


NAT'L INST OF STANDARDS & TECH R.I.C.

A11102145830 Watson, Edgar/Selected specific rates of QC100.U573 V42;1972 C.1 NBS-PUB-C 1972

COMMERCE

PUBLICATION

PUBLICATIONS

Selected Specific Rates of Reactions of the Solvated Electron in Alcohols

U.S. DEPARTMENT OF COMMERCE National Bureau of QC 100 . U.S.7.3 Nc. 4.2

1972

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards¹ was established by an act of Congress March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau consists of the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Center for Computer Sciences and Technology, and the Office for Information Programs.

THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of a Center for Radiation Research, an Office of Measurement Services and the following divisions:

Applied Mathematics—Electricity—Heat—Mechanics—Optical Physics—Linac Radiation²-Nuclear Radiation²-Applied Radiation²-Quantum Electronics³-Electromagnetics³—Time and Frequency³—Laboratory Astrophysics³—Cryogenics³.

THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to improved methods of measurement, standards, and data on the properties of well-characterized materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; and develops, produces, and distributes standard reference materials. The Institute consists of the Office of Standard Reference Materials and the following divisions:

Analytical Chemistry—Polymers—Metallurgy—Inorganic Materials—Reactor Radiation—Physical Chemistry.

THE INSTITUTE FOR APPLIED TECHNOLOGY provides technical services to promote the use of available technology and to facilitate technological innovation in industry and Government; cooperates with public and private organizations leading to the development of technological standards (including mandatory safety standards), codes and methods of test; and provides technical advice and services to Government agencies upon request. The Institute also monitors NBS engineering standards activities and provides liaison between NBS and national and international engineering standards bodies. The Institute consists of the following divisions and offices:

Engineering Standards Services—Weights and Measures—Invention and Innovation—Product Evaluation Technology—Building Research—Electronic Technology—Technical Analysis—Measurement Engineering—Office of Fire Programs.

THE CENTER FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides technical services designed to aid Government agencies in improving cost effectiveness in the conduct of their programs through the selection, acquisition, and effective utilization of automatic data processing equipment; and serves as the principal focus within the executive branch for the development of Federal standards for automatic data processing equipment, techniques, and computer languages. The Center consists of the following offices and divisions:

Information Processing Standards—Computer Information—Computer Services -Systems Development-Information Processing Technology.

THE OFFICE FOR INFORMATION PROGRAMS promotes optimum dissemination and accessibility of scientific information generated within NBS and other agencies of the Federal Government; promotes the development of the National Standard Reference Data System and a system of information analysis centers dealing with the broader aspects of the National Measurement System; provides appropriate services to ensure that the NBS staff has optimum accessibility to the scientific information of the world, and directs the public information activities of the Bureau. The Office consists of the

Office of Standard Reference Data-Office of Technical Information and Publications-Library-Office of International Relations.

¹ Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted; mailing address Washing-ton, D.C. 20234 ² Part of the Center for Radiation Research. ³ Located at Boulder, Colorado 80302.

OCT 1 2 1972

notane 10573 po. 42 1972

QCIOO Selected Specific Rates of Reactions of the Solvated Electron in Alcohols

Edgar Watson, Jr., and Sathyabhama Roy

Radiation Chemistry Data Center, Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556

U.S. DEPARTMENT OF COMMERCE, Peter G. Peterson, Secretary NATIONAL BUREAU OF STANDARDS, Lawrence M. Kushner, Acting Director, + USROS-1954=

Issued August 1972

V.S

Library of Congress Catalog Card Number: 72-600051

NSRDS-NBS 42

Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. (U.S.), 42, 22 pages (Aug. 1972) CODEN: NSRDAP

© 1972 by the Secretary of Commerce on Behalf of the United States Government

Foreword

The National Standard Reference Data System provides access to the quantitative data of physical science, critically evaluated and compiled for convenience, and readily accessible through a variety of distribution channels. The System was established in 1963 by action of the President's Office of Science and Technology and the Federal Council for Science and Technology, with responsibility to administer it assigned to the National Bureau of Standards.

The System now comprises a complex of data centers and other activities, carried on in academic institutions and other laboratories both in and out of government. The independent operational status of existing critical data projects is maintained and encouraged. Data centers that are components of the NSRDS produce compilations of critically evaluated data, critical reviews of the state of quantitative knowledge in specialized areas, and computations of useful functions derived from standard reference data. In addition, the centers and projects establish criteria for evaluation and compilation of data and make recommendations on needed improvements in experimental techniques. They are normally closely associated with active research in the relevant field.

The technical scope of the NSRDS is indicated by the principal categories of data compilation projects now active or being planned: nuclear properties, atomic and molecular properties, solid state properties, thermodynamic and transport properties, chemical kinetics, and colloid and surface properties.

The NSRDS receives advice and planning assistance from the National Research Council of the National Academy of Sciences-National Academy of Engineering. An overall Review Committee considers the program as a whole and makes recommendations on policy, long-term planning, and international collaboration. Advisory Panels, each concerned with a single technical area, meet regularly to examine major portions of the program, assign relative priorities, and identify specific key problems in need of further attention. For selected specific topics, the Advisory Panels sponsor subpanels which make detailed studies of users' needs, the present state of knowledge, and existing data resources as a basis for recommending one or more data compilation activities. This assembly of advisory services contributes greatly to the guidance of NSRDS activities.

The NSRDS-NBS series of publications is intended primarily to include evaluated reference data and critical reviews of long-term interest to the scientific and technical community.

LAWRENCE M. KUSHNER, Acting Director

.7

Preface

This report is one of a series of data publications on radiation chemistry; the aim of the series is to compile, evaluate, and present the numerical results on processes occurring in systems which have been subjected to ionizing radiation. Various kinds of data are important in radiation chemistry. The quantities which were measured first were the observed radiation yields or G values (molecules formed or destroyed per 100 eV). Various indirect methods based on G values have been used to determine yields of transient species and relative rates of reactions. The spectral properties (optical, electron spin resonance) of transients have provided a direct method for their identification, and rates of the very fast reactions of transients which occur in irradiated systems have been measured directly by spectroscopic methods. Conductivity and luminescence methods have also provided a means of measuring properties of transients and their kinetics. Some reactions which occur in irradiated systems have also been studied by other methods, such as photochemistry, electric discharge, ultrasonics, chemical initiation, electron impact, etc. The emphasis in these publications is on the data of radiation chemistry, but where other pertinent data exist, they are included.

The data of radiation chemistry are voluminous; thousands of systems have been investigated. As a result there are certain collections, e.g. rate constants of particular types of reactions or certain properties of transients, for which tabulations of the data are considered essential, but for which critical assessment of each value is impossible. On the other hand, certain systems and properties have been studied so extensively that critical examination of these data is desirable and timely. Authors of this series of data publications have been asked to evaluate the extent to which the data can be critically assessed, to describe their criteria for evaluation, and to designate preferred values whenever possible.

Contents

	1 uac
Foreword	III
Preface	IV
Introduction	1
Table 1. Rate Constants of Reactions of the Solvated Electron in Methanol (1.01a-1.28)	2
Table 2. Rate Constants of Reactions of the Solvated Electron in Ethanol (2.01a-2.30)	5
Table 3. Rate Constants of Reactions of the Solvated Electron in Propanols and Butanol	
(3.01a-3.15)	9
Table 4. Arrhenius Parameters for Reactions of the Solvated Electron in Alcohol Solutions	11
Table 5. Index of Entry Numbers (Tables 1, 2, and 3) for the Reaction of Solvated Electrons	
in Various Alcohol Solutions	11
References	12

Selected Specific Rates of Reactions of the Solvated Electron in Alcohols

Edgar Watson, Jr., and Sathyabhama Roy

Radiation Chemistry Data Center, Radiation Laboratory,* University of Notre Dame, Notre Dame, Indiana 46556

Solvated electrons are generated in alcohols by radiolysis, photolysis, reaction with sodium. etc. Rates of reactions of e_s^- with solvent and solute molecules, ions, and transients, in alcohol solutions, have been compiled. Arrhenius parameters are tabulated for some reactions.

Key words: Alcohols: chemical kinetics: data compilation; radiation chemistry; rates: solvated electron.

Introduction

The nature and chemical properties of solvated electrons in selected solvent media have been the subject of extensive study. One of the important characteristics of this species is its reactivity toward a large number of reagents. The latest rate data compilation for the hydrated electron includes over 700 compounds for which specific rates of reaction have been measured [71–0061].¹ Although several reviews [65-9018; 68-0520; 69-0334; 69-0451; 71-0062] containing rate data for solvated electrons in alcohols have been published. there has been no comprehensive compilation of these data. This compilation of rate constants and Arrhenius parameters has been prepared in order to consolidate the information available in the literature. These data are presented as reported without critical evaluation. Critical assessment of the kinetic parameters of several of the reactions will appear in forthcoming critical reviews [71–0062 and 71-0362].

Rate parameters contained in this compilation include data obtained by pulse radiolysis, flash photolysis, and γ -radiolysis. Competition kinetic studies in alcohols, unlike water, have yielded a large portion of the rate information available. For optimum utilization of the relative rates thus obtained, it is required that the specific rate for one of the competing processes be known. Specific rates obtained from relative rates are listed only when the normalizing rate constants used seemed to be reliable and consistent. Generally, the normalization rate constants are from pulse radiolysis studies which offer the most reliable kinetic method available to obtain rate data involving the solvated electron. Due to the abundance of relative rates obtained using N₂O as a competing solute and the lack of consistent measurements of its specific rate (e.g. in methanol $k(e_s^- + N_2O)$ values obtained from the available data vary over an order of magnitude), the specific rate of reaction of the hydrated electron with N₂O in water has been used to normalize relative rates involving N₂O. Hence, specific rates thus obtained are presented only for comparison purposes and should be considered with caution.

An attempt has been made to include all rate data which have been reported for alcohols. Duplication of references has been avoided in cases where it was apparent that two or more publications report the same experimental results.

Temperature when not specified is to be taken as ambient, 15 to 25 °C. Rate constants obtained at other temperatures have the appropriate temperature noted below the constant. No data on glassy or solid alcohols have been included. No corrections have been made for the effect of ionic strength on the reaction rates of e_s^- , but information pertinent to μ has been reported as given in the reference.

Table 4 contains Arrhenius parameters obtained for reactions of e_s^- in alcohols. Given in this table are: log A, E_a , ΔS^{\ddagger} , temperature range, and the reference.

Arrangement of Tables 1, 2, and 3

Solute and Reaction. The first "solute" listed in each table is the solvent (without solute) followed by solvent mixtures (with no solute), and an alphabetical arrangement of the other solutes. The products which have been identified are included

^{*}The Radiation Laboratory is operated under contract with the Atomic Energy Commission. The work of the Center is supported jointly by the National Bureau of Standards, Office of Standard Reference Data and The AEC. This is AEC Document COO-38-784.

¹ Figures in brackets indicate the literature references at the end of this paper.

in the listed reactions. In competition studies the reaction of e_s^- with the solute of entry appears as reaction (1) and is followed by the competing reaction (2). Solute concentrations were, in most cases 10^{-3} mol dm⁻³ or less. Higher concentrations are noted under *Comments*.

 k_1/k_2 . Relative rate constants listed are unitless (both second order rates in units of dm³mol⁻¹s⁻¹). Relative constants are listed once [under solute of reaction (1)]. Table 5 gives an index to entries for rate constants with the various solutes (relative and specific) listed in tables 1, 2, and 3.

k. Specific rate constants are listed and are in units of dm³mol⁻¹s⁻¹. In the case of the reaction of e_s^- with the alcohol, conversion of a second order rate to a first order rate can be made by multiplying the rate constant by the molarity of the alcohol. Half-lives are also given under *Comments*. Specific rates calculated from relative rates are for reaction (1), and the footnote gives the standard specific rate used for normalization. Error limits and ionic strength have been given as reported by authors. Except where otherwise indicated, all solutions are neutral. Most numerical values of k have been rounded off to one or two significant figures.

Method. Abbreviations used under Method are:

γ-r.	= gamma radiolysis
p.r.	= pulse radiolysis
f. phot.	= flash photolysis
c.k.	= competition kinetics
d.k.	= decay kinetics
calc.	= calculation.

Additional details of the method used are found in the *Comments* column.

Comments. Included under *Comments* are additional experimental details not included with the methods: $t_{1/2}$, measured quantities, corrections applied, etc. For brevity, the following abbreviations and symbols have been utilized:

A	= frequency factor
abs.	= absorption
anal.	= analysis
aq.	= aqueous
av.	= average
conc.	= concentration
const.	= constant
corr.	= correction
d.	= decay
dissocn.	= dissociation
E_a	= activation energy
elec. condy.	= electrical conductivity
eq.	= equation
f.o.	= first order
G	= radiation yield; (molecules or ions
	per 100eV absorbed)
k	per 100eV absorbed) = specific rate
k u	= specific rate
	= specific rate = ionic strength
$\stackrel{\mu}{P_v}$	= specific rate = ionic strength = vapor pressure
μP_v react.	= specific rate = ionic strength = vapor pressure = reaction
μP_v react.	= specific rate = ionic strength = vapor pressure = reaction = alcohol (solvent)
μP_v react. S S _m	= specific rate = ionic strength = vapor pressure = reaction = alcohol (solvent) = mixed solvent
$ \begin{array}{l}\mu\\P_v\\\text{react.}\\S\\S_m\\\Delta S^{\ddagger}\end{array} $	= specific rate = ionic strength = vapor pressure = reaction = alcohol (solvent) = mixed solvent = entropy of activation
μP_{v} react. S S _m ΔS^{\ddagger} s	<pre>= specific rate = ionic strength = vapor pressure = reaction = alcohol (solvent) = mixed solvent = entropy of activation = second</pre>
μP_{v} react. S S _m ΔS^{\ddagger} s scav.	<pre>= specific rate = ionic strength = vapor pressure = reaction = alcohol (solvent) = mixed solvent = entropy of activation = second = scavenger</pre>
μP_v react. S S _m ΔS^{\ddagger} s scav. soln.	<pre>= specific rate = ionic strength = vapor pressure = reaction = alcohol (solvent) = mixed solvent = entropy of activation = second = scavenger = solution</pre>
μP_{v} react. S S _m ΔS^{\ddagger} s scav.	<pre>= specific rate = ionic strength = vapor pressure = reaction = alcohol (solvent) = mixed solvent = entropy of activation = second = scavenger</pre>

Units used in tables 1, 2, 3, and 4:

k, A	$dm^3mol^{-1}s^{-1}$
E_a	kJ mol ⁻¹
ΔS ‡	J mol ⁻¹ deg ⁻¹
Т	°C
P_v	N m $^{-2}$.

References. The serial number used in Radiation Chemistry Data Center files has been used for reference citation. The first two numbers indicate the year of publication.

TABLE 1. Rate constants of reactions of the solvated electron in methanol

No.	Solute and reaction	k_1/k_2	$k(\mathrm{dm^3mol^{-1}s^{-1}})$	Method	Comments	Ref.
1.01a	No solute $(e_s^- + S)$ $e_s^- + CH_3OH \rightarrow CH_3O^- + H$		1.48×10^{4}	p.r.; d.k.		[64-0080].
1.01b	same		$(1.26 \pm 0.04) \times 10^4$	p.r.; d.k.	Methoxide ion conc. $0-10^{-3}$ mol dm ⁻³ ; d.f.o. over 3-4 half-lives; beyond 10^{-3} mol dm ⁻³ CH ₃ O ⁻ , $t_{1/2}$ in- creases to 3.1 μ s at 1 mol dm ⁻³ .	[69–0456].
1.01c	same		0.9×10^{4}	p.r.; d.k.	d.f.o. over 3-4 half-lives; little change in k with re- peated pulsing (~ 830 pulses); no CH ₂ OH radical abs. detected.	[69–0146]. [68–0260].
1.01d	same		1.9×10 ⁴	p.r.; d.k.	d. curves not of simple order and probably in- clude reaction with counter ion.	[64–0113].

No.	Solute and reaction	k_1/k_2	$k(dm^{3}mol^{-1}s^{-1})$	Method	Comments	Ref.
1.01e	same		$\begin{array}{c} 1.7 \times 10^{4} \\ (LiCl) \\ 1.9 \times 10^{4} \\ (NaBr) \\ 1.5 \times 10^{4} \\ (NaI) \\ (8 \rightarrow 5.4) \times 10^{3} \\ (KOH) \end{array}$	p.r.; d.k.	$t_{1/2} = 1.7 \ \mu$ s with added LiCl (conc. independent); $t_{1/2} =$ 1.5 μ s with added NaBr; $t_{1/2} = 1.9 \ \mu$ s with added NaI (conc. independent); conc. of KOH $0.15 \rightarrow 2.65$ mol dm ⁻³ .	[70-0246].
1.01f	same		$\sim 3.5 \times 10^{3}$ (T=-78±2)	p.r.; d.k.	d. curves not of simple order and probably in- clude reaction with counter ion.	[66-0082].
1.01g	No solute $e_{\overline{s}} + e_{\overline{s}} \rightarrow D_2 + CH_3O^-$ $(S = CH_3OD)$		$(3.3 \pm 2) \times 10^9$	c.k.	Reacted Na with CH ₃ OD and measured D ₂ , HD, and disso- lution rate of Na; k calc. based on diffusion and homo- geneous reaction kinetics.	[71-9165]
1.02	$ \begin{array}{c} H_2O (30 \text{ mol } \%) \\ e_s^- + S_m \rightarrow \end{array} $		$\sim 1 \times 10^{4}$	p.r.; d.k.	See 1.01f.	[66-0082].
1.03	$\begin{array}{c} CH_{3}CHOHCH_{3}\\ (50 \text{ mol }\%)\\ e_{s}^{-}+S_{m} \end{array}$		1.9×10^4 2.8×10^3 (T=-78)	p.r.; d.k.	See 1.01f; after ~20 pulses $t_{1/2}$ drops from 1.5 μ s to 0.6 μ s.	[66-0082].
1.04a	acetone (1) $e_s^- + (CH_3)_2 CO \rightarrow$ (2) $e_s^- + N_2 O \rightarrow N_2 + O^-$	0.825	$7.2 imes 10^{9c}$	γ-r.; c.k.	Measured $G(N_2)$; k_1/k_2 calc. on the basis of two conc. and is an av. value.	[67-0313].
1.04b	same	0.57	$5.0 imes 10^{ m 9c}$	γ-r.; c.k.	Two solute system (SF ₆ and (CH ₃) ₂ CO) to determine $\alpha_{acet.}$; k_1/k_2 obtained from ratio of empirical α values for acetone and N ₂ O ^{μ} .	[70-0064].
1.05a	acetophenone (1) $e_s^- + C_6H_5COCH_3 \rightarrow$ (2) $e_s^- + N_2O \rightarrow N_2 + O^-$	1.8	1.6×10^{10c}	γ-r.; c.k.	Measured $G(N_2)$.	[66-0045].
1.05b	same	1.85	1.6×10^{10c}	γ-r.; c.k.	Measured $G(N_2)$: k_1/k_2 is an average from two conc.	[67-0313].
1.06a	benzene (1) $e_s^- + C_6 H_6 \rightarrow$ (2) $e_s^- + N_2 O \rightarrow N_2 + O^-$	$2.3 imes 10^{-3}$	$2.0 imes 10^{7c}$	γ-r.; c.k.	Measured $G(N_2)$.	[67-0313].
1.06b 1.07a	same benzonitrile (1) $e_s^- + C_6H_5CN \rightarrow$ (2) $e_s^- + N_2O \rightarrow N_2 + O^-$	2.9×10^{-3} 2.05	2.5×10^{7c} 1.8×10^{10c}	γ-r.; c.k. γ-r.; c.k.	Measured $G(N_2)$. Measured $G(N_2)$.	[66-0045]. [67-0313].
1.07b 1.08	same benzoquinone	2.1	1.8×10^{10c} 3×10^{10}	γ-r.; c.k. p.r.: d.k.	Measured $G(N_2)$. Corr. made for natural d. of	[66-0045]. [70-0198].
1.09a	$e_{s}^{-} + C_{6}H_{4}O_{2} \rightarrow$ benzyl chloride $e_{s}^{-} + C_{6}H_{5}CH_{2}Cl \rightarrow$ $C_{6}H_{5}CH_{2} + Cl^{-}$		$(5.0 \pm 1.2) \times 10^{9}$	p.r.; d.k.	e_s^- . Corr. for d. of e_s^- in pure solvent; benzyl radical identified spec. from 317.1	[64-0113].
1.09b	same		(5.7±1.2)×10 ⁹	p.r.; d.k.	and 305.5 nm bands. Benzyl radical observed spec.; e_s^- conc. varied	[63–0059].
1.09c	benzyl chloride (1) $e_s^- + C_6H_5CH_2Cl \rightarrow$ (2) $e_s^- + N_2O \rightarrow N_2 + O^-$	0.725	6.3×10 ^{9c}	γ-r.; c.k.	two-fold. Measured $G(N_2)$; k_1/k_2 an average for two conc.	[67–0313].
1.09d	same	0.36 ± 0.04	$3.5 imes 10^{ m 9c}$	γ-r.; c.k.	Measured $G(N_2)$; constant μ maintained using LiCl.	[69-0456].
1.10	carbon tetrachloride (1) $e_s^- + \text{CCl}_4 \rightarrow$ (2) $e_s^- + \text{N}_2 \text{O} \rightarrow \text{N}_2 + \text{O}^-$	6.3 4.0	5.5×10^{10c} 3.5×10^{10c}	γ-r.: c.k.	Measured $G(N_2)$; k_1/k_2 given for two conc. studied.	[67-0313].

ı

No.	Solute and reaction	k_1/k_2	$k(dm^{3}mol^{-1}s^{-1})$	Method	Comments	Ref.
1.11	chloroacetate ion (1) $e_s^- + \text{ClCH}_2\text{COO}^-$ (2) $e_s^- + \text{N}_2\text{O} \rightarrow \text{N}_2 + \text{O}^-$	≪ 1	≪ 8.7×10 ⁹ c	γ-r.; c.k.	Measured G(N₂); constant μ maintained using LiCl.	[69–0456].
1.12a	chlorobenzene (1) $e_s^- + C_6 H_5 Cl \rightarrow$	9.5×10^{-2}	8.3×10^{8c}	γ-r.; c.k.	Measured $G(N_2)$.	[66–0045].
1.12b	(2) $e_s^- + N_2 O \rightarrow N_2 + O^-$ same	9.5×10^{-2}	8.3×10^{8} c	γ-r.; c.k.	Measured $G(N_2)$; k_1/k_2 is average for two conc.	[67–0313].
1.13	cyanogen iodide (1) $e_s^- + ICN \rightarrow I + CN^-$ (2) $e_s^- + N_2O \rightarrow N_2 + O^-$	0.53	4.6×10^{9} c	γ-r.; c.k.	Measured $G(N_2)$.	[69–0220].
1.14	$\begin{array}{c} \text{duroquinone} \\ e_s^- + C_{10}H_{12}O_2 \rightarrow \\ C_{10}H_{12}O_2^- \end{array}$		$\sim 10^{10}$	p.r.; d.k.	Corr. for e_s^- d. in pure solvent.	[70–0198].
1.15a	fluorobenzene (1) $e_s^- + C_6 H_5 F \rightarrow$ (2) $e_s^- + N_2 O \rightarrow N_2 + O^-$	5.85×10-3	$5.1 imes 10^{7 m c}$	γ-r.; c.k.	Measured $G(N_2)$; k_1/k_2 is average for two conc.	[67–0313].
1.15b	same	5.9×10^{-3}	5.1×10^{7} c	γ-r.; c.k.	Measured $G(N_2)$.	[66-0045].
1.16a	$ \begin{array}{l} H_s^-\\ e_s^- + H_s^+ \to H\\ (H_2 SO_4 \text{ or } HCl) \end{array} $		$(3.7 \pm 1.0) \times 10^{10}$	p.r.; d.k.	Corr. for counter ion con- tribution ($\sim 3\%$).	[63–0059].
1.16b	same		$(3.9\pm0.9)\times10^{10}$	p.r.; d.k.	Corr. for <i>e_s⁻</i> d. in pure solvent.	[64–0113].
1.16c	same		$(6.81 \pm 0.63) \times 10^{10}$	p.r.; d.k.	Measured elec. condy. d.; effect of pH (4-10), N ₂ O, and H ₂ O observed.	[71-0064].
1.16d	H_s^+	10	8.7×10 ^{10c}	γ-r.; c.k.	Measured $G(N_2)$; primary	[67-0313].
	(1) $e_s^- + H_s^+ \rightarrow H$ (H ₂ SO ₄) (2) $e_s^- + N_2O \rightarrow N_2 + O^-$	(µ=0)			salt effect evident $(k_1/k_2 = 2.93 \rightarrow 8.00);$ k_1/k_2 at $\mu = 0$ obtained from Broensted-Bjerrum plot.	
1.16e	same	3.0	2.6×10^{10c}	γ-r.; c.k.	Measured $G(H_2)$ and $G(N_2)$.	[66-0094]. [67-0018].
1.17	iodine (1) $e_s^- + I_2 \rightarrow$ (2) $e_s^- + S \rightarrow$		≤ 10 ⁷	γ-r.; c.k.	Measured $G(H_2)$; k is deduced from inequality conditions applied to scavenging equation.	[67-0030].
1.18a	methyl bromide (1) $e_s^- + CH_3Br \rightarrow CH_3 + Br^-$ (2) $e_s^- + N_2O \rightarrow N_2 + O^-$	1.46	$1.3 imes 10^{10c}$	γ-r.; c.k.	Measured $G({}^{14}\text{CH}_4)$ from ${}^{14}\text{CH}_3\text{Br}$; $\alpha_{\text{CH}_3\text{Br}}$ deter- mined from single solute exp.: k_1/k_2 obtained from ratio of empirical α values for CH_3Br and N_2O ^g .	[70-0064].
1.18b	methyl bromide (1) $e_s^- + CH_3Br \rightarrow CH_3 + Br^-$ (2) $e_s^- + S \rightarrow$	$1.35 imes 10^{6}$	$1.2 imes 10^{10a}$	γ-r.; c.k.	Measured $G({}^{14}CH_4)$; at low conc. of CH_3Br empirical α eq. modified to include c. of e_s^- d. as in pure solvent ^{μ} .	[70-0064].
1.19	naphthalene $e_s^- + C_{10}H_8 \rightarrow$		$\sim 2 \times 10^9$	p.r.; d.k.	Spectrum shows product is not C ₁₀ H ₈ ⁻ but probably	[64-0080].
1.20	nitrate ion (1) $e_s^- + NO_3^- \rightarrow$ (2) $e_s^- + N_2O \rightarrow N_2 + O^-$	≪ 1	$\ll 8.7 \times 10^{9c}$	γ-r.; c.k.	$C_{10}H_9$ radical. Measured $G(N_2)$; const. μ maintained.	[69-0456].
1.21	nitrite ion (1) $e_s^- + NO_2^- \rightarrow$ (2) $e_s^- + N_2O \rightarrow N_2 + O^-$	≪ 1	$\ll 8.7 \times 10^{9c}$	γ-r.; c.k.	See 1.20.	[69-0456].
1.22a	nitrobenzene (1) $e_s + K_2 O \rightarrow N_2 + O$ (2) $e_s + C_6 H_5 NO_2 \rightarrow$ (2) $e_s + N_2 O \rightarrow N_2 + O^-$	4.1	3.6×10 ^{10c}	γ-r.; c.k.	Measured $G(N_2)$.	[66-0045].
1.22b	same $(2) e_s + 1020 + 102 + 0$	4.0	3.5×10^{10c}	γ-r.; c.k.	Measured $G(N_2)$.	[67–0313].

No.	Solute and reaction	k_1/k_2	$k(\mathrm{dm^3mol^{-1}s^{-1}})$	Method	Comments	Ref.
1.23a	nitrous oxide (1) $e_s^- + N_2 O \rightarrow N_2 + O^-$ (2) $e_s^- + S \rightarrow$	$2.7 \times 10^{5} 4.2 \times 10^{5} (T=-97) 1.0 \times 10^{5} (T=150)$	2.4×10 ^{9a}	γ-r.: c.k.	Measured $G(N_2)$: at $T = 150$, $P_v = 1.32 \times 10^6$ Nm ⁻² ; see table 4 for Arrhenius parameters.	[68–0610].
1.23b 1.23c	same nitrous oxide (1) $e_s^- + N_2 O \rightarrow N_2 + O^-$	$ \begin{array}{c} (1-100) \\ > 4.55 \times 10^4 \\ 0.126 \\ (\mu=0; T=0) \end{array} $	$> 4.1 \times 10^{8a}$ 1.95×10^{9d}	γ-r.: c.k. γ-r.: c.k.	Measured $G(N_2)$. Measured $G(N_2)$: k_1/k_2 measured as function of μ . Corr, for counter ion	[67–0313]. [67–0065]. [63–0059].
1.24a	(2) $e_s^- + H_s^+ \rightarrow H$ oxygen $e_s^- + O_2 \rightarrow O_2^-$		$(2.1\pm0.4)\times10^{10}$	p.r.; d.k.	contribution ($\sim 3\%$).	[03~0039].
1.24b	same		$(1.9\pm0.4)\times10^{10}$	p. r .: d.k.	Corr. for e_s^- d. in pure solvent.	[64–0113].
1.24c	oxygen (1) $e_s^- + O_2 \rightarrow O_2^-$ (2) $e_s^- + H_s^+ \rightarrow H$ (H ₂ SO ₄)	0.36 ± 0.11	1.6×10^{10b}	γ-r.: c.k.	Measured <i>G</i> (H ₂).	[69–0146]. [68–0260].
1.25	silver ion (1) $e_s^- + Ag^+ \rightarrow Ag^0$ (2) $e_s^- + N_2 O \rightarrow N_2 + O^-$	$\begin{array}{c} 2.4 \\ (\mu = 0; T = 0) \end{array}$	$4.7 imes 10^{9e}$	γ-r.; c.k.	Measured $G(N_2)$: k_1/k_2 measured as a function of μ .	[67-0065].
1.26	sulfur hexafluoride (1) $e_s^- + SF_6 \rightarrow SF_5 + F^-$ (2) $e_s^- + N_2O \rightarrow N_2 + O^-$	3.2	2.8×10 ^{10c}	γ-r.; c.k.	Measured $G({}^{14}\text{CH}_4)$ from ${}^{14}\text{CH}_3\text{Br}$; two solute system (${}^{14}\text{CH}_3\text{Br} + \text{SF}_6$) used to determine $\alpha_{\text{SF}6}$; k_1/k_2 from ratio of $\alpha_{\text{SF}6}$ to α_{N^20} . ^g	[70–0064].
1.27a	toluene (1) $e_s^- + C_6 H_5 C H_3 \rightarrow$ (2) $e_s^- + N_2 O \rightarrow N_2 + O^-$	7.2×10-4	6.3×10 ⁶	γ-r.: c.k.	Measured $G(N_2)$.	[66-0045].
1.27b	same	$5.9 imes 10^{-4}$	$5.1 imes 10^{6c}$	γ-r.; c.k.	Measured $G(N_2)$; k_1/k_2 from single conc. exp.	[67–0313].
1.28	ubiquinone $(Q)^{r}$ $e_{s}^{-} + Q \rightarrow Q^{-}$		1.7×10 ¹⁰ (± 20%)	p. r.; d.k.	Corr. for natural d. of e_s^- : k dependent on conc. of Q; absorption spectrum of radical anion observed.	[70-0198].

TABLE 1. Rate constants of reactions of the solvated electron in methanol - Continued

^a $k(e_s^-+S) = 9 \times 10^3 \text{ dm}^3 \text{mol}^{-1}\text{s}^{-1}$; cf. 1.01c.

^b $k(e_s^- + H_s^+) = 4 \times 10^{10} \text{ dm}^3 \text{mol}^{-1} \text{s}^{-1}$; cf. 1.16a, 1.16b.

^c $k(e_s^{-} + N_2O) \sim k(e_{aq}^{-} + N_2O) = 8.7 \times 10^9 \text{ dm}^3 \text{mol}^{-1} \text{s}^{-1}$ (see Introduction). ^d $k(e_s^{-} + H_s^{+}) = 1.54 \times 10^{10} \text{ dm}^3 \text{mol}^{-1} \text{s}^{-1}$ (T=0) obtained by correcting (b) assuming $E_u = 11 \text{ kJ mol}^{-1}$.

^e $k(e_s^- + N_2O) = 1.95 \times 10^9 \text{ dm}^3 \text{mol}^{-1}\text{s}^{-1} (T=0); \text{ cf. } 1.23\text{ c.}$

^f Ubiquinone is a coenzyme quinone with 6 isoprenoid units in side chain.

^{*F*} G (product) resulting from the scavenging of e_s^- by a solute A can be fitted to an empirical equation containing α_A (or α_A , α_B , ... for two or more solutes) as an adjustable parameter. The α 's are characteristic of the solute and are shown [cf. 70-0064] to be related to the rate constant for scavenging by:

$$\alpha_{\rm A} = k(e_s^- + {\rm A})/\lambda,$$

where λ is a constant for a given medium. Hence, two α 's measured in the same alcohol have the following relationship:

$$\alpha_{\rm A}/\alpha_{\rm B} = k(e_s^- + {\rm A})/k(e_s^- + {\rm B}).$$

TABLE 2. Rate constants of reactions of the solvated electron in etha	TABLE 2.	Rate constants of	f reactions of	the solvated	electron in ethand
---	----------	-------------------	----------------	--------------	--------------------

No.	Solute and reaction	k_1/k_2	$k (\mathrm{dm^3 mol^{-1} s^{-1}})$	Method	Comments	Ref.
2.01a	No solute $(e_s^- + S)$ $e_s^- + C_2 H_3 OH \rightarrow H$ $+ C_2 H_3 O^-$		6.8×10 ³	p.r.; d .k.	$t_{1/2}$ dose dependent; zero dose $t_{1/2}$ (6 μ s) from computer anal.	[70-0172].
2.01b	same		$(0.8 - 1.0) \times 10^4$	p.r.; d.k.	Sodium ethoxide addition increases $t_{1/2}$ from neu- tral value. 4 μ s. to 5.3 μ s.	[70-0172].

No.	Solute and reaction	k_1/k_2	$k(\mathrm{dm^3mol^{-1}s^{-1}})$	Method	Comments	Ref.
2.01c	same		1.9×10^{3}	f. phot.; d.k.	e_s^- generated from I ⁻ ; abs. corrected for I ₂ ⁻ .	[64-7006].
2.01d	same		$1.35 imes 10^4$	p.r.; d.k.	d. curves not of simple order and probably in- clude reaction with counter ion; $t_{1/2}=3 \ \mu$ s;	[64-0113]. [63-0059].
2.01e	same		2.3×10^4 (LiCl) 2.0×10^4	p.r.; d.k.	$t_{1/2}$ longer in basic soln. $t_{1/2} = 1.7 \ \mu$ s with added LiCl (conc. independ- ent); $t_{1/2} = 2.0 \ \mu$ s with	[70-0246].
			(LiBr) $(9 \rightarrow 6) \times 10^{3}$ (KOH or NaOC ₂ H ₅)		added LiBr (> 0.1 mol dm ⁻³); conc. of KOH and NaOC ₂ H ₅ $(1-6) \times 10^{-1}$ mol dm ⁻³ .	
2.01f	same		$ \begin{array}{c} 1 (100021115) \\ 2.0 \times 10^3 \\ (T = -78 \pm 2) \end{array} $	p.r.; d.k.	$t_{1/2} = 20 \ \mu s;$ d. nearly f.o. but shows deviation at early times.	[66-0082].
2.01g	same (1) $e_s^- + S \rightarrow$ (2) $e_s^- + A \rightarrow$		$\sim 1.8 \times 10^4$	calc.	$G(H_2)$ used c.k. eq.; data from [64-0279] and [65-0501]; A is ace- tone. acetaldehyde. and Ni ²⁺ ; k_1 estimated using $k(e^{aq} + A)$ and is an av. value for three	[67-0030].
2.01h	No solute $e_{\overline{s}} + e_{\overline{s}} \rightarrow D_2 + C_2 H_5 O^-$ (S is C ₂ H ₅ OD)		$(5 \pm 4) \times 10^{9f}$ $(7 \pm 3) \times 10^{9f}$ $(5.3 \pm 2) \times 10^{6}$ (T = -78)	c.k.	solutes. Reacted Na with C ₂ H ₅ OD and measured D ₂ , HD, and dissolution rate of Na; k calc. based on dif- fusion and homogeneous	[71–9165].
2.02	glycerol (31 & 12 mol %) $e_{\overline{s}} + S_m \rightarrow$		8.2×10^4 (31 mol %) 5.4×10^4 (12 mol %)	p.r.; d.k.	reaction kinetics. $t_{1/2} = 0.50$ and $0.75 \ \mu s$ for 31 and 12%, respectively; d. nearly f.o. but shows deviation at early times.	[66-0082].
2.03	H_2 O (10, 20, and 36 mol %) $e_s^- + S_m \rightarrow$		$(12 \text{ mol }\%)$ 1.0×10^{5} $(10 \text{ mol }\%)$ 1.6×10^{4} $(20 \text{ mol }\%)$ 1.8×10^{4} $(36 \text{ mol }\%)$	p.r.; d.k.	$t_{1/2} = 0.4, 2.5, 2.2 \mu s$ for 10, 20, and 36 mol %, respectively; see 2.02.	[66-0082].
2.04	NaOH		(00 mor /0)	p.r.; d.k.	Rapid d. on ns time scale; with added NaOH rapid decaying transient reduced; postulated as reaction within spur; $\tau \sim 80$ ns but d. may not be of simple order.	[670126].
2.05a	acetaldehyde		$(4 \pm 0.5) \times 10^9$	p.r.; d.k.		[70-0172].
2.05b	$e_{\overline{s}}^{-} + CH_{3}CHO \rightarrow$ acetaldehyde (1) $e_{\overline{s}}^{-} + CH_{3}CHO \rightarrow$ (2) $e_{\overline{s}}^{-} + S \rightarrow$	$1.6 imes 10^{5}$	$1.1 imes 10^{9a}$	γ-r.; c.k.	Measured $G(\mathrm{H}_2)$.	[64–0279].
2.06a	acetone (1) $e_s^- + (CH_3)_2 CO \rightarrow$ (2) $e_s^- + S \rightarrow$	7.1×10^{5}	4.8 × 10 ^{9a}	γ-r.; c.k.	Measured $G(H_2)$.	[64-0279].
2.06h 2.06c	same acetone (1) $e_{\overline{s}} + (CH_3)_2 CO \rightarrow$ (2) $e_{\overline{s}} + N_2 O \rightarrow N_2 + O^{-1}$	4×10^{5} 0.52	2.7 × 10 ^{9a} 3.1 × 10 ^{9c}	γ-r.; c.k. γ-r.; c.k.	Measured $G(H_2)$. Measured $G({}^{14}CH_4)$ from two solute system $({}^{14}CH_3Br + (CH_3)_2CO)$ to determine $\alpha_{acet.}$; k_1/k_2 obtained from the ratio of empirical α values for acetone and N ₂ O ^d .	[67-0004]. [70-0064].

TABLE 2. Rate constants of reactions of the solvated electron in ethanol-Continued

TABLE 2. Rate constants of reactions of the solvated electron in ethanol-Continued	TABLE 2.	Rate constants of	reactions of th	he solvated	electron i	<i>n</i> ethanol – Continued
--	----------	-------------------	-----------------	-------------	------------	------------------------------

No.	Solute and reaction	k_1/k_2	$k(\mathrm{dm^3mol^{-1}s^{-1}})$	Method	Comments	Ref.
2.07	anthracene (1) $e_s^- + C_{14}H_{10} \rightarrow$ (2) $e_s^- + S \rightarrow$	2.4×10^{6}	1.6×10 ^{10a}	γ-r.; c.k.	Measured $G(H_2)$.	[64-0279].
2.08	benzene (1) $e_s^- + C_6 H_6 \rightarrow$ (2) $e_s^- + S \rightarrow$	8.5×10^{2}	$5.8 imes 10^{6a}$	γ-r.; c.k.	Measured $G(H_2)$: corr. for reaction of e_s^- with impurities.	[69-0651].
2.09a	benzyl chloride $e_s^- + C_6H_5CH_2Cl \rightarrow$ $C_6H_5CH_2 + Cl^-$		5.1×10^9	p.r.; d.k.	Corr. for $e_s^- d$. in pure S.	[64~0138].
2.09b	same		. $(5.1 \pm 1.2) \times 10^9$	p.r.; d.k.	Corr. for $e_s^- d$. in pure S; benzyl radical identified spec. from 317.1 and 305.5 nm bands.	[64-0113].
2.09c	same		$(5.3 \pm 1.3) \times 10^9$	p.r.; d.k.	Benzyl radical absorp- tion observed.	[63-0059].
2.10a	biphenyl $e_s^- + C_{12}H_{10} \rightarrow C_{12}H_{10}^-$		$> 2 \times 10^9$	p.r.; d.k.	Biphenylide ion identified spec. from 405, 610, and 635 nm bands.	[64-0113].
2.10b	biphenyl (1) $e_s^- + C_{12}H_{10} \rightarrow C_{12}H_{10}^-$ (2) $e_s^- + \text{naphthalene} \rightarrow$		$(4.3 \pm 0.7) \times 10^9$	p.r.; c.k.	O.D. of biphenylide ion measured at midpoint of 0.4 μ s pulse in pres- ence of various amounts of C ₁₀ H ₈ ; see 2.19 for $k(e_s^- + C_{10}H_8)$.	[64-0084].
2.11a	carbon tetrachloride (1) $e_s^- + CCl_4 \rightarrow$ (2) $e_s^- + S \rightarrow$	1.0×10^{4}	6.8×10 ^{7a}	γ-r.; c.k.	Measured $G(H_2)$.	[64-0279].
2.11b	carbon tetrachloride (1) $e_s^- + CCl_4 \rightarrow$ (2) $e_s^- + N_2O \rightarrow$	< 1.3	$< 1.1 \times 10^{10^{\circ}}$	γ-r.; c.k.	Dose and base affect k: upper limit because no corr. for acid formed.	[71-0009].
2.11c	carbon tetrachloride $e_s^- + CCl_4 \rightarrow$		1.1×10^{10}	p.r.; d.k.	Neutral and basic soln.	[71-0009].
2.12a	chloroacetic acid (1) $e_s^- + \text{ClCH}_2\text{COOH} \rightarrow$ (2) $e_s^- + \text{S} \rightarrow$	1.1×10^{5}	$7.5 imes 10^{8a}$	γ-r.: c.k.	Measured $G(H_2)$.	[64-0279].
2.12b	same	$1.3 imes 10^{5}$	8.9×10^{8a}	γ-r.: c.k.	Measured dose effect on $G(H_2)$ and $G(CH_3CHO)$.	[65-0045].
2.12c	same	$\begin{array}{c} 1.0 \times 10^5 \\ 5.0 \times 10^4 \\ (T=0) \\ 7.3 \times 10^3 \\ (T=-20) \\ 4.1 \times 10^3 \\ (T=-72) \end{array}$	6.8×10 ^{8a}	γ-r.; c.k.	Measured G(H₂).	[67–0173].
2.12d	chloroacetic acid (1) $e_s^- + \text{ClCH}_2\text{COOH} \rightarrow$ $\text{Cl}^- + \text{CH}_2\text{COOH}$ (2) $e_s^- + \text{H}_s^+ \rightarrow \text{H}$	$1.0\pm0.3_{5}$	2×10^{10b}	γ-r.; c.k.	Measured $G(H_2)$; utilized $G(H_2)$ given in [64– 0279] to obtain k_1/k_2 .	[65-0501].
2.13a	$(2) e_s + H_s \rightarrow H$ $(2) e_s + H_s \rightarrow H$ $(2) e_s + C_5 H_9 Br \rightarrow Br^-$ $+ C_5 H_9$ $(2) e_s^- + H_s^+ \rightarrow H$	0.48	9.6×10 ^{9b}	γ-r.; c.k.	Conc. of Cl ⁻ and C ₅ H ₉ Br was 0.1 mol dm ⁻³ ; conc. of H _s ⁺ 0.2 \rightarrow 1 mol dm ⁻³ ; 95% ethanol.	[70-0248].
2.13b	$\begin{vmatrix} c_{2} & c_{3} & + H_{s} \\ cyclopentyl bromide \\ e_{\overline{s}} + C_{5}H_{9}Br \rightarrow \end{vmatrix}$		2.3×10^{9}	p.r.: d.k.		[71-0475].
2.14	ethyl acetate (1) $e_s^- + CH_3COOC_2H_5 \rightarrow$ (2) $e_s^- + S \rightarrow$	1.1×10^{4}	$7.5 imes 10^{7a}$	γ-r.; c.k.	Measured $G(H_2)$.	[64-0279].
2.15a	$\begin{array}{c} (2) \ e_s + 0 \\ H_s^+ \\ e_s^- + H_s^+ \rightarrow H \end{array}$		$\begin{array}{c} (2.1\pm0.4)\times10^{10}\\ (HCl)\\ (2.2\pm0.3)\times10^{10}\\ (H_2\mathrm{SO}_4) \end{array}$	p.r.; d.k.	Conc. H ⁺ _s calc. assuming complete dissocn. of HCl and first dissocn. of H ₂ SO ₄ .	[63-0059].

					[
No.	Solute and reaction	k_{1}/k_{2}	$k(\mathrm{dm^3mol^{-1}s^{-1}})$	Method	Comments	Ref.
2.15b	same		$(2.0 \pm 0.4) \times 10^{10}$ (HCl and H ₂ SO ₄)	p.r.; d.k.	Corr. applied for e_s^- d. in pure solvent; see [63- 0059] for H ⁺ _s conc.	[64-0113].
2.15c	same		$(4.49 \pm 0.17) \times 10^{10}$	p.r.; d.k.	Measured elec. condy.d.; effect of pH(4-10). N ₂ O, and H ₂ O observed; see table 4 for Arrhenius	[71-0064].
2.15d	same		1.1×10 ¹⁰ (HCl) 1.4×10 ¹⁰ (H ₂ SO ₄)	p.r.; d.k.	parameters. Assumed only single ioniza- tion of H ₂ SO ₄ .	[71-0475].
2.15e	$\begin{array}{c} \mathrm{H}_{s}^{+} \\ (1) \ e_{s}^{-} + \mathrm{H}_{s}^{-} \rightarrow \mathrm{H} \\ (2) \ e_{s}^{-} + \mathrm{S} \rightarrow \end{array}$	$2.0 imes 10^{6}$	1.4×10^{10a}	γ-r.; c.k.	Measured $G(H_2)$.	[64-0279].
2.15f	$ \begin{array}{l} \mathrm{H}_{s}^{+} \\ (1) e_{s}^{-} + \mathrm{H}_{s}^{+} \rightarrow \mathrm{H} \\ (2) e_{s}^{-} + \mathrm{N}_{2}\mathrm{O} \rightarrow \mathrm{N}_{2} + \mathrm{O}^{-} \end{array} $	4.1 > 2.9	3.6×10^{10c} > 2.5×10^{10c}	γ·r.; c.k.	Measured $G(N_2)$; $k=3.6 \times$ 10 ¹⁰ based on k_{diss} $(H_2SO_4)=1.7 \times 10^{-3}$ and $k>2.5 \times 10^{10}$ is for com- plete dissocn. of H ₂ SO ₄ .	[71–0009].
2.16a	methyl bromide (1) $e_s^- + CH_3Br \rightarrow CH_3$ $+ Br^-$ (2) $e_s^- + N_2O \rightarrow N_2 + O^-$	1.52	9.1×10 ^{9c}	γ-r.; c.k.	Measured $G({}^{14}CH_4)$ from ${}^{14}CH_3Br; k_1/k_2$ ob- tained from ratio of em- pirical α values. ^d	[70-0064].
2.16b	$\begin{array}{c} (2) \ e_s + H_2O \rightarrow H_2 + O \\ \text{methyl bromide} \\ (1) \ e_s^- + CH_3Br \rightarrow CH_3 \\ + Br^- \\ (2) \ e_s^- + S \rightarrow \end{array}$	$1.0 imes 10^{6}$	6.8×10 ^{9a}	γ-r.; c.k.	See 2.16a.	[70-0064].
2.17	methyl chloride (1) $e_s^+ + CH_3Cl \rightarrow CH_3$ $+ Cl^-$ (2) $e_s^- + N_2O \rightarrow N_2 + O^-$	0.38	$2.3 imes 10^{9c}$	γ-r.: c.k.	See 2.06c: two solute sys- tem CH ₃ Cl and ¹⁴ CH ₃ Br.	[70-0064].
2.18	(2) $e_s + W_2 O \rightarrow W_2 + O$ naphthacene $e_s^- + C_{18} H_{12} \rightarrow$		$(1.02 \pm 0.08) \times 10^{10}$	p.r.; d.k.		[64-0084].
2.19	naphthalene $e_s^- + C_{19}H_8 \rightarrow$		$(5.4 \pm 0.5) \times 10^9$	p.r.; d.k.		[64-0084].
2.20	nitrate ion (1) $e_s^- + NO_s^- \rightarrow$ $NO_2 + OH^- + C_2H_5O^-$ (2) $e_s^- + H_s^+ \rightarrow H$	$(1.45\pm0.45)\times10^{-1}$	$3 imes 10^{9b}$	γ-r.: c.k.	See 2.12d.	[65-0501].
2.21a	nitrous oxide (1) $e_s^- + N_2O \rightarrow N_2 + O^-$ (2) $e_s^- + S \rightarrow$	$7.1 \times 10^{5} \\ 6.8 \times 10^{5} \\ (T = -112) \\ 5.8 \times 10^{5} \\ (T = 90) \\ 1.1 \times 10^{6} \\ (T = 145) $	4.8×10 ^{9a}	γ-r.: c.k.	Data from $[68-0047]$: at $T=90, P_r=1.62 \times 10^5$ Nm ⁻² : at $T=145, P_r=$ 8.5×10^5 Nm ⁻² ; see table 4 for Arrhenius param- eters.	[69-8025].
2.21b	same	$(T = 145)$ 1.0×10^{6} 5.0×10^{5} $(T = 90)$ 5.4×10^{5} $(T = 145)$ 5.4×10^{5} $(T = -112)$	6.8×10 ^{9a}	γ-r.; c.k.	Measured G(H2).	[67-0012]. [68-0047].
2.21c	nitrous oxide (1) $e_{\overline{s}} + N_2 O \rightarrow N_2 + O^-$ (2) $e_{\overline{s}} + CH_3 CHO \rightarrow$	1.75	7×10 ^{9e}	γ-r.; c.k.	Measured G(N2).	[71–0009].
2.22a	$\begin{array}{c} (2) \ c_{s} + O_{2} \\ \text{oxygen} \\ e_{s} + O_{2} \rightarrow O_{2}^{-} \end{array}$		$(1.9\pm0.3)\times10^{10}$	p.r.; d.k.	Corr. applied for $e_{\overline{s}}$ d. in pure S.	[64-0113].
2.22b 2.23	same perfluorocyclohexane $e_s^- + C_6 F_{12} \rightarrow$		$\begin{array}{c} (2.0\pm0.3)\times10^{10} \\ (2.5\pm0.5)\times10^{9} \end{array}$	p.r.: d.k. p.r.; d.k.		[63-0059]. [70-0172].
2.24	phenol $e_{\overline{s}} + C_6 H_5 OH \rightarrow$		4.5×10 ⁷	p.r.; d.k.		[71-0475].

TABLE 2. Rate constants of reactions of the solvated electron in ethanol-Continued

-						
No.	Solute and reaction	k_1/k_2 ,	$k(\mathrm{dm^3mol^{-1}s^{-1}})$	Method	Comments	Ref.
2.25a	propyl bromide $e_{\overline{s}} + C_3 H_7 Br \rightarrow C_3 H_7 + Br^-$		3.0×10^{9}	p.r.; d.k.	Neutral and basic soln.	[71-0009].
2.25b	propyl bromide (1) $e_s^- + C_3H_7Br \rightarrow$ (2) $e_s^- + N_2O \rightarrow N_2 + O^-$	≤ 0.19	$\leq 1.7 \times 10^{9c}$	γ-r.; c.k.	Dose effect on k; upper limit for k because no corr. for acid formed.	[71-0009].
2.26	propyl chloride (1) $e_s^+ + C_3 H_7 Cl \rightarrow C_3 H_7$ $+ Cl^-$ (2) $e_s^- + H_s^+ \rightarrow H$	2.4×10^{-2}	4.8×10 ⁸⁰	γ-r.; c.k.	Conc. of Cl ⁻ and C ₃ H ₇ Cl was 1 and 0.1 mol dm ⁻³ : conc. of H ⁺ 0.05 \rightarrow 1.0 mol dm ⁻³ ; 95% ethanol.	[70-0248].
2.27	sulfur hexafluoride (1) $e_s^- + SF_6 \rightarrow SF_5 + F^-$ (2) $e_s^- + N_2 O \rightarrow N_2 + O^-$	1.5	1.3×10 ^{10¢}	γ-r.; c.k.	Measured $G({}^{14}CH_4)$ from (${}^{14}CH_3Br+SF_6$) soln. to obtain α_{SF6} ; see 2.06c.	[70-0064].
2.28	p-terphenyl $e_{s}^{-} + C_{18}H_{14} \rightarrow C_{18}H_{14}$		$(7.2\pm0.6)\times10^9$	p.r.; d.k.	C ₁₈ H ₁₄ identified spec. from 435.8 nm band.	[64-0084].
2.29a	tetranitromethane $e_{\overline{s}} + C(NO_2)_4 \rightarrow$		3.5×1010	p.r.; d.k.		[71-0009].
2.29b	tetranitromethane (1) $e_s^- + C(NO_2)_4 \rightarrow$ (2) $e_s^- + N_2O \rightarrow N_2 + O^-$	2.7	2.4×10 ^{10c}	γ-r.; c.k.	Measured $G(N_2)$.	[71-0009].
2.30	triphenylmethanol $e_s^- + (C_6H_5)_3 \text{COH} \rightarrow$ $(C_6H_5)_3 \text{C} + \text{OH}^-$		$(2.0\pm0.4)\times10^8$	p.r.; d.k.	Corr. applied for $e_{\overline{s}}^-$ d. in S; triphenylmethyl radical identified spec.	[64-0113].

TABLE 2. Rate constants of reactions of the solvated electron in ethanol-Continued

^a $k(e_s^- + S) = 6.8 \times 10^3 \text{ dm}^3 \text{mol}^{-1} \text{s}^{-1}$; cf. 2.01a.

^b $k(e_s^- + H_s^+) = 2 \times 10^{10} \text{ dm}^3 \text{mol}^{-1} \text{s}^{-1}$; cf. 2.15.

^c $k(e_s^- + N_2O) \sim k(e_{aq}^- + N_2O) = 8.7 \times 10^9 \text{ dm}^3 \text{mol}^{-1} \text{s}^{-1}.$

^d See footnote (g). table 1.

^e $k(e_s^- + CH_3CHO) = 4 \times 10^9 \text{ dm}^3 \text{mol}^{-1}\text{s}^{-1}$: cf. 2.05a.

 $k(e_s^- + e_s^-) = (5 \pm 4) \times 10^9$ calc. based on $k(e_s^- + S) = 5.4 \times 10^3$ dm³mol⁻¹s⁻¹, and $k(e_s^- + e_s^-) = (7 \pm 3) \times 10^9$ based on $k(e_s^- + S) = 6.8 \times 10^3$ dm³mol⁻¹s⁻¹.

TABLE 3.	Rate constants of reactions of the solvated electron in 1-propano	ol (1-F	I-PrOH), 2-propanol (2-PrOH), and 1-butanol (1-BuC	DH)
----------	---	---------	--	-----

No.	Solute and reaction	k_{1}/k_{2}	$k(\mathrm{dm^3mol^{-1}s^{-1}})$	Method	Comments	Ref.
3.01a	No solute; $S = 1$ -PrOH $e_s^- + C_3 H_7 OH \rightarrow H$		$\sim 2.6 imes 10^4$	p.r.; d.k.	d. not of simple order; probably includes reaction	[64-0113].
3.01b	+ $C_3H_7O^-$ No solute; S=2-PrOH e_s^- + CH ₃ CHOHCH ₃ \rightarrow H		$\sim 1.1 \times 10^{4}$	p.r.; d.k.	with counter ion; $t_{1/2} \sim 2\mu$ s. $t_{1/2} \sim 5\mu$ s; see 3.01a.	[64-0113].
3.02a	+ (CH ₃) ₂ CHO ⁻ acetone: $S = 2$ -PrOH (1) $e_{\bar{s}}$ + (CH ₃) ₂ CO \rightarrow	7.7×10^{4}		γ-r; c.k.	Measured $G(H_2)$.	[67-0004]. [67-0174].
3.02b	(2) $e_s^- + CH_3CH_2CH_2OH \rightarrow$ acetone; $S = 2$ -PrOH (1) $e_s^- + (CH_3)_2CO \rightarrow$	0.59	$5.1 imes 10^{9a}$	γ-r; c.k.	Measured $G(N_2)$; single conc. determination.	[66-0221]. [66-0027].
3.02c	(2) $e_s^- + N_2 + O^-$ acetone; $S=1$ -BuOH (1) $e_s^- + (CH_3)_2 CO \rightarrow$	$1.4 imes 10^2$		γ-r.; c.k.	Measured $G(H_2)$.	[67-0004].
3.03	(2) e_{s}^{-} + CH ₃ (CH ₂) ₃ OH \rightarrow acetophenone; $S=2$ -PrOH (1) e_{s}^{-} + C ₆ H ₅ COCH ₃ \rightarrow	1.7	1.5×10 ^{10a}	γ-r.; c.k.	Measured $G(N_2)$.	[67-0045].
3.04a	(2) $e_s^* + N_2 O \rightarrow N_2 + O^-$ benzene; $S = 2$ -PrOH (1) $e_s^- + C_6 H_6 \rightarrow$	2.1×10^{-2}	1.8×10 ^{%a}	γ-r.; c.k.	Measured $G(N_2)$.	[66-0045].
3.04b 3.05	(2) $e_s^- + N_2 O \rightarrow N_2 + O^-$ same benzonitrile; $S=2$ -PrOH	2.0×10 ⁻² 1.9	1.7×10^{8a} 1.7×10^{10a}	γ-r.; c.k. γ-r.; c.k.	Measured $G(N_2)$. Measured $G(N_2)$.	[66-0027]. [66-0045].
3.06	(1) $e_s^- + C_6 H_5 CN \rightarrow$ (2) $e_s^- + N_2 O \rightarrow N_2 + O^-$ benzophenone; $S=2$ ·PrOH (1) $e_s^- + (C_6 H_5)_2 CO \rightarrow$ (2) $e_s^- + N_2 O \rightarrow N_2 + O^-$	1.30	1.1×10 ^{10a}	γ-r.; c.k.	Measured G(N ₂); single conc. determination.	[66-0027].

No.	Solute and reaction	k_{1}/k_{2}	$k(\mathrm{dm^3mol^{-1}s^{-1}})$	Method	Comments	Ref.
3.07	carbon tetrachloride: S=2-PrOH (1) $e_s^- + CCl_4 \rightarrow$	2.26	2.0×10 ^{10a}	γ-r.; c.k.	Measured G(N ₂); single conc. determination.	[66-0027].
3.08	(2) $e_s^- + N_2 O \rightarrow N_2 + O^-$ chlorobenzene: $S=2$ -PrOH	0.54	4.7×10 ^{9a}	γ-r.; c.k.	Measured $G(N_2)$.	[66-0045].
	(1) $e_s^- + C_6 H_5 Cl \rightarrow$ (2) $e_s^- + N_2 O \rightarrow N_2 + O^-$				•	
3.09	ferric ion; $S=1$ -PrOH (1) $e_s^- + Fe^{+3} \rightarrow Fe^{+2}$	5.6×10^{4}		γ-r.; c.k.	Measured $G(H_2)$.	[67–0174].
3.10	(2) $e_s^* + CH_3CH_2CH_2OH \rightarrow$ fluorobenzene; $S=2$ ·PrOH (1) $e_s^* + C_6H_5F \rightarrow$ (2) $e_s^* + N_2O \rightarrow N_2 + O^-$	5.0×10^{-2}	4.4×10 ^{sa}	γ-r.; c.k.	Measured $G(N_2)$.	[66-0045].
3.11a	$(1) e_s + H_2 O \rightarrow H_2 + O$ $H_s^*; S = 1 \cdot PrOH$ $(1) e_s^- + H_s^+ \rightarrow H(H_2 SO_4)$ $(2) e_s^- + N_2 O \rightarrow N_2 + O^-$	5.0(pH=2.4) 5.6(pH=2.7)	4.4×10 ^{10a} 4.9×10 ^{10a}	γ-r.; c.k.	Measured $G(N_2)$; k_1/k_2 used in calc. of $G(N_2)$ to good fit with exp.; taken from CH ₃ OH data [67–0065]	[69–0387].
3.11b	$ \begin{array}{l} \mathrm{H}_{\mathrm{s}}^{+}; S=1 \text{-} \mathrm{PrOH} \\ e_{\mathrm{s}}^{-} + \mathrm{H}_{\mathrm{s}}^{+} \rightarrow \mathrm{H} \end{array} \end{array} $		(2.55±0.19)×10 ¹⁰	p.r.; d.k.	and adjusted for μ. Measured elec. condy. d.; effect of pH(4-10), N ₂ O, and H ₂ O observed: see table 4 for Arrhenius parameters.	[71-0064].
3.11c	$H_{s}^{-}: S = 2 \operatorname{-PrOH} $ $(1) e_{s}^{-} + H_{s}^{+} \rightarrow H(HC1)$ $(2) e_{s}^{-} + N_{2}O \rightarrow N_{2} + O^{-}$	0.5	4.4×10 ^{9a}	γ-r.; c.k.	Measured $G(N_2)$: k_1/k_2 is av. for pH=1.3 \rightarrow 2.3.	[66-0027].
3.11d	$H_s; S=2$ -PrOH $e_s^- + H_s^- \rightarrow H$		$(1.67 \pm 0.14) \times 10^{10}$	p. r.; d.k.	Measured elec. condy. d.: effect of pH (4 -10), N ₂ O, and H ₂ O observed: see table 4 for Arrhenius parameters.	[71-0064]
3.12a	nitrobenzene: $S=2$ -PrOH (1) $e_s^- + C_6H_5NO_2 \rightarrow$ (2) $e_s^- + N_2O \rightarrow N_2 + O^-$	2.3	2.0×10 ^{10a}	γ-r.; c.k.	Measured $G(N_2)$.	[66-0045]
3.12b 3.13a	same nitrous oxide: $S=1$ -PrOH (1) $e_s^- + N_2O \rightarrow N_2 + O^-$ (2) $e_s^- + CH_3CH_2CH_2OH \rightarrow$	2.3 1.5×10^{5} 6.4×10^{4} (T = -120) 1.2×10^{5} (T = 140)	2.0×10 ^{10a}	γ-r.; c.k. γ-r.; c.k.	Measured $G(N_2)$. Measured $G(N_2)$: at $T = 140$, $P_v = 3.8 \times 10^5 \text{ Nm}^{-2}$; see table 4 for Arrhenius parameters.	[66-0027] [69-0387]
3.13b	nitrous oxide: $S=2$ -PrOH (1) $e_s^- + N_2O \rightarrow N_2 + O^-$ (2) $e_s^- + CH_3CHOHCH_3 \rightarrow$	(1 - 140) 5.9 × 10 ³		γ-r.; c.k.	Measured G(H2).	[66-0027]
3.13c	same	$\geq 2.2 \times 10^{5} \\ 8.4 \times 10^{5} \\ (T = -85) \\ 2.1 \times 10^{5} \\ (T = 140)$		γ-r.; c.k.	$G(N_2)$ from [68-0042]; at $T=140, P_r=6.6 \times 10^5$ Nm ⁻² ; see table 4 for Arrhenius parameters.	[69–8025]
3.14	propionaldehyde: $S=1$ -PrOH (1) e_s^- + CH ₃ CH ₂ CHO \rightarrow (2) e_s^- + CH ₃ CH ₂ CH ₂ OH \rightarrow	(1 - 140) 1 × 10 ⁵		γ-r.; c.k.	Measured G(H2).	[67-0174]
3.15	toluene: $S=2$ -PrOH (1) $e_s^- + C_6H_5CH_3 \rightarrow$ (2) $e_s^- + N_2O \rightarrow N_2 + O^-$	1.4×10^{-2}	1.2×10^{8a}	γ-r.; c.k.	Measured $G(N_2)$.	[66-0045]

 TABLE 3.
 Rate constants of reactions of the solvated electron in 1-propanol (1-PrOH), 2-propanol (2-PrOH), and 1-butanol (1-BuOH) - Con.

^a $k(e_s^- + N_2O) \sim k(e_{aq}^- + N_2O) = 8.7 \times 10^9 \text{ dm}^3 \text{mol}^{-1} \text{s}^{-1}$ (see Introduction).

Reaction	Alcohol	$\log A \\ (\mathrm{dm^3mol^{-1}s^{-1}})$	E_a (kJ mol ⁻¹)	ΔS^{\ddagger} (J mol ⁻¹ deg ⁻¹)	<i>Т</i> (°С)	Ref.
$e_{s}^{-} + S \rightarrow$	methanol ethanol 1-propanol 2-propanol	6.47 ^a 7.16 ^a	15.5 19.2 18.8 26.4	- 88 - 88 - 80 - 59	- 97 to 150 - 112 to 145 - 120 to 140 - 85 to 140	[68-0610]. [69-8025]. [68-0047]. [69-0387]. [69-8025]. [68-0042].
$e_s^- + \mathbf{H}_s^+ \rightarrow$ $e_s^- + e_s^-$	ethanol 1-propanol 2-propanol ethanol-d ₁	11.00 10.80 10.79	$(19.7 \pm 1.3) (24.3 \pm 2.1) (30.5 \pm 2.1) (32 \pm 8)$	-33 ^b -21 ^b -21 ^b	26 to 50 24 to 50 25 to 46 - 78 to 25	[71-0064]. [71-0064]. [71-0064]. [71-9165].

TABLE 4. Arrhenius parameters for reactions of the solvated electron in alcohol solutions

^a Log A calculated using experimental E_a and rate constants given in 1.01c and 2.01a. ^b ΔS^{\ddagger} calculated using experimental log A and the preexponential relationship of the transition-state theory.

Solute added	Methanol	Ethanol	1-Propanol	2-Propanol	1-Butanol
None (<i>e_s</i> + <i>S</i>)	1.01a, 1.01b, 1.01c, 1.01d, 1.01e, 1.01f, 1.17, 1.18b, 1.23a, 1.23b	2.01a, 2.01b, 2.01c, 2.01d, 2.01e, 2.01f, 2.01g, 2.05b, 2.06a, 2.06b, 2.07, 2.08, 2.11a, 2.12a, 2.12b, 2.12c, 2.14, 2.15e, 2.16b, 2.21a, 2.21b	3.01a, 3.02a, 3.09, 3.13a, 3.14	3.01b, 3.02a. 3.13b, 3.13c	3.02c.
None $(e_s^- + e_s^-)$	1.01g	2.01h			
acetaldehyde		2.05a, 2.05b			
acetone	1.04a, 1.04b	2.06a, 2.06b, 2.21b, 2.06c	3.02a	3.02b	3.02c.
acetophenone	1.05a, 1.05b	2.000		3.03	
anthracene		2.07			
benzene benzonitrile benzophenone	1.06a, 1.06b	2.08a, 2.08b		3.04a, 3.04b 3.05 3.06	
benzoquinone	1.08				
benzyl chloride	1.09a, 1.09b, 1.09c, 1.09d	2.09a, 2.09b, 2.09c			
biphenyl		2.10a, 2.10b			
carbon tetrachloride chloroacetic acid	1.10	2.11a, 2.11b, 2.11c 2.12a, 2.12b, 2.12c, 2.12d		3.07	
chloroacetate ion	1.11	2.120, 2.120			
chlorobenzene				3.08	
cyanogen iodide cyclopentyl bromide		2.13a, 2.13b			
duroquinone		2.13a, 2.13b			
ethyl acetate		2.14			
ferric ion			3.09		
H _x	1.16a, 1.16b, 1.16c, 1.16d, 1.16e, 1.23c, 1.24c	2.12d, 2.13a, 2.15a, 2.15b, 2.15c, 2.15d, 2.15f, 2.20, 2.24	3.11a, 3.11b	3.11c, 3.11d	
iodine	1.17	9 16 g 16			
methyl bromide methyl chloride	1.18a, 1.18b	2.16a, 2.16b 2.17			
naphthacene		2.18		3.03	

TABLE 5. Index of entry numbers (tables 1, 2, and 3) for the reaction of solvated electrons in various alcohol solutions

Solute added	Methanol	Ethanol	1-Propanol	2-Propanol	1-Butanol
naphthalene nitrate ion nitrite ion	1.20	2.10b, 2.19 2.20			
nitrobenzene	1.22a, 1.22b	2.06c, 2.11b, 2.15f, 2.16a, 2.17, 2.21a, 2.21b, 2.21c, 2.25b 2.27, 2.29b	3.13a	$\begin{array}{c} 3.12a, 3.12b\\ 3.04a, 3.04b,\\ 3.05, 3.06, 3.07,\\ 3.08, 3.10, 3.11a,\\ 3.11c, 3.12a,\\ 3.12b, 3.13b,\\ 3.13c, 3.15\end{array}$	
oxygen	1.24a, 1.24b, 1.24c	2.22a, 2.22b			
perfluorocyclohexane propionaldehyde propyl bromide propyl chloride silver ion sulfur hexafluoride	1.25	2.23 2.25a, 2.25b 2.26 2.27	3.14		
<i>p</i> -terphenyl tetranitromethane toluene triphenyl methanol ubiquinone	1.27a, 1.27b 1.28	2.28 2.29a, 2.29b 2.30		3.15	

TABLE 5. Index of entry numbers (tables 1, 2, and 3) for the reaction of solvated electrons in various alcohol solutions - Continued

References

- [63-0059] Pulse radiolysis studies of the reactivity of the solvated electron in ethanol and methanol. Taub, I. A., Sauer, M. C., Jr., Dorfman, L. M., Discussions Faraday Soc. 36, 206-13 (1963).
- [64-0080] Pulse radiolysis and matrix isolation data for methanol and 2-methyltetrahydrofuran (MTHF). Dainton, F. S., Keene, J. P., Kemp, T. J., Salmon, G. A., Teplý, J., Proc. Chem. Soc. 265-6 (1964).
- [64-0084] Pulse radiolysis studies. VI. The lifetimes of aromatic anions in the aliphatic alcohols. Arai, S., Dorfman, L. M., J. Chem. Phys. 41(7), 2190-4 (1964).
- [64-0113] Pulse radiolysis studies. IV. The solvated electron in the aliphatic alcohols. Taub, I. A., Harter, D. A., Sauer, M. C., Jr., Dorfman, L. M., J. Chem. Phys. 41(4), 979-85 (1964).
- [64-0138] The reactivity of aromatic compounds toward hydrated electrons. Anbar. M., Hart, E. J., J. Am. Chem. Soc. 86, 5633-7 (1964).
- [64-0279] Mechanism of hydrogen formation in the radiolysis of liquid ethanol. Adams, G. E., Sedgwick, R. D., Trans. Faraday Soc. 60, 865-72 (1964).
- [64-7006] Primary processes in the photo-oxidation of iodide ion in ethanol. Dobson, G., Grossweiner, L. I., Radiation Res. 23, 290-9 (1964).
- [65-0045] The radiolysis of ethanol. III. Liquid phase. Myron, J. J. J., Freeman. G. R., Can. J. Chem. 43, 381-94 (1965).
- [65-0501] Electron capture by solutes in the radiolysis of methanol and ethanol. Hayon, E., Moreau, M., J. Phys. Chem. 69, 4053-7 (1965).
- [65-9018] The solvated electron in organic liquids. Dorfman. L. M., Advan. Chem. Ser. **50**, 36-44 (1965).

- [66-0027] The γ-radiolysis of liquid 2-propanol. Effect of nitrous oxide and sulfuric acid. Sherman, W. V., J. Phys. Chem. 70(3), 667-72 (1966).
- [66–0045] The reactivity of electrons produced in the γ-radiolysis of aliphatic alcohols. Sherman, W. V., J. Am. Chem. Soc. 88(7), 1567–8 (1966).
- [66-0082] Absorption spectra of the solvated electron in polar liquids: Dependence on temperature and composition of mixtures. Arai, S., Sauer, M. C. Jr., J. Chem. Phys. 44(6), 2297-305 (1966).
- [66-0094] Linear energy transfer effect in the radiation chemistry of liquid methanol. Imamura, M., U.S.-Japan Seminar on Radiation Chemistry of Organic Compounds, Honolulu, Hawaii, May 2-6, 1966.
- [66-0221] Yields and rate constants of the precursors of hydrogen in the radiolysis of n-propanol. Basson, R. A., van der Linde, H. J., Nature (London) 210, 943-4 (1966).
- [67-0004] Polarity effects in the radiolysis of n-alcohols, Basson, R. A., van der Linde, H. J., J. Chem. Soc. Pt. A. (1), 28-32 (1967).
- [67-0012] The radiolysis of ethanol. V. Reactions of the primary reducing species in the liquid phase. Russell, J. C., Freeman, G. R., J. Phys. Chem. 71, 755-62 (1967).
- [67-0018] Radiolysis yields from γ-irradiated liquid methanol containing nitrous oxide and the effect of acid. Seki, H.: Imamura, M., J. Phys. Chem. 71(4), 870-5 (1967).
- [67-0030] Hydrogen formation in the radiolysis of liquid methanol and ethanol. Teplý, J., Habersbergerová, A., Collection Czech. Chem. Commun. 32, 1350-8 (1967).
- [67-0065] Kinetic salt effects on reactions of the solvated electron in methanol. Buxton, G. V., Dainton, F. S., Hammerli, M., Trans. Faraday Soc. 63(533), 1191-7 (1967).
- [67-0126] Direct observation of regions of high ion and radical concentration in the radiolysis of water and ethanol.

Thomas, J. K., Bensasson, R. V., J. Chem. Phys. 46, 4147-8 (1967).

- [67-0173] Effect of temperature on the yields of the precursors of hydrogen in the radiolysis of ethanol. Basson, R. A., J. Chem. Soc. Pt. A. (7), 1179-82 (1967).
- [67-0174] The radiation chemistry of n-propanol. Part I. Formation of the major products. Basson, R. A., van der Linde, H. J., J. Chem. Soc. Pt. A. 1182-6 (1967).
- [67-0313] Light-induced and radiation-induced reactions in methanol. Ι. γ-Radiolysis of solutions containing nitrous oxide. Sherman, W. V., J. Phys. Chem. 71(13), 4245-55 (1967).
- [68-0042] Reactions of the primary reducing species in the radiolysis of liquid 2-propanol. Russell, J. C., Freeman. G. R., J. Phys. Chem. 72(3), 808-15 (1968).
- [68-0047] The yields of the primary reducing species in the radiolysis of liquid ethanol. Russell. J. C., Freeman, G. R., J. Phys. Chem. 72(3), 816-21 (1968).
- [68-0260] Radiolysis of methanol. pulse studies and competition kinetics with oxygen and acid. Suryanarayanan, K., Lichtin, N. N., 156th Am. Chem. Soc. Meeting, Div. Phys. Chem., Atlantic City, New Jersey, Abstract No. 22, 8-13 Sept., 1968.
- [68-0520] Methods of production of solvated electrons and their chemical and physical properties. Thomas, J. K., Radiation Res. Rev. 1, 183-208 (1968).
- [68-0610] I. Kinetics of reactions of electrons during radiolysis of liquid methanol. II. Reaction of electrons with liquid alcohols and with water. Jha, K. N., Freeman, G. R., J. Chem. Phys. 48(12), 5480-90 (1968).
- [69-0146] The radiolysis of methanol and methanolic solutions. V. The acid effect. Suryanarayanan, K., Lichtin, N. N., J. Phys. Chem. **73**(5), 1384-91 (1969).
- [69-0220] Radiolysis of methanol containing cyanogen iodide, Ogura, H., Miyagawa, T., Kondo, M., Bull. Chem. Soc. Japan 42, 1763-5 (1969).
- [69-0334] Technique of pulse-irradiation. Arai, S., Radiation Chemistry 4(8), 2-13 (1969).
- [69-0387] Effect of temperature on the reactions of electrons during the γ-radiolysis of liquid n-propanol. Jha, K. N., Freeman, G. R., J. Chem. Phys. 51(7), 2839-46 (1969).
- [69-0451] Pulse radiolysis, Matheson, M. S., Dorfman, L. M., (The M. I. T. Press, Cambridge, Mass., 1969), 202 pp.
- [69-0456] The radiation chemistry of liquid and glassy methanol. Dainton, F. S., Salmon, G. A., Wardman, P., Proc. Roy. Soc. (London) Ser. A313, 1-30 (1969).
- [69-0651] Radiolysis of liquid ethanol-benzene mixtures in the

presence of electron scavengers. Holcman, J., Karolczak, S., Kroh, J., Mayer, J., Mieńska, M., Intern. J. Radiation Phys. Chem. 1(4), 457-64 (1969).

- [69-8025] Application of the refined model of nonhomogeneous kinetics to the reactions of electrons during the γ -radiolysis of ethanol and 2-propanol. Energies and entropies of activation of the reactions of solvated electrons with alcohols and with water. Jha, K. N., Freeman, G. R., J. Chem. Phys. **51**(7), 2846-50 (1969).
- [70-0064] Electron scavenging in γ-irradiated liquid methanol and ethanol. Rzad. S. J., Fendler, J. H., J. Chem. Anbar, M., Bambenek, M., Ross, A. B., to be published.
 [70-0172] Pulse radiolysis of ethanol. Fletcher, J. W., Richards,
- [70-0172] Pulse radiolysis of ethanol. Fletcher, J. W., Richards, P. J., Seddon, W. A., Can. J. Chem. 48(11), 1645-50 (1970).
- [70-0198] One-electron reactions in biochemical systems as studied by pulse radiolysis. III. Ubiquinone. Land, E. J., Swallow, A. J., J. Biol. Chem. 245(8), 1890-4 (1970).
- [70-0246] Pulse radiolysis studies of deaerated alcoholic solutions of alkali halides and potassium hydroxide, Arai, S., Kira, A., Imamura, M., J. Phys. Chem. 74(10), 2102-7 (1970).
- [70-0248] Evidence for very early ionic events in the radiolysis of ethanol. Khorana, S., Hamill, W. H., J. Phys. Chem. **74**(15), 2885-8 (1970).
- [71-0061] Selected specific rates of reaction of transients from water in aqueous solution. I. Hydrated electron. Anbar, M., Bambenek, M., Ross, A. B., to be published.
- [71-0009] γ-Radiolysis of liquid ethanol. Yields of hydrogen and free ions. Solvated electron rate constants. Akhtar, S. M. S., Freeman, G. R., J. Phys. Chem. 75(18), 2756-62 (1971).
- [71-0062] Radiolysis of ethanol. Freeman, G. R., to be published.
- [71-0064] Pulse radiolytic induced transient electrical conductance in liquid solutions. Part 4-The radiolysis of methanol, ethanol, 1-propanol, and 2-propanol. Fowles, P., Trans. Faraday Soc. 67(2), 428-39 (1971).
- [71-0362] Radiolysis of methanol. Baxendale, J. H., to be published.
- [71-0475] Rate constants and relative yields of solvated electrons in concentrated solutions. Rabani, J., Steen, H. B., Bugge, H., Brustad, T., Chem. Commun. (21), 1353-4 (1971).
- [71-9165] Production of electrons by reaction of sodium with methanol and ethanol: Kinetics of their formation and subsequent reactions. Fletcher, J. W., Richards, P. J., Can. J. Chem. 49(13), 2275-82 (1971).

Publications in the National Standard Reference Data Series National Bureau of Standards

You may use this listing as your order form by checking the proper box of the publication(s) you desire or by providing the full identification of the publication you wish to purchase. The full letter symbols with each publication number and full title of the publication and author must be given in your order, e.g. NSRDS-NBS-21, **Kinetic Data on Gas Phase Unimolecular Reactions**, by S. W. Benson and H. E. O'Neal.

Pay for publications by check, money order, or Superintendent of Documents coupons or deposit account. Make checks and money orders payable to Superintendent of Documents. Foreign remittances should be

- NSRDS-NBS 1, National Standard Reference Data System-Plan of Operation, by E. L. Brady and M. B. Wallenstein, 1964 (15 cents), SD Catalog No. C13.48:1.
- NSRDS-NBS 2, Thermal Properties of Aqueous Uni-univalent Electrolytes, by V. B. Parker, 1965 (45 cents), SD Catalog No. C13.48:2.
- NSRDS-NBS 3, Sec. 1, Selected Tables of Atomic Spectra, Atomic Energy Levels and Multiplet Tables, Si II, Si III, Si IV, by C. E. Moore, 1965 (35 cents), SD Catalog No. C13.48:3/Sec.1.
- NSRDS-NBS 3, Sec. 2, Selected Tables of Atomic Spectra, Atomic Energy Levels and Multiplet Tables, Si I, by C. E. Moore, 1967 (20 cents), SD Catalog No. C13.48:3/Sec.2.
- NSRDS-NBS 3, Sec. 3, Selected Tables of Atomic Spectra, Atomic Energy Levels and Multiplet Tables, C I, C II, C III, C IV, C V, C VI, by C. E. Moore, 1970 (\$1), SD Catalog No. C13.48:3/Sec.3.
- NSRDS-NBS 3, Sec. 4, Selected Tables of Atomic Spectra, Atomic Energy Levels and Multiplet Tables, N IV, N V, N VI, N VII, by

made either by international money order or draft on an American bank. Postage stamps are not acceptable.

No charge is made for postage to destinations in the United States and possessions, Canada, Mexico, and certain Central and South American countries. To other countries, payments for documents must cover postage. Therefore, one-fourth of the price of the publication should be added for postage.

Send your order together with remittance to Superintendent of Documents, Government Printing Office, Washington, D.C. 20402.

C. E. Moore, 1971 (55 cents), SD Catalog No. C13.48:3/Sec.4.

- NSRDS-NBS 3, Sec. 6, Selected Tables of Atomic Spectra, Atomic Energy Levels and Multiplet Tables, HI, D, T, by C. E. Moore, 1971 (In press), SD Catalog No. C13.48:3/Sec. 6.
- NSRDS-NBS 4, Atomic Transition Probabilities, Vol. I, Hydrogen Through Neon, by W. L. Wiese, M. W. Smith, and B. M. Glennon, 1966 (\$2.50), SD Catalog No. C13.48:4/Vol. I.
- NSRDS-NBS 5, The Band Spectrum of Carbon Monoxide, by P. H. Krupenie, 1966 (70 cents), SD Catalog No. C13.48:5.
- NSRDS-NBS 6, Tables of Molecular Vibrational Frequencies, Part 1, by T. Shimanouchi, 1967 (40 cents), SD Catalog No. C13.48:6/Pt.1. Superseded by NSRDS-NBS 39.
- NSRDS-NBS 7, High Temperature Properties and Decomposition of Inorganic Salts, Part 1. Sulfates, by K. H. Stern and E. L. Weise, 1966 (35 cents), SD Catalog No. C13.48:7/Pt.1.
- □ NSRDS-NBS 8, Thermal Conductivity of Selected Materials, by R. W. Powell, C. Y. Ho,

and P. E. Liley, 1966 (\$3). PB189698*

- NSRDS-NBS 9, Tables of Bimolecular Gas Reactions, by A. F. Trotman-Dickenson and G. S. Milne, 1967 (\$2), SD Catalog No. C13.48:9.
- NSRDS-NBS 10, Selected Values of Electric Dipole Moments for Molecules in the Gas Phase, by R. D. Nelson, Jr., D. R. Lide, Jr., and A. A. Maryott, 1967 (40 cents), SD Catalog No. C13.48:10.
- NSRDS-NBS 11, Tables of Molecular Vibrational Frequencies, Part 2, by T. Shimanouchi, 1967 (30 cents), SD Catalog No. C13.48:11/Pt.2. Superseded by NSRDS-NBS 39.
- □ NSRDS-NBS 12, Tables for the Rigid Asymmetric Rotor: Transformation Coefficients from Symmetric to Asymmetric Bases and Expectation Values of P²_z, P⁴_z, and P⁶_z, by R. H. Schwendeman, 1968 (60 cents), SD Catalog No. C13.48:12.
- NSRDS-NBS 13, Hydrogenation of Ethylene on Metallic Catalysts, by J. Horiuti and K. Miyahara, 1968 (\$1), SD Catalog No. C13.48:13.
- NSRDS-NBS 14, X-Ray Wavelengths and X-Ray Atomic Energy Levels, by J. A. Bearden, 1967 (40 cents), SD Catalog No. C13.48:14.
- NSRDS-NBS 15, Molten Salts: Vol. 1, Electrical Conductance, Density, and Viscosity Data, by G. J. Janz, F. W. Dampier, G. R. Lakshminarayanan, P. K. Lorenz, and R. P. T. Tomkins, 1968 (\$3), SD Catalog No. C13.48:15/Vol.1.
- NSRDS-NBS 16, Thermal Conductivity of Selected Materials, Part 2, by C. Y. Ho, R. W. Powell, and P. E. Liley, 1968 (\$2), SD Catalog No. C13.48:16/Pt.2.
- NSRDS-NBS 17, Tables of Molecular Vibrational Frequencies, Part 3, by T. Shimanouchi, 1968 (30 cents), SD Catalog No. C13.48:17/Pt.3. Superseded by NSRDS-NBS 39.
- NSRDS-NBS 18, Critical Analysis of the Heat-Capacity Data of the Literature and Evaluation of Thermodynamic Properties of Copper, Silver, and Gold from 0 to 300 K, by G. T. Furukawa, W. G. Saba, and M. L. Reilly, 1968 (40 cents), SD Catalog No. C13.48:18.
- NSRDS-NBS 19, Thermodynamic Properties of Ammonia as an Ideal Gas, by L. Haar, 1968 (20 cents), SD Catalog No. C13.48:19.
- □ NSRDS-NBS 20, Gas Phase Reaction Kinetics of Neutral Oxygen Species, by H. S.

Johnston, 1968 (45 cents), SD Catalog No. C13.48:20.

- □ NSRDS-NBS 21, Kinetic Data on Gas Phase Unimolecular Reactions, by S. W. Benson and H. E. O'Neal, 1970 (\$7), SD Catalog No. C13.48:21.
- NSRDS-NBS 22, Atomic Transition Probabilities, Vol. II, Sodium Through Calcium, A Critical Data Compilation, by W. L. Wiese, M. W. Smith, and B. M. Miles, 1969 (\$4.50), SD Catalog No. C13.48:22/Vol.II.
- NSRDS-NBS 23, Partial Grotrian Diagrams of Astrophysical Interest, by C. E. Moore and P. W. Merrill, 1968 (55 cents), SD Catalog No. C13.48:23.
- NSRDS-NBS 24, Theoretical Mean Activity Coefficients of Strong Electrolytes in Aqueous Solutions from 0 to 100 °C, by Walter J. Hamer, 1968 (\$4.25), SD Catalog No. C13.48:24.
- NSRDS-NBS 25, Electron Impact Excitation of Atoms, by B. L. Moiseiwitsch and S. J. Smith, 1968 (\$2), SD Catalog No. C13.48:25.
- NSRDS-NBS 26, Ionization Potentials, Appearance Potentials, and Heats of Formation of Gaseous Positive Ions, by J. L. Franklin, J. G. Dillard, H. M. Rosenstock, J. T. Herron, K. Draxl, and F. H. Field, 1969 (\$4). SD Catalog No. C13.48:26.
- NSRDS-NBS 27, Thermodynamic Properties of Argon from the Triple Point to 300 K at Pressures to 1000 Atmospheres, by A. L. Gosman, R. D. McCarty, and J. G. Hust, 1969 (\$1.25), SD Catalog No. C13.48:27.
- NSRDS-NBS 29, Photon Cross Sections, Attenuation Coefficients, and Energy Absorption Coefficients from 10 keV to 100 GeV, by J. H. Hubbell, 1969 (75 cents), SD Catalog No. C13.48:29.
- NSRDS-NBS 30, High Temperature Properties and Decomposition of Inorganic Salts, Part 2. Carbonates, by K. H. Stern and E. L. Weise, 1969 (45 cents). SD Catalog No. C13.48:30/Pt.2.
- □ NSRDS-NBS 31, Bond Dissociation Energies

^{*}Available from National Technical Information Service, Spring- . field, Virginia 22151.

in Simple Molecules, by B. deB. Darwent, 1970 (55 cents), SD Catalog No. C13.48:31.

- NSRDS-NBS 32, Phase Behavior in Binary and Multicomponent Systems at Elevated Pressures: n-Pentane and Methane-n-Pentane, by V. M. Berry and B. H. Sage, 1970 (70 cents), SD Catalog No. C13.48:32.
- NSRDS-NBS 33, Electrolytic Conductance and the Conductances of the Halogen Acids in Water, by W. J. Hamer and H. J. DeWane, 1970 (50 cents), SD Catalog No. C13.48:33.
- NSRDS-NBS 34, Ionization Potentials and Ionization Limits Derived from the Analyses of Optical Spectra, by C. E. Moore, 1970 (75 cents), SD Catalog No. C13.48:34.
- NSRDS-NBS 35, Atomic Energy Levels as Derived from the Analyses of Optical Spectra, Vol. I, ¹H to ²³V; Vol. II, ²⁴Cr to ⁴¹Nb; Vol. III, ⁴²Mo to ⁵⁷La, ⁷²Hf to ⁸⁹Ac, by C. E. Moore, 1971 (Vol. I, \$5; Vol. II, \$4.25; Vol. III, \$4.50), SD Catalog No. C13.48:35/Vols. I, II, and III.
- NSRDS-NBS 36, Critical Micelle Concentrations of Aqueous Surfactant Systems, by P. Mukerjee and K. J. Mysels, 1971 (\$3.75), SD Catalog No. C13.48:36.
- NSRDS-NBS 37, JANAF Thermochemical Tables, 2d Edition, by D. R. Stull, H. Prophet, et al., 1971 (\$9.75), SD Catalog No. C13.48:37.

- NSRDS-NBS 38, Critical Review of Ultraviolet Photoabsorption Cross Sections for Molecules of Astrophysical and Aeronomic Interest, by R. D. Hudson, 1971 (\$1), SD Catalog No. C13.48:38.
- NSRDS-NBS 39, Tables of Molecular Vibrational Frequencies, Consolidated Tables, by T. Shimanouchi, 1972 (In press), SD Catalog No. C13.48:39.
- NSRDS-NBS 40, A Multiplet Table of Astrophysical Interest (Reprint of 1945 Edition), by C. E. Moore, 1972 (\$2), SD Catalog No. C13.48:40.
- NSRDS-NBS 41, Crystal Structure Transformations in Binary Halides, by C. N. R. Rao, 1972 (In press), SD Catalog No. C13.48:41.
- NSRDS-NBS 42, Selected Specific Rates of Reactions of the Solvated Electron in Alcohols, by E. Watson, Jr., and S. Roy, 1972 (In press), SD Catalog No. C13.48:42.
- NSRDS-NBS 43, Selected Specific Rates of Reactions of Transients from Water in Aqueous Solution, by M. Anbar, M. Bambenek, and A. B. Ross, 1972 (In press), SD Catalog No. C13.48:43.
- INSRDS-NBS 44, The Radiation Chemistry of Gaseous Ammonia, by D. B. Peterson, 1972 (In press), SD Catalog No. C13.48:44.

FORM NBS-114A (1-71)			
U.S. DEPT. OF COMM. BIBLIOGRAPHIC DATA SHEET	1. PUBLICATION OR REPORT NO. NSRDS-NBS 42	2. Gov't Accession No.	3. Recipient's Accession No.
4. TITLE AND SUBTITLE	5. Publication Date		
	August 1972		
Selected Spec	ific Rates of Reactions of	the Solvated	
Electron in A	6. Performing Organization Code		
7. AUTHOR(S)			8. Performing Organization
	Jr. and Sathyabhama Roy		
9. PERFORMING ORGANIZAT	ION NAME AND ADDRESS		10. Project/Task/Work Unit No.
NATIONAL BU	UREAU OF STANDARDS		
	T OF COMMERCE		11. Contract/Grant No.
WASHINGTON	, D.C. 20234		
12. Sponsoring Organization Nat	me and Address		13. Type of Report & Period Covered
Atomio Imo	ergy Commission and National	Bureau of	Covered
	ingy commission and Macional	L Dulcau OI	NA
Standards			14. Sponsoring Agency Code
15. SUPPLEMENTARY NOTES			<u>L</u>
of e wit in alcoho	is, reaction with sodium, en th solvent and solute molecu ol solutions, have been comp lated for some reactions.	ules, ions, and t	ransients,
Alcohols: chemica	order, separated by semicolons) 1 linetics: data compilatio	on; radiation che	mistry; rates;
Alcohols: chemica solvated electron	1 binetics; data compilatio		······································
Alcohols: chemica	1 binetics; data compilatio	on; radiation che 19. SECURIT (THIS RE	Y CLASS 21. NO. OF PAG
Alcohols: chemica solvated electron 18. AVAILABILITY STATEME	1 binetics; data compilatio	19. SECURIT	Y CLASS 21. NO. OF PAG PORT)
Alcohols: chemica solvated electron	1 binetics; data compilatio	19. SECURIT (THIS RE	Y CLASS PORT) 21. NO. OF PAG 22
Alcohols: chemica solvated electron 18. AVAILABILITY STATEME XX UNLIMITED.	l linetics: data compilatio	19. SECURIT (THIS RE UNCL AS	Y CLASS PORT) SIFIED
Alcohols: chemica solvated electron 18. AVAILABILITY STATEME XX UNLIMITED.	1 binetics; data compilatio	19. SECURIT (THIS RE	Y CLASS PORT) SIFIED Y CLASS 21. NO. OF PAG 22 22 22. Price
Alcohols: chemica solvated electron 18. AVAILABILITY STATEME XX UNLIMITED.	l linetics: data compilatio	19. SECURIT (THIS RE UNCL AS 20. SECURIT	Y CLASS PORT) SIFIED Y CLASS 21. NO. OF PAG 22 22 22. Price
Alcohols: chemica solvated electron 18. AVAILABILITY STATEME XX UNLIMITED.	l linetics: data compilatio	19. SECURIT (THIS RE UNCL AS 20. SECURIT	Y CLASS PORT) SIFIED CY CLASS AGE) 21. NO. OF PAG 22 22 SIFIED 22. Price 30 cents

Announcement of New Publications in National Standard Reference Data Series

Superintendent of Documents, Government Printing Office, Washington, D.C. 20402

Dear Sir:

Please add my name to the announcement list of new publications to be issued in the series: National Standard Reference Data Series-National Bureau of Standards.

Name			
Company			
Address			
City	State	Zip Code	

(Notification key N-337)

PERIODICALS

JOURNAL OF RESEARCH reports National Bureau of Standards research and development in physics, mathematics, and chemistry. Comprehensive scientific papers give complete details of the work, including laboratory data, experimental procedures, and theoretical and mathematical analyses. Illustrated with photographs, drawings, and charts. Includes listings of other NBS papers as issued.

Published in two sections, available separately:

• Physics and Chemistry

Papers of interest primarily to scientists working in these fields. This section covers a broad range of physical and chemical research, with major emphasis on standards of physical measurement, fundamental constants, and properties of matter. Issued six times a year. Annual subscription: Domestic, \$9.50; \$2.25 additional for foreign mailing.

• Mathematical Sciences

Studies and compilations designed mainly for the mathematician and theoretical physicist. Topics in mathematical statistics, theory of experiment design, numerical analysis, theoretical physics and chemistry, logical design and programming of computers and computer systems. Short numerical tables. Issued quarterly. Annual subscription: Domestic, \$5.00; \$1.25 additional for foreign mailing.

TECHNICAL NEWS BULLETIN

The best single source of information concerning the Bureau's measurement, research, developmental, cooperative, and publication activities, this monthly publication is designed for the industry-oriented individual whose daily work involves intimate contact with science and technology—for engineers, chemists, physicists, research managers, product-development managers, and company executives. Includes listing of all NBS papers as issued. Annual subscription: Domestic, \$3.00; \$1.00 additional for foreign mailing.

Bibliographic Subscription Services

The following current-awareness and literaturesurvey bibliographies are issued periodically by the Bureau: Cryogenic Data Center Current Awareness Service (weekly), Liquefied Natural Gas (quarterly), Superconducting Devices and Materials (quarterly), and Electromagnetic Metrology Current Awareness Service (monthly). Available only from NBS Boulder Laboratories. Ordering and cost information may be obtained from the Program Information Office, National Bureau of Standards, Boulder, Colorado 80302.

NONPERIODICALS

Applied Mathematics Series. Mathematical tables, manuals, and studies.

Building Science Series. Research results, test methods, and performance criteria of building materials. components, systems, and structures.

Handbooks. Recommended codes of engineering and industrial practice (including safety codes) developed in cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications. Proceedings of NBS conferences. bibliographies, annual reports, wall charts, pamphlets, etc.

Monographs. Major contributions to the technical literature on various subjects related to the Bureau's scientific and technical activities.

National Standard Reference Data Series. NSRDS provides quantitative data on the physical and chemical properties of materials, compiled from the world's literature and critically evaluated.

Product Standards. Provide requirements for sizes, types, quality, and methods for testing various industrial products. These standards are developed cooperatively with interested Government and industry groups and provide the basis for common understanding of product characteristics for both buyers and sellers. Their use is voluntary.

Technical Notes. This series consists of communications and reports (covering both other-agency and NBS-sponsored work) of limited or transitory interest.

Federal Information Processing Standards Publications. This series is the official publication within the Federal Government for information on standards adopted and promulgated under the Public Law 89–306, and Bureau of the Budget Circular A–86 entitled, Standardization of Data Elements and Codes in Data Systems.

Consumer Information Series. Practical information, based on NBS research and experience, covering areas of interest to the consumer. Easily understandable language and illustrations provide useful background knowledge for shopping in today's technological marketplace.

CATALOGS OF NBS PUBLICATIONS

NBS Special Publication 305, Publications of the NBS. 1966-1967. When ordering, include Catalog No. C13.10:305. Price \$2.00; 50 cents additional for foreign mailing.

NBS Special Publication 305, Supplement 1, Publications of the NBS, 1968-1969. When ordering, include Catalog No. C13.10:305/Suppl. 1. Price \$4.50; \$1.25 additional for foreign mailing.

NBS Special Publication 305, Supplement 2, Publications of the NBS, 1970. When ordering. include Catalog No. C13.10:305/Suppl. 2. Price \$3.25; 85 cents additional for foreign mailing.

Order NBS publications (except Bibliographic Subscription Services) from: Superintendent of Documents, Government Printing Office, Washington, D.C. 20402.

U.S. DEPARTMENT OF COMMERCE National Bureau of Standards Washington, D.C. 20234

-

OFFICIAL BUSINESS

Pena ty for Private Use, \$300

POSTAGE AND FEES PAID U.S. DEPARTMENT OF COMMERCE 215

