NATIONAL BUREAU OF STANDARDS REPORT

10 108

ALGORITHMS FOR CALCULATING THE TRANSIENT HEAT CONDUCTION BY THERMAL RESPONSE FACTORS FOR MULTI-LAYER STRUCTURES OF VARIOUS HEAT CONDUCTION SYSTEMS

(Theories, Computer Programs, and Sample Calculations)

U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards ⁺ was established by an act of Congress March 3, 1901. Today, in addition to serving as the Nation's central measurement laboratory, the Bureau is a principal focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. To this end the Bureau conducts research and provides central national services in four broad program areas. These are: (1) basic measurements and standards, (2) materials measurements and standards, (3) technological measurements and standards, and (4) transfer of technology.

The Bureau comprises the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Center for Radiation Research, the Center for Computer Sciences and Technology, and the Office for Information Programs.

THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of an Office of Measurement Services and the following technical divisions:

Applied Mathematics—Electricity—Metrology—Mechanics—Heat—Atomic and Molecular Physics—Radio Physics "—Radio Engineering "—Time and Frequency "—Astrophysics "—Cryogenics."

THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to improved methods of measurement standards, and data on the properties of well-characterized materials needed by industry, commerce, educational institutions, and Government; develops, produces, and distributes standard reference materials; relates the physical and chemical properties of materials to their behavior and their interaction with their environments; and provides advisory and research services to other Government agencies. The Institute consists of an Office of Standard Reference Materials and the following divisions:

Analytical Chemistry—Polymers—Metallurgy—Inorganic Materials—Physical Chemistry. **THE INSTITUTE FOR APPLIED TECHNOLOGY** provides technical services to promote the use of available technology and to facilitate technological innovation in industry and Government; cooperates with public and private organizations in the development of technological standards, and test methodologies; and provides advisory and research services for Federal, state, and local government agencies. The Institute consists of the following technical divisions and offices:

Engineering Standards—Weights and Measures — Invention and Innovation — Vehicle Systems Research—Product Evaluation—Building Research—Instrument Shops—Measurement Engineering—Electronic Technology—Technical Analysis.

THE CENTER FOR RADIATION RESEARCH engages in research, measurement, and application of radiation to the solution of Bureau mission problems and the problems of other agencies and institutions. The Center consists of the following divisions:

Reactor Radiation-Linac Radiation-Nuclear Radiation-Applied Radiation.

THE CENTER FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides technical services designed to aid Government agencies in the selection, acquisition, and effective use of automatic data processing equipment; and serves as the principal focus for the development of Federal standards for automatic data processing equipment, techniques, and computer languages. The Center consists of the following offices and divisions:

Information Processing Standards—Computer Information — Computer Services — Systems Development—Information Processing Technology.

THE OFFICE FOR INFORMATION PROGRAMS promotes optimum dissemination and accessibility of scientific information generated within NBS and other agencies of the Federal government; promotes the development of the National Standard Reference Data System and a system of information analysis centers dealing with the broader aspects of the National Measurement System, and provides appropriate services to ensure that the NBS staff has optimum accessibility to the scientific information of the world. The Office consists of the following organizational units:

Office of Standard Reference Data—Clearinghouse for Federal Scientific and Technical Information 4—Office of Technical Information and Publications—Library—Office of Public Information—Office of International Relations.

Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted: mailing address Washington, D.C. 20234.

 ² Located at Boulder, Colorado 80302,
 ³ Located at 5285 Port Royal Road, Springfield, Virginia 22151.

NATIONAL BUREAU OF STANDARDS REPORT

NBS PROJECT

NBS REPORT

4212239

August 28, 1969

10 108

ALGORITHMS FOR CALCULATING THE TRANSIENT HEAT CONDUCTION BY THERMAL RESPONSE FACTORS FOR MULTI-LAYER STRUCTURES OF VARIOUS HEAT CONDUCTION SYSTEMS

(Theories, Computer Programs, and Sample Calculations)

by

T. Kusuda

IMPORTANT NOTICE

NATIONAL BUREAU OF ST/ for use within the Government. and review. For this reason, the whole or in part, is not authori Bureau of Standards, Washingto the Report has been specifically

Approved for public release by the director of the National Institute of Standards and Technology (NIST) on October 9, 2015

s accounting documents intended

subjected to additional evaluation

listing of this Report, either in

Office of the Director, National

y the Government agency for which

pies for its own use.

U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

PREFACE

A paper entitled "Thermal Response Factors for Multi-layer Structures of Various Heat Conduction Systems" was published in the 1969 Transactions of the American Society of Heating, Refrigerating and Air Conditioning Engineers (Vol. 75, Part 1, pp. 246-271). A computer program mentioned in that paper alled RESPTK was used to obtain thermal response factors for walls, solid objects and semi-infinite walls of planes, cylindrical and spherical systems. In order to respond to the many requests for the computer program, the Fortran listing, the input instructions of RESPTK and various modifications to that paper have been included in this report.

Contingent upon the responses given to this report a formal NBS publication may be issued in the future as a Building Science Series paper.

ABSTRACT

The thermal response factor method for calculating transient heat conduction through multi-layer slabs is generalized to include the solutions for many other important engineering heat transfer problems. Response factor formulas for multi-layer structures of cylindrical and spherical objects (hollow as well as solid), plane and curved surface walls adjacent to an infinitely thick heat conduction medium, such as the ground, and to plane slabs, are presented in this paper. Numerical evaluation of these formulas is carried out for selected multi-layer structures and results are tabulated.

Also included in this report are Fortran listings of the response factor calculation programs and sample usages of the computer programs for evaluating heat conduction through building walls.

Key Words: Thermal response factors, multi-layer structures, transient heat conduction, cylinder and sphere

Nomenclature

Unless otherwise specified, the following symbols are used throughout this paper. Since the units attached to symbols represent the English system (still most popular among heat and air conditioning engineers in the United States), a conversion table for standard metric units is also provided at the end of this section.

A, B, C, D	Elements of overall temperature flux matrix
$A_{v}, B_{v}, C_{v}, D_{v}$	Elements of individual layer temperature-flux
	matrix
F	Heat flux, Btu hr^{-1} ft ⁻²
f	Laplace transform of heat flux
^h I, ^h o	Exterior wall surface heat conductance [Btu ft ⁻² F ⁻¹ hr ⁻¹]
I	Irradiated heat flux, [Btu ft^{-2} hr^{-1} F^{-1}]
j	Complex number notation = $\sqrt{-1}$
λ _ν	Thermal conductivity of the vth layer
	$[Btu hr^{-1} F^{-1} ft^{-1}]$
1 _v	Thickness of the vth layer, [ft.]
m	Curvature index: m = 0, plane; m = 1, cylin-
	der; m = 2, sphere
N	A large number
n	Total number of layers to be considered
р	Laplace transform parameter (p is treated as a
	complex variable for the inversion integral)
Q	Heat flux, [Btu $hr^{-1} ft^{-2}$]

i

q	$=\sqrt{\frac{p}{\alpha}}$
r _v , r _{v+1}	Radii of the bounding surfaces of the vth
	layer, [ft]
R _v	Thermal resistance of the oth layer, [ft ² F hr Btu ⁻¹]
R	General response function defined in the text
T	Temperature, [F]
То	Initial temperature at $t = 0$, [F]
^T ν ^{* T} ν+1	Boundary temperatures of the vth layer, [F]
ν _ν , ν _{ν+1}	Temperature departure of the v th layer, (T - v
	T_0 and $(T_{v+1}-T_0)$, respectively, [F]
$\bar{v}_{v}, \bar{v}_{v+1}$	Laplace transforms of the temperature depar-
	tures, V and $V_{\nu+1}$
X _i , Y _i , and Z _i	Response factors, [Btu $ft^{-2} F^{-1} hr^{-1}$]
X _i , Y _i , and Z _i	Modified response factors [Btu ft ⁻² F ⁻¹ hr ⁻¹]
a _v	Thermal diffusivity of vth layer, $[ft^2 hr^{-1}]$
φ	Characteristic function of pulses
δ	Time increment, [hr]
۵,	Determinant of the matrix for A_{ν} , B_{ν} , C_{ν} , D_{ν}
Г	Determinant of the matrix of A, B, C, D
t	Time coordinate t _i = t - iδ, [hr]
Т	Time index $t = \tau \delta$
Ω	$\Omega = \beta_{fl} \delta$
β _ħ	$\beta_{\frac{1}{2}} = -p_{\frac{1}{2}}$, roots for residue evaluation
	$k = 1, 2, 3, \dots$
Ψ(β _ħ)	Defined in the text, eq. (26) ii

Subscripts

- v =layer boundaries
- \hbar = roots for the residue evaluation
- i = response factor series in relation to time series
- τ = discrete time

To convert from	Multiply by	To Obtain
$Q = Btu hr^{-1} ft^{-2}$	3.152481E + 00	W m ⁻²
$h = Btu hr^{-1} ft^{-2} \circ F^{-1}$	5.6783E + 00	$W m^{-2} K^{-1}$
$\lambda = Btu, hr^{-1} ft^{-1} \circ F^{-1}$	0.14423E - 02	W m ⁻¹ K ⁻¹
$c = Btu 1b^{-1} F^{-1}$	4.187E + 03	J Kg ^{−1} °K ^{−1}
$\rho = 1b ft^{-3}$	1.602E + 01	Kg m ⁻³
$\alpha = ft^2 hr^{-1}$	2.581E - 05	m ² s ⁻¹
$\ell = ft$	3.048E - 01	m

Unit Conversion

1. Introduction

A recent advance in computer application for hour by hour building heat transfer calculations has made it possible to improve the Response Factor technique in transient heat conduction analysis. This improved response factor method permits an accurate evaluation of transient (nonsteady and/or aperiodic) heat conduction through multi-layer walls and roofs, which has heretofore been extremely difficult.

It should be stated that an existing procedure commonly known in the U. S. as the Mackey and Wright $\frac{1-2}{}$ solution for evaluating the building heat transfer has been based upon the assumption that the building walls and roofs experience steady periodic temperature cycles on a diurnal basis. Their solution obtained using this assumption is inadequate for the accurate evaluation of actual hour-by-hour heat gain or loss of buildings.

Another well-known approach solving the transient heat transfer is finite difference approximations to the heat conduction equation. Although the computational procedures involved in this latter technique are less complicated than analytical procedures, extremely small grid sizes are required for finite difference time and space coordinates if computational stability is to be retained in calculating transient heat flow for a multi-layer heat flow problem.

The Response Factor Method has been treated previously by several authors $\frac{3-8}{}$. This method basically utilizes the superposition principle in such a manner that the overall thermal response of the building structure at a selected time is the sum of the responses caused by many individual temperature pulses during preceding significant times. Thus, by simulating the transient boundary temperatures by a train of pulses, and by summing up the heat flux caused by each pulse, the total heat flux at a given time can be derived. The calculation of the thermal response of multi-layer walls and roofs due to each individual temperature pulse has in the past been simulated by the concept of a finite number of lumped-resistances-and-capacitances by equating the heat flow path to an electrical circuit analog. A significant contribution has been made recently by Mitalas and Arseneault $\frac{9}{}$, who improved considerably the accuracy of the calculation by avoiding the lumped-resistance-andcapacitance concept. Mitalas and Arseneault were able to solve the differential equation of heat conduction for the multilayer system by employing a matrix equation of Laplace transforms $\frac{10}{}$. Although the matrix equation of the composite wall has been employed effectively in the past, previous efforts $\frac{1,2,6,7,8}{}$ have used Fourier series simulation of the boundary temperature functions. The previous difficulty of applying the matrix method for a periodic heat transfer problem was primarily due to the complexity of evaluating the inversion integrals of the Laplace transforms. Using a high-speed digital computer, Mitalas

and Arsenault were able numerically to invert the Laplace transform matrix for the multi-layer heat conduction equation when a periodic or transient boundary temperature function is simulated by a train of triangular pulses.

In this paper, the method employed by Mitalas and Arseneault is extended to cover walls and roofs with cylindrical and spherical curvatures. The response factors for the cylindrical and spherical walls may also be useful in analyzing the transient heat flow through pipes, underground shelters and structures, storage tanks, and tunnels. Sample calculations for a typical brick wall were performed using a computer program to carry out the mathematical procedures outlined in this paper. Results of the calculations for plane, cylindrical and spherical walls are compared with those obtained by an exact analytical method for a steady periodic boundary temperature profile.

Also presented in this paper are formulas for evaluating heat flux in semi-infinite systems, interfacial temperatures and heat fluxes of the multi-layer transient system, and the analyses for non-linear boundary heat transfer problems.

2. Heat Conduction Through a Homogeneous Layer

The heat conduction equations for one-dimensional heat flow in a homogeneous layer of a multilayer system are first analyzed. Assume that this particular layer has thermal diffusivity α_v , thermal conductivity λ_v , and at time t has boundary temperatures $T_v(t)$ at the surface $r = r_v$, and $T_{v+1}(t)$ at the surface $r = r_{v+1}$. Also assume that the temperature of the layer at time t = 0 was constant at T_o . The differential equation and boundary conditions describing the conditions stated above are then

$$\frac{\partial^2 T}{\partial r^2} + \frac{m}{r} \frac{\partial T}{\partial r} = \frac{1}{\alpha_v} \frac{\partial T}{\partial t} \text{ for } m = 0, 1, \text{ or } 2$$
(1)

$$T = T_v \text{ at } r = r_v \text{ for } t > 0$$

$$T = T_{v+1} \text{ at } r = r_{v+1}$$

$$T = T_o \text{ for all } r \text{ at } t = 0$$

Applying the Laplace transform to the above relations, it is possible to write

$$\frac{\mathrm{d}^{2}\bar{V}}{\mathrm{d}r^{2}} + \frac{\mathrm{m}}{\mathrm{r}}\frac{\mathrm{d}\bar{V}}{\mathrm{d}r} = q_{v}^{2}\bar{V}$$
(2)

$$\overline{V} = \overline{V}_{V}$$
 at $r = r_{V}$
 $\overline{V} = \overline{V}_{V+1}$ at $r = r_{V+1}$
where ∞

where

$$= \int_{0} (T - T_{0})e^{-pt}dt$$
(3)

$$q_{\mathcal{V}} = \sqrt{\frac{p}{\alpha_{\mathcal{V}}}}$$
(4)

and p is the Laplace transform operator.

v

A general solution of these Laplace transform equations for heat conduction may be written in matrix form,

$$\begin{pmatrix} \mathbf{\tilde{v}} \\ \mathbf{f} \\ \mathbf{v} \\ \mathbf{v} \end{pmatrix} = \begin{pmatrix} \mathbf{A} \\ \mathbf{C} \\ \mathbf{v} \\ \mathbf{v} \end{pmatrix} \begin{pmatrix} \mathbf{\tilde{v}} \\ \mathbf{D} \\ \mathbf{v} \end{pmatrix} \begin{pmatrix} \mathbf{\tilde{v}} \\ \mathbf{f} \\ \mathbf{v+1} \end{pmatrix}$$
 (5)

or by rearranging,

$$\begin{pmatrix} \mathbf{f} \\ \mathbf{f}_{\nu+1} \end{pmatrix} = \begin{pmatrix} \frac{D_{\nu}}{B} & -\frac{1}{B_{\nu}} \\ \frac{1}{B_{\nu}} & -\frac{A_{\nu}}{B_{\nu}} \end{pmatrix} \begin{pmatrix} \mathbf{\tilde{v}} \\ \mathbf{\tilde{v}}_{\nu+1} \end{pmatrix}$$
(6)

where f_{v} and f_{v+1} are the Laplace transforms of $-\lambda \frac{dV}{vdr}$, heat flux at $r = r_{v}$, and r_{v+1} , respectively. Specific expressions for each element of the matrix in (5) for the cases of m = 0, 1, and 2 are shown in Tables 1, 2 and 3.

By using the expressions in Tables 1, 2, and 3, it can be shown that the determinant of the matrix in (5) is

$$\Gamma_{\nu} = \begin{vmatrix} A_{\nu} & B_{\nu} \\ C_{\nu} & D_{\nu}^{\nu} \end{vmatrix} = \left(\frac{r_{\nu+1}}{r_{\nu}}\right)^{m}$$
(7)

3. Multi-layer Heat Conduction

The solutions obtained for the single layer (the vth layer) bounded by $\mathbf{r} = \mathbf{r}_{v}$ and $\mathbf{r} = \mathbf{r}_{v+1}$ are valid for each of the other layers of a multilayer slab, so that one may write for each layer:

1st layer:
$$\begin{pmatrix} \overline{V}_1 \\ f_1 \end{pmatrix} = \begin{pmatrix} A_1 & B_1 \\ C_1 & D_1 \end{pmatrix} \begin{pmatrix} \overline{V}_2 \\ f_2 \end{pmatrix}$$

2nd layer: $\begin{pmatrix} \overline{V}_2 \\ f_2 \end{pmatrix} = \begin{pmatrix} A_2 & B_2 \\ C_2 & D_2 \end{pmatrix} \begin{pmatrix} \overline{V}_3 \\ f_3 \end{pmatrix}$
(8)
(n-1)st layer: $\begin{pmatrix} \overline{V}_{n-1} \\ f_{n-1} \end{pmatrix} = \begin{pmatrix} A_{n-1} & B_{n-1} \\ C_{n-1} & D_{n-1} \end{pmatrix} \begin{pmatrix} \overline{V}_n \\ f_n \end{pmatrix}$

This is predicted upon the assumption that there is perfect thermal contact at the interface of the layers of the multi-layer slab giving continuity of temperature and heat flux. Combining the above matrix equations give

$$\begin{pmatrix} \overline{\mathbf{V}}_{1} \\ \mathbf{f}_{1} \end{pmatrix} = \begin{pmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{pmatrix} \begin{pmatrix} \overline{\mathbf{V}}_{n} \\ \mathbf{f}_{n} \end{pmatrix}$$
(9)

where

$$\begin{pmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{pmatrix} = \begin{pmatrix} \mathbf{A}_1 & \mathbf{B}_1 \\ \mathbf{C}_1 & \mathbf{D}_1 \end{pmatrix} \begin{pmatrix} \mathbf{A}_2 & \mathbf{B}_2 \\ \mathbf{C}_2 & \mathbf{D}_2 \end{pmatrix} \cdots \begin{pmatrix} \mathbf{A}_{n-1} & \mathbf{B}_{n-1} \\ \mathbf{C}_{n-1} & \mathbf{D}_{n-1} \end{pmatrix}$$
(10)

If the vth layer of the multi-layer slab has a negligibly small thermal mass, (e.g., is a fully enclosed air space), the matrix elements for that layer are

$$A_{v} = 1$$

$$B_{v} = R_{v}$$

$$C_{v} = 0$$

$$D_{v} = \Gamma_{v}$$
(11)

where R, is the thermal resistance of the layer.

Applying matrix algebra, the determinant of the overall matrix in (10) can be shown to be

$$\begin{vmatrix} A & B \\ C & D \end{vmatrix} = \Gamma = \Gamma_1 \cdot \Gamma_2 \cdot \Gamma_3 \dots \Gamma_{n-1} = \left(\frac{r_n}{r_1}\right)^m.$$
(12)

From (9), the Laplace transform of the heat flux matrix relation is

$$\begin{pmatrix} f_1 \\ f_n \end{pmatrix} = \begin{pmatrix} \frac{D}{B} & -\frac{\Gamma}{B} \\ \frac{1}{B} & -\frac{A}{B} \end{pmatrix} \begin{pmatrix} \overline{V}_1 \\ \overline{V}_n \end{pmatrix}$$
(13)

The heat flux at each surface can be evaluated by applying the inversion theorem of the Laplace transform to equation (13).

4. Superposition Principle and the Inversion of

Laplace Transforms

The inversion of (13) can be approximated easily by applying the superposition principle where the slab temperature T is represented by a linear sum of functions V_i (i = 1, 2,) such that

5

10

$$\mathbf{T} - \mathbf{T}_{0} = \sum_{i=0}^{\infty} \mathbf{V}_{i}(\mathbf{t}_{i})$$
(14)

Furthermore, the boundary temperature functions T_1 and T_n at $r = r_1$ and $r = r_n$ are assumed to be represented by a series of pulse functions such that

$$V_{1} = T_{1} - T_{0} = \bigvee_{i=0}^{\infty} V_{1,i} \varphi(t_{i})$$
$$V_{n} = T_{n} - T_{0} = \bigvee_{i=0}^{\infty} V_{n,i} \varphi(t_{i})$$

- 15 In the above equation, $V_{1,i}$ and $V_{n,i}$ are pulse heights at time $t = i\delta$ for the boundary surfaces, where δ is the discrete time interval of the pulses. The pulse function $\varphi(t_i)$ is defined only for $0 < t_i < m'\delta$, where m' is the width of the pulse at the time base. The simplest pulse most commonly used is the rectangular pulse of width δ , (or m' = 1),
- 20 such as shown in Fig. 1, and it can be described by the following pulse function

$$\varphi(t_i) = 0 \qquad t_i \leq 0$$
$$= 1 \qquad 0 < t_i \leq \delta$$
$$= 0 \qquad t_i > \delta$$

Т

Fig. 2, Trapezoidal pulses

Although the rectangular pulse simulation of the boundary temperatures is very simple, the approximation of a complex profile by a finite number of rectangular pulses inevitably causes loss of accuracy unless the time increment δ is chosen extremely small. A considerable gain in the accuracy, however, can be restored if the boundary temperatures are simulated by trapezoidal pulses, such as shown in Fig. 2. It can be proven also that two overlapping triangular pulses (dotted line) of base width of 2δ have identical thermal response to that created by the trapezoidal pulse of width δ , which is shared by the two triangular pulses (see Fig. 2). The triangular pulse of m' = 2 is, however, better suited for this analysis than the trapezoidal pulse, since it represents each pulse by a single pulse instead of two. The pulse function for a triangular pulse of base 2δ is

$$\varphi(t_i) = 0 \qquad \text{for} \qquad t_i \leq 0$$

$$= t_i / \delta \qquad \text{for} \quad 0 < t_i \leq \delta \qquad (16)$$

$$= 2 - t_i / \delta \qquad \text{for} \quad \delta < t_i \leq 2\delta$$

$$= 0 \qquad \text{for} \qquad t_i > 2\delta$$

Substituting (14) and (16) into the original differential equation it is found that the solutions obtained for V are also valid for V_i (i = 1, 2, ∞), provided that the new time coordinate t_i used for V, is related to the original time coordinate t by

The Laplace transform flux relation for $V_{1,i}$ and $V_{n,i}$, similar to equation (13) is then written as

$$\begin{pmatrix} f_{1,i} \\ f_{n,i} \end{pmatrix} = \overline{\varphi} \begin{pmatrix} \frac{D}{B} & -\frac{\Gamma}{B} \\ \frac{1}{B} & -\frac{A}{B} \end{pmatrix} \begin{pmatrix} V_{1}, t-i\delta \\ V_{n}, t-i\delta \end{pmatrix}$$
(17)

where $\bar{\varphi}$ is the Laplace transform of the pulse function φ , or $\overline{\varphi} = \frac{1}{\delta p^2} \text{ for } 0 < t_i \leq \delta$ $= \frac{1}{\delta p^2} (1 - 2e^{-p\delta}) \text{ for } \delta < t_i \leq 2\delta$ $= \frac{1}{\delta p^2} (1 - e^{-p\delta})^2, \text{ for } 2\delta < t_i$

for the triangular pulse function.

The inversion of the Laplace transform can be accomplished by applying the residue theorem to the inversion integral, details of which are given elsewhere $\frac{10}{}$.

The inversion of flux equation (17) essentially involves the analysis of the following general formula

$$f_i = \overline{\varphi} \, \frac{R}{B} \tag{19}$$

(18)

where R represents D, Γ , 1, or A in equation (17). The inversion of (19) yields

$$F_{i} = \lim_{p \to 0} \frac{d}{dp} \left[\frac{p^{2} \overline{\varphi} R e^{pt_{i}}}{B} \right] + \sum_{\substack{n=1 \\ n \neq 1}}^{\infty} \left[\frac{\overline{\varphi} R e^{pt_{i}}}{\frac{dB}{dp}} \right]_{p=-\beta_{n}}$$
(20)

where $\beta_{\hat{R}}$ ($\hat{n} = 1, 2, ...$) are the real roots of the equation

$$B(p = -\beta_{k}) = 0. \tag{21}$$

In order to evaluate equation (20), values of A, B, D, $\frac{dA}{dp}$, $\frac{dB}{dp}$, $\frac{dD}{dp}$ at p = 0 and $p = -\beta_{\frac{R}{2}}$, ($\frac{R}{dp} = 0$, 1, 2,) are needed.

The derivatives of matrix elements A_{ν} , B_{ν} , C_{ν} , and D_{ν} are provided in tables 4, 5, and 6 to assist in the calculation of the derivatives of A, B, C, and D by the following relationship:

$$\frac{d}{dp} \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} \frac{dA_{1}}{dp} & \frac{dB_{1}}{dp} \\ \frac{dC_{1}}{dp} & \frac{dD_{1}}{dp} \end{pmatrix} \begin{pmatrix} A_{2} & B_{2} \\ C_{2} & D_{2} \end{pmatrix} \cdots \begin{pmatrix} A_{n-1} & B_{n-1} \\ C_{n-1} & D_{n-1} \end{pmatrix} \\
+ \begin{pmatrix} A_{1} & B_{1} \\ C_{1} & D_{1} \end{pmatrix} \begin{pmatrix} \frac{dA_{2}}{dp} & \frac{dB_{2}}{dp} \\ \frac{dC_{2}}{dp} & \frac{dD_{2}}{dp} \end{pmatrix} \cdots \begin{pmatrix} A_{n-1} & B_{n-1} \\ C_{n-1} & D_{n-1} \end{pmatrix} (22) \\
+ \begin{pmatrix} A_{1} & B_{1} \\ C_{1} & D_{1} \end{pmatrix} \begin{pmatrix} A_{2} & B_{2} \\ \frac{dC_{2}}{dp} & \frac{dD_{2}}{dp} \end{pmatrix} \cdots \begin{pmatrix} \frac{dA_{n-1}}{dp} & \frac{dB_{n-1}}{dp} \\ \frac{dC_{n-1}}{dp} & \frac{dB_{n-1}}{dp} \end{pmatrix} (22)$$

dp

dp

Applying the theory of limits, it can also be shown that

2

 $\lim_{p \to 0} \begin{pmatrix} A_{\nu} & B_{\nu} \\ C_{\nu} & D_{\nu} \end{pmatrix} = \begin{pmatrix} 1 & R_{\nu} \\ 0 & 1 \end{pmatrix} \qquad \text{for } m = 0$ $= \begin{pmatrix} 1 & \frac{r_{\nu+1}}{\lambda_{\nu}} \ln\left(\frac{r_{\nu+1}}{r_{\nu}}\right) \\ 0 & \frac{r_{\nu+1}}{r_{\nu}} \end{pmatrix} \qquad \text{for } m = 1 \qquad (23)$

$$= \begin{pmatrix} 1 & R_{v} \left(\frac{-v+1}{r_{v}}\right) \\ & & \left(\frac{r_{v+1}}{r_{v}}\right)^{2} \end{pmatrix}$$
 for $m = 2$

It is extremely interesting to note that the multiplication of these successive matrices for the multi-component slab would yield

$$\lim_{\mathbf{p}\to\mathbf{0}} \begin{pmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{pmatrix} = \begin{pmatrix} \mathbf{1} & \frac{\mathbf{I}}{\mathbf{U}} \\ \mathbf{0} & \Gamma \end{pmatrix}$$

where U' = overall steady-state heat conductance from the surface 1 to n + 1.

The first term of the right-hand side of equation (20) can be reduced further, for the case of the triangular pulse function, to the following relation

$$\lim_{p \to 0} \frac{d}{dp} \left[\frac{p^2 \overline{\varphi} Re^{pt_i}}{B} \right] = \frac{U}{\delta} \left[\frac{dR}{dp} + R - \frac{R}{dp} \frac{dB}{dp} \right]_{p=0}, \ 0 < t_i \le \delta$$
(24)
$$= -\frac{U}{\delta} \left[\frac{dR}{dp} - \frac{R}{dp} \frac{dB}{dp} \right]_{p=0}, \ \delta < t_i \le 2\delta$$
$$= 0 \qquad , \ 2\delta < t_i$$

Table 7 is provided for the evaluation of the limits of each of the matrix elements and their derivatives, such as R and $\frac{dR}{dp}$, as p approaches zero.

Letting $p = -\beta_{h}$, then

$$\mathbf{q}_{v} = \mathbf{j} \sqrt{\frac{\beta \hbar}{\alpha_{v}}}$$
(25)

whereby the complex functions of Tables 1, 2, 3, 4, 5, and 6 and the derivatives occurring in series on the right-hand side of equation (20) can be represented as real functions as shown in Tables 8, 9, and 10.

The functions indicated in Tables 8, 9 and 10 are to be evaluated at each of the negative real roots $-\beta_{\frac{1}{2}}$ ($\frac{1}{2} = 1, 2, 3, \ldots$) of the equation B(p) = 0, for all non-negligible terms of equation (20). The magnitude of the terms, however, decreases quite rapidly with increase in $\frac{1}{2}$, particularly when t_i is large or when a particular component has a large $\frac{l_N}{\sqrt{\alpha_N}}$ value. For the triangular pulse function, the series of equation (20) can be evaluated by the following relations

$$\sum_{h=1}^{\infty} \left[\frac{\overline{\varphi} R e^{pt_{i}}}{\frac{dB}{dp}} \right]_{p=-\beta\hbar} = \sum_{h=1}^{\infty} \overline{\Psi}(\beta_{h}) e^{-\Omega} \qquad \text{for } t_{i} \leq \delta$$

$$= \sum_{h=1}^{\infty} \overline{\Psi}(\beta_{h}) (1 - 2e^{\lambda}) e^{-2\Omega} \qquad \text{for } \delta < t_{i} \leq 2\delta$$

$$= \sum_{h=1}^{\infty} \overline{\Psi}(\beta_{h}) (1 - e^{\lambda})^{2} e^{-i\Omega} \qquad \text{for } t_{i} = i\delta > 2\delta$$

$$= \sum_{h=1}^{\infty} \overline{\Psi}(\beta_{h}) (1 - e^{\lambda})^{2} e^{-i\Omega} \qquad \text{for } t_{i} = i\delta > 2\delta$$

where

$$\Psi(\beta_{\mathcal{R}}) = \frac{1}{\delta \beta_{\mathcal{R}}^{2}} \begin{bmatrix} \frac{R}{dB} \\ \frac{dB}{dp} \end{bmatrix}_{p=-\beta_{\mathcal{R}}}$$

 $\Omega = \beta_{R}\delta$

where R may be any one of A, Γ , 1, or D of Equation (17).

By combining (24) and (26), generalized response factors X_i (i = 0, 1, 2, ∞) may be derived in terms of R and its derivative $\frac{dR}{dp}$ as follows:

$$X_{0} = \begin{bmatrix} \frac{R}{B} \end{bmatrix}_{p=0} + \begin{bmatrix} \frac{dR}{dp} & -\frac{R}{dp} & \frac{dB}{dp} \\ B\delta & -\frac{R}{B^{2}\delta} & -\frac{R}{B^{2}\delta} & -\frac{R}{B^{2}\delta} \end{bmatrix}_{p=0} + \sum_{h=1}^{\infty} \overline{\Psi}(\beta_{h}) (1-2e^{\beta_{h}\delta}) e^{-2\beta_{h}\delta} \quad (\text{for } i = 1)$$

$$X_{1} = -\begin{bmatrix} \frac{dR}{dp} & -\frac{R}{B^{2}\delta} & -\frac{R}{B^{2}\delta} \\ B\delta & -\frac{R}{B^{2}\delta} & -\frac{R}{B^{2}\delta} & -\frac{R}{B^{2}\delta} \end{bmatrix}_{p=0} + \sum_{h=1}^{\infty} \overline{\Psi}(\beta_{h}) (1-2e^{\beta_{h}\delta}) e^{-2\beta_{h}\delta} \quad (\text{for } i = 2)$$

$$X_{1} = \sum_{h=1}^{\infty} \overline{\Psi}(\beta_{h}) (1-e^{\beta_{h}\delta})^{2} e^{-i\beta_{h}\delta} \quad (\text{for } i = 3, 4, \dots \infty)$$

Using these notations, the inversion of heat flux relation (17) may be expressed generally as

where X_i , Y_i , and Z_i are response factors and correspond to X_i of equation (27), (28) and (29) when R is replaced by D, 1, and A respectively.

By denoting the time coordinate t by increments of δ , say $t = \tau \delta$, $V_1(t - i\delta)$ may be expressed simply by $V_{1,\tau-i}$. Using the subscripted temperature notation, equation (28) can be used to express the original heat conduction system as follows

$$\binom{\mathbf{F}_{\mathbf{1},\tau}}{\mathbf{F}_{\mathbf{n},\tau}} = \sum_{\mathbf{i}=0}^{\infty} \binom{\mathbf{X}_{\mathbf{i}} - \Gamma \mathbf{Y}_{\mathbf{i}}}{\mathbf{Y}_{\mathbf{i}} - \mathbf{Z}_{\mathbf{i}}} \binom{\mathbf{V}_{\mathbf{1},\tau-\mathbf{i}}}{\mathbf{V}_{\mathbf{n},\tau-\mathbf{i}}}$$
(29)

This relation is called the convolution equation of the heat fluxes.

In equation (29), X_i , Y_i , and Z_i are called response factors. A close examination of (27), (28) and (29) reveals the following interesting facts:

1. Response factors X_i , Y_i , and Z_i tend to decrease with a common ratio $e^{-\beta_1 \delta}$ for large values of i or

$$\frac{X_{i+1}}{X_i} = \frac{Y_{i+1}}{Y_i} = \frac{Z_{i+1}}{Z_i} = e^{-\beta_1 \delta} \quad \text{if } i \ge N$$
(30)

and N is a large number. For a conventional building wall, N \approx 15.

2. To be compatible with the steady state heat flow condition when V_1 and V_n are constant, it is necessary that

$$\begin{vmatrix} \frac{1}{\Gamma} & \sum_{i=0}^{\infty} X_{i} \\ i = 0 \end{vmatrix} = \begin{vmatrix} \sum_{i=0}^{\infty} Y_{i} \\ i = 0 \end{vmatrix} = \begin{vmatrix} \sum_{i=0}^{\infty} Z_{i} \\ i = 0 \end{vmatrix} = U$$
(31)

where U is the overall heat transfer coefficient based upon $r = r_{n+1}$.

5. Sample Calculations

A digital computer program called RESPTK (refer to Appendix) has been developed at the National Bureau of Standards for calculating the response factors formulated in the previous sections. Sample walls with properties as shown in Fig. 3 and Table 11 were analyzed by this program for cases m = 0, 1, and 2 (for plane wall (PW), cylindrical wall (CW), and spherical wall (SW), respectively). The sample wall consists of two solid mass layers bounded by two air film layers. Table 12 shows the residues of $\frac{D}{\phi}$, $\frac{\phi}{B}$, and $\frac{A}{\phi}$ at p = 0 for $0 < t \le \delta$ and for $\delta < t \le 2\delta$. The residue of these functions becomes zero for $t > 2\delta$.

Table 13 gives β_{k} , the roots of B(p) = 0 along the negative real The response factors calculated by formula (20) for R = D, 1 and axis. A are indicated in Table 14 as X_i , Y_i , and Z_i , respectively. Also indicated at the end of Table 14 are the common ratios from (30) attained by successive values of each of the response factors when $i \ge 14$. Each of the response factors corresponds to the value evaluated at t = $i\delta$. As seen from Table 14, the response factors for plane, cylindrical, and spherical walls are very similar to each other in this particular wall. This is due to the fact that the curved walls used in the sample calculations had an innermost radius of 5 ft. and total wall thickness of 2/3 ft., which can be very closely simulated by the plane wall heat transfer. Using the response factors the heat flux values at $r = r_1$ and $r = r_5$ were also calculated for a periodic temperature profile, results of which are shown in Table 15, 16, and 17 corresponding respectively to the plane, cylindrical and spherical walls. Although the application of the response factor calculation is not limited to the periodic heat flow problem, the periodic heat flow problem was chosen for the sample calculation because exact solutions for the periodic heat flow problem can be used to check the accuracy of the

response factor method. (The response factor calculation is, in a rigorous sense, an approximate solution, where the boundary temperature profiles are approximated by a train of trapezoidal pulses). The exact solutions for the heat conduction equation under periodic boundary temperature conditions are obtained by setting in the original differential equation

$$T_{1} = T_{0} + \sum_{i=1}^{\infty} V_{1,i} e^{j\omega_{i}t}$$

$$T_{n} = T_{0} + \sum_{i=1}^{\infty} V_{n,i} e^{j\omega_{i}t}$$
(34)

$$A_{v,i} = \sqrt{\frac{\omega_i}{2\alpha_v}}$$
 (1+j), $\omega_i = \frac{i2\pi}{P}$ and $P = 24$

The heat flux relations in terms of complex variables are treated in reference [10]. Another computer program called ETD 2 was developed during the course of this study to perform the complex algebra calculation for the periodic heat flow problem. The results of the exact solutions are given in Tables 15, 16, and 17.

Agreement between the exact solutions and the solutions obtained by the response factor calculations shown in Tables 15, 16, and 17 is very good. To obtain this degree of agreement, the response factors had to be calculated up to i = 72. The compilation and computation of heat flux by response factors for all three walls using a UNIVAC 1108 took 34 seconds, while for a periodic heat transfer solution by complex algebra, the time was 16 seconds. The response factor calculation involves a lengthy iterative process in searching for the roots of B(p) = 0.

The plane wall response factors treated in this paper have also been calculated by D. G. Stephenson of the National Research Council of Canada $\frac{11}{}$. His results agree very well with those obtained in this paper.

6. Heating and Cooling of Plates, Cylinders and Spheres

For the calculation of heating and cooling loads for buildings, it may become necessary to determine the heat storage effect of interior furnishings, partitions, floors, ceilings, etc. This heat exchange problem may also be treated by the response factor method if these materials can be represented by simple geometric shapes such as solid plates, cylinders or spheres.

The boundary conditions for these cases are $\frac{\partial T}{\partial r} = 0$ at r = 0 for all t > 0 for the cylindrical and spherical cases (m \neq 0). For the case of cylindrical and spherical objects, the Laplace transform heat flux relation at the outside surface of the innermost core $r = r_1$ is expressed in terms of that core's thermal properties λ_1 and α_1

$$f_1 = G' \overline{V}_1 \tag{33}$$

where

$$G' = -\lambda_1 q_1 \left[\frac{I_1(q_1 r_1)}{I_0(q_1 r_1)} \right] \text{ for } m = 1$$
(34)

$$= \lambda_1 q_1 \left[\frac{1}{q_1 r_1} - \frac{\cosh (q_1 r_1)}{\sinh (q_1 r_1)} \right] \text{ for } m = 2$$
(35)

Combining this relationship with the rest of the outer multi-layer system as before

$$\begin{pmatrix} f_1 \\ f_n \end{pmatrix} = \begin{pmatrix} \frac{D}{B} & -\frac{\Gamma}{B} \\ \frac{1}{B} & -\frac{A}{B} \end{pmatrix} \begin{pmatrix} \overline{V}_1 \\ \overline{V}_n \end{pmatrix}$$
(36)

and noting that

$$f_1 = \frac{D}{B} \overline{V}_1 - \frac{\Gamma}{B} \overline{V}_n = G' \overline{V}_1, \qquad (37)$$

$$\overline{V}_{1} = \left(\frac{\frac{\Gamma}{B} \overline{V}_{n}}{\frac{D}{B} - G'}\right), \qquad (38)$$

then
$$f_n = \frac{\overline{V}_1}{B} - \frac{A}{B} \overline{V}_n$$
 (39)
 $= \frac{AG' - C}{D - BG'} \overline{V}_n$

The inversion of this heat flux relation is readily obtained by the residue theorem similar to equation (20). Table 18 shows specific expressions of G' dG'/dp for m = 1 and 2 (or for the cylinder and sphere.

For a plane shaped object heated or cooled at both surfaces in a space, the response factor representations of heat exchange between the objects and the air in space at time $t = \tau \delta$ is

$$q_{T} = \sum_{i=0}^{\infty} (X_{i} + Z_{i} - 2Y_{i}) T_{T-i}$$
(40)

where X_i , Y_i , Z_i (i = 0, 1, 2...) are response factors of the slab as defined in (30) including surface heat transfer coefficients, and $T_{\tau-i}$ represents space air temperature at time ($\tau - i$) δ .

7. Semi-infinite System

In many cases the transient heat conduction characteristics of semi-infinite and composite systems are needed. Problems of heat conduction to the paved earth surface, to the basement floor and to underground pipes are good examples for the semi-infinite system.

Assume the nth layer of the previous system (equations 8, 9, and 10) to be infinitely thick, its thermal conductivity and diffusivity been λ_n and α_n . For the infinitely thick nth layer, boundary conditions can be written as follows

$$T = T_n (t) \text{ at } r = r_n$$

$$T = T_0 \text{ for all t at } r_{n+1} \rightarrow \infty$$
(41)

The general solution in the Laplace transform domain is

$$f_n = G\overline{V}_n \tag{42}$$

where

$$G = \lambda_{n} q_{n} \text{ for } m = 0$$

$$= \lambda_{n} q_{n} \left[\frac{K_{1} (q_{n} r_{n})}{K_{0} (q_{n} r_{n})} \right]_{p} \text{for } m = 1$$

$$= \lambda_{n} q_{n} \left[1 + \frac{1}{q_{n} r_{n}} \right]_{p} \text{for } m = 2$$

$$q_{n} = \sqrt{\frac{P}{\alpha_{n}}}$$
(43)

Combining relation (37) with (9), the Laplace transform of the heat flux equation at $r = r_1$ (or at the surface) can be written as

$$\mathbf{f}_1 = \left(\frac{\mathbf{C} + \mathbf{D}\mathbf{G}}{\mathbf{A} + \mathbf{B}\mathbf{G}}\right) \ \overline{\mathbf{V}}_1 \tag{44}$$

The inversion of (44) cannot be obtained by the residue theorem as in the previous cases because of a branch point $\frac{10}{}$ at p = 0. The branch point integration described in reference [10] may be performed to yield the following response factor relations for the surface heat flux over a multi-layer semi-infinite system.

$$\mathbf{F}_{\tau} = \sum_{i=0}^{\infty} \overline{\mathbf{Z}}_{i} \mathbf{T}_{1,\tau-i}$$

where
$$\overline{Z}_0 = \phi_1$$

 $\overline{Z}_1 = \phi_2 - 2\phi_1$
 $\overline{Z}_i = \phi_i - 2\phi_{i-1} + \phi_{i-2} \text{ for } i \ge 3$
 $\phi_i = \int_0^{i\delta} \left(\frac{-1}{2\pi i} \int_{c_1 \text{ and } c_2} \left(\frac{C + DG}{A + BG}\right) \frac{ePt}{p\delta} dp\right) dt$

$$(45)$$

and c_1 and c_2 are paths of the line integral where p is defined by $p = re^{i\pi}$ and $p = re^{-i\pi}$ respectively for r from zero to infinity. Although the method described above is for a rigorous and generalized evaluation of response factors, an approximate solution to the problem may be obtained as described below.

For an approximate method, the response factor calculations will be performed for the surface layer region (which may or may not be of a multi-layer system) and for the semi-infinite region separately. The response factors for the former are denoted herein by X_i , Y_i and Z_i (i = 0, 1, 2,) and for the latter by Z'_i (i = 0, 1,).

The surface temperature of the entire region and the interfacial temperature (at $r = r_n$) between the surface layer and the semi-infinite regions at time τ are denoted by $T_{1,\tau}$ and $T_{n,\tau}$ respectively. At the interface, the following heat transfer relations can be established:

$$F_{n,\tau} = \sum_{i=0}^{\infty} Z_i^{\dagger} T_{n,\tau-i}$$

$$= \sum_{i=0}^{\infty} Y_i T_{1,\tau-i} - \sum_{i=0}^{\infty} Z_i T_{n,\tau-i}$$
(46)
(46)

Eliminating T from the above equation, and applying it to the heat flux at the surface $(r = r_1)$,

$$F_{1,\tau} = \sum_{i=0}^{\infty} \overline{z}_i T_{1,\tau-i}$$

where \overline{Z}_i (i = 0,1,... ∞) are the response factors for the overall system (multi-layer surface region plus the semi-infinite region), expressed as

$$\overline{Z}_{i} = X_{i} - \frac{Y_{i}^{2}}{Z_{i} + Z_{i}'}$$
 (47)

Table 19 shows mathematical formulas for obtaining Z'_i for m = 0, 1, and 2. Also shown in the Appendix are system schematics and response factors of various heat conduction systems treated in this paper.

8. Interfacial Temperatures

The response factor method can also be used to calculate the temperatures at the interfaces of a multi-layer wall system when surface temperatures at the outer surfaces are prescribed.

For the multi-layer system of Fig. 3, assume that the interfacial temperature at $r = r_3$ is to be calculated. The Laplace transforms of the matrix relations for the flux and temperature for the two subsystems, one for the layers 1 and 2, and the other for the layers 3 and 4, are written as follows:

By denoting

$$\begin{pmatrix} A^{(1)} & B^{(1)} \\ C^{(1)} & D^{(1)} \end{pmatrix} = \begin{pmatrix} A_3 & B_3 \\ C_3 & D_3 \end{pmatrix} \begin{pmatrix} 1 & -\frac{1}{h_0} \\ 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} A^{(2)} & B^{(2)} \\ C^{(2)} & D^{(2)} \end{pmatrix} = \begin{pmatrix} 1 & -\frac{1}{h_1} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} A_2 & B_2 \\ C_2 & D_2 \end{pmatrix}$$

$$\begin{pmatrix} A^{(2)} & B^{(2)} \\ C^{(2)} & D^{(2)} \end{pmatrix} \begin{pmatrix} A^{(1)} & B^{(1)} \\ C^{(1)} & D^{(1)} \end{pmatrix}$$

and by knowing that

$$\begin{pmatrix} \mathbf{f}\mathbf{I} \\ \mathbf{f}_{O} \end{pmatrix} = \begin{pmatrix} \overline{\mathbf{D}} & -\overline{\mathbf{I}} \\ \overline{\mathbf{B}} & -\overline{\mathbf{B}} \end{pmatrix} \begin{pmatrix} \overline{\mathbf{V}}\mathbf{I} \\ \overline{\mathbf{V}}_{O} \end{pmatrix}$$
$$\frac{1}{\overline{\mathbf{B}}} & -\frac{\overline{\mathbf{A}}}{\overline{\mathbf{B}}} \end{pmatrix} \begin{pmatrix} \overline{\mathbf{V}}\mathbf{I} \\ \overline{\mathbf{V}}_{O} \end{pmatrix}$$
$$\begin{pmatrix} \overline{\mathbf{V}}_{3} \\ \mathbf{f}_{3} \end{pmatrix} = \begin{pmatrix} \mathbf{A}(1) & \mathbf{B}(1) \\ \mathbf{C}(1) & \mathbf{D}(1) \end{pmatrix} \begin{pmatrix} \overline{\mathbf{V}}_{O} \\ \mathbf{f}_{O} \end{pmatrix}$$

and
it can be shown that

$$\bar{V}_{3} = \frac{B(1)}{B} \bar{V}_{1} + \left\{ \frac{B(2)}{B} \right\} \bar{V}_{0}.$$
 (48)

The inverse transform can be carried out to yield the following relation, if the triangular pulse simulations are used for V_i and V_o .

$$V_{3,\tau} = \sum_{i=0}^{\infty} (a_i \ V_{I,\tau-i} + b_i \ V_{o,\tau-i})$$
(49)

where, for example, b, can be evaluated by

$$b_{i} = \lim_{p \to 0} \frac{d}{dp} \left[\frac{B(2)}{B\delta} \, \bar{\varphi} e^{ip\delta} \right] + \sum_{\hbar=1}^{\infty} \left[\frac{B(2) \, \bar{\varphi} e^{ip\delta}}{p^{2}\delta \, \frac{dB}{dp}} \right]_{p=p_{\hbar}}$$
(50)

when $p_{\frac{1}{2}}$ is the $\frac{1}{2}$ h negative real root of B(p) = 0.

9. Application of Response Factors Calculation to

Non-Linear Boundary Problems

In many heat conduction problems, non-linear heat transfer relations occur at boundary surfaces. Two such cases of major importance are treated in this section as illustrative examples of the response factors technique.

Case 1: Stefan-Boltzmann type radiation heat exchange at one of the surfaces:

This situation is typical of the radiation heat exchange of space craft. Assume that the surfaces receive the solar radiation I, and become heated and in turn emit long wave-length radiation, which is proportional to the fourth power of the absolute temperature. The boundary heat transfer is then

$$-\lambda \left(\frac{\partial T}{\partial r}\right) = I(t) - \sigma \varepsilon T^{4}$$

surface (51)

where $\sigma = \text{Stefan-Boltzmann constant}$

 ϵ = surface emittance

If the inside surface of a wall of finite thickness is kept at a constant temperature T_0 , which is at the initial temperature when t = 0, the heat transfer relation at a time $t = \tau \delta$ is

$$Q_{\tau} = \sum_{i=0}^{\infty} (T_{\tau-i} - T_{o}) X_{i} = I_{\tau} - \sigma \varepsilon T_{\tau}^{4} - (52)$$

 $\mathbf{T}_{_{\mathbf{T}}}$ must be found from the following relation by iteration

$$T_{\tau} X_{o} + \sigma \varepsilon T_{\tau}^{4} = I_{\tau} - \sum_{i=1}^{\infty} (T_{\tau-i} - T_{o}) X_{i}$$
 (53)

Substituting the solution T_{τ} back into (39), the heat flux at time $t = \tau \delta$ can be obtained.

Case 2: Simultaneous heat and mass transfer boundary:

Transient heat transfer through a multilayer solid wall when one surface is wet and experiencing either evaporative or condensing heat and mass transfer is treated in this section. The surface boundary condition is:

$$-\lambda \left(\frac{\partial T}{\partial r}\right) = I + h_c (T_a - T) + K_D L(W_a - W)$$
surface
(54)

where

I = Irradiated heat flux h_c = Convective heat transfer coefficient K_D = Mass transfer coefficient T_a = Ambient air temperature W_a = Ambient air humidity ratio W = Humidity ratio of saturated air at the surface temperature, T

L = Latent heat of evaporation or condensation

Assuming again that the temperature of the other surface of the wall is kept constant at the initial system temperature at t = 0, the response factor relation for the iterative procedure for finding T_{T} will be written as

$$X_{o}(T_{T}-T_{o}) - h_{c}(T_{a}-T_{T}) - K_{D}L(W_{a}-W_{T}) = I_{T} - \sum_{i=0}^{\infty} X_{i}(T_{T-i}-T_{o})$$
(55)

As can be seen in this example, the irradiation, heat and mass transfer coefficients, air temperature and air humidity ratio can also be treated as time variables.

The value of T_{τ} must be found first from (55) by iteration and put back into the heat flux equation to calculate the heat transfer. Many other complex heat transfer problems can be solved in the same manner.

10. Calculation of Space Temperature

The response factors developed in this paper are not only useful for evaluating the conduction heat transfer, but also are applicable to the calculation of a space temperature.

Consider a simple room surrounded by a wall whose response factors are X_i , Y_i and Z_i (j = 0, 1, ...).

Also assume that the room air temperature at time t is established as a result of sensible heat balance among the following components:

$$q_{G} = heat generated at time \tau$$

$$q_{V} = cooling capacity of supply air$$

$$= 1.08 \cdot (CFM) \cdot (T_{\tau} - T_{s,\tau})$$
where (CFM) = supply air flow rate in
cu. ft per min.

$$T_{\tau} = room air temperature at time \tau$$

$$T_{s,\tau} = supply air temperature entering$$
the room

$$q_{a} = heat capacity of room air$$

$$= V_{a}C_{a} \frac{dT_{\tau}}{d\tau} = V_{a}C_{a} (T_{\tau} - T_{\tau-1})/\Delta\tau$$

where V_a = room air volume C_a = room air specific heat $\frac{dT_{\tau}}{d\tau}$ = time change of room air temperature q_w = heat gain to the room through the wall = $\left[-\sum_{j=0}^{\infty} T_{\tau-j} X_j + \sum_{j=0}^{\infty} T_{0,\tau-j} Y_j\right] A_w$

when $A_w = total$ wall area

It is assumed that the response factors were previously calculated for the heat flow in the direction from inside to outside in time increment $\Delta \tau$

The heat balance equation is

 $q_{G} + q_{w} - q_{v} = q_{a}$

The room air temperature T_{τ} is readily obtained by substituting each expression of heat flow into the above equation and factoring out T_{τ} as follows:

$$T_{\tau} = \frac{\bigvee_{a} C}{\Delta \tau} T_{\tau-1} - \left[\sum_{j=1}^{\infty} T_{\tau-j} X_{j} - \sum_{j=0}^{\infty} T_{o,\tau-j} Y_{j} \right] A_{w} + 1.08 \text{ (CFM)} T_{s,\tau} + q_{G}$$
$$-\frac{\bigvee_{a} C}{\Delta \tau} + 1.08 \text{ (CFM)} + X_{o} A_{w}$$

The knowledge of the past history of room air and outdoor air temperature, therefore, permits the evaluation of present room air temperature with the use of response factors. Although the example cited herein is a simple one, any degree of complexity can be added, if necessary, to make a complete heat balance of more complicated system.

11. Modified Response Factors

According to equation (29), the heat flux calculation by the convolution relation requires a large number of terms for the summation before the values of terms $X_i V_{\tau-i}$ becomes sufficiently small to be negligible. When the heat flux values are to be calculated successively, however, it is possible to shorten the computational efforts by making use of the modified response factors.

The modified response factor concept may be explained in conjunction with the common ratio (CR) relation of equation (30) as follows. From equation (29) the heat fluxes at $r = r_1$ for two consecutive times τ -1 and t can be expressed as

$$F_{1,\tau} = \sum_{i=0}^{\infty} (X_i V_{1,\tau-i} - \Gamma Y_i V_{n,\tau-i})$$
(56)

$$F_{1,\tau-1} = \sum_{i=0}^{\omega} (X_i V_{i,\tau-1-i} - \Gamma Y_i V_{n,\tau-1-i})$$
(57)

28

By multiplying the common ratio of the response factors (denoted here as $CR = e^{-\beta}1^{\delta}$) to the both sides of equation (57) and subtracting it from equation (56),

$$F_{1,\tau} - CR \cdot F_{1,\tau-1} = (X_{0} V_{1,\tau} - \Gamma Y_{0} V_{n,\tau}) + \sum_{i=1}^{\infty} \{ (X_{i} - X_{i-1} \cdot CR) V_{1,\tau-i} - \Gamma (Y_{i} - Y_{i-1} \cdot CR) V_{n,\tau-i} \}$$
(58)

By noting from equation (30) that

$$\frac{X_{i}}{X_{i-1}} = \frac{Y_{i}}{Y_{i-1}} = CR \qquad \text{for } i \ge N+1$$

the heat flux at $r = r_1$ for time τ may be calculated by

$$F_{1,\tau} = CR \cdot F_{1,\tau-1} + \sum_{i=0}^{N} (X_{i}^{\dagger} V_{i,\tau-i} - \Gamma Y_{i}^{\dagger} V_{n,\tau-i})$$
(59)

where

 $X_{i} = X_{i} - X_{i-1} \cdot CR$ $Y_{i} = Y_{i} - Y_{i-1} \cdot CR$ (60) for i = 1, 2, ... N

and

$$Y_{O} = Y_{O}$$

 $X_0' = X_0$

These sets of finite numbers, X_i , and Y_i (i = 0, 1 ... N), are called the modified response factors of the first kind.

Since the value of N is usually around 15, as indicated earlier for most of the building walls and roofs, the calculation effort for $F_{1,\tau}$ can be reduced drastically by employing the modified response factors. The similar expression can be derived for the heat flux at r = r_{n+1}, or for $F_{n,\tau}$.

Periodic heat flow

The response factor calculation can also be modified to shorten the periodic heat flow calculations. Under a periodic boundary condition, the temperatures and heat flux must assume the following relation

$$V_{1,\tau} = V_{1,\tau-\hbar p}$$
$$V_{n,\tau} = V_{n,\tau-\hbar p}$$
$$F_{1,\tau} = F_{1,\tau-\hbar p}$$

where p is the period of the cycle and $\hbar = 0, 1, 2, \dots \infty$.

Assuming that p is larger than N, beyond which the response factors are evaluated by the common ratio relation (30), equation (29) can be expressed as follows:

$$\begin{pmatrix} F_{1,\tau} \\ F_{n,\tau} \end{pmatrix} = \sum_{i=0}^{p-1} \begin{pmatrix} X_i - \Gamma Y_i \\ Y_i - Z_i \end{pmatrix} \begin{pmatrix} V_{1,\tau-1} \\ V_{n,\tau-1} \end{pmatrix}$$

for $o < \tau < p-1$

whereby X_i' , Y_i' and Z_i are modified response factors of the second kind according to the following relationships

$$X_{i}' = X_{i} + X_{p} \cdot (CR)^{i} / (1 - CR^{p})$$
$$Y_{i}' = Y_{i} + Y_{p} (CR)^{i} / (1 - CR^{p})$$
$$Z_{i}' = Z_{i} + Z_{p} (CR)^{i} / (1 - CR^{p})$$

12. Conclusions

General formulae for calculating thermal response factors for multi-layer structures of plane, cylindrical and spherical construction, have been developed and these formulae are listed in this report. Several applications of these response factors are also illustrated such as

- a. Interface temperature of a multi-layer construction
- b. Evaluation of non-linear boundary temperature problem such as radiation and evaporation
- c. Evaluation of room air temperature

The computer program called RESPTK developed to obtain the response factors based upon the formulae described in this report is found in the Appendix.

USCOMM-NBS-DC

31

$$m = 0$$

$$A_{\nu} = \cosh (q_{\nu}\ell_{\nu})$$

$$B_{\nu} = R_{\nu} S(q_{\nu}\ell_{\nu})$$

$$C_{\nu} = \frac{q_{\nu}\ell_{\nu}}{R_{\nu}} \sinh (q_{\nu}\ell_{\nu})$$

$$D_{\nu} = \cosh (q_{\nu}\ell_{\nu})$$
where $\ell_{\nu} = r_{\nu+1} - r_{\nu}$

$$R_{\nu} = \frac{\ell_{\nu}}{\lambda_{\nu}}$$

$$S(q_{\nu}\ell_{\nu}) = \frac{\sinh (q_{\nu}\ell_{\nu})}{q_{\nu}\ell_{\nu}}$$

Table 2 Matrix Elements for Cylindrical Layer

$$m = 1$$

$$A_{v} = (q_{v} r_{v+1}) (I_{0,1} K_{1,2} + K_{0,1} I_{1,2})$$

$$B_{v} = \left(\frac{r_{v+1}}{\lambda_{v}}\right) \left(-I_{0,1} K_{0,2} + K_{0,1} I_{0,2}\right)$$

$$C_{v} = \lambda_{v} q_{v}^{2} r_{v+1} (-I_{1,1} K_{1,2} + K_{1,1} I_{1,2})$$

$$D_{v} = (q_{v} r_{v+1}) (I_{1,1} K_{0,2} + K_{1,1} I_{0,2})$$

where
$$I_{0,1} = I_0(q_V, r_V)$$

 $I_{0,2} = I_0(q_V, r_{V+1})$
 $I_{1,1} = I_1(q_V, r_V)$
 $I_{1,2} = I_1(q_V, r_{V+1})$
 $K_{0,1} = K_0(q_V, r_V)$
 $K_{0,2} = K_0(q_V, r_V+1)$
 $K_{1,1} = K_1(q_V, r_V)$

These are the modified Bessel Functions.

Table 3 Matrix Elements for Spherical Layer

$$m = 2$$

$$A_{\nu} = \left(\frac{r_{\nu+1}}{r_{\nu}}\right) \left(\cosh(q_{\nu}\ell_{\nu}) - \frac{\ell_{\nu}}{r_{\nu}+1} - S(q_{\nu}\ell_{\nu})\right)$$

$$B_{\nu} = R_{\nu} \left(\frac{r_{\nu+1}}{r_{\nu}}\right) S(q_{\nu}\ell_{\nu})$$

$$C_{\nu} = \frac{1}{R_{\nu}} \left(\frac{\ell_{\nu}}{r_{\nu}}\right)^{2} \left[(q_{\nu}^{2}r_{\nu}r_{\nu}+1 - 1) - S(q_{\nu}\ell_{\nu}) + \cosh(q_{\nu}\ell_{\nu})\right]$$

$$D_{\nu} = \left(\frac{r_{\nu}+1}{r_{\nu}}\right) \left(\cosh(q_{\nu}\ell_{\nu}) + \left(\frac{\ell_{\nu}}{r_{\nu}}\right) S(q_{\nu}\ell_{\nu})\right)$$

where
$$\ell_{v} = r_{v+1} - r_{v}$$

$$R_{v} = \frac{\ell_{v}}{\lambda_{v}}$$
$$S(q_{v}\ell_{v}) = \frac{\sinh(q_{v}\ell_{v})}{q_{v}\ell_{v}}$$

$$m = 0$$

$$\frac{dA_{\mathcal{V}}}{dp} = \left(\frac{\ell_{\mathcal{V}}^{2}}{2\alpha_{\mathcal{V}}}\right) S_{1}\left(q_{\mathcal{V}}\ell_{\mathcal{V}}\right)$$

$$\frac{dB_{\mathcal{V}}}{dp} = \left(\frac{\ell_{\mathcal{V}}^{2}}{2\alpha_{\mathcal{V}}}\right) R_{\mathcal{V}} S_{2}\left(q_{\mathcal{V}}\ell_{\mathcal{V}}\right)$$

$$\frac{dC_{\mathcal{V}}}{dp} = \left(\frac{\ell_{\mathcal{V}}^{2}}{2\alpha_{\mathcal{V}}}\right) \frac{1}{R_{\mathcal{V}}} \left[S_{1}\left(q_{\mathcal{V}}\ell_{\mathcal{V}}\right) + \cosh(q_{\mathcal{V}}\ell_{\mathcal{V}})\right]$$

$$\frac{dD_{\mathcal{V}}}{dp} = \left(\frac{\ell_{\mathcal{V}}^{2}}{2\alpha_{\mathcal{V}}}\right) S_{1}\left(q\ell_{\mathcal{V}}\right)$$
where $S_{1}\left(q_{\mathcal{V}}\ell_{\mathcal{V}}\right) = \frac{\sinh(q_{\mathcal{V}}\ell_{\mathcal{V}})}{q_{\mathcal{V}}\ell_{\mathcal{V}}}$

$$S_{2}(q_{\nu}\ell_{\nu}) = \frac{\cosh(q_{\nu}\ell_{\nu}) - S_{1}(q_{\nu}\ell_{\nu})}{(q_{\nu}\ell_{\nu})^{2}}$$

Table 5 Derivatives of Matrix Elements for Cylindrical Layer m = 1

$$\begin{aligned} \frac{dA_{\nu}}{dp} &= \left(\frac{r_{\nu}r_{\nu+1}}{2\alpha_{\nu}}\right) \left(\mathbf{I}_{1}, \mathbf{I}_{1}, \mathbf{K}_{1}, \mathbf{I}_{2}, -\mathbf{K}_{1}, \mathbf{I}_{1}, \mathbf{I}_{2}\right) - \left(\frac{r_{\nu}^{2} + 1}{2\alpha_{\nu}}\right) \left(\mathbf{I}_{0,1}\mathbf{K}_{0,2} - \mathbf{K}_{0,1}\mathbf{I}_{0,2}\right) \\ \frac{dB_{\nu}}{dp} &= -\left(\frac{r_{\nu}r_{\nu+1}}{2\alpha_{\nu}}\right) \left(\frac{\mathbf{I}_{1,1}\mathbf{K}_{0,2} + \mathbf{K}_{1,1}\mathbf{I}_{0,2}}{q_{\nu}\lambda_{\nu}}\right) + \left(\frac{r_{\nu}^{2} + 1}{2\alpha_{\nu}}\right) \left(\frac{\mathbf{I}_{0,1}\mathbf{K}_{1,2} + \mathbf{K}_{0,1}\mathbf{I}_{1,2}}{q_{\nu}\lambda_{\nu}}\right) \\ \frac{dC_{\nu}}{dp} &= -\left(\frac{r_{\nu}r_{\nu+1}}{2\alpha_{\nu}}\right) \left(q_{\nu\lambda\nu}\right) \left(\mathbf{I}_{0,1}\mathbf{K}_{1,2} + \mathbf{K}_{0,1}\mathbf{I}_{1,2}\right) \\ &+ \left(\frac{r_{\nu}^{2} + 1}{2\alpha_{\nu}}\right) \left(q_{\nu\lambda\nu}\right) \left(\mathbf{I}_{1,1}\mathbf{K}_{0,2} + \mathbf{K}_{1,1}\mathbf{I}_{0,2}\right) \end{aligned}$$

$$\frac{dD_{\nu}}{dp} = \left(\frac{r_{\nu}r_{\nu+1}}{2\alpha_{\nu}}\right) \left(\mathbf{I}_{0,1}K_{0,2} - K_{0,1}\mathbf{I}_{0,2}\right) - \left(\frac{r_{\nu+1}^2}{2\alpha_{\nu}}\right) \left(\mathbf{I}_{1,1}K_{1,2} - K_{1,1}\mathbf{I}_{1,2}\right)$$

where $I_{0,1}$, $I_{0,2}$ $K_{1,2}$ are all defined previously in Table 2.

Table 6 Derivatives of Matrix Elements for Spherical Layer

$$m = 2$$

$$\frac{dA_{\nu}}{dp} = \left(\frac{\ell_{\nu}^{2}}{2\alpha_{\nu}}\right) \left(\frac{r_{\nu}+1}{r_{\nu}} S_{1}(q_{\nu}\ell_{\nu}) - \left(\frac{\ell_{\nu}}{r_{\nu}}\right) S_{2}(q_{\nu}\ell_{\nu})\right)$$

$$-\frac{dB_{\nu}}{dp} = \left(\frac{\ell_{\nu}^{2}}{2\alpha_{\nu}}\right) R_{\nu} \left(\frac{r_{\nu}+1}{r_{\nu}}\right) S_{2} (q_{\nu}\ell_{\nu})$$

$$\frac{dC_{\nu}}{dp} = \left(\frac{\ell_{\nu}^{2}}{2\alpha_{\nu}}\right) \frac{1}{R_{\nu}} \left(\frac{\ell_{\nu}^{2}}{r_{\nu}^{2}}\right) \left[\left(2\frac{r_{\nu}r_{\nu}+1}{\ell_{\nu}^{2}} + 1\right) S_{1}(q_{\nu}^{2}r_{\nu}r_{\nu}+1 - 1) S_{2}(q_{\nu}\ell_{\nu})\right]$$

$$\frac{dD_{\nu}}{dp} = \left(\frac{\ell_{\nu}^{2}}{2\alpha_{\nu}}\right) \left(\frac{r_{\nu}+1}{r_{\nu}} S_{1}(q_{\nu}\ell_{\nu}) + \left(\frac{\ell_{\nu}}{r_{\nu}}\right) \left(\frac{r_{\nu}+1}{r_{\nu}}\right) S_{2}(q_{\nu}\ell_{\nu})\right)$$

where ${\rm S}_1$ and ${\rm S}_2$ have been defined in Table 4.

Table 7 Limits of Derivative Matrices

m = 0

$$\frac{dA_{y}}{dp} = \frac{\ell_{y}^{2}}{2\alpha_{y}}$$
$$\frac{dB_{y}}{dp} = \frac{\ell_{y}^{2}}{6\alpha_{y}} R_{y}$$
$$\frac{dC_{y}}{dp} = \frac{1}{R_{y}} \frac{\ell_{y}^{2}}{\alpha_{y}}$$
$$\frac{dD_{y}}{dp} = \frac{\ell_{y}^{2}}{2\alpha_{y}}$$

m = 1

$$\begin{aligned} \frac{dA_{\nu}}{dp} &= \left(\frac{r_{\nu+1}^2}{2\alpha_{\nu}}\right) \left[\frac{1}{2} \left[\left(\frac{r_{\nu}}{r_{\nu+1}}\right)^2 - 1\right] + \ell_n \frac{r_{\nu+1}}{r_{\nu}}\right] \\ \frac{dB_{\nu}}{dp} &= \left(\frac{r_{\nu+1}^2}{4\alpha_{\nu}}\right) \left(\frac{r_{\nu+1}}{\lambda_{\nu}}\right) \left[\left[1 + \left(\frac{r_{\nu}}{r_{\nu+1}}\right)^2\right] \ell_n \left(\frac{r_{\nu+1}}{r_{\nu}}\right) - \left(1 - \left(\frac{r_{\nu}}{r_{\nu+1}}\right)^2\right)\right] \\ \frac{dC_{\nu}}{dp} &= \left(\frac{\lambda_{\nu}}{r_{\nu}}\right) \left(\frac{r_{\nu+1}^2}{2\alpha}\right) \left[1 - \left(\frac{r_{\nu}}{r_{\nu+1}}\right)^2\right] \\ \frac{dD_{\nu}}{dp} &= \left(\frac{r_{\nu+1}^2}{2\alpha_{\nu}}\right) \left[\frac{1}{2} \left(\frac{r_{\nu+1}^2 - r_{\nu}^2}{r_{\nu}r_{\nu+1}}\right) - \left(\frac{r_{\nu}}{r_{\nu+1}}\right) \ell_n \left(\frac{r_{\nu+1}}{r_{\nu}}\right)\right] \end{aligned}$$

When $(r_{\nu+1} - r_{\nu})/r_{\nu}$ is sufficiently small, these derivatives can be approximated as follows:

$$\frac{dA_{\nu}}{dp} = \left(\frac{\ell\nu^{3}}{2\alpha}\right) \left[1 - \frac{1}{2} \left(\frac{\ell\nu}{r_{\nu}}\right)^{2}\right]$$

$$\frac{dB_{\nu}}{dp} = \left(\frac{\ell\nu^{2}}{2\alpha}\right) \left[\frac{1}{3} + \frac{5}{12} \left(\frac{\ell}{r_{\nu}}\right) + \frac{1}{4} \left(\frac{\ell}{r_{\nu}}\right)^{2} + \frac{1}{6} \left(\frac{\ell}{r_{\nu}}\right)^{3}\right] R_{\nu}$$

$$\frac{dC_{\nu}}{dp} = \left(\frac{\ell\nu^{3}}{2\alpha}\right) \left[2 + \frac{\ell}{r_{\nu}}\right] \frac{1}{R_{\nu}}$$

$$\frac{dD_{\nu}}{d} = \left(\frac{\ell\nu^{2}}{2\alpha}\right) \left[1 + \frac{3}{2} \left(\frac{\ell\nu}{r_{\nu}}\right)\right]$$

m = 2

$$\frac{dA_{\nu}}{dp} = \left(\frac{\ell_{\nu}^{2}}{6\alpha_{\nu}}\right) \left(\frac{2r_{\nu+1}}{r_{\nu}} + 1\right)$$

$$\frac{dB_{\nu}}{dp} = R_{\nu} \left(\frac{r_{\nu+1}}{r_{\nu}}\right) \left(\frac{\ell_{\nu}^{2}}{6\alpha_{\nu}}\right)$$

$$\frac{dC_{\nu}}{dp} = \frac{1}{R_{\nu}} \left(\frac{\ell_{\nu}^{2}}{2\alpha_{\nu}}\right) \left[\frac{2r_{\nu+1}}{r_{\nu}} + \frac{2}{3} \left(\frac{\ell_{\nu}}{r_{\nu}}\right)^{2}\right]$$

$$\frac{dD_{\nu}}{dp} = \left(\frac{\ell_{\nu}^{2}}{6\alpha_{\nu}}\right) \left(\frac{r_{\nu+1}}{r_{\nu}}\right) \left(\frac{r_{\nu+1}}{r_{\nu}} + 2\right)$$

When $(r_{\nu+1} - r_{\nu})/r_{\nu}$ is sufficiently small, these derivatives can be approximated as follows

$$\frac{dA_{\nu}}{dp} = \frac{\ell_{\nu}^{2}}{2\alpha_{\nu}} \left(1 + \frac{2}{3} \frac{\ell_{\nu}}{r_{\nu}}\right)$$

$$\frac{dB_{\nu}}{dp} = \frac{\ell_{\nu}^{2}}{6\alpha_{\nu}} R_{\nu} \left(1 + \frac{\ell_{\nu}}{r_{\nu}}\right)$$

$$\frac{dC_{\nu}}{dp} = \frac{1}{R_{\nu}} \left(\frac{\ell_{\nu}^{2}}{\alpha_{\nu}}\right) \left[1 + \frac{\ell_{\nu}}{r_{\nu}} + \frac{1}{3} \left(\frac{\ell_{\nu}}{r_{\nu}}\right)^{2}\right]$$

$$\frac{dD_{\nu}}{dp} = \frac{\ell_{\nu}^{2}}{2\alpha_{\nu}} \left(1 + \frac{1}{3} \frac{\ell_{\nu}}{r_{\nu}}\right) \left(1 + \frac{\ell_{\nu}}{r_{\nu}}\right)$$

Table 8 m = 0 $A_{v} = \cos E$ $B_{ij} = R_{ij} S_1 (E)$ $C_{v} = -\frac{E}{R_{v}} \sin E$ $D_v = \cos E$ $\frac{dA_{v}}{dp} = \gamma S_{1} (E)$ $\frac{dB_{v}}{dp} = \gamma R_{v} S_{2} (E)$ $\frac{dC_{y}}{dp} = \frac{\gamma}{R_{y}} (S_{1}(E) + \cos(E))$ $\frac{dD_{v}}{dp} = \gamma S_{1} (E)$ where $E = \sqrt{\frac{\beta_{R}}{\alpha}}^{2}$ $S_1(E) = \frac{\sin E}{E}$ $S_2(E) = \frac{S_1(E) - \cos E}{E^2}$ $\gamma = \frac{\ell^2 v}{2\alpha_0}$

40

Table 9Matrix Elements for $p = -\beta_{\frac{1}{N}}$ for Cylindrical Layer m = 1

$$\begin{split} A_{\nu} &= -\frac{\pi}{2} \ E_{2} \left(J_{01} Y_{12} - Y_{01} J_{12} \right) \\ B_{\nu} &= \frac{\pi}{2} \left(\frac{x_{\nu+1}}{\lambda_{\nu}} \right) \left(J_{01} Y_{02} - Y_{01} J_{02} \right) \\ c_{\nu} &= \frac{\pi}{2} \left(\frac{\lambda_{\nu}}{x_{\nu+1}} \right) \left(-J_{11} Y_{12} + Y_{11} J_{12} \right) E_{z}^{2} \\ D_{\nu} &= \frac{\pi}{2} \ E_{z} \left(J_{11} Y_{02} - Y_{11} J_{02} \right) \\ \frac{dA_{\nu}}{dp} &= \frac{\pi}{4\alpha} \left\{ -x_{\nu+1} x_{\nu} \left(J_{11} Y_{12} - Y_{11} J_{12} \right) + x_{\nu+1}^{2} \left(J_{01} Y_{02} - Y_{01} J_{02} \right) \right\} \\ \frac{dB_{\nu}}{dp} &= \frac{\pi}{4\alpha} \left\{ -x_{\nu+1} x_{\nu} \left(J_{11} Y_{12} - Y_{11} J_{12} \right) + x_{\nu+1}^{2} \left(J_{01} Y_{12} - Y_{01} J_{12} \right) \right\} \\ \frac{dB_{\nu}}{dp} &= \frac{\pi}{4\alpha} \left\{ \left(x_{\nu+1} x_{\nu} \right) \left(J_{11} Y_{02} - Y_{11} J_{02} \right) + \left(x_{\nu+1} \right)^{z} \left(J_{01} Y_{12} - Y_{01} J_{12} \right) \right\} \\ \frac{dC_{\nu}}{dp} &= \frac{\pi}{4\alpha} \left\{ \left(x_{\nu+1} x_{\nu} \right) \left(J_{01} Y_{12} - Y_{01} J_{12} \right) + \left(x_{\nu+1} \right)^{z} \left(J_{11} Y_{02} - Y_{11} J_{02} \right) \right\} \\ \frac{dD_{\nu}}{dp} &= \frac{\pi}{4\alpha} \left\{ \left(x_{\nu+1} x_{\nu} \right) \left(-J_{01} Y_{02} + Y_{01} J_{02} \right) - \left(x_{\nu+1} \right)^{z} \left(-J_{11} Y_{12} + Y_{11} J_{12} \right) \right\} \\ \text{where } E_{2} &= \sqrt{\frac{SB_{\mu}}{2\lambda_{\nu}}} \left[x_{\nu+1} \right], E_{1} &= \sqrt{\frac{SB_{\mu}}{2\lambda_{\nu}}} \left[x_{\nu} \right] \\ J_{01} &= J_{0} \left(E_{1} \right), J_{11} = J_{1} \left(E_{1} \right) \\ J_{02} &= J_{0} \left(E_{2} \right), J_{12} = J_{1} \left(E_{2} \right) \\ K_{01} &= K_{0} \left(E_{1} \right), K_{11} = K_{1} \left(E_{2} \right) \\ \end{array}$$

Table 10 Matrix Elements for $p = -\beta_R$ for Spherical Layer

m = 2

$$\begin{split} A_{\nu} &= \left(\frac{r_{\nu}+1}{r_{\nu}}\right) \left(\cos E - \frac{\ell_{\nu}}{r_{\nu}+1} S_{1}\left(E\right)\right) \\ B_{\nu} &= R_{\nu} \left(\frac{\ell_{\nu}}{r_{\nu}}\right) S_{1}\left(E\right) \\ C_{\nu} &= \frac{1}{R_{\nu}} \left(\frac{\ell_{\nu}}{r_{\nu}}\right)^{2} \left[\cosh E - \left(E_{1}E_{2} + 1\right)S_{1}\left(E\right)\right] \\ B_{\nu} &= \left(\frac{r_{\nu}+1}{r_{\nu}}\right) \left(\cos E + \frac{\ell_{\nu}}{r_{\nu}} S_{1}\left(E\right)\right) \\ \frac{dA_{\nu}}{dp} &= \gamma \left\{\frac{r_{\nu}+1}{r_{\nu}} S_{1}\left(E\right) - \frac{\ell_{\nu}}{r_{\nu}} S_{2}\left(E\right)\right\} \\ \frac{dB_{\nu}}{dp} &= \gamma R_{\nu} \left(\frac{r_{\nu}+1}{r_{\nu}}\right) S_{2}\left(E\right) \\ \frac{dC_{\nu}}{dp} &= \gamma \left(\frac{1}{R_{\nu}}\right) \left(\frac{\ell_{\nu}}{r_{\nu}}\right)^{2} \left(\left(\frac{r_{\nu}r_{\nu}r_{\nu}+1}{\ell_{\nu}v^{2}} + 1\right)S_{1}\left(E\right) - \left(E_{1}E_{2} + 1\right)S_{2}\left(E\right)\right) \\ \frac{dB_{\nu}}{dp} &= \gamma \left(\frac{r_{\nu}+1}{r_{\nu}} S_{1}\left(E\right) + \left(\frac{\ell_{\nu}}{r_{\nu}}\right) \left(\frac{r_{\nu}+1}{r_{\nu}}\right)S_{2}\left(E\right)\right) \\ \text{where } E &= \sqrt{\frac{E_{\mu}}{C_{\nu}}} \ell_{\nu} \\ E_{1} &= \sqrt{\frac{E_{\mu}}{C_{\nu}}} \ell_{\nu} \\ S_{1}\left(E\right) &= \frac{\sin E}{E} \\ S_{2}\left(E\right) &= \frac{S_{1}\left(E\right) - \cos E}{E^{2}} \\ \gamma &= \frac{\ell_{\nu}^{2}}{2c_{\nu}} \end{split}$$

Table JC walls Sample multi-layer

Fig. 3.

layer v	description	لى (ft)	λ _ν (Btu/hr.)	(ft ² /hr.)	r _ν (ft)
1	Inside air film h _I = 1.20	0			5.000
2	Common brick 4"	0,333	0.42	0.019	5.000
3	Face brick 4"	0.333	0.77	0.028	5.333
4	Outside air film h _o = 3.0	0			5.666

Table 11

		Table 12	2	
$0 < t \leq \delta$		Residues at p D \overline{\mathcal{P}} B	= 0 for $\overline{\varphi}/B$	Α φ/Β
	PW	2.73117	-2.94849	7.88866
	CW	2.6297	-2.6874	7.90340
	SW	2.52953	-2.44114	7.89881
\$ ~ h ~ 25				
0 < t 5 20	PW	-2.31309	3.36656	-7.47058
	CW	-2.19279	3.07306	-7.51776
	SW	-2.07374	2.79607	-7.54387
PW = plane v	vall	m = 0		
CW = cylind	cical v	wall m = 1		
SW = spheric	cal wa	11 m = 2		

Table 13							
ph: Roots of PW	CW	SW					
.17452	.17701	.1 79 80					
.84430	.84634	.84866					
2.56859	2.57005	2.57188					
4.85967	4.86146	4.86360					
8.85960	8.86093	8.86265					
12.84988	12.85127	12.85303					
19.15047	19,15200	19.15398					
25.00846	25.0095	25.01083					
33.33174	33,33359	33.33583					
41.45064	41.45137	41.45249					
	Table \$%: Roots of PW .17452 .84430 2.56859 4.85967 8.85960 12.84988 19.15047 25.00846 33.33174 41.45064	Table 13 Roots of $B(p) = 0$ PW p_W CW.17452.17701.84430.846342.568592.570054.859674.861468.859608.8609312.8498812.8512719.1504719.1520025.0084625.009533.3317433.3335941.4506441.45137					

PW = plane wall

CW = cylindrical wall

SW = spherical wall

i		x _i	Yi	Zi
0	PW	.91949	0.00013	1.9834
	CW	.92162	0.00014	1.97607
	SW	.92365	0.00011	1.96864
1	PW	16678	0.00812	51260
	CW	16392	0.00759	52127
	SW	16099	0.00713	52993
2	PW	-0.07950	0.03112	23226
	CW	-0.07744	0.02916	23749
	SW	-0.07540	0.02726	24268
3	PW	-0.05150	0.04482	15634
	CW	-0.04987	0.04185	15997
	SW	-0.04826	0.03903	16353
4	PW	-0.03715	0.04658	11690
	CW	-0.03580	0.04340	11954
	SW	-0.03447	0.04038	12207
5	PW	-0.02861	0.04304	-0.09216
	CW	-0.02746	0.04000	-0.09410
	SW	-0.02632	0.03712	-0.09592
6	PW	-0.02292	0.03784	-0.07482
	CW	-0.02192	0.03508	-0.07625
	SW	-0.02094	0.03247	-0.07756
7	PW	-0.01877	0.03250	-0.66173
	CW	-0.01790	0.03006	-0.06277
	SW	-0.01704	0.02775	-0.06369
8	PW	-0.01556	0.02761	-0.05137
	CW	-0.01480	0.02548	-0.05212
	SW	-0.01404	0.02344	-0.05274
9	PW	-0.01298	0.02333	-0.04294
	CW	-0.01231	0.02147	-0.04346
	SW	-0.01165	0.01970	-0.04386
10	PW	-0.01086	0.01965	-0.03598
	CW	-0.01028	0.01804	-0.03632
	SW	-0.00970	0.01651	-0.03655

Table 14 Response Factors, Btu ft⁻², F⁻¹, hr⁻¹

Table 14 (con't)

i		xi	Yi	Zi			
11	PW CW SW	-0.00911 -0.00860 -0.00809	0.01653 0.01513 0.01381	-0.03018 -0.03039 -0.03050			
12	PW CW SW	-0.00764 -0.00719 -0.00675	0.01389 0.01269 0.01155	-0.02533 -0.02544 -0.02547			
13	PW CW SW	-0.00642 -0.00602 -0.00564	0.01167 0.01063 0.00965	-0.02126 -0.02131 -0.02127			
14	PW CW SW	-0.00539 -0.00505 -0.00471	0.00980 0.00891 0.00807	-0.01786 -0.01785 -0.01777			
CR	PW CW SW	0.8398 0.8378 0.8358					
PW = p	lane wall	m = 0					
SW = 5	pherical	wall $m = 2$					
CR = c	CR = common ratio where for $i > 15$						

$$\frac{X_{i+1}}{X_i} = \frac{Y_{i+1}}{Y_i} = \frac{Z_{i+1}}{Z_i} = CR$$

t	TIt	Τøt		QIt		Q\$t
			Exact	Response Factor	Exact	Response Factor
			Solution	Solution	Solution	Solution
24	75	77	-17 15	-17.15	31.04	30.58
23	75	79	-19.20	-19.18	32.92	33.77
22	75	81	-20.90	-20.83	39.47	38.71
21	75	83	-21.48	-21.33	44.79	47.35
20	75	85	-20.00	-19.91	69.48	70.30
19	75	87	-17.10	-17.10	-20.15	-24.28
18	75	138	-13.72	-13.76	-72,88	-78.01
17	75	162	-10.45	-10.53	-101.46	-103.27
16	75	168	-7.82	-7.91	-111.45	-111.14
15	75	163	-6.06	-6.13	-98,60	-99.37
14	75	148	-5.05	-5.07	-76.34	-74.90
13	75	128	-4.04	-4.36	-32.97	-32.06
12	75	104	-3.86	-3.89	-28.51	-28.87
11	75	100	-3.65	-3.68	-23.32	-23.04
10	75	95	-3.73	-3.75	-16.17	-16.18
9	75	90	-4.13	-4.15	-10.75	-10.70
8	75	86	-4.86	-4.87	-4.76	-4.73
7	75	82	-5.82	-5.83	7.48	8.04
6	75	76	-6.94	-6.95	14.46	14.34
5	75	74	-8.21	-8.22	17.11	17.42
4	75	74	-9.65	-9.66	19.08	18.77
3	75	75	-11.29	-11.30	19.94	20.27
2	75	76	-13.11	-13.12	25.02	24.84
1	75	76	-15.07	-15.08	27.90	28.39

Table 15 Plane Wall Model

TI: Inside temperature, (F)

T¢: Outside temperature, (F)

QI: Inside heat flux, (Btu hr^{-1} ft⁻²)

Q ϕ : Outside heat flux, (Btu hr⁻¹ ft⁻²)

$$QI_{t} = \sum_{j=0}^{\infty} X_{j} \cdot TI_{t-j} - \sum_{j=0}^{\infty} Y_{j} \cdot T\phi_{t-j}$$
$$Q\phi_{t} = \sum_{j=0}^{\infty} Y_{j} \cdot TI_{t-j} - \sum_{j=0}^{\infty} Z_{j} \cdot T\phi_{t-j}$$
$$J = 0$$

t	TIt	ΤΦ _t		QI _t		Qø _t
			Exact	Response Factor	Exact	Response Factor
			Solution	Solution	Solution	Solution
24	75	77	-17.94	-17,95	31.68	31.23
23	75	79	-20.13	-20.12	33.76	34.62
22	75	81	-22.00	-21,88	40.37	39.80
21	75	83	-2 2.60	-22.44	46.17	48,76
20	75	85	-21.06	-20.96	71.40	72.21
19	75	87	-18.01	-18.01	-17.72	-21.91
18	75	138	-14.44	-14.48	-75.48	-75.61
17	75	162	-10.99	-11.07	-99. 28	-101.12
16	75	168	-8.21	-8.30	-109.69	-109.39
15	75	163	-6.33	-6.41	-97.30	- 98 .08
14	75	148	-5.25	-5.29	-75.50	-74.04
13	75	128	-4.50	-4.53	-32.40	- 31.48
12	75	104	-3.99	-4.02	-28.06	-28.43
11	75	100	-3.76	-3.78	-23.02	-22.73
10	75	95	-3.82	-3.85	-15.97	-15.98
9	75	90	-4.24	-4.26	-10.64	-10.59
8	75	86	-5.00	-5.01	-4.73	-4.70
7	75	82	-6.00	-6.01	7.47	8.04
6	75	76	-7.18	-7.18	14.49	14.36
5	75	74	-8.50	-8.51	17.18	17.49
4	75	74	-10.02	-10.03	19. 2 3	18.92
3	75	75	-11.75	-11.75	20.1,7	20.50
2	75	76	-13.67	-13.68	25.36	25.18
1	75	76	-15.75	-15.76	28.37	28.86

Cylindrical Wall Table 16

TI: Inside temperature, (F)

T¢: Outside temperature, (F)

QI: Inside heat flux (Btu hr^{-1} ft⁻²)

QØ: Outside heat flux (Btu hr^{-1} ft^{-2})

$$QI_{t} = \sum X_{j} TI_{t-j} - \Gamma \sum Y_{j} T\phi_{t-j}$$
$$QO_{t} = \sum Y_{j} TI_{t-j} - \Gamma \sum Z_{j} T\phi_{t-j}$$
$$\Gamma = \frac{5.666}{5.000}$$

Time	TI	ΤØ		QI		Qø
(hr)			Exact	Response Factor	Exact	Response Factor
(11)			Solution	Solution	Solution	Solution
24	75	77	-18.74	-18.75	32,21	31,80
24	75	79	-21.07	-21.05	34.52	35.39
23	75	81	-23.03	-22.95	41.60	40.82
21	75	83	-23.74	-23 57	47.49	50.12
20	75.	85	-22.15	-22.04	73.26	74.06
19	75	87	-18.94	-18,93	-15.32	-19.57
18	75	138	-15.18	,-15.22	-73.10	-73.24
17	75	162	-11.54	-11.62	-97.13	-98.98
16	75	168	-8.60	-8.69	-107.96	-107.65
15	75	163	-6.60	-6.69	-96.03	-96.81
14	75	148	-5.46	-5.50	-74.68	-73.20
13	75	128	-4.66	-4.69	-31.86	-30.92
12	75	104	-4.11	-4.13	-27.64	-28.02
11	75	100	-3.85	-3.88	-22.74	-22.45
10	75	95	-3.91	-3.93	-15.80	-15.82
9	75	90	-4.32	-4.35	-10.57	-10.52
8	75	86	-5.11	-5.12	-4.74	-4.71
7	75	82	-6.16	-6.16	7.42	7.99
6	75	76	-7.39	-7.39	14.46	14.33
5	75	74	-8.78	-8.78	17.20	17.51
4	75	74	-10.37	-10.38	19.32	19.01
3	75	75	-12.18	-12.19	20.33	20.67
2	75	76	-14.21	-14.22	25.62	25.45
1	75	76	-16.41	-16.42	28.77	29.27

Spherical Wall Table 17

TI: Inside temperature, (F)

TØ: Outside temperature, (F)

Q\$\phi: Outside heat flux, (Btu hr^{-1} ft⁻²)

$$QI_{t} = \sum_{j=0}^{\infty} X_{j} \cdot TI_{t-j} - \Gamma \sum_{j=0}^{\infty} Y_{j} \cdot T\phi_{t-j}$$
$$Q\phi_{t} = \sum_{j=0}^{\infty} Y_{j} \cdot TI_{t-j} - \sum_{j=0}^{\infty} Z_{j} \cdot T\phi_{t-j}$$
$$\Gamma = \left(\frac{5.666}{5.000}\right)^{2}$$

Į

Table 18 Formulas for Cylinder and Sphere

m = 1.

$$G' = \left(\frac{\lambda_1}{r_1}\right) E_1 \frac{J_1(E_1)}{J_0(E_1)} \qquad \text{at } p = i\beta$$

$$\frac{\mathrm{dG'}}{\mathrm{dp}} = -\left(\frac{\lambda_1}{r_1}\right)\left(\frac{r_1^2}{2\alpha}\right)\left[\frac{J_1(E)}{\mathrm{EJ}_0(E)} + \frac{J_0^2(E)}{J_0^2(E)} - \frac{J_0(L/S_1(E))}{\mathrm{E}}\right]$$

m = 2

$$G' = \left(\frac{\lambda_1}{r_1}\right) \left(1 - \frac{\cos(E)}{S_1(E)}\right)$$

$$\frac{\mathrm{d}G'}{\mathrm{d}p} = -\left(\frac{\lambda_1}{r_1}\right)\left(\frac{r_1^2}{2\alpha}\right)\left[1 - \frac{\cos\left(\mathrm{E}\right) \cdot S_2\left(\mathrm{E}\right)}{S_1^2\left(\mathrm{E}\right)}\right]$$

where definitions of E, S₁(E) and S₂(E) are identical to those used in the previous tables. As E₁ approaches to zero G' approaches zero for both m = 1 and 2, $\frac{dG'}{dp}$ becomes $-\left(\frac{r_1^2}{2\alpha}\right)\left(\frac{\lambda_1}{r_1}\right)$ for m = 1 and $-\left(\frac{r_1^2}{3\alpha}\right)\left(\frac{\lambda_1}{r_1}\right)$ for m = 2.

Fig.4 Sample structures For Appendix

Table 19

Response Factors for Semi-infinite Region

Common Symbols

$$L = \frac{\lambda_n}{r_n} \text{ and } \mu = \frac{r_n^2}{\alpha_n \delta}$$
$$\phi_i = \left(\frac{2}{\pi}\right)^2 \int_0^\infty \frac{1 - e^{-\beta^2 i/\mu}}{\beta^3 \{Y_0^2(\beta) + J_0^2(\beta)\}} d\beta$$

m = 0

$$\overline{Z}_{1} = 2L \sqrt{\frac{\mu}{\pi}}$$

 $\overline{Z}_{2} = \overline{Z}_{1} (/2 - 2)$
 $\overline{Z}_{i} = \overline{Z}_{1} (/i - 2/i - 1 + \sqrt{i - 2}), i \ge 3$
m = 1
 $\overline{Z}_{1} = I_{\mu} (\phi_{1})$
 $\overline{Z}_{2} = I_{\mu} (\phi_{2} - 2\phi_{1})$
 $\overline{Z}_{i} = I_{\mu} (\phi_{i} - 2\phi_{i - 1} + \phi_{i - 2}) \text{ for } i \ge 3$
m = 2
 $\overline{Z}_{1} = 2L \sqrt{\frac{\mu}{\pi}} (1 + \frac{\sqrt{\pi}}{2} \frac{1}{\sqrt{\mu}})$
 $\overline{Z}_{2} = 2L \sqrt{\frac{\mu}{\pi}} (\sqrt{2} - 2)$
 $\overline{Z}_{i} = 2L \sqrt{\frac{\mu}{\pi}} (\sqrt{1 - 2/i - 1} + \sqrt{1 - 2}) \text{ for } i > 3$

These relationships show a very interesting fact such that Z_i for i = 2, 3,...∞ are identical for the cases where m = 0, 1 and 2. Moreover, from the cases of m = 0 and 1, it should follow that

3

$$(\phi_{i} - 2\phi_{i-1} + \phi_{i-2}) = \frac{2}{\sqrt{\mu\pi}} (/i - 2/i-1 + \sqrt{1-2})$$

or

$$\left(\frac{2}{\pi}\right)^{2} \int_{0}^{\infty} \frac{1 - e^{-\beta^{2}i/\mu} d\beta}{\beta^{3} \{Y_{0}^{2}(\beta) + J_{0}^{2}(\beta)\}} = 2\sqrt{\frac{i}{\mu\pi}}$$

which seems to be a remarkable relationship.
References

- [1] C. O. Mackey and L. T. Wright, Periodic Heat Flow--Homogeneous walls or roofs, ASHVE Trans vol. 50, 1944, p. 293.
- [2] C. O. Mackey and L. T. Wright, Periodic Heat Flow--Composite walls or roofs, ASHVE Trans vol. 52, 1946, pp. 283-296.
- [3] J. P. Stewart, Solar heat gain through walls and roofs for cooling load calculations, ASHVE Trans Vol. 54, 1948, pp. 361-388.
- [4] W. R. Brisken and S. G. Reque, Heat load calculations by thermal response, ASHRAE Trans, Vol. 62, 1956, p. 391.
- [5] D. G. Stephenson and G. P. Mitalas, Cooling load calculations by thermal response factors, ASHVE Trans, vol. 73, 1967.
- [6] L. A. Pipes, Matrix Analysis of heat transfer problems, Franklin Institute Journal, Vol. 263, No. 3, March, 1957, pp. 195-205.
- [7] H. L. Holden, The calculation of fluctuating heat flow in buildings Australian Computer Conference, Melbourne, 1963, DBR Report 236, CSIRO.
- [8] R. W. Muncey, Thermal response of a building to sudden changes of temperature or heat flow, Australian Journal of Applied Science, Vol. 14, No. 2, pp. 123, 128, 1963.
- [9] G. P. Mitalas and J. G. Arseneault, Fortran IV program to calculate heat flux response factors for multi-layer slabs, DBR computer program No. 23, Division of Building Research, National Research Council of Canada, 1967.

- [10] H. S. Carslaw and J. C. Jaeger, Conduction of heat in solids, Oxford at the Clarendon Press, 1957, p. 326.
- [11] D. G. Stephenson, National Research Council of Canada, private communication.

APPENDIX

Response factor formulas developed in the main text of this paper were used in the computer program called RESPTK. The Fortran listings of RESPTK and other necessary subroutines to calculate the thermal response factors of various multi-layer heat conduction systems such as depicted in Figure 4 are attached herewith. The main program to perform the input/output operation for RESPTK is called RESP. Sample input and output for RESP obtained for the systems described in Figure 4 are also attached. Certain portions of the computer program are written in Fortran V (Univac 1108) and certain modifications to the program will be necessary for use with a compiler that does not recognize statements made for the Univac Fortran V compiler. Input Requirement of the Computer Program RESPTK

RESPTK (K, L, R, G, AG, KG, X, Y, Z, NL, DT, NR, CR, U, IM, IS, F)

Input:

- K = Thermal conductivity (BTU/hr, ft, F) of each layer given in the order for minimum radius to the larger radii (Fig. 2). For the plane wall, it should be given from inside surface layer to the outer layers. For the layer with no thermal mass, such as surface boundary layer, conductance values should be used.
- L = Thickness of each layer (ft) given in the order for minimum radius to the larger radii (Fig. 2). This could be zero for some layers, i.e. surface boundary layer.
- R = Radius (ft) of each layer boundary given in the order of minimum value to the larger values (Fig. 2). For plane wall model, any arbitrary value being same for all the layer, should be given. Note that the number of R is NL + 1.
- G = Thermal diffusivity (ft²/hr) of each layer given in the order for the minimum radius to the larger radii (Fig. 2). For the layers with no thermal mass, such as surface boundary layers and air space, G should be zero for this program.

- AG = Thermal diffusivity (ft²/hr) of solid core or semi-infinite layer (Fig. 1), given only when IS = 1, or 2.
- KG = Thermal conductivity (Btu/hr, ft, °F) of solid core or of semi-infinite region (Fig. 1), given only when IS = 1 or 2.

NR = Number of X, Y, and Z generated by the program. NR is the output of this program such that the values of X, Y, Z can be calculated by a common ratio CR as follows:

$$\frac{X(J+1)}{X(J)} = \frac{Y(J+1)}{Y(J)} = \frac{Z(J+1)}{Z(J)} = CR$$

when $J \ge NR$. 57

- CR = Common ratio described above.
- U = Overall thermal conductance obtained by the reciprocal of total thermal resistance of the heat conduction system under consideration, Btu/hr, ft², °F.

Calculation of heat flux

(A) Referring to Fig. 2, the heat flux QI(N) and QO(N) can be evaluated as follows, where N is the time index such that time = DT*N.

$$QI(N) = \sum_{J=1}^{M} X(J) * TI(N-J) - GM * \sum_{J=1}^{M} Y(J) * TO(N-J)$$
$$J = 1$$
$$QO(N) = \sum_{J=1}^{M} Y(J) * TI(N-J) - \sum_{J=1}^{M} Z(J) * TO(N-J)$$
$$J = 1$$

where QI and QO, and TI and TO are heat fluxes (Btu/hr, ft²) and temperatures (F) at surfaces where the radii are minimum and maximum, or at the inside and outside surfaces. The values of QI and QO are positive when heat is flowing from TI side to TO side or from inside to outside.

In above equation for QI(N),

M = maximum number of response factors to be used, value of which will be determined by the significance of X(M)*TI(N-M). Usually $M \lesssim 72$ (when M > NR, X(J), Y(J)and Z(J) should be calculated by the common ratio CR such as described earlier) and

$$CM = \frac{R(NL + 1)}{R(L)}$$
 ** IM, which is unity for the plane wall problem.

B. For calculating heat conduction for the system with the semiinfinite region (when IS = 1),

$$QI(N) = \sum_{J=1}^{M} F(J) * TI(N-J)$$

TI(N-J) is the temperature at the surface where the radius is minimum (inner surface) at time (N-J)*DT. The value of QI(N) is positive when heat is flowing in the direction from the minimum radius (inside surface) to the larger radii (to outer layer and to the semi-infinite region). (C) For calculating the heat conduction for solid core system
(IS = Z),

$$QO(N) = -\sum_{J=1}^{M} F(J) TO(N-J) , Btu/hr, ft^{2}$$

TO(N-J) is the temperature of the surface where the radius is maximum (outside surface). The heat flux QO(N) is positive as it is defined in the above equation when heat is flowing in the direction from the smaller radius to the larger radii.

Bessel function

The calculation for IM = 1 (cylindrical system) requires a double precision Bessel function subroutine in the following forms:

$$J_0(X) = DBEJ(X, 0)$$

$$J_1(X) = DBEJ(X, 1)$$

$$Y_0(X) = DBEY(X, 0)$$

$$Y_1(X) = DBEY(X, 1)$$

```
WRIN ASG
         A=0491
WIT FOR RESPORESH
С
      THIS PROURAM IS DEVELOPED BY T.KUSUDA OF THE NATIONAL BURFAU OF
С
      STANDARDS FOR CALCULIING THE THERMAL RESPONSE FACTORS FOR
C
      COMPOSITE WALLS, FLOORS, ROOFS, BASEMENT WALLS HASEMENT FLOORS
С
      AND INTERNAL FURNISHINGS OF SIMPLE SHAPES
C
      RESPUNSE FACTORS ARE USED IN THE FULLOWING MANNER
ι
      X, Y, Z ARE RESPUNSE FACIORS
C
     Q1=X*TI-Y*TU*GMA INSTIL WHERE & IS MINIMUM
C
      WU=Y*T1-Z*IU OUTSIDE WHERE R IS MAXIMUM
C
      T1
            INSIDE TEMPERARURE WHERE R IS MINIMUM
C
      10
            UUTSILE LEMPERATURE WHERE R IS MAXIMUM
C
C
         THERMAL CONDUCTIVITY
      ĸ
      6
         THERMAL DIFFUSIVITY
C
      L
          THICKNESS
С
    IMED OR BLACK
                    PLANE WALL
Ĉ
    1M=1
         CYLINUKICAL WALL
С
    IM=2 SPHERICAL WALL
ί
    IN=U
           FINIL THICA WALL
C
    INEL
           SEMI-FINITE WALL
C
C
    IN=2
            SOLID ONJECT
    IF RESPONSE FACTURS OF THE SULID CILINDER OR SPHERE OF HOMOGENEOUS PROPETT ARE DESIRED. TREAT THE PROBLEM OF MULTILAYER BUT WITH THE
C
C
    IDENTICAL PROPERTIES FOR ALL THE LAYERS EXCEPT THE RADIUS
C
     IF IHEATED NO TEMPERATURE DATA THUS NO HEAT CALCULATION
С
     IF IHEAT=1 PERIODIC BOUNDATRY CONDITIONS
  400 FURMATIZHU
                  )
      REAL K(10),G(10),L(10),R(11),KG
      LIMENSION X(200),Y(200),Z(200),TI(1000),IO(1000),C(10),D(10),RES(1
     10) + KMK(10+4) + KMKG(4) + F(200)
    1 + URMAT(1U17)
    2 FURMAT(10+7.0)
  LUU FORMAT(1011
                              )
                    LAYER
                                          K(1)
                                                       (\mathbf{I})
  101 FURMATI77nu
                                                                i(I)
                                                                         RESLI
                               L(I)
                                                                              )
     1)
          DESCRIPTION
  102 FURMAT(77n
                    NU
                                                                              )
           UF LAYERS
     2
  103 FORMAT(110,1F11.3,1F10.3,1F10.2,1F10.3,1F8.2,2X,4A6)
                                                   THERMAL CONDUCTANCE
  104 FURMAT(SHHU
     3U=1F(.5)
  105 FORMAT (49HU
                                                   TIME INCREMENT DT=1F3.0 )
                                                       RESPONSE FACTORS
                                                                              )
  106 FORMAT(SULU
  107 FORMAT(120H0
                                    J
                                                           Х
                                                                            Y
                                                                              )
     1
  108 FORMAT(1117+1F23+4+2+15+4)
  112 FURMAL (440)
                                               CUMMON RATIO CR=1F7.5)
  117 FURMAT(44HU
      KEAD(5,1) THEAT
       IF (INEAT . WE. 0) CALL TUATA (IO, TI, WP, IHEAT)
  100 READ(5,2) DELTAT
  JUD READ(5.1) NLAYKINTESTIIMIIN
       IF (NLAYR.07.10) 60 TO 600
      NNLAYR=NLAYR+1
       IF (NLATROLU.O) GU TO 500
      DU 200 I=1.NLATR
  200 KEAD(5,2) L(1),K(1),D(1),C(1),RES(1)
       IF(IN.EQ.Z.AND.IM.EQ.U) 50 TO 301
    READ KORHO, AND C OF GROUND IF IN=1
C
  500 1F(IN.NE.U) KEAD(5,2)KG, UG, CG
С
     AG THERMAL DIFFUSIVITY OF EARTH
       IF(IN.NE.U) AG=KG/CG/DG
       IF (NLAYR.LG.O) GU TO 501
```

```
1+ (IM.EQ.U) OU TU SUI
     READ(502)(K(1),I=10NNLAYR)
     50 TU 302
JU1 K(1)=10.
     UU 303 IZZANNLAYR
JUS K(1)=R(I-1)+L(1)
312 IF (11. EN. C. AND. IN. NE. U) KEAD (5, 112) (RMKG(J), J=1,4)
     60 113 1=1. NLAYR
113 KEALI(5,112) (RINK(1,J), J=1,4)
     1+ (IN. EQ. 1) READ(5,112) (RMKG(J), J=1,4)
     UU JUG ISLINLAYR
     1 \leftarrow (L(1)) = 11(0, 111, 110)
111 6(1)=().
     K(I)=1./KES(1)
     00 TU 109
10 \ 6(1) = k(1)/c(1)/0(1)
109 CONTINUE
501 GMA=(R(NNLAYR)/R(1))**10
     WEITE (BreUT)
207 FURMATIZHI
                     )
     CALL RESMIN (KILINIGIAGIKGIXIYIZINLAYRIDELTATINRTICRIDTIMIINIF)
     WRITE (BALUU)
     1F(IN.EN.U) WRITE(6,701)
/U1 FURMAT(50mU
                  PLANE WALL SYSTEM
                                                                              )
     1+ (IM. EQ. 1) WRITE (6,7112)
 102 FURMAT (SURIU CYLINDRICAL
                                                                              )
                                  SYSTEM
     1+(IM.EQ.2) WRITE(0,703)
                  SPHERICAL SYSTEM
                                                                              )
 103 FORMAT(SUNU
     WHITH (601UL)
     WEITE (HOLUE)
     WHITE (604UU)
      IF GILAYROLGOUD OU TU 502
     1+(III.EQ.Z.AND.IM.NE.U) WEITE(0,120) KGODGOCGO(RMKG(J),J=1,4)
     DU 202 ILLINLAYR
     1r (L(1)) 202,203,202
203 K(1)=0.
2U2 WRITE(6+103) I+E(I)+R(I)+R(I)+RES(I)+(RMK(I+J)+J=1+4)
     1+ (IN.EQ.1) WRITE (n. 120) KG+DG+CG+ (KMKG(J)+J=1+4)
120 FURMAT(1F27.3+1F10.2+1F10.3+10X+4AD)
502 WRITE (6+105) UELIAT
     WEITE (6+104)UT
     WRITE (6+106)
     WRITE (0+400)
     IF (11. NE. U) 60 TU 1535
     WRITE (6+107)
     UO 114 N=1.NRT
     JN=N-1
 114 \text{ WRITE}(0 + 1 \cup 0) \cup N + X(N) + Y(N) + Z(N)
     60 TU 504
1035 WRITE (0, 555)
                                                                             )
                                                             F
                                           J
 555 FURMAT(SUHU
     IF (IN. EQ. 1) GU TU 505
     1+ (IN. EQ. 2. AND. IM. EQ. 0) 60 TO 505
     LU SUB N=1 NRT
     JN=11-1
     X(N) = -X(n)
 506 WRITE(6+508) JN+X(N)
     60 TU 504
 505 60 509 N=1 NRT
     J-vi=1U
 509 WRITE(BISUB) JNIF(IN)
 308 FURMAT(112401-21.5)
```

```
but write (b,400)

write (b,400)

write (b,400)

write (b,117) Cr

if (N1EST.e.G.H) GU TO BUU

CALL HEAT (\lambda, Y, Z, TI, TO, DELTAT, NP, NR[, GM,, UR)

GO TO BUU

ono STOP
```

500 5101 E100

```
WILL FOR SAMPLE, SAMPLE
               THIS PROGRAM ILLUSTRATES THE USE OF RESPTA AND HEATX
C
                  DEVELOPED BY THE NATIONAL BUREAU OF STANDARDS
C
                                    INSIDE TEMPERATURE WHERE R IS THE SMALLEST
Ċ
                   11
                   FU.
                                       OUISIDE TEMPERATURE WHERE R IS THE LARGEST
L
                                     THERMAL CONDUCTIVITY, K IS THE THRMAL CONDUCTANCE OF THE
C
                  n
                  LAYER IF THERE IS NO THERMAL MASS SUCH AS AIR SPACE
C
Ċ
                                     THICKNESS OF THE LAYER LEO IF NO THERMAL MASS
                  L
Ċ
                                     RADIUS OF THE LAYER USE ARBITRARY VALUE FOR THE PLANE WALL
                  \mathbf{R}
                                     THERMAL DIFFUSIVITY OF THE LAYER GED FOR NO THERMAL MASS
C
                  6
                  U_1ME_{14}S(0_1, \kappa(10), \kappa(10), \kappa(10), \sigma(10), \kappa(100), \gamma(100), \gamma(100),
                  LIMENSION NV(200), SOE(200), TCT(200), F(200), DB(200), TZ(200), TU(200)
                   UIMENSION IX(40) , TY(48) , HTW(11)
                   UIMENSION (1(200), T2(200), W2(200)
             2 FURMAT(1017)
             5 FURMAT (10+7.11)
       104 FURMAT(SUNU WALL COMPUSITION STATED FROM INSIDE SURFACE
                                                                                                                                                                                                                        )
       105 FURMAT(120HO
                                                                   LAYER
                                                                                                              ĸ
                                                                                                                                                                          L
                                                                                                                                                                                                                        )
                1 K
                                                                                            0
                                                                                                                                                                                                                        )
       110 FORMATISUNG PLANE WALL MODEL
                                                                                                                                                                                                                        )
       111 FURMAT(SUNG CYLINDRICAL WALL MODEL
                                                                                                                                                                                                                        )
       112 FORMATISUNU SPHERICAL WALL MODEL
                  KEAL KOL
                   READISO21 NDAYONIMAX
                   1+ (NUATOLGOU) GU TU 100
                              ROUM AIR LEAPERALUKE
                   11
C
                                  UUTUUUK AIR TEMPERATURE
 L
                   DB-
                                        WIND VELOCITY IN KNUTS
してい
                   W V
                                          SULAR RAUIATION
                   SUL
                                        TUTAL CLOUD AMOUNT
                   TUT
                   READ(5,1) (T/(JT), JT=1,24)
                   READ(5,1) (DR(JT),JT=1,24)
                   READ(5,1)(WV(J1), J1=1,24)
                   READ(5,1)(SUL(JT), JT=1,24)
                   READ(5,1)(ICT(JT),JT=1,24)
             1 FURMAT(12ro.11)
                   DU 103 ILZONDAY
                   00 103 JK=1,24
                   JT=24*(II-1)+JK
                   U_{13}(J_1)=D_{13}(J_K)
                   T_{ij}(j_i) = D_{ij}(j_i)
                   WV(JI)=WV(JK)
                   TUT(JT) = IUI(JK)
                   SUL(UT)=SUL(UK)
        103 12(JI)=TZ(UK)
        100 READ(5.2) NL. IM
                   REAU(5,5) (K(I), I=1, NL)
                   READ(5,5) (L(I),1=1,NL)
                   NLL=NL+1
                    READ(5,5) (R(1),1=1,NLL)
                    READ(5,5)(G(I),I=1,NL)
                    READ(5+5) DT
                    1+ (IM. EQ. U) WRITE (6, 110)
                    1F(1M.EQ.1) WRITE(6,111)
                    1F (IM.EW.2) WRITE(6,112)
                    WRITE(6,104)
                    WRITE (0,105)
                    DO 4 J=1,NLL
              4 WRITE(0,3) K(J), E(J), R(J), G(J)
              3 FORMAT(6F2U.n)
                    AG=0
                    KG=Ü
```

```
1N=0
   UX=R(NLL)/K(1)
   1+ (IM.LU.U) GMA=1.
   1+ (IM. EQ. L) GMAEGX
   1+ (1Mollow) GMACGX**2
   CALL RESPIN (KOLONOGO, GOKGOXOYOZONLODTONROCKOU) IMOINOF)
   HIW(a)=0.1
   111W(4)=0.9
   h1W(10)=1.
   HTW(1)=01
   111W(2)=NK
   h1W(3)=43
   HTW(4)=GMA
   HTW(5)=CK
   WELTE (0,15)
13 FURMATCIZUM1
                                                                 TCT(KT)
                      DB(KE)
                                      12(KT)
                                                   SOL(KT)
  IV(KT)
                    FOU
                                  101
                                           HEATWT
   WIPEU.
   W2H=U.
   DU 11 KT=49.NTMAX
   LALL FU(WVIKT) . 1. FUC. FUT. 1)
   HIW(n)=FUC
   Faw(7) = SUL(KT)
   VUH=DB(K))
   HIW(11)=101(KT)
 IN THIS PRUGRAM THE PRESENT TIME IS DT*48 TH HOUR
   LALL REVICIO, TX, 48, KT)
   CALL REVILIZOTION ABOKI)
   CALL HEAIX(X,Y,Z,TX,IY,OUB,TUT,HEAIWI,HTW,01P,02P)
   W_{k} T_{c} (D_{\ell} Z_{\ell}) U_{b} (K_{\ell}) T_{\ell} (K_{\ell}) SOL (K_{\ell}) T_{\ell} (K_{\ell}) WV (K_{\ell}) FUC T_{\ell} HEATWT
12 FURMAT(10+12.2)
   11 (KI-48)=101
   T2(K1-48)=12(K1)
   W2 (KI-48) CHEATWT
11 TU(KI)=TUI
   WRITE(7)11
   WRITE (7)12
   WRITE (7) WE
   KEWING 7
   END
```

W

)

```
WA FOR ANA
      SUBRUUTING RESPTR(KOLOROGOAGOKGOXOYOZONLODTONROCROUPIMOISOF)
      LIMEASION K(10)+L(10)+K(10)+G(10)+X(100)+Y(100)+Z(100)+AP(10)+BP(1
     10) CP(10) + DP(10) + A(10) + B(10) + C(10) + D(10) + ZR1(3) + ZR2(3) + RB(3) + RAP(3
     2), ROUT(100), RA(3, 100), ZRK(3, 100), RX(100), RY(100), AZ(100)
     30+ (100)
      REAL KOLOKO
      F1=3.1415927
      1F(IS.E0.1.ANU.IM.E0.0) WRITE(6,004)
  004 FORMAT(SUNU
                    SEMI-INFINITE
                                      PLANE WALL
                                                                            )
      1+(IS.EQ.1.AND.IM.EQ.1) WRITE(6,005)
                                                                            )
  005 FURMAT (SUHU
                     SEMI-INFINITE
                                      CYLINDER
      1F(15.EQ.1.AND.IM.EQ.2) WRITE(6,006)
                                                                            )
  006 FURMAT(50HU
                     SEMI-INFINITE
                                      SPHERE
      1F(15.EQ.2.AND.IM.EQ.0) WRITE(6.607)
  007 FURMAT(5000
                     SOLID SLAB
                                                                            )
      IF (ISOEQOZOANDOIMOEQOI)
                                WRITE(6,602)
                                                                            )
  002 FORMAT(50H
                     SULIU----CILINDER
      1F(IS.E0.2. AND. IM.E0.2) WRITE(6.003)
  003 FORMAT (SUN
                      SULID---- SPHERE
                                                                            )
      M:5=3
      IF(ISOEQOCOANDOIMONEOD) M3=1
      1F(IS.NE.1) GO TU 613
  608 ZE=KG/R(NE+1)
      UY=R(NL+1) **2/AG/UT
      CALL GPF(UY, ZL, IM, AZ)
      IF(IS.EQ.1.AND.NL.EQ.U) GU TO 901
  U13 CALL ABCUELO. +K+L+K+G+AX+BX+CX+DX+IM+NL)
      Kb(1)=UX
      Rb(2)=1.
      RH(3)=AX
      U=1./BX
      UU 1 I=10NL
      PX=0
      CALL ABCUP2(PX+K(1)+L(1)+R(I)+G(1)+AP(1)+BP(I)+CP(I)+DP(I)+IM)
    1 CALL ARCUZ(PX+K(I)+L(1)+R(I)+G(1)+A(I)+D(I)+C(I)+D(1)+IM+1)
      IF (NL.LT.2) 60 TU 502
      CALL DERVI(A+6+C+D+AP+6P+CP+DP+APP+6PP+CP+DP+NL)
      60 TU 503
  5U2 APP=AP(1)
      BPP=nP(1)
      CPP=CP(1)
      UPP=UP(1)
  503 1F(IS.NE.2) 60 TO 501
      1F(IM.EQ.U) GO TU 501
      CALL SULID(0. + R(1) + KG+AG+IM+HF+HFP)
      Z_R1(1)=(-UPP+HFP*AX)/DX/UT
      Z_{R2}(1) = -Z_{R1}(1)
      WRITE(6,1300)
                                    CPP
                                                          HEP
 1300 FORMAT(120H
                                                                            )
     1
                               ÛX
           AX
 1400 FURMAT(4+20.5)
      WRITE(6+1400) CPP+HFP+AX+DX
      60 TU 1212
  501 RAP(1)=DPP
      RAP(2)=0.
      RAP(3) = APP
      UO 2 I=1+5
      C1=RAP(I)/bX/DT
      C_2 = RB(1) * BPP/BX/BX/DT
      ZR2(I) = -C1 + C2
    2 ZR1(I) = -2R2(I) + RB(I) / BX
```

```
1212 WKITE (6+04)
                                                                               )
   64 FURMAT(SUHU
                    RESIDUES AT P=0
      WRITE(6.100) (ZR1(1),I =1,M3)
      WRITE(0,100) (ZR2(1),1=1,M3)
  100 FURMAT (3F20.6)
    ROOTS OF B(P)=0.
Ċ
  212 NMAX=40
      IF(IS.EQ.Z.AND.IM.NE.)) NMAX=100
      Fx=0.001
      DP0=0.1/01
      IF (IS.EQ.2.AND.IM.NE.A) UPU=3.1416*3.1410*AG/K(1)/R(1)*0.25
      ULX=U.00UI
      16 (IS. EQ. C. AND. IM. NE. U) ULX=DP0/1000
      NEU
      WKITE (6+03)
                                                                              )
   63 FORMAT(SUNU
                   RUDIS OF B(P)=0
   11 DL=DPU
      CALL ABCUC (PXONOLOROGOAXOBXOCXOUXO1MONL)
      IF (15.EQ.2.AND.IM.NE.U) LALL SULUX(PX, R(1), RG, AG, IM, BX, DX, TEST1)
   15 P_{x}P=P_{x}+D_{c}
      LALL ADCUG(PXP+K+L+R+G+AXP+ISXP+CXP+DXP+IM+NL)
      1+ (IS.NE.2) 60 TU 213
      1+ (IM. EQ. U) 60 TU 215
      CALL SULUX (PXP+R(1)+KG+AG+IM+BXP+DXP+TES[2)
      1+ (TES11*(EST2) 112+113+114
  114 PX=PXP
      TEST1=TEST2
      60 TU 15
  112 IF (DL-ULK) 130,130,117
  117 UL=UL/2.
      60 TU 15
  113 1F (TESI1) 118,119,118
  119 KXX=PX
      GU TU 51
  TIR KYX=HXH
      60 TU 31
  130 ABEANS(TEST1/TEST2)
      R_XX = (P_X + A_0 * P_XP) / (1 + A_0)
      60 TU 31
  213 IF (HX*BXP) 12,13,14
   14 PX=PXP
      BX=BXP
      60 TU 15
   12 1F (DL-ULX) 50,30,17
   17 UL=DL/2.
      60 TO 15
   13 IF(BX) 18+19+18
   19 RXX=PX
      60 TO 31
   TH KXX=HXH
      GU TU 31
   30 AB=ABS(BX/BXP)
      KXX=(PX+AB*PXP)/(1.+AB)
   31 N=N+1
      ROOT (N) = KXX
      1F(N \cdot G1 \cdot 1) DPO=RUOT(N)-RUOT(N-1)
      NRT=N
      WRITE(6,41) N+ROUT(N)
   41 FORMAT(I10,1F20.6)
      PX=RXX+DLX
      1ESTMX=40
      TESTX=RXX*UT
```

A

```
1F(TESTX+TESTMX)42,42,43
 42 IF (N.LT. NMAX) GO TO 11
 43 WRITE (6,05)
 55 FORMAT(50H0 RESUDUES AT P=ROOT(N)
    DU 600 JUEL NRT
    PX=ROOT(JJ)
    DO 51 J=1+NL
    c_{A}LL_{A}CU_{2}(P_{X}+K(J)+L(J)+K(J)+G(J)+G(J)+B(J)+C(J)+D(J)+IM+1)
 51 C_{A}LL_{A}BCOP \ge (PX+K+J)+L+(J)+R+(J)+G+(J)+AP+(J)+BP+(J)+CP+(J)+OP+(J)+IM)
    CALL ABOUZ(PX+K+L+R+G+AX+BX+CX+DX+IM+NL)
    1F(NL.LT.2) 60 TU 504
    CALL DERVI (A+B+C+D+AP+BP+CP+DP+APP+BPP+CPP+DPP+NL)
    60 TU 505
504 APP=AP(1)
    BPP=BP(1)
    \mathsf{LPP}=\mathsf{LP}(1)
    UPP=UP(1)
505 1F(IS.NE.2) GO TO 214
    IF (IM. EQ. U) GO TU 214
    CALL SULID (PX+R(1)+KG+AG+IM+HF+HFP)
    1F(HF) 401,400,401
401 PYS
           =(HF*AX-C_{X})/P_{X}/PX/(UPP-HFP*bX-HF*bPP)/DT
    60 TU 402
400 HYS=0.
402 RA(1,JJ)=PYS
    60 TU 601
<14 PY=BPP*PX*PX*D
    KA(1,JJ)=UX/PY
    RA(2+JJ)=1./PY
    RA(3,JJ)=AX/PY
601 PZ=PX*UT
 52 Rx(JJ) = EXP(-PZ)
  5 RY(JJ)=(1.-EXP(PZ))**2
000 WRITE(6,54) ROUT(JJ), (RA(M,JJ), M=1,M3)
 54 FORMAT(4+20.6)
    00 154 JU=1+NRT
    UU 154 M=1,M3
    ZR1(M) = RA(M, JJ) * RX(JJ) + ZR1(M)
154 ZR2(M)=RA(MFJJ)*RX(JJ)*RX(JJ)*(1-2/RX(JJ))+ZR2(M)
    11=1
    111=5
 80 FORMAT(SUHU
                  RESPONSE FACTORS OF
                                         FINITE SLAB
                                            X(J)
                                                                  Y(J)
 B1 FORMAT(120H0
                          J
   1
                Z(J)
101 FORMAT(120H1 RESPONSE FACTORS FOR SOLID CYLINDRICAL OBJECTS
   1
702 FORMAT(120H1
                     RESPONSE FACTORS FUR SOLID SPHERICAL OBJECTS
   1
    IF(IS.EQ.2.AND.IM.EQ.1) WRITE(6,701)
    1F(IS.EQ.2.AND.IM.EQ.2) WRITE(6,702)
    IF(IS.EQ.U) WRITE(6, RU)
    WRITE(6,61)
    IF(ZR1(2).LT.0) ZR1(2)=0.
    WRITE(6,55) II,(ZR1(M),M=1,M3)
    WRITE(6,55) III, (ZR2(M), M=1, M3)
    DO 67 M=1+M3
    ZRK(M+1)=ZR1(M)
 67 ZRK(M,2)=2R2(M)
 55 FORMAT(I10,3F20.6)
    NT=100
    00 58 N=3+NT
    NREN
```

)

)

)

)

)

```
UU 61 M=1,M3
01 ZHK (MON) = U.
   00 57 M=1.M3
   UO 57 JJ=1.NRT
   1/**(1JJ))**川
57 LRK(MON)=ZRK(MON)+PZ*RY(JJ)*RA(MOJJ)
   WRITE(0,55) N. (ZRK(M.N). M=1. M3)
    1F(N.L1.5) 60 10 58
   TEST1=2RK(1+in)/2KK(1+N-1)
    TFSTZ=ZRK(1,N-1)/ZRK(1,N-2)
    IF STJ=AHS (TEST1-IEST2)
    1F (TEST3-0.00001) 59:59:58
58 CUNTINUE
59 DO 60 NELINK
    X(N)=ZRK(L+N)
    Y(N)=ZRK(ZIN)
60 Z(N)=ZKK(J+N)
    CR=TES12
    WRITE (0102) CK
                      CK=1F10.6)
62 FURMAT(10HU
    IF (IS. EQ. . ANU. IM. EQ. U. GO TO AUU
    1+ (15. NE.1) 60 TU 900
901 IF (NL. LQ. U) 60 TO 905
    GE=2*KG/SURT (DI*AG*P1)
    1F(NK.LT.50) 60 10 610
    10 2114 J=50, NR
    ZJ=J
204 A2(J)=GF*(SORT(ZJ)-2.*SORT(ZJ-1.)+SORT(ZJ-2.))
    NRR= NR
    60 TU 300
010 UU 301 JENK+50
    Z(J+L)=Z(J)*CR
    X(J+1)=X(J)*CR
301 Y(J+1)=Y(J)*CR
    NKR=50
JUO LU 205 J=1. NKR
205 F(J) = \chi(J) - \chi(J) + \chi(J) / (Z(J) + AZ(J))
    INK=NRK
    60 TU 906
905 DO 904 JELINR
904 + (J)=AZ(J)
406 WRITE (6,207)
                                           F
                          J
207 FURMAT (SUHU
     CH1=1.
     DO 208 J=1.50
     CR=F(J+1)/F(J)
     TESTCR=ABS(CR=CR1)
     1F (TESTCR-0.00001) 611,611,612
 012 CH1=CR
     J=J-1
 208 WRITE (6+209) JJ++ (J)
 209 FORMAT(1110,1F20.5)
 011 NR=J
     CR=CR1
     GO TU 900
 000 WRITE(6,207)
     UO 210 J=1+NR
     F(J) = 2 * Y(J) - (X(J) + Z(J))
     JJ=J-1
 <10 WRITE(6:209) JJ.+(J)
 900 RETURN
      END
```

)

Ĵ,

```
WIN FUR BOB
      SUBROUTINE DERVT(A+B+C+D+A++B+C++D+A++B+B+C++D+P+N)
      DIMEDSION A(N) B(N) C(N) D(N) AP(N) BP(N) CP(N) D(N) AT(10) BT(1)
     1), CT(10), 61(10), ATT(10), 6TT(10), CT1(10), 6TT(10)
      UU 1 1=1014
      10 2 J=1,14
      1F(I.EU.J) 60 10 3
      AI (J)=A(J)
      b((J)=b(J)
      UT(J)=U(J)
      U_{1}(J)=U(J)
      60 TU 2
    3 AT(J)=AP(J)
      BIUDENPLUI
      U(J)=U(J)
      U1(J)=UP(J)
    2 CONTINUE
    1 CALL MULICATOBIOCTODIOATI(I)OBIT(I)OCTI(1)ODIT(I)ON)
      APPEAFI(1)
      DPP=BTI(1)
      (PP=LTT(1)
      UPP=DTI(1)
      DU 4 1=2+11
      APP=APP+AII(1)
      DPP=BPP+b11(1)
      CPP=CPP+CFI(I)
    4 UPP=0PP+011(1)
      RETURN
      LIND
```

```
WH FOR C.C
       SUBRUUIINE ANCUZIZOKOLOROGOAOBOCODOIMONL)
       U_1ME_NS_1O_N = AX(10) + BX(10) + CX(10) + DX(10) + R(10) + G(10)
       DUUBLE PRECISION DBEJ, DBEY, Z01, Z02
       KEAL K(10), L(10), J(1, J02, J11, J12
       F1=3.1415927
       2412P1*0.5
       I \vdash (NL \cdot LT \cdot c) \quad R(2) = R(1) + L(1)
       00 4 1=1.0L
       1F(G(I)) 103,103,102
  102 1+ (2) 1+1+101
  101 20=SURT(2/6(1))
       441=20*R(1)
       242=24*R(1+1)
       24L=24+L(1)
       IF (IM. NE. I) GU TU 3
       J01=01EJ(261+0)
       J11=0HEJ(241.1)
       JU2=HBEJ(202+0)
       U12=11EEJ(20201)
       101=13と11261・0)
       YI1=UNEY(ZG1+1)
       YUS=UBEY(262+0)
       Y12=115EY(262,1)
       AX(I) = -PP * 202 * (301 * 12 - Y01 * 312)
       6x(1)=PP*R(1+1)/R(1)+(-Y01*J02+J01*Y02)
       L_X(I) = K(I) / R(I+1) * (-UI1 * I 2 + Y 11 * UI2) * P + * 202 * 202
       UX(1)=PP*2@2*(011*Y02-Y11*002)
       60 TU 4
     3 LUESIN(ZUL)
       61=CUS(ZUE)
       51=CU/20L
       52=(51-C1)/ZOL/ZOL
       1F(IM.EQ.2) 60 TU 5
       A_X(I) = C1
       b_{X}(I) = L(I) / K(I) * S1
       L_{X}(1) = -Z_{UL} + K(1) / L(1) + UU
       Ux(1)=01
       60 TU 4
     5 UM=R(1+1)/K(1)
       A_{A}(1) = GM * (C1 - L(1) / R(1 + 1) * S1)
       0x(I)=L(1)/K(I)*GM*S1
       C_X(I) = L(I) * L(I) / R(I) / R(I) * R(I) / L(I) * (-(2u1 * 2u2 + 1) * S1 + C1)
       U_{X}(1) = GM * (U1 + L(1) / R(1) * S1)
       60 TU 4
     1 AX(1)=1.
       CX(I)=0.
       U_X(I) = (R(I+1)/R(L)) * * IM
       IF(IM \cdot EQ \cdot U) \quad \exists X(I) = L(I) / K(I)
       1F(IM.EQ.1) HX(I)=R(I+1)/K(I)*LOG(K(I+1)/R(I))
        IF(IM_{*}EQ_{*}Z) = HX(I) = L(I)/K(I) * (R(I+1)/R(I))
       60 TU 4
   103 Ax(I)=1.
       b_{X}(1) = 1/n(1)
       Cx(I)=U.
       \bigcup X(I) = (R(1+1)/K(1)) * * IM
     4 CONTINUE
       A=AX(1)
       b=BX(1)
       C=CX(1)
       U=DX(1)
        1F(NL.LT.2) 60 TU 6
```

ì

المعرب ا

CALL MULICAX, BX, CX, DX, A, B, COUNNL)

- - х х

 - - - - 4. * *

 - 3

```
WIN FOR UND
      SUBRUUTINE ANCOPZ(Z+K+L+K+G+AP+HP+CP+D+++M)
      LUUHLE PRECISION 201,202, DBEJ, UBEY
      KEAL K+L+JU1+JU2+J11+J12
      11=3.1415927
      14=P1/4.10
      1F(G) 103+103+104
  104 1+ (2) 101+101+105
  105 20=SQR1(116)
      20L=/1)*L
      241=24*K
      202=201+20L
                                            .
      17 (IM. NE. 1) 60 TU 3
      X=K*(k+L)
      Y=(K+L)++c
      21=(R+L)/1.
      JU1=ineJ(241+0)
      U12=118EU(262.0)
      U11=UBEJ(261+1)
      J12=015EJ(262+1)
      YU1=0BEY(2G1+0)
      YU2=UBEY(262+01
      Y11=0HEY(2G1+1)
      Y12=0BEY(2G2+1)
      AF=(-X*(011*Y12-111*012)+Y*(001*Y02-Y01*002))*PP
      6P=(x*(Jii*YU2-YI1*JU2)*Z1/ZQ2+Y*(JU1*Y12-Y01*J12)*Z1/ZQ2)*PP
      LP=PP*Z02/21*(x*(JU1*Y12-Y01*J12)+Y*(J11*Y02-Y11*J02))
      UP=(X*(-UUI*YU2+T01*U02)-Y*(-U11*Y12+Y11*U12))*PP
      60 TU 4
    3 X=L+L+U+5/6
      KI=R+L
      KES=L/K
      60=5114(ZUL)
      LI=CUS(ZGL)
      S1=CU/ZOL
      52=(S1-C1)/201/201
      1+ (IM. EQ. 6) 66 TU 5
      AP=X*(K1*51/R-L*52/R)
      BH#RES*X*K1*52/R
      211=201
      L1-2=1.42
      LP=X*(L/R)**2/RES*((2.*R*R1/L/L+1)*S1-(ZP1*ZP2+1.)*S2)
      D_{P}=X*(R1/R*S)+(L/R)*(R1/R)*S2)
      60 TU 4
    5 AP=X*S1
      HH=X*KES*52
      LP=X*(S1+L1)/RES
      UP=X*S1
      60 TJ 4
  103 AP=0.
      6H=0.
      CH=0.
      UP=U.
      60 TU 4
  101 1+ (1H.NE.U) 60 TU 6
      X=L*L*U.5/6
      AHEX
      BH=X+L/K/3
      LH=K/L+X+2.
      UH=X
      60 TU 4
    6 IF (IM.NE.1) 60 TU 7
```

è

```
 \begin{array}{l} k_{1} = R + L \\ A P = (1, 50 \neq f_{2} + R - R1 + k + 1) + k_{1} + R_{1} + L_{0} + (k_{1} / R_{1}) + h_{1} + 5 / 6 \\ B P = R_{1} / 4 / 6 / K + ((k_{1} + k_{1} + k + R) + L_{0} + (k_{1} / R) - (R_{1} + R_{1} - R + R)) \\ U P = (k_{1} + k_{1} + 0) + (k_{1} + k_{1} - R + R) + k_{1} / R - R + R_{1} + L_{0} + (k_{1} / R)) \\ 6 (k_{1} - k_{1} + k_{2} + 0) + (k_{1} + k_{1} - R + R) + k_{1} / R - R + R_{1} + L_{0} + (k_{1} / R) \\ 6 (k_{1} - k_{2} + R) + (k_{2} + R) + (k_{1} / R + R) + k_{1} / R + R_{1} + L_{0} + (k_{1} / R) \\ 6 (k_{1} - k_{2} + R) + (k_{2} + k_{1} / R + R) + (k_{1} / R) +
```

÷

E GD

```
WIN FUR E. . E.
      SUBRUUTINE MULI (A.D.C.D.AT.BT.CT.DI.N)
      DIMENSION A(N).B(N).C(N).D(N)
      A11=A(1)
      ol1=3(1)
      U11=0(1)
      071=0(1)
      Ir (H.Ll. el UU 10 3
      UU 1 U=2011
      AI=AIT+ALU)+ISTI+L(J)
      01=A1T+B(0)+BT1+0(J)
      CI=CIT+A(U)+HITI+C(U)
      U1=C11+15(U1+1)T1+1)(U)
      ALTEAL
      617=31
      CITELI
    1 011=01
      OU TU 4
    5 A1=A17
      DISHIT
      LI=CIT
      UIFDIT
    4 KETURII
      END
```

,

WIN FOR F.F SUBROUTINE SULID (ZORLONGOAGO IN. HEOHFP) KEAL KUNULIJIL DUDHLE PRECISION DHEJ. 200 ZUSSURI(Z/AG) LU1=LU*RL 261=201 LA=R1+R1/16 CUNEKG/R1 17(1) 20100 2 1+ (1M. WE.I) 60 TU 100 JU1=06EJ(240.0) 1x=AUS(JUI) 11-(1x-0.00001) 4+4+5 5 U11=UHEU(200,1) HH=CUH+ZUI#J11/JU1 HE1=011/001/201 HF2=(JU1*JU1+J11+J11-JU1+J11/201)/JU1/J01 HFP=-CUN*U.5*ZA*(HF1+HF2) 60 TU 300 100 C=COS(201) 5=514(201)/201 TX=AHS(SIH(ZW1)) 1+ (TX-0.00001) 4+4+3 3 h==-U01*(U/S-1) nFH=-LUN+U.5+2A+(1+C+(L-5)/5/5/201/201) 60 TU 500 1 HF=0. IF (IM. EW. C) HEH=-CUN+ZA/S. 1+(1M.E(0.1) HEP=-0.5*CUN*7A 60 TU 300 4 Hr=0. HEP=U. JUD RETURN END

```
ON FOR G.G
```

```
SUBROUTINE SULUX(Z+R1+KG+AG+IM+B+D+TEST)

KEAL KG+DUT+DIT

DOUBLE PKECISION DBED+ZGD

ZG=SURT(Z/AG)

ZG1=ZG*RT

ZGD=ZG1

CON=KGZRT

IF(1M+ME+1) GG TO 100

DD1=DBED(ZGD+0)

D1=DBED(ZGD+0)

D1
```

```
WIN FOR JUJ
       SUBRUUTINE GPF(U, ZL, 1M, Z)
       UIMENSION 2(100) /27(5000) /25(5000)
       DUUBLE PRECISION DBEJ, DBEY, ZW
       41=3.1415927
       SUTPLESORT (PI)
       P12=2./P1
       EH=0.001
       UH=0.1
  100 FORMAT(SUHU RESPONSE FACTORS FOR SEMI-INFINITE BED
       WRITE (DILUU)
       WHITE (DILUL)
  101 FORMAT(SUNU
                             ĸ
                                    Z(K)
       Z(1) = 2 \times Z \cup \times S \cup R \top (U) / S \cup T P J
       2Z=2(1)
       2(2)=2(1)*(SURI(2.)=2.)
       LU 2 K=3,50
       2K=K
    2 2(K)=2(1)*(SURT(2K)=2.*SURT(2K=1)+SQRT(2K=2.))
       1+(IM.EQ.U) 60 TU 70
       1F(IM. EQ. 1) 60 TU 1
       \angle(1) = \angle(1) + \angle \Box
       60 TU 70
     1 x=PI2 *LUG(0.5*CH )+0.30746691
       SUN=PI*0.5*(ATAN(X)+0.5*PI)
       1x=0
       D=EH-UD
       UU 1/ L=1,5000
       B=B+DB
     8 ZU=H
       1F(IX.EQ.10) GU 10 30
       2JO=UNEJ(2G+1)
       ZYO=UBEY(ZGIU)
       IESTX=ZJU+ZJU+ZY0+ZY0
       TrSTY=PIZ/6
       1ESTZ=ARS(IESTX-IESTY)
       1+(TESTZ-0.00001) 30,30,31
    31 22=8*8*8*1ESTX
       60 TU 32
    30 22=H*H*P12
       1 \lambda = 1 U
    32 2T(L)=1./22
       L1=L
       1EST=A05(21(L))*10
       1+ (TEST-0.0001) 11,11,17
    17 CONTINUE
    11 LTY=LT/2
       LTX=LTY*2-1
       BMAX=EB+(LIX-1)*UB
       BB=1./UMAA
       20=1./0
       SUT=SUN*2J
       P=EB-DR
       00 28 L=1+LT
       6=8+06
       213=13*13*20
     6 \ ZP = E XP (-ZB)
    28 \ ZS(L) = (1 - ZP) + ZT(L)
       CALL SIMS(2S,DB ,SUM,LTX)
       GK=(SUM+SUT)*PI2 +BH
       66=6K*+12
       2(1)=GG*2L*U
```

)

)

- 70 00 15 K=1+50 15 WRITE(6+10) K+2(K) 16 FORMAT(1110+3F10+5)
 - KE TURPI
 - EIJU

```
WIN FOR HOH
      SUBRUUTINE TONIALTO, TI, NP, 1HT)
С
      IF INTLL READ DAILY CYCLE
C
      IF INTER READ WEEKLY DATA
      DIMENSION IU(1000),TI(1000),06(200),UP(200),SOL(200)
  115 FURMAT(12+5.1)
    2 FURMAT(12F0.0)
      11-(IHT.EG.1) 60 10 121
      DU 116 HD=1+7
      NI=(w)-1)*24+1
      NF=N1+23
      KEAD (5,115) (105 (N) , N=N1, NF)
      READ(5,115)(DP(11),N=NI,NE)
  116 READ(5,115)(SUL(N),N=N1,NF)
      UU 119 NIL1016B
      10(10)=UB(11)+0.5*(SUL(11)*3.67-7)
  119 11(11)=75.
      60 TU 125
  121 KEAU(5,2) (UH(U),J=1,24)
      UU 122 NU=1.7
      10 122 N=1024
      10]=(10-1)*24+10
      TU(NL)=DU(N)
  122 11(N1)=75.
  123 WRITE (61204)
  204 FURMAT(201 04X04HT1ME+6X02HD607X03nSUN08X02HT008X02HDP08X02H11)
      00 205 NIV-11108
      N=160-1014+1
      11ME-INV
  205 WRITE (DIZUD) TIMEIDE (N) SOL (N) TU (N) OP (N) TI (N)
  206 FURMAT (6FIU.1)
      14=100
      RE TURLI
      EI.D
```

```
NII FUR HEATAPHEATA
      SUBEODIENE HEAIX(X,Y,Z,TU, 12,DB, 101+HEATWT, HEW, OIP, O2P)
      MEAT FLUX CALCULATION WHEN THE UUISIDE SURFACE UNDERGOES
      COMBINATION OF CANTALLYE AND CONVECTIVE HEAT TRANSFER
L
      01MF. 15101 A(1), 1110/(1), TU(1), T/(1) OHIW(1)
      HEAL KK
(.
      X(J), Y(J), Z(J), J=1(N-)))) SISPUNSE FAC
C
      IU(I), FZ(I), LEI, NT - HISTHE SURFACE AND SPACE TEMPERATURES
(_
      UN UNISIDE ATA TEMPS MATURE
C
      HIW(L)=DI TIME INCREMENT FOR RESPUNSE FACTORS
L.
      HIW(2)INK HUMBER OF RESPONSE FACTORS TO RE SUPPLIED
0
      HIW (O) THE HUMORY OF TERRERATURE DATA TO BE SUPPLIED
      HIW (4) IGMA RADIUS TATIO FUR CYLINDER AND SPHERE
٢,
      HIW(5)=CK COMMON RANIU FOR THE RESPONSE FACTOR CALCULATION FOR
L
1
      U .61.11K
      NTW(N) PROCESSIVE SURFACE HEAT TRANSFER COEFFICIENT
Ċ,
£,
      CUNVELIAL FUR LOW
      HIW (TITLE SULAR AND DAY RADIATION
<u>ا</u>ل
Ċ
      MIN(3) -A SOLAK AARTATION ANSORPTION FACTOR OF THE OUTSIDE SURFACE
5
      HIW (4) =F LIMMITTALLCE OF THE OUTSIDE SURFACE
      HIW (10)= CUSHI CUSHI OF WALL TILT ANGLE
C
Ĺ
      HIW (L1) TOTAL CLUUD AMOUNT
C
      TUT OUTSIDE SURFACE LEMPERATURE CALCULATED=TU(1)
C
      MEATOT MEAT GALIN TO THE SPACE
      NR=0.1714L-8
      UXMINEU.D
      レメニ40.
      UI=HIW(1)
      I_{M} \subset I \vdash I \times (I_{1} \cup I_{N} (2))
      N1-1-1X (NEW (3))
      GVATINW(4)
      UN=HIN(5)
      CUSMI=HTWLID)
      EHT=KR* (400 .+1115) +*4
      1F (CUSWI) 1,1,2
    2 EAT=EAT-2*CUSWI*(10.-FIW(11))
    1 1,=0.
      1××=1×+6×
      10(1)=1X
      \cup h = 1
    5 E1=KK*(400+10(1))**4
      CALL HEAT (X+T+Z+1Z+TU+NT+NK+6MA+CK+Q1+N2+Q1P+Q2P)
      111=11(8)*1116(7)
      h_{2}=h_{1}u(9)*(EAT-E1)
      H3=H10(6)*(D8=10(1))
      H=H1+H2+H0+W2
      60 TU(4+5 +12)+UK
    4 b1=H
      IU(1)=IXX
      UN=2
      60 TU 3
    5 07=0
      1+ (B1+021 61710
    8 JATTXX
      P1=H5
   18 15X=1X+DX
      10(1) = 1XX
      JK=2
      60 TU 3
    6 IF (1)X-UXMIN) 14+14+13
   13 DX=DX*U.5
      60 TU 18
```

```
14 C=AHS(B2/P1)

TU(1)=(TXX+C*TX)/(1.+C)

UK=3

GU TU S

7 IF(B1) 10,11,10
```

```
11 TU(1)=1X
```

```
60 TO 12
```

```
10 TU(1)=1XA
```

```
12 TOT=10(1)
```

```
HEATWIEGE
KETURU
```

LisU

WILL FUR FUILU

- C THIS SUBROUTINE CALCULATES OUTSIDE SURFACE HEAT TRANSFER C COEFFICIEDIS FOT AND FUC
- C FUT.... KAULATION PLUS CURVECTION
- C FUL ... CULIVECTION
- C V..., WIND WEDCITY IN KNOTS SUBROULINE FU(V, 15, FUC, FUT, 1WD) DIMENSION $\kappa(5)/0$, U, UDI, U, LU, UDZ, U, LU, UD1257, B(5)/, 454, U, 320, 0.
 - 1030+0.315+0.244+0.262/+C(6)/2.04+2.20+1.90+1.45+1.80+1.45/ VF=V+1.153
 - F(T=A(1S) + VP + VP + D(1S) + VP + C(1S)
 - INDEN IF THE SURFACE IS WINDWARD OR PARALLEL TO THE WIND INDEAL IS THE SUBFACE IS TERMARD.
 - INDED IF THE SURFACE IS LEEWARD
 - if (IWD.EG.U) 60 f0 1
 - 1+ (VP-7.0) 1+1+2 2 FUC=0.23+VF+1.02
 - 60 TU S
 - 1 +00=2.03
 - 3 RETURN
 - LND

C C

```
WILFOR 1.1
      SUBRUUTIAL HEAT (A.Y. X. TI, TU, NT, NK, GMA, CK, Q1, Q2, Q1P, Q2P)
      RESPUNSE FACTOR CALCULATION OF HEAT FLOXES
C
6
      PRIOR TO THE APPLICATION OF THIS ROUTINE THE TEMPERATURE DATA
С
      SHOULD HAVE BEEN REVERSED BY SUBROUTINE REVT
C
            INSILL LEMPERATURE WHERE R IS MINIMUM
      11
С
            OUTSIDE TEMPERATURE WHERE R IS MAXIMUM
      10
      UIMERSION A(1), Y(1), Z(1), TI(1), TU(1), XX(30), YY(30), ZZ(30)
      LU 2000 JEZINR
      XX(J)=X(J)-(H+X(J-1)
      YY(J)=Y(J)-CR*Y(J-1)
 2000 ZZ(J) = Z(J) = CR + Z(J-1)
 LUUU SUMXIN.
      SUMY=11.
      SUMY I=U.
      SUM/=110
      INT=IVIX
      DO 4 J=1.01
      SUMX=SUMX+1I(J)*AX(J)
      SUMY=SUMY+10(J) *YY(J)
      SUMY (=SUM (Y+ (I (J) *YY(J)
    4 SUMZ=SUMZ+10(J) *ZZ(J)
      G1=SUMX+SUMY *GMA
                           +411
      42=SUMIY-SUM7 +W2P
      WIH=UI
      W2P=W2
      KE TURN
      CIVID
```

WI I FOR REVIOREVI

C

6

С

- SUBRUULINE REVI(INTININI) DIMENSION I(I) KI(I)
 - INIS NOUTINE REVERSE THE ORDER OF TEMPERATURE SEQUENCE
- FUR N TEMPERATURE PUTINTS
- STARLING FROM PRESENT TIME NT AND ENDING UP WITH TIME NT-N+1 DU 1 J=1,10
- $\frac{1}{8\pi} \frac{1}{1} \frac{1$
 - LND

```
WIN FOR BIKENDIKE
    THE BESSEL FUNCTION SUBROUTINES WERE DEVELOPED BY B.A. PEAVY
С.
C
    OF THE NATIONAL DUREAU OF STANDARDS
       FUNCTION UDEU(X.M)
       CUMMUN / LICHE/MOUR, SOU, V, AOB, COU, E, F, G, H, PI
       DOUBLE PRECISION A(10), B(16), C(16), D(16), E(12), F(12), G(12), H(12),
      1 \vdash (18) \lor \cup (18) \lor \vdash (18) \lor \cup (18) \lor \cup (46) \lor \cup (46) \lor \vdash 
       DOUBLE PRELISION T(46) , AA, AB, AC, AD, X, DEEJ
       J=2
  100 AA=X/A.DU
       AC=X
       14 (AA.GI.1.110) 00 TU 6
       [(1)=1.Du
       1(2)=2.UU*AA**2-1.U0
       AD=4.10+AA**2-2.00
       UU 1 N=3+18
    1 ] (N) = Ab * I (N-1) - T (N-2)
       1F (J.EQ.0) GU TU 20
       1F (J.EQ.21 60 TU 30
       1F (DAHS(X).LT.1.D-8) AC=1.D-8
       1F (J.EQ.3) 60 TU 40
       AB=LUG(AL/8.00)
       1+ (M. EQ. 1) 60 TU 3
       AC=(Q(1)-AD*P(1))/2.00
       DU 2 N=2+18
    2 AL=AC+T(i_{i})*(i_{i}(i_{i})-AH*P(i_{i}))
       60 TU 5
    3 AC=(S(1)-AD*R(1))/2.00
       DU 4 N=2.10
    4 AC=AC+T(N)*(S(N)-K(N)*AB)
       AC=1.DU/X-AA*AC
     5 UNEUTAC
       RETURIN
    6 AA= 1.00/AA
       IF (J.EQ.I) AA=-AA
       L=12
       l \in (J \cdot L T \cdot c) L = 4b
       1(1)=1.00
       T(2)=AA
       1F (J.GE.2) T(2)=2.00*AA**2-1.00
       AN=2.00*AA
       1+ (U.GE.2) AU=2.DU*AA*A0-2.D0
       LU 7 N=31L
     7 T(N) = Ab + I(N-1) - T(N-2)
       1F (J.6T.1) 60 TU 50
       AA=1.00
       IF (X = T = 700 = D0) AA = EXP(-X)
       AH=1.DU/SGRT(X)
       1F (J.EQ.U) 60 TU 24
       AH=AB*PI*AA
       1F (M.EQ.1) GU TU 9
       AL=U(1)/2.UU
       DO 8 N=2+40
     A = AC = AC + T(IN) + U(IN)
       AL=AC*AB
       60 TU 5
     9 AL=V(1)/2.00
       UU 10 N=2+46
    10 AC=AC+T(N) *V(N)
       AC=AC* AN
       60 TU 5
    20 IF (M.EQ.1) GO TU 22
```

```
AL=P(1)/2.00
   PO 51 N=5110
21 A C = A C + \Gamma(1) + P(1)
   60 TO 5
22 AL=R(1)/2.00
   UU 23 N=2+16
23 AL=AC+1(1) + R(N)
   AC=AC*AA
   60 TU 5
24 AN=AN/AA
   1+ (M.EQ.1) 60 TU 26
   AL=U(1)/2.UU
   UU 25 N=2140
25 AC=AC+1(N)*U(N)
24 AL=AN*AC
   60 70 5
20 AL=V(1)/2.00
   UU 27 N=2+38
27 AL=AL+T(1) +V(1)
   60 TU 28
30 IF (M.EQ.1) 60 TU 32
   AL=A(1)/2.00
   UU 31 N=2+16
31 AL=AC+T(1) *A(1)
   60 TO 5
32 AL=((1)/2.00
   UU 33 N=2,10
33 AL=AL+1(1) +C(1)
   AL=AC*AA
   60 TU 5
40 An=2.00*L06(AC)/PI
   1+ (M.EQ.1) 50 10 42
   AC=(B(1)+Ab*A(1))/2.00
   UU 41 N=2+16
41 AC=AC+I(N)*(N(N)+AB*A(N))
   60 TU 5
42 AL=(1)(1)+AB*C(1))/2.00
   10 43 N=2+10
43 AC=AC+T(1)*(1)(1)+Ab*C(1))
   AU=AC*AA-2.DU/(P1*X)
   60 TU 5
50 AD=SURT(2.00/(PI+K))
   1F (M.EQ.1) 60 TU 60
   AH=E(1)/2.00
   AC=F(1)/2.00
   UO 51 N=2+12
   AB=AB+T(N)*E(N)
51 AC=AC+T(N)*F(N)
   AC=AL*AA
   AA=X-P1/4.00
55 IF (J.EQ.J) GU TO 52
   AC=AU*(AU*LOS(AA)-AC*SIN(AA))
   60 TU 5
52 AC=AD*(AC*COS(AA)+AB*SIN(AA))
   60 TU 5
60 AH=G(1)/2.00
   AC=H(1)/2.00
   DO 61 N=2+12
   AB=AB+1(1)+6(N)
61 AC=AC+T(N)*H(N)
   AC=AC+AA
   AA=X-.7500*P1
```

ì

٤

```
GU TU 55
LETRY UBEL(X,M)
JEU
GO TU 100
ENTRY UBEN(X,M)
JE1
GO TU 100
ENTRY UBET(X,M)
JE3
GU TU 100
END
```
FOR BITHIBITH

COMMON /LICHE/P, Q, R, S, U, V, A, B, C, U, E, F, G, H, PI DOUBLE PRECISION A(1a), B(1b), C(1b), D(1b), E(12), F(12), G(12), H(12), 1P(1B), Q(1b), R(1B), S(1B), U(46), V(46), PI, T, W, X, Y, ZCHEBYSHEV CUEFFICIENTS FOR RESSEL FUNCTIONS

DATA A/.J1545594294973U239U0+=.8723442352852221D=2+.2651786132U333 1681001-.3/00949936726497/9001.158067102332097261001-.0348937694114 20888500++48191800694676040-2+-+4606261662062750-3++324603288210-4+ 3-.17619469077620-5+.760816359240-7+-.2679253530-8+.784869630-10+-. 419438350-111.412530-131-.7590-15/16/-.060292226406569883001-.27447 54305529740265001+179034314077182663001+201567346255046637001=+1773 60201278114358200++04719668959576338700+-+72879624795520790-2++7531 7135932577740-31-156320791410570-41.32065325376550-51-144072332740 8-01.52487947870-01-1583755250-91.40263310-111-.874730-131.10430-1 94/+0/1+2957175412105295400+-1+1918011605412168700+1+28799409885767 1762001-00014439341345432530010177709117239728283001-0291755248061 25420800+.52402701826838570-2+-.2604443893485810-3+.158870192599320 3-4/-*761/56780540-6/*294970700730-7/-*9424212980-9/*252812370-10/-4.577/40-121.13300-131.19550-15/10/.040608211771868508001-.1286973 584381350001-.76729636288664594001.675615780772187667001-.226624991 6556754924001.042319180353336904001=.51316411610610850-21.440478629 786710-31-0283046401495150-41.14166243644920-51-0568844003990-71.18 8754703240-81-151/212150-10112114330-111-124409D-1311428D-15/1P1/3 9.141592653589793200/

DATA U/ ·798331/0337777180600 · 027824030273932236D-2 · 2251087357111599490-5 · 15278/78723000490-4 · 157817791105719D-5 · 22708300408408 2D-6 · 4542056294922D-7 · 1045317005796D-7 · 287935462925D-8 · 78080927 3512D-9 · 15141541538D-9 · - 1954135293D-10 · - 436057528D-10 · - 28962217 45D-10 · - 12227439190-10 · - 245354238D-11 · 110880533D-11 · 139814476D-511 · 70425609D-12 · 12051141D-12 · - 11025346D-12 · - 10945044D-12 · - 4417 68293D-13 · 436830-14 · 160627D-15 · 898852D-14 · 65964D-15 · - 253132D-1 74 · - 183222D-14 · - 29012D-15 · 45641D-15 · 3455D-15 · 7251D-16 · - 9677D-816 · - 8537D-16 · - 1473D-16 · 2382D-16 · 1975D-16 · 223D-17 · - 653D-17 · - 9466D-17 · - 2D-19 · 19D-17 · 108D-17 · - 19D-18 · - 56D-18/

ì

DATA P/255.46687962436216700:190.494320172742844D0:82.4890327440 124099600:22.274819242462230900:4.0116737601793485300:509493365439 298287100:4771874879617413520=1:341633176601234095D=2:1924693596 38811366D=3:873831549662236D=5:32609105057896D=6:1016972672769D= 47:26882012095D=9:60968928D=11:19890830=12:206305D=14:3132D=1 50:420=18/ DATA 07-21.057660177402440200+-4.5534335864483950100+8.005368868 17003347700+5.2836328668739200100+1.5115356760292279100+.2590844324 23490019700+.3008072242051187450-1+.2536308168086199010-2+.16270837 3904302330-5+.8216025939930660-5+.335195255631330-6+.1128121158760-47+.318587979630-9+.7657574380-11+.158554130-12+.2857520-14+.45230-516+.630-187

UATA 5/-26.088095480862667800;-1.8392392242861994300;9.361617831 13953886800;4.6055870266628418500;1.101461993004852200;.16107430165 2614782460;.1630004928981641760-1;.1217056994515740890-2;.700106278 354757550-4;.3202510691935050-5;.119367970746640-6;.3696783270360-8 4;.966597520-10;.2162553190-11;.41872790-13;.70860-15;.10570-16;.14 50-18/

COMMON /ZHZY/T(20),W(20),X(20),Y(20),Z(18)

DATA T/2.404825557695772/700,5.5200781102863106500,8.6537279129110 11221700,11.791534439014281600,14.930917708487785900,18.07106396791 20922500,21.211636629879258900,24.352471530749302700,27.49347913204 30254800,30.63460646843197500,33.775820213573568700,36.917698353664 4043900,40.05842576462823900,43.19979171317673000,46.34118837166181 5400,49.462609859739781700,52.62405184111499600,55.76551075501997900 6.58.90698392608094200,62.04846919022716900/

DATA #/3.851705970207512500+7.015586669815018700+10.17346813500272 1200+13.32569195551422300+16.470650050877032800+19.6158585104682420 20.22.760084380592771900+25.90367208761838300+29.04682853491685500+ 352.18967991097440400+55.3230755008386500+38.47476623477161500+41. 401709421281445100+44.75931899765282100+47.90146088718544700+51.043 553518357150900+54.18555364106132000+57.3275254379010100+60.4694578 64534749100+63.611356698481232007

UATA X1.51914749728946677601-.34020480655836812001.271452299928301 19µ11 -.23245983136472476(); .206546433077996((); -.1877288030404394100 2+.1752658942292298500+-.1617015566892499800+.1521812137785945168+-3 .1441659776363731900+.1372969434005029100+-.1313246266686680100+. 412605949712727543001-.12139862477175019001.11721119889065592001-.1 5134291926164295260++1099911430462771360+-+1068478882547174560++103 0959572869J7718001-.1012934989340184200711/-.40275939570255393001.5 7001157525261325400+-+2497048770578431700++2183594072478729400+-+19 854653714565571600++1800633753443155300+-+1671846004738180200++1557 92498525265221001-.1480111099727775001.1406057981839822001-.1342112 140310006500+1286166220720700+-12366790076985700+11924981201069 200500+-+1152730941201087500++1110704966592097500+-+108385348943680 35600+.1053740553952498500+-.1026005671034088700+.1000351468116204 4+//1.57079632679489700+62+00+15116+00+12554474+00+4716+00+3902410+ 500150+D0190054+D017381280+D0124+D011958+4D016+D014+D012466720+ 600120013.0015.0017.001

ED

lalf.	XOT	SAME	LE
		7	1 mill

,	T () ()										
75.	75.	15.	75.	75.	75.	75.	75.	75.	75.	75.	75.
76.	71.	10.	79.	1530	81.	82.	81.	80.	79.	78.	71.
70.	70.	15.	74.	74 .	74.	75.	77.	60.	83.	87.	90.
93.	44.	95.	94.	93.	91.	87.	85.	83.	81.	79.	77.
υ.	U.	٤.	۲.	10.	15.	15.	10.	3 .	2.	· U .	υ.
10.	10.	ວຍ.	20.	Lu.	5.	4.	۷.	1.	υ.	U.	υ.
0.	1J .	U +	υ.	υ.	5.	10.	29.	41.	42.	343.	350.
J50.	348.	41.	44.	41.	29.	20.	ట.	Ú .	U.	U.	υ.
θ.	U .	υ.	۷.	۷.	2.	U.	0.	U.	2.	2.	2.
1.	1.	1.	υ.	U.	U .	1.	1.	1.	1.	1.	1.
ن	0										
1.86	0.42	0.77	,								
0.	0.3333	0.3333	•								
5.0	5.0	5.333	5.	660							
0.	0.015	0.026	•								
1.0											

MA XAT RESP INPUT DATA FORMAT FOR RESP U 1. 0 3 U 0 U. U. 0.92 U • U . H11 + 0.01 0.12 11.5 J . 0.5 1.00 140. 0.20 0.00 INSIDE SURFACE 1/0-IN LIN/LEUM 6-IN CONCRETE 3 0 U 1 U • υ. U. 0.92 U • . 80. 0.12 0.010.5 0. 0.5 1.00 140. 0.20 0.00 0.7 120. 0.25 INSIDE SURFACE 1/8-IN LIN/LEUM N-IN CONCRETE GNUUND 3 0 U 2 Ú. U. U. 0.92 11.25 0.15 0.3 nU. U • 6. 0. U., U. 0.92 UUTSIDE SURFALE J-IN FAPER UUTSIDE SURFACE U 3 U 1 θe 0.92 U . U . U • 59. 0.01 0.13 0.5 U. 0.5 1.00 140. 0.2 0.00 3.01 • ث 3.51 3.51 3. INSIDE SURFACEL SET RI 1/8-IN LINULEUS 0-IN CUNCRETE i 3 0 1 U. U • U • 0.92 0. υ. U.01 U.13 8U • 0.5 0.2 0.00 0.5 1.00 140. 0.7 120. 0.20 3. د د 3.01 3.51 3.51 INNER SURFACE (SFT K) 1/3-IN LINULEUM 6-11 CUNCRETE GROUND 1 U - 2 6 HU . 0.3 0. 0.01 0.13 Ú• 0.92 0. U. U.+ U-25 50. 0.32 0.5 0.51 0.51 PAPERIG IN K) 1/0-IN LINOLEUM SURFACE 2 0• 0 3 0 9.92 U • U • 0• .08 0.3 0. 0.01 0.13 0.2 0.00 1.00 0.5 140. 3.51 5. 3.51 ٠ د 3.01 INNER SURFAC(J-FT K) 1/8-IN LINOLEUM 6-IN CUNCRETE 3 0 1 2 U. 0.92 Û • 0. U •

10.01 0.13 80. 0.3 U. 0.00 0.5 1.00 140. 5.0 0.7 0.25 120. 3. 3.11 3.51 3.51 .). INSTUE SURFACE (3FT R) 0 1/8-IN LINULEUM G-IN CONCRETE GRUUND 2 0 2 2 0.01 0.13 80. 0.5 0. U . υ. 0.92 U. U . 0.25 0.32 50. 0.5 0.51 0.51 6-1N RAD PAPEN 1/5-IN LINULEUM SURFACE yy lai EUF 101 + LIV

PLAN	E WALL					
	R L(1)) K(1)	(1)	C(T)	RESIT	DESCRIPTION OF LAYERS
1	• 000	.000	- •00	• 000	.92	THSTOF SURFACE
S	.500	1.000	140.00	•200	•00	6-IN CONCRETE
	- 10-04-1 - 1000	and control improveduate	TIME I	NCREMENT DT	= 1.	
			THERMAL	CONDUCTANCE	: · · · ·	J= .665
			RES	PONSE FACTOR	25	
	en in an an e an	s is could i suided. To be and American and	1	88.000-pr	11- Am	
				v	v	7
		J	0	x 0.0.0	1 0 276	5 0700
angest & ex		3 	*1 •	011	1911	-7.57/14
			U	91 C H 7 O	.1684	-3,5343 - 690#
				291	.1081	4057
	4	4	- 0	182	.0678	- 2527
	F)	()	114	.0424	1580
	E	ን	0	071	.0265	0989
	7	7	- •()	044	.0166	0618
-	anna shangga samar anni a anna shaka na	- where the international states is the international states as	alati, area in factor a sectoralizza è distribution e la composi de desemble recordi			
					·	
			COMMON RAT	10 CR= .625	549	
a tau inana anya itau katang ang						
n a same in post of the product of same parameter	a managana a sama a mana ang sa		s y new conservation a compared a compared	• спроделяющие с со промет на по	naar aleanMari	
1 1 1 1 M M M M M M M M M M M M M M M M	а нито и инстал с нама на на подибара		indication , is a contrast is the contrast of an exciton equation ${\bf e}_{i}$		- *1480-*	
		an and the set of the second of the second				

LAYER NO	L(I)	K(1)	(1)	C(T)	RFS(I)	DESCRIPTION OF LAYERS
1 2 3	.000 .010 .500	•000 •120 1•000 •700	.00 80.00 140.00 120.00	•000 •300 •200 •230	.92 .00 .00	INSIDE SURFACE 1/8-IN I INDLEUM 6-IN CONCRETE GROUND
			TIME INC	DREMENT DT=	1.	
			THERMAL (CONDUCTANCE	0:	• 665
	ananatainin Siran unan unan sakara sakara a da ta		RESP	NSE FACTORS		
				L .		ł
		0		-88083		
		1	-	• 08610		
	an a	2		02270		, and a difference of the second s
	angenera pipe da aporte della se secondaria dell'estato del anterio			01117		
		4	-	00700		
		5		• 00472		
		6	-	00329		
مىسىيەت يەر ب						
				00163		
		1.0	~ · ·	- 000 70		
		11		• 00079		
		12		• 80836		
		13	-	00023		
veden i der		14	-	00015		
		15	-	00010		
	······································	16	-	.00006		
		17		••00004		
		18	-	.00005		
	Apr. pt. mith	19	and the manhanestary is the second	• 00002		
		20	-	••00001		
	-	21		• 00001		
		27		- 00000		
	100 T	24		- 00000		
		25	_	00000		
		26		••••••••		
		27	-	• 00000		
		28	• –	• 00000		
		29	-	•00000		
		30	-	•00000		
an appendiate of the same signed in				• 00000		
		32	-	•00000		

PLANF LAYFR NO	L(T) •000 •250 •000	K(1) .000 .120 .000	(I) 	C(T) .000 .300 .000 FMENT DT=	RFS(T) .92 .00 .92	DESCRIPTION OF LAYERS OUTSIDE SURFAC 3-IN PAPER OUTSIDE SURFAC
LAYER NO	L(T) •000 •250 •000	K(I) .000 .000	(1) -00 -00 -00 TIME INCR THERMAL CO	C(T) .000 .300 .000 FMENT DT=	RFS(I) .92 .00 .92	DESCRIPTION OF LAYERS OUTSIDE SURFAC 3-IN PAPER OUTSIDE SURFAC
1 2 3	.000 .250 .000	.000 .120 .000	.00 50.00 .00 TIME INCR THERMAL CO	.000 .300 .000 FMENT DT=	.92 .00 .92	OUTSIDE SURFAC 3-IN PAPER OUTSIDE SURFAC
1 2 3	.000 .250 .000	.000 .120 .000	.00 50.00 .00 TIME INCR THERMAL CO	.000 .300 .000 FMENT DT=	.92 .00 .92	OUTSIDE SURFAC 3-IN PAPER OUTSIDE SURFAC
2 3	•250 •000	.120 .000	50.00 .00 TIME INCR THERMAL CO	•300 •000 FMENT DT=	•00 •92	3-IN PAPER OUTSIDE SURFAC
			TIME INCR	MENT DT=	1.	
	· · · · · · · · · · ·		THERMAL CO			
				NDUCTANCE	U=	.255
					-	• 12.3
, ago a su ago anno 1490 mar anno 1890		ayyanan ayo manoonalah oo ay oo ahaa ahaa ahaa ah	KESPON	SE FACTOR	S	
			n ar ar an			
gingepatron many subdimension dar	a	J				
		1	+1.	44446 40390		
		2		23878		
			···· •	18292		
		4	- •	14116		
		.5	- •	10496		
		6	- •	08411		
		7	anana mutamangan at anan	06492		
		н	- •	05012		,
			•••	03868		
		10	•m. •	02986		
		12	• •	1770		
		13		01373		
	A Real and an address				- B	
	2	CC	MMON RATIO	CR= .771	90	

- ----

	L (I)	К(1)	(I)	C(T)	RES(I)	OF LAYERS
1 2 3	.000 .010 .500	•000 •130 1•000	.00 20.00 140.00	•000 •300 •200	.92 .00	INSTDE SURFACE 1/8-IN LINOLEUM 6-IN CONCRETE
	a not a spectrum any second of		TIME INCR	FMENT DT=	1.	· • · • · • · ·
			THERMAL CO	NDUCTANCE	U	• 586
		-68 0.88	RESPON	SE FACTOR	5	
	J		X		Y	7
			•8881		• 0254	5.8264
	1		0003		• 1638 • 1637	- 6947
	3		=.0269		.0950	- 3053
	4		0165		.0584	2418
	5		0101		.0359	- 1484
	6		- 0052		0020	- 0011
	0				• 112211	=.091
· · · · · · · ·	7		0038 0038		•0220	0911 0560
	7	Cn	0038	CR= •614	•0220 •0135	0911 0560
		CO	0038	CR= •614	•0220 •0135	0560
		Co	MMON RATIO	CR= .614	•0220 •0135	05f0
		Co	MMON RATIO	CR= .614	.0135	05f0
		Cn	0038	CR= .614	.0135	0560
		Co	0038	CR= .614	.0135	0560 0560
		Co	MMON RATIO	CR= .614	.0135	0560 0560
		Co	MMON RATIO	CR= .614	.0135	0560 0560

CYLTHDR	ICAL WALL					
LAYER No_	L(I)	K(I)	(1)	С(Т)	RES(T)	DESCRIPTION OF LAYERS
1 2	.000	•000 •130	.00 80.00	•000 •300	.92 .00	TWMER SURFACE (3FT 1/8-IN LINOLFUM
3	.500	1.000 .700	140.00	•200 •230	•00	6-IN CONCRETE GROUND
	. –		TIME INCR	FMENT DT=	1.	
			THERMAL CO	NDUCTANCE	U	• 586
			RESPON	SE FACTOR	5	
	an an a sa an tarka			anant i		
				e apotes		
t and the second s		J		F	-	
		0	•	98803		
	anan a 🛛 🗤 👘 🗤	1		08387	ar	
		2		02481		
			•	01290		
		4	-	00501		
		<u>2</u>		003/0		
		7		00048		
				00234		
		0		00105		
		10		00070		
		11		00046		
		12		00029		
		13		00019		
		14	······································	00012		an5. an
		15		00007		
		16		00005		
		17		00003		
		18		00002		
		19	ander	00001		
		20	*** •	00001		
		21		00000		
		22		00000		
		23		00000		
		24	- •	00000		
All for the		25		0.0000		
		26	- •	00000		
				00000		
		28	*** 0	00000		
-		40	·	00000		
		31		00000		
		Land and the second second second		00000		

COMMON RATIO CR= .61407

AV II						
10	L(D)	K(1)	(1)	C(I)	RFS(T)	DESCRIPTION OF LAYERS
						9 2
1	.000 .010	•000 •130	•00 80•00	•000 •300	.92	INNER SURFAC(3-F
3	.500	1.000	140.00	.200	• 0.0	6-IN CONCRETE
	·· ············ · == ·		TIME TNCR	EMENT DT=	1.	
			THERMAL CO	NDUCTANCE	. · · · · · · · · · · · · · · · · · · ·	- 514
			RESPON	SE FACTOR	5	
			- · · · × ·		Y	7
	00		.8905		.0232	5.6855
	1		0842		.1480	-3.5316
			0414		-1338	6766
	3		0246		•0828	3840
	4		0148		.0500	2305
	5		0089		.0301	1388
	6	Name and the set of a specific cost on the Andrew Statements in some State in the paper on a specific cost	0054		•0181	0837
	/		-•0025		.0104	0504
annen - menin, metri in rinn son ven annere en dametada		i handa adalah merindi ka kalandigi kan digi sa dari kama ti Kana yandi k		- an-management and a second se		
		CON	MON RATIO	CR= .602	52	
		CON	MON RATIO	CR= .602	52	
		CON	IMON RATIO	CR= .602	52	
		COM	MON RATIO	CR= .602	52	
		COA	MON RATIO	CR= .602	952	
		CON	MON RATIO	CR= .602	252	
		COA	MON RATIO	CR= .602	52	
		CON	IMON RATIO	CR= .602	52	
		COA	MON RATIO	CR= .602	52	
		CON	IMON RATIO	CR= .602	52	
		COA	MON RATIO	CR= .602	52	
		CON	IMON RATIO	CR= .602	252	
			MON RATIO	CR= .602	52	
		COA	IMON RATIO	CR= .602	252	
		COA	MON RATIO	CR= .602	52	
		COA	MON RATIO	CR= .602	52	
		CON	MON RATIO	CR= .602	52	

CYLINDR.	ICAL					
LAYER	L(1)	K(I)	(1)	С(Т)	RES(T)	DESCRIPTION OF LAYERS
		250	56.00	. 320		PADERIA THE PI
1	.010	.130	80.00	.300	.00	1/8-IN LINOLEL
2	.000	.000	.00	.000	.92	SURFACE
a baaa ina are kana dada are baada are	manual according to the second se	energi an fer regu disana aname brezhen da si er	TIME INC	CREMENT DT=	1.	. Каларитарита с инструмента и алекторита с на власт и
			THERMAL	CONDUCTANCE	U=	1.002
			RESPO	ONSE FACTORS		
						and a second a second sec
		J		F		
	n se a se	0	and a second	.73468		
		1		20036		
ngalagi lah melalan gi spesari keng kanagana dan bahangan panana di sama	ang danishan pagar 1 gan sa ta ang partin manakadan kata	2	Manakarka di antara da kana da			- Calendra Managera () a secondaria () a calendra
	r			07054		
		5		04593	-	
		6	-	03869		an and gualdinast a dashe and - an angelikiki arikik ar' dashe diki da - kalifikikiri mugakikik
		7	•	03284		
	a antaria an ara - 1 a contant atalakir a mila a ananan ita-birdi at	8	•	02797	an a see seaming a sea a summer and a second se	
		10	-	- 02035		
	······································	<u> </u>		01736		· · · · · · · · · · · · · · · · · · ·
		12	-	01481		
	na - Yerr men - o santanona monotari arrena da omo	13	•	01264		 - Interpreter and construction and approximate and the set of the set
	, all half to do - and a standard to the a stationary of the state	14		01079	and the second second second second second	-
artumana punya utu di dipanga meningkan dan di du	۰. بالمراجع المراجع	CO	MMON RATIO) CR= .8533	52	
	11-1-1-1 - 101 -101 - 1-10-1 - 1-10-1 - 10	n a stand a stand and a stand and a stand and a standard and as a				· · · · · · · · · · · · · · · · · · ·
ter a sora utera sala alakaran utera ta sara ajuajuran angan	ual site provinces a source and the tig control of a fer	na ant a share har - i faanna fursi ee - i a dad ahayya galaar	hanna'n, nga sa a digar taabaan haarin oo haaraanning mga aara iyoo	gen (poplaater (17.10) stagetaater (nes nes.)		a manananga sanat p inan g nana sa sa kangana
	1997 - 199 P. J 1997					
			and a second of			
errettelsetende i date date festeralitet en entrette en salar salar salar sa	na sur	and a subject from the set of the set of the set		ers make game angemengige began at skeys "geboor bijde soors mait iks om strikte		Names of the set of the

	•					
SPHERICA	AL WALL					
LAYER	L(I)	К(Г)	(1)	C(1)	RES(T)	DESCRIPTION OF LAYERS
·	0.00	000		0.0.0		
1	• 000	•000	• 00	• 000	.92	INSTDE SURFACE OF
2	-010	1.000	1/10 00	• 300	• • • • •	
5	•	.700	120.00	•230	•00	GROUND
a na antar y yan dada wakati da sa a yaya ya m	an ang ang ang ang ang ang ang ang ang a	na ann an ann an ann an ann an ann ann	TIME INCR	EMENT DT-	1.	
			TURNE INCO		•••••	
			THERMAL CO	NDUCTANCE	·	.514
en provinsi adaali adaali kasa kasa kasa i			RESPON	SE FACTORS	5	
		ل		F		
		n		89045		
		1		08081		
	ann gaire a de a president de la seconda de la companya de la companya de la companya de la companya de la comp	2	-	02585		alativa – gri mengenetikanikan ingena segarapanan serina ne antakan anakan ingenetikan s
		3		01379		
		4		00841		
		5	• •	00533		
		6		00344		
		7		00223		
		8		00145		
		9		00093		
		10		00060		
		11		00038		
		12		00024		
	Management programme spectra	13		00015	ang para analy the same and a second s	
		14		00009		
		15		00005		
		16		00003		
	en en antilet e ann har er er er en an en annañ e ar en annañ er er en annañ e ar en annañ er er er er er er e	17		00002		
		18		00001		
······		19		00001	enama e o remiami e doptaren recebe -	
		20	~ •	00000		
	an a	22		00000		
		23	• -	00000		
		20		00000		
		25		00000		
ngeneras inco non-manifultr in memory	a upa nya nya kalengalar nyagya kut ngari ana di pantanahinan ka dan	26	· · · · · · · · · · · · · · · · · · ·	00000		· · · · · · · · · · · · · · · · · · ·
		27		00000		
	and the second	28	•	00000		
		29		00000		
			a a max as y as as			

SPHERIC	AL					
LAYER	L(I)	K(I)	(1)	C(I)	RES(I)	DESCRIPTION OF LAYERS
		.250	50.00	.320		6-IN RAD PAPER
1	.010	.130	80.00	•300	•00	1/8-IN LINOLEU
2	.000	•000	•00	•000	•92	SURFACE
anti senja nasaa aatti digi aa tasa (maan - a	unter tiple fil u – ritt forsende undekke softensomhelde undekkens kørend	in on, to make the case of the later and the second terms has	TIME INCR	EMENT DT=	1.	
n Provinsi Sana I. and Andrew Sana Ang			THERMAL CO	NDUCTANCE	U	= 1.002
			RESPON	ISE FACTORS	;	
aan mining di daadaan ka na dar daanderings	al a Chananan an Anna Anna an Anna Anna Anna A				aalamaaaa	
ann-sh yan- a a angan a s shinailina anton	Ny amandrona dia mampikamban dia kaominina dia kaominina dia kaominina dia kaominina dia kaominina dia kaominin	J		F		anne an ann an an an ann ann an ann an ann ann ann ann ann an a
	-	0		71441		
		2		12067		
nananana ana amin'ny faritr'o dia 1970. Ilay	na ar i ar t- saor tal mar a samhan data i atmanti data data data data data data data da	3		08440	nan sile direkaliri ola sovereniran aaralihi holo	g als i bangkalen al tähle anvarlaalek kei vaalek Bekal toi staraslasaleksi. Salekkonke barrake tavake dek
		4		06333		
		5	·	04860	-	
		6		03756		
		7	-	02909		
terenter encourses determined interesting to a second se		<u>n</u>		01747		ntendensensen av sen av andensense socialitieren er en
		10		01355		
	a gadenin. Mil yana yinaya ngana dana di santara sakanilika araw ak	11		01050		A 10 4 1000 A 1 A 1 10 A 1 1000 A 1000 A 10 10 10 10 10 10
niene wegenergeniegen gesche Statistikken und sonstanden		12		00814	49	
ellenter Frés - elesansetén co-ce -s cottanes	that dans an fa si - r andalahadhadhaans a rhfadquadha adaa	a antipolo approximate a manimal () a subsequence de la statem any a m				
an ana 2011 - 2014 ann an stàr albhainn dan ann						
		Col	MMON RATIO	CR= .7752	22	
un mash in she na shear a shearn a	Minister algent - un preserve program annaumentation a	ann a na an ann an an an an an an an an			ngkanggapanakana, serengangak saan térser séb mé	
- Banggan - I and a galaxies - I		allingele aga gana na ga ang a sa ana ana ani ang		na ana ana ana ang ang ang ang ang ang a	. we have been as the state of the second stat	
er sedar - kesk k makkar-inar bud				·····		
a dia fadama katan 20 tahun angka kata dara	nanda, materio e dadora in . Artenato trator para regular administrativa artenanta.		a name and an		and was no varies and and base , a view second by a to	

.

