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PREFACE

This document differs in origin from the typical National
Bureau of Standards Report. It constitutes the author's 1969
Ph.D. dissertation, in Stanford University's Department of
Engineering Economic Systems. Dr. Young's research in this
field was begun during his stay at the Bureau's Technical
Analysis Division, and was recorded both in detailed form
("Scheduling to Maximize £h.ssenger Satisfaction", NBS Report

9569 > July 1967 ) and in a compact open- literature version
("Scheduling a Vehicle between and Origin an a Destination to
Maximize Passenger Satisfaction", Proc. 22-nd Nat. Conf., Assoc.
Comp. Mach,, 1967 ; PP» 233-245). He has as a courtesy made his
thesis available to us for issue as a Report, so that we could
maintain continuity of detailed documentation for our* sponsor in
this area, the Department of Transportation's Northeast Corridor
Transportation Project.

The document has been reproduced verbatim , apart from a few

trivial typographical corrections, from the copy supplied by the
author. Clarity, suitability of organization and general technical
soundness have been checked, but the paper has not been subjected
to a full-scale technical and stylistic review, and some possible
revisions have been omitted in the interest of prompt issuance.
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PASSENGER TRANSPORTATION SCHEDULING

Dennis Ralph Young, Ph.D.
Stanford University, 1969

This dissertation presents a method for developing near optimal timetable

for the operation of fixed schedule passenger transportation systems. The

establishment of efficient operating policies for existing systems is clearly

desirable. Furthermore, the ability to compute optimal schedules for drawing-

board systems is required in the consideration of planning alternatives for

future transportation investments. Here, timetable optimization is accom-

plished by maximizing an objective function consisting of three basic compo-

nents: operating costs, revenues, and traveler benefits. Traveler benefits

are computed using a consumer preference model that specifies a traveler's

willingness to pay for alternative trips, based on the scheduling of those

trips. The optimization is based on successive iterations of a dynamic pro-

gramming algorithm that develops timetables for each vehicle in the system.

Solutions are termed optimal to within a "first-order passenger exchange."

Examples are presented to illustrate the utilization of the methodology

for computing information relevant to the development of system operating

policies and the consideration of planning alternatives. Finally, an analysis

is developed for the problem of choosing among proposed alternative transpor-

tation systems in the face of uncertainty about traveler demand and prefer-

ence behavior.

Approved for publication:
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CHAPTER I

INTRODUCTION

This thesis is a study of the problem of scheduling passenger trans-

portation systems. The term scheduling refers to the determination of

timetables and corresponding traveler accommodations for a system of

transportation vehicles operating over a network. Consideration is re-

stricted to common carrier transportation systems that operate by fixed

schedules (e.g. published timetables) as opposed to real time dispatching

policies

.

In recent years there has been a growing emphasis on transportation

planning and research. For example, the Northeast Corridor Transporta-

Vc

tion Project, under which this research was initiated, has emphasized

the development of methodology relevant to the intelligent selection

among proposed alternative transportation system configurations [1].

k
The Office of High Speed Ground Transportation, in its report on high

priority research [2], has recognized the significance of scheduling to

that task. Thus, the problem of developing good schedules is important

not only for the generation of day to day operating policy; more impor-

tantly, a method for synthesizing schedules that maximize significant

measures of system performance is essential to decision makers who must

evaluate proposed alternative systems. A method for developing "optimal

schedules" for alternative systems permits the proper comparison of these

k
The Northeast Corridor Transportation Project and the Office of High

Speed Ground Transportation are within the jurisdiction of the U.S.

Department of Transportation.
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alternatives--each in conjunction with its own best scheduling policy.

The net benefit associated with the best schedule is the measure of merit

for a proposed system.

In this dissertation, the scheduling problem is considered from a

"systems" viewpoint, so that scheduling is properly perceived in relation

to system objectives, user and operator benefits and costs, available re-

sources (capital equipment), and decision making. This consideration is

important for both current operations and planning decisions. With re-

spect to day to day operations, for example, a scheduling methodology en-

ables development of timetables and pricing policies appropriate to the

traveler market, the system objective, and the available vehicle inven-

tory and network. In the planning process, scheduling methodology facil-

itates evaluation of the system-wide effects of employing alternate fleet

sizes and vehicle speeds and capacities. In sum, the system perspective

is necessary to appreciate the full implications of scheduling.

At this point, it is worthwhile to review the literature in transpor-

tation scheduling so that the specific content and contribution of this

thesis may be viewed in perspective, later. The literature documents

scheduling studies made in conjunction with various modes of transporta-

tion (e.g. rail, air). In addition, both fixed schedule and real time

dispatching systems have been studied. Bisbee and Kuroda [3, 4], and

Meyer and Wolfe [5], have considered the latter. Only fixed schedule

systems are considered here. The mode orientation of each contribution

to the literature will be mentioned in the course of the following dis-

cussion.

The relevant literature may usefully be viewed along the following

lines of classification: element of scheduling, relevant factors accounted
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for , objective to be enhanced, and method of optimization. The element

of scheduling refers to the particular subproblem that a study chooses

to address; a subproblem, such as constructing a timetable over a route,

or allocating vehicles to trips, is an integral part of the overall sched-

uling problem. Relevant factors, such as costs and traveler delay, are

those quantities that a study deems important in the determination of a

solution. An objective, such as maximization of profit, specifies the

goal for operating the system under study. An optimization method, such

as mathematical programming, is a means to compute the solutions corre-

sponding to the specified objective. Contributions to the literature are

reviewed according to these four categories, below.

The following elements of transportation scheduling have been inves-

tigated by researchers. In the area of evaluation and cost accounting of

preconceived operating policies, several efforts have been made. The air-

line simulation projects documented by Croswell [6], Kingsley [7], and

Howard and Eberhardt [8], and the railroad simulation analysis of

MacDonald- Taylor [9], all include this aspect of scheduling. Another

element that has concerned researchers is the determination of the required

vehicle inventory for implementing a given timetable. The paper by

Carstens, Baxter, and Reitman [10] is directly concerned with this ques-

tion, in the context of railroad systems. In addition, Sugiyama [11]

has investigated the minimum number of required seats or vehicles to en-

sure full passenger seating on rail trips. Other efforts such as those

by Simpson [12] for airbus systems, and Lampkin and Saalmans [13] for

municipal buses, have included computation of minimum vehicle require-

ments as part of overall schedule determination considerations.
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A third element of scheduling that has received attention is the

assignment of vehicles and/or passenger flows to given routes and trip

departures. Gunn's [14] airline simulation work, Larson's [15, 16] air-

line scheduling papers, and Miller's [17] book on airline efficiency, are

primarily concerned with these questions. Furthermore, the Boeing air-

line simulation effort [18], and papers by Kushige [19], Taylor [20],

Gagnon [21], and Howard and Eberhardt [8], have investigated this area

in airline contexts.

A fourth element, closer to the problem of timetable construction,

is the determination of frequency of service (i.e., number of trips/hour)

levels to meet demands over specified routes. Simpson and Neuve-Eglise

[22] and Kushige [19] have analyzed this problem area. Welding [23] has

investigated the relationship of service frequency to the stability of

timetable execution in high frequency service systems.

Finally, the area of timetable construction has been approached

from various directions by different investigators. Several workers such

as Heap [24], and Martin- Lof [25], have been concerned with the problem

of spacing a set of trips along a route over time, given the overall fre-

quency of service level. Others such as Simpson [12] and Foulkes
,
Prager,

and Warner [26], have addressed the same question as part of their con-

sideration of more comprehensive scheduling problems. More fundamental

work has been done by Devanney [27] and Ward [28] to determine optimal

timetables for one-way dispatching of vehicles along simple linear net-

works. Another study, given by the author [29], offers the generation of

optimal timetables for a single vehicle operating over a single link net-

work with one-way traveler demand.
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There has been some progress towards developing integrated ap-

proaches that account for several elements of scheduling in order that

high quality, total system solutions may be synthesized. For instance,

various comprehensive heuristic methods for developing system operating

policies are in current use. Railroads employ automated procedures for

route and timetable selection [30], and airlines are well advanced in the

art of simulation studies [7, 8, 18]. In another context, Newton and

Thomas [31] have developed a computerized semi- analytical approach for

route design, vehicle allocation, and timetable development for a school

bus system. Lampkin and Saalmans [13] have combined a heuristic algo-

rithm and search procedure to plan routes, timetables, and vehicle re-

quirements for a municipal bus system. All these efforts were directed

at particular '‘real world" problems, and almost by necessity consist in

some part of improvised procedures.

On a more theoretical level, the following contributions have been

made: The determination of timetables over simple route segments, as

discussed in the works of Devanney
,
Ward, Heap, and Martin-Lof mentioned

earlier, suggests the coordination of these route timetables in larger

networks. This approach has been put forward by Foulkes
,
Prager

,
and

Warner [26] for bus service, Bisbee and Devanney [32] in a general pas-

senger transportation context, and is suggested by the analysis of Beck-

man, McGuire, and Wins ten [33] for freight train scheduling.

A dynamic programming method, based on one-shot scheduling of each

vehicle, has been given by Hyman and Gordon [34, 35] for developing a

total fleet timetable for airline operations. The previously mentioned

comprehensive approach taken by Simpson, includes the analytical
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determination of passenger flows, the fitting of timetables to these

flows, and the determination of minimum vehicle fleet requirements to

implement the timetables. Finally, Devanney [36] has attempted the opti-

mization of total system timetables through a novel "pseudo-adaptive pro-

gramming" approach.

In sum, various parts of the passenger transportation scheduling

problem have been studied. Some progress has been made towards integra-

tion of subproblem solutions into a comprehensive framework. However,

additional research in this most important task is still required.

The second category along which research efforts differ involves

the factors that are considered relevant to the analysis. Of course,

every study must account for certain physical system attributes such as

network structure, vehicle characteristics, and fleet size. In the more

practically oriented studies [6, 20], other physical requirements such

as maintenance, and crew and equipment availability, are explicitly ac-

counted for. In the case of Welding's [23] study, the physical require-

ment of safety is a primary determining factor in the analysis of mini-

mum headways for high frequency scheduled service.

A second set of factors, more often considered in the less theore-

tical approaches, consists of "institutional" considerations. For ex-

ample, some works [8, 18, 21] have directly integrated the effects of

competition and government regulation into their analyses. A third group

of factors contribute to the measurement of economic efficiency. Most

scheduling studies, for example, take revenues and operating cost into

consideration. Others emphasize additional indicators such as load fac-

tor [12] and total expenditure level [13], as having major significance.
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Finally, the most difficult factors to handle are those pertaining

to the satisfaction of traveler needs for transport services. The con-

cepts that have been used to understand and quantify this crucial aspect

of passenger systems may be divided into two categories--aggregate meas-

ures of service and individual traveler properties. The aggregate meas-

ures include total waiting time or delay [27], total travel time [13],

an aggregate utility index [29], and fare and time elasticities of de-

mand [22]. Individual traveler properties include traveler riding time

constraints [31], purpose of travel [8], and passenger preferences among

alternate departure and arrival times [29], levels of speed and fare [18],

and multi-stop and non-stop trips [21]. In addition, Gunn's [14] concept

of "persistence of demand"-- the amount of time by which a potential pas-

senger will advance or delay his desired departure in order to use a

service offered, is one of the more imaginative indices of traveler be-

havior .

The set of factors considered in a particular scheduling study is

closely related to the specification of system objectives. The diversity

of factors catalogued above indicates the heterogeneity of objective for-

mulations found in the literature. Another reason for the diversity of

objectives, of course, is that different researchers have investigated

different elements of the scheduling problem. For example, if one is

interested in assigning vehicles to a given timetable or in computing

vehicle requirements to service a specified demand, then it may make

sense to minimize vehicle requirements [11] or dollar costs [20]. Such

objectives do not apply to the problem of timetable construction, since
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the timetable with no scheduled trips is obviously the one that minimizes

costs or vehicle requirements.

The array of objectives found in the literature may be classified

along four lines. First, some works are merely concerned with synthe-

sizing schedules that are feasible, i.e., that meet prespecified demand

or service and resource requirements [30]. A second class consists of

objectives that are purely economic in nature. These include maximiza-

tion of revenues [34], minimization of costs, and maximization of profit

[19]. A third class of objectives pertains to the enhancement of tra-

veler service indices. These include minimization of total waiting time

or delay [26], or total travel time [13], or maximization of a utility

index [29] or a service index [7]. A final class of objectives combines

economic and traveler service criteria. An example in this class is the

minimization of a combination of traveler delay and capacity costs [27,

28]. In general, however, insufficient attention has been paid to for-

mulation of the latter type objective.

The final facet of scheduling research is the method of optimiza-

tion by which system objectives are extremized in the attainment of

solutions. The applicability of particular techniques depends upon the

element of scheduling that is considered. This partially accounts for

the variety of methods that are found in the literature. The range of

techniques includes analytic approaches, simulation, heuristics, and

mathematical programming.

The following analytical approaches have been offered for the

solution of some aspects of transportation scheduling. Beckman et al.

[33] have derived analytic solutions for determining the best freight
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schedule of a given connectivity structure in simple networks. Carstens

et al. [10] give an analytic solution to minimum vehicle requirements in

a two node rail network. Sugiyama [11] has presented an analysis to

find minimum seat requirements to yield satisfactory accommodation of

passenger loads. Welding [23] has contributed an empirical analysis of

headway and stability for close interval service. And Foulkes et al.

[26] solve the sequencing of buses in a feeder- trunkline network in terms

of a set of linear simultaneous equations.

Consideration of the more comprehensive aspects of scheduling has

required more complex approaches. Simulation and trial and error im-

provement techniques have been used in various quarters. The efforts of

Carstens et al. [10], Croswell [6], Kingsley [7], MacDonald- Taylor [9],

Gunn [14], Howard and Eberhardt [8], and the Boeing Company [18], attest

to this fact. Other heuristic techniques have also been found useful.

Heuristic methods used by railroads for synthesizing operating policies

[30], Taylor's [20] algorithm for achieving maintenance schedules com-

patible with flight timetables, and Gagnon's [21] allocation procedure

for assigning passengers to flights based on behavioral assumptions, are

all examples of intuitive procedures designed to achieve reasonably good

solutions

.

One of the most useful classes of optimization tools for various

aspects of the scheduling problem is mathematical programming. For ex-

ample, linear programming has been exploited by Miller [17] to assign

aircraft to routes, and travelers to flights. Aircraft allocation by

linear programming has also been done by Boeing [18], and by Kushige [19].

Another area of programming that has received much recent attention is
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network flow theory. Simpson, and Newton and Thomas each utilize net-

work flow algorithms within a larger computational framework, as de-

scribed below. Finally, dynamic programming has proved to be one of the

most valuable programming approaches. Research work using this method

is also reviewed below.

Several research works on scheduling have employed a combination

of the previously mentioned techniques to synthesize a comprehensive

computational method. For example, Lampkin and Saalmans [13] use a four

step procedure to produce municipal bus schedules. Bus routes are chosen

via a heuristic procedure that assures that routes have certain desirable

attributes. Service frequencies over the routes are found by minimizing

total travel time by a random search procedure. Service frequencies are

translated into timetables by "conventional" methods to achieve regular

service. Finally, linear programming is used to compute the minimum

vehicle requirements for implementing the timetables. Another effort

that utilizes multiple techniques is the school bus study by Newton and

Thomas [31]. In that work, route structure is found by solving a "trav-

eling salesman" network flow problem. The routes are then partitioned

into sections for individual buses, so that bus capacity and loading and

riding time constraints are met. Finally, bus timetables are fitted to

the route segments to ensure feasible stopping and loading times. One

of the most imaginative multiple step schemes has been devised by Simp-

son [12] to compute timetables for an airbus system. The route structure

is chosen heuristically . Daily passenger flows on each route segment are

found by a minimum- cost network flow algorithm that minimizes total pas-

senger miles, given the demands between city pairs. Frequency of service
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on each route segment is chosen to accommodate the passenger flows
,
based

on a specified vehicle capacity and load factor. The flights are spaced

over time to distribute demand evenly. Finally, timetables are adjusted

within small ranges, to minimize vehicle requirements. The value of

these multi-stage approaches is that they present feasible procedures for

obtaining solutions to the very large computational problem of timetable

synthesis. The difficulty is that they are ad hoc in nature, so that

there is no clear system objective which the resulting solutions may pur-

port to maximize. More direct approaches are found in the dynamic pro-

gramming efforts described below.

Dynamic programming has found application in the scheduling litera-

ture largely because it is a very flexible methodology for problem for-

mulation and optimization. However, straightforward application of

dynamic programming is prohibitive in terms of computer time and memory

requirements. Hence, all dynamic programming approaches are either re-

stricted to simple cases, or employ some computational modifications that

compromise the optimality of solutions. Devanney ' s [27] initial re-

search uses dynamic programming to develop optimal one-way timetables

for dispatching vehicles on a linear network from an origin to a destina-

tion node. Ward [28] implemented Devanney 1

s algorithms to perform com-

puter studies of dispatching policies over three types of one-way linear

networks: point to point, line of stations, and a two station loop.

The algorithms of Devanney and Ward are limited in that they are

concerned solely with the dispatching times of trips, and not with indi-

vidual vehicle trajectories. Thus, the coordination of dispatches in

alternate directions or on alternate network links is left unsolved.
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Bisbee and Devanney [32] have approached this problem by implementing

Simpson's heuristic fleet minimization algorithm to coordinate dispatches

on connecting links, and to compute vehicle fleet size requirements.

Other dynamic programming approaches have focused on tracking ve-

hicle trajectories. For example, the author's paper [29] on scheduling

a single vehicle over a single link with one-way demand, utilizes a dyna-

mic programming iterative equation. Larson [15] has used forward dyna-

mic programming to compute aircraft trajectories for fulfilling a preset

flight schedule. His conventional formulation is unable to handle a

system with more than a handful of vehicles. Larson's subsequent ap-

proach [16], however, integrates the principle of successive approxima-

tions with dynamic programming to compute high quality, though not neces-

sarily optimum, trajectories. Incidentally, although Larson addresses

the implementation of a specified timetable, his concern is very close

to that of timetable synthesis. His solutions allow unscheduled empty

"ferry" flights, and modifications of the input schedule. However, he is

not concerned with the state of the passenger population in that the re-

turns from each flight are assumed known. Hyman and Gordon [35] have

offered an additional vehicle oriented approach in which aircraft are

scheduled one at a time. After each airplane is scheduled, the aircraft

and the demand that it serves are removed from further consideration.

A very interesting dynamic programming approach is the pseudo-

adaptive programming method of Devanney [36]. Devanney formulates the

fleet scheduling problem in terms of a conventional dynamic program that

provides a complete state space description of the system. Noting the

hopeless computational requirements of such a program, Devanney forfeits
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exact state space information in favor of an aggregated, incomplete de-

scription of the system. Consequently, at each stage of the program,

scheduling decisions are made in terms of probabilistic estimates of the

resulting state transitions. Full development and evaluation of this

promising method has not yet been realized.

To preview the contributions of this thesis, it will be helpful to

refer to the categories along which the literature has been reviewed.

The context of this research is oriented at no particular mode of trans-

portation, but is abstractly concerned with the scheduling of vehicles of

specified (average) speeds and capacities, operating over a fixed net-

work. As indicated earlier, the purpose of scheduling is viewed in

terms of planning as well as current operations. Synthesis of fleet

timetables is the principal element of scheduling that is addressed here.

Evaluation of timetables, consideration of vehicle inventory require-

ments, and the assignment of vehicles and passengers to trips, will all

be intimately connected with the approach to timetable construction.

This dissertation contributes to the understanding of factors rele-

vant to scheduling considerations. In particular, a model of traveler

preferences for trips of alternative schedules and fares is offered in

the analysis of behavior and satisfaction. Furthermore, a contribution

is made towards the formulation of system objectives, by encoding tra-

veler benefits in the economic terms of willingness to pay. This enables

traveler benefits to be combined with costs and revenues into a flexible

formulation that allows an objective function to be chosen for a variety

of system orientations.

Of course, this thesis must be heavily concerned with the computa-

tional problem of timetable optimization. As indicated above, research
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efforts have taken various directions in the elusive quest for optimal

solutions. Here, a new vehicle oriented approach is offered for the

derivation of near optimal timetables.

Finally, this thesis considers the questions of data, uncertainty,

and the choice among alternative systems. The organization of the dis-

sertation is described below.

Chapter II presents the development of a spectrum of objective func-

tions for systems operated by agencies with alternate goals. In conjunc-

tion with the formulation of objectives, the second chapter presents the

development of a traveler preference model that characterizes the trave-

ler as an economic consumer of transportation services.

Chapter III offers a discussion of the computational problem involved

in optimizing the schedule of a transportation system. The infeasibil-

ity of straightforward optimization methods is demonstrated. Subse-

quently, a new procedure is developed in which the overall optimization

is decomposed into a set of interrelated suboptimizations. This new

method is presented in terms of a two station shuttle system. Exten-

sions of the procedure are given in later chapters. Finally, Chapter III

presents a discussion of the quality of solutions obtained using the new

computational tool.

In Chapter IV, the computational method is supplemented by a frame-

work for decision-making with uncertainty about traveler preferences and

levels of potential demand. In particular, a Monte Carlo formulation is

designed to be used in a Bayesian mode of analysis for choosing among

alternative proposed transportation systems.

Chapter V presents an illustrative case study. Among the questions

investigated here are those pertaining to different possible traveler
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markets, alternative fleet compositions and sizes, varying operator ob-

jectives, and alternate fare levels.

In Chapter VI, the computational method heretofore developed for a

shuttle system, is extended to more complex cases. Expanded sets of

decision options are considered, such as routing, local and express poli

cies, and variation of fares.

Chapter VII presents a discussion of some of the "systems concepts"

that have been molded here to synthesize solutions for the passenger

transportation scheduling problem. In addition, the particular solution

method developed in the context of transportation is characterized more

abstractly as a "facility scheduling-user allocation" algorithm. Some

illustrative examples that fit this framework, are formulated. Finally,

Chapter VII offers a summary of results, and a discussion of future

avenues for research and implementation.

Appendix A documents an interview procedure for obtaining data on

traveler scheduling preferences. Appendix B displays the computer pro-

gram used to implement the shuttle system computations.
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CHAPTER II

FORMULATION OF OBJECTIVES AND MEASURES OF BENEFIT

2 . 1 Objectives

An explicit mathematical statement of system objectives is highly

useful in the determination of good operating policies. That is, a

quantitative measure or criterion of system performance facilitates the

task of judging the merit of timetables, passenger accommodations, and

fare policies. Since it is the intention here to develop an analytic

tool of wide application within the framework of fixed schedule trans-

portation systems, specifying an objective function will require consid-

eration of the spectrum of motivations under which various transporta-

tion facilities are intended to operate.

Transportation systems range from purely private operations through

publically owned, government- run facilities. Accordingly, system opera-

tor goals vary from profit maximization to maximization of user benefits

and other social goals. In fact, a complete array of possible objective

functions exists. Maximization of patronage or user benefits minus

costs, minimization of costs subject to level of service constraints, or

maximization of profits subject to fare and schedule regulations, may

all be reasonable objectives for particular systems. This dissertation

deals with a wide variety of system objectives, although explicit con-

straints on costs, revenues, or benefits, are avoided. Aside from com-

putational convenience, the principal reason for this restriction is that

For example, maximization of patronage may be a valid objective for a

city concerned with alleviating highway congestion by encouraging
transit usage.
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the present study is oriented toward the planning process, and the

consideration of alternative systems. Hence, artificial constraints

are to be discouraged in favor of considering a wide range of systems

with corresponding cost and benefit levels. For example, rather than

require maximization of patronage subject to a breakeven of revenues

and costs, it is wiser to perform unconstrained maximization of patron-

age and consider the corresponding costs and patronage levels of the

alternative systems. It may turn out that a sharp rise in patronage

coincides with a small cost deficit, a contingency that may ultimately

be judged best.

Two additional comments are in order, with regard to the question

of constrained objectives in the context of the computational framework

developed here. First, results can often be brought within desirable

limits by modifying the parameters of the unconstrained objective.

Second, it will sometimes be feasible to modify the computational pro-

cess directly to include specific conditions.

To construct a flexible objective function, it is necessary to

identify the important schedule- related variables that are common to a

wide array of systems. Three components- -operating costs, revenues or

fares, and economic benefits to travelers--are taken here as the build-

ing blocks for the set of potential objectives. The first two compo-

nents--costs and revenues--are self-explanatory. The third, traveler

benefits, will be measured in terms of travelers' "willingness to pay"

for trips offered in the system timetable.

Before proceeding to the mathematical formulation of objective

functions, a short discussion about willingness to pay as a measure of
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user benefits is relevant here/' The question of measuring public bene-

fits is an important concern of the theory of welfare economics. Two

aspects of that theory are germane to this discussion. The first re-

lates to the question of whether individual benefits may be aggregated

to compile a measure of overall value. The second aspect concerns the

kind of welfare judgement that is implied by using willingness to pay

as a measure of benefit.

The question of aggregating individual benefits relates to the

theory of utility, and the controversy of whether ordinal or cardinal

utility measures are valid [38]. If the concept of cardinal utility is

acceptable then the aggregation of the utilities of individuals can be

viewed as a proper measure of total benefit. However, current economic

thought does not favor the cardinal utility concept. In particular,

economists prefer to avoid the dubious premise that the "satisfaction

levels" of two or more individuals are additive. Instead, economists

prefer to use ordinal utility functions and employ the concept of Pareto

rrtV

optimality to make social judgements. However, the concept of Pareto

efficiency leaves an important question unanswered. Specifically, there

are normally an infinite number of efficient points at which an economy

may operate, but the Pareto theory does not discriminate among them.

Consequently, the theory provides no help in evaluating alternate effi-

cient points of operation.

See Ref. [37], pp . 65-69, for a more complete discussion of this
material

.

idc

An economic allocation is Pareto optimal if it is not possible to

make any individual better off without making someone else worse off.
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Thus
,

in order to formulate an objective function that accounts for

user benefits, it is necessary to find some index that overcomes the ob-

jection to interpersonal comparison of satisfaction levels, yet provides

an explicit value scale with which to discriminate among economic alter-

natives. Willingness to pay is such a measure. Willingness to pay has

the additional advantage, of course, that it is measured in the same

units, dollars, as the other objective components, costs and revenues.

It is important, however, to be aware of the welfare criterion that

is implicit in the use of willingness to pay. A person's willingness to

pay does not necessarily correspond to his subjective valuation for a

given commodity. As an example, in the context of transportation, a

rich man may be willing to pay fifty dollars to take a given air trip

from Washington to New York, while a less wealthy man may be willing to

pay only ten dollars for the same trip. This does not imply that the

trip means more to the rich man than his poorer counterpart. In fact,

it may well be that ten dollars is a greater sacrifice to the poorer

man than fifty dollars is to the rich man.

When willingness to pay is used as a measure of social benefit,

then it is assumed that society values each individual's dollar equally,

regardless of his income. This means the distribution of income is ac-

cepted as given. Under this assumption, the total benefit of a commodity

(trip) is the sum of individual benefits. This is the usual formulation

of benefit/cost analysis. In economic theory, this corresponds to the

compensation principle which maintains that if net benefits exceed costs,

then those who stand to gain from the economic project (trip) can compen-

sate those who suffer from it, and still remain better off.
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Note that use of willingness to pay does not preclude the possibil-

ity of making alternate welfare evaluations. For example, a person's

willingness to pay can be weighted by a factor that depends on his in-

come, so that the aggregation of benefits corresponds to a modified wel-

fare criterion. Such an option could easily be incorporated into the

development here.

To proceed to a precise formulation, the objective function will be

taken as a linear combination of costs, revenues, and traveler benefits.

If there are J trips in the schedule then the value of the objective

function will be given by

where

J = total number of trips,

OCh = operating cost of trip j,

TTj = fare charge for trip j

,

A(j) = set of passengers aboard trip j,

WTP
1

= the maximum amount that passenger i is willing to pay

(2-1)

J

for taking trip j

,

a ,a ,a = constant coefficients.
1’ 2’ 3

Thus
,

F = -a^ Total Operating Cost + a^ Total Revenues

+a^ Total Willingness to Pay . (2-2)

By assigning different values to the coefficients (a
]_

,a 2

’

a 3^ ’
a

spectrum of objective functions can be formed. Using the values 0, ± 1,
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a number of objective measures with clear economic interpretations can be

obtained. These are illustrated in Fig. 1. However, there is no tech-

nical reason to restrict the a's to these values. Any weighted combina-

tion of costs, revenues, and willingness to pay can be considered. In

fact, adjustment of the a's may facilitate consideration of constraints.

For example, although the objective may be to maximize user benefits, it

may be desirable to assign a small positive value to a^ to discourage

excessive costs. With so flexible a formulation, it will be possible to

gain instructive insights into the effects of operator orientation on

system scheduling policy.

2 . 2 Traveler Preferences

To attempt to optimize schedules relative to the desired objective,

it is necessary to achieve an understanding of traveler behavior with

respect to the consumption of transportation services. That is, it is

important to learn how travelers choose among alternative services. In

particular, if it is known how travelers discriminate among alternative

trips, based on the schedule-related characteristics of the trips, then

a basis is established for designing good scheduling policies. The first

task, therefore, is to identify the schedule-related properties of a

trip that consumers consider important.

At this point it is pertinent to review what various research ef-

forts have found about the factors that affect the way a person chooses

to travel. Refs. [40] through [47] present a long list of transporta-

tion attributes that are found to affect travel behavior. Among these

*
See Ref. [39], Chapter 1, for a discussion of implementing constraints

by changing the weights of component objectives.
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(a) a
1

- 0

(b) a
x = 1

Array of Economic Objectives

(a) a.i = 0 (b) ai = 1 .

Figure 1.
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attributes, the following are important in the consideration of schedul-

ing: distance, travel time, cost or fare, speed, schedule convenience

and delay, reliability of destination achievement (i.e., the need to ar-

rive on time), frequency of service, and necessity, time, and inconven-

ience of changing vehicles. In this study, the latter two factors will

not receive much direct attention. Frequency of service will be more

explicitly considered in terms of schedule convenience. Vehicle trans-

fer will be mentioned briefly in Chapter VI.

Thus, three important schedule-related variables are to be focused

on: fare, travel time, and schedule convenience. All but the last fac-

tor mentioned above, are implicitly accounted for by these three compo-

V
nents. A consumer preference model for alternative trips, based on

these "commodities" will now be developed.

The development strategy will be as follows. Willingness to pay

will be assumed to be a decreasing function of trip duration (travel

time) and schedule inconvenience. The schedule inconvenience of a trip

will be defined in terms of its deviation from the traveler's "preferred

schedule" for a trip of the same duration. The willingness to pay

function will be developed in two steps. First, the contours of equal

willingness to pay will be modeled. These contours specify the combi-

nations of trip duration and schedule inconvenience among which the

traveler is indifferent; the contours map directly into corresponding

contours that specify the trip schedules (departure time, arrival time)

among which the traveler is indifferent. Finally, the function to which

the equi- value contours correspond, will be specified.

Consider the following notation':
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t^ = departure time of a trip (from origin)

,

t = arrival time of a trip (at destination)

,

(t^jt^) = time schedule of a trip,

& = duration (travel time) of a trip,

A = "schedule inconvenience" of a trip,

(A,^) = composite trip impedance,

WTP(A,^) = maximum price the traveler would pay for a trip of

impedance (A 3 «0 j

tt = fare charged for a trip.

Note that quantities & and A are viewed as impedances to travel.

That is, it is assumed that travelers prefer trips of shorter duration,

and trips of less schedule inconvenience, and they will pay more for

such trips. Furthermore, it is assumed that at some fixed price, tt ,
a

traveler will sacrifice some degree of schedule convenience for a faster

trip, and, alternately, will give up some degree of trip speed for a more

convenient schedule.

For example, suppose a traveler desires to depart on a trip from

New York to Washington, at 4 p.m. Assume that he has three trips to

choose from in the schedule. The first trip leaves at 4:15 p.m. and

takes four hours. The second trip leaves at 4 p.m. and takes four

hours. The third trip leaves at 4:15 p.m. and takes three and three-

quarters hours. Presumably, the traveler would be willing to pay more

for trips 2 and 3 than for trip 1. Further, he would choose among

trips 2 and 3 on the basis of his trade-off value between a fifteen min-

ute decrement of schedule inconvenience and a fifteen minute decrement in

trip duration. If he valued the decrement of schedule inconvenience more
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highly than the decrement of trip duration, then he would be willing to

pay more for trip 2 than trip 3, and vice versa.

The next step in the development of the consumer model is to define

the travel impedances & and A, in terms of the coordinates (t,,t )
d a

of a trip. The trip duration is given by

i - t - t .

a d
(2-3)

Quantification of schedule inconvenience requires a little more

work. The inconvenience of a trip will be characterized in terms of

its deviation from a traveler's "preferred schedule." It will be assumed

that, given a trip of <j> hours duration, a traveler has a preferred

schedule (t*,t*) where
d a

t* - t* = i • (2-4)ad
Thus, the deviation of a trip ( t

cj’
t
a ) from a traveler's preferred

schedule is just

A = < ca

'

- r
a>

• <2 - 5 >

Hence, given a trip (t ,,t ), its schedule impedance characteristics are
Q ci

found from Eqs
.

(2-3) and (2-5), once the traveler's preferred schedule

for a trip of duration is known. Note that a person's preferred

schedule changes as
<t> changes. In order to understand the way in

which a preferred schedule shifts, as a function of trip duration the

concept of a traveler's relative orientation toward departure time versus

arrival time, will now be introduced.

First, consider the following definitions:
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t* - a traveler's preferred departure- arrival time for an

"instantaneous" trip (t* = t* = t* at d> = O')

.

ad '

w = the relative importance, to the traveler, of departing near

his preferred departure time versus arriving near his pre-

ferred arrival time, 0 < w < 1.

A traveler wishing to adhere closely to some departure time will be

assumed to have a value of w near one, while a traveler desiring to

adhere to a time of arrival will have a w value close to zero. For

example, a commuter on his way to work in the morning may need to adhere

closely to a particular arrival time, and is therefore "arrival-oriented,"

(w = 0) . On the contrary, a businessman with an appointment in a distant

city the next day may be much more concerned about when his flight de-

parts than when it arrives at his destination; hence, he is "departure-

oriented," (w = 1).

With the above notions, a traveler's preferred schedule is given by

t* = t* + w^ ,
(2- 6 a)

Si

t* = t* - (1-w )<t> . (2- 6b)

Thus, if a traveler were completely departure-oriented (w = 1),

his preferred departure time t* would remain fixed at t*, and his ar-

rival time preference t* would shift according to the change in trip
Si

duration & . The reverse occurs if w = 0. For values of w between

0 and 1, both t* and t* change with changes in <t>

.

d a

To illustrate the meaning of Eqs. (2-6), consider a departure-

oriented traveler who wishes to travel from New York to Washington. Sup-

pose he prefers to leave New York at 10 a.m. If the trip takes four
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hours, his preferred schedule is t* = 10 a.m., t* = 2 p.m. If the trip
d a r

takes only three hours, he prefers a trip schedule t* = 10 a.m., t* =
d a

1 p.m. On the other hand suppose that the traveler is arrival-oriented,

and prefers to arrive in Washington at 1 p.m. His preferred schedule for

the four hour trip is (9 a.m., 1 p.m.); his preference for the three hour

trip is (10 a.m., 1 p.m.).

Eqs. (2-6), as written above, do not tell the whole story. It is

probably more realistic to consider w, and perhaps even t*
,
as func-

tions of trip time <j>

.

For example, consider the businessman in New York

with an appointment in San Francisco at 11 a.m. (Eastern Standard Time) on

the following day. If the flight takes six hours, then the businessman

will prefer to leave immediately after work to take a 7 p.m. flight out

of New York. He will not be particularly concerned with his time of ar-

rival. Thus he will be departure-oriented, with preferred departure

t* = t* = 7 p.m. Suppose, however, that the flight time were reduced to
d

two hours. Under these circumstances, the businessman might re-evaluate

his plans. He may prefer to go directly to his appointment the next day,

rather than sleep in San Francisco overnight. In this case, he will be-

come arrival-oriented with a preferred arrival time t* = t* = 11 a.m.
a

For relatively narrow ranges of trip time, however, the assumption

of constant values for w and t* appears reasonable. In any case, the

option to consider w and t* as functions of ^ is always available.

For simplicity, however, these parameters will be treated as constants

for each traveler, here.

Using (2-6) and (2-2), the schedule inconvenience can be written
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A = fc

a
- C

S
= fc

a
- t,V ‘

’ < 2
- 7a >

or

A = fc

d
' fc

d
= fc

d
- tVf + d-wXVV • (2- 7b)

By defining the "perceived instantaneous schedule,"

t . = t
a

- w(t
a
-t

d ) = t
d + (l-w)(t

a
-t

d ) , (2-8)

(2-7) can be written more succintly as

A = t' - t*
. (2-9)

A word must be added here with respect to the sign of A. From

(2-7) or (2-9) it is apparent that A may be positive or negative.

This does not imply, however, that a negative inconvenience is a con-

venience. The sign of A refers to whether the schedule deviates from

the preferred schedule on the "late side" or the "early side." In par-

ticular, if the trip leaves later than t*, i.e. , then A > 0; if
d d d

t
d
< fc

d
t^ien A < 0. Since the traveler may feel differently about

these two types of inconvenience, it is important to recognize the dis-

tinction.

Now that the units of trip impedance have been established, it is

possible to formulate the consumer willingness to pay function. The

development will be considered in two steps. The first step is to for-

mulate a traveler's "trade-off" behavior with respect to the two (unde-

sirable) commodities A and & .

Commodities A and & are both measured in units of time. At

first glance it may appear that there should be a one-to-one trade-off

of travel minutes with schedule inconvenience minutes. That this is not
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generally the case is related to the fact that the traveler attaches

different importance to the two impedances. A precedent for attaching

separate values to distinct types of time impedance is given by Cher-

niack [48]. In his paper, automobile "running time" and "waiting time"

are valued differently, for the purpose of computing congestion costs.

The trade-off behavior is modeled by contours of equal willingness

to pay that specify the sets of combinations of (A,^) values among

which the traveler is indifferent. These equal willingness to pay con-

tours are mappings of corresponding contours in the (t ,t ) plane that

specify the trips (t ,t ) among which the traveler is indifferent.
Q cL

Eqs. (2-3) and (2-7) perform the required transformation from the (t, ,t )

plane to the (A,^) plane. Each "indifference curve" corresponds to a

particular value of willingness to pay, namely the maximum price that

the traveler would pay for each of the (A,^) combinations (or equiva-

lently, each of the trips (t ,t )) on the curve. The next step in the

construction of the consumer model is to establish the function for

which the indifference curves are equi-value contours in the (A,^)

plane

.

The function WTP(A,^), once specified, will be used to describe the

traveler's preferences among alternative trips. The traveler will prefer

that trip for which he is willing to pay the most. Furthermore, it will

be assumed that a traveler finds a given trip "acceptable" if his will-

ingness to pay equals or exceeds the fare for that trip.

2 . 3 Contours of Equal Willingness to Pay

The following definition will be useful for describing traveler in-

difference curves:
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The additional increment of schedule inconvenience (6A) that the

traveler is willing to accept in order to secure a unit decrease in trip

duration, is called the marginal rate of substitution (mrs) of A for & •

More precisely, consider a constant level of willingness to pay:

WTP(A,«0 = C . (2-10)

Thus

,

3 WTP

3 A
dA +

^ WTP

5 i
d^ = 0

,
(2- 11a)

or equivalently,

Thus
,

WTP dA + WTP,d«* = 0 .

A
(2- lib)

mrs = -dA/dflS = + WTP, /WTP
A

® A
-slope of indifference curve

at (A,«0 •

(2-12)

The mrs is likely to depend on the relative magnitude of <b and

A- In particular, in a region where i is high and A is low, the mrs

of A for ^ is likely to be large. Alternately, in regions of high A

and low & ,
the mrs may be small. Further, it is conceivable that the

marginal rate of substitution varies with the absolute magnitudes of &

and A. That is, the trade-off behavior of the traveler in regions of

low trip impedance may differ from his behavior in high impedance regions.

For simplicity, however, it will be assumed that the mrs is insensitive

to the absolute magnitude of trip impedance.

The use of indifference curves to represent the preferences of con-

Vc

sumers is an integral part of classical economic theory. Usually,

See Ref. [49], Chapter 2.
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indifference curves are drawn for preferences among desirable commodi-

ties, apples and pears for example. In such case, the indifference

curves are convex from below, as illustrated in Fig. 2. The quantities

A and </> are undesirable, however. Therefore, the indifference curves

Vc

are convex from above, as in Fig. 3. Mathematically speaking,

-d(mrs)/d^ = d/d«KdA/d«S) = d
2
A/d«5

2
< 0, A > 0 ,

> 0, A < 0 ,

(2-13)

whereas

d
2
A/dP

2
> 0 , (2-14)

where A = apples, P = pears.

Eq. (2-13) is the precise characterization for the behavior of the

marginal rate of substitution, as described above. In particular, (2-13)

requires that the mrs of A for i ,
i.e., the rate at which the tra-

veler would incur an additional unit of inconvenience to secure a unit

decrease in trip duration, increases with & . Such behavior corresponds

to indifference curves that are convex from above, as in Fig. 3.

Fig. 4 summarizes the discussion of the traveler willingness to pay

model, to this point. The figure displays the contours of equal willing-

ness to pay in the (t ,t ) plane. In addition, the loci of preferred
Q 3.

schedules are shown for arrival and departure oriented travelers as well

as a traveler of intermediate orientation. The area enclosed by the wilt

ingness to pay equal to fare contour and the "instantaneous trip line,"

defines the set of acceptable trips. Finally, willingness to pay is

k
See Ref. [40] for an example of indifference curves for undesirable
commodities. The commodities are travel time and operating costs for

automobile travelers.
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Figure 2. Indifference Curves for Desirable Commodities.

Figure 3. Indifference Curves for Undesirable Commodities.
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Figure 4. Willingness to Pay Contours in the (t
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shown to decrease as & increases, and as trips deviate from the pre-

ferred schedule locus. Fig. 5 displays the transformation of the indif-

ference contours into the (A, «0 plane.

In the development that follows, specific mathematical forms are

proposed, with which to verify the formulas or calibrate the parameters.

A small experimental effort to verify the concepts proposed here is ex-

hibited in Appendix A. Procedures for collecting data are mentioned at

the end of this chapter. Further discussion of data and parameter esti-

mation is given in Chapter IV.

Although particular mathematical forms are required in order to

proceed with the discussion, the methodology developed does not hinge

on them. Thus, this analysis could proceed with any of several indif-

ference curve and willingness to pay formulas. Finally, the mathematical

models actually specified here are motivated by current knowledge about

consumer behavior with respect to transportation services.

A family of curves that behave according to the notions described

above is given by

n+ ,n+
A- + i_ = i
n+

,
n+

a
+

b
+

A > 0 ,

izAl
n-

n-
+

,n-

n-
= 1 A < 0 ,

(2- 15a)

(2- 15b)

where n+
,

n- > 1 ,
and

b
+

= b . (2-16)

Eqs. (2-15) distinguish between the two kinds of schedule inconven-

ience, A > 0 and A < 0. Presumably, the traveler may trade off
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Figure 5. Willingness to Pay Contours in the (A, <j>) Plane.
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"earltness" against trip duration differently than "lateness," as indi-

cated in Fig. 5. Eq. (2-16) states the requirement that the curves be

continuous at A = 0. A sufficient condition that (2-16) be satisfied

Another kind of asymmetry can be considered, in addition to the

ear li ness- lateness dichotomy. In particular, it may be observed that

the scheduling of a trip can cause travelers to experience "rushing"

and "waiting." Below, the rushing-waiting concept will be formulated

mathematically, and it will be shown that such an interpretation of

scheduling inconvenience is consistent with the original definition.

As postulated above, for a given trip duration the traveler

has a preferred schedule (t* , t*) . Furthermore, any (imperfect) trip
Q 3.

(t^jt^) ^ (t*,t*) of length must either be "early" (t^< t*, t^< t*)

or "late" (t^ > t*, t^ > t*)
,
with respect to the traveler's prefer-

ences. The ear li ness or lateness of a trip will cause the traveler to

rush or wait, depending on his relative orientation toward departure

time or arrival time.

Consider the two extremes of traveler orientation, departure-

orientation (w = 1) and arrival-orientation (w = 0) . For the de-

parture-oriented traveler, an early trip means that he must rush, and a

late trip means that he must wait. For example, suppose a departure-

oriented traveler prefers to leave at 8 a.m. If the trip departs at 7:30

a.m.
,
he must eat a hurried breakfast and dash to make the trip. On the

contrary, if the trip leaves at 8:30 a.m., he may become impatient at having

to leave later than he would like. The reverse behavior holds for an arrival-

oriented traveler, if the trip is early, he must wait some time at his
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destination. If the trip is late, he will be rushed to keep his appoint-

ment on time.

Now, not all travelers have extreme departure-arrival orientations.

Thus, there is usually an element of rushing and an element of waiting

associated with every imperfect trip. To analyze the general case, the

degree of waiting at each end of the trip will be specified, and negative

waiting will be interpreted as rushing. At the departure end of the trip,

the inconvenience is given by,

A
d

=
^ td”

fc

cP
' (2- 17a)

For the arrival end of the trip,

A
a - (t*-t

a ) . (2- 17b)

Thus, if > 0 ,
then the trip is late and waiting occurs (at the

origin). If < 0 ,
then the trip is early and rushing obtains (at the

origin). The reverse holds for A (at the destination), in conformity
ci

with the previously noted interpretations of early and late trips by de-

parture and arrival oriented travelers. In other words, A^ and A
a

always have opposite signs-- if waiting occurs at the origin then rushing

occurs at the destination. The relative inconvenience of these compo-

nents will be given by the orientation weighting parameter w.

At first glance, it may appear that an overall measure of trip in-

convenience should be the sum of A, and A • However, since it is not
a a

reasonable to assume that rushing on one end of the trip cancels waiting

at the other end, the two components must be considered separately. To

examine rushing and waiting more explicitly, let
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R = -min(wA
d

, (l-w)A
a ) = rushing

, (2-18a)

and

W = max(wA , , (1-w) A )
= waiting

. (2- 18b)
Q cl

Thus, the willingness to pay function may be written as WTP(W,R,^),

so that waiting, rushing, and trip duration are explicitly considered as

separate components of trip impedance. In this representation, equi-

value contours of willingness to pay are three dimensional over the pos-

itive octant of (W,R,^) space.

To demonstrate the relationship of the (R,W) formulation of sched-

ule inconvenience to the original A formulation, consider the behavior

of R and W as A changes. If the absolute value of A increases,

i.e., if an early trip is made earlier, or a late triD is made later,

then both R and W increase in magnitude (for 0 <w<l). Thus, A is

a travel impedance measure consistent with the rushing-waiting inter-

pretation of inconvenience. In fact, the rushing-waiting interpretation

is merely a more refined analysis of the earliness- lateness dichotomy.

Specifically, the relative importance of earliness versus lateness be-

comes a function of the traveler's arrival- departure orientation, since

it is that orientation that causes the traveler to interpret earliness-

lateness in terms of rushing and waiting.

To demonstrate this mathematically, assume indifference curves of

WTP(W,R,^) of the form,

~ ~ = 1 > rf,W,R, > 0 . (2-19)
, n n n —
b a c

Note from the definitions that.
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A
d

= A , (2-20a)

and

&a
= -A .

Thus
,

W = max(wA, ,
(1-w) A )

= max(wA,- (1-w) A) ,Q SL

and

R = -min(wA
d>

(1-w) A )
= -min(wA,- (1-w) A) .

Now, consider late trips for which A > 0. Then,

W = wA ,

and

R = (l-w)A •

Accordingly, Eq. (2-19) becomes,

,n . n n, N n n. n
<f +

(w c +(l-w) a )

A

_ ^
V 11 / N nb (ac)

Similarly, for early trips, A < 0 and,

W = - (1-w) A >

and

R = -wA •

In this case, (2-19) reduces to,

(2- 20b)

(2- 21a)

(2- 21b)

(2- 22a)

(2- 22b)

(2-23)

(2- 24a)

(2-24b)

£ +
((l-w)

n
c
n
dw

n
a
n
)(-A)

n

b
n

(ac)
n

1 . (2-25)

Thus, (2-19) reduces to the original formulation (2-15) where n+ = n- = n,
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b
+ = b = b

,
and

,

a
.

= ac
'+

, n n n n.l/n 5

(w c +(l-w) a )

(2- 26a)

and

,

a = ac

, ,, n n n. 1/n
((1-w) c +w a )

(2- 26b)

For simplicity, subsequent discussion will be restricted to symme-

tric indifference curves of the form

iAi n w(
n— + — = 1, n > 1 , 4 > 0 .

n ,n — ’ —
a b

(2-27)

Such symmetry ignores the difference between earliness and lateness,

and between rushing and waiting. A set of such curves for different

values of parameter n is illustrated in Fig. 6. Note that for any in-

difference curve here, a = I A 1 and b = & . Hence (2-27) implies

that for a given level of willingness to pay, the traveler is willing to

endure a maximum level of schedule inconvenience, and a maximum trip

duration. Further, |A| is tolerable only if 4 = 0, and 4 is
1 Imax J max

acceptable only if A = 0.

The case n = 1 represents straight line contours, corresponding to

a traveler with a constant trade-off value between 4 and A, indepen-

dent of (A , 4 )- For n > 1, the mrs behaves as described earlier. In

general, the exponent n increases with the degree of sensitivity that

the traveler exhibits toward extreme values of A or 4 -

As mentioned earlier, it will be assumed here that a traveler exhi-

bits the same trade-off characteristics in regions of high trip impedance

(A , 4 ) as he does in regions of low impedance. In other words, it is
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<P

Figure 6. Family of Equal Willingness to Pay Contours.
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assumed that the behavior of the mrs is independent of the level of

willingness to pay. This assumption is equivalent to requiring that suc-

cessive willingness to pay indifference curves have the same "shape," in

the following sense. Two curves will be said to have the same shape if

one curve can be transformed into the other by multiplying each of the

variables by the same constant. Such an operation is merely a change of

"scale" for the curve. For curves described by Eq. (2-27), the shape is

maintained by preserving the value

s = b/a , (2-28)

for all contours. Thus (2-27) can be rewritten as

+ -^— = i .

n n
a (sa)

(2-29)

To show that contours having different values of a, have the same shape

under (2-29), consider the following two curves.

a) + =
n . .n

a
t

(sa
x
)

(2- 30a)

(U) M2 + ^l
a
2

< Sa2>
n

= 1 ,
(2- 30b)

where a^ = Ka Then curve (i) can be transformed into curve (ii) by

multiplying 4 and A by K:

K
n

i aI
n

,

kv y n
,

i
n

L

a" (sap" a" (sa
2
)"

(2-31)

For the cases n = 1 and n = 2, it is easy to see that keeping s

constant is equivalent to maintaining the slope of the straight lines
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(n=l) or the eccentricity of the ellipse (n=2)

:

a. straight lines:

slope = ± s = ± b/a .

b. ellipse:

, 2 , 2 . 1 / 2 . .. ... , 2 , 1/2e = (a - b ) /a = (1 - (b/a) ) = (1
2
,
1/2

s )

(2- 32a)

(2- 32b)

Thus, constant s implies constant e.

With the formulation of (2-29), the value of willingness to pay at-

tached to each equal-WTP contour in the (A»^) plane can be modeled as

a function of parameter a. Before doing this, however, it is interest-

ing to see how the contour of equal WTP in the plane of (A,«0 trans-

forms into the (t^,t^) plane. This transformation is shown below, for

the straight line case with t* = 7 ,
w = 0.75. See Fig. 7.

The transformation is defined by Eqs
.

(2-3) and (2-7a), which are

repeated below, for convenience.

i = t - t, , (2-3)
a d

A = t - t* - w(t - t ) . (2- 7a)
ci ci Q

The equation to be transformed is

I A 1 £
a b

1
, (2-33)

or

and

A > 0 ,
(2- 34a)

A £
a b

1 A < 0 . (2- 34b)

Substitution of (2-3) and (2-7a) into (2-34a) yields
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(b)

0 1 234 56 789 10 11 12

Figure 7. Transformation of a Linear Willingness to Pay Contour
(a) Plane of (A, cj>) (b) Plane of (t , t ).

d a
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(t
a

- W(t
a - 5P

- t>V)

.

C
a

‘
"d _ ,

„ "*
1, "* » (2- 35a)

or

t = b(a + t*)

(a + b(l - w)) ‘'d ' (a + b(l - w))

(a - wb)
t, + (2- 35b)

Substitution of (2-3) and (2- 7a) into (2- 34b) yields

-<5. - " (t
a - V -

.
<a

‘ C
d ,

"b v 1 > (2- 36a)

or

t = (a_+ ,
wb

.) t .

b (a - t*)

a (a - b(l - w)) d ^ (a - (1 - w)b)
* (2- 36b)

Lines (2- 35b) and (2- 36b) intersect where A = 0 :

A = t - t* - w(t - t ) = 0 ,a v a d / (2- 37a)

or

-w t*
t = f t + q
a 1-wd 1 - w

(2- 37b)

Eq
.

(2-37b) describes the locus of points (t^,t^) = (t*,t*) of

desired schedules, as trip duration & is varied. The point of inter-

section of (2- 35b), (2- 36b), and (2- 37b), found by solving (2- 35b) and

(2- 36b) simultaneously, and substituting into (2- 37b) to check the equal-

ity, is given by

t
d

= t* - b(l - w)
,

t = t* + bw .

a

(2- 38a)

(2- 38b)

Eqs. (2-38) define the apex of a triangular contour in the (t , t )a ci

plane

.



- 46 -

2 . 4 Variation of Willingness to Pay

The final step in developing the willingness to pay function is to

specify the variation in willingness to pay as the parameter a changes.

Recall that a is a parameter that labels equal willingness to pay con-

tours with successively larger values as the curves proceed outward from

the origin in the (A,^) plane. Thus, a can be viewed as a measure

of composite (A,^) impedance. The following functional form appears

reasonable:

WTP(a) = Dexp(-a
2
/a

2
) . (2-39)

The family of functions given by (2-39) is illustrated for various

values of the parameter a, in Fig. 8. In that figure, a _ . is the
cutoff

level at which price equals willingness to pay; higher prices are unac-

ceptable to the traveler. By setting WTP(a) equal to tt in (2-39),

a __ is found to be,
cutoff

a
cutoff

= a v/ £n(D/n) . (2-40)

The form (2-39) satisfies the following plausible conditions.

First, there is a central region of a- values in which a traveler's will-

ingness to pay is highly sensitive to changes in the level of impedance

(a). Further, there are two "saturation" regions, at very low levels

and very high levels of impedance, in which a traveler's willingness to

pay is relatively insensitive to marginal improvements or decrements in

service

.

Curves of the shape (inverted S) of those in Fig. 8 have been used

before to describe the diversion of travelers from one mode of travel to

another, as a function of changes in the relative fares or trip times
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Figure 8. Willingness to Pay as a Function of Composite Impedance, a .
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among the modes [50,51]. Since the diversion of travelers to a given

mode is directly related to their willingness to pay for service on that

mode, the use of curves similar to (2-39) has some precedent.

One problem with the curves of Fig. 8 is that the infinite "tails"

imply that if the ride were free, a traveler would be willing to endure

an arbitrarily large amount of trip impedance. This contingency is of

no concern here, however, because the curves will never be used in that

region. In particular, the scheduling algorithm developed in Chapter III

will be used only with fares above a positive lower bound.

To complete the discussion, the full functional form of the will-

ingness to pay function, over the variables (A,^) and (t, ,t ), will

be obtained by solving for a and substituting into Eq. (2-39). Thus,

a /lAl n ,

jn, n.l/n
(

|

A
|

+ «5 / s ) (2-41)

and

WTP(A,<{) = Dexp(-Q~
2
( |

A
|

n
+ /Vs

n
)

2/n
) . (2-42)

Substituting for A and & using equations (2-3) and (2- 7b),

yields

WTP(
-
t
d’

t
a-

)
= Dexp

{
_cy

2

[(
fc

d
" fc* + (l-w)(t

a
-t

d ))
n
+ (t

£

. x n , n
t
d ) Is

_2/n

(2-43)

In summary, it is assumed that Eqs
.

(2-42) and (2-43) completely

specify the traveler's willingness to pay in terms of the trip impedance

characteristics, and the trip timetable, respectively.

2.5 Data

This chapter has presented the development of a traveler preference
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model involving a set of parameters (t* ,w ,D

,

q-

,

n , s) . Use of the methods

developed in this thesis is contingent on the acquisition of data that

facilitate the evaluation of these parameter values. In the present con-

text, data acquisition may be considered from two perspectives. First,

one may contemplate estimating parameters from data compiled from ob-

servations of actual traveler behavior. This will be called the "obser-

vation" approach. On the other hand, data might be obtained experimentally
,

through carefully designed interview sessions with active or prospective

travelers. The latter will be termed the "interview" approach.

Design and execution of a data collection program is outside the

scope of this dissertation. However, it is the intention here to discuss

the alternative approaches, and to indicate the steps required for their

implementation. In the following paragraphs, previous research work con-

cerned with the experimental determination of preference models by inter-

views, will be reviewed briefly. The interview approach requires the

construction of indifference curves and preference functions of individ -

ual consumers, by offeriig the experimental subjects choices among alter-

native commodity bundles. Consideration of the observation approach is

deferred until Chapter IV, since that discussion relies on methods pre-

sented later. The utilization of information obtained by both approaches,

to estimate the dis tr ibution of preference parameter values for the over-

all traveler population, is also considered in Chapter IV.

Relatively little experimental work has been done on the interview

approach to the determination of indifference curves and preference

functions. Three efforts, widely spaced in time, constitute the principal

contributions to this area. In 1931 Thurstone [52] pioneered the field



- 50 -

with experiments to construct indifference curves and preference order-

ing functions among hats, shoes, and overcoats. In 1950, Rousseas and

Hart [53] experimented with preference orderings among alternate combi-

nations of quantities of eggs and bacon, using responses of several indi-

viduals to construct composite indifference curves. Recent work (1968)

has been done by MacCrimmon and Toda [54], to expand on the Thurstone

methodology, with experiments involving dollars, ball point pens, and

French pastries.

The Thurstone and MacCrimmon- Toda methods are based on "equivalence-

dominance" techniques that require a subject to give his preferences be-

tween a given commodity bundle and a "reference" bundle. For example,

Thurstone used eight hats and eight pairs of shoes as a reference, and

asked his subjects to accept or reject various other combinations (e.g.

ten hats and four pairs of shoes) in place of the reference. In this

manner, he was able to draw an indifference curve separating the accept-

ance region from the rejection region. By varying the reference bundle,

a series of indifference curves, corresponding to different levels of

satisfaction, were obtained for each individual subject. The Thurstone

and MacCrimmon- Toda graphical results are impressive in their consistency

and conformity to a priori expectations of behavior.

Little has been done along these lines in the sphere of transporta-

tion research. In conjunction with this research, the author designed

an interview technique to investigate the traveler preference functions.

This technique, along with illustrative experimental results, is docu-

mented in Appendix A.

There are certainly advantages and disadvantages to both data
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collection approaches. On the one hand, interview methods may be designed

to elicit the exact information that is required for a particular study.

In addition, the interview method may explore a traveler's reactions to

a wide variety of (existent and non-existent) transportation alternatives.

On the other hand, it is questionable whether verbal responses correspond

*
closely with actual behavior. Data on observable behavior is more valid

in this respect. In addition, observable data is probably less expensive

to obtain. However, it is frequently difficult to secure actual travel

data relevant to many of the transportation situations of interest. For

example, no observations can be made to test traveler reaction to "draw-

ing board" systems. In short, "real world" observations must be made in

an environment filled with uncontrolled variables whose effects are dif-

ficult to discern. All these comments are relevant to the current state

of information in transportation research.

Thus, careful consideration should be given to each approach. This

author believes that research into both areas is only at the beginning

stages. Experimentation is currently proceeding in both the laboratory

1<ic VcV-'c

interview method, and the real world observational approach. Subse-

quent developments in these areas will likely shed more light on the

question.

In summary, empirical investigation of traveler preference behavior

* See Ref. [55] for a dissenting view on the validity of experimental
determination of indifference curves.

Me
See Ref. [54]

.

Vr.Wc

For example, the U.S. Department of Transportation Demonstration
Project for the Northeast Corridor.
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has been lacking. Appropriate data can conceivably be obtained in two

ways--direct observation of actual behavior, and laboratory interviews.

The previous discussion has reviewed earlier research on the interview

approach, the potential of which is largely unknown. Although the inter-

view method attempts to determine preference curves for individual sub-

jects, the results are to be considered as outputs of a random process

that describes the total population of consumers (travelers). The ran-

dom process itself may vary according to overall shifts or trends in

tastes and technology. Use of sample data, obtained either by interview

or observation, to estimate the character of the overall random process,

is discussed at the end of Chapter IV.
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CHAPTER III

THE COMPUTATIONAL METHOD

3 . i Introduction

Stated simply, the computational problem with which this disserta-

tion is concerned, is the following:

Given a population of travelers, a fleet of vehicles with specified

speeds and capacities, and a network over which travel takes place, find

the vehicle schedules and corresponding passenger assignments that maxi-

mize the value of the chosen objective.

This deceptively straightforward proposition may blind the unwary

observer to the host of implicit problems that it involves. These prob-

lems will become clear as the characteristics required of the solution

method are discussed further.

First, it is clear that a flexible solution method is desired. The

subject matter of concern here is characterized by a substantial degree

of heterogeneity: Travelers exhibit a variety of preferences, vehicles

have different speeds and capacities, networks have various topologies,

and operators have a number of different motivations and policies by

which they run their systems. Hence, a mathematical formulation is sought

that is capable of adapting to a reasonably wide array of transportation

situations

.

The structure of the passenger scheduling problem exhibits several

additional mathematical complications, which limit the choice of tools

that may be applied for its solution. In particular, the scheduling

problem involves non-linearities, discontinuities, constraints, discrete
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and continuous variables, and a high degree of dimensionality. To see

that these characteristics do indeed manifest themselves, it is only

necessary to consider the following aspects of the problem:

1. Traveler preferences among trips are, in all likelihood, non-

linear with respect to travel time, inconvenience, and cost. It would be

highly restrictive and unrealistic to assume otherwise. Further, since a

traveler is either willing or unwilling to ride a particular trip, there

will be some cut-off point (say a given level of fare at any particular

level of trip impedance) beyond which he can receive no benefit from the

trip. These two phenomena point to the fact that the objective function

is non-linear and discontinuous.

2. Timetables conform to the available number and speed capabili-

ties of the vehicles. Also, each passenger is allowed but one vehicle

assignment for his trip. Hence, the problem involves significant con-

straints .

3. Trip departure times may range over the continuous interval of

values within the specified scheduling period (0, T) . On the other hand,

passenger assignments are discrete (in the mathematical sense). That is,

a passenger must be assigned to one particular trip (or no trip at all).

Hence, optimization is required over both integer and continuous variables.

4. A timetable must be provided for each vehicle, and an assignment

for each passenger. Hence, the dimensionality of the problem is very

large

.

Finally, in addition to the properties mentioned above, it is impor-

tant to recognize that the scheduling problem is sequential in nature.

For instance, the time at which a vehicle is scheduled to depart a network
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node affects when it is next available for service. Thus the problem in-

volves significant interdependencies among the variables.

In all, the passenger transportation scheduling problem requires a

flexible solution method, capable of optimizing a highly irregular objec-

tive function over a complex, many- dimens ional
,
constrained set of solu-

tion vectors. The search for such a method is begun below.

3 . 2 Computational Tools

Having surveyed the properties that characterize the passenger trans-

portation scheduling problem, it is now appropriate to consider the arse-

nal of tools with which solutions may be approached. In searching for a

computational method, it will be found that aspects of various optimal

programming methods can contribute to solving particular phases of the

problem. However, overall optimization will require a more heuristic

approach

.

Consider first, the disciplines of linear and non-linear programming.

No attempt will be made here to scrutinize these methods. Suffice it to

say that there are two principal objections to employing such programming

methods as an overall framework. First, it is clear that the workable

algorithms of linear or quadratic programming are too restrictive with

respect to the mathematical forms they require. However, if the more gen-

eral programming theory is applied (Lagrange multipliers, etc.) it be-

comes evident that the size of the problem, in terms of the number of

variables and constraints, becomes unmanageable. In any case, the pro-

gramming methods do not guarantee global (absolute) optimality of solu-

tions except in the rather special case of convex or concave functions,

defined over a convex set of solution vectors. Hence, it is well to look
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beyond these programming methods in the search for an overall computa-

tional structure.

However, programming methods do provide a number of techniques and

insights that will be helpful in synthesizing a solution method. For

example, the solution of large problems by programming is sometimes ac-

complished by dividing the problem into a group of interrelated smaller

problems and performing a coordinated set of suboptimizations. The

decomposition principle of linear programming [56] and the manipulation

of Lagrange multiplier shadow prices in non-linear problems [57] illus-

trate this principle. Here, it will be seen that separating the time-

tables of individual vehicles, and the departure scheduling process from

the passenger assignment process, will lead to a feasible solution method.

A second aspect of programming that will prove valuable is the appli-

cation of specialized integer programming algorithms. In particular, use

will be made of optimum assignment and maximum network flow algorithms to

compute aggregate passenger benefits.

Next, consider the methodology of dynamic programming. More than a

computational technique, dynamic programming is a way of thinking, parti-

cularly with respect to sequential decisions. The principle of optimality,

embodied in the basic recursive equation, is so general as to allow the

present problem to be formulated in such a way that mathematical forms

need not be restricted, the problem's sequential character is naturally

embodied, constraints are easi iy included, and solutions can be guaran-

teed optimal. However, the "hooker" is that conventional dynamic pro-

gramming quickly becomes computationally infeasible as the dimensionality

of the problem increases. In the following discussion, it will be seen
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that a dynamic programming framework is not adequate in the present con-

text. However, it will be instructive here to attempt such a formulation

in order to demonstrate the dimensionality problem, and to set up a struc-

ture that will lead to the algorithm for optimizing the timetables of

individual vehicles.

Consider the following notation:

(0, T) = time period during which the system is to operate.

t = continuous time variable, 0 < t < T.

Let the period (0, T) be divided into K small discrete intervals

of width At, such that At = T/K. Then

k = discrete time variable, such that t = kAt .

k takes on values (0, 1, 2, ..., K)

.

Hence, optimization over the continuous variable t is to be ap-

proximated by optimization over a fine mesh discrete time grid.

Let

Sj = station from which the next departure of vehicle j will occur,

k. = next time at which vehicle i can depart from s.
,

J J

V = total number of vehicles in the fleet
,

T. = k. - k = number of time intervals (from present time k) until

til
the j vehicle can be dispatched from s . .

The state of the system is described by the vector x = (s,jt) where

_S — (s^, • • • >
Sy) >

and
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JT (T
i

> T
2

3 •••» Ty) •

Note that the "state of the passenger population" has not been in-

cluded in x . Keeping track of traveler locations directly is, of course,

highly infeasible. Some auxiliary method of accounting for passengers

would have to be developed to make the conventional dynamic program work-

able. It will be shown, however, that even if this consideration is

ignored, the dynamic program becomes impractical. Hence, further discus-

sion of passenger accounting will be deferred until the synthesis of the

final computational method.

The decision (or control) vector is given by c = (c^, c ..., c^) ,

where

f 0 if vehicle j is "enroute" at time k
,
and no

decision is required,

C
j(

k>

0 if vehicle j is at a station at time lc, and
/ is directed to "hold" there, at least until (3-1)

time k+1
,

m if vehicle j is directed to "dispatch" toward

y,
station m at time k.

Thus, each component c^(k) may take on one of (Mfl) values, where

M is the number of stations in the system. Of course, not all decision

values are applicable to a vehicle at any particular time. For example,

and

CD
II

/^N
o if t . > 0 ,

J J

c . (k) ^ e if t .
= 0 .

Let s . = q ,
and

(3-2)

= number of time intervals (less one) required by vehicle
to go from it6 present station (q) to station m .

J ,
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Define the transition vector ^(x,c,k) = •••> g^) as

follows

:

g(x,c,lc) = state at time lc+1 if decisions g are made at
time k, when the state is x .

Thus ,
with notation x ( 6r T

j
) ’

the situation q leads to

and

Let

£j(Xj’6’ k ) = (q,Tj -1) ,

£j(Xj>°> k ) = (q»o) ,

£j(2Sj»m,k) =(m,LJ
m) .

(3- 3a)

(3- 3b)

(3- 3c)

b(x,c,k) = the immediate benefit to the system, if decisions c

are chosen at time k, when the state is x .

The immediate benefit is computed as the sum of contributions to the

objective function resulting from dispatched trips corresponding to deci-

sion vector _c(k) . Hence

V

b(x,c,k) = V b (x ,c ,k)
, (3-4)

4j J J J

j
= l

where

b.(x.,c.,k) =0 if c. = 0 or 0 , (3-5a)
J^J J J

and

b.(x.,c.,k) = -3,00. + V (a n. + a^WTP
1

) if c. = m . (3-5b)
J 1 jm L 2 jm 3 jm J

ieA

Notation:

= set of passengers who would ride vehicle j to station m
at time lc ,

A
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OC .
= operating cost of the trip to m by vehicle j ,

n. = fare for trip to m aboard vehicle j ,

WTP
1

= willingness to pay of passenger i for trip to m
aboard vehicle j .

Two additional quantities need to be considered before proceeding

to the basic iterative equation:

criterion function,

and

I(x,k) = maximum total benefit it is possible to achieve, from
time k through time K, if the system is in state x
at time k.

The fundamental recursive equation is

I(x,k) = max «b(x,£,k) + I(g(x,£,k) ,k+l)
_ L J

(3-6)

Given boundary values I(x,K), Eq
.

(3-6) may be iterated backwards

c{j} . Thein time, from k = K through k = 0, to obtain l(x,0) = max-j

optimal schedule (trajectory) is found by proceeding in the forward

direction, from k = 0 to k = K, following the maximizing decisions

£(k) at each stage.

Turning to the basic computational problem, consider the amount of

computation and computer storage required to solve equation (3-6) . The

amount of computation depends primarily on the number of terms to be cal-

culated and compared in finding the maximum at each time k for each

state x. Suppose there are V(x) vehicles at stations when the system

is in state x. For each such vehicle j ,
there will be some number of
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feasible decisions, say MJ
,

that can be made when the system is in
X

state x- is the number of stations directly accessible to vehicle

j from its current station (in state x ). The value of depends on
X

the connectivity of the network, and is less than or equal to M, the total

number of stations. The total number of different decision vectors in

v(x)
i

(3-6) when the fleet is in state x, is then U M . The total number
j=l 2

of possible decisions, found by summing over all states x
,

is

\
VW

i

) IT M . Thus, the total computation time for the backwards iteration

, \
v(2)

j \
ls Kt^ ,

where t^ is the time per single decision alter-

native computation.

Now consider the computer storage requirements. The results of the

maximization in (3-6) for each x need to be recorded. To obtain them,

it is necessary to save all values I(g,k+1) at the succeeding stage

k+1. Thus, the dominant storage requirement is twice the number of dif-

V
ferent states. Recall that x = (s, _t) where _s can take on M pos-

sible values. Further, let t. take on one of L.+l values, 0 through
J J

L.. If any two stations are at least L* time intervals apart, then a

V V
lower bound on the number of states is X = M (L*+l)

It is apparent that the storage and computation time requirements

increase rapidly with the size of the system. Consider the following

illustration:

Let V = 5 vehicles, M = 4 stations, K = 100 time intervals,

_ ^
t =10 seconds. L* = 4 time intervals,
c

X = 4
5

5
5

= 3.1 10 states

Then

,
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Suppose

,

M'"' = 3 for all vehicles j at stations when the system is
— in state x,

\ V(x)
and let the total number of decisions, (_> 3 ,

be approximated by 3X .

x

This estimate corresponds to an average of one vehicle at a station, per

state. Then,

•Computation Time =3 • 3.1 ' 10^ • 100 • 10 ^ = 9.3 • 10^ sec

= 2.59 hours !

Thus, even for this modest example, the computational requirements

are entirely unreasonable. However, as mentioned earlier, the dynamic

programming formulation turns out to be highly useful in synthesizing the

final computational method. In particular, it will provide the basis for

timetable optimization for single vehicles. In addition, a technique

known as "successive approximation" [16], often useful in reducing the

computational problems of dynamic programs, will help guide the formula-

tion of the final procedure.

It is now appropriate to turn to a class of methods that will be

called "general iterative improvement procedures." These methods have

one important unifying characteristic. They all start from some initial

solution, and monotonically improve on that solution, step by step, until

no further improvement appears to be possible. There are several ex-

amples of these types of procedures. Often, a method of this kind can be

assured to lead to an optimum solution. A few examples of these methods

are discussed below. Iterative improvement will provide the basis for

the optimization scheme to be developed here.
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There is an extensive literature in the area of iterative "search 15

techniques [58]. Among the best known methods in this field are the

"gradient" methods. Gradient methods are based on the fact that the

direction of the gradient of a scalar function is the direction of the

maximum rate of increase of that function. Hence, gradient methods pro-

ceed by following the gradient at each successive solution point. When

this, is impossible, because of constraints that disallow movements along

the gradient, "locally best" directions are chosen. In sum, each solu-

tion point produces an improvement in the value of the function, over

its value at the previous point. However, except where the problem

possesses the appropriate convexity properties, gradient methods cannot

be guaranteed to lead to a globally optimum solution, or even to a local

optimum. Fig. 9 illustrates the gradient method, using three different

initial solutions. Only one of these solutions leads to the global opti-

mum.

Another well known improvement procedure, mentioned earlier in con-

nection with dynamic programming, is called "successive approximation."

The idea of this approach is the separation of a multivariable optimiza-

tion problem into successive single-variable optimizations. Thus, the

solution of an n- dimensional problem is reduced to the solution of a se-

quence of one- dimensional problems. This technique, sometimes called the

"one-at-a- time" method [59], is subject to similar pitfalls as the gradi-

ent methods. Hence, solutions cannot be assured to be optimal. Fig. 10

illustrates solution by successive approximation, for four different

initial solutions. Note here that constraints can cause the solution

method to go awry, as in the case of initial solution X^q. This is also

possible for gradient methods.



Figure 9. Gradient Method.

Figure 10. Successive Approximation.
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A third interesting iterative improvement algorithm, for determining

policies under uncertainties described by a Markov model, has been devel-

oped by Howard [60 ]. Here, a policy is defined as a set of strategies or

actions, one for each state of the system. Successive policies are devel-

oped by alternating between two steps: 1) Given a policy, compute the

objective function values that correspond to it. 2) Using the values

corresponding to the present policy, develop a better policy. Howard

shows that each successive policy is more valuable than its predecessor,

and that the iterative procedure always converges to the optimal policy.

In summary, it is evident that heuristic iterative improvement

methods hold out great promise as well as some peril. The basic idea of

these methods is of wide application and generality. As long as a way can

be found to improve solutions at every step, such a procedure may be tried.

However, one must also be aware of the pitfalls that often accompany these

methods. Like any serial scheme, the question of convergence must be in-

vestigated. Furthermore, as illustrated by Figs. 9 and 10, claims about

the optimality of solutions must be carefully scrutinized. As a rule, it

may be necessary to try several initial solutions before developing some

assurance that the best obtained solution is acceptable.

This concludes the general discussion of optimization methods. Below,

a computational procedure for the transportation scheduling problem is

developed. The framework is that of an iterative improvement algorithm.

The overall problem is analyzed into a series of interrelated subproblems.

Several of the methods discussed earlier, are applied to these subproblems.

The dynamic programming formulation developed earlier in this chapter,

encountered two major difficulties. First, taking direct account of the
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"state" of the passenger population was found to be infeasible. Second,

it was demonstrated that computational requirements increase rapidly with

the size of the system, particularly with the number of vehicles (V).

Suppose, however, that attention is restricted to a single transportation

vehicle. Furthermore, imagine that a certain portion of the traveler

population is "assigned" to this vehicle. In addition, assume that tra-

veler time preferences are sufficiently sharp, relative to vehicle system

capabilities, so that it is impossible for any one traveler to find ac-

•k

ceptable both of two successive trips by the same vehicle. Under these

conditions, a compact algorithm will be developed for optimizing the sched-

ule of a single vehicle. This algorithm will become an integral part of

the general iterative method for scheduling a fleet of vehicles. Devel-

opments in this chapter are restricted to a single link, "shuttle" net-

work. See Fig. 11. Extensions to more intricate networks are deferred

until Chapter VI.

3 . 3 The Single- Vehicle Algorithms

kk
Consider the one-way, single vehicle system illustrated in Fig. 12.

Although this system is of little practical consequence, it will be a use-

ful device for developing the important relationships for more complex

single vehicle systems.

Let

N = number of travelers wishing to go from the origin to the

destination, within the scheduling period (0,T),

F = duration of the forward trip, from origin to destination,

k
The mathematical statement of this assumption is developed later in this

chapter

.

kk
This system is analyzed in the author's paper, Ref. [29].
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Figure 11. The Two-Station System.

Figure 12. One-way, Single Vehicle System.
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R = duration of the return trip (including turnaround time
at both ends of the link).

F and R are integer quantities, assumed constant, and measured in

discrete time units (At) . Passengers departing at time k will arrive at

time k+F. F+R is the minimum number of time units separating successive

departures from the origin.

Recall that the state vector is given by x = (s/t). Here,

X = (s,T) = (s
1
,T

1
) = (1,T

1
)

= kj-k
, (3-7)

since there is but one vehicle and one possible station from which depar-

tures can take place. To simplify the development, consider the slightly

k
less economical state description

x = k^ = time at which the next departure from the origin
is possible.

Thus
,

x(k) = k^ > k .

The decision vector becomes

0

0

1 if k^ = k and "dispatch" is ordered.

The transition function is given by

c(lc) = c
1
(k) =<

if k^ > k,

if k^ = k and "hold" is ordered,

£(x,£,k) = g(k
1
,c

1
,k) = <

k
l

if k
l
> k

>

k+1 if k
l

= k and oii
NXo

k+F+R if k
l

= k and c
1
(k) = 1

(3-8)

(3-9)

(3-10)

The immediate benefit function is

takes on more possible values than k^-k
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b(x,c,k) = b(k1> c
1

,lc) = ^

if c
1 / 1 ,

-a^C' + Y (a
2
TT + a

3
wTP

1
) if c

x
= 1 .

(3-11)

OC ' is the operating cost of the round trip from origin to destina-

tion and back, WTP
1

is passenger i's willingness to pay for the trip

leaving at k and arriving at k+F, and tt is the fare for that trip.

The sum
( ^ )

i s over all passengers i who would leave the origin in the

i
vehicle at time k. The question arises as to which of the N travelers

are to be aboard the vehicle for that trip. This is an important point

that will be addressed shortly.

Let

b
]

_(k) = -a OC' + Y (a
2
ir + a^P 1

) (3-12)

Using the formulation given above, the basic dynamic programming equation

becomes
»

0 + I(k^,k+1) if k^ > k
,

fb + I(k+l,k+l) (3-13)K^.k) = J
max

[b (k) + I(k+F+R, k+1)

if k^ = k .

This equation may be simplified by considering the case k^ > k

more closely:

I(k^,lc) = I(k^ , k-hl ) if k^ > k .

Thus
,

I(k
L
,k) = I(k

L
,k+l) = I(kls k+2)

= ... = I(k
1
,k

1
) .

(3-14)

(3-15)

That is,
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I(k^,k) = I(k^,k ) for k^ > k . (3-16)

Therefore, states for which k^ / k (i.e., where the vehicle is not

at the origin)
,
can be ignored. Consequently, the following simplifica-

tion in notation is possible:

I(k
x
,k) I(k)

,

c (k^ ,k) — c (k)
,

g(k^ ,c ,k) g(c,k)
,

b(k
x
,c ,k) — b(c,k) .

Hence, Eq. (3-13) can be rewritten as

fo + I(k+1) "hold," c (k) = 0 ,

I(k) = max< (3-17)
I bj(k) + I(k+F+R) "dispatch," c(k) = 1 ,

for 0 < k < K .

The logic of this equation is simple. The equation states that if

the vehicle is at the origin at time k, then there are two options-- to

"hold" the vehicle at the origin until k+1 (at least)
, or to "dispatch"

it at time k. The option that maximizes I(k)
,

is to be picked. If the

hold option is taken, there is no immediate benefit, and I(k) is just

the maximum potential benefit that could be gained after remaining at the

origin until the next time interval k+1, namely I(k+1) . If the dis-

patch option is chosen, I(k) is equal to the sum of an immediate benefit

b^(k), plus the maximum benefit achievable after returning to the origin

at time k+F+R. (F+R is the duration of a round trip.)

Because Eq
. (3-17) involves stages F+R units apart, a set of

boundary conditions such as
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I (k) =0 for K < k < K+F+R
, (3-18)

is required. These particular conditions merely state that there is no

further benefit to be achieved if the vehicle returns to the origin

after the end of the scheduling period. Other boundary conditions may be

used, according to the problem context. Eq. (3-17) may now be used recur-

sively, beginning at k = K-l, and working backwards to k=0, to obtain

1(0), the maximum total benefit of the full scheduling period. At each

step in the process, the maximizing decision (hold or dispatch) is re-

corded.

Subsequently, the optimal vehicle schedule may be retrieved by pro-

ceeding in the forward direction, from lc = 0 to k = K, following the

optimal decisions. At each time k, if a hold decision is encountered

then no departure is scheduled, and consideration is moved to the next

time interval, k+1 . If a dispatch decision is found, however, a depar-

ture is recorded, and consideration is advanced to that time F+R time

units later, when the vehicle returns to the origin.

Two additional questions concerning the current algorithm remain to

be answered. First, as mentioned earlier, a determination must be made

as to which of the N passengers are to ride a given trip. This issue

arises in conjunction with the computation of b^(k), the immediate bene-

fit of a departure at time k, in Eq
.

(3-17). Two separate considerations

are involved-- "eligibility" and "priority." Recall from Chapter II, that

a passenger is termed eligible for a trip if he is willing to pay the

fare. A rule must be provided, however, to decide which of the eligible

travelers should be boarded, in case the number of these travelers exceeds

the vehicle capacity.
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From the beginning of this discussion it has been assumed that no

traveler may be eligible for each of two trips separated in time by more

than one round trip. Hence, there is no concern here about which of two

trips by the same vehicle, that a given traveler may prefer. Under this

stipulation, the optimal boarding procedure for the single link, single

vehicle system is:

Board passengers in decreasing order of the values

(a^TT +a^WTP) for the trip.

Thus, to compute b^(k), travelers must be ordered by their value

levels for the trip leaving at k and arriving at k+F. The situation

is not so simple for systems with more complex transportation networks.

The priority boarding procedure is modified accordingly, in Chapter VI.

It should be noted here, of course, that "real world" travelers do not

necessarily follow an optimal boarding rule. Thus, the procedure here

actually provides an upper bound approximation to the resultant benefit.

The second question concerning the current algorithm is that of de-

veloping a mathematical constraint to represent the assumption that no

traveler be eligible for two successive trips by the same vehicle.

Recall from Chapter II that there is a finite region in the (t ,t )
fl 3.

plane in which a passenger is willing to travel. See Fig. 3. That area

is bounded by the "instantaneous trip" line,

6 = C
a

- t
d

= 0
’ (3-19)

and the willingness to pay contour that corresponds to the price of the

trip, tt. The speed of the vehicle must be sufficiently restricted, rel-

ative to the passenger's "eligible area," such that the passenger cannot
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be eligible for two consecutive trips by the same vehicle. Thus, the

algorithm will not generate schedules based on having passengers board

the vehicle more than once.

The minimum time in which a vehicle may complete a round trip (from

either node) and prepare to depart again, is given by,

r = «$ + p + T^ + T2 , (3-20)

where

r = round trip time,

<t>
= duration of the forward trip,

p
= duration of the return trip,

t = minimum turnaround time at station x .

x

The above variables are continuous. Note that the turnaround times

at each node are considered separately here. For the one-way system,

Eq
.

(3-17) ensures that turnaround at the destination station (number 2)

is always minimal.

The purpose of this derivation is to ensure that r is always

greater than the width of the traveler's eligible area. Suppose that the

values <J>

,

p, t
^

, t
2

'j anc* r are given, and that the fare for the (for-

ward) trip is specified at tt. The indifference curve corresponding to

WTP = tt, is shown in Fig. 13. The intercepts of this curve are (a^,b^)

where b = sa . If is given, then the maximum tolerable schedule
TT TT

inconvenience
Jmax

as §i-ven by,

l

aLx * << - <* /s >

n
>

1/n
< 3

- 2i >

Since
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A = t ,
- t* = t - t*

,

d d a a
(2-5)

then the "width" of the set of acceptable trips is 2
l
Almax ,

since ac-

ceptable trip departures may range from,

= t* +
d ‘max

to

t
d

= C
d

"
l

A Lax

Thus, the requirement is

(3- 22a)

(3- 22b)

2
l

A
l max

< * + P + + t
2 ,

(3- 23a)

or

/
\l/n

2(a^ - («$

n
/s

n
) 1 < i + p + t

l
+ t

2 .
(3- 23b)

Now, a^ is the intercept of the indifference curve such that,

WTP(a )
= Dexp(-(a /a)

2
) = rr . (3-24)

TT TT

Thus
,

a_= a (ln(D/n))
1/2

. (3-25)

Substituting (3-25) into (3-23b) yields,

2[o'
n
(ln(D/n))

n//2
- (^/s)

n ]^n
< & + p + + t

2
• (3-26)

If & = p and = T
2

= T ’ t^ien (3-26) reduces to,

(o
,n
(ln(D/n)

)

n/2
- (^/s)

n
)

1/n
< i + T . (3-27)

Fig. 14 is a plot of inequality (3-27), using the values a = 2 ,

n = 1 ,
s = 1

,

t = 0.1. The figure illustrates the ranges of fares,
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Figure 13. The Willingness to Pay Equals Price Contour.

- 0.05

Figure 14. Valid Region for Trip Duration as a Function of Fare.
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relative to the trip duration & ,
valid as input to the algorithm.

From the one-way algorithm of Eq. (3-17) it is an easy transition to

the two-way algorithm for scheduling a vehicle to accommodate passenger

flow in both directions. Consider the following pair of iterative equa-

tions :

I(l.k) = max <

0 + 1(1, k+1)

b
1
(k) + 1(2, k+L

12
+TR 2>

1(2, k) = max <
0 + 1(2, k+1)

b
2
(k) + 1(1, k+L

21
+TV

"hold"
,

"dispatch"
,

"hold"
,

"dispatch" .

(3- 28a)

(3- 28b)

The terms appearing in these equations have the following definitions

L
^2

= number of discrete time units that the vehicle requires to

make the trip from node 1 to node 2.

TR^ = turnaround time at node 1, measured in discrete time units.

b^(lc) = immediate benefit achieved by having the vehicle depart
node 1 at time k.

The immediate benefit is given by,

b
L
(k) = -a OC + y (a

2
TT +a

3
WTP

L
) ,

ieA

(3-29)

where

OC = operating cost of the trip from node 1 to node 2,

tt = fare charged for the trip from node 1 to node 2,

A = set of passengers who would be aboard the vehicle if it

departed at time k. A contains no more than C members,
where C is the vehicle capacity.

WTP
1

= passenger i's willingness to pay for the trip leaving at
k

,
and arriving at k+L^ •

1(1, k) = maximum total benefit it is possible to achieve, from
time k through the end of the scheduling period (time K)

,

if the vehicle were at node 1 at time k .
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Parallel definitions apply to L^, TR^, b^Ck), and 1(2, k).

The interpretation of the iterative Eqs. (3-28) is parallel to that

of Eq. (3-17). Consider (3- 28a), for example:

There are two possible decisions that can be made if the vehicle is

at node 1 at time k. The first possibility is to have the vehicle remain

at node 1 until at least the next time interval, lc+1 . The second possi-

bility is to dispatch the vehicle at time k. The choice that maximizes

1(1, k) is to be chosen. If "hold" is chosen, there is no immediate gain,

and 1(1, lc) is just equal to 1(1, lc+1). However, if "dispatch" is picked,

then 1(1, k) is the sum of an immediate gain bj(lc), plus 1(2 ,lc+L.,
2
+TR

? ) ,

the maximum possible benefit achievable after the vehicle reaches node 2

and becomes ready to depart again.

Eqs. (3-28) may be used in conjunction with the following set of

boundary conditions:

1(1, k) = 0 if K < k < K+L
12
+ tr

2 ,
(3- 30a)

1(2, k) = 0 if K < k < K+L
21
+ TR

1 .
(3- 30b)

These boundary conditions state merely that there is no further ben-

efit to be achieved, if the vehicle returns to one of the stations after

the end of the scheduling time period.

Eqs. (3-28) are iterated together, in dynamic programming fashion as

explained earlier in connection with Eq
.

(3-17). A flow diagram illus-

trating the computational process is given in Fig. 15. Finally, it should

be noted that the priority boarding rule and the eligibility inequality

(3-26) hold for the two-way system as well.

The general iterative method to be developed here will revolve about

the use of the single vehicle algorithm to schedule each vehicle in the
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Set k = K - 1

Compute b^(k) and b
0
(k)

Calculate I(l,k) from (23a)
,
record optimal

(hold or

decision

,

dispatch)

,

Calculate I(2,k) from (23b) ,
record optimal decision

.

x = V
X' =<

"1 if x = 2
0

[2 if x =1
0

>

yes

<

X
0

n X II
t—

'

X II
K>

no

Record Departure from
node x at time k.

•'
_____

Set k = k + L + TR
XX ' X '

'

Set x = x
'

,

and vice versa.

Figure IS. The Two-way Single Vehicle Algorithm.
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system. Recall, however, that the latter algorithm requires a subset of

travelers as input. Hence, a method is required to allocate travelers

among vehicles. In this chapter, attention is restricted to the single

link shuttle system illustrated in Fig. 11. In this context, consider the

following assignment problem.

3 . 4 The Matching Problem

In this section, a description of the matching problem, in the con-

text of passenger allocation, is given. An efficient algorithm for ob-

"k

taining the optimal solution exists and is described in Ref. [61].

Suppose each vehicle is given an initial timetable from which to

operate. Then each vehicle makes a certain set of trips from each of the

two stations in the network. Consider the total set of trips made from

one of the stations, say station 1, by all vehicles in the system. Let

each of these trips be represented by a node n. Tag each node n with

a number d
,
such that

n

d^ = 0^ ,
the capacity of the vehicle j that makes trip n.

The set of "trip nodes" will be called node set SI. The number d isr n

called the "degree constraint" of node n.

Let each traveler (from station 1) be represented by a node m in

node set S2. Tag each node in set S2 with d =1. Now, consider the
m

node pair run
,
where n£ SI and m£ S2 . Let

e = the "edge" connecting node n with node m ,nm

•k

The algorithm is based on a "Hungarian" method. Credit belongs to

Mr. Jack Edmonds, Applied Math. Division, National Bureau of Standards,
for direction in the synthesis of this routine.
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and

c = the "edge weight" of edge e
nm run

Then c will be given by
run

c = value that passenger m holds for trip n .

nm

Thus

,

c
run

a.n +a„WTP
m

2 n 3 n
if WTP

m
> tt ,n — n

(3-31)

0 if WTP
m
< n ,n n

where TT
n

is the fare corresponding to trip n, and WTP™ is the will-

ingness to pay of passenger m for trip n. If = 0, edge e^ will

be ignored, i.e., assumed not to exist.

The representation of trips and travelers developed above, trans-

forms the passenger allocation problem into the general matching problem

in a "bipartite graph." Fig. 16 illustrates this graph- theoretic repre-

sentation. A formal statement of the problem requires the following de-

finitions :

A graph is bipartite if its nodes partition into two sets

such that no edge of the graph joins two members of the same set.

A matching in a graph is a subset M of its edges such
that no more than d^ edges meet any node n.

The problem statement is given as follows:

Given a bipartite graph with non-negative edge weights
c^n^eac!^ edge e, find a matching M such that the sum

eeM

is maximized.

c
e

Thus, given any feasible timetable for the vehicles, the matching

algorithm will find the best assignment of travelers to trips. It is now

opportune to combine this routine with the vehicle scheduling algorithm,
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Passengers

Node Set SI

Departures

Node Set S2

Figure 16. The Matching Problem.
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to synthesize the overall computational procedure for scheduling a fleet

of vehicles

.

3 . 5 The First Computation Method

Consider the procedure illustrated in the flowchart of Fig. 17, for

computing timetables and passenger assignments for the two-way, multi-

vehicle shuttle system. Given a passenger to vehicle allocation, this

iterative scheme, which will be called by its FORTRAN name M0DEL1, com-

putes vehicle timetables by successive use of the single vehicle schedul-

ing algorithm. Alternately, given a set of vehicle timetables, M0DEL1

computes the assignment of travelers to trips, using the optimum assign-

ment algorithm. Computations are started by specifying an initial allo-

cation of passengers to vehicles, £r an initial fleet timetable. M0DEL1

alternates between the passenger assignment computation and the succes-

sive vehicle schedule computations, until one timetable is obtained twice

in a row. The resulting timetable and corresponding assignment solution

constitute the final output.

Important to the discussion of M0DEL1 is the observation that there

are several aspects of this methodology that require arbitrary specifica-

tion. First, consider the process of initialization with which computa-

tions are begun. Obviously, there is a myriad of possible initial solu-

tions. Unfortunately, it will be found that the initial solution radic-

ally affects the output results of M0DEL1 computations. This consequence

will be discussed later.

Second, careful consideration of the flowchart of Fig. 17 reveals

that the assignment algorithm does not completely resolve the passenger

allocation problem. In particular, there may be some travelers who remain



Figure 17. The First Computation Method (M0DHL1)

.
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unassigned, either because there are no trips in the current iteration

that meet their preferences, or because all acceptable trips are filled

to capacity. The question then arises as to the allotment of "temporary"

assignments to these travelers, so that their preferences may influence

the next round of vehicle schedule computations. This issue may be re-

solved by specifying an arbitrary "eligibility rule." The following rule

was utilized here:

Allocate each unassigned traveler to the vehicle that makes
the trip in the current schedule that he values most.

This rule facilitates the revision of passenger assignments in suc-

cessive iterations, as schedules shift to the advantage of some travelers

relative to others. On the other hand, the rule has the disadvantage

that if a traveler cannot be assigned to his favorite trip (because of

capacity constraints) he remains ineligible for his second choice, which

may have empty seats. An alternate rule was tried, by which an unassigned

passenger is made eligible for the vehicle making his favorite "unfilled"

departure. This rule proves to be inferior in the sense that it fails to

dislodge passengers assigned to vehicles on previous iterations, in favor

of new travelers of higher current priority. Of course, many other eligi-

bility rules might be tried. Instead of pursuing such a course, analysis

of the weaknesses of the M0DEL1 process, including the need for the fore-

going eligibility rule, will help lead to the development of a superior

methodology later in this chapter.

Before the discussion of M0DEL1 computational results, consider the

question of convergence. It will be shown that the M0DEL1 iterations

must converge to a unique solution, for each initialization of the compu-

tation. In practice, only a few (three or four) iterations are required
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for convergence. The proof that M0DEL1 converges, emerges from the fol-

lowing five statements:

1. For a finite system of travelers and vehicles, there is a

finite maximum value for the stated objective function.

2. M0DEL1 produces a non- negative improvement in the value of

the objective function at every step of the process.

3. For every passenger to vehicle allocation, M0DEL1 computes

a unique timetable.

4. For every vehicle fleet schedule, M0DEL1 yields a unique set

of passenger assignments.

5. For a finite system of travelers and vehicles, there is only a

finite number of possible passenger to vehicle allocations.

Statement (1) follows from the fact that each vehicle has a finite

capacity and speed. Therefore, within the scheduling period (0,T),

only a finite number of passengers may be transported by each vehicle.

Given that there are a finite number of vehicles, and that the benefit

resulting from the transport of any traveler is finite, then the total

system benefit from any schedule, including the "best" one, must be fi-

nite. Alternately, it may be argued that a finite traveler population

can absorb only a finite benefit.

Statement (2) follows from the properties of the scheduling and

assignment algorithms. In particular, given any set of vehicle sched-

ules based on a current passenger assignment, one always attains an

assignment at least as good as the current one, by applying the assign-

ment algorithm. Analogously, given any passenger assignment based on a

current vehicle fleet timetable, one always obtains a timetable at least
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as good using the single vehicle scheduling algorithm. These latter two

statements follow from the fact that the assignment and scheduling algo-

rithms yield optimal solutions.

Although the assignment and scheduling solutions are optimal, they

are not necessarily unique. That is, more than one passenger assignment

solution may yield the optimum objective function value. Similarly, more

than one timetable may yield the optimal value for a given vehicle. How-

ever, the algorithms are programmed such that for any given input, the

same optimal solution results each time each algorithm is run with any

specific input. Thus, statements (3) and (4) apply. Statement (5) gives

an obvious property of a finite system of travelers and vehicles.

Now, statements (1) , (3) ,
and (4) imply that M0DEL1 cannot improve

the solution indefinitely, since at most M0DEL1 may test the timetables

resulting from every possible traveler- to-vehicle allocation, until the

best is reached. Furthermore, statement (2) precludes a decrease in the

objective function value on any iteration. Thus, the only remaining road-

block to convergence is the possibility of oscillations at a given level

of the objective function. However, statements (3) and (4) eliminate

this contingency, i.e., a given timetable must necessarily repeat if no

improvement occurs. Thus, convergence is assured.

Finally, it may be observed that once the program has converged,

i.e., once a timetable has repeated itself, then it is no longer possible

for the M0DEL1 procedure to improve the solution through additional itera-

tions. This follows from (3) and (4), which imply that the final time-

table would repeat indefinitely if computations were not terminated.

Thus, the rule for determining convergence (i.e., timetable repetition)

is correct.
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MODELI was translated into a FORTRAN IV computer program, to secure

a better understanding of this iteration procedure. A few illustrative

runs will be presented below.

3 . 6 Examples for MQDELl

Figs. 18 and 19 display the inputs used in most of the examples of

this section. In Fig. 18, the following notations may not be self-

explanatory:

SLOPE > s
,

DOLLAR D ,

KFIN K .

All travelers are assumed to have the same preference parameters

(D,cv,n,s) in these examples. The "INITIAL STATION" column specifies the

network node (No. 1 or No. 2) from which the corresponding vehicle is re-

quired to start at time t = 0 . The entry 0 indicates that no initial

station requirement is imposed. "SPEED" is given in miles per hour.

Fig. 19 lists the (t*,w) values for each potential traveler in the

system.

A. The objective function in the first example is "net willingness

to pay minus costs," as shown in Fig. 18. The complete set of iterations

is displayed in Figs. 20a through 20c . Fig. 20a shows the initial

The computer code utilizes a simpler version of the assignment algo-

rithm than the one described earlier. In particular, the routine pro-
grammed here requires all degree constraints, dn = 1. Hence, travelers
are matched to vehicle- seat- departures rather than vehicle departures.
The reason for this is painfully simple. The more general algorithm
was not known to the author at the time M0DEL1 was programmed. Further-
more, the exploratory nature of this study did not justify subsequent
reprogramming of the routine. However, use of the more general algo-

rithm would certainly improve the efficiency of MODELl.
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PARAMETERS

T

=

10.000

100.000

MILES

FROM

NODE

1
TO

NODE

2

100.000

MILES

FROM

NODE

2
TO

NODE

1

TURNAROUND

TIME

AT

NODE

1
=

0.050

HOURS

TURNAROUND

TIME

AT

NODE

2
=

0.050

HOURS

SLOPE

=

4.000

DOLLAR

=

20.00

ALPHA

=

0.500

N

=

2.000
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THE SCHEDULE

SCHEDULE FOR VEHICLE I

DEPARTS NODE AT TIME PASSENGERS ABOARD

1 0.50 2

2 2.50 0

1 4.50 8

2 6.50 0

BENEFIT ACHIEVED BY VEHICLE 1 = 0.0

-90-

SCHEDULE FOR VEHICLE 2

DEPARTS NODE AT TIME PASSENGERS ABOARD

1.00
3.00
5.00
7.00

0

7

6

13

BENEFIT ACHIEVED BY VEHICLE 2 = 0.0

SCHEDULE FOR VEHICLE 3

DEPARTS NODE AT TIME PASSENGERS ABOARD

1 1.50 3

2 5.00 0

1 9.00 G

BENEFIT ACHIEVED BY VEHICLE 3 = 0.0

SCHEDULE FOR VEHICLE 4

DEPARTS NODE AT TIME PASSENGERS ABOARD

2 3.00 0

1 6.50 0

2 9.00 0

BENEFIT ACHIEVED BY VEHICLE 4 = C.O

BENEFIT ACHIEVED IN SCHEDULING PROCESS = 0.0
BENEFIT ACHIEVED IN ASSIGNMENT PROCESS = 36.082

PROGRAM HAS COMPLETED 0 ITERATIONS

THE SCHEDULE HAS NOT YET CONVERGED

Figure 20. Illustrative M0DEL1 Computation

(a) Initial solution.



THE SCHEDULE

SCHEDULE FOR VEHICLE
DEPARTS NODE AT TIME PASSENGERS ABOARD

1 0.33 2

2 1.83 A 5

1 5.33 9 10
2 7.25 9 10

BENEFIT ACHIEVED BY VEHICLE 1 = 43.530

SCHEDULE FOR VEHICLE 2

DEPARTS NODE AT TIME PASSENGERS ABOARD

2 1.58 2 3

1 3.33 6 7

2 5.00 6

1 7.33 12 13

BENEFIT ACHIEVED BY VEHICLE 2 = 41.005

VEHICLE 3 HAS NO SCHEDULED DEPARTURES

SCHEDULE FOR VEHICLE 4
DEPARTS NODE AT TIME PASSENGERS ABOARD

2 8.08 11 12 1 3 14

BENEFIT ACHIEVED BY VEHICLE 4 = 4.823

BENEFIT ACHIEVED IN SCHEDULING PROCESS = 89

BENEFIT ACHIEVED IN ASSIGNMENT PROCESS = 109

PROGRAM HAS COMPLETED 1 ITERATIONS

THE SCHEDULE HAS NOT YET CONVERGED

-91-

Figure 20
.

(b) First Iteration.



THE SCHEDULE

SCHEDULE FOR VEHICLE 1

DEPARTS NODE AT TIME PASSENGERS ABOARD

1 0.33 2

2 1.83 4 5

1 5.33 9 10
2 7.25 9 10

BENEFIT ACHIEVED BY VEHICLE 1 = 43.530

SCHEDULE FOR VEHICLE 2

DEPARTS NODE AT TIME PASSENGERS ABOARD

2 1.58 2 3

1 3.33 6 7

2 5. CO 6

1 7.33 12 13

BENEFIT ACHIEVED BY VEHICLE 2 = 41.005

VEHICLE 3 HAS NO SCHEDULED DEPARTURES

SCHEOULE FOR VEHICLE 4

DEPARTS NODE AT TIME PASSENGERS ABOARD

2 8.08 11 12 13 14

BENEFIT ACHIEVED BY VEHICLE 4 = 4.823

BENEFIT ACHIEVED IN SCHEDULING PROCESS = 89.358
BENEFIT ACHIEVED IN ASSIGNMENT PROCESS = 109.358

PROGRAM HAS COMPLETED 2 ITERATIONS

THE SCHEDULE HAS CONVERGED

Figure 20. (c) Second Iteration.
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timetable, with passengers optimally assigned to it. The temporary tra-

veler eligibilities are not shown here. Recall from Fig. 19, that pas-

senger 3 from node 1, for example, is distinct from passenger 3 from

node 2.

Fig. 20 displays the following measures of aggregate benefit:

BENEFIT ACHIEVED IN SCHEDULING PROCESS = value of the objective func-
tion on the current iteration.

This value is the sum of vehicle benefits shown under each vehicle time-

table. Since these benefits are found using the vehicle scheduling algo-

rithm, zero value is specified for the initial (non- computed) timetable

iteration of Fig. 20a.

BENEFIT ACHIEVED IN ASSIGNMENT PROCESS = value of benefit accruing
to passengers assigned to

trips in the current time-
table .

The difference between the aggregate scheduling and assignment benefits

(after the initial iteration) is the operating cost of the timetable.

Observe that the initial timetable is a rather poor one. Only six

of the twenty-eight travelers find acceptable trips. Hence, most travel-

ers are "plugged into" the next iteration via the temporary eligibility

procedure. The behavior of vehicle 3 is interesting here. Traveler 3

from node 1 is assigned to the vehicle's initial timetable. However,

that traveler is not accommodated in the next iteration. In fact, too

few travelers are allocated to vehicle 3 to allow it to run profitably.

Hence, the vehicle becomes inactive.

Convergence is achieved quickly. The solution value is $89,358, with

$109,358 in traveler benefits, and $20. in operating costs.
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B

.

The following runs are designed to demonstrate the effect of

using different initial solutions to solve a given scheduling problem

with M0DEL1. In these computations, the objective is maximization of

consumer surplus (a^ =0, a^ = -1, a^ = 1) . All other inputs are assumed

the same as in Figs . 18 and 19

.

Figs. 21a and b display four initial schedules and four initial as-

signments used to generate solutions to the problem. The corresponding

results are illustrated in Figs. 22a and b. A few things are apparent

from these results. First, although there is visible similarity among

the various solutions, it is evident that the initialization radically

affects the final results. This is an important point that will receive

more attention later.

Second, the figures show that initialization via passenger alloca-

tion appears to be more effective than initialization by timetable speci-

fication. This results from the fact that unless the initial timetable

is chosen rather skillfully, many travelers may find the entire timetable

unacceptable. Hence, the heuristic eligibility rule must be relied upon

to allocate travelers to vehicles, a task that it may do poorly. On the

other hand, guessing at a reasonable initial passenger allocation is

relatively easy. For example, assignment A1 is a fairly uniform distribu-

tion of travelers among vehicles. A2 is an attempt to group travelers of

similar preferences, such that each vehicle is likely to be able to accom-

modate most of the passengers assigned to it. Assignments A3 and A4 are

randomly chosen. That is, each traveler is assigned to a vehicle by the

roll of dice. (Each vehicle is equally likely to be chosen.) Even the.

latter assignments lead to reasonably good solutions.
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Schedule Initial Value Vehicle No. Departure Times
(- indicate departure from node 2)

SI 36.1 1 0.50 -2.50 4.50 -6.50

2 -1.00 3.00 -5.00 7.00

3 1.50 -5.00 9.00

4 -3.00 6.50 -9.00

S2 28.6 1 2.00 -5.00

2 -7.00 9.00

3 7.00 -9.50

4 -2.00 4.50

S3 9.7 1 1.00 -3.50 8.00

2 1.00 -3.50 8.00

3 1.00 -3.50 8.00

4 1.00 -3.50 8.00

S4 97.7 1 -0.01 2.33 -3.92 5.33

-7.00 8.42

2 -1.75 3.33 -5.00 7.33

3 1.50

4 -0.01

Figure 21a. Initial Schedules.
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Assignment VFS* Vehicle No. Assigned Passengers
From node 1 From node 2

A1 75.9 1 1,5,9,13 4,8,12

2 2,6,10,14 3,7,11

3 3,7,11 2,6,10,14

4 4,8,12 1,5,9,13

A2 117.2 1 1,2,9,10,14 2,3,9,10

2 3,4,11,13 6,13,14

3 8,12 1,4, 5, 7,

8

4 5,6,7 11,12

A3 61.1 1 1,4,6,7,13 none

2 9,11,12 8,13,14

3 3,5,8,10 1,2,4,6,10,11

4 2,14 3,4,7,9,12

A4 90.8 1 7,9,12 2,9,10,11

2 1,11,14 1,3,4,5,6,7,13,14

3 2,4,5,6,10 12

4 3,8,13 8

VFS = Value of the first generated schedule

.

Figure 21b. Initial Assignments
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Schedule Final Value Vehicle No. Departure Times

SI 116.4 1 0.33 -1.83 5.33 -7.25

2 -1.58 3.33 -5.00 7.33

3 2.00 -5.92 8.00

4 -3.92 6.00 -8.08

S2 67.6 1 -0.00 1.42 -5.00

2 -7.00 8.42

3 -3.92 6.00 -8.08

4 -1.08 5.50

S3 73.2 1 0.33 -1.83 5.33 ooi

8.42

2 no departures

3 -1.92 4.00 -8.08

4 no departures

S4 98.1 1 -0.00 2.33 -3.92 5.33

-7.00 8.42

2 -1.83 3.33 -5.00 7.33

3 1.50

4 no departures

Figure 22a. Solution Schedules for Initial Schedules.
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;ignment Final Value Vehicle No. Departure Times

A1 108.1 1 -0.00 2.33 -4.08 5.50 -7.25

2 0.25 -1.67 5.17 -7.00 8.42

3 1.50 -3.92 6.00 -8.17

4 -1.17 4.00 -8.08

A2 119.8 1 0.25 -1.67 5.33 -7.17 8.58

2 1.33 -5.00 7.17 -8.58

3 -1.17 4.00 -7.08

4 -1.42 3.50 -8.08

A3 91.3 1 -1.83 3.33 -5.92 7.33

2 -5.00 6.42 -8.50

3 -0.92 4.50 -8.08

4 -7.17

A4 108.2 1 -1.58 3.00 -4.42 5.83 -7.25

2 -1.83 3.50 -5.00 6.42 -8.50

3 0.00 -2.42 4.50 -8.08

4 2.00 -5.92 8.00

Figure 22b. Solution Schedules for Initial Assignments.
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Finally, it is not clear what "type" of solutions the answers of

Fig. 22 represent. Recall from the earlier discussion in this chapter,

that iterative procedures may lead to various kinds of suboptimal solu-

tions. The following discussion, which includes the presentation of com-

puter runs designed to "perturb" the solutions obtained above, pursues

the question of solution "quality." That discussion, in addition to the

earlier observations on M0DEL1 solutions, will lead to the development of

an improved computational method, M0DEL2.

It is clear that M0DEL1 has the capability to render non-negative

improvement to any input timetable. In this sense, it may be considered

a useful computational tool. However, the wide divergence of solutions

resulting from alternate initializations casts serious doubt on the abil-

ity of M0DEL1 to reach an optimal solution. In addition, one rarely ob-

tains identical solutions from different initializations. Hence, even if

M0DEL1 could be relied upon to generate an optimum, it is difficult to

predict how many different initial solutions would be required to do so.

In order to determine whether or not a given solution is "locally

optimal" it is usually necessary to test values of the objective function

over points in its immediate neighborhood, within the "feasible region"

of solutions. In general, it is possible to test for "global" optimality

only by finding and comparing all local optima. Points in the neighbor-

hood of a solution may be tested by effecting small perturbations in var-

ious directions. In the present context, trip departure times may be

varied by plus or minus one grid point, At = T/K.

However, it is not feasible to try all possible such perturbed solu-

tions-- there are too many of them. Specifically, three changes to each
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departure time (+At, -At, 0) are possible. If there are d departures

per vehicle, and V vehicles, then there is a maximum of 3^ possible

perturbations. Actually, fewer possibilities exist since some of these

perturbations violate system constraints. However, with d = 10 and

40
V = 4, as in the current examples, there is a maximum of 3 possibili-

ties. Even if many of these are infeasible, the number of possibilities

is still enormous. Hence, a comprehensive perturbation test is not

reasonable

.

Nevertheless, it is instructive to consider a few perturbed solution

runs. The final timetables that resulted from initializations SI, A2, S3,

and A3, were perturbed by delaying all departures of even numbered

vehicles by At, and advancing all odd vehicle trips by At. Here,

At = T/K = 0.083. These perturbed timetables were input to M0DEL1. The

purpose is to observe whether the answers would converge back to the ori-

ginal solutions, or move to new solutions. If the original solution is

locally optimal then the computation may be expected to converge back to

it. Otherwise, if the perturbation happens to be in a direction of poten-

tial improvement, an improved answer may be expected. The results are

summarized in Fig. 23.

More detailed inspection of runs P2 and P4 reveals that alteration

of traveler eligibilities is the important mechanism by which perturba-

tions lead to new answers. That is, small changes in solutions are some-

times sufficient to alter traveler assignments and secondary eligibilities

such that improved solutions ultimately result. Although it is clear by

now that M0DEL1 tends to terminate suboptimally
,

it is advantageous to

pursue the perturbation analysis one step further.



-101

Four runs were performed to determine whether solutions could be

further improved by adjusting the eligibilities of travelers left unac-

commodated in the final schedules. Adjustments were made by matching

(by casual observation) the preferences of unassigned travelers to exist-

ing or feasible (supplementary) unfilled departures in the context of the

final schedule. Again, the final solutions resulting from initializa-

tions SI, A2, S2, and A3 were used. The final passenger assignments, per

turbed as described above, were input for the new "adjustment" runs. The

results are summarized in Fig. 24.

Manipulation of traveler eligibilities can significantly improve the

solutions. Figs. 23 and 24 show that the small perturbations of the time

table or passenger allocation solutions can nudge the computations out of

a suboptimal "rut." A graphical consideration of the process will help

clarify how M0DEL1 may terminate subop timally.

Consider two "spaces," Q, and -4 :

CL = space of all possible assignments of travelers to vehicles,

= space of all possible vehicle timetables.

If spaces d and are represented along separate axes, as in

Fig. 25, then M0DEL1 is reminiscent of the "one at a time," successive

•k

approximation method. That is, M0DEL1 proceeds by fixing the passenger

assignment solution and optimizing the timetable, then fixing the time-

table and optimizing the assignments. In Fig. 25, these iterations are

represented by right- angle movements in ) space. The danger of

this procedure is apparent. For example, solution (A^,S^) in the figure

*
For convenience, Fig. 25 displays assignment space as a continuum,
rather than a more appropriate discrete representation. The comments
above apply to either case.
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Run Original Solution and Value New Value Identical Solution?

PI SI 116.4 116.4 Yes.

P2 A2 119.8 122.8 No, slightly modified

P3 S2 67.6 67.6 Yes

P4 A3 91.3 99.1 No, one trip added
to otherwise identi-
can schedule.

Figure 23. Perturbation Runs.

Run Original Solution and Value New Value Changes

AJ1 SI 116.4 118.6 Modification of one
vehicle schedule.

AJ2 A2 119.8 119.8 No change

.

AJ3 S2 67.6 80.0 Significant modifi-
cation of two vehicle
schedules

.

AJ4 A3 91.3 114.4 Trips added to three
vehicle schedules.

Figure 24. Adjustment Runs.
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Figure 25. M0DEL1 Iterations in Schedule-Assignment Space.



- 104-

is (locally) optimal; however, a "ridge" solution such as is also

a possible output. The examples of Figs. 23 and 24 indicate that ridge-

like solutions are occurring. This may be concluded from the fact that

small perturbations in the timetables or assignments are found to lead to

improvements in each original solution.

Viewing the situation from another perspective, it may be observed

that the M0DEL1 method does not adequately reflect the interdependencies

among interrelated parts of the problem, e.g., the separate vehicle time-

tables and passenger- to- vehicle allocations. Consider, for instance, the

successive vehicle schedule optimizations.

Recall that throughout the successive timetable computations, the

traveler to vehicle allocation is fixed. Thus, each vehicle schedule is

optimized only with respect to its own traveler subpopulation. No con-

sideration is paid to the potential increase in benefit that a vehicle

might provide to travelers outside its domain. It is true that subsequent

to the entire vehicle fleet scheduling operation, the passenger assign-

ments are recomputed. This does not appear to be adequate, however. The

perturbation examples have shown that manipulation of passenger eligibil-

ities can significantly improve the solutions. Hence, to enhance the

iterative method, a technique is required for allowing vehicle schedules to

be computed on the basis of benefits to the entire traveler population.

Accordingly, optimization of a vehicle timetable must be allowed to con-

sider changes in the passenger assignments. Returning to the viewpoint of

Fig. 25, the revised procedure must relax the constraint in MODELl and al-

low movements in more than just the two orthogonal directions in )

space

.
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3. 7 Revised Computation Method

The new computational method, called M0DEL2 and illustrated in Fig.

26, operates as follows:

Each vehicle schedule is optimized with respect to the entire tra-

veler population, under the following stipulations: (a) All passengers

either currently assigned to vehicle j ojc currently unassigned are con-

sidered fully eligible for vehicle j, during the process of optimizing

vehicle j's timetable. (b) A passenger currently assigned to a trip

made by a vehicle other than j, is considered eligible for j, with the

reservation that the benefit that vehicle j can be said potentially to

provide such a passenger, is equal to the net increment that the traveler

would achieve by switching to vehicle j from his previous assignment.

Hence, execution of the single vehicle algorithm proceeds essentially

as before, with the exception that at each time k, the decision to depart

is based on the potential increment in benefit that would accrue to the

entire traveler population. That is, the quantity b(k) includes the sum

of benefits of passengers previously assigned to j or previously unas-

signed, plus the increment in benefits accruing to those passengers who

would switch to vehicle j from a different vehicle, if vehicle j were

to depart at time k.

To be more precise, the immediate benefit b^Ck) ,
for trip h leav-

ing node n at time k, is given by

(3-32)

i£H

where
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Read Inputs

Figure 26. The Revised Computation Method (M0DEL2)
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OC^ = operating cost for current trip h,

rr^ = fare for the current trip h,

h' = h*(i) = trip to which traveler i has been previously assigned,

V = fare for trip h'.

WTP,
1

h
= willingness to pay of traveler i for trip

•H
Pn

,

= willingness to pay of traveler i for trip h\

H = set of all travelers for whom WTP,
1
> tt, ,

and
n — n

a
2
n
h

+a
3
WTP

h
> a

2
n
h'

+a
3
mF

h'
‘

Let

h' = 0 if traveler i is previously assigned to the vehicle

making trip h, or is previously unassigned,

and let

WTP
1

= TT, ,
= 0 for h' = 0 .

h h

Recall that if trip h has limited capacity then a priority board-

ing rule must be implemented. A slight modification of the M0DEL1 rule

is required here. Rather than board in decreasing order of values for

trip h, travelers are boarded in decreasing order of incremental values

for trip h, over the values of previously assigned trips h' . This rule

assures that the scheduling of the vehicle making trip h, results in a

net gain to the total system benefit.

Subsequent to the optimization of each vehicle schedule, it is neces-

sary to modify the passenger assignments to conform with the revised time-

table. One time-consuming way to do this, of course, would be to apply

the optimum assignment algorithm after each vehicle schedule computation.

A less expensive approach is merely to change the assignments of those
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travelers affected by the rescheduling of the current vehicle. The lat-

ter approach is implemented by an adjustment routine that works as fol-

lows .

Suppose that vehicle j's timetable has been optimized, and that the

solution is based partially on the incremental benefit that some traveler

i would receive, were he to transfer to vehicle j from his previously

assigned vehicle. Then before the next vehicle (j+1) timetable is opti-

mized, it is necessary to change traveler i's assignment classification

to correspond to the revised timetable. The mechanics of the reclassifi-

cation are straightforward. It is sufficient here to say that traveler

incremental values for the trips in the new vehicle timetable are recom-

puted and reordered, to implement the optimal boarding rule. Once this

is done, those travelers aboard trips different from their original ones,

are reclassified accordingly.

Thus, M0DEL2 is characterized by successive single vehicle schedul-

ings and passenger assignment modifications. One possibility is that under

such a procedure, use of the optimal assignment algorithm might be dis-

pensed with entirely. Unfortunately, the assignment modification proced-

ure described here will not necessarily result in an optimal assignment

of passengers to the resulting final schedule. However, the new procedure

will significantly reduce the need for using the optimal assignment rou-

tine. That is, use of it can be viewed as a "correction maneuver" to

prevent the traveler assignments from straying too far from the optimal.

Hence, the assignment algorithm can be used only occasionally during the

iterations. As a practical matter, the solutions obtained without using
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the optimal assignment routine will prove to be quite acceptable, and

almost as good as solutions obtained with the assignment algorithm option.

In any case, one feature of the M0DEL2 computer program is an optional

call of the assignment algorithm.

A welcome result of developing M0DEL2 is the elimination of the

arbitrary temporary eligibility rule. That is, under M0DEL2 it is no

longer necessary arbitrarily to allocate unassigned travelers to vehicles;

unassigned travelers are considered fully eligible for the vehicle whose

timetable is currently being optimized. Another interesting feature is

the choice of three modes of initialization. In addition to initial time-

tables and passenger assignments, it is feasible to specify no initializa-

tion at all. In that case, timetable computations begin with all travel-

ers "uncommitted" and fully eligible for the first vehicle. Incident-

ally, if passenger assignment initialization is chosen, the first round

of vehicle schedule computations are performed with travelers eligible

only for their initially assigned vehicles in order that an initial time-

table may be constructed from which computations may begin. In other

words, an initial assignment specification is interpreted as implying an

initial timetable, namely that timetable which implements the initial

assignment optimally.

Termination of the M0DEL2 process is also more flexible. Once the

fleet timetable has converged, an option is available to apply the optimal

assignment algorithm. If the option is not chosen, the computation is

terminated; otherwise, a failure of the assignment algorithm to modify

existing traveler assignments will terminate the process. If such modi-

fication occurs, then timetable optimizations begin again. The discussion

below will demonstrate that MODEL2 computations must always converge.
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Convergence for M0DEL2 is assured on a basis similar to that for

MODELl. In particular, statements (1), (2), and (5) of p. 85 hold for

M0DEL2 as well. Statements (3) and (4) may be restated for M0DEL2 as

follows:

3. For every possible state of the traveler population, i.e.,

allocation of travelers to vehicles, the vehicle schedule algorithm

is programmed to yield a unique timetable solution.

4. For every fleet timetable, the optimal assignment algorithm

yields a unique traveler assignment solution.

As before, statements (1), (3), and (5) imply that M0DEL2 cannot

improve the solution indefinitely. Statement (2) precludes a decrease

in the objective function at any step. Oscillations at a fixed objec-

tive level are precluded by (3) and (4) as follows:

First, note that the program will not transfer any traveler from

one vehicle to another unless the net system gain is positive. Hence,

changes in traveler assignments are impossible if the objective level

remains fixed. Second, by (3) successive iterations over vehicle sched-

ules, with passenger assignments fixed, lead to identical output time-

tables. Thus, convergence within the inner vehicle- timetable optimiza-

tion loop is assured.

Now, suppose timetable convergence has occurred, and application of

the assignment algorithm is desired. If the resulting assignment solu-

tion is identical to the current one, termination is automatic. If

assignments are altered, timetable computation begins again. However,

if the previous timetable has already achieved the terminal objective

value, then no further increment is forthcoming, and no further assignment
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changes will occur. Therefore, the identical timetable will be regenerated,

and by (4) final application of the assignment algorithm will produce no

additional changes. Hence, convergence obtains.

3.8 Examples for M0DEL2

C

.

To observe the operation of M0DEL2, reconsider example A (Fig. 20)

used for M0DEL1. Figs. 27a through 27c display the successive iterations;

the order in which vehicles are read into the program here, is the reverse

of Fig. 18. The "optimal assignment" and "no initialization" options are

utilized in this computation. As for earlier printouts, identically

numbered travelers from different nodes are distinct.

The final solution value is 97.2. The total value of traveler bene-

fits is 129.2. The difference between these numbers is the timetable

operating cost.

In contrast to M0DEL1, M0DEL2 is sensitive to the ordering of the

vehicles because the vehicles whose timetables are optimized first have

"first shot" at serving unassigned travelers and potential transferees.

The allocation of traveler subpopulations to vehicles under the M0DEL1

scheme is not dependent on the vehicle ordering. For uniform fleets,

M0DEL2's sensitivity to vehicle ordering is of no consequence. For non-

uniform fleets, the discrepancy in the final objective value is of the

order of that which results from using alternate initial solutions.

Fortunately, M0DEL2 proves to be much more acceptable than MODEL 1 , with

respect to the divergence of solutions resulting from different initiali-

zations. Before proceeding to evaluate the performance of M0DEL2, it is

advantageous to develop an upper bound algorithm for generating standards

against which solution values may be measured. The final result for the

original vehicle order of Fig. 18 is shown in Fig. 28.



THE SCHEDULE

SCHEDULE E0R VEHICLF 1

DEPARTS NODE AT TIME

112-

PAS SENGFRS ABOARD

i . oa
6.00
8.08

4

I 1

1 1 13

BENEFIT ACHIEVED PY VEHICLE 1 = 7.035

PASSENGERS ABOARD
SCHEDULE for

DEPARTS NODE

2

SCHEDULE FOR
DEPARTS NODE

1

2

1

2

1

2

VEHICLE 2

AT TIME

7.17

VEHICLE 3

AT TT ME

0.25
1.67
3.33
5.00
7.17
8.53

9 10

2 = 3.939

2

2 3

6 7

6

12 13
12 14

3 = 48.947BENEFIT ACHIEVED BY VEHICLE

BENEFIT ACHTFVED BY VEHICLE

PASSENGERS ABOARD

SCHEDULE FOR VEHICLF 4
DEPARTS NODE AT TIME PASSENGFRS ABOARD

2

1

2

1

2

l

0.00
1.42
3.92
5.33
7.00
8.42

1

3 4

0

9 10
7 8

14

RENEFIT ACHIEVED BY VEHICLE 4 35.437

BENEFIT ACHIEVED IN SCHEDULING PROCESS = 95.458
BENEFIT ACHIEVED IN ASSIGNMENT PROCFSS = 0.000

THE PROGRAM HAS NOT YET CONVERGFD
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Figure 27. Illustrative M0DEL2 Computation.
( a ) Initial Iteration.
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Figure 27. (b) Second Iteration.
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Figure 27. (c) Final Iteration.
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THE SCHEDULE

SCHEDULE FOR VEHICLE 1
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Figure 28. Results for Alternate Vehicle Ordering.
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3 . 9 Upper Bounds

The upper bound will be developed as the minimum of two upper bounds.

The first bound will be based on the limitation of available vehicle cap-

ability. The second bound will be found as a limit to service that the

traveler population can absorb.

A. Bound based on vehicle capability . If a vehicle j is optimally

scheduled by itself with respect to the total traveler population, it will

achieve a total benefit (value) v\
,
greater than or equal to the compo-

nent benefit v^ that the same vehicle might provide under any sched-

uling of the entire vehicle fleet.

To see this, assume that under some scheduling S of the entire

fleet, vehicle 1 achieves a benefit v. > v. . Then v. cannot be
j J J

the optimal benefit for vehicle j scheduled alone. This is contrary to the

definition of v.. Therefore, v. > v° where v° is the component benefit
j J “ J J

that vehicle j contributes to the total benefit B° of the optimal

fleet schedule S°. Hence, an upper bound B'*’ can be obtained by summing

the v. over all vehicles:
J

V

' A 'j 2
k°>

= B°
, (3- 33a)

or,

B
1
> B° . (3- 33b)

The values v may be obtained by applying the single vehicle sched-

uling algorithm for each vehicle j.

The bound B^ is weak in the following sense. If the vehicle fleet

capacity is very large relative to the number of potential passengers,

then B^ may far exceed B° . It is easy to see, for example, that B^
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can be arbitrarily increased simply by adding more vehicles to the fleet.

Even with a vehicle fleet size well matched to the size of the traveler

market, B^" will closely approximate B° only under an unusual distri-

bution of passenger time preferences. In particular, the time preference

distribution must be such that under optimal fleet scheduling, each

vehicle gets the same usage as it would if it alone were (optimally)

scheduled with respect to the total traveler population.

2
To help remedy this difficulty, a new bound B is found, based on

a limit to the service that the traveler population can absorb:

2
B. Bound based on passenger service . The bound B will be found

by assigning travelers to a better alternative set of trips than could

possibly be available, even under an optimal fleet schedule. This new

set is composed of imaginary ideal trips; each such trip is assumed to

serve each of its passengers with a perfect schedule (zero inconvenience)

relative to the speed of the vehicle that executes the trip. To develop

the new set of alternative trips, which will be called the "maximum in-

ventory" of available trips, the maximum number of trips that each

vehicle j can make during the scheduling period (0,T) must be deter-

mined. Vehicle j can make up to n^ departures from each node, where

Tct .

2n .
= —r^- + 1 rounded to next smallest integer

, (3-34)

where

X = distance of a one-way trip,

CK = average speed of vehicle j .

If 2n . is odd, it will be assumed that vehicle j makes (2n.+l)/2
J
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trips from each node (i.e., replace n_

mum inventory of trips consists of n.
V J

each node, or a total of 2Q =
2 ^

n^ .

by (2n^+l)/2). Thus, the maxi-

trips by each vehicle j from

j=l

It is assumed that every passenger is served by a "perfect schedule"

(t*,t*) relative to the speed of the trip in the maximum inventory to

which he is assigned. Equivalently, it is assumed that every trip in the

maximum inventory serves each of its passengers with a perfect schedule.

Finally, operating costs will be considered on a per passenger basis,

such that if a passenger is assigned to a trip, he will be allocated a

minimal share of the operating expense of his trip. (A minimal share is

computed by dividing the total operating cost of a trip by the passenger

load, assuming that the vehicle is full.)

To be more precise, passengers will be considered for assignment to

trips in the maximum inventory, on the basis of the values

M OC,M _ h
V
ih

~ ~ a
l C,

'

“2"h '“3+a 0T\ +a QWTP
1
(A = 0>«*

h ) > (3-35)

M
where v.^ is the value or benefit of assigning passenger i to trip h

in the maximum inventory of trips. The other symbols are:

OC^ = operating cost of trip h
,

= capacity of the vehicle making trip h
,

TT^ = fare charged for trip h
,

^ = duration of trip h .

It will be shown that if passengers are optimally matched to trips

in the maximum inventory such that V
ih(i)

*" S max imize<3 >
then that

i

sum constitutes a valid upper bound on the benefit of the optimum schedule.

(h(i) is the trip h to which passenger i is assigned.)
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First, consider the set of alternative trips in the optimal schedule.

Each traveler can be associated with a set of values,

oc

V
ih

= _a
l “L^

+a
2
n
h
+a

3
WP ^Ah 5^ ’

where v°^ is the benefit of assigning passenger i to trip h (via

vehicle j) in the optimal schedule. Also,

(3-36)

= load or number of passengers on trip h, 0 < L^< C
h ’

OC,

—j— = the share of operating cost that can be allotted to a pas-
« senger on trip h,

= the schedule inconvenience of trip h in the optimal schedule
with respect to traveler i's preferences.

Note that
mm
Lh

z
00
h \ = _°Si

V
Consider the following summation, which assumes that every traveler

i has been assigned to a specific trip (or the null trip) in the optimal

schedule:

NN N OC.,.

v

£
v ih(i)

=

£
(
' a

l U
+a

2
rI
h(i) ^(D’^hCi) 5 ’

1=1 1=1 ^ (1)

(3-37)

where h(i) is the trip to which passenger i is assigned, and N is

the total number of passengers.

Now each trip h has passengers on board, according to defini-

tion. Thus, there are passengers for whom h(i) = h. Therefore,

the first term on the right hand side can be written

NOC,,.. H
’
ai ^ Vu

= '
ai ^ ^

i=l K } h=l

OC, H

~r~ eu
= " a

\ h ii
h=l

^t^h ’ (3-38)

where

e
h

=<
if ^ - 0 ,

if 1^ * 0 ,
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and H is the total number of trips in the optimal schedule.

Thus, the overall summation can be rewritten,

S
o

h=l
“Vh +a

2

( 3
- 39 )

Now by definition, the optimal solution assigns passengers in an

optimal way to the optimal schedule. Thus, under the optimal solution,

the total benefit above,

the total operating cost of empty trips in the optimal schedule.

Now, for every trip in the optimal schedule, there is a trip in the

maximum inventory that is at least as good, since: (a) for every trip by

vehicle j in the optimal schedule, there is at least one trip by the

same vehicle in the maximum inventory, and (b) that trip in the maximum

inventory is assumed to provide a perfect schedule to each of its passen-

gers. Such service is attainable by a trip in the optimal schedule only

in the ideal case.

Therefore, consider a subset of trips in the maximum inventory, the

elements of which are in a one- one correspondence with those in the opti-

mal schedule. "Pair off" trips in the optimal schedule with trips by

the same vehicle in the subset of the maximum inventory. Order these

pairs by the trip index h. Then

is maximized.

where the set of traveler to trip assignments and OC^ is
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M ^ o
v
ih - V

ih
all i,h, (3- 40a)

or

OC . OC

'“I -C^
+a

2
n
h
+a

3
WTpl« °’V * ' a

l
+a

2"h
+a

3
WIPH’V

(3- 40b)

since

C
h > 1^ and WTP

1
(A = 0,^) > WTP

L
(A
h ^h ) .

Thus, if we solve for the optimal assignment of passengers to the

subset of trips in the maximum inventory, on the basis of the values

M
V
ih ’

t^ien t^ie resulting total benefit B is greater than or equal to

B°, where B° is the benefit of the optimal solution. That is,

°., ,. N -OC = B°
e

(3-41)

Now, if the optimal assignment of travelers to a subset of the maximum

inventory results in a benefit not less than B°
,

then the optimal assign-

2 o
ment to the total maximum inventory must yield a benefit B > B > B .

2 q
Thus, B is a valid upper bound on B

The optimal assignment of travelers to the maximum inventory of trips

can be computed using the optimal assignment algorithm. As a practical

matter, however, it is not necessary to actually solve an assignment

problem if only one traveler "type" is considered, i.e., if all travelers

are assumed to have identical preference parameter values (D,or,n,s).

In such a case, all travelers have identical values and relative prefer-

ences for alternative trips in the maximum inventory, and it is easy to

allocate passengers to trips in the best possible way. All that is
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required is to "fill up" the trips from each node, in decreasing order of

benefit

,

M ^h
V
h

= -g- + aA +a
3
tfrp(0^

h ) .

h

M
Thus, reordering the trips by value

,
and using a new index p ,

q-1

B
2

= V C v
M
+

, (3-42)
L p p q q

v '

p=i

where

q = last trip to be loaded before all travelers have been allocated,

= remaining number of passengers loaded onto the trip q.

In the general case where travelers are not all of one type, and it

is still desired to avoid having to solve an optimal assignment problem,

2
B can be replaced by an upper bound on the solution to that assignment

problem. That is.

N

B < min
(I
i=l

mgx v.
h ,

M
l

max
i

M
'ih

= B~ (3-43)

The first terra within the minimization operation of (3-43) corresponds to

assigning each traveler to his most favored (fastest) trip in the maximum

inventory. The second term corresponds to filling each trip in the maxi-

mum inventory with maximally valued travelers. Each of these terms consti-

tutesan upper bound to the optimal assignment of travelers to trips in

the maximum inventory.

2
By virtue of the service factors that it idealizes, bound B can-

not be held as a very "tight" upper bound on the value of the optimal

2
scheduling solution. Recall that B assumes an abundance of trips by
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all vehicles, perfect schedules, and underestimated operating costs. How-

2
ever, B serves fairly adequately, to measure the limit on service which

2
can be absorbed by the traveler population. Thus, B complements bound

1 12
B so that the bound B = min(B ,B ) may be reasonably indicative of

the maximum achievable benefit.

In summary, two upper bounds have been set forth. The first is based

on a- limit of vehicle capabilities with respect to the given distribution

of passenger preferences. The second is based on a limit to the amount of

service that the set of travelers can absorb. A simplified flow chart

1 2
illustrating the computation of B and B is given in Fig. 29. The

1 2
upper bound routine to compute B = min(B ,B ) is coded as an optional

subroutine to the M0DEL1 and M0DEL2 programs.

3.10 Results

Fig. 30 displays the set of M0DEL2 results for example B. (The

objective is maximization of consumer surplus.) The figure shows M.0DEL2

solution values (with and without the optimum assignment option as desig-

nated in Fig. 26) from the nine alternate initializations. The upper

bound value and M0DEL1 results are also summarized.

Two features of these results are outstanding. First, the quality

of M0DEL2 solutions, in terms of the achieved level of the objective func-

tion, is much superior to that of M0DEL1 solutions. Second, M0DEL2 solu-

tions obtained from different initializations are in close agreement.

These are the two areas of improvement that were sought, in developing

MODEL2

.

Before discussing these areas further, two other characteristics are

to be noted. First, the number of iterations required for convergence is



Schedule vehicle j with respect to the

total traveler population, to obtain benefit v.

B 1 = B 1 +

2n .
= + 1, rounded to next

T A
J

J ‘ smallest integer.

2n . + 1

J

Jj_ 2

'3 = 3- 1
i

-

Set OC, C, ir, WTP (0, (f)

according to characteristics of vehicle

j and passenger i from "node."

I

I h = h + If

Match passengers to trips, based on

values r nodei to obtain total benefit B'.
<V
JlL 1

B 2 = B 2 + B 1
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Figure 29. Computation of Upper Bounds.
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greater where initialization (by timetable or assignment specification)

leaves few travelers unassigned. In these cases, the program spends sub-

stantial time ''undoing the mistakes" in the initial solution. This sug-

gests that it is advantageous to specify no initialization, and allow

computations to take their own course. Recall that the best solution in

Fig. 30 is obtained with no initialization. However, this is not always

the case

.

Another computationally important point is that use of the optimal

assignment algorithm does not appear to improve the solutions signifi-

cantly. When MODEL2 is extended to the scheduling of vehicles over more

complex networks in Chapter VI, the latter point will be highly relevant.

Returning to the question of solution quality, observe that M0DEL1

results in Fig. 30 achieve from 38.2 to 67.7 per cent of the upper bound

value, whereas M0DEL2 values range from 75.4 to 79.4 per cent. In view

of the conservativeness of the upper bound and the consistency of M0DEL2

solutions, there is some assurance that the solutions are at least close to

the optimal one.

The improvement in the consistency of solutions of M0DEL2 over those

of MODELl is just as remarkable as the improvement in solution quality.

The variation among MODELl solutions is 43.5 per cent of the highest

achieved value. The corresponding statistic for M0DEL2 is 4.9 per cent.

A closer look at the final M0DEL2 timetables will allow greater insight

into the nature of the solutions.

Fig. 31 displays the four distinct schedules that result from the

nine M0DEL2 runs. The similarity among the solutions is apparent. For

example, eleven of the twenty- five possible trips are found in each
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Departure
Times

SI S2 A2 A3

I. Fast Vehicles (182)
From node 1 VI V2 VI V2 VI V2 VI V2

0.33 2 - 2 - - 2 2 -

1.42 - - - 3,4 - - - 3,4

3.33 - 6,7 6,7 - - 6,7 6,7 -

5.33 9,10 - - 9,10 9,10 - - 9,10

7. 17 - 12,13 12,13 - - 12,13 12,13 -

8.42 14 - - 14 - - - 14

8.58 - - - - 14 - - -

From node5 2

0.00 - - - 1 - - - 1

1.58 - 2,3 - - 2,3 - - -

1.83 4,5 - 4,5 - - 4,5 4,5 -

3.92 - - - 0 - - - 0

5.00 - 6 6 - - 6 6 -

7.00 7,8 - - 7,8 - - - 7,8

7. 17 - - - - 9,10 - - -

8.58 - 13,14 13, 14 - - 13,14 13,14 -

11. Slow Vehicles (384)

From node 1 V3 V4 V3 V4 V3 V4 V5 V4

1.50 3 - - - - 3 - -

1.83 - - - 5 - - - -

4.00 - 8 8 - 8 - - 8

6.00 11 - - 11 - 11 11 -

From node 2

0.92 - - 2,3 - - - 2 -

1.00 - - - - - - - 3

3.92 0 - - 0 - 0 - -

7.08 - - - - 7,8 - - -

7.25 - 9,10 9,10 - - - - 9,10

8.08 11,12 - - 11,12 - 11,12 11,12 -

Objective
Value 136.4 140 . 6 133 .4 139 .2

*Passengers with the same number, but from different nodes, are distinct.

Figure 31. Solutions by M0DEL2.
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schedule. Thus, the computations from divergent initial points appear to

gravitate toward a common solution; however, the process does not always

attain the same level. There are suboptimal points at which M0DEL2 may

stop. This will be illustrated more dramatically, below. The probability

of premature termination varies directly with the attained level of the

objective function. Thus, it is unlikely that M0DEL2 terminates far

from the optimal solution.

This behavior is explained by the fact that M0DEL2 continues to

improve the solution as long as there is some traveler in the system for

whom the net benefit of transferring to a new vehicle outweighs the bene-

fit currently received by some other traveler (or empty seat)
,
already

assigned to that new vehicle. The probability that such a potential

traveler transfer exists, decreases as the solution improves. However,

there are suboptimal points, as well as optima, for which no such poten-

tial transfer exists.

The probability of suboptimal termination is also a decreasing func-

tion of dimensionality. The larger the problem (the more travelers and

vehicles)
, the less likely it is that no travelers can be found for whom

a transfer provides a net system benefit. Thus, M0DEL2's "freedom to

climb" is enhanced by large dimensionality but is mitigated as the summit

is approached.

The examples below, illustrate how M0DEL2 may terminate suboptimally

.

Following the examples, this chapter concludes with an explanation and

summary of claims on the merits of M0DEL1 and M0DEL2.

The array of Fig. 32 represents a problem with two passengers and

two dissimilar vehicles. Each vehicle has unit capacity. Each box in
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the array corresponds to a particular passenger- to-vehicle assignment. An

entry v_ is the system benefit achieved, as computed by the vehicle

scheduling algorithm, if vehicle j serves passenger i (exclusively).

In this context, consider the M0DEL2 computational process, applied

with no initialization:

1. With both travelers unassigned, vehicle VI chooses to serve

passenger PI, attaining a benefit of 9.

2. Vehicle V2 is faced with the following choice:

a. Serve passenger P2--net system benefit = 8 ,

b. Take passenger Pi away from VI- -net system benefit = (12-9)

= 3 .

Thus, V2 chooses option (a), to serve P2.

3. Vehicle VI may:

a. Continue to serve Pl--net benefit = 0 ,

b. Drop P2, serve Pl--net benefit = -8+(12-9) = -5 .

Thus V2 continues to serve P2.

Therefore, the final solution is (PI - Vl , P2 - V2) with value

9 + 8 = 17. It is clear, however, that the optimal solution is (Pi -

V2, P2 - Vl)
,
with value 12 + 6 = 18. The latter solution is obtained

with M0DEL2 if the vehicle order is reversed.

Figs. 33a, b, and c display a more complicated problem, with four

travelers and two identical vehicles of capacity two. Fig. 33a illus-

trates the approximate preferred departure times of the travelers. The

passengers may be pictured as traveling from the same station. Fig. 33b

tabulates the maximum benefit (computed by the single vehicle algorithm)

that could be achieved by a vehicle with each possible passenger
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Vehi cle

i

PI I 9

P2 I 6

\

! V2

4
I

12

Capacity of each vehicle is one.

Vehicles have different speeds
and/or fare.

Figure 32. Two Vehicle-Two Passenger Example of M0DEL2 Solution.

H* 20 H
i 4

Figure 33a. Representation of Preferred Departure Times of Travelers.

Passenger
Combination

Optimal Benefit from
Best Vehicle Schedule

1,0 10

2,0 10

3,0 10

4,0 10

1.2 9+9

1.3 7+7

1.4 9 + 8

2,3 10+0

2,4 6+6

3,4 8+8

Figure 33b. Maximum Benefit for Each Possible Boarding List.

Figure 33. Two Vehicle-Four Passenger Example of M0DEL2 Solution.
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Figure 33c. Benefits of Alternate Passenger - Vehicle Arrangements.
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combination aboard. For example, the figure shows that if any of the four

travelers were boarded alone, a benefit of ten units would accrue. Alter-

nately, the combination of passengers 1 and 4 could best be served by a

schedule that affords passenger 1 nine units of benefit, and passenger 4

eight units. Fig. 33c displays the benefits of all feasible passenger-

vehicle arrangements. The optimal arrangement is (1,2), (3,4) with a total

value 18 + 16 = 34. Consider the M0DEL2 computation, beginning with no

initialization:

1. VI chooses to serve (1,2), the traveler combination of highest

value--net benefit = 18.

2. V2 chooses to serve (3,4)--net benefit = 16.

Hence, the optimal solution is reached. Suppose, however, that for some

reason, perhaps by initialization, the solution (VI- (1,3), V2-(2,4)) is

reached. This solution has value 14 + 12 = 26. The following tabulation

shows that M0DEL2 terminates at this suboptimal point:

1. Vehicle VI has the following options:

a. Add passenger 2, drop passenger l--net gain = (10-6)-7 = -3,

b. Add passenger 2, drop passenger 3--net gain = (9-6)-7 = -4,

c. Add passenger 4, drop passenger l--net gain = (8-6)-7 = -5,

d. Add passenger 4, drop passenger 3--net gain = (8-6)-7 = -5,

e. Add passengers 2 and 4, drop passengers 1 and 3--net gain =

(12- 12)- 26 = -26,

f. Retain passengers 1 and 3--net gain = 0.

Option (f) is best, so no change will occur in the schedule for VI.

2. Vehicle V2 has the following options:

a. Add passenger 1, drop passenger 2--net gain = (9-7)-6 = -4,
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b. Add passenger 3, drop passenger 2--net gain = (8-7)-6 = -5,

c. Add passenger 1, drop passenger 4--net gain = (9-7)-6 = -4,

d. Add passenger 3, drop passenger 4--net gain = (0-7)-6 = -13,

e. Add passengers 1 and 3, drop passengers 2 and 4--net gain =

(14- 14)- 12 = -12,

f. Retain passengers 3 and 4--net gain = 0.

Thus, no change occurs in the schedule of V2, either.

3.11 Concluding Discussion

The examples in this chapter have clearly illustrated that the itera-

tive methods developed here are subject to pitfalls that may lead to sub-

optimal results. However, the computer runs have demonstrated that M0DEL2

produces self-consistent results that are clearly superior to those of

M0DEL1, and which closely approximate the optimal. The following claims

on MODEL2 solutions can be made:

1. Let F(A,S) = the objective function value for assignment solu-

tion A and scheduling (timetable) solution S,

and let

(A
q
,S

o )
= the final solution from a M0DEL2 computation.

Then,

F(A ,S )
= max F(A,S )

= max F(A ,S) . (3-44)
o o . o c o

A S

That is, given the solution (A ,S ), then A is the optimal assign-
o o o

ment of passengers to vehicle for the solution timetable S^. Similarly,

is the optimal schedule for the passenger allocation A^ . Eq
.

(3-44)

follows from the optimality of the passenger assignment and vehicle sched-

uling algorithms. To be entirely accurate, it must be assumed that the
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optimal assignment algorithm is applied to the final timetable. However,

the practical consequence of ignoring this requirement is small.

Eq. (3-44) also applies to M0DEL1 solutions. In essence, (3-44)

characterizes the "one-at-a- time" optimization in ( CL ) space pictured

in Fig. 25. Hence, in addition to Eq. (3-44), further claims can be made

for the merit of M0DEL2 solutions:

2. M0DEL2 solutions are optimal to within a "first-order," uni-

lateral exchange of travelers among vehicles. As stated earlier, a

property of the solution is that it is impossible simultaneously to

transfer passengers _to a vehicle, and discharge other passengers from that

vehicle, such that a net gain to the system results. Thus, improvement to

the solution, subsequent to terminations of M0DEL2 iterations, is possible

via higher-order passenger trades
, only.

Conclusion (2) is intuitively satisfying if one considers that the

mode of optimization is a one-at-a- time scheduling of vehicles. M0DEL2

is, therefore, a first-order process and does not consider benefits that

are attainable by simultaneous adjustments in the operation of two or

more vehicles. For instance, two-way trading of travelers among vehicles

is a second-order process that must be accomplished through optimization

of two or more vehicle schedules, simultaneously . This is not to say,

however, that it is unlikely to reach an optimum without higher order

operations

.

The computational barriers are now clearly defined. In order to

synthesize a more accurate algorithm, it is necessary to optimize over

two or more vehicles at a time. However, the motivation for single vehicle

optimization is the intractibility of straight-forward multi-vehicle
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optimization. (Recall the dynamic programming formulation and discussion.

The path to improving the algorithm further, is constrained by these oppos

ing factors. Two alternatives may be feasible. One approach is to test a

random series of two-way passenger "trades," around the final solution.

If a sufficiently large sample of such perturbations fails to improve the

solution then one would have some statistical assurance that an optimum

has been reached. A second approach is to synthesize a "two-vehicle algo-

rithm" from the dynamic programming formulation given earlier. This ap-

proach would require extremely efficient programming to be useful. Al-

though these ideas will not be pursued here, they constitute an area for

possible future research. Meanwhile, M0DEL2 can be used with the con-

fidence that solutions are likely to be near optimal, and that utiliza-

tion of several initial points will enhance the likelihood of achieving

an optimum.
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CHAPTER IV

UNCERTAINTY AND THE CHOICE AMONG ALTERNATIVE SYSTEMS

4. 1 Introduction

In Chapter III, a method was developed for computing the schedules

and corresponding benefit levels for transportation systems in a com-

pletely deterministic setting. In particular, passengers were charac-

terized by preference functions having known parameter values. Given

the present state of knowledge of traveler preferences and the inherent

random nature of traveler behavior, however, it is wise to consider how

to account for uncertainties when M0DEL2 is called upon to help choose

the best system among a set of proposed alternatives. The only uncer-

tainties to be considered here are those associated with traveler pref-

erence parameters, and the levels of potential demand. Uncertainties in

physical system parameters such as vehicle speeds or costs, are not

analyzed

.

The decision-making method presented here is designed to choose

among alternatives, based on the objective function components (costs,

revenues, and willingness to pay) only. In practice, other factors such

as safety, comfort, accessibility, external community benefits, other

social objectives related to transportation-- literally a host of factors--

must be weighed before a decision can be made. The methodology of this

chapter can merely aid in decision-making, by helping to choose the al-

ternative that provides the highest operational benefit. Looked at

another way, the method here is designed to choose the best system, given

that "all other factors are equal."
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In order to choose among alternative systems in the face of uncer-

tainty, the following task must be addressed:

Find the schedule (timetable) that maximizes the expected value of

the chosen objective, and compute the corresponding expected value of the

objective function.

Once the solution to this problem is available for each alternative

system, the most desirable system may be chosen on the basis of greatest

expected value. However, the above task is not easily accomplished in

view of the complex nature of traveler behavior and the difficulty of

optimization, even for the deterministic case. In particular, the M0DEL2

methodology is not suited to the direct incorporation of uncertainties.

Hence, the following mode of analysis will be employed. Traveler popu-

lations will be generated at random from the probability distributions

that describe the "traveler generating process." Then scheduling solu-

tions will be computed for the random traveler inputs, using the M0DEL2

method, and the results of these computations will be analyzed to deter-

mine the optimal choice among alternative systems.

Even with the above approach, accomplishing the central task of com-

puting the maximum expected value and corresponding timetable for a given

system requires some compromising assumptions. The first such assumption

pertains to the manner of determining the "fixed timetable" by which a

given system operates best. Specifically, one of the following two prem-

ises may be accepted:

Pi (Adaptive Timetables). The timetable is computed only after the

actual traveler population (an outcome of the random traveler generating

process) is known. Once the (sample) population has materialized, the
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preference parameters describing each traveler are assumed known with

certainty.

P2 (Permanent Timetable) . A single fixed timetable is computed on

the basis of uncertain knowledge of traveler characteristics. This time-

table, which will be called the "optimal stochastic timetable," is per-

manent as long as the state of knowledge of the random traveler generat-

ing process remains unchanged.

The first premise is the easier to implement into a method for choos-

ing among alternatives because it permits the use of M0DEL2 to transform

random traveler inputs directly into random sample benefits for each pro-

posed system. However, Pi is the less realistic of the two, and diverges

from the basic definition of a fixed schedule transportation system.

Nevertheless, the analysis for premise PI will be developed below, both

for its own merit and for the opportunity it provides to illustrate the

general (Bayesian) framework of analysis that is used in this chapter.

The analysis for choosing among alternative systems under premise P2

requires some additional assumptions or approximations. First, it will be

assumed that the levels of potential traveler demand (N) considered here

are sufficiently large so that the statistical properties of a random

traveler population of size N closely approximate the properties of the

distribution from which the population is generated. Thus, an (optimal)

timetable computed on the basis of a particular random traveler population

sample of size N will be (approximately) optimal for any other such sample

population of size N. Hence, only one traveler population need be gener-

ated to compute the optimal timetable for any given level of potential

demand N.
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A second approximation involves the set of timetables from which the

optimal stochastic timetable is drawn. Specifically, it will be assumed

that the optimal stochastic timetable (which maximizes the expected value

of the objective function) is also optimal for some deterministic level of

potential demand (N) . That is, the analysis here will be restricted to

searching over that set of schedules that are optimal for some single

level of traveler demand.

Before proceeding to the analyses, a few additional preliminary com-

ments are in order. First, consider the question of scale size in the

performance of scheduling computations. Recall from the previous chapter

that M0DEL2 receives input values for each traveler in the system. In

the current chapter, the same requirement holds, although traveler values

will be selected randomly. For large systems, with thousands of travelers,

the advisability of "full scale" computations is questionable. Thus, it

may frequently be necessary to analyze a "toy" system, that is scaled

down to manageable size. The scaling is effected by reducing the number

of potential travelers, the capacity of each vehicle, and the vehicle oper-

ating costs, all in the same proportion.

In general, the larger the scale, the more "accurate" the computa-

tion, in the following ways. First, the smaller the scale the more seri-

ous are the "round-off" errors. Note, for instance, that travelers in

any M0DEL2 scheduling computation are treated as integral units, no matter

what the scale (i.e., travelers are not allocated to trips in fractional

parts). Now, at one- tenth scale there will be only one traveler for

every ten at full scale. Suppose that at full scale seventy- five of the

one-hundred travelers are accommodated by the solution schedule. Then,
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presumably, at one- tenth scale either seven or eight of ten travelers

will be accommodated. Thus, the resultant benefit level, when rescaled

to full size, will be in error. The second effect of scale on computa-

tional accuracy concerns the statistical properties of a sample traveler

population that is drawn from the overall probability distribution of

preference parameter values and used with M0DEL2 for computing a schedule.

In particular, the larger the size (scale) of the sample traveler popula-

tion, the better the sample approximates the distribution from which the

sample is drawn. To summarize, the analyst is faced with a trade-off

between accuracy and computational cost, in choosing an appropriate scale

size.

It has been noted above that the methods of this chapter require the

selection of sample values from specified (multivariate) probability dis-

tributions. The technique of random sampling, a basic element of Monte

•/*

Carlo methods, may be used to generate the necessary sample values.

The random sampling technique is based on the generation of "random num-

bers," i.e., numbers that have the same statistical properties as the

desired random variables. Here, sample values from the multivariate

probability distributions f^(N^ jN^ , • • • ,N^) and fp|^(t*,w,D,Q/,n,s
j

N) ,

will be required. The first of these distributions is the joint density

function over the levels of potential demand (N^.) over each route or

trip type (r)

.

(In the shuttle system, for example, there are two trip

types, node 1 to node 2, and node 2 to node 1.) The second distribution

is the joint density function for the preference parameters P of any

potential traveler for trip type r, conditional on the demand levels N.

See Ref. [62] for a text on Monte Carlo techniques.
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Subsequent developments in this chapter utilize the ideas of Bayesian

statistical analysis. The objective is to provide a logical framework for

choosing the best alternative system and processing experimental data on

the random traveler process. Some introductory remarks on Bayesian

methodology are given below.

4. 2 Bayesian Analysis and Decision-Making

Bayesian decision theory provides a framework for making decisions

that depend on a real world process that can be modeled as a random

process with parameters whose values are uncertain. To describe this

framework, several aspects of the formulation must be delineated: The

random variables (x) must be identified. The random process g^(x
Q
)

that generates the random variables must be modeled in terms of para-

meters (u) whose values are uncertain. Finally, the uncertain state of

knowledge of the random process parameters must be encoded and the opti-

mal decision and sampling procedures must be determined.

The Bayesian approach requires that prior knowledge on the uncertain

parameters (u) of the random process be encoded in terms of a prior prob-

ability distribution f^(u
Q
). Data (D) , subsequently obtained by sampling

observable outputs of the random process g (x^)
,

is used to up-date the

state of information on the uncertain parameters, by using Bayes' rule to

derive a posterior distribution f i^(d|u^). Bayes' rule is given as

follows:

(4-1)

u

The denominator is just a normalization constant, obtained by
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integrating the numerator over u. Thus, the posterior distribution

f
u

|

D
is proportional to the prior distribution f^, multiplied by

,

which is called the likelihood function . The likelihood function is just

the conditional probability of the data, given the parameter values u of

the random process. Since the data is a function of the random variables

x, the likelihood function is derived from the generating function g^.

It is convenient, though not always possible, to specify the prior

f as one of a family of curves, such that the posterior distribution

^u|D’
°fr ta:*-ned via Eq. (4-1), is a member of the same family. In this

event, the family of curves is characterized by a set of parameters, and

the process of up-dating (computing the posterior) is reduced to modifi-

cation of these parameter values. For example, if the random process is

normal (Gaussian), and the prior is normal, then the posterior will also

be normal, with revised means and variances. The likelihood function and

prior are called conjugate functions in such cases. Another example of

conjugate functions is used for illustration, later.

The gain or loss resulting from the decision is a function of the

decision itself and the values of the parameters of the random process.

•k

The decision is made to maximize the expected gain (or minimize the ex-

pected loss) based on the current estimate of the parameters of the ran-

dom process. The expected value of obtaining additional data on the

process may be found by taking the difference between the prior expected

gain and the expected posterior gain.

k
In general, the decision should be made to maximize the expected value
of the "utility" of the gain. Maximizing expected gain corresponds to

assuming a linear utility function.
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4. 3 Analysis for Adaptive Timetables

This section develops the framework for choosing among alternative

systems under premise PI which requires that system timetables are com-

puted after the characteristics of the actual traveler population become

known with certainty. Here, the phenomena of traveler generation and

system scheduling are viewed as a conglomerate random process. That is,

a traveler population is viewed as the output of the traveler generation

process; subsequently, the transportation system schedule is optimized

(deterministically) to meet the requirements of the traveler population.

The value of the objective function resulting from the system scheduling

is then viewed as the output of the combined traveler generation- scheduling

transformation random process. In this perspective, the problem of choos-

ing the best alternative system, to serve traveler populations generated

from a particular probabilistic distribution is equivalent to the problem

of selecting the "best" of several random processes.

The problem of selecting the best of several processes is well known

k
in statistical literature. The analysis here is guided by that of

Raiffa and Schlaifer [64]. Although the approach is sound, it becomes

analytically intractible for very complicated mathematical forms, as in

the transportation context here. Hence, implementation of the procedure

would likely require the use of numerical methods in place of a closed

form analysis.

The original random variables for the current problem are the poten-

tial demand levels (N) and the passenger preference parameters (P)

.

*
See Ref. [63] for a historical summary.
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These values undergo a complex transformation, via the M0DEL2 compu-

tational process, to emerge as a set of new random variables b =

(b\b^, . . . ,b^) ,
distributed by g^ (b^ ,b^ , . .

.
,b^)

,
where b

m
is the

ttl
benefit (objective function level) for the m alternative system. Since

it is not analytically feasible to derive g^ from f^ and [f^j^], g^

will be considered the primary random process in this analysis. Thus,

random traveler generation-M0DEL2 optimization is the overall random

process for which the parameter values are uncertain. Sample data (D)

is obtained by sampling a population and using M0DEL2 to derive sample

benefit values of each alternative system. The likelihood function,

therefore, is g^C^0 ) for one sample ^b , and f, ,1 ( [ b ]
|u^) =

n •
~

• —

o

J

11
i i

K.TT^g^(b^) for n independent samples [b^].

Because analytical derivation is not possible, characterization of

the generating process is difficult. However, a reasonable argument for

*
picking a multi-normal (multivariate Gaussian) generating process goes

as follows:

The benefit (b
m

) of a given system m, is the sum of individual

traveler benefits. (Operating costs, if part of the objective, may be

reduced to a per passenger basis.) A system serves a relatively large

**
number of travelers. Thus, by a central limit theorem argument, no

matter how the individual traveler benefits are distributed, the system

benefit will be normally distributed. It is reasonable to expect,

therefore, that the joint density function
g^

is multi- normal

.

"k

See Ref. [64] for a description of the multi- normal process.

•kk

See Ref.
[ 65 ] for a description of the central limit theorem.
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There are (at least) two weaknesses in this argument. First, the

central limit theorem applies to the sum of independent random vari-

*
ables. Although the travelers' parameters are sampled independently,

their benefits may be correlated, since all traveler benefits are gener-

ated through the same transportation system (m) . For example, if it is

known that travelers B and C have very low benefit levels, possibly

on account of high fares or low speed vehicles in the system, then it

may' be more probable that traveler A has a low benefit level as well.

The second problem with the normality argument is that the existence of

normally distributed marginal distributions g (b
m

) for all m, does
bm

not necessarily mean that the joint distribution is multi-normal.

Despite these problems, the multi-normal distribution should be a ser-

viceable model of the system benefit generation process. More careful

characterization of this process will be possible only after more exten-

sive computational experience has been gained in the generation of sched-

ule benefits for random traveler inputs.

The decision-making framework is based on the criterion to choose

the alternative system with the highest expected value. The value of an

alternative system m will be given by

v = -K + k b
m = -K + k p , (4-2)

m m m m mm

where

= b
m

= mean operating benefit of system m
,

K = fixed cost of system m
,m

See Ref. [66] for a description of the conditions under which the

independence requirement may be dropped.
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k = proportionality constant to put fixed cost and operating
m

benefit on the same time basis (e.g. per annum).

From (4-2), the mean operating benefits Bm
are the uncertain para-

meters of the generating process that are of direct interest. The uncer-

tainty is encoded in terms of a prior probability density function

f
' (3

1
,j3_ ,

.

. . ,|3 ). By integrating with respect to the prior f' the

expected values may be found:

v' = -K + k R*
,m m nrm

(4-3)

where

B
? = expected value of B

1

,
under distribution f' .Km m £

The optimal decision is to choose the system with the highest

expected value. Let r be the index number of the system with the

highest expected value, under prior distribution f' . Then,
11.

r = arg max(v')
,

1 < m < A , (4-4)mm _ —

so that

v' > v' ,
1 < m < A . (4-5)

r — m — —

Thus, if the decision were to be made with prior knowledge only,

then system r is the best choice.

Now consider the process of obtaining sample values from the random

process, to improve the state of information on the process parameters.

Sampling and up-dating prior knowledge can be expected to lead to a

better decision and a greater expected value. The increase in expected

value (i.e., the expected value of sampling information VSI) less the

cost of sampling is the criterion for determining how much sampling
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information should be purchased. Hence, the optimal number of samples

to be purchased (n*) is found by maximizing the net expected value of

sampling information (NEVSI) with respect to the number of samples (n)

.

Thus, n* is the solution to the following equation:

NEVSI(Q' ,n*) = max NEVSI(Q
'
,n) , n > 0 and n integer

, (4-6)
n

where

and

NEVSI(g',n) = VSI(2' ,D,n) - nc

1 = a set of parameters that characterize the prior distribu-
tion f^ ,

D = the sample data (a set of n sample system benefits, _b)
,

c = the dollar cost per sample.

(4-7)

Now, VSI(Q
'
,D ,n) is the expectation with respect to the data D,

of the value of sampling information, VSI(Q',D,n). VSI is a random

variable prior to sampling since it is a function of the data D, a

random vector. To develop the mathematical expression for VSI, ob-

serve that the sampling information will lead to the posterior distribu-

tion f
* 1

(J3 ), yielding the posterior expected values,
cl ^

v" = -K + k B" . (4-8)
m m mm

The best posterior decision will be to choose the system q such that

v = max(v ) .

q m
m

(4-9)

Recall that the optimal choice among alternative systems, on the

basis of prior information, is system r. Subsequent to obtaining
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sampling information (data), however, the optimal choice is system q.

Thus, the value of sampling information (VSI) is just the posterior dif-

ference in expected values of systems q and r. Specifically,

VSI = vq' " v” = max(v[' ,v£' , . . . ,v”) - v^' ,

= max(v ' '-v' 1

,v' ' -v '
'

, . . . ,v' '-v ' ')
1 r 2 r A r J

(4-10)

or

VSI = max {-(Km-Kr ) + k^' - k.3”}
,

0 < m < A . (4-11)
m

Prior to sampling, the v'" or the R ' 1 (and VSI) are randomm m

variables. In particular, the are functions of the (as yet un-

known) parameters Q
'

' of the posterior distribution f
*

'

.

The poste-
.H

rior parameters are functions ^''(^',D,n) of the parameters Q' of the

prior f', the number of samples n, and the sample data D.^"

The expected value of VSI, required in (4-7) for computation of the

optimal number of samples, is found by integrating VSI with respect to

the density function describing the prior probability of the data:

VSI(2',D,n)
j

VSI(2',D,n) f
D
(D|n,3*) .

D

(4-12)

yDM ' ) is called the "preposterior" distribution, and may be

computed from the relationship,

f
D(D|n.S') = J ^|£

(D|n >2M)f
a
(6|fi',n) . (4-13)

1

It is often possible to reduce the sample data D to a set of "suf-
ficient statistics," a, that retain all the necessary sample informa-
tion required in the analysis. In such case, 3"(§',D,n) = Q '

' (^ ' ,o ,n) .



- 149 -

where f^|^ comPuted from the generating function g^Cb^ since

D consists of random sample benefit vectors [b]. Func tion f
Q
(j3|3',n)

is just the prior density function f^ .

Substituting the expected value of sampling information (4-12)

into the expression for the net expected value of sampling information

(4-7), and computing the optimal number of samples by solving Eq. (4-6),

completes the "preposterior" analysis of data acquisition.

A supplementary consideration to the preceding analysis is the op-

tion of differential sampling. In the above discussion, samples are

obtained by generating benefits of all proposed systems from common

population samples. More exotic sampling schemes are easily conceived.

In general, consideration may be given to various mixtures of sample

benefits, generated from the same or separate (independent) traveler

population samples and processed through one or more of the alterna-

tive systems. Such sampling methods may be analyzed in a manner anal-

ogous to the development above. Only a few general remarks will be

made here:

1. More information is obtained by generating alternative system

benefits from common traveler population samples. That is, more con-

sistent comparison of system performances is possible when inputs are

uniform.

2. Sampling system benefits from a common traveler population is

more difficult to analyze analytically than sampling benefits from inde-

pendent traveler population samples, because alternate system benefits

generated from a common population are not independent. Hence, multi-

variable generating functions g^ are required, in lieu of single vari-

bm
able functions g
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3. It may be more economical to consider procedures in which

"clearly inferior" systems are dropped from consideration on the basis

of only a few samples. In general, different numbers of samples from

alternate systems may be preferable.

4.4 Example

To illustrate the ideas of the foregoing discussion, consider the

following decision to choose among two alternative systems. Let the

random traveler generation- scheduling benefit process be characterized

by the rectangular function,

gb
(b\b 2

)

0 < b < Y 0 < b <

elsewhere .

(4-14)

Recall that b
m

is the (random) benefit of system m .

Thus, y and 0 are the (uncertain) parameters of the random pro-

cess. The uncertainty about these parameters is encoded by the conjugate

prior distribution,

f
;e

(Y - e)

Y > M[ , 0 > ,

elsewhere
,

(4-15)

where n',m' >0, M| ,M^ > 0 ,
and

, = life' illK' =
.-n'+l -m'+l

M M'
“l 2

(4-16)

1 , 2 ,

The likelihood function for n benefit samples of the form (b ,b )

is given by

fb
1

,^
2
/

y

»

e}
=

- n -n
Y 9 for 0<^^<Y > O<M2<0

(4-17)

0 elsewhere
,
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where

b
1

= (bj^b*, . . • ,b^) ,

2 2 2 2
b
Z

= (b
Z
,b

Z
,...,b

Z
) ,

M
x

= max(b J ,b
2

, . .
.
,b^)

, M
2

= max(b^ , b^ , . . . ,b^)

and

b™ = sample benefit value from the m^ alternative system.

(M^ ,M
2
) are sufficient statistics for the n pieces of sample

data in this example. Note that the prior and the likelihood function

are conjugate so that the posterior density function has the same form

as the prior. Thus, the posterior density function, with updated para-

meters, is written,

K' 'y e Y > M
j

'
, e > M

elsewhere
,

1 I

2

(4-18)

where

n = n + n,

Mj ' = max(MlfMp ,

and

K 1

(nn - 1) (m* 1 - 1)

,
,-n ' '

“hl
M i i

"

m ' '+1

1 2

m 1 = m + n
,

M
2

' = max(M
2
,Mp ,

(4-19)

(4-20)

(4-21)

The optimal decision, on the basis of prior information, is to pick

the system with the highest expected mean value (v 1

) in conformity with
m

Eq
.

(4-4). Since v' = -K + k R
1

,
the expected mean operating benefitsmm mm

P' are the crucial statistics for making the (prior) decision. The mean
m

operating benefits
j3|

and P 2
are given by,

= b
i

=
0

"
(Y0)"

1
b
1
db

1
db

2 = y /2 ,
(4- 22a)

0 0
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and

,e »y

»2
" b

2 - J J
<*»)' b

2
db

l
db

2
9/2 (4- 22b)

0 0

The expected values of the mean system operating benefits are given by,

P{ = (n'.M*) =

e v

(n'-l)M'

l/2Yf;
e

(Y> e) - (4- 23a)

and

.

P^ = ^(m\Mp =
(m'-l)M'

i/2er
0
(Y> e) - 1/2-5^ (4- 23b)

y e

If “ K
2
+k

2^2 — "Kx+k ]_3[
V2- V

l'^’
the 0P timal- (prior)

choice is system 2. If not, system 1 is best.

In analogy to (4-23), the posterior expected values are,

Pi

and

,

p:

l/2(n 1 '-1)M”

(n"-2)

1 / 2 (m
1 '-1)M”

(4- 24a)

(4- 24b)
'2 (m"-2)

To compute the value of sampling information, assume that v^ > v|,

i.e.

,

that the best prior choice is system 2. Then the VSI
,
found by sub-

stituting (4-24) into (4-10), is given by,

VSI = max {-(Kj-iy + k^' -
,
oj

,

= max {(K
2
-K

x
) + l/ 2[-i

(n ,,_
2)

k
1
(n , '-l)M’' k

2
(m"-l)M^'

(m ' ' - 2)
]•' a

(4-25)

(4-26)

The expected value of sampling information, found by integrating VSI with

respect to the probability density of the data (M^,M
2
), is given by,
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VSI(n,Mj,M^,n' ,m') VSI(n,M|
5M^n',m',M

l
,M

2
)

M1’M2

f
M
1
M
2
(M

i
>M

2

1

n
»M

[
>M2

»

n '

’

m ' ) (4-27)

In <4- 27 >> v2

the relationship,

is the preposterior distribution, computed from

£
M
1
M2

(M1’M2 I".m1>K2 j
f(M1>M2

|e,Y.n.M[,M^ > n' ,m')

0 ,y

f
y
©(y » © I >M2

»

n '

’

m '

> n) » (4-28)

where

f (y^ImJ ,M' ,n' ,m' ,n)
Ye

1 T- 2 (Y>0)

is given by Eq. (4-16), and

f(M
1
,M

2
|e, Y ,n,Mj,M^,n

is found as follows:

,m') = f(M
1
,M

2
|0,y,n)

f(M
1>M2 |0,Y,n)

= StO^.b 2 oyg^b 1
< Ml> b

2
=M

2
)

[g fa

(b < M
L
,b < M

2)j ] +
i.n (n_i)+n

Sb (b =M
1

’ b =M2^

-J1- 1
r l 2 T

i

[gb
(b <Mr b <m

2)J ]
. (4-29)

The two terms in (4-29) correspond to the two mutually exclusive

ways of obtaining M^,M
2

- The first possibility is to achieve the values

1 2
b =M^ , b =M

2
in separate samples. There are n(n-l) ways in which that

event can occur. The second possibility, that and M 0
occur on the

same sample, can happen n different ways. For the current example,
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12 12
g (b ,b ) = g . (b )g (b ) . Thus, expression (4-29) reduces to,
2 b 1 b 2

i
r < <

^

f(M1}M2
|e,Y,n) = 8

b i(
M
1
)g
b2

(M
2)

L ^1 (M1> 8"2 (M
2 >

)

’ (4‘ 30 )

where

g
5

.
(M,)

b
1 i

A 1 „ 1
( y) db" = M^/y

= S

Similarly,

M
2
/e

i

M
!
< V »

m
l > Y •

m
2 < e ,

m
2
> e .

(4- 31a)

(4- 31b)

Also

,

g , (M, )
=

b 1 1

r,-

-i

g 2
cm

2
) = <

< y >

> Y »

m
2 < 0 ,

M
2
> 0 .

(4- 32a)

(4- 32b)

Thus
,

f(M
1
,M

2
|e,Y,n) =

<

(y
0)'

1
(M

1
M
2
/y0)

n-

1

< y» M
2 - 9

otherwise

(4-33)

Substituting (4-33) and (4-15) into (4-28) and integrating, yields

the preposterior distribution,
^

(M^ ,M
2
|n,M| ,M

2
,n' ,m') . Substitut-

ing the preposterior and the VSI (4-26) into (4-27), and carrying through

the integration yields the expected value of sampling information,

VSI(n) . To determine the optimal number of samples, VSI(n) is combined
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with the cost of sampling, as in (4-7), to yield the net expected value of

sampling information, NEVSI(n) . Maximizing NEVSl(n) with respect to n

yields the optimal number of samples (n*) to be purchased.

It is evident that the decision analysis presented in the preceding

pages may become quite cumbersome in practice. Numerical methods may be

required to carry out the procedure. Below, a simplified approach is

presented that is more easily implemented, but which requires a new cri-

terion for computing the optimal decision and the value of sampling in-

formation .

•k

4.5 Multinomial Process

In the previous analysis, the random process was viewed as a com-

pound traveler generation- schedule transformation mechanism. In this

section, an additional transformation step is applied to the random vari-

ables. The following random variable is defined as a function of the

12 A
random vector b = (b ,b ,...,b ) :

s = arg max(-K + k b
m

) ,
(4- 34a)mm

m

so that

-K + k b
S
> -K + k b™, for all m, l<m<A. (4- 34b)

s s — mm
The overall process is illustrated in Fig. 34. The traveler population

is randomly selected, and input into the alternative systems, 1 through

12 A
A. The scheduling algorithm produces the random vector b = (b ,b , . .

.
,b ).

g
The random variable s is the index of the component b of the vector b,

such that (4- 34b) holds.

*
For a more complete description of this process, see Ref. [67].



Alternative

MODEL

2

Add

fixed

Systems

Benefit

costs

levels

bO
J~i

cd

II

w

- 156 -

Figure

34.

Compound

Random

Process.



- 157 -

This random process may be characterized by the "multinomial" para-

meters (p 1> p 2> . .
. ,pA) where,

til

p = probability that the m system produces the highest benefitm

value v = -K +k b
m

,m mm
and

pm
= 1

.

• <4- 35 )

m=l

The uncertainty on the values of the p^ may be encoded in terms of a

prior from the multivariate "beta" family of distributions:

where

f
' (p
£ l

,p 2’

*

,PA ) - K'Pi

nj- 1 n2" 1 nA~ 1

K'
r (nj+n£+. . ,+n^)

r(^) pop... pop 5

(4- 36a)

(4- 36b)

and

r« = (x-i)! for integer x and x > 1 . (4- 36c)

Suppose that n samples are generated, using n independent tra-

veler populations. The resulting data may be represented as,

D = (n 15 n 2
, . .

.
,n
A ) ,

where

and

,

(4-37)

n = the number of times system m's value exceeds the value of all

other systems, in the n trials, i.e., the number of "succes-

ses" for system m.
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The likelihood function is,

f
D|£

(DU>

n- n 0 n. An12 A _ i

(4-38)

The posterior distribution is just,

(4-39)

where

m
= n' + n ,m m (4-40)

and

K' ' (4-41)

The decision-making structure will be based on the strategy to

minimize the expected cost of choosing the "wrong" system. To formulate

the decision criterion, consider the following definition:

w = the cost of not choosing system m when in fact system m
is the best system.

Each alternative system m is identified with a parameter value w .

The w^ parameters allow the decision maker to incorporate indirect

k
costs of making an incorrect decision. For example, suppose a city plan-

ning agency attaches a greater cost to rejecting a proposal by a local

firm than rejecting a non-local firm's proposal. Then the city agency

may compute the costs (w^'s) by weighing the economic and political

ramifications of employing local versus non-local talent, against the

*
Costs (or benefits foregone) not directly attributable to system
users or operators.

m
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penalties of failing to choose the best system.

The decision criterion is to choose system m* to minimize the

mean value of the expected cost of a wrong decision. Thus,

m* = arg min
m

( Z
w

:
p
j
) ’

(4-42a)

= arg min
m

( w p )mm (4-42b)

= arg min (Constant - w p )

m
(4- 42c)

Thus
,

m* = arg max (w p )m mm
(4-43)

The prior estimate of p^ is,

p' = n'/ ( I n
' ) .

m m .Hi1=1 J

(4-44)

If all w
m

'

s are equal, then the decision rule is to pick the system cor-

responding to the highest (prior) mean success probability, p^. Other-

wise, the system m* corresponds to max(w^p
m) . After sampling has

m
been performed, the posterior estimates are given by,

m
n"/
m £ nj'

j=i

(4-45)

The optimal posterior decision is to chose system m** corresponding to

max (w p
1

1

) .

m m
m

The multinomial formulation yields to the same kind of preposterior
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analysis that was employed earlier to determine the optimal number of

samples to be purchased. The only difference here is that the value of

sampling must be gauged in terms of the "cost of a wrong decision" cri-

terion of Eq
. (4-43), rather than in terms of the difference in opera-

tional benefits of alternative systems, as in the earlier analysis.

In summary, the formulation of this section considerably simplifies

the task of choosing among alternative systems. The present formulation

provides a clear characterization of the random traveler generation sched-

uling phenomenon as a multinomial process. Uncertainty about the process

parameters (p 's) is easily encoded in terms of a rich family of multi-
m

variate beta distributions. The criterion to minimize the cost of a

wrong decision allows discrimination among systems on the basis of highest

mean probability of success. However, the formulation does not yield an

estimate of the mean operational benefit of the chosen system, nor does

it allow determination of sampling policy on the basis of operational

benefits

.

4 . 6 Analysis for Permanent Timetables

In this section, the decision-making methodology is developed for

the permanent timetable case, corresponding to the premise P2 that a

single fixed timetable is computed (for each alternative system) on the

basis of uncertain knowledge of traveler characteristics. As explained

in the introduction to this chapter, the following two assumptions are

made:

1. The possible levels of potential traveler demand (N) are suffi-

ciently large so that the statistical properties of any random traveler

population of size N closely approximate the properties of the proba-

bility distribution from which the population is generated.
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2. The (optimal stochastic) timetable that maximizes the expected

value of the objective function is also optimal for some deterministic

level of potential demand.

Assumption (1), in conjunction with the Monte Carlo technique for

generating random traveler populations, allows a simplification in the

consideration of uncertainties. In particular, according to this assump-

tion, an optimal timetable computed on the basis of a particular random

traveler population of size N will be (approximately) optimal for any

other such sample population of size N. Hence, uncertainty in the tra-

veler preference parameters (P) need not be explicitly included in the

determination of optimal timetables and maximum benefits. Only the un-

certainty in demand level need be considered. Actually, as indicated

earlier, there is a vector of potential demands N = (N^ ,N0 , . .
.

,

where R is the number of different types of trip. Thus, an additional

assumption, that each component demand N^ is related deterministically

to a proxy parameter N, will be made to ensure feasibility in the fol-

lowing analysis. N may be regarded as the overall system demand level,

and each component N^_ as some known percentage of N.

Suppose that N ranges over the interval [N . ,N ] ,
and thatrr ° min max

only a discrete set of values N . , N . + AN, N . + 2AN, ..., N - AN,
min min mm max

N are assumed possible. (AN should be small enough to ensure suffi-

cient accuracy, and large enough to maintain reasonable computational

requirements.) Then by generating a random traveler population to

correspond to each possible demand level, and by using M0DEL2 to generate

an optimal timetable for each of these populations, the "optimal set" of

timetables (for a given alternative transportation system) may be
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generated. According to assumption (2), the optimal stochastic time-

table is one of the timetables in this optimal set.

To compute the benefit associated with each of the timetables in

this set, it must be recognized that the (optimal stochastic) timetable

that is eventually selected must serve whatever demand level actually

materializes. Thus, the performance of each timetable must be evaluated

not only with respect to the demand level for which it is optimal, but

also with respect to all other possible demand levels. In the case of a

shuttle system, the procedure for performing this evaluation is clear:

Use the optimum assignment algorithm to match the sample traveler popula-

tion at each demand level to each of the timetables in the optimal set.

For network systems more complex than the shuttle, there is no easy

method for optimally assigning travelers to trips in a timetable. In

this case, a simulation may be devised to allocate travelers to acceptable

trips. For example, suppose travelers are randomly ordered, and each

successive traveler is assigned to his favorite trip in the timetable,

unless that trip is full. In the latter case, he may replace some tra-

veler who is already assigned, if a net system gain results. Iterations

over travelers would continue until no further improvements are possible.

(This procedure parallels the M0DEL2 rationale.)

Once the benefit of each demand level is computed for a given time-

table, the expected benefit of the timetable may be found by summing up

these (component) benefits, each benefit weighted by the probability of

its demand level occurring. Thus, for some system m,

N
max

b (4-46)

N=N .

min
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where

,

p(N) = probability that demand level N occurs,

b
T(m,N )

o

(N) = benefit produced by the system with the traveler
population of demand level N, from the timetable
T(m,N ) that is optimal for demand level N

j o' o
and system m .

b > \
= expected benefit of the timetable T(m,N

o ) that is
' 5 °' optimal for demand level N

q
and system m.

Once computation (4-46) is performed, the optimal stochastic time-

table for system m, T(m,N
m),

and the corresponding expected benefit

level bm , A N are chosen such that,
T(m,N )m

b , . > b . , for all N e [N . ,N ]T(m,N )
— T(m,N) mm max

(4-47)
m

A A

(N is the demand level for which timetable T(m,N ) is optimal.)
m m' r

Once T(m,N ) is found, and bm , A N is computed for each proposed
m T(m,N )m

system m, the best alternative system m* may be chosen such that

b
T(m*,fim*)

- b
T(m,N

m)
5 f°r M m “ (4-48)

The foregoing procedure for choosing among alternative systems, in

the permanent timetable case, is summarized in block diagram form in

Fig. 35.

4.7 Preference and Demand Data

Much of the analysis in this chapter is based on Bayesian estimation

methodology and decision criteria. The Bayesian techniques are equally

applicable to the problem of relating empirical data to the estimation

of parameter values of the traveler generation process. Recall that

Chapter II presented two modes for collecting information pertaining to

the preference behavior of travelers-- the "interview" approach and
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Figure 35. Method for Choosing the Best System in the Permanent Timetable Case.
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the "observation" approach. In both cases, the Bayesian scenario may be

followed

.

First, the (joint) generating function g must be formulated in
_ >_£

terms of parameters u, the values of which are uncertain. (N is the

vector of potential demand levels; P is the vector of preferences para-

meters-- (t* ,w ,D ,a ,n , s) .

)

As an example, g might be such that the
Jl!

"marginal" distributions gp
(D ,<x ,n ,

s) and g (N^ jN^, • • . ,N^) are multi-

normal, and g . (t*,w) is a curve with a.m. and p.m. "rush hour"

peaks. (If NjP's and (t*,w) are assumed independent, then g
_

is the product of g. T , g_, and g .) The uncertainty over the
N r t* ,w

parameter values of the generating process must be encoded in terms of

a prior density function. Next, the likelihood function, which is the

probability of the data conditional upon the parameter values of the gen-

erating function, must be formulated according to the kind of data ac-

tually obtained. It is the latter step that distinguishes the differences

in handling the two modes of information collection for the traveler de-

mand and preference estimation process. Finally, the posterior distri-

bution is computed from the prior and sample data, using the Bayesian

inference equation (4-1).

In order to clarify the difference in handling the two types of

traveler data, and to get a better idea of what the observable behavior

data might actually consist of, the steps in the construction of the

respective likelihood functions will now be considered. The ensuing

discussion presents a superficial treatment, designed to illustrate the

basic framework. Substantial refinement would be required to apply the

analysis in specific cases.
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In the case of interview data, sample values of each subject's will-

ingness to pay and indifference curve parameters (t* ,w ,D

,

q?

,

n , s) may be

obtained by "curve fitting" the response data to the formulas (2-42) or

(2-43) that specify the traveler^ willingness to pay for alternative

trips. Data on potential demand over a particular route can be collected

by sampling the percentage of the general public that have reason to

travel each route on a given day. Thus, the sample data will consist of

a set of "response vectors" of the form P = (t* ,w ,D ,q/ ,n ,
s)

,
plus sample

values of the potential demands N. Suppose that a sample N, and q

independent sample preference vectors [P] are obtained for a given trip

type. In addition, assume N and [P] are independent. Then, the

likelihood of the data (D) is,

u' = prior values of the generating function parameters.

Naturally, the data handling may be made more sophisticated by adjust-

ing the assumptions regarding the interdependence of N and P, and the

joint sampling of N and P . However, the updating procedure to im-

prove the state of knowledge of the random traveler generating process

^N P Procee<is in accordance with the regular Bayesian inference methods.

Finally, consider the collection of data by recording observed tra-

veler behavior in the context of an operational transport system. Pre-

sumably, the following factors may be observed: the available inventory

of trip schedules and durations over a given route, the number of travelers

(4-49)

where

Ik = i individual sample preference values ,
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aboard each trip, and the fare paid by each traveler. The data con-

sists of a set of observations D = (N*,d) where,

N* = the total number of travelers riding, and

— ~ ^1 5 ^2 5 ’ ' '

where

d. = the decision of traveler i, i.e., the trip that traveler i
1

chose to ride .

Thus

,

d. = j , 1 < j < J , (4-50)

where each trip j is described by a triplet (tt* , t“L t^) . Now, the
Q cl

likelihood of the data is.

D |uj“ = {nM-|u}={n*|u} j^d| N* ,u 1" (4-51)

where

= probability that there are N* travelers for whom at

least one of the available trips is satisfactory,

and

= probability that the N* travelers make the choices d.

The two factors in the final expression of Eq. (4-51) must be com-

puted by appropriate manipulation of the generating function g .

±z
r

Suppose, for example, that N and P are independent
(^g^ ^

= g^(N
o

)

gp(P
Q)^ ,

and that each traveler is considered as an independent sample.

Then, |n* |u| is found by integrating gN
(N

Q
) Tl^gpdh) over that portion
i=l —

of the N, P space for which N > N*, and the N* sets of travelers'

parameters fall in a region such that the available trips are acceptable

in the observed proportions. The probability -|_d j N* ,

u
j- is given by.
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(4-52)

where j^juj is found by integrating g^ ^
over the region in P

space for which the traveler decision d^ is optimal.

Utilization of the likelihood function (4-51) in the context of the

Bayesian method facilitates the estimation of the traveler generation

process parameters. For either type of data, with corresponding likeli-

hood functions (4-49) and (4-51) ,
Bayes* rule is the mechanism for updat-

ing the state of knowledge of the traveler generation process parameters.

Estimation of specific values for these parameters can proceed by mini-

mizing the expected value of a suitable loss function. For example, mini-

mizing the square loss function,

~ a
i
)2

’ (4_53)

i

where

u^ = i
fck

component of u, the vector of random process parameters,

u. = the estimated value of u.,
l l

is equivalent to finding the "least squares" estimate of parameters u,

based on the information contained in the prior distribution and the

subsequently collected data.

4 . 8 Concluding Comment

This chapter has presented the formulation for handling three im-

portant interrelated facets of the passenger transportation scheduling

problem: the formulation of uncertainty and Monte Carlo generation of

traveler populations, the decision analysis for choosing among proposed

alternative systems, and the manipulation of empirical data to up-date
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knowledge of the traveler generation process. Much of the discussion has

been theoretical in nature and practical implementation may require the

substitution of numerical methods for closed form analysis. However, it

is important to understand the logical framework of this chapter, before

such numerical techniques can be exploited.
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CHAPTER V

ILLUSTRATIVE COMPUTER EXAMPLES

5 . 1 Introduction

This chapter presents some of the potential applications of the

methodology developed in this research. In particular, the scheduling

method allows the study of numerous interesting and important questions,

the investigation of which fosters more intelligent evaluation of operat-

ing policies and planning alternatives. The examples exhibited here in-

clude consideration of alternate types of transportation vehicles and

passenger markets, as well as the effects of changing fare levels, fleet

k
sizes, and operator objectives.

The context in which the examples are set, is a helicopter shuttle

kk
service between two city centers, forty miles apart. The scheduling

period is assumed to be a twelve hour day (e.g. 8 a.m. to 8 p.m.). Two

types of vehicles, corresponding to proposed designs for future opera-

kkk
tions

,
are considered. Two traveler population distributions are

specified (arbitrarily) with the intention of representing contrasting

types of travelers. One sample traveler population is picked (randomly)

from each distribution, to serve as input to the scheduling computations.

The computer runs in this chapter average approximately two minutes
each. The set of examples represents an investment of approximately
one hour of computation time on the IBM 360/67.

•irk

Such as Washington, D.C. and Baltimore, Maryland.

•}(kk

The vehicle characteristics correspond to the Lockheed CL- 1026 and
the Sikorsky S-65. See Ref. [68]. The results of this chapter are

only illustrative and are not intended to reflect on the relative
merits of these vehicles.
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(No numerical illustrations of the Bayesian analysis, involving the gen-

eration of results from additional sample populations, are presented.)

All relevant values (vehicle capacities, operating costs, and numbers of

travelers) are scaled down by a factor of six from what might be con-

sidered the level of actual operation.

5 . 2 Inputs

All of the examples were executed under the option to forego use of

the optimum assignment algorithm, and with null initialization (i.e., no

initial timetables or traveler assignments were specified) . The time grid

was set at K = 120, so that departure decisions were considered at every

six minute (0.1 hour) interval.

The alternate vehicle types are described in Fig. 36. Vehicles of

type 1 are smaller, faster, and cheaper to operate than vehicles of

type 2. The vehicle speeds are such that the forty mile trip takes 10.4

minutes and 13 minutes, via vehicle types 1 and 2, respectively. Minimum

turnaround times are assumed to be ten minutes at each city, for each

vehicle type. Throughout most of the examples two alternate vehicle

fleets will be considered; the first consists of four vehicles of type 1

and the second consists of three vehicles of type 2. These fleets rep-

resent roughly commensurate purchase costs of 5.2 million dollars and

5.7 million dollars, respectively.

To generate the traveler populations, the number of potential travel-

ers from each node must be specified. These numbers were selected ran-

domly from the (properly scaled) distribution shown in Fig. 37, via the

Monte Carlo selection process mentioned in Chapter IV. The result is 41

travelers from node 1
,
and 47 travelers from node 2 , for these examples.
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^^\Vehicle Type 1 2

At tr ibute^^

*
Seating Capacity 5 10

Average Speed 230 mph 184 mph

it

Operating Cost 30c/mile 40$ /mile

Purchase Cost $1 . 3 million $1.9 million

Vc

Numbers scaled, as previously noted.

Figure 36. Vehicle Characteristics.
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VV

Figure 37. Distribution over the Number of Potential Travelers per Node.
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As noted earlier, two types of travelers are considered. To simplify

matters, each of these types is characterized by fixed values of the

willingness to pay parameters (D,a,n,s). The (t*,w) time preference

values for each traveler were selected randomly from probability distri-

butions discussed below.

The first traveler population, called type B (business), is described

by the parameter values (D = 25. , a = 0.467, n = 2, s = 0.67). The in-

difference curve, at willingness to pay level WTP = $8., is illustrated

in Fig. 38. Thus, at a fare level tt = $8., the curve of Fig. 38a repre-

sents the set of minimally acceptable trips. The time preference values

(t*,w) for travelers of type B were selected from the probability

distributions f
fc

*(t*) and f
w ,

(w
q / 1*) shown in Figs. 38b and c.

These distributions exhibit a.m. and p.m. peaks. In addition, the distri-

bution f , . is specified such that a.m. travelers tend to be arrival-
w/ 1*

oriented, while p.m. travelers tend to be departure- oriented . Such

behavior may be characteristic of daily business trips for which the time

of business appointments is the important consideration in the earlier

hours, and the time of departure for the return trip is important later

in the day. The set of randomly selected type B travelers for these

examples, is exhibited in Fig. 40a.

The second traveler population, type P (general public), is given by

parameter values (D = 20. , a = 0.697, n = 1, s = 0.5). The $8. indif-

ference curve is shown in Fig. 39a. Note that this traveler type is less

sensitive to schedule inconvenience and is willing to trade-off incon-

venience for speed in a constant ratio, irrespective of the relative

values of A and i. Also, observe that a traveler of type P has



0 . 2p

0. t-

t o

-> *-0

0 1 2 3 4 5 6 7 8 9 10 11 12

clock time: 8am 10am 12noon 2pm 4pm 6pm 8pm

Figure 38. Traveler Population Type B (business).
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a

.

time 8 a.m. 10 a.m. 12 noon 2 p.m. 4 p.m. 6 p.m. 8 p.m.

b.

f , .

w/ 1* (wQ
/t*)

1

0

c

.

Figure 39. Traveler Population Type P (general public).



LIST OF TRAVELERS

NODE 1 NODE 2

PASSENGER NO. TS TAR W PASSENGER NO. TSTAR W

1 1 .050 0.33 1 9 . 200 0.79
2 8.41C 0. 08 2 7.030 0. 41
3 9.600 0.68 3 10.660 0.91
4 7.720 0.69 4 3.130 0. 3 7

5 1C. 84 C 0.29 5 0.870 0. 06
6 1 .440 0.52 6 0 .1 80 0.3^
7 8.360 0.75 7 3. 530 0.65
8 7. 9 3

C

0. 07 8 1.370 0.13
9 7.050 0.54 9 0.350 0.64

10 1.590 0.21 10 1.180 0, 40
11 8. 76

C

0. 48 11 0.300 0.46
12 1.330 0.50 12 1 .6 90 0.29
13 8.12C 0.75 13 5.000 0. 39
14 11.40C C. 77 14 1! .650 0.75
15 10.910 0.30 15 8.390 0.46
16 1.03C 0.24 16 8.500 0. 78
17 10. IOC 0.79 17 8 .710 0.43
18 9.920 0.43 18 9.860 0.71
19 1C.27C 0.47 19 5.680 0. 59
20 9.250 0.91 20 9.010 0.87
21 3.070 0.19 21 7. 580 0.53
22 1.43C 0.24 22 4.520 0. 20
23 2.570 0.26 23 8.020 0.36
24 8.680 0.14 24 7. 080 0.77
25 7.97C 0.77 25 4.790 0.36
26 7.160 0.91 26 9.270 0 .61
27 10.870 0.88 27 5. 470 0.78
28 8.950 0. 46 28 1.580 0.32
29 8.780 0.49 29 9.590 0 .58
30 2. 08

C

0.13 30 8.330 0. 65
31 11.270 0. 94 31 8 .070 0.66
32 10.100 0.78 32 1.560 0.63
33 S.C2C 0.66 33 1. 020 0. 44
34 2.970 0.46 34 8 .470 0.66
35 0.630 0.40 35 3.170 0.30
36 7.44C 0.39 36 2.490 0. 33
37 3.070 0.45 37 7.560 0.95
38 9.970 0.75 38 9.010 0.32
39 8.4CC C. 49 39 9. 190 0. 98
40 9.790 0.78 40 8.470 0.64
41 2.080 0.31 41 1. 870 0.46

42 7.990 0. 42
43 10.880 0.48
44 11 .630 0.80
45 1.770 0.62
46 9.150 0. 78
47 5.590 0.29
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Figure 40a. Population B. Time Preference Parameters.



LIST CF TRAVELERS

NODE 1 NODE 2

PASSENGER NG« TSTAR W PASSENGER NO o TSTAR W

1 0, 560 0. 5 0 1 8. 550 0.81
2 7,040 0.01 2 5 o 07 0 Oo 29
3 9.320 0. 5 8 3 11.030 Oo 9 3

4 5,900 0.73 4 3.650 0.46
5 11,290 0.09 5 0.420 0.05
6 1,170 0.74 6 0.090 Oo 56
7 6,930 0.79 7 3.790 0. 82
8 6,150 0.01 8 1.060 Oo 14
9 5,110 0,49 9 0. 170 Oo 86

10 1.400 0.28 10 0.750 0.60
11 7.70C 0.31 11 0.140 Oo 71
12 1,000 0.71 12 1.550 0.42
13 6,460 0, 80 13 4.320 Oo 37
14 11,710 0. 62 14 11.830 0 o 5 8

15 11,400 0.10 15 6,990 Oo 3 1

16 0.520 0.37 16 7. 200 0, 84
17 10.220 0. 75 17 7.600 0.25
18 9,920 0.22 18 9. 800 0,62
19 10.470 0. 26 19 4.560 Oo 68
20 3.640 0.96 20 8.190 0.94
21 3.630 0. 14 21 5.730 0. 44
22 1,150 0.35 22 4.150 Oo 11
23 2.930 0.30 23 6.270 Oo 1 9

24 7.540 0.03 24 5.130 Oo 87
25 6,210 0,85 25 4.240 0.32
26 5.230 0 V 98 26 8.680 0.43
27 11.330 0. 86 27 4.490 0. 91
28 8.060 0. 28 28 1.390 0.47
29 7,750 0.33 29 9.300 0© 42
30 2,170 0. 10 30 6.880 0.62
31 11,650 0.93 31 6.370 0.65
32 10.220 0.72 32 1.360 0. 84
33 3.190 0, 5 7 33 0.510 0.66
34 3.550 0.62 34 7.150 0.61
35 0.300 0.62 35 3.660 0.33
36 5.570 0.25 36 2.800 0.43
37 3.620 0.59 37 5.710 0.99
38 10.030 0.6 8 38 8.180 0. 14
39 7.010 0.34 39 8.530 1.00
40 9. 680 0.74 40 7.150 0. 59
41 2. 160 0.42 41 1.840 0.65

42 6. 230 0.27
43 11.350 0.25
44 11.820 0.67
45 1.680 0.83
46 8.460 0.79
47 4.530 0.19
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Figure 40b. Population P. Time Preference Parameters.
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less money to spend for the trip and will probably use other means of

transit if the fare is too high. In contrast to traveler type B, time

preference parameters for travelers of type P are selected from the

uniform distributions shown in Figs. 39b and 39c. The set of randomly

selected type P travelers is shown in Fig. 40b.

Before considering the computer results, an additional note on

input values is necessary. In order that the double- counting inequality

(3-26) be properly observed, the fare levels must be maintained above a

certain lower bound for each vehicle type-passenger population combina-

tion. The appropriate minimum valid fares are tabulated in Fig. 41.

Slight violation of these minimum fares incurs only small risk of error.

In fact, some computer runs have been included at fare level tt = $10,

for the combination of population B with vehicle type 1. There is no

evidence of error in this case, although substantial errors do occur

for lower fares

.

Unfortunately, the region of invalid fares may (alas!) be an inter-

esting one to investigate. For instance, in the succeeding examples, it

happens that the fare that maximizes the objective function value often

falls below the minimum valid level. In such cases, the M0DEL2 program

is unable to do more than identify the general region of interest. Al-

though it would not be difficult to present a transportation example in

which the double counting inequality holds even for very low fare levels,

the current examples serve to identify the limits within which the pres-

ent methodology is useful.

5 . 3 Computer Runs

One of the most important areas that a series of computer runs can
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Figure 41. Minimum Valid Fare Levels.
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help investigate is the behavior of the significant system performance

measures, over a range of parameter values. To illustrate this function,

consider the results of the scheduling computations for population B and

vehicle type 1 (4 vehicle fleet) , under maximization of user benefit minus

cost, over a range of fare values. The important system quantities are

plotted in Fig. 42. At each level of fare, the M0DEL2 computation pro-

duces the value of revenue, patronage (demand), operating cost, profit,

and benefit minus cost, for the (optimal) timetable. It is clear that

the kind of information developed in Fig. 42 is of direct interest to

system planners and operators alike.

In addition to their specific numerical content, curves such as

those of Fig. 42 are of interest for the insights they provide into

system behavior and scheduling policy formation. Specifically, the

behavior exhibited in Fig. 42 clarifies the implications of optimizing

the difference between user benefits and operating costs. As the fare

is increased, the net benefit that accrues to each passenger decreases.

As a result, fewer trips remain "profitable" (in a benefit - cost sense),

and fewer travelers are able to find acceptable accommodation. Thus,

patronage declines as the fare increases. Costs also decline since

fewer trips are executed. Revenue, which is the product of fare and

patronage, rises at first and then falls. Operator profit, the differ-

ence of revenue and cost, also rises and then falls. Finally, since

traveler benefits decline faster than operating costs, as fare increases

from ten to fourteen dollars, the objective value (benefit minus cost) de

dines as well. Although the appropriate region is inaccessible for

M0DEL2 computations, it is apparent that the objective would be enhanced
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by lowering the fare, below ten dollars, until costs begin to rise faster

than traveler benefits.

A second important product of the scheduling computations is the set

of timetables corresponding to the alternate fare levels. The successive

schedules are displayed in Fig. 43, for fares ranging from eleven to four-

teen dollars. In each timetable diagram the line segments above the

time axis represent trip departures from node 1. Line segments below

the axis correspond to departures from node 2. The integer attached to

each line segment specifies the number of passengers aboard the given

trip

.

The set of timetables in Fig. 43 shows several interesting charac-

teristics. One property is the relative "stability" of the timetables

as fare is changed. Although fewer trips are executed as the fare is

raised, trips have a tendency to "drop out," leaving the rest of the time-

table almost unaffected. In other words, a decline in the number of

trips in the (optimal) schedule, resulting from a rise in fare, does not

imply a major realignment in the timetable. Under a system that exhibits

such behavior, the latter observations could be taken as an operational

guideline for adjusting system operations.

Two major properties of the timetable solutions are plotted in Fig.

44. First, the number of trips required in the schedule declines as the

fare increases. Second, the load factor, i.e. the percentage of avail-

able seats filled by travelers, increases with fare under the benefit-

cost objective. Such behavior stems from the decline of traveler bene-

fits, and the number of trips. In short, more travelers must be accom-

modated on fewer trips to make operations profitable (in a benefit-cost

sense) as the fare rises.



Leave

node

2

Leave

node

Population B
Vehicle Type 1

4 Vehicles
Max (Benefit-Cost) -184-

242 3 34443432

L ! l k k i l

c '
u345 2 3 223535 2 2

tt = $11.

2423 3435 532

i i i i i 1
IT

1 j
1

i • 1 i
•

3 223525 2

$ 12 .

4 4 3 5 5 3

3 3 5 3 3 5 5

4 4 5 3

I (- 1 1
1

i
h -I 1

TT = $14.

5 5

0 24 6 8 10 12

j
'

—

—

I

1 1 1 1 1
[

1- 1 H

8am) Departure Time (8pm)

Figure 43. Variation of Fleet Timetable vith Fare.



Population B
Vehicle Type 1

4 Vehicles
Maximization (Benefit-Cost)

10 11

Fare (dollars)

—4-

12

—4 1 ^~TT

13 14

Figure 44. Variation of Schedule Properties with Fare.

Load

Factor

(per

cent)



- 186 -

5 . 4 Comparative Studies

In the remaining examples, the outputs of scheduling computations

will be illustrated for alternate system combinations of traveler and

vehicle types. In addition to variation of fares, parametric changes in

fleet size and operator objectives, will be considered.

Fig. 45 displays the patronage, profit, and benefit minus cost

curves, plotted against fare, for populations B and P. The fleet con-

sists of four type 1 vehicles, and the objective is maximization of bene-

fit minus cost. It is apparent from the graphs that population P is less

effectively served than population B. Several factors are responsible

for this. First, a traveler of type P is generally willing to pay less

for his trip than a traveler of type B. Hence, at a given level of fare,

a traveler of population P is likely to receive a smaller net benefit

than his type B counterpart. In addition, the alternate distributions

of traveler time preferences for populations B and P, imply different

potentials for satisfactory service. In particular, the "peaked" distri-

bution of population B allows the execution of trips at times satisfactory

to relatively large numbers of travelers. For these reasons it is more

difficult to initiate profitable trips (in a benefit-cost sense) for

population P than for population B.

It is apparent from Fig. 45, that the two traveler markets imply

different service requirements. For example, the various indices of

performance-- patronage, profit, and benefit minus cost-- are found to

drop off more quickly with fare for traveler type P. Hence, a lower fare

structure is indicated for that market. Naturally, the two traveler mar-

kets require substantially different scheduling policies. Fig. 46
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displays the solution timetables for population P at fare rr = $8, ,
and

for population B at fare tt = $12. These schedules correspond to similar

objective function values. It is clear that the timetables follow the

appropriate time preference distributions rather closely.

Fig. 47 compares the performance of alternate vehicle fleets (four

type 1 vehicles versus three type 2 vehicles)
,

in the service of traveler

population B under benefit minus cost maximization. Over the range of

fares considered, the smaller but faster and cheaper type 1 vehicle ap-

pears to be the better alternative. This is the result of several fac-

tors. First, travelers are willing to pay more for faster trips; hence,

vehicle type 1 offers greater benefits in this respect. Second, vehicle

type 2 operating costs are higher, so that the "cost" component of the

benefit-cost objective is greater for this alternative. In addition, a

vehicle type 2 fleet will tend to offer fewer trips since it is more

difficult to synthesize "profitable" trips, for the two reasons just

given. Finally, the size of the traveler market in the current example

is such that the greater capacity of the type 2 vehicle cannot be utilized

to full advantage.

As for earlier examples, the vehicle 2 system appears to operate

best in the region of lower fare levels. In comparison, the vehicle type

1 system is more efficient than the vehicle type 2 system, at higher fare

values. The contrast in vehicle properties also has significant implica-

tion with respect to timetable construction. Fig. 48 compares the time-

tables corresponding to the alternate fleets, at levels of fare that

yield similar objective function values. In essence, the faster and

smaller type 1 vehicles operate best by executing a high freqeuncy
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service. The type 2 vehicles are better suited for a low frequency time-

table, with higher passenger loads per trip.

A parameter of great interest to planners is the size of the vehicle

fleet required for satisfactory operation. Fig. 49 displays the varia-

tion in the level of profits and benefit-cost, as the fleet size is var-

ied from one to five vehicles. The inputs are population B, fare level

of ten dollars, and the benefit-cost objective. Both vehicle types are

considered. Note that each of the curves exhibits a "saturation" effect.

In essence, this indicates that the particular passenger market can be

maximally served, with respect to the specified objective, by a limited

number of vehicles. Once a certain fleet size is reached, the remaining

traveler demand is inadequate to support additional service. In Fig. 49,

it is shown that two vehicles of the type 2 variety are sufficient to at-

tain the maximal objective value. In contrast, each of the first four

additional vehicles of type 1 makes some positive contribution to the

value of the objective. This result is in keeping with the fact that

vehicle type 1 is better able to run at low loads. Thus, incremental

additions to the objective value are more likely to be feasible for the

latter type vehicle.

The discussion thus far has presented the results of computations

under the benefit minus cost objective only. Examples using a second

important objective, the maximization of profit, will now be considered.

Fig. 50 compares the behavior of profit and operating cost, as functions

of the fare, under the alternate ob jectives--benefit minus cost, and pro-

fit. Several interesting points emerge from this comparison.
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Naturally, the profit level is higher, at each value of fare, under

profit maximization than under benefit-cost maximization. But, in ad-

dition, profit is maximized at a substantially higher level of fare under

the profit objective than under the benefit-cost criterion. Furthermore,

the maximum profit level is significantly greater under the profit maxim-

izing criterion. This behavior is directly attributable to the fact that

shifting from benefit-cost to profit maximization implies a transfer of

economic benefit from the system users to the system operator. In partic-

ular, an increase in the fare, neglecting its effects on patronage or

operating policy, represents an increase in profit (revenue) to the sys-

tem, and a decrease in net benefit (willingness to pay minus fare) to the

user. Thus, under profit maximization, the operator will want to in-

crease the level of fare until patronage losses and cost increases com-

bine to make further fare increases unprofitable. Increasing fare in

this way implies a transfer of benefits from the traveler to the system.

The two cost functions, corresponding to the alternate objectives,

present a striking contrast. As discussed earlier, the operating cost

under the benefit-cost criterion is a decreasing function of fare. In

contrast, the operating cost under profit maximization is generally in-

creasing. This is a result of the fact that as the fare increases (in

the range illustrated) it becomes more profitable to run additional

trips. Hence, the increase in cost corresponds to the expansion of the

number of trips in the schedule, as fare increases. Of course, if the

fare reaches too high a level, passengers will drop out rapidly and ser-

vice and operating costs will begin to fall.

Fig. 51 displays the variation of patronage with fare, under
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alternate objective functions. Again, the contrast in behavior is appar-

ent. Under benefit- cost, an increase in the fare implies a decrease in

user benefits and a cut- back in the timetable. Hence, a loss in patron-

age results. Under profit maximization, however, although the increase

in fare discourages travelers, the simultaneous enhancement of service

tends to draw passengers to the system. As a result, a fare increase may

enhance patronage in a region where the increase implies a more than com-

pensatory increase in the level of service. Specifically, in Fig. 51, a

fare increase from eleven to twelve dollars increases patronage. From

twelve to fourteen dollars, the market is saturated (all potential

travelers are served). Above fourteen dollars, the fare increase loses

travelers, despite enhancement of service. In the range of higher fares,

patronage falls quickly, as the number of travelers willing to pay the

price decreases; eventually, at very high fares, the enhancement of ser-

vice is no longer worthwhile.

Fig. 52 displays the variation in the provided service, as the fare

is increased under the profit criterion. As mentioned earlier, the num-

ber of scheduled trips increases with fare. In addition, the load factor

decreases with fare. The decreasing load factor is attributable to the

fact that at higher fares, it becomes profitable to "personalize" service

to the tastes of smaller groups of travelers. For example, above the

fare of twelve dollars, a trip with only one traveler aboard becomes

profitable. In other words, as the fare increases, the "breakeven" load

factor decreases, and smaller vehicle loads become profitable. Incident-

ally, the increase in scheduled service with fare is not necessarily mono-

tonic. Local decreases are possible, as shown, for example, by the
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behavior of the curves representing the cost and number of scheduled

trips, as fare is increased from ten to eleven dollars. In this case,

profit is maximized by maintaining a relatively stable load factor, and

cutting cost by executing a new timetable with one less trip. Local

variations not withstanding, the general behavior in Fig. 52 is in clear

contrast to the corresponding performance in the benefit-cost case, shown

earlier in Fig. 44. A more detailed view of the timetable behavior under

the profit criterion is displayed in Fig. 53. Here, the diminishing load

factor, and the proliferation of trips in the timetable, are plainly in

evidence

.

The foregoing examples have illustrated a few of the interesting and

important kinds of studies that the scheduling methodology can facilitate.

The most important areas for which valuable information can be developed

include the analysis of the behavior of system performance measures, and

the discovery of the important mechanisms that account for system behavior

under optimal scheduling. Within these two areas, many interesting ques-

tions may arise, in addition to those of the previous examples. Some

possibilities for future investigation are suggested below.

5 . 5 Additional Studies

In addition to fleet size and fare, other system parameters offer

opportunities for study. For example, the investigation of system behav-

ior under objective functions other than benefit-cost or profit maximiza-

tion may yield an interesting set of policy guidelines. In addition,

parametric variations of vehicle speeds and capacities may aid in the

design of vehicles to serve in particular system configurations. Exper-

imentation with the distributions of traveler preference parameters will
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yield important information regarding the sensitivity of system operation

to traveler characteristics. It may be particularly rewarding to analyze

more closely, the variations in system performance as traveler time pre-

ferences become increasingly "peaked" in their distribution. Perhaps

such a study can contribute to the understanding, if not the solution, of

the peaking problem of modern transit systems. In particular, the ques-

tions of fare policy and the selection among alternative vehicle fleets,

may be especially subject to scheduling analysis.

Another important question is the effect of unbalanced demands be-

tween system nodes. Parametric variation of the relative levels of

potential demand between alternate sets of nodes, may help indicate, for

example, what kinds of vehicle systems operate best when demand on out-

going trips is heavy, but demand for incoming trips is light.

Finally, areas suggested in other chapters of this dissertation re-

main open for investigation. For example, Chapter VI extends the compu-

tational method to include routing and scheduling over networks. All of

the parametric variations previously suggested, could be applied to

determine the important effects on optimal routing behavior. Several

areas mentioned in Chapter IV are prime candidates for computational

experimentation. For example, it is of direct importance in computa-

tional investigations to determine the effect of system scale size and

traveler population sample size on the accuracy and consistency of solu-

tions resulting from alternate traveler populations generated from the

same distribution. In performing a large set of computations, one would

like to choose the smallest scale consistent with reasonable computa-

tional accuracy. Hence, a study of these effects is clearly worthwhile.
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In addition, the utilization of successive sample traveler populations

in the manner suggested in Chapter IV for the decision-making context,

is an area of unexplored potential.

In summary, this chapter serves to indicate the variety of ques-

tions and analyses to which the scheduling methodology can usefully be

applied. Examples have been presented to illustrate a few of the

interesting areas and additional investigations have been suggested.

The list of appropriate areas for interesting studies has by no means

been exhausted, although the author and his resources are more nearly

so

.
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CHAPTER VI

EXTENDING THE COMPUTATIONAL METHOD TO NETWORK OPERATIONS

AND VARIABLE PRICING AND SERVICE OPTIONS

6 . 1 Introduction

The basic computational framework for scheduling a system of trans-

portation vehicles was developed in Chapter III, in the context of a

shuttle system. This chapter extends the methodology to more complex

transportation networks. Accordingly, the scheduling solutions will

involve the routing of vehicles, as well as the timetables and passenger

assignments. In addition, other options such as local-express runs and

pricing policies will be included in the computational framework.

The basic mode of development here is the expansion of the number of

possible decisions at each stage of the single vehicle scheduling algo-

rithm. The single vehicle algorithm will be used in the M0DEL2 context

for fleet scheduling, as before. In the dynamic programming formulation

of Chapter III the decision variable for each vehicle in Eq. (3-1) takes

on a value equal to the node number of the next station that the vehicle

will visit. This formulation motivates the first extension of the basic

single vehicle scheduling algorithm.

6 . 2 Non-Stop Algorithm

Consider a network consisting of a set of nodes (stations) such that

all direct trips (from any node m to any node n) are allowed. Further-

more, assume that all travelers may make direct, non-stop trips only. An

example of such a system is illustrated in Fig. 54. The new recursive
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scheduling equation becomes,

I(x,k) = max
{
b
xx «

(

k) + 1 (x ’

’

k+L
xx '

+TR
X '

) }
’ a11 x

>
0 < k < K ,
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L
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1 - TR (6- lb)

where

x = network node at time lc,

x' = next node in vehicle's itinerary,

L
,
= time required to make the trip from x to x'

,XX

TR ,
= turnaround time at node x'

,

x

Eq. (6- lb) covers the decision to delay departure from node x for at

and

(6-2)
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where

tt = fare for the (current) trip leaving at k,

WTP
1

= passenger i's willingness to pay for the trip leaving
at k ,

TtI^ = fare for the trip to which passenger i is previously
assigned

,
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1
) of the

current trip exceeds the value (a oTT ! +a.WTP
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'

) of the
2 l 3

previously assigned trip.

least one more time interval. In this case (6- la) reduces to,
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I(x,k) = b (k) + I (x , lc+1- TR +TR ) = I(x,k+1) . (6-3)
A. 25. A. A.

The computation of b^
x#

(k) in Eq. (6-2) follows from the same boarding

procedure developed in Chapter III. The double counting inequality

(3-26) for the shuttle system, which precludes double counting of pas-

sengers by a particular vehicle, is easily extended to the more general

network case.

The assumption that all travelers make direct, non-stop trips is

clearly necessary. The algorithm of Eq. (6-1) contains no mechanism

for "carrying" travelers through a network node. For example, in Fig.

54, suppose the vehicle makes a trip from node 1 to node 2, and then

another trip from node 2 to node 3. Passengers wishing to travel from

node 1 to node 3 will not be considered by the separate computations cor-

responding to the consecutive trips, 1 to 2 and 2 to 3. Of course, if a

given passenger prefers to travel to node 3 from node 1, via node 2, then

he may be represented as a series of two passengers-- the first wishing to

travel from 1 to 2, the second from 2 to 3. Two problems are inherent in

this procedure, however. First, the procedure may lead to a schedule

solution such that only one of the two "pseudo- travelers" is served.

Hence, the "real" traveler is accommodated on only one leg of his jour-

ney. An equally bad result occurs if the two legs of the journey are

scheduled such that the first trip arrives after the second trip has de-

parted! These problems may be minimized by skillful specification of the

preference parameters of the pseudo- travelers . Nevertheless, the proce-

dure is intrinsically artificial.

A second problem area is that a passenger's route must be uniquely
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specified, a priori . In many cases this will be no problem, as there is

often a "dominant" path between the two nodes of interest. In addition,

route selection decisions, as discussed for the example of Fig. 54, can

often be properly incorporated by following the "local-express" or "alter-

nate path" formulations, developed later.

In summary, the algorithm of Eq. (6-1) is useful for determining the

routing and scheduling of a single vehicle, in a system for which the as-

sumption of direct, non-stop trips is satisfactory.

6 . 3 Multi- Node Links

In most transportation networks, some nodes are considerably more

important than others. System operations are far more sensitive to rout-

ing and scheduling decisions made at Grand Central Station, for example,

than at Bronxville, New York. Thus, it is useful to consider a schedul-

ing algorithm in which vehicles are required to make decisions about

their itinerary, only when they reach certain "decision nodes" in the

network. The network of Fig. 55 has three decision nodes and thirteen

minor stations. At each decision node, the vehicle decides which deci-

sion node to go to next. For example, if the vehicle is at node 2, it

may decide to go to node 1 or node 3, or remain at node 2. The value of

choosing a particular destination, say node 1, is found from the benefit

afforded to all travelers along the 2-e-d-c-b-a- 1 link, that will be

aboard on some portion of the journey.

The intention in the following discussion is to extend the method-

ology to the multi-node link case by developing the appropriate assump-

tions and modifications of the basic algorithm of Eq. (6-1). First, an

assumption must be made corresponding to the earlier non-stop requirement
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Figure 54. Non-Stop System.

Figure 55. Multi-node Link System.
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for passenger trips. Here, passengers will be restricted to direct trips

between any two nodes on a single link of the network. (A link is de-

fined as the chain of stops between any two decision nodes.) Thus, in

Fig. 55, trips from node m to node j, or node 1 to node e, are accept-

able, but a trip from j to h is not. Of course, an appropriate set of

pseudo- travelers may be chosen to represent such multi- link passenger

trips, although such an option involves the difficulties previously men-

tioned. In addition it is assumed that there is a unique path between

any two decision nodes such that no intervening decision nodes lie in

that path.

Two computational modifications are required before the basic algo-

rithm can be applied. First, although dispatching decisions are made

from decision nodes only, the benefits of travelers going to or leaving

from intermediate stops must be computed using the local time coordinates

of the trip. For example, consider a trip scheduled to leave node 1, in

Fig. 55, at 10 a.m. and arrive at node 2 at noon. Suppose passenger P

rides the segment from station b to station e. If the trip segment from

1 to b takes a half hour, and the trip from e to 2 takes fifteen minutes,

then the appropriate trip coordinates with which to compute passenger P's

benefit is t = 10:30, t = 11:45, or A = t* - 10:30, & = 1-1/4da d

hours

.

The second modification involves the procedure for choosing the tra-

velers whose aggregated benefits maximize b^^k) for a trip along a

multi- stop link. Recall that for the two station shuttle, as well as the

multi-node, non-stop trip system, the optimal rule is to order passengers

by their net value for the trip. That rule is inadequate here because
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travelers, in general, ride different portions of a route segment between

decision nodes. Hence, certain travelers are in competition for seats

while others are not. Therefore, the problem reduces to that of finding

the "best" mutually exclusive sets of travelers for each seat in the ve-

hicle, such that each set consists of travelers riding non- overlapping

route segments.

The problem is illustrated in Fig. 56. In this figure, the arcs

represent traveler trajectories. The table displays the travelers' ori-

gins, destinations, and values for the trip leaving node 1 for node 2 at

time k. Observe, for example, that the trips of travelers 2 and 6 are

complementary, whereas travelers 4 and 5 are in competition for seats

over route segment a-b.

The negative of the traveler values are attached to the correspond-

ing arcs. Zero- valued arcs are included to represent empty seats. The

graph representation suggests that the problem of optimally boarding

passengers to the vehicle along the link is analogous to finding the

"minimal cost flow" between a source node and a sink node in a graph.

Here, the source node (1) is the decision node from which the trip ema-

nates; the sink node (2) is the node where the trip terminates. Each

traveler is represented by an edge connecting his origin node to his des-

tination node. Each edge is labeled with a cost (-value) and a "flow

capacity." A unit flow capacity is associated with each traveler edge.

A flow capacity of C (the vehicle capacity) is associated with zero

valued edges. A unit flow from source to sink is equivalent to a set of

"connecting" travelers (including "null" travelers, i.e. empty seats)

whose trip segments combine to make up a fully occupied seat between

successive decision nodes.
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Thus, the problem of optimal boarding is equivalent to the problem

of finding that flow from source to sink of magnitude C, that minimizes

cost (maximizes value). Algorithms to solve the min-cost flow problem

•k

are well known. Fig. 57 illustrates the solution to the problem of Fig.

56, for a vehicle capacity C = 2.

Stipulation of the appropriate trip coordinates for each traveler

along a link, and utilization of the min-cost flow algorithm for boarding

travelers and computing traveler benefits, allows the algorithm of Eq.

(6-1) to be used for the routing and scheduling of a vehicle among the

decision nodes of a multi-node link network.

6 . 4 Locals and Expresses

Consider a network with minor stops along the links connecting the

decision points, as in Fig. 55. More flexible scheduling policies may be

obtained by expanding the decision options to include not only the next

destination decision node, but also the "service mode" by which the ve-

hicle travels to that destination, i.e., local or express. If the local

mode is chosen, the vehicle makes all minor stops along the link, as be-

fore. If express is picked, the vehicle travels non-stop from origin to

destination decision nodes. Actually, there is no need to be limited to

these two service options. Any additional mode may be considered, such

as stopping at odd or even stations only. The new decision variables

become

,

c(x,k) = (x' , u) , (6-4)

where

*
See Ref. [69] for example.
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C = 2

Passengers

:

seat #1: 3 and 4,

seat # 2: 2 and 6.

Total Value = (2 + 6) + (2 + 6)

a

g

Figure 57. Min-Cost Flow Benefit Solution.
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x' = next decision node,

u = service mode (1 = local, e = express).

The iterative equation becomes,

I (x , k) = max
{bJJx

,(k) + I(x' ,^,+IR ,)} • (6-5)
x

'
,u

J

The immediate benefit b
U

,
(k) is computed differently for alternate

service modes u. If u = e (express) then only the benefits of travel-

ers at the origin node who are traveling directly to the destination

node, are tallied. If u = 1, however, all benefits of travelers along

the link are included. Presumably,

- e 1

xx* < xx ' ’ (6-6)

since locals are required to stop at intermediate points along the link.

6 . 5 Alternate Paths

Suppose the network is set up so that there is more than one way to

travel from one decision node to another. Two simple examples of this are

shown in Fig. 58. The first example is a network with one decision node.

Dispatches from that node (around the loop and back to itself) can go in

either of two directions. The same is true for dispatches from the deci-

sion nodes of Fig. 58b. In such cases, the decision vector can be ex-

panded to include path decisions, analogous to the service mode decisions

of the previous section. If p is the path variable, then the values of

t>xx ,
(k) and L“£, are computed according to the traveler population and

network characteristics for service mode u along path p.

6.6 Variable Fare

up

Another way to expand the decision options of the vehicle scheduling
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Figure 58. Networks with Alternate Paths.

© ©

Figure 59. Choosing Decision Nodes.
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algorithm is to make the fare for each trip a decision variable. Although

fare is not usually considered a scheduling variable, it _is, in fact, an

important determinant of system operation. For example, a fare policy

that discourages travelers from riding during hours of very high demand,

and encourages them to travel during relatively light periods, will fos-

ter more efficient operation.

Modification of the algorithm follows the lines developed in the

previous sections. Suppose the fare for each trip is allowed to take on

one of F possible values. The basic iterative equation (neglecting

service or path options) is,

priate boarding procedure) over those passengers whose willingness to pay

exceeds the particular value of fare, tt-

Eq. (6-7) must be used with some care, with respect to the double-

counting constraint embodied in Eq. (3-26). In particular, a risk of

error is run if the fare is allowed to range so low that it becomes pos-

sible for a traveler to find two trips acceptable by the same vehicle.

In summary, the algorithm of Eq. (6-7) is designed to study the

effectiveness of fare policy in dealing with the problem of "peaked de-

mand," and the consequent uneven utilization of system facilities over

time. More generally, the algorithm enables optimization over an impor-

tant additional scheduling factor, the fare policy.

I(x,k) = max
x' ,tt

The immediate benefit b
17

,
(k) is computed by summing (via the appro-

XX
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6 . 7 Trade- Offs

Setting up the single vehicle algorithm for a particular network

arrangement is probably more of an art than a science. The basic ques-

tions pertain to the number and placement of decision nodes. In resolv-

ing these questions, the goal is to maintain reasonable computational re-

quirements and to limit errors resulting from inadequate representation

of multi- link traveler trips without unduly compromising the width of the

spectrum of possible scheduling solutions.

The location of decision nodes should harmonize with the character

of actual traveler trips, and with the natural structure of the network.

For example, it is often appropriate to give decision node status to

nodes where many travelers begin or end their trips, and to nodes at

which natural route decisions must be made (i.e., a fork in the road).

Consider the network of Fig. 59, for example (see p. 214).

If most travel is from the extreme nodes 1, 6, and 9, into and out

of the hub node 3, then nodes 1, 3, 6, and 9 may be good choices for

decision nodes. However, if trips to and from nodes 1 and 6, 1 and 9,

and 9 and 6, are dominant then node 3 should not be a decision node,

because travelers along these routes would then have to be represented

by series of pseudo- travelers

.

Choosing the number of decision nodes requires additional trade-

offs. The more decision nodes there are, the greater flexibility the

algorithm will exhibit in computing the schedule. For example, in

Fig. 59, if node 3 were not a decision node then a vehicle reaching this

node would be required to pass through, pausing for the minimal stopping

time only. However, increasing the number of decision nodes aggravates
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two problems. First, the more decision nodes there are, the more travel-

ers there will be who must be represented as series of pseudo- travelers

.

Hence, there is a greater risk of error.

Second, increasing the number of decision nodes increases the compu-

tational requirements, in two ways. First, more decision nodes means

more decisions, and thus longer computation time. For example, if there

are X decision nodes, and an average of Y = qX (0 < q < i) decision

nodes accessible from each of the X nodes, then there are approximately

2
XY = qX decision computations to be made at each stage k in the algo-

rithm. Thus, the computation time is proportional to the square of the

number of decision nodes. The factor of proportionality increases with

the accessibility of one node from the others, and also with the number

of additional decision options such as local-express, fare, and alternate

paths. If there is an average of r options between decision nodes,

2
then the computation time is proportional to qrX .

Second, the more decision nodes and decision options, the greater

is the computer memory requirement. This stems from the fact that at

each stage k, the result of previous computations, L
U
^

,
stages back,

XX

must be recalled. The greater the number of possible values of L
U
^

, ,XX

the more stages of computation must be stored.

It is apparent that there are several limitations and compromises

associated with the algorithms of this chapter. A limitation not men-

tioned heretofore, is the absence of a traveler transfer option. For

example, in Fig. 59, if node 3 is not a decision node, a traveler going

from node 6 to node 9 does not have the option of riding a node 1-bound

vehicle to node 3, and then a node 1-originating vehicle to node 9. As
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in this instance, most of the difficulties revolve about the representa-

tional accuracy of individual traveler trips. The real concern, however,

is to achieve sufficient individual representational accuracy to ensure

adequate modeling of travel behavior in the aggregate . As outlined in

Chapter IV, the traveler population is to be drawn randomly from a pro-

bability distribution over traveler preference parameters values. Thus,

the aggregate behavior of the traveler population may be properly repre-

sented by developing the appropriate distributions of pseudo- travelers

,

rather than "true" travelers. The test of representational accuracy is

then, not whether individual traveler trips closely reflect real trips,

but whether the statistical trip behavior of the population is correct.

In summary, the compromises involved in setting up the single vehicle

algorithm for various situations, have been outlined above. Much is left

to the engineering judgement of the analyst for each particular case.

Below, incorporation of the single vehicle algorithm into the overall

iteration, is discussed.

6 . 8 Applying M0DEL2

In the preceding sections, the capabilities of the single vehicle

algorithm have been greatly expanded. The next task is to adapt the

iterative procedure for scheduling the entire vehicle fleet system.

Scrutinizing the M0DEL2 flow diagram of Fig. 26 reveals that except for

the optimum assignment algorithm, M0DEL2 is directly applicable to the

•k

more complex transportation systems discussed in this chapter. The

k
Use of M0DEL2 without optimum assignment precludes initialization by
timetables, unless computations are started by assigning travelers to

trips in the initial timetable in a heuristic, suboptimal way.
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iterative procedure for successively computing the itineraries of indi-

vidual vehicles and adjusting the passenger assignments, based on net

incremental benefits, needs no fundamental revision. The solutions ob-

tained will be optimal to within a first-order traveler transfer, as

before

.

Moreover, it was found in Chapter III, that application of the opti-

mum assignment routine did not significantly alter the results. The

same behavior can be expected here. This is fortunate because, in gen-

eral, the equivalent optimal assignment operation over a complex network,

is a difficult integer programming problem. Only the "non-stop" case,

with links having no minor stops, is directly subject to application by

the assignment algorithm. In other cases, the problem is that of find-

ing a matching of mutually exclusive "feasible" groups of travelers, to

inter- decision node trips. A feasible group is composed of travelers

with non- overlapping trip segments that combine to make a complete trip

between the decision nodes. (Empty seats count as null travelers.)

Travelers 2 and 6 in Fig. 56, for example, comprise such a group. So

does traveler 4 plus an empty seat from node 1 to node a. The task here

is to find the matching of traveler groups to trips such that the total

value is maximized, and such that no single traveler appears in more than

one of the assigned groups. This is equivalent to solving and comparing

solutions to Q different assignment problems, where Q is the number

of ways that the traveler population along the link can be separated into

mutually exclusive feasible groups. Integer programs are notoriously

difficult to solve, and this one promises to be no different. The formu-

lation will not be carried further here. The prospective gains of
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developing such an assignment algorithm do not appear to warrant the

effort. Nevertheless, it is an interesting combinatorial problem in its

own right.

6 . 9 Summary

This chapter has extended the domain of the computational method

developed in Chapter III. The single vehicle algorithm was expanded to

include a wide spectrum of decision options for scheduling transportation

network operations. The M0DEL2 iterative method was found applicable for

use in this wider context.

The algorithms of this chapter have not yet been programmed for a

computer. Such implementation, however, holds out great potential for

the study and development of scheduling, routing, and fare policies,

for a variety of transportation network operations.
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CHAPTER VII

CONCLUDING DISCUSSION

This chapter considers the following four areas of interest to round

out the discussion in this dissertation: 1) application of the schedul-

ing algorithm outside the context of passenger transportation, 2) the

"systems engineering" concepts that have been used to mold the ideas pre-

sented here, 3) the specific contributions that this research has offered,

and 4) suggested areas for future research in passenger transportation

scheduling

.

7 . 1 General Application of the Scheduling Algorithm

The M0DEL2 multi-vehicle scheduling algorithm has been developed

specifically to fit the context of passenger transportation. This does

not preclude the possibility, however, that the method has application in

other scheduling contexts. Abstracting from the transportation situa-

tion, the method may be viewed as a "facility scheduling - user alloca-

tion" algorithm. In that perspective, various applications may be en-

visioned. Fig. 60 displays some examples for consideration.

In attempting to adapt M0DEL2 to new applications, several relevant

factors must be recognized. First, it is clear that the preference func-

tions over alternate schedules need not assume the forms proposed in

Chapter II for the transportation context. The preference formulation

will depend on the particular scheduling application. Second, in order

to apply the M0DEL2 method an inequality to prevent double counting,

analogous to relationship (3-27), must be observed. In brief, that
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relationship requires that the overall minimum turnaround time between

successive uses of the facility, must exceed the width of the acceptable

range of schedule (departure or arrival) times for any given user. In

certain applications, such as the second one in Fig. 60, this may be an

unreasonable restriction. Finally, M0DEL2 is designed under the assump-

tion that the duration of use of the facility (trip length) is a known,

fixed number. In some applications this may not hold. For example, in

case 3 of Fig. 60 such an assumption may not always be justifiable. In

other cases, such as numbers 2 and 5 of Fig. 60, the duration of use may

be a matter of choice. In such instances it is possible to modify the

single vehicle algorithm, following the pattern of Chapter VI, to allow

the option of specifying the desired duration of use. In summary, the

foregoing discussion is offered as food for thought. Closer study and

refinement will be required to evaluate the utility of the algorithm for

various specific scheduling situations.

7 . 2 Systems Concepts

The underlying theme of this paper has been to apply the methodology

of systems engineering to the problem of passenger transportation schedul-

ing. The purpose of the following discussion is to summarize the systems

concepts of this analysis in the belief that explicit recognition of

these ideas may be helpful to future efforts in transportation research.

The first important systems concept is the clear formulation of a

meaningful objective function with which to gauge system operation. Fre-

quently, the problem of timetable construction is viewed merely as the

task of "fitting" timetables to travel demands, without relating the

schedule to the enhancement of a relevant index of system performance.
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Examples in Chapter V have demonstrated the significance of optimizing

in accordance with the correct measure of system operation.

In conjunction with the recognition of objectives, the utilization

of meaningful economic measures to quantify an objective function is a

second important systems requirement. In this vein, modeling of the tra-

veler's willingness to pay provides the required measure of consumer ben-

efit. In addition, integration of the three basic component measures-

-

costs, revenues, and traveler benefits-- facilitates the quantification

of an array of relevant economic criteria such as profit and benefit-cost.

A third set of systems engineering ideas revolves about the formula-

tion of the computational framework for obtaining scheduling solutions.

A number of principles were followed to facilitate the synthesis of a

viable algorithm. Owing to the large number of system variables, a

primary guideline was to describe the "state" of the system in as econ-

omical a fashion as possible. This principle was used in several ways.

First, with respect to the single vehicle scheduling algorithm, the

derivation in Chapter III, Eqs. (3-7) through (3-17), produced an itera-

tion that dispensed with the consideration of all superfluous vehicle

states. Second, direct accounting of the state of the traveler popula-

tion was suppressed in favor of a passenger to vehicle categorization

procedure, in conjunction with an inequality relationship (3-26) to

prevent double counting within the single vehicle optimizations.

The size of the overall optimization problem required the use of

another computational principle--decomposition. Here, decomposition

was implemented in two ways. Vehicle schedules were optimized individ-

ually, and passenger allocation was performed separately from timetable
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optimization. However, closer integration of the vehicle optimization

and passenger allocation processes was a prime factor in the development

of MODEL2 from M0DEL1.

A final computational principle, mono tonic improvement by iteration,

was used to formulate the comprehensive framework for synthesizing sched-

uling solutions. The nature of such iterative methods in complex prob-

lems does not ensure optimal results. As discussed in Chapter III, how-

ever, this methodology does provide an approach to a wide range of com-

plex optimizations.

In addition to the formulation of objectives, the quantification of

benefit measures, and the observance of computational principles, another

important systems engineering idea is the decision analysis framework

for decision making under uncertainty; this was discussed in Chapter IV.

In that chapter, the technique for system schedule optimization was woven

into the context of the decision to choose among alternative proposed

systems in the face of uncertainty about traveler population character-

istics. The principal modes of analysis involved Monte Carlo techniques

and the Bayesian theory of inference.

7 . 3 Contributions

The purpose of this section is to pin-point some of the specific

products of this research within the context of the systems framework

studied here. These contributions fall into three areas- -modeling of

economic traveler behavior, synthesis of an optimization algorithm, and

relating the significance of scheduling to decision making.

Concerning the traveler modeling. Chapter II has developed an econ-

omic consumer representation of the traveler in terms of the "commodities,"
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trip duration and schedule inconvenience. The concept of schedule in-

convenience was formulated in terms of a traveler's preferred schedule.

The preferred schedule was given as a function of the trip duration and

the traveler's relative departure time-arrival time orientation. Thus,

a new structural representation has been developed for quantifying the

attributes of a trip's schedule that affect the traveler's behavior.

The preference ordering and relative levels of economic benefit

that a traveler may receive from alternate trips have been encoded in

terms of a willingness to pay function over the trip schedule attributes.

Alternate assumptions with respect to the values of the time preference

and willingness to pay parameters allow study of the system-wide ef-

fects of different types of traveler populations (markets). In sum, the

economic traveler model, in .the context of the comprehensive objective

function formulation, allows explicit study of the importance of operator

and traveler behavior to overall system operation.

With regard to the difficult computational problem of optimizing

a system of vehicles with respect to an arbitrary traveler population,

this thesis has contributed what has been termed a first-order optimal

method. The solution is based on the repeated use of an optimal single-

vehicle algorithm developed in Chapter III for a shuttle service and

extended to more complex cases in Chapter VI.

Finally, the present study contributes to the field of transporta-

tion planning by stressing the importance of scheduling in the decision

to choose among alternative systems. To that end, Chapter IV has devel-

oped a framework for utilizing the scheduling optimization method in a

decision making context that accounts for the random nature of the
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traveler population. In addition, the examples of Chapter V illustrate

some of the numerous ways in which the scheduling methodology may be

used for parametric studies of the many interesting and important ques-

tions related to the consideration of transportation alternatives.

7 .4 Future Research

In the course of this dissertation several areas have emerged as

worthy candidates for continued research. These areas divide into three

basic categories--data analysis, computational experimentation, and

theoretical development.

As discussed in the second and fourth chapters, there are potential

benefits to be reaped from two modes of data acquisition and processing.

The first, laboratory interview experimentation, may build on the ground-

work laid by earlier research efforts. The second, observation of "real

world" traveler behavior, would be enhanced by development of controlled

experimental transportation projects. Data acquired by either method may

be processed in a Bayesian manner, as suggested in Chapter IV. The

development of the appropriate functional forms for such analysis must be

an important parallel endeavor. The developments in this thesis clearly

suggest the utility of such efforts in data analysis.

With respect to computational experimentation, the scheduling method-

ology developed here will be useful for investigating a wide array of

interesting questions. Some of these questions arose in Chapter V, such

as the investigation of system operation for alternate traveler markets,

fare policies, vehicle types, fleet sizes, and operator objectives. In

addition, the extended algorithms of Chapter VI have not yet been pro-

grammed for a computer; such implementation will provide wide opportunity
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for the study of scheduling and routing over networks, including the

investigation of local-express and differential pricing policies.

Finally, the theoretical developments of this dissertation suggest

avenues for continued study and refinement. In particular, the follow-

ing tasks may prove worthy of future effort: a) exploratory research, as

suggested in Chapter III, to improve upon the first-order schedule opti-

mization algorithm (M0DEL2)
,

b) further analysis to seek the derivation

of schedules under uncertainty about traveler characteristics, with less

restrictive assumptions than those of Chapter IV, and c) refinement of

the ideas of Chapter VI to develop efficient scheduling algorithms for

very complex transportation network structures.

In summary, the principal contribution of this research is the

framework that it has provided for both the establishment of operational

scheduling policies and the consideration of alternative systems within

the transportation planning process. Hopefully, the methodology will

find use in future transportation system analyses.
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APPENDIX A

INTERVIEW PROCEDURE FOR DETERMINING WILLINGNESS TO PAY CONTOURS

The following procedure is designed to elicit the information neces-

sary to construct the function describing a traveler's willingness to pay

for alternatively scheduled trips. The subject of the experiment should

be a person that is taking or intending to take a specific trip. The

willingness to pay function is to be determined for the particular trip

to which the subject is committed. In the sample results given below,

the subjects were persons who had made or were about to make reservations

for air trips.

The steps in the interview procedure are the following:

1. Pick a value of trip duration and have the subject choose

his preferred schedule (t* t*) for a trip 4> hours long. This trip
O cl

will be used as the reference trip (R) in the following steps. Note

that R is a point on the locus of the traveler's preferred schedules.

2. Hypothesize that R is the only trip available by the current

mode of travel (air, rail, etc.). The only alternatives are to travel

by another mode or forego making the trip. Set the price for trip R

at a very high level relative to existing prices, and ask the subject

if he is willing to take trip R for that price. Drop the price by

small increments until the subject becomes willing to pay the price.

Note the level of willingness to pay. This is the value of willingness

to pay associated with the indifference curve derived in the next

step

.
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3. Set up a data sheet consisting of a grid imposed on the (t^t^)

plane, as in Fig. Al. Mark R in the box corresponding to the reference

trip. Choose a feasible trip (t^jt^) at ran^om from the area surround-

ing the reference trip. Ask the subject if he prefers (0) or does not

prefer (X) this trip to the reference trip R. Mark the box (t, ,t )Q 3.

with an X or 0, accordingly. Continue this procedure for additional

trips in the vicinity of R, until the border separating the region of

0's from the region of X's is clearly delineated. This border outlines

the indifference contour passing through R and corresponding to the

willingness to pay level derived in step 2.

4. Repeat steps 1, 2, and 3 for several values of i.e., several

different reference trips R.

Fig. Al shows a sample data sheet obtained by one pass through the

above procedure. The dash (-) entries denote points on the indifference

curve. Figs. A2 through A7 illustrate the experimental results of inter-

viewing three different air travelers. Figs. A2, A4, and A6 show the

willingness to pay curves in the (t , t ) plane, along with piecewise
Q cL

linear approximations to the preferred schedule loci. Using these linear

preferred schedule loci, the experimental points (-) were translated into

the (A,^) plane, yielding the transformed curves of Figs. A3, A5 ,
and

A7

.

Too few test cases have been made to allow any general conclusions.

However, the three cases shown here are sufficient to illustrate some

apparent trends. First, the shapes of the willingness to pay contours,

as drawn through the experimental points in Figs. A2 through A7 ,
behave

as expected, i.e., they have the proper convexity property of Eq. (2-13).
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Figure Al. Sample Data Sheet.
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Figure A2. Traveler No. 1, (t , t ) Plane.
d a

San Francisco to New Haven



Figure A3. Traveler No. 1, (A,^) Plane.
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» Plane.Figure A4. Traveler No. 2
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hours

Figure A5. Traveler No. 2, (A ,«i) Plane.
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San Francisco to Los Angeles

Y

Figure A6

.

Traveler No. 3, (t
d
,t
a ) Plane.
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Figure A7 . Traveler No. 3, (A,«0 Plane.
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Second, as evidenced by the assymmetry of the contours in the (A,^)

plane, the distinction between earliness and lateness is an important one.

Third, willingness to pay decreases as trips become longer and more in-

convenient, as expected. Note, however, that for travelers like traveler

number 3 (Figs. A6 and A7) , the willingness to pay may be quite insensi-

tive to decreases in trip impedance for trips above a certain "satis-

factory" level.

Finally, the characterization of travelers by constant values of

w and t* appears reasonable over moderate ranges of trip duration,

but not over very wide ranges. For example, the first traveler (Figs.

A2 and A3) is strictly departure- oriented for trips below seven hours in

length. Above seven hours, both arrival time and departure time become

important. Hence w decreases below one. The second traveler (Figs.

A4 and A5) has three distinct preferences regions. He is departure-

oriented, with t* = 1 p.m., for trips between four and six hours, and

arrival-oriented, with t* = 7 p.m., for trips over six hours. Alter-

nately, he may be characterized, for trips longer than four hours, by

t* = 1 p.m. and the following variation of w: w is constant and equal

to one for & between four and six hours, and decreases linearly from

one to zero as & increases above six hours. For trips shorter than

four hours, the traveler's entire orientation changes, such that he now

prefers to travel earlier in the day, and can no longer be characterized

by t* = 1 p.m. Thus, over very wide ranges of trip duration, w and t*

for travelers 1 and 2 are non-constant functions of <i>. On the other

hand, traveler 3 is described by t* = 4 p.m., w = 1, throughout the

entire experimental range of trip times, 0.5 hours through 4 hours.
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In summary, the experimental interview method appears promising as

a research tool for investigating traveler preference behavior. The

subjects seem to be quite capable of grappling with questions related to

trips of direct concern to them. Test interviews took from forty- five

minutes to an hour to administer (to obtain four willingness to pay con-

tours), and no serious experimental difficulties were encountered.
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CCMPUTER

Routine

1. Main Program

2. Subroutine ADJUST

3. Subroutine IMBEN

4. Function WILPAY

5. Subroutine SCHED

6 . Subroutine MATCH

7. Subroutine UPLIM

APPENDIX B

PROGRAM FOR THE SHUTTLE SYSTEM (MODEL 2)

Function

Coordinate MODEL 2 computations

Update traveler assignments after
each vehicle schedule optimization

Compute the immediate benefit at each
stage of the single vehicle dynamic
programming algorithm

Compute a traveler's willingness to

pay for a specified trip

Compute an optimal single vehicle
schedule

Optimally assign travelers to the

trips in the timetable

Compute the upper bounds on the

optimal scheduling solution

Page
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254

256

257

259

264
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0 "IP I LER OPTIONS - N A M F = M A I N , OP T =0 1 , L I NEC NT = 5 7 . S OUR 0 E, E BC 0 1 C , NOL I S T , DEC K , LOAD , MA P , NO I

DIMENSION B< 2 ) ,NTRAV<2 ) , EL I G( 2,100 ) , DIST( 2) ,W( 2, 100 )

,

ITS TAR I 2, 100) » OPC OS T ( 20 ), F AR E(20), CAP(20), SP EE D(?0), EDGEWT (3000),
2L I ST (3000 > ,LOC ( 200 ) , NODWT 1(200 ) , NODWT 2 ( 200 ) ,

I

M A X ( 2 , 600 ) , TR ( 2 ) ,

3NZER0( 20) ,TIMDEP( 20,36 ),LASDEP(2,20),AB0ARD(50),L0CVEH(2,20),
4NUMPRE (2,20), PRFVDP( 20,36),NTRIP(2),PASBEN<2),B i::NFIT(20)
INTEGER CAP, EL IG, EDGEWT ,CONVER .ABOARD
REAL I MA X , N

COMMON I MAX, B , T I MDEP , L I ST , LOC , M 1 , M2 .LAST , NODWT 1, NODWT 2

,

1TR ,OIST , SPEED, KF IN, EDGEWT ,LASDEP,T ,NZERO, EL IG,

2A1 ,A2, A3, NTRAV.W.T STAR, OP CO ST, FARE, CAP .SLOPE, DOLLAR, ALPHA,

N

3, NUMVEH, ITER, INIT
RE AD (5, 40 10) T,DIST(1 ) ,DI ST(2) ,TR(1) ,TR(2)

4010 FO RM AT ( 5 F 10» 3 )

RE A D ( 5 ,4020 ) SLOPE , DDL L AR , ALPH A , N , A 1 , A 2 , A 3

4020 FORM AT ( 7 F 1 0« 3

)

RE A 0 ( 5,4030 ) KF IN,NTRAV( 1 ) ,NTRAV( 2) .NUMVEH
4030 F0RMAT(4I5)

DO 4035 NODE = 1,2
P AS B EN ( NODE ) = 0.
LIMIT = NTRAV ( NODE

)

R E A D ( 5 , 40 40 ) (W(NODE,I), 1 = 1, LIMIT)
4035 RE A D ( 5 ,4040 ) ( T S T AR ( NODE , I ) , I = 1 , L I M I T )

404 0 FORMAT ( 16F5.2/16F5,2/16F5.2/16F5.2/16F5„2/16F5 0 2 /4F5.2)
DO 4045 J=l, NUMVEH
BENPIT(J) = 0.

4045 REA D( 5 , 40 50 ) OPCOST ( J ) , F ARE ( J ) , SP EED ( J ) ,CAP ( J ) , N ZER 0( J

)

4050 FORMAT ( 3F10o 2 ,2 15

)

READ! 5,4030) MA XI T, I NI T, I BOUND , KORECT
THE ABOVE READ STATEMENT INPUTS PUN PARAMETERS - M*XIT IS THF MAX
NO, OF PROGRAM ITERATIONS ALLOWED, INIT DETERMINFS THF MODE OF
INITIALIZATION ( SCHEDULES ( 0 ) , ASS I GNMENT S ( 1 ) , NONE ( 2 ) )

,

I80UND INDICATES WHETHER IJPLIM 1$ TO BE CALLED, KORECT INDICATES
IF MATCH IS TO BE USED (N0(0), YES(l), ONLY ON FIRST I T FRA T I ON ( 2 ) )

ITER = 0

CONVER = 0

MOD I F = 0
ITER COUNTS PROGRAM ITERATIONS, CONVER = 1 MEANS SCHEDULE HAS
CONVERGED, MOD I F = 1 INDICATES THAT MATCH HAS MADE NO CHANGE
IN PASSENGER ASSIGNMENTS
NOW PRINT OUT THE INRUT PARAMETERS

4945 WRITE(6,4950)
4950 FORMAT! 1H1,40X, 'THE INPUT PARAMETERS')

WR I TE ( 6 , 4960 ) T,DIST(1),DIST(2),TR(1),TR(2)
4960 FORMAT (

' T = • , F 7» 3 , 2 5 X , F 1 0. 3 ,
« MILES PROM NODE 1 TO NODF 2'/

137X,F10<>3,' MILES FROM NODE 2 TO NODE 1'/' TURNAROUND TIME AT NODF
2 1 = ' » F7« 3 ,

' HOURS *,10X,' TURNAROUND TIMF AT NODE 2 = ',F7„3,
3' HOURS' >

WRITE (6,4970) SLOP E , DOL LA R , AL PH A , N, A 1 , A 2 , A3
4970 FORMAT (

' SLOPE = ',F7. 3,' DOLLAR = ',F7„2,' ALPHA = ',

1F7.3,' N = ' ,F7. 3/' A1 = ',F3.0,' A2 = ',F3.0,
2' A? = • , F 3 „ 0

)

RKFIN = KFIN
DEL = T/RKF IN

WR ITE( 6,4975) KFIN, DEL
4975 FORMAT ( 1H0, ' KFIN = ',I5,20X,» DELTA T = ',F6.3>

WRITE (6,4976) I N I T , KOR E CT , M AX I T , I BOUND
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4 ° 7 6 FORMAT! IHO, ' I N I T = ',14,' KORFFT = «,I4,» M4XIT = '
f I4 t » IPQIJNQ =

1 • , 14)
WR TTF ( o , ^OOO

)

5000 FORMAT ( 1H0, • VEHICLE NO* SPEED CAPACITY INITIAL STATION OPE
i p o onsT/r-is farf/one-way* )

TO 6 015 j = i, numveh
FT! 5 07 I TF ( 6, 5020 ) J , SP

F

c 0 ( J ) , CAP ( J ) » N 7 FP 0 ( J ) , OPCOS T ( J ) , FAR E ( J

)

5 0 2 0 >R -Y at (f.x , 13 , OX , FlOo 3 , OX, I3,9X, I 3, 1 7X,E6„ 2

,

9X,<=^ 0 ?. )

^116( 6,5025)
^Q76 FPK -*AT( 1H] , 35X, • LI ST OF TRAVEL FRF ' / 1 0 X »

' NOPF 1',64X,'N0DE 2'/
i* r 4 5 S E N G E D JOo TATAR* , 5X ,'W* ,46X, 'PASSENGER MO, T STAR * , 4 X ,

•
W

» )

I L I y = f‘I NO(NTPAV( 1) »NTRAV(2) )

)0 6f)30 1=1 , HIM
50 ? 0 H» I Tr (

(

,5050 ) I , TSTA R ( I , I) , W ( 1 , I ) , I , T5TA R ( 2 , I) , W ( 2 , I )

50 5 0 C C POUT( 6X , 14 , 2X, F7^, 3X,F4 0 2 ,5 IX, I4,2X,F7 0 3 ,3X ,F4.2
)

IF ( M T R A V ( 1 ) o L F o I L H ) GO TO 50 7 5

L

I

M 2 = NTRAV(l)
III-'- I L T V +

1

TO 5 06 5 1 = ILIM, LI M2
60 o 5 OP I TF ( 6, 6070) I , T STAR ( 1 , 1 ) , W< 1 , I

)

50 7 0 FORM AT ( 6X , I 4 , ?X , F 7 a 3 , 3X , F 4 0 2 )

GO T fi 2 00 0

6075 IF (NTRAV(?) a LE« ILIM) GO TO 2000
LI M2 = NTRAV ( 2 )

TIM = I L T M + 1

OP 6 080 1 = 1 1. IM, LI M2
5080 WRITFIA , 5085 ) I , T S TA R ( 2 , I) , W ( 2 , I

)

5085 FORMAT! 77X, I4t2X,F7 0 3,3X,F4 0 2)

2000 I F( INIT.E'0.2 ) GO TO 7000
R FA 0 IM THE INITIAL SCHEDULE OP PASSENGER ASSIGNMENT
TO READ IN £ NULL VEHICLE SCHEDULE, LET L A SDE P ( ! , J ) =1

,

LA SOFT ( 2 , J) =0
I F( INIToFOaO) GO TO 4058
on 4054 N 0 D E = 1 ,

2

LIMIT = N TR A V ( NODE

)

40 5 4 REA 0(5, 40 53) ( EL IG ( NODE , I ) , I = 1 , L I M I T

)

40 5 3 FORMAT ( 2 0 14/2 01 4/20 14/2014/ 2014)
PRINT OUT INITIAL ASSIGNMENTS

5088 WRITE (6, 5086)
5086 FORMAT! 1H1,30X, • INITIAL ASSIGNMENT OF TRAVELERS')

00 506 1 J = 1 , NUMVEH
WR I TF ( 6,5087) J

5087 FORMAT! 1 H 0 , 1 0 X , 'PASSENGERS ASSIGNED TO VEHICLE ', 14/

)

DO 5061 N0DE=1 ,

2

LIM = NTRAV(NCDE)
ABOARD! I) = 0

MM = 1

DO 5086 M=1,LIM
IF (EL IG! N0DF f M) o NEoJ*100) GO TO 5089
A BOARD ( HU ) = M

MM = MM+

1

5089 CONTINUF
•12 = MM—

1

MX = MA X 0 ( M 2 , 1

)

6091 WRITE(6,5092) NODE , ( A BOAR D( MN ) , MN = 1 , MX

)

509? FORMAT!' FROM NODE', 14,', PASSENGERS ',2514)
DO 5093 J=l, NUMVEH
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LASQFP(1,J) = 1

L A $ DEP ( 2 » J ) = 0

T I
M 0 E F ( J » 1 ) = 5 o *T

5093 CONT INUF
GO TO 4550
9 EA 0 INITIAL SCHEDULE* DEPARTURES FROM NODE 2 ARE TAGGED WITH
MINUS SIGNS IN TI^DEP

4058 00 4060 NODE = 1,2
4060 RE AD ( 5* 40 65 ) ( L 4SDEP ( NODE , J ) * J=l, NUMVEH)
4065 FORM AT (2014)

C FOR NULL SCHEDULES LET TIMDEP(J,1) BE GREATER THAN T

C AND LET LASDEP( 1, J)=l, L A SDEP ( 2 , J ) = 0

DO 4070 J = 1 , NUMVEH
NUMDEP = LASDEPI 1 , J ) +L A SDEP ( 2 , J)

4070 RE A 0(5,4075) ( T I MDEP ( J * NU M ) , NUM=1 , NUMDEP

)

4075 FORMAT ( 10F6» 2

)

DO 4076 NODE = 1*2
LIM = NTRAV ( NODE

)

DO 40 76 M = 1 , L I

M

4076 EL IG ( NODE , M ) = 0

C BELOW, CHECK IF MATCH IS TO BE EXECUTED ON THE p I RST ITERATION
7500 IF(KORECT.NF.O.AND*ITER.EQ.O) GO TO 4077
5090 WRITE(6,5 095 )

5095 FORMATt 1H1 ,40X, • THE SCHEDULE *
)

DO 6064 J=l, NUMVEH
I F ( T I MDE P ( J , 1 ) o L F 0 T ) GO TO 5099
WRITE(6,5096) J

5096 FORMATUHO,* VEHICLE ',14,* HAS NO SCHEDULED DEPARTURES'/)
GO TO 6064

5099 WR I T E ( 6 , 6000 ) J

6000 FORM AT ( / 1 HO ,
* SCHEDULE FOR VEH I CL E

* , I 4 /
' DEPARTS NOOE * 4X ,

• A T TIME
I ' , 5X, 'PASSENGERS ABOARD'/)
LAS = LASDEPd, J ) +LASDEP ( 2 , J )

N T R I P ( 1 ) = 0

NTR I P ( 2 ) = 0

DO 6060 N U M = 1 ,LAS
IF(TIMDEP(J*NUM)oLEoO® ) GO TO 6020
NODE = 1

NT R I P ( 1 ) = NTR I P( I ) + I

GO TO 6030
6020 NODE = 2

N TR I P ( 2 ) = NTR I P ( 2 ) + l

6030 MM = 1

ABOARD ( 1 ) = 0

LIM = NTR AV ( NODE

)

DO 6040 1=1, LIM
IF(ELIG(N0CIE,I).NE.J*100*NTRIP<N0DE) ) GO TO 6040
ABOARD ( MM ) = I

MM = MM+1
6040 CONTI NUF
6045 MAX = MM—

1

MX = MAXO ( MAX ,1

)

TIM = ABS( TIMDEP( J,NUM)

)

WRITE(6,6050 ) NODE*TIM, ( A BOARD ( MN ) , MN= 1 , M X

)

605 0 FORMAT ( 8X, 1 4 , 6X , F6. 2 , 4X ,2 5 1 4

)

C IF CAPACITIES GREATER THAN 25 ARE CONSIDERED, EXPAND FORMAT 6050
6060 CONTINUE
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WRITF(6, 6062 ) J,RENFIT(J)
60 62 FORMAT! 1H0, ' 3ENEFI T ACHIEVED BY VEHICLE' , I 4 f

• = ',F10„3)
6064 CONTINUE

R E N l = 0*
BEN 2 = FASBFN(l) + PAS8EN(2)
00 4080 J =1 , NtJMVFH

4980 RFN1 = PFM + PFNFIT(J)
WR ITF ( 6, 6065 ) BENI » BEN?

6065 FORMAT ( 1 HO * ' BENEFIT ACHIEVFD IN SCHEDULING PROCESS = *,F10.3/
1* BENEFIT ACHIEVED IN ASSIGNMENT PROCESS = »,F10.3)
IF ( ITER.FQ.MAXIT ) GO TO 6500
1 F ( K0RFCT o &0.3 lo ANDo MOD I F, c 0 o 1 0 ANOoCONVFPo FO* 1 ) GO TO 6500
I F( CON V F R o E Q o 1 o A N 0 o K. 0 R EC T » N E * 1 ) GO TQ 6500
WRI TE (6,6075

)

6075 FORMAT! 1 HO, » THE PROGRAM HAS NOT YET CONVERGED')
GO TO 4550

C BELOW, TRAVELERS ARP 0°T I MAL LY MATTED TO THE CURRENT SCHEDULE
ARRAY LOCVEH GIVES THE LOCATION OF THE FIRST SEAT-DEPARTURE IN

C NODE SET ? n= MATCH, CORRESPONDING TO EACH VEHICLE J

C LOCVEH IS PILLED BFLQW
4077 JLTM = NUMVFH+1

DO 4080 NODE = 1,2
P 4SBEN ( NODE ) = 0 o

LOCVFH(NOCE, 1 ) = 1

DO 4080 J =2 , J L I

M

LOCVEH (NODE , J ) = LOG VEH( NODE , J-l l+CAP! J-l ) * LASD C P( NODE , J-l

)

4080 CONTINUE
NOW, CONVERT PASSENGER LIST AND SCHEDULE INTO FORM FOR MATCH
INEXT KEEPS TRACK OF INDEX I IN LTST(I) AND EDGEWT(I) AS THESE

ARRAYS ARE FILLED
NSET2 KEEPS TALLY OF THE CURRENT NODE IN SFT 2 OF MATCH FOR WHICH

A FASSFNGER'S WTP IS BEING CONSIDERED
NODE = 1

4100 Ml = NTP AV ( MODE

)

M = 0

DO 412 5 J = 1 , NUMVEH
4125 M2 = H2+CAP! J )*LASDEP! NODE,J

>

BELOW, M2 IS INCREASED BY ONE TO CREATE AN ARTIFICIAL NODE TO
WHICH INELIGIBLE TRAVELERS CAN BE ASSIGNED IN MATCH.
M2 = M2+

1

INEXT = 1

DO 4300 1=1, Ml
NIX = 0

LOC ( I ) = INEXT
00 4250 J=l, NUMVEH
NSET2 = LOCVEH! NODE, J

J

LIM = LASDEP! 1, J J+LASDEP! 2, J

)

TRAVTM = CIST! NODE

!

TRAVTM = TRAVTM/S p EED(JI
DO 4250 NUMDEP = 1,LIM
TD = TIMDEP! J , NUMDEP

)

I F ( NODE • EQ. 2 ) GO TO 4150
IF (TO.LE.O. ) GO TO 4250
IF ( TD.GT. T ) GO TO 4245
GO TO 4175

4150 I F ( TD.GT. 0. ) GO TO 4250
TD = -TD
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4175 WTP = WI LPAY! TO , TRA VT M , N , TST AR < NODE , I ), W(NODF, I) , SLOPE,
1 HOLLAR, ALPHA)
IF( WTP„ LT.FARE! j ) ) GO TO 4-245

NIX = 1

ILIM2 = INEXT+CAP! J)-l
DO 4200 I 1 = 1,NEXT, I L I M2
E DG C WT ( I I ) = ( A ? * F ARE ( J ) A 3* WT P ) * 1 0 0 0 Oo + 0® 5

4200 LIST(II) = NSFT2+I I-I NEXT
INEXT = I NEXT+C AP ( J

)

4245 NSET2 = N SET2+CAP ( J )

4250 CONTINUE
IF(NIX.E0.1 ) GO TO 4300
LIST! INEXT ) = M2
E D G E In T ( INEXT ) = 1

INEXT = INEXT+1
4300 CONTINUE

LAST = I NEXT-1
L0CIM1 + 1 ) = LAST + 1

CALL MATCH
MOO T F = 1

DO 4500 M=1 , Ml
L I Ml = LOC(M)
LIM2 = LOC (M+l)-l
DO 4350 I = L I Ml » L IM2
IF! EDGEWT! I ULT.O) GO TO 4375

4350 CONTINUE
4355 JX = EL IG ( NODE , M ) /100

I F ( (EL IG(NODE,M)-JX>.NE.O) M00IF=0
EL IG ! NODE , M ) = 0

GO TO 4500
4375 I F ( L I ST ( I ) « EQ.M2 ) GO TO 4355

WT1 = -EDGEWT! I )

W T 2 = WT 1 /lOOOOe •

PASBEN(NOOE) = P AS BEN ( NOD

E

) +WT

2

DO 4400 J = 1 , NUMVEH
IF ( LOCVEH ( NODE, J )oLE.L 1ST ( I ) .AND, LOC VEH( NODE, J + l ). GT. L 1ST ( I ) )

1 GO TO 4425
4400 CONTINUE

WR I T E ( 6,4405 )

4405 FORMAT! 1H0, 'ERROR - PROGRAM PASSED THRU THE 4400 LOOP')
GO TO 6535

4425 JDEP = ( LIST! I )-LOCVEH ( NODE, J ) ) /CAP ( J M-l
I F ( EL IG! NCDF ,M).NE.(J*100+JDEP) ) M0DIF=0
EL IG! NODE ,M ) = J*100+JDEP

4500 CONTINUE
I F

(

NODE. EQ. 2 ) GO TO 5090
NODE = 2

GO TO 4100
7000 DO 7005 N0DE=1,2

LIM = NTRAV(NODE)
DO 7005 M = 1 , L I

M

7005 EL IG ( NOOE ,M ) = 0
DO 7010 J=l, NUMVEH
LA SDEP ( 1 , J ) = 1

LASDEP(2,J) = 0
7010 T I MDEP ( J , 1 ) = 5.*T

WRITE(6,7015)
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7015 FORMAT ( 1 H 0 / / ' NO INITIAL SCHEDULE OF ASSIGNMENT IS GIVEN' )

4550 DO 4575 NODE = 1,2
DO 4575 J = 1 , NUMVEH

4575 NUMPRE (NOCE,

J

) = L ASOEP ( NODE , J )

4580 DO 4650 J = 1 * NUMVEH
LIM = LA SDEP ( 1 ,J ) + L A S D E P ( 2 , J

)

DO 4600 NDEP=1,LIM
4600 PR E VO? ( J , NDEP ) = T I MDE ° ( J , NDEP

)

4605 CALL SCHED(J)
'NS TART = NZERO(J)
TF(NSTART.EO.O«AND. I MA X ( 1 » 1 ) o GT© I MAX (2,1) > NST A R T = 1

IF (NSTART.EQ.OoAND. IMAX( 1 , 1 )©LE a IMAX( 2, 1 ) ) NSTAR T=2
CALL ADJUST (J)

4650 BENFIT(J) = I VA X ( N S T A R T » 1

)

ITER = ITER+1
WRT TE( 6,6070) ITER

6070 F0RMAT( 1H0, ' °ROGRAM HAS COMPLETED* , 14, • ITERATIONS')
DO 4675 N0DE=1 ,2

DO 4675 J=l, NUMVEH
I F ( NUMPR E ( NO OF , J )oEQ»LA$DEP(NODE,J) ) GO TO 4675
WPITE(6,4655)

4655 FORMAT ( 1H0, * THE VEHICLE SCHEDULES HAVE NOT YET CONVERGED - NATCH
IIS NOT A PPL I ED TO THE FOLLOWING SCHEDULE')
GO TO 5090

4675 CONTINUE
DO 4700 J=1 , NUMVEH
LAS = LA SDEP ( 1 , J J+LASDEP ( 2,J)
DO 4700 NDEP = 1,LAS
IF ( TIMDEP (J,NDEP loGT, ( PRE VDP ( J , N DER )-T/ (

2

# *RKF IN ) ) © AND©
1TTMDEP(J,NDEP)©LT 0 (PREVDP( J , ND EP ) + T/ { 2© *RK F I N ) ) ) GO TO 4700
WRITE(6,4655

)

GO TO 5090
4700 CONTINUE

C CONVERGENCE IS REACHED
CONVER = 1

IF(K0RECT©F0ol ) W R I T E ( 6 , 4 72 5

)

4725 FORMAT ( 1H0, • THE VEHICLE SCHEDULE HAS CONVERGED, MATCH IS NOW APPL
l I ED * )

I F ( KOR ECT » EO© 1 ) GO TO 4077
WR ITE( 6, 6525

)

6525 FORMAT ( 1H0, 'THE SCHEDULE HAS CONVERGED')
GO TO 5090

6500 I F (

I

TER © EO* MAX I T

)

WR I TE ( 6 , 6530 ) MAXIT
6530 FORMAT <1H0,' MAX NO© OF I TERAT I ONS ,

9
, 14 , » , WERE PERFORMED')

6535 I F ( I BOUND© E Q© 1 ) CALL UPLIM
RETURN
END
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J', FILER OPTIONS - NAMF = MA I N , QPT=0 1 , L I NFC NT = 5 7 , SOURf E , E B<~ D I C , NOL 1ST , DEC K , LOAD , M A. ° , NO t

!

SUBROUT I N E ADJUST ( J

I

DIMENSION IM SX( 2 ,600) ,3(2 ) , TI MDEP ( 20 , 36 ) , LI ST ( 30 00) ,LOC (200)

,

1 N 0 0 W T 1 ( POO ) , NODWT 2 ( 200 ) , TR ( 2 ) , D I ST ( 2 ) , SP FED ( 20 ) , EOGEWT ( 3000 )

,

2LAS0EP( ? ,20) ,KZER0(20 ) , EL I G ( 2, 100 ) , NT RAV ( 2 I , W < 2 , 100 ) , TSTAR ( 2 , 1 00 )

,

30PC0ST( ?0 ) , FARE (20 ) ,CAP( 20) , QUEUE ( SO) ,P ASS ( 50)
INTEGER GAP ,ELIG,EDGEWT, PASS
R F 5 L I M/. X , N

COMMON I MAX , B ,T I MDEP , L I ST ,LOC, Ml ,M2 , LAST, NODWT 1 , NODWT 2

,

IT R , D I S T , S P F E 0 , KF I N , E DG EWT , L AS DEP ,
T

, NZER 0 , FL I G

,

2A1 , A 2, 7 3 ,NTRAV,W, TSTAR,OPCOST, FARE , CAP , SLOPE ,DOL LAR , AL PHA,

N

3, NIJMVEH, I TER , INIT
I CA D = CAP(J)
L M AX = LASDEP ( 1 , J )+LAS0EP( 2, J

)

DO 8500 NCDE=1 ,

2

JTRIP = 0

TRAVTM = DIST(NODE) /SPEED!

J

)

LIM = NT RAV (NODE)
C. BELOW, IF CURRENT TRAVELER HAS ELIGIBILITY FOR A TRIP BY J WHICH
0 NO LONGER EXISTS, SET HIS ELIGIBILITY TO ZFRO

00 8001 M=1,LIM
JJ = E L I G ( N 0 D E , M ) / 1 0 0

JJTRIP = ELIG(N0DE,M)-JJ*100
1 F ( J.EQo JJ.AND. JJTRI P.GT. LASDEPINODE, J) ) EL I G ( NODE , M ) =0

8001 CONTINUE
DO 347 5 L L= 1 » L M AX
IF ( (NODE. EQ. l.AND. TIMDEP( J,LL ) „LE.O. ).0R. ( NODE. E Q. 2. AND.

lTI v DFP(J,LL)»GT 0 Oo )) GO TO 8475
JTPIP = JTFIP+1
TO = ABS ( TIMDEP( J,LL >

)

LOAD = 0

IFULL = ICAP+1
DO 8 42 5 M = 1 , L I

M

JJ = EL IG ( NODF , M ) /100
IF( INIT.EQ. l.AND. ITER.EQ.O. AND. JJ.NF.JI GO TO 8425
JJTRIP = ELIG(NOQE,M)-JJ*100

8005 WTP = WILPAY( T D, TRAVTM, N, TSTAR(NODE, M) ,W(NODE,M) , SLOPE, DOLLAR,
1 ALPHA

)

BFLOW , IF CURRENT TRAVELER IS ELIGIBLE FOR THE CURRENT TRIP, BUT
IS UNWILLING TO PAY THE PRICE BECAUSE THE TIME OF THE TRIP HAS
BEEN CHANGED SINCE THE LAST ITERATION, SET HIS ELIGIBILITY TO ZERO
I F( FL IG C NODE,M).NE. ( J*100 + JTRI P).OR. WTP.GE. FARF( J») GO TO 8007
EL I G ( NODE , M ) = 0

GO TO 8425
BELOW, IF THE CURRENT TRAVELER HAS ELIGIBILITY DIFFERENT FROM,
AND IS UNWILLING TO PAY FOR THE CURRENT TRIP, DO NOT MODIFY
HIS ELIGIBILITY

8007 IF(WTP.LT.FARE( J ) ) GO TO 8425
C BELOW, IF CURRENT TRAVELER IS ELIGIBLE FOR A DIFFERENT VEHICLE
C THAN J USE NET INCREMENT RATHER THAN TOTAL BENEFIT

I F ( JJTRI P.NE.O. AND. J J.NE. J ) GO TO 8010
VALUE = A 2*F ARE ( J ) +A3+WTP
GO TO 8050

8010 NDEP = 2 * J J TR I P

8015 IF( (TIMDEP(JJ,1 ) . LE. 0. . AND. NODE. EQ. 2 ) . OR.
1(TIMDEP( JJ,n.GT.O. .AND. NODE. EQ.D) NDEP = NDEP-1

C PASSENGFR ( NODE , M I HAS BEEN FOUND TO HAVE BEEN ELIGIBLE FOR
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TH P JJTRIP DEPARTURE FROM NHD F BY VFHICLE JJ, A D QVE, AT
STATEMENTS 8010 AND 8015, JJTRIP WAS '“ONVERTFO TP NOFP - THE
OEPARTUPF MUMPER O c THE JJTRIP TRIP FROM NODE
TO J J = ABS(TIMQEP( JJ,NDEP)

)

TRAVJJ = CISTINOOE ) /SPEED! JJ

)

WTP2 = WILFAY(TDJJ,TR^VJJ,M,TSTAP( NODE, M ) , W ( NODE ,M ) , SLOPE, DOLLAR,
I ALPHA )

VALUF = A2*( FARE( J )-FARE( JJ ) )+A3*( WTP-WTP2)
I F ( VALUE o LE» Go ) GO TO 842 5

8050 LOAD = LOAO+1
IF ( LOAD.GTaCAPI J M GO TO 8060
QUEUE ( LOAD ) = VALUE
PASS (LOAD) = M

GO TO 8425
8060 QUEUE ( I FULL ) = VALUE

PASS (I FULL) = M

THE FOLLOWING LOOP MOVES THE SMALLEST COMPONENT IN QUEUE TO THE
LAST (IFULL) POSITION, THEREBY DISALLOWING THF CORRESPONDING
PASSENGER FRC V BOARDING
DO 8075 N N = 1 » I C A

P

I F ( QUEUE ( NN ) a GE o QUEUE ( NN+ 1 ) ) GO TO 8075
TE'1 = QUEUE (NN)
ITEM = PASS(NN)
QUEUE (NN) = QUEUE ( NN + 1 )

PASS(NN) = P ASS ( NN+1 )

QUEUE ( NN + 1 ) = T EM
PASS (NN+1 ) = ITEM

8075 CONTINUE
BELOW, IF PASSENGER IFULL WAS ELIGIBLE FOR CUPP F NT TRIP, SET HIS
ELIGIBILITY TO ZFRO SINCE HE WILL MOT BF BOARDED
MX = PASS(IFULL)
IF(ELIG(N0DE,MX)oEQ»(J*100+JTRIP) ) FL IG ( MOD E , M X ) = 0

8425 CONTINUE
ML IM = MI NO (LOAD, ICAP )

IF(MLIM.EC.O) GO TO 8475
DO 8450 MM= 1 , ML I*M

M = PASS ( MM I

8450 FL IG( NODE »M) = J*100+JTRIP
8475 CONTINUE
8500 CONTINUE

RETURN
END
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MPtLER OPTIONS- NAMR = MA I N , 0PT=0 1 , L I N ECNT=57 , SOU RC E, E RC OT C ,NOL IS T , HECK , LOAD , MA P, NO

E

SUBROUTINE IMBEN(J,KI
DIMENSION B(2)»TRATIM(2)»NTRAV(2),ELIG(2,100),D!ST(2)
DIMENSION W( 2,1001 ,TS TAR ( 2, 100)
DIMENSION 0PC0ST(20) , F ARE ( 20 ) , CAP ( 20) ,SPEED(20)
DIMENSION EOGFWTf 3000 ),LIST(3000),LOC(200), MODWT 1 ( 200 ) , N0DWT2 ( 200

)

1 , IMAX( 2, 600) , TP (2 ) ,NZERO( 20) ,T IMDEP ( 20,36) , LASDP0(2 ,201
DIMENSION QUEUE ( 50

)

INTEGER CAP, ELI G,EDGEWT
PEAL N » I M A X

COMMON I MAX, B,TIMDEP,LI ST ,LOC , Ml , M2 , L AST, N0DWT1 , N0DWT2

,

1TR,DIST,SPF P D,KFIN,EDGEWT,LASDEP»T,NZER0,ELIG»
2A1 , A2,A3,NTRAV,W,TSTAR,0PC0ST, FARE, CAP, SLOPE , DOL LAR , ALPHA ,

N

3 , N U M V E H , ITER, INIT
DO 3000 L = 1 ,

2

r
3 ( L )

= -A1*OPCOST( J)*DIST(L)
TR AT I M < L ) = DISTIL)

3000 TRATIM(L) = T R AT I M ( L ) / S PE ED ( J

)

P 1 = K

R 2 = KFIN
TD = R1*T/P2
I FULL = CAP ( J 1 + 1

ICA.P = C A P ( J )

DO 3300 NODE = 1,2
NTRIP = 0

LOAD = 0
ILIM = NTRAV ( NODE

)

DO 3300 I = 1 , 1 L TM
WTP = WI LPAY( TO,TRATIM( NODE) ,N,TSTAR (NODE, I > ,W (NODE, I )

,

1SL0PE, DOLLAR, ALPHA

)

IF ( WTP 8 LT.FARE( J ) ) GO TO 3300
JJ = EL I G ( NODE , I )/100

C BELOW, IF INITIAL ASSIGNMENTS ARE GIVEN, PASSFNG EPS APE ELIGIBLE
C ONLY FOR THEIR ASSIGNED VEHICLES ON THE INITIAL ITERATION

I F ( J J.NE. J.AND. INIT.EQ. 1. AND. ITER.EQ.O) GO TO 3300
NTRIP = FL IG (NODE, I )-JJ*100
IF (NTRIP. EQ, 0»0R, JJ.EQ. J) GO TO 3010
NDEP = 2*NTRIF
IP((TIMDEP(JJ,1).LE,0..AND. NODE . EQ® 2 ) .OR.

1 ( T IMDEP( JJ, 1 I.GToO. .AND. NODE, EQ. 1 ) ) NDEP = NDEP-1
THE FOLLOWING STATEMENTS, UP TO 3010, COMPUTE THE NET INCREMENTAL
BENEFIT TO TRAVELERS ASSIGNED TO VEHICLES OTHER THAN J

TDJJ = ABS(TIMDEP(JJ,NDEP)

)

TRAVJJ = DIST(NODE)/SPEED( JJ)
WTP2 = WI LPAY(TDJJ, TRAVJJ , N , TS T AR ( NOD E , I ) , W(NODE, I )

,

ISLOPE, DOLLAR, ALPHA

)

VALUE = A2*( FARF( J )-FARE< JJ) ) +A3*( WTP-WTP2 )

I F ( VALUE. LE. Oo ) GO TO 3300
GO TO 3020

3010 VALUE = A 2* FARE ( J )+A3*WTP
3020 LOAD = LOAD+1

IF ( LOAD. LE. ICAP) GO TO 3250
QUEUE ( I FULL ) = VALUE
DO 3150 NN = 1 , ICAP
IF(QUEUE(NN).GE.QUEUE(NN+1) ) GO TO 3150
TEM = QUEUE ( NN

)

QUEUE(NN) = QUEUE ( NN+1

)



QUEUE (NN+1) = T EM
3150 CONTINUE

8 ( NODE ) = B( NODE ) VAL'JE-QUEUE ( I FULL )

GO TO 3300
3250 3 ( NODE) = B ( NODE )+ VALUE

QUEUE (LOAD) = VALUE
3300 CONTINUE

RETURN
END
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DMPILER OPTIONS - NAM E= M A I N , 0PT = 0 1 , L I NEC NT=57 t SOURC E , E RC D I

C

, NOL I S T , DECK ,LOAD , MA P, NO

E

FUNCTION WILPAY(TD,TRATIM,N,TSTAP , W , $L 0 P E , DOL L AP , ALPHA

)

REAL N

DEL = ABS(TD+(1»—W)*TRATIM—TSTAR)
A = ( DEL**N+(TRATIM/SLOPE )**N ) **( 1 • /N)
W I L P A Y = DOLLAR*EXP(-(A/ALPHA)**2)
RETURN
END
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4PILTR OPTIONS - NaME = MA I N , 0 P T=0 1 , L T N EC NT = 57 , SOURC E , E PC 0 1 C , NOL I S T , DEC K , LOA.O , M A P , NO E

SUBROUTINE SCFED(J)
DIMENSION B( 2 ) , I MAX (2 ,600 ) , C ( 2 , 600 ) , TR ( 2 ) , I TR ( 2 ) , DI ST < 2 ) » S PE ED < 20

)

1,TRATIM<2 )» I T I ME ( 2 ) » T I MDE P ( 20» 36 ) » LASDEP ( 2 » 20) » N ZERO ( 20) ,

2EDGEWT ( 3000) * L I S T ( 3000 ) ,LOC (200 ) ,NODWTl< 200 ) , N00WT2 (20 0

)

3, EL IG(2t 100)
COMMON TMAX, B.TIMDEP.L IST,LOC, Ml ,M2,LAST,N0DWT1, N0DWT2

»

1TR,DIST,SPEED,KFIN,EDGEWT,LASDEP,T,NZER0,ELIG
INTEGER C ,REACY1, READY 2, EDGE WT, ELI

G

REAL IMAX
RKFIN = KFIN
DELT = T/PKFIN
DO 3500 L =1 * 2

TRATIM(L) = DIST(L)
TRATIM(L) = TPAT IM( L )/SPEED( J

)

ITIME(L) = ( TRATI M( L ) /DELT)+0 o 5

3500 ITR(L) = TR(L)/DELT+0 o 5

K 1 = KFIN+1
DO 3550 KK=1,K1
C ( 1 ,KK ) = 0

3550 C( 2,KK) = 0

RE ADY1 = IT IMF ( 1 ) MTR ( 2 )

READY2 = I T I ME ( 2 ) *-! TR ( 1

)

KKMAX = MAX0(PEADY1» READY 2 ) + Kl
DO 3600 KK= 1 » KKMAX
I M AX ( 1 , KK ) = 0„

3600 IMAX(2 t KK) = 0 o

KK - KFIN
3650 CALL I M B E N ( J * KK- 1

)

IMAX( 1 »KK ) = AMAX1 (IMAX( 1,KK+1 ) ,B( 1 ) + IMAX ( 2 , KK+R EADY1 )

)

I M AX ( 2 » KK ) = AMAX1 < IMAX(2,KK+1 ) , B( 2 ) + IMAX ( 1 , KK +R EADY2

M

IF( IMAX(1,KKI,GT. IMAXCl.KK+l) » C(l t KK) = 1

IF( IMAX(2»KK).GT.IMAX(2,KK+1) ) C(2,KK) = 1

KK = KK—

1

IF(KK.NE,0) GO TO 3650
C DETERMINE NODE ( NZERO ) OF INITIAL DEPARTURE

IF(NZERO( JI.NE.O) GO TO 3700
I F ( I MAX ( 1 * 1 ) • GT • I MAX ( 2 f 1 ) ) GO TO 3675
NODE = 2

GO TO 3720
3675 NODE = 1

GO TO 3720
- 3700 NODE = NZERO(J)
C BEGIN FORWARD RECOVERY OF THE SCHEDULE
3720 NUMDEP = Q

3725 KK=1
3730 IF (C(NODE ,KK ).E0.0) GO TO 3735

NUMDEP = NUMDEP+1
RK = KK—

1

I F ( NODE. EQ« 2 ) GO TO 3745
TIMDEPU, NUMDEP) = RK*DELT+10»**(-4)
NODE = 2

KK = KK+ITIME(1)+ITR<2)
GO TO 3740

3735 KK = KK+1
3740 IF(KK.GT.KFIN) GO TO 3750

GO TO 3730
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3745 T I M 0 E P ( J,NUMDEP) = -RK*DELT
NODE = 1

KK = KK+ITIME ( 2 I +ITR( 1

)

GO TO 3740
C BELOW, CALCULATE TOTAL NUMBER OF DEPARTURES FROM EACH NODE
3750 L ASDF P ( 1 ,

J

)
- 0

LASDEP(2,J) = 0

I F ( NUMOEP eGTaO) GO TO 3760
C THE FOLLOWING TWO STATEMENTS CONSTITUTE THE REPRESENTATION OF A

C NULL VEHICLE SCHEDULE
L ASDEP ( 1 » J ) =1
T I MDEP ( J , I )=5o*T
GO TO 3780

3760 DO 3775 N DE P= 1 , NUM DE

P

IF(TIMDEP( JtNDEPUGT.Oo ) LASDEP(1,J) = LASDEPU. , J > + 1

IF(TIMDEP(J,NDEP)*LE®0 ©

)

LASDEP(2,J) = L ASDEP { 2, J ) + 1

3775 CONTINUE
3780 RETURN

END
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1MPILER OPTIONS - N AM E = MA I N, 0PT=0 1 , L I NECNT=57 , SOURC E , FBC 01 C ,NOL I S T , DEC K , LOAD ,MA P,NOE

SUBROUTINE MATCH
INTEGER EDGFWT, EPS, RT, RTSET
INTEGER ELIG
DIMENSION EDGEWT (3000) , L I ST ( 30 00 ) » L OC ( 200 ) ,N0DWT1( 200) , N0DWT2<200)
1»LABEL1(200) »LABEL2(200)
DIMENSION B ( 2 » t I MAX (2, 600) ,DI ST( 2) , SPEED ( 20 ) ,T I MDE P I 20 , 36 ) ,

1LAS0EP(2,20),NZER0(20),ELIG(2,100),TR<2)
COMMON IMAX,B,TIMDFP,LIST,L0C,M1 , M2 , |_ AS T , NODWT 1 , N0DWT2 ,

1TR,DIST, SPEED, KF IN , E DGE WT , L A SDE P

,

T
, N Z ERO , EL I

G

EDGES ARE ORDERED BY LIST. LOC(M) GIVES LOCATION IN LIST OF THE
FIRST PLACE CORR ESPON D I NG TO AN EDGE EMANATING FROM NODE M IN
SET 1. NODWT 1 AND N0DWT2 GIVE WEIGHTS OF NODES IN SETS 1 AND 2.
EDGEWT GIVES WEIGHTS OF EDGES IN ORDFR OF THEIR APPEARANCE IN LIST
THE LABEL ARRAYS LIST THE BACK-NODES OF NODES IN THE TREE

*#£***$$:**$# ****>)<*##*

FIRST FIND LARGEST E DG EWT , MA X W T , I N GRAPH
5 MAXWT' = 0

10 DO 15 1 = 1, LAST
15 MAXWT = MAXO( MA XWT , EDGE WT ( I )

)

SET ALL NCDE WEIGHTS FOR NODES IN SET 1 EQUAL TO MAXWT.
SET WEIGHTS FOR NODES IN SET 2 EQUAL TO ZERO.
INITIALIZE LABEL1 AND LABEL

2

20 DO 30 M= 1 » M

1

25 NODWTl(M) = MAXWT
30 LAB ELI ( M ) = 0

35 DO A 5 L= 1 , M2
AO NODWT 2 ( L ( = 0
A 5 L A B EL2 ( L ) = 0

FIND NODE RT IN NODE SET RTSET WHICH HAS NON-ZERO NODE WT AND DOES
NOT MEET THE MATCHING. (AN EDGE IN THE MATCHING IS TAGGED WITH A

MINUS SIGN IN EDGEWT)
FIRST SEARCH MODE SET 1

50 DO 85 M=1 ,M1
55 I F ( NODWT 1 ( M ) . LE » 0 5 GO TO 85
60 ILIM1 = LOC(M)

ILIM2 = LCC ( M+l ) -1
DO 70 I=ILIM1, ILIM2

65 IF(EDGEWT(I I.LT.O) GO TO 85
70 CONTINUE

RT = M

RTSET = 1

75 GO TO 155
85 CONTINUE

C THERE WAS NO NODE IN SET 1 WHICH HAD NON-ZERO NODE WT AND WHICH
C DID NOT MEET THE MATCHING - SEARCH NODE SET 2

90 DO 120 L=1,M2
95 I F ( NODWT 2 ( L ) • LE • 0 ) GO TO 120

100 DO 115 1=1, LAST
105 I F ( L I ST ( I ).NE.L) GO TO 115
110 IF(EDGEWT(I ).LT.O) GO TO 120
115 CONTINUE

RT = L

RTSET = 2

116 GO TO 155
120 CONTINUE
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125 RETURN
C IF 125 IS R E ACHED » NO NODE EXISTS WITH NON-ZERO WEIGHT THAT DOES
C NOT MEET MATCHING - THUS OPTIMAL MATCHING IS REACHED
C NODE RT IN SET RTSET IS A TREE® THE OUTER NODES BELONG TO RTSET,
C, RT IS THE ROOT OF THE TREE
C IN THE NEXT DART THE EDGES IN THE EQUALITY SUBGRAPH ARE SEARCHED
C TO SEE IF EVERY EDGE IN THE SUBGRAPH WHICH MEETS AN OUTER NODE OF
C THE TREE MEETS AN INNER NODE OF THE TREE AT ITS OTHER END

15 5 DO 23 5 M= 1 , M

1

165 I L I Ml = LOC(M)
I L I M2 = LOC ( M+l ) -1
DO 235 I=ILIM1,ILIM2

170 LL = LIST (I)

IEDGE = I AB S ( FDGEWT ( I ) )

IF(N0DWT1(M)+N00WT2<LL).NE.IEDGE) GO TO 235
C EDGE I IS IN EQ® SUBGRAPH, CHECK IF IT MEETS AN OUTER NODE, AND IF SO
C WHETHER IT MEETS AN INNER NODE AT ITS OTHER END

175 IF ( RTSET, EQ. 1 ) GO TO 210
C RTSET IS NODE SET 2

IF ( LABEL2 (LL > „ EQ. 0® AND® LL • NE • RT ) GO TO 235
C LL IS AN CUTER NODE OF THE TREE

195 I F ( LAB EL 1 ( M ) » NE o 0 ) GO TO 235
NUZERO = LL
MU = M

GO TO 250
RTSET IS NODE SET 1 , EDGE I IS IN EQ® SUBGRAPH, CHECK IF IT MEETS AN
OUTER NODE, AND IF SO WHETHER IT MEETS AN INNER NODE AT OTHER END

210 IF(LABEL1(M),EQ.0.AND.M®NE.RTI GO TO 235
NODE M IN NODE SET 1 IS AN OUTER NODE OF THE TREE
I F ( LABEL2(LL ).NE.O» GO TO 235
NUZERO = M

MU = LL
GO TO 315

235 CONTINUE
EVERY EDGE IN THE EQUALITY SUBGRAPH WHICH MEETS AN OUTER NODE OF
THE TREE MEETS AN INNER NODE OF THE TREE AT ITS OTHER END
STATEMENT 550 STARTS THE EPSILON REDUCTION PROCEDURE

237 GO TO 550
BELOW, EDGE I MEETS OUTER NODE NUZERO = LIST(I) OF THE TREE, AND
NODE MU = M, NOT IN THE TREE
CHECK WHETHER MU MEETS AN EDGE IN MATCHING

250 LIM1 = LOC ( MU *

L I M2 = LOC (MU+1 )-l
DO 254 I=LIM1,LIM2

253 IF(EDGEWTU).GE.O) GO TO 254
' NU1 = LIST!

I

)

GO TO 265
254 CONTINUE"

MU MEETS NO EDGE IN MATCHING® SET LEAF, THE END NODE IN PATH TO RT,
EQUAL TO MU

258 L EAF=MU
259 LABELl(MU) = NUZERO
260 GO TO 400

C BELOW, MU MEETS EDGE I IN MATCHING. NU 1 IS THE NODE WHICH MEETS I

C AT THE OTHER END
265 IF(N0DWT2( NU1I.NE.0) GO TO 270
266 LEAF = NU1
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L A 6 E L 2 ( NU 1 I
= mij

LA BEL1 ( MU ) = NU ZERO
26 3 GO TO 4-40

C EXTEND TREE BY INCLUDING MU AND NO 1

270 LABELl(MU) = NUZERO
272 L A 8 E L 2 ( N U 1 ) = MO
275 GO TO 155

C EDGE I MEETS CUTER NODE NUZERO = M AND NODE MU = LIST(I),NOT IN
C TREE, AT ITS CTHER END
C SEE IF MU MEETS AN EDGE IN THE MATCHING

315 DO 335 M N = 1 » M

1

320 LI Ml = LOC (MM)
L I M2 = LOC (MM + 1 ) -

1

DO 33 5 II = LI Ml, LI M2

325 IF(LIST( I II.NF.MU) GO TO 335
330 IE(EDGEWT( II I.GE.O ) GO TO 335

NU 1 = MM
GO TO 365

335 CONTINUE
MU MEETS NO EDGE IN MATCHING-GET N C W MMT.HING RY INTERCHANGING
EDGES IN PATH FROM MU TO RT

350 LEAF = MU
352 L A 8 E L 2 ( MU ) = NUZERO
355 GO TO 440

NODE MU MEETS EDGE II IN MATCHING,, EDGF II MEET^ NU 1 AT OTHER END,
SEE IF NU 1 HAS NON-ZERO WEIGHT

365 IF(NODWTKNUlIoEQoO) GO TO 390
NU 1 HAS NON-ZERO NODE WT, EXTEND TREE TO INCLUDE MU AND NU1,

375 LABEL2 ( MU ) = NUZERO
330 LABEL 1 ( NU1 ) = MIJ

385 GO TO 155 #***$ a***##
390 LEAF = NU

1

LA B EL 1 ( NU 1 } = MU
LA B EL2 ( MU ) = NUZERO
NODE WT OF NU1=LEAE IS ZERO. INTERCHANGE EDGES IN PATH FROM LEAF
TO RT TO GET NEW MATCHING
IN THE FOLLOWING PART, A NEW MATCHING IS FOUND BY INTERCHANGING
EDGES IN TREE IN PATH FROM LEAF TO RT. STATEMENT 400 BEGINS CASE
WHERE LEAF IS IN NODE SET 1.

400 L I M 1 = LOC(LEAF)
L I M2 = LOC (LEAF + 1 I -1
DO 425 1=LIM1,LIM2

410 IF (L I ST ( I ).NE.LABEL1< LEAF )) GO TO 425
415 EDGE WT( I )

= -EDGEWTU)
420 GO TO 430
425 CONTINUE
430 LEAF = LABELl(LEAF)
435 IF(LABEL2(LEAF).EQ.O) GO TO 480

C 440 BEGINS CASE WHERE LEAF IS IN NODE SET 2

440 LEAF1 = LABEL2I LEAF

)

445 LIM1 = LOC(LEAFl)
L I M2 = LOC ( LEAF 1 +1 )-l
DO 465 I=LIM1,LIM2

450 I F C L IST< I J.NE.LEAF » GO TO 465
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455 EOGFWT( I )=-FOGEWT (I )

460 GO TO 470
465 CONTINUE
470 LEAF=LFAF1
475 I F ( LABEL1 ( LEAF )oNF a O) GO TO 400

C THE FOLl OWING STATEMENTS DISCARD THE CURRENT TRFE
4ft D 4TQ V = I » M

1

aoo LA3ELKM) = 0
4H5 DO 500 L = 1 1

w 2

5 00 L A 3 E L 2 ( L ) = 0

505 GO Tn 50
Q a*##* *******
C THE FOLLOWING PART FINDS THE MAXIMUM EPS TO BE USED IN NODE
C WEIGHT REDUCTION

550 EPS = 1 0**5
560 IF(RTSET,EQ.l ) GO TO 620
565 DO 605 M=l, w l

570 LI Ml = L 0 r
(
v

)

L I M2 = L0C(M+1)—

1

DO 605 I = L I Ml, LI M2
575 LL = LIST(I)

IF(LA3EL2<Ln.EQ.0.AND.LL.NE.RT» GO TO 605
5 30 FF5 = M I NO ( E PS t NOD WT2 ( LL ) )

585 IEDGF = I APS ( FDCEWTm I

T F ( NfJDWTl ( M ) +N0DWT2 < LL ) , EQ. I EDGE ) GO TO 605
590 E D S = MINO( F^StNODWTl ( M)-»-N0DWT2( LU-EDGEWTI I))
605 CONTINUE
610 GO TO 67C
620 DO 665 M=l f Ml
62 5 IF(LAPEL1 m.EQ.O. AND. M.NE.RTI GO TO 665
630 EPS = MIN0(EPS»N0DWT1(M)

)

63 5 LI Ml = LQC(M)
L I M 2 = LOC (

M + l ) -

1

DO 650 I=LIM1,LIM2
640 IEDGF = I ABS ( ED GEWT ( I )

1

L L = L I S T ( I )

IFINODWTl (M ) +N0DWT2 (LL >.EQ. IEDGE) GO TO 650
EPS = MINO( EPS t N0DWT1 ( M) + N0DWT2(LL ) -E DGEWT ( I )

)

650 CONTINUE
665 CONTINUE ************

THE NEXT PART DOES THE NODE WEIGHT REDUCTION
670 LI MF PS = 0

680 DO 735 M=1,M1
685 IF(LABEL1 (Ml. EQ.O) GO TO 730
690 I F ( RTS ET. EO* 1 ) GO TO 705
695 N0DWT1 ( M ) = N0DWT1 ( M ) + EPS
700 GO TO 735
705 NODWTl(M) = NCDWT1 ( M ) -EPS
710 I F ( NODWT 1 ( M ) , NE. 0 ) GO TO 735
715 LIMEPS = 1

720 NU = M

725 GO TO 735
730 IFIRT.EO.M.ANDoRTSET.EQ.l ) GO TO 705
735 CONTINUF
740 DO 800 L = 1 » M

2

745 I F ( LABEL2 ( L), EQ.O) GO TO 790
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760 IF(RTSET o E0<,2> GO TO 765
755 NOOW T2 ( L ) = NO DWT 2 I L ) + EP

S

760 GO TO 800
765 NODW T2 ( L ) = N0QWT2 ( L ) -EPS
770 IF(N0DWT2(L )„NE o 0> GO TO 800
775 LIMEPS = 1

780 MU = L

785 GO TO 800
790 IF (RTo E0» L® ANDo RTSET, EQ.2 ) GO TO 765
800 CONTINUE ************

BELOW, IF EPS IS LIMITED BY AN OUTER NODE WEIGHT BECOMING ZERO
( L I MEPS= 1 ) » AND IF THAT NODE IS RT , THE MATCHING IS RETAINED AND THE
TREE DISCARDED,, OTHERWISE THE TREE IS KFPT

805 IF(LIMEPS.EO.O) GO TO 155
815 IF(RT$ET.EQol ) GO TO 835
820 IF(N0DWT2(RT).EQ«0) GO TO 480
825 LEAF = NU
830 GO TO 440
835 IF(NODWTKRT).EQ.O) GO TO 480
840 LEAF = MU
845 GO TO 400

END
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01PILER OPTIONS - NAN' E = MA I N, 0PT=0 1 , L IN ECNT=57 , SOURC E , FBC DI C ,NOL IS T , DEC K ,LOAD , MA P, NOE

SUBROUTINE PPL I

M

INTEGER CAP , EL I G , EDGE WT , F I LL »C L ASS
D F A L I M X t N

DIMENSION JTRIP(20) , FILL (20 I ,CLASS( 20)
DIMENSION 8< 2) , NT RAVI 2 ) ,ELIG( 2 ,100) ,01 ST (2 ) ,W(2» 100 )

,

ITS TAR I 2, 100) » OPCnS T( 20) .FARE (20) ,CAP( 20 ) , SPEED ( 2 0 ) , EDGE WT ( 3000) ,

2L I ST< 3 000 ) ,LOF ( 200 ) , N0DWT1 ( 200 ) ,N0DWT2( 200 ) , IN AX ( 2, 600) , TR< 2 ) ,

3N Z ERO( 20 ) , TI‘1DEP( 20,36 ) ,LASDEPl 2,20)
CUMPON I VAX,B,TIMDEP,L1ST,L0C»N1

,

M2 , L AS

T

, NOOWT 1 , NOD WT 2 ,

1TP ,01 ST, SPFE0,KF IN.EOGEWT , LASDEP ,T , NZERO, EL I G,
2A1 , 42, A 3 ,NTRAV,W,TSTAR, DPCOS T , F AP E , CAP , SLOP E , DOL L AR , AL P HA ,

N

3 , NUMVEH
81 = 0.
R2 = 0,
MAXTRP = 0

NTYPE = 1

on 7050 J = 1 , NUMVEH
I F ( J a NE« 1 ) GO TO 7005
CLASS (1) = 1

GO TO 7010
C STATEMENT 7005 DETERMINES IF VEHICLE J IS IDENTICAL TO VEHICLE J-l
7005 IF(SPELD(J)aEOaSPEED(J-l ) , AND, OPCOS T ( J ) . EQ„ OPC OS T (

J -1

)

e AND,
IFARE ( J ) o EQ,PAPE( J-l ) , ANO.CAPI J ) »PQ, CAP( J-l ) ) GO T 0 7040
NTYPE = NTYPE+1

7010 DO 7020 NCDF=1,2
L I M = NTR.AV! NODE

)

DO 7020 1 = 1 , L I

M

7020 EL IG ( NODE , I ) = J*100
CALL SCHED(J)
NST ART = NZERO(J)
I F ( NSTARToEQ, 0*AND„ I MAX (l,l)oGT.IMAX(2,l)) NSTAR T=1
IF (NSTAF ToEO.Oo AND, I MAX! 1 , 1 ) . L E. I MAX ( 2 , 1 ) ) NSTAR T=2
WRI TE ( 6 ,7030) J , I M AX ( NS T A RT , I

)

7030 FORMAT! 1H0, 'UPPER LIMIT TO BENEFIT OF VE H I C LE • , I 4 ,
• EQUALS F10 . 3

)

70^0 CLASS! J ) = NTYPE
7050 B 1 = B1+IMAX(NSTART,1

)

WRITE(6,7055) B1
7055 FORMAT ( 1H0, ' OPPFR BOUND B1 =',F10.3>

DO 7070 J = l, NUMVEH
J TOT = 2, *T*SPEED( J ) /( DIST! 1 )+DIST( 2 ) ) + l.

TOT 1 = JTCT
T0T2 = JTOT/2

C DETERMINE IF JTOT IS ODD
IF! TOTl/2..GT*TOT2 ) GO TO 7060
JTRIP(J) = JTOT/2
GO TO 7065

7060 JTRIP(J) = < JTOT+1 ) /2
7065 MAXTRP = MAXTRP+ JTR I P ( J

)

7070 FILL(J) = 0

C NOW BEGIN ALLOCATING TRAVELERS TO VEHICLES IN THE MAXIMUM
C INVENTORY OF TRIPS

N1 = NTRAV(l)
N2 = NT RA V ( 2 )

7075 BJMAX = 0.
NT0P=0
DO 7090 J=l, NUMVEH

I
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1 F ( F ILL ( J )„ E0 o l) GQ TO 7090
TRAVTM = (DI5T( 1 ) +r>I ST ( 2 I )/(2 o *SFEE0( J) )

WTP = WILPAY! 1® , TRAVTM, N, 1. ,1« , SLOP E, DOLL AR , ALPHA)
CAP AC = CAP(J)
BJ - (-7 1*0PC0ST( J)MDIST(1 ) DISK 2 II ) / ( 2* CAPAC ) +A2 *F£R E ( J )+A3*WTP
I F ( BJ„LF,BJ^AX ) GO TO 7090
13 J WAX = RJ
NT OP = CLASS(J)

7090 CONTINUE
I F ( N TOP « E Qo 0 ) GO TO 7150
00 7145 J = 1 » NUM VF

H

IF(CLASS( J)«NE«NTOP» GO TO 7145
FILL! J ) = 1

L IMJ = JTR I P ( J

)

00 7140 MD= 1 » L I M

J

IF(NIoLEbO) GO TO 7100
LOAD = VI NO (CAP( J ) ,N1

)

82 = B2+LCAD*BJMAX
N1 = N 1 -C AP (

J

'

7100 IF(N2bLE»0) GC TO 7110
LOAD = MI NO ( CAP ( J) ,N2)
B 2 = B2+LCAD*BJMAX
N 2 = N2— CAP ( J I

7110 IF(NloLE»0.AND«N2 o LE«0) GO TO 7150
7140 CONTINUE
7145 CONTINUE

GO TO 7075
7150 WRITE(6,7155) 82
7155 FORMAT! 1 H 0 »

' UP D ER BOUND B2 =',F10„3)
RETURN
END
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