

A11102 145880

A11102145880 Moore, Charlotte Emm/Atomic energy level QC100 .U573 V35;1;1971 C.1 NBS-PUB-C 197

NAT'L INST OF STANDARDS

Contracts of Foreignation & TECH R.I.C.

ATOMIC FREESEY LEVELS

As Derived From the Asalyses of Optical Spectra

Author's Note on the Reprinting of Atomic Energy Levels: Volume I, 1949; Volume II, 1952; Volume III, 1958, Circular National Bureau of Standards 467

Although twelve years have elapsed since the publication of Volume III, there is a continuing steady demand for these Volumes. The data they contain on atomic spectra cover all elements in the Periodic Table except the two groups of rareearths: the lanthanides (Z = 58-71) and the actinides (Z = 90-?). Similar data for these spectra will be handled in a forthcoming Volume IV, now in course of preparation by W. C. Martin and his colleagues.

One of the rewarding aspects of these compilations has been the stimulation they have provided to further research on the analyses of atomic spectra. Gaps in the knowledge of spectra, and needs for investigation of additional spectra are immediately apparent in this comprehensive compendium.

Many additional spectra have been studied and numerous extended analyses have been published that supersede the material contained in Circular 467. A bibliography in the National Bureau of Standards Special Publication 306, Sections 1 to 4 (1968–1969), provides later reference material on individual spectra. It will be some years, however, before the entire set of Volumes will be superseded. The existing supply of these books is low. In order to meet the steady flow of requests, it has been decided to reissue the three Volumes as part of the National Standard Reference Data System. They are reprinted here as NSRDS–NBS 35, Volumes I, II, III.

The first Volume, issued in 1952, is in great demand, and more seriously in need of extensive revision than are the others. As new analyses appear for spectra of the lighter elements, the lists of revised energy levels, together with revised Multiplet Tables, are being published by the National Bureau of Standards under the title "Selected Tables of Atomic Spectra, Atomic Energy Levels and Multiplet Tables," as Sections of NSRDS-NBS 3. Section 1 contains these data for the spectra Si II, Si III, Si IV; Section 2 for Si I; Section 3 for CI, CII, CIII, CIV, CV, CVI. Similar data on the nitrogen spectra of higher ionization will be presented in Section 4. A number of other spectra are partially completed for inclusion in this Series.

Wherever the individual spectra in Volume I have been revised and reported in the NSRDS-NBS 3 Series, indication of this fact is clearly stated for each spectrum, in this reprinted issue.[†] Readers are urged to use the revised material for the spectra thus marked and to take note of further revisions of selected spectra as they appear in this series.

Washington, D.C. November 30, 1970

Charlotte E. Moore

Abstract

ATOMIC ENERGY LEVELS, VOLUME I. ¹H to ²³V

This series of three volumes is a critical compilation of atomic energy levels prepared at the National Bureau of Standards from the analyses of optical spectra. Volume I contains data on the spectra of hydrogen, deuterium, tritium, helium, lithium, beryllium, boron, carbon, nitrogen, oxygen, fluorine, neon, sodium, magnesium, aluminum, silicon, phosphorus, sulfur, chlorine, argon, potassium, calcium, scandium, titanium, and vanadium (¹H to ²³V). Volume II covers the spectra of chromium, manganese, iron, cobalt, nickel, copper, zinc, gallium, germanium, arsenic, selenium, bromine, krypton, rubidium, strontium, yttrium, zirconium, and niobium (²⁴Cr to ⁴¹Nb). Volume III includes the spectra of molybdenum, technetium, ruthenium, rhodium, palladium, silver, cadmium, indium, tin, antimony, tellurium, iodine, xenon, cesium, barium, lanthanum; hafnium, tantalum, tungsten, rhenium, osmium, iridium, platinum, gold, mercury, thallium, lead, bismuth, polonium, radon, radium, and actinium (⁴²Mo to ⁵⁷La; ⁷²Hf to ⁸⁹Ac).

Key words: Energy levels; H-V.

†EDITORIAL NOTE: See revision note on pages 21, 24, 26, 29, 30, 31, 144, 147, 148, and 150, Volume I.

Library of Congress Catalog Card Number 75-609945

AUG 2 9 1972

165762

· UEV 2

971

UNITED STATES DEPARTMENT OF COMMERCE • Maurice H. Stans, Secretary NATIONAL BUREAU OF STANDARDS • Lewis M. Branscomb, Director

ATOMIC ENERGY LEVELS

As Derived From the Analyses of Optical Spectra

Volume I

The Spectra of Hydrogen, Deuterium, Tritium, Helium, Lithium, Beryllium, Boron, Carbon, Nitrogen, Oxygen, Fluorine, Neon, Sodium, Magnesium, Aluminum, Silicon, Phosphorus, Sulfur, Chlorine, Argon, Potassium, Calcium Scandium, Titanium, and Vanadium

BY CHARLOTTE E. MOORE

NSRDS-NBS 35

Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. (U.S.), 35/V.I 359 pages (Dec. 1971) CODEN: NSRDA

Reissued December 1971

Reprint of NBS Circular 467, Volume I. See author's note opposite title page

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 (Order by SD Catalog No. C13.48:35/V.I), Price \$5 Stock Number 0303-0949

Preface

The present volume is the first of a series being prepared at the National Bureau of Standards as part of a general program on atomic energy levels derived from observations of optical spectra. This program can be traced back to 1924 when the Division of Physical Sciences of the National Research Council created a Committee on Line Spectra of the Elements. The general plan was to encourage and contribute to the structural analysis of atomic spectra and eventually to publish the results in a series of monographs. For twenty years the lure of complex spectra gave emphasis to analysis rather than to compilation and publication of Committee Reports.

In 1932 an extremely timely and useful book entitled "Atomic Energy States as Derived from the Analyses of Optical Spectra" was published by Robert F. Bacher and Samuel Goudsmit. That book set a precedent for omitting experimental details (wavelengths, intensities, Zeeman patterns, etc.) and summarized the terms then known for 231 spectra of 69 elements. Now structure has been recognized in more than 460 spectra, representing 83 elements, and the earlier analyses have in almost all cases been greatly extended.

The accumulation of spectroscopic data is now too vast for publication in a reasonable number of monographs, but the energy levels derived from them are so important for physics, chemistry, and astronomy that a revision of "Bacher and Goudsmit" is urgently needed; it can probably be condensed into three or four volumes. In the spring of 1946 it was determined that neither Bacher nor Goudsmit contemplated such a revision, and it was decided to undertake this at the National Bureau of Standards. Details of this project were discussed at a meeting of the National Research Council Committee on Line Spectra of the Elements, called by the Chairman, Henry Norris Russell, and held in Washington in May 1946. It was then decided to send to interested workers in various fields a questionnaire regarding the most useful form of presentation of the data on atomic energy levels. The present form represents the majority vote resulting from that inquiry.

It was originally planned to issue sections in pamphlet form as the manuscript was completed, and to assemble the sections into volumes of about 400 pages each. Section 1 has been published separately.

This volume comprises the first three sections of Circular 467 of the National Bureau of Standards as follows:

Section 1. The Spectra of Hydrogen, Deuterium, Tritium, Helium, Lithium, Beryllium, Boron, Carbon, Nitrogen, Oxygen, and Fluorine. (Pages 1 to 75.)

Section 2. The Spectra of Neon, Sodium, Magnesium, Aluminum, Silicon, Phosphorus, Sulfur, and Chlorine. (Pages 76 to 210.)

Section 3. The Spectra of Argon, Potassium, Calcium, Scandium, Titanium, and Vanadium. (Pages 211 to 309.)

It has since been decided not to publish sections 2 and 3 separately because they are simultaneously in press and complete Volume I.

The manuscript has been prepared by Charlotte E. Moore under the direction of William F. Meggers, Chief of the Spectroscopy Section of the Atomic and Molecular Physics Division. Sincere appreciation is hereby expressed for the cordial cooperation of the National Research Council Committee on Line Spectra of the Elements, and for the heretofore unpublished contributions of many spectroscopists. Because the current volumes of Atomic Energy Levels disclose many gaps in our knowledge in addition to some uncertainties and occasional irregularities, it seems certain that they will inspire further researches in experimental and theoretical spectroscopy, and thus in turn advance the specialized subjects of atomic and nuclear physics.

E. U. CONDON, Director.

WASHINGTON, D. C., June 1948.

Contents

	Page
Preface	II
1. Introduction	VII
2. Scope of the Present Tables	VII
3. Nomenclature (atomic energy levels, spectro- scopic terms, multiplets)	VIII
4. Arrangement	VIII
4.1. Headings, remarks	VIII
4.2. References	IX
4.3. Reference symbols	IX
5. Spectroscopic Notation	IX
5.1. Series spectra	х
5.2. Inert gases	XI
5.3. Complex spectra	XII
6. Columns of the Table	XII
6.1. Author	XII
6.2. Configuration	XII
6.3. Designation	XII
6.4. Inner quantum number J	XIII
6.5. Atomic energy level	XIII
6.6. Interval	XIII
6.7. Observed g-value (tables 1 to 4, Lande	*****
g-values)	XIV
7. Tables of Predicted and Observed Arrays of	
	XV
7.1. Shells	XV
auonees Bot through Not (tables 5	
to 11)	XV
00 11/	AV

21.67 5

۶

z

7. Tables of Predicted and Observed Arrays of Terms—Continued
7.3. Arrays of predicted terms of the se- quences Mg1 through A1 (tables 12 to 18)
7.4. Arrays of predicted levels of the NeI and AI sequences (tables 11 and 18) XVI
7.5. Arrays of predicted terms of the se- quences Cai through Vi (tables 19 to 22) XVI
8. The Periodic Table xvii
8.1. The chemical elements by atomic num- ber, ionization potentials (table 23) xvii
8.2. The chemical elements by chemical symbol (table 24) XVII
8.3. The periodic system (table 25) xvII
8.4. Index—isoelectronic sequences (table 26) XVII
9. Future Investigations xvII
9.1. Need for further analysis xvII
9.2. Term intervals xvIII
9.3. Series spectra—Rydberg denominators_ xvIII
9.4. Observed Zeeman patterns XVIII 9.5. Energy or Grotrian diagrams
5.0. Energy of Groutan diagrams XVIII
10. Acknowledgments XIX

List of Tables

Table	Subject	Page	Table	Subject	Page
1 to 4	Landé g-values	XX to XXVII			
				PREDICTED TERMS-continued	
	PREDICTED TERMS			~	*****
			16	S I	XXXIV
5	Be I	XXVIII	17	Cl I	XXXIV
6	В і	XXVIII	18	Аг	XXXV
7	С т	XXIX	19	Сат	XXXV
8	NI	XXIX	20	Se .	VVVVI
9	Ог	XXX	20	Se I	
10	Fι	XXXI	21	Ti 1	XXXVII
11	Ne I	XXXI	22	VI	XXXVIII
12	Mgi	XXXII	23	Ionization Potentials	XL
13	AlI	XXXII	24	Chemical Symbols	XLI
14	Si I	XXXIII	25	The Periodic System	XLII
15	Рг	XXXIII	26	Index—Isoelectronic Sequences	XLIII

ш

Index to Spectra

Element	Z	Spectrum	Page	Element	Z	Spectrum	Page
Hydrogen	1	H D T	$egin{array}{c} 1 \\ 3 \\ 3 \end{array}$	Neon	10	Ne 1 Ne 11 Ne 111	76 81 83
Helium	2	Не 1 Не 11	$\frac{4}{6}$			Ne IV Ne V Ne VI	84 86 88
Lithium	3	Li 1 Li 11 Li 111		Sodium	11	Na 1 Na 11 Na 111	
Beryllium	4	Be I Be II Be III Be IV	$12 \\ 14 \\ 14 \\ 15 \\ 15$	-		Na IV Na V Na VI Na VII Na VII	95 96 98 98 100 103
Boron	5	B I B II B III B IV B v	$16 \\ 17 \\ 19 \\ 19 \\ 20$	Magnesium	12	Na IX Mg I Mg II Mg III Mg IV	105 106 108 109 111
Carbon	6	C I C II C III C IV C V C V C VI	$21 \\ 24 \\ 26 \\ 29 \\ 30 \\ 31$			Mg v Mg vi Mg vii Mg vii Mg ix Mg x Mg x	113 114 117 119 121 122 123
Nitrogen	7	N I N II N III N IV N V N VI N VI N VII	$32 \\ 35 \\ 38 \\ 40 \\ 42 \\ 43 \\ 44$	Aluminum	13	Al I Al II Al III Al IV Al V Al VI Al VI	124 126 129 130 131 133 135
Oxygen	8	O I O II O III O IV O V O V O VI O VII O VIII	$\begin{array}{c} 45 \\ 47 \\ 50 \\ 53 \\ 56 \\ 58 \\ 59 \\ 59 \\ 59 \end{array}$	Silicon	14	Al viii Al ix Al x Al xi Al xii Si i Si ii Si ii	136 138 140 142 143 144 144 147 148
Fluorine	9	F I F II F III F IV F V F VI F VII F VII F VII F VII F VII	$ \begin{array}{r} 60 \\ 62 \\ 64 \\ 66 \\ 69 \\ 71 \\ 74 \\ 75 \\ \end{array} $			Si IV Si V Si VI Si VII Si VII Si XI Si XI	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

IV

Index to Spectra—Continued

Element	Z	Spectrum	Page	Element	Z	Spectrum	Page
Phosphorus	15	Р 1 Р 11 Р 111	$163 \\ 164 \\ 166$	Potassium— (Continued)	19	К 1х К х К х К хг	$239 \\ 239 \\ 241$
		P IV P V P VI P VII P VII P IX P X P XI P XI P XI P XI	168 169 170 171 173 174 176 177	Calcium	20	Ca I Ca II Ca III Ca IV Ca V Ca V Ca VI Ca VI Ca VII Ca VIII	$242 \\ 245 \\ 247 \\ 248 \\ 249 \\ 251 \\ 252 \\ 253 \\$
Sulfur	16	Р хіп S і S іI S іI S іII	180 181 183 185			Ca IX. Ca X. Ca XI. Ca XII. Ca XII. Ca XIII.	253 255 255 257 258
		S IV S V S VI S VII S VII S VIII S IX S X	187 188 189 190 191 193 194	Scandium	21	Ca xv	258 259 262 263 264 265 266
Chlorine	17	Cl I Cl II Cl II Cl III. Cl IV Cl V	194 195 197 199 201 202			Sc vii Sc viii Sc viii Sc ix Sc xi Sc xii	267 268 269 270 271 272
		Cl vi Cl vii Cl viii Cl viii Cl ix Cl ix Cl x Cl x	$204 \\ 205 \\ 206 \\ 207 \\ 209 \\ 210$	Titanium	22	Ti I Ti II Ti III Ti IV Ti V Ti V	273 279 281 283 284 285
Argon	18	A 1 A 11 A 111 A 1V A v A v A v1	211 216 218 220 222 223 224			Ti vii Ti viii Ti viii Ti ix Ti x Ti x Ti xii Ti xii Ti xii Ti xii	283 286 287 288 288 288 289 289 289
		A VII A VIII A IX A X A X A XI A XI A XIV	$224 \\ 224 \\ 225 \\ 226 \\ 226 \\ 226 \\ 226$	Vanadium	23	V I V II V III V III V IV V V	291 298 301 303 304
Potassium	19	K I K II K III K IV K V K VI K VII K VII K VIII	227 230 231 233 234 236 237 238			V VI_ V VII_ V VII_ V VIII_ V XII_ V XI_ V XII_ V XII_ V XIII_ V XIV_	304 305 306 306 307 307 308 309

v

Since the publication in 1932 by Bacher and Goudsmit of their book "Atomic Energy States,"¹ the number of energy levels determined from the analyses of optical spectra has increased by a factor of perhaps 4 or 5 and yet no critical compendium of these data exists. In order to meet this need, the present compilation has been undertaken at the National Bureau of Standards.

A handbook of "Atomic Energy Levels" is an indispensable tool for workers in many fields of science today. For the spectroscopist it reveals the gaps in our knowledge of atomic spectra—both those spectra that are incompletely analyzed because of insufficient observations and those that have not yet been observed. For the theoretical as well as the experimental investigators, the detailed comparison of data on related spectra, uniformly arranged, is a useful guide in the study of series, intervals, electron configurations, and many other related problems of atomic structure. Many interesting spectroscopic problems also arise in connection with microwave spectroscopy, with ultraviolet solar spectra observed from rockets, with infrared spectra observed with a sensitive detector, and in general with types of observation that have developed comparatively recently. If the analysis of a spectrum is complete the positions of the lines can be calculated from the known energy levels, including in many cases those of lines in the far infrared or ultraviolet. The present term tables are now being used in connection with some problems of this sort.

The needs of the nuclear as well as the atomic physicist, of the chemist interested in atomic structure, of the astrophysicist interested in the study of stellar structure and cosmical abundances, and of those in many other fields of science all provide the inspiration for this work.

2. Scope of the Present Tables

Ten of the fourteen members of the National Research Council Committee on Line Spectra of the Elements attended the meeting held in Washington in May 1946, to consider details of this program. Two members who were unable to attend, I. S. Bowen and R. A. Sawyer, made personal visits to the Bureau before the meeting for this purpose. A number of other spectroscopists, including B. Edlén, have also been consulted in private conference.

On the recommendation of the committee a questionnaire regarding details of arrangement of the tables was sent to 94 interested workers in various fields of science. Sixty-one replied to this inquiry. The scope, uses, and format of the book have been discussed at length and the general form adopted is a direct outgrowth of these conferences and recommendations.

The cordial collaboration of those who have been contacted is gratifying. The Chairman of the Committee, H. N. Russell, has read all of the manuscript, provided much material, and made many helpful suggestions. The writer has had the benefit of his broad experience with spectroscopic problems. The committee and others as well are giving their wholehearted support to this program.

Requests to extend the scope of the tables have been seriously considered. It was finally decided to include only the energy levels derived from observations of atomic spectra, exclusive of hyperfine structure ascribed to atomic nuclei (with the exception of H, D). With full appreciation of the importance of critical data on nuclear and X-ray spectra, on isotopes, and on other subjects related to atomic structure the present policy was adopted for several reasons. The usefulness of the tables might well be vitiated by the inclusion of too many kinds of data. The critical editing of the enormous amount of literature entailed by extending the program would of necessity delay by years the publication of data on any one phase of the subject. Finally, the preparation of the volumes of "Atomic Energy Levels" is an appropriate sequel to the work on the revised edition of "A Multiplet Table of Astrophysical Interest,"² hereinafter referred to as RMT.³ These two types of tables used in conjunction with each other provide a condensed and unified picture of many atomic spectra-the one containing the energy levels and term designations used to compile the multiplets and excitation potentials recorded in the other.

In view of the limitations imposed here, reference is made under the relevant spectra to the excellent summary and bibliography of data on hyperfine structure by Meggers, in his paper entitled "Spectroscopy, Past, Present, and Future."⁴ In addition, selected later papers on hyperfine structure and isotope shifts are listed for certain spectra. The reader is warned, however, that the individual references on these subjects included here are highly selected and that the present book is inadequate for workers in these fields.

¹ McGraw-Hill Book Co., Inc., New York, N. Y., and London (1932).

² Princeton Univ. Obs. Contr. No. 20 (1945).

³ This edition is limited to lines of wavelength longer than 3000 A. Along with the tabulation of energy levels, the writer is also preparing an ultraviolet extension to the Revised Multiplet Table.

⁴J. Opt. Soc. Am. 36, 431 (1946).

(Atomic Energy Levels, Spectroscopic Terms, Multiplets)

Briefly summarized, the atoms of a gas or vapor, when excited by radiation, absorb certain wavelengths corresponding to transitions of their outer electrons from lower energy levels to higher ones. When the transitions are from higher to lower energy levels the lines are emitted. Each chemical element can emit as many atomic spectra as it has electrons. If, for example, a sample of pure vanadium is placed in an electric arc and light from the arc is observed through a spectroscope, a complex array of spectral lines of various intensities appears. Most of these lines are produced by neutral vanadium atoms and are characteristic of the first (or arc) spectrum of vanadium, VI.

If vanadium atoms are excited by an electric spark instead of an arc the higher energy of the spark will cause a large proportion of them to lose an electron. The atoms with one less electron in turn exhibit their own characteristic array of spectral lines, i. e., the second spectrum of vanadium, VII. Similarly, with suitable sources of excitation, spectra of higher ionization can be observed corresponding to the loss of 2, 3, etc., electrons, the total number possible being equal to the atomic number of the element in question, in the case of vanadium, 23. To date, however, nothing is known about the vanadium spectra beyond VxIV. The present volume contains the energy levels of all atomic and ionic spectra in which structure has been recognized, for the 23 chemical elements hydrogen through vanadium, H, HeI, HeII, LiI, ... Vxiv, and includes 206 spectra.

An attempt has been made to follow the general plan adopted by Bacher and Goudsmit in 1932, but some major changes have been introduced. In the present work the elements are arranged in order of increasing atomic number rather than in the alphabetical order of their chemical symbols. The tables on pages XL and XLI should facilitate cross reference to the earlier book. For a given element the arc spectrum is followed by the successive spark spectra in order of increasing stage of ionization, as was done previously. Gaps occurring in the run of spark spectra for a given element indicate that structure has not yet been recognized in the missing spectrum.

Contrary to the earlier arrangement, in the present compilation the energy levels of *all* spectra are listed upward from the ground state *zero*. Absolute values are not given, but can be found for series spectra by consulting the references to the analysis or by subtracting the tabulated values from the limit quoted for a given spectrum.

The wavelengths, or positions of the lines observed in a given spectrum are carefully measured, and estimated intensities of the lines recorded. The wavelengths are then converted into wave numbers in vacuo from standard tables.⁵ By studying differences among the wave numbers of the observed lines the energy levels can be found, since each spectral line is produced by a transition between two such levels. From a careful study of groups of lines that have similar characteristics, such as intensity behavior when produced at different temperatures in the laboratory, the levels involved in the production of the lines are grouped to form spectroscopic terms. The terms result from definite configurations and motions of the outer electrons of the atom and are explained by a well-established theory of spectral structure.⁶ For any given electron configuration the array of terms to be expected in a given spectrum can be predicted from the quantum theory. Conversely, the energy levels and the terms formed from them furnish fundamental information. based on observation, concerning the outer electrons of the atom. The energy levels are, therefore, important constants of nature.

A group of related lines produced by transitions between two complex terms was first called a *multiplet* by M. A. Catalán in 1922.⁷ The Multiplet Tables mentioned above (RMT, sec. 2) give the observed wavelengths of the lines that form the leading multiplets of many different spectra.

4. Arrangement

4.1. Headings, Remarks

For each spectrum descriptive remarks which are selfexplanatory, are preceded by headings as follows: Those on the left give (1) the number of electrons in the atom, and, except for arc spectra, the isoelectronic sequence to which the spectrum belongs (see sec. 8.4); (2) the ground state of the atom with its complete electron configuration; (3) the absolute value of the ground level in cm⁻¹, i. e., the limit referred to the ground state of the ion of next higher ionization. The headings on the right give (1) the atomic number Z and (2) the ionization potential in electron volts obtained by multiplying the limit quoted

⁸ H. Kayser, *Tabelle der Schwingungszahlen*, Revised Edition (Edwards Brothers, Inc., Ann Arbor, Mich., 1944).

⁶ F. Hund, Linienspektren und Periodisches System der Elemente (Julius Springer, Berlin, 1927).

⁷ Phil. Trans. Roy. Soc. London (A) 223,, 127 (1922); Rev. Acad. Madrid 25, 20 (1922).

on the left by the factor 0.00012395, which was recommended by Birge in 1941.⁸ ⁹

In the remarks the word "author" refers to the investigator who has worked on the analysis of the spectrum, in contrast to the word "writer," which applies to the present compiler of these data.

4.2. References

In 1914 W. F. Meggers started a card catalog of all literature references on the description and analysis of atomic spectra, which has been carefully kept up to date and is doubtless the most complete of its kind in existence today. This catalog, together with the valuable and extensive collection of spectroscopic reprints of Meggers and Kiess, furnish the basic material requisite to the present program.

Following the descriptive remarks, literature references are given for each spectrum. It is not the purpose of this book to list all references to the analysis of each spectrum. The writer has attempted to make a careful appraisal of the literature and to list all the references needed to cover the complete analysis, including, of course, those used in the present work, and those giving the classified lines, energy or Grotrian diagrams, and observed *g*-values. A few selected references to hyperfine structure and isotope shift are also included, as mentioned in sec. 2.

In many spectra important regularities have been found by an author whose name does not appear in the references quoted here. This occurs when later and more complete papers include the earlier results and references. For example, Bowen and Millikan first discussed a number of the spectra described in Edlén's Monograph,¹⁰ but only the later reference is listed. Full recognition should be given to all such contributors in spite of the arbitrary limitations imposed here.

4.3 Reference Symbols

Most of the literature references are followed by letters in parentheses, which describe the scope and content of the paper, as follows:

ΙP	Ionization potential.
Т	Terms.
C L	Classified lines.
G D	Grotrian diagram.
ΕD	Energy diagram.
Z E	Zeeman effect.
IS	Isotope shift.
hfs	Hyperfine structure.

Several of these topics are frequently discussed in one paper, in which case all the symbols that are applicable are mentioned with the reference. If, for example, the symbols (I P) (T) (C L) follow a reference, it signifies that the paper gives an ionization potential, terms, and classified lines.

In a few selected cases, self-explanatory descriptions follow the reference, as, for example, in CI "(Solar data)."

Some papers are described in abstracts or letters to the editor in the Physical Review. These are indicated by (A) or (L) preceding the date in the reference, as is customary, but they should not be confused with the above symbols.

References for which no symbol is given are described in the remarks on the spectrum. Many of these are theoretical in character, as for example, the one to Racah's paper (see Ne I) which deals with *jl*-coupling in the spectra of the Ne I type (sec. 5.2). Symbols have been omitted in general from references that are specialized in character as compared with those that can be more concisely described by the array of letters given above.

5. Spectroscopic Notation

Some details of spectrum analysis should perhaps be mentioned in order to explain the plan of presentation of spectroscopic data adopted here. According to the quantum theory each energy level is defined by an inner quantum number commonly known as J. The terms (groups of related levels) have multiplicities which are all odd (1, 3, 5, 7, ...) or all even (2, 4, 6, 8, ...) in a given spectrum. For terms of odd multiplicity the J-values are always integers, 0, 1, 2, 3, ...; for those of even multiplicity the J-values are odd multiples of the fraction $\frac{1}{2}$, denoted as $\frac{1}{2}$, $\frac{1}{2}$, $\frac{2}{2}$, $\frac{3}{2}$, etc. Terms are further defined by azimuthal quantum numbers L that have for terms labeled S, P, D, F, G, H, I, K, etc., the values 0, 1, 2, 3, 4, 5, 6, 7, etc., respectively.

A term of a given kind and multiplicity consists of a definite number of energy levels whose inner quantum numbers are stipulated by the quantum theory. For example, an "S" term of multiplicity three has only one level with *J*-value equal to 1. This term is designated as ${}^{3}S_{1}$. A "D" term of multiplicity four consists of four levels whose *J*-values are $3\frac{1}{2}$, $2\frac{1}{2}$, $1\frac{1}{2}$, $\frac{1}{2}$, respectively, designated as ${}^{4}D_{3\frac{1}{2}}$, ${}^{4}D_{2\frac{1}{2}}$, ${}^{4}D_{1\frac{1}{2}}$, ${}^{4}D_{\frac{1}{2}}$. Tables giving the *J*-values of terms of each multiplicity are discussed in sec. 6.7.

The designation is further described by two other quantities discussed in sec. 5.1 and sec. 5.3: (1) a prefix that

⁸ Rev. Mod. Phys. 13, No. 4, 233 (1941).

[•] The discrepancies between the ionization potentials in this book and those given by the writer in the RMT are, in general, due to the use of the older factor, 0.00012345, in calculating data for the Multiplet Tables.

¹⁰ Nova Acta Reg. Soc. Sci. Uppsala (IV) 9, No. 6 (1934).

serves to distinguish terms of the same type and multiplicity from each other and which, for simpler spectra, gives information about the electron configuration, and (2) a superscript "o" denoting that a term belongs to the odd set (sec. 5.1). The complete multiplet designation of any spectral line includes all of these quantities: multiplicity, azimuthal quantum number, and inner quantum numbers for both the lower and higher energy levels involved in the production of the line.

The lines normally observed in a spectrum, i. e., the permitted lines, do not result from differences among the levels of each term and every other term, but from differences (called combinations) between two sets of terms, one "even" and one "odd." Permitted lines are further restricted by the rules governing the *J*-values. Only those *J*-value combinations between even and odd terms for which *J* changes by 0 or ± 1 are permitted, and normally no combinations occur between levels with J=0. Under special conditions "Forbidden" lines are observed, in which case these selection rules for odd and even terms and for *J*-values do not hold.

A relatively limited number of terms can thus account for a complex array of spectral lines. It is obviously desirable to describe these terms by a uniform notation that defines the quantum properties as completely as possible, and is also adaptable to all the varieties of spectra that have been and are likely to be observed.

A general scheme of notation was outlined in 1929,¹¹ which has been widely used. This scheme has been interpreted so freely by various investigators that a serious lack of uniformity has resulted in the literature. When this question arose in connection with the RMT the writer did not anticipate the present project, which is far wider in scope. She did, however, attempt to introduce uniformity and, in order to avoid further confusion, she has adopted here the notation of the RMT with only slight modifications. It is admittedly far from ideal, but is perhaps justifiable if it serves only to stimulate serious consideration of the question and the general adoption of a more satisfactory scheme.

The "Designation" (sec. 6.3) adopted for the less complex spectra that exhibit conspicuous series differs from that used for the more complex spectra that do not.

5.1. Series Spectra

For many elements the spectra become more complex as the degree of ionization decreases. The terms of each spark spectrum are the parent terms or "limits" of the series of terms in the spectrum of next lower degree of ionization. The term arrays resulting from the addition of s, p, d, f, etc., electrons to each limit are well known from theory (sec. 7). Consequently, for the simpler spectra the electron configurations of the observed terms can be assigned without ambiguity by a study of the limits in the spectrum of next higher degree of ionization.

The spectrum of OvI may be used as an illustration. Here the lowest term of OvII, $1s^{2}$ 'S, is so much lower than any other that no other limit need be considered. The addition of a "running" s, p, d, f, etc., electron to this state produces a series of doublet S, P°, D, F°, etc., terms in OvI. In this case the electrons and terms are of the same type. The ground term of OvI is $1s^{2}(^{1}S)2s$ 2S, the next term is $1s^{2}(^{1}S)2p$ 2P°, etc., where (^{1}S) signifies the parent term or limit in OvII. The "Designations" adopted for these terms are 2s 2S, 2p 2P°, etc., 12 The number "2" in the prefix 2s, etc., denotes the total quantum number, which depends on the shell occupied by the outer electrons giving rise to the term (see sec. 7). This number increases by unity for the series terms of a given type, as for example, for the series 2s 2S, 3s 2S, 4s 2S, etc.

An additional electron is effective in the production of the spectrum of Ov. The configuration $1s^2 2s^2$ gives the ground term ¹S, designated here as $2s^2$ ¹S; and $1s^2 2p^2$ gives the terms $2p^2$ ³P, $2p^2$ ¹D and $2p^2$ ¹S. The spectrum of Ov is more complex because, in addition, there are two low terms in Ovi, both of which are important parent terms or "limits" giving rise to terms in Ov. The addition of running electrons to these limits gives, among others, the following theoretical or predicted array of terms:

0	VI	Ov						
Config.	Limit	Added Electron	Config.	Terms				
1s ² 2s	$^{2}\mathrm{S}$	38	1s ² 2s(² S)3s	${^{3}S}_{^{1}S}$				
"	"	2p	1s ² 2s(² S)2p	{	³ P° 1P°			
"	"	3d	$1s^2 2s(^2S)3d$	{		³ D ¹ D		
1s ² 2p	²P°	38	1s ² 2p(² P°)3s	{	3P° 1P°	-		
"	"	3 <i>p</i>	1s² 2p(²P°)3p	${}^{3}S_{^{1}S}$	³ P 1P	³ D ¹ D		
- //	"	3d	1s² 2p(²P°)3d	{	3P° 1P°	³ D° 1D°	3F° 1F°	

Terms are "odd" (denoted by the superscript "o") when the configuration contains an odd number of p, f, h, etc. electrons, ³P°, for example. In the case of Ov, since one limit is even and the other one odd, no ambiguity occurs if a designation consisting of the running electron and term is used for terms from both limits, i. e., for terms from ²S in Ovi, $3s^{3}S$, $3s^{1}S$, $2p^{3}P^{\circ}$, $2p^{1}P^{\circ}$,

¹¹ H. N. Russell, A. G. Shenstone, and L. A. Turner, Phys. Rev. 33, 900 (1929).

¹² In the RMT the notation 2 2 S, 2 2 P°, etc. was used for series of this kind when the term and running electron were of the same type.

 $3d {}^{3}D$, $3d {}^{1}D$; and for terms from ${}^{2}P^{\circ}$ in Ovi, $3s {}^{3}P^{\circ}$, $3s {}^{1}P^{\circ}$, $3p {}^{3}S$, $3p {}^{3}P$, ... $3d {}^{1}F^{\circ}$. This notation has been adopted for those spectra that have two low limits, one even and one odd.

When two or more of the effective limits are all even or all odd, an addition to this notation is required. The limit terms are always listed in the term arrays (sec. 7) from lowest to highest, i. e., according to increasing value of the terms, starting from zero. In Ov the ground term is 2S and the next higher is 2P°. Consequently, 2S is listed first in the above array and in the one on page 57. For terms from the lowest of a group of limits the running electron is used as described above. For those from the next higher or second limit a prime is affixed to the running electron, for those from the third limit a double prime, etc. The use of primes is well illustrated by the term arrays: (1) of OIV, p. 55, where the lowest limit is even and the next odd, in which case primes are first introduced for the third limit; and (2) that of OII, p. 50, where the primes are used for the second limit, since the two lowest limits are even.

With the exception of the spectra of the inert gas type (sec. 5.2), the notation giving the running electron with primes affixed as described above has been used for the spectra of all isoelectronic sequences through K and for the spectrum of Ca1. The rest of the Ca1 sequence and the Sc1, Ti1, and V I sequences have the notation adopted for complex spectra (secs. 5.3 and 7.5).

5.2. Inert Gases

The first spectra of the inert gases form a special class of series spectra that must be discussed separately. In these neutral atoms the last electron required to close the different shells is added. Terms are not definitely distinguishable for many types of higher series members owing to the departure from LS-coupling, and the J-values of the components of the limit term must be indicated. A detailed account of the theory of the couplings of various types will not be attempted here. Briefly summarized, when LS-coupling does not hold, jl- or jj-coupling becomes important, the Landé g-values (tables 1 to 4), (sec. 6.7) do not hold, and levels are grouped by pairs rather than by terms. For further details, special treatises on the subject should be consulted.¹³

The present volume contains two sequences of this type: Ne I and A I. In these spectra the last of the six p-electrons is added and completes these shells. As stated in the remarks for Ne_I, Edlén suggested that a pair-coupling notation be adopted for Ne_I-like spectra to take into account the departure from *LS*-coupling. The *jl*-coupling notation in the general form suggested by Racah ¹⁴ has, consequently, been adopted, on Shortley's suggestion. Shortley has also prepared a detailed array of the theoretical arrangement of the pairs, for the writer to use as a guide in preparing the tables of spectra of this type.

A few general remarks will suffice to explain the general plan of presentation. All levels from a given configuration are in one group. The groups are listed in order of increasing value of the smallest level in each group. Within a group the levels are paired and the pairs form two subgroups, each of which has as a limit one of the two components of a ²P° term, ²P°₁₄ and ²P°_{<math>34}, the former</sub></sub> being the lower. Within the subgroup members of a pair are listed together in order of increasing value of the lower member, unless they are widely separated numerically, in which case the lower pairs precede the higher member of the wide pair. Each pair consists of two levels whose J-values are known from theory, and differ by only one unit. The designation of the pair gives the running electron, followed by the mean value of the two quantum numbers given in brackets. As usual, a prime is used with the running electron to indicate the higher limit.

The spectrum of NeI may be used as an illustration. The pairs from the 3s-configuration form one group. The next group in order of increasing numerical value of the lowest member is 3p, the next is 4s, etc. Within the 3sgroup one pair having J=2, 1, respectively, has the limit $({}^{2}P_{1_{2}}^{\circ})$ in NeII, and is designated as $3s[1_{2}]^{\circ}$, where the "" has the usual meaning. The second pair in the 3s group has the higher limit $({}^{2}P_{\varkappa})$ in Ne II and J-values 0 and 1, respectively. The designation is, therefore, $3s'[\frac{1}{2}]^{\circ}$. In the group having the 3*p*-configuration the components of pair 1, 0 are widely separated, 148259 and 150919, respectively. They are listed separately in numerical order within the subgroup having the limit (2P°), each member being labeled $3p[\frac{1}{2}]$. Then follows the related subgroup $3p'[1\frac{1}{2}]$, etc., with the pairs listed in increasing order.

The spectra to which the pair-coupling applies are listed under the NeI and AI isoelectronic sequences in table 26.

For convenience of cross reference to Bacher and Goudsmit's book and to other publications, the Paschen notation for these spectra has been retained in column 1. Unfortunately, the *jl*-coupling notation was not used in the RMT, but it is hoped that the style adopted there can be translated into the present form by means of the table on page XVII of that Contribution.¹⁵

¹³ E. Back and A. Landé, Zeemaneffekt und Multiplettstruktur der Spektrallinien, (Julius Springer, Berlin, 1925).

F. Hund, Linienspektren und Periodisches System der Elemente (Julius Springer, Berlin, 1927).

R. F. Bacher and S. Goudsmit, Atomic Energy States (McGraw-Hill Book Co., Inc., New York, N. Y. and London, 1932).

H. E. White, Introduction to Atomic Spectra (McGraw-Hill Book Co., Inc., New York, N. Y., and London, 1934).

E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra (The Macmillan Co., New York, N. Y.; The University Press, Cambridge, Eng., 1935).

¹⁴ Phys. Rev. 61, 537 (L) (1942).

¹⁵ A Multiplet Table of Astrophysical Interest, Princeton Univ. Obs. Contr. No. 20 (1945).

5.3. Complex spectra

In the majority of complex spectra the terms are so numerous that it is impracticable to designate them by their configurations. For these spectra the prefixes, a, b, c, d are assigned to the low terms of each type (even or odd) and z, y, x, etc., to those that combine with them (odd or even). The high terms of the same type as the low ones start with the prefix e and continue through f, g, etc.

6. Columns of the Table

The data on atomic energy levels are presented in a maximum number of seven columns in the tables. These columns may be described as follows, although the numbers on the left serve only as a guide to the order of presentation, since all are not needed for every spectrum.

Column	Description	Tabular Entry
1 2 3 4 5 6	Author Configuration Designation Inner Quantum Number Atomic Energy Level Interval	Edlén, Paschen, Author Config. Desig. J Level Interval
7	Observed g-value	Obs. g

6.1. Author

Column one gives the notation used in individual papers on the analysis of certain spectra. For many spectra discussed by Edlén, i. e., mostly spectra of the light elements, the heading "Edlén" is used to indicate his notation.

As stated above, the heading "Paschen" is given for spectra of the inert gas type, meaning that the column contains Paschen's notation.

Frequently "Author" or "Authors" and, occasionally, initials are used as a heading. This is explained in the remarks and references for the spectrum in question.

This column is used only when necessary to enable the reader to translate the notation in the literature into that adopted in the "Designation" column for the sake of uniformity. It is omitted for the simpler spectra and for those in which no ambiguity can occur in the interpretation of the individual papers on analysis.

6.2. Configuration

Column two gives the electron configuration. For the simpler spectra, where only one limit term is involved, the limit is not repeated in the configuration for each term. Similarly, the electrons in closed shells are given only when necessary. For example, in Li 1, p. 9, all terms have the limit (¹S) in Li 11, and two electrons form the closed 1s shell. The complete configuration of the ground term $2s^2S$ is $1s^2(^1S)2s$, here called 2s for brevity. Similarly, for the next term, $2p \ ^2P^\circ$, it is $1s^2(^1S)2p$, called 2p, etc. For each spectrum, any electrons not mentioned in the configuration column may be found in the heading giving the ground state.

This notation for complex spectra is first used for Sc II in the present volume. It is also used for all subsequent

spectra of the Cai sequence and for the spectra of the

Sci, Tii, and Vi sequences. These spectra are dis-

In many complex spectra it is impossible to group all

known levels into spectroscopic terms. Miscellaneous

levels are assigned numbers, and the superscript "o" if

cussed further in sec. 7.5.

they belong to the odd set.

In more complex spectra, all electrons and limits needed to explain the terms are given, the limit terms being in parentheses, as usual. In C II, p. 24, for example, the term at 116537.88 has the limit (^{1}S) in C III, as indicated by the configuration $2s^{2}(^{1}S)3s$. The rules governing the use of primes for terms from different limits have been described in detail in sec. 5.1.

The J-value indicating the component of the limit term responsible for certain terms or levels is of considerable theoretical interest. Many papers discuss this question. No attempt has been made to list here the J-values for the limit terms except in the case of inert gas spectra (sec. 5.2).

6.3. Designation

The designation column has been explained in sec. 5. Spectra have been divided into three classes and a uniform designation adopted for each class. For series spectra, the running electron without or with primes is given as a prefix to the term. For inert gas spectra the *jl*-coupling notation of the related pairs of levels is used. For complex spectra the prefixes $a, b, \ldots e, f; z, y, x, \ldots$ are given.

Miscellaneous levels are assigned numbers and odd levels are indicated throughout by the symbol "°."

Other miscellaneous designations, which are usually self-explanatory, are also used. In F I, p. 60, for example, the type of notation adopted by Edlén for miscellaneous levels from the 3d and 4d configurations, $3d X_2$, etc., has been retained. Edlén remarks that it is impossible to assign term designations to these levels because of the departure from *LS*-coupling.

6.4. Inner Quantum Number J

This column gives the inner quantum number J for each level when known, or the quantum numbers of all components of a term if the term is unresolved into its component levels. For brevity the end quantum numbers of a term are frequently given for unresolved terms. For example, the term of F II, p. 63, at 264610 is an unresolved ⁵F term. A ⁵F term consists of 5 components with J-values of 5, 4, 3, 2, 1, respectively. They are denoted as "5 to 1" in the column headed J. The J-values for terms of the various types, S, P, D, etc., and multiplicities are given in tables 1 and 2. A blank in this column indicates that the author has not defined the J-value. In sec. 6, following, J-values are discussed further.

As a rule, J-values can be determined from the observed combinations. In the spectra of Ne I and A I, however, Shortley has suggested that special care be taken to indicate those that are verified by observation in the case of levels produced by f-electrons, since some pairs overlap and some are unresolved. As an aid in the theoretical interpretation of these spectra, the J-values that are derived from the observed combinations involving f-electrons are entered in italics in the tables.

6.5. Atomic Energy Level

This column gives the atomic energy levels of the individual spectra, odd levels being in italics throughout. With the exception of H-like spectra they are, in general, *observed* values.¹⁶ In a number of spectra extrapolated values estimated from isoelectronic sequence data are also included to supplement incomplete observational results. Brackets are used to denote extrapolated values.

For every spectrum the levels are listed from the ground state zero, i. e., absolute values are not given in these tables. The levels are grouped by terms, or by pairs in the case of the inert gas spectra (sec. 5.2). The terms are listed in order of increasing numerical value of the smallest level in each. Miscellaneous levels are given in proper numerical order between terms. For unresolved levels the effective mean value of the components is given. For terms in which only certain components have been observed, those levels that are known are listed with the known J-value, and blanks occur in the table opposite the J-values of the missing members.

The value of the limit referred to the ground state of the atom of next higher stage of ionization, i. e., the limit giving the principal ionization potential, is entered in bold face in the table. In spectra having terms with negative absolute values, the limit appears in the correct numerical place in the table and is followed by higher terms. More often, it appears at the end of the table, following a row of leaders which indicate that many high terms have not yet been found. The value of the limit given in the heading is repeated in the table, throughout. Two limits are given for NeI- and AI-like spectra, when the absolute values of both components of the limit term ${}^{2}P_{13.3}^{\circ}$ are known, the lower limit being in bold-face type (see sec. 5.2).

The selection of the numerical value of the limit adopted here is frequently arbitrary, and those who are seriously interested in the best value should consult the references. The length and type of the series, the series formula used, the type of extrapolation, and many other factors affect the accuracy of the limit. The remarks contain relevant details regarding the evaluation of the limit. Higher limits, if any, can be calculated by the addition of the appropriate term values of the succeeding spectrum to the limit quoted here.

In many spectra no intersystem combinations connecting the terms of different multiplicity within a spectrum, have been observed. For these spectra a constant correction, x, which may be either positive or negative, must, therefore, be applied to the terms of one multiplicity, and a different constant y to those of another in spectra where terms of three multiplicities have been detected, in order to put all terms on the same scale. In the tables the entries "+x" and "+y" follow the levels of all such sets of terms.

If long series have been observed the relative positions of the terms of different multiplicity can be determined accurately from the series limits, and the correction x is small.¹⁷ In many cases series are short or lacking and the error may be considerable. Estimated relative positions of terms have, however, frequently been used in order to place all terms in the order that is approximately correct. The remarks on the spectrum and the use of brackets to denote estimated values should suffice to explain the procedure in the individual cases.

The uncertainty x is also occasionally used to indicate groups of detached terms that have not yet been connected by observation with the rest of the spectrum, but whose multiplicity is the same as that of terms that are known. This is true for a group of terms of Sc I, for example (p. 260).

6.6. Interval

The term intervals in this column are, with a very few exceptions, the differences between the level values of the

¹⁶ For spectra of the H sequence the values calculated by J. E. Mack from the series formula are given, as is explained in the remarks.

¹⁷ In a few spectra x has been omitted for this reason, as noted in the remarks.

components of terms in the preceding column. If, for a given term, the level of smallest J has the smallest numerical value, and this succession holds for all components from the lowest to the highest, the intervals are positive and the term is *normal*. On the contrary, if the level of smallest numerical value has the largest J, etc., thoughout the term, the intervals are negative and the term is *inverted*. The general run of intervals is positive or negative in a given spectrum according to whether the shell of outer electrons is less than or greater than half full (see sec. 7.1), although many exceptions to this general rule occur.

If some components of a term are missing, the order in which the *J*-values are listed is governed either by the foregoing rules concerning the shell, or by the behavior of other series members of the same type within the spectrum or the sequence.

The J-values are always given either in increasing or decreasing order for a term, even if the term may be partially inverted. For example, a ³P term has its Jvalues listed either in the order 2, 1, 0 or 0, 1, 2 even if this arrangement causes the levels to be given out of numerical order. For such terms the signs of the intervals call attention to the irregularity, since both positive and negative intervals occur whenever the term is partially inverted. The term 3d ⁵D of O III, p. 52, starting with the value 398135.0, is a term of this kind.

Estimated intervals are in brackets and are explained in the remarks.

6.7 Observed g-Value (Tables 1 to 4, Landé g-Values)

When a spectrum is observed in a magnetic field of suitable strength most lines are broken up into groups of related components arranged in definite patterns. The separations of the components are proportional to the magnetic field strength and to magnetic splitting factors (g-values) characteristic of the atomic energy levels. The g-values can be derived from a study of the observed patterns. These determine the multiplicity and the azimuthal and inner quantum numbers of the individual atomic energy levels. The theoretical g-values are well known for the individual levels of terms of all types. Consequently Zeeman patterns furnish one of the most reliable criteria for the correct interpretation of a complex spectrum.

Details of the theoretical and experimental aspects of this important subject will not be given here. Back and Landé, Bacher and Goudsmit, H. E. White,¹⁸ and many others discuss it.

Observed g-values are given in the last column of the tables. There is a surprising scarcity of reliable data on observed Zeeman patterns among the spectra of the light elements. The first entries in the table are for NI.

Some papers state that the analysis is confirmed by the observed Zeeman effect but give no details. The general policy is to list here only those references that give observed g-values or sufficient data from which to calculate them. The accuracy of the Zeeman material varies greatly and depends on such factors as the determination of the magnetic field used for the observational data, the resolving power of the spectroscope, the interpretation of the observed effect, and many others. As a result the listed g-values vary greatly in accuracy.

For spectra in which LS-coupling holds the observed values agree well with the Landé theoretical g-values. Because of their importance in spectrum analysis, these theoretical values are given in tables 1, 2, 3, and 4. Table 1 contains J- and g-values for terms of types S, P, D...Q of odd multiplicity, i. e., singlet, triplet, quintet, ... undecet terms. For example, the theoretical g-value of a ${}^{3}F_{4}$ level is 1.250; that of a ${}^{7}I_{6}$ level is 1.143. Since the data are identical for odd and even terms alike, one table suffices for both sets of terms. Table 2 gives similar data for terms of even multiplicity: doublets, quartets, ... decets.

For the convenience of those who are analyzing spectra, the theoretical g-values are also given in order of increasing numerical value followed by the designation of the level or levels for each g, for terms of odd multiplicity in table 3; and for those of even multiplicity in table 4. These g-values are quoted from the "Tables of Theoretical Zeeman Effects" by Kiess and Meggers,¹⁹ supplemented by their unpublished data for terms of multiplicity greater than eight.²⁰ Their tables give also the theoretical Zeeman patterns for practically all of the multiplet designations that have been observed within the range of multiplicity they cover.

Tables of theoretical g-values for jj-coupling may be found in papers by J. B. Green and his collaborators.²¹

Finally, the date of completion of the manuscript of each spectrum is given at the end of the table of energy levels of the spectrum.

¹⁸ E. Back and A. Landé, Zeemaneffekt und Multiplettstruktur der Spektrallinien (Julius Springer, Berlin, 1925).

F. Hund, Linienspektren und Periodisches System der Elemente (Julius Springer, Berlin, 1927).

R. F. Bacher and S. Goudsmit, Atomic Energy States (McGraw-Hill Book Co., Inc., New York, N. Y. and London, 1932).

H. E. White, Introduction to Atomic Spectra (McGraw-Hill Book Co., Inc., New York, N. Y., and London, 1934).

E. U. Condon and G. H. Shortley, *The Theory of Atomic Spectra* (The Macmillan Co., New York, N. Y.; The University Press, Cambridge, Eng., 1935).

¹⁹ Bur. Std. J. Res. 1, 641, RP23 (1928).

²⁰ They have extended their tables of theoretical Landé g-values to include all types of terms and multiplicities (up to ¹¹Q) that are likely to be needed, in order that tables 1 to 4 may be complete. The writer is indebted to them for this useful contribution.

²¹ Phys. Rev. 52, 736 (1937); 54, 876 (1938); 58, 1094 (1940); 59, 72 (1941); 64, 151 (1943).

With the exception of the simpler spectra and of those for which the analysis is seriously incomplete, arrays of observed terms are given following the individual tables of energy levels, the first being that of Be I, p. 13.

As stated above, the arrays of terms to be expected for a given configuration are well known from theory. A comparison of the terms observed in a given spectrum with those predicted reveals at once the completeness of the analysis. To facilitate this comparison, arrays of predicted terms arranged similarly to those of the observed terms are included here.

7.1. Shells

In the discussion of notation (sec. 5) reference was made to the "shells" of electrons and their importance in the production of spectroscopic terms. A clear description of these shells is quoted from White,²² p. 80: "The various electrons are classified under so-called *shells* of electrons. All electrons belonging to the same shell are characterized by the same total quantum number $n. \ldots$ "

"The shells $n=1, 2, 3, 4, \ldots$ are sometimes called (from x-ray spectra) the K, L, M, N, \ldots shells, respectively."

"The electrons in any shell n are further divided into subshells so that electrons belonging to the same subshell have the same azimuthal quantum number l. Electrons for which $l=0, 1, 2, 3, \ldots$ are called s, p, d, f, \ldots electrons, respectively, \ldots ". For example, 2s is used to specify one electron with l=0 and in the shell n=2.

No shell can contain more than 2 type-s electrons starting with n=1, 6 type-p electrons starting with n=2, 10 type-d electrons starting with n=3, or 14 type-f electrons starting with n=4, etc. The successive periods 1 to 7 in the periodic system (sec. 8.3) can, therefore, contain only 2, 8, 8, 18, 18, 32, and 32 elements, respectively. These are consequences of Pauli's exclusion principle.

This is illustrated in the following brief tabular excerpt from White's complete Table of Electron Configurations:

Shell		$\stackrel{K}{n=1}$	<i>n</i> =	L =2
Sul	oshell	<i>l</i> =0	<i>l</i> =0	<i>l</i> =1
1	Н	18		
2	He	1 s ²		
3	Li	1s ²	2s	
4	Be	$1s^2$	2s ²	
5	В	1 \$2	2s ²	2p
6	С	1s ²	2s ²	$2p^2$
				·

²² H. E. White, Introduction to Atomic Spectra (McGraw-Hill Book Co., Inc., New York, N. Y., and London, 1934).

Superscripts denote the number of electrons of a given type. Where no superscript is given unity is understood. He I, for example, has two electrons of the type 1s, as indicated by $1s^2$ in the above array. These similar electrons are known as *equivalent* electrons. The terms produced by *equivalent* and *nonequivalent* electrons and detailed discussions of Pauli's exclusion principle may be found in many standard treatises on atomic spectra.²³

All spectra having the same shells of electrons are similar. An isoelectronic sequence consists of spectra of different elements having the same shells of electrons. Each arc spectrum sets the pattern for the sequence, so far as the effective electrons are concerned. For example, the spectra of Be I, B II, C III, etc., form an isoelectronic sequence for which Be I, the arc spectrum of beryllium, sets the pattern, i. e., the Be I isoelectronic sequence. In B II, the first spark spectrum of B, the boron atoms have lost the outer electron, 2p. This spectrum, therefore, resembles that of Be I having two 2s electrons (denoted by $2s^2$) outside the closed shell $1s^2$. Similarly the carbon atoms have lost both outer 2p-electrons when the spectrum of C III is observed. This spectrum thus belongs in the same sequence. An array of predicted terms of each arc spectrum suffices, therefore, for all spectra of the sequence, as, for example, Be 1.

No arrays are given for spectra of the H, He I, Li I, and similar sequences. Since only 1s, 1s², and 2s electrons are involved, the arrays of predicted and observed terms are simple.

7.2. Arrays of Predicted Terms of the Sequences Ber Through Ne₁ (Tables 5 to 11)

Starting with Be I, predicted arrays of terms of the isoelectronic sequences from Be through Ne are given in the following tables (pages XXVIII to XXXI):

Table	Sequence
5	Bei
6	Bi
7	Ci
8	Ni
9	Oi
10	Fi
11	Nei

In all of these tables the closed shells are indicated immediately under the heading "Config." (" $1s^2+$ " for this group of spectra). The tables are divided into two sections. The upper half gives the terms from equivalent

²³ H. N. Russell, Phys. Rev. 29, 782 (1927).

R. C. Gibbs, D. T. Wilbur, and H. E. White, Phys. Rev. 29, 790 (1927).

F. Hund, Linienspektren und Periodisches System der Elemente (Julius Springer, Berlin, 1927).

C. L. B. Shudeman, J. Franklin Inst. 224, 501 (1937). (Terms from equivalent g, h, and i electrons.)

electrons and, for simpler spectra, the first low series members. The lower half indicates the series to be expected from the various limit terms (sec. 5.1), with the running electron denoted as nx, where n is the total quantum number, and x the type of electron, s, p, d, f, ..., etc.

The quantities n and x are indicated in the headings, nx ($n\geq 3$), etc., above the columns of the tables and are evaluated in the arrays of observed terms of the separate spectra of the sequence. For example, the $ns^{3}S$ series of BeI, p. 13, with the configuration $2s(^{2}S)nx$ has been observed from n=3 through n=8.

Many more terms can be predicted than are likely to be observed. The present tables are designed to contain enough predicted terms to suffice for all terms thus far observed in any spectrum of the sequence.

7.3. Arrays of Predicted Terms of the Sequences Mg_I Through A_I, (Tables 12 to 18)

Starting with Mg I, arrays of predicted terms of the isoelectronic sequences from Mg through A are given in the following tables (pages XXXII to XXXV):

Table	Sequence	
12 13 14 15 16 17 18	MgI AlI SiI PI SI ClI AI	

A comparison of these tables with the set described above, tables 5 to 11, shows that the same terms are predicted for spectra having the same numbers and types of electrons outside the closed shells. Beginning with table 12, the closed shells are $1s^2 2s^2 2p^6$ (entered directly under the heading "Config." in the tables). The total quantum number *n* of the running electron is one unit larger, but the term arrays are identical for similar spectra in the two sets of tables. For example, tables 5 and 12, 6 and 13, etc., are alike, except for the total quantum numbers and for the number of predicted terms included, which is governed by the terms that have been observed within the sequence.

7.4. Arrays of Predicted Levels of the Ne₁ and A₁ Sequences (Tables 11 and 18)

These tables give both predicted terms (LS-coupling) and predicted pairs of levels (*jl*-coupling) sec. 5.2. In the arrays of predicted and observed pairs of levels for these spectra, the pairs are listed in the general order of increasing value of the lower member of the pair, as suggested by Shortley. As some spectra in this sequence are of an intermediate type, more nearly *LS*-coupling, this order is not always obeyed numerically among the observed levels, but is retained in these tables for uniformity.

Similarly, in all of these tables (5 to 18, inclusive) and the corresponding arrays of observed terms, the limit terms are listed in the general order of increasing numerical value with primes added to indicate higher limits, as described in section 5.1.

7.5. Arrays of Predicted Terms of the Sequences Ca₁ Through V₁ (Tables 19 to 22)

Brief mention has been made of the special notation adopted for complex spectra (sec. 5.3). An examination of the tables for the sequences Ca₁, Sc₁, Ti₁, and V₁, tables 19 to 22, inclusive, reveals the rapid increase in the number of terms after d electrons are included in the structure of the unexcited atom. The use of primes is retained to indicate the different limits in Ca₁ and in table 19. For Sc₁₁ and subsequent spectra in the sequence, the notation for complex spectra is introduced (see below). Since the limits are carefully specified, no difficulty should arise in comparing the arrays of observed and predicted terms in this sequence.

For the configurations involving equivalent electrons, listed in the upper section of each array, Pauli's principle restricts the array of resulting terms, and the latter cannot be unequivocally assigned to specific limits.

When only s and p electrons appear in the low configurations the ground state is always to be found in the upper section, but in the lower, when d electrons are present in a configuration involving one s electron. Examples among arc spectra may be found in table 23, and others occur for singly ionized atoms.

Beginning with the Sci sequence terms from eight limits must be considered. For this reason, a simple type of prefix $a, b, c, \ldots z, y, x$, etc., is adopted for the terms from the different limits. In the Ti I group 15 limits must be handled, and in VI the number increases to 22. For these complex spectra the limits in the tables of predicted terms are tabulated in order of increasing numerical value of the terms in the arc spectrum of the sequence, Ti I for example. The same order does not macessarily apply to the other spectra in the sequence. In the arrays of observed terms the prefixes a, b, etc., of the *limit* terms are given in order to avoid confusion in comparing the different sets of tables.

As the complexity of the spectra increases there is a serious overlapping of families of terms from the various limits. The assignment of electron configurations is ambiguous in many cases. Beginning with Ti1, a number of question marks and colons appear in the arrays of observed terms, denoting the uncertainty of many suggested configurations.

8.1. The Chemical Elements by Atomic Number, Ionization Potentials (Table 23)

In the present work the elements are handled in order of increasing atomic number and they are listed in this order in table 23. Column one gives this number, Z; column two, the name of the element; and column three, the chemical symbol. Columns four and five give, respectively, the principal ionization potential and configuration of the ground state of the neutral atom. For elements with Z>23, i. e., for those beyond the range of the present volume, these data are taken from table 1, columns 5 and 9, respectively, of the key to the Periodic Chart of the Atoms revised in 1947 by Meggers.²⁴ Additional data on the ground states of the rare earths are given in his paper on this subject.²⁵

8.2. The Chemical Elements by Chemical Symbol (Table 24)

Bacher and Goudsmit arranged the spectra in the alphabetical order of the chemical symbol of the element. Table 24 gives the elements in this order, with the chemical symbol in column one followed by the name of the element in column 2 and the atomic number in column 3.

8.3. The Periodic System (Table 25)

The Periodic System in table 25 is arranged in the form suggested by Catalán, who generously furnished an unpublished copy for inclusion here.

8.4. Index—Isoelectronic Sequences (Table 26)

This table contains the index to the data in Volume I of this work, the spectra from H through V. In the left

margin the atomic number is given, followed by the chemical symbol. Across the top the successive stages of ionization appear, I denoting arc spectra, II first spark spectra, III second spark spectra, etc. The numbers in the table indicate the pages on which the individual spectra may be found. For example, FVIII is on page 75.

In this table, isoelectronic spectra appear on the diagonals. Every other diagonal is printed in bold face type in order to emphasize the spectra of each sequence. For example, S IX belongs to the OI sequence, printed in boldface along the diagonal. Similarly, Mg VI can be traced to NI along the diagonal not printed in bold face. Blanks occur for spectra that have not yet been analyzed.

No sequences are carried beyond V in this volume, but they will be continued in later volumes and indicated in tables arranged similarly to this one. The sequences started in Volume I but not completed there are listed below. The last spectrum in each sequence for which any data on analysis are known is indicated.

Sequence	Spectrum	Sequence	Spectrum
Ne I Na I	Coxviii		Ni XII Fe IX
Mgi	Co XVI	KI	Fevin
Siı	Nixv	Sei	Nivm
P1 S1	(V1x) ¹ Ni x111	Ti1 V1	Ni vii Cu vii

¹ This sequence is completed in the present volume.

9. Future Investigations

9.1. Need for Further Analysis

During the course of this compilation many interesting problems have presented themselves. The gaps in the sequences call attention to some spectra in which no structure has as yet been recognized. Within the sequences these gaps include the following spectra: NevII, VIII, IX; NaX; SXI; ClXII, XIII; AXII, XIII; KXII, XIII, XIV; CaXIV; and VX. If, in addition, FIX and NeX could be observed, the spectra of all possible stages of ionization would be represented for these two elements.

A careful study of the configurations in which a 3d electron becomes effective, is desirable. In the FI se-

quence the terms with 3d and 4d electrons for Na III. Mg IV, Al V, and Si VI should be verified, as there are marked irregularities along this sequence.

In Si1 the 3d ³D° term is lower than $3p^3$ ³D°, but the reverse is true for the rest of the sequence.

In the PI sequence the configuration assignments of terms in which $3p^4$, 3d, and 4s electrons are involved, should be examined along the sequence. More observations are also needed to verify the extensive extrapolations from Kv on.

Similar remarks apply to some spectra of the Cl I sequence, particularly to Ca IV, where various authors disagree on the interpretation. Analogous terms along this sequence are strikingly irregular as regards both position and intervals. Many such irregularities could be pointed out. It is hoped that the present work will stimulate further study along these lines.

²⁴ W. M. Welch Scientific Co., 1515 Sedgwick St., Chicago 10, Ill., U. S. A. (Chart and key, \$7.50; key, \$1.00). For Mn1 and Mo1 Catalán's revised values are quoted. The data on Tc1 are from Meggers.

²⁵ Electron Configurations of "Rare-Earth" Elements, Science 105, 514, No. 2733 (May 16, 1947).

The arrays of observed terms enable one to detect a number of conspicuous missing terms whose positions can be estimated by analogy with neighboring related terms. For example, Russell ²⁶ has suggested that the 3d''' ²G term in O_{IV} might be found. To quote him "It should give a strong combination with 3p''' ²F°, lying in the violet or near ultraviolet." Similarly, the absence of the 3d ²F term of Cl_{III} is conspicuous. Russell has also commented on the incompleteness of the analyses of S_{III} and S_{IV}.

In HeI the term 11s¹S is missing from the series. In MgI Shortley has called attention to the fact that the triplets are higher than the singlets, an anomaly that appears to be unexplained.

The general need for further analysis can perhaps best be visualized by a comparison of the arrays of observed and predicted terms of the various spectra. This procedure enables the user to grade each analysis for himself. For spectra whose energy levels are not yet tabulated for this program it is recommended that he consult the existing surveys of spectrum analysis.²⁷

Perhaps the most urgent needs of the astrophysicist are extensions to the work on the second and third spark spectra in the first long period (except for Fe III, which is well known). Many spectra of the heavier elements are incompletely analyzed and much work remains to be done on the highly complex spectra of the rare earths.

9.2. Term Intervals

A careful examination of the term intervals within a spectrum and in related spectra affords a useful check on the correctness of the analysis. In regular terms the intervals are roughly proportional to the larger J-values of the term, and term separations of similar terms usually increase smoothly along the sequence. Enough data are presented here for an extensive survey of this subject. The theoretical as well as observational aspects of this topic and its important relation to configuration assignments need not be emphasized to workers on spectrum analysis.

9.3. Series Spectra—Rydberg Denominators

Requests have been made for a tabulation of absolute term values and Rydberg denominators of the series members of each spectrum in which series have been detected, including the *J*-values of the limit terms. The need for a critical compilation of this material is fully appreciated. It is felt, however, that such a project can best be handled in a program restricted to the study of series in atomic spectra. Standard treatises such as Fowler's *Report on Series in Line Spectra* and Paschen-Götze's *Seriengesetze der Linienspektren*, the paper by Catalán and Poggio,²⁸ etc., together with other references included under the separate spectra should provide some data for those who are interested.

9.4. Observed Zeeman Patterns

A glance at the data on Zeeman effect in this volume alone, reveals a glaring need of further observations. The first entry of g-values occurs in the spectrum of N I. An outstanding example may be found in Ti I. The best observed g-values obtainable from existing data are given, and they serve remarkably well to confirm the analysis. For Ti, and also for other elements, however, Harrison 2^{9} has made extensive observations that doubtless show many excellently resolved patterns and would yield precise observed g-values, but his data for a number of complex spectra have not yet been utilized. A wealth of information is in store for future study in this field.

9.5. Energy or Grotrian Diagrams

There have been urgent requests to prepare a homogeneous set of energy diagrams to accompany these tables. This topic is handled very inadequately here. If the individual authors have included either an energy level diagram or a Grotrian diagram,³⁰ this fact is indicated by the symbol (E D) or (G D) following the references. If not, recourse to general references such as Grotrian's classical publication ³¹ or White's *Introduction to Atomic Spectra* ³² must be had. Readers are warned that the existing diagrams are far from uniform in style and scale and that many of them are not up to date, i. e., they do not represent the analysis as given in the tables. In many cases, the most notable being probably that of AI, the writer has been unable to locate diagrams representing the analysis.

The present work would be seriously delayed by the inclusion of diagrams, but the energy levels as recorded here furnish the requisite material for such a project.

Only a few of the many interesting subjects for future investigation have been touched upon. If this work provides the inspiration and stimulus for at least some of them, it will have been justified.

²⁸ Letter (Aug. 1947).

²⁷ W. F. Meggers, J. Opt. Soc. Am. 36, 433 (1946); C. E. Moore, RMT (1945).

²⁸ Zeit. Phys. 102, 461 (1936).

²⁹ Reports on Progress in Physics 8, 228 (1941).

³⁰ In energy diagrams only the positions of the levels or terms are indicated. In Grotrian diagrams lines indicating observed combinations connect the terms.

³¹ Graphische Darstellung der Spektren von Atomen und Ionen mit ein, zwei und drei Valenzelektronen, Part II (Julius Springer, Berlin, 1928).

²² H. E. White, Introduction to Atomic Spectra (McGraw-Hill Book Co., Inc., New York, N. Y., and London, 1934).

Many scientific workers and many institutions at home and abroad are represented in this work. The cordial collaboration and generous supply of unpublished material have been extremely gratifying.

Members of the National Research Council Committee on Line Spectra of the Elements have given enthusiastic support to the program. The chairman, H. N. Russell, has placed at the disposal of the writer the large collection of spectroscopic data accumulated at Princeton from the time the committee was formed in 1924. He has furnished unpublished analyses (Ca I, Sc I, Ti I, Ti II) and read all of the manuscript. Throughout the work he has been a valued and keenly interested consultant.

This undertaking has been made possible by the enthusiastic support of E. U. Condon, Director of the Bureau of Standards, and W. F. Meggers, Chief of the Spectroscopy Section. The personal interest taken by Dr. Condon has been a continual source of encouragement. The careful supervision and valued suggestions of Meggers, based on his wide experience and expert judgment, greatly enhance the value of this Circular. C. C. Kiess has also been ever ready to give the writer unpublished material (NI, OI) and authoritative and helpful suggestions on many important and troublesome questions. Other members of the Committee who have responded generously with data and stimulated further research for this program are J. E. Mack, who calculated all of the data on the spectra of the H sequence especially for inclusion here; and A. G. Shenstone, who submitted important unpublished results on CI, and CaII.

The most extensive contributions in manuscript form have come from Sweden, from B. Edlén and his colleagues. The writer had the benefit of a conference with Edlén during his visit to Washington shortly after this project had been started. From that time he has continuously supplied unpublished analyses and valuable comments as each section of the book was being prepared. His contributions include data on selected spectra from Be through O, on all the spectra of F, and complete term arrays of the arc spectra of Ne, S, and A. It has also been possible to include the spectra of higher ionization of Al, Si, and S only because E. Ferner submitted his unpublished manuscript on these spectra. H. A. Robinson supplied his material on the spectra P vi through P xiii together with comments on related spectra of Ne through Si; and K. Lidén furnished his data on F1.

The writer has had much helpful advice from G. Shortley on spectra of the NeI and AI sequences. M. A. Catalán of the University of Madrid has been a most helpful consultant throughout his entire stay in the United States. He calculated the *g*-values of ScI, ScII and TiII for inclusion here.

Manuscripts by H. R. Kratz (KI), by K. W. Meissner, L. G. Mundie and P. Stelson (LiI), by E. R. Thackeray (NaI), by W. E. Lamb, Jr., and R. C. Retherford (H), by H. E. Clearman, Jr., (BI) and by F. Rohrlich (TiI); and a reprint on NI sent from Japan by T. Takamine have been submitted especially for use in connection with this program. The writer has attempted to record her gratitude to each one in the pages of the book itself.

No project of this kind can be completed without the cooperation of experts in many lines. One of the greatest rewards has been the pleasure afforded by these contacts. Miss Sarah A. Jones, Librarian at the Bureau, and her competent staff deserve special mention for the splendid assistance they have so willingly given in locating hundreds of references. Mrs. Isabel D. Murray has also provided much expert technical assistance.

The details of publication of spectroscopic data such as those included here present a most taxing and difficult problem; one which has been ably and efficiently handled by Publications Section of the Bureau, the Department of Commerce, and the Government Printing Office. The painstaking care, cordial cooperation, and skill of J. L. Mathusa and his staff in the Publications Section of the Bureau are lasting contributions that can be fully appreciated only by the many users of this Circular. In the Department of Commerce, V. Vasco, and, in the Government Printing Office, H. D. Merold, have been equally cooperative. The book reflects their personal interest and skill and those of all whose services they have enlisted.

It is a pleasure to the writer to record here her appreciation of the enormous amount of assistance all have so graciously given her.

She is also extremely grateful to her husband, B. W. Sitterly, for his many helpful suggestions and cordial cooperation throughout this work.

						Multip	licity					
Term	Sin	glets 1	Tri	iplets 3	Qu	intets 5	Sej	ptets 7	No	onets 9	Un	decets 11
	J	g	J	g	J	g	J	g	J	g	J	g
S	0	0/0	1	2. 000	2	2. 000	3	2. 000	4	2. 000	5	2. 000
Р	1	1. 000	$\begin{array}{c} 2\\ 1\\ 0\end{array}$	1. 500 1. 500 0/0	3 2 1	$ \begin{array}{c} 1. \ 667 \\ 1. \ 833 \\ 2. \ 500 \end{array} $	4 3 2	1. 750 1. 917 2. 333	5 4 3	1. 800 1. 950 2. 250	$6 \\ 5 \\ 4$	1. 833 1. 967 2. 200
D	2	1. 000	3 2 1	1. 333 1. 167 0. 500	$ \begin{array}{c} 4 \\ 3 \\ 2 \\ 1 \\ 0 \end{array} $	1.500 1.500 1.500 1.500 0/0	$5\\4\\3\\2\\1$	1. 600 1. 650 1. 750 2. 000 3. 000	6 5 4 3 2	1. 667 1. 733 1. 850 2. 083 2. 667	7 6 5 4 3	1. 714 1. 786 1. 900 2. 100 2. 500
F	3	1. 000	4 3 2	1. 250 1. 083 0. 667	5 4 3 2 1	1. 400 1. 350 1. 250 1. 000 0. 000	$ \begin{array}{c} 6 \\ 5 \\ 4 \\ 3 \\ 2 \\ 1 \\ 0 \\ \end{array} $	$\begin{array}{c} 1.\ 500\\ 1.\ 500\\ 1.\ 500\\ 1.\ 500\\ 1.\ 500\\ 1.\ 500\\ 1.\ 500\\ 0/0 \end{array}$	7 6 5 4 3 2 1	$\begin{array}{c} 1.\ 571\\ 1.\ 595\\ 1.\ 633\\ 1.\ 700\\ 1.\ 833\\ 2.\ 167\\ 3.\ 500\\ \end{array}$	8 7 6 5 4 3 2	$\begin{array}{c} 1. \ 625 \\ 1. \ 661 \\ 1. \ 714 \\ 1. \ 800 \\ 1. \ 950 \\ 2. \ 250 \\ 3. \ 000 \end{array}$
G	4	1. 000	5 4 3	1. 200 1. 050 0. 750	6 5 4 3 2	1. 333 1. 267 1. 150 0. 917 0. 333	7 6 5 4 3 2 1	$\begin{array}{c} \textbf{1. 429}\\ \textbf{1. 405}\\ \textbf{1. 367}\\ \textbf{1. 300}\\ \textbf{1. 167}\\ \textbf{0. 833}\\ \textbf{-0. 500} \end{array}$	8 7 6 5 4 3 2 1 0	$\begin{array}{c} 1.\ 500\\ 1.\ 500\\ 1.\ 500\\ 1.\ 500\\ 1.\ 500\\ 1.\ 500\\ 1.\ 500\\ 1.\ 500\\ 1.\ 500\\ 0/0 \end{array}$	9 8 7 6 5 4 3 2 1	$\begin{array}{c} 1.556\\ 1.569\\ 1.589\\ 1.619\\ 1.667\\ 1.750\\ 1.917\\ 2.333\\ 4.000\\ \end{array}$
H	5	1. 000	6 5 4	1. 167 1. 033 0. 800	76 5 4 3	1. 286 1. 214 1. 100 0. 900 0. 500	8 76 5 4 3 2	1. 375 1. 339 1. 286 1. 200 1. 050 0. 750 0. 000	9 8 7 6 5 4 3 2 1	$\begin{array}{c} 1.\ 444\\ 1.\ 431\\ 1.\ 411\\ 1.\ 381\\ 1.\ 333\\ 1.\ 250\\ 1.\ 083\\ 0.\ 667\\ -1.\ 000\\ \end{array}$	$ \begin{array}{r} 10 \\ 9 \\ 8 \\ 7 \\ 6 \\ 5 \\ 4 \\ 3 \\ 2 \\ 1 \\ 0 \\ \end{array} $	$\begin{array}{c} 1.\ 500\\ 1.\ 500\\ 1.\ 500\\ 1.\ 500\\ 1.\ 500\\ 1.\ 500\\ 1.\ 500\\ 1.\ 500\\ 1.\ 500\\ 1.\ 500\\ 1.\ 500\\ 1.\ 500\\ 0/0 \end{array}$
I	6	1. 000	7 6 5	1. 143 1. 024 0. 833	8 7 6 5 4	1. 250 1. 179 1. 071 0. 900 0. 600	9 8 7 6 5 4 3	1. 333 1. 292 1. 232 1. 143 1. 000 0. 750 0. 250	10 9 8 7 6 5 4 3 2	$\begin{array}{c} 1.\ 400\\ 1.\ 378\\ 1.\ 347\\ 1.\ 304\\ 1.\ 238\\ 1.\ 133\\ 0.\ 950\\ 0.\ 583\\ -0.\ 333\end{array}$	11 10 9 8 7 6 5 4 3 2 1	$\begin{array}{c} 1.\ 455\\ 1.\ 445\\ 1.\ 433\\ 1.\ 417\\ 1.\ 393\\ 1.\ 357\\ 1.\ 300\\ 1.\ 200\\ 1.\ 000\\ 0.\ 500\\ -1.\ 500 \end{array}$
K	7	1.000	8 7 6	1. 125 1. 018 0. 857	9 8 7 6 5	$\begin{array}{c} 1.\ 222\\ 1.\ 153\\ 1.\ 054\\ 0.\ 905\\ 0.\ 667 \end{array}$	$ \begin{array}{r} 10 \\ 9 \\ 8 \\ 7 \\ 6 \\ 5 \\ 4 \end{array} $	1. 300 1. 256 1. 194 1. 107 0. 976 0. 767 0. 400	11 10 9 8 7 6 5 4 3	1. 364 1. 336 1. 300 1. 250 1. 179 1. 071 0. 900 0. 600 0. 000	$ \begin{array}{r} 12 \\ 11 \\ 10 \\ 9 \\ 8 \\ 7 \\ 6 \\ 5 \\ 4 \\ 3 \\ 2 \\ \end{array} $	$\begin{array}{c} 1.\ 417\\ 1.\ 402\\ 1.\ 382\\ 1.\ 356\\ 1.\ 319\\ 1.\ 268\\ 1.\ 191\\ 1.\ 067\\ 0.\ 850\\ 0.\ 417\\ -0.\ 667\\ \end{array}$

	Multiplicity											
Term	Sin	glets 1	Tri	Triplets 3		ntets 5	Ser	otets 7	No	onets 9	Un	decets 11
	J	g	J	g	J	g	J	g	J	g	J	g
L	8	1. 000	9 8 7	1. 111 1. 014 0. 875	10 9 8 7 6	1. 200 1. 133 1. 042 0. 911 0. 714	11 10 9 8 7 6 5	1. 273 1. 227 1. 167 1. 083 0. 964 0. 786 0. 500	$12 \\ 11 \\ 10 \\ 9 \\ 8 \\ 7 \\ 6 \\ 5 \\ 4$	$\begin{array}{c} 1.\ 333\\ 1.\ 303\\ 1.\ 264\\ 1.\ 201\\ 1.\ 139\\ 1.\ 036\\ 0.\ 881\\ 0.\ 633\\ 0.\ 200\\ \end{array}$	$ \begin{array}{r} 13 \\ 12 \\ 11 \\ 10 \\ 9 \\ 8 \\ 7 \\ 6 \\ 5 \\ 4 \\ 3 \end{array} $	$\begin{array}{c} 1. \ 385\\ 1. \ 365\\ 1. \ 341\\ 1. \ 309\\ 1. \ 267\\ 1. \ 208\\ 1. \ 125\\ 1. \ 000\\ 0. \ 800\\ 0. \ 450\\ -0. \ 250 \end{array}$
М	9	1. 000	10 9 8	1. 100 1. 011 0. 889	11 10 9 8 7	1. 182 1. 118 1. 033 0. 917 0. 750	12 11 10 9 8 7 6	$\begin{array}{c} 1.\ 250\\ 1.\ 205\\ 1.\ 145\\ 1.\ 067\\ 0.\ 958\\ 0.\ 804\\ 0.\ 571 \end{array}$	13 12 11 10 9 8 7 6 5	1. 308 1. 276 1. 235 1. 182 1. 111 1. 014 0. 875 0. 667 0. 333	$ \begin{array}{r} 14 \\ 13 \\ 12 \\ 11 \\ 10 \\ 9 \\ 8 \\ 7 \\ 6 \\ 5 \\ 4 \\ \end{array} $	$\begin{array}{c} 1.\ 357\\ 1.\ 335\\ 1.\ 308\\ 1.\ 273\\ 1.\ 227\\ 1.\ 167\\ 1.\ 083\\ 0.\ 964\\ 0.\ 786\\ 0.\ 500\\ 0.\ 000\\ \end{array}$
N	10	1. 000	11 10 9	1. 091 1. 009 0. 900	12 11 10 9 8	1. 167 1. 106 1. 027 0. 902 0. 778	13 12 11 10 9 8 7	$\begin{array}{c} 1.\ 231\\ 1.\ 186\\ 1.\ 129\\ 1.\ 055\\ 0.\ 906\\ 0.\ 819\\ 0.\ 625\\ \end{array}$	$14 \\ 13 \\ 12 \\ 11 \\ 10 \\ 9 \\ 8 \\ 7 \\ 6$	$\begin{array}{c} 1.\ 236\\ 1.\ 253\\ 1.\ 212\\ 1.\ 159\\ 1.\ 091\\ 1.\ 000\\ 0.\ 875\\ 0.\ 696\\ 0.\ 429\\ \end{array}$	$15 \\ 14 \\ 13 \\ 12 \\ 11 \\ 10 \\ 9 \\ 8 \\ 7 \\ 6 \\ 5$	$\begin{array}{c} 1.\ 333\\ 1.\ 310\\ 1.\ 280\\ 1.\ 244\\ 1.\ 197\\ 1.\ 136\\ 1.\ 056\\ 0.\ 944\\ 0.\ 786\\ 0.\ 548\\ 0.\ 167\\ \end{array}$
0	11	1. 000	12 11 10	1. 083 1. 008 0. 909	13 12 11 10 9	1. 154 1. 096 1. 023 0. 927 0. 800	14 13 12 11 10 9 8	1. 214 1. 170 1. 115 1. 045 0. 955 0. 833 0. 667	$15 \\ 14 \\ 13 \\ 12 \\ 11 \\ 10 \\ 9 \\ 8 \\ 7$	$\begin{array}{c} 1.\ 267\\ 1.\ 233\\ 1.\ 192\\ 1.\ 141\\ 1.\ 076\\ 0.\ 991\\ 0.\ 878\\ 0.\ 722\\ 0.\ 500\\ \end{array}$	$ \begin{array}{c} 16\\15\\14\\13\\12\\11\\10\\9\\8\\7\\6\end{array} $	$\begin{array}{c} 1. \ 312\\ 1. \ 288\\ 1. \ 257\\ 1. \ 220\\ 1. \ 173\\ 1. \ 114\\ 1. \ 036\\ 0. \ 933\\ 0. \ 792\\ 0. \ 589\\ 0. \ 286 \end{array}$
Q	12	1. 000	13 12 11	1. 077 1. 006 0. 917	14 13 12 11 10	1. 143 1. 088 1. 019 0. 932 0. 818	15 14 13 12 11 10 9	$\begin{array}{c} 1.\ 200\\ 1.\ 157\\ 1.\ 104\\ 1.\ 038\\ 0.\ 955\\ 0.\ 845\\ 0.\ 700\\ \end{array}$	16 15 14 13 12 11 10 9 8	$\begin{array}{c} 1.\ 250\\ 1.\ 217\\ 1.\ 176\\ 1.\ 126\\ 1.\ 064\\ 0.\ 985\\ 0.\ 882\\ 0.\ 744\\ 0.\ 556\\ \end{array}$	17 16 15 14 13 12 11 10 9 8 7	$\begin{array}{c} 1.\ 294\\ 1.\ 268\\ 1.\ 238\\ 1.\ 200\\ 1.\ 154\\ 1.\ 096\\ 1.\ 023\\ 0.\ 927\\ 0.\ 800\\ 0.\ 625\\ 0.\ 375\\ \end{array}$

TABLE 2. LANDÉ g-VALUES

	Multiplicity											
Term	Dor	ublets 2	Qua	artets 4	Se	extets 6	0	ctets 8	D	lecets		
	J	g	J	g	J	g	J	g	J	g		
s	1/2	2. 000	11/2	2. 000	21/2	2. 000	3½	2. 000	4½	2. 000		
Р	$1\frac{12}{2}$	1. 333 0. 667	$2^{1/2}_{1/2} \\ 1^{1/2}_{1/2} \\ \frac{1/2}{1/2}$	1. 600 1. 733 2. 667	$\begin{array}{c} 3^{1/2}_{1/2}\\ 2^{1/2}_{1/2}\\ 1^{1/2}_{1/2}\end{array}$	1. 714 1. 886 2. 400	$\begin{array}{c} 4\frac{1}{2} \\ 3\frac{1}{2} \\ 2\frac{1}{2} \end{array}$	1. 778 1. 937 2. 286	$\begin{array}{c} 5^{1\!\!/_2} \\ 4^{1\!\!/_2} \\ 3^{1\!\!/_2} \end{array}$	$\begin{array}{c} 1. \ 818 \\ 1. \ 960 \\ 2. \ 222 \end{array}$		
D	$2\frac{12}{12}$ $1\frac{12}{2}$	1. 200 0. 800	$3\frac{1}{2}$ $2\frac{1}{2}$ $1\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	1. 429 1. 371 1. 200 0. 000	$\begin{array}{c} 4\frac{1}{2}\\ 3\frac{1}{2}\\ 2\frac{1}{2}\\ 1\frac{1}{2}\\ 1\frac{1}{2}\\ \frac{1}{2}\end{array}$	1. 556 1. 587 1. 657 1. 867 3. 333	$5\frac{1}{2}\\4\frac{1}{2}\\3\frac{1}{2}\\2\frac{1}{2}\\1\frac{1}{2}$	1. 636 1. 697 1. 809 2. 057 2. 800	$\begin{array}{c} 6\frac{1}{2} \\ 5\frac{1}{2} \\ 4\frac{1}{2} \\ 3\frac{1}{2} \\ 2\frac{1}{2} \end{array}$	1. 692 1. 762 1. 879 2. 095 2. 572		
F	3½ 2½	1. 143 0. 857	$\begin{array}{c} 4^{1\!\prime}_{2} \\ 3^{1\!\prime}_{2} \\ 2^{1\!\prime}_{2} \\ 1^{1\!\prime}_{2} \end{array}$	1. 333 1. 238 1. 029 0. 400	$5^{1/2}_{1/2}\\4^{1/2}_{1/2}\\3^{1/2}_{1/2}\\2^{1/2}_{1/2}\\1^{1/2}_{1/2}\\1^{1/2}_{1/2}$	1. 455 1. 434 1. 397 1. 314 1. 067 -0. 667	$\begin{array}{c} 6\frac{1}{2} \\ 5\frac{1}{2} \\ 4\frac{1}{2} \\ 3\frac{1}{2} \\ 2\frac{1}{2} \\ 1\frac{1}{2} \\ \frac{1}{2} \end{array}$	$\begin{array}{c} 1.538\\ 1.552\\ 1.576\\ 1.619\\ 1.714\\ 2.000\\ 4.000 \end{array}$	$7\frac{1}{2} \\ 6\frac{1}{2} \\ 5\frac{1}{2} \\ 4\frac{1}{2} \\ 3\frac{1}{2} \\ 2\frac{1}{2} \\ 1\frac{1}{2} \\ 1\frac{1}{2} \\ 1\frac{1}{2} \\ 3\frac{1}{2} \\ 1\frac{1}{2} \\ 1\frac{1}{2} \\ 3\frac{1}{2} \\ 1\frac{1}{2} $	1. 600 1. 631 1. 678 1. 758 1. 905 2. 229 3. 200		
G	4½ 3½	1. 111 0. 889	$5\frac{1}{2}$ $4\frac{1}{2}$ $3\frac{1}{2}$ $2\frac{1}{2}$	1. 273 1. 172 0. 984 0. 571	$\begin{array}{c} 6\frac{1}{2} \\ 5\frac{1}{2} \\ 4\frac{1}{2} \\ 3\frac{1}{2} \\ 2\frac{1}{2} \\ 1\frac{1}{2} \end{array}$	1. 385 1. 343 1. 273 1. 143 0. 857 0. 000	$7\frac{1}{2}$ $6\frac{1}{2}$ $5\frac{1}{2}$ $4\frac{1}{2}$ $3\frac{1}{2}$ $2\frac{1}{2}$ $1\frac{1}{2}$ $\frac{1}{2}$	$\begin{array}{c} 1.\ 467\\ 1.\ 456\\ 1.\ 441\\ 1.\ 414\\ 1.\ 365\\ 1.\ 257\\ 0.\ 933\\ -1.\ 333\end{array}$	$\begin{array}{c} 8^{1}_{2} \\ 7^{1}_{2} \\ 6^{1}_{2} \\ 5^{1}_{2} \\ 3^{1}_{2} \\ 2^{1}_{2} \\ 1^{1}_{2} \\ 1^{1}_{2} \\ \frac{1}_{2} \end{array}$	1. 529 1. 537 1. 549 1. 566 1. 596 1. 651 1. 772 2. 133 4. 667		
H	5½ 4½	1. 091 0. 909	6½ 5½ 4½ 3½	1. 231 1. 133 0. 970 0. 667	7½ 6½ 5½ 4½ 3½ 2½	1. 333 1. 282 1. 203 1. 071 0. 825 0. 286	8½ 7½ 5½ 4½ 3½ 2½ 1½	$\begin{array}{c} 1.\ 412\\ 1.\ 388\\ 1.\ 354\\ 1.\ 301\\ 1.\ 212\\ 1.\ 048\\ 0.\ 686\\ -0.\ 400 \end{array}$	$\begin{array}{c} 9\frac{1}{2}\\ 8\frac{1}{2}\\ 7\frac{1}{2}\\ 6\frac{1}{2}\\ 5\frac{1}{2}\\ 4\frac{1}{2}\\ 3\frac{1}{2}\\ 2\frac{1}{2}\\ 1\frac{1}{2}\\ \frac{1}{2}\end{array}$	$\begin{array}{c} 1.\ 474\\ 1.\ 467\\ 1.\ 459\\ 1.\ 446\\ 1.\ 427\\ 1.\ 394\\ 1.\ 333\\ 1.\ 200\\ 0.\ 800\\ -2.\ 000 \end{array}$		
I	6½ 5½	1. 077 0. 923	7½ 6½ 5½ 4½	1. 200 1. 108 0. 965 0. 727	8½ 7½ 6½ 5½ 4½ 3½	1. 294 1. 239 1. 159 1. 035 0. 828 0. 444	9½ 8½ 7½ 6½ 5½ 3½ 2½	1. 368 1. 337 1. 294 1. 231 1. 133 0. 970 0. 667 0. 000	$\begin{array}{c} 10\frac{1}{2}\\ 9\frac{1}{2}\\ 8\frac{1}{2}\\ 7\frac{1}{2}\\ 6\frac{1}{2}\\ 5\frac{1}{2}\\ 4\frac{1}{2}\\ 2\frac{1}{2}\\ 1\frac{1}{2}\end{array}$	$\begin{array}{c} 1.\ 429\\ 1.\ 414\\ 1.\ 393\\ 1.\ 365\\ 1.\ 323\\ 1.\ 259\\ 1.\ 152\\ 0.\ 952\\ 0.\ 514\\ -0.\ 800 \end{array}$		
K	7½ 6½	1. 067 0. 933	8½ 7½ 6½ 5½	1. 176 1. 090 0. 964 0. 769	91/2 81/2 71/2 61/2 51/2 41/2	1. 263 1. 207 1. 129 1. 015 0. 839 0. 545	$10\frac{1}{2}$ 9 $\frac{1}{2}$ 8 $\frac{1}{2}$ 7 $\frac{1}{2}$ 6 $\frac{1}{2}$ 5 $\frac{1}{2}$ 4 $\frac{1}{2}$ 3 $\frac{1}{2}$	1. 333 1. 298 1. 251 1. 184 1. 087 0. 937 0. 687 0. 222	$11\frac{1}{2}$ $10\frac{1}{2}$ $9\frac{1}{2}$ $7\frac{1}{2}$ $6\frac{1}{2}$ $4\frac{1}{2}$ $3\frac{1}{2}$	$\begin{array}{c} 1. \ 391 \\ 1. \ 371 \\ 1. \ 343 \\ 1. \ 307 \\ 1. \ 255 \\ 1. \ 179 \\ 1. \ 063 \\ 0. \ 869 \\ 0. \ 508 \\ -0 \ 286 \end{array}$		

TABLE 2. LANDÉ g-VALUES—Continued

				1	Multiplicity	y				
Term	Do	ublets 2	Qu	artets 4	Se	xtets 6	0	etets 8	D	ecets 10
	J	g	J	g	J	g	J	g	J	g
L	8½ 7½	1. 059 0. 941	9½ 8½ 7½ 6½	1. 158 1. 077 0. 965 0. 800	$\begin{array}{c} 10\frac{1}{2}\\ 9\frac{1}{2}\\ 8\frac{1}{2}\\ 7\frac{1}{2}\\ 6\frac{1}{2}\\ 5\frac{1}{2}\\ 5\frac{1}{2}\end{array}$	1. 238 1. 183 1. 108 1. 004 0. 851 0. 615	$\begin{array}{c} 111_{2}'\\ 10_{12}'\\ 91_{2}'\\ 81_{2}'\\ 71_{2}'\\ 61_{2}'\\ 51_{2}'\\ 41_{2}' \end{array}$	1. 304 1. 267 1. 218 1. 152 1. 059 0. 923 0. 713 0. 364	$\begin{array}{c} 12\frac{1}{2}\\ 11\frac{1}{2}\\ 10\frac{1}{2}\\ 9\frac{1}{2}\\ 8\frac{1}{2}\\ 7\frac{1}{2}\\ 6\frac{1}{2}\\ 5\frac{1}{2}\\ 4\frac{1}{2}\\ 3\frac{1}{2}\end{array}$	1. 360 1. 336 1. 304 1. 263 1. 207 1. 129 1. 015 0. 839 0. 545 0. 000
М	9½ 8½	1: 053 0. 947	10½ 9½ 8½ 7½	1. 143 1. 068 0. 966 0. 824	$11\frac{1}{2}$ $10\frac{1}{2}$ $9\frac{1}{2}$ $8\frac{1}{2}$ $7\frac{1}{2}$ $6\frac{1}{2}$	1. 217 1. 164 1. 093 0. 997 0. 863 0. 667	$\begin{array}{c} 12\frac{1}{2}\\ 11\frac{1}{2}\\ 10\frac{1}{2}\\ 9\frac{1}{2}\\ 8\frac{1}{2}\\ 7\frac{1}{2}\\ 6\frac{1}{2}\\ 5\frac{1}{2}\\ 5\frac{1}{2} \end{array}$	1. 200 1. 242 1. 193 1. 128 1. 040 0. 918 0. 738 0. 462	$\begin{array}{c} 13\frac{1}{2}\\ 12\frac{1}{2}\\ 11\frac{1}{2}\\ 10\frac{1}{2}\\ 9\frac{1}{2}\\ 8\frac{1}{2}\\ 7\frac{1}{2}\\ 6\frac{1}{2}\\ 5\frac{1}{2}\\ 4\frac{1}{2}\end{array}$	1. 333 1. 307 1. 273 1. 230 1. 173 1. 096 0. 988 0. 831 0. 587 0. 182
N	10½ 9½	1. 048 0. 952	111½ 10½ 9½ 8½	1. 120 1. 060 0. 967 0. 842	12½ 11½ 10½ 9½ 8½ 7½	1. 200 1. 148 1. 081 0. 992 0. 873 0. 706	$13\frac{1}{2}$ $12\frac{1}{2}$ $11\frac{1}{2}$ $10\frac{1}{2}$ $9\frac{1}{2}$ $8\frac{1}{2}$ $7\frac{1}{2}$ $6\frac{1}{2}$	$\begin{array}{c} 1.\ 259\\ 1.\ 221\\ 1.\ 172\\ 1.\ 110\\ 1.\ 028\\ 0.\ 916\\ 0.\ 761\\ 0.\ 533\\ \end{array}$	$\begin{array}{c} 14\frac{1}{2}\\ 10\frac{1}{2}\\ 12\frac{1}{2}\\ 11\frac{1}{2}\\ 10\frac{1}{2}\\ 9\frac{1}{2}\\ 8\frac{1}{2}\\ 7\frac{1}{2}\\ 6\frac{1}{2}\\ 5\frac{1}{2}\end{array}$	1. 310 1. 282 1. 247 1. 203 1. 147 1. 073 0. 972 0. 831 0. 623 0. 303
0	11½ 10½	1. 043 0. 957	12½ 11½ 10½ 9½	1. 120 1. 054 0. 969 0. 857	13½ 12½ 11½ 10½ 9½ 8½	1. 185 1. 135 1. 071 0. 990 0. 882 0. 737	$14\frac{1}{2}$ $13\frac{1}{2}$ $12\frac{1}{2}$ $11\frac{1}{2}$ $9\frac{1}{2}$ $8\frac{1}{2}$ $7\frac{1}{2}$	1. 241 1. 203 1. 156 1. 096 1. 019 0. 917 0. 780 0. 588	$\begin{array}{c} 15\frac{1}{2}\\ 14\frac{1}{2}\\ 13\frac{1}{2}\\ 12\frac{1}{2}\\ 11\frac{1}{2}\\ 10\frac{1}{2}\\ 9\frac{1}{2}\\ 8\frac{1}{2}\\ 7\frac{1}{2}\\ 6\frac{1}{2}\\ \end{array}$	$\begin{array}{c} 1.\ 290\\ 1.\ 261\\ 1.\ 226\\ 1.\ 182\\ 1.\ 127\\ 1.\ 056\\ 0.\ 962\\ 0.\ 836\\ 0.\ 659\\ 0.\ 400 \end{array}$
Q	12½ 11½	1. 040 0. 960	13½ 12½ 11½ 10½	1. 111 1. 049 0. 970 0. 870	$14\frac{1}{2}$ $13\frac{1}{2}$ $12\frac{1}{2}$ $11\frac{1}{2}$ $10\frac{1}{2}$ $9\frac{1}{2}$	1. 172 1. 124 1. 064 0. 988 0. 890 0. 762	$15\frac{1}{2}$ $14\frac{1}{2}$ $13\frac{1}{2}$ $12\frac{1}{2}$ $11\frac{1}{2}$ $9\frac{1}{2}$ $9\frac{1}{2}$ $8\frac{1}{2}$	1. 226 1. 188 1. 142 1. 084 1. 012 0. 919 0. 797 0. 632	$16\frac{1}{2}$ $15\frac{1}{2}$ $14\frac{1}{2}$ $13\frac{1}{2}$ $12\frac{1}{2}$ $11\frac{1}{2}$ $10\frac{1}{2}$ $9\frac{1}{2}$ $8\frac{1}{2}$ $7\frac{1}{2}$	$\begin{array}{c} 1.\ 273\\ 1.\ 243\\ 1.\ 208\\ 1.\ 165\\ 1.\ 111\\ 1.\ 043\\ 0.\ 957\\ 0.\ 842\\ 0.\ 687\\ 0.\ 471 \end{array}$

Table 3. Landé g-values—Terms of Odd Multiplicity in Order of Increasing g

g	Desig.	g	Desig.	g	Desig.	g	Desig.
-1. 500	¹¹ I ₁	0. 744	⁹ Q ₉	0. 955	⁷ O ₁₀ ⁷ Q ₁₁	1. 076	°O ₁₁
-1.000	⁹ H ₁	0. 750	³ G ₃ ⁵ M ₇ ⁷ H ₃	0. 958	$^{7}M_{8}$	1. 077	³ Q ₁₃
-0. 667	$^{11}K_{2}$		7I4	0. 964	⁷ L ₇ ¹¹ M ₇	1. 083	³ F ₃ ³ O ₁₂ ⁷ L ₈
-0. 500	⁷ G ₁	0. 767	$^{7}\mathrm{K}_{5}$	0. 976	$^{7}K_{6}$		⁹ H ₃ ¹¹ M ₈
-0.333	⁹ I ₂	0. 778	⁵ N ₈	0. 985	⁹ Q ₁₁	1. 088	${}^{5}Q_{13}$
-0.250	$^{11}L_{3}$	0. 786	⁷ L ₆ ¹¹ M ₆ ¹¹ N ₇	0. 991	⁹ O ₁₀	1. 091	³ N ₁₁ ⁹ N ₁₉
0. 000	⁵ F ₁ ⁷ H ₂ ⁹ K ₃	0. 792	¹¹ O ₈	1. 000	¹ P ₁ ¹ D ₂ ¹ F ₃	1. 096	⁵ O ₁₂ ¹¹ Q ₁₂
	¹¹ M ₄	0. 800	³ H ₄ ⁵ O ₉ ¹¹ L ₅		¹ G ₄ ¹ H ₅ ¹ I ₆	1. 100	³ M ₁₀ ⁵ H ₅
0. 167	¹¹ N ₅		¹¹ Q ₉		${}^{1}\mathrm{K}_{7}$ ${}^{1}\mathrm{L}_{8}$ ${}^{1}\mathrm{M}_{9}$	1. 104	$^{7}Q_{13}$
0. 200	9L4	0.804	$^{7}M_{7}$		$^{1}N_{10}$ $^{1}O_{11}$ $^{1}Q_{12}$	1. 106	${}^{5}N_{11}$
0. 250	7I3	0. 818	⁵ Q ₁₀		⁵ F ₂ ⁷ I ₅ ⁹ N ₉	1. 107	$^{7}\mathrm{K}_{7}$
0. 286	¹¹ O ₆	0. 819	$^{7}N_{8}$		¹¹ I ₃ ¹¹ L ₆	1. 111	³ L ₉ ⁹ M ₉
0. 333	⁵ G ₂ ⁹ M ₅	0. 833	³ I ₅ ⁷ G ₂ ⁷ O ₉	1. 006	${}^{3}Q_{12}$	1. 114	¹¹ O ₁₁
0. 375	¹¹ Q ₇	0. 845	⁷ Q ₁₀	1. 008	³ O ₁₁	1. 115	⁷ O ₁₂
0. 400	⁷ K4	0. 850	¹¹ K ₄	1. 009	³ N ₁₀	1. 118	⁵ M ₁₀
0. 417	¹¹ K ₃	0. 857	³ K ₆	1. 011	³ M ₉	1. 125	³ K ₈ ¹¹ L ₇
0. 429	⁹ N ₆	0. 875	³ L ₇ ⁹ M ₇ ⁹ N ₈	1. 014	³ L ₈ ⁹ M ₈	1. 126	⁹ Q ₁₃
0. 450	¹¹ L ₄	0. 878	⁹ O ₉	1. 018	${}^{3}\mathrm{K}_{7}$	1. 129	⁷ N ₁₁
0. 500	³ D ₁ ⁵ H ₃ ⁷ L ₅	0. 881	⁹ L ₆	1. 019	⁵ Q ₁₂	1. 133	⁵ L ₉ 9I ₅
	⁹ O ₇ ¹¹ I ₂ ¹¹ M ₅	0. 882	⁹ Q ₁₀	1. 023	⁵ O ₁₁ ¹¹ Q ₁₁	1. 136	¹¹ N ₁₀
0. 548	¹¹ N ₆	0. 889	$^{3}M_{8}$	1. 024	³ I ₆	1. 139	⁹ L ₈
0. 556	⁹ Q ₈	0. 900	³ N ₉ ⁵ H ₄ ⁵ I ₅	1. 027	⁵ N ₁₀	1. 141	⁹ O ₁₂
0. 571	$^{7}\mathbf{M}_{6}$		⁹ K ₅	1. 033	³ H ₅ ⁵ M ₉	1. 143	³ I ₇ ⁵ Q ₁ , ⁷ I ₈
0. 583	°I3	0. 902	⁵ N ₉	1. 036	⁹ L ₇ ¹¹ O ₁₀	1. 145	${}^{7}M_{10}$
0. 589	¹¹ O ₇	0. 905	⁵ K ₆	1. 038	⁷ Q ₁₂	1. 150	⁵ G ₄
0. 600	⁵ I4 ⁹ K4	0. 906	⁷ N ₉	1. 042	$^{5}L_{8}$	1. 153	${}^{5}\mathrm{K}_{8}$
0. 625	⁷ N ₇ ¹¹ Q ₈	0. 909	³ O ₁₀	1. 045	⁷ O ₁₁	1. 154	⁵ O ₁₃ ¹¹ Q ₁₇
0. 633	⁹ L ₅	0. 911	⁵ L ₇	1. 050	³ G ₄ ⁷ H ₄	1. 157	7Q14
0. 667	³ F ₂ ⁵ K ₅ ⁷ O ₈	0. 917	${}^{3}Q_{11} {}^{5}G_{3} {}^{5}M_{8}$	1. 054	⁵ K ₇	1. 159	⁹ N ₁₁
	⁹ H ₂ ⁹ M ₆	0. 927	⁵ O ₁₀ ¹¹ Q ₁₀	1.055	⁷ N ₁₀	1. 167	³ D ₂ ³ H ₆ ⁵ N ₁₂
0. 696	⁹ N ₇	0. 932	⁵ Q ₁₁	1. 056	¹¹ N ₉		⁷ G ₃ ⁷ L ₉ ¹¹ M ₉
0. 700	7Q9	0. 933	¹¹ O ₉	1.064	⁹ Q ₁₂	1. 170	⁷ O ₁₃
0. 714	⁵ L ₆	0. 944	$^{11}N_{8}$	1. 067	⁷ M ₉ ¹¹ K ₅	1. 173	¹¹ O ₁₂
0. 722	9O8	0. 950	9I4	1. 071	⁵ I ₆ ⁹ K ₆	1. 176	⁹ Q ₁₄

g	Desig.	g	Desig.	g	Desig.	g	Desig.
1. 179	⁵ I ₇ ⁹ K ₇	1. 268	¹¹ K ₇ ¹¹ Q ₁₆	1. 381	9H6	1. 625	¹¹ F ₈
1. 182	⁵ M ₁₁ ⁹ M ₁₀	1. 273	⁷ L ₁₁ ¹¹ M ₁₁	1, 382	¹¹ K ₁₀	1. 633	⁹ F5
1. 186	⁷ N ₁₂	1. 276	⁹ M ₁₂	1. 385	¹¹ L ₁₃	1. 650	$^{7}\mathrm{D}_{4}$
1. 191	¹¹ K ₆	1. 280	¹¹ N ₁₃	1. 393	11 I 7	1. 661	¹¹ F ₇
1. 192	⁹ O ₁₃	1. 286	⁵ H ₇ ⁷ H ₆ ⁹ N ₁₄	1. 400	⁵ F ₅ ⁹ I ₁₀	1. 667	⁵ P ₃ ⁹ D ₆ ¹¹ G ₅
1. 194	$^{7}\mathrm{K}_{8}$	1. 288	¹¹ O ₁₅	1. 402	пKu	1. 700	9F4
1. 197	¹¹ N ₁₁	1. 292	7I ₈	1. 405	7G6	1. 714	¹¹ D ₇ ¹¹ F ₆
1. 200	³ G ₅ ⁵ L ₁₀ ⁷ H ₅	1. 294	¹¹ Q ₁₇	1. 411	⁹ H ₇	1. 733	$^9\mathrm{D}_5$
	⁷ Q ₁₅ ¹¹ I ₄ ¹¹ Q ₁₄	1. 300	⁷ G4 ⁷ K ₁₀ ⁹ K9	1. 417	¹¹ I ₈ ¹¹ K ₁₂	1. 750	$^{7}P_{4}$ $^{7}D_{3}$ $^{11}G_{4}$
1. 201	⁹ L ⁹		11I ₅	1. 429	7G7	1. 786	$^{11}D_6$
1. 205	⁷ M ₁₁	1. 3 03	⁹ L ₁₁	1. 431	9H8	1. 800	⁹ P ₅ ¹¹ F ₅
1. 208	$^{11}L_{8}$	1. 304	9I ₇	1. 433	11 I 9	1. 833	⁵ P ₂ ⁹ F ₃ ¹¹ P ₆
1. 212	⁹ N ₁₂	1. 308	⁹ M ₁₃ ¹¹ M ₁₂	1. 444	9H9	1. 850	$^9\mathrm{D}_4$
1. 214	⁵ H ₆ ⁷ O ₁₄	1. 309	¹¹ L ₁₀	1. 445	¹¹ I ₁₀	1. 900	$^{11}D_5$
1. 217	⁹ Q ₁₅	1. 31 0	¹¹ N ₁₄	1. 455	11]11	1. 917	⁷ P ₃ ¹¹ G ₃
1. 220	¹¹ O ₁₃	1. 312	¹¹ O ₁₆	1. 500	² P ₂ ³ P ₁ ⁵ D ₄	1. 950	⁹ P ₄ ¹¹ F ₄
1. 222	⁵ K9	1. 3 19	¹¹ K ₈		⁵ D ₃ ⁵ D ₂ ⁵ D ₁	1. 967	¹¹ P ₅
1. 227	⁷ L ₁₀ ¹¹ M ₁₀	1. 3 33	³ D ₃ ⁵ G ₆ ⁷ I ₉		⁷ F ₆ ⁷ F ₅ ⁷ F ₄	2.000	${}^{3}\mathrm{S}_{1}$ ${}^{5}\mathrm{S}_{2}$ ${}^{7}\mathrm{S}_{3}$
1. 231	⁷ N ₁₃		${}^9\mathrm{H}_5$ ${}^9\mathrm{L}_{12}$ ${}^{11}\mathrm{N}_{15}$		${}^{7}\mathrm{F}_{3}$ ${}^{7}\mathrm{F}_{2}$ ${}^{7}\mathrm{F}_{1}$		${}^{9}\mathrm{S}_{4}$ ${}^{11}\mathrm{S}_{5}$ ${}^{7}\mathrm{D}_{2}$
1. 232	7I ₇	1. 33 5	¹¹ M ₁₃		⁹ G ₈ ⁹ G ₇ ⁹ G ₆	2. 083	${}^9\mathrm{D}_3$
1. 233	⁹ O ₁₄	1. 33 6	⁹ K ₁₀		⁹ G ₅ ⁹ G ₄ ⁹ G ₃	2. 100	$^{11}D_4$
1. 235	⁹ M ₁₁	1. 33 9	⁷ H ₇		⁹ G ₂ ⁹ G ₁ ¹¹ H ₁₀	2. 167	⁹ F ₂
1. 238	⁹ I ₆ ¹¹ Q ₁₅	1. 3 41	¹¹ L ₁₁		¹¹ H ₉ ¹¹ H ₈ ¹¹ H ₇	2. 200	¹¹ P ₄
1. 244	$^{11}N_{12}$	1. 347	9I8		¹¹ H ₆ ¹¹ H ₅ ¹¹ H ₄	2. 250	⁹ P ₃ ¹¹ F ₃
1. 250	³ F ₄ ⁵ F ₃ ⁵ I ₈	1. 3 50	⁵ F ₄		¹¹ H ₃ ¹¹ H ₂ ¹¹ H ₁	2. 333	$^{7}P_{2}$ $^{11}G_{2}$
	⁷ M ₁₂ ⁹ H ₄ ⁹ K ₈	1. 356	¹¹ K ₉	1. 556	¹¹ G ₉	2. 500	⁵ P ₁ ¹¹ D ₃
	⁹ Q ₁₆	1. 357	¹¹ I ₆ ¹¹ M ₁₄	1. 569	¹¹ G ₈	2.667	$^9\mathrm{D}_2$
1. 253	⁹ N ₁₃	1.364	⁹ K ₁₁	1. 571	9F7	3. 000	$^{7}D_{1}$ $^{11}F_{2}$
1.256	⁷ K ₉	1. 365	$^{11}L_{12}$	1. 589	¹¹ G ₇	3. 500	⁹ F ₁
1. 257	¹¹ O ₁₄	1. 367	$^7\mathrm{G}_5$	1. 595	9F6	4. 000	¹¹ G ₁
1. 264	⁹ L ₁₀	1. 375	$^{7}\mathrm{H}_{8}$	1. 600	$^7\mathrm{D}_5$		
1. 267	⁵ G ₅ ⁹ O ₁₅ ¹¹ L ₉	1. 378	٥I٥	1. 619	¹¹ G ₆		

TABLE 4.	LANDÉ	g-VALUES 1	FOR	TERMS C	F EVEN	MULTIPLICITY	IN	ORDER OF	INCREASING	q
----------	-------	------------	-----	---------	--------	--------------	----	----------	------------	---

g	Desig.	g De	sig.	g	Desig.	g	Desig.
-2. 000	¹⁰ H ₁₅	0. 713 ⁸ L _{51/2}		0. 937	⁸ K ₅₁	1. 059	² L ₈₁₅ ⁸ L ₇₁₅
-1. 333	⁸ G _{1/2}	0. 727 4I435		0. 941	² L _{71/2}	1. 060	⁴ N ₁₀₃₅
-0.800	¹⁰ I _{11/2}	0. 737 ⁶ O ₈₃₅		0. 947	² M ₈₁	1. 063	¹⁰ K _{51/2}
-0.667	⁶ F ₁₅	0. 738 ⁸ M ₆₁₅		0. 952	² N ₉₁₅ ¹⁰ I ₃₁₅	1. 064	⁶ Q _{12}}
-0. 400	⁸ H _{11/2}	0. 761 ⁸ N ₇₁₅		0. 957	2O101/2 10Q101/2	1. 067	² K ₇₅ ⁶ F ₁₅
-0.286	¹⁰ K ₂₁	0. 762 ⁶ Q ₉₃₅	_	0. 960	² Q115	1. 068	⁴ M ₉₁₅
0. 000	⁴ D _{1/2} ⁶ G _{11/2} ⁸ I _{21/2}	0. 769 ⁴ K ₅₁	-	0. 962	¹⁰ O95	1. 071	⁶ H ₄) ⁶ O ₁ ,
	¹⁰ L ₃₁₄	0. 780 ⁸ O ₈₁₅	-	0. 964	⁴ K ₆₃₅	1. 073	¹⁰ N _{91/2}
0. 182	¹⁰ M ₄₁	0. 797 ⁸ Q ₉₅₅		0. 965	⁴ I ₅₃₅ ⁴ L ₇₃₅	1. 077	² I ₆₃ ⁴ L ₈₃
0. 222	⁸ K ₃₁₅	0. 800 $^{2}D_{1\frac{1}{2}}$ 4L	⁶³ / ₅ ¹⁰ H ₁ / ₅	0. 966	⁴ M _{8½}	1. 081	⁶ N ₁₀₁₅
0. 286	⁶ H ₂₁₅	0. 824 ⁴ M ₇₅		0. 967	⁴ N _{91/2}	1. 084	⁸ Q ₁₂ ,
0. 308	¹⁰ N ₅₁₅	0. 825 ⁶ H _{31/2}		0. 969	4O101/2	1. 087	⁸ K ₆ ,
0. 364	⁸ L ₄ ,	0. 828 ⁶ I ₄₃₅		0. 970	4H415 4Q1115 8]	435 1. 090	4K715
0. 400	⁴ F ₁₅ ¹⁰ O ₆₅	0.831 ¹⁰ M ₆₁ ¹⁰ M	J ₇₁₅	0. 972	$^{10}N_{81}$	1. 091	² H _{51/2}
0. 444	⁶ I ₃₁₅	0. 836 ¹⁰ O _{8½}		0. 984	4G315	1. 093	⁶ M _{91/2}
0. 462	⁸ M ₅₁₅	0. 839 ⁶ K _{5½} ¹⁰ L	514	0. 988	⁶ Q ₁₁ ¹⁰ M ₇ ¹⁰ M ₇ ¹⁵	1. 096	⁸ O _{111/2} ¹⁰ M _{81/2}
0. 471	¹⁰ Q715	0. 842 ⁴ N _{8½} ¹⁰ G	935	0. 990	⁶ O ₁₀ ¹ / ₂	1. 108	⁴ I _{81/2} ⁶ L _{81/2}
0. 508	¹⁰ K _{3%}	0.851 ⁶ L ₆₁₅		0. 992	⁶ N ₉₁₅	1. 110	⁸ N _{101/2}
0. 514	¹⁰ I ₂₁₅	0.857 ${}^{2}F_{25}$ 40	934 6G234	0. 997	⁶ M ₈	1. 111	² G ₄₁₅ ⁴ Q ₁₃₁₅ ¹⁰ Q ₁₂₁₅
0. 533	⁸ N ₆₃₅	0.863 ⁶ M ₇₅₅		1.004	⁶ L ₇₅	1. 120	⁴ O ₁₂₁₅
0. 545	⁶ K ₄₁ ³ ¹⁰ L ₄ ³	0. 869 ¹⁰ K _{4½}		1. 012	⁸ Q ₁₁ ,	1. 124	⁶ Q ₁₃₁₅
0. 571	⁴ G ₂₃₅	0. 870 ⁴ Q ₁₀₁₅		1. 015	⁶ K ₆₁ ¹⁰ L ₆	1. 127	¹⁰ O ₁₁₁
0. 587	¹⁰ M ₅₁₅	0. 873 ⁶ N ₈₁₅		1. 019	8O103	1. 128	⁸ M ₉₅
0. 588	⁸ O ₇₅₅	0. 882 ⁶ O ₉₃₅		1. 028	⁸ N935	1. 129	⁶ K ₇₁ ¹⁰ L ₇₁
0. 615	⁶ L ₅₁₅	0. 889 ² G ₃₁		1. 029	${}^{4}\mathrm{F}_{2\frac{1}{2}}$	1. 130	⁴ N ₁₁ ,
0. 626	¹⁰ N ₆₁₂	0. 890 ⁶ Q ₁₀ ,	-	1. 035	⁶ I ₅₁₅	1. 133	4H515 8I515
0. 632	⁸ Q814	0. 909 ² H ₄₁		1. 040	² Q ₁₂₁₅ ⁸ M ₈₁₅	1. 135	⁶ O ₁₂
0. 659	¹⁰ O715	0. 916 ⁸ N ₈₁		1. 043	2O111/2 10Q111/2	1. 142	⁸ Q ₁₃ ,
0. 667	² P _{1/2} ⁴ H _{31/2} ⁶ M _{61/2}	0. 917 ⁸ O ₉₁₂		1. 048	² N ₁₀ ¹ / ₅ ⁸ H ₃ ¹ / ₅	1. 143	² F ₃₅ ⁴ M ₁₀₅ ⁶ G ₃₅
	⁸ I ₃₁₅	0. 918 ⁸ M ₇₁		1. 049	⁴ Q ₁₂₃₅	1. 147	¹⁰ N ₁₀₁₂
0. 686	⁸ H _{2¹/2}	0. 919 ⁸ Q _{10}₂}	-	1. 053	² M ₉₁₅	1. 148	⁶ N ₁₁₁₅
0. 687	⁸ K _{41/2} ¹⁰ Q _{81/2}	0. 923 ² I _{51/2} ⁸ L	1615	1. 054	4O1113	1. 152	8L815 10I415
0. 706	6N715	0. 933 ² K ₆₃₂ ⁸ C	115	1. 056	¹⁰ O ₁₀	1. 156	⁸ O ₁₂₁₅

g	Desig.	g	Desig.	g	Desig.	g	Desig.
1. 158	4L935	1. 255	¹⁰ K ₇₁	1. 394	¹⁰ H ₄₁₄	1. 714	⁶ P _{3¹/2} ⁸ F _{2¹/2}
1. 159	⁶ I _{61⁄2}	1. 257	⁸ G ₂₁	1. 397	⁶ F _{31/2}	1. 733	⁴ P _{11/2}
1. 164	⁶ M _{101/2}	1. 259	⁸ N ₁₃₁₂ ¹⁰ I ₅₁₂	1. 412	⁸ H _{81/2}	1. 758	¹⁰ F ₄₁₂
1. 165	¹⁰ Q ₁₃₁₂	1. 261	¹⁰ O _{141/2}	1. 414	⁸ G _{41/2} ¹⁰ I _{91/2}	1. 762	¹⁰ D _{51/2}
1. 172	⁴ G ₄₅ ⁶ Q ₁₄₅ ⁸ N ₁₁₅	1. 263	⁶ K ₉₁₂ ¹⁰ L ₉₁₂	1. 427	¹⁰ H _{5½}	1. 772	¹⁰ G ₂₁
1. 173	¹⁰ M91⁄2	1. 267	⁸ L ₁₀ ¹ / ₂	1. 429	⁴ D _{3¹/2} ¹⁰ I _{10¹/2}	1. 778	⁸ P ₄₁
1. 176	4K81/2	1. 273	⁴ G _{51/2} ⁶ G _{41/2} ¹⁰ M _{111/2}	1. 434	⁶ F ₄ ,	1. 809	⁸ D ₃₁₂
1. 179	¹⁰ K ₆₁₅		¹⁰ Q ₁₆	1. 441	⁸ G ₅₁₅	1. 818	¹⁰ P ₅₁
1. 182	¹⁰ O ₁₂	1. 280	${}^{8}M_{121/2}$	1. 446	¹⁰ H ₆₃₅	1. 867	⁶ D _{11/2}
1. 183	⁶ L ⁹ %	1. 282	⁶ H _{6^{1/2}} ¹⁰ N _{13^{1/2}}	1. 455	⁶ F ₅₁	1. 879	$^{10}\mathrm{D}_{4\frac{1}{2}}$
1. 184	⁸ K ₇₅	1. 290	¹⁰ O _{151/2}	1. 456	⁸ G ₆₁₅	1. 886	⁶ P _{2¹/2}
1. 185	⁶ O ₁₃₁	1. 294	⁶ I _{81/2} ⁸ I _{71/2}	1. 459	¹⁰ H ₇₁₂	1. 905	¹⁰ F _{3%}
1. 188	⁸ Q ₁₄ ¹ / ₅	1. 298	⁸ K ₉₁₅	1. 467	⁸ G ₇₁ ¹⁰ H ₈₁	1. 937	⁸ P ₃₁
1. 193	⁸ M ₁₀	1. 301	⁸ H _{51/2}	1. 474	¹⁰ H _{91/2}	1. 960	¹⁰ P ₄₁₂
1. 200	² D _{21/2} ⁴ D _{11/2} ⁴ I _{71/2}	1. 304	⁸ L _{111/2} ¹⁰ L _{101/2}	1. 529	¹⁰ G ₈₁	2.000	² S ₁ ⁴ S ₁ ¹ ⁶ S ₂
	⁶ N ₁₂₁ ¹⁰ H ₂₁	1. 307	¹⁰ K ₈₁ ¹⁰ M ₁₂	1. 537	¹⁰ G ₇₅₅		⁸ S ₃₁ ⁸ F ₁ ¹⁰ S ₄
1. 203	⁶ H ₅₁ ⁸ O ₁₃ ¹ ¹⁰ N ₁₁ ¹	1. 310	¹⁰ N _{141/2}	1. 538	⁸ F ₆₁₅	2. 057	${}^{8}\mathrm{D}_{2}$
1. 207	⁶ K ₈₁ ¹⁰ L ₈₁	1. 314	⁶ F ₂₁	1. 549	¹⁰ G ₆₁₅	2. 095	¹⁰ D _{31/2}
1. 208	¹⁰ Q ₁₄₁	1. 323	¹⁰ I _{61/2}	1. 552	⁸ F _{51/2}	2. 133	¹⁰ G _{11/2}
1. 212	⁸ H ₄₁₅	1. 333	² P ₁₁₂ ⁴ F ₄₁₂ ⁶ H ₇₁₂	1. 556	⁶ D ₄₁	2. 222	¹⁰ P ₃₁
1. 217	⁶ M ₁₁ ,		⁸ K ₁₀ ¹⁰ H ₃ ¹⁰ H ₃ ¹⁰ M ₁ ³	1. 566	¹⁰ G ₅₁₂	2. 229	¹⁰ F ₂₁
1 . 2 18	⁸ L ₉₁	1. 336	$^{10}\mathrm{L}_{11}$	1. 576	⁸ F _{41/2}	2. 286	⁸ P ₂₁
1. 221	⁸ N ₁₂₃	1. 337	⁸ I _{81⁄2}	1. 587	⁶ D _{31/2}	2. 400	⁶ P ₁₁₂
1. 226	⁸ Q ₁₅ ¹⁰ O ₁ ³	1. 343	⁶ G ₅₁ , ¹⁰ K ₉₁	1. 596	¹⁰ G ₄₁	2. 572	$^{10}\text{D}_{23}$
1. 230	¹⁰ M ₁₀₁₂	1. 354	⁸ H _{61/2}	1. 600	⁴ P _{2¹/2} ¹⁰ F _{7¹/2}	2. 667	⁴ P _{1/2}
1. 231	⁴ H ₆₁₂ ⁸ I ₆₁₂	1. 360	$^{10}\mathrm{L}_{121/2}$	1. 619	⁸ F _{31/2}	2. 800	⁸ D _{11/2}
1. 238	⁴ F ₃ ¹ / ₅ ⁶ L ₁₀ ¹ / ₅	1. 365	⁸ G ₃₁ ¹⁰ I ₇₁	1. 631	¹⁰ F _{61/2}	3. 200	${}^{10}\mathrm{F}_{1\frac{1}{2}}$
1. 239	⁶ I _{71⁄2}	1. 368	⁸ I _{91⁄2}	1. 636	⁸ D _{51/2}	3. 333	⁶ D ₁₅
1. 241	⁸ O ₁₄₁₅	1. 371	⁴ D ₂ ¹⁰ K ₁₀ ¹⁰ K	1. 651	¹⁰ G _{31/2}	4. 000	⁸ F ₁
1. 2 42	⁸ M _{111/2}	1. 385	⁶ G _{61/2}	1. 657	⁶ D ₂₃₂	4.667	¹⁰ G ₁₅
1. 243	¹⁰ Q ₁₅₁	1. 388	⁸ H _{71/2}	1. 678	¹⁰ F _{51/2}		
1. 247	¹⁰ N ₁₂	1. 391	¹⁰ K ₁₁₁	1. 692	¹⁰ D _{61/2}		
1. 251	⁸ K ₈₁₄	1. 393	¹⁰ I ₈₁₄	1. 697	⁸ D ₄₁		

TABLE 5. PREDICTED TERMS OF THE BEI ISOELECTRONIC SEQUENCE

Config. $1s^2+$			Predicted	Terms		
2s ²	1S					
$2s(^2S)2p$	{ ³ P° 1P°					
$2p^2$	{1S ³ P 1D					
	ns $(n \ge 3)$	$np (n \ge 3)$	nd $(n \ge 3)$	$nf(n \ge 4)$	$ng (n \ge 5)$	
2s(2S)nx	{ ³ S 1S	3Po 1Po	³ D 1D	3F° 1F°	³ G 1G	
$2p(^{2}P^{\circ})nx$	{ ³ P° ¹ P°	³ S ³ P ³ D ¹ S ¹ P ¹ D	³ P° ³ D° ³ F° 1P° 1D° 1F°	³ D ³ F ³ G ¹ D ¹ F ¹ G	³ F° ³ G° ³ H° ¹ F° ¹ G° ¹ H°	

TABLE 6. PREDICTED TERMS OF THE B1 ISOELECTRONIC SEQUENCE

$\begin{array}{c} \text{Config.} \\ 1s^2 + \end{array}$							Predic	ted T e	erms						
$2s^{2}(^{1}S)2p$			²P°												
$2s \ 2p^2$	28		4P 2P		217										
0.2	(4S°		-1		-D										
$2p^{s}$	{		²P°		²D°										
		n	s ($n \ge$	3)			nŢ	o (n≥3	3)			:	nd $(n \ge 1)$	≥3)	
$2s^2(^1\mathrm{S})nx$	2S						²P°						²D		
2s 2p(³ P ^o)nx	{		4P° 2P°			4S 2S	4P 2P	41 21)			4P° 2P°	4D° 2D°	4F° 2F°	
2s $2p(^{1}P^{\circ})nx'$			²P°			2S	$^{2}\mathrm{P}$	2I	D			²P°	²D°	${}^{2}\mathrm{F}^{\mathrm{o}}$	
2p ² (³ P)nx''	{		⁴P ²P			4S° 2S°	⁴P° ²P°	4] 2])°)°			4P 2P	4D 2D	⁴F ²F	
$2p^2(^1\mathrm{D})nx^{\prime\prime\prime}$					²D		²P°	²])°	${}^{2}\mathrm{F}^{\circ}$	²S	$^{2}\mathrm{P}$	$^{2}\mathrm{D}$	${}^{2}\mathrm{F}$	²G
$2p^2(^1\mathrm{S})nx^{\mathbf{IV}}$	²S						²P°						²D		
		n	$f(n \ge$	4)			ng	$n \leq 5$	i)						
$2s^2(^1\mathrm{S})nx$			²F°					²G							
2s 2p(³ P ^o)nx	{	4D 2D	4F 2F	4G 2G			4F° 2F°	⁴G° 2G°	4日° 2日°		 				I
2s 2p(1P°)nx'		$^{2}\mathrm{D}$	${}^{2}\mathrm{F}$	2G			$^{2}\mathrm{F}^{\circ}$	²G°	²H°			• • • • • • •			
$2p^2(^3\mathrm{P})nx^{\prime\prime}$	{	4D° 2D°	⁴F° ²F°	4G° 2G°			⁴F 2F	⁴G 2G	⁴H ²H		 	 			i
$2p^2(^1\mathrm{D})nx^{\prime\prime\prime}$	²P°	²D°	$^{2}\mathrm{F}^{\circ}$	²G°	²H°	²D	${}^{2}\mathrm{F}$	²G	$^{2}\mathrm{H}$	²I	••••				
$2p^2(^1\mathrm{S})nx^{\mathrm{IV}}$			${}^{2}\mathrm{F}^{\circ}$					²G				• • • • • •			

XXD	7
	-

TABLE 7.—PREDICTED TERMS OF THE	CI	ISOELECTRONIC SEQUENCE
---------------------------------	----	------------------------

$\begin{array}{c} & \\ & \text{Config.} \\ & 1s^2 + \end{array}$							Pre	dicted '	Terms							
$2s^2 2p^2$	{ _{1S} ³ P	1D														
2s 2p ³	$\begin{cases} {}^5S^{\circ} \\ {}^3S^{\circ} & {}^3P^{\circ} \\ & {}^1P^{\circ} \end{cases}$	3Do														
2 <i>p</i> ⁴	${_{1S}}^{3P}$	1D														
-	ns (n≥	$np \ (n \ge 3) \qquad np \ (n \ge 3)$			$nd (n \ge 3)$				$nf(n \ge 4)$							
$2s^2 \ 2p(^2\mathrm{P^o})nx$	{ ³ P° ³ P°	-	³ S ³] ¹ S ¹]	5 1D			³ P° 1P°	³ D° 1D°	3F° 1F°			3D 1D	3F 1F	3G 1G		
2s 2p ² (⁴ P)nx	$\left\{\begin{array}{c} {}^{\delta}P\\ {}^{\delta}P\end{array}\right.$		⁵ S° 5] ³ S° 3]	P° 5D° P° 3D°			5P 3P	5D 3D	5F 3F			5D° 3D°	⁵F° ³F°	₅G° ₃G°		
2s 2p ² (² D)nx'	{	³ D	3] 1]	P° 3D° P° 1D°	3F° 1F°	$^{3}S_{^{1}S}$	³ P ¹ P	³ D 1D	³F ¹F	${}^{3}\mathrm{G}_{^{1}\mathrm{G}}$	3P° 1P°	³ D° 1D°	3F0 1F0	3G° 1G°	³H° ¹H°	
2s 2p ² (² S)nx''	$\left\{ {}^3{}^{\!\!\!}{\overset{}{\rm S}}_{\!\!\!1}{\overset{}{\rm S}} \right.$		3] 1]	٥٥ ٥٥				3D 1D					3F° 1F°			
2s 2p ² (² P)nx'''	$\begin{cases} {}^{3}P \\ {}^{1}P \end{cases}$		³ S° ³ I ¹ S° ¹ I	2° 3D° 1D°			³ P 1P	³ D 1D	³ F 1F			3D° 1D°	3F° 1F°	³G° ¹G°		
$2p^{3}(^{4}\mathrm{S}^{\mathrm{o}})nx^{\mathrm{IV}}$	$\begin{cases} {}^5S^{\circ} \\ {}^3S^{\circ} \end{cases}$		5] 3]	þ				5D° 3D°					2F. 2E			

TABLE 8. PREDICTED TERMS OF THE NI ISOELECTRONIC SEQUENCE

$\begin{array}{c} \text{Config.} \\ 1s^2 + \end{array}$		Predicted Terms																
2s ² 2p ³	{ ⁴ S°	²P°	²D°															
2s 2p ⁴	${}_{2S}$	4P 2P	$^{2}\mathrm{D}$															
2p ⁵		²P°																
	$ns \ (n \ge 3) \qquad np \ (n \ge 3)$						nd $(n \geq 3)$				$nf(n \ge 4)$							
$2s^2 2p^2(^3\mathrm{P})nx$	{	4P 2P		4S° 2S°	4P° 2P°	⁴D° ²D°			4P 2P	⁴ D ² D	⁴F ²F			4D° 2D°	⁴F° ²F°	4G° 2G°		
$2s^2 2p^2(^1{ m D}) nx'$			²D		²P°	²D°	²F°	² S	²P	²D	${}^{2}\mathrm{F}$	²G	²P°	²D°	²F°	²G°	2H°	
$2s^2 \ 2p^2 ({}^1 m S) nx''$	² S				²P°					$^{2}\mathrm{D}$					${}^{2}\mathrm{F}^{\circ}$			
$2s\ 2p^3(^5\mathrm{S^o})nx^{\prime\prime\prime}$	$\begin{cases} ^6\mathrm{S}^\circ \\ ^4\mathrm{S}^\circ \end{cases}$				6₽ 4₽					6D° 4D°					¢F ₄F			
2s 2p ³ (³ D°)nx ^{IV}	{		⁴D° ²D°		4P 2P	4D 2D	${}^{4}\mathrm{F}$ ${}^{2}\mathrm{F}$	4S° 2S°	4P° 2P°	⁴D° 2D°	4F° 2F°	4G° 2G°	4P 2P	4D 2D	4F 2F	4G 2G	4日 2日	
2s 2p ³ (³ P°)nx ^V	{	4P° 2P°		4S 2S	⁴ P ² P	4D 2D			4P° 2P°	4D° 2D°	4F° 2F°			4D 2D	4F 2F	4G 2G		

Config. $1s^2+$		Predicted Terms													
2s ² 2p ⁴	{1S		3Do		ıD										
2s 2p ⁵	K		1P°												
		n	s (n≥3	3)			np (n≥3)		$nd \ (n \geq 3)$					
$2s^2 \ 2p^3(^4{ m S}^{\circ})$ nx	{ ⁵ S° {3S°						5P 3P					⁵D° ²D°			
2s ² 2p ³ (² D ^o)nx'	{				*D° 1D°		*P 1P	₽D ₽D	*F 1F	² S° 1S°	*P° 1P°	²D° ¹D°	³F° ¹F°	³G° ¹G°	
$2s^2 \ 2p^2(^2P^\circ) nx''$	{		3P° 1P°			2S 1S	*P 1P	3D 1D			*P° 1P°	*D° 1D°	³F° ¹F°		
2s 2p ⁴ (⁴ P)nx'''	{		⁵P ³P			5S° ²S°	5Po 3Po	₅D₀ 3D₀			⁵P ²P	5D 2D	⁵F ²F		
28 2p ⁴ (² D)nx ^{IV}	{				*D 1D		3P° 1P°	3Do 1Do	²F° ¹F°	³ S 1S	*P 1P	₽D 1D	³F ¹F	³G ¹G	
2s 2p ⁴ (2S)nx ^v	${}^{3}S_{1S}$						*P° 1P°					1D 3D			
2s 2p ⁴ (² P)nx ^{VI}	{		3P 1P			³ S° 1S°	3P° 1P°	³D∘ 1D∘			з Р 1Р	3D 1D	*F 1F		
		n	$f(n \geq d)$	4)											
2s² 2p³(4S°)nx	{		⁵F ³F												
$2s^2 \ 2p^3(^2D^\circ)nx'$	${^{3}P}_{^{1}P}$	*D 1D	³F 1F	3G 1G	² Н 1Н										
28 ² 2p ³ (² P ^o)nx''	{	*D 1D	*F 1F	⁸ G 1G											
2s 2p ⁴ (*P)nx'''	{	₅D₀ ₽D₀	\$F₀	\$G°											
2s 2p ⁴ (² D)nx ¹ ^v	${^{\mathbf{s}\mathbf{P}^{\mathbf{o}}}_{^{1}\mathbf{P}^{\mathbf{o}}}}$	³D∘ ¹D∘	*F° 1F°	³G° ¹G°	³H° ¹H°										
2s 2p ⁴ (² S)nx [♥]	{		*F° 1F°												
2s2p4(2P)nxVI	{	³ D°	² F°	³ G°		•••••									

TABLE 9. PREDICTED TERMS OF THE OI ISOELECTRONIC SEQUENCE

Config. $1s^2+$		Predicted Terms												
$2s^2 \ 2p^5$ $2s \ 2p^6$	² S		²P°											
		n	s (n≥	3)		$np (n \geq 3)$					$nd \ (n \ge 3)$			
2s² 2p4(3P)nx	{		4P 2P			4S° 2S°	4P° 2P°	4D° 2D°			4P 2P	4D 2D	4F 2F	
2s ² 2p ⁴ (¹ D) nx' 2s ² 2p ⁴ (¹ S) nx''	2S				2D		2P° 2P°	²D°	²F°	2S	²P	2D 2D	²F	²G
28 2p ⁵ (³ P°)nx'''						4S 2S	4P 2P	4D 2D			4P° 2P°	4D° 2D°	4F° 2F°	
		n	$f(n \geq d)$	4)										
2s² 2p4(3P)nx	{	4D° 2D°	⁴F° ²F°	4G° 2G°										
$2s^2 \ 2p^4({}^1\mathrm{D})nx'$	²P°	²D°	²F°	²G°	²H°									
2s ² 2p ⁴ (1S)nx'' 2s 2p ⁵ (3P°)nx'''	{	4D 2D	2F° 4F 2F	4G 2G		•••••	· · · · · ·	_						

TABLE 10. PREDICTED TERMS OF THE FI ISOELECTRONIC SEQUENCE

TABLE 11. PREDICTED LEVELS OF THE NEI ISOELECTRONIC SEQUENCE

Config. $1s^2+$		Predicted Terms														
2s² 2p ⁶	1S	1 <u>S</u>														
	ns (n≥3)	$np (n \ge 3)$	$nd (n \ge 3)$	$nf (n \ge 4)$												
$2s^2 2p^5(^2\mathrm{P}^\circ)nx$	{ ³ P° 1P°	³ S ³ P ³ D ¹ S ¹ P ¹ D	³ P° ³ D° ³ F° ¹ P° ¹ D° ¹ F°	³ D ³ F ³ G ¹ D ¹ F ¹ G												
$2s \ 2p^{\mathfrak{s}}({}^2\mathrm{S})nx$	${}^{3}S_{1S}$	3P° 1P°	² D	3F° 1F°												
jl-Coupling Notation																
$\begin{array}{c} \text{Config.} \\ 1s^2 \ 2s^2 + \end{array}$			Predicted Pai	rs												
	ns (n≥3)	$np (n \ge 3)$	nd $(n \ge 3)$	$nf (n \ge 4)$												
$2p^{\mathfrak{s}}(^{2}\mathrm{P}_{1}^{\mathfrak{s}})nx$	[1½]°	$[\frac{\frac{1}{2}}{[2\frac{1}{2}]} \\ [1\frac{1}{2}]$	$[\frac{\frac{1}{2}}{[3\frac{1}{2}]^{\circ}} \\ [\frac{1}{2}]^{\circ} \\ [\frac{1}{2}]^{\circ} \\ [\frac{2}{2}]^{\circ}]^{\circ}$	$[1\frac{1}{2}] \\ [4\frac{1}{2}] \\ [2\frac{1}{2}] \\ [3\frac{1}{2}] \\ [3\frac$												
$2p^{\mathfrak{s}}(^{2}\mathrm{P}^{\mathfrak{o}}_{\mathcal{H}})nx'$	[½]°	$[1\frac{1}{2}] \\ [\frac{1}{2}]$	[2½]° [1½]°	$[3\frac{1}{2}]$ [2 ¹ / ₂]												

Config. $1s^2 2s^2 2p^6 +$		Predicted Terms												
3s ²	1S													
$3s(^2\mathrm{S})3p$	{	3P° 1P°												
$3p^2$	$\left\{ {}_{1}S \right\}$	3P	۱D			_								
		ns ($n \ge 4$)		7	$np (n \geq n)$	4)	1	$nd (n \geq 3$)					
3s(2S)nx	${}^{3\mathrm{S}}_{1\mathrm{S}}$				3P° 1P°			³ D 1D						
$3p(^{2}P^{\circ})nx$	{	3P° 1P°		3S 1S	³ P 1P	³ D 1D	³ P° 1P°	³ D° 1D°	3F° 1F°					
		$n_J \ (n \ge 4)$,	ng ($n \geq 3$	5)	7	nh ($n \ge 6$						
3s(2S)nx	{	3F° 1F°			3G 1G			3Ho						
$3p(^{2}P^{\circ})nx$	${}^{3}_{^{1}\mathrm{D}}$	3F 1F	³ G 1G	3F° 1F°	3G° 1G°	3H° 1H°	³ G 1G	³ H 1H	3I 1I					

TABLE 12. PREDICTED TERMS OF THE Mg I ISOELECTRONIC SEQUENCE

TABLE 13. PREDICTED TERMS OF THE ALI ISOELECTRONIC SEQUENCE

Config. 1s ² 2s ² 2p ⁶ +		Predicted Terms														
$3s^2(1S)3p$	2P°															
3s 3p ²	$\begin{cases} {}^{4}P \\ {}^{2}S & {}^{2}P & {}^{2}D \end{cases}$															
$3p^3$	$\begin{cases} {}^{4}S^{\circ} & \\ & {}^{2}P^{\circ} & {}^{2}D^{\circ} \end{cases}$															
	$ns (n \ge 4)$	$np (n \ge 4)$	$nd (n \ge 3)$	$nf (n \ge 4)$	$ng (n \ge 5)$											
$3s^2(^1\mathrm{S})nx$	2S	2Po	² D	2Fo	2G											
3s 3p(³ P°)nx	$\begin{cases} {}^{4}P^{\circ} \\ {}^{2}P^{\circ} \end{cases}$		$ \begin{array}{c} {}^{4}\mathrm{P}^{\circ} & {}^{4}\mathrm{D}^{\circ} & {}^{4}\mathrm{F}^{\circ} \\ {}^{2}\mathrm{P}^{\circ} & {}^{2}\mathrm{D}^{\circ} & {}^{2}\mathrm{F}^{\circ} \end{array} $	$ \begin{array}{c} {}^{4}D \\ {}^{2}D \\ {}^{2}D \\ {}^{2}F^{\circ} \\ {}^{2}G \end{array} $	4F° 4G° 4H° 2F° 2G° 2H°											
3s 3p(1P°)nx'	²P°	² S ² P ² D	² P° ² D° ² F°	² D ² F ² G	² F° ² G° ² H°	•••••										
XXXII	r.															
-------	----															
	ь.															

TABLE	14.	PREDICTED	TERMS	OF	THE	Si 1	ISOELECTRONIC	SEQUENCE
-------	-----	-----------	-------	----	-----	------	---------------	----------

Config. $1s^2 \ 2s^2 \ 2p^6 +$						Р	redicte	d Term	ns				
$3s^2 \ 3p^2$	{1 _S	۶P	۱D										
3s 3p ³	$\begin{cases} {}^{5}\mathrm{S}^{\circ}\\ {}^{3}\mathrm{S}^{\circ} \end{cases}$	3P° 1P°	3D° 1D°										
3 <i>p</i> ⁴	${}_{1S}$	зЪ	۱D										
		ns ($n \ge \frac{1}{2}$	4)	1	$np (n \ge$	4)	n	ad ($n \geq 3$	3)	n	of $(n \ge 4)$	£)	
3s ² 3p(² P°)nx	{	3P° 1P°		3S 1S	3P 1P	3D 1D	³ P° 1P°	3D° 1D°	³ F° ¹ F°	3D 1D	3F 1F	³ G 1G	
3s 3p ² (4P)nx	{	5P 3P		5S° 3S°	₅₽° 3₽°	5D° 3D°	5P 3P	5D 3D	⁵F ³F	5D° 3D°	5F° 3F°	5G° 3G°	

TABLE 15. PREDICTED TERMS OF THE Pt ISOELECTRONIC SEQUENCE

$\begin{array}{c} \text{Config.}\\ 1s^2\ 2s^2\ 2p^6+\end{array}$			Predicted Terms		
$3s^2 3p^3$	$\begin{cases} {}^{4}S^{\circ} \\ & {}^{2}P^{\circ} & {}^{2}D^{\circ} \end{cases}$				
3s 3p ⁴	$\begin{cases} {}^{4}P\\ {}^{2}S {}^{2}P {}^{2}D \end{cases}$				
$3p^5$	2P°				
	ns $(n \ge 4)$	$np (n \ge 4)$	$nd \ (n \geq 3)$	$nf(n \ge 4)$	
3s² 3p²(³P)nx	$\begin{cases} & {}^{4}P \\ & {}^{2}P \end{cases}$	⁴ S° ⁴ P° ⁴ D° ² S° ² P° ² D°	⁴ P ⁴ D ⁴ F ² P ² D ² F	4D° 4F° 4G° 2D° 2F° 2G°	
$3s^2 \ 3p^2(^1{ m D}) nx'$	2D	² P° ² D° ² F°	² S ² P ² D ² F ² G	² P° ² D° ² F° ² G° ² H°	
$3s^2 \ 3p^2(^1\mathrm{S})nx^{\prime\prime}$	2S	² P°	² D	2Fo	

Config. $1s^2 2s^2 2p^6 +$									Pro	edicted	Term	s				-	,	
3s ² 3p ⁴	{ _{1S}	۶P	۱D					<u> </u>										
3s 3p⁵	{	¹P₀																
	n;	s (n≥	.4)		np ($(n \ge 4)$			1	nd ($n \ge$	3)			7	$af (n \ge$	4)		
3s² 3p³(4S°)nx	{⁵S° {³S°				⁵P ³P					₅D₀ 20°					⁵F 3F			
$3s^2 3p^3(^2D^\circ)nx'$	{		3D° 3D°		³P ¹P	1D 2D	³F ¹F	³ S° 1S°	³₽° ¹₽°	³ D° 1D°	³F° ¹F°	³G° ¹G°	⁸ P ¹ P	$^{3}D_{^{1}D}$	³F ¹F	3G 1G	³H ¹H	
3s ² 3p ³ (² P°)nx''	{	³₽° ¹P°		3S 1S	³ P 1P	^{1}D			³₽° ¹₽°	³ D° 1D°	³F° ¹F°			³ D	8F 1F	³ G 1G		
3s 3p ⁴ (⁴ P)nx'''	{	³₽		5S° 3S°	۶ P o Po	5D° 3D°			5₽ 3₽	5D 3D	⁵F ³F			5D° 3D°	5F∘ 8F∘	⁵G° ³G°		
3s 3p ⁴ (² D)nx ^{IV}	{		³D 1D		3P° 1P°	³ Do	3F° 1F°	3S 1S	³ P 1P	³ D 1D	${}^{3}\mathbf{F}_{1}\mathbf{F}$	³ G ¹ G	3Po 1Po	1Do 3Do	³F° ¹F°	³G° ¹G°	³H° ¹H°	
3s 3p⁴(²S)nx ^v	${}^{3}S_{^{1}S}$				3P° 1P°					³ D 1D					3F° 1F°			
3s 3p⁴(²P)nx ^{v1}	{	³ P 1P		*S° 1S°	3P° 1P°	3Do 1Do			³₽ ¹P	³ D ¹ D	³ F ¹ F			1Do 3Do	3F0 1F0	³G° ¹G°		•••••
$3p^5(^2P^\circ)nx^{V11}$	{	*P° 1P°		³S ¹S	³ P	³ D 1D			1Po 8bo	1Do 3Do	3F0 1F0			1D 3D	3F 1F	³ G 1G		

TABLE 16. PREDICTED TERMS OF THE SI ISOELECTRONIC SEQUENCE

TABLE 17. PREDICTED TERMS OF THE CLI ISOELECTRONIC SEQUENCE

$\begin{array}{c} \text{Config.}\\ 1s^2\ 2s^2\ 2p^6+\end{array}$							Pr	edicted	Terms		<u> </u>					
3s ² 3p ⁵ 3s 3p ⁶	2P° 2S															
	$ns (n \ge 4)$		np ($(n \ge 4)$			4	nd ($n \geq 3$	3)			n	of $(n \geq$	4)		
3s ² 3p ⁴ (³ P)nx	$\begin{cases} {}^{4}P \\ {}^{2}P \end{cases}$	4S° 2S°	4P° 2P°	4D° 2D°			4P 2P	4D 2D	4F 2F			4D° 2D°	4F° 2F°	4G° 2G°		
$3s^2 \ 3p^4(^1\mathrm{D})nx'$	2D		$^{2}\mathrm{P}^{\circ}$	$^{2}\mathrm{D}^{\circ}$	${}^{2}\mathrm{F}^{\circ}$	²S	$^{2}\mathrm{P}$	$^{2}\mathrm{D}$	${}^{2}\mathbf{F}$	²G	²P°	$^{2}\mathrm{D}^{o}$	${}^{2}\mathbf{F}^{o}$	²G°	2H°	
3s ² 3p ⁴ (¹ S)nx''	2S		²P°					$^{2}\mathrm{D}$					${}^{2}\mathrm{F}^{\circ}$			
3s 3p ⁵ (3P°)nx'''	{ ⁴ P° ² P°	4S 2S	⁴ P ² P	4D 2D			4P° 2P°	⁴D° 2D°	4F° 2F°			4D 2D	⁴F ²F	4G 2G		

TABLE 18. FREDICTED LEVELS OF THE AT ISOELECTRONIC SEQUENC.	TABLE 18.	PREDICTED	LEVELS	OF	THE	AI	ISOELECTRONIC	SEQUENCE
---	-----------	-----------	--------	----	-----	----	---------------	----------

$\begin{array}{c} \text{Config.}\\ 1s^2\ 2s^2\ 2p^6+\end{array}$			Predicted Term	S	
3s ² 3p ⁶	1 <u>S</u>				
	ns $(n \ge 4)$	$np (n \ge 4)$	nd $(n \ge 3)$	$nf(n \ge 4)$	
$3s^2 \ 3p^5(^2{ m P}^{\circ}) nx$	{ 3P° 1P°	³ S ³ P ³ D ¹ S ¹ P ¹ D	³ P° ³ D° ³ F° ¹ P° ¹ D° ¹ F°	³ D ³ F ³ G ¹ D ¹ F ¹ G	
3s 3p ⁶ (2S)nx	${}^{3\mathrm{S}}_{^{1}\mathrm{S}}$	3P° 1P°	3D 1D	3F° 1F°	
		jl-Coupling	Notation		
Config. $1s^2 2s^2 2p^6 3s^2 +$			Predicted Pairs	1	
	$ns (n \ge 4)$	$np (n \ge 4)$	$nd \ (n \ge 3)$	$nf \ (n \ge 4)$	
$3p^{5}(^{2}\mathrm{P}^{\circ}_{1\!$	[1½]°	$[\frac{\frac{1}{2}}{[2\frac{1}{2}]}\\[2\frac{1}{2}]\\[1\frac{1}{2}]$	$\begin{bmatrix} \frac{1}{2} \\ 3\frac{1}{2} \\ 1\frac{1}{2} \\ 2\frac{1}{2} \\ 2\frac{1}{2} \end{bmatrix}^{\circ}$	$\begin{bmatrix} 1\frac{1}{2} \\ [4\frac{1}{2}] \\ [2\frac{1}{2}] \\ [3\frac{1}{2}] \end{bmatrix}$	
$3p^5(^2\mathrm{P}^\circ_{\mathscr{V}})nx'$	[½]°		$[2\frac{1}{2}]^{\circ}$ $[1\frac{1}{2}]^{\circ}$	$\begin{bmatrix} 3\frac{1}{2} \\ 2\frac{1}{2} \end{bmatrix}$	

TABLE 19. PREDICTED TERMS OF THE CAI ISOELECTRONIC SEQUENCE

Config. 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ +							Predic	cted To	erms						
4s ²	1S													-	
$3d^2$	{ _{1S}	зР	۱D	${}^3\mathrm{F}$	1G										
$4p^2$	{1S	۶P	۱D												
		n	s (n≥-	4)			n_1	$p(n \ge 4)$	4)			n	$d (n \geq 1)$	3)	
4s(2S)nx	${}^{3}S_{1S}$						зро 1Ро						3D 1D		
$3d(^{2}\mathrm{D})nx'$	{		3D 1D				³₽° 1₽°	3] 1])°)°	³F° ¹F°	3S 1S	3P 1P	3D 1D	³F ¹F	3G 1G
$4p(^{2}P^{\circ})nx^{\prime\prime}$	{	3P° 1P°				3S 1S	3P 1P	3] 1]	2			3P° 1P°	3Do 1Do	³F° 1F°	
		n	$f(n \geq 4)$	4)			n_{i}	$g(n \ge 5)$	5)						
4s(2S)nx	{		3F° 1F°					3G 1G							
$3d(^{2}\mathrm{D})nx'$	${}^{3P^{o}}_{^{1}P^{o}}$	³D° 1D°	³F° 1F°	³G° ¹G°	3H° 1H∘	3D 1D	${}^{3}\mathrm{F}_{^{1}\mathrm{F}}$	3G 1G	³H 1H	3I 1I					
$4p(^{2}P^{\circ})nx''$	{	3D 1D	3F 1F	3G 1G			3F° 1F°	3G° 1G°	3H° 1H°						

TABLE 20. PREDICTED TERMS	OF THE SCI	ISOELECTRONIC SEQUENCE
---------------------------	------------	------------------------

Config. $1s^2 2s^2 2p^6 3s^2 3p^6 +$								Pred	icted]	ſerms					
3 <i>d</i> 4s ²			²D												
$3d^3$	{{	4P 2P	$^{2}\mathrm{D}$ $^{2}\mathrm{D}$	4	F F 2	°G	²H								
			ns	$(n \ge \frac{1}{2})$	4)					np	$(n \ge 4$)			
3d 4s(3D)nx	{		4D 2D)					4P° 2P°	⁴D° 2D°	4F 2F	0			
3d 4s(1D)nx			2D)					$^{2}\mathrm{P}^{\circ}$	$^{2}\mathrm{D}^{\circ}$	${}^{2}\mathrm{F}$	0			
$3d^2(^3\mathrm{F})nx$	{			4 2	F F					⁴D° ²D°	⁴F ²F		₽G° ₽G°		
$3d^2(^1\mathrm{D})nx$			²D	•					²P°	²D°	${}^{2}\mathrm{F}$	0			
$3d^2(^1\mathrm{S})nx$	² S								²P°						
$3d^2(^{3}\mathrm{P})nx$	{	4P 2P						4S° 2S°	4₽° 2₽°	4D° 2D°					
$3d^2({}^1\mathrm{G})nx$						²G					${}^{2}\mathrm{F}$	10 ;	²G°	²H°	
$4p^2(^{3}\mathrm{P})nx$	{	4P 2P						4S° 2S°	4₽° 2₽°	⁴D° ²D°					
			nd	$(n \ge$	3)					nj	$f(n \ge 4)$	ł)			
3d 4s(3D) nx	$\begin{cases} {}^{4}S\\ {}^{2}S \end{cases}$	4P 2P	⁴ D ² D	4F 2F	4G 2G			4P° 2P°	⁴ D° ² D°	4F° 2F°	4G° 2G°	4H° 2H°			
3d 4s(1D) nx	2S	$^{2}\mathrm{P}$	²D	${}^{2}\mathrm{F}$	² G			²P°	$^{2}\mathrm{D}^{\circ}$	${}^{2}\mathrm{F}^{\circ}$	²G°	²H°			
$3d^2(^3\mathrm{F})nx$	{	4P 2P	${}^{4}\mathrm{D}_{^{2}\mathrm{D}}$	${}^{4}_{^{2}}\mathrm{F}$	${}^{4}G_{^{2}G}$	$^{4}\mathrm{H}_{^{2}\mathrm{H}}$			$^{4}\mathrm{D}^{\circ}_{^{2}\mathrm{D}^{\circ}}$	4F° 2F°	⁴G° ²G°	4H° 2H°	4I° 2I°		
$3d^2(^1\mathrm{D})nx$	² S	$^{2}\mathrm{P}$	² D	${}^{2}\mathbf{F}$	² G			²P°	$^{2}\mathrm{D}^{\circ}$	${}^{2}\mathrm{F}^{\circ}$	² G°	²H°			
$3d^2(^1\mathrm{S})nx$			$^{2}\mathrm{D}$							${}^{2}\mathrm{F}^{\circ}$					
$3d^2(^{3}\mathrm{P})nx$	{	$^{4}_{^{2}\mathrm{P}}$	${}^{4}\mathrm{D}_{^{2}\mathrm{D}}$	4F 2F					${}^{4}\mathrm{D}^{\circ}_{{}^{2}\mathrm{D}^{\circ}}$	⁴F° ²F°	⁴G° ²G°				
$3d^2(^1\mathrm{G})nx$			$^{2}\mathrm{D}$	${}^{2}\mathrm{F}$	² G	$^{2}\mathrm{H}$	${}^{2}\mathbf{I}$			${}^{2}\mathrm{F}^{\circ}$	²G°	²H°	2 I °	²K°	
$4p^2(^3\mathrm{P})nx$	{	⁴ P ² P	${}^{4}\mathrm{D}$ ${}^{2}\mathrm{D}$	⁴F ²F					⁴ D° ² D°	⁴F° ²F°	⁴ G° ² G°				

TARLE 21. PREDICTED TERMS OF THE TI I ISOELECTRONIC SEQUENCE

														• •			· · · · · · · · · · · · · · · · · · ·	· · ·	
				:	::	::	::	::	::	::	::	::	::	ж : :	::	::	::	••••	:
									I.					1 I1 1 I	I.				
					H	H	H		HH					ЩH	ЩH		H		
				4)	gğ	çğ	ğğ	õã	çğ				õõ	ŭū	ğğ		ç ç ç		ğğ
				$(n) \ge n$	5 H 3 H	5H		3F	3F	5F	3F 1F	5]f	E F	3F	3F	3F 1F	3F		3 FL
					0° D	åD D	đđ	ŰŪ	ŐŪ	ů ů Ú	ůŪ	Õů	ůŪ		ČŪ	0° Ú	đđ	ČŪ	ĞŪ
					5P	۶P 3P	3P 1P	$^{3}\mathrm{P}$		$^{\mathrm{\delta P}}_{\mathrm{aP}}$	ap 1P	5P 3P	$^{3}\mathrm{P}$			3P 1P	$^{3}\mathrm{P}$		3P 1P
								$\overset{\kappa}{\mathrm{N}}\overset{\imath}{\mathrm{N}}$					$\overset{\kappa}{N}\overset{1}{N}$						ន័ភ
T														31 o 11					
Term									°H1 1H°					°H1 °H1	°H1 1H°				
dicted					5G°	sG°	3G°		3G°					iG°	$^{3}_{1}$ G $^{\circ}_{\circ}$		$_{1}^{3}G_{\circ}^{\circ}$		
Pre				$(n \ge 4)$	ه با ه عالیه	5 Jro 3 Jro	3]?o 1]?o	3F0 1F0	3Fo 1Fo				3F0 1F0		3F0 1F0		3F0 1F0		3F0 1F0
			,	du	D°°	°0°	°0°	°u		°u	°0°	°u	ůů			D°0	°u		åå
					9 E	9 E	- 3	00 100		00 3 E	1 00 3	00 8 00 3	Po 3			- 3 - 3	3	ရိုင်	po 1
								[[[3]	1]	30 3]	3] 1			50 SO		3] 1	3] 1
			Iı																
		Hε												Ht Ht					
	ιĞ	${}^{3}\mathrm{G}$	1G 1G						ıç G						çõ				
	3F	3F 3F	ıF	$(n \ge 4)$	6F 3J7	5F 3F	3F										3F		
	Ū	$^{5}\mathrm{D}$	ŪŪ	ns				ů ¹					³ D ³ D ¹						d ¹
	зP	$^{3}\mathrm{P}$								5P 3P	ap 1P	ap 3P				$r_{\rm r}^{\rm s}$			
	Si }	=	SI SI SI															{ 3S 1S	<u> </u>
$+ {}^{9}d$																			
onfig. p ⁶ 3s ² 3					F) nx	27	F) nx	D) nx	x	x	x	m(d)	xr	xr	xu(c)	p) nx	27	3) nx	D) nx
² 2s ² 2p	d ² 4.8 ²	1	3		d ² 4s(4]	$d^{3}(^{4}\mathrm{F})n$	$d^{2} 4_{8}(^{2})$	$d^2 4s(^2)$	$d^{3}(^{2}\mathrm{G})_{R}$	$d^{3}(^{4}\mathrm{P})n$	$d^{3}(^{2}\mathrm{P})n$	d ³ 4s(⁴]	$d^{3}(^{2}\mathrm{D})_{T}$	₽ ³ (2H)1.	d ³ 4s(² ($d^{2} 4_{8}(^{2})$	$d^{3}(^{2}\mathrm{F})n$	d ² 48(² S	d 4s ² (²]
152 5	3d2	3.44	3		$3d^2$	$3d^3$	$3d^2$	$3d^2$	$3d^3$	3d ³	303	$3d^2$	$3d^3$	3d ³	$3d^{2}$	$3d^2$	$3d^3$	$3d^2$	3d

XXXVII

XXXV	III
AAAV.	111

c Sequence					$nd \ (n \ge 4)$	6S 6P 6D 6F 6G 4S 4P 4D 4F 4G	H ₁ D ₁ J ₁ Q ₁ J ₁ H ₂ D ₃ J ₁ Q ₁ J ₁	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4P 4D 4F 2P 2D 2F	Mr Ir Hr Dr Ar Mr Ir Hr Dr Ar	4P 4D 4F 4G 4H 2P 2D 2F 2G 2H
REDICTED TERMS OF THE VI ISOELECTRONI	Predicted Terms				$np \ (n \ge 4)$	6Po 6Do 6Fo 4Po 4Do 4Fo	6D° 6G° 4D° 4F° 4G°	4D° 4F° 4G° 2D° 2F° 2G°	4S° 4P° 4D° 2S° 2P° 2D°	0Iz 0Hz 0Dz	4D° 4F° 4G° 2D° 2F° 2G°
TABLE 22. P		$\left\{\begin{array}{ccc} 4P & 4F \\ 2P & 2D & 2F & 2G & 2H \\ & 2D & & \end{array}\right.$	$ \begin{pmatrix} {}^{6}S & {}^{4}P & {}^{4}D & {}^{4}F & {}^{4}G \\ {}^{2}S & {}^{2}D & {}^{2}F & {}^{2}G \\ {}^{2}P & {}^{2}D & {}^{2}F & {}^{2}G & {}^{2}H & {}^{2}I \\ {}^{2}D & {}^{2}D & {}^{2}F & {}^{2}G & {}^{2}H & {}^{2}I \end{pmatrix} $	[*S 5P 5D* 5F 5G 4S 4P 4D* 4F 4G [2S 2P 2D* 2F 2G	$ns \ (n \ge 4)$	G• €	4F	4F 2F	{ 4P 2P	Hr }	4F 2F
	Config. $1s^2 2s^2 2p^6 3s^2 3p^6 +$	$3d^3 4s^2$	$3d^5$	$3d^3 4p^2$		$3d^4(^5\mathrm{D})nx$	$3d^3 4s(^5\mathrm{F})nx$	$3d^3 \ 4s(^3{ m F}) nx$	$3d^4(^3\mathrm{P})nx$	$3d^4(^3\mathrm{HI})nx$	$3d^4(^3\mathrm{F})nx$

XXXIX

					:			:	· · · · · · · · · · · · · · · · · · ·			:			
<u>···</u>		<u></u>	•		•	· ·	² L	•	•••	<u> </u>	•	•	•	•	•
							²K		⁴ K ² K				²K		
	4I 2I	4I 2I	21		12		Iz		4I 2I				2I		
	⁴ H ² H	⁴ H ² H	² H		² H		² H		4H 14				² H		β
	⁴ G	2G ⁴ G	$^{2}\mathrm{G}$	$^{2}\mathrm{G}$	$^{2}\mathrm{G}$		$^{2}\mathrm{G}$		$^{2}\mathrm{G}$	² G	$^{2}\mathrm{G}$		$^{2}\mathrm{G}$	$^{2}\mathrm{G}$	$^{2}\mathrm{G}$
4 F	⁴ F	4F F	$^{2}\mathrm{F}$	4F 2F	$^{2}\mathrm{F}$	4F 2F			4 단 단	4H F	$^{2}\mathrm{F}$	$^{2}\mathrm{F}$	$^{2}\mathrm{F}$	$^{2}\mathrm{F}$	$^{2}\mathrm{F}$
êđ	² D ⁴ D	² D ²	$^{2}\mathrm{D}$	⁴ D ²	$^{2}\mathrm{D}$	² D ⁴		$^{2}\mathrm{D}$		² D ⁴	$^{2}\mathrm{D}$	$^{2}\mathrm{D}$		$^{2}\mathrm{D}$	$^{2}\mathrm{D}$
4 ⁶				$^{4}_{^{2}P}$		^{4}P				⁴ P ² P	$^{2}\mathrm{P}$	$^{2}\mathrm{P}$		$^{2}\mathrm{P}$	$^{2}\mathrm{P}$
				$^{4}_{ m N}$ $^{5}_{ m N}$						2°5 8°5	² S			2S	
							²K°								
							2Ι°		4I o 2I o				2I o		
	4H° 2H°	4H° 2H°	2H°		2H°		۵H۵		4H° 2H°				² H°		
	င့်ငိ	ဒိုင်	² G°		2G°				ဒိုင်				2G°		2G°
	4Fo 2Fo	Fro Fro	٤Fo	4Fo	٤Fo					tFo 2Fo	٤F°			٤Fo	٤F°
ůů				ÅÅ		ůů				ÅÅ	°	D°		ů	ů
Po 4				Po 4		Po 4 Po 2		ь°		Po 4	Po 2	Po 2		P° 2	~
ອີສ. ຫຼັງ				41 61		°°°°		5		4 61	67	8 0 0		67	
						5 4	12								
									нн				Н		
	7575	7575	75		75				α τίαι΄				64		
	* 02	24 0	2(2C										
															$^{2}\mathrm{F}$
				⁴ D						⁴ D ² D	$^{2}\mathrm{D}$			$^{2}\mathrm{D}$	
₽° ₽						4P 2P						$^{2}\mathrm{P}$			
<u>~</u>	<u></u>	<u></u>		<u> </u>				^{2}S	<u> </u>	<u></u>					
xu (2	xu(;	IJ	8	xu (xu (xu(xu (N	xu(xu(xu(53
d ³ 4s(⁵ P	$d^4(^3\mathrm{G})n$	d ³ 4s(³ G	$d^4(^1\mathrm{G})n$	$d^4(^{3}\mathrm{D})n$	d ³ 4s(¹ G	d ³ 4s(³ P	$d^4(11)nx$	$d^{4}(1S) na$	d ³ 4s(³ H	d³ 4s(³D	$d^4(^1\mathrm{D})n$	d ³ 4s(¹ P	d ³ 4s(¹ H	d ³ 4s(¹D	$d^{4}(^{1}\mathrm{F})n_{2}$

†Incomplete—only limits of higher multiplicity considered. *Two terms of this type predicted.

TABLE 23. THE CHEMICAL ELEMENTS-IONIZATION POTENTIALS*

Z	Element	Symbol	I. P.	Grour	nd Sta	ate	Z	Element	Symbol	I. P.	Grou	nd Sta	ate
1	Hydrogen	н	13. 595		18	2S15	36	Krypton	Kr	13. 996	(4s ²	4p ⁶)	¹ S ₀
2	Helium	He	24. 580		(1s ²)	1S ₀	37	Rubidium	Rb	4. 176		58	$^{2}S_{\frac{1}{2}}$
3	Lithium	Li	5. 390		2 s	$^{2}S_{3}$	3 8	Strontium	Sr	5. 692		5s ²	$^{1}\mathrm{S}_{0}$
4	Beryllium	Be	9. 320		2s ²	$^{1}\mathrm{S}_{0}$	39	Yttrium	Y	6.6	4d	5s ²	² D ₁ %
5	Boron	в	8. 296	$2s^2$	2p	²₽ <u></u> ₅°	40	Zirconium	Zr	6. 95	$4d^2$	58 ²	${}^{3}\mathbf{F}_{2}$
6	Carbon	C	11. 264	2s ²	$2p^2$	۶P0	41	Columbium	Cb	6. 77	$4d^4$	58	۴D۶
7	Nitrogen	N	14. 54	2s ²	$2p^3$	4Si14	42	Molybdenum	Mo	7. 18	4 <i>d</i> ,5	58	7S3
8	Oxygen	0	13. 614	2s ²	$2p^{4}$	$^{3}\mathrm{P}_{2}$	43	Technetium	Tc		$4d^5$	5s ²	$^{6}\mathrm{S}_{2\frac{1}{2}}$
9	Fluorine	F	17. 42	$2s^{2}$	$2p^5$	²Pi _½	44	Ruthenium	Ru	7.5	$4d^{7}$	5 8	${}^{5}\mathrm{F}_{5}$
10	Neon	Ne	21. 559	(2s ²	$2p^{6})$	$^{1}\mathrm{S}_{0}$	45	Rhodium	Rh	7. 7	$4d^{8}$	58	4F432
11	Sodium	Na	5. 138		3 s	$^{2}\mathrm{S}_{\frac{1}{2}}$	46	Palladium	Pd	8. 33		4d10	$^{1}\mathrm{S}_{0}$
12	Magnesium	Mg	7.644		3s²	$^{1}\mathrm{S}_{0}$	47	Silver	Ag	7. 574		58	$^{2}\mathrm{S}_{\mathrm{H}}$
13	Aluminum	Al	5. 984	3s ²	3p	²P [°]	48	Cadmium	Cd	8. 991		5s ²	$^{1}\mathrm{S}_{0}$
14	Silicon	Si	8. 149	3s ²	$3p^2$	$^{3}\mathrm{P}_{0}$	49	Indium	In	5. 785	5s2	5p	²₽ <u></u> ⅔
15	Phosphorus	Р	11. 0	3s2	3 <i>p</i> ³	4Sili	50	Tin	Sn	7. 332	5s ²	$5p^2$	$^{3}\mathrm{P}_{0}$
16	Sulfur	S	10. 357	3s2	3p4	$^{3}\mathrm{P}_{2}$	51	Antimony	Sb	8.64	5s ²	$5p^{3}$	$^{4}\mathrm{S}_{11}^{*}$
17	Chlorine	Cl	13. 01	3s ²	$3p^5$	²Pi ₁₅	52	Tellurium	Te	9. 01	5s ²	$5p^4$	$^{3}P_{2}$
18	Argon	A	15. 755	(3s²	3 <i>p</i> ⁶)	$^{1}\mathrm{S}_{0}$	53	Iodine	I	10. 44	5s ²	$5p^{5}$	² P _{1¹/2}
19	Potassium	К	.4. 339		4 8	${}^{2}S_{\frac{1}{2}}$	54	Xenon	Xe	12. 127	(582 .	5p ⁶)	$^{1}\mathrm{S}_{0}$
20	Calcium	Ca	6. 111		4s ²	$^{1}\mathrm{S}_{0}$	55	Cesium	Cs	3. 893		6 <i>s</i>	$^{2}\mathrm{S}_{\mathrm{M}}$
21	Scandium	Sc	6. 56	3 <i>d</i>	4s ²	${}^{2}\mathrm{D}_{1\frac{1}{2}}$	56	Barium	Ba	5. 210		6 <i>s</i> ²	$^{1}\mathrm{S}_{0}$
22	Titanium	Ti	6. 83	$3d^2$	4s ²	*F ₂	57	Lanthanum	La	5. 61	5d	6s²	$^{2}\mathrm{D}_{1\frac{1}{2}}$
23	Vanadium	v	6. 74	$3d^3$	4s ²	4F115	58	Cerium	Ce	(6.91)			
24	Chromium	Cr	6. 76	$3d^5$	4 s	$^{7}\mathrm{S}_{3}$	59	Praseodymium	Pr	(5.76)			
25	Manganese	Mn	7. 432	3d5	4s ²	⁶ S ₂₁₂	60	Neodymium	Nd	(6.31)	4f •	6s ²	⁵ I4
26	Iron	Fe	7.896	340	4s ²	${}^{5}D_{4}$	61	Prometheum	Pm				
27	Cobalt	Co	7.86	37	4s ²	4F415	62	Samarium	Sm	5.6	4f 6	6s ²	${}^7\mathrm{F_0}$
28	Nickel	Ni	7. 633	$3d^{8}$	4s ²	*F4	63	Europium	Eu	5. 67	$4f^{7}$	6 <i>s</i> ²	${}^{8}\mathrm{S}_{3\frac{1}{2}}$
29	Copper	Cu	7. 723	(3d ¹⁰)	4 s	$^{2}\mathrm{S}_{\mathrm{M}}$	64	Gadolinium	Gd	6. 16	$4f^{7} 5d$	6s ²	°D2
30	Zinc	Zn	9. 391		4s ²	$^{1}\mathrm{S}_{0}$	65	Terbium	Tb	(6.74)			
31	Gallium	Ga	6. 00	4s ²	4p	²P [°]	66	Dysprosium	Dy	(6.82)			
32	Germanium	Ge	8. 13	482	4 <i>p</i> ²	³ P ₀	67	Holmium	Ho				
33	Arsenic	As	10 ±	4 8 ²	4 <i>p</i> ³	4Siz	68	Erbium	Er				
34	Selenium	Se	9. 750	4s ²	4 <i>p</i> ⁴	$^{3}P_{2}$	69	Thulium	Tm		4f18	6s²	²F ₃₁₅
35	Bromine	Br	11. 84	4s ²	$4p^5$	²P _{11/2}	70	Ytterbium	Yb	6. 2	(4f 14)	6s²	$^{1}\mathrm{S}_{0}$

TABLE 23. THE CHEMICAL ELEMENTS-IONIZATION POTENTIALS-Continued

Z	Element	Symbol	I. P.	Grou	nd St	ate	Z	Element	Symbol	I. P.		Grou	nd St	ate
71	Lutecium	Lu	5. 0	5d	6s ²	$^{2}\mathrm{D}_{2^{1}2}$	88	Radium	Ra	5. 27	7		7s ²	¹ S ₀
72	Hafnium	Hf	5.5 ±	$5d^2$	6s ²	${}^{3}\mathrm{F}_{2}$	89	Actinium	Ac					
73	Tantalum	Та	$6 \pm$	$5d^3$	$6s^2$	4F11/2	90	Thorium	Th			$6d^2$	7s ²	${}^{3}\mathrm{F}_{2}$
74	Tungsten	W	7. 98	$5d^4$	6s ²	$^{5}\mathrm{D}_{0}$	91	Protactinium	Pa					
75	Rhenium	Re	7.87	$5d^5$	6s ²	$^{6}\mathrm{S}_{21_{2}}$	92	Uranium	U	4	±	$5f^3 6d$	7s2	${}^{5}\mathrm{L}^{\circ}_{6}$
76	Osmium	Os	8.7	$5d^{6}$	6s ²	$^{5}\mathrm{D}_{4}$	93	Neptunium	Np					
77	Iridium	Ir	9. 2	$5d^7$	6s ²	⁴ F _{11/2}	94	Plutonium	Pu					
78	Platinum	Pt	8.96	$5d^9$	6 <i>s</i>	³ D ₃	95	Americium	Am					
79	Gold	Au	9. 223	(5d ¹⁰)	6 <i>s</i>	$^{2}\mathrm{S}_{\frac{1}{2}}$	96	Curium	Cm					
80	Mercury	Hg	10. 434		6 <i>s</i> ²	$^{1}\mathrm{S}_{0}$	97							
81	Thallium	Tl	6. 106	6s ²	6p	² P ^o ^{1/2}	98							
82	Lead	Pb	7. 415	6s ²	6 <i>p</i> ²	$^{3}P_{0}$	99							
83	Bismuth	Bi	8 ±	6s ²	6 p ³	4S _{11/2}	100							
84	Polonium	Po					101							
85	Astatine	At					102							
86	Radon	Rn	10. 745	(6s ²	6p ⁶)	¹ S ₀	103							
87	Francium	Fa												

* Parentheses denote values that have been determined experimentally, but not yet confirmed by series.

TABLE 24. CHEMICAL SYMBOLS

Symbol	Element	Z	Symbol	Element	Z	Symbol	Element	Z	Symbol	$\mathbf{Element}$	Z
 A	Argon	18	Dy	Dysprosium	66	Mn	Manganese	25	s	Sulfur	16
Ac	Actinium	89	Er	Erbium	68	Mo	Molybdenum	42	Sb	Antimony	51
$\mathbf{A}\mathbf{g}$	Silver	47	Eu	Europium	63	N	Nitrogen	7	Sc	Scandium	21
Al	Aluminum	13	F	Fluorine	9	Na	Sodium	11	Se	Selenium	34
\mathbf{Am}	Americium	95	Fa	Francium	87	Nd	Neodymium	60	Si	Silicon	14
\mathbf{As}	Arsenic	33	Fe	Iron	26	Ne	Neon	10	Sm	Samarium	62
\mathbf{At}	Astatine	85	Ga	Gallium	31	Ni	Nickel	28	Sn	Tin	50
Au	Gold	79	Gd	Gadolinium	64	Np	Neptunium	93	Sr	Strontium	38
В	Boron	5	Ge	Germanium	32	0	Oxygen	8	Ta	Tantalum	73
Ba	Barium	56	н	Hydrogen	1	Os	Osmium	76	Tb	Terbium	65
Be	Beryllium	4	(D	Deuterium)	}	Р	Phosphorus	15	Tc	Technetium	43
Bi	Bismuth	83	(T	Tritium)		Pa	Protactinium	91	Te	Tellurium	52
\mathbf{Br}	Bromine	35	He	Helium	2	Pb	Lead	82	Th	Thorium	90
С	Carbon	6	Hf	Hafnium	72	Pd	Palladium	46	Ti	Titanium	22
Ca	Calcium	20	Hg	Mercury	80	Pm	Prometheum	61	Tl	Thallium	81
Cb	Columbium	41	Ho	Holmium	67	Po	Polonium	84	Tm	Thulium	69
Cd	Cadmium	48	I	Iodine	53	Pr	Praseodymium	59	U	Uranium	92
Ce	Cerium	58	In	Indium	49	Pt	Platinum	78	V	Vanadium	23
C1	Chlorine	17	Ir	Iridium	77	Pu	Plutonium	94	W	Tungsten	74
Cm	Curium	96	K	Potassium	19	Ra	Radium	88	Xe	Xenon	54
Co	Cobalt	27	Kr	Krypton	36	Rb	Rubidium	37	Y	Yttrium	39
\mathbf{Cr}	Chromium	24	La	Lanthanum	57	Re	Rhenium	75	Yb	Ytterbium	70
\mathbf{Cs}	Cesium	55	Li	Lithium	3	Rh	Rhodium	45	Zn	Zinc	30
Cu	Copper	29	Lu	Lutecium	71	Rn	Radon	86	Zr	Zirconium	40
			Mg	Magnesium	12	Ru	Ruthenium	44			

									4Yb 70				109	
									$^{\mathrm{Tm}}_{\mathrm{69}}$				101	
									Er 68				101	3
									Но 67				00	00
									Dy 66				80	0
									\mathbf{Tb}				04	
									Gd 64				Cm 06	06
									Eu 63				Am	P.
									m Sm 62				Pu	4 1
									Pm 61				Np	00
									PN 90				D	36
									Pr 59				Pa	aT
									58 28				d'T	De l
									La 57				Ac	0
			E	30 27		Cd 48				Hg 80				ł
				29 29		Ag 47				Au 79				;
			ž	78 Z		1 Pd 46				Pt 78				ł
			ζ	56		1 R} 45				Ir 77				;
			F.	26		c Ru				e 0s 76				1
				22 H		6 To 43				R R				i
				580		ь М 1 42				а. 74 74				;
				> Xi - Xi		r 4 C				H 2 H 2				i
			E	- 61 		2 4 9				H L				;
ī			3	201		2 é				1 P				103
	Ne 10	A 18		Kr 36			Xe 54				Rn 86			
	5 F	CI 17		Br 35			I 53				At 85			
	0 ∞	16 S		Se 34			Te 52				Po 84			
	Zr	P 15		33 33			Sb 51				Bi 83			
	οC	Si 14		1 Ge			Sn 50				Pb 82			
	цъ	AI 13		G ₈ 31			In 49				T1 81			
He 2	4 4	Mg 12	Ca 20		Sr 38			Ba 56				Ra 88	3	
H -	3 Fi	Na 11	K 19		Rb 37			Cs 55				Fr 87	5	
1s	2s 2p	3s 3p	48	4p	58	$\left 4d \right $	5p	(6s	4f	5d	6p	(78	5f	64

ABLE 25. THE PERIODIC SYSTEM

TABLE	26.	INDEX-1	SOELECTRONI	С	SEQUENCES
	[The	tabular entr	ies are page num	be	rs.]

7	Floment							s	pectrun	a						
2	Element	I	II	111	IV	v	VI	VII	VIII	IX	x	XI	XII	XIII	XIV	xv
1	Н, D, T	1, 3														
2	He	4	6													
3	Li	8	10	11					30							
4	Be	12	14	14	15											
5	В	16	17	19	19	20										
6	С	21	24	26	29	30	31									
7	N	32	35	38	40	42	43	44								
8	0	45	47	50	53	56	58	59	59							
9	F	60	62	64	66	69	71	74	75							
10	Ne	76	81	83	84	86	88									
11	Na	89	91	93	95	96	98	100	103	105						
12	Mg	106	108	109	111	113	114	117	119	121	122	123				
13	Al	124	126	129	130	131	133	135	136	138	140	142	143			
14	Si	144	147	148	150	151	152	154	156	157	159	160	162			
15	Р	163	164	166	168	169	170	171	173	174	176	177	179	180		
16	S	181	183	185	187	188	189	190	191	193	194		194			
17	Cl	195	197	199	201	202	204	205	206	207	209	210				
18	A	211	216	218	220	222	223	224	224	225	226	226			226	
19	K	227	230	231	233	234	236	237	238	239	239	241				
20	Ca	242	245	247	248	249	251	252	253	254	255	255	257	258		258
21	Sc	259	262	263	264	265	266	267	268	269	270	271	272			
22	Ti	273	279	281	283	284	285	286	287	288	288	289	289	290		
23	v	291	298	301	303	304	304	305	306	306		307	307	308	309	

					-		

HYDROGEN

1 electron

Ground state 1s ²S_{1/2}

1s 2S12 109678.758 cm⁻¹

This table deals only with the light isotope of hydrogen, H¹; cf. page 3 for the other isotopes. The levels through n=40 have been calculated by J. E. Mack, "using $R_{\rm H^1}=109677.581$ cm⁻¹ and $\alpha^2=5.3256\times10^{-5}$, and taking into account the Lamb-Retherford shift of the *s*-levels as well as the Sommerfeld-Dirac fine structure, according to the equation

Level_n-Level_∞=
$$R_A \left\{ -n^{-2}Z^2 + \alpha^2 n^{-3}Z^4 \left[-(J+\frac{1}{2})^{-1} + 3(4n)^{-1} + \Lambda_{nlZA} \right] + \cdots \right\}$$

Here A is the atomic weight, and α is the Sommerfeld fine-structure constant. The s-shift parameter Λ is appreciable only for l=0, and depends slowly upon n and Z and probably negligibly upon A; it is found from the work of Lamb and Retherford to be 0.0485 ± 0.0002 for the 2s-level of hydrogen, and in the calculation of this table it is assumed to be independent of n.

The intervals are carried one place farther than the level values, insofar as they are accurately known.

The 1s ${}^{2}S_{\frac{1}{2}}$ level consists of two hyperfine structure components separated by 0.0473824 $\pm 0.0000008 \text{ cm}^{-1}$, the lower of which has F=0 and the other F=1.

In any one-electron spectrum the correction arising from any modification ΔR of the value accepted for the Rydberg constant may be calculated to a close approximation from the equation

$$\Delta(\text{level}) = (1 - n^{-2})Z^2 \Delta R."$$

REFERENCES

A. Fowler, Report on Series in Line Spectra, p. 89 (Fleetway Press, London, 1922). (T) (C L)

- F. Paschen und R. Götze, Seriengesetze der Linienspektren, p. 22 (Julius Springer, Berlin, 1922). (T) (C L) H. E. White, Introduction to Atomic Spectra, p. 33 (McGraw Hill Book Co., Inc., New York, N. Y., 1934).
- (G D) (\mathbf{B}, \mathbf{B}) (\mathbf{B}, \mathbf{B})
- J. W. Drinkwater, O. Richardson, and W. E. Williams, Proc. Roy. Soc. (London) [A] 174, 164 (1940). (Fine structure)
- C. E. Moore, Princeton Obs. Contr. No. 20, 1 (1945). (C L)
- H. A. Bethe, Phys. Rev. 72, 339 (1947). (T)
- D. E. Nagle, R. S. Julian, and J. R. Zacharias, Phys. Rev. 72, 971 (L) (1947). (hfs)
- J. E. Nafe and E. B. Nelson, Phys. Rev. 73, 718 (1948). (hfs)
- H. Kuhn and G. W. Series, Nature 162, 373 (1948). (Fine structure)
- W. E. Lamb, Jr., and R. E. Retherford, Bul. Am. Phys. Soc. 24, No. 1, 59 (1949). (Fine structure)
- M. M. Kroll and W. E. Lamb, Jr., Phys. Rev. 75, 388 (1949). (T)

J. E. Mack, unpublished material (1949). (I P) (T) (C L)

1

Z=1

I. P. 13.595 volts

H

Config.	Desig.	J	Level	Interval	Config	Desig.	J	Level	Interval
18	1s 2S	1/2	0. 000		16s, etc.	16s ² S, etc.	½, etc.	109250. 33	
2p	$2p^{2}P^{\circ}$	1/2	82258. 907	110.0354	17s, etc.	17s 2S, etc.	½, etc.	109299. 25	
2s 2p	28 28 2p 2P°	$1\frac{1}{1}$	82258. 942 82259. 272	J_0. 3651	18s, etc.	18s ² S, etc.	½, etc.	109340. 25	
3p	3 <i>p</i> ² P°	1/2	97492.198	170. 010	19s, etc.	19s ² S, etc.	½, etc.	109374. 94	
3s 3p, 3d 2d	$\begin{vmatrix} 38 & ^{2}S \\ 3d & ^{2}D, & 3p & ^{2}P^{\circ} \\ 3d & ^{2}D \end{vmatrix}$	$1\frac{1}{2}$	97492.208 97492.306 97492.342	0. 1082 0. 0361	20s, etc.	20s ² S, etc.	½, etc.	109404. 57	
.	5 <i>u</i> - 15	1/2	100002 025		21s, etc.	21s ² S, etc.	½, etc.	109430.06	
4p 4s	$4p^{2}r$ $4s^{2}S$		102823.835 102823.839 102823.839	$\begin{bmatrix} 0.004 \\ 0.0456 \end{bmatrix}$	22s, etc.	22s 2S, etc.	½, etc.	109452.15	
$\begin{array}{c} 4p, 4d \\ 4d, 4f \\ 4f \end{array}$	$\begin{bmatrix} 4a \ ^{2}D, \ 4p \ ^{2}F^{\circ} \\ 4d \ ^{2}D, \ 4f \ ^{2}F^{\circ} \\ 4f \ ^{2}F^{\circ} \end{bmatrix}$	$ \begin{array}{r} 1 \\ 2 \\ 2 \\ 2 \\ 3 \\ 3 \\ \end{array} $	102823.881 102823.896 102823.904	^J 0. 0152 0. 0076	23s, etc.	23s 2S, etc.	½, etc.	109471. 428	
-1 <i>j</i> 5 m	5m 2P°	1/2	105201 615		24s, etc.	24s ² S, etc.	½, etc.	109488. 346	
5p 5s	$5s^{2}S$		105291.013 105291.617 105201.628	$\begin{array}{c} 0.\ 002 \\ 0.\ 0233 \end{array}$	25s, etc.	25s 2S, etc.	½, etc.	109503. 274	
5p, 5a 5d, 5f	$5d, ^{2}D, 5f ^{2}F^{\circ}$	$ \begin{array}{r} 172 \\ 2\frac{1}{2} \\ 21/2 \\ 21/ \end{array} $	105291.038 105291.646 105201.650	¹ 0. 0078 0. 0039	26s, etc.	26s 2S, etc.	½, etc.	109516. 513	
5 <i>j</i> , 5 <i>g</i> 5 <i>g</i>	$5g {}^{2}G, 5j {}^{2}F$		105291.050 105291.652	0. 0024	27s, etc.	27s ² S, etc.	½, etc.	109528. 309	
6p	6p ² P°		106632.135	770. 001	28s, etc.	28s 2S, etc.	½, etc.	109538.863	
6p, 6d	$6d^{2}D, 6p^{2}P^{\circ}$	$1\frac{1}{2}$	100032.130 106632.148 106632.150	$\begin{bmatrix} J \\ -0. & 0045 \end{bmatrix}$	29s, etc.	29s ² S, etc.	½, etc.	109548. 345	
6 <i>a</i> , 6 <i>f</i>	$6d^{2}$ D, $6f^{2}$ F° $6g^{2}$ G, $6f^{2}$ F°	$ \begin{array}{r} 2 \frac{7}{2} \\ 3 \frac{1}{2} \\ 4 \frac{1}{2} \end{array} $	106032.152 106632.155 106632.155	$\begin{array}{c} 0.\ 0022\\ 0.\ 0014 \end{array}$	30s, etc.	30s ² S, etc.	½, etc.	109556. 894	
6g, 6h 6h	$\begin{array}{c} 6g \ ^2\mathrm{G}, \ 6h \ ^2\mathrm{H}^\circ \\ 6h \ ^2\mathrm{H}^\circ \end{array}$	$4\frac{1}{2}$ $5\frac{1}{2}$	106632.156 106632.157	0. 0009	31s, etc.	31s ² S, etc.	½, etc.	109564.629	-
7s, etc.	7s 2S, etc.	½, etc.	107440. 425 to , 439	0. 014	32s, etc.	32s 2S, etc.	½, etc.	109571.651	
Se ota	8s 2S at a	1/2 of c	107965 036		33s, etc.	33s ² S, etc.	½, etc.	109578. 044	
03, 010.	00 0, 000	72, 000.	to . 045	0. 009	34s, etc.	34s 2S, etc.	½, etc.	109583. 881	
9s, etc.	9s 2S, etc.	½, etc.	108324.706 to.714	0.008	35s, etc.	35s 2S, etc.	½, etc.	109589. 225	
10s etc	10s 2S. etc.	½ etc.	108581.98		36s, etc.	36s ² S, etc.	½, etc.	109594. 130	
11e oto	11s 2S etc	1/2, 000.	108772 33		37s, etc.	37s 2S, etc.	$\frac{1}{2}$, etc.	109598. 643	
19a ota	12a 25 ot a	1/2, 000.	108017 11		38s, etc.	38s 2S, etc.	½, etc.	109602.804	
128, etc.	120 °D, 600.	/2, etc.	100917.11		39s, etc.	39s 2S, etc.	½, etc.	109606. 649	
108, etc.	140 29 oto	/2, etc.	109029.78		40s, etc.	40s 2S, etc.	½, etc.	109610. 210	
143, etc.	148 °D, etc.	72, etc.	109119.18						
158, etc.	158 'S, etc.	½, etc.	109191.30			$\infty = Limit$		109678.758	

February 1949.

D and **T**

1 electron

Ground state 1s 2S12

1s 2S14	\mathbf{D}	(H^2)	109708.	596	cm^{-1}
---------	--------------	------------------	---------	-----	-----------

18 $^{2}S_{12}$ T (H³) 109718.526 cm⁻¹

The term values have been calculated by J. E. Mack, "using $R_{\rm D}$ =109707.419 and $R_{\rm T}$ = 109717.348 cm⁻¹, and taking into account the same fine structure as in hydrogen. Lamb and Retherford have found that the 2s-shift in deuterium is the same as in light hydrogen within about 0.5 percent. Levels not given here may be calculated from the hydrogen table with the aid of the correction equations

Level_D-Level_H= $(1-n^{-2})$ 29.838 cm⁻¹ and Level_T-Level_H= $(1-n^{-2})$ 39.768 cm⁻¹.

Nafe and Nelson have kindly communicated the results of their hyperfine structure measurements in tritium in advance of publication. In both isotopes the 1s-level has two hyperfine-structure components, the lower of which has the lower *F*-value. In deuterium the separation is $0.01092095 \pm 0.00000023$ cm⁻¹, and the *F*-values are 1/2 and 3/2. In tritium the separation is 0.0505945 ± 0.0000010 cm⁻¹, the *F*-values 0 and 1."

REFERENCES

J. W. Drinkwater, O. Richardson, and W. E. Williams, Proc. Roy. Soc. (London) [A] 174, 164 (1940). (Fine structure) (I S)

D. E. Nagle, R. S. Julian, and J. R. Zacharias, Phys. Rev. 72, 971 (L) (1947). (hfs)

J. E. Nafe and E. B. Nelson, Phys. Rev. 73, 718 (1948); 75, in press (1949). (hfs)

R. E. Retherford and W. E. Lamb, Jr., Bul. Am. Phys. Soc. 24, No. 1, 59 (1949). (Fine structure)

J. E. Mack, unpublished material (1949). (I P) (T) (C L)

Config.	Desig.	J	Level	Level	Interval
18	1s ² S	1/2	0.000	0.000	
2p 2s	2p 2P° 2s 2S	$\frac{1/2}{1/2}$	$82281.285 \\ 82281.320$	82288.733 82288.768	$\begin{bmatrix} 0.0354 \\ 0.3652 \end{bmatrix}$
2p	$2p\ ^2\mathrm{P}^\circ$	$1\frac{1}{2}$	82281.650	82289.098	0.0002
3p 3s	3p ² P° 3s ² S	$\frac{1}{2}$ $\frac{1}{2}$	97518.721 97518.731	97527.547 97527.558	
3p, 3d 3d	$\begin{array}{ccc} 3d \ ^2\mathrm{D}, & 3p \ ^2\mathrm{P}^\circ \\ 3d \ ^2\mathrm{D} \end{array}$	$1\frac{1}{2}$ $2\frac{1}{2}$	97518.829 97518.865	$97527.656 \\97527.692$	-J 0.1082 0.0361
$\frac{4p}{4s}$	4p ² P° 4s ² S	1/2 1/2	$\frac{102851.808}{102851.812}$	$\begin{array}{c} 102861.118 \\ 102861.122 \end{array}$	0.004
$\begin{array}{c} 4p, 4d \\ 4d, 4f \end{array}$	$\begin{array}{ccc} 4d \ {}^{2}\mathrm{D}, & 4p \ {}^{2}\mathrm{P}^{\circ} \\ 4d \ {}^{2}\mathrm{D}, & 4f \ {}^{2}\mathrm{F}^{\circ} \\ 4d \ {}^{2}\mathrm{D}, & 4f \ {}^{2}\mathrm{F}^{\circ} \end{array}$	$1\frac{1}{2}$ $2\frac{1}{2}$	$\begin{array}{c} 102851.854 \\ 102851.869 \\ 102851.977 \end{array}$	$\begin{array}{c} 102861.163 \\ 102861.178 \\ 1029011100 \end{array}$	- J 0.0450 0.0152 0.0076
4 <i>j</i>	4 <i>j</i> *F *	37/2	102851.877	102801.180	
5p 5s	5p ² P° 5s ² S	1/2 1/2	$\begin{array}{c} 105320.260 \\ 105320.262 \end{array}$	$\begin{array}{c} 105329.792 \\ 105329.795 \end{array}$	
5p, 5d 5d, 5f	$5d {}^{2}D, 5p {}^{2}P^{\circ}$ $5d {}^{2}D, 5f {}^{2}F^{\circ}$	$1\frac{1}{2}$ $2\frac{1}{2}$	$\begin{array}{c} 105320.283 \\ 105320.291 \end{array}$	$\begin{array}{c} 105329.816 \\ 105329.824 \end{array}$	0.0078
5f, 5g 5g	$5g {}^{2}G, 5f {}^{2}F^{0}$ $5g {}^{2}G$	$3\frac{1}{2}$ $4\frac{1}{2}$	$\frac{105320.294}{105320.297}$	$\frac{105329.827}{105329.830}$	0.0024
6p 6s	6p ² P° 6s ² S	$\frac{1}{2}$	$106661.144 \\ 106661.145$	$106670.798 \\ 106670.800$	0.001
6p, 6d	$6d {}^{2}D, 6p {}^{2}P^{\circ}$	$1\frac{1}{2}$	106661.158	106670.812	-1 0.0136 0.0045
6 <i>a</i> , 6 <i>f</i>	$6a^{2}D, 6f^{2}F^{\circ}$ $6a^{2}G, 6f^{2}F^{\circ}$	$\frac{2\frac{1}{2}}{3\frac{1}{2}}$	106661.162	106670.816	0.0022
6g, 6h 6h	$6g^{2}G, 6h^{2}H^{\circ}$ $6h^{2}H^{\circ}$	4½ 5½	$\frac{106661.166}{106661.167}$	$\frac{106670.820}{106670.821}$	0.0014 0.0009
7s, etc.	7s 2S, etc.	½, etc.	107469.654	107479.381	
			to .669	to .396	
	∞=Limit		109708.596	109718.526	

February 1949.

I. P. D 13.598 volts

I. P. T 13.600 volts

3

D

HELIUM

He I

2 electrons

Ground state 1s² ¹S₀

$1s^2 {}^1S_0 198305 \pm 15 \text{ cm}^{-1}$

I. P. 24.580 volts

Z=2

Most of the terms are taken from Paschen-Götze with the term values subtracted from Paschen's limit as quoted by Robinson in 1937. Higher members of the ${}^{1}F^{\circ}$ and ${}^{3}F^{\circ}$ series are taken from Meggers and Dieke. The term 2p ${}^{3}P^{\circ}$ has been calculated from its combination with 2s ${}^{3}S_{1}$, using the resolved triplet as observed by Meggers, the intervals being -0.078 cm⁻¹ and -0.996 cm⁻¹. The components of 3p ${}^{3}P^{\circ}$ are based on Paschen's value of 3p ${}^{3}P_{2}^{\circ}$ and the intervals observed by Gibbs and Kruger; -0.165 cm⁻¹ and -0.192 cm⁻¹.

Some doubt exists regarding the correct classifications of lines attributed to doubly excited helium, such as those observed at 309.04 A and 320.38 A by Compton and Boyce, and at 320.392 A and 357.507 A by Kruger. Approximate theoretical computations of the energies of doubly excited levels have been made by a number of authors and are summarized by Wu. His classification of the line observed at 320.4 A as 2p ³P°- $2p^2$ ³P has been adopted and used for the calculation of $2p^2$ ³P.

Several references deal with intercombinations in He 1, namely, those by Lyman, Hopfield, Paschen, Suga, and others. The term values based on the excellent long series have been adopted in the table, since it is believed that they are the most accurate.

REFERENCES

- F. Paschen und R. Götze, Seriengesetze der Linienspektren p. 22 (Julius Springer, Berlin, 1922). (T) (C L)
- T. Lyman, Astroph. J. 60, 1 (1924). (T) (C L)
- K. T. Compton and J. C. Boyce, J. Franklin Inst. 205, 497 (1928). (C L)
- F. Paschen, Sitz. Berlin Akad. Wiss. 30, 662 (1929). (T) (C L)
- J. J. Hopfield, Astroph. J. 72, 133 (1930). (T) (C L)
- P. G. Kruger, Phys. Rev. 36, 855 (1930). (C L)
- R. C. Gibbs and P. G. Kruger, Phys. Rev. 37, 1559 (1931). (T)
- W. F. Meggers and G. H. Dieke, Bur. Std. J. Research 9, 121, RP462 (1932). (T) (C L)
- F. Paschen and R. Ritschl, Ann. der Phys. [5] 18, 888 (1933). (T) (C L)
- H. E. White, Introduction to Atomic Spectra p. 209 (McGraw-Hill Book Co., Inc., New York, N. Y., 1934). (G D)
- W. F. Meggers, J. Research Nat. Bur. Std. 14, 487, RP781 (1935). (C L)
- T. Suga, Sci. Papers Inst. Phys. Chem. Research (Tokyo) 34, No. 740, 16 (1937). (C L)
- H. A. Robinson, Phys. Rev. 51, 14 (1937). (I P)
- P. Jacquinot, Compt. Rend. 208, 1896 (1939). (C L)
- T.-Y. Wu, Phys. Rev. 66, 291 (1944). (C L)
- W. F. Meggers, J. Opt. Soc. Am. 36, 431 (1946). (Summary hfs)

HeI

Heı

Config.	Desig.	J	Level	Config.	Desig.	J	Level
182	1s ² ¹ S	0	0±15	18 78	78 ¹ S	0	195973. 19
18 28	28 3S	1	159850. 318	1s 7p	7 <i>p</i> ³ P°	2, 1, 0	196021.72
1s 2s	2s 1S	0	166271.70	1s 7d	7d ² D	3, 2, 1	196064.00
1s 2p	$2p$ $^{3}P^{\circ}$	2	169081.111	1s 7d	7d 1D	2	196064.31
			169081.189 169082.185	1s 7f	7f 1F°	3	196065.4
1s 2p	2 <i>p</i> ¹ P°	1	171129.148	1s 7f	7 <i>f</i> ² F°	4, 3, 2	196065.51
18 38	3s 3S	1	183231.08	1s 7p	7 <i>p</i> ¹ P°	1	196073.41
18 38	3s 1S	0	184859.06	1s 8s	8s 3S	1	196455. 79
1s 3p	3 <i>p</i> ³ P°	2	185558.92	1s 8s	8s 1S	0	196529.03
			185559.085	1s 8p	8 <i>p</i> ³ P°	2, 1, 0	196561.08
1s 3d	3 <i>d</i> ³ D	3, 2, 1	186095. 90	1s 8d	8d 3D	3, 2, 1	196589. 42
1s 3d	3 <i>d</i> ¹ D	2	186099. 22	1s 8d	8 <i>d</i> 1D	2	196589. 73
1s 3p	3 <i>p</i> ¹ P°	1	186203.62	1s 8f	8 <i>f</i> ¹ F°	3	196590. 3
18 48	48 3S	1	190292.46	1s 8f	8 <i>f</i> ³ F°	4, 3, 2	196590.42
1s 4s	4s 1S	0	190934. 50	1s 8p	8p 1P°	1	196595.56
1s 4p	4 <i>p</i> ³ P°	2, 1, 0	191211.42	18 98	9s 3S	1	196856.37
1s 4d	4 <i>d</i> ³ D	3, 2, 1	191438. 83	1s 9s	9s 1S	0	196907.13
1s 4d	4 <i>d</i> ¹ D	2	191440. 71	1s 9p	9p 3P°	2, 1, 0	196929.68
1s 4f	<i>4f</i> ³ F [◦]	4, 3, 2	191446.61	1s 9d	9 <i>d</i> ¹ D	2	196949. 49
1s 4f	4 <i>f</i> ¹ F°	3	191447. 24	1s 9d	9d 3D	3, 2, 1	196949. 63
1s 4p	4 <i>p</i> ¹ P°	1	191486.95	1s 9f	9f 1F°	3	196950. 3
1s 5s	58 3S	1	193341. 33	1s 9f	9f 3F°	4, 3, 2	196950. 36
18 58	5s 1S	0	193657.78	1s 9p	9 <i>p</i> ¹ P°	1	19695 3. 95
1s 5p	5 <i>p</i> ³ P°	2, 1, 0	193795.07	1s 10s	10s 3S	1	197139. 76
1s 5d	$5d$ ^{3}D	3, 2, 1	193911. 48	1s 10s	10s ¹ S	0	197176.36
ls 5d	5d ¹ D	2	193912. 54	1s 10p	10 <i>p</i> ³ P°	2, 1, 0	<i>197192.63</i>
1s 5f	5 <i>f</i> ¹ F°	3	193914. 31	1s 10d	10 <i>d</i> ¹ D	2	197207. 08
1s 5f	5f 3F°	4, 3, 2	<i>193915.79</i>	1s 10d	10d 3D	3, 2, 1	197207. 30
1s 5p	5 <i>p</i> ¹ P°	1	193936.75	1s 10f	10 <i>f</i> ³ F ^o	4, 3, 2	197208.0
1s 6s	6s 3S	1	194930. 46	1s 10p	10 <i>p</i> ¹ P°	1	197210. 41
1s 6s	6s 1S	0	195109. 17	1s 11s	11s 3S	1	197347.05
1s 6 p	6 <i>p</i> ³ P°	2, 1, 0	195187. 21	1s 11p	11 <i>p</i> ³ P ^o	2, 1, 0	197386.98
1s 6d	6 <i>d</i> ³ D	3, 2, 1	195254.37	1s 11d	11d 1D	2	197397.62
1s 6d	6 <i>d</i> ¹ D	2	195255. 02	1s 11d	11d 3D	3, 2, 1	197397. 75
ls 6f	6f 1F°	3	195256. 7	1s 11f	11 <i>f</i> ³ F ^o	4, 3, 2	<i>197398.6</i>
ls 6f	6 f ³ F°	4, 3, 2	195256.82	1s 11p	11 <i>p</i> ¹ P°	1	197400. 18
18 6p	6 <i>p</i> ¹ P°	1	195269. 17	18 128	12s 3S	1	197503.69
18 78	78 ² S	1	195862.63	18 128	12s ¹ S	0	197524.26

5

He I—Continued

He I—Continued

Z=2

I. P. He³ 54.400 volts

I. P. He⁴ 54.403 volts

Config.	Desig.	J	Level	Config.	Desig.	J	Level
1s 12p	12p ³ P°	2, 1, 0	197534.44	1s 16d	16d 3D	3, 2, 1	197876. 41
1s 12d	12d 1D	2	197542. 54	1s 16p	16p ¹ P°	1	197877.04
1s 12d	12 <i>d</i> ³ D	3, 2, 1	197542.67	1s 17p	17 <i>p</i> ³ P°	2, 1, 0	197922.51
1s 12p	12 <i>p</i> ¹ P°	1	197544.56	1s 17d	17d ³ D	3, 2, 1	197925. 33
18 138	13s 3S	1	197624. 98	1s 17p	17 <i>p</i> ¹ P°	1	197925.87
1s 13p	13p ³ P ^o	2, 1, 0	197649. 07	1s 18p	18 <i>p</i> ³ P°	2, 1, 0	197964.02
18 138	13s 1S	0	197649. 78	1s 18d	18d ³ D	3, 2, 1	197966. 75
1s 13d	13d 1D	2	197655.19	1s 18p	18 <i>p</i> ¹ P°	1	197966. 80
1s 13d	13d ³ D	3, 2, 1	197655.47	1s 19p	19 <i>p</i> ³P°	2, 1, 0	197999. 12
1s 13p	13p ¹ P°	1	197656.95	1s 19d	19d ³ D	3, 2, 1	198001. 43
18 148	14s 3S	1	197721.13	1s 19p	19 <i>p</i> ¹ P°	1	198001.44
1s 14p	14p ³ P°	2, 1, 0	197739. 90	1s 20p	20p ³ P°	2, 1, 0	198029.07
ls 14d	14d 1D	2	197744. 918	1s 20p	20 <i>p</i> ¹ P°	1	198031.02
1s 14d	14d ³ D	3, 2, 1	197744. 94	1s 20d	20d 3D	3, 2, 1	198031.41
1s 14p	14 <i>p</i> ¹ P ^o	1	197746.15	1s 21p	21 <i>p</i> ³ P°	2, 1, 0	198054.83
18 158	158 3S	1	197796.63	1s 21d	21d ³ D	3, 2, 1	198056. 50
1s 15p	15p ³ P°	2, 1, 0	197813.11	1s 22p	22 <i>p</i> ³ P°	2, 1, 0	198077.15
1s 15d	15d ³ D	3, 2, 1	197817.05				
1s 15p	15p ¹ P°	1	197818. 12	He II (2S ₁₅)	Limit		198305
1s 16p	16p ³ P ^o	2, 1, 0	197872.95	$2p^{2}$	$2p^2$ ³ P	2, 1, 0	481198

August 1946.

He II

(H sequence; 1 electron)

Ground state 1s 2S₁₂

1s ²S_{1/2} He³ 438889.040 cm⁻¹

1s ²S₁₂ He⁴ 438908.670 cm⁻¹

The levels have been calculated by J. E. Mack, "using $R_{\text{He}4}=109722.264$ and taking into account the fine structure as in hydrogen, but with $\Lambda=0.0402\pm0.009$, from the work of Skinner and Lamb on the 2s-level. The tentative experimental indication that Λ decreases with increasing *n* has been neglected. Assuming $R_{\text{He}3}=109717.344$, the levels of He³ may be calculated to a close approximation from those of He⁴ by the equation

 $Level_{He^3II} - Level_{He^4II} = -(1 - n^{-2})19.630 \text{ cm}^{-1}$."

REFERENCES

A. Fowler, Report on Series in Line Spectra, p. 95 (Fleetway Press, London, 1922). (T) (C L)

F. Paschen und R. Götze, Seriengesetze der Linienspektren, p. 25 (Julius Springer, Berlin, 1922). (T) (C L)

H. E. White, Introduction to Atomic Spectra, p. 33 (McGraw-Hill Book Co., New York, N. Y., 1934). (G D)

C. E. Moore, Princeton Obs. Contr. No. 20, 1 (1945). (C L)

H. A. Bethe, Phys. Rev. 72, 339 (1947). (T)

J. E. Mack and N. Austern, Phys. Rev. 72, 972 (1947); 74, 1262 (A) (1948). (Fine structure)

G. R. Fowles, Phys. Rev. 73, 639 (L) (1948); 74, 219 (L) (1948). (Fine structure)

H. Kopfermann and W. Paul, Nature 162, 33 (L) (1948). (Fine structure) M. Skinner and W. E. Lamb, Jr., Bul. Am. Phys. Soc. 24, No. 1, 59 (1949). (Fine structure)

J. E. Mack, unpublished material (1949). (I P) (T) (C L)

Config.	Desig.	J	Level	Level	Interval
18	1s 2S	1/2	0.000	0.000	
2p 2s 2p	2s ² S ² P° 2p ² P° 2p ² P°	1/2 1/2 1/2 1/2	$329164.390\ 329164.860\ 329170.135$	$\begin{array}{c} 329179.102\\ 329179.572\\ 329184.945\end{array}$	$\left] \right] \begin{array}{c} 0.470 \\ 5.8434 \end{array}$
3p 3s 3p, 3d 3d	3p ² P° 3s ² S 3d ² D, 3p ² P° 3d ² D	$\begin{array}{c} \frac{1/2}{1/2} \\ 1/2 \\ 1/2 \\ 21/2 \\ 21/2 \end{array}$	390123.179 390123.318 390124.910 390125.487	$\begin{array}{c} 390140.622\\ 390140.761\\ 390142.353\\ 390142.930\\ \end{array}$	$\left. \begin{array}{c} 0.14 \\ 1.7314 \\ 0.5771 \end{array} \right.$
$\begin{array}{c} 4p \\ 4s \\ 4p, 4d \\ 4d, 4f \\ 4f \end{array}$	$\begin{array}{c} 4p \ ^2\mathrm{P}^\circ \\ 4s \ ^2\mathrm{S} \\ 4d \ ^2\mathrm{D}, \ 4p \ ^2\mathrm{P}^\circ \\ 4d \ ^2\mathrm{D}, \ 4f \ ^2\mathrm{F}^\circ \\ 4f \ ^2\mathrm{F}^\circ \end{array}$	$1/2 \\ 1/2 \\ 1/2 \\ 2/2 \\ 3/2 \\ 3/2 $	$\begin{array}{r} 411458.517\\ 411458.576\\ 411459.248\\ 411459.491\\ 411459.613\end{array}$	411476.917 411476.976 411477.648 411477.891 411478.013	$\left] \right] \begin{array}{c} 0.06 \\ 0.7304 \\ 0.2435 \\ 0.1217 \end{array} \right]$
5p 5s 5p, 5d 5d, 5f 5f, 5g 5g	$\begin{array}{c} 5p\ ^2{\rm P}^\circ\\ 5s\ ^2{\rm S}\\ 5d\ ^2{\rm D},\ 5p\ ^2{\rm P}^\circ\\ 5d\ ^2{\rm D},\ 5f\ ^2{\rm F}^\circ\\ 5g\ ^2{\rm G},\ 5f\ ^2{\rm F}^\circ\\ 5g\ ^2{\rm G},\end{array}$	$\begin{array}{c} \frac{1}{12} \\ \frac{1}{12} \\ 1\frac{1}{2} \\ 2\frac{1}{2} \\ 3\frac{1}{2} \\ 4\frac{1}{2} \end{array}$	$\begin{array}{r} 421333.629\\ 421333.659\\ 421334.003\\ 421334.128\\ 421334.190\\ 421334.228\end{array}$	$\begin{array}{r} 421352.472\\ 421352.502\\ 421352.846\\ 421352.971\\ 421353.033\\ 421353.071\end{array}$	$\left. \begin{array}{c} 0.03 \\ 0.3740 \\ 0.1247 \\ 0.0624 \\ 0.0374 \end{array} \right.$
6 p 6s 6p, 6d 6d, 6f 6f, 6g 6g, 6h 6h	$\begin{array}{c} 6p \ ^2 {\rm P}^\circ \\ 6s \ ^2 {\rm S} \\ 6d \ ^2 {\rm D}, \ 6p \ ^2 {\rm P}^\circ \\ 6d \ ^2 {\rm D}, \ 6f \ ^2 {\rm F}^\circ \\ 6g \ ^2 {\rm G}, \ 6f \ ^2 {\rm F}^\circ \\ 6g \ ^2 {\rm G}, \ 6h \ ^2 {\rm H}^\circ \\ 6h \ ^2 {\rm H}^\circ \end{array}$	$\begin{array}{c} \frac{1}{12} \\ \frac{1}{12} \\ \frac{1}{12} \\ \frac{2}{12} \\ \frac{3}{12} \\ \frac{3}{12} \\ \frac{4}{12} \\ \frac{5}{12} \end{array}$	$\begin{array}{r} 426697.845\\ 426697.862\\ 426698.062\\ 426698.134\\ 426698.170\\ 426698.192\\ 426698.206\end{array}$	$\begin{array}{r} 426716.928\\ 426716.945\\ 426717.145\\ 426717.217\\ 426717.253\\ 246717.275\\ 426717.289\end{array}$	$\left. \begin{array}{c} 0.02 \\ 0.2164 \\ 0.0721 \\ 0.0361 \\ 0.0216 \\ 0.0144 \end{array} \right.$
7s, etc.	7s 2S, etc.	½, etc.		429951.508 to .741	
8s, etc.	8s 2S, etc.	½, et c .		432050.863 to1.023	
9s, etc.	9s 2S, etc.	½, etc.		433490.169 to .283	
10s, etc.	10s ² S, etc.	½, et c.		434519.693 to .777	
11s, etc.	11s 2S, etc.	½, etc.		435281.423 to .486	
12s, etc.	12s ² S, etc.	½, etc.		435860.778 to .828	
13s, etc.	13s ² S, etc.	½, etc.		436311.653 to .692	
14s, etc.	14s ² S, etc.	½, etc.		436669.407 to .439	
15s, etc.	15s 2S, etc.	½, etc.		436957.026 to 8.052	
	∞=Limit			438908. 670	

He³ II He⁴ II

February 1949.

LITHIUM

Li 1

3 electrons

Ground state 1s² 2s ²S₃

$2s \ {}^{2}S_{\frac{1}{2}} 43487.19 \pm 0.02 \text{ cm}^{-1}$

I. P. 5.390 volts

Z=3

The analysis is from Fowler and Paschen-Götze. Meissner has generously furnished in advance of publication preliminary results of level splittings derived from observed fine structure of selected lines. These data are as follows:

Term	Interval (cm ⁻¹)	Line resolved (A)	Term	Line resolved (A)
$2p \ {}^2\mathrm{P}^{\circ} \ 3d \ {}^2\mathrm{D} \ 4d \ {}^2\mathrm{D} \ 5d \ {}^2\mathrm{D} \ 6d \ {}^2\mathrm{D} \ {}$	$\begin{array}{c} 0.\ 3366 \ \pm 0.\ 0005^* \\ 0.\ 037 \ \pm 0.\ 001 \\ 0.\ 015 \ \pm 0.\ 002 \\ 0.\ 010 \ \pm 0.\ 003 \\ 0.\ 005 \ \pm 0.\ 003 \end{array}$	$\begin{array}{c} 6707,\ 912,\ .\ 761\\ 6103,\ 649,\ .\ 538\\ 4602,\ 894,\ .\ 826\\ 4132,\ 618,\ .\ 562\dagger\\ 3915,\ 346,\ .\ 295 \end{array}$	3s 2S 4s 2S 5s 2S 6s 2S	8126, 452, . 231 4971, 745, . 661 4273, 127, . 066 3985, 538, . 485

*Average of 6 determinations.

†Edlén and Lidén derive a mean value of 4132.60 ± 0.02 A and the resulting corrected values quoted for 5d ²D and the limit.

The values in the table for the above terms have been calculated from these wavelengths, except for $5d \,{}^{2}D$. Jackson and Kuhn state that the multiplet splitting of $2p \,{}^{2}P^{\circ}=0.3372\pm 0.0005 \text{ cm.}^{-1}$.

The remaining terms given to two decimals have been calculated from the measures by France. The terms ns ²S, n=7 to 11, and nd ²D, n=7 to 12, are from Werner. All other term values are from Fowler's Report.

REFERENCES

N. A. Kent, Astroph. J. 40, 337 (1914). (T) (Z E)

A. S. King, Astroph. J. 44, 169 (1916). (T)

A. Fowler, Report on Series in Line Spectra, p. 96 (Fleetway Press, London, 1922). (T) (C L)

F. Paschen und R. Götze, Seriengesetze der Linienspektren, p. 54, (Julius Springer, Berlin, 1922). (T) (C L)

S. Werner, Studier over Spektroskopiske Lyskilder til Frembringelse af Gnistspektre med Resultater for Lithiums Gnistspektrum, p. 67 (A. Aschehoug & Co., Dansk Forlag, Kobenhavn, 1927). (I P) (T) (C L)

R. W. France, Proc. Roy. Soc. (London) [A] 129, 354 (1930). (I P) (T) (C L)

H. E. White, Introduction to Atomic Spectra, p. 77, 87, (McGraw-Hill Book Co., Inc., New York, N. Y. 1934). (G D)

D. A. Jackson and H. Kuhn, Proc. Roy. Soc. (London) [A] 173, 278 (1939). (I S)

W. F. Meggers, J. Opt. Soc. Am. 36, 431 (1946). (Summary hfs).

K. W. Meissner, L. G. Mundie, and P. Stelson, Phys. Rev. 74, 932 (1948); 75, 891 (L) (1949). (T) (C L)

B. Edlén and K. Lidén, Phys. Rev. 75, 890 (L) (1949). (I P) (T)

|--|

Config.	Desig.	J	Level	Config.	Desig.	J	Level
28	28 2S	1/2	0. 00	12d	12 <i>d</i> ² D	1½, 2½	42725
2p	2 <i>p</i> ² P°	1/2	14903.66	13p	13p 2P°	1/2, 11/2	42832.92
	D 1	1/2	14904.00	14 <i>p</i>	14p ² P°	1/2, 11/2	42923. 39
38	38 45	⁷ 2	27200. 12	15p	15p 2P°	1/2, 11/2	42995.51
3p	$3p 2P^2$	$\frac{7}{2}, \frac{1}{2}$	30920. 30	16 <i>p</i>	16p 2P°	1/2, 11/2	43055.34
3d	3 <i>a *</i> D	$\frac{1}{2}$ $\frac{1}{2}$	31283. 12	17 <i>p</i>	17 <i>p</i> ² P°	1/2, 11/2	43105.42
48	4s 2S	1/2	3 5012.06	18p	18p ² P°	1/2, 11/2	43146.96
4 <i>p</i>	4p 2P°	1/2, 11/2	36469. 55	19p	19 <i>p</i> ² P°	1/2, 11/2	43181.84
4d	$4d$ $^{2}\mathrm{D}$	$\frac{1\frac{1}{2}}{21}$	36623.38	20 <i>p</i>	20 <i>p</i> ² P°	1/2, 11/2	43211.39
A.F.	1f 2F9	272	26620 Ø	21p	21p 2P°	1/2, 11/2	43237.16
4 <i>j</i>	4) ⁻ 1	<i>472</i> , <i>372</i>	38200 50	22 <i>p</i>	22p 2P°	1/2, 11/2	43259.14
58	5m 2D°	72	90015 56	23 <i>p</i>	23p 2P°	1/2, 11/2	43278.96
50	5 <i>d</i> 2D	72, 172	20004 02	24p	24p 2P°	1/2, 11/2	43296.03
Ja	5a -D	$2\frac{1}{2}$	39094. 93 39094. 94	25p	25p 2P°	1/2, 11/2	43311.45
6f	5f ² F°	2½, 3½	39104. 5	26p	26p 2P°	1/2, 11/2	43324. 81
6 <i>s</i>	6s 2S	1/2	39987.64	27 <i>p</i>	27p 2P°	1/2, 11/2	43336.40
6 <i>p</i>	6p 2P°	1/2, 11/2	40390. 84	28p	28p 2P°	1/2, 11/2	43346.39
6 <i>d</i>	6 <i>d</i> 2D	$\frac{11}{2}$	40437.31	29p	29 <i>p</i> ² P°	1/2, 11/2	43354.91
7.	7. 29	. 1/	40437.32	30 <i>p</i>	30 <i>p</i> ² P°	1/2, 11/2	43363.71
78	78 -5 7m 2D°	72	40907.9	31 <i>p</i>	31p 2P°	1/2, 11/2	43372.06
79		$\frac{72}{11/2}$	41217.30	32 <i>p</i>	32p 2P°	1/2, 11/2	43378. 31
107		172, 472	41240. 5	33p	3 3 <i>p</i> ² P°	1/2, 11/2	43384. 9
10 <i>a</i>	10 <i>a</i> 2D	172, 472	41409	34 <i>p</i>	34p 2P°	1/2, 11/2	43390. 3
8~	08 °D	72	41087.1	35p	35p 2P°	1/2, 11/2	43395.4
op od	<i>8p</i> 20	72, 172	41791.03	36p	36p 2P°	1/2, 11/2	43400.5
0a	8 <i>u</i> 2D	172, 272	41771. 0	37 <i>p</i>	37p 2P°	1/2, 11/2	43404. 7
98	98 - 5 0m 2 P 9	72	42003. 3	38p	38p 2P°	1/2, 11/2	43408.6
9p 0d		72, 172	42118. 27	39p	39p 2P°	1/2, 11/2	43412.4
9 <i>a</i>	9 <i>a</i> 2D	172, 272	42131. 3	40 <i>p</i>	40 <i>p</i> ² P°	1/2, 11/2	43416.9
108	108 *S	⁷ 2	42298	41 <i>p</i>	41 <i>p</i> ² P°	1/2, 11/2	43420.9
11.	10p 2P	72, 172	42379.16	42p	42 <i>p</i> ² P°	1/2, 11/2	43424. 3
118	118 *0	1/ 11/	42510				
11 <i>p</i>		$\frac{1}{2}, \frac{1}{2}$	42569.1	Li 11 (¹ S _o)	Limit		43487.19
120	11 <i>a *</i> D	$1\frac{1}{2}, 2\frac{1}{2}$	42578				
12p	12p 2P	1/2, 1/2	42719.14				

.

December 1948.

(He 1 sequence; 2 electrons)

Ground state 1s² ¹S₀

$1s^2 {}^{1}S_0 610079 \pm 25 \text{ cm}^{-1}$

I. P. 75.6193 ± 0.0031 volts

Singlet series have been published by both Schüler and Werner, the longer ones by Schüler. In the term list Schüler's rounded off values have been used for the terms 4s to 7s ¹S, 5d to 8d ¹D and 8f ¹F°. The limit is from Robinson and the 2p to 4p ¹P° terms are from Edlén. All the remaining terms are from Werner, who gives also an extrapolated value of 2s ¹S₀, entered in brackets in the table.

Intersystem combinations have not been observed, but the long series should give a reliable determination of the relative positions of the singlet and triplet terms.

REFERENCES

H. Schüler. Zeit. Phys. 37, 568 (1926). (T) (C L)

- S. Werner, Nature 116, 574 (L) (1925); 118, 154 (L) (1926). (T) (C L)
- S. Werner, Studier over Spektroskopiske Lyskilder til Frembringelse af Gnistspektre med Resultater for Lithiums Gnistspektrum, p. 59 (H. Aschehoug & Co., Dansk Forlag, Kobenhavn, 1927). (I P) (T) (C L).
- B. Edlén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 6, 31 (1934). (T) (C L)
- H. E. White, Introduction to Atomic Spectra p. 209 (McGraw-Hill Book Co., Inc., New York, N. Y., 1934). (G D)

H. A. Robinson, Phys. Rev. 51, 14 (1937). (I P) (T) (C L)

W. F. Meggers, J. Opt. Soc. Am. 36, 431 (1946). (Summary hfs)

5	 _	
		8

Li	Π

Author	Config.	Desig.	J	Level	Author	Config.	Desig.	J	Level
1.8 ² 1S	1s ²	1s ² 1S	0	0	4F	1s 4f	4f ¹ F°	3	58264 5
28	1s 2s	28 3S	1	476046	1s 4p ¹ P	1s 4p	4 <i>p</i> ¹ P°	1	5828 32
2s	18 28	28 1S	0	[490079]	58	1s 5s	58 3S	1	591 184
2p	1s 2p	2p 3P°	2, 1, 0	494273	5S	18 58	58 1S	0	591984
1s 2p ¹ P	1s 2p	2p 1P°	1	501816	5p	1s 5p	5p 3P°	2, 1, 0	592141
38	1s 3s	38 3S	1	554761	5d	1s 5d	5 <i>d</i> ³ D	3, 2, 1	592505
3S	1s 3s	38 1S	0	558779	5D	1s 5d	5 <i>d</i> ¹ D	2	5 92 508
3p	1s 3p	3p 3P°	2, 1, 0	559501	5F	1s 5f	5f ¹ F°	3	592523
3d	1s 3d	3d 3D	3, 2, 1	561245	5f	1s 5f	$5f$ $^3\mathrm{F}^\circ$	4, 3, 2	592527
3D	1s 3d	3d 1D	2	561276	5P	1s 5p	5p 1P°	1	592639
1s 3p ¹ P	1s 3p	3p 1P°	1	561749	6 <i>s</i>	1s 6s	6s 3S	1	597122
48	1s 4s	48 3S	1	579982	6S	1s 6s	6s 1S	0	5 97574
4S	1s 4s	4s 1S	0	581590	6 <i>p</i>	1s 6p	6p 3P°	2, 1, 0	5 97666
4p	1s 4p	4 <i>p</i> ³ P°	2, 1, 0	581897	6d	1s 6d	6d 3D	3, 2, 1	597876
4d	1s 4d	4 <i>d</i> ³ D	3, 2, 1	582612	6D	1s 6d	6 <i>d</i> ¹ D	2	597877
4 D	1s 4d	4 <i>d</i> ¹ D	2	582631	6f	1s 6f	$6f$ $^{3}F^{\circ}$	4, 3, 2	597886
4 f	1s 4f	4f ³ F ^o	4, 3, 2	582644	6F	1s 6f	6f 1F°	3	597886

Z=3

Li II—Continued

Author	Config.	Desig.	J	Level	Author	Config.	Desig.	J	Level
7s	1s 7s	78 ³ S	1	600641	8D	1s 8d	8 <i>d</i> ¹ D	2	603214
7S	1s 7s	78 1S	0	600925	8f	1s 8f	8f 3F°	4, 3, 2	603221
7 <i>d</i>	1s 7d	7d 3D	3, 2, 1	601115	8F	1s 8f	8f ¹ F°	3	603221
7D	1s 7d	7d 1D	2	601115	1				
7f	1s 7f	<i>7f</i> ³F°	4, 3, 2	601121		Li 111 (2S1/2)	Limit		610079
7 F	1s 7f	7f ¹ F°	3	601122					

May 1946.

Li III

(H sequence; 1 electron)

Ground state 1s 2S1/2

18 2S1/2 Li⁶ III 987644.9 cm⁻¹

18 2S1/2 Li⁷ III 987657.8 cm⁻¹

Edlén and Ericson found two lines of the Lyman series, and Gale and Hoag found three more and the first Balmer line. Edlén points out that careful measurement of the Lyman line in orders up to the twelfth showed it definitely to the red of the value calculated from the Dirac theory, with an average discrepancy of about 20 cm⁻¹. This disagreement vanishes when the 1s-shift, calculated at 19 cm⁻¹, is taken into account, according to Mack.

J. E. Mack has calculated the terms listed here, "using $R_{Li}^7 = 109728.723$ and the same value of Λ as in He II, which probably makes the listed ionization energy too low by something between 0 and 2 cm⁻¹. Assuming $R_{Li}^6 = 109727.295$, the levels of Li⁶ may be found from the equation

Level_{L1⁶}-level_{L1⁷}= $-(1-n^{-2})12.9$ cm⁻¹."

REFERENCES

H. G. Gale and J. B. Hoag, Phys. Rev. 37, 1703 (A) (1931). (C L)

B. Edlén and A. Ericson, Nature 125, 233 (1930); 127, 405 (1931); Zeit. Phys. 59, 656 (1930). (CL)

J. E. Mack, unpublished material (1949). (I P) (T) (C L)

Li III

Li III

Li II—Continued

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
1s 2p 2s 2p 3p 3s 3p, 3d 3d	1s ² S 2s ² S 2p ² P° 2p ² P° 3p ² P° 3s ² S 3d ² D, 3p ² P° 3d ² D	1/2 1/2 1/2 1/2 1/2 1/2 1/2 2/2	0.0 740731.2 740733.6 740760.8 877915.9 877916.6 877924.7 877924.7	$\begin{bmatrix} 2. & 4 \\ 29. & 58 \end{bmatrix} \begin{bmatrix} 0. & 7 \\ 8. & 77 \\ 2. & 92 \end{bmatrix}$	5p 5s 5p, 5d 5d, 5f 5f, 5g 5g 6s, etc.	$5p \ {}^{2}P^{\circ}$ $5s \ {}^{2}S$ $5d \ {}^{2}D, \ 5p \ {}^{2}P^{\circ}$ $5d \ {}^{2}D, \ 5f \ {}^{2}F^{\circ}$ $5g \ {}^{2}G, \ 5f \ {}^{2}F^{\circ}$ $5g \ {}^{2}G$ $6s \ {}^{2}S, \ etc.$	$\begin{array}{c} \frac{1}{12} \\ \frac{1}{12} \\ \frac{1}{12} \\ 2\frac{1}{2} \\ 3\frac{1}{2} \\ 4\frac{1}{2} \\ 4\frac{1}{2} \\ \frac{1}{2} \\ $	948152. 2 948152. 4 948154. 1 948154. 8 948155. 1 948155. 3 960223. 7 to 5. 5]] 0. 2 1. 89 0. 64 0. 31 0. 19
$\begin{array}{c} 4p \\ 4s \\ 4p, 4d \\ 4d, 4f \\ 4f \end{array}$	4p ² P° 4s ² S 4d ² D, 4p ² P° 4d ² D, 4f ² F° 4f ² F°	$\begin{array}{c} \frac{12}{12}\\ 12\\ 112\\ 212\\ 212\\ 312\\ 312\end{array}$	925929. 4 925929. 7 925933. 1 925934. 3 925934. 9]] 0.3 3.70 1.23 0.62	7s, etc.	7s ²S, etc. ∞=Limit	½, etc.	967502. 3 to 3. 5 987657. 8	

February 1949.

Z=3

I. P. Li⁶ III 122.419 volts

I. P. Li⁷ III 122.420 volts

BERYLLIUM

BeI

4 electrons

Ground state 1s² 2s² ¹S₀

2s² ¹S₀ 75192.29 cm⁻¹

I. P. 9.320 volts

Z=4

All but four of the terms are from the work of Paschen or Paschen and Kruger. According to Paschen no intersystem combinations have been observed. The relative positions of the singlet and triplet terms are, however, excellently determined by long series with a relative uncertainty x not exceeding ± 2 cm⁻¹.

The predicted position of the resonance line, $2s^2 {}^{1}S_0 - 2p {}^{3}P_1^{\circ}$, is 4548.29 A. Paton and Nusbaum have observed a line at 4553.07 A to which they assign this classification, but their result has not been confirmed.

The term values of higher series members, calculated from the series formula but not substantiated by observation, are in brackets in the table.

Four terms are from Edlén's work: 2p² ¹D, 3p ³P°, 2p² ¹S, and 3p ³P.

REFERENCES

R. F. Paton and R. E. Nusbaum, Phys. Rev. 33, 1093 (A) (1929). (C L)

F. Paschen and P. G. Kruger, Ann. der Phys. [5] 8, 1005 (1931). (T) (C L)

F. Paschen, Ann. der Phys. [5] 12, 514 (1932). (I P) (T) (C L)

B. Edlén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 6, 51 (1934). (T) (C L)

H. E. White, Introduction to Atomic Spectra, p. 179 (McGraw-Hill Book Co., Inc., New York, N. Y., 1934). (G D)

W. F. Meggers, J. Opt. Soc. Am. 36, 431 (1946). (Summary hfs)

Be I

Be I

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
2s ²	2s ² 1S	0	0. 00		2s(2S)3p	3p 1P°	1	[60187]	-
2s(2S)2p	2 <i>p</i> ³P°	0	21979. 43+x	0. 68 28(2s(2S)3d	3d 3D	1, 2, 3	62054.8 + x	
		$\frac{1}{2}$	21980. 11+x 21982. 46+x	2. 35	2s(2S)3d	3d 1D	2	64428. 15	
2s(2S)2p	2 <i>p</i> ¹ P°	1	42565. 3		2s(2S)4s	4s ³ S	1	64507.7 + x	
2s(2S)3s	3s ² S	1	52082. $07+x$		2s (2S) 4s	4s 1S	0	65245. 4	
2s(2S)3s	3s 1S	0	54677. 2		28 (2S) 4p	4 <i>p</i> ³ P°	0, 1, 2	[65949] +x	
2p ²	$2p^2$ ¹ D	2	56432. 5		28 (2S) 4p	4 <i>p</i> ¹ P°	1	[67228]	
2s(2S)3p	3 <i>p</i> ³₽°	0, 1, 2	58791.6 +x		2s (2S) 4d	4d *D	1, 2, 3	67943.6 $+x$	1
$2p^{2}$	2p ² ³ P	0	59694. $61+x$	1, 40	28 (2S) 4d	4d 1D	2	68781. 2	
			59696.01+x 59698.04+x	2. 03	28 (2S) 58	58 ³ S	1	69009.3 $+x$	

Be I—Continued

Be I—Continued

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
2s (2S) 5s	5s 1S	0	69322. 3		2s (2S) 9d	9d 3D	1, 2, 3	73803. 2 +x	
2s (2S) 5p	5 <i>p</i> *P°	0, 1, 2	[69634. 5] +x		2s (2S) 9d	9d 1D	2	73866. 9	
2s (2S) 5d	5d *D	1, 2, 3	70606. 7 + <i>x</i>		2s (2S) 10s	10s ¹ S	0	73930. 4	
2s (2S) 5d	5d 1D	2	71002. 3		2s (2S) 10d	10 <i>d</i> ³ D	1, 2, 3	74070. 6 +x	
2s (2S) 6s	6s ³ S	1	71161.9 $+x$		2s (2S) 10d	10 <i>d</i> ¹ D	2	74116. 7	
2s (2S) 6s	6s 1S	0	71320. 7		2s (2S) 11s	11s ¹ S	0	74163. 4	
28 (2S) 6p	6 p * P°	0, 1, 2	[71482.9] + x		2s (2S) 11d	11d ³ D	1, 2, 3	74268.6 +x	
$2p^2$	$2p^2$ ¹ S	0	71498. 9		2s (2S) 11d	11 <i>d</i> ¹ D	2	74301. 4	
2s (2S) 6d	6d * D	1, 2, 3	72030. 6 $+x$		2s (2S) 12d	$12d$ $^{3}\mathrm{D}$	1, 2, 3	74416.3 $+x$	
2s (2S) 6d	6d 1D	2	72251. 1		2s (2S) 12d	12d ¹ D	2	74443. 2	
2s (2S) 7s	7s *S	1	72355. 4 $+x$		Be 11 (2S1/2)	Limit		75192. 29	
2s (2S) 7s	7s 1S	0	72448. 3		2p (2P°) 3s	3s *P°	0	85554.96+x	2.05
2s (2S) 7d	7d ³ D	1, 2, 3	72881. 9 $+x$				$\frac{1}{2}$	855560.93+x	3. 92
2s (2S) 7d	7d 1D	2	73017. 2		2p (2P°) 3p	3 <i>p</i> *P	0		
2s (2S) 8s	8s *S	1	73089.1 $+x$				$\begin{vmatrix} 1\\2 \end{vmatrix}$	91901. 8 +x	
2s (2S) 8s	8s 1S	0	73146. 7		2p (2P°) 3d	3d 2 D°	1	[94189.51] + x	0, 60
2s (2S) 8d	8d *D	1, 2, 3	73429.6 $+x$				3	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1. 15
2s (2S) 8d	8d 1D	2	73519. 7		2p (2P°) 3d	3d P°	0	95162.1 + x	1.0
28 (2S) 98	9s 1S	0	73608. 5				$\frac{1}{2}$	95165.0 + x	1. 9

May 1946.

Be I OBSERVED TERMS*

Config. 1s ² +	OI	Observed Terms							
28 ² 2s(2S)2p 2p ²	$ \begin{array}{c} 2s^{2} {}^{1}S \\ \left\{\begin{array}{c} 2p {}^{3}P^{\circ} \\ 2p {}^{1}P^{\circ} \\ \left\{\begin{array}{c} 2p^{2} {}^{3}P \\ 2p^{2} {}^{1}S \\ \end{array}\right. 2p^{2} {}^{1}D \end{array} $								
	ns $(n \ge 3)$	$np (n \ge 3)$	$nd \ (n \ge 3)$						
2 s(2S) <i>nx</i>	{3- 8s *S \3-11s 1S	3 <i>p</i> *P°	3–12d ³ D 3–12d ¹ D						
$2p(^{2}P^{\circ})nx$	38 *P°	3 <i>p</i> ³ P	3d *P° 3d *D°						

*For predicted terms in the spectra of the Be 1 isoelectronic sequence, see Introduction.

(Li 1 sequence; 3 electrons)

Ground state 1s² 2s ²S₁₂

28 ²S₁₂ 146881.7 cm⁻¹

I. P. 18.206 volts

The analysis has been taken from the paper by Paschen and Kruger.

REFERENCES

F. Paschen and P. G. Kruger, Ann. der Phys. [5] 8, 1014 (1931). (I P) (T) (C L)

H. E. White, Introduction to Atomic Spectra p. 98 (McGraw-Hill Book Co., Inc., New York, N. Y., 1934). (G D)

W. F. Meggers, J. Opt. Soc. Am. 36, 431 (1946). (Summary hfs)

		веп		Dell					
Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
28	2s 2S	1/2	0. 0		5f	5f 2F°	21/2, 31/2	129321. 9	
2p	2 <i>p</i> ² P°	1/2	31928. 8	6. 6	6 <i>s</i>	6s 2S	1/2	133559.1	
38	3s 2S	172 1⁄2	882 3 1. 2		6 <i>p</i>	6 <i>p</i> ² P°		134485.6	
3 <i>p</i>	3p ²P°	1/2	96496.4	1. 8	6d	$6d \ ^{2}D$	1½, 2½	134682. 0	
3d	3 <i>d</i> 2D	$1\frac{1}{2}$ $1\frac{1}{2}, 2\frac{1}{2}$	96498. 2 98053. 2		6f 7s	6f 2F° 7s 2S	2½, 3½ ½	<i>134688. 1</i> 137226. 0	
4s 4p	4 <i>s</i> 2S 4 <i>p</i> 2P°		115465. 2		7 <i>p</i>	7 <i>p</i> ² P°	1½ 1½	137796	
4 <i>d</i>	4 <i>d</i> 2D	172	119422. 2		7d 7f	7d 2D 7f 2F°	$ \begin{array}{c} 1\frac{1}{2}, 2\frac{1}{2} \\ 2\frac{1}{2}, 3\frac{1}{2} \end{array} $	137920. 0 1 <i>37923</i> . 1	
4f	4 <i>f</i> ² F°	21/2, 31/2	119444.6		8d	8 <i>d</i> 2D	11/2, 21/2	140020. 4	
59 5p	53 28 5p 2P°		127336. 1 128970. 2		Be III (¹ S ₀)	Limit		146881. 7	
5d	5d ² D	1½, 2½	129311. 3						

April 1946.

Be III

(He I sequence; 2 electrons)

Ground state 1s² ¹S₀

 $1s^2 {}^{1}S_0 1241225 \pm 100 \text{ cm}^{-1}$

I. P. 153.850 ± 0.012 volts

Both Robinson and Edlén report six lines of the singlet series observed, although the earlier members have also been measured by others. The range is between 81 A and 100 A. The singlet terms have been taken from Robinson's paper.

The relative absolute values of the triplet and singlet terms have been determined by extrapolation of 3d ³D from He I and Li II, according to Edlén, who has generously furnished his unpublished term values of the triplets. Apparently no intersystem combinations have been observed in Be III, but the existence of the observed line $1s^2$ $^{1}S_0-2p$ $^{3}P_1^{\circ}$ in the related spectra from B IV to Al XII, within the errors of measurement of the predicted positions, indicates that the uncertainty x is small.

REFERENCES

B. Edlén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 6, 31 (1934). (T) (C L)

H. A. Robinson, Phys. Rev. 51, 14 (1937). (I P) (T) (C L)

B. Edlén, unpublished material (Sept. 1947). (T)

Z=4

Z=4

Be III

J

Level

Edlén and Ericson first observed this spectrum. Tyrén has observed three, and Robinson six, members of the principal series.

The terms in the table have been calculated by J. E. Mack, who has used $R_{\rm Be}^9=109730.623$ and $\Lambda = 0.040$.

REFERENCES

B. Edlén and A. Ericson, Nature 125, 233 (1930); 127, 405 (1931); Zeit. Phys. 59, 656 (1930). (C L)

H. A. Robinson, Phys. Rev. 50, 99 (1936). (C L)

F. Tyrén, Zeit. Phys. 98, 771 (1936). (C L)

Be IV

J. E. Mack, unpublished material (1949). (I P) (T) (C L)

Config.	De	esig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
$ \begin{array}{r} 1s \\ 2p \\ 2s \\ 2p \\ 3p \\ 3s \\ 3p, 3d \\ 3d \\ 4p \\ 4s \\ 4p, 4d \\ 4d, 4f \\ 4f $	1s 2s 2S 3s 2S 3d 2D, 3d 2D 4s 2S 4d 2D, 4d 2D,	2S 2p 2P° 2p 2P° 3p 2P° 3p 2P° 4p 2P° 4p 2P° 4f 2F° 4f 2F°	$\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \\$	$\begin{array}{c} 0\\ 1316965\\ 1316972\\ 1317058\\ 1560886\\ 1560888\\ 1560913\\ 1560923\\ 1646254\\ 1646255\\ 1646266\\ 1646270\\ 1646272\\ \end{array}$	$ \begin{bmatrix} 7 \\ 93.5 \end{bmatrix} \\ 27.6 \\ 9.2 \end{bmatrix} \\ \begin{bmatrix} 1 \\ 11.7 \\ 3.9 \\ 1.9 \end{bmatrix} $	5p 5s 5p, 5d 5d, 5f 5f, 5g 5g 6s, etc. 7s, etc.	$5p \ ^{2}P^{\circ}$ $5s \ ^{2}S$ $5d \ ^{2}D, \ 5p \ ^{2}P^{\circ}$ $5d \ ^{2}D, \ 5f \ ^{2}F^{\circ}$ $5g \ ^{2}G, \ 5f \ ^{2}F^{\circ}$ $5g \ ^{2}G$ $6s \ ^{2}S, \text{ etc.}$ $7s \ ^{2}S, \text{ etc.}$ $\infty = Limit$	1/2 1/3 2/2 3/2 4/2 1/2 3/2 4/2 1/2	1685766 1685767 1685772 1685774 1695775 1685776 1707229 to 234 1720170 to 173 1756004	$\begin{bmatrix} 0.5 \\ 6.0 \\ 2.0 \\ 1.0 \\ 0.6 \end{bmatrix}$

February 1949.

(H sequence; 1 electron)

•	-	

Ground state 1s 2S1/2

18 2S₁₂ 1756004 cm⁻¹

1s ²	$1s^2$ ¹ S	0	0		1s 4p	4 <i>p</i> ¹ P°	1	1179830
1s 2s	28 ³ S	1	956496 + x		1s 5p	5p ¹ P°	1	1201894
1s 2p	2p 3P°	0	0000101 -		1s 6p	6 <i>p</i> ¹ P°	1	1213931
		$\frac{1}{2}$	983363 + x 983363 + x	15	1s 7p	7 <i>p</i> ¹₽°	1	1221135
1s 2p	2p ¹ P°	1	997466					
1s 3p	$3p$ $^1\mathrm{P}^{\circ}$	1	1132323		Be IV (2S1/2)	Limit		1241225
		<u>.</u>			0		<u>.</u>	

Interval

Config.

September 1947.

Config.

Desig.

Be IV

J

Desig.

Level

Interval

I. P. 217.657 volts

Be IV

Z=4

BORON

BI

5 electrons

Ground state 1s $^{2}2s^{2}$ 2p $^{2}P_{12}^{o}$

 $2p \ ^{2}P_{12}^{\circ} 66930 \ cm^{-1}$

I. P. 8.296 volts

Z=5

The spectrum is incompletely observed, but 34 lines have been classified in the interval between 1378 A and 2498 A. The terms for which there is an entry in the column of the table headed "Authors", are from Edlén, but a correction of 90 cm⁻¹ has been added to the limit as quoted from Selwyn (66840 cm⁻¹). Whitelaw and Mack have recalculated the limit and derived the value B I $2s^2 2p {}^{2}P_{2}^{0}$ —B II $2s^2 {}^{1}S_{0}$ =66930 cm⁻¹, using the ²D series alone because of extra-configurational perturbations in the ²S series. Selwyn averaged the limits from both the ²S and ²D series.

The remaining terms are from an unpublished manuscript kindly furnished by Clearman, who has extended the doublet series by further observations and confirmed the correction to the limit mentioned above. Clearman has also found two quartet terms. No intersystem combinations have been observed, as indicated by x in the table. Edlén estimates that $2p^2P_{1\frac{1}{2}}^2 - 2p^{24}P_{2\frac{1}{2}} = 28800 \text{ cm}^{-1}$, by analogy with the observed intersystem combinations in C II and N III. The corresponding value of $2p^2 \, {}^4P_{\frac{1}{2}}$ is entered in brackets in the table and has been added to all of Clearman's values of quartet terms.

REFERENCES

I. S. Bowen, Phys. Rev. 29, 231 (1927). (T) (C L)

E. W. H. Selwyn, Proc. Phys. Soc. (London) 41, 401 (1929). (T) (C L)

B. Edlén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 6, 74 (1934). (T)

H. E. White, Introduction to Atomic Spectra p. 115 (McGraw-Hill Book Co., Inc., New York, N. Y., 1934). (G D)

N. G. Whitelaw and J. E. Mack, Phys. Rev. 47, 677 (1935). (I P) (T)

B. Edlén, Zeit. Phys. 98, 564 (1936). (C L)

W. Opeschowski and D. A. DeVries, Physica 6, No. 9, 913 (1939). (I S)

W. F. Meggers, J. Opt. Soc. Am. 36, 431 (1946). (Summary hfs)

H. E. Clearman Jr., unpublished material (Aug. 1947). (T) (C L)

BI						BI					
Config.	Desig.	J	Level	Interval	Authors	Config.	Desig.	J	Level	Interval	
$2s^2(^1\mathrm{S})2p$	2p ² P°	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	0 16	16	5 <i>d</i> 2D	$2s^2(^1\mathrm{S})5\mathrm{d}$	5 <i>d</i> ² D	$\left\{\begin{array}{c} 1\frac{1}{2}\\ 2\frac{1}{2}\end{array}\right\}$	$\left. \right\} 62481$		
2s 2p ²	2p ² ⁴ P	1/2	[28805]+x	5		2s 2p ²	$2p^2$ ² S	1/2	63561		
		$ \begin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array} $	$\begin{array}{c c} 28810 + x \\ 28816 + x \end{array}$	6	6 <i>d</i> ² D	$2s^2(^1S)6d$	6d ² D	$\left\{ \begin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array} \right.$	} 63847		
2s ² (1S)3s	3s 2S	1/2	40040			$2s^{2}(^{1}S)7s$	7s 2S	1/2	64156		
2s 2p ²	$2p^2 \ ^2\mathrm{D}$	$\left\{ \begin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array} \right\}$	} 47857			$2s^2(^1\mathrm{S})7d$	7d 2D	$\left\{ \begin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array} \right\}$	} 64664		
$2s^{2}(1S)3d$	3 <i>d</i> ² D	$\left\{ \begin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array} \right\}$	} 54765			$2s^2(1S)8d$	8d 2D	$\left\{ \begin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array} \right.$	65195		
2s ² (1S)4s	4s 2S	1/2	55009			2s ² (1S)9s	9s 2S	1/2	65553		
$2s^{2(1S)}4d$	4 <i>d</i> ² D	$\begin{cases} 1\frac{1}{2} \\ 0\frac{1}{2} \end{cases}$	} 59989			BII (1S ₀)	Limit		66930		
2s ² (¹ S)58	5s 2S	1/2	60146			2s 2p ²	$2p^2 {}^2\mathrm{P}$	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	72535 72547	12	
2s ² (1S)6s	6s 2S	1/2	62098			2p3	$2p^3 4 S^{\circ}$	1½	97037+x		
	Config. $2s^2(1S)2p$ $2s 2p^2$ $2s^2(1S)3s$ $2s 2p^2$ $2s^2(1S)3d$ $2s^2(1S)4s$ $2s^2(1S)4s$ $2s^2(1S)4d$ $2s^2(1S)5s$ $2s^2(1S)5s$ $2s^2(1S)6s$	Config.Desig. $2s^2(^{1}S)2p$ $2p \ ^{2}P^{\circ}$ $2s \ ^{2}p^2$ $2p^2 \ ^{2}P^{\circ}$ $2s \ ^{2}p^2$ $2p^2 \ ^{4}P$ $2s^2(^{1}S)3s$ $3s \ ^{2}S$ $2s \ ^{2}p^2$ $2p^2 \ ^{2}D$ $2s^2(^{1}S)3d$ $3d \ ^{2}D$ $2s^2(^{1}S)4s$ $4s \ ^{2}S$ $2s^2(^{1}S)5s$ $5s \ ^{2}S$ $2s^2(^{1}S)6s$ $6s \ ^{2}S$	B IConfig.Desig.J $2s^2({}^{1}S)2p$ $2p \ {}^{2}P^{\circ}$ $\frac{1}{2}$ $2s \ {}^{2}p^2$ $2p^2 \ {}^{2}P^{\circ}$ $\frac{1}{2}$ $2s \ {}^{2}p^2$ $2p^2 \ {}^{2}P$ $\frac{1}{2}$ $2s^2({}^{1}S)3s$ $3s \ {}^{2}S$ $\frac{1}{2}$ $2s^2({}^{1}S)3s$ $3s \ {}^{2}S$ $\frac{1}{2}$ $2s^2({}^{1}S)3d$ $3d \ {}^{2}D$ $\left\{ \begin{array}{c} 1\frac{1}{2}\\ 2\frac{1}{2}\\ 2\frac{1}{2}\\ 2s^2({}^{1}S)4d$ $4s \ {}^{2}S$ $\frac{1}{2}$ $2s^2({}^{1}S)5s$ $5s \ {}^{2}S$ $2s^2({}^{1}S)6s$ $6s \ {}^{2}S$	B IConfig.Desig.JLevel $2s^2(^{1}S)2p$ $2p \ ^2P^\circ$ $\frac{1}{12}$ 0 $2s^2(^{1}S)2p$ $2p \ ^2P^\circ$ $\frac{1}{12}$ 16 $2s \ 2p^2$ $2p^2 \ ^4P$ $\frac{1}{12}$ $28805]+x$ $2s^2(^{1}S)3s$ $3s \ ^2S$ $\frac{1}{2}$ 40040 $2s \ 2p^2$ $2p^2 \ ^2D$ $\left\{\frac{1}{22}\right)$ 47857 $2s^2(^{1}S)3d$ $3d \ ^2D$ $\left\{\frac{1}{222}\right)$ 54765 $2s^2(^{1}S)4s$ $4s \ ^2S$ $\frac{1}{2}$ 59989 $2s^2(^{1}S)5s$ $5s \ ^2S$ $\frac{1}{2}$ 60146 $2s^2(^{1}S)6s$ $6s \ ^2S$ $\frac{1}{2}$ 62098	B IConfig.Desig.JLevelInterval $2s^2({}^{1}S)2p$ $2p \ {}^{2}P^{\circ}$ $\frac{1}{12}$ 0 16 $2s \ {}^{2}p^{2}$ $2p^{2} \ {}^{P}$ $\frac{1}{12}$ $28805] + x$ 5 $2s \ {}^{2}p^{2}$ $2p^{2} \ {}^{P}$ $\frac{1}{12}$ $28805] + x$ 5 $2s^2({}^{1}S)3s$ $3s \ {}^{2}S$ $\frac{1}{2}$ 40040 5 $2s \ {}^{2}p^{2}$ $2p^{2} \ {}^{2}D$ $\left\{ \frac{1}{2}\frac{1}{2}\frac{1}{2} \right\}$ 47857 $2s^2({}^{1}S)3d$ $3d \ {}^{2}D$ $\left\{ \frac{1}{2}\frac{1}{2}\frac{1}{2} \right\}$ 54765 $2s^2({}^{1}S)4s$ $4s \ {}^{2}S$ $\frac{1}{2}$ 59989 $2s^2({}^{1}S)5s$ $5s \ {}^{2}S$ $\frac{1}{2}$ 60146 $2s^2({}^{1}S)6s$ $6s \ {}^{2}S$ $\frac{1}{2}$ 62098	BIConfig.Desig.JLevelIntervalAuthors $2s^2(^{1}S)2p$ $2p \ ^2P^\circ$ $\frac{12}{122}$ 0 16 $5d \ ^2D$ $2s \ ^2p^2$ $2p^2 \ ^4P$ $\frac{12}{122}$ $28805] + x$ 5 6 $2s^2(^{1}S)3s$ $3s \ ^2S$ $\frac{1}{2}$ $28816 + x$ 6 $6d \ ^2D$ $2s^2(^{1}S)3s$ $3s \ ^2S$ $\frac{1}{2}$ 40040 47857 $6d \ ^2D$ $2s^2(^{1}S)3d$ $3d \ ^2D$ $\left\{\frac{112}{212}$ 54765 47857 47857 $2s^2(^{1}S)4s$ $4s \ ^2S$ $\frac{1}{2}$ 55009 $4d \ ^2D$ $\left\{\frac{112}{212}$ $2s^2(^{1}S)4s$ $4s \ ^2S$ $\frac{1}{222}$ 59989 $4d \ ^2D$ $\left\{\frac{112}{212}$ $2s^2(^{1}S)5s$ $5s \ ^2S$ $\frac{1}{2}$ 60146 $4d \ ^2D$ $\left\{\frac{112}{212}$ $2s^2(^{1}S)5s$ $5s \ ^2S$ $\frac{1}{2}$ 60146 $4d \ ^2D$ $\left\{\frac{112}{212}$ $2s^2(^{1}S)6s$ $6s \ ^2S$ $\frac{1}{2}$ 62098 $4d \ ^2D$ $4d \ ^2D$	B IConfig.Desig.JLevelIntervalAuthorsConfig. $2s^2(1S)2p$ $2p \ ^2P^\circ$ $\frac{1}{12}$ 0 16 $5d \ ^2D$ $2s^2(1S)5d$ $2s \ 2p^2$ $2p^2 \ ^4P$ $\frac{1}{12}$ $28805]+x$ 55 $6d \ ^2D$ $2s^2(1S)6d$ $2s^2(1S)3s$ $3s \ ^2S$ $\frac{1}{2}$ 40040 s^2 $6d \ ^2D$ $2s^2(1S)6d$ $2s^2(1S)3s$ $3s \ ^2S$ $\frac{1}{2}$ 47857 s^2 $2s^2(1S)7s$ $2s^2(1S)3d$ $3d \ ^2D$ $\left\{\frac{112}{222}$ 54765 s^2 $2s^2(1S)7d$ $2s^2(1S)4s$ $4s \ ^2S$ $\frac{1}{2}$ 59989 $s^2(1S)5s$ $2s^2(1S)9s$ $2s^2(1S)5s$ $5s \ ^2S$ $\frac{1}{2}$ 60146 $s^2 \ 2p^3$ $2s^2(1S)6s$ $6s \ ^2S$ $\frac{1}{2}$ 60146 $2p^3$	BIBIBIConfig.Desig.JLevelIntervalAuthorsConfig.Desig. $2s^2(1S)2p$ $2p$ $2p^2$ $\frac{1}{12}$ $\frac{0}{16}$ 16 $5d$ 2D $2s^2(1S)5d$ $5d$ 2D $2s^2p^2$ $2p^2$ 2P $\frac{1}{12}$ $\frac{16}{16}$ 16 $5d$ 2D $2s^2(1S)5d$ $5d$ 2D $2s$ $2p^2$ $2p^2$ 2P $\frac{1}{12}$ $28810 + x$ 56 $6d$ 2D $2s^2(1S)6d$ $6d$ 2D $2s^2(1S)3s$ $3s$ 2S $\frac{1}{2}$ 40040 $2s^2(1S)7s$ $7s$ 2S $2s$ $2p^2$ $2p^2$ 2D $\left\{\frac{1}{2}{2}{2}{2}\right\}$ 47857 $2s^2(1S)7d$ $7d$ 2D $2s^2(1S)3d$ $3d$ 2D $\left\{\frac{1}{2}{2}{2}{2}\right\}$ 54765 $2s^2(1S)8d$ $8d$ 2D $2s^2(1S)4d$ $4d$ 2D $\left\{\frac{1}{2}{2}{2}{2}{2}\right\}$ 59989 BII $1(1S_0)$ $Limit$ $2s^2(1S)5s$ $5s$ 2S $\frac{1}{2}$ 60146 $2p^3$ $2p^3$ $2p^3$ $2p^3$ $2p^3$ $2p^3$	BIBIBIConfig.Desig.JLevelIntervalAuthorsConfig.Desig.J $2s^2(1S)2p$ $2p$ $^2P^\circ$ $\frac{12}{12}$ 0 16 $5d$ 2D $2s^2(1S)5d$ $5d$ 2D $\left\{\frac{112}{222}$ $2s 2p^2$ $2p^2 4P$ $\frac{12}{12}$ $28805]+x$ 56 $6d$ 2D $2s^2(1S)6d$ $6d$ 2D $\left\{\frac{112}{222}$ $2s^2(1S)3s$ $3s$ 2S $\frac{12}{2}$ $28816 + x$ 66 $6d$ 2D $2s^2(1S)6d$ $6d$ 2D $\left\{\frac{112}{222}$ $2s^2p^2$ $2p^2$ 2D $\left\{\frac{112}{222}$ $28816 + x$ 66 $6d$ 2D $2s^2(1S)7s$ $7s$ 2S $\frac{12}{222}$ $2s^2p^2$ $2p^2$ 2D $\left\{\frac{112}{222}$ $2s^2(1S)7s$ $7s$ 2S $\frac{12}{222}$ $2s^2(1S)3d$ $3d$ 2D $\left\{\frac{112}{222}$ 54765 $2s^2(1S)8d$ $8d$ 2D $\left\{\frac{112}{222}$ $2s^2(1S)4d$ $4d$ 2D $\left\{\frac{112}{222}$ 59989 Bit $(1S_0)$ $Limit$ 2 $2s^2(1S)5s$ $5s$ 2S $\frac{12}{2}$ 60146 $2p^3$ $2p^3$ $^2p^3$ $^2p^3$ $\frac{12}{2}$	BIBIBIBI2s²(1S)2p2p²P° $\frac{12}{12}$ 0 11/216165d 2D2s²(1S)5d5d 2D $\{\frac{11}{22}, \frac{11}{2}\}$ 624812s 2p²2p² 4P $\frac{12}{12}$ [28805]+x 12/25 28810 +x5 66d 2D2s²(1S)5d5d 2D $\{\frac{11}{22}, \frac{11}{2}\}$ 635612s 2p²2p² 4P $\frac{12}{12}$ [28805]+x 28810 +x5 66d 2D2s²(1S)6d6d 2D $\{\frac{11}{22}, \frac{11}{2}\}$ 638472s²(1S)3s3s 2S $\frac{11}{2}$ 40040400402s²(1S)7s7s 2S $\frac{1}{2}$ 641562s 2p²2p² 2D $\{\frac{11}{2}, \frac{11}{2}\}$ 547652s²(1S)7d7d 2D $\{\frac{11}{2}, \frac{11}{2}\}$ 646642s²(1S)3d3d 2D $\{\frac{11}{2}, \frac{11}{2}\}$ 550092s²(1S)8d8d 2D $\{\frac{11}{2}, \frac{11}{2}\}$ 655532s²(1S)4s4s 2S $\frac{1}{2}, \frac{11}{2}$ 59989BII (1So)Limit2s²(1S)5s5s 7S $\frac{1}{2}$ 601462s²2p²2p² 4.5° $\frac{1}{2}, \frac{1}{2}$ 725372s²(1S)6s6s 2S $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$ 62098122p³2p³ 4.5° $\frac{1}{2}, \frac{1}{2}$ 97037+x	

August 1947.

BI OBSERVED TERMS*

Config. $1s^2+$	Observed Terms	Observed Terms					
2s ² (¹ S)2p 2s 2p ² 2p ³	$\begin{cases} 2p \ {}^{2}\mathrm{P}^{\circ} \\ & 2p^{2} \ {}^{2}\mathrm{S} \\ 2p^{2} \ {}^{2}\mathrm{S} \\ & 2p^{2} \ {}^{2}\mathrm{P} \\ 2p^{3} \ {}^{2}\mathrm{P} \\ & 2p^{3} \ {}^{4}\mathrm{S}^{\circ} \end{cases}$						
	$ns \ (n \ge 3)$	nd $(n \ge 3)$					
$2s^2(^1\mathrm{S})nx$	3-7s, 9s 2S	3–8 <i>d</i> ² D					

*For predicted terms in the spectra of the B I isoelectronic sequence, see Introduction.

BII

(Be I sequence; 4 electrons)

Ground state 1s² 2s² ¹S₀

2s² ¹S₀ 202895 cm⁻¹

The terms are from Edlén, who remarks that the observed series, especially in the singlet system, are too short for the precise determination of the limits. By analogy with Be I, C III, and N IV, he interpolates the value of $2s^2 \, {}^{1}S_0 - 2p \, {}^{3}P_1^{\circ}$ as 37340 cm⁻¹, which places the limit $2s^2 \, {}^{1}S_0$ at 202895.0 cm⁻¹. The absolute values of the singlet terms as published in Edlén's Monograph have therefore been increased by 249 cm⁻¹. The relative uncertainty x is probably less than this. No intersystem combinations have been observed.

An extrapolated value of $3s \, {}^{1}S_{0}$ is given in brackets.

Z=5

I. P. 25.149 volts

17

REFERENCES

B. Edlén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 6, 51 (1934). (T) (C L) B. Edlén, Zeit. Phys. 98, 561 (1936). (I P) (C L)

B	Π

Вп

Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interva
28 1So	2s²	2s2 1S	0	0. 0		4 <i>p</i> ³ P	2s(2S)4p	4p 3P°	0, 1, 2	171544. 7+x	
2p ² P ₀	2s(2S)2p	2p ³ P°	0	37333.6+x	6.4	4d 3D	$2s(^2\mathrm{S})4d$	4 <i>d</i> ³ D	1, 2, 3	174072.6+x	
•P ₁ •P ₂			$\frac{1}{2}$	37340.0+x 37356.4+x	16.4	4 <i>f</i> ³ F	2s(2S)4f	4f ³ F°	2, 3, 4	174902.5+x	
$2p \ ^1\mathrm{P}_1$	$2s(^2S)2p$	2 <i>p</i> ¹ P°	1	73396. 7		$4f {}^{1}\mathrm{F}_{3}$	$2s(^2\mathrm{S})4f$	$4f {}^{1}\mathrm{F}^{\circ}$	3	174921.5	
$2p' {}^{2}P_{0}$	2p ²	$2p^2 P^2$	0	98910. 3+x	8.4	$4d \ ^{1}D_{2}$	$2s(^2\mathrm{S})4d$	4 <i>d</i> ¹ D	2	175546. 0	
[*] P ₁ [*] P ₂			$\frac{1}{2}$	98918. $7+x$ 98932. $7+x$	14.0	5s 3S1	2 s(2S)5s	58 3S	1	180896. $5+x$	
$2p' {}^1\mathrm{D}_2$	$2p^2$	$2p^{2}$ ¹ D	2	102362. 1		3s' 2P0	$2p(^2\mathrm{P^o})3s$	38 ³ P°	0	181645.2+x	9.8
2p' 1S ₀	$2p^2$	$2p^2$ ¹ S	0	127662. 0		$^{3}P_{2}^{\Gamma_{1}}$			$\frac{1}{2}$	181655.0+x 181675.9+x	20. 9
3s ³ S ₁	2s(2S)3s	3s 3S	1	129772. 9+x		5d ² D	$2s(^2\mathrm{S})5d$	5d 2 D	1, 2, 3	184633. 1+x	
38 1S0	2s(2S)3s	3s 1S	0	[135946]		5f ³ F	$2s(^2{ m S})5f$	5 <i>f</i> ³F°	2, 3, 4	184908. 2 +x	
$3p {}^{3}P_{01}$	$2s(^2S)3p$	3 <i>p</i> ³P°	0, 1	143989.7+x	3.7	3p' ¹ P ₁	$2p(^2\mathrm{P^o})3p$	3 <i>p</i> ¹ P	1	1891 2 6. 6	
$3p {}^{1}P_{1}$	$2s(^2S)3p$	3p 1P°		143993.4+x 144102.0		3d' ³ F ₂₃ ³ F ₄	$2p(^{2}\mathrm{P}^{\circ})3d$	3d * F°	2, 3 4	194748? + x 194760? + x	12
3d *D	2s(2S)3d	3d 3D	1, 2, 3	150649.0+x		$3d' {}^1\mathrm{D}_2$	$2p(^2\mathrm{P^o})3d$	3d ¹ D°	2	197721.0	
3d 1D2	$2s(^2\mathrm{S})3d$	3d 1D	2	154686. 9		3d' *D	$2p(^{2}\mathrm{P}^{\circ})3d$	3d ³D°	1, 2, 3	200484.6+x	
48 ³ S ₁	$2s(^{2}S)4s$	4s 3S	1	166344. 4+x	-						
48 1S ₀	2s(2S)4s	48 1S	0	1679 34. 2			B III (2S _{1/2})	Limit		202895	

May 1946.

B II OBSERVED TERMS*

Config. 1s ² +		Observed Terms										
$2s^2$ $2s(^2S)2p$ $2p^2$	$ \begin{array}{c} 2s^2 {}^{1}S \\ \left\{ \\ 2p^2 {}^{1}S \end{array} $	2p ² P° 2p ¹ P° 2p ² ³ P 2p ² ¹ D										
		ns $(n \geq 3)$	$np (n \geq 3)$	nd ($n \ge 3$)	$nf(n \ge 4)$							
2s(2S)nx	$\begin{cases} 3-5s \ ^{2}S \\ 4s \ ^{1}S \end{cases}$	20.200	3, 4p ³ P° 3p ¹ P°	3-5d ³ D 3, 4d ¹ D	4, 5f ³ F° 4f ¹ F°							
$2p(^2P^o)nx$	K	38 °F °	3p 1P	3 <i>d</i> ¹ D° 3 <i>d</i> ¹ F°								

*For predicted terms in the spectra of the Be I isoelectronic sequence, see Introduction.

(Li I sequence; 3 electrons)

Ground state 1s² 2s ²S₁₅

2s 2S₁₄ 305931.1 cm⁻¹

The terms are from Edlén. The absolute values are based on the assumption that n^* for $5g \,^2G$ equals that of the corresponding term in C iv, where $5g \,^2G - 6h \,^2H^\circ$ has been observed. The precision of this term in B III is estimated to be within $\pm 1 \,\mathrm{cm}^{-1}$. The series are well represented by a Ritz formula.

Edlén gives four extrapolated term intervals, which are entered in brackets in the table.

REFERENCES

B. Edlén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 6, 37 (1934). (I P) (T) (C L) (G D)

T	-
к	THE
D	

ВШ

Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
28 2S1	28	28 2S	1/2	0. 0		$5p {}^{2}P_{2}$	5 <i>p</i>	5 <i>p</i> ² P°	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	265719.7	[2. 2]
2p ² P ₁ ² P ₂	2p	2p 2P°		48358.5 48392.6	34. 1	5d 2D3	5d	5d 2D	$1\frac{1}{2}$ $2\frac{1}{2}$	266389. 5	
$3s {}^{2}S_{1}$ $3p {}^{2}P_{1}$	3s 3p	3s 2S 3p 2P°	1/2 1/2	180201. 8 <i>192949. 2</i>	10. 2	5f 2F	5f	5f 2F°	$\left\{ \begin{array}{c} 2^{1\!\!/_2} \\ 3^{1\!\!/_2} \end{array} \right.$	} 266416.5	
² P ₂	3 <i>d</i>	3 <i>d</i> 2D	$1\frac{1}{2}$ $1\frac{1}{2}$	192959.4	[3. 4]	5g 2G	5 <i>g</i>	5g 2G	$\left\{ \begin{array}{c} 3\frac{1}{2} \\ 4\frac{1}{2} \end{array} \right.$	} 266427. 2	
3a 2D3 48 2S1	48	43 2S	272 1/2	237695. 5		6d 2D3	6 <i>d</i>	6d 2D	$1\frac{1}{2}$ $2\frac{1}{2}$	278473. 7	
$4p \ ^{2}P_{2}$	4p	4 <i>p</i> ² P°	$1\frac{1}{2}$ $1\frac{1}{2}$	2 42832.4	[4. 3]	6 <i>f</i> ² F	6 <i>f</i>	6 <i>f</i> ² F°	$\left\{ \begin{array}{c} 2\frac{1}{2} \\ 3\frac{1}{2} \\ 3\frac{1}{2} \end{array} \right.$	} 278491.7	
4d 2D3	4d	4d ³ D	$1\frac{1}{2}$ $2\frac{1}{2}$	244138. 9	[1. 4]	6 <i>g</i> 2G	6 <i>g</i>	6g 2G	$\left\{\begin{array}{c} 3\frac{1}{2} \\ 4\frac{1}{2} \end{array}\right.$	} 278497.5	
4 <i>f</i> *F	4 <i>f</i>	4 <i>f</i> ² F°	$\left\{\begin{array}{c} 2\frac{1}{2} \\ 3\frac{1}{2} \\ 3\frac{1}{2} \end{array}\right.$	} 244199.2							
58 2S1	58	58 2S	1 1/2	263156. 2	l		B IV (1S ₀)	Limit		305931. 1	1

April 1946.

(He I sequence; 2 electrons)

Ground state 1s² ¹S₀

 $1s^{2} {}^{1}S_{0} 2091960 \pm 200 \text{ cm}^{-1}$

I. P. 259.298 ± 0.025 volts

Z=5

The singlet terms are from Tyrén and the observed singlet combinations are in the range from 48 to 60 A. The unit adopted by Tyrén, 10^3 cm⁻¹, has here been changed to cm⁻¹.

BIV

Relative absolute values of the triplet terms were derived by the extrapolation of 3d ³D from He I and Li II, according to unpublished material generously furnished by Dr. Edlén. These calculations have confirmed the classification by Tyrén of a line at 61 A as the intersystem combination $1s^2$ ${}^{1}S_{0}-2p$ ${}^{3}P_{1}^{\circ}$. The triplet terms have been taken from Edlén's 1947 manuscript.

Z=5

I. P. 37.920 volts

A. Ericson and B. Edlén, Zeit. Phys. 59, 676 (1930). (T) (C L)

B IV—Continued

REFERENCES

B. Edlén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 6, 31 (1934). (T) (C L)

H. A. Robinson, Phys. Rev. 51, 14 (1937). (I P) (T) (C L)

F. Tyrén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 12, No. 1, 24 (1940). (I P) (T) (C L)

B. Edlén, unpublished material (Sept. 1947). (T)

D	T T 7
D	

BIV

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
1s ² 1s 2s 1s 2p	1s ² ¹ S 2s ³ S 2p ³ P°	0 1 0	0 1601505 <i>1636898</i>	-16	1s 4p 1s 5p 1s 6p	4p 1P° 5p 1P° 6p 1P°	1 1 1	1982750 2022000 2043360	
1s 2p 1s 3p	2p 1P° 3p 1P°	1 2 1 1	1636882 1636934 1658020 1898180	52	В v (²S _½)	Limit		2091960	

September 1947.

BV

(H sequence; 1 electron)

Ground state 1s²S₁₂

1s 2S34 2744063 cm⁻¹

Edlén first observed the Lyman line. Tyrén has observed three members of the series. The listed term values have been calculated by J. E. Mack for $B^{11}v$, "using $R_{B}^{11}=109731.835$ and $\Lambda=0.040$; a change of 1 percent in Λ would change the series limit by 1.46 cm⁻¹. For B^{10} the series limit is less by 13.6 cm⁻¹ than for B^{11} ."

REFERENCES

B. Edlén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 6, 28, 152 (1934). (T) (C L)

F. Tyrén, Zeit. Phys. 98, 771 (1936). (C L)

J. E. Mack, unpublished material (1949). (I P) (T) (C L)

W7
v

B V

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
1s 2p 2s 2p 3p 3s 3s, 3d 3d		2 2 2 2 2 2 2 2 2 2	0 2057954 2057972 2058182 2439151 2439156 2439218 2439241	$\begin{bmatrix} 18\\228.3 \end{bmatrix} \begin{bmatrix} 5\\67.6\\22.6 \end{bmatrix}$	4 p 4s 4p, 4d 4d, 4f 4f 5s	$\begin{array}{c} 4p {}^{2}P^{\circ} \\ 4s {}^{2}S \\ 4d {}^{2}D \\ 4d {}^{2}D \\ 4d {}^{2}D \\ 5s {}^{2}S \\ 5s {}^{2}S \\ 5s {}^{2}S \\ \end{array}$	1/2 1/2 2/2 3/2 3/2 1/2 2/2 3/2	2572561 2572563 2572589 2572599 2572603 2634306 to 330]] 2 28.5 9.5 4.8
						∞=Limit		2744063	

Z=5

I. P. 340.127 volts

SEE REVISION IN NSRDS-NBS 3, Section 3, October 1970.

CARBON

CI

6 electrons

Ground state 1s² 2s² 2p² ³P₀

 $2p^2 {}^{3}P_0$ 90878.3 cm⁻¹

The term assignments are taken from Edlén, who has revised and extended the earlier work on the analysis of this spectrum. Two extrapolated term values, derived from the irregular doublet law, are entered in brackets in the table.

The singlet and triplet terms are well connected by intersystem combinations. Only two quintet terms are known. They are connected with the rest by intersystem combinations based on the measures of the resonance lines by Shenstone.

One term, 5p ¹S, has been revised as suggested in the 1939 reference listed below.

Selected term values of C I have been improved from a study of the lines that have been clearly identified in the Infrared Solar Spectrum. Such precision cannot be expected from terms based on lines in the ultraviolet. As a starting point the value of $3s {}^{3}P_{1}^{\circ} = 60353.00 \text{ cm}^{-1}$ was adopted as correct, to agree with Shenstone's recent measures. Excellent agreement was found between the laboratory measures of Kiess (8335 A to 11330 A) and solar wave-numbers of lines identified as C I in the solar spectrum. Further to the red solar wavelengths surpass laboratory values in accuracy and give consistent internal separations within the multiplets.

In the course of this work all term values have been recalculated. Consequently, most of the listed values differ slightly from those published by Edlén. No changes have been made in his analysis, but the level $3d \, {}^{3}P_{0}^{\circ}$, calculated from solar wave-numbers, has been added to his list.

REFERENCES

A. Fowler and E. W. H. Selwyn, Proc. Roy. Soc. (London) [A] 118, 34 (1928). (T) (C L)

- S. B. Ingram, Phys. Rev. 34, 421 (1929). (T) (C L)
- F. Paschen and G. Kruger, Ann. der Phys. [5] 7, 1 (1930). (T) (C L)
- B. Edlén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 6, 104 (1934). (I P) (T) (C L)
- H. E. White, Introduction to Atomic Spectra p. 266 (McGraw-Hill Book Co., Inc., New York, N. Y., 1934). (G D)
- C. C. Kiess, J. Research Nat. Bur. Std. 20, 33, RP1062 (1938). (C L)
- W. F. Meggers, J. Opt. Soc. Am. 36, 431 (1936). (Summary hfs)
- Y. Ishida, T. Tamura, and M. Fukushima, Sci. Papers Inst. Phys. Chem. Research (Tokyo) 36, No. 936, 417 (1939). (T) (C L)

H. D. Babcock and C. E. Moore, Carnegie Inst. Wash. Publ. 579 (1947). (Solar data)

B. Edlén, Nature 159, No. 4030, 129 (1947). (C L)

A. G. Shenstone, Phys. Rev. 72, 411 (1947). (T) (C L)

Z=6

I. P. 11.264 volts

ດດ)
44	1

\mathbf{n}	12
•	п
_	_

Сі

Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
2p ³ P ₀ ³ P ₁	$2s^2 2p^2$	2 <i>p</i> ² ∗P	0	0.0	16. 4	$4d \ ^1D_2$	2s ² 2p(² P°)4d	4d ¹ D°	2	83500	
${}^{3}\overline{P}_{2}^{1}$	$2s^2 2n^2$	$2n^2$ 1D	2	43. 5 10193. 70	27.1	4d 3F3	$2s^2 2p(^2P^\circ)4d$	$4d \ {}^{3}\mathrm{F}^{\circ}$	$\begin{array}{c}2\\3\\4\end{array}$	83761	
$2p D_2$ $2n^1 S_2$	$2s^2 2n^2$	$2n^{2}$ ¹ S	0	21648.4		$4d \ ^{3}D_{1}$	$2s^2 2n(^2P^\circ)4d$	4d ³D°	1	83830	
2p 00	2s 2p ³	$2p^3 {}^5\mathrm{S}^\circ$	2	33735. 2		$^{3}D_{2}^{1}$ $^{3}D_{3}^{2}$			23	83837 83847	7 10
3s ² P ₀	2s ² 2p(² P°)3s	3s ³P°	0	60333.80	19. 20	5s ¹ P ₁	2s ² 2p(² P°)5s	5s ¹ P°	1	83882.5	
${}^{\bullet}P_{1}$ ${}^{3}P_{2}$				60393.52	40. 52	$4d \ {}^{1}\mathbf{F_{3}}$	$2s^2 2p(^2P^\circ)4d$	$4d \ {}^{1}\mathbf{F}^{0}$	3	83949	
3s ¹ P ₁	2s² 2p(²P°)3s	3s 1P°	1	61982. 20		$4d \ ^{1}P_{1}$	$2s^2 2p(^2P^\circ)4d$	$4d \ ^{1}P^{\circ}$	1	84032	
2p' ³ D ₃ ³ D ₂ ³ D ₁	2s 2p ³	2 <i>p</i> ³ ³D°	$\begin{array}{c} 3\\2\\1\end{array}$	64088.56 64093.19 64092.01	-4.63 1.18	4d ³ P ₂ ³ P ₁ ³ P ₀	$2s^2 2p(^2P^\circ)4d$	4d ³ P°	$\begin{array}{c} 2\\ 1\\ 0\end{array}$	84102.6 84112	-9
$3p \ ^{1}P_{1}$	2s ² 2p(² P°)3p	3p ¹ P	1	68858		5p ¹ P ₁	$2s^2 2p(^2P^\circ)5p$	5 <i>p</i> ¹ P	1	84852.13	
3p ² D ₁ ³ D ₂ ² D ₂	2s² 2p(²P°)3p	3 <i>p</i> ³D	$\begin{array}{c}1\\2\\3\end{array}$	69689.79 69710.99 69744.40	21. 20 33. 41	5p ³ D ₂ ³ D ₃	2s² 2p(²P°)5p	5 <i>p</i> ³D	1 2 3	84952 84986. 2	34
$3p$ $^{3}S_{1}$	$2s^2 2p(^2P^\circ)3p$	$3p$ $^{2}\mathrm{S}$	1	70744.26		$5p \ ^{1}D_{2}$	2s ² 2p(² P°)5p	5 <i>p</i> ¹ D	2	85400. 38	
$3p$ $^{3}P_{0}$	$2s^2 2p(^2P^\circ)3p$	3 <i>p</i> ³₽	0	71352. 81	12 42	$5p {}^{1}S_{0}$	$2s^2 2p(^2P^\circ)5p$	5p ¹ S	0	85625.84	
³ P ₁ ³ P ₂			$\begin{vmatrix} 1\\ 2 \end{vmatrix}$	71365. 23 71385. 70	20. 47	$5d \ ^{1}D_{2}$	2s ² 2p(² P°)5d	$5d \ ^{1}D^{\circ}$	2	86187	
$3p \ ^1D_2$	2s ² 2p(² P ^o)3p	3 <i>p</i> 1D	2	72611. 06		5d ³ F ₂ ³ F ₂	$2s^2 2p(^2P^\circ)5d$	$5d\ {}^{3}\mathrm{F}^{\circ}$	2	86 31 9 86326, 9	8
$3p \ {}^{1}\mathrm{S}_{0}$	$2s^2 2p(^2P^\circ)3p$	3p ¹ S	0	73976. 23		- 0			4		
2 <i>p′</i> ³P	2s 2p ³	$2p^{s}$ $^{s}\mathrm{P}^{\circ}$	2, 1, 0	75256. 3		5d 3Da	$2s^2 2p(^2P^\circ)5d$	$5d \ ^{s}D^{o}$	$\begin{vmatrix} 1\\ 2 \end{vmatrix}$	86371 3	
$3d \ ^1D_2$	$2s^2 2p(^2P^\circ) 3d$	$3d \ ^1D^\circ$	2	77680 . 5		³ D ³			3	86396	25
4s 3Po	$2s^2 \ 2p(^2P^\circ) 4s$	4s ³ P°	0	78105.23	11. 83	6s ¹ P ₁	2s ² 2p(² P°)6s	6s ¹ P°	1	8641 3. 96	
$^{3}P_{2}$			2	78148.36	31. 30	$5d \ {}^{1}\mathrm{F}_{3}$	$2s^2 2p(^2P^\circ)5d$	$5d \ {}^{1}\mathrm{F}^{\circ}$	3	86450	
$3d {}^{3}\mathbf{F}_{2}$	$2s^2 2p(^2P^\circ) 3d$	$3d \ ^{3}F^{\circ}$	2	78199. 34 78015 80	16.48	$5d {}^{1}P_{1}$	$2s^2 2p(^2P^\circ)5d$	5 <i>d</i> 1P°	1	86491	
³ F ₄		0.1472.0	4	78250. 22	34. 40	5d ³ P ₂ ³ P ₁	2s ² 2p(² P°)5d	5 <i>d</i> ³ P°	$\begin{vmatrix} 2\\ 1\\ 2 \end{vmatrix}$	86504 86517	-13
$3d \ {}^{3}D_{1} \ {}^{3}D_{2} \ {}^{3}D_{3}$	2s ² 2p(² P ³)3d	3 <i>a</i> •D°	$\frac{1}{2}$	78300.8 78307 78316	6 9	6d ¹ D ₂	$2s^2 \ 2p(^2\mathrm{P^o}) 6d$	6d 1D°	2	87632	
4s ¹ P ₁	$2s^2 2p(^2\mathrm{P^o}) 4s$	4s ¹ P°	1	783 38		$6d {}^{3}F_{2}$	$2s^2 2p(^2P^\circ) 6d$	$6d \ {}^{s}\mathbf{F}^{o}$	2	87706	7
$3d \ {}^{1}\mathbf{F}_{3}$	$2s^2 2p(^2P^\circ)3d$	3d ¹ F°	3	78531		-L3			4	07715	
$3d \ ^{1}P_{1}$	$2s^2 2p(^2P^\circ) 3d$	3d ¹ P°	1	78727.91		6440	2s ² 2p(² P°)6d	6d 3 D°	1	07750	
3d ² P ₂ ² P ₁	$2s^2 2p(^2\mathrm{P}^\circ) 3d$	3d ³P°	2 1 0	79311. 10 79319. 06 79323 32	-7.96 -4.26	³ D ₃ ³ D ₃	282 2n(2P0)78	7 e 1Pº	3	87773	21
1 m 3 D.	$2e^{2} 2n(2P^{0})4n$	4n 3D	1	80173 29		6d 1Fe	$2s^2 2n(2P^{\circ})6d$	6d 1F°	3	87807	
^{1}p $^{2}D_{1}$ $^{3}D_{2}$ $^{3}D_{2}$	23 2p(1)+p	1p D	2	80192.49 80222.74	$ \begin{array}{r} 19. 20 \\ 30. 25 \end{array} $	6d P2	$2s^{2} 2p(1) 0d$ $2s^{2} 2n(2P^{\circ}) 6d$	6 <i>d</i> 3P°	2	87830	
4p ¹ P ₁	2s ² 2p(² P°)4p	4 <i>p</i> 1P	1	80563. 57		³ P ₁	23° 2p(1)00	04 1		87839	-9
$4p$ 3S_1	$2s^2 2p(^2P^\circ)4p$	4 <i>p</i> ³ S	1	81105. 70		$6d {}^{1}P_{1}$	$2s^2 2p(^2P^\circ)6d$	6d ¹ P°	1	87831. 3	
4p ³ P ₀ ³ P ₁ ³ P ₂	$2s^2 2p(^2P^\circ)4p$	4 <i>p</i> [≇] P	$egin{array}{c} 0 \\ 1 \\ 2 \end{array}$	81311. 52 81326. 33 81344. 48	14. 81 18. 15	7d ² F ₂ ² F ₃ ² F ₄	$2s^2 \ 2p(^2\mathrm{P^o})7d$	7d ³F°	$2 \\ 3 \\ 4$	88541.8 88547	5
$4p \ ^1D_2$	$2s^2 2p(^2\mathrm{P}^\circ)4p$	4 <i>p</i> ¹ D	2	81770. 36			2s ² 2p(² P°)7d	7d 3D°	1		
4p 1S ₀	2s ² 2p(² P°)4p	4p 1S	0	82252. 31		7d ³ D ₃			$\begin{bmatrix} 2\\3 \end{bmatrix}$	88607	

C I—Continued

C I—Continued

Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
7d ¹ F ₃	$2s^2 2p(^2\mathrm{P}^\circ)7d$	7d ¹ F°	3	88624			$2s^2 2p(^2\mathrm{P}^\circ)9d$	9d 3D°	1		
$7d \ ^{1}P_{1}$	$2s^2 \ 2p(^2\mathrm{P^o})7d$	7 <i>d</i> ¹ P°	1	88632.44		$9d \ ^{3}D_{3}$			$\frac{2}{3}$	89514	
7d ³ P ₂	$2s^2 \ 2p(^2\mathrm{P^o})7d$	7 <i>d</i> 3P°	2	88639		9d 1F3	$2s^2 2p(^2\mathrm{P}^\circ) 9d$	9 <i>d</i> 1F°	3	89517	
			0				$2s^2 2p(^2\mathrm{P^o}) 10d$	$10d \ ^{3}D^{\circ}$	1		
9.J 2T	$2s^2 2p(^2P^\circ) 8d$	8d ³ F°	4	00001		$10d \ ^{3}D_{3}$			3	89779	
⁸ F ₂			2	89082	-1		$2s^2 2p(^2\mathrm{P}^\circ)11d$	11d ³ D°	1		
	$2s^2 2p(^2P^\circ) 8d$	8d 3 D°	$\frac{1}{2}$			$11d \ ^{3}D_{3}$			3	8 99 68.4	
$8d \ D_3$			$\frac{2}{3}$	89146			C II (2P ^o)	Limit		90878. 3	
8d ¹ F ₃	$2s^2 \ 2p(^2\mathrm{P}^\circ) 8d$	8d 1F°	3	89155		$2p' {}^{1}\mathrm{D}_{2}$	$2s \ 2p^3$	$2p^3$ $^1\mathrm{D}^{\circ}$	2	[97878]	
8d *P ₂	$2s^2 2p(^2P^\circ) 8d$	8d ³P°	$egin{array}{c} 2 \\ 1 \\ 0 \end{array}$	89158			2s 2p ² (4P)3s	3s ⁵P	$\begin{array}{c}1\\2\\3\end{array}$	103541. 8 103562. 5 103587. 3	20. 7 24. 8
	$2s^2 2p(^2\mathrm{P^o}) 9d$	9d 3F°	4			$2p'$ $^{3}S_{1}$	2s 2p ³	$2p^3$ $^3\mathrm{S}^{\mathrm{o}}$	1	105800.5	
9d ³ F ₂			3 2	89450		2p' ¹ P ₁	28 2p ³	$2p^{3}$ 'P°	1	[119878]	

September 1947.

C I OBSERVED TERMS*

$\begin{array}{c} \text{Config.} \\ 1s^2 + \end{array}$	Observed Terms									
$2s^2 2p^2$	$\begin{cases} 2p^2 {}^{3}\mathrm{P} \\ 2p^2 {}^{1}\mathrm{S} & 2p^2 {}^{1}\mathrm{D} \end{cases}$									
$2s \ 2p^3$	$ \underbrace{ \begin{cases} 2p^3 \ {}^5\mathrm{S}^{\circ} \\ 2p^3 \ {}^3\mathrm{S}^{\circ} \\ \hline \end{array} \\ \qquad $									
	$ns (n \ge 3)$	$np (n \ge 3)$	$nd (n \ge 3)$							
2s² 2p(²P°)nx 2s 2p²(⁴P)nx	{ 3, 4s ³ P° 3-7s ¹ P° 3s ⁵ P	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3-8d ³ P° 3-11d ³ D° 3-9d ³ F° 3-7d ¹ P° 3-6d ¹ D° 3-9d ¹ F°							

*For predicted terms in the spectra of the C I isoelectronic sequence, see Introduction.

(B I sequence; 5 electrons)

Ground state $1s^2 2s^2 2p {}^2\mathrm{P}_{\frac{1}{2}}^{\circ}$

 $2p \ ^{2}P_{\frac{1}{2}}^{\circ}$ 196659. 0 cm⁻¹

The term values for the doublets are taken from Edlén's Monograph. He has since rejected his 5p'²D term. Intersystem combinations have been observed by Edlén (1936) and the resulting correction to the quartet terms as published in his Monograph, +19.3 cm⁻¹, has been applied.

REFERENCES

A. Fowler and E. W. H. Selwyn, Proc. Roy. Soc. (London) [A] 120, 312 (1928). (T) (C L)

B. Edlén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 6, 74 (1934). (I P) (T) (C L) (G D)

B. Edlén, Zeit. Phys. 98, 561 (1936). (C L)

B. Eldén, private communication (Dec. 1947). (T)

	TT.
U.	ш

Сп

Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
$2p {}^{2}P_{1}$	$2s^2(^1S)2p$	2p 2P°	$\frac{\frac{1}{2}}{11}$	0.0	64. 0	5s 2S1	$2s^{2}(^{1}S)5s$	5s 2S	1/2	173348. 18	
-1 ₂	0.01	0.04	172	04.0		$5p {}^{2}P_{1}$	$2s^2(^1S)5p$	$5p\ ^2\mathrm{P}^{o}$	1/2	175287.9	7.3
$2p' *P_1$ $4P_2$ $4P_3$	28 2p ^z	2 <i>p</i> * *P	$2^{\frac{72}{11/2}}$ $2^{\frac{1}{2}}$	$\begin{array}{r} 43000.\ 2\\ 43021.\ 8\\ 43050.\ 7\end{array}$	21. 6 28. 9	$^{2}P_{2}$ $3s' {}^{2}P_{1}$	2s 2p(3P°)3s	3s 2P°	$1\frac{1}{2}$ $\frac{1}{2}$	175295. 2	06.7
2n' 2D.	28 2 m2	$2n^2$ 2D	21/2	74930.9		$^{2}P_{2}^{-}$			11/2	178220.8	20. 4
2p $^{2}D_{2}^{3}$	20 20	20 1	$1\frac{1}{1}$	74933. 2	-2.3	5d 2D	$2s^{2}(^{1}S)5d$	5d ² D	$1\frac{1}{2}$	179404 9	
$2p' {}^2\mathrm{S}_1$	2s 2p ²	$2p^2$ $^2\mathrm{S}$	1⁄2	96494. 1		5 <i>u</i> - D ₃				170494.0	
$2p' {}^{2}P_{1} {}^{2}P_{2}$	2s 2p ²	$2p^2$ ² P	$\frac{1/2}{14}$	110625.1 110666.3	41. 2	5 f ² F	$2s^{2}(^{1}S)5f$	5f ² F°	$\left\{ \begin{array}{c} 2^{1/2} \\ 3^{1/2} \end{array} \right.$	} 178956.46	
- 2 20 20	202(15) 20	2025	1/2	116537 88		6s 2S1	2s ² (¹ S)6s	6s 2S	1/2	181258	
101-00	28-(-15) 58	0.00	72	110557. 88		$3p' {}^{4}D_{1}$	2s 2p(3P°)3p	3p 4D	1/2	181694.50	14.70
${}^{3p}{}^{2}\mathrm{P}_{1}{}^{2}\mathrm{P}_{2}$	2s ² (¹ S)3p	3 <i>p</i> ² P°	$1\frac{12}{12}$	131724.68 131735.81	11. 13	$\begin{array}{c} {}^{4}\mathrm{D}_{2} \\ {}^{4}\mathrm{D}_{3} \\ {}^{4}\mathrm{D}_{4} \end{array}$			$ \begin{array}{c c} 1 & \frac{1}{2} \\ 2 & \frac{1}{2} \\ 3 & \frac{1}{2} \\ \end{array} $	181709.20 181734.21 181770.48	25. 01 36. 27
$2p^{\prime\prime}$ ${}^4\mathrm{S}_2$	$2p^{3}$	$2p^3$ $^4\mathrm{S}^{\circ}$	1½	142024.4		2m/ 2D	9. 9. (3D°) 9.	2 m 2D	1/	182025 0	
${^{2}D_{2}} {^{2}D_{2}} {^{2}D_{3}}$	2s² (1S)3d	3 <i>d</i> 2D	$1\frac{12}{21/2}$	145549.99 145551.44	1. 45	$\begin{array}{ c c c c c } & 3p & -1 & 1 \\ & & 2P_2 \\ & & & 2P_2 \end{array}$	28 2p(°1) 3p	3p -1	$1\frac{1}{12}$	182023. 0	19.5
$2p'' {}^{2}D_{3}$	$2p^{3}$	$2p^3$ $^2\mathrm{D}^{\circ}$	$2\frac{1}{2}$	150462.8 150467.9	-5.1	6d ² D ₂	$2s^{2}(^{1}S)6d$	6 <i>d</i> 2D	$\begin{vmatrix} 1\frac{1}{2}\\ 2\frac{1}{2} \end{vmatrix}$	184064. 9	
4s ² S ₁	2s²(1S)4s	4s 2S	1/2	157234. 43		6 <i>f</i> ² F	$2s^2(^{1}S)6f$	$6f \ ^2{ m F}^{\circ}$	$\left\{ \begin{array}{c} 2\frac{1}{2} \\ 3\frac{1}{2} \\ 3\frac{1}{2} \end{array} ight.$	} 184376. 20	
$4p {}^{2}P_{1}$	$2s^2(^1S)4p$	$4p \ ^2P^\circ$	$\frac{1}{2}$	162518.70	5, 92	$3p' {}^{4}S_{2}$	2s 2p(3P°)3p	3 <i>p</i> ⁴S	1½	184688.69	
² P ₂			1 1/2	162924. 62		$3p' {}^{4}P_{1}$	2s 2p(3P°)3p	3 <i>p</i> 4P	1/2	186425. 02	16.30
$3s' {}^{4}P_{1} {}^{4}P_{2}$	$2s 2p(^{3}P^{\circ})3s$	3s 4P°	$1\frac{1}{2}$ $1\frac{1}{2}$	$166964.\ 70\ 166988.\ 46$	23.76	$\begin{array}{c} {}^{4}\mathrm{P}_{2} \\ {}^{4}\mathrm{P}_{3} \end{array}$			$\begin{array}{c c} 1\frac{1}{2}\\ 2\frac{1}{2}\end{array}$	186441. 32 186463. 75	22. 43
⁴ P ₈			$2\frac{1}{2}$	167033.43	14. 57	$3p' {}^{2}D_{2}$	2s 2p(3P°)3p	3p ² D	1½	188579.3	29.4
$4d {}^{2}D_{2}$	$2s^2(^1S)4d$	$4d \ ^{2}D$	$1\frac{1}{2}$ $2\frac{1}{2}$	168123.92 168124.33	0. 41	$^{2}D_{3}^{-}$		•	$2\frac{1}{2}$	188612.7	00.4
2n'' 2P.	2.n3	2n3 2Do	1/2	168731 6		$3p' {}^2S_1$	2s 2p(3P°)3p	3p ² S	1/2	194571.9	
$^{2}P_{2}^{-11}$	-p		$1\frac{1}{1/2}$	168750. 2	18. 6	$3d' {}^4F_2$	2s 2p(3P°)3d	$3d \ {}^{4}\mathrm{F}^{\circ}$	$\frac{1\frac{1}{2}}{21}$	195750.8	14.3
4f 2F	$2s^2(^1S)4f$	$4f {}^{2}\mathrm{F}^{\circ}$	$\left\{ \begin{array}{c} 2^{1\!\!\!/_2} \\ 3^{1\!\!\!/_2} \end{array} \right.$	} 168979.05		$4F_{4}$ $4F_{5}$			$ \begin{array}{c c} 2^{72} \\ 3^{1/2} \\ 4^{1/2} \end{array} $	195784.7 195812.3	19. 6 27. 6

I. P. 24.376 volts
C II—Continued

CII-Continued

Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
$3d' {}^{4}D_{1}$ ${}^{4}D_{2}$ ${}^{4}D_{2}$	2s 2p(³ P°)3d	3 <i>d</i> ⁴D°	1/2 1/2 21/2	196556.2 196561.8 196570.5	5. 6 8. 7	4d' ² F ₄	2s 2p(3P°)4d	$4d \ ^{2}\mathrm{F}^{\circ}$	$2\frac{1}{2}$ $3\frac{1}{2}$	221502	
4D4	C III (¹ S ₀)	Limit	31/2	196580.8 196659.0	10. 3	$4f' {}^{4}G_{3} {}^{4}G_{4} {}^{4}G_{5} {}^{4}G_{5}$	2s 2p(3P°)4f	4 <i>f</i> ⁴G	$\begin{array}{c c} 2\frac{1}{2} \\ 3\frac{1}{2} \\ 4\frac{1}{2} \\ 5\frac{1}{6} \end{array}$	$\begin{array}{c} 221543.\ 0\\ 221553.\ 2\\ 221574.\ 5\\ 221603.\ 6\end{array}$	10. 2 21. 3 29. 1
3d' ² D ₂ ³ D ₃	2s 2p(3P°)3d	$3d \ ^2D^\circ$	$1\frac{1}{2}{2\frac{1}{2}}{2\frac{1}{2}}$	198426.4 198437.2	10. 8	4f' ² G ₄	2s 2p(3P°)4f	4 <i>f</i> ²G	$3\frac{1}{2}$ $4\frac{1}{2}$	221585 221628	43
3d' ⁴ P ₃ ⁴ P ₂ ⁴ P ₁	2s 2p(3P°)3d	3 <i>d</i> 4P°	$2\frac{1}{2}$ $1\frac{1}{2}$ $\frac{1}{2}$	198842.0 198863.5 198877.7	-21.5 -14.2	$4f' {}^{4}D_{4}$ ${}^{4}D_{3}$ ${}^{4}D_{2}$	2s 2p(3P°)4f	4 <i>f</i> ⁴D	$ \begin{array}{c} 3\frac{1}{2} \\ 2\frac{1}{2} \\ 1\frac{1}{4} \end{array} $	$\begin{array}{c} 221696.5\\ 221727.4\\ 221746.3\end{array}$	-30.9 -18.9
3d' ² F ₃ ² F ₄	2s 2p(3P°)3d	$3d \ ^2{ m F}^{\circ}$	$2\frac{1}{2}$ $3\frac{1}{2}$	199941.4 199984.2	42. 8		20 2m (3D9) 4f	4.5.2D	1/2 1/2 21/	221710.0	
$3d' {}^{2}{}^{\mathrm{P}_{2}}_{{}^{2}\mathrm{P}_{1}}$	2s 2p(3P°)3d	$3d \ ^2P^\circ$	$1\frac{1}{2}$	202180. 3 202204. 4	-24.1	$\begin{array}{c} 4J & ^{2}D_{3} \\ & ^{2}D_{2} \end{array}$	28 2p(1) 4j	4,2 200	11/2	221752.9	-45.0
4s' ⁴ P ₁ ⁴ P ₂	2s 2p(³ P°)4s	4s 4P°	$\frac{1}{2}$ $1\frac{1}{2}$	209550.26 209574.28	24.02 46.08	$4a^{2}P_{2}^{2}P_{1}^{2}$	28 2p(°P*)4a	4 <i>a</i> ² F	172 1/2	222209.1	-26.9
$4P_{3}$ $4p' ^{2}P_{1}$	2s 2p(3P°)4p	4 <i>p</i> ² P	2½	209620.36 214406.6	23. 1	5s' 4P3	28 2p(*P*)58	58 *P*	$\begin{array}{c c} & & & & & \\ & 1^{1\prime_2} \\ & 1^{1\prime_2} \\ & 2^{1\prime_2} \\ \end{array}$	225813	
$4p' 4D_1$	2s 2p(3P°)4p	4 <i>p</i> 4D	$\frac{1}{2}$	214429. 7 214758. 3 214779. 6	14. 3	5p′ ²P	2s 2p(3P°)5p	5 <i>p</i> ² P	$\left\{\begin{array}{c} \frac{1/2}{11/2} \\ 11/2 \end{array}\right.$	} 227901	
$^{4}D_{2}$ $^{4}D_{3}$ $^{4}D_{4}$			$1^{\frac{1}{2}}{2^{\frac{1}{2}}{3^{\frac{1}{2}}}}$	$\begin{array}{c c} 214772. \ 0\\ 214794. \ 6\\ 214828. \ 0\end{array}$	22. 0 33. 4		2s 2p(3P°)5d	5d 4D°	$\frac{\frac{1}{2}}{1\frac{1}{2}}$		
$4p'$ ${}^4\mathrm{S}_2$	2s 2p(3P°)4p	4 <i>p</i> 4S	$1\frac{1}{2}$	215765.6		$5d' {}^{4}D_{4}$			$\begin{array}{c c} 27_{2} \\ 31_{2}^{\prime} \end{array}$	230763	
4p' ⁴ P ₂ ⁴ P ₃	2s 2p(3P°)4p	4p 4P	$rac{1}{12} \ 1 rac{1}{2} \ 2 rac{1}{2} \ 2 rac{1}{2} \ 2 \ 1 \ 2 \ 1 \ 2 \ 2 \ 1 \ 2 \ 2 \ 1 \ 1$	216378. 0 216397. 7	19. 7	5d' *P ₃	2s 2p(3P°)5d	5d * P°	$\begin{array}{c c} 2\frac{1}{2} \\ 1\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array}$	231050	
$4p' \ ^2D_3$	2s 2p(3P°)4p	4p 2D	$1\frac{1}{2}$ $2\frac{1}{2}$	216927		5 <i>f'</i> ² F	2s 2p(3P°)5f	5 <i>f</i> ² F	$\left\{\begin{array}{c} 2\frac{1}{2}\\ 3\frac{1}{2}\\ 3\frac{1}{2}\end{array}\right.$	} 231221	
4d' ⁴ F ₂ ⁴ F ₃ ⁴ F ₄ ⁴ F ₅	2s 2p(3P°)4d	4d ' F°	$\begin{array}{c} 1\frac{1}{2}\\ 2\frac{1}{2}\\ 3\frac{1}{2}\\ 4\frac{1}{2}\end{array}$	219553.8 219568.5 219589.2 219617.0	14. 7 20. 7 27. 8	5f' 4F5	2s 2p(3P°)5f	5f 'F	$\begin{array}{c c} 1\frac{1}{2}\\ 2\frac{1}{2}\\ 3\frac{1}{2}\\ 4\frac{1}{2}\end{array}$	231226. 8	
4d' ⁴ D ₂ ⁴ D ₃ ⁴ D ₄	2s 2p(3P°)4d	4d 4D°	$\begin{array}{c} \frac{1}{12} \\ 1\frac{1}{2} \\ 2\frac{1}{2} \\ 3\frac{1}{2} \\ 3\frac{1}{2} \end{array}$	220127. 8 220137. 0 220147. 6	9. 2 10. 6	5f' 4Ge	2s 2p(3P°)5f	5f *G	$\begin{array}{c} 2\frac{1}{2} \\ 3\frac{1}{2} \\ 4\frac{1}{2} \\ 5\frac{1}{2} \end{array}$	231499. 3	
4d' ² D ₂ ² D ₃	2s 2p(3P°)4d	$4d \ ^{2}D^{\circ}$	$1\frac{1}{2}$ $2\frac{1}{2}$	220601.1 220614.2	13. 1	5f' 4D4	2s 2p(3P°)5f	5f 4D	$3\frac{1}{2}$ $2\frac{1}{2}$	231520. 4	
4d' ⁴ P ₃ ⁴ P ₂	2s 2p(3P°)4d	4d 4P°	$2\frac{1}{2}$ $1\frac{1}{2}$	220808. 47 220828. 97	-20.50 -11.90		20 2m (3D9) 6 d	ed 4D 9	$ \frac{1\frac{1}{2}}{\frac{1}{2}}$		
$4f' {}^{2}F_{3} {}^{2}F_{4}$	2s 2p(3P°)4f	4 <i>f</i> ² F	$\begin{array}{c} 72 \\ 2\frac{1}{2} \\ 3\frac{1}{2} \end{array}$	221089. 6 221098. 8	9. 2	6 <i>d'</i> 4D4	28 2p(°r *)0a	Uu ·D·	$\begin{array}{c c} & & & & & & & & \\ & & 1^{1/2} \\ & & 2^{1/2} \\ & & 2^{1/2} \\ & & 3^{1/2} \end{array}$	236444	
4f' ⁴ F ₄ ⁴ F ₅	2s 2p(3P°)4f	4f *F	1½ 2½ 3½ 4½	221106. 3 221107. 4	1. 1	6d' 4P.	2s 2p(3P°)6d	6 <i>d</i> 4P°	$\begin{array}{c} 2\frac{1}{2} \\ 1\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array}$	236605	

December 1947.

C II OBSERVED TERMS*

Config. 1s ² +		Observ	ved Terms	
$2s^2(^1\mathrm{S})2p$	2 <i>p</i> ² P°			
2s 2p ²	$\left\{ egin{array}{cccc} 2p^2 \ ^4\mathrm{P} \ 2p^2 \ ^2\mathrm{S} & 2p^2 \ ^2\mathrm{P} & 2p^2 \ ^2\mathrm{D} \end{array} ight.$			
$2p^3$	$\left\{\begin{array}{cccc} 2p^{3} {}^{4}\mathrm{S}^{\circ} & \\ & 2p^{3} {}^{2}\mathrm{P}^{\circ} & 2p^{3} {}^{2}\mathrm{D}^{\circ} \end{array}\right.$			
	$ns \ (n \ge 3)$	$np (n \ge 3)$	$nd \ (n \geq 3)$	$nf (n \ge 4)$
2s ² (1S)nx	3-6s 2S	3– 5 <i>p</i> ² P°	3-6 <i>d</i> ² D	4–6f ² F°
2s 2p(3P°)nx	$\begin{cases} 3-5s \ {}^{4}P^{\circ} \\ 3s \ {}^{2}P^{\circ} \end{cases}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4, 5f ⁴ D 4, 5f ⁴ F 4, 5f ⁴ G 4f ² D 4, 5f ² F 4f ² G

*For predicted terms in the spectra of the B I isoelectronic sequence, see Introduction.

Сш

SEE REVISION IN NSRDS-NBS 3, Section 3, October 1970.

(Be I sequence; 4 electrons)

Ground state 1s² 2s² ¹S₀

2s² ¹S₀ 386159. 7 cm⁻¹

I. P. 47.864 volts

Z=6

All but three terms are from Edlén's Monograph. For the terms 7d ³D, 8d ³D, and 9d ³D the revised values of Whitelaw and Mack have been used. Edlén has since rejected his 4d' ¹P term.

No intersystem combinations have been found with certainty. The long D-series determine the limits to about ± 25 cm⁻¹. The uncertainty x in the relative positions of the singlets and triplets is, therefore, less than ± 50 cm⁻¹ according to Edlén. No trace of the line predicted at 1910.7 ± 2 A, $2s^2$ ${}^{1}S_0 - 2p$ ${}^{3}P_1^{\circ}$, is visible on his plates. A line observed at 339 A (294314.1 cm⁻¹) agrees within 4 cm⁻¹ with the calculated combination 2p ${}^{3}P_1^{\circ} - 5d$ ${}^{1}D_2$. This identification is uncertain, since it is not confirmed by other intersystem combinations.

REFERENCES

B. Edlén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 6, 51 (1934). (I P) (T) (C L) (G D)

N. G. Whitelaw and J. E. Mack, Phys. Rev. 47, 677 (1935). (T)

B. Edlén, private communication (Dec. 1947). (T)

1	TTT
J.	111
_	

Сш

		0 m									
Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
28 1So	2s ²	2s ² 1S	0	0. 0		$2p' \ ^1\mathrm{D}_2$	$2p^2$	$2p^2$ ¹ D	2	145875. 1	
$2p \ ^{s}P_{0}$	$2s(^2S)2p$	2p 3P°	0	52315.0+x	23.0	$2p' {}^1\mathrm{S}_0$	$2p^2$	$2p^2$ ¹ S	0	182520. 2	
³ P ₁ ³ P ₂			$\frac{1}{2}$	52338.0+x 52394.8+x	56. 8	3s 3S1	$2s(^2S)3s$	38 3S	1	238160. 7+x	
2p ¹ P ₁	2s(2S)2p	2p ¹ P°	1	102351.4		3s 1S0	2s(2S)3s	3s 1S	0	247169.5	
2p' ⁸ P ₀ ⁸ P ₁ ⁸ P ₂	2p ²	$2p^2$ ⁸ P	$egin{array}{c} 0 \ 1 \ 2 \end{array}$	137374. $0+x$ 137403. $4+x$ 137450. $5+x$	29. 4 47. 1	3p ¹ P ₁	$2s(^2\mathrm{S})3p$	3p ¹ P°	1	258931. 4	

C III—Continued

=

C III—Continued

									1		1
Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
3p ³ P ₀ ³ P ₁ ³ P ₂	2s(2S)3p	3p 3P°	$\begin{array}{c} 0 \\ 1 \\ 2 \end{array}$	259653.8+x 259659.3+x 259672.1+x	5. 5 12. 8	$5d$ $^{s}D_{3}$	2s(2S)5d	5d ³ D	$\begin{array}{c}1\\2\\3\end{array}$	34 5444 + <i>x</i>	
3d ³ D ₁ ³ D ₂ ³ D ₃	2s(2S)3d	3d 3D	$\begin{array}{c}1\\2\\3\end{array}$	$\begin{array}{c} 269957. \ 6+x \\ 269959. \ 7+x \\ 269962. \ 9+x \end{array}$	2. 1 3. 2	5g ³ G₄ ³ G₅	2s(2S)5g	5g ³ G	$3 \\ 4 \\ 5$	346525. 1+x 346526. 0+x	0. 9
$3d \ ^1D_2$	$2s(^2\mathrm{S})3d$	3d 1D	2	276482.7		5g 1G4	$2s(^2\mathrm{S})5g$	5 <i>g</i> ¹ G	4	346577.5	
3s' 3Po	2p(2P°)3s	3s ³P°	0	308162.9+x	33. 3	$5d \ ^1\mathrm{D}_2$	$2s(^2\mathrm{S})5d$	$5d \ ^{1}\mathrm{D}$	2	346656.0	
[•] P ₁ ³ P ₂			$\frac{1}{2}$	308196. 2+x 308264. 8+x	68.6	3 <i>d′</i> ¹ P ₁	$2p(^2\mathrm{P^o})3d$	3d ¹ P°	1	346713. 1	
4s ³ S ₁	$2s(^2S)4s$	4s ³ S	1	309404. 5+ <i>x</i>		$5f {}^{3}F_{2}$	2s(2S) 5f	<i>5f</i> ³F°	2	347099.5+x	1.8
3s' ¹ P ₁	$2p(^{2}\mathrm{P}^{\circ})3s$	3s 1P°	1	310005.2		³ F ₄			3 4	347101. 3+x 347103. 7+x	2.4
4s ¹ S ₀	$2s(^2S)4s$	4s 1S	0	311720. 7		5f ¹ F ₃	$2s(^{2}S)5f$	5f 1F°	3	348859.5	
4p ⁸ P ₀₁	$2s(^2S)4p$	4 <i>p</i> ³P°	0,1	317743 + x	5	6s 3S1	2s(2S)6s	6 <i>s</i> 3S	1	354796 + x	
2m/ 1D	9m(2D9)2m	2m 1D		210710		6p ¹ P ₁	2s(2S)6p	6 <i>p</i> ¹ P°	1	357088	
	2p(-1) 3p		1	201250 Q.L.m			$2s(^2S)6d$	6d 3D	1		
⁴ <i>u</i> ⁰ D ₁ ⁸ D ₂	23(-15)40	40 °D	$\frac{1}{2}$	321375.1+x 321375.1+x	$ \begin{array}{c} 16.3 \\ 23.5 \end{array} $	6d 3D3				358046 + x	
4f ³ F ₂ ³ F ₈	2s (2S)4f	4 <i>f</i> ³F°		$\begin{array}{c} 321398. \ 0+x \\ 321949. \ 1+x \\ 321955. \ 8+x \\ 321964. \ 7+x \end{array}$	6. 7 8. 9	6g ³ G ₄ ³ G ₅	2s(2S)6g	6 <i>g</i> ³ G	3 4 5	358638. 3+x 358639. 0+x	0. 7
4m 1D	20(28) Am	1 m 1D0	1	900100 1		6g 1G4	$2s(^2S)6g$	6g 1G	4	3 58688. 9	
4p -11	$2s(-5) \pm p$ 2s(2S) Af	4p -1	2	200701 1		$6d \ ^1D_2$	$2s(^2\mathrm{S})6d$	6 <i>d</i> ¹ D	2	358725. 5	
4/ T 8	2s(-5)+j $2m(2D^{\circ}) 2m$	4) - F	1	222024 0 1 m			$2s(^{2}S)6f$	6 <i>f</i> ³ F°	2		
$p D_1$ D_2 D_2	2p(-1)5p		$\begin{vmatrix} 1\\2\\3 \end{vmatrix}$	323049.4+x 323049.2+x	25. 4 38. 8	6 <i>f</i> ³F₄			4	358800 +x	
4d 1D.	2s(2S) 4d	4d 1D	2	323033.2 ± 1		6f ¹ F ₃	$2s(^2S)6f$	6 <i>f</i> ¹ F°	3	359122. 2	
3n' 3S.	$2n(2P^{\circ})3n$	3n 3S	1	327225 7 + r		7s 2S1	2s(2S)7s	7s 3S	1	363561 + x	
3n' 8P.	2p(1) 0p $2n(2P^{\circ})3n$	3n $3P$		$320633 1 \pm r$		$7p \ ^{1}P_{1}$	$2s(^2S)7p$	7 <i>p</i> ¹ P°	1	364896	
³ P ₁ ⁸ P ₀	- p(1)0p	00 1		329654.2+x 329690.9+x	21. 1 36. 7	7d 3D	$2s(^2\mathrm{S})7d$	7d 3D	1, 2, 3	365585 + x	
3d' 1D.	$2n(^{2}P^{\circ})3d$	$3d {}^{1}\mathrm{D}^{\circ}$	2	332690 3		$7d \ ^{1}\mathrm{D}_{2}$	$2s(^2\mathrm{S})7d$	7d 1D	2	366027. 0	
3n' 1Da	$2n(^{2}P^{\circ})3n$	3n ¹ D		333116 4		8p ¹ P ₁	$2s(^2S)8p$	8p 1P°	1	369926	
3d' *F.	$2n(^2P^\circ)3d$	3d 3F°	2	333333 / + r		8d ° D	$2s(^2S)8d$	8d 3D	1, 2, 3	370438 + x	
³ F ₂ ³ F ₄				333358.4+x 333395.0+x	25. 0 36. 6	9 d ⁸ D	2s(2S)9d	9d 3D	1, 2, 3	373748 + x	
3d' ³ D ₁ ³ D ₂	$2p(^2\mathrm{P}^\circ)3d$	3d ³ D°		$\begin{array}{c} 337602. \ 9+x\\ 337616. \ 4+x \end{array}$	13.5	4s' ³ P ₂	2p(2P°)4s	4s ³ P°	$\begin{bmatrix} 0\\1\\2 \end{bmatrix}$	376637 +x	
*D3			3	337636.7+x	20. 5	$4p' {}^{1}P_{1}$	$2p(^{2}P^{\circ})4p$	4p 1P	1	381104.8	
5s ³ S ₁	2s(2S)5s	58 3S	1	339881 + x			$2p(^{2}P^{\circ})4p$	4p 3D	1		
3d' ³ P ₂ ³ P ₁ ³ P ₀	$2p(^{2}P^{\circ})3d$	3d ^s P°	$\begin{vmatrix} 2\\ 1\\ 0 \end{vmatrix}$	$\begin{array}{c} 340049.5 + x \\ 340075.8 + x \\ 340090.3 + x \end{array}$	$\begin{vmatrix} -26.3\\ -14.5 \end{vmatrix}$	$4p' {}^{3}D_{2} {}^{3}D_{3}$	0 (2D9) 4	4 3D	23	$ \begin{array}{r} 381919 +x \\ 381958 +x \end{array} $	39
3d' ¹ F ₈	$2p(^{2}\mathrm{P}^{\circ})3d$	$3d \ {}^{1}\mathrm{F}^{\circ}$	3	341368.5		4p' ³ P ₁	2p(2P)4p	4 <i>p</i> •P		384313 + x	37
$5p \ ^1P_1$	$2s(^2S)5p$	5 <i>p</i> ¹ P°	1	343255. 7			$9m(2D^{\circ})/m$	4m 1D	2	205627 F	
	$2s(^2S)5p$	5 <i>p</i> *P°	0			$4p^{-1}D_2$	2p(2P)/4p		2	995916 0	
5p ⁸ P ₂			2	344181 + x	1	+ <i>a</i> ·D ₂	$C_{\rm IV}(2S_{\rm e})$	Limit		386159 7	
$3p' {}^{1}\mathrm{S}_{0}$	2p(2P°)3p	3p 1S	0	345093. 9	1			Linu		000100. /	1

C III—Continued

C III—Continued

Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Level	
	$2p(^{2}P^{\circ})4d$	4d ² D°	1 2			5d' ³ P ₂	$2p(^{2}P^{\circ})5d$	5 <i>d</i> ³ P°	2	410841	+x	
$4d' \ ^{s}D_{3}$			3	387646 +x					Ō			
4d' ³ P ₂	$2p(^2\mathrm{P^o})4d$	4d ³P°	2	388442 +x			$2p(^{2}P^{\circ})6p$	6 <i>p</i> ³ D	1			
			0			6p' ³ D ₃			$\frac{2}{3}$	421380	+x	
4d' ¹ F ₃	$2p(^{2}P^{\circ})4d$	4d ¹ F°	3	388772. 2			$2p(^2P^\circ)6p$	6 <i>p</i> ³ P	0			
$5p' \ ^1P_1$	$2p(^{2}\mathrm{P}^{\circ})5p$	5 <i>p</i> 1P	1	407430. 4		6p' ³ P ₂			$\begin{vmatrix} 1\\2 \end{vmatrix}$	421967	+x	
	$2p(^{2}\mathrm{P}^{\circ})5p$	$5p$ $^{3}\mathrm{D}$	1	-			$2p(^{2}\mathrm{P}^{\circ})6d$	6d 3 D°	1			
5p' ³ D ₃			$\frac{2}{3}$	407774 + x		6d' ³ D ₃			$\frac{2}{3}$	422881	+x	
	$2p(^{2}\mathrm{P}^{\circ})5p$	5 <i>p</i> ³ P	0			$6d' {}^{3}P_{2}$	$2p(^{2}\mathrm{P}^{\circ})6d$	$6d \ ^{3}P^{\circ}$	2	423058	+x	
$5p' \ ^{3}P_{2}$			$\frac{1}{2}$	408873 + x								
$5p' \ ^1D_2$	$2p(^{2}P^{\circ})5p$	$5p \ ^{1}D$	2	409505. 0			$2p(^2\mathrm{P}^\circ)7p$	7 <i>p</i> ² D	1			
$5d' \ ^1D_2$	$2p(^{2}P^{\circ})5d$	$5d \ ^1D^{o}$	2	409682.1		7p' ³ D ₃			$\frac{2}{3}$	429345	+x	
	$2p(^{2}P^{\circ})5d$	5d 3D°	1				$2p(^{2}\mathrm{P}^{\circ})7p$	7 <i>p</i> ³ P	0			
5d' ² D ₃			23	410534 + x		7p' ³ P ₂			$\begin{vmatrix} 1\\2 \end{vmatrix}$	429712	+x	

December 1947.

C III OBSERVED TERMS*

Config. 1s ² +		Observed Terms							
$2s^2$ $2s(^2S)2n$	$\begin{bmatrix} 2s^2 \ ^1S \\ & 2p \ ^2P^\circ \end{bmatrix}$								
2p ²	$\begin{cases} 2p \ ^{1}P^{\circ} \\ 2p^{2} \ ^{3}P \\ 2p^{2} \ ^{1}S \\ 2p^{2} \ ^{1}D \end{cases}$								
	$ns \ (n \ge 3)$	$np (n \ge 3)$	nd $(n \ge 3)$	$nf (n \ge 4) ng (n \ge 5)$					
$2s(^2\mathrm{S})nx$	{3-7s ³ S {3, 4s ¹ S	3–5 <i>p</i> ² P° 3–8 <i>p</i> 1P°	3–9 <i>d</i> ³ D 3–7 <i>d</i> ¹ D	4-6f ³ F° 5, 6g ³ G 4-6f ¹ F° 5, 6g ¹ G					
$2p(^{2}P^{\circ})nx$	{ 3, 4s ³ P ^o 3s ¹ P ^o	3p ³ S 3–7p ³ P 3–7p ³ D 3p ¹ S 3–5p ¹ P 3–5p ¹ D	3-6d ³ P° 3-6d ³ D° 3d ³ F° 3d ¹ P° 3-5d ¹ D° 3, 4d ¹ F°						

*For predicted terms of the Be I isoelectronic sequence, see Introduction.

C IV

(Li 1 sequence; 3 electrons)

Ground state $1s^2 2s {}^2S_{\frac{1}{2}}$

28 2S1 520177.8 cm⁻¹

The terms are from Edlén. His extrapolated values of three intervals and the term values of the two high series members $8f {}^{2}F^{\circ}$ and $8g {}^{2}G$, etc., which were calculated from a well-determined series formula, are entered in brackets in the table.

REFERENCES

B. Edlén, Zeit. Astroph. 7, 378 (1933). (T) (C L)

B. Edlén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 6, 40 (1934). (I P) (T) (C L) (G D) T.-Y. Wu, Phys. Rev. 58, 1114 (1940). (C L)

CIV

C IV

Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
2s 2S1	2s	2s 2S	1/2	0. 0		6d 2D	6 <i>d</i>	6 <i>d</i> ² D	$\left\{\begin{array}{c} 1\frac{1}{2}\\ 2\frac{1}{2}\end{array}\right\}$	} 471368	
${2p} {}^{2}P_{1} {}^{2}P_{2}$	2 <i>p</i>	2p 2P°	$1\frac{1}{2}$ $1\frac{1}{2}$	64484. 2 64591. 3	[107. 1	6f 2F	6f	6f 2F°	$\begin{cases} 2\frac{1}{2} \\ 3\frac{1}{4} \end{cases}$	<i>471403.0</i>	
3s 2S1	38	3s 2S	1/2	302847.9					(0/2	,	
$3p {}^{2}P_{1} {}^{2}P_{2}$	3 <i>p</i>	3 <i>p</i> ²P°	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	320048.5 320080.0	[31. 5	6 <i>g</i> ² G	6 <i>g</i>	6 <i>g</i> 2G	$\left\{\begin{array}{c} 3\frac{1}{2} \\ 4\frac{1}{2} \end{array}\right\}$	471407.4	
$3d {}^{2}\mathrm{D}_{2} {}^{2}\mathrm{D}_{3}$	3 <i>d</i>	3 <i>d</i> 2D	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	324880.2 324890.9	[10. 7]	6h ² H	6h	6h ² H°	$\left\{\begin{array}{c} 4\frac{1}{2} \\ 5\frac{1}{2} \end{array}\right.$	} 471407.9	
4 2 S.	4.0	4 × 2 S	1/2	401346 7		7s 2S1	78	78 2S	1/2	482659	
$4p {}^{2}P_{1}$	4p	4p 2P°	1/2 1/2	408308.9	13. 3	7 <i>p</i> ² P	7 <i>p</i>	7 <i>p</i> ² P°	$\left\{\begin{array}{c} \frac{1'_2}{1\frac{1'_2}{2}}\right.$	} 483931	
$4d {}^{2}D_{2}$	4d	4 <i>d</i> 2D	$1\frac{1}{2}$	410333. 8 410338 2	4.4	7d 2D	7d	7d 2D	$\left\{ egin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array} ight.$	} 484309	
4f 2F4	4 <i>f</i>	4 <i>f</i> ²F°	$\frac{2^{1/2}}{2^{1/2}}$	410/3/ 1	[2.1]	7f ² F	7f	7f ²F°	$\left\{ egin{array}{c} 2\frac{1}{2} \ 3\frac{1}{2} \ 3\frac{1}{2} \end{array} ight.$	} 484343.8	
5s 2S1	58	5s 2S	1/2	445366. 1		7g 2G	7 <i>g</i>	7g 2G	$\left\{ \begin{array}{c} 3\frac{1}{2} \\ 4\frac{1}{2} \end{array} \right.$	} 484346.6	
5 <i>p</i> ² P ₁ ² P ₂	5 <i>p</i>	5 <i>p</i> ² P°	$1^{1/2}_{1^{1/2}_{2}}$	448854 448861	[6. 7]	7h ² H	7h	7h ² H°	$\left\{ \begin{array}{c} 4^{1\!\!/_2} \\ 5^{1\!\!/_2} \end{array} \right.$	} 484346.9	
5d 2D3	5d	5 <i>d</i> 2D	$1\frac{12}{22}$	449887.4	[2. 2]	8 <i>p</i> ² P	8p	8 <i>p</i> ² P°	$\left\{\begin{array}{c} \frac{1_2}{1_2^{\prime}} \\ 1_2^{\prime\prime} \end{array}\right.$	} 492473	
$5f {}^{2}\mathrm{F}$	5 <i>f</i>	5f 2F°	$\left\{ egin{array}{c} 2\frac{1}{2} \ 3\frac{1}{2} \ 3\frac{1}{2} \end{array} ight.$	} 449938. 2		8F	8f	8f 2F°	$\left\{ egin{array}{c} 2 \frac{1}{2} & . \\ 3 \frac{1}{2} & . \end{array} ight.$	} [492743]	
5 <i>g</i> ²G	5 <i>g</i>	5g 2G	$\left\{ \begin{array}{c} 3\frac{1}{2} \\ 4\frac{1}{2} \end{array} \right.$	} 449948.4		8GHIK	8g, etc.	8g ² G, etc.	$\begin{cases} 3\frac{1}{2} \\ to \\ 71 \end{cases}$	[492745]	
6s 2S1	68	6s 2S	1/2	468765					1/2	J	
6 <i>p</i> ³ P	6 <i>p</i>	6 <i>p</i> ² P°	$\left\{ \begin{array}{c} \frac{1}{1} \\ 1\frac{1}{2} \\ \end{array} \right\}$	} 470763			C v (1S0)	Limit		520177.8	

April 1946.

Z=6

I. P. 64.476 volts

(He I sequence; 2 electrons)

Ground state 1s² ¹S₀

$1s^2 {}^{1}S_0 3162450 \pm 300 \text{ cm}^{-1}$

I. P. 391.986 ± 0.037 volts

C v

Z=6

The singlet terms are from Tyrén, who has reported (1940) nine lines visible on his spectrograms. His limit has been calculated from the series members n=2 to 6. The remaining singlet terms have been calculated from three classified lines at 32 A given in his 1936 paper. He has also classified a line at 40.731 A as the intersystem combination $1s^2 {}^{1}S_0 - 2p {}^{3}P_1^{\circ}$. His unit, 10^3 cm⁻¹ has here been changed to cm⁻¹.

The triplet terms are from an unpublished manuscript kindly furnished by Edlén, who states that the absolute term values of the triplets are based on an extrapolation of 3d ³D from He I and Li II. The relative positions of the singlet and triplet terms thus determined confirm the intersystem combination reported by Tyrén.

REFERENCES

B. Edlén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 6, 31 (1934). (C L)

F. Tyrén, Zeit. Phys. 98, 774 (1936). (C L)

- H. A. Robinson, Phys. Rev. 51, 14 (1937). (I P) (T) (C L)
- F. Tyrén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 12, No. 1, 24 (1940). (I P) (T) (C L)

B. Edlén, unpublished material (Sept. 1947). (T)

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
1s ²	1s ² 1S	0	0		1s 4p	4p 1P°	1	2991680	
18 28	2s 3S	1	2411266		1s 5p	5 <i>p</i> ¹ P°	1	3053060	
1s 2p	2p ³P°	0	2455165	-13	1s 6p	6p 1P°	1	308642 0	
			2455288	136	1s 7p	7 <i>p</i> ¹ P°	1	3 106750	
1s 2p	2p ¹ P°	1	2483240		1s 8p	8 <i>p</i> 1 P °	1	3 118760	
18 3d	3d 3D	3, 2, 1	2857308						
1s 3p	3p 1P°	1	2859350		C VI (2S35)	Limit		3162450	-

C v

September 1947.

(H sequence; 1 electron)

Ground state 1s ²S_{1/2}

18 2S_{1/2} 3951950 cm⁻¹

The first three members of the Lyman series have been observed by Tyrén. The terms listed below have been calculated by J. E. Mack, "using $R_{C^{12}}=109732.286$ and $\Lambda=0.040$. The series limit of C¹³ is higher by 14.0 cm⁻¹ than the one shown here."

REFERENCES

F. Tyrén, Zeit. Phys. 98, 771 (1936). (C L) J. E. Mack, unpublished material (1949). (I P) (T) (C L)

C VI

C VI

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
1s 2p 2s 2p 3p 3s 3p, 3d 3d	$ \begin{array}{c} 1s \ ^{2}S \\ 2s \ ^{2}S \\ 2s \ ^{2}S \\ 2p \ ^{2}P^{\circ} \\ 2p \ ^{2}P^{\circ} \\ 3p \ ^{2}P^{\circ} \\ 3d \ ^{2}D \\ 3d \ ^{2}D \\ \end{array} $	½ ½ 1½ 1½ 1½ 1½ 2½	0 2963768 2963806 2964241 3512811 3512822 3512951 3512998	$ \begin{bmatrix} 38 \\ 473. \ 3 \end{bmatrix} $ $ \begin{bmatrix} 11 \\ 140. \ 3 \\ 46. \ 7 \end{bmatrix} $	4p 4s 4p, 4d 4d, 4f 4f 5s, etc.	$4p \ ^{2}P^{\circ}$ $4s \ ^{2}S$ $4d \ ^{2}D, \ 4p \ ^{2}P^{\circ}$ $4d \ ^{2}D, \ 4f \ ^{2}F^{\circ}$ $4f \ ^{2}F^{\circ}$ $5s \ ^{2}S, \ etc.$ $\infty = Limit$	½ ½ 1½ 2½ 3½ ½ 1½ 2½ 3½ ½ ½	3704957 3704961 3705016 3705035 3705045 3793884 to 933 3951950]] 5 59.2 19.7 9.9

February 1949.

Z=6

I. P. 489.84 volts

NITROGEN

ΝI

7 electrons

Ground state $1s^2 2s^2 2p^3 {}^4S_{1\frac{1}{2}}^{\circ}$

 $2p^{3} \, {}^{4}S_{1\frac{1}{2}}^{\circ} \, 117345 \text{ cm}^{-1}$

I. P. 14.54 volts

Z=7

The terms have been taken chiefly from the list prepared by Ekefors with extensions calculated from the classifications published in Tokyo. Unfortunately, no term list was included in the Tokyo papers. Consequently, considerable editing has been done in compiling terms from all the observational material. Revised values are suggested for a few levels and tentative values not in the literature are listed for $5d \, {}^{4}F_{2\frac{1}{2}}$, $5d \, {}^{4}D_{3\frac{1}{2}}$, and $6d \, {}^{4}D_{3\frac{1}{2}}$. Further study is needed to verify the numerous blends resulting from practically coincident levels.

Intersystem combinations have been observed.

Kiess and Shortley have generously furnished g-values derived from the observed Zeeman effects of 18 infrared lines.

REFERENCES

O. S. Duffendack and R. A. Wolfe, Phys. Rev. 34, 409 (1929). (C L)

S. B. Ingram, Phys. Rev. 34, 421 (1929). (T) (C L)

E. Ekefors, Zeit. Phys. 63, 437 (1930). (I P) (T) (C L)

H. E. White, Introduction to Atomic Spectra p. 260 (McGraw-Hill Book Co., Inc., New York, N. Y., 1934). (G D)

B. Edlén, Bergstrand's Festkskrift p. 135 (1938). (C L)

M. Kamiyama, Sci. Papers Inst. Phys. Chem. Research (Tokyo) 36, No. 933, 375 (1939). (C L)

M. Kamiyama and T. Sugiura, Sci. Papers Inst. Phys. Chem. Research (Tokyo) 37, Nos. 982 and 983, 479 (1940). (C L)

M. Kamiyama and H. Noguchi, Sci. Papers Inst. Phys. Chem. Research (Tokyo) **39**, No. 1100, 475 (1942). (C L) J. R. Holmes, Phys. Rev. **63**, 41 (1943). (I S)

W. F. Meggers, J. Opt. Soc. Am. 36, 431 (1946). (Summary hfs)

C. C. Kiess and G. Shortley, J. Research Nat. Bur. Std. 42, 190, RP1961 (1949). (Z E)

N	Т
14	т

ΝI

Config.	Desig.	J	Level	Interval	Obs. g	Config.	Desig.	J	Level	Interval	Obs. g
$2s^2 2p^3$	$2p^{3}$ 4S°	1½	0	-		2s 2p ⁴	2p4 4P	$2\frac{1}{2}$ $1\frac{1}{2}$ $1\frac{1}{2}$	88109.5 88153.4 88173.0	-43.9 -19.6	
25 2p	2p ² · D	1½ 1½	19231	-8		2s ² 2p ² (³ P)3p	3 <i>p</i> 2S°	1/2 1/2	93582. 3		
2s ² 2p ³ 2s ² 2p ² (³ P)3s	3s 4P		83285. 5 83319. 3	33.8	2. 670 1. 735	$2s^2 2p^2(^{3}P)3p$	3 <i>p</i> ⁴ D°	$\begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \\ 2\frac{1}{2} \\ 3\frac{1}{2} \end{array}$	94772. 2 94794. 8 94832. 1 94883. 1	22. 6 37. 3 51. 0	$\begin{array}{c c} 0.\ 002\\ 1.\ 19\\ 1.\ 36\\ 1.\ 44 \end{array}$
2s² 2p²(³P)3s	3s 2P	$2\frac{1}{2}$	83366. 0 86131. 4 86223. 2	91. 8	1. 603	2s ² 2p ² (³ P)3p	3p 4P°	1/2 1/2 21/2	95476.5 95494.9 95533.2	18. 4 38. 3	$\begin{array}{c} 2. \ 671 \\ 1. \ 737 \\ 1. \ 598 \end{array}$

N I-Continued

N I-Continued

		1					1	1	1		
Config.	Desig.	J	Level	Interval	Obs. g	Config.	Desig.	J	Level	Interval	Obs. g
$2s^2 2p^2(^{3}P)3p$ $2s^2 2n^2(^{3}P)3n$	$3p {}^{4}\mathrm{S}^{\circ}$ $3n {}^{2}\mathrm{D}^{\circ}$	1½	96751.7 96788 2		2.004	2s ² 2p ² (³ P)4d	4d 4P	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	$110325 \\ 110351 \\ 110403$	26 52	
$2s^{2} 2p^{2} (1) 3p^{2}$ $2s^{2} 2p^{2} (^{3}P) 3p$	3p ² P°	$\frac{1}{2\frac{1}{2}}$	96864. 2 97770. 1	25.7		2s ² 2p ² (³ P)4d	4 <i>d</i> ² D	$1\frac{1}{2}$ $2\frac{1}{2}$	110448. 3 110470. 5	22. 2	
$2s^2 2p^2(^1D)3s$	3s' 2D	$1\frac{1}{2}$ $2\frac{1}{2}$	<i>97805.8</i> 99665	-7		$2s^2 2p^2(^1D) 3p$	3p' 2D°	$1\frac{1}{2}$ $2\frac{1}{2}$	110521.9 110545.8	23. 9	
2s ² 2p ² (³ P)4s	4s 4P		99658 103618. 1	50.0		$2s^2 2p^2(^1D)3p$	3p' 2P°	1½ 1½	112294.8 112320.8	26. 0	
	(a)	$ \begin{array}{c c} 1\frac{1}{2} \\ 2\frac{1}{2} \\ \end{array} $	103668. 1 103736. 8	68. 7		2s ² 2p ² (³ P)6s	68 4P	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	112565. 9 112610. 6	44.7	
$2s^2 2p^2(^{3}P)4s$	48 ² P		104142. 2 10422 7 . 4	85. 2		2.82 2.n2 (3P) 68	6. 2P		112682. 6	.2.0	
$2s^2 \ 2p^2(^{3}P) \ 3d$	3d 2P	$1\frac{1}{2}$	104615.4 104654.9	-39.5		20 20 (1)00	00 1		112823	88	
2s² 2p²(³P)3d	3 <i>d</i> 4F	$1\frac{1}{2}$ $2\frac{1}{2}$ $3\frac{1}{2}$ $4\frac{1}{2}$	$104665 \\ 104684 \\ 104718 \\ 104767 \\ 1$	19 34 49		$2s^2 2p^2(^{3}P)5d$	5 <i>d</i> 4F	$\begin{array}{c c} 1\frac{1}{2}\\ 2\frac{1}{2}\\ 3\frac{1}{2}\\ 4\frac{1}{2}\\ 4\frac{1}{2} \end{array}$	$\begin{array}{c} 112751?\\ 112763?\\ 112799\\ 112862\end{array}$	12 36 63	
$2s^2 2p^2(^{3}P)3d$	$3d \ ^2\mathrm{F}$	$\frac{1}{2}$	104810. 9	71. 8		$2s^2 2p^2(^{3}P)5d$	5 <i>d</i> ² P	$ \begin{array}{c c} 1\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array} $	112801 112816	-15	
$2s^2 \ 2p^2(^3P) 3d$	3d 4P	1/2 1/2	104864	26		$2s^2 2p^2(^{3}P)5d$	$5d \ ^{2}\mathrm{F}$	$2\frac{1}{2}$ $3\frac{1}{2}$	112820 112890. 2	70	
		$ \begin{array}{c c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array} $	$\frac{104890}{104957}$	67		2s ² 2p ² (³ P)5d	5d 4D	1/2			
28 ² 2p ² (³ P)3d	3 <i>d</i> 4D	$ \begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ 2\frac{1}{2} \end{array} $	10498 7 104998 105011	11 13				$\begin{array}{c c} 1 & \frac{1}{2} \\ 2 & \frac{1}{2} \\ 3 & \frac{1}{2} \\ 3 & \frac{1}{2} \end{array}$	112825 112892?	67	
$2s^2 \ 2p^2(^3\mathrm{P}) \ 3d$	3d ² D		105020 105120. 8	23. 5		$2s^2 2p^2(^{3}\mathrm{P})5d$	5d 4P	$\begin{array}{c c} & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{2}{2} \\ \end{array}$	$\begin{array}{c} 112855 \\ 112874 \\ 112912 \end{array}$	19 38	
$2s^2 2p^2(^{3}P)4p$	4p 28°	$\frac{2\frac{1}{2}}{\frac{1}{2}}$	105144. 3 106478. 6			$2s^2 2p^2(^{3}P)5d$	5d 2D	$1\frac{1}{2}$	112929. 2 112947. 5	18. 3	
$2s^2 2p^2(^{3}P)4p$	4p 4D°	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$ $3\frac{1}{2}$	106760.5 106780.1 106816.1 106870.7	19.6 36.0 54.6		2s ² 2p ² (³ P)7s	78 4P	$ \begin{array}{c c} & 1 \\ & 1 \\ & 1 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 1 \\ & 2 \\$	114015? 114072? 114146	57 74	
2s ² 2p ² (³ P)4p	4p 4P°	$ \begin{array}{c} 3_{12} \\ \frac{1}{12} \\ 1_{12}^{1/2} \end{array} $	106982.7 106998.3	15.6		2s ² 2p ² (³ P)7s	78 ² P	$1\frac{1}{2}$ $1\frac{1}{2}$	114130 114163	33	
2s ² 2p ² (³ P)4p	4 <i>p</i> 4S°	$2\frac{1}{2}$ $1\frac{1}{2}$	107039.0 107447. 2	10.1		$2s^2 2p^2(^3P)6d$	6d 4F	$ \left\{\begin{array}{c} 1\frac{1}{2} \\ \text{to} \\ 4\frac{1}{2} \end{array}\right. $	} 114160		
2s ² 2p ² (³ P)5s	58 4P	$1^{\frac{1}{2}}$ $1^{\frac{1}{2}}$ $2^{\frac{1}{2}}$	109813.5 109857.8 109927.9	44. 3 70. 1		$2s^2 2p^2(^{3}P)6d$	6d 4D	$\begin{array}{c c} & \frac{1}{2} \\ \end{array}$	114182	66	
2s ² 2p ² (³ P)5s	58 ² P	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	110029. 2 110108. 5	79. 3		2s ² 2p ² (³ P)6d	6 <i>d</i> ² P	$ \begin{array}{c c} 3\frac{1}{2} \\ 1\frac{1}{2} \end{array} $	114248? 114193	-16	
2s ² 2p ² (³ P)4d	4d 4F	$1\frac{1}{2}$ $2\frac{1}{2}$ $3\frac{1}{2}$	110196 110214 110248	18 34		2s ² 2p ² (³ P)6d	6 <i>d</i> ² F	$ \begin{array}{c c} \frac{1}{2} \\ 2\frac{1}{2} \\ 3\frac{1}{4} \end{array} $	114209 114196 114275	79	
			110304	00		2s ² 2p ² (³ P)6d	6d 2D	11/2	114232. 2	58.3	
28° 2p²(°r')4a	4 <i>a</i> *D	$ \begin{array}{c} \frac{1}{12} \\ \frac{1}{2} \\ \frac{2}{2} \\ \frac{1}{2} \\ \frac{1}{2}$	$ \begin{array}{c} 110221 \\ 110275 \\ 110288 \\ 110339 \end{array} $	54 13 51		2s ² 2p ² (³ P)6d	6d 4P	$2\frac{1}{2}$	114290. 5	00.0	
$2s^{2} 2p^{2}(^{3}P)4d$	4d 2P	11/2	110221. 7	0				$2\frac{1}{2}$	114259	15	
2s ² 2p ² (³ P)4d	4d 2F	¹ / ₂ 2 ¹ / ₂ 2 ¹ / ₂	110244. 6 110311 110272	62		2s ² 2p ² (³ P)8s	88 4P	$\begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}$	114809 114890 114942	81 52	

N I—Continued

Config.	Desig.	J		Level	Interval	Obs. g	Config.	Desig.	J	Level	Interval	Obs. <i>g</i>
2s ² 2p ² (³ P)8s	8s ² P	$\left\{ \begin{array}{c} \frac{1}{1} \\ 1\frac{1}{12} \\ 1\frac{1}{12} \end{array} \right\}$	}	114950			2s ² 2p ² (³ P)11s	11s 2P	$\left\{\begin{array}{c} \frac{1}{1}\\ 1\frac{1}{2} \end{array}\right\}$	} 116107		
2s² 2p²(³P)7d	7d 4D	$\begin{cases} \frac{1_2}{to}\\ \frac{3_2}{2} \end{cases}$	}	114988			2s ² 2p ² (³ P)11s	11s 4P	$\left\{\begin{array}{c} \frac{1/2}{\text{to}}\\ 2\frac{1}{2}\end{array}\right\}$	$\left. \right\}$ 116124		
2s ² 2p ² (³ P)7d	$7d \ ^{2}F$	$\left\{ egin{array}{c} 2\frac{1}{2} \ 3\frac{1}{2} \ 3\frac{1}{2} \end{array} ight.$	}	115004			2s ² 2p ² (³ P)10d	10 <i>d</i> ² P	$\left\{\begin{array}{c}1\frac{1}{2}\\\frac{1}{2}\end{array}\right.$	116155		
2s² 2p²(³P)7d	7d 2P	$\left\{\begin{array}{c}1\frac{1}{2}\\\frac{1}{2}\end{array}\right.$	}	115017			2s ² 2p ² (³ P)10d	10 <i>d</i> ² F	$\left\{ \begin{array}{c} 2\frac{1}{2} \\ 3\frac{1}{2} \end{array} ight.$	$\Big\}$ 116159		
$2s^2 2p^2(^{3}P)7d$	7d 2D	$1\frac{12}{21/2}$		115057.5 115100.1	42.6		2s ² 2p ² (³ P)10d	10 <i>d</i> 4D	$\begin{cases} \frac{1}{2} \\ to \\ \frac{1}{2} \end{cases}$	} 116164		
2s ² 2p ² (³ P)7d	7d 4P	$\begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}$		115103			2s ² 2p ² (³ P)10d	10 <i>d</i> ² D	$\left\{\begin{array}{c}1 & 3\frac{7}{2}\\ 1\frac{1}{2}\\ 2\frac{1}{2}\end{array}\right\}$	$\left. \right\} 116240$		
2s ² 2p ² (³ P)9s	9s 2P	$\begin{cases} \frac{1}{2} \\ 1\frac{1}{2} \\ 1\frac{1}{2} \end{cases}$	}	115480			$2s^2 2p^2(^{3}P)10d$	10 <i>d</i> 4P	$\begin{cases} \frac{1_2}{\text{to}}\\ 2\frac{1_2}{2} \end{cases}$	116259		
2s ² 2p ² (³ P)9s	98 4P	$\begin{cases} \frac{1}{2} \\ to \\ 2\frac{1}{2} \end{cases}$	}	115483			2s ² 2p ² (³ P)12s	12s 2P	$\left\{\begin{array}{c} \frac{1}{1}\\ 1\frac{1}{2} \end{array}\right.$	} 116305		
2s ² 2p ² (³ P)8d	8d 4D	$\begin{cases} \frac{1/2}{to}\\ 3\frac{1}{2} \end{cases}$	}	115524			2s ² 2p ² (³ P)12s	12s 4P	$\begin{cases} \frac{1/2}{\text{to}}\\ 2\frac{1}{2} \end{cases}$	116312		
2s ² 2p ² (³ P)8d	8d 2P	$\left\{\begin{array}{c}1\frac{1}{12}\\\frac{1}{12}\end{array}\right\}$	}	115530			$2s^2 2p^2(^{3}P)11d$	11 <i>d</i> 2P	$\left\{\begin{array}{c}1\frac{1}{2}\\\frac{1}{2}\end{array}\right.$	} 116351		
2s ² 2p ² (³ P)8d	8 <i>d</i> ² F	$\left\{ egin{array}{c} 2\frac{1}{2} \\ 3\frac{1}{2} \end{array} ight.$	}	115535			$2s^2 2p^2(^{3}P) 11d$	11 <i>d</i> ² F	$\left\{ egin{array}{c} 2^{1\!\!\!/_2} \\ 3^{1\!\!\!/_2} \end{array} ight.$	116359		
2s² 2p²(³P)8d	8d 2D	$1\frac{1}{2}$ $2\frac{1}{2}$		115597 115622	25		2s ² 2p ² (³ P)11d	11 <i>d</i> 4D	$\begin{cases} \frac{1/2}{to}\\ 3\frac{1}{2} \end{cases}$	} 116367		
2s ² 2p ² (³ P)8d	8d 4P	$\begin{cases} \frac{1/2}{10} \\ 2\frac{1}{2} \\ 2\frac{1}{2} \end{cases}$	}	115618			2s ² 2p ² (³ P)11d	11 <i>d</i> 2D	$\left\{ egin{array}{c} 1^{1\!\!\!/_2} \\ 2^{1\!\!\!/_2} \end{array} ight.$	} 116436		
2s ² 2p ² (³ P)10s	10s 2P	$\begin{cases} \frac{1}{12} \\ 1\frac{1}{2} \end{cases}$	}	115842			2s ² 2p ² (³ P)11d	11 <i>d</i> 4P	$\left\{\begin{array}{c} \frac{12}{10}\\ \frac{10}{212}\end{array}\right\}$	} 116441		
2s ² 2p ² (³ P)10s	10s 4P	$\begin{cases} \frac{1}{2} \\ \text{to} \\ 2\frac{1}{2} \end{cases}$	}	115855			2s ² 2p ² (³ P)13s	13s 2P	$\left\{\begin{array}{c} \frac{1_2}{1_2'}\\ 1_2''\end{array}\right\}$	} 116467		
2s² 2p²(³P)9d	9d 4D	$\begin{cases} \frac{12}{10}\\ \frac{312}{3}\end{cases}$	}	115887			2s ² 2p ² (³ P)12d	12d ² P	$\left\{\begin{array}{c} 1\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array}\right.$	$\Big\}$ 116502		
2s ² 2p ² (³ P)9d	9d 2P	$\left\{ \begin{array}{c} 1\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array} \right.$	}	115889			2s ² 2p ² (³ P)12d	12d 4P	$\begin{cases} \frac{1/2}{\text{to}}\\ 2\frac{1}{2} \end{cases}$	} 116581		
2s ² 2p ² (³ P)9d	9d 2F	$\left\{ \begin{array}{c} 2\frac{1}{2} \\ 3\frac{1}{2} \end{array} \right.$	}	115902			2s ² 2p ² (³ P)12d	12d 2D	$\left\{ \begin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array} ight.$	116625		
2s ² 2p ² (³ P)9d	9d 2D	$1\frac{1}{2}$ $2\frac{1}{2}$		115973 115991	18							
2s ² 2p ² (³ P)9d	9d 4P	$\begin{cases} \frac{1}{2}\\ to\\ 2\frac{1}{2}\end{cases}$	}	115990			N II (³ P ₀)	Limit		117345		

October 1947.

Config. 1s ² +		Observed Terms										
2s ² 2p ³ 2s 2p ⁴	$\left\{ 2p^{\ast} {}^{4}\mathrm{S}^{\circ} \right.$	$2p^{3}$ $^{2}\mathrm{P}^{\circ}$ $2p^{3}$ $^{2}\mathrm{D}^{\circ}$ $2p^{4}$ $^{4}\mathrm{P}$	>									
		ns $(n \ge 3)$			$np (n \ge 3)$	3)		nd $(n \ge 3)$				
2s ² 2p ² (3 P)nx	{	3–12s 4P 3–13s 2P	3, 4 3, 4	4 <i>p</i> 4S° 4 <i>p</i> 2S°	3, 4p 4P° 3p 2P°	3, 4p 4D° 3p 2D°	3–12d ⁴ P 3–12d ² P	3–11d ⁴ D 3–12d ² D	3- 6d ⁴ F 3-11d ² F			
$2s^2 2p^2(^1D) nx'$	-31	3s' 2D			$3p' \ ^2P^{\circ}$	$3p' \ ^2D^\circ$						

*For predicted terms in the spectra of the N I isoelectronic sequence, see Introduction.

NΠ

(C I sequence; 6 electrons)

Ground state $1s^2 2s^2 2p^2 {}^3P_0$

 $2p^2 {}^{3}P_0 238846.7 \text{ cm}^{-1}$

Edlén has revised and extended the earlier analysis of this spectrum. The terms are all taken from his Monograph, except those from the 4f configuration, which are from his 1936 paper, and his 3s' ³P and 5f-terms, which he has generously furnished in a private communication.

The singlet and triplet terms are well connected by intersystem combinations but the quintets are not so connected with the others. Edlén also suggests that by analogy with C I and O III the published absolute values of the quintet terms should be decreased by about 500 cm⁻¹. This correction has been applied in the table and should diminish the uncertainty x appreciably.

REFERENCES

A. Fowler and L. J. Freeman, Proc. Roy. Soc. (London) [A] 114, 662 (1927). (T) (C L)

L. J. Freeman, Proc. Roy. Soc. (London) [A] 124, 666 (1929). (T) (C L)

B. Edlén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 6, 109 (1934). (I P) (T) (C L) (G D of singlets)

B. Edlén, Zeit. Phys. 98, 564 (1936). (T) (C L)

J. B. Green and H. N. Maxwell, Phys. Rev. 51, 243 (1937). (Z E)

B. Edlén, unpublished material (Dec. 1947). (T).

Z=7

I. P. 29.605 volts

Nп

Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
2p ³ P ₀	$2s^2 2p^2$	2 <i>p</i> ² ³ P	0	0.0	49.1	4p ³ S ₁	$2s^2 2p(^2\mathrm{P}^\circ)4p$	$4p$ 3S	1	203532. 8	
*P1 *P2			$\frac{1}{2}$	49. 1 131. 3	82. 2	$4p \ ^1D_2$	$2s^2 2p(^2\mathrm{P^o})4p$	4 <i>p</i> ¹ D	2	205350. 7	
$2p \ ^1\mathrm{D}_2$	2s ² 2p ²	$2p^2$ ¹ D	2	15315. 7		3s' 5P1 5P2	2s 2p ² (⁴ P)3s	3s 5P	$\frac{1}{2}$	205982.1+x 206038.1+x	56.0
$2p$ $^1\mathrm{S}_0$	2s ² 2p ²	$2p^2$ ¹ S	0	32687.1		⁵ P ₃			3	206108. 7 $+x$	70.6
$2p' {}^{5}\mathrm{S}_{2}$	2s 2p ³	2 <i>p</i> ³ ⁵ S°	2	47167.7+x		4p 1S0	$2s^2 \ 2p(^2P^\circ)4p$	4 <i>p</i> 1S	0	206327.5	
2p' ² D ₃ ³ D ₂ ³ D ₁	2s 2p ³	2p³ ³D°	$3 \\ 2 \\ 1$	92237.9 92251.3 92252.9	-13.4 -1.6	4d ³ F ₂ ³ F ₃ ³ F ₄	$2s^2 2p(^2P^\circ)4d$	$4d$ ${}^3\mathbf{F}^{\circ}$	2 3 4	209675.3 209739.5 209825.3	64. 2 85. 8
2p' ³ P ₁₂ ³ P ₀	2s 2p ³	2 <i>p</i> ³ ³₽°	2, 1 0	109218. 2 109224. 8	-6.6	$4d \ ^1D_2$	$2s^2 \ 2p(^2P^\circ)4d$	$4d \ ^{1}D^{\circ}$	2	209926. 92	_
2p' ¹ D ₂	28 2p ³	$2p^{i_1}D^{\circ}$	2	144189. 1		$4d \ {}^{3}D_{1} \ {}^{3}D_{2} \ {}^{3}D_{2}$	$2s^2 \ 2p(^2P^\circ)4d$	$4d \ ^{3}D^{\circ}$	1 2 2	210239.8 210266.3	26. 5 35. 6
38 P0	2s² 2p(²P°)3s	38 *P°	0	148909. 37	31.60	•D3			0	210301.9	
*P ₁ *P ₂			$\frac{1}{2}$	148940.97 149077 .3 3	136. 36	4 <i>d</i> ³ P ₂ ³ P ₁ ³ P ₀	$2s^2 \ 2p(^2\mathrm{P^o})4d$	4d ³ P ^o	$\begin{vmatrix} 2\\ 1\\ 0 \end{vmatrix}$	210705.4 210751.5 210777.0	$ \begin{array}{c} -46.1 \\ -25.5 \end{array} $
3s ¹ P ₁	$2s^2 \ 2p(^2P^\circ) \ 3s$	38 ¹ P°	1	149188.74		$4f {}^{1}\mathrm{F}_{3}$	$2s^2 2p(^2P^\circ)4f$	$4f {}^{1}\mathbf{F}$	3	211030. 90	
2p' ³ S ₁	2s 2p ³	2p ³ ³ S°	1	155129.9		4f ³ F ₂	$2s^2 2n(^2P^\circ)4f$	4f 3F	2	211033. 71	
3 <i>p</i> ¹ P ₁	$2s^2 2p(^2P^\circ)3p$	3 <i>p</i> ¹ P	1	164611.60		³ F ₃ ³ F ₄		_, _	34	211057.07 211061.03	23. 36
3p ³ D ₁ ³ D ₂	2s² 2p(²P°)3p	3p *D	$\frac{1}{2}$	166522.48 166583.26 166679.45	60. 78 96. 19	4 <i>d</i> ¹ F ₃	$2s^2 2p(^2P^\circ)4d$	4d 1F°	3	211104. 8	
$2p' {}^{1}P_{1}$	2s 2p ³	2p ³ 1Po	1	166765.7		4f ³ G ₃ ³ G ₄	$2s^2 2p(^2P^\circ)4f$	4 <i>f</i> ³G	3 4	211288. 02 211295. 65	7.63
3p 3S1	$2s^2 2p(^{2}P^{\circ})3p$	3p 3S	1	168893. 04		*G5			5	211390. 77	50.12
3p P	2s ² 2p(² P ^o)3p	3v P	0	170573. 38	35 25	$4d {}^{1}\mathrm{P}_{1}$	$2s^2 2p(^2P^\circ)4d$	4d ¹P°	1	211335.5	
*P ₁ *P ₂	FX- 7-F	-r -	$\begin{array}{c} 1\\ 2\end{array}$	170608.63 170667.00	58. 37	$4f {}^{1}G_{4}$	$2s^2 2p(^2P^\circ)4f$	4f 1G	4	211402.89	
$3p$ $^{1}D_{2}$	2s² 2p(²P°)3p	3 <i>p</i> 1D	2	174212. 93		4f ³ D ₃ ³ D ₂	$2s^2 \ 2p(^2P^\circ)4f$	4 f ⁵ D	32	211411. 25 211416. 20	-4.95 -71.08
$3p {}^{1}S_{0}$	$2s^2 2p(^{2}P^{\circ})3p$	3p 1S	0	178274. 17		*D1				211487.28	
3d *F2	$2s^2 2p(^{2}P^{\circ}) 3d$	3d *F°	2	186512.38	50 49	$4f {}^{1}\mathrm{D}_{2}$	$2s^2 2p(^2P^\circ)4f$	4f 1D	2	211491. 16	
³ F ₂ ³ F ₄			$\frac{3}{4}$	186571.80 186653.35	81. 55	38' *P0 *P1 *P	2s 2p ² (⁴ P)3s	38 *P	012	211750. 2 211780. 6 211828. 8	30. 4 48. 2
$3d \ ^1D_2$	$2s^2 \ 2p(^2\mathrm{P}^\circ) 3d$	3d 1D°	2	187092.20		5. 3P.	9.2 9m(2D0) 5.	5 a 3 D 9		21/010 /	
$3d {}^{2}D_{1} {}^{2}D_{2} {}^{3}D_{2}$	2s² 2p(²P°)3d	3 <i>d</i> *D°	$\frac{1}{2}$	187438.34 187462.38 187492.72	24. 04 30. 34	³ P ₁ ³ P ₃	28° 2p("F")38	08 °F	1 2	214258. 2 214385. 3	45. 8 127. 1
2.4 MD	9-2 9-(2D9) 2-	2.1 100	2	188858 00		5s 1P1	2s ² 2p(² P°)5s	5s 1P°	1	214828.0	
³ P ₁ ³ P ₀	28° 2p(-1) 3u	5 <i>u</i> •1	1 0	188909.89 188937.95	-51.80 -28.06		$2s^2 \ 2p(^2\mathrm{P}^\circ) 5d$	$5d \ ^{3}D^{\circ}$	12		
$3d {}^{1}\mathrm{F}_{3}$	$2s^2 2p(^2P^\circ) 3d$	$3d \ {}^{1}\mathrm{F}^{\circ}$	3	189336.0		5d ³ D ₃			3	220717	
$3d \ ^{1}P_{1}$	2s ² 2p(² P°)3d	3d 1P°	1	190121.15		5f ³ F ₂ ³ F ₃	$2s^2 \ 2p(^2P^\circ) \ 5f$	5f * F	23	221070. 2	4.1
48 ³ Po	2s ² 2p(² P°)4s	4s *P°	0	196541.09	51, 79	°F4		N 1 (770	4	221074.3	
³ P ₁ ³ P ₂			$\frac{1}{2}$	196592.88 19671 2.17	119. 29	5d F3	$2s^2 2p(^2P^0) 5d$	5d 11-0	3	221137.6	
48 ¹ P ₁	2s² 2p(²P°)4s	4s ¹ P°	1	197859. 28		5f *G3 *G4 *G5	$2s^2 2p(^2P^0) 5f$	5f *G	3 4 5	221227.7 221232.7 221302.2	5. 0 69. 5
4 <i>p</i> ¹ P ₁	$2s^2 2p(^2P^\circ)4p$	4 <i>p</i> ¹ P	1	202169. 9		5f 1G4	$2s^2 2p(^2P^\circ)5f$	5f 1G	4	221312. 1	
4p ³ D ₁ ³ D ₂ ³ D ₂	2s² 2p(²P°)4p	4p *D	$\begin{array}{c}1\\2\\3\end{array}$	202714. 94 202765. 86 202862. 06	50. 92 96. 20	3p' ⁵ D ₀ ⁵ D ₁	$2s \ 2p^2(^4\mathrm{P}) 3p$	3 <i>p</i> ⁵ D°	01	224027. $1+x$ 224042. $9+x$	15.8
4p ³ P ₀ ³ P ₁ ³ P ₂	2s² 2p(²P°)4p	4 <i>p</i> ⁰P	$\begin{array}{c} 0 \\ 1 \\ 2 \end{array}$	203164. 7 203188. 8 203259. 7	24. 1 70. 9	⁸ D ₂ ⁸ D ₃ ⁸ D ₄			$\begin{vmatrix} 2\\ 3\\ 4\end{vmatrix}$	$\begin{array}{c} 224072. \ 3+x\\ 224115. \ 4+x\\ 224169. \ 3+x\\ \end{array}$	43. 1 53. 9

N II—Continued

N II—Continued

Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
3p' ⁵ P ₁ ⁵ P ₂ ⁵ P ₃	2s 2p ² (4P)3p	3 <i>p</i> ⁵P°	$\begin{array}{c}1\\2\\3\end{array}$	225987. 1+x 226011. 2+x 226055. 2+x	24. 1 44. 0	3d' ⁵ P ₃ ⁵ P ₂ ⁵ P ₁	2s 2p ² (4P)3d	3 <i>d</i> ⁵P	3 2 1	$\begin{array}{c} 244737. \ 4+x \\ 244775. \ 9+x \\ 244802. \ 0+x \end{array}$	-38.5 -26.1
3p' ⁵ S ₂ 3d' ⁵ F ₁ ⁵ F ₂	2s 2p ² (4P)3p N III (2P ² ₂) 2s 2p ² (4P)3d	3p ⁵ S° <i>Limit</i> 3d ⁵ F	2 1 2	230223. 0+x 238846. 7 243355. 5+x 243371. 2+x	15. 7 25. 4	$3d' {}^{5}\mathrm{D}_{0} {}^{5}\mathrm{D}_{1} {}^{5}\mathrm{D}_{2} {}^{5}\mathrm{D}_{3} {}^{5}\mathrm{D}_{3} {}^{5}\mathrm{D}_{4}$	2s 2p ² (4P)3d	3 <i>d</i> ⁵D	$ \begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \end{array} $	$\begin{array}{c} 245319.8+x\\ 245323.4+x\\ 245331.3+x\\ 245342.9+x\\ 245356.9+x\\ \end{array}$	3. 6 7. 9 11. 6 14. 0
⁵ F ₄ ⁵ F ₅			3 4 5	$\begin{array}{c} 243396. \ 6+x\\ 243430. \ 2+x\\ 243470. \ 8+x \end{array}$	33. 6 40. 6						

December 1947.

					N 11 OB	SERVED g-V	ALUES					
Desig.	J		Obs. g	D	esig.	J	Obs.	g	Desig.	J		Obs. g
38 P° 38 1P°	1 2 1		1. 455 1. 502 1. 051	3	³ p ³ S ³ p ³ P	1 1 2	2. 01 1. 53 1. 49	5 0 7	3d 1D° 3d 3D°	2 1 2		0. 986 0. 494 1. 114
3p 1P 3p 2D	1 1 2 3		1. 005 0. 494 1. 166 1. 330	8	3p 1D 3d 3F°	2 3 4	1. 002 1. 079 1. 250	2 9 0	3d *P° 3d 1P°	3 2 1 1	-	1. 329 1. 504 1. 487 1. 026
		I			ΝпΟ	BSERVED T	ERMS*					
Config. 1s ² +						Observ	ved Terms					
2s² 2p²	$\Big\{_{2p^2 {}^1\mathrm{S}}$	2 <i>p</i> ² ³₽	2p ² ¹ D						· · ·			
28 2p ³	$\begin{cases} 2p^3 {}^5\mathrm{S}^\circ \\ 2p^3 {}^3\mathrm{S}^\circ \end{cases}$	2p³ ³P° 2p³ ¹P°	${2p^{3}}{}^{3}{}^{D}{}^{o}$ ${2p^{3}}{}^{1}{}^{D}{}^{o}$									
	n	s (n≥3)			$np (n \ge 3)$)		nd $(n \ge 3)$			$nf(n \ge 4)$)
2s ² 2p(² P ^o)nx 2s 2p ² (⁴ P)nx	{ 3- 3- {	-58 ² P° -58 ¹ P° 38 ⁵ P 38 ² P		3, 4p ³ S 3, 4p ¹ S 3p ⁵ S°	3, 4p ³ P 3, 4p ¹ P 3p ⁵ P°	3, 4p ³ D 3, 4p ¹ D 3p ⁵ D°	3, 4d ³ P° 3, 4d ¹ P° 3d ⁵ P	3 -5 <i>d</i> ³ D° 3, 4 <i>d</i> ¹ D° 3 <i>d</i> ⁵ D	3, 4d ³ F° 3–5d ¹ F° 3d ⁵ F	4f ³ D 4f ¹ D	4, 5f °F 4f 1F	4, 5f ³ G 4, 5f ¹ G
				12						1		

*For predicted terms in the spectra of the C I isolectronic sequence, see Introduction.

/

(B I sequence; 5 electrons)

Ground state 1s² 2s² 2p ²P^o_{1/2}

 $2p \ ^{2}P_{\frac{1}{2}}^{\circ}$ 382625.5 cm⁻¹

38

All of the terms except those with a 4*f*-electron, have been taken from Edlén's Monograph. In 1936 Edlén published a revised and extended list of 4*f*-terms and the corresponding classified lines, including intersystem combinations. The observed correction to his previously published quartet terms -396.4 cm⁻¹, connecting them with the doublet terms has been incorporated into the present list.

NIII

REFERENCES

L. J. Freeman, Proc. Roy. Soc. (London) [A] 121, 318 (1928). (T) (C L) B. Edlén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 6, 78 (1934). (I P) (T) (C L) (G D) B. Edlén, Zeit. Phys. 98, 561 (1936). (T) (C L)

3.7		_
	тт	π
		п
		-

NIII

	14 111						1111				
Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
2p ² P ₁ ² P ₂	$2s^2(^1\mathrm{S})2p$	2p 2P°	$1/2 \\ 1/2 \\ 1/2$	0. 0 174. 5	174. 5	3s' ⁴ P ₁ ⁴ P ₂ ⁴ P ₃	2s 2p(³P°)3s	3s 4P°	1/2 1/2 21/2	287535.6 287598.1 287713.9	62. 5 115. 8
${2p'}{}^{4}\mathrm{P_{1}}_{{}^{4}\mathrm{P_{2}}}_{{}^{4}\mathrm{P_{3}}}$	2s 2p ²	$2p^2$ 4P	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$	57192. 1 57252. 0 57333. 2	59. 9 81. 2	3s' ² P ₁ ² P ₂	2s 2p(³P°)3s	3s 2P°	$\frac{1}{2}$ $1\frac{1}{2}$	297150. 2 297263. 1	112. 9
$2p' {}^{2}D_{3}$	$2s \ 2p^2$	$2p^2$ $^2\mathrm{D}$	$2\frac{1}{2}$	101023. 8	-7.7	4s ² S ₁	$2s^{2}(^{1}S)4s$	4s 2S	1⁄2	301088. 2	
$2p' {}^2S_1$	$2s \ 2p^2$	$2p^2$ ² S	1/2 1⁄2	131003. 5		${}^{3p'}{}^{^{2}\mathrm{P}_{1}}_{{}^{2}\mathrm{P}_{2}}$	$2s2p(^{3}\mathrm{P^{o}})3p$	3 <i>p</i> 2P	$1\frac{1}{2}$ $1\frac{1}{2}$	309132.6 309185.8	53. 2
${2p'{}^2{ m P_1}_{{}^2{ m P_2}}}$	$2s \ 2p^2$	$2p^2$ ² P	$1\frac{1}{2}$ $1\frac{1}{2}$	$\begin{array}{c} 145876. \ 1 \\ 145986. \ 5 \end{array}$	110. 4	$3p' {}^{4}D_{1} {}^{4}D_{2} {}^{4}D_{2}$	2s 2p(3P°)3p	3 <i>p</i> 4D	$\frac{\frac{1}{2}}{\frac{1}{2}}$	309662.8 309698.3	$35.5 \\ 62.2$
$2p^{\prime\prime}$ ${}^4\mathrm{S}_2$	$2p^3$	$2p^3$ ${}^4\mathrm{S}^{\mathrm{o}}$	$1\frac{1}{2}$	186802.3		$^{4}D_{4}$			$3\frac{272}{3\frac{1}{2}}$	309856. 7	96. 2
$2p^{\prime\prime}{}^{^{2}\mathrm{D}_{3}}_{^{2}\mathrm{D}_{2}}$	$2p^3$	$2p^3$ $^2\mathrm{D}^{\circ}$	$2\frac{1}{2}$ $1\frac{1}{2}$	203072. 2 203088. 9	-16.7	$4p {}^{2}P_{1} {}^{2}P_{2}$	$2s^2(^1\mathrm{S})4p$	4 <i>p</i> ² P°	$1\frac{1}{2}$ $1\frac{1}{2}$	311691. 3 311716. 1	24. 8
3s 2S1	2s ² (1S)3s	3s 2S	1⁄2	221302.4		$3p' \ {}^4\mathrm{S}_2$	2s 2p(3P°)3p	3p 4S	1½	314224. 0	
$2p^{\prime\prime} {}^{2}P_{1} {}^{2}P_{2}$	$2p^3$	$2p^3$ $^2\mathrm{P}^{\mathrm{o}}$	$1\frac{\frac{1}{2}}{1\frac{1}{2}}$	230404. 5 230408. 6	4.1	$3p' {}^{4}P_{1} {}^{4}P_{2} {}^{4}P_{2}$	2s 2p(³P°)3p	3 <i>p</i> 4P	$\frac{\frac{1}{2}}{\frac{1}{2}}$	317299. 9 317343. 4 317402. 3	43. 5 58. 9
${}^{3p}{}^{2}\mathrm{P_{1}}{}^{2}\mathrm{P_{2}}$	$2s^2(^1\mathrm{S})3p$	3 <i>p</i> ²₽°	$1\frac{1}{1}\frac{1}{2}$	245665.7 245701.7	36. 0	$4d \ {}^{2}\text{D}_{2} \\ {}^{2}\text{D}_{3}$	$2s^2(^1\mathrm{S})4d$	4 <i>d</i> 2D	$1\frac{1}{2}$ $2\frac{1}{2}$	317750. 8 317781. 8	31. 0
$\begin{array}{c} 3d \ ^2\mathrm{D}_2 \\ \ ^2\mathrm{D}_3 \end{array}$	$2s^{2}(^{1}S)3d$	$3d \ ^{2}D$	$1\frac{1}{2}$ $2\frac{1}{2}$	267238. 5 267244. 4	5. 9	4f 2F4	$2s^{2}(^{1}S)4f$	$4f {}^{2}\mathrm{F}^{\circ}$	$\frac{2\frac{1}{2}}{3\frac{1}{2}}$	320287.5	6

I. P. 47.426 volts

N III—Continued

N III—Continued

Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
3p' ² D ₂ ² D ₃	2s 2p(3P°)3p	3p ² D	$1\frac{1}{2}$ $2\frac{1}{2}$	320977. 4 321065. 8	88.4	$4p' {}^{2}D_{2} {}^{2}D_{3}$	2s 2p(3P°)4p	4p ² D	$1\frac{1}{2}{2\frac{1}{2}}$	377883. 7 377970. 8	87. 1
$3p' {}^2\mathrm{S}_1$	2s 2p(3P°)3p	3p ² S	1⁄2	327056. 8		$4p' {}^4\mathrm{S}_2$	2s 2p(3P°)4p	4p ⁴ S	1½	378440. 5	
3d' ⁴ F ₂ ⁴ F ₃ ⁴ F ₄	2s 2p(³P°)3d	3d 4F°	$ \begin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \\ 3\frac{1}{2} \\ 4\frac{1}{4} \end{array} $	330238.4 330273.5 330325.3	35. 1 51. 8 71. 4	$\begin{array}{c c} 4p' \ {}^{4}\mathrm{P}_{1} \\ {}^{4}\mathrm{P}_{2} \\ {}^{4}\mathrm{P}_{3} \end{array}$	2s 2p(3P°)4p	4 <i>p</i> 4P	$\begin{array}{c} \frac{1}{12} \\ 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}$	379307. 3 379352. 1 379405. 0	44. 8 52. 9
514 0.11 / L	0-0-(10)21	24/72	±72	000000.7			N IV (1S ₀)	Limit		382625.5	
$3a' *D_1 $	28 2p(°P*)3a	3a *D°	$\begin{array}{c c} & & & & & & \\ & & 1\frac{1}{2} \\ & & 1\frac{1}{2} \\ & & 2\frac{1}{2} \\ & & 3\frac{1}{2} \end{array}$	332810.0 332832.0 332860.3	13. 4 22. 0 28. 3	4 <i>d</i> ′ ⁴ F ₃ ⁴ F ₄ ⁴ F ₅	2s 2p(3P°)4d	4d 4F°	$\begin{array}{c} 1\frac{1}{2}\\ 2\frac{1}{2}\\ 3\frac{1}{2}\\ 4\frac{1}{3}\end{array}$	384016 384065 384139	49 74
5s 2S1	2s ² (¹ S)5s	5s 2S	1/2	333713. 1		15			(11/2)	
$3d' {}^{2}D_{2}$	2s 2p(3P°)3d	$3d \ ^{2}D^{\circ}$	$1\frac{1}{2}$	334542. 2 334568. 9	26. 7	4 <i>d'</i> ² D	2s 2p(3P°)4d	4d 2D°	$\left\{ \begin{array}{c} 172\\ 2\frac{1}{2} \end{array} \right\}$	}385126	
3d' ⁴ P ₃ ⁴ P ₂ ⁴ P ₁	2s 2p(3P°)3d	3d 4P°	$\begin{array}{c c} -72 \\ 2\frac{1}{2} \\ 1\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array}$	336213.4 336268.0 336303.1	-54.6 -35.1	4d' ⁴ D ₂ ⁴ D ₃ ⁴ D ₄	2s 2p(3P°)4d	4d ⁴D°	$\begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \\ 2\frac{1}{2} \\ 3\frac{1}{2} \end{array}$	385296 385323 385352	27 29
3d' ² F ₃ ² F ₄	2s 2p(3P°)3d	3d ²F°	$2\frac{1}{2}$ $3\frac{1}{2}$	339744.4 339855.7	111. 3	4d' 4P ₃	2s 2p(3P°)4d	4d ⁴P°	$2\frac{1}{2}$ $1\frac{1}{2}$ $\frac{1}{2}$	386246	
5d ² D ₂ ² D ₃	$2s^2({}^1 m S)5d$	5d 2D	$1\frac{1}{2}{2\frac{1}{2}}{2\frac{1}{2}}$	341946. 2 341947. 9	1.7	$4f' {}^{2}F_{3}$	2s 2p(3P°)4f	$4f {}^2\mathrm{F}$		386953.4	21
3d' ² P ₂ ² P ₁	2s 2p(3P°)3d	3d ²P°	$1\frac{1}{\frac{1}{2}}$	342693. 0 342763. 7	-70.7	-F4	2s 2p(3P°)4f	<i>4f</i> ⁴F	$1\frac{1}{2}$	300974	
5f 2F4	$2s^2(^{1}S)5f$	5f 2F°	$2\frac{1}{2}$ $3\frac{1}{2}$	342752.0		$\begin{array}{c c} 4J' & F_3 \\ & 4F_4 \\ & 4F_5 \end{array}$			$\begin{array}{c} 2\frac{7}{2} \\ 3\frac{1}{2} \\ 4\frac{1}{2} \end{array}$	387000. 8 387010. 3 387042. 3	9. 5 32. 0
<i>5g</i> 2G	$2s^2(^1S)5g$	5g 2G	$\left\{ \begin{array}{c} 3\frac{1}{2} \\ 4\frac{1}{2} \end{array} \right.$	}343116		$4d' {}^{2}F_{3} {}^{2}F_{4}$	2s 2p(3P°)4d	4d ² F°	$2\frac{1}{2}$ $3\frac{1}{2}$	387728.7 387811.5	82. 8
6d 2D3	$2s^2(^1S)6d$	6 <i>d</i> 2D	$1\frac{1}{2}$ $2\frac{1}{2}$	354517		$4f' {}^{4}G_{3} {}^{4}G_{4} {}^{4}G_{4}$	2s 2p(3P°)4f	4 <i>f</i> ⁴G	$2\frac{1}{2}$ $3\frac{1}{2}$ $4\frac{1}{3}$	388039.2 388082.9 388134.8	43. 7 51. 9
6f 2F4	$2s^2(^1S) 6f$	6f 2F°	$2\frac{1}{2}$ $3\frac{1}{2}$	354955.7		4G8	90 9m (3D9) 4.6	4520	$5\frac{1}{2}$	388198	63
6 <i>g</i> 2G	$2s^2(^1S)6g$	6g 2G	$\left\{ \begin{array}{c} 3\frac{1}{2} \\ 4\frac{1}{2} \end{array} \right.$	}355214		⁴ <i>J</i> [*] ² G ₄ ² G ₅	28 2p(°F*)4f	4 J "G		388290. 0	99. 7
4s' ⁴ P ₁ ⁴ P ₂ ⁴ P ₃	2s 2p(3P°)4s	48 4P°	$1^{1/2}_{1^{1/2}}_{1^{1/2}_{1^{1/2}_{2^{1/2}}}}$	368525.6 368588.3 368704.8	62. 7 116. 5	$ \begin{array}{ c c c c } & 4f' & ^{4}D_{4} \\ & & ^{4}D_{3} \\ & & ^{4}D_{2} \\ & & ^{4}D_{1} \end{array} $	2s 2p(3P°)4f	4 <i>f</i> ⁴D	$\begin{array}{c c} 3\frac{1}{2}\\ 2\frac{1}{2}\\ 1\frac{1}{2}\\ \frac{1}{2}\\ \frac{1}{2}\end{array}$	$\begin{array}{c} 388273.\ 4\\ 388310.\ 9\\ 388359.\ 2\\ 388386.\ 6\end{array}$	$ \begin{array}{c c} -37.5 \\ -48.3 \\ -27.4 \end{array} $
$\overline{3p}' {}^{2}\mathrm{D_{2}}$ ${}^{2}\mathrm{D_{3}}$	2s 2p(1P°)3p	3p′ 2D	$1\frac{1}{2}$ $2\frac{1}{2}$	373342 373376	34	4f' ² D ₃	2s 2p(3P°)4f	4 <i>f</i> ²D	$2\frac{1}{2}$	388376. 9 388442 4	-65.5
4p' ² P ₁ ² P ₂	2s 2p(³ P°)4p	4p 2P	$1\frac{1}{2}$ $1\frac{1}{2}$	374747. 4 374805. 3	57. 9	$\begin{array}{c c} & -D_2 \\ \hline & \overline{3d'} & ^2D_2 \\ & ^2D_2 \end{array}$	2s 2p(1P°)3d	3d' 2D°	172 $1\frac{1}{2}$ $2\frac{1}{6}$	396574.9	9. 9
$4p' \ {}^{4}D_{1} \ {}^{4}D_{2} \ {}^{4}D_{3} \ {}^{4}D_{3} \ {}^{4}D_{4}$	2s 2p(3P°)4p	4p 4D	$\begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \\ 2\frac{1}{2} \\ 3\frac{1}{2} \end{array}$	376756. 6 376803. 3 376863. 8 376953. 3	46. 7 60. 5 89. 5	-123	2s 2p(³P°)5d	5d 4D°		00004.0	
$\overline{3p}' {}^{2}\mathbf{P_{1}} {}^{2}\mathbf{P_{2}}$	2s 2p(1P°)3p	3p′ 2P		377591 377608	17	5d' 4D4			3½	409017	

June 1946.

Config. 1s²+		Observed Terms	
2s ² (¹ S)2p 2s 2p ² 2p ³	$2p\ ^2{ m P}^{ m o} \ \left\{ egin{array}{cccc} & 2p\ ^2{ m P}^{ m o} \ & 2p^2\ ^2{ m P} \ & 2p^2\ ^2{ m P} \ & 2p^2\ ^2{ m P} \ & 2p^2\ ^2{ m D} \ & 2p^3\ ^2{ m P}^{ m o} \ & 2p^3\ ^2{ m P}^{ m o} \ & 2p^3\ ^2{ m D}^{ m o} \end{array} ight.$		
2s² (1S)nx 2s 2p(3P°)nx 2s 2p(1P°)nx'	$ \frac{ns \ (n \ge 3)}{3-5s \ ^{2}S} \left\{ \begin{array}{c} 3, 4s \ ^{4}P^{\circ} \\ 3s \ ^{2}P^{\circ} \end{array} \right. $	$\begin{array}{c c} np \ (n \ge 3) \\ \hline & 3, 4p \ {}^{2}P^{\circ} \\ \hline & 3, 4p \ {}^{4}S & 3, 4p \ {}^{4}P & 3, 4p \ {}^{4}D \\ & 3p \ {}^{2}S & 3, 4p \ {}^{2}P & 3, 4p \ {}^{2}D \\ & & 3p' \ {}^{2}P & 3p' \ {}^{2}D \end{array}$	$nd \ (n \ge 3)$ 3-6d ² D 3, 4d ⁴ P° 3-5d ⁴ D° 3, 4d ⁴ F° 3d ² P° 3, 4d ² D° 3, 4d ² F° 3d' ² D°
2s² (1S)nx 2s 2p(3P°)nx	$\begin{array}{c} nf \ (n \ge 4) \\ \\ \hline \\ 4-6f \ {}^{2}F^{\circ} \\ \left\{ \begin{array}{c} 4f \ {}^{4}D & 4f \ {}^{4}F & 4f \ {}^{4}G \\ 4f \ {}^{2}D & 4f \ {}^{2}F & 4f \ {}^{2}G \end{array} \right. \end{array}$	$\frac{ng \ (n \ge 5)}{5, \ 6g \ ^2 \mathrm{G}}$	

*For predicted terms in the spectra of the BI isoelectronic sequence, see Introduction.

N IV

(Be I sequence; 4 electrons)

Ground state 1s² 2s² ¹S₀

2s² ¹S₀ 624851 cm⁻¹

The terms are from Edlén's papers. The absolute values of the singlet terms are uncertain, since only two members of the ¹D-series have been observed. No intersystem combinations have been found. By analogy with N III, Edlén (1936) estimates that $2s^2 \, {}^{1}S_0 - 2p \, {}^{3}P_1^{\circ} = 67200 \, \text{cm}^{-1}$, which gives the absolute value of $2s^2 \, {}^{1}S_0$ as $624851 \, \text{cm}^{-1}$ instead of the earlier value $624499 \, \text{cm}^{-1}$. The relative uncertainty x, therefore probably does not exceed $\pm 300 \, \text{cm}^{-1}$.

The terms 4p ³P°, 4f ³F°, 5g ³G, and 3d ³F° are from the 1936 reference. Edlén obtains the 4f ³F° term by assuming that 5g ³G is hydrogen-like (absolute value 70500 cm⁻¹) and adopting Freeman's identification of the 4f ³F°—5g ³G group of lines. The listed value of 5g ³G has been adjusted to fit Edlén's adopted value of 4f ³F°.

The estimated value of $3d \ {}^{3}F^{\circ}$ is included in the table in brackets.

REFERENCES

L. J. Freeman, Proc. Roy. Soc. (London) [A] 127, 330 (1930). (T) (C L)

B. Edlén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 6, 62 (1934). (T) (C L)

B. Edlén, Zeit. Phys. 98, 561 (1936). (I P) (C L)

Z=7

I. P. 77.450 volts

N IV

N iv

Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Leve	1	Interval
28 1S0	2s ²	 2s ² 1S	0	0		3 <i>d'</i> ³ F	2p(2P°)3d	3d 3F°	2, 3, 4	[499851]	+x	
$2p {}^{3}P_{0}$	$2s(^2S)2p$	$2p$ $^{3}\mathrm{P}^{\circ}$	0	67136.4+x	63. 2	4 <i>p</i> ³ P	$2s(^2\mathrm{S})4p$	4 <i>p</i> ³ P°	0, 1, 2	503625	+x	
${}^{3}P_{2}$			$\frac{1}{2}$	67343.8+x	144. 2	$3d' {}^{3}D_{1}$	$2p(^{2}P^{\circ})3d$	$3d$ $^{3}\mathrm{D}^{\circ}$	1	505487	+x	31
2 <i>p</i> ¹ P ₁	$2s(^2S)2p$	2 <i>p</i> ¹ P°	1	130695		³ D ₃			3	505561	+x	43
$2p' {}^{3}P_{0}$	$2p^{2}$	$2p^2$ ³ P	0	175463.5+x 175536.7+x	73. 2	$3d' {}^{1}F_{3}$	$2p(^{2}P^{\circ})3d$	3d ¹ F°	3	506292		
${}^{3}\mathrm{P}_{2}^{1}$			$\frac{1}{2}$	175550.7+x 175661.5+x	124. 8	4p ¹ P ₁	$2s(^2\mathrm{S})4p$	4 <i>p</i> ¹ P°	1	507022		
$2p' \ ^1D_2$	$2p^2$	$2p^2$ ¹ D	2	188885			$2s(^2S)4d$	4d 3D	1			
$2p'$ ${}^{1}S_{0}$	$2p^{2}$	$2p^{2}$ ¹ S	0	235370		$4d \ ^{3}D_{3}$			3	511384	+x	
38 ³ S ₁	2s(2S)3s	3s 3S	1	377206 + x		$3d' {}^{3}P_{2}$	$2p(^{2}P^{\circ})3d$	$3d \ ^{2}P^{\circ}$	2	511440	+x	-53
3s 1S0	2s(2S)3s	3s 1S	0	388858		-11			0	011400	7.	
3 <i>p</i> ¹ P ₁	$2s(^2S)3p$	3 <i>p</i> ¹ P°	1	404521		$4d \ ^1D_2$	$2s(^2S)4d$	4d ¹ D	2	514638		
3p ³ P ₀ ³ P ₁ ³ P ₂	$2s(^2\mathrm{S})3p$	3p 3P°	$egin{array}{c} 0 \ 1 \ 2 \end{array}$	$\begin{array}{c} 405893. \ 2+x \\ 405909. \ 0+x \\ 405944. \ 4+x \end{array}$	15. 8 35. 4	4f ³ F ₂ ³ F ₃ ³ F ₄	$2s(^2S)4f$	4 <i>f</i> ³F°	2 3 4	516631 516639 516650	+x +x +x +x	8
$3d {}^{3}D_{1}$	2s(2S)3d	3d 3D	1	419967.8+x	3, 5	3d' ¹ P ₁	$2p(^{2}\mathrm{P}^{\circ})3d$	$3d \ ^{1}P^{\circ}$	1	519414		
$^{3}D_{2}$ $^{3}D_{3}$			$\frac{2}{3}$	$\begin{vmatrix} 419971. \ 3+x \\ 419979. \ 4+x \end{vmatrix}$	8.1	$4f {}^{1}\mathrm{F}_{3}$	$2s(^2\mathrm{S})4f$	4f 1F°	3	521868		
$3d \ ^1D_2$	$2s(^2S)3d$	3d 1D	2	429158		5p ¹ P ₁	2s(2S)5p	5p ¹ P°	1	550218		
3s' ³ P ₀ ³ P ₁ ³ P ₂	$2p(^{2}P^{\circ})3s$	3s 3P°	$egin{array}{c} 0 \ 1 \ 2 \end{array}$	$\begin{array}{c} 465223.\ 0+x\\ 465300.\ 6+x\\ 465463.\ 4+x\end{array}$	77.6 162.8	$5d$ $^{3}D_{3}$	$2s(^{2}S)5d$	5d 3D	1 2 3	552731	+x	
3s' 1P1	$2p(^{2}P^{\circ})3s$	3s 1P°	1	473032		5g ³ G	2s(2S) 5g	5 <i>g</i> ³ G	3, 4, 5	554419	+x	
3p′ ¹ P ₁	$2p(^{2}P^{\circ})3p$	3 <i>p</i> 1P	1	480880			$2s(^2\mathrm{S})6d$	6 <i>d</i> ³ D	1			
a / 2D	$2p(^2\mathrm{P^o})3p$	3 <i>p</i> 3D	1	404904	_	6d ³ D ₃			3	574940	+x	
3p' 3D ₂ 3D ₃			$\frac{2}{3}$	$\begin{vmatrix} 484394 & +x \\ 484525 & +x \end{vmatrix}$	131	$4p' {}^{1}D_{2}$	$2p(^{2}P^{\circ})4p$	4 <i>p</i> 1D	2	591043		
3p′ ³S₁	$2p(^{2}\mathrm{P}^{\circ})3p$	3p 3S	1	487542 +x		$4d' {}^{3}D_{12}$	$2p(^{2}\mathrm{P}^{\circ})4d$	4d ³D°	1,2	593665	+x	39
2 m/ 3D	$2p(^{2}P^{\circ})3p$	3 <i>p</i> ³ P	0	404940 1		$^{\circ}D_{3}$	N (29)	Timit	0	093704	+x	
3p 3P_1			$\frac{1}{2}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	98				1	024891		
$3d' \ ^1D_2$	$2p(^{2}P^{\circ})3d$	3d 1D°	2	498315		· 5 // 3D	2p(*r*)5a	Su D	2	60/100	1	
$3p' \ ^1D_2$	$2p(^{2}P^{\circ})3p$	3 <i>p</i> 1D	2	499708		$5u \cdot D_3$			0	034198	- T -20	

May 1946.

Config. 1s ² +		Observed Terms							
$2s^2$ $2s(^2S)2p$ $2n^2$	$ \begin{array}{c} 2s^{2} {}^{1}S \\ \left\{ \begin{array}{c} 2p {}^{3}P^{\circ} \\ 2p {}^{1}P^{\circ} \\ \left\{ \begin{array}{c} 2p^{2} {}^{3}P \\ 2p^{2} {}^{3}P \\ \end{array} \right. \\ \left\{ \begin{array}{c} 2p^{2} {}^{3}P \\ 2p^{2} {}^{3}P \\ \end{array} \right. \\ \left\{ \begin{array}{c} 2p^{2} {}^{3}P \\ 2p^{2} {}^{3}P \\ \end{array} \right. \\ \left\{ \begin{array}{c} 2p^{2} {}^{3}P \\ 2p^{2} {}^{3}P \\ \end{array} \right. \\ \left\{ \begin{array}{c} 2p^{2} {}^{3}P \\ 2p^{2} {}^{3}P \\ \end{array} \right. \\ \left\{ \begin{array}{c} 2p^{2} {}^{3}P \\ 2p^{2} {}^{3}P \\ \end{array} \right. \\ \left\{ \begin{array}{c} 2p^{2} {}^{3}P \\ 2p^{2} {}^{3}P \\ \end{array} \right. \\ \left\{ \begin{array}{c} 2p^{2} {}^{3}P \\ 2p^{2} {}^{3}P \\ \end{array} \right. \\ \left\{ \begin{array}{c} 2p^{2} {}^{3}P \\ 2p^{2} {}^{3}P \\ \end{array} \right. \\ \left\{ \begin{array}{c} 2p^{2} {}^{3}P \\ 2p^{2} {}^{3}P \\ \end{array} \right. \\ \left\{ \begin{array}{c} 2p^{2} {}^{3}P \\ 2p^{2} {}^{3}P \\ \end{array} \right. \\ \left\{ \begin{array}{c} 2p^{2} {}^{3}P \\ 2p^{2} {}^{3}P \\ \end{array} \right. \\ \left\{ \begin{array}{c} 2p^{2} {}^{3}P \\ 2p^{2} {}^{3}P \\ \end{array} \right. \\ \left\{ \begin{array}{c} 2p^{2} {}^{3}P \\ 2p^{2} {}^{3}P \\ \end{array} \right. \\ \left\{ \begin{array}{c} 2p^{2} {}^{3}P \\ 2p^{2} {}^{3}P \\ \end{array} \right. \\ \left\{ \begin{array}{c} 2p^{2} {}^{3}P \\ 2p^{2} {}^{3}P \\ \end{array} \right. \\ \left\{ \begin{array}{c} 2p^{2} {}^{3}P \\ 2p^{2} {}^{3}P \\ \end{array} \right\} $								
2 p		<i>np</i> (<i>n</i> ≥3)	nd $(n \ge 3)$	$nf (n \ge 4) \qquad ng (n \ge 5)$					
2s(2S)nx 2p(2P°)nx	$\begin{cases} 3s \ {}^{3}S \\ 3s \ {}^{1}S \end{cases} \\ \begin{cases} 3s \ {}^{3}P^{\circ} \\ 3s \ {}^{1}P^{\circ} \end{cases}$	3, 4p ³ P° 3-5p ¹ P° 3p ³ S 3p ³ P 3p ³ D 3p ¹ P 3, 4p ¹ D	3-6d ³ D 3, 4d ¹ D 3d ³ P° 3-5d ³ D° 3d ¹ P° 3d ¹ D° 3d ¹ P	$\begin{array}{c c} & 4f {}^{3}\mathrm{F}^{\circ} \\ & 4f {}^{1}\mathrm{F}^{\circ} \end{array} & 5g {}^{3}\mathrm{G} \\ & 5g {}^{3}\mathrm{G} \end{array}$					

N IV OBSERVED TERMS*

*For predicted terms in the spectra of the Be I isoelectronic sequence, see Introduction.

$\mathbf{N} \mathbf{v}$

(Li I sequence; 3 electrons)

Ground state 1s² 2s ²S₁₅

2s 2S_{1/2} 789532.9 cm⁻¹

I. P. 97.863 volts

Z=7

Both Edlén and Cady have published analyses of this spectrum. Edlén has recently extended the earlier work and has generously furnished his revised term list in manuscript form. The observed term values in the table are from this unpublished list.

Edlćn's extrapolated intervals and the term values for higher series members based on his calculations from the series formula are entered in brackets in the table. These have been taken from his 1933 and 1934 papers.

REFERENCES

W. Cady, Phys. Rev. 44, 821 (1933). (T) (C L)

B. Edlén, Zeit. Astroph. 7, 378 (1933). (T) (C L)

B. Edlén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 6, 41 (1934). (T) (C L)

B. Edlén, unpublished material (Sept. 1947). (I P) (T)

NV

NV

Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
2s ² S ₁ 2p ² P ₁	2s 2p	2s 2S 2p 2P°	1/2 1/2	0. 0 80464. 9	959 4	6GH	6g, 6h	6g 2G, etc.	${ { 3\frac{1}{2} \\ to \\ 5\frac{1}{2} } }$	[713335]	
$^{2}P_{2}$ 3s $^{2}S_{1}$	38	3s 2S	$\begin{array}{c c} 1\frac{1}{12} \\ \frac{1}{12} \\ \frac{1}{12} \end{array}$	80723.3 456134	200.4	75	78	7s 2S	1/2	[731432]	
3p ² P ₁ ³ P ₂	3p	3 <i>p</i> ²P°	$1\frac{1}{2}$ $1\frac{1}{2}$	477777. 2 477851. 4	74. 2	7P	7p	7 <i>p</i> ² P°	$\begin{cases} 1^{72}_{1/2} \\ 1^{1/2}_{1/2} \end{cases}$	} 732993	
$3d \ {}^{2}D_{2} \ {}^{2}D_{3}$	3d	3 <i>d</i> 2D	$1\frac{1}{2}$ $2\frac{1}{2}$	484403 484427	[24]	7D	7d	7d 2D	$\left\{ \begin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array} \right\}$	<pre>{ [733516]</pre>	-
$4s \ ^2S_1$	48	4s 2S	1/2	606337		7 F	7f	$7f {}^2\mathrm{F}^{\circ}$	$\left\{ \begin{array}{c} 2^{1\!\!/_2} \\ 3^{1\!\!/_2} \end{array} \right.$	} [7 <i>33547</i>]	
$4p \ ^2P_2$	4p	4 <i>p</i> ² P°	$\left\{ \begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \\ 1\frac{1}{2} \end{array} \right\}$	615150	[32]	7GHI	7g, etc.	7g 2G, etc.	$\begin{cases} 3\frac{1}{2} \\ \text{to} \\ 6\frac{1}{2} \end{cases}$	[733552]	
$4d \ ^{2}D_{3}$	4d	4 <i>d</i> 2D	$\left\{ \begin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array} \right\}$	617905	[10]	85	88	8s 2S	1/2	[745260]	
	58	58 2S	¹ / ₂	673882	51 01	8P	8p	8 <i>p</i> ² P°	$\left\{\begin{array}{c} \frac{1_2}{1_2'}\\ 1_{1_2'}'\end{array}\right\}$	} [746311]	
$5p \ ^{2}P_{2}$	5p	5 <i>p</i> ² P ³		678297	[16]	8D	8 <i>d</i>	8d 2D	$\left\{ egin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array} ight.$	} [746649]	
5d 2D3	5d	$5d^{2}D$		679725 [700947]	[5]	8F	8f	8f 2F°	$\left\{ \begin{array}{c} 2\frac{1}{2} \\ 3\frac{1}{2} \end{array} \right.$	} [746670]	
6 <i>p</i> ² P	6 <i>p</i>	6 <i>p</i> ² P°	$\begin{cases} \frac{1}{12} \\ \frac{1}{12} \end{cases}$	712464		8GHIK	8g, etc.	8g 2G, etc.	$\begin{cases} 3\frac{1}{2} \\ to \\ 7\frac{1}{3} \end{cases}$	[746674]	
6 <i>d</i> 2D	6d	6d 2D	$\left\{ \begin{array}{c} 1\frac{1}{2}\\ 2\frac{1}{2} \end{array} \right\}$	713289							
$6\mathbf{F}$	6f	6f 2F°	$\begin{cases} 2\frac{1}{2} \\ 3\frac{1}{2} \end{cases}$				N VI (¹ S ₀)	Limit		789532. 9	

September 1947.

N VI

(He I sequence; 2 electrons)

Ground state 1s² ¹S₀

 $1s^2 {}^{1}S_0 4452800 \pm 500 \text{cm}^{-1}$.

I. P. 551.925 ± 0.062 volts

Z=7

Tyrén has observed the first three members of the singlet series. They are in the region from 23 A to 28 A. He lists also one intersystem combination—a line at 29.084 A classified as $1s^2 \, {}^{1}S_0 - 2p \, {}^{3}P_1^{\circ}$. His unit, $10^3 \, \text{cm}^{-1}$, has here been changed to cm⁻¹.

Edlén has generously furnished his unpublished manuscript containing absolute values of the triplet terms extrapolated along the He I isoelectronic sequence. The relative positions of the singlet and triplet terms thus determined confirm the intersystem combination reported by Tyrén. The $2s \, {}^{3}S-2p \, {}^{3}P^{\circ}$ combination has apparently not been observed, but Edlén regards the extrapolation from the irregular doublet law as very reliable. Brackets are used in the table to indicate extrapolated values not yet confirmed by observation.

REFERENCES

F. Tyrén, Nova Acta Reg. Soc. Sci Uppsala [IV] 12, No. 1, 24 (1940). (I P) (T) (C L)

B. Edlén, unpublished material (Sept. 1947). (T)

]	N V	1
---	-----	---

N VI

Z = 7

I. P. 666.83 volts

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
1s²	1 <i>s</i> ² ¹ S	0	0		1s 3p	3p 1P°	1	4016390	
1s 2s	2s ³ S	1	[3385890]		1s 4p	4 <i>p</i> ¹ P°	1	4206810	
1s 2p	2p ³ P°	$\begin{array}{c} 0 \\ 1 \\ 2 \end{array}$	[3438270] 3438280 [3438570]	[10] [290]	N vII (2S1)	Limit		4452800	-
1s 2 p	2 <i>p</i> ¹ P°	1	3 473790				_		

September 1947.

N VII

(H sequence; 1 electron)

Ground state 1s 2S12

1s ²S₁₂ 5379860 cm⁻¹

The first Lyman line has been observed by Tyrén. J. E. Mack has calculated the terms in the table, "using $R_{N^{14}}=109733.004$ and $\Lambda=0.040$. The series limit of N¹⁵ is higher by 14.0 cm⁻¹ than the value given here."

REFERENCES

F. Tyrén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 12, No. 1, 24 (1940). (C L) J. E. Mack, unpublished material (1949). (I P) (T) (C L)

Config.	Desig.	J	Level	Interval
$\frac{1s}{2p}$	1s ² S 2s ² S	1/2 1/2 1/2	0 4034535 4034605	70
2p 3s, etc.	2p ² P° 3s ² S, etc.	1½ ½, etc.	4035412 4782035 to 381	-] 0.0.3
4s, etc.	4s 2S, etc.	½, etc.	5043625 to 789	
	∞= <i>Limit</i>		5379860	

N VII

February 1949.

44

OXYGEN

01

8 electrons

Ground state $1s^2 2s^2 2p^4 {}^{3}P_2$

$2p^4 {}^{3}P_2$ 109836.7 cm⁻¹

Edlén has published a detailed analysis of this spectrum in which he has revised and extended the earlier work by others. The terms have all been taken from his paper. For the higher series members not included in his main term table, ns ${}^{5}S^{\circ}$ and ns ${}^{3}S^{\circ}$ (n=8 to 11), and nd ${}^{5}D^{\circ}$ and nd ${}^{3}D^{\circ}$ (n=8 to 10) the observed values taken from his discussion of the series formulas (p. 15), in which he compares observed and calculated values, are listed below.

Two terms not derived from observed lines are entered in brackets: 11s ${}^{5}S^{\circ}$, which is calculated from the series formula and $2s 2p^{5} {}^{1}P^{\circ}$, which is extrapolated.

Intersystem combinations connect the terms of the singlet, triplet, and quintet systems. Kiess and Shortley have observed g values for four levels as follows:

Desig.	Obs. g
3s 58°2	1.999
3p ⁵ P ₁ ⁵ P ₂	2.506 1.836
${}^{5}\mathbf{\hat{P}_{3}}^{2}$	1.666

REFERENCES

A. Fowler, Report on Series in Line Spectra p. 166 (Fleetway Press, London, 1922). (T) (C L)

R. Frerichs, Phys. Rev. 34, 1239 (1929); 36, 398 (1930). (T) (C L)

H. E. White, Introduction to Atomic Spectra p. 266 (McGraw-Hill Book Co., Inc., New York, N. Y., 1934). (G D)

K. R. More and C. A. Rieke, Phys. Rev. 50, 1054 (1936). (Standard wavelengths)

B. Edlén, Kungl. Svenska Vetenskapsakad. Handl. [3] 20, No. 10, 31 pp. (1943). (I P) (T) (C L)

W. F. Meggers, J. Opt. Soc. Am. 36, 431 (1946). (Summary hfs)

C. C. Kiess and G. Shortley, J. Research Nat. Bur. Std. 42, 190, RP1961 (1949). (Z E)

Ω	т	
υ	1	

01

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
2s ² 2p ⁴	2p ⁴ ³ P	2 1 0	0. 0 158. 5 226. 5	-158.5 -68.0	$2s^2 2p^3({}^4\mathrm{S}^\circ)4s$ $2s^2 2p^3({}^4\mathrm{S}^\circ)3d$	4s 3S° 3d 5D°	1 4	96225. 5 97420. 24	-0.13
2s ² 2p ⁴	$2p^{4}$ ¹ D	2	15867. 7				3, 2 2, 1, 0	97420.37 97420.50	-0.13
$2s^2 \ 2p^4$	$2p^{4}$ ¹ S	0	33792. 4		$2s^2 2p^3 ({}^4\mathrm{S}^\circ) 3d$	3d 3D°	3, 2, 1	97488.14	
$2s^2 2p^3 ({}^4S^\circ) 3s$	3s ⁵S°	2	73767.81		$2s^2 2p^3 ({}^4\mathrm{S}^\circ) 4p$	4 <i>p</i> ⁵ P	1	99092.64	0. 67
$2s^2 2p^3(^4S^\circ)3s$	38 3S°	1	76794.69				3	99095. 51 99094. 52	1. 21
$2s^2 \ 2p^3(^4S^\circ) 3p$	3 <i>p</i> ⁵P	$\frac{1}{2}$	86625.35 86627.37	2.02	$2s^2 2p^3 ({}^4\mathrm{S}^\circ) 4p$	4 <i>p</i> ³ P	2, 1, 0	99680. 4	
		3	86631.04	3. 67	$2s^2 2p^3(^2D^\circ)3s$	3s′ 3D°	3	101135.04	-12.17
$2s^2 2p^3(4S^\circ)3p$	3 <i>p</i> ³ P	2	88630. 84 88630. 30	0. 54			ĩ	101155.10	-7.89
		Ô	88631.00	-0.70	$2s^2 2p^3(^4S^\circ)5s$	58 ⁵ S°	2	102116. 21	
$2s^2 2p^3 ({}^4S^\circ) 4s$	48 ⁵ S°	2	95476.43		2s ² 2p ³ (⁴ S°)5s	58 3S°	1	102411.65	l

Z=8

I. P. 13.614 volts

O I—Continued

O I—Continued

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
2s ² 2p ³ (² D ^o)3s	3s' 1D°	2	102661.63		2s ² 2p ³ (² D°)3p	3p' 1D	2	116630. 51	
$2s^2 \ 2p^3 ({}^4\mathrm{S}^\circ) 4d$	4d ⁵D°	4	102865.09		$2s^2 2p^3(^2D^\circ)4s$	4s′ 1D°	2	122798.7	
		$\begin{vmatrix} 3\\2\\1\\0 \end{vmatrix}$			$2s^2 \ 2p^3 (^2D^\circ) 3d$	3 <i>d</i> ′ ³₽°	$egin{smallmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$	123296. 6 123355. 2 123386. 9	$ \begin{array}{ c c c c } -58.6 \\ -31.7 \end{array} $
$2s^2 2p^{3}({}^4\mathrm{S}^\circ)4d$	4d ³D⁰	3, 2, 1	102908. 14		$2s^2 2p^3(^2D^\circ)3d$	3d′ ³F°	4	124213.18	
$2s^2 2n^3(^4S^\circ)5n$	5n ³ P	2.1.0	103869.4				$\frac{3}{2}$		
$2s^2 2n^3(4S^\circ)6s$	68 ⁵ S°	2	105019 0		$2s^2 2n^3(2D^{\circ})3d$	3d' 1G°	4	12/238 21	
$2s^2 2n^3(4S^\circ)6s$	6x 35°	1	105164 90		$2s^2 2p^3(2D^0) 3d$	34/ 3(20	5	19/939 66	
$2s^2 2p(S) 0s^2$ $2s^2 2n^3(4S^0) 5d$	5 <i>d</i> 5D°	4 to 0	105385 3		23 2p (15)00	5 4 G	4	124258.37	-18.71 5.85
$2s^2 2p(S) 5d$ $2s^2 2n^3(4S^{\circ})5d$	5d 3D°	3.2.1	105/08 58		2 of 2 2 m3 (2 D °) 3 d	3 <i>d!</i> 1F0	2	10/206 20	
$23^{2} 2p(5) 50$	6m 3D	910	105400.00		$23^{2} 2p (D) 3a$		9	124520. 52	
$28^{2} 2p^{2} (-5) 0p$	7.599	2, 1, 0	100911.3		28° 2p°(•D)4p	4p °D	2	125782.09	-7.58 -5.05
$28^{2} 2p^{\circ}(-5^{-})78$	78 5	1	100545.1		0.0.5	0.5200	1	125787.14	
2s ² 2p ³ (*S ³) 7s	78 *5*		106627.9		28 2 2 3	2p° •P°		126266.48 126339.92	-73.44 -43.52
$2s^2 2p^3(^4S^3)6d$	6d °D°	4 to 0	106751.2				0	126383.44	10.01
$2s^2 2p^3(^4S^5)6d$	6d 3D	3, 2, 1	106765.8		$2s^2 2p^3(^2\mathrm{P}^5)3p$	$3p^{\prime\prime}$ ³ D	$\frac{3}{2}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	-5.77
$2s^2 2p^3(^4S^\circ)8s$	8s ⁵ S°	2	107445.4				1	127290. 93	-5. 51
$2s^2 2p^3 ({}^4S^\circ) 8s$	8s ³ S°	1	107497.1		$2s^2 2p^3(^2P^\circ)3p$	$3p^{\prime\prime} {}^{_{1}}\mathrm{P}$	1	127667.85	
$2s^2 2p^3(^4S^\circ)7d$	7d ⁵D°	4 to 0	107573.1		$2s^2 2p^3 (^2\mathrm{P}^\circ) 3p$	3 <i>p</i> ′′ ¹D	2	128595. 02	
$2s^2 2p^3(^4S^\circ)7d$	7d ³ D°	3, 2, 1	107582.7		$2s^2 2p^3(^2D^\circ)5s$	5s′ 1D°	2	129134 ±	
$2s^2 \ 2p^3 ({}^4\mathrm{S}^\circ) 9s$	9s ⁵S°	2	108021.4		$2s^2 2p^3(^2D^\circ)4d$	$4d'$ ${}^3\mathrm{F}^{\circ}$	4	129666. 55	
$2s^2 \ 2p^3 ({}^4S^\circ) 9s$	98 ³ S°	1	108057.6				$\frac{3}{2}$		
$2s^2 2p^3({}^4S^\circ)8d$	8d ⁵D°	4 to 0	108105. 7		$2s^2 2p^3(^2D^\circ)4d$	4 <i>d′</i> ¹ G°	4	129679.49	
$2s^2 2p^3 ({}^4S^\circ) 8d$.8d ³D°	3, 2, 1	108116.6		$2s^2 2p^3(^2D^\circ)4d$	4 <i>d'</i> ³ G°	5	129680.14	-19.02
$2s^2 2p^3({}^4S^\circ)10s$	10s ⁵S°	2	108412.0				$\frac{4}{3}$	129699.16 129693.08	6. 08
2s ² 2p ³ (⁴ S°)10s	10s 3S°	1	108436.1		$2s^2 2p^3(^2D^\circ)4d$	4 <i>d′</i> 1F°	3	129736.60	
$2s^2 2p^3(^4S^\circ)9d$	9 <i>d</i> ⁵D°	4 to 0	108470. 2		$2s^2 2p^3(^2D^\circ)4d$	4 <i>d′</i> ³P°	2	129969.60	
$2s^2 2p^3({}^4\mathrm{S}^\circ)9d$	9 <i>d</i> ³D°	3, 2, 1	108477.8				1	129979.04 129984.15	-9.44 -5.11
$2s^2 2p^3(^4S^\circ)11s$	11s ⁵ S°	2	[108688. 4]		2s2 2n3 (2P°) 3n	$3n^{\prime\prime}$ 1S	ů	130943 21	
$2s^2 2p^3(^4S^\circ)11s$	11s 3S°	1	108707.3		$2^{\circ} 2^{\circ} 2^{\circ} (1)^{\circ} $	6°/ 1D°	9	191007 1	
$2s^2 2p^3(^4S^\circ) 10d$	10 <i>d</i> °D°	4 to 0	108731.5		$23^{-}2p^{-}(^{-}D^{-})03$	03 -12 07 11 - 12 0	4	101027 ±	
$2s^{2} 2p^{3}(3S^{2}) 10a$	Iua »D°	3, 2, 1	108734.4		28° 2p°(2D ²)5a	5a. •r	43	132190.7 ±	
$2s^2 2n^3(^2D^\circ)3n$	3n' 3D	3	113294 42		9-2 9-3(2D 9) E d	52/ 100	2	100107 6	
20 2p (2)0p	0p 12		113294. 55	-0.13 -3.46	$28^{2} 2p^{3}(^{2}D^{2})5d$ $28^{2} 2m^{3}(^{2}D^{2})5d$	5d' 3G°	4 5	$132197.0 \pm$	
2s ² 2n ³ (² D ⁹)3n	3n' 3F	4	113238.01		23- 2p (-D)5a	<i>34</i> G	4	132217.8	-19.7
=• = _p (=) _o _p	op 1	$\begin{vmatrix} 3\\2 \end{vmatrix}$	113721. 06 113726. 81	-7.00 -5.75	$2s^2 \ 2p^3 (^2D^\circ) 5d$	5 <i>d'</i> ³P°	2, 1	132310 ±	
2s ² 2p ³ (² P ^o)3s	38'' 3P°	$\begin{vmatrix} 2\\ 1\\ 0 \end{vmatrix}$	113910.20 113920.63 113926.80	-10.43 -6.17	$2s^2 2p^3(^2D^\circ)7s$	7s' 1D°	2	133413 ±	
2s ² 2p ³ (² D ^o)3p	3p' 1F	3	113995. 81		$2s^2 2p^3(^2D^\circ)6d$	6 <i>d′</i> ³P°	2,1	133618 ±	
2s ² 2p ³ (² P ^o)3s	3s'' 1P°	1	115918. 30		2s 2p ⁵	$2p^{5}$ 1P°	1	[189837]	

Config. $1s^2+$					0	bserved Te	rms				
2s ² 2p ⁴ 2s 2p ⁵	$\left\{\begin{array}{c} 2p^{4} {}^{1}\mathrm{S} \end{array}\right.$	2p ⁴ ³ P 2p ⁵ ³ P ^o	2p ⁴ 1D								
		ns $(n \ge 3)$			np ($(n \ge 3)$			nd (n	≥3)	
$2s^2 \ 2p^3({}^4{ m S}^{ m o}) nx$	{3-10s ⁵ S° {3-11s ³ S°				3, 4p ⁵ P 3–6p ³ P				3–10d ⁵ D° 3–10d ³ D°		
2s ² 2p ³ (² D ^o)nx'	{		3s' ³ D° 3–7s' ¹ D°	-		${}^{3,4p'{}^{3}{ m D}}_{3p'{}^{1}{ m D}}$	${3p'\ {}^3{ m F}}\over{3p'\ {}^1{ m F}}$	3-6 <i>d′</i> ³P°		3–5d' ³ F° 3, 4d' ¹ F°	3–5d′ 3G9 3–5d′ 1G9
2s ² 2p ³ (² P ^o)nx''	{	3s'' ³ P° 3s'' ¹ P°	-	3 <i>p''</i> 1S	3 <i>p''</i> ¹ P	${3p^{\prime\prime}}{}^{3}{ m D}\ {3p^{\prime\prime}}{}^{1}{ m D}$					

*For predicted terms in the spectra of the O I isoelectronic sequence, see Introduction.

Оп

(N I sequence; 7 electrons)

Ground state $1s^2 2s^2 2p^3 {}^4S_{1\frac{1}{2}}$

2p³ ⁴S_{1^{1/2}} 283550.9 cm⁻¹

The terms are from Edlén's publications. He has summarized the earlier work on analysis by others and extended it by his observations in the far ultraviolet.

Edlén states that a number of the 5*f*-terms are very uncertain. These are followed by a "?" in the table. His estimated values of three terms from the (¹S) limit in O III are given in brackets.

Mihul lists the observed Zeeman effects for 111 lines, which in general agree well with the theoretical patterns for the adopted classifications. From his data a number of g-values could be calculated, but many of the observed patterns are unresolved.

Although the analysis of O II is fairly complete, the measures by different observers are discordant. The term values could be greatly improved by a set of homogeneous observations. A monograph containing all classified lines of this spectrum is also needed.

The doublet and quartet terms are connected by intersystem combinations, but the sextet terms are not so connected with the rest. The relative uncertainty, x, may be a few hundred cm⁻¹.

REFERENCES

I. S. Bowen, Phys. Rev. 29, 231 (1927). (T) (C L)

A. Fowler, Proc. Roy. Soc. (London) [A] 110, 476 (1926). (T) (C L)

- C. Mihul, Ann. de Phys. [10] 9, 294 (1928). (T) (C L) (Z E)
- H. N. Russell, Phys. Rev. 31, 27 (1928). (T) (C L)
- B. Edlén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 6, 136 (1934). (I P) (T) (C L) (G D)

B. Edlén, Zeit. Phys. 93, 728 (1935). (T) (C L)

Z=8

I. P. 35.146 volts

0 11

48

0 п

Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
$2p$ ${}^4\mathrm{S}_2$	2s ² 2p ³	$2p^3$ ${}^4\mathrm{S}^{\mathrm{o}}$	1½	0.0		$3d {}^{2}P_{2}$	2s ² 2p ² (³ P)3d	3 <i>d</i> ² P		233430.10 233544_09	-113.99
${2p} {}^{2}{ m D_{3}} {}^{2}{ m D_{2}}$	$2s^2 \ 2p^3$	$2p^3$ $^2\mathrm{D}^{o}$	$2^{1\!\!\!/_2}_{1^{1\!\!\!/_2}}$	26808.4 26829.4	-21.0	$3d \ {}^{2}D_{2}$	2s ² 2p ² (³ P)3d	3 <i>d</i> ² D		234402.48	51.97
2 <i>p</i> ² P ₂ ² P ₁	$2s^2 \ 2p^3$	$2p^3$ $^2\mathrm{P}^{\circ}$	$1\frac{1}{2}$ $\frac{1}{2}$	40466. 9 40468. 4	-1.5	$4s \stackrel{4P_1}{4P_2}$	2s ² 2p ² (³ P)4s	4s 4P	$\begin{array}{c c} 2/2 \\ 1/2 \\ 1/2 \\ 11/2 \end{array}$	238626. 32	105. 22
$2p' {}^{4}P_{3} {}^{4}P_{2} {}^{4}P_{2} {}^{4}P_{2}$	2s 2p ⁴	2p4 4P	$2\frac{1}{2}$ $1\frac{1}{2}$	119837.7 120001.1	-163.4 -82.4	$4^{2}P_{3}$	$9a^2 9m^2/(3D) Aa$	4 a 2D	$2\frac{1}{2}$	238892.96	161. 42
$2p' {}^{2}D_{3}$	2s 2p4	$2p^4$ $^2\mathrm{D}$	$\frac{72}{2\frac{1}{2}}$	120083. 5 165987. 7	-8.3	$\begin{array}{c} 48 \ {}^{2}P_{1} \\ {}^{2}P_{2} \end{array}$	28 ² 2p ² (°P)48	48 *P	$1\frac{1}{2}$	240328.75 240516.28	187. 53
$^{2}D_{2}$			1 1/2	165996. 0		38′ °S3	2s 2p ³ (°S°)3s	3811 050	21/2	245395.5 + x	
$3_{S} {}^{4}P_{1} {}^{4}P_{2} {}^{4}P_{3}$	$2s^2 \ 2p^2(^3P) \ 3s$	3s 4P	$1^{1/2}_{1^{1/2}}_{2^{1/2}}$	185235. 36 185340. 68 185499. 20	105. 32 158. 52	$ \begin{array}{c c} 4p & {}^{4}D_{1} \\ & {}^{4}D_{2} \\ & {}^{4}D_{3} \\ & {}^{4}D_{4} \end{array} $	$2s^2 2p^2(^{3}P)4p$	4 <i>p</i> 4D°	$ \begin{array}{c c} \frac{1}{2} \\ 1\frac{1}{2} \\ 2\frac{1}{2} \\ 3\frac{1}{4} \end{array} $	245767.80 245816.29 245902.85 246028 95	48. 49 86. 56 126. 10
3s ² P ₁ ² P ₂	2s ² 2p ² (³ P)3s	3s 2P	$1\frac{1}{2}{1\frac{1}{2}}$	188888. 38 189068. 37	179. 99	$4p \ {}^{2}D_{2}$	$2s^2 2p^2(^3P)4p$	4 <i>p</i> ² D°	$1\frac{1}{2}$	248009.1	176. 2
$2p' {}^2S_1$	2s 2p ⁴	$2p^4$ ² S	1/2	195710. 4		$4m^{2}D$	9-2 9m2/3D) 4m	4 m 2D9	1/	240100.0	
$3p$ 2S_1	$2s^2 \ 2p^2(^{3}P) \ 3p$	3p ² S°	1⁄2	203942. 21		$\begin{array}{c} 4p \ {}^{2}P_{1} \\ {}^{2}P_{2} \end{array}$	28 ² 2p ² (°P)4p	4 <i>p</i> ² P	$1^{\frac{72}{12}}$	248420.35 248514.23	88. 88
$3p \ {}^{4}D_{1} \ {}^{4}D_{2} \ {}^{4}D_{2}$	2s ² 2p ² (³ P)3p	3p 4D°	$\frac{\frac{1}{2}}{\frac{1}{2}}$	206730.80 206786.34 206877 00	55. 54 91. 56		$2s^2 2p^2(^1S)3p$	3 <i>p''</i> ² P°	$\left\{ \begin{array}{c} \frac{12}{112} \\ 1\frac{12}{2} \end{array} \right.$	}[250251]	
⁻ D ₃ ⁴ D ₄				207002.52	124.62	3d ² F ₄ ² F ₃	$2s^2 \ 2p^2(^1\text{D}) \ 3d$	3d' 2F	$\begin{array}{c c} 3\frac{1}{2} \\ 2\frac{1}{2} \end{array}$	251220. 9 251224. 1	-3.2
3s ² D ₃ ² D ₂	$2s^2 2p^2(^1D)3s$	3s' 2D	$2\frac{1}{2}$ $1\frac{1}{2}$	206971. 3 206972. 3	-1.0	$\overline{3d}^{3} \operatorname{G}_{5}{}^{2}\operatorname{G}_{4}$	$2s^2 \ 2p^2(^1\mathrm{D}) \ 3d$	3d' 2G	$\frac{4^{1}_{2}}{3^{1}_{2}}$	252607.7 252608.9	-1.2
${}^{3p}{}^{4P_{1}}_{{}^{4P_{2}}}_{{}^{4P_{3}}}$	2s² 2p²(3P)3p	3p 4P°	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$	208346. 17 208392. 27 208484. 24	46. 10 91. 97	$\overline{3d} \ {}^2\mathrm{D}_2 \ {}^2\mathrm{D}_3$	$2s^2 2p^2(^1\mathrm{D})3d$	3 <i>d'</i> 2D	1^{1}_{2} 2^{1}_{2}	25 3 046. 23 253048. 3 5	2. 12
${3p} {}^{2}{ m D_{2}} {}^{2}{ m D_{3}}$	$2s^2 \ 2p^2(^{3}P) \ 3p$	$3p \ ^2D^{\circ}$	$1\frac{1}{2}$ $2\frac{1}{2}$	211521.98 211712.66	190. 68	$\overline{3d} {}^{2}\mathrm{P_{1}} {}^{2}\mathrm{P_{2}}$	$2s^2 \ 2p^2(^1D) \ 3d$	3 <i>d</i> ′ ² P	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	253789.51 253791.87	2. 36
$3p$ ${}^4\mathrm{S}_2$	$2s^2 2p^2(^{3}P) 3p$	3p 4S°	1½	212161.94			$2s^2 2p^2(^{3}P)4d$	4d * F	11/2		
$2p' {}^{2}\mathrm{P_{2}}_{2}{}^{2}\mathrm{P_{1}}$	23 2p ⁴	$2p^4$ $^2\mathrm{P}$	$1\frac{12}{12}$	212593. 2 212762. 4	-169.2	4d 4F4 4F5			$\begin{array}{c c} 2\frac{7}{2} \\ 3\frac{1}{2} \\ 4\frac{1}{2} \end{array}$	254481. 5 254590. 7	109. 2
$3p {}^{2}P_{1} {}^{2}P_{2}$	2s ² 2p ² (³ P)3p	3 <i>p</i> ²₽°	$1\frac{1}{2}{1\frac{1}{2}}$	214169.74 214229.48	59. 74	4d 4D _{2,3}	$2s^2 2p^2(^{3}P)4d$	4d 4D	$ \begin{cases} \frac{1}{2} \\ 1\frac{1}{2} \\ 2\frac{1}{2} \end{cases} $	}254895. 2	
	$2s^2 \ 2p^2({}^1S)3s$	3s'' 2S	1/2	[226851]					31/2	,	
3p ² F ₃ ² F ₄	$2s^2 \ 2p^2(^1\text{D}) \ 3p$	3p' 2F°	$2^{1\!/_2}_{3^{1\!/_2}}$	228723.3 228746.9	23. 6	38' 4S2	2s 2p ³ (⁵ S°)3s	3s''' 4S°	1½	254982. 2	
$\overline{3p} \ {}^2\mathrm{D}_3 \ {}^2\mathrm{D}_2$	$2s^2 \ 2p^2(^1\text{D}) \ 3p$	3p′ ²D°	$2\frac{1}{2}$ $1\frac{1}{2}$	229946.6 229968.2	-21.6	$\begin{array}{c c} 4d \ {}^{4}P_{3} \\ {}^{4}P_{2} \\ {}^{4}P_{1} \end{array}$	$2s^2 2p^2(^{3}P)4d$	4d 4P	$\begin{array}{c c} 2\frac{1}{2} \\ 1\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array}$	255104. 6 255140. 9 255162. 6	$\begin{vmatrix} -36.3\\ -21.7 \end{vmatrix}$
3d ⁴ F ₂ ⁴ F ₃	$2s^2 \ 2p^2(^3\mathrm{P}) \ 3d$	$3d$ ${}^4\mathrm{F}$	$1\frac{1}{2}$ $2\frac{1}{2}$	231296.05 231350.08	54. 03 77. 91	$4d {}^{2}P_{2} {}^{2}P_{1}$	$2s^2 2p^2(^{3}P)4d$	4 <i>d</i> ² P	$1\frac{1}{\frac{1}{2}}$	255172. 5 255281. 4	- 108. 9
4F ₅			$\frac{372}{4\frac{1}{2}}$	231427. 99	102. 27	4d ² F ₃ ² F ₄	$2s^2 2p^2(^{3}P)4d$	4d ² F	$2\frac{1}{2}$ $3\frac{1}{2}$	255301. 3 255465. 2	163. 9
$3d \ {}^{4}P_{3} \ {}^{4}P_{2} \ {}^{4}P_{1}$	$2s^2 \ 2p^2(^3P) \ 3d$	3d 4P	$2\frac{1}{2}$ $1\frac{1}{2}$ $1\frac{1}{2}$	232462.83 232536.06 232602.57	-73.23 -66.51	3 <i>d</i> 2S1	$2s^2 2p^2(^1D)3d$	3d' 2S	1/2	255622. 4	
$\overline{3p} \stackrel{2}{_{2D}} \stackrel{2}{_{2D}}$	$2s^2 \ 2p^2(^1D) \ 3p$	3p′ ²P°	1/2 11/2	232480.1	46.6	${{4f_{^2}{ m D}_3}\atop{^2{ m D}_2}}$	$2s^2 2p^2(^{3}P)4f$	$4f ^{2}D^{\circ}$	$2\frac{1}{2}$ $1\frac{1}{2}$	255689.6 255812.2	-122.6
$3d \ {}^{4}D_{1} \ {}^{4}D_{2} \ {}^{*}D_{3} \ {}^{4}D_{4}$	$2s^2 \ 2p^2(^3\mathrm{P})3d$	3d 4D	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{2}{2}$ $\frac{3}{2}$	232711. 70 232745. 98 232747. 51 232753. 86	34. 28 1. 53 6. 35	4f ⁴ D ₄ ⁴ D ₃ ⁴ D ₂ ⁴ D ₁	2s ² 2p ² (³ P)4f	4 f 4D°	$\begin{array}{c} 3\frac{1}{2}\\ 2\frac{1}{2}\\ 1\frac{1}{2}\\ \frac{1}{2}\\ \frac{1}{2}\end{array}$	255691.4 255813.1 255913 ± 255912.0	$-121.7 \\ -100 \\ 1$
3d ² F ₈ ² F ₄	2s ² 2p ² (³ P)3d	3 <i>d</i> 2F	$2\frac{1}{2}$ $3\frac{1}{2}$	232796. 27 232959. 26	162.99						

O II—Continued

O II—Continued

Eldén	Config		1		1						
	Conng.	Desig.	J	Level	Interval	Eldén	Config.	Desig.	J	Level	Interval
4f ⁴ G ₃ ⁴ G ₄	2s ² 2p ² (³ P)4f	4 <i>f</i> ⁴G°	$2\frac{1}{2}$ $3\frac{1}{2}$ $4\frac{1}{4}$	255755.8 255759.4 255827.6	$3.6 \\ 68.2$	5f ² G ₄ ² G ₅	2s ² 2p ² (³ P)5f	5f 2G°	$3\frac{1}{2}$ $4\frac{1}{2}$	265763. 0 265930. 2	167. 2
4G6			51/2	255977.5	149.9	$5d \ ^{2}D_{3}$	$2s^2 2p^2(^{3}P)5d$	5d ² D	$1\frac{1}{2}$ $2\frac{1}{2}$	265856	
${}^{4f}{}^{2}{ m G}_{4}{}^{2}{ m G}_{5}$	$2s^2 \ 2p^2(^3P)4f$	4 <i>f</i> ² G°	$\begin{array}{c} 3^{1}_{12} \\ 4^{1}_{12} \end{array}$	255829.4 25598 3. 6	154. 2	$5f {}^{4}F_{2}$	$2s^2 \ 2p^2(^3P)5f$	5f 4F°		265928?	33
4d ² D ₂ ² D ₃	$2s^2 2p^2(^3\mathrm{P})4d$	4d ² D	$1\frac{1}{2}$ $2\frac{1}{2}$	255843. 1 255897. 2	54. 1	${}^{4}F_{4}$ ${}^{4}F_{5}$			$\begin{array}{c} 2\frac{7_{2}}{3\frac{1}{2}} \\ 3\frac{1}{2} \\ 4\frac{1}{2} \end{array}$	265981 265985 265999	24 14
4f ⁴ F ₂ ⁴ F ₃ ⁴ F.	$2s^2 \ 2p^2(^3P)4f$	4 <i>f</i> ⁴F°	$1\frac{1}{2}$ $2\frac{1}{2}$ $3\frac{1}{4}$	256083.5 256087.6 256123_1	4. 1 35. 5	$5f {}^{2}F_{3} {}^{2}F_{4}$	$2s^2 2p^2(^{3}P)5f$	5f 2F°	$2\frac{1}{2}{3\frac{1}{2}}{3\frac{1}{2}}$	265988? 265999?	11
${}^4\overline{F}_5$			4½	256136.2	13. 1	$3p' {}^6P_2 {}^6P_3$	$2s \ 2p^{3}(^{5}\mathrm{S}^{\circ})3p$	3 <i>p′′′</i> ⁰P	$1\frac{1}{2}$ $2\frac{1}{2}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	7.46
${{}^{4f}{}^{2}{ m F}_{3}}{}^{2}{ m F}_{4}}$	$2s^2 \ 2p^2(^{3}\mathrm{P})4f$	$4f {}^{2}\mathrm{F}^{\circ}$	$2\frac{1}{2}$ $3\frac{1}{2}$	256125.8 256143.3	17.5			4.74.010	3½	267783.40+a	12. 55
58.4P1	2s ² 2p ² (³ P)5s	5s 4P	1/2	257693. 7 257797 9	104. 2	$\begin{array}{c c} 4d & {}^2\mathrm{F}_3 \\ & {}^2\mathrm{F}_4 \end{array}$	$2s^2 2p^2(^1D)4d$	4 <i>d'</i> ² F	$\begin{vmatrix} 2\frac{1}{2} \\ 3\frac{1}{2} \end{vmatrix}$	274739. 2 274782. 4	43. 2
⁴ P ₈			$\frac{1}{2}$	257963. 8	165.9	$\overline{4d} \ ^2\mathrm{D}_{23}$	$2s^2 \ 2p^2(^1\mathrm{D}) 4d$	4d′ 2D	$\left\{ \begin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array} \right.$	274920	
5 ⁸ ² P ₁ ² P ₂	2s² 2p²(³P)5s	5s 2P	$1\frac{1}{2}$ $1\frac{1}{2}$	258408. 6 258601. 7	193. 1	$\overline{4d}$ ² P _{1 2}	$2s^2 \ 2p^2({}^1\mathrm{D})4d$	4d′ 2P	$\left\{\begin{array}{c} \frac{1_2}{1_2'}\\ 1_{1_2'}'\end{array}\right\}$	275611?	
4s ² D ₃ ² D ₂	$2s^2 \ 2p^2(^1D)4s$	4s' 2D	$2\frac{1}{2}$ $1\frac{1}{2}$	259286. 2 259287. 0	-0.8	$\overline{4f}$ ² G	$2s^2 \ 2p^2(^1\mathrm{D})4f$	4 <i>f</i> ′ 2G°	$\left\{ \begin{array}{c} 3\frac{1}{2} \\ 4\frac{1}{2} \end{array} \right.$	}275841. 3	
$5p \ {}^{4}D_{2} \ {}^{4}D_{3} \ {}^{4}D_{4} \ {}^{4}D_{4}$	$2s^2 \ 2p^2(^3\mathrm{P})5p$	5p 4D°	$\begin{array}{c} \frac{1}{12} \\ 1\frac{1}{2} \\ 2\frac{1}{2} \\ 3\frac{1}{2} \end{array}$	260959 261042 261180	83 138	$\overline{4f}$ ² F	$2s^2 2p^2(^1D)4f$	4f' 2F°	$\Big\{\begin{array}{c} 2\frac{1}{2} \\ 3\frac{1}{2} \\ 3\frac{1}{2} \\ \end{array}$	} <i>275879.</i> 6	
7 (D	$2s^2 \ 2p^2(^3\mathrm{P})5p$	5 <i>p</i> 4P°	1/2	001001 7			$2s^2 \ 2p^2({}^1S)3d$	3 <i>d''</i> 2D	$\left\{ \begin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array} \right\}$	}[275951]	
5 <i>p</i> ⁴ P ₂ ⁴ P ₃			$2\frac{1}{2}$	261261.7 261354.3	92.6	$\overline{4d} \ ^2\mathrm{S}_1$	$2s^2 \ 2p^2(^1\mathrm{D})4d$	4d' 2S	1/2	275997?	
5 <i>p</i> $^{2}D_{2}$ $^{2}D_{3}$	$2s^2 \ 2p^2(^3P)5p$	5 <i>p</i> 2D°	$1\frac{1}{2}$ $2\frac{1}{2}$	261697.5 261869.4	171. 9	$\overline{4f}$ ² D	$2s^2 \ 2p^2(^1\text{D})4f$	4 <i>f</i> ′ ²D°	$\left\{ \begin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array} ight.$	}276066. 3	
5d 4D2,3	$2s^2 \ 2p^2(^3P)5d$	5d 4D	$\begin{cases} \frac{1}{2} \\ 1\frac{1}{2} \\ 2\frac{1}{6} \end{cases}$	265220. 3		$\overline{4f}$ ² H	$2s^2 2p^2(^1D)4f$	4 <i>f′</i> 2H°	$\Big\{\begin{array}{c} 4\frac{1}{2} \\ 5\frac{1}{2} \\ \end{array}$	} <i>276109.1</i>	
			31/2	,		$\overline{4f}$ ² P	$2s^2 \ 2p^2({}^1\mathrm{D})4f$	4 <i>f′</i> ²₽°	$\begin{cases} \frac{1}{2} \\ 1\frac{1}{2} \end{cases}$	}276263. 9?	
5d ⁴ P ₃ ⁴ P _{1 2}	$2s^2 \ 2p^2(^3\mathrm{P}) 5d$	5 <i>d</i> 4P	$\left\{\begin{array}{c} 2\frac{1}{2} \\ 1\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array}\right.$	$\left.\begin{array}{c} 265431.\ 5\\ 265468.\ 2\end{array}\right.$	-36.7	58 2D23	2s ² 2p ² (¹ D)5s	5s' 2D	$\left\{ \begin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array} \right\}$	}278140	
5d 2F	$2s^2 2p^2(^3\mathrm{P}) 5d$	5d ² F	$2\frac{1}{2}$ $3\frac{1}{2}$	265578?			O III (3P ₀)	Limit		283550.9	
$5f {}^{4}D_{4}$ ${}^{4}D_{3}$ ${}^{4}D_{2}$ ${}^{4}D_{1}$	2s ² 2p ² (³ P)5f	5f 4D°	$ \begin{array}{c c} 3\frac{1}{2} \\ 2\frac{1}{2} \\ 1\frac{1}{2} \\ \frac{1}{2} \\ 1$	265639 265705? 265762? 265859?	$-66 \\ -57 \\ -97$	$3d' {}^6\mathrm{D}_5 \ {}^6\mathrm{D}_4 \ {}^6\mathrm{D}_3 \ {}^6\mathrm{D}_2 \ {}^6\mathrm{D}_1 \ {}^6\mathrm{D}_1$	2s 2p ³ (⁵ S°)3d	3 <i>d</i> ‴ ⁰D°	$\begin{array}{c c} 4\frac{1}{2} \\ 3\frac{1}{2} \\ 2\frac{1}{2} \\ 1\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array}$	291895.90+2 291896.78+2 291898.01+2 291899.11+2 291899.81+2	$\begin{bmatrix} & -0.88 \\ -1.23 \\ -1.10 \\ -0.70 \end{bmatrix}$
5f ⁴ G ₃ ⁴ G ₄ ⁴ G ₅ ⁴ G ₆	2s ² 2p ² (³ P)5f	5f 4G°	$\begin{array}{c} 2\frac{1}{2}\\ 3\frac{1}{2}\\ 4\frac{1}{2}\\ 5\frac{1}{2}\end{array}$	265665? 265691 265761 265925	$\begin{array}{c} 26\\70\\164 \end{array}$	4s' ⁶ S ₃	2s 2p ³ (⁵ S°)4s	4s''' 6S°	2½	298849.2 +3	c

December 1947.

OII OBSERVED TERMS*

Config. $1s^2+$	Observe	d Terms
$2s^2 2p^3$ $2s 2p^4$	$\begin{cases} 2p^{3} \ {}^{4}\mathrm{S}^{\circ} & \\ 2p^{3} \ {}^{2}\mathrm{P}^{\circ} & 2p^{3} \ {}^{2}\mathrm{D}^{\circ} \\ \begin{cases} 2p^{4} \ {}^{2}\mathrm{S} & 2p^{4} \ {}^{2}\mathrm{P} & 2p^{4} \ {}^{2}\mathrm{D} \end{cases} \end{cases}$	
	$ns \ (n \ge 3)$	$np \ (n \ge 3)$
2s ² 2p ² (³ P)nx 2s ² 2p ² (¹ D)nx'	$\begin{cases} 3-5s \ {}^{4}P \\ 3-5s \ {}^{2}P \\ 3-5s' \ {}^{2}D \end{cases}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2s 2p ³ (⁵ S°) <i>nx'''</i>	$\begin{cases} 3, \ 4s''' \ 6S^{\circ} \\ \ 3s''' \ 4S^{\circ} \end{cases}$	3 <i>p'''</i> ⁰P
	$nd \ (n \ge 3)$	$nf(n \ge 4)$
2s² 2p²(³P)nx	$\left\{\begin{array}{ccccc} 3-5d\ {}^{4}\mathrm{P} & 3-5d\ {}^{4}\mathrm{D} & 3,4d\ {}^{4}\mathrm{F} \\ 3,4d\ {}^{2}\mathrm{P} & 3-5d\ {}^{2}\mathrm{D} & 3-5d\ {}^{2}\mathrm{F} \end{array}\right.$	4, 5f ⁴ D° 4, 5f ⁴ F° 4, 5f ⁴ G° 4f ² D° 4, 5f ² F° 4, 5f ² G°
2s ² 2p ² (¹ D)nx' 2s 2p ³ (⁵ S°)nx'''	$\begin{cases} 3, 4d' \ {}^{2}S 3, 4d' \ {}^{2}P 3, 4d' \ {}^{2}D 3, 4d' \ {}^{2}F 3d' \ {}^{2}G \\ & 3d''' \ {}^{6}D^{\circ} \end{cases}$	4f' ² P° 4f' ² D° 4f' ² F° 4f' ² G° 4f' ² H°
2s ² 2p ² (³ P)nx 2s ² 2p ² (¹ D)nx' 2s 2p ³ (⁵ S°)nx''' 2s ² 2p ² (³ P)nx 2s ² 2p ² (³ P)nx 2s ² 2p ² (¹ D)nx' 2s 2p ³ (⁵ S°)nx'''	$ns (n \ge 3)$ $\begin{cases} 3-5s \ ^{4}P \\ 3-5s \ ^{2}P \\ 3-5s \ ^{2}D \\ \end{cases}$ $\begin{cases} 3, 4s''' \ ^{6}S^{\circ} \\ 3s''' \ ^{4}S^{\circ} \end{cases}$ $nd (n \ge 3)$ $\begin{cases} 3-5d \ ^{4}P \ 3-5d \ ^{4}D \ 3, 4d \ ^{4}F \\ 3, 4d \ ^{2}P \ 3-5d \ ^{2}D \ 3-5d \ ^{2}F \\ 3, 4d' \ ^{2}S \ 3, 4d' \ ^{2}P \ 3, 4d' \ ^{2}D \ 3, 4d' \ ^{2}F \ 3d' \ ^{2}G \\ \\ \end{cases}$	$np (n \ge 3)$ $3p \ 4S^{\circ} \qquad 3, 5p \ 4P^{\circ} \qquad 3-5p \ 4D^{\circ} \qquad 3-5p \ 2D^{\circ} \qquad 3p' \ 2S^{\circ} \qquad 3, 4p \ 2P^{\circ} \qquad 3-5p \ 2D^{\circ} \qquad 3p' \ 2P^{\circ} \qquad 4f' \ 4f' \ 2P^{\circ} \qquad 4f' \ 4f' \ 4f' \ 4f' \ 4f' \ 4f' \ 4f'$

*For predicted terms in the spectra of the NI isoelectronic sequence, see Introduction.

ОШ

(C I sequence; 6 electrons)

Ground state 1s² 2s² 2p² ³P₀

2p² ³P₀ 443193.5 cm⁻¹

The terms are from the papers by Edlén. The singlet, triplet and quintet terms are connected by intersystem combinations. Edlén has kindly furnished some unpublished results for inclusion here, namely, that intersystem combinations with quintet terms indicate that his published absolute values of these terms should be decreased by 418 cm^{-1} . This correction has been incorporated into the tabular values of the quintet terms.

REFERENCES

- C. Mihul, Ann. de Phys. [10] 9, 326 (1928). (T) (C L) (Z E)
- A. Fowler, Proc. Roy. Soc. (London) [A] 117, 317 (1928). (T) (C L)
- B. Edlén, Nova Acta Reg. Soc. Sci Uppsala [IV] 9, No. 6, 115 (1934). (I P) (T) (C L) (G D)
- B. Edlén, Zeit. Phys. 93, 726 (1935). (T) (C L) B. Edlén, Naturwiss. 30, 279 (1942). (T) (C L)
- B. Edlén, unpublished material (Dec. 1947). (T)

Z=8

I. P. 54.934 volts

ОШ

=

0 ш

Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
2p ³ P ₀ ³ P ₁ ³ P ₂	2s ² 2p ²	2 <i>p</i> ² ³₽	0 1 2	0. 0 113. 4 306. 8	113. 4 193. 4	3s' ³ P ₀ ³ P ₁ ³ P ₂	2s 2p ² (4P)3s	3s ³P	$\begin{array}{c} 0 \\ 1 \\ 2 \end{array}$	350026. 1 350122. 9 350302. 3	96. 8 179. 4
$2p \ ^1D_2$	2s ² 2p ²	$2p^2$ ¹ D	2	20271. 0		48 ³ P ₀	$2s^2 \ 2p(^2P^\circ)4s$	4s ³ P°	0	356732	106
$2p \ {}^{1}\mathrm{S}_{0}$	2s ² 2p ²	$2p^2$ ¹ S	0	43183. 5		³ P ₂			$\frac{1}{2}$	357111	273
$2p' {}^{5}S_{2}$	$2s \ 2p^3$	$2p^3$ ⁵ S°	2	60312.1		48 ¹ P ₁	$2s^2 \ 2p(^2\mathrm{P^o})4s$	4s ¹ P°	1	358667.4	
$2p' {}^{3}D_{3} {}^{3}D_{2} {}^{3}D_{1}$	2s 2p ³	$2p^3$ $^{3}\mathrm{D}^{\circ}$	$ \begin{array}{c} 3 \\ 2 \\ 1 \end{array} $	120025.4 120052.6 120058.5	$-27.2 \\ -5.9$	3p' ³ S ₁ 3p' ⁵ D ₀	$2s \ 2p^2(^4P) 3p$ $2s \ 2p^2(^4P) 3p$	3p ³S° 3n ⁵D°	1	363266.8 365515.76	
$2p' {}^{3}P_{2} {}^{3}P_{1} {}^{3}P_{0}$	2s 2p ³	2 <i>p</i> ³ ³₽°	2 1 0	142381.7 142382.8 142396.9		$\begin{bmatrix} 5T & 5D_1 \\ & 5D_2 \\ & 5D_3 \\ & 5D_4 \end{bmatrix}$		or -	$\begin{array}{c c}1\\2\\3\\4\end{array}$	365550.60 365619.12 365719.16 365846.46	34. 84 68. 52 100. 04 127. 30
$2p' \ ^1D_2$	2s 2p ³	$2p^3$ $^1D^{ m o}$	2	187049.4		4p ¹ P ₁	Zs ² 2p(² P°)4p	4 <i>p</i> ¹ P	1	365 72 3. 9	
$2p' {}^{3}S_{1}$	$2s 2p^3$	$2p^{3} {}^{3}\mathrm{S}^{\circ}$	1	197086.7		$4p {}^{3}D_{1} {}^{3}D_{2} {}^{3}D_{2}$	$2s^2 \ 2p(^2\mathrm{P^o})4p$	4p 3D	1 2 3	366486.91 366594.01 366801.04	107. 10 207. 03
2p -11	$23 2p^{-1}$ $2s^{2} 2n(2P^{0}) 3s^{-1}$	2p 1 3° 3Do	1	210458.0		$4n^{3}S$	$2s^2 2n(2P^{\circ})4n$	4n 38	1	367952 20	
³ P ₁ ³ P ₂	25- 2p(-1)05	99.1	1 2	267375.65 267632.59	118. 36 256. 94	$3p' {}^{5}P_{1}$	$2s 2p(1) \neq p$ $2s 2p^2(^4P)3p$	4 <i>p</i> ™ 3 <i>p</i> ⁵₽°	1 2	368526.37 368583.63	57.26
38 ¹ P ₁	$2s^2 \ 2p(^2P^\circ) 3s$	3s 1P°	1	273080.07		⁵ P ₃			3	368684.75	101. 12
$2p^{\prime\prime} {}^{3}P_{2} {}^{3}P_{1} {}^{3}P_{0}$	2p ⁴	2p4 3P	$\begin{array}{c} 2 \\ 1 \\ 0 \end{array}$	283758.9 283976.6 284073.3	-217.7 -96.7	$4p \ {}^{3}P_{0} \ {}^{3}P_{1} \ {}^{3}P_{2}$	2s² 2p(²P°)4p	4 <i>p</i> ³₽	$egin{array}{c} 0 \\ 1 \\ 2 \end{array}$	370326.7 370415.7 370524.2	89. 0 108. 5
3p ¹ P ₁	$2s^2 2p(^2P^\circ)3p$	3 <i>p</i> 1P	1	290956.62		$4p \ {}^{1}D_{2}$	2s ² 2p(² P°)4p	4p 1D	2	370900. 6	
$3p {}^{3}D_{1}$	$2s^2 2p(^2P^\circ)3p$	3p 3D	1	293865. 26	136. 34	4p 1S ₀	$2s^2 2p(^2P^\circ)4p$	4 <i>p</i> ¹ S	0	373046. 2	
$^{3}D_{3}^{2}$	9.2 9m/2D9)2m	2 39	2 3	294001. 60 294221. 65	220. 05	$3p' {}^{3}D_{1} {}^{3}D_{2} {}^{3}D_{2}$	2s 2p ² (⁴ P)3p	3 <i>p</i> 3D°	$\begin{vmatrix} 1\\ 2\\ 2 \end{vmatrix}$	374575 374662.5	88 136. 1
	25* 2p(-1)5p	3p -5	1	291001.00		2 2 1 5 5	$9_{0}, 9_{m^{2}}(4D), 9_{m}$	2 . 599	0	014190.0	
$2p^{3} \cdot D_{2}$	2p-	$2p \cdot \cdot D$		290209.4			$28 2p^{-(-1)} 3p$ $282 2m(2P^{0}) Ad$	0p "5 12 3E9	2	877875	
³ P ₁ ³ P ₂	25-2p(-1)5p	5 <i>p</i> - 1	$\begin{array}{c} 0\\ 1\\ 2\end{array}$	$\begin{array}{c c} 300228.21\\ 300310.31\\ 300440.85 \end{array}$	82. 10 130. 54	-10 -1·2	23-2p(1)+u	fu f	$\begin{vmatrix} 2\\3\\4 \end{vmatrix}$	011010	
$3p \ ^{1}D_{2}$	$2s^2 2p(^2P^\circ)3p$	3p 1D	2	306584.8		$4d \ ^1D_2$	$2s^2 2p(^2P^\circ)4d$	4d 1D°	2	377687	
$3p \ {}^{1}\mathrm{S}_{0}$	2s ² 2p(² P°)3p	3 <i>p</i> 1S	0	313801. 07		$3p' {}^{3}P_{2}$	2s 2p ² (4P)3p	3p ⁸ P°	2	378408.5	12.4
3d ³ F ₂ ³ F ₃ ³ P ₄	2s ² 2p(² P°)3d	3d ³F°	$\begin{vmatrix} 2\\ 3\\ 4 \end{vmatrix}$	324462.46 324658.25 324836.41	195. 79 178. 16	$^{3}\mathbf{P}_{0}^{1}$ $4d^{3}\mathbf{D}_{1}$	$2s^2 2n(^2P^\circ)4d$	4 <i>d</i> ³D°		378438.1	17. 2
$3d \ ^{1}D_{2}$	$2s^2 2p(^2P^\circ)3d$	3 <i>d</i> 1D°	2	324734. 22		³ D ₂ ³ D ₃			$\frac{1}{2}$	379293 379356	61
$3d \ {}^{3}D_{1} \ {}^{3}D_{2} \ {}^{3}D_{3}$	$2s^2 2p(^2P^\circ)3d$	3d 3D°	$\frac{1}{2}$	327227.94 327277.18 327350.90	49. 24 73. 72	4d 3P2	2s² 2p(²P°)4d	4 <i>d</i> ³P°	$\begin{vmatrix} 2\\ 1\\ 0 \end{vmatrix}$	380706	
3d 3P2	2s ² 2p(² P°)3d	3d P°	2	329467.98	114 00	$4d {}^{1}\mathrm{F}_{3}$	$2s^2 2p(^2P^\circ)4d$	4d ¹ F°	3	380782	
³ P ₁ ³ P ₀			1 0	329581.98 329643.43	-114.00 -61.45	4d ¹ P ₁	$2s^2 2p(^2P^\circ)4d$	4 <i>d</i> ¹ P°	1	381086	
3d 1F2	$2s^2 2p(^2P^\circ)3d$	3d ¹ F°	3	331820. 2			2s ² 2p(² P ^o)5s	5s P°	0		
$3d \ ^{1}P_{1}$	$2s^2 2p(^2P^\circ)3d$	3d ¹ P°	1	332777. 1		58 ² P ₂			$\begin{vmatrix} 1\\ 2 \end{vmatrix}$	392221	
3s' 5P1	2s 2p ² (4P)3s	3s 5P	1	338565. 87	124.47	5s ¹ P ₁	2s ² 2p(² P°)5s	5s 1P°	1	3927 78	
^o P ₂ ⁵ P ₃	274	274 18	2 3	338690. 34 338851. 50	161. 16	38' ³ D ₁ ² D ₂	2s 2p ² (2D)3s	38' B	1 2 2	394090 394126 304105	36 69

51

O III—Continued

O III—Continued

Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
3d' 5F1	2s 2p ² (⁴ P)3d	3d 5F	1	394516. 45	38 70	7d ¹ F ₃	$2s^2 2p(^2\mathrm{P^o})7d$	7d 1F°	3	422977	
⁵ F ₂ ⁵ F ₃			$\begin{vmatrix} 2\\ 3 \end{vmatrix}$	394555.15 394612.70	57.55	3p' 1F3	$2s \ 2p^2(^2{ m D}) 3p$	3 <i>p′</i> ¹F°	3	424998	
⁵ F ₄ ⁵ F ₅			$\begin{vmatrix} 4\\5 \end{vmatrix}$	394688.44 394780.47	92. 03	$\overline{3p'}$ ¹ D ₂	$2s \ 2p^2(^2{ m D}) \ 3p$	3 <i>p′</i> 1D°	2	426338	
3d' ⁵ D ₀ ⁵ D ₁ ⁵ D ₂ ⁵ D ₃	2s 2p²(4P)3d	3 <i>d</i> 5D	$\begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \end{array}$	398135.0 398131.4 398127.3 398137.4	-3.6 -4.1 10.1	48' ⁵ P ₁ ⁵ P ₂ ⁵ P ₃	2s 2p ² (4P)4s	48 ⁵P	$\begin{array}{c}1\\2\\3\end{array}$	428487 428606 428769	119 16 3
. D4			4	398218.8	81.4	$\overline{3p'}$ ¹ P ₁	$2s \ 2p^2(^2\mathrm{D}) 3p$	*3p′ 1P°	1	430025	
3d' ⁵ P ₃ ⁵ P ₂	$2s \ 2p^2(^4\mathrm{P})3d$	3 <i>d</i> ⁵P	32	398474.3 398544.3	-70.0 -38.5	4p' ³ S ₁	2s 2p ² (4P)4p	$4p$ $^3\mathrm{S}^{o}$	1	43701 5.0	
⁶ P ₁	0.0.1/(D)0.1	0.1.2D		398582.8	00.0	$4p' {}^{5}D_{0}$	$2s \ 2p^2(^4{ m P})4p$	4 <i>p</i> ⁵D°	0	198011 0	
3d' 3P ₂ 3P ₁ 3P ₀	28 2p ² (*P)3d	3 <i>a</i> °P	$ \begin{array}{c} 2\\ 1\\ 0 \end{array} $	400354.8 400464.7 400518.4	-109. 9 -53. 7	⁵ D ₂ ⁵ D ₃ ⁵ D ₄			$\frac{1}{2}$ $\frac{3}{4}$	438303. 2 438395. 2 438517. 5	62. 2 92. 0 122. 3
3d' ³ F ₂ ³ F ₃ ³ F ₄	2s 2p ² (4P)3d	3d 3F	$\begin{array}{c}2\\3\\4\end{array}$	401379 401475.4 401609.1	96 133. 7	$4p' {}^{5}P_{1} {}^{5}P_{2}$	2s 2p ² (⁴ P)4p	4 <i>p</i> ⁵P°	1 2	439278. 1 439329. 5	51.4 98.1
5d ³ F ₂	$2s^2 \ 2p(^2\mathrm{P^o}) 5d$	$5d$ ${}^3\mathrm{F}^{\mathrm{o}}$	2	401530		°P ₃			3	439427.6	00.1
			3 4				$2s \ 2p^2(^4P)4p$	$4p$ $^{3}D^{\circ}$	$\begin{array}{c}1\\2\end{array}$		
$5d \ ^1D_2$	$2s^2 \ 2p(^2P^\circ)5d$	5d 1D°	2	401787		$4p' {}^{3}D_{3}$			3	442710	
	2s ² 2p(² P°)5d	$5d$ $^{3}D^{\circ}$	1				O iv $({}^{2}P_{\frac{0}{12}})$	Limit		443193. 5	
$5d \ ^{3}D_{3}$			$\frac{2}{3}$	402530		41' 5P3	$2s \; 2p^2(^4{ m P}) 4d$	4 <i>d</i> ⁵P	3	450167	-70
5d ¹ F ₃	$2s^2 \ 2p(^2\mathbf{P^o}) \ 5d$	5d ¹ F°	3	403374		⁵ P ₂ ⁵ P ₁			$\begin{vmatrix} 2\\ 1 \end{vmatrix}$	450237 450291	-54
$5d \ ^{1}P_{1}$	$2s^2 \ 2p(^2\mathrm{P^o})5d$	5d ¹ P°	1	403526		24/31	$9 \circ 9 m^2 (2D) 2d$	27/31	221	459955	
$3d' {}^{3}D_{1}$	2s 2p ² (⁴ P)3d	$3d$ ^{3}D	1	405805.1	29.0		$23 2p^{-}(-D)3u$	54 °F	4, 0, 4	402000	
${}^{3}\overline{\mathrm{D}}_{3}^{2}$			3	405883. 0	48.9	34' 'D	28 2p ² (² D)3d	3a' 3D	1, 2, 3	454174	
6d 1D2	$2s^2 \ 2p(^2\mathrm{P^o}) 6d$	6 <i>d</i> ¹ D°	2	414675		3 <i>d'</i> 3P	$2s \ 2p^2(^2D) 3d$	3 <i>d′</i> ³ P	0, 1, 2	457634	
	$2s^2 2p(^2P^\circ) 6d$	6d 3D°	1			5d' ⁵ P ₃	2s 2p ² (4P)5d	5 <i>d</i> ⁵ P		473750	
6d 3D3			3	415181					1		
Decer	nber 1947.										

O III OBSERVED TERMS*

Config. $1s^2+$		Observed Terms	
2s ² 2p ²	$\begin{cases} 2p^{2} {}^{3}\mathrm{P} \\ 2p^{2} {}^{1}\mathrm{S} \end{cases} \qquad 2p^{2} {}^{3}\mathrm{P} \end{cases}$		
2s 2p ³	$\begin{cases} 2p^{3} {}^{5}\mathrm{S}^{\circ} \\ 2p^{3} {}^{3}\mathrm{S}^{\circ} & 2p^{3} {}^{3}\mathrm{P}^{\circ} & 2p^{3} {}^{3}\mathrm{D}^{\circ} \\ & 2p^{3} {}^{1}\mathrm{P}^{\circ} & 2p^{3} {}^{1}\mathrm{D}^{\circ} \end{cases}$		
2p ⁴	$\begin{cases} 2p^{4} {}^{3}\mathrm{P} & \\ 2p^{4} {}^{1}\mathrm{S} & 2p^{4} {}^{1}\mathrm{D} \end{cases}$		
	ns $(n \geq 3)$	$np (n \geq 3)$	nd $(n \geq 3)$
2s ² 2p(² P°)nx	{ 3-5s ³ P° 3-5s ¹ P°	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3, 4d ³ P° 3–6d ³ D° 3–5d ³ F° 3–5d ¹ P° 3–6d ¹ D° 3–5, 7d ¹ F°
28 2p ² (4P)nx	$\begin{cases} 3, 4s {}^{5}P \\ 3s {}^{3}P \end{cases}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3-5d ⁵ P 3d ⁵ D 3d ⁵ F 3d ³ P 3d ³ D 3d ³ F
2s 2p ² (² D)nx'	{ 3s' ³ D	3p' ¹ P° 3p' ¹ D° 3p' ¹ F°	3d' ³ P 3d' ³ D 3d' ³ F

*For predicted terms in the spectra of the C I isoelectronic sequence, see Introduction.

(B I sequence; 5 electrons)

Ground state $1s^2 2s^2 2p {}^2\mathbf{P}_{\frac{1}{2}}^{\circ}$

$2p^{2}P_{\frac{1}{2}}^{\circ}$ 624396.5 cm⁻¹

Most of the terms are from Edlén's Monograph, corrected to agree with his 1935 paper, in which he adds several terms from $2p^2({}^{1}D)$ and relabels his $2p^2({}^{3}P)3s {}^{2}P$ term as $2p^2({}^{1}D)3s {}^{2}D$. He also lists a combination in the visible, $3s' {}^{2}P^{\circ} - 3p' {}^{2}D$, from which a revised value of $3s' {}^{2}P^{\circ}$ has been calculated. A few other additions and corrections kindly communicated by Edlén have been incorporated into the table.

The term $6f {}^{2}F^{\circ}$ is from the paper by Whitelaw and Mack.

No intercombinations between the doublet and quartet terms have been observed, but the limits adopted by Edlén are based on well-established series, and the relative positions of the two groups of terms differ by probably only a small constant x.

REFERENCES

L. J. Freeman, Proc. Roy. Soc. (London) [A] 127, 330 (1930). (T) (C L)

B. Edlén, Nova Acta Reg. Soc. Uppsala [IV] 9, No. 6, 87 (1934). (I P) (T) (C L) (G D)

P. G. Kruger and W. E. Shoupp, Phys. Rev. 44, 105 (1933). (T) (C L)

E. Edlén, Zeit. Phys. 93, 726 (1935). (T) (C L)

N. G. Whitelaw and J. E. Mack, Phys. Rev. 47, 677 (1935). (T)

B. Edlén, unpublished material (Dec. 1947). (T)

$\mathbf{\Omega}$	337
U	11

O IV

Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
2p ² P ₁ ² P ₂	2s ² (¹ S)2p	2 <i>p</i> ² P°	$1^{\frac{1}{2}}_{1^{\frac{1}{2}}}$	0. 0 386. 5	386.5	3s' ² P ₁ ² P ₂	2s 2p(3P°)3s	38 2P°	$1\frac{1}{2}{1\frac{1}{2}}{1\frac{1}{2}}$	452808. 0 453073. 0	265. 0
$2p' {}^{4}P_{1} {}^{4}P_{2} {}^{4}P_{2}$	$2s \ 2p^2$	2p² 4P	$\frac{\frac{1}{2}}{\frac{1}{2}}$	71177. $0+x$ 71308. $4+x$	131. 4 184. 5	$3p' {}^{2}P_{1} {}^{2}P_{2}$	2s 2p(³ P°)3p	3 <i>p</i> ²P	$1\frac{1}{2}{1\frac{1}{2}}{1\frac{1}{2}}$	$\begin{array}{c} 467231. \ 1 \\ 467346. \ 5 \end{array}$	115. 4
$2p' {}^{2}D_{3} {}^{2}D_{2}$	2s 2p ²	$2p^2$ ² D	$2\frac{1}{2}$ $2\frac{1}{2}$ $1\frac{1}{2}$	$\begin{array}{c} 11492.9 \pm 12\\ 126936.3\\ 126950.3 \end{array}$	-14.0	$3p' {}^{4}D_{1} {}^{4}D_{2} {}^{4}D_{3} {}^{4}D_{3}$	2s 2p(3P°)3p	3 <i>p</i> 4D	$\frac{\frac{1}{2}}{\frac{1}{2}}$ $\frac{1}{2}$ $\frac{2}{2}$	$\begin{array}{c} 468075. \ 4+x \\ 468154. \ 2+x \\ 468289. \ 7+x \\ 4682490. \ 4+x \end{array}$	78. 8 135. 5 209. 7
2p' ² S ₁	2s 2p ²	$2p^2$ ² S	1⁄2	164366. 9		$3n'$ $4S_{0}$	2s 2n(3P°)3n	3n 48	072 146	408499.4+x 474217.8+x	
${2p' {}^{2}P_{1} \atop {}^{2}P_{2}}$	2s 2p ²	$2p^2$ ² P	$1\frac{\frac{1}{2}}{1\frac{1}{2}}$	$\begin{array}{c} 180481. \ 3 \\ 180724. \ 6 \end{array}$	243. 3	$3p' 4P_1$	$2s 2p(^{3}P^{\circ})3p$	$3p$ ^{4}P	1/2	478587.7+x	04 5
2 <i>p''</i> 4S ₂	$2p^{3}$	$2p^3$ ${}^4\mathrm{S}^{\circ}$	1½	231275.1+x		${}^{4}P_{2}$ ${}^{4}P_{3}$			$1\frac{1}{2}$ $2\frac{1}{2}$	$\begin{array}{r} 478682. \ 2+x \\ 478811. \ 3+x \end{array}$	129. 1
$2p^{\prime\prime} {}^{2}D_{3} {}^{2}D_{2}$	$2p^3$	$2p^{3}$ $^{2}\mathrm{D}^{\circ}$	$2\frac{12}{12}$	255156.7 255186.0	-29.3	$3p' {}^{2}D_{2} {}^{2}D_{3}$	2s 2p(3P°)3p	3 <i>p</i> ² D	$1\frac{12}{2\frac{1}{2}}$	482667. 5 482923. 1	255.6
$2p^{\prime\prime} {}^{2}P_{1} {}^{2}P_{2}$	$2p^3$	$2p^3$ $^2\mathrm{P}^{\circ}$	$1^{\frac{1}{2}}_{1\frac{1}{2}}$	289016.1 289024.0	7. 9	4s 2S1	$2s^2({}^1S)4s$	4s 2S	1⁄2	485823. 1	
38 2S1	2s²(1S)3s	3s 2S	1⁄2	357614. 8		3 p' 2S1	2s 2p(3P°)3p	3p ² S	1⁄2	492880	
${}^{3p}{}^{^{2}\mathrm{P_{1}}}_{^{2}\mathrm{P_{2}}}$	$2s^{2}(^{1}S)3p$	3p 2P°	$1\frac{1}{2}{1\frac{1}{2}}{1\frac{1}{2}}$	390161. 1 390248. 2	87. 1	$3d' {}^{4}F_{2} {}^{4}F_{3} {}^{4}F_{4}$	2s 2p(3P°)3d	3d 4F°	$1\frac{1}{2}$ $2\frac{1}{2}$ $3\frac{1}{2}$	494907.5+ x 494986.3+ x 4950987+ r	78. 8 112. 4
$3d \ {}^{2}D_{2} \\ {}^{2}D_{2}$	$2s^2(^1S)3d$	3d 2D	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	419533.5 419550.2	16. 7	${}^{4}F_{5}$			41/2	495252.8+x	154. 1
3s' ⁴ P ₁ ⁴ P ₂ ⁴ P ₃	2s 2p(3P°)3s	38 4P°	$\frac{\frac{1}{2}}{\frac{1}{2}}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{2}{2}$	438588.5 + x 438723.6 + x 438970.5 + x	135. 1 246. 9	$\begin{array}{c c} 3d' \ {}^{4}\mathrm{D}_{1} \\ {}^{4}\mathrm{D}_{2} \\ {}^{4}\mathrm{D}_{3} \\ {}^{4}\mathrm{D}_{4} \end{array}$	2s 2p(*P°)3d	3d * D°	$1^{1/2}_{1^{1/2}}_{2^{1/2}}_{3^{1/2}}$	$\begin{array}{c} 499506. \ 4+x \\ 499535. \ 3+x \\ 499582. \ 0+x \\ 499646. \ 6+x \end{array}$	28. 9 46. 7 64. 6

Z=8

53

I. P. 77.394 volts

O IV—Continued

O IV—Continued

Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
3d' ² D ₂ ² D ₃	2s 2p(3P°)3d	3 <i>d</i> 2D°	$1\frac{12}{21/2}$	50151 1. 3 501566. 4	55. 1	4d' ² D ₂ ² D ₃	2s 2p(3P°)4d	4d 2D°	$1\frac{12}{212}$	593627 593708	81
3d' ⁴ P ₃ ⁴ P ₂ ⁴ P.	2s 2p(3P°)3d	3 <i>d</i> ⁴P°	$2\frac{1}{2}$ $1\frac{1}{2}$ $1\frac{1}{2}$	503834.5+x 503947.9+x 504091.7+x	-113.4 -73.8	$4f' {}^{2}F_{3} {}^{2}F_{4}$	2s 2p(3P°)4f	4 <i>f</i> ² F	$2\frac{1}{2}{3\frac{1}{2}}{3\frac{1}{2}}$	594007 594080	73
$4d \ {}^{2}D_{2}$ ${}^{2}D_{3}$	$2s^{2}(^{1}S)4d$	4 <i>d</i> 2D	$1\frac{1}{2}$ $2\frac{1}{2}$	510560 510567	7	$4f' {}^{2}D_{2} {}^{2}D_{3}$	2s 2p(³ P°)4f	4 <i>f</i> ² D	$1\frac{1}{2}{2\frac{1}{2}}$	594337 594542	205
$3d' {}^{2}F_{3} {}^{2}F_{4}$	2s 2p(³ P°)3d	3d 2F°	2½ 3½	510746.1 510978.5	232. 4	4d' ² F ₃ ² F ₄	2s 2p(3P°)4d	4 <i>d</i> ² F°	$2\frac{1}{2}{3\frac{1}{2}}$	596299 596477	178
3 <i>d</i> ′ ² P ₂ ² P ₁	2s 2p(³ P°)3d	3 <i>d</i> ²P°	$1\frac{12}{12}$	514217 514368	-151	3p'' ² S ₁ 8f ² F	$2p^{2}(^{3}P)3p$ $2s^{2}(^{1}S)8f$	3p'' 2S° 8f 2F°	$\begin{cases} \frac{1}{2} \\ \frac{21}{2} \\ \frac{21}{2} \end{cases}$	597254 }597352	
3s' ² P ₁ ² P ₂	2s 2p(1P°)3s	3s' 2P°	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	518684 518690	6	4d' ² P ₂	2s 2p(3P°)4d	4 <i>d</i> ² P°	$\begin{bmatrix} 3\frac{1}{2} \\ 1\frac{1}{2} \\ 1\frac{1}{2} \end{bmatrix}$	597726	-137
58 ² S ₁	$2s^2(^1S)5s$	5s 2S	1/2	539 3 68		38'' 2Da	$2n^{2}(1D)3s$	38''' 2D		600092	
$\overline{3p'} {}^{2}D_{2}$	2s 2p(1P°)3p	3p′ 2D	$1\frac{1}{2}$ $2\frac{1}{2}$	$547311 \\ 547336$	25	² D ₃				600106	14
$\overline{3p'}^{2}P_{1}^{2}P_{2}$	2s 2p(1P°)3p	3 <i>p′</i> ⁰P	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	549792 549855	63	2m// 4D	2p ² (³ P)3p	3 <i>p''</i> 4D°	$\begin{array}{c c} & \frac{1}{2} \\ & \frac{1}{2} \\ & 2\frac{1}{2} \\ & 2\frac{1}{2} \\ & 2\frac{1}{2} \end{array}$	600077 1 -	
$5d^2D_0$	$2s^{2}(^{1}S)5d$	$5d \ ^{2}D$	$1\frac{1}{2}$	552034		5p -D4	$2n^{2}(^{3}P)3n$	3n'' 4P°	1/2	002311 T2	
5f 2F	2s ² (1S)5f	$5f {}^{2}\mathrm{F}^{\circ}$	$\begin{cases} 2\frac{1}{2} \\ 2\frac{1}{2} \end{cases}$	<i>552490</i>		3p'' 4Pa			$1\frac{1}{2}$ $2\frac{1}{2}$	606434 + x	
$\overline{3p'}$ ² S ₁	2s 2p(1P°)3p	3p' ² S		554461		3p'' ² D ₃	$2p^{2}(^{3}P)3p$	3p'' 2D°	21/2	615431	
4s' 4P1	2s 2p(⁸ P°)4s	48 4 P°	$\frac{1}{2}$	568638 + x	135	² D ₂				615460	-29
⁴ P ₂ ⁴ P ₃			$1\frac{1}{2}{2\frac{1}{2}}{2\frac{1}$	569020 + x	247	$3p'' {}^4S_2$	2p ² (³ P)3p	3 <i>p''</i> 4S°	1½	616588 + x	
2.d. 1F.	2s 2p(1P°)3d	3 <i>d′</i> ² F°	$\frac{2\frac{1}{2}}{3\frac{1}{2}}$	570791			O v (1S ₀)	Limit		624396.5	
4s' ³ P ₁	2s 2p(*P°)4s	4s ²₽°		573696 573907	211	3p'' *F	$2p^2(^1\mathrm{D})3p$	3 <i>p'''</i> ² F°	$\left\{\begin{array}{c} 2\frac{1}{2} \\ 3\frac{1}{2} \\ \end{array}\right.$	}624882	
- 2	2s ² (1S)6d	6d 3D	$1\frac{1}{2}$			5p' ² P ₂	$2s 2p(^{s}P^{\circ})5p$	5 <i>p</i> ² P	$1\frac{\frac{1}{2}}{1\frac{1}{2}}$	628496	
$6d ^{2}D_{3}$	2s2 2n(8P°) 4n	4n 2P	2½	574373 575204		3d'' ² F4	$2p^2(^{3}P)3d$	3 <i>d''</i> ² F	$2\frac{1}{2}$ $3\frac{1}{2}$	630095	
⁴ <i>p</i> ⁻¹ ¹ ² P ₂	23 2p(1)+p	1p 1	$1\frac{1}{2}$	575373	169	$5p' {}^{2}D_{2}$	2s 2p(³ P ^o)5p	5p ² D	1½	630703	176
$\overline{3d'} {}^{2}D_{2}$ ${}^{2}D_{3}$	2s 2p(1P°)3d	$3d' \ ^{2}D^{\circ}$	$1\frac{1}{2}$ $2\frac{1}{2}$	575819 575853	34	$^{2}D_{3}$			$2\frac{1}{2}$	630879	170
$38'' {}^{4}P_{1} {}^{4}P_{2}$	$2p^2(^8\mathrm{P})3s$	3s'' 4P	$1/2 \\ 11/2$	576591 + x 576735 + x	144 212	3d'' ² D ₃ ³ D ₂	$2p^2(^3P)3d$	3 <i>d''</i> 2D	$\begin{array}{c} 2\frac{1}{2} \\ 1\frac{1}{2} \end{array}$	632426 632594	-168
${}^{4}P_{3}$ $\overline{3d'} {}^{2}P_{1}$	2s 2p(1P°)3d	3 <i>d'</i> 2P°	$2\frac{1}{2}$	576947 + x 581721 5817/8	22	5.3/ AD	2s 2p(³ P ^o)5d	5 <i>d</i> 4D°		600000 1 -	
$4n^{\prime} 2D_{0}$	2s 2n(8P°)4n	$4n^{2}D$	172	584552		5d' 4P	28 2n(3P°)5d	5d 4P°	21/	63/2/5 5+r	
² D ₃			$2\frac{1}{2}$	584768	216	00 18	20 20 (1)00	001		004040.010	
7 <i>f</i> ⁰F	$2s^2(^{1}S)7f$	7f 2F°	$\left\{\begin{array}{c} 2\frac{1}{2} \\ 3\frac{1}{2} \\ 3\frac{1}{2} \end{array}\right.$	} <i>587850</i>		5d' ³ F ₈ ² F ₄	2s 2p(3P°)5d	5d ² F°	$2\frac{1}{2}$ $3\frac{1}{2}$	636024 636236	212
4p′ 2S	$2s 2p(^{3}P^{\circ})4p$	4 <i>p</i> ² S	1/2	590071		5d' ² P ₂	2s 2p(3P°)5d	5d ² P°	1½	636492?	
	2s 2p(*P°)4d	4 <i>d</i> ⁴D°	$\frac{\frac{1}{2}}{\frac{11}{2}}$			9.11 15	0-2(2D) 0 1	9.1// /D		626951	
4d' ⁴ D ₄			$\frac{27_2}{31_2}$	591767 +x		$3a^{+}$ $^{+}P_{3}$ $^{+}P_{2}$ $^{+}P_{2}$	2p*(°P)3d	Sal P	$ \begin{array}{c} 2^{\frac{1}{2}} \\ 1^{\frac{1}{2}} \\ 1^{\frac{1}{2}} \end{array} $	636950 + x 637012 + x	-99 - 62
4d' 4P3	2s 2p(^s P°)4d	4d 4 P°	$2\frac{1}{2}$ $1\frac{1}{2}$ $\frac{1}{2}$	592999 +x		$\frac{1}{3d''} {}^{2}\mathrm{D}$	$2p^2(^1\mathrm{D})3d$	3 <i>d'''</i> ² D	$\begin{cases} 1\frac{1}{2} \\ 2\frac{1}{2} \end{cases}$	}646859	

	(O IV—Con	tinued	1			1	1			1	Fro	ы			
Edlén	Config.	Desig.	J	Level	Interval						$n \ge 4)$	5, 7, 8f ²	4f 2			
3d" ² F ₃ ² F ₄	$2p^2(^1\mathrm{D})3d$	3 <i>d'''</i> 2F	$2\frac{1}{2}$ $3\frac{1}{2}$	651098 651117	19						t) fu		f 2D			
$\overline{3d}^{\prime\prime}^{2}\mathrm{P}_{2}^{2}_{\mathrm{P_{1}}}$	$2p^{2}(^{1}\mathrm{D})3d$	3 <i>d'''</i> ² P	$1\frac{12}{12}$	653328 653411	-83							1	4F0 2F0 4	2Fro	2F	2F
64/40	2s 2p(3P°)6d	6d 4 D°	1/2 1/2 21/2 21/2	656999 1 0									3d 3-5d	3d'	3 <i>d''</i> :	3d'''
0 <i>a</i> . ∗D4	2s 2p(1P°)4p	4p' ² D	$\frac{372}{1\frac{1}{2}}$	000320 +x								Q	ÅÅ	°Ū	Q	Q
$\frac{4p}{3d''} {}^{2}S_{1}$	$2p^{2}(^{1}\mathrm{D})3d$	3d''' 2S	$\frac{272}{\frac{1}{2}}$	659998							₹3)	3d	14	t <i>d'</i> :	3d''	3d'''
$\overline{4d'} ^{2}D_{3}$	2s 2p(1P°)4d	4 <i>d'</i> ² D°	$1\frac{1}{2}$ $2\frac{1}{2}$	668538							≡u) pu	3-(3,4	cr3	0.5
	2s 2p(3P°)7d	7d 4 D°	$\frac{\frac{1}{2}}{\frac{1}{2}}$										d ⁴ P	d' 2Pc	d'' 4P	d"'' 2P
7d' 4D4			31/2	669705 +x										673	63	Ç.)
Dece	mber 1947.															d''' 2S
						ls*	l'erms									2Fo 3
						TERM	rved '									3p'''
						RVED	Obse						AA	A	ÅÅ	
						OBSE	Ť.				6		3p 4 5p 3	4 <i>p</i> ′ 2	3p'' 4 3p'' 2	
						O IV					(u >		ŝ	3		
											du	² Po	44 44	$^{2}\mathrm{P}$	/ ŧPo	
												3p	$^{3p}_{3-5p}$	3p'	3p'	
													w w	ß	လိုလို	
													3p + 3	3p' 2	3p'' 4 3p'' 2	
									² D	°Ū						² D
									$2p^2$	$2p^{3}$						38/11
								s bo	다. 다.	ođ	3)		4Po 2Po	²P°	θ.	
								$2p^2$	$2p^2$	$2p^{3}$	(n Y		3, 48 3, 48	38'	38/1	
											ns					
									2p2 2S	2p3 4S°		-5s 2S				
										<u>.</u>		<u>6</u>	 2	1 2	~	
							Config. 1s ² +	$^{1}(^{1}S)2p$	$2p^3$	**		(1S) nx	$2p(^{3}\mathrm{P}^{\mathrm{o}})n_{2}$	$2p(^{1}P^{\circ})n_{3}$	2(3P)nx''	2(1D) nx'''
						U		28	28	2p		2.s.	2s	28	2p	2p

55

(Be I sequence; 4 electrons)

Ground state 1s² 2s² ¹S₀

2s² ¹S₀ 918702 cm⁻¹

Edlén has revised and extended his published analysis and has generously furnished a manuscript copy of his complete term list in advance of publication, for inclusion here. He states that no intersystem combinations have been observed and that the relative uncertainty x in the position of the triplet terms with respect to the singlets may be ± 100 cm⁻¹.

In the published papers Edlén has used a prime to designate the terms from the ²P^o limit in O v1.

REFERENCES

B. Edlén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 6, 62 (1934). (I P) (T) (C L) B. Edlén, unpublished material (Dec. 1947). (I P) (T)

O V

O V

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
2s ²	$2s^{2}$ ¹ S	0	0		$2p(^{2}\mathrm{P}^{\circ})3p$	3p 38	1	684124 + x	
$2s(^2\mathrm{S})2p$	2p [‡] P°	0 1 2	$\begin{array}{c} 82121. \ 2+x \\ 82257. \ 9+x \\ 82564. \ 1+x \end{array}$	136. 7 306. 2	2p(2P°)3p	3 <i>p</i> 3P	$\begin{array}{c} 0 \\ 1 \\ 2 \end{array}$	$\begin{array}{c} 689585. \ 6+x \\ 689699. \ 6+x \\ 689890. \ 3+x \end{array}$	114. 0 190. 7
$2s(^2S)2p$	2p 1P°	1	158798		$2p(^{2}P^{\circ})3d$	3 <i>d</i> ¹ D°	2	694646	
$2p^2$	$2p^2$ ³ P	0	213641.7+x	155. 7	$2p(^{2}P^{\circ})3p$	3p 1D	2	697170	
			$\begin{array}{c c} 213797. 4+x \\ 214066. 2+x \end{array}$	268. 8	$2p(^{2}\mathrm{P}^{\circ})3d$	3d 3D°	1	704360 + x	64
$2p^2$	$2p^2$ ¹ D	2	231722				$\frac{2}{3}$	704424 + x 704527 + x	103
2 p ²	$2p^2$ 1S	0	287909		$2p(^{2}\mathrm{P}^{\circ})3p$	3 <i>p</i> 1S	0	707630	
2s(2S)3s	38 3S	1	547150.0+x		$2p(^{2}\mathrm{P}^{\circ})3d$	3d 3P°	2	708154 + x	-142
2s(2S)3s	38 1S	0	561278				0	708230 + x 708379 + x	-83
$2s(^2S)3p$	3p 1P°	1	580826		$2p(^{2}\mathrm{P}^{\circ})3d$	3 <i>d</i> ¹ F°	3	712967	
$2s(^2S)3p$	3p 3P°	0	582983.6+x	36. 3	$2p(^{2}\mathrm{P}^{\circ})3d$	3 <i>d</i> ¹ P°	1	719277	
			$583019.9+x \\ 583097.2+x$	77. 3	2s(2S)4s	4s ³ S	1	722666 + x	
$2s(^2S)3d$	3d 3D	1	600925.5+x	10. 8	2s(2S)4s	4s 1S	0	731667	
			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19.8	$2s(^2\mathrm{S})4p$	4 <i>p</i> ³P°	0	786108 1 7	
2s(2S)3d	3d 1D	2	612617				$\frac{1}{2}$	736108 + x 736126 + x	18
$2p(^{2}P^{\circ})3s$	38 ³ P°	0	653099.7+x	162.5	$2s(^2S)4p$	4 <i>p</i> ¹ P°	1	7 3 7883	
			$\begin{array}{c} 653262.2+x\\ 653605.0+x\end{array}$	342. 8	$2s(^2\mathrm{S})4d$	4d ³ D	1	742401 + x	6
$2p(^{2}P^{\circ})3s$	38 1P°	1	664486				$\frac{2}{3}$	742407 + x 742421 + x	14
$2p(^{2}P^{\circ})3p$	3p 1P	1	672695		2s(2S)4d	4 <i>d</i> ¹ D	2	746280	
2p(2P°)3p	3p 3D	1	$677333 + \omega$	199	$2s(^2S)4f$	4 <i>f</i> ¹ F°	3	749857	
			$\begin{array}{r} 077532 + x \\ 677847 + x \end{array}$	315	2s(2S)5s	5s 2S	1	796263 +x	

Z=8

I. P. 113.873 volts

O v—Continued

O v-Continued

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
$2s(^{2}S)5p$	5 <i>p</i> ¹ P°	1	802452		2s(2S)7p	7p 1P°	1	860874	
$2s(^2\mathrm{S})5d$	5 <i>d</i> 3D	$\begin{array}{c}1\\2\\3\end{array}$	806625 + x		2s(2S)7d	7d 3D	$\begin{array}{c}1\\2\\3\end{array}$	861975	+x
2s(2S)5d	5 <i>d</i> 1D	2	808351		$2s(^2\mathrm{S})7d$	7d ¹ D	2	862419	
$2p(^{2}P^{o})4s$	48 ¹ P°	1	824280		$2s(^2S)8p$	8 <i>p</i> ¹ P°	1	874447	
2p(2P°)4p	4 <i>p</i> ¹ P	1	829588		2s(2S)8d	8d 3D	1		
$2p(^{2}P^{\circ})4p$	4 <i>p</i> ³ D	1	831047 + x	166			$\frac{2}{3}$	875365	+x
		3	831213 + x 831504 + x	291	$2p(^{2}\mathrm{P}^{\circ})5p$	5 <i>p</i> ¹ P	1	898580	
$2p(^{2}P^{\circ})4p$	4p ³ S	1	832251 + x		$2p(^{2}P^{\circ})5p$	$5p$ $^{3}\mathrm{D}$	1		
$2p(^{2}P^{\circ})4p$	4 <i>p</i> *P	0	995151 ⊥ <i>m</i>				3	899671	+x
		$\frac{1}{2}$	835321 + x 835321 + x	170	$2p(^{2}\mathrm{P}^{\circ})5p$	5 <i>p</i> ³ P	0		
$2p(^{2}P^{\circ})4d$	$4d \ ^1D^{o}$	2	837834				$\frac{1}{2}$	901344	+x
$2p(^{2}P^{\circ})4p$	4p 1D	2	837864		$2p(^{2}P^{\circ})5p$	5 <i>p</i> ¹ D	2	902442	
2s(2S)6p	6p 1 P °	1	839616		$2p(^{2}P^{\circ})5d$	5d 1D°	2	902592	
$2s(^{2}S)6f$	6f ¹ F°	3	84083 2		$2p(^{2}P^{\circ})5d$	5 <i>d</i> 3D°	1		
$2s(^2S)6d$	6d ³ D	1					3	904497	+x
			841220 + x		$2p(^{2}P^{\circ})5d$	5d 1F°	3	906404	
$2p(^{2}P^{\circ})4d$	4d ³ D°	1	841280 + x	94	O VI (2S1/2)	Limit		918702	
			841374 + x 841497 + x	123	$2p(^{2}P^{\circ})6p$	6 <i>p</i> ¹ P	1	935093	
2s(2S)6d	6d 1D	2	842105		$2p(^{2}\mathrm{P}^{\circ})6p$	6p 3D	1		
$2p(^{2}P^{\circ})4d$	4 <i>d</i> ³ P°	2	843290 + x	-107			$\frac{2}{3}$	935945	+x
			843397 + x 843449 + x	-52	$2p(^{2}P^{\circ})6p$	6 <i>p</i> ³ P	0		
$2p(^{2}P^{\circ})4d$	$4d \ {}^{1}\mathrm{F}^{\circ}$	3	847129				$\frac{1}{2}$	936805	+x
$2p(^{2}P^{\circ})4d$	4 <i>d</i> ¹ P°	1	847465		$2p(^{2}P^{\circ})6p$	6 <i>p</i> ¹ D	2	937341	

December 1947.

O V OBSERVED TERMS*

$\begin{array}{c} \text{Config.} \\ 1s^2 + \end{array}$					Observ	ed Terms				
2s ²	232 1S									
$2s(^2\mathrm{S})2p$	{	$\begin{array}{ccc} 2p & {}^{3}\mathrm{P}^{o} \\ 2p & {}^{1}\mathrm{P}^{o} \end{array}$								
$2p^2$	${2p^{2} {}^{1}S}$	2 <i>p</i> ² ∘P	$2p^2$ ¹ D				-			
		ns (n≥3)			$np (n \ge 3)$			nd $(n \ge 3)$		$nf (n \ge 4)$
2s(2S)nx	3–5s ³ S 3, 4s 1S		•		3, 4 <i>p</i> ³ P° 3–8 <i>p</i> ¹ P°			3-8d ³ D 3-7d ¹ D		4, 6 <i>f</i> 1F°
2p(2P°)nx		38 3P° 3, 48 1P°		3, 4p ³ S 3p ¹ S	3–6 <i>p</i> ³ P 3–6 <i>p</i> ¹ P	3–6p ³ D 3–6p ¹ D	3, 4d ³ P° 3, 4d ¹ P°	3–5d 3D° 3–5d 1D°	3–5d ¹ F°	

*For predicted terms in the spectra of the Be I isoelectronic sequence, see Introduction.

/

(Li I sequence; 3 electrons)

Ground state 1s² 2s ²S₁/₂

2s 2S1 1113999.5 cm⁻¹

This spectrum has been analyzed by Edlén. The observed term values have all been taken from a manuscript generously furnished by him in advance of publication. He remarks that the np ²P° and nd ²D series have been observed in the vacuum spark further than given in the table. For series members beyond n=6 he states that the term values calculated from a Ritz formula are probably to be preferred.

In the table, extrapolated intervals and calculated term values are entered in brackets. They have been taken from the 1933 and 1934 references below, as have also the entries in column one.

REFERENCES

B. Edlén, Zeit. Astroph. 7, 378 (1933). (T) (C L)

B. Edlén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 6, 44 (1934). (T) (C L)

F. Tyrén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 12, No. 1, 24 (1940). (C L)

B. Edlén, unpublished material (Sept. 1947). (T)

O VI

Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
28 2S1	28	2s 2S	1/2	0.0		6 F	6 <i>f</i>	6f 2F°	$\left\{\begin{array}{c} 2^{1/2}\\ 3^{1/2}\end{array}\right.$	}[1004265]	
$2p {}^{_2\mathrm{P}_1}_{^2\mathrm{P}_2}$	2p	2p ² P°	$1^{\frac{1}{2}}_{1^{\frac{1}{2}}}$	96375.0 96907.5	532. 5	6 CH	6a 6h	6a2C ata	$\int \frac{3\frac{1}{2}}{12}$	110042761	
$3s {}^2S_1$	38	38 2S	1/2	640039.8		0.011	09, 0%	09-0, 800.	51/2		
${}^{3p}{}^{^{2}\mathrm{P}_{1}}_{^{^{2}}\mathrm{P}_{2}}$	3p	3 <i>p</i> ² P°	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	666113. 2 666269. 8	156. 6	7 S	78	78 2S	1/2	1030780	
$3d \ {}^{2}D_{2} \\ {}^{2}D_{3}$	3d	3 <i>d</i> ² D	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	674625.7 674676.8	51. 1	7 P	7p	7 <i>p</i> ² P°	$\left\{ \begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \end{array} \right\}$	} 1032630	
4s ² S ₁	48	4s 2S	1/2	852696		7 D	7 d	$7d \ ^{2}D$	$\left\{ egin{array}{c} 1^{1\!\!\!/_2} \\ 2^{1\!\!\!/_2} \end{array} ight.$	} 1033324	
$4p {}^{2}\mathrm{P_{1}} {}^{2}\mathrm{P_{2}}$	4p	4p 2P°	1/2 1/2	863333. 8 863397. 7	63. 9	7 F	7f	<i>7f</i> ²F°	$\left\{ \begin{array}{c} 2 \frac{1}{2} \\ 3 \frac{1}{2} \end{array} \right.$	}[1033382]	
$4d {}^{2}\mathrm{D_{2}}_{2}{}^{2}\mathrm{D_{3}}$	4d	4 <i>d</i> ² D	$1\frac{1}{2}$ $2\frac{1}{2}$	866880. 1 866901. 5	21. 4	7 GHI	7g, et c .	7g ² G, etc.	$ \begin{cases} 3\frac{1}{2} \\ to \\ 6\frac{1}{2} \end{cases} $	[1033389]	
4f ² F ₃ ² F ₄	4f	$4f {}^{2}\mathrm{F}^{\circ}$	$2\frac{1}{2}$ $3\frac{1}{2}$	867077.7 867087.5	9.8	8 S	88	88 2S	1/2	[1050543]	
	58	58 2S	1/2	948690		8 P	8 p	8p 2P°	$\begin{cases} \frac{1}{12} \\ 1\frac{1}{2} \end{cases}$	} 1051724	
5p ² P ₂	5p	5p 2P°	$\left\{\begin{array}{c} \frac{1/2}{11/2} \\ 11/2 \end{array}\right.$	} 954080	[33]	8 F	8 <i>f</i>	8f 2F°	$\left\{\begin{array}{c} 2\frac{1}{2}\\ 3\frac{1}{2}\end{array}\right\}$	[1052280]	
$5d \ ^{2}D_{3}$	5d	5d 2D	$\left\{ \begin{array}{c} 1^{1\!\!\!/_2} \\ 2^{1\!\!\!/_2} \end{array} \right.$	} 955856	[11]		Que et e	0.20.44	§ 3½	[1059995]	
6 S	6 <i>s</i>	68 ² S	1/2	1000080		8 GHIK	8 <i>g</i> , etc.	8 <i>g *</i> G, etc.	$\left\{\begin{array}{c} to \\ 7\frac{1}{2} \right\}$	[1052285]	
6 P	6p	6 <i>p</i> ² P°	$\left\{ \begin{array}{c} \frac{12}{112} \\ 1\frac{12}{2} \end{array} \right.$	} 1003130		8 D	8d	$8d \ ^{2}D$	$\left\{ egin{array}{c} 1^{1\!\!\!/_2} \\ 2^{1\!\!\!/_2} \end{array} ight.$	} 1052296	
6 <i>d</i> 2D3	6 <i>d</i>	6d 2D	$\left\{\begin{array}{c} 1^{\frac{1}{2}} \\ 2^{\frac{1}{2}} \end{array}\right.$	} 1004178			O v11 (1S0)	Limit		1113999. 5	

September 1947.

Z=8

I. P. 138.080 volts

O VI

(He i sequence; 2 electrons)

Ground State 1s² ¹S₀

 $1s^2 {}^{1}S_0 5963000 \pm 600 \text{ cm}^{-1}$

I. P. 739.114 ± 0.074 volts

Z=8

Five singlet lines have been observed by Tyrén in the interval 17 A to 21 A. He has also observed one intersystem combination—a line at 21.804 A classified as $1s^2 {}^{1}S_0 - 2p {}^{3}P_1^{\circ}$. His unit 10^3 cm⁻¹ has here been changed to cm⁻¹.

The triplet terms are from Edlén, who has kindly furnished them in advance of publication. He remarks that the extrapolated absolute term values of the triplets relative to those of the singlets confirm the intersystem combination reported by Tyrén. The $2s^{3}S-2p^{3}P^{\circ}$ combination has apparently not been observed, but Edlén regards the extrapolation from the irregular doublet law as very reliable. Brackets are used in the table to indicate extrapolated values not yet confirmed by observation.

REFERENCES

F. Tyrén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 12, No. 1, 25 (1940). (I P) (T) (C L) B. Edlén, unpublished material (Sept. 1947). (T)

0	VII
\mathbf{v}	

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
1 <i>s</i> ²	1s ² 1S	0	0		1s 3p	3 <i>p</i> ¹ P°	1	5368550	
1s 2s	28 3S	1	4525340		$1s \ 4p$	4 <i>p</i> ¹ P°	1	5628100	
$1s \ 2p$	$2p\ ^{3}\mathrm{P}^{\mathrm{o}}$	0	[4586170]	[60]	1s 5p	5 <i>p</i> ¹ P°	1	5748450	
		2	[4586230 [4586780]	[550]	$1s \ 6p$	6 <i>p</i> ¹ P°	1	5813950	
$1s \ 2p$	2 <i>p</i> ¹ P°	1	4629200						
1s 3p	3p ³P°	0, 1, 2	5356380		O VIII (2S _{1/2})	Limit		5963000	
1s 3d	3d ² D	3, 2, 1	5364990						

September 1947.

(H sequence; 1 electron)

Ground state 1s ²S₁₄

1s 2S16 7027970 cm⁻¹

Tyrén has observed the first Lyman line. J. E. Mack has calculated the terms in the table, "using $R_0^{16} = 109733.539$, and $\Lambda = 0.040$. The last digit is arbitrary, since the extrapolated 1s-shift is 957 cm⁻¹. The series limits of O¹⁷ and O¹⁸ are higher than that for O¹⁶ by 14.3 and 25.8 cm⁻¹, respectively."

O VIII

REFERENCES

F. Tyrén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 12, No. 1, 24 (1940). (C L) J. E. Mack, unpublished material (1949). (I P) (T) (C L)

O VIII						O VIII					
Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval		
1s 2p 2s	1s ² S 2s ² S 2s ² S	$\frac{1/2}{1/2}$	0 5270363 5270483]] 120	3s, etc.	3s 2S, etc.	⅓, etc.	6246978 to 7569			
2p	$2p$ $^2\mathrm{P}^\circ$	$1\frac{1}{2}$	5271859	1496 L		∞=Limit		7027970			

February 1949.

O VII

Z=8

I. P. 871.12 volts

FLUORINE

Fι

9 electrons

Ground state $1s^2 2s^2 2p^5 {}^2P_{1\frac{1}{2}}^{\circ}$

2p⁵ ²P^o_{1^{1/2}} 140553.5 cm⁻¹

This spectrum is incompletely analyzed, but the terms from the ³P limit in F II are fairly well established. The terms listed have been taken from Edlén's later paper, supplemented by levels from further recent analysis by Lidén. The new levels have been generously furnished in manuscript form by Edlén, for inclusion here.

Intersystem combinations have been observed, connecting the doublet and quartet terms.

Edlén remarks that it is impossible to assign term designations to the levels labeled $3d \times and 4d \times A$, because of the departure from *LS*-coupling. He also states that the terms from ¹D in F II need further confirmation. They are connected with the rest by only two ultraviolet lines, those observed by Bowen at 806.92 A and 809.60 A.

REFERENCES

G. H. Carragan, Astroph. J. 63, 145 (1926). (Z E)

I. S. Bowen, Phys. Rev. 29, 231 (1927). (T) (C L)

B. Edlén, Zeit. Phys. 93, 447 (1935). (C L)

B. Edlén, Zeit. Phys. 98, 445 (1936). (I P) (T) (C L)

W. F. Meggers, J. Opt. Soc. Am. 36, 431 (1946). (Summary hfs)

B. Edlén, unpublished material (Dec. 1947). (T)

K. Lidén, Ark. Mat. Astr. Fys. (Stockholm) 35A, No. 24, p. 5 (1948). (T)

E.	т
.	Т.

								······································			
Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
$2p {}^{2}P_{2} {}^{2}P_{1}$	$2s^2 2p^5$	2 <i>p</i> ⁵ ²₽°	$1\frac{1}{2}$ $\frac{1}{2}$	0. 0 404. 0	-404. 0	$3p \ {}^{2}\mathrm{D}_{3} \ {}^{2}\mathrm{D}_{2}$	2s 2p ⁴ (³ P)3p	3p 2D°	$2\frac{1}{2}$ $1\frac{1}{2}$	117623.73 117873.75	-250. 02
3s 4P3	2s ² 2p ⁴ (³ P)3s	3s 4P	$2\frac{1}{2}$	102406. 50	-27474	$3p$ $^2\mathrm{S}_1$	2s ² 2p ⁴ (³ P)3p	3p ² S°	1⁄2	118406.09	
${}^{4}\mathrm{P}_{2}$ ${}^{4}\mathrm{P}_{1}$			$1\frac{1}{2}$ $\frac{1}{2}$	$\begin{array}{c} 102681.\ 24\\ 102841.\ 20\end{array}$	-159.96	$3p$ ${}^4\mathrm{S}_2$	2s ² 2p ⁴ (³ P)3p	3 <i>p</i> 4S°	$1\frac{1}{2}$	118428.62	
3s ² P ₂ ² P ₁	2s ² 2p ⁴ (³ P)3s	3s 2P	$1\frac{12}{12}$	104731. 86 105057. 10	- 325. 24	$3p {}^{2}P_{2} {}^{2}P_{1}$	2s ² 2p ⁴ (³ P)3p	3p 2P°	$1\frac{1}{2}$	118937.61 119082.63	- 145. 02
$3p \ {}^{4}P_{3} \ {}^{4}P_{2} \ {}^{4}P_{2}$	2s ² 2p ⁴ (³ P)3p	3p 4P°	$2\frac{1}{2}$ $1\frac{1}{2}$	115918.70 116041.69	-122.99 -102.70	$\overline{3s} {}^{2}\mathrm{D}_{3} {}^{2}\mathrm{D}_{2}$	2s ² 2p ⁴ (1D)3s	3s' 2D	$2\frac{1}{2}$ $1\frac{1}{2}$	$\begin{array}{c} 123925.\ 50\\ 123926.\ 56\end{array}$	-1.06
${}^{4}P_{1}$ $3p \ {}^{4}D_{4}$ ${}^{4}D_{3}$ ${}^{4}D_{2}$ ${}^{4}D_{1}$	2s² 2p4(3P)3p	3p 4D°	1/2 31/2 21/2 11/2 1/2	116144. 39 116988. 21 117164. 83 117309. 37 117392. 77	-176.62 -144.54 -83.40	$\begin{array}{c} 3d \ {}^{4}\mathrm{D}_{4} \\ {}^{4}\mathrm{D}_{3} \\ {}^{4}\mathrm{D}_{2} \\ {}^{4}\mathrm{D}_{1} \end{array}$	2s² 2p4(3P)3d	3d * D	$3\frac{1}{2}$ $2\frac{1}{2}$ $1\frac{1}{2}$ $\frac{1}{2}$	128064. 90 128088. 63 128123. 51 128185. 80	-23.73 -34.88 -62.29

Z=9

I. P. 17.42 volts

FI
F I—Continued

F I—Continued

Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
3d X ₈ 3d ⁴ F ₅ ⁴ F ₄	2s ² 2p ⁴ (³ P)3d 2s ² 2p ⁴ (³ P)3d	3d Z ₄ 3d 4F	$\frac{4\frac{1}{2}}{3\frac{1}{2}}$	$128141. \ 27$ $128219. \ 92$ $128515. \ 55$	-295.63		2s ² 2p ⁴ (³ P)4d	4 <i>d</i> 4F	$\begin{array}{c} 4\frac{1}{2} \\ 3\frac{1}{2} \\ 2\frac{1}{2} \\ 1\frac{1}{2} \end{array}$	133606. 39 133923. 83 133932. 56 133972. 06	-317. 44-8. 73-39. 50
⁴ F ₃ ⁴ F ₂			$\begin{array}{c} 2\frac{1}{2} \\ 1\frac{1}{2} \end{array}$	$\begin{array}{c} 128526. \ 15 \\ 128612. \ 73 \end{array}$	-86.58		$2s^2 \ 2p^4(^3\mathrm{P})4d$	$4d Z_3$		133607.33	
3d X7	$2s^2 \ 2p^4(^3P) \ 3d$	$3d \mathbb{Z}_2$		128220.65			$2s^2 \ 2p^4(^3\mathrm{P})4d$	$4d Z_2$		133624.61	
$3d X_6$	$2s^2 2p^4(^{3}\mathrm{P})3d$	$3d \mathbf{Z}_3$		128221.16			$2s^2 \ 2p^4(^3\mathrm{P})4d$	$4d Z_1$		133644.4	
$3d X_5$	$2s^2 \ 2p^4(^3\mathrm{P}) 3d$	$3d Y_3$		128339. 53			$2s^2 2p^4(^{3}P)4d$	4d Y ₃		133911.08	
$3d X_4$	$2s^2 \ 2p^4(^3\mathrm{P}) \ 3d$	$3d Y_2$	1½	128524.09			$2s^2 \ 2p^4(^3\mathrm{P})4d$	$4d Y_2$		133920. 20	
$3d X_3$	$2s^2 \ 2p^4(^3\mathrm{P}) 3d$	$3d Y_1$		128606.88			$2s^2 2p^4(^{3}P)4d$	$4d Y_1$		133966.47	
$3d X_2$	$2s^2 \ 2p^4(^3\mathrm{P}) 3d$	$3d X_2$		128698.68			$2s^2 \ 2p^4(^3\mathrm{P})4d$	$4d X_2$		134085.53	
$3d X_1$	$2s^2 \ 2p^4(^3\mathrm{P}) \ 3d$	$3d X_1$		128713. 12			$2s^2 \ 2p^4(^3P)4d$	$4d X_1$		134092.03	
	2s² 2p4(3P)5s	58 ⁴ P	$2\frac{1}{2}$ $1\frac{1}{2}$ $1\frac{1}{2}$	$\begin{array}{c} 132596.\ 26\\ 132745.\ 77\\ 133009\ 96\end{array}$	-149.51 -264.19	$\overline{3p} {}^{2}F_{3} {}^{2}F_{4}$	$2s^2 \ 2p^4(^1D) \ 3p$	3p′ ²F°	$2\frac{1}{2}{3\frac{1}{2}}{3\frac{1}{2}}$	137594.63 137603.44	8. 81
	2s² 2p4(3P)5s	5s 2P	$1\frac{1}{2}$ $\frac{1}{2}$	132999. 16 133224. 10	-224. 94	$\begin{array}{c c} \overline{3p} \ {}^{2}\mathrm{D}_{2} \\ {}^{2}\mathrm{D}_{3} \end{array}$	$2s^2 \ 2p^4({}^1\mathrm{D}) 3p$	3p′ 2D°	$1\frac{12}{22}$	138700. 15 138708. 01	7.86
	2s² 2p ⁴ (³P)4d	4d 4D	$\begin{array}{c} 3\frac{1}{2} \\ 2^{1} \\ 1\frac{1}{2} \\ 1\frac{1}{2} \end{array}$	133545. 27 133558. 14 133578. 15	-12.87 -20.01 -35.95		F 11 (³ P ₂)	Limit		140553.5	
			1/2	133614.10	55. 55	2p' ² S ₁	2s 2p ⁶	$2p^{6}$ ² S	1/2	[168554]	
	$2s^2 2p^4(^{3}P)4d$	41 Z.		133584.35							

December 1947.

F I OBSERVED TERMS*

$\underset{1s^2+}{\text{Config.}}$			
$2s^2 \ 2p^5$	$2p^{5}$ ² P°		
	ns $(n \ge 3)$	$np \ (n \ge 3)$	$nd \ (n \ge 3)$
2s ² 2p ⁴ (³ P)nx	{ 3, 5s ⁴ P 3, 5s ² P	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3, 4d 4D 3, 4d 4F
$2s^2 \ 2p^4(^1\mathrm{D})nx'$	38' 2D	$3p' \ ^2D^\circ$ $3p' \ ^2F^\circ$	

*For predicted terms in the spectra of the F ${\tt I}$ isoelectronic sequence, see Introduction.

Ground state $1s^2 2s^2 2p^4 {}^3P_2$

2p4 3P2 282190.2 cm⁻¹

Bowen, Dingle, and Edlén have all contributed to the analysis of this spectrum. The singlet and triplet terms are taken from Edlén, who has revised and extended the earlier work. The quintet terms, except 5f ⁶F, are from Dingle's paper. The term 5f ⁶F derived by Edlén agrees well with the 4f ⁵F term and Dingle's series limit.

Fп

The singlet and triplet terms are connected by intersystem combinations. The relative position of the quintets is determined by the series with the uncertainty x probably not exceeding 200 cm^{-1} .

Edlén lists a number of combinations that probably involve $2s^2 2p^3(^2D^\circ)4f$ terms at about $288600 \pm \text{cm}^{-1}$ above the ground state.

In a private communication Edlén has stated that his term published as $\overline{3d}$ ³D should have the designation $\overline{4s}$ ³P. He has also revised his published value of 3d' ¹S^o.

REFERENCES

H. Dingle, Proc. Roy. Soc. (London) [A] 128, 600 (1930). (T) (C L)

I. S. Bowen, Phys. Rev. 45, 82 (1934). (T) (C L) B. Edlén, Zeit. Phys. 93, 433 (1935). (I P) (T) (C L)

B. Edlén, private communication (Dec. 1947). (T)

Fп

Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
2p ³ P ₂ ³ P ₁ ³ P ₀	2s ² 2p ⁴	2p4 3P	2 1 0	0. 0 341. 8 490. 6	341. 8 148. 8		$2s^2 2p^3 ({}^4S^\circ) 3d$	3d ⁵D°		$\begin{array}{c} 231158.08+x\\ 231158.99+x\\ 231160.19+x\\ 231160.87+x \end{array}$	-0.91 -1.20 -0.68
$2p \ ^1D_2$	$2s^2 \ 2p^4$	$2p^{4}$ ¹ D	2	20873					Ō	231161.39 + x	-0.52
$2p$ ${}^1\mathrm{S}_0$	$2s^2 \ 2p^4$	$2p^4$ ¹ S	0	44919		$3d \ {}^{3}\mathrm{D}_{1} \ {}^{3}\mathrm{D}_{2}$	$2s^2 2p^3(^4\mathrm{S}^\circ) \mathrm{3d}$	$3d$ $^{3}D^{\circ}$	$\begin{array}{c}1\\2\end{array}$	232064.18 232064.98	0.80
$2p' {}^{3}P_{2} {}^{3}P_{1} $	2s 2p ⁵	$2p^5$ $^{3}P^{\circ}$	$\begin{array}{c} 2 \\ 1 \end{array}$	164797.7 165107.1	-309.4	$^{3}D_{3}$			3	232067.06	2.00
³ P ₀			Ō	165281.0	173. 9		$2s^2 \ 2p^3({}^4\mathrm{S}^\circ)4s$	4s ⁵ S°	2	235311.15+ x	
	$2s^2 \ 2p^3({}^4\mathrm{S}^\circ) 3s$	3s ⁵S°	2	176654.2 +x		$\overline{3p} \ ^{1}P_{1}$	$2s^22p^3(^2\mathrm{D^o})3p$	3p′ ¹P	1	235643. 1	
33 ³ S ₁	$2s^2 \ 2p^3({}^4\mathrm{S}^\circ) \ 3s$	38 3S°	1	182865. 2		$\overline{3p} {}^{3}D_{1}$	$2s^2 2p^3 (^2D^\circ) 3p$	3 <i>p′</i> ³ D	$\frac{1}{2}$	236170.35	2. 72
	$2s^2 \ 2p^3 ({}^4\mathrm{S}^\circ) 3p$	3 <i>p</i> ⁵P	1	202609.65 + x	11. 33	$^{3}D_{3}^{2}$			3	236195. 57	22.50
			$\frac{2}{3}$	202020.98+x 202640.53+x	19.55	.4s 3S1	$2s^2 \ 2p^3 ({}^4\mathrm{S}^\circ) 4s$	4s ³ S°	1	236961.63	
3p ³ P ₀ ³ P ₁ ³ P ₂	$2s^2 \ 2p^3 ({}^4\mathrm{S}^\circ) 3p$	3 <i>p</i> ³₽	$\begin{array}{c} 0 \\ 1 \\ 2 \end{array}$	207702. 91 207699. 91 207704. 61	-3.00 4.70	$\overline{3p} {}^{3}F_{4} {}^{3}F_{3} {}^{3}F_{2}$	$2s^2 2p^3 (^2 D^o) 3p$	3p' 3F	$4\\3\\2$	237507.91 237508.72 237509.37	-0.81 -0.65
38 3D3	$2s^2 2p^3 (^2D^\circ) 3s$	3s′ 3D°	3	211866.62	-21.07	3p 1F3	$2s^2 2p^3 (^2\mathrm{D}^\circ) 3p$	3p' ¹ F	3	238323.6	
${}^{3}D_{2}$ ${}^{3}D_{1}$			$\frac{2}{1}$	211887.69 211900.72	-13.03	2p' ¹ P ₁	2s 2p ⁵	$2p^{5}$ ¹ P°	1	239605.0	
$\overline{3s}$ ¹ D ₂	$2s^2 2p^3(^2D^\circ)3s$	3s' 1D°	2	215069.8		$\overline{3p} {}^{3}P_{2}$	$2s^22p^3(^2\mathrm{D}^\circ)3p$	3 <i>p′</i> ³P	2	240093.10	-60.24
38 1P1	$2s^2 2p^3 (^2{ m P^o}) 3s$	3s'' 1P°	1	227228. 2		$^{3}P_{0}$			0	240153. 34 240179. 91	-26.57
38 3P2	$2s^2 2p^3 (^2\mathrm{P^o}) 3s$	3s'′ ³P°	$\frac{2}{1}$	229550.83 229552 11	-1.61	$\overline{3p} \ ^1\mathrm{D}_2$	$2s^2 2p^3 (^2\mathrm{D}^\circ) 3p$	3 <i>p′</i> ¹ D	2	246283. 9	
⁸ P ₀			0	229555.10	-2.66	$4p \ {}^{3}P_{0} \ {}^{3}P_{1} \ {}^{3}P_{2}$	$2s^2 \ 2p^3(^4{ m S}^{ m o})4p$	4 <i>p</i> ³₽	$egin{array}{c} 0 \ 1 \ 2 \end{array}$	$\begin{array}{c} 246655.\ 10\\ 246662.\ 55\\ 246682.\ 67\end{array}$	7.45 20.12
						$\overline{\overline{3p}} ^{3}S_{1}$	$2s^2 2p^3 (^2P^\circ) 3p$	3p'' 3S	1	253313. 2	

I. P. 34.98 volts

62

		F II—Со	ntinued	1									
Edlén	Config.	Desig.	J	Level	Interval					$nf \ (n \ge 4$	4, 5f ⁵ F 4f ³ F		
4d ³D₃	$2s^2 2p^3({}^4\mathrm{S}^\circ) 4d$	4d ³D°	$\begin{array}{c}1\\2\\3\end{array}$	254016								ບໍ່ບໍ	
4 <i>f</i> ³F	$2s^2 2p^3(^4S^\circ)4f$	$4f$ $^{3}\mathrm{F}$	4, 3, 2	254547.3								3d' 3 3d' 1	
$\overline{\overline{3p}} {}^{3}D_{3} {}^{3}D_{2} {}^{3}D_{2} {}^{3}D_{1}$	$2s^2 \ 2p^3 (^2{ m P}^\circ) \ 3p$	3 <i>p''</i> ³D	3 2 1	$\begin{array}{c} 254702. \ 30 \\ 254717. \ 36 \\ 254723. \ 96 \end{array}$	-15.06 -6.60							aro 1Fo	3Fro 1Fro
	$2s^2 2p^3({}^4S^\circ)4f$	4 <i>f</i> ⁵F	5 to 1	254703. 1+x								$\frac{3d'}{3d'}$	3 <i>d''</i> 3 <i>d''</i>
<u>3p</u> ¹ P ₁	$2s^2 \ 2p^3 (^2P^\circ) \ 3p$	3 <i>p''</i> ¹ P	1	255606. 0						3)	0 0	0 0	0
$\overline{\overline{3p}} {}^{3}P_{0} \\ {}^{3}P_{1} \\ {}^{3}P_{2}$	2s² 2p³(²P°)3p	3 <i>p''</i> ³P	$egin{array}{c} 0 \\ 1 \\ 2 \end{array}$	257253. 9 257268. 8 257292. 7	14. 9 23. 9					$\leq n$) pu	$\frac{3d}{3}^{b}\Gamma$	3 <i>d'</i> ³ D 3 <i>d'</i> 1D	3 <i>d''</i> 1D
$\overline{\overline{3p}}$ ¹ D ₂	2s ² 2p ³ (² P°)3p	3 <i>p''</i> ¹ D	2	258930. 0								0.0	
5 <i>f</i> ⁵F	$2s^2 \ 2p^3({}^4\mathrm{S}^\circ)5f$	5 <i>f</i> ⁵F	5 to 1	264610 $+x$								' ^{3P} °	, apo
3d ³ F ₂ ³ F ₃ ³ F ₄	$2s^2 2p^3 (^2D^\circ) 3d$	3d′ 3F°	$\begin{array}{c} 2\\ 3\\ 4\end{array}$	264953. 12 264958. 63 264965. 91	5. 51 7. 28							。 3 <i>d</i> 。 3 <i>d</i>	3 <i>d'</i> 3 <i>d'</i>
$\overline{3d} {}^{1}\mathrm{S}_{0}$	$2s^2 2p^3(^2\mathrm{D^o}) 3d$	3d' 1S°	0	264994 . 9								1' 3S 1' 1S	
3d 3G5 3G4 3G3	$2s^2 2p^3 (^2D^\circ) 3d$	3d' *G°	5 4 3	265255.8 265267.8 265289.3	-12.0 -21.5	*	erms					ы т Ц Т	
3d 1G4	$2s^2 2p^3 (^2\mathrm{D}^\circ) 3d$	3 <i>d′</i> ¹ G°	4	265310 . 1		RMS	d T					3p' 3	
3d ³ D ₃ ³ D ₂ ³ D ₁	$2s^2 2p^3 (^2D^\circ) 3d$	3d' 3D°	3 2 1	265472.70 265498.74 265517.14	-26.04 -18.40	уер Те	Observe					ëë	¹ U ¹
$\overline{3d} \ ^{1}\mathrm{D}_{2}$	$2s^2 2p^3 (^2\mathrm{D}^{o}) 3d$	3 <i>d'</i> 1D°	2	266270. 2		BER				23)		${}^{3p'}_{3p'}$	${}^{3p''}_{3p''}$
$\overline{\overline{3p}}$ ${}^{1}\mathrm{S}_{0}$	$2s^2 \ 2p^3 (^2\mathrm{P^o}) \ 3p$	3p'' 1S	0	266338.4		I OB				<i>u</i>) <i>a</i>		0.0	
$\overline{3d}$ $^{2}S_{1}$	$2s^2 2p^3 (^2\mathrm{D}^\circ) 3d$	3d′ ³S°	1	266360.69		ц Н				lu	$p^{5}F$	o' ³ F p' ¹ F	/, 3P
3d ³ P ₂ ³ P ₁ ³ P ₀	$2s^2 2p^3 (^2D^\circ) 3d$	3d′ ³P°	$\begin{array}{c} 2\\ 1\\ 0 \end{array}$	266454. 27 266499. 12 266516. 35	-44.85 -17.23						9 9 7 7 7 7 7	60.00	$\begin{array}{c} 3p\\ 3p\\ 3p\end{array}$
<u>3d</u> 1F3	$2s^22p^3(^2\mathrm{D}^\circ)3d$	3d′ 1F°	3	266548.7									p'' 1
$\overline{3d}$ ¹ P ₁	$2s^2 2p^3 (^2\mathrm{D}^\circ) 3d$	3d′ 1P°	1	267400.3									
4s ³ D ₃ ³ D ₂ ³ D ₁	2s² 2p³(²D°)4s	48' ³ D°	3 2 1	269548. 7 269564. 2 269574. 5	-15.5 -10.3			$2p^{4} \ 1D$				4s' 3D° 4s' 1D°	
48 1D2	$2s^2 2p^3 (^2\mathrm{D}^\circ) 4s$	4s' 1D°	2	270508.4								က်က်	
	F III (${}^{4}S_{1\frac{1}{2}}^{\circ}$)	Limit		282190. 2						3)			
3d ³ F ₄ ³ F ₃ ³ F ₂	2s² 2p³(²P°)3d	3 <i>d''</i> ³F°	4 3 2	282544. 7 282569. 7 282586. 9	-25.0 -17.2			2p ⁴ ³ P	${2p^5} {}^{3\mathrm{Po}}$	ns (n≥			4s'' 3po 3s'' 1po
$\overline{\overline{3d}}$ ¹ D ₂	2s² 2p³(²P°)3d	3 <i>d''</i> 1D°	2	282774.7									ŝ
$\overline{\overline{3d}} {}^{3}P_{0} \\ {}^{3}P_{1} \\ {}^{3}P_{2}$	2s² 2p³(²P°)3d	3 <i>d''</i> *P°	$\begin{bmatrix} 0\\1\\2 \end{bmatrix}$	282897.0 282913.4 282947.9	16. 4 34. 5			p ⁴ 1S			4s 5S° 4s 3S°		
<u>3</u> <i>d</i> 1F3	2s ² 2p ³ (² P°)3d	3 <i>d''</i> ¹ F°	3	283409.4					<u> </u>		(3, 3,	<u> </u>	<u> </u>
$\overline{\overline{3d}}$ ¹ P ₁	$2s^2 2p^3(^2\mathrm{P}^\circ)3d$	3 <i>d''</i> ¹ P°	1	284224.8							xu	'xu	nx''
$\overline{\overline{3d}} {}^{2}\mathrm{D}_{3} \\ {}^{2}\mathrm{D}_{2} \\ {}^{3}\mathrm{D}_{1} $	2s² 2p³(²P°)4s	4s'' ³ P°	2 1 0	286701.9 286706.6 286707.3	-4.7 -0.7		Config. 1s ² +	$2p^4$	$2p^{5}$		$2p^3(4S^\circ)\eta$	$2p^{3}(^{3}\mathrm{D}^{\circ})$	$2p^3(^{2}\mathrm{P}^{\mathrm{o}})$
Dece	ember 1947.							$2s^{2}$	28 2		2.83	2_{s^2}	$2s^2$

Ground state 1s² 2s² 2p³ ⁴S₁¹

 $2p^{3} \, {}^{4}S_{1\frac{1}{2}}^{\circ} \, 505410 \, \, \mathrm{cm^{-1}}$

The terms are from the paper by Edlén. With the aid of observations in the extreme ultraviolet he has extended the analysis by Bowen and Dingle and derived improved values of the series limits. He has found the sextet terms and estimated their position relative to the other terms. The value of x is somewhat uncertain. Bowen found 14 intersystem combinations connecting the doublet and quartet terms.

The term $3p'' {}^{2}P^{\circ}$ depends upon the combination with $3s'' {}^{2}S$, assigned to a pair of lines at 2920 A. According to Edlén this classification is somewhat uncertain.

REFERENCES

H. Dingle, Proc. Roy. Soc. (London) [A] 122, 144 (1929). (T) (C L)
I. S. Bowen, Phys. Rev. 45, 82 (1934). (T) (C L)
B. Edlén, Zeit. Phys. 93, 433 (1935). (I P) (T) (C L)

F	III

F 111

Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
2p 4S ₂	$2s^2 2p^3$	$2p^3$ 4S°	1½	0		3s ² P ₁ ² P ₂	2s ² 2p ² (³ P)3s	38 2P	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	324489.9 324874.4	384. 5
$2p \ {}^{2}\mathrm{D}_{3} \ {}^{2}\mathrm{D}_{2}$	2s ² 2p ³	$2p^3 \ ^2\mathrm{D}^{o}$	$\begin{array}{c} 2\frac{1}{2} \\ 1\frac{1}{2} \end{array}$	34084 34120	-36	$\overline{3s} {}^{2}D_{3}$	2s ² 2p ² (¹ D)3s	3s' 2D	2½ 1½	344016.2 344019.5	-3.3
$2p$ $^{2}\mathrm{P}_{12}$	$2s^2 \ 2p^3$	$2p^3$ $^2\mathrm{P}^{o}$	$\left\{\begin{array}{c}1\frac{1}{2}\\\frac{1}{2}\end{array}\right.$	} 51558		$3p \ ^2S_1$	2s ² 2p ² (³ P)3p	3p ² S°	1/2	344438.4	
$2p' {}^{4}\mathrm{P}_{3} {}^{4}\mathrm{P}_{2} {}^{4}\mathrm{P}_{1} {}^{4}\mathrm{P}_{1}$	2s 2p ⁴	2p4 4P	$2\frac{1}{2}$ $1\frac{1}{2}$ $\frac{1}{2}$	151897. 9 152235. 3 152410. 0	-337.4 -174.7	$3p \ {}^{4}D_{1} \ {}^{4}D_{2} \ {}^{4}D_{3} \ {}^{4}D_{$	2s ² 2p ² (³ P)3p	3p 4D°	1/2 1/2 2/2 2/2 21/2	348700.5 348815.4 349005.1	114. 9 189. 7 258. 9
2p' ² D ₃ ² D ₂	2s 2p ⁴	$2p^4$ ² D	$2\frac{1}{2}$ $1\frac{1}{2}$	210240 210256	-16	$3p \stackrel{4}{}^{4}P_{1}$	2s ² 2p ² (³ P)3p	3p 4P°	$\frac{1}{12}$	351234. 1 351328. 4	94. 3
$2p' \ ^2\mathrm{S}_1$	$2s \ 2p^4$	$2p^4$ ² S	1/2	248260		$4\mathbf{\tilde{P}}_{3}^{2}$			$2\frac{1}{2}$	351517.1	188.7
$2p' {}^{2}\mathrm{P}_{2} {}^{2}\mathrm{P}_{1}$	2s 2p ⁴	$2p^4$ ² P	$1\frac{12}{12}$	$266559 \\ 266943$	- 384	$3p \ {}^{2}\mathrm{D}_{2} \ {}^{2}\mathrm{D}_{3}$	$2s^2 2p^2(^{3}P) 3p$	3 <i>p</i> 2D°	$1\frac{12}{22}$	355979.6 356370.0	390. 4
3s ⁴ P ₁ ⁴ P ₂ ⁴ P ₃	2s² 2p²(³P)3s	38 4P	$\begin{array}{c} \frac{1}{12} \\ 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}$	316707. 3 316918. 6 317237. 5	211. 3 318. 9	3p 4S2	2s ² 2p ² (³ P)3p	3p 4S°	1½	357477.0	

Z=9

I. P. 62.646 volts

F III—Continued

=

F III—Continued

Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
$3p {}^{2}P_{1} {}^{2}P_{2}$	2s ² 2p ² (³ P)3p	3p 2P°	$1^{1/2}_{1^{1/2}_{1^{1/2}_{2}}}$	360346. 2 360433. 1	86. 9	$\begin{array}{c} 4p \ {}^{4}\mathrm{D}_{1} \\ {}^{4}\mathrm{D}_{2} \\ {}^{4}\mathrm{D}_{3} \end{array}$	2s ² 2p ² (³ P)4p	4p 4D°	1/2 1/2 2/2	426426.0 426556.4 426730.7	130.4 174.3 256.8
$\overline{3s} \ ^2S_1$	$2s^2 \ 2p^2({}^1\mathrm{S})3s$	3s'' 2S	1/2	372673. 0		4D4			$3\frac{1}{2}$	426987.5	200.0
$\overline{3p} {}^{2}F_{3} {}^{2}F_{4}$	$2s^2 2p^2(^1D) 3p$	3 <i>p′</i> , ²F°	$2\frac{1}{2}$ $3\frac{1}{2}$	376806. 2 376871. 0	64. 8	4p ⁴ P ₁ ⁴ P ₂ ⁴ P ₃	2s² 2p²(3P)4p	4 <i>p</i> ⁴P°	$\begin{array}{c c} & \frac{1'_2}{1\frac{1'_2}{2\frac{1'_2}{2\frac{1'_2}{2\frac{1}{2}}}} \end{array}$	427456.7 427542.4 427729.3	85. 7 186. 9
$3p \ {}^{2}\mathrm{D}_{3} \ {}^{2}\mathrm{D}_{2}$	$2s^2 2p^2({}^1\mathrm{D})3p$	3 <i>p′</i> ² D°	$2\frac{1}{2}$ $1\frac{1}{2}$	380242.9 380299.1	-56.2	$4p {}^{2}D_{2} {}^{2}D_{3}$	$2s^2 \ 2p^2(^3P)4p$	4p 2D°	$1\frac{1}{2}$ $2\frac{1}{2}$	429105.3 429500.6	395. 3
$\overline{3p} {}^{2}\mathrm{P}_{1} {}^{2}\mathrm{P}_{2}$	$2s^2 2p^2(^1D)3p$	3p′ 2P°	$1\frac{1}{2}{1\frac{1}{2}}{1\frac{1}{2}}$	384350.9 384485.2	134. 3	$4p {}^{2}P_{1}$	2s ² 2p ² (³ P)4p	4p 2P°		431057.1	167.1
3d ⁴ F ₂ ⁴ F ₃ ⁴ F ₄ ⁴ F ₅	2s ² 2p ² (³ P)3d	3 <i>d</i> 4F	$1\frac{1}{2}$ $2\frac{1}{2}$ $3\frac{1}{2}$ $4\frac{1}{2}$	387257.3 387366.2 387521.8 387725.5	108. 9 155. 6 203. 7	$ \begin{array}{c c} & 1_{2} \\ & 3p' \ {}^{4}P_{3} \\ & {}^{4}P_{2} \\ & {}^{4}P_{1} \end{array} $	2s 2p ³ (⁵ S°)3p	3 <i>p'''</i> 4P	$\begin{array}{c c} 1/2 \\ 2\frac{1}{2} \\ 1\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array}$	434546. 3 434567. 0 434581. 6	$\begin{vmatrix} -20.7\\ -14.6 \end{vmatrix}$
$3d {}^{2}P_{2} {}^{2}P_{1}$	$2s^2 \ 2p^2(^3\mathrm{P})3d$	3d 2P	$1\frac{12}{12}$	389523. 5 389735. 7	-212. 2	4s 2D23	2s ² 2p ² (¹ D)4s	4s' 2D	$\left\{ egin{array}{c} 2\frac{1}{2} \\ 1\frac{1}{2} \end{array} ight.$	}440830	
$3d \ {}^{4}\mathrm{D}_{1} \ {}^{4}\mathrm{D}_{2} \ {}^{4}\mathrm{D}_{2} \ {}^{4}\mathrm{D}_{2}$	$2s^2 2p^2(^3\mathrm{P}) 3d$	3d 4D	$1^{1/2}_{1^{1/2}}_{2^{1/2}}$	390118. 4 390078. 3 390075. 7	-40.1 -2.6	4 <i>d</i> ² P ₂ ² P ₁	$2s^2 \ 2p^2(^3\mathrm{P})4d$	4 <i>d</i> 2P	$1\frac{1}{2}$	441159 441384	-225
$4\overline{D}_{4}^{3}$ $3d 4P_{3}$	$2s^2 2p^2(^{3}P)3d$	3d 4P	$3\frac{1}{2}$ $2\frac{1}{2}$	390208. 4 390832. 3	132.7	$\begin{array}{c} 4d \ {}^{4}P_{3} \\ {}^{4}P_{2} \\ {}^{4}P_{1} \end{array}$	$2s^2 2p^2(^{3}P)4d$	4 <i>d</i> 4P	$\begin{array}{c c} 2\frac{1}{2} \\ 1\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array}$	442153 442300 442378	$-147 \\ -78$
${}^{4}P_{2}^{\circ}$ ${}^{4}P_{1}$			$1\frac{1}{2}$ $\frac{1}{2}$	390974. 0 391045. 2	-71.2	$4d {}^{2}\mathbf{F_{3}}_{{}^{2}\mathbf{F_{4}}}$	$2s^2 2p^2(^3P)4d$	4 <i>d</i> ² F	$2\frac{1}{2}$ $3\frac{1}{2}$	442280 442634	354
$3d {}^{2}\mathrm{F_{3}} {}^{2}\mathrm{F_{4}}$	$2s^2 2p^2(^3\mathrm{P})3d$	3 <i>d</i> ² F	$2\frac{1}{2}$ $3\frac{1}{2}$	391255.6 391625.5	369. 9	$\overline{\overline{\overline{3d}}} \ ^2\mathrm{D}_{23}$	$2s^2 \ 2p^2(^1\mathrm{S}) 3d$	3 <i>d''</i> 2D	$\left\{ \begin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array} \right\}$	} 442760	
3s' 6S3	$2s \ 2p^3(^5\mathrm{S}^\circ) 3s$	38''' ⁶ S°	$2\frac{1}{2}$	391910.0 + x		$4d^{2}D$	22 2n2(3P) 1d	4.d 2D		444060	
${}^{3d}{}^{2}\mathrm{D}_{2}{}^{2}\mathrm{D}_{3}$	$2s^2 2p^2(^3P) 3d$	3d ² D	$1\frac{12}{212}$	395266. 1 395384. 1	118.0	$10^{-10} D_2^2$			$2\frac{1}{2}$	445008	48
$2p^{\prime\prime} {}^{2}P_{2} {}^{2}P_{1}$	$2p^5$	2p ⁵ ² P°	$1\frac{1}{2}$	401203 401721	-518	3 <i>d'</i> °D ₅ °D ₄ °D ₃	2s 2p ³ (°S°)3d	3d''' ºD°	$ \begin{array}{c c} & 4\frac{1}{2} \\ & 3\frac{1}{2} \\ & 2\frac{1}{2} \\ & 1\frac{1}{4} \end{array} $	$\begin{array}{c} 462930. \ 1+x \\ 462932. \ 7+x \\ 462936. \ 5+x \\ 462936. \ 5+x \end{array}$	$ \begin{array}{ c c } -2.6 \\ -3.8 \\ -3.4 \end{array} $
3s' 4S2	2s 2p ³ (⁵ S°)3s	3s''' 4S°	$1\frac{1}{2}$	404778		$^{6}D_{1}^{2}$			$ \begin{array}{c} 1_{72} \\ \frac{1}{2} \end{array} $	462939.9+x 462942.4+x	-2.5
$\overline{\overline{3p}} {}^{2}\mathrm{P_{1}} {}^{2}\mathrm{P_{2}}$	$2s^2 2p^2(^1\mathrm{S})3p$	3 <i>p''</i> 2P°	$1\frac{1}{2}$ $1\frac{1}{2}$	406899. 2 406903. 3	4. 1	5d ⁴ P ₃ ⁴ P ₁₂	2s² 2p²(³P)5d	5d 4P	$ \begin{array}{c} 2\frac{1}{2} \\ 1\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array} $	465409 465541	-132
$\overline{3d} {}^2\mathrm{F_4}_{^2\mathrm{F_3}}$	$2s^2 2p^2(^1D) 3d$	3d′ 2F	$3\frac{1}{2}{2\frac{1}{2}}$	413136. 1 413187. 1	-51.0	5d 2D23	$2s^2 \ 2p^2(^3\mathrm{P}) \ 5d$	5 <i>d</i> 2D	$\begin{cases} 1\frac{1}{2}\\ 2\frac{1}{2}\end{cases}$) }466293	
3d 2G5 2G4	$2s^2 2p^2(^1\mathrm{D})3d$	3d′ 2G	$4\frac{1}{2}$ $3\frac{1}{2}$	414887. 0 414890. 1	-3.1	$\overline{4d} \ {}^2\mathrm{F}_{34}$	$2s^2 2p^2(^1\mathrm{D})4d$	4 <i>d'</i> ² F	$\begin{cases} 3\frac{1}{2} \\ 2\frac{1}{6} \end{cases}$) }466810	
$4s \ {}^{4}P_{1} \ {}^{4}P_{2} \ {}^{4}P_{2}$	2s ² 2p ² (³ P)4s	4s 4P	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	415188		$\overline{4d} \ ^2\mathrm{D}_{23}$	$2s^2 2p^2(^{1}D)4d$	4 <i>d'</i> 2D	$\begin{cases} 1\frac{1}{2} \\ 2\frac{1}{2} \end{cases}$) }466964	
$\overline{3d} {}^{2}\mathrm{D}_{2}$	$2s^2 \ 2p^2(^1\mathrm{D}) 3d$	3 <i>d′</i> ²D	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	416160. 7 416178. 1	17.4	$\overline{4d} \ ^2\mathrm{P_{12}}$	$2s^2 \ 2p^2(^1\mathrm{D})4d$	4 <i>d'</i> ² P	$\begin{cases} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{cases}$, }467798	
$48 {}^{2}P_{1} {}^{2}P_{2}$	2s ² 2p ² (³ P)4s	4s 2P	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	417581 417968	387	3d' ⁴ D ₄ ⁴ D ₃	2s 2p ³ (⁵ S°)3d	3 <i>d'''</i> 4D°	$ \begin{array}{c} 3\frac{1}{2} \\ 2\frac{1}{2} \end{array} $	467868.9 467869.3	-0.4
$\overline{3d} {}^2\mathrm{P_1} {}^2\mathrm{P_2}$	$2s^2 2p^2(^1\mathrm{D})3d$	3d′ 2P	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	418180. 6 418240. 9	60. 3	⁴ D ₁₂			$\left\{\begin{array}{c}1\frac{1}{2}\\\frac{1}{2}\\\frac{1}{2}\end{array}\right.$	}467870. 3	-1.0
$\overline{3d} {}^{2}\mathrm{S}_{1}$	$2s^2 2p^2(^1D)3d$	3d' 2S	1/2	420997. 9		3s' ² D ₃ ² D ₂	2s 2p ³ (³ D°)3s	3s ¹ ♥ 2D°	$\begin{array}{c c} 2\frac{1}{2} \\ 1\frac{1}{2} \end{array}$	474369 474413	-44
3n' 6P.	28 2p ³ (5S°)3n	3n''' 6P	1%	425239.6 + r			0.0.0.000	F 14 07	(31/		
⁶ P ₃ ⁶ P ₄	20 20 (0)00	op 1	$2\frac{1}{2}$ $3\frac{1}{2}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$21.7 \\ 36.1$	$5d {}^{2}F_{34}$	$2s^2 \ 2p^2(^1\text{D})5d$	$5d' {}^{2}\mathbf{F}$	$\begin{cases} 2\frac{1}{2}\\ 1\frac{1}{2}\end{cases}$	}489494)	
4 <i>p</i> ² S ₁	2s ² 2p ² (³ P)4p	4 <i>p</i> 2S°	1/2	425388.9		$5d \ ^{2}D_{23}$	$2s^2 2p^2(^1D)5d$	5 <i>d'</i> ² D	$\begin{cases} 2\frac{1}{2} \end{cases}$	}490140	
							F IV(³ P ₀)	Limit		505410	

January 1947.

F III Observed Term	ıs*
---------------------	-----

Config. $1s^2+$	Observed Terms									
2s ² 2p ³	$\begin{cases} 2p^{3} {}^{4}\mathrm{S}^{\circ} \\ & 2p^{3} {}^{2}\mathrm{P}^{\circ} & 2p^{3} {}^{2}\mathrm{D}^{\circ} \end{cases}$									
$2s \ 2p^4$	$ \left\{ \begin{array}{ccc} 2p^{4} \ {}^{2}\mathrm{S} & 2p^{4} \ {}^{2}\mathrm{P} \\ 2p^{4} \ {}^{2}\mathrm{S} & 2p^{4} \ {}^{2}\mathrm{P} & 2p^{4} \ {}^{2}\mathrm{D} \end{array} \right. $									
$2p^5$	$2p^{5} 2P^{\circ}$									
	ns $(n \ge 3)$	$np \ (n \ge 3)$	$nd \ (n \ge 3)$							
2s² 2p²(³P)nx	{ 3, 4s ⁴ P 3, 4s ² P	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$2s^2 2p^2(^{1}D)nx'$	3, 4s' 2D	$3p' {}^{2}P^{\circ} 3p' {}^{2}D^{\circ} 3p' {}^{2}F^{\circ}$	3d' 2S 3, 4d' 2P 3-5d' 2D 3-5d' 2F 3d' 2G							
$2s^2 2p^2(^1\mathrm{S})nx^{\prime\prime}$	3s'' 2S	3 <i>p''</i> ² P°	3 <i>d''</i> ² D							
2s 2p ³ (⁵ S°)nx'''	{3s''' ⁶ S° {3s''' 4S°	$3p^{\prime\prime\prime}$ ⁶ P $3p^{\prime\prime\prime}$ ⁴ P	3d‴ ⁰D° 3d‴ ⁴D°							
2s 2p ³ (³ D°)nx ^{IV}	3s1x 3Do									

*For predicted terms in the spectra of the NI isoelectronic sequence, see Introduction.

F 17

(C I sequence; 6 electrons)

Ground state 1s² 2s² 2p² ³P₀

2p² ³P₀ 703766.4 cm⁻¹

The first work on this spectrum was by Bowen. Edlén has greatly extended the earlier analysis. About 250 lines in the intervals 140 to 679 A and 2171 to 3176 A are now classified. The terms are from Edlén, who has rejected two terms in his published list, 4d' ³S and $\overline{3s'}$ ³S. Extrapolated values are entered in brackets in the table.

The singlet and triplet terms are connected by intersystem combinations. No such combinations involving quintet terms have been observed. The uncertainty x may reach 50 to 100 cm⁻¹.

REFERENCES

B. Edlén, Zeit. Phys. 92, 19 (1934). (I P) (T) (C L)
B. Edlén, private communication (Dec. 1947). (T)

Z=9

I. P. 87.23 volts

F IV

F IV

Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
$2p {}^{3}\mathrm{P}_{0} {}^{3}\mathrm{P}_{1} {}^{3}\mathrm{P}_{2}$	$2s^2 2p^2$	2 <i>p</i> ² ³₽	$egin{array}{c} 0 \ 1 \ 2 \end{array}$	$\begin{array}{c} 0.\ 0\\ 225.\ 2\\ 613.\ 4\end{array}$	225. 2 388. 2	3p' ⁵ P ₁ ⁵ P ₂ ⁵ P ₃	2s 2p ² (4P)3p	3p ⁵P°	$\begin{array}{c} 1\\ 2\\ 3\end{array}$	542578.3+x 542693.2+x 542895.2+x	114. 9 202. 0
2p 1D ₂	$2s^2 \ 2p^2$	$2p^2$ ¹ D	2	25241		$3p' {}^{3}D_{1}$	$2s \ 2p^2(^4P) 3p$	3 <i>p</i> ³D°	$\frac{1}{2}$	550918	180
$2p \ {}^{1}\mathrm{S}_{0}$	$2s^2 \ 2p^2$	$2p^2$ ¹ S	0	53544		³ D ₃			$\frac{2}{3}$	551366	268
$2p' {}^{5}S_{2}$	$2s \ 2p^3$	$2p^3$ ⁵ S°	2	74506 + x		3n' 3P.	$2s \ 2p^2(^4P) 3p$	3 <i>p</i> ³P°	0	556051	
$2p' {}^{3}D_{3} \\ {}^{3}D_{2} \\ {}^{3}D_{1}$	$2s$ $2p^3$	$2p^3$ $^{3}\mathrm{D}^{\circ}$	$\begin{array}{c} 3\\2\\1\end{array}$	147841.8 147888.9 147901.6	-47.1 -12.7	³ P ₂ 48 ³ P ₀	$2s^2 2p(^2P^\circ)4s$	4s ³₽°	2 0	556316	265
$2p' {}^{3}P_{2} {}^{3}P_{1}$	2s 2p ³	2 <i>p</i> ³ ₃P°	$\frac{2}{1}$	175237.0 175242.0	-5.0 -22.1	³ P ₁ ³ P ₂			$\frac{1}{2}$	559881 560304	$ \begin{array}{c c} 134 \\ 423 \end{array} $
°P ₀	9. 9 <i>m</i> 3	2 -3 1 - 0	0	000000		4s ¹ P ₁	$2s^2 2p(^2\mathrm{P}^\circ)4s$	4s 1P°	1	561267	
$2p^{r-1}D_2$	$28 2p^{\circ}$	2p° 1D	1	220908		3s' ³ D ₁ ³ D ₂	$2s \; 2p^2(^2\mathrm{D})3s$	3s′ 3D	$\frac{1}{2}$	567900 568019	119
$2p' {}^{3}S_{1}$	2s 2p ³	2p ³ ³ S ⁶	1	238297.2		$^{3}\overline{\mathrm{D}}_{3}^{2}$			3	568175	156
$2p' {}^{1}P_{1}$	2s 2p ³	$2p^{3}$ P	1	257390		$3d' {}^{5}F_{1} {}^{5}F_{2}$	$2s \ 2p^2(^4P) \ 3d$	3 <i>d</i> ⁵F	$\frac{1}{2}$	[576581] + x 576656, 1 + x	[75]
2 <i>p''</i> ³ P ₂ ³ P ₁ ³ P ₀	$2p^4$	2 <i>p</i> ⁴ ³₽	$\begin{array}{c} 2\\ 1\\ 0\end{array}$	348327. 0 348770. 0 348963. 0	-443.0 -193.0	⁵ F ₃ ⁵ F ₄ ⁵ F _δ			$3 \\ 4 \\ 5$	$\begin{array}{c} 576768. \ 2+x \\ 576916. \ 6+x \\ 577100. \ 1+x \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
38 ³ P ₀ ³ P ₁ ³ P ₂	2s² 2p(²P°)3s	3s ³₽°	$egin{array}{c} 0 \ 1 \ 2 \end{array}$	416417.3 416639.8 417143.4	222.5 503.6	$3d' {}^{5}D_{0} {}^{5}D_{1} {}^{5}D_{2} {}^{5}D_{2} {}^{5}D_{2}$	2s 2p²(4P)3d	3d ⁵D	$ \begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \end{array} $	581806. 1+x 581811. 5+x 581828. 6+x 581872. 3+x	5. 4 17. 1 43. 7
3s ¹ P ₁	$2s^2 \ 2p(^2P^\circ) 3s$	38 1P°	1	423606.4		⁵ D ₄			4	581977.6+x	105. 3
${}^{3p}{}^{^{3}\mathrm{D}_{1}}_{{}^{^{3}\mathrm{D}_{2}}_{3}}$	2s² 2p(²P°)3p	3 <i>p</i> *D	$\begin{array}{c} 1\\ 2\\ 3\end{array}$	451819. 6 452081. 1 452517. 1	261. 5 436. 0	3d' ⁵ P ₃ ⁵ P ₂ ⁵ P ₁	2s 2p²(4P)3d	3 <i>d</i> ⁵P	$3 \\ 2 \\ 1$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$-150 \\ -101$
$3p$ $^{3}S_{1}$	$2s^2 \ 2p(^2\mathrm{P}^\circ) 3p$	$3p$ $^3\mathrm{S}$	1	456884.3		$3d' {}^{3}\mathrm{P}_{2}$	$2s\ 2p^2(^4\mathrm{P})3d$	3 <i>d</i> 3P	2	585201	004
$3p ^{3}P_{0}$	$2s^2 2p(^2\mathrm{P}^\circ)3p$	3p 3P	0	460215. 2	170.6	$^{3}P_{1}$ $^{3}P_{0}$			1 0	$585425 \\ 585531$	-106
³ P ₁ ³ P ₂			$\frac{1}{2}$	460385.8 460640.6	254.8	$\overline{3s'}$ ¹ D ₂	$2s \ 2p^2(^2\mathrm{D})3s$	3s' 1D	2	586263	
3p ¹ D ₂	$2s^2 2p(^2P^\circ)3p$	3p 1D	2	469644. 2		$4d {}^{3}\mathrm{F}_{2}$	$2s^2 2p(^2P^\circ)4d$	4d ³F°	2	586641	
3d 3F.	$2s^2 2p(^2P^\circ)3d$	3 <i>d</i> 3F°	2	492395.1	400 F		,		3 4		
³ F ₃ ³ F ₄			3 4	492858.8 493206.2	463.7 347.4	4d ¹ D ₂	$2s^2 \ 2p(^2\mathrm{P^o})4d$	4d ¹D°	2	587130	
$3d \ ^{1}D_{2}$	$2s^2 \ 2p(^2\mathrm{P^o}) \ 3d$	3d 1D°	2	492864		$3d' {}^{3}F_{2}$	$2s \ 2p^2(^4P) 3d$	$3d$ ${}^3\mathrm{F}$	2	588021 588223	202
$3d \ {}^{3}D_{1} \ {}^{3}D_{2} \ {}^{3}D_{2} \ {}^{3}D_{2}$	$2s^2 2p(^2\mathrm{P^o}) 3d$	3d ³D°	$\frac{1}{2}$	497481.4 497575.6 497729 1	94. 2 153. 5	$^{3}F_{4}^{3}$	$2s^2 2n(^2P^0) 4d$	4 <i>d</i> 3D°	4	588478	255
3d 3P.	282 2n(2P0)3d	3d 3D0	2	500390 1		$^{3}D_{2}$	20 2p(1)10	10 10	2	589188	79 218
³ P ₁ ³ P ₀	20 20(1)00	50 1	1 0	500602.1 500716.5	-212.0 -114.4	$4d {}^{3}P_{2}$	$2s^2 \ 2p(^2\mathrm{P^o})4d$	4d ³P°	2	590024 590901	-177
3s' 5P1	$2s \ 2p^2(^4{ m P}) 3s$	3s ⁵P	$\frac{1}{2}$	502723.0+x 502964.4+x	241.4	³ P ₀			Ō	590262	-61
${}^{5}\mathbf{P}_{3}^{2}$			3	502301, 4+x 503282, 4+x	318.0	4d 1F3	$2s^2 2p(^2\mathrm{P}^{\circ})4d$	4d 1F°	3	592240	
3d 1F3	$2s^2 \ 2p(^2\mathrm{P}^\circ) 3d$	$3d \ {}^{1}\mathrm{F}^{0}$	3	505421.4		4d ¹ P ₁	$2s^2 2p(^2\mathrm{P}^\circ)4d$	4d ¹P⁰	1	592674	
$3d \ ^{1}P_{1}$	$2s^2 \ 2p(^2\mathrm{P^o}) 3d$	3 <i>d</i> 1P°	1	506514		$3d' {}^{3}D_{1}$	$2s \ 2p^2(^4\mathrm{P}) 3d$	3d 3 D	1	595331	72
3s' 3Po	$2s \; 2p^2(^4{ m P}) 3s$	38 3P	0	519341	198	³ D ₂ ³ D ₃			$\frac{2}{3}$	595403 595481	78
[°] P ₁ [°] P ₂			$\frac{1}{2}$	519539 519890	351	$\overline{3p'}$ ¹ F ₃	$2s 2p^2(^2\mathrm{D}) 3p$	3 <i>p′</i> ¹F°	3	609811	
3p' ³ S ₁	2s 2p ² (4P)3p	3 <i>p</i> 3S°	1	534686		$\overline{3p'} {}^{1}\mathrm{D}_{2}$	$2s 2p^2(^2\mathrm{D}) 3p$	3p′ 1D°	2	612830	
3p' ⁵ D ₀	2s 2p ² (4P)3p	3p ⁵D°	0	[538507] +x	[66]	$\overline{3p'} {}^{1}P_{1}$	$2s 2p^2(^2\mathrm{D}) 3p$	3 <i>p′</i> ¹ P°	1	618889	
^δ D ₁ ^δ D ₂ ^δ D ₃ ^δ D ₄			1 2 3 4	$\begin{array}{c} 538573. \ 3+x\\ 538709. \ 2+x\\ 538909. \ 8+x\\ 539166. \ 1+x\end{array}$	135. 9 200. 6 256. 3	5d ³ F ₂	2s ² 2p(² P°)5d	5 <i>d</i> 3F°	2 3 4	629547	

F IV—Continued

F IV—Continued

Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
5d ¹ D ₂	$2s^2 2p(^2P^\circ)5d$	5d 1D°	2	630019		$\overline{3d'} {}^{1}F_{3}$	$2s 2p^2(^2D) 3d$	3d' 1F	3	657546	
5d ³ D ₃	28° 2p(2F ²)5a	5a °D'	$\begin{array}{c}1\\2\\3\end{array}$	631126		$\frac{3a^{\prime}}{3d^{\prime}} {}^{1}\mathrm{P}_{1}$	$2s 2p^2(^2D)3d$ $2s 2p^2(^2D)3d$	3 <i>d'</i> 1P	2	658629	
5d ³ P ₂ ³ P ₀₁	$2s^2 2p(^2\mathrm{P^o}) 5d$	5d ³ P°	2 1, 0	[631426] 631546	[-120]	4p' ³ D ₃	$2s~2p^2(^4{ m P})4p$	4 <i>p</i> ³D°	$\begin{array}{c}1\\2\\3\end{array}$	662843	
5d ¹ F ₃ 5d ¹ P ₁	$2s^2 2p(^2\mathrm{P^o})5d$ $2s^2 2p(^2\mathrm{P^o})5d$	5d 1F° 5d 1P°	3	632730 632740			$2s \ 2p^2({}^4\mathrm{P})4p$	4 <i>p</i> ³₽°	0 1		
3 <i>d</i> ′ ³ F ₂₃₄	$2s \ 2p^2(^2\mathrm{D}) 3d$	3 <i>d'</i> 3F	2, 3, 4	644224		4p' ³ P ₂ 4d' ⁵ P ₃	$2s2p^2(^4\mathrm{P})4d$	4 <i>d</i> ⁵P	2 3	665409 675110 + x	100
4s' ⁵ P ₂ ⁵ P ₃	$2s \ 2p^2({}^4\mathrm{P})4s$	4 <i>s</i> ⁵P	$\begin{array}{c}1\\2\\3\end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	323	${}^{5}P_{1 2}$ $4d' {}^{3}F_{2}$	$2s~2p^2({ m 4P})4d$	4d 3F	2, 1 2	675309 + x 677467	200
	$2s~2p^2(^2\mathrm{D})3d$	3 <i>d'</i> 3P	0	640007		$^{3}F_{3}$ $^{3}F_{4}$	9-9-24D) 4 1	4.440	$\frac{3}{4}$	677667 677906	239
$\frac{3d'}{3d'} \stackrel{^{3}P_{2}}{\overset{^{3}D_{12}}{2D_{12}}}$	$2s2p^2(^2{ m D})3d$	3 <i>d'</i> 3D	2 1, 2	648827 650196	146	$4d^{-3}D_{3}$ $^{3}D_{12}$	$2s 2p^2(*P)4d$	4d °D	$\begin{array}{c} 1, 2\\ 3 \end{array}$	679798 679994	196
°D3	2s² 2p(²P°)6d	$6d$ $^{3}\mathrm{D}^{\circ}$	$\frac{3}{2}$	050542			$2s 2p^2({}^4P)5p$	5p ³ D°	$1 \\ 2$	103100,4	
$6d \ ^{3}D_{3}$	$\Omega_{\rm r}^{2} \Omega_{\rm m}^{2} (2D^{\rm Q}) \mathcal{C}_{\rm r}^{2}$	6.1 3709	3	653606		$5p' {}^{3}D_{3}$	9 = 9 = 2/4 D $5 = 1$	5 J 5D	3	710760	
⁶ <i>d</i> ³ <i>P</i> ₂ ³ <i>P</i> ₀₁	$2s^{2} 2p(2P^{2}) 0a$	oa •r•	1, 0	653833	-61	5 <i>a</i> ⁵ P ₁₂	28 2p ² (*F) 5a	Ja °r	2, 1	710878 + x 717080 + x	-202
6d ¹ F ₃	$2s^2 2p(^2\mathrm{P^o}) 6d$	6d 1F°	3	<i>654469</i>		$\overline{4d'}{}^{3}\mathrm{F}_{234}$	2s 2p ² (² D)4d	4d' 3F	2, 3, 4	738996	
$3d' \ ^{3}S_{1}$	$2s \ 2p^2(^2\mathrm{D}) 3d$	3d' 3S		654739							

December 1947.

F IV OBSERVED TERMS*

$\begin{array}{c} \text{Config.} \\ 1s^2 + \end{array}$						Observed	l Terms					
2s ² 2p ²	$\Big\{_{2p^2 \ ^1\mathrm{S}}$	$2p^2$ $^3\mathrm{P}$	$2p^2$ ¹ D									
2s 2p ³	$\left\{egin{array}{c} 2p^3 \ {}^5\mathrm{S}^\circ\ 2p^3 \ {}^3\mathrm{S}^\circ\end{array} ight.$	${2p^3} {}^3\mathrm{P^o} \ {2p^3} {}^1\mathrm{P^o}$	${2p^3}{}^3{ m D^o} \ {2p^3}{}^1{ m D^o}$									
$2p^{i}$		$2p^4$ $^3\mathrm{P}$										
		ns $(n \ge 3)$		$np (n \ge 3)$					1	nd $(n \geq 3)$	0	
2s ² 2p(2P°)nx	{	3, 4s ³ P° 3, 4s ¹ P°		$3p$ $^3\mathrm{S}$	3 <i>p</i> 3P	3p ³ D 3p ¹ D			3–6d ³ P° 3–5d ¹ P°	3–6d ³ D° 3–5d ¹ D°	${}^{3-5d}_{3-6d} {}^{3}\mathrm{F}^{\circ}_{1}_{\mathrm{F}^{\circ}}$	
2s 2p ² (⁴ P)nx	{	3, 4s ⁵ P 3s ³ P		3p ³ S°	3 <i>p</i> ⁵P° 3, 4 <i>p</i> ³P°	3p ⁵ D° 3–5p ³ D°			3—5d ⁵P 3d ³P	3d 5D 3, 4d 3D	3d ⁵ F 3, 4d ³ F	
2s 2p ² (² D)nx'	{		3s' ³ D 3s' ¹ D		3p′ 1P°	3p′ 1D°	3p' 1F°	3d' 3S	3d' 3P 3d' 1P	3d' 3D 3d' 1D	3, 4 <i>d′</i> ³ F 3 <i>d′</i> ¹ F	

*For predicted terms in the spectra of the C I isoélectronic sequence, see Introduction.

(B I sequence; 5 electrons)

Ground state 1s² 2s² 2p ²P^o₁

2p ²P^o₃ 921450 cm⁻¹

All of the terms are from an unpublished manuscript kindly furnished by Edlén. He has revised and extended his earlier analysis. The notation in the left column is from his published papers.

No intersystem combinations have been observed. The position of the quartet terms relative to the doublets may be in error by $\pm 100 \text{ cm}^{-1}$ according to Edlén. This uncertainty is indicated by x in the table.

REFERENCES

B. Edlén, Zeit. Phys. 89, 597 (1934); 92, 26 (1934); 94, 56 (1935). (I P) (T) (C L).
B. Edlén, unpublished material (Dec. 1947). (I P) (T).

Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
$2p {}^{2}\mathrm{P_{1}} {}^{2}\mathrm{P_{2}}$	$2s^2(^1\mathrm{S})2p$	2 <i>p</i> ²P°	$1\frac{1}{12}$ $1\frac{1}{2}$	0 746	746	3s' ² P ₁ ² P ₂	2s 2p(3P°)3s	3s 2P°	$1/2 \\ 1/2 \\ 1/2$	638856 639365	509
$2p' {}^{4}P_{1} {}^{4}P_{2} {}^{4}P_{2} {}^{4}P_{2}$	2s 2p ²	2 <i>p</i> ² 4P	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	86035 + x 86287 + x 86651 + x	$\begin{array}{c} 252\\ 364 \end{array}$	$3p' {}^{2}P_{1} {}^{2}P_{2}$	2s 2p(3P°)3p	3 <i>p</i> ²P	$1^{1/2}_{1^{1/2}_{1^{1/2}_{2}}}$	$656208 \\ 656436$	228
$2p' \ {}^{2}D_{3} \ {}^{2}D_{2}$	2s 2p²	$2p^2$ $^2\mathrm{D}$	$2\frac{1}{2}$ $1\frac{1}{2}$	152876 152898	-22	$3p' {}^{4}D_{1} {}^{4}D_{2} {}^{4}D_{3} {}^{4}D_{3} {}^{4}D_{3}$	2s 2p(3P°)3p	3p 4D	$\begin{array}{c c} & \frac{1}{2} \\ & 1\frac{1}{2} \\ & 2\frac{1}{2} \\ & 2\frac{1}{2} \\ & 2\frac{1}{2} \end{array}$	$\begin{array}{c c} 657988+x \\ 658134+x \\ 658390+x \\ 658701+x \\ \end{array}$	146 256 401
$2p' {}^2\mathrm{S}_1$	2s 2p ²	$2p^{2}$ ² S	1⁄2	197565		$3p' 4S_2$	2s 2p(*P°)3p	3p 4S	$1\frac{1}{2}$	666240+x	
$2p^{\prime} {}^{^2\mathrm{P_1}}_{^{^2\mathrm{P_2}}}$	2s 2p ²	$2p^2 {}^2\mathrm{P}$	$1\frac{1}{2}$ $1\frac{1}{2}$	$214881 \\ 215348$	467	$3p' {}^{2}D_{2}$	2s 2p(3P°)3p	3p 2D	$\frac{1\frac{1}{2}}{2\frac{1}{4}}$	675932	490
$2p^{\prime\prime}$ ${}^4\mathrm{S}_2$	$2p^{3}$	$2p^3$ ${}^4\mathrm{S}^{\circ}$	1½	276657+x		$3n'^{2}S_{1}$	$2s 2n(3P^{\circ})3n$	$3n^2S$	1/2	687806	
$2p^{\prime\prime}{}^{^{2}\mathrm{D}_{3}}_{^{2}\mathrm{D}_{2}}$	2p ³	$2p^{3} {}^{2}\mathrm{D}^{\circ}$	$2\frac{1}{2}$ $1\frac{1}{2}$	307226 307273	-47	$3d' 4D_{12}$	2s 2p(1) 0p $2s 2p(3P^{\circ})3d$	3 <i>d</i> 4D°	$\begin{cases} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{cases}$	697817 + x	100
$2p^{\prime\prime} {}^{2}\mathrm{P_{1}} {}^{2}\mathrm{P_{2}}$	2p ³	$2p^3$ $^2\mathrm{P}^{\mathrm{o}}$	1/2 1/2	347418 347438	20	⁴ D ₃ ⁴ D ₄			$ \begin{array}{c} 1 \frac{1}{2} \\ 2 \frac{1}{2} \\ 3 \frac{1}{2} \end{array} $	$ \begin{bmatrix} 697919 + x \\ 698055 + x \end{bmatrix} $	102
38 ² S ₁	2s²(1S)3s	38 2S	1/2	524751		$3d' {}^{2}D_{2}$	2s 2p(3P°)3d	3 <i>d</i> ² D°	$\frac{1\frac{1}{2}}{21}$	699293	96
${_{^{2}\mathrm{P}_{1}}^{3p}}_{^{2}\mathrm{P}_{2}}^{2}$	$2s^{2}(^{1}\mathrm{S})3p$	3 <i>p</i> ²P°	$1/2 \\ 1/2 \\ 1/2$	565367 565544	177	$3d' \stackrel{4P_3}{4P_3}$	2s 2p(3P°)3d	3d 4P°	272 $2\frac{1}{2}$ $1\frac{1}{2}$	702908+x	-209
$3d {}^{2}\mathrm{D}_{2} {}^{2}\mathrm{D}_{2}$	$2s^{2}(^{1}S)3d$	3d 2D	$1\frac{1}{2}$ $2\frac{1}{2}$	$\begin{array}{c} 602476 \\ 602516 \end{array}$	40	$4P_{1}$			$172 \\ 1/2 \\ 72$	703117 + x 703259 + x	-142
3s' ⁴ P ₁ ⁴ P ₂ ⁴ P ₈	2s 2p(3P°)3s	3s 4P°	1/2 1/2 2/2	$ \begin{array}{c c} 621138 + x \\ 621395 + x \\ 621863 + x \end{array} $	$\begin{array}{c} 257\\ 468 \end{array}$	3s' ² P ₁₂	2s 2p(¹ P°)3s	3s' 2P°	$\left\{ \begin{array}{c} \frac{12}{112} \\ 1\frac{12}{2} \end{array} \right\}$	} 712755	

FV

FV

69

I. P. 114.214 volts

FV

70

F v—Continued

F v—Continued

Edlén	Config.	Desig.	J	Level	Interval	Eglén	Config.	Desig.	J	Level	Interval
3d' ² F ₃ ² F ₄	2s 2p(3P°)3d	3d ² F°	2½ 3½	712840 713306	466		2s 2p(3P°)4d	4d 2D°	$1\frac{1}{2}$ $2\frac{1}{2}$	841598 841695	97
48 2S1	$2s^2(^1\mathrm{S})4s$	4s 2S	1/2	712936		4 <i>d′</i> ⁴ P ₃	2s 2p(3P°)4d	4 <i>d</i> 4P°	$2\frac{1}{2}$	842452+x	
$3d' {}^{2}P_{2} {}^{2}P_{1}$	2s 2p(3P°)3d	3d ² P°		718472 718691	-219						
$4d \ {}^{2}D_{2} \ {}^{2}D_{3}$	$2s^2(^1\mathrm{S})4d$	4 <i>d</i> ² D	$1\frac{1}{2}$	744010 744036	2 6		$2s^{2}(^{1}S)6d$	6 <i>d</i> ² D	$1\frac{1}{2}$ $2\frac{1}{2}$	843497	
$\overline{3p}^{\prime}_{^{2}\mathrm{D}_{2}}^{^{2}\mathrm{D}_{2}}$	2s 2p(1P°)3p	3p′ 2D	$1\frac{1}{2}$	$\begin{array}{c} 751406 \\ 751452 \end{array}$	46	$\begin{array}{c} 3p^{\prime\prime} {}^{2}\mathrm{F}_{3} \\ {}^{2}\mathrm{F}_{4} \\ \end{array}$	$2p^{2}(^{1}\text{D})3p$	3p''' ² F ⁰	$2^{1/2}_{1/2}_{3^{1/2}_{1/2}}$	844112 844266	154
$\overline{3p}' {}^{2}\mathbf{P}_{1} {}^{2}\mathbf{P}_{2}$	2s 2p(1P°)3p	3p′ 2P		752529 753656	127	4 <i>a</i> , ² F ₃ ² F ₄	$2s 2p(^{\circ}P^{\circ})4a$ $2n^{2}(^{3}P)3d$	4 <i>a</i> ² F ³	$ \begin{array}{c} 2^{\frac{1}{2}} \\ 3^{\frac{1}{2}} \\ 1^{\frac{1}{2}} \end{array} $	847506 847817 852025	311
$\overline{3p}' {}^2\mathrm{S}_1$	2s 2p(1P°)3p	3p' 2S	1/2	760342			$2p^{-(1)}5a$	54 -1		853442	-407
<u>3</u> <i>d</i> ′ ² F ₃₄	2s 2p(1P°)3d	3d' 2F°	$\left\{ egin{array}{c} 2^{1/2} \\ 3^{1/2} \end{array} ight.$	} 783650			$2p^2(^1\mathrm{D})3p$	3 <i>p'''</i> ² D°	$egin{array}{c} 1^{1\!\!\!/_2} \\ 2^{1\!\!\!/_2} \end{array}$	854971	
$3s'' {}^{4}P_{1} {}^{4}P_{2} {}^{4}P_{3}$	$2p^2(^{3}\mathrm{P})$ 3s	3s'' 4P	$ \begin{array}{c} 1_{1/2} \\ 1_{1/2} \\ 2_{1/2} \\ 2_{1/2} \\ \end{array} $	784343+x 784604+x 785014+x	$\begin{array}{c} 261 \\ 410 \end{array}$	$3d^{\prime\prime} {}^{4}\mathrm{P}_{3} {}^{4}\mathrm{P}_{2} {}^{4}\mathrm{P}_{1}$	$2p^2(^{3}\mathrm{P})3d$	3 <i>d''</i> 4P	$2^{1\!\!\!/_2}_{1^{1\!\!\!/_2}_1}_1$	860421 + x 860619 + x 860725 + x	$-198 \\ -106$
$\overline{3d'}^{2} D_{2} D_{2} D_{3}$	2s 2p(1P°)3d	3 <i>d′</i> ² D°	$1\frac{1}{2}$ $2\frac{1}{2}$	787725 787764	39	<u>3</u> <i>d</i> '' ² D	$2p^2(^1\mathrm{D})3d$	3 <i>d'''</i> 2D	$\left\{ egin{array}{c} 1^{1\!\prime_{\!\!\!\!/2}} \\ 2^{1\!\prime_{\!\!\!/2}} \end{array} ight.$	} 873904	
$\overline{3d}' {}^{2}\mathrm{P}_{12}$	2s 2p(1P°)3d	3 <i>d′</i> 2P°	$\left\{ \begin{array}{c} 1/2 \\ 1/2 \\ 1/2 \end{array} \right.$	} 793308		3 <i>d''</i> ² F ₃₄	$2p^2(^1D)3d$	3 <i>d'''</i> ² F	$\left\{egin{array}{c} 2^{1_{2}'}_{2'_{2}'} \\ 3^{1_{2}'}_{2'} \end{array} ight.$	} 880312	
3s'' ² P ₁ ² P ₂	$2p^{2}(^{3}P)3s$	3s'' 2P	1/2 1/2 1/2	797059 797519	460	$3d^{\prime\prime} {}^{2}\mathrm{P}_{1} {}^{2}\mathrm{P}_{2}$	$2p^{2}(^{1}\mathrm{D})3d$	3 <i>d'''</i> ² P	1/2 1/2	882930 883083	153
$5d \ ^{2}D_{3}$	$2s^{2}(^{1}S)5d$	5d 2D	$1^{1/2}_{2^{1/2}_{2^{1/2}}}$	808663 808677	14		2s 2p(3P ^o)5s	58 ⁴ P°	$egin{array}{c} 1/2 \\ 1/2 \\ 2/2 \\ 2/2 \end{array}$	892180+x	
Ast AD	2s 2p(³ P°)4s	4s 4P°	$\frac{1}{2}$ $1\frac{1}{2}$	010000 1			2s 2p(³ P°)5p	5 <i>p</i> ² D	$1\frac{1}{2}$ $2\frac{1}{2}$	901487 902012	525
10 13			472	810298 + x			2s 2p(3P°)5d	$5d \ ^{4}D^{\circ}$			
3s'' 2D	$2p^{2}(^{1}\mathrm{D})3s$	3s''' 2D	$\left\{ \begin{array}{c} 1/2 \\ 2^{1/2} \end{array} ight.$	} 811075		5d' 4D			$2^{1/2}_{1/2}$ $3^{1/2}_{1/2}$	906074 + x	
3n'' 4D4	$2p^2(^{3}\mathrm{P})3p$	3p'' 4D°	1/2 11/2 21/2 31/2	816518 + x 816759 + x 817101 + x	$\begin{array}{c} 241\\ 342 \end{array}$		2s 2p(3P°)5d	5d * P°	$2\frac{1}{2}$ $1\frac{1}{2}$ $1\frac{1}{2}$	906565 + x	
	$2p^2(^{3}\mathrm{P})3p$	3 <i>p''</i> 4P°	-/2 1⁄2				Fvi (1S ₀)	Limit	/2	921450	
3p'' 4P3			$1\frac{1}{2}$ $2\frac{1}{2}$	823375 + x 823625 + x	250		2s 2p(3P°)6d	6d 4 D°	1/2		
	2s 2p(3P°)4p	4 <i>p</i> ² P	$1/2 \\ 1/2 \\ 1/2 \\$	829436 829707	271				$egin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \\ 3\frac{1}{2} \\ 3\frac{1}{2} \end{array}$	940921+x	
$4p' {}^{2}D_{2} {}^{2}D_{3}$	2s 2p(3P°)4p	4 <i>p</i> 2D	$1\frac{1}{2}$ $2\frac{1}{2}$	833501 833920	419		2s 2p(3P°)6d	6d 4 P°	$2^{1/_2}_{1^{1/_2}_{1^{1/_2}_{1^{1/_2}_{1^{1/_2}_{1^{1/_2}_{1^{1/_2}_{1^{1/_2}_{1^{1/_2}_{1^{1/_2}_{1^{1/_2}}}}}}$	941286+x	
3p'' 4S ₂	$2p^2(^{3}\mathrm{P})3p$	3 <i>p''</i> 4S°	$1\frac{1}{2}$	834790+x			9n2(3P)/d	Ad! AD	¹ /2 91/	008180.1.m	
	2s 2p(3P°)4p	4p 2S	1/2	838036			2p-(-1)40	10 -1		990109+x	
4d' 4D4	2s 2p(3P°)4d	4 <i>d</i> 4D°	$\begin{cases} \frac{1/2}{11/2} \\ 21/2 \\ 21/2 \\ 31/2 \end{cases}$	$ \begin{cases} 841037 + x \\ 841095 + x \\ 841305 + x \end{cases} $	58 210				,2		

December 1947.

$\begin{array}{c} \text{Config.} \\ 1s^2 + \end{array}$		Observed Terms	
$2s^2(^1\mathrm{S})2p$	2p 2P°		
$2s \ 2p^2$	$ \begin{vmatrix} 2p^2 & 2p^2 & 4P \\ 2p^2 & 2S & 2p^2 & 2P & 2p^2 & 2D \end{vmatrix} $		
$2p^3$	$\begin{cases} 2p^{3} \ {}^{4}\mathrm{S}^{\circ} & \\ & 2p^{3} \ {}^{2}\mathrm{P}^{\circ} & 2p^{3} \ {}^{2}\mathrm{D}^{\circ} \end{cases}$		
	ns (n≥3)	<i>np</i> (<i>n</i> ≥3)	$nd (n \ge 3)$
$2s^2(^1\mathrm{S})nx$	3, 4s ² S	3p ²P°	3-6 <i>d</i> ² D
2s 2p(³ P°)nx	$\begin{cases} 3-5s \ {}^{4}P^{\circ} \\ 3s \ {}^{2}P^{\circ} \end{cases}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3-6d ⁴ P° 3-6d ⁴ D° 3d ² P° 3, 4d ² D° 3, 4d ² F°
2s 2p(1P°)nx'	3s′ 2P°	3p' ² S $3p'$ ² P $3p'$ ² D	3d' ² P° 3d' ² D° 3d' ² F°
$2p^2(^{3}\mathrm{P})nx^{\prime\prime}$	$\begin{cases} 3s^{\prime\prime} {}^{4}P \\ 3s^{\prime\prime} {}^{2}P \end{cases}$	3p'' ⁴ S° 3p'' ⁴ P° 3p'' ⁴ D°	3, 4 <i>d''</i> ⁴ P 3 <i>d''</i> ² P
$2p^2(^1\mathrm{D})nx^{\prime\prime\prime}$	3s''' 2D	$3p''' \ ^2D^\circ \ \ 3p''' \ ^2F^\circ$	3d''' ² P 3d''' ² D 3d''' ² F

*For predicted terms in the spectra of the BI isoelectronic sequence, see Introduction.

F VI

(Be I sequence; 4 electrons)

Ground state 1s² 2s² ¹S₀

 $2s^{2} {}^{1}S_{0} 1267581 \text{ cm}^{-1}$

Edlén has revised and extended his published analysis and has generously furnished a

manuscript copy of his complete term list in advance of publication, for inclusion here. In the published papers he has used a prime to designate the terms from the ²P^o limit in F vII.

Intersystem combinations connecting the singlet and triplet systems of terms, have been observed.

REFERENCES

B. Edlén, Zeit. Phys. 89, 179 (1934). (I P) (T) (C L)

B. Edlén, Zeit. Phys. 94, 56 (1935). (T) (C L)

B. Edlén, unpublished material (Dec. 1947). (I P) (T)

I. P. 157.117 volts

Z=9

72

F VI

F VI

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
$\frac{2s^2}{2s(^2S)2p}$	2s ² ¹ S 2p ³ P°	0	0 96601	260	$2p(^{2}P^{\circ})3d$	3d ³P°	2 1 0	938524 938811 938958	$-287 \\ -147$
	-	$\frac{1}{2}$	96861 97437	576	$2p(^{2}P^{\circ})3d$	3 <i>d</i> 1F°	3	947305	
$2s(^2\mathrm{S})2p$	2p ¹₽°	1	186841		$2p(^{2}P^{\circ})3d$	3 <i>d</i> 1P°	1	953402	
$2p^2$	$2p^2$ $^3\mathrm{P}$	0	251341	294	2s(2S)4s	4s ³ S	1	989928	
		$\frac{1}{2}$	251635 252145	510	2s(2S)4s	4s 1S	0	997693	
$2p^{2}$	$2p^2$ $^1\mathrm{D}$	2	274597		$2s(^2\mathrm{S})4p$	4 <i>p</i> ¹ P°	1	1007852	
$2p^{2}$	$2p^2$ 1S	0	340424		$2s(^2\mathrm{S})4d$	4d 3D	1		
2s(2S)3s	3s 3S	1	747298				$\frac{2}{3}$	1014439	
2s(2S)3s	3s 1S	0	764392		2s(2S)4d	4d 1D	2	1019363	
2s(2S)3p	$3p \ ^1\mathrm{P}^{\circ}$	1	787833		2s(2S)5s	58 3S	1	1093463	
$2s(^2\mathrm{S})3p$	3 <i>p</i> ³P°	0	~~~~~		2s(2S)5p	5 <i>p</i> ¹ P°	1	1099409	
		$\frac{1}{2}$	790326 790474	148	2s(2S)5d	5d 3D	1		
$2s(^2\mathrm{S})3d$	3d 3D	1, 2	812169	39			$\frac{2}{3}$	1106417	
0 (00) 0 1	9.4 ID	3	812208		2s(2S)5d	5d 1D	2	1108712	
2s(2S)3a	3 <i>a</i> 1D		820855		2p(2P°)4s	4s ¹ P°	1	1112328	
$2p(^{2}P^{\circ})3s$	38 °P°		871160 871441	281 637	$2p(^{2}\mathrm{P}^{\circ})4p$	4 <i>p</i> ¹ P	1	1115967	
a (4700) a	9. 170		872078		$2p(^{2}\mathrm{P}^{\circ})4p$	4p 3D	1	1117498	243
$2p(^{2}P^{\circ})38$	38 P	1	884290				$\frac{2}{3}$	1117741 111827 3	532
$2p(^{2}P^{\circ})3p$	3 <i>p</i> 'P		895287		$2p(^{z}\mathrm{P}^{\circ})4p$	4 <i>p</i> ³ S	1	1121377	
2p(² P ²)3p	3p °D	$\begin{vmatrix} 1\\2\\3 \end{vmatrix}$	900442 900785 901397	343 612	2p(2P°)4p	4 <i>p</i> ³ P	$\begin{array}{c} 0 \\ 1 \\ 2 \end{array}$	$1122468 \\ 1122662$	194
$2p(^{2}\mathrm{P}^{\circ})3p$	$3p$ $^3\mathrm{S}$	1	909316		$2n(^{2}P^{\circ})4n$	4 <i>p</i> ¹ D	2	1126152	
$2p(^{2}P^{\circ})3p$	$3p$ $^{3}\mathrm{P}$	0	915196 915420	224	$2p(^{2}P^{\circ})4d$	$4d {}^{1}\mathrm{D}^{\circ}$	2	1126168	
		$\overline{2}$	915770	350	$2n(^{2}P^{\circ})4d$	4 <i>d</i> ³ D ^o	1		
$2p(^{2}\mathrm{P}^{\circ})3d$	3d 1D°	2	921821					1130339	
$2p(^{2}P^{\circ})3p$	3 <i>p</i> 1D	2	925393		$2n(^{2}\mathrm{P}^{\circ})4d$	4d 3P°	2	1131653	
$2p(^{2}\mathrm{P}^{\circ})3d$	$3d$ $^{3}\mathrm{D}^{\circ}$	$\begin{array}{c}1\\2\\3\end{array}$	933586 933717 933920	131 203				1131857	-204
$2n(^{2}P^{\circ})3n$	3n 18	0	934633		$2p(^{2}\mathrm{P}^{\circ})4d$	4 <i>d</i> ¹ F°	3	1135953	
-1.(-)	op a		1	1	$2p(^{2}P^{\circ})4d$	$4d {}^{1}\mathrm{P}^{\circ}$	1	1137535	t

F VI—Continued

F vi-Continued

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
2s(2S)6p	6 <i>p</i> ¹ P°	1	1154428		$2p(^{2}\mathrm{P}^{\circ})5d$	5d 3D°	$\frac{1}{2}$		
$2s(^2S)6d$	6 <i>d</i> ³ D	$\frac{1}{2}$					3	1220940	
		3	1156097		$2p(^{2}P^{\circ})5d$	5 <i>d</i> ³ P°	$\begin{array}{c} 2\\ 1\end{array}$	1221541	
$2s(^2\mathrm{S})6d$	6d 1D	2	1157385				ō		
$2s(^2\mathrm{S})7p$	7 <i>p</i> ¹ P°	1	1184469		$2p(^{2}P^{\circ})5d$	$5d \ {}^{1}\mathrm{F}^{\circ}$	3	1223598	
$2s(^2S)7d$	7d 3D	1			$2p(^{2}\mathrm{P}^{\circ})5d$	5d ¹ P°	1	1224285	
	· · · ·	3	1185884		$2p(^{2}\mathrm{P}^{\circ})6p$	6 <i>p</i> ³ D	1		
$3s(^2S)7d$	7d 1D	2	1186611				$\frac{2}{3}$	1266672	
$2s(^2S)8d$	8d 3D	1			F v11 (2S ₁₅)	Limit		1267581	
		23	1205139		$2p(^{2}\mathrm{P}^{\circ})6p$	6 <i>p</i> ³ P	0		
$2p(^2\mathrm{P^o})5p$	$5p$ $^{3}\mathrm{D}$	1					$\frac{1}{2}$	1267616	
		23	1215055		$2p(^{2}\mathrm{P}^{\circ})6p$	6 <i>p</i> 1D	2	1268554	
$2p(^{3}P^{\circ})5p$	$5p$ $^{3}\mathrm{P}$	0			$2p(^{2}\mathrm{P}^{\circ})6d$	6d ³ D°	1		
		$\frac{1}{2}$	1216995				$\frac{2}{3}$	1269888	
$2p(^{2}P^{\circ})5p$	5 <i>p</i> 1D	2	1218588		$2p(^{2}\mathrm{P}^{\circ})6d$	6d 1F°	3	1271437	
$2p(^2\mathrm{P^o})5d$	$5d \ ^{1}D^{\circ}$	2	1218786		$2p(^{2}P^{\circ})7d$	7 <i>d</i> ³D°	1		1
							3	1299418	1

December 1947.

F VI OBSERVED TERMS*

$\begin{array}{c} \text{Config.} \\ 1s^2 + \end{array}$		Observed Terms	
2s ²	2s ² ¹ S		
$2s(^2\mathrm{S})2p$	$\begin{cases} 2p \ {}^{3}P^{\circ} \\ 2p \ {}^{1}P^{\circ} \end{cases}$		
2p ²	$\left\{\begin{array}{cc} 2p^{2} {}^{1}\mathrm{S} & 2p^{2} {}^{3}\mathrm{P} \\ 2p^{2} {}^{1}\mathrm{D} & 2p^{2} {}^{1}\mathrm{D} \end{array}\right.$		
	$ns (n \ge 3)$	$np (n \ge 3)$	nd $(n \geq 3)$
2s(2S)nx	$\begin{cases} 3-5s \ {}^{3}S \\ 3, 4s \ {}^{1}S \end{cases}$	3p ³ P° 3-7p ¹ P°	3-8d ³ D 3-7d ¹ D
$2p(^{2}\mathrm{P}^{\circ})nx$	$\begin{cases} 3s {}^{3}P^{\circ} \\ 3, 4s {}^{1}P^{\circ} \end{cases}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3–5d ³ P° 3–7d ³ D° 3–5d ¹ P° 3–5d ¹ D° 3–6d ¹ F°

*For predicted terms in the spectra of the Be 1 isoelectronic sequence, see Introduction.

(Li I sequence; 3 electrons)

Ground state $1s^2 2s {}^2S_{\frac{1}{2}}$

2s ²S₁ 1493656 cm⁻¹

I. P. 185.139 volts

Z=9

The analysis is by Edlén, who, in 1934, published a list of nine classified lines in the range between 86 A and 134 A. He has recently extended the analysis and has generously furnished his unpublished term list for use in the present compilation. All terms in the table have been taken from the later list, although the entries in column one are from the earlier paper.

Edlén remarks that the np ²P° and nd ²D series have been observed in the vacuum spark further than indicated in the table, but beyond n=6 the term values calculated from a Ritz formula are probably to be preferred.

REFERENCES

B. Edlén, Zeit. Phys. 89, 179 (1934). (T) (C L)

B. Edlén, unpublished material (Sept. 1947). (I P) (T)

F VII

F VII

	-	11								
Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
28	2s 2S	1/2	0			65	6s 2S	1/2	1339216	
2p	2 <i>p</i> ² P°	$1/2 \\ 1/2 \\ 1/2$	112258 113235	977		6p	6 <i>p</i> ² P°	$\left\{ \begin{array}{c} \frac{12}{12} \\ 1\frac{12}{2} \end{array} \right.$	} 1342877	
38	3s 2S	1/2	854625			6d	6 <i>d</i> ² D	$\left\{ \begin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array} \right\}$	} 1344141	
3p	3 <i>p</i> ² P°	$1\frac{1}{1}\frac{1}{1}\frac{1}{2}$	885136 885418	282		78	7s 2S	1/2	1380775	
3d	3d 2D	$1\frac{1}{2}$ $2\frac{1}{2}$	895632 895722	90		7p	7 <i>p</i> ²P°	$\left\{\begin{array}{c} \frac{1_2'}{1_{12}'}\right\}$	} 1382858	
48	48 2S	1/2	1140416			7d	7d 2D	$\left\{ \begin{array}{c} 1\frac{1}{2}\\ 2\frac{1}{2} \end{array} \right\}$	} 1383841	
4 <i>p</i>	4 <i>p</i> ² P°	$\left\{\begin{array}{c} \frac{1_2}{1_2^{\prime}}\\ 1_2^{\prime\prime}\end{array}\right.$	} 1152977			8p	8 <i>p</i> ²P°	$\begin{cases} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{cases}$) } 1408848	
4d	$4d ^{2}D$	$\begin{array}{c c} 1\frac{1}{2}\\ 2\frac{1}{2}\end{array}$	$\begin{array}{c} 1157223 \\ 1157255 \end{array}$	32		8 <i>d</i>	$8d \ ^{2}D$	{ 11/2	} 1409538	
58	58 2S	1/2	1269826					272)	
5p	5 <i>p</i> ² P°	$\left\{ \begin{array}{c} \frac{1'_2}{1'_2} \\ 1'_2 \end{array} \right.$	} 1276194			F VIII (¹ S ₀)	Limit		1493656	
5d	5d ² D	$\left\{ \begin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array} ight.$	} 1278404							
	Config. 2s 2p 3s 3p 3d 4s 4p 4d 5s 5p 5d	Config. Desig. 2s 2s ² S 2p 2p ² P° 3s 3s ² S 3p 3p ² P° 3d 3d ² D 4s 4s ² S 4p 4p ² P° 4d 4d ² D 5s 5s ² S 5p 5p ² P°	Config. Desig. J 2s 2s 2S $\frac{1}{2}$ 2p 2p 2P° $\frac{1}{2}$ 3s 3s 2S $\frac{1}{2}$ 3p 3p 2P° $\frac{1}{2}$ 3d 3d 2D $\frac{1}{2}$ 4s 4s 2S $\frac{1}{2}$ 4d 4d 2D $\frac{1}{2}$ 5s 5s 2S $\frac{1}{2}$ 5p 5p 2P° $\frac{1}{2}$ 5d 5d 2D $\frac{1}{1}$	Config.Desig.JLevel2s2s 2S $\frac{1}{2}$ 02p $2p {}^2P^{\circ}$ $\frac{1}{2}$ 1122583s3s 2S $\frac{1}{2}$ 1132353s3s 2S $\frac{1}{2}$ 8546253p $3p {}^2P^{\circ}$ $\frac{1}{2}$ 8851363d $3d {}^2D$ $\frac{1}{2}$ 8956324s $4s {}^2S$ $\frac{1}{2}$ 11404164p $4p {}^2P^{\circ}$ $\frac{1}{2}$ 11529774d $4d {}^2D$ $\frac{1}{2}$ 11572555s $5s {}^2S$ $\frac{1}{2}$ 12698265p $5p {}^2P^{\circ}$ $\frac{1}{2}$ 12761945d $5d {}^2D$ $\left\{\frac{1}{2}$ 1278404	Config.Desig.JLevelInterval2s2s 2S $\frac{1}{2}$ 02p2p 2P° $\frac{1}{12}$ 1122583s3s 2S $\frac{1}{2}$ 8546253p3p 2P° $\frac{1}{12}$ 8851363d3d 2D $\frac{1}{12}$ 8956323d3d 2D $\frac{1}{12}$ 8956324s4s 2S $\frac{1}{12}$ 11529774d4d 2D $\frac{1}{12}$ 11572235s5s 2S $\frac{1}{2}$ 12698265p5p 2P° $\frac{1}{12}$ 12761945d5d 2D $\frac{1}{12}$ 1278404	Config.Desig.JLevelIntervalEdlén2s2s 2S½002p2p 2P° $\frac{112258}{11/2}$ 9773s3s 2S½8546253p3p 2P° $\frac{112}{12}$ 3d3d 2D $\frac{112}{11/2}$ 3d3d 2D $\frac{112}{11/2}$ 4s4s 2S½1115297711529774d4d 2D $\frac{112}{11/2}$ 5s5s 2S½121/2115722332325s5p 2P° $\frac{112}{11/2}$ 12698265p5p 2P° $\frac{112}{11/2}$ 1278404	Config.Desig.JLevelIntervalEdlénConfig.2s2s 2 S½06s2p2p 2 P°½½1122589776p3s3s 2 S½8546256d3p3p 2 P°½½8851362827s3d3d 2 D1½895632907p4s4s 2 S½11629778p4d4d 2 D1½1157223328d5s5s 2 S½12698265p5p 2 P°1½5d5d 2 D $\frac{1½}{1½}$ 1278404F vm (1 S_0)	Config.Desig.JLevelIntervalEdlénConfig.Desig. $2s$ $2s$ 2 S $\frac{1}{12}$ 0 6s6s 2 S $2p$ $2p$ 2 P° $\frac{1}{12}$ 1122258 977 6p6p 2 P° $3s$ $3s$ 2 S $\frac{1}{2}$ 854625 6d6d 2 D $3p$ $3p$ 2 P° $\frac{1}{12}$ 885136 282 7s7s 2 S $3d$ $3d$ 2 D $\frac{1}{12}$ 895632 90 $7p$ $7p$ 2 P° $4s$ $4s$ 2 S $\frac{1}{2}$ 1152977 $8p$ $8p$ $8p$ $2P°$ $4d$ $4d$ 2 D $\frac{1}{12}$ 1157223 32 $8d$ $8d$ 2 D $5s$ $5s$ 2 S $\frac{1}{12}$ 1269826 $5p$ 2 P° $\frac{1}{12}$ 1276194 $5d$ $5d$ 2 D $\left\{\frac{112}{12}$ 1278404 11617223 1278404 11617223	Config. Desig. J Level Interval Edlén Config. Desig. J 2s 2s ² S $\frac{1}{2}$ 0 68 6s ² S $\frac{1}{2}$ 2p $2p^{2}P^{\circ}$ $\frac{1}{12}$ 112258 977 66p 6p ² P^{\circ} $\frac{1}{12}$ 3s 3s ² S $\frac{1}{2}$ 112258 977 6dd 6dd ² D $\frac{1}{12}$ 3s 3s ² S $\frac{1}{2}$ 854625 6dd 6dd ² D $\frac{1}{12}$ 3d 3d ² D $\frac{1}{12}$ 885136 282 7s 7s ² S $\frac{1}{2}$ 4s 4s ² S $\frac{1}{140416}$ 7d 7d ² D $\frac{1}{12}$ 4d 4d ² D $\frac{1}{12}$ 1152977 32 8d 8d ² D $\frac{1}{12}$ 5s 5s ² S $\frac{1}{2}$ 1157223 32 8d 8d ² D $\frac{1}{12}$ 5s 5s ² S $\frac{1}{2}$ 1269826 F F F F	Config. Desig. J Level Interval Edlén Config. Desig. J Level 2s 2s 28 ½ 0 6s 6s 6s 28 ½ 1339216 2p 2p ³ P° ½ 112258 977 6p 6p ² P° $\left\{\frac{112}{22}$ 1339216 3s 3s ² S ½ 854625 6d 6d ² D $\left\{\frac{112}{22}$ 1344141 3p 3p ² P° ½ 885136 282 7s 7s ² S ½ 13492175 3d 3d ² D 1½ 895632 90 7p 7p ² P° $\left\{\frac{112}{2}$ 1382858 4s 4s ² S ½ 1140416 7d 7d ² D $\left\{\frac{112}{2}$ 1382858 4s 4s ² S ½ 1157223 32 8d 8d ² D $\left\{\frac{112}{2}$ 1408848 4d 4d ² D 1½ 1157223 32 8d 8d ² D $\left\{\frac{112}{2}$ 1409538 5s

September 1947.

(HeI sequence; 2 electrons)

Ground state 1s² S₀

$1s^{2}$ ¹S₀ 7693400 ± 800 cm⁻¹

Flemberg has classified three lines between 13 A and 16 A as the first three members of the singlet series. Tyrén has also observed the first two members of this series and classified a line at 16.951 A as the intersystem combination $1s^{2} {}^{1}S_{0} - 2p {}^{3}P_{1}^{\circ}$. Tyrén's value of the limit is quoted here. The unit, 10^3 cm⁻¹, has here been changed to cm⁻¹.

Edlén has extended the analysis and has generously furnished his unpublished manuscript containing absolute values of the triplet terms extrapolated along the He I isoelectronic sequence. The relative positions of the singlet and triplet terms thus determined confirm the intersystem combination reported by Tyrén. The 2s³S-2p³P° combination has apparently not been observed, but Edlén regards the extrapolation from the irregular doublet law as very reliable. Brackets are used in the table to denote extrapolated values not yet confirmed by observation.

REFERENCES

F. Tyrén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 12, No. 1, 25 (1940). (I P) (T) (C L)

H. Flemberg, Ark. Mat. Astr. Fys. (Stockholm) 28A, No. 18 p. 34 (1942). (T) (C L)

B. Edlén, unpublished material (Sept. 1947). (T)

		F VIII			F VIII						
Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval		
1s ²	1s ² 1S	0	0		1s 3d	3d 3D	3, 2, 1	[6912360]			
1s 2s	28 3S	1	[5829920]		1s 3p	3p ¹P°	1	6916590			
1s 2p	2p ³P°	$\begin{array}{c} 0\\ 1\\ 2\end{array}$	[5899150] 5899310 [5900260]	[160] [950]	1s 4p	4p 1P°	1	7256680			
1s 2p	2 <i>p</i> ¹ P°	1	5949900		F 1x (2S3)	Limit		7693400			

September 1947.

Z=9

I. P. 953.60 ± 0.10 volts

Ne I

10 electrons

Ground state $1s^2 2s^2 2p^6 {}^{1}S_0$

2p⁶ ¹S₀ 173931.7 cm⁻¹

I. P. 21.559 volts

Z = 10

The present list has been compiled from an unpublished manuscript kindly furnished by Edlén, who has made a study of the terms of this spectrum and interpreted them with the aid of present atomic theory. His term array is based on that published by Meggers and Humphreys in 1933, although he has revised and extended their list. Three place values are from measures made with the interferometer. His predicted values of five f-levels are entered in brackets in the table.

Edlén has determined the new values of the series limits quoted here.

The classical work by Paschen on Ne 1 forms the basis of all subsequent investigations. His notation has, therefore, been retained in column one of the table, except for his fractional numerical prefixes for levels from an s-configuration, m=1.5, 2.5, etc., which are listed as 1, 2, etc., in accord with the 1933 term table mentioned above. The letters U, V, X, Y, Z adopted later when configurations involving *f*-electrons were found, are also entered in this column. Eleven levels in the latter group have *J*-values fixed by the observed combinations listed in the 1933 reference below. These *J*-values are entered in italics in the table.

Edlén suggested that a pair-coupling notation be adopted for Ne-like spectra to take into account the departure from *LS*-coupling. According to Shortley, *LS*-designations can be significantly assigned in only a few cases, in particular, for the following groups of levels:

Paschen	Desig.	Paschen	Desig.	Paschen	Desig.
$(n-2)s_5 (n-2)s_4 (n-2)s_3 (n-2)s_2$	ns ³ P ² ns ³ P ² ns ³ P ³ ns ¹ P ²	2p ₁₀ 2p ₉ 2p ₈ 2p ₇ 2p ₆	$\begin{array}{c} 3p \ {}^{3}\mathrm{S}_{1} \\ 3p \ {}^{3}\mathrm{D}_{3} \\ 3p \ {}^{3}\mathrm{D}_{2} \\ 3p \ {}^{3}\mathrm{D}_{1} \\ 3p \ {}^{3}\mathrm{D}_{1} \\ 3p \ {}^{1}\mathrm{D}_{2} \end{array}$	$2p_5$ $2p_4$ $2p_3$ $2p_2$ $2p_1$	$3p {}^{1}P_{1}$ $3p {}^{3}P_{2}$ $3p {}^{3}P_{0}$ $3p {}^{3}P_{1}$ $3p {}^{1}S_{0}$

Consequently, the *jl*-coupling notation in the general form suggested by Racah is here introduced. The present arrangement has been suggested by Shortley, who has made a detailed investigation of the theoretical arrangement of the "pairs," to be used as a guide in preparing the present table. Pairs are separated only the case of np [½], where the interval is large.

Twenty lines of Ne1 in the range between 5852 A and 7032 A have been measured relative to the primary standard, and are regarded as accurate to eight figures. They have been adopted by the International Astronomical Union as secondary standards of wavelength.

REFERENCES

- F. Paschen, Ann. der Phys. [4] 60, 405 (1919). (T) (C L)
- W. Grotrian, Phys. Zeit. 21, 638 (1920). (G D)
- F. Paschen, Ann. der Phys. [4] 63, 201 (1920). (T) (C L)
- E. Back, Ann. der Phys. [4] 76, 330 (1925). (Z E)
- N. Ryde, Zeit. Phys. 59, 836 (1929). (T) (C L)
- K. Murakawa and T. Iwama, Sci. Papers Inst. Phys. Chem. Research (Tokyo) 13, No. 254, 289 (1930). (Z E)
- W. F. Meggers and C. J. Humphreys, Bur. Std. J. Research 10, 429, RP540 (1933). (T) (C L)
- J. C. Boyce, Phys. Rev. 46, 378 (1934). (I P) (T) (C L)
- W. F. Meggers, J. Research Nat. Bur. Std. 14, 490, RP781 (1935). (C L)
- Trans. Intern. Astr. Union 5, 86 (1935).
- Y. Ishida and T. Tamura, Sci. Papers Inst. Phys. Chem. Research (Tokyo) 29, 9 (1936). (T) (C L)
- P. Jacquinot, Compt. Rend. 202, 1578 (1936). (Z E)
- R. Ritschl und H. Schober, Phys. Zeit. 38, 6 (1937). (I S)
- C. J. Humphreys, J. Research Nat. Bur. Std. 20, 24, RP1061 (1938). (T) (C L)
- J. B. Green and J. A. Peoples, Jr., Phys. Rev. 54, 602 (1938). (Z E)
- G. Racah, Phys. Rev. 61, 537 (L) (1942).
- B. Edlén, Ark. Mat. Astr. Fys. (Stockholm) 29A, No. 32, p. 2 (1943). (C L)
- J. B. Green, Phys. Rev. 64, 151 (1943). (Z E)
- B. Edlén, unpublished material (March 1948). (I P) (T)
- G. Shortley, unpublished material (Aug. 1947).

Ne I

Ne	I
----	---

Paschen	Config.	Desig.	J	Level	Obs. g	Paschen	Config.	Desig.	J	Level	Obs. g
· ·	2p ⁶	2 <i>p</i> ⁶ ¹ S	0	0		$\begin{array}{c} 3s_1^{\prime\prime\prime\prime}\\ 3s_1^{\prime\prime\prime}\end{array}$	$2p^{5}(^{2}\mathrm{P}^{\circ}_{\mathscr{V}_{2}})3d$	3d' [2½]°	2 3	162410. 617 162412. 1 3 8	0. 781 1. 125
$1s_5$ $1s_4$	$2p^{5}(^{2}\mathrm{P}^{\circ}_{1})3s$	3s [1½]°	$\frac{2}{1}$	134043.790 134461.237	$\begin{array}{c} 1. \ 503 \\ 1. \ 464 \end{array}$	$\begin{array}{c} 3s_1''\\ 3s_1'\end{array}$	"	3d' [1½]°	$2 \\ 1$	162421. 944 162437. 642	1. 242 0. 752
$\frac{1s_3}{1s_2}$	$2p^{5}(^{2}\mathrm{P}_{5}^{\circ})3s$	3s' [½]°	0 1	134820. 591 135890. 670	1. 034	$3p_{10}$	$2p^5(^2\mathrm{P^o_{133}})4p$	4p [½]	1	162519. 850	1. 929
$2p_{10}$	$2p^{5}(^{2}\mathrm{P}_{1\mathrm{H}}^{\circ})3p$	3 p [½]	1	148259. 746	1. 984	$3p_9 \\ 3p_8$	"	$4p \ [2^{1/2}_{2}]$	$\frac{3}{2}$	162832. 683 162901. 093	$ \begin{array}{c} 1.328\\ 1.112 \end{array} $
${2 p_9 \over 2 p_8}$	"	$3p \ [21/_2]$	$3 \\ 2$	149659.000 149826.181	$\begin{array}{c} 1. \ 329 \\ 1. \ 137 \end{array}$	$rac{3p_7}{3\mathrm{p}_6}$	"	$4p \ [1\frac{1}{2}]$	$\frac{1}{2}$	163014. 600 163040. 330	0. 974 1. 360
$\frac{2p_7}{2p_8}$	"	$3p \ [1\frac{1}{2}]$	$\frac{1}{2}$	150123.551	0.669	$3p_3$	"	4p [½]	0	163403. 281	
$2p_3$	"	3p [½]	0	150919. 391		$egin{array}{c} 3p_5\ 3p_4 \end{array}$	$2p^5(^2\mathrm{P}^{\mathrm{o}}_{rac{1}{2}2})4p$	$4p' [1\frac{1}{2}]$	$1 \\ 2$	163659. 248 163710. 581	0. 685 1. 184
${2p_5 \over 2p_4}$	$2p^5(^2\mathrm{P}^{\mathrm{o}}_{\mathrm{H}})3p$	$3p' [1\frac{1}{2}]$	$1 \\ 2$	150774. 072 150860. 468	0. 999 1. 30 1	$egin{array}{c} 3p_2\ 3p_1\ \end{array}$	"	4p' [½]	1 0	163709. 699 164287. 864	1. 397
${2p_2\atop2p_1}$	"	3p' [½]	1 0	151040. 413 152972. 697	1. 340	385 384	$2p^5(^2\mathrm{Pi}_{24})5s$	5s [1½]°	$2 \\ 1$	165830. 144 165914. 756	1. 492 1. 207
2s5 2s4	$2p^{5}(^{2}\mathrm{P}^{\circ}_{1})4s$	48 [1½]°	$\frac{2}{1}$	158603.070 158797.954		383 382	$2p^{5}(^{2}\mathrm{P}^{\circ}_{\mathcal{Y}_{2}})5s'$	5s' [½]°	0 1	166608. 309 166658. 484	1. 295
$2s_3 \\ 2s_2$	$2p^5(^2\mathrm{P}^{\mathrm{o}}_{\mathrm{H}})4s$	4s' [½]°	0 1	159381. 94 159536. 57		$4d_6 \\ 4d_5$	$2p^5(^2\mathrm{Pis})4d$	4d [½]°	0 1	166969.639 166977.321	1. 391
$rac{3d_6}{3d_5}$	$2p^5(^2\mathrm{P}_{15}) 3d$	3d [½]°	0 1	161511.590 161526.134	1. 397	$\begin{array}{c} 4d_4'\\ 4d_4 \end{array}$	"	4d [3½]°	$\frac{4}{3}$	167002.007 167003.104	1. 251 1. 040
$\begin{array}{c} 3d'_4\\ 3d_4 \end{array}$	"	3d [3½]°	4 3	161592.308 161594.081	1. 249 1. 034	$4d_3 \\ 4d_2$	"	4d [1½]°	$2 \\ 1$	167013. 535 167028. 957	1. 322 0. 812
$egin{array}{c} 3d_3\ 3d_2\end{array}$	"	3d [1½]°	$2 \\ 1$	161609. 222 161638. 581	1. 356 0. 860	$\begin{array}{c} 4d_1''\\ 4d_1' \end{array}$	"	$4d \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\frac{2}{3}$	167049.580 167050.639	0. 990 1. 248
$\begin{array}{c} 3d_1''\\ 3d_1' \end{array}$	"	$3d \ [2\frac{1}{2}]^{\circ}$	2 3	161701. 623 161703. 413	0. 948 1. 249	$4s_1''' \\ 4s_1'''$	$2p^5(^2\mathrm{P}^{\mathrm{o}}_{\mathrm{22}})4d$	4d' [2½]°	2 3	167796.939 167797.865	0. 783 1. 116

Ne I—Continued

Ne I—Continued

Paschen	Config.	Desig.	J	Level	Obs. g	Paschen	Config.	Desig.	J	Level	Obs. g
4s''_	$2p^5(^2\mathrm{P}^{\circ}_{\!$	4d' [1½]°	2	167798.914	1. 230	$5p_{3}$	$2p^{5}(^{2}\mathrm{P}_{1_{2}}^{*})6p$	6p [½]	0	169978. 70	
481			1	107809.722	0. 191	$5p_5\ 5p_4$	$2p^5(^2\mathrm{P}^{\mathrm{o}}_{\mathrm{M}})6p$	$6p' [1\frac{1}{2}]$	$\frac{1}{2}$	170586.94 170599.19	
4X	$2p^5(^2\mathrm{P}_{15})4f$	$4f [1\frac{1}{2}]$	1, 2	167054.59		$5p_2$	"	$6p' [\frac{1}{2}]$	1	170580.35	
4V	,,	$4f [4\frac{1}{2}]$	4, 5	[167062.5]		$5p_1$			0	170691. 32	
4Y	"	$4f \ [2\frac{1}{2}]$	2, 3	167071.08		585	$2p^{5}(^{2}P_{116})7_{8}$	78 [11/2]°	2	170534 694	
4Z	11	$4f [3\frac{1}{2}]$	3, 4	[167079. 1]		584	$\mathbf{F} = \mathbf{V} \mathbf{F}$		ī	170559.032	
4U	$2p^{5}(^{2}\mathrm{P}_{\mathcal{Y}_{2}}^{\circ})4f$	$4f' [2\frac{1}{2}]$	2, 3	167848. 67		$5s_3 \\ 5s_2$	$2p^{5}(^{2}\mathrm{P}^{\circ}_{\mathcal{Y}_{2}})7s$	78' [½]°	0 1	171314.84 171325.997	1. 315
$4p_{10}$	$2p^{5}({}^{2}\mathrm{P}_{1^{1_{2}}})5p$	5p [½]	1	167451.44		6.7	9-5/2D:)6d	62 [1/10		100050 050	
${4p_9\over 4p_8}$	"	$5p \ [21/2]$	$\frac{3}{2}$	167561.03 167593.18			$2p^{\circ}(^{2}\Gamma_{1_{2}}) 0a$		1	170850. 252	1. 389
${4p_7\over 4p_6}$	"	$5p \ [1\frac{1}{2}]$	$1 \\ 2$	167641.53 167650.60		$\begin{array}{c} 6d'_4\\ 6d_4\end{array}$		$6d [3\frac{1}{2}]^{\circ}$	$\frac{4}{3}$	170860. 447 170860. 850	
$4p_{3}$		$5p [\frac{1}{2}]$	0	167869. 17		$\begin{array}{c} 6d_3\\ 6d_2\end{array}$	"	$6d \ [1\frac{1}{2}]^{\circ}$	$\begin{array}{c} 2\\ 1\end{array}$	170864.959 170869.927	1. 331 0. 783
${4p_5\over 4p_4}$	$2p^{5}(^{2}\mathrm{P}_{ m y2}^{\circ})5p$	$5p' [1\frac{1}{2}]$	$\begin{array}{c}1\\2\end{array}$	$\begin{array}{c} 168357.\ 44\\ 168380.\ 69\end{array}$		$\begin{array}{c} 6d_1^{\prime\prime} \\ 6d_1^{\prime} \end{array}$,,	6d [2½]°	2 3	170874. 840 170875. 216	0. 971
${4 p_2 \atop 4 p_1}$	"	$5p' [\frac{1}{2}]$	1 0	168360. 57 168588. 83		$\begin{array}{c} 6s_1^{\prime\prime\prime\prime}\\ 6s_1^{\prime\prime\prime}\end{array}$	$2p^{5}(^{2}\mathrm{P}^{\circ}_{\mathcal{Y}})6d$	$6d' \ [2^{1/2}_{/2}]^{\circ}$	$\frac{2}{3}$	171644. 139 171644. 434	
$\begin{array}{c} 4s_5 \\ 4s_4 \end{array}$	$2p^{5}(^{2}\mathrm{P_{1}^{s}})6s$	6s [1½]°	21	168926. 626 168969. 328	$ 1.500 \\ 1.184 $	$\begin{array}{c} 6s_1^{\prime\prime} \\ 6s_1^{\prime} \end{array}$	11	$6d' \ [1\frac{1}{2}]^{\circ}$	$\begin{array}{c} 2\\ 1\end{array}$	171641.951 171646.87	0. 857
$4s_{3}$	$2p^{5}(^{2}\mathrm{P}_{\frac{1}{2}}^{\circ})6s$	6s' [½]°	0	169707.899	1 919	6X	$2p^{5}(^{2}\mathrm{P}_{1/2}^{\circ})6f$	$6f [1\frac{1}{2}]$	1, 2	170877.72	
$4s_2$			1	169729.602	1. 313	6V	"	$6f [4\frac{1}{2}]$	4, 5	170879.95	
$5d_6$	$2p^{5}(^{2}\mathrm{P_{1}^{*}})5d$	5d [½]°	· 0	169484.98	1 000	6Y	, ,,	$6f [2\frac{1}{2}]$	2, 3	170882.65	
$5d_5$			1	169490. 414	1. 383	6Z	"	$6f [3\frac{1}{2}]$	3, 4	170884.95	
$5d'_4$ $5d_4$	<i>"</i>	$5d [3\frac{1}{2}]^{\circ}$	$\frac{4}{3}$	169503.612 169504.258	1. 093		$2p^{5}(^{2}\mathrm{P}^{\circ}_{rac{1}{2}})6f$	$6f' [3\frac{1}{2}]$	3, 4	171661.87	
$5d_3$	"	$5d \ [1\frac{1}{2}]^{\circ}$	2	169510.540	1. 298	6U		$6f' [2\frac{1}{2}]$	2, 3	171661.66	
$5d_2$			1	169518.977	0. 791	$6p_{10}$	$2p^{5}(^{2}\mathrm{P_{i_{2}}^{5}})7p$	7p [½]	1	171011. 31	
$5d_1''$ $5d_1'$	"	$5d \ [2\frac{1}{2}]^{\circ}$	$\frac{2}{3}$	169528.241 169528.862		$6p_9$ $6p_8$	11	$7p~[2^{1/2}]$	$\frac{3}{2}$	171034.80 171045.65	
$5s_1''' 5s_1'''$	$2p^5(^2\mathrm{P}_{\Sigma}^{\circ})5d$	$5d' [2\frac{1}{2}]^{\circ}$	$\frac{2}{3}$	170291.291 170291.650		$6p_7$ $6p_6$	"	$7p \ [1\frac{1}{2}]$	$\frac{1}{2}$	171059.96 171062.18	
$5s_1''$ $5s_1'$	"	$5d' [1\frac{1}{2}]^{\circ}$	2 1	170290.934 170297.98	$ \begin{array}{c c} 1. 251 \\ 0. 809 \end{array} $	$6p_3$,,	$7p [\frac{1}{2}]$	0	171150.81	
5X	$2p^{5}(^{2}\mathrm{Pi}_{5})5f$	$5f [1\frac{1}{2}]$	1, 2	169532. 22		${6 p_5 \atop 6 p_4}$	$2p^5(^2\mathrm{P}^\circ_{\mathrm{M}})7p$	$7p' [1\frac{1}{2}]$	$1 \\ 2$	171824. 2 171830. 0	
5V	"	$5f [4\frac{1}{2}]$	4, 5	[169536. 3]		$6p_2$	"	$7p' [\frac{1}{2}]$	1	171832. 7	
5Y	"	$5f [2\frac{1}{2}]$	2, 3	169540.88		$6p_1$			0	171915.46	
$5\mathbf{Z}$	11	$5f [3\frac{1}{2}]$	3, 4	[169545. 0]		6s5	$2p^{5}(^{2}\mathrm{P_{1_{2}}^{s}})8s$	8s [1½]°	2	171475. 295	
$5\mathrm{U}$	$2p^{5}(^{2}\mathrm{P}^{\circ}_{5})5f$	5f' [2½]	2, 3	170319. 71		684			1	171491.464	
$5p_{10}$	$2p^5(^2\mathrm{Pi}_{25})6p$	6p [½]	1	169750. 11		$6s_3$ $6s_2$	$2p^{5}(^{2}\mathrm{P}_{5})8s$	88' [½]	$\begin{array}{c} 0 \\ 1 \end{array}$	172256.31 172263.720	
$5p_9 \\ 5p_8$	"	$6p \ [2\frac{1}{2}]$	$3 \\ 2$	169799.15 169816.60		$\begin{array}{c} 7d_{6} \\ 7d_{5} \end{array}$	$2p^5(^2\mathrm{P}^\circ_{1\!$	7d [½]°	$\begin{array}{c} 0 \\ 1 \end{array}$	171671.14 171673.90	
$5p_{7} \\ 5p_{6}$	"	6p [1½]	$1 \\ 2$	169841.45 169845.79		$\begin{vmatrix} 7d'_4 \\ 7d_4 \end{vmatrix}$	"	7d [3½]°	4 3	171677. 455 171677. 714	

78

Ne I-Continued

Ne I—Continued

Paschen	Config.	Desig.	J	Level	Obs. g	Paschen	Config.	Desig.	J	Level	Obs. g
$7d_3$ $7d_2$	$2p^5(^2\mathrm{P}^{\mathrm{s}}_{\mathrm{1}\mathrm{b}\mathrm{i}})7d$	7d [1½]°	$2 \\ 1$	171683.331 171684.902		8U	$2p^5(^2\mathrm{P}^\circ_{\!$	$\left\{\begin{array}{l} 8f' & [3\frac{1}{2}] \\ 8f' & [2\frac{1}{2}] \end{array}\right.$	3, 4 2, 3	$\Big\}$ 172996. 63	
$7d_1^{\prime\prime}\ 7d_1^{\prime\prime}$	"	$7d \ [2\frac{1}{2}]^{\circ}$	$\frac{2}{3}$	171687.268 171687.518		$8p_{10}$	$2p^{5}(^{2}\mathrm{P}_{1}^{\circ})^{9}p$	9p [½]	1	172270. 4	
$7s_1''' 7s_1'''$	$2p^5(^2\mathrm{P}^{\mathrm{o}}_{\mathrm{S}})7d$	$7d' \ [2^{1/2}]^{\circ}$	$2 \\ 3$	172460.407 172460.602		$8p_9 \\ 8p_8$	"	9 <i>p</i> [2½]	$\frac{3}{2}$	172284. 2 172288. 8	
$7s''_{1}$ $7s'_{1}$	"	7d' [1½]°	$2 \\ 1$	172459.85 172463.02		8p7,6	"	9p [1½]	1, 2	172293. 4	
7X	$2p^5(^2\mathrm{P}_{126}^\circ)7f$	$7f [1\frac{1}{2}]$	1, 2	171688. 57		$8p_3$	$2p^{5}(^{2}\mathrm{P}_{\mathrm{H}}^{\circ})9p$	9 $p [\frac{1}{2}]$ 9 $p' [\frac{1}{2}]$	0 1	172329. 3	
7V	11	7f [4½]	4, 5	171689.95		8p4			2	173067.4	
7Y	,,	7f [23/3]	2.3	171692.07		8p1	,,,	9p' [½]	1 0	173099. 3	
77.	11	7f [31/4]	34	171693 32							
7U	$2p^5(^2\mathrm{P}^{\mathrm{o}}_{\mathrm{H}})7f$	$\begin{cases} 7f' [3\frac{1}{2}] \\ 7f' [91/1] \end{cases}$	3, 4	172471. 45		885 884	$2p^{5}(^{2}\mathrm{P}_{1})^{\circ}10s$	10s [1½]°	$\begin{array}{c} 2\\ 1\end{array}$	172477.303 172483.84	
$7p_{10}$	$2p^{5}(^{2}\mathrm{P}^{\circ}_{1 sc{1}_{2}})8p$	8p [½]	2, 3	171754. 2		883 882	$2p^{5}({}^{2}\mathrm{P}_{\mathrm{H}}^{\circ})10s$	10s' [½]°	0 1	173257.24 173261.41	
$7p_{9} 7p_{8}$	"	8p [2½]	$\frac{3}{2}$	171789. 0 171793. 7		$9d_6$ $9d_5$	$2p^{5}(^{2}\mathrm{P}^{\circ}_{1})9d$	9d [½]°	0 1	172566.85 172567.88	
$7p_7 \\ 7p_6$	"	8p [1½]	$1 \\ 2$	171800. 3 171805. 1		$9d'_4$ $9d_4$	"	9d [3½]°	$\frac{4}{3}$	172569.840 172570.064	
$7p_3$	"	8p [½]	0	171833. 0		$9d_3$ $9d_2$	"	9d [1½]°	$\begin{array}{c} 2\\ 1\end{array}$	172571.37 172572.82	
$7p_{4}$	$2p^5(^2\mathrm{P}_{arsigma}^{\circ})8p$	$8p' [1\frac{1}{2}]$	$\frac{1}{2}$	172575. 4		$9d''_1$ $9d'_1$	"	9d [2½]°	2	172574.12 172574.22	
$7p_2 \\ 7p_1$	"	8p' [½]	$\begin{array}{c} 1\\ 0\end{array}$	172564. 8 172601. 7		$9s_1''' 9s_1'''$	$2p^{5(^2\mathrm{P}^{\circ}_{\!$	9d' [2½]°	23	173351.45 173351.50	
785 784	$2p^{5}(^{2}\mathrm{P}^{\circ}_{1 angle_{2}})9s$	98 [1½]°	2_1	172073.375 172082.895		9s'1 9s'1	,,	9d' [1½]°	21	173351.49 173352.75	
$7s_3$ $7s_2$	$2p^{5}(^{2}\mathrm{P}^{\circ}_{\mathrm{H}})$ 98	9s' [½]°	$\begin{array}{c} 0 \\ 1 \end{array}$	172854.12 172858.96		9V	$2p^{5}(^{2}\mathrm{P}^{\circ}_{1\!$	$9f [4\frac{1}{2}]$	4, 5	172575. 83	
				(100000.000		9Y	11	9f [2 ¹ / ₂]	2, 3	172576. 8	
$rac{8d_6}{8d_5}$	$2p^{5}(^{2}\mathrm{P}^{\circ}_{1})$ 8d	$8d [\frac{1}{2}]^{\circ}$	$\begin{array}{c} 0 \\ 1 \end{array}$	172202.33 172203.86		9Z	11	9f [3½]	3, 4	172577. 3	
$\begin{array}{c} 8d'_4\\ 8d_4 \end{array}$	"	8d [3½]°	$\frac{4}{3}$	172207.110 172207.278		$9p_{10}$	$2p^{5}(^{2}\mathrm{P}_{15}^{\circ})10p$	10p [½]	1	172621. 0	
$\begin{array}{c} 8d_3 \\ 8d_2 \end{array}$	"	8d [1½]°	$\frac{2}{1}$	172208.77 172211.10		$9 p_9 \\ 9 p_8$,,,	$10p \ [2\frac{1}{2}]$	$\frac{3}{2}$	172625. 2	
$\begin{array}{c} 8d_1^{\prime\prime}\ 8d_1^{\prime\prime}\end{array}$	"	8d [2½]°	$\frac{2}{3}$	172213.094 172213.249		9 <i>p</i> _{7,6}	"	$10p \ [1\frac{1}{2}]$	1, 2	172632. 2	
8s'''' 8s'''	$2p^{5}(^{2}\mathrm{P}^{\circ}_{\mathrm{H}}) 8d$	8d' [2½]°	$\frac{2}{3}$	172989.185 172989.263		$9p_{3}$	//	10 <i>p</i> [½]	0	172667. 1	
$\frac{8s''_{1}}{8s'_{1}}$		8d' [1½]°	2_1	172989.06 172990.96		985 984	$2p^5(^2\mathrm{P}^\circ_{1_{2_2}})11s$	11s [1½]°	$\begin{array}{c} 2\\ 1\end{array}$	172761.79 172766.55	
8X	$2p^{5}(^{2}\mathrm{P}_{156}^{\circ})8f$	8 <i>f</i> [1½]	1, 2	172214.66		983 982	$2p^{5}(^{2}\mathrm{P}_{\mathrm{5}}^{\circ})11s$	11s' [½]°	0 1	173542.00 173545.28	
8V	11	8f [41/3]	4, 5	172215. 54?		10 <i>d</i> s	$2p^{5}(^{2}P_{1}) 10d$	10d [½]°	0	172826.54	
8Y	,,	8f [2½]	2, 3	[172216. 7]		10d5	r (= 172) = 5 00	(/ 2)	ĺ	172827.42	
8Z	"	8f [3½]	3, 4	172217.64							

Ne I—Continued

Ne I—Continued

Paschen	Config.	Desig.	J	Level	Obs. g	Paschen	Config.	Desig.	J	Level	Obs. g
$10d'_{4} \\ 10d_{4}$	$2p^{5}({}^{2}\mathrm{P_{1}})^{\circ}_{2}10d$	10d [3½]°	4 3	172829. 11 172829. 20		$\frac{11s_{1}^{\prime\prime\prime\prime}}{11s_{1}^{\prime\prime\prime}}$	$2p^5(^2\mathrm{P}^\circ_{32})11d$	11d' [2½]°	$\frac{2}{3}$	173802. 27 173802. 33	
$\begin{array}{c} 10d_3 \\ 10d_2 \end{array}$	"	10d [1½]°	$\frac{2}{1}$	172829. 87 172831. 28		$11s'_1$	"	11d' [1½]°	$\begin{array}{c} 2 \\ 1 \end{array}$	17 3 802.75	
${10d_1''\over 10d_1'}$	"	$10d \ [2\frac{1}{2}]^{\circ}$	$\frac{2}{3}$	172832. 20 172832. 24		1185 1184	2p ⁵ (² P _{11/2})13s	13s [1½]°	2	173128.02 173130 76	
$\frac{10s_{1}^{\prime\prime\prime\prime}}{10s_{1}^{\prime\prime\prime\prime}}$	$2p^{5}(^{2}\mathrm{P}^{\circ}_{\mathrm{H2}})10d$	$10d' \ [2\frac{1}{2}]^{\circ}$	$\frac{2}{3}$	173610.45 173610.52		1104				110100.10	
$\frac{10s''_1}{10s'_1}$	"	10d' [1½]°	$2 \\ 1$	173610.50 173611.54		$12d_5$	$2p^{\mathfrak{s}}(^{2}\mathrm{P}_{\mathfrak{i}})^{12d}$	$\begin{bmatrix} 12d & [\frac{1}{2}]^{\circ} \end{bmatrix}$	$\begin{array}{c} 0\\ 1\end{array}$	173165.56	
10 -	2n ⁵ (2P:1)11n	11n [11]	12	172873 0		$\begin{array}{c}12d_4'\\12d_4\end{array}$	"	$12d \ [3\frac{1}{2}]^{\circ}$	$\frac{4}{3}$	173166.46 173166.43	
10 / 7,6		11p [1/2]	1, 2	112015. 5		$12d_3$	"	12d [1½]°	$\begin{array}{c} 2\\ 1\end{array}$	173167.03	
10s5 10s4	$2p^{5}(^{2}\mathrm{P_{1}^{5}})12s$	$12s [1\frac{1}{2}]^{\circ}$	$\frac{2}{1}$	172970. 51 172974. 3.'		$12d''_1 \\ 12d'_1$	"	$12d \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\frac{2}{3}$	173168. 14 173168. 43	
$11d_6$ $11d_5$	$2p^{5}(^{2}\mathrm{P}_{1}^{*})11d$	11d [½]°	$\begin{array}{c} 0 \\ 1 \end{array}$	173019. 37 173019. 86		$13d_{5}$	$2p^{5}(^{2}\mathrm{P}_{122}^{\circ})$ 13 d	13d [½]°	0	173279.46	
$11d'_4$ $11d_4$	"	11d [3½]°	$\frac{4}{3}$	173020. 86 173020. 82		$13d'_{4}$	"	13d [3½]°	4	173280.05	
$11d_3$	"	11d [1½]°	$\frac{2}{1}$	173022. 02		1004			0	170200.12	
${11d_1''\over 11d_1'}$	"	11d [2½]°	$\frac{2}{3}$	173022.95 173023.27			Ne 11 (2P _{11/2})	Limit		173931.7	
							Ne 11 (² P ^o _{1/2})	Limit		174712. 2	

March 1948.

Ne i Observed Levels*

Config. 1s ² 2s ² +		Observed Terms											
2p ⁶	2p ⁶ ¹ S	2p ⁶ ¹ S											
	$ns \ (n \ge 3) \qquad np \ (n \ge 3)$												
$2p^5(^2\mathrm{P^o})nx$	$\begin{cases} 3-13s & {}^{3}\mathrm{P}^{\circ} \\ 3-11s & {}^{1}\mathrm{P}^{\circ} \end{cases}$	${3p\ {}^3{ m S}}\ {3p\ {}^1{ m S}}$	${3p{}^3{ m P}}\over{3p{}^1{ m P}}$	${3p\ ^3\mathrm{D}}\ {3p\ ^1\mathrm{D}}$									
	<i>jl</i> -Coupl	ing Notation											
		Observed Pa	airs										
	ns $(n \ge 3)$	$np (n \ge 3)$	$nd (n \ge 3)$	$nf(n \ge 4)$									
$2p^5(^2\mathrm{Pi}_{3\!$	3–13s [1½]°	$\begin{array}{c} 3-10p[\ \ 1\!/2]\\ 3-10p[2\!1\!/2]\\ 3-11p[1\!1\!/2] \end{array}$	$\begin{array}{c} 3-13d \ [\frac{1}{2}]^{\circ} \\ 3-13d \ [3\frac{1}{2}]^{\circ} \\ 3-12d \ [1\frac{1}{2}]^{\circ} \\ 3-12d \ [2\frac{1}{2}]^{\circ} \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$2\mathrm{p}^{5}(^{2}\mathrm{P}^{\circ}_{\mathrm{H}})$ nx'	3–11 <i>s′</i> [½]°	$\begin{array}{ccc} 3- & 9p'[1\frac{1}{2}] \\ 3- & 9p'[& \frac{1}{2}] \end{array}$	$3-11d'[2\frac{1}{2}]^\circ\ 3-11d'[1\frac{1}{2}]^\circ$	$\begin{array}{rrr} 6-&8f'[3\frac{1}{2}]\\ 4-&8f'[2\frac{1}{2}] \end{array}$									

*For predicted levels in the spectra of the Ne 1 isoelectronic sequence, see Introduction.

(F 1 sequence; 9 electrons)

Ground state $1s^2 2s^2 2p^5 {}^{2}\mathrm{P}^{\circ}_{1\frac{1}{2}}$

$2p^{5} \, {}^{2}\mathrm{P}^{\circ}_{1\frac{1}{2}} \, 331350 \, \,\mathrm{cm^{-1}}$

The terms are from Boyce, who has extended the analysis by further observations in the ultraviolet, and improved the earlier term values. The series limit is estimated from series of two members, the 3s and 4s terms.

Intersystem combinations connecting the doublet and quartet terms have been observed. The values of the 3d' ²G and 3d' ²S terms have been corrected to agree with the observed combinations.

REFERENCES

K. T. Compton and J. C. Boyce, J. Franklin Inst. 205, 511 (1928). (T) (C L) (G D)

T. L. de Bruin and C. J. Bakker, Zeit. Phys. 69, 19 (1931). (T) (C L) (Z E)

J. C. Boyce, Phys. Rev. 46, 378 (1934). (I P) (T) (C L)

B T		-
	^	TT
	с.	
	-	_

Ne II

Config.	Desig.	J	Level	Interval	Obs. g	Config.	Desig.	J	Level	Interval	Obs. g
2s ² 2p ⁵	2p ⁵ ² P°		0 782 217050	-782		2s ² 2p ⁴ (³ P)3d	3 <i>d</i> 4D	$\begin{array}{c c} 3\frac{1}{2} \\ 2\frac{1}{2} \\ 1\frac{1}{2} \\ 1\frac{1}{2} \\ 1\frac{1}{4} \end{array}$	$\begin{array}{c} 279139. \ 1\\ 279220. \ 6\\ 279326. \ 8\\ 279425. \ 1\end{array}$	-81.5 -106.2 -98.3	
2s ² 2p ⁴ (3P)3s	2p 5 3s 4P	$\begin{array}{c} 2\frac{1}{2}\\ 1\frac{1}{2}\\ \frac{1}{2}\\ \frac{1}{2}\end{array}$	219133. 0 219650. 8 219949. 9	-517.8 -299.1	1. 60 1. 73 2. 67	2s ² 2p ⁴ (³ P)3d	3 <i>d</i> 4F	$ \begin{array}{c c} & 4\frac{1}{2} \\ & 3\frac{1}{2} \\ & 2\frac{1}{2} \\ & 1\frac{1}{4} \end{array} $	280174. 4 280702. 5 281028. 1 280940. 6	-528.1 -325.6 78.5	
2s ² 2p ⁴ (³ P)3s	38 ²₽	$\begin{array}{c c} 1\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array}$	$\begin{array}{c} 224089.\ 3\\ 224701.\ 8\end{array}$	-612.5	1. 33 0. 67	2s ² 2p ⁴ (³ P)3d	$3d$ $^2\mathrm{F}$	$ \begin{array}{c} 172 \\ 3\frac{1}{2} \\ 2\frac{1}{2} \end{array} $	280349. 0 280264. 0 280799. 3	- 535. 3	
2s ² 2p ⁴ (³ P)3p	3p 4P°	$2\frac{1}{2}$ $1\frac{1}{2}$ $\frac{1}{2}$	246194.8 246417.4 246599.9	-222.6 -182.5	$ \begin{array}{c} 1. \ 60 \\ 1. \ 73 \\ 2. \ 67 \end{array} $	$2s^2 2p^4(^3\mathrm{P}) 3d$	$3d$ $^2\mathrm{D}$	$\begin{array}{c c} & -72 \\ & 2\frac{1}{2} \\ & 1\frac{1}{2} \end{array}$	280271. 0 280475. 6	-204. 6	
2s ² 2p ⁴ (¹ D)3s	3s′ 2D	$2\frac{1}{2}$ $1\frac{1}{2}$	246396.5 246400.0	-3.5	1. 20 0. 80	$2s^2 2p^4(^{3}P)3d$	3d 4P	1/2 1/2 21/2	$\begin{array}{c} 280770. \ 2\\ 280991. \ 7\\ 281173 \ 5\end{array}$	$\begin{array}{c} 221. \ 5\\ 181. \ 8\end{array}$	
2s ² 2p ⁴ (³ P)3p	3p ⁴D°	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	249110.8 249448.0 249697.7 249841.8	-337. 2-249. 7-144. 1	$\begin{array}{c} 1.\ 43\\ 1.\ 37\\ 1.\ 20\\ 0.\ 00 \end{array}$	2s ² 2p ⁴ (³ P)3d	3d ² P	$\frac{1}{1}$	281173. 5 281334. 5 281722. 3	387. 8	0. 70 1. 25
2s ² 2p ⁴ (³ P)3p	$3p$ $^2\mathrm{D}^{\mathrm{o}}$	$2\frac{1}{2}$ $1\frac{1}{2}$	251013.3 251524.7	-511.4	1. 20 0. 80	$2s^2 2p^4(^{3}P)4s$	48 ⁴ P	$\begin{array}{c c} 2\frac{1}{2} \\ 1\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array}$	$\begin{array}{c} 282000. \ 0 \\ 282376. \ 7 \\ 282682. \ 2 \end{array}$	-376.7 -305.5	
$2s^2 \ 2p^4(^3P) \ 3p$	3p ² S°	1/2	252800.8		1.96	2s ² 2p ⁴ (³ P)4s	4 <i>s</i> ² P	$1\frac{1}{2}$	283323. 7 283896 5	- 572. 8	
2s ² 2p ⁴ (³ P)3p 2s ² 2p ⁴ (³ P)3p	3p 4S° 3p 2P°	$1\frac{1}{2}$ $1\frac{1}{2}$	252956.0 254167.0	-127.0	1. 33	$2s^2 2p^4(^3\mathrm{P})4d$	4d ² D	$\begin{array}{c} 2\frac{1}{2} \\ 1\frac{1}{2} \\ 1\frac{1}{2} \end{array}$	302321? 302452?	-131	
2s ² 2p ⁴ (¹ D)3p	3 <i>p′</i> ²F°	$\begin{array}{c c} & \frac{1}{2} \\ & 2\frac{1}{2} \\ & 3\frac{1}{2} \\ & 3\frac{1}{2} \end{array}$	254294.0 274366.9 274411.3	44. 4	0. 71 0. 86 1. 14	2s ² 2p ⁴ (³ P)4f	4 <i>f</i> ⁴D°	$3\frac{1}{2}$ $2\frac{1}{2}$ $1\frac{1}{2}$	302830.6 302845.5 302905.2	-14.9 -59.7 -86.0	
$2s^2 2p^4(^1D)3p$	3p' ² P°	$1\frac{1}{\frac{1}{2}}$	276278.6 276514.1	-235.5	1. 33 0. 67	$2s^2 2p^4(^{3}P) 4d$	4 <i>d</i> ² P	$\begin{cases} 1\frac{1}{2} \\ 1\frac{1}{2} \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $	302884?		-
2s ² 2p ⁴ (1S)3s	38'' 2S	1/2	276678. 0		2. 00	$2s^2 2n^4(^{3}P) 4f$	4f 4F°	41/2	302905.8		
$2s^2 2p^4(^1D) 3p$	3p′ 2D°	$\begin{array}{c c} 1\frac{1}{2}\\ 2\frac{1}{2}\\ 2\frac{1}{2} \end{array}$	277327.6 277346.1	18. 5	0. 80 1. 20	20 2p (1) 4j	1, 1	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	303530.8 303826.6 303511.6	-625.0 -295.8 315.0	

Z = 10

I. P. 41.07 volts

Ne II—Continued

Ne II—Continued

Config.	Desig.	J	Level	Interval	Obs. g	Config.	Desig.	J	Level	Interval	Obs. g
$2s^2 \ 2p^4(^3{ m P}) \ 4f$	4f 4G°	$5\frac{1}{2}$ $4\frac{1}{2}$ 21/	303475. 7 303465. 1 808701 1	10.6 - 236.0		$2s^2 2p^4({}^1\mathrm{D}) 4s$	4s' 2D	$\left\{ egin{array}{c} 2^{1\!\!\!/_2} \\ 1^{1\!\!\!/_2} \end{array} ight.$	306018?		
		$2^{72}_{1/2}$	303602.3	98. 8		$2s^2 \ 2p^4({}^1\mathrm{D}) 3d$	$3d'$ $^{2}\mathrm{D}$	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	306244.8 306689.8	445. 0	
$2s^2 \ 2p^4(^3\mathrm{P}) \ 4f$	4f ² D°	${1^{1/_2}_{1/_2}\over 2^{1/_2}}$	303465.4 303882.3	416. 9		$2s^2 2p^4({}^1\mathrm{D}) 3d$	3d' ² F	$3^{1/2}_{21/2}$	307992. 2 308103 3	-111. 1	
$2s^2 \ 2p^4({}^1\mathrm{D}) 3d$	3d′ 2G	${41/_2} \over {31/_2}$	$\begin{array}{c} 305366. \ 2\\ 305367. \ 2\end{array}$	-1.0		$2s^2 2p^4({}^1\mathrm{D}) 3d$	3d' 2S	$\frac{1}{2}$	3 09049. 7		
$2s^2 2p^4({}^1 m S) 3p$	$3p^{\prime\prime}{}^{_{2}}\mathrm{P}^{\circ}$	$1^{1/_2}_{1/_2}$	305399. 2 305409. 3	-10.1	1.33 0.67	$2s^2 2p^4 ({}^1 m S) 3d$	$3d^{\prime\prime}{}^{2}\mathrm{D}$	$2\frac{1}{2}$ $1\frac{1}{2}$	327954.7 327968.2	-13.5	
$2s^2 2p^4 (^1\mathrm{D}) 3d$	3d' ² P	$1\frac{1}{2}$	305568.9 305584.2	-15.3							
		72				Ne 111 (³ P ₂)	Limit		331350		

March 1947.

Ne II Observed Terms*

$\begin{array}{c} \text{Config.} \\ 1s^2 + \end{array}$	Observed Terms										
2s ² 2p ⁵ 2s 2p ⁶	$2p^{5}$ $^{2}\mathrm{P}^{\circ}$ $2p^{6}$ $^{2}\mathrm{S}$	•									
	$ns \ (n \ge 3) \qquad \qquad np \ (n \ge 3)$										
$2s^2 \ 2p^4(^3{ m P}) nx$	$\left\{\begin{array}{c cccc} 3, 4s & {}^{4}\mathrm{P} \\ 3, 4s & {}^{2}\mathrm{P} \end{array} & \begin{array}{c ccccc} 3p & {}^{4}\mathrm{S}^{\circ} & 3p & {}^{4}\mathrm{P}^{\circ} & 3p & {}^{4}\mathrm{D}^{\circ} \\ 3p & {}^{2}\mathrm{S}^{\circ} & 3p & {}^{2}\mathrm{P}^{\circ} & 3p & {}^{2}\mathrm{D}^{\circ} \end{array}\right.$										
$2s^2 \ 2p^4({}^1\mathrm{D}) nx'$	3, $4s' {}^{2}D$ $3p' {}^{2}P^{\circ} 3p' {}^{2}D^{\circ} 3p'$	²F°									
$2s^2 \ 2p^4(^1\mathrm{S})nx^{\prime\prime}$	3s'' ²S 3p'' ²P°										
	$nd \ (n \ge 3) \qquad \qquad nf \ (n \ge 3)$	4)									
2s ² 2p ⁴ (³ P)nx	$\begin{cases} 3d \ {}^{4}P \ 3d \ {}^{4}D \ 3d \ {}^{4}F \ 3, 4d \ {}^{2}P \ 3, 4d \ {}^{2}D \ 3d \ {}^{2}F \ \end{cases} \qquad \begin{array}{c} 4f \ {}^{4}D^{\circ} \ 4f \ {}^{4}f^{\circ} D^{\circ} \ 4f \ {}^{4}f^{\circ} D^{\circ} \ {}^{4}f \ {}^{2}D^{\circ} \ {}^{4}f \ {}^{4}f \ {}^{4}f \ {}^{2}D^{\circ} \ {}^{4}f \ {}^{4}f \ {}^{4}f \ {}^{2}D^{\circ} \ {}^{4}f \ {}^{$	⁴ F° 4 <i>f</i> ⁴G°									
$2s^2 2p^4(^1\mathrm{D})nx'$	3d' ² S 3d' ² P 3d' ² D 3d' ² F 3d' ² G										
$2s^2 2p^4$ (1S) $nx^{\prime\prime}$	3 <i>d''</i> ² D										

*For predicted terms in the spectra of the F $\scriptstyle\rm I$ isoelectronic sequence, see Introduction.

(O I sequence; 8 electrons)

Ground state $1s^2 2s^2 2p^4 {}^3P_2$

 $2p^4 {}^{3}P_2 514148 \text{ cm}^{-1}$

This spectrum is incompletely analyzed. The terms have been taken from two references: triplet and quintet terms, de Bruin (1935); and singlet terms, Boyce (1934). The latter are located with respect to the ground state by means of the nebular lines at 3343 A, 3868.74 A, and 3967.51 A. The relative positions of the quintet terms and the ionization potential are estimated, and the uncertainty, x, may be considerable.

REFERENCES

V. v. Keussler, Zeit. Phys. 85, 1 (1933). (C L)

J. C. Boyce, Phys. Rev. 46, 378 (1934). (I P) (T) (C L)

T. L. de Bruin, Zeeman Verhandelingen p. 413 (Martinus Nÿhoff, The Hague, 1935). (I P) (T)

J. C. Boyce, Mon. Not. Roy. Astr. Soc. 96, 690 (1936). (C L)

Ne III

Ne III

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
2s ² 2p ⁴	2p4 3P	$2 \\ 1 \\ 0$	0 650 927	-650 - 277	$2s^2 \ 2p^3({}^4\mathrm{S}^\circ) 3d$	3d ³ D°	1 2 3	398192.70 398196.83 398210.74	4. 13 13. 91
$2s^2 \ 2p^4$	$2p^{4-1}$ D	2	25841		$2s^2 \ 2p^3({}^4\mathrm{S}^{\circ}) 3d$	3d ⁵D°	4	398946.98+x	-1. 53
$2s^2 \ 2p^4$	$2p^{4}$ 1S	0	55747					398948.01+x 398952.34+x 398955.75+x	-3.83 -3.41
$2s \ 2p^5$	2 <i>p</i> ⁵ ³P°	$egin{array}{c} 2 \\ 1 \\ 0 \end{array}$	204292 204879 205204	$-587 \\ -325$	$2s^2 2p^3(^2D^\circ)3p$	3p' ³ P	$ \begin{array}{c} 1\\ 0\\ 2 \end{array} $	398986. 64	05.02
$2s$ $2p^5$	$2p^{5}$ ¹ P°	1	289479				$\begin{array}{c} 1\\ 0\end{array}$	399082.57 399125.12	-95.93 -42.55
$2s^2 2p^3({}^4S^\circ)3s$ $2s^2 2p^3({}^4S^\circ)3s$	3 ₈ ⁵S° 38 ³S°	2 1	314148 + x 319444,90		$2s^2 2p^3(^2\mathrm{P^o})3p$	3 <i>p''</i> ³ D		409847.53 409845.08 409855.23	2.45 -10.15
$2s^2 \ 2p^3({}^4\mathrm{S}^\circ)3p$	3p 5P	1	352662.05+x	20.80	$2s^2 2p^3(^2P^\circ)3p$	3p'' 3S	1	410134. 72	
		$\frac{2}{3}$	$\begin{array}{r} 352692. \ 93+x \\ 352745. \ 91+x \end{array}$	52. 98	2s ² 2p ³ (² P ^o)3 ₇	3p'' ³ P	0 1	412293. 59 412313. 11	19. 52
$2s^2 \ 2p^3(^2D^\circ) 3s$	38′ 3D°	3 2	353148.00 353177.16	-29.16 -20.24			2	412320. 21	7.10
$2s^2 2p^3(^4S^\circ) 3p$	3p 3P	$\frac{1}{2}$	353197.40 356776.52		$2s^2 2p^3(^2D^3)3d$	3d' ³ F ^o	$\begin{array}{c}2\\3\\4\end{array}$	435527.90 435568.00 435620 80	40. 10 52. 80
		1 0	356766. 20 356776. 52	-10.32 -10.32	$2s^2 \ 2p^3(^2\mathrm{D^o}) 3d$	3 <i>d′</i> ³G°	5	436561.35	- 26. 99
$2s^2 \; 2p^3(^2\mathrm{D^\circ}) 3s$	3s′ 1D°	2	357930				3	436611.56	-23. 22
2s ² 2p ³ (² P ^o)3s	38'' ³ P°	$\begin{array}{c}2\\1\\0\end{array}$	374434.00 374460.75 374477.66	-26.75 -16.91	$2s^2 2p^3(^2\mathrm{D}^\circ)3d$	3 <i>d′</i> ³D°	$\begin{array}{c}3\\2\\1\end{array}$	436844.63 436914.39 436959.49	$ \begin{array}{c c} -69.76 \\ -45.10 \end{array} $
2s ² 2p ³ (² P ^o)3s	3s'' ¹ P°	1	379834		$2s^2 \ 2p^3 (^2 \mathrm{D}^\circ) 3d$	3 <i>d′</i> ³₽°	2	439586.00	
$2s^2 \ 2p^3(^2\mathrm{D^o}) 3p$	3p′ 3D	1	389058. 24	11. 13				439707.81 439760.35	-52.54
		3	389139. 05	69. 68	$2s^2 2p^3(^2\mathrm{D^o})3d$	3d' ³ S°	1	440064.90	
2s ² 2p ³ (² D ^o)3p	3p′ 3F	$2 \\ 3 \\ 4$	$\begin{array}{c} 391414. \ 02 \\ 391429. \ 94 \\ 391450. \ 31 \end{array}$	15. 92 20. 37	Ne iv (4S _{11/2})	Limit		514148	
February 194	7.					1			

Z = 10

I. P. 64 ± 1 volts

T. L. de Bruin, Zeit. Phys. 77, 505 (1932). (T) (C L)

$\begin{array}{c} \text{Config.} \\ 1s^2 + \end{array}$		Observed Terms										
2s ² 2p ⁴	${2p^{4}}$ 1S	2p4 3P	2p4 1D									
2s 2p ⁵	{	$2p^5$ $^3\mathrm{P^o}$ $2p^5$ $^1\mathrm{P^o}$										
		ns $(n \ge 3)$		$np (n \ge 3)$								
$2s^2 2p^3(^4\mathrm{S}^\circ)nx$	$\begin{cases} 3s & {}^{5}S^{\circ} \\ 3s & {}^{3}S^{\circ} \end{cases}$			$egin{array}{ccc} 3p & {}^5\mathrm{P} \ 3p & {}^3\mathrm{P} \end{array}$								
$2s^2 2p^3 (^2\mathrm{D}^\circ) nx'$	{		3s′ ³D° 3s′ 1D°	3p' ³ P 3p' ³ D 3p' ³ F								
$2s^2 2p^3 (^2\mathrm{P^o}) nx^{\prime\prime}$	{	3s'' ³ P° 3s'' ¹ P°		3p'' ³ S 3p'' ³ P 3p'' ³ D								
			nd (n	$n \ge 3$)								
2s ² 2p ³ (4S°)nx			$\begin{array}{ccc} 3d & {}^{5}\mathrm{D}^{\mathrm{o}} \ 3d & {}^{3}\mathrm{D}^{\mathrm{o}} \end{array}$									
$2s^2 \ 2p^3(^2\mathrm{D^\circ})nx'$	3d′ ³S°	3 <i>d′</i> ³₽°	$3d'$ $^{3}\mathrm{D}^{\circ}$	3d' ³ F° $3d'$ ³ G°								

*For predicted terms in the spectra of the O_I isoelectronic sequence, see Introduction.

Ne IV

(N 1 sequence; 7 electrons)

Ground state $1s^2 2s^2 2p^3 {}^4S^{\circ}_{144}$

$2p^{3} {}^{4}S^{\circ}_{1\frac{1}{2}}$ 783880 cm⁻¹

The analysis is by Paul and Polster, who have extended the earlier work by Boyce and published 111 classified lines in the interval from 140 A to 786 A. From series they derive the limit 781714 cm⁻¹ and place the level $2p^{3}$ ²D²₂ at 38540 cm⁻¹ above the ground state zero. No intersystem combinations have been observed.

On the basis of later analyses of the spectra in this sequence a slight adjustment in these values has been made by Robinson. The doublet terms have been increased by 2410 cm⁻¹ and the limit by 2166 cm⁻¹ to fit the isoelectronic sequence data. The later values have been adopted in the table. The uncertainty x, may be considerable.

REFERENCES

F. W. Paul and H. D. Polster, Phys. Rev. 59, 426 (1941). (I P) (T) (C L) H. A. Robinson, unpublished material (March 1948). (I P) (T)

Z = 10

I. P. 97.16 volts

Ne IV

Ne IV

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
2s ² 2p ³	$2p^3$ 4S°	11/2	0		$2s^2 2p^2(^1\mathrm{D})3d$	3 <i>d′</i> ² S	1/2	616482+x	
2s² 2p³	$2p^3$ $^2\mathrm{D}^\circ$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	40950 + x 40975 + x	-25	$2s^2 2p^2(^{3}\text{P})4s$	4s 4P	$\begin{array}{c c} \frac{1}{2} \\ 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}$	$633465 \\ 633790 \\ 634413$	325 623
$2s^2 \ 2p^3$	$2p^3$ ² P°	1/2 1/2 1/2	62157 + x 62167 + z	10	$2s^2 \ 2p^2(^3\mathrm{P}) 4s$	48 ² P		635866 + x 626475 + x	609
2s 2p ⁴	2 <i>p</i> ⁴ ⁴ P	$\begin{array}{c c} 2\frac{1}{2} \\ 1\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array}$	$\frac{183860}{184477}\\184799$	-617 - 322	$2s^2 2p^2(^3\mathrm{P})4p$	4 <i>p</i> 4D°	172 1/2 1/2 1/2 21/	641908 642184	276 288
2s 2p ⁴	$2p^4$ ² D	$2\frac{1}{2}$ $1\frac{1}{2}$	$\begin{array}{c c} 253807 + x \\ 253823 + x \end{array}$	-16			$3^{272}_{1/2}$	642934	462
2s 2p4	$2p^4$ ² S	1/2	299351+x		$2s^2 2p^2(^3\mathrm{P})4p$	4 <i>p</i> 4P°	$ \begin{array}{c c} \frac{1}{2} \\ 1\frac{1}{2} \\ 21 \end{array} $	643239 643672 648025	433 303
2s 2p4	2p4 2P	$\begin{array}{ c c c c } & 1\frac{1}{2} \\ & \frac{1}{2} \\ & \frac{1}{2} \end{array}$	319751 + x 320452 + x	-701	$2s^2 \ 2p^2(^3\mathrm{P})4p$	4 <i>p</i> 4S°	$1\frac{1}{2}$	648060	
$2s^2 \ 2p^2(^3\mathrm{P}) 3s$	3s 4P	$\begin{array}{c c} \frac{1/2}{11/2} \\ 21/2 \\ 21/2 \end{array}$	$\begin{array}{r} 478701 \\ 479079 \\ 479651 \end{array}$	378 572	$2s^2 2p^2(^1\text{D})4s$	4s' 2D	$\left\{\begin{array}{c} 2\frac{1}{2} \\ 1\frac{1}{2} \\ 1\frac{1}{2} \end{array}\right.$	$\Big\} 664124+x$	
$2p^5$	$2p^5$ $^2\mathrm{P}^{\circ}$		484623 + x 485585 + x	-962	$2s^2 \ 2p^2(^3\mathrm{P}) 4d$	4d ² F	$2\frac{1}{2}$ $3\frac{1}{2}$	670595 + x 671252 + x	657
2s² 2p²(3P)3s	3s 2P	$\frac{\frac{1}{2}}{\frac{1}{2}}$	488215 + x 488917 + x	702	$2s^2 2p^2(^3\mathrm{P})4d$	4a 4P	$\begin{array}{c c} 2\frac{1}{2} \\ 1\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array}$	$\begin{array}{c} 671402 \\ 672102 \\ 672676 \end{array}$	$-700 \\ -574$
$2s^2 \ 2p^2(^1\text{D}) 3s$	3s' 2D	$\left\{ egin{array}{c} 2^{1\!\!\!/_2} \\ 1^{1\!\!\!/_2} \end{array} ight.$	$\Big\}$ 511411+x		2s 2p ³ (⁵ S°)3d	3 <i>d'''</i> 4D°	$\begin{cases} \frac{1}{2} \\ to \\ 3^{1} \\ \end{pmatrix}$	672799	
$2s^2 \ 2p^2(^3P) 3p$	3 <i>p</i> 4P°	$\begin{array}{c c} & \frac{1_{2}}{1_{2}^{1_{2}}} \\ & 1_{2}^{1_{2}} \\ & 2_{2}^{1_{2}} \end{array}$	524391 524676 525017	$\begin{array}{c} 285\\ 341 \end{array}$	$2s^2 2p^2(^3\mathrm{P})4d$	4d ² D	$ \begin{array}{c c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array} $	673427 + x 673587 + x	160
$2s^2 \ 2p^2(^3P) \ 3p$	3p 4S°	11/2	532978		2s ² 2p ² (³ P)5s	58 4P		693106 602717	611
$2s^2 \ 2p^2({}^1S)3s$	3s'' 2S	1/2	551712 + x				$2\frac{172}{2\frac{1}{2}}$	694353	636
$2s^2 \ 2p^2(^3\mathrm{P}) 3d$	3 <i>d</i> ² P	$1\frac{1}{2}$	575968 + x 576353 + x	- 385	$2s^2 \ 2p^2(^1\mathrm{D}) 4d$	4d' ² F	$\left\{\begin{array}{cc} 2\frac{1}{2}\\ 3\frac{1}{2}\\ 3\frac{1}{2} \end{array}\right.$	$\Big\} 697855+x$	
$2s^2 \ 2p^2 ({}^1\mathrm{S}) 3d$	3 <i>d''</i> 2D	$\left\{ \begin{array}{c} 1^{1\!\!\!\!/_2} \\ 2^{1\!\!\!\!/_2} \end{array} \right.$	$\Big\}$ 576915+x		$2s^2 2p^2(^1\text{D})4d$	4 <i>d'</i> ² D	$\left\{\begin{array}{c} 1\frac{1}{2}\\ 2\frac{1}{2}\\ 2\frac{1}{2}\end{array}\right.$	$\Big\} 699622+x$	
$2s^2 2p^2(^3\mathrm{P})3d$	3 <i>d</i> 4P	$\begin{vmatrix} 2\frac{1}{2} \\ 1\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{vmatrix}$	579307 579626 579737	$-319 \\ -111$	$2s^2 2p^2(^1D)4d$	4 <i>d′</i> ² P	$\left\{\begin{array}{c} \frac{1/2}{1/2} \\ 1\frac{1}{2} \end{array}\right.$	$\Big\}$ 701223+x	
$2s^2 2p^2(^3P)3d$	3d ² F	$2\frac{1}{2}$	579375 + x 580095 + x	720	$2s^2 2p^2({}^{1}\mathrm{S})4d$	4 <i>d''</i> ² D	$\left\{\begin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}\right.$	$\Big\} \qquad 709460+x$	
		072	0000012		$2s^2 2p^2(^1D) 5s$	5s' 2D	$\left\{ \begin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array} \right\}$	724690+x	
$2s^2 \ 2p^2(^{3}P) \ 3d$	3d ² D	$\begin{array}{c} 1^{1/2}\\ 2^{1/2} \end{array}$	586685 + x 586918 + x	233	$2s^2 2p^2(^1D) 5d$	5 <i>d′</i> ² F	$\begin{cases} 2\frac{1}{2} \\ 2\frac{1}{2} \end{cases}$	$}{740607+x}$	
$2s \ 2p^{3}({}^{5}\mathrm{S}^{\circ})3s$	3s''' 4S°	1½	588021				(11/		
$2s^2 \ 2p^2(^1\mathrm{D}) 3d$	3d' ² F	$\left\{ egin{array}{c} 2^{1\!\!\!/_2} \\ 3^{1\!\!\!/_2} \end{array} ight.$	$\Big\} 605417 + x$		$2s^2 2p^2(^1D)6s$	6 <i>s'</i> ² D	$\left\{ \begin{array}{c} 1^{72} \\ 2^{1\!/_2} \end{array} \right.$	754597+x	
$2s^2 \ 2p^2(^1\mathrm{D}) 3d$	3d' ² D	$\left\{ egin{array}{c} 1^{1\!\!\!\!/_2} \\ 2^{1\!\!\!\!/_2} \end{array} ight.$	$\Big\} 609118+x$		Ne v (3P ₀)	Limit		783880	
$2s^2 2p^2({}^1\mathrm{D})3d$	3 <i>d′</i> ² P	$1/2 \\ 1/2 \\ 1/2$	612668 + x 612781 + x	113					

March 1948.

Config. $1s^2+$					Observed 7	ſerms					
$2s^2 2p^3$	$\left\{egin{matrix} 2p^3 & {}^4\mathrm{S}^{o} \ \end{array} ight.$	$2p^3$ $^2\mathrm{P}^{o}$	$2p^3$ $^2\mathrm{D}^{\circ}$								
2s 2p ⁴	$\left\{_{2p^4 \ ^2\mathrm{S}} ight.$	${2p^4}{}^4{ m P} \over {2p^4}{}^2{ m P}$	$2p^4$ ² D								
$2p^5$		$2p^5 \ ^2\mathrm{P}^{\circ}$									
		ns $(n \ge 3)$		$np (n \ge 3)$			$nd \ (n \ge 3)$				
2s ² 2p ² (³ P)nx	{	3–5s ⁴ P 3, 4s ² P		3, 4p ⁴ S°	3, 4 <i>p</i> 4P°	4 <i>p</i> 4D°		3, 4 <i>d</i> 4P 3 <i>d</i> 2P	3 , 4d	$^{2}\mathrm{D}$	3, 4 <i>d</i> ² F
$2s^2 2p^2({}^1\mathrm{D})nx'$			3-6s' 2D				3 <i>d′</i> 2S	3, 4 <i>d′</i> ² P	3 ,4d'	²D	3-5d' ² F
$2s^2 \ 2p^2({}^1\mathrm{S})nx''$	3s'' 2S								3 , 4 <i>d</i> ′′	²D	
$2s \ 2p^{3}(^{5}\mathrm{S}^{\circ})nx'''$	3s''' 4S°		1						$3d^{\prime\prime\prime}$	′ 4D°	

*For predicted terms in the spectra of the N I isoelectronic sequence, see Introduction.

Ne v

(C I sequence; 6 electrons)

Ground state 1s² 2s² 2p² ³P₀

 $2p^{2} {}^{3}P_{0}$ 1019950 cm⁻¹

Paul and Polster have classified a total of 56 lines of Ne v in the range 118 A to 572 A, as transitions among 47 energy levels. The absolute value of $2p^{2} {}^{3}P_{0}$ is calculated from the $nd {}^{3}P^{\circ}$ and $nd {}^{3}D^{\circ}$ series, in each of which two members have been observed.

The singlet and triplet terms are connected by the intersystem lines $2p^2 {}^{3}P_{2,1}-2p^2 {}^{1}D_2$ observed in the spectra of gaseous nebula, as given by Bowen.

No intersystem combinations connecting the quintet terms with the rest have been observed, as indicated by the uncertainty x in the table. Paul and Polster estimate from isoelectronic sequence data that the term $2p^3 \, {}^{5}S_{2}^{\circ}$ is $86700 \pm 300 \, \text{cm}^{-1}$ above the ground state. From later data on this sequence Robinson places the value at $88842 \, \text{cm}^{-1}$. The later value is entered in brackets and has been used in the present compilation for all quintet terms.

REFERENCES

I. S. Bowen, Rev. Mod. Phys. 8, 68 (1936). (C L)

F. W. Paul and H. D. Polster, Phys. Rev. 59, 428 (1941). (I P) (T) (C L)

H. A. Robinson, unpublished material (March 1948). (T)

Z = 10

I. P. 126.4 volts

Ne V

Ne V

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
$2s^2 2p^2$	2p ² ³ P	$\begin{array}{c} 0 \\ 1 \\ 2 \end{array}$	$\begin{array}{r} 0\\ 414\\ 1112 \end{array}$	414 698	$2s^2 \ 2p(^2\mathrm{P^o}) 3d$	3d ³D°	$\begin{array}{c}1\\2\\3\end{array}$	698231 698382 698735	151 353
$2s^2 \ 2p^2$	$2p^2$ ¹ D	2	30294		$2s^2 \ 2p(^2\mathrm{P^o}) 3d$	3d 3P°	2	701765	-309
2s ² 2p ²	$2p^2$ $^1\mathrm{S}$	0	63900					702459	-385
2s 2p ³	$2p^3$ $^5\mathrm{S}^{\mathrm{o}}$	2	[88842]+x		$2s^2 \ 2p(^2\mathrm{P^o}) 3d$	3d ¹ P°	1	702412	
28 2p ³	$2p^3\ {}^3\mathrm{D}^{o}$	3	175834	-71	$2s^2 \ 2p(^2\mathrm{P^o}) 3d$	3d 1F°	3	709956	
0.0.3	02 2709	1	175927	-22	$2s \ 2p^2(^4{ m P}) 3s$	38 3P	0 1	719350 719527 720011	177 484
28 2p°	2p3 3P3	$\begin{bmatrix} 2, 1\\ 0 \end{bmatrix}$	208157 208193	-36	0.10 (200) (4 200		720011	
$2s$ $2p^3$	$2p^3$ ¹ D°	2	270564		$2s^2 2p(^2\mathrm{P}^3) 4s$	48 ³ P ³	0, 1, 2	795279	
2s 2p ³	$2p^3$ $^3\mathrm{S}^{o}$	1	279365		$2s \ 2p^2(^4P)3d$	3d P	$\begin{vmatrix} 3\\2\\1 \end{vmatrix}$	799115 + x 799286 + x 799493 + x	$-171 \\ -207$
$2s$ $2p^3$	$2p^3 \ ^1 ext{P}^{\circ}$	1	303812		$2s^2 2p(^2P^\circ)4s$	4s 1P°	1	805284	
$2p^{4}$	2p4 3P	$\begin{array}{c} 2\\ 1\\ 0\end{array}$	$\begin{array}{r} 412681 \\ 413466 \\ 413803 \end{array}$	$-785 \\ -337$	$2s 2p^2(^4P)4s$	4s 5P	1, 2, 3	822976 + x	
$9_{2}^{2} 9_{2} (2D^{2}) 9_{2}$	2. 3D0	0	506020		$2s^2 \ 2p(^2\mathrm{P^o}) 4d$	4 <i>d</i> ¹ D°	2	83862 3	
28° 2p(°1') 38	98 °I		596250	3 96 8 66	$2s^2 \ 2p(^2\mathrm{P^o}) 4d$	4d ³ D°	1, 2, 3	842020	
$\Omega_{a^2} \Omega_{m}(^{2}\mathbb{D}^{2}) \Omega_{a}$	9° 1D°	1	001402		$2s^2 \ 2p(^2\mathrm{P^o})4d$	4 <i>d</i> ³ P°	2, 1, 0	842914	
28 ² 2p(² P ²)38	08 P	1	005251		$2s^2 2p(^2P^\circ)4d$	$4d$ $^{1}F^{\circ}$	3	847207?	
$2s^2 \ 2p(^2\mathrm{P^o}) 3d$	3d ¹ D°	2	690691		$2s \ 2p^2({}^4\mathrm{P})4d$	4 <i>d</i> 5P	3, 2, 1	865282 + x	
$2s \ 2p^2(^4{ m P}) 3s$	3s ⁵P	$1 \\ 2$	697507 + x 698059 + x	552 453					
		3	698512 + x	100	Ne vi $(^{2}P_{\frac{1}{2}}^{\circ})$	Limit		1019950	

March 1948.

Nev Observed Terms*

$\begin{array}{c} \text{Config.} \\ 1s^2 + \end{array}$			Obser	ved Terms		
$2s^2 2p^2$	$\Big\{_{2p^2}_{^1\!\mathrm{S}}$	$2p^2$ $^3\mathrm{P}$	$2p^2$ ¹ D			
$2s \ 2p^3$	$\left\{egin{smallmatrix} 2p^3 \ {}^5\mathrm{S}^{ullet}\ 2p^3 \ {}^3\mathrm{S}^{ullet} \end{matrix} ight.$	$rac{2p^3}{2p^3} rac{{}^3\mathrm{P}^{o}}{{}^1\mathrm{P}^{o}}$	${2p^3}{}^3{ m D^o}\ {2p^3}{}^1{ m D^o}$			
2p ⁴		$2p^4$ $^3\mathrm{P}$:
		ns $(n \ge 3)$			nd $(n \ge 3)$	
$2s^2 2p(^2\mathrm{P^o})$ nx	{	3, 4s ³ P° 3, 4s ¹ P°		3, 4d ³ P° 3d ¹ P°	3, 4d ³ D° 3, 4d ¹ D°	3, 4d ¹ F°
$2s \ 2p^2({}^4\mathrm{P})nx$	{	3, 4s ⁵ P 3s ³ P		3, 4d ⁵P		

*For predicted terms in the spectra of the C1 isoelectronic sequence, see Introduction.

Ground state $1s^2 2s^2 2p {}^2\mathbf{P}^{\circ}_{\mathcal{V}}$

 $2p \, {}^{2}\mathrm{P}^{\circ}_{12} \, \mathbf{1274000 \pm 1000 \ cm^{-1}}$

This spectrum is incompletely analyzed. Paul and Polster have classified 23 lines in the range from 110 A to 562 A. They have estimated the limit and ionization potential from isoelectronic data. No intersystem combinations have been observed but the uncertainty x is approximately known from their estimated value of $2p^2 \, {}^4P$ (entered in brackets in the table).

REFERENCE

F. W. Paul and H. D. Polster, Phys. Rev. 59, 429 (1941). (I P) (T) (C L)

Ne vi

Ne	V

						•			
Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
$2s^2(1S)2p$	2p ² P°	$1/2 \\ 1/2 \\ 1/2 \\$	0 1316	1316	2s 2p(3P°)3s	38 4P°	$\begin{cases} \frac{1/2}{to}\\ 2^{1/2} \end{cases}$	} 834113+x	
2s 2p ²	$2p^2$ ${}^4\mathrm{P}$	$ \begin{cases} \frac{1/2}{10} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{cases} $	$\left.\right\} \qquad [99300]+x$		$2s$ $2p(^{3}P^{o})3p$	3 <i>p</i> ² P	$\begin{cases} \frac{1}{2} \\ 1\frac{1}{2} \\ 1\frac{1}{2} \end{cases}$	} 878852	
$2s \ 2p^2$	$2p^2$ $^2\mathrm{D}$	$2\frac{1}{2}$ $1\frac{1}{2}$	$\frac{178998}{179020}$	-22	2s 2p(3P°)3p	3p ² S	1/2	900408	
$2s \ 2p^2$	$2p^2$ ² S	1/2	232587		$2s \ 2p(^{3}\mathrm{P^{o}}) 3p$	3p ² D	$\left\{ egin{array}{c} 1^{1\!\!\!\!/2} \\ 2^{1\!\!\!\!/2} \end{array} ight.$	} 906373	
2 s 2p ²	$2p^2$ ² P	$1^{1/2}_{1/2}$ $1^{1/2}_{1/2}$	$\frac{249292}{250112}$	820	2s 2p(3P°)3d	3 <i>d</i> 4D°	$\begin{cases} \frac{1}{2} \\ to \\ \frac{31}{4} \end{cases}$) 924791÷x	
$2s^2({}^1 m S)3s$	3s 2S	1⁄2	722610				0/2	,	
$2s^2(^1\mathrm{S})3p$	3 <i>p</i> 2P°	$1/2 \\ 11/2$	763096 763385	289	Ne vii (¹ S ₀)	Limit		1274000	
$2s^2(^1\mathrm{S})3d$	3 <i>d</i> 2D	$\left\{\begin{array}{c} 1^{1\!\!\!/_2}_{2^{1\!\!\!/_2}}\\ 2^{1\!\!\!/_2}\end{array}\right.$	} 816405						

October 1946

Z = 10

I. P. 157.91 ± 0.12 volts

SODIUM

Na I

11 electrons

Ground state $1s^2 2s^2 2p^6 3s {}^2S_{1/2}$

3s ²S_{1/2} 41449.65 cm⁻¹

Thackeray has observed the ²P° series in absorption to n=73. His values are used for this series for n=4 to 59,* and for the ²D series for n=8 to 13.

Meissner and Luft have observed selected lines with an interferometer. Their results, including observed intervals of the 3-6d 2D terms (the four-place entries in the table) and improved absolute values of the 3-7s 2S, 3p 2P° and 3-7d 2D terms, have been used.

From infrared observations Rood and Sawyer have extended the $nf^{2}F^{\circ}$ series from n=5to n=11, except for n=8. Their values have been used, a calculated value of $8f^{2}F^{\circ}$ being entered in brackets in the table.

The rest of the terms are from Fowler and Paschen-Götze, who published detailed analyses. By analogy with other spectra the designations 5g ²G and 6h ²H^o have been assigned to the terms calculated from Fowler's combinations labeled " $3\phi-4\phi$ " and " $4\phi-5\phi$ ", respectively.

REFERENCES

A. Fowler, Report on Series in Line Spectra p. 99 (Fleetway Press, London, 1922). (I P) (T) (C L)

F. Paschen und R. Götze, Seriengesetze der Linienspektren p. 56 (Springer, Berlin, 1922). (I P) (T) (C L)

W. F. Meggers, Bur. Std. J. Research 10, 673, RP558 (1933). (C L)

H. E. White, Introduction to Atomic Spectra p. 77 (McGraw-Hill Book Co., Inc., New York, 1934). (G D)

W. F. Meggers, J. Research Nat. Bur. Std. 14, 487, RP781 (1935). (C L)

K. W. Meissner und K. F. Luft, Ann. der Phys. [5] 29, 698 (1937). (I P) (T) (C L)

P. Rood and R. A. Sawyer, Astroph. J. 87, 70 (1938). (T) (C L)

W. F. Meggers, J. Opt. Soc. Am. 36, 431 (1946). (Summary hfs) E. R. Thackeray, Phys. Rev. (1949). (In press). (I P) (T) (C L)

\mathbf{N}	a	I
--------------	---	---

Na t

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
3s	3s 2S	1/2	0. 000		5 <i>p</i>	5 <i>p</i> ² P°	1/2	35040. 27 35042, 79	2. 52
3p	3 <i>p</i> ² P°	$1^{1/2}_{1^{1/2}_{1^{1/2}_{2}}}$	16956. 183 16973. 379	17. 1963	68	6s 2S	1/2	36372. 647	
48	4s 2S	1⁄2	25739. 86		5d	5 <i>d</i> ² D	$2\frac{1}{2}$ 1 $\frac{1}{2}$	37036. 781 37036. 805	-0. 0230
3d	3 <i>d</i> ² D	$2\frac{1}{2}$ $1\frac{1}{2}$	29172. 855 29172. 904	-0. 0494	5f	$5f ^{2}F^{\circ}$	$\begin{cases} 2^{1/2} \\ 2^{1/2} \\ 2^{1/2} \end{cases}$	} 37057.6	
4 <i>p</i>	4 <i>p</i> ² P°	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	30266. 88 30272. 51	5. 63	5.0	5g 2G	$3^{1/2}$	27060.2	
58	58 2S	1⁄2	33200 . 696		by by	6 2D°		87806 51	
4d	4d ² D	$2\frac{1}{2}$ $1\frac{1}{2}$	34548. 754 34548. 789	-0. 0346		0p -1	$1\frac{1}{1/2}^{72}$	37297.76	1. 25
A £	4.5 2779	$\int 2\frac{1}{2}$	21500 0		73	78 ² S	1/2	38012.074	
±J	4 <i>J</i> ² F	ξ 3 ¹ / ₂	34088.6		6d	6 <i>d</i> ² D	$2\frac{1}{2}$	38387.287	=0.0124

•The last 14 members are not included because page proof had been prepared when the data were received.

Z = 11

I. P. 5.138 volts

Na I-Continued

Na I-Continued

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
6 <i>f</i>	6f 2F°	$\left\{ egin{array}{c} 2^{1\!/_2} \ 3^{1\!/_2} \ 3^{1\!/_2} \end{array} ight.$	} 38400. 1		14p	14p 2P°	$\left\{ \begin{array}{c} 1_{2}'\\ 1_{2}''\\ 1_{2}'' \end{array} \right.$	} 40814.47	
6 <i>h</i>	6h 2H°	$\left\{\begin{array}{c} 4\frac{1/2}{5\frac{1}{2}} \\ 5\frac{1}{2} \end{array}\right.$	} 38403.4		14 <i>d</i>	14 <i>d</i> ² D	$\left\{ \begin{array}{c} 2^{1\!\!/_2} \\ 1^{1\!\!/_2} \end{array} \right.$	} 40890. 0	
7p	7p 2P°	$1/2 \\ 1/2 $	38540.40 38541.14	0. 74	15p	15p ² P°	$\begin{cases} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{cases}$	} 40901.11	
88	8s 2S	1/2	38968. 35		14.3		$\begin{pmatrix} 1\frac{1}{2} \\ 2\frac{1}{2} \end{pmatrix}$) ,	
7d	7d ² D	$2^{1/2}_{1/2}$ $1^{1/2}_{1/2}$	39200. 962 39200. 963	-0. 001	15d	$15d^{-2}D$	$\left\{ \begin{array}{c} \bar{1}_{12}^{2} \\ \bar{1}_{22}^{2} \end{array} \right\}$	} 40958	
7f	$7f$ $^2\mathrm{F}^{\mathrm{o}}$	$\left\{ egin{array}{c} 2^{1/\!\!\!\!/}_2 \\ 3^{1/\!\!\!\!/}_2 \end{array} ight.$	39209. 2		16 <i>p</i>	16p 2P°	$\left\{\begin{array}{c} \frac{1/2}{11/2} \\ 1\frac{1}{2} \\ \end{array}\right.$	} 40971.16	
8p	8p 2P°		39298. 54 39299. 01	0. 47	17p	17p ² P°	$\left\{\begin{array}{c} \frac{1/2}{11/2}\\ 11/2 \end{array}\right.$	} 41028.68	
98	9s 2S	1/2	39574. 51		18p	18p ² P°	$\left\{ \begin{array}{c} 1^{1/2} \\ 1^{1/2} \\ 1^{1/2} \end{array} \right.$	} 41076.37	
8 <i>d</i>	8 <i>d</i> ² D	$\left\{ egin{array}{c} 2^{1\!\!\!/_2} \\ 1^{1\!\!\!/_2} \end{array} ight.$	} 39729.00		19 <i>p</i>	19p ² P°	$\left\{\begin{array}{c} 1'_{2} \\ 1'_{2}' \\ 1'_{2}' \end{array}\right.$	} 41116. 28	
8 <i>f</i>	8f ² F°	$\left\{egin{array}{c} 2^{1/\!\!\!/}_{2} \ 3^{1/\!\!\!/}_{2} \end{array} ight.$	} [39734.0]		20p	20p 2P°	$\left\{\begin{array}{c} 1'_{2} \\ 1'_{2}'_{2} \\ 1'_{2}' \end{array}\right.$	} 41150.39	
9 <i>p</i>	9 <i>p</i> ²₽°	$1/2 \\ 1/2 \\ 1/2$	39794.53 39795.00	0. 47	21 p	21p 2P°	$\left\{\begin{array}{c} \frac{1_{2}}{1_{2}^{1_{2}}} \\ 1_{2}^{1_{2}^{1_{2}}} \end{array}\right.$	} 41179. 22	
103	10s ² S	1/2	39983. 0		22p	22p 2P°	$\begin{cases} \frac{1}{2} \\ 1\frac{1}{2} \end{cases}$	} 41204. 28	
9d	9d 2D	$\left\{ egin{array}{c} 2^{1/\!\!\!\!/}_{1/2} \ 1^{1/\!\!\!\!/}_{1/2} \end{array} ight.$	$\Big\}$ 40090. 57		23p	23p 2P°	$\begin{cases} \frac{1}{2} \\ 1\frac{1}{4} \end{cases}$	} 41225. 88	
9 <i>f</i>	$9f$ $^{2}\mathrm{F}^{\circ}$	$\left\{ egin{array}{c} 2^{1} {}^{\prime}_{2} \ 3^{1} {}^{\prime}_{2} \ 3^{1} {}^{\prime}_{2} \end{array} ight.$	} 40093. 2		24p	24p 2P°	$\begin{cases} \frac{1}{2} \\ 1\frac{1}{4} \end{cases}$) } 41244. 77	
10p	10 <i>p</i> ² P°	$\left\{\begin{array}{c} \frac{1/2}{11/2} \\ 11/2 \end{array}\right.$	} 40137. 23		25n	25n 2P°	$\begin{cases} 1/2 \\ 1/$) } /1961 /2	
118	11s 2S	1/2	40273. 5		200		$1\frac{1}{2}$	<i>41201.42</i>	
10 <i>d</i>	10 <i>d</i> ² D	$\left\{ egin{array}{c} 2^{1\!\!\!/_2} \\ 1^{1\!\!\!/_2} \end{array} ight.$	} 40349. 17		26 <i>p</i>	26p ² P°	$\left\{ \begin{array}{c} 1^{72}_{1/2} \\ 1^{1/2}_{1/2} \end{array} \right\}$	} 41276.11	
10 <i>f</i>	10f 2F°	$\left\{egin{array}{c} 2^{1\!/_{\!2}} \ 3^{1\!/_{\!2}} \ 3^{1\!/_{\!2}} \end{array} ight.$	} 40350.9		27 <i>p</i>	27 <i>p</i> ² P°	$\left\{\begin{array}{c} \frac{1/2}{11/2} \\ 11/2 \\ \end{array}\right.$	<i>41289.16</i>	
11p	11p 2P°	$\begin{cases} \frac{1}{2} \\ 1\frac{1}{2} \end{cases}$	} 40383.16		28 <i>p</i>	28p 2P°	$\left\{ egin{array}{c} 1^{1/2} \\ 1^{1/2} \\ 1^{1/2} \end{array} ight.$	} 41300.74	
128	12s 2S	1/2	40482. 9		29 <i>p</i>	29 <i>p</i> ² P°	$\left\{\begin{array}{c} \frac{1\!\!\!/2}{11\!\!\!/2} \\ 11\!\!\!/2 \end{array}\right.$	} 41311.09	
11 <i>f</i>	11f 2F°	$\left\{ egin{array}{c} 2^{1\!\!\!/_2} \ 3^{1\!\!\!/_2} \end{array} ight.$	} 40539		30 <i>p</i>	30p 2P°	$\left\{\begin{array}{c} \frac{1/2}{11/2} \\ 11/2 \end{array}\right.$	} 41320. 34	
11 <i>d</i>	11 <i>d</i> ² D	$\left\{ egin{array}{c} 2^{1\!\!\!/_2} \ 1^{1\!\!\!/_2} \end{array} ight.$	} 40540. 35		31p	31p 2P°	$\left\{\begin{array}{c} \frac{1'_{2}}{1_{1'_{2}}}\right.$	} 41328.87	
12p	12 <i>p</i> 2P°	$\left\{\begin{array}{c}1/2\\1/2\\1/2\end{array}\right.$	} 40566.03		32p	32p 2P°	$\left\{\begin{array}{c} \frac{1'_2}{11'_2} \\ 11'_2 \end{array}\right.$	} 41336. 50	
138	138 ² S	1/2	40644. 6		33 <i>p</i>	33p 2P°	$\left\{\begin{array}{c}1/\\11/\\11/\end{array}\right.$	} 41343.49	
12d	12d 2D	$\left\{ egin{array}{c} 2^{1\!\!\!/_2} \\ 1^{1\!\!\!/_2} \end{array} ight.$	} 40685.8		34p	34p 2P°	$ \left\{\begin{array}{c}1/2\\1/2\\11/ \end{array}\right. $	} 41349. 70	
13p	13 <i>p</i> ² P°	$\left\{\begin{array}{c}1/2\\1/2\\1/2\end{array}\right.$	} 40705.68		35 <i>p</i>	35n 2P°	$ \begin{cases} \frac{1}{2} \\ \frac{1}{2} \end{cases} $	} 41355.50	
148	148 ² S	1/2	40769. 5		00				
13d	13d 2D	$\left\{ egin{array}{c} 2^{1\!\!\!/_2} \\ 1^{1\!\!\!/_2} \end{array} ight.$	40798.8		36p	36p ⁻² P ⁵		<i>41360.82</i>	

Na I-Continued

Na I-Continued

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
37 <i>p</i>	37p 2P°	$\left\{\begin{array}{c} \frac{1_{2}}{11_{2}^{1_{2}}}\right.$	41365.66		49 <i>p</i>	49 <i>p</i> ² P°	$\left\{\begin{array}{c} \frac{1_{2}'}{1_{12}'} \\ 1_{12}'' \end{array}\right.$	} 41402.25	
38p	38 <i>p</i> ² P°	$\left\{\begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \\ 1\frac{1}{2} \end{array}\right.$	} 41370. 11		50p	50 <i>p</i> ² P°	$\left\{\begin{array}{c} \frac{1/2}{11/2} \\ 11/2 \end{array}\right.$	} 41404. 18	
39p	39p 2P°	$\left\{\begin{array}{c} \frac{1'_{2}}{1\frac{1'_{2}}{2}} \\ 1\frac{1'_{2}}{2} \end{array}\right.$	} 41374. 27		51 <i>p</i>	51p 2P°	$\left\{\begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \\ 1\frac{1}{2} \end{array}\right.$	<i>41406.03</i>	
40p	40 <i>p</i> ² P°	$\left\{\begin{array}{c} \frac{1_{2}}{1_{2}^{1_{2}}}\right.$	} 41378.04		52 <i>p</i>	52p ² P°	$\left\{\begin{array}{c} \frac{1_{2}}{1_{2}^{1_{2}}}\right.$	} 41407.69	•
41 <i>p</i>	41p ² P°	$\left\{\begin{array}{c} \frac{1_{2}}{1_{1/2}^{1/2}}\right.$	} 41381.55		53 <i>p</i>	53p 2P°	$\left\{\begin{array}{c} \frac{1'_{2}}{1'_{2}} \\ 1''_{2} \end{array}\right.$	} 41409.30	
42p	42p 2P°	$\begin{cases} & \frac{1}{2} \\ & 1\frac{1}{2} \end{cases}$	} 41384.84		54p	54p 2P°	$\left\{\begin{array}{c} \frac{1'_{2}}{1\frac{1'_{2}}{1\frac{1'_{2}}{2}}}\right.$	} 41410.81	
43p	43p 2P°	$\left\{\begin{array}{c} \frac{1'_2}{1\frac{1'_2}{2}}\right.$	} 41387.91		55p	55p 2P°	$\left\{\begin{array}{c} \frac{1/2}{11/2} \\ 1\frac{1}{2} \end{array}\right.$	} 41412.20	
44p	44p 2P°	$\left\{\begin{array}{c} \frac{1/2}{11/2} \\ 1\frac{1}{2} \end{array}\right.$	} 41390.73		56p	56p 2P°	$\left\{ \begin{array}{c} \frac{12}{12} \\ 1\frac{12}{2} \end{array} \right.$	} 41413.59	
45p	45p 2P°	$\begin{cases} \frac{1/2}{11/2} \\ 11/2 \end{cases}$	} 41393. 34		57 <i>p</i>	57p 2P°	$\begin{cases} & \frac{1}{2} \\ & 1\frac{1}{2} \end{cases}$	} 41414.89	
46 <i>p</i>	46p 2P°	$\left\{\begin{array}{c} \frac{1_{2}}{1_{2}}\\ 1_{2}^{1_{2}}\end{array}\right.$	} 41395.77		58 <i>p</i>	58p 2P°	$\left\{\begin{array}{c} \frac{1'_{2}}{1\frac{1'_{2}}{12}}\right.$	} 41416.06	
47p	47p ² P ^o	$\left\{\begin{array}{c} \frac{1/2}{1/2} \\ 1\frac{1}{2} \end{array}\right.$	} 41398.10		59 <i>p</i>	59 <i>p</i> ² P°	$\left\{\begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \\ 1\frac{1}{2} \end{array}\right.$	} 41417.18	
48p	48p 2P°	$\left\{\begin{array}{c} \frac{1/2}{11/2} \\ 11/2 \end{array}\right.$	} 41400. 28						-
					Na II (¹ S ₀)	Limit		41449.65	

January 1949.

Na 11

(Ne 1 sequence; 10 electrons)

Ground state $1s^2 2s^2 2p^6 {}^{1}S_0$

 $2p^{6}$ ¹S₀ **381528** cm⁻¹

The analysis has been taken from Söderqvist's Monograph except for the 5s- and 6s-levels, which are quoted from Vance's paper.

The term designations assigned by Söderqvist on the assumption of LS-coupling are listed under the heading "Author," with corresponding assignments added for the 5s- and 6s-levels.

As for Ne 1, the *jl*-coupling notation in the general form suggested by Racah is adopted. Shortley has, however, pointed out that the configurations $2p^5 3s$, $2p^5 3p$, and $2p^5 3d$ are much closer to *LS*-coupling than they are to *jl*-coupling.

REFERENCES

- I. S. Bowen, Phys. Rev. 31, 967 (1928). (T) (C L)
- S. Frisch, Zeit. Phys. 70, 498 (1931). (T) (C L)
- B. B. Vance, Phys. Rev. 41, 480 (1932). (T) (C L)
- J. Söderqvist, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 7, 22 (1934). (I P) (T) (C L) (G D)
- G. Racah, Phys. Rev. 61, 537 (L) (1942).
- G. Shortley, unpublished material (1948).

91

Z = 11

I. P. 47.29 volts

Na 11

Na 11

Author	Config.	Desig.	J	Level	Author	Config.	Desig.	J	Level
2p 1S0	2p6	2p ⁶ 1S	0	0. 00	3d ¹ P ₁	$2p^{5}(^{2}\mathrm{P}^{\circ}_{1rac{1}{2}}) 3d$	$3d \ [1\frac{1}{2}]^{\circ}$	1	331748.77
385 ³ P2 384 ³ P.	$2p^5(^2\mathrm{Pi}_{1\!$	$3_8 \ [1\frac{1}{2}]^{\circ}$	2	264928.00 265693 29	${{}^{3d}}_{{}^{3}\mathrm{D}_{3}}^{1\mathrm{D}_{2}}$	$2p^{5}(^{2}\mathrm{P}^{\mathrm{o}}_{\mathrm{22}})3d$	3d' [2½]°	$2 \\ 3$	332806.06 332845.80
3s ₃ ³ P ₀ 3s ₂ ¹ P ₁	$2p^{5}(^2\mathrm{P}^{\circ}_{\mathcal{H}})3s$	38′ [½]°	0 1	266285.36 268766.67	$\begin{array}{ccc} 3d & {}^{3}\mathrm{D}_{2} \\ & {}^{3}\mathrm{D}_{1} \end{array}$	"	3d' [1½]°	2 1	332966.42 333166.70
$3p_{10}\ {}^3\mathrm{S}_1$	$2p^{\mathfrak{s}(2\mathrm{P}_{1^{\mathfrak{s}}}^{\mathfrak{s}})}3p$	3p [½]	1	293224. 12	$\begin{array}{ccc} 4s_5 & {}^3\mathrm{P}_2 \\ 4s_4 & {}^3\mathrm{P}_1 \end{array}$	$2p^{5}(^{2}\mathrm{P_{1}^{o}})4s$	48 [1½]°	$\begin{array}{c} 2\\ 1\end{array}$	331500. 29 331877. 67
$\begin{array}{ccc} 3p_9 & {}^3\mathrm{D}_3 \\ 3p_8 & {}^3\mathrm{D}_2 \end{array}$	"	3p [2½]	$\frac{3}{2}$	297252.52 297639.34	$\begin{array}{ccc} 4s_3 & {}^3P_0 \\ 4s_2 & {}^1P_1 \end{array}$	$2p^{\mathfrak{s}(2}\mathrm{P}^{\mathfrak{o}}_{\mathfrak{H}})4s$	4s' [½]°	0 1	332713.96 333111.60
$\begin{array}{ccc} 3p_7 & {}^3\mathrm{D}_1 \ 3p_6 & {}^1\mathrm{D}_2 \end{array}$	"	$3p [1\frac{1}{2}]$	$\begin{array}{c}1\\2\end{array}$	298169. 14 299193. 75	5% ³ P.	$2p^{5}({}^{2}\mathrm{P^{o}_{1^{1/2}}})5s$	5s [1½]°	2	353960
$3p_3 \ ^{3}P_0$	$2n^{5}(^{2}\mathrm{P}_{v}^{\circ})3n$	$3p [\frac{1}{2}]$ $3p' [1\frac{1}{3}]$	0	300391.59 299889.16	582 ¹ P1	$2p^{5}(^{2}\mathrm{P}_{22}^{\circ})5s$	5s' [½]°	0	354850
$3p_4^{p_3} 3P_2^{-1}$	-p (- ₂₂) o p			300107. 71			() [1]		020200
${3p_2}{3p_1}{}^3{ m P_1}{3p_1}{}^1{ m S_0}$		$3p' [\frac{1}{2}]$		$\begin{array}{c} 300510. \ 92 \\ 308864. \ 54 \end{array}$	$4d P_1$	$2p^{5}(^{2}\mathrm{P}^{0}_{1\frac{1}{2}})4d$	$4d [1\frac{1}{2}]^{\circ}$	1	353573
$3d {}^{3}P_{0}$	$2p^5(^2\mathrm{P}^{\circ}_{1rac{1}{2}})3d$	3d [½]°	0	330553.18 330640.60	$6s_4$ ${}^{3}P_1$	$2p^{\mathfrak{s}(^2\mathrm{P}^{\mathfrak{o}}_{\mathfrak{l}}\mathfrak{l}_2)}6s$	6s [1½]°	$\begin{array}{c} 2\\ 1\end{array}$	363500
$3d$ $^{3}P_{2}$	"	3d [1½]°	2	330792.85	6s2 ¹ P1	$2p^{5}(^{2}\mathrm{P}_{\mathrm{F}}^{\mathrm{o}})6s$	6s' [½]°	0 1	364960
3d ³ F ₄ ³ F ₃	"	3d [3½]°	$\frac{4}{3}$	331126.76 331190.49					
${}^{3d}_{^{3}F_{2}}{}^{^{3}F_{2}}_{^{1}F_{3}}$	"	$3d [2\frac{1}{2}]^{\circ}$	$\frac{2}{3}$	331669.40 331711.75		Na 111 (² P ^o _{11/2})	Limit		381528
						Na III $(^{2}P_{\frac{1}{12}})$	Limit		382892

August 1947.

Na II OBSERVED LEVELS*

$\begin{array}{c} \text{Config.} \\ 1s^2 2s^2 + \end{array}$	Observed Terms							
$2p^6$	2p ⁶ ¹ S							
	ns $(n \ge 3)$	$np \ (n \ge 3) \qquad nd \ (n \ge 3)$						
$2p^{5}(^{2}\mathrm{P}^{\mathrm{o}})nx$	$\begin{cases} 3-6s \ {}^{3}P^{\circ} \\ 3-6s \ {}^{1}P^{\circ} \end{cases}$	3p ³ S 3p ³ P 3p ³ D 3p ¹ S 3p ¹ P 3p ¹ D	3d ³ P° 3d ³ D° 3d ³ F° 3, 4d ¹ P° 3d ¹ D° 3d ¹ F°					
jl-Coupling Notation								
		Observed Pairs						
	ns $(n \geq 3)$	$np (n \ge 3)$	$nd (n \ge 3)$					
$2p^{\mathfrak{s}}(^2\mathrm{P}^{\circ}_{\mathfrak{l}\mathfrak{l}\mathfrak{s}})nx$	3-6s [1½]°	$\begin{array}{cccc} 3p & [rac{1}{2}] \ 3p & [2]{2}] \ 3p & [2]{2}] \ 3p & [1]{2}] \end{array}$	$\begin{array}{c} 3d \ [\frac{1}{2}]^{\circ} \\ 3d \ [3\frac{1}{2}]^{\circ} \\ 3, 4d \ [1\frac{1}{2}]^{\circ} \\ 3d \ [2\frac{1}{2}]^{\circ} \end{array}$					
$2p^5(^2\mathrm{P}^{\mathrm{o}}_{\mathrm{J}2})nx'$	3-6s' [½]°	${3 p' \ [11/2] \over 3 p' \ [11/2]}$	3d' [2½]° 3d' [1½]°					

*For predicted levels in the spectra of the Ne 1 isoelectronic sequence, see Introduction.

(F 1 sequence; 9 electrons)

Ground state is $1s^2 2s^2 2p^5 {}^{2}\mathrm{P}^{\circ}_{1\frac{1}{2}}$

 $2p^{5} \, {}^{2}\mathrm{P}^{\circ}_{1\frac{1}{2}} \, 578033 \, \, \mathrm{cm^{-1}}$

The terms are taken from the paper by Tomboulian, who has revised and extended the analysis by Söderqvist, but adopts the limit estimated by Söderqvist. The ²P^o term from the ¹S limit in Na IV has not been located to confirm Söderqvist's ²S and ²D terms from this limit.

Intersystem combinations have been observed, connecting the doublet and quartet terms.

REFERENCES

J. Söderqvist, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 7, 39 (1934). (T) (C L) (G D) D. H. Tomboulian, Phys. Rev. 54, 347 (1938). (I P) (T) (C L)

3.7	
- N 0	
110	

N	a	III
---	---	-----

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
$2s^2 2p^5$	$2p^{5-2}\mathrm{P}^{\circ}$		0	-1364	$2s^2 2p^4(^3{ m P}) 3p$	3 <i>p</i> 4S°	1½	417415.5	
$2s \ 2p^6$	2p ⁶ ² S	1/2 1/2	264449	_	$2s^2 \ 2p^4(^3{ m P}) \ 3p$	3p ² P°	$1\frac{1}{2}$ $\frac{1}{2}$	418418. 1 418556. 9	-138.8
$2s^2 \ 2p^4(^3\mathrm{P}) 3s$	38 4P	$2\frac{1}{2}$	366165.3	-887.0	$2s^2 2p^4 ({}^1 m S) 3s$	3s'' 2S	1⁄2	435031	
		$1\frac{1}{12}$	367561. 9	- 509. 6	$2s^2 2p^4({}^1\mathrm{D}) 3p$	3p' ² F°	$2\frac{1}{2}$ $3\frac{1}{2}$	440472.0 440552.4	80. 4
$2s^2 \ 2p^4(^3{ m P}) \ 3s$	38 ² P	$1\frac{1}{2}$ $\frac{1}{2}$	373633. 0 374681. 4	-1048.4	$2s^2 2p^4({}^1\mathrm{D}) 3p$	3p' ² P°		442710.5	- 551. 1
2s ² 2p ⁴ (¹ D)3s	38′ 2D	$2\frac{1}{2}$ $1\frac{1}{2}$	399179. 4 399182. 7	-3.3	$2s^2 2p^4({}^1\mathrm{D}) 3p$	3p' ² D°		444748.1	76.9
$2s^2 \ 2p^4(^3\mathrm{P}) \ 3p$	3p 4P°	$2\frac{1}{2}$	406200.9	-361.1			$2\frac{1}{2}$	444825.0	
		$1\frac{1}{2}$ $\frac{1}{2}$	406562.0 406876.0	-314. 0	$2s^2 2p^{*}(^{3}P)3d$	3 <i>d</i> *D	$ \begin{array}{c c} 3\frac{7}{2} \\ 2\frac{1}{2} \\ 11 \end{array} $	460267.8	-153.2 -184.6
$2s^2 2p^4 ({}^3\mathrm{P}) 3p$	3p 4D°	$\frac{3\frac{1}{2}}{2\frac{1}{4}}$	410987.9	- 560. 3			$1\frac{1}{12}$ $1\frac{1}{12}$	460759.3	-153.7
		$\begin{array}{c c} & 272 \\ & 1\frac{1}{2} \\ & \frac{1}{2} \\ & \frac{1}{2} \end{array}$	411948. 2 411963. 9 412201. 5	-415.7 -237.6	$2s^2 2p^4 ({}^3\mathrm{P}) 3d$	3 <i>d</i> * F	$4\frac{1}{2}$ $3\frac{1}{2}$ $2\frac{1}{4}$	461877. 4? 463112. 8 463628 1	-1235.4 -515.3
$2s^2 2p^4 ({}^3\mathrm{P}) 3p$	3p ² D ^o	$2\frac{1}{2}$	414281.0	-892.2			$1\frac{1}{1}$	463462. 2	165. 9
$2s^2 2p^4(^3P) 3p$	3p ² S°	1/2	416910. 2		$2s^2 2p^4(^3\mathrm{P}) 3d$	3 <i>d</i> 4P	$\begin{array}{c c} \frac{1}{2} \\ 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}$	$\begin{array}{r} 462391.\ 2\\ 462963.\ 6\\ 463257.\ 4\end{array}$	572. 4 293. 8

I. P. 71.65 volts

Z = 11

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
$2s^2 \ 2p^4(^3\mathrm{P}) \ 3d$	3d ² F	$3^{1/2}_{2^{1/2}}$	$\begin{array}{c} 463968.\ 8\\ 465768.\ 8\end{array}$	-1800. 0	$2s^2 \ 2p^4({}^1\mathrm{D}) \ 3d$	3d' 2S	1/2	497751. 2	
$2s^2 \ 2p^4(^3\mathrm{P}) \ 3d$	3 <i>d</i> ² D	$2\frac{1}{2}$ $1\frac{1}{2}$	464392.1 465027.9	-635.8	$2s^2 2p^4({}^1\mathrm{D}) 4s$	4 <i>s'</i> ² D	$egin{array}{c} 2^{1\!\!/_2} \\ 1^{1\!\!/_2} \end{array}$	511410	
$2s^2 \ 2p^4(^3\mathrm{P}) \ 3d$	3d ² P	1/2 11/2	465988. 0 466773 0	785. 0	$2s^2 2p^4(^3{ m P}) 4d$	4d ² D	$\begin{array}{c} 2^{1\!/_2} \\ 1^{1\!/_2} \end{array}$	514652	
2s ² 2p ⁴ (³ P)4s	4s 4P	$2^{1/2}$ $1^{1/2}$	467773. 8	-754.7	$2s^2 \ 2p^4(^3{ m P}) 4d$	4 <i>d</i> ² P	$1\frac{1}{2}{1\frac{1}{2}}$	$515023 \\ 515379$	356
	4	$\frac{172}{\frac{1}{2}}$	468949. 5	-421.0	$2s^2 \ 2p^4 ({}^1\mathrm{S}) 3d$	3 <i>d''</i> 2D	$2\frac{1}{2}$ $1\frac{1}{2}$	$529465 \\ 529498$	-33
$2s^2 2p^4(^{3}P)4s$	48 ² P	$1\frac{1}{2}$	471446. 6 472250. 6	- 804. 0	$2s^2 \ 2p^4({}^1\mathrm{D})4d$	4d' ² P	$\left\{\begin{array}{c} \frac{1/2}{11/2} \\ 1\frac{1}{2} \end{array}\right.$	544227	
$2s^2 2p^4({}^1\mathrm{D}) 3d$	3d' ² G	$ \begin{array}{c} 4\frac{1}{2} \\ 3\frac{1}{2} \end{array} $	491928. 2		$2s^2 \ 2p^4({}^1\mathrm{D}) 4d$	4d' ² D	$\frac{1\frac{1}{2}}{2^{\frac{1}{2}}}$	544736	
$2s^2 \ 2p^4({}^1\mathrm{D}) \ 3d$	3d′ 2P	$1^{1/2}_{1/2}$	493191. 3 493289. 3	98. 0					
$2s^2 2p^4(^1\mathrm{D}) 3d$	3d' ² D	$1\frac{1}{2}$ $2\frac{1}{2}$	49 3 85 3 . 2 494599. 0	745. 8	Na 1V (3P2)	Limit		578033	
$2s^2 \ 2p^4({}^1\mathrm{D}) \ 3d$	3d' ² F	$3^{1/2}_{2^{1/2}_{2^{1/2}}}$	$\begin{array}{c} 495446. \ 8\\ 495668. \ 6\end{array}$	-221.8					
									1

Na III—Continued

Na III—Continued

March 1947.

Na III OBSERVED TERMS*

$\begin{array}{c} \text{Config.} \\ 1 s^2 + \end{array}$	Observed Terms								
2s ² 2p ⁵ 2s 2p ⁶	$2p^{5}$ ² P° $2p^{6}$ ² S								
	$ns \ (n \geq 3)$	$np (n \ge 3)$	$nd \ (n \ge 3)$						
$2s^2 2p^4(^{3}\mathrm{P}) nx$	$\left\{\begin{array}{ccc} 3, 4s & {}^{4}\mathrm{P} \\ 3, 4s & {}^{2}\mathrm{P} \end{array}\right.$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3d 4P 3d 4D 3d 4F 3, 4d 2P 3, 4d 2D 3d 2F						
$2s^2 2p^4({}^{1}\mathrm{D}) nx'$ $2s^2 2p^4({}^{1}\mathrm{S}) nx''$	3, 4s' ² D 3s'' ² S	3p' ² P° 3p' ² D° 3p' ² F°	3d' ² S 3, 4d' ² P 3, 4d' ² D 3d' ² F 3d' ² G 3d'' ² D						

*For predicted terms in the spectra of the F1 isoelectronic sequence, see Introduction.

(O I sequence; 8 electrons)

Ground state $1s^2 2s^2 2p^4 {}^3P_2$

2p⁴ ³P₂ **797741** cm⁻¹

The terms are from Söderqvist who has extended Vance's early work on this spectrum. In the 1946 reference Söderqvist states that the absolute values of the singlets as published in his Monograph should be decreased by 1000 cm⁻¹. This correction has been applied in the present list. The analysis is incomplete but 74 lines have been classified in the range 129 Å to 412 Å, and 40 terms found. No intersystem combinations have been observed and the uncertainty, x, may be considerable. The term 3d''' ³D has been calculated from its combination with $2p^5$ ³P° and added to the published list.

REFERENCES

J. Söderqvist, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 7, 51 (1934). (I P) (T) (C L) (G D) J. Söderqvist, Ark. Mat. Astr. Fys. (Stockholm) 32A, No. 19 p. 4 (1946). (C L)

N	a	I
_		

Ν	a	IV

Config.	Desig.	J	Level	Interval	Config.	Desig.		Level	Interval
2s ² 2p ⁴	2p4 3P	2 1 0	$0 \\ 1106 \\ 1576$	$-1106 \\ -470$	$\frac{2s^2 2p^3({}^{2}\mathrm{P}^{\circ})3d}{2s^2 2p^3({}^{2}\mathrm{P}^{\circ})3d}$	3d'' ³ P° 3d'' ¹ D°	2, 1, 0	663592 $664904 \pm x$	
282 2n4	$2n^{4}$ 1D	2	$31118 \pm r$		$2s^2 2n^3(^2P^\circ) 3d$	3 <i>d''</i> 3D°	3 2 1	665362	
$2s^2 2n^4$	2p D $2n^4$ 1S	0	$66780 \pm r$		$2s^2 2n^3(^2P^\circ)_{3d}$	3 <i>d''</i> 1P°	1	$665640 \pm r$	
20 2p $20 2n^5$	2p 5 2m5 3P°	2	019680		$2^{3} 2^{p} (1) 5^{d}$	2 2/1/ 1 1 50	2	667696 ± m	
28 2p			244688	$-1006 \\ -550$	$23^{-}2p^{-}(-1)3u$		2 9 1	601610	
9. 9.5	0.5.100	0	249230		$28^{2} 2p^{3} (-5) 4a$		0, 2, 1	004049	
			343972 + x		$2s^2 2p^3(^2D^3)4s$	48' °D°	3, 2, 1	689755	
$2s^2 \ 2p^3 ({}^4\mathrm{S}^\circ) 3s$	38 ³ S°	1	486648		$2s^2 2p^{3}(^2D^{\circ}) 4s$	4 <i>s'</i> ¹ D°		692043 + x	
$2s^2 \ 2p^3 (^2 { m D}^\circ) 3s$	3s′ 3D°	3	525100 525110	-19	$2s^2 2p^3 (^2P^\circ) 4s$	4s'' ³ P°	2, 1, 0	714937	
		1	525136	-17	$2s^2 2p^3(^2P^\circ) 4s$	4s'' ¹ P°	1	716773 + x	
$2s^2 \ 2p^3 (^2 { m D}^{ \circ}) \ 3s$	3s′ 1D°	2	531696 + x		$2s^2 2p^3 (^2\mathrm{D}^\circ) 4d$	4 <i>d′</i> ³D°	3, 2, 1	730712	
2s ² 2p ³ (² P ^o)3s	3s'' 3P°	2, 1, 0	550176		$2s^2 2p^3(^2\mathrm{D}^\circ)4d$	4 <i>d′</i> ¹ P°	1	731948+x	
2s ² 2p ³ (² P ^o)3s	3s'' ¹ P°	1	557081+x		$2s^2 2p^3 (^2\mathrm{D}^\circ) 4d$	4 <i>d′</i> ³P°	2, 1, 0	732355	
$2s^2 2p^3 ({}^4\mathrm{S}^\circ) 3\mathrm{d}$	3d ³ D°	1	594893	5	$2s^2 2p^3(^2\mathrm{D}^\circ)4d$	4 <i>d′</i> ³ S°	1	732940	
		$\begin{vmatrix} 2\\ 3 \end{vmatrix}$	594898 594941	43	$2s^2 2p^3 (^2\mathrm{D}^\circ) 4d$	4 <i>d′</i> ¹ D°	2	733548+x	
$2s^2 2p^3 (^2\mathrm{D}^\circ) 3d$	3 <i>d′</i> ³D°	3	638831	-111	$2s^2 2p^3 (^2\mathrm{D}^\circ) 4d$	4d' ¹ F°	3	734195 + x	
		$\begin{vmatrix} 2\\1 \end{vmatrix}$	638942 638977	-35	$2s^2 \ 2p^3 (^2 { m D}^\circ) 5s$	5s′ 3D°	3, 2, 1	7 <i>53352</i>	
$2s^2 \ 2p^3 (^2\mathrm{D}^\circ) 3d$	3 <i>d′</i> ¹₽°	1	641468+x		$2s^2 \ 2p^3 (^2\mathrm{P^o}) 4d$	4 <i>d''</i> ¹ D°	2	756045 + x	
$2s^2 2p^3(^2\mathrm{D^o}) 3d$	3 <i>d′</i> ³P°	2	643029	-275	$2s^2 2p^3 (^2\mathrm{P}^\circ) 4d$	4 <i>d''</i> ³D°	3, 2, 1	756367	
			643304 (643396)	(-92)	$2s^2 2p^3 (^2\mathrm{P}^\circ) 4d$	4 <i>d''</i> ¹ F°	3	757261+x	
$2s^2 \ 2p^3(^2\mathrm{D}^\circ) 3d$	3 <i>d′</i> ¹ D°	2	643912+x		$2s^2 2p^3 (^2\mathrm{D}^\circ) 5d$	5d' ³ D°	3, 2, 1	772415	
$2s^2 \ 2p^3 (^2\mathrm{D}^\circ) 3d$	3 <i>d′</i> ³S°	1	644140						
$2s^2 2p^3 ({}^4\mathrm{S}^\circ) 4s$	4s 3S°	1	644792		Na v (4S ₁₅)	Limit		797741	
$2s^2 2p^3 (^2\mathrm{D}^\circ) 3d$	3d' ¹ F°	3	646711+x		$2s \ 2p^4(^4P)3d$	3 <i>d'''</i> 3D	3, 2, 1	813538	

February 1947.

Z = 11

I. P. 98.88 volts

NaIV OBSERVED TERMS*

Config. $1s^2+$	Observed Terms						
2s ² 2p ⁴	$\left\{\begin{array}{c} 2p^{4-1}\mathrm{S}\end{array}\right.$	2p4 3P	$2p^4$ 1D				
2s 2p ⁵	{	$rac{2p^5}{2p^5} {}^3\mathrm{P}^{o}$					
		ns $(n \ge 3)$			nd	$(n \ge 3)$	
$2s^2 2p^3 ({}^4\mathrm{S}^\circ) nx$	3, 4s ³ S°					3, 4 <i>d</i> ³D°	
$2s^2 2p^3 (^2 { m D}^{ { m o}}) nx'$	{		3–5s′ ³D° 3, 4s′ 1D°	3, 4d′ 3S°	3, 4d′ ³ P° 3, 4d′ ¹ P°	$\begin{array}{ccc} 3-5d' & {}^{3}\mathrm{D}^{\circ} \\ 3, 4d' & {}^{1}\mathrm{D}^{\circ} \end{array}$	3, 4 <i>d′</i> ¹ F°
$2s^2 2p^3 (^2\mathrm{P}^\circ) nx^{\prime\prime}$	{	3, 4s'' ³ P° 3, 4s'' ¹ P°			${3d^{\prime\prime}}{}^3\mathrm{P^o}\ {3d^{\prime\prime}}{}^1\mathrm{P^o}$	${3, 4d^{\prime\prime} ^3 { m D}^{\circ}} \ {3, 4d^{\prime\prime} ^1 { m D}^{\circ}}$	3, 4 <i>d''</i> 1F°
2s 2p ⁴ (4P)nx'''						3d''' 3D	

*For predicted terms in the spectra of the O I isoelectronic sequence, see Introduction.

Na v

(N I sequence; 7 electrons)

Ground state $1s^2 2s^2 2p^3 {}^4S^{\circ}_{1\frac{1}{2}}$

 $2p^{3} {}^{4}S^{\circ}_{1\frac{1}{2}}$ 1118170 cm⁻¹

I. P. 138.60 volts

Z = 11

Söderqvist has found 45 terms in this spectrum and classified 203 lines in the interval between 100 A and 514 A. No intersystem combinations have been observed. The series are short and the uncertainty, x, may be considerable.

REFERENCES

J. Söderqvist, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 7, 75 (1934). (T) (C L) (G D) J. Söderqvist, Ark. Mat. Astr. Fys. (Stockholm) 32A, No. 19 p. 4 (1946). (I P) (T) (C L)
Na v

Na v

Autor Config. Desig. J Level Interval 29 45. 22^{1} 2 p^{1} $2p^{1}$ 15. $47570 + z$ $7770 + z^{2}$ 37^{1} 0 $22^{1} 2p^{1}(1)^{2}$ $24^{11} r^{10}$ $\frac{14}{233}$ 872244 644 37^{1} 15. $47570 + z$ $4s^{1} r^{10}$ $2s^{1} 2p^{1}(1)^{2} 4s$ $as^{11} r^{10}$ $\frac{14}{233}$ 882244 644 $2p^{1}$ $\frac{1}{15}$ $2r^{1} 2p^{1}$ $2s^{1} 2p^{1}(1)^{2} 4s$ $as^{11} r^{10}$ $\frac{14}{2s^{12}}$ $2s^{12}p^{1}(1)^{2} 4s$ $as^{11} r^{10}$ $\frac{14}{2s^{12}}$ 882244 644 $2p^{1}$ $\frac{1}{15}$ $2s^{12}p^{1}(1)^{2} t^{1}$ $2s^{12}p^{1}(1)^{2} t^{1}$ $as^{11} r^{1} t^{1}$ $as^{11} r^{1} t^{1} t^{1}$ $as^{11} r^{1} t^{1} t^{1} t^{1}$ $as^{11} r^{1} t^{1} $												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Author	Config.	Desig.	J	Level	Interval	Author	Config.	Desig.	J	Level	Interval
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$2p$ ${}^4\mathrm{S}_2$	$2s^2 2p^3$	$2p^3$ 4S°	1½	0		3e/ 4D	2: 2n3(3D°)3:	2017 470	$\int \frac{1}{2}$	079999	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	${{2p}_{{2}}}^{2}{{{D}_{3}}}_{{{2}}}{{{D}_{2}}}_{2}$	$2s^2 2p^3$	$2p^3$ ² D°	$egin{array}{c} 2^{1\!\!\!/_2} \\ 1^{1\!\!\!/_2} \end{array}$	47570 + x 47595 + x	-25	0.5 D	28 2p-(°D))38	98-1 -D	$3^{10}_{1/2}$	878288	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 <i>p</i> ² P ₁ ² P ₂	$2s^2 2p^3$	$2p^3$ ² P°	$1^{1/2}_{1^{1/2}}$	72454+x 72493+x	39	$\begin{array}{ c c c c } & 48 & {}^{4}P_{1} \\ & {}^{4}P_{2} \\ & {}^{4}P_{3} \end{array}$	$2s^2 2p^2(^{3}P) 4s$	48 4P	$\begin{array}{c} \frac{1/2}{11/2} \\ 21/2 \\ 21/2 \end{array}$	892244 892885 893822	641 937
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	${2p'} {{}^4{ m P_3}}_{{4 m P_2}}_{{4 m P_1}}$	2s 2p ⁴	$2p^4$ 4P	$2^{1\!/_2}_{1^{1\!/_2}_{1^{1\!/_2}_{1^{1\!/_2}_{2^{1^/_2}_{2^{1^/_2}_{2^{1^/_2}}}}}$	$\begin{array}{c} 215860 \\ 216896 \\ 217440 \end{array}$	$-1036 \\ -544$	33' 2D	2s 2p ³ (³ D°)3s	381A 5D°	$\left\{ egin{array}{c} 1^{1\!\!\!\!/_2} \\ 2^{1\!\!\!\!/_2} \end{array} ight.$	$\left. \right\} 894095 + x$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$2p' \ {}^{2}D_{3} \ {}^{2}D_{2}$	2s 2p4	$2p^{4}$ ² D	$2\frac{1}{2}$ $1\frac{1}{2}$	297116 + x 297150 + x	-34	$\begin{array}{c cc} 4s & {}^{2}P_{1} \\ & {}^{2}P_{2} \end{array}$	$2s^2 2p^2(^3\mathrm{P}) 4s$	48 ² P	$1^{\frac{1}{2}}_{\frac{1}{2}}$		1203
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$2p'$ $^2\mathrm{S}_1$	2s 2p4	$2p^4$ ² S	1/2	349987 + x		3d′ 4D	$2s$ $2p^{3(5S^{\circ})}3d$	3 <i>d'''</i> 4D°	$\begin{cases} \frac{1}{2} \\ \text{to} \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	908717	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$2p' \ {}^{2}P_{2} \ {}^{2}P_{1}$	2s 2p4	2p4 2P	$1\frac{1}{2}$ $\frac{1}{2}$	371967 + x 373167 + x	1200	_			$\begin{bmatrix} 3\frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$2p^{\prime\prime}{}^{_2}\mathrm{P_2}{}^{_2}\mathrm{P_1}$	$2p^{5}$	$2p^{5}$ ² P°	$1^{1/2}_{1/2}$	567583 + x 569211 + x	-1628	<u>3</u> 8′ 4P	2s 2p ³ (³ P°)3s	38 [♥] 4₽°	$\begin{cases} \text{to} \\ 2\frac{1}{2} \end{cases}$	} 919070	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$38 \frac{4P_1}{4P_2}$	$2s^2 2p^2(^{3}P) 3s$	38 4P	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	$671136 \\ 671790$	654	43 ² D	$2s^2 2p^2({}^1\mathrm{D}) 4s$	4s' 2D	$\left\{ egin{array}{c} 2^{1\!\!/_2} \\ 1^{1\!\!/_2} \end{array} ight.$	928053+x	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	${}^{4}\overline{P}_{3}^{2}$			$\frac{1}{2}$	672757	967	$4d$ $^{2}\mathrm{P}_{2}$	$2s^2 \ 2p^2(^3\mathrm{P})4d$	4 <i>d</i> ² P	$1\frac{1}{2}$	937669 + x	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ccc} 3s & {}^{2}P_{1} \\ {}^{2}P_{2} \end{array}$	$2s^2 2p^2(^{3}P)3s$	38 ² P	$1\frac{1}{1}\frac{1}{1}\frac{1}{2}$	682470 + x 683673 + x	1203		$2s^2 2p^2(^3\mathrm{P}) 4d$	$4d$ $^4\mathrm{D}$	$\frac{3\frac{1}{2}}{2\frac{1}{2}}$		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3s 2D	$2s^2 2p^2(^1D) 3s$	3s' 2D	$\left\{ egin{array}{c} 2^{1\!\!\!/_2} \ 1^{1\!\!\!/_2} \end{array} ight.$	$\Big\} 709277+x$		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			$\left\{ \begin{array}{c} 272 \\ 11/2 \\ 1/2 \\ 1/2 \end{array} \right.$	<pre> 939055 939858 </pre>	-803
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\overline{\overline{3s}}$ ² S ₁	$2s^2 2p^2({}^{1}\mathrm{S})3s$	3s'' 2S	1⁄2	748640+ <i>x</i>	0	$4d \ {}^{2}F_{3} \ {}^{2}F_{2}$	$2s^2 2p^2(^3\mathrm{P}) 4d$	4d ² F	$\frac{2\frac{1}{2}}{2\frac{1}{2}}$	940380+x 941302+x	1012
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cc} 3d & {}^{2}\mathrm{P}_{2} \\ & {}^{2}\mathrm{P}_{1} \end{array}$	$2s^2 2p^2(^{3}P)3d$	3 <i>d</i> ² P	$1\frac{1}{2}$ $\frac{1}{2}$	792337 + x 792849 + x	-512	$\begin{array}{c c} & \mathbf{F_4} \\ 4d & {}^{4}\mathbf{P_3} \\ & {}^{4}\mathbf{P_2} \end{array}$	$2s^2 2p^2(^3\mathrm{P}) 4d$	4d *P	$\begin{array}{c} 3_{72} \\ 2_{12}^{1/2} \\ 1_{12}^{1/2} \end{array}$	940716 940929	-213
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$d^{4}D_{23}$	$2s^2 2p^2(^{3}P)3d$	3 <i>d</i> ⁴D	$\left\{egin{array}{c} 3^{1\!\!\!/_2} \\ 2^{1\!\!\!/_2} \\ 1^{1\!\!\!/_2} \\ 1^{1\!\!\!/_2} \\ \frac{1\!\!\!/_2}{1\!\!\!/_2} \end{array} ight.$	} 797060 797270	-210	$4d$ $^2\mathrm{D}_2$ $^2\mathrm{D}_3$	2s ² 2p ² (³ P)4d	$4d$ $^{2}\mathrm{D}$	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{2}{2}$	944022 + x 944334 + x	312
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$3d$ $^{2}F_{3}$ $^{2}F_{4}$	2s ² 2p ² (³ P)3d	3d 2F	$2\frac{1}{2}$ $3\frac{1}{2}$	797288 + x 798535 + x	1247	$\overline{3p'}$ ${}^{2}\mathbf{F}_{4}$ ${}^{2}\mathbf{F}_{3}$	2s 2p ³ (³ D°)3p	$3p^{1V} {}^2\mathrm{F}$	${3^{1\!/_2}\over 2^{1\!/_2}}$	949462 + x 949984 + x	-522
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccc} 3d & {}^{4}\mathrm{P}_{3} \\ & {}^{4}\mathrm{P}_{2} \\ & {}^{4}\mathrm{P}_{1} \end{array}$	$2s^2 2p^2(^{3}P)3d$.3d 4P	$2\frac{1}{2}$ $1\frac{1}{2}$ $1\frac{1}{2}$	$798174 \\798620 \\798862$	-446 -242	$\overline{4d}$ ² F	$2s^2 2p^2 (^1\mathrm{D}) 4d$	4 <i>d′</i> ²F	$\left\{ egin{array}{c} 3^{1\!\!\!/_2} \ 2^{1\!\!\!/_2} \ 2^{1\!\!\!/_2} \end{array} ight.$	973350+x	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$3s' 4S_2$	28 2p ³ (⁵ S°)38	38''' 4S°	1½	801950		$\overline{4d}$ ² D	$2s^2 2p^2 ({}^1\mathrm{D}) 4d$	4d' 2D	$\left\{ egin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array} ight.$	974048+x	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$d^{2}D_{2}^{2}D_{3}^{2}$	$2s^2 2p^2(^3\mathrm{P}) 3d$	3 <i>d</i> 2D	$rac{1\frac{1}{2}}{2\frac{1}{2}}$	$rac{808546+x}{808920+x}$	374	$\begin{array}{c} \overline{3d'} & {}^{4}\mathrm{P}_{3} \\ & {}^{4}\mathrm{P}_{2} \\ & {}^{4}\mathrm{P}_{1} \end{array}$	2s 2p³(³D°)3d	3d ^{1v} 4P°	$2^{1/_2}_{1^{1/_2}}_{1^{1/_2}_{1^{1/_2}}}$	1004404 1004626 1004794	$-222 \\ -168$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\overline{3d}$ $^{2}\mathrm{F}_{4}$ $^{2}\mathrm{F}_{3}$	$2s^2 2p^2(^1\text{D}) 3d$	3d′ 2F	${3^{1\prime_2}_{72} \over 2^{1\prime_2}_{72}}$	828509 + x 828692 + x	-183	$\overline{3d'}$ 4D	2s 2p ³ (³ D°)3d	3d™ 4D°	$\begin{cases} \frac{1}{2} \\ to \\ 0 \end{cases}$	} 1008214	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\overline{3d}$ $^{2}\mathrm{D}_{2}$ $^{2}\mathrm{D}_{3}$	$2s^2 2p^2(^1\text{D})3d$	3d' 2D	$egin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}$	832075 + x 832228 + x	153	$\overline{3d'}$ 4S ₂	28 2m ³ (3D°)3d	3dIV 4S°	(3½ 1%	J 1008941	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\overline{3d}$ $^{2}P_{1}$ $^{2}P_{2}$	$2s^2 2p^2({}^1\mathrm{D})3d$	3d′ 2P	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	$837431 + x \\ 837723 + x$	292	$\overline{3d'}$ ${}^{2}F_{4}$	2s 2p ³ (³ D ^o)3d	3d1v 2F°	$3^{1/2}_{1/2}$	1010088 + x	-477
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\overline{3d}$ ² S ₁	$2s^2 2p^2 ({}^1\mathrm{D}) 3d$	$3d'$ $^2\mathrm{S}$	1/2	842067 + x		$\overline{5d}$ 2Γ	$2s^2 2n^2(1D) 5d$	5d' ² F	$\frac{27_2}{31/2}$	1010305 + x 1038208 + x	
$ \frac{3d}{3d} \ ^{2}D 2s^{2} \ 2p^{2}(^{1}S) \ 3d 3d'' \ ^{2}D \left\{\begin{array}{c} \frac{11}{2} \\ t_{0} \\ 2\frac{1}{2} \end{array}\right\} 866780 + x Na \ vi \ (^{3}P_{0}) Limit \dots 1118170 $	3 <i>p</i> ′́ ⁴P	2s 2p ³ (⁵ S°)3p	3 <i>p'''</i> 4P	$\left\{\begin{array}{c} \frac{1/2}{\text{to}}\\ 2\frac{1}{2}\end{array}\right\}$	847539		$\overline{5d}$ ² D	$2s^2 2p^2(^1D)5d$	5 <i>d'</i> ² D	$\left\{ \begin{array}{c} 2\frac{1}{2} \\ 1\frac{1}{2} \\ 2\frac{1}{2} \end{array} \right\}$	$\left. \right\} 1038845 + x$	
	3d 2D	$2s^2 2p^2(^1S)3d$	3d'' 2D	$\left\{\begin{array}{c} 1\frac{1}{2} \\ to \\ 2\frac{1}{2} \end{array}\right\}$	866780+x			Na vi (3P0)	Limit		1118170	

January 1947.

Config. $1s^2+$				Observed Terms	3			
$2s^2 \ 2p^3$	$\left\{ \begin{array}{ccc} 2p^3 & {}^4\mathrm{S}^{\circ} \end{array} ight.$	$2p^3$ $^2\mathrm{P}^{o}$	$2p^3$ $^2\mathrm{D}^{o}$					
2s 2p4	{21 1 2S	${2p^4}{}^4{}^4{ m P} \over 2p^4}{}^2{ m P}$	$2p^4$ $^2\mathrm{D}$					
$2p^{5}$		$2p^5$ $^2\mathrm{P}^{\mathrm{o}}$						
		ns $(n \ge 3)$		$np (n \ge 3)$		nd	(n≥3)	
$2s^2 \ 2p^2(^3P)nx$	{	3, 4s ⁴ P 3, 4s ² P		-		3, 4 <i>d</i> 4P 3, 4 <i>d</i> 2P	$\begin{array}{ccc} 3, 4d & {}^{4}\mathrm{D} \\ 3, 4d & {}^{2}\mathrm{D} \end{array}$	3, 4 <i>d</i> ² F
$2s^2 \ 2p^2({}^1\mathrm{D})nx'$			3, 4s' ² D		3d' ² S	3d' ² P	3-5d' ² D	$3{-}5d'$ $^2{ m F}$
$2s^2 \ 2p^2({}^1\!\mathrm{S})nx''$	3s'' 2S						$3d^{\prime\prime}$ 2D	
$2s \ 2p^{3}({}^{5}\mathrm{S}^{\circ})nx'''$	3s''' 4S°			3 <i>p'''</i> 4P			3 <i>d</i> ′′′′ 4 D°	
2s 2p ³ (³ D°)nx ^{IV}	{		38 ^{1V} 4D° 38 ^{1V} 2D°	$3p^{1\mathbf{v}} {}^{2}\mathbf{F}$	3d1v 4S°	3d1v 4P°	3 <i>d</i> 1v 4D°	3d1⊽ 2F°
$2s 2p^3(^3\mathrm{P}^\circ)nx^{\mathrm{V}}$		3s ^v ⁴P°						

*For predicted terms in the spectra of the NI isoelectronic sequence, see Introduction.

Na vi

(C I sequence; 6 electrons)

Ground state $1s^2 2s^2 2p^2 {}^3P_0$

$2p^2 {}^{3}P_0 1390558 \text{ cm}^{-1}$

The analysis is by Söderqvist, who has found 63 terms and classified 134 lines in the range between 80 A and 638 A. He determines the relative values of terms of different multiplicity from the series limits, although he lists a few observed singlet-triplet combinations. His term $2p^{4}$ ¹D has been corrected to agree with the two observed combinations.

Söderqvist gives the quintet term $2p^3 {}^5S_2^\circ$ at 103187 cm⁻¹ above the ground state zero. From isoelectronic sequence data Robinson estimates this value as 103508 cm⁻¹. The later value has been used in the table and all quintet terms adjusted accordingly. The uncertainty, x, may be a few hundred cm⁻¹.

REFERENCES

J. Söderqvist, Ark, Mat. Astr. Fys. (Stockholm) 32A, No. 19 p. 4 (1946). (I P) (T) (C L) H. A. Robinson, unpublished material (March 1948). (T)

Z = 11

I. P. 172.36 volts

Na vi

Na vi

Author	Config.	Desig.	J	Level	Interval	Author	Config.	Desig.	J	Level	Interval
$2p \ {}^{3}P_{0} \ {}^{3}P_{1} \ {}^{3}P_{2}$	$2s^2 2p^2$	$2p^2$ ³ P	$\begin{array}{c} 0\\ 1\\ 2 \end{array}$	0 698 1858	698 1160	3 <i>p</i> ′³D	2s 2p ² (² D)3p 2s 2p ² (⁴ P)3d	3p′ ³D° 3d ⁵D	1, 2, 3 0	1040223	
2p 1D	$2s^2 2p^2$	$2p^2$ ¹ D	2	35358		3d′ ⁵ D ₂₃			$\begin{bmatrix} 1\\ 2\\ 2 \end{bmatrix}$	$\left.\right\} 1041771+x$	
2 <i>p</i> ¹ S ₀	$2s^2 2p^2$	$2p^2$ ¹ S	0	74274					4)	
$2p'$ ${}^5\mathrm{S}_2$	$2s \ 2p^3$	$2p^3$ $^5\mathrm{S}^\circ$	2	103508+x		3d′ ⁵ P ₃ ⁵ P₀	$2s \ 2p^2(^4P)3d$	3d ⁵ P	3	1045793 + x 1046220 + x	-427
$2p' \ {}^{3}{ m D}_{3}_{3}_{D}_{3}_{2}_{3}_{D}_{2}$	$2s \ 2p^3$	$2p^3$ $^3\mathrm{D}^\circ$	$\begin{vmatrix} 3\\2\\1 \end{vmatrix}$	204131 204222 204260	$-91 \\ -38$	${}^{5}\overline{\mathrm{P}_{1}}^{2}$ $3d' {}^{3}\mathrm{P}_{2}$	$2s \ 2p^2(^4P)3d$	3 <i>d</i> ³P		1046548 + x 1047408	-328
2p' ³ P	$2s \ 2p^3$	$2p^3$ ³ P°	2, 1, 0	241341		³ P ₁				1048104	-090
2p' 1D	$2s \ 2p^3$	2p ³ ¹ D°	2	312175		$3d'$ 3F_2	$2s \ 2p^2(^4P)3d$	$3d$ $^{3}\mathrm{F}$	2	1053885	612
$2p'$ ${}^3\mathrm{S}_1$	$2s \ 2p^3$	$2p^3$ 3 S°	1	320589		³ F ₃ ³ F ₄			$\begin{vmatrix} 3\\4 \end{vmatrix}$	1054497 1055260	763
2p' ¹ P ₁	2s 2p ³	$2p^3$ ¹ P°	1	350179		$3d' {}^{3}D_{1}$	$2s \ 2p^2(^4P)3d$	$3d$ ^{3}D	1	1067760	211
$2p'' {}^{3}P_{2}$	2p4	$2p^{4}$ ³ P	2	477277	-1320	$^{3}D_{3}^{2}$			3	1068258	287
${}^{3}P_{0}$			0	479156	-559	$\overline{3p}'$ ¹ F ₃	$2s \ 2p^2(^2\mathrm{D})3p$	3 <i>p′</i> ¹F°	3	1071896	
$2p^{\prime\prime}$ ¹ D	2p4	$2p^4$ ¹ D	2	539310		$\overline{3p}'$ ¹ D ₂	$2s \ 2p^2(^2\mathrm{D})3p$	3 <i>p′</i> ¹ D°	2	1077752	
2. 3P.	$2s^2 2p(^2P^\circ)3s$	3s ³ P°	0	807901			$2s^2 2p(^2\mathrm{P^o}) 4s$	4s ³ P°	0		
³ P ₂				808795	1471	4s ³ P ₂				1090756	
38 ¹ P ₁	$2s^2 2p(^2P^\circ) 3s$	38 ¹ P°	1	817598		$\overline{3d}'$ ³ F	$2s \ 2p^2(^2D)3d$	$3d'$ 3 F	2, 3, 4	1125323	
$3p \ {}^{3}P_{1} \ {}^{3}P_{2}$	$2s^2 2p(^2\mathrm{P^o}) 3p$	3 <i>p</i> ³P	$\begin{array}{c c} 0\\ 1\\ 2\end{array}$	872577 873287	710	$4d$ $^{3}\mathrm{F}_{2}$	$2s^2 2p(^2\mathrm{P^o})4d$	4d ³F°	$\begin{vmatrix} 2\\ 3\\ 4 \end{vmatrix}$	11286 9 3	
$3d$ $^{3}\mathrm{F}_{2}$	$2s^2 2p(^2\mathrm{P^o}) 3d$	3d ³ F°	2	919476		$\overline{3d}'$ ³ P	$2s \ 2p^2(^2D)3d$	3 <i>d′</i> ³P	0, 1, 2	1130631	
			$\begin{vmatrix} 3 \\ 4 \end{vmatrix}$			$4d$ $^{1}D_{2}$	$2s^2 2p(^2\mathrm{P}^\circ)4d$	4d ¹ D°	2	1131032	
3 <i>d</i> ¹ D	$2s^2 2p(^2\mathrm{P}^\circ) 3d$	3d ¹ D°	2	920706		$4d$ $^{3}D_{1}$	$2s^2 2p(^2\mathrm{P^o}) 4d$	4d ³ D°	1	1133491	380
3s' ⁵ P ₁ ⁵ P ₂ ⁵ P	2s $2p^{2}(^{4}P)$ 3s	3s ⁵P	$\begin{vmatrix} 1\\ 2\\ 3 \end{vmatrix}$	923059+ x 923765+ x 924708+ r	706 943	$3D_2$ $3D_3$ $\overline{3d'}$ $3D$	$28 \ 2n^2(2D) 3d$	3 <i>d'</i> 3D		1133871 1134746	875
3d ³ D ³ D	$\left 2s^2 2p(^2\mathrm{P}^{\circ}) 3d \right $	3d ³ D°		929774 929999	$225 \\ 511$		$2s^2 2p(^2\mathrm{P}^\circ)4d$	4d ³ P ^o		1101001	
ى D°		0.1 370	3	930510		$4d \circ P_2$		4.7 1770	2	1136378	
$3d$ $^{3}P_{2}$ $^{3}P_{1}$	$2s^2 2p(^2\mathbf{P}^\circ) 3d$	3d P	$\begin{vmatrix} 2\\ 1\\ 0 \end{vmatrix}$	933915 934463	$-548 \\ -282$	$4d$ $^{1}F_{3}$	$2s^2 2p(^2P^3)4d$	$4d$ $1F^{\circ}$	3	1140721	
۳۲ ₀ عکات	$9_{02} 9_{m}(2D^{0}) 2d$	2.4 115.9	2	934143		$\frac{\partial a}{\partial d'}$ $\frac{\partial a}{\partial t}$	$28 2p^{2}(^{2}D) 3d$	00°00 27/11F	2	1144270	
ои -га 2.4 1D	$2s^{2} 2p(2r) 3a$	3u - r	1	016200		$\overline{2d'}$ 1D	$28 2p^{2}(^{2}D) 3d$	34 · F	0	1147725	
3a' 3D	$2s^{2} 2p(-1) 3u$	3 <i>a</i> -1		040778		$\frac{3a}{2d'}$ 1D	$28 2p^{2}(2D) 3d$	3 <i>a</i> -D		1151140	
³ P ₁ ³ P ₁	28 2p ⁻⁽⁻¹)58	53 1		950367	$\begin{array}{c} 589\\1022\end{array}$	<i>54</i> -11	$28 2p^{2}(^{2}D) 3a$	5 <i>a</i> - r	1	1151140	
3n' 3S.	$28 2n^2(4P)3n$	3 3 350		070895		10' 5P.	28 2p ⁻⁽⁻¹)48	48 1		1205485	
5 <i>p</i> -D1	$23 2p^{-(-1)} 3p$ $28 2n^{2} (4P) 3n$	$3n$ $3D^{\circ}$	1	310000		43 13	$9_{0}, 9_{2}(4\mathbf{P})/6$	1. 2P	0	120040072	
3p' 3D			2	996011 996734	723	48′ ³ Pa	$23 2p^{-(1)}$	-13 ·1		1214191	
2	$2s 2n^2(^4P)3n$	3p 3P°	0	000,04		10 1 2	$2s^2 2n(^2P^\circ) 5d$	5 <i>d</i> 3D°	1	1-1101	
3p' ³ P ₁ ³ P ₂			$\begin{vmatrix} 1\\2 \end{vmatrix}$	1005068 1005713	645	$5d$ $^{3}\mathrm{D}_{3}$	/ 1)0a		$\begin{vmatrix} \hat{2} \\ 3 \end{vmatrix}$	1228205	
3s' 3D	$2s \ 2p^2(^2D)3s$	38′ 3D	1, 2, 3	1016274			$2s^2 2p(^2\mathrm{P^o}) 5d$	5 <i>d</i> ³ P°	0		
3s' 1D	$_{2}$ 2s 2 $p^{2}(^{2}\text{D})$ 3s	38′ 1D	2	1033221		5d ³ P ₂			2	1228882	1

99

100

Na VI-Continued

Na VI-Continued

Au	$_{ m thor}$	Config.	Desig.	J	Level	Interval	Author	Config.	Desig.	J	Level	Interval
5d	${}^{1}\mathrm{F}_{3}$	$2s^2 2p(^2P^\circ) 5d$	5d ¹ F°	3	1230972		$\overline{4d'}$ ³ F	$2s \ 2p^2(^2\mathrm{D})4d$	4 <i>d′</i> ³F	2, 3, 4	1334585	
		$2s \ 2p^2({}^4\mathrm{P})4d$	4 <i>d</i> ⁵P	1			$\overline{4d'}$ ³ P	2s $2p^{2}(^{2}D)4d$	4 <i>d′</i> ³P	0, 1, 2	1335519	
4d'	⁵ P ₂			$\frac{2}{3}$	1250152 + x		$\overline{4d'}$ ³ D	$2s \ 2p^2(^2\mathrm{D})4d$	4d' ³ D	1, 2, 3	1337017	
4d'	³ F ₂ ³ F ₃ ³ F ₄	2s 2p ² (⁴ P)4d	4 <i>d</i> ³₽	$\begin{array}{c}2\\3\\4\end{array}$	$\begin{array}{c} 1253369 \\ 1253947 \\ 1254750 \end{array}$	578 803	5d′ ⁵P ₃	$2s \ 2p^2(^4\mathrm{P})5d$	5 <i>d</i> 5P	$\begin{array}{c}1\\2\\3\end{array}$	1343510 + x	
4d'	3D	$2s \ 2p^2(^4P)4d$	4d ³ D	1, 2, 3	1258613			Na v11 (2P ^o)	Limit		1390558	
3p''	³P	$1s^2 \ 2p^{3(4}{ m S}^{\circ}) 3p$	3 <i>p</i> ¹ v ³ P	0, 1, 2	1265583		$\overline{5d}'$ ³ F	28 $2p^2(^2D)5d$	$5d'$ $^3{ m F}$	2, 3, 4	1429862	
6d	${}^{1}\mathrm{F}_{3}$	$2s^2 2p(^2P^\circ) 6d$	6 <i>d</i> ¹ F°	3	1279991							

March 1948.

Na vi Observed Terms*

Config. $1s^2+$						Obs	served Ter	rms				
$2s^2 2p^2$	$\Big\{_{2p^2}{}^{_1}\!\mathrm{S}$	2p² ³P	$2p^2$ ¹ D									
2s 2p ³	$\begin{cases} 2p^{3} \ {}^{5}\!\mathrm{S}^{o} \\ 2p^{3} \ {}^{3}\!\mathrm{S}^{o} \end{cases}$	${2p^3}{}^3{ m P^o}\ {2p^3}{}^1{ m P^o}$	${2p^3}{}^{ m 3D^o}_{2p^3}{}^{ m 1D^o}_{ m 1D^o}$									
$2p^{4}$	{	2p4 3P	2 <i>p</i> ⁴ ¹ D									
		ns $(n \ge 3)$				np ($n \ge 3)$			na	$l(n \ge 3)$	
$2s^2 2p(^2\mathrm{P^o})nx$	{	3, 4s ³ P° 3s ¹ P°			3 <i>p</i>	³Р				3-5d ³ P° 3d ¹ P°	3–5d ³ D° 3, 4d ¹ D°	3, 4 <i>d</i> ³ F° 3–6 <i>d</i> ¹ F°
$2s \ 2p^2(^4P)nx$	{	3, 4s ⁵ P 3, 4s ³ P		3p 3S°	3p	³P°	3p 3D°			3-5 <i>d</i> ⁵ P 3 <i>d</i> ³ P	3d ⁵ D 3, 4d ³ D	3, 4 <i>d</i> ³ F
$2s \ 2p^2(^2D)nx'$	{		3s' ³ D 3s' ¹ D	_			3p' ³ D° 3p' ¹ D°	3p′ ¹F°	3d' 3S	3, 4 <i>d′</i> ³ P 3 <i>d′</i> ¹ P	3, 4d′ ³ D 3d′ ¹ D	${{3-5d'}_{3}{ m F}}\over{3d'}{ m {}^{1}{ m F}}$
$2p^{3}(^{4}\mathrm{S}^{\circ})nx^{\mathrm{IV}}$					3p1	* 3P						

*For predicted terms in the spectra of the C1 isoelectronic sequence, see Introduction.

Na vII

(B 1 sequence; 5 electrons)

Ground state 1s² 2s² 2p ²P^o_{1/2}

 $2p \ ^{2}P_{1/2}^{\circ}$ 1681679 cm⁻¹

All of the terms are taken from Söderqvist's later publication. The Grotrian diagram in the earlier paper should be extended to include the more complete analysis of 1944. He has classified 158 lines in the region between 62 A and 491 A.

The absolute values of the doublet terms are well determined. Those of the quartets are derived from the $nd \, {}^{4}D^{\circ}$ (n=3, 4, 5) series; and the relative uncertainty x, may be a few hundred cm⁻¹. No intersystem combinations have been observed.

Z = 11

I. P. 208.444 volts

REFERENCES

J. Söderqvist, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 7, 93 (1934). (T) (C L) (G D) J. Söderqvist, Ark. Mat. Astr. Fys. (Stockholm) 30A, No. 11 p. 9 (1944). (I P) (T) (C L)

a	V	T	I
 		-	1

Na VII

Author	Config.	Desig.	J	Level	Interval	Author	Config.	Desig.	J	Level	Interva
$2p$ $^{2}P_{1}$ $^{2}P_{2}$	$2s^2(^1\mathrm{S})2p$	2 <i>p</i> ² P°	$1/2 \\ 1$	0 2139	2139	$\overline{3p'} {}^{2}\mathrm{D}_{2}$ ${}^{2}\mathrm{D}_{3}$	2s 2p(1P°)3p	3 <i>p′</i> ² D	$rac{1\frac{1}{2}}{2\frac{1}{2}}$	$1251674 \\ 1252014$	34(
$2p' \ {}^{4}P_{1} \ {}^{4}P_{2} \ {}^{4}P_{2} \ {}^{4}P_{2}$	2s 2p ²	$2p^2$ 4P	$1^{1/2}_{1^{1/2}}_{1^{1/2}_{1^{1/2}}}$	115187 + x 115920 + x 116987 + x	733 1067	$\overline{3p'} {}^{2}\mathrm{P_{1}} {}^{2}\mathrm{P_{2}}$	$2s \ 2p(^{1}\mathrm{P}^{\circ})3p$	3 <i>p</i> ′²₽	$1^{\frac{1}{2}}_{1^{\frac{1}{2}}_{\frac{1}{2}}}$	$1253353 \\ 1253779$	426
$2p'$ $^{2}D_{3}$	$2s \ 2p^2$	$2p^2$ $^2\mathrm{D}$	$\frac{-72}{2^{1/2}}$	205412	-36	$\overline{3p'}$ ² S ₁	$2s 2p(^{1}\mathrm{P}^{\circ})3p$	3p' ² S	1/2	1258878	
$^{2}\mathrm{D}_{2}$ $2p'$ $^{2}\mathrm{S}_{1}$	$2s 2p^2$	$2p^2$ ² S	1 1/2	205448 264400		3s'' ⁴ P ₂ ⁴ P ₃	2p ² (°P)3s	3s'' *P		$\begin{array}{c} 1290221 + x \\ 1291755 + x \end{array}$	1534
$2p' \ {}^{2}P_{1} \ {}^{2}P_{2}$	$2s 2p^2$	$2p^2$ $^2\mathrm{P}$		283869 285189	1320	$\overline{3d'}$ ² F	2s 2p(1P°)3d	3d' ² F°	$\left\{\begin{array}{c} 2^{1/2}\\ 3^{1/2}\end{array}\right\}$	} 1292333	
$2p'' {}^{4}\mathrm{S}_{2}$	$2p^{3}$	$2p^3$ 4S°	1/2 $1\frac{1}{2}$	367481 + x		$4s \ ^{2}S_{1}$	$2s^2({}^1S)4s$	4s 2S	1/2	1294914	
$2p^{\prime\prime}{}^{^{2}\mathrm{D}_{3}}_{^{2}\mathrm{D}_{2}}$	$2p^{3}$	$2p^3$ $^2\mathrm{D}^\circ$	$2^{1\!\!\!/_2}_{1^{1\!\!\!/_2}}$	412311 412395	84	$\overline{3d'}$ $^{2}\mathrm{D}_{2}$ $^{2}\mathrm{D}_{3}$	$2s \ 2p(^{1}P^{\circ})3d$	3 <i>d′</i> 2D°	$1^{1/2}_{2^{1/2}_{2^{1/2}}}$	1303445 1303643	198
$2p^{\prime\prime}{}^2\mathrm{P_1}{}^2\mathrm{P_2}$	$2p^{3}$	$2p^3$ $^2\mathrm{P}^{\circ}$	$1/2 \\ 11/2 \\ 11/2 \\ 1$	465017 465111	94	$\overline{3d'}$ ² P	$2s$ $2p(^{1}P^{\circ})3d$	3 <i>d′</i> 2₽°	$\left\{ egin{array}{c} 1^{1\prime}_{2} \\ 1^{1\prime}_{2} \end{array} ight.$	} 1306468	
38 ² S ₁	$2s^2(^{1}S)3s$	3s ² S	1⁄2	951347		$\overline{3s^{\prime\prime}}^{2} D_{2}^{2} D_{2}$	$2p^2(^1\mathrm{D})3s$	3s''' 2D	$\frac{1\frac{1}{2}}{2^{\frac{1}{2}}}$	1331137 1331974	837
$3p$ $^{2}P_{2}$	$2s^2({}^1S)3p$	3 <i>p</i> ² P°	$1^{\frac{1}{2}}_{1^{\frac{1}{2}}_{2}}$	1008418		$4d {}^{2}D_{2}$	$2s^2({}^1S)4d$	4d ² D	$1^{1/2}_{1/2}$	1335809	80
${}^{3d}_{{}^{2}\mathrm{D}_{2}}{}^{^{2}\mathrm{D}_{2}}_{{}^{2}\mathrm{D}_{3}}$	$2s^2(^1\mathrm{S})3d$	3d ² D	$1\frac{1}{2}$ $2\frac{1}{2}$	1060580 1060699	119	-D3	$2p^2(^3\mathrm{P})3p$	3 <i>p''</i> ⁴D°	$\frac{\frac{272}{1}}{\frac{1}{2}}$	1999099	
3s' ⁴ P ₁ ⁴ P ₂ ⁴ P ₃	2s 2p(³ P°)3s	38 4P°	$egin{array}{c} 1^{1\!\!\!/2} \\ 1^{1\!\!\!/2} \\ 2^{1\!\!\!/2} \end{array}$	1077458 + x 1078190 + x 1079520 + x	732 13 3 0	$3p^{\prime\prime}$ $^4\mathrm{D}_4$			$\begin{array}{c} 172\\ 2^{1\!/2}\\ 3^{1\!/2}\\ 3^{1\!/2}\end{array}$	1338659+x	
3s' ² P ₁ ² P ₂	2s 2p(3P°)3s	38 ² P°	$1\frac{1}{2}{1\frac{1}{2}}$	1103222 1104620	13 98	3 <i>p''</i> 4P3	$2p^2(^3\mathrm{P})3p$	3 <i>p''</i> 4P°	$\begin{array}{c} \frac{1/2}{11/2} \\ 2\frac{1}{2} \\ 2\frac{1}{2} \end{array}$	1345036 + x	
${}^{3p'}{}^{^{2}\mathrm{P}_{1}}_{^{2}\mathrm{P}_{2}}$	$2s \ 2p(^{3}\mathrm{P}^{\circ})3p$	3 <i>p</i> 2P	$1^{1/2}_{1^{1/2}_{1^{1/2}_{2}}}$	$\frac{1126810}{1127431}$	621	$3p^{\prime\prime} ^2\mathrm{D}$	$2p^2(^3\mathrm{P})3p$	3 <i>p''</i> 2D°	$\left\{ egin{array}{c} 1^{1\!\!\!\!/2} \\ 2^{1\!\!\!\!/2} \end{array} ight.$	} 1348721	
$3p' \ {}^{2}D_{2} \ {}^{2}D_{2}$	2s 2p(3P°)3p	$3p$ $^{2}\mathrm{D}$	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	$\frac{1154779}{1156180}$	1401	$3p^{\prime\prime}$ $^4\mathrm{S}_2$	$2p^2(^3\mathrm{P})3p$	$3p^{\prime\prime}$ 4S°	$1\frac{1}{2}$	1363160+x	
3p' ² S ₁	2s 2p(3P°)3p	$3p$ $^2\mathrm{S}$	-/2 1⁄2	11 72 339		$\overline{3p^{\prime\prime}}^{2}F_{3}^{2}F_{4}$	$2p^2(^1\mathrm{D})3p$	$3p^{\prime\prime\prime 2}{ m F}^{\circ}$	$2^{1\!/_2}_{3^{1\!/_2}}$	1377822 1378295	473
$3d' \stackrel{4D_2}{4D_2}$	$2s \ 2p(^{3}P^{\circ})3d$	3 <i>d</i> ⁴D°	1/2 11/2 21/2	1185931 + x	259	3d'' ² F ₃ ² F ₄	$2p^2(^3\mathrm{P})3d$	3 <i>d''</i> ² F	$2^{1/_2}_{3^{1/_2}}$	$\begin{array}{c} 1388500?\\ 1388969? \end{array}$	469
$^{4}D_{4}$			$3\frac{1}{2}$	1186190 + x 1186666 + x	476	3 <i>d''</i> 2D	$2p^2(^3\mathrm{P})3d$	3 <i>d''</i> 2D	$\left\{ egin{array}{c} 1^{1\!\!\!\!/_2} \ 2^{1\!\!\!\!/_2} \end{array} ight.$	} 1390448?	
${{3d'}_{2}}^{2}{{ m D}_{2}}_{{ m D}_{3}}$	$2s \ 2p(^{3}P^{\circ})3d$	$3d$ $^2D^\circ$	$1\frac{1}{2}$ $2\frac{1}{2}$	1186628 1187885	1257	$\overline{3p^{\prime\prime}}$ ² D	2p ² (¹ D)3p	$3p^{\prime\prime\prime2} \mathrm{D}^{\circ}$	$\left\{ \begin{array}{c} 1^{1_{2}} \\ 2^{1_{2}} \end{array} \right\}$	} 1392764	- *- * [*]
$\begin{array}{ccc} 3d' & {}^4\mathrm{P}_3 & & \ {}^4\mathrm{P}_2 & & \ {}^4\mathrm{P}_1 & & \ {}^4\mathrm{P}_1 & & \ \end{array}$	28 2p(3P°)3d	3 <i>d</i> ⁴₽°	$2^{1\!\!\!/_2}_{1^{1\!\!\!/_2}_1}_{1^{1\!\!\!/_2}_1^{1\!\!\!/_2}_1}}}}}}}}}}}}}}}}}}}}$	1192538 + x 1193059 + x 1193402 + x	$-521 \\ -343$	$3d'' {}^{4}P_{3} {}^{4}P_{2} {}^{4}P_{2}$	$2p^2(^3\mathrm{P})3d$	3 <i>d''</i> ⁴P	$\begin{array}{c} 2\frac{1}{2} \\ 1\frac{1}{2} \\ 1\frac{1}{2} \\ 1\frac{1}{4} \end{array}$	1399238+x 1399771+x 1400059+x	-533 -288
3s' ² P	2s 2p(1P°)3s	3s′ 2P°	$\left\{ \begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \end{array} \right\}$	} 1198287		$\overline{3d''}$ 2D	$2n^{2}(1D)3d$	3 <i>d'''</i> 2D	$\int \frac{1}{2}$	1415636	
$3d'$ $^2\mathrm{F}_3$ $^2\mathrm{F}_4$	$2s \ 2p(^{3}\mathrm{P}^{\circ})3d$	3d ² F°	$2\frac{1}{2}$ $3\frac{1}{2}$	1209908 1211236	1328		$2s 2p(^{3}P^{\circ})4s$	48 4P°	$12\frac{1}{2}$) 110000	
$3d' {}^{2}P_{2} {}^{3}P_{1}$	2s 2p(3P°)3d	3d ²₽°	$1\frac{1}{2}$ $\frac{1}{2}$	1217189 1217955	-766	4s' 4P3			$1\frac{1}{2}$ $2\frac{1}{2}$	1423050+ x	

Na VII-Continued

Na VII-Continued

Author	Config.	Desig.	J	Level	Interval	Author	Config.	Desig.	J	Level	Interval
3d'' ² F ₃ ² F ₄	$2p^2(^1\mathrm{D})3d$	3d''' ² F	$2^{1/_2}_{3^{1/_2}}$	$\frac{1428717}{1428798}$	81	4 p′²D	2s 2p(1P°)4p	4 <i>p</i> ′²D	$\left\{\begin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}\right.$	$} 1561885$	
$\overline{3d^{\prime\prime}}{}^{2}\mathrm{P_{1}}{}^{2}\mathrm{P_{2}}$	$2p^2(^1\mathrm{D})3d$	3 <i>d'''</i> ²₽	$1^{1/2}_{1^{1/2}_{1^{1/2}_{2}}}$	$\frac{1432135}{1432606}$	471	$7d$ $^{2}\mathrm{D}$	$2s^2(^1\mathrm{S})7d$	$7d$ $^2\mathrm{D}$	$\left\{ \begin{array}{c} 1^{1\!\!\!/_2} \\ 2^{1\!\!\!/_2} \end{array} \right.$	1570078	
4s′ 2P2	2s 2p(3P°)4s	4s 2P°	$1^{1/2}_{1^{1/2}_{1^{1/2}_{2}}}$	1432595		$\overline{4d'}$ ² F	2s 2p(1P°)4d	4 <i>d′</i> 2F°	$\Big\{\begin{array}{c} 2\frac{1}{2} \\ 3\frac{1}{2} \\ 3\frac{1}{2} \\ \end{array}$	} 1577813 ?	
$4p' \ {}^2{ m P_1} \ {}^2{ m P_2}$	2s 2p(3P°)4p	4 <i>p</i> ² P	$1^{1/2}_{1^{1/2}_{1^{1/2}_{2}}}$	$\begin{array}{c} 1442711 \\ 1443165 \end{array}$	454	5p' ² P	2s 2p(3P°)5p	5p ² P	$\left\{\begin{array}{c} \frac{1_2'}{1_2''}\right\}$	$} 1578354$	
$4p' \ {}^{2}D_{2} \ {}^{2}D_{3}$	2s 2p(3P°)4p	4 <i>p</i> ² D	$1^{1/_2}_{2^{1/_2}}$	$\begin{array}{c} 1452095 \\ 1453349 \end{array}$	1254	5p' ² D	2s 2p(3P°)5p	$5p$ $^{2}\mathrm{D}$	$\left\{ egin{array}{c} 1^{1\!\!\!\!/_2} \\ 2^{1\!\!\!\!/_2} \end{array} ight.$	1583742	
${}^{5d}_{2\mathrm{D}_{2}}{}^{^{2}\mathrm{D}_{2}}_{2\mathrm{D}_{3}}$	$2s^2(^1\mathrm{S})5d$	$5d$ $^2\mathrm{D}$	$1\frac{12}{21/2}$	$1461518 \\ 1461588$	70	5 <i>d′</i> 4D	2s 2p(3P°)5d	5d ⁴D°	$\begin{cases} \frac{1_2}{t_2}\\ t_0\\ \frac{31_4}{t_1}\end{cases}$	$\left.\right\} 1589481 + x$	
4d' ⁴ D ₂ ⁴ D ₃ ⁴ D ₄	2s 2p(3P°)4d	4 <i>d</i> ⁴D°	$\begin{array}{c} \frac{1/2}{11/2}\\ 2\frac{1}/2\\ 3\frac{1}/2\\ \end{array}$	1462587 + x 1462631 + x 1463462 + x	44 831	5 <i>d'</i> 4P	2s 2p(3P°)5d	5d 4 P °	$\begin{cases} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{cases}$	$\left.\right\} 1590240+x$	
$4d'$ $^{2}\mathrm{D}_{3}$	2s 2p(3P°)4d	4d ²D°	$1\frac{12}{212}$	1464051		$5d' \ {}^2{ m F_3} \ {}^2{ m F_4}$	$2s \ 2p(^{3}\mathrm{P}^{\circ})5d$	$5d$ $^{2}\mathrm{F}^{\circ}$	$2\frac{1}{2}$ $3\frac{1}{2}$	1592815 1593915	11
4 <i>d′</i> 4P ₃	2s 2p(3P°)4d	4d ⁴ P°	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1465059+x		8d ² D	$2s^2(^1\mathrm{S})8d$	8 <i>d</i> 2D	$\left\{ egin{array}{c} 1^{1\!\!\!\!/_2} \\ 2^{1\!\!\!\!/_2} \end{array} ight.$	$\} 1596400$	
$4d'~^2{ m F_3}_{^2{ m F_4}}$	$2s \ 2p(^{3}P^{\circ})4d$	4d ² F°	$2^{1/2}_{2}_{3^{1/2}_{2}}$	1471559 1472727	1168	4 <i>p''</i> 4D	$2p^2(^3\mathrm{P})4p$	4 <i>p''</i> 4D°	$\begin{cases} \frac{1_2}{\text{to}}\\ \frac{3_{1_2}}{3_{1_2}}\end{cases}$	$\left.\right\} 1646320+x$	
$4d' \ ^{2}P_{2} \ ^{2}P_{1}$	2s 2p(3P°)4d	4d ² P°	$1\frac{1}{2}$ $\frac{1}{2}$	1 473809 1 47 4526	-717	6d′ 4P 6d′ 4D	$\left\{2s \ 2p({}^{3}\mathrm{P}^{\circ})6d\right.$	$\begin{cases} 6d & {}^{4}\mathrm{P}^{\circ} \\ 6d & {}^{4}\mathrm{D}^{\circ} \end{cases}$	$\begin{cases} \frac{1}{2} \\ \text{to} \\ 3\frac{1}{2} \end{cases}$	$\left.\right\} 1657724 + x$	
6 <i>d</i> ² D	$2s^2(^1S)6d$	6 <i>d</i> ² D	$\left\{ egin{array}{c} 1^{1\!\!\!/_2} \\ 2^{1\!\!\!/_2} \end{array} ight.$	brace 1529463		$4d^{\prime\prime} {}^{4}P_{3} {}^{4}P_{2}$	$2p^2(^3\mathrm{P})4d$	4 <i>d''</i> 4P	$2^{1/2}_{1/2}$	1668514 + x 1668855 + x	-341
$\overline{4s'}$ ² P	2s 2p(1P°)4s	4s' ² P°	$\left\{ \begin{array}{c} \frac{1/2}{11/2} \\ 11/2 \end{array} \right.$	} 1538951		-			1/2 		
							Na viii (1S°)	Limit		1681679	

October 1946.

Na VII OBSERVED TERMS*

$\begin{array}{c} \text{Config.} \\ 1s^2 + \end{array}$		Observed Terms	
$2s^2({}^1\mathrm{S})2p$	2p 2P°		
$2s$ $2p^2$	$\left\{\begin{array}{ccccccc} 2p^{2} & {}^{4}\mathrm{P} \\ 2p^{2} & {}^{2}\mathrm{S} \end{array} & 2p^{2} & {}^{2}\mathrm{P} & 2p^{2} & {}^{2}\mathrm{D} \end{array}\right.$		
$2p^3$	$\begin{cases} 2p^{3} {}^{4}\mathrm{S}^{\circ} \\ & 2p^{3} {}^{2}\mathrm{P}^{\circ} 2p^{3} {}^{2}\mathrm{D}^{\circ} \end{cases}$		
	ns $(n \ge 3)$	$np (n \ge 3)$	nd $(n \ge 3)$
$2s^2({}^1\mathrm{S})nx$	3, 4s ³ S	3p ²P°	3-8d ² D
$2s \ 2p(^{3}P^{\circ})nx$	$\begin{cases} 3, 4_8 \ {}^{4}P^{\circ} \\ 3, 4_8 \ {}^{2}P^{\circ} \end{cases}$	3p ² S $3-5p$ ² P $3-5p$ ² D	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2s 2p(1P°)nx'	3, 4s' ² P°	3p' ² S $3p'$ ² P $3, 4p'$ ² D	$3d' {}^{2}P^{\circ} {}^{3}d' {}^{2}D^{\circ} {}^{3}, 4d' {}^{2}F^{\circ}$
2p ² (³ P)nx''	{ 3s''4P	$3p'' {}^{4}S^{\circ} = 3p'' {}^{4}P^{\circ} = 3, 4p'' {}^{4}D^{\circ} = 3p'' {}^{2}D^{\circ}$	3, 4d'' ⁴ P 3d'' ² D 3d'' ² F
$2p^2(^1\text{D})nx'''$	3s''' ² D	$3p''' {}^{2}\mathrm{D}^{\circ} {}^{3}p''' {}^{2}\mathrm{F}^{\circ}$	$3d''' {}^{2}\mathbf{P} = 3d''' {}^{2}\mathbf{D} = 3d''' {}^{2}\mathbf{F}$

*For predicted terms in the spectra of the B1 isoelectronic sequence, see Introduction.

Na VIII

(Be I sequence; 4 electrons)

Ground state 1s² 2s² ¹S₀

2s² ¹S₀ 2131139 cm⁻¹

Eighty-six lines have been classified by Söderqvist, all but three of which are in the region between 51 A and 117 A. No intersystem combinations are known, but the absolute term values are well determined by the series, the relative uncertainty x being probably a few hundred cm⁻¹.

REFERENCE

J. Söderqvist, Ark. Mat. Astr. Fys. (Stockholm) 30A, No. 11, p. 7 (1944). (I P) (T) (C L)

		Na v	ш			Na VIII						
Author	Config.	Desig.	J	Level	Interval	Author	Config.	Desig.	J	Level	Interval	
28 ¹ S ₀	2s ²	2s ² 1S	0	0		3p' ¹ P ₁	$2p(^{2}P^{\circ})3p$	3p 1P	1	1432991		
2p ³ P ₀ ³ P ₁ ³ P ₂	$2s(^2\mathrm{S})2p$	2p 3P°	$\begin{array}{c} 0 \\ 1 \\ 2 \end{array}$	126053 + x 126783 + x 128387 + x	730 1604	$3p' {}^{3}D_{1} \\ {}^{3}D_{2} \\ {}^{3}D_{3}$	$2p(^{2}P^{\circ})3p$	3p ³D	$\begin{array}{c} 1 \\ 2 \\ 3 \end{array}$	$1439584 + x \\ 1440430 + x \\ 1442050 + x$	846 1620	
2p ¹ P ₁	$2s(^2\mathrm{S})2p$	2 <i>p</i> ¹ P°	1	243223		3 p' 3S1	$2p(^{2}P^{\circ})3p$	3p 3S	1	1452568 + x		
$2p' \ {}^{3}P_{0} \ {}^{3}P_{1} \ {}^{3}P_{2}$	$2p^2$	2p ² ³ P	$\begin{array}{c} 0 \\ 1 \\ 2 \end{array}$	327667 + x 328494 + x 329899 + x	827 1405	$3p' {}^{3}P_{1} {}^{3}P_{2}$	$2p(^{2}\mathrm{P}^{\mathrm{o}})3p$	3 <i>p</i> ₃P	$egin{array}{c} 0 \ 1 \ 2 \end{array}$	1460244 + x 1461128 + x	884	
2p' ¹ D ₂	$2p^{2}$	$2p^2$ ¹ D	2	361046		3d' ¹ D ₂	$2p(^{2}P^{\circ})3d$	3d ¹ D°	2	1469055		
$2p' \ {}^{1}S_{0}$	$2p^2$	$2p^2$ ¹ S	0	446099		$3p' {}^{1}D_{2}$	$2p(^{2}\mathrm{P}^{\circ})3p$	3 <i>p</i> ¹ D	2	1474598		
38 ³ S ₁	$2s(^2S)3s$	38 3S	1	1240255 + x		3 p′ 1S ₀	$2p(^{2}\mathrm{P}^{\circ})3p$	3 <i>p</i> 1S	0	1481521		
3s ¹ S ₀	$2s(^2S)3s$	38 ¹ S	0	1262799		$3d' {}^{3}D_{1}$	$2p(^{2}P^{\circ})3d$	3 <i>d</i> ³ D°	1	1485329 + x	292	
3 <i>p</i> ¹ P ₁	$2s(^2S)3p$	3 <i>p</i> ¹ P°	1	1294214		$^{3}D_{3}^{2}$			$\frac{2}{3}$	1485621+x 1486249+x	628	
3d ³ D ₁ ³ D ₂ ³ D ₃	$2s(^2\mathrm{S})3d$	3 <i>d</i> ³ D	$egin{array}{c} 1 \\ 2 \\ 3 \end{array}$	$\begin{array}{r} 1327399 + x \\ 1327436 + x \\ 1327557 + x \end{array}$	37 121	$3d' {}^{3}P_{2} {}^{3}P_{1} {}^{3}P_{0}$	$2p(^{2}P^{\circ})3d$	3d ³P°	$egin{array}{c} 2 \\ 1 \\ 0 \end{array}$	1492167+x 1492809+x 1493167+x	$\begin{vmatrix} -642 \\ -358 \end{vmatrix}$	
$3d$ $^{1}D_{2}$	$2s(^2\mathrm{S})3d$	3d ¹ D	2	1347756		3d′ 1F3	$2p(^{2}P^{\circ})3d$	$3d$ $^1\mathrm{F}^\circ$	3	1507690		
3s' 3P0	$2p(^{2}\mathrm{P^{o}})3s$	38 ³ P°	0	1399858 + x	805	3d' ¹ P ₁	$2p(^{2}\mathrm{P}^{\mathrm{o}})3d$	3d ¹ P°	1	1513677		
${}^{^{3}P_{1}}_{^{3}P_{2}}$			$\frac{1}{2}$	1400663+x 1402377+x	1714	4s ³ S ₁	2s(2S)4s	4s ³ S	1	1649682 + x		
3s' ¹ P ₁	$2p(^{2}\mathrm{P}^{\circ})3s$	38 ¹ P°	1	1426049		4s ¹ S ₀	$2s(^2\mathrm{S})4s$	48 ¹ S	0	1656830		
						$4p$ $^{1}P_{1}$	$2s(^2S)4p$	4 <i>p</i> ¹ P°	1	1673388		

I. P. 264.155 volts

Z = 11

Na VIII

Na VIII—Continued

Na VIII—Continued

Author	Config.	Desig.	J	Level	Interval	Author	Config.	Desig.	J	Level	Interval
4d 3D	$2s(^2\mathrm{S})4d$	4d 3D	1, 2, 3	1683549 + x		$5d$ $^{1}D_{2}$	$2s(^2\mathrm{S})5d$	5 <i>d</i> ¹ D	2	1848978	
$4d$ $^{1}D_{2}$	$2s(^2\mathrm{S})4d$	$4d$ $^{1}\mathrm{D}$	2	168998 2		6 <i>p</i> ¹ P ₁	$2s(^2\mathrm{S})6p$	6 <i>p</i> ¹ P°	1	1930912	
4 <i>p</i> ′ ¹ P ₁	$2p(^{2}\mathrm{P}^{\circ})4p$	4 <i>p</i> ¹ P	1	1813205		6 <i>d</i> ³ D	$2s(^2\mathrm{S})6d$	$6d$ ^{3}D	1, 2, 3	1933601 + x	
1 m/ 3D	$2p(^{2}\mathrm{P}^{\circ})4p$	4 <i>p</i> ³ D	1	1916170 1		$6d$ $^{1}D_{2}$	$2s(^2\mathrm{S})6d$	6d ¹ D	2	1935242	
^{4}p $^{\circ}\mathrm{D}_{2}$ $^{3}\mathrm{D}_{3}$			$\frac{2}{3}$	1810179 + x 1817462 + x	1283	5p′ ³P	$2p(^{2}\mathrm{P}^{\circ})5p$	5 <i>p</i> 3P	0, 1, 2	1988852 + x	
	$2p(^{2}P^{\circ})4p$	4 <i>p</i> ³₽	0			5p' ¹ D ₂	$2p(^2\mathrm{P^o})5p$	5p ¹ D	2	1990558	
$4p' \ ^{3}P_{2}$			$\frac{1}{2}$	1823044 + x		$5d'$ $^1\mathrm{D}_2$	$2p(^{2}\mathrm{P}^{\circ})5d$	$5d$ $^{1}\mathrm{D}^{\circ}$	2	1991118	
4d' ¹ D ₂	$2p(^{2}\mathrm{P}^{\circ})4d$	4 <i>d</i> ¹D°	2	1827472		5d′ 3D	$2p(^2\mathrm{P^o})5d$	$5d$ $^{3}D^{\circ}$	1, 2, 3	1994540 + x	
$4p' \ ^1D_2$	$2p(^{2}P^{\circ})4p$	4 <i>p</i> ¹ D	2	1827658		5d′ ³P	$2p(^2\mathrm{P^o})5d$	$5d$ $^{3}P^{\circ}$	2, 1, 0	1995095 + x	
	$2p(^{2}\mathrm{P}^{\circ})4d$	$4d$ $^{3}D^{\circ}$	1			$5d'$ ${}^1\mathrm{F}_3$	$2p(^{2}\mathrm{P}^{\circ})5d$	$5d$ ${}^{1}\mathrm{F}^{\circ}$	3	1998029	
4d' 3D3			$\frac{2}{3}$	1833704+x		6p′ 3D	$2p(^{2}\mathrm{P}^{\circ})6p$	6 <i>p</i> ³ D	1, 2, 3	2077097 + x	
$4d'$ $^{3}P_{2}$	$2p(^{2}P^{\circ})4d$	4d ³P°	2	1835175 + x		6d′ 3D	$2p(^2\mathrm{P^o})6d$	$6d$ $^{3}D^{\circ}$	1, 2, 3	2080630+x	
						6d′ 3P	$2p(^{2}\mathrm{P}^{\circ})6d$	6d 3P°	2, 1, 0	2081335+x	
4d' ¹ F ₃	$2p(^{2}P^{\circ})4d$	$4d$ ${}^1\mathrm{F}^{\circ}$	3	1838762		6d′ ¹ F ₃	$2p(^{2}\mathrm{P}^{\circ})6d$	$6d$ ${}^{1}\mathrm{F}^{\circ}$	3	2083106	
5 <i>p</i> ¹ P ₁	$2s(^2S)5p$	5 <i>p</i> ¹ P°	1	1838911							-
4d' ¹ P ₁	$2p(^2\mathrm{P^o})4d$	4d ¹ P°	1	1843384			Na IX (² S ₃)	Limit		2131139	
5 <i>d</i> ³ D	$2s(^2\mathrm{S})5d$	5 <i>d</i> 3D	1, 2, 3	1848841 + x							

May 1946.

Na vIII OBSERVED TERMS*

Config. $1s^2+$		Observed Terms	
2s ²	$2s^{2}$ ¹ S		
$2s(^2\mathrm{S})2p$	$\left\{egin{array}{ccc} 2p & {}^3\mathrm{P}^{\mathrm{o}}\ 2p & {}^1\mathrm{P}^{\mathrm{o}}\end{array} ight.$		
$2p^2$	$\left\{\begin{array}{cc} 2p^{2} {}^{3}\mathrm{P} \\ 2p^{2} {}^{1}\mathrm{S} \end{array} 2p^{2} {}^{1}\mathrm{D} \right.$		
	$ns \ (n \ge 3)$	$np \ (n \ge 3)$	$nd \ (n \ge 3)$
2s(² S)nx	$\begin{cases} 3, 4s & {}^{3}S \\ 3, 4s & {}^{1}S \end{cases}$	3-6p ¹ P°	3-6d ³ D 3-6d ¹ D
$2p(^{2}P^{\circ})nx$	$\begin{cases} 3s \ {}^{3}P^{\circ} \\ 3s \ {}^{1}P^{\circ} \end{cases}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3-6d ³ P° 3-6d ³ D° 3, 4d ¹ P° 3-5d ¹ D° 3-6d ¹ F°

*For predicted terms in the spectra of the Be 1 isoelectronic sequence, see Introduction.

104

NaIX

Z = 11

I. P. 299.78 volts

(Li 1 sequence; 3 electrons)

Ground state 1s² 2s ²S_{1/2}

2s 2S1/2 2418520 cm⁻¹

The analysis is by Söderqvist, who has classified 22 lines in this spectrum. They occur in the region 81 A to 44 A, with the exception of one line at 681 A.

Some of the relative levels have been connected by a study of the Rydberg denominators in the isoelectronic sequence rather than by the Ritz combination principle.

REFERENCE

J. Söderqvist, Ark. Mat. Astr. Fys. (Stockholm) 30A, No. 11, p. 1 (1944). (I P) (T) (C L)

N	a	IX

Na IX

Author J Interval Interval Config. Desig. Level Author Config. Desig. Level J28 2S1 28 2s 2S 1/2 0 $\frac{\frac{1}{2}}{1\frac{1}{2}}$ 5p 2P° $5p \ ^{2}P_{2 \ 1}$ 2059605 5p ${^{2}p}\,{^{2}P_{1}}\,{^{2}P_{2}}$ $\frac{\frac{1}{2}}{1\frac{1}{2}}$ 2p $2p \ ^{2}P^{\circ}$ 144038 2650 $1\frac{1}{2}{2\frac{1}{2}}$ $5d \ ^{2}D_{2}$ 146688 5d $5d ^{2}D$ 206283576 $^{2}\mathrm{D}_{3}$ 2062911 33 2S1 33 33 2S 1/2 1375944 $\frac{\frac{1}{2}}{1\frac{1}{2}}$ 6p 2P° 2169668 6p 2P21 6p ${}^{3p}\,{}^{^{2}\mathrm{P}_{1}}_{\,^{^{2}\mathrm{P}_{2}}}$ $\frac{\frac{1}{2}}{1\frac{1}{2}}$ 3p 2P° 1415368 3p762 1416130 6d ²D₂ ²D₃ $1\frac{1}{2}$ $2\frac{1}{2}$ 6d $6d ^{2}D$ 2171366 187 ${^{2}D_{2}} {^{2}D_{2}} {^{2}D_{3}}$ $1\frac{1}{2}$ $2\frac{1}{2}$ $3d ^{2}D$ 1429980 2171553 3d2241430204 $1\frac{1}{2}$ $1\frac{1}{2}$ 7p 2P° $7p \ ^{2}P_{21}$ 7p2235886 43 2S1 1840336 48 43 2S 1/2 $7d \ {}^2{
m D}_2 \ {}^2{
m D}_3$ $2237139 \\ 2237165$ $1\frac{1}{2}{1\frac{1}{2}}$ $\frac{1\frac{1}{2}}{2\frac{1}{2}}$ 7d $7d ^{2}D$ 4p 2P° **2**6 $4p \, {}^{2}P_{2 \, 1}$ 1856665 4p ${}^{4d}_{~^{2}\mathrm{D}_{2}}_{~^{2}\mathrm{D}_{3}}$ $\frac{1\frac{1}{2}}{2\frac{1}{2}}$ 1862222 4d $4d ^{2}D$ 350 1862572 Limit 2418520 Na x $(^{1}S_{0})$ 53 2S1 5s53 2S $\frac{1}{2}$ 2051922?

May 1946.

MAGNESIUM

Mg I

12 electrons

Ground state $1s^2 2s^2 2p^6 3s^2 {}^1S_0$

3s² ¹S₀ 61669.14 cm⁻¹

The most complete term array is given in Paschen's 1931 paper, which has been extensively used in the present compilation.

Paschen lists the combinations $3d \, {}^{3}D - nf \, {}^{3}F^{\circ}$ (n=4,5) and $3d \, {}^{1}D - nf \, {}^{1}F^{\circ}$ (n=4-9), deriving from his infrared observations practically coincident values for the terms $nf \, {}^{3}F^{\circ}$ and $nf \, {}^{1}F^{\circ}$ for n=4 and n=5. Assuming that the two F-series were coincident throughout, Russell, Babcock, and the writer extended both series by the identification of Paschen's lines in the Infrared Solar Spectrum and by the discovery of the constant solar wave-number separation $3d \, {}^{3}D - 3d \, {}^{1}D$ for predicted successive series members. The constancy of this separation and the behavior of the solar lines in the disk and spot spectra leave no doubt as to the correctness of the identifications, although laboratory observations are lacking for confirmation of many of the lines. The term values in the table for the F-series $(nf \, {}^{1}F^{\circ}$ to n=14 and $nf \, {}^{3}F^{\circ}$ to n=12) have been calculated from solar data, with a slight adjustment to Paschen's absolute values of $3d \, {}^{3}D$ and $3d \, {}^{1}D$, as indicated in the 1945 reference below.

The three-decimal values listed for the terms 3p ³P° and 3d ³D are from Meissner's paper. Sawyer suggests that Paschen's 6d ¹D term (58023.27 cm⁻¹ in the table) may have the designation $3p^2$ ¹D, in which case the *n*-values of the higher series members should be decreased by one unit. In accordance with the observations of Shenstone and Russell on related series, the nd ¹D series may well have absorbed the $3p^2$ ¹D term. The present analysis indicates that throughout the D-series the singlets are lower than the corresponding triplet terms.

The singlet and triplet terms are well connected by intersystem combinations.

REFERENCES

- F. Paschen, Sitz. Preuss. Akad. Wiss. 32, 709 (1931). (I P) (T) (C L)
- F. Paschen, Ann. der Phys. [5] 12, 511 (1932). (T) (C L)
- A. G. Shenstone and H. N. Russell, Phys. Rev. 39, 431 (1932).
- H. E. White, Introduction to Atomic Spectra p. 179 (McGraw-Hill Book Co., Inc., New York, N. Y., 1934). (G D)
- K. W. Meissner, Ann. der Phys. [5] 31, 518 (1938). (T) (C L)
- L. G. Mundie and K. W. Meissner, Phys. Rev. 65, 265 (1944). (I S)
- H. D. Babock and C. E. Moore, Astroph. J. 101, 374 (1945). (T) (C L)

Z = 12

I. P. 7.644 volts

Mg 1

Mg I

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
3s ²	382 1S	0	0. 00		3s(2S)7d	7d 3D	3, 2, 1	59317. 4	
$3s(^2\mathrm{S})3p$	3 <i>p</i> ³P°	0	21850. 368	20. 058	$3s(^2S)7f$	<i>7f</i> ³F°	2, 3, 4	59400.77	
		$\frac{1}{2}$	21911. 140	40. 714	$3s(^2S)7f$	7f ¹ F°	3	59400.77	
3s(2S) 3 p	3p 1P°	1	35051.36		3s(2S)9s	9s 3S	1	59648. 2	
3s(2S) 4s	4s 3S	1	41197. 37		$3s(^2S)8d$	8 <i>d</i> 1D	2	59690. 02	
3s(2S)4s	4s 1S	0	43503. 0		$3s(^2S)8d$	8d 3D	3, 2, 1	59880. 3	
$3s(^2\mathrm{S})3d$	3d 1D	2	46403.14		3s(2S)8f	8f 3F°	2, 3, 4	59935.38	
$3s(^2S)4p$	4 <i>p</i> ³ P°	0, 1	47847.7 47851.8	4.1	3s(2S)8f	8f 1F°	3	59935.38	
3s(2S)3d	3d 3D	3	47957 035		3s(2S)10s	10s ³ S	1	60103.5	
00(0)00		2	47957.018	-0.017 -0.029	$3s(^2S)9d$	9 <i>d</i> 1D	2	60127. 31	
3s(2S)4n	4n 1P°	1	193/6 6		3s(2S)9d	9d 3D	3, 2, 1	60263.0	
3s(2S) 5s	58 38	1	51872 36		3s(2S)9f	9f ³F°	2, 3, 4	60301.30	
3s(2S) 5s	5e 1S	0	52556 37		3s(2S)9f	9f ¹F°	3	60301.30	
3s(2S) 1d		2	53134 70		3s(2S)11s	11s 3S	1	60420. 2	
3s(2S) 4d	4d 3D	321	54192 16		$3s(^2S)10d$	10 <i>d</i> ¹ D	2	60435.15	
3s(2S) 5n	$5n$ $3P^{\circ}$	0, 2, 1	01102.10		3s(2S)10d	10 <i>d</i> ³ D	3, 2, 1	60534.5	
03(0)0p			51.050 6		3s(2S)10f	10f 3F°	2, 3, 4	60562.64	
30(2S) Af	4f 3F0	234	54676 38		3s(2S)10f	10 <i>f</i> ¹ F°	3	60562.64	
30(-10)+j	Af 1F°	2, 0, ±	54676 38		3s(2S)12s	12s 3S	1	60649. 2	
3s(2S) 5n	5n 1P°	1	5/699 /		3s(2S)11d	11 <i>d</i> ¹ D	2	60658. 37	
3e(2S)6e	68 3S	1	55801 83		$3s(^2S)11d$	11 <i>d</i> ³ D	3, 2, 1	60734. 0	
30(25)60	6° 1S	0	56187 03		3s(2S)11f	11 <i>f</i> ³ F°	2, 3, 4	60755.78	
30(2S)5d	5d 1D	2	56308 43		3s(2S)11f	11 <i>f</i> ¹ F°	3	60755.78	
$3 \circ (2S) 5 d$	5d 3D	321	56968 31		3s(2S)13s	13s 3S	1	60820. 9	
30(2S)6n	6n 3P°	0, 2, 1	57018 8		$3s(^2S)12d$	12d 1D	2	60826.6	
03(D)0p	00 1	2	57020. 1	1.3	$3s(^2S)12d$	12d 3D	3, 2, 1	60884. 8	
3s(2S)5f	$5f$ $^{3}\mathrm{F}^{\circ}$	2, 3, 4	57204. 22		$3s(^2\mathrm{S})12f$	12f 3F°	2, 3, 4	60902.53	
3s(2S)5f	5f ¹ F°	3	57204. 22		$3s(^2\mathrm{S})12f$	12f ¹ F°	3	60902.53	
3p ²	3 <i>p</i> ² ³ P	0	57812.72 57833 28	20. 56	3s(2S)14s	14s ³ S	1	60952.0	
		$\frac{1}{2}$	57873. 89	40. 61	$3s(^2S)13d$	13 <i>d</i> 1D	2	60955.8	
3s(2S)7s	78 3S	1	57853. 5		$3s(^2S)13d$	13d 3D	3, 2, 1	6100 2. 2	
3s(2S)7s	7s 1S	0	58009.46		$3s(^2\mathrm{S})13f$	13f ¹ F°	3	61016.42	
$3s(^2S)6d$	6 <i>d</i> ¹ D	2	58023. 27		$3s(^2\mathrm{S})14d$	14d 3D	3, 2, 1	61094. 6	
$3s(^2S)6d$	6 <i>d</i> ³ D	3, 2, 1	58442.62		$3s(^2\mathrm{S})14f$	14f ¹ F°	3	61106.98	
$3s(^2S)7p$	7 <i>p</i> ³₽°	0, 1, 2	58478.4						-
$3s(^2S)6f$	6 <i>f</i> ³ F°	2, 3, 4	58575.54		Мд II (² S _{1/2})	Limit		61669.14	-
38(2S)6f	6f ¹ F°	3	58575.54		$3p(^{2}P^{\circ})3d$	3d ¹ F°	3	8069 3 . 2	
3s(2S)8s	8s 3S	1	58962.49		$3p(^{2}P^{\circ})3d$	3d ³ D°	$\frac{1}{2}$	83510.73 83519 98	9. 25
3s(2S)7d	7d 1D	2	59041.09			1	3	83536. 22	16. 24

July 1947.

107

Mgi Observed Terms*

Config. $1s^2 2s^2 2p^6 +$		Observe	d Terms	
3s ²	3s ² 1S			
$3s(^2\mathrm{S})3p$	$\left\{\begin{array}{ccc} 3p & {}^{3}\mathrm{P}^{\circ} \\ 3p & {}^{1}\mathrm{P}^{\circ} \end{array}\right.$			
$3p^2$	$3p^2$ ³ P			•
	$ns (n \ge 4)$	$np (n \ge 4)$	$nd \ (n \ge 3)$	$nf (n \ge 4)$
$3s(^2\mathrm{S})nx$	$\begin{cases} 4-14s \ {}^{3}S \\ 4-7s \ {}^{1}S \end{cases}$	4–7p ³ P° 4, 5p ¹ P°	${3-14d} \ {}^{3}{ m D} \ {3-13d} \ {}^{1}{ m D}$	4–12f ³ F° 4–14f ¹ F°
$3p(^{2}P^{\circ})nx$	{		3d 3D° 3d 1F°	

*For predicted terms in the spectra of the Mg I isoelectronic sequence, see Introduction.

Mg II

(Na 1 sequence; 11 electrons)

Ground state $1s^2 2s^2 2p^6 3s {}^2S_{\nu_2}$

3s ²S₁₄ 121267.41 cm⁻¹

I. P. 15.03 volts

Z = 12

The analysis is from Fowler and Paschen-Götze. Mundie and Meissner calculate the separation of $3d \, {}^{2}D$ to be $1.000 \pm 0.002 \, \mathrm{cm}^{-1}$ (entered in brackets in the table). In 1913 A. S. King observed the line at 4481 A ($3d \, {}^{2}D-4f \, {}^{2}F^{\circ}$) as double, the violet component being about twice as strong as the red, thus indicating that the term $3d \, {}^{2}D$ is inverted.

REFERENCES

A. S. King, Astroph. J. 38, 327 (1913).

F. Paschen und R. Götze, Seriengesetze der Linienspektren, p. 103 (Julius Springer, Berlin, 1922). (T) (C L)

A. Fowler, Report on Series in Line Spectra, p. 118 (Fleetway Press, London, 1922). (I P) (T) (C L)

R. F. Bacher and S. Goudsmit, Atomic Energy States, p. 273 (McGraw-Hill Book Co., Inc., New York and London, 1932). (T)

H. E. White, Introduction to Atomic Spectra, p. 98 (McGraw-Hill Book Co., Inc., New York, N. Y., 1934). (G D)

L. G. Mundie and K. W. Meissner, Phys. Rev. 65, 272 (1944). (I S)

Mg II

Mg II

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
38	3s 2S	1/2	0. 00		7d	7 <i>d</i> 2D	$\left\{ \begin{array}{c} 1^{1_{2}} \\ 2^{1_{2}} \end{array} \right.$	} 112198.0	
3 <i>p</i>	3p 2P°	$1^{\frac{1}{2}}_{\frac{1}{2}}$	35669. 42 35760. 97	91. 55	7f	<i>7f</i> ₂F°	$\left\{\begin{array}{c} 2^{1/2}\\ 3^{1/2}\end{array}\right\}$	}] 112301. 8	
48	4s 2S	1/2	69805.19				0/2		
3d	3d 2D	$2\frac{1}{2}$	71490. 41 71491. 32	[-1.000]	7g	7g 2G	$\left\{\begin{array}{c} 3\frac{1}{2} \\ 4\frac{1}{2} \end{array}\right.$	} 112310. 2	
		-/2			98	9s 2S	1/2	114292. 2	
4p	$4p^{-2}P^{\circ}$		80620.8 80651.3	30. 5	8d	8d ² D	$\left\{ egin{array}{c} 1^{1\!\!\!/2} \\ 2^{1\!\!\!/2} \end{array} ight.$	} 114335. 7	
58	58 2S	1/2	92786. 2				01/	6	
4d	4d ² D	$\left\{ \begin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array} \right\}$	93312 . 1		8f	8f 2F°	$\left\{ \begin{array}{c} 2^{\frac{1}{2}} \\ 3^{\frac{1}{2}} \end{array} \right\}$	} 114403.6	
4f	4f ² F ^o	$\begin{cases} 2^{1/2} \\ 2^{1/2} \end{cases}$	} 93800.0		8g	8g 2G	$\left\{ egin{array}{c} 3^{1\!\!\!/_2} \ 4^{1\!\!\!/_2} \end{array} ight.$	} 114408.6	
5p	5 <i>p</i> ² P°		97454.9	14 1	9f	9f ² F ^o	$\left\{egin{array}{c} 2^{1\!\!/_2} \ 3^{1\!\!/_2} \end{array} ight.$	} 115845.1	
		11/2	97469.0	1			(31/2		
6 <i>s</i>	6 <i>s</i> 2S	1/2	103198. 1		9 <i>g</i>	9 <i>g</i> ² G	41/2	} 115848.6	
5d	5d 2D	$\left\{egin{array}{c} 1^{1\!\!\!/2} \ 2^{1\!\!\!/2} \ 2^{1\!\!\!/2} \end{array} ight.$	brace 103421. 1		10f	10f 2F°	$\left\{ egin{array}{c} 2^{1\!\!\!/_2} \ 3^{1\!\!\!/_2} \end{array} ight.$	116875. 7	
5f	$5f ^{2}F^{\circ}$	$\left\{egin{array}{c} 2^{1\!\!\!/_2} \ 3^{1\!\!\!/_2} \end{array} ight.$	} 103690. 2		10 <i>g</i>	10g ² G	$\left\{ egin{array}{c} 3^{1\!\!\!/_2} \ 4^{1\!\!\!/_2} \end{array} ight.$	} 116878. 2	
6p	$6p \ ^{2}P^{\circ}$	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	105623. 1 105630. 7	7.6	11f	11f ² F°	$\left\{ egin{array}{c} 2^{1\!\!\!/_2} \ 3^{1\!\!\!/_2} \end{array} ight.$	} 117638.3	
7s	78 2S	1/2	108784. 7		11g	11g ² G	$\left\{ egin{array}{c} 3^{1\!\!\!/_2} \\ 4^{1\!\!\!/_2} \end{array} ight.$	} 117640.6	
6d	6 <i>d</i> ² D	$\left\{ egin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array} ight.$	} 108900. 9		12f	12f 2F°	$\left\{\begin{array}{c} 2^{1/2}\\ 3^{1/2} \end{array}\right.$	} 118218.5	
6 <i>f</i>	6f 2F°	$\left\{ egin{array}{c} 2^{1\!\!\!/_2} \ 3^{1\!\!\!/_2} \end{array} ight.$	} 109062.6		12a	12a 2G	$\begin{cases} 3\frac{1}{2} \\ 3\frac{1}{2} \end{cases}$	} 118220. 2	
6 <i>g</i>	6g 2G	$\left\{ egin{array}{c} 3^{1\!\!\!/2} \\ 4^{1\!\!\!/2} \end{array} ight.$	} 109073. 2					,	-
88	88 ² S	1/2	112129. 8		Mg 111 (1S ₀)	Limit		121267.41	

May 1947.

Mg III

(Ne I sequence; 10 electrons)

Ground state $1s^2 2s^2 2p^6 {}^{1}S_0$

 $2p^{6}$ ¹S₀ 646364 cm⁻¹

The analysis has been taken from Söderqvist's Monograph. The term designations he assigns on the assumption of LS-coupling are given with his notation under the heading "Author" in the table.

As for Ne 1, the *jl*-coupling notation is introduced in the general form suggested by Racah. Shortley has, however, pointed out that the configurations $2p^5$ 3s, $2p^5$ 3p, and $2p^5$ 3d are much closer to *LS*-coupling than to *jl*-coupling.

REFERENCES

J. Söderqvist, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 7, 22 (1934). (I P) (T) (C L) (G D).

G. Racah, Phys. Rev. 61, 537 (L) (1942).

G. Shortley, unpublished material (1948).

109

Z = 12

I. P. 80.12 volts

110

Mg III

Mg III

Author	Config.	Desig.	J	Level	Author	Config.	Desig.	J	Level
2p ¹ S ₀	2p ⁶	2p ⁶ ¹ S	0	0. 0	4d ³ P ₁	$2p^5(^2\mathrm{P}^\circ_{1\!$	4d [½]°	0 1	581747
38 ³ P ₂ ³ P ₁	$2p^{5}(^{2}\mathrm{P}_{i_{2}})3s$	3s [1½]°	$\begin{array}{c} 2\\ 1\end{array}$	425649. 1 426877. 0	4d ¹ P ₁		4d [1½]°	1	583448
38 ³ P ₀ ¹ P ₁	$2p^5(^2\mathrm{P}^{\circ}_{5\!\!\!2})3s$	3s' [½]°	0 1	427861.1 431539.0	4 <i>d</i> ³ D ₁	$2p^{5}(^{2}\mathrm{P}^{\circ}_{\mathcal{H}})4d$	4d′[1½]°	$\begin{array}{c} 2\\ 1\end{array}$	585473
$3p_{10} \ {}^3\mathrm{S}_1$	$2p^{5}(^{2}\mathrm{P}_{1^{1}\!/_{2}}^{*})3p$	3p [½]	1	467387. 3	5s ³ P ₁	$2p^{5}(^{2}\mathrm{P}_{1_{2}}^{\circ})5s$	5s [1½]°	$2 \\ 1$	589116
3p ₉ ³ D ₃ 3p ₈ ³ D ₂	"	$3p \ [2\frac{1}{2}]$	$\frac{3}{2}$	$\begin{array}{c} 474062. \ 6\\ 474663. \ 6\end{array}$	5s ¹ P ₁	$2p^{5}(^{2}\mathrm{P}^{\circ}_{\mathrm{J}_{2}})5s$	5s' [½]°	0 1	591191
${\begin{array}{*{20}c} {3p_7} & {}^3\mathrm{D}_1 \ {3p_6} & {}^1\mathrm{D}_2 \end{array}}$	"	$3p \ [1\frac{1}{2}]$	$1 \\ 2$	$\begin{array}{c} 475511.\ 4\\ 477444.\ 9\end{array}$	5d 3P.	$2p^{5}(^{2}\mathrm{P}_{1rac{1}{2}})5d$	5d [½]°	0	605915
3p₃ ³P₀	"	3p [½]	0	479275. 3	5d 1P.	,,	50 [116]9	1	606930
$3p_5 {}^{1}P_1$ $3n_4 {}^{3}P_2$	$2p^5(^2\mathrm{P}^{\mathrm{o}}_{\mathrm{M}})3p$	$3p'[1\frac{1}{2}]$	$\frac{1}{2}$	478383.8 478855.5		$2n^{5}(^{2}\mathrm{P}_{v}^{\circ})5d$	$5d'[1]_{3}^{\circ}$	2	000200
$3p_2 \ ^{3}P_1$	"	3p'[½]	1	479465. 4	$5d$ $^{3}D_{1}$		000 [1/2]	ī	608332
$5p_1 - b_0$				101100. 0	60 3P.	$2p^{5}(^{2}\mathrm{P}_{1^{1}\!/_{2}})6s$	6s [1½]°	2	600166
${}^{3d}_{3P_{1}}$	$2p^{\mathfrak{s}(^2\mathrm{P}_{1s})}3d$	3d [½]°	0 1	530186.4 530429.5	60 1P	$2p^{5}(^{2}\mathrm{P}^{\circ}_{5})6s$	6s' [½]°	0	611000
$3d$ $^{3}P_{2}$	"	$3d \ [1\frac{1}{2}]^{\circ}$	2	530972.0	03 11				011299
3d ³ F ₄	"	$3d \ [3\frac{1}{2}]^{\circ}$	4	531569.9	$6d ^{1}P_{1}$	$2p^5(^2\mathrm{P}_{1_{2}})^{5} 6d$	6d [1½]°	1	618483
$3d {}^{3}F_{2} \\ {}^{1}F_{3}$	"	3d [2½]°	23	532731.8 532978.0	$6d$ $^{3}D_{1}$	$2p^{5}(^{2}\mathrm{P}^{\circ}_{\!$	6d'[1½]°	$\begin{array}{c} 2\\ 1\end{array}$	620598
3 <i>d</i> ¹ P ₁	,,,	3d [1½]°	1	534204.1	$7d$ $^{1}P_{1}$	$2p^{5}(^{2}\mathrm{P}_{1rac{1}{2}})7d$	7d [1½]°	1	625958
3d ¹ D ₂ ³ D ₃	$2p^5(^2\mathrm{P}^{\circ}_{\!$	3d'[2½]°	2 3	534782. 2 534931. 0	$7d$ $^{3}D_{1}$	$2p^{5}(^{2}\mathrm{P}^{\circ}_{\mathrm{5}})7d$	7d'[1½]°	$\begin{array}{c} 2\\ 1\end{array}$	628105
3d ³ D ₂ ³ D ₁	"	3d'[1½]°	2 1	535185.9 536156.7	8 <i>d</i> ¹ P ₁	$2p^5(^2\mathrm{Pi}_{35})8d$	8d [1½]°	1	6307 9 5
48 ³ P ₁	$2p^{5}(^{2}\mathrm{P}^{\circ}_{1})_{2})4s$	4s [1½]°	$2 \\ 1$	546529		Mary (2D°)			
4s ¹ P ₁	$2p^{5}(^{2}\mathrm{P}_{32}^{\circ})4s$	4s' [½]°	0 1	548727		Mg IV (² P ₃)	Limit		648590

July 1947.

$\begin{array}{c} \text{Config.} \\ 1s^2 \ 2s^2 + \end{array}$		Observed Terms											
2p ⁶	2p ⁶ ¹ S												
	$ns \ (n \ge 3) \qquad np \ (n \ge 3) \qquad nd \ (n \ge 3)$												
$2p^{5}(^{2}\mathrm{P}^{\circ})nx$	$ \begin{cases} 3-6s & {}^{3}P^{\circ} \\ 3-6s & {}^{1}P^{\circ} \end{cases} $	3p ³ S 3p ³ P 3p ³ D 3p ¹ S 3p ¹ P 3p ¹ D	$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
		jl-Coupling Notation											
		Observed Pair	ïs										
	ns $(n \ge 3)$	$np (n \ge 3)$	$nd \ (n \ge 3)$										
$2p^{\mathfrak{s}}(^{2}\mathbf{P}_{\mathfrak{i}\mathfrak{z}\mathfrak{s}}^{\mathfrak{s}})nx$	3-6s [1½]°	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 3-5d & [\begin{array}{c} \frac{1}{2}]^{\circ} \\ & 3d & [3\frac{1}{2}]^{\circ} \\ & 3-8d & [1\frac{1}{2}]^{\circ} \\ & 3d & [2\frac{1}{2}]^{\circ} \end{array}$										
$2p^{5}(^{2}\mathrm{P}_{33}^{\circ})nx'$	3–6s' [½]°	$rac{3p'}{3p'} \left[rac{112}{12} ight] \ rac{3p'}{2} \left[rac{112}{12} ight]$	$\begin{array}{c c} & 3d' & [2\frac{1}{2}]^{\circ} \\ & 3-7d' & [1\frac{1}{2}]^{\circ} \end{array}$										

*For predicted levels in the spectra of the NeI isoelectronic sequence, see Introduction.

Mg IV

(Fi sequence; 9 electrons)

Ground state $1s^2 2s^2 2p^5 {}^2\mathrm{P}^{\circ}_{1\frac{1}{2}}$

$2p^{5} {}^{2}\mathrm{P}^{\circ}_{1\frac{1}{2}} 881759 \mathrm{~cm}^{-1}$

The analysis is by Söderqvist, who has classified more than 70 lines, 13 in the interval 1459 A to 1956 A, and the rest between 123 A and 323 A.

From later isoelectronic sequence data Robinson has revised Söderqvist's $3d'^2S$ and $4d^2D$ terms, rejected his $3d^4D$ term, and added $3d^2F$; 3, $4d^4P$; $3d^4F$, and $3d'^2F$. These revisions have been incorporated into the table.

Intersystem combinations connecting the doublet and quartet systems of terms, have been observed.

REFERENCES

J. Söderqvist, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 7, 39 (1934). (I P) (T) (C L) H. A. Robinson, unpublished material (March 1948). (T) (C L)

111

I. P. 109.29 volts

Z = 12

112

Mg IV

Mg IV

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
2s ² 2p ⁵	$2p^{5}$ $^{2}\mathrm{P}^{\circ}$	$1\frac{1}{2}$ $\frac{1}{2}$	0 2226	-2226	$2s^2 2p^4({}^1\mathrm{D})3d$	$3d^\prime$ $^2\mathrm{P}$	1/2 1/2 1/2	$711622 \\711865$	243
2s 2p ⁶	2p ⁶ ² S	1⁄2	311527		$2s^2 2p^4({}^1\mathrm{D}) 3d$	3d' 2D	$\frac{11}{2}$	712120	1269
2s ² 2p ⁴ (³ P)3s	3s 4P	$\begin{array}{c} 2^{1\!/_{\!2}} \\ 1^{1\!/_{\!2}} \\ \frac{1^{1\!/_{\!2}}}{\frac{1^{\prime}_{\!2}}{2}} \end{array}$	543727.0 545143.5 545962.1	-1416.5 -818.6	$2s^2 2p^4(^1D)3d$	$3d'$ $^2{ m F}$	$\begin{array}{c c} & 2_{72} \\ & 3_{12}^{1/2} \\ & 2_{12}^{1/2} \end{array}$	713660	
2s ² 2p ⁴ (³ P)3s	38 2P	$1\frac{1}{2}$	553659 555338	-1679	$2s^2 2p^4({}^1\mathrm{D})3d$	3d' ² S	1/2	714330	
2s ² 2p ⁴ (1D)3s	3s′ 2D	$2\frac{1}{2}$	582571 582589	-18	2s ² 2p ⁴ (³ P)4s	48 ² P	$1\frac{1}{2}$ $\frac{1}{2}$	$723254 \\ 724809$	- 1555
2s ² 2p ⁴ (³ P)3p	3 <i>p</i> ⁴P°	$\frac{1}{2}$ $\frac{1}{2}$	596527.3	- 544 6	$2s^2 2p^4({}^1S)3d$	$3d^{\prime\prime}$ 2D	$2^{1/2}_{1/2} \ 1^{1/2}_{1/2}$	$752927 \\ 752965$	-38
		$1\frac{1}{2}$	597071.9 597589.9	-514.0 -518.0	$2s^2 \ 2p^4(^3P)4d$	$4d$ $^{2}\mathrm{D}$	$2\frac{1}{2}$	767454	3 345
$2s^2 \ 2p^4(^3\mathrm{P}) \ 3p$	3p 4D°	$\begin{array}{c c} 3\frac{1}{2} \\ 2\frac{1}{2} \\ 1\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array}$	603143.3 604007.4 604666.6	-864.1 -659.2	$2s^2 2p^4(^3\mathrm{P})4d$	4 <i>d</i> ⁴P	$ \begin{array}{c} 1/2 \\ \frac{1}{2} \\ 1\frac{1}{2} \\ 2\frac{1}{2} \\ 2\frac{1}{2} \end{array} $	767769 768728	959
$2s^2 \ 2p^4(^{3}P) \ 3p$	3 <i>p</i> 4S°	1½	612240. 3		$2s^2 2p^4(^{3}P)4d$	4d ² P	$\frac{1}{2}$	769397	659
2s ² 2p ⁴ (¹ S)3s	$3s^{\prime\prime}$ ² S	1⁄2	624102		$2s^2 2n^4(1S)4s$	4s'' 2S	1/2	707062	
2s ² 2p ⁴ (³ P)3d	3 <i>d</i> 4P	$\begin{array}{c c} 2\frac{1}{2} \\ 1\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array}$	676837 677805	- 968	$2s^{2} 2p^{4}(1D)4d$	4d' ² P	$ \left\{\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array}\right. $	802272	
$2s^2 \ 2p^4(^3\mathrm{P}) \ 3d$	3d 4F	$4\frac{1}{2}$ $3\frac{1}{2}$			2s ² 2p ⁴ (1D)4d	4 <i>d′</i> 2D	$\left\{ egin{array}{c} 1^{1\!\!\!\!/_2} \\ 2^{1\!\!\!\!/_2} \end{array} ight.$	} 803023	
			677355		$2s^2 \ 2p^4({}^1\mathrm{D})4d$	4d' ² S	1⁄2	803769	
$2s^2 \ 2p^4(^3P) \ 3d$	3d ² D	$2^{1\!\!\!/_2}_{1^{1\!\!\!/_2}}$	$678403 \\ 680030$	-1627	$2s^2 2p^4(^3\mathrm{P})5d$	$5d$ $^2\mathrm{D}$	$2^{1/_2}_{1^{1/_2}}$	$809677 \\ 811362$	-1685
$2s^2 2p^4(^{3}P) 3d$	3d ² F	$3\frac{1}{2}$ $2\frac{1}{2}$	680510		$2s^2 \ 2p^4(^3{ m P}) 5d$	5 <i>d</i> ² P	$\left\{\begin{array}{c} \frac{1'_{2}}{1^{1'_{2}}}\\ 1^{1'_{2}}\end{array}\right.$	810543	
2s ² 2p ⁴ (³ P)3d	3 <i>d</i> 2P	$1\frac{1}{2}{1\frac{1}{2}}{1\frac{1}{2}}$	681024 682471	1447	Mg v (3P2)	Limit		881759	

March 1948.

Mg iv Observed Terms*

$\frac{\text{Config.}}{1s^2+}$	Observed Terms											
2s ² 2p ⁵ 2s 2p ⁶	2p ⁵ ² P° 2p ⁶ ² S											
	$ns \ (n \geq 3)$	$np (n \geq 3)$	nd $(n \ge 3)$									
2s ² 2p ⁴ (³ P)nx	$\begin{cases} 3s \ {}^{4}P \\ 3, 4s \ {}^{2}P \end{cases}$	3p 4S° 3p 4P° 3p 4D°	$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$2s^2 2p^4({}^1\mathrm{D})nx'$	38′ 2D		3, 4d' ² S 3, 4d' ² P 3, 4d' ² D 3d' ² F									
2s ² 2p ⁴ (1S)nx''	3, 4s'' ² S		3 <i>d''</i> 2D									

*For predicted terms in the spectra of the F1 isoelectronic sequence, see Introduction.

Ground state $1s^2 2s^2 2p^4 {}^3P_2$

2p⁴ ³P₂ 1139421 cm⁻¹

Söderqvist has found 53 terms and classified 113 lines in this spectrum in the interval between 92 A and 355 A. No intersystem combinations have been observed and the uncertainty, x, may be considerable.

REFERENCE

J. Söderqvist, Ark. Mat. Astr. Fys. (Stockholm) 32A, No. 19 p. 4 (1946). (I P) (T) (C L)

	-	
	~	
1.	L V	- V

Mg v

Au	thor	Config.	Desig.	J	Level	Inter- val	Author	Config.	Desig.	J	Level	Inter- val
2p	³ P ₂ ³ P ₁ ³ P ₀	2s ² 2p ⁴	2p4 3P	$\begin{array}{c} 2\\ 1\\ 0 \end{array}$	0 1780 2519	$-1780 \\ -739$	$\boxed{ \begin{array}{c} \overline{\overline{3d}} & {}^{3}\mathrm{D}_{3} \\ & {}^{3}\mathrm{D}_{2} \\ & {}^{3}\mathrm{D}_{1} \end{array} }$	2s ² 2p ³ (² P ^o)3d	3d'' 3D°	3 2 1	902047 902441 902682	$-394 \\ -241$
2p	$^{1}\mathrm{D}_{2}$	2s ² 2p ⁴	$2p^4$ ¹ D	2	36348 + x		$\overline{\overline{3d}}$ ¹ P ₁	$2s^2 2p^3 (^2\mathrm{P^o}) 3d$	3 <i>d''</i> ¹₽°	1	902907 + x	
2p	$^{1}\mathrm{S}_{0}$	$2s^2 2p^4$	$2p^{4}$ ¹ S	0	77712 + x		$\overline{\overline{3d}}$ ${}^{1}\mathrm{F}_{3}$	$2s^2 \ 2p^3$ (2P°) $3d$	3 <i>d''</i> ¹ F°	3	905211 + x	
2p'	${}^{3}P_{2}$ ${}^{3}P_{1}$ ${}^{3}P_{0}$	2s 2p ⁵	2p⁵ ³P°	$\begin{array}{c} 2\\ 1\\ 0\end{array}$	283211 284827 285708	$-1616 \\ -881$	4s ³ S ₁ 3s' ³ P ₂	$2s^2 2p^3 ({}^4S^\circ)4s$ $2s 2p^4 ({}^4P)3s$	4s ³S° 3s‴ ³P	1 2	<i>910639</i> 940455	
2p'	$^{1}P_{1}$	2s 2p ⁵	$2p^5$ ¹ P°	1	397906 + x		³ P ₁			$\begin{vmatrix} 1\\0 \end{vmatrix}$	941048	- 593
38	${}^{3}S_{1}$	$2s^2 2p^3({}^4\mathrm{S}^\circ)3s$	38 3S°	1	684544		4s 3D	2s ² 2p ³ (² D°)4s	4s' 3D°	3, 2, 1	962027	
35	$^{3}D_{3}^{3}D_{2}^{3}D_{1}^{3}$	$2s^2 \ 2p^3 (^2 \mathrm{D}^\circ) 3s$	3s′ ³D°	$egin{array}{c} 3 \\ 2 \\ 1 \end{array}$	727718 727763 727787	$-45 \\ -24$	$ \begin{vmatrix} 4d & {}^{3}\mathrm{D}_{1} \\ & {}^{3}\mathrm{D}_{2} \\ & {}^{3}\mathrm{D}_{3} \end{vmatrix} $	$2s^2 2p^3 ({}^4\mathrm{S}^{\circ}) 4d$	4d ³ D°	$\begin{array}{c}1\\2\\3\end{array}$	962378 962395 962427	17 32
<u>3s</u>	$^{1}\mathrm{D}_{2}$	$2s^2 2p^3 (^2 { m D}^{\circ}) 3s$	3s' 1D°	2	735976+x		4s ¹ D ₂	2s ² 2p ³ (² D ^o)4s	4s' 1D°	2	965189 + x	
-		2s ² 2p ³ (² P°)3s	3s'′ ³P°	0			$\overline{\overline{4s}}$ ³ P	2s ² 2p ³ (² P°)4s	4s'' ³ P°	0, 1, 2	990599 *	
38	${}^{^{3}}\mathrm{P_{1}}$ ${}^{^{3}}\mathrm{P_{2}}$			$\begin{vmatrix} 1\\ 2 \end{vmatrix}$	756536 756589	53	$\overline{\overline{4s}}$ ¹ P ₁	2s ² 2p ³ (² P°)4s	4s'' ¹ P°	1	993795 + x	
$\overline{\overline{3s}}$	$^{1}P_{1}$	2s ² 2p ³ (² P°)3s	3s'' 1P°	1.	765049+x		5s ³ S ₁	$2s^2 2p^3 ({}^4\mathrm{S}^\circ) 5s$	5s ³ S°	1	1002125	
3d	$^{3}D_{1}$	$2s^2 2p^3 ({}^4\mathrm{S}^\circ) 3d$	3 <i>d</i> ³ D°	1	821963	14	$\overline{4d}$ ³ D	$2s^2 2p^3 (^2\mathrm{D}^{o}) 4d$	4 <i>d'</i> 3D°	1, 2, 3	1013878	
	$^{3}\mathrm{D}_{2}$ $^{3}\mathrm{D}_{3}$			$\begin{vmatrix} 2\\3 \end{vmatrix}$	822071	94	$\overline{4d}$ ¹ P ₁	$2s^2 2p^3(^2D^\circ)4d$	4d' ¹ P°	1	1015981 + x	
$\overline{3d}$	$^{3}\mathrm{D}$	$2s^2 2p^3 (^2\mathrm{D^o}) 3d$	3d' ³ D°	1, 2, 3	871221		$\overline{4d}$ ${}^{3}P_{2}$	$2s^2 2p^3(^2D^\circ)4d$	$4d'$ $^{3}P^{\circ}$	2	1017590	-382
$\overline{3d}$	$^{1}\mathrm{P_{1}}$	$2s^2 2p^3(^2\mathrm{D^o}) 3d$	3d' ¹ P°	1	873862+x		° 1 1			0	1017972	
$\overline{3d}$	${}^{3}P_{2}$	$2s^2 2p^3 (^2\mathrm{D}^\circ) 3d$	3d' ³ P°	2	876762	-482	$\overline{4d}$ $^{1}D_{2}$	$2s^2 2p^3 (^2\mathrm{D^o})4d$	4 <i>d′</i> ¹ D°	2	1018840+x	
	${}^{3}P_{0}$			0	877444	-200	$\overline{4d}$ ${}^{1}\mathrm{F}_{3}$	$2s^2 2p^3(^2\mathrm{D^o})4d$	4d' ¹ F°	3	1019913+x	
$\overline{3d}$	$^{1}\mathrm{D}_{2}$	$2s^2 2p^3(^2\mathrm{D}^\circ)3d$	3d' ¹ D°	2	878028+x		$\overline{3s'}$ $^{3}D_{1}$	$2s \ 2p^4(^2{ m D}) 3s$	3s1v 3D	1	1020311	64
$\overline{3d}$	$^3\mathrm{S}_1$	$2s^2 2p^3 (^2D^\circ) 3d$	3 <i>d′</i> ³S°	1	879485		$^{3}D_{3}^{2}$				1020375	93
$\overline{3d}$	${}^{1}\mathrm{F}_{3}$	$2s^2 2p^3 (^2\mathrm{D}^\circ) 3d$	3d' ¹ F°	3	883210+x		3p' ³ D	$2s \ 2p^4(^4{ m P})3p$	3 <i>p′′′</i> ³D°	1, 2, 3	1026283	
$\overline{\overline{3d}}$	³ P ₀ ³ P ₁ ³ P ₂	2s ² 2p ³ (² P°)3d	3d″ ³₽°	$\begin{array}{c} 0\\ 1\\ 2 \end{array}$	89867 3 898904 899291	231 387	5 <i>d</i> ³ D	$2s^2 2p^3({}^4\mathrm{S}^\circ)5d$	5d 3D°	1, 2, 3	1026774	
$\overline{\overline{3d}}$	$^{1}D_{2}$	2s ² 2p ³ (² P ^o)3d	3 <i>d''</i> 1D°		901872+x		$\begin{vmatrix} \overline{4d} & {}^{3}P_{1} \\ & {}^{3}P_{2} \end{vmatrix}$	$2s^2 2p^3(^2\mathrm{P}^\circ)4d$	4 <i>d''</i> ³ P°	$\begin{vmatrix} 1\\2 \end{vmatrix}$	1042481 1042681	200

Z = 12

I. P. 141.23 volts

Mg v—Continued

Au	thor	Config.	Desi	ig.	J	Level	Inter- val	Au	thor	Config.	Desig.	J	Level	Inter- val
4d	sD	$2s^2 2p^3 (^2\mathrm{P^o}) 4d$	4 <i>d''</i>	3Do	1, 2, 3	1043818		5d	$^{1}D_{2}$	$2s^2 2p^2 (^2D^\circ) 5d$	5d' 'D°	2	1082461+x	
$\frac{4d}{4d}$	${}^{1}D_{2}$ ${}^{1}P_{1}$	$2s^2 2p^3(^2P^3)4d$ $2s^2 2p^3(^2P^3)4d$	4 <i>d''</i>	1D°	2 1	1045766 + x 1046201 + x		$\frac{5d}{\overline{5d}}$	$^{1}\mathrm{F}_{3}$ $^{1}\mathrm{D}_{2}$	$\frac{2s^2}{2p^3} \frac{2p^3(^2\mathrm{D}^3)5d}{(^2\mathrm{P}^\circ)5d}$	5d'' ¹ F ³ 5d''' ¹ D ⁴	2	$ \begin{array}{c} 1082855 + x \\ 1110358 + x \end{array} $	
$\overline{\overline{\overline{4d}}}$	$^{1}\mathrm{F}_{3}$	$2s^2 \ 2p^3(^2\mathrm{P^o}) 4d$	4 <i>d''</i>	1F°	3	1046625 + x				Mg vi (4S _{1½})	Limit		1139421	
58	3D	$2s^2 \ 2p^3 (^2 \mathrm{D}^\circ) 5s$	5s'	³Do	3, 2, 1	1054921		4s'	$^{3}\mathrm{P}_{2}$	2s 2p ⁴ (⁴ P)4s	4s''' ³ P	2	1161768	
3d'	3D	$2s \ 2p^4({}^4\mathrm{P})3d$	3d'''	3D	1, 2, 3	1075102						0		
$\overline{5d}$	3D	$2s^2 \ 2p^3(^2\mathrm{D^\circ}) 5d$	5d'	³D٥	1, 2, 3	1079431		$\overline{3d'}$	$^{3}D_{3}$	$2s \ 2p^4(^2\mathrm{D})3d$	3 <i>d</i> ¹ v ³ D	3	1166471	-81
$\overline{5d}$	$^{3}P_{2}$	$2s^2 \ 2p^3 (^2 \mathrm{D^\circ}) 5d$	5d'	۶P°	$\frac{2}{1}$	1081883	-263	,	$^{3}\mathrm{D}_{1}^{2}$				1166626	-74
	1				0	1002140		55'	³ P ₂	2s 2p ⁴ (⁴ P)5s	5s''' 3P	$\begin{array}{c} 2\\ 1\\ 0\end{array}$	1250956	

February 1947.

Mg v Observed Terms*

Config. $1s^2+$				Observe	ed Terms			
2s ² 2p ⁴	$\left\{\begin{array}{c} 2p^{4} \ ^{1}\mathrm{S}\end{array}\right.$	$2p^4$ $^3\mathrm{P}$	$2p^{4}$ ¹ D					-
2s 2p ⁵	{	${2p^5 \atop 2p^5} {}^3\mathrm{P^o} \ {}^2p^5 {}^1\mathrm{P^o}$						
		ns ($n \ge 3$)		$np (n \ge 3)$		nd	$(n \ge 3)$	
$2s^2 \ 2p^3({}^4\mathrm{S}^\circ)nx$	3-58 3S°						3−5 <i>d</i> ³D°	
$2s^2 \ 2p^3(^2\mathrm{D}^\circ)nx'$	{		3–5s′ ³ D° 3, 4s′ ¹ D°		3d′ 3S°	${3-5d'}{}^{3}\mathrm{P}^{\circ}$ ${3,}~4d'~{}^{1}\mathrm{P}^{\circ}$	$\begin{array}{ccc} {f 3-5d'} & {}^3{f D}^\circ \ {f 3-5d'} & {}^1{f D}^\circ \end{array}$	3-5d' ¹ F°
$2s^2 \ 2p^3 (^2\mathrm{P^o})nx^{\prime\prime}$	{	3, 4s'' ³ P° 3, 4s'' ¹ P°				3, 4d'' ³ P° 3, 4d'' ¹ P°	${3,4d^{\prime\prime}}\ {}^{3}\mathrm{D}^{\circ}\ {3-5d^{\prime\prime}}\ {}^{1}\mathrm{D}^{\circ}$	3, 4 <i>d''</i> ¹ F°
2s 2p4(4P)nx'''		3-5s''' ³ P		3 <i>p'''</i> ³D°			3 <i>d'''</i> ³D	
2s 2p ⁴ (² D)nx ^{IV}			381A 3D				3d1v 3D	

*For predicted terms in the spectra of the O_I isoelectronic sequence, see Introduction.

Mg VI

(N I sequence; 7 electrons)

Ground state $1s^2 2s^2 2p^3 {}^4S^{\circ}_{1\frac{1}{2}}$

 $2p^{3} {}^{4}S^{\circ}_{1\frac{1}{2}}$ 1507520 cm⁻¹

The analysis is by Söderqvist, who has found 56 terms and classified 124 lines in the range 72 A to 403 A. No intersystem combinations have been observed. The observations indicate an evident typographical error in the published absolute value of $2p^4$ ²P, which has been corrected. The series are short and the uncertainty, x, may be considerable.

REFERENCE

J. Söderqvist, Ark. Mat. Astr. Fys. (Stockholm) 32A, No. 19 p. 4 (1946). (I P) (T) (C L)

Z = 12

I. P. 186.86 volts

Mg VI

Mg VI

Αu	ıtho r	Config.	Desig.	J	Level	Inter- val	Aut	hor	Config.	Desig	ç.	J	Level	Inter- val
2p	4S ₂	2s ² 2p ³	$2p^3$ 4S°	1½	0		$\overline{3d}$	² S ₁	$2s^2 2p^2({}^1\mathrm{D})3d$	3d' 28	5	1/2	1097978 + x	
2p	$^{2}_{^{2}\text{D}_{3}}_{^{2}\text{D}_{2}}$	2s ² 2p ³	$2p^3$ $^2\mathrm{D}^\circ$	$2\frac{1}{2}$ $1\frac{1}{2}$	54150 + x 54171 + x	-21	3p'	⁴P	$2s$ $2p^{3}(5S^{\circ})3p$	3 <i>p'''</i> 4I	P	$\begin{cases} \frac{1}{2} \\ to \\ 21/ \end{cases}$	1100146	
2 <i>p</i>	${}^{2}\mathrm{P}_{1} \\ {}^{2}\mathrm{P}_{2}$	$2s^2 2p^3$	$2p^3$ $^2\mathrm{P}^\circ$	$1/2 \\ 11/2$	82710+x 82832+x	122	2.1	4D	20. 2m3(3D°)20	2 J V 41		$ \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} $	1100000	
2p'	${}^{4}P_{3}$ ${}^{4}P_{2}$	2s 2p4	$2p^4$ 4P	$2\frac{1}{2}$ $1\frac{1}{2}$ $1\frac{1}{2}$	$247945 \\ 249578 \\ 250445$	$-1633 \\ -867$		-D	28 2p°(°D)38	921		$3\frac{10}{2}$)	
2p'	$^{4}P_{1}$ $^{2}D_{3}$	2s 2p4	$2p^4$ $^2\mathrm{D}$	$\frac{72}{2\frac{1}{2}}$	340551 + x	-33	3d	²D	$2s^2 2p^2({}^1\mathrm{S})3d$	3 <i>d''</i> 21	D	$\left\{ \begin{array}{c} 1^{72} \\ 2^{1\!\!/_2} \\ \end{array} \right.$	1123683 + x	
2n'	$^{2}D_{2}$	28 2n4	$2n^4$ 2S	1½	340584 + x 400619 + x		35'	²D	2s 2p ³ (³ D°)3s	3s ^{1v} 2]	D°	$egin{cases} 1^{1}_{2} \ 2^{1}_{2} \ 2^{1}_{2} \ \end{array}$	$\Big\}$ 1149638+x	
2p'	$^{2}P_{2}$ $^{2}P_{1}$	$2s 2p^4$	$2p^4$ ² P	$1\frac{1}{2}$	423981 + x 425938 + x	-1957	35'	⁴P	2s $2p^{3}(^{3}P^{\circ})$ 3s	3s ^v 4]	₽° .	$\begin{cases} \frac{1/2}{\mathrm{to}}\\ 2\frac{1}{2} \end{cases}$] 1172608	
35	⁴ P ₁ ⁴ P ₂ ⁴ P ₃	2s ² 2p ² (³ P)3s	3s ⁴P	$\begin{array}{c} \frac{1}{12} \\ 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}$	893943 894887 896443	$944 \\ 1556$	3d'	4D	2s 2p ³ (⁵ S°)3d	3d''' 4]	D°	$\begin{cases} \frac{12}{10}\\ \frac{12}{3\frac{1}{2}} \end{cases}$	}1175396	
3s	${}^{2}\mathrm{P}_{1} \\ {}^{2}\mathrm{P}_{2}$	2s ² 2p ² (³ P)3s	3s 2P	1/2 1/2	907202+ x 909096+ x	1894	<u>3</u> s'	${}^{^{2}}\mathrm{P_{1}} \\ {}^{^{2}}\mathrm{P_{2}}$	2s 2p ³ (³ P°)3s	3s⊽ 2]	P°	$1\frac{1}{2}$ $1\frac{1}{2}$	1191126 + x 1191432 + x	3 06
38	²D	$2s^2 2p^2(^1\mathrm{D})3s$	3s' 2D	$\left\{ egin{array}{c} 1^{1\!\!\!/_2} \\ 2^{1\!\!\!/_2} \end{array} ight.$	$\left. ight\}$ 937628+ x		4.8	4Pa	$2s^2 2p^2(^{3}P)4s$	48 4]	P	$\frac{\frac{1}{2}}{\frac{1}{2}}$	1196740	
38	$^{2}\mathrm{S}_{1}$	$2s^2 2p^2(^{1}S)3s$	3s'' 2S	1/2	982218 + x		10	- 3	$2s^2 2p^2(^{3}P)4s$	4s 2]	P	-/2 1/2	1100010	
3d	${}^{2}P_{2}$ ${}^{2}P_{1}$	$2s^2 2p^2(^{3}P)3d$	3d ² P	$1\frac{1}{2}$ $\frac{1}{2}$	$ \begin{array}{c} 1038855 + x \\ 1039472 + x \end{array} $	-617	$\frac{4s}{2}$	$^{2}P_{2}$				11/2	1198265 + x	
		$2s^2 2p^2(^{3}\text{P})3d$	3 <i>d</i> 4D	$\begin{vmatrix} 3\frac{1}{2} \\ 2\frac{1}{2} \end{vmatrix}$			3p'	${}^{2}\mathrm{F}_{4}^{4}$ ${}^{2}\mathrm{F}_{3}^{4}$	$\begin{vmatrix} 2s & 2p^{3}(^{3}\mathrm{D}^{\circ}) 3p \end{vmatrix}$	$\left \begin{array}{c} 3p^{1} \sqrt{2} \end{array}\right $	F.	$3\frac{1}{2}$ $2\frac{1}{2}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	-635
3d	${}^{4}\mathrm{D}_{23} \\ {}^{4}\mathrm{D}_{1}$			$\left \begin{array}{c} 1_{1_2}^{\prime} \\ 1_{2_2}^{\prime} \\ 1_{2_2}^{\prime} \end{array}\right $	1045205 1045620	-415	<u>4s</u>	²D	$2s^2 2p^2(^1\text{D})4s$	48′ 2]	D	$\left\{ egin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array} ight.$	$\left.\right\}$ 1234487+ x	
3d	²F ₃ ²F ₄	$2s^2 2p^2(^3\mathrm{P})3d$	3d ² F	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{vmatrix} 1045212 + x \\ 1047179 + x \end{vmatrix}$	1967	4d	4D ₂₃	$2s^2 2p^2(^{3}\mathrm{P})4d$	4 <i>d</i> 4]	D	$3\frac{1}{2}$	1248829	
3s '	$^{4}S_{2}$	2s 2p ³ (⁵ S°)3s	3s''' 4S°	1½	1046634			4D1				$\begin{pmatrix} 1\frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$	1249500	-671
3d	${}^{4}P_{3}$ ${}^{4}P_{2}$ ${}^{4}P_{1}$	$2s^2 2p^2(^{3}P)3d$	3 <i>d</i> 4P	$\begin{array}{c c} 2^{1/2} \\ 1^{1/2} \\ 1^{1/2} \\ 1^{1/2} \end{array}$	1047307 1047987 1048383	$-680 \\ -396$	4d	${}^{2}\mathrm{F}_{3}{}^{2}\mathrm{F}_{4}$	$2s^2 2p^2(^{3}P)4d$	4d 2]	F	$2\frac{1}{2}$ $3\frac{1}{2}$	$\begin{vmatrix} 1251503 + x \\ 1253148 + x \end{vmatrix}$	1645
3d	$^{2}D_{2}$ $^{2}D_{3}$	2s ² 2p ² (³ P)3d	3d 2D	$1\frac{1}{2}$ $2\frac{1}{2}$	1060848 + x 1061411 + x	563	4d	${}^{4}P_{3}$ ${}^{4}P_{2}$ ${}^{4}P_{1}$	$2s^2 2p^2(^{3}\text{P})4d$	4d 4]	P	$2\frac{1}{2}$ $1\frac{1}{2}$ $\frac{1}{2}$	$\begin{array}{c} 1252238 \\ 1252662 \\ 1252866 \end{array}$	$-424 \\ -204$
$\overline{3d}$	${}^{2}_{2}F_{4}$	$2s^2 2p^2(^1D)3d$	3 <i>d′</i> ² F	$3^{1/2}_{1/2}$ $2^{1/2}_{1/2}$	$\begin{vmatrix} 1082132 + x \\ 1082438 + x \end{vmatrix}$	-306	4d	$^{2}\mathrm{D}_{3}$	$2s^2 2p^2(^{3}P)4d$	4 <i>d</i> 2]	D	$1\frac{1}{2}$ $2\frac{1}{2}$	1257189 + x	
$\overline{3d}$	$^{2}\mathrm{D}_{2} \\ ^{2}\mathrm{D}_{3}$	$2s^2 2p^2(^1D)3d$	3 <i>d'</i> 2D	$1\frac{1}{2}$ $2\frac{1}{2}$	$\begin{vmatrix} 1085361 + x \\ 1085718 + x \end{vmatrix}$	357	<u>3</u> <i>d</i> ′	${}^{4}P_{3}$ ${}^{4}P_{2}$	2s 2p ³ (³ D ^o)3d	3d ^{1v} 4]	P°	$2\frac{1}{2}$ $1\frac{1}{2}$	1282028 1282398	$-370 \\ -270$
$\overline{3d}$	${}^{2}\mathbf{P}_{1} \\ {}^{2}\mathbf{P}_{2}$	$2s^2 2p^2(^1D)3d$	3 <i>d′</i> ² P	$1\frac{1}{2}$ $1\frac{1}{2}$	$\begin{array}{c} 1092558 + x \\ 1093046 + x \end{array}$	488		-11				72	120200	

Mg VI—Continued

Mg VI—Continued

Au	uthor	Config.	Desig.	J	Level	Inter- val	Au	thor	Config.	Desig.	J	Level	Inter- val
$\overline{3d'}$	4D	2s 2p ³ (³ D°)3d	3d™ 4D°	$ \begin{cases} \frac{1/2}{10} \\ 3^{1/2} \\ 3^{1/2} \end{cases} $]1287044		5d	⁴ D ₂₃	2s² 2p²(³P)5d	5d 4D	$\left\{egin{array}{c} {3^{1\!/_2}}\ {2^{1\!/_2}}\ {1^{1\!/_2}}\ {1^{1\!/_2}}\ {1^{1\!/_2}}\end{array} ight.$	}1342985	
$\overline{4d}$	${}^{2}\mathbf{F}$	$2s^2 2p^2(^1\mathrm{D})4d$	4d' ² F	$\left\{egin{array}{c} {\bf 3}^{1\!\!\!/2}_{2\!1\!\!\!/2} \ {\bf 2}^{1\!\!\!/2}_{1\!\!\!/2} \end{array} ight.$	$\Big\}$ 1287104+ x		5d	${}^{2}F_{3}$	$2\varepsilon^{2} 2p^{2}(^{3}\mathrm{P})5d$	$5d$ $^{2}\mathrm{F}$	$2\frac{1}{2}$	1344310 + x 1346056 + x	1746
$\overline{3d}'$	${}^{4}S_{2}$	$2s \ 2p^{3}(^{3}\mathrm{D}^{\circ})3d$	3d ^{IV} ⁴S°	$1\frac{1}{2}$	1287889			174 4D		F 1 (T)	0/2	1040000 7.4	
$\overline{3d}'$	${}^{2}\mathbf{F_{4}} \\ {}^{2}\mathbf{F_{3}}$	2s 2p ³ (³ D°)3d	$3d^{1V}$ ² F°	${3^{1\!/_2}_{2^{1\!/_2}}\over 2^{1\!/_2}}$	$ \begin{array}{r} 1288400 + x \\ 1289261 + x \end{array} $	-861	50	*P3	28° 2p°(°P)5a	5 <i>d</i> *P	$\begin{array}{c c} 2\frac{1}{2} \\ 1\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array}$	1345550	
$\overline{4d}$	²D	$2s2p^2(^1\mathrm{D})4d$	4d' ² D	$\left\{ egin{array}{c} 1^{1\!\!\!\!\!/_2} \\ 2^{1\!\!\!\!/_2} \end{array} ight.$	$\Big\}$ 1289787+x		4d'	4D	$2s \ 2p^{3}(^{5}\mathrm{S^{o}})4d$	4 <i>d'''</i> 4D°	$\begin{cases} 1\frac{1}{2} \\ to \\ 3\frac{1}{4} \end{cases}$	1373760	
$\overline{4d}$	${}^{2}\mathbf{P}$	$2s^2 \ 2p^2(^1\mathrm{D})4d$	4 <i>d′</i> ²₽	$\Big\{ \begin{smallmatrix} 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\$	$\Big\}$ 1292939+x				2s ² 2p ² (³ P)6s	6s 4P	1/2	,	
$\overline{4d}$	$^{2}\mathrm{S}_{1}$	$2s^2 2p^2 (^1\mathrm{D}) 4d$	$4d'$ $^2\mathrm{S}$	1/2	1295321 + x		65	${}^{4}\mathrm{P}_{3}$			$1\frac{1}{2}$ $2\frac{1}{2}$	1380643	
58	⁴ P ₂ ⁴ P ₃	2s ² 2p ² (³ P)5s	5s 4P	$1/2 \\ 11/2 \\ 21/2 \\ 21/2 \\ 1$	1317697 1318670	973	$\overline{5d}$	²F	2s² 2p²(1D)5d	5d' ² F	$\left\{egin{array}{c} {3^{1}\!$	$\Big\}$ 1381572+x	
4s'	${}^{4}S_{2}$	2s 2p ³ (⁵ S°)4s	4s''' 4S°	1½	1323609		$\overline{5d}$	² D	$2s^2 \ 2p^2({}^1\mathrm{D})5d$	5d' ² D	$\left\{ egin{array}{c} 1^{1}\!$	$\Big\}$ 1383088+ x	
$\overline{\overline{4d}}$	²D	$2s^2 2p^2 ({}^1\mathrm{S}) 4d$	$4d^{\prime\prime}$ $^{2}\mathrm{D}$	$\left\{ egin{array}{c} 1^{1\!\!\!/_2} \ 2^{1\!\!\!/_2} \end{array} ight.$	$\Big\}$ 1332285+x		5d'	4D	2s 2p ³ (⁵ S°)5d	5d''' 4D°	$\begin{cases} \frac{1}{2} \\ to \\ 3\frac{1}{2} \end{cases}$	1463928	
4n'	4P	28 2n3(5S°)4n	4n''' 4P	$\begin{cases} \frac{1}{2} \\ to \end{cases}$	1340950						1 5/2		
тр			<i>1p</i> 1	$2\frac{1}{2}$					Mg v11 (3P ₀)	Limit		1507520	

February 1947.

Mg vi Observed Terms*

Config. $1s^2+$	Observed Terms												
2s ² 2p ³	$\left\{ \begin{array}{cc} 2p^3 & {}^4\mathrm{S}^\circ \end{array} ight.$	2p³ ²P°	$2p^3$ $^2\mathrm{D}^{\circ}$										
2s 2p ⁴	$\left\{ \begin{array}{cc} 2p^4 & {}^2\mathrm{S} \end{array} ight.$	${2p^4}{}^{4}{}^{P}_{2p^{4}}{}^{2}{}^{P}_{2p}$	$2p^{4-2}\mathrm{D}$										
		ns $(n \ge 3)$		$np (n \ge 3)$		nd	$(n \ge 3)$						
$2s^2 2p^2(^{3}P)nx$	{	3–6s ⁴ P 3, 4s ² P				$\begin{array}{ccc} 3-5d & {}^4\mathrm{P} \\ 3d & {}^2\mathrm{P} \end{array}$	${\begin{array}{*{20}c} {3-5d} & {}^{4}{ m D} \\ {3,\ 4d} & {}^{2}{ m D} \end{array}}$	$3-5d$ $^{2}\mathrm{F}$					
$2s^2 2p^2({}^1\mathrm{D})nx'$			3 , 4s′ ² D		3, 4d' 2S	3, 4 <i>d′</i> ² P	3-5d' ² D	3-5d' ² F					
$2s^2 2p^2({}^1S)nx''$	3s'' 2S						3, 4 <i>d''</i> ² D						
$2s \ 2p^{3}(^{5}\mathrm{S}^{\circ})nx'''$	3, 4s''' 4S°			3, 4 <i>p'''</i> 4P			3-5d''' 4D°						
2s 2p ³ (³ D ^o)nx ^{IV}	{		3s ^{IV} 4D°	3nIV 2F	3d ^{1v} 4S°	3d1v 4P°	3d1v 4D°	3div 2F0					
2s 2p ³ (³ P°)nx [♥]	{	38 ^V 4P° 38 ^V 2P°	50 D	<i>op</i> 1				00 I					

*For predicted terms in the spectra of the NI isoelectronic sequence, see Introduction.

Mg VII

Ground state $1s^2 2s^2 2p^2 {}^{3}P_0$

$2p^2 {}^{3}P_0 1817734 \text{ cm}^{-1}$

Söderqvist has found 56 terms and classified 114 lines in this spectrum in the range 58 A to 434 A. He determines the relative values of the singlet, triplet, and quintet systems of terms from the series limits.

Söderqvist gives the quintet term $2p^3 {}^{5}S_{2}^{\circ}$ at 118134 cm⁻¹ above the ground state zero. From isoelectronic sequence data Robinson estimates this value as 118620 cm⁻¹. The later value has been used in the table and all quintet terms adjusted accordingly.

The uncertainties x and y may be considerable.

REFERENCES

J. Söderqvist, Ark. Mat. Astr. Fys. (Stockholm) 32A, No. 19 p. 4 (1946). (I P) (T) (C L) H. A. Robinson, unpublished material (March 1948). (T)

			IVI	g vii							wig	VII			
Au	ıthor	Config.	De	esig.	J	Level	Inter- val	Au	thor	Config.	D	esig.	J	Level	Inter- val
$\frac{1}{2p}$	³ P ₀ ³ P ₁ ³ P ₂	2s ² 2p ²	2p2	۶P	$\begin{array}{c} 0\\ 1\\ 2 \end{array}$	0 1127 2939	1127 1812	3d	$^{3}D_{1}$ $^{3}D_{2}$ $^{3}D_{3}$	$2s^2 2p(^2\mathrm{P^o}) 3d$	3d	۶Do	$\begin{array}{c}1\\2\\3\end{array}$	1191753 1192185 1193061	432 876
$\frac{2p}{2p}$	${}^{1}D_{2}$ ${}^{1}S_{0}$	$ \begin{array}{c} 2s^2 \ 2p^2 \\ 2s^2 \ 2p^2 \end{array} $	$\begin{array}{ c c } 2p^2 \\ 2p^2 \\ 2p^2 \end{array}$	1D 1S	2	41459 + x 85647 + x		3d	³ P ₂ ³ P ₁ ³ P ₀	$2s^2 2p(^2P^\circ)3d$	3d	۶Þ۰	$\begin{vmatrix} 2\\ 1\\ 0 \end{vmatrix}$	1196770 1197469 1197872	$-699 \\ -403$
2p' 2p'	⁵ S ₂	$2s 2p^3$ $2s 2p^3$	$\begin{vmatrix} 2p^3 \\ 2p \end{vmatrix}$	5S° ³D°	2	118620+y 232865		38'	³ P ₀ ³ P ₁ ³ P ₂	2s 2p ² (*P)3s	38	۶Þ	$\begin{array}{c} 0\\ 1\\ 2\end{array}$	$\begin{array}{c} 1211173 \\ 1212055 \\ 1213679 \end{array}$	882 1624
	$^{3}D_{2}$ $^{3}D_{1}$					232975 233027	-52	3d	¹ F ₃	$2s^2 2p(^2P^\circ) 3d$	3 <i>d</i>	1F°	3	1212323 + x	
2p' 2p'	³ P ¹ D ₂	2s 2p ³ 2s 2p ³	$\begin{array}{ c c } 2p^{3} \\ 2p^{3} \end{array}$	1Do	2, 1, 0	27492 2 35492 3 + x		3d 3p'	¹ P ₁ *S ₁	$\begin{vmatrix} 2s^2 & 2p({}^{2}\text{P}^{\circ}) & 3d \\ 2s & 2p^2({}^{4}\text{P}) & 3p \end{vmatrix}$	3d 3p	1Po 3So	1	1213297 + x 1235329	
2p' 2p'	³ S ₁ ¹ P ₁	$2s 2p^3$ $2s 2p^3$	$\begin{vmatrix} 2p^3 \\ 2p^3 \end{vmatrix}$	3S° 1P°	1	362128 397655 + x		3 <i>p'</i>	³ D ₂ ³ D ₂	$2s \ 2p^2(^4P)3p$	3p	³Dо	$\begin{array}{c}1\\2\\3\end{array}$	1264827 1266076	1249
3s	³ P ₀ ³ P ₁ ³ P ₂	2s ² 2p(² P°)3s	38	۶Po	$\begin{array}{c} 0\\ 1\\ 2\end{array}$	1047624 1048385 1050906	$\begin{array}{c} 761 \\ 2521 \end{array}$	$\frac{3p'}{2}$	3P	$2s 2p^2(^4P)3p$	3p	3Po	0, 1, 2	1276520	
3 s	¹ P ₁	2s ² 2p(² P°)3s	38	۱P°	1	1061534 + x		$\frac{3s'}{3p'}$	3D	$\begin{array}{cccc} 2s & 2p^2(^2\mathrm{D})3s \\ 2s & 2p^2(^2\mathrm{D})3p \end{array}$	3s' 3p'	۶D。	1, 2, 3	1285196	
3 p	³ P ₀ ³ P ₁ ³ P ₂	2s ² 2p(² P ^o)3p	3 p	³Р	$\begin{vmatrix} 0\\ 1\\ 2 \end{vmatrix}$	$\begin{array}{c} 1123745 \\ 1124937 \\ 1125850 \end{array}$	1192 913	38'	$^{1}\mathrm{D}_{2}$	2s 2p ² (² D)3s	3s'	۱D	2	1305806+ <i>x</i>	
3d	*F ₂	2s ² 2p(² P ^o)3d	3 <i>d</i>	۶Fo	2 3 4	1178758+x		3d'	⁵ D ₂₃	2s 2p ² (⁴ P)3d	3d	۶D	$\begin{array}{c c} 0\\ 1\\ 2\\ 3\\ 4 \end{array}$	$\Big\}$ 1317618+y	
3 s'	⁵ P ₁ ⁵ P ₂ ⁵ P ₃	2s 2p ² (4P)3s	35	۶P	1 2 3	$\begin{array}{c} 1179696 + y \\ 1180484 + y \\ 1181963 + y \end{array}$	788 1479	3d'	⁵ P ₃ ⁵ P ₂	$2s \ 2p^2(^4P)3d$	3d	۶P	3 2 1	1323222+y 1323889+y 1324311+y	$-667 \\ -422$
3d	$^{1}\mathrm{D}_{2}$	$2s^2 2p(^2\mathrm{P^o}) 3d$	3d	1D°	2	1181424 + x			°r1		1		1	1021011 9	

117

Z = 12

I. P. 225.31 volts

Mg VII—Continued

Mg VII—Continued

A	uthor	Config.	Desig.	J	Level	Inter- val	Author	Config.	Desig.	J	Level	Inter- val
3d'	³ P ₂ ³ P ₁ ³ P ₀	$2s \ 2p^2(^4P)3d$	3 <i>d</i> ³P	2 1 0	$\begin{array}{c} 1324975 \\ 1326033 \\ 1326568 \end{array}$	$-1058 \\ -535$	4s′ ⁵P₃	2s 2p ² (4P)4s	4s ⁵P	1 2 3	1549235+y	
3d'	³ F ₂ ³ F ₃ ³ F ₄	$2s \ 2p^2(^4P)3d$	3d ³F	$\begin{vmatrix} 2\\ 3\\ 4 \end{vmatrix}$	$\begin{array}{c} 1333173 \\ 1334115 \\ 1335328 \end{array}$	942 1213	4p' ³ D ₃	2s 2p ² (4P)4p	4 <i>p</i> ³D°	$\begin{array}{c}1\\2\\3\end{array}$	1579211	
$\overline{3p'}$	${}^{1}\mathrm{F}_{3}$	2s 2p ² (² D)3p	$3p'$ ${}^1\mathrm{F}^{\circ}$	3	1350497 + x		5 <i>d</i> ³ P	2s ² 2p(² P°)5d	5d ³ P ^o	0, 1, 2	1597937	
3d'	$^{3}D_{1}$ $^{3}D_{2}$ $^{3}D_{3}$	2s 2p ² (4P)3d	3d 3D	$\begin{array}{c}1\\2\\3\end{array}$	$\begin{array}{c} 1350626 \\ 1350948 \\ 1351359 \end{array}$	$\begin{array}{c} 322\\ 411 \end{array}$	4d' ⁵ P ₃ ⁵ P ₂ ⁵ P ₁	2s 2p ² (4P)4d	4 <i>d</i> ⁵P	$3 \\ 2 \\ 1$	$\frac{1600167 + y}{1600760 + y}$ $\frac{1601134 + y}{1601134 + y}$	$-593 \\ -374$
$\overline{3p'}$	$^{1}\mathrm{D}_{2}$	2s 2p ² (² D)3p	$3p'$ $^1\mathrm{D}^{\circ}$	2	1357681 + x		5d ¹ F ₃	$2s^2 2p(^2\mathrm{P}^\circ) 5d$	5d ¹ F°	3	1600986 + x	
$\overline{3d'}$	${}^{3}\mathrm{F}$	2s 2p ² (² D)3d	$3d'$ $^3{ m F}$	2, 3, 4	1414307		$4d'$ ${}^{3}F_{2}$	2s 2p ² (⁴ P)4d	4d ³ F	2	1604844	777
$\overline{3d'}$	³Р	$2s \ 2p^2(^2\mathrm{D})3d$	3d′ ³₽	0, 1, 2	1420669		³ F ₃ ³ F ₄			$\frac{3}{4}$	$\frac{1605621}{1606747}$	1126
0.11	210	$2s \ 2p^2(^2D)3d$	3 <i>d′</i> ³D	1	1 4990 40		6d ³ P	$2s^2 2p(^2\mathrm{P^o}) 6d$	6d ³ P ^o	0, 1, 2	1665781	
3a.	³ D ₃			3	1422040 1422614	574	$\overline{4d'}$ $^3\mathrm{F}$	$2s \ 2p^2(^2D)4d$	$4d'$ $^3\mathrm{F}$	2, 3, 4	1695880	
$\overline{3d'}$	$^{3}\mathrm{S}_{1}$	$2s \ 2p^2(^2\mathrm{D})3d$	$3d'$ $^3\mathrm{S}$	1	1435724			$2s \ 2p^2(^4P)5p$	5 <i>p</i> ³ D°	1		
$\overline{3d'}$	${}^{1}\mathrm{F}_{3}$	$2s \ 2p^2(^2D)3d$	3d' ¹ F	3	1438863 + x		$5p'$ $^{3}D_{3}$			$\frac{2}{3}$	1717734	
$\overline{3d'}$	$^{1}D_{2}$	2s 2p ² (² D)3d	3d' ¹ D	2	1439116 + x			$2s \ 2p^2(^4{ m P}) 5d$	5d ⁵ P	1		
4d	$^{1}\mathrm{D}_{2}$	$2s^2 \ 2p(^2\mathrm{P^o}) 4d$	4d ¹ D°	2	1466102 + x		$5d'$ 5P_3			$\frac{2}{3}$	1727216 + y	
4d	³ D ₂ ³ D ₃	2s² 2p(²P°)4d	4d ³D°	$\begin{array}{c}1\\2\\3\end{array}$	1469556 1470420	864	$5d'$ ${}^3\mathrm{F_4}$	2s $2p^2(^4P)5d$	5 <i>d</i> ³ F	$2 \\ 3 \\ 4$	1730140	
		2s ² 2p(² P ^o)4d	4d ³P°	0				$2s \ 2p^2(^4P)6d$	6 <i>d</i> ⁵ P	1		
4d	³ P ₂			$\frac{1}{2}$	1472144		6d' ⁵ P ₃			3	1795347 + y	
4d	¹ F ₃	$2s^2 2p(^2\mathrm{P^o})4d$	4d ¹ F°	3	1477931+x							
4d	¹ P ₁	2s ² 2p(² P°)4d	4d ¹ P°	1	1478676+x			Mg viii (2P ^o _{1/2})	Limit		1817734	

March 1948.

Mg VII OBSERVED TERMS*

$\begin{array}{c} \text{Config.} \\ 1s^2 + \end{array}$				Observed	Terms				
2s ² 2p ²	$\begin{cases} 2p^{2-3}P \\ 2p^{2-1}S \end{cases}$	$2p^2$ ¹ D							
23 2p ³	$\begin{cases} 2p^3 \ {}^{5}\!\mathrm{S}^{\circ} \\ 2p^3 \ {}^{3}\!\mathrm{S}^{\circ} & 2p^3 \ {}^{3}\mathrm{P} \\ & 2p^3 \ {}^{1}\mathrm{P} \end{cases}$	$\stackrel{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{$							
	$ns \ (n \ge 3)$)	np	$(n \ge 3)$			nd	$(n \ge 3)$	
$2s^2 2p(^2\mathrm{P^o})nx$	$\begin{cases} 3s & ^3\mathrm{P} \\ 3s & ^1\mathrm{P} \end{cases}$	5	3 <i>p</i> ³ P				3-6d ³ P° 3, 4d ¹ P°	3, 4d ³ D° 3, 4d ¹ D°	$3d$ ${}^{3}{ m F}^{\circ}$ $3-5d$ ${}^{1}{ m F}^{\circ}$
$2s \ 2p^2(^4P)nx$	$\begin{cases} 3, 4s \ {}^{5}P \\ 3s \ {}^{3}P \end{cases}$		3p ³ S° 3p ³ P°	3–5 <i>p</i> ³D°			$\begin{array}{ccc} \mathbf{3-}6d & {}^{5}\mathrm{P} \\ 3d & {}^{3}\mathrm{P} \end{array}$	3d 5D 3d 3D	3−5 <i>d</i> ³F
2s 2p ² (² D)nx'	{	3s' ³ D 3s' ¹ D		${3p'}_{3p'}{}^{3}\mathrm{D}^{\circ}$ ${3p'}_{1}\mathrm{D}^{\circ}$	3p′ 1F°	3d′ ³S	3 <i>d′</i> ³P	$3d'$ $^{3}\mathrm{D}$ $3d'$ $^{1}\mathrm{D}$	3, 4d′ ³ F 3d′ ¹ F

*For predicted terms in the spectra of the C1 isoelectronic sequence, see Introduction.

(B I sequence; 5 electrons)

Ground state $1s^2 2s^2 2p {}^2P_{\frac{1}{2}}^{\circ}$

$2p \ ^{2}P_{\frac{1}{2}}^{\circ} 2145679 \ \mathrm{cm}^{-1}$

The analysis is by Söderqvist, who has classified 118 lines, all but 9 of which lie between 52A and 97 A. He remarks that the term values of $2p^3 {}^{2}P^{\circ}$ and $2p^3 {}^{2}D^{\circ}$ need further confirmation, since no combination of these terms with the doublets of the $2p^2$ configuration have been observed. These two terms and those calculated from combinations with them may require a slight adjustment but they are not seriously in error, as compared with the errors of measurement. Apparently the values extrapolated from the law of irregular doublets and those obtained from observed combinations confirm the terms fairly well.

The absolute values of the doublet terms are well determined from the nd ²D series and nd ²F° series, both of which extend to n=5.

The absolute values of the quartet terms are obtained from the nd ⁴D° series (n=3, 4, 5). No intersystem combinations have been observed, and a small correction x may be needed to connect the doublet and quartet terms.

REFERENCE

J. Söderqvist, Ark. Mat. Astr. Fys. (Stockholm) 30A, No. 11, p. 13 (1944). (I P) (T) (C L)

Mg	VIII
----	------

Mg VIII

Aı	uthor	Config.	De	esig.	J	Level	Interval	Aut	hor	Config.	Desig	g.	J	Level	Interval
2p	$^{2}P_{1}$ $^{2}P_{2}$	$2s^2(^1\mathrm{S})2p$	2p	²P°	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	0 3304	3304	3 <i>p′</i>	$^{2}S_{1}$	2s 2p(3P°)3p	$3p^{-25}$	5	1/2	1460911	
2p'	${}^{4}P_{1}$ ${}^{4}P_{2}$ ${}^{4}P_{3}$	2s 2p ²	$2p^2$	4P	$\begin{array}{c} \frac{1'_2}{11'_2}\\ 21'_2\\ 21'_2\end{array}$	$ \begin{array}{r} 130598 + x \\ 131763 + x \\ 133481 + x \end{array} $	1165 1718	3 <i>d′</i>	⁴ D ₂ ⁴ D ₃ ⁴ D ₄	2s 2p(3P°)3d	3 <i>d</i> 4	D°	$1^{1/2}_{1^{1/2}}$ $1^{1/2}_{1^{1/2}}$ $2^{1/2}_{1^{1/2}}$ $3^{1/2}_{1^{1/2}}$	$\begin{vmatrix} 1476964 + x \\ 1477341 + x \\ 1478182 + x \end{vmatrix}$	377 841
2p'	$^{2}\mathrm{D}_{3}_{^{2}\mathrm{D}_{2}}$	2s 2p ²	$2p^2$	²D	$2\frac{1}{2}$ $1\frac{1}{2}$	232281 232304	-23	3d'	${}^{2}\mathrm{D}_{2}$ ${}^{2}\mathrm{D}_{3}$	2s 2p(3P°)3d	3d 2]	D٥	$1\frac{12}{212}$	1478 3 58 1478706	348
2p'	$^{2}\mathrm{S}_{1}$	2s 2p ²	$2p^2$	$^{2}\mathrm{S}$	1/2	298283		3 <i>d′</i>	${}^{4}P_{3}$	2s 2p(3P°)3d	3 <i>d</i> 4]	P٥	$\frac{2\frac{1}{2}}{11}$	1484449 + x	-704
2p'	${}^{2}\mathrm{P_{1}}$ ${}^{2}\mathrm{P_{2}}$	2s 2p ²	$2p^2$	$^{2}\mathrm{P}$	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	$318747 \\ 320742$	1995		${}^{4}P_{1}^{2}$				$1\frac{1}{2}$ $1\frac{1}{2}$	1485103 + x 1485639 + x	-486
$2p^{\prime\prime}$	4S ₂	2p ³	$2p^3$	4S°	$1\frac{1}{12}$	414380+x		38'	²P	2s 2p(1P°)3s	3s′ 2]	P° .	$\left\{ {{1}{1}{1}{1}{1}{2}}{1{1}{2}{1}{1}{2}} ight.$	}1486995	
$2p^{\prime\prime}$	${}^{2}D_{3}$ ${}^{2}D_{2}$	2p³	$2p^3$	²D°	$2\frac{1}{2}$ $1\frac{1}{2}$	465598 465738	-140	3d'	${}^{2}\mathrm{F}_{3}$ ${}^{2}\mathrm{F}_{4}$	2s 2p(3P°)3d	3d 2]	۳°	$2^{1\!/_2}_{3^{1\!/_2}}$	1504992 1507043	2051
$2p^{\prime\prime}$	$^{2}P_{1}$ $^{2}P_{2}$	$2p^{3}$	$2p^3$	²P°	$1^{\frac{1}{2}}_{1^{\frac{1}{2}}_{2}}$	524339 524486	147	3d'	${}^{2}P_{2}$ ${}^{2}P_{1}$	2s 2p(3P°)3d	3 <i>d</i> 2]	P٥	$1\frac{1}{2}$ $\frac{1}{2}$	1513099 1514266	-1167
38	$^{2}\mathrm{S}_{1}$	2s ² (1S)3s	38	$^{2}\mathrm{S}$	1/2	1210689		$\overline{3p'}$	$^{2}\mathrm{D}_{2}$	2s 2p(1P°)3p	3p′ 2]	D	$1\frac{1}{2}$	1548027	824
3 <i>d</i>	${}^{2}D_{2}$ ${}^{2}D_{3}$	$2s^{2}(^{1}S)3d$	3d	²D	$1\frac{1}{2}$ $2\frac{1}{2}$	$\frac{1335863}{1336033}$	170	$\overline{3p'}$	${}^{2}D_{3}$ ${}^{2}P_{1}$ ${}^{2}P_{2}$	2s 2p(1P°)3p	3p′2]	P	$\frac{272}{\frac{1}{2}}$	1549955	609
3s'	⁴ P ₁ ⁴ P ₂ ⁴ P ₂	2s 2p(3P°)3s	38	4P°	$ \begin{array}{c} \frac{1}{2} \\ \frac{1}{2} $	1352123 + x 1353279 + x 1355296 + x	$\begin{array}{c} 1156\\ 2017\end{array}$	$\overline{3p'}$	² S ₁	2s 2p(1P°)3p	3p′ 28	5	1/2	1556517	
38'	$^{2}P_{1}$ $^{2}P_{2}$	2s 2p(3P°)3s	38	²P°	$ \begin{array}{c} 2_{12} \\ \frac{1}{2} \\ 1_{12}^{1/2} \end{array} $	1381466 1383731	2265	3s''	${}^{4}P_{1}$ ${}^{4}P_{2}$ ${}^{4}P_{3}$	$2p^{2}(^{3}\mathrm{P})$ 3s	38'' 4]	2	$1^{1/2}_{1^{1/2}}_{1^{1/2}_{1^{1/2}_{2^{1/2}}}}$	1588737 + x 1589965 + x 1591973 + x	1228 2008
3p'	${}^{2}P_{1} \\ {}^{2}P_{2}$	2s 2p(3P°)3p	3p	²P	1/2 1/2	1408371 1409401	1030	$\overline{3d'}$	${}^{2}\mathrm{F}$	2s 2p(1P°)3d	3d' ² I	0	$\left\{ egin{array}{c} 2^{1\!\!\!/_2} \ 3^{1\!\!\!/_2} \end{array} ight.$	}1597469	
3p'	$^{2}D_{2}^{2}D_{3}^{2}$	2s 2p(3P°)3p	3p	²D	$1\frac{1}{2}$ $2\frac{1}{2}$	$1440561 \\ 1442836$	2275	$\overline{3d'}$	${}^{2}\mathrm{D}_{2}$ ${}^{2}\mathrm{D}_{3}$	2s 2p(1P°)3d	3 <i>d′</i> 2I)°	$1\frac{1}{2}$ $2\frac{1}{2}$	1607872 1608224	

Z = 12

I. P. 265.957 volts

Mg VIII—Continued

Mg VIII—Continued

Author	Config.	Desig.	J	Level	Interval	Author	Config.	Desig.	J	Level	Interval	
3 <i>d</i> ′ ² P	2s 2p(1P°)3d	3d' 2P°	$\left\{ \begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \\ 1\frac{1}{2} \end{array} \right.$	}1610669		48′ 4P3	2s 2p(3P°)4s	4s 4P°	$\begin{array}{c} \frac{1/2}{11/2}\\ 21/2\\ 21/2 \end{array}$	1769549 + x		
3s'' 2D	$2p^{2}(^{1}\text{D})3s$	3s''' 2D	$\left\{ egin{array}{c} 1^{1\!\!\!/_2} \\ 2^{1\!\!\!/_2} \end{array} ight.$	$}1638646$		4p' ² P ₂	2s 2p(3P°)4p	4 <i>p</i> ² P	1/2 1/2 1/2	1814176		
	$2p^2(^{3}\mathrm{P})3p$	3 <i>p''</i> 4D°	$\begin{array}{c c} & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{21}{2} \\ & \frac{21}{2} \end{array}$	10100501		$4p'$ $^{2}\mathrm{D}_{3}$	2s 2p(3P°)4p	4 <i>p</i> ² D	$1\frac{12}{212}$	1825262		
$3p^{\prime\prime} * D_4$ 4s 2S_1	2s ² (1S)4s	48 ² S	$\frac{372}{1/2}$	1647050+x 1647879		4 <i>d′</i> 2D	2s 2p(3P°)4d	4d ² D°	$\left\{ egin{array}{c} 1^{1\!\!\!/_2} \\ 2^{1\!\!\!/_2} \end{array} ight.$	}1837649		
3 <i>p''</i> 4P3	2p ² (³ P)3p	3 <i>p</i> ′′ ⁴P°	$\begin{array}{c} \frac{1/2}{11/2} \\ 21/2 \\ 21/2 \end{array}$	1653061 + x		4 <i>d′</i> 4D	2s 2p(3P°)4d	4d 4D°	$ \begin{cases} \frac{1/2}{10} \\ \frac{1}{31/2} \end{cases} $	$\left \right\} 1838017 + x$		
$3p^{\prime\prime}$ ${}^{4}S_{2}$	$2p^{2}(^{3}P)3p$	$3p'' 4S^{\circ}$	$1\frac{1}{2}$	1674774+x		4 <i>d'</i> 4P	2s 2p(3P°)4d	4 <i>d</i> 4P°	$\begin{cases} \frac{1/2}{to}\\ 2^{1/2} \end{cases}$	$\left.\right $ $\left.\right $ $1840084+x$		
$3p'' {}^2\mathbf{F}$ $4d {}^2\mathbf{D}_2$	$2p^{2}(^{1}\mathrm{D})3p$ $2s^{2}(^{1}\mathrm{S})4d$	$\begin{array}{c} 3p^{m-2}F^{2} \\ 4d ^{2}D \end{array}$	$\begin{cases} 3\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{cases}$	1693824 1693835	11	$4d' \ {}^2{ m F_3} \ {}^2{ m F_4}$	2s 2p(3P°)4d	4d ² F°	$2\frac{1}{2}$ $3\frac{1}{2}$	1846146 1848025	1879	
3d'' 2F	$2p^2(^{3}\mathrm{P})3d$	3 <i>d''</i> 2F	$2^{1/2}$ $2^{1/2}$ $3^{1/2}$	1701860		$5d \ {^2D_2}{^2D_3}$	$2s^2(^1\mathrm{S})5d$	$5d$ $^{2}\mathrm{D}$	$1\frac{12}{21/2}$	1858322 1858419	97	
3 <i>d''</i> ² D	$2p^{2}(^{3}P)3d$	3 <i>d''</i> 2D	$\begin{cases} 1\frac{1}{2} \\ 2\frac{1}{2} \end{cases}$	$}1703243?$		$\overline{4d'}$ ² F	2s 2p(1P°)4d	4d' ² F°	$\left\{egin{array}{c} 2^{1\!\!\!/_2} \ 3^{1\!\!\!/_2} \ 3^{1\!\!\!/_2} \end{array} ight.$	}1964303?		
<u>3p''</u> 2D	$2p^2(^1\mathrm{D})3p$	3p''' 2D°	$\begin{cases} 1\frac{1}{2} \\ 2\frac{1}{2} \end{cases}$	}1708860		$\overline{4d'}$ ² D	2s 2p(1P°)4d	4d' ² D°	$\Big\{ \begin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \\ 2\frac{1}{2} \\ \end{array} \Big\}$	}1968694?		
$3d^{\prime\prime} {}^{4}P_{3} {}^{4}P_{2} {}^{4}P_{2}$	$2p^2(^{3}P)3d$	3 <i>d''</i> 4P	$2\frac{1}{2}$ $1\frac{1}{2}$ $1\frac{1}{2}$	1716667 + x 1717481 + x 1717023 + x	-814 -442	5d' 4D	2s 2p(3P°)5d	5d ⁴ D°	$ \begin{cases} \frac{1/2}{10} \\ \frac{1}{3}\frac{1}{2} \end{cases} $	$\left \right\} 2002221 + x$		
$\overline{3d''}$ ² D	2p ² (¹ D)3d	3d''' 2D	$\begin{cases} 7^{2} \\ 1^{\frac{1}{2}} \\ 2^{\frac{1}{2}} \end{cases}$	$\left. \right\} 1733744$		$5d' \ {}^2{ m F_3} \ {}^2{ m F_4}$	2s 2p(3P°)5d	$5d$ 2 F°	$2^{1/2}_{2}_{3^{1/2}_{2}}$	2005261 2006652	1391	
<i>3d''</i> ² F	$2p^2(^1\mathrm{D})3d$	3d''' 2F	$\left\{ \begin{array}{c} 2^{1/2} \\ 3^{1/2} \\ 3^{1/2} \end{array} \right.$	}1751987			2p ² (³ P)4p	4 <i>p''</i> 4D°	$\begin{array}{c c} 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\$			
$\overline{3d^{\prime\prime}}^{2}P_{1}^{2}P_{2}$	$2p^2(^1\mathrm{D})3d$	3 <i>d'''</i> 2P	1/2 1/2	$\frac{1754593}{1755558}$	965	4 <i>p''</i> ⁴ D ₄			3½	2042060+x		
Octob	per 1946.	<u> </u>		Mg	VIII OBSEI	RVED TERMS	s*	Limit	<u>'</u>	2143079		
Cor	ifig.					Observed T	'erms					
			2.00									
282(10)	$2x^{2}(5)2p$ $2p^{-1}$											
28 2p	$2p^2$	$^{2}\mathrm{S}$ $2p^{2}$	²P	$2p^{2}$ $^{2}\mathrm{D}$								
2p3	{ 2p ³	2p ³	²P°	$2p^3$ $^2\mathrm{D}^{\circ}$								
		ns (n	> 3)			np (n > 3))	1	n	d (n > 3)		

2p*	l -	$2p^3$ $^2\mathrm{P}^{\circ}$	$2p^3$ $^2\mathrm{D}^{o}$														
		ns $(n \ge 3)$					np ($(n \ge 3)$						nd (r	$n \ge 3)$		
$2s^{2}({}^{1}\mathrm{S})nx$	3, 4s 2S													3-5d	²D		
2s 2p(3P°)nx	{	3, 4s 4P° 3s 2P°		3p	2S 3,	4p	²P	3 , 4 <i>p</i>	²D		3,	${4d \atop {3d}}$	4P° 2P°	${3-5d \atop 3, 4d}$	⁴D° 2D°	3-5d	²F°
2s 2p(1P°)nx'		3s' 2P°		3 <i>p</i> ′	²S	3p'	²P	3p'	²D			3d'	²P°	3, 4 <i>d'</i>	²D°	3, $4d'$	²F°
$2p^2(^{3}P)nx^{\prime\prime}$	{	3s'' 4P		3p''	4S°	$3p^{\prime\prime}$	₄P°	3, 4 <i>p''</i>	4D°			$3d^{\prime\prime}$	4P	$3d^{\prime\prime}$	²D	$3d^{\prime\prime}$	²F
$2p^2(^1\text{D})nx^{\prime\prime\prime}$			3s''' 2D		•			$3p^{\prime\prime\prime}$	²D°	3p''' 2F°		3 d'''	²P	$3d^{\prime\prime\prime}$	²D	3 d'''	${}^{2}\mathrm{F}$

*For predicted terms in the spectra of the BI isoelectronic sequence, see Introduction.

(Be 1 sequence; 4 electrons)

Ground state 1s² 2s² ¹S₀

2s² ¹S₀ 2645444 cm⁻¹

Sixty-five lines have been classified by Söderqvist. All but three lie in the range between 46 A and 91 A. No intersystem combinations are known, but the absolute term values are determined from series that are fairly well established. The relative uncertainty, x, is probably a few hundred cm⁻¹.

REFERENCE

J. Söderqvist, Ark. Mat. Astr. Fys. (Stockholm) 30A, No. 11 p. 8 (1944). (I P) (T) (C L)

			I	Mg 13	K						N	Ig IX			
Au	thor	Config.	De	sig.	J	Level	Interval	Aut	hor	Config.	De	sig.	J	Level	Interval
$\frac{1}{2s}$	¹ S ₀ ³ P ₀	$2s^2$ $2s(^2\mathrm{S})2p$	2s ² 2p	1S 3P°	0	0 140786+x	1162	3 <i>d'</i>	${}^{3}P_{2}$ ${}^{3}P_{1}$ ${}^{3}P_{0}$	$2p(^2\mathrm{P^o})3d$	3d	۶Po	2 1 0	$1815552 + x \\ 1816534 + x \\ 1817062 + x$	$-982 \\ -528$
	${}^{3}\mathrm{P}_{1}$ ${}^{3}\mathrm{P}_{2}$				$\begin{array}{c}1\\2\end{array}$	141948 + x 144420 + x	2472	3d'	¹ F ₃	$2p(^{2}\mathrm{P}^{\circ})3d$	3d	1F°	3	1834337	
2p	$^{1}\mathrm{P}_{1}$	$2s(^2\mathrm{S})2p$	2p	۱P°	1	271687		3d'	¹ P ₁	$2p(^{2}\mathrm{P}^{\circ})3d$	3d	۱P°	1	1841286	
2p'	${}^{3}P_{0}$ ${}^{3}P_{1}$ ${}^{3}P_{2}$	$2p^2$	2p2	³Р	$egin{array}{c} 0 \ 1 \ 2 \end{array}$	366194 + x 367493 + x 369650 + x	$\begin{array}{c} 1299\\2157\end{array}$	4p 4d	¹ P ₁ ³ D ₁	$2s(^2\mathrm{S})4p$ $2s(^2\mathrm{S})4d$	4p 4d	¹₽° ³D	1 1	2068680 2080274+x	54
2p'	$^{1}\mathrm{D}_{2}$	$2p^{2}$	$2p^{2}$	۱D	2	404744			$^{3}D_{2}$ $^{3}D_{3}$				$\frac{2}{3}$	2080328 + x 2080378 + x	50
2p'	$^{1}\mathrm{S}_{0}$	$2p^2$	2p2	$^{1}\mathrm{S}$	0	499444		4d	$^{1}\mathrm{D}_{2}$	$2s(^2\mathrm{S})4d$	4d	1D	2	2087888	
3s 3e	³ S ₁	$2s(^{2}S)3s$	38	3S	1	1532749 + x 1558076		An'	3Da	$2p(^{2}\mathrm{P}^{\circ})4p$	4p	3D	$\frac{1}{2}$	2230056+*	
3n	1P.	2s(2S)3n	3n	1P°	1	1593600		10	123	$2n(2P^{\circ})4n$	4n	зP	0	22000001.0	
3d	$^{3}D_{1}$ $^{3}D_{2}$	2s(2S)3d	3d	3D	1 2 2	1631321 + x 1631484 + x	$\begin{array}{c} 163\\ 168\end{array}$	4 <i>p</i> ′	³ P ₂		-1p	170	$1 \\ 2$	2235683	
9.1	°D3	9.(25) 9.2	9.7	117	3	1031052 + x		4 <i>d'</i>	$^{1}D_{2}$	$2p(^{2}P^{\circ})4a$	4 <i>a</i>	ישרי תי	2	2240823	
3a 3s'	$^{3}P_{0}$ $^{3}P_{1}$ $^{3}P_{2}$	$2s(^{2}S)3a$ $2p(^{2}P^{\circ})3s$	3a 3s	3bo	2 0 1 2	$ \begin{array}{r} 1054583 \\ 1710478 + x \\ 1711572 + x \\ 1714105 + x \end{array} $	$\begin{array}{c} 1094 \\ 2533 \end{array}$	4p' 4d'	¹ D ₂ ³ D ₃	$2p(^{2}P^{\circ})4p$ $2p(^{2}P^{\circ})4d$	4p 4d	3Do	$\frac{1}{2}$	2241083 2248572+x	
3s′	¹ P ₁	$2p(^2\mathrm{P^o})3s$	38	۱P°	1	1742772		4 <i>d</i> ′	$^{3}P_{2}$	$2p(^2\mathrm{P^o})4d$	4d	³ P°	2	2249773+x	
3p'	$^{1}\mathrm{P_{1}}$	$2p(^2\mathrm{P}^\circ)3p$	3p	۱P	1	1748116							$\stackrel{1}{0}$		
3p'	$^{3}D_{1}$ $^{3}D_{2}$ $^{3}D_{3}$	$2p(^2\mathrm{P^o})3p$	3p	зD	$\begin{array}{c}1\\2\\3\end{array}$	1755785 + x 1756803 + x 1759303 + x	$\begin{array}{c}1018\\2500\end{array}$	4d' 4d'	¹ F ₃ ¹ P ₁	$2p(^2\mathrm{P^o})4d$ $2p(^2\mathrm{P^o})4d$	4d $4d$	¹F° ¹P°	$\frac{3}{1}$	2256219 2258119	
3p'	$^{3}\mathrm{S}_{1}$	$2p(^2\mathrm{P^o})3p$	3p	$^{3}\mathrm{S}$	1	1770688+x		5d	зD	$2s(^2\mathrm{S})5d$	5d	3D	1, 2, 3	2285243 + x	
3p'	${}^{3}P_{0}$ ${}^{3}P_{1}$ ${}^{3}P_{2}$	$2p(^2\mathrm{P^o})3p$	3p	зЪ	$egin{array}{c} 0 \\ 1 \\ 2 \end{array}$	1777886 + x 1779003 + x 1780315 + x	$\begin{array}{c} 1117\\ 1312 \end{array}$	5d 5d'	¹ D ₂ ³ D, ³ P	$2s(^2\mathrm{S})5d$ $2p(^2\mathrm{P^o})5d$	$5d$ $5d^{-3}$	1D 2°,3D°	2 0 to 3	2288385 2451942+x	
3d'	$^{1}\mathrm{D}_{2}$	$2p(^2\mathrm{P^o})3d$	3 <i>d</i>	1D°	2	1789287		5d'	$^{1}\mathrm{F}_{3}$	$2p(^2\mathrm{P^o})5d$	5d	1F°	3	2454176	
3p'	$^{1}\mathrm{D}_{2}$	$2p(^2\mathrm{P^o})3p$	3p	1D	2	1795868									
3 <i>d'</i>	$^{3}D_{1}^{3}D_{2}^{3}D_{3}^{2}$	$2p(^2\mathrm{P}^\circ)3d$	3d	3Do	$\begin{array}{c}1\\2\\3\end{array}$	$ \begin{array}{r} 1807694 + x \\ 1808187 + x \\ 1809182 + x \end{array} $	493 995			Mg x (2S _{1/3})	Li	mit		2645444	

May 1946.

Z = 12

I. P. 327.90 volts

Mg ix Observed Terms*

Config. 1s ² +			Observed Terms		
2s ²	2s ² 1S				
$2s(^2\mathrm{S})2p$	$\left\{ \begin{array}{ccc} 2p & {}^{3}\mathrm{P}^{\circ} \\ 2p & {}^{1}\mathrm{P}^{\circ} \end{array} ight.$				
2 <i>p</i> ²	$\begin{cases} 2p^{2-3}P \\ 2p^{2-1}S \end{cases}$	$2p^2$ ¹ D			
	ns $(n \ge 3)$		$np (n \ge 3)$		$nd \ (n \ge 3)$
$2s(^2\mathrm{S})nx$	$\begin{cases} 3s & {}^3\mathbf{S} \\ 3s & {}^1\mathbf{S} \end{cases}$		3, 4p 1P°		3-5d ³ D 3-5d ¹ D
$2p(^{2}P^{\circ})nx$	$\begin{cases} 3s {}^{3}P^{\circ} \\ 3s {}^{1}P^{\circ} \end{cases}$	3p 3S	3, 4p ³ P 3p ¹ P 3, 4p ³ D 3, 4p ³ D	3-5d ³ P° 3, 4d ¹ P°	3-5d ³ D° 3, 4d ¹ D° 3-5d ¹ F°

*For predicted terms in the spectra of the BeI isoelectronic sequence, see Introduction.

Mg X

(Li 1 sequence; 3 electrons)

Ground state 1s2 2s 2S1/2

28 $^{2}S_{\frac{1}{2}}$ 2963810 cm⁻¹ .

The present analysis results from the classification of nine lines in the region 65 A to 44 A. The transition $2s {}^{2}S-2p {}^{2}P^{\circ}$ has not been reported. The predicted positions of these lines are at 625 A and 609 A.

Some of the relative levels have been connected by a study of the Rydberg denominators in the isoelectronic sequence rather than by the Ritz combination principle.

REFERENCE

J. Söderqvist, Ark. Mat. Astr. Fys. (Stockholm) 30A, No. 11, p. 3 (1944). (I P) (T) (C L)

122

I. P. 367.36 volts

Z = 12

Mg	X
	-

Author	Config.	Desig.	J	Level	In- ter- val
2s 2S1	28	28 2S	1/2	0	
$2p {}^{2}P_{1} {}^{2}P_{2}$	2p	2p 2P°	$1\frac{1}{2}$ $1\frac{1}{2}$	159929 163976	4047
3s 2S1	38	38 2S	1/2	1682648	
${}^{3p}{}^{^{2}\mathrm{P}_{1}}_{^{^{2}\mathrm{P}_{2}}}$	3p	3 <i>p</i> 2P°	$1\frac{1}{2}$ $1\frac{1}{2}$	1726519 1727832	1313
${}^{3d}_{2}{}^{2}\mathrm{D}_{2}_{2}_{2}_{3}$	3 <i>d</i>	3d 2D	$1\frac{1}{2}$ $2\frac{1}{2}$	$\begin{array}{r} 1743410 \\ 1743880 \end{array}$	470
$4p \ ^{2}P_{2,1}$	4 <i>p</i>	4p 2P°	$\Big\{ \begin{array}{c} \frac{1'_2}{1\frac{1'_2}{1\frac{1'_2}{2}}} \\ \end{array} \Big.$	} 2270148	
4d ² D ₂ ² D ₃	4 d	4 <i>d</i> 2D	$1\frac{1}{2}$ $2\frac{1}{2}$	$\frac{2277182}{2277694}$	512
	Mg XI (¹ S ₀)	Limit		2963810	

May 1946.

Mg XI

(He 1 sequence; 2 electrons)

Ground state 1s² ¹S₀

$1s^{2} {}^{1}S_{0} 14209200 \pm 2500 \text{ cm}^{-1}$

Flemberg has observed the four leading lines in this spectrum; they lie between 7 A and 9 A. He has calculated absolute term values on the assumption that the P-terms can be represented by a Ritz formula. The fourth line appeared on only one plate and was not used in the calculation of the limit.

The unit adopted by Flemberg, 10^3 cm⁻¹, has here been changed to cm⁻¹.

REFERENCE

H. Flemberg, Ark. Mat. Astr. Fys. (Stockholm) 28A, No. 18, p. 34 (1942). (I P) (T) (C L)

Config.	Desig.	J	Level
1s ²	1s ² 1S	0	0
1s 2p	2 <i>p</i> ¹P°	1	10907300
1s 3p	3 <i>p</i> ¹₽°	1	12738400
1s 4p	4p ¹ P°	1	13381100
1s 5p	5p 1P°	1	13680600
			
Mg XII (2S ₁₅)	Limit		14209200
		0	

Mg XI

October 1946.

Z = 12

I. P. 1761.23 ± 0.31 volts

ALUMINUM

Al I

13 electrons

Ground state $1s^2 2s^2 2p^6 3s^2 3p {}^2\mathbf{P}^{\circ}_{\frac{1}{2}}$

 $3p \ ^{2}\mathrm{P}_{\frac{1}{2}}^{\circ} 48279.16 \ \mathrm{cm}^{-1}$

The earlier analysis has been extended by Paschen and Ritschl, who have derived improved term values and extended the observations in the infrared and ultraviolet.

The terms $3p^2 {}^2\mathbf{P}$ and $3p^2 {}^2\mathbf{S}$ have been suggested by Bowen and Millikan and by Selwyn, respectively. The only combinations are with $3p {}^2\mathbf{P}^\circ$.

Paschen discusses the possibility that the term here called $3d \,^2D$ may be $3p^2 \,^2D$, in which case all subsequent members of the 2D series must have *n* decreased by one unit.

Intersystem combinations connecting the doublet and quartet terms have been observed.

REFERENCES

A. Fowler, Report on Series in Line Spectra, p. 156 (Fleetway Press, London, 1922). (T) (C L)

- I. S. Bowen and R. A. Millikan, Phys. Rev. 26, 160 (1925). (C L)
- E. W. H. Selwyn, Proc. Phys. Soc. (London) 41, Part 4, No. 229, 402 (1929). (C L)
- F. Paschen, Ann. der Phys. [5] 12, 516 (1932). (T) (C L)
- F. Paschen und R. Ritschl, Ann. der Phys. [5] 18, 886 (1933). (I P) (T) (C L)
- W. F. Meggers, J. Opt. Soc. Am. 36, 431 (1946). (Summary hfs)

		Alı				1	Al I		
Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
3s ² (1S)3p	3 p ² P°	$1/2 \\ 1/2 $	0. 00 112. 04	112. 04	$3s^2(^1\mathrm{S})4d$	4d ² D	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	38929. 42 38933. 96	4. 54
3s ² (1S)4s	4s 2S	1⁄2	25347.69		$3s^2({}^1 m S)5p$	5p ² P ^o	$\frac{1}{12}$	40271.98	5. 94
3s 3p ²	3p ² ⁴ P	$1\frac{1}{2}{1\frac{1}{2}{2\frac{1}{2}}}{2\frac{1}{2}}$	29020. 32 29066. 90 29142. 68	46. 58 75. 78	$3s^2(^1S)4f$	4f ² F°	$\left\{egin{array}{c} 1/2 \ 21/2 \ 31/2 \ 31/2 \end{array} ight.$	} 41318.74	
3s ² (1S)3d	3 <i>d</i> ² D	$\frac{1\frac{1}{2}}{2\frac{1}{4}}$	32435.45 32436.70	1. 34	3s ² (1S)6s	6s 2S	1⁄2	42144. 84	
$3s^2(^1\mathrm{S})4p$	4 <i>p</i> ² P°	$\frac{1}{1}$	32949. 84 32965 67	15. 83	$3s^2(1S)5d$	5d ² D	$1\frac{12}{212}$	42233. 72 42237. 71	3. 99
3s ² (1S)5s	58 2S	1/2	37689. 32		$3s^2(^1S)6p$	6 <i>p</i> ² P°	$1/2 \\ 1/2 \\ 1/2$	43334.95 43337.77	2. 82

Z = 13

I. P. 5.984 volts

Al I-Continued

Al I—Continued

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
3s ² (1S)5f	5f 2F°	$\left\{\begin{array}{c} 2\frac{1}{2}\\ 3\frac{1}{2}\end{array}\right\}$	43831.08		3s 3p ²	$3p^2$ ² S	1/2	51753. 0?	
$3s^2(^{1}S)6d$	6 <i>d</i> ² D	$1\frac{1}{2}$	44166.48	2. 40	3s 3p ²	3p ² ² P	$1\frac{1}{2}{1\frac{1}{2}}$	56643. 0? 56727. 3?	84. 3
3s²(1S)7s	7s 28	1/2	44273. 16		3s 3p(3P°)4s	4s 4P°	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	61691.29 61747.38 61843 41	56. 09 96. 0 3
$3s^2(^{1}S)7p$	7p 2P°	$1\frac{1}{2}$ $1\frac{1}{2}$	44928. 4 44 9 30. 4	2. 0	3s 3p(3P°)3d	3d ² D°	$\frac{1}{2}$	67635.3 67663 9	27. 9
$3s^2(^1S)6f$	6f ² F°	$\left\{ egin{array}{c} 2^{1\!\!\!/_2} \ 3^{1\!\!\!/_2} \end{array} ight.$	} 45194.65		3s 3p(3P°)3d	3d ² P°	$\frac{2}{2}$ $\frac{1}{2}$	71184. 7?	-76.0
$3s^2(^{1}S)7d$	7d 2D	$1\frac{1}{2}$ $2\frac{1}{2}$	$\begin{array}{c} 45344. \ 16 \\ 45345. \ 60 \end{array}$	1.44	3s 3p(3P°)3d	3d 4D°	72 1/2 11/	71235.63	8. 75
3s²(1S)8s	88 2S	1/2	45457. 27				$1^{\frac{1}{2}}{2^{\frac{1}{2}}{3^{\frac{1}{2}}}}$	71244.38 71260.78 71286.27	16. 40 25. 49
3s ² (1S)7f	7f ² F°	$\left\{ \begin{array}{c} 2\frac{1}{2} \\ 3\frac{1}{2} \end{array} \right\}$	<i>46015.73</i>		3s 3p(3P°)3d	3 <i>d</i> 4P°	$2\frac{1}{2}$ $1\frac{1}{2}$	72203. 77 72250. 29	-46.52 -27.30
3s ² (¹ S)8d	8d ² D	$\begin{vmatrix} 1\frac{1}{2}\\ 2\frac{1}{2} \end{vmatrix}$	46093. 9 46094. 27	0. 4	3s 3p(3P°)5s	58 2P°	1/2 1/3	72277.68 72979.0	21.00
3s ² (1S)9s	98 2S	1/2	46184. 5		0000000000		$1\frac{1}{2}$	73077.9	98.9
$3s^2(^1\mathrm{S})9d$	9 <i>d</i> ² D	$\begin{array}{c c} 1\frac{1}{2}\\ 2\frac{1}{2}\end{array}$	46593. 28 46593. 83	0. 55	3s 3p(3P°)4d	4d ² P°	$1\frac{1}{2}$ $1\frac{1}{2}$	76521. 8 76553. 7	31. 9
3s²(1S)10s	10s 2S	1/2	46665. 7		3s 3p(3P°)6s	6s ² P°	11/2	78612.5 78710.5	98. 0
3s ² (1S)10d	10 <i>d</i> ² D	$\left\{ egin{array}{c} 1\frac{1}{2}\\ 2\frac{1}{2} \end{array} ight.$	46942. 3		3s 3p(3P°)5d	5d ² F°	2½ 3½	80158.0 80191-9	33. 9
3s ² (¹ S)11d	11 <i>d</i> ² D	$\left\{ \begin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array} \right.$	$\Big\}$ 47192. 0				0/2	00101.0	
Аl п (1S ₀)	Limit		48279.16						+

August 1947.

Ali Observed Terms*

$\begin{array}{c} \text{Config.}\\ 1s^2 \ 2s^2 \ 2p^6 + \end{array}$		Ol	oserved Terms	
3s ² (1S)3p	3 <i>p</i> 2P°			
3s 3p ²	$\left\{\begin{array}{ccc} 3p^2 \ {}^{2}\mathrm{S?} & 3p^2 \ {}^{2}\mathrm{P?} \\ 3p^2 \ {}^{2}\mathrm{P?} \end{array}\right.$			
	ns $(n \ge 4)$	$np (n \ge 4)$	$nd \ (n \ge 3)$	$nf \ (n \ge 4)$
$3s^2(^1\mathrm{S})nx$	4-10s ² S	4-7p ² P°	3–11 <i>d</i> ² D	4-7f ² F°
3s 3p(3P°)nx	$\begin{cases} 4s & {}^{4}P^{\circ} \\ 5, 6s & {}^{2}P^{\circ} \end{cases}$		3d 4P° 3d 4D° 3, 4d 2P° 3d 2D° 5d 2F	•

*For predicted terms in the spectra of the Al1 isoelectronic sequence, see Introduction.

Ground state $1s^2 2s^2 2p^6 3s^2 {}^{1}S_0$

3s² ¹S₀ 151860.4 ± 0.5 cm⁻¹

Sawyer and Paschen published a detailed analysis in 1927, from which most of the terms have been taken. Since then some revisions and extensions have been made, especially regarding the terms from the ²P^o limit in Al III. The spectrum of Al II furnishes an excellent illustration of perturbed series and consequently is discussed in a number of theoretical papers on this subject. For example, Shenstone and Russell remark that one of the two lowest ¹D terms should be $3p^2$ ¹D. In accordance with their suggestions the terms labeled by Sawyer and Paschen 3 ¹D, 7 ³F, and 12 ¹P are here designated $3p^2$ ¹D, 3d ³F^o, and 4s ¹P^o?, respectively. These changes cause a decrease of one unit in the published values of *n* for all following series members in each of the three series.

In the 1927 paper the higher series members of the ^{3}P and ^{3}D series are assigned the *J*-values of the leading components (2 and 3, respectively). As the term intervals are known to be small, all three *J*-values for each term are entered in the table on the assumption that the terms are unresolved.

In 1933 Paschen and Ritschl published the detailed hyperfine structure separations they observed for a number of the components of triplet terms. From this paper the three new H-terms have been taken, and also slightly improved values of the terms 4s ¹S, 6s ³S, 8p ³P°, 5f ¹F°, and 5g ^{1, 3}G. It has been assumed that the singlet and triplet G-terms and also the singlet and triplet H-terms are coincident, since no multiplicities are assigned to them. Van Vleck and Whitelaw give the theoretical explanation of this for the G-terms.

Intersystem combinations connecting the singlet and triplet systems of terms have been observed.

REFERENCES

R. A. Sawyer und F. Paschen, Ann. der Phys. [4] 84, 1 (1927). (I P) (T) (C L)

F. Paschen, Ann. der Phys. [5] 12, 509 (1932). (T) (C L)

A. G. Shenstone and H. N. Russell, Phys. Rev. 39, 427 (1932). (T)

F. Paschen und R. Ritschl, Ann. der Phys. [5] 18, 872 (1933). (T) (C L) (hfs)

J. H. Van Vleck and N. G. Whitelaw, Phys. Rev. 44, 551 (1933).

W. F. Meggers, J. Opt. Soc. Am. 36, 431 (1946). (Summary hfs)

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
352	3s ² 1S	0	0. 0		$3s(^2S)4p$	4p 3P°	0 1	105424. 3 105438. 4	14.1
$3s(^2\mathrm{S})3p$	3 <i>p</i> ³ P°	$\begin{array}{c} 0 \\ 1 \\ 2 \end{array}$	37392. 0 37453. 8 37579. 3	61. 8 125. 5	$3s(^2S)4p$	4p ¹ P°	2 1	105467.7 106918.2	2010
$3s(^2\mathrm{S})3p$	3p 1P°	1	59849. 7		$3s(^2S)3d$	3 <i>d</i> ¹ D	2	110087.5	
$3p^2$	3p ² ¹ D	2	85479.0		3s(2S)5s	5s 3S	1	120089. 8	
3s(2S)4s	4s 3S	1	91271. 2		3s(2S)5s	53 1S	0	121365. 2	
$3p^2$	3p² ³₽	$egin{array}{c} 0 \ 1 \ 2 \end{array}$	94084.5 94146.8 9426 7.7	62. 3 120. 9	$3s(^2\mathrm{S})4d$	4 <i>d</i> ³ D	$egin{array}{c} 3 \\ 2 \\ 1 \end{array}$	121480. 3 121480. 9 121481. 2	-0.6 -0.3
3s(2S)4s	4s 1S	0	95348. 2		$3s(^2S)4f$	4f ³ F ^o	2	123415.9	2.1
3s(2S)3d	3d ³ D	3	95546.8	-1.1			3 4	123418.0 123420.8	2. 8
		$\frac{2}{1}$	95548. 8	-0.9	$3s(^2S)4f$	4f ¹ F°	3	123468. 1	1

Al II

I. P. 18.823 volts

Al II

Z = 13

Al II—Continued

=

Al II—Continued

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
3s(2S)4d	4d 1D	2	124792. 0		3s(2S)9s	9s 3S	1	144524.3	
$3s(^2\mathrm{S})5p$	5p ³P°	0	125700.5	5. 7	$3s(^2\mathrm{S})8d$	8d 3D	3, 2, 1	144638. 9	-
			125706.2 125719.0	12.8	3s(2S)9s	9s 1S	0	144641. 9	
$3s(^2\mathrm{S})5p$	5 <i>p</i> ¹ P°	1	125866.7		3s(2S)8d	8d 1D	2	144780. 2	
3s(2S)6s	6s 3S	1	132213. 2		$3s(^2S)8f$	8 <i>f</i> ¹F°	3	144781.9	
3s(2S)6s	6s 1S	0	132776.4		$3s(^2\mathrm{S})9p$	9 <i>p</i> ¹ P°	1	144939.1	
$3s(^2\mathrm{S})5d$	5d 3D	3	132819.7	-0.2	3s(2S)8g	8g 3G	3, 4, 5	144964. 7	
9-(29) 54	54 3179	2, 1	102019.9		3s(2S)8g	8g 1G	4	144964. 7	
əs("¤)əj	- 5) ° F		133440.4	5. 4 6. 9	$3s(^2\mathrm{S})8h$	8h ³ H°	4, 5, 6	144990.0	
20(28) 5f	5f 1F9	2	100441.0		$3s(^2\mathrm{S})8h$	8h ¹ H°	5	144990. 0	
38(23)5J	571D	0	199014 1		$3s(^2S)8f$	<i>8f</i> ³F°	2	145126.5	2. 4
38(25)5a	50.30	245	100914.1					145132. 1	3. 2
38(*5)3g	5g VG	5, 4, 5	194101. 2		$3p(^2\mathrm{P^o})3d$	3d ³D°	1, 2	145148	4
38(48)8g	by AG	4	104101. 2		20(25)0m	0 m 3D9	019	140102	
38(28)6p			104917.0		38(25)9p	9p °F	0, 1, 2	1401807	
38(25)6p	0 <i>p</i> °P °	$\begin{array}{c} 0\\ 1\\ 2\end{array}$	135009.0 135012.1 135018.9	3. 1 6. 8	3p(*1*)48	48 % 12	$\begin{array}{c} 0\\ 1\\ 2\end{array}$	$ \begin{array}{c} 145773.9\\ 145832.6\\ 145959.4 \end{array} $	58. 7 126. 8
$3s(^2\mathrm{S})7s$	78 3S	1	138496.7		3s(2S)10s	10s 3S	1	146108.8	
$3s(^2\mathrm{S})6f$	6f 3F°	2	138518.7	17.7	$3s(^2\mathrm{S})9d$	9d 3D	3, 2, 1	146185. 0	
		3 4	138559. 2	22.8	3s(2S)10s	10s ¹ S	0	146190. 1	
3s(2S)7s	7s 1S	0	138799. 3		3s(2S)9d	9d 1D	2	146274.4	
$3s(^2\mathrm{S})6d$	6d 3D	3, 2, 1	138811. 9		3s(2S)9f	9f ¹F°	3	146276.5	
$3s(^2S)6f$	6f 1F°	3	139242.9		$3s(^2\mathrm{S})10p$	10 <i>p</i> ¹ P°	1	146297.5	
$3s(^2\mathrm{S})6d$	6d 1D	2	139286.8		3s(2S)9g	9g 3G	3, 4, 5	146414. 5	
$3s(^2S)6g$	6g 3G	3, 4, 5	139588. 7		3s(2S)9g	9g 1G	4	146414. 5	
$3s(^2\mathrm{S})6g$	6g 1G	4	139588. 7		3s(2S)9h	9h ³H°	4, 5, 6	146432.8	
$3s(^2\mathrm{S})7p$	7 <i>p</i> ¹ P°	1	139916.7		3s(2S)9h	9h 1H°	5	146432.8	
$3s(^{2}S)7p$	7p 3P°	0, 1, 2	140091.2		$3s(^2\mathrm{S})9f$	<i>9f</i> ³F°	23	146496.7 146497.8	1. 1
3p(-1)3a	50 .1		141002.4 141107.5	25. 1 33. 0	2-(25)10-	10 m 3D9	0 1 9	140499. 2	
30(25)80	80.35	1	141140.0		38(-5)10p	2d 3D°	0, 1, 2	1/6505 0?	
30(25)80	8:15	1	142179.0		5 <i>p</i> (-1)5 <i>a</i>	54 1		146596.9	1. 9 2. 4
3s(-5)0s		201	142300.0		20(25)110	11. 39	1	140000.0	
38(-5)7a	74 1F9	0, 2, 1	142002.0		38(25)118	118 °D	1	141229.0	
38(28)7J		3	142001.0		38(25)11p		2.0.1	147200.0	
38(25)7a			142007.0		38(25)10a	10 <i>a</i> °D	3, 2, 1	147202.0	
38(25)7g	7g °G	3, 4, 3	142849.2		38(25)118		0	147242 0	
38(20) 1g		4	142849. 2		$3s(^{2}S)10d$		2	147343. 2	
38(25)8p	8p P		142958.9		3s(2S)10f	10, 16	3	147344. 2	
38(2S)8p	8p P	0, 1, 2	143170.0		$3s(^{2}S)10g$	10g ³ G	3, 4, 5	147451.0	
3s(2S)7f	7f3 F°	$\begin{vmatrix} 2\\ 3\\ \end{vmatrix}$	143262.7 143269.8	7.1	$3s(^{2}S)10g$	10g ¹ G	4	147451.0	
	1	4	143280.6		$3s(^{2}S)10h$	10h 3H 3	4, 5, 6	147464.7	1

127

Al II—Continued

Al II—Continued

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
3s(2S)10h	10 <i>h</i> ¹ H°	5	147464.7		$3s(^{2}S)13f$	13f ¹ F°	3	149199. 2	
3s(2S)10f	10f ³ F°	2	147499.8	0.4	$3s(^2\mathrm{S})13g$	13g 3G	3, 4, 5	149252. 9	
_		$\begin{bmatrix} 3\\4 \end{bmatrix}$	147500. 2 147500. 8	0. 6	$3s(^2\mathrm{S})13g$	13g 1G	4	149252. 9	
$3s(^2\mathrm{S})11p$	11 <i>p</i> ³ P°	0, 1, 2	147572?		$3s(^2S)13f$	13f 3F°	2, 3, 4	149269.5	
$3p(^{2}P^{\circ})4s?$	4s ¹ P°	1	148002.0		$3s(^2\mathrm{S})14p$	14 <i>p</i> ¹ P°	1	149434.8	
$3s(^2\mathrm{S})12s$	12s 3S	1	148052.5		3s(2S)15s	15s 1S	0	149554.7	
$3_{\mathcal{S}}(^2\mathrm{S})11d$	11d 3D	3, 2, 1	148090. 0		$3s(^2\mathrm{S})14f$	14f ¹ F°	3	149568.6	
$3s(^2\mathrm{S})12s$	12s ¹ S	0	148097.1	10000	$3s(^2\mathrm{S})14f$	14f ³ F°	2, 3, 4	149625.5	
$3s(^2\mathrm{S})11f$	11f ¹ F°	3	148132.6		$3s(^2\mathrm{S})15p$	15p ¹ P°	1	149748.0	
$3s(^2\mathrm{S})11d$	11d ¹ D	2	148132.7		$3s(^{2}S)16s$	16s ¹ S	0	149856.6	
$3_{\mathcal{S}}(^2\mathrm{S})11g$	11g ³ G	3, 4, 5	148217.6		$3s(^{2}S)15f$	15f ¹ F°	3	149866.2	
$3s(^2\mathrm{S})11g$	11g ¹ G	4	148217.6		$3s(^{2}S)15f$	15f 3F°	2, 3, 4	149913. 2	
$3s(^2\mathrm{S})11f$	11f 3F°	2	148248.7	0.4	$3s(^2\mathrm{S})16p$	16p ¹ P°	1	150007.6	
		3 4	148249.1 148249.6	0.5	3s(2S)16f	16f ¹ F°	3	150109. 7	
$3s(^2\mathrm{S})12p$	12p ¹ P°	1	148579.4		3s(2S)16f	16f ³ F°	2, 3, 4	150148.4	
$3s(^2\mathrm{S})13s$	13s 3S	1	148673. 7		$3s(^{2}S)17f$	17f ¹ F°	3	150311.1	
$3s(^2\mathrm{S})13s$	13s ¹ S	0	148706. 9		$3s(^{2}S)17f$	17f 3F°	2, 3, 4	150343. 5	
$3s(^2\mathrm{S})12f$	12f ¹ F°	3	148731.6		3s(2S)18f	18f ¹ F°	3	150479.7	
$3s(^2\mathrm{S})\mathbf{12g}$	12g ³ G	3, 4, 5	148800. 4		3s(2S)19f	19f ¹ F°	3	150622.2	
$3s(^2\mathrm{S})12g$	12g 1G	4	148800. 4		3s(2S)20f	20f ¹ F°	3	150744.1	
$3s(^2\mathrm{S})12f$	12f 3F°	2, 3, 4	148822.5						
$3s(^2S)13p$	13p ¹ P°	1	149051 . 9		Al III (2S ₁₅)	Limit		151860.4	
$3s(^2\mathrm{S})14s$	14s 1S	0	149179. 8						

July 1947.

128

=

Al II OBSERVED TERMS*

$\begin{array}{c} \text{Config.} \\ 1s^2 \ 2s^2 \ 2p^6 + \end{array}$		Observed Term	15
3s ²	3s ² 1S		-
$3s(^2\mathrm{S})3p$	$\left\{ egin{array}{ccc} 3p & ^{\circ}\mathrm{P}^{\circ} \ & 3p & ^{1}\mathrm{P}^{\circ} \end{array} ight.$		
3p²	$\begin{cases} 3p^2 {}^3\mathrm{P} & \\ & 3p^2 & 1 \end{cases}$)	
	$ns \ (n \ge 4)$	$np (n \ge 4)$	$nd (n \ge 3)$
3s(2S) <i>nx</i>	$\begin{cases} 4-13s \ {}^{3}S \\ 4-16s \ {}^{1}S \end{cases}$	4–11p ³ P° 4–16p ¹ P°	3–11d ³ D 3–11d ¹ D
$3p(^{2}\mathrm{P}^{\circ})nx$	$\begin{cases} 4s {}^{3}P^{\circ} \\ 4s {}^{1}P^{\circ}? \end{cases}$		3d ³ P° 3d ³ D° 3d ³ F°
	$nf \ (n \ge 4)$	ng $(n \ge 5)$	$nh \ (n \ge 6)$
3s(2S)nx	$\begin{cases} 4-17f \ {}^{3}F^{\circ} \\ 4-20f \ {}^{1}F^{\circ} \end{cases}$	5-13g ³ G 5-13g ¹ G	8–10h ³ H° 8–10h ¹ H°

*For predicted terms in the spectra of the Mg I isoelectronic sequence, see Introduction.

Z = 13

(Na 1 sequence; 11 electrons)

Ground state $1s^2 2s^2 2p^6 3s {}^2S_{\frac{1}{2}}$

3s ²S_{1/2} 229453.99 cm⁻¹

The analysis is by Paschen. Three terms, $6s \, {}^2S$, $7s \, {}^2S$ and $7p \, {}^2P^\circ$ are from the paper by Ekefors, who extended the observations in the ultra-violet to $486 \, \text{A.}'$

REFERENCES

F. Paschen, Ann. der Phys. [5] 71, 148 (1923) and unpublished material. (I P) (T) (C L) E. Ekefors, Zeit. Phys. 51, 471 (1928). (T) (C L)

Al III

Al	III
	*14

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
38	3s 2S	1/2	0.00		6 <i>g</i>	6 <i>g</i> 2G	$\left\{\begin{array}{c} 3^{1}_{72} \\ 4^{1}_{2}^{1} \end{array}\right.$	} 202001. 32	
3p	3p ² P°	$1^{\frac{1}{2}}_{\frac{1}{2}}$	53684. 1 53916. 6	232. 5	6 <i>h</i>	6h 2H°	$\begin{cases} 4\frac{1}{2} \\ 5\frac{1}{6} \end{cases}$	202007. 32	
3d	3 <i>d</i> ² D	$2\frac{1}{2}$ $1\frac{1}{2}$	115955. 03 115957. 31	-2.28	7s	7s 2S	1/2	202904. 8	
48	4s 2S	1/2	126162. 58		7p	$7p^{2}P^{\circ}$	$\begin{cases} \frac{1}{2} \\ 11/2 \end{cases}$	205360	
4p	4 <i>p</i> ² P°	$1^{\frac{1}{2}}_{1^{\frac{1}{2}}_{\frac{1}{2}}}$	143632. 25 143712. 38	80. 13	7 <i>à</i>	7d ² D	$\begin{cases} 1^{72} \\ 2^{1/2} \\ 1^{1/2} \end{cases}$	208880. 37	
4 d	4 <i>d</i> ² D	$\begin{array}{c c} 2\frac{1}{2} \\ 1\frac{1}{2} \\ 1\frac{1}{2} \end{array}$	$\begin{array}{c} 165785.\ 26\\ 165786.\ 54 \end{array}$	-1.28	7f	7f 2F°	$\begin{cases} 2\frac{1}{2} \\ 3\frac{1}{2} \\ 3\frac{1}{2} \end{cases}$	} 209260.98	
4 <i>f</i>	4f 2F°	$2\frac{1}{2}$ $3\frac{1}{2}$	167612.05 167612.43	0. 38	7g	7g 2G	$\begin{cases} 3\frac{1}{2} \\ 4\frac{1}{2} \end{cases}$	209282. 17	
58	5s 2S	1/2	170636. 38						
5p	5 <i>p</i> ² P°	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	178430. 49 178469. 64	39.15	7h	7h ² H°	$\left\{\begin{array}{c} 4\frac{7}{2}\\ 5\frac{1}{2}\end{array}\right\}$	} 209287.52	
5d	5 <i>d</i> 2D	$\left\{ \begin{array}{c} 2^{1\prime}_{2} \\ 1^{1\prime}_{2} \end{array} \right.$	188875. 52		8d	8d °D	$\left\{\begin{array}{c} 2\frac{1}{2} \\ 1\frac{1}{2} \\ 1\frac{1}{2} \end{array}\right.$	$\Big\}$ 213741. 42	
5f	5f 2F°	$2^{1/2}_{1/2}_{3^{1/2}_{1/2}}$	189875.34 189875.46	0. 12	8f	8f 2F°	$\left\{\begin{array}{c} 2^{1\!/_2} \\ 3^{1\!/_2} \end{array}\right.$	} 213992.12	
5g	5 g 2G	$\left\{ \begin{array}{c} 3^{1/2} \\ 4^{1/2} \end{array} \right.$	} 189927.76		8g	8g 2G	$\left\{\begin{array}{c}3^{1\prime_2}\\4^{1\prime_2}\end{array}\right.$	$\Big\}$ 214010. 67	
6s	6s 2S	1/2	191478. 5		8h	8h 2H°	$\left\{ egin{array}{c} 4\frac{1}{2} \ 5\frac{1}{2} \end{array} ight.$	} 214015.8	
6 <i>p</i>	6 <i>p</i> ² P°	1/2 1/2	195620. 94 195641. 53	20. 59	9h	9h ²H°	$\left\{ \begin{array}{c} 4\frac{1}{2} \\ 5\frac{1}{2} \end{array} \right.$	} 217255. 2	
6d	6 <i>d</i> ² D	$\left\{ \begin{array}{c} 2^{1\!\!\!/_2} \\ 1^{1\!\!\!/_2} \end{array} \right.$	} 201374. 37		A1 xy (19)	Limit		220453 00	
6 <i>f</i>	6f 2F°	$\left\{ \begin{array}{c} 2^{1\!\!/_2} \\ 3^{1\!\!/_2} \end{array} \right.$	} 201969. 52		AI IV (~50)	Linu		<i>447499. JJ</i>	-
	1	1			1	1			

May 1947.

Al III

I. P. 28.44 volts

Al iv

Ground state 1s² 2s² 2p⁶ ¹S₀

2p⁶ ¹S₀ 967783 cm⁻¹

I. P. 119.96 volts

AI 137

The analysis has been taken from Söderqvist's Monograph. The term designations he assigns on the assumption of LS-coupling are given with his notation under the heading "Author" in the table.

As for Ne 1, the *jl*-coupling notation in the general form suggested by Racah is introduced. Shortley has, however, pointed out that the configurations $2p^5 3s$, $2p^5 3p$, and $2p^5 3d$ are much closer to *LS*-coupling than to *jl*-coupling.

REFERENCES

J. Söderqvist, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 7, 34 (1934). (I P) (T) (C L).

G. Racah, Phys. Rev. 61, 537 (L) (1942).

G. Shortley, unpublished material (1948).

T 37
- I V

	211 1 V											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Au	thor	Config.	Desig.	J	Level	Author		Config.	Desig.		Level
38 $\frac{1}{P_1}$ $2p^4(P_{1y})3s$ 38 $1/s^{1}$ $d^{10}d^{47.7}$ $4s$ P_1 $2p^4(P_{2y})4s$ $4s'$ $1/s^{1}$ 851966 $3p_1$ $2p^4(P_{1y})3p$ $3p$ $1/s$ 671635.5 $4d$ P_1 $2p^4(P_{2y})4d$ $4d$ $1/s^{1}$ 855286 $3p_1$ $2p^4(P_{1y})3p$ $3p$ $1/s$ 671635.5 $4d$ P_1 $2p^4(P_{2y})4d$ $4d$ $1/s^{10}$ 1 855286 $3p_1$ $2p^4(P_{2y})3p$ $3p$ $1/s^{1}$ 671635.5 $4d$ P_1 $2p^{4}(P_{2y})4d$ $4d^{-1}(1/s)^{0}$ 1 855286 $3p_1$ $2p^{1}$ $2p^{1}$ $2p^{1}(P_{2y})4s$ $3s^{1}(1/s)^{1}$ 1 682868.3 $5s^{1}P_1$ $2p^{1}(P_{2y})5s$ $5s'(1/s)^{1}$ 1 871391 $3p_1$ p_1 1 687436.5 p_1 $2p^{1}(P_{2y})5s$ $5s'(1/s)^{1}$	2p	¹ S ₀	2p ⁶	$2p^{6}$ ¹ S	0	0	48	³ P ₁	2p ⁵ (² P [*] ₁)4s	4s [1½]°	21	802936
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	38	${}^{^{3}}\mathrm{P}_{^{2}}$	$2p^{5}(^{2}\mathrm{P_{ik}^{5}})3s$	3s [1½]°	$\frac{2}{1}$	616646.7 618477.5	4 s	¹ P ₁	$2p^5(^2\mathrm{P}^\circ_{\mathcal{H}})4s$	4s' [½]°	0 1	806231
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	38	³ P ₀ ¹ P ₁	$2p^{\mathfrak{s}}(^{2}\mathrm{P}^{\circ}_{\mathcal{V}})3s$	3s' [½]°	0 1	619947.7 624720.5	4d	$^{3}P_{1}$	$2p^5(^2\mathrm{P^{5}_{15}})4d$	4d [½]°	01	851956
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$3p_{10}$	$^{3}\mathrm{S}_{1}$	$2p^{5}(^{2}\mathrm{P}_{15})^{3}p$	3p [½]	1	671635.5	4 <i>d</i>	¹ P ₁	"	$4d [1\frac{1}{2}]^{\circ}$	1	855286
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	${3 p_9 \atop {3 p_8}}$	³ D ₃ ³ D ₂	"	3p [2½]	$\frac{3}{2}$	680862. 9 681686. 7	4d	$^{3}\mathrm{D}_{1}$	$2p^5(^2\mathrm{P}^{\circ}_{\prime\!$	4d' [1½]°	$\begin{array}{c} 2\\ 1\end{array}$	858671
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	${3 p_7 \atop 3 p_6}$	$^{3}\mathrm{D_{1}}_{^{1}\mathrm{D_{2}}}$	"	3p [1½]	$\frac{1}{2}$	682869. 3 685732. 8	58	3P1	2p ⁵ (² P _{1₁})5s	5s [1½]°	$\begin{array}{c} 2\\ 1 \end{array}$	871391
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$3p_{3}$	$^{8}\mathrm{P}_{0}$	"	3p [½]	0	688313. 3			$2n^{5}(^{2}P_{\mu}^{\circ})5s$	58' [1/2]°	0	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	${3 p_5 \atop 3 p_4}$	${}^{1}P_{1}$ ${}^{3}P_{2}$	$2p^{5}(^{2}\mathrm{P}^{\circ}_{\mathrm{J}_{2}})3p$	$3p' [1\frac{1}{2}]$	$\begin{array}{c}1\\2\end{array}$	687456. 8 687834. 7	58	¹ P ₁	- p (1 72) 00		1 1	874669
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	${3p_2\atop 3p_1}$	${}^{^{3}}P_{1}$ ${}^{^{1}}S_{0}$	"	3p' [½]	1 0	688653. 0 690244. 9	5d	³ P ₁	$2p^{5}(^{2}\mathrm{P}_{1rac{1}{2}rac{1}{2}})5d$	5d [½]°	01	894614
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	24	3D.	9m5(2De.)2d	22 [1/10	0	750107 /	5d	$^{1}\mathrm{P}_{1}$	"	$5d [1\frac{1}{2}]^{\circ}$	1	896138
$3d \ {}^{3}P_{2}$ '' $3d \ [1!!_{2}]^{\circ}$ 2 761015.4 $5d \ J_{1}$ $5d \ J_{1}$ $d \ J_{1}$ 1 50501 $3d \ {}^{3}F_{4}$ '' $3d \ [3!_{2}]^{\circ}$ 4 761694.5 $6d \ {}^{1}P_{1}$ $2p^{5}(2P_{1!_{2}}^{\circ})6d$ $6d \ [1!_{2}]^{\circ}$ 1 918215 $3d \ {}^{3}F_{2}$ '' $3d \ [2!_{2}]^{\circ}$ 2 763502.8 $6d \ {}^{3}D_{1}$ $6d \ {}^{3}D_{1}$ $2p^{5}(2P_{2!_{2}}^{\circ})6d$ $6d' \ [1!_{2}]^{\circ}$ 2 921362 $3d \ {}^{1}P_{1}$ '' $3d \ [1!_{2}]^{\circ}$ 1 767040.6 $$ $$ $$ $$ $3d \ {}^{3}D_{3}$ $2p^{5}(2P_{2!_{2}}^{\circ})3d$ $3d' \ [2!_{2}]^{\circ}$ 3 767351.9 $Al \ v \ (^{2}P_{1!_{2}})$ $Limit$ $$ 967783 $3d \ {}^{3}D_{2}$ '' $3d' \ [1!_{2}]^{\circ}$ 2 767756.1 $Al \ v \ (^{2}P_{2!_{2}})$ $Limit$ $$ $3d \ {}^{3}D_{1}$ '' $3d' \ [1!_{2}]^{\circ}$ 2 767756.1 $Al \ v \ (^{2}P_{2!_{2}})$ $Limit$ $$ $3d \ {}^{3}D_{1}$ '' $3d' \ [1!_{2}]^{\circ}$ 2 767756.1 $Al \ v \ (^{2}P_{2!_{2}})$ $Limit$ $$ $3d \ {}^{3}D_{1}$ '' $3d' \ [1!_{2}]^{\circ}$ 2 767756.1 $Al \ v \ (^{2}P_{2!_{2}})$ $Limit$ $$ $3d \ {}^{3}D_{1}$ '' $3d' \ [1!_{2}]^{\circ}$ 2 767756.1 $Al \ v \ (^{2}P_{2!_{2}})$ $Limit$ $$	อน	${}^{3}P_{1}$	2p ⁻ (-1 13)50	Ju [/2]	1	759600.9	5.1	۶D.	$2p^5(^2\mathrm{P}_{52}^{\circ})5d$	5d' [1½]°	2	800081
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3d	$^{3}\mathrm{P}_{2}$	"	3d [1½]°	2	761015.4	Ju	$^{-}D_{1}$			1	000201
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3d	³ F ₄ 3F.	"	3d [3½]°	4	761694. 5 769977 1	6d	$^{1}\mathrm{P}_{1}$	$2p^{5}(^{2}\mathrm{P}_{1_{2}}^{\circ})6d$	6d [1½]°	1	918215
$3d$ $^{1}P_{1}$ '' $3d$ $[1\frac{1}{2}]^{\circ}$ 1 767040.6 Al $(^{2}P_{1\frac{1}{2}})$ $Limit$ $$ 967783 $3d$ $^{3}D_{2}$ $2p^{5}(^{2}P_{\frac{1}{2}})^{\circ}3d$ $3d'$ $2\frac{1}{2}$ 767351.9 Al v $2P_{1\frac{1}{2}}$ 967783 $3d$ $^{3}D_{2}$ '' $3d'$ $1\frac{1}{2}$ 767756.1 Al v $2P_{\frac{1}{2}}$ 971223	3d	${}^{3}F_{2}$ ${}^{1}F_{3}$,,	3d [2½]°	2 3	763502. 8 764304. 3	6 <i>d</i>	$^{3}\mathrm{D}_{1}$	$2p^5(^2\mathrm{P}_{5}^{\circ})6d$	6d' [1½]°	$\begin{array}{c} 2\\ 1\end{array}$	921362
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3d	¹ P ₁	"	3d [1½]°	1	767040. 6						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3d	$^{3}D_{3}_{^{1}D_{2}}$	$2p^{5}(^{2}\mathrm{P}^{\circ}_{\mathrm{J}_{2}})3d$	3d' [2½]°	$\frac{3}{2}$	767351.9 767536.2?			Al v $(^{2}P_{1\frac{1}{2}})$	Limit		967783
	3d	${}^{3}\text{D}_{2}$ ${}^{3}\text{D}_{1}$	"	3d' [1½]°	$\frac{2}{1}$	767756. 1 770836. 1			AI V (*P ₃)			971223

April 1947.

Al IV OBSERVED LEVELS*

Config. $1s^2 2s^2 +$	Observed Terms									
2p ⁶	$2p^{6}$ 'S	$2p^{\mathfrak{s}}$ 'S								
	ns $(n \ge 3)$	$np (n \ge 3)$	nd $(n \ge 3)$							
$2p^{5}(^{2}\mathrm{P}^{\circ})nx$	$\begin{cases} 3-5s & ^{3}P^{\circ} \\ 3-5s & ^{1}P^{\circ} \end{cases}$	3p ³ S 3p ³ P 3p ³ D 3p ¹ S 3p ¹ P 3p ¹ D	$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
jl-Coupling Notation										
	Observed Pairs									
	ns $(n \ge 3)$	$np (n \ge 3)$	nd $(n \geq 3)$							
$2p^5(^2\mathrm{Pis})nx$	3-5s [1½]°	$egin{array}{cccc} 3p & [1]_2 \ 3p & [2]_2 \ 3p & [2]_2 \ 3p & [1]_2 \end{array} \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$2p^5(^2\mathrm{P}_{\mathrm{s}}^{\circ})nx'$	3-5s' [½]°	$rac{3p'}{3p'} \left[rac{112}{12} ight] \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$3d' [2\frac{1}{2}]^{\circ} \ 3-6d' [1\frac{1}{2}]^{\circ}$							

*For predicted levels in the spectra of the Ne I isoelectronic sequence, see Introduction.

Al v

(F 1 sequence; 9 electrons)

Ground state $1s^2 2s^2 2p^5 {}^2\mathrm{P}_{1}^{\circ}$

 $2p^{5} {}^{2}\mathrm{P}^{\circ}_{1\frac{1}{2}} 1240600 \mathrm{~cm^{-1}}$

The analysis published by Söderqvist in 1934 has been extended by Ferner to include 78 classified lines in the region between 85 A and 281 A. The present list has been compiled from unpublished material kindly furnished by Ferner.

Intersystem combinations connecting the doublet and quartet terms have been observed. All but one of the observed combinations are with the ground term.

Ferner's unit, 10^3 cm⁻¹, has here been changed to cm⁻¹.

By analogy with related spectra in the isoelectronic sequence Robinson has suggested the following changes in Ferner's term assignments:

Ferner	Robinson	Ferner	Robinson			
$3d \ {}^{4}\mathrm{P}_{2lash 2}$	3d 2D21/2	3d' 2S1/2	3d′ 2P112			
3d ⁴ D _{11/2} ⁴ D _{21/2}	3d ⁴ F _{1½} 3d ⁴ P _{2½}	$3d' {}^{2}\mathrm{P}_{1\frac{1}{2}}$	3d′ ²D₁1⁄2			
$3d \ ^{2}D_{212}$	$3d \ {}^{2}\mathrm{F}_{2rac{1}{2}}$	$3d' {}^{2}\mathrm{D}_{1\frac{1}{2}}$	3d′ ²S⅓			
4d ⁴ D _{11/2} ⁴ D _{21/2}	$\begin{array}{c} 4d \ {}^4\mathrm{P}_{1lash 2}\ 4d \ {}^2\mathrm{D}_{2lash 2}\end{array}$	${3d' {}^2{ m D}_{234} \over 4d' {}^2{ m S}_{34}}$	${3d' {}^2 { m D}_{2\!$			
4d ² D _{11/2} ² D _{21/2}	$\begin{array}{c} 4d \ ^2\mathrm{P}_{1\frac{1}{2}} \\ 4d \ ^2\mathrm{D}_{1\frac{1}{2}} \end{array}$	$\begin{array}{c} 4d' \ {}^{2}\mathrm{P}_{1\!$	4 <i>d′</i> ²D			

*1100620.

He has also suggested a correction of $+1000 \text{ cm}^{-1}$ to Ferner's absolute term values. This correction has been made in the limit quoted here.

I. P. 153.77 volts

Z = 13

REFERENCES

J. Söderqvist, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 7, 39 (1934). (T) (C L) E. Ferner, Ark. Mat. Astr. Fys. (Stockholm) 36A, No. 1, p. 57 (1948). (I P) (T) (C L) H. A. Robinson, unpublished material (March 1948). (T) (C L)

Al v

Author	Config.	Desig.	J	Level	Interval	Author	Config.	Desig.	J	Level	Interval
$2p \ {}^{2}P_{2} \ {}^{2}P_{1}$	$2s^2 2p^5$	2p ⁵ 2P°	$1\frac{1}{2}$	0 3440	-3440	$4d \ {}^{4}D_{3} \ {}^{4}D_{2}$	2s ² 2p ⁴ (³ P)4d	4 <i>d</i> 4D	$3^{1/2}_{1/2}_{2^{1/2}_{1^{1/2}_{2}}}$	$1062510 \\ 1062820$	-310
$2p'$ $^2\mathrm{S}_1$	$2s \ 2p^6$	$2p^6$ $^2\mathrm{S}$	1/2	358810		-			$\frac{1}{\sqrt{2}}$		
$\begin{array}{ccc} 3s & {}^{4}P_{3} \\ & {}^{4}P_{2} \\ & {}^{4}P_{1} \end{array}$	2s ² 2p ⁴ (³ P)3s	38 4P	$2\frac{1}{2}$ $1\frac{1}{2}$ $\frac{1}{2}$	751810 753960 755250	$-2150 \\ -1290$	4d ⁴ P ₂ ⁴ P ₃	2s ² 2p ⁴ (³ P)4d	4d 4P	$\begin{array}{c} \frac{1'_2}{11'_2}\\ 21'_2\\ 21'_2\end{array}$	1063650 1064050	400
${}^{3_{3}}_{~~^{2}P_{2}}{}^{^{2}P_{2}}_{P_{1}}$	2s ² 2p ⁴ (*P)3s	33 2P	$1\frac{1}{2}$ $\frac{1}{2}$	764240 766790	-2550	$\begin{array}{c} 4d {}^{2}\mathrm{P}_{1} \\ {}^{2}\mathrm{P}_{2} \end{array}$	2s ² 2p ⁴ (³ P)4d	4 <i>d</i> 2P	$1/2 \\ 11/2 \\ 11/2 \\ 1/$	$\begin{array}{c} 1065170 \\ 1067770 \end{array}$	2600
$\overline{3s}$ $^{2}D_{3}$ $^{2}D_{2}$	2s ² 2p ⁴ (¹ D)3s	3s′ 2D	$2^{1/2}_{1/2}_{1/2}$	796650 796680	-30	$\begin{array}{c c} 4d & {}^2\mathrm{D}_2 \\ & {}^2\mathrm{D}_3 \end{array}$	$2s^2 2p^4(^3\mathrm{P})4d$	4d ² D	$1\frac{12}{212}$	$\frac{1065460}{1066610}$	1150
38 2S1	2s ² 2p ⁴ (1S)3s	3s'' 2S	1/2	843880		$\overline{\overline{4s}}$ ² S ₁	$2s^2 2p^4({}^1\mathrm{S})4s$	4s'' 2S	1/2	1089930	
3d 4D3	2s ² 2p ⁴ (³ P)3d	3d 4D	$3\frac{1}{2}$ $2\frac{1}{2}$	919900	-780	$3s' {}^{2}P_{2} {}^{2}P_{1}$	2s 2p ⁵ (³ P ^o)3s	3s''' 2₽°	$1\frac{12}{12}$	1096180 1098350	-2170
*D2				920080		$\overline{4d} \ {}^{2}P_{1} \ {}^{2}P_{2}$	$2s^2 2p^4(^1D)4d$	4 <i>d′</i> ²₽	$1\frac{1}{2}$ $1\frac{1}{2}$	$\frac{1101400}{1103380}$	1980
$\begin{array}{c} 3d {}^{4}P_{1} \\ {}^{4}P_{2} \\ {}^{4}P_{3} \end{array}$	$2s^2 2p^4(*P)3d$	3d ⁴P	$ \begin{array}{c c} \frac{1}{2} \\ 1\frac{1}{2} \\ 2\frac{1}{2} \end{array} $	921440 922120 922640	680 520	$\overline{4d}$ ² S ₁	$2s^2 2p^4({}^1\mathrm{D})4d$	4d' ² S	1⁄2	1102540	
3d 2F3	2s ² 2p ⁴ (² P)3d	3d 2F	$3\frac{1}{2}$	923230		$\overline{4d}$ ² D ₃	$2s^2 2p^4({}^1\mathrm{D})4d$	4 <i>d′</i> 2D	$2\frac{1}{2}$ $1\frac{1}{2}$	1103190	
${}^{3d}_{2D_{2}}{}^{2D_{2}}_{2D_{3}}$	2s ² 2p ⁴ (³ P)3d	3d ² D	$1\frac{1}{2}$ $2\frac{1}{2}$	925430 926400	970	5d 4D ₃ 4D ₂	2s ² 2p ⁴ (³ P)5d	5 <i>d</i> 4D	$\begin{array}{c} 3^{1\!\!/_2} \\ 2^{1\!\!/_2} \\ 1^{1\!\!/_2} \\ 1^{\prime} \\ 1^{\prime} \end{array}$	$\frac{1127550}{1127730}$	-180
${}^{3d}_{~~^{2}\mathrm{P}_{2}}{}^{^{2}\mathrm{P}_{1}}_{2}$	2s ² 2p ⁴ (² P)3d	3d 2P	$1^{1/2}_{1^{1/2}_{1^{1/2}_{2}}}$	925900 928410	2510	$5d \ {}^{2}D_{2}$	2s ² 2p ⁴ (³ P)5d	$5d$ $^{2}\mathrm{D}$	$ \begin{array}{c} 7^{2} \\ 1^{\frac{1}{2}} \\ 2^{\frac{1}{2}} \end{array} $	1129350	1550
$\overline{3d} \ ^{2}P_{1} \ ^{2}P_{2}$	$2s^2 2p^4(^1D)3d$	3d′ 2P	$1^{1/2}_{1^{1/2}_{1^{1/2}_{2}}}$	960420 961630	1210	$5d \ ^{2}P_{1}$	2s ² 2p ⁴ (³ P)5d	5d 2P	$\frac{272}{\frac{1}{2}}$	1129350 1121650	2300
$\overline{3d}$ ² S ₁	$2s^2 2p^4({}^1\mathrm{D})3d$	3d′ 2S	1/2	960860		=		1111.000	1 1/2	1131050	
$\overline{3d} \ ^2\mathrm{D}_3 \ ^2\mathrm{D}_2$	$2s^2 2p^4(^1D)3d$	3d′ ²D	$2\frac{1}{2}$ $1\frac{1}{2}$	962640 963330	-690	$\begin{array}{c} 4d {}^{2}\mathrm{D}_{3} \\ {}^{2}\mathrm{D}_{2} \end{array}$	$2s^2 2p^*(^{1}S)4d$	4 <i>d''</i> ² D	$ \begin{array}{c} 2^{\frac{1}{2}} \\ 1^{\frac{1}{2}} \end{array} $	1149160 1149260	-100
$48 \ {}^{2}P_{2} \ {}^{2}P_{1}$	2s ² 2p ⁴ (³ P)4s	48 2P	$1\frac{1}{2}$	1005760 1008040	-2280	$\begin{bmatrix} 6d & {}^{2}\mathrm{D}_{2} \\ & {}^{2}\mathrm{D}_{3} \end{bmatrix}$	$2s^2 2p^4(^{3}P)6d$	6d ² D	$1\frac{1}{2}$ $2\frac{1}{2}$	$\frac{1163850}{1165450}$	1600
$\overline{\overline{3d}}$ ² D ₂	$2s^2 2n^4(1S)3d$	3 <i>d''</i> 2D	21/2	1007150		$\overline{5d}$ ² S ₁	$2s^2 2p^4(^1D)5d$	5d' ² S	1⁄2	1167380	
$^{2}D_{2}$			$1\frac{1}{2}$	1007290	-140	$\overline{5d}$ ² P ₂	$2s^2 2p^4({}^1\mathrm{D})5d$	5d' ² P	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	1168060	
48 ² D ₃ ² D ₂	2s ² 2p ⁴ (¹ D)4s	48' 2D	$2\frac{1}{2}$ $1\frac{1}{2}$	1043430 1043480	-50						
			/-				Al vi (³ P ₂)	Limit		1240600	

March 1948.
$\begin{array}{c} \text{Config.} \\ 1s^2 + \end{array}$			IS				
2s ² 2p ⁵ 2s 2p ⁶	2p ⁶ ² S	2p⁵ ²₽°					
		ns $(n \ge 3)$			nd (n	2≥3)	
2s ² 2p ⁴ (³ P)nx	{	3 s ⁴ P 3 , 4s ² P		6	3, 4 <i>d</i> 4P 3–5 <i>d</i> 2P	${\substack{{\rm 3-5d}\ {\rm 4D}\ {\rm 3-6d}\ {\rm 2D}}}$	3d 2F
$2s^2 \ 2p^4(^1\mathrm{D})nx'$			3, 4s' 2D	3–5d′ 2S	3−5d′ ²P	3, $4d'$ ² D	
2s ² 2p ⁴ (1S)nx''	3, 4s'' 2S					3, $4d^{\prime\prime}$ ² D	
2s 2p ⁵ (³ P ^o)nx'''		3s''' 2P°					

*For predicted terms in the spectra of the F1 isoelectronic sequence, see Introduction.

Al VI

(O I sequence; 8 electrons)

Ground state 1s² 2s² 2p⁴ ³P₂

2p⁴ ³P₂ 1536300 cm⁻¹

The analysis is by Ferner, who has extended the earlier work by Söderqvist. He has listed 45 terms and 89 classified lines. The later observations are in the region between 68 A and 113 A. Two intersystem combinations have been observed.

Ferner expresses all level values in units of 10^3 cm⁻¹ but for uniformity all values listed below are given in cm⁻¹.

REFERENCES

J. Söderqvist, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 7, 51 (1934). (T) (C L) E. Ferner, Ark. Mat. Astr. Fys. (Stockholm) 36A, No. 1, p. 48 (1948). (I P) (T) (C L)

		Al VI			Al VI							
Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval			
2s ² 2p ⁴	2p4 *P	2 1 0	0 2736 3831	$-2736 \\ -1095$	$2s^2 2p^3 (^2\mathrm{P^o}) 3s$	3s'' ³ P°	$\begin{array}{c} 0\\ 1\\ 2 \end{array}$	993660 993880	220			
$2s^2 2p^4$	$2p^4$ ¹ D	2	41600		$2s^2 2p^3 (^2{ m P}^{\circ}) 3s$	3₅″ ¹P°	1	1003700				
2s ² 2p ⁴ 2s 2p ⁵	2p ⁴ ¹ S 2p ⁵ ³ P ^o	0 2	88670 <i>323002</i>	-2468	$2s^2 \ 2p^3 ({}^4\mathrm{S}^\circ) 3d$	3d ³ D°	1 2 3	1079460 1079490 107961 0	30 120			
2s 2p ⁵	2p ⁵ ¹ P ^o	1 0 1	325470 326822 451840	-1352	$2s^2 2p^3 (^2\mathrm{D^o}) 3d$	3d' ³ F°	4 3 2	1132180	-			
2s ² 2p ³ (4S°)3s	38 3S°	1	91313 0		$2s^2 2p^3 (^2 \mathrm{D}^\circ) 3d$	3d' ³ D°	3, 2, 1	1134170				
$2s^2 2p^3 (^2D^\circ) 3s$	3s' ³ D°	3, 2, 1	9 61100		$2s^2 \ 2p^3 (^2 \mathrm{D}^\circ) 3d$	3 <i>d′</i> ¹ P°	1	1136500				
28 ² 2p ³ (² D°)38	38′ 1D°	2	97079 0						1			

Z = 13

I. P. 190.42 volts

Al VI—Continued

Al VI-Continued

Config.	Desig.	J	Level	Interval	Config. Des		J	Level	Interval
2s² 2p³(²D°)3d	3d′ ³P°	2 1 0	1140840 1141670 1141910	$-830 \\ -240$	$\begin{array}{c} 2s^2 \ 2p^3({}^2\mathrm{P}^{o})4s \\ 2s^2 \ 2p^3({}^2\mathrm{D}^{o})4d \end{array}$	4s'' ¹ P° 4d' ³ D°	1 3, 2, 1	1 3 12070 1339480	-
$2s^2 2p^3(^2\mathrm{D}^\circ) 3d$	3d' ¹ D°	2	1142220		$2s^2 \ 2p^3 (^2\mathrm{D}^\circ) 4d$	4 <i>d′</i> ¹₽°	1	1341090	
$2s^2 \ 2p^3(^2{ m D}^{\circ}) \ 3d$	3d′ ³S°	1	1145020		$2s^2 \ 2p^3 (^2\mathrm{D^o}) 4d$	4 <i>d′</i> ³₽°	2	1343320	
$2s^2 \ 2p^3(^2\mathrm{D}^\circ) 3d$	3d' ¹ F°	3	1150250						
$2s^2 \ 2p^3 (^2\mathrm{P^o}) \ 3d$	3 <i>d′′</i> ³P°	0	1164220	400	$2s^2 \ 2p^3 (^2\mathrm{D^o}) 4d$	4 <i>d′</i> ³S°	1	1345030	
		$\frac{1}{2}$	1165260	640	$2s^2 2p^3 (^2\mathrm{D^o}) 4d$	4 <i>d′</i> ¹ D°	2	1345430	
$2s^2 \ 2p^3 (^2\mathrm{P^o}) \ 3d$	3 <i>d''</i> ³F°	4	1166590		$2s^2 \ 2p^3(^2\mathrm{D^o})4d$	4 <i>d′</i> ¹ F°	3	1346780	
		2	1168690	-2160	$2s \ 2p^4(^2S)3s$	3s ^v ³S	1	1359890	
$2s^2 2p^3 (^2\mathrm{P^o}) 3d$	3 <i>d</i> ′′′ ¹D°	2	1169150		$2s^2 2p^3 (^2\mathrm{P}^{o}) 4d$	4 <i>d''</i> ³₽°	0		
$2s^2 \ 2p^3 (^2\mathrm{P}^\circ) \ 3d$	3 <i>d''</i> ³D°	3	1169390	-1260			$\frac{1}{2}$	1371220	
		1	1170000		$2s^2 2p^3 (^2\mathrm{P}^{o}) 4d$	$4d^{\prime\prime}$ $^{3}\mathrm{D}^{\circ}$	3	1373440	-1700
$2s^2 \ 2p^3(^2\mathrm{P}^\circ) 3d$	3 <i>d''</i> ¹ P°	1	1171050				1	1070140	
$2s^2 2p^3(^2\mathrm{P}^{o}) 3d$	$3d^{\prime\prime}$ 'F°	3	1174450		$2s^2 2p^3 ({}^4\mathrm{S}^\circ) 5d$	$5d$ $^{3}D^{\circ}$	1, 2, 3	1375250	
$2s \ 2p^4(^4{ m P}) 3s$	3s‴ ³P	2	1204550 1205500	-950	$2s^2 \ 2p^3 (^2\mathrm{P^o}) 4d$	4 <i>d''</i> ¹ F°	3	1376860	
2s2 2m3(4S°)/s	1. 350	0	1018000		$2s^2 2p^3 (^2 { m D}^{\circ}) 5s$	5s′ 1D°	2	1405220	
$2s^{2} 2p^{2} (5) 4s^{2}$	4°, 3Do	2 9 1	107/550		$2s^2 2p^3 (^2\mathrm{P}^\circ) 5d$	5 <i>d''</i> ³P°	0		
$2s^2 2p^3 (2D^9) 4s$	4°/ 1D°	9	1079680				$\frac{1}{2}$	1465780	
$2s^2 2n^3(4S^9) 4d$	4d 3D°	1 2 2	1080060		$2s^2 \ 2p^3 (^2\mathrm{P^o}) 5d$	5d'' ³ D°	3	1466990	
$2 \circ 2p^{-}(10) + d$ $2 \circ 2p^{-}(2D) 2 \circ$	3eIV 3D	2 2 1	1202200				1		
20 2p (-D)00	0.5. 10	0, 2, 1	1230230		Al VII (4S _{11/2})	Limit		1536300	

February 1947.

Al VI OBSERVED TERMS*

$\begin{array}{c} \text{Config.} \\ 1s^2 + \end{array}$	Observed Terms											
$2s^2 2p^4$ $2s 2p^5$	$\begin{cases} 2p^4 \ {}^1\mathrm{S} \\ \end{cases}$	$egin{array}{ccc} 2p^4 & ^3\mathrm{P} \ & 2p^5 & ^{3\mathrm{P}^{\mathbf{o}}} \ & 2p^5 & ^{1\mathrm{P}^{\mathbf{o}}} \end{array}$	2p4 1D									
		ns ($n \ge 3$)		n	$d (n \geq 3)$							
2s ² 2p ³ (4S°)nx	3, 4s ³ S°				3−5 <i>d</i> ³ D°							
$2s^2 \ 2p^3(^2\mathrm{D}^\circ) nx'$	{		3, 4s′ ³D° 3–5s′ ¹D°	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$2s^2 \ 2p^3 (^2{ m P^o}) nx''$	{	3s'' ³ P° 3, 4s'' ¹ P°		$3-5d^{\prime\prime}$ $^3\mathrm{P}^{\circ}$ $3d^{\prime\prime}$ $^1\mathrm{P}^{\circ}$	$\begin{array}{cccc} 3-5d^{\prime\prime} & {}^{3}\mathrm{D}^{\circ} & 3d^{\prime\prime} & {}^{3}\mathrm{F}^{\circ} \\ 3d^{\prime\prime} & {}^{1}\mathrm{D}^{\circ} & 3, 4d^{\prime\prime} & {}^{1}\mathrm{F}^{\circ} \end{array}$							
2s 2p ⁴ (⁴ P)nx'''		3≈''' ³P										
2s $2p^4(^2D)nx^{IV}$			381A 3D									
2s $2p^4(^2\mathrm{S})nx^{\nabla}$	3s⊽ 3S											

*For predicted terms in the spectra of the O I isoelectronic sequence, see Introduction.

(N I sequence; 7 electrons)

Ground state $1s^2 2s^2 2p^3 {}^4S^{\circ}_{11/2}$

$2p^{3} {}^{4}S^{\circ}_{1\frac{1}{2}}$ 1951830 cm⁻¹

The analysis is from Ferner who kindly furnished his manuscript in advance of publication. He has extended the earlier work by Söderqvist to include 76 classified lines between 58 A and 96 A. One intersystem combination has been observed, but the relative positions of the doublet and quartet terms are determined from the series.

The unit used by Ferner, 10^3 cm⁻¹, has here been changed to cm⁻¹.

REFERENCES

J. Söderqvist, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 7, 64 (1934). (T) (C L) E. Ferner, Ark. Mat. Astr. Fys. (Stockholm) 36A, No. 1, p. 42 (1948). (I P) (T) (C L)

Al VII

Al VII

Author	Config.	Desig.	J	Level	Inter- val	Author	Config.	Desig.	J	Level	Inter- val
$2p$ ${}^4\mathrm{S}_2$	2s ² 2p ³	$2p^{3}$ 4S°	1½	0		$3d \ {}^2\mathrm{D}_2 \ {}^2\mathrm{D}_3$	2s ² 2p ² (³ P)3d	3d ² D	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	$1343710 \\1344530$	820
${{2p}_{2}}{{{}_{2}}}{{}_{2}}{{}_{3}}{{}_{3}}$	2s ² 2p ³	$2p^3$ $^2\mathrm{D}^\circ$	$1\frac{1}{2}$ $2\frac{1}{2}$	60700 60760	60	$\overline{3d} {}^{2}F_{4} {}^{2}F_{3}$	$2s^2 2p^2(^1D) 3d$	3 <i>d′</i> 2F	$3\frac{1}{2}$ $2\frac{1}{2}$	$1366720 \\ 1367160$	-440
${2p} \ {}^{2}P_{1} \ {}^{2}P_{2}$	2s ² 2p ³	$2p^3$ $^2P^\circ$	$1\frac{1}{2}$ $1\frac{1}{2}$	93000 93270	270	$\overline{3d} \stackrel{^{2}\mathrm{D}_{2}}{\stackrel{^{2}\mathrm{D}_{2}}}{\stackrel{^{2}\mathrm{D}_{2}}}{\stackrel{^{2}\mathrm{D}_{2}}{\stackrel{^{2}\mathrm{D}_{2}}{\stackrel{^{2}\mathrm{D}_{2}}}{\stackrel{^{2}\mathrm{D}_{2}}{\stackrel{^{2}\mathrm{D}_{2}}}{\stackrel{^{2}\mathrm{D}_{2}}}{\stackrel{^{2}\mathrm{D}_{2}}}{\stackrel{^{2}\mathrm{D}_{2}}}{\stackrel{^{2}\mathrm{D}_{2}}}{\stackrel{^{2}\mathrm{D}_{2}}}{\stackrel{^{2}\mathrm{D}_{2}}}{\stackrel{^{2}\mathrm{D}_{2}}}{\stackrel{^{2}\mathrm{D}_{2}}}{\stackrel{^{2}\mathrm{D}_{2}}}{\stackrel{^{2}\mathrm{D}_{2}}}{\stackrel{^{2}\mathrm{D}_{2}}}{\stackrel{^{2}\mathrm{D}_{2}}}{\stackrel{^{2}\mathrm{D}_{2}}}{\stackrel{^{2}\mathrm{D}_{2}}}{\stackrel{^{2}\mathrm{D}_{2}}}{\stackrel{^{2}\mathrm{D}_{2}}}{\stackrel{^{2}\mathrm{D}_{2}}}{\stackrel{^{2}\mathrm{D}_{2}}}}}}}}}}$	$2s^2 2p^2(^1D)3d$	3d' ² D	1^{1}_{2} 2^{1}_{2}	1369270 1369960	690
$2p' \ {}^4 ext{P_3} \ {}^4 ext{P_2} \ {}^4 ext{P_1}$	2s 2p4	2p4 4P	$\begin{array}{c c} 2\frac{1}{2} \\ 1\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array}$	$\begin{array}{c} 280200 \\ 282660 \\ 283960 \end{array}$	$-2460 \\ -1300$	$\begin{array}{c c} & \mathbb{P}_3 \\ \hline 3d & {}^{2}\mathrm{P}_1 \\ & {}^{2}\mathrm{P}_2 \end{array}$	$2s^{2} 2p^{2}({}^{1}\mathrm{D})3d$	3 <i>d′</i> ² P	$\frac{1}{1}$	1378290 1379130	840
$2p' {}^2\mathrm{D_3} {}^2\mathrm{D_2}$	2s 2p ⁴	$2p^4$ ² D	$2\frac{1}{2}$ $1\frac{1}{2}$	$384260 \\ 384310$	-50	3p' 4P	2s 2p ³ (⁵ S°)3p	3 <i>p'''</i> ⁴P	$\left\{\begin{array}{c} \frac{1}{2}\\ to\\ 2\frac{1}{6}\end{array}\right\}$	1383700	
$2p' {}^2\mathrm{S}_1$	2s 2p4	$2p^4$ ² S	1/2	451360		$\overline{3d}$ 2S.	$2s^2 2n^2(1D) 3d$	3d' 2S	1/2	1384370	
${2p'}{^2\mathrm{P_2}}{^2\mathrm{P_1}}$	2s 2p ⁴	2p ⁴ ² P	$1\frac{1}{2}$ $\frac{1}{2}$	$\begin{array}{r} 476090 \\ 479050 \end{array}$	-2960	$\begin{bmatrix} 3d & b_1 \\ \hline \hline \overline{3d} & ^2D \end{bmatrix}$	$2s^{2} 2p^{2} (1S) 3d$	3 <i>d''</i> 2D	$\left\{ \begin{array}{c} 1^{1}_{2} \\ 2^{1}_{2} \\ 2^{1}_{2} \end{array} \right\}$	1410380	
$\begin{array}{ccc} 3s & {}^4P_1 \\ & {}^4P_2 \\ & {}^4P_3 \end{array}$	2s ² 2p ² (³ P)3s	3s 4P	$\begin{array}{c} \frac{1}{12} \\ 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}$	$\begin{array}{c} 1147100 \\ 1148630 \\ 1150920 \end{array}$	$\begin{array}{c}1530\\2290\end{array}$	3d' 4D	2s 2p ³ (⁵ S°)3d	3 <i>d'''</i> 4D°	$ \left\{\begin{array}{c} \frac{1}{2}\\ $	1473060	
${}^{3s}{}^{2}P_{1}{}^{2}P_{2}$	2s ² 2p ² (³ P)3s	3s 2P	$1^{\frac{1}{2}}_{1^{\frac{1}{2}}_{2}}$	$\frac{1162360}{1165130}$	2770	As 4P.	2s ² 2p ² (³ P)4s	4s 4P	$\begin{bmatrix} 1/2 \\ 1/2 \\ 1/2 \\ 1/4 \end{bmatrix}$	1540740	
38 2D	2s ² 2p ² (¹ D)3s	3s′ 2D	$\left\{ \frac{1\frac{1}{2}}{2\frac{1}{6}} \right\}$	1196680		4P ₃			$2\frac{1}{2}$	1542850	2110
$\overline{\overline{3s}}$ ² S ₁	2s ² 2p ² (¹ S)3s	3s'' 2S	1/2	1246840		4s ² P ₂	$2s^2 2p^2(^{3}P)4s$	4s 2P	$1\frac{1}{2}$ $1\frac{1}{2}$	1540820	
${}^{3d}{}^{^{2}\mathrm{P}_{2}}_{^{2}\mathrm{P}_{1}}$	$2s^2 2p^2(^{3}P)3d$	3 <i>d</i> ² P	$1\frac{1}{2}$ $\frac{1}{2}$	$\frac{1315640}{1316420}$	-780	$\overline{3d'} \stackrel{4P_3}{\stackrel{4P_2}{\stackrel{4P}{1}}}$	2s $2p^{3}(^{3}D^{\circ})3d$	3d™ 4P°	$2\frac{1}{2}$ $1\frac{1}{2}$	1591560 1592170 1502550	-610 -380
3s' 4S ₂	2s 2p ³ (⁵ S°)3s	3s''' 4S°	1½	1322180		*P ₁			72	1092000	
${^{2}{ m F_{3}}}_{^{2}{ m F_{4}}}$	$2s^2 2p^2(^{3}P)3d$	3d ² F	$2\frac{1}{2}$ $3\frac{1}{2}$	$\begin{array}{c} 1323370 \\ 1326390 \end{array}$	3020	$\overline{3d}'$ ⁴ D	2s 2p ³ (³ D°)3d	3d™ 4D°	$\left\{\begin{array}{c}7^{2}\\\text{to}\\3^{1}\!\!/_{2}\end{array}\right\}$	1598270	
	$2s^2 2p^2(^3P)3d$	3d 4D	$3\frac{1}{2}$			$4d$ $^{2}\mathrm{P}_{2}$	$2s^2 2p^2(^3P)4d$	4d ² P	$1\frac{1}{12}$	1598890	
$3a * D_{32}$ 4D_1			$\left[\begin{array}{c} 1^{1/2}_{1/2} \\ 1^{1/2}_{1/2} \\ 1^{1/2}_{1/2} \end{array}\right]$	1323940 1324710	-770	$\overline{3d}'$ ${}^{4}\mathrm{S}_{2}$	2s 2p ³ (³ D ^o)3d	3d™ 4S°	1½	1599300	
$\begin{array}{c} 3d & {}^{4}\mathrm{P}_{3} \\ {}^{4}\mathrm{P}_{2} \\ {}^{4}\mathrm{P}_{1} \end{array}$	$2s^2 2p^2(^{3}P) 3d$	3d 4P	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1326960 1327990 1328550	$-1030 \\ -560$	$4d \ {}^{4}D_{32} \ {}^{4}D_{1}$	2s² 2p²(³P)4d	4d 4D	$\left\{ egin{array}{c} 3\frac{1}{2} \\ 2\frac{1}{2} \\ 1\frac{1}{2} \\ 1\frac{1}{2} \\ \frac{1}{2} \end{array} ight\}$	1600670 1601740	-1070

Z = 13

I. P. 241.93 volts

Al VII—Continued

Author	Config.	Desig.	J	Level	Inter- val	Author	Config.	Desig.	J	Level	Inter- val	
$4d \ {}^{2}F_{3} \ {}^{2}F_{4}$	2s ² 2p ² (³ P)4d	4 <i>d</i> ² F	$2^{1/2}_{2}_{3^{1/2}_{2}}$	$1603550 \\ 1606260$	2710	58 4P3	2s ² 2p ² (³ P)5s	5s 4P	$\frac{\frac{1}{2}}{1\frac{1}{2}}$ $2\frac{1}{2}$	1702070		
4d 4P2	$2s^2 2p^2(^{3}P)4d$	4 <i>d</i> 4P	$2\frac{1}{2}$ $1\frac{1}{2}$ $\frac{1}{2}$	1605240		$5d~^2{ m F_3}_{^2{ m F_4}}$	2s ² 2p ² (³ P)5d	5 <i>d</i> 2F	$2\frac{1}{2}$ $3\frac{1}{2}$	$\begin{array}{c} 1729840 \\ 1732410 \end{array}$	2570	
${}^{4d}_{2}{}^{2}{}^{2}{}^{D_{2}}_{D_{3}}$	$2s^2 \ 2p^2(^3P)4d$	4d ² D	$1\frac{1}{2}$ $2\frac{1}{2}$	$\frac{1610820}{1611560}$	740	$4d' {}^{4}\mathrm{D}_{4} {}^{4}\mathrm{D}_{3}$	$2s \ 2p^{3}(^{5}\mathrm{S}^{\circ})4d$	4 <i>d'''</i> 4D°	$ \begin{array}{c} 3\frac{1}{2} \\ 2\frac{1}{2} \\ (11) \end{array} $	1739390 1739600	-210 -370	
$\overline{4d}$ $^{2}\mathrm{D}_{2}$ $^{2}\mathrm{D}_{3}$	$2s^2 2p^2({}^1\mathrm{D})4d$	4d' ² D	$1\frac{1}{2}$ $2\frac{1}{2}$	$\frac{1646820}{1647880}$	1060	⁴ D ₂₁			$\left\{\begin{array}{c}1\frac{1}{2}\\\frac{1}{2}\end{array}\right\}$	1739970		
4d 2F34	2s ² 2p ² (1D)4d	4 <i>d'</i> 2F	$\left\{ egin{array}{c} 2^{1\!\!/_2} \\ 3^{1\!\!/_2} \end{array} ight\}$	1647430	-	5 <i>d</i> ² F ₄₃	$2s^2 2p^2({}^1\mathrm{D})5d$	5d′ 2F	$\left\{ egin{smallmatrix} 3^{1\!\!/_2} \\ 2^{1\!\!/_2} \end{array} ight\}$	1773560		
4 <i>d</i> 2S1	$2s^2 2p^2({}^1\mathrm{D})4d$	4 <i>d'</i> 2S	1/2	1654160			Al VIII (3P0)	Limit		1951830		
Marc	March 1947.											

Al VII OBSERVED TERMS*

Config. $1s^2+$		Observed Terms											
$2s^2 2p^3$	$\left\{egin{array}{cccccccccccccccccccccccccccccccccccc$	$2p^3$ $^2\mathrm{D}^{\circ}$											
2 s 2p ⁴	$\begin{cases} 2p^{4} \ ^{2}\mathrm{S} & 2p^{4} \ ^{4}\mathrm{P} \\ 2p^{4} \ ^{2}\mathrm{P} & 2p^{4} \ ^{2}\mathrm{P} \end{cases}$	$2p^4$ ² D											
	ns $(n \ge 3)$		$np (n \ge 3)$	$nd (n \ge 3)$									
2 s ² 2p ² (³ P)nx	$\begin{cases} 3-5s \ {}^{4}P \\ 3, 4s \ {}^{2}P \end{cases}$			$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{2}\mathrm{F}$								
$2s^2 2p^2(^1D)nx'$		3s' 2D		3 , $4d'$ ² S 3 d' ² P 3 , $4d'$ ² D 3 -5 d	′ ²F								
$2s^2 \ 2p^2({}^1\mathrm{S})nx''$	3s'' 2S			3 <i>d''</i> ² D									
2s 2p ³ (⁵ S°)nx'''	3s''' 4S°		3 <i>p'''</i> 4P	3, 4 <i>d'''</i> 4D°									
28 $2p^{3}(^{3}D^{\circ})nx^{IV}$				$3d^{1\vee} * S^{\circ} = 3d^{1\vee} * P^{\circ} = 3d^{1\vee} * D^{\circ}$									

*For predicted terms in the spectra of the N 1 isoelectronic sequence, see Introduction.

Al VIII

(C I sequence; 6 electrons)

Ground state $1s^2 2s^2 2p^2 {}^3P_0$

 $2p^2 {}^{3}P_0 2300390 \text{ cm}^{-1}$

The analysis is by Ferner, who has generously furnished his manuscript in advance of publication. He has extended the earlier work by Söderqvist to include 77 classified lines in the region between 53 A and 91 A. The relative values of the singlet, triplet, and quintet systems of terms are determined from the series limits.

Ferner's unit, 10^3 cm⁻¹, has here been converted to cm⁻¹.

REFERENCES

J. Söderqvist, Nova Acta Reg. Soc. Sci. Uppsala [IV], 9, No. 7, 77 (1934). (T) (C L) E. Ferner, Ark. Mat. Astr. Fys. (Stockholm) 36A, No. 1, p. 37 (1948). (I P) (T) (C L)

Z = 13

I. P. 285.13 volts

Al VIII

							1					
Author	Config.	De	sig.	J	Level	Inter- val	Author	Config.	Desig.	J	Level	Inter- val
$2p \ {}^{3}P_{0} \ {}^{3}P_{1} \ {}^{3}P_{2}$	$2s^2 2p^2$	$2p^2$	зР	$\begin{array}{c} 0 \\ 1 \\ 2 \end{array}$	$\begin{array}{c} 0\\1740\\4440\end{array}$	1740 2700	$3d' {}^{5}P_{3} {}^{5}P_{2} {}^{5}P_{1}$	$2s \ 2p^2(^4{ m P})3d$	3d ⁵P	$3 \\ 2 \\ 1$	$ \begin{array}{r} 1631170 + y \\ 1632060 + y \\ 1632670 + y \end{array} $	
$2p$ $^{1}D_{2}$	$2s^2 2p^2$	$2p^2$	۱D	2	46690+x		$3d' {}^{3}P_{2}$	$2s \ 2p^2(^4P)3d$	3d ³ P	2	1633840	- 1600
$2p$ $^1\mathrm{S}_0$	$2s^2 2p^2$	$2p^2$	$^{1}\mathrm{S}$	0	96170 + x		°P ₁			$ \begin{bmatrix} 1\\ 0 \end{bmatrix} $	1635440	1000
$2p'$ ${}^5\mathrm{S}_2$	2s 2p ³	$2p^3$	⁵ S°	2	133510 + y		$3d' {}^{3}F_{2}$	$2s \ 2p^2(^4P)3d$	$3d$ $^3\mathbf{F}$	2	1643590	1400
$2p' {}^{3}D_{3}$	2s 2p ³	$2p^3$	³ D°	3	262190		${}^{3}F_{4}$			4	1646790	1800
$^{3}D_{1}^{2}$				1	262390	-70	3p' ¹ F ₃	$2s \ 2p^2(^2\mathrm{D})3p$	3p' ¹ F°	3	1659180 + x	
$2p'$ $^{3}\mathrm{P}$	$2s$ $2p^3$	$2p^3$	³P°	0, 1, 2	309130		$\overline{\overline{3s'}}$ ${}^{3}S_{1}$	$2s \ 2p^2(^2S)3s$	3s'' 3S	1	1662740	
$2p' \ ^1\mathrm{D}_2$	$2s$ $2p^3$	$2p^3$	1D°	2	396990+x		$3d' {}^{3}D_{1}$	$2s \ 2p^2(^4P) 3d$	$3d$ ^{3}D	1	1664880	500
$2p'$ ${}^3\mathrm{S}_1$	$2s$ $2p^3$	$2p^3$	³ S°	1	404220		$^{3}D_{3}^{2}$			3	1665930	550
2p′ ¹ P ₁	$2s$ $2p^3$	$2p^3$	۱P°	1	444550+x		$\overline{3p}' \ ^1D_2$	$2s \ 2p^2(^2D) 3p$	$3p'$ $^1\mathrm{D}^{\mathrm{o}}$	2	1667490+x	
3s ³ P ₀ ³ P ₁ ³ P ₂	$2s^2 2p(^2\mathrm{P^o}) 3s$	38	۶Ъ٥	$\begin{array}{c} 0 \\ 1 \\ 2 \end{array}$	1319280 1320450 1324080	$\begin{array}{c} 1170\\ 3630 \end{array}$	≣ 3s′ ³P₂	2s 2p ² (² P)3s	3s‴ ³P	$egin{array}{c} 0 \ 1 \ 2 \end{array}$	1682590	
38 ¹ P ₁	2s ² 2p(² P°)3s	3 s	۱P°	1	1335270+x		$\overline{3d}'$ ³ F	$2s \ 2p^2(^2\mathrm{D})3d$	$3d'$ $^3{ m F}$	2, 3, 4	1733950	
$3p$ 3S_1	$2s^2 2p(^2\mathrm{P^o})3p$	3p	³ S	1	1402180		$\overline{3d}'$ ³ D	2s $2p^2(^2D)3d$	$3d'$ $^{3}\mathrm{D}$	1, 2, 3	1742250	
3s' ⁵ P ₁ ⁵ P ₂ ⁵ P ₃	2s $2p^2(^4 ext{P})$ 3s	3s	⁵P	$\begin{array}{c}1\\2\\3\end{array}$	1465810 + y 1467470 + y 1469680 + y	$\begin{array}{c} 1660\\ 2210\end{array}$	3d' ³ P ₂ ³ P ₁ ³ P ₀	$2s \ 2p^2(^2\mathrm{D}) 3d$	3d′ ³P	$\begin{array}{c} 2\\ 1\\ 0\end{array}$	1745690 1747940 1749640	-1250 -1700
$3d$ $^{3}\mathrm{F}_{2}$	$2s^2 2p(^2\mathrm{P^o}) 3d$	3d	³F°	2	1468700+x		$\overline{3d}'$ $^{3}S_{1}$	$2s \ 2p^2(^2\mathrm{D})3d$	$3d'$ $^3\mathrm{S}$	1	1762090	
				$\frac{3}{4}$				2s ² 2p(² P°)4s	4s ³P°	0		
$3d$ $^{1}D_{2}$	$2s^2 2p(^2\mathrm{P^o}) 3d$	3d	۱D°	2	1471980+x		4s ³ P ₂			$1 \\ 2$	1785380	
3d ³ D ₁ ³ D ₂ ³ D ₃	$2s^2 \ 2p(^2\mathrm{P^o}) \ 3d$	3 d	3Do	$\begin{array}{c}1\\2\\3\end{array}$	1484560 1485240 1486710	680 14 7 0	$\overline{\overline{3d}}' \ {}^{3}\mathrm{D}_{2} \ {}^{3}\mathrm{D}_{3}$	$2s \ 2p^2(^2\mathrm{S})3d$	3 <i>d''</i> ³D	$\begin{array}{c}1\\2\\3\end{array}$	$1815990 \\1816950$	960
3d ³ P ₂	$2s^2 2p(^2\mathrm{P^o}) 3d$	3d	³P°	2	1490590	980	$\overline{\overline{\overline{3}}} d'$ ³ F	$2s \ 2p^2(^2\mathrm{P})3d$	3d‴ ³ F	2, 3, 4	1831700	
³ P ₁ ³ P ₀					1491570 1492140	- 570	$3\overline{\overline{d}'}$ ³ D	2s $2p^2(^2P)3d$	$3d^{\prime\prime\prime}$ ³ D	1, 2, 3	1840570	
2.4 2D	2s 2p ² (4P)3s	3 s	۶P	0	1504010			$2s \ 2p^2(^2\mathrm{P})3d$	3 <i>d'''</i> ³₽	0		
$^{3}P_{2}$				$\frac{1}{2}$	1504810 150 72 20	2410	$\overline{\overline{3d'}} {}^{3}P_{2}$			$\frac{1}{2}$	1844390	
3d ¹ F ₃	$2s^2 2p(^2\mathrm{P^o}) 3d$	3d	۱F°	3	1509210+x			$2s^2 \ 2p(^2\mathrm{P^o}) 4d$	4 <i>d</i> ³ D ^o	1	10/0100	
$3d P_1$	$2s^2 \ 2p(^2\mathrm{P^o}) 3d$	3d	۱P°	1	1510060 + x		4a $^{3}D_{3}^{2}$			3	1847490	1310
$3p'$ $^3\mathrm{S}_1$	$2s \ 2p^2(^4P)3p$	3p	³S°	1	1531270		4d ¹ P ₁	$2s^2 2p(^2\mathrm{P^o}) 4d$	4 <i>d</i> ¹ P°	1	1853670+x	
${3p' \ {}^{3}D_{1} \atop {}^{3}D_{2} \atop {}^{3}D_{3} \atop {}^{3}D_{3}}$	2s 2p ² (4P)3p	3p	3Do	$1 \\ 2 \\ 3$	1564140 1564840 1566840	700 2000	$4d' {}^{5}\mathrm{P_{3}} {}^{5}\mathrm{P_{2}} {}^{5}\mathrm{P_{1}}$	2s $2p^{2}(^{4}P)4d$	4 <i>d</i> ⁵P	$3 \\ 2 \\ 1$	1991450 + y 1992250 + y 1992760 + y	8 00 510
$3p'$ $^{3}P_{2}$	2s 2p ² (4P)3p	3 <i>p</i>	۶Po	$egin{array}{c} 0 \ 1 \ 2 \end{array}$	1577760		4d' ³ F ₃ ³ F ₄	2s $2p^{2}(^{4}P)4d$	4 <i>d</i> ³ F	$2 \\ 3 \\ 4$	199 77 10 1999 710	2000
3s′ 3D	2s $2p^2(^2D)$ 3s	38'	3D	1, 2, 3	1585400							
3s' 1D2	2s $2p^2(^2D)$ 3s	38'	۱D	2	1608440 + x			Al IX (² P ^o ₂)	Limit		2300390	
										-		

7

March 1948.

Al VIII OBSERVED TERMS*

Config. $1s^2+$							Observed 7	ferms							
$2s^2 \ 2p^2$	$\Big\{_{2p^2 \ \mathrm{IS}}$	$2p^2$	۶P	2p² 1D											
2s 2p ³	$\left\{egin{smallmatrix} 2p^3 & {}^5\mathrm{S}^\circ\ 2p^3 & {}^3\mathrm{S}^\circ\ \end{cases} ight.$	${2 p^3 \over 2 p^3}$	3P° 1P°	${2p^3}_{2p^3}{}^{3}{ m D^{\circ}}_{1}{ m D^{\circ}}$											
		ns (n	≥ 3)			np	$(n \ge 3)$				nd	$(n \ge 3)$			
$2s^2 2p(^2\mathrm{P}^\circ)nx$	{	3, 4s 3s	³₽° ¹₽°		3p 3S					3d 3, 4d	3P° 1P°	3, 4d 3d	³D° 1D°	${{3d}\atop{3d}}$	3F° 1F°
$2s \ 2p^2(^4P)nx$	{	3s 3s	5P 3P		3p 3S°	3 <i>p</i> ³₽°	3 <i>p</i> ³D°			$\begin{array}{c} 3,\ 4d \\ \mathbf{3d} \end{array}$	5P 3P	3 d	3D	3 , 4d	${}^{3}\mathrm{F}$
$2s \ 2p^2(^2\mathrm{D})nx'$	{			3s' ³ D 3s' ¹ D			3 <i>p′</i> ¹D°	3 <i>p′</i> ¹F°	3d' 3S	3d'	зР	3d'	3D	3d'	${}^{3}\mathrm{F}$
$2s \ 2p^2(^2S)nx''$	3s'' 3S											$3d^{\prime\prime}$	3D		
2s $2p^2(^2\mathbf{P})nx^{\prime\prime\prime}$		3s''	′ ³P							$3d^{\prime\prime}$	′ ³P	3 d'''	³D	3 <i>d</i> ′′	′ ³F

*For predicted terms in the spectra of the C I isoelectronic sequence, see Introduction.

Al IX

(B I sequence; 5 electrons)

Ground state $1s^2 2s^2 2p {}^2\mathbf{P}_{\frac{1}{2}}^{\circ}$

2p ²P[°]_{1/2} 2663340 cm⁻¹

Ferner has extended the preliminary analysis by Söderqvist and now has 74 classified lines in the range between 43 A and 77 A. He kindly furnished his manuscript in advance of publication.

No intersystem combinations have been observed, as indicated by x in the table, but the absolute values of the doublet and quartet terms are determined from series. The quartet terms are not all connected by observed combinations.

Ferner's unit, 10^3 cm⁻¹, has here been changed to cm⁻¹.

REFERENCE

J. Söderqvist, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 7, 90 (1934). (C L) E. Ferner, Ark. Mat. Astr. Fys. (Stockholm) 36A, No. 1, p. 30 (1948). (I P) (T) (C L) Z = 13

I. P. 330.1 volts

Al 1	IX
------	----

Al ix

Au	thor	Config.	De	sig.	J	Level	Interval	Author	Config.	Desig.	J	Level	Interval
${2p}$	${\rm ^{2}P_{1}\atop {\rm ^{2}P_{2}}}$	$2s^2(^1\mathrm{S})2p$	2p	²P°	1/2 1/2 1/2	0 4890	4890	$\overline{3p'}$ $^{2}\text{D}_{2}$ $^{2}\text{D}_{3}$	2s 2p(1P°)3p	3p' ² D	$rac{1\frac{1}{2}}{2\frac{1}{2}}$	1875340 1876710	1370
2p'	⁴ P ₁ ⁴ P ₂ ⁴ P ₂	$2s \ 2p^2$	2p ²	4P	$\begin{array}{c c} & \frac{1}{2} \\ \end{array}$	146310 + x 148000 + x 150490 + x	$1690 \\ 2490$	$\overline{3p'}$ ² P	2s 2p(1P°)3p	3 <i>p′</i> ²₽	$\begin{cases} \frac{1}{2} \\ 1\frac{1}{2} \end{cases}$	}1878390	
2p'	2D	$2s \ 2p^2$	$2p^2$	²D	$\left\{ \begin{array}{c} 1^{1}_{2} \\ 2^{1}_{2} \end{array} \right.$	259720		$\begin{array}{ c c c c } 3s'' & {}^{4}P_{1} & \\ & {}^{4}P_{2} & \\ & {}^{4}P_{3} & \\ \end{array}$	2p ² (³ P)3s	3s'' 4P	$\begin{array}{c c} & \frac{1}{2} \\ & 1\frac{1}{2} \\ & 2\frac{1}{2} \end{array}$	$ \begin{array}{c c} 1917920+x \\ 1918850+x \\ 1921100+x \end{array} $	930 2250
2p'	$^{2}\mathrm{S}_{1}$	$2s \ 2p^2$	$2p^2$	$^{2}\mathrm{S}$	1/2	332650		$\overline{3d}'$ ² F	2s 2p(1P°)3d	3d' ² F°	$\begin{cases} 2\frac{1}{2} \\ 2\frac{1}{2} \end{cases}$	}1933050	
2p'	${}^{2}\mathrm{P}_{1} \\ {}^{2}\mathrm{P}_{2}$	$2s \ 2p^2$	$2p^2$	$^{2}\mathrm{P}$	1/2 1/2	353960 356950	2990	$\overline{3d}' ^{2}D_{2}$	2s 2p(1P°)3d	3d' ² D°	$1 \frac{37_2}{1\frac{1}{2}}$	1943380	600
$2p^{\prime\prime}$	${}^{4}S_{2}$	$2p^{3}$	$2p^3$	ŧS°	$1\frac{1}{2}$	461910+x		² D ₃				1943980	
$2p^{\prime\prime}$	$^{2}D_{3}$ $^{2}D_{2}$	$2p^3$	$2p^{3}$	²D°	$2\frac{1}{2}$	$519560 \\ 519740$	-180	3 <i>d′</i> ² P	$2s 2p(^{1}P^{\circ})3d$	3d' ² P°	$\begin{cases} 72 \\ 1\frac{1}{2} \end{cases}$	}1954710	
$2p^{\prime\prime}$	$^{2}P_{1}$ $^{2}P_{2}$	$2p^3$	2p ³	²P°	$\frac{1}{\frac{1}{2}}$ $\frac{1}{2}$ $1\frac{1}{2}$	584150 584390	240		2p ² (³ P)3p	3 <i>p''</i> ⁴D°	$\begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}$		
3s	$^{2}\mathrm{S}_{1}$	2s ² (1S)3s	38	$^{2}\mathrm{S}$	1/2	1501020		$3p'' {}^{4}D_{4}$				1986800 + x	
3d	$^{2}\mathrm{D}_{2}$ $^{2}\mathrm{D}_{3}$	$2s^2(^1\mathrm{S})3d$	3d	²D	$1\frac{1}{2}$ $2\frac{1}{2}$	$\begin{array}{c} 1642140 \\ 1642380 \end{array}$	240	3 <i>p′′</i> ⁴P₃	2p ² (*P)3p	3 <i>p''</i> ⁴ P ^o	$\begin{array}{c c} & \frac{1}{12} \\ & 1\frac{1}{2} \\ & 2\frac{1}{2} \end{array}$	1991700+x	
3 s′	⁴ P ₁	2s 2p(3P°)3s	38	⁴P°	$\frac{1}{2}$	1657690 + x 1650850 + x	1660	$3p^{\prime\prime}$ ${}^4\mathrm{S}_2$	$2p^2(^3\mathrm{P})3p$	3 <i>p''</i> 4S°	11/2	2017670+x	
	${}^{4}P_{3}^{2}$				$2^{1/2}_{1/2}$	1662340+x	2990	$\overline{3p}^{\prime\prime} ^{2}\mathrm{D}$	$2p^2(^1\mathrm{D})3p$	3 <i>p'''</i> 2D°	$\begin{cases} 1\frac{1}{2} \\ 2\frac{1}{2} \end{cases}$	2056120	
3 s′	${\rm ^{2}P_{1}\atop {}^{2}P_{2}}$	2s 2p(3P°)3s	38	²P°	$1/2 \\ 1/2 \\ 1/2$	1690880 1694110	3230	3 <i>d''</i> ⁴P	$2p^2(^3\mathrm{P})3d$	3 <i>d''</i> 4P		2065270+x	-1080
3p'	$^{2}P_{1}$	2s 2p(3P°)3p	3p	$^{2}\mathrm{P}$	$\frac{1}{2}$	1720900	1500				$1\frac{1}{\frac{1}{2}}$	$\begin{array}{ c c c c c } 2066350+x \\ 2067100+x \\ \end{array}$	-750
3p'	$^{2}D_{2}$ $^{2}D_{3}$	2s 2p(3P°)3p	3p	$^{2}\mathrm{D}$	$1^{1/2}$ $1^{1/2}$ $2^{1/2}$	1757500 1760970	3470	$\begin{array}{ c c c } 4d & {}^{2}\mathrm{D}_{2} \\ & {}^{2}\mathrm{D}_{3} \end{array}$	$2s^2(^1S)4d$	4d ² D	$egin{array}{c} 1^{1\!\!\!/2}_{2^1\!\!\!/2}\\ 2^{1\!\!\!/2}_{1\!\!\!/2} \end{array}$	2094020 2094490	470
3p'	$^{2}S_{1}$	2s 2p(3P°)3p	3p	$^{2}\mathrm{S}$	1/2	1780950			2s 2p(3P°)4d	4 <i>d</i> 4D°	$ \begin{array}{c c} \frac{1}{2} \\ 1\frac{1}{2} \\ 2\frac{1}{2} \end{array} $		
3d'	${}^{4}\mathrm{D}_{12}$	$2s \ 2p(^{3}\mathrm{P}^{\circ}) 3d$	3d	4D°	$\begin{cases} \frac{1}{2} \\ 1\frac{1}{2} \end{cases}$	$\Big\}$ 1799090+x	400	$4d' $ 4D_4				2254250+x	
	⁴ D ₃ ⁴ D ₄				$2\frac{1}{2}$ $3\frac{1}{2}$	$\begin{bmatrix} 1799490 + x \\ 1800980 + x \end{bmatrix}$	1490	4d' 4P3	2s 2p(3P°)4d	4d 4P°	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2256240+x	
3d'	$^{2}\mathrm{D}_{2}$ $^{2}\mathrm{D}_{3}$	2s 2p(3P°)3d	3d	²D°	$\begin{array}{c c} 1\frac{1}{2}\\ 2\frac{1}{2}\end{array}$	1800460 1800910	450	$4d' {}^{2}F_{4}$	2s 2p(3P°)4d	4d ² F°	$ \begin{array}{c} 72 \\ 2\frac{1}{2} \\ 3\frac{1}{2} \end{array} $	2265580	
<u>3s'</u>	$^{2}\mathrm{P}$	2s 2p(1P°)3s	38'	²P°	$\left\{\begin{array}{c} \frac{1_2'}{1\frac{1_2'}{2}}\right.$	}1807020			$2s^2(^1\mathrm{S})5d$	5d ² D	11/2		
3d'	⁴ ₽₃ 4₽.	2s 2p(3P°)3d	3d	4P°	$2\frac{1}{2}$	1807490 + x	-1040	5d ² D ₃	$9a 9m(1D^{\circ})/d$	<i>Adv</i> 2D9		2301150	
	${}^{4}P_{1}$				$\begin{array}{c c} & 172 \\ & 1/2 \\ & 1/2 \end{array}$	1808550 + x 1809210 + x	-680	$\overline{4d'}$ ² D ₃	28 2 p(-1)40	L- DF	$2\frac{172}{2}$	2393860	
3d'	${}^{2}F_{3}$ ${}^{2}F_{4}$	2s 2p(3P°)3d	3d	${}^{2}\mathrm{F}^{\circ}$	$2\frac{1}{2}$ $3\frac{1}{2}$	1831260 1834300	3040						
3 <i>d'</i>	${}^{2}_{^{2}P_{2}}$	2s 2p(3P°)3d	3d	²P°	$1\frac{1}{2}$	1840470 1842220	-1750		Al x $({}^{1}S_{0})$	Limit		2663340	

August 1947.

$\begin{array}{c} \text{Config.} \\ 1s^2 + \end{array}$					Observed	Terms			
$2s^2(^1\mathrm{S})2p$		2p ² P°							
$2s \ 2p^2$	$\left\{_{2p^2 \ ^2\mathrm{S}} ight.$	${2p^2 \ {}^4{ m P}}{2p^2 \ {}^2{ m P}}$	$^{2p^{2}-^{2}\mathrm{D}}$						
$2p^3$	$\left\{ {{2{p^3}} {}^4{ m{S}}^{ m{o}}} ight.$	$2p^3$ ² P°	$2p^3$ $^2\mathrm{D}^{\mathrm{o}}$						
		ns $(n \ge 3)$			$np (n \ge 3)$			nd $(n \ge 3)$	
$2s^2(^1\mathrm{S})nx$	3s 2S							3-5 <i>d</i> 2D	
2s 2p(3P°)nx	{	3s 4P° 3s 2P°	_	$3p$ $^2\mathrm{S}$	3 <i>p</i> ² P	$3p$ $^{2}\mathrm{D}$	$\begin{array}{ccc} 3,4d & {}^4\mathrm{P}^\circ \\ 3d & {}^2\mathrm{P}^\circ \end{array}$	3, 4 <i>d</i> 4D° 3 <i>d</i> 2D°	3, 4 <i>d</i> 2F°
$2s \ 2p(^{1}P^{\circ})nx'$		3s' ² P°			3p' ² P	3p′ 2D	3d' ² P°	3, 4 <i>d′</i> 2D°	$3d'$ ${}^2\mathrm{F}^{\circ}$
$2p^2(^{3}\mathrm{P})nx''$		3s'' 4P		$3p^{\prime\prime}$ 4S°	3 <i>p</i> ′′ ⁴P°	3 <i>p''</i> 4D°	3d'' 4P		
$2p^2(^1D)nx'''$						$3p^{\prime\prime\prime} \ ^{2}\mathrm{D}^{\circ}$			

*For predicted terms in the spectra of the BI isoelectronic sequence, see Introduction.

Al X

(Be I sequence; 4 electrons)

Ground state 1s² 2s² ¹S₀

2s² ¹S₀ 3215340 cm⁻¹

Ferner has extended the preliminary analysis by Söderqvist and has classified 30 lines in the region between 44 A and 63 A. He has kindly furnished his manuscript in advance of publication.

No intersystem combinations have been observed, as indicated by x in the table, but absolute values of the singlet and triplet terms are known from the series.

Ferner's unit, 10^3 cm⁻¹, has here been changed to cm⁻¹.

REFERENCES

J. Söderqvist, Nova Acta Reg. Soc. Sci Uppsala [IV] 9, No. 7, 94 (1934). (T) (C L) E. Ferner, Ark. Mat. Astr. Fys. (Stockholm) 36A, No. 1, p. 27 (1948). (I P) (T) (C L)

I. P. 398.5 volts

Z = 13

A	1	X

Al x

Author	Config.	Desig.	J	Level	Inter- val	Author	Config.	Desig.	J	Level	Inter- val
2s ¹ S ₀	2s ²	282 1S	0	0		3p' ¹ P ₁	$2p(^{2}P^{\circ})3p$	3 <i>p</i> ¹ P	1	2094730	
${{2p}_{{{3}}{{P_0}}\atop{{3}{P_1}}}}_{{{3}{P_2}}}$	$2s(^2\mathrm{S})2p$	2 <i>p</i> ³₽°	$egin{array}{c} 0 \ 1 \ 2 \end{array}$	154850 + x 156540 + x 160200 + x	$1690 \\ 3660$	$3p' {}^{3}D_{1} \\ {}^{3}D_{2} \\ {}^{3}D_{3}$	2p(2P°)3p	3p 3D	$\begin{array}{c}1\\2\\3\end{array}$	$\begin{array}{c} 2101950 + x \\ 2103560 + x \\ 2107290 + x \end{array}$	1610 3730
2 <i>p</i> ¹ P ₁	$2s(^2\mathrm{S})2p$.	2 <i>p</i> ¹ P°	1	300400		$3p'$ $^{3}S_{1}$	$2p(^{2}\mathrm{P}^{\circ})3p$	$3p$ 3S	1	2119440+x	
2p′ ³P	$2p^2$	$2p^2$ $^3\mathrm{P}$	$egin{array}{c} 0 \ 1 \ 2 \end{array}$	$\begin{array}{r} 404300 + x \\ 406270 + x \\ 409460 + x \end{array}$	19 70 3190	$3p' {}^{3}P_{1} {}^{3}P_{2}$	2p(2P°)3p	3 <i>p</i> ³₽	$\begin{array}{c} 0 \\ 1 \\ 2 \end{array}$	2128300+x 2130180+x	1880
$2p'$ $^{1}\mathrm{D}_{2}$	$2p^{2}$	$2p^2$ ¹ D	2	448840		3d' ¹ D ₂	$2p(^{2}\mathrm{P}^{\circ})3d$	3d ¹ D°	2	2140690	
$2p' \ ^{1}\mathrm{S}_{0}$	$2p^{2}$	$2p^2$ 1S	0	553270		$3p' \ ^1D_2$	$2p(^{2}\mathrm{P}^{\circ})3p$	3 <i>p</i> ¹ D	2	2148320	
3s ³ S ₁	2s(2S)3s	3s 3S	1	1855510 + x		·	$2p(^2\mathrm{P^o})3d$	3d ³D°	1	0101000 1	
3s ¹ S ₀	$2s(^2\mathrm{S})3s$	3s 1S	0	1884330		$\begin{array}{c} \mathrm{S}a \ \ \mathrm{^{3}D_{3}} \\ \mathrm{^{3}D_{3}} \end{array}$			3	2161630+x 2163110+x	1480
3 <i>p</i> ¹ P ₁	$2s(^2\mathrm{S})3p$	3 <i>p</i> ¹ P°	1	1923850		$3d' {}^{3}P_{2}$	$2p(^{2}\mathrm{P}^{\circ})3d$	3d ³ P°	2	2169960 + x	-1390
$3d \ {}^{3}D_{1}$	$2s(^2S)3d$	3d 3D	$\frac{1}{2}$	1965560 + x 1965770 + x	210	-11			0	$z_{171300+x}$	
$^{3}D_{3}^{2}$			3	19600770+x 1966050+x	280	$3d'$ ${}^1\mathrm{F}_3$	$2p(^{2}P^{\circ})3d$	3d ¹ F°	3	2192060	
$3d$ $^{1}D_{2}$	$2s(^2\mathrm{S})3d$	3d ¹ D	2	1992250		$4d$ $^{1}D_{2}$	$2s(^2S)4d$	4d ¹ D	2	2527470	
	$2p(^{2}\mathrm{P}^{\circ})3s$	3 <i>s</i> ³₽°	0			4d′ ¹ F ₃	$2p(^{2}\mathrm{P}^{\circ})4d$	4d ¹ F°	3	2714560	
3s' ³ P ₂			$\frac{1}{2}$	2056910+x	-			-			
3s' ¹ P ₁	2p(2P°)3s	38 ¹ P°	1	2090980			Al x1 (2S ₁₅)		Limit	3215340	

August 1947.

Al x Observed Terms*

$\begin{array}{c} \text{Config.} \\ 1s^2 + \end{array}$		Observed Terms									
2s ²	2s ² 1S										
$2s(^2\mathrm{S})2p$	{	$egin{array}{ccc} 2p & {}^3\mathrm{P}^{\mathrm{o}} \ 2p & {}^1\mathrm{P}^{\mathrm{o}} \end{array}$									
$2p^2$	$\left\{_{2p^2}\right\}$ 'S	$2p^2$ $^3\mathrm{P}$	$2p^2$ ¹ D								
		ns $(n \ge 3)$		$np \ (n \ge 3)$			nd $(n \ge 3)$				
$2s(^2\mathrm{S})nx$	$\begin{cases} 3s & {}^{3}S \\ 3s & {}^{1}S \end{cases}$				3 <i>p</i> 1P°			3d 3D 3, 4d 1D			
$2p(^{2}P^{\circ})nx$	{	38 ³ P° 38 ¹ P°		3p 3S	3p ³ P 3p ¹ P	3p ³ D 3p ¹ D	3d ³ P°	$\begin{array}{c} 3d \ ^3\mathrm{D}^{\mathrm{o}} \ 3d \ ^1\mathrm{D}^{\mathrm{o}} \end{array}$	3, 4 <i>d</i> 1F°		

*For predicted terms in the spectra of the Be 1 isoelectronic sequence, see Introduction.

Ground state 1s² 2s ²S₁₆

2s 2S_{1/2} 3564900 cm⁻¹

The analysis is by Ferner, who kindly furnished his manuscript in advance of publication. Seven lines have been classified between 39 A and 54 A. Observations of the resonance lines have not been reported. Some of the relative levels have been connected by a study of the behavior of the Rydberg denominators rather than by the Ritz combination principle.

Ferner's unit, 10^3 cm⁻¹, has here been changed to cm⁻¹.

REFERENCE

E. Ferner, Ark. Mat. Astr. Fys. (Stockholm) 36A, No. 1, p. 25 (1948). (I P) (T) (C L)

Config.	Desig.	J	Level	Inter- val
28	28 2S	1/2	0	
2p	2p 2P°	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	175900 181820	5920
38	38 2S	1/2	2020460	
3 <i>p</i>	3p 2P°	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	2068770 2070520	1750
3d	3d 2D	$1\frac{1}{2}$ $2\frac{1}{2}$	$\begin{array}{c} 2087980 \\ 2088540 \end{array}$	560
4d	4d 2D	$1\frac{1}{2}$ $2\frac{1}{2}$	2734140	
Al XII (1S ₀)	Limit		3564900	

Al XI

August 1947.

I. P. 441.9 volts

(He I sequence; 2 electrons)

Ground state 1s² ¹S₀

 $1s^{2} {}^{1}S_{0} 16825000 \pm 3000 \text{ cm}^{-1}$

Flemberg has observed the first three members of the singlet series; the lines are in the region between 6 A and 7 A. He has calculated absolute term values on the assumption that the P-terms can be represented by a Ritz formula.

The unit adopted by Flemberg, 10^3 cm⁻¹, has here been changed to cm⁻¹.

REFERENCE

H. Flemberg, Ark. Mat. Astr. Fys. (Stockholm) 28A, No. 18 p. 34 (1942). (I P) (T) (C L)

Config.	Desig.	J	Level
182	1s ² ¹ S	0	0
$1s \ 2p$	2 <i>p</i> ¹ P°	1	12891900
1s 3p	3p 1P°	1	15072700
1s $4p$	4 <i>p</i> ¹ P°	1	15838600
Al XIII (2S ₁₅)	Limit		16825000

Al XII

143

Z = 13

I. P. 2085.46 ± 0.37 volts

October 1946.

SILICON

Si I

14 electrons

Z = 14

I. P. 8.149 volts

Ground state $1s^2 2s^2 2p^6 3s^2 3p^2 {}^3P_0$

 $3p^2 {}^{3}P_0 65743.00 \text{ cm}^{-1}$

The terms are from Kiess, who has revised and extended the earlier work on analysis. He has published a complete list of classified lines extending from 1565 A to 12270 A. His notation has been adopted throughout, except for the following entries, which have been changed for uniformity:

Kiess	Desig.	Kiess	Desig.
3 <i>p</i> ³ P	$3p^2$ ³ P	3p′ ³D°	$3p^3$ $^3\mathrm{D}^{\circ}$
3p ¹ D	$3p^2$ ¹ D	<i>x'</i>	1°
3p ¹ S	$3p^2$ ¹ S	<i>x''</i>	2°

The singlet and triplet terms are connected by numerous intersystem combinations. No quintet terms have been found.

The Si I sequence invites further study from the theoretical point of view. In Si I the 3d ³D^o term is lower than the $3p^3$ ³D^o term. In later members of the sequence the corresponding terms appear in the reverse order.

The extension by Kiess of the laboratory analysis to cover the infrared region has been of special astrophysical importance. The leading lines of Si I are strong in the solar spectrum. Conversely, the solar wave-number separations within the multiplets afford a valuable check on the accuracy of infrared solar wavelengths, provided the Si lines are unblended in the sun. The satisfactory internal agreement within the "solar" Si multiplets has also justified the use of this method to identify solar lines by prediction as unquestionably due to Si, although they have not yet been observed in the laboratory.

REFERENCES

H. D. Babcock, C. E. Moore and W. P. Hoge, Mt. Wilson Contr. No. 534; Astroph. J. 83, 118 (1936). C. C. Kiess, J. Research Nat. Bur. Std. 21, 85, RP1124 (1938). (I P) (T) (C L) (E D) Si I

Si 1

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
3s ² 3p ²	3p ² ³ P	$\begin{array}{c} 0 \\ 1 \\ 2 \end{array}$	$0.\ 00 \\ 77.\ 15 \\ 223.\ 31$	77. 15 146. 16	3s ² 3p(² P ^o)5p	5p 3D	$1 \\ 2 \\ 3$	56978.00 57017.26 57197.94	39. 26 180. 68
$3s^2 \ 3p^2$	$3p^2$ ¹ D	2	6298. 81		3s² 3p(²P°)5p	5p 3P	0	57295.76	32, 88
$3s^2 \ 3p^2$	$3p^{2}$ 1S	0	15394. 24				$\frac{1}{2}$	57328.64 57468.18	139. 54
3s ² 3p(² P°)4s	4s ³ P°	$\begin{array}{c} 0 \\ 1 \\ 2 \end{array}$	39683. 10 39760. 20 39955. 12	77. 10 194. 92	$3s^2 \ 3p(^2\mathrm{P^o})4d$	$4d$ $^{3}F^{\circ}$	$2 \\ 3 \\ 4$	57372.44 57450.70 57583.85	78. 26 133. 15
3s ² 3p(² P°)4s	4s ¹ P°	1	40991.74		$3s^2 \ 3p(^2{ m P^o}) 5p$	5p 3S	1	57541.86	
$3s^2 \ 3p(^2\mathrm{P}^\circ) 3d$	3d 3D°	1 2	45276. 20 45293. 60	17.40 28.26	$3s^2 \ 3p(^2\mathrm{P^o})5p$	5p 1D	2	57797.82	
		3	45321.86	20. 20	$3s^2 3p(^2\mathrm{P}^\circ)5p$	5p ¹ S	0	58311. 19	
$3s^2 \ 3p(^2\mathrm{P}^\circ)4p$	4 <i>p</i> ¹ P	1	47284. 20		$3s^2 3p(^2\mathrm{P}^\circ)4f$	4f ¹ F	3	58774.18	
$3s^2 3p(^2P^\circ)3d$ $3s^2 3p(^2P^\circ)4p$	$\begin{vmatrix} 3d & {}^{1}\mathrm{D}^{\circ} \\ 4p & {}^{3}\mathrm{D} \end{vmatrix}$	2 1	47351.50 48020.00	82.38	$3s^2 \ 3p(^2\mathrm{P^o})4f$	4f ³ F	$\begin{vmatrix} 2\\ 3\\ 4 \end{vmatrix}$	58775. 44 58786. 80 58789. 00	11. 36 2. 20
		$\begin{vmatrix} 2\\ 3 \end{vmatrix}$	$\begin{array}{c} 48102.\ 38\\ 48264.\ 35\end{array}$	161. 97	$3s^2 \ 3p(^2\mathrm{P^o})4d$	4d ¹ P°	1	58802.00	
3s 3p ³	$3p^3 {}^3\mathrm{D}^\circ$	1	48399.15	178 45	$3s^2 \ 3p(^2\mathrm{P^o})4d$	4d ¹ F°	3	58893. 28	
		$\begin{vmatrix} 2\\ 3 \end{vmatrix}$	48577.60 48873.96	296. 36	$3s^2 3p(^2P^\circ)4f$	4f 3G	3	59035.15	1.85
$3s^2 \ 3p(^2\mathrm{P^o})4p$	4p 3P	0	49028.17	32 38				59037.00 59053.84	16. 84
			49060.55 49188.61	128.06	$3s^2 \ 3p(^2\mathrm{P^o}) 5d$	5 <i>d</i> ³ D°	1 2	59056.70 59032.42	-24.28
$3s^2 3p(^2\mathrm{P}^5)4p$	4p ³ S	1	49399.66				3	59118.51	
$3s^2 \ 3p(^2\mathrm{P^o}) 3d$	3 <i>d</i> ³ F ^o	$\begin{vmatrix} 2\\ 3\\ 4 \end{vmatrix}$	49850.93 49934.12 50071.88	83. 19 137. 76	$3s^2 3p(^2P^\circ)4f$	4f ³ D	$\begin{vmatrix} 3\\2\\1 \end{vmatrix}$	59109.75 59190.84 59190.40	-81. 09 0. 44
$3s^2 \ 3p(^2\mathrm{P^o})4p$	4 <i>p</i> ¹ D	2	50189. 43			1°	?	59109.9	
$3s^2 \ 3p(^2\mathrm{P^o}) 3d$	3d ³ P°	2	50499.44	-66.51	$3s^2 \ 3p(^2P^\circ)4f$	4f ¹ D	2	59110. 91	
			50565.95 50602.15	-36.20		2°	?	59132.5	
$3s^2 \ 3p(^2P^\circ)4p$	4p 1S	0	51611. 77		3s ² 3p(² P°)6s	6s ³ P°	0	59220.76	52. 52
$3s^2 \ 3p(^2\mathrm{P^o}) 3d$	3d ¹ F°	3	53362.41				$\begin{vmatrix} 1\\2 \end{vmatrix}$	59273.28 59506.17	232. 89
$3s^2 \ 3p(^2\mathrm{P^o}) 3d$	3d ¹ P°	1	53387.17		3s ² 3p(² P°)6s	6s ¹ P°	1	59636.34	
3s² 3p(²P°)4d	4 <i>d</i> ³ D°	$\begin{array}{c}1\\2\\3\end{array}$	54184.97 54205.12 54257.40	20. 15 52. 28	3s² 3p(²P°)5d	5 <i>d</i> ³ P°	$\begin{vmatrix} 2\\ 1\\ 0 \end{vmatrix}$	59917.35 60010.10 60042.48	-92.75 -32.38
3s ² 3p(² P°)5s	58 ³ P°	0	54244. 58	60.32	3s ² 3p(² P ^o)5d	5 <i>d</i> ¹ D°	2	60299. 92	
		$\begin{vmatrix} 1\\2 \end{vmatrix}$	54313.90 54527.88	213. 98	$3s^2 3p(^2P^\circ)5d$	$5d$ $^3F^{\circ}$	2	60645.49	60 41
3s ² 3p(² P°)5s	5s ¹ P°	1	54870.99				$\begin{vmatrix} 3\\4 \end{vmatrix}$	60705.90 60849.13	143. 23
3s ² 3p(² P ^o)5p	5 <i>p</i> ¹ P	1	56425. 1		$3s^2 \ 3p(^2P^\circ)5f$	5f 1D	2	61303. 28	
$3s^2 \ 3p(^2\mathrm{P^o}) 4d$	4d ¹ D°	2	56503.00		3s ² 3p(² P°)5f	5f 3F	2	61304. 50	0.26
3s ² 3p(² P°)4d	4 <i>d</i> ³ P°	$\begin{vmatrix} 2\\1\\0 \end{vmatrix}$	56690.94 56700.84 56733.24	-9.90 -32.40			34	61304. 86 61306. 57	1. 71

Si I—Continued

Si I—Continued

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
$3s^2 \ 3p(^2\mathrm{P^o})5d$	5d ¹ P°	1	61308. 32		$3s^2 \ 3p(^2P^\circ) 6f$	6f ³ F	2	62668. 50	
3s ² 3p(² P°)6d	6d 3D°	$\begin{array}{c}1\\2\\3\end{array}$	61510.71 61423.93 61575.80	$-86.78 \\ 151.87$	3s ² 3p(² P°)8s	8s 3P°	3 4 0	62753.05	FF 00
$3s^2 \ 3p(^2\mathrm{P^o})5d$	5d 1F°	3	61424.00				$1 \\ 2$	62808.95 62923.75	55. 90 114. 80
$3s^2 \ 3p(^2P^\circ)7s$	7s ³P°	0	61540.00 61594.80	54.80	$3s^2 \ 3p(^2\mathrm{P}^\circ)6d$	6d ¹ F°	3	62802.00	
	FC 20	2	<i>61823</i> . 44	228. 04	$3s^2 \ 3p(^2\mathrm{P}^\circ)7d$	7 <i>d</i> ³ D°	$\frac{1}{2}$	62873.90 62875.18	$1.28 \\ 61.12$
$3s^2 3p(^2P^3)5f$	j ⊅j °G	3 4 5	61562. 37 61563. 75	1, 38	$3s^2 3n(^2P^\circ)8s$	88 1P°	3 1	62936.30 63130.60	
$3s^2 \ 3p(^2P^\circ)5f$	5f 3D	3 2 1	61597. 12 61597. 90 61598. 60	0. 78 0. 70	$3s^2 \ 3p(^2\mathrm{P}^\circ)7d$	7 <i>d</i> ³ F°	2 3 4	63257.61 63353.70 63580.63	96. 09 26. 93
3s² 3p(²P°)6d	6 <i>d</i> ³ P°	2	61845.96 61936 86	-90.90	$3s^2 \ 3p(^2\mathrm{P}^\circ)7d$	7 <i>d</i> ¹ F°	3	63642.55	
	7 100	0	61970. 28	-33.42	$3s^2 \ 3p(^2P^\circ)8d$	8 <i>d</i> ³ D°	$1 \\ 2 \\ 2$	00050 05	
$3s^2 3p(^2P^2)7s$	78 P	1	61881.50				3	63758.35	
$3s^2 \ 3p(^2\mathrm{P^o})6d$	6d ¹ D°	2	62155.20		$3s^2 3p(^2P^\circ)9s$	9s ¹ P°	1	63884.95	
$3s^2 \ 3p(^2\mathrm{P^o}) 6d$	6 <i>d</i> ³ F°	$2 \\ 3 \\ 4$	62349. 27 62376. 68 62534. 46	27. 41 157. 78	Si 11 (2P ₃)	Limit		65743.00	

October 1947.

Si i Observed Terms*

$\begin{array}{c} \text{Config.}\\ 1s^2 \ 2s^2 \ 2p^6 + \end{array}$	Obser	ved Terms		
3s ² 3p ²	$\begin{cases} 3p^2 \ ^3P \\ 3p^2 \ ^1S \\ 3p^2 \ ^3D^2 \end{cases} $	-		
08 Op	$ns \ (n \ge 4)$		$np (n \ge 4)$	
$3s^2$ $3p(^2\mathrm{P^o})$ nx	$\begin{cases} 4-8s \ ^{3}P^{\circ} \\ 4-9s \ ^{1}P^{\circ} \end{cases}$	4, 5p ³ S 4, 5p ¹ S	4, 5p ³ P 4, 5p ¹ P	4, 5p ³ D 4, 5p ¹ D
	$nd \ (n \ge 3)$		$nf (n \geq q)$	4)
3s ² 3p(² P°)nx	$\begin{cases} 3-6d \ {}^{3}\mathrm{P}^{\circ} & 3-8d \ {}^{3}\mathrm{D}^{\circ} & 3-7d \ {}^{3}\mathrm{F}^{\circ} \\ 3-5d \ {}^{1}\mathrm{P}^{\circ} & 3-6d \ {}^{1}\mathrm{D}^{\circ} & 3-7d \ {}^{1}\mathrm{F}^{\circ} \end{cases}$	4, 5f ³ D 4, 5f ¹ D	4-6f 3F 4f 1F	4, 5g ³ G

*For predicted terms in the spectra of the Si ${\tt i}$ isoelectronic sequence, see Introduction.

(Al I sequence; 13 electrons)

Ground state $1s^2 2s^2 2p^6 3s^2 3p {}^2\mathbf{P}_{42}^{\circ}$

3p ²P[°]_{1/2} 131818 cm⁻¹

The doublet terms from the ¹S limit in Si III are from Fowler. His values of nf ²F°, n=7 to 9, are from his series formula and are indicated by brackets in the table, although they appear to be confirmed by observed combinations with $3p^2$ ²D.

The $3p^2$ ²P term has been calculated from the data given by Bowen and Millikan in 1925.

The remaining terms are from Bowen, who pointed out in his 1928 paper that Fowler's term called "x" is $3p^2$ 2D; and listed the two lines classified as 3p 2P°- $3p^2$ 2S. This combination has been used to calculate $3p^2$ 2S.

The quartet terms are from Bowen's 1932 paper. No intersystem combinations have been observed and the uncertainty, x, may be considerable. Bowen remarks that the relative positions of the doublet and quartet terms are only approximately determined by assuming that the difference between the terms 4s ²S and 4s ⁴P^o is equal to that between the terms $3s^2$ ¹S and 3p ³P^o in Si III.

REFERENCES

A. Fowler, Phil. Trans. Roy. Soc. London [A] 225, 20 (1925). (I P) (T) (C L)

I. S. Bowen and R. A. Millikan, Phys. Rev. 26, 160 (1925). (T) (C L)

I. S. Bowen, Phys. Rev. 31, 37 (1928). (C L)

I. S. Bowen, Phys. Rev. 39, 13 (1932). (T) (C L)

C. C. Kiess, J. Research Nat. Bur. Std. 21, 205, RP1124 (1938). (C L)

TT
11

Si II

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
$3s^2(^1\mathrm{S})3p$	3p ² P°	$1/2 \\ 11/2$	0 287	287	$3s^2({}^1 m S)5f$	5f 2F°	$\left\{\begin{array}{c} 2\frac{12}{3}\\ 3\frac{12}{2} \end{array}\right.$	} 113756.60	
3s 3p ²	3p ² 4P	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	44080.3+x 44190.9+x 44264.4+x	110. 6 173. 5	$3s^{2}(^{1}S)6p$	6 <i>p</i> ² P°	$1^{\frac{1}{2}}_{1\frac{1}{2}}$	114048.7 114057.8	9. 1
3s 3p ²	$3p^2$ ² D	$\frac{272}{11/2}$	$\begin{array}{c} 44364. \ 4+x \\ 55303. \ 93 \\ 55303. \ 93 \\ \end{array}$	15, 91	3s ² (1S)7s	7s 2S	1/2	117908. 93	
3s ² (1S)4s	4s 2S	$\frac{2\frac{1}{2}}{\frac{1}{2}}$	55319. 84 65495. 08	101 01	3s 3p(3P ⁶)4s	4s 4P	$\begin{array}{c} & \frac{12}{11/2} \\ & 1\frac{1}{2} \\ & 2\frac{1}{2} \end{array}$	$\begin{array}{c} 118118. \ 0+x \\ 118234. \ 0+x \\ 118433. \ 9+x \end{array}$	116. 0 199. 9
3s 3p ²	$3p^2$ ² S	1/2	76663. 9		$3s^{2}(1S)6d$	6 <i>d</i> ² D	$\begin{cases} 1\frac{1}{2} \\ 2\frac{1}{2} \end{cases}$	} 118516.6	
$3s^2(^1\mathrm{S})3d$	3 <i>d</i> ² D	$1\frac{1}{2}$ $2\frac{1}{2}$	79334. 89 79351. 49	16.60	$3s^{2}(^{1}S)6f$	6f ² F°	$\begin{cases} 2^{1/2} \\ 3^{1/2} \end{cases}$	} 119307.57	
$3s^2(^1\mathrm{S})4p$	4 <i>p</i> ² P°	$1^{\frac{1}{2}}_{1\frac{1}{2}}$	81185.98 81245.98	60. 00	3s ² (1S)7f	7f 2F°	$\begin{cases} 2\frac{1}{2} \\ 2\frac{1}{2} \end{cases}$	} } [122649]	
3s 3p ²	$3p^2$ ² P	$1/2 \\ 1/2 \\ 1/2$	83800 84004	204	$3p^3$	3p ³ 4S°		124291.2+x	
3s ² (1S)5s	5s 2S	1⁄2	97966. 60		$3s^{2}(1S)8f$	$8f ^{2}F^{\circ}$	$\begin{cases} 2\frac{1}{2} \\ 3\frac{1}{2} \end{cases}$	[124814]	
$3s^2(^1\mathrm{S})4d$	4 <i>d</i> ² D	$1\frac{1}{2}$ $2\frac{1}{2}$	101017.58 101018.88	1. 30	3s ² (1S)9f	9f 2F°	$\begin{cases} 2\frac{1}{2} \\ 3\frac{1}{2} \end{cases}$	}] [126294]	
$3s^2(^1\mathrm{S})4f$	4f ² F ^o	$\left\{egin{array}{c} 2^{1\!\!\!/_2} \ 3^{1\!\!\!/_2} \ 3^{1\!\!\!/_2} \end{array} ight.$	} 103552.58		Si III (1S ₀)	Limit		, 131818	
$3s^2(^1\mathrm{S})5p$	5 <i>p</i> ² P°	$1\frac{1}{2}$ $1\frac{1}{2}$	103855. 29 103879. 60	24. 31	3s 3p(3P°)4p	4 <i>p</i> 4P	$\frac{1}{2}$ $1\frac{1}{2}$	135272. $4+x$ 135334. $6+x$ 13540. $4+x$	62. 2 134. 8
3s ² (1S)6s	6s ² S	1⁄2	111178.95		3s 3n(3P°)4n	4n 4S	$\frac{27_2}{1\frac{1}{2}}$	135409.4+x 136161.1+x	
$3s^{2}(1S)5d$	5 <i>d</i> ² D	$\left\{ egin{array}{c} 1^{1\!\prime_{\!\!\!\!2}} \ 2^{1\!\prime_{\!\!\!2}} \ 2^{1\!\prime_{\!\!\!2}} \end{array} ight.$	} 112389. 2				-72		

September 1947.

Z = 14

I. P. 16.34 volts

Si 11 Observed Terms*

$\begin{array}{c} \text{Config.}\\ 1s^2 \ 2s^2 \ 2p^6 + \end{array}$		Observed Terms								
$3s^2(^1\mathrm{S})3p$	3p 2P°									
3s 3p ²	$\left\{\begin{array}{ccc} 3p^2 \ {}^2\mathrm{S} & 3p^2 \ {}^2\mathrm{P} \\ 3p^2 \ {}^2\mathrm{S} & 3p^2 \ {}^2\mathrm{P} \end{array}\right.$	$3p^2$ ² D								
3p ³	$3p^3$ 4S°									
	$ns (n \ge 4)$		$np (n \ge 4)$	nd $(n \ge 3)$	$nf (n \ge 4)$					
$3s^2(^1\mathrm{S})nx$	4-7s 2S		4-6p ² P°	3-6d ² D	4–6f ² F°					
3s 3p(3P°)nx	4s 4P°		4p 4S 4p 4P							

*For predicted terms in the spectra of the Al1 isoelectronic sequence, see Introduction.

Si III

SEE REVISION IN NSRDS-NBS 3, Section 1, June 1965.

(Mg I sequence; 12 electrons)

Ground state $1s^2 2s^2 2p^6 3s^2 {}^1S_0$

3s² ¹S₀ 269940.6 cm⁻¹

The analysis is from Bowen, who has extended the earlier work of Fowler, by observations in the ultraviolet. Ninety-six lines have been classified in the interval 566 A to 5739 A. One intersystem combination, $3s^2 \, {}^{1}S - 3p \, {}^{3}P_1^{\circ}$, is given, but Bowen states that the identification of this line is dubious. He remarks further that "the term values of the singlets and triplets can be independently determined with an accuracy that precludes any large shift in the relative position of the two systems, regardless of this identification." The irregular doublet law for the isoelectronic sequence through P IV confirms this classification, as has been pointed out by Robinson.

Van Vleck and Whitelaw, by analogy with Al II, using a rigorous series formula, have recalculated the absolute value of 5g ³G as equal to 39831 cm⁻¹ as compared with Fowler's value 39741 cm⁻¹ and Bowen's value 39734.0 cm⁻¹.

REFERENCES

R. A. Sawyer und F. Paschen, Ann. der Phys. [IV] 84,, 8 (1927). (T)
I. S. Bowen, Phys. Rev. 39, 8 (1932). (I P) (T) (C L)
H. A. Robinson, Phys. Rev. 51, 731 (1937).
J. H. Van Vleck and N. G. Whitelaw, Phys. Rev. 44, 560 (1933). (T)

Z = 14

I. P. 33.46 volts

Si III

Si III

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
3s ²	382 1S	0	0. 0		$3s(^2S)4d$	4 <i>d</i> ¹ D	2	204329.6	
$3s(^2S)3p$	3 <i>p</i> ³P°	0	52630	128	3s(2S)5s	58 ⁸ S	1	206079.6	
		$\frac{1}{2}$	53019	261	3s(2S)5s	5s 1S	0	207872.5	
$3s(^2\mathrm{S})3p$	3 <i>p</i> ¹ P°	1	82883.0		$3s(^2S)4f$	4f ³ F°	2	209436.7	27.6
$3p^2$	$3p^2 \ ^1\mathrm{D}$	2	121946				4	209464. 3 209503. 8	39. 5
$3s(^2\mathrm{S})3d$	3d 1D	2	122213. 0		$3p(^{2}P^{\circ})3d$	3d ³P°	2	216095	-98
3p ²	$3p^2$ P	0	129615	132			0	216255	-62
		$\frac{1}{2}$	130006	259	$3p(^{2}P^{\circ})3d$	3d 3D°	1	217290	54
$3s(^2\mathrm{S})3d$	3d 3D	3	142847.6	-2.1			3	217344 217395	51
		í	142851.7	-2.0	$3p(^{2}P^{\circ})4s$	48 ³ P°	0	226305	127
3s(2S)4s	48 ³ S	1	153281. 0				$\frac{1}{2}$	226727	295
3p ²	$3p^2$ ¹ S	0	153443. 0		3s(2S)5g	5g ³ G	3, 4, 5	230206.6	
38(2S)48	4s ¹ S	0	159068.4		$3s(^2S)6g$	6g ³ G	3, 4, 5	242379.0	
$3s(^2\mathrm{S})4p$	4 <i>p</i> ³P°	0	175134.0	33. 0	$3p(^{2}P^{\circ})4p$	4 <i>p</i> ³ P	0	247776	83
İ		$\frac{1}{2}$	175240. 2	73. 2			2	247859 248073	214
$3s(^2S)4p$	4 <i>p</i> ¹ P°	1	176485.9						-
3s(2S)4d	4d ³ D	3, 2, 1	201502. 5		Si IV (2S1)	Limit		269940.6	

July 1947.

Si III OBSERVED TERMS*

$\begin{array}{c} \text{Config.}\\ 1s^2 \ 2s^2 \ 2p^6 \end{array}$	Observed Terms									
3s ²	3s ² ¹ S									
3s(2S)3p	$\left\{\begin{array}{cc} 3p & {}^{3}\mathrm{P}^{\circ} \\ 3p & {}^{1}\mathrm{P}^{\circ} \end{array}\right.$									
$3p^2$	$\begin{cases} 3p^{2} {}^{3}P \\ 3p^{2} {}^{1}S \\ & 3p^{2} {}^{1}D \end{cases}$									
	$ns (n \ge 4)$	$np (n \ge 4)$	$nd (n \ge 3)$	$nf (n \ge 4)$	ng $(n \ge 5)$					
3s(2S)nx	{4, 58 ³ S 4, 58 ¹ S	4p ³ P° 4p ¹ P°	3, 4 <i>d</i> 3D 3, 4 <i>d</i> 1D	4f ³F°	5, 6 <i>g</i> 3G					
$3p(^{2}\mathrm{P}^{\circ})np$	48 ³ P°	4p 3P	3 <i>d</i> ³ P° 3 <i>d</i> ³ D°							

*For predicted terms in the spectra of the Mg I isoelectronic sequence, see Introduction.

(Na I sequence; 11 electrons)

Ground state 1s² 2s² 2p⁶ 3s ²S₁₆

3s 2S1/2 364097.7 cm⁻¹

The first detailed analysis by Fowler was extended and improved by Edlén and Söderqvist, who observed the spectrum from 815 A to 4328 A. The terms have been taken from their paper, extrapolated values being entered in brackets. They estimate the accuracy of the limit as probably within 2 or 3 cm^{-1} . One additional term, $8f \, {}^2\text{F}^\circ$, has been taken from Fowler's paper and corrected slightly to agree with the rest.

The observations by McLennan and Shaver extend to the violet limit 458 A and those by Millikan and Bowen extend to 361 A.

REFERENCES

R. A. Millikan and I. S. Bowen, Phys. Rev. 23, 1 (1924). (C L)

J. C. McLennan and W. W. Shaver, Trans. Roy Soc. Canada [3] 18, Sec III p. 14 (1924). (C L)

A. Fowler, Phil. Trans. Roy. Soc. (London) [A] 225, 38 (1925). (T) (C L)

B. Edlén and J. Söderqvist, Zeit. Phys. 87, 217 (1933). (I P) (T) (C L)

		Si IV			Si IV					
Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval	
38	3s 2S	1/2	0. 0		6 <i>d</i>	6 <i>d</i> ² D	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	313923. 4		
3p	3 <i>p</i> ²P°	$1\frac{1}{2}$ $1\frac{1}{2}$	71289.6 71749.9	460. 3	6f	6f 2F°	$2\frac{1}{2}$ $3\frac{1}{2}$	315231.6		
3 d	3 <i>d</i> ² D	$egin{array}{c} 1^{1\!\!\!/_2} \\ 2^{1\!\!\!/_2} \end{array}$	160376. 8		6 <i>g</i>	6g ² G	$\begin{cases} 3\frac{1}{2} \\ 4\frac{1}{2} \end{cases}$	} 315306.8		
48	4s 2S	1/2	193981. 5		64	6b 2H °	∫ 4½	315320 0		
4p	4 <i>p</i> ² P°		218269.5 218431.3	161. 8	5.	5 20) 010020.0		
4d	$4d \ ^{2}D$	$1\frac{12}{2}$	250010.6		78 7p	78 25 7p 2P°	72 1⁄2	318/44. 3		
4f	4f ² F°	21/2	254129.4	1.3	· F		11/2	[322347]		
50	E . 29		254130.7	1.0	7 d	$7d^{2}D$	$\begin{array}{c c} 1\frac{1}{2}\\ 2\frac{1}{2}\end{array}$	[327369]		
53 5p	58 -5 5p 2P°	72 1/2 11/6	205420. 4 276506. 5 276581_8	75. 3	7f	7f 2F°	$2\frac{1}{2}$ $3\frac{1}{2}$	328201.5		
5d	5 <i>d</i> 2D	$1\frac{1}{2}$ $2\frac{1}{2}$	291499. 2		7g	7g 2G	$\left\{\begin{array}{c} 3\frac{1}{2} \\ 4\frac{1}{2} \end{array}\right.$	328251. 7		
5f	5f ² F°	$2\frac{1}{2}$ $3\frac{1}{2}$	293721.0		7h	7h ² H°	$\left\{\begin{array}{c} 4\frac{1}{2} \\ 5\frac{1}{2} \end{array}\right.$	} 328262		
5 <i>g</i>	5 <i>g</i> ² G	$\left\{\begin{array}{c} 3^{1\!\!\!/_2} \\ 4^{1\!\!\!/_2} \end{array}\right.$	} 293839. 7		8f	8f 2F°	$\left\{\begin{array}{c} 2\frac{1}{2} \\ 3\frac{1}{2} \end{array}\right.$	<pre>{ [336619]</pre>		
68	6s 2S	1/2	299679.6		Si v (18.)	Limit		364097 7	-	
6 <i>p</i>	6 <i>p</i> ² P°	$1^{\frac{1}{2}}_{1^{\frac{1}{2}}_{\frac{1}{2}}}$	305645 305687.6	43	61 ((-60)	Limit		004031.1		

June 1947.

I. P. 45.13 volts

Z = 14

Si v

(Ne I sequence; 10 electrons)

Ground state $1s^2 2s^2 2p^6 {}^{1}S_0$

 $2p^{6}$ ¹S₀ **1345100** cm⁻¹

The analysis is by Ferner, who has extended the early work by Söderqvist. Thirteen lines have been classified in the region 78 A to 118 A, as combinations with the ground term.

Ferner's term designations assigned on the assumption of LS-coupling are given under the heading "Author" in the table.

As for Ne 1, the *jl*-coupling notation in the general form suggested by Racah is introduced. The unit used by Ferner, 10^3 cm⁻¹, has here been changed to cm⁻¹.

REFERENCES

E. Ferner, Ark. Mat. Astr. Fys. (Stockholm) 28A, No. 4 p. 4 (1941). (I P) (T) (C L).

G. Racah, Phys. Rev. 61, 537 (L) (1942).

Si	V
~ ~	

Si v

Author	Config.	Desig.	J	Level	Author	Config.	Desig.	J	Level
2 <i>p</i> 1S	2p6	2p ⁶ 1S	0	0	$4d \ ^{1}P_{1}$	$2p^5(^2\mathrm{Pi}_{5\!$	4d [1½]°	1	1168550
	2p ⁵ (² P _{1¹/2})3s	3s [1½]°	2		$4d$ $^{3}D_{1}$	$2p^{5}(^{2}\mathrm{P}_{\mathrm{H}}^{\circ})4d$	$4d'[1\frac{1}{2}]^{\circ}$	1	1174050
3s 3P1	2m5(2P°)2a	20/[1/]0	1	840560	5d ¹ P ₁	$2p^{5}(^{2}\mathrm{P}_{15})^{5}d$	5d [1½]°	1	1232850
38 ¹ P ₁	2p*(-1 32)05	J S [/2]	1	848460	$5d \ ^{3}D_{1}$	$2p^5(^2\mathrm{P}^{\mathrm{o}}_{\mathrm{H}})5d$	5d'[1½]°	1	1237520
9 <i>d</i> 3D	$2p^{5}(^{2}\mathrm{P}^{\circ}_{1rac{1}{2}})3d$	3d [½]°	0	1018010	6d ¹ P ₁	$2p^5(^2\mathrm{P}_{1\!$	6d [1½]°	1	1267380
$3d {}^{1}\mathrm{P}_{1}$		3d [1½]°	1	1029410	$6d \ ^{3}D_{1}$	$2p^5(^2\mathrm{P}^{\mathrm{o}}_{\mathrm{H}})6d$	6d′[1½]°	1	1272090
$3d$ $^{3}\mathrm{D}_{1}$	$2p^{5}(^{2}\mathrm{P}^{\circ}_{2})3d$	3d'[1½]°	1	1036930					· · · · · · · · · · · · · · · · · · ·
	$2p^{5}(^{2}\mathrm{P}_{1})^{2}$	4s [1½]°	2			Si vi (²P°i½)	Limit		1345100
4s ² P ₁			1	1100690		Si vi (2P [°] ₅)	Limit		1350200
4s ¹ P ₁	2p ⁵ (² P ³ / ₂)4s	4s' [½]°	0 1	1105550				1	

April 1947.

I. P. 166.73 volts

Si v Observed Levels*

Config. 1s ² 2s ² +	Observ	Observed Terms								
$2p^{6}$	2p ⁶ ¹ S									
	ns $(n \ge 3)$	$nd \ (n \ge 3)$								
$2p^5(^2\mathrm{P}^\circ)nx$	$\begin{cases} 3, 4s & {}^{3}P^{\circ} \\ 3, 4s & {}^{1}P^{\circ} \end{cases}$	3d ³ P° 3-6d ³ D° 3-6d ¹ P°								
	jl-Coupling Notat	ion								
	Obser	ved Pairs								
	ns $(n \ge 3)$	nd $(n \ge 3)$								
$2p^5(^2\mathrm{Pi}_{153})nx$	3, 4s [1½]°	$\begin{array}{ccc} 3d & [\frac{1}{2}]^{\circ} \\ 3-6d & [\frac{1}{2}]^{\circ} \end{array}$								
$2p^5(^2\mathrm{P}^{\circ}_{\!$	3, 4s' [½]°	3– 6 <i>d′</i> [1½]°								

*For predicted levels in the spectra of the Ne $\scriptstyle\rm I$ isoelectronic sequence, see Introduction.

Si VI

(F 1 sequence; 9 electrons)

Ground state $1s^2 2s^2 2p^5 {}^2\mathbf{P}^{\circ}_{1\frac{1}{2}}$

 $2p^{5} {}^{2}\mathrm{P}^{\circ}_{1\frac{1}{2}}$ **1654800** cm⁻¹

I. P. 205.11 volts

The terms are from Ferner's paper. He has extended the earlier analysis by Söderqvist to include 63 classified lines in the range between 65 A and 249 A. All but two of the observed combinations are with the ground term. According to Ferner some of the term assignments are somewhat uncertain. The unit adopted by Ferner, 10^3 cm⁻¹, has here been changed to cm⁻¹.

By analogy with related spectra in the isoelectronic sequence Robinson has suggested the following changes in Ferner's term assignments:

Ferner	Robinson	Ferner	Robinson
3d 4F214 3d 4P214	$3d \ {}^{4}\mathrm{P}_{234}$ $3d \ {}^{2}\mathrm{D}_{234}$	$3d' {}^{2}S_{3}$ $3d' {}^{2}P_{1}$	3d' ² P ₁₅₅ 3d' ² D ₁₅₅
3d 2D234 4d 4F234	$3d {}^{2}F_{244}$ $4d {}^{2}D_{244}^{\cdot}$	3d' ² D ₂ , ² D ₁ , 3d' ² F ₂ ,	3d' ² F ₂₁₄ 3d' ² S ₁₄ 3d' ² D ₂₁₄
4d ² D ₂ , ² D ₁ ,	4 <i>d</i> ² D ₁ , 4 <i>d</i> ² D ₁ , 4 <i>d</i> ² P ₁ ,	$4d' \ {}^{2}S_{1/2} \ 4d' \ {}^{2}D_{21/2} \ {}^{2}D_{11/2}$	$4d' \ ^2S_{3/3} **$ $4d' \ ^2P_{1/3}$ $4d' \ ^2D$ $4d' \ ^2P_{3/3} ***$
*1401250) **14	46330. *	**1445500

REFERENCES

E. Ferner, Ark. Mat. Astr. Fys. (Stockholm) 28A, No. 4, p. 5 (1941). (I P) (T) (C L) H. A. Robinson, unpublished material (March 1948). (T) (C L)

Z = 14

Si vi

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
2s ² 2p ⁵	$2p^{5-2}\mathrm{P}^{\circ}$	1½ ½	0 5100	-5100	2s ² 2p ⁴ (³ P)4s	48 ² P	1½ ½	1329900	
2s 2p ⁶	$2p^6$ $^2\mathrm{S}$	1⁄2	406500		2s ² 2p ⁴ (¹ D)4s	4s' 2D	${2\frac{1}{2}}{1\frac{1}{2}}$	} 1371820	
2s ² 2p ⁴ (² P)3s	38 4P	$2\frac{1}{2}$ $1\frac{1}{2}$ $\frac{1}{2}$	990460 993640	-3180	2s 2p ⁵ (³P°)3s	3s''' 2P°	$1\frac{1}{2}$ $\frac{1}{2}$, 1375840 1378830	-2990
2s ² 2p ⁴ (³ P)3s	3s 2P	$1\frac{1}{2}$	1005440 1009140	-3700	$2s^2 2p^4(^3{ m P}) 4d$	4 <i>d</i> 4F	$4\frac{1}{2}$		
2s ² 2p ⁴ (¹ D)3s	3s′ 2D	$2\frac{1}{2}$ $1\frac{1}{2}$	$1041450 \\ 1041500$	- 50			$2\frac{1}{2}$ $1\frac{1}{2}$	$\begin{array}{r} 1399110 \\ 1399450 \end{array}$	-340
2s ² 2p ⁴ (1S)3s	3s'' 2S	1/2	1094460		2s ² 2p ⁴ (³ P)4d	4 <i>d</i> 4 P	$1^{\frac{1}{2}}_{1^{\frac{1}{2}}_{\frac{1}{2}}}_{2^{\frac{1}{2}}_{\frac{1}{2}}}$	$\frac{1400880}{1401740}$	860
2s ² 2p ⁴ (³ P)3d	3 <i>d</i> 4F	$\begin{array}{c} 4\frac{1}{2} \\ 3\frac{1}{2} \\ 2\frac{1}{2} \\ 1\frac{1}{2} \end{array}$	1193290	-1040	$2s^2 2p^4(^3\mathrm{P}) 4d$	4 <i>d</i> ² P	$1\frac{1}{2}$ $1\frac{1}{2}$	$\frac{1402510}{1406330}$	3820
2s ² 2p ⁴ (*P)3d	3 <i>d</i> 4P	1 7/2 1/2	1194330 1194970	1070	2s ² 2p ⁴ (³ P)4d	4 <i>d</i> ² D	$1\frac{1}{2}$ $2\frac{1}{2}$	$\frac{1403050}{1404870}$	1820
		$1\frac{12}{212}$	$\frac{1196040}{1197230}$	1190	$2s^2 2p^4(^1\mathrm{D}) 4d$	4d' ² S	1/2	1444340	
$2s^2 2p^4(^{3}P)3d$	3 <i>d</i> ² P	$1^{\frac{1}{2}}_{1\frac{1}{2}}$	$\frac{1200720}{1204740}$	4020	$2s^2 2p^4({}^1\mathrm{D}) 4d$	4 <i>d'</i> ² D	$2\frac{1}{2}$ $1\frac{1}{2}$	$\frac{1445000}{1445590}$	- 590
$2s^2 2p^4(^{3}P)3d$	3 <i>d</i> 2D	$1\frac{12}{22}$	$\frac{1201100}{1202960}$	1860	$2s^2 \ 2p^4({}^1\mathrm{D})4d$	4 <i>d'</i> ² P	$1\frac{1}{2}{1\frac{1}{2}}{1\frac{1}{2}}$	1445030	
$2s^2 2p^4(^1\mathrm{D})3d$	3d′ 2P	$1\frac{1}{2}$ $1\frac{1}{2}$	$\frac{1239200}{1242390}$	3190	$2s^2 2p^4 ({}^1 m S) 4d$	4 <i>d''</i> 2D	$2\frac{1}{2}$ $1\frac{1}{2}$	1497100	
$2s^2 2p^4(^1\mathrm{D})3d$	3d' 2S	1⁄2	1241060		$2s^2 2p^4(^3\mathrm{P}) 5d$	5d ² D	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	1497630	
$2s^2 2p^4(^1\mathrm{D})3d$	3 <i>d′</i> 2D	$2\frac{1}{2}$ $1\frac{1}{2}$	$\frac{1242220}{1243860}$	-1640	$2s^2 2p^4(^1\mathrm{D}) 5d$	5d' 2S	-/2 1/2	1538370	
$2s^2 2p^4(^1\mathrm{D})3d$	3 <i>d′</i> 2F	$3\frac{1}{2}{2\frac{1}{2}}$	1243020		$2s^2 \ 2p(^1\mathrm{D}) 5d$	5d' ² P	$1\frac{1}{2}$ $1\frac{1}{2}$	1538580	
$2s^2 2p^4({}^1S)3d$	3d'' 2D	$2\frac{1}{2}$ $1\frac{1}{2}$	$\frac{1291510}{1291800}$	-290				105 4000	-
2s ² 2p ⁴ (³ P)4s	4s 4P	$2\frac{1}{2}$ $1\frac{1}{2}$ $\frac{1}{2}$	1322980		SI VII (*P2)			1694800	

March 1948.

Si vi Observed Terms*

Config. 1s ² +		Observed Terms							
2s ² 2p ⁵ 2s 2p ⁶	2p ⁶ ² S	2p ⁵ ² P°							
		ns $(n \ge 3)$			nd	$(n \ge 3)$			
$2s^2 2p^4(^{3}P)nx$	{	3, 4s ⁴ P 3, 4s ² P			3, 4 <i>d</i> 4P 3, 4 <i>d</i> 2P	3–5 <i>d</i> 2D	3, 4 <i>d</i> 4F		
2s ² 2p ⁴ (¹ D)nx'			3, 4s' 2D	3-5d' ² S	3− 5 <i>d′</i> ² P	3, 4 <i>d′</i> 2D	3d′ 2F		
$2s^2 2p^4({}^1S)nx''$	3s'' 2S					3, 4 <i>d''</i> 2D			
2s 2p ⁵ (³ P ^o)nx'''		3s''' 2P°							

*For predicted terms in the spectra of the F I isoelectronic sequence, see Introduction.

154

Si VII

Ground state 1s² 2s² 2p⁴ ³P₂

 $2p^{4} {}^{3}P_{2}$ 1988000 cm⁻¹

In 1941 Ferner published an analysis of this spectrum including 71 classified lines-64 in the region between 54 A and 85 A and 7 between 217 A and 278 A. The present term list is, however, based on later work kindly furnished by him in manuscript form.

Two intersystem combinations have been observed, connecting the triplet and singlet terms.

Ferner's unit, 10^3 cm⁻¹, has here been changed to cm⁻¹.

REFERENCES

E. Ferner, Ark. Mat. Astr. Fys. (Stockholm) 28A, No. 4 p. 3 (1941). (T) (C L) E. Ferner, Ark. Mat. Astr. Fys. (Stockholm) 36A, No. 1, p. 48 (1948). (I P) (T) (C L)

Config.	Desig.	J.	Level	Inter- val	Config.	Desig.	J.	Level	Inter- val
2s ² 2p ⁴	2p4 ³ P	2 1 0	0 4030 5570	$-4030 \\ -1540$	$2s^2 2p^3(^2D^\circ)3d$	3 <i>d′</i> ³D°	3 2 1	1428020 1428090	-70
$2s^2 2p^4$	2p ⁴ ¹ D	2	47000		$2s^2 2p^3 (^2\mathrm{D}^\circ) 3d$	3d′ 1P°	1	1429680	
2s ² 2p ⁴ 2s 2n ⁵	$\begin{vmatrix} 2p^4 & {}^{1}S \\ 2p^5 & {}^{3}P^{\circ} \end{vmatrix}$	0	99780 36 170	8610	$2s^2 \ 2p^3 (^2 \mathrm{D}^\circ) 3d$	3d′ ³P°	2 1 0	1435460 1436750 1437090	-1290 -340
20 20			366780 368760	-3610 -1980	$2s^2 2p^3 (^2\mathrm{D}^\circ) 3d$	3d' ¹ D°	2	1436760	
$2s^2 \ 2p^5$	2p ⁵ ¹ P°	1	506080		$2s^2 \ 2r^3(^2D^\circ) 3d$	$3d'$ $^3S^{\circ}$	1	1441230	_
2s ² 2p ³ (⁴ S°)3s	38 3S°	1	1172470		$2s^2 \ 2p^3 (^2\mathrm{D}^{o}) 3d$	3d' ¹ F°	3	1447870	
2s ² 2p ³ (² D°)3s 2s ² 2p ³ (² D°)3s	3s' ³ D° 3s' ¹ D°	1, 2, 3 2	1225150 1236320		$2s^2 2p^3 (^2{ m P}^{ m o}) 3d$	3 <i>d′′</i> ³P°	$egin{array}{c} 0 \ 1 \ 2 \end{array}$	1460290 1460860 1461860	570 1000
2s ² 2p ³ (² P ^o)3s	3s′′ ³₽°	0 1 2	1261610 1262040	430	$2s^2 \ 2p^3 (^2{ m P}^{ m o}) 3d$	3 <i>d''</i> ³F°	4 3 2	1463270 1466490	-3220
2s² 2p³(²P°)3s	3s'' ¹ P°	1	1273170		$2s^2 \ 2p^3 (^2\mathrm{P}^\circ) 3d$	3 <i>d''</i> ¹ D°	2	1466910	
$2s^2 2p^3({}^4\mathrm{S}^\circ) 3d$	3d ³ D°	$1, 2 \\ 2, 3$	1367360 1367560	200	$2s^2 2p^3 (^2\mathrm{P^o}) 3d$	3 <i>d''</i> 3D°	3 2 1	1467390 1470050	-2660
$2s^2 2p^2(^2D^\circ)3d$	3 <i>d'</i> 3F°		1426050		$2s^2 2p^3 (^2\mathrm{P^o}) 3d$	3d'' ¹ P°	1	1470490	
		2	1		$2s^2 2p^3(^2P^\circ)3d$	3d'' 1F°	3	1474100	

Si VII

Si VII

Z = 14

I. P. 246.41 volts

Si VII—Continued

Si VII—Continued

Config.	Desig.	J.	Level	Inter- val	Config.	Desig.	J.	Level	Inter- val
2s 2p4(4P)3s	3s‴ ≥P	2	1499430		2s² 2p³(²D°)4d	4 <i>d′</i> ¹ F°	3	1714610	
		Ô			2s ² 2p ³ (² P ^o)4d	4 <i>d''</i> ³P°	0		
2s 2p4(2D)3s	3s [™] ³D	3	1590930				$\frac{1}{2}$	1741130	
		1			$2s^2 2p^3 (^2\mathrm{P}^{o}) 4d$	4 <i>d''</i> ³D°	3	1744440	
$2s^2 2p^3 (^2D^o) 4s$	4s′ ³D°	1, 2, 3	1631160				ĩ		
2s ² 2p ³ (² D ^o)4s	4s′ ¹D°	2	1635820		$2s^2 2p^3 (^2\mathrm{P^o}) 4d$	$4d^{\prime\prime}$ ¹ F°	3	1748200	
$2s^2 2p^3 ({}^4\mathrm{S}^{\mathrm{o}}) 4d$	4d ³D°	$1 \\ 2, 3$	1643740		$2s^2 2p^3 ({}^4\mathrm{S}^\circ) 5d$	5d ³ D ^o	$\begin{array}{c}1\\2,3\end{array}$	1769040	
2s² 2p³(²P°)4s	4s″ ³P°	0			$2s^2 2p^3 (^2D^\circ) 5d$	5 <i>d'</i> ³ D°	3, 2	1834120	
		$\frac{1}{2}$	1669900		0.20.2/200154	<i>F 1/ 2</i> D0		1000110	
$2s^2 2p^3 (^2\mathrm{D^o}) 4d$	4 <i>d′</i> ³D°	3,21	1707070		2s ² 2p ³ (² D ²)5a	5a °P		1836140	
$2s^2 2p^3(^2\mathrm{D^o}) 4d$	4 <i>d′</i> ¹P°	1	1707550		2s 2p4(4P)4s	4s''' *P	2	1887680	
2s² 2p³(²D°)4d	4 <i>d′</i> ³₽°	$\begin{array}{c} 2 \\ 1 \\ 0 \end{array}$	1711010				0		_
2s ² 2p ³ (² D°)4d	$4d'$ $^3S^{\circ}$	1	1712680		Si vIII (4S ₁₁₅)	Limit		1988000	

February 1947.

Si VII OBSERVED TERMS*

$\begin{array}{c} \text{Config.} \\ 1s^2 + \end{array}$		-		Observed Te	erms		
2s ² 2p ⁴	$\left\{_{2p^4 \ ^1\mathrm{S}} ight.$	$2p^4$ $^3\mathrm{P}$	2p ⁴ ¹ D				
2s 2p ⁵	{	${2p^5 \atop 2p^5} {}^3\mathrm{P^o} \atop {}^1\mathrm{P^o}$					
		ns $(n \ge 3)$			nd	$(n \ge 3)$	
$2s^2 \ 2p^3({}^4\mathrm{S}^\circ)nx$	3s 3S°					3–5 <i>d</i> ³ D°	
$2s^2 \ 2p^3(^2\mathrm{D^o})nx'$	{		3, 4s′ ³ D° 3, 4s′ ¹ D°	3, 4d′ 3S°	${\begin{array}{*{20}c} {3-5d'} & {}^{3}\mathrm{P}^{\circ} \ {3,4d'} & {}^{1}\mathrm{P}^{\circ} \end{array}}$	${\begin{array}{*{20}c} 3-5d' & {}^3\mathrm{D}^{\circ}\ 3d' & {}^1\mathrm{D}^{\circ} \end{array}}$	$3d' {}^{3}\mathrm{F}^{\circ}$ 3, $4d' {}^{1}\mathrm{F}^{\circ}$
2s ² 2p ³ (² P ^o)nx''	{	3, 4s'' ³ P° 3s'' ¹ P°			3, 4 <i>d''</i> ³ P° 3 <i>d''</i> ¹ P°	${\begin{array}{*{20}c} 3,4d^{\prime\prime} & {}^{3}\mathrm{D}^{\circ} \ 3d^{\prime\prime} & {}^{1}\mathrm{D}^{\circ} \end{array}}$	3d'' ³F° 3, 4d'' ¹F°
2s 2p ⁴ (⁴ P)nx'''		3, 4s''' ³ P					
28 $2p^4(^2D)nx^{1V}$			3 ⁸ 1A 3D				-

*For predicted terms in the spectra of the O I isoelectronic sequence, see Introduction.

Si VIII

Ground state $1s^2 2s^2 2p^3 4S_{116}^{\circ}$

2p³ ⁴S[°]_{11/2} 2451570 cm⁻¹

The terms published by Ferner in 1941 have been corrected as indicated in his 1948 paper. The absolute values of the quartet terms have been decreased by 250 cm^{-1} ; those of the doublet terms increased by 250 cm⁻¹ as compared with the values he published in 1941.

Fifty-nine lines have been classified, all but 13 of which are in the region between 49 A and 76 A. No intersystem combinations have been published and the uncertainty, x, may be considerable.

The unit adopted by Ferner, 10³ cm⁻¹, has here been changed to cm⁻¹.

REFERENCES

J. Söderqvist, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 7, 64 (1934). (T) (C L)

E. Ferner, Ark. Mat. Astr. Fys. (Stockholm) 28A, No. 4, p. 6 (1941). (I P) (T) (C L)

E. Ferner, Ark. Mat. Astr. Fys. (Stockholm) 36A, No. 1, p. 42 (1948).

1637470 1638830 1639640

-1360

-810

 $2\frac{1}{12}$ $1\frac{1}{2}$ $\frac{1}{2}$

Author	Config.	Desig.	J	Level	Interval	Author
2p 4S2	2s ² 2p ³	$2p^3$ $^4S^{\circ}$	$1\frac{1}{2}$	0	-	$3d ^{2}D_{2}$
${{}^{2}p}{{}^{2}\mathrm{D}_{2}}{{}^{2}\mathrm{D}_{3}}$	$2s^2 \ 2p^3$	$2p^3$ $^2\mathrm{D}^{\circ}$	$1\frac{1}{2}{2\frac{1}{2}}{2\frac{1}{2}}$	67140+x 67420+x	280	$\overline{3d} \ {}^{2}F_{4}$
${}^{2p} {}^{^{2}P_{1}}_{^{^{2}P_{2}}}$	2s ² 2p ³	$2p^3$ $^2P^{\circ}$	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	103320 + x 103900 + x	580	$\overline{3d} \ {}^{2}\mathrm{F}_{3}$
2p' ⁴ P ₃ ⁴ P ₂ ⁴ P ₁	2s 2p ⁴	2p4 4P	$2\frac{1}{2}$ $1\frac{1}{2}$ $\frac{1}{2}$	$312670 \\ 316260 \\ 318160$	$-3590 \\ -1900$	$\begin{array}{c} {}^{2}\mathrm{D}_{3}\\ \overline{3d} {}^{2}\mathrm{P}_{1}\\ {}^{2}\mathrm{P}_{2}\end{array}$
${}^{2p'}{}^{^{2}\mathrm{D}_{3}}_{^{2}\mathrm{D}_{2}}$	2s 2p4	$2p^{4-2}\mathrm{D}$	$2\frac{1}{2}$ $1\frac{1}{2}$	428300 + x 428360 + x	-60	3p' 4P
$2p' \ ^2\mathrm{S}_1$	2s 2p4	$2p^4$ ² S	$\frac{1}{2}$	502360+x		<u>.</u>
${}^{2p'}{}^{^{2}\mathrm{P}_{2}}_{^{2}\mathrm{P}_{1}}$	2s 2p ⁴	$2p^{4}$ ² P	$1\frac{12}{12}$	528420 + x 532790 + x	-4370	3 <i>d</i> ² S ₁
3s ⁴ P ₁ ⁴ P ₂ ⁴ P ₃	2s ² 2p ² (³ P)3s	3s 4P	$1^{1/2}_{1^{1/2}}_{1^{1/2}_{2^{1/2}}}$	$\begin{array}{c} 1430510 \\ 1432870 \\ 1436120 \end{array}$	2360 3250	3 <i>d′</i> 4D
${}^{3s}{}^{2}P_{1}{}^{2}P_{2}$	$2s \ 2p^2(^{3}\mathrm{P})3s$	38 2P	$1\frac{1}{2}$ $1\frac{1}{2}$	$\begin{array}{c} 1447950 + x \\ 1451900 + x \end{array}$	3950	$\begin{array}{c c} 4s & {}^{2}P_{2} \\ 4d & {}^{2}F_{3} \\ {}^{2}F \end{array}$
$\begin{array}{ccc} \overline{3s} & {}^2D_2 \\ & {}^2D_3 \end{array}$	2s ² 2p ² (¹ D)3s	3s′ 2D	$1\frac{12}{212}$	$\begin{array}{c c} 1486120 + x \\ 1486710 + x \end{array}$	590	$4d \ 4P_3$
3 <i>d</i> ² P ₂	2s ² 2p ² (³ P)3d	3 <i>d</i> ² P	$1\frac{1}{2}$ $\frac{1}{2}$	1622900+x		*P2
33′ 4S2	$2s \ 2p^{3}(^{5}\mathrm{S}^{\circ})3s$	3s''' 4S°	$1\frac{1}{2}$	1628660		$4d$ $^{2}D_{3}$
${}^{3d}{}^{2}{ m F_{3}}_{{}^{2}{ m F_{4}}}$	2s ² 2p ² (³ P)3d	3d ² F	$2\frac{1}{2}$ $3\frac{1}{2}$	$\begin{vmatrix} 1632010 + x \\ 1636490 + x \end{vmatrix}$	4480	$\overline{4d}$ $^{2}\mathrm{D}_{3}$
3d 4D ₃₂	2s ² 2p ² (³ P)3d	3d 4D	$\big\{\begin{array}{c} 3\frac{1}{2}\\ 2\frac{1}{2}\\ 1\frac{1}{2}\\ \frac{1}{2}\\ \frac{1}{2}\\ \frac{1}{2}\\ \frac{1}{2}\\ \end{array}$	} 1633370		

Si VIII

Si vm

 $^{2}\mathrm{D}$

 $^{2}\mathrm{F}$

²D

Desig.

3d

3d'

3d'

3d' ^{2}P

3d' ^{2}S

4s

4d

4d

4d

4d'

3p''' 4P

3d''' 4D°

 $^{2}\mathbf{P}$

 $^{2}\mathrm{F}$

4P

²D

 $^{2}\mathrm{D}$

Limit

Config.

 $2s^2 2p^2(^{3}P)3d$

 $2s^2 2p^2(^1D)3d$

 $2s^2 2p^2(^1D)3d$

 $2s^2 2p^2(^{1}D)3d$

2s 2p3(5S°)3p

2s² 2p²(¹D)3d

2s 2p3(5S°)3d

2s² 2p²(³P)4s

 $2s^2 2p^2(^{3}P)4d$

 $2s^2 2p^2(^{3}P)4d$

 $2s^2 2p^2(^{3}P)4d$

 $2s^2 2p^2(^1D)4d$

Si 1x (3P0)

J

 $\frac{1\frac{1}{2}}{2\frac{1}{2}}$

 ${3\frac{1}{2}}{2\frac{1}{2}}$

 $\frac{1\frac{1}{2}}{2\frac{1}{2}}$

 $\frac{\frac{1}{2}}{1\frac{1}{2}}$

 $to 2^{1/2}_{2/2}$

1⁄2 ⅔

to 3½

 $\frac{\frac{1}{2}}{1\frac{1}{2}}$

 $2\frac{1}{2}$ $3\frac{1}{2}$

 $2\frac{1}{2}$ $1\frac{1}{2}$ $\frac{1}{2}$

 $1\frac{1}{2}$ $2\frac{1}{2}$

 $\frac{1\frac{1}{2}}{2\frac{1}{2}}$

Level

1657290 + x1658460 + x

1682560 + x1682780 + x

1683930 + x1685560 + x

1694560 + x1696140 + x

1701700 + x

1927190 + x

1996930 + x2000980 + x

 $\frac{1999240}{2000520}$

2006710 + x

2046680 + x

2451570

1698230

1801710

Interval

1170

-220

1630

1580

4050

-1280

I. P. 303.87 volts

July 1948.

2s² 2p²(³P)3d

3d 4P

4P2

4P1

3d $^{4}P_{3}$

Si VIII OBSERVED TERMS*

Config. $1s^2+$		Observed Terms					
2s ² 2p ²	$\left\{ {2p^3} ight. { m 4S^o} ight.$	2p ³ ² P°	2p ³ ² D°				
2s 2p4	$\left\{ 2p^{4} \ ^{2}\mathrm{S} ight.$	$2p^4$ ⁴ P $2p^4$ ² P	2p4 2D				
		ns $(n \ge 3)$		$np (n \ge 3)$	nd $(n \geq 3)$		
2s ² 2p ² (³ P)nx	{	3s 4P 3, 4s 2P			3, 4d ⁴ P 3d ⁴ D 3d ² P 3, 4d ² D 3, 4d ²	F	
$2s^2 \ 2p^2({}^1\mathrm{D})nx'$			3s′ 2D		3d' ² S 3d' ² P 3, 4d' ² D 3d' ²	F	
2s 2p ³ (⁵ S°)nx'''	3s''' 4S°			3 <i>p'''</i> 4P	3 <i>d'''</i> 4D°		

*For predicted terms in the spectra of the NI isoelectronic sequence, see Introduction.

Si ix

(CI sequence; 6 electrons)

Ground state $1s^2 2s^2 2p^2 {}^{3}P_0$

 $2p^2 {}^{3}P_0 2838460 \text{ cm}^{-1}$

I. P. 351.83 volts

Z = 14

The terms have been taken from a manuscript by Ferner who generously submitted his revised analysis in advance of publication. A total of 42 lines have been classified, all but two of which are in the region between 44 A and 65 A. No combinations involving the terms $2p^{3}$ ¹D° and $2p^{3}$ ¹P° are listed.

The systems of terms of different multiplicity are not connected by intersystem combinations. Their relative positions are estimated by extrapolation along the isoelectronic sequence. The uncertainties, x and y, may be considerable.

Ferner's unit, 10^3 cm⁻¹, has here been converted to cm⁻¹.

REFERENCES

E. Ferner, Ark. Mat. Astr. Fys. (Stockholm) 28A, No. 4 p. 6 (1941). (T) (C L)
E. Ferner, Ark. Mat. Astr. Fys. (Stockholm) 36A, No. 1, p. 37 (1948). (I P) (T) (C L)

Si IX

Author	Config.	Desig.	J	Level	Inter- val	Author	Config.	Desig.	J	Level	Inter- val
$2p \ {}^{3}P_{0} \ {}^{3}P_{1} \ {}^{3}P_{2}$	2s ² 2p ²	$2p^2$ ³ P	0 1 2	0 2590 6460	2590 3870	$3d \ {}^{1}F_{3}$	$2s^2 2p(^2P^\circ)3d$ $2s^2 2n(^2P^\circ)3d$	3d ¹ F° $3d$ ¹ P°	3	1837810 + x 1838540 + x	
$2n$ $1D_{2}$	2s2 2n2	$2n^2$ 1D	2	$52960 \pm r$		3n' 3S.	2s 2p(1) 3n	3n 3S°	1	1858500	
$2p D_2$	23 2p	2p $D2n^2 1S$		$107780 \pm c$			23 2p (1) 3p $2a 2m^2(4D) 3m$	2 3 1 0	1	1000000	
$2p$ $-S_0$ $2p'$ 5S_2	2s ⁻ 2p ⁻ 2s 2p ³	$2p^{3}$ $5S^{\circ}$	2	107780 + x 150010 + y		$3p' {}^{3}\mathrm{D}_{2} {}^{3}\mathrm{D}_{3}$	28 2p ⁻⁽⁻¹)3p	$3p$ $^{\circ}D$	$\begin{vmatrix} 1\\2\\3 \end{vmatrix}$	1896170 1899040	2870
$2p' {}^{3}D_{3}$	$2s \ 2p^3$	$2p^3$ $^3\mathrm{D}^3$	3	292210 292360	-150	<u>3</u> s' 3D	2s 2p ² (² D)3s	3s′ 3D	1, 2, 3	1917080	
${}^{3}\overline{\mathrm{D}}_{1}^{2}$			ĩ	292440	-80	$3d' {}^{5}P_{3} {}^{5}P_{2}$	$2s \ 2p^2(^4P)3d$	$3d$ $^5\mathrm{P}$	$3 \\ 2$	1971270 + y 1972500 + y	-1230
2 <i>p′</i> ³P	$2s$ $2p^3$	$2p^3$ $^3\mathrm{P}^{\circ}$	2, 1, 0	344080		⁵ P ₁			1	1973460+y	- 900
$2p' \ ^1D_2$	2s 2p ³	$2p^3$ ¹ D ^o	2	440410 + x		$3d' {}^{3}\mathrm{P}_{2}$	$2s \ 2p^2(^4P)3d$	3d ³ P	2	1973940	
$2p'$ 3S_1	2s 2p ³	$2p^3$ $^3\mathrm{S}^{o}$	1	446980					Ō		
2p′ ¹ P ₁	2s 2p ³	2p ³ ¹ P ^o	1	492820 + x		$3d' {}^3{ m F}_2 {}^3{ m F}_3$	$2s \ 2p^2(^4P)3d$	$3d$ $^3\mathrm{F}$	23	1985150 1987160	2010 2670
38 ³ P ₁ ³ P ₂	$2s^2 2p(^2P^2)3s$	3s ^s P°	$\begin{vmatrix} 0\\ 1\\ 2 \end{vmatrix}$	1623380 1628550	5170	$\frac{^{3}\mathrm{F}_{4}}{\mathrm{3}n'}$	$2s 2n^2(^2D)3n$	3n' ¹ F°	4	1989830 1999930+x	2010
3s ¹ P ₁	$2s^2 \ 2p(^2\mathrm{P^o}) \ 3s$	3s 1P°	1	1640920 + x		$\overline{3p}' {}^{1}\mathrm{D}_{2}$	$2s 2p^2(^2D)3p$	3p' ¹ D°	2	2009410 + x	
38' ⁵ P ₁ ⁵ P ₂	2s 2p ² (⁴ P)3s	3s ⁵P	1 2 3	1784260 + y 1786430 + y 1789650 + y	$\begin{array}{c} 2170\\ 3220 \end{array}$	$3d' \ ^{3}D_{32}$	$2s \ 2p^2(^4P)3d$	$3d$ $^{3}\mathrm{D}$	$\begin{array}{c}1\\2,3\end{array}$	2011690	
-13	0.1 0. (2D0) 2 J	0.7 210		1703000 + 9		$\overline{3d'}$ ${}^3\mathrm{F}$	$2s \ 2p^2(^2D) 3d$	$3d'$ $^3{ m F}$	2, 3, 4	2084940	
3a °F ₂	28° 2p(°r*)3a	Sa "F		1789400 + x		$\overline{3d}'$ ³ D	$2s \ 2p^2(^2D)3d$	$3d'$ $^{3}\mathrm{D}$	1, 2, 3	2093650	
2d ID.	202 2n(2P0)3d	34 109	9	$179/090 \pm r$		$\overline{\overline{3d}}'$ ³ F	$2s$ $2p^2(^2P)3d$	$3d^{\prime\prime\prime}$ $^3{ m F}$	2, 3, 4	2190790	
$\begin{array}{c} 3d {}^{3}\mathrm{D}_{2} \\ 3d {}^{3}\mathrm{D}_{2} \\ {}^{3}\mathrm{D}_{3} \end{array}$	$2s^{2} 2p(^{2}P^{\circ})3d$ $2s^{2} 2p(^{2}P^{\circ})3d$	3 <i>d</i> ³ D	1 2 3	1808160 1809080 1811480	$920 \\ 2400$	$4d \ {}^{3}{ m D}_{2} \ {}^{3}{ m D}_{3}$	2s² 2p(²P°)4d	4d ³D°	$\begin{array}{c}1\\2\\3\end{array}$	2264270 2266400	2130
3d ³ P ₂ ³ P ₁ ³ P ₀	2s² 2p(²P°)3d	3d ³P°	2 1 0	1815690 1816940 1817670	$-1250 \\ -730$		Si x (² P [°] _½)	Limit	 	2838460	

March 1948.

Si ix Observed Terms*

Config. $1s^2+$				Observed Terms				
2s ² 2p ²	$\Big\{_{2p^2 \ {}^1\!\mathrm{S}}$	$2p^2$ $^3\mathrm{P}$	$2p^2$ ¹ D					
$2s \ 2p^3$	$igg\{ {2p^3 \ {}^5 ext{S}^{\circ} \ 2p^3 \ {}^3 ext{S}^{\circ} \ } \$	${2p^3}{}^3{ m P^o}\ {2p^3}{}^1{ m P^o}$	${2p^3\ {}^3{ m D}^{ m o}}\over 2p^3\ {}^1{ m D}^{ m o}}$					
		ns $(n \ge 3)$		$np \ (n \ge 3)$		$nd (n \ge 3)$	\$)	
$2s^2 \ 2p(^2\mathrm{P^o})nx$	{	38 3P° 38 1P°			3d 3P° 3d 1P°	3, 4 <i>d</i> ³ D° 3 <i>d</i> ¹ D°	${3d \atop 3d}$	3F° 1F°
$2s \ 2p^2(^4\mathrm{P})nx$	{	38 ⁵P		3p ³ S° 3p ³ D°	3d ⁵P 3d ³P	$3d$ $^{3}\mathrm{D}$	3d	۶F
$2s \ 2p^2(^2D)nx'$	{		3s' 3D	3p' 1D° 3p' 1F°		3d′ 3D	3d'	۶F
$2s \ 2p^2(^2\mathbf{P})nx'''$							3d''	′ ³F

*For predicted terms in the spectra of the C I isoelectronic sequence, see Introduction.

(B I sequence; 5 electrons)

Ground state $1s^2 2s^2 2p {}^2P_{12}^{\circ}$

 $2p \ ^{2}P_{\frac{1}{2}}^{\circ}$ **3237400** cm⁻¹

Ferner has classified 29 lines in the range between 47 A and 57 A. He has kindly furnished his unpublished manuscript extending the analysis he published in 1941.

No intersystem combinations have been observed, as indicated by x in the table, but the absolute values of the doublet and quartet terms are determined from series. Extrapolated values are in brackets in the table.

The quartet terms are not all connected by observed combinations. Ferner's unit, 10^3 cm⁻¹, has here been changed to cm⁻¹.

REFERENCES

E. Ferner, Ark. Mat. Astr. Fys. (Stockholm) 28A, No. 4, p. 18 (1941). (T) (C L) E. Ferner, Ark. Mat. Astr. Fys. (Stockholm) 36A, No. 1, p. 30 (1948). (I P) (T) (C L)

Si x

Si x

Au	thor	Config.	Desig.	J	Level	Interval	Author	Config.	Desig.	J	Level	Interval
2p	$^{2}P_{1}$ $^{2}P_{2}$	$2s^2(^1\mathrm{S})2p$	$2p$ $^{2}\mathrm{P}^{\circ}$	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	0 6990	6990	3p' ² D ₃	2s 2p(3P°)3p	3 <i>p</i> ² D	$1\frac{1}{2}$ $2\frac{1}{2}$	2110260	
2p'	⁴ P ₁ ⁴ P ₂ ⁴ P ₃	2s 2p ²	2p² 4P	$egin{array}{c} 1^{1\!\!\!/2}_{1^2} \\ 1^{1\!\!\!/2}_{1^2} \\ 2^{1\!\!\!/2}_{1^2} \end{array}$	162060 + x 164500 + x 168090 + x	2440 3590	$3d' \ {}^{4}D_{12}$ ${}^{4}D_{3}$ ${}^{4}D_{4}$	2s 2p(3P°)3d	3 <i>d</i> 4D°	$\left\{\begin{array}{c} \frac{1}{12} \\ 1\frac{1}{2} \\ 2\frac{1}{2} \\ 3\frac{1}{6} \end{array}\right.$	$ \left. \right\} \begin{array}{c} 2151950 + x \\ 2152370 + x \\ 2154860 + x \end{array} $	420 2490
2p'	²D	2s 2p ²	$2p^2$ $^2\mathrm{D}$	$\left\{ egin{array}{c} 1^{1\!\!\!\!/_2} \\ 2^{1\!\!\!\!/_2} \end{array} ight.$	287830		$3d' {}^{2}\mathrm{D}_{2}$	2s 2p(3P°)3d	3d 2D°	$1\frac{1}{2}$	2153680	760
2p'	$^{2}\mathrm{S}_{1}$	2s 2p ²	$2p^2$ ² S	1/2	367650		$^{2}D_{3}$				2154440	
2p'	$^{2}P_{1}$	2s 2p ²	$2p^2$ $^2\mathrm{P}$	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	389740 394000	4260	3s' 2P	2s 2p(1P°)3s	3s′ ²P°	$\left\{ \begin{array}{c} \frac{1}{1} \\ 1\frac{1}{2} \\ \end{array} \right\}$	}2158290	
2p''	4S ₂	2p ³	$2p^3$ $^4\mathrm{S}^{\mathrm{o}}$	11/2	510190+x		$3d'$ ${}^4\mathrm{P}_3$	2s 2p(3P°)3d	3 <i>d</i> ⁴P°	$egin{array}{c c} 2^{1\!\!\!/_2} \\ 1^{1\!\!\!/_2} \\ 1^{1\!\!\!/_2} \\ 1^{1\!\!\!/_2} \end{array}$	2161950+x	
2 <i>p''</i>	$^{2}\mathrm{D}_{3}$ $^{2}\mathrm{D}_{2}$	2p³	$2p^3$ $^2\mathrm{D}^\circ$	$\begin{array}{c c} 2\frac{1}{2} \\ 1\frac{1}{2} \\ 1\frac{1}{2} \end{array}$	574360 574600	-240	$3d'~^2{ m F_3}_{^2{ m F_4}}$	$2s \ 2p(^{3}P^{\circ})3d$	$3d$ $^2\mathrm{F}^{\mathrm{o}}$	$2\frac{1_2}{3\frac{1}{2}}$	2188570 2193140	4570
2 <i>p''</i>	${}^{2}\mathrm{P}_{1}$ ${}^{2}\mathrm{P}_{2}$	2p ³	2p² ₂P°	$1^{1/2}_{1^{1/2}_{2}}$	[644560] [644940]	380	${3d'}^{\ 2}{ m P_2}_{\ 2}{ m P_1}$	$2s 2p(^{3}P^{\circ})3d$	$3d$ $^2P^{\circ}$	$1\frac{12}{12}$	2199190 2201770	-2580
3d	${}^{2}\mathrm{D}_{2}$ ${}^{2}\mathrm{D}_{3}$	$2s^2(^1\mathrm{S})3d$	$3d$ $^{2}\mathrm{D}$	$1\frac{12}{212}$	1979260 1979730	470	$\overline{3d}'$ ² F	2s 2p(1P°)3d	$3d'$ $^2\mathrm{F}^{\mathrm{o}}$	$\left\{ egin{array}{c} 2\frac{1}{2} \ 3\frac{1}{2} \ 3\frac{1}{2} \end{array} ight.$	}2299860	
38'	⁴ P ₁ ⁴ P ₂	2s 2p(3P°)3s	3s 4P°	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	1993860 + x 1996180 + x	2320	$\overline{3d}^{\prime}$ $^{2}\mathrm{D}_{2}$ $^{2}\mathrm{D}_{3}$	$2s \ 2p(^{1}P^{\circ})3d$	3d' 2D°	$1\frac{1}{2}{2\frac{1}{2}}{2\frac{1}{2}}$	2310230 2311360	1130
	⁴ P ₃			$2rac{1}{2}$	2000570+x	4390	$3d'' {}^{4}P_{3}$	$2p^2(^3P)3d$	3 <i>d''</i> ⁴P	$2\frac{1}{2}$	2445320 + x	-1540
3s′	$^{2}P_{2}$	2s 2p(3P°)3s	3s 2P°	$1\frac{1}{2}$ $1\frac{1}{2}$	2035810		*P ₂			$1\frac{72}{1/2}$	2440800+x	
3 <i>p'</i>	$^{2}P_{2}$	2s 2p(3P°)3p	3 <i>p</i> ² P	$1\frac{1}{2}{1\frac{1}{2}}{1\frac{1}{2}}$	2066600			Si XI (1S ₀)	Limit		3237400	

August 1947.

159

Z = 14

I. P. 401.3 volts

Si x Observed Terms*

$\begin{array}{c} \text{Config.} \\ 1s^2 + \end{array}$		Observed Terms								
$2s^2({}^1S)2p$ $2s 2p^2$	$\Big\{_{2p^2 \ ^2\mathrm{S}}$	$2p$ $^2\mathrm{P}^\circ$ $2p^2$ $^4\mathrm{P}$ $2p^2$ $^2\mathrm{P}$	$2p^2$ ² D							
$2p^3$	$\left\{ 2p^3 \ {}^4\mathrm{S}^\circ \right\}$	2p³ 2P°	2p³ 2D°	1	1					
		ns $(n \ge 3)$		$np (n \ge 3)$		$nd (n \ge 3)$				
$2s^{2}(^{1}S)nx$ $2s 2p(^{3}P^{\circ})nx$ $2s 2p(^{1}P^{\circ})nx'$ $2p^{2}(^{3}P)nx''$	{	38 4P° 38 2P° 38' 2P°	-	3p 2P 3p 2D	3d 4P° 3d 2P°	3d 2D 3d 4D° 3d 2D° 3d 2F° 3d' 2D° 3d' 2F° 3d' 4P 3d' 3d'				

*For predicted terms in the spectra of the BI isoelectronic sequence, see Introduction.

Si XI

(Be I sequence; 4 electrons)

Ground state 1s² 2s² ¹S₀

2s² ¹S₀ 3840470 cm⁻¹

Ferner has published a preliminary analysis giving the classifications of 12 lines in the region between 43 A and 49 A. He has recently extended the earlier work and generously furnished his revised term list in advance of publication, to be used in compiling the list below. No intersystem combinations have been observed, as indicated by x in the table.

The unit adopted by Ferner, 10^3 cm⁻¹, has here been changed to cm⁻¹.

REFERENCES

E. Ferner, Ark. Mat. Astr. Fys. (Stockholm) 28A, No. 4 p. 20 (1941). (T) (C L) E. Ferner, Ark. Mat. Astr. Fys. (Stockholm) 36A, No. 1, p. 27 (1948). (I P) (T) Z = 14

I. P. 476.0 volts

Si XI

Author	Config.	Desig.	J	Level	Inter- val	Author	Config.	Desig.	J	Level	Inter- val
23 ¹ S ₀	2s ²	28 ² 1S	0	0		$3d$ $^{1}D_{2}$	2s(2S)3d	3 <i>d</i> ¹ D	2	2361010	
2p ³ P ₀ ³ P ₁ ³ P ₂	$2s(^2S)2p$	2 <i>p</i> ³P°	$\begin{array}{c} 0 \\ 1 \\ 2 \end{array}$	$ \begin{array}{r} 169140 + x \\ 171560 + x \\ 176810 + x \end{array} $	$\begin{array}{c} 2420\\5250\end{array}$	3p' ³ D ₃	2p(2P°)3p	3p 3D	$\begin{array}{c}1\\2\\3\end{array}$	2486810+x	
2p ¹ P ₁	$2s(^2\mathrm{S})2p$	2 <i>p</i> ¹ P°	1	329400		$3d'$ $^1\mathrm{D}_2$	$2p(^{2}\mathrm{P}^{\circ})3d$	3 <i>d</i> ¹ D°	2	2523240	
2p' ³ P ₀	$2p^{2}$	2 p² ³P	0	443020 + x 445910 + x	2890	$3p'$ $^{1}D_{2}$	$2p(^{2}\mathrm{P}^{\circ})3p$	3 <i>p</i> ¹ D	2	2532140	
³ P ₂			2	450470 + x	4560	2 <i>d/</i> 3D.	$2p(^{2}\mathrm{P}^{\circ})3d$	3d 3D°	1	05/69101 -	
$2p' \ ^1D_2$	2p ²	$2p^{2}$ ¹ D	2	493400		$^{3}D_{3}$			3	2540810+x 2548970+x	2160
2p' ¹ S ₀	2p ²	$2p^2$ ¹ S	0	607630		3d' ³ P ₂	$2p(^{2}\mathrm{P}^{\circ})3d$	3d ³ P°	2	2556220+x	
3s 1S0	2s(2S)3s	3s 1S	0	2241480					0		
3p ¹ P ₁	$2s(^2\mathrm{S})3p$	3 <i>p</i> ¹ P°	1	2285040		3d′ 1F3	$2p(^{2}\mathrm{P}^{\circ})3d$	3 <i>d</i> ¹ F°	3	2581130	
3d ³ D ₂ ³ D ₃	2s(2S)3d	3d 3D	1 2 3	2331390 + x 2331940 + x	550		Si XII (²S½)	Limit		3840470	

August 1947.

Si XI OBSERVED TERMS*

Config. 1s ² +		Observed Terms							
2s ²	2s ² 1S								
2s(2S)2p	{	2p ³ P° 2p ¹ P°							
2 <i>p</i> ²	$\left\{ \begin{array}{c} _{2p^{2}} {}^{1}\mathrm{S} \end{array} \right.$	2p² ³P	2p² 1D						
	ns $(n \ge 3)$	np (n	≥ 3)		$nd \ (\geq 3)$				
$2s(^2\mathrm{S})nx$	$\begin{cases} 3s & 1S \end{cases}$	3p 1P°			3d 3D 3d 1D				
$2p(^{2}P^{\circ})nx$	{		3p ³ D 3p ¹ D	3 <i>d</i> ³P°	3d 3D° 3d 1D°	3d ¹F°			

*For predicted terms in the spectra of the Be I isoelectronic sequence, see Introduction.

(Li I sequence; 3 electrons)

Ground state 1s2 2s 2S1/2

28 2S1/2 4221460 cm⁻¹

The classifications of three lines in the region 44 A to 45 A were published by Ferner in 1941, but no terms were given. His absolute term values based on later work, and kindly furnished in advance of publication, have been used in compiling the present list. Observations of the resonance lines have not been reported.

Ferner's unit, 10^3 cm⁻¹, has here been changed to cm⁻¹.

REFERENCES

E. Ferner, Ark. Mat. Astr. Fys. (Stockholm) 28A, No. 4 p. 21 (1941). (C L) E. Ferner, Ark Mat. Astr. Fys. (Stockholm) 36A, No. 1, p. 25 (1948). (I P) (T)

Config.	Desig.	J	Level	Interval
28	2s 2S	1⁄2	0	
2p	2 <i>p</i> ²P°	$1^{1/2}_{1^{1/2}_{2}}$	191900 200290	8390
38	3s 2S	1/2	2390580	
3 d	3d 2D	$1^{1/_2}_{1/_2}$ $2^{1/_2}_{1/_2}$	$2463540 \\ 2464530$	990
				
Si x111 (1S ₀)	Limit		4221460	

Si XII

August 1947.

I. P. 523.2 volts

PHOSPHORUS

РІ

15 electrons

Ground state $1s^2 2s^2 2p^6 3s^2 3p^3 {}^{4}S^{\circ}_{1\frac{1}{2}}$

$3p^3 \, {}^4S^{\circ}_{1_{2_2}} \, 88560 \, \, \mathrm{cm}^{-1}$

Eleven terms have been found by Kiess, who extended earlier work on this spectrum by making the important observations in the infrared to 10813 A. Robinson observed the ultraviolet region as far as 1323 A and was able to extend the analysis.

The present list is taken from Robinson's paper, except for the term 4p ²P°, which has been adjusted to fit the observations by Kiess.

Intersystem combinations connecting the doublet and quartet terms have been observed.

There is not complete agreement about the configuration assignments of $3d {}^{2}P$ and $3p^{4} {}^{2}P$, and those entered in the table are tentative.

REFERENCES

C. C. Kiess, Bur. Std. J. Research 8, 393, RP425 (1932). (I P) (T) (C L)

H. A. Robinson, Phys. Rev. 49, 297 (1936). (I P) (T) (C L)

W. F. Meggers, J. Opt. Soc. Am. 36, 431 (1946). (Summary hfs)

_		PI			PI				
Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
3s ² 3p ³	3p ³ 4S°	1½	0.0		$3s^2 3p^2(^3\mathrm{P})4p$	4p 2P°		67971.1 68088.3	117. 2
3s² 3p³	$3p^3 {}^2\mathrm{D}^{\circ}$	$1\frac{1}{2}$ $2\frac{1}{2}$	11361.7 11376.5	14. 8	3s ² 3p ² (³ P)4p	4p 28°	1/2	68473.2	
3s² 3p²	3 <i>p</i> ³ ₂P°	$1^{\frac{1}{2}}_{\frac{1}{2}}$	18722.4 18748.1	25. 7	3s² 3p²(³P)3d	3 <i>d</i> ² F	$2\frac{1}{2}$ $3\frac{1}{2}$	70391. 3 70690. 0	298. 7
3s ² 3p ² (³ P)4s	4s 4P	$\begin{array}{c} \frac{1/2}{11/2}\\ 21/2\\ 21/2\end{array}$	55939. 23 56090. 59 56339. 68	151. 36 249. 09	$3s^2 3p^2(^3\mathrm{P}) 3d$	3d 4D	$ \begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \\ 2\frac{1}{2} \\ 3\frac{1}{6} \end{array} $	70637.5 70778.6	141. 1
3s² 3p²(3P)4s	48 ² P	$1^{\frac{1}{2}}_{\frac{1}{2}}$	57876. 8 58174. 4	297. 6	3s 3p4	3p4 2D	$2\frac{1}{2}$	71168.3 71202_6	-34.3
3s 3p4	3p4 4P	$\begin{array}{c} 2\frac{1}{2} \\ 1\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array}$	59533. 4 59713. 6 59818. 6	-180.2 -105.0	3s² 3p²(³P)3d	3d 4P	$\begin{array}{c} 1/2 \\ 2\frac{1}{2} \\ 1\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array}$	$\begin{array}{c} 72386. \ 6\\ 72494. \ 6\\ 72571. \ 4\end{array}$	-108.0 -76.8
3s ² 3p ² (¹ D)4s	4s' 2D	$\left\{ egin{array}{c} 1^{1\!\!\!/2} \\ 2^{1\!\!\!/2} \end{array} ight.$	} 65156.6		3s ² 3p ² (³ P)3d	3 <i>d</i> ² P	1/2 1/2 1/2	72741.9 72883.5	141. 6
3s ² 3p ² (³ P)4p	4p 4D°	$ \begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \\ 2\frac{1}{6} \end{array} $	65373.6 65450.2 65585 1	76. 6 134. 9	3s 3p4	$3p^{4}$ ² S	1/2	72943. 3	
			65787.3	202. 2	$3s^2 3p^2(^3P) 3d$	3d ² D?	$1\frac{1}{2}$ $2\frac{1}{2}$	73248. 1	
3s² 3p²(³P)4p	4 <i>p</i> 4P°	$\begin{array}{c c} & \frac{1}{2} \\ & 1\frac{1}{2} \\ & 2\frac{1}{2} \end{array}$	66343.4 66360.2 66544.1	16. 8 183. 9	3s ² 3p ² (3P)5s	5s 4P	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	75064. 6? 75211. 3? 75523 4?	146. 7 322. 1
$3s^2 3p^2(^3\mathrm{P})4p$	4p 2D°	$1\frac{1}{2}$ $2\frac{1}{2}$	66813. 1 66870. 2?	57. 1			272		_
$3s^2 \ 3p^2(^3P)4p$	4p 4S°	1½	66834. 5		Рп (³Р₀)	Limit		88560	
38 3p ⁴	3p4 2P	$1\frac{1}{2}$ $\frac{1}{2}$	67908. 6 68126. 2	-217.6					

November 1947.

Z = 15

I. P. 11.0 volts

Config. $1s^2 2s^2 2p^6 +$		Observed Terms									
3s² 3p³	$\left\{ {{3{p^3}} 4{{\mathbb{S}}^\circ }} \right\}$	3p ³ 2P° 3n4 4P	3p³ ²D°								
38 3p4	${}_{3p^{4}}{}^{2}S$	$3p^4 2P$	$3p^4$ ² D						1		
		ns ($n \ge 4$)			$np (n \ge 4)$			$nd (n \ge 3)$			
3s ² 3p ² (*P)nx	{	4, 58 ⁴ P 4s ² P		4p 4S° 4p 2S°	4p 4P° 4p 2P°	4p 4D° 4p 2D°	3d 4P 3d 2P	3d 4D 3d 2D?	3d 2F		
3s ² 3p ² (¹ D)nx'			4s' 2D								

*For predicted terms in the spectra of the P I isoelectronic sequence, see Introduction.

Рп

(Si I sequence; 14 electrons)

Ground state $1s^2 2s^2 2p^6 3s^2 3p^2 {}^{3}P_0$

3p² ³P₀ 158550.0 cm⁻¹

The terms are mostly from the 1936 paper by Robinson, who has revised and extended the earlier analysis by Bowen. The singlet and triplet terms are well connected by intersystem combinations.

In his later paper Robinson adds two quintet terms, and makes a few corrections to his earlier list which have been incorporated here. The quintet terms are not connected by observation with the rest, as indicated by the uncertainty x and brackets denoting that the relative position of $3p^3$ ⁵S^o is estimated.

REFERENCES

I. S. Bowen, Phys. Rev. 29, 510 (1927). (T) (C L)
S. Tolansky, Zeit. Pkys. 74, 336 (1932). (hfs)
H. A. Robinson, Phys. Rev. 49, 297 (1936). (I P) (T) (C L)
H. A. Robinson, Phys. Rev. 51, 726 (1937). (T)

164

Z = 15

I. P. 19.65 volts

Рп	
----	--

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
3s² 3p²	3p ² ³ P	$\begin{array}{c} 0 \\ 1 \\ 2 \end{array}$	0. 0 166. 6 470. 3	166. 6 303. 7	3s ² 3p(² P°)4d	4d 3D°	3 2 1	127333.6 127890.2 127935.7	-556.6 -45.5
$3s^2 3p^2$	$3p^2$ ¹ D	2	8882.6		$3s^2 3p(^2\mathrm{P^o}) 4d$	4d ³P°	0	127368.7	232. 5
$3s^2 3p^2$	$3p^{2}$ ¹ S	0	21576. 4				1 2	127601.2 127951.1	349. 9
3s 3p ³	$3p^3$ ⁵ S°	2	[52450. 0]+x		$3s^2 3p(^2P^\circ)4d$	4 <i>d</i> ¹ D°	2	129612.0	
3s 3p ^s	$3p^3 \ ^3D^\circ$	1	65251.8	21. 1	$3s^2 3p(^2\mathrm{P^o}) 5p$	1 (5p 3S?)	1	129625. 5?	
		3	65307.7	34. 8		2	2	130239.6	
3s 3p ^s	3p ³ ³ P ^o	2	76764.9	-48.3		3	1, 2	130826. 2	
			76824.4	-11.2	$3s^2 3p(^2\mathrm{P^o}) 5p$	4 (5p ¹ D?)	2	130913. 9	
3s 3p ³	3p ³ 1D°	2	77710. 8			5	2	130949.6	
3s² 3p(²P°)4s	48 ³ P°	0	86599.0	146. 1	$3s^2 \ 3p(^2\mathrm{P^o})5p$	6 (5p ¹ P?)	1	130970.0	
		$\begin{vmatrix} 1\\2 \end{vmatrix}$	87126.1	381. 0		7	2	131320. 5	
3s² 3p(²P°)4s	4s ¹ P°	1	88893. 5			8	1, 2	131601. 9	
3s 3p ³	3p³ ¹P°	1	102798.4			9	2	131633. 1	
$3s^2 3p(^2\mathrm{P^o}) 4p$	4p 3D	1	103166. 7	173.5		10	?	131652. 1?	
			103668. 9	328. 7	3s² 3p(²P°)4d	4d ¹ P°	1	131729. 1	
$3s^2 \ 3p(^2\mathrm{P^o}) 3d$	3d 3P°	2	103632.3	-123.1	$3s^2 3p(^2\mathrm{P^o})4d$	4 <i>d</i> ¹ F°	3	131764.4	
			103755. 4 104219?	-464	$3s^2 \ 3p(^2\mathrm{P^o})4f$	11 (4f ¹ D?)	2	132082. 4	
$3s^2 3p(^2\mathrm{P^o}) 3d$	3d ³ D°	1	103935.8	117.4		12	2, 3	132134. 1	
		3	104101.4	48. 2		13	2	132163. 6	
$3s^2 3p(^2\mathrm{P^o}) 4p$	4p 3P	0	105225.5	78.1		14	2	132206. 9	
		$\begin{vmatrix} 1\\2 \end{vmatrix}$	105550. 9	247. 3	$3s^2 3p(^2\mathrm{P^o})4f$	15 (4f ¹ F?)	3	132236. 0	
$3s^2 3p(^2\mathrm{P^o}) 3d$	3 <i>d</i> ¹ D°	2	105963. 1			16	2, 3	132354. 7	
$3s^2 3p(^2\mathrm{P^o}) 4p$	4p 3S	1	106002.5			17	1	132371. 2	
$3s^2 \ 3p(^2\mathrm{P^o}) 4p$	4 <i>p</i> ¹ D	2	107924. 2			18	2	132397.0	
$3s^2 3p(^2\mathrm{P^o}) 3d$	3 <i>d</i> ¹ P°	1	108371.8		$3s^2 3p(^2\mathrm{P}^\circ)5p$	19 (5p ¹ S?)	0, 1	132641. 5?	
$3s^2 3p(^2\mathrm{P^o}) 4p$	4 <i>p</i> ¹ P	1	108417.4			20	1	133418. 8?	
3s 3p ³	3 <i>p</i> ³ 3S°	1	110254.9		3s ² 3p(² P°)6s	6s 3P°	0	137433	53
	2°	2, 3	110456.9?				$\begin{vmatrix} 1\\2 \end{vmatrix}$	137486	514
$3s^2 3p(^2\mathrm{P^o}) 4p$	4p 1S	0	111114. 8		3s ² 3p(² P°)6s	6s 1P°	1	138058.4	
3s ² ¦3p(² P°)5s	58 ³ P°	0 1 2	123345.4 123456.7 123892.0	111. 3 435. 3	3s² 3p(²P°)5d	5d ³P°	$\begin{array}{c} 0\\ 1\\ 2\end{array}$	139091. 9	
3s ² 3p(² P°)5s	58 ¹ P°	1	124433. 8		3s ² 3p(² P°)6d	6d ³ P°	0		
$3s^2 3p(^2\mathrm{P^o})4d$	4d ³ F ^o	2	124955.9	174 7			$\begin{vmatrix} 1\\2 \end{vmatrix}$	145519.8	
		34	125130.6 125392.7	262. 1	P III (² P ^o ₅₅)	Limit		158550.0	
					3s 3p ² (4P)3d	3 <i>d</i> ⁵P	3 2 1	$\begin{array}{c} 160018. \ 2+x \\ 160144. \ 7+x \\ 160235. \ 2+x \end{array}$	-126.5 -90.5
		1		1					1

October 1947.

Config. 1s ² 2s ² 2p ⁶ +					Observed 7	erms.			
3s ² 3p ²	$\left\{_{3p^2}\right\}$ 'S	3 <i>p</i> ² ³₽	3p² 1D						
3s 3p ³	$\begin{cases} 3p^3 \ {}^5\mathrm{S}^{\circ} \\ 3p^3 \ {}^3\mathrm{S}^{\circ} \end{cases}$	${3p^3}{^3{ m P}^{ m o}} \ {3p^3}{^1{ m P}^{ m o}}$	${}^{3p^3}_{3p^3}{}^{1}\mathrm{D}^{\circ}_{3p^3}$						
		ns $(n \ge 4)$			$np (n \ge 4)$			$nd (n \ge 3)$	
3s ² 3p(² P ^o)nx 3s 3p ² (⁴ P)nx	{	4–6s ³ P° 4–6s ¹ P°		4p ³ S 4p ¹ S	4p ³ P 4p ¹ P	4p ³ D 4p ¹ D	3–6d ³ P° 3, 4d ¹ P° 3d ⁵ P	3, 4d 3D° 3, 4d 1D°	4d ³ F° 4d ¹ F°

*For predicted terms in the spectra of the Si I isoelectronic sequence, see Introduction.

Рш

(Al 1 sequence; 13 electrons)

Ground state $1s^2 2s^2 2p^6 3s^2 3p {}^{2}P_{\frac{1}{2}}^{\circ}$

 $3p \, {}^{2}\mathrm{P}_{\frac{1}{2}}^{\circ} \, 243290.0 \ \mathrm{cm}^{-1}$

I. P. 30.156 ± 0.003 volts

Z = 15

The terms have been taken from Robinson, who has revised and extended the earlier work on analysis. An evident misprint has been corrected here, i. e., the absolute term values of 4f ⁴D should have been printed as negative.

Robinson has classified two lines as the intersystem combination $3p {}^{2}P^{\circ}-3p^{2} {}^{4}P$. He remarks that these must be considered as tentative classifications, but that they are consistent with the analogous transition in Al I.

REFERENCES

R. A. Millikan and I. S. Bowen, Phys. Rev. 25, 600 (1925). (T) (C L) I. S. Bowen, Phys. Rev. 39, 13 (1932). (T) (C L) H. A. Robinson, Phys. Rev. 51, 726 (1937). (I P) (T) (C L) Рш

Рш

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
3s²(1S)3p	3 <i>p</i> ² P°	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	0. 0 559. 6	559. 6	3s 3p(3P°)4s	48 4P°	$\frac{\frac{1}{2}}{\frac{1}{2}}$	184453.4 184639.3 185045-2	185. 9 405. 9
38 3p ²	3p ² ⁴ P	$\begin{array}{c c} & \frac{1}{2} \\ & 1\frac{1}{2} \\ & 2\frac{1}{2} \end{array}$	$\begin{array}{c} 56919.\ 3\\ 57125.\ 8\\ 57454.\ 5\end{array}$	206. 5 328. 7	3s 3p(³P°)3d	²1°		185045. 2	
3s 3p ²	$3p^2 {}^2\mathrm{D}$	$1\frac{1}{2}$ $2\frac{1}{2}$	74915. 1 74944. 6	29. 5	3s 3p(3P°)4s	48 ² P°	$1\frac{1}{2}{1\frac{1}{2}}$	186920. 7	
$3s$ $3p^2$	$3p^3$ ² S	1⁄2	100201. 2		$3s^2(^1\mathrm{S})5p$	5p ² P°	$1\frac{1}{2}$ $1\frac{1}{2}$	191639.5	
3s 3p ²	$3p^2 {}^2\mathrm{P}$	$1^{\frac{1}{2}}_{1\frac{1}{2}}$	1090 3 5. 7 109409. 7	374. 0	$3s^2(^1S)5d$	$5d$ $^2\mathrm{D}$	$\left\{ egin{array}{c} 1^{1\!\!\!\!/2} \\ 2^{1\!\!\!\!/2} \end{array} ight.$	} 200442.8	
$3s^2(^1\mathrm{S})3d$	3d ² D	$1\frac{1}{2}$	116873.6 116884.9	11. 3	$3s^2(^1\mathrm{S})6s$	6s 2S	1/2	201103. 4	
3s²(1S)4s	4s 2S	1/2	117834. 5		$3s^2(^1\mathrm{S})5f$	5f ² F ^o	$\left\{egin{array}{c} 2^{1\!\!/_2} \ 3^{1\!\!/_2} \end{array} ight.$	} 202906.4	
$3s^2(^1\mathrm{S})4p$	4 <i>p</i> ² P°	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	141375. 7 141512. 8	137. 1	$3s^2(^1\mathrm{S})5g$	5g 2G	$\left\{\begin{array}{c} 3\frac{1}{2} \\ 4\frac{1}{2} \end{array}\right.$	203782. 7	
3p ³	$3p^3 \ ^2D^\circ$	$1\frac{1}{2}{2\frac{1}{2}}$	147322.4 147384.3	61. 9	3s 3p(3P°)4p	4 <i>p</i> 4P	$\frac{\frac{1}{2}}{\frac{1}{2}}$	209938. 9 210055. 8	116. 9 250. 3
$3p^3$	$3p^3$ ${}^4\mathrm{S}^{\circ}$	1½	159714.6		$3s 3n(^{3}P^{\circ})4n$	4n ⁴ S		210306.1	
$3p^{3}$	$3p^{3} {}^2\mathrm{P}^{\circ}$	$\begin{array}{c c} 1^{1/2}_{1/2}\\ 1^{1/2}_{1/2}\end{array}$	170107. 2 170167. 0	-59.8	$3s^2(^1S)6d$	6d 2D	$\begin{cases} 1\frac{1}{2} \\ 2\frac{1}{2} \end{cases}$	213982. 8	
$3s^2(^1\mathrm{S})4d$	4d ² D	$\left\{ egin{array}{c} 1^{1\!\!\!/_2} \\ 2^{1\!\!\!/_2} \end{array} ight.$	} 172429. 2		$3s^2(^1S)6f$	6f ² F°	$\begin{cases} 2\frac{1}{2} \\ 3\frac{1}{2} \end{cases}$	215402.0	
3s 3p(3P°)3d	3d 4P°	$\begin{array}{c c} 2\frac{1}{2} \\ 1\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array}$	173813. 4 173988. 4 174106. 2	$ \begin{array}{c} -175.0 \\ -117.8 \end{array} $	3s²(1S)6g	6g 2G	$\left\{\begin{array}{c} 3\frac{1}{2} \\ 4\frac{1}{2} \end{array}\right.$	215863. 2	
3s 3p(3P°)3d	3d 4D°	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	175260. 8 175314. 1	53. 3 62. 5	3s ² (1S)7g	7g 2G	$\left\{ egin{array}{c} 3^{1\!\!\!/_2} \\ 4^{1\!\!\!/_2} \end{array} ight.$	223131. 0	
		$ \begin{array}{c c} 2\frac{1}{2} \\ 3\frac{1}{2} \end{array} $	175376.6 175427.2	50. 6	P IV (1S ₀)	Limit		243290.0	
$3s^2(^1\mathrm{S})5s$	5s 2S	1/2	176041. 0		3s 3p(3P°)4f	4f 4D	$\frac{3\frac{1}{2}}{2^{\frac{1}{2}}}$	248168.4 248199.4	-31.0
$3s^2(^1S)4f$	$4f {}^{2}\mathbf{F}^{\circ}$	$\left\{\begin{array}{c} 2\frac{1}{2} \\ 3\frac{1}{2} \end{array}\right.$	} 178653. 2					$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{vmatrix} -29.0 \\ -37.1 \end{vmatrix}$

September 1947.

P III OBSERVED TERMS*

$\begin{array}{c} \text{Config.}\\ 1s^2\ 2s^2\ 2p^6+\end{array}$		Observed Terms									
3s ² (1S)3p 3s 3p ²	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$3p^2$ ² D									
$3p^3$	$\left\{\begin{array}{cc} 3p^{3} \ {}^{4}\mathrm{S}^{\circ} \\ & 3p^{3} \ {}^{2}\mathrm{I} \end{array}\right.$	° 3p ³ 2D°									
	$ns (n \ge 1)$	£)	np	(<i>n</i> ≥ 4)	nd	$(n \ge 3)$	nf (n≥4)	ng $(n \ge 5)$		
3s ² (¹ S)nx 3s 3p(³ P°)nx	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0	4 <i>p</i> 4S	4–5p ² P° 4p ⁴ P	3d 4P°	3–6d ² D 3d ⁴ D°	4f 4D°	4–6f ² F°	5–7g ² G		

*For predicted terms in the spectra of the Al I isoelectronic sequence, see Introduction.

(Mg I sequence; 12 electrons)

Ground state 1s² 2s² 2p⁶ 3s² ¹S₀

3s² ¹S₀ 414312.4 cm⁻¹

The analysis published by Bowen in 1932 has been extended by Robinson to include a total of 105 classified lines in the range from 283 A to 4291 A.

Intersystem combinations connecting the singlet and triplet terms have been observed. Robinson remarks that the observed combination $3s^2 {}^{1}S_0 - 3p {}^{3}P_1^{\circ}$ obeys the irregular doublet law very well.

REFERENCES

I. S. Bowen, Phys. Rev. **39**, 10 (1932). (T) (C L) H. A. Robinson, Phys. Rev. **51**, 727 (1937). (I P) (T) (C L)

P	IV
---	----

P IV

I. P. 51.354 ±0.013 volts

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
382	3s ² 1S	0	0. 0		3 s(2S)4d	4 <i>d</i> ¹ D	2	296757.8	
$3s(^2S)3p$	3 <i>p</i> ³₽°	0	67911.6	227.4	$3p(^{2}P^{\circ})3d$	3 <i>d</i> ¹ P°	1	298327	
			68139.0	468.4	$3s(^2\mathrm{S})4f$	4 <i>f</i> ³F°	2	303115	235
$3s(^2S)3p$	3p ¹ P°	1	105189.9				4	303659	309
3s(2S)3d	3d ¹ D	2	158138. 2		3 s(2S)5s	58 ³ S	1	30 91 02. 4	
$3p^2$	$3p^2$ ³ P	0	164935	243	$3p(^{2}\mathrm{P}^{\circ})4s$	48 ¹ P°	1	313078	
		$\frac{1}{2}$	165646	468	3 s(2S)5s	5s 1S	0	3166 27. 0	
$3p^2$	$3p^2$ ¹ D	2	166144		$3p(^{2}\mathrm{P}^{\circ})4s$	48 ³ P°	0	317662 817018	286
$3s(^2S)3d$	3d 3D	3, 2, 1	189389. 0				2	31835 3	405
$3p^2$	$3p^2$ ¹ S	0	194588.5		$3s(^2S)5p$	5p 3P°	0	800058	
3s(2S)4s	48 ³ S	1	22 6888.6				2	320126	73
3s(2S)4s	48 ¹ S	0	233995. 0		$3s(^2\mathrm{S})5p$	5 <i>p</i> ¹ P°	1	<i>320063.5</i>	
$3s(^2S)4p$	4p ³ P°	$egin{array}{c} 0 \\ 1 \\ 2 \end{array}$	256544. 1 256602. 7 256751. 3	58. 6 148. 6	3s(2S)5d	5 <i>d</i> ³ D	$\begin{array}{c} 3\\ 2\\ 1\end{array}$	339635.5 339639.3 339642.1	-3.8 -2.8
$3s(^2S)4p$	4 <i>p</i> ¹ P°	1	257520. 2		$3s(^2S)5d$	5 <i>d</i> ¹ D	2	341004.8?	
$3p(^{2}P^{\circ})3d$	3d ¹ F°	3	276270?		3 s(² S)5 f	$5f$ ${}^3\mathrm{F}^{\circ}$	2	010000	
$3p(^{2}\mathrm{P}^{\circ})3d$	3d 1D°	2	276325?				4	343590	281
$3p(^{2}\mathrm{P}^{\circ})3d$	3d ³P°	2	281011	-240	$3s(^2\mathrm{S})5g$	5g ³ G	3, 4, 5	343688	
		0	281391	-140	$3s(^2S)6s$	68 ³ S	1	3 466 72	
$3p(^{2}P^{\circ})3d$	3d 3D°	$1 \\ 2 \\ 3$	283142 283239 283321	97 82	3s(2S)6p	6p ¹ P°	1	352125?	-
3s(2S)4d	4 <i>d</i> ⁸ D	1 2 3	293233. 5 293238. 9 293246. 6	5.4 7.7	P v (² S ₁)	Limit		414312.4	

July 1947.
	Observed Terms								
382	3s ² ¹ S								
3s(2S)3p	$\left\{egin{array}{cc} 3p & {}^3\mathrm{P}^{\circ}\ 3p & {}^1\mathrm{P}^{\circ}\end{array} ight.$								
$3p^2$	$\left\{\begin{array}{cc} 3p^2 \ {}^3P \\ 3p^2 \ {}^1S \\ \end{array} \right. 3p^2 \ {}^1D$								
	ns $(n \ge 4)$	$np (n \ge 4)$		$nd (n \ge 3)$	$nf (n \ge 4)$	$ng \ (n \ge 5)$			
3s(2S)nx	$\begin{cases} 4-6s & {}^{3}S \\ 4, 5s & {}^{1}S \end{cases}$	4, 5p ³ P° 4–6p ¹ P°		3–5d ³ D 3–5d ¹ D	4, 5f ³ F°	5g 3G			
$3p(^{2}P^{\circ})nx$	$\begin{cases} 4s {}^{3}P^{\circ} \\ 4s {}^{1}P^{\circ} \end{cases}$		3d ³ P° 3d ¹ P°	3d ³ D° 3d ¹ D° 3d ¹ F°					

* For predicted terms in the spectra of the Mg1 isoelectronic sequence, see Introduction.

P v

(Na I sequence; 11 electrons)

Ground state 1s² 2s² 2p⁶ 3s ²S_{1/2}

3s ²S_{1/2} 524462.9 cm⁻¹

The analysis is from Robinson who has extended the earlier work by Bowen and Millikan. The total number of classified lines is 38, of which 31 are in the range between 210 A and 1610 A. The absolute value of $6h \,{}^{2}\text{H}^{\circ}$ was extrapolated along the Na I isoelectronic sequence.

REFERENCE

H. A	. Robinson,	Phys.	Rev.	51,	732	(1937).	(I P)	(T)	(C L)	1
------	-------------	-------	------	-----	-----	---------	-------	-----	-------	---

P v					P v				
Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
38	3s 2S	1/2	0. 0		68	6s 2S	1/2	427157	
3p	3p 2P°	$1^{\frac{1}{2}}_{1^{\frac{1}{2}}_{2}}$	88651. 7 89446. 3	794. 6	6p	6p 2P°	1/2 1/2	435100.4	
3d	3d 2D	$1\frac{12}{212}$	204197. 1 204208. 3	11. 2	6d	6d 2D	$\left\{ \begin{array}{c} 1^{1\prime_{2}} \\ 2^{1\prime_{2}} \end{array} ight.$	} 445814	
48	4s 2S	1⁄2	272961. 1		6 <i>f</i>	6f ² F°	$\begin{cases} 2\frac{1}{2} \\ 3\frac{1}{2} \end{cases}$	} 448061.7	
4 <i>p</i>	4p 2P°	$1\frac{1}{2}$ $1\frac{1}{2}$	304161. 3 304445. 3	284. 0	6g	6 <i>g</i> ² G	$\begin{cases} 3\frac{1}{2} \\ 4\frac{1}{4} \end{cases}$	448216.8	
4d	4 <i>d</i> ² D	$1\frac{1}{2}$ $2\frac{1}{2}$	345398. 4 345403. 3	4. 9	6h	6h ² H°	$\begin{cases} \frac{41}{2} \\ 516 \end{cases}$) } 448247.4	
4 <i>f</i>	4f ² F ^o	$\left\{ egin{array}{c} 2^{1\!\!\!/_2} \ 3^{1\!\!\!/_2} \end{array} ight.$	} 352595.3		7s	7s 2S	1/2	455573	
58	5s 2S	1/2	376639. 2		7p	7 <i>p</i> ² P°	$\begin{cases} \frac{1}{2} \\ 1\frac{1}{6} \end{cases}$	460363	
5 <i>p</i>	5 <i>p</i> ² P°	1½ 1½	391101. 7 391242. 4	140. 7	7d	7d 2D	$\begin{cases} 1\frac{1}{2} \\ 2\frac{1}{2} \end{cases}$	$\left.\right\} 466893$	
5d	5d 2D	$\left\{\begin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \\ 2\frac{1}{2} \end{array}\right.$	} 410631. 1		7f	7f 2F°	$\begin{cases} 2\frac{1}{2} \\ 3\frac{1}{2} \end{cases}$	- } 468530	
5f	5f ² F°	$\left\{\begin{array}{c} 2\frac{1}{2} \\ 3\frac{1}{2} \end{array}\right.$	} 414458.7		8p	8 <i>p</i> ² P°	$\begin{cases} \frac{1}{2} \\ 1\frac{1}{2} \end{cases}$	476181	
5g	5g 2G	$\left\{\begin{array}{c} 3^{1\!\!/_2} \\ 4^{1\!\!/_2} \end{array}\right.$	} 414684.4						-
					P v1 (1S ₀)	Limit		524462. 9	

June 1947.

Z = 15

I. P. 65.007 ± 0.003 volts

(Nei sequence; 10 electrons)

Ground state 1s² 2s² 2p⁶ ¹S₀

2p⁶ ¹S₀ 1778250 cm⁻¹

The analysis is by Robinson who has generously furnished his manuscript in advance of publication. He has classified 23 lines in the range 57 A to 91 A, as combinations with the ground term. The term designations he assigns on the assumption of LS-coupling are given in the table under the heading "Author".

As for NeI, the *jl*-coupling notation in the general form suggested by Racah is introduced. A predicted value of $7d [1\frac{1}{2}]^{\circ}$, is entered in brackets in the table, since the observed combination is a blend.

REFERENCES

G. Racah, Phys. Rev. **61**, 537 (L) (1942). H. A. Robinson, unpublished material (June 1947). (I P) (T) (C L)

P VI

Author	Config.	Desig.	J	Level	Author	Config.	Desig.	J	Level
2p 1S ₀	2p6	2p ⁶ ¹ S	0	0	5s ¹ P ₁	$2p^{5}(^{2}\mathrm{P}^{\circ}_{22})5s$	5s′[½]°	0 1	1582860
3s 3P1	2p ⁵ (² P ₁ ³)3s	3s [1½]°	$2 \\ 1$	1093240	5d 3P.	$2p^{5}(^{2}\mathrm{P}_{1\!$	5d [½]°	0	1619690
3s ¹ P ₁	$2p^{\mathfrak{s}}({}^{2}\mathrm{P}_{\mathfrak{H}}^{\circ})3s$	3s′[½]°	0 1	1103180	5d ¹ P ₁	"	5d [1½]°	1	1616320
3d ³ P ₁	$2p^5(^2\mathrm{Pi_{15}})3d$	3d [½]°	0	1806610	$5d$ $^{3}D_{1}$	$2p^{5}(^{2}\mathrm{P}_{ m eta}^{\circ})5d$	5d'[1½]°	1	1622800
3d ¹ P ₁	"	3d [1½]°	1	1321910	6s ¹ P ₁	$2p^{s}(^{2}\mathrm{P}_{22}^{\circ})6s$	6s'[½]°	0 1	16509 30
$3d \ ^{2}D_{1}$	$2p^{\mathfrak{s}}({}^{2}\mathrm{P}^{\circ}_{\mathcal{H}})3d$	3d'[1½]°	1	1334210	6d ¹ P ₁	$2p^{5}(^{2}\mathrm{P}_{1\!$	6d [1½]°	1	16662 20
4s 3P1	$2p^{5}(^{2}\mathrm{P}_{15}^{\circ})4s$	4s [1½]°	$\frac{2}{1}$	1439840	$6d$ $^{3}D_{1}$	$2p^5(^2\mathrm{P}^{\circ}_{\!$	6d′[1½]°	1	1672940
48 ¹ P ₁	$2p^{5}(^{2}\mathrm{P}^{\circ}_{\mathcal{H}})4s$	4s'[½]°	0 1	1446740	$7d \ ^{1}P_{1}$	$2p^{5}(^{2}\mathrm{P_{i_{2}}})7d$	7d [1½]°	1	[1696180]
	$2p^5(^2\mathrm{P}_{15})^4d$	4d [½]°	0			2p ³ (² P ₃₂)7a		1	1702790
4d ³ P ₁ 4d ¹ P ₁	,,	4d [1½]°	1	1516530 1523460	$8d P_1$	$2p^5(^2\mathrm{Pis})8d$	$8d [1\frac{1}{2}]^{\circ}$	1	1715440
$4d$ $^{8}D_{1}$	$2p^{5}(^{2}\mathrm{P}^{\circ}_{\mathcal{H}})4d$	4d'[1½]°	1	1531210	$9d \ ^{1}P_{1}$	$2p^{5}(^{2}\mathrm{P}_{1\!$	9d [1½]°	1	1726160
5s *P1	$2p^{\mathfrak{s}}(^{2}\mathrm{P_{1}^{s}})5s$	5s [1½]°	$\frac{2}{1}$	1576040		$P \operatorname{vii} ({}^{2}P_{1})$	Limit		1778250
						I VII (-I ½)	Limit		1/00019

June 1947.

I. P. 220.414 volts

P VI

P VI OBSERVED LEVELS*

$\begin{array}{c} \text{Config.} \\ 1s^2 \ 2s^2 + \end{array}$	Observed Terms						
2p6	2p ⁶ 1S						
	$ns \ (n \ge 3)$	nd $(n \ge 3)$					
$2p^5(^2P^o)nx$	$\begin{cases} 3-5s & {}^{3}P^{\circ} \\ 3-6s & {}^{1}P^{\circ} \end{cases}$	3-5d ³ P° 3-7d ³ D° 3-9d ¹ P°					
	jl-Coupling Nota	tion					
	Obser	rved Pairs					
	$ns (n \ge 3)$	nd $(n \ge 3)$					
$2p^5(^2\mathrm{Pi}_{145})nx$	3-5s [1½]°	$\begin{array}{ccc} 3-5d & [\frac{1}{2}]^{\circ} \\ 3-9d & [\frac{1}{2}]^{\circ} \end{array}$					
$2p^{5}(^{2}\mathrm{P}^{\circ}_{\mathscr{Y}_{2}})nx'$	3-6s' [½]°	3-7d' [1½]°					

*For predicted levels in the spectra of the Ne 1 isoelectronic sequence, see Introduction.

P VII

(F 1 sequence; 9 electrons)

Ground state $ls^2 2s^2 2p^5 {}^2\mathrm{P}^{\circ}_{1_{2_2}}$

2p⁵ ²P^o_{11/2} **2124300** cm⁻¹

The analysis is by Robinson, who has generously furnished his manuscript in advance of publication. He has classified more than 70 lines in the region between 49 A and 223 A. Intersystem combinations connecting the doublet and quartet terms have been observed.

REFERENCE

H. A. Robinson, unpublished material (March 1948). (I P) (T) (C L)

I. P. 263.31 volts

Z = 15

172

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
$2s^2 2p^5$	2p ⁵ ² P°	$1\frac{12}{12}$	0 7268	-7268	2s ² 2p ⁴ (³ P)4s	48 ² P		1695720 1701380	5660
28 2p ⁶	2p ⁶ ² S	1/2	454732		$2s^2 2p^4(^{1}D)4s$	4s' 2D	$\left\{ \begin{array}{c} 2\frac{1}{2} \\ 1\frac{1}{4} \end{array} \right\}$	} 1741710	
2s ² 2p ⁴ (³ P)3s	3s 4P	$2\frac{1}{2}$ $1\frac{1}{2}$ $\frac{1}{2}$	$\begin{array}{c} 1259730 \\ 1264170 \\ 1266000? \end{array}$	$-4440 \\ -1830$	$2s^2 2p^4(^3{ m P})4d$	4d ² D	$ \begin{array}{c} 1/2 \\ 2\frac{1}{2} \\ 1\frac{1}{2} \end{array} $	1775510 1784030	
2s ² 2p ⁴ (³ P)3s	3s 2P	$1\frac{1}{2}$ $\frac{1}{2}$	$\begin{array}{c} 1277380 \\ 1282550 \end{array}$	5170	2s ² 2p ⁴ (³ P)4d	4 <i>d</i> 4P	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	} 1778690	
2s ² 2p ⁴ (¹ D)3s	3s' 2D	$2\frac{12}{12}$ $1\frac{12}{2}$	1317110		2s ² 2p ⁴ (³ P)4d	4 <i>d</i> ² P	$ \begin{array}{c c} 1/2 \\ 1/2 \\ 1/2 \end{array} $, 1780190 1782260	2070
2s ² 2p ⁴ (1S)3s	3s'' 2S	1/2	1375810		2s ² 2p ⁴ (¹ S)4s	4s'' 2S	. 1/2	1801570	
$2s^2 2p^4(^{3}P)3d$	3d 4P	$2\frac{12}{1\frac{12}{2}}$ $1\frac{12}{12}$ $\frac{12}{12}$	$\frac{1496890}{1500040}$	3150	$2s^2 2p^4({}^1\mathrm{D})4d$	4d' ² P	$1\frac{1}{2}$	1827890 18 2 9190	-1300
2s ² 2p ⁴ (³ P)3d	3d 4F	$4\frac{1}{2}$ $3\frac{1}{2}$			2s ² 2p ⁴ (1D)4d	4d' ² D	$\left\{\begin{array}{cc} 2^{1\!\!\!/_2} \\ 1^{1\!\!\!/_2} \end{array}\right.$	} 1828630	
		$\frac{272}{1\frac{1}{2}}$	1498400		$2s^2 2p^4({}^1\mathrm{D}) 4d$	4d' ² S	1/2	1830190	
2s ² 2p ⁴ (³ P)3d	3 <i>d</i> 2D	$2\frac{1}{2}$ $1\frac{1}{2}$	$\frac{1502040}{1506730}$	-4690	2s ² 2p ⁴ (³ P)5s	5s ² P	$1\frac{1}{2}$ $\frac{1}{2}$	1865680	
$2s^2 \ 2p^4(^3\mathrm{P}) 3d$	3 <i>d</i> ² P	$1\frac{1}{2}$ $1\frac{1}{2}$	$\frac{1505300}{1511310}$	6010	$2s^2 2p^4({}^1 m S)4d$	$4d^{\prime\prime} ^{2}D$	$\left\{ egin{array}{c} 2^{1\!\!\!/_2} \ 1^{1\!\!\!/_2} \end{array} ight.$	} 1885000	
$2s^2 \ 2p^4(^3P) \ 3d$	3d ² F	$\frac{3\frac{1}{2}}{91}$	1510050		$2s^2 2p^4({}^1 m S)5s$	5s'' 2S	1/2	1913620	
	0. <i>11</i> 9D	272 1/	1510050		2s 2p ⁵ (³ P ^o)3d	3d''' 1°		1919310?	
28° 2p*(1D)3a	sa "r	$1\frac{72}{12}$	1540400	3690	2s 2p ⁵ (³ P ^o)3d	3d''' 2°		1921010?	
$2s^2 2p^4({}^1\mathrm{D})3d$	3d′ 2F	$3\frac{1}{2}$	1559190		2s 2p ⁵ (³ P°)3d	3d''' 3°		1922150?	
	01/ 10	272	1552740		2s 2p ⁵ (³ P ^o)3d	3d''' 4°		1925560?	
$2s^{2} 2p^{*}(^{1}D) 3a$	$3a^{\prime}$ ² D		1553740	-680	2s 2p ⁵ (³ P ^o)3d	3d''' 5°		1931070?	
2s ² 2p ⁴ (¹ D)3d	3d' 2S	1/2	1555560		$2s^2 2p^4({}^1 m S)5d$	5 <i>d''</i> 2D	$\begin{cases} 2\frac{1}{2} \\ 1\frac{1}{2} \end{cases}$	} 2013690	
$2s^2 2p^4({}^1\!\mathrm{S})3d$	3 <i>d''</i> 2D	$2\frac{12}{12}$ $1\frac{12}{2}$	$1606550 \\ 1606880$	- 330				, 	
2s 2p ⁵ (³ P ^o)3s	3s''' 2P°		1692160 1696860	-4700	P VIII (3P2)	Limit		2124300	

March 1948.

P VII OBSERVED TERMS*

.

Config. $1s^2+$	Observed Terms)
2s ² 2p ⁵		2p ⁵ ² P°					
2s 2p ⁶	$2p^{6}$ ² S						
		ns $(n \ge 3)$			nd (r	ı≥3)	
2s ² 2p ⁴ (³ P)nx	{	3s ⁴ P 3–5s ² P			3, 4 <i>d</i> 4P 3, 4 <i>d</i> 2P	3, 4 <i>d</i> 2D	3d 4F 3d 2F
$2s^2 \ 2p^4({}^1\mathrm{D})nx'$			3, 4s' ² D	3, 4d′ 2 S	3, 4d' ² P	3, 4 <i>d′</i> ² D	3d' ² F
2s ² 2p ⁴ (¹ S)nx''	3-58'' 2S					$3-5d^{\prime\prime} \ ^{2}D$	
2s 2p ⁵ (³ P°)nx'''		38''' ² P°					

*For predicted terms in the spectra of the F I isoelectronic sequence, see Introduction.

Ground state $ls^2 2s^2 2p^4 {}^3P_2$

 $2p^4 {}^{3}P_2 2495000 \text{ cm}^{-1}$

The terms are from an unpublished manuscript kindly furnished by Robinson. No intersystem combinations have been observed and the uncertainty, x, may be considerable. The unit adopted by Robinson, 10^3 cm⁻¹, has here been changed to cm⁻¹.

REFERENCE

H A. Robinson, unpublished material (March 1948). (I P) (T)

P	VIII

.	V III	
		_

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
2s ² 2p ⁴	2p4 3P	2 1 0	0 5757 7826	-5757 -2069	$2s^2 2p^3 (^2\mathrm{P}^\circ) 3d$	3d'' 3F°	$4 \\ 3 \\ 2$	1790480 1795030	-4550
2s ² 2p ⁴	2p4 1D	2	52450 + x		$2s^2 2p^3 (^2\mathrm{P^o}) 3d$	3 <i>d''</i> ¹ D°	2	1795430+x	
2s ² 2p ⁴	$2p^{4-1}S$	0	110970 + x		$2s^2 2p^3 (^2\mathrm{P^o}) 3d$	3 <i>d''</i> 3D°	3	1796240	-4530
2 s 2p ⁵	2p⁵ ³P°	2	403806	-5107				1800770	
			408913 411736	-2823	$2s^2 2p^3 (^2\mathrm{P}^\circ) 3d$	3d′′ ¹P°	1	1800760+x	
2s 2p ⁵	2p ⁵ ¹ P°	1	560680 + x		$2s^2 2p^3 (^2\mathrm{P^o}) 3d$	3d'' ¹ F°	3	1804930+x	
$2s^2 2p^3 ({}^4\mathrm{S}^\circ) 3s$	38 3S°	1	1462340		$2s^2 2p^3 ({}^4\mathrm{S}^\circ) 4s$	4s 3S°	1	1958370	
$2s^2 2p^3 (^2 { m D}^{ m o}) 3s$	3s′ ³D°	1, 2 3	1519740 1520030	290	$2s^2 2p^3 (^2D^\circ) 4s$	4s' 3D°	$\frac{1}{2}$	0000170	-
$2s^2 \ 2p^3(^2{ m D}^\circ) 3s$	3s′ 1D°	2	1532020+x		9.2 9m3(2D°)4.	4.4 109	0	00222410	
2s² 2p³(²P°)3s	3s″ ³P°	0 1 2	1559500 1560070 1561260	570 1190	$2s^2 2p^3 ({}^4S^\circ) 4d$ $2s^2 2p^3 ({}^4S^\circ) 4d$	48 ³ D°	2 1 2	2033520+x	
$2s^2 2p^3(^2P^\circ)3s$	3s'' 1P°	1	1573270 + x				3	2046710	
$2s^2 2p^3 (4S^\circ) 3d$	3d ³ D°	1.2	1685980		$2s^2 \ 2p^3 (^2P^\circ) 4s$	4s'' ¹ P°	1	2073760+x	
		3	1686280	300	$2s^2 2p^3(^2\mathrm{D^o})4d$	4 <i>d′</i> ³D°	3, 2, 1	2115510	
$2s^2 2p^3(^2\mathrm{D^\circ}) 3d$	$3d'$ ${}^3\mathrm{F}^{\circ}$	4, 3, 2	1749870		$2s^2 2p^3(^2\mathrm{D^o})4d$	4 <i>d′</i> ³P°	2 1	2119360	
$2s^2 2p^3 (^2\mathrm{D}^\circ) 3d$	$3d'$ $^{s}\mathrm{D}^{\circ}$	3, 2, 1	1753090				ō		
$2s^2 2p^3(^2D^\circ) 3d$	3d′ 1P°	1	1753830+x		$2s^2 2p^3(^2D^\circ)4d$	$4d'$ $^{3}S^{\circ}$	1	2122020	
$2s^2 2p^3 (^2\mathrm{D}^\circ) 3d$	3d′ ³P°	2	1760530	-1870	$2s^2 2p^3 (^2 \mathrm{D}^\circ) 4d$	4 <i>d′</i> ¹ F°	3	2123570+x	
		Ô	1102400		$2s^2 2p^3(^4\mathrm{S}^\circ) 5d$	$5d$ $^{3}D^{\circ}$	$\frac{1}{2}$		
$2s^2 2p^3 (^2 \mathrm{D}^\circ) 3d$	3d′ ¹D°	2	1761680+x				3	2210630	
$2s^2 2p^3 (^2 { m D}^{\circ}) \Im d$	$3d'$ $^{3}\mathrm{S}^{\circ}$	1	1767880		$2s^2 \ 2p^3 (^2 { m D}^{\circ}) 5s$	5s′ 1D°	1	2240920+x	
$2s^2 2p^3 (^2\mathrm{D}^\circ) 3d$	3d′ ¹ F°	3	1776050+x						
2 8² 2p³(²P°)3d	3d′′ ³P°	0 1 2	1787090 1788090 1789690	1000 1600	P 1x (4S1%)	Limit		2495000	

March 1948.

Z = 15

I. P. 309.26 volts

P VIII OBSERVED TERMS*

Config. 1s ² +				Observed Te	erms		
2s ² 2p ⁴	$\left\{\begin{array}{c} 2p^{4-1}\mathrm{S}\end{array}\right.$	2p⁴ ³P	2p4 1D				
2s 2p ⁵	{	${2p^5}_{2p^5} {}^{ m sP^o}_{1{ m P^o}}$					
	n	s $(n \ge 3)$			nd ($(n \ge 3)$	
$2s^2 \ 2p^3({}^4\mathrm{S}^\circ)nx$	3, 4s 3S°					$3-5d$ $^{3}D^{\circ}$	
$2s^2 \ 2p^3(^2\mathrm{D^o})nx'$	{		3, 4s' ³ D° 3–5s' ¹ D°	3, 4d′ 3S°	$\begin{array}{ccc} 3,4d' & {}^3\mathrm{P}^\circ \ 3d' & {}^1\mathrm{P}^\circ \end{array}$	3, 4 <i>d'</i> ³ D° 3 <i>d'</i> ¹ D°	3d' 3F° 3, 4d' 1F°
$2s^2 2p^3(^2\mathrm{P}^\circ)nx''$	{ 3,	3s'' ³ P° 4s'' ¹ P°			${3d^{\prime\prime}}\ {}^3\mathrm{P}^{\mathrm{o}}\ {3d^{\prime\prime}}\ {}^1\mathrm{P}^{\mathrm{o}}$	3d′′′ ³D° 3d′′′ ¹D°	3d'' 3F° 3d'' 1F°

*For predicted terms in the spectra of the O I isoelectronic sequence, see Introduction.

P IX

(N I sequence; 7 electrons)

Ground state $1s^2 2s^2 2p^3 {}^4S^{\circ}_{11/2}$

 $2p^3 \ {}^4S^{\circ}_{1\frac{1}{2}} \ 3006200 \ \mathrm{cm}^{-1}$

The analysis is by Robinson, who has kindly furnished a manuscript copy in advance of publication. He has found 35 terms, and classified more than 100 lines in the region between 40 A and 314 A. Intersystem combinations connecting the doublet and quartet systems of terms have been observed.

REFERENCE

H. A. Robinson, unpublished material (March 1948). (I P) (T) (C L)

•	Р	Ľ	K
		14	7

Ріх

Config.	Desig.	J	Level	Internal	Config.	Desig.	J	Level	Interval
2s ² 2p ³	2p ³ 4S°	1½	0		2p ⁵	2p ⁵ ² P ^o	11/2	898220 904700	-6480
2s² 2p³	2p ³ ² D°	$1\frac{12}{212}$	73167 73730	563	2s ² 2p ² (³ P)3s	3s 4P	$\frac{1}{12}$	$1744000 \\ 1746250$	2250
$2s^2 2p^3$	$2p^3$ ² P°	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	113457 114430	973			$2\frac{1}{2}$	1751850	5600
2s 2p4	2p4 4P	$\frac{21/2}{21/2}$	345390		$2s^2 2p^2(^{3}P)3s$	3s ² P	$1^{\frac{1}{2}}_{1^{\frac{1}{2}}_{2}}$	$\begin{array}{c} 1764370 \\ 1768970 \end{array}$	4600
			353050	-2610	$2s^2 2p^2 ({}^1\mathrm{D}) 3s$	3s′ 2D	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	$\frac{1805940}{1807340}$	1400
2s 2p ⁴	2p4 2D	$2\frac{1}{2}$ $1\frac{1}{2}$	472580 473090	-510	$2s^2 2p^2(^3\mathrm{P}) 3d$	3d ² P	$1\frac{1}{2}$	1962630 1963830	-1200
2s 2p ⁴	$2p^4$ ² S	1/2	552540		2s 2p ³ (⁵ S°)3s	3s''' 4S°	1½	1965970	
2s 2p4	$\left \begin{array}{cc} 2p^4 & {}^2\mathrm{P} \\ \end{array}\right $	$1\frac{1}{2}$ $\frac{1}{2}$	580710 587010	-6300	$2s^2 2p^2(^3\mathrm{P})3d$	3 <i>d</i> ² F	$2\frac{1}{2}$ $3\frac{1}{2}$	1970380 1976610	6230

Z = 15

I. P. 372.62 volts

P IX—Continued

P IX—Continued

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
$2s^2 2p^2(^{s}\mathrm{P})3d$	3d 4D		1973870	2100	2s 2p ³ (³ D°)3p	3p ^{1v} ² F	$2\frac{1}{2}$ $3\frac{1}{2}$	2224980	
		$\frac{27_2}{3\frac{1}{2}}$	1979970		2s 2p ³ (³ D ^o)3d	3d ¹ ♥ 2F°	$3\frac{1}{2}$ $2\frac{1}{2}$	2309530 2312530	-3000
$2s^2 2p^2(^3\mathrm{P}) 3d$	3 <i>d</i> 4P	$2\frac{1}{2}$ $1\frac{1}{2}$ $\frac{1}{2}$	$\begin{array}{c} 1977830 \\ 1979750 \\ 1980870 \end{array}$	$-1920 \\ -1120$	$2s^2 2p^2(^3\mathrm{P})4s$	4s 4P	$\frac{\frac{1}{2}}{\frac{1}{2}}$	9254100	
2s ² 2p ² (³ P)3d	3d ² D	$1\frac{1}{2}$ $2\frac{1}{2}$	2000360 2001960	1600	2s ² 2p ² (³ P)4s	48 ² P	$\begin{array}{c c} & 272 \\ & 1/2 \\ & 1/2 \\ & 1/2 \end{array}$	2354100 2354120 2359520	5400
$2s^2 \ 2p^2({}^1\mathrm{D}) 3d$	3d' ² F	$egin{array}{c} 2^{1\!\!\!/_2} \\ 3^{1\!\!\!/_2} \end{array}$	2028530		2s ² 2p ² (³ P)4d	4d ² F	$2\frac{1}{2}$	2430900	5500
$2s^2 2p^2 ({}^1\mathrm{D}) 3d$	3 <i>d′</i> ² D	$1\frac{12}{21/2}$	2031610				$\begin{bmatrix} 372\\ 1/2 \end{bmatrix}$	2430400	
$2s^2 2p^2({}^1\mathrm{D})3d$	3 <i>d'</i> ² P	$1^{1/2}_{1^{1/2}_{1^{1/2}_{2}}}$	$2038670 \\ 2042470$	3800	$2s^2 2p^2(^3\mathrm{P})4d$	4 <i>d</i> 4P	$\begin{cases} to \\ 2\frac{1}{2} \end{cases}$	} 2435220 }	
28 2n ³ (5S°)3n	3n''' 4P	$\begin{cases} \frac{1}{2} \\ to \end{cases}$	2043950		2s ² 2p ² (³ P)4d	4d ² D	$\left\{\begin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}\right.$	} 2441100	
		$2\frac{1}{2}$			$2s^2 2p^2({}^1\mathrm{D})4d$	4d' ² F	$2\frac{1}{2}$ $3\frac{1}{2}$	2480120	
$2s^2 2p^2({}^{1}\text{D})3d$ $2s^2 2p^2({}^{1}\text{S})3d$	$3d' ^2S$ $3d'' ^2D$	$\begin{cases} \frac{1}{2} \\ \frac{1}{2} \\ \frac{2}{3} \end{cases}$	2049150 } 2079720		$2s^2 2p^2(^1\mathrm{D})4d$	4 <i>d′</i> ² D	$\left\{ egin{array}{c} 1^{1\!\!\!\!/_2} \\ 2^{1\!\!\!\!/_2} \end{array} ight.$	} 2487270	
2s 2p ³ (³ D°)3s	381v 2D°	$\left\{\begin{array}{c} 2^{1}/2\\ 1^{1}/2\\ 2^{1}/2\end{array}\right.$	} 2103110		$2s^2 2p^2(^1\mathrm{S})4d$	4 <i>d''</i> 2D	$\left\{\begin{array}{c} 1^{\frac{1}{2}} \\ 2^{\frac{1}{2}} \end{array}\right.$	} 2547080	
2s 2p ³ (⁵ S°)3d	3d''' 4D°	$\begin{cases} \frac{\frac{1}{2}}{to}\\ 3\frac{1}{2} \end{cases}$	} 2161390		P x (³ P ₀)	Limit		3006200	-

March 1948.

P ix Observed Terms*

$\begin{array}{c} \text{Config.} \\ 1s^2 + \end{array}$				Obse	rved Terms				
2s ² 2p ³	$\left\{ 2p^3 \ 4\mathrm{S}^\circ ight. ight.$	2p³ 2P°	2p³ 2D°						
2s 2p4	$\left\{ 2p^{4} \ ^{2}\mathrm{S} ight.$	${2p^4}{}^4{ m P} \over {2p^4}{}^2{ m P}$	$2p^4$ $^2\mathrm{D}$						
$2p^{5}$		$2p^{5}$ $^{2}\mathrm{P}^{\circ}$							
		ns $(n \ge 3)$		$np (n \ge 3)$		1	nd $(n \ge 3)$		
2s ² 2p ² (³ P)nx	{	3, 4s 4P 3, 4s 2P				$\begin{array}{ccc} 3,4d & {}^4\mathrm{P} \\ 3d & {}^2\mathrm{P} \end{array}$	3d 4D 3, 4d 2D	3, 4d	${}^{2}\mathrm{F}$
$2s^2 2p^2(^1D)nx'$			3s' 2D		3 <i>d′</i> ²S	3d′ 2P	3, 4 <i>d′</i> ² D	3, 4d'	${}^{2}\mathrm{F}$
$2s^2 2p^2({}^1S)nx''$							3, 4 <i>d''</i> ² D		
2s 2p ³ (⁵ S°)nx'''	3s''' 4S°			3p''' ⁴ P			3d''' 4D°		
$2s 2p^3(^3D^\circ)nx^{I\nabla}$			3s17 2D°	3p	IV 2F			3div	${}^{2}\mathrm{F}^{\circ}$

*For predicted terms in the spectra of the NI isoelectronic sequence, see Introduction.

Ground state 1s² 2s² 2p² ³P₀

Px

2p² ³P₀ 3432500 cm⁻¹

The analysis is from unpublished material kindly furnished by Robinson. He has found 36 terms and classified more than 70 lines in the region between 43 A and 318 A.

The singlet and triplet terms are connected by intersystem combinations. The connection of the quintet terms with the rest is based on Robinson's extrapolation of isoelectronic sequence data, as indicated by the uncertainty, x, and brackets in the table. The position of the level $2p^{3}$ ³D₂^o is also extrapolated and entered in brackets.

REFERENCE

H. A. Robinson, unpublished material (March 1948). (I P) (T) (C L)

-									
Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
$2s^2 2p^2$	2p ² ³ P	$\begin{array}{c} 0 \\ 1 \\ 2 \end{array}$	0 3390 8580	33 90 5190	$2s^2 \ 2p(^2\mathrm{P^o}) 3d$	3 <i>d</i> ³ P°	2 1 0	2171630 2173040 2173990	$-1410 \\ -950$
$2s^2 \ 2p^2$	$2p^2$ ¹ D	2	59330		$2s \ 2p^2(^4P)3s$	3s *P	0	2178420	3900
$2s^2 \ 2p^2$	$2p^2$ ¹ S	0	119430				$\frac{1}{2}$	2182320 2188220	5900
$2s \ 2p^3$	$2p^3$ ${}^5\mathrm{S}^{\mathrm{o}}$	2	[166580]+x		$2s^2 \ 2p(^2\mathrm{P^o}) 3d$	3d 1P°	1	2197500	
$2s \ 2p^3$	2p ³ ³ D°	3	322790	[-220]	$2s^2 \ 2p(^2\mathrm{P^o}) 3d$	3d ¹ F°	3	2197500	
		$\begin{array}{c} 2\\ 1\end{array}$	[<i>323010</i>] <i>323160</i>	-150	$2s \ 2p^2(^4{ m P})3p$	3p 3S°	1	2216880	
2s 2p ³	2p ^{3 3} P°	2 1 0	379660		2s 2p ² (4P)3p	3p 3D°	3 2 1	2262660 2267280 2269510	$-4620 \\ -2230$
2s 2p ³	$2p^{3}$ ¹ D°	2	484377		$2s \ 2p^2(^4P)3p$	3p 3P°	2	2275380	5760
2s 2p ³	$2p^3$ 3 S°	1	490100				$1 \\ 0$	2281140 2286080 ?	-4940
2s 2p ³	2p ^{3 1} P°	1	541090		$2s \ 2p^2(^2D)3s$	3s' 3D	1, 2, 3	2281000	
2s² 2p(²P°)3s	3s ³₽°	$\begin{array}{c} 0 \\ 1 \\ 2 \end{array}$	1954140 1955980 1963430	1840 7450	$2s \ 2p^2({}^1\mathrm{D})3s$ $2s \ 2p^2({}^4\mathrm{P})3d$	3s' ¹ D 3d ⁵ D	2 0	2307970	
2s ² 2p(² P°)3s	3s 1P°	1	1976578					$2331040 \pm r$	
2s 2p ² (*P)3s	3s ⁵P	1 2	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$2600 \\ 4270$			3∫ 4	2001010 2	
$2s^2 2p(^2\mathrm{P^o}) 3d$	3d ³F°	3 2	2139320 + x 2140410	1210	$2s \ 2p^2(^4P) 3d$	3d ⁶ P		2342240 + x 2343760 + x 2344970 + x	$-1520 \\ -1210$
$2s^2 2p(^2P^\circ) 3d$	3d ¹ D°	3 4 2	2147190		$2s \ 2p^2(^4P)3d$	3d 3P	2 1 0	$\begin{array}{r} 2345800 \\ 2351740 \\ 2354640 \end{array}$	$-5940 \\ -2900$
$\frac{1}{2s^2} \frac{2p(2P^\circ)}{3d}$	3d ³ D ^o	1 2 3	2162410 2163500 2166800	1090 3300	$2s \ 2p^2(^4P)3d$	3d 3F	2 3 4	2355750 2358400 2362900	$\begin{array}{c} 2650\\ 4500 \end{array}$

P x

Z = 15

I. P. 425.46 volts

P x—Continued

P x—Continued

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
2s 2p ² (² D)3p 2s 2p ² (² D)3p 2s 2p ² (⁴ P)3d	3p' 1F° 3p' 1D° 3d 3D	3 2 1 2 3	2371790 2382480 2385080 2387080 2388630	2000 1550	$2s \ 2p^2({}^2\mathrm{D})3d$ $2s \ 2p^2({}^2\mathrm{D})3d$ $2s \ 2p^2({}^2\mathrm{D})3d$ $2s \ 2p^2({}^2\mathrm{D})3d$	3d' 1D 3d' 1F 3d' 3S	2 3 1	2499250? 2499250? 2509590?	
2s 2p ² (² D)3d 2s 2p ² (² D)3d	3d′ 3F 3d′ 3D	2, 3, 4 1, 2, 3	2467290 2476100		P x1 (2P%)	Limit		3432500	

March 1948.

Px Observed Terms*

$\begin{array}{c} \text{Config.} \\ 1s^2 + \end{array}$					Ob	served Terr	ms				
2s ² 2p ²	$\Big\{_{2p^2} \ {}^{1}\mathrm{S}$	$2p^2$ ³ P	$2p^2$ ¹ D					-			
23 2p ³	$egin{cases} 2p^3 \ ^5\mathrm{S}^{\circ}\ 2p^3 \ ^3\mathrm{S}^{\circ} \end{cases}$	$rac{2p^3}{2p^3} rac{{}^3\mathrm{P}^{o}}{{}^1\mathrm{P}^{o}}$	${2p^3}{}^3{}^3{ m D}^{ m o} \ 2p^3}{}^1{ m D}^{ m o}$								
		ns $(n \ge 3)$			np ($(n \ge 3)$			nd	$(n \ge 3)$	
$2s^2 2p(^2P^\circ)nx$	{	38 ³ P° 38 ¹ P°							3d ³ P° 3d ¹ P°	3d ³ D° 3d ¹ D°	3d ³ F° 3d ¹ F°
$2s \ 2p^2(^4P)nx$	{	38 ⁵ P 38 ³ P		3p 3S°	3p 3P°	3 <i>p</i> ³D°			3d ⁵ P 3d ³ P	3d 5D 3d 3D	3d 3F
$2s \ 2p^2(^2D)nx'$	{		38′ 3D 38′ 1D			3p′ 1D°	3p′ 1F°	3d' 3S		3d' 3D 3d' 1D	3d′ 3F 3d′ 1F

*For predicted terms in the spectra of the C I isoelectronic sequence, see Introduction.

P XI

(B 1 sequence; 5 electrons)

Ground state 1s² 2s² 2p ²P^o_{1/2}

$2p \ ^{2}P_{\frac{1}{2}}^{\circ}$ 3867500 cm⁻¹

The analysis is by Robinson, who has generously furnished his manuscript in advance of publication. He has classified 31 lines in the range from 42 A to 325 A. Some of the relative levels have been connected by a study of the behavior of the Rydberg denominators, rather than by the Ritz combination principle.

No intersystem combinations, connecting the doublet and quartet terms, have been observed, as indicated by x in the table. Robinson's extrapolated value of $2p^2 {}^4P_{33}$ is entered in brackets.

REFERENCE

H. A. Robinson, unpublished material (Feb. 1948). (I P) (T) (C L)

177

Z = 15

I. P. 479.4 volts

P	XI

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
$2s^2(^1\mathrm{S})2p$	2p 2P°	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	0 9700	9700	2s 2p(³P°)3d	3d ² D°	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	2539140 2540050	910
2s 2p ²	$2p^2$ ⁴ P	$\frac{\frac{1}{2}}{\frac{1}{2}}$	[177900]+x 181300 +x 186400 +x	3400 5100	$2s2p(^1\mathrm{P^o})3s$	3s' 2P°	$\left\{\begin{array}{c} \frac{12}{12} \\ 1\frac{12}{2} \end{array}\right.$	} 2541040	
2s 2p ²	$2p^2$ $^2\mathrm{D}$	$ \begin{cases} 2^{1/2} \\ 1^{1/2} \\ 2^{1/2} \end{cases} $	317190		2s 2p(³P°)3d	3d 4P°	$ \begin{array}{c c} \frac{1}{2} \\ \frac{1}{2} \\ 2\frac{1}{2} \end{array} $	2547290 + x	
2s 2p ²	$2p^2$ $^2\mathrm{S}$	1/2	403330		$2s2p(^3\mathrm{P^o})3d$	3d ² F°	$2\frac{1}{2}$ $3\frac{1}{2}$	2578000 2584000	6000
2s 2p ²	$2p^2$ ² P	1/2 $1/2$ $1/2$	$425820 \\ 431650$	5830	2s 2p(³ P°)3d	3d ² P°		2589460 2593090	-3630
$2p^{s}$ $2s^{2}({}^{1}S)3s$	2p ³ 4S° 3s 2S	$1\frac{1}{2}$ $\frac{1}{2}$	559500 + x 2174060		$2s2p(^1\mathrm{P}^\circ)3d$	3d′ ²F°	$\left\{ \begin{array}{c} 2^{1\!\!\!/_2} \\ 3^{1\!\!\!/_2} \end{array} \right.$	} 2697820	
$2s^{2}(^{1}S)3d$	3d ² D	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	2347470 2348130	660	2s 2p(1P°)3d	3d' 2D°	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	2707510 2709400	1890
2s 2p(³ P°)3s	38 4P°	$2\frac{1}{2}$ $1\frac{1}{2}$ $\frac{1}{2}$	2369930 +x 2376130 +x 2379730 +x	$-6200 \\ -3600$	$2p^2(^{s}\mathrm{P})3d$	3 <i>d''</i> 4P	$2\frac{1}{2}$ $1\frac{1}{2}$ $\frac{1}{2}$	2856820 + x 2858970 + x	-2150
2s 2p(⁸ P°)3s	3s 2P°	$\left\{\begin{array}{c} \frac{1'_{2}}{1\frac{1'_{2}}{2}} \end{array}\right.$	} 2410070		D ==== (10)				
2s 2p(*P°)3d	3 <i>d</i> 4D°	$\begin{array}{c} \frac{1/2}{11/2} \\ 21/2 \\ 31/2 \\ 31/2 \end{array}$	2536000 + x 2540500 + x	4500	r XII (*50)			3867300	

February 1948.

P XI OBSERVED TERMS*

$\begin{array}{c} \text{Config.} \\ 1s^2 + \end{array}$		Observed Terms						
2s ² (1S)2p 2s 2p ² 2p ³	$egin{cases} 2p^2 \ ^2S \ 2p^3 \ ^4S^\circ \end{cases}$	$2p$ $^2\mathrm{P}^{\circ}$ $2p^2$ $^4\mathrm{P}$ $2p^2$ $^2\mathrm{P}$	$2p^2$ ² D		•			
	•	ns $(n \ge 3)$				nd $(n \ge 3)$		
$2s^2(^1\mathrm{S})nx$	3s 2S					3d 2D		
$2s \ 2p(^{3}P^{\circ})nx$	{	3s 4P° 3s 2P°		3d 3d	4P° 2P°	$\begin{array}{ccc} 3d & {}^4\mathrm{D}^{\mathbf{o}} \ 3d & {}^2\mathrm{D}^{\mathbf{o}} \end{array}$	3d ² F°	
$2s \ 2p(^{1}P^{\circ})nx'$		3s' 2P°				3d′ 2D°	3d' ² F°	
$2p^2(^{3}\mathrm{P})nx^{\prime\prime}$				3d''	4P			

*For predicted terms in the spectra of the BI isoelectronic sequence, see Introduction.

2

Z = 15

(Be I sequence; 4 electrons)

Ground state 1s² 2s² ¹S₀

2s² ¹S₀ 4520500 cm⁻¹

The analysis is by Robinson, who has kindly furnished his manuscript on this spectrum in advance of publication. He has found 18 terms and classified 15 lines between 36 A and 44 A. Some of the relative terms have been connected by a study of the Rydberg denominators rather than by the Ritz combination principle.

No intersystem combinations have been observed, as indicated by the uncertainty x in the table. Robinson's extrapolated value of 2p ³P₀° is entered in brackets.

REFERENCE

H. A. Robinson, unpublished material (Feb. 1948). (I P) (T) (C L)

D	VII
Τ.	AII

Р ХП

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
2s ²	2s ² 1S	0	0		2s(2S)3d	3d 1D	2	2760490	
$2s(^2\mathrm{S})2p$	2 <i>p</i> ³P°	0	[183190] + x	3200	$2p(^2\mathrm{P}^\circ)3s$	38 ¹ P°	1	2876720	
		$\frac{1}{2}$	186390 + x 192990 + x	6600	$2p(^2\mathrm{P}^\circ)3p$	3p 1P	1	2888690?	
$2s(^2\mathrm{S})2p$	2p 1P°	1	358840		$2p(^{2}\mathrm{P}^{\circ})3p$	3p 3D	1		
$2p^2$	$2p^2$ $^3\mathrm{P}$	0					23	2897300 + x	
		$\frac{1}{2}$	490990 + x		$2p(^2\mathrm{P}^\circ)3d$	3d 1D°	2	2936160	
$2p^2$	$2p^{2}$ $^{1}\mathrm{D}$	2	538190		$2p(^{2}\mathrm{P}^{\circ})3p$	3p 1D	2	2947770	
2s(2S)3s	38 3S	1	2594640 + x		$2p(^{2}\mathrm{P}^{\circ})3d$	3d 3D°	1, 2, 3	2964340 +x	
2s(2S)3s	38 1S	0	2629250		$2p(^2\mathrm{P}^\circ)3d$	3d 1F°	3	3000210	
$2s(^2\mathrm{S})3p$	3 <i>p</i> ¹₽°	1	2677740		$2p(^2\mathrm{P}^\circ)3d$	3d 1P°	1	30115 40	
$2s(^2\mathrm{S})3d$	3d 3D	1 2 3	$\begin{array}{r} 2726690 + x \\ 2727190 + x \\ 2727840 + x \end{array}$	500 650	Р хии (²S _½)	Limit		4520500	

February 1948.

I. P. 560.3 volts

P XII OBSERVED TERMS*

Config. $1s^2+$		Observed Terms	3
282	2s ² ¹ S		
$2s(^2S)2p$	$\left\{ egin{array}{ccc} 2p & {}^3\mathrm{P}^\circ \ & 2p & {}^1\mathrm{P}^\circ \end{array} ight.$		
2p ²	$\begin{cases} 2p^{2} {}^{3}P \\ 2p^{2} {}^{1}I \end{cases}$)	
	$ns (n \ge 3)$	$np (n \ge 3)$	$nd \ (n \ge 3)$
$2s(^2\mathrm{S})nx$	$\begin{cases} 3s & {}^3\mathbf{S} \\ 3s & {}^1\mathbf{S} \end{cases}$	3p 1P°	3d ³ D 3d ¹ D
$2p(^{2}P^{\circ})nx$	{ 38 ¹ P°	3p ¹ P 3p ³ D 3p ¹ D	3d ¹ P° 3d ³ D° 3d ¹ F°

*For predicted terms in the spectra of the Be I isoelectronic sequence, see Introduction.

P XIII

(Li 1 sequence; 3 electrons)

Ground state 1s² 2s ²S₁₆

2s 2S1/2 4933060 cm⁻¹

This spectrum is incompletely analyzed. Robinson has kindly furnished his unpublished manuscript giving seven classified lines; one at 110 A and six between 35 A and 38 A. The resonance lines have not been observed. The absolute value of the ground term has been extrapolated from isoelectronic sequence data. Similarly, other relative levels have been connected by a study of the Rydberg denominators in the isoelectronic sequence rather than by the Ritz combination principle.

REFERENCE

H. A. Robinson, unpublished material (Feb. 1948). (I P) (T) (C L)

Config.	Desig.	J	Level	Interval
28	23 2S	1/2	0	
2p	2p 2P°	$1^{1/2}_{1^{1/2}_{1^{1/2}_{2}}}$	207720 219250	11530
38	38 ² S	1/2	2794900	
3 <i>p</i>	3p 2P°	$1/2 \\ 11/2$	2844390 2850150	5760
3 <i>d</i>	3d 2D	$1\frac{12}{212}$	2870260 2871620	1360
4 <i>f</i>	4f ² F°	$2\frac{1}{2}$ $3\frac{1}{2}$	3772770?	
P xIV (1S ₀)	Limit		4933060	

P XIII

February 1948.

Z = 15

I. P. 611.45 volts

Z = 16

I. P. 10.357 volts

SULFUR

SΙ

16 electrons

Ground state $1s^2 2s^2 2p^6 3s^2 3p^4 {}^{3}P_2$

 $3p^4 {}^{3}P_2 83559.3 \text{ cm}^{-1}$

Edlén has revised and extended the earlier analyses and has generously furnished his manuscript term list in advance of publication, for inclusion here. Brackets denote values calculated from the series. For two such terms, however, 4f and 8f ⁵F, combinations with 3d ⁵D° have been observed.

Intersystem combinations connecting terms of all three multiplicities, have been observed.

REFERENCES

R. Frerichs, Zeit. Phys. 80, 150 (1933). (I P) (T) (C L)

K. W. Meissner, O. Bartelt und L. Eckstein, Zeit. Phys. 86, 54 (1933). (I P) (T) (C L)

J. E. Ruedy, Phys. Rev. 44, 757 (1933). (I P) (T) (C L)

B. Edlén, Phys. Rev. 62, 434 (1942). (T)

W. F. Meggers, J. Opt. Soc. Am. 36, 431 (1946). (Summary hfs)

B. Edlén, unpublished material (Nov. 1946). (I P) (T)

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
3s ² 3p ⁴	3p4 3P	2 1 0	0. 0 396. 8 573. 6	-396.8 -176.8	$3s^2 3p^3(^2D^\circ)4s$ $3s^2 3n^3(^4S^\circ)3d$	4s' ¹ D° 3d ³ D°	2	69238.7 70165-9	
3s ² 3p ⁴	3p4 1D	2	9239. 0				$\frac{1}{2}$	70166. 8 70170. 7	0. 9 3 . 9
3s ² 3p ⁴	3p ⁴ ¹ S	0	22181. 4		3s ² 3p ³ (⁴ S°)5s	58 5S°	2	[70706]	
$3s^2 3p^3 ({}^4\mathrm{S}^\circ) 4s$	4s 5S°	2	52623. 88		$3s^2 3p^3({}^4\mathrm{S}^\circ) 5s$	58 3S°	1	71352.5	
$3s^2 3p^3({}^4\mathrm{S}^\circ) 4s$	4s ³S°	1	55331. 15		3s 3p⁵	3p⁵ ³P°	$\frac{2}{1}$	72025.5 72382.5	-357.0
3s² 3p³(4S°)4p	4 <i>p</i> ⁵ P	1 2	63446. 36 63457. 33	10. 97 17. 93	0.00 ×((0) 5		Ō	72572.4	-189.9
3s ² 3p ³ (4S°)4p	4p 3P	3	63475.26 64891.71	0.40	$3s^2 3p^3(*S^2) 5p$	5 <i>p</i> .•P	$\frac{1}{2}$	73911.53 73915.16 73921.14	3. 63 5. 98
	-	$\frac{1}{2}$	64889. 23 64892. 89	-2.48 3.66	3s² 3p³(4S°)5p	5 <i>p</i> ³ P	2	74269. 20	-1.08
3s² 3p³(²D°)4s	4s' 3D°	$\frac{1}{2}$	67816.87 67825.72	8.85			0	74270. 28	-2.04
		3	67843.38	17.00	$3s^2 3p^3 ({}^4\mathrm{S}^\circ) 4d$	4d ⁵ D°	$\frac{4}{3}$	74973.35 74974,30	-0.95
3p⁵(4S°)3d	3d ⁵D°	$\begin{array}{c} 4\\ 3\\ 2\\ 1\\ 0\end{array}$	67878.03 67890.45 67888.25 67885.97 67884.67	$ \begin{array}{c c} -12.42\\ 2.20\\ 2.28\\ 1.30\\ \end{array} $			2 1 0	74975.43 74976.31 74976.90	-1.13 -0.88 -0.59

SI

SI

S I—Continued

S I-Continued

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
3s ² 3p ³ (4S°)4d	4d ³ D°	1 2 3	75952.16 75952.67 75956.80	0. 51 4. 13	3s ² 3p ³ (4S°)7p	7 <i>p</i> ³ P	2 1 0	80113. 23 80120. 51 80124. 16	-7.28 -3.65
$3s^2 \ 3p^3 ({}^4\mathrm{S}^\circ) 6s$	68 ⁵ S°	2	76464. 26		$3s^2 3p^3 ({}^4\mathrm{S}^\circ) 6d$	6d ³ D°	3	80182.54	-1 30
$3s^2 \ 3p^3({}^4\mathrm{S}^\circ)4f$	4 <i>f</i> ⁵F	5 to 1	[76653]				$\begin{array}{c} 2\\ 1\end{array}$	80183.93 80185.78	-1.85
$3s^2 \ 3p^3 ({}^4\mathrm{S}^\circ) 4f$	4f ³ F	4, 3, 2	[76655]		$2s^2 \ 3p^3({}^4\mathrm{S}^\circ)8s$	8s 5S°	2	80449. 30	
3s² 3p³(4S°)6s	68 ³ S°	1	76720. 90		$3s^2 \ 3p^3({}^4\mathrm{S}^\circ) \ 6f$	6 <i>f</i> ⁵F	5 to 1	80494. 73	
3s ² 3p ³ (² P ^o)4s	4s'' ³ P°	0	77136.10	14, 49	$3s^2 3p^3 ({}^4\mathrm{S}^\circ) 6f$	6f 3F	4, 3, 2	80495. 76	
		$\frac{1}{2}$	77180. 59 77181. 41	30. 82	3s ² 3p ³ (4S°)8s	8s 3S°	1	80521.99	
3s² 3p³(4S°)6p	6 <i>p</i> ⁵₽	$1 \\ 2 \\ 3$	77851. 21 77856. 49	5. 28	3s² 3p³(4S°)7d	7d ⁵D°	4 3 2	80995.48	
$3s^2 \ 3p^3({}^4\mathrm{S}^\circ)6p$	6p ³ P	2	77891.10				1 0		
		1 0			3s² 3p³(4S°)8p	8p 8P	0,1	80995. 90 80996. 3 3	0. 43
38 ² 3p ³ (² D ²)4p	4 <i>p</i> ′ •D	$\frac{1}{2}$	78152.45 78152.00 78203.38	$ \begin{array}{c} -0.45 \\ 51.38 \end{array} $	3s ² 3p ³ (4S°)7d	7d 3D°	3 2 1	81080.52 81082.83 81084.83	-2.31 -2.00
$3s^2 \ 3p^3({}^4\mathrm{S}^\circ) 5d$	5 <i>d</i> ⁵ D°	$\frac{4}{3,2}$	78270. 30 78270. 72	-0.42	$3s^2 3n^3 (4S^\circ) 9s$	98 5S°	2	81281.76	
		2, 1, 0	78271.19	-0.47	$3s^2 3p^3 ({}^4S^\circ)7f$	7f 5F	5 to 1	81309. 23	
3s ² 3p ³ (² P ^o)4s	4s'' ¹ P°	1	78290. 4		$3s^2 3p^3(^4S^\circ)7f$	7f 3F	4.3.2	81310.08	
$3s^2 \ 3p^3 (^2 \mathrm{D}^\circ) 4p$	4p' ⁸ F	$\frac{2}{3}$	78410. 37 78436. 30	25. 93	$3s^2 3p^3 ({}^4S^\circ) 9s$	98 3S°	1	[81327, 3]	
		4	78463. 55	27. 25	$3s^2 3p^3(4S^\circ)8d$	8d 5D°	4	81628.90	
$3s^2 \ 3p^3(^2\mathrm{D^o})4p$	4 <i>p′</i> ¹ F	3	78638. 2				32		
$3s^2 \ 3p^3({}^4\mathrm{S}^\circ) 5d$	5d 3D°	32	78692.24 78691.78	0.46			$\overline{1}$		
		1	78692.99	-1.21	$3s^2 3p^3(4S^\circ)8d$	8d 3D°	3	81663.4	
$3s^2 \ 3p^3({}^4\mathrm{S}^\circ)7s$	78 ⁵ S°	2	79058. 24				2	81666 81668	$-3 \\ -2$
$3s^2 \ 3p^3({}^4\mathrm{S}^\circ)5f$	5 <i>f</i> ⁵F	5 to 1	79143. 18		$3s^2 3p^3(^4S^\circ) 10s$	10s 5S°	2	81819.40	
$3s^2 \ 3p^3({}^4S^\circ)5f$	<i>5f</i> ³F	4, 3, 2	79144. 45	-	$3s^2 3p^3 (4S^\circ) 8f$	8f 5F	5 to 1	[81837, 3]	
$3s^2 \ 3p^3(^4{ m S}^{\circ})7s$	78 ³ S°	1	79185.74		$3s^2 3n^3 (4S^\circ) 8f$	8f 3F	4.3.2	[81837, 9]	
3s ² 3p ³ (² D°)4p	4p′ ³P	2 1 0	79376. 34 79405. 74 79418. 45	$ \begin{array}{c} -29.40 \\ -12.71 \end{array} $	$3s^2 3p^3({}^4S^\circ)9d$	9d ⁵D°	4 3	82053.94	-
3s² 3p³(4S°)7p	7 <i>p</i> ⁵P	$1 \\ 2 \\ 3$	79785. 72		202 201459 10 1	104 509	2 1 0	00050 0	
3s² 3p³(4S°)6d	6d ⁵D°	4 3 2 1	7999 2. 36		os* op°(*o⁻)10a	10a °D'	4 3 2 1 0	62003. 3	
		J			Sп (4Si≯s)	Limit		83559. 3	-

December 1947.

SI OBSERVED TERMS*

Config. 1s ² 2s ² 2p ⁶ +		C	Observed Terms	
3s ² 3p ⁴	$\begin{cases} 3p^{4-3}P \\ 3p^{4-1}S & 3p^{4-3}P \end{cases}$	4 1D		
3s 3p ⁵	3 <i>p</i> ⁵ ³ P°			
	$ns (n \ge 4)$		$np (n \ge 4)$	$nd \ (n \ge 3) \qquad nf \ (n \ge 4)$
3s ² 3p ³ (4S°)nx	$\begin{cases} 4, 6-10s & {}^{5}S^{\circ} \\ 4-8s & {}^{3}S^{\circ} \end{cases}$	4	4–7 <i>p</i> ⁵ P 4–8 <i>p</i> ³ P	3-10 <i>d</i> ⁵ D° 3- 8 <i>d</i> ³ D° 5-7 <i>f</i> ³ F
3s ² 3p ³ (² D°)nx'	{ 4s' 4s'	³ D° 1D°	4p' ³ P 4p' ³ D 4p' ³ F 4p' ¹ F	
$3s^2 \ 3p^3(^2P^\circ)nx''$	$\begin{cases} \frac{4s'' {}^{3}P^{\circ}}{4s'' {}^{1}P^{\circ}} \end{cases}$			

*For predicted terms in the spectra of the SI isoelectronic sequence, see Introduction.

S II

(P I sequence; 15 electrons)

Ground state $1s^2 2s^2 2p^6 3s^2 3p^3 {}^{4}S_{14}^{\circ}$

 $3p^3 {}^4S^{\circ}_{1\frac{1}{2}} 188824.5 \text{ cm}^{-1}$

The terms are from the paper by Hunter. He has revised and extended the earlier analyses of this spectrum.

The level labeled "x" in his list is here designated "1". The configuration assignments for this level and for the term called "(²P)" in the table are unknown. The latter is attributed by Robinson to $3s^2 3p^2$ (³P) 3d instead of the term at 118146.50 cm⁻¹.

Intersystem combinations, connecting the doublet and quartet systems of terms, have been established by L. and E. Bloch and confirmed by Hunter. They indicate a correction of +317.17 cm⁻¹ to the absolute values of the doublet terms published by Ingram.

REFERENCES

S. B. Ingram, Phys. Rev. 32, 172 (1928). (I P) (T) (C L)

L. et E. Bloch, Ann. de Phys. [10] 12, 5 (1929). (T) (C L)

M. Gilles, Ann. de Phys. [10] 15, 301 (1931). (I P) (T) (C L) (Z E)

O. Bartelt und L. Eckstein, Zeit. Phys. 86, 77 (1933). (T) (C L)

A. Hunter, Phil. Trans. Roy. Soc. London [A] 233, 303 (1934). (I P) (T) (C L)

H. A. Robinson, Phys. Rev. 49, 297 (1936).

I. P. 23.4 ± 0.1 volts

Z = 16

C	TT .
D	11

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
$3s^2 3p^3$	$3p^3 {}^4\mathrm{S}^{\circ}$	1½	0. 0		$3s^2 \ 3p^2(^3P)4p$	4p 2P°	1/2	133268. 53	131. 29
$3s^2 \ 3p^3$	$3p^3 {}^2\mathrm{D}^{\circ}$	$1\frac{1}{2}$ $2\frac{1}{2}$	14851.9 14883.4	31. 5		1	172 1⁄2?	133359. 82 133359. 4	
3s² 3p ³	$3p^3 {}^2\mathrm{P}^{\circ}$	$1/2 \\ 1/2 \\ 1/2$	24524. 2 24572. 8	48.6		2 (² P) 3	$1\frac{1}{12}$ $1\frac{1}{2}$	139845. 6 140015. 7	170. 1
3s 3p ⁴	3p4 4P	$2\frac{1}{2}$ $1\frac{1}{2}$	79394. 8 79757. 9 79968 0	-363.1 -210.1	3s ² 3p ² (¹ D)4p	4p′ 2F°	$2^{1/2}_{2}_{3^{1/2}_{2}}$	140229. 78 140318. 80	89. 02
3s 3p ⁴	3p4 2P	$1^{\frac{72}{12}}_{\frac{1}{2}}$	105599. 02 106044 16	-445. 14	3s² 3p²(1D)4p	4p′ 2D°	$2\frac{1}{2}{1\frac{1}{2}}{1\frac{1}{2}}$	140708. 51 140750. 00	-41. 49
3s ² 3p ² (⁸ P)4s	4s 4P	72 1/2	109560. 50	270 78	$3s^2 \ 3p^2(^1\text{D})4p$	4 <i>p′</i> ² P°	$1^{\frac{1}{2}}_{1^{\frac{1}{2}}_{2}}$	143488.61 143623.03	134. 42
		$ \begin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array} $	109831. 28 110268. 33	437. 05	3s ² 3p ² (³ P)5s	5s 4P	1/2 1/2 1/2	$150258.\ 20$ $150531.\ 12$	272.92
$3s^2 3p^2(^3P)3d$	3 <i>d</i> *F	$\begin{array}{c c} & 1\frac{1}{2} \\ & 2\frac{1}{2} \\ & 3\frac{1}{2} \\ & 4\frac{1}{2} \end{array}$	$\begin{array}{c} 110176.83\\ 110313.13\\ 110508.48\\ 110766.31 \end{array}$	$\begin{array}{c} 136.\ 30\\ 195.\ 35\\ 257.\ 83\end{array}$	3s ² 3p ² (³ P)5s	5s 2P	$2\frac{1}{2}$ $\frac{1}{2}$ $1\frac{1}{2}$	150996. 27 151383. 83 151910. 67	526. 84
3s ² 3p ² (³ P)4s	4s 2P	$1\frac{1}{2}{1\frac{1}{2}}$	1129 3 7. 33 113461. 22	523. 89	$3s^2 3p^2(^{3}\mathrm{P})4d$	4 <i>d</i> 4F	$1\frac{1}{2}$ $2\frac{1}{2}$ $3\frac{1}{2}$	$\begin{array}{c} 151959.\ 41\\ 152094.\ 34\\ 152304\ 71 \end{array}$	134. 93 210. 37
3s² 3p²(³P)5a	3d 4D	$1^{1/2}_{1/2}\\ 2^{1/2}_{1/2}\\ 3^{1/2}_{1/2}$	$\begin{array}{c} 114162.\ 20\\ 114200.\ 45\\ 114230.\ 75\\ 114279.\ 11 \end{array}$	$\begin{array}{c} 38.\ 25\\ 30.\ 30\\ 48.\ 36 \end{array}$	$3s^2 \ 3p^2(^3\mathrm{P})4d$	4 <i>d</i> 4D	$ \begin{array}{r} 3_{72} \\ 4_{72} \\ \frac{1}{2} \\ 1_{72}^{1/2} \\ 2_{1/2}^{1/2} \end{array} $	152615. 25 $153153. 66$ $153201. 72$ $153202. 90$	310. 54 48. 06 81. 08
$3s^2 \ 3p^2(^3P) \ 3d$	$3d$ $^2{ m F}$	$2\frac{1}{2}{3\frac{1}{2}}$	$\begin{array}{c} 114804. \ 11 \\ 115285. \ 31 \end{array}$	481. 20			$3^{1/2}_{1/2}$	153282. 80 153413. 52	130. 72
$3s^2 \ 3p^2(^3\mathrm{P})3d$	3d 4P	$2\frac{1}{2}$ $1\frac{1}{2}$	115817.0 115870.4	-53.4 -21.9	$3s^2 \ 3p^2(^3P)4d$	4 <i>d</i> 4P	$2^{1/2}_{1^{1/2}_{1^{1/2}_{2^{1/2}}_{2^{1/2}_{2^{1/2}_{2^{1/2}}_{2^{1/2}_{2^{1/2}}_{2^{1/2}}_{2^{1/2}}_{2^{1/2}}_{2^{1/2}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$	$\begin{array}{c} 155818.\ 37\\ 156029.\ 28\\ 156148.\ 19\end{array}$	$\begin{vmatrix} -210. \ 91 \\ -118. \ 91 \end{vmatrix}$
3s ² 3p ² (³ P)3d	3d 2P	1/2 1/2 1 1/2	118146 50		$3s^2 \ 3p^2(^3\mathrm{P})4d$	$4d$ $^{2}\mathrm{F}$	$2^{1/2}_{2}_{3^{1/2}_{2}}$	156121. 33 156603. 67	482. 34
$3s^2 \ 3p^2(^{8}P) \ 3d$	3d ² D	1/2 1/2 21/2	119242. 13 $119294 70$	52. 57	3s ² 3p ² (³ P)4d	4 <i>d</i> ² D	$1\frac{12}{212}$	$\begin{array}{c} 158666.\ 45\\ 158826.\ 87\end{array}$	160. 42
3s² 3p²(1D)4s	4s′ ²D	$1^{1/2}_{1/2}$ $2^{1/2}_{1/2}$	121528. 20 121529. 49	1. 29	$3s^2 3p^2(^{3}P)5p$	5p 4D°	1/2 11/2 21/2 31/2	164118.6 164252.0 164447.3	$133. 4 \\ 195. 3 \\ 325. 4$
$3s^2 \ 3p^2(^3P)4p$	$4p$ $^2\mathrm{S}^{\mathrm{o}}$	1/2	125485. 32		$3s^2 3p^2(^1D)4d$	4d' ² F	3½	164180. 63	
3s² 3p²(³P)4p	4 <i>p</i> ⁴D°	$1^{1/2}_{1^{1/2}}_{1^{1/2}_{2^{1/2}}}_{2^{1/2}_{2^{1/2}}}_{3^{1/2}_{2^{1/2}}}$	127824.93 127976.21 128233.07 128599.11	$\begin{array}{c} 151.\ 28\\ 256.\ 86\\ 366.\ 04 \end{array}$	$3s^2 3p^2(^{3}P)5p$	5 <i>p</i> 4P°	$2\frac{1}{2}$	164 231. 78 164279. 3 164317. 4	38. 1
3s² 3p²(³P)4p	4p 4P°	1/2 1/2 1/2 2/2	129787.71 129858.07 130134.08	70. 36 276. 01	3s² 3p²(1D)4d	4 <i>d′</i> ² G	$\begin{array}{c} 2^{1\!\!\!\!/_2} \\ 4^{1\!\!\!/_2} \\ 3^{1\!\!\!/_2} \end{array}$	164459.5 164334.94 164336.71	-1. 77
3s² 3p²(³P)4p	4p 2D°	$1\frac{1}{2}$ $2\frac{1}{2}$	130641.00 131186.86	545. 86	3s ² 3p ² (³ P)5p	5 <i>p</i> 4S°	1½	165002.45	
3s ² 3p ² (³ P)4p	4p 4S°	1½	131028.76		S III (3P ₀)	Limit		188824.5	

October 1947.

$\begin{array}{c} \text{Config.}\\ 1s^2 \ 2s^2 \ 2p^6 + \end{array}$	Observed Terms				
3s ² 3p ³	$\begin{cases} 3p^{3} {}^{4}\mathrm{S}^{\circ} \\ 3p^{3} {}^{2}\mathrm{P}^{\circ} & 3p^{3} {}^{2}\mathrm{D}^{\circ} \\ \begin{cases} 3p^{4} {}^{4}\mathrm{P} \\ 2p^{4} {}^{4}\mathrm{P} \end{cases} \end{cases}$				
00 0 <i>p</i>	$\frac{1}{\frac{3p^{4} 2P}{ns (n \ge 4)}}$	$np (n \ge 4)$	$nd \ (n \ge 3)$		
3s ² 3p ² (³ P)nx	$\begin{cases} 4, 5s & {}^{4}P \\ 4, 5s & {}^{2}P \end{cases}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3, 4d ⁴ P 3, 4d ⁴ D 3, 4d ⁴ F 3d ² P 3, 4d ² D 3 4d ² F		
$3s^2 \ 3p^2(^1P)nx'$	4s' 2D	$4p' {}^{2}\mathrm{P}^{\circ} \qquad 4p' {}^{2}\mathrm{D}^{\circ} \qquad 4p' {}^{2}\mathrm{F}^{\circ}$	4d' ² F $4d'$ ² G		

S III

*For predicted terms in the spectra of the P1 isoelectronic sequence, see Introduction.

(Si I sequence; 14 electrons)

Ground state 1s² 2s² 2p⁶ 3s² 3p² ³P₀

3p² ³P₀ 282752 cm⁻¹

The present term list has been compiled from those published by Hunter and by Robinson, although Ingram, Gilles, and others have contributed to the analysis.

Intersystem combinations connecting the singlet and triplet terms have been observed. Robinson derives from his measures a correction of -6 cm^{-1} to be applied to all terms higher than 140000 cm⁻¹. This correction has been introduced here. An estimated value of the interval of $3p^3 {}^3P_{1,0}^{\circ}$ is entered in brackets in the table.

The quintet terms suggested by Gilles have been omitted, awaiting further confirmation.

REFERENCES

S. B. Ingram, Phys. Rev. 33, 907 (1929). (I P) (T) (C L)
M. Gilles, Ann. de Phys. [10] 15, 322 (1931). (I P) (T) (C L) (Z E)
A. Hunter, Phil. Trans. Roy. Soc. London [A] 233, 309 (1934). (I P) (T) (C L)
L. et E. Bloch, J. Phys. Rad. [7] 6, No. 11, 441 (1935). (C L)
H. A. Robinson, Phys. Rev. 52, 724 (1937). (T) (C L)

Z=16

I. P. 35.0 ± 0.4 volts

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interva
3s ² 3p ²	3p ² ³ P	$egin{array}{c} 0 \ 1 \ 2 \end{array}$	0. 0 297. 2 832. 5	297. 2 535. 3	$3s^2 3p(^2\mathrm{P^o}) 3d$	3 <i>d</i> ³ D°	$\begin{array}{c}1\\2\\3\end{array}$	147550. 32 147690. 99 147744. 54	140. 67 53. 55
3s² 3p²	$3p^2$ ¹ D	2	11320		3s² 3p(²P°)4s	4s ¹ P°	1	148397.8	
3s ² 3p ² 3s 3p ³	3p ² ¹ S 3p ³ ³ D°	0 1 2 3	27163 84018.9 84046.4 84099.5	27.55 53.1	$3s^2 3p(^2\mathrm{P^o})4p$ $3s^2 3p(^2\mathrm{P^o})4p$	4p ³ D	1 2 3 0	169770.04 170067.31 170648.94	297. 27 581. 63
3s 3p•	3p³ ³P°	2 1 0	98743.0 98765.6	-22.6 [-6]	$3s^2 3p(^2P^\circ)4p$	4p 3S	1 2 1	172785.77 173191.73 174036.19	154.50 405.96
$3s$ $3p^3$ $3s$ $3p^3$	$3p^{3} {}^{1}\mathrm{D}^{\circ}$ $3p^{3} {}^{1}\mathrm{P}^{\circ}$	2 1	104159? 136839		$3s^2 3p(^2\mathrm{P^o})4d$	4 <i>d</i> ³ F°	$2 \\ 3 \\ 4$	204578.89 205070.75 205560.67	491. 86 489. 92
3s 3p ³ 3s ² 3p(² P°)3d	3p ³ ³ S° 3d ³ P°	1 0 1 2	138061.4 143095.91 143116.19	$20.\ 28 \\ 7.\ 74$	$3s^2 3p(^2P^\circ)4d$	4 <i>d</i> ³ D°	$1 \\ 2 \\ 3 \\ 0$	206538.87 206671.61 206910.97	132. 74 239. 36
3s² 3p(²P°)4s	48 ³₽°	0 1 2	146696. 19 146736. 54 147146. 00	40. 35 409. 46	3s ² 3p(² P°)5s S IV (² P [°] ₂)	58 ¹ P° Limit	1 2 1	209926. 1 210697. 6 211326. 8 282752	152. 7 771. 5
	1			1	1				

S III

October 1947.

186

S III OBSERVED TERMS*

$\begin{array}{c} \text{Config.}\\ 1s^2 \ 2s^2 \ 2p^6 + \end{array}$				C	bserved T	erms			
3s ² 3p ²	$\begin{cases} 3p^2 \ ^1\mathrm{S} \end{cases}$	$3p^2$ ³ P	$3p^2$ ¹ D						
3s 3p ³	$\left\{ {^{3p^3}} {^3\mathrm{S}}^{\circ} ight.$	${3p^3}{}^{3}{ m P^{o}}\ {3p^3}{}^{1}{ m P^{o}}$	${3p^3}{^3{ m D}^{\circ}}{3p^3}{^1{ m D}^{\circ}}$						
		ns $(n \ge 4)$			$np (n \ge 4)$			nd $(n \ge 3)$	
3s² 3p(²P°)nx	{	4, 5s ³ P° 4, 5s ¹ P°		4 <i>p</i> ³ S	4 <i>p</i> ³ P	4p 3D	3d 3P°	3, 4 <i>d</i> 3D°	4 <i>d</i> 3F°

*For predicted terms in the spectra of the Si I isoelectronic sequence, see Introduction.

S III

(Al I sequence; 13 electrons)

Ground state $1s^2 2s^2 2p^6 3s^2 3p {}^2\mathbf{P}_{\frac{1}{2}}^{\circ}$

3p ²P^o_{1/2} 381541.4 cm⁻¹

This spectrum is incompletely analyzed but 53 lines have been classified in the range from 519 A to 3118 A. For the doublet terms the authors' notation is entered in the first column of the table. The configurations are as given in Bacher and Goudsmit.

The quartet terms are from Bowen's 1932 paper. No intersystem combinations have been observed, as indicated by the uncertainty x. Bowen remarks that the relative positions of the doublet and quartet terms are only approximately determined, by assuming that the difference between the terms 4s ²S and 4s ⁴P^o is equal to that between the terms $3s^2$ ¹S and 3p ³P^o in S v.

REFERENCES

R. A. Millikan and I. S. Bowen, Phys. Rev. 25, 600 (1925). (I P) (T) (C L)

I. S. Bowen, Phys. Rev. 31, 37 (1928). (T) (C L)

R. F. Bacher and S. Goudsmit, Atomic Energy States p. 404 (McGraw-Hill Book Co. Inc., New York, N. Y.; and London, 1932). (T)

I. S. Bowen, Phys. Rev. 39, 13 (1932). (T) (C L)

L. Bloch et E. Bloch, J. Phys. Rad. [7] 6, No. 11, 441 (1935). (C L)

Authors	Config.	Desig.	J	Level	Inter- val	Authors	Config.	Desig.	J	Level	Inter- val
		_									
${3p_2\atop 3p_1}$	$3s^2(^1\mathrm{S})3p$	3 <i>p</i> 2P°	$1\frac{1}{2}$ $1\frac{1}{2}$	0. 0 950. 2	950. 2	$4 p_2 \\ 4 p_1$	$3s^{2}({}^{1}\mathrm{S})4p$	4 <i>p</i> ²₽°	$1\frac{1}{2}$ $1\frac{1}{2}$	213507.4 213717.4	210. 0
	3s 3p ²	$3p^2$ 4P	$1^{1/2}_{1^{1/2}}_{2^{1/2}_{1^{1/2}_{2^{1/2}}}}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	344 547		3s 3p(3P°)3d	3d 4P°	$\begin{array}{c} 2\frac{1}{2} \\ 1\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array}$	222854 + x 223143 + x	-289
$b D_2 \\ b D_3$	3s 3p ²	$3p^2$ ² D	$1\frac{12}{212}$	94101. 9 94148. 1	46. 2		3s 3p(3P°)3d	3d 4D°	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	224991 + x 225094 + x 225194 + x	103 100
bS	$3s \ 3p^2$	$3p^2$ $^2\mathrm{S}$	1/2	123503. 9					31/2	225274 + x	80
$b\mathbf{P_1} \\ b\mathbf{P_2}$	3s 3p ²	$3p^2$ $^2\mathrm{P}$	$1\frac{1}{2}{1\frac{1}{2}}$	133617. 9 134243. 9	626. 0	4 <i>d</i>	$3s^2(^1\mathrm{S})4d$	$4d$ $^{2}\mathrm{D}$	$iggl\{ egin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array} ight\}$	}255389. 8	
$\begin{array}{c} 3d_2 \\ 3d_1 \end{array}$	$3s^2({}^1 m S)3d$	3d ² D	$1\frac{1}{2}{2\frac{1}{2}}{2\frac{1}{2}}$	152127. 1 152141. 4	14. 3		3s 3p(3P°)4s	48 4P°	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	263759 + x 264105 + x 264741 + x	346 636
4s	3s ² (1S)4s	$4s$ $^2\mathrm{S}$	1/2	181432. 2		Fa	2-2(15) 5-	50 29	1/-	071010 4	
	$3p^{3}$	$3p^3$ 4S°	$1\frac{1}{2}$	197110 + x		08	382(20)38	08 20	72	271010. 4	
сP	3p ³	3p³ ²₽°	$\left\{ { {1 } {1 \atop {1 \atop {2 \atop {1 \atop {2 \atop {1 \atop {2 \atop {2 \atop$	}211368			S v (1S0)	Limit		381541.4	

S IV

I. P. 47.29 volts

S IV

Z = 16

September 1947.

187

S IV OBSERVED TERMS*

Config. $1s^2 2s^2 2p^6 +$			Observe	ed Terms		
$3s^2(^1\mathrm{S})3p$		3p ² P°				
3s 3p ²	$\left\{\begin{array}{c} 3p^2 \ ^2\mathrm{S} \end{array}\right.$	${3p^2}{3p^2}{}^4\mathrm{P}\over{3p^2}{}^2\mathrm{P}$	$3p^2$ ² D			
3p ³	$\left\{ \begin{array}{c} 3p^3 \ {}^4\mathrm{S}^4 \end{array} \right.$	$3p^3 \ ^2P^\circ$				
		ns $(n \ge 4)$		$np(n \ge 4)$	nd	$(n \ge 3)$
$3s^2(^1\mathrm{S})nx$	4, 5s 2S			4p 2P°		3, 4d 2D
$3s 3p(^{3}P^{\circ})nx$		4s 4P°			3d 4P°	3d ⁴D°

*For predicted terms in the spectra of the Al $\scriptstyle\rm I$ isoelectronic sequence, see Introduction.

S v

(Mg I sequence; 12 electrons)

Ground state 1s² 2s² 2p⁶ 3s² ¹S₀

3s² ¹S₀ 584700 cm⁻¹

This spectrum is incompletely analyzed, but Bowen has classified 30 lines in the range between 437 A and 905 A. He gives absolute values for only the triplet terms, but lists the singlet combination $3s^2 {}^{1}S_0 - 3p {}^{1}P_1^{\circ}$, which has been used to calculate $3p {}^{1}P_1^{\circ}$ in the table.

By extrapolation along the isoelectronic sequence the writer has estimated the limit $3s^2 \, {}^{1}S_0$ as approximately 584700 cm⁻¹, which places $3p \, {}^{3}P_0^{\circ}$ at 83071 cm⁻¹ above the ground state zero. These estimated values are entered in brackets in the table. The uncertainty, x, may be several hundred cm⁻¹. Bowen has estimated the error of the limit as probably not greater than $\pm 1000 \, \text{cm}^{-1}$.

REFERENCES

I. S. Bowen, Phys. Rev. **39**, 8 (1932). (T) (C L) I. S. Bowen, letter (Sept. 1947). (T)

S	v
ັ	

SV

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
3s ² 3s(2S)3p	3s ² ¹ S 3p ³ P°	0 0 1 2	$0 \\ [83071]+x \\ 83433 +x \\ 84200 +x \end{bmatrix}$	362 767	3s(2S)4s 3p(2P°)3d	4s ³S 3d ³P°	1 2 1 0	311670 + x $345376 + x$ $345750 + x$ $345787 + x$	$-374 \\ -237$
3s(2S)3p 3p ²	3p ¹ P° 3p ² ³ P		$ \begin{array}{r} 127149 \\ 200000 + x \\ 200417 + x \\ 201186 + x \end{array} $	417 769	$3p(^2\mathrm{P^o})3d$	3d ³D°	1 2 3	$\begin{array}{c} 347883 + x \\ 348051 + x \\ 348168 + x \end{array}$	168 117
3s(2S)3d	3d BD	1, 2, 3	201130 + x 234987 + x		S VI (2S ₁₄)	Limit		[584700]	

September 1947.

Z = 16

I. P. 72.5 \pm volts

S v Observed Terms*

$\begin{array}{c} \text{Config.}\\ 1s^2 \ 2s^2 \ 2p^6 + \end{array}$	Observed Terms						
3s ²	3s ² ¹ S						
$3s(^2\mathrm{S})3p$	$\left\{ egin{array}{ccc} 3p & {}^3\mathrm{P}^{\mathrm{o}} \ 3p & {}^1\mathrm{P}^{\mathrm{o}} \end{array} ight.$						
$3p^2$	$3p^2$ ³ P						
	ns $(n \ge 4)$	nd	$(n \ge 3)$				
3s(2S)nx	4s ³ S		3d 3D				
$3p(^{2}P^{\circ})nx$		3d ³P°	3d ³D°				

*For predicted terms in the spectra of the Mg ${\tt I}$ isoelectronic sequence, see Introduction.

S VI

(Na 1 sequence; 11 electrons)

Ground state $1s^2 2s^2 2p^6 3s {}^2S_{\frac{1}{2}}$

 $3s \, {}^{2}S_{\frac{1}{2}} \, 710194 \, \, \mathrm{cm^{-1}}$

The terms are from Robinson, who has extended the earlier analysis by Bowen and Millikan. There are 29 classified lines, all but 2 of which are in the region between 171 A and 1117A. The absolute value of the ground state was extrapolated along the isoelectronic sequence.

REFERENCES

I. S. Bowen and R. A. Millikan, Phys. Rev. 25, 295 (1925). (T) (C L) H. A. Robinson, Phys. Rev. 52, 724 (1937). (I P) (T) (C L)

		S VI			S VI				
Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
38	3s 2S	1/2	0			5f ² F°	$\begin{cases} 2\frac{1}{2} \\ 3\frac{1}{2} \end{cases}$	} 551848	
3p	3 <i>p</i> ² P°	$1\frac{1}{1}\frac{1}{1}\frac{1}{2}$	105874 107137	1263	5g	5 <i>g</i> ² G	$\begin{cases} 3\frac{1}{2} \\ 4\frac{1}{4} \end{cases}$) } 552106	
3d	3d ² D	$1\frac{1}{2}$ $2\frac{1}{2}$	$247420 \\ 247452$	32	68	6s 2S		573823	
48	4s 2S	1/2	362983		6 <i>p</i>	6 <i>p</i> ² P°		589670	
4p	4p ² P°	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	401164 401621	457	64	6d 2D	$\int \frac{1/2}{1/2}$	596877	
4d	4 <i>d</i> ² D	$1\frac{12}{22}$	$451785 \\ 451808$	23	6f	6f ² F°	$\begin{array}{c c} 2\frac{1}{2} \\ 2\frac{1}{2} \\ 2\frac{1}{2} \end{array}$	600170	
4 <i>f</i>	4 <i>f</i> ^₂ F°	$\left\{ egin{array}{c} 2^{1\!\!\!/_2} \\ 3^{1\!\!\!/_2} \end{array} ight.$	} 462653		74	7 <i>d</i> ² D	$\begin{cases} 3\frac{1}{2} \\ 1\frac{1}{2} \end{cases}$	627231	
58	5s 2S	1/2	504112						
5p	5p ²P°	$1/2 \\ 1/2 \\ 1/2$	522030 522248	218	7f	$7f \ ^{2}F^{\circ}$	$\left\{ \begin{array}{c} 2\frac{7}{2}\\ 3\frac{1}{2} \end{array} \right\}$	} 629395	
5d	5 <i>d</i> 2D	$rac{11}{212}$	546021 546032	11	S VII (¹ S ₀)	Limit		710194	-

June 1947.

Z = 16

I. P. 88.029 ± 0.003 volts

(Ne 1 sequence; 10 electrons)

Ground state 1s² 2s² 2p⁶ ¹S₀

 $2p^{6}$ ¹S₀ **2266990** cm⁻¹

Ferner has classified 16 lines between 46 A and 72 A as combinations with the ground term, and generously furnished his analysis in advance of publication. The term designations he assigns on the assumption of LS-coupling are given in the table under the heading "Author."

As for Ne I, the *jl*-coupling notation in the general form suggested by Racah is introduced. Ferner's unit, 10^3 cm⁻¹, has here been changed to cm⁻¹.

REFERENCES

G. Racah, Phys. Rev. 61, 537 (L) (1942).

E. Ferner, Ark. Mat. Astr. Fys. (Stockholm) 36A, No. 1, p. 62 (1948). (I P) (T) (C L)

Author	Config.	Desig.	J	Level	Author	Config.	Desig.	J	Level
2p ¹ S ₀	2p ⁶	2p ⁶ ¹ S	0	0	58 ³ P ₁	$2p^{5}(^{2}\mathrm{P_{133}^{5}})5s$	5s [1½]°	$2 \\ 1$	1998920
3s P1 3s P1	$2p^{5}(^{2}\Gamma_{12})^{38}$ $2p^{5}(^{2}\Gamma_{22}^{\circ})^{38}$	38 [172] 38' [½]°	1 0 1	1376220 1388330	$3p' \begin{cases} {}^{3}P_{1} \\ {}^{1}P_{1} \end{cases}$	$\Big\} 2s 2p^{6}(^{2}\mathrm{S})3p$	$3p \left\{ {}^{\mathrm{sP}\circ}_{\mathrm{1P}\circ} \right\}$	} 1	2000400
3d ⁸ P1	$2p^{5}(^{2}\mathrm{P}^{\mathfrak{i}_{\mathfrak{l}}}) 3d$	3d [½]°	0 1	1624770	5d ¹ P ₁ 5d ³ D ₁	$2p^5(\mathrm{P}^{\mathfrak{s}}_{\mathfrak{1}\mathfrak{2}\mathfrak{2}})5d$ $2p^5(^2\mathrm{P}^{\mathfrak{s}}_{\mathfrak{2}\mathfrak{2}})5d$	$5d [1\frac{1}{2}]^{\circ}$ $5d' [1\frac{1}{2}]^{\circ}$	1 1	2046080 2055630
3d ¹ P ₁	66	3d [1½]°	1	1644630	6d 1P.	2n ⁵ (2P:1)6d	6d [11/4]°	1	2113850
$3d$ $^{3}D_{1}$	$2p^{5}(^{2}\mathrm{P}^{\circ}_{\!$	3d' [1½]°	1	1662210	$6d {}^{3}D_{1}$	$2p^{5}(^{2}P_{3})^{0}6d$	6d' [1½]°	1	2123230
43 ³ P1	2p ⁵ (² P _{11/2})4s	4s [1½]°	$\frac{2}{1}$	1820230	7d ³ D ₁	$2p^5(^2\mathrm{P}^{\circ}_{\!$	7d' [1½]°	1	2163940
48 ¹ P ₁	2p ⁵ (² P ^o ₂)4s	4s' [½]°	0 1	1829760					
4 <i>d</i> ¹ P ₁	$2p^{5}(^{2}\mathrm{P}_{15})^{2}$	4d [1½]°	1	1919500		S vIII (² P ₁) S vIII (² P ₅)	Limit Limit		2266990 2277120
$4d \ ^{3}D_{1}$	$2p^{\circ}({}^{2}\mathrm{P}_{3})^{2}4d$	$4d' [1\frac{1}{2}]^{\circ}$		1930240					

August 1947.

S VII

190

Z = 16

I. P. 280.99 volts

S VII

S VII OBSERVED LEVELS*

$\begin{array}{c} \text{Config.} \\ 1s^2 \ 2s^2 + \end{array}$		Observed Terms									
2p ⁶	2p ⁶ 1S	$2p^{6-1}\mathrm{S}$									
	ns $(n \ge 3)$	$nd \ (n \ge 3)$	$np (n \ge 3)$								
$2p^{\delta}(^{2}\mathrm{P}^{\mathrm{o}})nx$	$\begin{cases} 3-5s \ {}^{3}P^{\circ} \\ 3-4s \ {}^{1}P^{\circ} \end{cases}$	3d ³ P° 3-7d ³ D° 3-6d ¹ P°									
2p ⁶ (2S) <i>nx</i>			$3p {^{3}P^{\circ}}_{1P^{\circ}}$								
	j	l-Coupling Notation	· · · · · · · · · · · · · · · · · · ·								
		Observed Pair	3								
	ns $(n \ge 3)$	$nd \ (n \ge 3)$									
$2p^5(^2\mathrm{P}^\circ_{15})$ nx	3-5s [1½]°	$\begin{array}{ccc} 3d & [\frac{1}{2}]^{\circ} \\ 3-6d & [\frac{1}{2}]^{\circ} \end{array}$									
$2p^5(^2\mathrm{P}^\circ_{\!$	3-4s' [½]°	3–7d′ [1½]°									

*For predicted levels in the spectra of the Ne I isoelectronic sequence, see Introduction.

S VIII

(F 1 sequence; 9 electrons)

Ground state $1s^2 2s^2 2p^5 {}^2\mathrm{P}_{1\frac{1}{2}}^{\circ}$

 $2p^{5} \, {}^{2}\mathrm{P}^{\circ}_{1\frac{1}{2}} \, 2652720 \, \, \mathrm{cm}^{-1}$

The analysis was furnished by Ferner in advance of publication. He has classified 44 lines in the interval between 44 A and 65 A. All but one of the observed combinations are with the ground term. In addition, Robinson has classified a pair of lines at 202.605 A and 198.550 A as $2p^5 {}^{2}P^{\circ}-2p^6 {}^{2}S$.

Ferner's unit, 10^3 cm⁻¹, has here been changed to cm⁻¹.

REFERENCES

H. A. Robinson, Phys. Rev. 52, 724 (1937). (C L) E. Ferner, Ark. Mat. Astr. Fys. (Stockholm) 36A, No. 1, p. 57 (1948). (I P) (T) (C L) 191

I. P. 328.80 volts

Z = 16

S VIII	S	VIII
--------	---	------

S VIII

Author	Config.	Desig.	J	Level	Interval	Author	Config.	Desig.	J	Level	Interval
$2p \ {}^{2}P_{2} \ {}^{2}P_{1}$	$2s^2 2p^5$	$2p^5$ $^2\mathrm{P}^{\circ}$	$1\frac{1}{\frac{1}{2}}$	0 10130	-10130	$\overline{3d}$ ² S ₁	$2s^2 2p^4(^{1}\text{D})3d$	3d' ² S	1/2	1894330	
$2p' \ ^2S_1$	2s 2p ⁶	$2p^{6}$ $^{2}\mathrm{S}$	1⁄2	50 3 590		$\overline{3d}$ ² F ₃	$2s^2 2p^4(^1D)3d$	$ \frac{3d'}{2F} $	$egin{array}{c} 3^{1\!/\!2} \ 2^{1\!/\!2} \ 2^{1\!/\!2} \end{array}$	1895520	
$\begin{array}{ccc} 3s & {}^{4}P_{3} \\ & {}^{4}P_{2} \\ & {}^{4}P_{1} \end{array}$	$2s^2 \ 2p^4(^3\mathrm{P}) \ 3s$	3s 4P	$2\frac{1}{2}$ $1\frac{1}{2}$ $1\frac{1}{2}$	$1559580 \\ 1565250 \\ 1569290$	$-5670 \\ -4040$	$\begin{vmatrix} \overline{\overline{3d}} & {}^{2}\mathrm{D}_{3} \\ & {}^{2}\mathrm{D}_{2} \end{vmatrix}$	$2s^2 2p^4({}^{1}S)3d$	3d'' 2D	$2^{1/2}_{1/2} \ 1^{1/2}_{1/2}$	195 2 100 195 3 010	-910
3_{s} $^{2}P_{2}$ $^{2}P_{1}$	2s ² 2p ⁴ (³ P)3s	3s 2P	$1\frac{1}{2}$	$\frac{1579700}{1586650}$	-6950	3s' ² P ₂ ² P ₁	2s 2p ⁵ (³ P°)3s	3s''' 2P°	$1\frac{1}{2}$ $\frac{1}{2}$	2038530 2045040	-6510
$\overline{3s}$ $^{2}D_{3}$ $^{2}D_{2}$	$2s^2 2p^4 ({}^1\mathrm{D}) 3s$	3s′ 2D	$2^{1/2}_{1^{1/2}_{1^{1/2}_{2}}}$	$\frac{1623380}{1623610}$	-230	$\begin{array}{c c} 4s & {}^{2}P_{2} \\ & {}^{2}P_{1} \end{array}$	$2s^2 2p^4(^{3}P)4s$	4s ² P	$1\frac{1}{2}$	$\begin{array}{c} 2102340 \\ 2111240 \end{array}$	-8900
$\overline{\overline{3s}}$ ² S ₁	2s ² 2p ⁴ (1S)3s	3s'' 2S	1/2	1688170		$4d$ 4P_3	$2s^2 2p^4 (^3P)4d$	4d 4P	$egin{array}{c} 1^{1\!\!\!/2} \\ 1^{1\!\!\!/2} \\ 2^{1\!\!\!/2} \end{array}$	2 1998 3 0	
3d 4D3	$2s^2 2p^4(^{3}P)3d$	3d ⁴ D	$\begin{array}{c c} 3\frac{1}{2} \\ 2\frac{1}{2} \\ 1\frac{1}{2} \\ 1\frac{1}{2} \end{array}$	$\frac{1831370}{1822510}$		$\left \begin{array}{cc} 4d & {}^2\mathrm{D}_2 \\ & {}^2\mathrm{D}_3 \end{array}\right $	2s ² 2p ⁴ (³ P)4d	4d ² D	$1\frac{12}{212}$	$2204100 \\ 2208530$	4430
3d 4P2	$2s^2 2p^4(^{3}\mathrm{P})3d$	3 <i>d</i> 4P	$ \frac{72}{\frac{1}{2}} \frac{1}{1}\frac{1}{2} $	1834830	2010	4d ² P ₂	2s ² 2p ⁴ (³ P)4d	4d ² P	$1^{1/2}_{1^{1/2}_{1^{1/2}_{2}}}$	2207770	
$^{4}P_{3}$			$2\frac{1}{2}$	1838740	3910	$\overline{4d}$ ² S ₁	$2s^2 2p^4(^1D)4d$	4d' ² S	$\frac{1}{2}$	2253570	
${}^{3d}_{2}{}^{2}P_{1}_{2}_{2}$	$2s^2 \ 2p^4(^3P) \ 3d$	3d ² P	$1/2 \\ 1/2 \\ 1/2$	$\frac{1839250}{1847550}$	8300	$\overline{4d}$ ² F ₃	$2s^2 2p^4(^1D)4d$	4d' ² F	${3 \frac{1}{2} \over 2 \frac{1}{2}}$	2254790	
3d ${}^{2}\mathrm{D_{2}}$ ${}^{2}\mathrm{D_{3}}$	$2s^2 \ 2p^4(^3\mathrm{P}) 3d$	3d ² D	$1\frac{1}{2}$ $2\frac{1}{2}$	$\frac{1842770}{1847810}$	5040		STY (3P)	Limit			
$\overline{3d}$ $^{2}P_{1}$ $^{2}P_{2}$	$2s^2 2p^4({}^1\mathrm{D})3d$	3d′ 2P	$1/2 \\ 11/2$	$\frac{1888460}{1897460}$	9000		(°12)	Linti		2052120	
$\overline{3d}$ $^2\mathrm{D}_3$ $^2\mathrm{D}_2$	$2s^2 2p^4({}^1\mathrm{D}) 3d$	3d' ² D	$2\frac{1}{2}$ $1\frac{1}{2}$	$\frac{1892000}{1898220}$	-6220						

August 1947.

S VIII OBSERVED TERMS*

Config. $1s^2+$		Observed Terms							
2s ² 2p ⁵		$2p^5$	²P°						
2s 2p ⁶	$2p^{6-2}\mathrm{S}$								
		ns (n	≥3)			nd ($(n \ge 3)$		
2s ² 2p ⁴ (³ P)nx	{	3s 3, 4s	4P 2P			3, 4d 4P 3, 4d 2P	$\begin{array}{ccc} 3d & {}^4\mathrm{D} \\ 3, 4d & {}^2\mathrm{D} \end{array}$		
$2s^2 \ 2p^4({}^1\mathrm{D})nx'$				3s1 2D	3, 4d′ 2S	3d' ² P	$3d'$ $^{2}\mathrm{D}$	3, 4d' ² F	
$2s^2 \ 2p^4({}^1\mathrm{S})nx''$	3s'' 2S						$3d^{\prime\prime}$ 2D		
2s $2p^{5}(^{3}P^{\circ})nx'''$		3 s''	′ 2P°						

*For predicted terms in the spectra of the F1 isoelectronic sequence, see Introduction.

Z = 16

1. P. 378.95 volts

(O I sequence; 8 electrons)

Ground state 1s² 2s² 2p⁴ ³P₂

 $2p^{4} {}^{3}P_{2} {}^{3}057300 {}^{-1}$

Ferner has found 17 terms and classified 21 lines in this spectrum in the range from 46 A to 56 A. No intersystem combinations have been observed and the uncertainty, x, may be large. The unit adopted by Ferner, 10^3 cm⁻¹, has here been changed to cm⁻¹.

REFERENCE

E. Ferner, Ark. Mat. Astr. Fys. (Stockholm) 36A, No. 1, p. 48 (1948). (I P) (T) (C L)

SIX

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
2s ² 2p ⁴	2p4 3P	2	0	-7970	2s ² 2p ³ (² D°)3d	3d′ ¹D°	2	2117140+x	
		Ô	10630	-2660	$2s^2 \ 2p^3(^2\mathrm{D}^\circ) 3d$	$3d'$ $^3S^\circ$	1	2125310	
2s ² 2p ⁴	2p4 1D	2	58000 + x		$2s^2 \ 2p^3(^2D^\circ) 3d$	3d′ ¹F°	3	2134410+x	
2s ² 2p ⁴	2p ⁴ ¹ S	0	122300+x		$2s^2 2p^3(^2P^\circ)3d$	3d′′ ³P°	0		
$2s^2 \ 2p^3({}^4\mathrm{S}^\circ) 3s$	38 3S°	1	1783150					2144820 2146610	1790
$2s^2 \ 2p^3(^2{ m D}^{\circ}) 3s$	3s′ ³D°	3	1845770	-570	$2s^2 \ 2p^3(^2\mathrm{P^o}) \ 3d$	3d′′ ³F°	4		
			1840340					2154570	
$2s^2 \ 2p^3(^2{ m D}^{\circ}) 3s$	3s′ ¹D°	2	1858500 + x		$2s^2 \ 2p^3(^2\mathrm{P}^\circ)3d$	3 <i>d′′</i> ³D°	3	2156430	
2s ² 2p ³ (² P°)3s	3s'' ¹ P°	1	1904040+x						
$2s^2 \ 2p^3({}^4\mathrm{S}^\circ) 3d$	3 <i>d</i> ³ D°	1,2	2035220 2035870	650	2s ² 2p ³ (² P ^o)3d	3 <i>d''</i> ¹₽°	1	2162470+x	
$2s^2 \ 2p^3(^2\mathrm{D^o}) 3d$	3 <i>d′</i> ³D°	3, 2, 1	2108190		G (4Ge)	Timit			
2s ² 2p ³ (² D°)3d	3d′ ³P°	2 1 0	2116450 2119180 -	-2730	o x (*0i¾)			- 3037300	

August 1947.

S IX OBSERVED TERMS*

$\begin{array}{c} \text{Config.} \\ 1s^2 + \end{array}$		Observed Terms									
2s ² 2p ⁴	$\left\{_{2p^{4-1}\mathrm{S}} ight.$	2p4 3P	2p4 1D								
		ns $(n \ge 3)$			nd ($(n \ge 3)$					
$2s^2 \ 2p^3({}^4\mathrm{S}^\circ)nx$	3 <i>s</i> *S°					3d ³D°					
2s ² 2p ³ (² D [°])nx'	{		38′ 3D° 38′ 1D°	3d′ ³S°	3d′ ³P°	$\begin{array}{ccc} 3d' & ^{3}\mathrm{D}^{\circ} \\ 3d' & ^{1}\mathrm{D}^{\circ} \end{array}$	3d′ ¹ F°				
2s ² 2p ³ (² P ^o)nx''	{	3s'' 1P°			3 <i>d''</i> ³ P° 3 <i>d''</i> ¹ P°	3d′′ ³D°	3d″ ³F°				

*For predicted terms in the spectra of the O I isoelectronic sequence, see Introduction.

(N 1 sequence; 7 electrons)

Ground state $1s^2 2s^2 2p^3 {}^4S^{\circ}_{1\frac{1}{2}}$

 $2p^{3}$ ${}^{4}S^{\circ}_{1_{2}}$ **3615900** cm⁻¹

The spectrum is very incompletely analyzed. Ferner has classified 4 lines between 44 A and 47 A and has generously furnished these classifications in advance of publication. The terms in the table have been derived from Ferner's data, adjusted by Robinson to fit the isoelectronic sequence data. All entries in brackets have been extrapolated along the isoelectronic sequence by Robinson. No intersystem combinations have been observed and the uncertainty, x, probably exceeds ± 1000 cm⁻¹.

Ferner's unit, 10^3 cm⁻¹, has been changed to cm⁻¹ in deriving the term values.

REFERENCES

E. Ferner, Ark. Mat. Astr. Fys. (Stockholm) 36A, No. 1, p. 42 (1948). (C L) H. A. Robinson, unpublished material (March 1948). (I P) (T)

 Config.	Desig.	J	Level	Interval
2s ² 2p ³	2p ³ 4S°	1½	0	
2s ² 2p ³	$2p^3 \ ^2\mathrm{P}^{\circ}$	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	[122230]+x [123730]+x	[1500]
2s ² 2p ² (³ P)3s	3s 4P	$1^{1/2}_{1^{1/2}}_{2^{1/2}}$	2092360 2098460	6100
2s ² 2p ² (³ P)3d	3 <i>d</i> ² D	$1\frac{1}{2}$ $2\frac{1}{2}$	2375140 + x 2377300 + x	2160
S x1 (3P0)	 Limit		[3615900]	

March 1948.

S XII

(B I sequence; 5 electrons)

Ground state 1s² 2s² 2p ²P³/₅

 $2p \, {}^{2}\mathrm{P}_{1}$ cm⁻¹

By extrapolation along the B I isoelectronic sequence, Edlén estimates that the separation of the lowest term, $2p {}^{2}P_{1/2}^{\circ} - 2p {}^{2}P_{1/2}^{\circ}$, is 13266 cm⁻¹ (7536 A).

REFERENCE

B. Edlén, Zeit. Astroph. 22, 58 (1942). (T)

July 1948.

S X

I. P. 448.2 volts

Z = 16

I. P. volts

CHLORINE

Cl I

17 electrons

Ground state $1s^2 2s^2 2p^6 3s^2 3p^5 {}^{2}\mathbf{P}^{\circ}_{1_{2}}$

3p⁵ ²P[°]_{1½} 104991 cm⁻¹

Most of the terms are from the analysis by Kiess, who has revised and extended the earlier work on this spectrum. Green and Lynn have observed the Zeeman effect and, with the aid of g-values, added a few terms to the list by Kiess. They list 11 unclassified lines for which both g-values are known.

Their miscellaneous levels are labeled in the table with numbers assigned by the writer, followed by their tentative designations entered in parentheses.

Intersystem combinations, connecting the doublet and quartet terms, have been observed

REFERENCES

L. A. Turner, Phys. Rev. 27, 401 (1926). (C L)

Cl I

O. Laporte, Nature 121, 1021 (1928). (C L)

C. C. Kiess, Bur. Std. J. Research 10, 827, RP570 (1933). (I P) (T) (C L)

B. Edlén, Zeit, Phys. 104, 413 (1937). (I P) (C L)

W. F. Meggers, J. Opt. Soc. Am. 36, 431 (1946). (Summary hfs)

J. B. Green and J. T. Lynn, Phys. Rev. 69, 165 (1946). (T) (C L) (Z E)

L. Davis, Jr., B. T. Feld, C. W. Zabel, and J. R. Zacharias, Phys. Rev. 73, 525 (L) (1948). (hfs)

Config.	Desig.	J	Level	Interval	Obs. g	Config.	Desig.	J	Level	Interval	Obs. g
3s ² 3p ⁵	3p ⁵ ² P ^o	11/2	0 881	-881		3s ² 3p ⁴ (³ P)4p	4p 2S°	1/2	85239.98		1. 280
3s ² 3p ⁴ (³ P)4s	48 4P	$2\frac{1}{2}$	71954.00 72484.20	-530.20	1.599 1.722	3s ² 3p ⁴ (³ P)4p	4 <i>p</i> ² P°	$1\frac{1}{2}$ $\frac{1}{2}$	85438.04 85913.44	-475. 40	1. 327 1. 379
		1/2	72822.64	- 338. 44	2.652	3s ² 3p ⁴ (³ P)4p	4p 4S°	11/2	85730.68		1. 877
3s ² 3p ⁴ (³ P)4s	48 ² P	$1\frac{1}{2}$ $\frac{1}{2}$	74221. 44 74861. 24	-639. 80	1. 340 0. 663	3s ² 3p ⁴ (¹ D)4p	4p' 2P°	$1\frac{1}{2}$ $\frac{1}{2}$	94309.67 94464.50	-154.83	1. 328 0. 872
3s ² 3p ⁴ (³ P)4p	4p 4P°	$\begin{array}{c c} 2\frac{1}{2} \\ 1\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array}$	82914. 54 83126. 59 83360. 55	-212.05 -233.96	$\begin{array}{c} 1.\ 591 \\ 1.\ 723 \\ 2.\ 617 \end{array}$	3s ² 3p ⁴ (³ P)5p	5p 4P°	$2\frac{1}{2}$ $1\frac{1}{2}$ $\frac{1}{2}$	94477.93 94659.28 94969.43	-181.35 -310.15	1. 559 1. 722 2. 309
3s² 3p4(3P)4p	4p 4D°	$\begin{array}{c c} 3\frac{1}{2}\\ 2\frac{1}{2}\\ 1\frac{1}{2}\\ \frac{1}{2}\\ \frac{1}{2}\end{array}$	83889.64 84127.90 84480.91 84684.27	-238.26-353.01-203.36	1. 422 1. 308 1. 163 0. 059	3s ² 3p ⁴ (³ P)5p	5p 4D°	$\begin{array}{c} 3\frac{1}{2}\\ 2\frac{1}{2}\\ 1\frac{1}{2}\\ \frac{1}{2}\\ \frac{1}{2}\\ \frac{1}{2}\end{array}$	94727.91 94822.75 95309.43 95530.51	$ \begin{array}{r} -94.84 \\ -486.68 \\ -221.08 \end{array} $	1. 420 1. 247 1. 147 1. 409
3s² 3p4(1D)4s	4s' 2D	$2\frac{1}{2}$ $1\frac{1}{2}$	84115.68 84117.38	-1.70		$3s^2 3p^4(^1D)4p$	4p′ ² F°	2½ 3½	95140.05 95176.00	35. 95	
3s ² 3p ⁴ (³ P)4p	$4p ^{2}D^{\circ}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	84643.69 84984.04	- 340. 35	1.269 0.986	3s ² 3p ⁴ (³ P)5p	5p 2D°	$2\frac{1}{2}$ $1\frac{1}{2}$	95396.31 95702.01	-305. 70	1. 352 1. 321

Z = 17

har the ---- '

I. P. 13.01 volts

Cl I

Cl I—Continued

Cl I—Continued

Config.	Desig.	J	Level	Interval	Obs. g	Config.	Desig.	J	Level	Interval	Obs. g
3s ² 3p ⁴ (³ P)5p 3s ² 3p ⁴ (³ P)5p	5p ² S° 5p ⁴ S°	$\frac{1'_2}{1^{1'_2}}$	95593. 28 95608. 30		0. 699 1. 531	3s ² 3p ⁴ (³ P)5d	5 <i>d</i> 4F	$\begin{array}{c} 4\frac{1}{2} \\ 3\frac{1}{2} \\ 2\frac{1}{2} \\ 1\frac{1}{2} \end{array}$	99513, 68 99664, 15 99761, 52 99945, 42	-150.47 -97.37 -183.90	$1.310 \\ 1.181 \\ 1.149 \\ 1.240$
3s² 3p4(3P)4d	4 <i>d</i> 4D	$3\frac{1}{2}$ $2\frac{1}{2}$ $1\frac{1}{2}$ $1\frac{1}{2}$ $\frac{1}{2}$	95696. 49 95782. 41 95893. 16 95991. 18	$-85.92 \\ -110.75 \\ -98.02$	$\begin{array}{c} 1.\ 367 \\ 1.\ 209 \\ 0.\ 00 \end{array}$	3s ² 3p ⁴ (³ P)4d	4d ² P	$1\frac{1}{2}$ $\frac{1}{2}$	995 3 0. 10 99707. 00	-176.90	1. 306 1. 289
3s ² 3p ⁴ (³ P)5p	5 <i>p</i> 2P°	$1\frac{1}{2}$ $\frac{1}{2}$	96308.84 96589.64	- 280. 80	1. 286 0. 712	$\begin{array}{c} 3s^2 \ 3p^4({}^3\mathrm{P})6p \\ 3s^2 \ 3p^4({}^3\mathrm{P})6p \end{array}$	1° (2D?) 2° (4D°?)	$1\frac{1}{2}$ $\frac{1}{2}$	99564. 7 99582. 7		1. 32 0. 49
3s ² 3p ⁴ (1D)4p	4p' 2D°	$2^{1\!/_2}_{1^{1\!/_2}}$	96478.38 96481.70	-3.32	0. 867	$3s^2 3p^4(^{3}P)7s?$	1 (4P?)		99677.1		1.73
3s ² 3p ⁴ (³ P)4d	4 <i>d</i> 4F	$\begin{array}{c} 4\frac{1}{2} \\ 3\frac{1}{2} \\ 2\frac{1}{2} \end{array}$	$\begin{array}{c} 96490.\ 40\\ 96726.\ 81\\ 96941.\ 30\end{array}$	-236.41 -214.49 -314.25	1. 097	$3s^2 3p^4(^{3}P)7s?$	0 <i>p</i> -1 2 (2P?)	$172 \\ 1/2 $	99819.8 99899.2 99968.1	-79.4	1. 28 0. 81 1. 21
3s ² 3p ⁴ (³ P)4d	$4d$ $^2{ m F}$	$1\frac{1}{2}$ $3\frac{1}{2}$ $2\frac{1}{2}$	97255.55 96829.85 97179.94	- 350. 09	0.967	$3s^2 3p^4(^3\mathrm{P})5d$	5 <i>d</i> 4P	$2^{1/2}_{1^{1/2}}_{1^{1/2}_{1/2}}$	99984. 30 100233. 00 100167. 12	-248.70 65.88	1. 589 1. 470
3s ² 3p ⁴ (³ P)6s	6s 4P	$2^{1/_2}_{1^{1/_2}_{1^{1/_2}_{1^{1/_2}_{1^{1/_2}_{1^{1/_2}_{1^{1/_2}_{1^{1/_2}_{1^{1/_2}}}}}}$	97233. 37 97476. 20 98095, 96	-242.83 -619.76	$\begin{array}{c} 1.500 \\ 1.393 \\ 1.962 \end{array}$	$3s^2 3p^4(^{3}P)7s?$	3 (² P?)	11/2	100046. 5		1.42
3s² 3p4(3P)4d	4 <i>d</i> 4P	$2^{1/2}_{1/2}$ $1^{1/2}_{1/2}$ $1^{1/2}_{1/2}$	97334. 60 98040. 80 98641. 22	-706.20 -600.42	1. 902 1. 241 1. 620	$3s^2 3p^4(^{3}P)5d$	5 <i>d</i> ² D	$2^{1/2}_{1/2}$ $2^{1/2}_{1/2}$ $1^{1/2}_{1/2}$	$100142. 41 \\ 100585. 28 \\ 100245. 32 \\ 100342. 98$	-442.87 -97.66	1. 069
3s² 3p4(3P)4d	4 <i>d</i> 2D	$2\frac{1}{2}$ $1\frac{1}{2}$	97529. 85 97803. 46	-273. 61	1. 355	3s ² 3p ⁴ (³ P)5d	$5d$ $^2\mathrm{P}$	$1\frac{1}{2}$ $\frac{1}{2}$	$100700.\ 3$ $100733.\ 4$	-33.1	$1.65 \\ 1.59$
3s ² 3p ⁴ (³ P)6p	6p 'P°	$2\frac{1}{2}$ $1\frac{1}{2}$ $\frac{1}{2}$	98911.6		1. 91	3s ² 3p ⁴ (³ P)6d	6d 4D	$\begin{array}{c} \frac{1/2}{11/2}\\ 2\frac{1}{2}\\ 3\frac{1}{2}\end{array}$	$\begin{array}{c} 100941. \ 9 \\ 101041. \ 6 \\ 101048. \ 47 \\ 100985. \ 60 \end{array}$	99.7 6.9 -62.87	$ \begin{array}{c} 1. 010 \\ 1. 168 \\ 1. 364 \\ 1. 377 \end{array} $
3s ² 3p ⁴ (³ P)6p	6 <i>p</i> 4D°	${31/2\atop 2^{1/2}\atop 1^{1/2}_{1/2}}$	99015.1		1. 32	3s ² 3p ⁴ (³ P)6d	4 (4F?)	1½?	101219. 0		1. 20
		1/2				$3s^2 3p^4(^3P)6d$	5 (4P?)	$2\frac{1}{2}$	101422. 4		1.60
38 ^z 3p*(*P)5d	5 <i>d</i> 4D	$3\frac{1}{2}$ $2\frac{1}{2}$ $1\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	99196. 02 99264. 71 99350. 22 99403. 61	-68.69 -85.51 -53.39	1. 392 1. 358 0. 363	3s ² 3p ⁴ (³ P)6d 3s ² 3p ⁴ (³ P)6d	6 7 (2F?)	$\frac{1/2}{2^{1/2}}$	101587. 4 101855. 0		0. 69
						Cl 11 (3P2)	Limit		104991		

January 1948.

Cl i Observed Terms*

$\begin{array}{c} \text{Config.}\\ 1s^2 2s^2 2p^6 + \end{array}$	Observed Terms									
3s ² 3p ⁵	3 <i>p</i> ⁵ ² P°									
	$ns (n \ge 4)$	$np (n \ge 4)$	nd $(n \geq 3)$							
3s ² 3p ⁴ (³ P)nx	$\left\{\begin{array}{cc}4,6s & {}^{4}\mathrm{P}\\4s & {}^{2}\mathrm{P}\end{array}\right.$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4, 5d ⁴ P 4-6d ⁴ D 4, 5d ⁴ F 4, 5d ² P 4, 5d ² D 4, 5d ² F							
$3s^2 \ 3p^4(^1\mathrm{D}) nx'$	4s′ 2D	4p' ² P° 4p' ² D° 4p' ² F°								

*For predicted terms in the spectra of the Cl 1 isoelectronic sequence, see Introduction.

Сlп

(S I sequence; 16 electrons)

Ground state $1s^2 2s^2 2p^6 3s^2 3p^4 {}^{3}P_2$

$3p^{4} {}^{3}P_{2}$ 192000 cm⁻¹

The terms are from the paper by Kiess and de Bruin, who have summarized, revised, and extended the earlier analysis by Murakawa and others. They give a complete list of classified lines; it extends from 558 A to 9483 A. Intersystem combinations connecting all three systems of terms, have been observed.

The two unclassified levels designated by them as x' and x'' are here labeled 1 and 2, respectively. The term they list as 4s'³P is entered as "³P" since its configuration is not definitely known.

The estimated position of $3p^{4}$ ¹S given by Edlén, is entered in brackets in the table.

REFERENCES

C. C. Kiess and T. L. de Bruin, J. Research Nat. Bur. Std. 23, 443, RP1244 (1939). (I P) (T) (C L) (G D)

B. Edlén, Phys. Rev. 62, 434 (1942). (T)

S. Tolansky, Zeit. Phys. 74, 336 (1932). (hfs)

S. Tolansky, Zeit. Phys. 73, 470 (1931). (I S)

TT
11

Config. Desig. .T Level Interval Config. Desig. J Level Interval 3p4 3P 3s2 3p4 2 $3s^2 3p^3(^2D^\circ)3d$ 3d'1P° 0 1 127726.9 $-697 \\ -299$ -697 697 ō 128621. 9 3s² 3p³(4S°)4p 5P 996 4p $\frac{1}{2}$ 40. 6 67. 3 128662.5 128729.8 3s2 3p4 3p4 1D 2 11652 3 3s2 3p4 0 [27900] $3p^4$ ^{1}S 3s2 3p3(2D°)4s 1D° 2 129065.4 4s' $3p^5$ 3Po 2 2 131767.4 3s 3p5 93366.6 3s² 3p³(4S°)4p зP 4p $\begin{array}{r}
 12.6 \\
 -13.2
 \end{array}$ -632.193998. 7 94332. 8 131754. 8 131768. 0 1 1 -334.1 ō 0 3G° 3s² 3p³(4S°)4s ۶S° 2 3s2 3p3(2D°)3d 3 4s107878.5 3d'132162.1 11.3 17.9 $132173.4 \\ 132191.3$ 4 3s² 3p³(4S°)3d 5D° 3d110295.8 4 3 2 5 -1.0-2.7-2.5110296.8 4s'' 3P° 3s² 3p³(²P°)4s 0 137770. 1 110299.5 34. 3 73. 2 110302.0 137804.4 137877.6 1 -1.5 Ō 2 110303.5 3s2 3p3(4S°)4s 3S° $4s^{\prime\prime}$ 112608.0 3s² 3p³(²P°)4s 1P° 4s1 1 138623.0 1P° 3s 3p⁵ $3p^5$ 1 115656.4 3s² 3p³(²P°)3d $3d^{\prime\prime}$ ¹P° 1 139350.0 119809. 9 3s² 3p³(²P°)3d $3s^2 \ 3p^3(^4S^\circ) 3d$ 3Do 3d3 3*d′′* ¹D° 2 140259.1 10.9 119799.0 119842.1 $\frac{2}{1}$ -43.1 140740. 0 141010. 0 3s² 3p³(²P°)3d $3d^{\prime\prime}$ ³D° 1 270. 0 $\mathbf{2}$ 339.6 $3s^2 3p^3(^2D^\circ)3d$ 1D° 2 3d'121498.6 3 141349.6 $3s^2 \ 3p^3(^2D^\circ) 3d$ 3d'1F° 3d'' 3F° 3 121635.1 3s² 3p³(²P°)3d 143996.3 432 -178. **2** -169. 1 144174.5144343.623 $3s^2 \ 3p^3(^2D^\circ)3d$ 3d'3Fo 126031.8 187.3 126219.1 126456.6 237.5 1 $3s^2 3p^3(^2D^\circ)4p$ ^{1}P 145468.5 4 4p'3s² 3p³(²P°)3d 3s² 3p³(²D°)4s 4s' 3Do $\frac{1}{2}$ 126725. 1 3d'' 3P° 0 18.2 126743. 3 1 39.5 $\hat{\mathbf{2}}$ 146012.9 126782.8

Z = 17

I. P. 23.80 volts

СПП

Cl II—Continued

Cl II—Continued

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
3s ² 3p ³ (² D ^o)4p	4p' 3D	1 2 3	$\begin{array}{c} 146330. \ 0 \\ 146333. \ 8 \\ 146469. \ 0 \end{array}$	3. 8 135. 2	3s ² 3p ³ (4S°)5d	5 <i>d</i> ⁵ D°	0 1 2	169799. 1	0.5
$3s^2 \ 3p^3(^2D^\circ) 4p$	4 <i>p′</i> ³F	2 3	147053. 7 147125. 7	72.0 72.7			3 4	169799.6 169800.2	0. 5
3s² 3p³(²D°)4p	4p′ ¹ F	4 3	147198. 4 147605. 7		$3s^2 \ 3p^3(^2D^\circ) 5s$	5s' 3D°	$\begin{array}{c}1\\2\\3\end{array}$	170514.7 170535.1 170575.5	20. 4 40. 4
3s² 3p³(²D°)4p	4 <i>p′</i> ³P	$2 \\ 1 \\ 0$	149798. 3 149952. 4 150019. 0	-154.1 -66.6	$3s^2 \ 3p^3({}^4\mathrm{S}^\circ)5d$	5d 3D°	$3 \\ 2 \\ 1$	170973.6 171005.8 171051.5	-32.2 -45.7
3s² 3p³(²D°)3d	3d′ ³P°	2 1	150681.4 150812.7	-131. 3	$3s^2 3p^3(^2D^\circ)5s$ $2s^2 2m^3(^2D^\circ)4d$	5s' 1D°	2	171209.2	
3s² 3p³(2D°)3d	3d' 3D°	3	151092.7	74. 1	$38^{2} 3p^{2} (^{2}D^{2})^{4}a$	4 <i>a</i> , °F	2 3 4	172572.6 172650.3 172740.9	77. 7 90. 6
3s ² 3n ³ (4S°)5s	5s 5S°	1 2	151133. 8 152233. 1	-115.2	$3s^2 \ 3p^3(^2D^\circ)4d$	4d′ 3G°	3 4 5	173222.7 173243.9 173277.5	21. 2 33. 6
3s ² 3p ³ (² D ^o)4p	4p′ ¹D	2	153257.0		3s ² 3p ³ (² D ^o)4d	4 <i>d′</i> ¹ F°	3	174045.0	
$3s^2 \ 3p^3(^2D^\circ)3d$	$3d'$ $^3S^{\circ}$	1	153571.2			2	2	174256. 3	
3s ² 3p ³ (4S°)5s	5s 38°	1	153633. 1		3s ² 3p ³ (² D ^o)4d	4 <i>d'</i> ³ D°	1 2	174785.7 174820.6	34. 9
$3s^2 \ 3p^3(^4S^0)4d$	$4d \circ D^\circ$	0 1 2	154616.7 154617.8 154619.6	1. 1 1. 8 3. 0	3s² 3p³(²D°)4d	4 <i>d'</i> 3S°	3 1	174852.6 17742 3. 1	
2 - 5 (3 D 9) 1 -	A .VII 3'D°	3 4 2	154623.8	1. 2	$3s^2 \ 3p^3(^2D^\circ)4d$	4 <i>d′</i> ³P°	0 1 2	177693.6 177754.2 177816 0	60. 6 62. 7
3p ⁶ (*F*)48	4811101	1 0	157078.8 157666.8 157956.8	$ \begin{array}{c c} -590.2 \\ -290.0 \end{array} $	3s² 3p³(²D°)4d	4d' ¹ D°	2 2	177816.9 178539.1	
$3s^2 \ 3p^3(^2P^\circ)4p$	4 <i>p''</i> 3S	1	158177. 1		$3s^2 \ 3p^3(^2D^\circ) 4d$	4d' ¹ P°	1	179867 . 0	
3s ² 3p ³ (² P ^o)4p	4 <i>p</i> ″ ³D	1 2 3	$\begin{array}{c} 158723.\ 7\\ 158768.\ 6\\ 158786.\ 4\end{array}$	44. 9 17. 8	3s ² 3p ³ (² P ^o)5s	5s″ ³₽°	$\begin{array}{c} 0 \\ 1 \\ 2 \end{array}$	182337. 9 182372. 3 182448. 7	34. 4 76. 4
$3s^2 3p^3(^2P^\circ)4p$	4p'' ¹ D	2	159574. 2		3s ² 3p ³ (² P ^o)4d	4 <i>d</i> ″ ³F°	4 3 2	184628.1 184655.2 184658	-27.1 -3.2
03 0p (1) ±3	-	1 2	159999. 6 160143. 4	159. 3 143. 8	$3s^2$ $3p^3(^2P^\circ)4d$	4 <i>d</i> ″ ³P°	2 2 1	185765.0 185905.4	140. 4
$3s^2 \ 3p^3(^2P^\circ) 4p$	4 <i>p''</i> ¹ P	1	161348. 4				0		
$3s^2 \ 3p^3(^2{ m P}^{ m o})4p$	4 <i>p''</i> ³P	2 1 0	161634. 9 161654. 8 161671. 0	$ \begin{array}{c c} -19.9 \\ -16.2 \end{array} $	$3s^2 \ 3p^3(^2\mathrm{P^o})4d$	$4d^{\prime\prime}$ ³ D°	1 2 3	185865. 2	
3s² 3p³(4S°)4d	4d ³D°	3 2 1	161796.5 161907.7 161989.8	-111.2 -82.1	3s ² 3p ³ (² D ^o)6s	6s' ³ D°	$1 \\ 2 \\ 3$	186844. 3 186861. 0 186898. 3	16. 7 37. 3
	1	2	164210. 7		3s ² 3p ³ (² D ^o)6s	6s' 1D°	2	187141.4	
3s ² 3p ³ (² P°)4p	4 <i>p''</i> 1S	0	165362.1						-
3s ² 3p ³ (4S°)6s	6s 5S°	2	168673.6		Cl III (4S _{11/2})	Limit		192000	
3s ² 3p ³ (4S°)6s	6s 3S°	1	169246.6						

January 1948.

$\begin{array}{c} \text{Config.}\\ 1s^2\ 2s^2\ 2p^6+\end{array}$	Observed Terms										
3s ² 3p ⁴	$\begin{cases} 3p^{4-3}P \\ 3p^{4-1}D \end{cases}$										
3s 3p ⁵	$\begin{cases} 3p^5 & ^3\mathbf{P}^\circ \\ & 3p^5 & ^1\mathbf{P}^\circ \end{cases}$										
	$ns \ (n \ge 4) \qquad np \ (n \ge 4)$										
3s ² 3p ³ (4S°)nx	$\begin{cases} 4-6s \ {}^{5}S^{\circ} \\ 4-6s \ {}^{3}S^{\circ} \end{cases} \qquad $										
$3s^2 \ 3p^3(^2D^\circ)nx'$	$\begin{cases} 4-6s' {}^{3}D^{\circ} \\ 4-6s' {}^{1}D^{\circ} \\ 4-6s' {}^{1}D^{\circ} \\ \end{cases} \qquad \begin{array}{c} 4p' {}^{3}P & 4p' {}^{3}D & 4p' {}^{3}F \\ 4p' {}^{1}P & 4p' {}^{1}D & 4p' {}^{1}F \\ \end{cases}$										
$3s^2 \ 3p^3(^2\mathrm{P^o})nx^{\prime\prime}$	$\begin{cases} 4, 5s'' {}^{3}P^{\circ} \\ 4s'' {}^{1}P^{\circ} \end{cases} \qquad \begin{cases} 4p'' {}^{3}S & 4p'' {}^{3}P & 4p'' {}^{3}D \\ 4p'' {}^{1}S & 4p'' {}^{1}P & 4p'' {}^{1}D \end{cases}$										
$3p^5(^2P^\circ)nx^{VII}$	48 ^{VII 3} P°										
	$nd \ (n \ge 3)$										
3s ² 3p ³ (4S°)nx	$\begin{cases} 3-5d & {}^{5}\mathrm{D}^{\circ} \\ 3-5d & {}^{3}\mathrm{D}^{\circ} \end{cases}$										
3s ² 3p ³ (² D°)nx'	$\begin{cases} 3,4d' {}^{3}\mathrm{S}^{\circ} & 3,4d' {}^{3}\mathrm{P}^{\circ} & 3,4\dot{d}' {}^{3}\mathrm{D}^{\circ} & 3,4d' {}^{3}\mathrm{F}^{\circ} \\ & 3,4d' {}^{1}\mathrm{P}^{\circ} & 3,4d' {}^{1}\mathrm{D}^{\circ} & 3,4d' {}^{1}\mathrm{F}^{\circ} \end{cases}$										
3s ² 3p ³ (² P ^o)nx''	$\begin{cases} 3, 4d'' {}^{3}P^{\circ} & 3, 4d'' {}^{3}D^{\circ} & 3, 4d'' {}^{3}F^{\circ} \\ 3d'' {}^{1}P^{\circ} & 3d'' {}^{1}D^{\circ} \end{cases}$										

*For predicted terms in the spectra of the SI isoelectronic sequence, see Introduction.

Cl ш

(P I sequence; 15 electrons)

Ground state $1s^2 2s^2 2p^6 3s^2 3p^3 {}^4S^{\circ}_{1\frac{1}{2}}$

 $3p^{3} \, {}^{4}S^{\circ}_{1\frac{1}{2}} \, 321936 \, \mathrm{cm}^{-1}$

The terms are from Bowen, who has greatly extended the early work on this spectrum. About 300 lines have been classified, and the observations range from 406 A to 4971 A. Intersystem combinations connecting the doublet and quartet terms have been observed.

Bowen remarks that because of perturbations the designations of the doublet levels of the 3d configuration are somewhat uncertain.

REFERENCES

I. S. Bowen, Phys. Rev. 31, 35 (1928). (I P) (T) (C L) I. S. Bowen, Phys. Rev. 45, 401 (1934). (I P) (T) (C L)

Z = 17

I. P. 39.90 volts

200

Cl III

Сl пі

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
3s ² 3p ³	$3p^3$ ${}^4\mathrm{S}^{\circ}$	1½	0. 0	-	3s ² 3p ² (³ P)4p	4 <i>p</i> ⁴ P°	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	204021.6 204124.0	102. 4
$3s^2 3p^3$	$3p^3 \ ^2D^\circ$	$1\frac{12}{2}$ $2\frac{1}{2}$	18053 18120	67			21/2	204541.2	417.2
$3s^2 \ 3p^3$	$3p^3 \ ^2\mathrm{P}^{\circ}$	$\frac{1}{2}$ $1\frac{1}{2}$	29812 29907	95	3s ² 3p ² (°P)4p	$4p$ $^{2}\mathrm{D}^{3}$	$1\frac{1}{2}$ $2\frac{1}{2}$	205037.3 205946.9	909. 6
3s 3n4	$3n^{4}$ ⁴ P	$2\frac{1}{2}$	98520		3s² 3p²(3P)4p	4 <i>p</i> 4S°	$1\frac{1}{2}$	205938.5	
00 Op			99130 99475	$-610 \\ -345$	$3s^2 3p^2(^3\mathrm{P}) 4p$	4 <i>p</i> ² P°	$1^{1/2}_{1^{1/2}_{1^{\prime}_{2}}}$	209042.1 209182.8	140. 7
$3s^2 \ 3p^2(^3\mathrm{P})3d$	3d 4F	$1\frac{1}{2}{2\frac{1}{2}}$	$\begin{array}{c} 146525. \ 6 \\ 146749. \ 9 \end{array}$	224. 3 323 1	$3s^2 \ 3p^2({}^1\mathrm{D}) 4p$	4p' ² F°	$2^{1\!/_2}_{3^{1\!/_2}}$	216524.6 216710.4	185. 8
		${3^{1\!/_2}_{4^1\!/_2}}$	147073. 0 147497. 9	424. 9	$3s^2 \ 3p^2(^1\mathrm{D})4p$	4p′ 2D°	$2^{1/2}_{1^{1/2}_{1^{1/2}_{2}}}$	217850. 2 217913. 1	-62.9
$3s^2 \ 3p^2(^3P) 3d$	3d ⁴ D	$1^{1/2}_{1/2}$ $1^{1/2}_{1/2}$ $2^{1/2}_{1/2}$	$\begin{array}{c} 151946.\ 4\\ 151879.\ 9\\ 151848.\ 6\end{array}$	-66.5 -31.3 104.9	3s² 3p²(1D)4p	4p′ ²P°	1/2 1/2	221862.9 222100.7	237. 8
3s² 3p²(³P)4s	4s 4P	$3\frac{1}{2}$ $\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{4}$	151953. 5 173736. 0 174093. 8 174613. 9	357. 8 520. 1	$3s^2 3p^2(^3\mathrm{P})4d$	4 <i>d</i> 4F	$\begin{array}{c} 1\frac{1}{2}\\ 2\frac{1}{2}\\ 3\frac{1}{2}\\ 4\frac{1}{4}\end{array}$	239506. 3 239729. 9 240075. 2	223. 6 345. 3 493. 2
3s ² 3p ² (³ P)4s	4s 2P	$\frac{1}{1}$	178369. 7 179076. 1	706. 4	$3s^2 3p^2(^3{ m P}) 4d$	4 <i>d</i> 4D	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	240508.4 241559.4 241572.4	13. 0 112. 7
$3s^2 \ 3p^2(^3\mathrm{P}) \ 3d$	3d 4P	$2^{\frac{1}{2}}_{1^{\frac{1}{2}}_{1^{\frac{1}{2}}}}$	179495.2 179663.5 179781.0	-168.3 -117.5	$3n^2 3m^2(3\mathbf{D}) 1 \mathbf{d}$	Ad 4D	2½ 3½ 21/2	241685. 1 242046. 2	361. 1
3s ² 3p ² (³ P)3d	3 <i>d</i> ² D	$\frac{1^{1/2}}{2^{1/2}}$	182076. 3 183042. 7	966.4	99- 9h-(-1)+a	44 1	$ \begin{array}{c} 272 \\ 11/2 \\ 1/2 \\ 1/2 \end{array} $	$\begin{array}{c} 242322.8\\ 243080.7\\ 243207.2 \end{array}$	$\begin{vmatrix} -257.9\\ -126.5 \end{vmatrix}$
$3s^2 \ 3p^2(^3\mathrm{P}) 3d$	3d ² P	$\frac{1}{1/2}$	185838. 3 186220 4	-382.1	$3s^2 \ 3p^2(^3\mathrm{P})4d$	4d ² F	$2^{1\!\!\!/_2}_{3^{1\!\!\!/_2}_{1^{\prime\!\!\!/_2}}}$	$\begin{array}{c} 243828.\ 4\\ 244684.\ 9\end{array}$	856. 5
3s² 3p²(1D)4s	4s' 2D	$2^{1/2}$ $1^{1/2}$	188220. 4 188390. 1 188448. 1	- 58. 0	3s² 3p²(³P)5s	5s 4P	$1/2 \\ 11/2 \\ 21/2 \\ 21/2$	244951. 5 245392. 4 246137. 2	440. 9 744. 8
$3s^2 3p^2({}^1\mathrm{D}) 3d$	3d′ 2D	$2^{1\!\!\!/_2}_{1^{1\!\!\!/_2}}$	194959.5 195268.2	- 308. 7	$3s^2 \ 3p^2(^{3}\mathrm{P}) 4d$	4d ² D	$1\frac{12}{212}$	248528. 2 248657. 7	129. 5
$3s^2 \ 3p^2({}^1\mathrm{D}) \ 3d$	3d' 2F	$2^{1\!\!\!/_2}_{3^{1\!\!\!/_2}}$	196137.9 196155.8	17. 9	$3s^2 \ 3p^2({}^1\mathrm{D})4d$	$4d' \ ^{2}D$	$1\frac{1}{2}$ $2\frac{1}{2}$	254612. 7? 254683. 4?	70. 7
$3s^2 3p^2({}^1\mathrm{D})3d$	3d′ 2P	$1^{1/2}_{1^{1/2}_{1^{1/2}_{2}}}$	198835.5 198983.9	148. 4	$3s^2 \ 3p^2({}^1\mathrm{D})4d$	4d' ² F	$3\frac{1}{2}$ $2\frac{1}{2}$	255086. 3 255140. 4	- 54. 1
3s² 3p²(3P)4p	4 <i>p</i> 4D°	$1^{1/2}_{1^{1/2}}_{1^{1/2}}_{2^{1/2}}$	201073.4 201332.0 201765.1	258.6 433.1	3s ² 3p ² (1D)5s	5s' 2D	$2^{1/2}_{1/2}_{1/2}$	258885. 8 258890. 8	-5.0
		$3\frac{1}{2}$	202367.6	002. 5	Cliv (3Pc)	Limit		321936	

November 1947.

Cl III OBSERVED TERMS*

$\begin{array}{c} \text{Config.} \\ 1s^2 \ 2s^2 \ 2p^6 + \end{array}$			Obse	erved Term	15 `			
$3s^2 3p^3$	$\begin{cases} 3p^{3} {}^{4}\mathrm{S}^{\circ} \\ & 3p^{3} {}^{2}\mathrm{P}^{\circ} \\ & 3p^{3} {}^{2}\mathrm{D}^{\circ} \end{cases}$							
38 3p*	3p* *P							
	$ns (n \ge 4)$		np ($n \ge 4$)			$nd \ (n \geq 3)$	
3s ² 3p ² (³ P)nx	$\begin{cases} 4, 5s \ ^4P \\ 4s \ ^2P \end{cases}$	4 <i>p</i> 4S°	$\begin{array}{c} 4p & {}^4\mathrm{P}^{\mathrm{o}} \\ 4p & {}^2\mathrm{P}^{\mathrm{o}} \end{array}$	$\begin{array}{ccc} 4p & {}^4\mathrm{D}^{\mathrm{o}} \\ 4p & {}^2\mathrm{D}^{\mathrm{o}} \end{array}$		3, 4 <i>d</i> 4P 3 <i>d</i> 2P	3, 4d 4D 3, 4d 2D	${f 3,4d}_{4f}{f 4F}_{4d}{f 2F}$
$3s^2 3p^2(^1\mathrm{D})nx'$	4, 5s' ² D		$4p' \ ^2P^{\circ}$	$4p'$ $^{2}\mathrm{D}^{\circ}$	$4p' \ ^2{ m F}^{\circ}$	3d' 2P	3, 4d′ 2D	3, 4 <i>d′</i> ² F

*For predicted terms in the spectra of the P $\scriptstyle\rm I$ isoelectronic sequence, see Introduction.

(Si I sequence; 14 electrons)

Ground state 1s² 2s² 2p⁶ 3s² 3p² ³P₀

 $3p^2 {}^{3}P_0 431226 \text{ cm}^{-1}$

The analysis is by Bowen, who has classified 84 lines in the range between 318 A and 3167 A. The singlet and triplet terms are connected by intersystem combinations. Bowen classifies three lines (437 A-440 A) as $3p^{3}$ ⁵S^o-4s ⁵P, but lists no quintet terms.

REFERENCES

I. S. Bowen, Phys. Rev. 31, 36 (1928). (C L)

S. C. Deb, Acad. Sci. Allahabad Bul. 2, 49 (1932). (I P) (T) (C L)

I. S. Bowen, Phys. Rev. 45, 401 (1934). (I P) (T) (C L)

I. S. Bowen, Phys. Rev. 46, 377 (1934). (T) (C L)

Cl IV

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
3s ² 3p ²	3p ² ³ P	$\begin{array}{c} 0 \\ 1 \\ 2 \end{array}$	0 491 1341	491 850	3s ² 3p(² P ^o)4s	4s 3P°	$\begin{array}{c} 0 \\ 1 \\ 2 \end{array}$	215026. 0 215389. 3 216468. 1	363. 3 1078. 8
3s ² 3p ²	$3p^2 {}^1\mathrm{D}$	2	13766		3s ² 3p(² P ^o)4s	-4s 1P°	1	219454	
3s ² 3p ²	$3p^2$ ¹ S	0	32550		$3s^2 3p(^2\mathrm{P^o})4p$	4p 3D	1	247575. 1?	451.0
3s 3p ³	$3p^3$ $^3\mathrm{D}^{\circ}$	1	102752	35			$\frac{2}{3}$	248020. 1 248961. 2	935. 1
		$\frac{2}{3}$	102787	82	$3s^2 3p(^2\mathrm{P^o})4p$	4p ³ P	0	251471.4 251725.8	254.4
3s 3p ³	$3p^3$ $^3\mathrm{P}^{\circ}$	2	120256	-18			$\frac{1}{2}$	252396. 7	670. 9
		Ô	120300	-26	3s ² 3p(² P ^o)5s	5s 3P°	0	312747 312991	244
3s 3p ³	$_{3p^3}$ s S°	1	16472 1				$\hat{2}$	314225	1234
3s 3p ³	3p³ ¹P°	1	166742		3s ² 3p(² P ^o)5s	5s 1P°	1	315121	1
$3s^2 3p(^2P^\circ) 3d$	3 <i>d</i> ³ P°	2	181643	-430					
		0	182073 182300	-227	Cl v (² P ^o)	Limit		431226	
3s² 3p(²P°)3d	$3d$ $^{3}D^{\circ}$	$1 \\ 2 \\ 3$	187008 187174 187 3 46	166 172					

October 1947.

Z = 17

I. P. 53.5 volts

Cl iv

Cl IV OBSERVED TERMS*

Config. 1s ² 2s ² 2p ⁶ +	Observed Terms									
$3s^2 3p^2$	$\begin{cases} 3p^2 \ {}^3P \\ 3p^2 \ {}^1S \\ \end{cases} 3p^2 \ {}^3P \\ 3p^2 \ {}^1D \end{cases}$									
3s 3p²	$\begin{cases} 3p^{3} \ {}^{3}\mathrm{S}^{\circ} & 3p^{3} \ {}^{3}\mathrm{P}^{\circ} & 3p^{3} \ {}^{3}\mathrm{D}^{\circ} \\ & 3p^{3} \ {}^{1}\mathrm{P}^{\circ} \end{cases}$									
	$ns \ (n \ge 4)$	$np (n \ge 4)$	$nd (n \ge 3)$							
3s² 3p(²P°)nx	{ 4, 58 ³ P° 4, 58 ¹ P°	4p ³ P 4p ³ D	3d 3P° 3d 3D°							

*For predicted terms in the spectra of the Si I isoelectronic sequence, see Introduction.

Cl v

(Al 1 sequence; 13 electrons)

Ground state $1s^2 2s^2 2p^6 3s^2 3p {}^2P^{\circ}_{\frac{1}{2}}$

3p ²P[°]_{1/2} 547000 cm⁻¹

The analysis is by Bowen except for the revision of $3d \, {}^{4}P^{\circ}$ and the addition of $5d \, {}^{2}D$ suggested by Phillips and Parker. Forty-two lines have been classified in the interval between 236 A and 894 A.

No intersystem combinations connecting the doublet and quartet systems of terms have been observed, as indicated by x in the table.

REFERENCES

I. S. Bowen, Phys. Rev. 31, 37 (1928). (C L)
S. C. Deb, Acad. Sci. Allahabad Bull. 2, 43 (1932). (T) (C L)
I. S. Bowen, Phys. Rev. 45, 401 (1934). (I P) (T) (C L)
L. W. Phillips and W. L. Parker, Phys. Rev. 60, 306 (1941). (T) (C L)

202

Z = 17

I. P. 67.80 volts

Cl	٦
_	

Config.	Desig.	J	Level	Interva	Config.	Desig.	J	Level	Interval
3s²(1S)3p	3p ² P°	1/2 1/2	0 1492	1492	3s 3p(3P°)3d	3d 4P°	$2\frac{1}{2}$ $1\frac{1}{2}$	269986 + x 270423 + x	-437 -322
3s 3p ²	3p² 4P	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$	86000 + x 86538 + x 87381 + x	5 3 8 843	3s 3p(³P°)3d	3d 4D°	$\frac{\frac{1}{2}}{\frac{1}{2}}$	270745 + x 272596 + x 272757 + x	161
3s 3p ²	$3p^2 \ ^2\mathrm{D}$	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	113234 113306	72			$\begin{vmatrix} 2\frac{1}{2} \\ 3\frac{1}{2} \\ 3\frac{1}{2} \end{vmatrix}$	272919+x 273020+x	102
3s 3p ²	$3p^2$ ² S	1/2	146644		$3s^2(^1\mathrm{S})4d$	$4d^{2}D$	$\left\{ \begin{array}{c} 1^{1}_{2} \\ 2^{1}_{2} \end{array} \right.$	} 349511	
3s 3p ²	3 <i>p</i> ² ²P	$1\frac{1}{2}{1\frac{1}{2}}{1\frac{1}{2}}$	$157931 \\ 158892$	961	3s 3p(³P°)4s	4s 4P°	$\begin{array}{c c} & \frac{1/2}{11/2} \\ & 11/2 \\ & 21/2 \end{array}$	353445 + x 353978 + x 354925 + x	533 947
3s ² (1S)3d	3d 2D	$1\frac{1}{2}$ $2\frac{1}{2}$	$\frac{185861}{185893}$	32	$3s^2({}^1 m S)5d$	5d 2D	$1\frac{1}{2}$ $2\frac{1}{2}$	422949 423022	73
3p ³	3p ³ 4S°	1½	233757+x						
3s ² (1S)4s	4s 2S	1/2	256313		Cl vi (1S0)	Limit		547000	

September 1947.

Config. 1s² 2s² 2p ⁶ +	Observed Terms								
3s²(1S)3p 3s 3p²	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
3p³	3p ³ 4S°								
	ns $(n \ge 4)$	$nd (n \ge 3)$							
3s²(1S)nx 3s 3p(3P°)nx	4s 2S 4s 4P°	3–5d 2D 3d 4P° 3d 4D°							

Cl v Observed Terms*

*For predicted terms in the spectra of the Al I isoelectronic sequence, see Introduction.

(Mg I sequence; 12 electrons)

Ground state 1s² 2s² 2p⁶ 3s² ¹S₀

 $3s^{2} {}^{1}S_{0} 780000 \pm \text{ cm}^{-1}$

The analysis is incomplete. One singlet combination has been given by Bowen and Millikan, a line at 671.37 Å classified as $3s^2 {}^{1}S_0 - 3p {}^{1}P_1^{\circ}$. The triplet terms are from Phillips and Parker, who have classified 34 lines in the range 194 A to 736 A.

Cl VI

From isoelectronic sequence data the writer has estimated the approximate value of the limit, and of $3p \, {}^{3}P_{1}^{\circ}$ above the ground state zero. All triplet terms have, consequently, been increased by 98147 cm⁻¹. The estimated values are entered in brackets in the table. The uncertainty, x, may be several hundred cm⁻¹.

REFERENCES

I. S. Bowen and R. A. Millikan, Phys. Rev. 25, 597 (1925). (C L) W. L. Parker and L. W. Phillips, Phys. Rev. 57, 140 (1940). (T) (C L) L. W. Phillips and W. L. Parker, Phys. Rev. 60, 306 (1941). (T) (C L)

Cl VI				Cl vi					
Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
$\frac{3s^2}{3s(^2\mathrm{S})3p}$	3s ² 1S 3p 3P°	0	0 [98147]+x	553	$3p(^{2}\mathrm{P}^{\circ})3d$	3d 3D°	$\begin{array}{c}1\\2\\3\end{array}$	$\begin{array}{r} 411802 + x \\ 412075 + x \\ 412228 + x \end{array}$	273 153
$3s(^{2}S)3p$	3p ¹ P°	$1 \\ 2 \\ 1$	$ \begin{array}{c} 98700 + x \\ 99865 + x \\ 148949 \end{array} $	1165	3s(2S)4d	4 <i>d</i> ² D	$\begin{array}{c}1\\2\\3\end{array}$	509868 + x 509896 + x 509947 + x	28 51
$3p^2$	$3p^2$ $^3\mathrm{P}$	$\begin{array}{c} 0 \\ 1 \\ 2 \end{array}$	234960 + x 235596 + x 236797 + x	$\begin{array}{c} 636\\ 1201 \end{array}$	$3s(^{2}S)4f$ $3s(^{2}S)5d$	4f ³ F ^o	2, 3, 4	529889 + x	
3s(2S)3d	3d 3D	- 1 2 3	$\begin{array}{c} 279845 + x \\ 279860 + x \\ 279888 + x \end{array}$	$\frac{15}{28}$			23	612058 + x 612089 + x	31
3s(2S)4s	48 ³ S	1	407404 + x		Cl v11 (2S5)	Limit		[780000]	
$3p(^{2}\mathrm{P}^{\circ})3d$	3d ³ P°	$\begin{array}{c} 2\\ 1\\ 0\end{array}$	409079 + x 409975 + x 410762 + x	$-896 \\ -787$					

July 1947.

I. P. 96.7 \pm volts

Cl VI
Cl vi Observed Terms*

Config. 1s ² 2s ² 2p ⁶ +	(bserved Terms	
3s ²	3s ² 1S		
3s(25)3p 3p ²	$\begin{cases} 3p \ ^{1}P^{\circ} \\ 3p^{2} \ ^{3}P \end{cases}$		
	$ns \ (n \ge 4)$	$nd (n \ge 3)$	$nf \ (n \ge 4)$
3s(2S)nx 3p(2P°)nx	48 ³ S	3-5d 3D 3d 3P° 3d 3D°	4f 3F°

*For predicted terms in the spectra of the Mg $\scriptstyle\rm I$ isoelectronic sequence, see Introduction.

Cl VII

(Na I sequence; 11 electrons)

Ground state $1s^2 2s^2 2p^6 3s {}^2S_{\varkappa}$

3s 2S1 921902 cm⁻¹

The resonance lines were observed by Bowen and Millikan. The analysis was extended by Phillips to include 22 classified lines in the interval between 174 A and 813 A. Absolute term values were derived from the 3d-nf series.

REFERENCES

I. S. Bowen and R. A. Millikan, Phys. Rev. 25, 295 (1925). (C L) L. W. Phillips, Phys. Rev. 53, 248 (1938). (I P) (T) (C L)

Cl	VП	

		OI VII					UI VII		
Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
38	3s 2S	1/2	0		4 <i>f</i>	4f 2F°	$2^{1/2}_{2}_{3^{1/2}_{1/2}}$	584086 584099	13
3p	$3p^{2}P^{0}$	$1\frac{\frac{1}{2}}{1\frac{1}{2}}$	$123001 \\ 124891$	1890	58 -	58 2S	1/2	647677	
3 <i>d</i>	3d 2D	$1\frac{1}{2}{2\frac{1}{2}}{2\frac{1}{2}}$	290166 290239	73	5d	5d 2D	$1\frac{1}{2}$ $2\frac{1}{2}$	$697598 \\ 697619$	21
43	48 2S	1⁄2	464003		5 <i>7</i>	5f ² F°	$\frac{2\frac{1}{2}}{3\frac{1}{4}}$	705398 705409	11
4 p	4p 2P°	$1\frac{1}{2}{1\frac{1}{2}}{1\frac{1}{2}}$	509197 509885	688	6f	6f 2F°	$\begin{cases} 2\frac{1}{2} \\ 3\frac{1}{2} \\ 3\frac{1}{2} \end{cases}$	<pre> 771549</pre>	
4 <i>d</i>	4d 2D	$1\frac{1}{2}$ $2\frac{1}{2}$	$569142 \\ 569182$	40				·	
					Cl vIII (¹ S ₀)	Limit		921902	

June 1947.

I. P. 114.27 volts

Z = 17

Cl VIII

(Ne 1 sequence; 10 electrons)

Ground state 1s² 2s² 2p⁶ ¹S₀

 $2p^{6} {}^{1}S_{0} 2810000 \pm 500 \text{ cm}^{-1}$

I. P. 348.3 ± 0.1 volts

Z = 17

Edlén has classified 13 lines in the region between 39A and 59A, as combinations with the ground term. The terms from the (2S) limit in Cl 1x need further confirmation.

As for Ne 1 the *jl*-coupling notation in the general form suggested by Racah is introduced. The unit 10^3 cm⁻¹ used by Edlén has here been converted to cm⁻¹.

REFERENCES

B. Edlén, Zeit. Phys. 100, 726 (1936). (I P) (T) (C L)

G. Racah, Phys. Rev. 61, 537 (L) (1942).

Cl	VIII
~ ~ .	

		Cl VIII				CI	VIII		
Edlén	Config.	Desig.	J	Level	Edlén	Config.	Desig.	J	Level
$2p$ ${}^{1}S_{0}$	2s ² 2p ⁶	2p ⁶ 1S	0	0	4 <i>d</i> ¹ P ₁	$2s^2 2p^5 ({}^2\mathrm{P}^{\circ}_{1_{22}}) 4d$	4d [1½]°	1	2356820
38 ³ P ₁	$2s^2 2p^5 ({}^2\mathrm{P^{\circ}_{1_{2}}}) 3s$	3s [1½]°	$\frac{2}{1}$	1689450	$4d$ $^{3}D_{1}$	$2s^2 2p^5(^2\mathrm{P}_{52}^{\circ}) 4d$ $2s 2p^6(^2\mathrm{S}) 3p$	4d′[1½]° 3p ³P°	1 2	2368550
38 ¹ P ₁	$2s^2 2p^5(^2\mathrm{P}_{5}^{\circ})3s$	3s' [½]°	0 1	1704360	3p′ ³ P ₁			1 0	<i>2371580</i> ?
3d ³ P ₁	$2s^2 2p^5 ({}^2\mathrm{P^{5}_{1_{1_{2}}}}) 3d$	3d [½]°	0 1	1972390	$3p' {}^{1}P_{1}$	2s 2p ⁶ (² S)3p	3p ¹ P°	1	2401770?
3 <i>d</i> ¹ P ₁	"	3d [1½]°	1	1997040	$5a P_1$	$28^{2} 2p^{3}(^{2}P_{1}^{*}) 5a$			2521750
$3d$ $^{3}D_{1}$	$2s^22p^5(^2\mathrm{P}^{\circ}_{ec{ m b}})3d$	3d′[1½]°	1	2020730	5 <i>a</i> ⁵ D ₁	28° 2p°(21%)3a	5a [172]	1	2534080
4s ³ P ₁	$2s^2 2p^5 ({}^2\mathrm{P}_{1\!$	4s [1½]°	2_1	2242000		Cl IX (2P _{1,4})	Limit		2810000
4s ¹ P ₁	$2s^2 2p^5 ({}^2\mathrm{P}^{\circ}_{12}) 4s$	4s' [½]°	0 1	2254200		Cl IX $({}^{2}P_{\cancel{2}})$	Limit		2823600

April 1947.

Cl VIII OBSERVED LEVELS*

Config. $1s^2+$	Observed Terms						
2s ² 2p ⁶	2p ⁶ 1S						
	ns $(n \ge 3)$	$np (n \ge 3)$	$nd (n \ge 3)$				
2s ² 2p ⁵ (² P ^o)nx	$\begin{cases} 3, 4s \ {}^{3}P^{\circ} \\ 3, 4s \ {}^{1}P^{\circ} \end{cases}$		3d ³ P° 3–5d ³ D° 3–5d ¹ P°				
$2s \ 2p^6(^2S)nx$	{	3p ³ P° 3p ¹ P°					
	jl-Coupling	Notation	· · · ·				
		Observed P	airs				
	ns $(n \ge 3)$		$nd \ (n \ge 3)$				
$2s^2 \ 2p^5(^2\mathrm{Pi}_{155}) nx$	3, 4s [1½]°		$\begin{array}{ccc} 3d & [rac{1}{2}]^{\circ} \\ 3-5d & [1rac{1}{2}]^{\circ} \end{array}$				
$2s^2 \ 2p^5(^2\mathrm{P}^{\circ}_{\!$	3, 4s' [½]°		3 −5 <i>d′</i> [1½]°				

*For predicted levels in the spectra of the Ne ${\bf I}$ isoelectronic sequence, see Introduction.

Cl IX

(F 1 sequence; 9 electrons)

Ground state $1s^2 2s^2 2p^5 {}^2\mathbf{P}_{14}^{\circ}$

2p⁵ ²P^o_{11/2} 3233000 cm⁻¹

Edlén has classified 34 lines in this spectrum in the interval 42 A to 53 A. The absolute value of the ground state has been extrapolated. Since no combinations between the two lowest terms have been observed, relative values have been extrapolated from the irregular doublet law for the three terms entered in brackets in the table. The uncertainty in the relative values may be large.

Levels from the 3d configurations with limits ³P and ¹D in Cl x are labeled X since Edlén has been unable to assign term designations to them.

The unit used by Edlén, 10^3 cm⁻¹, has here been converted to cm⁻¹.

REFERENCE

B. Edlén, Zeit. Phys. 100, 726 (1936). (I P) (T) (C L)

Z = 17

I. P. 400.7 volts

OI IX						_		U IX			
Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
$2p \ {}^{2}P_{2} \ {}^{2}P_{1}$	$2s^2 2p^5$	2p ⁵ ² P°	$1\frac{1}{2}$	0 13600	-13600	$3d X_2$	$2s^2 2p^4(^{3}P)3d$	3d X ₂		2209470	
$2p' \ ^2S_1$	2s 2p ⁶	$2p^{6}$ 2S	1/2	[553400]		$\begin{array}{c} 3d X_1 \\ \overline{3d} X_5 \end{array}$	$\begin{vmatrix} 2s^2 & 2p^4 ({}^{3}\text{P}) & 3d \\ 2s^2 & 2p^4 ({}^{1}\text{D}) & 3d \end{vmatrix}$	$\begin{array}{c cc} 3d & X_1 \\ 3d' & X_5 \end{array}$		$2216710 \\ 2259280$	
$3s \ {}^{4}P_{3} \ {}^{4}P_{2} \ {}^{4}P_{1}$	$2s^2 2p^4(^{3}P)3s$	3s 4P	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} 1888970 \\ 1896600 \\ 1901850 \end{array}$	$-7630 \\ -5250$	$\overline{3d}$ X ₄	$2s^{2} 2p^{4}(^{1}\text{D})3d$	$3d' X_4$		2263310	
$3s {}^{2}P_{2} {}^{2}P_{1}$	2s ² 2p ⁴ (³ P)3s	3s 2P	$1\frac{1}{2}$	$1911950 \\ 1921050$	-9100	$\begin{array}{c} 3d \mathbf{X}_{2,3} \\ \overline{3d} \mathbf{X}_1 \end{array}$	$\begin{array}{ c c c c } 2s^2 & 2p^4 (^1\text{D}) & 3d \\ 2s^2 & 2p^4 (^1\text{D}) & 3d \\ \end{array}$	$\begin{array}{ccc} 3d' & X_{2,3} \\ 3d' & X_1 \end{array}$		2268000 2272570	
$\overline{3s}$ $^2\mathrm{D}_3$ $^2\mathrm{D}_2$	2s ² 2p ⁴ (¹ D)3s	3s' 2D	$2\frac{1}{2}$ $1\frac{1}{2}$	$1959790 \\ 1959960$	-170	$\begin{array}{c c} \overline{\overline{3d}} & {}^2\mathrm{D}_3 \\ & {}^2\mathrm{D}_2 \end{array}$	$2s^2 2p^4(^{1}S)3d$	$3d^{\prime\prime}$ 2D	$2^{1\!/_2}_{1^{1\!/_2}}$	2328830 2330130	-1300
$\overline{\overline{3s}}$ ² S ₁	2s ² 2p ⁴ (1S)3s	3s'' 2S	1/2	2031080		3s' ² P ₂ ² P ₁	$2s \ 2p^{5}(^{3}P^{\circ})3s$	3s''' 2P°	$1\frac{1}{2}$	[2415740] [2424380]	-8640
3d X ₆ 3d X ₅	$\begin{array}{ c c c c } 2s^2 & 2p^4 (^{3}\mathrm{P}) & 3d \\ 2s^2 & 2p^4 (^{3}\mathrm{P}) & 3d \end{array}$	$\begin{vmatrix} 3d & X_6 \\ 3d & X_5 \end{vmatrix}$		2196890 2199540		$3d' {}^{2}P_{1} {}^{2}P_{2}$	$2s \ 2p^{5}(^{3}\mathrm{P}^{\circ})3d$	3 <i>d'''</i> 2P°	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	[2715940] [2722690]	6750

2203850

2205950

[3233000]

March 1947.

 $2s^2\ 2p^4(^3\mathrm{P})3d$

 $2s^2 2p^4(^{3}P)3d$

 $3d X_4$

 $3d X_3$

Cl ix Observed Terms*

Cl x (3P₂)

Limit

$\begin{array}{c} \text{Config.} \\ 1s^2 + \end{array}$	Observed Terms						
2s ² 2p ⁵	$2p^5$ $^2\mathrm{P}^{\circ}$						
2s 2p ⁶	$2p^6$ ² S						
	$ns (n \ge 3)$	$nd (n \ge 3)$					
2s ² 2p ⁴ (³ P)nx	$\begin{cases} 3s & {}^{4}P \\ 3s & {}^{2}P \end{cases}$						
$2s^2 \ 2p^4({}^1\mathrm{D})nx'$	3s' 2D						
$2s^2 2p^4(^1\mathrm{S})nx^{\prime\prime}$	3s'' 2S	3 <i>d''</i> 2D					
2s 2p ⁵ (³ P ^o)nx'''	3s''' 2P°	3d''' 2P°					

*For predicted terms in the spectra of the FI isoelectronic sequence, see Introduction.

C1 -T

 X_4

3d

 $3d X_3$

Cl X

(O I sequence; 8 electrons)

Ground state $1s^2 2s^2 2p^4 {}^3P_2$

 $2p^4 {}^{3}P_2 {}^{3}673000 {}^{-1}$

Edlén has classified 15 lines between 39 A and 47 A. The absolute value of the ground term has been extrapolated from the isoelectronic sequence. Similarly, the singlet and triplet terms are connected only through the extrapolated value of $2p^4 {}^{3}P_2 - 2p^4 {}^{1}D_2$, and the uncertainty, x, may be large. The estimated value of $2p^5 {}^{3}P_{2}^{\circ}$ is given in brackets.

Edlén's term values expressed in units of 10^3 cm⁻¹ are here changed to cm⁻¹.

REFERENCE

B. Edlén, Zeit, Phys. 100, 732 (1936). (I P) (T) (C L).

11	v	
U.	$\mathbf{\Lambda}$	

Cl x

1	Sulen	Comig.	Desig.	J	Devei	Interval	Eulen	Comig.	Desig.	J	Lever	Interval
2p	³ P ₂ ³ P ₁	2s ² 2p ⁴	2p4 3P	2	0	-10880	35 ¹ P ₁	2s ² 2p ³ (² P ^o)3s	3s'' ¹ P°	1	2262140 +x	
	-1			Ō	10000		24 3D	$2s^2 2p^3(^4S^\circ) 3d$	3d ³ D ^o	1	0115060	
2p	۱D	$2s^2 2p^4$	$2p^{4-1}\mathrm{D}$	2	61000 + x		$\begin{array}{c} 3u & ^{\circ}D_{2} \\ & ^{3}D_{3} \end{array}$	1		3	2416040	680
2p	1S	2s ² 2p ⁴	$2p^{4-1}$ S	0	130310 + x	_	$\overline{3d}$ ³ D	$2s^2 2p^3(^2\mathrm{D^o})3d$	3d′ ³D°	3, 2, 1	2494700	
2p'	' ³ P	$2s$ $2p^5$	$2p^5$ $^3\mathrm{P}^{\circ}$	2	[487000]		$\overline{3d}$ ¹ D ₂	2s ² 2p ³ (² D ^o)3d	3 <i>d′</i> ¹D°	2	2500380 +x	
							$\overline{3d}$ ³ P	$2s^2 2p^3 (^2\mathrm{D^o}) 3d$	$3d'$ $^3\mathrm{P}^{\mathrm{o}}$	2, 1, 0	2502750	
3s	$^{3}\mathrm{S}_{1}$	$2s^2 2p^3 ({}^4\mathrm{S}^\circ) 3s$	3s 3S°	1	2134700		$\overline{3d}$ ¹ F ₃	2s ² 2p ³ (² D°)3d	3d' ¹ F°	3	2520420 +x	
<u>3s</u>	3D	2s ² 2p ³ (² D ^o)3s	3s′ 3D°	3, 2, 1	2202610		$\overline{\overline{3d}}$ ³ D	$2s^2 2p^3(^2\mathrm{P^o}) 3d$	3 <i>d''</i> ³D°	3, 2, 1	2547580	
<u>3s</u>	1D	2s ² 2p ³ (² D°)3s	3s′ 1D°	2	2212650 +x							
								Cl xI (4S _{11/2})	Limit		3673000	

March 1947.

Cl x Observed Terms*

$\begin{array}{c} \text{Config.} \\ 1s^2 + \end{array}$			Observ	ed Terms		
2s ² 2p ⁴	$\left\{_{2p^{4}}\right\}$ S	2p4 3P	2p4 1D			
		ns $(n \ge 3)$			nd $(n \ge 3)$	
$2s^2 \ 2p^3 ({}^4\mathrm{S}^\circ) nx$	3s 3S°				3d ³D°	
2s ² 2p ³ (² D ^o)nx'	{		3s′ 3D° 3s′ 1D°	3d′ ³₽°	3d' ³ D° 3d' ¹ D° 3d	l' 1F°
2s ² 2p ³ (² P ^o)nx''	{	3s'' 1P°			3 <i>d''</i> ³D°	

*For predicted terms in the spectra of the OI isoelectronic sequence, see Introduction.

Z = 17

I. P. 455.3 volts

Ground state $1s^2 2s^2 2p^3 4S_{12}^{\circ}$

$$2p^3 \ {}^4S_{1}^{\circ}$$
 cm⁻¹

This spectrum has not been analyzed, but Edlén has classified two lines as due to ClxI:

А	Int.	Wave No.	Desig.
40. 787 40. 392	0 0	$2451760 \\ 2475740$	$2p^{3} {}^{2}\text{D}^{\circ} - 3s' {}^{2}\text{D} \\ 2p^{3} {}^{4}\text{S}_{152}^{\circ} - 3s' {}^{4}\text{P}_{252}^{\circ}$

By extrapolation along the isoelectronic sequence, he lists combinations giving the relative positions of two other levels (entered in brackets in the table). From these data preliminary term values have been calculated and entered below. The uncertainty x is probably large.

The unit used by Edlén, 10^3 cm⁻¹, has here been changed to cm⁻¹.

REFERENCE

B. Edlén, Zeit. Phys. 100, 728 (1936). (C L)

Edlén	Config.	Desig.	J	Level
$2p$ ${}^4\mathrm{S}_2$	$2s^2 2p^3$	$2p^3$ 4S°	1½	0
2p 2D3	$2s^2 \ 2p^3$	$2p^{3} \ ^{2}\mathbf{D}^{\mathbf{o}}$	$1\frac{12}{212}$	[94000]+x
2p ² P ₂	$2s^2 2p^3$	$2p^3$ $^2\mathrm{P}^{\mathrm{o}}$	$1^{1/2}_{11/2}$	[143000]+x
	2s ² 2p ² (³ P)3s	3s 4P	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	
38 4P3			$\frac{1}{2}$	2475740
38 2D	2s ² 2p ² (¹ D)3s	3s' 2D	$\left\{\begin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \\ 2\frac{1}{2} \end{array}\right.$	$\Big\}2545760?+x$

Cl XI

February 1947.

Cl XI

I. P. volts

ARGON

18 electrons

Ground state 1s² 2s² 2p⁶ 3s² 3p⁶ ¹S₀

3p⁶ ¹S₀ 127109.9 cm⁻¹

The present list has been compiled from an unpublished manuscript kindly furnished by Edlén, who has made a study of this spectrum and interpreted it with the aid of present atomic theory. His term array is based on those published by Humphreys (1938) and by Meggers and Humphreys (1933), although he has revised and extended their lists. Three place entries are from interferometer measurements. The values of $4f [4\frac{1}{2}]$, $4f [3\frac{1}{2}]$, and $4f' [3\frac{1}{2}]$ are from unpublished data by Humphreys based on observations by Sittner.

The terms $ns'[\frac{1}{2}]^{\circ}$ (n=11 to 16) and $nd'[1\frac{1}{2}]^{\circ}$ (n=9 to 14) have been calculated by the writer from the absorption series observed by Beutler in the region between 871 and 876 A, and added to Edlén's list. Beutler lists these terms as blended.

Edlén has determined the new values of the series limits quoted here.

The Paschen notation used by Meissner, Rasmussen, Meggers, Humphreys, and others is entered in column one of the table in the same form as for NeI. The letters U, V, W, X, Y, Z, adopted when configurations involving f electrons were found, are also entered in this column. Twenty-seven of these levels have *J*-values fixed by the observed combinations. These *J*-values are given in italics in the table.

Edlén suggested that a pair-coupling notation be adopted for Ne-like spectra to take into account the departure from *LS*-coupling. According to Shortley, *LS*-designations can be significantly assigned in only a few cases, in particular, for the following groups of levels:

Paschen	Desig.	Paschen	Desig.	Paschen	Desig.	Paschen	Desig.	Paschen	Desig.
$(n-3)s_5$	ns ³ P ₂	$2p_{10}$	$4p$ $^{3}S_{1}$	$2p_5$	4p ³ P ₀	$4d_6$	4d ³ P ₀	$4d_1''$	4d ³ F ₂
$(n-3)s_4$	ns ³ Pi	$2p_9$	4p ³ D ₃	$2p_{4}$	4 <i>p</i> ¹ P ₁	$4d_5$	4d ³ Pi	$4d_1'$	4d ¹ F ₃
$(n-3)s_3$	ns ³P₀	$2p_{8}$	$4p \ ^{s}D_{2}$	2p3	4p ³ P ₂	$4d'_4$	4d ⁸ F ₄	4s''''	$4d$ $^1D_2^\circ$
$(n-3)s_2$	ns ¹ P ₁	2p7	4p ³ D ₁	$2p_{2}$	4p ³ P ₁	$4d_4$	4d ³ F ₃	4s'''	$4d$ $^{8}D_{3}$
		2p6	4p ¹ D ₂	$2p_1$	4p ¹ S ₀	$4d_3$	$4d$ $^{3}P_{2}^{2}$	4s''	$4d$ $^{s}D_{2}^{s}$
						$4d_2$	4d ¹ Pi	$4s'_1$	4d ^s Di

Consequently, the *jl*-coupling notation in the general form suggested by Racah is here introduced. The present arrangement has been suggested by Shortley, who has made a detailed investigation of the theoretical arrangement of the "pairs", to be used as a guide in preparing the present table. The pairs $nd [3\frac{1}{2}]^{\circ}$ and $nd[1\frac{1}{2}]^{\circ}$ are partially inverted as compared with NeI.

No Grotrian diagram appears to have been published for this spectrum.

Z = 18

I. P. 15.755 volts

211

A I-Continued

REFERENCES

- K. W. Meissner, Zeit. Phys. 39, 172 (1926); 40, 839 (1927). (I P) (T) (C L)
- E. Rasmussen, Serier i de Aedle Luftarters Spektre med Saerligt Henblik paa Radiumemanation p. 22 (Danske Ervhervs Annoncebureau's Forlag, Kobenhavn, 1932) Dissertation, Copenhagen. (T) (C L)
- E. Rasmussen, Zeit. Phys. 75, 695 (1932). (T) (C L)
- W. F. Meggers and C. J. Humphreys, Bur. Std. J. Research 10, 437, RP540 (1933). (T) (C L)
- R. M. Woods and B. J. Spence, Phys. Rev. 45, 669 (1934). (C L)
- J. C. Boyce, Phys. Rev. 48, 396 (1935). (I P) (T) (C L)
- H. Beutler, Zeit. Phys. 93, 177 (1935). (I P) (T) (C L)
- H. Kopfermann und H. Krüger, Zeit. Phys. 105, 389 (1937). (I S)
- J. B. Green, Phys. Rev. 52, 736 (1937). (Z E)
- J. B. Green and B. Fried, Phys. Rev. 54, 876 (1938). (Z E)
- P. Jacquinot, Compt. Rend. 206, 1635 (1938). (Z E)
- C. J. Humphreys, J. Research Nat. Bur. Std. 20, 26, RP1061 (1938) and unpublished data. (T) (C L)
- G. Racah, Phys. Rev. 61, 537 (L) (1942).
- B. Edlén, Ark. Mat. Astr. Fys. (Stockholm) 29A, No. 32 (1943). (C L)
- J. B. Green, Phys. Rev. 64, 151 (1943). (Z E)
- G. Shortley, unpublished material (Aug. 1947).
- B. Edlén, unpublished material (April 1948). (I P) (T) (C L)
- W. R. Sittner, unpublished material (1949).

		<u>A I</u>				A I					
Au- thors	Config.	Desig.	J	Level	Obs. g	Au- thors	Config.	Desig.	J	Level	Obs. g
1 <i>p</i> ₀	3p ⁶	3p ⁶ ¹ S	0	0. 0		$3p_{10}$	$3p^{5}(^{2}\mathrm{P}^{\circ}_{1})5p$	5p [½]	1	116660. 054	1. 90
185	3p ⁵ (² P _{11/2})4s	4s [1½]°	2	93143. 800	1. 506	${3 p_9 \atop 3 p_8}$	"	5p [2½]	$3 \\ 2$	116942. 815 116999. 389	1. 09
184 183	3p ⁵ (² P ^o / ₂)4s	4s' [½]°	0	93750. 639 94553. 707	1. 404	$\begin{array}{c} 3p_7 \\ 3p_6 \end{array}$	"	5p [1½]	$\begin{array}{c}1\\2\end{array}$	117151. 387 117183. 654	1. 01 1. 42
$1s_2$			1	95399.870	1. 102	$3p_{5}$	"	5p [½]	0	117563. 020	
$2p_{10}$	$3p^5(^2\mathrm{P}_{15})4p$	4p [½]	1	104102. 144	1. 985	$3p_4 \\ 3p_3$	$3p^{5}(^{2}\mathrm{P}^{\circ}_{\mathrm{5}})5p$	$5p' [1\frac{1}{2}]$	$\frac{1}{2}$	118407.494 118469.117	0. 61
${2 p_9 \over 2 p_8}$	"	$4p \ [2\frac{1}{2}]$	$3 \\ 2$	$\begin{array}{c} 105462.\ 804\\ 105617.\ 315 \end{array}$	$\begin{array}{c} 1.\ 338\\ 1.\ 112 \end{array}$	$3p_2$	"	5p' [½]	1	118459. 662	1. 45
$2p_7$	"	4p [1½]	$\frac{1}{2}$	106087.305 106237.597	0.838				U	110070. 981	
$2p_{5}^{2}$	"	4p [½]	0	107054. 319	1.000	$\begin{array}{c} 4d_{6} \\ 4d_{5} \end{array}$	$3p^{5}(^{2}\mathrm{P}_{15})^{2}4d$	4d [½]°	0 1	118512. 17 118651. 447	1. 467
${2p_4 \over 2p_3}$	$3p^5(^2\mathrm{P}^\circ_{\!$	4p' [1½]	$\frac{1}{2}$	107131. 755 107289. 747	0. 819 1. 260	$\begin{array}{c} 4d'_4\\ 4d_4 \end{array}$	"	4d [3½]°	4 3	119023.699 119212.93	1. 255 1. 077
$2p_2 \\ 2p_1$	11	4p' [½]	1 0	107496. 463 108722. 668	1. 380	$\begin{array}{c} 4d_3 \\ 4d_2 \end{array}$	"	4d [1½]°	$2 \\ 1$	118906.665 119847.81	1. 437 0. 768
$3d_6$	$3p^{5}(^{2}\mathrm{P_{ik}})3d$	3d [½]°	0	111667.87		$\begin{array}{c} 4d_1''\\ 4d_1'\end{array}$	"	4d [2½]°	$\frac{2}{3}$	119444. 88 119566. 11	0. 908
$3d_5$ $3d'_4$		3d [3½]°	1 4	111818.09 112750.22		$4s_{1}^{''''}$ $4s_{1}^{'''}$	$3p^5(^2\mathrm{P}^{\circ}_{\!$	4 <i>d'</i> [2½]°	$\frac{2}{3}$	120619. 076 120753. 52	0. 987 1. 133
$3d_4$			3	113020. 39		$4s_{1}''$	"	4d' [1½]°	2	120600. 944	1. 057
$\begin{array}{c} 3d_3 \ 3d_2 \end{array}$	"	3d [1½]°	$\begin{array}{c} 2\\ 1\end{array}$	112138. 98 114147. 75		4s'			1	121011. 979	0. 877
$\begin{array}{c} 3d_1'' \ 3d_1' \end{array}$	"	3d [2½]°	2 3	113426.05 113716.61		385 384	3p ⁵ (² P ³ ₁₅)6s	6s [1½]°	$\frac{2}{1}$	119683. 113 119760. 22	$1.500 \\ 1.184$
$\frac{3s_1'''}{3s_1'''}$	$3p^5(^2\mathrm{P}^\circ_{5/2})3d$	3d' [2½]°	$\frac{2}{3}$	114641. 04 114821. 99		$\frac{3s_3}{3s_2}$	$3p^{5}(^{2}\mathrm{P}^{\circ}_{5})6s$	6s' [½]°	0 1	121096. 67 121161. 356	1. 27 1
$\frac{3s_1''}{3s_1'}$	11	3d' [1½]°	$2 \\ 1$	114805.18 115366.90		4X 4X	$3p^{5}(^{2}\mathrm{P_{i_{3}}})4f$	4f [1½]	1 2	120188. 34 120188. 66	
2s5 2s4	3p ⁵ (² P ³ ₁) ₂)5s	5s [1½]°	$\begin{array}{c} 2\\ 1\end{array}$	113468.55 113643.26		4V	"	4f [4½]	$5\\4$	120207. 32 120207. 77	
2s ₃ 2s ₂	$3p^{5}(^{2}\mathrm{P}^{\circ}_{5})5s$	5s' [½]°	01	114861.67 114975.07		4Y 4Y	"	4f [2½]	$3 \\ 2$	120229. 81 120230. 07	

A I—Continued

A I—Continued

Au- thors	Config.	Desig.	J	Level	Obs. g	Au- thors	Config.	Desig.	J	Level	Obs. g
4U	$3p^5(^2\mathrm{Pi}_{5})4f$	4f [3 ¹ / ₂]	3, 4	120250. 15		$5p_2$ $5p_1$	$3p^5(^2\mathrm{P}_{3})7p$	7p' [½]	1 0	124651. 05 124749. 89	
4W	$3p^{5}(^{2}\mathrm{P}_{5})^{\circ})4f$	$4f' [3\frac{1}{2}]$	3,4	121653. 40			0. ((D) \ \ 0.]				
$\frac{4Z}{4Z}$	"	$4f' [2\frac{1}{2}]$	$\begin{array}{c} 3\\ \mathscr{Q}\end{array}$	$\begin{array}{c} 121654.\ 32\\ 121654.\ 58\end{array}$		$egin{array}{c} 6d_6 \ 6d_5 \end{array}$	$3p^{5}(^{2}\mathrm{P}^{\circ}_{1})6d$	$6d [\frac{1}{2}]^{\circ}$	$\begin{vmatrix} 0\\ 1 \end{vmatrix}$	123508.96 123468.034	1. 233
$4p_{10}$	$3p^5(^2\mathrm{P}_{15})^{6p}$	6p [½]	1	121068. 804		$\begin{array}{c} 6d'_4\\ 6d_4\end{array}$	"	6d [3½]°	$\frac{4}{3}$	123653. 238 123773. 920	1. 256 1. 052
${4p_9\over 4p_8}$	"	6p [2½]	$\begin{array}{c} 3\\2\end{array}$	121165. 431 121191. 92		$6d_3$	"	6d [1½]°	$\begin{array}{c} 2\\ 1\end{array}$	123808.60	1. 206
${4p_7\over 4p_6}$	"	$6p [1\frac{1}{2}]$	$\begin{array}{c}1\\2\end{array}$	$\begin{array}{c} 121257.\ 227\\ 121270.\ 682 \end{array}$		$\begin{array}{c} 6d_1^{\prime\prime} \\ 6d_1^{\prime} \end{array}$	11	$6d \ [2\frac{1}{2}]^{\circ}$	$\frac{2}{3}$	123826. 85 123832. 50	$ \begin{array}{c c} 1. & 107 \\ 1. & 245 \end{array} $
$4p_{5}$	"	6p [½]	0	121470. 304		6s''''	$3p^{5}({}^{2}\mathrm{P}^{\circ}_{\!$	6d' [2½]°	2	125113. 48	0. 777
$\begin{array}{c} 4p_4 \\ 4p_3 \end{array}$	$3p^{5}(^{2}\mathrm{P}^{\circ}_{5\!$	$6p' [1\frac{1}{2}]$	$\begin{array}{c}1\\2\end{array}$	122609.76 122635.128		$6s_1''$	"	6d' [1½]°	$\frac{3}{2}$	125150.00 125066.501	1. 098
$4p_{2}$	"	6p' [½]	1	122601. 290		681				125286.28	
$4p_1$			0	122790. 612		585	3p ⁵ (² P [*] ₁₅)8s	8s [1½]°	2	123903. 295	1. 50
$5d_6$	$3p^{5}(^{2}\mathrm{P_{15}})5d$	5d [½]°	0	121794. 158	1 400	584	0.500000	0.4.5.1.10	1	123935.97	
$5a_5$ $5d'_4$ $5d_4$	"	5d [3½]°	4	121952. 908 122036. 134 122160 22	$1.\ 400$ $1.\ 253$ $1\ 076$	$5s_3$ $5s_2$	3p [•] (² P ₃)8s	88' [1/2]	$\begin{array}{c} 0\\ 1\end{array}$	125334.75 125353.31	1. 26
$5d_4$ $5d_3$ $5d_9$	"	5d [1½]°	2	122086.974 122514.29	1. 387 0. 813	6X 6X	$3p^{5}(^{2}\mathrm{P}_{1}^{*})6f$	$6f [1\frac{1}{2}]$	1 2	$\begin{array}{c} 124041. \ 20 \\ 124041. \ 38 \end{array}$	
5d"	,,	5d [214]°	2	122282 134	0.941	6V	"	$6f [4\frac{1}{2}]$	4, 5	124046.64	
$5d'_1$			3	122329. 72	1. 199	6Y	"	$6f [2\frac{1}{2}]$	3	124051.44	
$5s_1'''$	$3p^5(^2\mathrm{P}^{\mathrm{o}}_{\mathrm{H}})5d$	5d' [2½]°	$\begin{vmatrix} 2\\ 3 \end{vmatrix}$	123505.536 123557,459	0.802 1.127	6U	,,,	G.f. [91/]	2 0 1	124051.05	
581	,,	5d' [1½]°	2	123372. 987	1. 265	6W	3m5(2D.°.)6f	6f' [21/]	0, ±	124030.30	
$5s'_1$			1	123815.53	0.846	67	<i>3p*(-1 y₂)0j</i>	6f' [21/]	2, 4	125483 16	
4s5 4s4	$3p^{5}(^{2}\mathrm{P_{1}^{*}})7s$	7s [1½]°	$\begin{array}{c} 2\\ 1\end{array}$	122440. 109 122479. 459	$\begin{array}{c} 1.\ 506 \\ 1.\ 164 \end{array}$	6Z		0 [272]	2	125483. 34	
4 s ₃	$3p^{5}(^{2}\mathrm{P}^{\circ}_{\mathrm{H}})7s$	7s' [½]°	0	123873.07		$6p_{10}$	$3p^{5}(^{2}\mathrm{P}_{15})^{2}8p$	8p [½]	1	124311. 72	
$4s_2$			1	123882.30	1. 296	$6p_9$	"	$8p \ [2\frac{1}{2}]$	3	124349.04 124356.73	
5X 5X	$3p^{5}(^{2}\mathrm{P}_{1,2})5f$	$5f [1\frac{1}{2}]$	1 2	$\begin{array}{c} 122686. \ 20 \\ 122686. \ 40 \end{array}$		$6p_3$		8p [1½]		124376.38 124381.01	
$5\mathrm{V}$	"	$5f [4\frac{1}{2}]$	4, 5	122695. 70		6 <i>p</i> 6		8m [1/]		124001.01	
5Y 5Y	"	5f [2 ¹ / ₂]	3 2	$122707.94 \\ 122708.18$		$6p_4$	$3p^5(^2\mathrm{P}^\circ_{\mathrm{2}})8p$	8p' [1/2] 8p' [1/2]	1	124103.41 125783.8 125791.94	
$5\mathbf{U}$	"	5f [3 ¹ / ₂]	3, 4	122717.90		6 <i>p</i> 3	,,	8m' [1/]	1	125777 3	
5W	$3p^{5}(^{2}\mathrm{P}^{\circ}_{\mathrm{H}})5f$	5f' [3 ¹ / ₂]	3, 4	124135. 74		$\begin{array}{c} 6p_2\\ 6p_1\end{array}$			0	125831. 45	
5Z 5Z	"	$5f' [2\frac{1}{2}]$	3 2	$\begin{array}{c} 124137.\ 29\\ 124137.\ 45\end{array}$		$7d_6$	$3p^{5}(^{2}\mathrm{P}^{\circ}_{1})7d$	7d [½]°	0	124526.75 124554.939	
$5p_{10}$	$3p^{5}(^{2}\mathrm{P}_{1,2}^{*})7p$	7p [½]	1	123172. 09		7d4	"	7d [3½]°	4	124609.917 124649 549	
$5p_{9} \\ 5p_{8}$	"	$7p [2\frac{1}{2}]$	$\frac{3}{2}$	$\begin{array}{c} 123205. \ 83 \\ 123220. \ 73 \end{array}$		$7d_3$,,	7d [1½]°	2	124603. 957	
$5p_{7} \\ 5p_{6}$	"	7p [1½]	$\begin{array}{c c} 1\\ 2\end{array}$	123254.99 123261.593		$\begin{bmatrix} 7d_2 \\ 7d''_1 \end{bmatrix}$,,	7d [2½]°	$\begin{array}{c} 1\\ 2\end{array}$	124788.39 124692.02	
$5p_{5}$,,,	7p [½]	0	123385.13		$7d_1'$			3	124715.16	
$5 p_4 \\ 5 p_3$	$3p^5(^2\mathrm{P}^{\circ}_{5})7p$	7p' [1½]	$\begin{vmatrix} 1\\ 2 \end{vmatrix}$	124643.54 124658.52		$7s_1''' 7s_1'''$	$3p^{5}(^{2}\mathrm{P}_{\mathcal{H}}^{\circ})7d$	7 <i>d′</i> [2½]°	$\begin{vmatrix} 2\\ 3 \end{vmatrix}$	126064.50 126089.56	

A I—Continued

A I—Continued

Au- thors	Config.	Desig.	J	Level	Obs. g	Au- thors	Config.	Desig.	J	Level	Obs. g
7s''	3p⁵(²P⅔)7d	7d' [1½]°	2 1	126053. 21		$\begin{array}{c}9d'_4\\9d_4\end{array}$	$3p^{5}(^{2}\mathrm{P}_{1}^{*})9d$	9d [3½]°	4 3	125631.69 125652.04	
6s5	$3p^{5}(^{2}\mathrm{P}^{\circ}_{\mathfrak{l}_{2}})9s$	9s [1½]°	2	124771.67		$egin{array}{c} 9d_3 \ 9d_2 \end{array}$	"	9d [1½]°	$\begin{array}{c} 2\\ 1\end{array}$	125637. 93 125718. 12	
6s3	$3p^{5}(^{2}\mathrm{P}^{\circ}_{\mathscr{V}})9s$	9s' [½]°	0	126202.82 126211.57		$\begin{array}{c} 9d''_{1} \\ 9d'_{1} \end{array}$	"	9d [2½]°	$\frac{2}{3}$	125671.53 125680.52	
7X	$3p^{5}(^{2}\mathrm{P_{1k}^{5}})7f$	7f [1½]	1	124857. 27		9s'1	$3p^{5}(^{2}\mathrm{P}^{\circ}_{\mathscr{V}_{2}})9d'$	9d' [1½]°	2 1	127130	
7X		F (1)(1)	2	124857.42		855	3p ⁵ (² P [*] _{11/2})11s	11s [1½]°	2	125709. 45	
7V 7V	,,	$7f [4\frac{1}{2}]$ 7f [21/]	4, 0	124800.04		884	3n5(2P.°.)110	110' [1/10		125715.50	
7 Y			2	124805. 19		8s2	5 p ⁻ (- 1 ½) (18		1	127130	
7U	"	7f [3 ¹ / ₂]	3, 4	124868.77		9X	$3p^{5}(^{2}\mathrm{P}_{15})9f$	9 <i>f</i> [1½]	1, 2	125748. 9	
7W	$3p^5(^2\mathrm{P}^{\circ}_{\!$	7f' [3 ¹ / ₂]	3, 4	126294.90		9V	11	$9f [4\frac{1}{2}]$	4,5	125750. 39	
7 Z	"	7f' [2 ¹ / ₂]	$\begin{vmatrix} 3\\2 \end{vmatrix}$	126295. 02		9Y	"	9f [2 ¹ / ₂]	3 2	125752. 8	
$7p_{10}$	3p ⁵ (² P _{11/2})9p	9p [½]	1	125039.60		9U	"	9f [3 ¹ / ₂]	3, 4	125754. 21	
$7p_{9} 7p_{8}$	"	$9p \ [2\frac{1}{2}]$	$\begin{vmatrix} 3\\2 \end{vmatrix}$	$125054.\ 1$ $125059.\ 8$		920	$3n^{5}(^{2}P_{3})11n$	11n [1/3]	1	125844_3	
$7p_7$ $7p_6$	"	9p [1½]	$\frac{1}{2}$	$\begin{array}{c} 125072. \ 6 \\ 125074. \ 9 \end{array}$		$9p_7$	<i>i i i i i i i i i i</i>	$\frac{11p}{11p} \begin{bmatrix} 1\frac{1}{2} \end{bmatrix}$	1 2	125853. 3 125853 8	
$7p_5$	"	9p [½]	0	125122. 54		$9p_5$	"	11p [½]	0	125888. 9	
$7p_1$	$3p^5(^2\mathrm{P}^{\circ}_{\mathscr{V}_2})9p$	9p' [½]	1 0	126524. 2		$10d_6$ $10d_5$	$3p^{5}(^{2}\mathrm{P}_{12})^{10d}$	10d [½]°	0	125895.72 125898.64	
$\begin{array}{c} 8d_6 \\ 8d_5 \end{array}$	$3p^{5}(^{2}\mathrm{P}^{\circ}_{1 sc{1}s})8d$	8d [½]°	0 1	125163.00 125135.898		$\begin{array}{c}10d'_{4}\\10d_{4}\end{array}$	"	$10d \ [3\frac{1}{2}]^{\circ}$	$\frac{4}{3}$	125922.53 125932.59	
$\begin{array}{c} 8d'_4 \\ 8d_4 \end{array}$	"	8d [3½]°	$\frac{4}{3}$	125219. 88 125269. 52		10d ₃	"	$10d \ [1\frac{1}{2}]^{\circ}$	21	125906.61	
$8d_3$	"	8d [1½]°	$\begin{array}{c}2\\1\end{array}$	125282.97		$10d''_{1} \\ 10d'_{1}$	"	10d [2½]°	$\frac{2}{3}$	125945.72 125957.40	
$\begin{array}{c} 8d_1''\\ 8d_1'\end{array}$	"	8d [2½]°	$\frac{2}{3}$	125291.45 125293.65		10s'1	$3p^{5}(^{2}\mathrm{Ps})10d$	10d' [1½]°	$\frac{2}{1}$	127410	
7s5 7s4	3p ⁵ (² P _{1¹/2})10s	10s [1½]°	$\frac{2}{1}$	125329.99 125331.93		9s5 9s4	$3p^{5}(^{2}\mathrm{P}^{\circ}_{1 m b2})12s$	12s [1½]°	$2 \\ 1$	125979.41 125984. 35	
8X	$3p^5(^2\mathrm{P}_{11/2}^\circ)8f$	8f [1½]	1, 2	125386. 41			$3p^{5}(^{2}\mathrm{P}_{1\!\!\!2}^{\circ})12s$	12s' [½]°	0	107/10	
8V	"	$8f [4\frac{1}{2}]$	4, 5	125388.65		982			T	127410	
8Y 8Y	11	$8f [2\frac{1}{2}]$	$\begin{array}{c} 3\\2\end{array}$	$\begin{array}{c} 125391. \ 04 \\ 125391. \ 17 \end{array}$		$10p_{10}$	$3p^{5}(^{2}\mathrm{P}_{15})^{12}$	12p [½]	$1 \\ 0$	126072.6 126101.7	
8U	"	8f [3½]	3, 4	125393. 79		10 05			Ű	120101.1	
$8p_{10}$	$3p^{5}(^{2}\mathrm{P}_{1_{2}}^{\circ})10p$	10 <i>p</i> [½]	1	125505. 5		$\begin{array}{c c} 11d_6\\ 11d_5 \end{array}$	3p ⁵ (² P ³ 1 ¹ / ₁)11d	11d [½]°	$\begin{array}{c} 0 \\ 1 \end{array}$	126114.66 126099.49	
8p ₉	"	10p [2½]	$\frac{3}{2}$	125519. 9		$\begin{array}{c} 11d_4'\\ 11d_4 \end{array}$	"	11d [3½]°	4 3	126135.42 126154.55	
${8p_7 \over 8p_6}$	"	10 <i>p</i> [1½]	$\frac{1}{2}$	125531. 5 125533. 8		$11d_3$	"	11d [1½]°	$2 \\ 1$	<i>126159. 9</i>	
$8p_5$	"	10 <i>p</i> [½]	0	125561.9		$11d''_{1}$	"	11d [2½]°	2	126162.5	
$9d_6$ $9d_5$	$3p^{5}(^{2}\mathrm{P}_{1+2}^{\circ})9d$	9d [½]°	01	125595.11 125613.12					ð	120100. 24	

A I—Continued

A I—Continued

Au- thors	Config.	Desig.	J	Level	Obs. g	Au- thors	Config.	Desig.	J	Level	Obs. g
11s'1	3 p ⁵ (² P [°] ₃)11d	11d' [1½]°	$2 \\ 1$	127610		$13d_3$	$3p^5(^2\mathrm{Pi}_{1\!$	13d [1½]°	21	126420. 8	
10s5 10s4	3p⁵(²P _{11/2})13s	1 3 s [1½]°	2 1	126178. 27 126181. 30		$13d''_{1} \\ 13d'_{1}$	"	13d [2½]°	$\frac{2}{3}$	126432. 1 126435. 5	
1082	$3p^{5}(^{2}\mathrm{P}_{\mathrm{H}}^{\circ})13s$	13s' [½]°	0 1	127610		$13s'_{1}$	$3p^{5}(^{2}\mathrm{P}_{\mathrm{H}}^{\circ})13d$	13d' [1½]°	$\frac{2}{1}$	127880	
$11p_5$	3p⁵(²P _i ⅔)13p	13p [½]	1 0	126270. 0		$egin{array}{c} 14d_6\ 14d_5\end{array}$	$3p^{5}(^{2}\mathrm{P}_{15})^{2}$	14d [½]°	0 1	126508. 1 126510. 06	
$rac{12d_6}{12d_5}$	$3p^{5}(^{2}\mathrm{P}_{15})^{12d}$	12d [½]°	0 1	126281. 3 126292. 71		$14d'_{4} \\ 14d_{4}$	"	14d [3½]°	4 3	126517.41 126521.71	
$\begin{array}{c} 12d'_4\\ 12d_4\end{array}$	"	$12d \ [3\frac{1}{2}]^{\circ}$	$\frac{4}{3}$	126295.79 126305.28		$14d_3$	"	14d [1½]°	$\begin{array}{c} 2 \\ 1 \end{array}$	126514.8	
$12d_3$	$3p^{5}(^{2}\mathrm{P_{1}^{*}})13d$	$12d \ [1\frac{1}{2}]^{\circ}$	$\frac{2}{1}$	126302.6		$14d'_1$	"	14d [2½]°	$\frac{2}{3}$	126530. 1	
$12d''_1 \\ 12d'_1$	"	$12d \ \ [2\frac{1}{2}]^{\circ}$	$\frac{2}{3}$	126313. 1 126316. 1		14s'1	$3p^5(^2\mathrm{P}^{\circ}_{ m H})14d$	14d' [1½]°	$\begin{array}{c} 2\\ 1\end{array}$	127970	
$12s'_1$	$3p^{5}(^{2}\mathrm{P}^{\circ}_{\mathrm{H}})12d$	12d' [1½]°	$\begin{array}{c} 2\\ 1\end{array}$	127760			А II (²Р _{і́½})	Limit		127109.9	
$11s_5$ $11s_4$	3p⁵(²P°i⅓)14s	14s [1½]°	$\begin{array}{c} 2\\ 1\end{array}$	126328. 80 126332. 0		1282	3p ⁵ (² P [°] _{1∕2})15s	15s' [½]°	01	127880	
$11s_{2}$	3p⁵(²P⅔)14s	14s' [½]°	$\begin{array}{c} 0 \\ 1 \end{array}$	127760			$3n^{5}(^{2}P_{k}^{\circ})16s$	168' [½]°	0		
$13d_{5}$	$3p^{5}(^{2}\mathrm{P}_{1})^{1}3d$	13d [½]°	0 1	126412.99		1382			1	127970	
$13d'_4$ $13d_4$	"	13d [3½]°	4 3	126419.65 126426.07			А II (²Р [°] _½)	Limit		128541. 3	
Apr	·il 1948.										

A 1 Observed Levels*

Config. $1s^2 2s^2 2p^6 3s^2 +$	Observed Terms											
3 <i>p</i> ⁶	3p ⁶ ¹ S											
	$ns \ (n \ge 4)$	$np (n \ge 4)$	$nd \ (n \ge 3)$									
$3p^{5}(^{2}\mathrm{P}^{\circ})nx$	$\begin{cases} 4-16s {}^{3}P^{\circ} \\ 4-9, 11-16s {}^{1}P^{\circ} \end{cases}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccc} 4d \ {}^{3}\mathrm{P}^{\circ} & 4d \ {}^{3}\mathrm{D}^{\circ} & 4d \ {}^{3}\mathrm{F}^{\circ} \\ 4d \ {}^{1}\mathrm{P}^{\circ} & 4d \ {}^{1}\mathrm{D}^{\circ} & 4d \ {}^{1}\mathrm{F}^{\circ} \end{array}$									
		jl-Coupling 1	Notation									
		Observed 2	Pairs									
	$ns \ (n \ge 4)$	$np \ (n \ge 4)$	nd $(n \ge 3)$	$nf(n \ge 4)$								
$3p^5(^2\mathrm{P}_{1\!$	4–14s [1½]°	$\begin{array}{c} 4-13p \ [\ \frac{1}{2}] \\ 4-10p \ [2\frac{1}{2}] \\ 4-11p \ [1\frac{1}{2}] \end{array}$	$\begin{array}{c} 3-14d \ [\frac{1}{2}]^{\circ} \\ 3-14d \ [\frac{3}{2}]^{\circ} \\ 3-14d \ [\frac{1}{2}]^{\circ} \\ 3-14d \ [\frac{1}{2}]^{\circ} \\ 3-14d \ [\frac{2}{2}]^{\circ} \end{array}$	$\begin{array}{c} 4-9f \ [1\frac{1}{2}] \\ 5-9f \ [4\frac{1}{2}] \\ 4-9f \ [2\frac{1}{2}] \\ 5-9f \ [3\frac{1}{2}] \end{array}$								
$3p^{5}(^{2}\mathrm{P}_{\mathrm{5}}^{\mathrm{o}})nx'$	4-9, 11-16s'[½]°	$\begin{array}{c} 4-8p'[1\frac{1}{2}] \\ 4-9p'[\frac{1}{2}] \end{array}$	$\begin{array}{c c} 3-7d' [2\frac{1}{2}]^{\circ} \\ 3-7, \ 9-14d' [1\frac{1}{2}]^{\circ} \end{array}$	$\begin{array}{c} 4-7f'[3\frac{1}{2}]\\ 4-7f'[2\frac{1}{2}] \end{array}$								

*For predicted levels in the spectra of the A ${\tt I}$ isoelectronic sequence, see Introduction.

(Cl 1 sequence; 17 electrons)

Ground state $1s^2 2s^2 2p^6 3s^2 3p^5 {}^{2}P^{\circ}_{1\frac{1}{2}}$

 $3p^{5} {}^{2}\mathrm{P}^{\circ}_{1_{2_{3}}} 222820 \pm 300 \mathrm{~cm^{-1}}$

A monograph containing the complete and detailed analysis of this spectrum is needed. Most of the analysis is by de Bruin, but his work has been revised and extended by a number of investigators who are not in complete agreement on all details of interpretation.

A II

The term list published by Boyce forms the basis of the present compilation, but the later additions and revisions by Minnhagen, Edlén, and de Bruin have been incorporated into the present list. The writer has prepared a complete multiplet array for this spectrum and in dubious cases she has attempted to adopt the term assignments that appear to be best confirmed from the multiplet evidence.

One term labeled "2P" in the table, ("a 2P" in the published papers), has as yet no configuration assignment. Three miscellaneous levels assigned by de Bruin (1937) to the 4f configuration have been omitted pending further confirmation.

The doublet and quartet terms are well connected by observed intersystem combinations. Edlén has derived the series limit quoted here from the $({}^{3}P)ns {}^{4}P {}^{2}P$ series (n=4, 5, 6).

REFERENCES

T. L. de Bruin, Zeit. Phys. 51, 108 (1928); Proc. Roy. Acad. Amsterdam 31, No. 7, 771 (1928). (I P) (T) (C L)

T. L. de Bruin, Zeit. Phys. 61, 307 (1930); Proc. Roy. Acad. Amsterdam 33, No. 2, 198 (1930). (I P) (T) (C L)

A. H. Rosenthal, Ann. der Phys. [5] 4, 49 (1930). (T) (C L)

J. C. Boyce, Phys. Rev. 48, 397 (1935). (I P) (T) (C L)

T. L. de Bruin, Proc. Roy. Acad. Amsterdam 40, No. 4, 340 (1937). (T) (C L)

B. Edlén, Zeit. Phys. 104, 413 (1937). (I P) (T) (C L)

R. Bezler, Zeit. Phys. 116, 480 (1940). (Z E)

L. Minnhagen, Ark. Mat. Astr. Fys. (Stockholm) 34A, No. 22 p. 4 (1947). (T) (C L)

L. Minnhagen, Ark. Mat. Astr. Fys. (Stockholm) 35A, No. 16 p. 3 (1948). (E D)

A II

A II

Config.	Desig.	J	Level	Interval	Obs. g	Config.	Desig.	J	Level	Interval	Obs. g
$3s^2 3p^5$	$3p^{5}$ ² P°	$1\frac{1}{2}$ $\frac{1}{2}$	0. 0 1432. 0	-1432. 0		$3s^2 3p^4(^1D)4s$	4s' 2D	$1\frac{1}{2}$ $2\frac{1}{2}$	$148620. \ 98 \\ 148843. \ 29$	222. 31	0. 803 1. 202
3s 3p ⁶	$3p^{6}$ ² S	1/2	108722.5			3s ² 3p ⁴ (³ P)3d	$3d$ $^2\mathrm{F}$	$\frac{3\frac{1}{2}}{2\frac{1}{6}}$	149180.18 150148 54	-968.36	
3s ² 3p ⁴ (³ P)3d	3 <i>d</i> 4D	$3\frac{1}{2}$ $2\frac{1}{2}$ $1\frac{1}{2}$ $1\frac{1}{2}$	$\begin{array}{c} 132328.\ 22\\ 132482.\ 12\\ 132631.\ 64\\ 132738\ 60\end{array}$	-153.90 -149.52 -106.96		$3s^2 3p^4(^3{ m P}) 3d$	3d ² D	$ \begin{array}{c c} 1^{1/2} \\ 1^{1/2} \\ 2^{1/2} \\ \end{array} $	150475. 82 151088. 18	612. 36	
3s² 3p4(3P)4s	48 4P	$2\frac{1}{2}$ $1\frac{1}{2}$	134242.62 135086.88 125602.62	-844.26 -515.74	$1.598 \\ 1.722 \\ 2.650$	3s ² 3p ⁴ (³ P)4p	4 <i>p</i> 4P°	$2\frac{1}{2}$ $1\frac{1}{2}$ $\frac{1}{2}$	155044. 07 155352. 04 155709. 02	-307.97 -356.98	1. 599 1. 720 2. 638
3s² 3p4(3P)4s	48 ² P	$ \begin{array}{c c} 72 \\ 1\frac{1}{2} \\ \frac{1}{2} \end{array} $	138244. 51 139259. 22	- 1014. 71	$\begin{array}{c} 2.\ 030\\ 1.\ 334\\ 0.\ 676\end{array}$	3s ² 3p ⁴ (³ P)4p	4 <i>p</i> 4D°	$\begin{array}{c} 3^{1\!\!/_2} \\ 2^{1\!\!/_2} \\ 1^{1\!\!/_2} \\ 1^{1\!\!/_2} \end{array}$	157234.93 157674.30 158168.71	-439.37 -494.41 -260.34	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
3s ² 3p ⁴ (³ P)3d	3 <i>d</i> 4F	$\begin{array}{c} 4^{1\!\!/_2} \\ 3^{1\!\!/_2} \\ 2^{1\!\!/_2} \\ 1^{1\!\!/_2} \end{array}$	$\begin{array}{c} 142187.\ 42\\ 142718.\ 01\\ 143108.\ 63\\ 142279.\ 48\end{array}$	-530.59 -390.62 -263.85		3s ² 3p ⁴ (³ P)4p	$4p$ $^{2}\mathrm{D}^{\circ}$	$\begin{array}{c c} & 72 \\ & 2\frac{1}{2} \\ & 1\frac{1}{2} \end{array}$	158731.20 159394.32	-663.12	1. 241 0. 918
3s ² 3p ⁴ (³ P)3d	3d ² P	$1\frac{1}{2}$	143372.48	958, 94		3s ² 3p ⁴ (³ P)4p	4 <i>p</i> ² P°	$1^{1/2}_{1^{1/2}_{1^{1/2}_{2}}}$	159707.46 160240.35	532.89	0. 983 1. 244
2.2 2. 4/3D) 2d	2.4 AD		145009.84			3s ² 3p ⁴ (³ P)4p	4 <i>p</i> 4S°	1½	161049.65		1. 987
58″ 3p³(°r)3a	3 <i>a</i> *P	$ \begin{array}{c} \frac{72}{1\frac{1}{2}} \\ 2\frac{1}{2} \end{array} $	147229.17 147504.12 147876.98	274. 95 372. 86		3s ² 3p ⁴ (³ P)4p	4p ² S°	1⁄2	161090. 31		1. 695

Z = 18

I. P. 27.62 volts

A II—Continued

A II—Continued

Config.	Desig.	J	Level	Interval	Obs. g	Config.	Desig.	J	Level	Interval	Obs.g
3s ² 3p ⁴ (¹ S)4s	4s'' 2S	1⁄2	167308.66		1. 993	3s ² 3p ⁴ (³ P)4d	4d ² D	$2\frac{1}{2}$	192557.77 19271293	-155.16	1. 198
$3s^2 \ 3p^4(^1D) 4p$	4p' ² F°	$2\frac{1}{2}$ $3\frac{1}{2}$	170401.88 170531.29	129. 41	$\begin{array}{c} 0. \ 857 \\ 1. \ 140 \end{array}$	3s ² 3p ⁴ (³ P)4f	4 <i>f</i> 4F°	$\frac{1}{2}$	194800. 97	-21.98	0.000
$3s^2 \ 3p^4(^1\mathrm{D})4p$	4p′ 2P°	$1\frac{1}{2}$ $\frac{1}{2}$	172214.74 172817.14	- 602. 40	$\begin{array}{c} 1. \ 332 \\ 0. \ 677 \end{array}$			$3\frac{1}{2}$ $2\frac{1}{2}$ $1\frac{1}{2}$	194822.95 194862.31 194997.65	-39.36 -135.34	
3s ² 3p ⁴ (¹ D)3d	3 <i>d′</i> ² D	$2\frac{1}{2}$ $1\frac{1}{2}$	172336. 47 172830. 63	— 494. 16		$3s^2 3p^4(^{3}P)4f$	4 <i>f</i> 4D°	$3^{1\!/_2}_{2^{1\!/_2}}$	194883.96 195032.13	-148.17	
$3s^2 3p^4(^1\mathrm{D}) 4p$	4 <i>p′</i> ² D°	$1\frac{1}{2}$ $2\frac{1}{2}$	173348.78 173394.33	45. 55	$0.804 \\ 1.202$			$1\frac{1}{2}$	195298.62 195282.50	16. 12	
$3s^2 \ 3p^4(^1\mathrm{D}) \ 3d$	3 <i>d′</i> ²P	$1\frac{1}{2}$	174410.74 174821 94?	-411. 20		3s ² 3p ⁴ (¹ D)5s	5s' 2D	$2\frac{1}{2}$ $1\frac{1}{2}$	$\begin{array}{c} 195865.\ 61\\ 195867.\ 73 \end{array}$	-2.12	
	212	11/2	170503 00			$3s^2 \ 3p^4(^{3}P)4f$	4f 1°	1½	196077.40		
	-1	$\frac{1}{\frac{1}{2}}$	179932. 83	-339.74		3s ² 3p ⁴ (³ P)4f	$4f 2^{\circ}$	1⁄2	196091.04		
3s² 3p4(3P)5s	5s 4P	$\begin{array}{c c} 2^{1\!/_2} \\ 1^{1\!/_2} \\ 1^{1\!/_2} \\ 1^{1\!/_2} \end{array}$	181595.04 182223.06 182052.14	-628.02 -729.08	$ \begin{array}{c} 1.\ 603 \\ 1.\ 609 \\ 2.\ 550 \end{array} $	$3s^2 3p^4(^{3}P)4f$	4f ²D°	$1\frac{1}{2}$ $2\frac{1}{2}$	196622.78 196633.93	11. 15	
3s ² 3p ⁴ (³ P)5s	5s 2P		183091. 83	- 823. 75	1. 445	3s ² 3p ⁴ (¹ D)4d	4d' ² G	${3\frac{1}{2}}{4\frac{1}{2}}$	198595. 91 198604. 78	8. 87	
3s ² 3p ⁴ (³ P)4d	4d 4D	7^{2} $3^{1/2}_{2^{1/2}}_{2^{1/2}_{2^{1/2}}_{2^{1/2}}_{2^{1/2}}_{2^{1/2}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$	183676. 42 183798. 22	-121.80 -188.61	1. 427 1. 370	3s ² 3p ⁴ (³ P)6s	6s 4P	$2^{1/2}_{1/2}_{1/2}_{1/2}_{1/2}$	198813. 17 199138. 92 200111. 16	- 325. 75 - 972. 24	
	0.1/ 10	$1\frac{1}{2}$	183980. 83 184193. 12	-206. 29	0. 380	3s ² 3p ⁴ (¹ D)4d	4d' ² P	$1\frac{1}{2}{1\frac{1}{2}}{1\frac{1}{2}}$	199447.56 199982.96	535. 40	0. 670
$3s^2 3p^3(^1D) 3a$	30. 25	72	184094.10		1 000	3s ² 3p ⁴ (¹ D)4d	4d' ² D	$1\frac{1}{2}$	199525.96	154, 62	1 100
3s ² 3p*(3P)4d	4a *F	$\begin{array}{c} 4\frac{1}{2}\\ 3\frac{1}{2}\\ 2\frac{1}{2}\\ 1\frac{1}{2}\end{array}$	$\begin{array}{c} 185093. \ 92\\ 185625. \ 47\\ 186075. \ 06\\ 186341. \ 39 \end{array}$	-531.55 -449.59 -266.33	$\begin{array}{c} 1. \ 330 \\ 1. \ 217 \\ 1. \ 045 \\ 0. \ 612 \end{array}$	3s ² 3p ⁴ (³ P)6s	6s 2P	$2\frac{1}{2}$ $1\frac{1}{2}$ $\frac{1}{2}$	199680.58 200032.65 200624.00	- 591. 35	1. 196
3s² 3p4(3P)4d	4d 4P	$1^{1/2}_{1^{1/2}}_{1^{1/2}_{1^{1/2}_{2^{1/2}}_{2^{1/2}_{2^{1/2}}_{2^{1/2}_{2^{1/2}}_{2^{1/2}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$	$\begin{array}{c} 186172.\ 32\\ 186471.\ 32\\ 186891.\ 92 \end{array}$	299. 00 420. 60	$\begin{array}{c} 2. \ 600 \\ 1. \ 494 \\ 1. \ 588 \end{array}$	3s ² 3p ⁴ (¹ D)4d	4d′ 2F	${3\frac{1}{2}}{2\frac{1}{2}}$	200139. 84 200235. 70	95. 86	0. 862
$3s^2 \ 3p^4(^1S) \ 3d$	3 <i>d''</i> 2D	$2\frac{1}{2}$ $1\frac{1}{2}$	186728.28 186750.78	-22.50		$3s^2 3p^4(^{3}\text{P}) 5d$	5 <i>d</i> ² P	$1\frac{1}{2}$	204418. 50 204515. 81	- 97. 31	
3s ² 3p ⁴ (³ P)4d	$4d$ $^2{ m F}$	$\frac{3\frac{1}{2}}{2\frac{1}{6}}$	186817.12 187589.62	—772 . 50	1.167 0.861	3s ² 3p ⁴ (³ P)5d	$5d$ $^2\mathrm{D}$	$2\frac{1}{2}$ $1\frac{1}{2}$	204586.40		
322 3n4(3P)4d	4d 2P	-/2	180035 62		0.667	$3s^2 3p^4(^{1}D)4d$	4d' ² S	1/2	205243.96		2.004
03 OP (1)14	10 1	$1\frac{12}{12}$	190593. 62	658.00	1. 322	$3s^2 3p^4(^1D)4f$	4f' ² P°	$1\frac{1}{2}$	208592.90		
3s ² 3p ⁴ (³ P)5p	5 <i>p</i> ² P°	$1\frac{12}{12}$	190106. 84 190196. 80	- 89. 96		3s ² 3p ⁴ (¹ D)6s	6s′ 2D	$\frac{11}{12}$	212932.88 212934.30	1. 42	
3s ² 3p ⁴ (³ P)5p	5p ² D°	$2\frac{1}{2}$ $1\frac{1}{2}$	190508.00								
3s ² 3p ⁴ (³ P) 5p	$5p$ 2 S°	1/2	191708.46			A III (3P2)	Limit		222820		
$3s^2 \ 3p^4(^1S) 4p$	4 <i>p''</i> ² P°	$1\frac{12}{12}$	191975.16 192334.09	- 358. 93	1. 332 0. 760						

April 1948.

A II OBSERVED TERMS*

Config. $1s^2 2s^2 2p^6$					Observed	l Terms				
3s² 3p ⁵ 3s 3p ⁶	3p ^{6 2} S	3 p⁵ ²₽°					-			
			ns $(n \ge 4)$					np (n	≥4)	
3s² 3p4(3P)nx	{	4–6s ⁴ P 4–6s ² P				$\begin{array}{c} 4p \ {}^{4}S^{\circ} \\ 4, \ 5p \ {}^{2}S^{\circ} \end{array}$	$4p \\ 4, 5p$	⁴P° 2P°	4p ⁴ D° 4, 5p ² D°	
$3s^2$ $3p^4(^1\text{D})nx'$			4–6s′ ² D				4p'	²P°	4p' 2D°	$4p'$ ${}^2\mathrm{F}^{\circ}$
$3s^2 3p^4({}^1\mathrm{S})nx''$	4 <i>s</i> ″ 2S						4 <i>p</i> ′′	²P°		
			$nd (n \ge 3)$					nf (n	≥4)	
3s² 3p4(3P)nx	{	3, 4 <i>d</i> ⁴ P 3–5 <i>d</i> ² P	3, 4 <i>d</i> 4D 3–5 <i>d</i> 2D	3, 4d 4F 3, 4d 2F					$\begin{array}{cc} 4f & {}^4\mathrm{D}^{\circ} \\ 4f & {}^2\mathrm{D}^{\circ} \end{array}$	4 <i>f</i> 4F°
$3s^2 \ 3p^4(^1\mathrm{D})nx'$	3, 4d' 2S	3, 4 <i>d′</i> ² P	3, 4 <i>d′</i> ² D	4d' ² F	4d' ² G		4f'	²P°		
$3s^2 \ 3p^4({}^1\mathrm{S}) nx''$			3d'' 2D							

*For predicted terms in the spectra of the Cl I isoelectronic sequence, see Introduction.

АШ

(S I sequence; 16 electrons)

Ground state 1s² 2s² 2p⁶ 3s² 3p⁴ ³P₂

3p⁴ ³P₂ 329965.80 cm⁻¹

The terms are from de Bruin's 1937 paper except for singlets which are from Boyce and Edlén. The $3p^4$ ¹S term, according to Edlén, is derived from the nebular line at 5191.4 A, identified as the forbidden transition $3p^{4}$ ¹D $-3p^{4}$ ¹S.

Intersystem combinations connecting the three systems of terms have been observed.

Unfortunately, no complete or homogeneous list of classified lines exists. Such a list is needed to improve the present term values and to explain the numerical discrepancies in the various published papers. De Bruin's terms here designated 3d' 3P°, 4d'' 3P° D° F°, and 5s'' ³P° are apparently based on unpublished observational material.

REFERENCES

- V. v. Keussler, Zeit. Phys. 84, 42 (1933). (I P) (T) (C L)
- T. L. de Bruin, Proc. Roy. Acad. Amsterdam 36, No. 7, 724 (1933). (T) (C L)
- T. L. de Bruin, Zeeman Verhandelingen p. 414 (Martinus Nÿhoff, The Hague, 1935). (T) (C L)
- J. C. Boyce, Phys. Rev. 48, 397 (1935). (I P) (T) (C L) J. C. Boyce, Phys. Rev. 49, 351 (1936). (T) (C L)
- T. L. de Bruin, Proc. Roy. Acad. Amsterdam 40, No. 4, 343 (1937). (I P) (T) (C L)
- B. Edlén, Phys. Rev. 62, 434 (1942). (T) (C L)

218

Z = 18

I. P. 40.90 volts

A III

A III

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
3s ² 3p ⁴	3p ⁴ ³ P	2 1 0	0. 00 1412. 40 1570. 20	-1112.40 -457.80	3s ² 3p ³ (² D°)4p	4p' ³ P	2 1 0	$\begin{array}{c} 231341.\ 80\\ 231627.\ 30\\ 231754.\ 80 \end{array}$	-285.50 -127.50
3s ² 3p ⁴	3p4 1D	2	14010		$3s^2 \ 3p^3(^2\mathrm{P^o})4p$	4 <i>p''</i> 3S	1	239193.48	
3s ² 3p ⁴	3p4 1S	0	33267		$3s^2 \ 3p^3(^2P^\circ)4p$	4 <i>p''</i> ³ D	1	240150.66	106 93
3s 3p ⁵	$3p^5$ $^3\mathrm{P}^{\circ}$	2	113800.70	-996, 90			$\frac{2}{3}$	240257.59 240291.66	34. 07
		1 0	114797.60 115328.40	-530. 80	$3s^2 \ 3p^3(^2\mathrm{P^o})4p$	4 <i>p</i> ′′ ³P	0	242923. 96	221.80
$3s \ 3p^5$	$3p^{5}$ $^{1}\mathrm{P}^{\circ}$	1	144023				$\frac{1}{2}$	243145.76 243424.97	279. 21
$3s^2 \ 3p^3({}^4\mathrm{S}^\circ) 3d$	3 <i>d</i> ⁵D°	0	111000.00		$3s^2 \ 3p^3({}^4\mathrm{S}^\circ)4d$	4d ⁵D°	0	010000 NG	
100 C		12	144882.93 144885.97	3. 04 6. 98			$\frac{1}{2}$	246029.76 246033.79	4.03 2.85
		$\frac{3}{4}$	144892.95 144907.00	14. 05			$\frac{3}{4}$	246036.64 246046.57	9. 93
$3s^2 \ 3p^3({}^4\mathrm{S}^\circ) 3d$	$3d$ $^{3}D^{\circ}$	3	156917.62	-7.06	3s ² 3p ³ (⁴ S°)5s	5s 5S°	2	250712.27	
		$\frac{2}{1}$	156924.68 157031.40	-106. 72	$3s^2 \ 3p^3({}^4S^\circ)4d$	4d ³D°	1	252272.92	
$3s^2 \ 3p^3({}^4\mathrm{S}^\circ)4s$	4s ⁵ S°	2	174375.00				$\frac{2}{3}$	252253.69 252289.02	35. 33
$3s^2 3n^3(4S^\circ)4s$	48 ³ S°	1	180679.00		3s ² 3p ³ (⁴ S ^o)5s	5s ³ S°	1	252575.88	
		-			$3s^2 3p^3(^2D^\circ)4d$	$4d'$ ${}^3\mathrm{F}^{o}$	2	266722.80	154 70
$3s^2 3p^3(^2D^2) 3d$	3 <i>d′</i> ³F°	$\frac{4}{3}$	186402.15 186657.20	-255.05 -245.85			$\frac{3}{4}$	266877.50 267071.22	193. 72
		2	186903.05		$3s^2 3p^3(^2D^\circ)4d$	4d′ 3G°	3	267782.10	51 10
$3s^2 3p^3(^2D^2)3d$	$3d'$ $^{3}D^{\circ}$	$\frac{1}{2}$	$ \begin{array}{r} 187171.12 \\ 187823.05 \end{array} $	651.93 891.00			$\frac{4}{5}$	267833.20 267895.82	62. 62
	0.1/ 100	3	188714.05	001.00	$3s^2 \ 3p^3(^2\mathrm{D}^\circ)4d$	4 <i>d′</i> ³D°	1	268978.80	34, 00
3s ² 3p ³ (² D ²)3a	3a' "P"	0	188517.32				$\frac{2}{3}$	269012.80 269000.80	-12.00
		2	100500000		$3s^2 3p^3 (^2D^\circ)4d$	4d′ ³P°	2	271507.88	
$3s^2 3p^{\circ}(^2D^{\circ})4s$	4s′ °D°	$\frac{1}{2}$	196589.20 196613.91	$24.71 \\ 65.89$			$1 \\ 0$	271672.08 271696.22	-24. 14
		3	196679.80		$3s^2 3p^3(^2D^\circ)4d$	4 <i>d′</i> 3S°	1	272068.45	
$3s^2 3p^3(*S^2)4p$	4 <i>p</i> ⁰P	$\frac{1}{2}$	204563.53 204649.24	85. 71 148_13	3s ² 3p ³ (² D ^o)5s	5s′ 3D°	1	272127.82	60.34
	0.14 0.00	3	204797. 37	110, 10			$\frac{2}{3}$	272188.16 272250.90	62. 74
$3s^2 3p^3(^2D^3)3d$	3d' 3S°	1	204727.47		$3s^2 \ 3p^3(^2\mathrm{P^o})4d$	4 <i>d''</i> ³ F°	2	281461.97	11, 85
$3s^2 3p^{\circ}(^2P^{\circ})4s$	4s'' ³ P°	2	207233.09 207532.15	-299.06 -141.01			$\frac{3}{4}$	281473.82	1-1-00
0.0.0.0/(00)/	4 m	0	207673.16		$3s^2 \ 3p^3 (^2\mathrm{P^o}) 4d$	4 <i>d</i> ″ ³P°	0	281947.88	52.38
382 3p°(*S°)4p	4 <i>p</i> ³ P	2	209151.82 209127.04	24.78 - 39.31			$\frac{1}{2}$	282000.26 282099.14	98.88
	0.111.077.0	0	209166. 35	00.01	$3s^2 \ 3p^3(^2\mathrm{P^o})4d$	4 <i>d''</i> ³D°	3	283919.78	-176 48
$3s^2 3p^3(^2P^5)3d$	3 <i>d''</i> 3D°	32	210212.26 211004.85	-792.59 -558.98			$\frac{2}{1}$	284096.26 284118.51	-22.25
	0.144 0700	1	211563.83	000.00	3s ² 3p ³ (² P°)5s	5s'' ³ P°	0	285831.20	50, 80
$3s^2 3p^{3}(^2P^{2})3d$	3d'' ³ P°	$\frac{2}{1}$	213950. 87 214346. 70	-395.83 -221.79			$rac{1}{2}$	285882.00 286009.21	127. 21
		0	214568.49						
58" 5p°(2D°)4p	4p′ ³D	$\frac{1}{2}$	225155. 18 225147. 93	-7.25 254.66	A IV (4S°)	Limit		329965.80	
2.2 2.3(2) 0) 4	4	3	225402.59						
55° δρ°(2D°)4p	4 <i>p′</i> ⁵£′	2 3 4	$\begin{array}{c} 226355. \ 96\\ 226503. \ 22\\ 226646. \ 06 \end{array}$	147. 26 142. 84					
February 19	48.				1	1			

219

Config. $1s^2 2s^2 2p^6 +$				Observed	Terms				
3s ² 3p ⁴	$\left\{\begin{array}{c} 3p^{4-1}S \end{array}\right.$	3p4 *P	3p4 1D						
38 3p ⁵	{	$3p^5$ $^{\mathrm{spo}}$ $3p^5$ $^{\mathrm{spo}}$							
			ns $(n \ge 4)$				np ($n \ge$: 4)	
$3s^2 \ 3p^3({}^4\mathrm{S}^\circ)nx$	{4, 5s ⁵ S° {4, 5s ³ S°						4p ⁵ P 4p ³ P		
$3s^2 \ 3p^3(^2D^\circ)nx'$			4, 5s′ 3D°				4 <i>p</i> ′ ³P	4 <i>p′</i> ³D	4 <i>p</i> ′ ³F
$3s^2 \ 3p^3(^2\mathrm{P^o})nx^{\prime\prime}$		4, 5s" 3P°				4p″ 3S	4 <i>p</i> ″ ³P	4 <i>p</i> ″ ³D	
			nd $(n \ge 3)$						
3s² 3p³(4S°)nx	{		3, 4d ⁵ D° 3, 4d ² D°						
$3s^2$ $3p^3(^2D^\circ)nx'$	3, 4d' 3S°	3, 4d' ³ P°	3, 4d′ 3D°	3, 4d′ ³F°	4 <i>d′</i> ³G°				
$3s^2 3p^3(^2\mathrm{P^o})nx''$		3, 4 <i>d"</i> ³ P°	3, 4 <i>d″</i> ³D°	4 <i>d</i> ″ ³F°					

*For predicted terms in the spectra of the S I isoelectronic sequence, see Introduction.

A IV

(P I sequence; 15 electrons)

Ground state 1s² 2s² 2p⁶ 3s² 3p³ ⁴S^o₁₅₆

3p³ ⁴S[°]_{1½} 482400 cm⁻¹

The analysis is incomplete. Boyce has classified 26 lines in the range between 396 A and 1197 A and listed 8 terms.

De Bruin has extended the analysis and published the term list which is quoted here. Intersystem combinations connecting the doublet and quartet terms have been observed.

The ionization potential estimated by Edlén from isoelectronic sequence data has been used to calculate the limit (entered in brackets in the table).

REFERENCES

J. C. Boyce, Phys. Rev. 48, 401 (1935). (I P) (T) (C L)
B. Edlén, Zeeman Verhandelingen p. 91 (Martinus Nÿhoff, The Hague, 1935). (I P)
T. L. de Bruin, Physica 3, No. 8, 809 (1936). (T) (C L)
A. B. Rao, Ind. J. Phys. 12, 399 (1938). (T) (C L)

Z = 18

I. P. 59.79 volts

A IV

A IV

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
3s ² 3p ³	$3p^3$ 4S°	1½	0. 00		3s ² 3p ² (³ P)4p	4 <i>p</i> 4D°		285960. 17	268. 63
3s² 3p³	$3p^3 \ ^2D^\circ$	$1\frac{12}{212}$	21 0 90 21219	129			$1^{1/2}_{21/2}$ $3^{1/2}_{2/2}$	286228.80 286751.68 287555.83	522.88 804.15
3s² 3p³	3 <i>p</i> ³ ²₽°	$1\frac{1}{2}$ $1\frac{1}{2}$	34854 35035	181	$3s^2 \ 3p^2(^3\mathrm{P})4p$	4 <i>p</i> ⁴P°	$1/2 \\ 11/2 \\ 21/2 \\ 21/2 $	289125.88 289237.82 289834.68	$\begin{array}{c} 111. \ 94 \\ 596. \ 86 \end{array}$
3s 3p ⁴	3 <i>p</i> ⁴ 4P	$2\frac{1}{2}$ $1\frac{1}{2}$ $\frac{1}{2}$	$\begin{array}{c} 117564 \\ 118515 \\ 119044 \end{array}$	951 529	$3s^2 3p^2(^3P)4p$	4p 2D°	$1\frac{1}{2}$ $2\frac{1}{2}$	290256.45 291667.73	1411. 28
3s 3p4	$3p^4$ ² D	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	$145921 \\ 146000$	79	$3s^2 \ 3p^2(^{3}P)4p$	4 <i>p</i> 4S°	$1\frac{1}{2}$	291748.70	
3s 3p ⁴	3 <i>p</i> ⁴ ² P	$\frac{11}{2}$	$166356 \\ 167444$	-1088	$3s^2 \ 3p^2(^{3}\text{P})4p$	4 <i>p</i> ² P°	$1^{1/2}_{1^{1/2}_{1^{1/2}_{2}}}$	295674.54 295806.77	132. 23
$3p^{4}$	$3p^4$ ² S	1/2	177833		$3s^2 3p^2(^{3}P)4p$	$4p$ $^2S^{\circ}$	1⁄2	299563.20	
3s ² 3p ² (³ P)4s	4s 4P	1/2	250219. 45	687, 15	$3s^2 3p^2(^{1}\text{D})4p$	$4p' \ ^2{ m F}^{\circ}$	$2\frac{1}{2}$ $3\frac{1}{2}$	304074.29 304399.90	325. 61
		$1\frac{12}{212}$	250906.60 251972.00	1065. 40	$3s^2 \ 3p^2(^1D) 4p$	4 <i>p</i> ′ ² D°	$\frac{21_{2}}{11_{1}}$	306236. 28	-71.97
3s ² 3p ² (³ P)4s	4s 2P	$1^{\frac{1}{2}}_{1^{\frac{1}{2}}}$	256093. 29 257348. 89	1255. 60			172		
3s ² 3p ² (¹ D)4s	4s' 2D	$2\frac{1}{2}$ $1\frac{1}{2}$	268151.38 268171.38	20. 00	A v (3P ₀)	Limit		[482400]	

November 1947.

A	IV	OBSERVED	TERMS*
	- · ·	ODDDIG DD	TE TRACTICO

	1999			1000			
$\begin{array}{c} \text{Config.}\\ 1s^2 \ 2s^2 \ 2p^6 + \end{array}$			Oł	oserved T	erms		
3s ² 3p ³	$\left\{ \substack{3p^3 \ {}^4\mathrm{S}^\circ} ight.$	3 <i>p</i> ³ ₂P°	3 <i>p</i> ³ ²D°				
3s 3p4	$\left\{_{3p^{4}} \ ^{2}\mathrm{S} ight.$	$\begin{array}{ccc} 3p^4 & {}^4\mathrm{P} \\ 3p^4 & {}^2\mathrm{P} \end{array}$	3 <i>p</i> ⁴ ² D				
		ns $(n \ge 4)$			np	$(n \ge 4)$	
3s ² 3p ² (³ P)nx	{	4s 4P 4s 2P		$\begin{array}{c} 4p \ {}^4\mathrm{S}^{\mathrm{o}} \\ 4p \ {}^2\mathrm{S}^{\mathrm{o}} \end{array}$	4p 4P° 4p 2P°	$\begin{array}{ccc} 4p & {}^4\mathrm{D}^{\mathrm{o}} \\ 4p & {}^2\mathrm{D}^{\mathrm{o}} \end{array}$	
$3s^2 \ 3p^2(^1\mathrm{D})nx'$			4s' 2D			4p′ 2D°	$4p' \ ^2{ m F}^{\circ}$

*For predicted terms in the spectra of the PI isoelectronic sequence, see Introduction.

(Si 1 sequence; 14 electrons)

Ground state $1s^2 2s^2 2p^6 3s^2 3p^2 {}^{3}P_0$

3p² ³P₀ 605100 cm⁻¹

The terms have been taken from the paper by Phillips and Parker. This includes the earlier work by Boyce. Thirty-six lines have been classified in the region between 336 A and 836 A. Intersystem combinations connecting the singlet and triplet terms have been observed. No quintet terms have been found.

Using the method suggested by Edlén for extrapolation along the isoelectronic sequence, the writer has estimated the value of the limit quoted above and entered in brackets in the table.

REFERENCES

J. C. Boyce, Phys. Rev. 48, 401 (1935). (I P) (T) (C L)

B. Edlén, Zeeman Verhandelingen p. 91 (Martinus Nÿhoff, The Hague, 1935). (I P)

L. W. Phillips and W. L. Parker, Phys. Rev. 60, 301 (1941). (T) (C L)

A	37
A	V

A V

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
3s ² 3p ²	3p ² ³ P	$\begin{array}{c} 0 \\ 1 \\ 2 \end{array}$	0 765 2032	765 1267	3s ² 3p(² P°)3d	3d ³ P°	2 1 0	217578 218286 218642	-708 - 356
$3s^2 \ 3p^2$ $3s \ 3p^3$	3p ^{2 1} D 3p ^{3 3} D°	2	16301 <i>121632</i>	46	$3s^2 \ 3p(^2\mathrm{P^o}) \ 3d$	$3d$ $^{3}D^{\circ}$	$\begin{array}{c}1\\2\\3\end{array}$	224216 224505 224717	289 212
		$\begin{vmatrix} 2\\ 3 \end{vmatrix}$	121678 121810	132	3s ² 3p(² P°)4s	4s ³ P°	0	295742 296249	507
3s 3p ³	3p ³ ³ P°	$\begin{array}{c}2\\1,0\end{array}$	141764 141773	-9	202 3n(2P°)40	40 1Dº	2	297893 301300	1044
3s 3p ³	$3p^3$ $^3\mathrm{S}^\circ$	1	191537		35-3 <i>p</i> (-1)+5	-10 -1		001000	
3s 3p ³	$3p^3 \ ^1\mathrm{P}^\circ$	1	195356		A VI (2P ^o _{1/2})	Limit		[605100]	

October 1947.

I. P. 75.0 volts

Ground state $1s^2 2s^2 2p^6 3s^2 3p {}^{2}P_{1_{2}}^{\circ}$

 $3p \ ^{2}P_{\frac{1}{2}}^{\circ} 736600 \ \mathrm{cm}^{-1}$

The analysis is by Phillips and Parker, who have classified 37 lines in the region between 180 A and 596 A. No intersystem combinations have been observed. They estimate that $3p^2 \, {}^{4}P_{\frac{1}{2}}$ is 100,000 cm⁻¹ above the ground state, with an uncertainty x equal to ± 1000 cm⁻¹. This value is entered in brackets in the table, and it has been added to the published values of all quartet terms.

Their limit, derived from the three members of the $3p \, {}^{2}P^{\circ} - nd \, {}^{2}D$ series is 721300 ± 300 cm⁻¹ (I. P. 89.41±0.04). Using the method suggested by Edlén, the writer has extrapolated the value of the limit quoted above and entered in brackets in the table. The uncertainty in this estimate is large because of the incompleteness of the isoelectronic sequence data.

REFERENCE

L. W. Phillips and W. L. Parker, Phys. Rev. 60, 301 (1941). (I P) (T) (C L)

A VI

A VI

Config.	Desig.	J	Level	Interval	Config.	Desig.		Level	Interval
3s ² (¹ S)3p 3s 3p ²	· 3p 2P° 3p2 4P	$ \begin{array}{r} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 2 \\$	$ \begin{array}{c} 0 \\ 2210 \\ [100000]+x \\ 100802 +x \\ 102034 +x \end{array} $	2210 802 1232	3s 3p(3P°)3d	3d 4D°	$ \begin{array}{r} \frac{1/2}{11/2} \\ 21/2 \\ 31/2 \\ 1/2 \\ 31/2 \\ 1/2 \\ $	319121 + x 319393 + x 319615 + x 319747 + x 342286	272 222 132
3s 3p ² 3s 3p ²	$3p^2$ ² S $3p^2$ ² P	-/2 1/2 1/2 11/4	169801 182182 183577	1395	3s 3p(3P°)4s	4s 4P°	$\begin{array}{c} & 1/2 \\ & 1/2 \\ & 1/2 \\ & 2/2 \\ & 2/2 \end{array}$	453954 + x 454716 + x 456115 + x	762 1 3 99
$3s^2(^1S)3d$	3d 2D	1/2 $1\frac{1}{2}$ $2\frac{1}{2}$ $1\frac{1}{4}$	$ \begin{array}{c} 218592 \\ 218657 \\ 270356 + 7 \end{array} $	65	3s²(1S)4d 3s²(1S)5d	4d 2D 5d 2D	$ \begin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \\ 1\frac{1}{2} \\ 2\frac{1}{4} \end{array} $	454760 454810 555330 555555	50 225
3s 3p(3P°)3d	$3d 4P^{\circ}$	$2\frac{1}{2}$ $1\frac{1}{2}$ $\frac{1}{2}$	$\begin{array}{c} 316199 + x \\ 316815 + x \\ 317298 + x \end{array}$	-616 -483	A VII (1S0)	Limit		[736600]	

September 1947.

A VI OBSERVED TERMS*

$\begin{array}{c} \text{Config.} \\ 1s^2 \ 2s^2 \ 2p^6 + \end{array}$	Observed Terms						
$3s^2(^1S)3p$		3p ₂P°					
3 s 3p ²	$\Big\{_{3p^2 \ ^2\mathrm{S}}$	${{3p^2}\over{3p^2}} {{}^4{ m P}^2{ m P}}$					
3p³	3p ³ 4S°						
	ns ($n \ge 4)$	nd	(n≥3)			
$3s^2(^1{ m S})nx$	4s 2S			3–5 <i>d</i> ² D			
3s 3p(3P°)nx		48 4P°	3d 4P°	3d 4D°			

*For predicted terms in the spectra of the Al I isoelectronic sequence, see Introduction.

Z = 18

I. P. 91.3 volts

(Mg I sequence; 12 electrons)

Ground state $1s^2 2s^2 2p^6 3s^2 {}^1S_0$

A VII

3s² ¹S₀ 1000400 cm⁻¹

Phillips and Parker have classified 25 lines in the interval between 151 A and 644 A. No intersystem combinations have been observed.

From the D-series they derive an absolute value of $3p {}^{3}P_{0}^{\circ}$ equal to $891000 \pm 200 \text{ cm}^{-1}$, and by extrapolation along the isoelectronic sequence estimate the absolute value of $3s^{2} {}^{1}S_{0}$ as $1005000 \pm 1000 \text{ cm}^{-1}$.

From later data on this sequence the writer has extrapolated these values by the method suggested by Edlén, and adopted the revised entries given in the table in brackets.

REFERENCE

L. W. Phillips and W. L. Parker, Phys. Rev. 60, 305 (1941). (I P) (T) (C L)

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
3s ²	382 1S	0	0		$3s(^2S)4p$	4p 1P°	1	566362	
3s(2S)3p	3 <i>p</i> ³₽°	$\begin{array}{c} 0 \\ 1 \\ 2 \end{array}$		805 1681	3s(2S)4d	4 <i>d</i> ³ D	$\begin{array}{c}1\\2\\3\end{array}$	634584 + x 634622 + x 634697 + x	3 8 7 5
$3s(^2\mathrm{S})3p$	3p 1P°	1	170720		$3s(^2S)4f$	$4f$ ${}^{3}\mathrm{F}^{\circ}$	2, 3, 4	660092	
$3p^2$	3 <i>p</i> ² ³₽	$egin{array}{c} 0 \ 1 \ 2 \end{array}$	$\begin{array}{r} 269829 \ +x \\ 270770 \ +x \\ 272554 \ +x \end{array}$	941 1784	$3s(^2\mathrm{S})5d$	5d *D	$\begin{array}{c}1\\2\\3\end{array}$	772300 + x 772325 + x 772355 + x	25 30
3s(2S)3d	3d 3D	1	324097 + x 324136 + x	3 9					
		3	324130 + x 324184 + x	48	A VIII (2S _{1/2})	Limit		[1000400]	
3s(2S)4s	4s 3S	1	514083 + x						

August 1947.

A VIII

(Na 1 sequence; 11 electrons)

Ground state $1s^2 2s^2 2p^6 3s {}^2S_{y_2}$

3s ²S_{1/2} 1157400 cm⁻¹

Phillips and Parker classified 23 lines in the interval 120 A to 526 A. The resonance lines calculated at 700.398 A and 713.990 A, have not been observed. Absolute term values were derived from four members of the ²D-series.

REFERENCE

L. W. Phillips and W. L. Parker, Phys. Rev. 60, 305 (1941). (I P) (T) (C L)

 $\mathbf{224}$

Z = 18

I. P. 124.0 volts

A VII

Z = 18

I. P. 143.46±0.05 volts

A VIII

A VIII

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
	33 2S	1⁄2	0		58	58 2S	1/2	812422	
3 <i>p</i>	3p 2P°	$1^{\frac{1}{2}}_{1^{\frac{1}{2}}_{\frac{1}{2}}}$	140058 142776	2718	5p	5 <i>p</i> 2P°	$1/2 \\ 1/2 \\ 1/2$	832245 832691	446
3 d	3 <i>d</i> 2D	$1\frac{1}{2}{2\frac{1}{2}}{2\frac{1}{2}}$	332576 332727	151	5d	5 <i>d</i> 2D	$1\frac{1}{2}$ $2\frac{1}{2}$	$rac{865084}{865111}$	27
4 s	43 2S	1⁄2	575910		5f	5f ² F ^o	$\frac{2\frac{1}{2}}{3^{1/2}}$	875248 875077	29
4 <i>p</i>	4p 2P°	$1\frac{1}{2}$ $1\frac{1}{2}$	628240 629237	997	6 <i>d</i>	6 <i>d</i> 2D	$\begin{cases} 1\frac{1}{2} \\ 2\frac{1}{6} \end{cases}$	} 955560	
4d	4d ² D	$rac{11_2}{21_2'}$	$\begin{array}{c} 697471 \\ 697548 \end{array}$	77				, 	
4f	4f 2F°	2½ 3½	716818 716852	34	A 1x (¹ S ₀)	Limit		1157400	

June 1947.

A IX

(Ne 1 sequence; 10 electrons)

 cm^{-1}

Ground state 1s² 2s² 2p⁶ ¹S₀

 $2p^{6} {}^{1}\mathrm{S}_{0}$

Two lines observed at 49.180 A and 48.730 A have been classified by Phillips and Parker as combinations with the ground term. The measurements may be in error by ± 0.002 A or ± 100 cm⁻¹.

As for NeI, the *jl*-coupling notation in the general form suggested by Racah is here introduced.

REFERENCES

L. W. Phillips and W. L. Parker, Phys. Rev. 60, 306 (1941). (T) (C L)

G. Racah, Phys. Rev. 61, 537 (L) (1942).

B. Edlén, Zeit. Astroph. 22, 62 (1942). (I P)

A	IX

Authors	Config.	Desig.	J	Level
1S ₀	2p ⁶	2p ⁶ 1S	0	0
³ P ₁	2p ⁵ (² P ³ ₁₅)3s	3 s [1½]°	$2 \\ 1$	2033350
¹ P ₁	2p ⁵ (² P ^o ₃)3s	3s' [½]°	0 1	2052120

April 1947.

225

Z=18

I. P. 421 volts

(F 1 sequence	; 9 electrons)		
Ground state	$1s^2 2s^2 2p^5 {}^2\mathrm{P}^{\circ}_{1\mathcal{V}_2}$		
$2p^5 \ ^2\mathrm{P}^{\circ}_{1lash}$	cm ⁻¹	I. P.	

This spectrum has not been analyzed. By interpolation along the F I isoelectronic sequence from F I through Ca XII, Edlén derives a reliable estimated value of the interval of the ground term, $2p^{5} {}^{2}P_{1\frac{1}{2}}^{\circ}-2p^{5} {}^{2}P_{\frac{1}{2}}^{\circ}$, equal to 18063 cm⁻¹. The faint coronal line observed at 5536 A, wave number 18059 cm⁻¹, may thus be tentatively identified as this forbidden line of A x, according to Edlén.

REFERENCE

B. Edlén, Zeit. Astroph. 22, 59 (1942). (T)

March 1947.

226

A XI

(O I sequence; 8 electrons)

Ground state 1s² 2s² 2p⁴ ³P₂

 $2p^{4} {}^{3}P_{2}$ cm⁻¹

This spectrum has not been analyzed. By extrapolation along the O_I isoelectronic sequence Edlén estimates the separation $2p^4 \ {}^{3}P_2 - 2p^4 \ {}^{3}P_1$ to be approximately 14449 cm⁻¹, or 6919 A. This line has not been identified in the solar corona.

REFERENCE

B. Edlén, Zeit. Astroph. 22, 59 (1942). (T)

March 1947.

A XIV

(B I sequence; 5 electrons)

Ground state $1s^2 2s^2 2p {}^2P_{\frac{1}{2}}^{\circ}$

 $2p \ ^{2}P_{\frac{1}{2}}^{\circ}$ cm⁻¹

By extrapolation of the B_I isoelectronic sequence, Edlén estimates that the separation of the lowest term $2p^{2}P_{1/2}^{\circ}-2p^{2}P_{1/2}^{\circ}$, falls near enough to warrant tentative identification of the coronal line observed at 4359 A (wave number 22935 cm⁻¹) as [A xIV].

REFERENCE

B. Edlén, Zeit. Astroph. 22, 59 (1942). (T)

March 1947.

Z = 18

I. P. volts

Z = 18

volts

Z = 18

volts

I. P.

POTASSIUM

ΚI

19 electrons

Ground state $1s^2 2s^2 2p^6 3s^2 3p^6 4s {}^2S_{44}$

4s 2S1/2 35009.78 cm⁻¹

I. P. 4.339 volts

Z = 19

H. R. Kratz has observed in absorption the np ²P° series to n=79. He has generously furnished a list of his final term values in advance of publication, for inclusion here. His value of the limit is quoted. The series ns ²S (n=4 to 8), nd ²D (n=3 to 6), and nf ²F° (n=4to 9) are from Edlén, who revised the older values. Edlén remarks that the ns ²S and nd ²D series can best be continued by an extrapolation of the appropriate series formula, since the observed wavelengths are uncertain. This comment applies to the listed values of ns ²S(n=9to 13), which are from Fowler's Report. Mack has furnished revised values of nd ²D(n=8to 13), derived from observations of the forbidden transitions 6s-nd on the plates of Kratz. The last two members of this series are, respectively, 34213.1 and 34332.6.

From Paschen's classifications of far infrared lines Edlén concludes that the 5g ²G and 6h ²H^o terms are H-like. The terms derived from these calculations are entered in brackets in the table. Compared with all others, the terms 4f ²F^o, 5f ²F^o, and 5s ²S, derived from far infrared observations, are somewhat uncertain, according to Edlén.

No attempt has been made to give a complete bibliography of papers dealing with hyperfine structure of K I. From interferometric measures of the combinations $4p \, {}^{2}P^{\circ}-nd \, {}^{2}D$ (n=5 to 8) Masaki and Kobayakawa observe the following term intervals:

	n=5	6	7	8
nd ² D	-0. 503	-0. 262	-0. 158	-0. 096
4p ² P ^o ₂ -4p ² P ^o ₁	57. 600	57. 600	57. 599	57. 600

The papers on Zeeman effect deal only with forbidden transitions of K I. From observations in a magnetic field of the lines at 4642 A and 4641 A (4s ${}^{2}S-3d {}^{2}D$) Segrè and Bakker observe the interval of $3d {}^{2}D$ to be 2.325 ± 0.015 cm⁻¹.

The K¹^b resonance lines have been observed in absorption by Beutler and Guggenheimer at 662.38 A and 653.31 A. The $4s^2 {}^{2}P^{\circ}$ term in the table has been calculated from these lines.

REFERENCES

- S. Datta, Proc. Roy. Soc. London [A] 101, 539 (1922). (I P) (T) (C L)
- A. Fowler, Report on Series in Line Spectra p. 101 (Fleetway Press, London, 1922). (I P) (T) (C L)
- F. Paschen und R. Götze, Seriengesetze der Linienspektren p. 59 (Julius Springer, Berlin, 1922). (I P) (T) (C L)
- W. Grotrian, Graphische Darstellung der Spektren von Atomen und Ionen mit ein, zwei and drei Valenzelektronen, Part II, p. 29 (Julius Springer, Berlin, 1928). (G D)
- E. Segrè und C. J. Bakker, Zeit. Phys. 72, 724 (1931). (Z E)
- H. Beutler und K. Guggenheimer, Zeit. Phys. 87, 188 (1933). (T) (C L)
- W. F. Meggers, Bur. Std. J. Research 10, 673, RP558 (1933). (C L)
- W. F. Meggers, J. Research Nat. Bur. Std. 14, 497, RP781 (1935). (C L)
- B. Edlén, Zeit. Phys. 98, 453 (1936). (I P) (T) (C L)
- O. Masaki and K. Kobayakawa, J. Sci. Hirosima Univ. [A] 6, 217 (1936). (C L)
- F. A. Jenkins and E. Segrè, Phys. Rev. 55, 545 (1939). (Z E)
- W. F. Meggers, J. Opt. Soc. Am. 36, 431 (1946). (Summary hfs)
- H. R. Kratz, unpublished material (Dec. 1947). (I P) (T)

ົ	0	0
4	4	0

=

ΚI

ΚI

Config.	Desig.		J	Level	Interval	Config.	Desig.	J	Level	Interval
3p ⁶ (¹ S)4s	4s 2S		$\frac{1}{2}$	0. 00		3p ⁶ (1S)11s	11s 2S	1/2	33598. 17	
$3p^6(^1\mathrm{S})4p$	4 <i>p</i> ² P°		$1^{1/2}_{1^{1/2}_{1^{1/2}_{2}}}$	12985. 17 13042. 89	57. 72	$3p^{6}({}^{1} m S)9f$	9f 2F°	$\left\{ \begin{array}{c} 3^{1\!/_2} \\ 2^{1\!/_2} \end{array} \right.$	} 33652.0	
3p6(1S)5s	5s 2S		$\frac{1}{2}$	21026. 8		3p ⁶ (¹ S)11p	11p ² P°		33736.60	0. 84
3p ⁶ (1S)3d	3 <i>d</i> 2D		$2^{1\!/_2}_{1^{1\!/_2}}$	21534. 42 21536. 75	-2. 33	3n ⁶ (18)10d	10d 2D	$\int 2^{\frac{1}{2}}$	33737.44	
3p ⁶ (¹ S)5p	5p ² P°		1/2 11/2	24701.44 24720.20	18. 76	$3p^{6}(^{1}S)12s$	12s 2S	$1\frac{1}{2}$	33869.7	
$3p^{6}({}^{1}\!\mathrm{S})4d$	4d ² D		$\frac{21}{2}$	27397. 01	-1. 10	3p ⁶ (¹ S)12p	120 ° D 12p ² P°	$\frac{1}{1/2}$	33972. 34 33979 91	0. 60
3p ⁶ (1S)6s	6s 2S		$\frac{1}{2}$	27398. 11 27450. 65		3p ⁶ (¹ S)11d	11d ² D	$\begin{cases} 2\frac{1}{2} \\ 1\frac{1}{2} \end{cases}$	34056.9	
$3p^{6}(^{1}S)4f$	4f 2F°	Ę	$3\frac{1}{2}$	} 28127.7		3p ⁶ (1S)13s	13s 2S	$\begin{array}{c c} 1 & 1 \\ 1 & 1 \\ 1 \\ 1 \\ 1 \\ 2 \end{array}$	34069. 3	
3p ⁶ (¹ S)6p	$6n^{2}P^{\circ}$	ľ	27/2 1/2	28999.29	0.41	3p ⁶ (¹ S)13p	13 <i>p</i> ² P°	$\frac{1}{12}$	34148.15 34148.63	0. 48
				29007.70	8. 41	$3p^{6}(^{1}\mathrm{S})14p$	14 <i>p</i> ²P°	1/2	34282.77	0.38
$3p^{6}(^{1}S)5d$	5 <i>d</i> ² D		$2\frac{1}{2}$ $1\frac{1}{2}$	30185. 18 30185. 69	-0. 51	3n6/18)15n	150 2P°		34283.15 @1@88.16	0.00
3p ⁶ (1S)7s	7s 28		$\frac{1}{2}$	30274. 26		5p*(-5)15p	15 <i>p</i> -1	$1^{\frac{72}{1/2}}$	34388. 46	0. 30
3p6(1S)5f	5f 2F°	{	${31/2} \over {21/2}$	} 30605.6		$3p^{6}(^{1}\mathrm{S})16p$	16 <i>p</i> ² P°	$1/2 \\ 1/2 \\ 1/2$	34472.18 34472.43	0. 25
3p ⁶ (1S)5g	5g 2G	{	${31/2} \atop {41/2}$	} [30619.8]		$3p^{6}(^{1}\mathrm{S})17p$	17 <i>p</i> ² P°	$1/2 \\ 1/2 \\ 1/2$	34540. 23 34540. 44	0. 21
3p ⁶ (1S)7p	7p 2P°		$1^{1/2}_{1^{1/2}_{2}}$	31069.98 31074.46	4. 48	$3p^{6}(^{1}\mathrm{S})18p$	18 <i>p</i> ²P°	$\left\{ \begin{array}{c} 1_{2}'\\ 1_{2}''\\ 1_{2}'' \end{array} \right.$	} 34596. 27	
$3p^{6}({}^{1}\!\mathrm{S})6d$	6 <i>d</i> 2D		$2^{1\!/_2}_{1^{1\!/_2}}$	31695. 51 31695. 75	-0.24	$3p^{6}(^{1}\mathrm{S})19p$	19 <i>p</i> ²P°	$\left\{\begin{array}{c} \frac{1_2}{1_2}\\ 1_2^{1_2}\end{array}\right.$	} 34642.78	
3p ⁶ (1S)8s	88 2S		$\frac{1}{2}$	317 64. 95		$3p^{6}(^{1}\mathrm{S})20p$	20 <i>p</i> ² P°	$\begin{cases} \frac{1}{2} \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $	} 34681.84	
$3p^{6}({}^{1}\!\mathrm{S})6f$	6f 2F°	{	${3^{1\!/_2}\over 2^{1\!/_2}}$	} 31953.0		$3p^{6}(^{1}\mathrm{S})21p$	21 <i>p</i> ² P°	$ \begin{cases} 1\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{1} \end{cases} $	34714.98	
$3p^{6}(^{1}\mathrm{S})6h$	6h ²H°	{	$4\frac{1}{2}$ $5\frac{1}{2}$	[<i>31960. 6</i>]		$3p^{6}(^{1}\mathrm{S})22p$	22 <i>p</i> 2P°	$\begin{pmatrix} 1/2 \\ 1/2 \\ 11/ \end{pmatrix}$) 34743.37	
3p ⁶ (1S)6g	6 <i>g</i> 2G	{	${31/2} \over {41/2}$] [31960. 8]		3p ⁶ (¹ S)23p	23p 2P°	$\begin{pmatrix} 1/2 \\ 1/2 \\ 11/2 \end{pmatrix}$) } 34767.78	
3 <i>p</i> ⁶ (1S)8 <i>p</i>	8 <i>p</i> 2P°		$1^{1/2}_{1^{1/2}_{1^{1/2}_{2}}}$	32227.42 32230.12	2. 70	$3p^6(^1\mathrm{S})24p$	24 <i>p</i> ² P°	$\begin{pmatrix} 1/2 \\ 1/2 \\ 11/ \end{pmatrix}$) } 34789.03	
3p ⁶ (1S)7a	7d 2D	{	$2^{1\!\!/_2}_{1^{1\!\!/_2}}$	32598. 46		3p ⁶ (¹ S)25p	25p ² P°	$\begin{pmatrix} 1/2 \\ 1/2 \\ 11/ \end{pmatrix}$, } 34807.62	
3p ⁶ (¹ S)9s	9s 2S		$\frac{1}{2}$	32648. 17		04/15).00	0.0	$\begin{pmatrix} 1/2 \\ 1/2 \end{pmatrix}$		
$3p^{6}({}^{1}\mathrm{S})7f$	$7f \ ^2F^\circ$	{	$3\frac{1}{2}{2\frac{1}{2}}$	} 32764.52		3p°(18)20p	20p ² P ³	$ \begin{bmatrix} 1\frac{1}{2} \\ $	34823.88	
$3p^{6}({}^{1}\!\mathrm{S})9p$	9p 2P°		$\frac{1/2}{11/2}$	32940. 34 32942. 08	1. 74	$3p^{6}({}^{1} m{S})27p$	27 <i>p</i> ²P°	$\begin{cases} \frac{1}{2} \\ 1\frac{1}{2} \\ \end{pmatrix}$	} 34838.30	
3p ³ (1S)8d	$8d \ ^2D$	{	$2^{1/_2}_{1^{1/_2}}$	33178.36		$3p^{6}(^{1}\mathrm{S})28p$	28 <i>p</i> ²P°	$\left\{ \begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \\ \end{array} \right.$	<i>34851.11</i>	
3p ⁶ (¹ S)10s	10s 2S		$\frac{1}{2}$	33214. 39		$3p^6(^1\mathrm{S})29p$	29 <i>p</i> ² P°	$\left\{ \begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \end{array} \right.$	} 34862.52	
3p ⁶ (1S)8f	8f 2F°	{	${3^{1\!/_2}\atop{2^{1\!/_2}}}$	} 33291.04		3p ⁶ (1S)30p	30 <i>p</i> ² P°	$\left\{\begin{array}{c} \frac{1_{2}}{1_{2}^{1_{2}}}\right.$	} 34872.70	
3p ⁶ (1S)10p	10 <i>p</i> 2P°		$1^{1/2}_{1^{1/2}_{1^{1/2}_{2}}}$	33410. 34 33411. 54	1. 20	$3p^{6}({}^{1}\)31p$	3 1 <i>p</i> ² P°	$\left\{ egin{array}{c} 1^{1\!\!\!/_2} \\ 1^{1\!\!\!/_2} \end{array} ight.$	} 34881.94	
3p ⁶ (¹ S)9d	9d 2D	{	$2\frac{1}{2}$ $1\frac{1}{2}$	33572.11		$3p^{6}(^{1}\mathrm{S})32p$	32 <i>p</i> ² P°	$\left\{ \begin{array}{c} \frac{1_{2}}{1_{2}} \\ 1_{2}^{1_{2}} \end{array} \right.$	} 34890. 20	

K I—Continued

K I—Continued

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
3p ⁶ (¹ S)33p	33 <i>p</i> ²P°	$\left\{\begin{array}{c} \frac{1_2'}{1_2'}\\ 1_{1_2'}^{1_2'}\end{array}\right.$	} 34897.75		3p ⁶ (1S)58p	58p 2P°	$\left\{\begin{array}{c} \frac{1}{2}\\ 1\frac{1}{2} \end{array}\right.$	} 34975.15	
3p ⁶ (1S)34p	34 <i>p</i> ²P°	$\left\{\begin{array}{c} \frac{1_{2}}{1_{1/2}^{1/2}}\right.$	} 34904.57		$3p^{6}({}^{1}\!\mathrm{S})59p$	59 <i>p</i> ²P°	$\left\{\begin{array}{c} \frac{1_{2}}{1_{12}^{1_{2}}} \\ 1_{12}^{1_{2}^{1_{2}}} \end{array}\right.$	} 34976.36	
3p ⁶ (1S)35p	35 <i>p</i> ²P°	$\left\{\begin{array}{c} \frac{1/2}{11/2} \\ 11/2 \end{array}\right.$	} 34910.79		$3p^{6}({}^{1}\!\mathrm{S})60p$	60 <i>p</i> ² P°	$\left\{\begin{array}{c} \frac{1_{2}}{1_{1_{2}}^{1_{2}}}\right.$	} 34977.50	
3p ⁶ (¹ S)36p	36p ²P°	$\left\{\begin{array}{c} \frac{1\!\!\!/_2}{11\!\!\!/_2} \\ 11\!\!\!/_2 \end{array}\right.$	} 34916.51		$3p^{6}({}^{1}\mathrm{S})61p$	61 <i>p</i> ² P°	$\left\{\begin{array}{c} \frac{1_2'}{1_2'}\\ 1_{1_2'}^{1_2'}\end{array}\right.$	} 34978.62	
3p ⁶ (1S)37p	37 <i>p</i> ²P°	$\left\{\begin{array}{c} \frac{1\!\!\!/_2}{11\!\!\!\!/_2} \\ 11\!\!\!/_2 \end{array}\right.$	} 34921.69		3p ⁶ (¹ S)62p	62 <i>p</i> ² P°	$\left\{\begin{array}{c} \frac{1_{2}}{1_{2}^{1_{2}}}\right.$	} 34979.60	
3p ⁶ (1S)38p	38 <i>p</i> ²P°	$\left\{\begin{array}{c} 1'_{2} \\ 1''_{2} \\ 1''_{2} \end{array}\right.$	} 34926.47		3p ⁶ (1S)63p	63 <i>p</i> ²P°	$\left\{\begin{array}{c} \frac{1_{2}}{1_{2}^{1_{2}}}\right.$	} 34980.65	
3p ⁶ (1S)39p	39 <i>p</i> ²P°	$\left\{\begin{array}{c} \frac{1_{2}}{1_{1/2}^{1/2}}\right.$	} 34930. 91		3p ⁶ (¹ S)64p	64 <i>p</i> 2P°	$\left\{\begin{array}{c} \frac{1\!\!\!/_2}{11\!\!\!/_2} \\ 11\!\!\!/_2 \end{array}\right.$	} 34981.58	
3p ⁶ (¹ S)40p	40 <i>p</i> ²P°	$\left\{\begin{array}{c} \frac{1_2'}{1_2''}\\ 1_{1_2''}^{1_2''}\end{array}\right.$	} 34934.97		$3p^{6}({}^{1}\!\mathrm{S})65p$	65 <i>p</i> ² P°	$\left\{\begin{array}{c} \frac{1\!\!\!/_2}{11\!\!\!/_2} \\ 11\!\!\!/_2 \end{array}\right.$	} 34982.47	
3p ⁶ (¹ S)41p	41 <i>p</i> ² P°	$\left\{\begin{array}{c} \frac{1_{2}}{1_{1_{2}}^{1_{2}}}\right.$	} 34938.72		3p ⁶ (1S)66p	66 <i>p</i> ² P°	$\left\{\begin{array}{c} 1'_{2} \\ 1'_{2}' \\ 1'_{2}' \end{array}\right.$	} 34983. 27	
3p ⁶ (¹ S)42p	42 <i>p</i> ² P°	$\left\{\begin{array}{c} \frac{1'_2}{11'_2} \\ 11'_2 \end{array}\right.$	} 34942.20		3p ⁶ (1S)67p	67p 2P°	$\left\{\begin{array}{c} \frac{1'_{2}}{1\frac{1'_{2}}{1\frac{1}{2}}}\right.$	} 34984.10	
$3p^{6}({}^{1}S)43p$	43 <i>p</i> ²P°	$\left\{\begin{array}{c} \frac{1'_2}{1_{1'_2}}\right.$	} 34945.49		3p ⁶ (1S)68p	68 <i>p</i> ²P°	$\left\{\begin{array}{c} \frac{1_{2}}{1_{2}^{1_{2}}} \\ 1_{2}^{1_{2}^{1_{2}}} \end{array}\right.$	} 34984.83	
3p ⁶ (1S)44p	44 <i>p</i> ²P°	$\left\{\begin{array}{c} \frac{1'_2}{11'_2} \\ 11'_2 \end{array}\right.$	} 34948.48		$3p^{6}({}^{1} m{S})69p$	69 <i>p</i> ²P°	$\left\{\begin{array}{c} \frac{1_{2}}{1_{2}^{1_{2}}}\\ 1_{2}^{1_{2}^{1_{2}}}\end{array}\right.$	} 34985.57	
3p ⁶ (1S)45p	45 <i>p</i> ²P°	$\left\{\begin{array}{c} \frac{1/2}{1/2}\\ 1\frac{1}{2}\end{array}\right.$	} 34951.26		$3p^6(^1\mathrm{S})70p$	70 <i>p</i> ²P°	$\left\{\begin{array}{c} \frac{1\!\!\!/_2}{11\!\!\!/_2} \\ 11\!\!\!/_2 \end{array}\right.$	} 34986.25	
3p ⁶ (¹ S)46p	46 <i>p</i> ²P°	$\left\{\begin{array}{c} \frac{1'_2}{1'_2}\\ 1'_2 \end{array}\right.$	} 34953.85		$3p^{6}(^{1}\mathrm{S})71p$	71p 2P°	$\left\{\begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \\ 1\frac{1}{2} \end{array}\right.$	} 34986.96	
3p ⁶ (¹ S)47p	47p ²P°	$\left\{\begin{array}{c} \frac{1'_2}{1\frac{1'_2}{1^\prime_2}}\right.$	} 34956.32		$3p^6(^1\mathrm{S})72p$	72p ²P°	$\left\{\begin{array}{c} \frac{1'_{2}}{1'_{2}}\\ 1''_{2}\end{array}\right.$	} 34987.53	
$3p^{6}(^{1}S)48p$	48 <i>p</i> ²P°	$\left\{\begin{array}{c} \frac{1'_2}{1_{1'_2}'}\right\}$	} 34958.61		$3p^{6}(^{1}\mathrm{S})73p$	73 <i>p</i> ²P°	$\left\{\begin{array}{c} \frac{1'_{2}}{11'_{2}} \\ 11'_{2} \end{array}\right.$	} 34988.19	
3p ⁶ (1S)49p	49 <i>p</i> ²P°	$\left\{\begin{array}{c} \frac{1_{2}}{1_{1_{2}}^{1_{2}}}\right.$	} 34960.73		$3p^6(^1\mathrm{S})74p$	74 <i>p</i> ²P°	$\left\{\begin{array}{c} 1'_{2} \\ 1'_{2} \\ 1'_{2} \end{array}\right.$	} 34988.85	
3p ⁶ (¹ S)50p	50p ²P°	$\left\{\begin{array}{c} \frac{1_2'}{1_{12}'} \\ 1_{12}'' \end{array}\right\}$	} 34962.83		$3p^6({}^1\mathrm{S})75p$	75 p ² P°	$\left\{\begin{array}{c} \frac{1/2}{72}\\ 1\frac{1/2}{72}\end{array}\right.$	} 34989.4	
3p ⁶ (¹ S)51p	51 <i>p</i> ²P°	$\left\{\begin{array}{c} \frac{1_2}{1_{12}^{1_2}}\right\}$	} 34964.67		$3p^6(^1\mathrm{S})76p$	76 <i>p</i> ²P°	$\left\{\begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \\ 1\frac{1}{2} \end{array}\right.$	} 34989.9	
3p ⁶ (¹ S)52p	52p ²P°	$\left\{\begin{array}{c} \frac{1_2}{1_2^{1_2}}\\ 1_{1_2}^{1_2}\end{array}\right\}$	} 34966.45		$3p^{6}({}^{1}\mathrm{S})77p$	77 <i>p</i> ²P°	$\left\{\begin{array}{c} \frac{1}{2}\\ 1\frac{1}{2}\\ 1\frac{1}{2}\end{array}\right.$	} 34990.5	
3p ⁶ (¹ S)53p	53 <i>p</i> ²P°	$\left\{ \begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \end{array} \right\}$	} 34968.09		$3p^{6}({}^{1}\mathrm{S})78p$	78 <i>p</i> ²P°	$\left\{\begin{array}{c} \frac{1/2}{11/2}\\ 11/2\end{array}\right.$	} 34990.8	
3p ⁶ (¹ S)54p	54 <i>p</i> ² P°	$\left\{\begin{array}{c} \frac{1_{2}}{1_{2}^{\prime}}\\ 1_{2}^{\prime\prime}\end{array}\right\}$	} 34969.69		$3p^{6}({}^{1}\mathrm{S})79p$	79 <i>p</i> ²P°	$\left\{\begin{array}{c} \frac{1_{2}}{1_{2}^{\prime}}\\ 1_{2}^{\prime}\end{array}\right $	} 34991. 2	
3p ⁶ (¹ S)55p	55 <i>p</i> ²P°	$\left\{\begin{array}{c} \frac{1}{2}\\ 1\frac{1}{2}\end{array}\right\}$	} 34971.17						
3p ⁶ (¹ S)56p	56 <i>p</i> ²P°	$\left\{ \begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \end{array} \right\}$	} 34972.57		K II $({}^{1}S_{0})$ $3p^{5}({}^{3}P_{2}^{\circ})4s^{2}$	Limit 4s ² ² P°	11/2	35009.78 150970	-2096
$3p^{6}(^{1}\mathrm{S})57p$	57p 2P°	$\left\{ \begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \end{array} \right\}$	} 34973.88		3p"(*Pi)482		72	103066	

May 1948.

229

(A I sequence; 18 electrons)

Ground state 1s² 2s² 2p⁶ 3s² 3p⁶ ¹S₀

3p⁶ ¹S₀ 256637 cm⁻¹

Most of the levels were found by de Bruin, whose analysis is repeated in the three references listed under his name. The present list is taken from the paper by Bowen, who extended the earlier work by observations in the ultraviolet near 600 A, which served to connect de Bruin's levels with the ground term. Bowen also determined the limit from the 4s- and 5s-series and extended the assignments of the Paschen notation to all but 2 of the 20 levels thus far identified in this spectrum. This notation is entered in column one of the table under the heading "A I".

As for A I, the *jl*-coupling notation in the general form suggested by Racah is adopted. The writer has suggested tentatively the tabular designation of the level labeled Y_{11} by de Bruin. The pairs $nd[3\frac{1}{2}]^{\circ}$ and $nd[1\frac{1}{2}]^{\circ}$ are partially inverted as compared with Ne I.

The LS-designations ns ${}^{3}P_{210}^{\circ}$, ${}^{1}P_{1}^{\circ}$ can probably be safely assigned to the levels ns_{5} , ns_{4} , ns_{3} , ns_{2} , respectively.

REFERENCES

T. L. de Bruin, Zeit. Phys. 38, 94, 1926; Proc. Royal Acad. Amsterdam 29, No. 5, 713 (1926); Arch. Néerl. Sci. exactes et naturelles, [IIIA] 11, 75 (1928). (T) (C L) (E D) (Z E)

I. S. Bowen, Phys. Rev. 31, 499 (1928). (I P) (T) (C L)

G. Racah, Phys. Rev. 61, 537 (L) (1942).

Aı	de Bruin	Config.	Desig.	J	Level	Aı	de Bruin	Config.	Desig.	J	Level
$1p_0$		3p ⁶	3p ⁶ 1S	0	0	$2p_2 \\ 2p_1$	P9 P10	$3p^5(^2\mathrm{P}^\circ_{3\!$	4p' [½]	1 0	190134. 8 194776. 1
$1s_5 \ 1s_4 \ 1s_3$	$egin{array}{c} X_2 \ X_3 \ X_7 \end{array}$	$3p^{5}(^{2}\mathrm{P}^{\circ}_{1})4s$ $3p^{5}(^{2}\mathrm{P}^{\circ}_{2})4s$	$4s [1\frac{1}{2}]^{\circ}$ $4s' [\frac{1}{2}]^{\circ}$	$2 \\ 1 \\ 0$	162507.0 163237.0 165149.5	$2s_5$ $2s_4$	Y ₂ Y ₃	$3p^{5}(^{2}\mathrm{P_{112}^{5}})5s$	5s [1½]°	$2 \\ 1$	212575.5 212992.9
1s ₂	X ₈	2m5(2D°)2d	2.4 [1/19	1	166461.5	$2s_3$ $2s_2$	$\begin{array}{c} Y_4 \\ Y_5 \end{array}$	$3p^{5}(^{2}\mathrm{P}_{\mathbf{y}}^{\circ})5s$	5s' [½]°	01	214727.0 215018.8
$3d_5$	$\mathbf{\tilde{X}}_{5}^{4}$	sp*(*r 133)3a //	$3d [3^{1/2}_{2}]$	0 1 4	164496.1	$4d_5$	Y ₆	$3p^{5}(^{2}\mathrm{P}^{\circ}_{1})_{2})4d$	4d [½]°	01	215404.9
$3d_4$ $3d_3$	X9 X6	"	3d [1½]°	3 2 1	170835.4 164932.3	$4d_4$	Y9 Y7		$4d [3\frac{1}{2}]^{\circ}$	$\begin{vmatrix} 4\\3\\2 \end{vmatrix}$	217726.4 215855.8
$3d_1''$	X10	"	3d [2½]°	2 3	171526.8	4d''_1	Y ₁₀	11.	$4d [2\frac{1}{2}]^{\circ}$	1 2 3	219196. 2
$2p_{10}$	P_1	$3p^{5}(^{2}\mathrm{P_{12}^{o}})4p$	4p [½]	1	183208. 4		Y_8	$3p^{5}(^{2}\mathrm{P}^{\circ}_{\mathcal{V}_{2}})4d$	4d′ [?]°	2	217066.3
${2p_9\over 2p_8}$	$\begin{array}{c} P_2 \\ P_3 \end{array}$	"	4p [2½]	$\frac{3}{2}$	$\frac{186388.5}{186685.6}$		Y ₁₁	"	4d' [1½]°	$\begin{array}{c} 2\\ 1\end{array}$	223124. 1
$2p_7 \\ 2p_6$	P_4 P_5	,,	$4p [1\frac{1}{2}]$	$\frac{1}{2}$	187531.1 188154.4			К III (²Р _{і́以})	Limit		256637
$2p_5 \ 2p_4 \ 2p_3$	P ₈ P ₆ P ₇	$^{\prime\prime} 3p^{5}(^{2}\mathrm{P}^{\circ}_{\mathcal{H}})4p$	$4p [\frac{1}{2}]$ $4p' [1\frac{1}{2}]$	$\begin{array}{c} 0 \\ 1 \\ 2 \end{array}$	189772. 0 189243. 7 189661. 7			К ш (²Рӄ́)	Limit		258803

КП

I. P. 31.81 volts

КП

Z = 19

May 1948.

KII OBSERVED LEVELS *

$\begin{array}{c} \text{Config.}\\ 1s^2 \ 2s^2 \ 2p^6 \ 3s^2 + \end{array}$	Observed Terms								
3p ⁶	3p ⁶ ¹ S								
· · · ·	$ns \ (n \ge 4)$								
$3p^{5}(^{2}\mathrm{P}^{\circ})nx$	$\begin{cases} 4, 58 {}^{3}P^{\circ} \\ 4, 58 {}^{1}P^{\circ} \end{cases}$								
jl-Coupling Notation									
	Obser	ved Levels							
	$ns (n \ge 4)$	$np (n \ge 4)$	nd $(n \ge 3)$						
$3p^5(^3\mathrm{P}_{14})nx$	4, 5s [1½]°	$\begin{array}{c} 4p \ [\frac{1}{2}] \\ 4p \ [2\frac{1}{2}] \\ 4p \ [1\frac{1}{2}] \end{array}$	3, $4d [\frac{1}{2}]^{\circ}$ 3, $4d [\frac{3}{2}]^{\circ}$ 3, $4d [\frac{1}{2}]^{\circ}$ 3, $4d [\frac{1}{2}]^{\circ}$						
$3p^5(^2P_{ m H}^{\circ})nx'$	4, 5s'[½]°	$\begin{array}{c} 4p'[1\frac{1}{2}] \\ 4p'[\frac{1}{2}] \end{array}$	4d'[1½]°						

*For predicted levels in the spectra of the AI isoelectronic sequence, see Introduction.

КП

(Cli sequence; 17 electrons)

Ground state $1s^2 2s^2 2p^6 3s^2 3p^5 {}^{2}\mathbf{P}_{14}^{\circ}$

 $3p^{5} {}^{2}\mathrm{P}^{\circ}_{1\frac{1}{2}} 369000 \mathrm{~cm^{-1}}$

The analyses by various investigators are discordant, but nearly 80 lines have been classified in the range between 325 A and 3885 A.

From observed intersystem combinations Edlén has derived a correction of $+667.7 \text{ cm}^{-1}$ to the absolute values of the doublet terms given by de Bruin, to connect them with the quartet terms. Edlén also states that the limit derived by extrapolation along the isoelectronic sequence is 369000 cm⁻¹. This limit (entered in brackets in the table), indicates a correction of about -8000 cm^{-1} to the limit listed by de Bruin, 377000 cm⁻¹.

The doublet terms as given by Edlén and the quartet terms from de Bruin have been used in compiling the present list. The additional terms are from Tsien.

Kruger and Phillips designate as $4s'' {}^{2}S_{\frac{1}{2}}$ the level at 246012 cm⁻¹, given by Tsien as $3d' {}^{2}D_{\frac{1}{2}}$. Further study is needed to confirm the terms from the higher limits.

REFERENCES

T. L. de Bruin, Zeit. Phys. 53, 658 (1929). (IP) (T) (C L)

B. Edlén, Zeit. Phys. 104, 410 (1937). (I P) (T) (C L)

P. G. Kruger and L. W. Phillips, Phys. Rev. 51, 1087 (1937). (T) (C L)

W.-Z. Tsien, Chinese J. Phys. 3, No. 2, 118 (1939). (T) (C L)

I. P. 46 volts

Z = 19

232

-

		КШ			КШ				
Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
3s² 3p ⁵	3p⁵ ²P°	$1\frac{1}{2}$	0 2162	-2162	3s ² 3p ⁴ (1S)4s	4s'' 2S	1⁄2	241667	
3p ⁶	$3p^{\mathfrak{6}}\ ^2\mathrm{S}$	$\frac{1}{2}$	130609		$3s^2 \ 3p^4(^{3}P)4p$	4p 2D°	$2\frac{1}{2}$ $1\frac{1}{2}$	243120.6 243448.2	—327. 6
3s ² 3p ⁴ (³ P)3d	3d 2D	$1\frac{12}{212}$	190916 192082	1166	3s² 3p4(3P)4p	4 <i>p</i> 2P°	$1\frac{12}{12}$	243947.4 245382.3	<u>— 1434.</u> 9
3s ² 3p ⁴ (³ P)3d	3d 2F	$\left\{ egin{array}{c} 3^{1\!\!\!/_2} \\ 2^{1\!\!\!/_2} \end{array} ight.$	201165		3s ² 3p ⁴ (¹ D)3d	3d' 2D	$2\frac{1}{2}$ $1\frac{1}{2}$	$244523 \\ 246012$	
3s ² 3p ⁴ (³ P)4s	4s 4P	$\frac{2\frac{1}{2}}{1\frac{1}{2}}$	207421.9 208687.8	-1265.9	$3s^2 \ 3p^4(^{3}P)4p$	4p 4S°	$1\frac{1}{2}$	246625.6	
			209461. 3	773. 5	3s ² 3p ⁴ (¹ D)3d	3d' ² S	1⁄2	250857	
3s ² 3p ⁴ (³ P)4s	48 ² P	$1\frac{1}{2}$	212725.4 214232.3			1		252040	
3s² 3p4(1D)4s	4s' 2D	$2\frac{1}{2}$ $1\frac{1}{2}$	$225051 \\ 225082$	-31	3s ² 3p ⁴ (³ P)5s	5s 2P	$1\frac{1}{2}$ $\frac{1}{2}$	262828 263770	-942
3s ² 3p ⁴ (³ P)4p	4p 4P°	$2\frac{1}{2}$	237512.0 037910 0	-400. 2	$3s^2 \ 3p^4(^1D)5s$	5s′ 2D	$2\frac{1}{2}$ $1\frac{1}{2}$	$\begin{array}{c} 289400 \\ 289515 \end{array}$	-115
		$\frac{1/2}{1/2}$	238455.1	-542.9	$3s^2 \ 3p^4({}^1S)3d$	3 <i>d''</i> 2D	$2\frac{1}{2}$ $1\frac{1}{2}$	302404 303902	-1498
3s ² 3p ⁴ (³ P)4p	4 <i>p</i> 4D°	$3\frac{1}{2}$ $2\frac{1}{2}$ $1\frac{1}{2}$ $\frac{1}{2}$	240829.9 241443.5 242165.3 242526.7	-613.6 -721.8 -361.4		2		307429	
$3s^2 \ 3p^4(^1D)3d$	3 <i>d′</i> 2P	$1\frac{1}{2}$	$241039 \\ 242548$	- 1509	K IV (3P2)	Limit		[369000]	

January 1948.

K	111	Observed	TERMS*

Config. 1s ² 2s ² 2p ⁶		Observed Terms										
3s ² 3p ⁵ 3s 3p ⁶	3p ⁵ ² P° 3p ⁶ ² S											
	ns $(n \ge 4)$		$np (n \ge 4)$		nd (r	ı≥3)						
$3s^2 \ 3p^4(^3P)nx$	$\begin{cases} 48 & {}^{4}P \\ 4, 5s & {}^{2}P \end{cases}$	4p 4S ⁵	$\begin{array}{ccc} 4p & ^{4}\mathrm{P}^{\circ} & 4p & ^{4}\mathrm{D}^{\circ} \\ 4p & ^{2}\mathrm{P}^{\circ} & 4p & ^{2}\mathrm{D}^{\circ} \end{array}$			3d ² D	3d 2F					
3s ² 3p ⁴ (¹ D)nx' 3s ² 3p ⁴ (¹ S)nx"	4 <i>s</i> ″ 2S	, 5s' ² D		3d' 2S	3 <i>d′</i> 2P	3d′ 2D 3d″ 2D						

*For predicted terms in the spectra of the Cl I isoelectronic sequence, see Introduction.

(S I sequence; 16 electrons)

Ground state 1s² 2s² 2p⁶ 3s² 3p⁴ ³P₂

3p4 3P2 491300 cm⁻¹

The terms are from the papers by Bowen and by Tsien, with the revised values of $3p^4$ ¹S and $3p^5$ ¹P° suggested by Edlén, and of 4s ³S° by Mrs. Beckman. Colons have been added by the writer to some levels that appear to need further confirmation.

Nearly 60 lines have been classified in the region between 271 A and 754 A. Intersystem combinations connecting the singlet and triplet terms have been observed.

The limit is from Edlén's 1937 paper. He has derived it by extrapolation of isoelectronic sequence data.

REFERENCES

M. Ram, Indian J. Phys. 8, 155 (1933). (T) (C L)

I. S. Bowen, Phys. Rev. 46, 791 (1934). (T) (C L)

B. Edlen, Zeit. Phys. 104, 192 (1937). (I P)

A. Beckman, Bidrag till Kännedomen om Skandiums Spektrum i Yttersta Ultraviolett, Akademisk Avhandling p. 79 (Almqvist and Wiksells Boktryckeri-A.-B., Uppsala, 1937). (C L)

W.-Z. Tsien, Chinese J. Phys. 3, No. 2, 131 (1939). (T) (C L)

B. Edlén, Phys. Rev. 62, 434 (1942). (T) (C L)

\mathbf{K}	IV

K IV

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
3s ² 3p ⁴	3p⁴ ³P	2 1 0	$0 \\ 1673 \\ 2324$	$\begin{array}{c} 1673 \\ 651 \end{array}$	3s ² 3p ³ (4S°)4s 3s ² 3p ³ (2P°)3d	4s 3S° 3d″ 1P°	1 1	260352 <i>261445</i>	
3s² 3p4 3s² 3p4	3p ⁴ ¹ D 3p ⁴ ¹ S	2 0	16386 38548		$3s^2 3p^3(^2\mathrm{P}^\circ)3d$	3 <i>d''</i> ³D°	$3 \\ 2 \\ 1$	262831 263659	- 828
3s 3p ⁵	3p⁵ ³P°	2 1 0	134181 135659 136453	$-1478 \\ -794$	3s ² 3p ³ (² P ^o)3d 3s ² 3p ³ (² D ^o)4s	3d'' ¹ D° 4s' ³ D°	$\frac{2}{1}$	273409 277795 277851	56
3s 3p ⁵ 3s ² 3p ³ (4S°)3d	3p⁵ ¹P° 3d ³D°	1	171140 189952 191204	-252	3s ² 3p ³ (² D°)4s	4s' 1D°	3 2	277986	135
3s² 3p³(2D°)3d	3d′ 1F°	1 3	191204 191403 222420	-199	3s ² 3p ³ (² P ^o)4s	4s'' 3P°	$egin{array}{c} 0 \ 1 \ 2 \end{array}$	293384 293473 293720	89 247
3s² 3p³(2D°)3d	3d′ ³P°	$\begin{array}{c} 2 \\ 1 \\ 0 \end{array}$	225445 226090 227652	-645 - 1562	3s ² 3p ³ (² P ^o)4s 3s ² 3p ³ (⁴ S ^o)5s	4s'' 1P° 5s 3S°	1 1	298134 367890	
3s ² 3p ³ (² D°)3d 3s ² 3p ³ (³ P°)3d	3d′ ¹P° 3d′′ ³P°	1 2 1 0	235527: 256034 257124 257811:	$-1090 \\ -687$	K v (4S _{11/2})	Limit		491300	

December 1947.

I. P. 60.90 volts

Z = 19

Config. $1s^2 2s^2 2p^6 +$			Observe	d Terms		
3s ² 3p ⁴	$\left\{\begin{array}{c} 3p^{4-1}\mathrm{S}\end{array}\right.$	3 <i>p</i> ⁴ ³ P	3p4 1D			
3s 3p ⁵	{	${3p^5}{}^3\mathrm{P^o}\ {3p^5}{}^1\mathrm{P^o}$			_	
		ns $(n \ge 4)$			nd $(n \ge 3)$	
$3s^2$ $3p^3(^4\mathrm{S}^\circ)nx$	4, 5s 3S°				3d ³ D°	
$3s^2 \ 3p^3(^2\mathrm{D^o})nx'$	{		4s' ³ D° 4s' ¹ D°	$\begin{array}{ccc} 3d' & {}^3\mathrm{P}^{\mathrm{o}} \ 3d' & {}^1\mathrm{P}^{\mathrm{o}} \end{array}$		3d′ ¹F°
3s ² 3p ³ (² P ^o)nx''	{	4s'' ³ P° 4s'' ¹ P°		$3d^{\prime\prime} {}^{3}\mathrm{P}^{\circ}$ $3d^{\prime\prime} {}^{1}\mathrm{P}^{\circ}$	${3d^{\prime\prime}{}^{3}{ m D}^{\circ}\over 3d^{\prime\prime}{}^{1}{ m D}^{\circ}}$	

*For predicted terms in the spectra of the SI isoelectronic sequence, see Introduction.

KV

(P I sequence; 15 electrons)

Ground state $1s^2 2s^2 2p^6 3s^2 3p^3 {}^{4}S^{\circ}_{14}$

$3p^3 4S_{11/2}^{\circ}$ cm⁻¹

The analysis is incomplete. The terms are from the paper by Tsien, who includes those given earlier by Bowen. Seventy-two lines have been classified in the interval between 294 A and 825 A.

The relative position of the doublet terms with respect to the quartet terms was estimated from the irregular doublet law. Tsien lists combinations of $3p^3$ ⁴S° and $3p^3$ ²P° with the level labeled "3", which are not in disagreement with this estimate.

REFERENCES

I. S. Bowen, Phys. Rev. 46, 791 (1934). (T) (C L) W.-Z. Tsien, Chinese J. Phys. 3, No. 2, 136 (1939). (T) (C L) Z = 19

volts

I.P.

 -	
TZ .	
n.	•

ΚV

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
3s ² 3p ³	3p³ ⁴S°	1½	0		$3s^2 3p^2(^3P) 3d$	3d ² F	$\frac{2\frac{1}{2}}{3\frac{1}{2}}$	262487 262874	387
3s ² 3p ³	3p³ 2D°	$\begin{array}{c} 1\frac{1}{2}\\ 2\frac{1}{2}\end{array}$	24000 24237	237	$3s^2 3p^2(^{3}P)3d$	3 <i>d</i> ² D	$2\frac{1}{2}$	264741 264032	- 191
3s ² 3p ³	3 <i>p</i> ³ 2₽°	$1/2 \\ 1/2 \\ 1/2$	39745 40064	319		3	1/2	264932 268043	
3s 3p4	3 <i>p</i> ⁴ 4P	$2\frac{1}{2}$ $1\frac{1}{2}$	$\frac{136639}{138042}$	-1403		4		274375	
		1/2	138806	-104	$3s^2 3p^2(^{1}\text{D})3d$	3d' ² D	$rac{11_2}{21_2}$	281024	
3s 3p*	3p* 2D	$2^{1/2}_{1/2}$	161199 161564	365	$3s^2 \ 3p^2({}^1\mathrm{D})3d$	3d′ 2P	$1/2 \\ 1/2 $	290772	
	1 2	-	169703 169886		$3s^2 3p^2(^1D)3d$	3d′ 2F	$2^{1\!\!\!/_2}_{3^{1\!\!\!/_2}}$	292710	
3s 3p4	3p4 2P	$1\frac{1}{2}$	194 792 196310	-1527	$3s^2 \ 3p^2({}^1\mathrm{D})3d$	3d' ² S	$1\frac{1}{2}$	292968	
3s 3p4	3 <i>p</i> ⁴ ² S	72 1/2	205784		$3s^2 \ 3p^2({}^1 m S) \ 3d$	3 <i>d''</i> ² D	$rac{11_2}{21_2'}$	$304461 \\ 305978$	1517
$3s^2 \ 3p^2(^3P)3d$	3 <i>d</i> 4F	$\frac{11/2}{21/2}$	206720	445		5		307717	
		$ \begin{array}{c} 272 \\ 31/2 \\ 41/2 \end{array} $	207105			6		3 10120	
$3s^2 \ 3p^2(^3\mathrm{P})3d$	3d 4D	$3\frac{1}{2}$ $2\frac{1}{2}$	222367	344	3s ² 3p ² (³ P)4s	48 4P	$1^{1/2}_{1^{1/2}}_{2^{1/2}}$	336628 337645 339172	101 7 1527
		$ \begin{array}{c} 1\frac{1}{2} \\ \frac{1}{2} \end{array} $	222711	011	3s ² 3p ² (³ P)4s	4s ² P	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	3437 26 3 45526	1800
$3s^2 \ 3p^2(^3\mathrm{P})3d$	3 <i>d</i> 4P	$\begin{array}{c c} 2\frac{1}{2} \\ 1\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array}$	$\begin{array}{c} 257865 \\ 259276 \\ 259726 \end{array}$	$-1411 \\ -450$	3s ² 3p ² (¹ D)4s	4s' 2D	$2\frac{1}{2}$ $1\frac{1}{2}$	3 56993 3 57033	-40
3s ² 3p ² (³ P)3d	3d ² ₽	$1\frac{1}{2}$ $\frac{1}{2}$	$259205 \\ 260868$	-1663					

November 1947.

Kv Observed Terms*

Config. 1s ² 2s ² 2p ⁶ +		Observed Terms								
$3s^2 3p^3$	$\left\{ {{3{p^3}} \ {^4}{ m{S}}^{ m{o}}} ight.$	3p³ 2P°	$3p^3$ $^2\mathrm{D}^\circ$							
3s 3p ⁴	$\Big\{_{3p^4\ ^2\mathrm{S}}$	3p ⁴ ⁴ P 3p ⁴ ² P	$3p^{4}$ ² D							
		ns $(n \ge 4)$			nd (1	n≥ 3)				
$3d^2 \ 3p^2(^3P) nx$	{	4s ⁴ P 4s ² P			3d 4P 3d 2P	3d 4D 3d 2D	3d 4F 3d 2F			
$3s^2 3p^2(^1D)nx'$			4s' 2D	3d' ² S	3d' ² P	3d' ² D	3d' ² F			
$3s^2 \ 3p^2({}^1S)nx''$						3 <i>d"</i> 2D				

*For predicted terms in the P I isoelectronic sequence, see Introduction.

К И

(Si 1 sequence; 14 electrons)

Ground state 1s² 2s² 2p⁶ 3s² 3p² ³P₀

3p² ³P₀ 804513 cm⁻¹

The analysis is chiefly by Whitford, with singlet terms added from Robinson's paper. Twenty-seven lines have been classified in the interval between 256 A and 725 A. Intersystem combinations connecting the singlet and triplet terms have been observed.

Using the method suggested by Edlén for extrapolation along the isoelectronic sequence, the writer has estimated the value of the limit quoted above and entered in brackets in the table.

REFERENCES

A. E. Whitford, Phys. Rev. 46, 793 (1934). (T) (C L) H. A. Robinson, Phys. Rev. 52, 725 (1937). (T) (C L)

K VI

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
3s ² 3p ² 3s ² 3p ²	3p ² ³ P 3p ² ¹ D	$egin{array}{c} 0 \\ 1 \\ 2 \\ 2 \end{array}$	0 1131 2924 18973	1131 1793	3s 3p ³ 3s ² 3p(² P ⁰)3d	3p ^{3 1} P° 3d ³ P°	1 2 1 0	223840 252332 253504 254043	$-1172 \\ -539$
3s 3p ³	$3p^3$ $^{3}D^{\circ}$	1 2 3	140743 140796 140966	53 170	3s² 3p(²P°)4s	4s ³P°	$\begin{array}{c} 0 \\ 1 \\ 2 \end{array}$	387421 388114 390493	693 2379
3s 3p ³ 3s 3p ³	$3p^3$ 3 Po $3p^3$ 3 So	2, 1, 0 1	163434 218316		К VII (²Р _%)	Limit		[804513]	

October 1947.

Z = 19

I. P. 99.7 volts

K VI

(Al I sequence; 13 electrons)

Ground state $1s^2 2s^2 2p^6 3s^2 3p {}^2P_{\cancel{2}}^{\circ}$

 $3p \ ^{2}P_{\frac{1}{2}}^{\circ} 950200 \ \mathrm{cm}^{-1}$

Both Whitford and Phillips have worked on the analysis of this spectrum. Thirty lines have been classified in the interval between 175 A and 671 A. No intersystem combinations have been observed, but Phillips estimates that $3p^2 {}^{4}P_{\frac{1}{2}}$ is approximately 114000cm^{-1} above the ground state. This value is entered in brackets in the table. The uncertainty x may exceed ± 1000 cm⁻¹.

Using the method suggested by Edlén, the writer has extrapolated the value of the limit quoted above and entered in brackets in the table. The uncertainty in this estimate is large owing to the incompleteness of the isoelectronic sequence data.

REFERENCES

A. E. Whitford, Phys. Rev. 46, 793 (1934). (T) (C L) L. W. Phillips, Phys. Rev. 55, 708 (1939). (T) (C L)

IL V II	I	VI	K
---------	---	----	---

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
$3s^2({}^1S)3p$	3 <i>p</i> 2P°	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	0 3129	3129	3 s 3p(3P°)3d	3d ⁴D°	$\frac{\frac{1}{2}}{\frac{1}{2}}$	365092 + x 365463 + x 365778 + x	37 1 315
3s 3p ²	3p ² 4P	$1^{1/2}_{1/2}\\ 2^{1/2}_{1/2}$		$\begin{array}{c} 1145\\ 1726\end{array}$	3s ² (1S)4s	4s 2S	$\frac{\frac{272}{3\frac{1}{2}}}{\frac{1}{2}}$	$ 365916 + x \\ 439297 $	138
3s 3p ²	$3p^2$ ² D	$1\frac{12}{22}$	151882 152049	167	3s 3p(3P°)4s	48 4P°	$ \frac{\frac{1}{2}}{1\frac{1}{2}} \frac{1}{2} \frac{1}{2} $	565314 + x 566443 + x 568375 + x	1129 1932
3s 3p ²	$3p^2$ ² S	1/2	193079		$3s^2(^1S)4d$	4d ² D	11/2	570812	157
3s 3p ²	3p² ²P	$1\frac{1}{2}$ $1\frac{1}{2}$	$206507 \\ 208434$	1927			$2\frac{1}{2}$	570969	157
3s²(1S)3d	3d ² D	$1\frac{1}{2}$ $2\frac{1}{2}$	$250668 \\ 250787$	119	K VIII (1S ₀)	Limit		[950200]	
3p ³	3 <i>p</i> ³ 4S°	1½	307479 +x						

September 1947.

K VII OBSERVED TERMS*

Config. 1s ² 2s ² 2p ⁶ +	-	Observed Terms	
$3s^2({}^1\mathrm{S})3p$		3 <i>p</i> 2P°	
3s 3p ²	$\left\{_{3p^2 \ ^2\mathrm{S}} ight.$	3p ² ⁴ P 3p ² ² P 3p ² ² D	
3 <i>p</i> ³	3p ³ ⁴ S ^o		
		ns $(n \ge 4)$	nd $(n \ge 3)$
3s²(1S)nx	48 2S		3, 4d 2D
3s 3p(3P°)nx		4s 4P°	3d 4D°

*For predicted terms in the spectra of the Al1 isoelectronic sequence, see Introduction.

237

I. P. 118 volts

K VII

(Mg I sequence; 12 electrons)

Ground state $1s^2 2s^2 2p^6 3s^2 {}^1S_0$

 $3s^2 {}^{1}S_0 1247000 \pm cm^{-1}$

Twenty-six lines have been classified in the range between 155 A and 938 A. The triplet terms are from Parker and Phillips; the singlets from Tsien. By extrapolation along the sequence Mrs. Beckman has classified a line at 774.738 A as the intersystem combination $3s^2 \, {}^{1}S_0 - 3p \, {}^{3}P_{1}^{\circ}$. The listed values of the triplet terms have been adjusted to fit this assignment.

From isoelectronic sequence data the writer has extrapolated the value of the limit, using the method suggested by Edlén. This value is entered in brackets in the table. Although this estimate may be in error by more than ± 1000 cm⁻¹, it gives an approximate value of the ionization potential.

REFERENCES

A. Beckman, Bidrag till Kännedomen om Skandiums Spektrum i Yttersta Ultraviolett, Akademisk Avhandling
 p. 55 (Almqvist and Wiksells Boktryckeri-A.-B., Uppsala, 1937). (C L)

W.-Z. Tsien, Chinese J. Phys. 3, No. 2, 142 (1939). (T) (C L)

W. L. Parker and L. W. Phillips, Phys. Rev. 57, 140 (1940). (T) (C L)

Per law	K VIII				K VIII				
Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
3s ² 3s(2S)3p	3s ² ¹ S 3p ³ P°	0 0 1 2	0 127968 129080 131452	1112 2372	3s(2S)3d 3s(2S)4s	3d 3D 4s 3S	1 2 3 1	368004 368060 368132 631654	56 72
3s(2S)3p 3s(2S)3d 3p ²	3p 1P° 3d 1D 3p ² 3P	1 2 0 1 2	<i>192540. 2</i> 299117. 4 304669 306035 308608	1366 2573	3s(2S)4d 3s(2S)4f	4d 3D 4f 3F°	1 2 3 2, 3, 4	770165 770260 770401 <i>801511</i>	95 141
		2	00000		K 1x (2S14)	Limit		[1247000±]	

March 1948.

Z = 19

I. P. $155 \pm$ volts

(Na 1 sequence; 11 electrons)

Ground state $1s^2 2s^2 2p^6 3s {}^2S_{\frac{1}{2}}$

3s ²S_{1/2} 1419425 cm⁻¹

All but two of the terms are from the paper by Kruger and Phillips, who extended the earlier work by Edlén and Whitford. Absolute term values are based on three members of the ²D-series.

The two terms 5s ${}^{2}S$ and 5g ${}^{2}G$ have been added from the paper by Tsien, but adjusted to agree with the term array by Kruger and Phillips.

Twenty-five lines have been classified, in the range from 112 A to 636 A.

REFERENCES

W.-Z. Tsien, Chinese J. Phys. 3, No. 2, 145 (1939). (T) (C L) P. G. Kruger and L. W. Phillips, Phys. Rev. 55, 352 (1939). (I P) (T) (C L)

Κ	IX

						K IX			
Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
38	3s 2S	1/2	0		58	5s 2S	1/2	979901	
3p	3p 2P°	$1\frac{1}{2}$ $1\frac{1}{2}$	157159 160925	3766	5g	<i>5g</i> ² G	$\begin{array}{c} 4^{1\!\!\!/_2} \\ 3^{1\!\!\!/_2} \end{array}$	$\frac{1044250}{1044298}$	-48
3d	3 <i>d</i> ² D	$1\frac{1}{2}$ $2\frac{1}{2}$	$374788 \\ 375080$	292	5d	5 <i>d</i> ² D	$\begin{array}{c} 1^{1\!\!\!/_2} \\ 2^{1\!\!\!/_2} \end{array}$	$\begin{array}{c} 1049114 \\ 1049174 \end{array}$	60
4 s	4 <i>s</i> ² S	1⁄2	698902		5f	5f ² F ^o	$\frac{2\frac{1}{2}}{3\frac{1}{4}}$	1061120	52
4 <i>p</i>	4 <i>p</i> ² P°	$1^{\frac{1}{2}}_{1^{\frac{1}{2}}_{2}}$	758174 759615	1441					
4d	4d ² D	$1\frac{12}{22}$	836703 836861	158	K x (¹ S ₀)	Limit		1419425	
4f	4f ² F ^o	$2\frac{1}{2}{3\frac{1}{2}}$	860763 860842	79					

June 1947.

Кx

(Ne I sequence; 10 electrons)

Ground state 1s² 2s² 2p⁶ ¹S₀

 $2p^{6}$ ¹S₀ 4064300 cm⁻¹

Eleven lines between 29 A and 41 A have been classified by Edlén and Tyrén as combinations with the ground term. Their absolute term values have been extrapolated along the Ne I isoelectronic sequence.

By analogy with Ne I, *jl*-coupling notation in the general form suggested by Racah is introduced.

The unit adopted by Edlén and Tyrén, 10^3 cm⁻¹, has here been changed to cm⁻¹.

REFERENCES

B. Edlén and F. Tyrén, Zeit. Phys. 101, 206 (1936). (I P) (T) (C L)

G. Racah, Phys. Rev. 61, 537 (L) (1942).

I. P. 175.94 volts

Z = 19

Z = 19

I. P. 503.8 volts

КХ

КХ

Authors	Config.	Desig.	J	Level	Authors	Config.	Desig.	J	Level
2p 1S0	2s ² 2p ⁶	$2p^{6}$ 1S	0	0	3p' ³ P ₁	2s 2p ⁶ (2S)3p	3 <i>p</i> ³₽°	2	3219400
38 ⁸ P ₁	$2s^2 \ 2p^5(^2\mathrm{P}_{1_{2_2}})3s$	3s [1½]°	2_1	2407300	3p′ ¹ P ₁	2s 2p ⁶ (2S)3p	3 <i>p</i> ¹₽°	0 1	3237600
3s ¹ P ₁	2s² 2p ⁵ (²P [°] ₂)3s	3s' [½]°	0 1	2430300	4d ¹ P ₁	$2s^2 \ 2p^5 ({}^2\mathrm{P}^{\circ}_{1\!$	$4d [1\frac{1}{2}]^{\circ}$	1	3356400
3d ³ P1	$2s^2 \ 2p^5(^2\mathrm{P}_{1>2}^{\circ}) \ 3d$	3d [½]°	0	2760200	4d 3D1	$2s^2 \ 2p^5 (^2\mathrm{P}_{\mathrm{5}}^{\mathrm{o}}) 4d$	4d' [1½]°	1	3379700
$3d$ $^{1}P_{1}$	11	$3d \ [1^{1/2}_{2}]^{\circ}$	1	2794900		 K xı (²Pîنه)	Limit		4064300
3d ³ D ₁	$2s^2 2p^5 ({}^2\mathrm{P}^{\circ}_{\!$	$3d' \ [1^{1/2}_{2}]^{\circ}$	1	2832300		K x1 (2P ₃)	Limit		4087775
4s ³ P ₁	$2s^2 \ 2p^5(^2\mathrm{Pi_{1/2}})4s$	4s [1½]°	2 1	3205100					
4s ¹ P ₁	2s ² 2p ⁵ (² P ^o ₃₂)4s	4s' [½]°	0 1	3232400					

April 1947.

K x Observed Levels*

Config. 1s²+	Observed Terms									
2s ² 2p ⁶	2p ⁶ ¹ S									
	ns $(n \ge 3)$	$np(n \ge 3)$	$nd \ (n \ge 3)$							
2s ² 2p ⁵ (² P ^o)nx	$\begin{cases} 3, 4s {}^{3}P^{\circ} \\ 3, 4s {}^{1}P^{\circ} \end{cases}$		3d ³ P° 3, 4d ³ D° 3, 4d ¹ P°							
2s 2p ⁶ (2S)nx	{	$\begin{array}{c} 3p \ ^3\mathrm{P}^{\mathrm{o}} \ 3p \ ^1\mathrm{P}^{\mathrm{o}} \end{array}$								
jl-Coupling Notation										
	Observed Pairs									
5-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	ns $(n \ge 3)$		nd $(n \ge 3)$							
$2s^2 \ 2p^5(^2\mathrm{Pi}_{145})$ nx	3, 4s [1½]°		3d [½]° 3, 4d [1½]°							
$2s^2 \ 2p^5(^2\mathrm{P}^{\circ}_{32})$ nx'	3, 4s'[½]°		3, 4d'[1½]°							

*For predicted levels in the spectra of the Ne I isoelectronic sequence, see Introduction.
(F I sequence; 9 electrons)

Ground state $1s^2 2s^2 2p^5 {}^2P^{\circ}_{1\frac{1}{2}}$

 $2p^{5} {}^{2}P_{1_{2}}^{\circ}$ cm⁻¹

Edlén and Tyrén have classified 8 lines, which lie between 32 A and 37 A. They give no term array because the analysis is so incomplete. In the 1942 reference Edlén states that the interval of the ground term is known from his unpublished material to be 23475 cm⁻¹. From these data, preliminary term values have been calculated and listed below.

REFERENCES

B. Edlén and F. Tyrén, Zeit. Phys. 101, 206 (1936). (C L)
B. Edlén, Zeit. Astroph. 22, 59 (1942). (T)

Edlén	Config.	Desig.	J	Level	Inter- val
$2p \ {}^{2}P_{2} \ {}^{2}P_{1}$	$2s^2 \ 2p^5$	2p ⁵ ² P°	$1\frac{1}{2}$	0 23475	-23475
3s ⁴ P ₃ ⁴ P ₂	2s ² 2p ⁴ (³ P)3s	3s 4P	$2^{1/2}_{1/2} \ 1^{1/2}_{1/2} \ 1^{1/2}_{1/2}$	2640600? 2652800?	-12200
38 ² P ₂	2s ² 2p ⁴ (³ P)3s	3s 2P	$1\frac{1}{2}$ $\frac{1}{2}$	2671300?	
3s' ² D ₃ ² D ₂	2s ² 2p ⁴ (¹ D)3s	3s' 2D	$2^{1\!\!/_2}_{1^1\!\!/_2}$	2727600? 2728300?	-700
3d	$2s^2 2p^4(^{3}P) 3d$	3d X		3047900?	
$\overline{3d}$	2s ² 2p ⁴ (¹ D)3d	3d' X		3107500?	

K XI

March 1947.

I. P. volts

Ca I

20 electrons

Ground state 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² ¹S₀

4s² ¹S₀ 49304.80 cm⁻¹

I. P. 6.111 volts

Z = 20

The arc spectrum of calcium occupies an important place in the development of spectroscopic theory. In addition to the "regular" series, the terms involving two excited electrons were first discussed in the classical paper by Russell and Saunders in 1925.

Although the spectrum is well known, further observations in the infrared are urgently needed; and a monograph containing a homogeneous list of lines and term values should be prepared as soon as the analysis can be extended with the aid of these data.

The regular series terms, i. e., those from the ²S limit in Ca II, are from Fowler and Paschen-Götze. The rest are from Russell and Saunders and from unpublished analysis by Russell, who has generously furnished all of his data on this spectrum. The 6f ³F^o term has been resolved by Grafenberger. Three-place entries in the table are quoted from Wagman, who derived them from observations made with the interferometer. The writer has prepared a complete multiplet array and calculated all other values from the best available wavelength material. Colons indicate that the term values should be confirmed by further observations.

The singlet and triplet terms are connected by observed intersystem combinations.

REFERENCES

F. Paschen und R. Götze, Seriengesetze der Linienspektren, p. 72 (Julius Springer, Berlin, 1922). (I P) (T) (C L)

A. Fowler, Report on Series in Line Spectra, p. 121 (Fleetway Press, London, 1922). (I P) (T) (C L)

H. N. Russell and F. A. Saunders, Astroph. J. 61, 38 (1925). (I P) (T) (C L)

E. Back, Zeit. Phys. 33, 579 (1925). (Z E)

H. N. Russell, unpublished material (1927?). (T) (C L)

A. G. Shenstone and H. N. Russell, Phys. Rev. 39, 417 (1932). (T)

W. F. Meggers, Bur. Std. J. Research 10, 676, RP558 (1933). (I P) (T) (C L)

- N. E. Wagman, Univ. Pittsburgh Bul. 34, 1 (1937). (T) (C L)
- H. Grafenberger, Ann. der Phys. [5] 30, 267 (1937). (C L)

Ca 1

Ca I

Config.	Desig.	J	Level	Interval	Obs. g	Config.	Desig.	J	Level	Interval	Obs. g
4s ²	4s ² 1S	0	0. 000			$4s(^2\mathrm{S})4f$	4f 1F°	3	42343. 554		
$4s(^2\mathrm{S})4p$	4 <i>p</i> ³ P°	$egin{array}{c} 0 \\ 1 \\ 2 \end{array}$	15157. 910 15210. 067 15315. 948	52. 157 105. 881		4s(2S)6p	6p 3P°	$egin{array}{c} 0 \\ 1 \\ 2 \end{array}$	42514.79: 42518.72 42526.528	3. 93 7. 81	
$4s(^2\mathrm{S})3d$	3d 3D	$\begin{array}{c}1\\2\\3\end{array}$	20335. 344 20349. 247 20370. 987	13. 903 21. 740	$\begin{array}{c} 0. \ 501 \\ 1. \ 162 \\ 1. \ 329 \end{array}$	$4s(^2\mathrm{S})5d$	5d 3D	$\begin{array}{c}1\\2\\3\end{array}$	$\begin{array}{r} 42743.\ 058\\ 42744.\ 776\\ 42747.\ 443\end{array}$	1. 718 2. 667	
$4s(^2S)3d$	3d 1D	2	21849. 610		1. 007	4s(2S)5d	5d 1D	2	42919. 074		
$4s(^2S)4p$	4p ¹P°	1	23652. 324			$4s(^2S)6p$	6 <i>p</i> ¹ P°	1	43933. 341		
4s(2S)5s	5s 3S	1	31539. 510			4s(2S)7s	7s 38	1	43980. 798		
4s(2S)5s	5s 1S	0	33317. 25			4s(2S)7s	7s 1S	0	44276. 638		
$3d(^{2}\mathrm{D})4p$	4 <i>p′</i> 3F°	$\begin{array}{c}2\\3\\4\end{array}$	35730. 450 35818. 712 35896. 890	88. 262 78. 178	$\begin{array}{c} 0.\ 754 \\ 1.\ 076 \\ 1.\ 245 \end{array}$	4s(2S)5f	5 <i>f</i> ³F°	$\begin{array}{c}2\\3\\4\end{array}$	44762.620 44762.822 44763.101	0. 202 0. 279	
$3d(^{2}\mathrm{D})4p$	4 <i>p′</i> ¹ D°	2	35835.400		0. 893	$4s(^2S)5f$	5f ¹ F°	3	44804. 786		
$4s(^2\mathrm{S})5p$	5 <i>p</i> 3P°	$egin{array}{c} 0 \\ 1 \\ 2 \end{array}$	36547. 671 36554. 722 36575. 132	7. 051 20. 410		4s(2S)7p	7p ³₽°	$egin{array}{c} 0 \\ 1 \\ 2 \end{array}$	44957.8 44961.6	3. 8	
$3d(^{2}\mathrm{D})4p$	4 <i>p′</i> ¹ P°	1	36731.622			$4s(^2S)6d$	6d 1D	2	44989. 882		
$4s(^2S)4d$	4 <i>d</i> 1D	2	37298. 312			4s(2S)6d	6d 3D	1 2	45049.066 45050.406	1. 340	
$4s(^2S)4d$	4d 3D	$\begin{vmatrix} 1\\2\\3 \end{vmatrix}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3. 682 5. 578		$4s(^2\mathrm{S})7p$	7 <i>p</i> ¹ P°	3	45052.359 45425.283	1. 555	
$3d(^{2}\mathrm{D})4p$	4p' 3D°	1	38192. 373	96 791		4s(2S)8s	8s 3S	1	45738. 732		
		$\begin{vmatrix} 2\\ 3 \end{vmatrix}$	38219.094 38259.102	40. 008		4s(2S)8s	8s 1S	0	45887. 31		
4 <i>p</i> ²	$4p^2$ $^3\mathrm{P}$	$egin{array}{c} 0 \\ 1 \\ 2 \end{array}$	38417.585 38464.844 38551.588	47. 259 86. 744		$4s(^{2}S)6f$	6f 3F°	2 3 4	46164. 66 46164. 80 46164. 99	0. 14 0. 19	
$3d(^{2}\mathrm{D})4p$	4 <i>p′</i> ³P°	0	39333. 371	1 945		$4s(^2S)6f$	6f 1F°	3	46182.23		
		$\begin{vmatrix} 1\\2 \end{vmatrix}$	39335. 316 39340. 078	4. 762		$4s(^2\mathrm{S})7d$	7d 3D	$\begin{array}{c}1\\2\end{array}$	46302.18 46303.92	1.74	
4s(2S)6s	6s 3S	1	40474. 275					3	46306. 170	2.20	
$3d(^{2}\mathrm{D})4p$	4p' ¹ F°	3	40537.860			$4s(^2\mathrm{S})7d$	7 <i>d</i> 1D	2	46309.9		
$4p^{2}$	$4p^{2}$ 1S	0	40690. 436			$4s(^2S)8p$	8 <i>p</i> ¹ P°	1	46479.95		
$4p^2$	$4p^2$ ¹ D	2	40719.867			4s(2S)9s	9s 3S	1	46748. 21		
$4s(^2S)5p$	5 <i>p</i> ¹ P°	1	41678.997	-		4s(2S)9s	9s 1S	0	46835. 2		
4s(2S)6s	6s 1S	0	41786. 312			4s(2S)7f	7f 3F°	2, 3, 4	47006.11		
$4s(^2\mathrm{S})4f$	4f ³F°	$\begin{vmatrix} 2\\ 3\\ 4 \end{vmatrix}$	42170. 183 42170. 531 42171. 006	0. 348 0. 475		4s(2S)7f	7f ¹ F°	3	47015. 137		

Ca I—Continued

Ca I—Continued

Config.	Desig.	J	Level	Interval	Obs. g	Config.	Desig.	J	Level	Interval	Obs. g
$4s(^2S)8d$	8d 3D	1 2 3	47036. 32 47040. 00 47045. 384	3. 68 5. 38		4s(2S)12f	12f 3F°	2, 3, 4	48531.4 48570.7		
$4s(^{2}S)9n$	9 <i>n</i> 1P°	1	47184.26			$4s(^{2}S)13f$	13f 3F°	2, 3, 4	48617 1		
4s(2S)10s	10s 3S	1	47382 10			$4s(^{2}S)14d$	14 <i>d</i> 3D	12,0,1	48676 6		
$4s(^{2}S)10s$	108 ¹ S	0	47436. 9			$4s(^{2}S)15d$	15d ³ D	1, 2, 3	48762 4		
$3d(^{2}D)5s$	5s' 3D	1	47456.1			$4s(^{2}S)16d$	16d 3D	1 2 3	48830 7		
		$\frac{1}{2}$	47465. 9 47475. 7	9.8 9.8		Ca II $({}^{2}S_{16})$	Limit		49304.80		
4s(2S)8f	8f ³F°	2, 3, 4	47550. 11			$3d(^{2}\mathrm{D})5p$	$5p'$ ${}^3\mathrm{F}^{\circ}$	2	51235. 2:	24.2	
$4s(^{2}S)8f$	8f 1F°	3	47554.97					$\frac{3}{4}$	51259.5: 51318.7:	59. 2	
$4s(^2\mathrm{S})10p$	10p 1P°	1	47660. 8			$3d(^{2}\mathrm{D})4d$	4 <i>d′</i> ³D	1	51351.1	18.5	
$4s(^2S)9d$	9d 3D	1 2	47753.3	4. 2				$\frac{2}{3}$	51369.6 51395.5	25. 9	
		3	47765. 5	8.0		$3d(^{2}\mathrm{D})4d$	4d' 3G	$\frac{3}{4}$	51553.6: 51579.0:	25. 4	
4s(2S)11s	11s ³ S	1	47805.85					5	51611. 5:	31. 5	
4s(2S)11s	118 ¹ S	0	47843.1			$3d(^{2}\mathrm{D})4d$	$4d'$ $^3\mathrm{S}$	1	51571. 4		
$4s(^2S)9f$	9f 3F°	2, 3, 4	47922. 2			$3d(^{2}\mathrm{D})5p$	$5p'$ $^{3}D^{\circ}$	$\frac{1}{2}$	51710.9 51734.0	23. 1	
$4s(^2S)9f$	9f 1F°	3	47924. 9					3	51766.5	32. 5	
$4s(^{2}S)11p$	11 <i>p</i> ¹ P°	1	47998.6			$3d(^{2}\mathrm{D})4d$	$4d'$ ${}^3\mathrm{F}$	$\frac{2}{3}$	53214.6 53247.9	33. 3	
$4s(^{2}S)10d$	10d ³ D	$\begin{array}{c}1\\2\end{array}$	48032. 0 48033. 5	1.5				ů 4	53260. 4	12. 5	
		3	48036. 2	2. 1		$3d(^{2}\mathrm{D})4d$	$4d'$ $^{3}\mathrm{P}$	$\begin{array}{c} 0 \\ 1 \end{array}$	54282. 2 54288. 0	5.8	
$4s(^{2}S)12s$	12s 3S	1	48103.89					2	54304. 2	10. 2	
$4s(^{2}S)12s$	12s 1S	0	48128. 2			$3d(^{2}\mathrm{D})5d$	$5d'$ $^{3}\mathrm{D}$	$\frac{1}{2}$	56444.8 56469.1	24.3	
$4s(^{2}S)10f$	10f 3F°	2, 3, 4	48186.61					3	56494. 7	20. 0	
$4s(^{2}S)10f$	10f ¹ F°	3	48188. 3			$3d(^{2}\mathrm{D})5d$	$5d'$ $^{3}\mathrm{G}$	$\frac{3}{4}$	56526. 3: 56546. 6:	20. 3	
$4s(^2\mathrm{S})12p$	12p 1P°	1	48222.9					5	56578. 2:	51. 0	
4s(2S)11d	11d 3D	1, 2, 3	48259. 2			$3d(^{2}\mathrm{D})5d$	$5d'$ 3S	1	56558.8		
4s(2S)13s	13s 3S	1	48320. 4			$3d(^{2}\mathrm{D})5d$	$5d'$ ${}^3\mathrm{F}$	$\frac{2}{3}$	56900. 7: 56924. 1:	23.4 55.4	
4s(2S)11f	11f 3F.0	2, 3, 4	48382.90					4	56979. 5:	0011	
$4s(^{2}S)11f$	11f 1F°	3	48385.5			$3d(^{2}\mathrm{D})5d$	5d′ ³P	$\begin{array}{c} 0\\ 1\\ \end{array}$	57601. 0 57617. 8	16.8 20.4	
4s(48)13p	13p 1P		48416.0			0.1(0) 0.1	<i>6 11 3</i> D	2	57638. 2		
4s(45)12d	12a °D	1, 2, 3	48434. 8			$3a(^{2}\mathrm{D})6d$	oar P	1	59366. 8:	25. 2	
48(40)148	148 °S		48484. 7					2	59392. 0:		
5 <i>a</i> *	3a² ∘P	1 2	48524. 130 48537. 673 48563. 630	$\begin{array}{c} 13.\ 543\\ 25.\ 957\end{array}$	1						
								8			

May 1948.

Config. 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ +	Observed Terms		
4s ²	4s ² ¹ S		
$3d^2$	$3d^2$ ³ P		
4 <i>p</i> ²	$\begin{cases} 4p^{2} {}^{3}P \\ 4p^{2} {}^{1}S \end{cases} \qquad 4p^{2} {}^{1}D \end{cases}$		
	$ns \ (n \ge 5)$	$np \ (n \ge 4)$	
4s(2S)nx	$\begin{cases} 5-14s & {}^{3}S \\ 5-12s & {}^{1}S \end{cases}$	4- 7p ³ P° 4-13p ¹ P°	
$3d(^{2}\mathrm{D})nx'$	$\left\{ 5s' \ ^{3}\mathrm{D} \right\}$	$\begin{array}{ccc} 4p' & 3\mathbf{P}^{\circ} \\ 4p' & \mathbf{P}^{\circ} \end{array} \begin{array}{c} 4, & 5p' & 3\mathbf{D}^{\circ} \\ 4p' & 1\mathbf{P}^{\circ} \end{array}$	4, 5p' ^s F° 4p' ¹ F°
	$nd (n \ge 3)$	$nf \ (n \ge 4)$	
$4s(^2\mathrm{S})nx$	$\begin{cases} 3-16d & {}^{3}\mathrm{D} \\ 3-& 7d & {}^{1}\mathrm{D} \end{cases}$		4-13f ³ F° 4-11f ¹ F°
$3d(^{2}\mathrm{D})nx'$	4, 5d' ³ S 4-6d' ³ P 4, 5d' ³ D 4, 5d' ³ F 4, 5d' ³ G		

*For predicted terms in the spectra of the Ca I isoelectronic sequence, see Introduction.

Ca II

(K I sequence; 19 electrons)

Ground state 1s² 2s² 2p⁶ 3s² 3p⁶ 4s ²S₁₆

4s ²S_{1/2} 95748.0 cm⁻¹

The analysis is chiefly from the paper by Saunders and Russell, who extended the earlier work on this spectrum. Their estimated value of 5g ²G is entered in brackets. The terms nd ²D (n=11 to 16) and nf ²F° (n=8 to 10) have been added from an unpublished manuscript by Shenstone who made additional observations in the region between 2897 A and 3758 A. Shenstone has also generously furnished his recent unpublished observations of the pair of lines at 8927.34 A and 8912.10 A, having intensities 20 and 15, respectively, and classified as 4d ²D-4f ²F°. These lines have been used to calculate the value of 4f ²F° listed in the table.

The three-place entries are quoted from Wagman's paper. They are derived from his observations made with the interferometer. The writer has made slight adjustments in the rest of the term values in order to fit the various sets of observations together.

A monograph on this spectrum is needed.

REFERENCES

- F. A. Saunders and H. N. Russell, Astroph. J. 62, 1 (1925). (I P) (T) (C L)
- H. E. White, Introduction to Atomic Spectra, p. 97 (McGraw-Hill Book Co., Inc., New York, N. Y., 1934). (E D)
- N. E. Wagman, Univ. Pittsburgh Bul. 34, 1 (1937). (T) (C L)

A. G. Shenstone, unpublished material (1930, 1946). (T) (C L)

I. P. 11.87 volts

Z = 20

91	6
49	εU

Са п

Са п

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
3p ⁶ (¹ S)4s	43 ² S	1/2	0. 00		3p ⁶ (¹ S)7g	7g 2G	$\begin{cases} 3\frac{1}{2} \\ 4\frac{1}{6} \end{cases}$	86780. 9	
$3p^{\mathfrak{6}}({}^1\!\mathrm{S})3d$	3d 2D	$1\frac{1}{2}$ $2\frac{1}{2}$	13650. 212 13710. 901	60. 689	$3p^{6}({}^{1}\mathrm{S})8d$	$8d \ ^{2}D$	$1^{1/2}$	87674. 0	1. 7
3p ⁶ (1S)4p	$4p \ ^2P^{\circ}$	$1/2 \\ 1/2 \\ 1/2$	25191. 541 25414. 427	222. 886	3p ⁶ (1S)8f	8f 2F°	$\begin{cases} 2^{1/2} \\ 2^{1/2} \\ 2^{1/2} \end{cases}$	} 88847.6	
3p ⁶ (1S)5s	58 2S	1⁄2	52166. 982		-1 (-) -0	-2	$(3\frac{1}{2})$)	
$3p^6(^1\mathrm{S})4d$	4 <i>d</i> 2D	$1^{1\prime_2}_{2\prime_2}$	56839. 309 56858. 511	19. 202	3p ⁶ (¹ S)8g	8g 2G	$\left\{\begin{array}{c} 3^{72} \\ 4^{1/2} \\ \end{array}\right.$	} 88883. 8	
$3p^{\mathfrak{6}}({}^{1}\!\mathrm{S})5p$	5 <i>p</i> 2P°	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	60535.0 60613.2	78. 2	$3p^{\mathfrak{g}(1S)}9d$	9d 2D	$1\frac{1}{2}$ $2\frac{1}{2}$	89489. 8 89490. 8	1. 0
$3p^{\mathfrak{g}(1\mathrm{S})}4f$	4f 2F°	$\begin{cases} 2\frac{1}{2} \\ 3\frac{1}{6} \end{cases}$	68056.96		3p ⁶ (¹ S)9f	9f 2F°	$\left\{ egin{array}{c} 2^{1\!\!\!/_2} \ 3^{1\!\!\!/_2} \ 3^{1\!\!\!/_2} \end{array} ight.$	} 90300.0	
3p ⁶ (¹ S)6s	6s 2S	1/2	7 0677. 61		3p ⁶ (¹ S)9g	9g 2G	$\left\{\begin{array}{c} 3^{1\!\!/_2} \\ 4^{1\!\!/_2} \end{array}\right.$	} 90326.4	
$3p^{\mathfrak{s}(1\mathrm{S})}5d$	5 <i>d</i> 2D	$1\frac{1}{2}$ $2\frac{1}{2}$	72722. 11 72730. 77	8. 66	3p ⁶ (¹ S)10d	10 <i>d</i> 2D	$1\frac{1}{2}{2\frac{1}{2}}$	90755. 3 90756. 1	0. 8
3p ⁶ (¹ S)6p	6 <i>p</i> ²P°	$1/2 \\ 1/2 \\ 1/2$	74485. 8 74521. 7	35. 9	$3p^{6}({}^{1}\!\mathrm{S})10f$	10f 2F°	$\left\{ egin{array}{c} 2^{1\!\!\!/_2} \ 3^{1\!\!\!/_2} \ 3^{1\!\!\!/_2} \end{array} ight.$	} 91338.0	
$3p^{6}({}^{1}S)5f$	5f ² F ^o	$\left\{ egin{array}{c} 2^{1\!\!\!/_2} \ 3^{1\!\!\!/_2} \ 3^{1\!\!\!/_2} \end{array} ight.$	} 78027.8		$3p^{6}(^{1}\mathrm{S})11d$	11 <i>d</i> 2D	$\left\{ egin{array}{c} 1^{1\!\!\!\!/_2} \\ 2^{1\!\!\!\!/_2} \end{array} ight.$	} 91674. 0	
$3p^{6}({}^{1}\mathrm{S})5g$	5g 2G	$\left\{ egin{array}{c} 3^{1\!\!\!/ 2} \ 4^{1\!\!\!/ 2} \end{array} ight.$	[78163]		$3p^{6}({}^{1}\!\mathrm{S})12d$	12d 2D	$\left\{ egin{array}{c} 1^{1\!\!\!\!/_2} \\ 2^{1\!\!\!\!/_2} \end{array} ight.$	} 92360. 9	
3p ⁶ (1S)7s	78 2S	1/2	79449. 9		3p ⁶ (¹ S)13d	13d 2D	$\begin{cases} 1\frac{1}{2} \\ 2\frac{1}{2} \end{cases}$	} 92885.0	
3p ⁶ (¹ S)6d	6d 2D	$egin{array}{c} 1^{1\!\!\!/_2} \\ 2^{1\!\!\!/_2} \end{array}$	80523. 47 80528. 06	4. 59	$3p^{6}({}^{1}\!\mathrm{S})14d$	14d 2D	$\begin{cases} 1\frac{1}{2} \\ 2\frac{1}{2} \end{cases}$) } 93299.6	
$3p^{6}({}^{1}\!\mathrm{S})6f$	6f 2F°	$\left\{ egin{array}{c} 2^{1\!\!\!/_2} \ 3^{1\!\!\!/_2} \ 3^{1\!\!\!/_2} \end{array} ight.$	} 83458.4		$3p^{6}({}^{1}\mathrm{S})15d$	15d 2D	$\left\{ \begin{array}{c} 1^{1}_{2} \\ 2^{1}_{2} \end{array} \right\}$) } 93628. 8	
3p ⁶ (¹ S)6g	6g 2G	$\left\{ egin{array}{c} 3\frac{1}{2} \ 4\frac{1}{2} \end{array} ight.$	} 83540. 0		$3n^{6}(1S) 16d$	16 <i>d</i> 2D	$\int 1\frac{1}{2}$	93896 4	
3p ⁶ (1S)8s	8s 2S	1/2	84302. 6		<i>Sp</i> (S)100	100 12	$2\frac{1}{2}$	5 00000. 1	
3p ⁶ (1S)7d	7d 2D	$1\frac{1}{2}$ $2\frac{1}{2}$	84935. 4 84938. 3	2. 9	Ca III (¹ S ₀)	Limit		95748.0	
$3p^{6}(^{1}\mathrm{S})7f$	7f 2F°	$\left\{\begin{array}{c} 2\frac{1}{2} \\ 3\frac{1}{2} \end{array}\right.$	} 86727.5						

May 1948.

Ca III

Ground state 1s² 2s² 2p⁶ 3s² 3p⁶ ¹S₀

3p⁶ ¹S₀ 413127 cm⁻¹

This spectrum is incompletely analyzed. The present list has been compiled from the paper by Bowen, who has classified 137 lines in the region between 403 A and 4081 A.

The Paschen notation as given by Bowen is entered in column one of the table, under the heading "A I". Bowen remarks, however, that these assignments are in many cases doubtful for levels having the 3*d* configuration. The writer has, nevertheless, adopted them tentatively in order to introduce the *jl*-coupling notation in the general form suggested by Racah, as in the case of all spectra like AI. The pairs $nd[3\frac{1}{2}]^{\circ}$ and $nd[1\frac{1}{2}]^{\circ}$ are partially inverted as compared with Ne I.

The LS-designations ns ${}^{3}P_{210}^{\circ} {}^{1}P_{1}^{\circ}$ can probably be safely assigned to the levels ns_{5} , ns_{4} , ns_{3} , ns_{2} , respectively.

REFERENCE

I. S. Bowen, Phys. Rev. 31, 499 (1928). (I P) (T) (C L)

Ca	ш
----	---

Ca III

Aı	Bowen	Config.	Desig.	Ĵ	Level	Aı	Bowen	Config.	Desig.	J	Level
1 <i>p</i> ₀	3p	3p ⁶	3p ⁶ ¹ S	0	0. 0	$2p_5$	$4p_{5}$	$3p^5(^2\mathrm{Pi_{15}})4p$	4p [½]	0	282072
$3d_5$	3D1	$3p^5(^2\mathrm{Pi}_{33})3d$	3 d [½]°	0 1	203845.1	$2p_4 \ 2p_3$	$\begin{array}{c} 4p_4 \\ 4p_3 \end{array}$	$3p^5(^2\mathrm{P}^{\circ}_{\!$	$4p' [1\frac{1}{2}]$	$\begin{array}{c}1\\2\end{array}$	281136. 3 281878. 8
$3d_4$	$3D_3$	"	3d [3½]°	$\frac{4}{3}$	213378. 3	$2p_2$	4p2	"	$4p' [\frac{1}{2}]$	1 0	282568.4
$\begin{array}{c} 3d_3 \ 3d_2 \end{array}$	$\begin{array}{c} 3\mathrm{D}_2\\ 3\mathrm{D}_5 \end{array}$	"	$3d [1\frac{1}{2}]^{\circ}$	2 1	204835.4 224552.4	$4d_5$	4D1	$3p^{5}(^{2}\mathrm{P_{155}^{\circ}})4d$	4d [½]°	$\begin{array}{c} 0 \\ 1 \end{array}$	<i>322998. 9</i>
$3d_1^{\prime\prime}$	3D₄	"	$3d \ [2\frac{1}{2}]^{\circ}$	2 3	214332. 3	$4d_4$	$4D_3$	"	4d [3½]°	$\frac{4}{3}$	326182
$3s_1''' 3s_1'''$	$3D_6$ $3D_8$	$3p^{5}(^{2}\mathrm{P}_{5}^{\circ})3d$	3 <i>d′</i> [2½]°	2 3	225823. 2 228411. 6	$4d_3$	4D ₂	"	$4d \ [1\frac{1}{2}]^{\circ}$	$\begin{array}{c} 2\\ 1\end{array}$	323650.6
$rac{3s_1''}{3s_1'}$	3D7 3D9	"	3d' [1½]°	$2 \\ 1$	227387. 8 232831. 4	$4d_{1}^{\prime \prime}$	4D4	"	$4d \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	2 3	328086.5
185 184	485 484	3p ⁵ (² P ₁ [*])4s	4s [1½]°	2 1	242543.5 243927.0	4s'''	$4D_5$	$3p^5(^2\mathrm{P}^{\circ}_{\!\!\!\!\!\!\!\mathcal{H}})4d$	4 <i>d'</i> [2½]°	2 3	<i>335285.9</i>
$\frac{1s_3}{1s_2}$	$\begin{array}{c} 4s_3\\ 4s_2 \end{array}$	$3p^{5}(^{2}\mathrm{P}_{5}^{\circ})4s$	4s' [½]°	0 1	245608.4 247693.4	285 284	585 584	3p ⁵ (² P ₁ [*])5s	$58 [1\frac{1}{2}]^{\circ}$	$\begin{array}{c} 2\\ 1\end{array}$	327917 328580.4
$2p_{10}$	4p ₁₀	$3p^{5}(^{2}\mathrm{P}^{\circ}_{1:5})4p$	4p [½]	1	272185.4	$2s_3 \\ 2s_2$	5s3 5s2	$3p^{5}(^{2}\mathrm{P}^{\circ}_{\mathscr{V}})5s$	5s' [½]°	0 1	331042. 7 331398. 6
${2p_9\over 2p_8}$	$4p_{9} \\ 4p_{8}$	"	$4p \ [2\frac{1}{2}]$	$\frac{3}{2}$	277018. 8 277377. 5			() (0D0)	T 2 21		419195
$2p_7 \\ 2p_6$	$4p_7 \\ 4p_6$	"	4p [1½]	$\frac{1}{2}$	278616. 7 279738. 2			Ca IV $({}^{2}P_{1}^{\circ})$ Ca IV $({}^{2}P_{3}^{\circ})$	Limit		413127 416261

May 1948.

Z = 20

I. P. 51.21 volts

Ca III OBSERVED LEVELS*

Config. $1s^2 2s^2 2p^6 3s^2 +$	Observe	ed Terms					
3p ⁶	3p ⁶ 1S						
	$ns \ (n \ge 4)$						
$3p^{5}(^{2}\mathrm{P}^{\circ})nx$	$\begin{cases} 4, 5s {}^{3}P^{\circ} \\ 4, 5s {}^{1}P^{\circ} \end{cases}$						
jl-Coupling Notation							
	Observed Levels						
	ns $(n \ge 4)$	$np (n \ge 4)$	$nd (n \ge 3)$				
$3p^{5}(^{2}\mathrm{P}^{\circ}_{1 sc{1}s})nx$	4, 5s [1½]°	$\begin{array}{c} 4p \ [\frac{1}{2}] \\ 4p \ [2\frac{1}{2}] \\ 4p \ [1\frac{1}{2}] \end{array}$	3, $4d \ [\frac{1}{2}]^{\circ}$ 3, $4d \ [3\frac{1}{2}]^{\circ}$ 3, $4d \ [1\frac{1}{2}]^{\circ}$ 3, $4d \ [2\frac{1}{2}]^{\circ}$				
$3p^{5}(^{2}\mathrm{P}_{\prime\prime}^{\circ})nx^{\prime}$	4, 5s'[½]°	$4p'[1\frac{1}{2}] \\ 4p'[\frac{1}{2}]$	$\begin{array}{c} 3, \ 4d' [2\frac{1}{2}]^{\circ} \\ \ 3d' [1\frac{1}{2}]^{\circ} \end{array}$				

*For predicted levels in the spectra of the AI isoelectronic sequence, see Introduction.

Ca IV

(Cli sequence; 17 electrons)

Ground state $1s^2 2s^2 2p^6 3s^2 3p^5 {}^{2}P^{\circ}_{1}$

 $3p^{5} {}^{2}\mathrm{P}^{\circ}_{1\frac{1}{2}} 542000 \mathrm{~cm^{-1}}$

Various investigators disagree about the interpretation of this spectrum. Tsien has published 34 classified lines in the region between 249 A and 669 A, all but one of which are due to combinations from the ground term. His terms are listed except for 4s ⁴P, 4s ²P, and 4s' ²D, which are from the paper by Kruger and Phillips. Further study of this spectrum is desirable to confirm the present analysis.

The limit (entered in brackets in the table) is from Edlén, who has estimated it by extrapolation along the isoelectronic sequence.

REFERENCES

I. S. Bowen, Phys. Rev. 31, 498 (1928). (C L)

B. Edlén, Zeit. Phys. 104, 410 (1947). (I P)

P. G. Kruger and L. W. Phillips, Phys. Rev. 51, 1087 (1937). (T) (C L)

W.-Z. Tsien, Chinese J. Phys. 3, No. 2, 118 (1939). (T) (C L)

 $\mathbf{248}$

Z = 20

I. P. 67 volts

	Ca IV			Ca IV					
Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval	
3p⁵ 2P°	$1\frac{1}{2}$	0 3115	-3115	3s ² 3p ⁴ (³ P)4s	4s ²₽	$1\frac{1}{2}$ $\frac{1}{2}$	$298175 \\ 300249$	-2074	
3p ⁶ ² S	1⁄2	152430		3s ² 3p ⁴ (¹ D)3d	$3d'~^2\mathrm{D}$	$\begin{array}{c c} 2^{1/_2} \\ 1^{1/_2} \end{array}$	303591		
3d 4F	$\frac{4\frac{1}{2}}{3\frac{1}{2}}$			3s² 3p4(1D)3d	$3d'$ $^2\mathrm{S}$	1/2	303844		
	$\frac{27_2}{1\frac{1}{2}}$	221944		3s ² 3p ⁴ (1D)4s	4s′ 2D	$1\frac{1}{2}$ $2\frac{1}{2}$	$314079 \\ 314373$	294	
3d 4D	$3\frac{1}{2}$ $2\frac{1}{2}$ $1\frac{1}{2}$ $1\frac{1}{2}$	$\begin{array}{r} 227427\\ 227827\\ 228691 \end{array}$	$-400 \\ -864$	3s ² 3p ⁴ (³ P)4p	4 <i>p</i> ²P°	$1\frac{1}{2}$ $\frac{1}{2}$	329277		
0.1 07	/2	220001		3s ² 3p ⁴ (1S)4s	4s'' 2S	1/2	337207		
$3d ^{2}D$	$1\frac{1}{2}{2\frac{1}{2}}{2\frac{1}{2}}$	228429 230113	1684	3s ² 3p ⁴ (1D)5s	5s′ 2D	$2\frac{1}{2}$	399755	-1194	
3d ² F	${3\frac{1}{2}}{2\frac{1}{2}}$	266840				1/2			
4s 4P	$2\frac{1}{2}$ $1\frac{1}{2}$ $\frac{1}{2}$	$\begin{array}{c} 291373 \\ 293011 \\ 294291 \end{array}$	-1638 - 1280	Ca v (3p ⁴ ³ P ₂)	Limit		[542000]		
	Desig. 3p ⁵ ² P ^o 3p ⁶ ² S 3d ⁴ F 3d ⁴ D 3d ² D 3d ² F 4s ⁴ P	Desig. J $3p^5$ 2P° $1\frac{1}{2}$ $3p^5$ 2P° $1\frac{1}{2}$ $3p^6$ 2S $\frac{1}{2}$ $3d$ 4F $4\frac{1}{2}$ $3d$ 4F $4\frac{1}{2}$ $3d$ 4F $4\frac{1}{2}$ $3d$ 4D $3\frac{1}{2}$ $3d$ 4D $3\frac{1}{2}$ $3d$ 4D $3\frac{1}{2}$ $3d$ 2D $1\frac{1}{2}$ $3d$ 2D $1\frac{1}{2}$ $3d$ 2F $3\frac{1}{2}$ $4s$ 4P $2\frac{1}{2}$	Desig. J Level $3p^5$ ² P° $\frac{112}{12}$ 0 3115 $3p^5$ ² P° $\frac{112}{12}$ 0 3115 $3p^6$ ² S $\frac{12}{12}$ 152430 $3d$ ⁴ F $\frac{412}{12}$ 214 $3d$ ⁴ F $\frac{412}{12}$ 221944 $3d$ ⁴ D $\frac{312}{12}$ 227427 112 227827 $\frac{12}{12}$ $3d$ ² D $\frac{112}{12}$ 228691 $3d$ ² D $\frac{112}{12}$ 228429 $3d$ ² F $\frac{312}{212}$ 266840 $4s$ ⁴ P $\frac{212}{212}$ 291373 $\frac{112}{12}$ 293011 $\frac{112}{294291}$	Desig. J Level Interval $3p^5 \ {}^{2}P^{\circ}$ $\frac{11}{2}$ 0 -3115 $3p^5 \ {}^{2}S$ $\frac{1}{2}$ 152430 -3115 $3d \ {}^{4}F$ $\frac{41}{2}$ 21944 -3115 $3d \ {}^{4}F$ $\frac{41}{2}$ 221944 -3115 $3d \ {}^{4}D$ $\frac{31}{2}$ 227427 -400 $\frac{11}{2}$ 227827 -400 -864 $3d \ {}^{4}D$ $\frac{31}{2}$ 228691 -864 $3d \ {}^{2}D$ $\frac{11}{2}$ 228429 1684 $3d \ {}^{2}F$ $\frac{31}{2}$ 2066840 -1638 $4s \ {}^{4}P$ $\frac{21}{2}$ 294291 -1638	Desig.JLevelIntervalConfig. $3p^5 \ ^2P^\circ$ $\frac{112}{12}$ 0 3115 -3115 $3s^2 \ ^2p^4(^3P) \ ^4s$ $3p^5 \ ^2S$ $\frac{12}{12}$ 3115 -3115 $3s^2 \ ^2p^4(^3P) \ ^4s$ $3d \ ^4F$ $\frac{412}{12}$ $3s^2 \ ^2p^4(^1D) \ ^3d$ $3s^2 \ ^2p^4(^1D) \ ^3d$ $3d \ ^4D$ $\frac{312}{212}$ 227427 -400 $3s^2 \ ^2p^4(^1D) \ ^4s$ $3d \ ^4D$ $\frac{312}{212}$ 227427 -400 $3s^2 \ ^2p^4(^3P) \ ^4p$ $3d \ ^4D$ $\frac{312}{212}$ 227827 -400 -864 $3d \ ^2D$ $\frac{112}{122}$ 228691 -864 $3s^2 \ ^2p^4(^3P) \ ^4p$ $3d \ ^2D$ $\frac{112}{212}$ 228429 1684 $3s^2 \ ^2p^4(^1D) \ ^5s$ $3d \ ^2F$ $\frac{312}{212}$ 291373 -1638 -1280 $4s \ ^4P$ $\frac{212}{212}$ 291373 -1638 -1280	Desig.JLevelIntervalConfig.Desig. $3p^5 2P^\circ$ $\frac{112}{12}$ 0 $\frac{72}{12}$ -3115 $3s^2 3p^4(^3P)4s$ $4s ^2P$ $3p^5 2S$ $\frac{112}{2}$ 0 3115 -3115 $3s^2 3p^4(^3P)4s$ $4s ^2P$ $3d ^4F$ $\frac{412}{12}$ $3s^2 3p^4(^1D)3d$ $3d' ^2D$ $3d ^4F$ $\frac{412}{12}$ $3s^2 3p^4(^1D)3d$ $3d' ^2S$ $3d ^4D$ $\frac{312}{212}$ 227427 -400 $3s^2 3p^4(^1D)4s$ $3d ^4D$ $\frac{312}{212}$ 227827 -400 $3s^2 3p^4(^3P)4p$ $4p ^2P^\circ$ $3d ^2D$ $\frac{112}{22}$ 228429 1684 $3s^2 3p^4(^1S)4s$ $4s'' ^2S$ $3d ^2F$ $\frac{312}{212}$ 20113 1684 $3s^2 3p^4(^1D)5s$ $5s' ^2D$ $3d ^2F$ $\frac{312}{212}$ 201373 -1638 $Ca v (3p^4 ^3P_2)$ $Limit$	Ca IVCa IVCa IVDesig.JLevelIntervalConfig.Desig.J $3p^5 2P^\circ$ $\frac{11}{12}$ 0 -3115 $3s^2 3p^4(^3P)4s$ $4s^{-2P}$ $\frac{11}{12}$ $3p^6 2S$ $\frac{12}{12}$ 3115 -3115 $3s^2 3p^4(^3P)4s$ $4s^{-2P}$ $\frac{11}{12}$ $3d^{-4}F$ $\frac{41}{22}$ 3125 $3s^2 3p^4(^1D)3d$ $3d' ^2D$ $2\frac{11}{22}$ $3d^{-4}F$ $\frac{41}{22}$ $3s^2 3p^4(^1D)3d$ $3d' ^2S$ $\frac{11}{22}$ $3d^{-4}F$ $\frac{31}{22}$ 221944 $3s^2 3p^4(^1D)4s$ $4s' ^2D$ $\frac{11}{22}$ $3d^{-4}D$ $\frac{31}{22}$ 227427 -400 $3s^2 3p^4(^3P)4p$ $4p^{-2P^\circ}$ $\frac{11}{22}$ $3d^{-4}D$ $\frac{31}{22}$ 225691 -864 $3s^2 3p^4(^1S)4s$ $4s'' ^2S$ $\frac{12}{22}$ $3d^{-2}D$ $\frac{11}{22}$ 228429 1684 $3s^2 3p^4(^1D)5s$ $5s' ^2D$ $2\frac{12}{2}$ $3d^{-2}F$ $\frac{31}{2}$ 2266840 -1638 $Ca v (3p^{+3}P_2)$ $Limit$ $$ $4s^{-4}P$ $\frac{21}{2}$ 293011 -1638 $Ca v (3p^{+3}P_2)$ $Limit$ $$	Desig.JLevelIntervalConfig.Desig.JLevel $3p^5 2P^\circ$ $\frac{11}{2}$ 0 -3115 $3s^2 3p^4(^3P)4s$ $4s ^{2P}$ $\frac{11}{2}$ 298175 $3p^5 2S$ $\frac{1}{2}$ 3115 -3115 $3s^2 3p^4(^3P)4s$ $4s ^{2P}$ $\frac{11}{2}$ 298175 $3d ^4F$ $\frac{41}{2}$ 3152430 $3s^2 3p^4(^1D)3d$ $3d' ^{2D}$ $2\frac{1}{2}$ $3d ^4F$ $\frac{41}{2}$ $3\frac{1}{2}$ $3s^2 3p^4(^1D)3d$ $3d' ^{2S}$ $\frac{1}{2}$ $3d ^4D$ $\frac{31}{2}$ 227427 -400 $3s^2 3p^4(^1D)4s$ $4s' ^{2D}$ $\frac{11}{2}$ $3d ^{4D}$ $\frac{31}{2}$ 227427 -400 $3s^2 3p^4(^3P)4p$ $4p ^{2P^\circ}$ $\frac{11}{2}$ $3d ^{4D}$ $\frac{31}{2}$ 228691 -864 $3s^2 3p^4(^3P)4p$ $4p ^{2P^\circ}$ $\frac{11}{2}$ $3d ^{2D}$ $\frac{11}{2}$ 228429 1684 $3s^2 3p^4(^1S)4s$ $4s'' ^{2S}$ $\frac{1}{2}$ $3d ^{2F}$ $\frac{31}{2}$ 228429 1684 $3s^2 3p^4(^1D)5s$ $5s' ^{2D}$ $2\frac{1}{2}$ $3d ^{2F}$ $\frac{31}{2}$ 293011 -1638 $Ca v (3p^4 ^{3P}_2)$ $Limit$ $$ $4s ^{4P}$ $\frac{21}{2}$ 293011 -1638 $Ca v (3p^4 ^{3P}_2)$ $Limit$ $$	

March 1948.

Ca IV OBSERVED TERMS*

Config. 1s ² 2s ² 2p ⁶		Observed Terms						
3s ² 3p ⁵		$3p^{5} \ ^{2}P^{\circ}$						
3s 3p ⁶	$3p^{6} 2S$							
		ns $(n \ge 4)$		$np (n \ge 4)$		nd $(n \ge 3)$		
3s ² 3p ⁴ (³ P)nx	{	4s 4P 4s 2P		4p 2P°		$\begin{array}{ccc} 3d & {}^4\mathrm{D} \\ 3d & {}^2\mathrm{D} \end{array}$	${3d}$ ${}^4{ m F}$ ${3d}$ ${}^2{ m F}$	
3s ² 3p ⁴ (¹ D)nx'			4, 5s' 2D		3d′ 2S	3 <i>d</i> ⁺ 2D		
3s² 3p4(1S)nx"	4s" 2S							

*For predicted terms in the spectra of the Cl 1 isoelectronic sequence, see Introduction.

Ca v

(S I sequence; 16 electrons)

Ground state $1s^2 2s^2 2p^6 3s^2 3p^4 {}^{3}P_2$

3p⁴ ³P₂ 680800 cm⁻¹

The terms are from the papers by Bowen and by Tsien with the revised value of $3p^5 P^{\circ}$ suggested by Edlén.

More than 70 lines have been classified in the interval 184 A to 656 A. Intersystem combinations connecting the singlet and triplet terms have been observed.

REFERENCES

M. Ram, Indian J. Phys. 8, 167 (1933). (T) (C L)
I. S. Bowen, Phys. Rev. 46, 791 (1934). (T) (C L)
B. Edlén, Zeit. Phys. 104, 192 (1937). (I P)
W.-Z. Tsien, Chinese J. Phys. 3, No. 2, 131 (1939). (T) (C L)
B. Edlén, Phys. Rev. 62, 434 (1942). (T) (C L)

Z = 20

I. P. 84.39 volts

9	5	$\mathbf{\Omega}$
4	υ	U

		Ca v					Ca v		
Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
3s ² 3p ⁴	3p⁴ ³P	2 1 0	0 2404 3276	$-2404 \\ -872$	3s ² 3p ³ (² D ^o)4s	4s′ 3D°	1 2 3	369590 369696 369959	106 263
3s ² 3p ⁴	$3p^{4}$ ¹ D	2	18831		3s ² 3p ³ (² D ^o)4s	4s′ 1D°	2	374728	
3s² 3p4 3s 3p5	3p4 1S 3p5 3P°	$\begin{array}{c} 0\\ 2\\ 1\\ 0\end{array}$	$\begin{array}{r} 43847 \\ 154664 \\ 156756 \\ 157807 \end{array}$	$-2092 \\ -1141$	$3s^2 3p^3(^2P^\circ)4s$	4s'' ³ P°	$\begin{array}{c} 0\\ 1\\ 2\\ 1\end{array}$	387039 387226 387652 802288	187 426
3s 3p⁵	$3p^{5}$ $^{1}\mathrm{P}^{\circ}$	1	197849		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	43 1 58 ³ S°	1	592285 501127	
3s ² 3p ³ (² D°)3d 3s ² 3p ³ (² P°)3d	3d′ ¹ F° 3d′′ ³ P°	3 2 1 0	254125 298204 299535	- 1331	$3s^2 \ 3p^3(^2D^\circ)5s$ $3s^2 \ 3p^3(^2D^\circ)5s$	5s' ³ D° 5s' ¹ D°	$egin{array}{c} 1 \\ 2 \\ 3 \\ 2 \end{array}$	524651 524770 525053 526523	119 283
3s ² 3p ³ (² P ^o)3d 3s ² 3p ³ (² P ^o)3d	3d'' ¹ P° 3d'' ³ D°	$ \begin{array}{c} 1 \\ 3 \\ 2 \\ 1 \end{array} $	302184 309834 310945	-1111	3s ² 3p ³ (² P ^o)5s 3s ² 3p ³ (² P ^o)5s	5s'' ³P° 5s'' 1P°	$egin{array}{c} 0 \ 1 \ 2 \ 1 \end{array}$	542249 542650 544143	401
3s ² 3p ³ (² P ^o)3d 3s ² 3p ³ (⁴ S ^o)4s	3d'' 1D° 4s 3S°	2 1	329230 350914		Ca vi (⁴ S ₁ %)	Limit		680800	

December 1947.

Ca v Observed Terms*

Config. 1s ² 2s ² 2p ⁶ +		Observed Terms						
3s ² 3p ⁴	$\begin{cases} 3p^{4-1}S \end{cases}$	3p4 3P	3p4 1D					
$3s \ 3p^5$	{	$rac{3p^5}{3p^5} rac{_3\mathrm{P}^\circ}{^1\mathrm{P}^\circ}$						
		ns $(n \ge 4)$			nd $(n \ge 3)$			
$3s^2 \ 3p^3({}^4\mathrm{S}^\circ)nx$	4, 58 3S°							
3s ² 3p ³ (² D ^o)nx'	{		4, 5s' ³ D° 4, 5s' ¹ D°			3d′ 1F°		
3s ² 3p ³ (² P°)nx''	{	4, 5s" ³ P° 4, 5s" ¹ P°		3d" ³ P° 3d" ¹ P°	3d" 3D° 3d" 1D°			

*For predicted terms in the spectra of the S I isoelectronic sequence, see Introduction.

-500

1354

1437

2106

2467

-67

Ca VI

(P I sequence; 15 electrons)

Ground state $1s^2 2s^2 2p^6 3s^2 3p^3 {}^{4}S^{\circ}_{1\frac{1}{2}}$

 $3p^{3} {}^{4}\mathrm{S}^{\circ}_{1\frac{1}{2}}$ cm^{-1}

The terms are from the paper by Tsien, who includes those given earlier by Bowen. Fifty-three lines have been classified in the interval between 228 A and 766 A. For the term $3p^{4}$ ²P the value given by Mrs. Beckman is quoted in place of that by Tsien.

The relative positions of the doublet and quartet systems of terms were estimated from the irregular doublet law. No intersystem combinations have been observed, as indicated by the uncertainty x in the table and the brackets around $3p^3 {}^{2}D_{1\frac{1}{2}}^{\circ}$.

REFERENCES

I. S. Bowen, Phys. Rev. 46, 791 (1934). (T) (C L)

A. Beckman, Bidrag till Kännedomen om Skandiums Spektrum i Yttersta Ultraviolett, Akademisk Avhandling p. 74 (Almqvist and Wiksells Boktryckeri -A.-B., Uppsala, 1937). (C L) W.-Z. Tsien, Chinese J. Phys. 3, No. 2, 136 (1939). (T) (C L)

Config. JInterval Config. JInterval Desig. Level Desig. Level 3p3 4S° $3s^2 3p^3$ 0 3 303651 + x $1\frac{1}{2}$ 3d' 2S $3s^2 3p^3$ $3p^3$ ²D^o $1\frac{1}{2}{2\frac{1}{2}}$ [27000] + x3s² 3p²(¹D)3d 320397 + x $\frac{1}{2}$ 417 27417 + x $2\frac{1}{2}{1\frac{1}{2}}$ $3s^2 3p^2(^1D)3d$ 3d' ²D 321084 + x3p³ ²P^o 44754 + x45310 + x $3s^2 3p^3$ $1\frac{1}{2}$ $1\frac{1}{2}$ 321584 + x556 332138 + x333492 + x $3s^2 3p^2(^1D)3d$ 3d' ²P $1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$ $1\frac{1}{2}$ $\frac{1}{2}$ 3p4 4P 1557923s 3p4 -1983157775-1058 $3s^2 3p^2(^1S) 3d$ $3d^{\prime\prime} ^{2}D$ ${1\frac{1}{2}}{2\frac{1}{2}}$ 158833360821 + x $2\frac{1}{2}$ $1\frac{1}{2}$ 175758 + x176157 + x (^{2}D) $\frac{1}{2}$ -399 $2\frac{1}{2}$ $1\frac{1}{2}$ 3s2 3p2(3P)3d $^{2}\mathrm{D}$ 3d383743 + x ${1^{1\prime_2}_{1\prime_2}\over 2^{1\prime_2}_{7\prime_2}}$ 3s 3p4 $3p^4$ ²D 193412 + x201 $1^{1/2}_{1^{1/2}} 2^{1/2}_{1^{1/2}}$ 193613 + x3s² 3p²(³P)4s 4s 4P 433849 4352863p4 2P $1\frac{1}{2}$ 223170 + x3s 3p4 4373923s² 3p²(³P)4s $^{2}\mathbf{P}$ $1\frac{1}{2}$ $1\frac{1}{2}$ 442423 + x4s444890 + x3s 3p4 $3p^4$ ^{2}S 1/2 231318 + x $3s^2 \ 3p^2(^{3}P)3d$ $2^{1/2}_{1/2}$ $3^{1/2}_{1/2}$ $2\frac{1}{2}$ $1\frac{1}{2}$ 3s² 3p²(1D)4s 457458 + x3d ^{2}F 291165 + x4s' ^{2}D 457525 + x $1\frac{1}{2}$ 3s2 3p2(3P)3d $3d ^{2}P$ 294798 + x-2452297250 + x

November 1947.

Ca VI

Ca VI

I. P.

Z = 20

volts

Ca VI OBSERVED TERMS*

$\begin{array}{c} \text{Config.}\\ 1s^2 \ 2s^2 \ 2p^6 + \end{array}$		Observed Terms						
3s² 3p ³	$\left\{ {{3{p^3}} {}^4{\rm{S}}^\circ } ight.$	3p ³ 2P°	$3p^3$ 2D°					
3s 3p ⁴	$\left\{_{3p^4\ ^2\mathrm{S}} ight.$	${3p^4}{}^4{ m P}\over{3p^4}{}^2{ m P}$	3p4 2D					
		ns $(n \ge 4)$			nd (1	$n \ge 3$)		
3s ² 3p ² (³ P)nx	{	4s 4P 4s 2P			3d/ 2P	3d ² D	3d 2F	
$3s^2 \ 3p^2(^1\mathrm{D})nx'$			4s' 2D	3d' 2S	3d' ² P	3d' ² D		
$3s^2 \ 3p^2({}^1\mathrm{S})nx''$						$3d^{\prime\prime} ^2\mathrm{D}$		

*For predicted terms in the spectra of the PI isoelectronic sequence, see Introduction.

Ca VII

(Si 1 sequence; 14 electrons)

Ground state $1s^2 2s^2 2p^6 3s^2 3p^2 {}^{3}P_0$

3p² ³P₀ 1030000 cm⁻¹

The terms are from the paper by Phillips, who includes those found by Whitford and by Robinson. In the interval between 202 A and 640 A, 33 lines have been classified in all. Intersystem combinations connecting the singlet and triplet terms have been observed.

The limit entered in brackets in the table has been estimated by Phillips.

REFERENCES

A. E. Whitford, Phys. Rev. 46, 793 (1934). (T) (C L)
H. A. Robinson, Phys. Rev. 52, 725 (1937). (T) (C L)
L. W. Phillips, Phys. Rev. 55, 708 (1939). (I P) (T) (C L)

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
3s ² 3p ²	3p² ³₽	$\begin{array}{c} 0 \\ 1 \\ 2 \end{array}$	0 1627 4070	$\begin{array}{c} 1627\\ 2443\end{array}$	$3s^2$ $3p(^2P^\circ)3d$	3d 3P°	$\begin{array}{c}2\\1\\0\end{array}$	286232 288169 289011	$-1937 \\ -842$
3s ² 3p ²	$3p^2$ ¹ D	2	21870		$3s^2 \ 3p(^2\mathrm{P^o}) 3d$	3d ³D°	$\frac{1}{2}$	302663 303151	488
3s 3p ³	3p3 3D°	$\begin{array}{c}1\\2\\3\end{array}$	160160 160228 160527	68 299	3s² 3p(²P°)4s	4s 3P°	3 0	303349 490012	906
3s 3p ³	$3p^3$ $^3\mathrm{P}^{\circ}$	2, 1, 0	185405				$\frac{1}{2}$	490918 494264	3346
3s 3p ³	$3p^3$ $^3\mathrm{S}^{\mathrm{o}}$	1	245232						
3s 3p ³	3p ³ 1P°	1	252493		Ca viii (²P⅔)	Limit		[1030000]	

October 1947.

Ca VII

Z = 20

I. P. 128 volts

Ca VII

(Al I sequence; 13 electrons)

Ground state $1s^2 2s^2 2p^6 3s^2 3p {}^2P_{y_2}^{\circ}$

 $3p \ ^{2}P_{\frac{1}{2}}^{\circ}$ 1189000 cm⁻¹

The analysis is by Whitford and by Phillips. Thirty-five lines have been classified in the interval between 114 A and 596 A. No intersystem combinations have been observed, but Phillips estimates that $3p^2 {}^{4}P_{1_{2}}$ is approximately 128000 cm⁻¹ above the ground state. This value is entered in brackets in the table. The uncertainty x may exceed ± 1000 cm⁻¹.

Using the method suggested by Edlén, the writer has extrapolated the value of the limit quoted above and entered in brackets in the table. The uncertainty in this estimate is large owing to the incompleteness of the isoelectronic sequence data.

REFERENCES

A. E. Whitford, Phys. Rev. 46, 793 (1934). (T) (C L)

L. W. Phillips, Phys. Rev. 55, 708 (1939). (T) (C L)

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
3s ² (1S)3p	3p 2P°	$\frac{\frac{1/2}{11/2}}{11/2}$	0 4305	4305	3s 3p(3P°)3d	3d 4D°	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	410725 + x 411283 + x	558 381
3 s 3p²	3p ² 4P	$1/2 \\ 11/2 \\ 21/2 \\ 21/2$	[128000]+x 129581 +x 131942 +x	$\begin{array}{c}1581\\2361\end{array}$	$3s^{2}(^{1}S)4s$	4s 2S	$2\frac{1}{2}$ $3\frac{1}{2}$ $\frac{1}{2}$	$ \begin{array}{r} 411664 + x \\ 411782 + x \\ 547308 \end{array} $	118
3s 3p ²	$3p^2 \ ^2\mathbf{D}$	$1\frac{1}{2}$ $2\frac{1}{2}$	171573 171828	255	3s 3p(3P°)4s	48 4P°	$\frac{1}{1}$	687650 + x 689017 + x	$1367 \\ 2709$
3s 3p ²	$3p^2 {}^2S$	1/2	216590		$3s^2(^1\mathrm{S})4d$	4 <i>d</i> ² D	$2\frac{1}{2}$	691726 + x 697981 200170	191
38 3p ²		$1\frac{12}{12}$	231012 233584	2572	$3s^2({}^1 m S)5d$	5 <i>d</i> ² D	$\frac{2\frac{1}{2}}{1\frac{1}{2}}$	698172 872860	210
3s ² (15)3d	3 <i>a</i> *D	$ \begin{array}{c} 1 \frac{1}{2} \\ 2 \frac{1}{2} \\ 1 \frac{1}{2} \end{array} $	282302 282574	212			2½	873070	
op		172	544170 + x		Ca IV (1S ₀)	Limit		[1189000]	

September 1947.

Ca VIII OBSERVED TERMS*

Config. $1s^2 2s^2 2p^6 +$		Observed Terms					
3s²(1S)3p		3 <i>p</i> 2P°					
3s 3p ²	$\left\{_{3p^2 \ ^2\mathrm{S}} ight.$	${3p^2}{3p^2} {}^4{ m P} \ {3p^2} {}^2{ m P}$	$3p^2$ ² D				
3p ³	3p ³ 4S°						
		ns $(n \ge 4)$		$nd (n \ge 3)$			
3s²(1S)nx	48 2S			3–5d 2D			
3s 3p(3P°)nx		4s 4P°		3d 4D°			

*For predicted terms in the spectra of the Al I isoelectronic sequence, see Introduction.

Z = 20

I. P. 147 volts

Ca VIII

Ground state $1s^2 2s^2 2p^6 3s^2 {}^1S_0$

3s² ¹S₀ 1519000 ± cm⁻¹

Twenty-eight lines have been classified in the range between 100 A and 828 A. The triplet terms are from Parker and Phillips; the singlets from Tsien. By extrapolation along the sequence, Mrs. Beckman has classified a line at 693.824 A as the intersystem combination $3s^2 {}^{1}S_0 - 3p {}^{3}P_1^{\circ}$. The listed values of the triplet terms have been adjusted to fit this assignment.

From isoelectronic sequence data, the writer has extrapolated the value of the limit, using the method suggested by Edlén. This value is entered in brackets in the table. Although this estimate may be in error by more than ± 1000 cm⁻¹, it gives an approximate value of the ionization potential.

REFERENCES

A. Beckman, Bidrag till Kännedomen om Skandiums Spektrum i Yttersta Ultraviolett, Akademisk Avhandling p. 55 (Almqvist and Wiksells Boktryckeri -A.-B., Uppsala, 1937). (C L) W.-Z. Tsien, Chinese J. Phys. 3, No. 2, 142 (1939). (T) (C L)

W. L. Parker and L. W. Phillips, Phys. Rev. 57, 140 (1940). (T) (C L)

		Ca IX			Ca IX				
Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
382	3s ² 1S	0	0		3s(2S)4s	4s 3S	1	760002	
3s(2S)3p	3p 3P°	$\begin{array}{c} 0\\ 1\\ 2 \end{array}$	142635 144130 147370	$\begin{array}{c} 1495\\ 3240\end{array}$	3s(2S)4d	4 <i>d</i> ³ D	$\begin{array}{c}1\\2\\3\end{array}$	916652 916780 916990	128 210
3s(2S)3p	3 <i>p</i> ¹ P°	1	214487.8		$3s(^2S)4f$	4 <i>f</i> ³F°	$\frac{2}{3}$	954003 954023	20
$3s(^2\mathrm{S})3d$	3d ¹ D	2	335195.0		-		4	954055	52
3p ²	3p ² ³ P	$egin{array}{c} 0 \ 1 \ 2 \end{array}$	$339420 \\ 341333 \\ 344935$	1913 3602	3s(2S)5d	5d 3D	$\begin{array}{c}1\\2\\3\end{array}$	$\begin{array}{c} 1137720 \\ 1137880 \end{array}$	160
3s(2S)3d	3 <i>d</i> 3D	$\begin{array}{c}1\\2\\3\end{array}$	$\begin{array}{c} 411525 \\ 411652 \\ 411858 \end{array}$	127 206	Ca x (2S _{1/2})	Limit		[1519000]	

March 1948.

Z = 20

I. P. $188 \pm$ volts

(Nai sequence; 11 electrons)

Ground state 1s² 2s² 2p⁶ 3s ²S₁₄

3s 2S1/2 1704660 cm⁻¹

Kruger and Phillips extended the earlier analysis by Edlén. Their absolute term values are derived from three members of the 2D-series. One term, 5s 2S has been added from the work of Tsien but adjusted to agree with those by Kruger and Phillips.

Twenty-two lines have been classified in the range from 93 A to 574 A.

REFERENCES

W.-Z. Tsien, Chinese J. Phys 3, No. 2, 145 (1939). (T) (C L)

P. G. Kruger and L. W. Phillips, Phys. Rev. 55, 352 (1939). (I P) (T) (C L)

		Cax			Ca X				
Config.	Desig.		Level	Interval	Config.	Desig.	J	Level	Interval
38	3s 2S	1/2	0		4 <i>f</i>	$4f$ $^2\mathrm{F}^{\mathrm{o}}$	$2^{1\!\!\!/_2}_{3^{1\!\!\!/_2}}$	1016113 1016208	95
3p	$3p ^{2}P^{\circ}$	$1\frac{1}{2}$ $1\frac{1}{2}$	174214 179295	5081	55	5s 2S	1⁄2	1170098	
3d	3 <i>d</i> 2D	$1^{1/2}_{1/2}\ 2^{1/2}_{1/2}$	$\begin{array}{r} 417113 \\ 417527 \end{array}$	414	5d	5 <i>d</i> 2D	$1^{1\!\!\!/_2}_{2^{1\!\!\!/_2}}$	$\begin{array}{c} 1248686 \\ 1248791 \end{array}$	105
48	4s 2S	$\frac{1}{2}$	832838		5f	5f ² F ^o	$2\frac{1}{2}$	1263323 1263383	60
4 <i>p</i>	4 <i>p</i> ² P°	$1\frac{1}{2}{1\frac{1}{2}}{1\frac{1}{2}}$	899305 901210	1905	6 <i>f</i>	6f 2F°	$2^{1/2}_{1/2}_{3^{1/2}_{1/2}}$	1398140	
4d	$4d ^{2}D$	$egin{array}{c} 1^{1\!\!\!/_2} \\ 2^{1\!\!\!/_2} \end{array}$	987259 987484	225					
					Ca x1 (1S ₀)	Limit		1704660	

June 1947.

Ca XI

(Ne I sequence; 10 electrons)

Ground state 1s² 2s² 2p⁶ ¹S₀

 $2p^{6}$ $^{1}S_{0}$ 4774300 cm⁻¹

Eleven lines between 25 A and 35 A have been classified by Edlén and Tyrén as combinations with the ground term. Their absolute term values have been extrapolated along the Ne i isoelectronic sequence.

By analogy with Ne I, the *jl*-coupling notation in the general form suggested by Racah is introduced.

The unit adopted by Edlén and Tyrén, 10^3 cm⁻¹, has here been changed to cm⁻¹.

REFERENCES

B. Edlén and F. Tyrén, Zeit. Phys. 101, 206 (1936). (I P) (T) (C L)

G. Racah, Phys. Rev 61, 537 (L) (1942).

Z = 20

I. P. 591.8 volts

Z = 20

255

I. P. 211.29 volts

	C	a XI	,		Ca XI				
Authors	Config.	Desig.	J	Level	Authors	Config.	Desig.	J	Level
2p ¹ S ₀	$2s^2 2p^6$	$2p^{6}$ 1S	0	0	3p′ ¹ P ₁	2s 2p ⁶ (² S)3p	3 <i>p</i> ¹ P°	1	3708900
3s ³ P ₁	$2s^2 \ 2p^5 ({}^2\mathrm{P}_{14}) 3s$	3s [1½]°	2_1	2810900	4s ³ P ₁	$2s^2 \ 2p^5 ({}^2\mathrm{P^{*}_{1_{2}}}) 4s$	4s [1½]°	$2 \\ 1$	3753900
3s ¹ P ₁	$2s^2 \ 2p^5 (^2\mathrm{P}_{\prime\!\!\!2}^{\circ}) 3s$	3s' [½]°	0 1	2839900	4s ¹ P ₁	$2s^2 2p^5 ({}^2 ext{P}^{\circ}_{32}) 4s$	4 <i>s</i> ′ [½]°	0 1	3781900
3d ³ P ₁	$2s^2 \ 2p^5(^2\mathrm{P}_{15}) 3d$	3d [½]°	0 1	3199300	4d ¹ P ₁	$2s^2 2p^5(^2\mathrm{P^{\circ}_{1}}) 4d$	$4d [1\frac{1}{2}]^{\circ}$	1	3919000
3 <i>d</i> ¹ P ₁	"	$3d [1\frac{1}{2}]^{\circ}$	1	3239700	$ \ 4d \ ^{3}\mathbf{D}_{1} $	$2s^{2} 2p^{\circ}(^{2}P_{\mathcal{H}}) 4d$	$4d' [1\frac{1}{2}]^{\circ}$	1	3948400
$3d$ $^{3}D_{1}$	$2s^2 \ 2p^5 (^2\mathrm{P}^{\circ}_{ m 52}) 3d$	$3d' \ [1\frac{1}{2}]^{\circ}$	1	3284300					
3p' ³ P ₁	2s 2p ⁶ (2S)3p	3 <i>p</i> ³₽°	$2 \\ 1 \\ 0$	3 692900		Ca xii (²Р _{ї́ӄ}) Ca xii (²Р _ӄ ́)		Limit Limit	4774300 4804328

April 1947.

CaxI Observed Levels*

$\begin{array}{c} \text{Config.} \\ 1s^2 + \end{array}$		Observed Terms					
2s ² 2p ⁶	2p ⁶ ¹ S						
	$ns \ (n \ge 3)$	$np (n \ge 3)$	$nd \ (n \ge 3)$				
$2s^2 \ 2p^5(^2\mathrm{P^o})nx$	$\begin{cases} 3, 4s \ {}^{3}P^{\circ} \\ 3, 4s \ {}^{1}P^{\circ} \end{cases}$		3d ³ P° 3, 4d ³ D° 3, 4d ¹ P°				
2s 2p ⁶ (² S)nx	{	3p ³ P° 3p ¹ P°					
	jl-Coupling	Notation					
	0	bserved Pair	rs				
	ns $(n \ge 3)$		$nd \ (n \ge 3)$				
$2s^2 \ 2p^5(^2\mathrm{Pi}_{1\!$	3, 4s [1½]°		$3d [\frac{1}{2}]^{\circ}$ 3, 4d $[\frac{1}{2}]^{\circ}$				
$2s^2 \ 2p^5(^2\mathrm{P}^{\circ}_{\!$	3, 4s'[½]°		3, 4 <i>d′</i> [1½]°				

 $* For predicted levels in the spectra of the Ne {\tt i} isoelectronic sequence, see Introduction.$

Ca XI

Ca XII

(F 1 sequence; 9 electrons)

Ground state $1s^2 2s^2 2p^5 {}^2\mathbb{P}^{\circ}_{1\frac{1}{2}}$

 $2p^{5} {}^{2}P_{1\frac{1}{2}}^{\circ}$ cm⁻¹

Edlén and Tyrén have classified 9 lines in the range 27 A to 32 A. They have published no term array because the analysis is so incomplete. In the 1942 paper Edlén lists the interval of the ground term as 30028 cm^{-1} , a value based on unpublished material. From these data preliminary term values have been calculated and entered in the table.

REFERENCES

B. Edlén and F. Tyrén, Zeit. Phys. 101, 206 (1936). (C L)
B. Edlén, Zeit. Astroph. 22, 59 (1942). (I P) (T)

Edlén	Config.	Desig.	J	Level	Interval
$2p {}^{2}\mathrm{P}_{2} {}^{2}\mathrm{P}_{1}$	2s² 2p ⁵	$2p^5$ $^2\mathrm{P}^{\circ}$	$1\frac{1}{1/2}$ $\frac{1}{1/2}$	0 30028	-30028
3s ⁴ P ₃ ⁴ P ₂	2s ² 2p ⁴ (³ P)3s	3s 4P	$2^{1\!/_2}_{1^{1\!/_2}}_{1^{1\!/_2}_{1^{1\!/_2}_2}}$	$3062300 \\ 3077100$	-14800
3s ² P ₂ ² P ₁	2s ² 2p ⁴ (³ P)3s	3s 2P	$1\frac{1}{2}$	3097900	
$\overline{3s} \ {}^{2}D_{3} \ {}^{2}D_{2}$	2s ² 2p ⁴ (¹ D)3s	3s′ 2D	$2^{1\!\!/_2}_{1^1\!\!/_2}$	$3158600 \\ 3158900$	-300
$\overline{3d}$	$2s^2 2p^4(^{1}\text{D})3d$	3d' X		3574200	
$\overline{\overline{3d}} {}^{2}\mathrm{D}_{3} {}^{2}\mathrm{D}_{2}$	$2s^2 2p^4(^1S) 3d$	3 <i>d''</i> 2D	$2\frac{1}{2}$ $1\frac{1}{2}$	$3648000 \\ 3652400$	-4400

Ca XII

March 1947.

I. P. 655 volts

This spectrum has not been analyzed. Edlén suggests the possibility that the line observed in the coronal spectrum at 4086.3 A (24465 cm⁻¹) may be due to the forbidden transition $2p^4 {}^{3}P_2 - 2p^4 {}^{3}P_1$ of Ca XIII. This separation for the leading components of the ground term is not inconsistent with that extrapolated along the O I isoelectronic sequence.

REFERENCE

B. Edlén, Zeit. Astroph. 22, 62 (1942). (T) March 1947.

Ca xv

(C I sequence; 6 electrons)

Ground state 1s² 2s² 2p² ³P₀

 $2p^2 {}^{3}P_0$ cm^{-1} .

An extrapolation of the ground term interval along the CI isoelectronic sequence indicates that the separations of the components of the ground term, $2s^2 2p^2$ ³P, should be approximately 17700 cm⁻¹, according to Edlén. He suggests that the line observed in the solar corona at 5694.42 A, wave number 17556 cm⁻¹, may tentatively be identified as [Caxv]?, $2s^2 2p^2 {}^{3}P_0 - 2s^2 2p^2 {}^{3}P_1.$

REFERENCE

B. Edlén, Zeit. Astroph. 22, 59 (1942). (T)

March 1947

Z = 20

I.P.

volts

Z = 20

volts

SCANDIUM

Sc I

21 electrons

Ground state $1s^2 2s^2 2p^6 3s^2 3p^6 3d 4s^2 {}^{2}D_{1\frac{1}{2}}$

a ²D_{11/2} 52920 cm⁻¹

I. P. 6.56 volts

Z = 21

The analysis is chiefly from the paper by Russell and Meggers with some additions from unpublished manuscript generously furnished by Russell. In the published analysis the terms $a \,{}^{4}P$, $y \,{}^{4}P^{\circ}$, and $z \,{}^{4}S^{\circ}$ were unconnected with the rest and $a \,{}^{4}P_{\frac{1}{2}}$ was assigned the value x. The connection is now established from observed combinations.

Similarly, the group $a {}^{2}P$, $v {}^{2}D^{\circ}$, $z {}^{2}S^{\circ}$ and $u {}^{2}D^{\circ}$ were connected with the rest only by the relation $a {}^{2}P_{y_{2}}=y$. Ufford has predicted the relative position of $a {}^{2}P$. His estimated value, $a {}^{2}P_{y_{2}}=21400$, is entered in brackets in the table and has been added to all levels in this group of terms. The uncertainty is indicated by y since the group is not connected with the rest by observed combinations.

The two terms, $f \, {}^{4}P$ and $x \, {}^{4}D^{\circ}$ have been added from the unpublished material mentioned above. The limit is also from a recalculation of the series recently made by Russell for inclusion here.

Russell and Meggers have noted that the assignment of the limit terms to the two triads $z {}^{2}P^{\circ} z {}^{2}D^{\circ} z {}^{2}F^{\circ}$, $y {}^{2}P^{\circ} y {}^{2}D^{\circ} y {}^{2}F^{\circ}$ is uncertain. One triad has the limit $a {}^{3}D$ in Sc II and the other, $a {}^{1}D$. Russell, in discussing the behavior of the d electrons in related spectra, concludes that the higher triad has as its limit the term of higher multiplicity. (See 1927 reference below.)

The doublet and quartet terms are connected by observed intersystem combinations.

In the 1925 paper mentioned below some observed Zeeman patterns are given. Catalán has calculated from these patterns the g-values listed in the table.

REFERENCES

S. Goudsmit, J. van der Mark, and P. Zeeman, Proc. Roy. Acad. Amsterdam 28, No. 2, 127 (1925). (Z E)

H. N. Russell and W. F. Meggers, Sci. Papers Bur. Std. 22, No. 558, 340 (1927). (I P) (T) (C L) (G D) H. N. Russell, Astroph. J. 66, 201 (1927); Mt. Wilson Contr. No. 341 (1927).

C. W. Ufford, unpublished material (July 1941). (T)

H. N. Russell, unpublished material (Jan. 1934, May 1948). (I P) (T) (C L)

M. A. Catalân, unpublished material (June 1948). (Z E)

W. F. Meggers, J. Opt. Soc. Am. 36, 431 (1946). (Summary hfs.)

9	60	
4	00	

Sc I

Sc I

Config.	Desig.	J	Level	Interval	Obs. g	Config.	Desig.	J	Level	Interval	Obs. g
3d 4s ²	a ² D	$1\frac{12}{212}$	0. 00 168. 34	168. 34	0. 79 1. 20	3d ² (a ³ F)4p	y 4D°	$rac{1/2}{11/2}\ 21/2$	32637.40 32659.21 32696.84	$21.81 \\ 37.63 \\ 54.70$	
3d²(a 3F)4s	a 4F	$\begin{array}{c c} 1^{1\!\!/_2} \\ 2^{1\!\!/_2} \\ 3^{1\!\!/_2} \\ 4^{1\!\!/_2} \end{array}$	$\begin{array}{c} 11520. \ 15\\ 11557. \ 64\\ 11610. \ 24\\ 11677. \ 31 \end{array}$	37. 49 52. 60 67. 07		3d2(a 3F)4p	z 2G°	$3^{1\!\!/_2} \ 3^{1\!\!/_2} \ 4^{1\!\!/_2}$	32751.54 33056.19 33151.40	95. 21	
3d²(a 3F)4s	a ² F	$2\frac{1}{2}$ $3\frac{1}{2}$	14926. 24 15041. 98	115. 7 4		3d ² (a ³ F)4p	x ² F°	$2^{1\!\!\!/_2}_{3^{1\!\!\!/_2}}$	33154.01 33278.64	124. 63	
3d 4s(a 3D)4p	z 4F°	$1\frac{1}{2}$ $2\frac{1}{2}$ $2\frac{1}{2}$	15672.55 15756.51	83. 96 125. 25		3d ² (a ³ F)4p	x 2D°	$1\frac{12}{212}$	3 3615.06 33707.25	92. 19	
	170		16026. 52	144. 76		3 <i>d</i> ³	e 4F	$1^{1/2}_{1/2}$ $2^{1/2}_{1/2}$	33763. 57 33798. 68	$\begin{array}{c} 35. \ 11 \\ 47. \ 94 \end{array}$	
3d 4s(a °D)4p	2 *D°	$\begin{array}{c c} & & & & & & \\ & & 1^{1}\!$	16009.71 16021.78 16141.04 16210.80	$\begin{array}{c} 12.\ 07\\ 119.\ 26\\ 69.\ 76\end{array}$		3d As(a 3D) 5s	e 4D		33846. 62 33906. 40	59. 78	
3d 4s(a 1D)4p	z ² D°	$\begin{array}{c c} 0/2 \\ 2^{1/2} \\ 1^{1/2} \end{array}$	16022.72 16096.86	-74. 14		54 18(4 15)00	• 2	$egin{array}{c} 1^{1/2}_{1/2} \ 2^{1/2}_{1/2} \ 3^{1/2}_{1/2} \end{array}$	34422. 85 34480. 05 34567. 10	$\begin{array}{c} 32.\ 60\\ 57.\ 20\\ 87.\ 05\end{array}$	
3d²(b 1D)4s	b 2D	$2\frac{1}{2}$ $1\frac{1}{2}$	17012. 98 17025. 36	-12 . 38		3d 4s(a ³ D)5s	e 2D	$1\frac{1}{2}$ $2\frac{1}{2}$	35671.00 35745.57	74. 57	
3d²(a 3P)4s	a 4P	$\frac{\frac{1}{2}}{\frac{1}{2}}$	17918.85 17947.98	29. 13 52. 27		3d ³ :	f ² D	$1^{1\!/_2}_{2^{1\!/_2}}$	36276. 76 36330. 49	53. 73	
3d 4s(a 3D)4p	z ⁴ P°	$\begin{array}{c c} 2/2 \\ 1/2 \\ 1/2 \\ 1/2 \end{array}$	18504. 05 18515. 77	11. 72 55 6 2		$3d^3$	e 4P	$1^{1/2}_{1^{1/2}_{1^{1/2}_{2^{1/2}}_{2^{1/2}_{2^{1/2}_{2^{1/2}_{2^{1/2}}_{2^{1/2}_{2^{1/2}_{2^{1/2}}_{2^{1/2}_{2^{1/2}}_{2^{1/2}_{2^{1/2}_{2^{1/2}}_{2^{1/2}_{2^{1/2}}_{2^{1/2}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$	36492.82 36515.76 36572.80	22. 94 57. 04	
3d 4s(a 1D)4p	z ² P°	$2\frac{1}{2}$ $\frac{1}{2}$	18571.40 18711.03	144 79		3d ² (b ¹ D)4p	w 2D°	$1\frac{12}{212}$	36934. 15 37039. 77	105.62	
$3d^{2}(a \ {}^{1}G)4s$	a ² G	$1\frac{1}{2}$ $4\frac{1}{2}$	18855.76 20237.10	144.75		3d 4s(a 3D)4d	e 2P	$\frac{1}{12}$ $1\frac{1}{2}$	37085. 72 37148. 25	62. 53	
3d 4s(a 1D)4p	z 2F°	$3\frac{1}{2}$ $2\frac{1}{2}$	20239. 92 <i>21032</i> . 78	-2.82		3d²(b 1D)4p	w ² P°	$1\frac{1}{2}$	37086.31 37125.72	39. 41	
$2d_2(a \ 3D) A_2$	a 2P		21085.84	53,06		3d ² (a ³ P)4p	x 4D°	1/2 1/2 11/2	971.86 1.8		
Ju-(u -1)+3	<i>u</i> -1	$1\frac{1}{2}$	21480.40 + y	80.40				$2\frac{1}{2}$ $3\frac{1}{2}$	37553.34 37717.11	66. 86 163. 77	
3d 4s(a ³ D)4p	y ² P°	$\left\{\begin{array}{c} \frac{72}{1\frac{1}{2}} \\ 1\frac{1}{2} \end{array}\right\}$	} 24656 . 80			3d 4s(a 3D)4d	g 2D	$1\frac{12}{212}$	37780.83 37855. 50	74. 67	
3d 4s(a ³ D)4p	y 2D°	$\begin{vmatrix} 1\frac{1}{2}\\ 2\frac{1}{2} \end{vmatrix}$	24866.18 25014.15	147. 97	$ \begin{array}{c c} 0.82\\ 1.17\\ \end{array} $	3d ² (a ³ P)4p	z 48°	1½	3 817 9. 92		
3d 4s(a) 4p	y ² F°	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	25584.64 25724.72	140. 08	0. 90 1. 14	3d ² (a ³ P)4p	y ⁴P°	$1/2 \\ 11/2 \\ 21/2 \\ 21/2 \\ 1$	38570.64 38601.50 38657.93	$30.86 \\ 56.43$	
3d2(a 3F)4p	z 4G°	$\begin{array}{c c} 2\frac{1}{2} \\ 3\frac{1}{2} \\ 4\frac{1}{2} \\ 5\frac{1}{2} \end{array}$	29022.87 29096.20 29189.83 29303.52	73. 33 93. 63 113. 69		3d 4s(a 3D)4d	e 2G	$3\frac{1}{2}$ $4\frac{1}{2}$	38571. 70 38658. 23	86. 53	
3d²(a 1S)4p	x ² P°	1/2 11/2	30573.10 30706 61	133. 51	0. 68	3d 4s(a ³ D)4d	e ²F	$2\frac{1}{2}{3\frac{1}{2}}{3\frac{1}{2}}$	38871. 60 38959. 16	87.56	
3d ² (a *F)4p	y 4F°	172 11/2 21/2	31172.62 31215.76	43. 14		3d ² (a ¹ G)4p	<i>z</i> 2H°	$4\frac{1}{2}$ $5\frac{1}{2}$	39153. 42 39249. 27	95. 85	
		$\begin{vmatrix} 3\frac{1}{2} \\ 4\frac{1}{2} \end{vmatrix}$	31275.32 31350.81	59.56 75.49		$3d^2(a \ ^1G)4p$	y ²G°	$3\frac{1}{2}$ $4\frac{1}{2}$	39392.95 39423.73	30. 78	

Sc I—Continued

Sc I—Continued

Config.	Desig.	J	Level	Interval	Obs. g	Config.	Desig.	J	Level	Interval	Obs. g
3d 4s(a ³ D)4d	.f ⁴D	$\frac{1/2}{11/2}$	39701. 30 39721. 71	$20.\ 41$ $33.\ 22$		3d ² (a ³ P)4p:	v 2D°	$rac{1\frac{1}{2}}{2\frac{1}{2}}$	$\begin{array}{c} 43166.\ 52+y\\ 43220.\ 74+y\end{array}$	54. 22	
		$2\frac{1}{2}$ $3\frac{1}{2}$	39754.93 39799.85	44. 92		3d ² (a ³ P)4p:	z ² S°	1/2	43337.03+y		
3d 4s(a 3D)4d	e *G	$\begin{array}{c} 2\frac{1}{2}\\ 3\frac{1}{2}\\ 4\frac{1}{2}\\ 5\frac{1}{2}\end{array}$	39861. 25 39902. 65 39957. 71 40028. 23	$\begin{array}{c} 41.\ 40\\ 55.\ 06\\ 70.\ 52\end{array}$		-	g 4D	$\begin{array}{c} \frac{1/2}{11/2}\\ 21/2\\ 21/2\\ 31/2\\ 31/2\end{array}$	44598. 8 0		
3d²(a 1G)4p	w ²F°	$2^{1_{\prime 2}}_{3^{1_{\prime 2}}_{\prime 2}}$	39881.25 39889.11	7.86		$4p^2(f$ ³ P)3 d	h ⁴ F	$\begin{array}{c c} 1\frac{1}{2}\\ 2\frac{1}{2}\\ 3\frac{1}{2}\\ 3\frac{1}{2} \end{array}$	44823.06 44909.50 45016.37	86. 44 106. 87	
3d 4s(a 3D)4d	f 4F	$\begin{array}{c} 1\frac{1}{2}\\ 2\frac{1}{2}\\ 3\frac{1}{2}\\ 4\frac{1}{2}\end{array}$	40521. 21 40554. 98 40604. 02 40670. 87	33. 77 49. 04 66. 85			i 4F	$\begin{array}{c c} & 0/2 \\ & 4\frac{1}{2} \\ & 1\frac{1}{2} \\ & 2\frac{1}{2} \\ & 2\frac{1}{2} \end{array}$	45125. 57 47898. 95 47946. 25	$109. \ 20$ $47. \ 30$ $125. \ 52$	
	h ² D	$1\frac{1}{2}{2\frac{1}{2}}$	40802.72 40825.65	22. 93					48071.77 48323.58?	251.81?	
3d 4s(a 3D)4d	ƒ 4₽	$1^{1/2}_{1^{1/2}}_{1^{1/2}}_{2^{1/2}}$	$\begin{array}{c} 41447.\ 02\\ 41474.\ 88\\ 41505.\ 65\end{array}$	27. 86 30. 77			<i>u</i> ² D°	$\begin{array}{c} 1^{1/2}\\ 2^{1/2}\\ \cdots\end{array}$	51231.50+y 51329.54+y	98. 04	
3d ² (a ³ F)5s	g 4F	$\begin{array}{c}1\frac{1}{2}\\2\frac{1}{2}\\3\frac{1}{2}\\4\frac{1}{2}\\4\frac{1}{2}\end{array}$	$\begin{array}{c} 41921.\ 94\\ 41960.\ 86\\ 42015.\ 57\\ 42085.\ 01 \end{array}$	38. 92 54. 71 69. 44		Sc 11 (a ³ D ₁)	Limit		52920		

June 1948.

Sc I Observed Terms*

Config. $1s^2 2s^2 2p^6 3s^2 3p^6 +$		Observed Terms												
3d 4s ²		a 2D												
3 <i>d</i> ³	$\begin{cases} e & 4P \end{cases}$	f 2D:	e ⁴F											
		ns ($n \ge 4$)				<i>np</i> (n≥4)				nd (r	$n \ge 3)$	
3d 4s(a ³ D)nx	{	e 4D e 2D				z ⁴ P° y ² P°	z 4D° y 2D°	z ⁴ F° y ² F°			f 4P e 2P	f 4D g 2D	f 4F e 2F	e 4G e 2G
3d 4s(a 1D)nx						z 2P°	z ² D°	z ² F°						
3d ² (a ³ F)nx	{		$\stackrel{a, g}{a} \stackrel{ m ^{4}F}{\stackrel{ m ^{2}F}{}}$				$egin{array}{c} y & {}^4\mathrm{D}^{\mathrm{o}} \ x & {}^2\mathrm{D}^{\mathrm{o}} \end{array}$	$egin{array}{c} y & {}^4\mathrm{F}^{\mathrm{o}} \ x & {}^2\mathrm{F}^{\mathrm{o}} \end{array}$	z 4G° z 2G°					
$3d^2(b \ ^1\mathrm{D})nx$		b ²D				w ² P°	w 2D°							
$3d^2(a \ ^1\mathrm{S})nx$						x ² P°								
$3d^2(a \ ^3\mathrm{P})nx$	$\begin{cases} a \ {}^{4}\mathrm{P} \\ a \ {}^{2}\mathrm{P} \end{cases}$				$z {}^{4}S^{\circ}$ $z {}^{2}S^{\circ}$:	y ⁴P°	x 4D° v 2D°:							
$3d^2(a \ {}^1\mathrm{G})nx$				a 2G				$w \ ^{2}\mathrm{F}^{\circ}$	y ₂G°	<i>z</i> 2H°				
$4p^2(f \ ^3\mathrm{P})nx$													h ⁴F	

*For predicted terms in the spectra of the Sc \imath isoelectronic sequence, see Introduction.

I. P. 12.89 volts

(Ca I sequence; 20 electrons)

Ground state 1s² 2s² 2p⁶ 3s² 3p⁶ 3d 4s ³D₁

a ³D₁ 104000 cm⁻¹

The analysis is from Russell and Meggers. All the terms are from the 1927 paper, except y ¹P°, which has been taken from the later reference. By analogy with Y II they assign a ¹S to the configuration $4s^2$ in place of the earlier assignment to $3d^2$.

The singlet and triplet terms are connected by observed intersystem combinations.

The g-values have been generously furnished by Catalán, who has calculated them from the observed Zeeman patterns given in the 1925 reference below.

REFERENCES

S. Goudsmit, J. van der Mark, and P. Zeeman, Proc. Roy. Acad. Amsterdam 28, No. 2, 130 (1925). (Z E) H. N. Russell and W. F. Meggers, Sci. Papers Bur. Std. 22, No. 558, 331 (1927). (I P) (T) (C L) (G D)

W. F. Meggers and H. N. Russell, Bur. Std. J. Research 2, 761, RP 55 (1929). (T) (C L)

M. A. Catalán, unpublished material (June 1948). (Z E)

Sc II

~	
50	TT
SU	

Config.	Desig.	J	Level	Interval	Obs. g.	Config.	Desig.	J	Level	Interval	Obs. g
3d(2D)4s	a ³ D	1 2 3	$\begin{array}{c} 0.\ 00\\ 67.\ 68\\ 177.\ 63\end{array}$	67. 68 109. 95	0. 50 1. 17 1. 33	3d(2D)5s	e ³ D	$\begin{array}{c}1\\2\\3\end{array}$	57551. 46 57613. 94 57743. 37	62. 48 129. 43	
$3d(^{2}\mathrm{D})4s$	a ¹ D	2	2540. 97		1. 00	3d(2D)5s	e 1D	2	58251.92		
$3d^2$	a ³ F	2	4802.75	80. 67	0.67	$3d(^{2}\mathrm{D})4d$	e ¹ F	3	59528. 22		
		3 4	4883. 42 4987. 64	104. 22	1. 07 1. 24	$3d(^{2}\mathrm{D})4d$	f ³ D	1	59874.79	54, 39	
$3d^2$	b ¹ D	2	10944. 51					$\frac{2}{3}$	59929.18 60001.60	72.42	
4s ²	a ¹ S	0	11736. 35			$3d(^{2}\mathrm{D})4d$	e ³ G	3	60266. 95	81, 25	
$3d^2$	a ³ P	0	12074.00	27, 45				$\frac{4}{5}$	$60348.\ 20$ $60456.\ 97$	108. 77	
		$\begin{vmatrix} 1\\ 2 \end{vmatrix}$	$\begin{array}{c} 12101.\ 45\\ 12154.\ 34\end{array}$	52. 89		$3d(^{2}\mathrm{D})4d$	e ¹ P	1	60400. 02		
$3d^2$	a 1G	4	14261.40			$3d(^{2}\mathrm{D})4d$	e ³ S	1	61071. 10		
$3d(^{2}\mathrm{D})4p$	z ¹ D°	2	26081. 32		1. 00	$3d(^{2}\mathrm{D})4d$	e ³ F	2	63373. 91	70, 52	
$3d(^{2}\mathrm{D})4p$	z ³ F°	2	27443.65	158,67	0.65			$\frac{3}{4}$	63444.43 63527.73	83. 30	
		$\frac{3}{4}$	27602.32 27841.17	238. 85	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$3d(^{2}\mathrm{D})4d$	f ¹ D	2	64366. 15		
$3d(^2\mathrm{D})4p$	z ³ D°	$\begin{array}{c}1\\2\\3\end{array}$	27917.69 28021.21 28161.03	103. 52 139. 82	$\begin{array}{c} 0.\ 51 \\ 1.\ 16 \\ 1.\ 33 \end{array}$	$3d(^{2}\mathrm{D})4d$	e ³ P	$egin{array}{c} 0 \ 1 \ 2 \end{array}$	$64615.\ 28$ $64646.\ 08$ $64705.\ 16$	30. 80 59. 08	
$3d(^{2}\mathrm{D})4p$	z ³ P°	0	29736. 22	5 90		$3d(^{2}\mathrm{D})4d$	e 1S	0	64942.79		
		$\begin{array}{c}1\\2\end{array}$	29742.12 29823.92	81. 80	1. 50	$3d(^{2}\mathrm{D})4d$	e 1G	4	65235. 8 3		
$3d(^{2}\mathrm{D})4p$	z ¹ P°	1	30815.65		1. 00	$4p^{2}$	f 3P	0	76242.40	117.41	
$3d(^{2}\mathrm{D})4p$	z ¹ F°	3	32349.98	1	1. 00			$\begin{array}{c}1\\2\end{array}$	76359.81 76588.48	228. 67	
4s(2S)4p	y ³ P°	$\begin{array}{c} 0 \\ 1 \\ 2 \end{array}$	39001. 59 39114. 44 39344. 90	$112. 85 \\ 230. 46$		Sc 111 (2D11/2)	Limit		104000		
$4s(^2S)4p$	y ¹ P°	1	55715 52								

June 1948.

Config. $1s^2 2s^2 2p^6 3s^2 3p^6 +$		Observed Terms									
3d2	{ a ³ P	<i>a</i> ³ F <i>b</i> ¹ D	a 1G								
4s ²	a ¹ S										
4 <i>p</i> ²	f 3P	•									
		ns $(n \ge 4)$			$np (n \ge 4)$			2	nd ($n \ge 4$)	
$3d(^{2}\mathrm{D})nx$	{	a, e ³ D a, e ¹ D		z 3P° z 1P°	z ³ D° z ¹ D°	$z {}^{3}F^{\circ}$ $z {}^{1}F^{\circ}$	e ³ S e ¹ S	e ³ P e ¹ P	f ³ D f ¹ D	e ³ F e ¹ F	e ³ G e ¹ G
$4s(^2\mathrm{S})nx$	{			y ³ P° y ¹ P°							

*A chart of predicted terms in the spectra of the Ca I isoelectronic sequence is given in the Introduction. Owing to the change in binding energies of the 3d and 4s electrons along this sequence, the arrangement of the charts of observed and predicted terms is not identical. In Sc II no primes are used to indicate higher limits, and the prefixes $a, b, \ldots e, z, y$, replace those indicating the running electron.

Sc III

(K I sequence; 19 electrons)

Ground state $1s^2 2s^2 2p^6 3s^2 3p^6 3d {}^2D_{14}$

3d ²D_{11/2} 199693.0 cm⁻¹

The early analysis by Gibbs and White was revised and extended by Smith. By analogy with Ti IV, Russell and Lang confirmed Smith's interpretation, added the 5s ²S term, and predicted a number of series members. Their term array has been used for the present compilation, predicted values being entered in brackets. Fourteen lines in the range from 730 A to 4069 A have been classified.

REFERENCES

R. C. Gibbs and H. E. White, Proc. Nat. Acad. Sci. 12, 598 (1926). (T) (C L)

S. Smith, Proc. Nat. Acad. Sci. 13, 65 (1927). (I P) (T) (C L)

H. N. Russell and R. J. Lang, Astroph. J. 66, 19; Mt. Wilson Contr. No. 337 (1927). (I P) (T) (C L)

		Sc III			Sc III						
Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval		
3 p ⁶ (¹ S)3d	3 <i>d</i> 2D	$rac{11/2}{21/2}$	0. 0 19 7. 5	197. 5	$3p^6({}^1\mathrm{S})5d$	5 <i>d</i> 2D	$rac{1^{1\!/_2}}{2^{1\!/_2}}$	[148263] [148283]	20		
$3p^6(^1\mathrm{S})4s$	4s 2S	$\frac{1}{2}$	25536.7		3p ⁶ (1S)6s	6s 2S	1⁄2	[149253]			
$3p^{\mathfrak{6}(1\mathrm{S})}4p$	4p ²P°	$1^{1/2}_{1^{1/2}_{2}}$	62102. 2 62575. 9	473. 7	$3p^{6}({}^{1}\!\mathrm{S})5\!f$	5f 2F°	$\left\{\begin{array}{c} 2\frac{1}{2} \\ 3\frac{1}{2} \\ 3\frac{1}{2} \end{array}\right.$	$\left. \right\} \ [159553]$			
$3p^{\mathfrak{6}(1\mathrm{S})}4d$	4d ² D	$1\frac{12}{212}$	$\begin{array}{c} 112254. \ 2 \\ 112299. \ 2 \end{array}$	45. 0	3p ⁶ (1S)5g	5g 2G	$\left\{\begin{array}{c} 3\frac{1}{2} \\ 4\frac{1}{2} \end{array}\right.$	} [160133]			
$3p^{6}({}^{1}\!\mathrm{S})5s$	58 2S	1/2	114863.8								
3p ⁶ (1S)5p	5p ² P°	$1/2 \\ 11/2$	[<i>128183</i>] [<i>128363</i>]	180	Sc IV (¹ S ₀)	Lìmit		199693.0			
3p ⁶ (1S)4f	4f ² F°	$\left\{\begin{array}{c} 2\frac{1}{2} \\ 3\frac{1}{2} \\ 3\frac{1}{2} \end{array}\right.$	} 136871.0								

May 1948.

Z = 21

I. P. 24.75 volts

(A1 sequence; 18 electrons)

Ground state $1s^2 2s^2 2p^6 3s^2 3p^{6-1}S_0$

3p⁶ ¹S₀ 596300 cm⁻¹

The analysis is seriously incomplete, but four lines between 215 A and 298 A have been independently classified, in the first two references quoted below, as combinations with the ground term. The two sets of wavelengths are not completely accordant, but the interpretation is the same in both papers.

The levels given in the table are from Mrs. Beckman's observations, and the limit is from the other paper. Mrs. Beckman's unit, 10^3 cm⁻¹, has here been changed to cm⁻¹, and all values have been rounded off in the last places. The limit may be in error by several hundred cm⁻¹.

For convenience, the Paschen notation has been added by the writer in column one of the table, under the heading "AI". As for AI, the *jl*-coupling notation in the general form suggested by Racah is here introduced, although LS-designations as indicated in column two under the heading "Authors" are perhaps preferable for the terms thus far identified.

REFERENCES

A. Beckman, Bidrag till Kännedomen om Skandiums Spektrum i Yttersta Ultraviolett, Akademisk Avhandling p. 90 (Almqvist and Wiksells Boktryckeri -A.-B., Uppsala, 1937). (T) (C L)

P. G. Kruger, S. G. Weissberg and L. W. Phillips, Phys. Rev. 51, 1090 (1937). (I P) (T) (C L) G. Racah, Phys. Rev. 61, 537 (L) (1942).

AI	Authors	Config.	Desig.	J	Level
$1p_{0}$	3p ⁶ 1S	3p ⁶	$3p^{6}$ 1S	0	0
184	3 <i>p</i> ⁵ 4s ³P°	3p⁵(²P°1½)4s	4s [1½]°	$2 \\ 1$	335090
1s2	3p ⁵ 4s ¹ P°	$3p^{5}(^{2}\mathrm{P}_{5}^{\circ})4s$	4s' [½]°	0 1	341010
284	3 <i>p⁵ 5s</i> ³P°	$3p^{5}[^{2}\mathrm{P}_{15})^{2}$	5s [1½]°	$\frac{2}{1}$	460430
$2s_2$	3p ⁵ 5s 1P°	3p⁵(²P⅔)5s	5s' [½]°	0 1	463990
		Sc ∇ (² P ₁)	Limit		596300
		Sc v (2P ^o _{1/2})	Limit		600630

Sc IV

May 1948.

Z=21

I. P. 73.9 volts

(Cli sequence; 17 electrons)

Ground state $1s^2 2s^2 2p^6 3s^2 3p^{5} {}^{2}P^{\circ}_{14}$

$3p^{5} {}^{2}\mathrm{P}^{\circ}_{1\frac{1}{2}} 741000 \mathrm{~cm^{-1}}$

Fifteen lines have been classified in the region from 228 A to 587 A, as combinations from the ground term. Two independent sets of term values have been published, that are in agreement except for the level 4s ${}^{4}P_{2\%}$, for which Kruger and Phillips give 387508 cm⁻¹; and the level 4s ${}^{4}P_{3\%}$, which was not found by Mrs. Beckman. All other entries in the table are from the latter list. The unit adopted by Mrs. Beckman, 10^{3} cm⁻¹, has here been changed to cm⁻¹.

From isoelectronic sequence data Edlén has estimated the limit given above and entered in brackets in the table.

REFERENCES

A. Beckman, Bidrag till Kännedomen om Skandiums Spektrum i Yttersta Ultraviolett, Akademisk Avhandling p. 86 (Almqvist and Wiksells Boktryckeri -A.-B., Uppsala, 1937). (T) (C L)

P. G. Kruger and L. W. Phillips, Phys. Rev. 51, 1087 (1937). (T) (C L)

B. Edlén, Zeit. Phys. 104, 413 (1937). (I P)

Config.	Desig.	J	Level	Interval
$3s^2 3p^5$	$3p^{5}$ ² P ^o	$1\frac{1}{2}$ $\frac{1}{2}$	0 4328	-4328
3s 3p ⁶	3p ⁶ 2S	1/2	174412	
3s ² 3p ⁴ (³ P)4s	48 4P	$2\frac{1}{2}$ $1\frac{1}{2}$ $\frac{1}{2}$	386387 388868 391575?	$-2481 \\ -2707$
3s ² 3p ⁴ (³ P)4s	48 ² P	$1\frac{1}{2}$ $\frac{1}{2}$	$395503 \\ 398447$	-2944
3s ² 3p ⁴ (1D)4s	4s' 2D	$2^{1\!\!\!/_2}_{1^{1\!\!\!/_2}}$	$\begin{array}{c} 410050 \\ 410133 \end{array}$	-83
3s ² 3p ⁴ (1S)4s	4s'' 2S	1/2	437512	
Sc vi (3P2)	Limit		[741000]	

Sc V

January 1948.

Z = 21

I. P. 92 volts

(S I sequence; 16 electrons)

Ground state 1s² 2s² 2p⁶ 3s² 3p⁴ ³P₂

3p4 3P2 896000 cm⁻¹

The analysis has been done independently by Mrs. Beckman and by Kruger and Pattin with results that are substantially in agreement. The triplet terms are quoted from the former and the singlets from the latter paper. Twenty-nine lines have been classified in the interval between 200 A and 581 A. The unit adopted by Mrs. Beckman, 10^3 cm⁻¹, has here been changed to cm⁻¹.

Intersystem combinations connecting the singlet and triplet terms have been observed. The limit is from Edlén, who has extrapolated it from isoelectronic sequence data.

REFERENCES

A. Beckman, Bidrag till Kännedomen om Skandiums Spektrum i Yttersta Ultraviolett, Akademisk Avhandling p. 76 (Almqvist and Wiksells Boktryckeri - A.-B., Uppsala 1937). (T) (C L)
P. G. Kruger and H. S. Pattin, Phys. Rev. 52, 621 (1937). (T) (C L)
B. Edita, Cit. Dhys. 104, 102 (1027). (L)

B. Edlén, Zeit. Phys. 104, 192 (1937). (I P)

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
3s ² 3p ⁴	3p4 3P	2 1 0	$\begin{array}{c} 0\\ 3352\\ 4453\end{array}$	$-3352 \\ -1101$	3s ² 3p ³ (² D°)4s 3s ² 3p ³ (² P°)4s	4s' 1D° 4s'' 3P°	2 0	478354 491826	261
3s ² 3p ⁴	3p4 1D	2	21397				$\frac{1}{2}$	492087 492802	715
3s ² 3p ⁴	3p ⁴ 1S	0	49238		$3s^2 \ 3p^3 (^2{ m P}^{ m o}) 4s$	4s'' ¹ P°	1	497984	
3s 3p ⁵	3p⁵ ³P°	$\begin{array}{c} 2 \\ 1 \\ 0 \end{array}$	175344 178197 179784	$-2853 \\ -1587$	Sc vii (4S ₁₁₄)	Limit		896000	
3s² 3p³(4S°)4s	4s ³ S°	1	452070	-					
3s² 3p³(2D°)4s	4s′ ³D°	1 2 3	472400 472563 473001	163 438					

Sc VI

I. P. 111.1 volts

Z = 21

Sc VI

January 1948.

Z = 21

volts

1. P.

Sc VII

(PI sequence; 15 electrons)

Ground state $1s^2 2s^2 2p^6 3s^2 3p^3 {}^{4}S_{1\frac{1}{2}}^{\circ}$

$$3p^3 \, {}^{4}S_{11/2}^{\circ}$$
 cm⁻¹

The analysis is incomplete. Six multiplets have been published by Kruger and Pattin, who derive term intervals but give no term values. Mrs. Beckman has extended their analysis slightly and estimated the relative positions of the doublet and quartet systems of terms from isoelectronic sequence data. Her terms are, in general, quoted, except for the term $3p^4$ ⁴P, which is based on the wavelengths by Kruger and Pattin.

Twenty lines have been classified in the interval between 182 A and 571 A. No intersystem combinations have been observed, as indicated by the uncertainty x in the table and brackets around $3p^{3-2}D_{1/2}^{\circ}$.

The unit adopted by Mrs. Beckman, 10^3 cm⁻¹, has here been changed to cm⁻¹.

REFERENCES

P. G. Kruger and H. S. Pattin, Phys. Rev. 52, 624 (1937). (C L)

α.

A. Beckman, Bidrag till Kännedomen om Skandiums Spektrum i Yttersta Ultraviolett, Akademisk Avhandling p. 71 (Almqvist and Wiksells Boktryckeri -A.-B., Uppsala, 1937). (T) (C L)

			VII		St VII							
Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval			
$3s^2 3p^3$	$3p^3 4S^\circ$	1½	0		$3s^2 3p^2(^{3}\text{P}) 3d$	3 <i>d</i> ² P	$1\frac{1}{\frac{1}{2}}$	329950 + x 333360 + x	3410			
$3s^2 3p^3$ $3s^2 3p^3$	$3p^{3} 2D^{3}$ $3p^{3} 2P^{\circ}$	$1\frac{1}{2}$ $2\frac{1}{2}$ $\frac{1}{2}$	[30000] + x 30670 + x 49840 + x	670	3s ² 3p ² (³ P)4s	48 4P	$1^{\frac{1}{2}}_{1^{\frac{1}{2}}_{2^{\frac{1}{2}}}}$	$541670 \\ 543600? \\ 546490$	1930 2890			
3s 3p ⁴	3p4 4P	$1\frac{1}{2}$ $2\frac{1}{2}$ $1\frac{1}{2}$	50740 + x 175050 177760	-2710	3s ² 3p ² (3P)4s	4s 2P	$\frac{1}{1}$ $1\frac{1}{2}$ $1\frac{1}{2}$	551940 + x 555200 + x	3260			
		172 1/2 72	179200		$3s^2 3p^2({}^1\mathrm{D})4s$	4s' 2D	$2\frac{1}{2}$ $1\frac{1}{2}$	568860 + x 568990 + x	-130			

December 1947.

Sc VII Observed Terms*

$\begin{array}{c} \text{Config.}\\ 1s^2\ 2s^2\ 2p^6+\end{array}$		Observed Terms										
3s ² 3p ³ 3s 3p ⁴	{ ³ <i>p</i> ³ ⁴ S°	3p ³ ² P° 3p ⁴ ⁴ P	3p³ 2D°									
		ns $(n \ge 4)$		nd $(n \ge 3)$								
$3s^2 3p^2(^3P) nx$	{	4s 4P 4s 2P		3 <i>d</i> 2P								
3s ² 3p ² (¹ D)nx'			4s' 2D									

*For predicted terms in the spectra of the P1 isoelectronic sequence, see Introduction.

(Si I sequence; 14 electrons)

Ground state $1s^2 2s^2 2p^6 3s^2 3p^2 {}^{3}P_0$

 $3p^2 {}^{3}P_0 1280000 \text{ cm}^{-1}$

The analysis is incomplete. The results by Kruger and Phillips are not entirely in agreement with those by Mrs. Beckman. The present list has been compiled from the three references below. One term, $4s {}^{1}P_{1}^{\circ}$, has been calculated from its combination with $3p^{2} {}^{1}D_{2}$ as given by Mrs. Beckman. Twenty-five lines are classified in the region between 164 A and 494 A. Intersystem combinations connecting the singlet and triplet terms have been observed. The limit, entered in brackets in the table, has been estimated by Phillips.

REFERENCES

A. Beckman, Bidrag till Kännedomen om Skandiums Spektrum i Yttersta Ultraviolett, Akademisk Avhandling p. 65 (Almqvist and Wiksells Boktryckeri -A.-B., Uppsala, 1937). (T) (C L) P. G. Kruger and L. W. Phillips, Phys. Rev. 52, 97 (1937). (T) (C L)

L. W. Phillips, Phys. Rev. 55, 708 (1939). (I P) (T) (C L)

Sc VIII Config. Desig. JLevel Interval Config. Desig. JLevel Interval 3s² 3p² $3p^2$ ³P $3s^2 3p(^2P^\circ)3d$ 3d 3P° $\mathbf{2}$ 319570 0 $\begin{array}{c} 2280\\ 3230 \end{array}$ $-2970 \\ -1130$ 2280 5510 322540 $\overline{\mathbf{2}}$ 323670 0 4s 3P° 3s2 3p2 3p2 1D 2 25030 3s² 3p(²P°)4s 0 603540 1070 604610 609180 4570 $\mathbf{2}$ $\mathbf{2}$ 3p3 3P° 207760 3s 3p3 1 õ 3s² 3p(²P^o)4s 4s ¹P° 1 614100 3s 3p3 3p3 3S° 1 271680 3s 3p3 $3p^{3} P^{\circ}$ 1 281520 Sc IX $({}^{2}P_{\frac{1}{2}}^{\circ})$ Limit [1280000]

October 1947.

Z = 21

I. P. 159 volts

Sc VIII

Ground state $1s^2 2s^2 2p^6 3s^2 3p {}^{2}P_{1_{2}}^{\circ}$

a

 $3p \ ^{2}P_{\frac{1}{2}}^{\circ} 1456000 \ \mathrm{cm}^{-1}$

The analysis is incomplete, but 17 lines have been classified in the region between 119 A and 537 A. The listed term values have been calculated by the writer from the combinations given in the references below.

No intersystem combinations have been observed. Using the method of extrapolation suggested by Edlén, the writer has estimated that $3p^2 \, {}^4P_{1/2}$ is about 141000 cm⁻¹ above the ground state. This value is entered in brackets in the table and has been added to all quartet terms. The uncertainty x may well exceed ± 1000 cm⁻¹. Similarly, she has extrapolated the value of the limit quoted above and entered in brackets in the table. The uncertainty in this estimate is large owing to the incompleteness of the isoelectronic sequence data.

REFERENCES

- A. Beckman, Bidrag till Kännedomen om Skandiums Spektrum i Yttersta Ultraviolett, Akademisk Avhandling
 p. 59 (Almqvist and Wiksells Boktryckeri -A.-B., Uppsala 1937). (T) (C L)
- P. G. Kruger and L. W. Phillips, Phys. Rev. 52, 97 (1937). (T) (C L)

		SCIA			St IX						
Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval		
3s ² (1S)3p	3p 2P°	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	0 5760	5760	3s ² (1S)4s	48 2S	1/2	666260			
38 3p ²	3p ² 4P	$1'_{2}$ $1'_{2}$ $1'_{2}$	[141000]+x 143120+x 146280+x	$\begin{array}{c} 2120\\ 3160 \end{array}$	$3s 3p(^{3}P^{\circ})4s$	48 4P°	$\begin{array}{c c} & \frac{1}{2} \\ & 1\frac{1}{2} \\ & 2\frac{1}{2} \end{array}$	819550 + x 821490 + x 825120 + x	1940 3630		
3s 3p ²	$3p^2$ ² D	$ \begin{array}{r} 2^{72} \\ 1^{1/2} \\ 2^{1/2} \end{array} $	140280 + x 191760		$3s^2(^1\mathrm{S})4d$	4 <i>d</i> 2D	$rac{1_{72}^{1_{72}}}{2_{72}^{1_{72}}}$	837210 837450	2 40		
3s 3p ²	$3p^2$ ² S	1/2	240410								
38 3p ²	3 <i>p</i> ² ²P	$1^{\frac{1}{2}}_{\frac{1}{2}}$	$255830 \\ 259150$	3320	$\int Sc \mathbf{x} (^{1}S_{0})$	Limit		[1456000]			
$3s^2(^1S)3d$	$3d$ $^2\mathrm{D}$	$1\frac{1}{2}$ $2\frac{1}{2}$	$313860 \\ 314210$	350							

October 1947.

Sc IX OBSERVED TERMS*

$\begin{array}{c} \text{Config.}\\ 1s^2 \ 2s^2 \ 2p^6 + \end{array}$		Observed Terms										
$3s^2(^1S)3p$		3 <i>p</i> ² P°										
3s 3p ²	$\left\{_{3p^2 \ ^2\mathrm{S}} ight.$	${3p^2 \ {}^4{ m P}} \over {3p^2 \ {}^2{ m P}}$	$3p^2$ ² D									
		ns $(n \ge 4)$		nd $(n \ge 3)$								
$3s^2(^1\mathrm{S})nx$	4s 2S			3, 4 <i>d</i> 2D								
3s 3p(3P°)nx		4s 4P°										

*For predicted terms in the spectra of the Al1 isoelectronic sequence, see Introduction.

I. P. 180 volts

Ground state $1s^2 2s^2 2p^6 3s^2 {}^1S_0$

Co T

3s² ¹S₀ 1819530 cm⁻¹

The terms are from the paper by Mrs. Beckman, who has classified 26 lines in the region between 76 A and 628 A. She lists one intersystem combination, $3s^2 {}^{1}S_0 - 3p {}^{3}P_1^{\circ}$, and derives absolute term values from the $3d {}^{3}D - nf {}^{3}F^{\circ}$ series (n=4, 5, 6).

Sc X

Parker and Phillips have independently found four triplet terms 3p ³P°, 3d ³D, 4s ³S, and 4f ³F°. Their arrangement of the 3p ³P°-4s ³S and 3d ³D-4f ³F° multiplets is identical with Mrs. Beckman's but they differ from her in the interpretation of the group of lines ascribed to 3p ³P°-3d ³D.

Their resulting terms that differ from those listed below (adjusted to the same zero point) are as follows:

Desig.	Level	Desig.	Level
$3d$ $^{3}D_{3}$	455510	$4f$ ${}^3\mathrm{F}^{\mathrm{o}}_4$	1117757
$^{3}D_{2}$	455199	${}^3\mathrm{F}^{\mathrm{o}}_{\mathrm{3}}$	1117710
³ D ₁	455007	${}^3\mathrm{F}^{\mathrm{o}}_2$	1117689
		<u> </u>]	

By extrapolation along the isoelectronic sequence, using the method suggested by Edlén, the writer calculates the limit to be approximately 1818600 cm⁻¹ (I. P. 225.4), or about 1000 cm⁻¹ lower than that derived by Mrs. Beckman from the ${}^{3}F^{\circ}$ series.

The unit adopted by Mrs. Beckman, 10³ cm⁻¹, has here been changed to cm⁻¹.

REFERENCES

A. Beckman, Bidrag till Kännedomen om Skandiums Spektrum i Yttersta Ultraviolett, Akademisk Avhandling p. 53 (Almqvist and Wiksells Boktryckeri -A.-B., Uppsala, 1937). (I P) (T) (C L) (G D)
W. L. Parker and L. W. Phillips, Phys. Rev. 57, 140 (1940). (T) (C L)

		JC A			St A						
Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval		
3s ²	3s ² 1S	0	0		3s(2S)5p	5 <i>p</i> ¹ P°	1	1309880	-		
3s(2S)3p	3p 3P°	$egin{array}{c} 0 \ 1 \ 2 \end{array}$	157230 159210 163530	$\begin{array}{c} 1980\\ 4320 \end{array}$	$3s(^2\mathrm{S})5d$	5 <i>d</i> ³ D	$\begin{array}{c}1\\2\\3\end{array}$	1351120			
$3s(^2S)3p$	3p ¹ P°	1	236490		$3s(^2S)5f$	5f ³ F ^o	2	1374440	110		
3 s(² S)3d	3 <i>d</i> 3D	$\begin{array}{c}1\\2\\3\end{array}$	$\begin{array}{r} 458710 \\ 459030 \\ 459470 \end{array}$	320 440	$3s(^2\mathrm{S})6f$	6f ³F°		1574000			
3s(2S)4s	4s 3S	1	899250				4	1511130			
$3s(^2S)4p$	4 <i>p</i> ¹₽°	1	980600						-		
$3s(^2S)4d$	4 <i>d</i> 3D	$\begin{array}{c}1\\2\\3\end{array}$	$\begin{array}{c} 1074060 \\ 1074250 \\ 1074530 \end{array}$	190 280	Sc x1 (2S3)	Limit		1819530			
$3s(^2S)4f$	<i>4f</i> ³F°	2 3 4	1121400 1121550 1121740	150 190							

March 1948.

270

I. P. 225.5 volts

(Na I sequence; 11 electrons)

Ground state 1s² 2s² 2p⁶ 3s ²S_{1/2}

 $3s \ ^2S_{\frac{1}{2}} \ 2015030 \ \mathrm{cm}^{-1}$

The analysis is by Mrs. Beckman who has extended the work of Edlén and of Kruger and Phillips. She has published 30 classified lines in the interval from 62 A to 168 A.

The absolute value of the ground state is extrapolated from isoelectronic sequence data. The unit adopted by Mrs. Beckman, 10³ cm⁻¹, has here been changed to cm⁻¹.

REFERENCES

B. Edlén, Zeit. Phys. 100, 621 (1936). (T) (C L)

A. Beckman, Bidrag till Kännedomen om Skandiums Spektrum i Yttersta Ultraviolett, Akademisk Avhandling,

p. 45 (Almqvist and Wiksells Boktryckérí -A.-B., Uppsala, 1937). (I P) (T) (C L) (G D)

Sc XI

SC	XI
----	----

Config.	Desig.		Level	Interval	Config.	Desig.	J	Level	Interval
38	38 2S	1/2	0		5f	5f ² F°	$2^{1/2}_{1/2}_{3^{1/2}_{1/2}}$	1482160 1482210	50
3p	$3p ^{2}P^{\circ}$	$1\frac{1}{2}$ $1\frac{1}{2}$	191030 197720	6690	68	6s 2S	1/2	158879 0	
3d	3 <i>d</i> ² D	$1\frac{1}{2}$ $2\frac{1}{2}$	$\begin{array}{r} 459410 \\ 460030 \end{array}$	620	6 <i>p</i>	6 <i>p</i> ² P°	1/2 1/2 1/2	1609480	
48	4s ² S	1/2	977470		6 <i>d</i>	6 <i>d</i> ² D	$\begin{array}{c c} 1^{1/_2} \\ 2^{1/_2} \end{array}$	1635020	
4p	4p ² P°	$1/2 \\ 1/2 \\ 1/2$	1051340 1053870	2530	6 <i>f</i>	6 <i>f</i> ² F°	$2\frac{1}{2}$ $3\frac{1}{2}$	1645030	
4d	4 <i>d</i> ² D	$1\frac{1}{2}$ $2\frac{1}{2}$	$\frac{1148560}{1148830}$	270	7 <i>d</i>	7 <i>d</i> ² D	$1\frac{1}{2}$ $2\frac{1}{2}$	1736700	
4f	4f ² F°	$2\frac{1}{2}$ $3\frac{1}{2}$	1182570 1182680	110	7f	7f ² F°	$2\frac{1}{2}$ $3\frac{1}{2}$	1743430	
58	5s 2S	1/2	1382110						
5p	5 <i>p</i> ² P°	$1^{1/2}_{1^{1/2}_{1^{1/2}_{2}}}$	1418280 1419550	1270	Sc XII (¹ S ₀)	Limit		2015030	-
5d	5 <i>d</i> 2D	$rac{1\frac{1}{2}}{2\frac{1}{2}}$	$\frac{1464770}{1464870}$	100					

June 1947.

Z = 21

I. P. 249.76 volts

Sc XII

Ground state 1s² 2s² 2p⁶ ¹S₀

2p⁶ ¹S₀ 5539700 cm⁻¹

Edlén and Tyrén have classified five lines in the range 26 A to 30 A, as combinations with the ground term. Their absolute term values are based on extrapolation along the Ne I isoelectronic sequence. Their unit, 10^3 cm⁻¹, has here been changed to cm⁻¹.

As for NeI, the jl-coupling notation in the general form suggested by Racah is introduced.

REFERENCES

B. Edlén and F. Tyrén, Zeit. Phys. 101, 210 (1936). (I P) (T) (C L)
G. Racah, Phys. Rev. 61, 537 (L) (1942).

Authors	Config.	Desig.	J	Level
2p ¹ S ₀	2p ⁶	2p ⁶ ¹ S	0	0
3s ³ P ₁	$2p^{5}(^{2}\mathrm{P}^{\circ}_{1\frac{1}{2}})3s$	3s [1½]°	$\frac{2}{1}$	3245100
3s ¹ P ₁	$2p^5(^2\mathrm{P}^{\mathrm{o}}_{\mathrm{22}})3\mathrm{s}$	3s' [½]°	0 1	3280800
3d 3P.	$2p^5(^2\mathrm{P}^{\circ}_{1 sc{1}s})3d$	3d [½]°	0	3668400
$3d \ ^{1}P_{1}$	"	3d [1½]°	1	3 714700
$3d$ $^{3}D_{1}$	$2p^5(^2\mathrm{P}^{\circ}_{3\!\!\!2})3d$	3d′ [1½]°	1	3767300
	Sc XIII (2P ₁ ^o)	Limit		5539700
-	Sc XIII (2P ^o)	Limit		5577400

Sc XII

April 1947.

Z = 21

I. P. 686.6 volts

TITANIUM

Ti I

22 electrons

Ground state $1s^2 2s^2 2p^6 3s^2 3p^6 3d^2 4s^2 {}^{3}F_2$

 $a {}^{3}F_{2} 55138 \text{ cm}^{-1}$

I. P. 6.83 volts

Z = 22

The arc spectrum of titanium was one of the first highly complex spectra to be analyzed fairly completely. The detailed analysis published by Russell in 1927 contains 142 terms based on 422 multiplets, and lists 1394 classified lines. Singlet, triplet, and quintet terms are connected by intersystem combinations. This paper, which represents the work of many early contributions as well, by King, Meggers, Kiess, Babcock, and many others, is concluded with the noteworthy statement "The present theories of atomic and spectral structure suffice to give a most satisfactory account, in full and complete detail, of all the features of the very complex spectrum of titanium."

From infrared observations Kiess and Meggers have added the terms d ³P and a ⁵D. In 1940 Russell added e ³H and in 1947 he revised the configuration assignments for inclusion here, as given in column one of the table.

The term values given to three places in the table are from the 1928 paper by Kiess, who calculated them from lines he observed with the interferometer.

Approximate g-values have been calculated by the writer from the Zeeman patterns observed by King and Babcock and quoted by Russell (1927). Most of the observed patterns are unresolved, and consequently the observed g-values differ from the theoretical ones, by a few percent in some cases. They verify the analysis, however, with remarkable consistency. Colons indicate that the observational data are insufficient to give an independent g-value. It is highly desirable to extend this work with the aid of Harrison's unpublished Zeeman observations of titanium.

Both Many and Rohrlich have made theoretical investigations of this spectrum. In the former paper the reality of the term $a \, {}^{1}S_{0}$ at 15166.59 is questioned and this term has been rejected by Russell. Rohrlich has suggested that the ${}^{1}P^{\circ}$ term at 39265.80 may be a ${}^{1}D^{\circ}$ term. This change has been adopted in the table and the labels of higher ${}^{1}P^{\circ}$ and ${}^{1}D^{\circ}$ terms changed accordingly, since it has been noted by Russell that this term may equally well be a ${}^{1}D^{\circ}$ term. In cases where Rohrlich's configuration assignments differ from those of Russell a colon is entered in column one after the configuration.

REFERENCES

H. N. Russell, Astroph. J. 66, 347 (1927); Mt. Wilson Contr. No. 345 (1927). (I P) (T) (C L) (G D) (Z E)

C. C. Kiess, Bur. Std. J. Research 1, 77, RP4 (1928). (T) (C L)

W. F. Meggers and C. C. Kiess, Bur. Std. J. Research 9, 310, RP473 (1932). (T) (C L)

C. C. Kiess, J. Research Nat. Bur. Std. 20, 35 (RP1062) (1938). (T) (C L)

H. N. Russell, unpublished material (May 1940, April 1947). (T) (C L)

A. Many, Phys. Rev. 70, 511 (1946).

F. Rohrlich, Phys. Rev. 74, 1381 (1948).

C. E. Moore, unpublished material (June 1948). (Z E)

2	7.	4
_	-	

=

		Ti	I					Ti I			
Config.	Desig.	J	Level	Interval	Obs. g	Config.	Desig.	J	Level	Interval	Obs. g
3d² 4s²	a ³ F	$2 \\ 3 \\ 4$	0. 000 170. 132 386. 873	170. 132 216. 741	$0.66 \\ 1.08 \\ 1.25$	3d² 4s(a ²F)4p	z ³F°	2 3 4	19323. 003 19421. 580 19573. 980	98. 577 152. 400	$0.67 \\ 1.07 \\ 1.26$
3d ³ (b 4F)4s	a 5F	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \end{array} $	$\begin{array}{c} 6556. \ 86\\ 6598. \ 83\\ 6661. \ 00\\ 6742. \ 79\end{array}$	$\begin{array}{c} 41. \ 97 \\ 62. \ 17 \\ 81. \ 79 \\ 100. \ 21 \end{array}$	$\begin{array}{c} 0. \ 00 \\ 0. \ 99 \\ 1. \ 25 \\ 1. \ 35 \\ 1. \ 45 \end{array}$	$3d^2 4s(a \ ^2\mathrm{F})4p$	z ³D°	$1 \\ 2 \\ 3 \\ 1$	19937. 878 20006. 049 20126. 072	68. 1 7 1 120. 023	1. 16 1. 34
0.70 / 0		5	6843.00		1.41	$3d^{3}(a^{2}P)4s$		1	20062, 98		1.03
$3d^2 4s^2$		2	7255. 29		1. 02	$3a^{\circ}(b^{2}D)4s$	0 'D	2	20209.64		1.01:
3d ² 4s ²	a ^s P	$\begin{array}{c} 0 \\ 1 \\ 2 \end{array}$	8436. 630 8492. 437 8602. 353	55. 807 109. 916	$1.\ 50 \\ 1.\ 49$	$3d^{\circ}(a^{2}H)4s$ $3d^{2} 4s(a^{2}F)4p$:	a ¹ H z ³ G°	5 3 1	20795.65 21469.534 21588 520	118.986	1.01 0.75
3d3(b 4F)4s	b ³F	$2 \\ 3 \\ 4$	$11531.812 \\ 11639.820 \\ 11776.820$	108. 008 137. 000	$\begin{array}{c} 0.\ 67 \\ 1.\ 08 \\ 1.\ 26 \end{array}$	$3d^2 4s(a {}^2F)4p$	z ¹ D°	$\frac{4}{5}$	21088. 520 21739. 743 22081. 15	151. 223	1. 05
$3d^2 4s^2$	a ¹ G	4	12118.46		0, 98	$3d^2 4s(a {}^2F)4p$	z ¹ F°	- 3	22404.69		1.00
$3d^{3}(a \ ^{4}P)4s$	<i>a</i> ⁵ P	1	13981. 75	46 70	2, 50	$3d^2 4s(a {}^2F)4p$	z 1G°	4	24694.81		0. 97
		$\frac{2}{3}$	$\begin{array}{c} 14028.\ 47\\ 14105.\ 68\end{array}$	40. 72 77. 21	$ \begin{array}{c} 1.82\\ 1.66 \end{array} $	$3d^2 4s(b \ ^4P)4p$	z ³ S°	1	24921.19		1. 99
3d3(a 2G)4s	a ³ G	3	15108. 153	18 650	0. 74	$3d^{2} 4s(b \ ^{4}P)4p$	z ⁵S°	2	25102.88		1. 93
		4 5	15156. 803 15220. 400	48. 050 63. 597	$ \begin{array}{c} 1.06 \\ 1.21 \end{array} $	3d ² 4s(a ⁴ F)4p:	y ³F°	23	25107.453 25227.236	119.783 161 109	1.06
3d² 4s(a 4F)4p	z ⁵ G°	$2 \\ 3 \\ 4 \\ 5 \\ 6$	15877.18 15975.59 16106.08 16267.51 16458.71	98. 41 130. 49 161. 43 191. 20	$\begin{array}{c} 0. \ 39 \\ 0. \ 93 \\ 1. \ 15 \\ 1. \ 25 \\ 1. \ 33 \end{array}$	3d² 4s(a 4F)4p:	y ³D°	4 1 2 3	25388.345 25317.842 25438.930 25643.724	121. 088 204. 794	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
3d² 4s(a 4F)4p	z 5F°	$1 \\ 2 \\ 3 \\ 4$	16817.19 16875.19 16961.42 17075.31	$58.\ 00\\86.\ 23\\113.\ 89\\12$	0. 00 1. 26: 1. 34	3d ² 4s(b ⁴ P)4p	z ³P°	$\begin{array}{c} 2\\ 1\\ 0\end{array}$	25493. 78 25537. 39	-43. 61	1. 47 1. 50
3d³(b 2D)4s	a ³ D		17215. 44 17369. 59 17424. 11 17540. 33	140. 13 54. 52 116. 22	$ \begin{array}{c} 1. 42 \\ 0. 49 \\ 1. 17 \\ 1. 34 \end{array} $	$3d^2 4s(b \ ^4P)4p$:	y ⁵D°	$ \begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \end{array} $	25605.03 25635.74 25699.95 25797.60 25926.82	$\begin{array}{c} 30.\ 71 \\ 64.\ 21 \\ 97.\ 65 \\ 129.\ 22 \end{array}$	1. 52
3d3(a 2P)4s	b ³ P	$egin{array}{c} 0 \ 1 \ 2 \end{array}$	17995. 75 18061. 54 18145. 40	65. 7 9 83. 86		3d ³ (b ⁴ F)4p	y ⁵G°	$2 \\ 3 \\ 4 \\ 5$	26494.37 26564.43 26657.41 26772.98	70.06 92.98 115.57	$\begin{array}{c} 0.\ 34 \\ 0.\ 91 \\ 1.\ 15 \\ 1.\ 25 \end{array}$
3d ³ (a ² H)4s	a ³ H	$4 \\ 5 \\ 6$	18037.28 18141.252 18192.594	$103. \ 97 \\ 51. \ 342$	0.80 1.02 1.17	3d ³ (b ⁴ F)4p:	x ³ F°	6 2	26910.69 26803.462	137.71	1. 34 0. 66
3d ³ (a ² G)4s	b 1G	4	18287.62		1. 02			$\frac{3}{4}$	26892.946 27025.667	132. 721	1.06 1.23
3d² 4s(a 4F)4p	z ⁵D°	$\begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \end{array}$	18462.83 18482.86 18525.07 18593.99	$20.03 \\ 42.21 \\ 68.92 \\ 101.24$	$1. \ 65? \\ 1. \ 50 \\ 1. \ 49$	3d³(b 4F)4p	x ³D°	$egin{array}{c} 1 \\ 2 \\ 3 \end{array}$	27355.065 27418.037 27480.077	62. 972 62. 040	0. 51 1. 17 1. 36
3d³(a 4P)4s	c ⁸ P	4 0 1	18695. 23 18818. 23 18825. 89	7. 66	1. 51 1. 54?	3d ³ (b ⁴ F)4p:	y ³G°	3 4 5	27499.033 27614.693 27750.156	115. 660 135. 463	$\begin{array}{c c} 0.\ 75 \\ 1.\ 05 \\ 1.\ 21 \end{array}$
		2	18911. 55	85. 66	1. 54:	$3d^2 4s(b \ ^4P)4p$	<i>z</i> 5P°	$1 \\ 2 \\ 3$	27665.57 27740.19 27887.74	74. 62 147. 55	

Ti I—Continued

Ti I-Continued

Config.	Desig.	J	Level	Interval	Obs. g	Config.	Desig.	J	Level	Interval	Obs. g
3d ² 4s(a ² D)4p:	y ¹ D°	2	27906.91		0. 98	$3d^2 4s(b \ ^2P)4p$:	y ¹P°	1	34947.02		
$3d^{3}(b \ {}^{4}\mathrm{F})4p$	y ⁵F°	1	28596. 45	42.37	0.00	$3d^2 4s(b \ ^2P)4p$:	x ¹D°	2	35035.11		
	1	$\begin{vmatrix} 2\\ 3 \end{vmatrix}$	28638.82 28702.70	63. 88 85 69	$1.01 \\ 1.24$	$3d^2 4s(b \ ^2\mathrm{P})4p$	y ³S°	1	35439.43		2.18
		$\begin{vmatrix} 4\\5 \end{vmatrix}$	28788.39 28896.08	107.69	1. 34 1. 40	3d ³ (a ² G)4p	y ³H°	4	35454.099	105. 563	0.79
3d4	a ⁵ D	$\begin{array}{c} 0\\ 1\\ 2\\ 3\\ 4 \end{array}$	28772.86 28791.62 28828.51 28882.44 28952.10	18. 76 36. 89 53. 93 69. 66		3d ³ (a ⁴ P)4p	w ⁵D°	6 0 1 2	35685. 188 35503. 40 35527. 76	$ \begin{array}{c} 125.526\\ 24.36\\ 49.38 \end{array} $	1. 17 1. 51
3d ² 4s(b ⁴ P)4p:	w ³ D°	1 2 2	29661. 272 29768. 686	107. 414 143. 606	0. 51 1. 16	2.12.4. (= ATN 5-	510	2 3 4	35652.95 35757.51	75. 81 104. 56	1. 33 1. 46 1. 46
e 20 (7, eT) (3	29912. 292		1. 34	3a2 4s(a *F)5s	e PF	$\begin{vmatrix} 1\\2\\2 \end{vmatrix}$	35959.07 36013.57	54.50 82.90	0.00
$3d^{3}(b \ ^{2}\mathrm{F})4s$	$a {}^{1}F$	3	29818. 31					$\begin{vmatrix} 3\\4 \end{vmatrix}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	112.45	1.24 1.34
$3d^{3}(b \ {}^{4}\mathrm{F})4p$	$x ^{5}D^{\circ}$	$\begin{vmatrix} 0\\1 \end{vmatrix}$	29829.16 29855.26	26. 10	1.46			5	36351.43	142. 01	1. 42
		$\begin{vmatrix} 2\\ 3 \end{vmatrix}$	29907.29 29986.24	78. 95	1.50 1.49	$3d^2 4s(b \ ^2G)4p$:	y ¹G°	4	36000. 25		1.00
$2d^2 A_0(a 4 F) A_m$	m 3G.º	4	30060. 34	74. 10	1. 49	$3d^4$	b ³G	$\frac{3}{\frac{4}{5}}$	$\begin{array}{c c} 36065.75\\ 36132.21\\ 36200.04 \end{array}$	66. 46 68. 73	
5 <i>a</i> ² 48(<i>a</i> * f)4 <i>p</i> ;		3 4 5	$\begin{array}{c} 29914.773\\ 29971.106\\ 30039.246 \end{array}$	56. 333 68. 140	1. 19	3d ³ (a ⁴ P)4p	y ⁵P°		36298. 43	42, 24	2. 47
$3d^2 4s(a \ ^2D)4p$:	v ³D°	$\begin{vmatrix} 1\\ 2 \end{vmatrix}$	31184.089 31190.663	6. 574	$0.51 \\ 1.17$			$\frac{2}{3}$	36340.67 36414.58	73. 91	1. 81 1. 66
$3d^2 4s(b \ ^2G)4p$:	w ³ G°	3	31206.014 31373.862	115.001	1. 34 0. 75	$3d^{3}(b \ ^{2}\mathrm{D})4p$:	w ³ P°	$\begin{array}{c c} 0 \\ 1 \\ 2 \end{array}$	37090.65 37173.03 37325.47	82. 38 152. 44	1.53 1.48
		4 5	31489. 486 31628. 698	115. 624 139. 212	1.05 1.19	3d ³ (a ⁴ P)4p	y ⁵S°	2	37359. 13		1. 99
3d ² 4s(a ² D)4p:	y ³ P°	$egin{array}{c} 0 \\ 1 \\ 2 \end{array}$	31685.90 31725.75 31805.94	39. 85 80. 19	1. 47	3d ² 4s(a ⁴ F)5s	e ³F	$2 \\ 3 \\ 4$	37538.71 37659.97 37824.69	121. 26 164. 72	$\begin{array}{c} 0.\ 67\\ 1.\ 11\\ 1.\ 27\end{array}$
3d² 4s(b ²G)4p	z ³ H°	$\begin{array}{c} 4\\ 5\\ 6\end{array}$	31830.016 31914.304 32013.555	84. 288 99. 251	0. 80 1. 04 1. 17	3d ³ (a ² G)4p	v ³G°	$3\\4\\5$	37554.99 37617.93 37690.37	62. 94 72. 44	0.77 1.05 1.20
3d ² 4s(a ² D)4p	y ¹ F°	3	32857.76		0.99?	$3d^2 4s(b \ ^2G)4p$:	x ¹ F°	3	37622.63		0. 94
$3d^2 4s(b \ ^2P)4p$:	$x ^{3}P^{\circ},$	$\begin{array}{c} 0 \\ 1 \\ 2 \end{array}$	33085.14 33090.55 33114.49	5. 41 23. 94	$1.46\\1.46$	3d ³ (b ² D)4p:	u ³ F°	$2 \\ 3 \\ 4$	37654.77 37743.96 37852.47	89.19 108.51	0. 65 1. 08 1. 24
3d ² 4s(a ² D)4p:	w ³ F°	$2 \\ 3 \\ 4$	33655.898 33680.162 33700.897	24. 264 20. 735	0. 66 1. 09 1. 26	$3d^2 4s(b \ ^2P)4p$:	u ³D°	$\begin{array}{c}1\\2\\3\end{array}$	37851.91 37976.78 38159.71	124. 87 182. 93	0. 53 1. 14: 1. 35
$3d^2 4s(a \ ^2D)4p$:	z ¹ P°	1	33660.73		0. 94?	$3d^3(a \ ^2\mathrm{P})4p$	z ¹ S°	0	3 8200. 94		
3d² 4s(b 2G)4p	v ³ F°	$\begin{array}{c}2\\3\\4\end{array}$	33980.685 34078.612 34205.001	97. 927 126. 389	$\begin{array}{c} 0.\ 63 \\ 1.\ 10 \\ 1.\ 23 \end{array}$	3d ³ (a ² G)4p	t ³ F°	$2 \\ 3 \\ 4$	38451.29 38544.38 38670.73	93. 09 126. 35	0. 66 1. 08 1. 25
3 <i>d</i> ⁴	d ³P	$\begin{array}{c} 0\\ 1\\ 2 \end{array}$	34170. 95 34327. 96 34535. 04	157. 01 207. 08		3d ³ (a ² H)4p	z ³I°	5 6 7	38572.75 38669.03 38779.97	96. 28 110. 94	0. 81 1. 02 1. 15
$3d^2 4s(b \ ^2G)4p$:	z ¹ H°	5	34700. 31		1. 02	3d ³ (b ² D)4p:	t ³D°	$1 \\ 2 \\ 3$	38654.23 38699.95 38764.96	45. 72 65. 01	0. 54: 1. 32

Ti I—Continued

Ti I—Continued

Config.	Desig.	J	Level	Interval	Obs. g	Config.	Desig.	J	Level	Interval	Obs. g
3d ³ (a ² G)4p:	x 1G°	4	38959. 53		1. 02		w ³ H°	4	41780.95	114 20	
3d3(b 2D)4p	x ¹ P°	1	39078.00						41895.15 41995.39	100. 24	-
3d3(b 4F)5s	f ⁵F	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{array} $	39107. 25 39149. 26 39214. 38 39302. 36 39412. 78	42. 01 65. 12 87. 98 110. 42		3d² 4s(a 4F)5p	v ⁵D°	$0 \\ 1 \\ 2 \\ 3 \\ 4$	41822.99 41854.01 41906.61 41985.93 42092.52	$\begin{array}{c} 31.\ 02\\ 52.\ 60\\ 79.\ 32\\ 106.\ 59\end{array}$	
3d ³ (a ² H)4p	x ³ H°	$\begin{array}{c} 4\\ 5\\ 6\end{array}$	39115.99 39152.14 39198.39	$36.15 \\ 46.25$	$\begin{array}{c} 0.\ 88?\\ 1.\ 02\\ 1.\ 18 \end{array}$	3d ² 4s(a ⁴ F)4d	e ⁵H	$ \begin{array}{c} 3 \\ 4 \\ 5 \\ 6 \end{array} $	41823. 19 41917. 05 42018. 01 42123. 77	93. 86 100. 96 105. 76	$1.15 \\ 1.22$
3d ³ (a ² P)4p	w ¹ D°	2	39265.80		1.06:			7	42205. 59	81.82	1. 28
3d ³ (b ⁴ F)5s	f ³F	$\begin{array}{c}2\\3\\4\end{array}$	39526. 89 39640. 98 39785. 94	114. 09 144. 96		3d ² 4s(a ⁴ F)4d	e ⁵D	$\begin{array}{c} 0\\ 1\\ 2\\ \end{array}$	418 7 1. 56 41901. 36 41958. 51	29. 80 57. 15 94. 21	
3d ³ (a ⁴ P)4p	s ³ D°	1	39662.15 39686 10	23. 95	0. 52			$\frac{3}{4}$	42052.72 42184.66	131. 94	
		3	39715.51	29. 41	1.31:	3d ² 4s(a ⁴ F)4d	g ³ F	2	41871.87	116. 52	
$3d^3(b \ ^2\mathrm{D})4p$	w ¹ F°	3	40303.04		1.05:			4	42107.06	118.67	
3d ³ (a ² H)4p	z ¹ I°	6	40319.80		1. 03	3d ³ (a ² P)4p:	u ³ P°	$\begin{array}{c} 2\\ 1\end{array}$	41928.59 41943.95	-15.36	
3d ³ (a ⁴ P)4p:	v ³ P°	$egin{array}{c} 0 \\ 1 \\ 2 \end{array}$	40369.76 40384.58 40467.04	14. 82 82. 46			q ³ D°		41959.46 42146.39	60. 49	
3d ³ (a ² P)4p	r ³ D°	$\begin{array}{c}1\\2\\3\end{array}$	40556.07 40670.60 40844.19	114. 53 173. 59	0. 49		<i>p</i> ³ D°	$\begin{array}{c} 2\\ 3\\ 1\end{array}$	42206.88 42311.31 42193.94	104. 43	1. 32
$3d^{3}(a^{2}P)4p$	x ³ S°	1	40844.19				F	$\frac{2}{3}$	42269.73	106. 98	
	w 1G°	4	40883.30		0, 95:	$3d^2 4s(a \ {}^4\mathrm{F})4d$	e ⁵ P	1	42611. 58	110 50	
$3d^{3}(a \ ^{2}G)4p$:	y ¹ H°	5	41039.93		1. 03	· · ·		$\begin{vmatrix} 2\\ 3 \end{vmatrix}$	42724. 11 42858. 90	112. 53	1.64
3d ² 4s(a ² F)5s	e ¹ F	3	41087. 31		1. 01	$3d^2 4s(a \ ^2S)4p$:	w ¹ P°	1	42927.55		1. 00:
3d ³ (a ² H)4p	u ³ G°	$\begin{array}{c} 3\\ 4\\ 5\end{array}$	41169.82 41255.44 41341.62	85. 62 86. 18	0.73 1.03 1.19	3d ² 4s(a ⁴ F)4d	<i>g</i> ⁵F	$\begin{array}{c}1\\2\\3\\\end{array}$	43034.08 43080.92 43148.15	46. 84 67. 23 83. 84	-
3d² 4s(a 4F)4d	e ³ G	$3\\4\\5$	41194. 42 41368. 86 41481. 13	174. 44 112. 27			r ³ F°	4 5 2	43231. 99 43330. 07 43467. 55	98. 08	
	s ³ F°	23	41337. 43 41457. 62	$120. 19 \\ 166. 51$	0.66 1.09	9.72/ OTT\ 4	100	34	43583.14 43744.55	161. 41	0.05
0 70 A (. ATN A 3	277	4	410%4.13		1. 24	3a ³ (a ² H)4p:		4	43674.31		0.95
3a² 4s(a ≠r)4a	e °n	$\begin{vmatrix} 4\\5\\6 \end{vmatrix}$	$\begin{array}{c c} 41515.09 \\ 41556.33 \\ 41615.02 \end{array}$	41. 24 58. 69		$3d^3(b \ ^2\mathrm{D})4p$	$\begin{bmatrix} v & ^{1}D^{\circ} \\ u & ^{1}D^{\circ} \end{bmatrix}$	$\begin{vmatrix} 2\\ 2 \end{vmatrix}$	43710. 28		0. 98:
$3d^{3}(a^{2}G)4p$:	v ¹ F ⁰	3	41585.24			$3d^{3}(b \ {}^{4}\mathrm{F})4d$	f ⁵H	3	43843.82	57 09	
3d ² 4s(a ⁴ F)4d	e ⁵G	2 3 4	41714. 35 41757. 47 41818. 70	43. 12 61. 23 84 78	1. 12			4 5 6 7	43901. 74 43971. 55 44051. 37 44134. 65	57.92 69.81 79.82 83.28	$ \begin{array}{c cccc} 0. 91 \\ 1. 11 \\ 1. 21 \\ 1. 29 \\ \end{array} $
		$\begin{vmatrix} 5\\6 \end{vmatrix}$	41903. 48 42019. 22	115. 74	$ \begin{array}{c c} 1.24\\ 1.34\\ \end{array} $		o 3D°	$\begin{vmatrix} 1\\ 2\\ 3 \end{vmatrix}$	43975.62 44079.39 44233.15	103. 77 153. 76	1. 18?
Ti I—Continued

Ti I—Continued

Config.	Desig.	J	Level	Interval	Obs. g	Config.	Desig.	J	Level	Interval	Obs. g
	t ³ G°	3 4 5	44162.44 44375.57	213. 13		3d ² 4s(a ² F)4d	i ³ F	2 3 4	47038.16 47194.68	156. 52	
3d ³ (a ² H)4p	x ¹ H°	5	4416 3. 24		1. 03	3d ³ (b 4F)6s	i ⁵ F	1			
3d ³ (b ⁴ F)4d	f ⁵D	0 1						$\begin{array}{c} 2\\ 3\\ 4\end{array}$			
		$\frac{2}{3}$	44254. 39 44381. 17	126. 78		3d ² 4s(a 4F)5d	g ⁵H	5 3	47777. 32 47840. 62	72 00	
3d ² 4s(a ² D)5s	e ¹ D	2	44581.16					$\begin{vmatrix} 4\\5 \end{vmatrix}$	47913.61 47994.32	80.71	
·	q ³F°	2 3 4	44825. 26 44923. 00 45041_02	97. 74 118. 02		$3d^2 4s(a + E) 5d$	h 5G	6 7 2	48106.83 48262.83	156.00	
$3d^{3}(a, 4P)4n$	210 3S°	1	40041.00				<i>n</i> u		47936.79	66. 18 81. 29	
	$n^{3}D^{\circ}$	1	44966. 36	97.58					$\begin{array}{c c} 10010.00\\ 48119.47\\ 48233.47 \end{array}$	101. 39 114. 00	
		$\frac{2}{3}$	45206. 3 4	142.40		$3d^2 4p^2$	j ⁵F	$\frac{1}{2}$	48058.85	48. 57	
3d ² 4s(a ² S)4p:	t ³P°	$\begin{array}{c} 0 \\ 1 \\ 2 \end{array}$	45040.70 45090.73 45178.06	50. 03 87. 33					48107. 42 48208. 87 48328. 81 48462. 11	101. 45 119. 94 133. 30	
3d ² 4s(a ² F)4d	e ¹ H	5	45485. 35			$3d^2 4s(a \ {}^4\mathrm{F})5d$	g ⁵D	0			
3d ³ (b ⁴ F)4d?	f ⁵G	$2 \\ 3 \\ 4 \\ 5$	45689.89 45711.28	$\begin{array}{c} 21.\ 39\\ 45.\ 17 \end{array}$				$\begin{array}{c c}1\\2\\3\\4\end{array}$	48059. 82 48186. 11	126. 29	
		5 6	45756. 457 45904. 7 3	148. 28		$3d^{3}(b \ ^{2}\mathrm{F})4p$:	u ¹ F°	3	48365.09		
3d² 4s(a 2F)4d	f ³H	$\begin{array}{c} 4\\5\\6\end{array}$	45721. 89 45832. 50 45960. 39	110. 61 127. 89	0.80 1.03 1.17	3d ² 4s(a ⁴ F)5d	k ⁵F	1 2 3	48519. 21 48588. 28	69. 07 84. 38	
3d ² 4s(a ⁴ F)6s	h ⁵F	1	45764.71	48. 30				$\begin{vmatrix} 4\\5 \end{vmatrix}$	48672.66	99.07	
		$\frac{4}{5}$	45813.01 45893.26 46007.62 46157.76	80. 25 114. 36 150. 14		3d ² 4p ²	e 3D	$\begin{array}{c}1\\2\\3\end{array}$	48724. 83 48724. 34 48839. 74	-0.49 115.40	
3d ² 4s(a ² F)4d	e 1G	4	46068. 04			$3d^2 4p^2$	h ⁵D	0	48802.32	57, 19	
3d ² 4s(b ⁴ P)5s	e ³ P	$egin{array}{c} 0 \ 1 \ 2 \end{array}$	46244.60					$\begin{array}{c}1\\2\\3\\4\end{array}$	48859.51 48915.07 49024.43 49036.46	55. 56 109. 36 12. 03	
3d ³ (b ² F)4p:	u 1G°	4	46257.67		0. 95		f ³D	1			
3 d ² 4s(a 4F)6s	h ³ F	2						$\begin{vmatrix} 2\\ 3 \end{vmatrix}$	49571.69 49619.72	48.03	
		3 4	46530. 45				f ¹D	2	50128.08		
3d ² 4s(a ² F)4d	<i>f</i> ¹ F	3	46650. 26				<i>f</i> ¹G	4	52125. 98		
$3d^2 4p^2$	g ⁵G	$2 \\ 3 \\ 4 \\ 5$	46943. 91 47030. 28 47139. 86	86. 37 109. 58 140. 83			e 1P	1	53663. 32		
		5 6	47280. 69 47446. 84	166. 15		Ti 11 (a 4F133)	Limit		55138		

June 1948.

Ti I OBSERVED TERMS

Config. 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ +					Obser	rved Terr	ns				
3d ² 4s ²	{a ² P	a 1D	<i>a</i> ³ F	<i>a</i> 1G							
$3d^{4}$	${_{d ^{3}P}}$	a 5D		b 3G							
$3d^2 4p^2$	{	h 5D e 3D	i ⁵F	<i>g</i> ⁵ G							
			ns $(n \ge 4)$	****			n	$p (n \ge 4)$			
3d ² 4s(a 4F)nx	{		e, h ⁵ F e, h ³ F		-		$z, v {}^{5}\mathrm{D}^{\circ}$ $y {}^{3}\mathrm{D}^{\circ}$	z ⁵ F° y ³ F°	z ⁵ G° x ³ G°		
3d ³ (b ⁴ F)nx	{		a, f, i ⁵ F b, f ³ F				x ⁵ D° x ³ D°	y ⁵F° x ³F°	y ⁵G° y ³G°		
3d ² 4s(a ² F)nx	{		<i>e</i> ¹ F				$\begin{array}{cc} z & {}^{3}\mathrm{D}^{\circ} \\ z & {}^{1}\mathrm{D}^{\circ} \end{array}$	z ³ F° z ¹ F°	$\begin{array}{ccc}z & {}^{3}\mathrm{G}^{\circ}\\z & {}^{1}\mathrm{G}^{\circ}\end{array}$		
3d ² 4s(a ² D)nx	{	e 1D				y ³P° z ¹P°	$egin{array}{cc} v & {}^3\mathrm{D}^{\circ} \ y & {}^1\mathrm{D}^{\circ} \end{array}$	w ³ F° y ¹ F°			
3d ³ (a ² G)nx	{			a ³ G b ¹ G				t ³ F° v ¹ F°	v ³ G° x ¹ G°	y ³H° y ¹H°	
3d ³ (a ⁴ P)nx	$\begin{cases} a \ {}^{5}\mathrm{P} \\ c \ {}^{3}\mathrm{P} \end{cases}$				$y {}^{5}\mathrm{S}^{\circ} w {}^{3}\mathrm{S}^{\circ}$	y ⁵P° v ³P°	w ⁵D° s ³D°				
3d ³ (a ² P)nx	$\begin{cases} b \ ^{3}\mathrm{P} \\ a \ ^{1}\mathrm{P} \end{cases}$				$\begin{array}{c} x \ {}^{3}\mathrm{S}^{\circ} \\ z \ {}^{1}\mathrm{S}^{\circ} \end{array}$	u ³P°	r ³ D° w ¹ D°				
$3d^2 4s(b \ ^4P)nx$	{e 3P				$z {}^{5}S^{\circ}$ $z {}^{3}S^{\circ}$	z ⁵ P° z ³ P°	y ⁵ D° w ³ D°				
3d ³ (b ² D)nx	{	a 3D b 1D				w ³ P° x ¹ P°	t ³ D° u ¹ D°	u ³ F° w ¹ F°			
$3d^{3}(a^{2}\mathrm{H})nx$	{			$egin{array}{c} a \ ^3\mathrm{H} \\ a \ ^1\mathrm{H} \end{array}$					u ³ G° v ¹ G°	$egin{array}{c} x \ {}^{3}\mathrm{H}^{\circ} \ x \ {}^{1}\mathrm{H}^{\circ} \end{array}$	z ³ I° z ¹ I°
3d ² 4s(b ² G)nx	{							v ³ F° x ¹ F°	w ³ G° y ¹ G°	$z {}^{3}\mathrm{H^{o}}$ $z {}^{1}\mathrm{H^{o}}$	
$3d^2 4s(b \ ^2P)nx$	{				y 3S°	$egin{array}{c} x & {}^3\mathrm{P}^{\mathrm{o}} \ y & {}^1\mathrm{P}^{\mathrm{o}} \end{array}$	u ³ D° x ¹ D°				
$3d^{3}(b \ ^{2}\mathrm{F})nx$			a 1F				1	u ¹ F°	u 1G°		
3d² 4s(a 2S)nx	{					t ³ P° w ¹ P°					
			nd $(n \ge 4)$								
3d ² 4s(a ⁴ F)nx	{e 5P	<i>e, g</i> 5D	g, k ⁵ F a ³ F	$\begin{array}{c} e, h \ {}^{5}G \\ e \ {}^{3}G \\ e \ {}^{3}H \\ \end{array}$							
3d ³ (b ⁴ F)nx		f ⁵ D	y 1	f ⁵ G? f ⁵ H	[
3d ² 4s(a ² F)nx	{		i ${}^3\mathrm{F}$ f ${}^1\mathrm{F}$	e ¹ G e ¹ H	i l						

.

*For predicted terms in the spectra of the Ti I isoelectronic sequence, see Introduction.

(Sc I sequence; 21 electrons)

Ground state 1s² 2s² 2p⁶ 3s² 3p⁶ 3d² 4s ⁴F_{11/2}

 $a \ {}^{4}\mathrm{F}_{1\frac{1}{2}} \ 110000 \ \mathrm{cm}^{-1}$

This spectrum has been analyzed by Russell. His detailed analysis published in 1927 contains 50 terms derived from 164 multiplets, and includes 529 classified lines. The doublet and quartet terms are connected by observed intersystem combinations.

The configuration assignments are of considerable theoretical interest, as indicated, for example, in the references to the papers by Ufford, Racah, and Many listed below. Many has interchanged the configurations given by Russell to the two low ⁴F terms. From a detailed study of the series relations Russell has recently shown conclusively that his original assignments were correct, namely that the lower term $(a \ {}^{4}F)$ has the configuration $3d^{2}$ $(a \ {}^{3}F)4s$ and that the higher one $(b \ {}^{4}F)$ should be ascribed to $3d^{3}$.

Approximate g-values have been determined by Catalán from the Zeeman patterns observed by King and Babcock and quoted by Russell (1927). Very few patterns have been resolved and consequently the observed g-values differ from the theoretical ones by a few percent in some cases. Colons indicate that LS-coupling has been assumed and a theoretical g-value introduced in order to utilize the observed data. It is highly desirable to extend this work with the aid of Harrison's unpublished Zeeman observations of titanium.

REFERENCES

H. N. Russell, Astroph. J. 66, 283 (1927); Mt. Wilson Contr. No. 344 (1927). (I P) (T) (C L) (G D) (Z E)

C. W. Ufford, Phys. Rev. 44, 732 (1933).

G. Racah, Phys. Rev. 62, 438 (1942).

A. Many, Phys. Rev. 70, 511 (1946).

H. N. Russell, Phys. Rev. 74, 689 (1948).

M. A. Catalán, unpublished material (June 1948). (Z E)

	1	
		-

Ті п

-											
Config.	Desig.	J	Level	Interval	Obs. g	Config.	Desig.	J	Level	Interval	Obs. g
3d ² (a ³ F)4s	a ⁴ F	$ \begin{array}{r} 1\frac{1}{2} \\ 2\frac{1}{2} \\ 3\frac{1}{2} \\ 41 \end{array} $	$\begin{array}{c} 0.\ 00\\ 93.\ 94\\ 225.\ 47\\ 202\\ 93\\ 202\\ 93\\ 93\\ 93\\ 93\\ 93\\ 93\\ 93\\ 93\\ 93\\ 93$	93. 94 131. 53 167. 75		3d3	a ⁴ P	1/2 1/2 21/2 21/2	9363. 71 9395. 76 9518. 05	32. 05 122. 29	2. 63 1. 74 1. 60:
3d ³	b ⁴F	$\frac{472}{11/2}$	907. 96	75. 84		3d ³	a ² P	$1\frac{1}{2}$ $1\frac{1}{2}$	9850. 90 9975. 92	125. 02	0.66 1.33
		$\begin{array}{c} 272 \\ 31/2 \\ 41/2 \end{array}$	1087. 21 1215. 58	103. 41 128. 37		3d ² (a ³ P)4s	b⁴P		$\begin{array}{r} 9872.\ 87\\ 9930.\ 74\\ 10024.\ 74\end{array}$	57. 87 94. 00	2. 60 1. 72: 1. 60:
3d ² (a ³ F)4s	a ²F	$2\frac{1}{2}{3\frac{1}{2}}{3\frac{1}{2}}$	4628. 61 4897. 60	268. 99	0.86: 1.14:	3d3	b 2D	$\frac{11}{2}$ $\frac{11}{2}$ $\frac{21}{2}$	12628. 77 12758. 15	129. 38	0.80: 1.20:
3d ² (a ¹ D)4s	a 2D	$rac{1\frac{1}{2}}{2\frac{1}{2}}$	8710. 47 8744. 27	33. 80	0.80 1.20:	3d ³	a ²H	4½ 5½	$\begin{array}{c} 12676.\ 99\\ 12774.\ 81 \end{array}$	97. 82	0.91: 1.09:
3d 3	a ² G	$\begin{array}{c}3\frac{1}{2}\\4\frac{1}{2}\end{array}$	8997.69 9118.15	120. 46	0.89: 1.11:	3d ² (a ¹ G)4s	b²G	41/2 31/2	15257.53 15265.60	-8.07	1.11: 0.89:

I. P. 13.63 volts

Z = 22

Ti II—Continued

Ti II—Continued

Config.	Desig.	J	Level	Interval	Obs. g	Config.	Desig.	J	Level	Interval	Obs. g
3d ² (a ³ P)4s	b ²P	$1^{\frac{1}{2}}_{1\frac{1}{2}}$	16515. 79 16625. 25	109. 46	0. 66 1. 33	3d ² (a ¹ G)4p	x $^2\mathrm{F}^{\mathrm{o}}$	$3^{1\!\!/_2}_{2^{1\!\!/_2}}$	47466.80 47625.17	-158. 37	1. 14: 0. 86:
3d3	b ²₽	${3\frac{1}{2}}{2\frac{1}{2}}$	20891. 88 20951. 77	- 59. 89	1.14: 0.86:	3d 4s(a ³ D)4p	x 4D°	1/2 11/2 21/2	52329.78 52458.98 59471 48	$129.\ 20\\12.\ 50$	
$3d^2(a \ {}^1\mathrm{S})4s$	a 2S	1⁄2	21338.00:					$\frac{2}{3}\frac{1}{2}$	52631.07	159.59	
3d 4s ²	c ² D	$1\frac{1}{2}$ $2\frac{1}{2}$	24961. 34 25193. 04	231. 70	0.80: 1.20:	3d 4s(a 3D)4p	x ² P°	$1\frac{1}{2}$ $1\frac{1}{2}$	53121.48 53128.17	6. 69	
3d ² (a ³ F)4p	z ⁴ G°	$2\frac{1}{2}$ $3\frac{1}{2}$ $4\frac{1}{2}$ $5\frac{1}{2}$	29544.37 29734.45 29968.08	190. 08 233. 63 272. 60	0.57: 0.98:	$3d 4s(a ^{3}D)4p$	w ² D°	$2\frac{1}{2}$ $1\frac{1}{2}$	53554.90 53596.70	-41. 80	
9.J2(- 3E) 4m	a ATTO		30240.00		0.40.	$3a 4s(a \circ D)4p$	y *P*	$1^{72}_{1/2}$	56249.11	25. 98 76. 83	
3a²(a °r)4p	2 'F	$\begin{array}{c} 1 & 7_2 \\ 2 & 1_{/2} \\ 3 & 1_{/2} \\ 4 & 1_{/2} \end{array}$	30958.70 31113.61 31300.92	122. 18 154. 91 187. 31	1. 03: 1. 24:	3d 4s(a 3D)4p	w ² F°	$2^{1/2}$ $2^{1/2}$ $3^{1/2}$	59321.79 59467.81	146. 02	
3d ² (a ³ F)4p	z ² F°	$2\frac{1}{2}$	31207.44	000 90	0.86:	$3d^2(a \ {}^3\mathrm{F})5s$	e ⁴ F	1½	62180. 02	01.92	
	100	31/2	31490. 82	200.00	1. 14:			$2^{1/2}_{1/2}$ $3^{1/2}_{1/2}$	$\begin{array}{c} 62271.\ 25\\ 62409.\ 58\\ 62504\ 97\end{array}$	138. 33 184. 69	
3 <i>d</i> ² (a °F)4 <i>p</i>	z 2D°	$\begin{array}{c}1\frac{1}{2}\\2\frac{1}{2}\end{array}$	31756.50 32025.50	269.00	0. 92			$\frac{47}{2}$	02094.27		
3d ² (a ³ F)4p	z⁴D°	$\frac{1}{2}$	32532.38 32602.51	70. 13	0.00 1 20	$3d^2(a^3F)5s$	e ² F	$\begin{array}{c c} 2^{7_2} \\ 3^{1_2} \\ \end{array}$	63168. 23 63444. 76	276. 53	
		$2\frac{1}{2}$ $3\frac{1}{2}$ $3\frac{1}{2}$	32697.94 32767.02	95. 43 69. 08	1. 37 1. 43:	3d ² (a ³ F)4d	e ⁴G	$\begin{array}{c c} 2^{1\!/_2} \\ 3^{1\!/_2} \\ 4^{1\!/_2} \end{array}$	64884.65 64977.57 65094 29	92. 92 116. 72	
$3d^2(a \ ^3\mathrm{F})4p$	z ² G°	$3\frac{1}{2}$ $4\frac{1}{2}$	34543.36 34748.50	205. 14	0.89: 1.11:			$5\frac{1}{2}$	65241. 60	147. 31	
3d ² (a ³ P)4p	z ² S°	1/2	37430. 55		2. 09	$3d^2(a \ {}^3\mathrm{F})4d$	e ⁴H	$\begin{array}{c c} 3\frac{1}{2} \\ 4\frac{1}{2} \end{array}$	65184.72 65307.45	122.73 138.40	
$3d^2(a \ ^1\mathrm{D})4p$	y ²D°	$1\frac{1}{2}$	39233. 44	243. 43	0.80:				65445. 85 65589. 10	143. 25	
3d3(a 1D)4p	z ² P°	$\frac{272}{1\frac{1}{2}}$	39602.90 39674.64	-71.74	1.20. 1.21 0.67:	$3d^2(a \ {}^3\mathrm{F})4d$	f 2F	$2\frac{1}{2}{3\frac{1}{2}}{3\frac{1}{2}}$	65312.71 65458.65	145. 94	
3d ² (a ¹ D)4p	y ² F°	$2\frac{1}{2}$	<i>3992</i> 6. <i>83</i>	147 99	0. 86:	$3d^2(a \ {}^3\mathrm{F})4d$	e ⁴D	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	66767. 43? 66816. 49	49.06	
		31/2	40074.71	147.00	1. 14:			$egin{array}{c} 2^{1\!\!/_2} \\ 3^{1\!\!/_2} \end{array}$	66937.70 66996.67	58. 97	
$3d^2(a \ ^3\mathrm{P})4p$	z $^{4}S^{\circ}$	1½	40027. 28			$3d^2(a \ {}^3\mathrm{F})4d$	e 2G	31/2	67604. 20	216 67	
$3d^2(a \ ^3\mathrm{P})4p$	y ⁴ D°	$1/2 \\ 1/2 $	$40330.\ 25$ $40425.\ 80$	95.55 156.00					67820. 87	210.01	
		$2\frac{1}{2} \\ 3\frac{1}{2}$	40581.80 40798.37	216. 57		$3d^2(a \ {}^3\mathrm{F})4d$	e ² H	$ \begin{array}{c c} 4\frac{1}{2} \\ 5\frac{1}{2} \end{array} $	68328.95 68582.34	253. 39	
3d ² (a ³ P)4p	z 4P°	$2^{\frac{1}{2}}{1^{\frac{1}{2}}{2^{\frac{1}{2}}}}$	41996. 74 42068. 85 42208. 84	72. 11 139. 99		3d ² (a ³ F)4d	f 4F	$\begin{array}{c c} 1\frac{1}{2} \\ 2\frac{1}{2} \\ 3\frac{1}{2} \\ 3\frac{1}{2} \end{array}$	68767.66 68845.14 68950.39	77. 48 105. 25 130. 96	
$3d^2(a \ {}^1\mathrm{G})4p$	y 2G°	$\frac{3\frac{1}{2}}{4\frac{1}{4}}$	43740.77	40. 22	0. 89:	2d Ac(h 1D)Am	a 2D°	4½	69081.35		
$3d^2(a^3P)4n$	$x^{2}D^{\circ}$	21/2	4/902 /2		1, 20:	54 48(0 -D)4p	00	$2\frac{1}{2}$	69622.15	294.83	
54 (4 1) 1p		11/2	44914.80	-12. 38	0. 80:	$3d \ 4s(b \ ^1D)4p$	v ² F°	$2^{1/2}_{1/2}\ 3^{1/2}_{1/2}$	70606.35 70893.00	286.65	
3d ² (a ³ P)4p	y ² P°	$1^{1/2}_{1^{1/2}_{1^{1/2}_{2}}}$	45472.89 45548.90	76. 01	0. 66: 1. 33:						
3d ² (a ¹ G)4p	z ² H°	$4\frac{1}{2}$ $5\frac{1}{2}$	45673.75 45908.56	234. 81		Ti III (a 3F2)	Limit		110000		

June 1948.

Ti 11 Observed Terms*

Config. $1s^2 2s^2 2p^6 3s^2 3p^6 +$							Observ	ed Terr	ns						
3 <i>d</i> ³	{	a ⁴ P a ² P	b 2D	b 4F b 2F	a ² G a ² H										
3d 4s ²			<i>c</i> ² D												_
			ns (n	.≥4)			,	np	$(n \ge 4)$				nd (r	ı≥4)	
$3d^2(a \ ^2\mathbf{F})nx$	{			a, e ⁴ F a, e ² F				$z \frac{4}{2}$ $z \frac{4}{2}$ $z \frac{1}{2}$ $z \frac{1}{2}$	z 4F° z 2F°	z 4G° z 2G°		e ⁴ D	${f}{}^4\mathrm{F}$ ${f}{}^2\mathrm{F}$	e ⁴ G e ² G	e ⁴ H e ² H
$3d^2(a \ ^1D)nx$			<i>a</i> 2D				z ² P°	y 2D°	y $^2\mathrm{F}^{\circ}$						
$3d^2(a \ ^3\mathrm{P})nx$	{	b 4P b 2P				$z {}^{4}S^{\circ}$ $z {}^{2}S^{\circ}$	z ⁴ P° y ² P°	$\begin{array}{c} y \ {}^4\mathrm{D}^\circ \ x \ {}^2\mathrm{D}^\circ \end{array}$							
$3d^2(a \ ^1\mathrm{S})nx$	a 2S														
$3d^2(a \ {}^1\mathrm{G})nx$					b ² G				x $^2\mathrm{F}^{\circ}$	y ₂G°	z ² H°				
3d 4s(a ³ D)nx	{						y 4P° x 2P°	x ⁴ D° w ² D°	w ²F°						
3d 4s(b 1D)nx								v ²D°	v ² F°						

*A chart of predicted terms in the spectra of the Sc1 isoelectronic sequence is given in the Introduction. Owing to the difference in binding energies of the 3d and 4s electrons along this sequence, the charts of observed and predicted terms are not similarly arranged for Ti II.

Ti III

(Ca 1 sequence; 20 electrons)

Ground state $1s^2 2s^2 2p^6 3s^2 3p^6 3d^2 {}^3F_2$

$a {}^{3}\mathrm{F}_{2} 227000 \mathrm{~cm}^{-1}$

The analysis is by Russell and Lang who have classified 84 lines in the interval between 1002 A and 2984 A.

The singlet and triplet terms are connected by observed intersystem combinations.

REFERENCE

H. N. Russell and R. J. Lang, Astroph. J. 66, 25 ; Mt. Wilson Contr. No. 337 (1927). (I P) (T) (C L)

I. P. 28.14 volts

Z = 22

	Tim					Т	'i III	
Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level
3d²	a ³ F	2 3 4	0. 0 183. 7 421. 9	183. 7 238. 2	$3d(^2\mathrm{D})4p$ $3d(^2\mathrm{D})4p$	z ¹ F° z ¹ P°	3 1	83116. 58 83795. 70
$3d^2$	a 1D	2	84 72. 6		$3d(^{2}\mathrm{D})4d$	e ³ G	3 4	$129096. \ 3 \\ 129256. \ 0$
$3d^2$	a ³ P	0 1 2 0	$10536. 4 \\ 10603. 5 \\ 10721. 1 \\ 14052. 7?$	67. 1 117. 6	$3d(^{2}\mathrm{D})4d$	e 3D		129472. 6 129873. 9 130019. 5
$3d^2$	a ¹ G	4	14398. 5		$3d(^{2}\mathrm{D})4d$	e ³ S	2	132854. 6
$3d(^{2}\mathrm{D})4s$	a ³ D	$1 \\ 2 \\ 3$	38063.50 38197.98 38425.19	134. 48 227. 21	$3d(^{2}\mathrm{D})4d$	e ³ F	$2 \\ 3 \\ 4$	133067. 2 133209. 7 133373. 7
$3d(^{2}\mathrm{D})4s$	<i>b</i> 1D	2	41703.65		$3d(^{2}\mathrm{D})4d$	e ³ P	0	135543.8
$3d(^{2}\mathrm{D})4p$	<i>z</i> ¹ D°	2	75197.43				$\frac{1}{2}$	135002.4 135724.1
$3d(^{2}\mathrm{D})4p$	z ³ D°	$1 \\ 2 \\ 3$	76999. 70 77166. 65 77424. 20	$166.95 \\ 257.55$	$4s(^2\mathrm{S})4p$	y ³ P°	$\begin{array}{c} 0\\ 1\\ 2\end{array}$	137262 137490 137971

324. 70 412. 53

- 5. 93 85. 58

77421.48 77746.18 78158.71

80943. 95 80938. 02 81023. 60 Interval

159.7 216.6

145.6

142.5 164.0

58.6 121.7

228 481

227000

June 1948.

 $3d(^{2}D)4p$

 $3d(^{2}D)4p$

z 3F°

z 3P°

 $2 \\ 3 \\ 4$

0

1 2

Ti III OBSERVED TERMS*

Ti IV (2D)11/2)

Limit

Config. 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ +		Observed Terms						
3d²	$\begin{cases} a \ ^{3}P & a \ ^{2}F \\ a \ ^{1}S & a \ ^{1}D & a \ ^{2}G \end{cases}$							
	ns $(n \ge 4)$	$np \ (n \ge 4)$	$nd (n \ge 4)$					
3d(2D)nx 4s(2S)nx	$\begin{cases} a ^{3}D \\ b ^{1}D \end{cases}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	e ³ S e ³ P e ³ D e ³ F e ³ G					

*A chart of predicted terms in the spectra of the Ca I isoelectronic sequence is given in the Introduction. Owing to the change in binding energies of the 3d and 4s electrons along this sequence, the arrangement of the charts of observed and predicted terms is not identical. In Ti III no primes are used to indicate higher limits, and the prefixes $a, b \ldots e, z, y$ replace those indicating the running electron.

Z = 22

I. P. 43.24 volts

Ti IV

(K I sequence; 19 electrons)

Ground state 1s² 2s² 2p⁶ 3s² 3p⁶ 3d ²D_{1^{1/2}}

3d ²D_{1^{1/2}} 348817.8 cm⁻¹

The analysis is from Russell and Lang, who have revised and extended the early work of Gibbs and White. Thirty-one lines have been classified in the range between 423 A and 5492 A.

REFERENCES

R. C. Gibbs and H. E. White, Proc. Nat. Acad. Sci. 12, 598 (1926). (T) (C L)

H. N. Russell and R. J. Lang, Astroph. J. 66, 15 (1927); Mt. Wilson Contr. No. 337 (1927). (I P) (T) (C L)

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
$3p^6(^1\mathrm{S})3d$	3 <i>d</i> 2D	$1^{1/_2}_{1/_2}$	0. 0 384. 3	384. 3	$3p^{\mathfrak{e}(1\mathrm{S})5d}$	5 <i>d</i> 2D	$rac{11/2}{21/2}$	258827. 2 258866. 7	39. 5
3p ⁶ (1S)4s	4s 2S	$\frac{1}{2}$	80378.6		$3p^{6}({}^{1}\mathrm{S})6s$	6s 2S	1/2	2 658 3 5. 8	
3p ⁶ (1S)4p	4p 2P°	$1/2 \\ 1/2 \\ 1/2$	127912.5 128730.9	818. 4	$3p^{6}({}^{1} m{S})5g$	5 <i>g</i> 2G	$\left\{\begin{array}{c} 3^{1\!\!/_2} \\ 4^{1\!\!/_2} \end{array}\right.$	} 278501. 1	
$3p^6(^1\mathrm{S})4d$	4 <i>d</i> 2D	$1^{1/2}_{1/2} 2^{1/2}_{1/2}$	196794. 8 196880. 5	85. 7	$3p^{6}({}^{1} m S)6h$	6h ²H°	$\left\{\begin{array}{c} 4\frac{1}{2} \\ 5\frac{1}{2} \end{array}\right.$	} 300012.5	
3p ⁶ (¹ S)5s	58 2S	1/2	212395. 8		$3p^6(^1\mathrm{S})7h$	7h ² H°	$\begin{cases} 4\frac{1}{2} \\ 5\frac{1}{4} \end{cases}$	} 312973.5	
$3p^6(^1\mathrm{S})5p$	5 <i>p</i> ² P°	$1/2 \\ 1/2 \\ 1/2$	230597.6 230913.4	315. 8				, 	
$3p^6(^1\mathrm{S})4f$	4 <i>f</i> ² F°	$2^{1\!/_2}_{3^{1\!/_2}}$	236125. 3 236132. 5	7. 2	Ti v (1S ₀)	Limit		348817.8	

May 1948.

Ti IV

Ti IV

(AI sequence; 18 electrons)

Ground state 1s² 2s² 2p⁶ 3s² 3p⁶ ¹S₀

3p⁶ ¹S₀ 805500 cm⁻¹

Four lines are classified in the region between 163 A and 228 A, as combinations with the ground term. The levels in the table are from the 1937 reference, and all values have been rounded off in the last places.

For convenience, the Paschen notation has been added by the writer in column one of the table, under the heading "A I". As for AI, the jl-coupling notation in the general form suggested by Racah is here introduced, although *LS*-designations, as indicated in column two under the heading "Authors", are perhaps preferable for the terms thus far identified.

REFERENCES

P. G. Kruger and S. G. Weissberg, Phys. Rev. 48, 659 (1935). (C L)

P. G. Kruger, S. G. Weissberg and L. W. Phillips, Phys. Rev. 51, 1090 (1937). (I P) (T) (C L)

G. Racah, Phys. Rev. 61, 537 (L) (1942).

Ат	Authors	Config.	Desig.	J	Level
$1 p_0$	3p ⁶ 1S	3p ⁶	3p ⁶ 1S	0	0
184	3p⁵ 4s ^{\$} P°	3p ^{\$} (2P ₁ [*])4s	48 [1½]°	$2 \\ 1$	436880
182	3p⁵ 48 ¹P°	3p ^{\$} (²P⅔)48	4s'[½]°	0 1	443780
284	3p ⁵ 58 ^{\$} P°	3p ^δ (²P ₁₃)5s	58 [½]°	$2 \\ 1$	608090
282	3p ^δ 58 ¹ P°	3p⁵(²P⅔)5s	5s'[½]°	0 1	612970
		Ti vī (² P ₁ ,)	Limit		805500
		Ti vi (² P ^o)	Limit		811330

Ti v

May 1948.

I. P. 99.8 volts

Ti vi

(Cl 1 sequence; 17 electrons)

Ground state $1s^2 2s^2 2p^6 3s^2 3p^5 {}^{2}P^{\circ}_{1\frac{1}{2}}$

$3p^{5} {}^{2}\mathrm{P}^{\circ}_{1\frac{1}{2}} 966000 \mathrm{~cm^{-1}}$

All of the terms except $3p^6$ ²S are from the paper by Edlén. Twelve lines in the region between 182 A and 524 A have been classified as combinations from the ground term. Edlén has estimated the value of the limit by extrapolation along the isoelectronic sequence, as indicated by brackets in the table. His unit, 10^3 cm⁻¹, has here been changed to cm⁻¹.

REFERENCES

S. G. Weissberg and P. G. Kruger, Phys. Rev. 49, 872 (A) (1936). (C L) B. Edlén, Zeit. Phys. 104, 407 (1937). (I P) (T) (C L)

Config.	Desig.	J	Level	Interval
3s ² 3p ⁵	3p ⁵ ² P ^o		0 5840	5840
38 3p6	$3p^6$ ² S	1/2	196620	
3s ² 3p ⁴ (² P)4s	48 4P	$2\frac{1}{2}$ $1\frac{1}{2}$ $\frac{1}{2}$	495390	
3s ² 3p ⁴ (³ P)4s	48 2P	$1\frac{12}{12}$	$502580 \\ 506440$	- 3860
3s ² 3p ⁴ (¹ D)4s	48′ 2D	$2\frac{1}{2}$ $1\frac{1}{2}$	518820 518930	-110
3s ² 3p ⁴ (1S)4s	4s'' 2S	1/2	549000	
Ti VII (³ P ₂)	Limit		[966000]	

-T1 V	/1
-------	----

January 1948.

Z = 22

I. P. 120 volts

Ті VII

(S I sequence; 16 electrons)

Ground state $1s^2 2s^2 2p^6 3s^2 3p^4 {}^{3}P_2$

3p⁴ ³P₂ 1136000 cm⁻¹

All the terms are from Edlén's paper except $3p^5 {}^{3}P^{\circ}$, which is from Kruger and Pattin, who have estimated the value entered in brackets in the table. Twenty-four lines have been classified in the region between 164 A and 200 A. The limit is from Edlén, who has extrapolated it from isoelectronic sequence data.

The singlet and triplet terms are connected by two observed intersystem combinations. The unit adopted by Edlén, 10^3 cm⁻¹, has here been changed to cm⁻¹.

REFERENCES

B. Edlén, Zeit. Phys. 104, 188 (1937). (I P) (T) (C L)
P. G. Kruger and H. S. Pattin, Phys. Rev. 52, 622 (1937). (T) (C L)

Ті VII

Config. Desig. JLevel Interval Config. Desig. JLevel Interval 4s' 1D° 3s2 3p4 $3p^4$ ³P 2 3s² 3p³(²D°)4s 2 592930 0 -45404540 $\frac{1}{0}$ -13604s'' 3Po 607550 607990 609120 3s² 3p³(²P°)4s 5900 0 440 11**3**0 3p4 1D $\mathbf{2}$ 3s2 3p4 24120 2 3p⁴ ¹S 54770 3s² 3p³(²P°)4s 4s'' 1P° 3s2 3p4 0 1 614790 196260 3p⁵ ³P^o $\mathbf{2}$ 3s 3p5 -3800 $\begin{array}{c} 1 \\ 0 \end{array}$ 200060 -[2140][202200] Ti VIII (4S_{11/2}) Limit 1136000 3s2 3p3(4S°)4s 3S° 1 564240 4s 3s² 3p³(²D°)4s 4s' 3D° 5861001 2 3 $\begin{array}{c} 220\\ 680 \end{array}$ 586320 587000

January 1948.

Z = 22

I. P. 140.8 volts

Ti VII

(PI sequence; 15 electrons)

Ground state $1s^2 2s^2 2p^6 3s^2 3p^3 {}^{4}S^{\circ}_{1\frac{1}{2}}$

$$3p^3 \, {}^{4}S^{\circ}_{11_{2}} \qquad \text{cm}^{-1}$$

The analysis is incomplete. Kruger and Pattin have observed 15 lines between 150 A and 162 A and arranged them in five multiplets that give intervals consistent with those found in related isoelectronic spectra.

By a rough extrapolation of $3p^3 \, {}^4S^{\circ}_{1^{1/2}} - 3p^3 \, {}^2D^{\circ}_{1^{1/2}}$ along the isoelectronic sequence the writer has estimated the value of $3p^3 \, {}^2D^{\circ}_{1^{1/2}}$ entered in brackets in the table. She has calculated the terms listed below from the observed multiplets. The uncertainty x in the estimated position of the doublet terms relative to the quartets may well exceed $\pm 500 \,\mathrm{cm}^{-1}$.

REFERENCE

P. G. Kruger and H. S. Pattin, Phys. Rev. 52, 624 (1937). (C L)

Config.	Desig.	J	Level	Interval
3s ² 3p ³	$3p^3$ ${}^4\mathrm{S}^{\circ}$	1½	0	
3s² 3p³	$3p^3$ $^2\mathrm{D}^{\mathrm{o}}$	$1\frac{12}{212}$	[33000]+x 34080 +x	1080
3s² 3p³	$3p^3$ $^2\mathrm{P}^{\circ}$	$1^{\frac{1}{2}}_{1^{\frac{1}{2}}_{\frac{1}{2}}}$	55000 56460	1460
3s ² 3p ² (³ P)4s	4s 4P	$1/2 \\ 11/2 \\ 21/2 \\ 21/2 \\ 1$	660130 662850 666500	2720 3650
3s ² 3p ² (³ P)4s	4s 2P	$1\frac{1}{2}$ $1\frac{1}{2}$	672220 + x 676450 + x	4230
3s ² 3p ² (1D)4s	4s' 2D	$2\frac{1}{2}$ $1\frac{1}{2}$	691260 + x 691490 + x	-230

Ті VІП

December 1947.

Z = 22

volts

I. P.

FEREN

(Sis sequence; 14 electrons)

Ground state 1s² 2s² 2p⁶ 3s² 3p² ³P₀

 $3p^2 {}^{3}P_0 1560000 \text{ cm}^{-1}$

The analysis is very incomplete, but seven lines have been classified by Phillips in the interval 281 A to 341 A as combinations among three triplet terms. He states that the interval $3p^2 {}^{3}P_0 - 3p^2 {}^{3}P_1$ of the ground term has been extrapolated along the sequence, since no combinations from the ground state $3p^2 {}^{3}P_0$ are known. The first interval is, therefore, entered in brackets in the table, as well as his estimated value of the limit.

Ti IX

REFERENCE

L. W. Phillips, Phys. Rev. 55, 709 (1939). (I P) (T) (C L)

Config.	Desig.	J	Level	Interval
$3s^2 \ 3p^2$	3p² ³₽	$\begin{array}{c} 0 \\ 1 \\ 2 \end{array}$	0 3100 7310	[3100] 4210
3s 3p ³	$3p^3$ $^3S^{\circ}$	1	299920	
3s² 3p(²P°)3d	3d ³P°	2 1 0	352460 356800 358380	$-4340 \\ -1580$
Ti x (² P ^o _{1/2})	Limit	ja	[1560000]	

October 1947.

Ti X

(Al I sequence; 13 electrons)

Ground state 1s² 2s² 2p⁶ 3s² 3p ²P^o₂₄

$$3p {}^{2}P_{\frac{1}{2}} cm^{-1}$$

This spectrum has not been analyzed, but Edlén has classified two lines as follows:

I. A.	Int.	Wave No.	Desig.
101. 355	[2]	986630	$\bigg] 3p {}^{2}\mathrm{P}^{\circ} - 4d {}^{2}\mathrm{D}$
102. 107	2	979360	

His unit, 10^3 cm⁻¹, is here changed to cm⁻¹.

REFERENCE

B. Edlén, Zeit. Phys. 103, 540 (1936). (C L)

December 1947.

Z=22

I. P. 193 volts

Z = 22

I. P. volts

(Mg I sequence; 12 electrons)

Ground state $1s^2 2s^2 2p^6 3s^2 {}^1S_0$

3s² ¹S₀ 2142000 cm⁻¹

Edlén has classified 14 lines in the region between 71 A and 126 A. No intersystem combinations have been observed and the triplet terms are not all connected by observed combinations. He has determined the relative positions of the various groups of terms and also the ionization potential by extrapolation along the isoelectronic sequence. His estimated value of the limit is entered in brackets in the table.

His unit, 10³ cm⁻¹, has here been changed to cm⁻¹.

REFERENCE

B. Edlén, Zeit. Phys. 103, 536 (1936). (I P) (T) (C L)

Ti XI

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval		
$3s^2$ $3s(^2S)3p$	3s ² 1S 3p *P°	0	0 172370+x	2550	3s(2S)4f	4f 3F°	2 3 4	1297420+x			
0.400.01	0115	$\frac{1}{2}$	174920 + x 180550 + x	5630	3s(2S)5d	5d 3D	1 2				
3s(28)3d	3 <i>d</i> °D	$\frac{1}{2}$	504150 + x		3s(2S)5f	5f *F°		1577370+x			
3s(2S)4s	4s ³ S	1	1050030 + x					1603570+x			
$3s(^2S)4p$	4p ¹ P°	1	1139970								
3s(2S)4d	4d 3D	$1 \\ 2 \\ 3$	$1243080 + x \\ 1243350 + x \\ 1243770 + x$	270 420	Ti XII (2S _{1/2})	Limit		[2142000]			

August 1947.

Ti XII

(Nai sequence; 11 electrons)

Ground state $1s^2 2s^2 2p^6 3s {}^2S_{\nu_2}$

3s 2S_{1/2} 2351530 cm⁻¹

Edlén has classified 16 lines in the interval 60 A to 116 A, and extrapolated the absolute value of the ground term from isoelectronic sequence data.

The unit adopted by Edlén, 10^3 cm⁻¹, has here been changed to cm⁻¹.

REFERENCE

B. Edlén, Zeit. Phys. 100, 621 (1936). (I P) (T) (C L)

Z = 22

I. P. 266 volts

m:

Z = 22

I. P. 291.47 volts

290

		Ti XII			Ті ХП						
Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval		
3s 3p 3 d	3s ² S 3p ² P° 3d ² D	$\frac{\frac{1}{2}}{\frac{1}{2}}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	0 208300 216960 502370	8660	5p 5d	5p 2P° 5d 2D	$\begin{array}{c} \frac{12}{12}\\ 1\frac{12}{2}\\ \frac{112}{2}\\ 2\frac{12}{2}\end{array}$	1645820 1647310 1697530 1697740	1490 210		
48	48 2S	272 1/2	1133370		5f	5f ² F°	$2\frac{1}{2}$ $3\frac{1}{2}$	1717270 1717410	140		
4p	4 <i>p</i> ² P°	$1\frac{1}{2}$ $1\frac{1}{2}$	1214330 1217670	3340	6f	6f 2F°	$2\frac{1}{2}$ $3\frac{1}{2}$	1911470			
4d	4d 2D	$1\frac{1}{2}{2\frac{1}{2}}$	1321380 1321840	460	Ti XIII (¹ S ₀)	Limit		2351530			
4 <i>f</i>	4f ² F°	$2\frac{1}{2}$ $3\frac{1}{2}$	1360770 1360930	160				2001000			

June 1947.

Ti XIII

(Ne I sequence; 10 electrons)

Ground state 1s² 2s² 2p⁶ ¹S₀

 $2p^{6}$ ¹S₀ 6360600 cm⁻¹

Edlén and Tyrén have classified five lines in the interval between 23 A and 26 A, as combinations with the ground term. Their absolute term values are based on extrapolation along the Ne I isoelectronic sequence. Their unit, 10^3 cm⁻¹, has here been changed to cm⁻¹. As for Ne I, the *jl*-coupling notation in the general form suggested by Racah is introduced.

REFERENCES

B. Edlén and F. Tyrén, Zeit. Phys. 101, 210 (1936). (I P) (T) (C L) G. Racah, Phys. Rev. 61, 537 (L) (1942).

Authors	Config.	Desig.	J	Level
2p 1S0	2p ⁶	2p ⁶ 1S	0	0
3s 3P1	$2p^{5}(^{2}\mathrm{P_{i_{2}}})3s$	3s [1½]°	$2 \\ 1$	3709200
3s ¹ P ₁	$2p^{5}(^{2}\mathrm{P}^{\circ}_{32})3s$	3s'[½]°	0 1	3753600
3 <i>d</i> ³ P ₁	$2p^5(^2\mathrm{Pi}_{33})3d$	3d [½]°	0 1	4168200
$3d \ ^{3}P_{1}$	"	3d [1½]°	1	4219800
$3d \ ^{3}D_{1}$	$2p^{5}(^{2}\mathrm{P}^{\circ}_{\!$	3d′[1½]°	1	4281600
	Ti xıv (2P _{1,2})	Limit		6360600
	Ti xiv (2P ^o ₁₂)	Limit		6407500

Ti	XIII

April 1947.

I. P. 788.4 volts

Z = 22

VANADIUM

VΙ

23 electrons

Ground state 1s² 2s² 2p⁶ 3s² 3p⁶ 3d³ 4s² ⁴F_{11/2}

 $a \ {}^{4}\mathrm{F}_{1\frac{1}{2}} 54361 \ \mathrm{cm}^{-1}$

I. P. 6.74 volts

Z = 23

The arc spectrum of vanadium has been studied since 1923. The early contributions of Meggers, Laporte, Landé, Bechert, Sommer, and many others culminated in the extensive analysis of this highly complex spectrum published by Meggers and Russell in 1936. They list 60 doublet terms, 60 quartet terms, and 28 sextet terms from 634 multiplets, and give 2186 classified lines extending from 2082 A to 11911 A. The terms of all three multiplicities are connected by observed intersystem combinations.

The configuration assignments of many of the odd doublet and quartet terms are extremely uncertain and a number of terms are unassigned. No limit assignment has been attempted for the sextet triad $x e^{0}P^{\circ}$, $w e^{0}D^{\circ}$, and $x e^{0}F^{\circ}$, which comes from $3d^{4}5p$, and for two quartet triads which may arise from $3d^{3}4s5p$. Rohrlich has suggested that some of the configurations of odd terms from $d^{3}sp$ and $d^{4}p$ should be interchanged.

Zeeman observations by Babcock of more than 900 lines provided the large array of g-values which greatly facilitated the analysis. Much of this material was generously furnished in manuscript form for inclusion in the 1936 paper. A discussion of the g-sums by Russell and Babcock appears in the 1935 reference below.

Six terms, and miscellaneous odd levels were added by the writer in 1939 from additional observations of the spectrum between 1848 A and 2173 A.

REFERENCES

H. N. Russell and H. D. Babcock, Zeeman Verhandelingen p. 286 (Martinus Nijhoff, The Hague 1935). (Z E) W. F. Meggers and H. N. Russell, J. Research Nat. Bur. Std. 17, 125, RP906 (1936). (I P) (T) (C L) (Z E) C. E. Moore, Phys. Rev. 55, 710 (1939). (T) (C L)

- W. F. Meggers, J. Opt. Soc. Am. 36, 431 (1946). (Summary hfs.)
- F. Rohrlich, Phys. Rev. 74, 1393 (1948).

ົ	O	9
4	J	4

Config.	Desig.	J	Level	Interval	Obs. g	Config.	Desig.	J	Level	Interval	Obs. g
$3d^3 4s^2$	a ⁴ F	$1\frac{1}{2}$ $2\frac{1}{2}$	0. 00 137. 38	137.38 186.04	0. 40 1. 01	3d ⁴ (a ³ H)4s	b ² H	$4\frac{1}{2}$ $5\frac{1}{2}$	19023. 47 19145. 13	121.66	0. 91 1. 08
		3½ 4½	523. 42 553. 02	229. 60	1. 20	3d4(b 3F)4s	<i>a</i> ² F	$2^{1/_2}_{3^{1/_2}}$	19026. 34 19078. 15	51. 81	$0.86 \\ 1.14$
3d4(a 5D)4s	a ⁶ D	$\frac{\frac{1}{2}}{\frac{1}{2}}$	$\begin{array}{c} 2112. \ 32 \\ 2153. \ 20 \\ 2220 \ 13 \end{array}$	40. 88 66. 93	$\begin{array}{c c} 3.29 \\ 1.82 \\ 1.61 \end{array}$	3d ⁵	<i>a</i> ⁶ S	$2\frac{1}{2}$	20202. 49		
		272 31/2 41/2	$2220.13 \\ 2311.37 \\ 2424.89$	91. 24 113. 52	$ \begin{array}{c} 1.01\\ 1.53\\ 1.52 \end{array} $	3d ³ 4s(a ³ F)4p	z 4D°	$\frac{\frac{1}{2}}{\frac{1}{2}}$	20606. 43 20687. 75 20828. 48	81. 32 140. 73	-0.04 1.21 1.35
3d4(a 5D)48	a 4D	$\begin{array}{c} \frac{1}{12} \\ 1\frac{1}{2} \\ 2\frac{1}{2} \\ 3\frac{1}{2} \\ 3\frac{1}{2} \end{array}$	8412. 94 8476. 20 8578. 52 8715. 72	63. 26 102. 32 137. 20	$\begin{array}{c} 0.\ 00\\ 1.\ 19\\ 1.\ 35\\ 1.\ 39 \end{array}$	3d4(a 3D)4s	b4D	$3\frac{1}{2}$ $3\frac{1}{2}$ $2\frac{1}{2}$	21032. 52 20767. 57 20789. 13	-204.04 -21.56 -23.86	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
3d3 4s2	a 4P	$rac{1}{1} rac{1}{2} \ 1 rac{1}{2} \ 2 rac{1}{2} \ 2 rac{1}{2} \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \$	9544. 54 9636. 96 9824. 58	92. 42 187. 62	2.59 1.70 1.55	3d ⁴ (a ³ G)4s	b²G	$1\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $4\frac{1}{2}$	20812. 99 20830. 20 21603. 17	-17. 21	1. 20 0. 10 1. 11
3d ³ 4s ²	a ² G	$3^{1/2}_{1/2}$ $4^{1/2}_{1/2}$	10892.50 11100.65	208. 15	0. 88 1. 13	3d ³ 4s(a ³ F)4p	z 4G°	$3^{1/2}_{1/2}$ $2^{1}_{1/2}$	21646. 39 21841. 45	122. 05	0.86 0.55
3d ³ 4s ²	a ² P	1½ ½	13801. 53 13810. 90	-9.37	1. 20 0. 64			$3\frac{12}{4\frac{12}{5\frac{12}{2}}}$	21963.50 22121.17 22313.99	157. 67 192. 82	$\begin{array}{c} 0.96 \\ 1.16 \\ 1.24 \end{array}$
$3d^3 4s^2$	a ² D	$1\frac{12}{22}$	14514. 75 14548. 83	34. 08	0. 97 1. 17	3d ³ 4s(a ³ F)4p	z 4F°	$\begin{array}{c} 1\frac{1}{2}\\ 2\frac{1}{2}\\ 3\frac{1}{2} \end{array}$	23088.06 23210.56 23353.09	$122.50 \\ 142.53 \\ 166.77$	0. 39? 0. 98? 1. 23
3d4(a 3H)4s	a ⁴ H	$3\frac{1}{2}$ $4\frac{1}{2}$ $5\frac{1}{2}$ $6\frac{1}{2}$	14910. 04 14949. 30 15000. 84 15062. 94	$39.26 \\ 51.54 \\ 62.10$	$\begin{array}{c c} 0. \ 65 \\ 0. \ 94 \\ 1. \ 10 \\ 1. \ 18 \end{array}$	3d ³ 4s(a ³ F)4p	z ² D°	$\begin{array}{c} 4\frac{1}{12} \\ 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}$	23519.84 23608.80 23935.15	326. 3 5	1. 31 0. 76 1. 32?
3d4(a 3P)4s	6 4P	$1/2 \\ 11/2 \\ 21/2 \\ 21/2 \\ 1$	15078. 25 15270. 42 15571. 90	192. 17 301. 48	$\begin{array}{c} 2.\ 60\\ 1.\ 68\\ 1.\ 54 \end{array}$	3d4(a 5D)4p	<i>z</i> ⁶ P°	$\begin{array}{c} 1\frac{1}{2}\\ 2\frac{1}{2}\\ 3\frac{1}{2}\end{array}$	24648.10 24727.85 24838.56	79. 75 110. 71	$2. \ 34 \\ 1. \ 85 \\ 1. \ 67$
3d ³ 4s ²	a ² H	$4\frac{1}{2}$ $5\frac{1}{2}$	15103. 77 15264. 83	161.06	0. 90 1. 07	3d4(a 5D)4p	<i>z</i> *P°	$\frac{\frac{1}{2}}{\frac{1}{2}}$	24770.62 24915.16 25130.96	$144.54 \\ 215.80$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
3d4(b 3F)4s	6 4F	$\begin{array}{c} 1\frac{1}{2}\\ 2\frac{1}{2}\\ 3\frac{1}{2}\\ 4\frac{1}{2}\\ 4\frac{1}{2}\end{array}$	15664. 75 15688. 80 15724. 22 15770. 72	$\begin{array}{c} 24.\ 05\\ 35.\ 42\\ 46.\ 50\end{array}$	$\begin{array}{c} 0.\ 39\\ 1.\ 05\\ 1.\ 22\\ 1.\ 31 \end{array}$	3d4(a 5D)4p	y ⁰F°	$\frac{\frac{1}{2}}{\frac{1}{2}}$	24789.36 24830.18 24898.73 24992.88	40. 82 68. 55 94. 15	$ \begin{array}{c c} -0.58 \\ 1.02 \\ 1.23 \\ 1.37 \end{array} $
3d3 4s(a 5F)4p	<i>z</i> ⁶ G°	$1\frac{1}{2}$ $2\frac{1}{2}$ $3\frac{1}{2}$ $4\frac{1}{4}$	16361.45 16449.85 16572.54	88. 40 122. 69 156. 21	0.00 0.78 1.10	3d4(a iD)/m	ar 4E.0	$4\frac{1}{2}$ $5\frac{1}{2}$	25111.50 25253.53	118. 62 142. 03	1. 41 1. 41 1. 41
		472 51/2 61/2	16917.15 16917.44	188. 40 219. 29	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ju (u D)*p	y ·r	$172 \\ 2\frac{1}{2} \\ 3\frac{1}{2} \\ 4\frac{1}{2} \\ 4\frac{1}{2} \\ 2$	26004.22 26122.04 26171.96	$\begin{array}{c c} 73.\ 71 \\ 117.\ 82 \\ 49.\ 92 \end{array}$	0. 98 1. 15 1. 23
3d ⁴ (a ³ G)4s	a 4G	$2\frac{1}{2}$ $3\frac{1}{2}$ $4\frac{1}{2}$ $5\frac{1}{6}$	$\begin{array}{c} 17054.\ 87\\ 17116.\ 92\\ 17181.\ 98\\ 17242\ 05\end{array}$	$\begin{array}{c} 62.\ 05\\ 65.\ 06\\ 60.\ 07\end{array}$	$ \begin{array}{c c} 0.59\\ 0.96\\ 1.14\\ 1.27 \end{array} $	3d ³ 4s(a ³ F)4p	z ² G°	$3\frac{1}{2}{4\frac{1}{2}}$	26021.89 26344.94	323. 05	0. 92 1. 13
3d3 4s(a 5F)4p	<i>z</i> ⁶ D°	1/2 1/2 1/2 2/2 31/2	18085.82 18126.27 18198.08 18809.97	40. 45 71. 81 104. 19	3. 20 1. 76 1. 58 1. 56	3d4(a 5D)4p	y 4D°	$\begin{array}{c} \frac{1/2}{11/2}\\ 2\frac{1}{2}\\ 3\frac{1}{2}\\ 3\frac{1}{2}\end{array}$	26182.60 26249.48 26352.59 26480.28	66. 88 103. 11 127. 69	$-0.06 \\ 1.17 \\ 1.34 \\ 1.39$
3 d3 da(a 5F) da	# 8F0		18302. 27 18438. 07	135. 80	1. 55	3d4(a 5D)4p	<i>y</i> ⁶ D°	$\frac{\frac{1}{2}}{\frac{1}{2}}$	26397.36 26437.68 26505.88	40. 32 68. 20	3. 25 1. 86 1. 59
ou* 48(u *F)4p	2 "F"	2^{72} $1^{1}_{1^{5}_{2}}$ $2^{1}_{2^{5}_{2}}$ $3^{1}_{2^{5}_{2}}$	18174.06 18258.89 18372.46	53. 94 84. 83 113. 57	$ \begin{array}{c c} -0.44 \\ 1.14 \\ 1.28 \\ 1.28 \\ 1.28 \end{array} $			$3^{1/2}_{1/2}$ $4^{1/2}_{1/2}$	26604.77 26738.31	98. 89 133. 54	1. 59 1. 58 1. 50
		$4\frac{1}{2}$ $5\frac{1}{2}$	18513. 46 18680. 12	141. 00 166. 66	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$3d^3 4s(a \ ^3\mathrm{F})4p$	z ² F°	$2\frac{1}{2}$ $3\frac{1}{2}$	27187.77 27470.88	283. 11	1.01? 1.01
3d4(a 3P)48	b ²P	$1\frac{1}{1}\frac{1}{2}$	`18805. 05 19189. 28	384. 23	0. 67 1. 37	3d ³ 4s(a ⁵ P)4p	x ⁶ D°	1/2 1/2 2/2 3/2 4/4	28313.68 28368.76 28462.15 28595.64 28768.13	55. 08 93. 39 133. 49 172. 49	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

VΙ

V I-Continued

V I-Continued

Config.	Desig.	J	Level	Interval	Obs. g	Config.	Desig.	J	Level	Interval	Obs. g
3d3 4s(a 5P)4p	z 4S° y 6P°	$ \begin{array}{c} 1\frac{1}{2} \\ \frac{1}{2} \\ \frac{2}{2} \\ \frac{1}{2} \\ \frac{2}{2} \\ \frac{1}{2} \\ \frac{1} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ $	28621. 27 29202. 80 29296. 43	93. 63 121. 74	2.32 1.76	3d ³ 4s(a ⁵ F)4p	v ⁴ D°	$\frac{\frac{1}{2}}{\frac{1}{2}}$ $\frac{2}{2}$ $\frac{2}{2}$ $\frac{3}{2}$	34477.40 34537.21 34619.52 34747.06	59. 81 82. 31 127. 54	0. 00 1. 05 1. 28 1. 35
3d ³ 4s(c ³ P)4p	y ⁴P°	$\begin{array}{c} 3\frac{1}{2} \\ \frac{1}{2} \\ 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}$	29418.17 30021.57 30094.52 30120.78	72. 95 26. 26	$ \begin{array}{c} 1. \ 62 \\ 2. \ 67 \\ 1. \ 74 \\ 1. \ 67 \end{array} $		u ⁴D°	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$ $3\frac{1}{2}$	35012.91 35092.36 35225.04 35379.11	79. 45 132. 68 154. 07	$ \begin{array}{c} 1. 12 \\ 1. 32 \\ 1. 33 \end{array} $
3d ³ 4s(b ³ G)4p?	y ⁴G°	$\begin{array}{c c} 2\frac{1}{2} \\ 3\frac{1}{2} \\ 4\frac{1}{2} \\ 5\frac{1}{2} \end{array}$	30635.60 30694.34 30771.72 30864.34	58. 74 77. 38 92. 62	$\begin{array}{c} 0.53\\ 0.93\\ 1.13\\ 1.21 \end{array}$	3d4(a 3P)4p?	y 4S° x 2D°	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$	36408. 23 36416. 49 36700. 78	284. 29	1.85 0.89 1.13
3d ³ 4s(a ⁵ P)4p	z 68°	21/2	30832. 58			3d4(b 3F)4p	x ² G°	31/2	36461.26	77 29	0.85
3d ³ 4s(b ³ G)4p	x 'F°	$\begin{array}{c c} 1\frac{1}{2} \\ 2\frac{1}{2} \\ 3\frac{1}{2} \\ 4\frac{1}{2} \end{array}$	31200. 12 31228. 98 31268. 15	28. 86 39. 17 49. 35	0. 38 1. 01 1. 21	3d ³ 4s(b ¹ D)4p	y ²P°	472 1/2 1/2	36477.75 36580.46	102. 71	0. 74 1. 17
3d ³ 4s(a ⁵ F)4p	x 4G°	$\begin{array}{c} 4\frac{1}{2}\\ 2\frac{1}{2}\\ 3\frac{1}{2}\\ 3\frac{1}{2}\end{array}$	31317.50 31398.09 31541.18	143. 09 180. 55	1. 32 0. 53 0. 95	3d4(a 3P)4p?	x ⁴ P°	$2\frac{1}{2}$ $1\frac{1}{2}$ $\frac{1}{2}$	36611.81 36814.80 36695.49	-202.99 119.31	1. 54 1. 77 2. 51
		$ \begin{array}{c c} 4\frac{1}{2} \\ 5\frac{1}{2} \end{array} $	31721.73 31937.18	215. 45	1. 12 1. 20		w 2G°	${3\frac{1}{2}}{4\frac{1}{2}}$	36628.82 36828.33	199. 51	0. 65
	$z ^{2}S^{\circ}$ $y ^{2}S^{\circ}$	1/2 1/2	31786.19 31962.30		2. 30 2. 21	3d ³ 4s(b ³ H)4p?	w ⁴ G°	$2^{1/2}_{1/2}\ 3^{1/2}_{1/2}\ 4^{1/3}$	36763.41 36822.86 36897.88	59. 45 75. 02	1.06
	x 4D°	$\begin{array}{c c} 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 3 \\ 1 \\ \end{array}$	32348.89 32456.45 32660.26 32891.06	107. 56 203. 81 230. 80	0.08 1.17 1.29 1.35		x ² F°	$5\frac{1}{2}$ $2\frac{1}{2}$ $3\frac{1}{4}$	36938.42 36766.00 36925.88	40. 54	1. 26 0. 89
3d³ 4s(b 3G)4p	z 4H°	$ \begin{array}{c c} & 3_{72} \\ & 3_{1/2} \\ & 4_{1/2} \\ & 5_{1/2} \\ & 6_{1/2} \\ \end{array} $	32692.09 32788.22 32897.81 32963.90	96. 13 109. 59 66. 09	0. 68 0. 98 1. 11 1. 21	$3d^5$	e 4F	$\begin{array}{c} 1\frac{1}{2}\\ 2\frac{1}{2}\\ 3\frac{1}{2}\\ 4\frac{1}{2}\end{array}$	36983. 63 36989. 20 37025. 60 37075. 64	5. 57 36. 40 50. 04	1.00
3d3 4s(a 5F)4p	z ² P° w ⁴ F°	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	32724. 86 32767. 88 32738. 14	43. 02	0. 73? 1. 22 0. 52	3d4(a 5D)5s	e ⁶ D	$1^{1/2}_{1^{1/2}}$ $1^{1/2}_{1^{1/2}}$ $2^{1/2}_{1^{1/2}}$ $3^{1/2}_{1^{1/2}}$	37116. 68 37158. 36 37227. 44 37322. 09	41. 68 69. 08 94. 65	3. 08 1. 87 1. 61 1. 64
00 10(0 1)1p		$\begin{array}{c c} 2 & -7 & -2 \\ 2 & -7 & -2 \\ 3 & -7 & -2 \\ 3 & -7 & -2 \\ 3 & -7 & -2 \\ 4 & -7 & -2 \\ 4 & -7 & -2 \\ 4 & -7 & -2 \\ 4 & -7 & -2 \\ -7 & -7 & -2 \\ -7 & -7 & -7 \\ -7 & -7 & -7 \\ -7 & -7 &$	32846. 74 32988. 82 33155. 30	108. 60 142. 08 166. 48	1. 01 1. 18 1. 30	3d4(a 3H)4p	v ₂G°	$4\frac{1}{2}$ $3\frac{1}{2}$ $4\frac{1}{4}$	37440. 74 37174. 68 37361 95	118. 65	1. 48 0. 99 1. 05
	y 2G°	$\begin{array}{c c} 4^{1/2} \\ 3^{1/2} \end{array}$	33306.96 33360.31	- 53. 35	1. 03 0. 91		y ²H°	$\frac{4\frac{1}{2}}{5\frac{1}{2}}$	37180.90 37210.85	29. 95	0. 73
	y 2F ⁶ z 2H ⁶	$ \begin{array}{c c} 3\frac{1}{2} \\ 2\frac{1}{2} \\ 4\frac{1}{2} \end{array} $	33481.45 33527.64 33640.18	-46. 19	1. 11 0. 85 0. 92	3d4(a ² H)4p	z 41°	$4\frac{1}{2}$ $5\frac{1}{2}$ $6\frac{1}{2}$	37285.03 37315.83 37404.25	30. 80 88. 42 114. 11	0. 87 0. 96 1. 08
3d ³ 4s(c ³ P)4p	w ⁴ D°	$5\frac{1}{2}$ $\frac{1}{2}$ $1\frac{1}{2}$	33695.32 33966.72 33976.02	9. 30	1. 09 0. 09 0. 80	$3d^4(b^3\mathbf{F})4p?$	w ² F°	$2\frac{1}{2}$ $3\frac{1}{2}$	37342.66 37475.08	132. 42	0. 84 1. 08
	1°	2½ 3½	34065.61 34128.04 34019.12	62. 43	1. 30 1. 35	3d ³ 4s(a ⁵ F)5s	e ⁰F	$1^{\frac{1}{2}}$ $1^{\frac{1}{2}}$ $2^{\frac{1}{2}}$	37374. 98 37423. 17 37503. 14	48. 19 79. 97	$ \begin{array}{c c} -0.72 \\ 1.05 \\ 1.30 \end{array} $
	v ⁴ F°	$1\frac{1}{2}$ $2\frac{1}{2}$	34030. 04 34167. 84	137. 80 206. 97	0.86			$3\frac{1}{2}$ $4\frac{1}{2}$ $5\frac{1}{2}$	37614. 97 37758. 07 37931. 41	111. 83 143. 10 173. 34	1. 33 1. 43 1. 52
			34529.81	155.00	1. 21	3d4(b ³ F)4p	w 2D°	$1\frac{1}{2}{2\frac{1}{2}}{2\frac{1}{2}}{2}$	37457.50 37752.54	295. 04	0. 80 1. 18
	y ² D°	$ \begin{array}{c c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array} $	34428.76 34486.80	58.04	0. 73	3d ³ 4s(b ³ H)4p?	y ⁴H°	$3\frac{1}{2}$ $4\frac{1}{2}$ $5\frac{1}{2}$ $6\frac{1}{2}$	37481.36 37516.95 37565.88 3 7626.44	35. 59 48. 93 60. 56	0.76 1.05 1.09 1.24

V I—Continued

V I—Continued

Config.	Desig.	J	Level	Interval	Obs. a	Config.	Desig.	J	Level	Interval	Obs. a
3d4(b 3F)4p	v 4G°	$2\frac{1}{2}$ $3\frac{1}{2}$ $4\frac{1}{2}$	37498.76 37556.00 37644.41	57. 24 88. 41 120 48	0. 60 1. 02 1. 15		x ² P°	$1\frac{1}{2}$ $1\frac{1}{2}$	40328.62 40437.42	108. 80	1. 52
		5½	37764.89	120. 10	1. 22		w ² P°	$1\frac{1}{2}$ $1\frac{1}{2}$	40693.76		
$3d^{4}(a^{3}H)4p?$	z ² 1°	5½ 6½	37530.29 37606.32	76. 03	0. 94 1. 06		w ² H°	$5\frac{1}{2}$	40919.68	-60. 86	0. 961
3d4(b 3F)4p	t 4D°	$\begin{array}{c} \frac{12}{112}\\ 1\frac{12}{212}\\ 2\frac{12}{312}\end{array}$	37757.24 37834.98 37959.66 38115.65	77. 74 124. 68 155. 99	0. 01 1. 18 1. 33 1. 35	3d4(a 3G)4p	t 4F°	$ \begin{array}{r} 1 \frac{1}{2} \\ 2 \frac{1}{2} \\ 3 \frac{1}{2} \\ 4 \frac{1}{2} \end{array} $	40300. 94 41389. 49 41428. 93 41492. 29	39. 44 63. 36 107. 07	0. 42 0. 899 1. 15
3d4(a 5D)5s	e 4D	$1^{\frac{1}{2}}_{1^{\frac{1}{2}}}_{2^{\frac{1}{2}}}$	37940. 08 38003. 93 38106. 32	63. 85 102. 39 136. 14		$3d^3 4s(b \ ^1G)4p?$	t ² G°	$\frac{1}{2}$ $3\frac{1}{2}$ $4\frac{1}{2}$	41539.50 41436.58 41539.14	102. 56	0. 90 1. 04
$3d^{4}(a^{3}\mathrm{H})4p$	x ² H°	372 4½	38242.40 38123.76	00.07	0. 88	3d ³ 4s(a ¹ H)4p?	v 2H°	$4\frac{1}{2}$ $5\frac{1}{2}$	41501.41 41659.71	158. 30	0.87
		$5\frac{1}{2}$	38220. 63	90. 87	1. 10	$3d^4(a \ ^3\mathrm{G})4p$	t 4G°	2½	41654.70	103 71	0. 58
3d4(a 3H)4p	x ⁴ H°	$3\frac{1}{2}$ $4\frac{1}{2}$ $5\frac{1}{2}$ $6\frac{1}{4}$	38245.75 38323.87 38404.96	78. 12 81. 09 78. 00	$\begin{array}{c c} 0. \ 67 \\ 0. \ 93 \\ 1. \ 11 \\ 1. \ 22 \end{array}$			$\begin{array}{c} 3\frac{1}{2} \\ 4\frac{1}{2} \\ 5\frac{1}{2} \end{array}$	41758.41 41860.54 41918.24	103. 71 102. 13 57. 70	1. 03 1. 20 1. 20
	u 2G°	$4\frac{1}{2}$ $3\frac{1}{2}$	38529.78 38610.94	-81. 16	0. 99 0. 88?		v 4P°	$\begin{array}{c} \frac{1'_2}{1\frac{1'_2}{2}}\\ 2\frac{1'_2}{2\frac{1'_2}{2}}\end{array}$	41751.78 41848.47 42009.93	96. 69 161. 46	$\begin{array}{c} 2.56 \\ 1.62 \\ 1.48 \end{array}$
3d ³ 4s(a 1H)4p?	y ²I°	$5\frac{1}{2}{6\frac{1}{2}}$	39008.60 39081.10	72. 50	0. 92 1. 06	3d ³ 4s(a ⁵ P)4p	r 4D°	1/2 1/2 21/2	41928. 47 41999. 10 42138. 00	70. 63 138. 90	0. 04 1. 20 1. 33
3d ³ 4s(a ⁵ F)5s	f 4F	$\begin{array}{c} 1\frac{1}{2}\\ 2\frac{1}{2}\\ 3\frac{1}{2}\\ 4\frac{1}{2}\end{array}$	39127.23 39241.34 39398.82	114. 11 157. 48 198. 19	0. 46? 1. 03 1. 22?	3d ³ 4s(b ¹ D)4p?	u ² F°	$3\frac{1}{2}$ $2\frac{1}{2}$ $3\frac{1}{2}$	42245.61 41950.35	70. 58	1. 36 0. 84
3d ³ 4s(a ⁵ P)4p	w ⁴ P°	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	39237.10 39248.90 39422.66	11. 80 173. 76	$ \begin{array}{c} 1. 55. \\ 2. 57 \\ 1. 60 \\ 1. 52 \end{array} $	$3d^4(a \ ^5\mathrm{D})4d$	e ⁰G	$\begin{array}{c} 1\frac{1}{2}\\ 2\frac{1}{2}\\ 3\frac{1}{2}\end{array}$	42033. 84 42070. 05 42114. 17	36. 21 44. 12 63. 14	1. 11
3d4(b 3F)4p	u ⁴ F°	$1\frac{1}{2}$ $2\frac{1}{2}$ $3\frac{1}{2}$	39266. 60 39300. 48 39341. 76	33. 88 41. 28	0. 54 1. 00 1. 21			$ \begin{array}{c} 4\frac{1}{2} \\ 5\frac{1}{2} \\ 6\frac{1}{2} \end{array} $	42177. 31 42257. 32 42353. 42	80. 01 96. 10	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
		41/2	39391.02	49. 20	1. 30	$3d^3 4s(b \ ^1\mathrm{G})4p$	u ² H°	$4\frac{1}{2}$ $5\frac{1}{2}$	42079.14 42220.69	141. 55	0.85
$3d^3 4s(c \ ^3P)4p$	x 4S°	1½	39847.24		2.00	$3d^{4}(a \ ^{5}\mathrm{D})4d$	e 6P	11/2			
$3d^4(a \ ^3P)4p$	s 4D°	$1\frac{1}{2}$	39877.62 39935.07	57.45 64.82	0.01			$\begin{array}{c c} 2\frac{1}{2} \\ 3\frac{1}{2} \end{array}$	42164. 74		1. 44
		$\begin{array}{c c} 2\frac{7}{2} \\ 3\frac{1}{2} \end{array}$	<i>40125.79</i>	125. 90	1. 33		2°	3½	42236.66		
3d4(a 3P)4p	v ²D°	$1\frac{1}{2}$ $2\frac{1}{2}$	39884.43 40119.26	234. 83	0. 92 1. 14	3d ² 4s(a ¹ P)4p?	v ² P°	$1\frac{1}{2}$ $\frac{1}{2}$	4 23 18. 42 42480. 62	-162. 20	1.34 1.14
3d4(a ³ H)4p	u 4G°	$2\frac{1}{2}$	39962.17	39.01	0. 53		w 2S°	1/2	42362.04		1. 50
		$ \begin{array}{c c} 3\frac{1}{2} \\ 4\frac{1}{2} \\ 51 \end{array} $	40001.18 40038.95	37. 77 24. 83	0.99	3d4(a 5D)4d	f ⁶ F				
	v ² F°	$\begin{array}{c} 3_{72} \\ 2_{1/2} \\ 3_{1/2}^{1/2} \end{array}$	40153.51 40587.35	43 3. 84	1. 23			$ \begin{array}{r} 1/2 \\ 2\frac{1}{2} \\ 3\frac{1}{2} \\ 4\frac{1}{2} \\ 51 \end{array} $	42363. 62 42506. 32	142. 70 71. 66	1 20
3d ³ 4s(a ¹ P)4p?	u 2D°	$1\frac{1}{2}$ $2\frac{1}{2}$	40225.38	100. 39	0.70	$3d^{4}(a \ ^{5}\mathrm{D})4d$	٥D	5½	42577.98		1. 39
$3d^{3} 4s(a \ ^{1}P)4p?$	$x {}^{2}S^{\circ}$	-/2 1⁄2	40299.81					$egin{array}{c} 1^{1/2} \\ 2^{1/2} \\ 2^{1/2} \end{array}$			
$3d^4(a \ ^3\mathrm{G})4p$	w 4田°	31/2	40314.83	63 87	0. 65			$\begin{array}{c c} 3\frac{1}{2} \\ 4\frac{1}{2} \end{array}$	42404.89 42553.62	148. 73	1. 61
		4½ 5½ 6½	40378.70 40452.38 40535.62	73. 68 83. 24	0. 92 1. 08 1. 22		w ⁶ D°	$\begin{array}{c} \frac{1}{12} \\ 1\frac{1}{2} \\ 2\frac{1}{2} \\ 3\frac{1}{2} \\ 3\frac{1}{2} \\ 4\frac{1}{2} \end{array}$	42480. 31 42587. 41 42725. 33	107. 10 137. 92	

V I—Continued

VI-Continued

Config.	Desig.	J	Level	Interval	Obs. g	Config.	Desig.	J	Level	Interval	Obs. g
3d ² 4s(a ⁵ P)4p	w 4S° 8 4F°	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$	42969. 49 42981. 34 43051. 31	69. 97 05 78	1. 94		r 4F°	$\begin{array}{c}1\frac{1}{2}\\2\frac{1}{2}\\3\frac{1}{2}\\4\frac{1}{2}\end{array}$	44973.60 45049.17 45058.62 45145.16	75. 57 9. 45 86. 54	0. 58? 0. 97 1. 26
	g ⁴D°	$\begin{array}{c} 3^{\frac{1}{2}} \\ 4^{\frac{1}{2}} \\ \frac{1}{2} \end{array}$	43147.09 43266.15 43249.44	90. 78 119. 06			q ⁴F°	$1\frac{1}{2}$ $2\frac{1}{2}$ $3\frac{1}{2}$	45066.56 45107.21 45157.72	40. 65 50. 51	0. 59 0. 93 1. 05
	-	$\begin{array}{c c} 1^{\frac{1}{2}} \\ 2^{\frac{1}{2}} \\ 3^{\frac{1}{2}} \end{array}$	43308.83 43410.82 43555.12	101. 99 144. 30	1. 46		u 2P°	$4\frac{1}{2}$ $\frac{1}{2}$ $1\frac{1}{2}$	45237.16	79.44	1. 22
	u ⁴ P°	$\begin{array}{c c} & \frac{1'_2}{1'_2} \\ & 1'_2 \\ & 2'_2 \end{array}$	43443.33 43503.99 43585.59	60. 66 81. 60		3d ³ 4s(a ¹ H)4p?	r ² G°	$\begin{array}{c} 1_{72} \\ 3_{1/2}^{1/2} \\ 4_{1/2}^{1/2} \end{array}$	45175.92 45361.42	185. 50	0. 98 1. 14
3d ³ 4s(a ⁵ F)4d	e 6H	$\frac{2\frac{1}{2}}{3\frac{1}{4}}$	43649.40	57.42	0.38		2a°	5½	45353.69		
		$\begin{array}{c c} 3^{72} \\ 4^{1/2} \\ 5^{1/2} \\ 6^{1/2} \\ 7^{1/2} \end{array}$	43787. 60 43894. 15 44028. 33 44189. 95	20.78 106.55 134.18 161.62	1. 11 1. 18 1. 30 1. 38	3d ³ 4s(a ⁵ F)4d	g ⁶ F	$\begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \\ 2\frac{1}{2} \\ 3\frac{1}{2} \\ 4\frac{1}{2} \end{array}$	45638. 54 45700. 25 45743. 62 45813. 25	61. 71 43. 37 69. 63 221. 33	1. 26
	x ⁶ F ^o	$\begin{array}{c c} & \frac{1}{2} \\ & 1\frac{1}{2} \\ & 2\frac{1}{2} \\ & 2\frac{1}{2} \\ & 3\frac{1}{2} \\ & 3\frac{1}{2} \\ & 4\frac{1}{2} \\ & 5\frac{1}{4} \end{array}$	$\left.\begin{array}{c} 43707.\ 978\\ 43845.\ 808\\ 43959.\ 248\\ 44026.\ 298\\ 44026.\ 518\end{array}\right.$	137. 83 113. 44 67. 05 176. 22		3d4(a 2D)4p	p ⁴ F°	$\begin{array}{c c} 5\frac{1}{2} \\ 1\frac{1}{2} \\ 2\frac{1}{2} \\ 3\frac{1}{2} \\ 4\frac{1}{4} \end{array}$	46034.58 45648.86 45688.41 45760.03 45891.55	39. 55 71. 62 131. 52	0.60
3d ³ 4s(a ⁵ F)4d	f G	$1\frac{1}{2}$ $2\frac{1}{2}$	43818.02 43847.16	$\begin{array}{c c} 29.14 \\ 64.77 \end{array}$	0. 38? 0. 78		t ² P°	1/2 $1\frac{1}{2}$ $\frac{1}{2}$	45654.50 45946.66	-292. 16	1. 02
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{r} 43911. 93 \\ 44005. 14 \\ 44139. 69 \\ 44327. 04 \end{array}$	93. 21 134. 55 187. 35	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3d4(a 3D)4p	o 4D°	$\begin{array}{c c} & \frac{1}{2} \\ & 1\frac{1}{2} \\ & 2\frac{1}{2} \\ & 2\frac{1}{2} \end{array}$	45702.14 45762.24 45838.06	60. 10 75. 82 99. 01	0. 96?
3d ³ 4s(b 1G)4p	t ² F°	$egin{array}{c} 3^{1\!\!/_2} \\ 2^{1\!\!/_2} \end{array}$	43873.79 43875 25	-1. 46	1. 04? 0. 86		r 4G°	$ \begin{array}{c c} 3\frac{7}{2} \\ 2\frac{1}{2} \\ 3\frac{1}{2} \end{array} $	46052.79 46139.06	86. 27	1. 45 0. 56 0. 96
3d ² 4s(a ³ F)5s	e ² F	$\begin{array}{c c} 2^{1\!/_{\!2}} \\ 3^{1\!/_{\!2}} \end{array}$	43918.58 44066.05	147. 47	0. 89 1. 18				46243.64 46363.42	104. 58	1. 15 1. 19
	x 6P°	$\begin{array}{c c} 1\frac{1}{2}\\ 2\frac{1}{2}\\ 3\frac{1}{2}\end{array}$	43988.00?				4 °	$1\frac{1}{2}$ $2\frac{1}{2}$	}46 <i>322. 39:</i>		-
	s 4G°	21/2	43999.68	43.68	0.00		5°		46500.64		
		$ \begin{array}{c c} 3\frac{1}{2} \\ 4\frac{1}{2} \\ 5\frac{1}{2} \end{array} $	44043. 36 44104. 55 44178. 45	61. 19 73. 90	0. 98 1. 26 1. 34		t 4P°	172 1/2 1/2 1/2	46851.10 46862 73	11. 63	
3d4(a 3G)4p	t ² H°	4½ 5½	44145.77 44184.02	38. 25	0. 90 1. 06?			$2\frac{1}{2}$	46868. 10	5. 37	
3d ³ 4s(a ⁵ F)4d	f 6P	11/2	44443. 67	88. 93		$\begin{vmatrix} 3d^3 & 4s(b^3 G) & 4p \end{vmatrix}$	s ² F ^o	$\begin{vmatrix} 2\frac{1}{2} \\ 3\frac{1}{2} \end{vmatrix}$	46996. 84 47143. 24	146. 40	1. 02
		$\begin{vmatrix} 2\frac{7}{2} \\ 3\frac{1}{2} \end{vmatrix}$	44532. 60	157.87			7 °	3½	47348.14		
$3d^4(a \ ^3\mathrm{G})4p$	s 2G°	$\begin{array}{c c} 4\frac{1}{2} \\ 3\frac{1}{2} \end{array}$	44463.28 44495.43	-32. 15	1. 09 0. 91		3°	11/2	47423.18		
	<i>p</i> ⁴ D°	1/2 1/2 1/2 21/2	44514.34 44554.25 44616_68	39. 91 62. 43	1. 22	3d ³ 4s(b ³ G)4p	s ² H°	$ \begin{array}{c c} 4\frac{1}{2} \\ 5\frac{1}{2} \\ 3\frac{1}{3} \end{array} $	47611.77 47701.55 47615.56	89. 78	1. 01? 0. 94
		31/2	44700.88	84. 20	1. 32?		00	{ 1 ¹ / ₂	\$47682 68		
3d² 4s(a ⁵ F)4d	g ⁶ D	$\begin{array}{c c} & \frac{1}{2} \\ & 1\frac{1}{2} \\ & 2\frac{1}{2} \\ & 3\frac{1}{2} \\ & 3\frac{1}{2} \\ & 4\frac{1}{2} \end{array}$	44844. 83 44921. 08 45056. 61 45157. 74	76. 25 135. 53 101. 13	1. 55?		q 4G°	$\begin{array}{c c} 2\frac{1}{2} \\ 2\frac{1}{2} \\ 3\frac{1}{2} \\ 4\frac{1}{2} \\ 5\frac{1}{2} \end{array}$	47690. 5 47823. 24 48014. 18 48191. 04	132. 7 190. 94 176. 86	

295

VI-Continued

VI-Continued

Config.	Desig.	J	Level	Interval	Obs. g	Config.	Desig.	J	Level	Interval	Obs. g
	0 4F°	$\begin{array}{c} 1\frac{1}{2}\\ 2\frac{1}{2}\\ 3\frac{1}{2}\\ 4\frac{1}{2}\end{array}$	47801.6 47915.9 48139.4 48328.8	114. 3 223. 5 189. 4			24° 25°	2½ 3½?	50130. 6 50154. 35		
	10°	2½	47809. 20				26°	$\left\{ \begin{array}{c} 2\frac{1}{2} \\ 3\frac{1}{2} \end{array} ight.$	<i>50333. 59</i>		
	11°	2½	47925. 49:				27°	1½	50355.89		
3d ³ 4s(b ³ G)4p	q 2G°	$3\frac{1}{2}$ $4\frac{1}{2}$	47959.82 48157.57	197. 75	0. 89 1. 08		r ${}^{2}\mathrm{F}^{\circ}$	$2\frac{1}{2}{3\frac{1}{2}}$	50404. 14 50539. 27	135. 13	
	12°	$\left\{ egin{array}{c} 2\frac{1}{2} \\ 3\frac{1}{2} \\ 3\frac{1}{2} \end{array} ight.$	}48001. 8:	i			28°	$\left\{ egin{array}{c} 2^{1\!\!\!/_2} \ 3^{1\!\!\!/_2} \ 3^{1\!\!\!/_2} \end{array} ight.$	} 50438. 35		
	13°	3½	4 8023. 68				p ⁴G°	$\frac{2\frac{1}{2}}{3\frac{1}{6}}$	50452.6:	127. 0	
	14°	3½	48047.63						50742.4	162. 8 191. 2	
	15°	$2\frac{1}{2}$	48070. 91				29°	31/2	50529.67		
	16°	$\left\{ \begin{array}{c} 2\frac{1}{2} \\ 3\frac{1}{2} \end{array} \right.$	}48201. 79			$3d^3 4p^2$	h G	$1\frac{1}{2}$	50584, 27	70 45	
	1 7 °	3½?	48289.8					$2\frac{1}{2}$ $3\frac{1}{2}$	50654.72 50751.83	97. 11	
3d4(a ³ P)4p?	v 2S°	1/2	48844.67		2.03			$ \frac{4\frac{1}{2}}{5\frac{1}{2}} $	50876.00 51026.30	124.17	
	18°	2½	48881.48					$6\frac{1}{2}$	51201. 12	114.02	
	19°	$2\frac{1}{2}$	48964.99				30°	3½	50595.73		
	20°	1½	49000. 82				n 4£**	$ \begin{array}{c} 1 \frac{1}{2} \\ 2 \frac{1}{2} \\ 2 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 $	50909.7 51021.2	$111.5 \\ 153.3$	
	n ⁴ D°	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$ $3\frac{1}{2}$	49189. 74 49283. 77 49440. 31 49584, 09	94. 03 156. 54 143. 78			m 4D °	$ \begin{array}{c} 3^{\frac{1}{2}} \\ 4^{\frac{1}{2}} \\ \frac{1}{2} \\ 1^{\frac{1}{2}} \end{array} $	51174.50 51366.6 50976.5: 51067 7	192. 1 91. 2	
	21°	21/2	49302.61					21/2 31/2	51212. 2: 51398. 1:	144. 5 185. 9	
	22°	$\left\{ \begin{array}{c} 3\frac{1}{2} \\ 4\frac{1}{2} \end{array} \right\}$	}49341. 90:				31°	$\left\{ \begin{array}{c} 1^{1/2} \\ 2^{1/2} \\ 2^{1/2} \end{array} \right.$	}51194. 2		
3d ³ 4s(b ³ D)4s	t ² D°	$2\frac{1}{2}$	49689.01	-33.87	1. 25		32°	1½	51830. 69		
3d ³ 4s(a ⁵ F)5d	f ⁰H	$1\frac{1}{2}$ $2\frac{1}{2}$	49722.88 49717.57	70 61			33°	$\left\{ egin{array}{c} 2^{1\!\!\!/_2} \\ 3^{1\!\!\!/_2} \end{array} ight.$	}52008. 09		
		$3\frac{1}{2}$ $4\frac{1}{2}$ $5\frac{1}{2}$	49797. 18 49875. 12 49983. 16	77. 94 108. 04 181. 10		3d ³ 4s(b ³ H)4p?	p 2G°	$3\frac{1}{2}$ $4\frac{1}{2}$	52774.08 52947.98	173. 90	
		6½ 7½	50164.26 50301.63	137. 37		3d ³ 4s(b ³ H)4p?	r ²H°	4½	54081.51	169. 75	
3d ³ 4s(a ⁵ F)5d	<i>g</i> ⁰G	$1\frac{1}{2}$ $2\frac{1}{2}$ 21/2	40790 17					5½ 	<i>54251.26</i>		
		572 4½ 5½ 6¼	49932.37 50114.59 50209.05	143. 20 182. 22 94. 46		V II (a ⁵ D ₀)	<i>Limit</i> 34°	 21⁄4	54361		
3d ³ 4s(b ³ H)4p	x 21°	5½ 6½	49977.90 50120.69	142. 79	0. 91 1. 06		35°	$\begin{cases} 1\frac{1}{2}\\ 2\frac{1}{2}\end{cases}$	}55877. 82:		
	23°	3½?	50090. 28				8 2P°	1½ ½	57561. 36? 57744. 12?	—18 2. 7 6	

June 1948.

Config. 1s² 2s² 2p ⁶ 3s² 3p ⁶ +	-					O	oserved Ter	rms				
3d ³ 4s ²	{	a 4P a 2P	a 2D	a ⁴ F	a 2G	a ² H						
3d ⁵	a S			e ⁴F								
$3d^3 4p^2$					h ⁰G							
				7	ns $(n \ge 4)$)						
$3d^{4}(a, D)nr$	{		1, e 6D									
		C	ı, e ⁴D	e °F								
$3d^{\$} 4s(a {}^{\flat}F)nx$	R			j̃ ⁴Ē								
3d ³ 4s(a ³ F)nx		L 4D		e ² F								
$3d^4(a \ ^3P)nx$	{	b 2P										
3d4(a 3H)nx	{					a 4H b 2H						
$3d^4(b \ ^3\mathrm{F})nx$	{			b 4F a 2F								
$3d^4(a \ ^3G)nx$	{				a 4G b 2G							
3d4(a ⁸ D)nx			b 4D									
				7	$np (n \ge 4)$)				nd (n	≥4)	
3d4(a 5D) <i>nx</i>	{	z ⁶ P° z ⁴ P°	y ⁶ D° y ⁴ D°	y 6F° y 4F°					e °P f °D	f °F	e 6G	
3d ³ 4s(a ⁵ F)nx	{		z 6D° v 4D°	z ⁶ F° w ⁴ F°	z ⁶ G° x ⁴ G°		,		f°P g°L	g ⁰F	<i>f, g</i> °G	e, f ⁶ H
3d ³ 4s(a ³ F)nx	{		$z {}^{4}\mathrm{D}^{\circ}$ $z {}^{2}\mathrm{D}^{\circ}$	z 4F° z 2F°	z 4G° z 2G°		/					
3d4(a ³ P)nx	$\begin{cases} y & 4S^{\circ}? \\ v & 2S^{\circ}? \end{cases}$	x 4P°?	s 4D° v 2D°									
3d4(a 3H)nx	{				u 4G° v 2G°	$\substack{x \ {}^4\mathrm{H}^{\circ} \ x \ {}^2\mathrm{H}^{\circ}}$	$\begin{array}{c}z & {}^{4}\mathrm{I}^{\circ}\\z & {}^{2}\mathrm{I}^{\circ}\end{array}$					
3d4(b 3F)nx	{		$t \stackrel{4 D^{\circ}}{w \stackrel{2 D^{\circ}}{D}}$	u ⁴ F° w ² F°?	v 4G° x 2G°							
3d ³ 4s(a ⁵ P)nx	$\begin{cases} z & {}^6\mathrm{S}^\circ \\ w & {}^4\mathrm{S}^\circ \end{cases}$	y °P° w 'P°	x ⁶ D° r ⁴ D°									
$3d^4(a \ ^3G)nx$	{			t ⁴ F°	t 4G° s 2G°	w 4H° t 2H°						
3d3 4s(b 3G)nx	{			x 4F° s 2F°	y 4G°? q 2G°	z 4H° s 2H°						
3d4(a 3D)nx			o 4D°	p 4F°								
3d ³ 4s(b ¹ G)nx				t ² F ^o	t 2G°?	u ² H°						
$3d^{3} 4s(c P)nx$	$x + S^{\circ}$	y ⁴P°	w ⁴ D°									
3d ³ 4s(b ³ H)nx	{				w 4G°? p 2G°?	y 4H°? r 2H°?	x ² I°					
$3d^{3} 4s(b^{3}D)nx$			t 2D°									
3d ³ 4s(a ¹ P)nx	x 2S°?	v 2P°?	u ² D°?									
$3d^3 4s(a \ ^1\mathrm{H})nx$					7 2G°?	v ² H°	? y 2I°?					
3a° 4s(0 ¹ D)nx		y *Po		u *F*?								

*For predicted terms in the spectra of the VI isoelectronic sequence, see Introduction.

(Ti1 sequence; 22 electrons)

Ground state 1s² 2s² 2p⁶ 3s² 3p⁶ 3d⁴ ⁵D₀

a ⁵D₀ 114600 cm⁻¹

I. P. 14.2 volts

Z = 23

The analysis is from the paper by Meggers and the writer, who published 89 terms and 1456 classified lines in the region from 1313 A to 7015 A. The terms of the three multiplicities are connected by observed intersystem combinations.

The g-values were calculated from unpublished data kindly furnished by Babcock and given in the 1940 reference below.

This is the first spectrum in which all theoretical terms (except the highest singlet, ¹S). arising from the electron configuration d^4 have been established.

Many has discussed the configuration assignments and suggests from theoretical calculations that the term c ¹D at 44658 cm⁻¹ be assigned to $3d^3$ 4s. The two other terms which he criticizes, b ³P and c ³P, were published in 1940 with precisely the limits he suggests.

Although intensively sought, series have not been found, probably because this spectrum has been observed only with condensed sparks at atmospheric pressure. The limit, entered in brackets in the table, was estimated by Russell from isoelectronic sequence data.

When the analysis of VIII has been extended, the prefixes b, c, assigned by the writer to the limits may be changed. The limits here called $a^{2}F$, $b^{2}G$, and $c^{2}D$ have not yet been observed in VIII.

REFERENCES

H. N. Russell, Astroph. J. 66, 233 (1927); Mt. Wilson Contr. No. 342 (1927). (I P)

W. F. Meggers and C. E. Moore, J. Research Nat. Bur. Std. 25, 83 RP1317 (1940). (I P) (T) (C L) (E D) (Z E)

A. Many, Phys. Rev. 70, 511 (1946).

Config.	Desig.	J	Level	Interval	Obs. g	Config.	Desig.	J	Level	Interval	Obs. g
3 <i>d</i> ⁴	a ⁵ D	$\begin{array}{c} 0\\ 1\\ 2\\ \end{array}$	$\begin{array}{c} 0.\ 00\\ 36.\ 05\\ 106.\ 63\\ 208.\ 80\end{array}$	36. 05 70. 58 102. 26		3d4	a ³ H	$\begin{array}{c} 4\\ 5\\ 6\end{array}$	$\begin{array}{c} 12545.\ 15\\ 12621.\ 57\\ 12706.\ 15\end{array}$	76. 42 84. 58	0. 83: 1. 02 1. 27:
3d ³ (a ⁴ F)4s	a ⁵F		208. 89 339. 21 2604. 82	130. 32 82. 19	. 0.07	3d4	b ³F	$\begin{array}{c}2\\3\\4\end{array}$	$\begin{array}{c} 13490.\ 84\\ 13542.\ 68\\ 13609.\ 00\end{array}$	51. 84 66. 32	$\begin{array}{c} 0.\ 59 \\ 1.\ 06 \\ 1.\ 19 \end{array}$
		$\begin{array}{c} 2\\ 3\\ 4\\ 5\end{array}$	$\begin{array}{c} 2687.01\\ 2808.76\\ 2968.22\\ 3162.80 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.97 1.20 1.30: 1.28:	3d ³ (a ⁴ P)4s	a 5P	$\begin{array}{c}1\\2\\3\end{array}$	13511. 71 13594. 73 13741. 61	83. 02 146. 88	$\begin{array}{c} 2.\ 39\\ 1.\ 78\\ 1.\ 62 \end{array}$
3d ³ (a ⁴ F)4s	a ³ F	$\begin{array}{c}2\\3\\4\end{array}$	8640. 21 8841. 97 9097. 81	201. 76 255. 84	$\begin{array}{c} 0. \ 65 \\ 1. \ 04 \\ 1. \ 22 \end{array}$	3d4	a ³ G	$\begin{array}{c} 3\\ 4\\ 5\end{array}$	$\begin{array}{c} 14461.\ 73\\ 14556.\ 09\\ 14655.\ 63\end{array}$	94. 36 99. 54	$\begin{array}{c} 0.\ 74 \\ 1.\ 00 \\ 1.\ 17 \end{array}$
3d4	a ³ P	$\begin{array}{c} 0\\ 1\\ 2 \end{array}$	$11295.51 \\11514.76 \\11908.27$	219. 25 393. 51	1.48 1.49	3d ³ (a ² G)4s	b 3G	3 4 5	$\begin{array}{c} 16340.\ 97\\ 16421.\ 51\\ 16533\ 00 \end{array}$	80. 54 111. 49	$\begin{array}{c} 0.\ 76 \\ 1.\ 03 \\ 1\ 16 \end{array}$

V II

V II

V II—Continued

V 11—Continued

Config.	Desig.	J	Level	Interval	Obs. g	Config.	Desig.	J	Level	Interval	Obs. g
3d4	a 1G	4	17910. 98		0. 95	3d ³ (a ⁴ F)4p	z ³ D°	1	36954.58	86 52	0. 24
3 <i>d</i> ⁴	a ³ D	$\begin{array}{c}1\\2\\2\end{array}$	18269. 49 18293. 87	$\begin{array}{c} \mathbf{24.\ 38}\\ \mathbf{60.\ 02} \end{array}$	$\begin{array}{c} 0. \ 49 \\ 1. \ 13 \\ 1 \ 20 \end{array}$	$2^{3}(a^{4}E) 4a$	- 500	23	37041.11 37205.01	163. 90	1. 08 1. 32
$2 d_3(a 2C) A_2$	b 1G	3	10112 03		1. 50	3a°(a *r)4p	z °D°		37201.41 37259.42	58. 01 109. 59	1.39
$3u^{\circ}(u^{-3}G)48$		4	10120 60		1 20				37520.61	$151.60 \\ 10.48$	1. 39
3a°(a *F)48		$\begin{vmatrix} 2\\1\\0 \end{vmatrix}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-33.50 4.92	1. 38	3d ³ (a ⁴ F)4p	z ³ G°	4	37531.09 39234.05	169. 72	1. 44 0. 84
$3d^{4}$	a ¹ I	6	19191. 50		0.96:			5	39612.97	209. 20	1. 19
3d4	a ¹ S	0	19902. 60			$3d^3(a \ {}^4\mathrm{F})4p$	z ³ F°	2	40001.66	193.86	0.65
3d3(a 4P)4s	c 3P	$\begin{array}{c} 0\\ 1\\ 2\end{array}$	$\begin{array}{c} 20156.\ 64\\ 20089.\ 56\\ 20343.\ 00 \end{array}$	-67.08 253.44	1.35 1.36	$3d^{3}(c^{2}D)4s$	C 3D	3 0 0	40195.52 40430.10 44098.46	234. 58	1.02 1.22 1.27
$3d^{3}(a^{2}H)4s$	b ³ H	4	20242. 32	07.07	0. 82	00 (0 2)10		$\begin{vmatrix} 0\\2\\1 \end{vmatrix}$	44159.43	-60.97 -41.54	1. 14
00 (0 11)10		5	$\begin{array}{c} 20280. \ 19 \\ 20363. \ 22 \end{array}$	37. 87 83. 03	1.01 1.14	$3d^{4}$	c ¹ D	2	44657 99		0.00
$3d^{3}(a \ ^{2}\mathrm{D})4s$	b 3D	1	20522. 14	04.01	0. 58	$3d^3(a \ ^4\mathrm{P})4p$	z ³ P°	0	46586. 43	104.00	
		$\begin{vmatrix} 2\\ 3 \end{vmatrix}$	20617.05 20622.99	5. 94	$\begin{array}{c} 1.\ 25\\ 1.\ 26 \end{array}$		171	$\begin{array}{c}1\\2\end{array}$	46690. 4 3 46739. 98	49. 55	1. 44 1. 48
$3d^4$	a ¹ D	2	20980. 92		1. 02	$3d^3(a \ ^4\mathrm{P})4p$	z 5P°	$\frac{1}{2}$	46754.59	125.35	2.28
3d ³ (a ² P)4s	a ¹ P	1	22273. 54		0. 97			3	47051.89	171. 95	1. 58
3d ³ (a ² H)4s	a ¹ H	5	23391. 09		1. 04	$3d^{3}(a \ ^{4}\mathrm{P})4p$	y ⁵D°	0	47027.88	80. 10	1 49
$3d^3(a \ ^2\mathrm{D})4s$	b ¹ D	2	25191.08		0. 99				47101.88	-6.10 79.29	1.45
3d4	a ¹ F	3	26839. 82		0. 97				47420.10	238. 93	1.40 2.28
3d4	<i>c</i> ³F	$\begin{array}{c} 2\\ 3\\ 4\end{array}$	30267.46 30306.40 30318.63	38. 94 12. 23	$\begin{array}{c} 0.\ 67 \\ 1.\ 06 \\ 1.\ 25 \end{array}$	3d ³ (a ² G)4p	z ³ H°	$\begin{array}{c} 4\\ 5\\ 6\end{array}$	47056. 32 47297. 08 47607. 79	240. 76 310. 71	0.78 1.01 1.13
3d ³ (a ² F)4s	d ³F	4	30613. 97	74	1. 23	3d3(a 2P)4p	z ¹ S°	0	48258. 28		
		$\begin{vmatrix} 3\\2 \end{vmatrix}$	30641.71 30673.14	-31.43	$\begin{array}{c} 1.\ 05 \\ 0.\ 67 \end{array}$	3d ³ (a ² G)4p	y ³ G°	3	48579.96	150 80	0.67
$3d^4$	d ³ P	2	32040. 76	-258 48	1. 38			$\begin{vmatrix} 4\\5 \end{vmatrix}$	48730.76 48853.04	122. 28	1.02 1.22
			32299. 24 32420. 04	-120.80	1. 48	3d ³ (a ² G)4p	y ³ F°	$\frac{2}{3}$	49201.66 49210.78	9.12	0. 63 0. 99
$3d^{3}(a \ ^{2}\mathrm{F})4s$	$b {}^{1}F$	3	34228.79		1. 00			4	49268.61	07.00	1. 18
$3d^{3}(a \ {}^{4}\mathrm{F})4p$	z ⁵ G°	$\begin{vmatrix} 2\\ 3 \end{vmatrix}$	34592.72 34745.72	153.00	0. 31 0. 93	$3d^{3}(a \ ^{2}\mathrm{G})4p$	z ¹ F°	3	49568.45		0. 97
		$\begin{vmatrix} 4\\5 \end{vmatrix}$	34946.55 35193.13	246.58	$\begin{array}{c} 1.\ 14 \\ 1.\ 16 \end{array}$	$3d^3(a \ ^2\mathrm{G})4p$	z ¹ H°	5	49593.41		0.95
		6	35483.39	290. 20		$3d^3(a \ ^2\mathrm{G})4p$	z ¹ G°	4	49723.68		0.96
$3d^4$	c 1G	4	36425.07		0. 96	$3d^3(a \ ^4\mathrm{P})4p$	z ⁵ S°	2	49731. 32		
$3d^3(a \ {}^4\mathrm{F})4p$	z ⁵F°	$\begin{array}{c}1\\2\end{array}$	36489.34 36673.51	184. 17	0.35	3d ³ (a ² P)4p	z ¹ D°	2	49898. 22		0. 93
		$\overline{3}$ 4 5	36919.23 37150.57 37352.39	$\begin{array}{c} 245.\ 72\\ 231.\ 34\\ 201.\ 82 \end{array}$	1. 24 1. 40:	3d ³ (a ⁴ P)4p	y ³ D°	$egin{array}{c} 1 \\ 2 \\ 3 \end{array}$	50473.76 50775.47 51085.77	301. 71 310. 30	0. 49 1. 11 1. 27
					_	3d ³ (a ² P)4p	y 3P°	$egin{array}{c} 0 \ 1 \ 2 \end{array}$	50662.36 50738.82 51123.31	76. 46 384. 49	1. 39 1. 51

V II—Continued

V II—Continued

Config.	Desig.	J	Level	Interval	Obs. g	Config.	Desig.	J	Level	Interval	Obs. g
3d ³ (a ² H)4p	y ³ H°	4	52082.88	70 67	0. 70	3d ³ (a ² F)4p	x 1G°	4	65790. 28		0. 94
			52153.55 52252.70	99.15	0. 98 1. 04:	$3d^2 4s(b \ ^2F)4p$	y ⁵G°	2	66228.4:	138 0	
3d3(a 2P)4p	z ³ S°	1	52181.18		1.85			$\begin{vmatrix} 3\\4\\ \cdot \end{matrix}$	66667.3: 66962.7:	295.4 393.3	
3d³(a ²D)4p	x ³ F°	$2 \\ 3 \\ 4$	52245.68 52391.94 52657.51	$\begin{array}{c} 146.\ 26\\ 265.\ 57\end{array}$	0. 68 1. 07 1. 18:	$3d^{3}(a \ {}^{2}\mathrm{F})4n$	x 1F°	5 6 3	67356.0: 67795.7:?	439. 7	0.95
3d3(a 2P)4p	x ³ D°	1 2 3	52604.11 52700.03 52767.36	95. 92 67. 33	0. 63 1. 10 1. 26	$3d^2 4s(b \ ^4\mathrm{F})4p$	v ³ F ^o	$\begin{vmatrix} 2\\ 3\\ 4 \end{vmatrix}$	67737.8 67905.1 68147.2	167. 3 242. 1	
3d ³ (a ² P)4p	z ¹ P°	1	52803.75		0. 92	$3d^2 4s(b \ {}^4\mathrm{F})4p$	u ³ D°	1	68759.4	38.3	
3d3(a 2H)4p	z ³ I°	5 6	52877.99 53076.82	$198.83 \\ 242.70$	0. 84: 0. 98	2 J2 4 - (1 4T) 4	. 309	$\begin{vmatrix} 2\\ 3\\ 2 \end{vmatrix}$	68797.7 68945.0	147. 3	
3d ³ (a ² D)4p	w ³ D°	1	53751.46	117. 17	1. 11: 0. 49:	3 <i>a</i> ² 48(0 °F)4p	v "G	3 4 5	69912.1 70227.8	267. 9 315. 7	
		$\frac{2}{3}$	53927.19	58.56	1. 37	$3d^2 4s(b \ ^2\mathrm{G})4p$	x ¹ H°	5	70936.4		
$3d^3(a \ ^2\mathrm{H})4p$	y ¹G°	4	54144. 20		1.00	$3d^2 4s(b \ ^2\mathrm{G})4p$	w ¹ G°	4	72292. 2:		
3d ³ (a ² D)4p	x ³ P°	$egin{array}{c} 2 \\ 1 \\ 0 \end{array}$	54715.63 54717.85 54813.45	-2.22 -95.60		3d ³ (a ⁴ F)4d	e ⁵H	$ \begin{array}{c} 3 \\ 4 \\ 5 \\ 6 \end{array} $	72447.96: 72550.71 72680.20: 72837.00	$102.75 \\ 129.49 \\ 156.80$	
$3d^3(a \ ^2\mathrm{D})4p$	y ¹ F°	3	55142.01		0. 94			7	73020. 35:	183. 35	
3d3(a 2H)4p	x ³ G°	$5 \\ 4 \\ 3$	55206. 87 55304. 34 55349. 63	-97.47 -45.29	$ \begin{array}{c} 1. 15 \\ 1. 02 \\ 0. 82 \end{array} $	$3d^3(a \ {}^4\mathrm{F})4d$	e ⁵P	$\begin{array}{c}1\\2\\3\end{array}$	72517.84: 72674.28 72908.17	156. 44 233. 89	
3d ³ (a ² H)4p	z ¹ I°	6	55403.38		1.01:	$3d^{3}(a \ {}^{4}\mathrm{F})4d$	e ⁵D	0			
$3d^3(a \ ^2\mathrm{H})4p$	y ¹ H°	5	55499. 38		1.03:			$\begin{vmatrix} 1\\ 2\\ 0 \end{vmatrix}$	72682.06:?	107.17	
3d ³ (a ⁴ P)4p	y 3S°	1	5566 3. 27		1. 92			$\begin{vmatrix} 3\\4 \end{vmatrix}$	72951.00:	161. 77	
$3d^3(a \ ^2\mathrm{D})4p$	y ¹ P°	1	56171.49		1.05:	$3d^{3}(a \ {}^{4}\mathrm{F})4d$	e ⁵G	2	73026.76	118. 92	
3d ³ (a ² D)4p	y ¹D°	2	57342.59		0. 98			3 4 5	73145.08 73278.92 72416.62	133. 24 137. 71	
3d ³ (a ² F)4p	w ³ F°	$2 \\ 3 \\ 4$	62085.02 62133.39 62176.24	48. 37 42. 85	$\begin{array}{c} 0.58: \\ 1.00 \\ 1.36: \end{array}$	$3d^{3}(a \ ^{4}\mathrm{F})4d$	e ⁵F	6	73498. 93:	82. 30	
	1°	4	62761.9					$\begin{vmatrix} 2\\ 3 \end{vmatrix}$			
3d ² 4s(b ⁴ F)4p	y ⁵F°	1	63548.5:	108. 7				$\begin{vmatrix} 4\\5 \end{vmatrix}$	73222.72: 73293.82:?	71. 10	
		23	63657.2	159.7 209.7		$3d^2 4s(b \ ^2\mathrm{G})4p$	w ¹ F°	3	74664.5		
		$\frac{4}{5}$	64287.1	260. 5		$3d^{3}(c \ ^{2}\mathrm{D})4p?$	t ³ D°	1	75715. 45:?	42. 84	0.50:
3d ³ (a ² F)4p	w ³ G°	$ \begin{array}{c} 3 \\ 4 \\ 5 \end{array} $	64057.39 64130.84 64229.10	73. 45 98. 26	0. 72: 1. 02		24 ³ F ^o	$\begin{vmatrix} 2\\3\\2 \end{vmatrix}$	75848. 13 76220, 4	89.84	1. 14:
$3d^{2}(a \ ^{2}\mathrm{F})4p$	x ¹ D°	2	64586.23		1.03:			$\begin{vmatrix} \overline{3} \\ 4 \end{vmatrix}$	76385.8 76643.5	165. 4 257. 7	
$3d^3(a \ ^2\mathrm{F})4p$	v ³ D°	3	64603.53	200 60	1. 22:		2°	3	76405.4		
		$\begin{array}{c} 2\\ 1\end{array}$	64804.13 64930.76	-126.63	1. 02: 0. 46:		w ¹ D°	2	78791. 3:		
3d² 4s(b 4F)4p	x ⁵ D°	0 1 2 3	65783.4 65816.2 65885.3 65996.7	32. 8 69. 1 111. 4 161. 0			3°	3	79040. 4		
		4	66158.6	101. 9		V III $(a \ {}^{4}F_{1\frac{1}{2}})$	Limit		[114600]		

June 1948.

Config. $1s^2 2s^2 2p^6 3s^2 3p^6 +$	C	Observed Terms
3d4	$\begin{cases} a {}^{3}P & a {}^{5}D \\ a {}^{3}P & a {}^{3}D & b {}^{3}F & a {}^{3}G & a {}^{3}H \\ a {}^{3}P & c {}^{3}F \\ a {}^{1}S & a {}^{1}D & a {}^{1}F & a {}^{1}G \\ c {}^{1}D & c {}^{1}G \end{cases}$	
	ns (n≥4)	$np (n \ge 4)$
$3d^3(a \ ^4\mathrm{F})nx$	$\begin{cases} a {}^{5}\mathbf{F} \\ a {}^{3}\mathbf{F} \end{cases}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$3d^3(a^2P)nx$	$\begin{cases} b^{3}P \\ a^{1}P \end{cases}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$3d^{3}(a \ ^{4}\mathrm{P})nx$	$\begin{cases} a {}^{5}\mathbf{P} \\ c {}^{3}\mathbf{P} \end{cases}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$3d^3(a \ ^2\mathrm{G})nx$	{	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3d ³ (a ² D)nx	$\begin{cases} b {}^{3}\mathrm{D} \\ b {}^{1}\mathrm{D} \end{cases}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3d ³ (a ² H)nx	$\left\{\begin{array}{ccc} b {}^{3}\mathrm{H} \\ a {}^{1}\mathrm{H} \end{array}\right.$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$3d^3(a \ ^2\mathrm{F})nx$	$\begin{cases} d {}^{3}\mathbf{F} \\ b {}^{1}\mathbf{F} \end{cases}$	$\begin{array}{cccccc} v & {}^{3}\mathrm{D}^{\circ} & w {}^{3}\mathrm{F}^{\circ} & w {}^{3}\mathrm{G}^{\circ} \\ x & {}^{1}\mathrm{D}^{\circ} & x {}^{1}\mathrm{F}^{\circ} & x {}^{1}\mathrm{G}^{\circ} \end{array}$
3d ² 4s(b ⁴ F)nx	{	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$3d^2 4s(b \ ^2G)nx$		$w {}^{1}\mathrm{F}^{\circ} w {}^{1}\mathrm{G}^{\circ} x {}^{1}\mathrm{H}^{\circ}$
$3d^3(c \ ^2\mathrm{D})nx$	c ³ D	t ³ D°
	$nd (n \ge 4)$	
3d ³ (a ⁴ F)nx	e ⁵ P e ⁵ D e ⁵ F e ⁵ G e ⁵ H	

*A chart of predicted terms in the spectra of the TiI isoelectronic sequence is given in the Introduction. Owing to the differences in binding energy of the 3d and 4s electrons the arrangement of the charts of predicted and observed terms is different for V II.

V III

(Sc 1 sequence; 21 electrons)

Ground state $1s^2 2s^2 2p^6 3s^2 3p^6 3d^3 {}^4F_{1\frac{1}{2}}$

$$a \ {}^{4}\mathrm{F}_{14} \ 240000 \ \mathrm{cm}^{-1}$$

The analysis is by White, who has classified 120 lines in the interval between 1117 A and 2595 A. The limit (entered in brackets in the table) is derived from his extrapolation of isoelectronic sequence data.

The doublet and quartet terms are connected by observed intersystem combinations. The reality of the term a ²P is questioned in the paper by Many.

REFERENCES

H. E. White, Phys. Rev. 33, 672 (1929). (I P) (T) (C L) A. Many, Phys. Rev. 70, 513 (1946). 301

Z = 23

I.P. 29.7 volts

302

Vш

V III

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
3d²	a 4F	$1\frac{1}{2}$ $2\frac{1}{2}$ $3\frac{1}{2}$ $4\frac{1}{2}$	0 145 339 583	$145 \\ 194 \\ 244$	3d ² (a ³ F)4p	<i>z</i> 4F°	$\begin{array}{c} 1\frac{1}{2}\\ 2\frac{1}{2}\\ 3\frac{1}{2}\\ 4\frac{1}{2}\\ 4\frac{1}{2} \end{array}$	86716 86937 87218 87544	221 281 326
3 <i>d</i> ³	a ²P	$1^{\frac{1}{2}}_{1^{\frac{1}{2}}_{2}}$	$\frac{11207}{11387}$	180	$3d^2(a \ {}^3\mathrm{F})4p$	z ²F°	$2\frac{1}{2} \\ 3\frac{1}{2}$	87881 88329	448
3 <i>d</i> ³	a 4P	1/2 1/2 1/2 21/	$\frac{11513}{11590}$	77 181	$3d^2(a \ {}^3\mathrm{F})4p$	z 2D°	$1\frac{1}{2}{2\frac{1}{2}}$	88560 88946	386
3d ²	a 2G	$272 \\ 31/2 \\ 41/2 \\ 1/$	11966 12187	221	3d ² (a ³ F)4p	z ⁴ D°	1/2 11/2 21/2 31/2	89004 89191 89458 89418	$187 \\ 267 \\ -40$
3 <i>d</i> ³	a 2D	$1\frac{1}{2}{2\frac{1}{2}}{2\frac{1}{2}}$	$\frac{16229}{16376}$	147	$3d^2(a \ {}^3\mathrm{F})4p$	z ² G°	$3\frac{1}{2}$	91712	343
3d ³	a ² H	$4\frac{1}{2}$ $5\frac{1}{2}$	$\frac{16822}{16977}$	155	$3d^2(a \ {}^{\mathbf{a}}\mathbf{F})4d$	e 4H	$\frac{1}{2}$	141269 141486	217
3d²(a ²F)4s	6 4F	$\begin{array}{c} 1\frac{1}{2}\\ 2\frac{1}{2}\\ 3\frac{1}{2}\\ 4\frac{1}{2}\end{array}$	$\begin{array}{r} 43941 \\ 44108 \\ 44344 \\ 44645 \end{array}$	$167 \\ 236 \\ 301$			$5\frac{1}{2}$ $6\frac{1}{2}$	141733 141991	247 258
3d ² (a ² F)4s	b 2F	$2^{1\!\!\!/_2}_{3^{1\!\!\!/_2}}$	$49329 \\ 49807$	478	V IV (a ³ F ₂)	Limit		[240000]	
3d²(a ³F)4p	<i>z</i> ⁴G°	$2\frac{1}{2}$ $3\frac{1}{2}$ $4\frac{1}{2}$ $5\frac{1}{2}$	85523 85874 86305 86808	$351 \\ 431 \\ 503$					

June 1948.

V III OBSERVED TERMS*

Config. 1s² 2s² 2p ⁶ 3s² 3p ⁶ +	Observed Terms										
3d ²	$\begin{cases} a \stackrel{4P}{a \stackrel{2}{P}} & a \stackrel{4F}{a \stackrel{2D}{}} & a \stackrel{2G}{} & a \stackrel{2H}{} \end{cases}$										
	ns $(n \ge 4)$	$np (n \ge 4)$	nd $(n \ge 4)$								
$3d^2(a \ ^3\mathrm{F})nx$	$\begin{cases} b \ {}^{4}\mathbf{F} \\ b \ {}^{2}\mathbf{F} \end{cases}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e 4H								

*For predicted terms in the spectra of the Sc 1 isoelectronic sequence, see Introduction.

Ground state 1s² 2s² 2p⁶ 3s² 3p⁶ 3d² ³F₂

 $a \ {}^{3}F_{2} \ 391000 \ cm^{-1}$

White has classified 64 lines in the region between 675 A and 2269 A, and extrapolated the limit from isoelectronic sequence data. The limit derived from his ionization potential is entered in brackets in the table.

From a study of related spectra, Edlén has rejected White's 3d 1So term, and his four intersystem combinations. Edlén suggests that the line observed at 734.36 A (136173 cm⁻¹) may be designated a $a {}^{1}D_{2}-z {}^{3}F_{2}^{\circ}$, which decreases White's singlet terms by 698 cm⁻¹. This change has been adopted here.

REFERENCE

H. E. White, Phys. Rev. 33, 538 (1929). (I P) (T) (C L)

B. Edlén- unpublished material (Feb. 1949). (T) (C L)

	V	1	V	

146851

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
3d²	a ³ F	2 3 4	0 318 730	$318\\412$	$3d(^{2}\mathrm{D})4p$	z ³ F°	2 3 4	147133 147653 148365	520 712
3d² 3d²	a 1D a 1P	2 0	10960 13121	117	$3d(^{2}\mathrm{D})4p$	z ³ P°	1 1	151446 151424	-22
2.72	a 10	12	13238 13453	215	$3d(^2\mathrm{D})4p$	z ¹ F°	2 3	151564 153920	140
3d(2D)4s	a *D	1	96195	215	$3d(^{2}\mathrm{D})4p$ $3d(^{2}\mathrm{D})4d$	z 1P°	1	<i>155567</i> 217835	
0.7(1)) 4 -	LID	3	96410 96795	385		, tu	4 5	218097 218461	262 364
$3d(^{2}D)4s$ $3d(^{2}D)4p$	<i>o</i> ¹ D <i>z</i> ¹ D°	2	144276		3d(2D)4d	e ³F	$2 \\ 3 \\ 4$	$\begin{array}{c} 223510 \\ 223833 \\ 224263 \end{array}$	323 430
3d(2D)4p	z ¹ D°	$1 \\ 2 \\ 3$	$146116 \\ 146426 \\ 146851$	$\begin{array}{c} 310\\ 425\end{array}$	V v (² D ₁₁₄)	Limit		[391000]	

Feb. 1949.

V IV OBSERVED TERMS*

 $V v (^{2}D_{1})$

Config. 1s² 2s² 2p ⁶ 3s² 3p ⁶ +	Observed Terms								
3d ²	{ <i>a</i> ³ P <i>a</i> ³ F <i>a</i> ¹ D	<i>a</i> ¹ G							
	ns $(n \ge 4)$	$np (n \ge 4)$	nd $(n \ge 4)$						
$3d(^2\mathrm{D})nx$	$\left\{\begin{array}{cc} a ^{2} D \\ b ^{1} D \end{array}\right.$	$\begin{vmatrix} z^{*}P^{\circ} & z^{*}D^{\circ} & z^{*}F^{\circ} \\ z^{1}P^{\circ} & z^{1}D^{\circ} & z^{1}F^{\circ} \end{vmatrix} e$	²F e³G						

*A chart of predicted terms in the spectra of the Carisoelectronic sequence is given in the Intro-duction. Owing to the change in binding energies of the 3d and 4s electrons along this sequence, the arrangement of the charts of observed and predicted terms is not identical. In Viv the prefixes $a, b, \ldots e, z$ replace those indicating the running electron.

Z = 23

I. P. 48 volts

V IV

Z = 23

I. P. 65.2 volts

(KI sequence; 19 electrons)

Ground state 1s² 2s² 2p⁶ 3s² 3p⁶ 3d ²D_{11/2}

3d ²D_{11/2} 526000 cm⁻¹

The terms have been calculated from the data published by Gibbs and White, who classified 11 lines in the region between 286 A and 1716 A. From these data Kruger and Weissberg have calculated the limit by fitting a Ritz-Rydberg formula to the ²S terms. Their limit in round numbers is quoted here.

REFERENCES

R. C. Gibbs and H. E. White, Phys. Rev. 33, 162 (1929). (C L) P. G. Kruger and S. G. Weissberg, Phys. Rev. 52, 317 (1937). (I P)

Config.	Desig.	J	Level	Interval
3p ⁶ (1S)3d	3d 2D	$1\frac{12}{22}$	0 620	620
3p ⁶ (1S)4s	4s 2S	1/2	148100	
3p ⁶ (1S)4p	4p 2P°	$1/2 \\ 1/2 \\ 1/2$	206347 207617	1270
3p ⁶ (1S)5s	58 2S	1/2	328167	
$3p^{6}({}^{1}\mathrm{S})4f$	4f ²F°	$\left\{ egin{array}{c} 2^{1\!\!\!/_2} \\ 3^{1\!\!\!/_2} \end{array} ight.$	} 349204	
$3p^{\dot{6}}({}^1\mathrm{S})6s$	6s 2S	1/2	403933	
V VI (1S0)	Limit		526000	
		1		

V	V
-	-

May 1948.

V VI

(A 1 sequence; 18 electrons)

Ground state 1s² 2s² 2p⁶ 3s² 3p⁶ ¹S₀

$3p^{6}$ ¹S₀ **1040100** cm⁻¹

I. P. 128.9 volts

Z = 23

Four lines are classified in the region between 128 A and 182 A, as combinations with the ground term. The values listed in the table have been rounded off in the last places.

For convenience, the Paschen notation has been added by the writer in column one under the heading "AI". As for AI, the *jl*-coupling notation in the general form suggested by Racah is here introduced, although LS-designations, as indicated in column two under the heading "Authors", are perhaps preferable for the terms thus far identified.

REFERENCES

P. G. Kruger and S. G. Weissberg, Phys. Rev. 48, 659 (1935). (I P) (T) (C L)
P. G. Kruger, S. G. Weissberg and L. W. Phillips, Phys. Rev. 51, 1090 (1937). (I P) (T)
G. Racah, Phys. Rev. 61, 537 (L) (1942).

		V VI			
Аі	Authors	Config.	Desig.	J	Level
$1p_0$	$3p^{6}$ 1S	3p ⁶	$^{3}p^{6}$ $^{1}\mathrm{S}$	0	0
184	3p⁵ 4s ³ P°	$3p^{5}(^{2}\mathrm{P_{15}^{\circ}})4s$	4s [1½]°	$\begin{array}{c} 2\\ 1 \end{array}$	549300
$1s_2$	3p⁵ 4s ¹ P°	$3p^{5}(^{2}\mathrm{P})^{\circ}_{\mathrm{H}})4s$	4s′[½]°	0 1	557650
284	3p ⁵ 5s ³ P°	$3p^{5}(^{2}\mathrm{P_{1}\overset{o}{,}})5s$	5s [1½]°	$\begin{array}{c} 2\\ 1\end{array}$	771760
$2s_2$	3p⁵ 5s 1P°	$3p^{5}(^{2}\mathrm{P}_{\mathrm{H}}^{\circ})5s$	5s'[½]°	0 1	778920
		V vII $(^{2}P_{1\frac{6}{2}})$	Limit		1040100
		V VII (2P ^o _{1/2})	Limit		1047760

May 1948.

V VII

(Cl 1 sequence; 17 electrons)

Ground state 1s² 2s² 2p⁶ 3s² 3p⁵ ²P^o₁₄

 $3p^{5} {}^{2}\mathrm{P}^{\circ}_{1\frac{1}{2}} 1216000 \mathrm{~cm}^{-1}$

All of the terms except $3p^6$ ²S are from the paper by Edlén. Thirteen lines in the region between 148 A and 472 A have been classified as combinations from the ground state. Edlén has estimated the value of the limit by extrapolation along the isoelectronic sequence, as indicated by brackets in the table. His unit, 10^3 cm⁻¹, has here been changed to cm⁻¹.

REFERENCES

S. G. Weissberg and P. G. Kruger, Phys. Rev. 49, 872 (A) (1936). (C L) B. Edlén, Zeit. Phys. 104, 407 (1937). (I P) (T) (C L)

p				
Config.	Desig.	J	Level	Interval
$3s^2 \ 3p^5$	3p⁵ ²₽°	$1\frac{12}{2}$	0 7660	-7660
3s 3p ⁶	3p ⁶ ² S	1⁄2	219160	
3s ² 3p ⁴ (³ P)4s	48 4P	$2\frac{1}{2}$ $1\frac{1}{2}$ $\frac{1}{2}$	$\begin{array}{c} 608640 \\ 612810 \\ 615480 \end{array}$	$-4170 \\ -2670$
3s ² 3p ⁴ (³ P)4s	48 2P	$1\frac{1}{2}$ $\frac{1}{2}$	$\begin{array}{c} 620650 \\ 625570 \end{array}$	-4920
3s ² 3p ⁴ (¹ D)4s	4s' 2D	$2\frac{1}{2}$ $1\frac{1}{2}$	$\begin{array}{c} 638540 \\ 638710 \end{array}$	-170
3s ² 3p ⁴ (1S)4s	4s'' 2S	1/2	671580	
V VIII (3P2)	Limit		[1216000]	

V VII

January 1948.

I. P. 151 volts

Z = 23

V VIII

(S 1 sequence; 16 electrons)

Ground state $1s^2 2s^2 2p^6 3s^2 3p^4 {}^{3}P_2$

3p4 3P2 1401000 cm⁻¹

The analysis is by Edlén, who has classified 19 lines in the range between 135 A and 147 A. He has extrapolated the limit from isoelectronic sequence data. The singlet and triplet terms are connected by two observed intersystem combinations.

Edlén's unit, 10^3 cm⁻¹, has here been changed to cm⁻¹.

REFERENCE

B. Edlén, Zeit. Phys. 104, 188 (1937). (I P) (T) (C L)

V VIII

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
3s ² 3p ⁴	3p4 3P	2 1 0	0 6000 7580	-6000 - 1580	$3s^2 3p^3(^2D^\circ)4s$	4s' 1D°	2	718450	
3s ² 3p ⁴	3p4 1D	2	27 120		3s ² 3p [*] (² P [*])4s	4s'' *P*	$\begin{array}{c} 0 \\ 1 \\ 2 \end{array}$	734240 734870 736640	630 1770
3s ² 3p ⁴ 3s ² 3p ³ (⁴ S ^o)4s	3p ⁴ ¹ S 4s ³ S°	01	60720 687250		3s ² 3p ³ (² P ^o)4s	4s'' ¹ P°	1	742790	
3s² 3p³(2D°)4s	4s' 3D°	1 2 3	710600 710910 711990	310 1080	V IX (4Si1)	Limit		1401000	

January 1948.

V IX

(P 1 sequence; 15 electrons)

Ground state $1s^2 2s^2 2p^6 3s^2 3p^3 {}^4S^{\circ}_{1\frac{1}{2}}$

$$3p^3 {}^{4}S^{\circ}_{112}$$
 cm⁻¹

I. P. volts

Kruger and Pattin have observed 6 lines near 126 A, and arranged them in two multiplets that give intervals consistent with those found in related isoelectronic spectra.

By a rough extrapolation of $3p^3 \, {}^4S^{\circ}_{11/2} - 3p^3 \, {}^2D^{\circ}_{11/2}$ along the isoelectronic sequence, the writer has estimated the value of $3p^3 \, {}^2D^{\circ}_{11/2}$ (entered in brackets in the table), and calculated the terms listed below from the multiplets given by Kruger and Pattin. The uncertainty x in the estimated position of the doublet terms relative to the quartets may exceed $\pm 500 \text{ cm}^{-1}$.

REFERENCE

P. G. Kruger and H. S. Pattin, Phys. Rev. 52, 624 (1937). (C L)

I. P. 173.7 volts

V VIII

Z = 23

Z=23

Config.	Desig.	J	Level	Interval
$3s^2 \ 3p^3$	$3p^3$ 4S°	$1\frac{1}{2}$	0	
3s ² 3p ³	$3p^3$ ² D°	$1\frac{12}{212}$	[36000]+x 37520 +x	1520
3s ² 3p ² (³ P)4s	48 4P	$1/2 \\ 11/2 \\ 21/2 \\ 21/2 \\ 1$	789070 792700 797320	$\begin{array}{c} 3630\\ 4620 \end{array}$
3s ² 3p ² (1D)4s	4s' 2D	$2\frac{1}{2}$ $1\frac{1}{2}$	824500 + x 824860 + x	- 360

December 1947.

V XI

(Al 1 sequence; 13 electrons)

Ground state $1s^2 2s^2 2p^6 3s^2 3p {}^2\mathbf{P}_{\mathbf{y}_{\mathbf{z}}}$

 $3p \, {}^{2}\mathrm{P}_{2}^{\circ}$ cm⁻¹

This spectrum has not been analyzed, but Edlén has classified two lines as follows:

I. A.	Int.	Wave No.	Desig.
87. 166 87. 868	3 4	$\frac{1147240}{1138070}$	}3p ² P°-4d ² D

His unit, 10^3 cm⁻¹, is here changed to cm⁻¹.

REFERENCE

B. Edlén, Zeit. Phys. 103, 540 (1936). (C L)

December 1947.

V XII

(Mg I sequence; 12 electrons)

Ground state $1s^2 2s^2 2p^6 3s^2 {}^1S_0$

3s² ¹S₀ 2490000 cm⁻¹

Edlén has classified 15 lines in the region between 61 A and 106 A. No intersystem combinations have been observed, and the triplet terms are not all connected by observed combinations. He has determined the relative positions of the various groups of terms and also the ionization potential by extrapolation along the isoelectronic sequence. His estimated value of the limit is entered in brackets in the table.

His unit, 10^3 cm⁻¹, has here been changed to cm⁻¹.

REFERENCE

B. Edlén, Zeit. Phys. 103, 536 (1936). (I P) (T) (C L)

I.P.

Z = 23

volts

Z=23

I. P. 309 volts

307

2	n	0
Ο	υ	0

V XII

V XII

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
3s ²	3s ² 1S	0	0		3s(2S)4f	4f 3F°	2 3 4	1/85160±~	
38(-D)9h	50 1	$\begin{array}{c} 0\\ 1\\ 2\end{array}$	191450 + x 198610 + x	3100 7160	3s(2S)5d	5d *D	1 2	1485100 + x 1818660 + x	070
3s(2S)3d	3d 3D	$\begin{array}{c}1\\2\\3\end{array}$	549580 + x		3s(2S)5f	5f 3F°	3 2	1818910 + x	250
3s(2S)4s	4s 3S	1	1212500 + x				3 4	1848960+x	
3s(2S)4p	4 <i>p</i> ¹ P°	1	1310500						
3s(2S)4d	4d 3D	1 2 3	$1424530 + x \\ 1424850 + x \\ 1425410 + x$	320 560	V XIII (2S ₁₅)	Limit		[2490000]	

August 1947.

V XIII

(Na 1 sequence; 11 electrons)

Ground state 1s² 2s² 2p⁶ 3s ²S_{1/2}

38 2S1/2 2713130 cm⁻¹

Edlén has classified 15 lines in the interval 52 A to 99 A, and extrapolated the absolute value of the ground term from isoelectronic sequence data.

The unit adopted by Edlén, 10^3 cm⁻¹, has here been changed to cm⁻¹.

REFERENCE

B. Edlén, Zeit. Phys. 100, 621 (1936). (I P) (T) (C L)

V	XIII	
V.	лш	

Config. J Level Interval Config. \boldsymbol{J} Level Interval Desig. Desig. $2\frac{1}{2}{3\frac{1}{2}}{3\frac{1}{2}}$ 3s 2S 0 $4f ^{2}F^{\circ}$ 1550290 38 $\frac{1}{2}$ 4f220 1550510 **2**25350 236430 $3p ^{2}P^{\circ}$ $1\frac{1}{2}$ $1\frac{1}{2}$ 3p11080 $5p \ ^{2}P^{\circ}$ $1\frac{1}{2}$ $1\frac{1}{2}$ 5p1889360 2070 1891430 $\frac{1\frac{1}{2}}{2\frac{1}{2}}$ $\begin{array}{c} 545500 \\ 546730 \end{array}$ 3d $3d \ ^{2}D$ 1230 $\frac{1946050}{1946360}$ $1\frac{1}{2}{2\frac{1}{2}}{2\frac{1}$ 5d $5d \ ^2D$ 310 1300330 4s4s 2S $\frac{1}{2}$ $2\frac{1}{2}$ $3\frac{1}{2}$ $5f \ ^2F^\circ$ 5f1388410 1392780 $4p \ ^{2}P^{\circ}$ $1^{\frac{1}{2}}_{1^{\frac{1}{2}}}$ 1968740 4p4370 --------_____ $\frac{1505740}{1506340}$ $1\frac{1}{2}{2\frac{1}{2}}{2\frac{1}{2}}{2}$ 4d $4d \ ^{2}D$ 600 V XIV (1S₀) Limit 2713130 _ _ _

June 1947.

Z = 23

I. P. 336.29 volts

V XIII

(Ne 1 sequence; 10 electrons)

Ground state 1s² 2s² 2p⁶ ¹S₀

 $2p^{6}$ ¹S₀ **7237600** cm⁻¹

Edlén and Tyrén have classified four lines in the region between 20 A and 23 A, as combinations with the ground term. They have derived absolute term values by extrapolation along the NeI isoelectronic sequence. Their unit, 10³ cm⁻¹, has here been changed to cm⁻¹. As for NeI, the *jl*-coupling notation in the general form suggested by Racah is introduced.

REFERENCES

B. Edlén and F. Tyrén, Zeit. Phys. 101, 210 (1936). (I P) (T) (C L).
G. Racah, Phys. Rev. 61, 537 (L) (1942).

Authors	Config.	Desig.	J	Level
$2p$ $^1\mathrm{S}_0$	$2p^{\mathfrak{b}}$	2p ⁶ ¹ S	0	0
38 ³ P ₁	$2p^{5}(^{2}\mathrm{P}_{1rac{1}{2}})3s$	3s [1½]°	$2 \\ 1$	4202700
3s ¹ P ₁	$2p^5(^2\mathrm{P}^\circ_{ m scises})3s$	3s' [½]°	01	4257100
3d ¹ P ₁	$2p^5(^2\mathrm{P}_{152})3d$	$3d \ [1\frac{1}{2}]^{\circ}$	1	4757800
$3d$ $^{3}D_{1}$	$2p^5(^2\mathrm{P}^\circ_{\mathfrak{i}\mathfrak{b}\mathfrak{s}})3d$	3d'[1½]°	1	4827200
	V xv (² P ₁)	Limit		7237600
	V xv (² P ₃₂)	Limit		7295300

V XIV

April 1947.

Z = 23

I. P. 897.1 volts

FORM NBS-114A (1-71)				
U.S. DEPT. OF COMM. BIBLIOGRAPHIC DATA SHEET	1. PUBLICATION OR REPORT NO. NES-NSRDS 35. Vol. I	2. Gov't Accession No.	3. Recipient'	s Accession No.
4. TITLE AND SUBTITLE Atomic Energy Levels as Derived from the Analyses of Optical Spectra. Vol. I, H to V			5. Publication Date December	
			6. Performing Organization Code	
7. AUTHOR(S) Charlotte E. Moore			8. Performing	Organization
9. PERFORMING ORGANIZATION NAME AND ADDRESS			10. Project/Task/Work Unit No.	
NATIONAL BUREAU OF STANDARDS DEPARTMENT OF COMMERCE WASHINGTON, D.C. 20234			11. Contract/Grant No.	
12. Sponsoring Organization Nar	ne and Address		13. Type of H	Report & Period
			Covered	
Same			Final	
			14, Sponsorin	ig Agency Code
				a destablished a
lithium, beryllium magnesium, aluminu calcium, scandium, spectra of chromiu germanium, arsenic zirconium, and nic molybdenum, techne tin, antimony, tel tantalum, tungster lead, bismuth, pol	, boron, carbon, nitrogen, m, silicon, phosphorus, sul titanium, and vanadium (¹ m, manganese, iron, cobalt, , selenium, bromine, krypto bium (²⁴ Cr to ⁴¹ Nb). Volum tium, ruthenium, rhodium, p lurium, iodine, xenon, cesi , rhenium, osmium, iridium, onium, radon, radium, and a	oxygen, fluorin fur, chlorine, to V). Volu nickel, copper on, rubidium, st e III includes alladium, silve um, barium, lan platinum, gold ctinium (⁴² Mo t	e, neon, s argon, pot me II cove , zinc, ga rontium, y the spectr r, cadmium thanum; ha , mercury, o 57La; 72	odium, assium, rs the llium, ttrium, a of , indium, fnium, thàllium, Hf to ⁸⁹ Ac).
17. KEY WORDS (Alphabetical	order, separated by semicolons)			
Energy levels; H-V	•	110		
10. AVAILABILITY STATEMEN	41.	(THIS RE	PORT)	21. NO. OF PAGES
X UNLIMITED.		UNCL AS	SIFIED	35 9
FOR OFFICIAL D TO NTIS.	STRIBUTION. DO NOT RELEASE	20. SECURIT (THIS P	TY CLASS AGE)	22. Price \$5.00
		UNCLAS	SIFIED	

USCOMM-DC 66244-P71

Publications in the National Standard Reference Data Series National Bureau of Standards

You may use this listing as your order form by checking the proper box of the publication(s) you desire or by providing the full identification of the publication you wish to purchase. The full letter symbols with each publication number and full title of the publication and author must be given in your order, e.g. NSRDS-NBS-21, Kinetic Data on Gas Phase Unimolecular Reactions, by S. W. Benson and H. E. O'Neal.

Pay for publications by check, money order, or Superintendent of Documents coupons or deposit account. Make checks and money orders payable to Superintendent of Documents. Foreign remittances should be made either

- 🗆 NSRDS-NBS 1, National Standard Reference Data System-Plan of Operation, by E. L. Brady and M. B. Wallenstein, 1964 (15 cents), SD Catalog No. C13.48:1.
- □ NSRDS-NBS 2, Thermal Properties of Aqueous Uni-univalent Electrolytes, by V. B. Parker, 1965 (45 cents), SD Catalog No. C13.48:2.
- □ NSRDS-NBS 3, Sec. 1, Selected Tables of Atomic Spectra, Atomic Energy Levels and Multiplet Tables, Si II, Si III, Si IV, by C. E. Moore, 1965 (35 cents), SD Catalog No. C13.48:3/Sec.1.
- □ NSRDS-NBS 3, Sec. 2, Selected Tables of Atomic Spectra, Atomic Energy Levels and Multiplet Tables, Si I, by C. E. Moore, 1967 (20 cents), SD Catalog No. C13.48:3/Sec.2.
- NSRDS-NBS 3, Sec. 3, Selected Tables of Atomic Spectra, Atomic Energy Levels and Multiplet Tables, C I, C II, C III, C IV, C V, C VI, by C. E. Moore, 1970 (\$1), SD Catalog No. C13.48:3/Sec.3.
- NSRDS-NBS 3, Sec. 4, Selected Tables of Atomic Spectra, Atomic Energy Levels and Multiplet Tables, N IV, N VI, N VII, N VII, N VII, N VII by C. E. Moore, 1971 (55 cents), SD Catalog No. C13.48:3/Sec. 4.
- 🗆 NSRDS-NBS 4, Atomic Transition Probabilities, Vol. I, Hydrogen Through Neon, by W. L. Wiese, M. W. Smith, and B. M. Glennon, 1966 (\$2.50), SD Catalog No. C13.48:4/Vol.I.
- □ NSRDS-NBS 5, The Band Spectrum of Carbon Monoxide, by P. H. Krupenie, 1966 (70 cents), SD Catalog No. C13.48:5.
- NSRDS-NBS 6, Tables of Molecular Vibrational Frequencies, Part 1, by T. Shimanouchi, 1967 (40 cents), SD Catalog No. C13.48:6/Pt.1.
- □ NSRDS-NBS 7, High Temperature Properties and Decomposition of Inorganic Salts, Part 1. Sulfates, by K. H. Stern and E. L. Weise, 1966 (35 cents), SD Catalog No. C13.48:7/Pt.1.
- □ NSRDS-NBS 8, Thermal Conductivity of Selected Materials,
- by R. W. Powell, C. Y. Ho, and P. E. Liley, 1966 (\$3). PB189698* ☐ NSRDS-NBS 9, Tables of Bimolecular Gas Reactions, by A. F. Trotman-Dickenson and G. S. Milne, 1967 (\$2), SD Catalog No. C13.48:9.
- □ NSRDS-NBS 10, Selected Values of Electric Dipole Moments for Molecules in the Gas Phase, by R. D. Nelson, Jr., D. R. Lide, Jr., and A. A. Maryott, 1967 (40 cents), SD Catalog No. C13.48:10.
- NSRDS-NBS 11, Tables of Molecular Vibrational Frequencies, Part 2, by T. Shimanouchi, 1967 (30 cents), SD Catalog No. C13.48:11/Pt.2.
- □ NSRDS-NBS 12, Tables for the Rigid Asymmetric Rotor: Transformation Coefficients from Symmetric to Asymmetric Bases and Expectation Values of P_z^2 , P_z^4 , and P_z^6 , by R. H. Schwendeman, 1968 (60 cents), SD Catalog No. C13.48:12.
- □ NSRDS-NBS 13, Hydrogenation of Ethylene on Metallic Catalysts,
- by J. Horiuti and K. Miyahara, 1968 (\$1), SD Catalog No. C13.48:13.
- □ NSRDS-NBS 14, X-Ray Wavelengths and X-Ray Atomic Energy Levels, by J. A. Bearden, 1967 (40 cents), SD Catalog No. C13.48:14.
- * Available from National Technical Information Service, Springfield, Virginia 22151.

by international money order or draft on an American bank. Postage stamps are not acceptable.

No charge is made for postage to destinations in the United States and possessions, Canada, Mexico, and certain Central and South American countries. To other countries, payments for documents must cover postage. Therefore, one-fourth of the price of the publication should be added for postage.

Send your order together with remittance to Superintendent of Documents, Government Printing Office, Washington, D.C. 20402.

- □ NSRDS-NBS 15, Molten Salts: Vol. 1, Electrical Conductance, Density, and Viscosity Data, by G. J. Janz, F. W. Dampier, G. R. Lakshminarayanan, P. K. Lorenz, and R. P. T. Tomkins, 1968 (\$3), SD Catalog No. C13.48:15/Vol.1.
- NSRDS-NBS 16, Thermal Conductivity of Selected Materials, Part 2, by C. Y. Ho, R. W. Powell, and P. E. Liley, 1968 (\$2), SD Catalog No. C13.48:16/Pt.2.
- □ NSRDS-NBS 17, Tables of Molecular Vibrational Frequencies, Part 3, by T. Shimanouchi, 1968 (30 cents), SD Catalog No. C13.48:17/Pt.3.
- □ NSRDS-NBS 18, Critical Analysis of the Heat-Capacity Data of the Literature and Evaluation of Thermodynamic Properties of Copper, Silver, and Gold From O to 300°K, by G. T. Furukawa, W. G. Saba, and M. L. Reilly, 1968 (40 cents), SD Catalog No. C13.48:18.
- □ NSRDS-NBS 19, Thermodynamic Properties of Ammonia as an Ideal Gas, by L. Haar, 1968 (20 cents), SD Catalog No. C13.48:19.
- □ NSRDS-NBS 20, Gas Phase Reaction Kinetics of Neutral Oxygen Species, by H. S. Johnston, 1968 (45 cents), SD Catalog No. C13.48:20.
- NSRDS-NBS 21, Kinetic Data on Gas Phase Unimolecular Re-actions, by S. W. Benson and H. E. O'Neal, 1970 (\$7), SD Catalog No. C13.48:21.
- □ NSRDS-NBS 22, Atomic Transition Probabilities, Vol. II, Sodium Through Calcium, A Critical Data Compilation, by W. L. Wiese, M. W. Smith, and B. M. Miles, 1969 (\$4.50), SD Catalog No. C13.48:22/Vol.II.
- □ NSRDS-NBS 23, Partial Grotrian Dlagrams of Astrophysical Interest, by C. E. Moore and P. W. Merrill, 1968 (55 cents), SD Catalog No. C13.48:23.
- □ NSRDS-NBS 24, Theoretical Mean Activity Coefficients of Strong Electrolytes in Aqueous Solutions from 0 to 100° C, by Walter J. Hamer, 1968 (\$4.25), SD Catalog No. C13.48:24.
- □ NSRDS-NBS 25, Electron Impact Excitation of Atoms, by B. L. Moiseiwitsch and S. J. Smith, 1968 (\$2), SD Catalog No. C13.48:25.
- NSRDS-NBS 26, Ionization Potentials, Appearance Potentials, and Heats of Formation of Gaseous Positive Ions, by J. L. Franklin, J. G. Dillard, H. M. Rosenstock, J. T. Herron, K. Draxl, and F. H. Field, 1969 (\$4), SD Catalog No. C13.48:26.
- □ NSRDS-NBS 27, Thermodynamic Properties of Argon from the Triple Point to 300 K at Pressures to 1000 Atmospheres, by A. L. Gosman, R. D. McCarty, and J. G. Hust, 1969 (\$1.25), SD Catalog No. C13.48:27.
- NSRDS-NBS 28, Molten Salts: Vol. 2, Section 1, Electrochemistry of Molten Salts: Gibbs Free Energies and Excess Free Energies From Equilibrium-Type Cells, by G. J. Janz and C. G. M. Dijkhuis. Section 2, Surface Tension Data, by G. J. Janz, G. R. Lakshminarayanan, R. P. T. Tomkins, and J. Wong, 1969 (\$2.75), SD Catalog No. C13.48:28/Vol.2.
- □ NSRDS-NBS 29, Photon Cross Sections, Attenuation Coefficients, and Energy Absorption Coefficients From 10 keV to 100 GeV, by J. H. Hubbell, 1969 (75 cents), SD Catalog No. C13.48:29.

- □ NSRDS-NBS 30, High Temperature Properties and Decomposition of Inorganic Salts, Part 2. Carbonates, by K. H. Stern and E. L. Weise, 1969 (45 cents), SD Catalog No. C13.48:30/Pt. 2.
- NSRDS-NBS 31, Bond Dissociation Energies in Simple Molecules, by B. deB. Darwent, 1970 (55 cents), SD Catalog No. C13.48:31.
- □ NSRDS-NBS 32, Phase Behavior in Binary and Multicomponent Systems at Elevated Pressures: n-Pentane and Methane-n-Pentane, by V. M. Berry and B. H. Sage, 1970 (70 cents), SD Catalog No. C13.48:32.
- NSRDS-NBS 33, Electrolytic Conductance and the Conductances NSROS-NBS 33, Electrolytic conductance and the conductances of the Halogen Acids in Water, by W. J. Hamer and H. J. DeWane, 1970 (50 cents), SD Catalog No. C13.48:33.
 NSRDS-NBS 34, Ionization Potentials and Ionization Limits Derived from the Analyses of Optical Spectra, by C. E. Moore,
- 1970 (75 cents), SD Catalog No. C13.48:34.
- □ NSRDS-NBS 35, Atomic Energy Levels as Derived From the Analyses of Optical Spectra. Vol. I, ¹H to ²³V; Vol. II, ²⁴Cr to ⁴¹Nb; Vol. III, ⁴²Mo to ⁵⁷La, ⁷²Hf to ⁸⁹Ac, by C. E. Moore, 1971 (In preparation), SD Catalog No. C13.48:35/Vols. I, II, and III.
- □ NSRDS-NBS 36, Critical Micelle Concentrations of Aqueous Surfactant Systems, by P. Mukerjee and K. J. Mysels, 1971 (\$3.75), SD Catalog No. C13.48:36. NSRDS-NBS 37, JANAF Thermochemical Tables, 2d Edition, by
- D. R. Stull, H. Prophet, et al., 1971 (\$9.75), SD Catalog No. C13.48:37.
- □ NSRDS-NBS 38, Critical Review of Ultraviolet Photoabsorption Cross Sections for Molecules of Astrophysical and Aeronomic Interest, by R. D. Hudson, 1970 (\$1), SD Catalog No. C13.48:38.

☆ GPO: 1972 O - 452- ☆ GPO: 1972 O - 452-685

Announcement of New Publications on Standard Reference Data

Superintendent of Documents, Government Printing Office, Washington, D.C. 20402

Dear Sir:

(cut here)

Please add my name to the announcement list of new publications to be issued in the series: National Standard Reference Data Series-National Bureau of Standards.

 Name______

 Company______

 Address_______

 City_______State______Zip Code______

(Notification Key N337)

