

NSRDS—NBS 52

U.S. DEPARTMENT OF COMMERCE / National Bureau of Standards

NBS PUBLICATIONS

Electronic Absorption and Internal and External Vibrational Data of Atomic and Molecular Ions Doped in Alkali Halide Crystals

The National Bureau of Standards¹ was established by an act of Congress March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau consists of the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Institute for Computer Sciences and Technology, and the Office for Information Programs.

THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of a Center for Radiation Research, an Office of Measurement Services and the following divisions:

Applied Mathematics — Electricity — Mechanics — Heat — Optical Physics — Nuclear Sciences² — Applied Radiation² — Quantum Electronics³ — Electromagnetics³ — Time and Frequency^a — Laboratory Astrophysics^a — Cryogenics^a.

THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to improved methods of measurement, standards, and data on the properties of well-characterized materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; and develops, produces, and distributes standard reference materials. The Institute consists of the Office of Standard Reference Materials and the following divisions:

Analytical Chemistry — Polymers — Metallurgy — Inorganic Materials — Reactor Radiation — Physical Chemistry.

THE INSTITUTE FOR APPLIED TECHNOLOGY provides technical services to promote the use of available technology and to facilitate technological innovation in industry and Government; cooperates with public and private organizations leading to the development of technological standards (including mandatory safety standards), codes and methods of test; and provides technical advice and services to Government agencies upon request. The Institute consists of a Center for Building Technology and the following divisions and offices:

Engineering and Product Standards - Weights and Measures - Invention and Innovation — Product Evaluation Technology — Electronic Technology — Technical Analysis - Measurement Engineering - Structures, Materials, and Life Safety⁴ - Building Environment' -- Technical Evaluation and Application' -- Fire Technology.

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides technical services designed to aid Government agencies in improving cost effectiveness in the conduct of their programs through the selection, acquisition, and effective utilization of automatic data processing equipment; and serves as the principal focus within the executive branch for the development of Federal standards for automatic data processing equipment, techniques, and computer languages. The Institute consists of the following divisions:

Computer Services - Systems and Software - Computer Systems Engineering - Information Technology.

THE OFFICE FOR INFORMATION PROGRAMS promotes optimum dissemination and accessibility of scientific information generated within NBS and other agencies of the Federal Government; promotes the development of the National Standard Reference Data System and a system of information analysis centers dealing with the broader aspects of the National Measurement System; provides appropriate services to ensure that the NBS staff has optimum accessibility to the scientific information of the world. The Office consists of the following

Office of Standard Reference Data --- Office of Information Activities --- Office of Technical Publications — Library — Office of International Relations.

¹Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted; mailing address Washington, D.C. 20234. ² Part of the Center for Radiation Research.

^a Located at Boulder, Colorado 8030

⁴ Part of the Center for Building Technology

UG 1 5 1974 tace. Electronic Absorption and C100. 573 Internal and External Vibrational Data of Atomic .52 74 and Molecular lons Doped in Alkali Halide Crystals 2

S. C. Jain, A. V. R. Warrier, and S. K. Agarwal

UNG

Department of Physics Indian Institute of Technology New Delhi 110029, India

t. NSRDS - NBS 52

U.S. DEPARTMENT OF COMMERCE, Frederick B. Dent, Secretary NATIONAL BUREAU OF STANDARDS, Richard W. Roberts, Director L.S. Issued July 1974

Library of Congress Catalog Number: 74-600010

NSRDS-NBS 52

Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. (U.S.), 52, 59 pages (July 1974) CODEN: NSRDAP

© 1974 by the Secretary of Commerce on Behalf of the United States Government

U.S. GOVERNMENT PRINTING OFFICE WASHINGTON: 1974

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 (Order by SD Catalog No. C13.48:52). Price 95 cents. Stock Number 0303-01262

Foreword

The National Standard Reference Data System provides access to the quantitative data of physical science, critically evaluated and compiled for convenience and readily accessible through a variety of distribution channels. The System was established in 1963 by action of the President's Office of Science and Technology and the Federal Council for Science and Technology, and responsibility to administer it was assigned to the National Bureau of Standards.

NSRDS receives advice and planning assistance from a Review Committee of the National Research Council of the National Academy of Sciences-National Academy of Engineering. A number of Advisory Panels, each concerned with a single technical area, meet regularly to examine major portions of the program, assign relative priorities, and identify specific key problems in need of further attention. For selected specific topics, the Advisory Panels sponsor subpanels which make detailed studies of users' needs, the present state of knowledge, and existing data resources as a basis for recommending one or more data compilation activities. This assembly of advisory services contributes greatly to the guidance of NSRDS activities.

The System now includes a complex of data centers and other activities in academic institutions and other laboratories. Components of the NSRDS produce compilations of critically evaluated data, reviews of the state of quantitative knowledge in specialized areas, and computations of useful functions derived from standard reference data. The centers and projects also establish criteria for evaluation and compilation of data and recommend improvements in experimental techniques. They are normally associated with research in the relevant field.

The technical scope of NSRDS is indicated by the categories of projects active or being planned: nuclear properties, atomic and molecular properties, solid state properties, thermodynamic and transport properties, chemical kinetics, and colloid and surface properties.

Reliable data on the properties of matter and materials is a major foundation of scientific and technical progress. Such important activities as basic scientific research, industrial quality control, development of new materials for building and other technologies, measuring and correcting environmental pollution depend on quality reference data. In NSRDS, the Bureau's responsibility to support American science, industry, and commerce is vitally fulfilled.

RICHARD W. ROBERTS, Director

Foreword	iii
Introduction	1
References	2

Contents

Page

PART I. ELECTRONIC ABSORPTION OF IMPURITY CENTERS DOPED IN ALKALI HALIDE CRYSTALS

1.	Cu, Ag and Au Centers.	Tables 1-3	5-7
2.	Mg, Ca, Sr and Ba Centers.	Tables 4-7	7-8
3.	Zn, Cd and Hg Centers.	Tables 8-10	8-9
4.	Ga, In, Tl, Pb, Sn, Ge and Bi Centers.	Tables 11-17	10-14
5.	Ti, V, Cr, Mn, Co and Ni Centers.	Tables 18-23	14–18
6.	Rh and Pd Centers.	Tables 24, 25	18
7.	Eu, Sm, Yb and Ho Centers.	Tables 26–29	19–21
8.	Uranium Centers.	Table 30	21
9.	H and D Centers.	Table 31	21
10.	Halogen Centers.	Table 32	22
11.	O, S, Se Centers.	Tables 33-35	22
12.	OH and OD Centers.	Table 36	23
13.	Complex Ion Centers.	Tables 37-43	23-25

PART II. VIBRATIONAL FREQUENCIES OF INTERNAL MODES OF COMPLEX IONS DOPED IN ALKALI HALIDE CRYSTALS

1.	Point Group Symmetry of Molecular Ions.	Table 44	29
2.	Homonuclear Diatomic Molecular Ions.	Table 45	30
3.	Heteronuclear Diatomic Molecular Ions.	Table 46	31
4.	Triatomic Symmetric Linear Ions.	Table 47	32
5.	Triatomic Asymmetric Linear Ions.	Table 48	33
6.	Triatomic Bent Ions.	Table 49	34
7.	Tetraatomic Pyramidal Ions.	Table 50	35
8.	Tetraatomic Planar Ions.	Table 51	36
9.	Pentaatomic Tetrahedral Ions.	Table 52	37
10.	Polyatomic Ions.	Table 53	43

PART III. EXTERNAL VIBRATIONAL FREQUENCIES OF IMPURITY CENTERS DOPED IN ALKALI HALIDE CRYSTALS

1.	Point Impurities.	Table 54	47
2.	Complex Ions.	Table 55	50

v

Electronic Absorption and Internal and External Vibrational Data of Atomic and Molecular Ions Doped in Alkali Halide Crystals

S. C. Jain,* A. V. R. Warrier,** and S. K. Agarwal**

Department of Physics Indian Institute of Technology New Delhi 110029, India

Spectral data for more than 70 atomic and molecular ions doped in alkali halide crystals are tabulated. The tables include electronic absorption data, listings of internal vibrational frequencies of doped complex ions, and tabulations of the frequencies of external modes. The data that appear in the tables were selected on the basis of the consistency among different authors, the types of instruments, and the temperature of measurement. In addition to the data, the tables include the spectroscopic assignments given by the authors in the references cited.

Key words: Atomic ions; doped alkali halide crystals; external vibrational modes; internal vibrational modes; molecular ions.

Introduction

When atomic and molecular impurity ions are doped in crystals, the optical (electronic) absorption spectrum of the ions will be modified. Because of the low symmetry of the environment (lower than spherical symmetry), the degeneracies of free ion levels can split and transitions between these split levels can take place. These transitions give rise to the so-called crystal field bands and can be interpreted on the basis of crystal field theory [1].¹ In addition, transitions involving the transfer of charge between the impurity ion and the surrounding ligands also can occur, giving rise to strong charge transfer absorption bands. If there is considerable overlap of the wave functions of the impurity ion and the ligands, further modifications of the spectra occur due to covalency effects, and the observed spectra can only be explained on the basis of ligand field theory and molecular orbital theory [2, 3]. Thus the study of optical absorption spectra gives information about the symmetry of the crystal field as well as the nature of the interaction between the impurity ion and the host lattice. The crystal field transitions are parity forbidden and they are phonon assisted. Temperature dependence of the optical spectrum gives the nature of the transitions.

Complex molecular ions, in addition to their electronic spectrum, give infrared and Raman spectra due to their internal vibrational modes [4, 5]. When such ions are doped in crystals, their vibrational frequencies shift depending upon the size of the host lattice sites and of the complex ion as well as the interaction between the ions [6]. Splitting of the degenerate vibrational modes may occur due to lowering of the symmetry of the ion whenever defects are present in the nearest or next nearest neighbour positions [7, 8]. These internal vibrational modes can sometimes show side bands due to combination with the external modes of impurity host lattice system [9, 10]. Therefore, a detailed study of the internal vibrational modes of molecular impurities gives useful information about the defect properties as well as the phonon spectrum of the host lattice.

When impurity ions are introduced into a lattice, new modes are induced in the lattice giving rise to an absorption spectrum in the far infrared. If the impurity is monoatomic, only localized, resonant, or gap modes are induced, depending upon whether the new absorption appears above the optical band, in the acoustic continuum, or in the gap between the acoustic and optical branches, respectively [11]. Whether the impurity will induce a localized, resonant, or gap mode will depend upon the relative mass of the impurity ion with respect to the ion it replaces, as well as the force constant between the impurity and the host lattice ions. If, on the other hand, the impurity is molecular, in addition to these modes, librational as well as tunneling modes are also induced [7, 12]. These new modes can give rise to far infrared absorption and Raman scattering, and show strong resonant scattering of phonons in thermal conductivity. Impurity also breaks down the

^{*}Also at the Solid State Physics Laboratory, Lucknow Road, Delhi 110007, India. **Present address: Solid State Physics Laboratory, Lucknow Road, Delhi 110007, India.

¹ Figures in brackets indicate literature references on page 2.

translational symmetry of the lattice, and vibrations at all points in the Brillouin zone become infrared and/or Raman active depending upon the symmetry of the mode. Thus impurity induced infrared and Raman spectra can be used to map the phonon spectrum of the host lattice.

Alkali halide crystals doped with more than 70 different impurity ions have been investigated from the above-mentioned points of view [13]. This is because of the ease with which pure and wellcharacterized alkali halide crystals can be grown, as well as to their almost perfect ionic nature, precise knowledge of the location of the ions and the neighbouring defect in the lattice, etc. The cubic symmetry of the crystal field and the exact knowledge of the symmetry of the field due to defects in the vicinity of the impurity ion, make alkali halides excellent hosts to study and to interpret the optical and other defect sensitive properties of ions.

In alkali halide crystals most of the impurities enter substitutionally at the cation or anion site depending upon whether the impurity is cationic or anionic, respectively. In the case of a few large complex impurity ions such as $Co(CN)_6$, $Fe(CN)_6$, etc., the impurity replaces a complex group of seven lattice sites MX_6 (M-alkali ion and X-halide ion). If the impurity is aliovalent, extra charge is compensated by the creation of vacancies or by intentionally doped or background charge compensating impurity ions. The symmetry of the environment about the $Co(CN)_6$ group is determined by the location of the charge compensating entity.

Impurity doped alkali halides find many modern technological applications. Tl⁺ doped NaI is a well known scintillator and is extensively used in γ -ray scintillation counters. Color centers in alkali halides are being used successfully as memory devices. Recently it has been shown that the paraelectric property of Li⁺ in KCl can be used as a thermometer to measure extremely low temperatures.

With the wide academic interest and potential technological applications of impurity centers in alkali halides, the availability of comprehensive optical data of different centers in alkali halide crystals is extremely valuable. The amount of literature on the optical properties of impurity centers in alkali halides has grown so much in the last ten years that it is extremely difficult for one to keep track of the development. It is therefore desirable to gather all the optical data in one place for all the impurity centers doped in alkali halides so that this can serve as a ready reference.

The following tables on the optical properties have been prepared by critically going through more than 500 papers listed in [13] and other relevant papers published before 1964. The references are given for those papers from which the actual data reported is taken. If more than one paper exists on the same impurity ion, the data are evaluated on the basis of the experimental procedures used, the resolution and accuracy of the instruments employed for measurements, consistency of the data between different authors, and quality of the samples on which measurements were made. Assignments given for the absorption bands in the table are those reported in the references.

The reference data are divided into three parts. In Part I the electronic absorption bands are tabulated. Here the peak positions are given in nanometers (nm). The data given in eV in the paper are converted to nm using the relation 1 eV = 1239.0nm. Wherever possible the temperature of measurement is also indicated for each band.

Since the available data on halfwidth/oscillator strength of the absorption bands are meager and not consistent among different authors, we have not included them.

The data on the internal vibrational frequencies of complex ions doped in alkali halide crystals are given in Part II.² Here the frequencies are given in wavenumbers (cm^{-1}) and the ions are arranged in the order of increasing number of atoms in the complex ions.

In Part III the frequencies of the external modes are presented. Here again the frequencies are in wavenumbers (cm^{-1}) . The data are presented first for monoatomic impurities and then for the molecular ions.

References are given at the end of each table.

- [1] Ballhausen, C. J., Ligand Field Theory, McGraw Hill, N.Y. (1962).
- [2] Sugano, S., and Shulman, R. G., Phys. Rev. 130, 517 (1963).
 [3] Ballhausen, C. J., and Gray, H. B., Molecular Orbital Theory,
- Benjamin, N.Y. (1964). [4] Herzherg, G. Infrared and Raman Spectra of Polyatomic.
- [4] Herzberg, G., Infrared and Raman Spectra of Polyatomic Molecules, Van Nostrand, N.Y. (1945).
- [5] Nakamoto, K., Infrared Spectra of Inorganic and Coordination Compounds, John Wiley, N.Y. (1970).
- [6] Field, G. R., and Sherman, W. F., J. Chem. Phys. 47, 2378 (1967).
- [7] Decius, J. C., Coker, E. H., and Brenna, G. L., Spectrochim Acta 21, 1281 (1963).
- [8] Jain, S. C., Warrier, A. V. R., and Agarwal, S. K., Chem. Phys. Letters 14, 211 (1972).
- [9] Seward, W. D., and Narayanamurti, V., Phys. Rev. 148, 463 (1963).
- [10] Metselaar, R., and Van der Elsken, J., Phys. Rev. 165, 359 (1968).
- [11] Maradudin, A., Localized Excitations in Solids, Plenum Press, N.Y. (1969) pp. 1-16.
- [12] Wedding, B., and Klein, M. V., Phys. Rev. 177, 1274 (1969).
- [13] Jain, S. C., et al., Bibliographies on Properties of Defect Centers in Alkali Halides, Report No. NBS-OSRDB-71-1, National Bureau of Standards, Washington, D.C. (1971).

² In keeping with commonly accepted conventions in molecular spectroscopy, certain energies have been expressed in their wavenumber (cm⁻¹) equivalents. The actual energy can be obtained by multiplying the cm⁻¹ equivalent by hc.

PART I.

Electronic Absorption of Impurity Centers Doped in Alkali Halide Crystals

Center	. NaCl	KCl	KBr	KI	Assignment	References
Cu ²⁺				^d 366		[1]
			^d 300			ni i
		^d 248				[1]
		b 243				[2]
		210				[2]
Cu+	° 372					[3]
			° 305			[4]
	° 282	^b 284	° 292	278		[2, 5]
	° 257	° 261	° 263	262		[1, 4, 5]
	^c 214	° 202	° 210	^d 229		[1, 4]
		° 194	° 199			[4, 6]
	° 185	° 186				[6]
Cu ⁰	° 550					[7]
	° 496	^d 457	^d 480	^d 556		[1, 7]
	^c 460					[7]
				^d 283		n i
		^d 246	^d 247	^d 251		[1]
		^d 242	^d 243			i ni
		^d 235	^d 240			ni
		^d 233	^d 236			i ni
		° 232	° 233			i ni
		° 229	° 230	1		i ni
		° 225				
						[-]
Colloidal Cu	^a 574	° 568	° 575	575		[1, 8]
Gu	413					[8]

TABLE 1. Optical absorption bands (in nm) of copper centers in alkali halides

^bLiquid air/nitrogen temperature.

^cLiquid helium temperature.

^dTemperature between 4.2 and 77 K.

- [1] Kratzig, E., Timusk, T., and Martienssen, W., Phys. Stat. Sol. 10, 709 (1965).
- [2] Bohun, A., and Kaderka, M., Czech. J. Phys. B19, 1180 (1969).
 [3] Ueta, M., Ikezawa, M., and Nagasaka, S., J. Phys. Soc.
- Japan 20, 1724 (1965).
- [4] Fussgaenger, K., Phys. Stat. Sol. 34, 157 (1969).
- [5] Dultz, W., and Sittig, R., Proc. Int. Sym. Color Centers in Alkali Halides, Rome (1968) pp. 86.
- [6] Nagasaka, S., Ikezawa, M., and Ueta, M., J. Phys. Soc. Japan 20, 1540 (1965).
 [7] Bohun, A., Slaky, P., Dolejsi, J., and Kaderka, M., Proc. Int. Sym. Color Centers in Alkali Halides, Rome (1968) pp. 41.
- [8] Takeuchi, N., J. Phys. Soc. Japan 26, 872 (1969).

TABLE 2. Optical absorption bands (in nm) of silver centers in alkali halides

Center	NaCl	NaBr	KCl	KBr ·	KI	RbCl	RbBr	CsCl	CsBr	CsI	Assignment	References
Ag ²⁺			^b 800	^d 1137								[1, 2]
			^b 630									[1]
			^b 560	^d 539								[1, 2]
			^b 460									[1]
				^d 409								[2]
		^a 356	ь 338		^d 350							[1, 2]
Ag+	^d 225	^a 242	^a 244	^a 241	^d 276						Ag+ pairs	[3, 5]
			^d 230									[3, 5]
		^a 229										[4]

Center	NaCl	NaBr	KCl	KBr	KI	RbCl	RbBr	CsCl	CsBr	CsI	Assignment	References
		^a 222										[4]
	^d 214		^d 225	^d 238	^d 253	^d 223	^d 243					[3, 5]
	^d 210		^d 219	^d 233								[3, 5]
				^d 225								[3, 5]
	d 194		^d 209	^d 212	^d 244							[3, 5]
						^d 218	^d 222]				[5]
						^d 212	^d 218					[5]
	^d 188		^d 200									[3]
			^d 191			^d 198	^d 208					[3, 5]
	^b 163		ь 173	° 199	238							[5, 6, 7]
Ag^0	^a 385	^a 450	^a 425	^a 494	^a 494						Interstitial	[2, 4, 8]
											Ag atom.	
			° 420	° 445	° 470	° 410						[9]
			^b 197									[1]
Ag-			^b 435								(Ag [−]) ₂	[10]
			^b 403								$(Ag^{-})_{2}$	[10]
	^b 330		° 399	^d 413.8	^d 431					^d 446.5	${}^{1}\mathrm{A}_{1g} \rightarrow {}^{3}\mathrm{T}_{1u} (\mathrm{A})$	[11, 12, 13, 14]
			ь 390								$(Ag^{-})_{2}$	[10]
			ь 330								$(Ag^-)_2$	[10]
	^b 310		^d 381.5	^d 396	^d 415.8					^d 432.8	${}^{1}A_{1g} \rightarrow {}^{3}T_{2u}$	[11, 12, 14]
											or ${}^{3}\mathbf{E}_{u}(\mathbf{B})$	
	^b 275		° 285	^d 296.5	^d 311			^d 301.5	^d 308.5	^d 328.8	${}^{1}\mathrm{A}_{1g} \rightarrow {}^{1}\mathrm{T}_{1u} (\mathrm{C})$	[10, 14]
			^b 283								(Ag ⁻) ₂	[10]
			^ь 278								$(Ag^{-})^{2}$	[10]
			^b 267								(Ag ⁻) ₂	[10]
			^b 263								(Ag ⁻) ₂	[10]
			^b 228								(Ag ⁻) ₂	[10]

TABLE 2. Optical absorption bands (in nm) of silver centers in alkali halides - Continued

^b Liquid air/nitrogen temperature.

^c Liquid helium temperature.

Sol. 10, 709 (1965).

^d Temperature between 4.2 and 77 K.

References

Fujioka, Y., Japan J. Appl. Phys. 4, Suppl. 1, 631 (1965).

- [8] Maenhent-van der Vorst, W., and Dekeyser, W., Physica 23, 903 (1957).
- [9] Brown, F. C., Cavenett, B. C., and Hayes, W., Proc. Roy. Soc. A300, 78 (1967).

- [10] Yoshikawa, A., Tkezoe, H., Maruyama, I., and Onaka, R., J. Phys. Soc. Japan **32**, 472 (1972).
 [11] Topa, V., and Haragea, S., Phys. Stat. Sol. **16**, 137 (1966).
 [12] Kleemann, W., Z. Physik **215**, 113 (1968).
 [13] Kojima, K., Shimanuki, S., Maki, M., and Kojima, T., J. Phys. Soc. Japan **28**, 1227 (1970).
 [14] Kleamann, W. Z. Physik **214**, 262 (1070).
- [14] Kleemann, W., Z. Physik 214, 362 (1970).
- [3] Fussgaenger, K., Martienssen, W., and Bilz, H., Phys. Stat. Sol. 12, 383 (1965).

[1] Delbecq, C. J., Hayes, W., O'Brien, M. C. M., and Yuster,

[2] Kratzig, E., Timusk, T., and Martienssen, W., Phys. Stat.

- [4] Etzel, H. W., and Schulman, J. H., J. Chem. Phys. 22, 1549 (1954).
- [5] Fussgaenger, K., Phys. Stat. Sol. 34, 157 (1969).

P. H., Proc. Roy. Soc. A271, 243 (1963).

- [6] Kojima, K., Sokurai, S., and Kojima, T., J. Phys. Soc. Japan 24, 815 (1968).
- [7] Onaka, R., Fukuda, A., Inohara, K., Mabuchi, T., and

Center	NaCl	KCl	KBr	КІ	Assignmen	t	References
AuCl ₄		^a 320			$^{1}A_{1g} \rightarrow ^{1}A_{2u}$		[1]
		^a 226			${}^{1}A_{1g} \rightarrow {}^{1}E_{u}$		[1]
Au ⁰		^a 271					[1]
Au-	^d 294	^d 304	^d 311	^d 321.5	$^{1}A_{1g} \rightarrow {}^{3}T_{1u}$	(A)	[2]
	^d 272.5	^d 284	^d 293.3	^d 310.0	$^{1}A_{1g} \rightarrow {}^{3}T_{2u}$		[2]
					or ${}^{3}E_{u}$	(B)	
	^d 220.7	^d 228.3	^d 235.6	^d 245.5	$^{1}A_{1g} \rightarrow {}^{1}T_{1u}$	(C)	[2]
	^d 195.6	^d 202.5	^d 209.2	^d 219.0	(D ₁)		[2]
	^b 172	^d 175.5			(D ₂)]3]
Au Colloids		ª 555					[4]

TABLE 3. Optical absorption bands (in nm) of gold centers in alkali halides

^bLiquid air/nitrogen temperature.

^cLiquid helium temperature.

^dTemperature between 4.2 and 77 K.

References

- Takeuchi, N., Nishie, S., and Konishi, Y., Japan. J. Appl. Phys. 8, 814 (1969).
 Fischer, F., Z. Physik 231, 293 (1970).
- [3] Mabuchi T., Yoshikawa, A., and Onaka, R., J. Phys. Soc. Japan 28, 805 (1970).

[4] Jain, S. C., and Sehgal, H. K., J. Phys. Chem. Sol. 33, 1161 (1972).

TABLE 4. Optical absorption bands (in nm) ofmagnesium ions in alkali halides

Center	LiF	KCl	Assignment	References
Mg ²⁺	a 308	^a 320		[1]
	^b 216	ª 272		[1, 2, 3]

^aRoom temperature.

^bLiquid air/nitrogen temperature.

^cLiquid helium temperature.

^dTemperature between 4.2 and 77 K.

References

- [1] Sootha, G. D., and Singh, D., Phys. Rev. 183, 842 (1969).
- [2] Mort, J., Solid State Comm. 3, 263 (1965).
- [3] Mort, J., Phys. Letters 21, 124 (1966).

TABLE 5. Optical absorption bands (in nm) ofcalcium centers in alkali halides

Center	NaCl	KCl	KBr	Assignment	References
Ca ²⁺	^ь 469 ь 398	^ь 596 ^ь 588 ^ь 488	^b 697	Z ₂ Z ₁ Z ₃	[1] [2] [1]

^a Room temperature.

^b Liquid air/nitrogen temperature.

^c Liquid helium temperature.

^d Temperature between 4.2 and 77 K.

References

[1] Kojima, K., J. Phys. Soc. Japan 19, 868 (1964).

[2] Yurachkovskii, P. A., and Gorbenko, P. K., Opt. and Spec. **20**, 35 (1966).

Center	NaCl	NaBr	KCI	KBr	KI	RbCl	Assignment	References
Sr ²⁺	^b 514 ^b 565	יים 550 ^b 550	^b 834 ^b 635 ^b 595, 617	^b 713 ^b 658	 ^b 840 	 ^b 664	$egin{array}{c} Z_4 \ Z_2 \ Z_1 \end{array}$	[1] [2, 3] [2, 3, 4]
	^b 398		^b 494 ^b 450	^b 556 ^b 510 ^b 198			Z ₃ S	[2, 3] [5] [5]

 TABLE 6. Optical absorption bands (in nm) of strontium centers in alkali halides

^bLiquid air/nitrogen temperature.

[2] Kojima, K., J. Phys. Soc. Japan 19, 868 (1964).

^cLiquid helium temperature.

^dTemperature between 4.2 and 77 K.

References

- Ishiguro, M., and Takeuchi, N., J. Phys. Soc. Japan 15, 1871 (1960).
 - 5, 1871 [3] Hingsammer, J., and Jodl, H., Phys. Letters 25A, 131 (1967).
 - [4] Gehrer, G., and Langer, H., Phys. Letters **26A**, 232 (1968).
 - [5] Ohkura, H., Phys. Rev. 136, A446 (1964).

FABLE	7.	Optical	absorp	tion	bands	(in	nm)	of
	l	barium cei	nters in	alka	li halia	les		

Center	KCl	KBr	Assignment	References
Ba ²⁺	^ь 812 ^ь 636 ^ь 599	^b 845 ^b 713 	$egin{array}{c} Z_2 \ Z_2 \ Z_1 \end{array}$	[1] [1] [2]

^a Room temperature. ^b Liquid air/nitrogen temperature. ^c Liquid helium temperature.

^d Temperature between 4.2 and 77 K.

References

[1] Kojima, K., J. Phys. Soc. Japan 19, 868 (1964).

[2] Jain, S. C., and Radhakrishna, S., J. Sci. and Ind. Res. 26, 324 (1967).

Center	NaCl	KCl	KBr	KI	Assign- ment	Refer- ences
Zn ²⁺	^a 273 ^a 256 ^a 189	^a 272 ^a 200	^a 212 ^a 202	a245		[1, 2] [1, 3] [4]
Zn ¹⁺		^a 245	^a 275	^a 330		[2, 3, 4]
Zn ⁰		^a 350	a370	^a 440		[3, 5]

TABLE 8. Optical absorption bands (in nm) ofzinc centers in alkali halides

^aRoom temperature.

^bLiquid air/nitrogen temperature.

^cLiquid helium temperature.

^dTemperature between 4.2 and 77 K.

- Kuwabara, G., and Aoyagi, K., Japan. J. Appl. Phys. 4 Suppl. 1, 627 (1965).
- [2] Ben-Dor, L., Glasner, A., and Zolotov, S., Phys. Stat. Sol. 18, 593 (1966).
- [3] Ben-Dor, L., Glasner, A., and Zolotov, S., Solid State Chem. 4, 4 (1972).
- [4] Jain, S. C., and Radhakrishna. S., Phys. Rev. **172**, 972 (1968).
- [5] Radhakrishna, S., Nuov. Cimento 48, 169 (1971).

Center	NaCl	NaBr	KCl	KBr	KI	Assignment	References
Cd ²⁺			 a979	 a280	^b 292	$(Cd^{2+})_{2}$	[1]
	 			^a 250			[1, 2]
				^a 263 ^a 227		$(Cd^{2+})_2$ $(Cd^{2+})_2$	[1]
	a190		 ^a 190	^a 212 ^a 202	^b 235		[1, 2] [2, 3]
Cd1+	^a 310	^a 300	^a 310	°340–310	^a 355		[1, 4, 5]
				*300 *280		(Cd ⁺) ₂	[1] [1]
Cd⁰				°365	°510		[2, 5]
Cd Colloids	^a 270	°275	°275	°300	°310		[2,4]

TABLE 9. Optical absorption bands (in nm) of cadmium centers in alkali halides

^bLiquid air/nitrogen temperature.

^cLiquid helium temperature.

^dTemperature between 4.2 and 77 K.

References

- [1] Ben-Dor, L., Glasner, A., and Zolotov, S., J. Solid State Chem. 4, 4 (1972).
- [3] Ben-Dor, L., Glasner, A., and Zolotov, S., Phys. Stat. Sol. 18, 593 (1966).
 [4] Jain, S. C., Sootha, G. D., and Jain, R. K., J. Phys. C. 1, 1220
- [2] Jain, S. C., and Radhakrishna, S., Phys. Rev. 172, 972 (1968).
- (1968). [5] Radhakrishna, S., J. Phys. Soc. Japan **26**, 1204 (1969).

Center	KCl	KBr	KI	Assignment	References
Hg ²⁺	^a 265			(Hg ²⁺) ₂	[1]
	^a 245	^b 300	^a 347		[1,2]
		^b 275	^a 290		[1]
			^a 275		[1]
Hg ¹⁺	^a 410		^a 455		[1]
		^b 315		$({\rm Hg^{1+}})_2$	[1]
	^a 290	^b 260	^a 280		[1]
			^a 260		[1]
Hg°	^a 345		^a 425		[1]
Hg ²⁺ :OH ⁻	^a 195				[2]
HgO	^a 215				[2]

TABLE 10. Optical absorption bands (in nm) of mercury centers in alkali halides

^aRoom temperature.

^bLiquid air/nitrogen temperature.

^cLiquid helium temperature.

^dTemperature between 4.2 and 77 K.

References

 Ben-Dor, L., Glasner, A., and Zolotov, S., J. Solid State Chem. 2, 549 (1970).

[2] Allen, C. A., and Fredericks, W. J., Phys. Stat. Sol. 3a, 143 (1970).

Center	NaCl	KCl	KBr	KI	CsBr	CsI	Assignment	References
Ga ¹⁺				°307			$(Ga^{1+})_2$	[1]
				^b 287	^b 288	^b 310	$^{1}A_{1g} \rightarrow ^{3}T_{1u}(A)$	[1, 2, 3]
	^b 272	^b 261	^b 272				$^{1}A_{1g} \rightarrow ^{3}T_{1u}(A_{1})$	[1, 2]
	^b 265	^b 255	^b 265				$^{1}A_{1g} \rightarrow ^{3}T_{1u}(A_{2})$	[1, 2]
	^b 257	^b 247	^b 257		^b 269	^b 290	${}^{1}A_{1g} \rightarrow {}^{3}E_{u}$ or	[1, 2, 3]
							$^{3}T_{2u}(B)$	
	°241	°228	°245	°275			$(Ga^{1+})_2$	[1]
	^b 216				^b 229	^b 253	$^{1}A_{1g} \rightarrow ^{1}T_{1u}(C)$	[4,5]
		°218	°228	°254			$^{1}A_{1g} \rightarrow ^{1}T_{1u}(C_{1})$	[4]
		°214	°225	°251			$^{1}A_{1g} \rightarrow ^{1}T_{1u}(C_{2})$	[4]
		°210	°222	°247			$^{1}A_{1g} \rightarrow ^{1}T_{1u}(C_{3})$	[4]
	^b 158	^b 166	^b 188				(D')	[2]
Ga°-Ga°					^b 427	^b 400		[5]
Ga°-Ga1+						°517–563		[5]

TABLE 11. Optical absorption bands (in nm) of gallium centers in alkali halides.

^bLiquid air/nitrogen temperature.

^cLiquid helium temperature.

^dTemperature between 4.2 and 77 K.

References

[1] Fukuda, A., J. Phys. Soc. Japan 26, 1006 (1969).

- Mabuchi, T., Fukuda, A., and Onaka, R., Science of Light [2] 15, 79 (1966).
- [4] Fukuda, A., J. Phys. Soc. Japan 27, 96 (1969).
 [5] Osminin, V. S., and Zazubovich, S. G., Optics and Spectroscopy 29, 491 (1970).
- [3] Zazubovich, S. G., Phys. Stat. Sol. 38, 119 (1970).
 - TABLE 12. Optical absorption bands (in nm) of indium centers in alkali halides

Center	NaCl	KF	KCl	KBr	KI	RbCl	CsBr	Assignment	References
In ¹⁺					°330	•		(In ¹⁺) ₂	[1]
			^b 284		°312			$^{1}A_{1g} \rightarrow ^{3}T_{1u}(A)$	[2,3]
	^b 302	^a 284	^b 290	°297	a325		°284	$^{1}A_{1g} \rightarrow ^{3}T_{1u}(A_{1})$	[3, 4, 5, 7]
	^b 295	^a 265	^b 282	°293	^a 309		°281	$^{1}A_{1g} \rightarrow {}^{3}T_{1u}(A_{2})$	[3, 4, 5, 7]
	^b 276	^a 246	^b 265	°280	^a 291		°267	${}^{1}A_{1g} \rightarrow {}^{3}E_{u}$ or	[3, 4, 7]
								${}^{3}T_{2u}(B)$	
			°248	°266	°292			$(In^{1+})_2$	[1]
	°238	^a 213	^b 228	^b 243	°264			$^{1}A_{1g} \rightarrow ^{1}T_{1u}(C)$	[1, 3, 4, 6]
	°247		^b 234		^b 269	°231	°238	$^{1}A_{1g} \rightarrow ^{1}T_{1u}(C_{1})$	[6,7]
	°239		^b 229		^b 265	°227	°235	$^{1}A_{1g} \rightarrow ^{1}T_{1u}(C_{2})$	[6,7]
	°232		^b 225		^b 262	°224	°232	$^{1}A_{1g} \rightarrow ^{1}T_{1u}(C_{3})$	[6,7]
	^b 164	a 133	^b 167	^b 187	°230	^b 176	°220	(D)	[3, 4, 7, 8]

^aRoom temperature.

^bLiquid air/nitrogen temperature.

^cLiquid helium temperature.

^dTemperature between 4.2 and 77 K.

- [1] Fukuda, A., J. Phys. Soc. Japan 26, 1006 (1969).
- [2] Fukuda, A., Inohara, K., and Onaka, R., J. Phys. Soc. Japan 19, 1274 (1964).
- [3] Zazubovich, G., Liidya, G. G., Luschik, N. E., and Luschik, Ch. B., Bull. Acad. Sci. USSR Phys. Ser. 29, 380 (1965).
- [4] Fukuda, A., Science of Light 13, 64 (1964).

- [5] Fukuda, A., Makishima, S., Mabuchi, T., and Onaka, R., J. Phys. Chem. Solids 28, 1763 (1967).
- [6] Fukuda, A., J. Phys. Soc. Japan 27, 96 (1969).
 [7] Fukuda, A., and Makishima, S., Phys. Letters 24A, 267 (1967).
- [8] Inohara, K., Science of Light 14, 92 (1965).

Center	NaCl	KCl	KBr	Assignment	References
Ge ²⁺	^b 264 ^b 222 	^b 264 ^b 294 ^b 262 ^b 222 ^b 230 ^b 210	^b 274 ^b 226 	${}^{1}A_{1g} \rightarrow {}^{3}T_{1u}(A)$ ${}^{1}A_{1g} \rightarrow {}^{3}T_{1u}(A_{1})$ ${}^{1}A_{1g} \rightarrow {}^{3}T_{1u}(A_{2})$ ${}^{1}A_{1g} \rightarrow {}^{1}T_{1u}(C)$ ${}^{1}A_{1g} \rightarrow {}^{1}T_{1u}(C_{1})$	[1]. [2] [2] [1] [2]
		^b 219 ^b 212		$ \begin{array}{c} {}^{1}A_{1g} \rightarrow {}^{1}T_{1u}(C_{2}) \\ {}^{1}A_{1g} \rightarrow {}^{1}T_{1u}(C_{3}) \end{array} $	[2] [2]

TABLE 13. Optical absorption bands (in nm) of germanium centers in alkali halides

^b Liquid air/nitrogen temperature.

^c Liquid helium temperature.

^d Temperature between 4.2 and 77 K.

References

[1] Luschik, N. E., and Luschik, Ch. B., Optics and Spectroscopy 8, 441 (1960).

[2] Zazubovich, S. G., Luschik, N. E., and Luschik, Ch. B., Optics and Spectroscopy 15, 203 (1963).

Center	КСІ	KBr	KI	Assignment	References
Bi ³⁺	^b 324		^a 460	${}^{1}A_{1y} \rightarrow {}^{3}T_{1u}(A)$	[1, 2, 3]
		^b 369		$^{1}A_{1q} \rightarrow {}^{3}T_{1u}(A_{1})$	[3]
		^b 359		$^{1}A_{1g} \rightarrow {}^{3}T_{1u}(A_2)$	[3]
	^b 244			${}^{1}A_{1q} \rightarrow {}^{3}E_{u} \text{ or } {}^{3}T_{2u}(B)$	[3]
	^b 220		^a 255	$^{1}A_{1q} \rightarrow ^{1}T_{1u}(C)$	[1, 2]
	^b 212	^b 233		${}^{1}A_{1g} \rightarrow {}^{1}T_{1u}(C_1)$	[3]
	^b 207	^b 224		${}^{1}A_{1g} \rightarrow {}^{1}T_{1u}(C_2)$	[3]
	^b 201			$^{1}A_{1g} \rightarrow {}^{1}T_{1u}(C_{3})$	[3]
	^b 194	^b 211		D'	[3]
Bi ²⁺	^a 335				[4]
BiO+	^b 324			$^{1}A_{1q} \rightarrow {}^{3}T_{1u}(A)$	[3]
	^b 217			$^{1}A_{1q} \rightarrow {}^{1}T_{1u}(C_{1})$	[3]
	^b 207			${}^{1}A_{1g} \rightarrow {}^{1}T_{1u}(C_2)$	[3]

TABLE 14. Optical absorption bands (in nm) of bismuth centers in alkali halides

^a Room temperature.

^b Liquid air/nitrogen temperature.

^c Liquid helium temperature.

^d Temperature between 4.2 and 77K.

- [1] Zazubovich, S. G., Luschik, N. E., and Luschik, Ch. B., Optics and Spectroscopy 15, 203 (1963).
- [2] Jain, S. C., Agarwal, S. K., and Chandra, G., (To be published).
- [3] Siederdissen, J. Nonerzu, and Fischer, F., Phys. Stat. Sol. 48, 215 (1971).
 [4] Reisfeld, R., and Honigbaum, A., J. Chem. Phys. 48, 5565
- (1968).

Center	NaCl	NaBr	NaI	KCI	KBr	KI	RbCl	RbBr	RbI	CsCl	CsBr	CsI	Assignment	References
Tl1+			° 306			° 292							$(Tl^{1+})_2$	[1]
			° 303			° 289							$(Tl^{1+})_2$	[1]
												° 290		[2]
												° 276		[2]
												° 257		[2]
	^b 253	^b 268	^b 291	^b 245.8	^b 258	^b 281	^b 242	^b 258	° 280.5	^a 247	° 256		${}^{1}A_{1g} \rightarrow {}^{3}T_{1u}(A)$	[1, 2, 3, 4, 5, 6,
														7, 8, 9, 10]
												° 246		[2]
				^a 247.3									$^{1}A_{1g} \rightarrow {}^{3}T_{1u}(A_{1})$	[3, 4]
				° 246.4									$^{1}A_{1g} \rightarrow {}^{3}T_{1u}(A, A_2)$	[3]
				° 245.8									$^{1}A_{1g} \rightarrow {}^{3}T_{1u}(A_2)$	[3, 4]
				° 243.6									$^{1}A_{1g} \rightarrow {}^{3}T_{1u}(A_{3})$	[3, 4]
			263			^c 250							B'	
			* 260 d 257										B ₁	
			° 257										B_2	[11]
												° 238		[2]
			° 258			° 249							C	
	¹⁰ 214	" 228	" 250	0 208	" 221	0 243.1	° 205	" 220	" 243		° 242		${}^{1}\mathrm{A}_{1g} \rightarrow {}^{3}\mathrm{T}_{2u}$ or	[1, 2, 3, 4, 5, 7,
	h 100	h 010	hano		h 200	h 202	h 107	h 200	h 204		# 22F		$^{3}E_{u}(B)$	9, 11]
	" 199	"218	" 238	° 194	" 208	" 232	° 197	" 208	° 234	a 196	° 225		$^{1}A_{1g} \rightarrow ^{1}\Gamma_{1u}(\mathbb{C})$	[3, 4, 7, 8, 9,
				° 196.3		° 234							$^{1}A_{1u} \rightarrow {}^{1}T_{1u}(C_{1})$	[3, 4, 5]
				° 194.4		° 232.8							$^{1}A_{1a} \rightarrow {}^{1}T_{1a}(C_{2})$	[3, 4, 5]
				° 192.8		° 232							$^{1}A_{1a} \rightarrow {}^{1}T_{1u}(C_3)$	[3, 4, 5]
	^b 161	^b 188	^b 224	^b 169	^b 190	° 223.9	ь 174	^b 198	^b 226				D	[5, 7, 10]
Tlo				° 1470	° 1580	° 1695							$^{2}P_{1/2} \rightarrow ^{2}P_{3/2}$	[12]
				° 1300	° 1430	° 1550							${}^{2}\mathrm{P}_{1/2} \rightarrow {}^{2}\mathrm{P}_{3/2}$	[12]
				^b 640										[13]
				^b 380										[13]
				ь 300										[13]
				ь 250										[13]
$T^{1^{2+}}$				^b 364										[13]
				^b 294										[13]
				^b 262										[13]
				^b 220										[13]

TABLE 15. Optical absorption bands (in nm) of thallium centers in alkali halides

^b Liquid air/nitrogen temperature.

^c Liquid helium temperature.

^d Temperature between 4.2 and 77 K.

- [1] Fukuda, A., J. Phys. Soc. Japan 26, 1006 (1969).
- [2] Masunaga, S., Morita, I., and Ishiguro, M., J. Phys. Soc. Japan 21, 638 (1966).
- [3] Esser, P. D., and Levy, P. W., Int. Symp., Color Centers in Alkali Halides, Rome, 1968, pp. 87.
- [4] Stauber, M. C., and Lemos, A. M., Int. Symp. Color Centers in Alkali Halides, Rome, 1968, pp. 264.
- [5] Uchida, Y., and Tsuboi, T., J. Phys. Soc. Japan 24, 1075 (1968).
- [6] Masunaga, S., and Ishiguro, M., J. Phys. Soc. Japan 25, 1337 (1968).
- [7] Ramamurti, J., Bull. Am. Phys. Soc. 14, 357 (1969).
- [8] Ghosh, A. K., J. Chem. Phys. 43, 2978 (1965).
- [9] Fukuda, A., Science of Light 13, 64 (1964).
- [10] Inohara, K., Science of Light 14, 92 (1965).
- [11] Matsui E., J. Phys. Soc. Japan 22, 819 (1967).
- [12] Delbecq, C. J., Ghosh A. K., and Yuster, P. H., Phys. Rev. 154, 797 (1967).
- [13] Delbecq, C. J., Ghosh, A. K., and Yuster, P. H., Phys. Rev. 151, 599 (1966).

Center	NaCl	KCl	KBr	KI	RbCl	RbBr	RbI	Assignment	References
Sn ²⁺	^b 294	^b 288	^b 312					${}^{1}\mathrm{A}_{1g} \rightarrow {}^{3}\mathrm{T}_{1u}(\mathrm{A}_{1})$	[1]
	^b 285	^b 279	^b 305					${}^{1}\mathrm{A}_{1g} \rightarrow {}^{3}\mathrm{T}_{1u}(\mathrm{A}_{2})$	[1]
	^b 259	^b 250	^b 275					${}^{1}A_{1g} \rightarrow {}^{3}E_{u}$ or ${}^{3}T_{2u}(B)$	[1]
	^b 239	^b 237	^b 260	^b 300	^b 239	^b 264		${}^{1}\mathrm{A}_{1g} \rightarrow {}^{1}\mathrm{T}_{1u}(\mathrm{C}_{1})$	[1, 2]
							^b 292		[2]
	^b 233	^b 231	^b 254	^b 296	^b 233	^b 256		${}^{1}\mathrm{A}_{1g} \rightarrow {}^{1}\mathrm{T}_{1u}(\mathrm{C}_{2})$	[1, 2]
	^b 225	^b 224	^b 247	^b 287	^b 225	^b 248	^b 279	${}^{1}\mathrm{A}_{1g} \rightarrow {}^{1}\mathrm{T}_{1u}(\mathrm{C}_{3})$	[1, 2]
	^b 168	^b 173	^b 201	^b 236	^b 179	^b 200	^b 235	D'	[1, 2]
	^b 160	^b 165	^b 190	^b 222	^b 173	^b 194	^b 224	D	[1, 2]
Sn ⁻	^b 387	^b 420						Т	[3]
		^b 371						Т	[3]
	^b 294	^b 317						Т	[3]
	^b 265	^b 279						Т	[3]
	^b 236	^b 252						Т	[3]
	^b 223	^b 238						Т	[3]
	^b 207	^b 221						Т	[3]

TABLE 16. Optical absorption bands (in nm) of tin centers in alkali halides

^b Liquid air/nitrogen temperature.

^c Liquid helium temperature.

^d Temperature between 4.2 and 77 K.

References

Fukuda, A., Science of Light 13, 64 (1964).
 Inohara, K., Science of Light 14, 92 (1965).

[3] Velicescu, B., and Topa, V., Int. Conf. on Color Centers in Ionic Crystals, Reading U.K., 1971, Abs. No. D62.

Center	NaCl	NaI	KCl	KBr	KI	RbCl	RbBr	RbI	CsCl	CsBr	CsI	Assignment	References
Pb ²⁺							^a 363						[1]
				^b 324								$(Pb^{2+})_2(A)$	[2]
	^b 271		^b 270	^b 297	^b 353	ь 270	^b 302	^b 358	^a 278	^a 310	a 373	${}^{1}\mathrm{A}_{1g} \rightarrow {}^{3}\mathrm{T}_{1u}(\mathrm{A})$	[1, 2, 3, 4, 5, 6]
								^a 330					[1]
	^b 209		^b 211	^b 272	^b 308				ь 232	^b 251	^b 281	${}^{1}A_{1g} \rightarrow {}^{3}E_{u} \text{ or } {}^{3}T_{2u}(B)$	[2, 3, 4, 6]
							^a 274						¹ [1]
				^b 267	ь 297							$(Pb^{2+})_2(C')$	[2]
							^a 258						[1]
				^b 224	^b 262		^b 225	^b 275				${}^{1}\mathrm{A}_{1g} \rightarrow {}^{1}\mathrm{T}_{1u}(\mathrm{C})$	[2, 3, 5]
	^b 201		^b 201			^b 206			^b 204	^b 222	^b 260	${}^{1}\mathrm{A}_{1g} \rightarrow {}^{1}\mathrm{T}_{1u}(\mathrm{C}_{1})$	[3, 5, 6]
	^b 198		^b 198			^b 202			ь 200	^b 216	ь 253	${}^{1}\mathrm{A}_{1g} \rightarrow {}^{1}\mathrm{T}_{1u}(\mathrm{C}_{2})$	[3, 5, 6]
	^b 194		^b 195			^b 196			ь 196	^b 210	^b 244	${}^{1}\mathrm{A}_{1g} \rightarrow {}^{1}\mathrm{T}_{1u}(\mathrm{C}_{3})$	[3, 5, 6]
	^b 184		^b 188	^b 215	ь 253	^b 192	^b 217	^b 254				D'	[3, 5]
	^b 160		^b 165	ь 192	^b 228	^b 173	^b 194	^b 229			^b 215	D	[5, 6]
Pb^{1+}			^b 240	a 300	a 320				^b 258	^b 291	^b 347		[2, 4, 6]
Pb⁰			^b 604									$(Pb^{0})_{2}$	[2]
	a 285		^b 280										[2, 7]
			^b 230										[2]

TABLE 17. Optical absorption bands (in nm) of lead centers in alkali halides

Center	NaCl	NaI	KCl	KBr	KI	RbCl	RbBr	Rbl	CsCl	CsBr	CsI	Assignment	References
Pb Colloids	^a 270		^a 260	. a 255	^a 265								[2, 4]
Pb-	 ^b 447 ^b 418 ^b 360 ^b 332 ^b 308 ^b 284 ^b 260 ^b 239 ^b 220 	 ^b 564 ^b 490 ^b 438 ^b 396 ^b 365 ^b 299 	 ^b 497 ^b 444 ^b 388 ^b 359 ^b 323 ^b 296 ^b 280 ^b 257 ^b 226 ^b 205 	 ^b 541 ^b 460 ^b 418 ^b 383 ^b 342 ^b 294 ^b 274 ^b 238 ^b 221 	 ^b 608 ^b 502 ^b 429 ^b 427 ^b 387 ^b 306 ^b 301 ^b 263 ^b 240 							$\begin{array}{c} T_{1} \\ T_{2} \\ T_{3} \\ T_{4} \\ T_{5} \\ T_{6} \\ T_{7} \\ T_{8} \\ T_{9} \\ T_{10} \end{array}$	$\begin{bmatrix} 8, 9, 10 \\ [8, 9, 10] \\ [8, 9, 10] \\ [8, 9, 10] \\ [8, 9, 10] \\ [8, 9, 10] \\ [8, 9, 10] \\ [8, 9, 10] \\ [8, 9, 10] \\ [8, 9, 10] \\ [8, 9, 10] \\ [8, 9, 10] \\ [8, 9, 10] \end{bmatrix}$
Pb ³⁺			^b 465 ^b 303 ^b 216	 			 		 		 		[11] [11] [11]

TABLE 17. Optical absorption bands (in nm) of lead centers in alkali halides – Continued

^b Liquid air/nitrogen temperature.

^c Liquid helium temperature.

^d Temperature between 4.2 and 77 K.

References

- [1] Masunaga, S., and Ishiguro, M., J. Phys. Soc. Japan 25, 1337 (1968). Jain, S. C., Singh, Risal, and Agarwal, S. K., (to be published).
- [2]
- [3] Fukuda, A., Science of Light 13, 64 (1964).
 [4] Jain, S. C., Radhakrishna, S., and Sai, K. S. K., J. Phys. Soc. Japan 27, 1179 (1969). [5] Inohara, K., Science of Light 14, 92 (1965).
- [6] Pande, K. P., Ph.D. Thesis, I.I.T. Madras, India, 1972.
- [7] Ikeda, T., and Yoshida, S., J. Phys. Soc. Japan 22, 138 (1967).
- [8] Topa, V., and Velicescu, B., Phys. Stat. Sol. 33, K29 (1969).
- [9] Billardon, M., Briat, B., Topa, V., and Taurel, L., Proc. XVI Colloque. Symp. 'Magnetic Resonances and Related Phenomena' Bucharest, Romania (1970).
- [10] Velicescu, B., and Topa, V., Int. Conf. on Colour Centres in Ionic Crystals, Reading U.K., 1971, Abs. No. D62. [11] Schoemaker, D., and Kolopus, J. L., Solid State Comm. 8,
- 435 (1970).

IABLE	10.	Optical	aosorp	otion o	anas	(in	nm)	ој
	tite	anium cei	nters in	alkali	halic	les		

Center	LiF	Assignment	References
Ti	^a 270 ^a 250 ^a 240 ^a 207		[1] [1] [1] [1]

^a Room temperature.

^b Liquid air/nitrogen temperature.

^c Liquid helium temperature.

^d Temperature between 4.2 and 77 K.

References

[1] Jain, S. C., and Sootha, G. D., Phys. Stat. Sol. 22, 505 (1967).

Center	NaCl	Assignment ${}^{4}A_{2g} \rightarrow$	References
V2+	^b 1307	${}^{4}\mathrm{T}_{2}(t_{2}^{2})$	[1]
	^b 1242	$\frac{1}{4}T_2(t_2^2)$	[1]
	^b 1221	$\frac{1}{4}T_2(t_2^2)$	[1]
	^b 1215	$4T_2(t_2^2)$	[1]
	^b 1190	${}^{4}T_{2}(t_{2}^{2})$	
	^b 1169	${}^{4}T_{2}(t_{2}^{2})$	
	^b 806	4T1(a)	[1]
	^b 790	4T1(a)	[1]
	^b 781	4T1(a)	[1]
	^b 772	4T1(a)	[1]
	^b 762	4T1(a)	[1]
	^b 494	4T1(b)	[1]
	^b 236	Charge transfer	[1]
	^b 200	Charge transfer	[2]
V1+	^a 640		[3]

TABLE	19.	Optical	absorpt	ion b	ands	(in	nm	of
	van	adium ce	nters in	alkali	i hali	des		

^b Liquid air/nitrogen temperature. ^c Liquid helium temperature.

^d Temperature between 4.2 and 77 K.

References

- Kuwabara, G., Phys. Rev. 138, A99 (1965).
 Kuwabara G., and Aoyagi, K., Japan. J. Appl. Phys. 4, Suppl. 1,627 (1965).
 Sai K. S. K., Ph.D. Thesis, I.I.T. Delhi, India, 1971.

Center	NaCl	KCl	RbBr	Assignment ${}^{6}A_{1}(S) \rightarrow$	References
Mn ²⁺	^b 518	^b 521		⁴ T ₁ (G)	[1]
	^b 460.5	^b 443.5		${}^{4}T_{2}(G)$	[1]
	^b 425.3				[1]
	^b 421.6 ^b 417.5	} b 418		${}^{4}A_{1}(G), {}^{4}E(G)$	[1]
		^b 374			[1]
	^b 370.8	{ ^b 370.8 b 368.5		${}^{4}T_{2}(D)$	[1]
	^b 353	^b 354		4E(D)	[1]
	^b 326	^b 332.5		${}^{4}T_{1}(P)$	[1]
	^ь 274 ^ь 262	} a 272	{ ^a 300 ^a 271	Charge transfer	[2, 3]
	^b 255	a 260		${}^{4}A_{2}(F), {}^{4}T_{1}(F)$	[1]
		^a 245	a 255	Charge transfer	[2, 3]
	^b 245.5	^a 234		${}^{4}T_{2}(F)$	[1]
	^b 220				[3]
	^b 194	a 201	^a 230	Charge transfer	[2, 3]
Mn+	^b 278.5			$3d^{5}4s(^{7}S) \rightarrow 3d^{5}4p(^{7}P)$	[4]
		a 223			[5]
	-		-		

TABLE 21. Optical absorption bands (in nm) of manganese centers in alkali halides

TABLE	20.	Optical	absorp	tion	bands	(in	nm)	of	
	chra	omium ce	nters in	alka	ali hali	des	,	5	

Center	NaCl	KCl	Assignment	References
Cr ²⁺	 ^b 240	^ь 330 ^ь 240		[1] [1]

^a Room temperature.

^a Room temperature.
^b Liquid air/nitrogen temperature.
^c Liquid helium temperature.
^d Temperature between 4.2 and 77 K.

References

[1] Radhakrishna, S., and Sai, K. S. K., Phys. Stat. Sol. (b) 45, K153 (1971).

Center	NaCl	KCl	RbBr	Assignment ${}^{6}A_{1}(S) \rightarrow$	Reference
Mn° at the lattice site	° 422.8				[6]
	° 415-226.5				[6]
	° 226.5				[6]
Mn° at the off center position	° 453.0				[6]
	° 408.4				[6]
	° 355.9				[6]
	° 415-226.5				[6]
	° 232.4				[6]
	° 226.0				[6]
	° 216.7				[6]
In° at the interstitial site	° 519.0				[6]
	° 453.0				[6]
	° 389.3				[6]
	° 415-226.5				[6]
	° 232.4				[6]
	° 226.0				[6]
	° 216.7				[6]
In° Aggregates	^a 210.0	^a 210.0			[7]

TABLE 21. Optical absorption bands (in nm) of manganese centers in alkali halides – Continued

^b Liquid air/nitrogen temperature.

^c Liquid helium temperature.

 $^{\rm d}$ Temperature between 4.2 and 77 K.

References

- [1] Mehra, A., Phys. Stat. Sol. 29, 847 (1968).
- Mehra, A., Japan, J. Appl. Phys. 7, 963 (1968).
 Kuwabara, G., and Aoyagi, K., Japan, J. Appl. Phys. 4, Suppl. 1, 627 (1965).
- [4] Ikeya, M., and Itoh, N., (Private communication).

[5] Mehendru. P. C., and Mitra, V., Phys. Rev. 176, 1089 (1968).

- [6] Ikeya. M., and Itoh, N., J. Phys. Soc. Japan 29, 1295 (1970).
 [7] Sootha, G. D., and Mitra, V., Physica 46, 531 (1970).

TABLE 22. Optical absorption bands (in nm) of cobalt centers in alkali halides

Center	LiCl	NaF	NaCl	NaBr	KCI	KBr	RbCl	Assignment ${}^{4}A_{2} \rightarrow$	References
Co ²⁺ in tetrahedral symmetry			^b 1923		^a 2070			¹ T ₁ (F)	[1, 2]
			^b 1727		a 1770			${}^{4}T_{1}(F)$	[1, 2]
			^b 1493		^a 1531			${}^{4}T_{1}(F)$	[1.2]
				a 728		^b 724			[3, 4]
			2.2	a 702		^b 694			[3, 4]
			^b 695		^a 695			⁴ T ₁ (P)	[1, 2]
	1		^b 660		^a 667			${}^{4}T_{1}(P)$	[1, 2]
			^b 640		^a 630			${}^{4}T_{1}(P)$	[1, 2]
				^a 668		^b 670			[3]
				a 644		^b 640			[3, 4]
					^b 610	^b 625	^b 608		[4, 5]
					^b 599	^b 602	^b 580		[4, 5]
						^b 585			[4, 5]
					^b 578	^b 575			[4, 5]
					^b 552	^b 562	^b 568		[4, 5]

Center	LiCl	NaF	NaCl	NaBr	KCl	KBr	RbCl	Assignment ${}^{4}A_{2} \rightarrow$	References
					^b 549	^b 552	^b 552		[4, 5]
					^b 544	^b 540	^b 542		[4, 5]
					ь 535	^b 535	^b 535		[4, 5]
					^a 529			$d^2 T_1$	[1]
					^b 526		^b 526		[4, 5]
					^b 518		^b 517		[4, 5]
					^b 515				[4, 5]
					▷ 505		^b 508		[4,5]
						° 483		$b^2 T_2$	
						⁰ 469			
					0 457	⁰ 462	0 453		[4, 5]
						0 454	° 450		[4.5]
					⁰ 450			$b^2 1_1$	
					• 444	b 431	b 444		[4.5]
						* 423	b 407		[4, 5]
					2071		\$407		[5]
					~ 271 a 944				[0]
					a 995				[0]
					- 200 a 920				[0]
Co^{2+} in octahedral symmetry		b 1412			230				[1]
co in octaneurar symmetry		b 1337							[7]
		^b 1312							[7]
		^b 1280							[7]
		^b 967							[7]
	^b 615	^b 610							[4, 7]
	^b 591								[4]
	^b 581								[4]
	^b 575								[4]
	^b 562				^b 562				[4.8]
	^b 550				^b 551				[4.8]
	^b 543								[4]
	^b 538								[4]
	^b 535		^b 533		^b 533				[4.8]
	ь 523		^b 526		^b 525				[4.8]
	^b 518								[4]
	^b 515	^b 515	^b 507	1	^b 516				[4. 7. 8]
		^b 500	^b 502		^b 502				[7, 8]
		^b 465	^b 495						[7.8]
			" 240 h 212						[9]
			⁵ 212						[9]
			" 193						[9]
Co+			^a 210		^a 212				[10. 11]

TABLE 22. Optical absorption bands (in nm) of cobalt centers in alkali halides - Continued

^a Room temperature.

^b Liquid air/nitrogen temperature.

^c Liquid helium temperature.

^d Temperature between 4.2 and 77 K.

- [1] Washimiya, S., J. Phys. Soc. Japan 18, 1719 (1963).
 [2] Reynolds, M. L., Hagston, W. E., and Garlick, G. F. J., Phys. Stat. Sol. 30, 97 (1968).
 [3] Hills, M. E., J. Phys. Soc. Japan 19, 760 (1964).
 [4] Musa, M., Phys. Stat. Sol. 16, 771 (1966).
 [5] Musa, M., Phys. Stat. Sol. 9, K175 (1965).
 [6] Mehra, A., Japan J. Appl. Phys. 6, 1030 (1967).

- [7] Srivastava, J. P., J. Chem. Phys. 48, 5283 (1968).
 [8] Bohun, A., and Trutia, A., Phys. Stat. Sol. 9, K131 (1965).
 [9] Cappelletti, R., Fieschi, R., Martegani, G., and Pirola, L., J. de Phys. 28, Suppl. C4-130 (1967).
- [10] Jain, S. C., and Lal. K. Crystal Lattice Defects 1, 165 (1970).
 [11] Jain, S. C., Agarwal, S. K., and Chandra, G. (To be published).

Center	LiF	LiCl	NaCl	NaBr	KCl	RbCl	Assignment ${}^{3}A_{2g} \rightarrow$	References
Ni ²⁺	°1233		a1850	}			$\left\{ \begin{array}{c} {}^{3}E_{g} \\ {}^{3}D \end{array} \right\} {}^{3}T_{2}{}_{\prime\prime}(F)$	[1, 2]
			a1250				$^{\circ}B_{2g}$ $\int ^{-2g} (2)$	
	a729		°935				$\left. \begin{array}{c} {}^{3}A_{2g} \\ {}^{3}E_{g} \end{array} \right\} {}^{3}T_{1g}(F)$	[1,2]
	^a 649		^a 792 ^a 771	}			$\begin{bmatrix} {}^{1}A_{1g} \\ {}^{1}B_{1g} \end{bmatrix} {}^{1}E_{g}(D)$	[1, 2]
			°666					[1]
	^a 454 ^a 405		*545 *490				$^{1}T_{2g}(D)$ $^{3}A_{2g}$	[1, 2]
			^a 476 ^a 254	}	 ª266		${}^{3}E_{g}$ $\int {}^{3}\Gamma_{1g}(P)$	[1, 2]
			^a 246			°265	$3t_2 \rightarrow e_g({}^3\mathrm{T}_{2u})$	[1]
		^a 254 ^a 207	^a 242 ^a 216	^a 321 ^a 280	^a 251 ^a 220		$G(T_{2u}^{**}) \rightarrow e_g^*$	[3]
		^a 182	^a 194	²240	° 196	^a 209	$\begin{cases} 3t_{1u} \rightarrow 3e_g({}^3\mathrm{T}_{2u}) \\ e_g^* \rightarrow a_{1u}^* \text{ or } t_{1u}^* \end{cases}$	[1, 3]
Ni+			350		370			[4]
			310 279		340 2 88			[4] [4]

TABLE 23. Optical absorption bands (in nm) of nickel centers in alkali halides

^bLiquid air/nitrogen temperature.

^cLiquid helium temperature.

^dTemperature between 4.2 and 77 K.

References

- Polak, K., Z. Physik 223, 338 (1969).
 Berge, P., Dubois, M., Blanc, G., and Adam-Benveniste, M., J. De Physique 26, 339 (1965).
- [3] Nasu, T., and Asano, Y., J. Phys. Soc. Japan 27, 264 (1969). [4] Kats, M. L., and Semenov, B. Z., Optics and Spectroscopy 4,637 (1958).

TABLE	24.	Optical	absorption	bands (in	nm)	of
	rhe	odium cei	nters in alka	ali halides		

Center	nter NaCl Assignment		References
Rh ³⁺	^a 680	${}^{1}A_{1g} \rightarrow {}^{3}T_{1g} \text{ or } {}^{3}T_{2g}$	[1]
	a515	${}^{1}A_{1g} \rightarrow {}^{1}T_{1g}$	[1]
	^a 412	${}^{1}A_{1g} \rightarrow {}^{1}T_{2g}$	[1]
	°250	Charge transfer	[1]
	^a 210		[1]

^aRoom temperature.

^bLiquid air/nitrogen temperature.

^cLiquid helium temperature.

^dTemperature between 4.2 and 77 K.

Reference

[1] Jain, S. C., Agarwal, S. K., and Sootha, G. D., Phys. Stat. Sol. 40b, K69 (1970).

TABLE 25. Optical absorption bands (in nm) of palladium centers in alkali halides

Center	NaCl	KCl	Assignment	References
Pd ²⁺	ª272	[▶] 272	Charge transfer	[1,2]
Pd1+	ª220		Charge transfer	[1]
Pd Colloids		ª222		[2]

^aRoom temperature.

^bLiquid air/nitrogen temperature.

^cLiquid helium temperature.

^dTemperature between 4.2 and 77 K.

References

[1] Agarwal, S. K., Ph.D. Thesis, I.I.T. Delhi, India. (1970).
 [2] Jain, S. C., Agarwal, S. K., Sootha, G. D., and Chander, Ramesh, J. Phys. C. 3, 1343 (1970).

Center	NaCl	KCl	KBr	KI	Assignment	References
Eu ²⁺		^d 410.8			$4f^7 \rightarrow 4f^65d$	[1]
		^d 407.5			$4f^7 \rightarrow 4f^65d$	[1]
		^d 404.1			$4f^7 \rightarrow 4f^65d$	[1]
		^d 400.8			$4f^7 \rightarrow 4f^65d$	[1]
		^d 397.5			$4f^7 \rightarrow 4f^65d$	[1]
		^d 394.2			$4f^7 \rightarrow 4f^65d$	[1]
		^d 391			$4f^7 \rightarrow 4f^65d$	[1]
		^d 388.5			$4f^7 \rightarrow 4f^65d$	[1]
		^d 386.4			$4f^7 \rightarrow 4f^65d$	[1]
		^d 383.5			$4f^7 \rightarrow 4f^65d$	[1]
		^d 380.6			$4f^7 \rightarrow 4f^65d$	[1]
		^d 376.8		^b 375	$4f^7 \rightarrow 4f^65d$	[1.2]
		^d 364	^b 367	^b 365	$4f^7 \rightarrow 4f^65d$	[1, 2]
	^b 343	^b 343	^b 344.8	^b 345	$4f^7 \rightarrow 4f^65d$	[2, 3]
		^b 328.9	^b 330	^b 330	$4f^7 \rightarrow 4f^65d$	[2, 3]
				^b 275	$4f^7 \rightarrow 4f^65d$	[2]
		^b 270.6		^b 270	$4f^7 \rightarrow 4f^65d$	[2, 3]
				^b 260	$4f^7 \rightarrow 4f^65d$	[2]
	^b 249.2	^b 249.2	^b 254.3	^b 255	$4f^7 \rightarrow 4f^65d$	[2, 3]
		^b 246.5	^b 248.7		$4f^7 \rightarrow 4f^65d$	[3]
		^b 240	^b 243.1		$4f^7 \rightarrow 4f^65d$	[3, 4]
		^b 234		^b 235	$4f^7 \rightarrow 4f^65d$	[4]
Cu +	^a 570					[5]
	^b 400					[6]
	^a 312					[5]
	^a 272					[5]

TABLE 26. Optical absorption bands (in nm) of europium centers in alkali halides

^bLiquid air/nitrogen temperature.

^cLiquid helium temperature.

^dTemperature between 4.2 and 77 K.

- Bron, W. E., and Wagner, M., Phys. Rev. 145, 689 (1966).
 Verenko, G. D., et al., Optics and Spectroscopy 28, 36 (1970).
 Reisfeld, R., and Glasner, A., J. Opt. Soc. Amer. 54, 331 (1974). (1964).
- [4] Chowdri, B. V. R., and Itoh, N., Phys. Stat. Sol. 46, 549 (1971).
- [5] Parfianovich, I. A., et al., Bull. Acad. Sci. USSR: Phys. Series 30, 1479 (1966).
 [6] Gorobets, B. S., et al., Sov. Phys. Dokl. 13, 519 (1968).

$T_{1} = -07$	0	1 1 .•	7 7	/• `	`	c •		•	11 14	1	1 • 1
I ABLE Z (Untical	absorption	hands	lin nm	1 01	t samarum	centers	n a	kalı	hal	Ides
TIDDD	oprocat	abborphon	ounus	(010 10110)	, ,	Santartant	centers	un ai	nuur	nuu	reaco

Center	NaCl	NaI	KCl	KBr	KI	RbCl	Assignment	References
Sm^{2+}	^d 627.2	° 662.3	° 613	° 614	^d 629	^d 605	$4f^6 \rightarrow 4f^55d$	[1, 2, 3]
		° 584.8	^d 569.8				$4f^6 \rightarrow 4f^{5}5d$	[1, 2]
		° 542.3	° 541.8	° 544.9			$4f^6 \rightarrow 4f^{5}5d$	[1. 2. 3]
			° 504.6	° 504			$4f^6 \rightarrow 4f^{5}5d$	[1, 2, 3]
		° 458.5					$4f^6 \rightarrow 4f^{5}5d$	[2]
		° 432	° 431.5	° 432.9			$4f^6 \rightarrow 4f^55d$	[1, 2, 3]
			^c 408	^c 408			$4f^6 \rightarrow 4f^55d$	[1, 2, 3]
		° 382	^d 387.4				$4f^6 \rightarrow 4f^55d$	[1, 2]
		° 371					$4f^6 \rightarrow 4f^{5}5d$	[2]
			° 337.7	° 358			$4f^6 \rightarrow 4f^55d$	[1, 2, 3]
			° 327.5	° 344.9			$4f^6 \rightarrow 4f^{5}5d$	[1, 2, 3]
			^d 275.5				$4f^6 \rightarrow 4f^{5}5d$	[1, 3]
			^d 268.4				$4f^6 \rightarrow 4f^55d$	[1, 3]

Center	NaCl	NaI	KCl	KBr	KI	RbCl	Assignment	References
			^d 261.4				$4f^6 \rightarrow 4f^{5}5d$	[1, 3]
			^d 249				$4f^6 \rightarrow 4f^55d$	[1.3]
			^d 241				$4f^6 \rightarrow 4f^55d$	[1, 3]
			^d 225.5				$4f^6 \rightarrow 4f^55d$	[1.3]
			^d 187.3				$4f^6 \rightarrow 4f^56s^1$	[3]
			^d 173				$4f^6 \rightarrow 4f^56s^1$	[3]
Sm^+			^b 1250				${}^{6}\mathrm{H}_{5/2}$	[4]
			^b 1120				${}^{6}\mathrm{H}_{7/2}$	[4]
			^b 961.6				⁶ H _{9/2}	[4]
			^b 861.1				⁶ H _{11/2}	[4]
			^b 799.2				${}^{6}\mathrm{H}_{13/2}$	[4]

TABLE 27. Optical absorption bands (in nm) of samarium centers in alkali halides-Continued

^c Liquid helium temperature.

^b Liquid air/nitrogen temperature.

^d Temperature between 4.2 and 77 K.

References

 Bron. W. E., and Heller. W. R., Phys. Rev. **136A**, 1433 (1964).
 Kaplyanskii. A. A., et al.. Optics and Spectroscopy **16**, 144 (1964).

[3] Patscheke, E., Z. Physik 186, 63 (1965).
[4] Fong, F. K., et al., Phys. Rev. 151, 299 (1966).

Table 28.	Optical absorption bands (in nm) of holmium centers
	in alkali halides

Center	KCl	KBr	Assignment	References
Ho ²⁺	^b 310 ^b 269 ^b 245 ^b 234	^b 299 ^b 260 ^b 225 ^b 216	$\begin{array}{c} 4f^{11} \rightarrow 4f^{10}5d \\ 4f^{11} \rightarrow 4f^{10}5d \\ 4f^{11} \rightarrow 4f^{10}5d \\ 4f^{11} \rightarrow 4f^{10}5d \\ 4f^{11} \rightarrow 4f^{10}5d \end{array}$	[1] [1] [1] [1]
Ho+		^a 375 ^a 282 ^a 252		[1] [1] [1]
Ho ⁰		^a 220	Clusters of Ho ⁰	[1]

^aRoom temperature. ^bLiquid air/nitrogen temperature.

^a Liquid helium temperature. ^d Temperature between 4.2 and 77 K.

Reference

[1] Sai, K. S. K., Ph.D. Thesis. I.I.T. Delhi, India (1971).

TABLE 29. Optical absorption bands (in nm) of ytterbium centers in alkali halides

Center	NaCl	KCl	KBr	Assignment	References
Yb ²⁺			d 377.3		[1]
			^d 337		[1]
-		ь 310	ь 300		[2]
	ь 270	ь 270			[2]
		^b 245			[2]
		^b 230	^b 225		[2]
Yb ³⁺	ь 270	ь 270			[3]

^a Room temperature. ^c Liquid helium temperature. ^b Liquid air/nitrogen temperature.

^d Temperature between 4.2 and 77 K.

References

[1] Wagner. M., and Bron. W. E., Phys. Rev. 139, 223 (1965). [2] Dolgopolova. A. V., et al., Optics and Spectroscopy 17, 73 (1964).

[3] Sootha. G. D., Tripathi. T. C., and Agarwal. S. K., Phys. Stat. Sol. 44b, K61 (1971).

TABLE 30. Optical absorption bands (in nm) of uranyl centers in alkali halides

Center	LiF NaCl		KC1	Assignment	References		
UO_2^{2+}	^ь 290 ^ь 240	^b 260	^ь 270 ^ь 234		[1. 2] [1]		

^a Room temperature. ^c Liquid helium temperature. ^b Liquid air/nitrogen temperature.

^d Temperature between 4.2 and 77 K.

References

[1] Sootha. G. D., Radharkrishna. S., and Agarwal. S. K., Nuovo Cimento 64B, 19 (1969).

[2] Agarwal. S. K., Ph.D. Thesis, I.I.T. Delhi, India, 1970.

TABLE 31.	Optical al	bsorption	bands (in nm)	of	hydrogen	centers i	n al	kali	hal	ides
-----------	------------	-----------	---------	--------	----	----------	-----------	------	------	-----	------

Center	NaF	NaCl	NaBr	NaI	KCl	KBr	KI	RbCl	RbBr	RbI	CsBr	CsI	Assign- ment	Refer- ences
U(H-)	^a 157	192	210		^d 211.5	^d 225	244	^d 226	242		^d 242.5	^d 269		[1. 2. 3. 4.5]
U(D -)					^d 210.8	^d 224		^d 225.3				^d 268.5		[3.5]
U ₂		^d 220	^d 259	^d 328	^d 235	^d 272	^d 337	^d 247	^d 280.5	^d 345				[6]
U_2'			^d 242.5	^d 300		^d 257	^d 315		^d 267	^d 325				[6]
U_2''			^d 217	^d 255.5		^d 240.5	^d 266.5		^d 251.5	^d 272.5				[6]

^aRoom temperature.

^cLiquid helium temperature.

^bLiquid air/nitrogen temperature.

^dTemperature between 4.2 and 77 K.

- [1] Meistrisch. M. L., J. Phys. Chem. Solids 29, 1119 (1968).
- Schulman, J. H. and Compton. W. D. Color Centers in Solids. Pergamon Press. N.Y. (1962).
 Baldini, G., Mulazzi, E., and Terzi, N., Phys. Rev. 140,
- A2094 (1965).
- Mitra. S. S., and Brada. Y., Phys. Rev. 145, 626 (1966).
- [6] Tanton, G. A., Shatas, R. A., Singh, R. S., and Mitra, S. S., J. Chem. Phys. 52, 538 (1970).
- [6] Fischer. F., Z. Physik 204, 351 (1967).

TABLE 32. Optical absorption bands (in nm) of
halogen centers in alkali halides

Center	NaBr	KCI	KBr	Assignment	References
I-	^b 193.5	^b 184.7	^b 193.8		[1, 2]

^aRoom temperature. ^c Liquid helium temperature. ^b Liquid air/nitrogen temperature. ^d Temperature between 4.2 and 77 K.

References

[1] B. W. Fowler, "Physics of Colar Centers," Ed B. W. Fowler, Academic Press (1968), pp 53-179. [2] Rolfe, J., Appl. Phys. Letters 6,66 (1965).

Table 33.	Optical	absorp	otion b	bands ((in nm)	of
oxy	gen cent	ers in a	ılkali	halide	\$	

Center	NaF	NaCl	KCI	KBr	Assignment	References
02	 142	^b 248	^b 248 194	^b 248		[1] [2, 3]

^a Room temperature.

^c Liquid helium temperature.

^bLiquid air/nitrogen temperature. ^d Temperature between 4.2 and 77 K.

References

- Rolfe, J., Lipsett, F. R., and King, W. J., Phys. Rev. 123, 447 (1961).
- [2] Meistrisch, M. L., J. Phys. Chem. Solids 29, 1119 (1968).
 [3] Fischer, F., Grundig, H., and Hilsch, R., Z. Phys. 189, 79 (1966).

TABLE 34. Optical absorption bands (in nm) ofsulphur centers in alkali halides

Center	KCI	KBr	Assignment	References
SH-	^ь 185.1	^b 193.6		[1, 2, 3]
S-	^b 192.4	^b 203.5		[1, 2, 3]
S	^b 393.5			[2]

^a Room temperature.

^b Liquid air/nitrogen temperature.

^c Liquid helium temperature.

^d Temperature between 4.2 and 77 K.

References

[1] Fischer, F., and Grundig, H., Phys. Letters 13, 113 (1964).

[2] Fischer, F., and Grundig, H., Z. Physik 184, 299 (1965).

[3] Rolfe, J., Appl. Phys. Letters 6, 66 (1965).

TABLE 35. Optical absorption bands (in nm) ofselenium centers in alkali halides

Center	KCl	KBr	Assignment	References
SeH ⁻	^d 202.4 ^d 193.6	^d 211.4 ^d 202.3		[1] [1]
Se ⁻	^d 208.6 ^d 201.6	^d 219.0 ^d 212.6		[1] [1]
Se	^d 395 ^d 364	^d 406.5 ^d 374		[1] [1]

^a Room temperature.

^b Liquid air/nitrogen temperature.

^c Liquid helium temperature.

^d Temperature between 4.2 and 77 K.

Reference

[1] Fischer, F., Z. Physik 187, 262 (1965).

22

TABLE 36. Optical absorption bands (in nm) of OH/OD centers in alkali halides

Center	NaF	NaCl	KCl	KBr	Assignment	References
OH- OD-	151.2	^b 185	° 205 ^d 203	^b 214		[1, 2, 3, 4] [4]

^c Liquid helium temperature.

^b Liquid air/nitrogen temperature. ^d Temperature between 4.2 and 77 K.

References

 Meistrisch, M. L., J. Phys. Chem. Solids 29, 1119 (1968).
 Etzel, H. W., and Patterson, D. A., Phys. Rev. 112, 1112 (1958). [3] Sittig. R., Phys. Stat. Sol. 21, K175 (1967).
[4] Fischer, F., Sol. Stat. Comm. 2, 51 (1964).

TABLE 37. Optical absorption bands (in nm) of amide centers in alkali halides

Center	KCl	KBr	KI	Assignment	References
NH₂	^d 253.9	^d 272.2	^d 295.0	0-0	[1]
ND₂	^d 251.8	^d 268.5	^d 294.0	0-0	[1]

^a Room temperature

^c Liquid helium temperature.

^b Liquid air/nitrogen temperature. ^d Temperature between 4.2 and 77 K.

References

[1] Windheim, R., and Fischer, F., Z. Physik 197, 309 (1966).

 TABLE 38.
 Optical absorption bands (in nm) of nitrite centers in alkali halides

Center	NaBr	KCl	KBr	KI	Assignment	References
NO ₂ -	* ° 397.2	* ° 398.8	* ^c 401.1	* ^c 401.1	Zero-phonon transition	[1, 2]

*This band shows vibrational progression with separations $(\sim 1010 \text{ cm}^{-1} \text{ and } 600 \text{ cm}^{-1})$.

^a Room temperature.

^b Liquid air/nitrogen temperature.

^c Liquid helium temperature.

^d Temperature between 4.2 and 77 K.

References

[1] Timusk, T., and Staude, W., Phys. Rev. Letters 13, 373 (1964). [2] Avarmaa, R., and Rebane, L., Phys. Stat. Sol. 35, 107 (1969).

TABLE 39. Optical absorption bands (in nm) of chromate centers in alkali halides

Center	KCl	KBr	KI	Assignment	References
CrO ₄ ^{2–}	* ^b 335 ^b 270 ^b 240	* ^b 355 ^b 285 ^b 270 ^b 246	* ^b 365 ^b 270 	$t_1 \rightarrow e$ $$ $t_1 \rightarrow t_2$ $$	$[1, 2] \\ [1, 2] \\ [1, 2] \\ [1, 2] \\ [1, 2]$

*This absorption band shows a vibrational progression with a separation of 800 cm⁻¹. The peak position reported here corresponds to the strongest peak in the progression.

^a Room temperature.

^b Liquid air/nitrogen temperature.

^c Liquid helium temperature.

^d Temperature between 4.2 and 77 K.

References

[1] Jain, S. C., Warrier, A. V. R., and Agarwal, S. K., Chem. Phys. Letters 14, 211 (1972). [2] Jain, S. C., Warrier, A. V. R., and Agarwal, S. K., J. Phys. Chem. Solids 34, 209 (1973).

Center	KBr	KI	Assignment	References
MnO ₄ ¹⁻	* ° 600	* ° 650	$t_1 \rightarrow e$	[1. 2]
1	* ° 520	* ° 540	$t_1 \rightarrow e$	[1.2]
	° 390		$t_2 \rightarrow e$	[1]
	° 336		$t_2 \rightarrow e$	[1]
	° 305			[1]
	° 230		$t_1 \rightarrow t_2$	[1]
	° 200			[1]

TABLE 40. Optical absorption bands (in nm) of
permanganate centers in alkali halides

*These bands show vibrational progression with separations of 760 cm⁻¹ and 780 cm⁻¹. The peak position corresponds to the strongest peak in the progression.

^a Room temperature.

^b Liquid air/nitrogen temperature.

^c Liquid helium temperature.

^d Temperature between 4.2 and 77 K.

References

 Jain, S. C., Pooley, D., and Singh, Risal, J. Phys. C. 5, L307 (1972). [2] Jain. S. C., Singh. Risal. and Agarwal S. K., (to be published).

TABLE 41. Optical absorption bands (in nm) of manganate centersin alkali halides

Center	KCl	KBr	KI	Assignment	References
MnO ₄ ^{2–}	^b 850 * ^b 600 ^b 430 ^b 340 ^b 290	^b 850 * ^b 600 ^h 430 ^b 340 ^b 290	^b 850 ^{" b} 600 ^b 430 ^b 340 ^b 290	$e \rightarrow t_2$ $t_1 \rightarrow e$ $t_1 \rightarrow t_2$ $t_1 \rightarrow t_2$ $t_1 \rightarrow t_2$	[1] [1, 2] [2] [2] [2]

*This band shows vibrational progression with a separation of 740 cm⁻¹. The peak position given here corresponds to the strongest peak in the progression.

^a Room temperature.

^b Liquid air/nitrogen temperature.

^c Liquid helium temperature.

^d Temperature between 4.2 and 77 K.

References

[1] Jain. S. C., Singh, Risal, and Agarwal, S. K., (to be published).

[2] Jain. S. C., Sootha, G. D., and Agarwal, S. K., J. Phys. Chem. Solids 32, 897 (1971).

Center	NaCl	KCl	Assignment $t_{2g}^5({}^2\mathrm{T}_{2g}) \rightarrow$	References
Fe(CN) ₆ ³⁻	^a 505	^a 500	$t_{2g}^4 e_g^1 ({}^4\mathrm{T}_{1g})$	[1]
	^a 420	^a 414	$t_{1u}^5 t_{2q}^6 ({}^2 T_{1u})$	[1]
	^a 376	a 377	$t_{2g}^5 a_{1g}^1 ({}^2A_{1g})$	[1]
	^a 357	^a 348	$t_{2g}^4 e_g^1 ({}^4\mathrm{T}_{2g})$	[1]
	^a 338	a 323	$t_{2g}^4 e_g^1 ({}^2A_{2g}, {}^2T_{1g})$	[1]
	^a 302	^a 296	$t_{1u}^5 t_{2g}^5 e_g^1$	[1]
	^a 262	^a 274	$t_{2g}^4 e_g^1 ({}^2\mathbf{E}_g)$	[1]
		^a 258	$t_{1u}^5 t_{2q}^5 e_q^1$	[1]
		^a 248	$t_{1u}^5 t_{2g}^5 e_g^1$	[1]
		^a 200	$t_{1u}^5 t_{2g}^5 e_g^1$	[1]

 TABLE 42. Optical absorption bands (in nm) of ferricyanide centers in alkali halides

^b Liquid air/nitrogen temperature. ^c Liquid helium temperature.

^d Temperature between 4.2 and 77 K.

References

Jain. S. C., Warrier, A. V. R., and Sehgal, H. K., J. Phys. C. 6, 193 (1973).

Center	NaCl	KCl	Assignment $t_{2g}^{6}({}^{1}A_{1g}) \rightarrow$	References
Co(CN)§-	^a 484 ^a 409 ^a 361 ^a 316 ^a 280 ^a 260	^a 480 ^a 400 ^a 353 ^a 310 ^a 277 ^a 258	$\left. \begin{array}{c} t \frac{5}{2}g e_{g}^{1} ({}^{3}T_{1g}) \\ t \frac{5}{2}g e_{g}^{1} ({}^{3}T_{2g}) \\ t \frac{5}{2}g e_{g}^{1} ({}^{1}T_{1g}) \\ t \frac{5}{2}g e_{g}^{1} ({}^{1}T_{1g}) \\ \end{array} \right\}$	[1] [1] [1] [1]
		^a 201	t_{1u}	[1]

TABLE 43. Optical absorption bands (in nm) of cobalticyanide centers in alkali halides.

^aRoom temperature. ^bLiquid air/nitrogen temperature. ^cLiquid helium temperature.

^dTemperature between 4.2 and 77 K.

Reference

[1] Jain. S. C., Warrier, A. V. R., and Sehgal. H. K., J. Phys. C. 5, 1511 (1972).

PART II.

Vibrational Frequencies of Internal Modes of Complex Ions Doped in Alkali Halide Crystals

an a made a

No. of atoms	Point group symmetry	Modes and their symmetry and activity in infrared and Raman ^a	Molecular impurities investigated
2	D _{xh}	$\nu_s \; (\Sigma_g^+; \mathrm{R})$	$N_{2}^{-}, O_{2}^{-}, S_{2}^{-}, Se_{2}^{-}$
2	C _{xv}	ν_s (Σ^+ ; IR, R)	OH-, OD-, CN-, SH-, SeH-, SSe-
3	D _{xh}	$\nu_{1s} (\Sigma_{g}^{+}; \mathbf{R})$ $\nu_{2b} (\Pi_{u}; \mathbf{IR})$ $\nu_{3s} (\Sigma_{u}^{+}; \mathbf{IR})$	$N_{\overline{3}}$, $BO_{\overline{2}}$
3	С _{хv}	$ \begin{array}{l} \nu_{1s} \; (\Sigma^+; \mathrm{IR}, \mathrm{R}) \\ \nu_{2b} \; (\Pi; \; \mathrm{IR} \; \mathrm{R}) \\ \nu_{3s} \; (\Sigma^+; \mathrm{IR}, \mathrm{R}) \end{array} $	NCO NCS-
3	C _{2v}	$ \nu_{1s}(A_1; IR, R) $ $ \nu_{2b}(A_1; IR, R) $ $ \nu_{3s}(B_2; IR, R) $	$\begin{array}{l} \operatorname{NO}_{\overline{2}}, \operatorname{NH}_{\overline{2}}, \operatorname{ND}_{\overline{2}}, \operatorname{H}_{2}\operatorname{O} \operatorname{NHD}_{\overline{2}} \\ \mathbf{S}_{\overline{\delta}} \end{array}$
4	C _{3v}	$\nu_{1s}(A_{1}, IR, R) \\ \nu_{2b}(A_{1}; IR, R) \\ \nu_{3s}(E, IR, R) \\ \nu_{4b}(E; IR, R)$	ClO ₃ ⁻ , IO ₃ ⁻ , SeO ₃ ²⁻
4	D _{3h}	$\nu_{1s}(A'; R) \\ \nu_{2b}(A''; IR) \\ \nu_{3s}(E'; IR, R) \\ \nu_{4b}(E'; IR, R)$	NO ₃ ⁻ . CO ₃ ²⁻ . BO ₃ ³⁻
5	T _d	$\nu_{1s}(A_1; R) \\ \nu_{2b}(E; R) \\ \nu_{3s}(T_2; IR, R) \\ \nu_{4b}(T_2; IR, R)$	$\begin{array}{c} \mathrm{NH}_{4}^{+},\mathrm{ND}_{4}^{+},\mathrm{BH}_{4}^{-},\mathrm{BD}_{4}^{-},\mathrm{BF}_{4}^{-},\\ \mathrm{ClO}_{4}^{-},\mathrm{MnO}_{4}^{-},\mathrm{SO}_{4}^{2-},\mathrm{SeO}_{4}^{2-},\\ \mathrm{CrO}_{4}^{2-},\mathrm{MnO}_{4}^{2-},\mathrm{MoO}_{4}^{2-},\\ \mathrm{BeF}_{4}^{2-} \end{array}$
13	O _h	$\nu_{1s}(A_{1g}; R) \\ \nu_{3s}(E_g; R) \\ \nu_{6s}(T_{1u}; IR)$	$\begin{array}{c} Co(CN)_{6}^{3-}, Co(CN)_{6}^{4-}, \\ Co(CN)_{6}^{5-}, Fe(CN)_{6}^{3-}, \\ Fe(CN)_{6}^{4-}, Fe(CN)_{6}^{5-} \end{array}$

TABLE 44. Point group symmetry, normal modes and their activity in infraredabsorption and Raman scattering for the molecular ions investigated.

^aSubscripts 's' and 'b' for the modes indicate stretching and bending respectively. IR and or R in the parenthesis after the modes means whether that particular mode is infrared and or Raman active.

TABLE 45. Internal vibration frequencies of homonuclear diatomic molecular ions doped in alkali halide crystals.

These ions have only one vibrational mode $\nu_s \left(\sum_{g}\right)$ which is Raman active and infrared inactive. The accuracy, when given by

the authors, is quoted. In other cases the accuracy is estimated to be ± 1 cm⁻¹, except in the cases marked with an asterisk where no idea of accuracy could be obtained. The values have been rounded off to nearest wavenumber unless the accuracy is equal to or better than ± 0.5 cm⁻¹. ESR and uniaxial stress experiments ¹ suggest that O_2^- . S_2^- and Se_2^- are aligned along (110) direction in FCC alkali halides.

Crystal : Impurity	Frequency (cm ⁻¹) $\nu_s \left(\sum_{g}^{+}\right)$	Temperature K	Remarks	References
$\mathrm{KCl}:\mathrm{N}_{2}$	1836 ± 3	RT	Raman	[2]
$\mathrm{KBr}:\mathrm{N}_{2}^{-}$	1821 ± 3	RT	Raman	[2]
$KI: N_2^-$	1870 ± 3	RT	Raman	[2]
$NaCl:O_2^-$	1144 ± 1	RT	Raman	[2, 3, 4]
NaBr : O 2	1131 ± 1	RT	Raman	[2.3,4]
$\text{KCl}: O_2^-$	1145 ± 1	RT	Raman	[2, 3, 4]
$KBr: O_{\overline{2}}$	1135 ± 1	RT	Raman	[2, 3, 4]
$KI:O_{2}$	1123 ± 1	RT	Raman	[2, 3, 4]
$RbCl: O_2^-$	1141 ± 1	RT	Raman	[2, 3, 4]
$RbBr: O_{2}$	1132 ± 1	RT	Raman	[2. 3. 4]
$NaBr: S_{2}$	610 ± 1	RT	Raman	[2]
$NaI:S_{2}$	592 ± 1	RT	Raman	[2]
$\operatorname{KBr}: \operatorname{S}_2^{-}$	612 ± 2	RT	Raman	[2]
$KI:S_{2}^{-}$	594 ± 1	RT	Raman	[2]
$RbBr: S_{2}$	611 ± 1	RT	Raman	[2]
$RbI:S_{2}$	598 ± 1	RT	Raman	[2]
$NaI:Se_{2}$	333 ± 1	RT	Raman	[2]
$KI:Se_2^-$	325 ± 1	RT	Raman	[2]

RT-Room temperature.

References

- [1] Zeller. H. R., and Kanzig. W., Helv. Phys. Acta 40, 845 (1967). [2] Holzer, W., Murphy, W. F., and Bernstein, H. J., J. Mol.
- Spect. 32, 13 (1969).

[3] Holzer. W., Murphy. W. F., Bernstein, H. J., and Rolfe. J., J. Mol. Spect. 26, 543 (1968). [4] Rolfe, J., Holzer, W., Murphy, W. F., and Bernstein, H. J., J.

Chem. Phys. 49, 963 (1968).

TABLE 46. Internal vibrational frequencies of heteronuclear diatomic molecular ions in alkali halides.

These ions have only one vibrational mode $\nu_s(\Sigma_g^+)$ which is both Raman and IR active. The accuracy, when given by the authors, is quoted. In other cases the accuracy is estimated to be ± 1 cm⁻¹, except in the cases marked with an asterisk where no idea of accuracy could be obtained. The values have been rounded off to nearest wavenumber unless the accuracy is equal to or better than ± 0.5 cm⁻¹. Stress and dichroism experiments suggest that the molecular axis in the $\langle 100 \rangle$ direction for CN⁻ and perhaps also for OH⁻ in FCC alkali halides¹ and (110) or possibly (111) in BCC alkali halides³. The free ion frequencies are:

Crystal : Impurity	Frequency (cm ⁻¹) $\nu_s(\Sigma_g^+)$	Temperature K	Remarks	References
NaCl:CN-	2106.8	10	Raman	[2]
NaBr:CN-	2087 ± 1	100	IR	[3]
NaI:CN-	2074 ± 1	100	IR	[3]
KCl:CN-	2087.7	8.5	Raman	[2]
KBr:CN-	2078	2	IR	[4]
KI:CN-	2067	2	IR É	[4]
RbCl:CN-	2081	2	IR	[4]
RbBr:CN-	2070 ± 1	100	IR	[3]
RbI:CN-	2063 ± 1	100	IR	[3]
CsCl:CN-	2078 ± 1	100	IR	[3]
CsBr:CN-	2066 ± 1	100	IR	[3]
CsI:CN-	2053 ± 1	100	IR	[3]
NaCl:OH- NaBr:OH- KCl:OH- KBr:OH- KI:OH- RbCl:OH-	3654.5 ± 0.5 3626 ± 0.5 3641 ± 0.5 3618 ± 0.5 3603 3632 ± 0.5	4.5 4.5 4.5 4.5 4.5 4.5 4.5	IR IR IR Raman and IR IR IR	[6] [6] [5. 6] [6] [6]
NaCl:OD- KCl:OD- KBr:OD- KCl:SH- KBr:SH-	2689 2684.5 ± 0.5 2668 ± 0.5 *2585 *2569	4.5 4.5 4.5 RT RT	Raman IR IR IR IR	[5] [6. 7] [6] [8] [8]
KCl:SeH-	*2294	RT	IR	[9]
NaI:SSe ⁻ KI:SSe ⁻	462 ± 1 464 ± 1	RT RT	Raman Raman	[10] [10]

 $v_s = 3596 \text{ cm}^{-1} \text{ for OH}^{-}$. $v = 2680 \text{ cm}^{-1} \text{ for OD}^{-}$ and $v_s = 2042 \text{ cm}^{-1} \text{ for CN}^{-}$.

RT Room temperature.

- [1] Narayanamurti, V., and Pohl, R. O., Rev. Mod. Phys. 42, 201 (1970).
- Callender, R. H., and Pershan, P. S., Light Scattering Spectra of Solids, Ed. G. B. Wright, Springer-Verlag, N.Y., pp. 505-12 (1969).
 Field, G. R., and Sherman, W. F., J. Chem. Phys. 47,
- 2378 (1967).
- [4] Seward. W. D., and Narayanamurti, V., Phys. Rev. 148,
- [4] Sewald, W. D., and Warayahamuth, V., Phys. Rev. 140, 463 (1966).
 [5] Fenner, W. R., and Klein, M. V., Light Scattering Spectra of Solids, Ed. G. B. Wright, Springer-Verlag, N.Y., pp. 497-504 (1969).
 [6] W. D. D. Klein, M. V. Ding, Rev. 177, 1274.
- [6] Wedding, B., and Klein, M. V., Phys. Rev. 177, 1274 (1969).

[9] Fischer, F., Z. Phys. 187, 262 (1965).
[10] Holzer, W., Murphy, W. F., and Bernstein, H. J., J. Mol. Spect. 32, 13 (1969).

TABLE 47. Internal vibrational frequencies (cm^{-1}) of linear triatomic molecular ions with $D_{\infty h}$ point group, doped in alkali halides.

These ions have one mode $\nu_1\left(\sum_{g}^{+} s\right)$ which is only Raman active and two modes $\nu_2\left(\prod_{u}^{+} b\right)$ and $\nu_3\left(\sum_{u}^{+} s\right)$ only infrared active.

The accuracy, when given by the authors, is quoted. In other cases the accuracy is estimated to be $\pm 1 \text{ cm}^{-1}$, except in the cases marked with an asterisk where no idea of accuracy could be obtained. The values have been rounded off to nearest wavenumber unless the accuracy is equal to or better than $\pm 0.5 \text{ cm}^{-1}$, N_3^- and BO $_2^-$ enters substitutionally into the lattice at the anion site such that molecular axis is along $\langle 111 \rangle$ in FCC alkali halides [1, 2]. The free ion values are known only for N_3^- ions and are $\nu_1 = 1344 \text{ cm}^{-1}$, $\nu_2 = 645 \text{ cm}^{-1}$ and $\nu_3 = 2041 \text{ cm}^{-1}$

Createl - Impurity	Frequency (cm ⁻¹)			Tomporature	Romanka	References
	$ u_1\left(\sum_{g}^{+}\right) $	$\nu_2 \left(\prod_u^+ \right)$	$\nu_3\left(\sum_{u}^{i}\right)$	K		References
NaCl : $N_{\overline{3}}$		640.3 ± 0.1	2083.1 ± 0.1	120	IR	[1]
$NaBr: N_3^{-*}$			2064.5		IR	[2]
$NaI: N_3^{-*}$			2037.0		IR	[2]
$KCl: N_{\overline{3}}$		643.0 ± 0.1	2051.2 ± 0.1	120	IR	[1]
$KBr: N_{\overline{3}}$		641.5 ± 0.1	2038.2 ± 0.1	120	IR	[1]
$KI: N_{\overline{3}}$		639.7 ± 0.1	2022.1 ± 0.1	120	IR	[1]
$RbCl: N_3^{-*}$			2040.0		IR	[2]
$RbBr: N_3^{-*}$			2029.0		IR	[2]
$RbI: N_3^{-*}$			2016.2		IR	[2]
$CsCl:N_3^{-*}$			2043.0		IR	[2]
$CsBr: N_3^{-*}$			2026.0		IR	[2]
$CsI: N_3^{-*}$			2006.0		IR	[2]
$\mathrm{KCl}:\mathrm{BO}_{\bar{2}}$						
¹⁰ B ¹⁶ O ¹⁶ O		610	2043		IR	[3]
$^{10}B^{16}O^{17}O$			2038		IR	[3]
¹⁰ B ¹⁶ O ¹⁸ O			2029		IR	[3]
¹¹ B ₁₆ O ₁₆ O		590	1972		IR	[3]
¹¹ B ¹⁶ O ¹⁷ O			1968		IR	[3]
¹¹ B ¹⁶ O ¹⁸ O			1959		IR	[3]
$\operatorname{KBr} : \operatorname{BO}_2^{-}$		<	2000		ID	101
¹⁰ B ₁ eO ₁ eO		607	2029			
10B16O17O			2023		IR	
10B16O18O			2016		IR	
11B16O16O		587	1959		IR	[3]
$^{11}B^{16}O^{17}O$			1953		IR	[3]
$^{11}B^{16}O^{18}O$			1946		IR	[3]
$KI : BO_{2}$						
$^{10}B^{16}O^{16}O$		607	2016		IR	[4]
10B16O18O			2000		IR	[4]
¹¹ B ¹⁶ O ¹⁶ O		587	1946		IR	[4]
- 0 0						

- [1] Bryant. J. I., and Turrell, G. C., J. Chem. Phys. **37**, 1069 (1962).
- [2] Price, W. C., Sherman, W. F., and Wilkinson, G. R., Spectrochim. Acta 16, 663 (1960).
- [3] Morgan, H. W., and Staats, P. A., J. Appl. Phys. 33, 364 (1962).
- [4] Mauring, T., Eesti NSV Teaduste Akadeemia Toimetised XVII Koide, Fuusika, Mathemaatika (1968) NR.2. 232-234.

These ions have three modes. $\nu_1(\Sigma^+)$, $\nu_2(\Pi)$ and $\nu_3(\Sigma^+)$ which are both Raman and infrared active. The accuracy, when given by the authors, is quoted. In other cases the accuracy is estimated to be $\pm 1 \text{ cm}^{-1}$, except in the cases marked with an asterisk where no idea of accuracy could be obtained. The values have been rounded off to nearest wavenumber unless the accuracy is equal to or better than $\pm 0.5 \text{ cm}^{-1}$. NCO⁻ and NCS⁻ enter the alkali halide lattice substitutionally replacing the anion such that the molecular axis is along (111) in FCC alkali halides [1] and along (100) in BCC alkali halides [5]. The free ion frequencies are:

$\nu_1 = 1207 \text{ cm}^{-1}$, $\nu_2 = 637$, 628 cm⁻¹ and $\nu_3 = 2165 \text{ cm}^{-1}$ for NCO⁻ and $\nu_1 = 743 \text{ cm}^{-1}$, $\nu_2 = 470 \text{ cm}^{-1}$ and $\nu_3 = 2066 \text{ cm}^{-1}$ for NCS⁻.

	F	Frequency (cm ⁻	1)	T	D	DC
Crystal : Impurity	$\nu_1(\Sigma^+)$	$\nu_2(\Pi)$	$\nu_3(\Sigma^+)$	K I emperature	Kemarks	Kelerences
NaCl:NCO-						
¹⁴ N ¹² C ¹⁶ O ⁻ ¹⁴ N ¹³ C ¹⁶ O ⁻		633.2 ± 0.3	$\begin{array}{c} 2211.2 \pm 0.3 \\ 2153.1 \pm 0.3 \end{array}$	298 298	IR IR	[1] [1]
NaBr : NCO-	1217.6	637.3	2219		IR	[2]
NaI · NCO-	1210.6	636.4	2195		IB	[2]
1141.11000	1210.0	000.1	2190		int	[2]
KCl : NCO - ¹⁴ N ¹² C ¹⁶ O -	1211		2182	100	IB	[4]
¹⁴ N ¹³ C ¹⁶ O ⁻		613.2 ± 0.3	2152 2153.1 ± 0.3	298	IR	[1]
KBr:NCO-						
14N12C16O-	1206	629.98	2170	100	IR	[3. 4]
14N13C16O-		612.78	2115	100	IR	[3]
$^{15}\mathrm{N}^{12}\mathrm{C}^{16}\mathrm{O}^{-1}$		626.64	2154	100	IR	[3]
¹⁴ N ¹² C ¹⁸ O ⁻		625.23	2163	100	IR	[3]
$^{14}N^{13}C^{18}O^{-1}$			2104 ± 0.3	298	IR	[1]
$^{15}N^{13}C^{16}O^{-1}$			2097	100	IR	[3]
¹⁵ N ¹² C ¹⁸ O ⁻			2144	100	IR	[3]
KI : NCO-						
¹⁴ N ¹² C ¹⁶ O ⁻	1200.8 ± 0.3	628.0 ± 0.3	2155.8 ± 0.3	298	IR	[1]
¹⁴ N ¹³ C ¹⁶ O ⁻		610.0 ± 0.3	2099.0 ± 0.3	298	IR	[1]
$^{14}N^{12}C^{18}O^{-1}$			2148.2 ± 0.3	298	IR	[1]
¹⁵ N ¹² C ¹⁶ O ⁻			2138.7 ± 0.3	298	IR	[1]
RbCl : NCO-	1211.8	635.1	2201		IR	[2]
RbBr : NCO -	1207	633.5	2191		IR	[2]
RbI : NCO-	1202.4	632.4	2179		IR	[2]
CsCl : NCO-	1212.4	633.2	2205		IR	[2]
CsBr : NCO-	1206	632	2187		IR	[2]
CsI : NCO-	1200	630	2170		IR	[2]
NaI : NCS -*			2050	40	IR	[5]
KI : NCS-*			2038	40	IR	[5]
RbI : NCS-*			2028	40	IR	[5]
CsI:NCS-*			2038	40	IR	[5]

- Maki. A., and Decius. J. C., J. Chem. Phys. **31**, 772 (1959).
 Price, W. C., Sherman, W. F., and Wilkinson, G. R., Proc. Roy. Soc. **A255**, 5 (1960).
- [3] Decius. J. C., Jacobson, J. L., Sherman, W. F., and Wilkinson, G. R., J. Chem. Phys. 43, 2180 (1965).
- [4] Conant, D. R., and Decius, J. C., Spectrochim. Acta 23A, 2931 (1967).
 [5] Cur dill M. A. and Shaman W. E. Bl., B. 169, 1000.
- [5] Cundill, M. A., and Sherman, W. F., Phys. Rev. 168, 1008 (1968).

These ions have three modes $\nu_1(A_1)$, $\nu_2(A_1)$ and $\nu_3(B_2)$ which are both Raman and infrared active. The accuracy, when given by the authors, is quoted. In other cases the accuracy is estimated to be ± 1 cm⁻¹, except in the cases marked with an asterisk where no idea of accuracy could be obtained. The NO2 ion enters substitutionally into the lattice at the anion site such that the 2-fold axis of the ion points in the (110) directions in FCC alkali halides. The values have been rounded off to nearest wavenumber unless the accuracy is equal to or better than ± 0.5 cm⁻¹. The free ion values are:

> $\nu_1 = 1328 \text{ cm}^{-1}, \ \nu_2 = 828.2 \text{ cm}^{-1} \text{ and } \nu_3 = 1261 \text{ cm}^{-1} \text{ for NO}_2^ \nu_1 = 3210 \text{ cm}^{-1}, \ \nu_2 = 1532 \text{ cm}^{-1} \text{ and } \nu_3 = 3266 \text{ cm}^{-1} \text{ for NH}_2^ \nu_1 = 2355 \text{ cm}^{-1}, \ \nu_2 = 1131 \text{ cm}^{-1} \text{ and } \nu_3 = 2429 \text{ cm}^{-1} \text{ for ND}_2^ \nu_1 = 2387 \text{ cm}^{-1}, \ \nu_2 = 1247 \text{ cm}^{-1} \text{ and } \nu_3 = 3236 \text{ cm}^{-1} \text{ for NHD}^-$ and $\mu_2 = 2367 \text{ cm}^{-1}, \ \nu_2 = 1247 \text{ cm}^{-1} \text{ and } \nu_3 = 3236 \text{ cm}^{-1} \text{ for NHD}^-$ and $\nu_1 = 3657 \text{ cm}^{-1}, \nu_2 = 1595 \text{ cm}^{-1} \text{ and } \nu_3 = 3756 \text{ cm}^{-1} \text{ for } H_2O.$

Control Inconstant	1	Frequency (cm ⁻¹)	Temperature	D	DC
Crystal:Impunity	$\nu_1(A_1)$	$\nu_2(A_1)$	$\nu_3(B_2)$	K	Remarks	References
NaCl:NO ₂	1346	636	1304	2	IR	[1]
NaBr:NO ₂ -	1327 ± 2	828 ± 2	1283 ± 2	6	R	[2]
KCl:NO ₂ -	1329	805	1290	2	IR	[1]
KBr:NO ₂						
$^{14}N^{16}O_2^{-}$	1316.2 ± 0.5	798.1 ± 0.5	1275 ± 0.5	8	IR	[3]
¹⁴ N ¹⁶ O ¹⁸ O ⁻	1303.9 ± 0.5	779 ± 0.5	1256.6 ± 0.5	8	IR	[3]
¹⁵ N ¹⁶ O ¹⁶ O ⁻	1294.2 ± 0.5	793 ± 0.5	1249.5 ± 0.5	8	IR	[3]
¹⁵ N ¹⁶ O ¹⁸ O ⁻			1230.4	8	IR	[3]
¹⁵ N ¹⁸ O ¹⁸ O ⁻			1221.5	8	IR	[3]
KI:NO ₂ -	1308	806 ± 2	1253	5	IR	[1]
NaCl:S ₂	531 ± 1			300	IR. R	[4]
NaBr:S ₃	523 ± 1			300	IR, R	[4]
KCl:S ₃	527 ± 1		540 ± 2	300	IR, R	[4]
KBr:S ₃	523 ± 1		585 ± 2	300	IR, R	[4]
KI:S ₃	543 ± 1		585 ± 2	300	IR, R	[4]
RbCl:S ₃	528 ± 1			300	IR, R	[4]
$RbBr:S_3^-$	555 ± 1			300	IR, R	[4]
RbI:S ₃	544 ± 1			300	IR, R	[4]
KCl:NH ₂	3202	1532	3258	20	a IR	[5]
$\mathrm{KBr}:\mathrm{NH}_2^-$	3185	1508	3235	20	^a IR	[5]
KI:NH ₂	3154	1500	3202	20	^a IR	[5]
KCl:NHD-	2379	1355	3218	20	^a IR	[5]
KBr:NHD ⁻	2371	1330	3202	20	^a IR	[5]
KCl:ND ₂	2353	1137	2419	20	^a IR	[5]
$KBr:ND_2^-$	2339	1121	2412	20	^a IR	[5]
KI:ND ₂	2323	1113	2395	20	^a IR	[5]
KCI-H O	2425	1620	2400	20	ID	[6]
KGI:H ₂ O	3433	1625	3400	20		[0]
KDI:H2O	2570	1023	3423	20		[0]
A1.112U	3370	1090	3390	20	III	[U]

^a The absorption maxima expressed in eV in the paper is converted to wave number (cm^{-1}) by using the conversion factor 1 $eV = 8065 cm^{-1}$.

- [1] Narayanamurti, V., Seward, W. D., and Pohl, R. O., Phys. Rev. 148, 481 (1966). [2] Evans, A. R., and Fitchen, D. B., Phys. Rev. B2, 1074
- [4] Holzer, W., Murphy, W. F., and Bernstein, H. J., J. Mol. Spect. 32, 13 (1969).
 [5] Windheim, R., and Fischer, F., Proc. Int. Conf. 'Lumines-cence', Budapest (1966) pp. 877-882.
 [6] Ruhenbeck, C., Z. Phys. 207, 446 (1967).
- (1970).
- [3] Rolfe, J., J. Chem. Phys. 47, 1901 (1967).

TABLE 50. Vibrational frequencies of nonplanar tetra-atomic (C_{3v}) molecular ions doped in alkali halide crystals.

These ions have four modes $\nu_1(A_1)$, $\nu_2(A_1)$, $\nu_3(E)$ and $\nu_4(E)$ which are both Raman and infrared active. The accuracy, when given by the authors, is quoted. In other cases the accuracy is estimated to be $\pm 1 \text{ cm}^{-1}$, except in the cases marked with an asterisk where no idea of accuracy could be obtained. The values have been rounded off to nearest wavenumber unless the accuracy is equal to or better than $\pm 0.5 \text{ cm}^{-1}$. ClO₃, IO₃ and SeO₃²⁻ ions go substitutionally into the lattice at the anion site such that the 3-fold axis of the ion coincides with (111) direction [1-3] in FCC alkali halides. The free ion frequencies are:

$\nu_1 = 930, \ \nu_2 = 610, \ \nu_3 = 982$	and	$\nu_4 = 479 \text{ cm}^{-1}$
		for ClO_3^-
$\nu_1 = 754, \ \nu_2 = 373, \ \nu_3 = 774$	and	$\nu_4 = 355, 330 \text{ cm}^{-1}$
		for IO ₃
$\nu_1 = 807, \ \nu_2 = 432, \ \nu_3 = 737$	and	$\nu_4 = 374 \text{ cm}^{-1}$
		for SeO ₂ ⁻ .

	Frequency (cm ⁻¹)				T		
Crystal:Impurity	$\nu_1(A_1)$	$\nu_2(A_1)$	$\nu_3(E)$	$\nu_4(E)$	ture K	Remarks	References
NaCl:ClO ₃		:					
³⁵ ClO ₃ ³⁷ ClO ₃			1027.5 1017.5			IR IR	[1]
KCl:ClO ₃							
³⁵ ClO ₃			1016			IR	[1]
³⁷ ClO ₃			1006			IR	[1]
KBr:ClO ₃							
³⁵ ClO ₃	947.60	628.01	1004.45	493.82	176	IR	[1]
³⁷ ClO ₃	940.60	623.08	994.35	492.28	176	IR	[1]
KI:ClO ₃							
³⁵ ClO ₃	937.60	620.88	990.36	487.12	176	IR	[1]
³⁷ ClO ₃	930.80	615.98	980.28	485.53	176	IR	[1]
KI:IO ₇							
I ¹⁶ O ₃ -	791.05 ± 0.15	381.7 ± 0.15	806.75 ± 0.15	323.7 ± 0.15	130	IR	[2]
I ¹⁸ O ₃	749.75 ± 0.15	365.6 ± 0.15	767.25 ± 0.15	307.15 ± 0.15	130	IR	[2]
KBr:SeO ₂ ²⁻	845.5		780 ± 1		293	aIB	[3]
3			763 ± 1		293	aIR	[3]
			752.5 ± 1		293	aIR	[3]
			749 ± 1		293	aIR	[3]

^a Charge compensating defect occupying the nearest neighbour positions lowers the site symmetry of the ion resulting in the splitting of ν_3 .

References

Krynauw, G. N., and Schutte, C. J. H., Spectrochim. Acta 21, 1947 (1965).
 Klee, W. E., Spectrochim. Acta 26A, 1165 (1970).

[3] Demyanenko, V. P., Tsyashchenko, Yu. P., and Verlan, E. M., Phys. Stat. Sol. 48, 737 (1971).

TABLE 51. Vibrational frequencies (cm^{-1}) of planar tetraatomic molecular ions (D_{3h}) doped in alkali halide crystals.

These ions have four modes $\nu_1(A')$ Raman active, $\nu_2(A'')$ infrared active and $\nu_3(E')$ and $\nu_4(E')$ both Raman and infrared active. The accuracy, when given by the authors, is quoted. In other cases the accuracy is estimated to be $\pm 1 \text{ cm}^{-1}$, except in the cases marked with an asterisk where no idea of accuracy could be obtained. The values have been rounded off to nearest wavenumber unless the accuracy is equal to or better than $\pm 0.5 \text{ cm}^{-1}$. NO₃⁻, CO₃²⁻, and BO₃³⁻ enter the lattice substitutionally at the anion site such that the plane of the ion is perpendicular to the $\langle 111 \rangle$ direction [1, 2, 6] in FCC alkali halides.

Crystal:	Frequency (cm ⁻¹)				T	D I	Peferences
Impurity	$\nu_1(A')$	ν ₂ (A'')	ν ₃ (Ε′)	ν ₄ (Ε')	K	Kemarks	Keferences
NaCl:NO ₃ NaBr:NO ₃ NaI:NO ₃ KCl:NO ₃			1423 ± 1 1398 ± 1 1391 ± 1 1398 ± 1		77 77 77 77 77	IR IR IR IR	[1] [1] [1] [1]
$\begin{array}{r} \text{KB1:} \text{IVO}_3 \\ & {}^{14}\text{N}{}^{16}\text{O}_2^{-18}\text{O}{}^{-14}\text{N}{}^{16}\text{O}_2^{-18}\text{O}{}^{-14}\text{N}{}^{16}\text{O}{}^{18}\text{O}{}^{-2} \\ & {}^{14}\text{N}{}^{16}\text{O}{}^{-18}\text{O}{}^{-2} \\ & {}^{15}\text{N}{}^{16}\text{O}{}^{-3} \\ & {}^{15}\text{N}{}^{16}\text{O}{}^{-18}\text{O}{}^{-1$	1054.8 ± 0.5 1034.9 944.4 1055.1 	$841.3 \pm 0.5 \\837.8 \\834.3 \\830.6 \\820.0 \\816.4$	$1382.2 \pm 0.5 \\ 1383.2 \\ 1377.2 \\ 1363.4 \\ 1352.4 \\ 1352.3 \\ 1352.3 \\ 1339.7 \\ 1339$	715.6±0.5 714.4 	8 8 8 8 8 8	IR IR IR IR IR IR	[2] [2] [2] [2] [2] [2]
¹⁵ N ¹⁶ O ¹⁸ O ⁻ ₂			1338.7 1344.7 1329.3		8	IR	[2]
¹⁵ N ¹⁸ O ₃ ⁻ KI:NO ₃ ⁻			1329.3 1372 ± 1		8 77	IR IR	[2] [1]
KCl:CO ₃ ^{2–}		882	1476 1420 1391		300	^a IR	[4]
KCl:CO ₃ ^{2–} . Ca ²⁺			1520 1398		300	^a IR	[3]
KCl:CO ^{2–} , Sr ²⁺	1073	880	1493 1473 1420 1380		300	ªIR	[4]
KCl:CO ₃ ^{2–} , Pb ²⁺	1049	864	1551 1333	736 681		^a IR	[5]
KBr:CO3 ⁻		883	1475 1459 1402 1380		300	^a IR	[4]
KBr:CO $_{3}^{2-}$. Pb ²⁺	1043	863	1556 1319	731 677		aIR	[5]
KI:CO ₃ ^{2–}		885	1485 1398 1368		300	^a IR	[4]
KBr:BO ³⁻ 3	952	735	1247		300	^a IR	[6]
KBr:H ₃ BO ₃	1040		1222 1450 1400		300	^a IR	[6]

^a Because of the charge compensating defect in the neighbourhood of the ion the symmetry is lowered resulting in the splitting of ν_3 and ν_4 .

References

Metselaar. R., and Van der Elsken, J., Phys. Rev. 165, 359 (1968 Rolfe, J., J. Chem. Phys. 47, 1901 (1967).

[3] Maksimova, T. I., Phys. Stat. Sol. 33, 547 (1969).

[4] Jain, S. C., and Sehgal, H. K., Unpublished work.
[5] Morgan, H. W., and Staats, P. A., J. Appl. Phys. 33, 364 (1962). [6] Jain, S. C., and Sehgal. H. K., Unpublished work.

TABLE 52. Vibrational frequencies of penta-atomic tetrahedral molecular ions (T_d) doped in alkali halides.

These ions have four modes of which $\nu_1(A_1)$ and $\nu_2(E)$ are only Raman active, while $\nu_3(T_2)$ and $\nu_4(T_2)$ are both Raman and infrared active. The accuracy, when given by the authors, is quoted. In other cases the accuracy is estimated to be ± 1 cm⁻¹, except in the cases marked with an asterisk where no idea of accuracy could be obtained. The values have been rounded off to nearest wavenumber unless the accuracy is equal to or better than ± 0.5 cm⁻¹. These tetrahedral ions enter the lattice substitutionally such that the four bonds are directed along the (111) directions in FCC alkali halides [2.3]. In BCC alkali halides the tetrahedral ions occupy the anion site such that the site symmetry is reduced to D_{2d} [1-3]. The free ion frequencies are:

> $\nu_1 = 3040, \ \nu_2 = 1680, \ \nu_3 = 3145 \text{ and } \nu_4 = 1400 \text{ cm}^{-1} \text{ for } {}^{14}\text{NH}_4^+$ $\nu_1 = -$, $\nu_2 = 1646$, $\nu_3 = 3137$ and $\nu_4 = 1399$ cm⁻¹ for ¹⁵NH⁺₄ $\nu_1 = 2214$, $\nu_2 = 1215$. $\nu_3 = 2346$ and $\nu_4 = 1065$ cm⁻¹ for ND⁺₄ $\nu_1 = 2264, \nu_2 = 1210, \nu_3 = 2244 \text{ and } \nu_4 = 1080 \text{ cm}^{-1} \text{ for BH}_4^{-1}$ $\nu_1 = 1570, \nu_2 = 855. \nu_3 = 1696 \text{ and } \nu_4 = 823 \text{ cm}^{-1} \text{ for BD}_4^{-1}$ $\nu_1 = 769, \nu_2 = 353, \nu_3 = 984 \text{ and } \nu_4 = 524 \text{ cm}^{-1} \text{ for } {}^{11}\text{BF}_4$ $\nu_1 = 769, \nu_2 = 353, \nu_3 = 1016 \text{ and } \nu_4 = 529 \text{ cm}^{-1} \text{ for } {}^{10}\text{BF}_4$ $\nu_1 = 928, \nu_2 = 459, \nu_3 = 1119 \text{ and } \nu_4 = 625 \text{ cm}^{-1} \text{ for ClO}_4^{-1}$ $\nu_1 = 845, \nu_2 = 355, \nu_3 = 910 \text{ and } \nu_4 = 395 \text{ cm}^{-1} \text{ for } \text{MnO}_4$ $\nu_1 = 983, \nu_2 = 450, \nu_3 = 1105 \text{ and } \nu_4 = 611 \text{ cm}^{-1} \text{ for } \text{SO}_4^{2-1}$ $\nu_1 = 833$. $\nu_2 = 335$. $\nu_3 = 875$ and $\nu_4 = 432$ cm⁻¹ for Se \vec{O}_4^{2-1} $\nu_1 = 847, \nu_2 = 348, \nu_3 = 884 \text{ and } \nu_4 = 368 \text{ cm}^{-1} \text{ for } \text{CrO}_4^{-1}$ $\nu_1 = 894, \nu_2 = 381, \nu_3 = 833 \text{ and } \nu_4 = 318 \text{ cm}^{-1} \text{ for } MoO_4^{\frac{1}{2}}$

Constal.Immunity		Frequen	cy (<i>cm</i> ^{−1})		Temperature	Dural	D C
Crystal:impurity	$\nu_1(A_1)$	$\nu_2(\mathbf{E})$	$\nu_3(T_2)$	$\nu_4(T_2)$	K	Remarks	Keferences
CsCl:NH ₄ ¹⁴ NH ₄ ¹⁵ NH ₄ ⁺			3129 3118	1432 1426		IR IR	[1] [1]
CsBr:NH ₄ CsI:NH ₄ CsCl:ND ⁺			3132 3136	1422 1411.5		IR IR	[1] [1]
⁴ ¹⁴ ND ⁺ ¹⁵ ND ⁺ ⁺			2349 2331	1084 1077.3		IR IR	[1] [1]
$CsBr:ND_{4}^{+}$ $CsI:ND_{4}^{+}$			2350 2350	1077.3 1070.9		IR IR	[1] [1]
NaCl:BH ₄ NaBr:BH ₄ NaI:BH ₄ KCl:BH ₄ KBr:BH ₄ KI:BH ₄ CsBr:BH ₄ CsI:BH ₄		 	$2376 \pm 3 2284 \pm 3 2278 \pm 3 2321 \pm 3 2290 \pm 3 2256 \pm 3 2340 \pm 3 2298 \pm 3$	$1166 \pm 3 \\ 1123 \pm 3 \\ 1109 \pm 3 \\ 1142 \pm 3 \\ 1125 \pm 3 \\ 1107 \pm 3 \\ 1090 \pm 3 \\ 1070 \pm 3 $	$ 120 \\ 300 \\ 300 \\ 300 \\ 300 \\ 300 \\ 120 \\ 120 $	IR IR IR IR IR IR IR	[2] [2] [2] [2] [2] [2] [2] [2]
$\begin{array}{l} \mathrm{KCl:BD}_{\overline{4}} \\ \mathrm{KBr:BD}_{\overline{4}} \\ \mathrm{KI:BD}_{\overline{4}} \\ \mathrm{CsBr:BD}_{\overline{4}} \\ \mathrm{CsI:BD}_{\overline{4}} \end{array}$		 	$1696 \pm 3 \\ 1678 \pm 3 \\ 1657 \pm 3 \\ 1748 \pm 3 \\ 1707 \pm 3$	$\begin{array}{c} 863 \pm 3 \\ 856 \pm 3 \\ 842 \pm 3 \\ 835 \pm 3 \\ 820 \pm 3 \end{array}$	300 300 300 120 120	IR IR IR IR IR	[2] [2] [2] [2] [2]
NaI:BF ₄ ¹⁰ BF ₄ ¹¹ BF ₄			1120.5 ± 0.5 1079 ± 0.5	530.0 ± 0.5 528.0 ± 0.5	300 300	IR IR	[3] [3]
¹⁰ BF ₄ ¹¹ BF ₄			1131.0 ± 0.5 1090.5 ± 0.5	538.0 ± 0.5 536.5 ± 0.5	300 300	IR IR	[3] [3]

0 11		Freque	$ncy (cm^{-1})$		Temperature	D	D	
Crystal:Impurity	$\nu_1(\mathbf{A}_1)$	$\nu_2(\mathbf{E})$	$\nu_3(T_2)$	$\nu_4(T_2)$	K	Remarks	References	
KBr:BF ₄ ¹⁰ BF ₄ ¹¹ BF ₄			$\begin{array}{c} 1124.0 \pm 0.5 \\ 1084.0 \pm 0.5 \end{array}$	532.5 ± 0.5 531.0 ± 0.5	300 300	IR IR	[3] [3]	
KI:BF ₄ ¹⁰ BF ₄			1116.5 ± 0.5	528.0 ± 0.5	300	IR	[3]	
¹¹ BF ₄			1076.5 ± 0.5	526.5 ± 0.5	300	IR	[3]	
CsBr:BF ₄ ¹⁰ BF ₄ ¹¹ BF ₄			1120 ± 1 1080 ± 1	535 ± 1 533 ± 1	300 300	IR IR	[3] [3]	
CsI:BF ₄ ¹⁰ BF ₄ ¹¹ BF ₄			1109 ± 1 1070 ± 1	529 ± 1 527 ± 1	300 300	IR IR	[3] [3]	
KCl:ClO₊			1133.7	642.6	176	IR	[4]	
KBr:ClO ₄ ³⁵ ClO ₄ ³⁷ ClO ₄			1122.60 1109.40	636.18 633.18	176 176	IR IR	[4, 5] [5]	
KI:ClO∓ RbBr:ClO∓ RbI:ClO∓			1111.00 1118.35 1100.10	631.78 634.78 631.36	176 176 176	IR IR IR	[4, 5] [4] [4]	
KBr:MnO∓ KI:MnO∓ RbBr:MnO∓	840 840 		923 ± 1 913 ± 1 923.5	 404.5	300 300 77	IR, R IR, R IR	[6] [6] [7]	
KCl:SO₄ ⁻ , ⊟			1172 1119 1113		300	aIR	[8]	
KCl:SO4 ⁻ , Ca ²⁺	982		1186 1157 1090	651 629 616	300	⁵IR	[8, 9, 10]	
KCl:SO ²⁻ , Sr ²⁺			1184 1152 1089		300	⁵IR	[10]	
KCl:SO ₄ ²⁻ , Ba ²⁺	979		1186 1147 1083	640 628 619	300	₽IR	[9, 10]	
KCl:SO ²⁻ , Zn ²⁺			1185 1156 1090		300	^b IR	[10]	
KCl:SO ₄ ²⁻ , Cd ²⁺			1185 1156 1090		300	⁵IR	[10]	
KC1:SO ₄ ²⁻ ,Pb ²⁻	969		1197 1150 1048		300	⁵IR	[9, 10]	

TABLE 52. Vibrational frequencies of penta-atomic tetrahedral molecular ions (T_d) doped in alkali halides. – Continued

38

Createlline		Frequer	ncy (cm^{-1})		Temperature	Dement	Deferences
Crystal:Impurity	$\nu_1(A_1)$	$\nu_2(\mathbf{E})$	$\nu_3(T_2)$	$\nu_4(T_2)$	- K	Kemarks	References
KBr:SO ₄ ²⁻ , Ca ²⁺ ³⁴ SO ₄ ²⁻	975		1172 1135		77	[▶] IR	[9]
³² SO ₄ ²⁻	977		1067 1185 1154 1082		77	♭IR	[9]
KCl:SeO ₄ ²⁻ , M ²⁺ ⁸² SeO ₄ ²⁻			925.5 ± 1 904.5 ± 1 860.5 ± 1		120	♭IR	[11]
$^{80}{ m SeO_4^{2-}}$	836		928 ± 1 907 ± 1 862.5 ± 1		120	[▶] IR	[11]
⁷⁸ SeO4 ²⁻			930.5 ± 1 909.5 ± 1 865.0 ± 1		120	ьIR	[11]
⁷⁷ SeO ²⁻			931.5 ± 1 910.5 ± 1 866.0 ± 1		120	⁵IR	[11]
⁷⁶ SeO ₄ ²⁻			933 ± 1 912 ± 1 867.5 ± 1		120	⁵IR	[11]
KBr:SeO ₄ ²⁻ , M ²⁺ ⁸² SeO ₄ ²⁻			917.5 ± 1 897.5 ± 1 851.5 ± 1		120	^b IR	[11]
⁸⁰ SeO4 ²⁻	828.5		920 ± 1 899.5 ± 1 854 ± 1		120	ьIR	[11]
⁷⁸ SeO4 ⁻			922.5 ± 1 902.0 ± 1 856.0 ± 1		120	⁵IR	[11]
⁷⁷ SeO4-			924 ± 1 903 ± 1 857 ± 1		120	^b IR.	[11]
⁷⁶ SeO ₄ ²⁻			925.5 ± 1 904.5 ± 1 858.5 ± 1		120	^b IR,	[11]
KCl : CrO ₄ ²⁻			913±1		300	IR	[12]
KCl : CrO ₄ ^{2−} .⊟	860		939 ± 1 896 ± 1 887 ± 1		300	^a IR,	[12]

TABLE 52. Vibrational frequencies of penta-atomic tetrahedral molecular ions (T_d) doped in alkali
halides. - Continued

0 . 1.1		Frequen	cy (<i>cm</i> ⁻¹)		Temperature	D .	Def
Crystal:Impurity	$\nu_1(A_1)$	$\nu_2(E)$	$\nu_3(T_2)$	$\nu_4(T_2)$	K	Remarks	References
$\mathrm{KCl}:\mathrm{CrO}_{4}^{2-}.\mathrm{Ca}^{2+}$	860		944 ± 1 929 ± 1 881 ± 1		300	^b IR,	[13]
KBr : CrO ₄ ²⁻			908		300	IR	[12]
$\operatorname{KBr}: \operatorname{CrO}_{4}^{2-}$.	856		927 ± 1 894 ± 1 888 ± 1		300	a IR	[12]
KBr : CrO ₄ ²⁻ , Mg ²⁺	856		937 ± 1 925 ± 1 880 ± 1		77	^b IR	[14]
$\operatorname{KBr}:\operatorname{CrO}_4^{2-},\operatorname{Ca}^{2+}$	855		936 ± 1 924 ± 1 880 ± 1	433 416 399	77	^b IR	[13. 14]
KBr : CrO ₄ ²⁻ , Sr ²⁺	853		938 ± 1 922 ± 1 878 ± 1	428 399	77	^h IR	[14]
KBr : CrO ₄ ²⁻ . Ba ²⁺	849		940 ± 1 921 ± 1 872 ± 1	427 414 401	77	^b IR	[14]
KBr : CrO ₄ ^{2–} , Pb ²⁺	837		941 ± 1 920 ± 1 843 ± 1	415 391 378	77	^b IR	[14]
KI : CrO ₄ ²⁻			907		300	^b IR	[12]
KI : CrO₄ ⁻ , ⊟	855		926 ± 1 891 ± 1 884 ± 1		300	aIR	[12]
KI : CrO ₄ ²⁻ , Ca ²⁺	855		928 ± 1 920 ± 1 875 ± 1		300	^b IR	[12]
KBr : MnO ₄ ^{2 –}	830		860 ± 1		300	IR, R	[6]
KBr : MnO₄²−, ⊟	830		870 ± 1 842 ± 1 836 ± 1		300	^a IR	[6]
KBr : MnO4 ²⁻ . Ca ²⁺	830		890 ± 1 880 ± 1 846 ± 1		300	[▶] IR	[6]
KBr : MoO ₄ ²⁻	898		855 ± 1		300	IR, R	[15]
$\operatorname{KBr}: \operatorname{MoO}_4^{2-}, \square$	898		876 ± 1 844 ± 1 834 ± 1		300	^a IR	[15]

TABLE 52.Vibrational frequencies of penta-atomic tetrahedral molecular ions (T_d) doped in alkali
halides. - Continued

Constal Loope in	Fre	quency (cm^{-1})			Temperature	D	Peference
Crystal:Impurity	$\nu_1(A_1)$	$\nu_2(E)$	ν_3)T ₂)	$\omega_4(T_2)$	K	Kemarks	Keterences
KCl:BeF ₄ ²⁻			837.4 ± 1		300	^b IR	[16]
KCl : BeF_{4}^{2-} , Mg^{2+}			910.4 ± 1 870.4 ± 1 770.0 ± 1		300	[▶] IR	[16]
KCl : BeF ²⁻ . Ca ²⁺			909.0 ± 1 870.3 ± 1 770.2 ± 1		300	♭IR	[16]
KCl : BeF ²⁻ . Sr ²⁺			909.6 ± 1 862.6 ± 1 768.1 ± 1		300	♭IR	[16]
KCl : BeF ²⁻ , Ba ²⁺			910.9 ± 1 853.4 ± 1 762.7 ± 1		300	⁵IR	[16]
KCl : $\operatorname{BeF}_4^{2-}$, Zn^{2+}			909.0 ± 1 869.0 ± 1 780.0 ± 1		300	^b IR	[16]
$\mathrm{KCl}:\mathrm{BeF}_{4}^{2-}.\mathrm{Cd}^{2+}$			910 ± 1 768 ± 1		300	^b IR	[16]
KCl : BeF ²⁻ . Mn ²⁺			909.8 ± 1 870.0 ± 1 770.0 ± 1		300	^b IR	[16]
KCl : BeF ²⁻ ₄ . Sn ²⁺			910.1 ± 1 870.0 ± 1 770.0 ± 1		300	^b IR	[16]
KCl : BeF ²⁻ ₄ . Pb ²⁺			909.8 ± 1 868.0 ± 1 757.6 ± 1		300	^b IR	[16]

Table 52.	Vibrational frequencies of penta-atomic tetrahedral molecular ions (T_d) doped in alkali
	halides. – Continued

^a Here the charge compensation is by an anion vacancy in one of the twelve nearest neighbour anion sites, reducing the symmetry from T_d to C_s resulting in the splitting of $\nu_3(T_2)$ into $\nu_3(A') + \nu_3(A') + \nu_3(A'')$. Here $\nu_3(A'') < \nu_3(A')$. \Box denotes anion vacancy.

^b Here charge compensation is by a divalent cation in one of the six nearest neighbour cation sites, reducing the symmetry of the ion to C_{2v} resulting in the splitting of $\nu_3(T_2)$ into $\nu_3(A_1) + \nu_3(B_1) + \nu_3(B_2)$. Here $\nu_3(B_2) > \nu_3(A_1) > \nu_3(B_1)$. M^{2+} denotes unknown divalent cation impurity.

- [1] Price. W. C., Sherman, W. F., and Wilkinson. G. R., Proc. Roy. Soc. A255, 5 (1960).
- [2] Coker. E. H., and Hofer. D. E., J. Chem. Phys. 48, 2713 (1968).
- [3] Bonadeo. H., and Silberman. E., J. Mol. Spect. 32, 214 (1969).
 [4] K. C. M. J. C. M. J. C. J. H. J. Difference of the second s
- [4] Krynauw, G. N., and Schutte, C. J. H., Z. Phys. Chem. 55, 134 (1967).
 [5] Krynauw, G. N., and Schutte, C. J. H., Spectrochim. Acta
- [6] Jain, S. C., Agarwal, S. K., and Singh, Risal (To be Pub-
- lished (1973).
- [7] Manzelli. P., and Toddei, G., J. Chem. Phys. 51, 1484 (1969).
 [8] Malaimana T. I. Phys. Syst. 5 1 22, 547 (1960).
- [8] Maksimova. T. I., Phys. Stat. Sol. 33, 547 (1969).

- [9] Decius, J. C., Coker, E. H., and Brenna, G. L., Spectrochim. Acta 19, 1281 (1963).
- [10] Mirlin, D. N., and Reshina, I. I., Sov. Phys. Solid State 10, 895 (1968).
- [11] Demyanenko, V. P., Tsyashchenko, Yu. P., and Verlan. E. M., Phys. Stat. Sol. 48, 737 (1971).
 [12] Jain, S. C., Warrier, A. V. R., and Agarwal, S. K., Chem.
- 12] Jain, S. C., Warrier, A. V. R., and Agarwal, S. K., Chem. Phys. Letters 14, 211 (1972).
- [13] Dem'yanenko. V. P., Tsyashchenko. Yu. P., and Verlan.
 E. M., Sov. Phys.-Solid State 12, 417 (1970).
- [14] Miller, P. J., Cessac, G. L., and Khanna, R. K., Spectrochim. Acta (1971).
- [15] Jain. S. C., Agarwal, S. K., and Singh. Risal. (Private communication).
- [16] Crzybowski, J., Khanna, R. K., and Verble, J. L., Spectrochim. Acta (1971).

TABLE 53. Vibrational frequencies of octahedral complexes doped in alkali halide crystals.

The $\nu_1(A_{1g})$ and $\nu_3(E_g)$ stretching modes are only Raman active and the stretching mode $\nu_6(T_{1u})$ is only infrared active. The accuracy, when given by the authors, is quoted. In other cases the accuracy is estimated to be $\pm 1 \text{ cm}^{-1}$, except in the cases marked with an asterisk where no idea of accuracy could be obtained. The values have been rounded off to nearest wavenumber unless the accuracy is equal to or better than $\pm 0.5 \text{ cm}^{-1}$. Co(CN)^{*n*}₆ and Fe(CN)^{*n*}₆ (n=3,4,5) ions enters the lattice substitutionally such that the metal ion occupies the cation site and the six CN⁻ ions occupying the six nearest neighbour anion sites in FCC alkali halides.

	l	Frequency (cm ⁻	')	Temperature	P l	References	
Crystal : Impurity	$\nu_1(\mathbf{A}_{1g})$	$\nu_{3}(\mathbf{E}_{g})$	$\nu_6(T_{1u})$	K	Remarks	References	
$NaCl : Co({}^{12}CN)_6^{3-}$			2142 ± 1 2137 ± 1 2130 ± 1 2124 ± 1	300	^a IR	[1]	
$NaCl : Co({}^{13}CN)_6^{3-}$			2121 ± 1 2094 ± 1 2089 ± 1 2085 ± 1 2078 ± 1	300	ª IR	[1]	
KCl : Co(12CN) ₆ ^{3 –}			2128 ± 1 2126 ± 1 2118 ± 1 2111 ± 1 2109 ± 1	300	^a IR	[1]	
KCl : Co(¹³ CN) ₆ ^{3 –}			2085 ± 1 2076 ± 1	300	^a IR	[1]	
NaCl : Co(CN) ₆ ⁺⁻			2094 ± 1 2086 ± 1 2081 ± 1 2076 ± 1	300	^{a, b} IR	[1]	
KCl : Co(CN) ₆ ⁴⁻			2085 ± 1 2076 ± 1 2067 ± 1 2063 ± 1	300	^{a, b} IR	[1]	
NaCl : Co(CN) ₆ ^{5 -}			1976 ± 1	300	⁵IR	[1]	
KCl : Co(CN) ₆ ^{5 –}			1959 ± 1	300	^b IR	[1]	
$\operatorname{NaCl}: \operatorname{Fe}(\operatorname{CN})_6^{3-}$	2131	2127	2121 ± 1 2115 ± 1 2110 ± 1	300	^a IR	[2]	
$\mathrm{KCl}:\mathrm{Fe}(\mathrm{CN})_6^3$ -	2126	2121	2109 ± 1 2103 ± 1 2099 ± 1	300	^a IR	[2]	
$NaCl:Fe(CN)_6^{4-}$			2073 ± 1 2064 ± 1 2050 ± 1 2047 ± 1	300	^a IR	[2]	
KCl:Fe(CN) ₆ ⁴⁻			$2059 \pm 1 \\ 2048 \pm 1 \\ 2032 \pm 1 \\ 2028 \pm 1$	300	^a IR	[2]	

Vibrational frequencies of octahedral complexes doped in alkali halide crystals-Continued TABLE 53.

Crystal:Impurity	Fre	equency (cm ⁻¹))	Tomporature	Demenles	Deferences
	$\nu_1(A_{1g})$	$\nu_3(\mathbf{E}_g)$	$\nu_6(T_{1u})$	K	Remarks	References
NaCl:Fe(CN) ₆ ₅-			1967 ± 1	300	^b IR	[2]
$KCl:Fe(CN)_6^{5-}$			1947 ± 1	300	^b IR	[2]

^a Since there are charge compensating defects in the neighbourhood of the ions. the symmetry of the complex is lowered resulting in the splitting of $\nu_6(T_{1u})$ mode giving rise to more than one band. ^b These species are produced by X-irradiating the NaCl and KCl crystals containing $Co(CN)_6^{3-}$ and $Fe(CN)_6^{3-}$ ions.

References

Jain, S. C., Warrier, A. V. R., and Sehgal, H. K., J. Phys. C. 5, 1511 (1972).

[2] Jain. S. C., Warrier. A. V. R., and Sehgal. H. K., J. Phys. C. 6, 193 (1973).

PART III.

External Vibrational Frequencies of Impurity Centers Doped in Alkali Halide Crystals

	IABL	E 54a.	r req	uenci	es of e	externa	i moues	(in c	:m -)	aue i	00-0-0	enters	in aire	an namues	
Center	LiF	NaF	NaCl	NaBr	NaI	KCl	KBr	KI	RbCl	RbBr	CsCl	CsBr	CsI	Assignment	References
U(H ⁻)	^d 1024	^d 859.5	^b 563	^b 498	^d 426.8	^d 502	^d 444	^b 446	^d 476	^d 426	^d 424	^d 365.5	^d 283	Localized mode	[1. 2. 3. 4, 5]
U(D −)	^d 746	₫615	^b 408	^b 361	^d 318.5	^ь 360	^d 318		^b 340		^d 302	^d 263	^d 219	Localized mode	[1, 2, 3, 4, 5]
U1(H)							^d 794	^d 718						Localized mode	[6, 7]
U1(D)							^d 567.1	^d 518						Localized mode	[6. 7]
H- Na+						^d 531								Localized	[8]
						^d 490								Localized	[8]
,						^d 443								mode Localized mode	[8]
H− K+			^d 686						^d 493	^d 442				Localized	[8, 9]
			^d 514						^d 468	^d 387				mode Localized mode	[8, 9]
									^d 432					Localized mode	[8, 9]
H⁻−Rb+						^d 550	^d 489							Localized	[8]
						^d 511	^d 453	·						mode Localized	[8]
						^d 483	^d 427							mode Localized mode	[8]
H⁻−Cs+						^b 617.5								Localized	[9]
						^b 526								Localized	[9]
						^b 455.5								Localized mode	[9]
HF-						^b 519								Localized	[9]
						^b 493								mode Localized mode	[9]
HBr-						^d 525								Localized	[8]
						^d 494								mode Localized mode	[8]
HI-						^b 569								Localized	[9]
						^b 513								Localized	[9]
						^b 483								mode Localized mode	[9]

ABLE 54a.	Frequencies o	f external modes ((in cm ⁻¹)) due to i	U-centers i	n alkali halides
-----------	---------------	--------------------	------------------------	------------	-------------	------------------

^b Liquid air/nitrogen temperature.

^c Liquid helium temperature.

^d Temperature between 4.2 and 77 K.

- [1] Dotsch, H., Phys. Stat. Sol. 31, 649 (1969).
 [2] Barth, W., and Fritz, B., Phys. Stat. Sol. 19, 515 (1967).
 [3] Bauerle, D., and Fritz, B., Phys. Stat. Sol. 24, 207 (1967).
 [4] Fritz, B., Gross, U., and Bauerle, D., Phys. Stat. Sol. 11, 231
- (1965). [5] Dotsch. H., and Mitra. S. S., Phys. Rev. 178, 1492 (1969).

- [6] Durr. U., and Bauerle. D., Z. Physik 233, 94 (1970).
 [7] Bauerle. D., and Fritz, B., Phys. Stat. Sol. 29, 639 (1968).
 [8] Barth. W., and Fritz. B., Phys. Stat. Sol. 19, 515 (1967).
 [9] Mirlin. D. N., and Reshina, I. I., Sov. Phys. Solid State 8, 116 (1966).

TABLE 54b. Frequencie	s of external mod	es (in cm ⁻¹) due i	to point impurities	in alkali halides
-----------------------	-------------------	---------------------------------	---------------------	-------------------

Center	NaCl	NaBr	NaI	KCl	KBr	KI	RbCl	RbBr	Assignment	References
⁷ Li+	^d 154 ^d 141 ^d 114 ^c 43.7	 		 c 42.1	 ° 16.07				Lattice mode around impurity Lattice mode around impurity Lattice mode around impurity Resonant mode	[1] [1] [1] [1, 2, 3, 4]
6Li+	° 45.3			° 39.5	° 17.71				Resonant mode	[1, 2, 3, 4]
Na-						° 63			Resonant mode	[5]
K-	^d 143 ^d 122 ^d 87								Lattice mode around impurity Lattice mode around impurity Lattice mode around impurity	[1] [1] [1]
Cs-						° 83.5			Gap mode	[5]
⁶⁵ Cu⁺	° 48 ° 40 ° 23.57		 						$\begin{array}{c} {\rm A}_{1g},{\rm T}_{2g}\\ {\rm E}_{g}\\ {\rm Resonant\ mode} \end{array}$	[6] [6] [3]
Ag^+	187.5 183.7 183								$\begin{array}{c} \mathbf{A}_{1g},\mathbf{E}_g,\mathbf{T}_{2g}\\ \mathbf{A}_{1g},\mathbf{E}_g\\ \mathbf{E}_g\\ \mathbf{E}_g\end{array}$	[8] [8] [8]
	179.2 178.5 164.7								$\begin{bmatrix} A_{1g} \\ T_{2g} \\ A_{1g} \end{bmatrix}$	[8] [8] [8]
	163.8 159								T_{2g} E _g	[8] [8]
	156 155 143								$\begin{array}{c} 1_{2g} \\ T_{1u} \\ A_{1g} \end{array}$	[8] [1, 8] [8]
	142.5 142								$egin{array}{c} T_{2g} \ E_{g} \end{array}$	[8] [8]
	131 130.8 ^d 122.4								T_{1u} T_{2g}	[1, 8] [8] [8]
	^d 121.5 120.5								T_{2g} T_{1u}	[8] [1, 8]
	^d 119.7 ^d 113 ^d 111 5								E_g T_{2g}	[8] [8]
	^d 104.8 ^d 103.5								$\begin{array}{c} {\bf E}_g \\ {\bf A}_{1g}, {\bf T}_{2g} \\ {\bf E}_g \end{array}$	[8] [8]
	^d 99.5 ^d 59.4								\mathbf{E}_{g}^{g} \mathbf{E}_{g}	[8] [8]
	 d 53	 48	 36.7	 ° 38.6	 ° 33.5	 ° 17.5	° 36.1 ° 26.4 ° 21.4		Resonant mode Resonant mode Resonant mode	[1, 2, 7, 8] $[1, 2, 7, 8]$ $[1, 2, 7, 8]$

Center	NaCl	NaBr	NaI	KCl	KBr	KI	RbCl	RbBr	Assignment	References
Mg ²⁺	120									[9]
Ca ²⁺	110									[9]
Tl+				^a 138					E_q	ſioj
				^a 135	a 123	a 113			E	[10]
				a 113	a 109				E _a	[10]
				^a 110					T_{2a}	[10]
				^a 80	a 82				E_a, A_{1a}	[10]
					a 71				E _a	[10]
					a 70				T_{2a}	[10]
						a 67			$T_{1\nu}$	[10]
						^a 62			T ₂₀	[10]
						a 60			Ea	r10
						^a 51			E _a	[10]
						^a 50			T_{a}	[10]
									/	L- ,
F-	^d 144					78			Gap mode	[2]
-	d 112					70			Gap mode	[2]
	^d 59.5									[1]
	0,110									
Cl-						77			Gap mode	[2]
Br-	^d 140									[1]
	d 117									
	d 85									
	00					73.8			Gap mode	[2]
							1			[-]
I-	^d 140									[1]
	^d 120									
	d 71									
	• -									[*]

TABLE 54b. Frequencies of external modes (in cm^{-1}) due to point impurities in alkali halides – Continued

^b Liquid air/nitrogen temperature.

^c Liquid helium temperature.

^d Temperature between 4.2 and 77 K.

- [1] Macdonald, H. F., Klein, M. V., and Martin, T. P., Phys. Rev. 177, 1292 (1969).
- Genzel, L., Optical Properties of Solids, Ed. S. Nudelman and S. S. Mitra, Plenum Press (1969) pp. 453-487.
 Kirby, R. D., Nolt, I. G., Alexander, R. W., and Sievers, A. J., Phys. Rev. 168, 1057 (1968).
 Kirbu, P. D. Hurghe, A. F. and Siever, A. L. Ding, D.
- [4] Kirby, R. D., Hughes, A. E., and Sievers, A. J., Phys. Rev. 2B, 481 (1970).
- [5] Sievers, A. J., Localized Excitations in Solids, Ed. R. F. Wallis, Plenum Press (1969) pp. 27-45.
- [6] Ganguly, B. N., Kirby, R. D., Klein, M. V., and Montgomery, G. P., Jr., Phys. Rev. Letters 28, 307 (1972).
- [7] Sievers, A. J., Phys. Rev. Letters 13, 310 (1964).
 [8] Montgomery, G. P., Jr., Klein, M. V., Ganguly, B. N., and Wood, R. F., Preprint (1972).
- [9] Weber, R., and Siebert, F., Z. Physik 213, 273 (1968).
 [10] Harley, R. T., Page, J. B., Jr. and Walker, C. T., Phys. Rev. Letters 23, 922 (1969).

Center	NaCl	NaBr	NaI	KCl	KBr	KI	RbCl	RbBr	RbI	Assignment	References
NCO-	^b 86	^b 165 ^b 136 ^b 127 ^b 123	^b 172 ^b 105 ^b 91 ^b 35	^b 194 ^b 147 ^b 115 ^b 52	^b 183.6 ^b 167.5 ^b 157 ^b 122	^b 172.5 ^b 152.5 ^b 133 ^b 119	^b 109 ^b 101 ^b 87 ^b 36	^b 153.6 ^b 141 ^b 31	^b 114.5 ^b 101 ^b 87 ^b 62		[1] [1] [1] [1]
		^b 117 ^b 106 ^b 90 			^b 105 ^b 99.7 ^b 97.4 ^b 84 ^b 79 ^b 41	^b 82.2 ^b 77.8 ^b 59 ^b 31 			^b 57 ^b 24 		(1) (1) (1) (1) (1) (1)
N ₃ -		^b 124	^b 105 		^ь 178 ^ь 97	^b 145 ^b 80		^b 155	^b 126		[1] [1]
BO ₂ -					^ь 169 ^ь 102	^ь 139 ^ь 88					[1] [1]
NO ₂ -	 	 	 	 	 	^d 89.2 ^d 88 ^d 79.4 ^d 78 ^d 72.8 ^d 71.1	 	 	 	Gap mode Gap mode Gap mode Gap mode Gap mode Gap mode	[2] [2] [2] [2] [2] [2]
NO ₃ -	 	 	 		^b 175 ^b 143 ^b 103 ^b 93	^b 182 ^b 111 ^b 89 ^b 74	 			 	[1] [1] [1] [1]
CN-	^b 189 ^b 147 ^b 132 <u>b</u> 45 	^b 197 ^b 154 ^b 122 ^b 114 ^b 109 ^b 35 	^b 165 ^b 126 ^b 93 ^b 26 	 c 12	 c 12	 c 83 c 68 c 43 c 11	 a 19	 	 	 Gap mode Translational mode Librational mode	$[1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [3, 4] \\ [3] \\ [1, 3] \\ [1, 3, 5] $

TABLE 55a. Frequencies of external modes (in cm^{-1}) due to molecular impurities in alkali halides

^b Liquid air/nitrogen temperature.

^c Liquid helium temperature. ^d Temperature between 4.2 and 77 K.

References

- [1] Cundill, M. A., and Sherman, W. F., Phys. Rev. Letters 16, [1] Cunani, M. A., and Sherman, W. Y., Phys. Letters 570 (1966).
 [2] Renk, K. F., Phys. Letters 14, 281 (1965).
 [3] Seward, W. D., and Narayanamurti, V., Phys. Rev. 148, 463
- (1966).

[4] Lytle, C. D., and Sievers, A. J., Bull. Am. Phys. Soc. 10, 616

(1965).
 [5] Narayanamurti, V., and Pohl, R. O., Rev. Mod. Phys. 42, 201 (1970).

Center	NaCl	NaI	KCl	KBr	KI	RbCl	CsBr	Assignment	References
OH-	° 390	427	° 297.5	° 312.7	° 284	° 272	289	Librational mode	[1, 2, 3]
					° 86.9			Gap mode	[4]
					° 86.2			Gap mode	[4]
				° 86	° 77				[4, 5]
				° 68	° 69.5				[4, 5]
	° 12.2		° 32	° 37.5		° 30		Non-Devonshire line	[4, 6, 7]
	° 22								[7]
	° 15.6								[7]
	° 9.3								[7]
	° 2								[7]
OD-			° 232	° 236.3	° 215			Librational mode	[1, 2]
				° 86					[5]
				° 68					[5]
				° 35				Non-Devonshire line	[5]

TABLE 55b. Frequencies of external modes (in cm^{-1}) due to OH^{-} and OD^{-} in alkali halides

^a Room temperature. ^b Liquid air/nitrogen temperature. ^c Liquid helium temperature.

^d Temperature between 4.2 and 77 K.

- Klein, M. V., Wedding, B., and Levine, M. A., Phys. Rev. 180, 902 (1969).
 Harrison, J. P., and Luty, F., Int. Conf., Color Centers in Alkali Halides, Rome (1968).
 Wedding, B., and Klein, M. V., Phys. Rev. 177, 1274 (1969).
 Renk, K. F., Phys. Letters 20, 137 (1966).

- [5] Bosomworth, D. R., Solid State Comm. 5, 681 (1967).
 [6] Chau, C. K., Klein, M. V., and Wedding, B., Phys. Rev. Letters 17, 371 (1967).
 [7] Kirby, R. D., Hughes, A. E., and Sievers, A. J., Phys. Rev. B2, 481 (1970).

FORM NBS-114A (1-71)	••••						
U.S. DEPT. OF COMM.	1. PUBLICATION OR REPORT NO.	2. Gov't Accession	3. Recipient'	s Accession No.			
SHEET	NBS-NSRDS-52			and the second se			
4. TITLE AND SUBTITLE		<u> </u>	5. Publicatio	on Date			
Electronic Absorpti	Tulu 1074						
Data of Atomic and	6. Performing	Treanization Code					
Crystals							
7			0 Desferries	Oreceiretien			
7. AUTHOR(S)			8. Performing	g Organization			
S.C. Jain, A.V.R. V	10. Project/7	Fask/Work Unit No					
7. PERFORMING ORGANIZAT	ION NAME AND ADDRESS						
NATIONAL BU	UREAU OF STANDARDS		11 6				
DEPARTMENT	T OF COMMERCE		The Contract/	Grant No.			
WASHINGTON	, D.C. 20234						
12. Sponsoring Organization Nat	me and Address		13. Type of F	Report & Period			
	ine and riddress		Covered	cepore a r errou			
			Final				
Same as	No. 9.		14. Sponsorin	e Agency Code			
15. SUPPLEMENTARY NOTES			<u> </u>				
Library	of Congress Catalog Card N	umber: 74-60	0010				
16. ABSTRACT (A 200-word or	less factual summary of most significant i	nformation. If docume	nt includes a s	significant			
Spectral data for I	more than 70 atomic and molec	ular ions doped	l in alkal	i halide			
crystals are tabula	ated. The tables include ele	ctronic absorpt	tion data,	listings			
of internal vibrat	ional frequencies of doped co	mplex ions, and	tabulatio	ns of the			
frequencies of exte	ornal modes. The data that a	propriate the tr	ables were	colocted			
trequencies of external modes. The data that appear in the tables were selected							
on the basis of the	e consistency among different	authors, the f	types of i	nstruments,			
on the basis of the	e consistency among different e of measurement. In additic	authors, the factor authors, the factor authors and the state of the state.	types of i the table	serected nstruments, s include			
on the basis of the and the temperature the spectroscopic a	e consistency among different e of measurement. In additic assignments given by the auth	authors, the factor of the target of the target of the data, nors in the reference of the target of ta	types of i the table erences ci	s include ted.			
on the basis of the and the temperature the spectroscopic a	e consistency among different e of measurement. In additic assignments given by the auth	authors, the factor of the target of the target of the data, nors in the refe	types of i the table erences ci	nstruments, s include ted.			
on the basis of the and the temperature the spectroscopic a	e consistency among different e of measurement. In additic assignments given by the auth	authors, the ta on to the data, ors in the refe	types of i the table erences ci	selected nstruments, s include ted.			
on the basis of the and the temperature the spectroscopic a	e consistency among different e of measurement. In additic assignments given by the auth	authors, the ta n to the data, nors in the refe	types of i the table erences ci	nstruments, s include ted.			
on the basis of the and the temperature the spectroscopic a	e consistency among different e of measurement. In additio assignments given by the auth	authors, the ta n to the data, nors in the refe	types of i the table erences ci	nstruments, s include ted.			
on the basis of the and the temperature the spectroscopic a	e consistency among different e of measurement. In additic assignments given by the auth	authors, the ta on to the data, ors in the refe	types of i the table erences ci	selected nstruments, s include ted.			
on the basis of the and the temperature the spectroscopic a	e consistency among different e of measurement. In additic assignments given by the auth	authors, the ta n to the data, nors in the refe	types of i the table erences ci	nstruments, s include ted.			
on the basis of the and the temperature the spectroscopic a	e consistency among different e of measurement. In additic assignments given by the auth	authors, the ta n to the data, nors in the refe	types of i the table erences ci	nstruments, s include ted.			
on the basis of the and the temperature the spectroscopic a	e consistency among different e of measurement. In additic assignments given by the auth	authors, the ta authors, the form to the data, fors in the refe	types of i the table erences ci	nstruments, s include ted.			
on the basis of the and the temperature the spectroscopic a	e consistency among different e of measurement. In additic assignments given by the auth	authors, the ta n to the data, nors in the refe	types of i the table erences ci	nstruments, s include ted.			
on the basis of the and the temperature the spectroscopic a	e consistency among different e of measurement. In additic assignments given by the auth	authors, the ta n to the data, nors in the refe	types of i the table erences ci	nstruments, s include ted.			
on the basis of the and the temperature the spectroscopic a	e consistency among different e of measurement. In additic assignments given by the auth	authors, the ta n to the data, nors in the refe	types of i the table erences ci	nstruments, s include ted.			
on the basis of the and the temperature the spectroscopic a	e consistency among different e of measurement. In additic assignments given by the auth	authors, the ta n to the data, nors in the refe	types of i the table erences ci	nstruments, s include ted.			
on the basis of the and the temperature the spectroscopic a	e consistency among different e of measurement. In additic assignments given by the auth	authors, the ta n to the data, nors in the refe	types of i the table erences ci	nstruments, s include ted.			
on the basis of the and the temperature the spectroscopic a	e consistency among different e of measurement. In additic assignments given by the auth	authors, the ta n to the data, nors in the refe	types of i the table erences ci	nstruments, s include ted.			
on the basis of the and the temperature the spectroscopic a	e consistency among different e of measurement. In additic assignments given by the auth	authors, the tage of the tage of the tage of the data, nors in the reference of the tage of ta	types of i the table erences ci	selected nstruments, s include ted.			
on the basis of the and the temperature the spectroscopic a 17. KEY WORDS (Alphabetical	e consistency among different e of measurement. In additic assignments given by the auth order, separated by semicolons)	authors, the ta n to the data, fors in the refe	types of i the table erences ci	internal			
 on the basis of the and the temperature the spectroscopic a the spectroscopic a 17. KEY WORDS (Alphabetical Atomic ions; doped 	order, separated by semicolons) alkali halide crystals; exte	ernal vibration	types of i the table erences ci	internal			
 on the basis of the and the temperature the spectroscopic a 17. KEY WORDS (Alphabetical Atomic ions; doped vibrational modes; 	order, separated by semicolons) alkali halide crystals; exte molecular ions.	ernal vibration	al modes;	nstruments, s include ted.			
 on the basis of the and the temperature the spectroscopic a 17. KEY WORDS (Alphabetical Atomic ions; doped vibrational modes; 18. AVAILABILITY STATEMENT 	order, separated by semicolons) alkali halide crystals; exter molecular ions.	ernal vibration	al modes;	internal			
 on the basis of the and the temperature the spectroscopic a speco	order, separated by semicolons) alkali halide crystals; exte molecular ions.	ernal vibrationa 19. SECURIT (THIS RE)	al modes; Y CLASS PORT)	internal			
 on the basis of the and the temperature the spectroscopic a the spectroscopic	order, separated by semicolons) alkali halide crystals; exte molecular ions.	ernal vibration	al modes; Y CLASS PORT)	internal 21. NO. OF PAGES 59			
 on the basis of the and the temperature the spectroscopic a the spectroscopic	order, separated by semicolons) alkali halide crystals; exter molecular ions.	ernal vibrationa 19. SECURIT (THIS RE: UNCL ASS	al modes; Y CLASS PORT)	internal 21. NO. OF PAGES 59			
 on the basis of the and the temperature the spectroscopic a s	order, separated by semicolons) alkali halide crystals; exter molecular ions.	ernal vibrationa 19. SECURIT (THIS RE UNCL ASS 20. SECURIT (THIS DA	al modes; Y CLASS PORT) SIFIED Y CLASS	selected nstruments, s include ted. internal 21. NO. OF PAGES 59 22. Price			
 on the basis of the and the temperature the spectroscopic at th	order, separated by semicolons) alkali halide crystals; externo molecular ions.	ernal vibrationa 19. SECURIT (THIS RE: UNCL ASS 20. SECURIT (THIS PA	al modes; Y CLASS PORT) SIFIED Y CLASS GE)	internal 21. NO. OF PAGES 59 22. Price 95 cents			
 on the basis of the and the temperature the spectroscopic at th	order, separated by semicolons) alkali halide crystals; externo molecular ions.	ernal vibrationa 19. SECURIT (THIS RE UNCL ASS 20. SE CURIT (THIS PA UNCL ASS	al modes; Y CLASS PORT) SIFIED Y CLASS GE) SIFIED	<pre>selected nstruments, s include ted. internal 21. NO. OF PAGES 59 22. Price 95 cents</pre>			

Announcement of New Publications in National Standard Reference Data Series

Superintendent of Documents, Government Printing Office, Washington, D.C. 20402

Dear Sir:

Please add my name to the announcement list of new publications to be issued in the series: National Standard Reference Data Series-National Bureau of Standards.

Name			
Company			,
Address			
City	State	Zip Code	

(Notification key N-337)

U. S. GOVERNMENT PRINTING OFFICE : 1974 O - 532-811

NBS TECHNICAL PUBLICATIONS

PERIODICALS

JOURNAL OF RESEARCH reports National Bureau of Standards research and development in physics, mathematics, and chemistry. Comprehensive scientific papers give complete details of the work, including laboratory data, experimental procedures, and theoretical and mathematical analyses. Illustrated with photographs, drawings, and charts. Includes listings of other NBS papers as issued.

Published in two sections, available separately:

• Physics and Chemistry (Section A)

Papers of interest primarily to scientists working in these fields. This section covers a broad range of physical and chemical research, with major emphasis on standards of physical measurement, fundamental constants, and properties of matter. Issued six times a year. Annual subscription: Domestic, \$17.00; Foreign, \$21.25.

• Mathematical Sciences (Section B)

Studies and compilations designed mainly for the mathematician and theoretical physicist. Topics in mathematical statistics, theory of experiment design, numerical analysis, theoretical physics and chemistry, logical design and programming of computers and computer systems. Short numerical tables. Issued quarterly. Annual subscription: Domestic, \$9.00; Foreign, \$11.25.

DIMENSIONS, NBS

The best single source of information concerning the Bureau's measurement, research, developmental, cooperative, and publication activities, this monthly publication is designed for the layman and also for the industry-oriented individual whose daily work involves intimate contact with science and technology —for engineers, chemists, physicists, research managers, product-development managers, and company executives. Annual subscription: Domestic, \$6.50; Foreign, \$8.25.

NONPERIODICALS

Applied Mathematics Series. Mathematical tables, manuals, and studies.

Building Science Series. Research results, test methods, and performance criteria of building materials, components, systems, and structures.

Handbooks. Recommended codes of engineering and industrial practice (including safety codes) developed in cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications. Proceedings of NBS conferences, bibliographies, annual reports, wall charts, pamphlets, etc.

Monographs. Major contributions to the technical literature on various subjects related to the Bureau's scientific and technical activities.

National Standard Reference Data Series. NSRDS provides quantitative data on the physical and chemical properties of materials, compiled from the world's literature and critically evaluated.

Product Standards. Provide requirements for sizes, types, quality, and methods for testing various industrial products. These standards are developed cooperatively with interested Government and industry groups and provide the basis for common understanding of product characteristics for both buyers and sellers. Their use is voluntary.

Technical Notes. This series consists of communications and reports (covering both other-agency and NBS-sponsored work) of limited or transitory interest.

Federal Information Processing Standards Publications. This series is the official publication within the Federal Government for information on standards adopted and promulgated under the Public Law 89–306, and Bureau of the Budget Circular A–86 entitled, Standardization of Data Elements and Codes in Data Systems.

Consumer Information Series. Practical information, based on NBS research and experience, covering areas of interest to the consumer. Easily understandable language and illustrations provide useful background knowledge for shopping in today's technological marketplace.

BIBLIOGRAPHIC SUBSCRIPTION SERVICES

The following current-awareness and literature-survey bibliographies are issued periodically by the Bureau:

Cryogenic Data Center Current Awareness Service Publications and Reports of Interest in Cryogenics) A literature survey issued weekly Annual subscription : Domestic, \$20.00; foreign, \$25.00.

Liquefied Natural Gas. A literature survey issued quarterly. Annual subscription \$20,00

Superconducting Devices and Materials. A hterature survey issued quarterly Annual subscription: \$20.00. Send subscription orders and remittances for the preceding bibliographic services to the U.S. Department of Commerce, National Technical Information Service, Springfield, Va. 22151.

Electromagnetic Metrology Current Awareness Service Abstracts of Selected Articles on Measurement Techniques and Standards of Electromagnetic Quantities from D-C to Millimeter Wave Frequencies Issued monthly Annual subscription: \$100.00 Special rates for multi-subscriptions). Send subscription order and remittance to the Electromagnetic Metrology Information Center, Electromagnetic Division National Bureau of Standards Boulder, Colo. 80302

Order NBS publications (except Bibliographic Subscription Services from: Superintendent of Documents, Government Printing Office, Washington, D.C. 20402.

U.S. DEPARTMENT OF COMMERCE National Bureau of Standards Winkigt n DC 20134

Penalty for Private Use, \$300

