

NBS

NSRDS-NBS 62

U.S. DEPARTMENT OF COMMERCE/National Bureau of Standards

Compilation of Rate Constants for the Reactions of Metal Ions in Unusual Valency States

QC

100
.0573
NO. 62
1978
C. 2

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards' was established by an act of Congress March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau's technical work is performed by the National Measurement Laboratory, the National Engineering Laboratory, and the Institute for Computer Sciences and Technology.

THE NATIONAL MEASUREMENT LABORATORY provides the national system of physical and chemical and materials measurement; coordinates the system with measurement systems of other nations and furnishes essential services leading to accurate and uniform physical and chemical measurement throughout the Nation's scientific community, industry, and commerce; conducts materials research leading to improved methods of measurement, standards, and data on the properties of materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government Agencies; develops, produces, and distributes Standard Reference Materials; and provides calibration services. The Laboratory consists of the following centers:

> Absolute Physical Quantities ${ }^{2}$ - Radiation Research - Thermodynamics and Molecular Science - Analytical Chemistry - Materials Science.

THE NATIONAL ENGINEERING LABORATORY provides technology and technical services to users in the public and private sectors to address national needs and to solve national problems in the public interest; conducts research in engineering and applied science in support of objectives in these efforts; builds and maintains competence in the necessary disciplines required to carry out this research and technical service; develops engineering data and measurement capabilities; provides engineering measurement traceability services; develops test methods and proposes engineering standards and code changes; develops and proposes new engineering practices; and develops and improves mechanisms to transfer results of its research to the utlimate user. The Laboratory consists of the following centers:

Applied Mathematics - Electronics and Electrical Engineering² - Mechanical Engineering and Process Technology ${ }^{2}$ - Building Technology - Fire Research Consumer Product Technology - Field Methods.

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides scientific and technical services to aid Federal Agencies in the selection, acquisition, application, and use of computer technology to improve effectiveness and economy in Government operations in accordance with Public Law 89-306 (40 U.S.C. 759), relevant Executive Orders, and other directives; carries out this mission by managing the Federal Information Processing Standards Program, developing Federal ADP standards guidelines, and managing Federal participation in ADP voluntary standardization activities; provides scientific and technological advisory services and assistance to Federal Agencies; and provides the technical foundation for computer-related policies of the Federal Government. The Institute consists of the following divisions:

Systems and Software - Computer Systems Engineering - Information Technology.

[^0]The National Bureau of Standards was reorganized, effective April 9, 1978.

Compilation of Rate Constants for the Reactions of Metal Ions in Unusual Valency States

George V. Buxton and Robin M. Sellers

Cookridge Radiation Research Centre,
Cookridge Hospital,
Leeds LS16 6QB,
Great Britain

[^1]
Library of Congress Cataloging in Publication Data

Buxton, George V

Compilation of rate constants for the reactions of metal ions in unusual valency states.
(Nat. stand. ref. data ser., Nat. Bur. of Stand. ; NSRDS-NBS 62) Supt. of Docs. no.: C 13.48:62

1. Chemical reaction, Rate of-Tables, etc. 2. Metal ions-Tables.
I. Sellers, Robin M., joint author. II. Title. III. Series: United States.

National Bureau of Standards. National standard reference data series ; NSRDS-NBS 62.
QC100.U573 no. 62 [QD502] 602'.1s [546,.3]

NSRDS-NBS 62

Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. (U.S.), 62, 78 pages (June 1978) CODEN: NSRDAP
(C) 1978 by the Secretary of Commerce on Behalf of the United States Government

Foreword

The National Standard Reference Data System provides access to the quantitative data of physical science, critically evaluated and compiled for convenience and readily accessible through a variety of distribution channels. The System was established in 1963 by action of the President's Office of Science and Technology and the Federal Council for Science and Technology, and responsibility to administer it was assigned to the National Bureau of Standards.

NSRDS receives advice and planning assistance from a Review Committee of the National Research Council of the National Academy of Sciences-National Academy of Engineering. A number of Advisory Panels, each concerned with a single technical area, meet regularly to examine major portions of the program, assign relative priorities, and identify specific key problems in need of further attention. For selected specific topics, the Advisory Panels sponsor subpanels which make detailed studies of users' needs, the present state of knowledge, and existing data resources as a basis for recommending one or more data compilation activities. This assembly of advisory services contributes greatly to the guidance of NSRDS activities.

The System now includes a complex of data centers and other activities in academic institutions and other laboratories. Components of the NSRDS produce compilations of critically evaluated data, reviews of the state of quantitative knowledge in specialized areas, and computations of useful functions derived from standard reference data. The centers and projects also establish criteria for evaluation and compilation of data and recommend improvements in experimental techniques. They are normally associated with research in the relevant field.

The technical scope of NSRDS is indicated by the categories of projects active or being planned: nuclear properties, atomic and molecular properties, solid state properties, thermodynamic and transport properties, chemical kinetics, and colloid and surface properties.

Reliable data on the properties of matter and materials are a major foundation of scientific and technical progress. Such important activities as basic scientific research, industrial quality control, development of new materials for building and other technologies, measuring and correcting environmental pollution depend on quality reference data. In NSRDS, the Bureau's responsibility to support American science, industry, and commerce is vitally fulfilled.

Ernest Ambler, Director

Preface

This report is one of a series of data publications on radiation chemistry; the aim of the series is to compile, evaluate, and present the numerical results on processes occurring in systems which have been subjected to ionizing radiation. Various kinds of data are important in radiation chemistry. The quantities which were measured first were the observed radiation yields or G values (molecules formed or destroyed per 100 eV). Various indirect methods based on G values have been used to determine yields of transient species and relative rates of reactions. The spectral properties (optical, electron spin resonance) of transients have provided a direct method for their identification, and rates of the very fast reactions of transients which occur in irradiated systems have been measured directly by spectroscopic methods. Conductivity and luminescence methods have also provided a means of measuring properties of transients and their kinetics. Some reactions which occur in irradiated systems have also been studied by other methods, such as photochemistry, electric discharge, ultrasonics, chemical initiation, electron impact, etc. The emphasis in these publications is on the data of radiation chemistry, but where other pertinent data exist, they are included.

The data of radiation chemistry are voluminous; thousands of systems have been investigated. As a result there are certain collections, e.g. rate constants of particular types of reactions or certain properties of transients, for which tabulations of the data are considered essential, but for which critical assessment of each value is impossible. On the other hand, certain systems and properties have been studied so extensively that critical examination of these data is desirable and timely. Authors of this series of data publications have been asked to evaluate the extent to which the data can be critically assessed, to describe their criteria for evaluation, and to designate preferred values whenever possible.

Contents

Page
Introduction. 1
Arrangement of the tables 2
List of abbreviations 4
Table 1. Silver(0) and (II) reactions 5
Table 2. Gold(0) and (II) reactions 6
Table 3. Cadmium(I) reactions 7
Table 4. Cobalt(I) reactions 13
Table 5. Chromium(I), (II) and (V) reactions 20
Table 6. Copper(I) and (III) reactions 24
Table 7. Europium(II) reactions 29
Table 8. Iron(II) reactions 30
Table 9. Mercury(0) and (I) reactions 31
Table 10. Indium(II) reactions 35
Table 11. Iridium(II) reactions 35
Table 12. Manganese(I) reactions 35
Table 13. Molybdenum(II) reactions 36
Table 14. Nickel(I) reactions 37
Table 15. Lead(I) reactions 44
Table 16. Praesodymium(IV) reactions 45
Table 17. Platinum(I) and (III) reactions 46
Table 18. Rhodium(II) reactions 50
Table 19. Ruthenium(I), (II), (III) and (IV) reactions 51
Table 20. Samarium(II) reactions 53
Table 21. Thallium(0) and (II) reactions 55
Table 22. Thulium(II) reactions 59
Table 23. Ytterbium(II) reactions 60
Table 24. Zinc(I) reactions 62
Table 25. Intramolecular electron transfer reactions for some metal complexes 65
References 66

Compilation of Rate Constants for the

Reactions of Metal Ions in Unusual

Valency States*
George V. Buxton and Robin M. Sellers**
Cookridge Radiation Research Centre, Cookridge Hospital, Leeds LS16 6QB, Great Britain.

Abstract

Kinetic data have been compiled for reactions of uncommon oxidation states of metals which are produced by radiolysis of aqueous solutions of metal ions. Most of the reaction rates are for transient species, and the rates were determined by pulse radiolysis; some data were obtained by flash photolysis and gamma radiolysis. Metal ions from Groups IB, IIB, IIIA, IVA, VIB, VIIB, VIIIB, and the lanthanides are included in the compilation.

Key words: Aqueous solution; chemical kinetics; complex ions; electron transfer; metal ions; radiation chemistry; rates; transients..

Introduction

The discovery of the hydrated electron as a major product of the radiolysis of water and the development of pulse radiolysis have together resulted in the accumulation, during the last ten years, of a considerable amount of information on the chemistry of unusual valency states of metal ions in aqueous solution, which has been reviewed recently (G. V. Buxton and R. M. Sellers, 77-0121). ${ }^{1}$ For the most part attention has been focussed on hyperreduced states produced in reaction (1), which affords a simple, and often unique, method of their formation. Reactions of hydroxyl radicals and hydrogen atoms, and of simple radicals derived from them, with metal ions have been less commonly studied.

$$
\begin{gather*}
e_{\mathrm{aq}}^{-}+\mathrm{M}^{\mathrm{n}+} \rightarrow \mathrm{M}^{(\mathrm{n}-1)+} \tag{1}\\
2 \mathrm{M}^{(\mathrm{n}-1)+} \rightarrow \mathrm{M}^{\mathrm{n}+}+\mathrm{M}^{(\mathrm{n}-2)+} \tag{2}\\
\mathrm{M}^{(\mathrm{n}-1)+}+\mathrm{S} \rightarrow \text { products } \tag{3}
\end{gather*}
$$

This compilation lists the rate constants for reactions of these metal ions in unusual valency states. In the majority of cases the species are unstable, generally decaying by dismutation (2), or reaction with the solvent or a solute (3). This instability has been the principal criterion on which the decision to include data in this tabulation has been based. However, because the bulk of information on these metal ions has been obtained by pulse radiolysis methods, we have also included some rate constants for the reactions of stable metal ions such as $\mathrm{Cu}^{+}, \mathrm{Cr}^{2+}$ and Eu^{2+} measured by these methods. In these examples, indicated in the tables, much other data not recorded here has been obtained by other techniques.

[^2]${ }^{1}$ Literature references are given at the end of this paper.

Arrangement of the Tables

The tables are listed in alphabetical order of the chemical symbols of the metals involved. Within each table the arrangement is by oxidation state, starting with the lowest, and is further subdivided according to the complexing ligands in the order aquo ions (and hydrolysed forms), inorganic ligands in alphabetical order of the first letter of the chemical symbol of the principal element of that ligand (e.g. N for ammonia), and organic ligands in alphabetical order of their written names. For each individual transient species the reactants are in the order: inorganic species, organic radicals, both in alphabetical order of their chemical symbols, followed by organic compounds in alphabetical order of their written names.

Table 25 is somewhat different, and lists the rate constants for some intramolecular electron transfer reactions. The reactions are subdivided according to the method of production of the transient species. Note that all the rate constants in this table are first order, and have therefore units of s^{-1}. Reactions of metallo-proteins and related compounds are not dealt with in this compilation.

The data given for each reaction are the measured rate constant, and a brief description of the experimental conditions etc. as outlined below. Literature data published to approximately mid-1976 are covered.

Reaction: Three main methods have been used to measure the rate constants reported here:
(i) by monitoring the rate of removal of the absorption of the
(ii) $\begin{aligned} & \text { metal species at some convenient wavelength }\end{aligned}$
(iii) by comperition the rate of formation of some product

Methods (i) and (iii) have the disadvantage that they do not involve characterisation of the products of the reaction, and in many instances in the literature no additional experiments have been performed to overcome this. Often the reaction type has been assumed. Particular attention has been given to this problem in this compilation. Where there is no experimental information on the products given in the original work or elsewhere, only the left hand side of the equation is given, followed in brackets by the possible type of reaction as originally suggested, or as seems appropriate. If experimental evidence is given, the products are quoted, and the nature of the evidence indicated in the column headed 'Comments'.

In some cases the reactive intermediates themselves have not been fully characterised, and in such instances brief details of the method and conditions of formation are given.

Rate Constants: Most of the rate constants listed were measured under conditions where the reaction obeyed first order kinetics and no knowledge of absolute concentrations of the transient species is required. Error limits on the rate constants are those quoted in the original work. In the great majority of cases their magnitude is $\pm 10-$ 15% of the rate constant value, which is typical of the precision of the mean of pseudo first order rate constants measured by pulse methods. If the data source gives no errors none are shown here, but they should be assumed to be at least $\pm 25 \%$ to allow for the possibility that the rate constant is derived from a single measurement.

Second order rate constants are prefaced by " $2 k=$ " or " $2 k / \epsilon_{\lambda}=$ " as appropriate. In cases where it is not clear whether the value refers to $2 k$ or k this is noted in the 'Comments' column. The measured quantity is $2 k / \epsilon_{\lambda}$ and is subject to the same limitations given above for pseudo first order rate constants. Calculation of $2 k$ requires a knowledge of ϵ_{λ}, and where this quantity is quoted in the original work it is given under 'Comments'. In many instances, however, the values of ϵ_{λ} used to calculate $2 k$ have not been clearly stated.

Evaluation of ϵ_{λ} requires a knowledge of the concentration of transient species present which, in radiation chemical systems, means that the dose per pulse and the G value ${ }^{2}$ of the species must be known. In our experience these quantities are each likely to be uncertain by $\pm 10 \%$, so that the error in $2 k$ may be as much as three times as large as the error in $2 k / \epsilon_{\lambda}$. Therefore, in the absence of any quoted errors, the error in $2 k$ should be assumed to be $\pm 50 \%$.

[^3]Equilibrium constants are quoted under the 'Rate Constants' heading, and are prefixed by " $K=$ " followed by the appropriate units. If the individual rate constants for the forward and reverse processes are known these are shown as " k_{p} " and " k_{r} " respectively. Activation energies are prefaced by " $E_{\mathrm{a}}=$ " and are given in units of kJ mol^{-1}.

Ionic Strength ($)$: Ionic strengths have either been taken directly from the original work, or calculated from the conditions given. In the few instances where the formation of ion pairs has been taken into account the values are followed by an asterisk. If insufficient information is given to enable the ionic strength to be calculated the column has been left blank. The ionic strength of rate constants extrapolated to zero ionic strength is given as " \rightarrow $0^{\prime \prime}$. Unfortunately in a number of studies little or no attempt has been made to maintain the ionic strength constant. The practice of many reaction kineticists of adding a high concentration of inert electrolyte, such as NaClO_{4}, has not been widely adopted by radiation chemists, no doubt because of possible complications due to direct radiolysis of the electrolyte (cf. J. Konstantatos and D. Katakis, 67-0019). There is no reason however why an ionic strength of say 0.1 or $0.5 \mathrm{~mol} \mathrm{dm}^{-3}$ should not become standard for pulse radiolytic measurements. It is to be hoped that more consideration will be given to this problem in future studies.

Temperature: Where temperatures are quoted in the original work these have been given. In the absence of any information temperatures are given as room temperature (RT). The temperature ranges over which activation parameters have been measured are given as appropriate. Since many of the rate constants quoted in these tables are near the diffusion controlled limit and have therefore small activation energies, little uncertainty is engendered by an imprecise knowledge of the temperature. For example a change in temperature of 5° from 25° changes k by 11% for an activation energy of $16 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

Comments: Information and comments relevant to the reactions and rate constants are given in this column as outlined above. No attempt has been made to give a complete description of the conditions employed in the measurement of the rate constants quoted, but where the concentration of one or more of the solutes exceeds 0.1 $\mathrm{mol} \mathrm{dm}{ }^{-3}$ this has been noted.

References: The references are listed following the tables in order of the serial number of the paper in the files of the Radiation Chemistry Data Centre at the University of Notre Dame. The first two digits of this number represent the year in which the work was published. The references in the tables also give the first four letters of the first author's name and a dot for each additional author up to a maximum of four dots.

List of Abbreviations

Reaction:	af	adduct formation
	dis	dismutation (disproportionation)
	et	electron transfer
	int et	intramolecular electron transfer
	0 at	oxygen atom transfer
	pt	proton transfer
	et - is	inner sphere electron transfer
	?	uncertain
Rate Constant:	$2 k$	rate constant for second order reaction
	ϵ_{λ}	extinction coefficient at wavelength λ
	$E_{\text {a }}$	activation energy (units $\mathrm{kJ} \mathrm{mol}{ }^{-1}$)
	K	equilibrium constant
	$\mathrm{p} K$	acid dissociation constant ($=-\log _{10} K$)
	k_{f}	rate constant for forward reaction of equilibrium
	k_{r}	rate constant for reverse reaction of equilibrium
	?	value uncertain
Ionic Strength: (I)	$\rightarrow 0$	extrapolated to zero ionic strength
	*	calculated taking into account the formation of ion pairs
	var	various
Temperature:	RT	room temperature
pH:	nat	natural pH of the solution
Method:	comp.	competition kinetics
	f.ph.	flash photolysis
	γ	γ-radiolysis
	pr	pulse radiolysis
Chemical Symbols:	bpy	bipyridyl
	en	ethylenediamine
	gly	glycine
	EDTA ${ }^{4-}$	ethylenediamine tetraacetate
	NAD^{+}	nicotinamide adenine dinucleotide
	NTA^{3-}	nitrilotriacetate
	PNDA	p-nitroso- N, N-dimethylaniline
	L	ligand (specified in table).

Table 1. Silver(0) and Silver(II) reactions

No.	Reaction	$k / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1 \mathrm{~m}}$	I	$t /{ }^{\circ} \mathrm{C}$	pH	Method	Comments	Ref.
1.1	Ag(0) - aquo ions and complexes $\mathrm{Ag}^{0}+\mathrm{Ag}^{+} \rightarrow \mathrm{Ag}_{2}^{+}$	5.9×10^{9}	-	RT	-	pr	Product characterised by absorption spectrum and charge.	Puki..68-0431
		$(6.5 \pm 0.3) \times 10^{\circ}$	-	29	1.0	pr	-	Farh...73-1053
		$(5.2 \pm 0.3) \times 10^{\circ}$	-	29	1.0	pr	Measured at pressure of 6.72 kbar .	Farh...73-1053
1.2	$\begin{array}{r} \mathrm{Ag}_{2}^{+}+\mathrm{Ag}^{+} \rightarrow \\ \mathrm{Ag}^{3^{+}}+\mathrm{Ag}_{3}{ }^{\circ} \end{array}$	3.8×10^{0}	$\rightarrow 0$	RT	-	pr	Products characterised by absorption spectrum.	Puki..68-0431
1.3	$\mathrm{Ag}^{\circ}+\mathrm{Ag}^{+} \rightarrow \mathrm{Ag}^{+}$	ca. 10^{8}	-	RT	-	pr	Product characterised by absorption spectrum.	Puki..68-0431
1.4	$\mathrm{Ag}_{2}{ }^{\circ} \mathrm{Ag}_{3}{ }^{+}+\mathrm{MnO}_{4}{ }^{-}$(et)	1.2×10^{10}	0.003	RT	-	pr	Measured by the rate of depletion of the $\mathrm{MnO}_{4}^{-} \mathrm{ab}-$ sorption.	Baxe..65-0385
1.5	$\mathrm{Ag}_{3}{ }^{+}+\mathrm{O}_{2}($ et or af)	3.8×10^{8}	-	RT	-	pr	Product uncertain, but transfers an electron to 1,4-benzoquinone (see Sell.76-1134).	Baxe..65-0393
1.6	$\begin{gathered} \mathrm{Ag}_{3}{ }^{+}+1,4 \text {-benzo- } \\ \text { quinone } \rightarrow \text { Aga }^{2+}(?)+ \\ (1,4-\text { benzoquinone })^{-} \end{gathered}$	$(1.5 \pm 0.3) \times 10^{6}$	-	25 ± 2	5.8	pr	Measured by the rate of formation of the semiquinone in the presence of $1 \mathrm{~mol} \mathrm{dm}^{-3}$ 2-methyl-2-propanol.	Sell.76-1134
1.7	$\mathrm{Ag}_{3}{ }^{+}+$menaquinone \rightarrow $\mathrm{Aga}^{2+}(?)+$ (menaquinone $^{-}$	slow	-	-	7.0	pr	Only 24% electron transfer, which may be due to side reactions. Solutions contained $1 \mathrm{~mol} \mathrm{dm}^{-3}$ 2-methyl-2-propanol.	Rao.73-1047
1.8	$\begin{gathered} \mathrm{Ag}(0) \text { - ammine complexes } \\ \mathrm{Ag}^{0}+{\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}+}^{\mathrm{Ag}_{2}\left(\mathrm{NH}_{3}\right)_{\mathrm{n}}^{+}} \end{gathered}$	$5.2 \times 10^{\circ}$	-	RT	-	pr	Ag^{0} generated from $e_{\mathrm{aq}}^{-}+\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+}$ might be same as product of $e_{\mathrm{aq}}^{-}+$ Ag^{+}. Product contains unknown number of ammine ligands.	Puki.68-0435
1.9	$\begin{aligned} & \mathrm{Ag}_{2}\left(\mathrm{NH}_{3}\right)_{\mathrm{n}}^{+}+\mathrm{Ag}_{2}\left(\mathrm{NH}_{3}\right)_{\mathrm{n}}^{+} \rightarrow \\ & \mathrm{Ag}_{4}\left(\mathrm{NH}_{3}\right)_{\mathrm{n}}{ }^{2+} ? \end{aligned}$	$2 k=2.6 \times 10^{10}$	-	RT	-	Pr	Product uncertain; gives ultimately $\mathrm{Ag}_{3}{ }^{\circ}$.	Puki.68-0435
1.10	$\begin{gathered} \mathrm{Ag}_{2}\left(\mathrm{NH}_{3}\right)_{\mathrm{n}}{ }^{+}+\mathrm{Ag}_{\mathrm{A}}\left(\mathrm{NH}_{3}\right)_{2}^{+} \rightarrow \\ \mathrm{Ag}_{3}\left(\mathrm{NH}_{3}\right)_{\mathrm{n}}{ }^{2+} ? \end{gathered}$	10^{8}	-	RT	-	pr	Measured from rate of formation of product, nature of which is uncertain.	Puki.68-0435
	Ag(II) - aquo complex							
1.11	$\begin{gathered} \mathrm{Ag}^{2+}+\mathrm{Ag}^{2+} \rightarrow \\ \mathrm{Ag}^{+}+\mathrm{Ag}^{+} \end{gathered}$	$1.5 \times 10^{\circ}$	-	RT	-	pr	-	Puki..68-0431
1.12	$\begin{array}{r} \mathrm{Ag}^{2+}+\text { anisole } \rightarrow \\ \mathrm{Ag}^{+}+\text {anisole }{ }^{+} \end{array}$	$(3.8 \pm 0.4) \times 10^{7}$	-	20 ± 2	nat(?)	pr	Product characterised by absorption spectrum and esr.	$0^{\prime} \mathrm{Ne} . .75-1171$

Table 1. Silver(0) and Silver(II) reactions - Continued

No.	Reaction	$k / \mathrm{dm}^{5} \mathrm{~mol}^{-1} \mathrm{~s}^{-1 \mathrm{a}}$	I	$t /{ }^{\circ} \mathrm{C}$	pH	Method	Comments	Ref.
1.13	$\begin{aligned} & \mathrm{Ag}^{++}+1,2 \text {-dimethoxy- } \\ & \text { benzene } \rightarrow \mathrm{Ag}^{+}+ \\ & (1,2 \text {-dimethoxybenzene) } \end{aligned}$	$(6.0 \pm 0.6) \times 10^{7}$	-	20 ± 2	nat(?)	pr	Product characterised by absorption spectrum and esr.	$0^{\prime} \mathrm{Ne} . .75-1171$
1.14	$\begin{aligned} & \mathrm{Ag}^{{ }^{+}}+1,3 \text {-dimethoxy- } \\ & \text { benzene } \rightarrow \mathrm{Ag}^{+}+ \\ & \text {(1,3-dimethoxybenzene) } \end{aligned}$	$(6.3 \pm 0.6) \times 10^{7}$	-	20 ± 2	nat(?)	pr	Product characterised by absorption spectrum and esr.	$0^{\prime} \mathrm{Ne} . .75-1171$
1.15	$\begin{aligned} & \mathrm{Ag}^{2+}+1,4-\text { dimethoxy- } \\ & \text { benzene } \rightarrow \mathrm{Ag}^{+}+ \\ & (1,4-\text { dimethoxybenzene) } \end{aligned}$	$(4.6 \pm 0.5) \times 10^{7}$	-	20 ± 2	nat(?)	pr	Product characterised by absorption spectrum and esr.	0'Ne..75-1171
1.16	$\begin{aligned} & \mathrm{Ag}^{2+}+1,2,3 \text {-trimeth- } \\ & \text { oxybenzene } \rightarrow \mathrm{Ag}^{+}+ \\ & (1,2,3 \text {-trimethoxy }- \\ & \text { benzene) }{ }^{+} \end{aligned}$	$(2.5 \pm 0.3) \times 10^{7}$	-	20 ± 2	nat(?)	pr	Product characterised by absorption spectrum and esr.	0'Ne..75-1171
1.17	$\mathrm{Ag}^{2+}+1,2,4-\mathrm{tri}-$ methoxybenzene \rightarrow $\mathrm{Ag}^{+}+(1,2,4-$-rimeth oxybenzene) ${ }^{+}$	$(7.0 \pm 0.7) \times 10^{7}$	-	20 ± 2	nat(?)	pr	Product characterised by absorption spectrum and esr.	0'Ne..75-1171
1.18	$\mathrm{Ag}^{2+}+1,3,5-\text { tri- }$ methoxybenzene \rightarrow $\mathrm{Ag}^{+}+(1,3,5-$ trimeth oxybenzene) ${ }^{+}$	$(5.6 \pm 0.6) \times 10^{7}$	-	20 ± 2	nat(?)	pr	Product characterised by absorption spectrum and esr.	0^{\prime} Ne..75-1171

${ }^{2}$ If the data source gives no errors none are shown here but they should be assumed to be at least $\pm 25 \%$ (or $\pm 50 \%$ for $2 k$).

Table 2. Gold(0) and Gold(II) reactions.

No.	Reaction	$k / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1 \mathrm{a}}$	I	$t /^{\circ} \mathrm{C}$	pH	Method	Comments

alf the data source gives no errors none are shown here but they should be assumed to be at least $\pm 25 \%$ (or $\pm 50 \%$ for $2 k$).

Table 3. $\mathrm{Cd}(\mathrm{I})$ reactions

No.	Reaction	$k / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1 / 4}$	I	$t /{ }^{\circ} \mathrm{C}$	pH	Method	Comments	Ref.
3.1	$\mathrm{Cd}_{\text {ta }}^{+}$							
	$\mathrm{Cd}^{+}+\mathrm{BrO}_{3}^{-}$(et)	$(1.25 \pm 0.2) \times 10^{6}$	0.08	RT	nat	pr	-	Meye.68-0855
		$\begin{gathered} E_{\mathrm{a}}=13.4 \pm 1.7 \mathrm{~kJ} \\ \mathrm{~mol}^{-\mathrm{1}} \end{gathered}$	0.08	3-90	nat	pr	-	Meye.70-1228
3.2	$\mathrm{Cd}^{+}+\mathrm{Cd}^{+} \rightarrow \mathrm{Cd}_{2}{ }^{+}$	$2 k=c a .1 .2 \times 10^{\circ}$	0.4	25 ± 2	nat	pr	Measured at 300 nm taking $\epsilon_{300}=8080$ $\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$. Rate constant estimated from studies of Cd^{+}decay in presence of several different OH scavengers.	Buxt.75-1027
		$2 k=3.0 \times 10^{9}$	0.002	RT	nat	pr	Measured at 300 nm taking $\epsilon_{300}=16500$	Kelm..75-1064
							$\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$. Rate	
							constant estimated	
							from computer analysis of Cd^{+}decay.	
							Competing reactions taken to be $\mathrm{Cd}^{+}+$	
							$\mathrm{H}_{2} \mathrm{O}_{2}$ and $\mathrm{Cd}^{+}+$	
							R. (R $=\mathrm{CH}_{3} \mathrm{COHCH}_{3}$,	
							$\mathrm{CH}_{3} \mathrm{CHOH}, \mathrm{CH}_{2} \mathrm{OH}$). Product identified	
							from effect of ionicstrength on its	
							decay.	
		$2 k=5.0 \times 10^{9}$	0.004	RT	nat	pr	Measured at 313 nm taking $\epsilon_{301}=14000$ $\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$. Rate constant independent of OH scavenger used.	Bark.75-1153
3.3	$\mathrm{Cd}^{+}+\mathrm{Co}(\mathrm{en})_{3}{ }^{\text {a }}$ (et)	$(1.6 \pm 0.2) \times 10^{9}$	0.08	RT	5-6	pr	-	Meye.69-0428
3.4	$\mathrm{Cd}^{+}+$cis- $\mathrm{Co}(\mathrm{en})_{2} \mathrm{Cl}_{2}{ }^{+}$	$(2.3 \pm 0.3) \times 10^{\circ}$	0.08	RT	5-6	pr	-	Meye.69-0428
	(et)							
3.5	$\mathrm{Cd}^{+}+\text {trans- } \mathrm{Co}(\mathrm{en})_{2} \mathrm{Cl}_{2}{ }^{+}$	$(2.6 \pm 0.4) \times 10^{9}$	0.08	RT	5-6	pr	-	Meye.69-0428
	(et)							
3.6	$\mathrm{Cd}^{+}+\mathrm{Co}(\mathrm{en})_{2} \mathrm{CO}_{3}{ }^{+}$(et)	$(6.7 \pm 1.0) \times 10^{8}$	0.08	RT	5-6	pr	-	Meye.69-0428
3.7	$\left.\mathrm{Cd}^{+}+\text {cis-Co(en) }\right)_{2} \mathrm{~F}_{2}^{+}$ (et)	$(6.0 \pm 0.9) \times 10^{8}$	0.08	RT	5-6	pr	-	Meye.69-0428
3.8	$\mathrm{Cd}^{+}+\mathrm{Co}(\mathrm{en})_{2} \mathrm{FH}_{2} \mathrm{O}^{2+}$ (et)	$(4.1 \pm 0.6) \times 10^{8}$	0.08	RT	5-6	pr	-	Meye.69-0428
3.9	$\begin{aligned} & \mathrm{Cd}^{+}+c i s-\mathrm{Co}(\mathrm{en})_{2} \mathrm{NH}_{3} \mathrm{Cl}^{2+} \\ & \text { (et) } \end{aligned}$	$\begin{aligned} & (1.75 \pm 0.26) \\ & \times 10^{\circ} \end{aligned}$	0.08	RT	5-6	pr	-	Meye.69-0428
3.10	$\begin{aligned} & \mathrm{Cd}^{+}+c i s-\mathrm{Co}(\mathrm{en})_{2} \mathrm{NH}_{3} \mathrm{NO}_{2}{ }^{2+} \\ & \text { (et) } \end{aligned}$	$(2.8 \pm 0.7) \times 10^{\circ}$	0.08	RT	5-6	pr	-	Meye.69-0428
3.11	$\mathrm{Cd}^{+}+\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{\mathrm{e}^{3+}}$ (et)	(1.72 $\pm 0.3)$	0.08	RT	5-6	pr	-	Meye.69-0428
		$\times 10^{8}$						
3.12	$\mathrm{Cd}^{+}+\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}^{2+}$ (et)	$(25 \pm 0.4) \times 10^{\circ}$	0.08	RT	4.0	pr	-	Meye.69-0428
3.13	$\mathrm{Cd}^{+}+\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}^{2+}$ (et)	$(2.2 \pm 0.3) \times 10^{9}$	0.08	RT	5-6	pr	-	Meye.69-0428
3.14	$\mathrm{Cd}^{+}+\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{CN}^{2+}$ (et)	$(9.1 \pm 1.4) \times 10^{8}$	0.08	RT	5-6	pr	-	Meye.69-0428
3.15	$\mathrm{Cd}^{+}+\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{~F}^{2+}$ (et)	$(5.4 \pm 0.8) \times 10^{8}$	0.08	RT	5-6	pr	-	Meye.69-0428
3.16	$\mathrm{Cd}^{+}+\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}$ fumarate ${ }^{+}$	$(8.3 \pm 2.1) \times 10^{8}$	0.08	RT	5-6	pr	Products of the	Meye.69-0428
	(et or af?)						reaction have re-	
							latively large ab-	
							sorption.	
3.17	$\mathrm{Cd}^{+}+\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{H}_{2} \mathrm{O}^{\text {3 }}$	$(6.2 \pm 0.9) \times 10^{8}$	0.08	RT	4.0	pr	-	Meye.69-0428
	(et)							

Table 3. $\mathrm{Cd}(\mathrm{I})$ reactions - Continued

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline No. \& Reaction \& \(k / \mathrm{dm}^{5} \mathrm{~mol}^{-1} \mathrm{~s}^{-12}\) \& \(I\) \& \(t /{ }^{\circ} \mathrm{C}\) \& pH \& Method \& Comments \& Ref. \\
\hline 3.18 \& \begin{tabular}{l}
\[
\mathrm{Cd}^{+}+\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{OH}^{2+}
\] \\
(et)
\end{tabular} \& \((9.0 \pm 1.3) \times 10^{8}\) \& 0.08 \& RT \& 7.1 \& pr \& - \& Meye.69-0428 \\
\hline 3.19 \& \begin{tabular}{l}
\[
\mathrm{Cd}^{+}+\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{~N}_{3}{ }^{2+}
\] \\
(et)
\end{tabular} \& \[
\begin{gathered}
(1.41 \pm 0.2) \\
\times 10^{\circ}
\end{gathered}
\] \& 0.08 \& RT \& 5-6 \& Pr \& - \& Meye.69-0428 \\
\hline 3.20 \& \begin{tabular}{l}
\[
\mathrm{Cd}^{+}+\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{NCS}^{2+}
\] \\
(et)
\end{tabular} \& \[
\begin{gathered}
(1.32 \pm 0.2) \\
\times 10^{\circ}
\end{gathered}
\] \& 0.08 \& RT \& 5-6 \& pr \& - \& Meye.69-0428 \\
\hline 3.21 \& \[
\begin{aligned}
\& \mathrm{Cd}^{+}+\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{OOCCH}_{3}{ }^{2+} \\
\& \text { (et) }
\end{aligned}
\] \& \((9.0 \pm 1.3) \times 10^{7}\) \& 0.08 \& RT \& 5-6 \& pr \& - \& Meye.69-0428 \\
\hline 3.22 \& \(\mathrm{Cd}^{+}+\mathrm{Cr}^{+}\) \& \(<10^{7}\) \& - \& RT \& nat \& pr \& - \& Вахе..66-0848 \\
\hline 3.23 \& \(\mathrm{Cd}^{+}+\mathrm{CrO}_{4}{ }^{--}\)(et) \& \((9.8 \pm 1.0) \times 10^{\circ}\) \& 0.02* \& \(25 \pm 2\) \& nat \& pr \& - \& Buxt. \(76-1072\) \\
\hline 3.24 \& \(\mathrm{Cd}^{+}+\mathrm{Cr}_{3} \mathrm{O}^{2-}{ }^{\text {- }}\) (et) \& \((1.6 \pm 0.2) \times 10^{10}\) \& 0.02* \& \(25 \pm 2\) \& nat \& pr \& - \& Burt. \(76-1072\) \\
\hline \multirow[t]{2}{*}{3.25} \& \multirow[t]{2}{*}{\(\mathrm{Cd}^{+}+\mathrm{Cu}^{2+}(\mathrm{et})\)} \& \((1.2 \pm 0.2) \times 10^{8}\) \& 0.08 \& RT \& nat \& pr \& - \& Meye.68-0855 \\
\hline \& \& \((1.1 \pm 0.2) \times 10^{\circ}\) \& 0.04 \& RT \& 5-8 \& \(\gamma\) \& Measured by competition kinetics using \(\mathrm{NO}_{3}{ }^{-}\)as competitor and taking \(k\left(\mathrm{Cd}^{+}+\mathrm{NO}_{3}^{-}\right)=\) \(3.5 \times 10^{8} \mathrm{dm}^{3}\) \(\mathrm{mol}^{-1} \mathrm{~s}^{-1}\). \& Fiti70-0117 \\
\hline \multirow[t]{5}{*}{3.26} \& \multirow[t]{5}{*}{\[
\begin{aligned}
\& \mathrm{Cd}^{+}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \\
\& \mathrm{Cd}^{2+}+\mathrm{OH}+\mathrm{OH}^{-}
\end{aligned}
\]} \& \((1.55 \pm 0.2) \times 10^{\circ}\) \& - \& RT \& nat \& pr \& - \& Meye.68-0855 \\
\hline \& \& \((2.2 \pm 0.2) \times 10^{\circ}\) \& - \& 25 \& nat \& pr \& - \& Buxt. 76-1072 \\
\hline \& \& \(2.8 \times 10^{\circ}\) \& - \& RT \& nat \& pr \& \& Buxt.67-0062 \\
\hline \& \& \[
\begin{gathered}
E_{\mathrm{a}}=9.2 \pm 0.8 \\
\mathrm{~kJ} \mathrm{~mol}
\end{gathered}
\] \& - \& 1-30 \& nat \& pr \& - \& Buxt..76-1072 \\
\hline \& \& \& \& \& \& \& Products identified in \(\boldsymbol{\gamma}\)-radiolysis studies (see Buxt. 73-0039). \& \\
\hline 3.27 \& \(\mathrm{Cd}^{+}+\mathrm{H}_{3} \mathrm{O}^{+}\) \& \(<10^{8}\) \& 0.08 \& RT \& - \& pr \& - \& Meye.68-0855 \\
\hline \multirow[t]{2}{*}{3.28} \& \multirow[t]{2}{*}{\(\mathrm{Cd}^{+}+1 \mathrm{O}_{3}^{-}\)(et)} \& \((2.3 \pm 0.3) \times 10^{\circ}\) \& 0.08 \& RT \& nat \& pr \& - \({ }^{-}\) \& Meye.68-0855 \\
\hline \& \& \((2.1 \pm 0.2) \times 10^{\circ}\) \& 0.04 \& RT \& 5-8 \& \(\gamma\) \& Measured by competition kinetics using \(\mathrm{NO}_{3}^{-}\)as competitor and taking \(k\left(\mathrm{Cd}^{+}+\mathrm{NO}_{3}{ }^{-}\right)=\) \(3.5 \times 10^{8} \mathrm{dm}^{3}\) \(\mathrm{mol}^{-1} \mathrm{~s}^{-1}\). \& Fiti70-0117 \\
\hline \multirow[t]{2}{*}{3.29} \& \multirow[t]{2}{*}{\(\mathrm{Cd}^{+}+\mathrm{MnO}_{4}^{-}\)(et)} \& \multirow[t]{2}{*}{\((7.8 \pm 0.8) \times 10^{\circ}\)

1.3×10^{10}} \& - \& ca. 22 \& 7.0 \& pr \& Measured by the rate of depletion of the $\mathrm{MnO}_{4}^{-} \mathrm{ab}_{-}$ sorption in the presence of $c a$. 1 mol dm ${ }^{-3}$ 2-methyl-2-propanol. \& Rao.73-1104

\hline \& \& \& ca.

$$
0.004
$$ \& 20 \& nat \& pr \& Measured by the rate of depletion of the MnO_{4}^{-} absorption. \& Baxe..65-0385

\hline 3.30 \& $\mathrm{Cd}^{+}+\mathrm{Ni}^{2+}$ \& $<10^{7}$ \& - \& RT \& nat \& pr \& - \& Baxe..66-0848

\hline 3.31 \& $\mathrm{Cd}^{+}+\mathrm{NO}_{2}{ }^{-}(\mathrm{et})$ \& $(2.0 \pm 0.3) \times 10^{9}$ \& 0.08 \& RT \& nat \& pr \& - \& Meye.68-0855

\hline \& \& $$
\begin{gathered}
E_{\mathrm{a}}=12.5 \pm 1.7 \\
\mathrm{~kJ} \mathrm{~mol}^{-1}
\end{gathered}
$$ \& 0.08 \& 3-90 \& nat \& pr \& - \& Meye.70-1228

\hline 3.32 \& $\mathrm{Cd}^{+}+\mathrm{NO}_{3}{ }^{-}(\mathrm{et})$ \& $(3.5 \pm 0.5) \times 10^{8}$ \& 0.08 \& RT \& nat \& pr \& - \& Meye.68-0855

\hline
\end{tabular}

Table 3. $\mathrm{Cd}(\mathrm{I})$ reactions - Continued

Table 3. $\mathrm{Cd}(\mathrm{I})$ reactions - Continued

No.	Reaction	$\mathrm{k} / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1 \mathrm{a}}$	I	$t /{ }^{\circ} \mathrm{C}$	pH	Method	Comments	Ref.
3.36	$\mathrm{Cd}^{+}+\mathrm{Pb}^{+}$(et)	7.5×10^{7}	-	RT	nat	pr	-	Baxe..66-0848
3.37	$\mathrm{Cd}^{+}+\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{8}^{\text {s+ }}$ (et)	$(2.2 \pm 0.3) \times 10^{\circ}$	0.08	RT	nat	pr		Nav. $70-1229$
3.38	$\begin{aligned} & \mathrm{Cd}^{+}+\mathrm{S}_{2} \mathrm{O}_{8^{2-}} \rightarrow \\ & \mathrm{Cd}^{2+}+\mathrm{SO}_{4}^{-}+\mathrm{SO}_{4}^{2-} \end{aligned}$	$(2.4 \pm 0.2) \times 10^{\circ}$	0.02*	25 ± 2	nat	pr	Product identification: SO_{4}^{-}observed to form at same rate as Cd^{+} decayed.	Buxt..76-1072
3.39	$\mathrm{Cd}^{+}+\mathrm{Zn}^{2+}$	$<10^{7}$	-	RT	nat	pr	-	Baxe..66-0848
3.40	$\mathrm{Cd}^{+}+{ }^{\text {CH}}{ }_{2} \mathrm{OH} \rightarrow \mathrm{CdCH}_{2} \mathrm{OH}^{+}$	$+2 \times 10^{8}$	-	RT	nat	pr	Product inferred from conductivity measurements.	Kelm..75-1064
3.41	$\mathrm{Cd}^{+}+\mathrm{CH}_{3} \mathrm{CHOH} \rightarrow$	$<2 \times 10^{8}$	-		nat	pr		Bark.75-1153
	$\mathrm{CdCH}_{3} \mathrm{CHOH}^{+}$	$(1.3 \pm 0.7) \times 10^{9}$	-	RT	nat	pr	Product inferred from conductivity measurements.	Kelm..75-1064
3.42	$\mathrm{Cd}^{+}+\cdot \mathrm{CHOHCH}_{2} \mathbf{O H}$	$<2 \times 10^{8}$	-	RT	nat	pr	-	Bark.75-1153
3.43	$\underset{\substack{\mathrm{Cd}^{+} \\ \mathrm{CdCH}_{3} \mathrm{COHCH}_{3} \mathrm{CH}_{3}}}{ }$	$<2 \times 10^{8}$	-	RT	nat	pr	-	Bark.75-1153
		$(2.4 \pm 1.2) \times 10^{\circ}$	-	RT	nat	pr	Product inferred from conductivity measurements.	Kelm..75-1064
3.44	$\mathrm{Cd}^{+}+{ }^{\text {CHOHCHCHOHCH2 }} \mathbf{2} \mathbf{O H}$	$<2 \times 10^{8}$	-	RT	nat	pr	-	Bark.75-1153
3.45	$\begin{aligned} & \mathrm{Cd}^{+}+{ }^{+} \mathrm{CH}_{2}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{COH} \rightarrow \\ & \mathrm{Cd}^{2+}+\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CH}_{2}+\mathrm{OH} \end{aligned}$	$c a .1 \times 10^{9}$	-	RT	nat	pr	Isobutene detected as product.	Kelm..75-1064
		$<2 \times 10^{8}$	-	RT	nat	pr	-	Bark.75-1153
3.46	$\mathrm{Cd}^{+}+-\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{3}\left(\mathrm{CHCH}_{2} \mathrm{O}\right)-$	$-\quad<2 \times 10^{8}$	-	RT	nat	pr	Radical from polyethylene glycol $\left(\mathrm{mw} 10^{4}\right)+\mathbf{O H}$.	Bark.75-1153
3.47	$\mathrm{Cd}^{+}+$allyl alcohol	$<5 \times 10^{7}$	-	25 ± 2	nat	pr	-	Buxt..76-1072
3.48	$\begin{aligned} & \mathrm{Cd}^{+}+9,10-\text { anthra- } \\ & \text { quinone } \rightarrow \mathrm{Cd}^{2+}+ \\ & (9,10 \text {-anthraquinone })^{-} \end{aligned}$	$(1.03 \pm 0.1) \times 10^{9}$	-	ca. 22	7.0	pr	Measured by the rate of formation of the semiquinone in the presence of $c a .1 \mathrm{~mol} \mathrm{dm}^{-3}$ 2-methyl-2-propanol.	Rao.73-1104
3.49	$\begin{aligned} & \mathrm{Cd}^{+}+\text {benzophenone } \rightarrow \\ & \mathrm{Cd}^{2+}+(\text { (benzophenone })^{-} \end{aligned}$	1.0×10^{3}	-	RT	7.0	pr	Measured by the rate of formation of the ketyl radical in the presence of $c a .1 \mathrm{~mol} \mathrm{dm}^{-3}$ 2-methyl-2-propanol.	Rao.75-1032
3.50	$\begin{aligned} & \mathrm{Cd}^{+}+1,4 \text {-benzoquinone } \rightarrow \\ & \mathrm{Cd}^{+}+(1,4 \text {-benzoquinone })^{-} \end{aligned}$	$(4.1 \pm 0.8) \times 10^{9}$$4.4 \times 10^{\circ}$	-	25 ± 2	5.4	pr	Measured by the rate of formation of the semiquinone in the presence of $1 \mathrm{~mol} \mathrm{dm}^{-3}$ 2-methyl-2-propanol.	Sell.76-1134
			-	RT	7.0	pr	Measured in the presence of $c a .1$ mol dm ${ }^{-3}$ 2-methyl-2-propanol.	Rao.75-1032
		$(7.7 \pm 0.8) \times 10^{0}$	-	ca. 22	7.0	pr	Measured in the presence of $c a$. 1 mol dm ${ }^{-3}$ 2-methyl-2-propanol.	Rao.73-1104

Table 3. $\mathrm{Cd}(\mathrm{l})$ reactions - Continued

No.	Reaction	$k / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1} \mathrm{a}$	I	$t /{ }^{\circ} \mathrm{C}$	pH	Method	Comments	Ref.
3.51	$\mathrm{Cd}^{+}+2$-hydroxy-1,4-naphthoquinone \rightarrow $\mathrm{Cd}^{2+}+$ (2-hydroxy-1,4naphthoquinone) ${ }^{-}$	$(3.57 \pm 0.4) \times 10^{\circ}$	-	ca. 22	7.0	pr	Measured by the rate of formation of the semiquinone in the presence of ca. $1 \mathrm{~mol} \mathrm{dm}^{-3}$ 2-methyl-2-propanol.	Rao.73-1104
3.52	$\begin{aligned} & \mathrm{Cd}^{+}+\text {menaquinone } \rightarrow \\ & \mathrm{Cd}^{2+}+(\text { menaquinone })^{-} \end{aligned}$	$(4.6 \pm 0.5) \times 10^{\circ}$	-	RT	7.0	pr	Measured by the rate of formation of the semiquinone in the presence of ca. $1 \mathrm{~mol} \mathrm{dm}^{-3}$ 2-methyl-2-propanol.	$\begin{aligned} & \text { Rao.73-1047, } \\ & \text { Rao. } 75-1032 \end{aligned}$
		$(4.68 \pm 0.5) \times 10^{\circ}$	-	ca. 22	7.0	pr	Measured in the presence of $c a$. 1 mol dm ${ }^{-3}$ 2-methyl-2-propanol.	Rao.73-1104
3.53	$\begin{gathered} \mathrm{Cd}^{+}+\mathrm{NAD}^{+} \rightarrow \\ \mathrm{Cd}^{3+}+\mathrm{NAD} \cdot \end{gathered}$	$(2.9 \pm 0.3) \times 10^{\circ}$	-	ca. 22	7.0	pr	Measured by the rate of formation of NAD. in the presence of $c a$. 1 $\mathrm{mol} \mathrm{dm}^{-3}$ 2-methyl-2-propanol.	Rao.73-1104
3.54	$\mathrm{Cd}^{+}+1,4-$ naphthoquinone-2- sulphonate \rightarrow $\mathrm{Cd}^{2+}+(1,4-$ naphthoquinone-2sulphonate) ${ }^{-}$	$(7.35 \pm 0.7) \times 10^{\circ}$	-	ca. 22	7.0	pr	Measured by the rate of formation of the semiquinone in the presence of $c a .1 \mathrm{~mol} \mathrm{dm}^{-3}$ 2-methyl-2-propanol.	Rao.73-1104
3.55	$\mathrm{Cd}^{+}+\mathrm{PNDA}(\mathrm{et})$	1.4×10^{10}	-	RT	nat	pr	-	Dain.68-0066
3.56	$\begin{aligned} & \mathrm{Cd}^{+}+\text {riboflavin } \rightarrow \\ & \mathrm{Cd}^{2+}+(\text { riboflavin })^{-} \end{aligned}$	$(5.10 \pm 0.5) \times 10^{\circ}$	-	ca. 22	7.0	pr	Measured by the rate of formation of the reduced riboflavin in the presence of $c a$. 1 mol dm ${ }^{-3}$ 2-methyl-2-propanol.	Rao.73-1104
	Cd(I) complexes							
3.57	CdEDTA ${ }^{\text {3- }}+\mathrm{BrO}_{3}{ }^{-}$(et)	$(8.9 \pm 1.8) \times 10^{6}$	0.16	RT	11.3	pr	-	Meye.70-1228
		$\begin{gathered} E_{\mathrm{a}}=4.6 \pm 1.2 \\ \mathrm{~kJ} \mathrm{~mol} \end{gathered}$	0.16	3-90	11.3	pr	-	Meye.70-1228
3.58	$\begin{aligned} & \text { CdEDTA }^{3-}+\text { CdEDTA }^{3-} \\ & \text { (et or af) } \end{aligned}$	$\begin{gathered} k^{\prime} / \epsilon_{350}=(5.8 \\ \pm 1.5) \times 10^{3} \\ \mathrm{~cm} \mathrm{~s}^{-1} \end{gathered}$	0.16	RT	11.3	pr	Unclear whether k or $2 k$.	Meye.70-1228
		$\begin{gathered} \prime k \prime=(4 \pm 2) \\ \times 10^{7} \end{gathered}$	0.16	RT	11.3	pr	Unclear whether k or $2 k$.	Meye.70-1228
3.59	$\mathrm{CdEDTA}^{3-}+\mathrm{IO}_{3}{ }^{-}$(et)	$(2.7 \pm 0.6) \times 10^{68}$	0.16	RT	11.3	pr	-	Meye.70-1228
3.60	CdEDTA ${ }^{\mathbf{3 -}}+\mathrm{NO}_{2}{ }^{-}$(et)	$(3.2 \pm 0.6) \times 10^{6}$	0.16	RT	11.3	pr	-	Meye.70-1228
		$\begin{gathered} E_{\mathrm{a}}=8.4 \pm 1.2 \\ \mathrm{~kJ} \mathrm{~mol}^{-1} \end{gathered}$	0.16	3-90	11.3	pr	-	Meye.70-1228
3.61	$\mathrm{CdEDTA}^{\mathrm{s-}}+\mathrm{NO}_{3}{ }^{-}$(et) $C d(e n)_{n}{ }^{+}$(n unknown)	$(1.66 \pm 0.3) \times 10^{7}$	0.16	RT	11.3	pr	-	Meye.70-1228
3.62	$\mathrm{Cd}(\mathrm{en})_{\mathrm{n}}{ }^{+}+\mathrm{BrO}_{3}^{-}$(et)	$(1.28 \pm 0.3) \times 10^{8}$	0.64	RT	11.4	pr	-	Meye.70-1228
3.63	$\mathrm{Cd}(\mathrm{en})_{\mathrm{n}}{ }^{+}+1 \mathrm{IO}_{3}^{-}$(et)	$(2.5 \pm 0.5) \times 10^{\circ}$	0.64	RT	11.4	pr	-	Meye.70-1228
3.64	$\mathrm{Cd}(\mathrm{en})_{\mathrm{n}}{ }^{+}+\mathrm{NO}_{2}{ }^{-}$(et)	$(1.12 \pm 0.2) \times 10^{\circ}$	0.64	RT	11.4	pr	-	Meye.70-1228
3.65	$\mathrm{Cd}(\mathrm{en})_{\mathrm{n}}{ }^{+}+\mathrm{NO}_{3}^{-}$(et)	$(4.5 \pm 0.9) \times 10^{3}$	0.64	RT	11.4	pr	-	Meye. $70-1228$

Table 3. $\mathrm{Cd}(\mathrm{I})$ reactions - Continued

No.	Reaction $\quad k / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}{ }^{\text {a }}$	I	$t /{ }^{\circ} \mathrm{C}$	pH	Method	Comments	Ref.
	$C d(g l y)$						
3.66	$\mathrm{Cd}(\mathrm{gly})+\mathrm{BrO}_{3}^{-}(\mathrm{et}) \quad(6.1 \pm 1.2) \times 10^{7}$	0.21	RT	10.5	pr	-	Meye.70-1228
3.67	$\mathrm{Cd}(\mathrm{gly})+\mathrm{IO}_{3}^{-}$(et) $\quad(1.8 \pm 0.4) \times 10^{\circ}$	0.21	RT	10.5	pr	-	Meye.70-1228
3.68	$\mathrm{Cd}(\mathrm{gly})+\mathrm{NO}_{3}^{-}$(et) $\quad(8.5 \pm 1.7) \times 10^{8}$	0.21	RT	10.5	pr	-	Meye.70-1228
3.69	$\begin{aligned} & \mathrm{Cd}(\text { gly })+\mathrm{NO}_{3}^{-}(\mathrm{et}) \quad(2.4 \pm 0.5) \times 10^{8} \\ & C d N T A^{2-} \end{aligned}$	0.21	RT	10.5	pr	-	Meye.70-1228
3.70	CdNTA ${ }^{2-}+\mathrm{BrO}_{3}^{-}(\mathrm{et}) \quad(1.02 \pm 0.2) \times 10^{7}$	0.10	RT	10.7	pr	-	Meye.70-1228
3.71	$\begin{aligned} & \mathrm{CdNTA}^{2-}+\mathrm{CdNTA}^{2-} \\ & \text { (et or af) } \end{aligned}$	0.10	RT	10.7	pr	Unclear whether k or $2 k$.	Meye.70-1228
		0.10	RT	10.7	pr	Unclear whether k or $2 k$.	Meye.70-1228
3.72	CdNTA ${ }^{2-}+10^{-}{ }^{-}(\mathrm{et}) \quad(6.1 \pm 1.2) \times 10^{8}$	0.10	RT	10.7	pr	-	Meye.70-1228
3.73	CdNTA ${ }^{2-}+\mathrm{NO}_{2}^{-}(\mathrm{et}) \quad(4.2 \pm 0.8) \times 10^{7}$	0.10	RT	10.7	pr	-	Meye.70-1228
3.74	$C d(1)$-radical complexes						
3.75	$\begin{aligned} & \mathrm{CdCH}_{3} \mathrm{CHOH}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \\ & \mathrm{Cd}^{2+}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{OH}^{-} \quad 257 \mathrm{~s}^{-1} \end{aligned}$	-	RT	nat	pr	Products inferred from conductivity measurements.	Kelm..75-1064
3.76	$\begin{aligned} & \mathrm{CdCH}_{3} \mathrm{COHCH}_{3}+ \\ & \mathrm{Cd}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{CHOHCH}_{3} \end{aligned}+\mathrm{OH}^{-} \quad 161 \mathrm{~s}^{-1}$	-	RT	nat	pr	Products inferred from conductivity measurements.	Kelm..75-1064
3.77	$\begin{gathered} \mathrm{Cd}_{2}{ }^{+}+\mathrm{CH}_{2}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{COH} \rightarrow \\ \mathrm{Cd}^{+}+\mathrm{Cd}^{2+}+\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CH}_{2}+\mathrm{OH}^{-} \end{gathered}$	-	RT	nat	pr	Isobutene detected as product.	Kelm..75-1064

${ }^{\text {a }}$ If the data source gives no errors none are shown here but they should be assumed to be at least $\pm 25 \%$ (or $\pm 50 \%$ for $2 k$).

Table 4. Cobalt(I) reactions

No.	Reaction	$k / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}{ }^{\text {a }}$	I	$1{ }^{\circ} \mathrm{C}$	pH	Method	Comments	Ref.
4.1	$\begin{aligned} & \mathrm{Co}^{+}{ }_{\mathrm{ma}} \\ & \mathrm{Co}^{+}+\mathrm{Br}_{2}^{-} \text {(et) } \end{aligned}$	$(1.0 \pm 0.3) \times 10^{10}$	-	RT	nat	f.ph.	Competing reactions $\mathrm{Br}_{2}^{-}+\mathrm{Br}_{2}^{-}$ and $\mathrm{Co}^{+}+\mathrm{Co}^{+}$not considered.	Thor.70-7726
4.2	$\mathrm{Co}^{+}+\mathrm{BrO}_{5}^{-}$(et)	$(4.8 \pm 0.5) \times 10^{9}$	0.019*	25 ± 2	nat	pr	-	Buxt..76-1072
		$(7.1 \pm 1.1) \times 10^{\circ}$	$\rightarrow 0$	25 ± 2	nat	pr	-	Buxt..76-1072
4.3	$\mathrm{Co}^{+}+\mathrm{Cd}^{2+}$	$<10^{7}$	-	RT	nat	pr	-	Вaxe..66-0848
4.4	$\mathrm{Co}^{+}+\mathrm{Co}^{+}$(et or af)	$2 k<4 \times 10^{9}$	0.019*	25 ± 2	nat	pr	Estimated at 370 nm taking $\epsilon_{370}=$ $2080 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$ cm^{-1}.	Buxt.75-1027
4.5	$\mathrm{Co}^{+}+\mathrm{Cu}^{2+}$ (et)	$\begin{array}{r} (4.1 \pm 0.4) \times 10^{8} \\ (1.06 \pm 0.36) \times 10^{10} \end{array}$	$\begin{aligned} & 0.019^{*} \\ & 0.04 \end{aligned}$	$\begin{gathered} 25 \pm 2 \\ \mathrm{RT} \end{gathered}$	$\begin{aligned} & \text { nat } \\ & 5-8 \end{aligned}$	$\begin{gathered} \mathrm{pr} \\ \gamma \end{gathered}$	Measured by competition kinetics using $\mathrm{NO}_{3}{ }^{-}$as competitor and taking $\begin{aligned} & k\left(\mathrm{Co}^{+}+\mathrm{NO}_{\mathrm{s}}^{-}\right)=1.8 \mathrm{x} \\ & 10^{9} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1} . \end{aligned}$	$\begin{array}{r} \text { Buxt..76-1072 } \\ \text { Fiti70-0117 } \end{array}$
4.6	$\begin{aligned} & \mathrm{Co}^{+}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \\ & \mathrm{Co}^{2+}+\mathrm{OH}+\mathrm{OH}^{-} \end{aligned}$	$\begin{gathered} (1.6 \pm 0.2) \times 10^{\circ} \\ 1.9 \times 10^{9} \\ E_{\mathrm{a}}=13.0 \pm 1.0 \\ \mathrm{~kJ} \mathrm{~mol}^{-1} \end{gathered}$	-	$\begin{gathered} 25 \\ R T \\ 1-30 \end{gathered}$	nat nat nat	$\begin{aligned} & \mathrm{pr} \\ & \mathrm{pr} \\ & \mathrm{pr} \end{aligned}$	Products identified in γ-radiolysis studies (see ref. 73-0039).	Buxt. 76-1072 Buxt..67-0062 Buxt..76-1072
4.7	$\mathrm{Co}^{+}+\mathrm{IO}^{-}$(et)	$\begin{aligned} & (4.3 \pm 0.4) \times 10^{9} \\ & (4.9 \pm 0.8) \times 10^{9} \end{aligned}$	$\begin{gathered} 0.019^{*} \\ 0.04 \end{gathered}$	$\begin{gathered} 25 \pm 2 \\ \mathrm{RT} \end{gathered}$	$\begin{aligned} & \text { nat } \\ & 5-8 \end{aligned}$	$\begin{array}{r} \mathrm{pr} \\ \gamma \end{array}$	Measured by competition kinetics using $\mathrm{NO}_{3}{ }^{-}$as competitor and taking $k\left(\mathrm{Co}^{+}+\mathrm{NO}_{3}{ }^{-}\right)=$ $1.8 \times 10^{9} \mathrm{dm}^{3}$ $\mathrm{mol}^{-1} \mathrm{~s}^{-1}$.	$\begin{array}{r} \text { Buxt..76-1072 } \\ \text { Fiti70-011 } \end{array}$
4.8	$\mathrm{Co}^{+}+\mathrm{MnO}_{4}^{-}$(et)	1.06×10^{10}	ca. 0.004	20	nat	pr	Measured by the rate of depletion of the $\mathrm{MnO}_{4}^{-} \mathrm{ab}-$ sorption.	Baxe..65-0385
4.9	$\mathrm{Co}^{+}+\mathrm{N}_{2} \mathrm{O} \rightarrow \mathrm{CoO}^{+}+\mathrm{N}_{2}$	$2 \quad 7 \times 10^{8}$	-	RT	nat	γ	Estimated from N_{2} yields in the $\gamma-$ radiolysis of Co^{2+} $+\mathrm{N}_{2} \mathrm{O}$ solutions.	Buxt..67-0062
		$(1.0 \pm 0.1) \times 10^{\circ}$	-	25 ± 2	nat	Pr	Products inferred from γ-ray induced chain reaction in the system $\mathrm{Co}^{2+}+$ $\mathrm{HCO}_{2}{ }^{-}+\mathrm{N}_{2} \mathrm{O}$. (see ref. 73-0039).	Buxt..76-1072
4.10	$\mathrm{Co}^{+}+\mathrm{NO}_{3}^{-}$(et)	$(1.8 \pm 0.2) \times 10^{\circ}$	0.019	25 ± 2	nat	pr	,	Buxt..76-1072
4.11	$\mathrm{Co}^{+}+\mathrm{Ni}^{++}$	$<10^{7}$	-	RT	nat	pr	-	Baxe..66-0848

Table 4. Cobalt(I) reactions - Continued

No.	Reaction	$k / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-12}$	I	$t /{ }^{\circ} \mathrm{C}$	pH	Method	Comments	Ref.
4.12	$\mathrm{Co}^{+}+\mathrm{O}_{2}$ (et or af)	$(6.0 \pm 0.6) \times 10^{\circ}$	-	25 ± 2	nat	pr	Absorption of products similar to that of O_{2}^{-}but decay slower (see ref. 76-1072). Product transfers an electron to 1,4-benzoquinone (see ref. 76-1134). Evidence possibly indicates product to be $\mathrm{CoO}_{2}{ }^{+}$.	Buxt..76-1072
4.13	$\mathrm{Co}^{+}+\mathrm{OH}$ (et)	$c a .8 \times 10^{9}$	-	25 ± 2	nat	Pr	Estimated from decay of Co^{+}in $\mathrm{ab}-$ sence of OH scavengers, taking into account the major competing reaction $\mathrm{Co}^{+}+\mathrm{Co}^{+}$.	Buxt.75-1027
4.14	$\mathrm{Co}^{+}+\mathrm{Pb}^{2+}$	$<10^{7}$	-	RT	nat	pr	-	Baxe..66-0848
4.15	$\begin{aligned} & \mathrm{Co}^{+}+\mathrm{S}_{2} \mathrm{O}_{3^{2-}} \rightarrow \\ & \mathrm{Co}^{2+}+\mathrm{SO}_{4}^{-}+\mathrm{SO}_{4}{ }^{2-} \end{aligned}$	$(2.8 \pm 0.5) \times 10^{9}$	0.019	25 ± 2	nat	pr	Formation of SO_{4}^{-} inferred from the absorption produced on pulse radiolysis of solutions of $\mathrm{Co}^{2+}+\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}$.	Buxt..76-1072
4.16	$\mathrm{Co}^{+}+\mathrm{Zn}^{\mathbf{2 +}}$	$<10^{7}$	-	RT	nat	pr	-	Вахе..66-0848
4.17	$\mathrm{Co}^{+}+$allyl alcohol \rightarrow (Co-allyl alcohol) ${ }^{+}$	ca. 10^{8}	-	25 ± 2	nat	pr	Product characterised by its absorption spectrum.	Buxt..76-1072
4.18	$\begin{aligned} & \mathrm{Co}^{+}+9,10-\text { anthra- } \\ & \text { quinone } \rightarrow \mathrm{Co}^{++} \\ & \text {anthraquinone })^{-} \end{aligned}$	$(1.05 \pm 0.1) \times 10^{\circ}$	-	ca. 22	nat	pr	Measured by the rate of formation of the semiquinone in the presence of ca. $1 \mathrm{~mol} \mathrm{dm}{ }^{-3} 2-$ methyl-2-propanol.	Rao.73-1104
4.19	$\mathrm{Co}^{+}+$benzophenone \rightarrow $\mathrm{Co}^{2+}+$ (benzophenone) $^{-}$	$2.5 \times 10^{\circ}$	-	RT	7.0	pr	Measured by the rate of formation of the ketyl radical in the presence of $c a .1 \mathrm{~mol} \mathrm{dm}^{-3}$ 2-methyl-2-propanol.	Rao.75-1032
4.20	$\begin{aligned} & \mathrm{Co}^{+}+1,4 \text {-benzoquinone } \rightarrow \\ & \mathrm{Co}^{2+}+(1,4-\text { benzo- } \\ & \text { quinone })^{-} \end{aligned}$	4.8×10^{9}	-	RT	7.0	Pr	Measured by the rate of formation of the semiquinone in the presence of ca. $1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ 2-methyl-2-propanol.	Rao.75-1032
		$(5.1 \pm 0.5) \times 10^{\circ}$	-	25 ± 2	4.7	pr	Measured in the presence of 1 mol dm^{-3} 2-methyl-2propanol.	Sell.76-1134
		$(7.35 \pm 0.7) \times 10^{9}$	-	ca. 22	7.0	pr	Measured in the presence of $c a .1$ mol dm ${ }^{-3}$ 2-methyl-2-propanol.	Rao.73-1104

Table 4. Cobalt(l) reactions - Continued

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline No. \& Reaction \& \(k / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}{ }^{\text {a }}\) \& I \& \(t /{ }^{\circ} \mathrm{C}\) \& pH \& Method \& Comments \& Ref. \\
\hline \multirow[t]{2}{*}{4.21} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& \mathrm{Co}^{+}+\text {menaquinone } \rightarrow \\
\& \mathrm{Co}^{2+}+(\text { menaquinone })^{-}
\end{aligned}
\]} \& \((4.0 \pm 0.4) \times 10^{\circ}\) \& - \& RT \& 7.3 \& pr \& Measured by the rate of formation of the semiquinone in the presence of \(c a .1 \mathrm{~mol} \mathrm{dm}^{-3}\) 2-methyl-2-propanol. \& \[
\begin{aligned}
\& \text { Rao.73-1047 } \\
\& \text { Rao.75-1032 }
\end{aligned}
\] \\
\hline \& \& \((4.1 \pm 0.1) \times 10^{\circ}\) \& - \& ca. 22 \& 7.0 \& pr \& Measured in the presence of \(c a .1\) mol dm \({ }^{-3}\) 2-methyl2 -propanol. \& Rao.73-1104 \\
\hline 4.22 \& \begin{tabular}{l}
\[
\mathrm{Co}^{+}+1,4-
\] \\
naphthoquinone-2sulphonate \(\rightarrow \mathrm{Co}^{2+}+\) (1,4-naphthoquinone-2sulphonate) \({ }^{-}\)
\end{tabular} \& \((6.83 \pm 0.7) \times 10^{\circ}\) \& - \& ca. 22 \& 7.3 \& pr \& Measured by the rate of formation of the semiquinone in the presence of ca. \(1 \mathrm{~mol} \mathrm{dm}^{-3}\) 2-methyl-2-propanol. \& Rao.73-1104 \\
\hline \multirow[t]{2}{*}{4.23} \& \[
\begin{aligned}
\& \mathrm{Co}^{+}+\text {riboflavin } \rightarrow \\
\& \mathrm{Co}^{2+}+(\text { riboflavin })^{-}
\end{aligned}
\] \& \((2.55 \pm 0.3) \times 10^{\circ}\) \& - \& ca. 22 \& 7.0 \& pr \& Measured by the rate of formation of the reduced riboflavin in the presence of \(c a\). 1 mol dm \({ }^{-3}\) 2-methyl-2-propanol. \& Rao.73-1104 \\
\hline \& \multicolumn{8}{|l|}{\[
\begin{aligned}
\& \mathrm{Co}(\mathrm{I}) \text { complexes } \\
\& \mathrm{Co}(\mathrm{CM})_{s^{4-}} \text { (from } \mathrm{Co}\left(\mathrm{CN}_{s^{3}}{ }^{3-}\right. \\
\& \left.\quad+e_{\mathrm{nq}}{ }^{-}\right)
\end{aligned}
\]} \\
\hline 4.24 \& \[
\begin{aligned}
\& \mathrm{Co}(\mathrm{CN})_{5^{--}}+\mathrm{H}_{2} \mathrm{O} \rightarrow \\
\& \mathrm{Co}(\mathrm{CN})_{5} \mathrm{H}^{-}+\mathrm{OH}^{-}
\end{aligned}
\] \& \[
\begin{aligned}
\& (1.1 \pm 0.1) \mathrm{x} \\
\& 10^{5} \mathrm{~s}^{-1}
\end{aligned}
\] \& - \& 20 \& ca. 13 \& pr \& Measured in the presence of \(c a\). \(0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{H}_{2}\). Proton transfer mechanism implied from isotope effect (compare entry 4.25). \& Vene.71-0097 \\
\hline 4.25 \& \(\mathrm{Co}(\mathrm{CN})_{5}{ }^{4}+\mathrm{D}_{2} \mathrm{O} \rightarrow\)
\(\mathrm{Co}(\mathrm{CN})_{5} \mathrm{D}^{3-}+\mathrm{OD}^{-}\)

$\mathrm{CoL}^{+}(L=5,7,7,12,12,14$ \& $(1.9 \pm 0.2) \mathrm{x}$
$10^{4} \mathrm{~s}^{-1}$

aramethyl-1,4,8,11-te \& zacyc \& 20 \& ca. 13 \& pr \& Measured in $\mathrm{D}_{2} 0$ in the presence of ca. $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ H_{2}. \& Vene.71-0097

\hline 4.26 \& $$
\begin{aligned}
& \mathrm{CoL}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \\
& \mathrm{CoLH}^{2+}+\mathrm{OH}^{-}
\end{aligned}
$$ \& 20 \& 0.001 \& RT \& 9-10 \& pr \& Measured in the presence of 1 mol dm^{-3} 2-methyl-2propanol. See ref. for evidence for proton transfer mechanism. \& Tait..76-1001

\hline 4.27 \& $$
\begin{array}{r}
\mathrm{CoL}^{+}+\mathrm{H}_{3} \mathrm{O}^{+} \rightarrow \\
\mathrm{CoLH}^{2+}+\mathrm{H}_{2} \mathrm{O}
\end{array}
$$ \& $1.2 \times 10^{\circ}$ \& 0.015 \& RT \& 3.5-4.2 \& pr \& Measured in the presence of 1 mol dm^{-3} 2-methyl-2propanol. See ref. for evidence for proton transfer mechanism. \& Tait..76-1001

\hline
\end{tabular}

Table 4. Cobalt(I) reactions - Continued

Table 4. Cobalt(I) reactions - Continued

No.	Reaction	$k / \mathrm{dm}^{5} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}{ }^{\text {a }}$	I	$t /{ }^{\circ} \mathrm{C}$	pH	Method	Comments	Ref.
4.37	$\mathrm{CoL}^{+}+\mathrm{Fe}(\mathrm{bpy})_{3}{ }^{\text {s+ }}$ (et)	2.3×10^{7}	$\begin{aligned} & c a . \\ & 0.02 \end{aligned}$	RT	9.2	pr	Measured in the presence of 1 mol dm^{-3} 2-methyl-2propanol.	Tait..76-1001
4.38	$\begin{aligned} & \mathrm{CoL}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \\ & \mathrm{CoLH}^{+}+\mathrm{OH}^{-} \end{aligned}$	48	0.001	RT	9-10	pr	Measured in the presence of 1 mol dm^{-3} 2-methyl-2propanol. See ref. for evidence for proton transfer mechanism.	Tait..76-1001
4.39	$\begin{array}{r} \mathrm{CoL}^{+}+\mathrm{H}_{3} \mathrm{O}^{+} \rightarrow \\ \mathrm{CoLH}^{+}+\mathrm{H}_{2} \mathrm{O} \end{array}$	$3.1 \times 10^{\circ}$	0.015	RT	3.5-4.2	pr	Measured in the presence of 1 mol dm^{-3} 2-methyl-2propanol. See ref. for evidence for proton transfer mechanism.	Tait..76-1001
4.40	$\begin{aligned} & \mathrm{CoL}^{+}+\mathrm{HPO}_{4}^{2^{--}} \rightarrow \\ & \mathrm{CoLH}^{++}+\mathrm{PO}_{4}{ }^{3-} \end{aligned}$	1.0×10^{5}	$\begin{gathered} 0.06 \\ 0.3 \end{gathered}$	RT	10.0	pr	Measured in the presence of 1 mol dm^{-3} 2-methyl-2propanol. See ref. for evidence for proton transfer mechanism.	Tait..76-1001
4.41	$\begin{gathered} \mathrm{CoL}^{+}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-} \rightarrow \\ \mathrm{CoLH}^{+}+\mathrm{HPO}_{4}{ }^{-} \end{gathered}$	9.8×10^{7}	$\begin{gathered} 0.005- \\ 0.01 \end{gathered}$	RT	5.5	pr	Measured in the presence of 1 mol dm^{-3} 2-methyl-2propanol. See ref. for evidence for proton transfer mechanism.	Tait..76-1001
4.42	$\begin{array}{r} \mathrm{CoL}^{+}+\mathrm{NH}_{4}^{+} \rightarrow \\ \mathrm{CoLH}^{+}+\mathrm{NH}_{3} \end{array}$	6.8×10^{5}	$\begin{gathered} 0.015- \\ 0.1 \end{gathered}$	RT	7.0	pr	Measured in the presence of 1 mol dm^{-3} 2-methyl-2propanol. See ref. for evidence for proton transfer mechanism.	Tait. $76-1001$
4.43	$\mathrm{CoL}^{+}+\mathrm{N}_{2} \mathrm{O}(\mathrm{et})$	3.9×10^{7}	0.01	RT	9.2	pr	Reaction possibly involves two electron oxidation to Co(III) complex.	Tait..76-1001
4.44	$\mathrm{CoL}^{+}+\mathrm{O}_{2} \rightarrow \mathrm{CoLO}_{2}{ }^{+}$	1.7×10^{9}	0.02	RT	9.2	pr	Measured in the presence of 1 mol dm ${ }^{-3}$ 2-methyl-2propanol. Reaction does not involve formation of CoL^{2+}, assumed therefore to involve the coordination of the O_{2}.	Tait..76-1001
4.45	$\mathrm{CoL}^{+}+\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{\mathrm{e}^{\text {a }}}{ }^{\text {(}}$ (et)	4.0×10^{8}	$\begin{aligned} & 0.016- \\ & 0.028 \end{aligned}$	RT	9.2	pr	Measured in the presence of 1 mol dm^{-3} 2-methyl-2propanol.	Tait..76-1001

Table 4. Cobalt(I) reactions - Continued

Table 4. Cobalt(I) reactions - Continued

No.	Reaction	$k / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1 \mathrm{a}}$	I	$t /{ }^{\circ} \mathrm{C}$	pH	Method	Comments	Ref.
4.54	$\mathrm{CoL}^{+}+\mathrm{Cr}(\mathrm{bpy})_{3}{ }^{\text {at }}$ (et)	1.6×10^{3}	$\begin{gathered} 0.016 \\ 0.028 \end{gathered}$	RT	6.5	pr	Measured in the presence of 1 mol dm^{-3} 2-methyl-2propanol.	Tait..76-1001
4.55	$\begin{aligned} & \mathrm{CoL}^{+}+\mathrm{H}_{3} \mathrm{O}^{+} \rightarrow \\ & \mathrm{CoLH}^{2+}+\mathrm{H}_{2} \mathrm{O} \end{aligned}$	1.6×10^{5}	$\begin{gathered} 0.06- \\ 0.6 \end{gathered}$	RT	$\begin{array}{r} 0.25- \\ 1.25 \end{array}$	pr	Measured in the presence of 2 mol dm^{-3} 2-propanol. See ref. for evidence for proton transfer mechanism.	Tait..76-1001
4.56	$\mathrm{CoL}^{+}+\mathrm{O}_{\mathbf{2}} \rightarrow \mathrm{CoLO}^{+}{ }^{+}$	$1.1 \times 10^{\circ}$	0.02	RT	6.5	pr	Measured in the presence of 1 mol dm ${ }^{-3}$ 2-methyl-2propanol. Reaction does not involve formation of CoL^{2+}, assumed therefore to involve the coordination of O_{2}.	Tait. $76-1001$
4.57	$\begin{aligned} & \mathrm{CoL}^{+}+\text {acetic acid } \rightarrow \\ & \mathrm{CoLH}^{++}+\mathrm{CH}_{3} \mathrm{COO}^{-} \end{aligned}$	6.2×10^{4}	$\begin{array}{r} 0.01- \\ 0.05 \end{array}$	RT	4.8	Pr	Measured in the presence of 2 mol $\mathrm{dm}^{-3} 2$-propanol. See ref. for evidence for proton transfer mechanism.	Tait..76-1001
4.58	$\begin{aligned} & \mathrm{CoL}^{+}+9,10 \text {-anthraquinone- } \\ & 2,6 \text {-sulphonate } \rightarrow \mathrm{CoL}^{+} \\ & +(9,10 \text {-anthraquinone- } \\ & 2,6 \text {-sulphonate })^{-} \end{aligned}$	3.8×10^{9}	0.004	RT	6.5	pr	Measured in the presence of 1 mol dm^{-3} 2-methyl-2propanol. Semiquinone product characterised by its absorption.	Tait..76-1001
4.59	$\mathrm{CoL}^{+}+$indigosulphonate \rightarrow $\mathrm{CoL}^{2+}+$ (indigosulphonate) $^{-}$	4.9×10^{9}	0.004	RT	6.5	pr	Measured in the presence of 1 mol dm^{-3} 2-methyl-2propanol. Radical anion product characterised by its absorption.	Tait..76-1001
4.60	$\begin{aligned} & \mathrm{CoL}^{+}+\text {riboflavin } \rightarrow \\ & \mathrm{CoL}^{2^{+}}+(\text {(riboflavin })^{-} \end{aligned}$	1.0×10^{9}	0.004	RT	6.5	pr	Measured in the presence of 1 mol dm^{-3} 2-methyl-2propanol. Radical anion product characterised by its absorption.	Tait..76-1001

${ }^{2}$ If the data source gives no errors none are shown here but they should be assumed to be at least $\pm 25 \%$ (or $\pm 50 \%$ for $2 k$).

Table 5. Chromium(I), chromium(II) and chromium(V) reactions

No.	Reaction	$k / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1} \mathrm{a}$	I	$t /{ }^{\circ} \mathrm{C}$	pH	Method	Comments	Ref.
5.1	$C_{r}($) Reactions $C_{r_{a}^{+}}^{+}$ $\mathrm{Cr}^{+}+\mathrm{H}_{2} \mathrm{O}$	$<5 \times 10^{3} \mathrm{~s}^{-1}$	-	22 ± 2	3.0-4.3	pr	Estimated from first order, dose dependent decay of Cr^{+}. Major competing reactions thought to be $\mathrm{Cr}^{+}+$ $\mathrm{H}_{2} \mathrm{O}_{2} . \mathrm{H}_{2}$ detected as product ($G=2.9$ at pH 3.4).	Cohe.74-1142
	$\mathrm{CrH}^{2+}\left(\text { from } H+\mathrm{Cr}^{2+}\right)$				0-2			42
5.3	$\begin{gathered} \mathrm{CrH}^{2+}+\mathrm{H}_{3} \mathrm{O}^{+} \rightarrow \\ \mathrm{Cr}^{\mathrm{r}^{+}}+\mathrm{H}_{2}+\mathrm{H}_{2} \mathrm{O} \end{gathered}$	$(1.8 \pm 0.2) \times 10^{4}$	var	22 ± 2	0-2	pr	$\begin{aligned} & G\left(\mathrm{H}_{2}\right)=3.8 \text { at } \mathrm{pH} \\ & 0-2 . \end{aligned}$	Cohe.74-1142
5.4	$C_{\text {- }}$ II) reactions (includes $\mathrm{Cr}_{\mathrm{ad}}^{2+}$ $\begin{gathered} \mathrm{Cr}^{-+}+\mathrm{Br}_{2}^{-} \rightarrow \overrightarrow{\mathrm{CrBr}^{+}}+\mathrm{Br}^{-} \end{gathered}$	hose measured by radioly $(1.9 \pm 0.2) \times 10^{9}$	ic methods 0.2	22 ± 3	1	pr	Reaction occurs by inner sphere diffusion controlled mechanism. $G\left(\mathrm{CrBr}^{2+}\right)=2.4$ in $\boldsymbol{\gamma}$-radiolysis experiments.	Laur.74-1104
5.5	$\begin{aligned} & \mathrm{Cr}^{2^{+}}+\mathrm{Cl}_{2}^{-} \rightarrow \overrightarrow{\mathrm{CrCl}^{-}} \\ & \mathrm{Cr}^{+1^{+}}+2 \mathrm{Cl}^{-}(\mathrm{a}) \text { or } \end{aligned}$	$(2.4 \pm 0.3) \times 10^{\circ}$	0.2	22 ± 3	1	pr	Reaction occurs by parallel mechanisms involving innersphere (path a) and outer sphere (b) diffusion control with approximately equal probability. $G\left(\mathrm{CrCl}^{1+}\right)$ $=1.4$ in γ-radiolysis experiments.	Laur.74-1104
5.6	$\begin{gathered} \mathrm{Cr}^{2+}+\mathrm{I}_{2}^{-} \rightarrow \\ \mathrm{Crl}^{2+}+\mathrm{I}^{-} \end{gathered}$	$(1.5 \pm 0.2) \times 10^{\circ}$	0.2	22 ± 3	1	pr	Reaction occurs by inner sphere diffusion controlled mechanism. $\mathrm{Cr}^{1{ }^{2+}}$ characterised by flash photolysis and γ-radiolysis experiments. $G\left(\mathrm{CrI}^{2+}\right)$ $=0.85$ at $0^{\circ} \mathrm{C}$.	Laur.74-1104
5.7	$\mathrm{Cr}^{++}+\mathrm{MnO}_{4}^{-(\mathrm{et})}$	$3.7 \times 10^{\circ}$	ca. 0.01	20	nat	pr	Measured by the rate of depletion of the MnO_{4}^{-}absorption.	Baxe..65-0385
5.8	$\mathrm{Cr}^{++}+\mathrm{N}_{2} \mathrm{O}$	$<10^{6}$	-	25	nat	γ	Estimated from the values of $G\left(\mathrm{~N}_{2}\right)$ measured in the γ-radiolysis of $\mathrm{Cr}^{+}+\mathrm{N}_{2} \mathrm{O}$ solutions.	Sell72-0844

Table 5. Chromium(I), chromium(II) and chromium(V) reactions - Continued

No.	Reaction	$k / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-19}$	I	$1 /{ }^{\circ} \mathrm{C}$	pH	Method	Comments	Ref.
5.9	$\underset{\mathrm{Cr}^{2+}}{\mathrm{CrO}_{2^{2+}}}+$	$(1.6 \pm 0.2) \times 10^{8}$	-	25 ± 2	2.6-4.3	pr	Measured from the rate of formation of $\mathrm{CrO}_{2^{2+}}$ in the presence of 0.5 mol dm ${ }^{-3}$ 2-methyl-2-propanol. Product characterised by its absorption spectrum and by conductivity measurements.	Sell.76-1134
		$(1.6 \pm 0.2) \times 10^{8}$	-	RT	1-3	pr	Measured from the rate of formation of $\mathrm{CrO}_{2}{ }^{2+}$.	Ilan..75-1215
		$(1.9 \pm 0.3) \times 10^{8}$	-	25 ± 2	3.4	$\begin{gathered} \mathrm{pr} \\ \text { (comp) } \end{gathered}$	Measured by competition with 1,4benzoquinone taking $k\left(\mathrm{Cr}^{2+}+\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{2}\right)=$ $3.2 \times 10^{8} \mathrm{dm}^{3} \mathrm{~mol}^{-1}$ s^{-1}.	Sell.76-1134
5.10	$\underset{\mathrm{Cr}^{2+}}{\mathrm{CrCONH}}{ }^{2+}+\mathrm{CONH}_{2} \rightarrow$	$(6.5 \pm 0.7) \times 10^{8}$	-	22 ± 2	0-4.5	pr	Measured by the rate of formation of the product in the presence of 1 $\mathrm{mol} \mathrm{dm}{ }^{-3}$ formamide. Product characterised by its absorption spectrum and decay kinetics.	Cohe.74-1146
5.11	$\underset{\mathrm{Cr}^{2+}}{\mathrm{CrCH}_{2} \mathrm{OH}^{2+}} \mathrm{CH}_{2} \mathrm{OH} \rightarrow$	1.6×10^{8}	-	22 ± 2	0-1	Pr	Measured by the rate of formation of the product. Product characterised by its absorption spectrum and decay kinetics.	Cohe.74-1146
5.12	$\begin{gathered} \mathrm{Cr}^{2+}+\mathrm{CO}_{2}^{-} \rightarrow \\ \mathrm{CrCO}_{2}^{+} \end{gathered}$	$(1.1 \pm 0.1) \times 10^{\circ}$	ca. 0.04	25 ± 2	1.4	pr	Measured by rate of formation of the product in the presence of $1 \mathrm{~mol} \mathrm{dm}^{-3}$ formic acid. Product characterised by its spectrum and decay kinetics.	Elli....73-1057
5.13	$\begin{gathered} \mathrm{Cr}^{2^{+}}+\cdot \mathrm{CH}_{2} \mathrm{CHO} \rightarrow \\ \mathrm{CrCH}_{2} \mathrm{CHO}^{2+} \text { or } \\ \mathrm{CrCH}_{2} \mathrm{CH}(\mathrm{OH})_{2^{2+}} \end{gathered}$	3.5×10^{8}	-	22 ± 2	0-1	pr	Measured by the rate of formation of the product, which may be in the form of an acetal.	Cohe.74-1146
5.14	$\underset{\mathrm{Cr}^{2+}}{\mathrm{CrCH}_{2} \mathrm{COOH}^{2+}} \cdot \mathrm{CH}_{2} \mathrm{COOH} \rightarrow$	2.5×10^{8}	-	22 ± 2	0-1	Pr	Measured by the rate of formation of the product. Product characterised by its absorption spectrum and decay kinetics.	Cohe.74-1146
5.15	$\underset{\mathrm{Cr}^{2+}+\cdot \mathrm{CHOH} \cdot \mathrm{COOH}}{\mathrm{CrCHOH} \cdot \mathrm{COOH}^{2+}} \rightarrow$	1.4×10^{8}	-	22 ± 2	0-1	pr	Measured by the rate of formation of the product. Product characterised by its absorption spectrum and decay kinetics.	Cohe.74-1146

Table 5. Chromium(I), chromium(II) and chromium(V) reactions - Continued

No.	Reaction	$k / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1 \mathrm{a}}$	I	$t /{ }^{\circ} \mathrm{C}$	pH	Method	Comments	Ref.
5.16	$\underset{\mathrm{CrCH}\left(\mathrm{CH}_{3}\right) \mathrm{OH}^{2+}}{\mathrm{Cr}^{2+}}+$	7.9×10^{7}	-	22 ± 2	0-1	pr	Measured by the rate of formation of the product. Product characterised by its absorption spectrum and decay kinetics.	Cohe.74-1146
5.17	$\begin{gathered} \mathrm{Cr}^{3+}+\cdot \mathrm{CHOHCH}_{2} \mathrm{OH} \rightarrow \\ \mathrm{CrCH}_{2} \mathrm{CHO} \mathrm{O}^{+} \text {or } \\ \mathrm{CrCH}_{2} \mathrm{CH}(\mathrm{OH})_{2^{2+}} \end{gathered}$	1.5×10^{8}	-	22 ± 2	3.0-4.5	pr	Measured by the rate of formation of the product. Product is identical to that formed in the reaction $\mathrm{Cr}^{2+}+\mathrm{CH}_{2} \mathrm{CHO}$ (see entry 5.13).	Cohe.74-1146
5.18	$\underset{\mathrm{Cr}^{2^{+}}}{\mathrm{CrCH}(\mathrm{COOH})_{2}{ }^{2+}}+\mathrm{CH}(\mathrm{COOH})_{2} \rightarrow$	6.0×10^{7}	-	22 ± 2	0-1	pr	Measured by the rate of formation of the product. Product characterised by its absorption spectrum and decay kinetics.	Cohe.74-1146
5.19	$\underset{\mathrm{Cr}^{2+}+\mathrm{CH}_{3} \mathrm{CHCOOH}}{\mathrm{CrCH}\left(\mathrm{CH}_{3}\right) \mathrm{COOH}{ }^{+}} \rightarrow$	1.1×10^{8}	-	22 ± 2	0-1	pr	Measured by the rate of formation of the product. Product characterised by its absorption spectrum and decay kinetics.	Cohe.74-1146
5.20	$\begin{gathered} \mathrm{Cr}^{2+}+\mathrm{CH}_{3} \mathrm{C}(\mathrm{OH}) \mathrm{COOH} \\ \mathrm{CrCOH}\left(\mathrm{CH}_{3}\right) \mathrm{COOH}^{+} \end{gathered}$	9.2×10^{7}	-	22 ± 2	0-1	pr	Measured by the rate of formation of the product. Product characterised by its absorption spectrum and decay kinetics.	Cohe.74-1146
5.21	$\begin{gathered} \mathrm{Cr}^{3^{+}}+\mathrm{CH}_{2} \mathrm{~N}_{\left(\mathrm{CH}_{3}\right) \mathrm{CHO}} \rightarrow \\ \mathrm{CrCH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right) \mathrm{CHO}^{2+} \end{gathered}$	$(1.1 \pm 0.1) \times 10^{8}$	-	22 ± 2	0-4.5	pr	Measured by the rate of formation of the product in the presence of $1 \mathrm{~mol} \mathrm{dm}^{-3}$ $\mathrm{CH}_{3} \mathrm{~N}\left(\mathrm{CH}_{3}\right) \mathrm{CHO}$. Product characterised by its absorption spectrum and decay kinetics.	Cohe.74-1146
5.22	$\underset{\mathrm{Cr}^{2+}}{\mathrm{CrCOH}\left(\mathrm{CH}_{3}\right)_{2}{ }^{2+}}\left(\mathrm{CH}_{3}{ }_{2} \mathrm{COH} \rightarrow\right.$	5.1×10^{7}	-	22 ± 2	0-1	pr	Measured by the rate of formation of the product. Product characterised by its absorption spectrum and decay kinetics.	Cohe.74-1146
5.23	$\begin{aligned} & \mathrm{Cr}^{2+}+\cdot \mathrm{R} \rightarrow \mathrm{CrR}^{2+} \\ & \cdot \mathrm{R}=\text { radical from dioxane } \\ & \text { (H abstraction) } \end{aligned}$	1.0×10^{8}	-	22 ± 2	0-1	pr	Measured by the rate of formation of the product. Product characterised by its absorption spectrum and decay kinetics.	Cohe.74-1146
5.24	$\begin{gathered} \mathrm{Cr}^{2+}+\quad+\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{OH} \\ \mathrm{CrCH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{OH}^{2+} \end{gathered}$	1.0×10^{8}	-	22 ± 2	0-1	pr	Measured by the rate of formation of the product. Product characterised by its absorption spectrum and decay kinetics.	Cohe.74-1146

Table 5. Chromium(I), chromium(II) and chromium(V) reactions - Continued

No.	Reaction	$k / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}{ }^{\text {a }}$	I	$t /{ }^{\circ} \mathrm{C}$	pH	Method	Comments	Ref.
5.25	$\underset{\mathrm{CrCH}\left(\mathrm{CH}_{3}\right) \mathrm{OCH}_{2} \mathrm{CH}_{3}{ }^{2+}}{ }+$	3.4×10^{7}	-	22 ± 2	0-1	pr	Measured by the rate of formation of the product. Product characterised by its absorption spectrum and decay kinetics.	Cohe.74-1146
5.26	$\begin{gathered} \mathrm{Cr}^{2+}+\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{COOH} \\ \mathrm{CrCH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{COOH}^{+} \end{gathered}$	1.1×10^{8}	-	22 ± 2	0-1	pr	Measured by the rate of formation of the product. Product characterised by its absorption spectrum and decay kinetics.	Cohe.74-1146
5.27	$\mathrm{Cr}^{+}+$anthraquinone-2,6-disulphonate \rightarrow $\mathrm{Cr}^{+}+$(anthraquinone-2,6-disulphonate) ${ }^{-}$	$(2.8 \pm 0.3) \times 10^{0}$	-	ca. 22	7.0	pr	Measured by the rate of formation of the semiquinone in the presence of $c a .1$ $\mathrm{mol} \mathrm{dm}{ }^{-3}$ 2-methyl-2propanol.	Rao.75-1032
5.28	$\begin{aligned} & \mathrm{Cr}^{\mathrm{s}^{+}}+1,4-\text { benzo- } \\ & \text { quinone } \rightarrow \mathrm{Cr}^{+}+ \\ & \text {(1,4-benzoquinone) } \end{aligned}$	$(3.2 \pm 0.3) \times 10^{3}$	-	25 ± 2	3.4	Pr	Measured by the rate of formation of the semiquinone in the presence of 0.5 mol dm^{-3} 2-methyl-2propanol.	Sell.76-1134
		$(3.5 \pm 0.4) \times 10^{9}$	-	ca. 22	7.0	pr	Measured by the rate of formation of the semiquinone in the presence of $c a .1 \mathrm{~mol}$ dm^{-3} 2-methyl-2propanol.	Rao.75-1032
5.29	$\begin{aligned} & \mathrm{Cr}^{2+}+\text { tetra- } \\ & \quad \text { nitromethane } \rightarrow \\ & \mathrm{Cr}^{+}+\mathrm{NO}_{2}+\mathrm{C}\left(\mathrm{NO}_{2}\right)_{3} \end{aligned}$	$(1.2 \pm 0.2) \times 10^{6}$	-	25 ± 2	3.4	pr	Measured by the rate of formation of the nitroform anion in the presence of 1 mol dm ${ }^{-3}$ 2-methyl-2propanol.	Sell.76-1134
5.30	$\begin{aligned} & \mathrm{Cr}\left(V \text { (from } \mathrm{CrO}_{4} \mathbf{2}^{-}+e_{\mathrm{ad}}^{-}\right) \\ & \mathrm{Cr}^{\mathbf{v}}+\mathrm{Cr}^{\mathbf{v}} \text { (dis or af) } \end{aligned}$	$\begin{gathered} 2 k / \epsilon_{400}=(7 \pm 3) \\ \times 10^{8} \mathrm{~cm} \mathrm{~s}^{-1} \end{gathered}$	0.003	25	nat	pr	-	Sell72-0844

${ }^{\text {a }}$ If the data source gives no errors none are shown here but they should be assumed to be at least $\pm \mathbf{2 5 \%}$ (or $\pm 50 \%$ for $2 k$).

Table 6. Copper(I) and copper(III) reactions

No.	Reaction	$k / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}{ }^{\text {a }}$	I	$t /{ }^{\circ} \mathrm{C}$	pH	Method	Comments	Ref.
6.1	$\stackrel{C u_{\text {aq }}^{+}}{\mathrm{Cu}^{+}}+\mathrm{Cu}(\mathrm{OH})_{2}^{+} \text {(et) }$							
		$(1.8 \pm 0.6) \times 10^{\circ}$	0.003	25	4.8	pr	See comments under entry 6.37 .	Sell72-0844
		$(1.6 \pm 0.5) \times 10^{0}$	0.003	25	6	pr	See comments under entry 6.37 .	Sell72-0844
		$(3.6 \pm 1.2) \times 10^{\circ}$	0.002	RT	nat	pr	-	Meye71-0174
6.2	$\mathrm{Cu}^{+}+\mathrm{MnO}_{4}^{-}$(et)	$5 \times 10^{\circ}$	$\begin{aligned} & c a . \\ & 0.08 \end{aligned}$	20	2	pr	Measured by the rate of depletion of the MnO_{4}^{-}absorption. Dependence of k on $\left[\mathrm{Cu}^{2+}\right]$ detected.	Baxe..65-0385
		$(6.4 \pm 0.6) \times 10^{\circ}$	0.004	25	nat	pr	Measured by the rate of depletion of the MnO_{4}^{-}absorption.	Sell72-0844
6.3	$\mathrm{Cu}^{+}+\mathrm{N}_{2} \mathrm{O}$	$<10^{6}$	-	25	nat	γ	Estimated from N_{2} yields in the γ radiolysis of $\mathrm{Cu}^{\mathbf{2 +}}$ $+\mathrm{N}_{2} \mathrm{O}$ solutions.	Sell72-0844
6.4	$\begin{gathered} \mathrm{Cu}^{+}+\cdot \mathrm{CH}_{2} \mathrm{OH} \\ \mathrm{CuCH}_{2} \mathrm{OH}^{+} \end{gathered}$	$k_{\mathrm{f}} c a .10^{10}$	-	RT	4.5	pr	Identity of product inferred from its absorption spectrum.	Buxt.77-1500
		$k_{\mathrm{r}} c a .10^{6} \mathrm{~s}^{-1}$	-	RT	4.5	pr	Rate constants estimated from rate of growth and decay of $\mathrm{CuCH}_{2} \mathrm{OH}^{+}$.	Buxt.77-1500
6.5	$\begin{gathered} \mathrm{Cu}^{+}+\left(\mathrm{CH}_{3}\right)_{2} \mathrm{COH} \\ \mathrm{CuCOH}\left(\mathrm{CH}_{3}\right)_{2}^{+} \end{gathered}$	ca. $6 \times 10^{\circ}$	-	RT	4.5	pr	Identity of product inferred from its absorption spectrum.	Buxt 77-1500
6.6	$\begin{aligned} & \mathrm{CuCOH}\left(\mathrm{CH}_{3}\right)_{2}^{+}+\mathrm{H}^{+} \rightarrow \\ & \mathrm{Cu}^{+}+\text {products } \end{aligned}$	3.2×10^{7}	-	RT	3-4.5	pr	Estimated from dependence of decay of absorption attributed to $\mathrm{CuOH}\left(\mathrm{CH}_{3}\right)_{2}{ }^{+}$ on $\left[\mathrm{H}^{+}\right]$(see entry 6.5).	Buxt.77-1500
6.7	$\begin{aligned} & \mathrm{Cu}^{+}+\cdot \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH} \rightarrow \\ & \mathrm{CH}_{2}=\mathrm{CH}_{2}+\mathrm{OH}^{-}+\mathrm{Cu}^{2+} \end{aligned}$	1.9×10^{10}	-	RT	4.5	γ	Estimated from yields of Cu^{I} in γ-radiolysis of $\mathrm{Cu}^{2+}+\mathrm{C}_{2} \mathrm{H}_{4}$ solutions. Products inferred from data for entry 6.8 .	Buxt.77-1500
6.8	$\underset{\mathrm{Cu}^{+}+\mathrm{CH}_{2}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{COH}}{\mathrm{CuCH}_{2}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{COH}^{+}} \rightarrow$	2.6×10^{0}	-	RT	4.5	γ	Product inferred from its absorption spectrum. Estimated from yields of Cu^{I} in the $\boldsymbol{\gamma}$-radiolysis of $\mathrm{Cu}^{2+}+2-$ methyl-2-propanol + $\mathrm{C}_{2} \mathrm{H}_{4}$ solutions. Final product is $\mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$.	Buxt.77-1500
6.9	$\underset{\mathrm{Cu}^{+}+\text {acrylamide }}{\mathrm{Cu}^{2} \text {-acrylamide }{ }^{+}}$	$\begin{gathered} K=(2.1 \pm 0.1) \times \\ 10^{4} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \\ k_{\mathrm{f}}=2 \times 10^{9} \\ k_{\mathrm{r}}=1.1 \times 10^{5} \mathrm{~s}^{-1} \end{gathered}$	-	25 ± 2	$\begin{aligned} & 4 \\ & 2.5 \\ & 2.5 \end{aligned}$	pr	Measured from the effect of [acrylamide] on the yield and rate of formation of Cu -acrylamide ${ }^{+}$.	Buxt. $76-1186$
6.10	$\mathrm{Cu}^{+}+$benzoquinone	$<10^{\circ}$	-	25 ± 2	4.9	Pr	Estimated from the non-formation of benzosemiquinone in the pulse radiolysis of $\mathrm{Cu}^{2+}+$ benzoquinone solutions.	Sell.76-1134

Table 6. Copper(I) and copper(III) reactions - Continued

Table 6. Copper(I) and copper(III) reactions - Continued

No.	Reaction	$k / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-18}$	I	$t /{ }^{\circ} \mathrm{C}$	pH	Method	Comments	Ref.
6.18	$\mathrm{CuL}^{+}+\mathrm{Co}(\mathrm{en})_{3}{ }^{\text {+ }}$	$<10^{3}$	$\begin{aligned} & 0.016- \\ & 0.028 \end{aligned}$	RT	7.0	pr	Measured in the presence of 1 mol dm ${ }^{-3}$ 2-methyl-2-propanol.	Tait..76-1039
6.19	$\mathrm{CuL}^{+}+\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{\mathrm{e}^{3+}}$	$<10^{3}$	$\begin{aligned} & 0.016 \\ & 0.028 \end{aligned}$	RT	7.0	pr	Measured in the presence of 1 mol dm ${ }^{-3}$ 2-methyl-2-propanol.	Tait..76-1039
6.20	$\mathrm{CuL}^{+}+\mathrm{CoL}^{\prime}(\mathrm{OH})_{2}{ }^{+}$	$<10^{3}$	$\begin{aligned} & 0.016 \\ & 0.028 \end{aligned}$	RT	7.0	pr	Measured in the presence of 1 $\mathrm{mol} \mathrm{dm}^{-3}$ 2-methyl-2-propanol.	Tait..76-1039
($L^{\prime}=2,3,9,10$-tetramethyl-1,4,8,11-tetraazacyclotetradeca-1,3,7,10-tetraene).								
6.21	$\mathrm{CuL}^{+}+\mathrm{Cr}(\mathrm{bpy}) 3^{\text {a+ }}$ (et)	$(3.7 \pm 0.4) \times 10^{8}$	$\begin{aligned} & 0.016 \\ & 0.028 \end{aligned}$	RT	7.0	pr	Measured in the presence of 1 mol dm ${ }^{-3}$ 2-methyl-2-propanol.	Tait. 76-1039
6.22	$\mathrm{CuL}^{+}+\mathrm{Fe}(\mathrm{bpy})_{3}{ }^{\text {a+ }}$	$<10^{3}$	$\begin{aligned} & 0.016 \\ & 0.028 \end{aligned}$	RT	7.0	pr	Estimated in the presence of 1 mol dm ${ }^{-3}$ 2-methyl2 -propanol.	Tait..76-1039
6.23	$\mathrm{CuL}^{+}+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{pt})$	$(5.0 \pm 0.5) \times 10^{6}$	$\begin{aligned} & 0.06- \\ & 0.3 \end{aligned}$	RT	<1.25	pr	Reaction may involve proton transfer to the metal centre to give a hydrido complex.	Tait..76-1039
6.24	$\mathrm{CuL}^{+}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$	$<10^{4}$	$\begin{aligned} & 0.01- \\ & 0.1 \end{aligned}$	RT	5.50	pr	-	Tait. 76-1039
6.25	$\mathrm{CuL}^{+}+\mathrm{N}_{2} \mathrm{O}$ (et or 0 at)	$(1.7 \pm 0.2) \times 10^{6}$	-	RT	7.0	pr	Measured in the presence of 1 mol dm ${ }^{-3}$ 2-methyl-2-propanol. Reaction possibly involves two electron oxidation to Cu (III) complex.	Tait..76-1039
6.26	$\begin{gathered} \mathrm{CuL}^{+}+\mathrm{O}_{2} \\ \mathrm{CuLO}_{2}^{+} \end{gathered}$	$(2.6 \pm 0.3) \times 10^{7}$	-	RT	7.0	pr	Product does not transfer an electron to 1,4-benzoquinone, and identified therefore as O_{2} adduct.	Tait..76-1039
6.27	$\underset{\text { (et) }}{\mathrm{CuL}^{+}}+\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{\mathrm{e}^{3+}}$	$(7.2 \pm 0.7) \times 10^{4}$	$\begin{aligned} & 0.016 \\ & 0.028 \end{aligned}$	RT	7.0	pr	Measured in the presence of 1 mol dm ${ }^{-3}$ 2-methyl-2propanol.	Tait..76-1039
6.28	$\mathrm{CuL}^{+}+\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{NO}^{3+}$	$<10^{3}$	$\begin{aligned} & 0.016- \\ & 0.028 \end{aligned}$	RT	7.0	pr	Estimated in the presence of 1 mol dm^{-3} 2-methyl-2propanol.	Tait..76-1039
6.29	$\mathrm{CuL}^{+}+$acetic acid	$<10^{4}$	$\begin{aligned} & 0.015- \\ & 0.06 \end{aligned}$	RT	4.85	pr	Estimated in the presence of 1 mol dm^{-3} 2-methyl-2propanol.	Tait..76-1039
6.30	$\begin{aligned} & \mathrm{CuL}^{+}+9,10-\text { anthra- } \\ & \text { quinone- } 2,6 \text {-disul- } \\ & \text { phonate (et) } \end{aligned}$	$(4.3 \pm 0.4) \times 10^{\circ}$	0.004	RT	7.0	pr	Measured in the presence of 1 mol dm^{-3} 2-methyl-2propanol.	Tait..76-1039

Table 6. Copper(I) and copper(III) reactions - Continued

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline No. \& Reaction \& \(k / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-12}\) \& I \& t/ \({ }^{\circ} \mathrm{C}\) \& pH \& Method \& Comments \& Ref. \\
\hline 6.31 \& \[
\begin{aligned}
\& \mathrm{CuL}^{+}+9,10-\text { anthra- } \\
\& \text { quinone-2-sulphon- } \\
\& \text { ate (et) }
\end{aligned}
\] \& \((1.1 \pm 0.1) \times 10^{0}\) \& 0.004 \& RT \& 7.0 \& pr \& Measured in the presence of 1 mol \(\mathrm{dm}^{-3}\) 2-methyl-2propanol. \& Tait..76-1039 \\
\hline 6.32 \& \[
\begin{aligned}
\& \mathrm{CuL}^{+}+\text {1,4-benzo- } \\
\& \text { quinone (et) }
\end{aligned}
\] \& \((2.6 \pm 0.3) \times 10^{\circ}\) \& 0.004 \& RT \& 7.0 \& pr \& Measured in the presence of 1 mol \(\mathrm{dm}^{-3}\) 2-methyl-2propanol. \& Tait..76-1039 \\
\hline 6.33 \& \[
\begin{aligned}
\& \mathrm{CuL}^{+}+3 \text {-benzoyl- } \\
\& \text { pyridine }
\end{aligned}
\] \& no reaction observed \& 0.004 \& RT \& 7.0 \& pr \& - \& Tait..76-1039 \\
\hline 6.34 \& \(\mathrm{CuL}^{+}+\)eosin Y \& no reaction observed \& 0.004 \& RT \& 7.0 \& pr \& - \& Tait..76-1039 \\
\hline 6.35 \& \(\mathrm{CuL}^{+}+\)fluorescein \& no reaction observed \& 0.004 \& RT \& 7.0 \& pr \& - \& Tait..76-1039 \\
\hline \multirow[t]{2}{*}{6.36} \& \[
\begin{aligned}
\& \mathrm{CuL}^{+}+\text {methyl iodide } \\
\& \text { (et or } \mathrm{S}_{\mathrm{N}} 2 \text {) }
\end{aligned}
\] \& \((3.1 \pm 0.3) \times 10^{6}\) \& 0.01 \& RT \& 9.2 \& pr \& Measured in the presence of 1 mol \(\mathrm{dm}^{-3}\) 2-methyl-2propanol. \& Tait..76-1039 \\
\hline \multicolumn{9}{|c|}{\(\mathrm{Cu}(\mathrm{III})\) Reactions} \\
\hline \& \multicolumn{8}{|l|}{\(\mathrm{Cu}(\mathrm{III})\) aquo ion \(\left(\mathrm{Cu}(\mathrm{OH})_{3}, \mathrm{Cu}(\mathrm{OH})_{2}{ }^{+} \text {and } \mathrm{CuOH}^{2+}\right)^{\text {b }}\)} \\
\hline \multirow[t]{2}{*}{6.37} \& \multirow[t]{2}{*}{\[
\underset{\mathrm{H}^{+}}{\mathrm{CuOH}^{+}} \rightleftharpoons \mathrm{Cu}(\mathrm{OH})_{2}^{+}+
\]} \& \(\mathrm{p} K=2.4 \pm 0.2\) \& var \& 25 \& 0.6 \& pr \& \begin{tabular}{l}
Degree of hydrolysis deduced from conductivity experiments (see ref. 70-0512). \\
Note: \(\quad \mathrm{p} K\) of this value is also in keeping with the data of Baxendale et al (ref. 65-0394) and of Meyerstein (ref. 710174) taking into account equilibrium 6.39.
\end{tabular} \& Sell72-0844 \\
\hline \& \& \(\mathrm{p} K=3.05 \pm 0.05\) \& var \& RT \& 2-7 \& pr \& - \& Baxe..65-0394 \\
\hline 6.38 \& \[
\begin{aligned}
\& \mathrm{Cu}(\mathrm{OH})_{2}^{+} \rightleftharpoons \\
\& \mathrm{CuOH}^{+}
\end{aligned}
\] \& \[
\begin{gathered}
k_{\mathrm{f}}=(4.2 \pm 1.4) \\
\times 10^{4} \mathrm{~s}^{-1} \\
\text { and } K=1.3 \times \\
10^{-4} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \\
k_{\mathrm{f}}=(2.8 \pm 1.0) \\
\times 10^{4} \mathrm{~s}^{-1} \\
\text { and } K=9.0 \times \\
10^{-5} \mathrm{dm}^{3} \mathrm{~mol}^{-1}
\end{gathered}
\] \& var \& RT
RT \& 3.50

3.65 \& pr \& Estimated from decay of Cu^{m} in the presence of $\mathrm{Br}^{-}, \mathrm{CH}_{3} \mathrm{OH}$, $\mathrm{H}_{2} \mathrm{O}_{2}$ etc. Values of k_{r} taken to be same as $k\left(\mathrm{Cu}^{2+}+\mathrm{OH}\right)$. \& Вахе..65-0394

\hline 6.39 \& $$
\begin{aligned}
& \mathrm{Cu}(\mathrm{OH})_{2}{ }^{+} \rightleftharpoons \\
& \mathrm{Cu}(\mathrm{OH})_{3}+\mathrm{H}^{+}
\end{aligned}
$$ \& $\mathrm{p} K>6$ \& var \& 25 \& 0-6 \& pr \& - \& Sell72-0844

\hline 6.40 \& $\mathrm{Cu}(\mathrm{OH})_{2}{ }^{+}+\mathrm{Cu}^{+}$(et) \& $(1.8 \pm 0.6) \times 10^{9}$ \& 0.003 \& 25 \& 4.8 \& pr \& Estimated from decay of $\mathrm{Cu}^{\text {II }}$ in deaerated solutions. \& Sell72-0844

\hline \& \& $(1.6 \pm 0.5) \times 10^{9}$ \& 0.003 \& 25 \& 6 \& pr \& Possibly some contribution from $\mathrm{Cu}(\mathrm{OH})_{s}+$ Cu^{+}. \& Sell72-0844

\hline \& \& $(3.6 \pm 1.2) \times 10^{\circ}$ \& 0.002 \& RT \& nat \& pr \& Possibly some contribution from

$$
\mathrm{Cu}(\mathrm{OH})_{s}+\mathrm{Cu}^{+}
$$ \& Meye71-0174

\hline 6.41 \& $$
\underset{\text { (et?) }}{\mathrm{Cu}(\mathrm{OH})_{2}^{+}}+\mathrm{Cu}(\mathrm{gly})^{+}
$$ \& $(8.1 \pm 0.5) \times 10^{7}$ \& 0.004 \& RT \& 5.5 \& pr \& - \& Meye71-0775

\hline
\end{tabular}

Table 6. Copper(I) and copper(III) reactions - Continued

No.	Reaction	$k / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$	I	$t /{ }^{\circ} \mathrm{C}$	pH	Method	Comments	Ref.
6.42	$\underset{(\mathrm{af})}{\mathrm{Cu}(\mathrm{OH})_{2}^{+}}+\mathrm{Cu}(\mathrm{OH})_{2}{ }^{+}$	$\begin{gathered} 2 k=(4.6 \pm 0.6) \\ \times 10^{7} \end{gathered}$	0.002	RT	6	pr	Estimated from the decay of $\mathrm{Cu}^{I I}$ in $\mathrm{N}_{2} \mathrm{O}$ saturated solutions.	Meye71-0174
		$2 k<5 \times 10^{7}$	0.004	25	6	pr	Possibly some contribution from $\mathrm{Cu}(\mathrm{OH})_{2}{ }^{+}$ $+\mathrm{Cu}(\mathrm{OH})_{s}$ and $\mathrm{Cu}(\mathrm{OH})_{s}$ $+\mathrm{Cu}(\mathrm{OH})_{3}$.	Sell72-0844
6.43	$\begin{aligned} & \mathrm{Cu}(\mathrm{OH})_{2}{ }^{+}+ \\ & \mathrm{CuNO}_{2}{ }^{+} \text {(et) } \end{aligned}$	ca. $3 \times 10^{\circ}$	ca. 0.002	RT	5.2	pr	Estimated from decay of $\mathrm{Cu}^{\text {II }}$ in presence of $\mathrm{NO}_{2}{ }^{-}$.	Meye71-0174
6.44	$\begin{aligned} & \mathrm{Cu}(\mathrm{OH})_{2}^{+}+\text {mena- } \\ & \text { quinone (?) } \end{aligned}$	$(2.0 \pm 0.2) \times 10^{\circ}$	-	RT	$\begin{aligned} & 9.0 \\ & 10.6 \end{aligned}$	pr	40% of $\mathrm{Cu}^{\text {II }}$ claimed to react by electron transfer. $\mathrm{Cu}^{\text {III }}$ formed by $\mathrm{OH}+$ $\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2}$.	Rao.73-1047
		-	-	RT	8.0	pr	20.3% electron transfer. $\mathrm{Cu}^{\text {II }}$ formed by $\mathrm{OH}+\mathrm{CuSO}_{4}$.	Rao.73-1047
		-			10.6	pr	39% electron transfer. $\mathrm{Cu}^{\text {II }}$ formed by $\mathrm{OH}+$ CuSO_{4}.	Rao.73-1047
	$\mathrm{Cu}($ III) Complexes. (The precise nature of these complexes is uncertain: all were formed by OH oxidation of the correspcomplex).							
6.45	$\begin{aligned} & \mathrm{Cu}{ }^{\mathrm{m}}\left(\mathrm{NH}_{3}\right)_{n}+ \\ & \mathrm{Cu}{ }^{\mathrm{m}}\left(\mathrm{NH}_{3}\right)_{n}(\mathrm{af} ?) \end{aligned}$	$\begin{gathered} 2 k=(3.0 \pm 0.5) \\ \times 10^{7} \end{gathered}$	<0.008	RT	11.1	pr	-	Meye71-0775
6.46	$\begin{aligned} & \mathrm{CuII}(\alpha \text {-alanine })_{2} \\ & \text { (int et?) } \end{aligned}$	$\underset{s^{-1}}{(8.0 \pm 2.4) \times 10^{s}}$	<0.002	RT	6.3	pr	-	Meye71-0775
6.47	$\begin{aligned} & \mathrm{CuII}(\beta \text {-alanine })_{2} \\ & \text { (int et?) } \end{aligned}$	$\underset{s^{-1}}{(7.0 \pm 2.1) \times 10^{s}}$	<0.002	RT	5.8	pr	-	Meye71-0775
6.48	$\begin{aligned} & \mathrm{Cu}^{\mathrm{II}}(\alpha-\mathrm{amino-n}- \\ & \quad \text { butyric acid })_{2} \text { (int et?) } \end{aligned}$	$(5.0 \pm 1.5) \times 10^{3}$	<0.002	RT	6.1	pr	-	Meye71-0775
6.49	$\begin{aligned} & \mathrm{Cu}{ }^{\text {II }}(\beta \text {-amino-n- } \\ & \quad \text { butyric acid })_{2} \text { (int et?) } \end{aligned}$	$\left(\frac{4.5}{\mathrm{~s}^{-1}} \pm 1.3\right) \times 10^{\mathrm{s}}$	<0.002	RT	6.0	pr	-	Meye71-0775
6.50	$\begin{aligned} & \mathrm{Cu}{ }^{\mathrm{m}}(\gamma \text {-amino-n- } \\ & \quad \text { butyric acid })_{2} \text { (int et?) } \end{aligned}$	$(1.2 \pm 0.4) \times 10^{3}$	<0.002	RT	4.8	pr	-	Meye71-0775
6.51	$\begin{aligned} & \text { CuII }(\alpha \text {-amino- } \\ & \text { iso-butyric acid) } \\ & \text { (int et?) } \end{aligned}$	$(1.5 \pm 0.5) \times 10^{3}$	<0.002	RT	6.2	pr	-	Meye71-0775
		$\left.\underset{s^{-1}}{(2.5} \pm 0.8\right) \times 10^{3}$	<0.002	RT	7.3	pr	-	Meye71-0775
6.52		$<3 \mathrm{~s}^{-1}$	0.002	RT	5.8	pr	-	Meye71-0775
		$120 \mathrm{~s}^{-1}$	0.002	RT	11.6	pr	-	Meye71-0775
6.53	$\mathrm{Cu}^{\text {mi(en }}{ }_{\text {n }}+$	$2 k=5.5 \times 10^{5}$	0.002	RT	5.8	pr	-	Meye71-0775
	$\left.\mathrm{Cu}^{\text {III }} \mathrm{en}\right)_{\mathrm{n}}(\mathrm{af}$? $)$		0.002	RT	11.6	pr	-	Meye71-0775
6.54	$\begin{aligned} & \mathrm{Cum}(\text { gly })_{2} \text { (int } \\ & \text { et?) } \end{aligned}$	$\underset{s^{-1}}{(6.0 \pm 2.0) \times 10^{3}}$	<0.002	RT	6.1	pr	-	Meye71-0775
		$\frac{(2.2 \pm 0.7) \times 10^{4}}{s^{-1}}$	<0.002	RT	7.5	pr	-	Meye71-0775

${ }^{\text {a }}$ If the data source gives no errors none are shown here but they should be assumed to be at least $\pm 25 \%$ (or $\pm 50 \%$ for $2 k$). ${ }^{\text {b }}$ The form of $\mathrm{Cu}^{\text {II }}$ reacting reinterpreted from original references according to equilibria 6.37 and 6.39 .

Table 7. Europium(II) reactions

No.	Reaction	$k / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1 \mathrm{a}}$	I	$t /{ }^{\circ} \mathrm{C}$	pH	Method	Comments	Ref.
$E u_{\text {aq }}^{2+}$ (Includes only those rate constants measured by pulse radiolysis).								
7.1	$\mathrm{Eu}^{2+}+\mathrm{BrO}_{3}^{-}$	$<10^{4}$	$\begin{aligned} & c a . \\ & 0.01 \end{aligned}$	RT	nat	pr	-	Fara.72-0065
7.2	$\mathrm{Eu}^{2+}+\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}^{2+}$	90 ± 9	0.06	25	6	pr	-	Fara.73-0107
	(et-is)	$(4.7 \pm 0.5) \times 10^{2}$	$\begin{aligned} & 1.0 \\ & \left(\mathrm{NaClO}_{4}\right) \end{aligned}$	25	6	pr	-	Fara.73-0107
		$(5.3 \pm 0.5) \times 10^{2}$	$\begin{aligned} & 1.0 \\ & (\mathrm{NaCl}) \end{aligned}$	25	6	pr	-	Fara.73-0107
7.3	$\mathrm{Eu}^{2+}+\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{CN}^{2+}$	<30	0.06	25	6	pr	-	Fara.73-0107
7.4	$\mathrm{Eu}^{2+}+\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{~F}^{2+}$	$(2.8 \pm 0.3) \times 10^{3}$	0.06	25	6	pr	-	Fara.73-0107
	(et-is)	$(1.5 \pm 0.2) \times 10^{4}$	$\begin{aligned} & 1.0 \\ & \left(\mathrm{NaClO}_{4}\right) \end{aligned}$	25	6	pr	-	Fara.73-0107
		$(2.4 \pm 0.2) \times 10^{4}$	$\begin{aligned} & 1.0 \\ & (\mathrm{NaCl}) \end{aligned}$	25	6	pr	-	Fara.73-0107
(et-is)								
7.6	$\mathrm{Eu}^{2+}+\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{~N}_{3}{ }^{+}$	< 30	0.06	25	6	pr	-	Fara.73-0107
7.7	$\mathrm{Eu}^{2+}+\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{NCS}^{2+}$	<10	0.06	25	6	pr	-	Fara.73-0107
7.8	$\mathrm{Eu}^{2+}+\mathrm{Cu}^{++}$	$<10^{4}$	$\begin{aligned} & c a . \\ & 0.01 \end{aligned}$	RT	nat	pr	-	Fara.72-0065
7.9	$\mathrm{Eu}^{2+}+\mathrm{H}_{2} \mathrm{O}_{2}$	$<10^{4}$	$\begin{aligned} & c a . \\ & 0.01 \end{aligned}$	RT	nat	pr	-	Fara.72-0065
7.10	$\mathrm{Eu}^{2+}+\mathrm{IO}_{3}^{-}$	$<10{ }^{\text {4 }}$	$\begin{aligned} & c a . \\ & 0.01 \end{aligned}$	RT	nat	pr	-	Fara.72-0065
7.11	$\mathrm{Eu}^{\mathbf{2 +}}+\mathrm{MnO}_{4}^{-}$(et)	6.5×10^{0}	$\begin{aligned} & c a . \\ & 0.01 \end{aligned}$	RT	nat	pr	-	Fara.72-0065
7.12	$\mathrm{Eu}^{\mathbf{2 +}}+\mathrm{NO}_{2}{ }^{-}(\mathrm{et})$	6.2×10^{5}	$\begin{aligned} & c a . \\ & 0.01 \end{aligned}$	RT	nat	pr	-	Fara.72-0065
7.13	$\mathrm{Eu}^{2+}+\mathrm{NO}_{3}{ }^{-}$	$<10^{4}$	$\begin{aligned} & c a . \\ & 0.01 \end{aligned}$	RT	nat	pr	-	Fara.72-0065
7.14	$\mathrm{Eu}^{\mathbf{2 +}}+\mathrm{N}_{2} \mathrm{O}$	$<10^{4}$	$\begin{aligned} & c a . \\ & 0.01 \end{aligned}$	RT	nat	pr	-	Fara.72-0065
7.15	$\mathrm{Eu}^{2+}+\mathrm{O}_{2}$	$<10^{4}$	$\begin{aligned} & c a . \\ & 0.01 \end{aligned}$	RT	nat	pr	-	Fara.72-0065
7.16	$\mathrm{Eu}^{\mathbf{2 +}}+\mathrm{OH}(\mathrm{et})$	9×10^{8}	-	RT	nat	pr	Measured from the rate of decay of Eu^{2+} in the absence of OH scavengers. Major competing reaction is OH +0 H .	Fara.72-0065
		$(1.3 \pm 0.2) \times 10^{9}$	-	RT	2	pr	-	$\begin{aligned} & \text { Pika..73-1084 } \\ & \text { Gord65-0799 } \end{aligned}$
		$3.8 \times 10^{\circ}$	-	RT	nat	pr	-	
7.17	$\begin{aligned} & \mathrm{Eu}^{2+}+\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}^{2+} \\ & \text { (et-is) } \end{aligned}$	ca. 3×10^{3}	0.06	25	6	pr	-	Fara.73-0107
7.18	$\begin{aligned} & \mathrm{Eu}^{2+}+\mathrm{Ru}_{\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}^{2+}}^{\text {(et-is) }} \end{aligned}$	$(1.5 \pm 0.2) \times 10^{4}$	0.06	25	6	pr	-	Fara.73-0107
7.19	$\mathrm{Eu}^{2+}+\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{H}_{2} \mathrm{O}^{\text {s+ }}$	$<2 \times 10^{3}$	0.3	25	2	pr	-	Fara.73-0107
7.20	$\begin{aligned} & \mathrm{Eu}^{2+}+\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{\mathrm{o}^{3+}} \\ & \text { (et-is) } \end{aligned}$	ca. 1×10^{3}	0.06	25	6	pr	-	Fara.73-0107
		$(2.3 \pm 0.2) \times 10^{3}$	$\begin{aligned} & 1.0 \\ & \left(\mathrm{NaClO}_{4}\right) \end{aligned}$	25	6	pr	-	Fara.73-0107
		$(1.5 \pm 0.2) \times 10^{4}$	$\begin{aligned} & 1.0 \\ & (\mathrm{NaCl}) \end{aligned}$	25	6	pr	-	Fara.73-0107
7.21	$\begin{aligned} & \mathrm{Eu}^{2+}+\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{OH}^{2+} \\ & \text { (et-is) } \end{aligned}$	$(6.0 \pm 0.6) \times 10^{4}$	0.06	25	6	pr	-	Fara.73-0107
		$(1.0 \pm 0.1) \times 10^{5}$	0.3	25	6	pr	-	Fara.73-0107

"If the data source gives no errors none are shown here but they should be assumed to be at least $\pm 25 \%$ (or $\pm 50 \%$ for $2 k$).

Table 8. Iron(II) and iron(III) radical complex reactions

No.	Reaction	$k / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}{ }^{\text {a }}$	I	$t /{ }^{\circ} \mathrm{C}$	pH	Method	Comments	Ref.
8.1	$\mathrm{FeH}^{2+}+\mathrm{H}^{+} \rightarrow \mathrm{Fe}^{3+}+\mathrm{H}_{2}$	$(1.06 \pm 0.1) \times 10^{4}$	$\begin{aligned} & 0.1- \\ & 1.0 \end{aligned}$	19-24	$0.1-$	pr	H_{2} product characterised by vpc; Fe^{3+} by its absorption spectrum.	Jays...69-0434
8.2	$\mathrm{FeHO}_{2}{ }^{\text {a+ }} \rightarrow \mathrm{Fe}^{3+}+\mathrm{HO}_{2}{ }^{-}$	$\underset{\mathrm{s}^{-1}}{(1.8 \pm 0.1) \times 10^{s}}$	$\begin{aligned} & 1.0 \\ & \left(\mathrm{HClO}_{4} /\right. \\ & \left.\mathrm{NaClO}_{4}\right) \end{aligned}$	20,25	$\begin{aligned} & 0.1- \\ & 0.3 \end{aligned}$	pr	$\mathrm{Fe}^{\text {III }}$ detected as product.	Jays.. 73-0038
		$\begin{gathered} E_{\mathrm{a}}=8.8 \pm 0.8 \mathrm{~kJ} \\ \mathrm{~mol}^{-1} \end{gathered}$						
8.3	$\begin{gathered} \mathrm{FeHO}_{2}{ }^{2+}+\mathrm{Fe}^{2+} \rightleftharpoons \\ \mathrm{FeHO}_{2} \mathrm{Fe}^{4+} \end{gathered}$	$K=22 \pm 2 \mathrm{dm}^{3}$	1.0 $\left(\mathrm{HClO}_{4}\right)$ NaClO_{4})	20	$\begin{aligned} & 0.1- \\ & 0.3 \end{aligned}$	pr	Measured from the effect of $\left[\mathrm{Fe}^{\mathrm{I}}\right]$ on the absorption of $\mathrm{FeHO}_{2} \mathrm{Fe}^{4+}$.	Jays..73-0038
		$K=27 \pm 2 \mathrm{dm}^{\mathrm{s}}$	1.0 $\left(\mathrm{HClO}_{4}\right)$ NaClO_{4})	25		pr		
		$K=33 \pm 1 \mathrm{dm}^{\mathrm{s}}$	1.0 $\left(\mathrm{HClO}_{4}\right)$ NaClO_{4})	30	$\begin{aligned} & 0.1- \\ & 0.3 \end{aligned}$	pr		
		$\underset{\substack{\mathrm{mol}^{-1}}}{ }=37.5 \mathrm{dm}^{3}$	$\begin{aligned} & 1.0 \\ & \left(\mathrm{HClO}_{4} /\right. \\ & \left.\mathrm{NaClO}_{4}\right) \end{aligned}$	40	$\begin{aligned} & 0.1- \\ & 0.3 \end{aligned}$	pr		
8.4	$\begin{gathered} \mathrm{FeHO}_{2^{2+}}+\mathrm{SO}_{4}{ }^{2-} \rightleftharpoons \\ \mathrm{FeHO}_{2} \mathrm{SO}_{4} \end{gathered}$	$\underset{\mathrm{mol}^{-1}}{K=90} \pm 20 \mathrm{dm}^{\mathrm{s}}$	1.0 $\left(\mathrm{HClO}_{4}\right)$ NaClO_{4})	22 ± 1	$\begin{aligned} & 0.1- \\ & 0.3 \end{aligned}$	pr	Measured from the effect of $\left[\mathrm{SO}_{4}{ }^{2-}\right.$] on the absorption of $\mathrm{FeHO}_{2} \mathrm{Fe}^{4+}$. $\mathrm{Fe}^{\text {III }}$ detected as product.	Jays..73-1022
8.5	$\begin{aligned} & \mathrm{FeHO}_{2} \mathrm{Fe}^{4+} \rightarrow \\ & \mathrm{Fe}^{3+}+\mathrm{HO}_{2}^{-}+\mathrm{Fe}^{2+} \end{aligned}$	$\underset{\mathrm{s}^{-1}}{(1.8 \pm 0.1) \times 10^{4}}$	1.0 $\left(\mathrm{HClO}_{4}\right)$ NaClO_{4})	20	$\begin{aligned} & 0.1- \\ & 0.3 \end{aligned}$	pr		Jays..73-0038
		$\underset{\mathrm{s}^{-1}}{(2.5 \pm 0.1) \times 10^{4}}$	1.0 (HClO_{4}) $\left.\mathrm{NaClH}_{4}\right)$	25	$\begin{aligned} & 0.1- \\ & 0.3 \end{aligned}$	pr		
		$\begin{gathered} E_{\mathrm{a}}=47.7 \pm 4.6 \mathrm{~kJ} \\ \mathrm{~mol}^{-1} \end{gathered}$						
8.6	$\begin{gathered} \mathrm{FeHO}_{2} \mathrm{Fe}^{4+}+\mathrm{SO}_{4^{2-}} \rightleftharpoons \\ \mathrm{FeHO}_{2} \mathrm{FeSO}_{4}{ }^{+} \end{gathered}$	$K=100 \pm 20 \mathrm{dm}^{3}$	1.0 $\left(\mathrm{HClO}_{4}\right)$ NaClO_{4})	22 ± 1	$\begin{aligned} & 0.1- \\ & 0.3 \end{aligned}$	pr	Measured from the effect of [$\mathrm{SO}_{4}{ }^{2-}$] on the absorption of $\mathrm{FeHO}_{2} \mathrm{Fe}^{4+}$.	Jays..73-1022
8.7	$\underset{\substack{\mathrm{FeHO}_{2} \mathrm{SO}_{4}}}{\mathrm{HO}_{2}^{-}} \rightarrow \mathrm{FeSO}_{4}^{+}+$	ca. $10^{4} \mathrm{~s}^{-1}$	-	22 ± 1	$\begin{aligned} & 0.1- \\ & 0.3 \end{aligned}$	pr	$\mathrm{FeSO}_{4}{ }^{+}$characterised by its absorption spectrum.	Jays..73-1022
8.8	$\begin{aligned} & \mathrm{FeHO}_{2} \mathrm{FeSO}_{4}{ }^{+} \rightarrow \\ & \mathrm{FeSO}_{4} \mathrm{Fe}^{3+}+\mathrm{HO}_{2}- \end{aligned}$	ca. $10^{4} \mathrm{~s}^{-1}$	-	22 ± 1	$\begin{aligned} & 0.1- \\ & 0.3 \end{aligned}$	pr	$\mathrm{FeSO}_{4} \mathrm{Fe}^{3+}$ characterised by its absorption spectrum.	Jays..73-1022

${ }^{\text {a }}$ If the data source gives no errors none are shown here but they should be assumed to be at least $\pm 25 \%$ (or $\pm 50 \%$ for $2 k$).

Table 9. Mercury(0) and mercury(l) reactions

No.	Reaction	$k / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$	I	$t /{ }^{\circ} \mathrm{C}$	pH	Method	Comments	Ref.
9.1	$\begin{gathered} \mathrm{Hg} \mathrm{o}^{\mathrm{o}} \\ \mathrm{Hg}^{\mathrm{o}} \end{gathered}+\mathrm{Hg}^{\mathrm{a}^{+}} \rightarrow \mathrm{Hg}_{2^{2+}}$	$(5.9 \pm 0.6) \times 10^{8}$	-	RT	3-4	pr	Measured from the pH dependence of the formation of $\mathrm{Hg}_{2}{ }^{2+}$.	Fuji..73-1080
9.2	$\begin{array}{r} \mathrm{Hg}^{0}+\mathrm{HgOH}^{+} \rightarrow \\ \mathrm{Hg}_{2}{ }^{\mathrm{a}^{+}}+\mathrm{OH}^{-} \end{array}$	$(5.0 \pm 0.5) \times 10^{8}$	-	RT	3-4	pr	Measured from the pH dependence of the formation of $\mathrm{Hg}_{2}{ }^{\mathbf{+}}$.	Fuji..73-1080
9.3	$\begin{array}{r} \mathrm{Hg}^{0}+\mathrm{Hg}(\mathrm{OH})_{2} \rightarrow \\ \mathrm{Hg}_{2}{ }^{2+}+2 \mathrm{OH}^{-} \end{array}$	$<5 \times 10^{7}$	-	RT	3-4	pr	Measured from the pH dependence of the formation of $\mathrm{Hg}_{2}{ }^{2+}$. See also comments for entry 9.6.	Fuji..73-1080
9.4	$\begin{aligned} & \mathrm{Hg}_{2}{ }^{+} \\ & \mathrm{Hg}_{2}{ }^{+}+\mathrm{Hg}_{2}{ }^{+} \text {(et?)} \end{aligned}$	$\begin{aligned} & 2 k=(1.4 \pm 0.2) \\ & \times 10^{10} \end{aligned}$	<0.017	RT	1.9	pr	Rate constant calculated taking $\epsilon_{285}=9000 \mathrm{dm}^{3}$ $\mathrm{mol}^{-1} \mathrm{~cm}^{-1} .$	Fara.72-0290
	$\begin{aligned} & \mathrm{Hg}(1) \\ & \mathrm{Hg}_{\mathrm{aq}}^{+}(\text {and hydrolysed forms) } \end{aligned}$.
9.5	$\mathrm{Hg}^{+} \rightleftharpoons \mathrm{HgOH}+\mathrm{H}^{+}$	$\mathrm{p} K=5.1$	var	RT	4-7	pr	Measured from the effect of pH on the absorption spectrum of Hg^{+}.	Fuji...75-1044
9.6	$\mathrm{Hg}^{+}+\mathrm{Hg}^{+} \rightarrow \mathrm{Hg}^{0}+\mathrm{Hg}^{\mathbf{+}}$	$\begin{gathered} 2 k=(4.9 \pm 0.5) \\ \times 10^{9} \\ 2 k=(5.2 \pm 0.5) \\ \times 10^{9} \end{gathered}$	$\begin{aligned} & \rightarrow 0 \\ & \rightarrow 0 \end{aligned}$	RT RT	$\begin{aligned} & 2.0 \\ & 4.3 \end{aligned}$	pr pr	Transient product formed, whose decay is dependent on [$\mathrm{Hg}^{\mathrm{II}}$], and which gives $\mathrm{Hg}_{2}{ }^{2+}$. These results taken to indicate that Hg^{+} $+\mathrm{Hg}^{+}$results in dismutation. Rate constants calculated taking $\epsilon_{25 s}=1.4 \mathrm{x}$ $10^{4} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$.	Fuji..73-1080
	$\mathrm{Hg}^{+}+\mathrm{Hg}^{+}\left(\rightarrow \mathrm{Hg}^{2}{ }^{\mathbf{+}}\right)$	$\begin{gathered} 2 k=(8.0 \pm 1.0) \\ \times 10^{9} \end{gathered}$	<0.017	RT	1.9	pr	Products not characterised, but reaction considered to involve dimerisation. Rate constant calculated taking $\epsilon_{272}=7800 \mathrm{dm}^{3}$ $\mathrm{mol}^{-1} \mathrm{~cm}^{-1}$.	Fara.72-0290
9.7	$\begin{gathered} \mathrm{HgOH}+\mathrm{HgOH} \\ \mathrm{Hg}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \\ \text { or } \mathrm{Hg}_{2}(\mathrm{OH})_{2} \end{gathered}$	$\begin{aligned} & 2 k=(4.4 \pm 0.4) \\ & \times 10^{\circ} \end{aligned}$	<0.1	RT	-	pr	Products identified from pH dependence of their absorption spectra. Rate constant calculated taking $\epsilon_{300}=5300 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$ cm^{-1}.	Fuji...75-1044
9.8	$\mathrm{Hg}^{\mathbf{1}}+\mathrm{Hg}^{\mathbf{1}}$	$\begin{gathered} 2 k=(4.9 \pm 1.0) \\ \times 10^{9} \end{gathered}$	-	RT	1.2	pr	-	Pika..75-1218
		$\begin{gathered} 2 k=(5.1 \pm 1.0) \\ \times 10^{9} \end{gathered}$	-	RT	3.15	pr	-	Pika..75-1218
		$\begin{aligned} & 2 k=(3.5 \pm 0.7) \\ & \times 10^{9} \end{aligned}$	-	RT	4.8	pr	-	Pika..75-1218
		$\begin{gathered} 2 k=c a .1 .1 \times \\ 10^{10} \end{gathered}$	-	RT	10.2	pr	-	Pika..75-1218

Table 9. Mercury (0) and mercury(I) reactions - Continued

No.	Reaction	$k / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-19}$	I	$t /{ }^{\circ} \mathrm{C}$	pH	Method	Comments	Ref.
9.8	$\mathrm{Hg}^{\mathbf{1}}+\mathrm{Hg}^{\mathbf{1}}$	$\begin{gathered} 2 k=c a .1 .5 \times \\ 10^{10} \end{gathered}$	-	RT	11.0	pr	-	Pika..75-1218
		$2 k=(7.0 \pm 1.4)$	$1(\mathrm{KOH})$	RT	14	pr	-	Pika..75-1218
		$\times 10^{9}$	+ data	at interm				
9.9	$\mathrm{Hg}^{\mathbf{1}}+\mathrm{O}_{2}($ et or af)	$(4.0 \pm 0.6) \times 10^{8}$		RT	2.7	pr	-	Pika..75-1218
		$(1.2 \pm 0.2) \times 10^{9}$	-	RT	11.2	pr	-	Pika..75-1218
		$(1.6 \pm 0.2) \times 10^{\circ}$	1(KOH)	RT	14	pr	-	Pika.. $75-1218$
	Note: A change in mechanism of the decay of Hg^{l} aquo ions is observed on increasing the pH . There appears to be no good understanding of why this should be, and we suggest, therefore, that the reaction mechanisms written above should be viewed with caution. Note also that the spectral data for Hg^{+}obtained by Faraggi and Amozig (ref. 72-0290) and by Fujita et al. (ref. 73-1080) do not correspond.							
	$\mathrm{Hg}(I)$ Complexes HgBr and related species							
9.10	$\mathrm{HgBr}+\mathrm{HgBr} \rightarrow \mathrm{Hg}_{2} \mathrm{Br}_{2}$	$2 k=8 \times 10^{\circ}$	-	RT	-	pr	Product characterised by its absorption spectrum.	Jung.76-1042
		$\begin{gathered} 2 k=(1.0 \pm 0.1) \\ \times 10^{20} \end{gathered}$	-	RT	-	pr	-	Fuji...76-1087
9.11	$\mathrm{HgBr}+\mathrm{O}_{2} \rightarrow \mathrm{HgBrO}_{2}$	$>10^{\circ}$	-	RT	-	pr	Product characterised by conductivity experiments and nonformation of $\mathrm{O}_{2}{ }^{-}$/ HO_{2} absorption.	Jung..76-1042
9.12	$\begin{gathered} \mathrm{HgBr}+1,4-\text { benzo- } \\ \underset{\text { quinone } \rightarrow \mathrm{HgBr}^{+}}{(1,4-\text { benzoquinone })^{-}} \end{gathered}$	$>10^{9}$	-	RT	5-5.5	pr	Benzosemiquinone product characterised by its absorption spectrum.	Jung..76-1042
9.13	$\begin{aligned} & \mathrm{HgBr}+\text { tetranitro- } \\ & \text { methane } \rightarrow \mathrm{HgBr}^{+}+ \\ & \mathrm{C}\left(\mathrm{NO}_{2}\right)_{s}^{-}+\mathrm{NO}_{2} \end{aligned}$	2.2×10^{9}	-	RT	-	pr	Nitroform anion product characterised by its absorption spectrum.	Jung..76-1042
9.14	$\begin{aligned} & \mathrm{HgBrO}_{2}+1,4 \text {-benzo- } \\ & \text { quinone } \rightarrow \mathrm{HgBr}^{+}+ \\ & \mathrm{O}_{2}+(1,4-\text { benzo- } \\ & \text { quinone })^{-} \end{aligned}$	7×10^{8}	-	RT	-	pr	Benzosemiquinone product characterised by its absorption spectrum.	Jung..76-1042
	HgCl							
9.15	$\underset{\substack{\mathrm{HgCl}}}{\mathrm{Hg}_{2} \mathrm{Cl}_{2}}$	$\begin{aligned} 2 k & =(8.0 \pm 0.5) \\ & \times 10^{9} \end{aligned}$	-	RT	-	pr	Product characterised by its absorption spectrum, and gravimetrically giving $G\left(\mathrm{Hg}_{2} \mathrm{Cl}_{2}\right)=3.0 \mathrm{in}$ solutions containing 2-propanol.	Nazh.73-0043
9.16	$\mathrm{HgCl}+\mathrm{O}_{2} \rightarrow \mathrm{HgClO}_{2}$	$(1.0 \pm 0.3) \times 10^{0}$	-	RT	-	pr	Product characterised by conductivity experiments and non-formation of $\mathrm{O}_{2}-/ \mathrm{HO}_{2}$ absorption.	Nazh.73-0043
9.17	$\begin{aligned} & \mathrm{HgCl}+\mathrm{OH} \rightarrow \\ & \mathrm{HgCl}+\mathrm{OH}^{-} \end{aligned}$	ca. 10^{10}	-	RT	-	pr	Products characterised by conductivity experiments.	Nazh.73-0043
9.18	$\begin{aligned} & \mathrm{HgCl}+1,4 \text {-benzo- } \\ & \text { quinone } \rightarrow \mathrm{HgCl}^{+} \\ & \quad+(1,4 \text {-benzosemi- } \\ & \text { quinone })^{-} \end{aligned}$	$\begin{gathered} 3.0 \times 10^{9} \\ (3.9 \pm 0.4) \times 10^{9} \end{gathered}$	-	$\begin{gathered} \text { RT } \\ 25 \pm 2 \end{gathered}$	5.1	$\begin{aligned} & \mathrm{pr} \\ & \mathrm{pr} \end{aligned}$	Benzosemiquinone product characterised by its absorption spectrum.	Jung.76-1042 Sell. 76-1134
9.19	$\mathrm{HgCl}+$ tetranitromethane $\rightarrow \mathrm{HgCl}^{+}$ $+\mathrm{C}\left(\mathrm{NO}_{2}\right)_{3}^{-}+\mathrm{NO}_{2}$	$(4.5 \pm 0.3) \times 10^{\circ}$	-	RT	5-5.5	pr	Nitroform anion product characterised by its absorption spectrum.	Nazh.73-0043

Table 9. Mercury(0) and mercury(I) reactions - Continued

No.	Reaction	k / dm	$\mathrm{mol}^{-1} \mathrm{~s}^{-1} \mathrm{a}$	I	$t /{ }^{\circ} \mathrm{C}$	pH	Method	Comments	Ref.
9.20	$\begin{aligned} & \mathrm{HgClO}_{2}+1,4 \text {-benzo- } \\ & \text { quinone } \rightarrow \mathrm{HgCl}^{+} \\ & +\mathrm{O}_{2}+(1,4-\text { benzo- } \\ & \text { semiquinone })^{-} \\ & \mathrm{HgCN} \end{aligned}$		$7 \times 10^{\circ}$	-	RT	-	pr	Benzosemiquinone product characterised by its absorption spectrum.	Jung..76-1042
9.21	$\underset{\substack{\mathrm{HgCN}}}{\mathrm{Hg}_{2}(\mathrm{CN})_{2}} \mathrm{HgCN} \rightarrow$		$\begin{aligned} & (3.4 \pm 0.5) \\ & 0^{9} \end{aligned}$	< 0.2	RT	-	pr	Product characterised by its absorption spectrum and decay to give Hg^{0} and $\mathrm{Hg}(\mathrm{CN})_{2}$. Rate constant calculated taking ϵ_{285} $=3800 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$.	Fuji...75-1203
		$2 k=$	1.2×10^{10}	-	RT	-	pr	-	Jung.76-1042
9.22	$\begin{aligned} & \mathrm{HgCN}+\mathrm{O}_{2} \rightarrow \\ & \mathrm{HgCN}^{+}+\mathrm{O}_{2}^{-} \end{aligned}$		$4 \times 10^{\circ}$	-	RT	-	pr	$\mathrm{O}_{3}{ }^{-}$product characterised by its absorption spectrum, lifetime in neutral solution, and conductivity measurements.	Jung..76-1042
9.23	$\mathrm{HgCN}+\mathrm{OH}(\mathrm{et})$		$3.1 \times 10^{\circ}$	-	RT	-	Pr	Estimated from initial decay of HgCN in the absence of OH scavengers.	Fuji...75-1203
9.24	$\mathbf{H g C N}+{ }^{\text {CH2 }} \mathbf{2} \mathbf{O H}$		4.0×10^{9}	-	RT	-	pr	Estimated from initial decay of HgCN in the presence of methanol.	Fuji...75-1203
9.25	$\begin{aligned} & \mathrm{HgCN}+\mathrm{CH}_{3} \mathrm{CHOH} \text { (et to } \\ & \mathrm{HgCN} \text { ?) } \end{aligned}$		3.9×10^{0}	-	RT	-	pr	Estimated from initial decay of HgCN in the presence of ethanol.	Fuji...75-1203
9.26	$\begin{aligned} & \mathrm{HgCN}+\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH} \rightarrow \\ & \mathrm{Hg}^{\circ}+\mathrm{CN}^{-}+\mathrm{CH}_{3} \mathrm{COCH}_{3} \end{aligned}$		$2.4 \times 10^{\circ}$	-	RT	-	pr	Estimated from initial decay of HgCN in the presence of 2propanol. $G($ acetone $)=3.0$ measured.	Fuji...75-1203
9.27	$\underset{\text { (af?) }}{\mathrm{HgCN}}+\cdot \mathrm{CH}_{2} \mathrm{C}_{(}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{OH}$		$1.6 \times 10^{\circ}$	-	RT	-	pr	Estimated from initial decay of HgCN in the presence of 2-methyl-2-propanol. Isobutene not detected as product.	Fuji...75-1203
9.28	$\begin{aligned} & \mathrm{HgCN}+1,4 \text {-benzo- } \\ & \text { quinone } \rightarrow \mathrm{HgCN}^{+}+ \\ & \text {(1,4-benzoquinone) } \end{aligned}$		$3.5 \times 10^{\circ}$	-	RT	-	pr	Benzosemiquinone product characterised by its absorption spectrum.	Jung..76-1042
9.29	$\begin{aligned} & \mathrm{HgCN}+\text { tetranitro- } \\ & \text { methane } \rightarrow \mathrm{HgCN}^{+}+ \\ & \mathrm{C}\left(\mathrm{NO}_{2}\right)_{3}^{-}+\mathrm{NO}_{2} \end{aligned}$		$3.1 \times 10^{\circ}$	-	RT	-	pr	Nitroform anion product characterised by its absorption spectrum.	Jung. 76-1042
9.30	$\mathrm{HgI}+\mathrm{HgI} \rightarrow \mathrm{Hg}_{2} \mathrm{I}_{2}$		$5.0 \times 10^{\circ}$	-	RT	-	pr	Product characterised by its absorption spectrum.	Jung..76-1042

Table 9. Mercury(0) and mercury(I) reactions - Continued

No.	Reaction	$k / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-18}$	I	$t /{ }^{\circ} \mathrm{C}$	pH	Method	Comments	Ref.
9.31	$\mathrm{HgI}+\mathrm{O}_{2} \rightarrow \mathrm{HgIO}_{2}$	$>10^{\circ}$	-	RT	-	pr	Product characterised by conductivity experiments and nonformation of $\mathrm{O}_{2}^{-/}$ HO_{2} absorption.	Jung..76-1042
9.32	$\begin{aligned} & \mathrm{HgI}+1,4-\text { benzo- } \\ & \text { quinone } \rightarrow \mathrm{HgI}^{+}+ \\ & (1,4-\text { benzoquinone })^{-} \end{aligned}$	$>10^{\circ}$	-	RT	-	pr	Benzosemiquinone product characterised by its absorption spectrum.	Jung..76-1042
9.33	$\begin{aligned} & \mathrm{HgI}+\text { tetranitro- } \\ & \text { methane } \rightarrow \mathrm{HgI}^{+}+ \\ & \mathrm{C}\left(\mathrm{NO}_{2}\right)_{5}^{-}+\mathrm{NO}_{2} \end{aligned}$	1.4×10^{0}	-	RT	-	pr	Nitroform anion product characterised by its absorption spectrum.	Jung..76-1042
	HgSCN							
9.34	$\underset{\mathrm{HgSCN}+\mathrm{HgSCN}}{\mathrm{Hg} 2(\mathrm{SCN})_{2}} \rightarrow$	$2 k=6.0 \times 10^{9}$	-	RT	-	pr	Product characterised by its absorption spectrum.	Jung..76-1042
9.35	$\mathrm{HgSCN}+\mathrm{O}_{2} \rightarrow \mathrm{HgSCNO}_{2}$	$>10^{9}$	-	RT	-	pr	Product characterised by conductivity experiments and nonformation of $\mathrm{O}_{3}{ }^{-/}$ HO_{2} absorption.	Jung. 76-1042
9.36	$\begin{aligned} & \text { HgSCN }+1,4-\text { benzo- } \\ & \text { quinone } \rightarrow \text { HgSCN } \\ & (1,4-\text { benzoquinone })^{-} \end{aligned}$	$>10^{\circ}$	-	RT	-	pr	Benzosemiquinone product characterised by its absorption spectrum.	Jung. 76-1042
9.37	$\begin{aligned} & \mathrm{HgSCN}+\text { tetranitro- } \\ & \text { methane } \rightarrow \mathrm{HgSCN}^{+}+ \\ & \mathrm{C}\left(\mathrm{NO}_{2}\right)_{3}^{-}+\mathrm{NO}_{2} \end{aligned}$	2.8×10^{9}	-	RT	-	pr	Nitroform anion product characterised by its absorption spectrum.	Jung..76-1042
9.38	$\begin{aligned} & \mathrm{HgSCNO}_{2}+1,4 \text {-benzo- } \\ & \quad \text { quinone } \rightarrow \mathrm{HgSCN}^{+}+\mathrm{O}_{2}+ \\ & \text { (l,4-benzoquinone) } \end{aligned}$	$1.0 \times 10^{\circ}$	-	RT	-	pr	Benzosemiquinone product characterised by its absorption spectrum.	Jung. 76-1042

${ }^{\text {a }}$ If the data source gives no errors none are shown here but they should be assumed to be at least $\pm \mathbf{2 5 \%}$ (or $\pm 50 \%$ for $2 k$).

Table 10. Indium(III) reactions

No.	Reaction	$k / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}{ }^{\text {a }}$	I	$t{ }^{\circ} \mathrm{C}$	pH	Method	Comments	Ref.
10.1								
	$\mathrm{In}^{\mathbf{2 +}}+\mathrm{In}^{\mathbf{2 +}}$ (et or af)	$\begin{gathered} 2 k=c a .1 .2 \times \\ 10^{9} \end{gathered}$	$\begin{gathered} 0.7 \\ \left(\mathrm{LiClO}_{4}\right) \end{gathered}$	RT	3	pr	Reinterpreted from data in ref. 76-1087.	Tayl.69-0971
		$\begin{aligned} & 2 k=(1.6 \pm 0.2) \\ & \times 10^{\circ} \end{aligned}$	0.0075	25	3.6	pr	Measured in the presence of $1 \mathrm{~mol} / \mathrm{dm}^{3}$	R.M. Sellers, unpub. data
							2-methyl-2-propanol	
							taking $\epsilon_{250}=7000$	
							$\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$.	
10.2	$\mathrm{In}^{\mathbf{2 +}}+\mathrm{OH}(\mathrm{et})$	$\begin{gathered} 2 k=(4.9 \pm 0.7) \\ \times 10^{\circ} \end{gathered}$	-	25	3.6	pr	Measured from the initial decay of	R.M. Sellers, unpub. data
							In^{2+} in the absence of OH scavengers.	
10.3	$\mathrm{In}^{\mathbf{2 +}}+\mathrm{N}_{2} \mathrm{O}$	$<10^{6}$	-	25	nat	γ	Estimated from the values of $G\left(\mathrm{~N}_{2}\right)$	Sell72-0844
							measured in the	
							$\boldsymbol{\gamma}$-radiolysis of $\mathbf{I n}^{\mathbf{3 +}}+\mathrm{N}_{2} \mathrm{O}$ solutions.	

${ }^{2}$ If the data source gives no errors none are shown here but they should be assumed to be at least $\pm 25 \%$ (or $\pm 50 \%$ for $2 k$).

Table 11. Iridium(II) reactions

No.	Reaction	$k / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1 /}$	I	$t /{ }^{\circ} \mathrm{C}$	pH	Method	Comments	Ref.
11.1	$\begin{aligned} & I r^{\mathbf{n}}\left(\text { from } e_{\mathrm{aq}}^{-}+I r \mathrm{Cl}_{\mathrm{e}^{\mathrm{s}}}\right) \\ & \mathrm{Ir}^{\mathrm{n}}+\mathrm{Ir}^{\mathrm{n}} \quad \text { (dis)} \end{aligned}$	$\begin{aligned} & 2 k=(3.3 \pm 0.4) \\ & \times 10^{\circ} \end{aligned}$	0.0018	RT	-	pr	-	Bros73-1066

${ }^{\text {a }}$ If the data source gives no errors none are shown here but they should be assumed to be at least $\pm 25 \%$ (or $\pm 50 \%$ for $2 k$).

Table 12. Manganese(I) reactions

${ }^{\text {a }}$ If the data source gives no errors none are shown here but they should be assumed to be at least $\pm \mathbf{2 5 \%}$ (or $\pm 50 \%$ for $2 k$).

Table 13. Molybdenum reactions

No.	Reaction	$k / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1 \mathrm{a}}$	I	$t /{ }^{\circ} \mathrm{C}$	pH	Method	Comments	Ref.
	$\left[\mathrm{Mo}_{2}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{4}\right]^{-}$(from	$\left.\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{4}+e^{-}$in metha						
13.1	$\begin{aligned} & {\left[\mathrm{Mo}_{2}\left(\mathrm{O}_{2} \mathrm{CCFF}_{3}\right)_{4}\right]^{-}+} \\ & {\left[\mathrm{Mo}_{2}\left(\mathrm{O}_{2} \mathrm{CF}_{3}\right)_{4}\right]^{-}} \\ & \text {(dis?) } \end{aligned}$	$\begin{gathered} \prime k^{\prime}=(4.5 \pm 1.0) \\ \times 10^{9} \end{gathered}$	-	RT	-	pr	Measured from decay of $\mathrm{Mo}(11 / 2)$ species in methanol. Two decay	Baxe...76-1003
		$' k^{\prime}=(2.5 \pm 1.0)$	-	RT	-	pr		
		$\times 10^{8}$					processes observed,	
							one of which believed	
							to be a dismutation	
							reaction. Rate con-	
							stant (unclear whether	
							k or $2 k$) calculated	
							taking $\epsilon_{\text {780 }}=2600$	
							$\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$.	
							Note that if the slower process does	
							not involve the	
							$\mathrm{Mo}(1 / 2)$ species,	
							the value of ϵ, and	
							hence k, is incorrect.	
13.2	$\begin{gathered} {\left[\mathrm{Mo}_{2}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{4}\right]^{-}} \\ +\mathrm{O}_{2}(\mathrm{af}) \end{gathered}$	$(5.9 \pm 0.3) \times 10^{9}$	-	RT	-	pr	Measured in	Вахе...76-1003
							Methanol.	
							Starting mater-	
							ial $\left[\mathrm{Mo}_{2}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{4}\right]$	
							not regenerated,	
							so reaction does	
							not involve	
							electron transfer.	

aIf the data source gives no errors none are shown here but they should be assumed to be at least $\pm 25 \%$ (or $\pm 50 \%$ for $2 k$).

Table 14. Nickel(I) and nickel(III) reactions

Table 14. Nickel(I) and nickel(III) reactions - Continued

Table 14. Nickel(I) and nickel(III) reactions - Continued

Table 14. Nickel(I) and nickel(III) reactions - Continued

No.	Reaction	$k / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-12}$	I	$t{ }^{\circ} \mathrm{C}$	pH	Method	Comments	Ref.
14.54	$\mathrm{NiL}^{+}+\mathrm{Cr}(\mathrm{bpy})_{3}{ }^{\text {a+ }}$ (et)	$(7.7 \pm 0.8) \times 10^{8}$	$\begin{aligned} & 0.016 \\ & 0.028 \end{aligned}$	RT	7.0	pr	Measured in the presence of 1 mol dm ${ }^{-3}$ 2-methyl2 -propanol.	Tait..76-1039
14.55	$\mathrm{NiL}^{+}+\mathrm{Fe}(\mathrm{bpy}) \mathrm{s}^{\text {s+ }}$ (et)	$(6.4 \pm 0.6) \times 10^{7}$	$\begin{aligned} & 0.016 \\ & 0.028 \end{aligned}$	RT	7.0	pr	Measured in the presence of 1 $\mathrm{mol} \mathrm{dm}{ }^{-3}$ 2-methyl-2-propanol.	Tait..76-1039
14.56	$\mathrm{NiL}^{+}+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{pt})$	$(1.1 \pm 0.1) \times 10^{8}$	$\begin{aligned} & 0.06- \\ & 0.3 \end{aligned}$	RT	<1.25	pr	Reaction may involve proton transfer to the metal centre to give a hydrido complex.	Tait..76-1039
14.57	$\mathrm{NiL}^{+}+\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}(\mathrm{pt})$	$<10^{4}$	$\begin{aligned} & 0.01- \\ & 0.1 \end{aligned}$	RT	5.50	pr	-	Tait..76-1039
14.58	$\mathrm{NiL}^{+}+\mathrm{N}_{2} \mathrm{O}$ (et or 0 at)	$(3.9 \pm 0.4) \times 10^{7}$	-	RT	7.0	pr	Reaction possibly involves two electron oxidation to $\mathrm{Ni}(\mathrm{III})$ complex.	Tait..76-1039
14.59	$\begin{aligned} & \mathrm{NiL}^{+}+\mathrm{O}_{2} \rightarrow \\ & \mathrm{NiL}^{2+}+\mathrm{O}_{2}^{-} \end{aligned}$	$(1.6 \pm 0.2) \times 10^{\circ}$	$-$	RT	7.0	pr	Product transfers an electron to 1,4-benzoquinone but not menaquinone, and identified therefore as O_{2}^{-}, although O_{2} adduct, $\mathrm{NiLO}_{2}{ }^{+}$could conceivably react in same way.	'Tait. 76-1039
14.60	$\mathrm{NiL}^{+}+\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{\mathrm{b}^{\mathrm{s}}}$ (et)	$(3.8 \pm 0.4) \times 10^{8}$	$\begin{aligned} & 0.016 \\ & 0.028 \end{aligned}$	RT	7.0	pr	Measured in the presence of 1 mol dm^{-3} 2-methyl-2propanol.	Tait. 76-1039
14.61	$\mathrm{NiL}^{+}+\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{NO}^{3+}$ (et)	$(7.4 \pm 0.7) \times 10^{7}$	$\begin{aligned} & 0.016 \\ & 0.028 \end{aligned}$	RT	7.0	pr	Measured in the presence of 1 mol dm ${ }^{-3}$ 2-methyl-2propanol.	Tait. 76-1039
14.62	$\begin{aligned} & \mathrm{NiL}^{+}+\text {acetic acid } \\ & (\mathrm{pt}) \end{aligned}$	$(1.2 \pm 0.1) \times 10^{4}$	$\begin{aligned} & 0.015- \\ & 0.06 \end{aligned}$	RT	4.85	pr	Measured in the presence of 1 mol dm^{-3} 2-methyl-2propanol.	Tait..76-1039
14.63	$\mathrm{NiL}^{+}+9,10-$ anthra-quinone-2,6-disulphonate (et)	$(4.8 \pm 0.5) \times 10^{0}$	0.004	RT	7.0	pr	Measured in the presence of 1 mol dm^{-3} 2-methyl-2propanol.	Tait..76-1039
14.64	$\begin{aligned} & \mathrm{NiL}^{+}+1,4 \text {-benzo- } \\ & \text { quinone (et) } \end{aligned}$	$(4.8 \pm 0.5) \times 10^{0}$	0.004	RT	7.0	pr	Measured in the presence of 1 mol dm^{-3} 2-methyl-2propanol.	Tait..76-1039
14.65	$\begin{aligned} & \mathrm{NiL}^{+}+3 \text {-benzoyl- } \\ & \text { pyridine (et) } \end{aligned}$	$(2.5 \pm 0.3) \times 10^{8}$	0.004	RT	7.0	pr	Measured in the presence of 1 mol dm^{-3} 2-methyl-2propanol.	Tait..76-1039
14.66	$\begin{aligned} & \mathrm{NiL}^{+}+\text {fluorescein } \\ & \text { (et) } \end{aligned}$	$(3.2 \pm 0.3) \times 10^{0}$	0.004	RT	7.0	pr	Measured in the presence of 1 mol dm^{2} 3 2 -methyl-2propanol.	Tait..76-1039
14.67	$\begin{aligned} & \mathrm{NiL}^{+}+\text {methyl iodide } \\ & \text { (et or } \mathrm{S}_{\mathrm{N}} 2 \text {) } \end{aligned}$	$(4.6 \pm 0.5) \times 10^{8}$	0.01	RT	9.2	Pr	Measured in the presence of 1 mol dm^{-3} 2-methyl-2propanol.	Tait..76-1039

Table 14. Nickel(I) and nickel(III) reactions - Continued

No.	Reaction	$k / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$	I	$t /{ }^{\circ} \mathrm{C}$	pH	Method	Comments	Ref.
	$N i L^{+} \quad(L=5,7,7,12,14$	amethyl-1,4,8,11	azacyclo	eca	diene).			
14.68	$\mathrm{NiL}^{+}+\mathrm{Co}(\mathrm{bpy})_{3}{ }^{3+}$ (et)	$(1.3 \pm 0.1) \times 10^{0}$	$\begin{aligned} & 0.016- \\ & 0.028 \end{aligned}$	RT	7.0	pr	Measured in the presence of 1 mol dm^{-3} 2-methyl-2propanol.	Tait. 76-1039
14.69	$\begin{aligned} & \mathrm{NiL}^{+}+ \\ & \mathrm{CoLL}^{\prime}\left(\mathrm{OH}_{2}\right)(\mathrm{OH})^{2+}(\mathrm{et}) \end{aligned}$	$(2.6 \pm 0.3) \times 10^{6}$	$\begin{aligned} & 0.016- \\ & 0.028 \end{aligned}$	RT	7.0	pr	Measured in the presence of 1 mol dm^{-3} 2-methyl-2propanol.	Tait..76-1039
($\mathrm{L}^{\prime}=5,7,7,12,14,14$-hexamethyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene). propanol.								
14.70	$\mathrm{NiL}^{+}+\mathrm{Co}(\mathrm{en}) 3^{3+}$ (et)	$(1.1 \pm 0.1) \times 10^{\circ}$	$\begin{aligned} & 0.016- \\ & 0.028 \end{aligned}$	RT	7.0	pr	Measured in the presence of 1 mol dm ${ }^{-3}$ 2-methyl-2propanol.	Tait..76-1039
14.71	$\mathrm{NiL}^{+}+\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{\mathrm{e}^{3+}}$ (et)	$(1.9 \pm 0.2) \times 10^{6}$	$\begin{aligned} & 0.016- \\ & 0.028 \end{aligned}$	RT	7.0	pr	Measured in the presence of 1 mol dm^{-3} 2-methyl-2propanol.	Tait..76-1039
14.72	$\mathrm{NiL}^{+}+\mathrm{CoL}^{\prime}(\mathrm{OH})_{2}{ }^{+}(\mathrm{et})$	$(3.6 \pm 0.4) \times 10^{7}$	$\begin{aligned} & 0.016- \\ & 0.028 \end{aligned}$	RT	7.0	pr	Measured in the presence of 1 mol dm ${ }^{-3}$ 2-methyl-2propanol.	Tait..76-1039
($\mathrm{L}^{\prime}=$ 2,3,9,10-tetramethyl-1,4,8,11-tetraazacyclotetradeca-1,3,8,10-tetraene). propanol.								
14.73	$\mathrm{NiL}^{+}+\mathrm{Cr}_{\text {(bpy }}^{3}{ }^{3+}$	$(1.1 \pm 0.1) \times 10^{8}$	$\begin{aligned} & 0.016- \\ & 0.028 \end{aligned}$	RT	7.0	Pr	Measured in the presence of 1 mol dm ${ }^{-3}$ 2-methyl-2propanol.	Tait..76-1039
14.74	$\mathrm{NiL}^{+}+\mathrm{Fe}(\mathrm{bpy}) 3^{\text {a }}$ (et)	$(2.2 \pm 0.2) \times 10^{6}$	$\begin{aligned} & 0.016- \\ & 0.028 \end{aligned}$	RT	7.0	pr	Measured in the presence of 1 mol dm^{-3} 2-methyl-2propanol.	Tait..76-1039
14.75	$\mathrm{NiL}^{+}+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{pt})$	$(1.3 \pm 0.1) \times 10^{8}$	0.06-0.3	RT	<1.25	pr	Reaction may involve proton transfer to the metal centre to give a hydrido complex	Tait..76-1039
14.76	$\mathrm{NiL}^{+}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$(pt)	$(2.4 \pm 0.2) \times 10^{5}$	0.01-0.1	RT	5.50	Pr	Measured in the presence of 1 mol dm^{-3} 2-methyl-2propanol.	Tait..76-1039
14.77	$\begin{aligned} & \mathrm{NiL}^{+}+\mathrm{N}_{2} \mathrm{O} \quad \text { (et or } \\ & \mathrm{O} \text { at) } \end{aligned}$	$(1.8 \pm 0.2) \times 10^{7}$	-	RT	7.0	pr	Measured in the presence of 1 mol dm^{-3} 2-methyl-2propanol. Reaction possibly involves two electron oxidation to $\mathrm{Ni}^{1 I}$ complex.	Tait..76-1039
14.78	$\begin{aligned} & \mathrm{NiL}^{+}+\mathrm{O}_{2} \rightarrow \\ & \mathrm{NiL}^{2+}+\mathrm{O}_{2}^{-} \end{aligned}$	$(1.7 \pm 0.2) \times 10^{9}$	-	RT	7.0	pr	Product transfers an electron to 1,4-benzoquinone but not menaquinone, and identified therefore as $\mathrm{O}_{2}{ }^{-}$, although O_{2} adduct $\mathrm{NiLO}_{2}{ }^{+}$, could conceivably react in same way.	Tait. $76-1039$

Table 14. Nickel(I) and nickel(III) reactions - Continued

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline No. \& Reaction \& \(k / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-12}\) \& I \& \(t /{ }^{\circ} \mathrm{C}\) \& pH \& Method \& Comments \& Ref. \\
\hline 14.79 \& \(\mathrm{NiL}^{+}+\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{\mathrm{a}^{\text {a }}}\) (et) \& \((4.5 \pm 0.5) \times 10^{6}\) \& \[
\begin{aligned}
\& 0.016 \\
\& 0.028
\end{aligned}
\] \& RT \& 7.0 \& pr \& Measured in the presence of 1 mol \(\mathrm{dm}^{-3}\) 2-methyl-2propanol. \& Tait..76-1039 \\
\hline 14.80 \& \[
\begin{aligned}
\& \mathrm{NiL}^{+}+ \\
\& \quad \mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{NO}^{3+} \\
\& \text { (et) }
\end{aligned}
\] \& \((3.5 \pm 0.4) \times 10^{7}\) \& \[
\begin{aligned}
\& 0.016 \\
\& 0.028
\end{aligned}
\] \& RT \& 7.0 \& pr \& Measured in the presence of 1 mol \(\mathrm{dm}^{-3}\) 2-methyl-2propanol. \& Tait. \(76-1039\) \\
\hline 14.81 \& \(\mathrm{NiL}^{+}+\)acetic acid (pt) \& \((1.9 \pm 0.2) \times 10^{5}\) \& \[
\begin{aligned}
\& 0.015- \\
\& 0.06
\end{aligned}
\] \& RT \& 4.85 \& pr \& Measured in the presence of 1 mol \(\mathrm{dm}^{-3}\) 2-methyl-2propanol. \& Tait..76-1039 \\
\hline 14.82 \& \(\mathrm{NiL}^{+}+9,10-\) anthra-quinone-2,6-disulphonate (et) \& \((5.0 \pm 0.5) \times 10^{9}\) \& 0.004 \& RT \& 7.0 \& pr \& Measured in the presence of 1 mol \(\mathrm{dm}^{-3}\) 2-methyl-2propanol. \& Tait.. 76-1039 \\
\hline 14.83 \& \begin{tabular}{l}
\(\mathrm{NiL}^{+}+\)1,4-benzoquinone \\
(et)
\end{tabular} \& \((3.8 \pm 0.4) \times 10^{\circ}\) \& 0.004 \& RT \& 7.0 \& pr \& Measured in the presence of 1 mol dm \({ }^{-3}\) 2-methyl-2propanol. \& Tait. 76-1039 \\
\hline 14.84 \& \[
\begin{aligned}
\& \mathrm{NiL}^{+}+3 \text {-benzoylpyri- } \\
\& \text { dine (et) }
\end{aligned}
\] \& \((7.5 \pm 0.8) \times 10^{8}\) \& 0.004 \& RT \& 7.0 \& pr \& Measured in the presence of 1 mol \(\mathrm{dm}^{-3}\) 2-methyl-2propanol. \& Tait. \(76-1039\) \\
\hline 14.85 \& \(\mathrm{NiL}^{+}+\operatorname{eosin} \mathrm{Y}(\mathrm{et})\) \& \((2.7 \pm 0.3) \times 10^{\circ}\) \& 0.004 \& RT \& 7.0 \& pr \& Measured in the presence of 1 mol dm \({ }^{-3}\) 2-methyl-2propanol. \& Tait. \(76-1039\) \\
\hline 14.86 \& \(\mathrm{NiL}^{+}+\)fluorescein (et) \& \((3.3 \pm 0.3) \times 10^{9}\) \& 0.004 \& RT \& 7.0 \& pr \& Measured in the presence of 1 mol \(\mathrm{dm}^{-3}\) 2-methyl-2propanol. \& Tait. \(76-1039\) \\
\hline 14.87 \& \(\mathrm{NiL}^{+}+\)methyl iodide (et or \(\mathrm{S}_{\mathrm{N}} 2\)) \& \((1.3 \pm 0.1) \times 10^{8}\) \& 0.01 \& RT \& 9.2 \& pr \& Measured in the presence of 1 mol \(\mathrm{dm}^{-3}\) 2-methyl-2propanol. \& Tait. \(76-1039\) \\
\hline \& Ni(I) radical complexes \& \& \& \& \& \& \& \\
\hline 14.88 \& \[
\begin{aligned}
\& \mathrm{NiCH}_{2} \mathrm{OH}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \\
\& \mathrm{Ni}^{2^{+}}+\mathrm{CH}_{3} \mathrm{OH}+\mathrm{OH}^{-}
\end{aligned}
\] \& \(7 \mathrm{~s}^{-1}\) \& - \& RT \& nat \& pr \& Products characterised by conductivity experiments. \& Kelm...74-1037 \\
\hline 14.89 \& \(\mathrm{NiCH}_{2} \mathrm{OH}^{+}+\mathrm{H}_{2} \mathrm{O}_{2}\) (et?) \& \(7.3 \times 10^{3}\) \& - \& RT \& nat \& pr \& - \& Kelm...74-1037 \\
\hline 14.90 \& \(\mathrm{NiCO}_{2}+\mathrm{H}_{2} \mathrm{O}\) \& \(<1 \mathrm{~s}^{-1}\) \& - \& RT \& nat \& pr \& - \& Kelm...74-1037 \\
\hline 14.91 \& \[
\begin{aligned}
\& \mathrm{NiC}_{2} \mathrm{H}_{4} \mathrm{OH}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \\
\& \mathrm{Ni}^{2+}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{OH}^{-}
\end{aligned}
\] \& \(5 \mathrm{~s}^{-1}\) \& - \& RT \& nat \& pr \& Products characterised by conductivity experiments. \& Kelm...74-1037 \\
\hline 14.92 \& \(\mathrm{NiC}_{2} \mathrm{H}_{4} \mathrm{OH}^{+}+\mathrm{H}_{2} \mathrm{O}_{2}\) (et?) \& \(2.3 \times 10^{4}\) \& - \& RT \& nat \& pr \& - \& Kelm...74-1037 \\
\hline 14.93 \& \(\mathrm{NiCOH}\left(\mathrm{CH}_{3}\right)_{2}^{+}+\mathrm{H}_{2} \mathrm{O}\) \& \(<1 \mathrm{~s}^{-1}\) \& - \& RT \& nat \& pr \& - \& Kelm...74-1037 \\
\hline 14.94 \& \(\mathrm{NiCOH}\left(\mathrm{CH}_{5}\right)_{2}{ }^{+}+\mathrm{H}_{2} \mathrm{O}_{2}\) \& \(1.1 \times 10^{6}\) \& - \& RT \& nat \& pr \& - \& Kelm...74-1037 \\
\hline 14.95 \& \(\mathrm{NiC}_{2} \mathrm{H}_{4} \mathrm{OC}_{2} \mathrm{H}_{5}^{+}+\mathrm{H}_{2} \mathrm{O}\) \& \(<1 \mathrm{~s}^{-1}\) \& - \& RT \& nat \& pr \& - \& Kelm...74-1037 \\
\hline 14.96 \& \(\mathrm{NiC}_{2} \mathrm{H}_{4} \mathrm{OC}_{2} \mathrm{H}_{5}{ }^{+}+\mathrm{H}_{2} \mathrm{O}_{2}\) \& \(1.3 \times 10^{3}\) \& - \& RT \& nat \& pr \& - \& Kelm...74-1037 \\
\hline 14.97 \& \[
\begin{aligned}
\& \mathrm{NiC}_{3} \mathrm{H}_{9}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \\
\& \mathrm{Ni}^{++}+\mathrm{C}_{5} \mathrm{H}_{10}+\mathrm{OH}^{-}
\end{aligned}
\] \& \(49 \mathrm{~s}^{-1}\) \& - \& RT \& nat \& pr \& Products characterised by conductivity experiments. \& Kelm...74-1037 \\
\hline 14.98 \& \[
\begin{aligned}
\& \mathrm{NiC}_{5} \mathrm{H}_{9}^{+}+\mathrm{H}_{2} \mathrm{O}_{2} \\
\& \left(\mathrm{C}_{5} \mathrm{H}_{9}=\text { cyclopentyl radical }\right) \\
\& \mathrm{NiO}_{2}^{+} \mathrm{NiO}_{2} \mathrm{H}^{+}
\end{aligned}
\] \& \(<5 \times 10^{5}\) \& - \& RT \& nat \& pr \& - \& Kelm...74-1037 \\
\hline 14.99 \& \(\mathrm{NiO}_{2}^{+} \rightarrow \mathrm{Ni}^{2+}+\mathrm{O}_{2}{ }^{-}\) \& \(780 \pm 80 \mathrm{~s}^{-1}\) \& - \& \(25 \pm 2\)

42 \& 5.7 \& pr \& Measured from the rate of formation of the nitroform anion in solutions contining tetranitromethane and 1 $\mathrm{mol} \mathrm{dm}{ }^{-3}$ 2-methyl-2propanol. \& Sell.76-1134

\hline
\end{tabular}

Table 14. Nickel(I) and nickel(III) reactions - Continued

No.	Reaction	$k / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-12}$	I	$t /{ }^{\circ} \mathrm{C}$	pH	Method	Comments	Ref.
14.100	$\begin{gathered} \mathrm{NiO}_{2}^{+}+\mathrm{H}^{+} \rightleftharpoons \\ \mathrm{NiO}_{2} \mathrm{H}^{+} \end{gathered}$	$\begin{aligned} & K=2000 \pm 1200 \mathrm{M}^{-1} \\ & \text { (i.e. } \mathrm{p} K_{\mathrm{a}}=3.2 \pm \\ & 0.3 \text {) } \end{aligned}$		25 ± 2	$3.0-$	pr	Measured from the pH dependence of the rate of formation of the nitroform anion in solutions containing tetranitromethane and $1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ 2-methyl-2propanol.	Sell. 76-1134
14.101	$\begin{aligned} & \mathrm{NiO}_{2} \mathrm{H}^{2+} \rightarrow \\ & \mathrm{Ni}^{2^{+}}+\mathrm{HO}_{2} \end{aligned}$	$>2800 \mathrm{~s}^{-1}$	-	25 ± 2	3.0	pr	Estimated from the rate of formation of the nitroform anion in solutions containing tetranitromethane and 1 mol dm ${ }^{-3}$ 2-methyl-2propanol.	Sell.76-1134
	Ni(III) complexes							
14.102	$\mathrm{Ni}^{\text {III }}\left(\mathrm{NH}_{3}\right)_{\mathrm{n}}+\mathrm{N}_{2} \mathrm{H}_{4}$	$(4 \pm 1) \times 10^{6}$	-	RT	11.3	pr	-	Lati.72-0460
14.103	$\mathrm{Ni}^{\text {III }}\left(\mathrm{NH}_{3}\right)_{\mathrm{n}}+\mathrm{Ni}{ }^{\text {III }}\left(\mathrm{NH}_{3}\right)_{n}$	$2 k<3.5 \times 10^{7}$	-	RT	11.3	pr	-	Lati.72-0460
	Rate constants for the decay of $\mathrm{Ni}^{1 I I}(\mathrm{en})_{\mathrm{n}}$ and $\mathrm{Ni}^{\mathrm{II}}(\mathrm{gly})_{\mathrm{n}}$ are given in tables III and IV respectively of ref. 72-0461.							

${ }^{2}$ If the data source gives no errors none are shown here but they should be assumed to be at least $\pm 25 \%$ (or $\pm 50 \%$ for $2 k$).

Table 15. Lead(I) reactions

${ }^{\text {a }}$ If the data source gives no errors none are shown here but they should be assumed to be at least $\pm 25 \%$ (or $\pm 50 \%$ for $2 k$).

Table 16. Praseodymium(IV) reactions

No.	Reaction	$k / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1 \mathrm{a}}$	I	$t /{ }^{\circ} \mathrm{C}$	pH	Method	Comments	Ref.
16.1	$\begin{aligned} & \mathrm{Pr}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \\ & \mathrm{PrOH}^{+}+\mathrm{H}^{+} \end{aligned}$	$\begin{aligned} & K=(7 \pm 1) \times 10^{-4} \\ & \text { or } \mathrm{p} K_{\mathrm{a}}=3.1 \pm 0.1 \end{aligned}$	$1^{\text {var }}$	RT	$\begin{aligned} & 1.95- \\ & 5.87 \end{aligned}$	pr	Measured from effect of pH on absorption of $\operatorname{Pr}(\mathrm{IV})$.	Fara.72-0066
16.2	$\mathrm{Pr}^{\text {rV }}+\mathrm{Br}^{-}$(et or af)	$(1.2 \pm 0.4) \times 10^{10}$	$\begin{gathered} 0.75 \\ {\left[\mathrm{Pr}_{2}\left(\mathrm{SO}_{4}\right)_{3}\right]} \end{gathered}$	RT	nat	pr	-	Fara.72-0066
16.3	$\mathrm{Pr}^{\text {rV }}+\mathrm{H}_{2} \mathrm{O}_{2}\left(\mathrm{H}\right.$ at ${ }^{\text {a }}$)	$(8 \pm 1) \times 10^{6}$	$\begin{gathered} 0.75 \\ {\left[\mathrm{Pr}_{2}\left(\mathrm{SO}_{4}\right)_{3}\right]} \end{gathered}$	RT	nat	pr	-	Fara.72-0066
16.4	$\begin{gathered} \mathrm{Pr}^{\mathrm{rv}}+\mathrm{HSO}_{4}^{-} \\ \text {(et or Hat) } \end{gathered}$	$(2.0 \pm 0.3) \times 10^{6}$	-	RT	2-3.8	Pr	-	Fara.72-0066
16.5	$\mathrm{Pr}^{\text {rV }}+\mathrm{NO}_{2}^{-}$(et?)	$(3 \pm 1) \times 10^{7}$	$\begin{gathered} 0.75 \\ {\left[\mathrm{Pr}_{2}\left(\mathrm{SO}_{4}\right)_{3}\right]} \end{gathered}$	RT	nat	pr	Stable pradot	Fara.72-0066
16.6	$\begin{aligned} & \mathbf{P r}^{\text {rV }}+\mathbf{P r}_{\text {(see comments) }}^{\text {rv }} \end{aligned}$	$\begin{gathered} 2 k=(1.6 \pm 0.8) \\ \times 10^{8} \end{gathered}$	-	RT	5.8	pr	Stable products of reaction suggested to be $\mathrm{Pr}^{I I}$ and O_{2}. Initial product possibly an oxo or hydroxo bridged dipraseodymium species.	Fara.72-0066

-If the data source gives no errors none are shown here but they should be assumed to be at least $\pm \mathbf{2 5 \%}$ (or $\pm 50 \%$ for $2 k$).

Table 17. Platinum(I) and platinum(III) reactions

Table 17. Platinum(l) and platinum(III) reactions - Continued

Table 17. Platinum(l) and platinum(III) reactions - Continued

Table 17. Platinum(I) and platinum(III) reactions - Continued

${ }^{\text {a }}$ If the data source gives no errors none are shown here but they should be assumed to be at least $\pm 25 \%$ (or $\pm 50 \%$ for $2 k$).

Table 18. Rhodium(II) reactions

${ }^{2}$ If the data source gives no errors none are shown here but they should be assumed to be at least $\pm 25 \%$ (or $\pm 50 \%$ for $2 k$).

Table 19. Ruthenium(I), (II), (III) and (IV) reactions

Table 19. Ruthenium(I), (II), (III) and (IV) reactions - Continued

${ }^{\text {a }}$ If the data source gives no errors none are shown here but they should be assumed to be at least $\pm 25 \%$ (or $\pm 50 \%$ for $2 k$).

Table 20. Samarium(II) reactions

Table 20. Samarium(II) reactions - Continued

No.	Reaction	$k / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}{ }^{\text {a }}$	I	$t /{ }^{\circ} \mathrm{C}$	pH	Method	Comments	Ref.
20.22	$\mathrm{Sm}^{2+}+\mathrm{O}_{3}$ (af or et)	3.9×10^{8}	0.015	RT	nat	pr	-	Fara.72-0065
		$(4.2 \pm 0.5) \times 10^{8}$	0.375	RT	3-6	pr	-	Pika..73-1084
20.23	$\mathrm{Sm}^{2+}+\mathrm{OH}(\mathrm{et})$	6×10^{9}	-	RT	nat	pr	-	Fara.72-0065
		$(6.2 \pm 0.8) \times 10^{\circ}$	0.375	RT	3-6	pr	-	Pika..73-1084
20.24	$\mathrm{Sm}^{2+}+\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{s} \mathrm{Br}^{2+}$ (et)	1.5×10^{8}	0.06	RT	6	pr	-	Fara.73-0107
20.25	$\mathrm{Sm}^{2+}+\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}^{2+}$ (et)	1.5×10^{8}	0.06	RT	6	pr	-	Fara.73-0107
		4.3×10^{3}	$\begin{gathered} 1.0 \\ \left(\mathrm{NaClO}_{4}\right) \end{gathered}$	RT	6	pr	-	Fara.73-0107
		6.5×10^{8}	$\begin{array}{r} 1.0 \\ (\mathrm{NaCl}) \end{array}$	RT	6	pr	-	Fara.73-0107
20.26	$\mathrm{Sm}^{2+}+\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{H}_{2} \mathrm{O}^{3+}$ (et)	6.5×10^{7}	0.3	RT	2	pr	-	Fara.73-0107
		1.8×10^{8}	$\begin{gathered} 1.0 \\ \left(\mathrm{NaClO}_{4}\right) \end{gathered}$	RT	2	pr	-	Fara.73-0107
		1.3×10^{0}	$\begin{array}{r} 1.0 \\ (\mathrm{NaCl}) \end{array}$	RT	2	pr	-	Fara.73-0107
20.27	$\mathrm{Sm}^{2+}+\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}{ }^{1{ }^{2+}}$ (et)	ca. 10^{3}	0.06	RT	6	pr	-	Fara.73-0107
20.28	$\mathrm{Sm}^{2+}+\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{s} \mathrm{OH}^{2^{+}}$ (et)	4.0×10^{7}	0.06	RT	6	Pr	-	Fara.73-0107
		2.2×10^{8}	$\begin{gathered} 1.0 \\ \left(\mathrm{NaClO}_{4}\right) \end{gathered}$	RT	6	pr	-	Fara.73-0107
		6.0×10^{8}	$\begin{array}{r} 1.0 \\ (\mathrm{NaCl}) \end{array}$	RT	6	pr	-	Fara.73-0107
20.29	$\mathrm{Sm}^{2+}+\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{\mathrm{e}^{3+}}$ (et)	2.5×10^{7}	0.06	RT	6	pr	-	Fara.73-0107
		2.0×10^{8}	$\begin{gathered} 1.0 \\ \left(\mathrm{NaClO}_{4}\right) \end{gathered}$	RT	6	pr	-	Fara.73-0107
		8.0×10^{8}	$\begin{array}{r} 1.0 \\ (\mathrm{NaCl}) \end{array}$	RT	6	pr	-	Fara.73-0107
20.30	$\mathrm{Sm}^{2+}+\mathrm{Yb}^{\mathbf{3 +}}$ (et)	3.0×10^{6}	0.015	RT	nat	pr	-	Fara. 72-0065

${ }^{\text {a }}$ If the data source gives no errors none are shown here but they should be assumed to be at least $\pm 25 \%$ (or $\pm 50 \%$ for $2 k$).

Table 21. Thallium(0) and (II) reactions

Table 21. Thallium(0) and (II) reactions - Continued

No.	Reaction	$k / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-12}$	I	$t /{ }^{\circ} \mathrm{C}$	pH	Method	Comments	Ref.
21.13	$\mathrm{Tl}_{2}{ }^{+}+1,4 \text {-dicyano- }$ benzene $\rightarrow 2 \mathrm{Tl}^{+}+$ (1,4-dicyanobenzene) ${ }^{-}$	$2.7 \times 10^{\circ}$	-	RT		pr	Organic product characterised by its absorption spectrum.	Robi.73-0121
$T l^{I I}$ (Rate constants from pulse radiolysis and flash photolysis experiments only). $\mathrm{Tl}_{\mathrm{aq}}^{2+}$ and TlOH^{+}								
21.14	$\begin{gathered} \mathrm{Tl}^{2+}+\mathrm{Co}^{2+} \rightleftharpoons \\ \mathrm{Tl}^{+}+\mathrm{Co}^{3+} \end{gathered}$	$=(6.2 \pm 0.5) \times 10^{3}$	0.75	25	0.6	f.ph.	Evidence for products and equilibrium from conventional kinetic studies.	Falc..74-7625
21.15	$\begin{gathered} \mathrm{Tl}^{2+}+\mathrm{Co}^{3+} \rightarrow \\ \mathrm{T}^{\mathrm{s}^{+}}+\mathrm{Co}^{2+} \end{gathered}$	$(9.5 \pm 0.5) \times 10^{6}$	0.55	22 ± 2	0.3	f.ph.	Evidence for products from conventional kinetic studies.	Falc..75-7093
21.16	$\begin{gathered} \mathrm{Tl}^{2+}+\mathrm{Fe}^{2+} \rightarrow \\ \mathrm{Tl}^{+}+\mathrm{Fe}^{2+} \end{gathered}$	$(2.42 \pm 0.1) \times 10^{6}$	0.30	14.7	0.6	f.ph.	Evidence for products from conventional kinetic studies.	Falc..75-7093
		$(2.50 \pm 0.1) \times 10^{6}$	0.30	18.3	0.6	f.ph.		Falc..75-7093
		$(2.53 \pm 0.1) \times 10^{6}$	0.30	20.7	0.6	f.ph.		Falc..75-7093
		$(2.60 \pm 0.1) \times 10^{6}$	0.30	24.8	0.6	f.ph.		Falc. $75-7093$
		$(2.70 \pm 0.1) \times 10^{6}$	0.30	29.0	0.6	f.ph.		Falc. 75-7093
		$(2.73 \pm 0.1) \times 10^{6}$	0.30	33.9	0.6	f.ph.		Falc..75-7093
		$(2.81 \pm 0.1) \times 10^{6}$	0.30	36.0	0.6	f.ph.		Falc..75-7093
		$(2.91 \pm 0.1) \times 10^{6}$	0.30	39.6	0.6	f.ph.		Falc..75-7093
		$\mathrm{a}=48 \pm 2 \mathrm{~kJ} \mathrm{~mol}^{-1}$	0.30	14-40	0.6	f.ph.		Falc..75-7093
		$(6.7 \pm 0.7) \times 10^{6}$	$\stackrel{1}{\left(\mathrm{HClO}_{4}\right)}$	23	0	pr		Schw...74-1017
21.17	$\begin{gathered} \mathrm{Tl}^{2^{+}}+\mathrm{Fe}^{3+} \rightleftharpoons \\ \mathrm{Tl}^{\mathrm{s}^{+}}+\mathrm{Fe}^{2+} \end{gathered}$	$(1.1 \pm 0.15) \times 10^{6}$	0.30	25	0.6	f.ph.	Evidence for products and equilibrium from conventional kinetic studies.	Falc.. 74-7625
21.18	$\begin{aligned} & \mathrm{Tl}^{2+}+\mathrm{HO}_{2} \rightarrow \\ & \mathrm{Tl}^{+}+\mathrm{H}^{+}+\mathrm{O}_{2} \end{aligned}$	$(2.5 \pm 1) \times 10^{\circ}$	-	RT	1	pr	Estimated from initial decay of $\mathrm{Tl}^{\text {II }}$ in aerated solutions.	Cerc..66-0097
21.19	$\begin{array}{r} \mathrm{Tl}^{2+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \\ \mathrm{TlOH}^{+}+\mathrm{H}^{+} \end{array}$	$\begin{aligned} & =4.6 \pm 0.2 \\ & 3.5 \times 10^{5} \mathrm{~s}^{-1} \\ & (1.4 \pm 0.5) \times 10^{10} \end{aligned}$	var var var	$\begin{aligned} & 21 \\ & 21 \\ & 21 \end{aligned}$	$\begin{aligned} & 2-7 \\ & 2-7 \\ & 2-7 \end{aligned}$		Evidence for equilibrium from optical and conductivity measurements.	0'Ne.75-1130
21.20	$\begin{aligned} & \mathrm{Tl}^{2^{+}}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \\ & \mathrm{Tl}^{+}+\mathrm{HO}_{2}+\mathrm{H}^{+} \end{aligned}$	$(2.8 \pm 0.8) \times 10^{7}$	-	RT	1	pr	Evidence for products from $\mathrm{H}_{2} \mathrm{O}_{2}$ and H_{2} yields in γ-irradiated Tl^{I} solutions. (see ref. 71-0036).	Cerc..66-0097
21.21	$\begin{gathered} \mathrm{T}^{2^{+}}+\mathrm{Mn}^{2^{+}} \rightarrow \\ \mathrm{Tl}^{+}+\mathrm{Mn}^{3+} \end{gathered}$	$(1.9 \pm 0.2) \times 10^{4}$	0.75	22 ± 3	0.3	f.ph.	Evidence for products from conventional kinetic studies etc. (see ref. 75-7093).	Falc..75-7093
21.22	$\begin{gathered} \mathrm{Tl}^{\mathrm{II}}+\mathrm{O}_{2}^{-} \rightarrow \\ \mathrm{Tl}^{\mathrm{I}}+\mathrm{O}_{2} \end{gathered}$	2×10^{10}	-	RT	5.2	γ	Rate constant and products deduced from $\mathrm{H}_{2} \mathrm{O}_{2}$ and H_{2} yields in γ-irradiated Tl^{l} solutions. No account taken of hydrolysis of Tl^{2+} (see entry 21.19).	Fara..71-0036

21.23	$\mathrm{Tl}^{I I}+\mathrm{Tl}^{0}$	see entry 21.6
21.24	$\mathrm{Tl}^{\mathrm{II}}+\mathrm{Tl}_{2}{ }^{+}$	see entry 21.12

Table 21. Thallium(0) and (II) reactions - Continued

Table 21. Thallium(0) and (II) reactions - Continued

No.	Reaction	$k / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-19}$	I	$t /{ }^{\circ} \mathrm{C}$	pH	Method	Comments	Ref.
21.29	$\begin{aligned} & \mathrm{Tl}^{2+}+\mathrm{CH}_{3} \mathrm{COHCH}_{3} \\ & \text { (et or af) } \end{aligned}$	$(9.4 \pm 2.3) \times 10^{3}$	-	23 ± 2	0.43	γ	Estimated from the γ-ray induced chain reaction in $\mathrm{Tl}^{I I}+$ 2-propanol solutions, taking $\left.k\left(T 1^{\text {II }}+T\right]^{\text {II }}\right)$ $=5.5 \times 10^{5} \mathrm{dm}^{3} \mathrm{~mol}^{-1}$ s^{-1} (see entry 21.25).	Burc.70-0336
21.30	$\begin{gathered} \mathrm{Tl}^{2^{+}}+\text {anisole } \rightarrow \\ \left.\mathrm{T} \mathrm{l}^{+}+\text {(anisole }\right)^{+} \end{gathered}$	$(5.0 \pm 0.5) \times 10^{8}$	-	20 ± 2	4	pr	Radical cation product characterised by its absorption and esr spectra.	0'Ne..75-1171
21.31	$\mathrm{Tl}^{2+}+1,2-$ dimethoxybenzene $\rightarrow \mathrm{Tl}^{+}+$ (1,2-dimethoxybenzene) ${ }^{+}$	$(6.0 \pm 0.6) \times 10^{8}$	-	20 ± 2	4	pr	Radical cation product characterised by its absorption and esr spectra.	$\begin{aligned} & \text { O'Ne. }^{\prime} \text { 75-1171 } \\ & \text { O'Ne..75-1086 }^{\prime} \end{aligned}$
21.32	$\begin{aligned} & \mathrm{TIOH}^{+}+1,2 \text {-dimethoxy- } \\ & \text { benzene } \rightarrow \mathrm{T}^{+}+\mathrm{OH}^{-}+ \\ & (1,2-\text { dimethoxybenzene })^{+} \end{aligned}$	$1.2 \times 10^{\circ}$	-	RT	>4.7	pr	Radical cation product characterised by its absorption and esr spectra.	0'Ne..75-1086
21.33	$\begin{aligned} & \mathrm{T}^{2^{+}}+1,3 \text {-dimethoxy- } \\ & \text { benzene } \rightarrow \mathrm{Tl}^{+}+(1,3- \\ & \text { dimethoxybenzene })^{+} \end{aligned}$	$(8.0 \pm 0.8) \times 10^{8}$	-	20 ± 2	4	pr	Radical cation product characterised by its absorption and esr spectra.	0'Ne..75-1171
21.34	$\begin{aligned} & \mathrm{T}^{2^{+}}+1,4-\text { dimethoxy- } \\ & \text { benzene } \rightarrow \mathrm{Tl}^{+}+ \\ & \text {(1,4-dimethoxybenzene) } \end{aligned}$	$(6.5 \pm 0.7) \times 10^{8}$	-	20 ± 2	4	pr	Radical cation product characterised by its absorption and esr spectra.	$\begin{aligned} & 0^{\prime} \mathrm{Ne} .75-1086 \\ & \text { O'Ne. }^{\prime} \mathrm{F} .75-1171 \end{aligned}$
21.35	$\begin{aligned} & \mathrm{TIOH}^{+}+1,4 \text {-dimethoxy- } \\ & \text { benzene } \rightarrow \mathrm{TI}^{+}+\mathrm{OH}^{-}+ \\ & (1,4 \text {-dimethoxybenzene) } \end{aligned}$	4.5×10^{8}	-	RT	>4.7	pr	Radical cation product characterised by its absorption and esr spectra.	0'Ne..75-1086
21.36	$\mathrm{TlOH}^{+}+$menaquinone	slow	-	RT	6.8	pr	-	Rao.73-1047
21.37	$\begin{aligned} & \mathrm{T}^{1^{+}}+1,2,3-\text { trimethoxy- } \\ & \quad \text { benzene } \rightarrow \mathrm{T}^{+}+(1,2,3- \\ & \text { trimethoxybenzene })^{+} \end{aligned}$	$(3.2 \pm 0.3) \times 10^{8}$	-	20 ± 2	4	pr	Radical cation product characterised by its absorption and esr spectra.	0'Ne..75-1171
21.38	$\begin{aligned} & \mathrm{T}^{2^{+}}+1,2,4 \text {-trimeth- } \\ & \quad \text { oxybenzene } \rightarrow \mathrm{T}^{+}+ \\ & \\ & (1,2,4-\text { trimethoxybenzene })^{+} \end{aligned}$	$(6.8 \pm 0.7) \times 10^{8}$	-	20 ± 2	4	pr	Radical cation product characterised by its absorption and esr spectra.	0'Ne..75-1171
21.39	$\begin{aligned} & \mathrm{Tl}^{2^{+}}+1,3,5 \text {-trimeth- } \\ & \quad \text { oxybenzene } \rightarrow \mathrm{Tl}^{+}+ \\ & (1,3,5 \text {-trimethoxybenzene })^{+} \end{aligned}$	$(7.0 \pm 0.7) \times 10^{8}$	-	20 ± 2	4	pr	Radical cation product characterised by its absorption and esr spectra.	0'Ne..75-1171

Table 21. Thallium(0) and (II) reactions - Continued

No.	Reaction	$k / \mathrm{dm}^{5} \mathrm{~mol}^{-1} \mathrm{~s}^{-1 \mathrm{a}}$	I	$t /{ }^{\circ} \mathrm{C}$	pH	Method	Comments	Ref.
21.40	Tl ${ }^{\text {II }}$ chloro-complexes$\mathrm{Tl}^{1+}+\mathrm{Cl}^{-} \rightleftharpoons \mathrm{TlCl}^{+}$	$\begin{array}{r} K=(6.2 \pm 0.7) \\ \times 10^{4} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \end{array}$	$\begin{gathered} 1 \\ \left(\mathrm{HClO}_{4}\right) \end{gathered}$	23	0	pr	Measured from effect of $\left[\mathrm{Cl}^{-}\right]$on absorption spectrum of Tl^{I}.	Dods.74-1038
		$k_{\mathrm{f}}=9 \times 10^{\circ}$	$\begin{gathered} 1 \\ \left(\mathrm{HClO}_{4}\right) \end{gathered}$	23	0	pr	Measured from rate of attainment of equilibrium.	Dods.74-1038
		$k_{\mathrm{r}}=1.4 \times 10^{5} \mathrm{~s}^{-1}$	$\begin{gathered} 1 \\ \left(\mathrm{HClO}_{4}\right) \end{gathered}$	23	0	pr		
21.41	$\underset{\substack{\mathrm{TlCl}_{2}}}{\mathrm{TlCl}^{+}}+$	$\begin{gathered} K=(1.9 \pm 0.4) \\ \times 10^{3} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \end{gathered}$	$\stackrel{1}{\left(\mathrm{HClO}_{4}\right)}$	23	0	pr	Measured from effect of $\left[\mathrm{Cl}^{-}\right]$on absorption spectrum of $\mathrm{Tl}^{\mathrm{II}}$.	Dods.74-1038
21.42	$\underset{\substack{\mathrm{TiCl}_{2} \\ \mathrm{TlCl}_{3}^{-} \\ \mathrm{Cl}^{-}}}{\rightleftharpoons}$	$\underset{\substack{ \\\mathrm{mol}^{-1}}}{K=13 \pm 3 \mathrm{dm}^{3}}$	$\begin{gathered} \mathbf{1} \\ \left(\mathrm{HClO}_{4}\right) \end{gathered}$	23	0	pr	Measured from effect of $\left[\mathrm{Cl}^{-}\right]$on absorption spectrum of Tl^{I}.	Dods.74-1038
21.43	$\mathrm{Tl}^{\text {II }}+\mathrm{Tl}^{\text {II }}$ (dis)	$2 k=5.38 \times 10^{\circ}$	1	23	0	pr	$\begin{aligned} & {\left[\mathrm{Cl}^{-}\right]=1 \times 10^{-3}} \\ & \mathrm{~mol} \mathrm{dm}^{-3} \end{aligned}$	Dods.74-1038
		$2 k=5.58 \times 10^{\circ}$	1	23	0	pr	$\begin{aligned} & {\left[\mathrm{Cl}^{-}\right]=9.7 \times 10^{-3}} \\ & \mathrm{~mol} \mathrm{dm} \end{aligned}$	Dods.74-1038
		$2 k=4.74 \times 10^{\circ}$	1	23	0	pr	$\underset{\mathrm{dm}^{-3}}{\left[\mathrm{Cl}^{-}\right]}=0.1 \mathrm{~mol}$	Dods.74-1038
		$2 k=3.70 \times 10^{\circ}$	1	23	0	pr	$\begin{aligned} & {\left[\mathrm{Cl}^{-}\right]} \\ & \mathrm{dm}^{-\mathrm{s}} \end{aligned}=0.98 \mathrm{~mol}$	Dods.74-1038

Plus data at intermediate chloride concentrations.
${ }^{\text {a }}$ If the data source gives no errors none are shown here but they should be assumed to be at least $\pm 25 \%$ (or $\pm 50 \%$ for $2 k$).

Table 22. Thulium(II) reactions

No.	Reaction	$k / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1 \mathrm{a}}$	I	$t /{ }^{\circ} \mathrm{C}$	pH	Method	Comments	Ref.
	$T m_{\mathrm{aq}}^{2+}$ 22.1	$\mathrm{Tm}^{2+}+\mathrm{OH}(\mathrm{et})$	$(7 \pm 1) \times 10^{9}$	-	RT	$3-6$	pr	

${ }^{2}$ If the data source gives no errors none are shown here but they should be assumed to be at least $\pm 25 \%$ (or $\pm 50 \%$ for $2 k$).

Table 23. Ytterbium(II) reactions

Table 23. Ytterbium(II) reactions - Continued

No.	Reaction	$k / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-12}$	I	$t /{ }^{\circ} \mathrm{C}$	pH	Method	Comments	Ref.
23.23	$\mathrm{Yb}^{9+}+\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{H}_{2} \mathrm{O}^{3+}$ (et)	1.0×10^{7}	0.3	RT	2	pr	-	Fara.73-0107
		2.9×10^{7}	$\begin{aligned} & 1.0 \\ & \left(\mathrm{NaClO}_{4}\right) \end{aligned}$	RT	2	pr	-	Fara.73-0107
		3.2×10^{8}	$\begin{aligned} & 1.0 \\ & (\mathrm{NaCl}) \end{aligned}$	RT	2	pr	-	Fara.73-0107
23.24	$\mathrm{Yb}^{\mathbf{2 +}}+\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{I}^{\mathbf{+}}$ (et)	ca. 10^{8}	0.06	RT	6	pr	-	Fara.73-0107
23.25	$\mathrm{Yb}^{3+}+\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{\mathrm{e}^{3+}}(\mathrm{et})$	5.0×10^{8}	0.06	RT	6	pr	-	Fara.73-0107
		4.5×10^{7}	$\begin{aligned} & 1.0 \\ & \left(\mathrm{NaClO}_{4}\right) \end{aligned}$	RT	6	pr	-	Fara.73-0107
		3.0×10^{8}	$\begin{aligned} & 1.0 \\ & (\mathrm{NaCl}) \end{aligned}$	RT	6	pr	-	Fara.73-0107
23.26	$\mathrm{Yb}^{2+}+\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{OH}^{2+}$ (et)	1.3×10^{7}	0.06	RT	6	pr	-	Fara.73-0107
		2.3×10^{7}	0.3	RT	6	pr	-	Fara.73-0107
		5.0×10^{7}	$\begin{aligned} & 1.0 \\ & \left(\mathrm{NaClO}_{4}\right) \end{aligned}$	RT	6	pr	-	Fara.73-0107
		1.4×10^{8}	1.0	RT	6	pr	-	Fara.73-0107

${ }^{\text {a }}$ If the data source gives no errors none are shown here but they should be assumed to be at least $\pm \mathbf{2 5 \%}$ (or $\pm 50 \%$ for 2 k).

Table 24. Zinc(l) reactions

No.	Reaction	$k / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-12}$	I	$t{ }^{\circ} \mathrm{C}$	pH	Method	Comments	Ref.
	$2 n^{+}{ }_{\text {aq }}$							
24.1	$\mathrm{Zn}^{+}+\mathrm{BrO}_{3}^{-}$(et)	$(2.1 \pm 0.3) \times 10^{\circ}$	0.08	RT	nat	pr	-	Meye.68-0855
24.2	$\mathrm{Zn}^{+}+\mathrm{Cd}^{2+}$ (et?)	$<1 \times 10^{7}$	0.08	RT	nat	pr	The reason for the discrepancy between these two values is not clear.	Мeуe.68-0855
		8.3×10^{8}	-	RT	nat	pr		Baxe..66-0848
24.3	$\mathrm{Zn}^{+}+\mathrm{ClO}_{3}{ }^{-}$	$<3 \times 10^{8}$	0.08	RT	nat	pr	-	Meye.68-0855
24.4	$\mathrm{Zn}^{+}+\mathrm{Co}^{\mathbf{2 +}}$	$<3 \times 10^{3}$	0.08	RT	nat	pr	-	Meye.68-0855
24.5	$\mathrm{Zn}^{+}+\mathrm{Co}(\mathrm{bpy})_{3^{+}}{ }^{+}$(et)	2.6×10^{8}	-	RT	nat	pr	-	Вахе..72-0381
24.6	$\mathrm{Zn}^{+}+\mathrm{Co}(\mathrm{en})_{3}{ }^{+{ }^{+}}$(et)	$(2.5 \pm 0.4) \times 10^{8}$	0.08	RT	5-6	pr	-	Meye.69-0428
24.7	$\mathrm{Zn}^{+}+c i s-\mathrm{Co}(\mathrm{en})_{2} \mathrm{Cl}_{2}{ }^{+}$ (et)	$(1.91 \pm 0.3) \times 10^{\circ}$	0.08	RT	5-6	pr	-	Meye.69-0428
24.8	$\begin{aligned} & \mathrm{Zn}^{+}+\text {trans- } \\ & \mathrm{Co}(\mathrm{en})_{2} \mathrm{Cl}_{3}{ }^{+} \text {(et) } \end{aligned}$	$(2.3 \pm 0.3) \times 10^{\circ}$	0.08	RT	5-6	pr	-	Meye.69-0428
24.9	$\mathrm{Zn}^{+}+\mathrm{Co}(\mathrm{en})_{2} \mathrm{CO}_{3}{ }^{+}$	$(4.7 \pm 0.7) \times 10^{8}$		RT	5-6	pr	-	Meye.69-0428
	(et)							
24.10	$\mathrm{Zn}^{+}+c i s-\mathrm{Co}(\mathrm{en})_{2} \mathrm{~F}_{2}^{+}$ (et)	$(5.4 \pm 0.8) \times 10^{8}$	0.08	RT	5-6	pr	-	Meye.69-0428
24.11	$\mathrm{Zn}^{+}+\mathrm{Co}(\mathrm{en})_{2} \mathrm{FH}_{2} \mathrm{O}^{2+}$ (et)	$(4.7 \pm 0.7) \times 10^{8}$	0.08	RT	5-6	pr	-	Meye.69-0428
24.12	$\mathrm{Zn}^{+}+c i s-\mathrm{Co}_{0}(\mathrm{en})_{2} \mathrm{NH}_{3} \mathrm{Cl}^{2+}$	$(1.47 \pm 0.2) \times 10^{9}$	0.08	RT	5-6	pr	-	Meye.69-0428
24.13	$\begin{aligned} & \mathrm{Zn}^{+}+c i s- \\ & \quad \mathrm{Co}(\mathrm{en})_{2} \mathrm{NH}_{3} \mathrm{NO}_{2}{ }^{2+} \text { (et) } \end{aligned}$	$(2.7 \pm 0.7) \times 10^{\circ}$	0.08	RT	5-6	pr	-	Meye.69-0428
24.14	$\underset{\text { (et) }}{\mathrm{Zn}^{+}}+\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6^{3+}}{ }^{3+}$	$(8.4 \pm 1.3) \times 10^{8}$	0.08	RT	5-6	pr	-	Meye.69-0248
24.15	$\mathrm{Zn}^{+}+\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}^{2+}$ (et)	$(2.6 \pm 0.4) \times 10^{\circ}$	0.08	RT	4.0	pr	-	Meye.69-0428
24.16	$\mathrm{Zn}^{+}+\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}^{2+}$ (et)	$(2.2 \pm 0.3) \times 10^{9}$	0.08	RT	5-6	pr	-	Meye.69-0428
24.17	$\mathrm{Zn}^{+}+\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{CN}^{2+}$ (et)	$(1.30 \pm 0.2) \times 10^{\circ}$	0.08	RT	5-6	pr	-	Meye.69-0428
24.18	$\mathrm{Zn}^{+}+\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{~F}^{2+}$ (et)	$(8.2 \pm 1.2) \times 10^{8}$	0.08	RT	5-6	pr	-	Meye.69-0428
24.19	$\begin{aligned} & \mathrm{Zn}^{+}+\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{\mathrm{s}} \text { fumar- } \\ & \text { ate }{ }^{+}(\mathrm{et}) \end{aligned}$	$(1.2 \pm 0.3) \times 10^{9}$	0.08	RT	5-6	pr	-	Meye.69-0428
24.20	$\mathrm{Zn}^{+}+\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{H}_{2} \mathrm{O}^{3+}$ (et)	$(1.56 \pm 0.2) \times 10^{9}$	0.08	RT	4.0	pr	-	Meye.69-0428
24.21	$\mathrm{Zn}^{+}+\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{OH}^{2+}$ (et)	$(1.10 \pm 0.2) \times 10^{9}$	0.08	RT	6.6	pr	-	Meye.69-0428
24.22	$\mathrm{Zn}^{+}+\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{~N}_{\mathrm{s}^{2+}}$ (et)	$(1.49 \pm 0.2) \times 10^{\circ}$	0.08	RT	5-6	pr	-	Meye.69-0428
24.23	$\mathrm{Zn}^{+}+\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{NCS}^{2+}$ (et)	$(1.65 \pm 0.2) \times 10^{\circ}$	0.08	RT	5-6	pr	-	Meye.69-0428
24.24	$\mathrm{Zn}^{+}+\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{OOCCH}_{3}{ }^{2+}$ (et)	$(5.0 \pm 0.8) \times 10^{3}$	0.08	RT	5-6	pr	-	Meye.69-0428
24.25	$\begin{aligned} & \mathrm{Zn}^{+}+\mathrm{Cr}^{3+} \\ & \mathrm{Zn}^{+}+\mathrm{Cr}_{2} \mathrm{O}_{7^{2-}}(\mathrm{et}) \\ & \mathrm{Zn}^{+}+\mathrm{Cu}^{+} \text {(et) } \end{aligned}$	$\begin{gathered} <10^{7} \\ (1.6 \pm 0.2) \times 10^{10} \\ (2.5 \pm 0.4) \times 10^{8} \\ (9.5 \pm 2.0) \times 10^{9} \end{gathered}$	$\begin{aligned} & - \\ & 0.020^{*} \\ & 0.08 \\ & 0.4 \\ & \left(\mathrm{ZnSO}_{4}\right) \end{aligned}$	$\begin{gathered} \text { RT } \\ 25 \pm 2 \\ \text { RT } \\ \text { RT } \end{gathered}$	nat nat nat 5-8	prpr	-	Baxe..66-0848Buxt. $76-1072$
24.26							-	
24.27						pr	-	Meye.68-0855
						γ	Measured by competition with NO_{3}^{-}.	Fiti70-0117
							Rate constant cal-	
							culated taking	
							$k\left(\mathrm{Zn}^{+}+\mathrm{NO}_{3}^{-}\right)=2.1$	
							$\begin{aligned} & \times 10^{9} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1} \\ & \text { (see entry } 24.33 \text {). } \end{aligned}$	
24.28	$\begin{aligned} & \mathrm{Zn}^{+}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \\ & \mathrm{Zn}^{2+}+\mathrm{OH}+\mathrm{OH}^{-} \end{aligned}$	$\begin{aligned} & (1.80 \pm 0.3) \times 10^{\circ} \\ & (2.3 \pm 0.2) \times 10^{\circ} \end{aligned}$	-	$\begin{gathered} \mathrm{RT} \\ 25 \pm 2 \end{gathered}$	nat nat	$\begin{aligned} & \mathrm{pr} \\ & \mathrm{pr} \end{aligned}$	Products inferred from γ-radiolysis experiments (see ref. 73-0039).	$\begin{aligned} & \text { Meye.68-0855 } \\ & \text { Buxt. } 76-1072 \end{aligned}$
		$\begin{gathered} E_{\mathrm{a}}=10.5 \pm 1.0 \\ \mathrm{~kJ} \mathrm{~mol}^{-1} \end{gathered}$	-	-	nat	pr	-	Buxt. $76-1072$

Table 24. Zinc(I) reactions - Continued

No.	Reaction	$k / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1 / 4}$	I	$t /{ }^{\circ} \mathrm{C}$	pH	Method	Comments	Ref.
24.29	$\mathrm{Zn}^{+}+\mathrm{H}_{3} \mathrm{O}^{+}$	$<10^{8}$	0.08	RT	-	pr	-	Meye.68-0855
24.30	$\mathrm{Zn}^{+}+\mathrm{IO}_{3}^{-}$(et)	$(3.6 \pm 0.5) \times 10^{0}$	0.08	RT	nat	pr	-	Meye.68-0855
		$(1.7 \pm 0.3) \times 10^{10}$	$\begin{aligned} & 0.4 \\ & \left(\mathrm{ZnSO}_{4}\right) \end{aligned}$	RT	5-8	γ	Measured by competition with $\mathrm{NO}_{3}{ }^{-}$.	Fiti70-0117
							Rate constant cal-	
							culated taking	
							$k\left(\mathrm{Zn}^{+}+\mathrm{NO}_{3}^{-}\right)=$	
							$2.1 \times 10^{9} \mathrm{dm}^{3} \mathrm{~mol}^{-1}$	
							s^{-1} (see entry 24.33).	
24.31	$\mathrm{Zn}^{+}+\mathrm{Ni}^{\mathbf{+}}$ (et)	$<5 \times 10^{\circ}$	0.08	RT	nat	pr	-	Meye.68-0855
		5×10^{7}	-	RT	nat	pr	-	Baxe..66-0848
24.32	$\mathrm{Zn}^{+}+\mathrm{NO}_{\mathbf{2}}{ }^{-}$(et)	$(2.2 \pm 0.3) \times 10^{\circ}$	0.08	RT	nat	pr	-	Meye.68-0855
24.33	$\mathrm{Zn}^{+}+\mathrm{NO}_{3}{ }^{-}$(et)	$(2.1 \pm 0.3) \times 10^{\circ}$	0.08	RT	nat	pr	-	Meye.68-0855
24.34	$\mathrm{Zn}^{+}+\mathrm{N}_{2} \mathrm{O} \rightarrow$	$<1.3 \times 10^{7}$	-	RT	nat	pr	-	Meye.68-0855
	$\mathrm{ZnO}^{+}+\mathrm{N}_{2}$	$(3.7 \pm 0.4) \times 10^{7}$	-	25 ± 2	nat	pr	Products charac-	Buxt. 76-1072
		$E_{\mathrm{a}}=35.5 \pm 1.4 \mathrm{~kJ}$	-	1-30	nat	pr	terised by their	
		mol^{-1}					absorption spectrum	
							(see ref. 76-1072)	
							and in γ-radiolysis	
							experiments (see	
							ref. 73-0039).	
24.35	$\begin{array}{r} \mathrm{Zn}^{+}+\mathrm{O}_{2} \rightarrow \\ \mathrm{Zn}^{2+}+\mathrm{O}_{3}^{-} \end{array}$	$(2.4 \pm 0.4) \times 10^{9}$	-	RT	nat	pr	-	Meye.68-0855
		3.3×10^{9}	-	RT	nat	pr	-	Baxe..66-0848
							Products characterised by their	
							absorption spectrum	
							(see ref. 76-1072)	
							and reactivity with	
							1,4-benzoquinone (see ref. 76-1134).	
24.36	$\mathrm{Zn}^{+}+\mathrm{OH}(\mathrm{et})$	5.7×10^{0}	-	RT	nat	pr	No correction made	Baxe..66-0848
							for competing reaction $\mathrm{Zn}^{+}+\mathrm{Zn}^{+}$.	
		$c a .8 \times 10^{\circ}$	-	25 ± 2	nat	pr	Estimated from decay of Zn^{+}in the absence of OH scavengers taking into account competing reactions such as $\mathrm{Zn}^{+}+\mathrm{Zn}^{+}, \mathrm{Zn}^{+}+$ $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{OH}+\mathrm{OH}$ etc.	Buxt.75-1027
24.37	$\mathbf{Z n}^{+}+\mathbf{P b}^{\mathbf{+}}$ (et)	4.0×10^{8}	-	RT	nat	pr	-	Baxe..66-0848
24.38	$\mathrm{Zn}^{+}+\mathrm{Ru}(\mathrm{bpy})_{3^{+}}{ }^{\text {+ }}$ (et)	2.5×10^{0}	-	RT	nat	pr	-	Baxe.72-0381
24.39	$\mathrm{Zn}^{+}+\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{\mathrm{s}}{ }^{+}$(et)	$(2.2 \pm 0.3) \times 10^{\circ}$	0.08	RT	nat	pr	-	Navo.70-1229
24.40	$\begin{aligned} & \mathrm{Zn}^{+}+\mathrm{S}_{2} \mathrm{O}_{\mathbf{3}^{2-}} \\ & \mathrm{Zn}^{2+}+\mathrm{SO}_{4}^{-}+\mathrm{SO}_{4}{ }^{2-} \end{aligned}$	$(1.3 \pm 0.1) \times 10^{\circ}$	0.02*	25 ± 2	nat	pr	-	Buxt. $76-1072$
24.41	$\mathrm{Zn}^{+}+\mathrm{Zn}^{+}$	$2 k<8 \times 10^{8}$	0.4	25 ± 2	nat	pr	Estimated from rate	Buxt.75-1027
							of decay of Zn^{+}in	
							the presence of $2-$	
							methyl-2-propanol.	
							Major competing reac-	
							. $\mathrm{PH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{OH}$.	
24.42	$\underset{\left(\mathrm{Zn}^{+}+\text {allyl alcohol } \rightarrow\right.}{(\mathrm{Zn}-\text { allyl alcohol })^{+}}$	$c a .10^{8}$	-	25 ± 2	nat	pr	Product characterized	Buxt..76-1072
							by its absorp-	
							tion spectrum.	

Table 24. Zinc(l) reactions - Continued

No.	Reaction	$k / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}{ }^{\text {a }}$	I	$t /{ }^{\circ} \mathrm{C}$	pH	Method	Comments	Ref.
24.43	$\begin{aligned} & \mathrm{Zn}^{+}+\text {benzophonone } \rightarrow \\ & \mathrm{Zn}^{2+}+\text { (benzophenone) }^{-} \end{aligned}$	$2.5 \times 10^{\circ}$	-	RT	7.0	pr	Measured in the presence of $c a$. $1 \mathrm{~mol} \mathrm{dm}{ }^{-3} 2$ methyl-2-propanol. Ketyl radical product characterised by its absorption spectrum.	Rao.75-1032
24.44	$\begin{gathered} \mathrm{Zn}^{+}+1,4-\text { benzo- } \\ \text { quinone } \rightarrow \mathrm{Zn}^{2+}+ \\ \text { (1,4-benzoquinone) } \end{gathered}$	$(3.0 \pm 0.6) 10^{\circ}$	-	25 ± 2	5.7	pr	Measured in the presence of 1 mol dm^{-3} 2-methyl-2propanol. Semiquinone product characterised by its absorption spectrum.	Sell. $76-1134$
		4.8×10^{9}	-	RT	7.0	pr	Measured in the presence of $c a$. $1 \mathrm{~mol} \mathrm{dm}{ }^{-3} 2$ -methyl-2-propanol.	Rao.75-1032
24.45	$\begin{aligned} & \mathrm{Zn}^{+}+\text {menaquinone } \rightarrow \\ & \mathrm{Zn}^{2+}+(\text { menaquinone })^{-} \end{aligned}$	$(3.8 \pm 0.4) \times 10^{\circ}$	-	RT	7.1	pr	Measured in the presence of $c a$. $1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ 2-methyl-2-propanol. Semiquinone product characterised by its absorption spectrum.	$\begin{aligned} & \text { Rao.73-1047, } \\ & \text { Rao.75-1032 } \end{aligned}$
$2 n^{1}$ Complexes								
ZnL^{+}(from $\mathrm{ZnL}^{2+}+\mathrm{CH}_{3} \mathrm{CO}^{-} \mathrm{CH}_{3}$), $\mathrm{L}=$ hematoporphyrin (ix) (no reference made to number of protons involved with complex).								
24.46	$\underset{\mathrm{ZnL}^{+}+\mathrm{ZnL}^{+}}{(\mathrm{ZnL})_{2^{2}}} \boldsymbol{\prime} \quad k^{\prime}=$	$.1 \pm 0.4) \times 10^{8}$	0.1	RT	13	pr	Unclear whether k or $2 k$. Measured in the presence of $1 \mathrm{~mol} \mathrm{dm}^{-3} 2$-propanol. Dimerisation mechanism implied from subsequent reactions (see entry 24.47) and comparison with the products of reduction of $\mathrm{ZnL}^{\mathbf{2}^{+}}$in aprotic solvents.	Hare.74-1040
24.47	$(\mathrm{ZnL})_{2}{ }^{\mathbf{+}} \rightarrow \mathrm{P}$	$17 \pm 2 \mathrm{~s}^{-1}$	0.1	RT	13	Pr	Reaction suggested to involve internal rearrangement.	Hare.74-1040
	$\mathbf{P} \rightarrow$ dihydroporphyrin product	$<0.14 \mathrm{~s}^{-1}$	0.1	RT	13	Pr	Reaction presumed to involve splitting of dimer.	Hare.74-1040

alf the data source gives no errors none are shown here but they should be assumed to be at least $\pm 25 \%$ (or $\pm 50 \%$ for $2 k$).

Table 25. Intramolecular electron transfer reactions for some metal complexes ${ }^{\boldsymbol{a}}$

No.	Reaction	$k / \mathrm{s}^{-1 \mathrm{~b}}$	I	$t /{ }^{\circ} \mathrm{C}$	pH	Method	Comments	Ref.
Electron adducts								
25.1	$\begin{gathered} \left(\mathrm{NH}_{3}\right)_{5} \mathrm{Co}_{0}{ }^{\text {I }}\left(p-00 \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)^{-} \rightarrow \\ \left(\mathrm{NH}_{3}\right)_{5} \mathrm{Co}^{\mathrm{I}\left(p-00 \mathrm{P}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)} \end{gathered}$	2.6×10^{3}	-	RT	7.0	pr	-	Simi..77-1027
25.2	$\begin{gathered} \left(\mathrm{NH}_{3}\right)_{5} \mathrm{Co}_{0}{ }^{\text {II }}\left(m-00 \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)^{-} \rightarrow \\ \left(\mathrm{NH}_{3}\right)_{5} \mathrm{CC}^{\mathrm{I}}\left(m-00 \mathrm{O}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right) \end{gathered}$	1.5×10^{2}	-	RT	7.0	pr	-	Simi..77-1027
25.3	$\begin{gathered} \left(\mathrm{NH}_{3}\right)_{5} \mathrm{Co}_{0}^{\mathrm{II}}\left(o-00 \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)^{-} \\ \left(\mathrm{NH}_{3}\right)_{5} \mathrm{Co}^{\mathrm{I}}\left(o-00 \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right) \end{gathered}$	4.0×10^{5}	-	RT	7.0	pr	-	Simi..77-1027
25.4	$\begin{aligned} & \left(\mathrm{NH}_{3}\right)_{5} \mathrm{Co}_{0}{ }^{\text {II}}\left(o-\mathrm{OOCC}_{8} \mathrm{H}_{4} \mathrm{NO}_{2} \mathrm{H}\right) \\ & \left(\mathrm{NH}_{3}\right)_{5} \mathrm{Co}^{\mathrm{I}}\left(o-\mathrm{OOCCO}_{8} \mathrm{H}_{4} \mathrm{NO}_{2}\right) \end{aligned}+\mathrm{H}^{+}$	9.5×10^{3}	-	RT	0.8	pr	-	Simi..77-1027
25.5	$\begin{aligned} & \left(\mathrm{NH}_{3}\right)_{5} \mathrm{Co}^{\mathrm{m}}\left[2,4-00 \mathrm{CC}_{8} \mathrm{H}_{4}\left(\mathrm{NO}_{2}\right)_{2}\right]^{-} \\ & \quad \rightarrow\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Co}^{\mathrm{I}}\left[2,4-00 \mathrm{CC}_{8} \mathrm{H}_{4}\left(\mathrm{NO}_{2}\right)_{2}\right] \end{aligned}$	3.5×10^{4}	-	RT	7.0	pr	-	Simi..77-1027
25.6	$\begin{aligned} & \left(\mathrm{NH}_{3}\right)_{5} \mathrm{Co}^{\mathrm{m}}\left[3,5-00 \mathrm{CC}_{6} \mathrm{H}_{4}\left(\mathrm{NO}_{2}\right)_{2}\right]^{-} \\ & \quad \rightarrow\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Co}^{\mathrm{I}}\left[3,5-00 \mathrm{CC}_{6} \mathrm{H}_{4}\left(\mathrm{NO}_{2}\right)_{2}\right] \end{aligned}$	1.3×10^{2}	-	RT	7.0	pr	-	Simi..77-1027
25.7	$\underset{\mathrm{Cu}^{\mathrm{I}} \text { (gluthathione }{ }^{-} \text {) } \rightarrow}{\mathrm{Cu}^{1} \text { (gluthathione) }}$	$\begin{aligned} & (3.6 \pm 0.3) \\ & \times 10^{3} \end{aligned}$	-	RT	11	pr	Rate constant independent of [Cuㅍ]: [glutathione] ratio in range $1: 2$ to $1: 5$ and of $\left[\mathrm{Cu}^{\mathrm{II}}\right]$ in the range $(1-10) \times 10^{-4} \mathrm{~mol}$ dm^{-3}.	Fara.76-1016
25.8	$\begin{gathered} \mathrm{Cu}^{\mathrm{I}(\text { gly })_{2}\left(\mathrm{gly}^{-}\right)} \rightarrow \\ \left.\mathrm{Cu}^{\mathrm{I}}(\mathrm{gly})_{3}\right) \end{gathered}$	$\begin{gathered} (1.7 \pm 0.3) \\ \times 10^{4} \end{gathered}$	-	RT	9	pr	Rate constant independent of [Cu^{I}]: [gly] ratio in range 1:6 to $1: 15$ and of $\left[\mathrm{Cu}^{\mathrm{I}}\right]$ in the range ($1-10$) x $10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$.	Fara.76-1016
25.9	Hydroxyl radical adducts $\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Co}^{\mathrm{II}} \mathrm{OOCC}_{5} \mathrm{H}_{5} \mathrm{OH} \rightarrow$ $\left(\mathrm{NH}_{3}\right)_{5} \mathrm{C}_{0}{ }^{\mathrm{I}} \mathrm{OOCC}_{6} \mathrm{H}_{4} \mathrm{OH}+\mathrm{H}^{+}$ Hydrogen atom adducts	$<10^{2}$	-	RT	6.0	pr	-	Cohe.71-0282
	$\begin{aligned} & \left(\mathrm{NH}_{3}\right)_{5} \mathrm{CC}^{\mathrm{II}} \mathrm{OOCC}_{8} \mathrm{H}_{5} \mathrm{H} \rightarrow \\ & \left(\mathrm{NH}_{3}\right)_{5} \mathrm{Co}_{0}{ }^{\text {O}} \mathrm{OOCC}_{8} \mathrm{H}_{4} \mathrm{H}+\mathrm{H}^{+} \end{aligned}$	$<10^{2}$	-	RT	1	pr	-	Cohe.71-0282

${ }^{\text {an }}$ Intramolecular electron transfer reactions of metallo-proteins and related systems not included..
${ }^{\mathrm{b}}$ N.B. First order rate constants.

References

62-0164 Haissinsky, M., Radiolysis of compounds of the noble metals in aqueous solution. I. Action of gamma rays on the chlorides of $\mathrm{Pt}^{\mathrm{II}}$ and $\mathrm{Pt}^{\text {V }}$ in acid solution, RADIATION RES. 17(3): 274-85 (1962).

64-0133 Asmus, K.-D.; Henglein, A.; Ebert, M.; Keene, J.P., Pulsradiolytische Untersuchung schneller Reaktionen von hydratisierten Elektronen, freien Radikalen und Ionen mit Tetranitromethan in waessriger Loesung, BER. BUNSENGES. PHYS. CHEM. 68: 657-63 (1964).
65-0385 Baxendale, J.H.; Keene, J.P.; Stott, D.A., Determination of some fast reaction rates using the pulsed radiolysis of permanganate solutions, Pulse Radiolysis, Ebert, M.; Keene, J.P.; Swallow, A.J.; Baxendale, J.H. (eds.), Acad. Press, N.Y., 1965, p. 107-15.
65-0393 Baxendale, J.H.; Fielden, E.M.; Keene, J.P., Pulse radiolysis of Ag^{+}solutions, Ibid., p. 207-16.
65-0394 Baxendale, J.H.; Fielden, E.M.; Keene, J.P., Formation of Cu ${ }^{\text {III }}$ in the radiolysis of Cu^{2+} solutions, Ibid., p. 217-20.
65-0799 Gordon, S., Ibid., p 285.
66-0097 Cercek, B.; Ebert, M.; Swallow, A.J., Novel valence states of thallium as studied by pulse radiolysis, J. CHEM. SOC. PT. A (5): 612-5 (1966).

66-0848 Baxendale, J.H.; Keene, J.P.; Stott, D.A., Reactions and relative potentials of some metal ions in unstable valence states, CHEM. COMMUN. 715-16 (1966).
67-0019 Konstantatos, J.; Katakis, D., The radiolysis of concentrated neutral sodium perchlorate aqueous solutions, J. PHYS. CHEM. 71(4): 979-83 (1967).
67-0062 Buxton, G.V.; Dainton, F.S.; Thielens, G., Kinetics of reactions of the hydrated electron, CHEM. COMMUN (4): 201 (1967).
68-0066 Dainton, F.S.; Wiseall, B., Reactions of nitrosodimethylaniline with free radicals, TRANS. FARADAY SOC. 64(3): 694-705 (1968).
$68-0169$ Adams, G.E.; Broszkiewicz, R.B.; Michael, B.D., Pulse radiolysis studies on stable and transient complexes of platinum, TRANS. FARADAY SOC. 64(5): 1256-64 (1968).
68-0302 Ghosh-Mazumdar, A.S.; Hart, E.J., A pulse radiolysis study of bivalent and zerovalent gold in aqueous solutions, ADVAN. CHEM. SER. 81: 193-209 (1968).
68-0431 Pukies, J.; Roebke, W.; Henglein, A., Pulsradioytische Untersuchung einiger Elementarprozesse der Silberreduktion, BER. BUNSENGES. PHYS. CHEM. 72(7): 842-7 (1968).
68-0435 Pukies, J.; Roebke, W., Pulsradioytische Untersuchung der Reduktion des Ag^{+}-Ions in ammoniakalischer Loesung, BER. BUNSENGES. PHYS. CHEM. 72(9/10): 1101-5 (1968).
68-0855 Meyerstein, D.; Mulac, W.A., Reductions by monovalent zinc, cadmium, and nickel cations, J. PHYS. CHEM. 72(3): 784-8 (1968).

69-0144 Ghosh-Mazumdar, A.S.; Hart, E.J., Electron pulse radiolysis of aqueous tetrachloro and tetracyano complexes of $\mathrm{Pt}^{\mathrm{II}}$, INT. J. RADIAT. PHYS. CHEM. 1: 165-76 (1969).
69-0428 Meyerstein, D.; Mulac, W.A., Reduction of cobalt(III) complexes by monovalent zinc, cadmium, and nickel ions in aqueous solutions, J. PHYS. CHEM. 73(4): 1091-5 (1969).
69-0434 Jayson, G.G.; Keene, J.P.; Stirling, D.A.; Swallow, AJJ., Pulseradiolysis study of some unstable complexes of iron, TRANS. FARADAY SOC. 65(561): 2453-64 (1969).
69-0971 Taylor, R.S.; Sykes, A.G., Preparation, spectrum, and stability of indium(I) in aqueous solution, J. CHEM. SOC. PT. A 241923 (1969).

70-0117 Fiti, M., La cinetique de competition dans l'etude des intermediaires instables. I. Les ions $\mathrm{Co}^{+}, \mathrm{Mn}^{+}, \mathrm{Zn}^{+}, \mathrm{Cd}^{+}$et Ni^{+}, REV. ROUM. CHIM. 15(1): 77-85 (1970).
70-0178 Baxendale, J.H.; Rodgers, M.A.J.; Ward, M.D., Radiolysis of aqueous solutions of ruthenium (III) hexa-ammine and chloropenta-ammine, J. CHEM. SOC. PT. A (8): 1246-50 (1970).

70-0336 Burchill, C.E.; Hickling, G.G., Radiation-induced oxidation of alcohols by Tl(III) in acid aqueous solution, CAN. J. CHEM. 48(16): 2466-73 (1970).
70-0512 Barker, G.C.; Fowles, P., Pulse radiolytic induced transient electrical conductance in liquid solutions. Part 3. Radiolysis of aqueous solutions of some inorganic systems, TRANS. FARADAY SOC. 66(7): 1661-9 (1970).
70-0580 Baxendale, J.H.; Koulkes-Pujo, A.-M., Une etude par radiolyse pulse sur l'espece transitoire Au II, J. CHIM. PHYS. 67(9): 1602-7 (1970).
70-1228 Meyerstein, D.; Mulac, W.A., The effect of ligands on the chemical properties of monovalent cadmium ions, INORG. CHEM. 9(7): 1762-6 (1970).
70-1229 Navon, G.; Meyerstein, D., The reduction of ruthenium(III) hexaammine by hydrogen atoms and monovalent zinc, cadmium, and nickel ions in aqueous solutions, J. PHYS. CHEM. 74(23): 4067-70 (1970).
70-7309 Burchill, C.E.; Wolodarsky, W.H., The photo-chemistry of aqueous solutions of Tl(III) perchlorate, CAN. J. CHEM. 48(19): 2955-9 (1970).
70-7726 Thornton, A.T.; Laurence, G.S., The rates of oxidation of Fe^{2+}, Mn^{2+}, and Co^{+}by $\mathrm{Br}_{2}{ }^{-}$radical ions, CHEM. COMMUN. 443-4 (1970).

71-0036 Faraggi, M.; Zehavi, D.; Anbar, M., Effect of thallous ions on the yields of hydrogen and hydrogen peroxide in radiolyzed aqueous solutions, TRANS. FARADAY SOC. 67: 2057(1971).

71-0097 Venerable, G.D.II; Halpern, J., Pulse radiolysis of aqueous solutions of pentacyanocobaltate(II). The detection and characterization of pentacyanocobaltate(I), J. AMER. CHEM. SOC. 93(9): 2176-9 (1971).
71-0174 Meyerstein, D., Trivalent copper. I. A pulse radiolytic study of the chemical properties of the aquo complex, INORG. CHEM. 10(3): 638-41 (1971).
71-0234 Baxendale, J.H.; Mulazzani, Q.G., A study of the oxidation and reduction of $\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{~N}_{2}{ }^{2+}$ by $\boldsymbol{\gamma}$ - and electron pulse radiolysis, J. INORG. NUCL. CHEM. 33(3): 823-30 (1971).

71-0282 Cohen, H.; Meyerstein, D., Oxidation of benzoatopentaamminecobalt(III) by hydroxyl radicals, J. AMER. CHEM. SOC. 93(17): 4179-83 (1971)
71-0775 Meyerstein, D., Trivalent copper. II. A pulse radiolytic study of the formation and decomposition of amino complexes, INORG. CHEM. 10(10): 2244-0 (1971).
72-0065 Faraggi, M.; Tendler, Y., Pulse radiolysis in lanthanide aqueous solutions. I. Formation spectrum and chemical properties of divalent europium, ytterbium, and samarium ions, J. CHEM. PHYS. 56(7): 3287-93 (1972).
72-0066 Faraggi, M.; Feder, A., Pulse radiolysis studies in lanthanide aqueous solutions. II. Formation, spectrum and some chemical properties of praseodymium(IV) in aqueous solution. J. CHEM. PHYS. 56(7): 3294-7 (1972).
72-0290 Faraggi, M.; Amozig, A., Pulse radiolysis of metallic ions in aqueous solutions. I. Pulse radiolysis in $\mathrm{Hg}^{\mathbf{2 +}}$ and $\mathrm{Hg}_{2}{ }^{\mathbf{2 +}}$ ions in
aqueous solutions, INT. J. RADIAT. PHYS. CHEM. 4(3): 3538 (1972).
72-0381 Baxendale, J.H.; Fiti, M., Transient species in the reactions of some pyridyl complex ions with hydrated electrons, J. CHEM. SOC. DALTON TRANS. (18): 1995-8 (1972).
72-0460 Lati, J.; Meyerstein, D., Trivalent nickel. I. A pulse radiolytic study of the formation and decomposition of the ammoniacal complex in aqueous solution, INORG. CHEM. 11(10): 2393-7 (1972).

72-0461 Lati, J.; Meyerstein, D., Trivalent nickel. II. A pulse radiolytic study of the formation and decomposition of the ethylenediamine and glycine complexes in aqueous solution, INORG. CHEM. 11(10): 2397-401 (1972).
72-0844 Sellers, R.M., Ph.D. Thesis, Univ. of Leeds, 1972.
72-7088 Wright, R.C.; Laurence, G.S., Production of platinum(III) by flash photolysis of $\mathrm{PtCl}_{8}{ }^{2-}$, J. CHEM. SOC., CHEM. COMMUN. (3): 132-3 (1972)

73-0038 Jayson, G.G.; Parsons, B.J.; Swallow, A.J., Oxidation of ferrous ions by perhydroxyl radicals, J. CHEM. SOC, FARADAY TRANS. 1 69(1): 236-42 (1973).
73-0039 Buxton, G.V.; Dainton, F.; McCracken, D.R., Radiation chemical study of the reaction of $\mathrm{Ni}^{+}, \mathrm{Co}^{+}$and Cd^{+}with $\mathrm{N}_{2} \mathrm{O}$. Evidence of the formation of a hyperoxidised state by oxygen atom transfer, J. CHEM. SOC, FARADAY TRANS. 1 69(1): 243-54 (1973).
73-0043 Nazhat, N.B.; Asmus, K.-D., Reduction of mercuric chloride by hydrated electrons and reducing radicals in aqueous solutions. Formation and reactions of $\mathrm{HgCl}, \mathrm{J}$. PHYS. CHEM. 77(5): 61420 (1973).
73-0107 Faraggi, M.; Feder, A., Electron-transfer reactions of cobalt(III) and ruthenium(III) ammines with europium(II), ytterbium(II), and samarium(II) in aqueous solutions, INORG. CHEM. 12(1): 236-41 (1973).
73-0121 Robinson, E.A.; Schulte-Frohlinde, D., Pulse radiolysis of 1,4dicyanobenzene in aqueous solutions in the presence and absence of thallium(I) ions, J. CHEM. SOC. FARADAY TRANS. 1 69(4): 707-18 (1973).
73-0122 Jayson, G.G.; Parsons, B.J.; Swallow, A.J., Appearance of sulphatoferric complexes in the oxidation of ferrous sulphate solutions. A study by pulse radiolysis, J. CHEM. SOC. FARADAY TRANS. 1 69(6): 1079-89 (1973).
73-1047 Rao, P.S.; Hayon, E., One-electron redox reactions of free radicals in solution. Rate of electron transfer processes of quinones, BIOCHIM. BIOPHYS. ACTA 292: 516-33 (1973).
73-1053 Farhataziz; Mihalcea, I.; Sharp, L.J.; Hentz, R.R. Pulse radiolysis of liquids at high pressures. IV. Hydrogen-atom reactions in aqueous $0.1 \mathrm{M} \mathrm{HClO}_{4}$ solutions, J. CHEM. PHYS. 59(5): 2309-15 (1973).
73-1057 Ellis, J.D.; Green, M.; Sykes, A.G.; Buxton, G.V.; Sellers, R.M., Pulse radiolysis of titanium(III) and other metal(III) ions in the presence of formic acid, J. CHEM. SOC., DALTON TRANS. (16): 1724-8 (1973).

73-1066 Broszkiewicz, R.K., Pulse radiolysis studies on complexes of iridium, J. CHEM. SOC, DALTON TRANS. (17): 1799-802 (1973).

73-1080 Fujita, S.; Horii, H.; Taniguchi, S., Pulse radiolysis of mercuric ion in aqueous solutions, J. PHYS. CHEM. 77(24): 2868-71 (1973).

73-1084 Pikaev, A.K.; Sibirskaya, G.K.; Spitsyn, V.I., Study of divalent samarium, europium, thulium, ytterbium, and of tetravelent praseodymium ions by pulse radiolysis in aqueous solution, DOKL. PHYS. CHEM. (ENGL. TRANSL.) 209(4-6): 339-42
(1973), Transl. from DOKL. AKAD. NAUK SSSR 209(5): 1154-7 (1973).
73-1104 Rao, P.S.; Hayon, E., Rate constants of electron transfer processes in solution: Dependence on the redox potential of the acceptor, NATURE(LONDON) 243: 344-6 (1973).
74-1017 Schwarz, H.A.; Comstock, D.; Yandell, J.K.; Dodson, R.W., A pulse radiolysis study of thallium(II) in aqueous perchloric acid solutions, J. PHYS. CHEM. 78(5): 488-93 (1974).
74-1037 Kelm, M.; Lilie, J.; Henglein, A.; Janata, E., Pulse radiolytic study of Ni^{+}. Nickel-carbon bond formation, J. PHYS. CHEM. 78(9): 882-7 (1974).
74-1038 Dodson, R.W.; Schwarz, H.A., Pulse radiolysis studies of chloride complexes of thallium(II). Absorption spectra and stability constants of $\mathrm{TlCl}^{+}, \mathrm{TlCl}_{2}$, and TlCl_{3}, J. PHYS. CHEM. 78(9): 892-9 (1974).
74-1040 Harel, Y.; Meyerstein, D., On the mechanism of reduction of porphyrins. A pulse radiolytic study, J. AMER. CHEM. SOC. 96(9): 2720-7 (1974).
74-1072 Mulazzani, Q.G.; Ward, M.D.; Semerano, G.; Emmi, S.S.; Giordani, P., Gamma and pulse radiolysis of tetracyanonickelate(II) anion in aqueous solution, INT. J. RADIAT. PHYS. CHEM. 6(3): 187-201 (1974).
74-1104 Laurence, G.S.; Thornton, A.T., Kinetics of oxidation of transition-metal ions by halogen radical anions. ''art. IV. The oxidation of vanadium(II) and chromium(II) by diiodide, dibromide, and dichloride ions generated by pulse radiolysis, J . CHEM. SOC., DALTON TRANS. (11): 1142-8 (1974).
74-1142 Cohen, H.; Meyerstein, D., Ultraviolet-visible spectrum, and kinetics of formation and decomposition, of pentaaquahydridochromium(III) and chromium(II) in aqueous perchlorate solutions: A pulse-radiolysis study, J. CHEM. SOC., DALTON TRANS. (23): 2559-64 (1974).
74-1146 Cohen, H.; Meyerstein, D., Chromium-carbon bonds in aqueous solutions. A pulse radiolytic study, INORG. CHEM. 13(10): 2434-43 (1974).
74-7265 Falcinella, B.; Felgate, P.D.; Laurence, G.S., Aqueous chemistry of thallium(II). Part I. Kinetics of reaction of thallium(II) with cobalt(II) and iron(II) ions and oxidation-reduction potentials of thallium(II), J. CHEM. SOC., DALTON TRANS. 1367-73 (1974).

75-1027 Buxton, G.V.; Sellers, R.M., Pulse radiolysis study of monovalent cadmium, cobalt, nickel and zinc in aqueous solution. Pt. 1. Formation and decay of the monovalent ions, J. CHEM. SOC., FARADAY TRANS. I 71(3): 558-68 (1975).
75-1032 Rao, P.S.; Hayon, E., One electron oxidation of odd-valent metal ions in solution, J. PHYS. CHEM. 79(9): 865-8 (1975).
75-1044 Fujita, S.; Horii, H.; Mori, T.; Taniguchi, S., Pulse radiolysis of mercuric oxide in neutral aqueous solutions, J. PHYS. CHEM. 79(10): 960-4 (1975).
75-1049 Armor, J.N.; Hoffman, M.Z., Reactivity of coordinated nitrosyls. IV. One-electron reduction of ruthenium nitrosylpentaammine (3+) ion in aqueous solution, INORG. CHEM. 14(2): 444-6 (1975).

75-1064 Kelm, M.; Lilie, J.; Henglein, A., Pulse radiolytic investigation of the reduction of cadmium(II) ions, J. CHEM. SOC., FARADAY TRANS. 1 71(5): 1132-42 (1975).
75-1077 Armor, J.N.; Furman, R.; Hoffman, M.Z., Reactivity of coordinated nitrosyls. V. Generation and characterization of a ruthenium(II) alkylnitroso complex, J. AMER. CHEM. SOC. 97(7): 1737-42 (1975).
75-1086 O'Neill, P.; Steenken, S.; Schulte-Frohlinde, D., Formation of radical cations from 1,2- and 1,4-dimethoxybenzene by
electron transfer to Tl^{2+} and Ag^{2+} in aqueous solution. A pulse radiolysis and in situ radiolysis EPR study, ANGEW. CHEM. INT. ED. ENGL. 14(6): 430-1 (1975)
75-1092 Meyerstein, D., Kinetics of complexation of copper(I) ions with maleate and fumarate in aqueous solutions. A pulse radiolytic study, INORG. CHEM. 14(7): 1716-7 (1975).
75-1128 Lilie, J.; Simic, M.G.; Endicott, J.F., Chemical behavior of rhodium(II)-ammine complexes generated by the pulse radiolytic one-electron reduction of rhodium(III) ammines, INORG. CHEM. 14(9): 2129-33 (1975).
75-1130 0'Neill, P.; Schulte-Frohlinde, D., Evidence for formation of a $(\mathrm{T} 10 \mathrm{H})^{+}$complex, J. CHEM. SOC., CHEM. COMMUN. (10): 387-8 (1975).
75-1153 Barkatt, A., Rabani, J., Kinetics of spur reactions of electrons in ethylene glycol-water glassy ice. A pulse radiolytic study, J. PHYS. CHEM. 79(24): 2592-7 (1975).
75-1171 O'Neill, P.; Steenken, S.; Schulte-Frohlinde, D., Formation of radical cations of methoxylated benzenes by reaction with OH radicals, $\mathrm{Tl}^{2+}, \mathrm{Ag}^{2+}$, and SO_{4}^{-}in aqueous solution. An optical and conductometric pulse radiolysis and in situ radiolysis electron spin resonance study, J. PHYS. CHEM. 79(25): 27739 (1975).
75-1188 Storer, D.K.; Waltz, W.L.; Brodovitch, J.C.; Eager, R.L., A pulse radiolysis study of some platinum(II) and platinum(IV) complex ions in aqueous solutions. The formation and characterization of platinum(I) and platinum(III) transients, INT. J. RADIAT. PHYS. CHEM. 7(6): 693-704 (1975).
75-1203 Fujita, S.; Horii, H.; Mori, T.; Taniguchi, S., Pulse radiolysis of $\mathrm{Hg}(\mathrm{CN})_{2}$ in aqueous solutions, BULL. CHEM. SOC. JPN. 48(11): 3067-72 (1975).
75-1215 Ilan, Y.A.; Czapski, G.; Ardon, M., The formation of $\mathrm{CrO}_{2}{ }^{2+}$ in the reaction of $\mathrm{Cr}^{2+}+\mathrm{O}_{2}$ in aqueous acid solutions, ISR. J. CHEM. 13(1): 15-21 (1975).
75-1218 Pikaev, A.K.; Sibirskaya, G.K.; Spitsyn, V.I., Pulsed radiolysis of aqueous solutions of compounds of divalent mercury, DOKL. PHYS. CHEM. (ENGL. TRANSL.) 224(1-3): 994-7 (1975). Translated from DOKL. AKAD. NAUK SSSR 224(3): 638-41 (1975).

75-7093 Falcinella, B.; Felgate, P.D.; Laurence, G.S., Aqueous chemistry of thallium(II) with manganese(II), iron(II), and cobalt(I) ions, J. CHEM. SOC., DALTON TRANS. (1): 1-9 (1975).
76-1001 Tait, A.M.; Hoffman, M.Z.; Hayon, E., The reactivity of cobalt(I) complexes containing unsaturated macrocyclic ligands in aqueous solution, J. AMER. CHEM. SOC. 98(1): 86-93 (1976).

76-1003 Baxendale, J.H.; Garner, C.D.; Senior, R.G.; Sharpe, P., The reduction of molybdenum(II) trifluoroacetate by pulse radiolysis in methanol, J. AMER. CHEM. SOC. 98(2): 637-8 (1976).

76-1016 Faraggi, M.; Leopold, J.G., Pulse radiolysis studies of electrontransfer reaction in molecules of biological interest. II. The reduction of $\mathrm{Cu}(\mathrm{II})$-peptide complexes, RADIAT. RES. 65(2): 238-49 (1976).
76-1039 Tait, A.M.; Hoffman, M.Z.; Hayon, E., Reactivity of nickel(I) and copper(I) complex containing 14 -membered macrocyclic ligands in aqueous solution, INORG. CHEM. 15(4): 934-9 (1976).

76-1042 Jungbluth, H.; Beyrich, J.; Asmus, K.-D., Reduction of mercuric halides and pseudohalides in aqueous solution. Formation and some physicochemical properties of $\mathrm{HgCl}, \mathrm{HgBr}$, $\mathrm{HgI}, \mathrm{HgSCN}$, and HgCN radical molecules, J. PHYS. CHEM. 80(10): 1049-53 (1976).

76-1055 Broszkiewicz, R.K.; Grodkowski, J., Pulse radiolysis studies on aqueous systems $\mathrm{PtCl}_{4}{ }^{2-}-\mathrm{Cl}^{-}$and $\mathrm{PtCl}_{4}{ }^{2-}-\mathrm{Br}^{-}$, INT. J. RADIAT. PHYS. CHEM.8(3): 359-65 (1976).

76-1072 Buxton, G.V.; Sellers, R.M.; McCracken, D.R., Pulse radiolysis study of monovalent cadmium, cobalt, nickel and zinc in aqueous solution. Part 2. Reactions of the monovalent ions, J. CHEM. SOC., FARADAY TRANS. 1 72(6): 1464-76 (1976).
76-1087 Fujita, S.; Horii, H.; Mori, T.; Taniguchi, S., Pulse radiolysis of HgBr_{2} in aqueous solutions, BULL. CHEM. SOC. JPN. 49(5): 1250-3 (1976).
76-1093 Brodovitch, J.C.; Storer, D.K.; Waltz, W.L.; Eager, R.L., A pulse radiolysis and flash photolysis study of the formation and characterization of platinum(III) amine complex ions, INT. J. RADIAT. PHYS. CHEM. 8(4): 465-75 (1976).
76-1134 Sellers, R.M.; Simic, M.G., Pulse radiolysis study of the reactions of some reduced metal ions with molecular oxygen in aqueous solution, J. AMER. CHEM. SOC. 98(20): 6145-50 (1976).

76-1186 Buxton, G.V.; Green, J.C.; Sellers, R.M., Oxidation of copper(I)-olefin complexes in aqueous solution by oxygen and hydrogen peroxide, J. CHEM. SOC., DALTON TRANS. (21): 2160-5 (1976).
77-0121 Buxton, G.V.; Sellers, R.M., The radiation chemistry of metal ions in aqueous solution, COORD. CHEM. REV. 22(3): 195274 (1977).
77-1027 Simic, M.G.; Hoffman, M.Z.; Brezniak, N.V.; Kinetics of ligand-to-metal intramolecular electron transfer in cobalt(III)ammine complexes containing a coordinated radical, J. AMER. CHEM. SOC. 99(7): 2166-72 (1977).
77-1500 Buxton, G.V.; Green, J.C., Reactions of some simple α - and β-hydroxyalkyl radicals with Cu^{2+} and Cu^{+}ions in aqueous solution, J. CHEM. SOC., FARADAY TRANS. 1 74: 697-714 (1978).

NBS-114A (REV. 7-73)

U.S. DEPT. OF COMM. BIBLIOGRAPHIC DATA SHEET	1. PUBLICATION OR REPORT NO. NSR DS-N BS 62	2. Gov't Accession No.	3. Recipient's Accession No.
4. TITLE AND SUBTITLE COMPILATION OF RATE CONSTANTS FOR THE REACTIONS OF METAL IONS IN UNUSUAL VALENCY STATES			5. Publication Date June 1978
			6. Performing Organization Code
7. AUTHOR(S) George V. Buxton and Robin M. Sellers			8. Performing Organ. Report No.
9. PERFORMING ORGANIZATION NAME AND ADDRESS NATIONAL BUREAU OF STANDARDS DEPARTMENT OF COMMERCE WASHINGTON, D.C. 20234			10. Project/Task/Work Unit No.
			11. Contract/Grant No.
12. Sponsoring Organization Name and Complete Address (Street, City, State, ZIP)Same as Item 9.			13. Type of Report \& Period Covered N / A
			14. Sponsoring Agency Code

Library of Congress Catalog Card Number: 78-816

16. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant bibliography or literature survey, mention it here.)
Kinetic data have been compiled for reactions of uncommon oxidation states of metals which are produced by radiolysis of aqueous solutions of metal ions. Most of the reaction rates are for transient species, and the rates were determined by pulse radiolysis; some data were obtained by flash photolysis and gamma radiolysis. Metal ions from Groups IB, IIB, IIIA, IVA, VIB, VIIB, VIIIB, and the lanthanides are included in the compilation.
17. KEY WORDS (six to twelve entries; alphabetical order; capitalize only the first letter of the first key word unless a proper name; separated by semicolons)
Aqueous solution; chemical kinetics; complex ions; electron transfer; metal ions; radiation chemistry; rates; transients.
18. AVAILABILITY $X X$ UnlimitedFor Official Distribution. Do Not Release to NTIS
[X] Order From Sup. of Doc., U.S. Government Printing Office Washington, D.C. 20402, SD Stock No. SN003-003-01882-1
\square Order From National Technical Information Service (NTIS) Springfield, Virginia 22151

19. SECURITY CLASS (THIS REPURT) UNCL ASSIFIED	21. NO. OF PAGES UNCL
20. SECURITY CLASS (THIS PAGE) UNCLASSIFIED	22. Price $\$ 2.40$

Where can you find all the reference data you need?

 Right in theJournal of Physical
and Chemical
Reference Data!

Now in its sixth year, this valuable publication has proved that it fills the important gaps for you in the literature of the physical sciences.
Published by the American Institute of Physics and the American Chemical Society for the National Bureau of Standards, this quarterly gives you quantitative numerical data, with recommended values and uncertainty limits chosen by experts in the field.
Critical commentary on methods of measurement and sources of error, as well as full references to the original literature, is an integral part of each of your four issues a year.
Can you afford to be without this prime source of reliable data on physical and chemical properties? To start receiving your copies, just fill in the order form and drop into the mail. If you do use a purchase order, please attach the printed form as this will help us to expedite your order. Send for complete list of reprints!

Journal of Physical and Chemical Reference Data

American Chemical Society
1155 Sixteenth Street,N.W., Washington, D.C. 20036
Yes, I would like to receive the JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA at the one-year rate checked below:

Name				U.S., Canada, Mexico	Members	Nonmembers	
		HomeBusiness					
				$\square \$ 25.00$	$\square \$ 100.00$		
City		State			Other Countries \square \$29.00 \square \$104.00		
Bill me	Bill company or school \square	Payment enclosed \square		Please Attach This Order Form To Purchase Order.			

Three comprehensive reference volumes, each, as the Journal itself, published by the American Institute of Physics and the American Chemical Society for the National Bureau of Standards .. . your triple assurance of their accuracy, immediacy, and usefulness.

Supplement No. 1 to Vol. 2

"PHYSICAL AND THERMODYNAMIC PROPERTIES OF ALIPHATIC ALCOHOLS"

by R. C. Wilhoit and B. J. Zwolinski, Thermodynamics Research Center Department of Chemistry, Texas A \& M University Represents the most exhaustive review and critical analysis of selected physical and thermodynamic properties of aliphatic alcohols that has been published in the world literature of chemistry.

Supplement No. 1 to Vol. 3

"THERMAL CONDUCTIVITY OF THE ELEMENTS:

 A COMPREHENSIVE REVIEW'by C. Y. Ho, R. W. Powell, and P. E. Liley, Thermophysical Properties Research Center, Purdue University, West Lafayette, Indiana
This comprehensive review of the world's thermal conductivity data presents recommended or estimated values for all 105 elements.

Business Operations-Books and Journals Dept.
American Chemical Soclety
1155 16th Street, N.W.
Washington, D.C. 20036
Please send \qquad copies of \qquad at $\$$ \qquad
A. "PHYSICAL AND THERMODYNAMIC PROPERTIES OF ALIPHATIC ALCOHOLS." (First supplement to Vol. 2 of the Journal of Physical and Chemical Reference Data.) Hard Cover: $\$ 33.00$. Soft Cover: $\$ 30.00$.
B. "THERMAL CONDUCTIVITY OF THE ELEMENTS. A COMPREHENSIVE REVIEW." (First supplement to Vol. 3 of the Journal of Physical and Chemical Reference Data.) Hard Cover: $\$ 60.00$. Sott Cover: $\$ 55.00$.
C. "ENERGETICS OF GASEOUS IONS." (First supplement to Vol. 6 of the Journal of Physica! and Chemical Reference Data.) Hard Cover: $\$ 70.00$. Soft Cover: $\$ 65.00$.
\square I am enclosing a check \square I am enclosing a money order Name
Address

Please add $\$ 1.50$ extra for foreign postarye and handling.

Supplement No. 1 to Vol. 6 ENERGETICS OF GASEOUS IONS

by H. M. Rosenstock, K. Draxl, B. Steiner, and

 J. T. Herron, National Bureau of StandardsProvides a comprehensive body of critically evaluated information on ionization potentials, appearance potentials, electron affinities and heats of formation of gaseous positive and negative ions. It is a complete revision and extension of the earlier reference work, "Ionization Potentials, Appearance Potentials and Heats for Formation of Gaseous Positive lons," NSRDS-NBS 26.

SUBSCRIPTION ORDER FORM

Enter my Subscription To DIMENSIONS/NBS at $\$ 12.50$. Add $\$ 3.15$ for foreign mailing. No additional postage is required for mailing within the United States or its possessions. Domestic remittances should be made either by postal money order, express money order, or check. Foreign remittances should be made either by international money order, draft on an American bank, or by UNESCO coupons.

Send Subscription to:
\square

[^4]
Announcement of New Publications in National Standard Reference Data Series

Superintendent of Documents, Government Printing Office, Washington, D.C. 20402

Dear Sir:

Please add my name to the announcement list of new publications to be issued in the series: National Standard Reference Data Series - National Bureau of Standards.

Name
Company
Address
City \qquad State Zip Code
(Notification Key N-519)

PERIODICALS

JOURNAL OF RESEARCH-The Journal of Research of the National Bureau of Standards reports NBS research and development in those disciplines of the physical and engineering sciences in which the Bureau is active. These include physics, chemistry, engineering, mathematics, and computer sciences. Papers cover a broad range of subjects, with major emphasis on measurement methodology, and the basic technology underlying standardization. Also included from time to time are survey articles on topics closely related to the Bureau's technical and scientific programs. As a special service to subscribers each issue contains complete citations to all recent NBS publications in NBS and nonNBS media. Issued six times a year. Annual subscription: domestic $\$ 17.00$; foreign $\$ 21.25$. Single copy, $\$ 3.00$ domestic; $\$ 3.75$ foreign.
Note: The Journal was formerly published in two sections: Section A "Physics and Chemistry" and Section B "Mathematical Sciences."

DIMENSIONS/NBS

This monthly magazine is published to inform scientists, engineers, businessmen, industry, teachers, students, and consumers of the latest advances in science and technology, with primary emphasis on the work at NBS. The magazine highlights and reviews such issues as energy research, fire protection, building technology, metric conversion, pollution abatement, health and safety, and consumer product performance. In addition, it reports the results of Bureau programs in measurement standards and techniques, properties of matter and materials, engineering standards and services, instrumentation, and automatic data processing.

Annual subscription: Domestic, \$12.50; Foreign \$15.65.

NONPERIODICALS

Monographs-Major contributions to the technical literature on various subjects related to the Bureau's scientific and technical activities.
Haudbooks-Recommended codes of engineering and industrial practice (including safety codes) developed in cooperation with interested industries, professional organizations, and regulatory bodies.
Special Publications-Include proceedings of conferences sponsored by NBS, NBS annual reports, and other special publications appropriate to this grouping such as wall charts, pocket cards, and bibliographies.
Applied Mathematics Series-Mathematical tables, manuals, and studies of special interest to physicists, engineers, chemists, biologists, mathematicians, computer programmers, and others engaged in scientific and technical work.
National Standard Reference Data Series-Provides quantitative data on the physical and chemical properties of materials, compiled from the world's literature and critically evaluated. Developed under a world-wide program coordinated by NBS. Program under authority of National Standard Data Act (Public Law 90-396).

NOTE: At present the principal publication outlet for these data is the Journal of Physical and Chemical Reference Data (JPCRD) published quarterly for NBS by the American Chemical Society (ACS) and the American Institute of Physics (AIP). Subscriptions, reprints, and supplements available from ACS, 1155 Sixteenth St. N.W., Wash., D.C. 20056.

Building Science Series-Disseminates technical information developed at the Bureau on building materials, components, systems, and whole structures. The series presents research results, test methods, and performance criteria related to the structural and environmental functions and the durability and safety characteristics of building elements and systems.
Technical Notes-Studies or reports which are complete in themselves but restrictive in their treatment of a subject. Analogous to monographs but not so comprehensive in scope or definitive in treatment of the subject area. Often serve as a vehicle for final reports of work performed at NBS under the sponsorship of other government agencies. Voluntary Product Standards--Developed under procedures published by the Department of Commerce in Part 10, Title 15, of the Code of Federal Regulations. The purpose of the standards is to establish nationally recognized requirements for products, and to provide all concerned interests with a basis for common understanding of the characteristics of the products. NBS administers this program as a supplement to the activities of the private sector standardizing organizations.
Consumer Information Series-Practical information, based on NBS research and experience, covering areas of interest to the consumer. Easily understandable language and illustrations provide useful background knowledge for shopping in today's technological marketplace.
Order above NBS publications from: Superintendent of Documents, Government Printing Office, Washington, D.C. 20402.

Order following NBS publications-NBSIR's and FIPS from the National Technical Information Services, Springfield, Va. 22161.
Federal Information Processing Standards Publications (FIPS PUB)-Publications in this series collectively constitute the Federal Information Processing Standards Register. Register serves as the official source of information in the Federal Government regarding standards issued by NBS pursuant to the Federal Property and Administrative Services Act of 1949 as amended, Public Law 89-306 (79 Stat. 1127), and as implemented by Executive Order 11717 (38 FR 12315, dated May 11, 1973) and Part 6 of Title 15 CFR (Code of Federal Regulations).
NBS Interagency Reports (NBSIR)-A special series of interim or final reports on work performed by NBS for outside sponsors (both government and non-government). In general, initial distribution is handled by the sponsor; public distribution is by the National Technical Information Services (Springfield, Va. 22161) in paper copy or microfiche form.

BIBLIOGRAPHIC SUBSCRIPTION SERVICES

[^5]Superconducting Devices and Materials. A literature survey issued quarterly. Annual subscription: $\$ 30.00$. Send subscription orders and remittances for the preceding bibliographic services to National Bureau of Standards, Cryogenic Data Center (275.02) Boulder, Colorado 80302.
U.S. DEPARTMENT OF COMMERCE

National Bureau of Standards
Washington, D.C. 20234

SPECIAL FOURTH-CLASS RATE

 BOOK
[^0]: 'Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted: mailing address Washington,D.C. 20234.
 ${ }^{2}$ Some divisions within the center are located at Boulder, Colorado, 80303.

[^1]: U.S. DEPARTMENT OF COMMERCE, Juanita M. Kreps, Secretary

 Dr. Sidney Harman, Under Secretary
 Jordan J. Baruch, Assistant Secretary for Science and Technology
 V. S, NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

[^2]: *This is a data review prepared for, and in cooperation with, pthe Radiation Chemistry Data Center of the Radiation Laboratory, University of Notre Dame, Indiana 46556. The Laboratory is operated under contract with the Department of Energy. The work of the Center is supported in part by the National Bureau of Standards, Office of Standard Reference Data.

 - Present address: Central Electricity Generating Board, Berkeley Nuclear Laboratories, Berkeley, Gloucestershire GL13 9PB, Great Britain.

[^3]: ${ }^{2} G$ is the number of molecules of a species produced per 100 eV of absorbed energy.

[^4]: MAIL ORDER FORM TO:
 Superintendent of Documents Government Printing Office Washington, D.C. 20402

[^5]: The following current-awareness and literature-survey bibliographies are issued periodically by the Bureau:
 Cryogenic Data Center Current Awareness Service. A literature survey issued biweekly. Annual subscription: Domestic, $\$ 25.00$; Foreign, $\$ 30.00$.
 Liquified Natural Gas. A literature survey issued quarterly. Annual subscription: $\$ 20.00$.

