A11102 146438

PUBLICATIONS

NBS

NSRDS-NBS 62

U.S. DEPARTMENT OF COMMERCE / National Bureau of Standards

Compilation of Rate Constants for the Reactions of Metal lons in Unusual Valency States

QC 100 .U573 No.62 1978 C.2

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards' was established by an act of Congress March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau's technical work is performed by the National Measurement Laboratory, the National Engineering Laboratory, and the Institute for Computer Sciences and Technology.

THE NATIONAL MEASUREMENT LABORATORY provides the national system of physical and chemical and materials measurement; coordinates the system with measurement systems of other nations and furnishes essential services leading to accurate and uniform physical and chemical measurement throughout the Nation's scientific community, industry, and commerce; conducts materials research leading to improved methods of measurement, standards, and data on the properties of materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government Agencies; develops, produces, and distributes Standard Reference Materials; and provides calibration services. The Laboratory consists of the following centers:

Absolute Physical Quantities² — Radiation Research — Thermodynamics and Molecular Science — Analytical Chemistry — Materials Science.

THE NATIONAL ENGINEERING LABORATORY provides technology and technical services to users in the public and private sectors to address national needs and to solve national problems in the public interest; conducts research in engineering and applied science in support of objectives in these efforts; builds and maintains competence in the necessary disciplines required to carry out this research and technical service; develops engineering data and measurement capabilities; provides engineering measurement traceability services; develops test methods and proposes engineering standards and code changes; develops and proposes new engineering practices; and develops and improves mechanisms to transfer results of its research to the utlimate user. The Laboratory consists of the following centers:

Applied Mathematics — Electronics and Electrical Engineering² — Mechanical Engineering and Process Technology² — Building Technology — Fire Research — Consumer Product Technology — Field Methods.

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides scientific and technical services to aid Federal Agencies in the selection, acquisition, application, and use of computer technology to improve effectiveness and economy in Government operations in accordance with Public Law 89-306 (40 U.S.C. 759), relevant Executive Orders, and other directives; carries out this mission by managing the Federal Information Processing Standards Program, developing Federal ADP standards guidelines, and managing Federal participation in ADP voluntary standardization activities; provides scientific and technological advisory services and assistance to Federal Agencies; and provides the technical foundation for computer-related policies of the Federal Government. The Institute consists of the following divisions:

Systems and Software — Computer Systems Engineering — Information Technology.

¹Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted; mailing address Washington, D.C. 20234. ²Some divisions within the center are located at Boulder, Colorado, 80303.

The National Bureau of Standards was reorganized, effective April 9, 1978.

Compilation of Rate Constants for the Reactions of Metal lons in Unusual Valency States

NATIONAL BUREAU OF STANDARDS LIBRARY JUL 2 6 1979

George V. Buxton and Robin M. Sellers

Cookridge Radiation Research Centre, Cookridge Hospital, Leeds LS16 6QB, Great Britain

U.S. DEPARTMENT OF COMMERCE, Juanita M. Kreps, Secretary

Dr. Sidney Harman, Under Secretary

Jordan J. Baruch, Assistant Secretary for Science and Technology

1. S, NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

Issued June 1978

Library of Congress Cataloging in Publication Data

Buxton, George V

Compilation of rate constants for the reactions of metal ions in unusual valency states.

(Nat. stand. ref. data ser., Nat. Bur. of Stand. ; NSRDS-NBS 62) Supt. of Docs. no.: C 13.48:62

1. Chemical reaction, Rate of—Tables, etc. 2. Metal ions—Tables. I. Sellers, Robin M., joint author. II. Title. III. Series: United States. National Bureau of Standards. National standard reference data series ; NSRDS-NBS 62.

QC100.U573 no. 62 [QD502] 602'.1s [546'.3] 78-816

NSRDS-NBS 62

Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. (U.S.), 62, 78 pages (June 1978) CODEN: NSRDAP

(C) 1978 by the Secretary of Commerce on Behalf of the United States Government

U.S. GOVERNMENT PRINTING OFFICE WASHINGTON: 1978

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 Stock No. 003-003-01882-1 Price \$2.40 (Add 25 percent additional for other than U.S. mailing).

Foreword

The National Standard Reference Data System provides access to the quantitative data of physical science, critically evaluated and compiled for convenience and readily accessible through a variety of distribution channels. The System was established in 1963 by action of the President's Office of Science and Technology and the Federal Council for Science and Technology, and responsibility to administer it was assigned to the National Bureau of Standards.

NSRDS receives advice and planning assistance from a Review Committee of the National Research Council of the National Academy of Sciences-National Academy of Engineering. A number of Advisory Panels, each concerned with a single technical area, meet regularly to examine major portions of the program, assign relative priorities, and identify specific key problems in need of further attention. For selected specific topics, the Advisory Panels sponsor subpanels which make detailed studies of users' needs, the present state of knowledge, and existing data resources as a basis for recommending one or more data compilation activities. This assembly of advisory services contributes greatly to the guidance of NSRDS activities.

The System now includes a complex of data centers and other activities in academic institutions and other laboratories. Components of the NSRDS produce compilations of critically evaluated data, reviews of the state of quantitative knowledge in specialized areas, and computations of useful functions derived from standard reference data. The centers and projects also establish criteria for evaluation and compilation of data and recommend improvements in experimental techniques. They are normally associated with research in the relevant field.

The technical scope of NSRDS is indicated by the categories of projects active or being planned: nuclear properties, atomic and molecular properties, solid state properties, thermodynamic and transport properties, chemical kinetics, and colloid and surface properties.

Reliable data on the properties of matter and materials are a major foundation of scientific and technical progress. Such important activities as basic scientific research, industrial quality control, development of new materials for building and other technologies, measuring and correcting environmental pollution depend on quality reference data. In NSRDS, the Bureau's responsibility to support American science, industry, and commerce is vitally fulfilled.

E. Ambler.

ERNEST AMBLER, Director

Preface

This report is one of a series of data publications on radiation chemistry; the aim of the series is to compile, evaluate, and present the numerical results on processes occurring in systems which have been subjected to ionizing radiation. Various kinds of data are important in radiation chemistry. The quantities which were measured first were the observed radiation yields or G values (molecules formed or destroyed per 100 eV). Various indirect methods based on G values have been used to determine yields of transient species and relative rates of reactions. The spectral properties (optical, electron spin resonance) of transients have provided a direct method for their identification, and rates of the very fast reactions of transients which occur in irradiated systems have been measured directly by spectroscopic methods. Conductivity and luminescence methods have also provided a means of measuring properties of transients and their kinetics. Some reactions which occur in irradiated systems have also been studied by other methods, such as photochemistry, electric discharge, ultrasonics, chemical initiation, electron impact, etc. The emphasis in these publications is on the data of radiation chemistry, but where other pertinent data exist, they are included.

The data of radiation chemistry are voluminous; thousands of systems have been investigated. As a result there are certain collections, *e.g.* rate constants of particular types of reactions or certain properties of transients, for which tabulations of the data are considered essential, but for which critical assessment of each value is impossible. On the other hand, certain systems and properties have been studied so extensively that critical examination of these data is desirable and timely. Authors of this series of data publications have been asked to evaluate the extent to which the data can be critically assessed, to describe their criteria for evaluation, and to designate preferred values whenever possible.

Contents

Introducti	on		Page 1
Arrange	ement	of the tables	2
List of	ahhrev	riations	4
Table	1.	Silver(0) and (II) reactions	5
Table	2	Gold(0) and (II) reactions	6
Table	3.	Cadmium(I) reactions	7
Table	4.	Cobalt(I) reactions	13
Table	5.	Chromium(I), (II) and (V) reactions	20
Table	6.	Copper(I) and (III) reactions	24
Table	7.	Europium(II) reactions	29
Table	8.	Iron(II) reactions	30
Table	9.	Mercury(0) and (I) reactions	31
Table 1	10.	Indium(II) reactions	35
Table 1	11.	Iridium(II) reactions	35
Table 1	12.	Manganese(I) reactions	35
Table 1	13.	Molvbdenum(II) reactions	36
Table	14.	Nickel(I) reactions	37
Table	15.	Lead(I) reactions	44
Table	16.	Praesodymium(IV) reactions	45
Table	17.	Platinum(I) and (III) reactions	46
Table 1	18.	Rhodium(II) reactions	50
Table 1	19.	Ruthenium(I), (II), (III) and (IV) reactions	51
Table 2	20.	Samarium(II) reactions	53
Table 2	21.	Thallium(0) and (II) reactions	55
Table 2	22.	Thulium(II) reactions	59
Table 2	23.	Ytterbium(II) reactions	60
Table 2	24.	Zinc(I) reactions	62
Table 2	25.	Intramolecular electron transfer reactions for	
		some metal complexes	65
Reference	s	L	66

Compilation of Rate Constants for the

Reactions of Metal Ions in Unusual

Valency States*

George V. Buxton and Robin M. Sellers**

Cookridge Radiation Research Centre, Cookridge Hospital, Leeds LS16 6QB, Great Britain.

Kinetic data have been compiled for reactions of uncommon oxidation states of metals which are produced by radiolysis of aqueous solutions of metal ions. Most of the reaction rates are for transient species, and the rates were determined by pulse radiolysis; some data were obtained by flash photolysis and gamma radiolysis. Metal ions from Groups IB, IIB, IIIA, IVA, VIB, VIIB, VIIB, and the lanthanides are included in the compilation.

Key words: Aqueous solution; chemical kinetics; complex ions; electron transfer; metal ions; radiation chemistry; rates; transients..

Introduction

The discovery of the hydrated electron as a major product of the radiolysis of water and the development of pulse radiolysis have together resulted in the accumulation, during the last ten years, of a considerable amount of information on the chemistry of unusual valency states of metal ions in aqueous solution, which has been reviewed recently (G. V. Buxton and R. M. Sellers, 77–0121).¹ For the most part attention has been focussed on hyper-reduced states produced in reaction (1), which affords a simple, and often unique, method of their formation. Reactions of hydroxyl radicals and hydrogen atoms, and of simple radicals derived from them, with metal ions have been less commonly studied.

$$e_{aa}^{-} + M^{n+} \rightarrow M^{(n-1)+} \tag{1}$$

$$2M^{(n-1)+} \rightarrow M^{n+} + M^{(n-2)+}$$
 (2)

$$M^{(n-1)+} + S \rightarrow \text{products}$$
 (3)

This compilation lists the rate constants for reactions of these metal ions in unusual valency states. In the majority of cases the species are unstable, generally decaying by dismutation (2), or reaction with the solvent or a solute (3). This instability has been the principal criterion on which the decision to include data in this tabulation has been based. However, because the bulk of information on these metal ions has been obtained by pulse radiolysis methods, we have also included some rate constants for the reactions of stable metal ions such as Cu^+ , Cr^{2+} and Eu^{2+} measured by these methods. In these examples, indicated in the tables, much other data not recorded here has been obtained by other techniques.

^{*} This is a data review prepared for, and in cooperation with, pthe Radiation Chemistry Data Center of the Radiation Laboratory, University of Notre Dame, Indiana 46556. The Laboratory is operated under contract with the Department of Energy. The work of the Center is supported in part by the National Bureau of Standards, Office of Standard Reference Data. **Present address: Central Electricity Generating Board, Berkeley Nuclear Laboratories, Berkeley, Gloucestershire GL13 9PB, Great Britain.

¹Literature references are given at the end of this paper.

Arrangement of the Tables

The tables are listed in alphabetical order of the chemical symbols of the metals involved. Within each table the arrangement is by oxidation state, starting with the lowest, and is further subdivided according to the complexing ligands in the order aquo ions (and hydrolysed forms), inorganic ligands in alphabetical order of the first letter of the chemical symbol of the principal element of that ligand (e.g. N for ammonia), and organic ligands in alphabetical order of their written names. For each individual transient species the reactants are in the order: inorganic species, organic radicals, both in alphabetical order of their chemical symbols, followed by organic compounds in alphabetical order of their written names.

Table 25 is somewhat different, and lists the rate constants for some intramolecular electron transfer reactions. The reactions are subdivided according to the method of production of the transient species. Note that all the rate constants in this table are first order, and have therefore units of s^{-1} . Reactions of metallo-proteins and related compounds are not dealt with in this compilation.

The data given for each reaction are the measured rate constant, and a brief description of the experimental conditions etc. as outlined below. Literature data published to approximately mid-1976 are covered.

Reaction: Three main methods have been used to measure the rate constants reported here:

(i) by monitoring the rate of removal of the absorption of the

- metal species at some convenient wavelength
- (ii) by monitoring the rate of formation of some product
- (iii) by competition kinetics.

Methods (i) and (iii) have the disadvantage that they do not involve characterisation of the products of the reaction, and in many instances in the literature no additional experiments have been performed to overcome this. Often the reaction type has been assumed. Particular attention has been given to this problem in this compilation. Where there is no experimental information on the products given in the original work or elsewhere, only the left hand side of the equation is given, followed in brackets by the possible type of reaction as originally suggested, or as seems appropriate. If experimental evidence is given, the products are quoted, and the nature of the evidence indicated in the column headed 'Comments'.

In some cases the reactive intermediates themselves have not been fully characterised, and in such instances brief details of the method and conditions of formation are given.

Rate Constants: Most of the rate constants listed were measured under conditions where the reaction obeyed first order kinetics and no knowledge of absolute concentrations of the *transient* species is required. Error limits on the rate constants are those quoted in the original work. In the great majority of cases their magnitude is ± 10 – 15% of the rate constant value, which is typical of the precision of the mean of pseudo first order rate constants measured by pulse methods. If the data source gives no errors none are shown here, but they should be assumed to be at least $\pm 25\%$ to allow for the possibility that the rate constant is derived from a single measurement.

Second order rate constants are prefaced by "2k =" or " $2k/\epsilon_{\lambda} =$ " as appropriate. In cases where it is not clear whether the value refers to 2k or k this is noted in the 'Comments' column. The measured quantity is $2k/\epsilon_{\lambda}$ and is subject to the same limitations given above for pseudo first order rate constants. Calculation of 2k requires a knowledge of ϵ_{λ} , and where this quantity is quoted in the original work it is given under 'Comments'. In many instances, however, the values of ϵ_{λ} used to calculate 2k have not been clearly stated.

Evaluation of ϵ_{λ} requires a knowledge of the concentration of transient species present which, in radiation chemical systems, means that the dose per pulse and the *G* value² of the species must be known. In our experience these quantities are each likely to be uncertain by $\pm 10\%$, so that the error in 2k may be as much as three times as large as the error in $2k/\epsilon_{\lambda}$. Therefore, in the absence of any quoted errors, the error in 2k should be assumed to be $\pm 50\%$.

^aC is the number of molecules of a species produced per 100 eV of absorbed energy.

Equilibrium constants are quoted under the 'Rate Constants' heading, and are prefixed by "K =" followed by the appropriate units. If the individual rate constants for the forward and reverse processes are known these are shown as " k_r " and " k_r " respectively. Activation energies are prefaced by " $E_a =$ " and are given in units of kJ mol⁻¹.

Ionic Strength (*I*): Ionic strengths have either been taken directly from the original work, or calculated from the conditions given. In the few instances where the formation of ion pairs has been taken into account the values are followed by an asterisk. If insufficient information is given to enable the ionic strength to be calculated the column has been left blank. The ionic strength of rate constants extrapolated to zero ionic strength is given as " \rightarrow 0". Unfortunately in a number of studies little or no attempt has been made to maintain the ionic strength constant. The practice of many reaction kineticists of adding a high concentration of inert electrolyte, such as NaClO₄, has not been widely adopted by radiation chemists, no doubt because of possible complications due to direct radiolysis of the electrolyte (cf. J. Konstantatos and D. Katakis, 67–0019). There is no reason however why an ionic strength of say 0.1 or 0.5 mol dm⁻³ should not become standard for pulse radiolytic measurements. It is to be hoped that more consideration will be given to this problem in future studies.

Temperature: Where temperatures are quoted in the original work these have been given. In the absence of any information temperatures are given as room temperature (RT). The temperature ranges over which activation parameters have been measured are given as appropriate. Since many of the rate constants quoted in these tables are near the diffusion controlled limit and have therefore small activation energies, little uncertainty is engendered by an imprecise knowledge of the temperature. For example a change in temperature of 5° from 25° changes k by 11% for an activation energy of 16 kJ mol⁻¹.

Comments: Information and comments relevant to the reactions and rate constants are given in this column as outlined above. No attempt has been made to give a complete description of the conditions employed in the measurement of the rate constants quoted, but where the concentration of one or more of the solutes exceeds 0.1 mol dm^{-3} this has been noted.

References: The references are listed following the tables in order of the serial number of the paper in the files of the Radiation Chemistry Data Centre at the University of Notre Dame. The first two digits of this number represent the year in which the work was published. The references in the tables also give the first four letters of the first author's name and a dot for each additional author up to a maximum of four dots.

List of Abbreviations

Reaction:	af	adduct formation
	dis	dismutation (disproportionation)
	et	electron transfer
	int et	intramolecular electron transfer
	O at	oxygen atom transfer
	pt	proton transfer
	et – is	inner sphere electron transfer
	?	uncertain
Rate Constant:	2k	rate constant for second order reaction
	έλ	extinction coefficient at wavelength λ
	Ea	activation energy (units kJ mol ⁻¹)
	K	equilibrium constant
	р <i>К</i>	acid dissociation constant (= $-\log_{10}K$)
	kf	rate constant for forward reaction of
		equilibrium
	k _r	rate constant for reverse reaction of
		equilibrium
	?	value uncertain
Ionic Strength:	$\rightarrow 0$	extrapolated to zero ionic strength
(1)	*	calculated taking into account the
		formation of ion pairs
	var	various
Temperature:	RT	room temperature
pH:	nat	natural pH of the solution
Method:	comp.	competition kinetics
	f.ph.	flash photolysis
	γ	γ-radiolysis
	pr	pulse radiolysis
Chemical Symbols:	bpy	bipyridyl
	en	ethylenediamine
	gly	glycine
	EDTA4-	ethylenediamine tetraacetate
	NAD ⁺	nicotinamide adenine dinucleotide
	NTA ³⁻	nitrilotriacetate
	PNDA	p-nitroso-N,N-dimethylaniline
	L	ligand (specified in table).

No.	Reaction	$k/\mathrm{dm^3\ mol^{-1}\ s^{-1}}$	Ι	t∕°C	рН	Method	Comments	Ref.
	Ag(0) - aquo ions and							
1.1	$complexes \\ Ag^{o} + Ag^{+} \rightarrow Ag_{2}^{+}$	5.9 x 10°	-	RT	-	pr	Product charac- terised by ab- sorption spec-	Puki68–0431
				20	1.0		trum and charge.	T 1 79 1059
		$(6.5 \pm 0.3) \times 10^{9}$	-	29	1.0	pr	- Meaning at any	Farh73-1053
		$(5.2 \pm 0.3) \times 10^{\circ}$	-	29	1.0	pr	sure of 6 72 kbar	ram73-1035
1.2	$Ag_2^+ + Ag^+ \rightarrow$	3.8 x 10 ⁹	$\rightarrow 0$	RT	-	pr	Products charac-	Puki68-0431
	$Ag^{a+} + Ag_{a}^{o}$						terised by ab-	
1 2	$A \sigma_0^0 \perp A \sigma^+ \rightarrow A \sigma_0^+$	ca 10 ⁸	_	RT	_	Dr	Product charac-	Puki 68-0431
1.0	ngs + ng - ngs	64.10	-	ICI .	-	P	terised by absorn-	1 42100-0401
							tion spectrum.	
1.4	$Ag_{2}^{\circ}/Ag_{3}^{+} + MnO_{4}^{-}$ (et)	1.2 x 1010	0.003	RT	-	pr	Measured by the	Baxe65-0385
	0 0					•	rate of depletion	
							of the MnO ₄ - ab-	
							sorption.	
1.5	$Ag_3^+ + O_2$ (et or af)	3.8 x 10 ^s	-	RT	-	pr	Product uncertain,	Baxe65-0393
							but transfers an	
							electron to	
							(see Sell 76_1134)	
1.6	$Ag_{*}^{+} + 1.4$ -benzo-	$(1.5 \pm 0.3) \times 10^{6}$	_	25 ± 2	5.8	Dr	Measured by the	Sell.76-1134
1.0	quinone $\rightarrow Ag_3^{2+}(?) +$					F-	rate of formation	
	(1,4-benzoquinone)						of the semiquinone	
							in the presence of	
							1 mol dm ⁻³	
							2-methyl-2-propanol.	
1.7	Ag_3^+ + menaquinone \rightarrow	slow	-	-	7.0	pr	Only 24% electron	Rao.73-104
	$Ag_{3}^{*}(?) + (menaquinone)$						transfer, which may	
							be due to side	
							contained	
							1 mol dm ⁻³	
							2-methyl-2-propanol.	
	Ag(0) – ammine complexes							
1.8	$Ag^{0} + Ag(NH_{3})_{2}^{+} \rightarrow$							
	$Ag_2(NH_3)_n^+$	5.2 x 10°	-	RT	-	pr	Ag ^o generated from	Puki.68-043
							$e_{aq}^- + Ag(NH_3)_2^+ -$	
							might be same as	
							product of e_{aq} +	
							Ag'. Product con-	
							ber of ammine	
							ligands.	
1.9	$Ag_2(NH_3)_n^+ + Ag_2(NH_3)_n^+ \rightarrow$	$2k = 2.6 \times 10^{10}$	_	RT	-	pr	Product uncertain;	Puki.68-043
	$Ag_{4}(NH_{3})_{n}^{2+}$?					-	gives ultimately	
							Ag ₃ °.	
1.10	$Ag_2(NH_3)_n^+ + Ag(NH_3)_2^+ \rightarrow$	108	-	RT	-	pr	Measured from rate	Puki.68-043
	$Ag_3(NH_3)n^{2+}$?						of formation of	
							product, nature of	
	An(ID - anno complan						which is uncertain.	
1.11	$Ag^{2+} + Ag^{2+} \rightarrow$							
	$Ag^+ + Ag^{s+}$	1.5 x 10 ⁹	-	RT	-	pr	_	Puki68-0431
1.12	$Ag^{2^+} + anisole \rightarrow$	$(3.8 \pm 0.4) \times 10^7$	-	20 ± 2	nat(?)	pr	Product charac-	O'Ne75-1171
	$Ag^+ + anisole^+$						terised by absorp-	
							tion spectrum and esr.	

TABLE 1	•	Silver(0)	and	Silver(II)	reactions		Continued
---------	---	-----------	-----	------------	-----------	--	-----------

No.	Reaction	$k/dm^{s} mol^{-1} s^{-1} a$	Ι	t/°C	pН	Method	Comments	Ref.
1.13	$Ag^{a+} + 1,2-dimethoxy-$ benzene $\rightarrow Ag^{+} + (1,2-dimethoxybenzene)^{+}$	$(6.0 \pm 0.6) \ge 10^7$	-	20±2	nat(?)	pr	Product charac- terised by absorp- tion spectrum and esr.	O'Ne75–1171
1.14	$Ag^{a+} + 1,3-dimethoxy-$ benzene $\rightarrow Ag^{+} + (1,3-dimethoxybenzene)^{+}$	$(6.3 \pm 0.6) \ge 10^7$	-	20 ± 2	nat(?)	pr	Product charac- terised by absorption spectrum and esr.	O'Ne75–1171
1.15	$Ag^{2^+} + 1,4$ -dimethoxy- benzene $\rightarrow Ag^+ + (1,4$ -dimethoxybenzene) ⁺	$(4.6 \pm 0.5) \ge 10^7$	-	20 ± 2	nat(?)	pr	Product character- ised by absorption spectrum and esr.	O'Ne75–1171
1.16	$Ag^{3+} + 1,2,3$ -trimeth- oxybenzene $\rightarrow Ag^+ +$ (1,2,3-trimethoxy- benzene) ⁺	$(2.5 \pm 0.3) \ge 10^7$	-	20±2	nat(?)	pr	Product character- ised by absorption spectrum and esr.	O'Ne75–1171
1.17	$Ag^{a+} + 1,2,4$ -tri- methoxybenzene → $Ag^{+} + (1,2,4$ -trimeth- oxybenzene) ⁺	$(7.0 \pm 0.7) \ge 10^7$	-	20±2	nat(?)	pr	Product character- ised by absorption spectrum and esr.	O'Ne75–1171
1.18	$Ag^{4+} + 1,3,5-tri-$ methoxybenzene \rightarrow $Ag^{+} + (1,3,5-trimeth-$ oxybenzene) ⁺	$(5.6 \pm 0.6) \ge 10^7$	-	20±2	nat(?)	pr	Product character- ised by absorption spectrum and esr.	O'Ne75–1171

^aIf the data source gives no errors none are shown here but they should be assumed to be at least $\pm 25\%$ (or $\pm 50\%$ for 2k).

TABLE	2.	Gold(0)	and	Gold(II)	reactions
-------	----	---------	-----	----------	-----------

No.	Reaction	$k/\mathrm{dm^{s}\ mol^{-1}\ s^{-1}}$ a	Ι	t∕°C	рН	Method	Comments	Ref.
	Au(0) from Au(CN) ₂ ⁻ + e_{aq}^{-}							
2.1	$Au^{o} + Au^{o} \rightarrow Au_{2}^{o}$	$(3.2 \pm 0.9) \ge 10^9$	0.001	RT	11	pr	Product assumed.	Ghos.68-030
		$(2.9 \pm 0.7) \ge 10^9$	0.1	RT	13	pr	Solutions contain- ed 9.8 x 10 ⁻² mol dm ⁻³ H ₂ .	Ghos.68–030
2.2	$Au^{o} + Fe(CN)_{6}^{3-}$ (et?)	5.5 x 10 ⁸	-	RT	-	pr	-	Ghos.68-030
2.3	$Au^{o} + N_{2}O$ (et or O at)	5.5 x 10 ⁸	_	RT	-	pr	-	Ghos.68-030
2.4	Au ⁰ + O ₂ (et or af) Au(0) from $Au(CN)_2^- + H$	3.6 x 10°	-	RT	-	pr	-	Ghos.68-0302
2.5	$Au^{0} + Au^{0} \rightarrow Au_{2}^{0}$ $Au(II) from Au(CN)_{2}^{-} + OH$	$(5.0 \pm 1.0) \ge 10^9$	0.015	RT	2	pr	-	Ghos.68-030
2.6	$Au^{II} + Au^{II}$ (dis or af)	$(2.4 \pm 0.6) \ge 10^8 \ 0.01$		RT	2	pr	Solutions contain- ed 0.1 mol dm ^{-s} HCl.	Ghos.68-0302
		$(4.8 \pm 1.2) \ge 10^8$	0.01	RT	4,7	pr	Solutions contain– ed 0.01 mol dm ^{-s} KCl.	Ghos.68-030
	$Au(II)$ from $AuCl_4^- + H$							
2.7	$\begin{array}{l} Au^{II} + Au^{II} \rightarrow \\ Au^{I} + Au^{III} \end{array}$	$(1.4 \pm 0.3) \ge 10^9$	0.01	20	2	pr	Nature of products -see ref. 70-0580.	Baxe.700580
		$(8.6 \pm 0.7) \ge 10^8$	0.011	20	2	pr	Solutions contain- ed 10 ^{-s} mol dm ^{-s} Cl ⁻ .	Baxe.70-0580
		$(1.2 \pm 0.1) \ge 10^9$	0.131	20	2	pr	Solutions contain- ed 10 ⁻³ mol dm ⁻³ Cl ⁻ + 0.12 mol dm ⁻³ NaC	Baxe.70-0580
		$(2.7 \pm 0.6) \ge 10^8$	0.02	20	2	pr	Solutions contain- ed 10 ⁻² mol dm ⁻³ Cl ⁻ .	Baxe.70-0580
		$(2.5 \pm 0.2) \ge 10^7$	0.11	20	2	pr	Solutions contain- ed 10 ⁻¹ mol dm ⁻³ Cl ⁻ .	Baxe.700580

alf the data source gives no errors none are shown here but they should be assumed to be at least $\pm 25\%$ (or $\pm 50\%$ for 2k).

TABL	E 3.	Cd(I)	reactions
------	------	-------	-----------

No.	Reaction	$k/\mathrm{dm^3\ mol^{-1}\ s^{-1}}$	Ι	t∕°C	pН	Method	Comments	Ref.
	Cd ⁺ _{aq}							
3.1	$Cd^+ + BrO_3^-$ (et)	$(1.25 \pm 0.2) \ge 10^{6}$	0.08	RT	nat	pr	-	Meye.68-085
		$E_{\rm a} = 13.4 \pm 1.7 \rm kJ$	0.08	3 - 90	nat	pr	-	Meye.70-122
29	$Cd^+ + Cd^+ \rightarrow Cd^{3+}$	mol^{-1} $2k = ca + 1.2 \times 10^9$	04	25 ± 2	nat	DF	Measured at 300 nm	Buxt 75-102
0.2	$Cu \rightarrow Cu_2$	$2\pi = cu. 1.2 \times 10$	0.7	2012	Lat	Pr	taking $\epsilon_{acc} = 8080$	Duxt.10-102
							$dm^3 m ol^{-1} cm^{-1}$	
							am [•] mol [•] cm [•] .	
							Kate constant es-	
							timated from studies	
							of Cd ⁺ decay in pre-	
							sence of several	
							different OH scav-	
							engers.	
		$2k = 3.0 \times 10^9$	0.002	RT	nat	pr	Measured at 300 nm	Kelm75-106
							taking $\epsilon_{300} = 16500$	
							dm ³ mol ⁻¹ cm ⁻¹ . Rate	
							constant estimated	
							from computer analy_	
							sis of Cd ⁺ decay	
							Compating anothing	
							tompeting reactions	
							taken to be Cd +	
							H_2U_2 and $U_1' +$	
							$\mathbf{K} \cdot (\mathbf{K} = \mathbf{CH}_{3}\mathbf{COHCH}_{3},$	
							CH ₃ CHOH, CH ₂ OH). Pro-	
							duct identified	
							from effect of ionic	
							strength on its	
							decay.	
		$2k = 5.0 \ge 10^9$	0.004	RT	nat	pr	Measured at 313 nm	Bark.75-115
						-	taking $\epsilon_{301} = 14000$	
							$dm^3 mol^{-1} cm^{-1}$.	
							Rate constant in-	
							dependent of OH	
							scavenger used.	
33	$Cd^+ \pm Co(en)^{3+}$ (et)	$(1.6 \pm 0.2) \times 10^{9}$	0.08	RТ	5-6	DF	-	Meye 60-049
3.4	$Cd^+ \pm cisCo(en)Cl_+^+$	$(2.3 \pm 0.3) \times 10^9$	0.00	RT	5.6	pr		Maya 60_042
0.4	(et)	$(2.3 \pm 0.3) \times 10^{-3}$	0.00	N1	3-0	pr	-	Meye.09-042
3.5	$Cd^+ + trans - Co(en)_2 Cl_2^+$	$(2.6 \pm 0.4) \ge 10^9$	0.08	RT	5-6	Dr	_	Meye.69-042
	(et)					1		,
3.6	$Cd^+ + Co(en)_2CO_3^+$ (et)	$(6.7 \pm 1.0) \ge 10^8$	0.08	RT	5-6	pr	-	Meye.69-042
3.7	$Cd^+ + cis - Co(en)_2 F_2^+$	$(6.0 \pm 0.9) \ge 10^8$	0.08	RT	5-6	pr	_	Meve.69-042
	(et)					1		,
3.8	$Cd^+ + Co(en) = FH_2O^{2+}$ (et)	$(4.1 \pm 0.6) \times 10^8$	0.08	ВT	5-6	Dr	_	Meye.69-042
3.9	$Cd^+ + cis = Co(en) h NH_{\circ}Cl^{2+}$	(1.75 ± 0.26)	0.08	RT	5-6	pr pr		Meye 69_042
0.9	(at)	+ 109	0.00	ici -	0-0	P	_	Micyc.07-042
2 10	Cd ⁺ Lois Co(an) NH NO 2 ⁺	$(2.0 \pm 0.7) = 1.09$	0.00	PT	56			Maria 60, 049
5.10	$c_{1} + c_{2} - c_{0}(e_{1})_{2} + h_{3} + 0_{2}^{-1}$	$(2.8 \pm 0.7) \times 10^{3}$	0.00	N1	5-0	pr	-	Meye.09-042
2 1 1		(1.70.1.0.0)	0.00	DT	5 (M (0.049
5.11	$Ca^{+} + Co(IVH_3)e^{-}$ (et)	(1.72 ± 0.3)	0.08	ĸı	2-0	pr	-	Meye.09-042
		x 10 ⁸						14 49 949
3.12	$\operatorname{Cd}^{+} + \operatorname{Co}(\operatorname{NH}_3)_5 \operatorname{Br}^{2^{+}}(\operatorname{et})$	$(25 \pm 0.4) \ge 10^{9}$	0.08	KT'	4.0	pr	-	Meye.69-042
3.13	$Cd^+ + Co(NH_3)_5Cl^{2+}$ (et)	$(2.2 \pm 0.3) \ge 10^{\circ}$	0.08	RT	5-6	pr	-	Meye.69-042
3.14	$Cd^{+} + Co(NH_{3})_{5}CN^{2+}$ (et)	$(9.1 \pm 1.4) \ge 10^8$	0.08	RT	5-6	pr	-	Meye.69-042
3.15	$Cd^{+} + Co(NH_3)_5F^{2+}$ (et)	$(5.4 \pm 0.8) \ge 10^8$	0.08	RT	5-6	pr	-	Meye.69-042
3.16	Cd ⁺ + Co(NH ₃) ₅ fumarate ⁺	$(8.3 \pm 2.1) \ge 10^8$	0.08	RT	5-6	pr	Products of the	Meye.69-042
	(et or af?)						reaction have re-	
							latively large ab-	
							sorption.	
3.17	$Cd^+ + Co(NH_3)_{*}H_{*}O^{3+}$	$(6.2 \pm 0.9) \times 10^{8}$	0.08	RT	4.0	рг	_	Meve.69-042
	(at)					r-		

TABLE	3.	Cd(I)	reactions	_	Continued
-------	----	-------	-----------	---	-----------

No.	Reaction	$k/dm^3 mol^{-1} s^{-1} a$	Ι	t∕°C	рН	Method	Comments	Ref.
3.18	$Cd^+ + Co(NH_3)_5OH^{2+}$	$(9.0 \pm 1.3) \ge 10^8$	0.08	RT	7.1	pr	-	Meye.69-042
3.19	(et) $Cd^+ + Co(NH_3)_5N_3^{2+}$ (et)	(1.41 ± 0.2)	0.08	RT	5-6	pr	-	Meye.69-0428
3.20	$Cd^+ + Co(NH_3)_5NCS^{3+}$ (et)	(1.32 ± 0.2) x 10°	0.08	RT	5-6	pr	-	Meye.69-042
3.21	$Cd^+ + Co(NH_3)_5OOCCH_3^{2+}$ (et)	$(9.0 \pm 1.3) \ge 10^7$	0.08	RT	5–6	pr	-	Meye.69-042
3.22	$Cd^+ + Cr^{3^+}$	< 10'	_	RT	nat	pr	_	Baxe66-0848
3.23	$Cd^{+} + CrO_{4}^{2-}$ (et)	$(9.8 \pm 1.0) \times 10^{9}$	0.02*	25 ± 2	nat	pr	_	Buxt76-1072
3.24	$Cd^{+} + Cr_{2}O_{7}^{2-}$ (et)	$(1.6 \pm 0.2) \times 10^{10}$	0.02*	25 ± 2	nat	pr	_	Buxt76-1072
3.25	$Cd^{+} + Cu^{2^{+}}$ (et)	$(1.2 \pm 0.2) \times 10^{8}$	0.08	RT	nat	pr	_	Meye.68-085
		$(1.1 \pm 0.2) \ge 10^9$	0.04	RT	5–8	γ	Measured by compe- tition kinetics using NO ₃ ⁻ as com- petitor and taking $k(Cd^+ + NO_3^-) =$ 3.5 x 10 ⁸ dm ³	Fiti70-0117
							mol ⁻¹ s ⁻¹ .	
3.26	$Cd^+ + H_2O_2 \rightarrow$	$(1.55 \pm 0.2) \ge 10^9$	-	RT	nat	pr	-	Meye.68-085
	$Cd^{a+} + OH + OH^{-}$	$(2.2 \pm 0.2) \ge 10^9$	-	25	nat	pr	-	Buxt76-1072
		2.8 x 10 ⁹	-	RT	nat	pr		Buxt67-0062
		$E_{\rm a} = 9.2 \pm 0.8$ kJ mol ⁻¹	-	1 - 30	nat	pr	-	Buxt76–1072
							Products identified in γ-radiolysis studies (see Buxt 73-0039).	
3.27	$Cd^+ + H_3O^+$	$< 10^{8}$	0.08	RT	-	pr	-	Meye.68-085
3.28	$Cd^+ + IO_3^-$ (et)	$(2.3 \pm 0.3) \ge 10^9$	0.08	RT	nat	pr	-	Meye.68-085
		$(2.1 \pm 0.2) \ge 10^{9}$	0.04	RT	5–8	γ	Measured by compe- tition kinetics using NO_3^- as com- petitor and taking $k(Cd^+ + NO_3^-) =$ 2.5 = 100 dm ³	Fiti70-0117
							5.5 X 10° um²	
3.29	$Cd^+ + MnO_4^-$ (et)	$(7.8 \pm 0.8) \ge 10^9$	-	ca.22	7.0	pr	Measured by the rate of depletion of the MnO ₄ ⁻ ab-	Rao.73–1104
							sorption in the	
							presence of ca. 1	
							mol dm ³ 2-methyl-	
		1.3 x 1010	<i>ca</i> . 0.004	20	nat	pr	2-propanol. Measured by the rate of depletion of the MnQ4 ⁻	Baxe65–0385
							absorption.	
3.30	$Cd^+ + Ni^{2+}$	< 107	-	RT	nat	pr	_	Baxe66-0848
3.31	$Cd^+ + NO_2^-$ (et)	$(2.0 \pm 0.3) \times 10^{9}$	0.08	RT	nat	pr	_	Meye.68-085
		$E_{\rm a} = 12.5 \pm 1.7$ kJ mol ⁻¹	0.08	3 - 90	nat	pr	-	Meye.70-122
3.32	$Cd^+ + NO_3^-$ (et)	$(3.5 \pm 0.5) \ge 10^8$	0.08	RT	nat	pr	-	Meye.68-085

TABLE 3. Co	(I) reactions	- Continued
-------------	---------------	-------------

No.	Reaction	$k/dm^3 mol^{-1} s^{-1} a$	Ι	t/°C	рН	Method	Comments	Ref.
3.33	$Cd^+ + N_2O \rightarrow CdO^+ + N_2$	< 2 x 10 ⁸	-	RT	nat	pr	_	Meye.68-085
		1 x 10 ⁶	-	RT	nat	pr	-	Buxt67-0062
		$(3.5 \pm 0.4) \ge 10^6$	-	25	nat	pr	Solutions contain-	Buxt76–1072
		$E_{\rm a} = 45.6 \pm 1.3$ kJ mol ⁻¹	-	1 – 30	nat	pr	ed 0.1 mol dm ⁻³ methanol.	
							Products inferred	
							from γ -ray induc-	
							ed chain reaction	
							in the system	
							$Cd^{2^+} + HCO_2^- + N_2O.$	
							G(N ₂) measured in	
							the system Cd ³⁺ +	
							$N_2O.$ (see ref.	
3 34	$Cd^+ \perp 0$, (et or af)	$(2.4.\pm0.4) \times 10^{9}$		RT	net	Dr	/3-0039).	Meye 68 085
0.04		(2.4 ± 0.4) x 10 ⁻ 3 3 ± 10 ⁹	-	RT	nat	pr pr	-	Bare 66-08/8
		$(2.6 \pm 0.4) = 10^{9}$	-	25-1-2	mat	pr	Absorption and	Daxe00-0040
		$(3.0 \pm 0.4) \times 10^{-1}$	-	20 1 2	nat	pr	trum of products	Buxt70-1072
							similar to that of	
							O.T. but decay	
							olower (see ref	
							76 1079) Dro	
							duct transfers an	
							electron to	
							n-benzoguinone	
							p-benzoquinone (see ref. 76-1134)	
							Fuidence possibly	
							indicates product	
							to be CdO _a ⁺	
3.35	$Cd^+ + OH \rightarrow Cd^{a+} + OH^-$	ca. 8 x 10°	_	25	nat	Dr	Estimated from de-	Buxt.75-1027
		00.01.20				r-	cay of Cd ⁺ in ab-	DURATO TOLI
							sence of OH sca-	
							vengers taking in-	
							to account the	
							major competing	
							reaction $Cd^+ + Cd^+$.	
		1.8 x 1010	-	RT	nat	pr	Experimentally de-	Baxe66-0848
						-	termined rate con-	
							stant for the decay	
							of Cd ⁺ in the ab-	
							sence of OH scaven-	
							gers. Not correct-	
							ed for $Cd^+ + Cd^+$	
							or other competing	
							reactions.	
		2 x 10 ¹⁰	-	RT	nat	pr	Estimated from	Kelm75-1064
							computer analysis	
							of the decay of	
							the optical absorp-	
							tion and conduc-	
							tivity of Cd ⁺ in	
							the absence of OH	
							scavengers, taking	
							$Cd^{+} + Cd^{+} and$	
							$Cd^{-} + H_2O_2$ as the	
							competing reac-	
							tions. Products	
							identified from	
							1	
							conductivity	

TABLE 3. Cd(I) reactions - Continued

No.	Reaction	$k/\mathrm{dm^3\ mol^{-1}\ s^{-1}\ a}$	Ι	t/°C	рН	Method	Comments	Ref.
3.36	$Cd^{+} + Pb^{2^{+}}$ (et)	7.5 x 10 ⁷	_	RT	nat	pr	-	Baxe66-0848
3.37	$Cd^+ + Ru(NH_3)_6^{s^+}$ (et)	$(2.2 \pm 0.3) \ge 10^9$	0.08	RT	nat	pr	-	Nav70-1229
3.38	$Cd^{+} + S_{2}O_{6}^{2^{-}} \rightarrow Cd^{2^{+}} + SO_{4}^{-} + SO_{4}^{2^{-}}$	$(2.4 \pm 0.2) \ge 10^{9}$	0.02*	25±2	nat	pr	Product identifi- cation: SO ₄ ⁻ ob- served to form at same rate as Cd ⁺	Buxt76–1072
3 30	$Cd^+ \perp 7n^{2+}$	< 107	_	RТ	nat	Dr	decayed.	Bare 66-0848
3.40	$Cd^+ + \cdot CH_2OH \rightarrow CdCH_2OH$	1^+ 2 x 10 ⁸	-	RT	nat	pr	Product inferred from conductivity measurements.	Kelm75–1064
3.41	$Cd^+ + CH_3CHOH \rightarrow$	$< 2 \ge 10^{8}$	_	RT	nat	pr	-	Bark.75-1153
	CdCH₃CHOH+	$(1.3 \pm 0.7) \ge 10^9$	-	RT	nat	pr	Product inferred from conductivity measurements.	Kelm75-1064
3.42	Cd ⁺ + ·CHOHCH ₂ OH	$< 2 \times 10^{8}$	-	RT	nat	pr	_	Bark.75-1153
3.43	$Cd^+ + CH_sCOHCH_s \rightarrow CdCH_sCOHCH_s^+$	< 2 x 10 ⁸	-	RT	nat	pr	-	Bark.75-115
		$(2.4 \pm 1.2) \ge 10^9$	-	RT	nat	pr	Product inferred from conductivity measurements.	Kelm75-1064
3.44	Cd ⁺ + •CHOHCHOHCH ₂ OH	$< 2 \ge 10^{8}$	-	RT	nat	pr	-	Bark.75-115
3.45	$Cd^{+} + \cdot CH_{2}(CH_{3})_{2}COH \rightarrow Cd^{2^{+}} + (CH_{3})_{2}C = CH_{2} + CH_{3}$	ca. 1 x 10° OH ⁻	-	RT	nat	pr	Isobutene detected as product.	Kelm75-1064
		$< 2 \times 10^{8}$	-	RT	nat	pr	-	Bark.75-115
3.46	$Cd^+ + -(CH_2CH_2O)_n(CHCH_2)$	0)- $< 2 \times 10^{8}$	-	RT	nat	pr	Radical from polyethylene glycol (mw 10 ⁴) + OH.	Bark.75–115
3.47	Cd ⁺ + allyl alcohol	< 5 x 10 ⁷	-	25 ± 2	nat	pr	_	Buxt76-1072
3.48	Cd^+ + 9,10-anthra- quinone $\rightarrow Cd^{2+}$ + (9,10-anthraquinone) ⁻	$(1.03 \pm 0.1) \times 10^9$	-	ca.22	7.0	pr	Measured by the rate of formation of the semiquinone in the presence of <i>ca</i> . 1 mol dm ^{-s} 2-methyl-2-propanol.	Rao.73-110
3.49	Cd ⁺ + benzophenone → Cd ²⁺ + (benzophenone) ⁻	1.0 x 10°	-	RT	7.0	pr	Measured by the rate of formation of the ketyl radi- cal in the presence of ca. 1 mol dm ⁻³ 2-methyl-2-propanol.	Rao.75–103
3.50	Cd ⁺ + 1,4-benzoquinone → Cd ²⁺ + (1,4-benzoquinone	(4.1 ± 0.8) x 10 ⁹ ≥) ⁻	-	25±2	5.4	pr	Measured by the rate of formation of the semiquinone in the presence of 1 mol dm ⁻³ 2-methyl-2-propanol.	Sell.76–1134
		4.4 x 10°	-	RT	7.0	pr	Measured in the presence of ca. 1 mol dm ⁻³ 2-methyl-	Rao.75–103
		$(7.7 \pm 0.8) \ge 10^9$	-	ca.22	7.0	pr	Measured in the presence of ca. 1 mol dm ⁻³ 2-methyl- 2-propanol.	Rao.73-110

TABLE 3.	Cd(I)	reactions	- Continued
----------	-------	-----------	-------------

No.	Reaction	$k/\mathrm{dm^{3}\ mol^{-1}\ s^{-1}}$	Ι	t∕°C	pН	Method	Comments	Ref.
3.51	Cd ⁺ + 2-hydroxy- 1,4-naphthoquinone → Cd ²⁺ + (2-hydroxy-1,4- naphthoquinone) ⁻	(3.57 ± 0.4) x 10°	-	ca.22	7.0	pr	Measured by the rate of formation of the semiquinone in the presence of $ca. 1 \mod dm^{-3}$	Rao.73-1104
3.52	Cd ⁺ + menaquinone → Cd ²⁺ + (menaquinone) ⁻	$(4.6 \pm 0.5) \times 10^9$	-	RT	7.0	pr	Measured by the rate of formation of the semiquinone in the presence of $ca. 1 \mod dm^{-3}$	Rao.73–1047, Rao.75–1032
		$(4.68 \pm 0.5) \ge 10^9$	-	ca. 22	7.0	pr	2-methyl-2-propanol. Measured in the presence of ca . 1 mol dm ⁻³ 2-methyl-	Rao.73–1104
3.53	$\begin{array}{l} Cd^+ + NAD^+ \rightarrow \\ Cd^{*+} + NAD \end{array}$	$(2.9 \pm 0.3) \ge 10^{9}$	-	ca. 22	7.0	pr	2-propanol. Measured by the rate of formation of NAD. in the presence of ca. 1 mol dm ⁻³ 2-methyl-	Rao.73–1104
3.54	$Cd^+ + 1,4-$ naphthoquinone-2- sulphonate \rightarrow $Cd^{2^+} + (1,4-$ naphthoquinone-2- culphonate)-	$(7.35 \pm 0.7) \ge 10^{9}$	-	ca. 22	7.0	pr	Measured by the rate of formation of the semiquinone in the presence of $ca. 1 \mod dm^{-3}$	Rao.73–1104
3.55 3.56	Cd^+ + PNDA (et) Cd^+ + riboflavin \rightarrow Cd^{2^+} + (riboflavin) ⁻	1.4 x 10 ¹⁰ (5.10 ± 0.5) x 10 ⁹	-	RT ca. 22	nat 7.0	pr pr	Measured by the rate of formation of the reduced riboflavin in the presence of ca. 1 mol dm ⁻³ 2-methyl- 2-propanol.	Dain.68–0066 Rao.73–1104
	CdEDTA ³⁻							
3.57	CdEDTA ³⁻ + BrO ₃ ⁻ (et)	$(8.9 \pm 1.8) \ge 10^6$ $E_a = 4.6 \pm 1.2$ kI mol ⁻¹	0.16 0.16	RT 3–90	11.3 11.3	pr pr	1	Meye.70–1228 Meye.70–1228
3.58	CdEDTA ³⁻ + CdEDTA ³⁻ (et or af)	$'k'/\epsilon_{350} = (5.8 \pm 1.5) \times 10^{3}$ cm s ⁻¹	0.16	RT	11.3	pr	Unclear whether k or $2k$.	Meye.70-1228
		$k' = (4 \pm 2)$ x 10'	0.16	RT	11.3	pr	Unclear whether k or $2k$.	Meye.70-1228
3.59	$CdEDTA^{3-} + IO_{3-}$ (et)	$(2.7 \pm 0.6) \ge 10^8$	0.16	RT	11.3	pr	-	Meye.70-1228
3.60	$CdEDTA^{3-} + NO_2^{-}$ (et)	$(3.2 \pm 0.6) \ge 10^6$ $E_a = 8.4 \pm 1.2$ kI mol ⁻¹	0.16 0.16	RT 3 – 90	11.3 11.3	pr pr	-	Meye.70–1228 Meye.70–1228
3.61	$CdEDTA^{3^-} + NO_3^-$ (et) $Cd(en)_n^+$ (n unknown)	$(1.66 \pm 0.3) \times 10^7$	0.16	RT	11.3	pr	-	Meye.70-1228
3.62	$Cd(en)_n^+ + BrO_3^-$ (et)	$(1.28 \pm 0.3) \ge 10^8$	0.64	RT	11.4	pr	-	Meye.70-1228
3.63	$Cd(en)_n^+ + IO_3^- (et)$	$(2.5 \pm 0.5) \ge 10^9$	0.64	RT	11.4	pr	-	Meye.70-1228
3.64	$Cd(en)_n^+ + NO_2^- (et)$	$(1.12 \pm 0.2) \ge 10^9$	0.64	RT	11.4	pr	-	Meye.70-1228
3.65	$Cd(en)_n^+ + NO_s^-$ (et)	$(4.5 \pm 0.9) \ge 10^8$	0.64	RT	11.4	pr	-	Meye.70-1228

TABLE	3.	Cd(I)	reactions -	Continued
-------	----	-------	-------------	-----------

No.	Reaction	$k/dm^3 mol^{-1} s^{-1}$	Ι	t/°C	pН	Method	Comments	Ref.
_	Cd(gly)							
3.66	$Cd(gly) + BrO_3^{-}$ (et)	$(6.1 \pm 1.2) \ge 10^7$	0.21	RT	10.5	pr	-	Meye.70-1228
3.67	$Cd(gly) + IO_3^-$ (et)	$(1.8 \pm 0.4) \ge 10^9$	0.21	RT	10.5	pr	-	Meye.70-1228
3.68	$Cd(gly) + NO_2^-$ (et)	$(8.5 \pm 1.7) \ge 10^8$	0.21	RT	10.5	pr	-	Meye.70-1228
3.69	$Cd(gly) + NO_3^-$ (et) $CdNTA^{2^-}$	$(2.4 \pm 0.5) \ge 10^8$	0.21	RT	10.5	pr	-	Meye.70-1228
3.70	$CdNTA^{2-} + BrO_{3-}$ (et)	$(1.02 \pm 0.2) \ge 10^7$	0.10	RT	10.7	pr	-	Meye.70-1228
3.71	CdNTA ²⁻ + CdNTA ²⁻ (et or af)	$k'/\epsilon_{350} = (1.2 \pm 0.4) \times 10^{5}$ cm s ⁻¹	0.10	RT	10.7	pr	Unclear whether k or 2k.	Meye.70–1228
		$k' = (8 \pm 4) x$ 10 ⁸	0.10	RT	10.7	pr	Unclear whether k or $2k$.	Meye.70–1228
3.72	$CdNTA^{2-} + IO_{3-}$ (et)	$(6.1 \pm 1.2) \ge 10^8$	0.10	RT	10.7	pr	-	Meye.70-1228
3.73	$CdNTA^{2-} + NO_{2}^{-}$ (et)	$(4.2 \pm 0.8) \ge 10^7$	0.10	RT	10.7	pr	-	Meye.70-1228
3.74	$CdNTA^{2^-} + NO_3^-$ (et) Cd(I)-radical complexes	$(4.5 \pm 0.9) \ge 10^7$	0.10	RT	10.7	pr	-	Meye.70-1228
3.75	$CdCH_{3}CHOH^{+} + H_{2}O \rightarrow Cd^{2+} + CH_{3}CH_{2}OH + O$	257 s ⁻¹ 9H ⁻	-	RT	nat	pr	Products inferred from conductivity measurements.	Kelm75-1064
3.76	$CdCH_{3}COHCH_{3}^{+} + H_{2}O - Cd^{2+} + CH_{3}CHOHCH_{3} + CH_{3}$	→ 161 s ⁻¹ - OH ⁻	-	RT	nat	pr	Products inferred from conductivity measurements.	Kelm75-1064
3.77	$\begin{array}{r} \mathrm{Cd_{2}^{2^{+}}+\cdot\mathrm{CH_{2}(CH_{3})_{2}COH}} \rightarrow \\ \mathrm{Cd^{+}+\mathrm{Cd^{2^{+}}+(CH_{3})_{2}C}=} \end{array}$	$ca. 1 \ge 10^{9}$ = CH ₂ + OH ⁻	-	RT	nat	pr	Isobutene detected as product.	Kelm75-1064

*a*3

*If the data source gives no errors none are shown here but they should be assumed to be at least $\pm 25\%$ (or $\pm 50\%$ for 2k).

TABLE 4. Cobalt(I)	reactions
--------------------	-----------

No.	Reaction	$k/dm^{3} mol^{-1} s^{-1}$	Ι	t/°C	рН	Method	Comments	Ref.
4.1	Co^+_{aq} $Co^+ + Br_2^-$ (et)	$(1.0 \pm 0.3) \ge 10^{10}$	-	RT	nat	f.ph.	Competing reac- tions $Br_2^- + Br_2^-$ and $Co^+ + Co^+$ not	Thor.70–772
4.2	$Co^+ + BrO_3^-$ (et)	$(4.8 \pm 0.5) \ge 10^9$	0.019*	25 ± 2	nat	pr	considered.	Buxt76–1072
		$(7.1 \pm 1.1) \times 10^9$	$\rightarrow 0$	25 ± 2	nat	pr	-	Buxt76-107
4.3	$Co^+ + Cd^{2+}$	< 107	-	RT	nat	pr	-	Baxe66-084
4.4	Co ⁺ + Co ⁺ (et or af)	$2k < 4 \ge 10^{\circ}$	0.019*	25±2	nat	pr	Estimated at 370 nm taking $\epsilon_{370} =$ 2080 dm ³ mol ⁻¹ cm ⁻¹ .	Buxt.75–102
4.5	$Co^{+} + Cu^{2+}$ (et)	$(4.1 \pm 0.4) \ge 10^8$	0.019*	25 ± 2	nat	pr	-	Buxt76-1072
		$(1.06 \pm 0.36) \ge 10^{10}$	0.04	RT	5–8	γ	Measured by compe- tition kinetics using NO ₅ ⁻ as com- petitor and taking $k(Co^+ + NO_5^-) = 1.8 \text{ x}$ $10^9 \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$.	Fiti70–011
4.6	$Co^+ + H_2O_2 \rightarrow$	$(1.6 \pm 0.2) \ge 10^9$	-	25	nat	pr	-	Buxt76-1072
	$\mathrm{Co}^{2^+} + \mathrm{OH} + \mathrm{OH}^-$	1.9 x 10 ⁹	-	RT	nat	pr	-	Buxt67-0062
		$E_{\rm a} = 13.0 \pm 1.0$ kJ mol ⁻¹	-	1 – 30	nat	pr	- Products identified in γ-radiolysis studies (see ref. 73-0039).	Buxt76–1072
4.7	$Co^+ + IO_3^-$ (et)	$(4.3 \pm 0.4) \ge 10^9$	0.019*	25 ± 2	nat	pr	-	Buxt76-1072
		$(4.9 \pm 0.8) \ge 10^9$	0.04	RT	5–8	γ	Measured by compe- tition kinetics using NO ₃ ⁻ as com- petitor and taking $k(Co^+ + NO_3^-) =$ 1.8 x 10 ⁹ dm ³ mol ⁻¹ s ⁻¹ .	Fiti70–011
4.8	$Co^+ + MnO_4^-$ (et)	1.06 x 10 ¹⁰	ca. 0.004	20	nat	pr	Measured by the rate of depletion of the MnO ₄ ⁻ ab-	Baxe65–038
4.9	$\mathrm{Co}^{+} + \mathrm{N}_{2}\mathrm{O} \rightarrow \mathrm{Co}\mathrm{O}^{+} + \mathrm{N}_{2}\mathrm{O}$	N ₂ 7 x 10 ⁸	-	RT	nat	γ	Estimated from N ₂ yields in the γ - radiolysis of Co ²⁺ + N ₂ O solutions	Buxt67-0062
		$(1.0 \pm 0.1) \ge 10^9$	-	25±2	nat	pr	Products inferred from γ -ray induced chain reaction in the system Co ²⁺ + HCO ₂ ⁻ + N ₂ O. (see ref. 73-0039).	Buxt76–1072
4.10	$Co^+ + NO_3^-$ (et)	$(1.8 \pm 0.2) \ge 10^{9}$	0.019	25 ± 2	nat	pr	-	Buxt76-1072
4.11	$Co^+ + Ni^{2+}$	< 107	-	RT	nat	pr	-	Baxe66-084

TABLE 4	Cobalt(I)	reactions		Continued
---------	-----------	-----------	--	-----------

No.	Reaction	$k/dm^{3} mol^{-1} s^{-1}$	Ι	t∕°C	рН	Method	Comments	Ref.
4.12	Co ⁺ + O ₂ (et or af)	(6.0 ± 0.6) x 10 [◦]	-	25±2	nat	pr	Absorption of pro- ducts similar to that of O_2^- but decay slower (see ref. 76-1072). Product transfers an electron to 1.4-benzominone	Buxt76–1072
							(see ref. 76–1134). Evidence possibly indicates product to be CoO ₂ ⁺ .	
4.13	Co ⁺ + OH (et)	<i>ca.</i> 8 x 10°	-	25±2	nat	pr	Estimated from de- cay of Co^+ in ab- sence of OH scav- engers, taking in- to account the major competing reaction $Co^+ + Co^+$.	Buxt.75–1027
4.14	$Co^{+} + Pb^{2+}$	< 107	_	RT	nat	Dr	_	Baxe66-0848
4.15	$Co^+ + S_2O_8^{2^-} \rightarrow Co^{2^+} + SO_4^{-^-} + SO_4^{2^-}$	$(2.8 \pm 0.5) \times 10^9$	0.019	25 ± 2	nat	pr	Formation of SO ₆ - inferred from the absorption produc-	Buxt76–1072
							ed on pulse radio- lysis of solutions of $Co^{2^+} + S_2O_8^{2^-}$.	
4.16	$Co^+ + Zn^{2^+}$	< 10"	-	RT	nat	pr	-	Baxe66-0848
4.17	Co ⁺ + allyl alcohol → (Co–allyl alcohol) ⁺	ca. 10 ⁸	-	25±2	nat	pr	Product charac- terised by its absorption spec- trum.	Buxt76–1072
4.18	Co ⁺ + 9,10-anthra- quinone → Co ²⁺ + (9,10- anthraquinone) ⁻	$(1.05 \pm 0.1) \times 10^{\circ}$	~	ca. 22	nat	pr	Measured by the rate of formation of the semiquinone in the presence of $ca. 1 \mod dm^{-3} 2-$	Rao.73–1104
4.19	Co ⁺ + benzophenone → Co ²⁺ + (benzophenone) ⁻	2.5 x 10°	-	RT	7.0	pr	methyl-2-propanol. Measured by the rate of formation of the ketyl radi- cal in the presence of ca. 1 mol dm ⁻³	Rao.75–103
4.20	Co ⁺ + 1,4-benzoquinone → Co ²⁺ + (1,4-benzo- quinone) ⁻	• 4.8 x 10°	-	RT	7.0	pr	2-methyl-2-propanol. Measured by the rate of formation of the semiquinone in the presence of $ca. 1 \mod dm^{-s}$	Rao.75–103
		$(5.1 \pm 0.5) \ge 10^{9}$	-	25±2	4.7	pr	Measured in the presence of 1 mol dm ⁻³ 2-methyl-2-	Sell.76–1134
		$(7.35 \pm 0.7) \ge 10^{\circ}$	-	ca. 22	7.0	pr	propanol. Measured in the presence of <i>ca</i> . 1 mol dm ⁻³ 2-methyl- 2-propanol.	Rao.73-110

TABLE	4.	Cobalt(I)	reactions	_	Cutinued
-------	----	-----------	-----------	---	----------

No.	Reaction	$k/\mathrm{dm^3\ mol^{-1}\ s^{-1}\ a}$	Ι	t/°C	рН	Method	Comments	Ref.
4.21	Co ⁺ + menaquinone → Co ^{s+} + (menaquinone) ⁻	$(4.0 \pm 0.4) \ge 10^{\circ}$	-	RT	7.3	pr	Measured by the rate of formation of the semiquinone in the presence of $ca. 1 \mod dm^{-3}$	Rao.73–1047 Rao.75–1032
		$(4.1 \pm 0.1) \ge 10^9$	-	ca. 22	7.0	pr	Z-methyl-2-propanol. Measured in the presence of ca. 1 mol dm ⁻³ 2-methyl-	Rao.73–1104
4.22	$Co^+ + 1,4-$ naphthoquinone-2- sulphonate $\rightarrow Co^{2^+} +$	$(6.83 \pm 0.7) \ge 10^{9}$	-	ca. 22	7.3	pr	Measured by the rate of formation of the semiquinone	Rao.73–1104
·4.02	(1,4-naphthoquinone-2- sulphonate) ⁻	(9.55 + 0.2) 109		00	7.0		in the presence of ca. 1 mol dm ⁻³ 2-methyl-2-propanol.	D. 50 110
4.23	Co ⁺ + riboflavin → Co ²⁺ + (riboflavin) ⁻	$(2.55 \pm 0.3) \ge 10^9$	-	ca. 22	7.0	pr	Measured by the rate of formation of the reduced riboflavin in the presence of ca. 1 mol dm ⁻³ 2-methyl- 2-propanol.	Kao.73–1104
	Co(1) complexes Co(CN) $_{5}^{4-}$ (from Co(CN) $_{5}^{3-}$							
4.24	$\begin{array}{r} + c_{aq} \\ Co(CN)_{5}^{4^-} + H_2O \rightarrow \\ Co(CN)_{5}H^{3^-} + OH^- \end{array}$	$(1.1 \pm 0.1) \times 10^{5} \text{ s}^{-1}$	-	20	ca. 13	pr	Measured in the presence of ca . 0.1 mol dm ⁻³ H ₂ . Proton transfer mechanism implied from isotope ef- fect (compare contro 4 25)	Vene.71–0097
4.25	$\begin{array}{r} \text{Co}(\text{CN})_5^{4^-} + \text{D}_2\text{O} \rightarrow \\ \text{Co}(\text{CN})_5\text{D}^{5^-} + \text{OD}^- \end{array}$	$(1.9 \pm 0.2) \times 10^4 \mathrm{s}^{-1}$	-	20	ca. 13	pr	Measured in D ₂ O in the presence of ca. 0.1 mol dm ⁻³ H ₂ .	Vene.71–0097
	CoL+ (L = 5,7,7,12,12,14	-hexamethyl-1,4,8,11-tel	traazacyclot	etradeca-4,	14-diene)	NH X	· _	
						NH N		
4.26	$CoL^+ + H_2O \rightarrow CoLH^{2^+} + OH^-$	20	0.001	RT	9–10	, pr	Measured in the presence of 1 mol dm ⁻³ 2-methyl-2- propanol. See ref. for evidence for proton transfer mechanism.	Tait76–1001
4.27	$CoL^{+} + H_{3}O^{+} \rightarrow CoLH^{2^{+}} + H_{2}O$	1.2 x 10°	0.015	RT	3.5-4.2	pr	Measured in the presence of 1 mol dm ⁻³ 2-methyl-2- propanol. See ref. for evidence for proton transfer mechanism.	Tait76–1001

TABLE 4. Cobalt(I) reactions - Continued

No.	Reaction	$k/dm^{3} mol^{-1} s^{-1} a$	Ι	t/°C	pН	Method	Comments	Ref.
4.28	$C_{0}L^{+} + H_{2}PO_{4}^{-} \rightarrow$ $C_{0}LH^{+} + HPO_{4}^{2}$	3.0 x 10 ⁷	0.005 -0.01	RT	5.5	pr	Measured in the presence of 1 mol dm ⁻³ 2-methyl-2- propanol. See ref. for evidence for proton transfer mechanism	Tait76–1001
4.29	$CoL^+ + N_2O$ (et)	9.0 x 10 ^s	0.01	RT	9.2	pr	Reaction possibly involves two elec- tron oxidation to	Tait76–1001
4.30	$CoL^+ + O_2 \rightarrow CoLO_2^+$	9.0 x 10 ^s	0.02	RT	9.2	pr	Measured in the presence of 1 mol dm^{-3} 2-methyl-2- propanol. Reaction does not involve the formation of CoL ²⁺ , assumed therefore to in- volve the coordin- ation of the O ₂ .	Tait76–1001
	$CoL^+ (L = 5, 7, 7, 12, 14, 14 - 14, 14, 14)$	hexamethyl—1,4,8,11—tet	raazacycloteti	radeca–4,1.	I–diene).			
4.31	$CoL^+ + Co(bpy)_{s^{3^+}}$ (et)	1.2 x 10°	ca. 0.02	RT	9.2	, br	Measured in the presence of 1 mol dm ⁻³ 2-methyl-2-	Tait76–1001
4.32	$CoL^+ + Co(en)_3^{3+}$ (et)	7.9 x 10 ⁶	ca. 0.02	RT	9.2	pr	propanol. Measured in the presence of 1 mol dm ⁻³ 2-methyl-2-	Tait76–1001
4.33	$CoL^+ + Co(NH_3)_8^{3+}$ (et)	7.5 x 10 ^e	ca. 0.02	RT	9.2	pr	propanol. Measured in the presence of 1 mol dm ⁻³ 2-methyl-2-	Tait76–1001
4.34	$CoL^+ + CoL^{2^+}$ (et)	4.0 x 10 ⁶	ca. 0.02	RT	9.2	pr	Measured in the presence of 1 mol dm ⁻³ 2-methyl-2-	Tait76–1001
4.35	$CoL^+ + CoL'^{2+}$ (et)	6.7 x 10 ^e	ca. 0.02	RT	9.2	pr	propanol. Measured in the presence of 1 mol dm ⁻³ 2-methyl-2- propanol.	Tait76–1001
4.36	$(L' = 2,3,9,10-\text{tetramethyl-} \text{CoL}^+ + \text{Cr}(\text{bpy})_3^{3^+} \text{(et)}$	1,4,8,11-tetraazacyclote 1.2 x 10 ⁹	tradeca–1,2,8 <i>ca.</i> 0.02	3,10-tetrae RT	ne) 9.2	pr	Measured in the presence of 1 mol dm ⁻³ 2-methyl-2- propanol.	Tait76–1001

TIDE F GONATUR TOGOTORO GONTHAUGA	TABLE	4.	Cobalt(I)	reactions		Continued
-----------------------------------	-------	----	-----------	-----------	--	-----------

No.	Reaction	$k/\mathrm{dm^3\ mol^{-1}\ s^{-1}}$	Ι	t∕°C	рН	Method	Comments	Ref.
4.37	$CoL^+ + Fe(bpy)_{3}^{3+}$ (et)	2.3 x 10 ⁷	ca. 0.02	RT	9.2	pr	Measured in the presence of 1 mol dm ⁻³ 2-methyl-2-	Tait76–1001
4.38	$C_{0}L^{+} + H_{2}O \rightarrow$ $C_{0}LH^{2^{+}} + OH^{-}$	48	0.001	RT	9–10	pr	propanol. Measured in the presence of 1 mol dm ⁻³ 2-methyl-2- propanol. See ref. for evidence for proton transfer mechanism	Tait76–1001
4.39	$CoL^+ + H_3O^+ \rightarrow CoLH^+ + H_2O$	3.1 x 10°	0.015	RT	3.5–4.2	pr	Measured in the presence of 1 mol dm ⁻³ 2-methyl-2- propanol. See ref. for evidence for proton transfer mechanism.	Tait76–1001
4.40	CoL ⁺ + HPO₄ ^{2−} → CoLH ²⁺ + PO₄ ^{3−}	1.0 x 10 ⁵	0.06– 0.3	RT	10.0	pr	Measured in the presence of 1 mol dm ⁻³ 2-methyl-2- propanol. See ref. for evidence for proton transfer mechanism.	Tait76–1001
4.41	CoL ⁺ + H₂PO₄ ⁻ → CoLH ⁺ + HPO₄ ²⁻	9.8 x 107	0.005- 0.01	RT	5.5	pr	Measured in the presence of 1 mol dm ⁻³ 2-methyl-2- propanol. See ref. for evidence for proton transfer	Tait76–1001
4.42	$CoL^+ + NH_4^+ \rightarrow CoLH^+ + NH_3$	6.8 x 10 ⁵	0.015- 0.1	RT	7.0	pr	mechanism. Measured in the presence of 1 mol dm ^{-s} 2-methyl-2- propanol. See ref. for evidence for proton transfer mechanism	Tait76–100]
4.43	$CoL^+ + N_2O$ (et)	3.9 x 10 ⁷	0.01	RT	9.2	pr	Reaction possibly involves two elec- tron oxidation to	Tait76–1001
4.44	$CoL^+ + O_2 \rightarrow CoLO_2^+$	1.7 x 10°	0.02	RT	9.2	pr	Measured in the presence of 1 mol dm ⁻³ 2-methyl-2- propanol. Reaction does not involve formation of CoL ²⁺ , assumed therefore to involve the coordination of	Tait76–1001
4.45	$CoL^+ + Ru(NH_3)e^{2+}$ (et)	4.0 x 10 ⁸	0.016– 0.028	RT	9.2	pr	Measured in the presence of 1 mol dm ⁻³ 2-methyl-2- propanol.	Tait76–1001

•

TABLE	4.	Cobalt(I)	reactions	_	Continued
-------	----	-----------	-----------	---	-----------

No.	Reaction	k/dm ^s mol ⁻¹ s ⁻¹ a	Ι	t∕°C	pН	Method	Comments	Ref.
4.46	$CoL^+ + Ru(NH_3)_5NO^{3+}$ (et)	3.9 x 10 ⁷	0.016– 0.028	RT	9.2	pr	Measured in the presence of 1 mol dm ^{-s} 2-methyl-2-	Tait76-1001
4.47	$CoL^+ + acetic acid \rightarrow CoLH^+ + CH_{2}COO^-$	7.5 x 10 ⁷	0.01- 0.05	RT	4.8	pr	propanol. Measured in the presence of 1 mol dm ⁻³ 2-methyl-2- propanol. See ref. for evidence for proton transfer	Tait76–1001
4.48	CoL ⁺ + 9,10-anthraquinone -2-sulphonate → CoL ²⁺ + (9,10-anthraquinone-2- sulphonate) ⁻	4.4 x 10°	0.004	RT	9.2	pr	Measured in the presence of 1 mol dm ⁻³ 2-methyl-2- propanol. Semi- quinone product characterised by	Tait76–1001
4.49	CoL ⁺ + 3-benzoylpyridine (et + ?)	4.6 x 10 ^s	0.004	RT	9.2	pr	its absorption. Measured in the presence of 1 mol dm ⁻³ 2-methyl-2- propanol. Only 50% electron trans- fer to the 3- benzoylpyridine. Other reaction pathway(s) not	Tait76–1001
4.50	CoL ⁺ + fluorenone → CoL ²⁺ + (fluorenone) ⁻	4.3 x 10°	0.004	RT	9.2	pr	characterised. Measured in the presence of 1 mol dm ⁻³ 2-methyl-2- propanol. Ketyl radical product characterised by	Tait76–1001
4.51	CoL ⁺ + menaquinone → CoL ²⁺ + (menaquinone) ⁻	4.6 x 10°	0.004	RT	9.2	pr	Measured in the presence of 1 mol dm ⁻³ 2-methyl-2- propanol. Semi- quinone product characterised by	Tait76–1001
4.52	CoL ⁺ + methyl iodide (et)	4.7 x 10 ⁸	0.015	RT	9.2	pr	No evidence for substitution $(S_N 2)$ reaction pathway.	Tait76–1001
	CoL^+ ($L = 2,3,9,10$ -tetrameth	yl—1,4,8,11—tetraazac	vclotetradeca-	-1,3,8,10-t	etraene)		N X	
4.53	$CoL^+ + Co(bpy)_{3^{3^+}}$ (et)	8.5 x 10 ⁷	0.016– 0.028	RT	6.5	pr	Measured in the presence of 1 mol dm ^{-s} 2-methyl-2- propanol.	Tait76–1001

TABLE 4. Cobalt(I) reactions - Continued

No.	Reaction	$k/dm^{3} mol^{-1} s^{-1} a$	Ι	t∕°C	рН	Method	Comments	Ref.
4.54	$CoL^+ + Cr(bpy)_s^{s+}$ (et)	1.6 x 10 ⁸	0.016– 0.028	RT	6.5	pr	Measured in the presence of 1 mol dm ⁻³ 2-methyl-2- propagol.	Tait76–100
4.55	$CoL^+ + H_3O^+ \rightarrow CoLH^{2+} + H_2O$	1.6 x 10 ⁵	0.06– 0.6	RT	0.25– 1.25	pr	Measured in the presence of 2 mol dm ⁻³ 2-propanol. See ref. for evi- dence for proton transfer mechanism.	Tait76–100
4.56	$C_0L^+ + O_2 \rightarrow C_0LO_2^+$	1.1 x 10°	0.02	RT	6.5	pr	Measured in the presence of 1 mol dm^{-3} 2-methyl-2- propanol. Reaction does not involve formation of CoL ²⁺ , assumed therefore to involve the energiation of O	Tait76–100
4.57	CoL ⁺ + acetic acid → CoLH ²⁺ + CH ₃ COO ⁻	6.2 x 104	0.01- 0.05	RT	4.8	pr	Measured in the presence of 2 mol dm ⁻³ 2-propanol. See ref. for evi- dence for proton transfer mechanism	Tait76–100
4.58	CoL ⁺ + 9,10-anthraquinone- 2,6-sulphonate → CoL ²⁺ + (9,10-anthraquinone- 2,6-sulphonate) ⁻	3.8 x 109	0.004	RT	6.5	pr	Measured in the presence of 1 mol dm ⁻³ 2-methyl-2- propanol. Semi- quinone product characterised by its absorption	Tait76–100
4.59	CoL ⁺ + indigosulphonate → CoL ²⁺ + (indigosulphonate) ⁻	4.9 x 10°	0.004	RT	6.5	pr	Measured in the presence of 1 mol dm ⁻³ 2-methyl-2- propanol. Radical anion product char- acterised by its absorption.	Tait76–100
4.60	CoL ⁺ + riboflavin → CoL ²⁺ + (riboflavin) ⁻	1.0 x 10°	0.004	RT	6.5	pr	Measured in the presence of 1 mol dm ⁻³ 2-methyl-2- propanol. Radical anion product char- acterised by its absorption.	Tait76–100

*If the data source gives no errors none are shown here but they should be assumed to be at least $\pm 25\%$ (or $\pm 50\%$ for 2k).

TABLE 5. Chromium(I), chromium(II) and chromium(V) reactions

No.	Reaction	$k/dm^{3} mol^{-1} s^{-1} a$	Ι	t∕°C	pН	Method	Comments	Ref.
	Cr(1) Reactions Cr ⁺							
5.1	Cr ⁺ + H ₂ O	< 5 x 10 ³ s ⁻¹	-	22±2	3.0-4.3	pr	Estimated from first order, dose dependent decay of Cr^+ . Major competing reactions thought to be Cr^+ + H ₂ O ₂ . H ₂ detected as product ($G = 2.9$ at pH 3.4).	Cohe.74—1142
	CrH^{2+} (from $H + Cr^{2+}$)							
5.2	$CrH^{2+} + H_2O$	$< 1 s^{-1}$	-	22 ± 2	0–2	pr	-	Cohe.74-1142
5.3	$CrH^{2^+} + H_3O^+ \rightarrow Cr^{3^+} + H_2 + H_2O$	$(1.8 \pm 0.2) \ge 10^4$	var	22 ± 2	0–2	pr	$G(H_2) = 3.8$ at pH 0-2.	Cohe.74-1142
	Cr(II) reactions (includes only	those measured by radioly	tic methods).				
5.4	$Cr_{aq}^{Cr^{a+}} + Br_2^{-} \rightarrow CrBr^{2^+} + Br^{-}$	$(1.9 \pm 0.2) \ge 10^9$	0.2	22±3	1	pr	Reaction occurs by inner sphere dif- fusion controlled mechanism	Laur.74–1104
							$G(CrBr^{2+}) = 2.4$ in γ -radiolysis experiments.	
5.5	$Cr^{a^+} + Cl_2^- \rightarrow CrCl^{a^+} + Cl^-(a) \text{ or } Cr^{a^+} + 2Cl^-(b)$	$(2.4 \pm 0.3) \ge 10^{9}$	0.2	22±3	1	pr	Reaction occurs by parallel mechanisms involving inner- sphere (path a) and outer sphere (b) dif- fusion control with	Laur.74–1104
							approximately equal probability. $G(CrCl^{2+})$ = 1.4 in γ -radiolysis experiments.	
5.6	$Cr^{2^+} + I_2^- \rightarrow CrI^{2^+} + I^-$	(1.5 ± 0.2) x 10°	0.2	22±3	1	pr	Reaction occurs by inner sphere dif- fusion controlled mechanism. CrI^{2+} characterised by flash photolysis and γ -radiolysis experiments. $G(CrI^{2+})$	Laur.74–1104
		0.5.100		-			$= 0.85 \text{ at } 0^{\circ} \text{C}.$	D (5 0005
5.7	$Cr^{3} + MnO_4$ (et)	3.7 x 10 ^v	ca.0.01	20	nat	pr	Measured by the rate of depletion of the MnO_4^- ab-	Baxe05-0385
5.8	$Cr^{2+} + N_2O$	< 10 ⁶	-	25	nat	γ	Estimated from the values of $G(N_2)$ measured in the N_2 radiolycic of	Sell72-0844
							$Cr^{s^+} + N_2O$ solutions.	

No.	Reaction	$k/dm^3 mol^{-1} s^{-1}$	Ι	t/°C	pН	Method	Comments	Ref.
5.9	$\begin{array}{c} Cr^{2^+} + O_2 \rightarrow \\ CrO_{3}^{2^+} \end{array}$	$(1.6 \pm 0.2) \times 10^8$	-	25±2	2.6-4.3	pr	Measured from the rate of formation of CrO ₂ ²⁺ in the presence of 0.5 mol dm ⁻³ 2-methyl- 2-propanol. Product characterised by its absorption spectrum	Sell.76-1134
		$(1.6 \pm 0.2) \times 10^8$	-	RT	1–3	pr	and by conductivity measurements. Measured from the	Ilan75–1215
							rate of formation of CrO ₂ ²⁺ .	
		$(1.9 \pm 0.3) \ge 10^8$	-	25±2	3.4	pr (comp)	Measured by com- petition with 1,4- benzoquinone taking $k(Cr^{a^+} + C_6H_4O_2) =$ 3.2 x 10 ⁸ dm ³ mol ⁻¹	Sell.76-1134
5.10	Cr ²⁺ + ·CONH ₂ → CrCONH ₂ ²⁺	$(6.5 \pm 0.7) \ge 10^{6}$	-	22±2	0-4.5	pr	Measured by the rate of formation of the product in the presence of 1 mol dm ⁻³ formamide. Product characterised by its absorption spectrum and decay	Cohe.74–1146
5.11	$Cr^{2^+} + \cdot CH_2OH \rightarrow$ $CrCH_2OH^{2^+}$	1.6 x 10 ⁸	-	22±2	0–1	pr	Measured by the rate of formation of the product. Product characterised by its absorption spectrum and decay kinetics	Cohe.74–1146
5.12	$Cr^{2^+} + CO_2^- \rightarrow CrCO_2^+$	(1.1 ± 0.1) x 10°	ca. 0.04	25±2	1.4	pr	Measured by rate of formation of the product in the pre- sence of 1 mol dm ⁻³ formic acid. Product characterised by its spectrum and decay	Elli73–1057
5.13	$Cr^{2+} + \cdot CH_2CHO \rightarrow$ $CrCH_2CHO^{2+} \text{ or}$ $CrCH_2CH(OH)_2^{2+}$	3.5 x 10 ⁸	-	22±2	0–1	pr	Measured by the rate of formation of the product, which may be in the form of	Cohe.74–1146
5.14	$Cr^{2^+} + \cdot CH_2COOH \rightarrow$ $CrCH_2COOH^{2^+}$	2.5 x 10 ⁸	-	22±2	0–1	pr	Measured by the rate of formation of the product. Product characterised by its absorption spectrum and decay kinetics.	Cohe.74–1146
5.15	Cr ²⁺ + ·CHOH.COOH → CrCHOH.COOH ²⁺	1.4 x 10 ⁸	-	22±2	0–1	pr	Measured by the rate of formation of the product. Product characterised by its absorption spectrum and decay kinetics.	Cohe.74-1146

TABLE 5. Chromium(I), chromium(II) and chromium(V) reactions — Continued

TABLE 5. Chromium(I), chromium(II) and chromium(V) reactions - Continued

No.	Reaction	$k/\mathrm{dm^3\ mol^{-1}\ s^{-1}}$	Ι	t∕°C	рН	Method	Comments	Ref.
5.16	$Cr^{2+} + CH_3CHOH \rightarrow$ $CrCH(CH_3)OH^{2+}$	7.9 x 10 ⁷	-	22±2	0–1	pr	Measured by the rate of formation of the product. Product characterised by its absorption spectrum	Cohe.74–1146
5.17	Cr^{2^+} + ·CHOHCH ₂ OH → $CrCH_2CHO^{2^+}$ or $CrCH_2CH(OH)_2^{2^+}$	1.5 x 10 ⁸	-	22±2	3.0-4.5	p ́r	and decay kinetics. Measured by the rate of formation of the product. Product is identical to that formed in the reaction $Cr^{2+} + CH_2CHO$ (see	Cohe.74–1146
5.18	Cr^{2^+} + ·CH(COOH) ₂ → $CrCH(COOH)_{2^{2^+}}$	6.0 x 10 ⁷	-	22±2	0–1	pr	entry 5.13). Measured by the rate of formation of the product. Product characterised by its absorption spectrum and decay kinetics.	Cohe.74-1146
5.19	$Cr^{2+} + CH_{3}CHCOOH \rightarrow$ $CrCH(CH_{3})COOH^{2+}$	1.1 x 10 ⁸	-	22±2	0–1	pr	Measured by the rate of formation of the product. Product characterised by its absorption spectrum and decay kinetics.	Cohe.74–1146
5.20	$Cr^{2^+} + CH_3C(OH)COOH \rightarrow$ $CrCOH(CH_3)COOH^{2^+}$	9.2 x 10 ⁷	-	22±2	0–1	pr	Measured by the rate of formation of the product. Product characterised by its absorption spectrum and decay kinetics.	Cohe.74–1146
5.21	Cr^{2+} +·CH ₂ N(CH ₃)CHO → $CrCH_2N(CH_3)CHO^{2+}$	$(1.1 \pm 0.1) \ge 10^{8}$	-	22±2	0-4.5	pr	Measured by the rate of formation of the product in the pre- sence of 1 mol dm ⁻³ CH ₃ N(CH ₃)CHO. Product characterised by its absorption spectrum and decay kinetics.	Cohe.74–1146
5.22	$Cr^{2^+} + (CH_3)_2COH \rightarrow$ CrCOH(CH_3)_2^2+	5.1 x 10 ⁷	-	22±2	0–1	pr	Measured by the rate of formation of the product. Product characterised by its absorption spectrum	Cohe.74–1146
5.23	$Cr^{2+} + \cdot R \rightarrow CrR^{2+}$ $\cdot R = radical from dioxane$ (H abstraction)	1.0 x 10°	-	22±2	0–1	pr	and decay kinetics. Measured by the rate of formation of the product. Product characterised by its absorption spectrum and decay kinetics	Cohe.74–1146
5.24	$Cr^{2+} + \cdot CH_2C(CH_3)_2OH \rightarrow$ $CrCH_2C(CH_3)_2OH^{2+}$	1.0 x 10 ^s	-	22±2	0–1	pr	Measured by the rate of formation of the product. Product characterised by its absorption spectrum and decay kinetics.	Cohe.74-1146

TABLE 5	5.	Chromium(I),	chromium(II)	and	chromium(V)	reactions	Continued
---------	----	--------------	--------------	-----	-------------	-----------	-----------

No.	Reaction	$k/\mathrm{dm^3\ mol^{-1}\ s^{-1}}$	Ι	t∕°C	pН	Method	Comments	Ref.
5.25	Cr^{s^+} + $CH_sCHOCH_2CH_3$ → $CrCH(CH_3)OCH_2CH_3^{2^+}$	3.4 x 10 ⁷	-	22±2	0–1	pr	Measured by the rate of formation of the product. Product characterised by its absorption spectrum	Cohe.74-1146
5.26	$Cr^{2+} + CH_2C(CH_3)_2COOH - CrCH_2C(CH_3)_2COOH^{2+}$	> 1.1 x 10 ⁸	-	22±2	0–1	pr	and decay kinetics. Measured by the rate of formation of the product. Product characterised by its absorption spectrum and decay kinetics.	Cohe.74-1146
5.27	Cr ^{s+} + anthraquinone- 2,6-disulphonate → Cr ^{s+} + (anthraquinone- 2,6-disulphonate) ⁻	$(2.8 \pm 0.3) \ge 10^9$	-	ca.22	7.0	pr	Measured by the rate of formation of the semiquinone in the presence of ca. 1 mol dm ⁻³ 2-methyl-2- propagol	Rao.75–1032
5.28	Cr ³⁺ + 1,4-benzo- quinone → Cr ³⁺ + (1,4-benzoquinone) ⁻	$(3.2 \pm 0.3) \ge 10^8$	-	25±2	3.4	pr	Measured by the rate of formation of the semiquinone in the presence of 0.5 mol dm ⁻³ 2-methyl-2- propanol.	Sell.76–1134
		$(3.5 \pm 0.4) \ge 10^9$	-	ca.22	7.0	pr	Measured by the rate of formation of the semiquinone in the presence of ca. 1 mol dm ⁻³ 2-methyl-2- propanol.	Rao.75–1032
5.29	$Cr^{2^+} + tetra-$ nitromethane \rightarrow $Cr^{3^+} + NO_2 + C(NO_2)_3^-$	$(1.2 \pm 0.2) \ge 10^{6}$	-	25±2	3.4	pr	Measured by the rate of formation of the nitroform anion in the presence of 1 mol dm ⁻³ 2-methyl-2- propanol.	Sell.76-1134
5.30	$Cr(V)$ (from $CrO_4^{2^-} + e_{aq}^{-})$ $Cr^{V} + Cr^{V}$ (dis or af)	$2k/\epsilon_{400} = (7 \pm 3)$ x 10 ⁸ cm s ⁻¹	0.003	25	nat	pr	-	Sell72-0844

^aIf the data source gives no errors none are shown here but they should be assumed to be at least $\pm 25\%$ (or $\pm 50\%$ for 2k).

	TABLE	6.	Copper(I)	and	copper(III)	reactions
--	-------	----	-----------	-----	-------------	-----------

,

No.	Reaction	$k/\mathrm{dm^3\ mol^{-1}\ s^{-1}}$	Ι	t∕°C	pН	Method	Comments	Ref.
	Cu ⁺						·····	
6.1	$Cu^+ + Cu(OH)_2^+$ (et)	$(1.8 \pm 0.6) \ge 10^{9}$	0.003	25	4.8	pr	See comments under entry 6.37.	Sell72-0844
		$(1.6 \pm 0.5) \ge 10^9$	0.003	25	6	pr	See comments under entry 6.37.	Sell72-0844
		$(3.6 \pm 1.2) \ge 10^9$	0.002	RT	nat	pr	_	Meye71-017
6.2	$Cu^+ + MnO_4^-$ (et)	5 x 10 ⁹	ca.	20	2	pr	Measured by the	Baxe65-0385
			0.08				rate of depletion of the MnO_4^- ab- sorption. Depen- dence of k on $[Cu^{2+}]$ detected.	
		$(6.4 \pm 0.6) \ge 10^9$	0.004	25	nat	pr	Measured by the	Sell72-0844
							rate of depletion of the MnO ₄ ⁻ ab-	
63	$Cu^+ + N_0 Q$	< 10*	_	25	nat	\sim	Estimated from No.	Sel172_0844
				20		,	yields in the γ - radiolysis of Cu ²⁺	
61	Cu ⁺ + .CH.OH →	k. cg 1019		ЯT	4.5		Hartity of product	Bust 77 1500
0.7		<i>M cu</i> . 10	-	R1	7.0	P	inferred from its	Duxt.77-1000
	Guonzon						absorption spectrum.	
		$k_{-} ca. 10^{6} s^{-1}$	_	RT	4.5	Dr	Rate constants esti-	Buxt.77-1500
		of our to t			110	r-	mated from rate of	2000
							growth and decay of	
							CuCH ₂ OH ⁺ .	
6.5	$Cu^+ + (CH_3)_2COH \rightarrow CuCOH(CH_3)_2^+$	ca. 6 x 10 ⁹	-	RT	4.5	pr	Identity of product inferred from its	Buxt.77–1500
6.6	C.CO.H(CH.) + , H+	2 2 - 107		рт	2 4 5	-	Estimated from do	Burt 77 1500
0.0	$Cucon(Cits)_2 + H \rightarrow$ $Cu^+ + products$	5.2 x 10 ⁴	-	A I	3-4.5	pr	pendence of decay of	Buxt.77-1300
							buted to CuOH(CH ₃) ₂ ⁺ on [H ⁺] (see entry 6.5).	
6.7	$Cu^{+} + \cdot CH_{2}CH_{2}OH \rightarrow$ $CH_{2}=CH_{2} + OH^{-} + Cu^{2+}$	1.9 x 10 ¹⁰	-	RT	4.5	γ	Estimated from yields of Cu ^I in γ -radiolysis	Buxt.77-1500
							of $Cu^2 + C_2H_4$ solutions.	
							Products interred from	
60	Cat I CU (CU) COU	0.6 1.09		DT	4.5		data for entry 0.8.	D
0.0	$Cu^+ + CH_2(CH_3)_2COH^+$ $CuCH_2(CH_3)_2COH^+$	2.0 X 10 ²	-	K I	4.5	γ	from its absorp-	Buxt. 77-1500
							mated from yields of	
							lysis of $Cu^{2+} + 2-$	
							methyl_2_propanol +	
							C-H. solutions Final	
							product is CH_=C(CH_)	
6.9	Cu⁺ + acrylamide ≓ Cu-acrylamide⁺	$K = (2.1 \pm 0.1) \text{ x}$ 10 ⁴ dm ³ mol ⁻¹	-	25 ± 2	4	pr	Measured from the effect of [acry]-	Buxt76-1186
		$k_{\rm f}=2 \ge 10^9$			2.5		amide] on the yield	
		$k_{\rm r} = 1.1 \text{ x} 10^{\rm s} \text{ s}^{-1}$			2.5		and rate of formation	
							of Cu-acrylamide ⁺ .	
6.10	Cu ⁺ + benzoquinone	< 10 ⁶	-	25 ± 2	4.9	pr	Estimated from the non-formation of	Sell.76-1134
							benzosemiquinone in the pulse radiolysis of Cu^{2^+} + benzoquinone	
							solutions.	

IABLE O. Copper(I) and copper(III) reactions — Cont	anued
---	-------

No.	Reaction	$k/\mathrm{dm^3\ mol^{-1}\ s^{-1}}$	Ι	t∕°C	pН	Method	Comments	Ref.
6.11	Cu ⁺ + ethylene ≓ Cu–ethylene ⁺	$K = (2.22 \pm 0.1)$ x 10 ⁵ dm ³ mol ⁻¹	-	25±2	4	γ	Measured from he effect of admitting ethylene to solu- tions of Cu-acrylamide ⁺ (see entry 6.9).	Buxt76–1186
6.12	Cu ⁺ + fumaric acid ≓ Cu-fumaric acid ⁺	$k_t = (1.7 \pm 0.4)$ x 10°	-	22 ± 2	3.65	pr	Measured from the rate of formation	Meye75-109
		$k_{\rm r} = (2.4 \pm 0.4)$ x 10 ⁵ s ⁻¹ $K = (7.1 \pm 2.0)$	-	22±2	3.65	pr	of the product in the presence of 1 mel dm ⁻³ methanol	
		$x = (7.1 \pm 2.0)$ x 10 ³ dm ³ mol ⁻¹					moi din methanoi.	
		$K = (9.0 \pm 2.0)$ x 10 ^s dm ³ mol ⁻¹	-	22±2	3.65	pr	Measured from the effect of [fumaric acid] on the yield of Cu-fumaric acid ⁺	Meye75-109
							- in the presence of 1 mol dm ⁻³ meth-	
6.13	Cu ⁺ + iso-butene ⇒ Cu-iso-butene ⁺	$K = (2.7 \pm 0.1)$ x 10 ⁴ dm ³ mol ⁻¹	-	25±2	4	γ	Measured from the effect of admitting iso-butene to solu-	Buxt76–1186
6.14	Cu ⁺ + maleic acid ≓	$k_{\rm f} = (2.0 \pm 0.4)$	_	22 ± 2	3.65	pr	Measured from the	Meye75-109
	Cu-maleic acid ⁺	x 10 ⁹				•	rate of formation	
		$k_{\rm r} = (1.8 \pm 0.4)$ x 10 ⁵ s ⁻¹ $K = (1.1 \pm 0.3)$ = 104 dec3 cm ²	-	22±2	3.65	pr	of the product in the presence of 1 mol dm ⁻³ methanol.	
		$K = (1.3 \pm 0.2)$ x 10 ⁴ dm ³ mol ⁻¹	-	22±2	3.65	pr	Measured from the effect of [maleic acid] on the yield of Cu-maleic acid ⁺ in the presence of	Meye75-109:
6.15	Cu^+ + tetranitro- methane $\rightarrow Cu^{2^+}$ + NO_2 + $C(NO_2)_3^-$	$(4.2 \pm 0.4) \ge 10^8$	-	RT	-	pr	1 <i>M</i> methanol. Measured from the rate of formation of the nitroform	Asmu64–0133
		$(4.7 \pm 0.5) \ge 10^8$	-	25±2	4.9	pr	Measured from the rate of formation of the nitroform anion.	Sell.76-1134
						γ	F	
	Cu(1) Complexes CuL ⁺ (L = 5,7,7,12,14,14–1	hexamethyl=1,4,8,11-tetra	azacyclotet	radeca-4,11	!-diene)		N N	
6.16	CuL ⁺ + Co(bpy) ₃ ³⁺ (et)	$(1.2 \pm 0.1) \ge 10^7$	0.016– 0.028	RT	7.0	pr	Measured in the presence of 1 mol dm ^{-s} 2-methyl- 2-propagol	Tait76–1039
6.17	CuL ⁺ + CoL'(OH ₂)(OH) ²⁺	< 10 ³	0.016– 0.028	RT	7.0	pr	Measured in the presence of 1 mol dm ^{-s} 2-methyl-	Tait76–1039

(L' = 5, 7, 7, 12, 14, 14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene).

TABLE 6. Copper(I) and copper(III) reactions - Continued

No.	Reaction	$k/\mathrm{dm^{3}\ mol^{-1}\ s^{-1}}$	Ι	t∕°C	pН	Method	Comments	Ref.
6.18	CuL ⁺ + Co(en)s ^{s+}	< 10 ³	0.016– 0.028	RT	7.0	pr	Measured in the presence of 1 mol dm ⁻³ 2-methyl-	Tait76–1039
6.19	CuL ⁺ + Co(NH ₃) ₆ ³⁺	< 10 ³	0.016– 0.028	RT	7.0	pr	Measured in the presence of 1 mol dm ⁻³ 2-methyl- 2-propagol.	Tait76–1039
6.20	$CuL^+ + CoL'(OH)_2^+$	< 10 ³	0.016– 0.028	RT	7.0	pr	Measured in the presence of 1 mol dm ⁻³ 2-methyl- 2-propanol.	Tait76–1039
	(L' = 2,3,9,10-tetramethyl-	-1,4,8,11-tetraazacyclotet	radeca-1,3,7	7,10-tetra	ene).			
6.21	CuL ⁺ + Cr(bpy) ₅ ³⁺ (et)	$(3.7 \pm 0.4) \ge 10^{6}$	0.016– 0.028	RT	7.0	pr	Measured in the presence of 1 mol dm ⁻³ 2-methyl- 2-propanol.	Tait76–1039
6.22	CuL ⁺ + Fe(bpy)s ³⁺	< 10 ^s	0.016– 0.028	RT	7.0	pr	Estimated in the presence of 1 mol dm ⁻³ 2-methyl- 2-propagol.	Tait76–1039
6.23	$CuL^+ + H_sO^+$ (pt)	$(5.0 \pm 0.5) \ge 10^{6}$	0.06– 0.3	RT	<1.25	pr	Reaction may involve proton transfer to the metal centre to give a hydrido	Tait76–1039
6.24	$CuL^+ + H_2PO_4^-$	< 104	0.01- 0.1	RT	5.50	pr	complex.	Tait76–1039
6.25	CuL ⁺ + N₂O (et or O at)	$(1.7 \pm 0.2) \ge 10^6$		RT	7.0	pr	Measured in the presence of 1 mol dm ⁻³ 2-methyl- 2-propanol. Reaction possibly involves two electron oxidation to Cu(III) complex.	Tait76–1039
6.26	$CuL^+ + O_2 \rightarrow CuLO_2^+$	$(2.6 \pm 0.3) \ge 10^7$	-	RT	7.0	pr	Product does not transfer an elec- tron to 1,4-benzo- quinone, and identi- fied therefore as O ₂	Tait76–1039
6.27	$CuL^+ + Ru(NH_3)e^{3+}$ (et)	$(7.2 \pm 0.7) \ge 10^4$	0.016– 0.028	RT	7.0	pr	adduct. Measured in the presence of 1 mol dm ⁻³ 2-methyl-2-	Tait76–1039
6.28	CuL ⁺ + Ru(NH ₃) ₅ NO ³⁺	< 10ª	0.016– 0.028	RT	7.0	pr	propanol. Estimated in the presence of 1 mol dm ⁻³ 2-methyl-2-	Tait76–1039
6.29	CuL ⁺ + acetic acid	< 104	0.015- 0.06	RT	4.85	pr	propanol. Estimated in the presence of 1 mol dm ⁻³ 2-methyl-2-	Tait76–1039
6.30	CuL ⁺ + 9,10-anthra- quinone-2,6-disul- phonate (et)	$(4.3 \pm 0.4) \ge 10^9$	0.004	RT	7.0	pr	propanol. Measured in the presence of 1 mol dm ⁻³ 2-methyl-2- propanol.	Tait76–1039

TABLE 0. Copper(I) and copper(III) reactions — Continue	TABLE 6.	Copper(I)	and	copper(III)	reactions	_	Continue
---	----------	-----------	-----	-------------	-----------	---	----------

No.	Reaction	$k/dm^3 mol^{-1} s^{-1} a$	Ι	t∕°C	рН	Method	Comments	Ref.
6.31	CuL ⁺ + 9,10-anthra- quinone-2-sulphon- ate (et)	$(1.1 \pm 0.1) \ge 10^{\circ}$	0.004	RT	7.0	pr	Measured in the presence of 1 mol dm ⁻³ 2-methyl-2-	Tait76–1039
6.32	CuL ⁺ + 1,4-benzo- quinone (et)	$(2.6 \pm 0.3) \ge 10^9$	0.004	RT	7.0	pr	Measured in the presence of 1 mol dm ⁻³ 2-methyl-2- propanol.	Tait76–1039
6.33	CuL ⁺ + 3-benzoyl-	no reaction observed	0.004	RT	7.0	pr	-	Tait76–1039
6.34	CuL^+ + eosin Y	no reaction observed	0.004	RT	7.0	pr	-	Tait76–1039
6.35	CuL ⁺ + fluorescein	no reaction observed	0.004	RT	7.0	pr	-	Tait76–1039
6.36	CuL ⁺ + methyl iodide (et or S _N 2) Cu(III) Reactions	$(3.1 \pm 0.3) \ge 10^{6}$	0.01	RT	9.2	pr	Measured in the presence of 1 mol dm ⁻³ 2-methyl-2- propanol.	Tait76–1039
	Cu(III) aquo ion (Cu(OH) ₃ , C	Cu(OH)2 ⁺ and CuOH ²⁺) ^b						
6.37	$CuOH^{2^+} \rightleftharpoons Cu(OH)_{2^+} + H^+$	$\mathrm{p}K=2.4\pm0.2$	var	25	0.6	pr	Degree of hydro– lysis deduced from	Sell72-0844
							conductivity experi-	
							ments (see ref. $70, 0512$)	
							Note: $\mathbf{p}K$ of this value	
							is also in keeping	
							with the data of	
							Baxendale et al (ref.	
							65-0394) and of	
							Meyerstein (ref. 71-	
							0174) taking into	
							account equilibrium	
		$pK = 3.05 \pm 0.05$	var	RT	2-7	Dr ·	_	Baxe65-0394
6.38	$Cu(OH)_2^+ \rightleftharpoons$	$k_{\rm f} = (4.2 \pm 1.4)$	var	RT	3.50	pr	Estimated from decay	Baxe65-0394
	CuOH ⁺ + OH	x 10 ⁴ s ⁻¹					of Cu ^{III} in the pre-	
		and $K = 1.3 \text{ x}$					sence of Br ⁻ , CH ₃ OH,	
		10 ⁻⁴ dm ³ mol ⁻¹		_			H ₂ O ₂ etc. Values of	
		$k_{\rm f} = (2.8 \pm 1.0)$	var	RT	3.65	pr	$k_{\rm r}$ taken to be same	
		$x 10^{\circ} s^{\circ}$					as $k(Cu^{3+} + OH)$.	
		$10^{-5} dm^{3} mol^{-1}$						
6.39	$Cu(OH)_2^+ \rightleftharpoons$	pK > 6	var	25	0-6	pr	-	Sell72-0844
6.40	$Cu(OH)_{2}^{+} + Cu^{+}$ (et)	$(1.8 \pm 0.6) \times 10^{9}$	0.003	25	4.8	Dr	Estimated from decay	Sell72-0844
		(,				r-	of Cu ^{III} in deaerated	
		$(1.6 \pm 0.5) \ge 10^{9}$	0.003	25	6	pr	Possibly some contri-	Sell72-0844
							bution from Cu(OH) _s + Cu ⁺ .	
		$(3.6 \pm 1.2) \ge 10^9$	0.002	RT	nat	pr	Possibly some con- tribution from $Cu(OH)_{0} + Cu^{+}$	Meye71-017
6.41	$Cu(OH)_2^+ + Cu(gly)^+$ (et?)	$(8.1 \pm 0.5) \ge 10^7$	0.004	RT	5.5	pr		Meye71-077

No.	Reaction	$k/\mathrm{dm^3\ mol^{-1}\ s^{-1}}$	Ι	t∕°C	рН	Method	Comments	Ref.
6.42	$Cu(OH)_2^+ + Cu(OH)_2^+$ (af)	$2k = (4.6 \pm 0.6)$ x 10 ⁷	0.002	RT	6	pr	Estimated from the decay of Cu ^{III} in N ₂ O saturated solu-	Meye71-0174
		$2k < 5 \ge 10^7$	0.004	25	6	pr	Possibly some contri- bution from $Cu(OH)_{3}^{+}$ + $Cu(OH)_{3}$ and $Cu(OH)_{3}$ + $Cu(OH)_{3}$.	Sell72-0844
6.43	$Cu(OH)_2^+ + CuNO_2^+$ (et)	ca. 3 x 10°	ca. 0.002	RT	5.2	pr	Estimated from decay of Cu^{m} in presence	Meye71-0174
6.44	Cu(OH)2 ⁺ + mena- quinone (?)	$(2.0 \pm 0.2) \ge 10^9$	-	RT	9.0, 10.6	pr	40% of Cu^{III} claimed to react by elec- tron transfer. Cu^{III} formed by OH + $Cu(ClO_4)_2$.	Rao.73–1047
		-	-	RT	8.0	pr	20.3% electron trans- fer. Cu^{III} formed by OH + CuSO4.	Rao.73-1047
		-			10.6	pr	39% electron transfer. Cu ^{III} formed by OH +	Rao.73–1047
	Cu(III) Complexes. (The pre-	cise nature of these com	plexes is un	certain: al	ll were for	med by OH	I oxidation of the correspond	ding Cu ^{II}
6.45	$Cu^{III}(NH_s)_n + Cu^{III}(NH_s)_n (af?)$	complex). $2k = (3.0 \pm 0.5)$ x 10 ⁷	<0.008	RT	11.1	pr	-	Meye71-0775
6.46	$Cu^{III}(\alpha-alanine)_2$ (int et?)	$(8.0 \pm 2.4) \ge 10^3$	≤0.002	RT	6.3	pr	-	Meye71-0775
6.47	$\operatorname{Cu}^{\mathrm{III}}(\beta-\operatorname{alanine})_2$ (int et?)	$(7.0 \pm 2.1) \ge 10^3$	≤0.002	RT	5.8	pr	-	Meye71-0775
6 .48	$Cu^{III}(\alpha - amino - n - butyric acid) (int et?)$	$(5.0 \pm 1.5) \ge 10^3$	<0.002	RT	6.1	pr	-	Meye71-0775
6.49	$\operatorname{Cu}^{\mathrm{m}}(\beta-\operatorname{amino}-\mathbf{n}-$	$(4.5 \pm 1.3) \ge 10^3$	<0.002	RT	6.0	pr	-	Meye71-0775
6.50	$Cu^{III}(\gamma-amino-n-buttyric acid), (int et?)$	$(1.2 \pm 0.4) \times 10^{3}$	<0.002	RT	4.8	pr	-	Meye71-0775
6.51	Cu ^m (α-amino- iso-butyric acid) ₂	$(1.5 \pm 0.5) \ge 10^3$ s ⁻¹	<0.002	RT	6.2	pr	-	Meye71-0775
	(int et?)	$(2.5 \pm 0.8) \ge 10^3$ s ⁻¹	≤0.002	RT	7.3	pr	-	Meye71-0775
6.52	Cu ^{III} (en) _n (int et?)	$< 3 s^{-1}$	0.002	RT	5.8	pr	-	Meye71-0775
6 5 9		120 s *	0.002	KI DT	11.0	pr	-	Meye/1-0//5
0.55	$Cu^{(en)}n + Cu^{(en)}n$	$2\kappa = 3.5 \times 10^3$ $2k = 3.0 \times 10^7$	0.002	RT RT	5.8 11.6	pr p-	-	Meye 71 0775
6.54	Cu ^{III} (gly) ₂ (int	$2n = 3.9 \times 10^{7}$ (6.0 ± 2.0) x 10 ³	<0.002	RT	6.1	pr	-	Meye71-0775
	,	$(2.2 \pm 0.7) \ge 10^4$ s ⁻¹	<0.002	RT	7.5	pr	-	Meye71-0775

TABLE 6.	Copper(I)	and	copper(III)	reactions	_	Continued
----------	-----------	-----	-------------	-----------	---	-----------

^aIf the data source gives no errors none are shown here but they should be assumed to be at least $\pm 25\%$ (or $\pm 50\%$ for 2k). ^bThe form of Cu^{III} reacting reinterpreted from original references according to equilibria 6.37 and 6.39.
TABLE 7. Europium(II) reactions

No.	Reaction	$k/\mathrm{dm^3\ mol^{-1}\ s^{-1}}$	Ι	t∕°C	рН	Method	Comments	Ref.
	Eu_{aq}^{2+} (Includes only t	hose rate constants measure	ed by pulse r	adiolysis).			
7.1	$Eu^{2+} + BrO_3^-$	< 104	<i>ca.</i> 0.01	RT	nat	\mathbf{pr}	-	Fara.72-0065
7.2	$Eu^{2+} + Co(NH_3)_5Cl^{2+}$	90 ± 9	0.06	25	6	pr	-	Fara.73-0107
	(et-is)	$(4.7 \pm 0.5) \ge 10^2$	1.0	25	6	pr	-	Fara.73-0107
			(NaClO ₄)					
		$(5.3 \pm 0.5) \ge 10^2$	1.0 (NaCl)	25	6	pr	-	Fara.73–0107
7.3	$Eu^{2+} + Co(NH_3)_5CN^{2+}$	< 30	0.06	25	6	pr	-	Fara.73-0107
7.4	$Eu^{2+} + Co(NH_3)_5F^{2+}$	$(2.8 \pm 0.3) \times 10^3$	0.06	25	6	pr	_	Fara.73-0107
	(et-is)	$(1.5 \pm 0.2) \times 10^4$	1.0 (NaClO ₄)	25	6	pr	-	Fara.73-0107
		$(2.4 \pm 0.2) \ge 10^4$	1.0 (NaCl)	25	6	pr	-	Fara.73-0107
7.5	$Eu^{2+} + Co(NH_{2})OH^{2+}$	ca. 100	0.3	25	_	Dr	_	Fara.73-0107
	(et-is)	001200	0.0	20		P-		
7.6	$Eu^{2^+} + Co(NH_3)_5N_3^{2^+}$	< 30	0.06	25	6	pr	-	Fara.73-0107
7.7	$Eu^{2+} + Co(NH_3)_5NCS^{2+}$	< 10	0.06	25	6	pr	-	Fara.73-0107
7.8	$Eu^{2+} + Cu^{2+}$	< 104	<i>ca</i> . 0.01	RT	nat	pr	-	Fara.72-0065
7.9	$\mathrm{Eu}^{2^+} + \mathrm{H}_2\mathrm{O}_2$	< 104	<i>ca</i> .	RT	nat	\mathbf{pr}	-	Fara.72-0063
7.10	Eu ²⁺ + IO ₃ ⁻	< 104	0.01 ca.	RT	nat	pr	-	Fara.72-0065
7.11	$Eu^{a+} + MnO_4^-$ (et)	6.5 x 10°	<i>ca</i> .	RT	nat	pr	-	Fara.72-0065
7.12	$Eu^{2^+} + NO_2^-$ (et)	6.2 x 10 ⁵	<i>ca</i> .	RT	nat	pr	-	Fara.72-0065
7.13	$Eu^{2+} + NO_3^-$	< 104	<i>ca</i> .	RT	nat	pr	-	Fara.72-0065
7.14	$Eu^{2+} + N_2O$	< 104	<i>ca</i> .	RT	nat	pr	-	Fara.72-0065
7.15	$Eu^{2+} + O_2$	< 104	<i>ca</i> .	RT	nat	pr	-	Fara.72-0063
7.16	Eu ²⁺ + OH (et)	9 x 10 ⁸	_	RT	nat	pr	Measured from the rate of decay of Eu ²⁺ in the absence of OH sca- vengers. Major com-	Fara.72–0065
							peting reaction is OH	
		$(1.3 \pm 0.2) \ge 10^{9}$	-	RT	2	pr	- UII.	Pika73-1084
		3.8 x 10°	-	RT	nat	pr	-	Gord65-079
7.17	$Eu^{2+} + Ru(NH_3)_5Br^{2+}$	ca. 3 x 10 ³	0.06	25	6	pr	-	Fara.73-0107
7.18	$Eu^{2+} + Ru(NH_3)_5Cl^{2+}$ (et-is)	$(1.5 \pm 0.2) \ge 10^4$	0.06	25	6	pr	-	Fara.73-0107
7.19	Eu ²⁺ + Ru(NH ₃) ₅ H ₂ O ³⁺	$\leq 2 \ge 10^3$	0.3	25	2	pr	-	Fara.73-0107
7.20	$Eu^{2+} + Ru(NH_3)_6^{3+}$	ca. 1 x 10 ³	0.06	25	6	pr	-	Fara.73-0107
	(et-is)	$(2.3 \pm 0.2) \ge 10^3$	1.0 (NaClO ₄)	25	6	pr	-	Fara.73-0107
		$(1.5 \pm 0.2) \ge 10^4$	1.0 (NaCl)	25	6	\mathbf{pr}	-	Fara.73-0107
7.21	$Eu^{2+} + Ru(NH_3)_5OH^{2+}$	$(6.0 \pm 0.6) \ge 10^4$	0.06	25	6	pr	-	Fara.73-0107
	(et-is)	$(1.0 \pm 0.1) \ge 10^{5}$	0.3	25	6	pr	-	Fara.73-0107

.

No.	Reaction	$k/\mathrm{dm^3\ mol^{-1}\ s^{-1}}$	Ι	t∕°C	рН	Method	Comments	Ref.
8.1	$FeH^{a+} + H^+ \rightarrow Fe^{a+} + H_2$	$(1.06 \pm 0.1) \ge 10^4$	0.1- 1.0	19–24	0.1- 1.0	pr	H ₂ product charac- terised by vpc; Fe ³⁺ by its absorp- tion spectrum.	Jays69-0434
8.2	$FeHO_{2}^{a+} \rightarrow Fe^{a+} + HO_{2}^{-}$	$(1.8 \pm 0.1) \ge 10^{3}$ s ⁻¹ $E_{a} = 8.8 \pm 0.8 \text{ kJ}$	1.0 (HClO₄/ NaClO₄)	20,25	0.1- 0.3	pr	Fe ^m detected as product.	Jays73–003
		mol ⁻¹	1.0	00	0.1		M 16 d	1 79 009
8.3	$FeHO_2^{a^+} + Fe^{a^+} \rightleftharpoons$ $FeHO_2Fe^{a^+}$	$K = 22 \pm 2 \mathrm{dm^3}$ $\mathrm{mol^{-1}}$	1.0 (HClO ₄ / NaClO ₄)	20	0.1- 0.3	pr	Measured from the effect of [Fe ^{II}] on the absorption of	Jays 73–003
		$K = 27 \pm 2 \mathrm{dm^3}$ $\mathrm{mol^{-1}}$	1.0 (HClO ₄ / NaClO ₄)	25	0.1- 0.3	pr	FeHO ₂ Fe ⁴⁺ .	
		$K = 33 \pm 1 \text{ dm}^3$ mol^{-1}	1.0 (HClO ₄ / NaClO ₄)	30	0.1- 0.3	pr		
		$K = 37.5 \text{ dm}^3$ mol^{-1}	1.0 (HClO ₄ / NaClO ₄)	40	0.1 - 0.3	pr		
8.4	FeHO₂²+ + SO₄²- ≓ FeHO₂SO₄	$K = 90 \pm 20 \text{ dm}^3$ mol^{-1}	1.0 (HClO ₄ / NaClO ₄)	22±1	0.1– 0.3	pr	Measured from the effect of $[SO_4^{2^-}]$ on the absorption of FeHO ₄ Fe ⁴⁺	Jays73–102
8.5	$\begin{array}{r} \text{FeHO}_2\text{Fe}^{4^+} \rightarrow \\ \text{Fe}^{3^+} + \text{HO}_2^- + \text{Fe}^{2^+} \end{array}$	$(1.8 \pm 0.1) \ge 10^4$ s ⁻¹	1.0 (HClO₄/ NaClO₄)	20	0.1- 0.3	pr	Fe ^m detected as product.	Jays73-003
		$(2.5 \pm 0.1) \ge 10^4$ s ⁻¹ $E_a = 47.7 \pm 4.6 \text{ kJ}$	1.0 (HClO ₄ / NaClI ₄)	25	0.1- 0.3	pr		
8.6	FeHO₂Fe ⁴⁺ + SO₄ ^{2−} ≓ FeHO₂FeSO₄ ²⁺	$\frac{\text{mol}^{-1}}{\text{mol}^{-1}} \pm 20 \text{ dm}^3$	1.0 (HClO ₄ / NaClO ₄)	22±1	0.1- 0.3	pr	Measured from the effect of $[SO_4^{2-}]$ on the absorption	Jays73–102
8.7	$FeHO_2SO_4 \rightarrow FeSO_4^+ + HO_2^-$	ca. 10 ⁴ s ⁻¹	-	22±1	0.1- 0.3	pr	or renu2re". FeSO4 ⁺ character- ised by its absorption spectrum	Jays73–102
8.8	$FeHO_2FeSO_4^{2^+} \rightarrow FeSO_4Fe^{3^+} + HO_2^-$	<i>ca.</i> 10 ⁴ s ⁻¹	-	22±1	0.1- 0.3	pr	FeSO ₄ Fe ^{s+} characterised by its absorption	Jays73–102

TABLE 8. Iron(II) and iron(III) radical complex reactions

TABLE	9.	Mercury(0)	and	mercury(I)	reactions
-------	----	------------	-----	------------	-----------

No.	Reaction	$k/dm^3 mol^{-1} s^{-1} a$	Ι	t∕°C	рН	Method	Comments	Ref.
9.1	$\begin{array}{l} Hg^{0} \\ Hg^{0} + Hg^{a+} \rightarrow Hg_{2}^{a+} \end{array}$	$(5.9 \pm 0.6) \ge 10^8$	-	RT	3-4	pr	Measured from the pH dependence of the formation of	Fuji73–1080
9.2	$\begin{array}{r} Hg^{o} + HgOH^{+} \rightarrow \\ Hg_{2}^{2^{+}} + OH^{-} \end{array}$	$(5.0 \pm 0.5) \ge 10^8$	-	RT	3-4	pr	Hg2 ²⁺ . Measured from the pH dependence of the formation of Hg2 ²⁺ .	Fuji73–1080
9.3	$Hg^{o} + Hg(OH)_{a} \rightarrow Hg_{a}^{a+} + 2OH^{-}$	< 5 x 10 ⁷	-	RT	3-4	pr	Measured from the pH dependence of the formation of $Hg_2^{2^+}$. See also comments for entry 9.6.	Fuji73–1080
9.4	$Hg_{2}^{H} + Hg_{2}^{+} (et?)$ $Hg(l)$	$2k = (1.4 \pm 0.2)$ x 10 ¹⁰	<0.017	RT	1.9	pr	Rate constant cal- culated taking $\epsilon_{285} = 9000 \text{ dm}^3 \text{ mol}^{-1} \text{ cm}^{-1}.$	Fara.72–029
9.5	Hg_{aq}^{+} (and hydrolysed forms) $Hg^{+} \rightleftharpoons HgOH + H^{+}$	pK = 5.1	var	RT	4-7	pr	Measured from the effect of pH on the absorption spectrum of Hg ⁺	- Fuji75–1044
9.6	$Hg^+ + Hg^+ \rightarrow Hg^0 + Hg^{2+}$	$2k = (4.9 \pm 0.5)$	$\rightarrow 0$	RT	2.0	pr	Transient product	Fuji73–1080
		$2k = (5.2 \pm 0.5)$ x 10°	$\rightarrow 0$	RT	4.3	pr	is dependent on $[Hg^{II}]$, and which gives $Hg_2^{2^+}$. These results taken to indicate that Hg^+ + Hg^+ results in dismutation. Rate constants calculated taking $\epsilon_{255} = 1.4 \text{ x}$ $10^4 \text{ dm}^3 \text{ mol}^{-1} \text{ cm}^{-1}$.	
	Hg ⁺ + Hg ⁺ (→ Hg ₂ ²⁺)	$2k = (8.0 \pm 1.0)$ x 10°	<0.017	RT	1.9	pr	Products not char- acterised, but reaction considered to involve dimerisation. Rate constant calculated taking $\epsilon_{272} = 7800 \text{ dm}^3$ mol ⁻¹ cm ⁻¹ .	Fara.72–029
9.7	HgOH + HgOH → $Hg_2O + H_2O$ or $Hg_2(OH)_2$	$2k = (4.4 \pm 0.4)$ x 10°	< 0.1	RT	-	pr	Products identified from pH dependence of their absorption spectra. Rate con- stant calculated taking $\epsilon_{200} = 5300 \text{ dm}^3 \text{ mol}^{-1}$ cm ⁻¹	Fuji75–1044
9.8	$Hg^{I} + Hg^{I}$	$2k = (4.9 \pm 1.0)$	-	RT	1.2	pr	-	Pika75-1218
		$2k = (5.1 \pm 1.0)$ x 10°	-	RT	3.15	pr	-	Pika75–1218
		$2k = (3.5 \pm 0.7)$	-	RT	4.8	pr	-	Pika75–1218
		2k = ca. 1.1 x	-	RT	10.2	pr	-	Pika75-1218

No.	Reaction	$k/\mathrm{dm^3\ mol^{-1}\ s^{-1}\ a}$	Ι	t∕°C	pН	Method	Comments	Ref.
9.8	$Hg^{I} + Hg^{I}$	2k = ca. 1.5 x	-	RT	11.0	pr	-	Pika75-1218
		$2k = (7.0 \pm 1.4)$	1(KOH)	RT	14	Dr	_	Pika75-1218
		x 10 ⁹	+ data	at interm	ediate nH's	1		Pika75-1218
9.9	$Hg^{I} + O_{2}$ (et or af)	$(4.0 \pm 0.6) \times 10^8$	-	RT	2.7	Dr	-	Pika75-1218
		$(12 \pm 0.2) \times 10^9$	_	RT	11.2	- DF	_	Pike 75-1218
		$(1.2 \pm 0.2) \times 10^{-10}$	1/2010	DT	11.2	PI	_	Dil. 75 1910
		$(1.0 \pm 0.2) \times 10^{-5}$			14	pr	-	F1Ka (3-1210
	understanding of wi with caution. Note a 73-1080) do not cou	ny this should be, and we loo that the spectral data in respond.	suggest, the for Hg ⁺ obt	erefore, th ained by	at the react Faraggi and	tion mechan Amozig (re	nisms written above shoul ef. 72–0290) and by Fujit	d be viewed ta et al. (ref.
	Hg(I) Complexes							
	HgBr and related species							
9.10	$HgBr + HgBr \rightarrow Hg_2Br_2$	$2k = 8 \ge 10^9$	-	RT	-	pr	Product charac- terised by its absorption spec- trum.	Jung76–1042
		$2k = (1.0 \pm 0.1)$	-	RT	-	pr	-	Fuji76–1087
		x 1010						_
9.11	HgBr + O₂ → HgBrO₂	> 109	-	RT	-	pr	Product charac- terised by con- ductivity experi- ments and non- formation of $O_2^{-}/$ HO ₂ absorption	Jung76–1042
012	HgBr + 1 4-henzo-	> 109	_	RT	5_5 5	Dr	Renzosemiquinone	Jung 76-104
7.12	quinone \rightarrow HgBr ⁺ + (1,4-benzoquinone) ⁻	/ 10	-	RI	0-0.0	þr	product characterised by its absorption	Jung 10-10-12
0.12	HaDa I tatuanitus	9.9 - 109		DT		-	Nitroform online and	Inna 76 104
9.13	$\begin{array}{rcl} \text{HgBr} + \text{tetranitro-} \\ \text{methane} \rightarrow \text{HgBr}^+ + \\ \text{C}(\text{NO}_2)_3^- + \text{NO}_2 \end{array}$	2.2 x 10°	-	KI	-	pr	duct characterised by its absorption spectrum.	Jung 70–1042
9.14	$HgBrO_{2} + 1,4-benzo-quinone \rightarrow HgBr^{+} + O_{2} + (1,4-benzo-quinone)^{-}$	7 x 10 ^a	-	RT	-	pr	Benzosemiquinone product charac- terised by its absorption spec- trum.	Jung76–1042
9.15	$HgCl + HgCl \rightarrow$	$2k = (8.0 \pm 0.5)$	_	RТ	_	Dr	Product charac-	Nazh.73-004
,	Hg ₂ Cl ₂	x 10 ⁹				Pr	terised by its absorption spec- trum, and gravi- metrically giving $G(\text{Hg}_2\text{Cl}_2) = 3.0$ in solutions containing 2-propanol.	
9.16	$\mathrm{HgCl}+\mathrm{O_2}\rightarrow\mathrm{HgClO_2}$	$(1.0 \pm 0.3) \ge 10^9$	-	RT	-	pr	Product charac- terised by conduc- tivity experiments and non-formation	Nazh.73-004
0.17		1010		DØ			of O_2^-/HO_2 absorption.	N 1 50 000
9.17	$HgCl + OH \rightarrow$ $HgCl + OH^{-}$	ca. 10 ¹⁰	-	КТ	-	pr	Froducts charac- terised by conductivity	Nazh.73-004
9.18	HgCl + 1.4-henzo-	3.0×10^{9}	_	RT	_	Dr	Benzosemiquinone	Jung. 76-1049
7.10	quinone \rightarrow HgCl ⁺ + (1,4-benzosemi- guinone) ⁻	$(3.9 \pm 0.4) \ge 10^9$	-	25 ± 2	5.1	pr	product charac- terised by its	Sell.76–1134
9.19	$HgCl + tetranitro-methane \rightarrow HgCl++ C(NO2)3- + NO2$	$(4.5 \pm 0.3) \ge 10^9$	-	RT	5–5.5	pr	Nitroform anion product charac- terised by its absorption spectrum.	Nazh.73-004

TABLE 9. Mercury(0) and mercury(I) reactions - Continued

TABLE 9.	Mercury(0)	and	mercury(I)	reactions -	- Continued
----------	------------	-----	------------	-------------	-------------

No.	Reaction	$k/dm^3 mol^{-1} s^{-1} a$	Ι	t∕°C	pН	Method	Comments	Ref.
9.20	HgClO ₂ + 1,4-benzo- quinone \rightarrow HgCl ⁺ + O ₂ + (1,4-benzo- semiquinone) ⁻ HaCN	7 x 10°	_	RT	-	pr	Benzosemiquinone product charac- terised by its absorption spectrum.	Jung76–1042
9.21	$H_gCN + H_gCN \rightarrow$ $H_{ga}(CN)_2$	$2k = (3.4 \pm 0.5)$ x 10°	< 0.2	RT	-	pr	Product charac- terised by its absorption spec- trum and decay to give Hg ⁰ and Hg(CN) ₂ . Rate constant cal- culated taking ϵ_{285} = 3800 dm ³ mol ⁻¹ cm ⁻¹ .	Fuji75–1203
		$2k = 1.2 \ge 10^{10}$	-	RT	-	pr	-	Jung76–1042
9.22	$HgCN + O_2 \rightarrow HgCN^+ + O_2^-$	4 x 10°	-	RT	-	pr	O ₂ ⁻ product charac- terised by its absorption spectrum, lifetime in neutral solution, and con- ductivity measure-	Jung76–1042
							ments.	
9.23	HgCN + OH (et)	3.1 x 10°	-	RT	-	pr	Estimated from initial decay of HgCN in the absence of OH scavengers	Fuji75–1203
9.24	HgCN + ∙CH₂OH	4.0 x 10°	-	RT	-	pr	Estimated from initial decay of HgCN in the presence of	Fuji75–1203
9.25	HgCN + CH₃CHOH (et to HgCN?)	3.9 x 10°	-	RT	-	pr	methanol. Estimated from initial decay of HgCN in the presence of	Fuji75–1203
9.26	HgCN + (CH₃)₂CHOH → Hg ^o + CN ⁻ + CH₃COCH₃ -	2.4 x 10⁰ + H⁺	-	RT	-	pr	Estimated from initial decay of HgCN in the presence of 2- propanol. G(acetone) = 3.0	Fuji75–1203
9.27	HgCN + ·CH ₂ C(CH ₃) ₂ OH (af?)	1.6 x 10 ⁹	-	RT	-	pr	measured. Estimated from initial decay of HgCN in the presence of 2- methyl-2-propanol. Isobutene not detected as product	Fuji75–1203
9.28	HgCN + 1,4-benzo- quinone \rightarrow HgCN ⁺ + (1,4-benzoquinone) ⁻	3.5 x 10°	-	RT	-	pr	Benzosemiquinone product charac- terised by its	Jung76–1042
9.29	HgCN + tetranitro- methane \rightarrow HgCN ⁺ + C(NO ₂) ₃ ⁻ + NO ₂	3.1 x 10°	-	RT	-	pr	Nitroform anion product charac- terised by its absorption spectrum.	Jung76–1042
0.30	Hgl + Hgl + Hgl	$2k = 50 = 10^{9}$		рт			Product charge	Jung 76 1049
9.00	ngi + ngi → ng2i2	$2n = 3.0 \times 10^{-5}$	-	A1	_	PI	terised by its absorption spectrum.	Jung., 70–1042

No.	Reaction	$k/dm^3 mol^{-1} s^{-1} a$	Ι	t/°C	pН	Method	Comments	Ref.
9.31	$\mathrm{HgI}+\mathrm{O_2}\rightarrow\mathrm{HgIO_2}$	> 10°	-	RT	-	pr	Product charac- terised by con- ductivity experi- ments and non- formation of $O_2^{-}/$ HO ₂ absorption.	Jung76–1042
9.32	HgI + 1,4-benzo- quinone \rightarrow HgI ⁺ + (1,4-benzoquinone) ⁻	> 10 ⁹	-	RT	-	pr	Benzosemiquinone product charac- terised by its	Jung76–1042
9.33	HgI + tetranitro- methane \rightarrow HgI ⁺ + C(NO ₂) ₃ ⁻ + NO ₂	1.4 x 10°	-	RT	-	pr	absorption spectrum. Nitroform anion product charac- terised by its absorption spectrum.	Jung76–1042
9.34	$\begin{array}{l} HgSCN \\ HgSCN + HgSCN \rightarrow \\ Hg_2(SCN)_2 \end{array}$	$2k = 6.0 \text{ x } 10^9$	-	RT	-	pr	Product charac- terised by its	Jung76–1042
9.35	$\mathrm{HgSCN}+\mathrm{O_2}\rightarrow\mathrm{HgSCNO_2}$	> 10°	-	RT	-	pr	Product charac- terised by con- ductivity experi- ments and non-	Jung76–1042
							formation of $O_2^-/$	
9.36	HgSCN + 1,4-benzo- quinone \rightarrow HgSCN ⁺ + (1,4-benzoquinone) ⁻	> 10°	-	RT	-	pr	Benzosemiquinone product charac- terised by its	Jung76–1042
9.37	HgSCN + tetranitro- methane \rightarrow HgSCN ⁺ + C(NO ₂) ₃ ⁻ + NO ₂	2.8 x 10°	-	RT	-	pr	Nitroform anion product charac- terised by its	Jung76–1042
9.38	$\begin{array}{l} \text{HgSCNO}_2 \ + \ 1,4-\text{benzo-} \\ \text{quinone} \ \rightarrow \ \text{HgSCN}^+ \ + \ \text{O}_2 \ - \\ (1,4-\text{benzoquinone})^- \end{array}$	1.0 x 10°	-	RT	-	pr	Benzosemiquinone product charac- terised by its absorption spectrum.	Jung76–1042

TABLE 9. Mercury(0) and mercury(I) reactions — Continued

TABLE 10. Indium(II) reactions

No.	Reaction	$k/dm^3 mol^{-1} s^{-1} a$	Ι	t∕°C	pН	Method	Comments	Ref.
	In ²⁺							
10.1	\ln^{2^+} + \ln^{2^+} (et or af)	$2k = ca. 1.2 \text{ x}$ 10^{9}	0.7 (LiClO₄)	RT	3	pr	Reinterpreted from data in ref. 76–1087.	Tayl.69–0971
		$2k = (1.6 \pm 0.2)$ x 10°	0.0075	25	3.6	pr	Measured in the pre- sence of 1 mol/dm ³ 2-methyl-2-propanol taking $\epsilon_{250} = 7000$ dm ³ mol ⁻¹ cm ⁻¹ .	R.M. Sellers, unpub. data
10.2	In ²⁺ + OH (et)	$2k = (4.9 \pm 0.7)$ x 10°	-	25	3.6	pr	Measured from the initial decay of In ²⁺ in the absence of OH scavengers.	R.M. Sellers, unpub. data
10.3	In ²⁺ + N ₂ O	< 10 ⁶	-	25	nat	γ	Estimated from the values of $G(N_2)$ measured in the γ -radiolysis of In ³⁺ + N ₂ O solutions.	Sell72-0844

"If the data source gives no errors none are shown here but they should be assumed to be at least $\pm 25\%$ (or $\pm 50\%$ for 2k).

TABLE 1	1. Iridium(II)	reactions
---------	----------------	-----------

No.	Reaction	$k/\mathrm{dm^3\ mol^{-1}\ s^{-1}\ a}$	Ι	t/°C	рН	Method	Comments	Ref.
11.1	$\begin{array}{l} Ir^{\Pi} \left(from \; e_{aq}^{-} \; + \; IrCl_{\theta}{}^{3-} \right) \\ Ir^{\Pi} \; + \; Ir^{\Pi} \qquad (\mathrm{dis}) \end{array}$	$2k = (3.3 \pm 0.4)$ x 10 ⁹	0.0018	RT	-	pr	-	Bros73-1066

"If the data source gives no errors none are shown here but they should be assumed to be at least $\pm 25\%$ (or $\pm 50\%$ for 2k).

No.	Reaction	$k/dm^3 mol^{-1} s^{-1} a$	Ι	t∕°C	pН	Method	Comments	Ref.
12.1	$\frac{Mn^{+}_{aq}}{Mn^{+} + Cu^{2+}} (et?)$	$k_{\rm rel} = 1.6 \pm 0.2$	2.0	RT	5–8	γ	Measured by competi-	Fiti70-0117
			(MnSO4)			·	tion kinetics using NO_3^- as competitor in the presence of 0.5 mol dm ⁻³ MnSO ₄ . Rate constant relative to $k(Mn^+ + NO_3^-)$.	
12.2	Mn ⁺ + IO ₃ ⁻ (et?)	$k_{\rm rel} = 1.4 \pm 0.1$	2.0 (MnSO ₄)	RT	5–8	γ	Measured by competi- tion kinetics using NO_3^- as competitor in the presence of $0.5 \text{ mol dm}^{-3} \text{ MnSO}_4$. Rate constant relative to $k(\text{Mn}^+ + \text{NO}_3^-)$.	Fiti70-0117
12.3	$Mn^+ + NO_3^-$ (et?)	see entries 12.1 and	12.2.					

IABLE IZ. Manganese(I) rea	actions
----------------------------	---------

TABLE	13.	Mol	ybdenum	reactions
-------	-----	-----	---------	-----------

No.	Reaction	$k/dm^3 mol^{-1} s^{-1} a$	Ι	t∕°C	pH	Method	Comments	Ref.
	[Mo2(O2CCF3)4] ⁻ (from M	$V_{02}(O_2CCF_3)_4 + e_s^-$ in methano	0		_			
13.1	$[Mo_2(O_2CCF_3)_4]^- + [Mo_2(O_2CCF_3)_4]^-$	$k' = (4.5 \pm 1.0)$ x 10°	-	RT	-	pr	Measured from decay of Mo(1 1/2) species	Baxe76–1003
	(dis?)	$k' = (2.5 \pm 1.0)$ x 10 ⁸	-	RT	-	pr	in methanol. Two decay processes observed, one of which believed to be a dismutation reaction. Rate con- stant (unclear whether k or $2k$) calculated taking $\epsilon_{780} = 2600$ dm ³ mol ⁻¹ cm ⁻¹ . Note that if the slower process does not involve the Mo(1 1/2) species, the value of ϵ , and hence k is incorrect.	
13.2	[Mo ₂ (O ₂ CCF ₃) ₄] ⁻ + O ₂ (af?)	(5.9 ± 0.3) x 10⁰	-	RT	-	pr	Measured in Methanol. Starting mater ial [Mo ₂ (O ₂ CCF ₃) ₄] not regenerated, so reaction does not involve electron transfer	Baxe76–1003

TABLE 1	4.	Nickel(I)	and	nickel(III)	reactions
---------	----	-----------	-----	-------------	-----------

No.	Reaction	$k/dm^{3} mol^{-1} s^{-1} a$	Ι	t/°C	pН	Method	Comments	Ref.
14.1	$Ni^+ + BrO_3^-$	< 8.4 x 10 ⁶	0.08	RT	nat	pr	-	Meye.68–0855
14.2	$Ni^+ + Cd^{a+}$	< 107	-	RT	nat	pr	-	Baxe66-0848
14.3	$Ni^+ + Co(en)s^{3+}$	< 5 x 10 ⁶	0.08	RT	5-6	Dr	-	Meye.69-0428
14.4	$Ni^+ + cis -$	$(5.9 \pm 0.9) \ge 10^6$	0.08	RT	5-6	pr	-	Meye.69-0428
1.5	$Co(en)_{2}Cl_{2}$ (et)	(0.2 + 0.1) - 106	0.00	DT	5 6			Mana 60, 0499
14.5	$N_1' + trans -$	$(8.3 \pm 2.1) \times 10^{\circ}$	0.08	KI	9-0	pr	-	Meye.09-0428
14.6	$Co(en)_{2}Cl_{2}$ (et)	< 5 - 106	0.09	РT	5.6			Mara 60, 0428
14.0	$N_1 + Co(en)_2CO_3$	≤ 5 x 10°	0.00	DT	5-6	P	-	Maya 60, 0420
14.7	$N_1 + c_2 - C_0(e_1)_2 r_2$	S X 10 ²	0.00	PT	5-6	pr	-	Maya 60, 0420
14.0	$N_1 + Co(en)_2 r n_2 O^2$	$(4.7 \pm 0.7) = 106$	0.00	NI DT	5-0	pr	-	Maya 60, 0428
14.9	$Co(en)_2NH_3Cl^{2+}$ (et)	(4.7 ± 0.7) x 10 ⁴	0.00	RI	5-0	PI	-	Meye.09-0420
14.10	$Ni^+ + cis$ -	$(3.3 \pm 0.8) \ge 10^6$	0.08	RT	5–6	pr	-	Meye.69-0428
	$Co(en)_2NH_3NO_2^{2+}$ (et)							
14.11	$Ni^+ + Co(NH_3)e^{3+}$	< 5 x 10 ⁶	0.08	RT	5-6	pr	-	Meye.69-0428
14.12	$Ni^+ + Co(NH_3)_5Br^{2+}$ (et)	$(1.05 \pm 0.2) \ge 10^9$	0.08	RT	4.0	pr	-	Meye.69-0428
14.13	$Ni^{+} + Co(NH_3)_5Cl^{2+}$ (et)	$(6.5 \pm 1.0) \ge 10^6$	0.08	RT	5-6	pr	-	Meye.69-0428
14.14	$Ni^{+} + Co(NH_3)_5CN^{2+}$ (et)	$(3.3 \pm 0.8) \ge 10^8$	0.08	RT	5-6	pr	-	Meye.69-0428
14.15	$Ni^{+} + Co(NH_3)_5F^{2+}$	< 5 x 10 ⁶	0.08	RT	5-6	pr	-	Meye.69-0428
14.16	$Ni^{+} + Co(NH_3)_5H_2O^{3+}$	< 5 x 10 ⁶	0.08	RT	4.0	pr	-	Meye.69-0428
14.17	$Ni^+ + Co(NH_3)_5OH^{2+}(et)$	$(1.3 \pm 0.3) \ge 10^6$	0.08	RT	7.6	pr	-	Meye.69-0428
14.18	$Ni^+ + Co(NH_3)_5N_3^{2+}(et)$	$(5.8 \pm 1.5) \times 10^{8}$	0.08	RT	7.6	pr	-	Meye.69-0428
14.19	Ni^+ +	$(4.1 \pm 1.0) \ge 10^6$	0.08	RT	7.6	pr	-	Meye.69-0428
14.90	N:+ (et)	< 5 - 106	0.09	рт	5.6			Maya 60, 0499
14.20	Co(NHa)-OOCCHa ²⁺	\$ 3 X 10 ⁻	0.00	N1	5.0	pr	-	Meye.09-0420
14 21	$Ni^+ + Cr^{a+}$	< 107	_	ВT	nat	nr	_	Baxe66-0848
14.99	$N_{i}^{+} \pm C_{\mu}^{2+}$	$< 24 \times 10^{7}$	0.08	RT	net	pr		Meye 68_0855
14.92	Ni ⁺ + H.O.	$(3.2 \pm 0.3) = 107$	0.00	25	nat	P ¹	_	Burt 76 1079
14.20	N:2+ + OH + OH-	$(3.2 \pm 0.5) \times 10^{7}$	-	RT 25	net	pr pr	-	Maya 68, 0855
		(4.0 <u>-</u> 0.0) x 10	-	PT	nat	P	-	Burt 67 0069
						I	Products identi- fied in γ -radiol- ysis studies (see ref. 73-0039).	
14.24	$Ni^+ + H_3O^+$	< 10 ⁶	0.08	RT	nat	pr	-	Meye.68–0855
14.25	$Ni^+ + IO_3^-$ (et)	$(2.2 \pm 0.3) \ge 10^8$	0.08	RT	nat	pr	-	Meye.68-0855
14.26	$Ni^+ + MnO_4^-$ (et)	7.5 x 10 ⁹	0.005	RT	nat	pr	Measured by the rate of depletion of the MnO ₄ ⁻ ab- sorption.	Baxe65–0385
14.27	Ni ⁺ + Ni ⁺	slow (< 10 ⁸)	var	RT	nat	pr	Estimated from decay of Ni ⁺ in presence and absence of OH	Kelm74–1037
14.90	NIT I NO T (-)	$(15 \pm 0.0) = 108$	0.00	DT			scavengers.	Mana 60, 0055
14.20	$N_1 + NO_2$ (et)	$(1.5 \pm 0.2) \times 10^{\circ}$	0.08	DT	nat	pr	-	Mene 60, 0055
14.29	$N_1 + N_0$	< 1.4 x 10° (2 104	0.08		nat	pr	- M 1: J	Meye.08-0855
14.30	$N_1^+ + N_2^- \rightarrow N_1^- + N_2^-$	0.3 x 10°	-	KI	nat	pr	presence of 1	Meye.08-0855
							mol dm ⁻³ NiSO ₄	
		$(9.1 \pm 0.9) \ge 10^6$	-	25 ± 2	nat	pr	Measured in the presence of 0.5 mol dm ⁻³ NiSO ₄ .	Buxt76–1072
		5.1 x 10°	-	RT	nat	pr	-	Buxt67-0062
		$E_{\rm a} = 40.6 \pm 3.8 \rm kJ$ mol ⁻¹	-	1–30	nat	pr	Products inferred from γ -ray induced chain reaction in the system Ni ²⁺ +	Buxt67-0062
							also measured in	

 $Ni^{2+} + N_2O$ solutions.

(see ref. 73-0039).

 $k/dm^{3} mol^{-1} s^{-1} a$ Ι t/°C Method Reaction pН Comments Ref. $Ni^+ + OH \rightarrow$ RT 14.31 2 x 1010 Measured from a Kelm...74-1037 _ nat pr $Ni^{2+} + OH^{-}$ computer fit of the decay of Ni⁺ in the absence of OH scavengers assuming competing reactions to be OH + OH and Ni⁺ +H₂O₂. Product identified by conductivity measurements (but see ref. 75-1027). RT $(1.4 \pm 0.2) \times 10^9$ Meye.68-0855 14.32 $Ni^+ + O_2 \rightarrow NiO_2^+$ nat pr 2.2 x 10° RT Baxe..66-0848 nat pr Product characterised by its absorption spectrum (ref. 76-1072), reactivity with tetranitromethane and lack of reactivity with 1,4-benzoquinone (ref. 76-1134). $Ni^{+} + Pb^{2^{+}}$ RT Baxe..66-0848 14.33 < 107 nat pr _ 0.08 RT 14.34 $Ni^{+} + Ru(NH_{3})_{6}^{3+}$ (et) $(4.0 \pm 0.6) \ge 10^8$ nat Navo.70-1229 pr 14.35 $Ni^+ + S_2O_8^{2-} \rightarrow$ $(1.5 \pm 0.2) \ge 10^8$ 0.049 25 ± 2 SO4⁻ product char-Tait..76-1001 nat pr $Ni^{2^+} + SO_4^- + SO_4^{2^-}$ acterised by its absorption spectrum and decay kinetics. $Ni^{+} + Zn^{2^{+}}$ < 107 Baxe..66-0848 14.36 RT nat _ pr 14.37 $Ni^+ + \cdot CH_2OH \rightarrow$ 4.2 x 10° _ RT nat Product charac-Kelm...74-1037 pr NiCH₂OH⁺ terised by its absorption spectrum and conductivity measurements. 14.38 $Ni^+ + CO_2^- \rightarrow NiCO_2$ 6.6 x 10⁹ 4 x 10⁻⁴ RT Product charac-Kelm...74-1037 nat pr terised by its absorption spectrum and conductivity measurements. Kelm...74-1037 14.39 $Ni^+ + C_2H_4OH \rightarrow$ 2.3 x 10⁹ 4 x 10⁻⁴ RT nat pr Product charac-NiC₂H₄OH⁺ terised by its absorption spectrum and conductivity measurements. $Ni^+ + CH_3COHCH_3 \rightarrow$ Kelm...74-1037 14.40 1.4 x 10⁹ 4 x 10⁻⁴ RT nat pr Product charac-NiCOH(CH₃)₂ terised by its absorption spectrum and conductivity measurements. $Ni^+ +$ 14.41 $H_2C(CH_3)_2OH \rightarrow$ 3 x 10⁹ 4 x 10⁻⁴ RT Isobutene detected Kelm...74-1037 nat pr $Ni^{2+} + OH^{-} + CH_2 = C(CH_3)_2$ as product; OHdetected by conductivity measure-

TABLE 17, INCREMIT BUG DICKEMINI, ICACHONS - CONDING	TABLE	14.	Nickel(I)	and	nickel(III)	reactions -	Continue
--	-------	-----	-----------	-----	-------------	-------------	----------

No.

14.42

 $Ni^+ + \cdot C_5H_9 \rightarrow NiC_5H_9^+$

 $(\cdot C_5 H_9 = cyclopentyl radical)$

38

RT

nat

4 x 10⁻⁴

2.8 x 10°

ments.

pr

Product charac-

terised by its absorption spectrum and conductivity measurements.

Kelm...74-1037

TABLE	14.	Nickel(I)	and	nickel(III)	reactions		Continued
-------	-----	-----------	-----	-------------	-----------	--	-----------

No.	Reaction	$k/\mathrm{dm^3\ mol^{-1}\ s^{-1}}$	Ι	t∕°C	pН	Method	Comments	Ref.
14.43	Ni ⁺ + allyl alcohol → Ni–allyl alcohol ⁺	ca. 10 ⁸	-	25 ± 2	nat	рг	-	Buxt76–1072
14.44	Ni ⁺ + 1,4-benzo- quinone \rightarrow Ni ²⁺ + (1,4-benzoquinone) ⁻	$(2.3 \pm 0.5) \ge 10^{6}$	-	25	6.0	pr	Measured by the rate of formation of the semiquinone in the presence of 1 mol dm ^{-s} 2-methyl- 2 prepared	Sell.76–1134
14.45	Ni ⁺ + mensquinone -	9 4 - 109	_	ca 25	7.0	775	2-propanol. Measured by the	Rao 75-103
14.40	Ni ²⁺ + (menaquinone) ⁻	$(2.5\pm0.3) \times 10^{9}$	-	RT	7.0	pr pr	rate of formation of the semiquinone in the presence of ca . 1 mol dm ⁻³	Rao.73-103. Rao.73-104
14.46	Ni ⁺ + tetranitro- methane \rightarrow Ni ²⁺ + C(NO ₂) ₃ ⁻ + NO ₂	$(1.4 \pm 0.2) \ge 10^{9}$	-	25 ± 2	5.9	pr	2-methyl-2-propanol. Measured by the rate of formation of the nitroform anion in the presence of 1 mol dm ⁻³ 2-methyl- 2-propanol.	Sell.76–1134
	Ni(I) Complexes							
14.47	Ni ^I -cyano complexes Ni(CN) ₃ ^{2−} + Ni(CN) ₅ ^{2−} \rightarrow Ni ₂ (CN) ₆ ^{4−}	$2k = (1.5 \pm 0.2)$ x 10 ⁸	0.1 (HCO2Na)	20 ± 2	-	pr	Product charac- terised by its	Mula74–1072
14.48	$\begin{array}{r} \operatorname{Ni}(\operatorname{CN})_4{}^{3-} \to \\ \operatorname{Ni}(\operatorname{CN})_5{}^{2-} + \operatorname{CN}^{-} \end{array}$	$(8.1 \pm 1.0) \ge 10^3$ s ⁻¹	0.1 (HCO ₂ Na)	20 ± 2	-	pr	Ni(CN) _s ²⁻ charac- terised by its absorption spectrum.	Mula74–1072
						\checkmark	-	
						NH HN		
	NiL^+ (L = 5,5,7,12,12,14-h	examethyl-1,4,8,11-teti	aazacyclotet	radecane).		ſ		
						NH HN		
14.49	NiL ⁺ + Co(bpy)s ³⁺	$(1.3 \pm 0.1) \ge 10^9$	0.016– 0.028	RT	7.0	pr	Measured in the presence of 1 mol dm ⁻³ 2-methyl-	Tait76–1039
14.50	NiL ⁺ + CoL'(OH ₂)(OH) ²⁺ (et)	$(1.1 \pm 0.1) \ge 10^6$	0.016– 0.028	RT	7.0	pr	2-propanol. Measured in the presence of 1 mol dm ⁻³ 2-methyl-	Tait76–1039
							2–propanol.	
14 51	(L' = 5,7,7,12,14,14-hexam)	ethyl-1,4,8,11-tetraaza	cyclotetrade	ca-4,11-di	ene).		M 11.1	T : 76 1000
14.51	$N_1L' + Co(en)_{s^{s^*}}$ (et)	$(1.1 \pm 0.1) \times 10^{5}$	0.016– 0.028	ĸr	7.0	pr	Measured in the presence of 1 mol dm ^{-s} 2-methyl- 2-propagol	Tait 76–1039
14.52	$NiL^+ + Co(NH_3)e^{3+}$ (et)	(1.9 ± 0.2) x 10 ⁵	0.016– 0.028	RT	7.0	рг	Measured in the presence of 1 mol dm ^{-s} 2-methyl-	Tait76–1039
14.53	$NiL^+ + CoL'(OH)_2^+$ (et)	(1.7 ± 0.2) x 10 ⁷	0.016– 0.028	RT	7.0	pr	2-propanol. Measured in the presence of 1 mol dm ⁻³ 2-methyl-	Tait76–1039

(L' = 2,3,9,10-tetramethyl-1,4,8,11-tetraazacyclotetradeca-1,3,8,10-tetraene).

TABLE 14. Nickel(I) and nickel(III) reactions - Continued

No.	Reaction	$k/\mathrm{dm^3\ mol^{-1}\ s^{-1}\ a}$	Ι	t∕°C	рН	Method	Comments	Ref.
14.54	$NiL^+ + Cr(bpy)_3^{s+}$ (et)	$(7.7 \pm 0.8) \ge 10^8$	0.016– 0.028	RT	7.0	pr	Measured in the presence of 1 mol dm ⁻³ 2-methyl- 2-propanol	Tait76–1039
14.55	NiL ⁺ + Fe(bpy) ₅ ³⁺ (et)	$(6.4 \pm 0.6) \ge 10^7$	0.016– 0.028	RT	7.0	pr	Measured in the presence of 1 mol dm ⁻³ 2-methyl-	Tait76–1039
14.56	$NiL^+ + H_aO^+$ (pt)	$(1.1 \pm 0.1) \ge 10^{6}$	0.06– 0.3	RT	<1.25	pr	Reaction may involve proton transfer to the metal centre to give a hydrido complex	Tait76–1039
14.57	$NiL^+ + H_2PO_4^-$ (pt)	< 104	0.01- 0.1	RT	5.50	pr	-	Tait76-1039
14.58	$NiL^+ + N_2O$ (et or O at)	(3.9± 0.4) x 10 ⁷	-	RT	7.0	pr	Reaction possibly involves two electron oxidation to Ni(III) complex.	Tait76–1039
14.59	$NiL^{+} + O_2 \rightarrow NiL^{2^{+}} + O_2^{-}$	$(1.6 \pm 0.2) \ge 10^9$	-	RT	7.0	pr	Product transfers an electron to 1,4-benzoquinone but not menaquinone, and identified	Tait76–1039
							therefore as O_2^- , although O_2 adduct, NiLO ₂ ⁺ could conceiv- ably react in same way.	
14.60	$NiL^+ + Ru(NH_3)e^{3+}$ (et)	$(3.8 \pm 0.4) \ge 10^8$	0.016– 0.028	RT	7.0	pr	Measured in the presence of 1 mol dm ⁻³ 2-methyl-2- propanol.	Tait76–1039
14.61	$NiL^{+} + Ru(NH_{3})_{5}NO^{3+}$ (et)	$(7.4 \pm 0.7) \ge 10^7$	0.016– 0.028	RT	7.0	pr	Measured in the presence of 1 mol dm ⁻³ 2-methyl-2- propanol.	Tait76–1039
14.62	NiL ⁺ + acetic acid (pt)	$(1.2 \pm 0.1) \ge 10^4$	0.015– 0.06	RT	4.85	pr	Measured in the presence of 1 mol dm ⁻³ 2-methyl-2- propanol.	Tait76–1039
14.63	NiL ⁺ + 9,10-anthra- quinone-2,6-disulphonate (et)	$(4.8 \pm 0.5) \ge 10^9$	0.004	RT	7.0	pr	Measured in the presence of 1 mol dm ⁻³ 2-methyl-2- propanol.	Tait76–1039
14.64	NiL ⁺ + 1,4-benzo- quinone (et)	$(4.8 \pm 0.5) \ge 10^9$	0.004	RT	7.0	pr	Measured in the presence of 1 mol dm ⁻³ 2-methyl-2- propanol.	Tait76–1039
14.65	NiL ⁺ + 3-benzoyl- pyridine (et)	$(2.5 \pm 0.3) \ge 10^8$	0.004	RT	7.0	pr	Measured in the presence of 1 mol dm ⁻³ 2-methyl-2- propanol.	Tait76–1039
14.66	NiL ⁺ + fluorescein (et)	$(3.2 \pm 0.3) \ge 10^{9}$	0.004	RT	7.0	pr	Measured in the presence of 1 mol dm ⁻³ 2-methyl-2- propanol.	Tait76–1039
14.67	NiL ⁺ + methyl iodide (et or S _N 2)	$(4.6 \pm 0.5) \ge 10^8$	0.01	RT	9.2	pr	Measured in the presence of 1 mol dm ⁻³ 2-methyl-2- propanol.	Tait76–1039

TABLE	14.	Nickel(I)	and	nickel(III)	reactions	_	Continued
-------	-----	-----------	-----	-------------	-----------	---	-----------

No.	Reaction	$k/dm^{3} mol^{-1} s^{-1}$	Ι	t∕°C	рН	Method	Comments	Ref.
						7		
	NiL^+ (L = 5,7,7,12,14,14		etraazacyclote	etradeca-4	,11-diene).			
14.68	NiL ⁺ + Co(bpy) ₃ ³⁺ (et)	$(1.3 \pm 0.1) \ge 10^9$	0.016– 0.028	RT	7.0	pr /	Measured in the presence of 1 mol	Tait76–1039
							dm ⁻³ 2-methyl-2- propanol.	
14.69	NiL ⁺ + CoL'(OH ₂)(OH) ²⁺ (et)	$(2.6 \pm 0.3) \ge 10^6$	0.016– 0.028	RT	7.0	pr	Measured in the presence of 1 mol dm ⁻³ 2-methyl-2-	Tait76–1039
	(L' = 5, 7, 7, 12, 14, 14-hexan	nethyl-1.4.8.11-tetraaza	cvclotetradec	a-4.11-di	ene).		propanol.	
14.70	$NiL^{+} + Co(en)_{3}^{3+} (et)$	$(1.1 \pm 0.1) \ge 10^6$	0.016–` 0.028	RT	7.0	pr	Measured in the presence of 1 mol dm ^{-s} 2-methyl-2-	Tait76–1039
14.71	$NiL^+ + Co(NH_3)e^{3+}$ (et)	$(1.9 \pm 0.2) \ge 10^6$	0.016– 0.028	RT	7.0	pr	propanol. Measured in the presence of 1 mol dm ⁻³ 2-methyl-2-	Tait76–1039
14.72	$NiL^+ + CoL'(OH)_2^+$ (et)	$(3.6 \pm 0.4) \ge 10^7$	0.016– 0.028	RT	7.0	pr	propanol. Measured in the presence of 1 mol dm ⁻³ 2-methyl-2-	Tait76–1039
	(L' = 2,3,9,10-tetramethyl-	-1,4,8,11-tetraazacyclote	etradeca-1,3,8	8,10-tetra	ene).		propanol.	
14.73	NiL ⁺ + Cr(bpy) ₃ ³⁺	$(1.1 \pm 0.1) \ge 10^8$	0.016– 0.028	RT	7.0	pr	Measured in the presence of 1 mol dm ⁻³ 2-methyl-2-	Tait76–1039
14.74	NiL ⁺ + Fe(bpy) ₃ ³⁺ (et)	$(2.2 \pm 0.2) \ge 10^6$	0.016– 0.028	RT	7.0	pr	propanol. Measured in the presence of 1 mol dm ⁻³ 2-methyl-2-	Tait76–1039
14.75	$NiL^+ + H_3O^+$ (pt)	$(1.3 \pm 0.1) \text{ x10}^{6}$	0.06–0.3	RT	<1.25	pr	propanol. Reaction may involve proton transfer to the metal centre to	Tait76–1039
14.76	$NiL^+ + H_2PO_4^-$ (pt)	$(2.4 \pm 0.2) \times 10^{5}$	0.01-0.1	RT	5.50	pr	Measured in the presence of 1 mol dm ^{-s} 2-methyl-2-	Tait76–1039
14.77	NiL ⁺ + N ₂ O (et or O at)	$(1.8 \pm 0.2) \ge 10^7$	-	RT	7.0	pr	propanol. Measured in the presence of 1 mol dm ⁻³ 2-methyl-2- propanol. Reaction possibly involves	Tait76–1039
							two electron oxida- tion to Ni ^{III} complex.	
14.78	$NiL^{+} + O_{2} \rightarrow NiL^{2^{+}} + O_{2}^{-}$	$(1.7 \pm 0.2) \ge 10^{9}$	-	RT	7.0	pr	Product transfers an electron to 1,4-benzoquinone but not menaqui- none, and identified therefore as O_2^- , although O_2 adduct	Tait76–1039
			4	1			NiLO ₂ ⁺ , could con- ceivably react in same way.	

TABLE 1	4.	Nickel(I)	and	nickel(III)	reactions -	Continued
---------	----	-----------	-----	-------------	-------------	-----------

No.	Reaction	$k/dm^{3} mol^{-1} s^{-1} a$	Ι	t/°C	pН	Method	Comments	Ref.
14.79	$NiL^+ + Ru(NH_3)e^{3+}$ (et)	$(4.5 \pm 0.5) \ge 10^6$	0.016– 0.028	RT	7.0	pr	Measured in the presence of 1 mol dm ⁻³ 2-methyl-2-	Tait76–1039
14.80	NiL ⁺ + Ru(NH ₃) ₅ NO ³⁺ (et)	$(3.5 \pm 0.4) \ge 10^7$	0.016– 0.028	RT	7.0	pr	propanol. Measured in the presence of 1 mol dm ⁻³ 2-methyl-2-	Tait76–1039
14.81	NiL ⁺ + acetic acid (pt)	$(1.9 \pm 0.2) \ge 10^{5}$	0.015- 0.06	RT	4.85	pr	propanol. Measured in the presence of 1 mol dm ⁻³ 2-methyl-2-	Tait76–1039
14.82	NiL ⁺ + 9,10-anthra- quinone-2,6-disulphonate (et)	$(5.0 \pm 0.5) \ge 10^9$	0.004	RT	7.0	pr	propanol. Measured in the presence of 1 mol dm ^{-s} 2-methyl-2-	Tait76–1039
14.83	NiL ⁺ + 1,4-benzoquinone (et)	$(3.8 \pm 0.4) ext{ x10}^{9}$	0.004	RT	7.0	pr	propanol. Measured in the presence of 1 mol dm ⁻³ 2-methyl-2-	Tait76–1039
14.84	NiL ⁺ + 3-benzoylpyri- dine (et)	$(7.5 \pm 0.8) \ge 10^8$	0.004	RT	7.0	pr	propanol. Measured in the presence of 1 mol dm ⁻³ 2-methyl-2-	Tait76–1039
14.85	NiL ⁺ + eosin Y (et)	$(2.7 \pm 0.3) \ge 10^9$	0.004	RT	7.0	pr	propanol. Measured in the presence of 1 mol dm ^{-s} 2-methyl-2-	Tait76–1039
14.86	NiL ⁺ + fluorescein (et)	(3.3± 0.3) x 10°	0.004	RT	7.0	pr	Measured in the presence of 1 mol dm ^{-s} 2-methyl-2-	Tait76–1039
14.87	NiL^+ + methyl iodide (et or $S_N 2$)	$(1.3 \pm 0.1) \ge 10^{8}$	0.01	RT	9.2	pr	propanol. Measured in the presence of 1 mol dm ⁻³ 2-methyl-2- propanol.	Tait76–1039
14.88	Ni(I) radical complexes NiCH ₂ OH ⁺ + H ₂ O → Ni ²⁺ + CH ₃ OH + OH ⁻	7 s ⁻¹	-	RT	nat	pr	Products charac- terised by conduc- tivity experiments.	Kelm74–103
14.89	$NiCH_2OH^+ + H_2O_2$ (et?)	7.3 x 10 ³	-	RT	nat	pr	-	Kelm74-103
14.90	$NiCO_2 + H_2O$	$< 1 \text{ s}^{-1}$	-	RT	nat	pr	-	Kelm74-103
14.91	$NiC_{2}H_{4}OH^{+} + H_{2}O \rightarrow$ $Ni^{2+} + C_{2}H_{5}OH + OH^{-}$	5 s ⁻¹	-	RT	nat	pr	Products charac- terised by conduc- tivity experiments.	Kelm74–103
14.92	$NiC_{2}H_{4}OH^{+} + H_{2}O_{2}$ (et?)	2.3 x 10 ⁴	-	RT	nat	pr	-	Kelm74–103
14.93	$NiCOH(CH_3)_2^+ + H_2O$	$< 1 s^{-1}$	-	RT	nat	pr	-	Kelm74–103
14.94	$NiCOH(CH_3)_2^+ + H_2O_2$	1.1 x 10 ⁶	-	RT	nat	pr	-	Kelm74–103
14.95	$\mathrm{NiC_{2}H_{4}OC_{2}H_{5}^{+} + H_{2}O}$	$< 1 s^{-1}$	-	RT	nat	pr	-	Kelm74-103
14.96	$\mathrm{NiC_{2}H_{4}OC_{2}H_{5}^{+} + H_{2}O_{2}}$	1.3 x 10 ³	-	RT	nat	pr		Kelm74-103
14.97	$NiC_{\mathfrak{s}}H_{\mathfrak{g}}^{+} + H_{2}O \rightarrow$ $Ni^{2^{+}} + C_{\mathfrak{s}}H_{10} + OH^{-}$	49 s ⁻¹	-	RT	nat	pr	Products charac- terised by conduc-	Kelm74–103
14.98	$NiC_{5}H_{9}^{+} + H_{2}O_{2}$ ($C_{5}H_{9} = cyclopentyl radical$) $NiO_{2}^{+}NiO_{2}H^{2+}$	< 5 x 10 ⁵	-	RT	nat	pr		Kelm74–103
14.99	$NiO_2^+ \rightarrow Ni^{2^+} + O_2^-$	$780 \pm 80 \text{ s}^{-1}$	-	25 ± 2	5.7	pr	Measured from the rate of formation of the nitroform anion in solutions contining tetra-	Sell.76-1134
				49			nitromethane and 1 mol dm ^{-s} 2-methyl-2- propanol.	

No.	Reaction	$k/\mathrm{dm^3\ mol^{-1}\ s^{-1}}$	Ι	t∕°C	pН	Method	Comments	Ref.
14.100	NiO₂ ⁺ + H ⁺ ≓ NiO₂H ^{a+}	$K = 2000 \pm 1200 \text{ M}^{-1}$ (i.e. $pK_a = 3.2 \pm 0.3$)	0.04	25 ± 2	3.0- 5.7	pr	Measured from the pH dependence of the rate of formation of the nitroform anion in solutions containing tetranitromethane and 1 mol dm ⁻³ 2-methyl-2- propanol.	Sell.76–1134
14.101	NiO₂H² ⁺ → Ni² ⁺ + HO₂	> 2800 s ⁻¹	-	25 ± 2	3.0	pr	Estimated from the rate of formation of the nitroform anion in solutions containing tetra- nitromethane and 1 mol dm ⁻³ 2-methyl-2- propanol.	Sell.76-1134
	Ni(III) complexes	(
14.102	$Ni^{m}(NH_3)_n + N_2H_4$	$(4 \pm 1) \times 10^{\circ}$	-	RT	11.3	pr	-	Lati.72-0460
14.103	$N_1^{m}(NH_3)_n + N_1^{m}(NH_3)_n$ Rate constants for the deca These rate constants canno	$2k < 3.5 \times 10^7$ by of Ni ^{III} (en) _n and Ni ^{III} (gly) _n t be attributed to any specif	- are giv ic reaction	KT en in tables l on.	II.3 II and IV	pr respectively	- v of ref. 72-0461.	Lati.72–0460

TABLE 1	4.	Nickel(I)	and	nickel(III)	reactions		Continued
---------	----	-----------	-----	-------------	-----------	--	-----------

TABLE 15. Lead(I) reactions

No.	Reaction	$k/dm^3 mol^{-1} s^{-1}$	Ι	t∕°C	pН	Method	Comments	Ref.
	Pb ⁺ _{aq}							
15.1	$Pb^+ + Cd^{2+}$	< 107	-	RT	nat	pr	-	Baxe66-0848
15.2	$Pb^+ + Cr^{a+}$	< 107	-	RT	nat	pr	-	Baxe66-0848
15.3	$Pb^+ + Ni^{2+}$	< 107	-	RT	nat	pr	-	Baxe66-0848
15.4	$Pb^{+} + O_{2} \rightarrow$ $Pb^{2^{+}} + O_{2}^{-}$	3.9 x 10°	-	RT	nat	pr	- Product transfers an electron to 1,4- benzoquinone and	Baxe66-0848
							tentatively identi– fied as O ₂ ⁻ . (Ref. 76–1134).	
15.5	Pb ⁺ + OH (et)	7.7 x 10 ⁸	-	RT	nat	pr	Reinterpreted from data in ref. 66–0848 on decay of Pb ⁺ in the absence of OH scaven- gers. Principal com- peting reaction, Pb ⁺ + Pb ⁺ , not taken into account.	Baxe66–0848
15.6	$Pb^+ + Zn^{2+}$	< 107	-	RT	nat	pr	_	Baxe66-0848
15.7	$Pb^{I} + 1,4$ -benzo- quinone $\rightarrow Pb^{2^{+}} +$	(4.1 ± 0.8) x 10 ⁹	-	25 ± 2	6.3	pr	Lead(II) acetate salt used, Pb ⁺	Sell.76-1134
	(1,4-benzoquinone) ⁻						may be complexed to acetate. Measured from the rate of formation of the benzosemiquinone product in the presence of 1 mol dm ⁻³ 2-methyl-2- propanol.	
15.8	Pb ⁺ + menaquinone → Pb ²⁺ + (menaquinone) ⁻	$(3.7 \pm 0.4) \ge 10^{9}$	-	RT	7.2	pr	Measured by the rate of formation of the semiquinone in the presence of ca. 1 mol dm ⁻³ 2-methyl-2-propanol.	Rao.75–1032 Rao.73–1047

TABLE	16.	Praseod	ymium(IV) reactions
-------	-----	---------	----------	-------------

No.	Reaction	$k/\mathrm{dm^3\ mol^{-1}\ s^{-1}\ a}$	Ι	t∕°C	рН	Method	Comments	Ref.
16.1	$Pr^{a^+} + H_2 0 \rightleftharpoons$ $PrOH^{a^+} + H^+$	$K = (7 \pm 1) \times 10^{-4}$ or pK _a = 3.1 ± 0	var).1	RT	1.95– 5.87	pr	Measured from effect of pH on absorption of Pr(IV).	Fara.72–0066
16.2	$Pr^{IV} + Br^{-}$ (et or af)	$(1.2 \pm 0.4) \ge 10^{19}$	0.75 [Pr ₂ (SO ₄) ₃]	RT	nat	pr	-	Fara.72-0066
16.3	$Pr^{IV} + H_2O_2$ (H at ?)	$(8 \pm 1) \ge 10^6$	0.75 [Pr ₂ (SO ₄) ₃]	RT	nat	pr	-	Fara.72-0066
16.4	$Pr^{IV} + HSO_{4}^{-}$ (et or H at)	$(2.0 \pm 0.3) \ge 10^6$	-	RT	2-3.8	pr	-	Fara.72–0066
16.5	$Pr^{IV} + NO_2^-$ (et?)	$(3 \pm 1) \ge 10^7$	0.75 [Pr ₂ (SO ₄) ₃]	RT	nat	pr	-	Fara.72-0066
16.6	Pr ^{IV} + Pr ^{IV} (see comments)	$2k = (1.6 \pm 0.8)$ x 10 ⁸	-	RT	5.8	pr	Stable products of reaction suggested to be Pr ^{III} and O ₂ . Initial product possibly an oxo or hydroxo bridged dipraseodymium species.	Fara.72–0066

TABLE 17. Platinum(I) and platinum(III) reactions

No.	Reaction	$k/\mathrm{dm^3\ mol^{-1}\ s^{-1}\ a}$	Ι	t∕°C	pН	Method	Comments	Ref.
	Pt ^I Reactions							
	Pt^{I} from $PtCl_{4}^{2-} + e_{aq}^{-}$							
17.1	$Pt^{I} + N_{2}O$ (et or O at)	$\leq 4 \ge 10^6$	-	RT	nat	pr	-	Ghos.69-0144
17.2	$Pt^{I} + O_2$ (et or af)	$\leq 2 \ge 10^7$	-	RT	nat	pr	-	Ghos.69-0144
17.3	$Pt^{I} + Pt^{I} \rightarrow Pt^{o} +$	$k' = (4.1 \pm 0.5)$	0.003	RT	nat	pr	Unclear whether	Ghos.69-0144
	Pt ^{II}	x 10 ⁹					rate constants	
							refer to k or 2k.	
		$k' = (3.15 \pm 0.15)$	0.013	RT	nat	pr	Measured in the	Ghos.69-0144
		x 10 ⁹					presence of 0.1 mol	
							dm ⁻³ KCl.	
		k' = ca. 2.5 x	0.018	RT	2	pr	-	Ghos.69-0144
		x 10 ⁹						
							Products identified	
							in γ -radiolysis	
							experiments (see ref.	
							62-0164).	
	Pt^{I} from $Pt(CN)_{4}^{2-} + e_{aq}^{-}$							
17.4	$Pt^{I} + N_{2}O$ (et or O at)	$(1.8 \pm 0.25) \ge 10^7$	-	RT	nat	pr	-	Ghos.69-0144
17.5	$Pt^{I} + O_{2}$ (et or af)	$(3.5 \pm 0.5) \ge 10^9$	-	RT	nat	pr	-	Ghos.69-0144
	Pt^{I} from $PtLCl^{+} + e_{aq}^{-}$ (L =	= diethylenetriamine).						
17.6	$Pt^{I} + Pt^{I}$ (? see	$2k = (4.6 \pm 2.0)$	2 x 10 ⁻⁴	ca.	nat	pr	Rate constant	Stor75-1188
	comments)	x 10 ⁷		25			represents decay of	
							second transient	
							produced from Pt ^{II}	
							$+ e_{aq}$. First transient	
							decays by a first	
							order reaction with	
							$(2.3 \pm 1.3) \ge 10^5$	
							s ⁻¹ , probably	
							associated with	
							the substitution	
							of Cl ⁻ by H ₂ O.	
	Pt^{I} from $PtLCl^{+} + H(L) =$	- diethylenetriamine).					·	
17.7	$Pt^{I} + Pt^{I}$ (dis?)	$2k = (6.8 \pm 0.8)$	-	ca.	2-3	pr	-	Stor75-1188
		x 10 ⁹		25		•		
	Pt^{I} from $Pt(en)_{2}^{2^{+}} + e_{aq}^{-}$							
17.8	$Pt^{I} + Pt^{I}$ (dis?)	$2k = (9.0 \pm 0.8)$	4 x 10 ⁻⁴	ca.	nat	Dr	-	Stor75-1188
		x 10 ⁸		25		r-		
	Pt^{I} (from $Pt(en)a^{2+} + H$							
17.9	$Pt^{I} + Pt^{I}$ (dis?)	$2k = (2.8 \pm 0.6)$	_	ca.	2-3	D r	_	Stor75-1188
1117	10 10 (alb))	± 10 ⁸		25	2-0	P1		51011110 1100
	Pt^{I} from $PtLCl^{+} + H(L) =$	tetraethyldiethylenetriami	ne)	20				
17 10	$Pt^{I} + Pt^{I} (dis^{2})$	$2k = (1.3 \pm 0.6)$	_	ca	2_3	DF		Stor 75-1188
11.10	1t 1t (uis.)	$= 10^{11} (1)$	_	cu.	2-0	P	_	5.0110-1100
	Dem Reactions	X 10 (.)						
	$D_{\text{fill from } D_{\text{fill}}(C_1)^2 \rightarrow C_1^{-1}$							
1711	$\frac{1}{(D+III)i} \cdot \frac{1}{(D+III)ii}$	$(2 \pm 1) = 105 = -1$			0.2		Presting and hable	Stor 75 1100
17.11	$(\mathbf{rt}) \rightarrow (\mathbf{rt})$	(3 <u>1</u>) x 10 ⁻ s -	-	cu.	0.5	pr	Reaction probably	500775-1100
	(see comments for			25			associated with	
	mechanism)						Change in number	
							or chloride ligands	
							and/or substitution	
							of CI by H ₂ O.	
							Measured in the	
							presence of 0.5 mol	
							dm ⁻³ HCl.	
17.12	$Pt^{m} + Cu^{n}$ (et)	$(1.5 \pm 0.2) \ge 10^{s}$	0.5	ca.	0.3	pr	Measured in the	Stor75-1188
			(HCl)	25			presence of 0.5	
							mol dm ⁻ [*] HCl.	
							Cu ^{II} in the form	
							of chloro complex.	

TABLE 17. Platinum(I) and platinum(III) reactions - Continued

No.	Reaction	$k/dm^{3} mol^{-1} s^{-1}$	Ι	t∕°C	рН	Method	Comments	Ref.
17.13	Pt ^m + Pt ^m (dis)	$2k = ca. 2 \ge 10^{9}$	0.5 (HCl)	ca. 25	0.3	pr	Rate constant is for the decay of the second transient Pt ^{III} species, (Pt ^{III}) ^{III} in entry 17.11. Measured in the presence of 0.5 mol dm ⁻³ HCl.	Stor75-1188
17.14	Pt ^{III} from PtCl ₆ ²⁻ + hν Pt ^{III} + Fe ²⁺ (et)	(2.8 ± 0.3) x 10 ⁴	2 x 10 ⁻³	-	-	f.ph.	From dependence of rate constant for this reaction on ionic strength charge on Pt ^{III} is -1, and iden- tified therefore as PtCL ₄ ⁻ . Broszkiewicz and Grodkowski (ref. 76-1055) suggest how- ever that the reaction observed under the conditions employed was	Wrig.72–7084
17.15	Pt ^{III} + Pt ^{III} (dis)	$2k = (4.6 \pm 0.4)$ x	10-3	<i>ca</i> .	5.8	f.ph.	$Cl_2 + Fe^{-1}$. Other experiments give $k =$ $(4.0 \pm 0.6) \times 10^6$ dm ³ mol ⁻¹ s ⁻¹ for Cl ₂ ⁻ + Fe ²⁺ . Rate constant cal-	Wrig.72-7084
	Pull from PoCl 37 + OU	10.		20			culated taking $\epsilon_{410} = 3.7 \times 10^3$ dm ³ mol ⁻¹ cm ⁻¹ .	
17.16	$\begin{array}{ccc} c_{1} & & \\ c_{1} & & \\ p_{1} & \rightarrow & \\ p_{1} & & \\ \end{array} \xrightarrow{c_{1}} c_{1} & \\ c_{1} & & \\ p_{1} & & \\ c_{1} & & \\ p_{1} & & \\ c_{1} & & \\ p_{1} & & \\ c_{1} & & \\ c_{1} & & \\ p_{1} & & \\ c_{1} & & $	1.8 x 10 ⁵ s ⁻¹	-	RT	nat	pr	Rate constant measured from decay of reactant at 450 nm.	Adam68–016
cí	он сі _{он}	2.0 x 10 ⁵ s ⁻¹	-	RT	nat	pr	Rate constant measured from decay of reactant	Ghos.69–014
		2.0 x 10 ⁵ s ⁻¹	-	RT	nat	pr	Rate constant measured from build-up of pro- duct at 400 nm. Ligand reorgani- zation mechanism implied from simil- arity of products	Adam68-016
	Pt^{III} from $Pt(en)s^{2+} + Cl_2^{-}$						of $PtCl_{4}^{2-} + OH$ and $PtCl_{6}^{2-} + e_{aq}^{-}$ (ref. 68–0169).	
17.17	$(Pt^{III})^{i} \rightarrow (Pt^{III})^{iI}$	$(1.3 \pm 0.1) \times 10^{3} \text{ s}^{-1}$	-	ca. 25	0.3	pr	Decay approxi- mates to two consecutive first order processes (see also 17.18). Measured in the presence of 0.5 mol dm ⁻³ HCl	Stor751188

TABLE 17. Platinum(I) and platinum(III) reactions - Continued

No.	Reaction	$k/\mathrm{dm^3\ mol^{-1}\ s^{-1}}$	Ι	t∕°C	pН	Method	Comments	Ref.
17.18	(Pt ^{III}) ⁱⁱ → (Pt ^{III}) ⁱⁱⁱ	$7.7 \pm 0.8 \text{ s}^{-1}$	-	ca. 25	0.3	pr	Measured in the presence of 0.5 mol dm ⁻³ HCl. See also comments under 17 17	Stor75-1188
17.19	$Pt^{III} + Cu^{II}$ (et)	$(3.2 \pm 0.7) \ge 10^6$	0.5 (HCl)	ca. 25	0.3	pr	Measured in the presence of 0.5 mol dm ⁻³ HCl.	Stor75-1188
17.20	$Pt^{III} + Fe^{II}$ (et)	$(2.5 \pm 0.4) \ge 10^{5}$	0.5 (HCl)	ca. 25	0.3	pr	Measured in the presence of 0.5 mol dm ⁻³ HCl.	Stor75-1188
17.21	$Pt^{\text{III}} \text{ from } Pt(en)_2^{2^+} + OH$ $(Pt^{\text{III}})^{i} \rightarrow (Pt^{\text{III}})^{ii}$	$(2.5 \pm 0.2) \ge 10^5$	-	RT	4.0-7.0	pr	-	Brod76–1093
	+ n	$(2.4 \pm 0.3) \ge 10^5$	-	RT	7.0-9.6	pr	-	Brod76-1093
17.22	$(Pt^{III})^{i} + OH^{-} \rightarrow$ $(Pt^{III})^{ii} + H_{2}O$	$(3.1 \pm 0.5) \ge 10^{10}$	-	RT	7.0–9.6	pr		Brod76-1093
17.23	$(Pt^{III})^{i} + H^{+} \rightarrow (Pt^{III})^{III}$	$(4.2 \pm 0.9) \ge 10^9$	-	RT	4.0-7.0	pr	-	Brod76-1093
17.24	(Pt ^{III)¹¹ + (Pt^{III)¹¹ (dis?)}}	$(1.5 \pm 0.4) \ge 10^6$	-	RT	2.9–8.5	pr	Measured in the presence of (0-2) x 10 ⁻³ mol dm ⁻³ Cl ⁻ .	Brod76–1093
		$(4.3 \pm 2.8) \ge 10^{6}$	-	RT	4.0–9.1	f.ph.	Measured in the presence of (0-1) x 10 ⁻⁵ mol dm ⁻³ Cl ⁻ . Unclear whether these rate constants refer to k or 2k.	Brod76–1093
17.25	(Pt ^{III}) ^{II} + Cu ^{II}	< 104	-	RT	6.3-6.6	pr	-	Brod76-1093
17.26	$(Pt^{III})^{ii} + Fe(CN)_6^{4^-} $ (et)	$(2.3 \pm 0.2) \ge 10^8$	-	RT	6.3–6.6	pr	-	Brod76–1093
17.27	$(Pt^{III})^{II} + O_2$	< 105	-	RT	6.3-6.6	pr	-	Brod76-1093
17.28	$(Pt^{III})^{III} \rightarrow (Pt^{III})^{II} + H^+$	$(6.6 \pm 1.8) \ge 10^2$ or $pK_a = 6.8 \pm 0.2$	-	RT	2.8-4.3	pr	Cf. entry 17.23	Brod76–1093
17.29	$(Pt^{m})^{m} \rightarrow ?$	$28 \pm 6 \mathrm{s}^{-1}$	-	RT	2.8-4.3	pr	Reaction may be second order.	Brod76–1093
17.30	$ (Pt^{III})^{II} + CI^{-} \rightarrow (Pt^{III})^{IV} $	$(1.11 \pm 0.09) \ge 10^9$	-	RT	3-4,5.1	pr	-	Brod76–1093
17.31	$(Pt^{III})^{iv} + Cu^{II}$ (et?)	$(2.7 \pm 1.0) \ge 10^{5}$	-	RT	2.1	pr	Measured in the presence of 5 x 10 ⁻⁶ mol dm ⁻³ Cl ⁻ .	Brod76–1093
		$(3.2 \pm 1.1) \ge 10^5$	-	RT	2.0	f.ph.	Measured in the presence of 0-0.5 mol dm ⁻³ 2-methyl- 2-propanol. Mechanism of reaction may be complex as the rate constants were appreciably bigher	
							(25-50%) at the lower [Cu ^{II}] employed.	
17.32	(Pt ^{III}) ^{iv} + 'k' (Pt ^{III}) ^{iv} (dis?)	$= (5.7 \pm 1.0) \times 10^7$	-	RT	3.4	pr	Measured in the presence of 10^{-5} mol dm ⁻³ Cl ⁻ . Rate constant calculated taking ϵ_{360} (Pt ^{III}) ^{iv} = 9070 dm ³ mol ⁻¹ cm ⁻¹ .	Brod76–1093

TABLE	17.	Platinum(I)	and	platinum(III)	reactions		Continued
-------	-----	-------------	-----	---------------	-----------	--	-----------

No.	Reaction	$k/dm^{3} mol^{-1} s^{-1} a$	Ι	t∕°C	pН	Method	Comments	Ref.
17.32 Co	ont. 'k'	Y = (4.9 ± 1.9) x 10 ⁷	-	RT 	2.0	f.ph.	Measured in the presence of $(0-1)$ x 10^{-5} mol dm ⁻³ Cl ⁻ and 0-0.5 mol dm ⁻³ 2-methyl-2- propanol. Rate constant calculated taking ϵ_{260} (Pt ^{III}) ¹ ^y = 9490 dm ³ mol ⁻¹ cm ⁻¹ . Unclear whether these rate con- stants refer to k or 2k.	Brod76–1093
17.33	Pt^{III} from trans- $Pt(en)_2Cl_1$ $Pt^{III} + Pt^{III}$ (dis)	$2^{2^+} + e_{aq}^- \text{ or } CH_3COHCH_3$ $2k = (5.8 \pm 1.0) \text{ x}$ 10^7	-	<i>ca</i> . 25	-	pr	Measured in the presence of 2.6 mol dm ⁻³ 2-	Stor75-1188
17.24	Pt^{III} from trans- $Pt(en)_2Cl_2$	$2^{2^+} + H$			0		propanol.	Stor 75 1100
17.34	rt + rt (ais)	$2k = (0.8 \pm 1.0) \times 10^7$	-	<i>ca.</i> 25	2	pr	presence of 0.11– 2 mol dm ⁻³ 2–methyl– 2–propanol.	500773-1166
	Pt ^{III} from trans_Pt(en) ₂ Cl	$_{2^{2^{+}}}$ + $\cdot CH_{2}OH$						
17.35	$Pt^{III} + Pt^{III} (dis)$	$2k = (1.04 \pm 0.38)$ x 10 ⁸	-	<i>ca.</i> 25	-	pr	Measured in the presence of 2–4 mol dm ⁻³ methanol.	Stor75-1188
17 36	$Pt^{II} \rightarrow Cu^{II}$ (aten) $Ct + Dt^{III} \rightarrow Cu^{II}$ (aten)	$(3.2 \pm 0.7) \pm 108$			0.3		Managurad in the	Stor 75 1199
17.50	II - Cu (ci)	$(3.2 \pm 0.7) \times 10^{-5}$	-	25	0.5	pr	presence of 0.5 mol dm ⁻³ HCl.	500175-1100
17.37	Pt ^m + Pt ^m 2 (dis)	$k = (6.8 \pm 1.6) \ge 10^8$	-	<i>ca.</i> 25	0.3	pr	Measured in the presence of 0.5 mol dm ⁻³ HCl.	Stor75-1188
	Pt^{III} from $Pt(dien) Cl^+ +$	ОН						
17.38	(Pt ^m) ⁱ → (Pt ^m) ⁱⁱ	$(4.8 \pm 0.8) \ge 10^3$	-	RT	nat	pr	Rate constant for initial decay of Pt ^{III} transient. This process is followed by (i) an intermediate process exhibiting	Brod76–1093
							mixed order kinetics, and (ii) a slow second order decay with $2k = (7.6 \pm 0.6) \times 10^4$ dm ³ mol ⁻¹ s ⁻¹ .	
17.00	$Pt^{\rm III} from PtLCl^+ + Cl_2$	$_{2}^{-}$ (L = tetraethyldiethylenetri	iamine).		0.0			0
17.39	rt ^m + Cu ⁿ	$(1.5 \pm 0.4) \ge 10^7$	-	ca. 25	0.3	pr	Measured in the presence of 0.5 mol dm ⁻³ HCl	Stor75-1188
17.40	Ptm + Ptm	$2k = ca. 8 \times 10^{5}$	_	CA.	0.3	DF	Measured in the	Stor75-1188
2.7.20				25	0.0	P*	presence of 0.5 mol dm ⁻³ HCl.	201110-1100
	Pt ^{III} from PtLCl ⁺ + OI	H(L = tetraethyldiethylenetric)	amine).					
17.41	$(\operatorname{Pt}^{\operatorname{III}})^{i} \rightarrow (\operatorname{Pt}^{\operatorname{III}})^{ii}$	$1.8 \pm 0.6 \text{ s}^{-1}$	-	<i>ca</i> . 25	nat	pr	-	Brod76-1093
				20				

TABLE 18. Rhodium(II) reactions

No.	Reaction	$k/\mathrm{dm^3\ mol^{-1}\ s^{-1}}$	Ι	t∕°C	pН	Method	Comments	Ref.
	Rh(NH3)42+ and related comple	xes						
18.1	$\frac{\text{Rh}(\text{NH}_3)_4^{2^+} + \text{H}_2\text{O} \rightarrow}{\text{Rh}(\text{NH}_3)_3\text{H}_2\text{O}^{2^+} + \text{NH}_3}$	3.5 x 10 ³ s ⁻¹	-	RT	4.0	pr	Rate constant mea- sured by change in conductivity result- ing from $NH_3 + H^+$ $\rightarrow NH_4^+$. Solutions contained also 0.5 mol dm ⁻³ 2-methyl-2- propanol.	Lili75–1128
18.2	Rh(NH ₃) ₃ H ₂ O ²⁺ + H ₂ O → Rh(NH ₃) ₂ (H ₂ O) ₂ ²⁺ + NH ₃	40 s ⁻¹	-	RT	4.0	pr	Rate constant mea- sured by change in conductivity result- ing from $NH_s + H^+$ $\rightarrow NH_4^+$. Solutions contained also 0.5 mol dm ⁻³ 2-methyl- 2-propagol.	Lili75–1128
18.3	$\begin{array}{l} \mathrm{Rh}(\mathrm{NH}_3)_4{}^{2^+} + \mathrm{O}_2 \rightarrow \\ \mathrm{O}_2\mathrm{Rh}(\mathrm{NH}_3)_4{}^{2^+} \end{array}$	3.1 x 10 ⁸	-	RT	4.0	pr	Product charac- terised by co- ductivity measure- ments. Measured	Lili75–1128
							in the presence of 0.5 mol dm ⁻³ 2-methyl-2-propanol.	
18.4	Rh(NH3)4 ²⁺ + 2 Rh(NH3)4 ²⁺ (dis?)	$k = ca. \ 1.2 \ x \ 10^7$	-	RT	4.0	pr	Estimated from dependence of chain length in the Rh(NH ₃) ₄ 2 ⁺ + Rh(NH ₃) ₄ Br ₂ ⁺ reaction on dose rate.	Lili75–1128
18.5	Rh(NH₃)₄ ²⁺ + Rh(NH₃)₄Br₂ ⁺ → Rh(NH₃)₄ ³⁺ + Rh(NH₃)₄Br	<i>ca.</i> 1.4 x 10 ⁶	-	RT	4.0	pr	Estimated from initial conduc- tivity change. Measured in the presence of 0.5 mol dm ⁻³ 2-methyl- 2-propanol. Pro- ducts inferred from chain reaction which ensues.	Lili75–1128

TABLE 19.	Ruthenium(I),	(II), (I	II) and	(IV)	reactions
-----------	---------------	----------	---------	------	-----------

No.	Reaction	$k/\mathrm{dm^3\ mol^{-1}\ s^{-1}}$ a	Ι	t∕°C	pН	Method	Comments	Ref.
	$Ru^{\rm I}$ $Ru(NH_3)_{\rm s}N_2^+$							
19.1	Ru(NH ₃) ₅ N ₂ ⁺ + Ru(NH ₃) ₅ N ₂ ⁺ (dis)	$2k = 2.7 \text{ x } 10^9$	< 6 x 10 ⁻⁴	20 ± 2	2 nat	pr	Deposit of met- tallic ruthenium and molecular nitrogen ($G(N_2)$ = 1.25) formed as stable pro- ducts. Immediate products of reac- tion unknown	Baxe.71-023
	Ru ^{II}						HOIL GIRLOWN.	
19.2	$\frac{\text{Ru}(\text{NH}_3)_{5}\text{Cl}^{+} + \text{H}_2\text{O} \rightarrow}{\text{Ru}(\text{NH}_3)_{5}\text{H}_2\text{O}^{2^+} + \text{Cl}^{-}}$	$4.7 \pm 0.4 \mathrm{s}^{-1}$	-	20	nat	pr	Product charac- terised by its	Baxe70-0178
19.3	Ru(NH3)5H2O ²⁺ + Ru(NH3)5Cl ²⁺ → Ru(NH3)5Cl ⁺ + Ru(NH3)5	1.0 x 10 ³ H ₂ O ³⁺	3 x 10 ⁻⁴	20	nat	pr	absorption spectrum. Products inferred from fact that radiation brings about complete aquation of	Baxe70–0178
19.4	$Ru(NH_3)_5NO^{2+} + O_2$	7.6 x 10 ⁶	-	RT	_	pr	Ru(NH ₃) ₅ Cl ²⁺ . –	Armo.75–104
19.5	(et or af) Ru(NH₃)₅NO ²⁺ + H2CC(CH → Ru(NH₃)₅NO. CH2C(CH	s)2OH 3.7 x 10° 3)2OH ²⁺	-	RT	1.0–10.3	pr	Measured in the presence of 0.1 - 2.0 mol dm ⁻³ 2-methyl-2- propanol. Pro- duct characterised by elemental	Armo75–107
							microanalysis, ion exchange chroma- tography, and uv- visible, ir and nmr spectroscopy.	
19.6	Ru(NH ₃) ₅ NO ²⁺ + O ₂ CH ₂ C(CH ₃) ₂ OH (af or et)	3 x 10°	-	RT	nat	pr	Measured in the presence of 1 mol dm ⁻³ 2- methyl-2-propanol.	Armo75–107
19.7	$\begin{array}{r} Ru(\mathrm{NH}_3)_5\mathrm{N}_2{}^{3^+} + \mathrm{H}_2\mathrm{O} \rightarrow \\ \mathrm{Ru}(\mathrm{NH}_3)_5\mathrm{OH}^{2^+} + \mathrm{H}^+ + \mathrm{I} \end{array}$	$250 \pm 20 \text{ s}^{-1}$ N ₂	-	20 ± 2	nat	pr	Measured from decay of Ru(NH3)5N2 ³⁺	Baxe.71-0234
		$270 \pm 20 \text{ s}^{-1}$	-	20 ± 2	nat	pr	Measured from the formation of Ru(NH ₃) ₅ OH ²⁺ . Ru product char- acterised by its absorption spectrum $G(N_2) = 9.7 (=$ $2 G e_{aq}^2 + G_{OH})$ measured in γ - radiolysis experi- ments with N ₂ O saturated solutions.	Baxe.71–0234

No.	Reaction	$k/dm^3 mol^{-1} s^{-1} a$	Ι	t∕°C	pН	Method	Comments	Ref.
	Ru ^{IV} (The precise nature of	f these complexes is unce	rtain; all were	formed by	OH oxid	ation of the	correspondingRu ^{III} complex	κ).
19.8	Ru(NH ₃) ₆ ⁴⁺ + Ru(NH ₃) ₆ ⁴⁺ (dis)	4.5 x 10°	3 x 10 ⁻³	20	nat	pr	Unclear whether rate constant refers to k or 2k. A product of this reaction (possibly Ru(NH ₃). ⁶⁺) decays by a first order process with $k = 0.75 \text{ s}^{-1}$. Further, slower reactions ensue before the formation of the stable pro- ducts, and these presumably are due to aquation and bydrolwsis reactions	Baxe70-0178
19.9	Ru(NH₃)₅Cl³+ → products	2.5 x 10 ⁵ s ⁻¹	3 x 10 ⁻³	20	nat	pr	The product of this reaction undergoes two further unimolecu- lar reactions with rate constants of 44 and 0.45 s ⁻¹ . These are probably associated with aquation and hydro- lysis reactions.	Baxe70-0178

TABLE 19. Ruthenium(I), (II), (III) and (IV) reactions - Continued

TABLE	20.	Samarium(Π) reactions
-------	-----	-----------	---	-------------

No.	Reaction	$k/dm^{3} mol^{-1} s^{-1} a$	Ι	t∕°C	pН	Method	Comments	Ref.
	Sm ²⁺ ag							
20.1	$Sm^{2+} + BrO_3^-$ (et)	7.1 x 10 ^e	0.015	RT	nat	pr	-	Fara.72–0065
		$(7.0 \pm 0.5) \times 10^7$	0.0375	RT	6	pr	-	Pika73-1084
20.2	Sm^{2^+} + Co(en) ₃ ³⁺	$< 1 \times 10^{6}$	0.06- 1.0	RT	6	pr	-	Fara.73-0107
20.3	$Sm^{2+} + Co(NH_3)_5Br^{2+}$	3.5 x 10 ⁷	0.06	RT	6	pr	-	Fara.73–0107
	(et)	1.6 x 10 ⁸	1.0	RT	6	pr	-	Fara.73–0107
			(NaClO ₄)					
		2.5 x 10°	1.0 (NaCl)	RT	6	pr	-	Fara.73-0107
20.4	$Sm^{2+} + Co(NH_3)_5Cl^{2+}$	3.8 x 10 ⁷	0.06	RT	6	pr	-	Fara.73-0107
	(0)	1.7 x 10 ⁸	1.0	RT	6	pr	_	Fara.73-0107
			(NaClO ₄)			1		
		2.3 x 10 ⁸	1.0	RT	6	pr	-	Fara.73–0107
			(NaCl)					
20.5	$\mathrm{Sm}^{2^+} + \mathrm{Co}(\mathrm{NH}_3)_5\mathrm{CN}^{2^+}$	$< 3.0 \times 10^{6}$	0.06	RT	6	pr	-	Fara.73-0107
20.6	$Sm^{2+} + Co(NH_3)F^{2+}$	2.5 x 10 ⁷	0.06	RT	6	pr	-	Fara.73–0107
	(et)	1.1 x 10 ⁸	1.0 (NaClO ₄)	RT	6	pr	-	Fara.73-0107
		1.8 x 10 ⁸	10	ВТ	6	DF	_	Fara 73_0107
		1.0 x 10	(NaCl)		Ŭ	pr	_	1 414.10-0101
20.7	$Sm^{2+} + Co(NH_3)_5H_2O^{3+}$	6.0 x 10 ⁶	0.3	RT	_	pr	-	Fara.73-0107
	(et)	8.8 x 10 ⁶	1.0 (NaClO ₄)	RT	-	pr	-	Fara.73–0107
		2.6 x 10 ⁷	1.0	RT	_	Dr	_	Fara.73–0107
			(NaCl)			1		
20.8	$Sm^{2+} + Co(NH_3)_5I^{2+}$ (et)	5.8 x 10 ⁷	0.06	RT	6	pr	-	Fara.73-0107
20.9	$Sm^{2+} + Co(NH_3)_5N_3^{2+}$ (et)	7.8 x 10 ⁷	0.06	RT	6	pr	-	Fara.73-0107
		2.5 x 10 ⁸	0.5	RT	6	pr	-	Fara.73-0107
20.10	$Sm^{2+} \perp C_0(NH) NCS^{2+}$	< 1.0 = 1.06	0.06	ВT	6	22		Fore 72 0107
20.10		$< 1.0 \times 10^{-1}$	0.00	RT	6	pr	-	Fara. 73-0107
		1.0 X 10	(NaClO ₄)	1(1	0	pr	-	raia.75-0107
20.11	$Sm^{2+} + Co(NH_3)_6^{3+}$	$< 1.0 \ge 10^{6}$	0.06	RT	6	pr	-	Fara.73–0107
	(ei)	5.0×10^{9}	1.0	ВT	6	DF	_	Fara 73_0107
		0.0 x 10	(NaCl)		Ũ	P.		1 414.10-0101
20.12	$Sm^{2+} + Co(NH_3)_5OH^{2+}$ (et)	1.5 x 10 ⁷	0.3	RT	-	pr	-	Fara.73–0107
		5.0 x 10 ⁷	1.0	RT	-	pr	-	Fara.73–0107
		5.0 x 10 ⁷	(NaClO ₄) 1.0	RT	-	pr	-	Fara.73–0107
			(NaCl)					
20.13	$Sm^{2+} + CrO_{4}^{2-}$ (et)	$(4.0 \pm 0.5) \ge 10^9$	0.375	RI	6	pr	-	Pika73-1084
20.14	$Sm^{2+} + Cu^{2+}$ (et)	8.3 x 10 ⁷	0.015	RT	nat	pr	-	Fara.72–0065
20.15	$Sm^{2+} + H_2O_2$ (et)	3.5 x 10 ⁷	0.015	RT	nat	pr	-	Fara.72-0065
		$(6.7 \pm 0.3) \ge 10^7$	0.375	RT	6	pr	-	Pika73-1084
20.16	$Sm^{2+} + Eu^{3+}$ (et)	7.5 x 10 ⁶	0.015	RT	nat	pr	-	Fara.72-0065
20.17	$Sm^{2+} + 1O_s^{-}$ (et)	4.9 x 10 ⁷	0.015	RT	nat	Pr	-	Fara.72-0065
20.18	$Sm^{3+} + MnO_4^-$ (et)	$(4.7 \pm 0.5) \times 10^{\circ}$	0.375	RT	0	pr	-	Pika73-1084
00.10	C 2+ + NO = ()	6.5 x 10 ⁹	0.015	KT	nat	pr	-	Fara. 72-0065
20.19	$Sm^{*} + NO_2^-$ (et)	1.1×10^{9}	$\rightarrow 0$	KT	nat	pr	-	Fara. 72-0065
90.90	Sat I'NO TO	$(1.3 \pm 0.2) \times 10^{\circ}$	0.375	RT	0	pr	-	Pika / 3-1084
20.20	$Sm^{*} + NO_3$ (et)	$(1.5 \pm 0.2) \times 10^{\circ}$	0.375	R I DT	0	pr	-	Fika / 3-1084
20.91	Sm2t (N.O. (-+2)	$2.0 \times 10^{\circ}$	0.015	RT RT	nat	pr	-	Fara 72 0065
20.21	$JIII^- + IV_2 U(et?)$	2.0 X 10°	0.015	111	пас	pr	-	CO00-21.818.1

TABLE 20.	Samarium(II)	reactions	_	Continued
-----------	--------------	-----------	---	-----------

No.	Reaction	$k/dm^{3} mol^{-1} s^{-1} a$	Ι	t∕°C	pН	Method	Comments	Ref.
20.22	$Sm^{2^+} + O_2$ (af or et)	3.9 x 10 ⁸	0.015	RT	nat	pr	_	Fara.72-0065
		$(4.2 \pm 0.5) \ge 10^{8}$	0.375	RT	3-6	pr	-	Pika73-1084
20.23	$Sm^{2+} + OH$ (et)	6 x 10 ⁹		RT	nat	pr	-	Fara.72-0065
		$(6.2 \pm 0.8) \ge 10^9$	0.375	RT	3–6	pr	-	Pika73-1084
20.24	Sm^{2^+} + $\operatorname{Ru}(\operatorname{NH}_3)_{\mathcal{S}}\operatorname{Br}^{2^+}$ (et)	1.5 x 10 ^s	0.06	RT	6	pr	-	Fara.73-0107
20.25	$Sm^{2+} + Ru(NH_3)_5Cl^{2+}$ (et)	1.5 x 10 ^s	0.06	RT	6	pr	-	Fara.73-0107
		4.3 x 10 ^s	1.0 (NaClO ₄)	RT	6	pr	-	Fara.73-0107
		6.5 x 10 ^s	1.0 (NaCl)	RT	6	pr	-	Fara.73-0107
20.26	$Sm^{2^+} + Ru(NH_3)_5H_2O^{3^+}$ (et)	6.5 x 10'	0.3	RT	2	pr	-	Fara.73-0107
		1.8 x 10 ^s	1.0 (NaClO ₄)	RT	2	pr	-	Fara.73-0107
		1.3 x 10°	1.0 (NaCl)	RT	2	pr	-	Fara.73-0107
20.27	$Sm^{2+} + Ru(NH_3)_5I^{2+}$ (et)	ca. 10 ⁸	0.06	RT	6	pr	-	Fara.73-0107
20.28	$Sm^{2+} + Ru(NH_3)_5OH^{2+}$ (et)	4.0 x 10 ⁷	0.06	RT	6	Pr	-	Fara.73-0107
		2.2 x 10 ⁸	1.0 (NaClO₄)	RT	6	pr	-	Fara.73-0107
		6.0 x 10 ^s	1.0 (NaCl)	RT	6	pr	-	Fara.73-0107
20.29	$Sm^{2^+} + Ru(NH_3)e^{3^+}$	2.5 x 10 ⁷	0.06	RT	6	pr	-	Fara.73-0107
	(et)	2.0 x 10 ⁸	1.0 (NaClO ₄)	RT	6	pr	-	Fara.73-0107
		8.0 x 10 ⁸	1.0 (NaCl)	RT	6	pr	-	Fara.73-0107
20.30	$Sm^{2+} + Yb^{3+}$ (et)	3.0 x 10 ⁶	0.015	RT	nat	pr	-	Fara.72-0065

TABLE 21. Thallium(0) and (II) reactions

No.	Reaction	$k/dm^3 mol^{-1} s^{-1} a$	Ι	t∕°C	pH	Method	Comments	Ref.
	Tl(0)							
21.1	TI_{aq}^{o} $TI^{o} + H_{3}O_{2} \rightarrow$ $TI^{+} + OH + OH^{-}$	5 x 10°	-	RT	0.1,5.2	γ	Rate constant and products deduced from H ₂ O ₂ and H ₂	Fara71–0036
							yields in γ -irradi-	
		< 107	-	RT	nat	pr	-	Fara71-0036
21.2	$TI^{\circ} + HO_{2} \rightarrow$ $TI^{+} + HO_{2}^{-}$	1.3 x 10 ¹⁰	-	RT	0.1,5.2	γ	Rate constant and products deduced from H_2O_2 and H_2 yields in γ -irradi- ated Tl ^I solutions.	Fara71–0036
21.3	$Tl^{o} + O_{2} \rightarrow$	$(1.0 \pm 0.2) \ge 10^7$	-	RT	nat	pr	-	Fara71-0036
91 A	$Tl^+ + O_2^-$ $Tl^0 + O_2^- \rightarrow$	1 4 x 10°	_	RT	52	~	Rate constant and	Fara 71-0036
21.4	$TI^{+} + O_{2}^{2^{-}}$	1.4 × 10	-	AT.	0.4	7	products deduced from H_2O_2 and H_2 yields in γ -irradi- ated Tl ^I solutions.	1 4141
21.5	$TI^{\circ} + TI^{+} \rightleftharpoons$	$K = 2.3 \times 10^3 M^{-1}$	-	RT	6.5	pr	Measured from the	Cerc66-0097
	Tl ₂ +	$k_t > 10^{10}$	-	RT	6.5	pr	effect of $[T1^+]$ on the absorption due to Tl_2^+ .	
21.6	$ \begin{array}{l} Tl^{\bullet} + Tl^{\Pi} \rightarrow \\ Tl^{+} + Tl^{I} \end{array} $	$(4.5 \pm 1) \ge 10^9$	-	RT	nat	pr	Products deduced from H ₂ O ₂ and H ₂ yields in γ -irradi-	Fara71–0036
							ated Tl ^I solutions. No account taken of	
•							the hydrolysis of Tl ²⁺ (see entry 21.19).	
							competing reaction $Tl_2^+ + Tl^{II}$ (see entry 21.12).	
21.7	$Tl^{\circ} (?) + 1,4-benzo-$ quinone $\rightarrow Tl^{+} + (1,4)$	2.8 x 10 ⁹ -benzo-	-	ca. 25	7.0	pr	Semiquinone product identified by its	Rao.75–103
	quinone) ⁻ Tl _a +						absorption spectrum.	
21.8	$Tl_3^+ + H_2O_3 \rightarrow$ $2Tl^+ + OH + OH^-$	$(7 \pm 2) \ge 10^{6}$	-	RT	nat	pr	Products deduced from H ₂ O ₂ and H ₂ yields in γ-irradi-	Fara71–0036
21.9	$Tl_2^+ + N_2O$ (O at or et)	$(1.4 \pm 0.2) \ge 10^7$	-	25	nat	pr	γ -radiolysis studies indicate that N ₂ is	Sell72-0844
							one of the products of this reaction.	
21.10	$Tl_2^+ + O_2 \rightarrow$	$(1.0 \pm 0.2) \ge 10^7$	-	RT	nat	pr	-	Fara71-0036
	2 2Tl ⁺ + 0 ₂ ⁻	1.2 x 10'	-	RT	0.1,5.2	γ	Rate constant and products deduced from H ₂ O ₂ and H ₂ yields in γ -irradi-	Fara71–0036
91.11		100 onter 01 5					ated Tl ^I solutions.	
21.11	$Tl_2 \rightleftharpoons TP + TT$ $Tl_2^+ + TT \rightarrow$	see entry 21.5 $(4.4 + 0.9) \times 10^9$	$\rightarrow 0$	ВТ	nat	D r	Products deduced	Cerc66-0097
-1.12	3TI+	$(4.5 \pm 1) \times 10^{\circ}$	0.0006	RT	nat	pr	from H_2O_2 and H_2 yields in γ -irradi-	Fara71-0036
		$(7.5 \pm 1) \ge 10^9$	0.015	RT	nat	pr	No account taken of the hydrolysis of TI ⁺ (see entry 21.19.	

TABLE	21.	Thallium(0)	and	(II)	reactions	—	Continued
-------	-----	-------------	-----	-------------	-----------	---	-----------

No.	Reaction	$k/\mathrm{dm^3\ mol^{-1}\ s^{-1}}$	Ι	t∕°C	pН	Method	Comments	Ref.
21.13	Tl_2^+ + 1,4-dicyano- benzene $\rightarrow 2Tl^+$ + (1,4-dicyanobenzen	2.7 x 10° 	-	RT		pr	Organic product characterised by its absorption spectrum.	Robi.73-0121
	Tl^{Π} (Rate constants fr Tl^{2+} and $TlOH^{+}$	om pulse radiolysis and flash p	hotolysis exp	periments or	aly).		Spoon ann	
21.14	$Tl^{2+} + Co^{2+} \rightleftharpoons$ $Tl^{+} + Co^{3+}$	$k_{\rm f} = (6.2 \pm 0.5) \ge 10^3$	0.75	25	0.6	f.ph.	Evidence for products and equili- brium from conven- tional kinetic studies.	Falc74–7625
21.15	$\begin{array}{r} Tl^{2^+} + Co^{3^+} \rightarrow \\ Tl^{3^+} + Co^{2^+} \end{array}$	$(9.5 \pm 0.5) \ge 10^6$	0.55	22 ± 2	0.3	f.ph.	Evidence for products from conventional kinetic studies.	Falc75–7093
21.16	$\begin{array}{r} \mathrm{Tl}^{2^+} + \mathrm{Fe}^{2^+} \rightarrow \\ \mathrm{Tl}^+ + \mathrm{Fe}^{2^+} \end{array}$	$(2.42 \pm 0.1) \ge 10^6$	0.30	14.7	0.6	f.ph.	Evidence for pro- ducts from conven- tional kinetic	Falc75–7093
		(9.50 ± 0.1) 105	0.20	10.2	0.6	f., h	studies.	E-1. 75 7000
		$(2.50 \pm 0.1) \times 10^{\circ}$	0.30	18.5	0.0	1.pn.		Falc 75-7093
		$(2.55 \pm 0.1) \times 10^{\circ}$	0.30	20.7	0.0	1.pn. f.ph		Falc. 75 7002
		$(2.00 \pm 0.1) \times 10^{6}$	0.30	24.0	0.0	f nh		Falc 75_7093
		$(2.70 \pm 0.1) \times 10^{6}$	0.30	33.9	0.6	f.nh.		Falc 75-7093
		$(2.81 \pm 0.1) \times 10^{6}$	0.30	36.0	0.6	f.nh.		Falc75-7093
		$(2.91 \pm 0.1) \times 10^6$	0.30	39.6	0.6	f.nh.		Falc75-7093
		$E_{\rm a} = 48 \pm 2 \rm k I mol^{-1}$	0.30	14-40	0.6	f.ph.		Falc75-7093
		$(6.7 \pm 0.7) \times 10^6$	1 (HClO ₄)	23	0	pr		Schw74-1017
21.17	Tl ²⁺ + Fe ³⁺ ≓ Tl ³⁺ + Fe ²⁺	$(1.1 \pm 0.15) \ge 10^6$	0.30	25	0.6	f.ph.	Evidence for pro- ducts and equilibrium from conventional kinetic studies	Falc74-7625
21.18	$\begin{array}{l} \mathrm{Tl}^{2^+} + \mathrm{HO}_2 \rightarrow \\ \mathrm{Tl}^+ + \mathrm{H}^+ + \mathrm{O}_2 \end{array}$	$(2.5 \pm 1) \ge 10^{9}$	-	RT	1	pr	Estimated from ini- tial decay of TI ^{II}	Cerc66-0097
21.19	Tl ²⁺ + H ₂ O ⇒	$pK = 46 \pm 0.2$	Vаг	21	2-7	DF	Evidence for emili-	O'Ne.75-113
	$TIOH^+ + H^+$	$k_t = 3.5 \times 10^5 \mathrm{s}^{-1}$	var	21	2-7	pr	brium from optical and	0 1.000 110
		$k_r = (1.4 \pm 0.5) \times 10^{10}$	Var	21	2-7	P- Dr	conductivity measurement	ts.
21.20	$\mathrm{Tl}^{2^+} + \mathrm{H}_2\mathrm{O}_2 \rightarrow$	$(2.8 \pm 0.8) \times 10^7$	_	RT	1	pr	Evidence for pro-	Cerc66-0097
	$TI^+ + HO_2 + H^+$						ducts from H_2O_2 and H_2 yields in γ -irradi- ated Tl ¹ solutions. (see ref. 71-0036).	
21.21	$\begin{array}{r} Tl^{2^+} + Mn^{2^+} \rightarrow \\ Tl^+ + Mn^{3^+} \end{array}$	$(1.9 \pm 0.2) \ge 10^4$	0.75	22 ± 3	0.3	f.ph.	Evidence for pro- ducts from conven-	Falc75–7093
							studies etc. (see ref. 75–7093).	
21.22	$TI^{II} + O_2^- \rightarrow TI^{I} + O_2$	2 x 10 ¹⁰	-	RT	5.2	γ	Rate constant and products deduced from H_2O_2 and H_2 yields in γ -irradi- ated Tl^1 solutions. No account taken	Fara71–0036
							of hydrolysis of	
01.00		. 01.6					Tl ²⁺ (see entry 21.19).	
21.23 21.24	$Tl^{II} + Tl_2^+$ see	entry 21.0 entry 21.12						

TABLE 21. Thallium(0) and (II) reactions - Continued

No.	Reaction	$k/dm^{3} mol^{-1} s^{-1} a$	Ι	t∕°C	pН	Method	Comments	Ref.
21.25	Tl ²⁺ + Tl ²⁺ (dis)	$2k = (3.8 \pm 0.6) \times 10^8$	1 (HClO,	23	0	pr	Measured from decay of Tl^{2+} monitored at 280 nm. Value of ϵ_{280} used to cal- culate rate constant not given, but is <i>ca</i> . 3200 dm ³ mol ⁻¹ cm ⁻¹	Schw74–1017
		$2k = (5.2 \pm 0.5) \times 10^{8}$	0.25	25	1	f.ph.	Measured from decay	Falc74–7625
		$2k = (0.2 \pm 0.0) \times 10^{-1}$	0.23	20	0.0	f.ph.	of 11 ⁻ monitored	
		$2k = (9.2 \pm 0.9) \times 10^{\circ}$	0.50	25	0.0	r.pn.	at 270 nm. Kate	
		$2k = (1.5 \pm 0.1) \times 10^{5}$	1.0	25	0.0	r.pn.	tabiant calculated	
		$2k = (1.2 \pm 0.1) \times 10^{\circ}$	1.0	25	0.5	r.pn.	$taking e_{270} = 5500$	
		$2k = (1.3 \pm 0.1) \times 10^{5}$	1.0	25	0	r.pn.	dm ^o mol · cm ·. 1 his	
		$E_{\rm a} = 7.9 \pm 1.5 \rm kJ mol^{-1}$	-	15-45	-	f.ph.	value was obtained by	
							interpolation from the	
							measured spectrum of	
							Ti ^{**} and the value of	
							$\epsilon_{260} = 5400 \text{ dm}^3 \text{ mol}^{-1}$	
							cm ⁻¹ measured by Cercek	
							et al (ref. 66-0097).	
							Note however that this	
							latter value was mea-	
							sured in solutions at	
							pH ca. 6.5 and refers	
							therefore to TIOH ⁺	
							(see entry 21.19).	
		$\frac{2k}{\epsilon_{270}} = (6.1 \pm 0.6)$ x 10 ⁴ cm s ⁻¹	1 (HClO₄)	25 ± 2	0	f.ph.	Measured in the pre- sence of 5 x 10 ⁻³ mol dm ⁻ Ti ^{III} and 1 x 10 ⁻⁴	Burc.70-7309 3
							mal dm ⁻³ Tl	
		$2k/\epsilon_{max} = (1.3 \pm 0.2)$	1	25 ± 2	0	f.nh	Measured in the pre-	Bure 70_730
		$x 10^5 \text{ cm s}^{-1}$	(HCIO)	20 - 2	v	1.pn.	sence of 5×10^{-3}	Durc.10-100.
•			(110104)				mol dm ⁻³ Tl ^{III} and 5	
							x 10 ⁻² mol dm ⁻³ 2-	
							propanol	
21.26	TIOH ⁺ + TIOH ⁺	$2k = (4.6 \pm 1.6) \ge 10^9$	ca. 0	RT	6.5	pr	Measured from decay	Cerc66-0097
	(dis)						of TlOH ⁺ monitored	
							at 260 nm. Rate	
							constant calculated	
							taking $\epsilon_{260} = 5400$	
							dm ³ mol ⁻¹ cm ⁻¹ .	
		$2k = 5 \ge 10^9$	-	RT	> 5.5	pr	Extinction coeffi-	O'Ne.75-113
							cient used to calcu-	
							late rate constant	
							not given.	
21.27	$Tl^{2^+} + \cdot CH_2OH$	$(1.2 \pm 0.3) \ge 10^4$	-	23 ± 2	0.43	γ	Estimated from the	Burc.70-0336
	(et or af)						γ -ray induced chain	
							reaction in Tl^{Π} +	
							methanol solutions,	
							taking $k(Tl^{\Pi} + Tl^{\Pi})$	
							$= 5.5 \times 10^8 \text{ dm}^3 \text{ mol}^{-1}$	
							s ⁻¹ (see entry 21.25).	
21.28	Tl ²⁺ + CH ₃ C HOH	$(1.5 \pm 0.4) \ge 10^4$	-	23 ± 2	0.43	γ	Estimated from the	Burc.70-0336
	(et or af)						γ -ray induced chain	
							reaction in Tl^{Π} +	
							ethanol solutions,	
							taking $k(Tl^{\Pi} + Tl^{\Pi})$	
							$= 5.5 \times 10^{8} \text{ dm}^{3} \text{ mol}^{-1}$	
							s^{-1} (see entry 21.25).	

TABLE 2	21.	Thallium(0)	and	(II)	reactions	-	Continued
---------	-----	-------------	-----	------	-----------	---	-----------

No.	Reaction	$k/dm^3 mol^{-1} s^{-1} a$	Ι	t∕°C	рН	Method	Comments	Ref.
21.29	Tl ²⁺ + CH ₃ COHCH ₃ (et or af)	$(9.4 \pm 2.3) \ge 10^3$	-	23 ± 2	0.43	γ	Estimated from the γ -ray induced chain reaction in Tl ^{II} + 2-propanol solutions, taking $k(\text{Tl}^{\text{II}} + \text{Tl}^{\text{II}})$ = 5.5 x 10 ⁸ dm ³ mol ⁻¹ s ⁻¹ (see entry 21.25).	Burc.70–0336
21.30	Tl^{a+} + anisole \rightarrow Tl^+ + (anisole) ⁺	$(5.0 \pm 0.5) \ge 10^8$	-	20 ± 2	4	pr	Radical cation pro- duct characterised by its absorption and esr spectra.	O'Ne75–1171
21.31	$TI^{2^+} + 1,2-dimeth-$ oxybenzene $\rightarrow TI^+ +$ $(1,2-dimethoxybenzene)^+$	$(6.0 \pm 0.6) \ge 10^8$	-	20 ± 2	4	pr	Radical cation pro- duct characterised by its absorption and esr spectra.	O'Ne75–1171 O'Ne75–1086
21.32	TIOH ⁺ + 1,2-dimethoxy- benzene \rightarrow Tl ⁺ + OH ⁻ + (1,2-dimethoxybenzene) ⁺	1.2 x 10 ⁹	-	RT	> 4.7	pr	Radical cation pro- duct characterised by its absorption and est spectra.	O'Ne75–1086
21.33	$TI^{2^+} + 1,3$ -dimethoxy- benzene $\rightarrow TI^+ + (1,3-$ dimethoxybenzene) ⁺	$(8.0 \pm 0.8) \ge 10^8$	-	20 ± 2	4	pr	Radical cation pro- duct characterised by its absorption	O'Ne75–1171
21.34	$Tl^{2^+} + 1,4$ -dimethoxy- benzene $\rightarrow Tl^+ + (1,4$ -dimethoxybenzene) ⁺	$(6.5 \pm 0.7) \ge 10^8$	-	20 ± 2	4	pr	Radical cation pro- duct characterised by its absorption	O'Ne75–1086 O'Ne75–1171
21.35	$TIOH^+ + 1,4$ -dimethoxy- benzene $\rightarrow TI^+ + OH^- + (1,4$ -dimethoxybenzene) ⁺	4.5 x 10 ⁸	-	RT	> 4.7	pr	Radical cation pro- duct characterised by its absorption	O'Ne75-1086
21.36 21.37	TIOH ⁺ + menaquinone Tl ²⁺ + 1,2,3-trimethoxy- benzene \rightarrow Tl ⁺ + (1,2,3- trimethoxybenzene) ⁺	slow (3.2 \pm 0.3) x 10 ⁸	-	RT 20 ± 2	6.8 4	pr pr	Radical cation pro- duct characterised by its absorption and	Rao.73–1047 O'Ne75–1171
21.38	Tl^{2^+} + 1,2,4-trimeth- oxybenzene \rightarrow Tl^+ + (1,2,4-trimethoxybenzene) ⁺	$(6.8 \pm 0.7) \ge 10^8$	-	20 ± 2	4	pr	Radical cation pro- duct characterised by its absorption	O'Ne75-1171
21.39	Tl^{2^+} + 1,3,5-trimeth- oxybenzene $\rightarrow Tl^+$ + $(1,3,5-trimethoxybenzene)^+$	$(7.0 \pm 0.7) \ge 10^8$	-	20 ± 2	4	pr	Radical cation pro- duct characterised by its absorption and esr spectra.	O'Ne75–1171

TABLE	21.	Thallium(0)	and	(II)	reactions	—	Continued
-------	-----	-------------	-----	------	-----------	---	-----------

No.	Reaction	$k/\mathrm{dm^{s}\ mol^{-1}\ s^{-1}}$	Ι	t/°C	pН	Method	Comments	Ref.
	Tl ^{II} chloro-complexes							
21.40	$Tl^{2^+} + Cl^- \rightleftharpoons TlCl^+$	$K = (6.2 \pm 0.7)$	1	23	0	pr	Measured from ef-	Dods.74-1038
		x 10 ⁴ dm ³ mol ⁻¹	(HClO₄)				fect of [Cl ⁻] on ab- sorption spectrum of Tl ^{II} .	
		$k_{\rm f} = 9 \ge 10^{\rm o}$	1 (HClO ₄)	23	0	pr	Measured from rate of attainment of equilibrium.	Dods.74-1038
		$k_{\rm r} = 1.4 \text{ x} 10^5 \text{ s}^{-1}$	1	23	0	pr	oquinorium.	
			(HClO ₄)		-	r-		
21.41	$TICI^+ + CI^- \rightleftharpoons$	$K = (1.9 \pm 0.4)$	1	23	0	pr	Measured from ef-	Dods.74-1038
	TlCl ₂	x 10 ³ dm ³ mol ⁻¹	(HClO ₄)				fect of [Cl ⁻] on	
							absorption spectrum of Tl ^{II} .	
21.42	$TlCl_2 + Cl^- \rightleftharpoons$	$K = 13 \pm 3 \mathrm{dm^3}$	1	23	0	pr	Measured from ef-	Dods.74-1038
	TlCl ₃ -	mol ⁻¹	(HClO ₄)				fect of [Cl ⁻] on	
							absorption spectrum of Tl ^{II} .	
21.43	$Tl^{II} + Tl^{II}$ (dis)	$2k = 5.38 \ge 10^9$	1	23	0	pr	$[Cl^{-}] = 1 \times 10^{-3}$ mol dm ⁻³	Dods.74-1038
		$2k = 5.58 \ge 10^9$	1	23	0	pr	$[Cl^{-}] = 9.7 \times 10^{-3}$ mol dm ⁻³	Dods.74-1038
		$2k = 4.74 \ge 10^9$	1	23	0	pr	$\begin{bmatrix} CI^{-} \end{bmatrix} = 0.1 \text{ mol}$ dm ^{-s}	Dods.74-1038
		$2k = 3.70 \text{ x } 10^9$	1	23	0	pr	$\begin{bmatrix} Cl^{-} \end{bmatrix} = 0.98 \text{ mol} \\ dm^{-s}$	Dods.74-1038
		Plus data at intermed	liate chloride	concentra	ations.			

TABLE 22. Thulium(II) reactions									
No.	Reaction	k/dm ³ mol ⁻¹ s ^{-1 a}	Ι	t∕°C	рН	Method	Comments	Ref.	
22.1	$\frac{Tm_{aq}^{2+}}{Tm^{2+} + OH (et)}$	$(7 \pm 1) \ge 10^9$	-	RT	3-6	pr	_	Pika73-1084	

TABLE 23. Ytterbium(II) reactions

No.	Reaction	$k/dm^{3} mol^{-1} s^{-1} a$	Ι	t∕°C	рН	Method	Comments	Ref.
	Yb ²⁺ (Rate constants from pul	se radiolysis studies on	ly).					
23.1	$Yb^{2^+} + BrO_3^-$	< 10 ⁵	0.015	RT	nat	pr	-	Fara.72-0065
23.2	$Yb^{a+} + Co(en)_{a}^{a+}$	$< 5 \times 10^{3}$	0.06-1.0	RT	6	pr	-	Fara.73-0107
23.3	$Yb^{2^+} + Co(NH_3)_5Br^{2^+}$ (et)	3.0 x 10 ⁶	0.06	RT	6	pr	-	Fara.73-0107
		1.4 x 10 ⁷	1.0 (NaClO ₄)	RT	6	pr	-	Fara.73-0107
		2.5 x 10 ⁷	(NaCl)	RT	6	pr	-	Fara.73-0107
23.4	$Yh^{2+} + Co(NH_a)_{*}Cl^{2+}$ (et)	4.3 x 10 ⁵	0.06	ВT	6	DT	_	Fara.73-0107
2001		1.9 x 10 ⁷	1.0 (NaClOv)	RT	6	pr	-	Fara.73-0107
		2.3 x 10 ⁷	1.0	RT	6	pr	-	Fara.73-0107
02 E	VL2+ (C-(NUL) CN2+ (-A)	2.0 - 1.05		DT	6			Fam 72 010
20.0 02.6	$1b^{\circ} + Co(MI_{3})_{5}CM^{\circ}$ (et)	3.0×10^{-1}	0.00	ni pr	6	pr	-	Fara. 73-0107
23.0	$10^{-} + Co(10H_3)_{5}F^{-}$ (et)	1.1×10^{-1}	0.00	RI DT	6	pr	-	Fara. 73-0107
		0.0 x 10 [,]	1.0 (NaClO ₄)	кі)	0	pr	-	r ara. 73-010
		1.0 x 10 ⁵	1.0 (NaCl)	RT	6	pr	-	Fara.73-0107
23.7	$Yb^{2+} + Co(NH_s)_5H_2O^{3+}$ (et)	2.2 x 10 ⁵	0.3	RT	2	pr	-	Fara.73-0107
		6.4 x 10 ⁵	1.0 (NaClO ₄)	RT	2	pr	-	Fara.73-0107
23.8	$Yb^{2^+} + Co(NH_3)_5N_3^{2^+}$ (et)	1.6 x 10 ⁷	0.06	RT	6	pr	_	Fara.73-0107
		2.6 x 10 ⁷	0.5 (NaClO ₄)	RT	6	pr	-	Fara.73-0107
23.9	$Yb^{2+} + Co(NH_3)_5NCS^{2+}$	\leq 5.0 x 10 ⁴	0.5 (NaClO4)	, RT	6	pr	-	Fara.73-0107
23.10	$Yb^{2^{+}} + Co(NH_{3})e^{3^{+}}$	$\leq 5.0 \times 10^4$	0.06	RT	6	Dr	_	Fara.73-0107
23.11	$Yb^{2^+} + Co(NH_3)sOH^{2^+}$ (et)	7.7 x 10 ⁶	0.3	RT	5.5	Dr	_	Fara.73-010
		1.9 x 10 ⁷	1.0 (NaClOv)	RT	5.5	pr	-	Fara.73-010
		2.9 x 10 ⁷	1.0	RT	5.5	pr	-	Fara.73-010
23.12	$Yh^{2^+} + Cu^{2^+}$ (et)	1.2×10^{7}	0.015	ВТ	nat	Dr	_	Fara 72-006
23.13	$Yh^{2^+} + H_0\Omega_0$ (et)	91×10^{5}	0.015	RT	net	P ¹	_	Fara 72-006
23.14	$Yh^{2^+} \pm IO_{2^-}$ (et)	21×10^{5}	0.015	RT	net	pr		Fara 72_006
23.15	$Yh^{2^+} + M_P Q_{1^-}(et)$	2.1 x 10 8 3 x 107	0.015	RT	net	P		Fara 72_006
23.16	$Yh^{2+} + NO_{a-}(et)$	4.7×10^7	0.015	RT	nat	P	-	Fara 72-006
23.17	$Yh^{2+} + NO_{2-}^{-}$ (et)	3.6 x 10 ⁵	0.015	RT	nat	P ¹	_	Fara.72-006
23.18	$Yh^{2^+} + N_{2}O$ (et?)	ca. 104	0.015	BT	nat	P-	_	Fara.72-0065
23.19	$Yh^{2^+} + O_2$ (et or af)	$(6.3 \pm 1) \times 10^7$	0.375	RT	2	P*	_	Pika. 73-1084
20117		65×10^7	0.015	BT	net	P ¹	_	Fara 72-006
23.20	$Yh^{2+} + OH$ (et)	3 x 10 ⁹	0.015	RT	nat	P*	_	Fara. 72-006
		$(3.2 \pm 0.3) \times 10^9$	0.375	RT	2	P ⁻	_	Pika73-1084
23.21	$Yb^{2^+} + Ru(NH_3)_5Br^{2^+}$	3.3 x 10 ⁷	0.06	RT	6	pr	-	Fara 73-010
23.22	$Yb^{2^+} + Bu(NH_{\bullet})_{*}Cl^{2^+}$ (et)	1.5 x 107	0.06	вт	6	Dr	_	Fara.73-010
		1.8 x 10 ⁵	1.0	RT	6	pr	-	Fara.73-010
		2.8 x 10 ⁵	1.0 (NaCl)	RT	6	pr	-	Fara.73-0107

No.	Reaction	$k/dm^3 mol^{-1} s^{-1}$	Ι	t∕°C	рН	Method	Comments	Ref.
23.23	Yb ²⁺ + Ru(NH ₃) ₅ H ₂ O ³⁺	1.0 x 10 ⁷	0.3	RT	2	pr	_	Fara.73-0107
	(et)	2.9 x 10 ⁷	1.0 (NaClO	RT	2	pr	-	Fara.73-0107
		3.2 x 10 ⁸	1.0 (NaCl)	RT	2	pr	-	Fara.73–0107
23.24	Yb ²⁺ + Ru(NH ₃) ₅ I ²⁺ (et)	ca. 10 ⁸	0.06	RT	6	pr	-	Fara.73-0107
23.25	$Yb^{3+} + Ru(NH_3)e^{3+}$ (et)	5.0 x 10 ⁸	0.06	RT	6	pr	-	Fara.73-0107
		4.5 x 10 ⁷	1.0 (NaClO	RT	6	pr	-	Fara.73-0107
		3.0 x 10 ⁸	1.0 (NaCl)	RT	6	pr	-	Fara.73–0107
23.26	$Yb^{2+} + Ru(NH_3)_5OH^{2+}$	1.3 x 10 ⁷	0.06	RT	6	pr	_	Fara.73-0107
	(et)	2.3 x 10 ⁷	0.3	RT	6	pr	-	Fara.73-0107
		5.0 x 10 ⁷	1.0 (NaClO	RT	6	pr	-	Fara.73-0107
		1.4 x 10 ⁸	1.0 (NaCl)	RT'	6	pr	-	Fara.73–0107

TABLE 23. Ytterbium(II) rea	ctions — Continued
-----------------------------	--------------------

TABLE 24. Zinc(I) reactions

No.	Reaction	$k/dm^{3} mol^{-1} s^{-1}$	Ι	ℓ/°C	pН	Method	Comments	Ref.
	Zn ⁺ aq							
24.1	$Zn^+ + BrO_3^-$ (et)	$(2.1 \pm 0.3) \times 10^9$	0.08	RT	nat	pr	-	Meye.680855
24.2	$Zn^+ + Cd^{a+}$ (et?)	$< 1 \times 10^{7}$	0.08	RT	nat	pr	The reason for the	Meye.680855
		8.3 x 10 ^s	-	RT	nat	pr	discrepancy between these two values is not clear.	Baxe66-0848
24.3	$Zn^+ + ClO_3^-$	$< 3 \times 10^{8}$	0.08	RT	nat	pr	-	Meye.68-0855
24.4	$Zn^+ + Co^{2+}$	$< 3 \times 10^{8}$	0.08	RT	nat	pr	-	Meye.68-0855
24.5	$Zn^+ + Co(bpy)_s^{s+}$ (et)	2.6 x 10°	-	RT	nat	pr	-	Baxe72-0381
24.6	$Zn^{+} + Co(en)_{3}^{2+}$ (et)	$(2.5 \pm 0.4) \ge 10^8$	0.08	RT	5-6	pr	-	Meye.69-0428
24.7	$Zn^+ + cis - Co(en)_2 Cl_2^+$ (et)	$(1.91 \pm 0.3) \ge 10^9$	0.08	RT	5–6	pr	-	Meye.69-0428
24.8	$Zn^+ + trans - Co(en)_2Cl_2^+ (et)$	$(2.3 \pm 0.3) \ge 10^9$	0.08	RT	5–6	pr	-	Meye.69-0428
24.9	$Zn^+ + Co(en)_2CO_3^+$ (et)	$(4.7 \pm 0.7) \ge 10^8$	0.08	RT	5–6	pr	-	Meye.69-0428
24.10	$Zn^+ + cis - Co(en)_2 F_2^+$ (et)	$(5.4 \pm 0.8) \ge 10^8$	0.08	RT	5–6	pr	-	Meye.69-0428
24.11	$Zn^+ + Co(en)_2 FH_2O^{2+}$ (et)	$(4.7 \pm 0.7) \ge 10^8$	0.08	RT	5–6	pr	-	Meye.69-0428
24.12	$Zn^+ + cis - Co(en)_2 NH_3 Cl^{2+}$ (et)	(1.47± 0.2) x 10 ⁹	0.08	RT	5–6	pr	-	Meye.69–0428
24.13	$Zn^+ + cis - Co(en)_2 NH_3 NO_2^{2+}$ (et)	$(2.7 \pm 0.7) \ge 10^9$	0.08	RT	5–6	pr	-	Meye.69-0428
24.14	$Zn^{+} + Co(NH_3)e^{3+}$ (et)	$(8.4 \pm 1.3) \ge 10^8$	0.08	RT	5–6	pr	-	Meye.69–0248
24.15	$Zn^+ + Co(NH_3)_5Br^{2+}$	$(2.6 \pm 0.4) \ge 10^9$	0.08	RT	4.0	pr	-	Meye.69-0428
24.16	$Zn^{+} + Co(NH_3)_5Cl^{2+}$	$(2.2 \pm 0.3) \ge 10^9$	0.08	RT	5–6	pr	-	Meye.69-0428
24.17	$Zn^+ + Co(NH_3)_5CN^{2+}$	$(1.30 \pm 0.2) \ge 10^9$	0.08	RT	5–6	pr	-	Meye.69-0428
24.18	$Zn^+ + Co(NH_3)_5F^{2+}$	$(8.2 \pm 1.2) \ge 10^8$	0.08	RT	5-6	pr	-	Meye.69-0428
24.19	Zn ⁺ + Co(NH ₃) ₅ fumar-	$(1.2 \pm 0.3) \ge 10^9$	0.08	RT	5–6	pr	-	Meye.69-0428
24.20	$Zn^+ + Co(NH_3)_{5}H_2O^{3+}$	$(1.56 \pm 0.2) \ge 10^9$	0.08	RT	4.0	pr	-	Meye.69-0428
24.21	$Zn^+ + Co(NH_3)_5OH^{2+}$	$(1.10 \pm 0.2) \ge 10^9$	0.08	RT	6.6	pr	-	Meye.69-0428
24.22	$Zn^{+} + Co(NH_3)_5N_3^{2+}$	$(1.49 \pm 0.2) \ge 10^9$	0.08	RT	5-6	pr	-	Meye.69-0428
24.23	$Zn^+ + Co(NH_3)_5NCS^{2+}$	$(1.65 \pm 0.2) \ge 10^9$	0.08	RT	5-6	pr	-	Meye.69-0428
24.24	$Zn^+ + Co(NH_3)_5OOCCH_3^{2+}$	$(5.0 \pm 0.8) \ge 10^8$	0.08	RT	5–6	pr	-	Meye.69-0428
24.25	$7n^+ \perp Cn^{3+}$	< 107		ВŢ	net			Bare 66-0848
24.26	$Zn^+ + Cr_2 \Omega_2^{2-}$ (et)	$(1.6 \pm 0.2) \times 10^{10}$	0.020*	25+2	nat	pr pr		Buxt. 76-1072
24.27	$Zn^{+} + Cu^{2+}$ (et)	$(2.5 \pm 0.4) \times 10^{8}$	0.08	BT	nat	pr pr	_	Meye.68-0855
		$(9.5 \pm 2.0) \times 10^{\circ}$	0.4 (ZnSO4)	RT	5-8	γ	Measured by compe- tition with NO ₃ ⁻ . Rate constant cal- culated taking	Fiti70-0117
							$k(\text{Zn}^+ + \text{NO}_s^-) = 2.1$ x 10 ⁹ dm ³ mol ⁻¹ s ⁻¹ (see entry 24.33).	
24.28	$Zn^+ + H_2O_2 \rightarrow$	$(1.80 \pm 0.3) \ge 10^9$	-	RT	nat	pr	-	Meye.68-0855
	$Zn^{2+} + OH + OH^{-}$	$(2.3 \pm 0.2) \ge 10^9$	-	25 ± 2	nat	pr	Products inferred from γ -radiolysis	Buxt76-1072
							experiments (see	
		$E_{\rm a} = 10.5 \pm 1.0$ kJ mol ⁻¹	-	-	nat	pr	rei. 73-0039). -	Buxt76-1072

TABLE 24. Zinc(I) reactions — Continued

No.	Reaction	$k/\mathrm{dm^3\ mol^{-1}\ s^{-1}}$	Ι	t∕°C	рН	Method	Comments	Ref.
24.29	$Zn^+ + H_aO^+$	< 10 ⁶	0.08	RT	-	pr	-	Meye.68-0855
24.30	$Zn^+ + IO_3^-$ (et)	$(3.6 \pm 0.5) \ge 10^9$	0.08	RT	nat	pr	-	Meye.68-0855
		$(1.7 \pm 0.3) \ge 10^{10}$	0.4 (ZnSO	RT (4)	5–8	γ	Measured by com- petition with NO ₃ ⁻ . Rate constant cal- culated taking	Fiti70-0117
							$k(Zn^{-} + NO_3^{-}) =$ 2.1 x 10 ⁹ dm ³ mol ⁻¹ s ⁻¹ (see entry 24.33).	
24.31	$Zn^{+} + Ni^{2+}$ (et)	$< 5 \times 10^{6}$	0.08	RT	nat	pr	-	Meye.680855
		5 x 10 ⁷	-	RT	nat	pr	-	Baxe66-0844
24.32	$Zn^+ + NO_2^-$ (et)	$(2.2 \pm 0.3) \ge 10^9$	0.08	RT	nat	pr	-	Meye.68-0855
24.33	$Zn^+ + NO_3^-$ (et)	$(2.1 \pm 0.3) \times 10^9$	0.08	RT	nat	pr	-	Meye.68-0855
24.34	$Zn^+ + N_2O \rightarrow$	$< 1.3 \times 10^{7}$	-	RT	nat	pr	-	Meye.68-0855
	$ZnO^+ + N_2$	$(3.7 \pm 0.4) \ge 10^7$	-	25 ± 2	nat	pr	Products charac-	Buxt76-1072
		$E_{\rm a} = 35.5 \pm 1.4 \rm kJ$ mol ⁻¹	-	1–30	nat	pr	terised by their absorption spectrum (see ref. 76-1072)	
							and in γ -radiolysis	
							ref 73_0039)	
24.35	$Zn^+ + O_2 \rightarrow$	$(2.4 \pm 0.4) \times 10^{9}$	_	RT	nat	Dr	-	Meye. 68-0855
- 1100	$Zn^{2^+} + O_2^-$	3.3 x 10°	_	RT	nat	Dr	_	Baxe66-084
						r-	Products charac- terised by their	
							absorption spectrum (see ref. 76–1072)	
							and reactivity with 1,4-benzoquinone (see ref. 76-1134)	
24.36	$Zn^+ + OH$ (et)	5.7 x 10°	_	RT	nat	n r	No correction made	Baxe66-084
						r	for competing reac- tion $Zn^+ + Zn^+$.	
		<i>ca</i> . 8 x 10 ⁹	-	25 ± 2	nat	pr	Estimated from	Buxt.75–102
							decay of Zn ⁺ in the absence of OH	
							scavengers taking into account compet–	
							ing reactions such as $Zn^+ + Zn^+$, $Zn^+ +$	
94.97	7 + 1012 + (.)	4.0 1.08		Da			H_2O_2 , $OH + OH$ etc.	D ((004)
24.37	$Zn' + Pb^{-1}$ (et)	4.0 x 10 ⁶	-	KT	nat	pr	-	Baxe00-084
24.30	$Zn + Ru(Dpy)_{3}$ (et)	$(2.5 \times 10^{\circ})$	-	KI DT	nat	pr	-	Daxe. 72-0381
24.39	$Z_{11}^{+} + Ru(1(R_{3})^{6})$ (et)	$(2.2 \pm 0.3) \times 10^{\circ}$	0.00	л I 95 — 9	nat	pr	-	Dues 76 1079
24.40	$Zn^{2+} + SO_4^{-} + SO_4^{2-}$ $Zn^{2+} + SO_4^{-} + SO_4^{2-}$	$(1.3 \pm 0.1) \times 10^{3}$	0.02*	2512	nat	pr	-	Buxt. 75-1072
24.41	2u + 2n	$2\kappa \leq 8 \ge 10^8$	0.4	25±2	nat	pr	of decay of Zn ⁺ in the presence of 2-	Buxt. 75–102
							Major competing reac- tion is Zn ⁺ +	
0.4.40	7 +						·CH ₂ C(CH ₃) ₂ OH.	D
24.42	$2n' + allyl alcohol \rightarrow$ (Zn – allyl alcohol) ⁺	ca. 10 ⁸	-	25 ± 2	nat	pr	Product characterized by its absorp-	Buxt76–107

TABLE 24	4. Zi	nc(I) I	eactions	_	Continued
----------	-------	---------	----------	---	-----------

No.	Reaction	$k/dm^3 mol^{-1} s^{-1}$	Ι	t∕°C	рН	Method	Comments	Ref.
24.43	Zn ⁺ + benzophonone → Zn ²⁺ + (benzophenone) ⁻	2.5 x 10°	-	RT	7.0	pr	Measured in the presence of ca. 1 mol dm ⁻³ 2- methyl-2-propanol. Ketyl radical pro- duct characterised by its absorption	Rao.75–1032
24.44	Zn ⁺ + 1,4-benzo- quinone → Zn ²⁺ + (1,4-benzoquinone) ⁻	(3.0 ± 0.6) 10°	-	25±2	5.7	pr	spectrum. Measured in the presence of 1 mol dm ⁻³ 2-methyl-2- propanol. Semi- quinone product characterised by its absorption spectrum.	Sell.76-1134
		4.8 x 10°	-	RT	7.0	pr	Measured in the presence of <i>ca</i> . 1 mol dm ⁻³ 2- methyl-2-propagol.	Rao.75-1032
24.45	Zn ⁺ + menaquinone → Zn ²⁺ + (menaquinone) ⁻	$(3.8 \pm 0.4) \ge 10^{9}$	-	RT	7.1	pr	Measured in the presence of ca. 1 mol dm ⁻³ 2-methyl- 2-propanol. Semi- quinone product characterised by its absorption	Rao.73–1047, Rao.75–1032
	Zn ^I Complexes						spectrum.	
	ZnL ⁺ (from ZnL ²⁺ + CH (no reference made to	(sCO ⁻ CHs), L = hematop o number of protons invol	orphyrin ved with	(ix) complex).	HO ₂ C		, он	
24.46	$ZnL^{+} + ZnL^{+} \rightarrow 'k' = (ZnL)_{2}^{2^{+}}$	$(2.1 \pm 0.4) \ge 10^8$	0.1	RT	13	pr	Unclear whether k or 2k. Measured in the presence of 1 mol dm ⁻³ 2-pro- panol. Dimerisation mechanism implied from subsequent reactions (see entry 24.47) and comparison with the products of reduction of ZnL ²⁺ in aprotic solvents	Hare.74–1040
24.47	$(ZnL)_2^{2^+} \rightarrow P$	$17 \pm 2 \text{ s}^{-1}$	0.1	RT	13	pr	Reaction suggested to involve internal rearrangement.	Hare.74–1040
	$P \rightarrow dihydroporphyrin$ product	< 0.14 s ⁻¹	0.1	RT	13	pr	Reaction presumed to involve splitting of dimer.	Hare.74-1040
No.	Reaction	k/s ^{-1 b}	1	t/°C	ъH	Method	Comments	Ref.
-------	--	--------------------------------------	---	------	-----	--------	--	--------------
	Pl							
25.1	Liectron adducts $(NH_3)_5CO^{III}(p=OOCC_6H_4NO_2)^- \rightarrow$ $(NH_3)_5CO^{II}(p=OOCC_6H_4NO_3)$	2.6 x 10 ³	-	RT	7.0	pr	-	Simi77–1027
25.2	$(NH_3)_5Co^{III}(m-OOCC_6H_4NO_2)^- \rightarrow$ $(NH_3)_5Co^{III}(m-OOCC_6H_4NO_2)$	1.5 x 10 ²	-	RT	7.0	pr	-	Simi77-1027
25.3	$(\mathrm{NH}_3)_{\mathrm{s}}\mathrm{Co}^{\mathrm{ff}}(o-\mathrm{OOCC}_{\mathrm{s}}\mathrm{H}_4\mathrm{NO}_2)^- \rightarrow \\ (\mathrm{NH}_3)_{\mathrm{s}}\mathrm{Co}^{\mathrm{ff}}(o-\mathrm{OOCC}_{\mathrm{s}}\mathrm{H}_4\mathrm{NO}_2)$	4.0 x 10 ⁵	-	RT	7.0	pr	-	Simi77-1027
25.4	$(\mathrm{NH}_3)_{\mathrm{s}}\mathrm{Co}^{\mathrm{III}}(o-\mathrm{OOCC}_{\mathrm{s}}\mathrm{H}_4\mathrm{NO}_2\mathrm{H}) \rightarrow$ $(\mathrm{NH}_3)_{\mathrm{s}}\mathrm{Co}^{\mathrm{III}}(o-\mathrm{OOCC}_{\mathrm{s}}\mathrm{H}_4\mathrm{NO}_2) + \mathrm{H}^+$	9.5 x 10 ³	-	RT	0.8	pr	-	Simi77-1027
25.5	$(\mathrm{NH}_3)_5 \mathrm{Co}^{\mathrm{III}}[2,4-\mathrm{OOCC}_4\mathrm{H}_4(\mathrm{NO}_2)_2]^- \rightarrow (\mathrm{NH}_3)_5 \mathrm{Co}^{\mathrm{II}}[2,4-\mathrm{OOCC}_4\mathrm{H}_4(\mathrm{NO}_2)_2]$	3.5 x 104	-	RT	7.0	pr	-	Simi77-1027
25.6	$(NH_3)_5Co^{III}[3,5-OOCC_6H_4(NO_2)_2]^- \rightarrow (NH_3)_5Co^{II}[3,5-OOCC_6H_4(NO_2)_2]$	1.3 x 10 ²	-	RT	7.0	pr	-	Simi77-1027
25.7	Cu ^{II} (gluthathione ⁻) → Cu ^I (gluthathione)	(3.6 ± 0.3) x 10 ³	-	RT	11	pr	Rate constant independent of [Cu ^{II}]: [glu- tathione] ratio in range 1:2 to 1:5 and of [Cu ^{II}] in the range (1-10) x 10 ⁻⁴ mol dm ⁻³ .	Fara.76–1016
25.8	Cu ^{II} (gly)₂(gly ⁻) → Cu ^I (gly)₃	(1.7 ± 0.3) x 10 ⁴		RT	9	pr	Rate constant independent of $[Cu^{II}]$: [gly] ratio in range 1:6 to 1:15 and of $[Cu^{II}]$ in the range (1-10) x 10^{-4} mol dm ⁻³ .	Fara.76–1016
25.9	Hydroxyl radical adducts (NH ₃) ₅ Co ^{III} OOCC ₆ H ₅ OH \rightarrow	< 10 ²	-	RT	6.0	pr	_	Cohe.71-0282
	$(NH_3)_5Co^{II}OOCC_6H_4OH + H^+$ Hydrogen atom adducts							
25.10	$(NH_3)_5Co^{III}OOCC_6H_5H \rightarrow (NH_3)_5Co^{II}OOCC_6H_4H + H^+$	< 10 ²	-	RT	1	pr	-	Cohe.71-0282

TABLE	25.	Intramolecular	electron	transfer	reactions	for	some	metal	complexes
				of the lot of	Tomotho Ho		000		

^aIntramolecular electron transfer reactions of metallo-proteins and related systems *not* included.. ^bN.B. First order rate constants.

- 62-0164 Haissinsky, M., Radiolysis of compounds of the noble metals in aqueous solution. I. Action of gamma rays on the chlorides of Pt^{II} and Pt^{IV} in acid solution, RADIATION RES. 17(3): 274-85 (1962).
- 64-0133 Asmus, K.-D.; Henglein, A.; Ebert, M.; Keene, J.P., Pulsradiolytische Untersuchung schneller Reaktionen von hydratisierten Elektronen, freien Radikalen und Ionen mit Tetranitromethan in waessriger Loesung, BER. BUNSENGES. PHYS. CHEM. 68: 657-63 (1964).
- 65-0385 Baxendale, J.H.; Keene, J.P.; Stott, D.A., Determination of some fast reaction rates using the pulsed radiolysis of permanganate solutions, *Pulse Radiolysis*, Ebert, M.; Keene, J.P.; Swallow, A.J.; Baxendale, J.H. (eds.), Acad. Press, N.Y., 1965, p. 107-15.
- 65-0393 Baxendale, J.H.; Fielden, E.M.; Keene, J.P., Pulse radiolysis of Ag⁺ solutions, Ibid., p. 207-16.
- 65-0394 Baxendale, J.H.; Fielden, E.M.; Keene, J.P., Formation of Cu^{III} in the radiolysis of Cu²⁺ solutions, Ibid., p. 217-20.
- 65-0799 Gordon, S., Ibid., p 285.
- 66-0097 Cercek, B.; Ebert, M.; Swallow, A.J., Novel valence states of thallium as studied by pulse radiolysis, J. CHEM. SOC. PT. A (5): 612-5 (1966).
- 66-0848 Baxendale, J.H.; Keene, J.P.; Stott, D.A., Reactions and relative potentials of some metal ions in unstable valence states, CHEM. COMMUN. 715-16 (1966).
- 67-0019 Konstantatos, J.; Katakis, D., The radiolysis of concentrated neutral sodium perchlorate aqueous solutions, J. PHYS. CHEM. 71(4): 979-83 (1967).
- 67-0062 Buxton, G.V.; Dainton, F.S.; Thielens, G., Kinetics of reactions of the hydrated electron, CHEM. COMMUN (4): 201 (1967).
- 68-0066 Dainton, F.S.; Wiseall, B., Reactions of nitrosodimethylaniline with free radicals, TRANS. FARADAY SOC. 64(3): 694-705 (1968).
- 68-0169 Adams, G.E.; Broszkiewicz, R.B.; Michael, B.D., Pulse radiolysis studies on stable and transient complexes of platinum, TRANS. FARADAY SOC. 64(5): 1256-64 (1968).
- 68-0302 Ghosh-Mazumdar, A.S.; Hart, E.J., A pulse radiolysis study of bivalent and zerovalent gold in aqueous solutions, ADVAN. CHEM. SER. 81: 193-209 (1968).
- 68-0431 Pukies, J.; Roebke, W.; Henglein, A., Pulsradioytische Untersuchung einiger Elementarprozesse der Silberreduktion, BER.
 BUNSENGES. PHYS. CHEM. 72(7): 842-7 (1968).
- 68-0435 Pukies, J.; Roebke, W., Pulsradioytische Untersuchung der Reduktion des Ag⁺-Ions in ammoniakalischer Loesung, BER. BUNSENGES. PHYS. CHEM. 72(9/10): 1101-5 (1968).
- 68-0855 Meyerstein, D.; Mulac, W.A., Reductions by monovalent zinc, cadmium, and nickel cations, J. PHYS. CHEM. 72(3): 784-8 (1968).
- 69-0144 Ghosh-Mazumdar, A.S.; Hart, E.J., Electron pulse radiolysis of aqueous tetrachloro and tetracyano complexes of Pt^{II}, INT. J. RADIAT. PHYS. CHEM. 1: 165-76 (1969).
- 69-0428 Meyerstein, D.; Mulac, W.A., Reduction of cobalt(III) complexes by monovalent zinc, cadmium, and nickel ions in aqueous solutions, J. PHYS. CHEM. 73(4): 1091-5 (1969).
- 69-0434 Jayson, G.G.; Keene, J.P.; Stirling, D.A.; Swallow, A.J., Pulseradiolysis study of some unstable complexes of iron, TRANS. FARADAY SOC. 65(561): 2453-64 (1969).
- 69-0971 Taylor, R.S.; Sykes, A.G., Preparation, spectrum, and stability of indium(I) in aqueous solution, J. CHEM. SOC. PT. A 2419-23 (1969).

- 70-0117 Fiti, M., La cinetique de competition dans l'etude des intermediaires instables. I. Les ions Co⁺, Mn⁺, Zn⁺, Cd⁺ et Ni⁺, REV. ROUM. CHIM. 15(1): 77-85 (1970).
- 70-0178 Baxendale, J.H.; Rodgers, M.A.J.; Ward, M.D., Radiolysis of aqueous solutions of ruthenium (III) hexa-ammine and chloropenta-ammine, J. CHEM. SOC. PT. A (8): 1246-50 (1970).
- 70-0336 Burchill, C.E.; Hickling, G.G., Radiation-induced oxidation of alcohols by Tl(III) in acid aqueous solution, CAN. J. CHEM. 48(16): 2466-73 (1970).
- 70-0512 Barker, G.C.; Fowles, P., Pulse radiolytic induced transient electrical conductance in liquid solutions. Part 3. Radiolysis of aqueous solutions of some inorganic systems, TRANS. FARADAY SOC. 66(7): 1661-9 (1970).
- 70-0580 Baxendale, J.H.; Koulkes-Pujo, A.-M., Une etude par radiolyse pulse sur l'espece transitoire Au II, J. CHIM. PHYS. 67(9): 1602-7 (1970).
- 70-1228 Meyerstein, D.; Mulac, W.A., The effect of ligands on the chemical properties of monovalent cadmium ions, INORG. CHEM. 9(7): 1762-6 (1970).
- 70-1229 Navon, G.; Meyerstein, D., The reduction of ruthenium(III) hexaammine by hydrogen atoms and monovalent zinc, cadmium, and nickel ions in aqueous solutions, J. PHYS. CHEM. 74(23): 4067-70 (1970).
- 70-7309 Burchill, C.E.; Wolodarsky, W.H., The photo-chemistry of aqueous solutions of Tl(III) perchlorate, CAN. J. CHEM. 48(19): 2955-9 (1970).
- 70-7726 Thornton, A.T.; Laurence, G.S., The rates of oxidation of Fe²⁺, Mn²⁺, and Co⁺ by Br₂⁻ radical ions, CHEM. COMMUN. 443-4 (1970).
- 71-0036 Faraggi, M.; Zehavi, D.; Anbar, M., Effect of thallous ions on the yields of hydrogen and hydrogen peroxide in radiolyzed aqueous solutions, TRANS. FARADAY SOC. 67: 2057-(1971).
- 71-0097 Venerable, G.D.II; Halpern, J., Pulse radiolysis of aqueous solutions of pentacyanocobaltate(II). The detection and characterization of pentacyanocobaltate(I), J. AMER. CHEM. SOC. 93(9): 2176-9 (1971).
- 71-0174 Meyerstein, D., Trivalent copper. I. A pulse radiolytic study of the chemical properties of the aquo complex, INORG. CHEM. 10(3): 638-41 (1971).
- 71-0234 Baxendale, J.H.; Mulazzani, Q.G., A study of the oxidation and reduction of $Ru(NH_3)_5N_2^{a^+}$ by γ and electron pulse radiolysis, J. INORG. NUCL. CHEM. 33(3): 823-30 (1971).
- 71-0282 Cohen, H.; Meyerstein, D., Oxidation of benzoatopentaamminecobalt(III) by hydroxyl radicals, J. AMER. CHEM. SOC. 93(17): 4179-83 (1971)
- 71-0775 Meyerstein, D., Trivalent copper. II. A pulse radiolytic study of the formation and decomposition of amino complexes, INORG. CHEM. 10(10): 2244-0 (1971).
- 72-0065 Faraggi, M.; Tendler, Y., Pulse radiolysis in lanthanide aqueous solutions. I. Formation spectrum and chemical properties of divalent europium, ytterbium, and samarium ions, J. CHEM. PHYS. 56(7): 3287-93 (1972).
- 72-0066 Faraggi, M.; Feder, A., Pulse radiolysis studies in lanthanide aqueous solutions. II. Formation, spectrum and some chemical properties of praseodymium(IV) in aqueous solution. J. CHEM. PHYS. 56(7): 3294-7 (1972).
- 72-0290 Faraggi, M.; Amozig, A., Pulse radiolysis of metallic ions in aqueous solutions. I. Pulse radiolysis in Hg²⁺ and Hg2²⁺ ions in

aqueous solutions, INT. J. RADIAT. PHYS. CHEM. 4(3): 353-8 (1972).

- 72-0381 Baxendale, J.H.; Fiti, M., Transient species in the reactions of some pyridyl complex ions with hydrated electrons, J. CHEM. SOC. DALTON TRANS. (18): 1995-8 (1972).
- 72-0460 Lati, J.; Meyerstein, D., Trivalent nickel. I. A pulse radiolytic study of the formation and decomposition of the ammoniacal complex in aqueous solution, INORG. CHEM. 11(10): 2393-7 (1972).
- 72-0461 Lati, J.; Meyerstein, D., Trivalent nickel. II. A pulse radiolytic study of the formation and decomposition of the ethylenediamine and glycine complexes in aqueous solution, INORG. CHEM. 11(10): 2397-401 (1972).
- 72-0844 Sellers, R.M., Ph.D. Thesis, Univ. of Leeds, 1972.
- 72-7088 Wright, R.C.; Laurence, G.S., Production of platinum(III) by flash photolysis of PtCle²⁻, J. CHEM. SOC., CHEM. COMMUN. (3): 132-3 (1972)
- 73-0038 Jayson, G.G.; Parsons, B.J.; Swallow, A.J., Oxidation of ferrous ions by perhydroxyl radicals, J. CHEM. SOC, FARADAY TRANS. 1 69(1): 236-42 (1973).
- 73-0039 Buxton, G.V.; Dainton, F.; McCracken, D.R., Radiation chemical study of the reaction of Ni⁺, Co⁺ and Cd⁺ with N₂O. Evidence of the formation of a hyperoxidised state by oxygen atom transfer, J. CHEM. SOC, FARADAY TRANS. 1 69(1): 243-54 (1973).
- 73-0043 Nazhat, N.B.; Asmus, K.-D., Reduction of mercuric chloride by hydrated electrons and reducing radicals in aqueous solutions. Formation and reactions of HgCl, J. PHYS. CHEM. 77(5): 614-20 (1973).
- 73-0107 Faraggi, M.; Feder, A., Electron-transfer reactions of cobalt(III) and ruthenium(III) ammines with europium(II), ytterbium(II), and samarium(II) in aqueous solutions, INORG. CHEM. 12(1): 236-41 (1973).
- 73-0121 Robinson, E.A.; Schulte-Frohlinde, D., Pulse radiolysis of 1,4dicyanobenzene in aqueous solutions in the presence and absence of thallium(I) ions, J. CHEM. SOC. FARADAY TRANS. 1 69(4): 707-18 (1973).
- 73-0122 Jayson, G.G.; Parsons, B.J.; Swallow, A.J., Appearance of sulphatoferric complexes in the oxidation of ferrous sulphate solutions. A study by pulse radiolysis, J. CHEM. SOC. FARADAY TRANS. 1 69(6): 1079-89 (1973).
- 73-1047 Rao, P.S.; Hayon, E., One-electron redox reactions of free radicals in solution. Rate of electron transfer processes of quinones, BIOCHIM. BIOPHYS. ACTA 292: 516-33 (1973).
- 73-1053 Farhataziz; Mihalcea, I.; Sharp, L.J.; Hentz, R.R. Pulse radiolysis of liquids at high pressures. IV. Hydrogen-atom reactions in aqueous 0.1M HClO₄ solutions, J. CHEM. PHYS. 59(5): 2309-15 (1973).
- 73-1057 Ellis, J.D.; Green, M.; Sykes, A.G.; Buxton, G.V.; Sellers, R.M., Pulse radiolysis of titanium(III) and other metal(III) ions in the presence of formic acid, J. CHEM. SOC., DALTON TRANS. (16): 1724-8 (1973).
- 73-1066 Broszkiewicz, R.K., Pulse radiolysis studies on complexes of iridium, J. CHEM. SOC, DALTON TRANS. (17): 1799-802 (1973).
- 73-1080 Fujita, S.; Horii, H.; Taniguchi, S., Pulse radiolysis of mercuric ion in aqueous solutions, J. PHYS. CHEM. 77(24): 2868-71 (1973).
- 73-1084 Pikaev, A.K.; Sibirskaya, G.K.; Spitsyn, V.I., Study of divalent samarium, europium, thulium, ytterbium, and of tetravelent praseodymium ions by pulse radiolysis in aqueous solution, DOKL. PHYS. CHEM. (ENGL. TRANSL.) 209(4-6): 339-42

(1973), Transl. from DOKL. AKAD. NAUK SSSR 209(5): 1154-7 (1973).

- 73-1104 Rao, P.S.; Hayon, E., Rate constants of electron transfer processes in solution: Dependence on the redox potential of the acceptor, NATURE(LONDON) 243: 344-6 (1973).
- 74-1017 Schwarz, H.A.; Comstock, D.; Yandell, J.K.; Dodson, R.W., A pulse radiolysis study of thallium(II) in aqueous perchloric acid solutions, J. PHYS. CHEM. 78(5): 488-93 (1974).
- 74-1037 Kelm, M.; Lilie, J.; Henglein, A.; Janata, E., Pulse radiolytic study of Ni⁺. Nickel-carbon bond formation, J. PHYS. CHEM. 78(9): 882-7 (1974).
- 74-1038 Dodson, R.W.; Schwarz, H.A., Pulse radiolysis studies of chloride complexes of thallium(II). Absorption spectra and stability constants of TlCl⁺, TlCl₂, and TlCl₃, J. PHYS. CHEM. 78(9): 892-9 (1974).
- 74-1040 Harel, Y.; Meyerstein, D., On the mechanism of reduction of porphyrins. A pulse radiolytic study, J. AMER. CHEM. SOC. 96(9): 2720-7 (1974).
- 74-1072 Mulazzani, Q.G.; Ward, M.D.; Semerano, G.; Emmi, S.S.; Giordani, P., Gamma and pulse radiolysis of tetracyanonickelate(II) anion in aqueous solution, INT. J. RADIAT. PHYS. CHEM. 6(3): 187-201 (1974).
- 74-1104 Laurence, G.S.; Thornton, A.T., Kinetics of oxidation of transition-metal ions by halogen radical anions. Part. IV. The oxidation of vanadium(II) and chromium(II) by diiodide, dibromide, and dichloride ions generated by pulse radiolysis, J. CHEM. SOC., DALTON TRANS. (11): 1142-8 (1974).
- 74-1142 Cohen, H.; Meyerstein, D., Ultraviolet-visible spectrum, and kinetics of formation and decomposition, of pentaaquahydridochromium(III) and chromium(II) in aqueous perchlorate solutions: A pulse-radiolysis study, J. CHEM. SOC., DALTON TRANS. (23): 2559-64 (1974).
- 74-1146 Cohen, H.; Meyerstein, D., Chromium-carbon bonds in aqueous solutions. A pulse radiolytic study, INORG. CHEM. 13(10): 2434-43 (1974).
- 74-7265 Falcinella, B.; Felgate, P.D.; Laurence, G.S., Aqueous chemistry of thallium(II). Part I. Kinetics of reaction of thallium(II) with cobalt(II) and iron(II) ions and oxidation-reduction potentials of thallium(II), J. CHEM. SOC., DALTON TRANS. 1367-73 (1974).
- 75-1027 Buxton, G.V.; Sellers, R.M., Pulse radiolysis study of monovalent cadmium, cobalt, nickel and zinc in aqueous solution. Pt. 1. Formation and decay of the monovalent ions, J. CHEM. SOC., FARADAY TRANS. I 71(3): 558-68 (1975).
- 75-1032 Rao, P.S.; Hayon, E., One electron oxidation of odd-valent metal ions in solution, J. PHYS. CHEM. 79(9): 865-8 (1975).
- 75-1044 Fujita, S.; Horii, H.; Mori, T.; Taniguchi, S., Pulse radiolysis of mercuric oxide in neutral aqueous solutions, J. PHYS. CHEM. 79(10): 960-4 (1975).
- 75-1049 Armor, J.N.; Hoffman, M.Z., Reactivity of coordinated nitrosyls.
 IV. One-electron reduction of ruthenium nitrosylpentaammine (3+) ion in aqueous solution, INORG. CHEM. 14(2): 444-6 (1975).
- 75-1064 Kelm, M.; Lilie, J.; Henglein, A., Pulse radiolytic investigation of the reduction of cadmium(II) ions, J. CHEM. SOC., FARADAY TRANS. 1 71(5): 1132-42 (1975).
- 75-1077 Armor, J.N.; Furman, R.; Hoffman, M.Z., Reactivity of coordinated nitrosyls. V. Generation and characterization of a ruthenium(II) alkylnitroso complex, J. AMER. CHEM. SOC. 97(7): 1737-42 (1975).
- 75-1086 O'Neill, P.; Steenken, S.; Schulte-Frohlinde, D., Formation of radical cations from 1,2- and 1,4-dimethoxybenzene by

electron transfer to Tl²⁺ and Ag²⁺ in aqueous solution. A pulse radiolysis and in situ radiolysis EPR study, ANGEW. CHEM. INT. ED. ENGL. 14(6): 430-1 (1975)

- 75-1092 Meyerstein, D., Kinetics of complexation of copper(I) ions with maleate and fumarate in aqueous solutions. A pulse radiolytic study, INORG. CHEM. 14(7): 1716-7 (1975).
- 75-1128 Lilie, J.; Simic, M.G.; Endicott, J.F., Chemical behavior of rhodium(II)-ammine complexes generated by the pulse radiolytic one-electron reduction of rhodium(III) ammines, INORG. CHEM. 14(9): 2129-33 (1975).
- 75-1130 O'Neill, P.; Schulte-Frohlinde, D., Evidence for formation of a (TlOH)⁺ complex, J. CHEM. SOC., CHEM. COMMUN. (10): 387-8 (1975).
- 75-1153 Barkatt, A., Rabani, J., Kinetics of spur reactions of electrons in ethylene glycol-water glassy ice. A pulse radiolytic study, J. PHYS. CHEM. 79(24): 2592-7 (1975).
- 75-1171 O'Neill, P.; Steenken, S.; Schulte-Frohlinde, D., Formation of radical cations of methoxylated benzenes by reaction with OH radicals, Tl²⁺, Ag²⁺, and SO₄⁻ in aqueous solution. An optical and conductometric pulse radiolysis and in situ radiolysis electron spin resonance study, J. PHYS. CHEM. 79(25): 2773-9 (1975).
- 75-1188 Storer, D.K.; Waltz, W.L.; Brodovitch, J.C.; Eager, R.L., A pulse radiolysis study of some platinum(II) and platinum(IV) complex ions in aqueous solutions. The formation and characterization of platinum(I) and platinum(III) transients, INT. J. RADIAT. PHYS. CHEM. 7(6): 693-704 (1975).
- 75-1203 Fujita, S.; Horii, H.; Mori, T.; Taniguchi, S., Pulse radiolysis of Hg(CN)₂ in aqueous solutions, BULL. CHEM. SOC. JPN. 48(11): 3067-72 (1975).
- 75-1215 Ilan, Y.A.; Czapski, G.; Ardon, M., The formation of CrO₂²⁺ in the reaction of Cr²⁺ + O₂ in aqueous acid solutions, ISR. J. CHEM. 13(1): 15-21 (1975).
- 75-1218 Pikaev, A.K.; Sibirskaya, G.K.; Spitsyn, V.I., Pulsed radiolysis of aqueous solutions of compounds of divalent mercury, DOKL. PHYS. CHEM. (ENGL. TRANSL.) 224(1-3): 994-7 (1975). Translated from DOKL. AKAD. NAUK SSSR 224(3): 638-41 (1975).
- 75-7093 Falcinella, B.; Felgate, P.D.; Laurence, G.S., Aqueous chemistry of thallium(II) with manganese(II), iron(II), and cobalt(I) ions, J. CHEM. SOC., DALTON TRANS. (1): 1-9 (1975).
- 76-1001 Tait, A.M.; Hoffman, M.Z.; Hayon, E., The reactivity of cobalt(I) complexes containing unsaturated macrocyclic ligands in aqueous solution, J. AMER. CHEM. SOC. 98(1): 86-93 (1976).
- 76-1003 Baxendale, J.H.; Garner, C.D.; Senior, R.G.; Sharpe, P., The reduction of molybdenum(II) trifluoroacetate by pulse radiolysis in methanol, J. AMER. CHEM. SOC. 98(2): 637-8 (1976).

- 76-1016 Faraggi, M.; Leopold, J.G., Pulse radiolysis studies of electrontransfer reaction in molecules of biological interest. II. The reduction of Cu(II)-peptide complexes, RADIAT. RES. 65(2): 238-49 (1976).
- 76-1039 Tait, A.M.; Hoffman, M.Z.; Hayon, E., Reactivity of nickel(I) and copper(I) complex containing 14-membered macrocyclic ligands in aqueous solution, INORG. CHEM. 15(4): 934-9 (1976).
- 76-1042 Jungbluth, H.; Beyrich, J.; Asmus, K.-D., Reduction of mercuric halides and pseudohalides in aqueous solution. Formation and some physicochemical properties of HgCl, HgBr, HgI, HgSCN, and HgCN radical molecules, J. PHYS. CHEM. 80(10): 1049-53 (1976).
- 76-1055 Broszkiewicz, R.K.; Grodkowski, J., Pulse radiolysis studies on aqueous systems PtCl₄²⁻-Cl⁻ and PtCl₄²⁻-Br⁻, INT. J. RADIAT. PHYS. CHEM.8(3): 359-65 (1976).
- 76-1072 Buxton, G.V.; Sellers, R.M.; McCracken, D.R., Pulse radiolysis study of monovalent cadmium, cobalt, nickel and zinc in aqueous solution. Part 2. Reactions of the monovalent ions, J. CHEM. SOC., FARADAY TRANS. 1 72(6): 1464-76 (1976).
- 76-1087 Fujita, S.; Horii, H.; Mori, T.; Taniguchi, S., Pulse radiolysis of HgBr₂ in aqueous solutions, BULL. CHEM. SOC. JPN. 49(5): 1250-3 (1976).
- 76-1093 Brodovitch, J.C.; Storer, D.K.; Waltz, W.L.; Eager, R.L., A pulse radiolysis and flash photolysis study of the formation and characterization of platinum(III) amine complex ions, INT. J. RADIAT. PHYS. CHEM. 8(4): 465-75 (1976).
- 76-1134 Sellers, R.M.; Simic, M.G., Pulse radiolysis study of the reactions of some reduced metal ions with molecular oxygen in aqueous solution, J. AMER. CHEM. SOC. 98(20): 6145-50 (1976).
- 76-1186 Buxton, G.V.; Green, J.C.; Sellers, R.M., Oxidation of copper(I)-olefin complexes in aqueous solution by oxygen and hydrogen peroxide, J. CHEM. SOC., DALTON TRANS. (21): 2160-5 (1976).
- 77-0121 Buxton, G.V.; Sellers, R.M., The radiation chemistry of metal ions in aqueous solution, COORD. CHEM. REV. 22(3): 195-274 (1977).
- 77-1027 Simic, M.G.; Hoffman, M.Z.; Brezniak, N.V.; Kinetics of ligand-to-metal intramolecular electron transfer in cobalt(III)ammine complexes containing a coordinated radical, J. AMER. CHEM. SOC. 99(7): 2166-72 (1977).
- 77-1500 Buxton, G.V.; Green, J.C., Reactions of some simple α and β -hydroxyalkyl radicals with Cu²⁺ and Cu⁺ ions in aqueous solution, J. CHEM. SOC., FARADAY TRANS. 1 74: 697-714 (1978).

☆ U. S. GOVERNMENT PRINTING OFFICE : 1978-253-601

NBS-114A (REV. 7-73)						
U.S. DEPT. OF COMM. BIBLIOGRAPHIC DATA SHEET	1. PUBLICATION OR REPORT NO. NSR DS-NBS 62	2. Gov't Accession No.	3. Recipient's Accession No.			
4. TITLE AND SUBTITLE COMPILATION OF RATE IN UNUSUAL VALENCY	5. Publication Date June 1978					
			6. Performing Organization Code			
7. AUTHOR(S) George V. Buxton an	7. AUTHOR(S) George V. Buxton and Robin M. Sellers					
9. PERFORMING ORGANIZAT		10. Project/Task/Work Unit No.				
DEPARTMEN WASHINGTON	11. Contract/Grant No.					
12. Sponsoring Organization Name and Complete Address (Street, City, State, ZIP)			13. Type of Report & Period Covered N/A			
Jallie as I Lelli 7, 14. Sponsoring Agency Code 6 SUDDLEMENTARY NOTES						
13. SUPPLEMENTARI NUTES						

Library of Congress Catalog Card Number: 78-816

16. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant bibliography or literature survey, mention it here.)

Kinetic data have been compiled for reactions of uncommon oxidation states of metals which are produced by radiolysis of aqueous solutions of metal ions. Most of the reaction rates are for transient species, and the rates were determined by pulse radiolysis; some data were obtained by flash photolysis and gamma radiolysis. Metal ions from Groups IB, IIB, IIIA, IVA, VIB, VIIB, VIIIB, and the lanthanides are included in the compilation.

17. KEY WORDS (six to twelve entries; alphabetical order; capitalize only the first letter of the first key word unless a proper name; separated by semicolons)

Aqueous solution; chemical kinetics; complex ions; electron transfer; metal ions; radiation chemistry; rates; transients.

18.	AVAILABILITY XX Unlimited	19. SECURITY CLASS (THIS REPORT)	21. NO. OF PAGES
	For Official Distribution. Do Not Release to NTIS	UNCL ASSIFIED	80
	X Order From Sup. of Doc., U.S. Government Printing Office Washington, D.C. 20402, SD Stock No. SN003-003-01882-1	20. SECURITY CLASS (THIS PAGE)	22. Price
	Order From National Technical Information Service (NTIS) Springfield, Virginia 22151	UNCLASSIFIED	φ2.40

USCOMM-DC 29042-P74

Where can you find all the reference data you need?

Right in the Journal of Physical and Chemical Reference Data!

Now in its sixth year, this valuable publication has proved that it fills the important gaps for you in the literature of the physical sciences.

Published by the American Institute of Physics and the American Chemical Society for the National Bureau of Standards, this quarterly gives you quantitative numerical data, with recommended values and uncertainty limits chosen by experts in the field.

Critical commentary on methods of measurement and sources of error, as well as full references to the original literature, is an integral part of each of your four issues a year.

Can you afford to be without this prime source of reliable data on physical and chemical properties? To start receiving your copies, just fill in the order form and drop into the mail. If you do use a purchase order, please attach the printed form as this will help us to expedite your order. Send for complete list of reprints!

Journal of Physical and Chemical Reference Data American Chemical Society 1155 Sixteenth Street,N.W., Washington, D.C. 20036

Yes, I would like to receive the JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA at the one-year rate checked below:

Name				Members	Nonmembers
Street		Business	U.S., Canada, Mexico	\$25.00	\$100.00
City		State Zip	Other Countries	\$29.00	\$104.00
Bill me 🗆	Bill company or school 🛛	Payment enclosed 🗆	Please Attach Thi	s Order Form	To Purchase Order.

Important Additions TO THE JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA

Three comprehensive reference volumes, each, as the Journal itself, published by the American Institute of Physics and the American Chemical Society for the National Bureau of Standards . . . your triple assurance of their accuracy, immediacy, and usefulness.

Supplement No. 1 to Vol. 2

"PHYSICAL AND THERMODYNAMIC PROPERTIES OF ALIPHATIC ALCOHOLS"

by R. C. Wilhoit and B. J. Zwolinski, Thermodynamics Research Center, Department of Chemistry, Texas A & M University

Represents the most exhaustive review and critical analysis of selected physical and thermodynamic properties of aliphatic alcohols that has been published in the world literature of chemistry.

> Supplement No. 1 to Vol. 3 "THERMAL CONDUCTIVITY OF THE ELEMENTS: A COMPREHENSIVE REVIEW"

by C. Y. Ho, R. W. Powell, and P. E. Liley, Thermophysical Properties Research Center, Purdue University, West Lafayette, Indiana

This comprehensive review of the world's thermal conductivity data presents recommended or estimated values for all 105 elements.

Business Operations—Books and Journals Dept. American Chemical Society 1155 16th Street, N.W. Washington, D.C. 20036

Please send _____ copies of ______ at \$_____

- A. "PHYSICAL AND THERMODYNAMIC PROPERTIES OF ALIPHATIC ALCOHOLS." (First supplement to Vol. 2 of the Journal of Physical and Chemical Reference Data.) Hard Cover: \$33.00. Soft Cover: \$30.00.
- B. "THERMAL CONDUCTIVITY OF THE ELEMENTS. A COMPREHENSIVE REVIEW." (First supplement to Vol. 3 of the Journal of Physical and Chemical Reference Data.) Hard Cover: \$60.00. Soft Cover: \$55.00.
- C. "ENERGETICS OF GASEOUS IONS." (First supplement to Vol. 6 of the Journal of Physical and Chemical Reference Data.) Hard Cover: \$70.00. Soft Cover: \$65.00.

□ I am enclosing a check □ I am enclosing a money order				
Name				
Address				
City	State Zip Code			
Title Please add \$1.50 extra for foreign p	employer			

Supplement No. 1 to Vol. 6

ENERGETICS OF GASEOUS IONS

by H. M. Rosenstock, K. Draxl, B. Steiner, and J. T. Herron, National Bureau of Standards

> Provides a comprehensive body of critically evaluated information on ionization potentials, appearance potentials, electron affinities and heats of formation of gaseous positive and negative ions. It is a complete revision and extension of the earlier reference work, "Ionization Potentials, Appearance Potentials and Heats for Formation of Gaseous Positive Ions," NSRDS-NBS 26.

. . . the monthly There's magazine of the National Bureau of Standards. Still featured are special aranew ticles of general interest on current topics such as consumer product safety and building look technology. In addition, new sections are designed to . . . PROVIDE **SCIENTISTS with illustrated discussions** of recent technical developments and work in progress . . . INFORM INDUSTRIAL MANAGERS of technology transfer activities in Federal and private labs. . . DESCRIBE TO MAN-UFACTURERS advances in the field of voluntary and mandatory standards. The new DIMENSIONS/NBS also carries complete listings of upcoming conferences to be held at NBS and reports on all the latest NBS publications, with information on how to order. Finally, each issue carries a page of News Briefs, aimed at keeping scientist and consumer alike up to date on major developments at the Nation's physical sciences and measurement laboratory.

(please detach here)

SUBSCRIPTION ORDER FORM

Enter my Subscription To DIMENSIONS/NBS at \$12.50. Add \$3.15 for foreign mailing. No additional postage is required for mailing within the United States or its possessions. Domestic remittances should be made either by postal money order, express money order, or check. Foreign remittances should be made either by international money order, draft on an American bank, or by UNESCO coupons.

Send Subscription to:

NAME-FIRST, LAST					
COMPANY NAME OR ADDITIONAL AD	DDRESS LINE				
STREET ADDRESS					
CITY STATE ZIP CODE					
PLEASE PRINT					

Remittance Enclosed (Make checks payable to Superintendent of Documents)

Charge to my Deposit Account No.

MAIL ORDER FORM TO: Superintendent of Documents Government Printing Office Washington, D.C. 20402

Announcement of New Publications in National Standard Reference Data Series

Superintendent of Documents, Government Printing Office, Washington, D.C. 20402

Dear Sir:

Please add my name to the announcement list of new publications to be issued in the series: National Standard Reference Data Series-National Bureau of Standards.

Name			
Company			
Address			
City	State	Zip Code	

(Notification Key N-519)

☆ U.S. GOVERNMENT PRINTING OFFICE : 1978 O-253-601

NBS TECHNICAL PUBLICATIONS

PERIODICALS

JOURNAL OF RESEARCH—The Journal of Research of the National Bureau of Standards reports NBS research and development in those disciplines of the physical and engineering sciences in which the Bureau is active. These include physics, chemistry, engineering, mathematics, and computer sciences. Papers cover a broad range of subjects, with major emphasis on measurement methodology, and the basic technology underlying standardization. Also included from time to time are survey articles on topics closely related to the Bureau's technical and scientific programs. As a special service to subscribers each issue contains complete citations to all recent NBS publications in NBS and non-NBS media. Issued six times a year. Annual subscription: domestic \$17.00; foreign \$21.25. Single copy, \$3.00 domestic; \$3.75 foreign.

Note: The Journal was formerly published in two sections: Section A "Physics and Chemistry" and Section B "Mathematical Sciences."

DIMENSIONS/NBS +

This monthly magazine is published to inform scientists, engineers, businessmen, industry, teachers, students, and consumers of the latest advances in science and technology, with primary emphasis on the work at NBS. The magazine highlights and reviews such issues as energy research, fire protection, building technology, metric conversion, pollution abatement, health and safety, and consumer product performance. In addition, it reports the results of Bureau programs in measurement standards and techniques, properties of matter and materials, engineering standards and services, instrumentation, and automatic data processing.

Annual subscription: Domestic, \$12.50; Foreign \$15.65.

NONPERIODICALS

Monographs—Major contributions to the technical literature on various subjects related to the Bureau's scientific and technical activities.

Handbooks—Recommended codes of engineering and industrial practice (including safety codes) developed in cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications—Include proceedings of conferences sponsored by NBS, NBS annual reports, and other special publications appropriate to this grouping such as wall charts, pocket cards, and bibliographies.

Applied Mathematics Series—Mathematical tables, manuals, and studies of special interest to physicists, engineers, chemists, biologists, mathematicians, computer programmers, and others engaged in scientific and technical work.

National Standard Reference Data Series—Provides quantitative data on the physical and chemical properties of materials, compiled from the world's literature and critically evaluated. Developed under a world-wide program coordinated by NBS. Program under authority of National Standard Data Act (Public Law 90-396). NOTE: At present the principal publication outlet for these data is the Journal of Physical and Chemical Reference Data (JPCRD) published quarterly for NBS by the American Chemical Society (ACS) and the American Institute of Physics (AIP). Subscriptions, reprints, and supplements available from ACS, 1155 Sixteenth St. N.W., Wash., D.C. 20056.

Building Science Series—Disseminates technical information developed at the Bureau on building materials, components, systems, and whole structures. The series presents research results, test methods, and performance criteria related to the structural and environmental functions and the durability and safety characteristics of building elements and systems. Technical Notes-Studies or reports which are complete in themselves but restrictive in their treatment of a subject. Analogous to monographs but not so comprehensive in scope or definitive in treatment of the subject area. Often serve as a vehicle for final reports of work performed at NBS under the sponsorship of other government agencies. Voluntary Product Standards-Developed under procedures published by the Department of Commerce in Part 10, Title 15, of the Code of Federal Regulations. The purpose of the standards is to establish nationally recognized requirements for products, and to provide all concerned interests with a basis for common understanding of the characteristics of the products. NBS administers this program as a supplement to the activities of the private sector standardizing organizations.

Consumer Information Series—Practical information, based on NBS research and experience, covering areas of interest to the consumer. Easily understandable language and illustrations provide useful background knowledge for shopping in today's technological marketplace.

Order above NBS publications from: Superintendent of Documents, Government Printing Office, Washington, D.C. 20402.

Order following NBS publications—NBSIR's and FIPS from the National Technical Information Services, Springfield, Va. 22161.

Federal Information Processing Standards Publications (FIPS PUB)—Publications in this series collectively constitute the Federal Information Processing Standards Register. Register serves as the official source of information in the Federal Government regarding standards issued by NBS pursuant to the Federal Property and Administrative Services Act of 1949 as amended, Public Law 89-306 (79 Stat. 1127), and as implemented by Executive Order 11717 (38 FR 12315, dated May 11, 1973) and Part 6 of Title 15 CFR (Code of Federal Regulations).

NBS Interagency Reports (NBSIR)—A special series of interim or final reports on work performed by NBS for outside sponsors (both government and non-government). In general, initial distribution is handled by the sponsor; public distribution is by the National Technical Information Services (Springfield, Va. 22161) in paper copy or microfiche form.

BIBLIOGRAPHIC SUBSCRIPTION SERVICES

The following current-awareness and literature-survey bibliographies are issued periodically by the Bureau:

Cryogenic Data Center Current Awareness Service. A literature survey issued biweekly. Annual subscription: Domestic, \$25.00; Foreign, \$30.00.

Liquified Natural Gas. A literature survey issued quarterly. Annual subscription: \$20.00. Superconducting Devices and Materials. A literature survey issued quarterly. Annual subscription: \$30.00. Send subscription orders and remittances for the preceding bibliographic services to National Bureau of Standards, Cryogenic Data Center (275.02) Boulder, Colorado 80302. OFFICIAL BUSINESS

Penalty for Private Use, \$300

POSTAGE AND FEES PAID U.S. DEPARTMENT OF COMMERCE COM-215

SPECIAL FOURTH-CLASS RATE BOOK