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THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research

and provides technical services designed to aid Government agencies in improving cost effec-

tiveness in the conduct of their programs through the selection, acquisition, and effective

utilization of automatic data processing equipment; and serves as the principal focus within

the executive branch for the development of Federal standards for automatic data processing

equipment, techniques, and computer languages. The Institute consists of the following

divisions:

Computer Services — Systems and Software — Computer Systems Engineering — Informa-

tion Technology.

THE OFFICE FOR INFORMATION PROGRAMS promotes optimum dissemination and
accessibility of scientific information generated within NBS and other agencies of the Federal
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Foreword

The National Standard Reference Data System provides access to the quantitative data of phys-

ical science, critically evaluated and compiled for convenience and readily accessible through a

variety of distribution channels. The System was established in 1963 by action of the President’s

Office of Science and Technology and the Federal Council for Science and Technology, and

responsibility to administer it was assigned to the National Bureau of Standards.

NSRDS receives advice and planning assistance from a Review Committee of the National

Research Council of the National Academy of Sciences-National Academy of Engineering. A num-

ber of Advisory Panels, each concerned with a single technical area, meet regularly to examine

major portions of the program, assign relative priorities, and identify specific key problems in

need of further attention. For selected specific topics, the Advisory Panels sponsor subpanels

which make detailed studies of users’ needs, the present state of knowledge, and existing data re-

sources as a basis for recommending one or more data compilation activities. This assembly of

advisory services contributes greatly to the guidance of NSRDS activities.

The System now includes a complex of data centers and other activities in academic insti-

tutions and other laboratories. Components of the NSRDS produce compilations of critically

evaluated data, reviews of the state of quantitative knowledge in specialized areas, and computa-

tions of useful functions derived from standard reference data. The centers and projects also

establish criteria for evaluation and compilation of data and recommend improvements in ex-

perimental techniques. They are normally associated with research in the relevant field.

The technical scope of NSRDS is indicated by the categories of projects active or being

planned : nuclear properties, atomic and molecular properties, solid state properties, thermody-

namic and transport properties, chemical kinetics, and colloid and surface properties.

Reliable data on the properties of matter and materials are a major foundation of scientific

and technical progress. Such important activities as basic scientific research, industrial quality con-

trol, development of new materials for building and other technologies, measuring and correcting

environmental pollution depend on quality reference data. In NSRDS, the Bureau’s responsibility

to support American science, industry, and commerce is vitally fulfilled.

Ernest Ambler, Acting Director
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Preface

This report is one of a series of data publications on radiation chemistry; the aim of the series

is to compile, evaluate, and present the numerical results on processes occurring in systems which

have been subjected to ionizing radiation. Various kinds of data are important in radiation chem-

istry. The quantities which were measured first were the observed radiation yields or G values (mole-

cules formed or destroyed per 100 eV). Various indirect methods based on G values have been used to

determine yields of transient species and relative rates of reactions. The spectral properties (optical,

electron spin resonance) of transients have provided a direct method for their identification, and rates

of the very fast reactions of transients which occur in irradiated systems have been measured directly

by spectroscopic methods. Conductivity and luminescence methods have also provided a means of

measuring properties of transients and their kinetics. Some reactions which occur in irradiated systems

have also been studied by other methods, such as photochemistry, electric discharge, ultrasonics, chem-

ical initiation, electron impact, etc. The emphasis in these publications is on the data of radiation

chemistry, but where other pertinent data exist, they are included.

The data of radiation chemistry are voluminous; thousands of systems have been investigated.

As a result there are certain collections, e.g. rate constants of particular types of reactions or certain

properties of transients, for which tabulations of the data are considered essential, but for which

critical assessment of each value is impossible. On the other hand, certain systems and properties

have been studied so extensively that critical examination of these data is desirable and timely.

Authors of this series of data publications have been asked to evaluate the extent to which the data

can be critically assessed, to describe their criteria for evaluation, and to designate preferred values

whenever possible.

IV



Yields of Free Ions Formed in Liquids by Radiation.*

A. O. Allen

Department of Chemistry

Brookhaven National Laboratory

Upton ,N.Y. 11973

Free ions are those produced by ionizing radiation which escape initial recombination.

Yields of free-ion pairs are tabulated for liquid alkanes, alkenes, alkynes, dienes and

aromatic hydrocarbons, and other non polar and polar compounds, including alcohols,

ethers, esters, halides, amines, nitriles, etc. Total ion yields for a few liquids are compared

with gas phase ion yields. Theoretical treatments of these data are discussed.

Key words: Electrons; free ions; ion yields; liquid; non polar systems; polar systems; radia-

tion chemistry; radiation physics.

1. Definitions

When X—rays, gamma rays or fast charged particles traverse a gas, positive and negative ions are

formed in equal numbers, and (in the absence of an applied electric field) become uniformly distributed

through the volume by diffusion, and eventually disappear by pairwise general recombination. If a D.C.

electric field is applied, the ions drift to the electrodes and give up their charge to the external circuit.

At ordinary radiation intensities, a relatively modest field strength suffices to collect all the ions. The

number of ions of either sign produced by unit energy input is called the ion yield and is a characteristic

property of each gaseous substance.

In a liquid under radiation, the charge collected by an applied field is usually only a small fraction

of that produced by the same radiation absorbed in the same amount of the same material in gaseous

form. The cause of this difference was correctly described nearly seventy years ago by G. Jaffe

[080002]
1

. In a gas, ionization knocks out an electron with sufficient momentum to escape from the

electric field of the positive ion it leaves behind; but in a liquid, collisions with surrounding molecules

rapidly reduce its initial outward momentum so that it has only a small escape probability. Usually the

electron rapidly returns to its parent ion and recombines with it. This process is called initial

recombination or geminate recombination. The number of electrons that escape initial recombination,

per unit energy input by the radiation, is called the free-ion yield. Since an applied electric field tends to

pull the electron out of the field of the positive ion, the free— ion yield increases with the applied field. The

field strength that a liquid can stand is limited by dielectric breakdown; in most liquids, the free-ion

yield at the maximum usable field is still only a small fraction of the ion yield found in the gaseous form

of the same substance. Only in monatomic liquids (liquefied rare gases) has complete collection of the

ions been reported.

The escaped electron can (1) remain as a quasi—free electron in a delocalized state in a conduction

band; (2) aggregate solvent molecules about itself to form a solvated electron
; (3) react with a solvent

molecule, or an impurity or solute molecule to form a new negatively charged molecule, or negative ion.

* This is a data review prepared for, and in cooperation with, the Radiation Chemistry Data Center of the Radiation Laboratory, University of Notre Dame, Notre Dame,

Indiana 46556. The Laboratory is operated under contract with the Energy Research and Development Administration. The work of the Center is supported in part by the National

Bureau of Standards, Office of Standard Reference Data.

Numbers in brackets indicate the literature references at the end of this paper.
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The term “negative ion” is however sometimes used to indicate any negatively charged entity, including

the electron.

Although attempts are made to extrapolate the free—ion yield to infinite field strength to obtain the

total ion yield, the zero— field free—ion yield is precisely determinable and has been the focus of much
recent work.

The free-ion yield depends strongly on the “radiation quality” or linear energy transfer (LET). At

high LET, the positive charges are grouped in columns, the electrons are pulled back by a large group

of positive ions instead of by just one or a few, and the escape probability becomes much lower. Most of

the data reported here were taken with low LET or near—minimum ionization radiations such as y rays,

1-2 MeV X—rays or megavolt electron beams, and this condition may be assumed unless otherwise

indicated.

The free—ion yield is of practical significance in determining the chemical changes that occur in

liquid and amorphous systems under radiation. The scientific significance of free-ion yield

measurements lies in the fact that no adequate theory exists for the behavior of electrons in non-

crystalline condensed systems, and free-ion yields offer one type of data which may point the way to

the development of such a theory.

The purpose of this review is to assemble currently available data on zero—field free-ion yields in

pure liquids for the convenience of those who wish to use these quantities. No attempt is made here to

assess probable errors or to ascertain probable “best” values. Before this can be done, the many
differences in results reported from different laboratories will have to be resolved in the light of

independent determinations.

2. Notation and Units

The ion yield in gases is usually expressed as its reciprocal, denoted W, which is always expressed

in eV per ion pair. In liquids, the yield is usually given as G = 100/ IE, the number of ions of either sign

produced per 100 eV energy input. In this paper, the zero-field free-ion yield in liquids is denoted by

,
while the total ion yield is Gfj . The electron is represented by e~

.

3. Methods of Measurement

3.1. Scavenging

The scavenging method involves adding a substance which reacts directly with the electron (or in

some cases with the positive ion or its deprotonated successor radical) to form a chemical product which

is determined quantitatively. Examples of scavengers are anthracene, biphenyl, pyrene and the free

radical galvinoxyl, which readily add an electron to form a colored radical anion of known optical

absorptivity, and N2 0, which reacts with an electron to form O" and a molecule of nitrogen, which is

determined. There are two varieties of the method: (1) the steady—state method, in which a permanent

chemical product is determined, following an exposure to a continuous source such as y rays; (2) the

pulse method, in which the optical absorption of a transient product such as pyrene ion gives a measure

of the electron yield.

There are many sources of error. If the scavenger concentration is too high, some of the initially

recombining electrons or ions may be counted as well as the free ions; results should always be

extrapolated to zero scavenger concentration. A less obvious error occurs if some of the electrons react

with the scavenger to form other products, which are not determined; or the electron may also be

reacting with impurities, or with free radicals or other radiation products; these errors make the reported

yield too low. If, however, the determined product also is formed by the reaction of the scavenger with

other free radicals formed by the radiation, the reported yield might be too high. If the radiation dose is

too large, the product may begin to compete with the scavenger. It is generally difficult or impossible to

estimate the accuracy of a determination of a free-ion yield by the scavenger method except by

comparison with results of other methods.
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3.2. Conductivity

The specific conductance of a system is proportional to the product of the number of ions formed

and their mobility. If the mobility is known, or guessed, then a determination of the conductivity

produced by a known intensity of radiation can be used to calculate the free—ion yield. For non-polar

liquids, the method is difficult and not too reliable and has been superseded by the charge collection

method. Used with a pulse radiolysis system in aqueous and alcoholic media, this method has given

valuable results.

3.3. Charge Collection

Charge collection methods comprise steady—state and pulse methods.

In the steady—state method, the current of ions collected by the field is measured with the radiation

intensity so low and the field so high that essentially no general ion recombination occurs as the ions are

swept out by the field.

In the pulse or “clearing field” method the charge produced by a short pulse of radiation is

collected by the field and measured. In one version, the field is turned on immediately after the

radiation pulse to give a direct measurement of the zero-field free—ion yield; a ballasting condenser

takes care of the charge necessary to bring the electrodes to voltage when the field is switched on

directly after the radiation pulse. Irt another version, the field is maintained during the pulse and the

zero—field value obtained by extrapolation.

In all the electrical methods, the collected currents or charges must be kept very small to avoid

recombination errors, and it is difficult to avoid systematic errors in the electrical measurement systems.

Also, difficulties in measuring the energy put into the liquid may occur at these very low dose rates.

Although careful determinations of G*; by charge collection should be accurate to ±5%, values

reported by different laboratories for the same pure liquid at the same temperature unfortunately often

differ by many times this amount.

4. Tabulations of Gg

Tables 1—4 give values of G^ for a variety of pure liquids. When values were determined by a

particular worker over a series of temperatures, only one value is usually given in the tables; values

obtained over a range of temperatures are shown graphically in figures 1 — 6. For temperature effects in

aromatic hydrocarbons, see [741110]. The tables give the name of the liquid, temperature of

measurement, dielectric constant of the liquid, method used, reported value of Gjj, and literature

reference. The dielectric constants are omitted from the hydrocarbon tables because the values nearly

all lie about 1.8—2. When no temperature is reported, “room temperature” may be assumed. Under

“Methods” is indicated whether conductivity (condy.), charge collection (charge coll.) or scavenging

(scav., followed by the formula or name of the scavenger used) was employed.

Data on mixtures of non-polar compounds are given in [680376] and [700055], but are not

reproduced here. In mixtures of hydrocarbons, G
fi
changes gradually with composition; but addition of a

little CCl* to neopentane results in an abrupt drop of G^. Relative values of G^ in mixtures of hexane

and alcohols are reported in [710464] and [731090], mixtures of benzene and alcohols in [741084],

mixtures of ethanol and water in [730143], and mixtures of alcohols and alkanes in [741035].
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Table 1 . Zero-field free-ion yields in saturated hydrocarbon liquids

Compound Temp.®"*

K
Method® G(i

*
Reference

Methane 140 charge coll. 1.13 741012

Ethane 200 charge coll. 0.158 741012

Propane 238 charge coll. 0.166 741012

233 charge coll. 0.143 720166

Cyclopropane 234 charge coll. 0.049 741012

Butane 293 charge coll. 0.225 741012

296 charge coll. 0.193 700055

Isobutane 294 charge coll. 0.31 720166

n-Pentane 2% charge coll. 0.17 731054

296 charge coll. 0.145 700055

Isopentane 296 charge coll. 0.170 700055

Neopentane 296 condy. 1.1 700090

296 charge coll. 0.86 700055

294 charge coll. 1.09 720269

294 scav., N 20 0.95 700650

Cyclopentane 296 charge coll. 0.155 700055

n-Hexane 296 condy. 0.10 650216

297 condy. 0.10 660149— condy. 0.137 680821

recalc, in 720405

296 condy. 0.11 690240

296 scav., (C 6H 5 )sCC1 0.12 690348— scav., CH3 Br 0.12 700047

296 charge coll. 0.131 700055

298 scav., c-C 6F 12 0.08 700299— condy. 0.13 720405

292 charge coll. 0.18 731054— scav., C 2H 5OT 0.12 730242

2—Methylpentane 296 charge coll. 0.148 700055

3-Methylpentane 296 charge coll. 0.146 700055

298 scav., c-CjF^ 0.17 700299

2,3-Dimethylbutane 296 charge coll. 0.192 700055

2,2-Dimethylbutane 296 charge coll. 0.304 700055

Cyclohexane 296 charge coll. 0.148 700055— scav., CHjBr 0.13 700047

298 scav., c-CjFu 0.14 700299

296 scav., anthracene 0.17 700360

296 scav., (C 6H5 )sCC1 0.13 690348

296 scav., galvinoxyl 0.15 700019

294 charge coll. 0.19 731054

Methylcyclohexane 293 scav., pyrene 0.122 730124

n-Heptane 296 charge coll. 0.131 700055

2,4—Dimethylpentane 296 charge coll. 0.178 700055

2,2,3-Trimethylbutane 296 charge coll. 0.290 700055

n-Octane 296 charge coll. 0.124 700055

2,3,4—Trimethylpentane 296 charge coll. 0.174 700055

2,2,4-Trimethylpentane 296 charge coll. 0.332 700055— scav., CHsBr 0.36 700047— scav., c-C 6Fu 0.37 700299

296 scav., (C 6Hs )sCC1 0.36 690348

296 scav., galvinoxyl 0.39 700019— scav., CHjBr 0.13 720032— scav., C 2HsOT 0.22 730242— scav., CHjBr 0.3 740092

2,2,3,3—Tetramethylbutane 379® charge coll. 0.80 720269

n-Nonane 296 charge coll. 0.117 700055

2,2,4,4-Tetramethylpentane 295 charge coll. 0.83 720269

2,2,3,3-Tetramethylpentane 295 charge coll. 0.42 720269

/i-Decane 296 charge coll. 0.117 700055
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Table 1 . Zero-field free-ion yields in saturated hydrocarbon liquids— Continued

Compound
rP l.b
1 emp.

K
Method' Gti

*
Reference

2,2,5,5-Tetramethylhexane 293 charge coll. 0.67 720269

2,2,6,6-Tetramethylheptane 293 charge coll. 0.47 720269

2,2,7,7-Tetramethyloctane 316 charge coll. 0.34 720269

n-Tetradecane 296 charge coll. 0.120 700055

Squalane (C^H^) 296 charge coll. 0.119 700055

*When no temperature is given in the reference, room temperature may be assumed.

When determinations were made at several temperatures on the same compound, only one result is given here;

the others are displayed fn the accompanying figures.

'Abbreviations: condy. =

charge

conductivity under irradiation combined with measured or assumed ion mobility values

coll. = charge collection by clearing field,

scav. = scavenging of the negative or positive charge by the
d
Free-ion yield in molecule/100 eV.

'This octane isomer melts at 374 K.

compound indicated.

Table 2. Zero-field free-ion yields in unsaturated and aromatic hydrocarbon liquids

Compound Temp.

K
Method G°u Reference

Ethylene 170 charge coll. 0.010 741012

Propylene 234 charge coll. 0.042 741012

Butene-

1

293 charge coll. 0.093 731054

cis-Butene-2 293 charge coll. 0.23 731054

fra/is-Butene-2 293 charge coll. 0.080 731054

Isobutene 293 charge coll. 0.25 731054

2-Methylbutene-2 292 charge coll. 0.26 731054

Hexene—

1

296 charge coll. 0.062 700055

293 charge coll. 0.10 731054

Hexene-2* 296 charge coll. 0.076 700055

fran.s-Hexene-2 293 charge coll. 0.092 731054

cis—Hexene—

3

293 charge coll. 0.13 731054

fran.y-Hexene-3 293 charge coll. 0.10 731054

3,3-Dimethylbutene-l 296 charge coll. 0.169 700055

2,3-Dimethylbutene-2 293 charge coll. 0.44 731054

Cyclohexene 296 charge coll. 0.15 700055

293 charge coll. 0.20 731054

Propadiene(Allene) 282 charge coll. 0.050 731054

Butadiene-1,3 269 charge coll. 0.038 731054

Pentadiene-1,4 293 charge coll. 0.067 731054

Cyclopentadiene 195 scav., NH 3 0.05 652067

Hexadiene-1,5 292 charge coll. 0.066 731054

Heptadiene-1,6 292 charge coll. 0.067 731054

Octadiene-1,7 292 charge coll. 0.065 731054

Acetylene 198 charge coll. 0.02 731054

Propyne 260 charge coll. 0.17 731054

Butyne—

2

293 charge coll. 0.32 731054

Hexyne-1 253 charge coll. 0.10 731054

Hexyne-2 293 charge coll. 0.19 731054

Hexyne-3 293 charge coll. 0.21 731054

Benzene — scav., tritiated water or ale. 0.077 690650— scav., tritiated water or ale. 0.098 700349

298 scav., galvinoxyl 0.055 700019

296 charge coll. 0.053 700055

292 charge coll. 0.081 741110

Toluene 298 scav., galvinoxyl 0.051 700019

292 charge coll. 0.093 741110

/erf-Butylbenzene 296 charge coll. 0.089 700055

o-Xylene 292 charge coll. 0.094 741110
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Table 2. Zero-field free-ion yields in unsaturated and aromatic hydrocarbon liquids— Continued

Compound Temp.

K
Method G°ti Reference

m-Xylene 292 charge coll. 0.082 741110

p—Xylene 292 charge coll. 0.073 741110

1,2,3-TrimethyJbenzene 292 charge coll. 0.12 741110

1,2,4-Trim ethylbenzene 292 charge coll. 0.083 741110

1,3,5-Trimethylbenzene 293 charge coll. 0.087 741110

1,2,3,4-Tetramethylbenzene 292 charge coll. 0.11 741110

1,2, 4,5-Tetram ethylbenzene 358 charge coll. 0.15 741110

Pentamethylbenzene 353 charge coll. 0.25 741110

Hexamethylbenzene 448 charge coll. 0.6 741110

Naphthalene 376 charge coll. 0.11 741110

Anthracene 500 charge coll. ~ 0.1 741110

Biphenyl 373 pulse radiolysis, ion spectra <0.35 690431

*Cis-trans mixture.

Table 3. Zero—field free-ion yields in miscellaneous non—polar liquids

Compound Temp.

K
€ Method G°

f ,
Reference

Tetramethylsilane 296 1.84 charge coll. 0.74 700055

Tetramethyltin 296 2.07 charge coll. 0.62 700055

Carbon disulfide 296 2.63 charge coll. 0.314 700055

296 scav., (C 6H 5 )3CC1 0.26 690348

Triethylamine 296 2.44 charge coll. 0.148 700055

Germanium tetrachloride 296 2.44 charge coll. 0.127 700055

Carbon tetrachloride 296 2.232! charge coll. 0.096 700055

296 scav., (C 6H 5 )3 CC1 0.093 690348

296 condy. 0.068 660148

1,4—Dioxane 295 2.21 condy. 0.05 650216

296 condy. 0.038 660148— scav., benzophenone 0.1 690521

296 charge coll. 0.046 700055

296 scav., anthracene 0.10 700360

293 2.20 charge coll. 0.08 751047

335 2.15 charge coll. 0.12 751047

374 2.08 charge coll. 0.16 751047

Carbon tetrafluoride 143 1.64 charge coll. 0.07 730095

Perfluoro-n-pentane 296 1.68 charge coll. 0.035 700055

Perfluoromethylcyclohexane 296 1.85 charge coll. 0.028 700055

Oxygen 87 1.50 charge coll. 0.013 720034

Table 4. Zero--field free--ion yields in polar liquids (e > 3)

Compound Temp.

K
€ Method G?

i
Reference

Ethers:

Di-n-butyl ether — 3.1 condy. 0.11 650216

187 4.50 charge coll. 0.21 751047

220 3.99 charge coll. 0.23 751047

255 3.52 charge coll. 0.26 751047

293 3.14 charge coll. 0.30 751047

332 2.83 charge coll. 0.36 751047

373 2.55 charge coll. 0.42 751047

406 2.35 charge coll. 0.48 751047

436 2.20 charge coll. 0.54 751047
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Table 4. Zero-field free-ion yields in polar liquids (e > 3) — Continued

Compound Temp.

K
€

1
Method G°u Reference

Di—n—propyl ether 169 5.64 charge coll. 0.23 751047

202 4.76 charge coll. 0.25 751047

254 3.90 charge coll. 0.30 751047

293 3.43 charge coll. 0.34 751047

342 2.91 charge coll. 0.38 751047

376 2.60 charge coll. 0.44 751047

Diisopropyl ether 296 3.9 charge coll. 0.305 700055

Diethyl ether — 4.3 condy. 0.19 650216

296 charge coll. 0.35 700055— scav., CH3Br 0.15 700249

296 scav., anthracene 0.28 700360

195 8.0 charge coll. 0.53 751047

223 6.45 charge coll. 0.50 751047

252 5.40 charge coll. 0.49 751047

293 4.39 charge coll. 0.54 751047

328 3.70 charge coll. 0.57 751047

Dimethyl ether 165 10.7 charge coll. 0.64 751047

195 9.0 charge coll. 0.73 751047

226 7.4 charge coll. 0.74 751047

Tetrahydropyran 231 7.28 charge coll. 0.45 751047

254 6.60 charge coll. 0.48 751047

293 5.60 charge coll. 0.51 751047

Tetrahydrofuran 296 .7.5 scav., pyrene, anthracene 0.68 700406— scav., benzophenone 0.5 690521— scav., maleic anydride 0.6* 701042— pulse radiolysis 0.39
b

731069— scav., pyrene 0.3 741030

205 11.6 charge coll. 0.72 751047

2—Methyltetrahydrofuran 296 7.9 scav., anthracene 0.23 700360

Halides:

n-Butyl bromide 295 6.9 condy. 0.27 650216

n—Butyl chloride 295 7.2 condy. 0.39 650216

Fluoroform 183 21.4 charge coll. 1.1 730095

Methyl fluoride 183 27.9 charge coll. 1.6 730095

Difluoromethane 183 38.9 charge coll. 1.9 730095

Ketones:

Methyl ethyl ketone 293 18.5 condy. 0.84 720153

Acetone 296 21 scav., anthracene 1.18 700360— scav., anthracene 1.5 710186— scav., stilbene and anthracene 1.1 710189— condy. 1.2 720002

Dimethyl sulfoxide 296 46.6 scav., anthracene 1.62 700360— scav., N20 1.8 710215— scav., biphenyl 1.8 720232— scav., anthracene and Br 1.2-1.

8

731016

Esters:

Methyl formate 296 8.5 scav., anthracene 0.32 700360

1,2—Propanediol carbonate 296 64.5 scav., anthracene 2.25 700360

Nitriles:

Benzonitrile 296 25.2 scav., anthracene 1.40 700360

296 scav., trans-stilbene 1.4 741100

Acetonitrile 296 37.5 scav., anthracene 1.55 700360

Pyridine 296 12 scav., anthracene 0.40 700360

Amines:

Aniline — 6.9 scav., pyrene 0.95 680227

Tributylamine 293 5. condy. 0.25 720153

Butylamine 293 5. condy. 0.27 720153

Diethylamine — 3.6 scav., pyrene 0.1 741030

Ethylamine — 6.2 scav., pyrene and (C 6H 5 ) 2
1.8 741094
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Table 4. Zero-field free-ion yields in polar liquids (e > 3) — Continued

Compound Temp.

K
€ Method G?

.

Reference

Methylamine — 9.4 scav., pyrene and (C 6H 5 )2 2.2 741094

Ammonia 258 20. scav., pyrene and (C 6H S )2 3.3 741094

296 17. pulse radiolysis 3.2 741062

225 25 pulse radiolysis 3.0 740159

225
2+

scav., Lu 2.9 740159

Ethanolamine

Alcohols:

— 57.7 scav., anthracene 0.2 731106

Neopentyl alcohol 337 8.3 scav., galvinoxyl 0.21 700019

ferf-Butyl alcohol 333 7.8 scav., anthracene and pyrene 0.7 720574

296 12.3 scav., galvinoxyl 0.67 700019

Hexyl alcohol 293 13.3 scav., anthracene and pyrene 1.1 720574

n-Pentyl alcohol 298 14.2 scav., galvinoxyl 0.45 700019

337 scav., galvinoxyl 0.46 700019

Isopentyl alcohol 293 15. scav., anthracene and pyrene 0.35 720574

293 condy. 0.40 720153

n—Butyl alcohol 298 17.1 scav., galvinoxyl 0.63 700019

298 scav., acetone 0.55 670004

293 scav., anthracene and pyrene 0.56 720574

293 condy. 0.58 720153

Isobutyl alcohol 293 17.7 scav., anthracene and pyrene 0.5 720574

Isopropyl alcohol 296 18.3 scav., anthracene 0.92 700360— scav., (C 6H5 )2 1.0 650499

298 scav., N20 1.2 680042— scav., NOj 1.7 690655

298 condy. 2.2 710064

291 scav., tetranitromethane 1.2 710564

293 scav., anthracene and pyrene 1.0 720574

n-Propyl alcohol — 20.1 scav., (C 6H5 )2 1.0 650499

298 scav., N 20 1.2 690387

298 scav., acetone 0.65 670004

298 condy. 2.2 710064

150-298 pulse radiolysis 1.45 751054

Ethyl alcohol — 24.3 scav., (C 6H 5 )2 1.0 640113

298 scav., N20 1.5 680047

296 scav., galvinoxyl 1.0 700019

294 scav., anthracene 0.98 700360

298 condy. 1.95 710064

290 condy. 3.9
C

710531

296 scav., acetone, nitrobenzene 1.7 720199— scav., (C 6H5 )2 1.7 700172

Methyl alcohol — 32.6 scav., (C 6H s )2 1.1 650499

298 scav., acetone 1.3 670004— scav., N 20 2.0 670018

296 scav., anthracene 1.1 700360

298 scav., N 20 2.0 680610

298 condy. 2.0 710064— condy. 1.9 731086

296 scav., nitrobenzene and acetone 1.7 730292

Ethylene glycol — 38. scav., (C 6Hs )2 1.2 650499

293 scav., anthracene and pyrene 1.2 720574

Nitro compounds:

Nitrobenzene 298 34.8 scav.
,
galvinoxyl 0.43 700019

Nitromethane 298 37.8 scav., galvinoxyl 0.31 700019

Amides:

Hexamethylphosphoramide — 30 scav., biphenyl and anthracene 2.4 720105

293 condy. 1.2 720153— scav., anthracene and pyrene 2.3 731091

Dimethylform amide 2% 37. scav., anthracene 2.0 700360

Dimethylacetamide 296 38. scav., anthracene 1.7 700360
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Table 4. Zero-field free-ion yields in polar liquids (c > 3) — Continued

Compound Temp.

K
< Method Reference

Formamide — 109. scav., N 20 3.3 700173

N-Methylpropionamide 2% 164. scav., anthracene 2.6 700360

Water* (H20) — 80 scav., KMn0 4 G(e~tq )
= 2.7 670311— review G(e;

q )
= 2.7 730418— condy. G(OH') = 0.7;

G°,
;
= G(H

+
)
= 3.4 710138— condy. G(OH') = 0.8;

Gfj = G(H +
)
= 3.5 700243— condy. G(OH“) < 0.3;

G°,
j
= 2.85 ± 0.15 720404

(D 20) — scav., KMn04 G(e;
q )(D 2 0) = 2.9 680061

‘Much lower values were obtained with high-LET radiations.
b
Absorption due to e

-,Na
+
ion pair, extrapolated to zero Na +

.

'Yield includes G(anions) = 2.1, in addition to solvated electrons, as

deduced from decay kinetics; not observed by other workers.

^Yields change very little with temperature up to 523 K, C.J. Hochanadel, [550048].

Figure 1. G ° for n-pentane, n-hexane and cyclohexane.

Open symbols from [680376]; filled symbols, [720269].
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Figure 2. G^for low-molecular-weight saturated hydrocarbons.

Data from [741012, 720034 and 720166].
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Figure 3. G^ for some saturated hydrocarbons, from [720269].
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5. Remarks on Gfj Data

5.1. Hydrocarbons

The chief property determining in hydrocarbons is molecular shape. By and large, the more

nearly spherical the molecules, the bigger G^. Despite variations in G^ by a factor of up to 100, the

temperature coefficients are quite comparable. The effect of double and triple bonds is relatively minor,

although the difference between cis- and trans-butene-2 is surprising. Comparing results from the two

laboratories responsible for most of the data, we find that the more recent data from Freeman's

laboratory are consistently about 30% higher than the data on the same liquids by Schmidt and Allen.

Further work is required to settle this and other discrepancies.

5.2 Other Non-polar Compounds

The near—spherical tetramethides have large values of G^, but equally spherical carbon

tetrachloride has a low value. This is attributed to the reactivity of CCI4 with e~
,
which seems to convert

e~ to Cl~ before it emerges from the positive ion field. However, CF4 ,
which does not ordinarily react

readily with electrons [690179], also has a very low G°{i . This seems to be an outstanding anomaly.

5.3. Polar Liquids

The yield of free solvated electrons in water has been the subject of dozens of papers, and only in

recent years has agreement been obtained. The two papers cited in table 4 for G(e~
q ) in water contain

references to earlier work. For effects of radiation quality (LET) on the yields see [610164] and [690185].

The free—ion yield also includes some OH" which is shown by pulse conductivity studies; therefore, G^
is actually larger than Ge

—

.

There is some controversy about yields of solvated electrons and free ions in methyl and ethyl

alcohols. Earlier scavenger studies gave G{e~) about 1.0, but pulse conductivity gave values near 2. In

the light of later work, it now appears that electron reaction with biphenyl and anthracene may have

been underestimated because of the short lifetime of the product ions in alcohol, while in other cases too

low a scavenger concentration was used. The two conductivity studies differ widely, however, on the

total ion pair yield; [710531] found the yield of other anions to be larger than that of solvated electrons

while [710064] found the anion yield less than 8% of the electron yield. Another disagreement involves

the yield in tetrahydrofuran.

G^j should increase with increasing dielectric constant, which shortens the range of the Coulomb
forces. Table 4 shows a strong tendency in this direction, but with many exceptions. The yield in

ammonia, which is much larger than that in liquids of similar dielectric constant, seems connected with

the slowness of reaction of the solvated electron with the conjugate acid ion NH4 .

6. Total Ion Yields

Only in two polyatomic liquids has G
fi
been determined to high enough fields to allow a reasonable

extrapolation to infinite field. Table 5 shows that the extrapolated total yield for y rays in neopentane

and CS2 is close to that measured in the gas phase. In the monatomic liquids Ar, Kr and Xe, nearly

complete collection of the ions is possible, and the total ion yield in the liquid is found to be greater than

in the gas. In the solid forms of . these elements, optical absorptions are found by Baldini at longer

wave-lengths than in the corresponding gas [629023] and it is believed that the resulting excited states

spontaneously ionize, in the liquid as well as the solid state [719437]. If this is true, Baldini s absorptions

give the effective ionization potential in the liquid, 7^. Takahashi et al. [740153] found reasons for

assuming that the ratio of W to 7 should be the same in the liquid and gas, and obtained the following

calculated values for Ar, 24.0; Kr, 20.1; Xe, 16.7. These calculated values agree with their

measured values within the experimental error (3 to 8%).
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Table 5. Total ion yields reported for selected liquids

Compound Temp.

K
Radiation Source % satn.

obtained

or.

(eV)

gm\g^ Reference

Carbon disulfide Room y rays from Ra 80 3.8 26 -1 340008

Neopentane 296
60nCo y rays 84 4.03 24.8 0.94 700090*

Argon 87 20—kV or 50—kV X rays 95-100 3.9 26 ± 3 -1 660847

87 Internal conversion -100 4.2 23.6 1.11 740029

e~ , from
207

Bi

87
M
Ni /3-rays 98 4.22 23.7 1.11 740153

87
60 Ĉo y rays 100 4.5 22.5 1.18 690429

87 1.7 MeV X-rays 100 7.3 13.7 1.9 730059

Krypton 148 1.7 MeV X-rays 98 13.0 7.7 3.2 730059

120
M
Ni /3-rays 91 4.9 20.5 1.17 740153

Xenon 183 1.7 MeV X-rays -100 13.7 7.3 3.0 730059

183 Po a-rays 5.8 17.3 1.27 730735

166
M
Ni /3—rays 90 6.1 16.4 1.33 740153

from 710122.

7. Theoretical Treatments

No good quantitative theory exists of the free—ion yield. Jaffe's theory [080002] was based on a

columnar model which is unrealistic for low LET radiations and has not proved useful quantitatively.

Recent treatments start with Onsager's formula for the probability P(r) of escape by thermal agitation of

a pair of ions separated by a distance r:

P(r) = (1 + ftE))exp(-rJr)

where rc= e2lekT, e is electronic charge, e dielectric constant, k Boltzmann’s constant, T the absolute

temperature, and J{E) is a function of the applied field expressed as a double summation of terms again

involving e and T. The model for hydrocarbons assumes that an electron very quickly loses energy to

electronic and vibronic modes and attains a level of energy which is less than that of molecular

vibrations but still greater than thermal. It then loses energy much more slowly by elastic collisions, and

how far it travels before it is thermalized depends on how smooth a potential surface it finds, which in

turn depends on how nearly spherical the liquid molecules are. Eventually it attains thermal energy at a

distance r from the positive ion, which of course is not the same for all electrons. Some distribution

function D(r) must exist which gives the probability of the electron becoming thermalized at r, and the

escape probability is then / D(r)P(r)dr. If this model holds, the same function should determine both the

field dependence and the temperature dependence of G
fi

. Every worker who has in recent years

seriously considered G
fi
has expressed his results in terms of an assumed D(r), which usually includes

two parameters, the total yield Gf; and a “mean penetration range” called b or r
0 . Both the temperature

coefficient of the zero-field free-ion yield and the field effect on the yield may be used to obtain the

best value of the range r

^

defined by an assumed D(r). Mozumder [748021] fitted experimental data on

G
fi

for 19 hydrocarbons and other organic liquids with five different assumed forms of D{r) to obtain

values of the range r0 . For any particular liquid, the f;ve values of r0 ranged over a factor of 1.6 to 1.8.

But all the calculated “mean” ranges are many times longer than anyone would have supposed prior to

the analysis of the free-ion yields. Thus, the smallest r
0 values in Mozumder's results were obtained

from a “truncated power law” D{r) = (2.7/477r0
3
) (r/r0 )

-5 - 7 and ranged from 28A for 1,4—dioxane to 133A

for neopentane. The majority of electrons formed in the ionization of liquids by a, /3, y or X—rays have

initial energies below 100 eV. Extrapolation of the usual “electron ranges” obtained by experiments on

kilovolt electrons suggests maximum ranges <1 A for 100—eV electrons in hydrocarbons [660148], The

usual “electron range” determination consists in finding how thick a foil must be inserted in an electron

beam to prevent ionization in air beyond the foil; the foil is thus only sufficient to reduce the electron

energy below the ionization threshold (15—20 eV). The extra distance traveled in liquids is required to

reduce the electron energy from a few eV to thermal levels. This distance depends strongly on the shape

of the molecules.
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The ranges in dielectric liquids deduced from free—ion yields agree in order of magnitude with

values obtained by photoionization of solute molecules [710638] and metal surfaces [720439]. Recent

work on electron scattering in metals has shown similar effects; the “mean free path” in the metal,

which decreases with decreasing energy at higher energies, shows a sharp upturn at electron energies

below 40 eV [749139],

The trouble with the Onsager model is that it does not conform well with physical reality, for only

about 40% of the ions are formed in isolated pairs. The remainder occur in groups, usually known as

“spurs”, which contain from 2 to 50 or more ionizations, located close together. The electrons formed by

ionization in such a group are attracted back by the collective charge of all the ions in the group,

partially shielded by the charge on all the other electrons. Obviously the Onsager formula cannot apply

to such a vague and complex situation. When the field is not too high and the escape probability from a

spur remains low, the parameter r0 may be rationalized as the mean distance between the positive and

negative charges in the last pair to remain in a spur at the moment that all the other pairs have

recombined. When the field is high enough so that an appreciable number of spurs contribute more than

one free-ion pair, the use of the Onsager formula cannot be justified. Dodelet and Freeman [758020]

have proposed a model of the spur which, together with an assumed D(r), gives a reasonable fit to the

data on field effects in such diverse liquids as xenon and water. The values obtained for the parameters

GJ°i and r0 are not however very different from those obtained (much more simply) by not taking the

spurs into account. The physical significance of such values remains doubtful as long as D(r) is taken

arbitrarily, which it must be until the process of electron slowing—down in the low energy range is better

understood.

We do not include any quoted values of the “penetration range” in our tables of data, because the

numbers have no precise quantitative significance. Nevertheless, the r0 values listed in any paper on

free-ion yields, have great qualitative meaning. It is clear that electrons of somewhat superthermal

energy must lose their momentum more slowly, in passing through a liquid, the more nearly isotropic are

the molecules of the liquid. The same behavior of thermal electrons is indicated ,by mobility

measurements of thermal electrons in hydrocarbon liquids, although quantitative correlatiori between G
fi

and mobility has not yet been made. A great deal of information remains to be extracted from G
fi
data.
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