

Radiation Chemistry of Ethanol: A Review of Data on Yields, Reaction Rate Parameters, and Spectral Properties of Transients

DEPARTMENT OF COMMERCE National Bureau of Standards

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards' was established by an act of Congress March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government. (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau consists of the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Institute for Computer Sciences and Technology, and the Office for Information Programs.

THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of a Center for Radiation Research, an Office of Measurement Services and the following divisions:

Applied Mathematics — Electricity — Mechanics — Heat — Optical Physics — Nuclear Sciences² — Applied Radiation² — Quantum Electronics³ — Electromagnetics³ — Time and Frequency^{*} — Laboratory Astrophysics^{*} — Cryogenics^{*}

THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to improved methods of measurement, standards, and data on the properties of well-characterized materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; and develops, produces, and distributes standard reference materials. The Institute consists of the Office of Standard Reference Materials and the following divisions:

Analytical Chemistry --- Polymers --- Metallurgy --- Inorganic Materials --- Reactor Radiation — Physical Chemistry.

THE INSTITUTE FOR APPLIED TECHNOLOGY provides technical services to promote the use of available technology and to facilitate technological innovation in industry and Government; cooperates with public and private organizations leading to the development of technological standards (including mandatory safety standards), codes and methods of test; and provides technical advice and services to Government agencies upon request. The Institute consists of a Center for Building Technology and the following divisions and offices:

Engineering and Product Standards - Weights and Measures - Invention and Innovation — Product Evaluation Technology — Electronic Technology — Technical Analysis - Measurement Engineering - Structures, Materials, and Life Safety - Building Environment ' — Technical Evaluation and Application ' — Fire Technology.

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides technical services designed to aid Government agencies in improving cost effectiveness in the conduct of their programs through the selection, acquisition, and effective utilization of automatic data processing equipment; and serves as the principal focus within the executive branch for the development of Federal standards for automatic data processing equipment, techniques, and computer languages. The Institute consists of the following

Computer Services - Systems and Software - Computer Systems Engineering - Information Technology.

THE OFFICE FOR INFORMATION PROGRAMS promotes optimum dissemination and accessibility of scientific information generated within NBS and other agencies of the Federal Government; promotes the development of the National Standard Reference Data System and a system of information analysis centers dealing with the broader aspects of the National Measurement System; provides appropriate services to ensure that the NBS staff has optimum accessibility to the scientific information of the world. The Office consists of the following

Office of Standard Reference Data - Office of Information Activities - Office of Technical Publications - Library - Office of International Relations.

¹Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted; mailing address Washington, D.C. 20234 Part of the Center for Radiation Research

ocated at Boulder, Colorado 8030

^{*} Part of the Center for Building Technology.

Radiation Chemistry of Ethanol: A Review of Data on Yields, Reaction Rate Parameters, and Spectral Properties of Transients

Gordon R. Freeman

Department of Chemistry University of Alberta Edmonton T6G 2G2, Canada

Prepared at the

Radiation Chemistry Data Center, Radiation Laboratory, University of Notre Dame, Notre Dame, Ind. 46556

U.S. DEPARTMENT OF COMMERCE, Frederick B. Dent, Secretary NATIONAL BUREAU OF STANDARDS, Richard W. Roberts, Director

Issued February 1974

Library of Congress Catalog Number: 73-600192

NSRDS-NBS 48

Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. (U.S.), 48, 43 pages (Feb. 1974) CODEN: NSRDAP

C 1974 by the Secretary of Commerce on Behalf of the United States Government

U.S. GOVERNMENT PRINTING OFFICE WASHINGTON: 1974

Foreword

The National Standard Reference Data System provides access to the quantitative data of physical science, critically evaluated and compiled for convenience and readily accessible through a variety of distribution channels. The System was established in 1963 by action of the President's Office of Science and Technology and the Federal Council for Science and Technology, and responsibility to administer it was assigned to the National Bureau of Standards.

NSRDS receives advice and planning assistance from a Review Committee of the National Research Council of the National Academy of Sciences-National Academy of Engineering. A number of Advisory Panels, each concerned with a single technical area, meet regularly to examine major portions of the program, assign relative priorities, and identify specific key problems in need of further attention. For selected specific topics, the Advisory Panels sponsor subpanels which make detailed studies of users' needs, the present state of knowledge, and existing data resources as a basis for recommending one or more data compilation activities. This assembly of advisory services contributes greatly to the guidance of NSRDS activities.

The System now includes a complex of data centers and other activities in academic institutions and other laboratories. Components of the NSRDS produce compilations of critically evaluated data, reviews of the state of quantitative knowledge in specialized areas, and computations of useful functions derived from standard reference data. The centers and projects also establish criteria for evaluation and compilation of data and recommend improvements in experimental techniques. They are normally associated with research in the relevant field.

The technical scope of NSRDS is indicated by the categories of projects active or being planned: nuclear properties, atomic and molecular properties, solid state properties, thermodynamic and transport properties, chemical kinetics, and colloid and surface properties.

Reliable data on the properties of matter and materials is a major foundation of scientific and technical progress. Such important activities as basic scientific research, industrial quality control, development of new materials for building and other technologies, measuring and correcting environmental pollution depend on quality reference data. In NSRDS, the Bureau's responsibility to support American science, industry, and commerce is vitally fulfilled.

RICHARD W. ROBERTS, Director

Preface

This report is one of a series of data publications on radiation chemistry; the aim of the series is to compile, evaluate, and present the numerical results on processes occurring in systems which have been subjected to ionizing radiation. Various kinds of data are important in radiation chemistry. The quantities which were measured first were the observed radiation yields or G values (molecules formed or destroyed per 100 eV). Various indirect methods based on G values have been used to determine yields of transient species and relative rates of reactions. The spectral properties (optical, electron spin resonance) of transients have provided a direct method for their identification, and rates of the very fast reactions of transients which occur in irradiated systems have been measured directly by spectroscopic methods. Conductivity and luminescence methods have also provided a means of measuring properties of transients and their kinetics. Some reactions which occur in irradiated systems have also been studied by other methods, such as photochemistry, electric discharge, ultrasonics, chemical initiation, electron impact, etc. The emphasis in these publications is on the data of radiation chemistry, but where other pertinent data exist, they are included.

The data of radiation chemistry are voluminous; thousands of systems have been investigated. As a result there are certain collections, e.g. rate constants of particular types of reactions or certain properties of transients, for which tabulations of the data are considered essential, but for which critical assessment of each value is impossible. On the other hand, certain systems and properties have been studied so extensively that critical examination of these data is desirable and timely. Authors of this series of data publications have been asked to evaluate the extent to which the data can be critically assessed, to describe their criteria for evaluation, and to designate preferred values whenever possible.

		Page
Foi	reword	iii
Pre	eface	iv
1.	Assessment Criteria and Data Code Numbers	1
2.	Primary and Final Product Yields	2
	2.1. Gas Phase	2
	References	3
	Data Sheets	4
	Figures	5
	2.2. Liquid Phase	6
	References	7
	Data sheets	8
	Figures	11
	2.3. Solid Phase	11
	References	11
	Data sheets	12
3.	Reaction Rate Parameters	13
	Data sheets	14
4.	Spectroscopic Parameters	25
	4.1. Optical Absorption Spectra	25
	4.2. ESR Absorption Spectra	26
	References	26
	Data sheets	27
	Figures	30

Contents

List of Data Sheets

Yields

FPg1	Ethanol gas.	Final Product Yields	4
PPg1	Ethanol gas.	Primary Product Yields	4
FP/1	Ethanol liquid.	Final Product Yields	8
FPl2	Ethanol liquid.	Final Product Yields	9
PP/1	Ethanol liquid.	Primary Product Yields	9
PP/2	Ethanol liquid.	Primary Product Yields	10
PPl3	Ethanol liquid.	Free Ion Yields	10
FPs1	Ethanol solid.	Final Product Yields	12
PPs1	Ethanol solid.	Primary Product Yields	13
PPs2	Ethanol solid.	Primary Product Yields	13

Rate Parameters

Rg1	Ethanol gas.	C_2H_5OH*	14
Rg2	Ethanol gas.	$e^{-} + C_2 H_5 OH$	14
Rg3	Ethanol gas.	$e^- + (C_2H_5OH)_nH^+$	14
Rg4	Ethanol gas.	$e^- + CH_3 CHO$	15
Rg5	Ethanol gas.	$CH_3 CHOH + CH_3 CHOH$	15
Rg6	Ethanol gas.	$C_2H_5O + C_2H_5O$	15
Rg7	Ethanol gas.	$H + C_2 H_5 OH$	16
Rg8	Ethanol gas.	$CH_3 + C_2H_5OH$	16
Rg9	Ethanol gas.	$O(^{3}P) + C_{2}H_{5}OH$	17

			Page
R g10	Ethanol gas.	$(C_2H_5OH)_2H^+$	17
R g11	Ethanol gas.	CH ₃ CHOH, ·CH ₂ CH ₂ OH, CH ₃ CH ₂ O·	17
$R_g 12$	Ethanol gas.	$CH_2O + C_2H_5OH$	18
R /1	Ethanol liquid.		18
R /2	Ethanol liquid.	e_{solv}^- + solute	19
R/3	Ethanol liquid.	e_{soly}^- + solute	20
R <i>l</i> 4	Ethanol liquid.	Aromatic anions $+ C_2 H_5 OH$	20
R /5	Ethanol liquid.	$RO + RO^{-}$	21
R /6	Ethanol liquid.	$C_2H_5OH_2^+ + B_{\dots}$	21
R <i>l</i> 7	Ethanol liquid.	$CH_3 CHOH + CH_3 CHOH$	22
R /8	Ethanol liquid.	$H + C_2 H_5 OH$	23
R /9	Ethanol liquid.	$CH_3 + C_2H_5OH$	24
R/10	Ethanol liquid.	misc	24
R s1	Ethanol solid.	<i>e</i> ⁻ _{s olv}	25

Spectroscopic Parameters

Sl1	Properties derived from optical absorption spectra: e_{solv}	27
Ss1	Properties derived from optical absorption spectra: e_{trap}	28
Sl2	Properties derived from optical absorption spectra: CH ₃ CHOH, CH ₃ CHO-	28
Sl3	Properties derived from esr spectra: CH ₃ CHOH, CH ₂ CH ₂ OH	29
Ss2	Properties derived from esr spectra: e_{trap}	29

List of Figures

$FP_{g1}, 2$	Product yields from the γ -radiolysis of ethanol vapor as a	
	function of temperature	5
FPg3	Product yields from the γ -radiolysis of ethanol vapor as a	
-	function of dose at 150°C	5
FPg4	Product yields from the γ -radiolysis of ethanol vapor as a	
	function of pressure at 150°C	5
FPg5	Product yields from the radiation sensitized pyrolysis of	
	ethanol, as a function of pressure	6
FP/1	Yields of hydrogen and acetaldehyde as functions of absorbed	
	γ -ray dose in liquid ethanol at 22 ± 4°C	11
FP/2	Yield of hydrogen from the γ -radiolysis of liquid ethanol at	
	different temperatures	11
Sl, s1	Optical absorption spectra of e_{solv}^- in liquid ethanol at	
	~ 298 K, 195 K, and in the solid at 77 K	30
Sl2	Optical absorption spectra of CH ₃ CHOH and CH ₃ CHO-	30
Sl3	Optical absorption spectra of e_{soly}^- and Cl_{2soly}^- , and $CH_3CHO_{soly}^-$	31
Sl4	First derivatives of esr spectra of CH ₃ CHOH and ·CH ₂ CH ₂ OH	31
Ss2	Optical properties of y-irradiated ethanol at 78 K	31
Ss3, 4	Optical absorption spectra of e_{trap}^- in ethanol glass	32
Ss5	First derivatives of esr spectra of γ -irradiated ethanol at 77 K	33
Ss6	ESR spectra of e_{trap}^- in ethanol glass	33

Radiation Chemistry of Ethanol: A Review of the Data on Yields, Reaction Rate Parameters, and Spectral Properties of Transients*

Gordon R. Freeman

Chemistry Dept., University of Alberta, Edmonton T6G 2G2, Canada

Submitted Feb. 9, 1971; Revised Sept. 15, 1972

The yields (G) for products and intermediates formed by irradiation of ethanol, in the solid, liquid and gaseous state, have been compiled and reviewed. Rates of reactions of transient ions and radicals and spectroscopic parameters, including optical and esr spectra, are also included.

Key Words: Chemical kinetics; data compilation; ethanol; G; radiation chemistry; rates; review; spectra.

1. Assessment Criteria and Data Code Numbers

When the investigation of a kinetic system is in the initial or the final stages, the experimental data can be evaluated according to mainly physical criteria. However, at intermediate stages a major criterion for evaluation is the extent to which the data fit a reaction mechanism.

The investigation of the liquid phase radiolysis of ethanol is at an intermediate stage, while the gas and solid phase studies are at late-initial stages. Matching the experimental results to a mechanism is therefore of great importance for the liquid phase; proposed mechanisms are useful but not stringent criteria for the evaluation of the gas and solid phase results.

Reaction mechanisms in the radiolysis of alcohols have recently been reviewed (700239) and do not require extensive discussion here. Relevant segments of mechanisms are presented where needed in the following sections.

Product yields are reported as G values, the number of molecules formed per 100 eV of energy absorbed by the system. The yields are usually lower when the system contains impurities. For this reason higher yields obtained at low doses are generally favored. A second criterion is self consistency; the yields of the various products should give a material balance.

In assessing rate constants, values obtained from pulse radiolysis are usually favored over those obtained from competition kinetics. Furthermore, the half life of solvated electrons is decreased by the presence of impurities, so the longer values of $t_{1/2}(e_{solv} \rightarrow RO_{solv} + H)$ are probably more accurate than the shorter ones.

The text of each chapter should be read before the data sheets and figures of that chapter are used.

The data sheets and figures are numbered in such a way that additions to the compilation can conveniently be made in future revisions. In a code number such as FPg1 the capital letters indicate the type of data, in this case Final Product Yields, the small letter indicates the phase, in this case gas, and the number is that of the sheet or figure. The codes are:

FP, final product yields; PP, primary product yields;

R, reaction rate parameters; S, spectroscopic parameters;

g, gas; l, liquid; s, solid.

^{*} This is a data review prepared for, and in cooperation with, the Radiation Chemistry Data Center of the Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556. The Laboratory is operated under contract with the Atomic Energy Commission. The work of the Center is supported in part by the National Bureau of Standards, Office of Standard Reference Data.

The term "primary product" is ambiguous in common usage and therefore requires definition. In the present data review a primary product is a transient intermediate or the final product of an "unscavengable" reaction. Its yield is in most cases not measured directly, but is derived from scavenging studies and a reaction mechanism.

The reference numbers are the code numbers assigned by the Radiation Chemistry Data Center at the University of Notre Dame.

Reference

700239 Freeman, G.R., ACTIONS CHIM. BIOL. RADIATIONS 14: 73-134 (1970).

2. Primary and Final Product Yields

2.1. Gas Phase

The product yields from ethanol vapor depend on the temperature, pressure and radiation dose (680521, 680522, 700231). Different reaction conditions have been used in different laboratories, so a comparison of results obtained by different workers is not straightforward. Reaction conditions are included in the tables.

One persistent difficulty with gas phase radiation chemistry is that no general agreement has been reached about a standard dosimeter. The Fricke dosimeter is reproducible, but its density is several orders of magnitude greater than that of vapors at the pressures usually used. The extrapolation from energy absorption in a Fricke solution to that in a low density vapor is somewhat uncertain, because the energy spectrum of the radiation (primary plus scattered) incident upon the samples is not accurately known in most laboratories.

The nitrogen yield from nitrous oxide has been used as a dosimeter, but the value of $G(N_2)$ depends upon reaction conditions and is not always reproducible (610103, 660434, 660747, 670027, 680318, 680403).

The saturation current method (620115, 640299) is good. It requires an accurate value of W, the average amount of energy expended in the gas per ion pair formed. The reproducibility of W values from one laboratory to the next is within about 4% (570050, 580061, 640177, 650795, 670437, 680390, 680843, 680844, 700510, 710122).

The radiation induced polymerization of acetylene, with $G(-C_2H_2) = 71.9$ (550037), is sometimes used.

A convenient and dependable gas phase dosimeter for γ -radiation in systems containing light atoms (H,C,N,O) is several hundred torr of ethylene at room temperature (~ 25°C). To obtain the same balance between secondary electrons from the cell walls and direct absorption from the γ rays, the pressure of ethylene chosen is that which gives an electron density the same as the sample under investigation. The value $G(H_2) = 1.31$ for ethylene at 25°C is probably accurate to within three percent (620115, 670149, 670398).

Causes of error in addition to dosimetry are likely to be impurities in the original ethanol and difficulties with the methods of microanalysis.

Product yields from the gas phase radiolysis of ethanol vapor at different temperatures, irradiation doses and pressures are given in the following data sheets and figures.

As the temperature is increased from 60°C to about 150°C most of the product yields increase gently and tend to reach plateau values (figs. FPg1 and 2). At temperatures above 200°C chain reactions begin to occur, causing a general increase in product yields. However, the butanediol yield decreases (fig. FPg2) due to the relative instability of its precursor radicals CH_3CHOH at high temperatures.

At 150°C, where chain reactions are negligible, the yields of hydrogen and acetaldehyde decrease with increasing dose (fig. **FP**g3). Those of methane and carbon monoxide increase slightly with dose (fig. **FP**g3). The yields of ethylene (1.1), ethane (0.3), butanediol (3.1), propanediol (0.4) and diethyl ether (0.15) were independent of dose up to 5 x 10²⁰ eV/g (680521).

The yields of hydrogen, acetaldehyde and ethylene at 150° C decrease with increasing ethanol pressure (fig. FPg4). The G values of methane (3.3), ethane (0.3), and carbon monoxide (0.7) are independent of pressure. Those of 2,3-butanediol (3.1) and 1,2-propanediol (0.4) were too scattered to indicate whether they were pressure independent or not (680521).

The effect of ethanol pressure on the chain-product yields at 350° C is illustrated in figure **FP**g**5**. Some product yields increase while others remain constant or decrease as the pressure is increased (680522, 700231, 700239).

References for Gas Phase Text, Tables and Figures

- 550037 Dorfman, L.M.; Shipko, F.J., J. AMER. CHEM. SOC. 77: 4723-6 (1955).
- 570050 Jesse, W.P.; Sadaukis, J., PHYS. REV. 107(3): 766-71 (1957).
- 580061 Jesse, W.P., PHYS. REV. 109(6): 2002-4 (1958).
- 610057 Ramaradhya, J.M.; Freeman, G.R., CAN. J. CHEM. 39: 1836-42 (1961).
- 610103 Hearne, J.A.; Hummel, R.W., RADIAT. RES. 15: 254-67 (1961).
- 620115 Back, R.A.; Woodward, T.W.; McLauchlan, K.A. CAN. J. CHEM. 40: 1380-4 (1962).
- 640177 Meisels, G.G., J. CHEM. PHYS. 41(1): 51-6 (1964).
- 640299 Lee, R.A.; Davidow, R.S.; Armstrong, D.A., CAN. J. CHEM. 42: 1906-16 (1964).
- 650027 Myron, J.J.J.; Freeman, G.R., CAN. J. CHEM. 43: 1484-92 (1965).
- 650721 Sieck, L:W.; Johnsen, R.H., J. PHYS. CHEM. 69(5): 1699-1703 (1965).
- 650795 Adler, P.; Bothe, H.-K., Z. NATURFORSCH. PT. A 20: 1700-7 (1965).
- 660434 Jones, F.T.; Sworski, T.J., J. PHYS. CHEM. 70(5): 1546-52 (1966).
- 660747 Holtslander, W.J., Unpublished results, Univ. of Alberta, 1966.
- 670027 Lampe, F.W.; Kevan, L.; Weiner, E.R.; Johnston, W.H., J. PHYS. CHEM. 71(5): 1528-9 (1967).
- 670096 Hotta, H.; Kurihara, H.; Abe, T., BULL. CHEM. SOC. JAPAN 40(4): 714-8 (1967).
- 670149 Holtslander, W.J.; Freeman, G.R., CAN. J. CHEM. 45: 1649-59 (1967).
- 670398 Anderson, A.R.; Best, J.V.F., NATURE (LONDON) 216: 576-7 (1967).
- 670437 Hunter, L.M.; Johnsen, R.H., J. PHYS. CHEM. 71(10): 3228-37 (1967).
- 670546 Anderson, A.R.; Winter, J.A., The Chemistry of Ionization and Excitation, G.R.A. Johnson and G. Scholes (eds.), Taylor and Francis Ltd, London, 197-209, 1967.
- 680287 Bansal, K.M.; Freeman, G.R., J. AMER. CHEM. SOC. 90(20): 5632-3 (1968).
- 680318 Willis, C.; Miller, O.A.; Rothwell, A.E.; Boyd, A.W., ADVAN. CHEM. SER. 81: 539-49 (1968).
- 680390 Cooper, R.; Mooring, R.-M., AUST. J. CHEM. 21: 2417-25 (1968).
- 680403 Takao, S.; Shida, S.; Hatano, Y.; Yamazaki, H., BULL. CHEM. SOC. JAPAN 41(9): 2221 (1968).
- 680493 Bansal, K.M., Ph.D. Thesis, University of Alberta, Edmonton, 1968.
- 680521 Bansal, K.M.; Freeman, G.R., J. AMER. CHEM. SOC. 90(26): 7183-89 (1968).
- 680522 Bansal, K.M.; Freeman, G.R., J. AMER. CHEM. SOC. 90(26): 7190-96 (1968).
- 680843 Jesse, W.P., PHYS. REV. 174: 173-7 (1968).
- 680844 Jesse, W.P., RADIATION RES. 33: 229-37 (1968).
- 700231 Bansal, K.M.; Freeman, G.R., J. AMER. CHEM. SOC. 92(14): 4173-5 (1970).
- 700239 Freeman, G.R., ACTIONS CHIM. BIOL. RADIAT. 14: 73-134 (1970).
- 700510 Huyton, D.W.; Woodward, T.W., TRANS. FARADAY SOC. 66(7): 1648-55 (1970).
- 710122 Stoneham, T.A.; Ethridge, D.R.; Meisels, G.G., J. CHEM. PHYS. 54(9): 4054-9 (1971).

Reference	610057	650027	650721	670096	670546	680521	(680493) 680522	700231
G (Product)								
H ₂	7.6 (9.2)	7.5	10.8	10.3	9.2	9.9 (8.4)	47	
СН,СНО	4.5	3.5	4.2			3.6 (3.2)	50	
(CH ₃ CHOH) ₂	1.2	3.1	1.2			(3.1)	0.6	
CH₄	1.7 (2.4)	2.3	0.9	4.6	0.34	3.3 (3.3)	40	
CO	1.1 (0.9)	0.6	1.2			0.6 (0.7)	10.0	
C ₂ H ₆	0.2 (0.2)	0.2	0.65			0.3 (0.3)	3.6	
C ₂ H ₄	0.7 (1.4)	1.2	1.6			1.1 (1.1)	20	
C ₂ H ₂	0.03	0.09	0.30			(0.26)	(~0.1)	
CH ₂ O			0.9			(0.8)	(13)	
СН₃ОН							17.4	
$(C_2H_5)_2O$			0.07			0.15 (0.15)	(5.6)	~65 (~2.5)
CH ₃ CH(OH)CH ₂ OH	0.15	0.9	0.16			(0.4)	(1.8)	
CH ₃ CH(OH)C ₂ H ₅			_				2.9	
Radiation	⁴ He ²⁺	γ	$2 \text{MeV} e^-$	γ	γ	γγ	γ	γ
Dose $(10^{18} eV/g)$	600(5)	400	70	30	200	10 (80)	120	40
Dose rate (10 ¹⁵ eV/gs)	3	17	~ 300	2	6	11	24	24
Dosimetry	Fricke	$C_2H_4 \rightarrow H_2$	$(-C_2H_2)$	Fricke	$N_2 O \rightarrow N_2$	a	a	a
	$G(Fe^{3+})$ 15.5	G 1.28	G 71.9	$G({\rm Fe}^{3+})$ 15.6	G 10.6			
T (°C)	108	105	25	175	108	150	350	380
P (Torr)	660	800	45	3,040	760	860	560	85 (1630)
Cell size (cm ³)	1,000	500	2,040	50	130	500	300	500
Cell material	Pyrex	Pyrex	Al &	hard	Pyrex	Pyrex	Pyrex	Pyrex
			Brass	glass				

DATA SHEET FPg1. Ethanol gas. Final Product Yields

a. $C_2H_4 \rightarrow H_2$, G 1.31.

DATA SHE	ET PPg1.	Ethanol gas.	Primary	Product	Yields
----------	----------	--------------	---------	---------	--------

Reference	670096 ^b	670546 ^b	700239°
G (Product) ^a			
e-		3.5 ^f	4.0 ^g
Hď			~ 4
H_2^d	1.7		1.7
CH ₃ ^d			1.5
CH4 ^d	0.4		1.6
CH ₃ CHO _{scavengable} ^e			~ 2.5
CH ₃ CHO _{unscavengable} ^d			1.8
(CH ₃ CHOH) ₂ scavengable ^e			3.1
$(CH_3CHOH)_2$ unscavengable			0.0
Method	C ₂ H ₄ scaveng	er temp. effect on H ₂ & CH ₄ yields	dose and scavenger effects

a. Yields derived from scavenging studies.

b. Reaction conditions same as on data sheet FPg1.

c. γ , 860 Torr, 150°C, extrapolated to zero dose.

d. Product that does not result from a neutralization reaction.

e. This is not a primary product because it results from free radical reactions.

 $G(CH_3CHOH) \cong 2G(CH_3\dot{C}HO + (CH_3CHOH)_2)_{scavengable} \cong 11.$

f. Estimated from a mechanism that is probably not correct (see 700239).

g. The average amount of energy expended per ion pair formed is

W = 25.1 eV (650795).

FIGURE FPg1. Product yields from the γ-radiolysis of ethanol vapor as a function of temperature (680493, 680521, 680522).
Ethanol density = 0.66g/l (385 Torr at 150°C). Dose=1.3 x 10²⁰ eV/g. (×), the yields of CH₃CH(OC₂H₅)₂ and CH₂(OC₂H₅)₂ were approximately equal. ▼, see figure FPg2 for the separate yields of CH₂O and CH₃OH.

FIGURE FPg4. Product yields from the γ -radiolysis of ethanol vapor as a function of pressure at 150°C (680521). Dose = 8 x 10¹⁹ eV/g. The points represent experimental results; the solid lines were calculated from the proposed mechanism (680521).

2.2. Liquid Phase

The main products from the radiolysis of liquid ethanol are hydrogen, acetaldehyde and 2,3butanediol (sheets **FP***l***1** and **2**). Probable sources of error in the measured yields were impurities in the irradiated ethanol and difficulties with the methods of microanalysis. The error in the Fricke dosimetry used for all the γ radiolyses should have been $\leq 1\%$.

The yields of hydrogen and acetaldehyde decrease with increasing dose above 10^{17} eV/g (fig. FP/1), while that of 2,3-butanediol is independent of dose (650045, 660839, 680575).

Dose dependence of the hydrogen and acetaldehyde yields is caused by competition between the solvated electron reactions (1) and (3),

$e_{solv}^- \to C_2 H_5 O_{solv}^- + H$	(1)
$H + C_2H_5OH \rightarrow H_2 + CH_3CHOH$	(2)
$e_{solv}^- + CH_3CHO \rightarrow CH_3CHO_{solv}^-$	(3)
$CH_3CHO_{solv}^- + C_2H_5OH_{2solv}^+ \rightarrow CH_3CHOH + C_2H_5OH$	(4)

where e_{solv}^- is actually $e^-(C_2H_5OH)_n$. The yield of 2,3-butanediol is independent of dose because the same number of precursor CH₃ CHOH radicals result from either (1) or (3), through (2) and (4). Thus the rates of *formation* of butanediol and acetaldehyde are unaffected by the occurrence of (3).

$$2CH_{3} CHOH \rightarrow (CH_{3} CHOH)_{2}$$
(5)
$$\rightarrow CH_{3} CHO + C_{2}H_{5}OH$$
(6)

The net yield (formation minus destruction) of acetaldehyde decreases because (3) destroys aldehyde.

The solvated electrons that undergo (3) at doses $\leq 10^{20} \text{eV/g}$ are free ions. The aldehyde concentrations at these doses are $\leq 10^{-3}M$, and electrons that undergo geminate neutralization are too short lived to react appreciably with such low concentrations of scavenger (698025, 700239). At doses $\geq 10^{21} \text{eV/g}$ the aldehyde is $\geq 10^{-2}M$, and by analogy with nitrous oxide solutions (680047, 698025) scavenging in spurs becomes significant at these concentrations. The addition of a mineral acid to ethanol causes the yields of hydrogen and acetaldehyde to increase, whereas that of 2,3-butanediol remains unchanged (640279, 660839, 680047, 680575, 700239); as more acid is added $G(H_2)$ increases to a plateau of about 5.9 and $G(CH_3CHO)$ increases to a plateau of about 3.7 (660839, 680047). The plateau values are independent of dose (fig. **FP**/1).

Acid counteracts the effect of acetaldehyde formation in two ways: reaction (7) competes with (3), and (8) converts acetaldehyde into unreactive acetal.

$$\begin{array}{l} e_{solv}^{-} + C_2 H_5 OH_{2\ solv}^{+} \rightarrow C_2 H_5 OH + H \\ CH_3 CHO + 2C_2 H_5 OH (+ H^+) \rightarrow CH_3 CH(OC_2 H_5)_2 + H_2 O \end{array}$$

$$(7)$$

The upper, horizontal hydrogen curve in figure FP/1 represents the values of $G(H_2)$ obtained when HCl or H_2SO_4 is added to ethanol. The lower hydrogen curve was calculated by assuming that $G(e_{solv})_{fi} = 1.7$ and $G(H_2)_0 = 5.9$ in neutral ethanol. The rate constants used were $k_1 = 1.2 \text{ x}$ 10^5 s^{-1} and $k_3 = 4 \text{ x} 10^9 \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$ (700172). The decrease in $G(H_2)$ at doses $> 4 \text{ x} 10^{20} \text{ eV/g}$ is caused by acetaldehyde scavenging electrons in the spurs.

The curves through the acetaldehyde yields in figure FP/l are analogous to those through the hydrogen yields. The two sets are superimposable by a vertical displacement of 2.1 G units.

The hydrogen yield from liquid ethanol has been measured at temperatures from $-112^{\circ}C$ (mp = $-117^{\circ}C$) to the critical temperature, 243°C (fig. FPl2). The increase of $G(H_2)$ from neutral ethanol at temperatures between 25° and 100°C is probably associated with the competition between reactions (1) and (3). The addition of acid removes the temperature effect in this region (fig. FPl2). The hydrogen yield increases gently as the temperature is increased above 150°C, and there is no discontinuity as the system passes through the critical temperature (fig. FPl2).

Yields of reactive intermediates and unscavengable yields of final products are given on sheets **PP**/1 and **2**.

The free ion yield decreases gently with increasing temperature (698025), but is independent of pressure up to 5300 bar (720199). See sheets **PP***l***2** and **3**.

References for Liquid Phase Text, Tables and Figures

- 540005 McDonell, W.R.; Newton, A.S., J. AMER. CHEM. SOC. 76: 4651-8 (1954).
- 550032 Bakh, N.A.; Sorokin, Yu.I., Symposium on Radiation Chemistry,
- N.A. Bakh (ed.), Consultants Bureau, New York, 1956, p.135–44 (English Translation).
- 560017 Newton, A.S.; McDonell, W.R., J. AMER. CHEM. SOC. 78: 4554-5 (1956).
- 570024 Burr, J.G.Jr., J. AM. CHEM. SOC. 79: 751-2 (1957).
- 570025 Burr, J.G.Jr., J. PHYS. CHEM. 61: 1477-80 (1957).
- 590020 Adams, G.E.; Baxendale, J.H.; Sedgwick, R.D., J. PHYS. CHEM. 63: 854-58 (1959).
- 610020 Johnsen, R.H., J. PHYS. CHEM. 65: 2144-7 (1961).
- 610098 Hayon, E.; Weiss, J.J., J. CHEM. SOC.: 3962-70 (1961).
- 620140 Taub, I.A.; Dorfman, L.M., J. AM. CHEM. SOC. 84: 4053-9 (1962).
- 640113 Taub, I.A.; Harter, D.A.; Sauer, M.C.Jr.; Dorfman, L.M., J. CHEM. PHYS. 41(4): 979-85 (1964).
- 640155 Zwiebel, I.; Bretton, R.H., AM. INST. CHEM. ENG. J. 10: 339-44 (1964).
- 640228 Kroh, J.; Mayer, J., BULL. ACAD. POLON. SCI., SER. SCI. CHIM. 12: 163-7 (1964).
- 640279 Adams, G.E.; Sedgwick, R.D., TRANS. FARADAY SOC. 60: 865-72 (1964).
- 650045 Myron, J.J.J.; Freeman, G.R., CAN. J. CHEM. 43: 381-94 (1965).
- 650499 Sauer, M.C.Jr.; Arai, S.; Dorfman, L.M., J. CHEM. PHYS. 42(2): 708-12 (1965).
- 650501 Hayon, E.; Moreau, M., J. PHYS. CHEM. 69: 4053-7 (1965).
- 660133 Kroh, J.; Mayer, J., BULL. ACAD. POL. SCI. SER. SCI. CHIM. 14(1): 47-50 (1966).
- 660308 Kroh, J.; Bogus, W.; Mayer, J., BULL. ACAD. POL. SCI. SER. SCI. CHIM. 14(8): 559-63 (1966).
- 660839 Fletcher, J.W., Ph.D., Thesis, University of Alberta, 1966.

- 670004 Basson, R.A.; van der Linde, H.J., J. CHEM. SOC. PT. A (1): 28-32 (1967).
- 670012 Russell, J.C.; Freeman, G.R., J. PHYS. CHEM. 71: 755-762 (1967).
- 670173 Basson, R.A., J. CHEM. SOC. PT. A (7): 1179-82 (1967).
- 670223 Ward, J.A.; Hamill, W.H., J. AMER. CHEM. SOC. 89(20): 5116-20 (1967).
- 680047 Russell, J.C.; Freeman, G.R., J. PHYS. CHEM. 72(3): 816-21 (1968).
- 680336 Kroh, J.; Mayer, J., BULL. ACAD. POL. SCI. SER. SCI. CHIM. 16(7): 377-82 (1968).
- 680575 Basson, R.A., J. CHEM. SOC. PT. A (8): 1989-92 (1968).
- 690566 Basson, R.A., J. S. AFR. CHEM. INST. 22: 63-79 (1969).
- 690651 Holcman, J.; Karolczak, S.; Kroh, J.; Mayer, J.; Mienska, M., INT. J. RADIAT. PHYS. CHEM. 1(4): 457-64 (1969).
- 698025 Jha, K.N.; Freeman, G.R., J. CHEM. PHYS. 51(7): 2846-50 (1969).
- 700064 Rzad, S.J.; Fendler, J.H., J. CHEM. PHYS. 52(10): 5395-403 (1970).
- 700172 Fletcher, J.W.; Richards, P.J.; Seddon, W.A., CAN. J. CHEM. 48(11): 1645-50 (1970).
- 700239 Freeman, G.R., ACTIONS CHIM. BIOL. RADIAT. 14: 73-134 (1970).
- 700360 Hayon, E., J. CHEM. PHYS. 53(6): 2353-8 (1970).
- 710009 Akhtar, S.M.S.; Freeman, G.R., J. PHYS. CHEM. 75(18): 2756-62 (1971).
- 710064 Fowles, P., TRANS. FARADAY SOC. 67(2): 428-39 (1971).
- 710531 Rabani, J.; Graetzel, M.; Chaudhri, S.A., J. PHYS. CHEM. 75(25): 3893-4 (1971).
- 710769 Pikaev, A.K.; Sibirskaya, G.K.; Shirshov, E.M.; Glazunov, P.Ya.; Spitsyn, V.I., DOKL. PHYS. CHEM., PROC. ACAD. SCI. USSR (ENGLISH TRANSL.) 200(2): 786-9 (1971).
- 720199 Jha, K.N.; Freeman, G.R., J. CHEM. PHYS. 57(4): 1408-14 (1972).

References	540005	560017	550032	610020	610098	640279	650045	690566
G(Product)								
H ₂ *	3.5	4.1	6.0	5.53	4.87	4.85	4.6, 5.0 ^d	5.0
CH ₃ CHO [•]	1.7	3.0°	0.8(1)	(1.40)	3.14		$(1.9), 2.8^{d}$	3.2
(CH ₃ CHOH) ₂ [•]	$\sim 0.7(1.0^{b})$	1.4 ^b		(1.95)	1.67	2.80	(2.2)	1.7
CH4	0.43	0.43	0.1(0.2)	0.80	0.58	0.61	$0.6, 0.6^{d}$	0.6
CO	0.11	0.09	0.2(0.3)	0.10	0.26		0.06	
H ₂ O	0.8		1.2(2.1)				(0.5)	0.30
C_2H_6	0.17	0.18		0.30		0.23	0.24	0.11
C ₂ H ₄	0.17	0.22		0.27		0.1	0.14	0.19
C ₂ H ₂	0.04						(≤0.02)	
C ₃ H ₈	0.025						0.009	
C ₄ H ₁₀	< 0.010						(0.0004)	
CH ₃ CH(OH)C ₂ H ₅							(0.08)	
CH ₂ O	0.30						0.13	0.4
$(CH_2OH)_2$	12.02						(0.01)	
CH ₃ CH(OH)CH ₂ OH	J~0.3						(0.13)	
HO(CH ₂) ₃ OH	h						(0.002)	
CH ₃ CH(OH)CH ₂ CH ₂ OH	80.0						(0.05)	
HO(CH ₂) ₄ OH	J						(0.01)	
Radiation	⁴ He ²⁺ (28 MeV)	⁴ He ²⁺ (28 MeV)	$X(e^{-})$	$\gamma(X)$	γ	γ	γ	γ
$Dose(10^{18} eV/g)$	8000	300	-	10(200)	~ 1	3	10(100)	~ 1
Dose rate(10 ¹⁵ eV/gs)	1×10^{6}	3×10^4	300	3(40)	~ 1	0.6	0.3 - 17	2
Temp. (°C)	18	21	25	26	20	room	25	room

DATA SHEET FPl1. Ethanol liquid. Final Product Yields

a. See data sheet FP/2 for additional data and preferred values.

b. Total vicinal glycol.

c. Total carbonyl.

d. Extrapolated to zero dose.

Reference	G(H ₂)	G(CH ₃ CHO)	G(CH ₃ CHOH) ₂	<i>G</i> (CH ₄)	Radiation	Dose (10 ¹⁸ eV/g)	Dose Rate (10 ¹⁵ eV/gs)	Temp. (°C)	Press. (bar) ^e
70024 70025	}3.7		_		γ	500	_	room	_
590020	4.35		_	0.60	γ	5	0.1	18	
20140		1.9	1.3		$e^{-}(15 \mathrm{MeV})$	400	4 x 10 ⁸	room	
40228		_		0.45	γ	10	5	20	
50501	4.9	_	—	—	γ	0.7	0.4	room	
60133	4.87	2.18	_	_	γ	4	4	20	
60839	4.2(5.0)	2.0	2.2	0.6(0.61)	γ	100(0.7)	10	room	
70004	4.85	-	—		γ	1	2	room	
70012 80047	}5.1	_	—	_	γ	0.2	10	25	
70223	4.2			0.4	γ	8	3	20	
80336			2.8		γ	800	30	20	
80575	5.0(4.0)	3.2(2.3)	1.7(1.6)		γ	1(100)	1	room	
90651	4.5				γ	~ 5	2	room	
00172	5.9 *	3.7	2.3*		γ	0*		25	
10009	5.9 *				γ	0 *	7	20	
20199	5.0		_		γ	1	2	23	1
20199	5.5		_		γ	1	2	23	5300
20199	5.7	—	_		γ	0ª	2	23	1-5300
referred	5.8 ± 0.1 [•]	$3.7 \pm 0.2^{\bullet}$	2.1 ± 0.4	0.61	γ	≤ 0.01	0.1-100	22 ± 4	0-5300
Values ^b	5.1 ± 0.2	3.0 ± 0.2	2.1 ± 0.4	0.61	γ	1	0.1-100	22 ± 4	0-500
	4.15 ± 0.15	2.0 ± 0.2	2.1 ± 0.4	0.61	γ	100	0.1-100	22 ± 4	0-500

DATA SHEET FP12. Ethanol liquid. Final Product Yields

a. Extrapolated to zero dose.

b. See figure FP/1 and discussion in section 2.2.

c. Pressure equals vapor pressure, \sim 50 Torr, unless otherwise stated.

leference	590020	610098	640113 650499	640155	640279	650045	650501	660308
F(Product)								
ntermediates								
e (total)							1.65"	
$(e_{solv})_{fi}^{b}$		1.4	1.0°		1.02	0.9	0.9	
H _{spur, scavengable}	2.7				2.25	2.7	2.7 - 3.0	
CH ₃	0.44					0.4		
СН₃СНОН						6.4		
radicals (total)	6.9			7.76				6.5
triplet states								
Inscavengable								
H ₂	1.65				1.65	1.5		
CH4	0.16					0.2		0.28(0.26)
СН3СНО						1.9		
Radiation	γ	γ	pulse	γ	γ	γ	γ	γ(X)
$\log_{10}(10^{18} \text{eV}/\text{g})$	5	1	0.14	~ 10	2	2 - 100	0.7	10(0.5)
$\int \frac{10^{15}}{10^{15}} eV(rs)$		0.3	3×10^8	2	0.6	2 = 100	0.4	4(2)
$\operatorname{Cemp}(^{\circ}C)$	18	20	25	25	room	25	room	r(2)
Cavenger	henzo-	носн соон	hinhonyl	25 ПРРН	HSO	<u>с</u> н	LINO	T
Jeavenger	guinone		Dipitenyi	DIII		nentadieno-	CICH COOH	12
	quinone				CH COCH	1 3	Ni^{2+} Co^{2+}	
					CICH COOH	1,0	111 , 00	
					anthracene			
					antinacene			

DATA SHEET PP11. Ethanol liquid. Primary Product Yields. (contd. on PP12)

Reference	670004	670012	670173 (680575)	680047	698025	700064	700172	700360	710009	Preferred Values
G(Product) Intermediates e ⁻ (total) ^a (e ⁻ _{solv}) ^b H _{apur, sesvengable} CH ₃	0.9 2.3	3.1 1.2 2.0	0.95 2.33	4.0 1.5 2.2	4.3 1.5 [⊾]	4.1 1.05	(4.3) 1.7	1.0	1.7	4.3 1.7 ^t 2.6 0.4
CH ₃ ĈHOH radicals (total) triplet states species X Unscavengable H ₂ CH ₄ CH ₄ CH ₃ CHO	1.7	0.8	6.3 1.72 1.7	0.8			(8.4) ^e	(~ 0.07)	0.0	~ 8 ^s 0.0 ^f 1.6 0.2 1.8
Radiation Dose(10 ¹⁸ eV/g) Dose rate(10 ¹⁵ eV/gs) Temp. (°C) Scavenger	γ 1 2 room acetone	γ 0.2 10 25 N ₂ O, HCl	γ ~ 1 25 CICH ₂ COOH (O ₂ , Fe ³⁺)HCl	γ 0.2 10 25 N ₂ O H ₂ SO ₄	γ 0.2 10 25 ^h N ₂ O	γ 0.2 ~ 1 room SF ₆ , CH ₃ Br	pulse $2MeV e^{-}(\gamma)$ 0.08 2×10^{8} 25 terphenyl, $C_{2}H_{5}O^{-}$	pulse $2MeV e^-$ 0.9 3×10^{10} room anthracene $(+ N_2O \text{ for}$ triplets)	γ 0.1 7 20 H ₂ SO ₄ , N ₂ O, CH ₃ CHO	γ or e ⁻ 25

DATA SHEET PPl2. Ethanol liquid. Primary Product Yields

Footnotes to Data Sheets PPl1 and 2.

a. Derived from an assumed model.

b. The free ions are those that escape neutralization in the spurs.

c. Used ϵ (biphenylide) = (1.1 ± 0.4) x 10⁴ M^{-1} cm⁻¹ at 546 nm and 1.5 x 10⁴ M^{-1} cm⁻¹ at 700 nm.

d. This value is much too low, because it was derived from results obtained from dilute electron-scavenger solutions, e.g. $10^{-2}M$ chloroacetic acid.

e. Estimated from the listed yields of scavengable products.

f. See also sheet no. **PP**/3. Lower values of $G(\bar{e_{solv}})_{fi}$ apparently result from the use of impure ethanol or high irradiation doses (> 10^{17}eV/g). Values of $G(\bar{e_{solv}})_{fi} \approx 1.0$ are associated with reported values of $k(\bar{e_{solv}} \rightarrow C_2H_5O_{\text{solv}} + H) \geq 2 \times 10^5 \text{s}^{-1}$, which are too high (see sheet **R**/1).

g. The values of $G(CH_3 CHOH) \cong 6 - 7$ correspond to a value of $G(\bar{e_{solv}})_{fi} \cong 1.0$. The $CH_3 CHOH$ yield has to be increased by 2(1.7 - 1.0) = 1.4 units to match $G(\bar{e_{solv}})_{fi} = 1.7$.

h. $G(e_{solv})_{fi} = 1.7, 1.4 \text{ and } 1.2, \text{ at } -112, 90, \text{ and } 145^{\circ}C, \text{ respectively.}$

Reference	710064	710531	710759	720199
G (Free Ion) e_{solv} C_2H_5O- X- Total	1.95±0.4 ^b	1.8 ± 0.2^{b} 1.8 ± 0.1^{b} 0.34 ± 0.04^{b} 3.4 ± 0.1^{b}	1.05	1.7
Radiation Dose (10 ¹⁸ eV/g) Dose rate (10 ¹⁵ eV/gs) Temp. (°C) Press. (bar) Scavenger	pulse 10 MeV e ⁻ 0.1 10 ⁸ 26±4 1 N ₂ O, HClO₄, NaOH	pulse 2 MeV e 0.01 10 ⁷ 17 1 C ₆ H ₅ CH ₂ Cl, HClO ₄	pulse 5 MeV e ⁻ 0.1 10 ⁸ room 1 KOH, NaOC ₂ H ₅	γ 1 2 23 1, 5300 C ₆ H ₅ NO ₂ , CH ₃ COCH ₃ , naphthalene

DATA SHEET PP13. Ethanol liquid. Free Ion Yields^a

a. See also data sheet no. PP12.

b. Measured by a radiation induced electrical conductance method.

FIGURE FP11. Yields of hydrogen and acetaldehyde as functions of absorbed γ -ray dose in liquid ethanol at $22 \pm 4^{\circ}C$.

Circles, H_2 ; squares, CH_3CHO . The neutral ethanol curves are calculated (see section 2.2).

- Neutral ethanol: \ominus , \Box , 650045; \oplus , \Box , 680575; \bigcirc , \Box , all other references in sheets **FP**/1 and 2.
- $10^{-2}M \ HCl \ \text{or} \ H_2 \text{SO}_4: \bigcirc, \blacksquare, 660839; \bigcirc, \blacksquare, 680575;$

●, 680047; ●, 640279.

The yield of 2,3-butanediol is 2.1 ± 0.4 , (sheets **FP**/1 and 2), independent of dose (650045, 680575)

and of the presence or absence of acid (640279, 650045, 660839).

FIGURE FPl2.

Yield of hydrogen from the γ -radiolysis of liquid ethanol at different temperatures (680047). O, neutral; \triangle , 3 x 10⁻⁴M HCl. Dose = 2 x 10¹⁷ eV/g. 7.9 g ethanol in a 30 ml bulb. Critical density = 0.276 g/cm³.

2.3. Solid Phase

There are many similarities between the liquid and solid phase product yields (see sheets FP/2 and FPs1). In both phases electron reactions make the hydrogen and acetaldehyde yields sensitive to the radiation dose and to the presence or absence of a mineral acid (670023).

Electrons and neutral free radicals are trapped in solid ethanol when it is irradiated at 77 K (620100, 625003). The presence of a solute such as sodium hydroxide in the ethanol increases the yield of trapped electrons (635001), whereas the presence of a mineral acid decreases it (645001). Addition of an aromatic hydrocarbon to the alcohol increases the yield of trapped negative charges by capturing electrons to form anions. The same yield of trapped negative charge is obtained, $G(e_{\text{trap}}^- + \text{anion}) \cong 3.0$, whether the solute is sodium hydroxide or an aromatic hydrocarbon (sheets **PPs1** and **2**). In the absence of an added solute, $G(e_{\text{trap}}^-) \cong 2.3$. In both the presence and absence of a solute, $G(anions + neutral radicals)_{\text{trap}} \cong 9$.

References for Solid Phase Text and Tables

- 590044 Johnsen, R.H., J. PHYS. CHEM. 63: 2088-9 (1959).
- 610020 Johnsen, R.H., J. PHYS. CHEM. 65: 2144-7 (1961).
- 610098 Hayon, E.; Weiss, J.J., J. CHEM. SOC. 3962-70 (1961).
- 620100 Ronayne, M.R.; Guarino, J.P.; Hamill, W.H., J. AM. CHEM. SOC. 84: 4230-5 (1962).
- 625003 Larin, V.A.; Grishina, A.D.; Bakh, N.A., PROC. ACAD. SCI. USSR, PHYS. CHEM. SECT. (ENGLISH TRANSL.) 42(4): 113-6 (1962).
- 635001 Chachaty, C.; Hayon, E., NATURE 200: 59-60 (1963).
- 640229 Wendenburg, J.; Henglein, A., Z. NATURFORSCH. PT. B 19: 995-8 (1964).

⁵³⁰⁰ bar: \boxtimes ; all other experiments were done at the vapor pressure, ~ 50 Torr.

- 645001 Chachatty, C.; Hayon, E., J. CHIM. PHYS. 61: 1115-28 (1964).
- 660132 Kroh, J.; Mayer, J., BULL. ACAD. POLON. SCI. SER. SCI. CHIM. 14(1): 51-4 (1966).
- 660133 Kroh, J.; Mayer, J., BULL. ACAD. POLON. SCI. SER. SCI. CHIM. 14(1): 47-5 (1966).
- 660195 Johnsen, R.H.; Hagopian, A.K.E.; Yun, H.B., J. PHYS. CHEM. 70: 2420 (1966).
- 670023 Fletcher, J.W.; Freeman, G.R., CAN. J. CHEM. 45: 635-40 (1967).
- 670272 Kroh, J.; Mayer, J., CHEM. PHYS. LETT. 1: 191-4 (1967).
- 670650 Trofimov, V.I.; Chkheidze, I.I., KINETIKA I KATALIZ 8(6): 1374-6 (1967).
- 675183 Chachaty, C., J. CHIM. PHYS. 64: 614-26 (1967).
- 680336 Kroh, J.; Mayer, J., BULL. ACAD. POLON. SCI. SER. SCI. CHIM. 16(7): 377-8 (1968).
- 700097 Habersbergerova, A.; Josimovic, Lj.; Teply, J., TRANS. FARADAY SOC. 66: 669-78 (1970).
- 700276 Shida, T., J. PHYS. CHEM. 74(16): 3055-62 (1970).
- 700328 Hase, H.; Kevan, L., J. PHYS. CHEM. 74(18): 3355-8 (1970).
- 710389 Sinits'ina, Z.A.; Bagdasar'yan, Kh.S., HIGH ENERGY CHEM. (ENGLISH TRANSL.) 5: 21-3 (1971).
- 720198 Hase, H.; Warashina, T.; Noda, M.; Namiki, A.; Higashimura, T., J. CHEM. PHYS. 57: 039-45 (1972).

Reference	590044	610020	610	098	660133	660195	670023	670272	680336	
$G (Product)^{\bullet}$ H_{2} $CH_{3}CHO$ $(CH_{3}CHOH)_{2}$ CH_{4} CO $C_{2}H_{6}$ $C_{2}H_{4}$ $C_{2}H_{2}$ $C_{3}H_{8}$ $H_{2}O$	4.7, 5.9 ^b 0.28, 0.46 ^b 0.01, 0.30 ^b 0.29, 0.28 ^b 0.32, 0.33 ^b	4.6, 5.9 ^b *2.4, 4.2 ^b *0.8, 1.4 ^b 0.30, 0.42 ^b 0.01, 0.30 ^b 0.41, 0.28 ^b 0.35, 0.33 ^b *2.2 ^b	6.0 3.5 2.6 0.22 0.11	4.5 3.6 0.95 0.45 0.20	4.4 3.1	2.6 0.94	4.0°, 4.9 ^d 2.8, 3.8 ^d 0.85, 1.0 ^d 0.3, 0.3 ^d 0.3, 0.3 ^d 0.3, 0.3 ^{d,e} 0.20, 0.23 ^d 0.01, 0.01 ^d 0.02, 0.02 ^d	4.4, 4.9 ^f	0.7	
Radiation Dose(10 ¹⁸ eV/g) Dose rate(10 ¹⁵ eV/gs) T(K)	γ 10 3 83	γ 10, *200 3 - 40 77	200kv Xrays 1 3 77	γ 1 0.3 77	γ 5 4 77	3MeV Xrays 420 77	γ 100 8 77	γ 4 3 77	γ 800 30 77	

DATA SHEET FPs1. Ethanol solid. Final Product Yields⁶

a. Measured after melting the sample.

b. Photobleached with visible light.

c. $G(H_2) = 4.4$ at 5 x $10^{17} eV/g$.

- d. Photobleached with light of $\lambda > 520$ nm. The same yields, except that of ethane, were obtained without photobleaching when the alcohol contained 0.2M HCl. Exposing the acidic samples to light of $\lambda > 520$ nm had no effect on the yields.
- e. 0.2M HCl increased $G(C_2H_6)$ to 0.6.

f. $10^{-3}M H_2 SO_4$.

g. Preferred values similar to those in the liquid phase.

DATA SHEET PPs1. Ethanol solid. Primary Product Yields*

Reference	640229	620100	625003	635001	645001	660132	670023	670272
G (Product) ^e trap H _{uap} CH ₃ ĈHOH _{trap} radicals _{trap}	0.14	(3)	9.0	2 (3) 6	2.3(0.0 [•] , 3.1 [•]) 6(9.7 [•] , 5.5 [•])	7.3	> 0.9 ^a 0.0 ^b	0.85
Radiation Dose(10 ¹⁸ eV/g) Dose rate(10 ¹⁵ eV/gs) T(K) Method	¹⁰ B(n,α) ⁷ Li 5 1 77 optical	$ \begin{array}{c} \gamma \\ 1 \\ 2 \\ 77 \\ optical \\ (\phi_2) \end{array} $	γ, X 1 ~ 1 77 esr	$\frac{\gamma}{19}$ $\frac{\gamma}{77}$ esr (1N NaOH)	γ 70 20 77 esr (a, 1N H ₂ SO ₄) (b, 2N NaOH)	γ 10 4 77 esr	γ 100 8 77 a. kinetics b. esr	$\begin{array}{c} \gamma \\ 4 \\ 3 \\ 77 \\ C_6 H_6, \\ \text{kinetics of} \\ \Delta G(H_2) \end{array}$

a. See data sheet PPs2 for additional data and preferred values.

b. The values in parentheses were measured with the solute listed at the bottom of the column, opposite Method.

The values without parentheses were obtained without the addition of a solute.

Reference	670650	675183	700097	700276	700328	710389	720198	Preferred Value	s
G(Product) e _{trap} H _{urap} CH ₃ ĈHOH _{urap} radicals _{urap}	6.3	2.4(3.0) 5.5	2.2	(2.35)	< 0.1	3.55 8.25	c	$2.3(3.0) \\ 0.0 \\ 6(5.5) \\ \sim 8.3 (8.5)$	0.14
Radiation Dose(10 ¹⁸ eV/g) Dose rate(10 ¹⁵ eV/gs) T(K) Method	1.6MeV e ⁻ 300 120 esr	γ 100 10 77 esr (C ₆ H ₆)	γ 4 3 107 optical	γ 6 35 77 optical (RSSR)	γ 20 5 77 esr EtOH-H ₂ O	γ 10 77 optical esr	γ 15 6 4, 77 optical esr	γ 1-100 1-100 77 (NaOH or aromatic hydrocarbon)	$^{10}B(n,\alpha)^{7}Li$ 5 1 77

DATA SHEET PPs2. Ethanol solid. Primary Product Yields*

a. See data sheet **PPs1** for additional data.

b. The values in parentheses were measured with the solute listed at the bottom of the column, opposite Method.

The values without parentheses were obtained without the addition of a solute.

c. Same yield of e_{trap}^- at 4 and 77 K.

3. Reaction Rate Parameters

The reactions are listed according to phase. Estimates of accuracy are not given because it is not yet possible to evaluate the systematic errors. Reference to accuracy is sometimes made in the footnotes or comments under the Tables.

Temperatures are given in °C for the gas phase and in K for the liquid and solid phases, which corresponds to the most general usage.

DATA SHEET Rgl. Ethanol gas. C2H5OH*

Reaction	<i>k</i> (s ⁻¹)	Method	Reference	
$(1) C_2H_5OH^* \rightarrow CH_3\dot{C}HOH + H$ $(2) C_2H_5OH^* \rightarrow CH_3CHO + H_2$ $(3) C_2H_5OH^* + M \rightarrow C_2H_5OH + M$ $(4) C_2H_5OH^{\dagger} \rightarrow C_2H_4 + H_2O$ $(5) C_2H_5OH^{\dagger} + M \rightarrow C_2H_5OH + M$	$\begin{cases} 6 \times 10^{9} & a \\ 3 \times 10^{9} & a \\ a \end{cases}$	γ -rad., pressure dependence of H ₂ and C ₂ H ₄ yields at 150°C.	680521	

a. Relative to assumed value of $k_3 = k_5 = 3 \times 10^{11} \text{dm}^3/\text{mol}\cdot\text{s}$ calculated from collision rate at 150°, assuming the collision efficiency to be unity. However, the collision efficiencies of 3 and 5 might be less than unity.

Reference to Sheet No. Rg1

680521 Bansal, K.M.; Freeman, G.R., J. AM. CHEM. SOC. 90: 7183-9 (1968).

DATA SHEET Rg2. Ethanol gas. $e^- + C_2H_5OH$

 $e^{-} + C_2H_5OH \rightarrow C_2H_5O^{-} + H$ $\Delta H = 63 \text{ kcal/mol}^4$

This reaction is highly endothermic and is negligible in radiolysis systems. However, the equivalent reaction in the liquid phase does occur (sheet no. Rll).

- a. Estimated from the bond dissociation energy $D(C_2H_5O-H) = 102 \text{ kcal/mol}^b$ and the electron affinity $EA(C_2H_5O) = 39 \text{ kcal/mol}^c$
- b. 659052 Benson, S.W., J. CHEM. EDUC. 42: 502 (1965).
- c. 689041 Williams, J.W.; Hamill, W.H., J. CHEM. PHYS. 49: 4467-77 (1968).

DATA	Sheet	Rg3 .	Ethanol	gas.	e	+	(C	2H5	OH)	H^+
------	-------	--------------	---------	------	---	---	----	-----	-----	-------

Reaction	t(°C)	<i>k</i> (dm ³ /mol·s)	Reference
$e^{-} + (C_2H_5OH)_nH^+ \rightarrow nC_2H_5OH + H$	50 - 200	estimated 10 ¹⁴ –10 ¹⁵ • at several hundred torr pressure	680133 680522

a. Assumed to be equal to the rate constant in other molecular gases at pressures in the vicinity of 1 atm (679028, 679027, 679029, 670319, 700046).

Comment:

The reaction

$$e^{-}$$
 + (C₂H₅OH)₂H⁺ \rightarrow (n-1)C₂H₅OH + CH₂CHOH + 2H

is endothermic and highly improbable for n > 1 (680521). It can be neglected under all radiolysis conditions that have been reported (700239).

References to Sheet No. Rg3

670319 Wood, C.J.; Back, R.A.; Dawes, D.H., CAN. J. CHEM. 45: 3071-8 (1967).

- 679027 McGowan, S.M., CAN. J. PHYS. 45: 439-48 (1967).
- 679028 Fisk, G.A.; Mahan, B.H.; Parks, E.K., J. CHEM. PHYS. 47: 2649-58 (1967).
- 679029 Kasner, W.H., PHYS. REV. 164: 194-200 (1967).
- 680133 Freeman, G.R., RADIATION RES. REV. 1: 1-74 (1968).
- 680521 Bansal, K.M.; Freeman, G.R., J. AM. CHEM. SOC. 90: 7183-9 (1968).
- 680522 Bansal, K.M.; Freeman, G.R., J. AM. CHEM. SOC. 90: 7190-6 (1968).
- 700046 Wilson, D.E.; Armstrong, D.A., CAN. J. CHEM. 48: 598-602 (1970).
- 700239 Freeman, G.R., ACTIONS CHIM. BIOL. RAD. 14: 73-134 (1970).

Reaction	t(°C)	P(Torr)	<i>k</i> (dm³/mol·s)	Method	Reference	
(1) $e^- + CH_3CHO \rightarrow CH_3CHO^-$ postulated	150	860 С₂Н₅ОН	10 ⁸ •	y-rad. of ethanol, dose dependence of yields.	680521	

a. Relative to $k(e^- + (C_2H_5OH)_nH^+) = 10^{14} \text{ dm}^3/\text{mol}\cdot\text{s}$ (Sheet no. Rg3). The authors state that a high pressure (~ 1 atm) of alcohol vapor is required to obtain the high value of k, which might indicate that the charged species are clustered by ethanol molecules.

References to Sheet No. Rg4

680521 Bansal, K.M.; Freeman, G.R., J. AM. CHEM. SOC. 90: 7183-9 (1968).

700239 Freeman, G.R., ACTIONS CHEM. BIOL. RAD. 14: 73-134 (1970).

DATA SHEET Rg5. Ethanol gas. CH₃CHOH + CH₃CHOH

Reaction	t(°C)	P(Torr)	k ₁ /k ₂	Method	Reference
(1) $2CH_3CHOH \rightarrow CH_3CHO + C_2H_5OH$	25	10 - 60	~ 1	Hg(${}^{3}P_{1}$) photosens.	677127
(2) $2CH_3CHOH \rightarrow (CH_3CHOH)_2$	150	$10^2 - 10^3$	≤ 2.0	γ -rad.	680521

References to Sheet No. Rg5

677127 Kato, A.; Cvetanovic, R.J., CAN. J. CHEM. 45: 1845-61 (1967).
680521 Bansal, K.M.; Freeman, G.R., J. AM. CHEM. SOC. 90: 7183-9 (1968).

DATA SHEET **R**g6. Ethanol gas. $C_2H_5O \cdot + C_2H_5O \cdot$

 $\begin{array}{ll} C_2H_5O \cdot + C_2H_5O \cdot \rightarrow CH_3CHO + C_2H_5OH & (1) \\ C_2H_5O \cdot + C_2H_5O \cdot \rightarrow C_2H_5OOC_2H_5 & (2) \\ k_1/k_2 = 12 \ \text{at} \ 25\,^{\circ}\text{C} & (627003) \\ \text{Reactions of} \ C_2H_5O \cdot \text{and other alkoxy radicals are discussed in 670780.} \end{array}$

References to Sheet No. Rg6

627003 Heicklen, J.; Johnston, H. S., J. AM. CHEM. SOC. 84: 4394-403 (1962).
670780 Gray, P.; Shaw, R.; Thynne, J. C. J., PROG. REAC. KIN. 4: 63-117 (1967).

 $\begin{array}{rl} & D_{ATA} \ S_{HEET} \ Rg7. \ Ethanol \ gas. \ H \ + \ C_2H_5OH \\ (I) & H \ + \ C_2H_5OH \ \rightarrow \ H_2 \ + \ CH_3CHOH \end{array}$

Reaction	k/k ₁	t(°C)	k _I , dm³/mol·s	Method	Reference
$\log k_{\rm I} = 10.1 - (8100 \pm 600)/4.6 {\rm T}$		570 - 690	1.5 x 10 ⁸ at 650°C (calc. 3 x 10 ⁵ at 108°)	ignition	659047
(1) $D + C_2H_5OH \rightarrow HD + CH_3CHOH$ log $k_1 = 9.7 - (6900 \pm 1000)/4.6T$		570 - 670	1.1 x 10 ⁸ at 650°C (calc. 8 x 10 ⁵ at 108°C)	ignition	689067
(2) $H + C_6 H_6 \rightarrow H_2 + C_6 H_5$	0.9	108	1	íα rad.	610046
$(3) H + C_6 H_6 \rightarrow C_6 H_7$	4.2	108		α rad.	610046
(4) $H + c - C_6 H_{10} \rightarrow H_2 + c - C_6 H_9$	20	108	$(1 - 7) \times 10$	a rad.	610046
(5) $H + c - C_6 H_{10} \rightarrow c - C_6 H_{11}$	50	108	J	a rad.	610046
$(6) H + C_3 H_6 \rightarrow C_3 H_7$	80	150	$1 \times 10^{7 b}$	γ rad.	680521

a. Assuming: $k_2 = 6 \ge 10^7$ (610026); $k_3 = 1.8 \ge 10^8$ (620067); $k_4 = 1.1 \ge 10^8$ (620061); $k_5 = 4.9 \ge 10^8$ (620061).

b. Assuming $k_6 = 1.0 \times 10^9$ (620117).

Comment: There is uncertainty about the degree to which hydrogen atoms are thermalized before they react in radiolysis systems. The value $k_1 = 1 \times 10^7 \text{dm}^3/\text{mol} \cdot \text{s}$ at 108° might be somewhat higher than that for thermal hydrogen atoms at the same temperature.

References to Sheet No. Rg7

- 610026 Hardwick, T.J., J. PHYS. CHEM. 65: 101-8 (1961).
- 610046 Ramaradhya, J.M.; Freeman, G.R., CAN. J. CHEM. 39: 1843-7 (1961).
- 620061 Hardwick, T.J., J. PHYS. CHEM. 66: 291-5 (1962).
- 620067 Hardwick, T.J., J. PHYS. CHEM. 66: 117-25 (1962).
- 620117 Yang, K., J. AM. CHEM. SOC. 84: 719-21 (1962).
- 659047 Oganesgan, K.T.; Nal'andyan, A.B.; Parsamyan, N.I., DOKL. AKAD. NAUK ARMYANSKII, SSSR 40: 159-63 (1965) (RUSSIAN).
- 680521 Bansal, K.M.; Freeman, G.R., J. AM. CHEM. SOC. 90(26): 7183-89 (1968).
- 689067 Dzotsenidze, Z.G.; Oganesyan, K.T.; Nal'andyan, A.B., ARM. KHIM. ZHURNAL 21: 370-4 (1968) (RUSSIAN).

Reaction	log A (dm³/mol∙s)	E (kcal/mol)	t(°C)	log <i>k</i> (dm³/mol⋅s) at 150°C	Method	Reference
$(1) CH_3 + C_2H_5OH \rightarrow CH_4 + R \cdot$	8.3	8.7	189-341	3.8 *	phot. (+CD ₃ COCD ₃)	517000
			150	3.2 [▶]	γ -rad. (+C ₃ H ₆)	680521
	8.7	9.6	130-250	3.7*	phot. (+CD ₃ COCD ₃)	687266
(2) $CH_3 + C_2H_5OH \rightarrow CH_4 + CH_3CHOH$	8.6	9.7	130-250	3.6*	phot. (+CD ₃ COCD ₃)	687266
$(3) CH_3 + C_2H_5OH \rightarrow CH_4 + CH_3CH_2O$	7.9	9.4	130-250	3.0ª	phot. (+CD ₃ COCD ₃)	687266
(4) $CH_3 + C_2H_5OH \rightarrow CH_4 + CH_2CH_2OH$			130-250	2.5*	phot. $(+CD_3COCD_3)$	687266
(5) $CH_3 + CH_3CD_2OH \rightarrow CH_4 + [C_2OH_3D_2]$	7.8	9.0	130-250	3.2*	phot. (+CD ₃ COCD ₃)	687266
(6) $CH_3 + CH_3CD_2OH \rightarrow CH_3D + CH_3CDOH$	8.6	11.4	130-250	2.7*	phot. (+CD ₃ COCD ₃)	687266
(7) $CD_3 + C_2H_5OD \rightarrow CD_3H + C_2H_4OD$	8.6	9.7	130-250	3.6*	phot. (+CD ₃ COCD ₃)	687266
(8) $CD_3 + C_2H_5OD \rightarrow CD_4 + C_2H_5O$	7.8	10.1	130-250	2.6*	phot. (+CD ₃ COCD ₃)	687266
$k_2/k_3 = 2.7$ (scavengable CH ₄) and 1.8 (un	scavengable CH	(₄) ^c	105		γ -rad. (deuterated	650027
$k_2/k_4 = 8.0$ (scavengable CH ₄) and 6.4 (un	scavengable CH	[₄)	105		ethanols	650027
					+ 1,3-pentadiene)	

DATA SHEET $\mathbf{R}_{g}\mathbf{8}$. Ethanol gas. $CH_{3} + C_{2}H_{5}OH$

a. Based on $k(CH_3+CH_3\rightarrow C_2H_6) = 2.2 \times 10^{10} \text{ dm}^3/\text{mol}\cdot\text{s}$ (568001).

b. Based on $k(CH_3+C_3H_6 \rightarrow C_4H_9) = 5.3 \times 10^4 \text{ dm}^3/\text{mol} \cdot \text{s}$ (677501).

c. The isotope effect per C-H or C-D bond for abstraction by methyl radicals was $k_{\rm H}/k_{\rm D} = 3.9$ for scavengable methane and 2.5 for unscavengable methane (650027).

References to Sheet No. Rg8

517000 Trotman-Dickensen, A.F.; Steacie, E.W.R., J. CHEM. PHYS. 19: 329-36 (1951).

- 568001 Shepp, A., J. CHEM. PHYS. 24: 939-43 (1956).
- 650027 Myron, J.J.J.; Freeman, G.R., CAN. J. CHEM. 43: 1484-92 (1965).
- 677501 Cvetanovic, R.J.; Irwin, R.S., J. CHEM. PHYS. 46: 1694-702 (1967).
- 680521 Bansal, K.M.; Freeman, G.R., J. AM. CHEM. SOC. 90: 7183-9 (1968).
- 687266 Gray, P.; Herod, A.A., TRANS. FARADAY SOC. 64: 1568-76 (1968).

 D_{ATA} Sheet **R**g**9**. Ethanol gas. $O(^{3}P) + C_{2}H_{5}OH; O(^{3}P) + CH_{3}CHO$

Reaction	t(°C)	$k(dm^3/mol\cdot s)$	Method	Reference
$(1) O({}^{3}P) + C_{2}H_{5}OH \rightarrow OH + CH_{3}$ $(2) O({}^{3}P) + CH_{3}CHO \rightarrow OH + CH_{3}$	С́НОН 25 С́О 25	6×10^{7} 2 x 10 ⁸	$ \begin{array}{c} Hg({}^{3}P_{1}) + N_{2}O^{b} + C_{4}H_{8} - 1 \\ Hg({}^{3}P_{1}) + N_{2}O^{b} + C_{4}H_{8} - 1 \end{array} $	677127 639015

Relative to $k_3 = 2 \times 10^9 \text{dm}^3/\text{mol} \cdot \text{s}$ at 25° (639015). a.

 $O(^{3}P) + C_{4}H_{8} - 1 \rightarrow C_{4}H_{8}O \cdot$

 $Hg(^{3}P_{1}) + N_{2}O \rightarrow Hg + N_{2} + O(^{3}P)$. The N₂ yield was used to monitor the amount of $O(^{3}P)$ formed. Rate constant b. ratios were obtained from product analyses.

(3)

References to Sheet No. Rg9

677127 Kato, A.; Cvetanovic, R.J., CAN. J. CHEM. 45: 1845-61 (1967).

639015 Cvetanovic, R.J., ADV. PHOTOCHEM. 1: 115-82 (1963).

DATA SHEET Rg10. Ethanol gas. (C2H5OH)2H⁺

Reaction	E(kcal/mol)	t(°C)	P(Torr)	$\Delta H(\text{kcal/mol})$	Reference
$(C_2H_5OH)_2H^+ \rightarrow (C_2H_5)_2OH^+ + H_2O$	~ 43	300-400	$10^2 - 10^3$	~ 25	680287 700231 710449

Method: γ -radiation sensitized pyrolysis of ethanol.

References to Sheet No. Rg10

Bansal, K.M.; Freeman, G.R., J. AM. CHEM. SOC. 90: 5632-3 (1968). 680287 Bansal, K.M.; Freeman, G.R., J. AM. CHEM. SOC. 92: 4173-5 (1970). 700231 Bansal, K.M.; Freeman, G.R., RADIAT. RES. REV. 3: 209-77 (1971). 710449

Reaction	$\log A(s^{-1})$	<i>E</i> (kcal/mol)	t(°C)	P(Torr)	Method	$\Delta H(\text{kcal/mol})$	Reference
(1) CH_3 CHOH \rightarrow CH_3 CHO + H		≥ 30 ª	290-375	~ 500 (0.66g/dm ³)	γ−rad. ethanol	30	680522
$(2) \cdot CH_2CH_2OH \rightarrow C_2H_4 + OH$		27 ^{a,b}	320-375	"	"	~ 30	"
$(3) \operatorname{CH}_{3}\operatorname{CH}_{2}\operatorname{O} \rightarrow \operatorname{CH}_{3} + \operatorname{CH}_{2}\operatorname{O}$		20*	290-375	"	"	12	"
	9.6	13°	19–195	~ 20	phot. ethyl propionate	11	607002
$(4) \operatorname{CH}_{3}\operatorname{CH}_{2}\operatorname{O} \to \operatorname{CH}_{3}\operatorname{CHO} + \operatorname{H}^{d}$		21 ^d	~ 100		phot. C ₂ H ₅ ONO ₂	19	670780

DATA SHEET Rg11. Ethanol gas. CH3 CHOH, ·CH2CH2OH, CH3CH2O·

The reaction appeared to be in its pressure dependent rate region at the temperatures and pressures used, a. so the "infinite pressure" value of E is probably a little higher than this.

b. The infinite pressure value of E_2 is at least equal to the endothermic heat of reaction, $\Delta H_2 \approx 30$ kcal/mol.

Calculated from the values $E_3 - E_5 = 7.5 \pm 1 \text{ kcal/mol}$ and $E_5 = 5.5 \text{ kcal/mol}$ (607002). c.

$$C_2H_5O + C_2H_5COOC_2H_5 \rightarrow C_2H_5OH + [C_5H_9O_2]$$
(5)

However, the value of E_5 seems too low by comparison with the value $E_6 = 9.8$ kcal/mol (587001), so E_3 may be greater than 13 kcal/mol.

 $CH_3 + C_2H_5COOC_2H_5 \rightarrow CH_4 + [C_5H_9O_2]$ (6)

The evidence for the occurrence of this reaction is somewhat tenuous. d. .

References to Sheet No. Rg11

587001 Wijnen, M.H.J., J. AM. CHEM. SOC. 80: 2394-400 (1958).

607002 Wijnen, M.H.J., J. AM. CHEM. SOC. 82: 3034-40 (1960).

670780 Gray, P.; Shaw, R.; Thynne, J.C.J., PROG. REAC. KIN. 4: 63-117 (1967).

Bansal, K.M.; Freeman, G.R., J. AM. CHEM. SOC. 90: 7190-6 (1968). 680522

DATA SHEET	R g12.	Ethanol	gas.	$CH_2O +$	C ₂ H ₅ OH
------------	---------------	---------	------	-----------	----------------------------------

Reaction*	E (kcal/mol)	t(°C)	P(Torr)	Δ <i>H</i> (kcal/mol)	Reference
$CH_2O + C_2H_5OH \rightarrow CH_3OH + CH_3CHO$	~ 16	200-380	$\begin{array}{c} C_2H_5OH\sim 600\\ CH_2O\sim 40 \end{array}$	-4	700231

a. Method: Thermal. Mechanism unknown; not inhibited by propylene. Overall rate constant at 380°C, $k = 1.6 \times 10^{-2} \text{dm}^3/\text{mol}\cdot\text{s}$.

Reference to Sheet No. Rg12

700231 Bansal, K.M.; Freeman, G.R., J. AM. CHEM. SOC. 92: 4173-5 (1970)

Reaction ⁶	$\log_{(s^{-1})}^{\log A}$	E (kcal/mol)	$\binom{k_1}{(10^5 \mathrm{s}^{-1})}$	t _{1/2} (μs)	T(K)	dose (10 ¹⁷ eV/g)	Method	Ref.
$(1) e_{ady} \rightarrow C_2 H_5 O_{ady} + H$			2	3	room	1.4	pulse rad.	630059
$(\Delta H \leq 0 \text{ kcal/mol})$			0.33	21	room		flash phot. I-	647006
$(\Delta S^{\ddagger} = -21 \text{ cal/deg mol})$ (698025)			2.1 ^b	3.3	298		γ-rad., dose depend- ence of H ₂ yield. ^b	650045
			0.35	20	195	1.4	pulse rad.	660082
			l°	7	298		γ -rad., N ₂ O scav. ^c	670012 680047
			~ 2	~ 3 ^d	room		pulse rad.	670126
			(~ 2)	(3-4)	room		(0.1 N NaOH)	670126
			2.1°	3.3	293		γ-rad., RCl scav.	670173
	8.4	4.6			173-433		γ -rad., N ₂ O scav.	698025
			1	7	298			698025
			2.6	2.7	room		γ -rad., CH ₃ Br scav.	700064
			1.2	6	298	< 0.1	pulse rad.	700172
				1.8	room	~ 10	pulse rad. (+ LiCl)	700246
				4.5-6.8	room	~ 10	pulse (+ KOH or NaOC H)	700246
			11	61	293	1	nulse rad $(1mM NaOH)$	710009
	8.45	4.86	0.8	9	298	?	pulse (+1mM NaOEt)	710101
Preferred Values	8.4	4.6	1.1	6.1	293	0		

DATA SHEET **R**11. Ethanol liquid. e

a. For those who prefer the alternate formulation (2), $k_2 = (k_1/17) \text{ dm}^3/\text{mol}\cdot\text{s}$.

 $e_{solv}^- + C_2 H_5 OH \rightarrow C_2 H_5 O_{solv}^- + H$

However, see the footnotes on sheet no. Rs1.

b. Assumed $k(e_{solv}^- + CH_3CHO) = 1.6 \times 10^9 dm^3/mol \cdot s.$

c. Assumed $k(\bar{e_{solv}} + N_2O) = 7 \times 10^9 \text{dm}^3/\text{mol}\cdot\text{s}$, as in water at 298 K.

d. This reaction was preceded by the fast decay of an initial portion with $t_{1/2} \approx 0.08\mu$ s, attributed to reaction of e_{solv}^- with $C_2H_5OH_2^+$ and other intermediates in spurs. The initial fast decay did not occur in the presence of 0.1N NaOH.

e. Assumed $k(e_{solv} + ClCH_2COO^-) = 1.2 \times 10^9 dm^3/mol·s$, as in water.

Comment:

The pulse technique gives $t_{1/2} \approx 3\mu s$ for solvated electrons in neutral ethanol when the pulse dose is about 10^{17}eV/g . At such a dose the concentration of the sibling ions $C_2H_5OH_2^+$ is great enough that the rate of (3) is appreciable (700172).

$$F_{\text{solv}} + C_2 H_5 O H_2^+ \rightarrow C_2 H_5 O H + H$$

A more accurate value of the half life of (1) at room temperature is 6μ s. Associated with this higher value of $t_{1/2}$ are higher values of the free ion yield, $G_{fi} \cong 1.7$, and initial hydrogen yield, $G(H_2)_0 \cong 5.9$ (sheets **PP/2** and **FP/2**).

References to Sheet No. R/l

630059 Taub, I.A.; Sauer, M.C.Jr.; Dorfman, L.M., DISCUSS. FARADAY SOC. 36: 206-13 (1963).

647006 Dobson, G.; Grossweiner, L.I., RADIAT. RES. 23: 290-9 (1964).

650045 Myron, J.J.J.; Freeman, G.R., CAN. J. CHEM. 43: 381-94 (1965).

(2)

(3)

- 660082 Arai, S.; Sauer, M.C.Jr., J. CHEM. PHYS. 44(6): 2297-305 (1966).
- 670012 Russell, J.C.; Freeman, G.R., J. PHYS. CHEM. 71: 755-62 (1967).
- 670126 Thomas, J.K.; Bensasson, R.V., J. CHEM. PHYS. 46: 4147-8 (1967).
- 670173 Basson, R.A., J. CHEM. SOC. PT. A (7): 1179-82 (1967).
- 680047 Russell, J.C.; Freeman, G.R., J. PHYS. CHEM. 72(3): 816-21 (1968).
- 698025 Jha, K.N.; Freeman, G.R., J. CHEM. PHYS. 51(7): 2846-50 (1969).
- 700064 Rzad, S.J.; Fendler, J.H., J. CHEM. PHYS. 52(10): 5395-403 (1970).
- 700172 Fletcher, J.W.; Richards, P.J.; Seddon, W.A., CAN. J. CHEM. 48(11): 1645-50 (1970).
- 700246 Arai, S.; Kira, A.; Imamura, M., J. PHYS. CHEM. 74(10): 2102-7 (1970).
- 710009 Akhtar, S.M.S.; Freeman, G.R., J. PHYS. CHEM. 75(18): 2756-62 (1971).
- 710101 Baxendale, J.H.; Wardman, P., CHEM. COMMUN. (9): 429-30 (1971).

DATA SHEET	$\mathbf{R}l2$.	Ethanol	liquid.	$e_{a olv}^- +$	solute \rightarrow	(solute)
------------	------------------	---------	---------	-----------------	----------------------	----------

Solute	<i>k</i> (10 ⁹ dm ³ /mol·s)	T(K)	Reference
e, dy	5	room	700172
H ⁺ _{solv}	20 ^{a,b}	296	630059, 640113, 659018
	29°	296	710009
Contraction of the second s	39 [*] , 36 [*]	293	710064, 720194
	53ª	290	710531
02	19ª	296	659018
N ₂ O	8°	298	690883
NO ₃	2.8 ^{d,e}	room	650501
CH ₃ CHO	4.0 ^a	298	700172
(CH ₃) ₂ CO	4.0 [•]	294	730001
$C(NO_2)_4$	35*	293	710009
$c-C_6F_{12}$	2.5*	298	700172
CICH, COOH	3.0 ^a	293	730001
	20 ^{d,e}	room	650501
C ₃ H ₇ Cl	0.48 ^{d,f}	room	700248
C,H,CH,Cl	5.1ª	296	659018
CCl	11*	293	710009
$n-C_3H_7Br$	3.0 ^a	293	710009
c-C ₅ H ₉ Br	9.5 ^{d,f}	room	700248
C ₆ H ₆	0.005 ⁸	room	690651
biphenyl	4.3 ^a	296	659018
naphthalene	5.4 [•] , 4.5 [•] , 4.1 [•]	295 ± 1	659018, 710009, 730001
p-terphenyl	7.2ª	296	659018
naphthacene	10.2 [*]	296	659018
(C ₆ H ₅) ₃ COH	0.2*	296	659018

a. Pulse radiolysis.

b. The ethanol possibly contained water, which reduces the diffusion coefficient of H^* (710064).

- c. Relative to $k(\bar{e_{solv}} + CH_3CHO) = 4 \times 10^9 \text{dm}^3/\text{mol} \cdot \text{s}$ (710009).
- d. Relative to $k(e_{solv}^{-} + H_{solv}^{+}) = 2.0 \times 10^{10} \text{ dm}^3/\text{mol}\cdot\text{s.}$
- e. Obtained by normalization to earlier results that now appear to have been affected by impurities.
- f. γ -radiolysis of 95% ethanol + 0.2 1M HCl + solute.
- g. Relative to assumed $k(\bar{e_{solv}} \rightarrow RO_{solv}^- + H) = 1 \times 10^5 s^{-1}$ and $k(\bar{e_{solv}} + impurity)$ [impurity] = 5 x 10⁴ s⁻¹.

References to Sheet No. R/2

630059 Taub, I.A.; Sauer, M.C.Jr.; Dorfman, L.M., DISCUSS. FARADAY SOC. 36: 206-13 (1963).

- 640113 Taub, I.A.; Harter, D.A.; Sauer, M.C.Jr.; Dorfman, L.M., J. CHEM. PHYS. 41(4): 979-85 (1964).
- 650501 Hayon, E.; Moreau, M., J. PHYS. CHEM. 69: 4053-7 (1965).
- 659018 Dorfman, L.M., ADVAN. CHEM. SER. 50: 36-44 (1965).
- 690651 Holcman, J.; Karolczak, S.; Kroh, J.; Mayer, J.; Mienska, M., INT. J. RADIAT. PHYS. CHEM. 1(4): 457-64 (1969).
- 690883 Fletcher, J.W., Unpublished results (1969).
- 700172 Fletcher, J.W.; Richards, P.J.; Seddon, W.A., CAN. J. CHEM. 48(11): 1645-50 (1970).
- 700248 Khorana, S.; Hamill, W.H., J. PHYS. CHEM. 74(15): 2885-8 (1970).
- 710009 Akhtar, S.M.S.; Freeman, G.R., J. PHYS. CHEM. 75(18): 2756-62 (1971).
- 710064 Fowles, P., TRANS. FARADAY SOC. 67(2): 428-39 (1971).
- 710531 Rabani, J.; Graetzel, M.; Chaudhri, S.A., J. PHYS. CHEM. 75(25): 3893-4 (1971).
- 720194 Jha, K.N.; Bolton, G.L.; Freeman, G.R., CAN. J. CHEM. 50: 3073-5 (1972).
- 730001 Bolton, G.L.; Jha, K.N., Freeman, G.R., (unpublished).

DATA SH	EET $\mathbf{R}/3$.	Ethanol	liquid.	eady	+	solute
---------	----------------------	---------	---------	------	---	--------

(1) $e_{solv}^{-} + solute \rightarrow products$ (2) $e_{solv}^{-} \rightarrow C_2 H_5 O_{solv}^{-} + H$

Solute	k_1/k_2^{*} (10 ⁴ dm ³ /mol)	T(K)	Reference
H ⁺ _{eol}	24, 12	 293, 296	710009, 640279
N,0	6.7	418	698025
-	3.4	363	698025
	4.2	298	698025
	6	293	710009
	4.0	161	698025
	3.6	room	700064
SF ₆	5.4	room	700064
CH,Br	5.5	room	700064
CH ₃ Cl	1.4	room	700064
CCI	9.	293	710009
•	0.06(?)	296	640279
CH,CHO	3, 0.93	293, 296	710009, 640279
CH,),CO	4.1	296	640279
572	2	296	670004
	1.9	room	700064
	3.5	296	720199
CICH,COOH	0.64	room	640279
•	0.58	293	670173
	0.29	273	670173
	0.041	253	670173
	0.022	201	670173
CH,COOC,H,	0.064	296	640279
ZH.NO,	12.2	296	720199
nthracene	14	296	640279
anhthalana	1.2	206	720100

a. γ -radiolysis of solutions; competition kinetics.

(?) Value is low because the product HCl competed with the CCl₄ for e_{oolv}^- (710009).

References to Sheet No. R/3

640279	Adams,	G.E.;	Sedgwick,	R.D.,	TRANS.	FARADAY	SOC. 6	50: 865-	-72 (1964).
--------	--------	-------	-----------	-------	--------	---------	--------	----------	-------------

- 670004 Basson, R.A.; van der Linde, H.J., J. CHEM. SOC. PT. A (1): 28-32 (1967).
- 670173 Basson, R.A., J. CHEM. SOC. PT. A (7): 1179-82 (1967).
- 698025 Jha, K.N.; Freeman, G.R., J. CHEM. PHYS. 51(7): 2846-50 (1969).
- 700064 Rzad, S.J.; Fendler, J.H., J. CHEM. PHYS. 52(10): 5395-403 (1970).
- 710009 Akhtar, S.M.S.; Freeman, G.R., J. PHYS. CHEM. 75(18): 2756-62 (1971).
- 720199 Jha, K.N.; Freeman, G.R., J. CHEM. PHYS. 57(4): 1408-14 (1972).

DATA	Sheet	R <i>l</i> 4 .	Ethanol	liquid.	Aromatic	anions	+	Α	or	AH	[]
------	-------	------------------------------	---------	---------	----------	--------	---	---	----	----	----

Reaction	<i>k</i> (dm ³ /mol·s)	T(K)	Reference
biphenylide ⁻ + C ₂ H ₅ OH \rightarrow C ₁₂ H ₁₁ + C ₂ H ₅ O ⁻ biphenylide ⁻ + C ₂ H ₅ OH ₂ ⁺ \rightarrow C ₁₂ H ₁₁ + C ₂ H ₅ OH anthracide ⁻ + C ₂ H ₅ OH \rightarrow C ₁₄ H ₁₁ + C ₂ H ₅ O ⁻ anthracide ⁻ + C ₂ H ₅ OH ₂ ⁺ \rightarrow C ₁₄ H ₁₁ + C ₂ H ₅ OH <i>p</i> -terphenylide ⁻ + C ₂ H ₅ OH \rightarrow C ₁₈ H ₁₅ + C ₂ H ₅ O ⁻ <i>p</i> -terphenylide ⁻ + C ₂ H ₅ OH ₂ ⁺ \rightarrow C ₁₈ H ₁₅ + C ₂ H ₅ OH	2.6 x 10^4 3.3 x 10^{10} 2.3 x 10^4 3.7 x 10^{10} 2 x 10^2 1.9 x 10^{10}	296 296 296 296 296 296 296	640084 640084 640084 640084 640084 640084 640084

Reference to Sheet No. Rl4

640084 Arai, S.; Dorfman, L.M., J. CHEM. PHYS. 41: 2190-4 (1964).

DATA SI	HEET $\mathbf{R}/5$.	Ethanol	liquid.	RO	+	RO ⁻
---------	-----------------------	---------	---------	----	---	-----------------

Reaction	<i>k</i> (dm ³ /mol·s)	T(K)	Method	Reference
$CH_{3}CHOH + C_{2}H_{5}O^{-} \stackrel{f}{=} CH_{3}CHO^{-} + C_{2}H_{5}OH$	$k_{\rm f} < 10^3$ $k \le 20$	room	pulse rad.	700647
$C_2H_5O + C_2H_5O^- \rightarrow CH_3CHO^- + C_2H_5OH$ $CH_3\dot{C}HOH + OH^- \rightleftharpoons_r CH_3CHO^- + H_2O$	$k_r \approx 20^{\circ}$ $> 8 \times 10^{7}$ $k_t \approx 10^{9}$ $k_r \approx 10^{5}$ $pK_a = 11.6^{a}$	room room	pulse rad. pulse rad. <i>aqueous</i>	700647 660074
		1	and the second	

a. $K_{a} = [CH_{3}CHO^{-}][H^{+}]/[CH_{3}CHOH]$

References to Sheet No. R/5

660074 Asmus, K.-D.; Henglein, A.; Wigger, A.; Beck, G., BER. BUNSENGES. PHYS. CHEM. 70: 756-8 (1966). 700647 Fletcher, J.W.; Richards, P.J.; Seddon, W.A., CAN. J. CHEM. 48: 3765-8 (1970).

DATA SHEET **R**16. Ethanol liquid. $C_2H_5OH_2^+ + B$

Miscellaneous Reactions

(1,2) $2C_2H_5OH = \frac{1}{2}C_2H_5OH_2^+ + C_2H_5O^-, pK_i = 19.12, k_1 = 1.01 \times 10^{-11} dm^3/mol \cdot s, \qquad k_2 = 3.85 \times 10^{10} dm^3/mol \cdot s,$

$\Delta G_1 = 29.4 \text{ kcal/mol},$	$\Delta H_1 \cong 11.5 \text{ kcal/mol},$	$\Delta S_1 = -60 \text{ cal/deg·mol},$	T = 298 K (679116)
---------------------------------------	---	---	---------------------

(3) $C_2H_5OH_2^+ + H_2O = C_2H_5OH + H_3O^+, K = [C_2H_5OH_2^+][H_2O]/[H_3O^+] = 0.15 \text{ dm}^3/\text{mol}, \Delta H = -5.0 \text{ kcal/mol}, 298 \text{ K} (410001)$ (4) $HNO_3 + C_2H_5OH = C_2H_5OH_2^+ + NO_3^-, pK = 3.57, 298 \text{ K} (410001)$

	Acetal formation	<i>k</i> (dm³/mol·s)	E (kcal/mol)	<i>T</i> (K)	Reference
(5)	$CH_3CHO + C_2H_5OH_2^+ (+ C_2H_5OH) \rightarrow CH_3CH(OC_2H_5)_2 + H_3$	O ⁺ 2.4	22.6	298	340007
		1.4	15.5	298	410001

References to Sheet No. R/6

340007 Deyrup, A.J., J. AM. CHEM. SOC. 56: 60-4 (1934).

410001 Bell, R.P.; Norris, A.D., J. CHEM. SOC.: 118-20 (1941).

679116 Briere, G.; Gaspard, F., J. CHIM. PHYS. 64: 1071-84 (1967).

700172 Fletcher, J.W.; Richards, P.J.; Seddon, W.A., CAN. J. CHEM. 48: 1645-50 (1970).

		DATA	SHEET	R <i>l</i> 7 .	Ethanol	liquid.	СН₃СНОН	+	CH ₃ (ĊHOH
(I)	2CH₃ ĈHOH →	CH ₃ C	CHO +	C ₂ H ₅ (ЭH					
			~ * * ~ * *							

(II) $2CH_3CHOH \rightarrow (CH_3CHOH)_2$

	k_{1}/k_{11}	T(K)	Method	Reference
	0.9	room	γ-rad.	680575
	0.8	room	γ -rad.	700172
	0.9*	room	Derived from the scavengable	yields of acetaldehyde
			and butanediol, using preferred FP12 and PP12.	yields from Sheets
	$(k_{\rm I} + k_{\rm II}), \mathrm{dm^3/mol}\cdot\mathrm{s}$	T(K)	Method	Reference
	$1.7 \ge 10^6 \epsilon_{207nm} \cong 4.1 \ge 10^8 *$	296	pulse rad.	620140
	$(5 \times 10^8)^{b}$			(700647)
	$2.3 \times 10^6 \epsilon_{300nm} \approx 1.1 \times 10^9$	room	pulse rad. + N ₂ O	690419
	1.0 x 10 ⁹	room	unclear	700172
	$7 \times 10^{8} * b$	room	pulse rad.	700647
queous	7×10^8	296	pulse rad., 0.8 N H ₂ SO ₄	630045
•			$\epsilon_{max} = 240 \text{dm}^3/\text{mol}\cdot\text{cm}$	
laueous	9 x 10 ⁸	293	pulse rad., 0.1 N H ₂ SO,	670269
1			$\epsilon_{nu} = 500 \text{dm}^3/\text{mol}\cdot\text{cm}$	
laueous	1.0×10^9	296	intermittent rad.	670094
			$C_{2}H_{2}OH + H_{2}O_{2}$ chain	

* Preferred value.

a. Assuming $\epsilon_{297nm} = 240 \text{dm}^3/\text{mol}\cdot\text{cm}$, as in water.

b. Using $\epsilon_{255 \text{ nm}} = 870 \text{ dm}^3/\text{mol}\cdot\text{cm}$ and $\epsilon_{297 \text{nm}} = 290 \text{ dm}^3/\text{mol}\cdot\text{cm}$.

References to Sheet No. R17

- 620140 Taub, I.A.; Dorfman, L.M., J. AM. CHEM. SOC. 84: 4053-9 (1962).
- 630045 Dorfman, L.M.; Taub, I.A., J. AMER. CHEM. SOC. 85: 2370-4 (1963).
- 670094 Seddon, W.A.; Allen, A.O., J. PHYS. CHEM. 71: 1914-8 (1967).
- 670269 Cullis, C.F.; Francis, J.M.; Raef, Y.; Swallow, A.J., PROC. ROY. SOC. (LONDON) SER. A 300: 443-54 (1967).
- 680575 Basson, R.A., J. CHEM. SOC. PT. A (8): 1989-92 (1968).
- 690419 Simic, M.; Neta, P.; Hayon, E., J. PHYS. CHEM. 73(11): 3794-800 (1969).
- 700172 Fletcher, J.W.; Richards, P.J.; Seddon, W.A., CAN. J. CHEM. 48(11): 1645-50 (1970).
- 700647 Fletcher, J.W.; Richards, P.J.; Seddon, W.A., CAN. J. CHEM. 48(23): 3765-8 (1970).

- (I) $H + C_2H_5OH \rightarrow H_2 + R$.
- (II) $H + Solute \rightarrow HS$ · (III) $H + Solute \rightarrow H_2 + R$ ·
- (III) $H + Solute \rightarrow H_2 + R$ (IV) $H + RCl \rightarrow HCl + R$.

Solute	k ratio	$k_{\rm I}({\rm dm^3/mol\cdot s})^{\bullet}$	T(K)	Method	Reference
	II/I				
<i>p</i> -benzoquinone	1450*		291	γ-rad., H ₂ yield	590020
(CH ₄),CO	77*	6.2×10^{6} ^{a,b}	room	y-rad., H ₂ yield	670004
C ₆ H ₆	24		room	γ -rad(+ H ₂ SO ₄), H ₂ yield	690651
	III/I				
n-C ₆ H ₁₄	0.84°	$5.9 \times 10^{6} d$	308	Phot. of t-C, H, SD and	707158
				C ₆ H ₅ SD	
	0.20	$2.5 \times 10^{7} d$	313	Phot. of tritiated	707158
				$C_3H_7SH(T)$	
	IV/I				
CICH,COOH	132*		293	y-rad., H, yield	670173
CICH ₂ COOH	28*		201	γ -rad., H ₂ yield	670173
Acidic aqueous ethanol		2×10^7	room	·γ−rad.	670103
		$2.5 \times 10^7 $ e	298	y-rad., H, and HD yields	710017
		2.6×10^{7} f	288	e rad., esr	710003

- a. This value should be accepted with reserve, because it is difficult to make clear distinction between the reactions of hydrogen atoms and those of electrons. The reactions attributed to hydrogen atoms in 670004 might have been spur reactions of electrons. The hydrogen atom rate constants reported by Hardwick (620067, etc.) should be re-examined for the same reason.
- b. Assuming $k(H + (CH_3)_2CO) = 4.8 \times 10^8$ (620067).

c. Pryor, et al, prefer this value (707158).

f.

d. Assuming $k(H + n - C_6 H_{14}) = 4.9 \times 10^6$ (620067).

e. Relative to $k(H + C_6H_5COOH \rightarrow C_6H_6COOH) = 1.0 \times 10^9$ in solution containing $10^{-3}M C_6H_5COOH$ and $0.1M HClO_4(690001)$.

Relative to $k(H + C_6H_5COOH) = 8.5 \times 10^8$ in solution containing $10^{-3}M C_6H_5COOH$ and 0.1M HClO₄.

References to Sheet No. R/8

- 590020 Adams, G.E.; Baxendale, J.H.; Sedgwick, R.D., J. PHYS. CHEM. 63: 854-8 (1959).
- 620067 Hardwick, T.J., J. PHYS. CHEM. 66: 117-25 (1962).
- 670004 Basson, R.A.; van der Linde, H.J., J. CHEM. SOC. PT. A. (1): 28-32 (1967).
- 670103 Anbar, M.; Neta, P., INT. J. APPL. RAD. ISOTOPES 18: 493-23 (1967).
- 670173 Basson, R.A., J. CHEM. SOC. PT. A. (7): 1179-82 (1967).
- 690001 Neta, P.; Dorfman, L.M., J. PHYS. CHEM. 73: 413-7 (1969).
- 690651 Holcman, J.; Karolczak, S.; Kroh, J.; Mayer, J.; Mienska, M., INT. J. RADIAT. PHYS. CHEM. 1(4): 457-64 (1969).
- 707158 Pryor, W.A.; Stanley, J.P.; Griffith, M.G., SCIENCE 169: 181-2 (1970).
- 710003 Neta, P.; Fessenden, R.W.; Schuler, R.H., J. PHYS. CHEM. 75: 1654-66 (1971).
- 710017 Neta, P.; Holden, G.R.; Schuler, R.H., J. PHYS. CHEM. 75: 449-54 (1971).

(V) $CH_3 + benzoquinone \rightarrow C_7H_7O_2$.

k(relative)	T(K)	Method	Reference
$k_{\rm v}/k_{\rm I} = 4,500$	291	γ -rad.	590020
$k_{\rm H}/k_{\rm III} = 2.2^{\rm a}$	301	γ -rad. (+1,3-pentadiene)	650027
$k_{\rm II}/k_{\rm IV} = 6.2^{\rm b}$	301	γ -rad. (+1,3-pentadiene)	650027

a. Based on scavengable CH4; 1.8 based on unscavengable CH4.^c

b. Based on scavengable CH4; 3.2 based on unscavengable CH4.^c

c. Unscavengable CH₄ is not a product of thermal CH₃ radicals.

References to Sheet No. R19

590020 Adams, G. E.; Baxendale, J. H.; Sedgwick, R. D., J. PHYS. CHEM. 63: 854-8 (1959). 650027 Myron, J. J. J.; Freeman, G. R., CAN. J. CHEM. 43: 1484-92 (1965).

DATA SHEET R110. Ethanol liquid. Miscellaneous reactions

- (1) $C_2H_5OH \rightarrow [C_2H_5OH^+ + e^-]$
- (2) $C_2H_5OH \rightarrow [CH_3CHOH^+ + H + e^-]$
- (3) $[e^{-}] \rightarrow [e_{solv}^{-}]$

(4) $[C_2H_5OH^++C_2H_5OH] \rightarrow [C_2H_5O+C_2H_5OH_2^+]$

- (5) $[CH_{3}CHOH^{+}+C_{2}H_{5}OH] \rightarrow [CH_{3}CHO+C_{2}H_{5}OH_{2}^{+}]$
- (6) $[C_2H_5OH_2^+ + e_{solv}^-] \rightarrow [C_2H_5OH + H]$

(7) $[C_2H_5OH_2^+ + e_{solv}^-] \rightarrow C_2H_5OH_2^+ + e_{solv}^-$ (free ions)

The square brackets indicate that the enclosed species are in a spur. Reactions (1)-(7) are discussed in 680047 and 700239, which also include other references.

(8) $e^- + C_6H_6 \rightarrow C_6H_6^-$

(9) $C_6H_6^- + C_2H_5OH \rightarrow C_6H_7 \cdot + C_2H_5O^-$

(10) $C_2H_5OH^+ + Cl_{solv}^- \rightarrow C_2H_5OH + Cl$

(8) and (10) are assumed to occur prior to solvation of the newly generated e^- and $C_2H_5OH^+$. The concentration of C_6H_6 or Cl_{solv}^- required for (8) or (10) to intercept (3) or (4) is $\sim 1M$ (700248).

References to Sheet No. R/10

- 680047 Russell, J. C.; Freeman, G. R., J. PHYS. CHEM. 72: 816-21 (1968).
- 700239 Freeman, G. R., ACTIONS CHIM. BIOL. RADIATIONS 14: 73-134 (1970).
- 700248 Khorana, S.; Hamill, W. H., J. PHYS. CHEM. 74: 2885-8 (1970).

DATA SHEET Rsl. Ethanol solid. e solv

Reaction*	log A(s	-1) E	(kcal/mol)	$k_1(s^{-1})$	t _{1/2}	T(K)	Method	Reference
(1) $e_{solv}^- \rightarrow C_2 H_5 O_{solv}^-$	+ H 8		5	1 x 10 ⁻⁶	~ 8 days	77	γ -rad.; H ₂ yields, compare t _{1/2} \cong 3 μ s (298K)	670023
	5.3		3.7	1×10^{-3}		89–97 107	alkali metal + C_2H_5OH , esr optical, $\lambda_{max} = 540$ nm	675117 700097

a. This reaction can be written in several different ways. It seems preferable to write it as a unimolecular decomposition of the solvated electron complex (1), rather than as a bimolecular reaction with an ethanol molecule (2) (700239).

 $e_{solv}^- + C_2 H_5 OH \rightarrow C_2 H_5 O^- + H$ (2)

The reaction is driven by the difference between the solvation energies of e^- and $(C_2H_5O^- + H)$, so several ethanol molecules take part in the formation of the transition state. A third form (3) of the decomposition was proposed for mechanistic reasons that might not have been valid, so it should be treated with reserve. $e^-_{adv} + 2C_2H_5OH \rightarrow CH_3CHOH + C_2H_5O^- + H_2(3)$

References to Sheet No. Rsl

670023 Fletcher, J.W.; Freeman, G.R., CAN. J. CHEM. 45: 635-40 (1967).

675117 Bennett, J.E.; Mile, B.; Thomas, A., J. CHEM. SOC. PT. A: 1399-403 (1967).

700097 Habersbergerova, A.; Josimovic, Lj.; Teply, J., TRANS. FARADAY SOC. 66: 669-78 (1970).

700239 Freeman, G.R., ACTIONS CHIM. BIOL. RADIATIONS 14: 73-134 (1970).

4. Spectroscopic Parameters

4.1. Optical Absorption Spectra

Optical absorption spectra of intermediates formed during the radiolysis of liquid ethanol have been measured using pulse techniques (620140, 650499, 660082, 690419, 700246, 700647, 710458, 720197). Spectra of e_{solv} , CH₃CHOH and CH₃CHO_{solv} are shown in figures Sl,s1, Sl2 and Sl3. The CH₃CHO_{solv} anion is obtained in good yield in strongly basic ethanol and in ethanol that contains acetaldehyde.

$$CH_{3}CHOH + C_{2}H_{5}O_{solv}^{-} \rightarrow CH_{3}CHO_{solv}^{-} + C_{2}H_{5}OH \quad (1)$$

$$CH_{3}CHO + e_{solv}^{-} \rightarrow CH_{3}CHO_{solv}^{-} \quad (2)$$

 $Cl_{2 \text{ solv}}^2$ may form in solutions that contain a high concentration of Cl_{solv}^2 . The suggested mechanism is (700246):

$$\begin{array}{ll} \operatorname{ROH}^{+} + \operatorname{Cl}_{\operatorname{solv}}^{-} \to \operatorname{ROH} + \operatorname{Cl} & (3) \\ \operatorname{Cl} + \operatorname{Cl}_{\operatorname{solv}}^{-} \to \operatorname{Cl}_{2^{-} \operatorname{solv}} & (4) \end{array}$$

The absorption spectrum of $Cl_2^{-}_{solv}$ in ethanol is shown in figure Sl3.

When solid pure ethanol is irradiated at 77 K to a dose of $\sim 10^{19} \text{eV/g}$ it attains a deep blue color; at $\sim 10^{20} \text{eV/g}$ it appears almost black. The color is due to the optical absorption of electrons trapped in the matrix. The optical absorption spectrum of the initially localized electrons shifts towards the blue as relaxation occurs in the solvating structure about the electron. The "solvation time" is about 3 ns in liquid ethanol at 166 K (710139) and about 5 μ s in the glass at 77 K (720004).

The absorption spectrum of solvated electrons in solid ethanol at 77 K is compared with that in liquid ethanol at 298 K in figure Sl,sl.

Characteristics of the optical spectra of e_{solv} and e_{trap} are listed in sheet nos. S/1 and Ss1. The energy of the absorption maximum E_{max} increases and the width of the spectrum at half height $W_{1/2}$ decreases with decreasing temperature and upon changing from the liquid to the glass phase.

The quantum efficiency of optical bleaching of irradiated ethanol at 78 K is dependent on the wavelength of the light used (fig. Ss2B).

Characteristics of the optical spectra of CH₃ CHOH and CH₃CHO-solv are given in sheet no. Sl2.

4.2. Electron Spin Resonance Absorption Spectra

ESR spectra of irradiated ethanol and e_{trap} at 77 K are shown in figure Ss3 (650517, 685130). Similar spectra are also reported in refs. 635001 and 700636.

The line width of the esr singlet of e_{trap} increases with increasing polarity of the matrix molecules (685130). This shift parallels the increasing energy of the optical absorption with increasing polarity of the organic matrix (685130).

The esr line width of e_{trap} in C₂H₅OD is only half that in C₂H₅OH (sheet no. Ss3).

The esr spectra of CH_3CHOH and CH_2CH_2OH in liquid ethanol are shown in figure Sl4. They, were obtained by photolysis of ethanol containing hydrogen peroxide (660074). The parameters are listed in sheet no. Sl3.

Spectroscopic References

- 595002 Alger, R.S.; Anderson, T.H.; Webb, L.A., J. CHEM. PHYS. 30(3): 695-706 (1959).
- 610067 Alger, R.S.; Anderson, T.H.; Webb, L.A., J. CHEM. PHYS. 35(1): 49-54 (1961).
- 620140 Taub, I.A.; Dorfman, L.M., J. AM. CHEM. SOC. 84: 4053-9 (1962).
- 635001 Chachaty, C.; Hayon, E., NATURE 200: 59-60 (1963).
- 640113 Taub, I.A.; Harter, D.A.; Sauer, M.C.Jr.; Dorfman, L.M., J. CHEM. PHYS. 41(4): 979-85 (1964).
- 650499 Sauer, M.C.Jr.; Arai, S.; Dorfman, L.M., J. CHEM. PHYS. 42(2): 708-12 (1965).
- 650517 Blandamer, M.J.; Shields, L.; Symons, M.C.R., J. CHEM. SOC. 1127-31 (1965).
- 660074 Asmus, K.-D.; Henglein, A.; Wigger, A.; Beck, G., BER. BUNSENGES. PHYSIK. CHEM. 70(7): 756-8 (1966).
- 660082 Arai, S.; Sauer, M.C.Jr., J. CHEM. PHYS. 44(6): 2297-305 (1966).
- 660840 Livingston, R.; Zeldes, H., J. CHEM. PHYS. 44(3): 1245-59 (1966).
- 685130 Ekstrom, A.; Willard, J.E., J. PHYS. CHEM. 72(13): 4599-603 (1968).
- 690419 Simic, M.; Neta, P.; Hayon, E., J. PHYS. CHEM. 73(11): 3794-800 (1969).
- 700097 Habersbergerova, A.; Josimovic, Lj.; Teply, J., TRANS. FARADAY SOC. 66: 669-78 (1970).
- 700246 Arai, S.; Kira, A.; Imamura, M., J. PHYS. CHEM. 74(10): 2102-7 (1970).
- 700636 Fujii, S.; Willard, J.E., J. PHYS. CHEM. 74(25): 4313-9 (1970).
- 700647 Fletcher, J.W.; Richards, P.J.; Seddon, W.A., CAN. J. CHEM. 48(23): 3765-8 (1970).
- 700770 Bernas, A.; Grand, D., CHEM. COMMUN. (24): 1667-8 (1970).
- 710139 Baxendale, J.H.; Wardman, P., NATURE (LONDON) 230: 449-50 (1971).
- 710458 Robinson, M.G.; Jha, K.N.; Freeman, G.R., J. CHEM. PHYS. 55(10): 4933-5 (1971).
- 720004 Kevan, L., J. CHEM. PHYS. 56(2): 838-44 (1972).
- 720197 Jha, K.N.; Bolton, G.L.; Freeman, G.R., J. PHYS. CHEM. 76(25): 3876-83 (1972).

DATA	Sheet	\mathbf{Sll} .	Properties	derived	from	optical	absorption	spectra:	e
					5				8 014

State, T		liquid, 296 ± 3 K		
Reference	640113 650499 660082	710101	710769	720197
$\begin{split} \lambda_{max}(nm) \\ E_{max}(eV) \\ dE_{max}/dT \\ (10^{-3}eV/deg) \\ W_{1/2}(eV)^{*} \\ dW_{1/2}/dT \\ (10^{-3}eV/deg) \\ G_{fi}\epsilon_{\lambda (max)}^{b} \\ d(G_{fi}\epsilon_{\lambda (max)})/dT \\ G_{fi} \\ \epsilon_{\lambda(max)}(dm^{3}/mol \cdot cm) \\ f \end{split}$	700 1.77 - 3.4 1.5 < 1 15,000 7 1.0 ^e 15,000 ^e 0.87 ^e (0.71 ^{e,d})	15,200 16	700 ± 20° 1.77 ± 0.05 16,000	688 ± 7^{e} 1.80 ± 0.02^{e} $- 3.2$ 1.4 ≤ 1 $16,000$ < 10 1.7 $9,400$ 0.4^{d}

a. Peak width at half height.

b. Product of the free ion yield of solvated electrons and their molar absorbancy coefficient (decadic).

c. This value of $G_{\rm fi}$ appears to be too small (see sheet no. **PP**/2, so those of $\epsilon_{\lambda(\max)}$ and f are probably too large.

d. Corrected for the internal field in the liquid (720197).

e. Independent of KOH concentration up to 2 M.

References to Sheet No. Sll

640113 Taub, I.A.; Harter, D.A.; Sauer, M.C.Jr.; Dorfman, L.M., J. CHEM. PHYS. 41: 979-85 (1964).

650499 Sauer, M.C.Jr.; Arai, S.; Dorfman, L.M., J. CHEM. PHYS. 42: 708-12 (1965).

660082 Arai, S.; Sauer, M.C.Jr., J. CHEM. PHYS. 44: 2297-305 (1966).

710101 Baxendale, J.H.; Wardman, P., CHEM. COMMUN.: 429-30 (1971).

710769 Pikaev, A.K.; Sibirskaya, G.K.; Shirshov, E.M.; Glazunov, P.Ya.; Spitsyn, V.I., DOKL. PHYS. CHEM. (ENGL. TRANSL.) 200: 786-9 (1971).

720197 Jha, K.N.; Bolton, G.L.; Freeman, G.R., J. PHYS. CHEM. 76(25): 3876-83 (1972).

DATA SHEET Ssl. Properties derived from optical absorption spectra: eireg

State, T		Glassy solid, 4 K					
Reference	595002 610067	685130	700770	700636	720198	720145	720198
$\lambda_{max}(nm)$ $E_{max}(eV)$ $dE_{max}/dT (10^{-3}eV/deg)$ $W_{1/2}(eV)^{4}$ $dW_{1/2}/dT (10^{-3}eV/deg)$ $G(e_{trap})$ $G(e_{trap})$	512 2.42 1.0	543 2.28 1.0	531 2.33 1.1 2.5	$530 \pm 2.3 \pm 0.1^{b}$ 1.2 ± 0.1 ^b	545 2.27 - 3.0 1.4 + 1.7	530	1500° 495° 0.83° 2.50° d - 3.2° 1.05° 1.3° + 1.5°

a. Peak width at half height.

b. The ± values indicate the extent of shift or scatter that can be caused by pre-annealing the glass before irradiation or by letting the irradiated sample sit in the dark for several hours at 77 K before measurement.

c. Electrons trapped in an unrelaxed matrix. The portion bleachable with 1700 nm light has $E_{max} = 0.83 \text{ eV}$ and $W_{1/2} = 0.5 \text{ eV}$ and a narrow esr line (sheet no. Ss2).

d. E_{max} shifts irreversibly towards higher energy when the sample is warmed towards 77 K. See figures Ss4 and 5.

e. After warming to 77 K and re-cooling to 4 K. These electrons give a wide esr line, the same as at 77 K (sheet no. Ss2).

References to Sheet No. Ssl

595002 Alger, R.S.; Anderson, T.H.; Webb, L.A., J. CHEM. PHYS. 30: 695-706 (1959).

610067 Alger, R.S.; Anderson, T.H.; Webb, L.A., J. CHEM. PHYS. 35: 49 (1961).

685130 Ekstrom, A.; Willard, J.E., J. PHYS. CHEM. 72: 4599-603 (1968).

- 700770 Bernas, A.; Grand, D.; Chachaty, C., CHEM. COMMUN.: 1667-8 (1970).
- 700636 Fujii, S.; Willard, J.E., J. PHYS. CHEM. 74: 4313-9 (1970).
- 720145 Sawai, T.; Shinozaki, Y.; Meshitsuka, G., BULL. CHEM. SOC. JAPAN 45: 984-7 (1972).
- 720198 Hase, H.; Warashina, T.; Noda, M.; Namiki, A.; Higashimura, T., J. CHEM. PHYS. 57: 1039-45 (1972).

	Species	Т	λ _{max} (nm)	$\epsilon_{\lambda} (\mathrm{dm^3/mol}\cdot\mathrm{cm})$	Reference
Aqueous Aqueous	CH₃ ĈHOH CH₃CHO- CH₃ ĈHOH CH₃CHO- cH₃CHO-	room room room room room	< 230 ~ 250 < 270 < 210 < 220	870 _{255am} 290 _{297am} 500 _{255am} 235 _{297am} 1300 _{255am} 890 _{297am}	690419 700647 700647 690419 690419 690419 690419 690419

DATA SHEET SI2. Ethanol liquid. Properties derived from optical absorption spectra: CH₃CHOH, CH₃CHO_{1,al}

References to Sheet No. Sl2

690419 Simic, M.; Neta, P.; Hayon, E., J. PHYS. CHEM. 73: 3794-800 (1969).
700647 Fletcher, J.W.; Richards, P.J.; Seddon, W.A., CAN. J. CHEM. 48: 3765-8 (1970).

DATA SHEET S13. Ethanol liquid. Properties derived from ESR spectra: CH₃CHOH, CH₂CH₂OH

Species	g Factor*	ΔH (oersted) ^b	Reference
CH ₃ ĈHOH	2.00323	0.2°	660840
ĈH ₂ CH ₂ OH	2.00247		660840

a. Independent of temperature, 240 to 330 K.

b. Line-width

c. 0.17 at 240 K and 0.23 at 330 K.

CH ₃ CHOH Coupling Constants (oersted)							
T(K)	a _a	a _β	а _{он}				
330 299 240 206	15.24 15.37 15.50	22.14 22.19 22.27	- 0.98 1.13				

Reference to Sheet No. S/3

660840 Livingston, R.; Zeldes, H., J. CHEM. PHYS. 44: 1245-59 (1966).

n	0	0 0	17.1 1	2 . 2	n .•		C	TOD		
	SHEET	SSZ.	Ethanol	solid.	Properties	derived	trom	ESK	spectra:	P
PAIM		~~			- · · · · · · · · · · · · · · · · · · ·		J. 0		op con a.	~ [[]

Solvent	T(K)	g factor	ΔH (oersted) ^a	Reference
$C_{2}H_{5}OH$ $C_{2}H_{5}OH$ $C_{2}H_{5}OH$ $C_{2}H_{5}OH$ $C_{2}H_{5}OH$	77 77 4 4	2.0010	14 12 5.5 ± 0.5^{b} 13.5 $\pm 0.5^{c}$	650517 685130 720198 720198
C_2H_5OH C_2H_5OD	4 77	2.0013	$13.5 \pm 0.5^{\circ}$ 6	72019 65051

a. Line-width between points of maximum slope of the absorption (between minimum and maximum of first derivative curve).

b. Electrons in unrelaxed matrix; optical $E_{max} = 0.83 \text{ eV}$; see sheet no. Sl,sl.

c. Electrons in relaxed matrix; optical $E_{max} = 2.50 \text{ eV}$; see sheet no. Sl,sl.

References to Sheet No. Ss2

650517 Blandamer, M.J.; Shields, L.; Symons, M.C.R., J. CHEM. SOC.: 1127-31 (1965).

685130 Ekstrom, A.; Willard, J.E., J. PHYS. 72: 4599-603 (1968).

720198 Hase, H.; Warashina, T.; Nada, M.; Namiki, A.; Higashimura, T., J. CHEM. PHYS. 57: 1039-45 (1972).

FIGURE Sl,s1. Optical absorption spectra of e_{nolv} in liquid ethanol at ~ 298 K (650499) and 195 K (660082) and in solid at 77 K (685130). See also figure Ss2.

FIGURE S12. Optical absorption spectra of CH_3CHOH and $CH_3CHO_{solv}^-$.

A(690419): 1 atm N₂O added as electron scavenger; room temperature.

Liquid ethanol: pulse dose 1.7 x $10^{18} \text{eV/g}; \bullet$, neutral; \blacksquare , NaOH added. Aqueous 0.1M ethanol: pulse dose 2.2 x $10^{18} \text{eV/g}; \triangle$, pH 1; \bigcirc , pH 6; \Box , pH 13; ϵ_{aq} applies only to the aqueous solutions.

B(700647): pure ethanol, room temperature, pulse dose $\leq 6 \ge 10^{17} \text{ eV/g}.$

FIGURE S13. Optical absorption spectra of e_{solv} and $Cl_2^-_{solv}$ in 3.3 M LiCl and $CH_3CHO_{solv}^-$ in 0.3 M KOH. Ethanol solvent. Room temperature. Pulse length $\cong 1\mu s$; dose $\cong 10^{18} eV/g$. (700246)

FIGURE SI4.

First derivatives of esr spectra of CH_3 CHOH and CH_2CH_2OH in liquid ethanol (660840). (a) CH_3 CHOH at 299 K.

(b) CH₃ CHOH (strong lines) and CH₂CH₂OH (numbered lines) at 203 K.

FIGURE Ss2. Optical properties of γ-irradiated ethanol at 78 K (700770). Dose not stated.
A: Spectra of extinction coefficients of trapped electrons and CH₃ ĊHOH radicals.
B: Spectrum of relative quantum efficiencies for bleaching.

FIGURE Ss3. A: Transient absorption of e⁻_{trap} in ethanol glass at 77 K at ---0.1 μs, ---3 μs, and ----7 μs after a 6 x 10¹⁷ eV/g, 1.1 μs pulse (720004).
B: Optical absorption spectra of e⁻_{trap} in ethanol glass.

The spectra were recorded at 77 and 4 K after gamma radiolysis at 77 K (720198).

- FIGURE Ss4. A: Optical absorption spectra of e_{trap} in ethanol glass. After the radiolysis at 4 K, the spectra were obtained at 4 (1), 10 (2), 19 (3), 30 (4), 42 (5), and 77 K (6). The total dose was 1.5 x 10¹⁹ eV/g. The rate of the temperature rise was about 1 deg/min (720198).
 - B: Optical absorption spectra of e_{irrep}^{-} in ethanol glass. The spectrum A was obtained at 4 K after radiolysis at 4 K. The spectrum B was obtained after photobleaching with light of $\lambda = 1700$ nm at 4 K. Subtraction of the spectrum B from the spectrum A gives a spectrum shown in the insert. Spectrum C was obtained at 77 K when the sample was warmed rapidly to 77 K after irradiation at 4 K. The total gamma dose was $1.5 \times 10^{19} \text{eV/g}$ (720198).

- FIGURE Ss6. ESR spectra of e_{imp} in ethanol glass. The spectrum A was obtained at 4 K after radiolysis at 4 K. The spectrum B was obtained after photobleaching with light of $\lambda > 1000$ nm at 4 K. Subtraction of spectrum B from spectrum A gives a singlet spectrum shown in the insert. Spectrum C was measured at 4 K after the sample which was irradiated at 4 K was warmed rapidly to 77 K. The total dose was $1.1 \ge 10^{19} \text{eV/g}$ (720198).
- FIGURE Ss5. First derivatives of esr spectra of γ -irradiated ethanol at 77 K. Cavity frequency ~ 9.5 GHz. I and II (650790) (a) C₂H₅OH, (b) C₂H₅OD I — before bleaching; - - - after bleaching with visible light, leaving radicals trapped in the matrix.
 - II e_{rrap}, by difference between the curves in I.
 III (685130) before bleaching.

Acknowledgment

This review was written at the suggestion of Dr. Alberta B. Ross of the Radiation Chemistry Data Center, University of Notre Dame, who also made a preliminary compilation of most of the data and references. I would like to express my appreciation to Dr. Ross for her gentle persuasion and for the large amount of help given.

Announcement of New Publications in National Standard Reference Data Series

Superintendent of Documents, Government Printing Office, Washington, D.C. 20402

Dear Sir:

Please add my name to the announcement list of new publications to be issued in the series: National Standard Reference Data Series-National Bureau of Standards.

Name		
Company		
Address		
City	_State	Zip Code

(Notification key N-337)

s.

0.5.00FT.OF.COM 1. PUBLICATION OR REPORT NO 2. Week Accession 3. Recipient's Accession 4. TITLE AND SUBTITUE 5. Publication Date Radiation Chemistry of Ethanol: A Review of the Data on Yielday 5. Publication Date Reaction Rate Parameters, and Spectral Properties of Translent 6. Performing Organization Code 7. AUTHOR(S) 6. Performing Organization Code Gordon R. Freeman 10. Project/Task/ Work Unit No. 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. Project/Task/ Work Unit No. NATIONAL BUREAU OF STANDARDS DEPARTMENT OF COMMIRCE 11. Contact/Gran No. VASINGTON, DA.C. 2024 11. Contact/Gran No. 12. Sponsoring Organization Name and Address 13. Type of Report & Period Atomic Energy Commission and National Bureau of Standards NA 14. Sponsoring Agency Code 13. SUPPLEMENTARY NOTES 15. SUPPLEMENTARY NOTES 14. Sponsoring Agency Code 16. ABSTRACT (A 200-word of less factual summary of most significant information. If document includes a significant biologicaphy of Iteranet survey, mention it here.) 16. ABSTRACT (A 200-word of less factual summary of most significant information. If document includes a significant biologicaphy of Iteranet survey, mention it here.) 15. SUPPLEMENTARY NOTES 14. Sponsoring Agency Code 16. MAS	FORM NBS-114A (1-71)				
4. THE AND MUTTLE 1. NORE 100 TO 3. Publication Date Reditation Chemistry of Ethanol: A Review of the Data on Y1eida, 5. Publication Date Reaction Rate Parameters, and Spectral Properties of Transients 4. Performing Organization Cade 7. AUTHOR(S) 6. Performing Organization Cade Option On GANIZATION NAME AND ADDRESS 10. Project/Task/Work Unit No. NATIONAL BUREAU OF STANDARDS 11. Contract/Grant No. DEPARTMENT OF COMMERCE WASHINGTON, D.C. 20234 12. Spensoring Organization 13. Type of Report & Period Correct NA 14. Spensoring Organization NA 15. SUPPLEMENTARY NOTES 13. Type of Report & Period 16. ABSTEACT (A 200-wood or less factual summary of most significant information. If document includes a significant 17. SUPPLEMENTARY NOTES 14. Spensoring Agency Code 18. SUPPLEMENTARY NOTES 14. Spensoring Agency Code 19. ABSTEACT (A 200-wood or less factual summary of most significant information. If document includes a significant 19. ABSTEACT (A 200-wood or less factual summary of most significant information. If document includes a significant 19. ADSTEACT (A 200-wood or less factual summary of most significant information. If document includes a significant 19. VEEV WORDS (Alphabetical order, separated by semicolona)<	U.S. DEPT. OF COMM. BIBLIOGRAPHIC DATA	1. PUBLICATION OR REPORT NO.	2. Gov't Accession No.	3. Recipient	s Accession No.
Radiation Chemistry of Ethanol: A Review of the Data on Yields, Pebruary 1974 Reaction Rate Parameters, and Spectral Properties of Transients 5 Performing Organization Code 7. AUTHOR(S) 9. Performing Organization Code 0ordon R. Freeman 9. Performing Organization Code NATIONAL BUREAU OF STANDARDS DEPARTMENT OF COMMERCE WASHINGTON, D.C. 2034 10. Project/Task/Work Unit No. 12. Sponsoring Organization Name and Address 11. Contract/Grant No. Atomic Energy Commission and National Bureau of Standards 13. Type of Report & Period Covered 15. SUPPLEMENTARY NOTES 14. Sponsoring Agency Code 16. ADSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant bubblography of Breature survey, mentionic heco) 16. # SUPPLEMENTARY NOTES 16. ADSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant bubblography of Breature survey, mentionic heco) 16. # SUPPLEMENTARY NOTES 16. ADSTRACT (A 200-word or less factual summary of most significant information. If the solid, 11quid and gaseous state, have been compiled and reviewed. Rates of reactions of transient ions and radicals and spectroscopic parameters, including optical and est spectra, are also included. 17. KEY WORDS (Alphabetical order, separated by semicolome) Chemical kinetics; data compilation; ethanol; G; radiation chemistry; rates, review; spectra. 21. No. OF PAGES (THE	4. TITLE AND SUBTITLE			5. Publicati	on Date
Reaction Rate Parameters, and Spectral Properties of Transients 6. Performing Organization Code 7. AUTHOR(S) 4. Performing Organization Code 9. PERFORMING CRAMIZATION NAME AND ADDRESS 10. Project/Task/Work Unit No. NATIONAL DIREAU OF STANDARDS DEPARTMET OF COMPARE 11. Contract/Grant No. 12. Sponsoring Organization Name and Address 11. Contract/Grant No. Atomic Energy Commission and National Bureau of Standards 13. Type of Reform & Period Covered 13. SUPPLEMENTARY NOTES 14. Sponsoring Agency Code 14. Sponsoring Organization Standards NA 14. Sponsoring Agency Code 13. Supplementary notes in the factor in the second of less factual summary of most significant information. If document includes a significant bibliography of iterature array, methods in the factors 15. SUPPLEMENTARY NOTES 14. Sponsoring Agency Code 16. ADSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant bibliography of transference, methods in the solid, liquid and gaseous state, have been compiled and reviewed. Rates of fractions of transference included. 17. KEY WORDS (Alphabetical order, separated by semicolone) Chemical kinetics; data compilation; ethanol; G; radiation chemistry; rates, review; spectra. 18. AVAILABILITY STATEMENT 19. SECURITY CLASS (THE REPORT) 43 19. NILIS 20. SCCIRTY CLASS (THE SEPORT) 21. No. OF PA	Radiation Chemistry	of Ethanol: A Review of	the Data on Yields	, Februa:	ry 1974
7. AUTHOR(S) 8. Performing Organization Gordon R. Freeman 10. Project/Tasl/Work Unit No. NATIONAL BUREAU OF STANDARDS DEPARTMENT OF COMMERCE WASHINGTON, D.C. 20234 10. Project/Tasl/Work Unit No. 12. Sponsoring Organization Name and Address 11. Contract/Grant No. Atomic Energy Commission and National Bureau of Standards 11. Contract/Grant No. 15. SUPPLEMENTARY NOTES 13. Type of Report & Period Covered 16. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant bibliography or literature survey, mention it here.) 16. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant bibliography or literature survey, mention it here.) 17. KEY WORDS (Alphabetical order, separated by semicolons) The yields (G) for products and intermediates formed by irradiation of ethanol, in the solid, liquid and gaseous state, have been compiled and reviewed. Rates of optical and esr spectra, are also included. 17. KEY WORDS (Alphabetical order, separated by semicolons) Chemical kinetics; data compilation; ethanol; G; radiation chemistry; rates, review; spectra. 18. AVAILABILITY STATEMENT 19. SECURITY CLASS (THIS RAED) 20. SECURITY CLASS (THIS SAED) 21. NO. OF PAGES (THIS SAED) 21. UNLIMITED. 43 22. Price 80 cents 80 cents <	Reaction Rate Parame	eters, and Spectral Proper	ties of Trànsien t s	6. Performing	Organization Code
GORGOR, K. Freeman 10. Project/Tack/Work Unit No. 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. Project/Tack/Work Unit No. NATIONAL BUREAU OF STANDARDS DEPARTMENT OF COMMERCE WASHINGTON, D.C. 2034 11. Contract/Grant No. 12. Sponsoring Organization Name and Address 13. Type of Report & Period Covered Atomic Energy Commission and National Bureau of Standards 13. Type of Report & Period 14. Sponsoring Agency Code 14. Sponsoring Agency Code 15. SUPPLEMENTARY NOTES 14. Sponsoring Agency Code 16. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant biolography or licestance survey, monitonit here.) 16. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant biolography or licestance survey, monitonit here.) 17. NEY WORDS (Alphabetical forder, separated by semicolons) 18. AVAILABULITY STATEMENT 19. KEY WORDS (Alphabetical order, separated by semicolons) Chemical kinetics; data compilation; ethanol; G; radiation chemistry; rates, review; spectra. 19. NULLASSIFIED 21. NO. OF PACES (THIS PACE) 20. ECURITY CLASS (THIS PACE) 22. Price 80 cents	7. AUTHOR(S)			8. Performin	g Organization
NATIONAL BUREAU OF STANDARDS DEPARTMENT OF COMERCE WASHINGTON, DC. 20234 11. Contract/Grant No. 12. Sponsoring Organization Name and Address Atomic Energy Commission and National Bureau of Standards 13. Type of Report & Period National Agency Code 13. SUPPLEMENTARY NOTES 14. Sponsoring Agency Code 14. Sponsoring Agency Code 15. SUPPLEMENTARY NOTES 15. SUPPLEMENTARY NOTES 14. Sponsoring Agency Code 15. SUPPLEMENTARY NOTES 15. Supplement includes a significant bibliography or literature survey, mentionit here) 16. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant bibliography or literature survey, mentionit here) 17. KEY WORDS (Alphaberical order, separated by semicolons) The yields (G) for products and radicals and spectroscopic parameters, including optical and esr spectra, are also included. 17. KEY WORDS (Alphaberical order, separated by semicolons) Chemical kinetics; data compilation; ethanol; C; radiation chemistry; rates, review; spectra. 18. AVAILABULITY STATEMENT 9. SECUNITY CLASS (THIS REPORT) 21. NO. OF PAGES (THIS REPORT) 18. AVAILABULITY STATEMENT 10. NITS. 22. Price (THIS PAGE) 20. Price	Gordon R. Freeman 9. PERFORMING ORGANIZAT	ION NAME AND ADDRESS		10. Project/	Task/Work Unit No.
12. Sponsoring Organization Name and Address 13. Type of Report & Period Covered Atomic Energy Commission and National Bureau of Standards 14. Sponsoring Agency Code 13. SUPPLEMENTARY NOTES 14. Sponsoring Agency Code 14. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant bibliography or literature survey, mention it here.) 16. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant bibliography or literature survey, mention it here.) 15. supplex (C) for products and intermediates formed by irradiation of ethanol, in the solid, liquid and gaseous state, have been compiled and reviewed. Rates of reactions of transient ions and radicals and spectroscopic parameters, including optical and esr spectra, are also included. 17. KEY WORDS (Alphabetical order, separated by semicolons) Chemical kinetics; data compilation; ethanol; G; radiation chemistry; rates, review; spectra. 18. AVAILABILITY STATEMENT 19. SECURITY CLASS 21. NO. OF PAGES 18. AVAILABILITY STATEMENT 19. SECURITY CLASS 21. NO. OF PAGES 19. NUNLIMITED. UNCLASSIFIED 43 10. NTIS. 20. DETRITY CLASS 20. Price 20. SECURITY CLASS 20. Price 80 cents	NATIONAL BU DEPARTMENT WASHINGTON	11. Contract.	Grant No.		
Atomic Energy Commission and National Bureau of Standards NA 14. Sponsoring Agency Code 15. SUPPLEMENTARY NOTES 16. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant bibliography or literature survey, montion it here.) 17. Maximum and the set of the solid (1) for products and intermediates formed by irradiation of ethanol, in the solid (1) fluid and gaseous state, have been compiled and reviewed. Rates of reactions of transient ions and radicals and spectroscopic parameters, including optical and esr spectra, are also included. 17. KEY WORDS (Alphabetical order, separated by semicolons) Chemical kinetics; data compilation; ethanol; G; radiation chemistry; rates, review; spectra. 18. AVAILABILITY STATEMENT 19. SECURITY CLASS (THIS REPORT) 21. NO. OF PAGES (THIS REPORT) 19. AVAILABILITY STATEMENT 19. SECURITY CLASS (THIS REPORT) 21. NO. OF PAGES (THIS RAGE) 19. OR OFFICIAL DISTRIBUTION. DO NOT RELEASE 20. SECURITY CLASS (THIS PAGE) 22. Price (THIS PAGE)	12. Sponsoring Organization Na	me and Address		13. Type of	Report & Period
14. Sponsoring Agency Code 15. SUPPLEMENTARY NOTES 16. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant bibliography or literature survey, mention it here.) 17. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant bibliography or literature survey, mention it here.) 18. Supplementation of the solution of the solut	Atomic Energy Commi	ssion and National Bureau	of Standards	Covered	NA
15. SUPPLEMENTARY NOTES 16. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant bibliography or literature survey, mention it here.) The yields (G) for products and intermediates formed by irradiation of ethanol, in the solid, liquid and gaseous state, have been compiled and reviewed. Rates of reactions of transitent ions and radicals and spectroscopic parameters, including optical and esr spectra, are also included. 17. KEY WORDS (Alphabetical order, separated by semicolons) Chemical kinetics; data compilation; ethanol; G; radiation chemistry; rates, review; spectra. 18. AVAILABILITY STATEMENT 19. SECURITY CLASS 19. ON TIS. 21. NO. OF PAGES 10. ON TIS. 22. Price 10. ONTIS. 22. Price 10. ONTIS. 22. Price 10. CLASSIFIED 20. Cents	ntomic incig, com			14. Sponsorii	ng Agency Code
14. SUPPLEMENTARY NOTES 16. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant bibliography or literature survey, mention it here.) 17. Market and the survey mention it here.) 17. Split (A)					
10. ASSIRACT (A 400-word of less factual summary of most significant information. If document includes a significant bibliography or literature survey, manufoni there.) The yields (G) for products and intermediates formed by irradiation of ethanol, in the solid, liquid and gaseous state, have been compiled and reviewed. Rates of reactions of transient ions and radicals and spectroscopic parameters, including optical and esr spectra, are also included. 17. KEY WORDS (Alphabetical order, separated by semicolons) Chemical kinetics; data compilation; ethanol; G; radiation chemistry; rates, review; spectra. 18. AVAILABILITY STATEMENT 19. SECURITY CLASS (THIS REPORT) 21. NO. OF PAGES 20. SECURITY CLASS (THIS REPORT) 21. NO. OF PAGES 22. Price 80 cents					
17. KEY WORDS (Alphabetical order, separated by semicolons) Chemical kinetics; data compilation; ethanol; G; radiation chemistry; rates, review; spectra. 18. AVAILABILITY STATEMENT Image: Composition of procession of the second of th	10. ABSTRACT (A 200-word or bibliography or literature su	less factual summary of most significativey, mention it here.)	ant information. If documer	nt includes a	significant
17. KEY WORDS (Alphabetical order, separated by semicolons) 17. KEY WORDS (Alphabetical order, separated by semicolons) Chemical kinetics; data compilation; ethanol; G; radiation chemistry; rates, review; spectra. 18. AVAILABILITY STATEMENT Image: Compile and provide the semicolons of the semic	The vields (G) for m	roducts and intermodiates	formed has down 14 a		
17. KEY WORDS (Alphabetical order, separated by semicolons) 17. KEY WORDS (Alphabetical order, separated by semicolons) Chemical kinetics; data compilation; ethanol; G; radiation chemistry; rates, review; spectra. 18. AVAILABILITY STATEMENT 19. OF OFFICIAL DISTRIBUTION. DO NOT RELEASE 10. NTIS.	the solid, liquid and	gaseous state, have been	compiled and rowi	ion of et	hanol, in
17. KEY WORDS (Alphabetical order, separated by semicolons) Chemical kinetics; data compilation; ethanol; G; radiation chemistry; rates, review; spectra. 18. AVAILABILITY STATEMENT 19. SECURITY CLASS (THIS REPORT) You NLIMITED. 43 Image: For OFFICIAL DISTRIBUTION. DO NOT RELEASE TO NTIS. 20. SECURITY CLASS (THIS PAGE) 20. SECURITY CLASS (THIS PAGE) 80 cents	reactions of transier	it ions and radicals and s	Dectroscopic param	ewed. Ka	tes of
17. KEY WORDS (Alphabetical order, separated by semicolons) Chemical kinetics; data compilation; ethanol; G; radiation chemistry; rates, review; spectra. 18. AVAILABILITY STATEMENT 19. SECURITY CLASS (THIS REPORT) 18. AVAILABILITY STATEMENT 19. SECURITY CLASS (THIS REPORT) 19. OF OFFICIAL DISTRIBUTION. DO NOT RELEASE TO NTIS. 20. SECURITY CLASS (THIS PAGE) 20. SECURITY CLASS (THIS PAGE) 20. SECURITY CLASS (THIS PAGE) 20. SECURITY CLASS (THIS PAGE) 80 cents	optical and esr spect	ra, are also included.	peteroscopic param	eters, In	cruding
17. KEY WORDS (Alphabetical order, separated by semicolons) Chemical kinetics; data compilation; ethanol; G; radiation chemistry; rates, review; spectra. 18. AVAILABILITY STATEMENT Image: Compilation in the second secon					
17. KEY WORDS (Alphabetical order, separated by semicolons) Chemical kinetics; data compilation; ethanol; G; radiation chemistry; rates, review; spectra. 18. AVAILABILITY STATEMENT INLIMITED. POR OFFICIAL DISTRIBUTION. DO NOT RELEASE 19. SECURITY CLASS (THIS PAGE) 20. SECURITY CLASS (THIS PAGE) 80 cents UNCLASSIFIED					
17. KEY WORDS (Alphabetical order, separated by semicolons) Chemical kinetics; data compilation; ethanol; G; radiation chemistry; rates, review; spectra. 18. AVAILABILITY STATEMENT 19. SECURITY CLASS (THIS REPORT) Y UNLIMITED. 43 POR OFFICIAL DISTRIBUTION. DO NOT RELEASE TO NTIS. 20. SECURITY CLASS (THIS PAGE) 20. SECURITY CLASS (THIS PAGE) 22. Price (SO CENTY) 80 cents 00 cents					
17. KEY WORDS (Alphabetical order, separated by semicolons) Chemical kinetics; data compilation; ethanol; G; radiation chemistry; rates, review; spectra. 18. AVAILABILITY STATEMENT X UNLIMITED. POR OFFICIAL DISTRIBUTION. DO NOT RELEASE TO NTIS. POR OFFICIAL DISTRIBUTION. DO NOT RELEASE 10. SECURITY CLASS (THIS PAGE) 20. SECURITY CLASS (THIS PAGE) 80 cents UNCLASSIFIED					
17. KEY WORDS (Alphabetical order, separated by semicolons) Chemical kinetics; data compilation; ethanol; G; radiation chemistry; rates, review; spectra. 18. AVAILABILITY STATEMENT 19. SECURITY CLASS (THIS REPORT) 19. SECURITY CLASS (THIS PAGE) 10. OF PAGES (THIS PAGE) 10. SECURITY CLASS 11. NO. OF PAGES 12. Price 13. UNCLASSIFIED 14. UNCLASSIFIED					
17. KEY WORDS (Alphabetical order, separated by semicolons) Chemical kinetics; data compilation; ethanol; G; radiation chemistry; rates, review; spectra. 18. AVAILABILITY STATEMENT IN UNLIMITED. IN FOR OFFICIAL DISTRIBUTION. DO NOT RELEASE TO NTIS. 20. SECURITY CLASS (THIS PAGE) 20. SECURITY CLASS (THIS PAGE) 80 cents					
17. KEY WORDS (Alphabetical order, separated by semicolons) Chemical kinetics; data compilation; ethanol; G; radiation chemistry; rates, review; spectra. 18. AVAILABILITY STATEMENT 19. SECURITY CLASS (THIS REPORT) 21. NO. OF PAGES (THIS REPORT) 18. AVAILABILITY STATEMENT 19. SECURITY CLASS (THIS REPORT) 43 19. FOR OFFICIAL DISTRIBUTION. DO NOT RELEASE TO NTIS. 20. SECURITY CLASS (THIS PAGE) 22. Price 80 cents					
17. KEY WORDS (Alphabetical order, separated by semicolons) Chemical kinetics; data compilation; ethanol; G; radiation chemistry; rates, review; spectra. 18. AVAILABILITY STATEMENT Image: Availability Statement Imag					
17. KEY WORDS (Alphabetical order, separated by semicolons) Chemical kinetics; data compilation; ethanol; G; radiation chemistry; rates, review; spectra. 18. AVAILABILITY STATEMENT IN UNLIMITED. IFOR OFFICIAL DISTRIBUTION. DO NOT RELEASE TO NTIS. IFOR OFFICIAL DISTRIBUTION. DO NOT RELEASE UNCLASSIFIED 20. SECURITY CLASS (THIS PAGE) 80 cents					
17. KEY WORDS (Alphabetical order, separated by semicolons) Chemical kinetics; data compilation; ethanol; G; radiation chemistry; rates, review; spectra. 18. AVAILABILITY STATEMENT 19. SECURITY CLASS (THIS REPORT) 21. NO. OF PAGES Image: Complex of the second					
17. KEY WORDS (Alphabetical order, separated by semicolons) Chemical kinetics; data compilation; ethanol; G; radiation chemistry; rates, review; spectra. 18. AVAILABILITY STATEMENT 19. SECURITY CLASS (THIS REPORT) 21. NO. OF PAGES (THIS REPORT) Image: Complex					
17. KEY WORDS (Alphabetical order, separated by semicolons) Chemical kinetics; data compilation; ethanol; G; radiation chemistry; rates, review; spectra. 18. AVAILABILITY STATEMENT 19. SECURITY CLASS (THIS REPORT) 21. NO. OF PAGES (THIS REPORT) X UNLIMITED. 43 Image: For official distribution. do not release to ntil. 20. SECURITY CLASS (THIS PAGE) 22. Price 80 cents NUNCLASSIFIED 80 cents					
17. KEY WORDS (Alphabetical order, separated by semicolons) Chemical kinetics; data compilation; ethanol; G; radiation chemistry; rates, review; spectra. 18. AVAILABILITY STATEMENT 19. SECURITY CLASS (THIS REPORT) 21. NO. OF PAGES (THIS REPORT) Image:					
17. KEY WORDS (Alphabetical order, separated by semicolons) Chemical kinetics; data compilation; ethanol; G; radiation chemistry; rates, review; spectra. 18. AVAILABILITY STATEMENT 19. SECURITY CLASS (THIS REPORT) 21. NO. OF PAGES Image: Complex separated by semicolons (This Report) 43 Image: Complex separated by semicolons (This Page) 80 cents Image: Complex separated by semicolons (This Page) 80 cents					
17. KEY WORDS (Alphabetical order, separated by semicolons) Chemical kinetics; data compilation; ethanol; G; radiation chemistry; rates, review; spectra. 18. AVAILABILITY STATEMENT Image: Spectra in the system is a spectra in the system in the system is a spectra in the system in the system is a spectra in the system in the system is a spectra in the system in the system is a spectra in the system is a spectra in the system in the system in the system in the system in th					
Chemical kinetics; data compilation; ethanol; G; radiation chemistry; rates, review; spectra. 18. AVAILABILITY STATEMENT X UNLIMITED. FOR OFFICIAL DISTRIBUTION. DO NOT RELEASE TO NTIS. 21. NO. OF PAGES (THIS REPORT) 43 UNCLASSIFIED 20. SECURITY CLASS (THIS PAGE) 80 cents	17. KEY WORDS (Alphabetical	order, separated by semicolons)			
Spectra. 18. AVAILABILITY STATEMENT Image: Constraint of the state of the s	Chemical kinetics; da	ta compilation; ethanol; G	; radiation chemis	stry; rate	es, review;
X UNLIMITED. 17. SECONTITICLASS 24.3 FOR OFFICIAL DISTRIBUTION. DO NOT RELEASE 20. SECURITY CLASS 22. Price TO NTIS. 80 cents	18. AVAILABILITY STATEMEN	NT	19 SECULITY		21 NO OF PAGES
X UNLIMITED. 43 FOR OFFICIAL DISTRIBUTION. DO NOT RELEASE TO NTIS. 20. SECURITY CLASS (THIS PAGE) 22. Price 80 cents UNCLASSIFIED 80 cents	THE STATEMEN		(THIS REF	PORT)	- NO. OF FAGES
FOR OFFICIAL DISTRIBUTION. DO NOT RELEASE 20. SECURITY CLASS (THIS PAGE) 22. Price TO NTIS. 80 cents	X UNLIMITED.		UNCL ASS	IFIFD	43
TO NTIS. (THIS PAGE) 80 cents UNCLASSIFIED	FOR OFFICIAL D	ISTRIBUTION. DO NOT RELEASE	20. SECURITY	CLASS	22. Price
UNCLASSIFIED	TO NTIS.			3E)	80 cents
			UNCLASS	FIED	

NBS TECHNICAL PUBLICATIONS

PERIODICALS

JOURNAL OF RESEARCH reports National Bureau of Standards research and development in physics, mathematics, and chemistry. Comprehensive scientific papers give complete details of the work, including laboratory data, experimental procedures, and theoretical and mathematical analyses. Illustrated with photographs, drawings, and charts. Includes listings of other NBS papers as issued.

Published in two sections, available separately:

• Physics and Chemistry (Section A)

Papers of interest primarily to scientists working in these fields. This section covers a broad range of physical and chemical research, with major emphasis on standards of physical measurement, fundamental constants, and properties of matter. Issued six times a year. Annual subscription: Domestic, \$17.00; Foreign, \$21.25.

• Mathematical Sciences (Section B)

Studies and compilations designed mainly for the mathematician and theoretical physicist. Topics in mathematical statistics, theory of experiment design, numerical analysis, theoretical physics and chemistry, logical design and programming of computers and computer systems. Short numerical tables. Issued quarterly. Annual subscription: Domestic, \$9.00; Foreign, \$11.25.

DIMENSIONS, NBS

The best single source of information concerning the Bureau's measurement, research, developmental, cooperative, and publication activities, this monthly publication is designed for the layman and also for the industry-oriented individual whose daily work involves intimate contact with science and technology -for engineers, chemists, physicists, research managers, product-development managers, and company executives. Annual subscription: Domestic, \$6.50; Foreign, \$8.25.

NONPERIODICALS

Applied Mathematics Series. Mathematical tables, manuals, and studies.

Building Science Series. Research results, test methods, and performance criteria of building materials, components, systems, and structures.

Handbooks. Recommended codes of engineering and industrial practice (including safety codes) developed in cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications. Proceedings of NBS conferences, bibliographies, annual reports, wall charts, pamphlets, etc.

Monographs. Major contributions to the technical literature on various subjects related to the Bureau's scientific and technical activities.

National Standard Reference Data Series. NSRDS provides quantitative data on the physical and chemical properties of materials, compiled from the world's literature and critically evaluated.

Product Standards. Provide requirements for sizes, types, quality, and methods for testing various industrial products. These standards are developed cooperatively with interested Government and industry groups and provide the basis for common understanding of product characteristics for both buyers and sellers. Their use is voluntary.

Technical Notes. This series consists of communications and reports (covering both other-agency and NBS-sponsored work) of limited or transitory interest.

Federal Information Processing Standards Publications. This series is the official publication within the Federal Government for information on standards adopted and promulgated under the Public. Law 89–306, and Bureau of the Budget Circular A–86 entitled, Standardization of Data Elements and Codes in Data Systems.

Consumer Information Series. Practical information, based on NBS research and experience, covering areas of interest to the consumer. Easily understandable language and illustrations provide useful background knowledge for shopping in today's technological marketplace.

BIBLIOGRAPHIC SUBSCRIPTION SERVICES

The following current-awareness and literature-survey bibliographies are issued periodically by the Bureau:

Cryogenic Data Center Current Awareness Service | Publications and Reports of Interest in Cryogenics) A literature survey issued weekly. Annual subscription : Domestic, \$20.00; foreign, \$25.00.

Liquefied Natural Gas. A literature survey issued quarterly Annual subscription: \$20.00.

Superconducting Devices and Materials. A literature survey issued quarterly. Annual subscription: \$20.00. Send subscription orders and remittances for the preceding bibliographic services to the U.S. Department of Commerce, National Technical Information Service, Springfield, Va. 22151.

Electromagnetic Metrology Current Awareness Service Abstracts of Selected Articles on Measurement Techniques and Standards of Electromagnetic Quantities from D-C to Millimeter-Wave Frequencies) Issued monthly Annual subscription: \$100.00 Special rates for multi subscriptions. Send subscription order and remittance to the Electromagnetic Metrology Information Center, Electromagnetics Division, National Bureau of Standards, Boulder, Colo. 80302.

> Order NBS publications (except Bibliographic Subscription Services) from: Superintendent of Doc ments, Government Printing Office, Washington, D.C. 20402.

U.S. DEPARTMENT OF COMMERCE National Bureau of Standards Washington D.C. 20234

OFFICIAL BUSINESS

Penalty for Private Use, \$300

POSTAGE AND FEES PAID U.S. DEPARTMENT OF COMMERCE COM-215

