A11102 146056

E BAYI

NSRDS-NBS 15

NBS PUBLICATIONS

QC 100 .0573

no.15 1968

c.2

Molten Salts: Volume 1, Electrical Conductance, Density, and Viscosity Data

U.S. DEPARTMENT OF CONNERCE NATIONAL BUREAU OF STANDARDS

UNITED STATES DEPARTMENT OF COMMERCE

C. R. Smith, Secretary

U.S., NATIONAL BUREAU OF STANDARDS · A. V. ASTIN, Director

Molten Salts: Volume 1, Electrical Conductance, Density, and Viscosity Data

G. J. Janz,* F. W. Dampier,* G. R. Lakshminarayanan,* P. K. Lorenz,* and R. P. T. Tomkins*

*This report was prepared under contract at the Molten Salts Data Center Rensselaer Polytechnic Institute, Troy, N.Y. 12180

Issued October 1968

National Buleau of NOV 29 1968 142552 QC100 .U573 No.15 1966

Library of Congress Catalog Card Number: 68-60051

Foreword

The National Standard Reference Data System is a Government-wide effort to provide for the technical community of the United States effective access to the quantitative data of physical science, critically evaluated and compiled for convenience, and readily accessible through a variety of distribution channels. The System was established in 1963 by action of the President's Office of Science and Technology and the Federal Council for Science and Technology.

The responsibility to administer the System was assigned to the National Bureau of Standards and an Office of Standard Reference Data was set up at the Bureau for this purpose. Since 1963, this Office has developed systematic plans for meeting high-priority needs for reliable reference data. It has undertaken to coordinate and integrate existing data evaluation and compilation activities (primarily those under sponsorship of Federal agencies) into a comprehensive program, supplementing and expanding technical coverage when necessary, establishing and maintaining standards for the output of the participating groups, and providing mechanisms for the dissemination of the output as required.

The System now comprises a complex of data centers and other activities, carried on in Government agencies, academic institutions, and nongovernmental laboratories. The independent operational status of existing critical data projects is maintained and encouraged. Data centers that are components of the NSRDS produce compilations of critically evaluated data, critical reviews of the state of quantitative knowledge in specialized areas, and computations of useful functions derived from standard reference data. In addition, the centers and projects establish criteria for evaluation and compilation of data and make recommendations on needed modifications or extensions of experimental techniques.

Data publications of the NSRDS take a variety of physical forms, including books, pamphlets, loose-leaf sheets and computer tapes. While most of the compilations have been issued by the Government Printing Office, several have appeared in scientific journals. Under some circumstances, private publishing houses are regarded as appropriate primary dissemination mechanisms.

The technical scope of the NSRDS is indicated by the principal categories of data compilation projects now active or being planned: nuclear properties, atomic and molecular properties, solid state properties, thermodynamic and transport properties, chemical kinetics, colloid and surface properties, and mechanical properties.

An important aspect of the NSRDS is the advice and planning assistance which the National Research Council of the National Academy of Sciences-National Academy of Engineering provides. These services are organized under an overall Review Committee which considers the program as a whole and makes recommendations on policy, long-term planning, and international collaboration. Advisory Panels, each concerned with a single technical area, meet regularly to examine major portions of the program, assign relative priorities, and identify specific key problems in need of further attention. For selected specific topics, the Advisory Panels sponsor subpanels which make detailed studies of users' needs, the present state of knowledge, and existing data resources as a basis for recommending one or more data compilation activities. This assembly of advisory services contributed greatly to the guidance of NSRDS activities.

The NSRDS-NBS series of publications is intended primarily to include evaluated reference data and critical reviews of long-term interest to the scientific and technical community.

A. V. Astin, Director

Preface

This work was undertaken to meet the need for a critical assessment of the existing data for electrical conductance, density and viscosity of inorganic compounds in the molten state. The scope embraces the publications in the scientific literature to the current date (December, 1966): while care was taken to be comprehensive, it is clear that there will be omissions and that the task is therefore one to be continued and extended.

The results for some 174 compounds as single-salt melts are reported: no attempt was made in the present effort to embrace the results for molten salt mixtures. With the exception of quaternary ammonium salts, an anion classification has been used for the presentation of the data: i.e., Fluorides, Chlorides, Bromides, Iodides, Carbonates, Nitrites, Nitrates, Oxides, Sulfides, Sulfates, and Miscellaneous.

The authors will be pleased to have additional studies directed to their attention.

Acknowledgments

This work was made possible in large part by financial support received from the Office of Standard Reference Data, National Bureau of Standards, Washington, D.C., for the compilation and critical evaluation of published literature in the general field of molten salts. The participation of A. T. Ward and R. D. Reeves in the first stages of this work, and the assistance of A. G. Timidei, and C. G. M. Dijkhuis in the preparation of the final copy are acknowledged with pleasure.

Contents

		Page
For	eword	iii iv
Preface		
Acknowledgments		
1.	Introduction	1
2.	Symbols and units	1
.3.		1
	Estimation of uncertainty	2
5.		$\frac{2}{2}$
	Lithium fluoride	$\frac{2}{3}$
	Sodium fluoride Potassium fluoride	3
	Cesium fluoride	3
	Beryllium fluoride	3
	Magnesium fluoride, calcium fluoride, strontium	0
	fluoride, barium fluoride, lanthanum (II) fluoride,	
	and cerium (III) fluoride	4
	Thorium (IV) fluoride and uranium (IV) fluoride	4
	Manganese fluoride, copper (II) fluoride, silver	
	fluoride, zinc fluoride, and lead fluoride	4
	Lithium chloride	4
	Sodium chloride	4
	Potassium chloride	5
	Rubidium chloride	6
	Cesium chloride	6
	Beryllium chloride	6
	Magnesium chloride	6
	Calcium chloride	7
	Strontium chloride	7
	Barium chloride	7
	Scandium (III) chloride	8
	Yttrium (III) chloride	8
	Lanthanum (III) chloride	8
	Cerium (III) chloride	8
	Praseodymium (III) chloride	8 9
	Neodymium (III) chloride Gadolinium (III) chloride	9
	Dysprosium (II) chloride, holmium (III) chloride,	9
	and erbium (III) chloride	9
	Thorium (IV) chloride	ģ
	Uranium (IV) chloride	9
	Manganese (II) chloride	9
	Titanium (IV) chloride	9
	Copper (I) chloride	9
	Silver chloride	10
	Zinc chloride	10
	Cadmium chloride	11
	Mercury (I) chloride	11
	Mercury (II) chloride	11
	Alumium (III) chloride	11
	Gallium (III) chloride	12
	Indium chloride	12
	Indium (II) chloride	12
	Indium (III) chloride	12
	Thallium (I) chloride	12
	Tin (II) chloride Tin (IV) chloride	12 13
	Lead (II) chloride	13
	Bismuth (III) chloride	13
	Tellurium (II) chloride	13
	Tellurium (IV) chloride	13
	Lithium bromide	13
	Sodium bromide	14
	Potassium bromide	14
	Rubidium bromide	15

	Pag
Cesium bromide	1
Magnesium bromide	1
Calcium bromide	1
Strontium bromide	1
Barium bromide	1
Lanthanum (III) bromide	1
Praseodymium (III) bromide	1
Neodymium (III) bromide	1
Gadolinium (III) bromide	1
Copper (I) bromide	1
Silver bromide	1
Zinc bromide	1
Cadmium bromide	1
Mercury (II) bromide	1
Aluminum bromide Indium (III) bromide	1
Thallium (II) bromide	1
Lead (II) bromide	1
Bismuth (III) bromide	1
Lithium iodide	1
Sodium iodide	j
Potassium iodide	j
Rubidium iodide	2
Cesium iodide	2
Magnesium iodide	2
Calcium iodide	2
Strontium iodide	2
Barium iodide	2
Aluminum (III) iodide	2
Lanthanum (III) iodide, cerium (III) iodide, prase-	
odymium (III) iodide, and neodymium (III)	
iodide	4
Silver iodide	4
Zinc iodide	4
Cadmium iodide	-
Mercury (II) iodide	1
Gallium (II) iodide	
Indium (III) iodide	
Thallium (I) iodide	
Lead (II) iodide	
Bismuth (III) iodide	
Lithium carbonate Sodium carbonate	
Potassium carbonate	
Lithium nitrite	
Lithium nitrite	
Sodium nitrite	
Sodium nitrite Potassium nitrite	
Sodium nitrite Potassium nitrite Rubidium nitrite	
Sodium nitrite Potassium nitrite Rubidium nitrite Cesium nitrite	
Sodium nitrite Potassium nitrite Rubidium nitrite Cesium nitrite Barium nitrite	
Sodium nitrite Potassium nitrite Rubidium nitrite Cesium nitrite Barium nitrite Lithium nitrate	
Sodium nitrite Potassium nitrite Rubidium nitrite Cesium nitrite Barium nitrite Lithium nitrate Sodium nitrate	
Sodium nitrite Potassium nitrite Rubidium nitrite Cesium nitrite Barium nitrite Lithium nitrate	
Sodium nitrite Potassium nitrite Rubidium nitrite Cesium nitrite Barium nitrite Lithium nitrate Sodium nitrate Potassium nitrate	
Sodium nitrite Potassium nitrite Rubidium nitrite Cesium nitrite Barium nitrite Lithium nitrate Sodium nitrate Potassium nitrate Rubidium nitrate	
Sodium nitrite Potassium nitrite Rubidium nitrite Cesium nitrite Barium nitrite Lithium nitrate Sodium nitrate Potassium nitrate Rubidium nitrate Cesium nitrate Silver nitrate Thallium (I) nitrate	
Sodium nitrite Potassium nitrite Rubidium nitrite Cesium nitrite Barium nitrite Lithium nitrate Sodium nitrate Potassium nitrate Rubidium nitrate Cesium nitrate Silver nitrate Thallium (I) nitrate Vanadium pentoxide and chromium trioxide	
Sodium nitrite Potassium nitrite Rubidium nitrite Cesium nitrite Barium nitrite Lithium nitrate Sodium nitrate Potassium nitrate Rubidium nitrate Cesium nitrate Silver nitrate Thallium (I) nitrate	
Sodium nitrite Potassium nitrite Rubidium nitrite Cesium nitrite Barium nitrite Lithium nitrate Sodium nitrate Potassium nitrate Rubidium nitrate Cesium nitrate Silver nitrate Thallium (I) nitrate Vanadium pentoxide and chromium trioxide Molybdenum trioxide Wüstite (Fe _{0.95} O)	
Sodium nitrite Potassium nitrite Rubidium nitrite Cesium nitrite Barium nitrite Lithium nitrate Sodium nitrate Potassium nitrate Rubidium nitrate Cesium nitrate Silver nitrate Thallium (I) nitrate Vanadium pentoxide and chromium trioxide Molybdenum trioxide Wüstite (Fe _{0.95} O) Boron oxide	
Sodium nitrite Potassium nitrite Rubidium nitrite Cesium nitrite Barium nitrite Lithium nitrate Sodium nitrate Potassium nitrate Rubidium nitrate Cesium nitrate Silver nitrate Thallium (I) nitrate Vanadium pentoxide and chromium trioxide Molybdenum trioxide Wüstite (Fe _{0.95} O) Boron oxide Silicon dioxide	
Sodium nitrite Potassium nitrite Rubidium nitrite Cesium nitrite Barium nitrite Lithium nitrate Sodium nitrate Potassium nitrate Rubidium nitrate Cesium nitrate Silver nitrate Thallium (I) nitrate Vanadium pentoxide and chromium trioxide Molybdenum trioxide Wüstite (Fe _{0.95} O) Boron oxide	

Page 30

Arsenic trioxide	30
Antimony sesquioxide, bismuth sesquioxide, and	
tellurium dioxide	30
Iron (II) sulfide	30
Cobalt (II) sulfide	30
Nickel (II) sulfide	31
Copper (I) sulfide	31
Silver sulfide	31
Germanium (II) sulfide	31
Tin (II) sulfide	31
Lead sulfide	31
Antimony (III) sulfide	31
Bismuth (III) sulfide	31
Lithium sulfate	32
Sodium sulfate	32
Potassium sulfate	32
Rubidium sulfate	32
Cesium sulfate	32
Silver sulfate	33
Tetrapropylammonium tetrafluoroborate	33
Tetrapropylammonium hexafluorophosphate	33
Tetrapropylammonium tetraphenylborate	33
Tetrabutylammonium bromide	33
	33
Tetrabutylammonium iodide	34 34
Tetrabutylammonium tetrafluoroborate	34 34
Tetrabutylammonium hexafluorophosphate	34 34
Tetrabutylammonium tetraphenylborate	<u> </u>
Tetrahexylammonium tetrafluoroborate	34
Tetra-n-amylammonium thiocyanate	34
Lithium molybdate	35
Sodium molybdate	35

Potassium molybdate	- 35
Sodium tungstate	- 33
Potassium tungstate	- 35
Sodium thiocyanate	33
Potassium thiocyanate	- 35
Sodium hydroxide	- 36
Potassium hydroxide	- 36
Potassium dichromate	36
Sodium metaphosphate	- 36
Uranyl chloride	- 36
Lithium hydride	- 36
Lithium chlorate	37
Lithium perchlorate	3
List of tables 1 to 174	- 39
6. Numerical values of electrical conductance, density,	
and viscosity	- 42
7. Cumulative tables of temperature dependent equa-	
tions	10
Table 175. Specific conductance-best equations	10
Table 176. Density-best equations	11
Table 177. Equivalent conductance	11
Table 178. Viscosity-best equations	12
Table 179. Specific conductance-exponential equa-	12
tions	12
Table 180. Specific conductance-power series equa-	12.
tions	12
Table 181. Viscosity-exponential equations	13
Table 182. Viscosity-power series equations	13
8. References	13
9. Additional data sources	-133 -131
10 Compound index	
10. Compound index	138

Page

Molten Salts: Volume 1, Electrical Conductance, Density, and Viscosity Data

G. J. Janz, F. W. Dampier, G. R. Lakshminarayanan, P. K. Lorenz, and R. P. T. Tomkins

Data on the electrical conductance, density and viscosity of single-salt melts were compiled from a comprehensive search of the literature up to December 1966 and a critical assessment made of the compiled data. Recommended values were determined and are presented as functions of temperature in the form of equations and tables.

The results for some 174 compounds as single-salt melts are reported; no attempt was made in the present effort to embrace the results for molten salt mixtures. Data are presented for fluorides, chlorides, bromides, iodides, carbonates, nitrites, nitrates, oxides, sulfides, sulfates, and a miscellaneous group.

Key Words: Data compilation, density, electrical conductance, molten salts, standard reference data, viscosity.

1. Introduction

The critical assessment of the electrical conductance, viscosity, and density data of inorganic compounds in the molten state (i.e., "single-salt melts") was undertaken to meet the need for consistent sets of values for these properties.

With the exception of quaternary ammonium slats, an anion classification has been used in this compilation: i.e., Fluorides, Chlorides, Bromides, Iodides, Carbonates, Nitrites, Nitrates, Oxides, Sulfides, Sulfates, and additional salts given as Miscellaneous. The order within each anionic group is in the list of tables preceding section 6. Results are reported for some 174 compounds.

2. Symbols and Units

The equations used to express the temperature dependence of density, conductance, and viscosity are as follows:

Density: Equivalent conductance:

$$\rho = a - bT$$
 $\Lambda = A_{\Lambda} e^{-E_{\Lambda}/RT}$

Specific conductance:	Viscosity:
$\kappa = a + bT$	$\eta = A_{\eta} E_{\nu}^{/RT}$
$\kappa = a + bT + cT^2$	$\eta = a + bT + cT^2$
$\kappa = a + bT + cT^2 + dT^3$	$\eta = a + bT + cT^2 + dT^3$

The symbols and units are:

J = joule

cal = thermochemical calorie = 4.1840J

 $T(^{\circ}K)$ = temperature in degrees Kelvin, defined in the thermodynamic scale by assigning 273.16 °K to the triple point of water (freezing point, 273.15 °K = 0 °C).

$$R = gas constant = 1.98717 calmol-1 deg-1= 8.3143 J mol-1 deg-1$$

 $\Lambda = \text{equivalent conductance (ohm^{-1}\text{cm}^2 \text{ equiv}^{-1})} \\ A_{\Lambda} = \text{in ohm}^{-1} \text{ cm}^2 \text{ equiv}^{-1} \\ E_{\Lambda} = \text{in cal mol}^{-1} \\ \kappa = \text{specific conductance (ohm^{-1} \text{ cm}^{-1})} \\ \rho = \text{density (g cm}^{-3}) \\ \eta = \text{viscosity (cp)} \\ A_{\eta} = \text{in cp} \\ E_{\eta} = \text{in cal mol}^{-1}.$

3. Preparation of Tables

The selection of the best values of the data for the calculations was based on consideration of different factors, such as: experimental techniques, the number of measurements, the temperature range, the deviations of the data from a fitted curve, and the reliability of previous work from any one center. In general the data of each investigation were evaluated by fitting linear, quadratic and exponential equations by the method of least squares; usually the equation with the smallest standard deviation was selected as the best equation. In some cases, however, the data from several laboratories have been combined for the preceding analysis (see: discussions of the individual salts (sec. 5)).

The literature references are given as footnotes in these tables. Where only one reference is underscored the data from that investigation has been used to gain the best values. Where more than one reference is underlined, the data from these sources were combined as reported in section 5, to gain the best values. The tabulated best-values of specific conductance, density, and viscosity, were calculated using the equations listed with each table (sec. 6).

Equivalent Conductance – The equivalent conductance of a single-salt melt is defined by the relation: $\Lambda = \kappa \frac{\text{(Equivalent Weight)}}{\rho}$. The tabulated values of specific conductance and density were used to gain the values of Λ (sec. 6), and the latter, to develop the exponential equations for equivalent conductance.

Melting Points – The melting point reference is listed at the bottom of each table together with the references for density, conductance and viscosity (sec. 6). In some cases (e.g., MgI_2 , GaI_2) the melting point could only be indicated as less than a certain temperature since the actual melting point was not stated in the investigation (the lowest temperature at which measurements were made on the liquid melt).

Extrapolation Beyond the Experimental Temperature Limits – To calculate equivalent conductance over the corresponding temperature range for which specific conductance data were reported, extrapolation of the density data was necessary in some cases. When this extrapolation exceeded a temperature range greater than 20°, the values are enclosed in brackets (sec. 6).

Estimation of Precision-

(i) Definitions: The standard deviation was computed by the expression:

$$s = \sqrt{\frac{\Sigma (X_e - X_c)^2}{n - p}}$$

where X_e and X_c are the experimental and calculated values (from least squares equations), respectively, for each temperature, *n* the number of data points, and *p* the number of coefficients. The standard deviation, *s*, is used as the index of precision (sec. 7).

The percent precision (P.P.) is defined by:

$$P.P. = \frac{s}{Z} \times 100$$

where Z is the value of the physical property at the "midpoint temperature" (i.e., the midpoint of the temperature range over which the physical property has been investigated). Thus, for LiCl the percent precision would be simply

 $[0.00074 \times 10^2/6.215] = 0.012$ percent.

Here 6.215 is the value of κ at 980 °K (temperature limits, 910 to 1050 °K; refer. Table 19, sec. 6). The percent precision values, stated in brackets, normally follow immediately the precision values e.g., s = 0.00074 (0.012%) for LiCl. The units for precision are those of the physical property being considered.

(ii) Computations: All computations were effected with the digital computer facilities at Rensselaer Polytechnic Institute and Fortran IV programs. The calculations with the quadratic equations, in the majority of the cases, were taken to eight significant figures; the calculations with the exponential and cubic equations, similarly to 14 significant figures. The coefficients of these equations are stated to more significant figures than is justified by the accuracy in order that the equations may be used to gain values within the limits of the precision of the measurements.

4. Estimation of Uncertainty

Estimates of uncertainty were based primarily on comparisons of the departures of the experimental results from the best values. Where this was impossible, the estimate of uncertainty was guided by more qualitative factors. In all cases, consideration was also given to experimental techniques and previous results from the respective laboratories. The precision (i.e., the standard deviation was an important consideration throughout this part of the work.

The Percent Departure (P.D.) is defined by:

$$P.D. = \left[\frac{\text{Experimental Value} - \text{Tabulated Value}}{\text{Tabulated Value}}\right] 100$$

and has been used to compare the results of different investigators with the best values (sec. 6). The Percent Departure analysis for three salts, KCl, NaNO₃, and KNO₃ is illustrated in figures 1 to 3 respectively (sec. 5).

Where an uncertainty statement is bracketed, the brackets indicate that the estimate has been based on minimal information.

5. Discussion

In this section the following information is given for each compound: precision, estimated uncertainty, source of the temperature dependent equation, and the departure values. For the data used to gain the best equation, the details given are as follows: literature reference, temperature range, number of data points, and (for viscosity only) the experimental technique. The maximum percent departure has also been given, where possible (e.g., KCl (fig. 1): the maximum percent departure between the values of van Artsdalen [79]¹ and Winterhager [85] is 1.24 (1112 °K)).

The uncertainty statements in brackets, being based on minimal information, are more qualitative than the unbracketed values.

Lithium Fluoride

[Refer: Table 1, p. 42, for numerical values]

Four investigations of the specific conductance for molten LiF have been reported [42, 83, 86, 88]. Compared to the data of Winterhager and Werner [86] the results of van Artsdalen and Yaffe [83], and Yim and Feinleib [88] show maximum departures of 14.7 percent (1140 °K) and -4.1 percent (1173 °K) respectively; the results of Ryschkewitsch [42] show larger departures. It has been suggested [198] that some experimental factors (e.g., possibly

¹Figures in brackets indicate the literature references on page 135.

a distortion of the potential probe arrangement) led to systematically high values in the van Artsdalen measurements. The work of Winterhager and Werner [86] appears the most thorough; their data (1148.2 to 1310 °K, 9 points) were selected. Using the quadratic equation for specific conductance the precision is s = 0.0237 (0.264%). The uncertainty of the specific conductance values is estimated to be about 12 percent.

The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 0.303 (0.23%).

Three density studies have been reported [25, 81, 83]. The estimated uncertainty of the density values, based on the van Artsdalen studies [83], is 0.5 percent. The maximum departure between the densities of van Artsdalen and Jaeger [25] is 0.5 percent (1141.7 °K). The studies of Schinke and Sauerwald [81] were to establish the volume change on fusion.

Sodium Fluoride

[Refer: Table 2, p. 42, for numerical values]

Five investigations of the specific conductance for molten NaF have been reported [31, 46, 67, 86, 88]. The tabulated values were calculated from the data of Winterhager and Werner [86] (1276.2 to 1411.2 °K, 8 points). Using the linear equation for specific conductance the precision is s = 0.0089 (0.17%). The maximum departure between the data of Winterhager [86] and Yim and Feinleib [88] is 3.1 percent (1270 °K). The uncertainty of the specific conductance values is estimated to be about 3.5 percent.

The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 0.119 (0.10%).

Of the two density investigations [25, 31], the results of Jaeger [25] were selected to generate the tabulated values; the information was insufficient for an estimate of accuracy.

Potassium Fluoride

[Refer: Table 3, p. 43, for numerical values]

Eight investigations of the specific conductance for molten KF have been reported [26, 31, 42, 73, 83, 86, 88, 198]. The tabulated values were calculated from the data of Winterhager and Werner [86] (1132.2 to 1285.2 °K, 12 points). Using the linear equation for specific conductance the precision is s = 0.0201 (0.526%). The study of specific conductance for KF by Bredig and Bronstein [198] was limited to one temperature (1178.2 °K). Comparison of this value (3.77 Ω^{-1} cm⁻¹) with that of Winterhager and Werner shows the departure to be 1.85 percent. The results of the other investigators show larger departures. The uncertainty of the specific conductance values is estimated to be about 12 percent. The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 0.188 (0.16%).

Of the three density studies [26, 81, 83], the investigation of van Artsdalen [83] appears most thorough. The maximum departure between the density data of van Artsdalen and Jaeger and Kapma [26] is 0.9 percent (1140 °K). The study of Schinke and Sauerwald [81] were to establish the volume change on fusion. The uncertainty of the density values is judged to be about 0.6 percent.

Cesium Fluoride

[Refer: Table 4, p. 43, for numerical values]

Two investigations of the specific conductance for molten CsF have been reported [182, 83]. The tabulated values were calculated from the data of Bronstein, Dworkin, and Bredig [182] (1010.2 to 1125.2 °K, 6 points). Using the linear equation for specific conductance the precision is s=0.0456(1.73%). The maximum departure between the results of Bredig [182] and Yaffe and van Artsdalen [83] is 34 percent (1050 °K). The uncertainty of the specific conductance values is estimated to be about 5 percent.

The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 0.118 (0.097%).

Of the two density studies [25, 83], the data of van Artsdalen [83] were selected to calculate the tabulated values. The maximum departure between the densities reported by Jaeger [25] and van Artsdalen [83] is 1.1 percent (1041.9 °K). The uncertainty of the density values is judged to be about 0.8 percent.

Beryllium Fluoride

[Refer: Table 5, p. 44, for numerical values]

The tabulated values of specific conductance for molten BeF_2 were obtained from the data of Mackenzie [143] (973 to 1173 °K, 6 points). Since the least squaring to quadratic, cubic and exponential equations was unsatisfactory, the values were gained graphically. No attempt to estimate the accuracy of the specific conductance values was made.

Two investigations of the viscosity have been reported [143, 225]. The tabulated values were calculated from the data of Moynihan and Cantor [225] (846.9 to 1252.2 °K, 25 points, rotating cylinder viscometer). The exponential equation expresses the data of Moynihan and Cantor with a precision $s=3.08 \times 10^6$ (2.77%). The uncertainty of the viscosity values is judged to be about 3.0 percent.

The viscosities of the second study (Mackenzie [143], restricted falling ball technique), show departures of about 8.0 percent from those of Moynihan and Cantor.

Magnesium Fluoride, Calcium Fluoride, Strontium Fluoride, Barium Fluoride, Lanthanum (III) Fluoride, and Cerium (III) Fluoride

[Refer: Tables 6 to 11, pp. 44 to 45, for numerical values]

The tabulated values of density for molten MgF₂, CaF₂, SrF₂, BaF₂, LaF₃, and CeF₃ were calculated from the data of Kirshenbaum, Cahill, and Stokes [95]. The maximum departure between the density values of Mashovetz [197] and Kirshenbaum [95] is 0.4 percent for CaF₂. The uncertainty of density values is estimated to be about 0.5 percent for CaF₂ and (1.0%) for the other five fluorides.

Thorium (IV) Fluoride and Uranium (IV) Fluoride

[Refer: Tables 12 and 13, p. 46, for numerical values]

The tabulated values of density for molten ThF_4 and UF_4 were calculated from the data of Kirshenbaum and Cahill [167]. The uncertainty of the density values is estimated to be about (1%).

Manganese Fluoride, Copper (II) Fluoride, Silver Fluoride, Zinc Fluoride, and Lead Fluoride

[Refer: Tables 14 to 18, pp. 46 to 47]

The tabulated values of the specific conductances for molten MnF_2 , CuF_2 , AgF, ZnF_2 , and PbF_2 were calculated from the graphical data of Winterhager and Werner [86]. The number of data points interpolated from the Winterhager graphs, the corresponding temperature ranges and the best equation are as follows:

MnF₂ 4 points, 1223–1273 °K, linear equation CuF₂ 6 points, 1233–1370 °K, linear equation AgF 6 points, 773–923 °K, linear equation ZnF₂ 4 points, 1173–1223 °K, linear equation PbF₂ 7 points, 1123–1273 °K, linear equation.

The uncertainty of the specific conductance values is estimated to be about (20%).

Lithium Chloride

[Refer: Table 19, p. 47, for numerical values]

Nine investigations of the specific conductance for molten LiCl have been reported [33, 42, 44, 45, 55, 62, 66, 79, 85]. The specific conductance values of van Artsdalen and Yaffe [79] (917.1 to 1056.5 °K; 7 of the 9 reported temperatures omitting 896.0 and 907.6 °K) and two values from Edwards [62] (920.2 and 940.2 °K) were used to develop the quadratic equation. Using the quadratic equation for specific conductance the precision is s = 0.00074 (0.012%). The maximum percent departures of the specific conductance values of various investigators from the combined data of van Artsdalen [79] and Edwards et al. [62], are as follows: Bloom et al. [66], 3.2 (910 °K): Biltz and Klemm [33], 0.8 (954.2 °K): Grothe [55], 0.3 (973.2 °K): Winterhager and Werner [85], -0.7 (961.2 °K) and Karpachev et al. [44], -3.0 (910 °K). The results of Ryschkewitsch [42] show larger departures. The uncertainty of the specific conductance values is estimated to be about 0.7 percent. Considerable corrosion of the cell (above 1056 °K) was noted by van Artsdalen.

The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 0.0847 (0.048%).

Of the seven sets of density data [3, 25, 55, 62, 66, 79, 81] the most thorough studies appear to be those of van Artsdalen [79] and Bloom [66]. The uncertainty of the tabulated densities, calculated from the van Artsdalen data [79] is estimated to be about 0.2 percent. Compared to the density data of van Artsdalen, the results of Bloom et al. [66]. Brunner [3], Edwards et al. [62], Jaeger [25] and Grothe [55] show maximum departures of 0.2 percent (900 °K), -0.2 percent (1050 °K), -0.3 percent (1050 °K), -0.4 percent (913 °K) and -0.4 percent (1050 °K) respectively.

Four sets of viscosity data have been reported [12, 45, 47, 121]. The tabulated values of viscosity were calculated from the data of Murgulescu and Zuca [121] (902.9 to 1082.9 °K, 11 points, oscillating ball technique). The cubic equation expresses the data of Murgulescu and Zuca with a precision s = 0.0092 (0.81%). The uncertainty of the viscosity values is estimated to be about 1.0 percent.

The investigator, reference, experimental method, and the maximum percent deviation from the values of Murgulescu and Zuca are as follows: Fawsitt [12], oscillating disk, +21.7 percent: Karpachev [45], oscillating ball, 200 percent: and Karpachev [47], oscillating ball, 7.4 percent. No explanation for the two vastly different results was offered by Karpachev.

Sodium Chloride

[Refer: Table 20, p. 48, for numerical values]

Seventeen investigations of the specific conductance for molten NaCl have been reported [2, 4, 10, 27, 33, 42, 49, 52, 55, 62, 63, 71, 79, 82, 85, 199]. The specific conductance data of van Artsdalen and Yaffe [79] (1079.6 to 1294.6 °K, 24 of the 26 reported temperatures, omitting 1075.5 and 1077.8 °K) were used to develop the tabulated values. Using the quadratic equation for specific conductance the precision is s = 0.00164 (0.043%). Compared to the data of van Artsdalen the results of Ryschkewitsch [42], and Edwards et al. [62]. show maximum departures of -0.6 percent (1093 °K) and 0.8 percent (1273 °K) respectively; the results of the other investigators show larger departures. The estimated uncertainty of the specific conductance values is about 0.8 percent.

The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 0.0870 (0.057%).

Of the eleven density studies [3, 11, 25, 55, 62, 66, 79, 80, 81, 96, 126] the most thorough appears to be that of van Artsdalen [79]. Compared to the density data of van Artsdalen [79] the results of Brunner [3], Edwards et al. [62] and Kirshenbaum [126] show departures of -0.2 percent (1080 °K), -0.4 percent (1111 °K) and 0.6 percent (1290 °K) respectively; the results of Bloom et al. [66] and Jaeger [25] show larger departures. The studies of Sauerwald et al. [80, 81] and Bockris et al. [96] were to establish the volume change on fusion. The uncertainty of the tabulated densities, calculated from van Artsdalen data is estimated to be about 0.4 percent.

Four investigations of the viscosity have been reported [12, 38, 57, 121]. The tabulated values of viscosity were calculated from the data of Murgulescu and Zuca [121] (1085.9 to 1243.2 °K, 11 points, oscillating ball technique). The cubic equation expresses the data of Murgulescu and Zuca with a precision s=0.0057 (0.55%). The uncertainty of the viscosity values is estimated to be about 1.0 percent.

The investigator, reference, experimental method, and the maximum percent departure from the values of Murgulescu and Zuca are as follows: Fawsitt [12], oscillating disk, 4.30 percent; Dantuma [38], oscillating ball, 8.4 percent; Ogawa [57], restricted falling sphere, 7.2 percent.

Potassium Chloride

[Refer: Table 21, p. 48, for numerical values]

Nineteen investigations of the specific conductance for molten KCl have been reported [2, 4, 10,26, 27, 42, 44, 49, 50, 55, 62, 63, 66, 79, 85, 123, 124, 125, 129]. The departures of recent determinations from the values of van Artsdalen [79] are illustrated in figure 1. The tabulated values were calculated from the data of van Artsdalen and Yaffe [79] (1063.2 to 1198.3 °K, 15 points). Using the quadratic equation for specific conductance the precision is s = 0.003 (0.14%). The departure between the data of van Artsdalen and Crook and Bockris [123] is about 0.4 percent over the range 1053.2 to 1198.2 °K. Van Artsdalen [79] and Crook [123] both used well established a-c conductance techniques (0.5 to 20 kc/sec); the results of Duke [124] were gained with a d-c technique. The results of Buckle and Tsaoussoglou [125a], gained with a new a-c technique (10 to 100 kc/sec) are lower than the van Artsdalen data by about 0.8 percent. The results of the other investigators show larger departures. The uncertainty of the specific

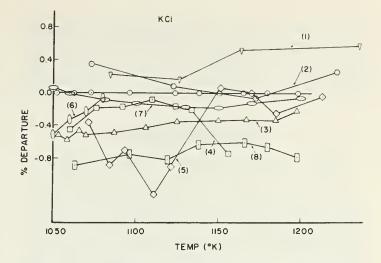


FIGURE 1. Comparison of percent departure of the data of various investigators with the van Artsdalen specific conductance data for KCl.

• Base line-van Artsdalen and Yaffe	[79]
♥ Huber and Potter	[63]
 Edwards and Taylor 	[62]
△ Crook	[123]
Duke and Bissell	[124]
♦ Winterhager and Werner	[85]
0 Bloom and Knaggs	[66]
∽ Murgulescu and Zuca	[129]
Buckle and Tsaoussoglou	[125]
-	

conductance values is estimated to be about 0.6 percent.

The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 0.109 (0.092%).

The density of molten KCl has been the subject of more than ten investigations [3, 11, 26, 62, 66, 70,79, 80, 81, 126, 178]. The uncertainty of the tabulated density values, calculated from the van Artsdalen data [79] is estimated to be about 0.5 percent. The density data of Kirshenbaum [126], $\rho = 2.062$ -5.350 \cdot 10⁻⁴ T °K (1101 to 1607 °K), extends to higher temperatures than any of the other investigations; at 1100 °K, the Kirshenbaum data are about 1.45 percent lower than the van Artsdalen values. The maximum percent departure between the densities of van Artsdalen [79] and the other investigators are as follows: Brunner [3], -0.2 (1080 °K); Arndt and Gessler [11], -1.1 (1123 °K); Jaeger and Kapma [26], -0.14 (1130 °K); Edwards et al. [62], 0.4 (1060 °K); Bloom et al. [66], 0.5 (1063 °K); Peake and Bothwell [70], -0.7 (1170 °K); Neithamer and Peak [178], -0.6 (1178 °K). The studies of Vogel, Schinke, and Sauerwald [80] and Schinke and Sauerwald [81] were to establish the volume change on fusion.

Three investigations of the viscosity for molten KCl have been reported [12, 102, 111]. The tabulated values of viscosity were calculated from the data of Murgulescu and Zuca [102] (1056.5 to 1202.0 °K, 11 points, oscillating ball techinque). The cubic equation expresses the data of Murgulescu and Zuca with a precision s = 0.0132 (1.43%). The uncertainty of the viscosity values is estimated to be about 1.5 percent.

The investigator, references, experimental method, and the maximum percent departure from the values of Murgulescu and Zuca are as follows: Fawsitt [12], oscillating disk, 25 percent; and Karpachev and Stromberg [111], oscillating ball, 5.2 percent.

Rubidium Chloride

[Refer: Table 22, p. 49, for numerical values]

Three investigations of specific conductance for molten RbCl have been reported [33, 82, 129]. The tabulated values were calculated from the data of van Artsdalen and Yaffe [82] (1003.0 to 1197.3 °K, 11 points). Using the quadratic equation for specific conductance the precision is s = 0.0026 (0.15%). Compared to the data of van Artsdalen [82], the results of Murgulescu and Zuca [129] and Klemm [33] show departures of 3.18 percent (1140 °K) and 6.03 percent (1188.2 °K) respectively. The uncertainty of the specific conductance values is estimated to be about 3.5 percent.

The tabulated values of equivalent conductance are expressed by the exponential equation with a precision s = 0.192 (0.19%).

Of the four density studies [25, 35, 36, 82] the most thorough appears to be that of van Artsdalen [82]. Compared to the data of van Artsdalen the results of Klemm [36], and Biltz [35] show maximum departures of -0.8 percent (1055 °K), and 0.3 percent (1200 °K) respectively. The uncertainty of the tabulated density values calculated from the van Artsdalen data [82] is estimated to be about 0.4 percent.

Two investigations of viscosity have been reported [109, 121]. The tabulated values were calculated from the data of Murgulescu and Zuca [121] (1005.2 to 1148.2 °K, 11 points, oscillating ball technique). The cubic equation expresses the data of Murgulescu and Zuca with a precision s = 0.0058 (0.50%). The uncertainty of the viscosity values is estimated to be about 1.0 percent.

The viscosities of the second study (Janz and Reeves [109], oscillating hollow cylinder technique) are consistently higher than those of Murgulescu and Zuca (e.g., 53.5% at 1010 °K, 9.9% at 1140 °K).

Cesium Chloride

[Refer: Table 23, p. 49, for numerical values]

Four investigations of the specific conductance for molten CsCl have been reported [33, 82, 129, 199]. The tabulated values were calculated from the data of van Artsdalen and Yaffe [82] (926.5 to 1170.0 °K, 11 points). Using the quadratic equation for specific conductance the precision is s = 0.00280(0.18%).

The maximum departure between the specific conductance values of van Artsdalen [82] and Biltz and Klemm [33] is 10.6 percent (1104.2 °K). The

uncertainty of the tabulated specific conductance values is estimated to be about 5.0 percent.

The exponential equation expresses the tabulated values of equivalent conductance with a precision of s = 0.2520 (0.26%).

Five density studies have been reported [25, 59, 80, 81, 82]: of these the most thorough appears to be that of van Artsdalen [82]. The uncertainty of the density values calculated from the van Artsdalen data [82] is estimated to be about 0.1 percent.

The accuracy of the density measurements for CsCl is greater than the accuracies for any of the other molten salts; these data appear highly suitable for high temperature calibration reference standards. The maximum departure between the density data of Jaeger [25] and van Artsdalen [82] is 0.12 percent (1154.2 °K).

Two investigations of viscosity have been reported [109, 121]. The tabulated values were calculated from the data of Murgulescu and Zuca [121] (928.0 to 1110.2 °K, 11 points, oscillating ball technique). The cubic equation expresses the data of Murgulescu and Zuca with a precision s = 0.0067 (0.82%). The uncertainty of the viscosity values is estimated to be about 1.0 percent.

The viscosities of the second study (Janz and Reeves [109], oscillating hollow cylinder techinque) show a linear "cross-over" departure from those of Murgulescu and Zuca (e.g., 13.3% at 940 °K; 18.8% at 1110 °K).

Beryllium (II) Chloride

[Refer: Table 24, p. 50, for numerical values]

Two investigations of the specific conductance for molten BeCl₂ have been reported [32, 186]. The tabulated values were calculated from the data of Delimarskii, Sheiko, and Feshchenko [186] (718.2 to 761.2 °K, 5 points). Using the linear equation for specific conductance the precision is $s = 9.70 \cdot 10^{-5}$ (3.3%). Comparison of the data of Delimarskii [186] and Voigt and Biltz [32] shows that the values of Delimarskii are considerably lower, the mazimum departure being 180 percent (718.2 °K). The uncertainty of the specific conductance values is estimated to be about (50%).

The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 0.0169 (21.6%).

The density data of Klemm [36] were used to calculate the tabulated values: no estimate of accuracy was attempted owing to the limited information.

Magnesium Chloride

[Refer: Table 25, p. 50, for numerical values]

Three investigations of the specific conductance for molten MgCl₂ have been reported [35, 63, 94]. The tabulated values were calculated from the data of Bockris et al. [94] (987.2 to 1252.1 °K, 27 points). Using the quadratic equation for specific conductance the precision is s = 0.00300 (0.24%). Compared to the data of Bockris et al., the results of Biltz and Klemm [35] and Huber, Potter, and Clair [56] show maximum departures of -1.1 percent (1214 °K) and -1.6 percent (1111 °K) respectively. The uncertainty of the tabulated specific conductance values is estimated to be about 1 percent.

The exponential equation expresses the tabulated values of equivalent conductance with a precision of s = 0.1053 (0.28%).

Of the three density studies [36, 63, 91, 113] the data of Ellis and Smith [91] were selected to calculate the tabulated values. Compared to the data of Ellis et al. [91, 113] the maximum percent departures of the densities of Klemm [36] and Huber, Potter, and Clair [63] are 0.24 (1044.2 °K) and 0.6 (1000 °K) respectively. The uncertainty of the density values is judged to be about 0.2 percent.

An exponential equation, $\eta = 0.355 \exp(5250/RT)$, for the viscosity has been reported by Ukshe [223] without any mention of the temperature limits.

Calcium Chloride

[Refer: Table 26, p. 50, for numerical values]

Ten investigations of the specific conductance for molten CaCl₂ have been reported [2, 4, 11, 35, 42, 50, 71, 83, 85, 94]. The tabulated values were calculated from the data of Bockris et al. [94] (1046.3 to 1291.8 °K, 21 points). Using the exponential equation for specific conductance the precision is s = 0.00587 (0.25%). Compared to the data of Bockris et al., the results of Biltz and Klemm [35], Yaffe and van Artsdalen [83], and Lee and Pearson [50] show maximum departures of -6.4 percent (1061 °K), 4.4 percent (1223 °K), and 0.02 percent (1073 °K) respectively; the results of the other investigators show larger departures. The uncertainty of the specific conductance values is judged to be about 2.5 percent.

The exponential equation expresses the tabulated values of equivalent conductance with a precision of s = 0.03441 (0.05%).

Of the four density studies [11, 17, 63, 83] the most thorough appears to be that of van Artsdalen and Yaffe [83]. Compared to the density data of van Artsdalen the results of Arndt and Gessler [11], and Huber, Potter, and Clair [63] show maximum departures of -1.0 percent (1223 °K) and -0.9 percent (1060 °K) respectively. The uncertainty of the density values calculated from the van Artsdalen data [83] is estimated to be about 0.9 percent.

Two investigations of the viscosity have been reported [47, 109]. The tabulated values were calculated from the data of Janz and Reeves [109] (1058.7 to 1242.6 °K, 12 points, oscillating hollow cylinder technique). The cubic equation expresses the data of Janz and Reeves with a precision s = 0.0738 (3.64%) and the uncertainty of the data is judged to be about 4.0 percent.

The viscosities of the second study (Karpachev and Stromberg [47]; oscillating ball technique) are consistently higher than those of Janz and Reeves (e.g., 3.8% at 1073 °K; 18.7% at 1173 °K).

Strontium Chloride

[Refer: Table 27, p. 51, for numerical values]

Three investigations of the specific conductance for molten $SrCl_2$ have been reported [4, 83, 94]. The tabulated values were calculated from the data of Bockris et al. [94] (1145.7 to 1357.0 °K, 14 points). Using the exponential equation for specific conductance the precision is s = 0.0012 (0.05%). The departure between the values of van Artsdalen and Yaffe [83] and Bockris [94] is about 3.1 percent for the range, 1145.7 to 1289.9 °K. The uncertainty of the tabulated values is judged to be about 4.0 percent.

The exponential equation expresses the tabulated values of equivalent conductance with a precision of s = 0.0247 (0.036%).

Four density studies have been reported [11, 81, 83, 91]; of these the van Artsdalen and Yaffe [83] study appears the best. Compared to the data of van Artsdalen [83] the results of Arndt and Gessler [11] and Ellis et al. [91] show maximum departures of -1.2 percent (1170 °K) and -0.4 percent (1163 °K) respectively. The uncertainty of the density values, calculated from the van Artsdalen data [83], is judged to be about 0.7 percent.

The tabulated values of viscosity were calculated from the data of Janz and Reeves [109] (1150.5 to 1258.6 °K, 18 points, oscillating hollow cylinder technique). The exponential equation expresses the data of Janz and Reeves with a precision s = 0.0706(2.88%) and the uncertainty of the data is judged to be about (4.0%).

Barium Chloride

[Refer: Table 28, p. 51, for numerical values]

Five investigations of the specific conductance for molten BaCl₂ have been reported [4, 63, 83, 85, 94]. The tabulated values were calculated from the data of Bockris et al. [94] (1232.6 to 1358.8 °K, 14 points). Using the exponential equation for specific conductance, the precision is s=0.00254(0.12%). Compared to the data of Bockris et al., the results of Winterhager and Werner [85], and Arndt [4] show maximum departures of 2.8 percent (1241 °K) and -4.4 percent (1273 °K) respectively. The uncertainty of the specific conductance values is judged to be about 9.0 percent.

The exponential equation expresses the tabulated values of equivalent conductance with a precision of s = 0.01954 (0.025%).

Five density studies have been reported [11, 63, 70, 81, 83]; of these the work of van Artsdalen and Yaffe [83] appears the most thorough. The maximum departure between the density data of Arndt and Gessler [11] and van Artsdalen [83] is -1.0 percent (1273 °K); the results of Peake and Bothwell [70] and Huber et al. [63], show larger departures. The uncertainty of the density values calculated from the van Artsdalen data [83] is estimated to be about 5.0 percent.

Two investigations of the viscosity for this salt have been reported [109, 210]. The tabulated values were calculated from the data of Janz and Reeves [109] (1261.4 to 1313.9 °K, 5 points, oscillating hollow cylinder technique). The cubic equation expresses the data of Janz and Reeves with a precision s = 0.0651 (1.60%) and the uncertainty of the data is considered to be about 4.0 percent.

The results of the second study (Slavyanskii [210]) are presented in graphical form only. The interpolated values are consistently higher than those of Janz and Reeves (e.g., 9.3% at 1274 °K; 28% at 1307 °K).

Scandium (III) Chloride

[Refer: Table 29, p. 51, for numerical values]

The tabulated values of specific conductance for molten ScCl₃ were calculated from the data of Biltz and Klemm [30] (1213 to 1264 °K, 5 points). The density data of Klemm [36] are limited to two temperatures (1213 and 1273 °K). The data for these properties are insufficient to establish the precision or to judge the accuracy.

Yttrium (III) Chloride

[Refer: Table 30, p. 52, for numerical values]

The tabulated values of specific conductance for molten YCl₃ were calculated from the data of Biltz and Klemm [35] (973.2 to 1148.2 °K, 6 points). Using the quadratic equation for specific conductance the precision is s = 0.00428 (0.69%) and the uncertainty of the data is judged to be about 10 percent.

The exponential equation expresses the tabulated values of equivalent conductance with a precision of s = 0.276 (1.8%).

The density values were calculated from the data of Klemm [36]; no estimate of accuracy was attempted owing to the limited information.

Lanthanum (III) Chloride

[Refer: Table 31, p. 52, for numerical values]

Three investigations of the specific conductance for molten LaCl₃ have been reported [35, 83, 118]. The tabulated values were calculated from the data of van Artsdalen and Yaffe [83] (1146.2 to 1260.2 °K). Using the quadratic equation for specific conductance the precision is $s = 0.009 \ (0.05\%)$. The results of Dworkin, Bronstein and Bredig [118] $(\kappa = -1.640 + 2.564 \cdot 10^{-3}T)$ covering a limited range, 1153.2 to 1193.2 °K, are consistently smaller than those of van Artsdalen (e.g., 10.7%, 1200 °K). The uncertainty of the specific conductance values is judged to be about 10 percent.

The exponential equation expresses the tabulated values of equivalent conductance with a precision of s = 0.277 (0.63%).

The maximum departure between the density results of Klemm [36] and those of van Artsdalen and Yaffe [83] is 0.94 percent (1250 °K). The uncertainty of the tabulated density values, calculated from the data of van Artsdalen and Yaffe [83] is judged to be about 0.6 percent.

The tabulated values of viscosity were calculated from the exponential equation of Smirnov, Khokhlov, and Stepanov [136] (1183 to 1276 °K, 18 points, oscillating ball viscometer). The uncertainty of the viscosity values is estimated to be about (1.0%).

Cerium (III) Chloride

[Refer: Table 32, p. 53, for numerical values]

Two investigations of the specific conductance for molten CeCl₃ have been reported [99, 119]. The tabulated values were calculated from the data of Bronstein, Dworkin, and Bredig [119] (1101.2 to 1204.2 °K, 8 points). Using the quadratic equation for specific conductance the precision is s = 0.00580(0.41%). The maximum departure between the data of Bredig [119] and Mellors and Senderoff [99] is 19.1 percent (1131.2 °K). The uncertainty of the specific conductance values is estimated to be about 15 percent.

The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 0.188 (0.58%).

The density data of Senderoff [99] were used to calculate the tabulated values; no estimate of accuracy was attempted owing to the limited information.

Praseodymium (III) Chloride

[Refer: Table 33, p. 53, for numerical values]

Two investigations of the specific conductance for molten $PrCl_3$ have been reported [32, 120]. The tabulated values were calculated from the data of Voigt and Biltz [32] (1097 to 1238 °K, 6 points). Using the exponential equation for specific conductance the precision is s = 0.0032 (0.32%). The maximum departure between the data of Voigt [32] and Dworkin, Bronstein, and Bredig [120] is 20 percent (1150 °K). The uncertainty of the specific conductance values is estimated to be about 15 percent.

Neodymium (III) Chloride

[Refer: Table 34, p. 53, for numerical values]

Two investigations of the specific conductance for molten NdCl₃ have been reported [32, 118]. The tabulated values were calculated from the data of Voigt and Biltz [32] (1048 to 1173 °K, 6 points). Using the linear equation for specific conductance the precision is s = 0.0024 (0.30%). The uncertainty of the specific conductance values is estimated to be about (12%).

Gadolinium (III) Chloride

[Refer: Table 35, p. 54, for numerical values]

The tabulated values of specific conductance for molten GdCl₃ were calculated from the data of Dworkin, Bronstein, and Bredig [171] (902.2 to 971.2 °K, 4 points). Using the exponential equation for specific conductance the precision is s = 0.00525 (1.17%). The uncertainty of the specific conductance values is estimated to be about (20%).

Dysprosium (III) Chloride, Holmium (III) Chloride, and Erbium (III) Chloride

[Refer: Tables 36 to 38, p. 54, for numerical values]

The tabulated values of specific conductance for molten DyCl₃, HoCl₃, and ErCl₃ were calculated from the data of Dworkin, Bronstein, and Bredig [171]. The number of data points, the temperature range, the precision, the estimated uncertainty and the best equation are as follows:

 $DyCl_3 - 3$ points, 952–1003 °K,

s = 0.00483 (1.13%), (20%), linear equation. HoCl₃ - 4 points, 1020-1092 °K,

s = 0.00289 (0.57%), (20%), linear equation. ErCl₃-3 points, 1074–1112 °K,

s = 0.000150 (0.03%), (20%), linear equation.

Thorium (IV) Chloride

[Refer: Table 39, p. 55, for numerical values]

The tabulated values of specific conductance for molten ThCl₄ were calculated from the data of Voigt and Biltz [32] (1087.2 to 1195.2 °K, 5 points). Using the quadratic equation for specific conductance the precision is s = 0.0140 (1.96%), and the uncertainty of the specific conductance values is estimated to be about 15 percent.

The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 0.273 (1.2%).

The density results reported by Klemm [36] show little change with temperature; no estimate of accuracy was attempted.

Uranium (IV) Chloride

[Refer: Table 40, p. 55, for numerical values]

The tabulated values of specific conductance for molten UCl₄ were calculated from the data of Voigt and Biltz [32] (843 to 893 °K, 3 points). Using the linear equation for specific conductance the precision is s = 0.0013 (0.32%). The uncertainty of the tabulated specific conductance values is estimated to be about (9%). The melting point (840 °K) observed by Voigt [32] is lower than the established melting point (863 °K) [130].

Manganese (II) Chloride

[Refer: Table 41, p. 55, for numerical values]

Two investigations of the specific conductance for molten MnCl₂ have been reported [85, 192]. The tabulated values were calculated from the data of Murgulescu and Zuca [192] (923.2 to 1123.2 °K, 5 points). Using the quadratic equation for specific conductance the precision is $s = 3.66 \cdot 10^{-4}$ (0.022%). Comparison of the data of Murgulescu [192] and Winterhager and Werner [85] shows the maximum departure to be about 27 percent (1128.2 °K). The uncertainty of the specific conductance values is estimated to be about 20 percent.

The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 0.265 (0.59%).

The density data of Murgulescu [192] were used to calculate the tabulated values; no estimate of accuracy was attempted owing to the limited information.

Titanium (IV) Chloride

[Refer: Table 42, p. 55, for numerical values]

The tabulated values of viscosity for molten TiCl₄ have been calculated from the data of Toropov [204] (293 to 333 °K, 3 points, capillary viscometer). The exponential equation expresses the data of Toropov with a precision s = 0.0095 (1.39%). No estimate of accuracy was attempted owing to the limited information.

Copper (I) Chloride

[Refer: Table 43, p. 56, for numerical values]

Five investigations of the specific conductance for molten CuCl have been reported [33, 35, 85, 189, 212]. The tabulated values were calculated from the data of Grantham and Yosim [189] (746.2 to 1430.2 °K, 19 points). Using the cubic equation for specific conductance the precision is $s = 6.40 \cdot 10^{-3}$ (0.16%). This cubic equation can be used to gain values of specific conductance (within 6%) in the range 700 to 740 °K. Grantham [189] has reported a specific conductance maximum at 1123 °K. Compared to the data of Grantham the results of Klemm and Biltz [33], and Winterhager and Werner [85] show maximum departures of -5.5 percent (740 °K), and 5.1 percent (950 °K) respectively. The uncertainty of the specific conductance values is estimated to be about 5 percent.

The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 0.968 (0.84%).

The data of Klemm [36] were used to calculate the densities; no estimate of accuracy was attempted owing to the limited information.

The tabulated values of viscosity were calculated from the data of Karpachev and Stromberg [47] (773.2 to 973.2 °K, 5 points, oscillating ball technique). The cubic equation expresses the data with a precision s = 0.00069 (0.037%). The uncertainty of the viscosity values is estimated to be about (2.0%).

Silver Chloride

[Refer: Table 44, p. 56, for numerical values]

Eight investigations of the specific conductance for molten AgCl have been reported [1, 10, 21, 23, 60, 72, 100, 166, 202, 212]. The tabulated values were calculated from the quadratic specific conductance equation of Bell and Flengas [166] (753 to 1013 °K). The precision reported by Flengas is s = 0.0035 (0.082%). The maximum percent departures between the specific conductance values of Bell and Flengas [166] and the other investigators are as follows: Spooner and Wetmore [60], 0.4 percent (773.2 °K); Doucet and Bizouard [100], 1.1 percent (873.2 °K); Arndt and Gessler [10], 4.4 percent (973 °K); Tubandt and Lorenz [21], -3.8 percent (873 °K); Lorenz and Höchberg [23], 2.6 percent (873 °K): and Harrap and Heymann [72], -2.7 percent (873 °K). The uncertainty of the specific conductance values is estimated to be about 0.7 percent.

The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 0.279 (0.21%).

Of the five density studies [22, 54, 60, 81, 166, 212] the data of Flengas [166] were selected to calculate the tabulated values. Compared to the density data of Flengas [166] the results of Spooner and Wetmore [60], Lorenz and Höchberg [22], and Boardman, Dorman, and Heymann [54], show maximum departures of 0.2 percent (743 °K), -0.8percent (901 °K), and -1.1 percent (900 °K) respectively. The studies of Schinke and Sauerwald [81] were to establish the volume change on fusion. The estimated uncertainty of the density values is about 0.1 percent.

Two investigations of the viscosity have been reported [24, 72]. The tabulated values were calculated from the data of Harrap and Heymann [72] (723.2 to 973.2 °K, 10 points, vertical capillary viscometer). The cubic equation expresses the data of Harrap and Heymann with a precision s = 0.0033 (0.19%). The uncertainty of the viscosity values is estimated to be about 1.5 percent.

The results of the second study (Lorenz and Höchberg [24], oscillating disk technique) are consistently lower than those of Harrap and Heymann (e.g., -2.7%, 876.2 °K: -6.4%, 942.2 °K).

Zinc Chloride

[Refer: Table 45, p. 57, for numerical values]

Five investigations of the specific conductance for molten ZnCl₂ have been reported [33, 87, 94, 98, 189]. The tabulated values were calculated from the data of Bockris et al. [94] (593.3 to 969.7 °K). To cover the entire range it was necessary to generate three quadratic equations: the temperature range, the number of data points, and the precision appropriate to this subdivision are as follows:

593.3 to 672.5 °K, 7 points, $s = 4.66 \times 10^{-4}$ (6.6%); 672.5 to 824.7 °K, 10 points, $s = 8.38 \times 10^{-4}$ (1.25%); 824.7 to 969.7 °K, 13 points, $s = 1.60 \times 10^{-3}$ (0.53%).

Comparison of the data of Bockris [94] and Grantham and Yosim [189] in the low temperature region (593.3 to 672.5 °K) shows the maximum departure to be 42 percent (633 °K). The uncertainty of the specific conductance values for this region is estimated to be about 30 percent. The maximum departure between the data of Bockris [94] and Duke and Fleming [87] (in the range 672.5 to 824.7 °K) is -5.6percent (748 °K). In the high temperature range (824.7 to 969.7 °K) comparison of the results of Bockris [94] and Grantham [189] shows the maximum departure to be 3.94 percent (937.2 °K). The uncertainty of the specific conductance values in the region 672.5 to 969.7 °K is estimated to be about 5 percent.

For temperatures above 960 °K values of specific conductance may be gained from the following quadratic equation (s = 0.011 (1.8%)) based on the data of Grantham [189] (937.2 to 1136.2 °K, 5 points): $\kappa = 1.50344 - 4.54126 \cdot 10^{-3}T + 3.55485 \cdot 10^{-6}T^2$.

The three exponential equations express the tabulated values of equivalent conductance with the precisions s = 0.040 (18%) (593.3 to 672.5 °K); s = 0.062 (3.3%) (672.5 to 824.7 °K); s = 0.080 (0.94%) (824.7 to 969.7 °K) respectively.

Of the seven investigations of density [36, 40, 56, 87, 91, 98, 113] the results of Mackenzie and Murphy [98] were selected to calculate the tabulated values. The density values of Mackenzie [98] are in agreement with those of Klemm [36] to within (0.3%). Compared to the data of Mackenzie, the results of Duke and Fleming [87], Wachter and Hildebrand [40] and Ellis and Smith [91] show maximum departures of -0.2 percent (866 °K).

-0.5 percent (823.9 °K) and -1.6 percent (934 °K) respectively.

The tabulated values of viscosity were obtained from the data of Mackenzie and Murphy [98] (593.2 to 673.2 °K, 5 points, restricted falling ball technique). Since the least squaring to exponential, quadratic and cubic were poor, it became necessary to obtain the tabulated values from a smooth curve of the experimental data.

Cadmium Chloride

[Refer: Table 46, p. 57, for numerical values]

Six investigations of the specific conductance of molten CdCl₂ have been reported [19, 27, 33, 51, 66, 94]. The tabulated values were calculated from the data of Bockris et al. [94] (844.7 to 1082.4 °K, 25 points). Using the quadratic equation for specific conductance the precision is s = 0.000149 (0.007%). Compared to the data of Bockris, the results of Bloom and Heymann [51], Bloom and Knaggs [66] and Aten [19] show departures of -0.3 percent (873 °K), 0.8 percent (1000 °K) and -0.8 percent (853 °K) respectively; the results of the other investigators show larger departures. The uncertainty of the specific conductance values is estimated to be about 0.6 percent.

The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 0.02004 (0.035%).

Of the three investigations of density [15, 54, 66], the data of Bloom et al. [66] and Boardman et al. [54] were selected to generate the linear equation to express the density values. The maximum percent departure between the density values of Bloom [66] and Boardman [54] is 0.3 percent (850 °K) while that between the tabulated values and the values of Lorenz, Frei, and Jabs [15] is 1.3 percent (870 °K). The uncertainty of the density values is estimated to be about 0.3 percent.

Two investigations of viscosity have been reported [47, 53]. The tabulated values of viscosity were calculated from the data of Bloom, Harrap, and Heymann [53] (863.2 to 963.2 °K, 10 points, vertical capillary viscometer). The exponential equation expresses the data of Bloom, Harrap, and Heymann with a precision s = 0.0075 (0.36%). The uncertainty of the viscosity values is estimated to be about 1.5 percent.

The viscosities of the second study (Karpachev and Stromberg [47], the oscillating ball technique) are consistently higher than those of Bloom, Harrap, and Heymann. The maximum departure from the tabulated values is 5.2 percent (873 °K).

Mercury (I) Chloride

[Refer: Table 47, p. 58, for numerical values]

The tabulated values of specific conductance for molten HgCl were calculated from the data of Biltz and Klemm [35] (802.2 to 819.2 °K, 4 points). Using the exponential equation for specific conductance the precision is s = 0.00604 (0.60%). The uncertainty of specific conductance values is estimated to be about (20%).

The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 0.00732 (0.017%).

The density data of Klemm [36] were used to palculate the tabulated values; no estimate of accuacy was attempted owing to the limited information.

Mercury (II) Chloride

[Refer: Table 48, p. 58, for numerical values]

Four investigations of the specific conductance for molten HgCl₂ have been reported [35, 94, 103, 189]. The tabulated values were calculated from the data of Grantham and Yosim [189] (559.2 to 705.2 °K, 17 points). Using the cubic equation for specific conductance the precision is $s=3.87 \cdot 10^{-7}$ (0.50%). Grantham's [189] results in the temperature range 559.2 to 802.2 °K exhibit a maximum value at 753 °K. The maximum departure between the data of Bockris et al. [94] and Grantham and Yosim [189] is 2.6 percent (579 °K); the results of Biltz and Klemm [35] and Janz and McIntyre [103] show larger departures. The uncertainty of the specific conductance values is estimated to be about 3 percent.

The exponential equation expresses the tabulated values of equivalent conductance with a precision $s = 8.5 \cdot 10^{-5}$ (4.2%).

Of the three density studies [18, 103, 127], the data of Janz and McIntyre [103] were selected to calculate the tabulated values. Compared to the data of Janz, the results of Johnson, Silva, and Cubicciotti [127] and Prideaux [18] show maximum departures of 0.4 percent (550 °K) and 2.5 percent (630 °K) respectively. The uncertainty of the density values is judged to be about 0.5 percent.

The tabulated values of viscosity were calculated from the data of Janz and McIntyre [103] (554.0 to 579.3 °K, 5 points, oscillating hollow sphere technique). The cubic equation expresses the data with a precision s=0.0080 (0.49%). The uncertainty of the viscosity values is estimated to be about (3.0%).

Aluminum (III) Chloride

[Refer: Table 49, p. 58, for numerical values]

The density data of Nisel'son and Sokolova [149] (480.1 to 623.2 °K, 18 points) for molten AlCl₃ were used to calculate the tabulated values. Using the quadratic equation for density the precision is s=0.0422 (3.7%). No estimate of accuracy was attempted owing to the poor precision and limited information.

The tabulated values of viscosity were calculated from the data of Nisel'son and Sokolova [149] (461.5 to 549.2 °K, 12 points, capillary viscometer). The cubic equation expresses the data with a precision s = 0.00159 (0.62%). The uncertainty of the viscosity values is estimated to be about (1.0%).

Gallium (III) Chloride

[Refer: Table 50, p. 59, for numerical values]

Of the two density studies [148, 149] for molten GaCl₃, the data of Greenwood and Wade [148] were selected to calculate the tabulated values. The maximum departure between the densities reported by Nisel'son and Sokolova [149] and Wade [148] is 0.77 percent (388.8 °K). The estimated uncertainty of the density values is about 0.4 percent.

Two investigations of the viscosity have been reported [148, 149]. The tabulated values were calculated from the data of Nisel'son and Sokolova [149] (355.9 to 519.7 °K, 12 points, capillary viscometer). The cubic equation expresses the data of Nisel'son and Sokolova with a precision s = 0.0121 (1.78%). The uncertainty of the viscosity values is estimated to be about 2.0 percent.

The results of the second study (Greenwood and Wade [148]; capillary viscometer) are in excellent agreement with those of Nisel'son and Sokolova (e.g., 0.63% at 360 °K).

Indium Chloride

[Refer: Table 51, p. 59, for numerical values]

The tabulated values of specific conductance for molten InCl were calculated from the data of Klemm [34] (498.2 to 624.2 °K, 5 points). Using the quadratic equation for specific conductance the precision is s = 0.0176 (1.5%). The estimated uncertainty of the tabulated specific conductance values is about (12%).

The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 0.205 (0.39%).

The density values were calculated from the data of Klemm [34]; no estimate of accuracy was attempted owing to the limited information.

Indium (II) Chloride

[Refer: Table 52, p. 60, for numerical values]

The tabulated values of specific conductance for molten InCl₂ were calculated from the data of Klemm [34] (508.2 to 780.2 °K, 8 points). Using the quadratic equation for specific conductance the precision is s = 0.0074 (1.5%). The uncertainty of the specific conductance values is estimated to be about (12%).

The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 0.389 (2.4%).

The density values were calculated from the data of Klemm [34]: no estimate of accuracy was attempted owing to the limited information.

Indium (III) Chloride

[Refer: Table 53, p. 60, for numerical values]

The tabulated values of specific conductance for molten InCl₃ were calculated from the data of Klemm [34] (859.2 to 967.2 °K, 6 points). Using the linear equation for specific conductance the precision is $s = 0.00235 \cdot (0.61\%)$. The uncertainty of the specific conductance values is estimated to be about (10%).

The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 0.0580 (0.42%).

The density values were calculated from the data of Klemm [34]; no estimate of accuracy was attempted owing to the limited information.

Thallium (I) Chloride

[Refer: Table 54, p. 61, for numerical values]

Two investigations of the specific conductance for molten TlCl have been reported [21, 189]. The tabulated values were calculated from the data of Grantham and Yosim [189] (720.2 to 1169.2 °K, 22 points). Using the cubic equation for specific conductance the precision is $s = 5.52 \cdot 10^{-3}$ (0.30%). The maximum departure between the data of Tubandt and Lorenz [21] and Grantham [189] is 0.7% (880 °K). The uncertainty of the specific conductance values is estimated to be about 0.7 percent.

The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 0.363 (0.43%).

The data of Klemm [36] were used to calculate the densities; no estimate of accuracy was attempted owing to the limited information.

Tin (II) Chloride

[Refer: Table 55, p. 61, for numerical values]

Two investigations of the specific conductance for molten SnCl₂ have been reported [35, 189]. The tabulated values were calculated from the data of Grantham and Yosim [189] (529.2 to 1235.2 °K, 21 points). Although the cubic equation expresses the data with a precision $s = 4.41 \cdot 10^{-3}$ (0.18%), it is not entirely satisfactory in the low temperature region (1.0% at 560.2 °K). Grantham's results exhibit a maximum value for specific conductance at 1148 °K. The maximum departure between the data of Biltz and Klemm [35] and Grantham [189] is 5.1 percent (520 °K). The uncertainty of the specific conductance values is estimated to be about 4 percent.

The exponential equation expresses the tabulated

values of equivalent conductance with a precision s = 4.95 (7.4%).

Of the two density studies [25, 36], the data of Jaeger [25] were selected to calculate the tabulated values. The maximum departure between the results of Jaeger [25] and Klemm [36] is 1.34 percent (638.2 °K). The uncertainty of the density values is judged to be about 1.3 percent.

Tin (IV) Chloride

[Refer: Table 56, p. 62, for numerical values]

The density data of Pugachevick, Nisel'son, Sokolova, and Anurov [147] for molten $SnCl_4$ were used to calculate the tabulated values. The estimated uncertainty of the density values is about (0.8%).

Two investigations of the viscosity have been reported [147, 204]. The tabulated values were calculated from the data of Pugachevick, Nisel'son, Sokolova, and Anurov [147] (273 to 423 °K, 20 points, capillary viscometer). The exponential equation expresses the data of Pugachevick [147] with a precision s=0.0059 (1.15%). The uncertainty of the viscosity values is judged to be about 1.5 percent.

The results of the second study (Toropov [204]; capillary viscometer) are in good agreement with those of Pugachevick (e.g., -4.6%, 293 °K; 0.7%, 333 °K).

Lead (II) Chloride

[Refer: Table 57, p. 62, for numerical values]

Six investigations of the specific conductance for molten PbCl₂ have been reported [7, 51, 72, 85, 97, 151, 212]. The tabulated values were calculated from the data of Lantratov and Moiseeva [97] (773.2 to 923.2 °K, 7 points). Using the quadratic equation for specific conductance the precision is s=0.00802 (0.44%). Compared to the data of Lantratov and Moiseeva the results of Lorenz and Kalmus [7] and Bloom and Heymann [51] show maximum departures of -1.0 percent (881 °K) and -0.5 percent (873 °K); the results of the other investigators show larger departures. The uncertainty of the specific conductance values is estimated to be about 5 percent.

The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 0.301 (0.58%).

Of the four density studies [15, 40, 54, 150] the data of Boardman, Dorman, and Heymann [54] were selected to calculate the tabulated values. The maximum percent departures between the results of Boardman et al. [54], and those of Wachter and Hildebrand [40], Bell and Flengas [150], and Lorenz, Frei, and Jabs [15] are -0.3 percent (818.5 °K), 0.7 percent (920 °K) and -0.8 percent (800 °K) respectively. The uncertainty of the density values is estimated to be about 0.3 percent.

Two investigations of the viscosity have been reported [8, 72]. The tabulated values were calculated from the data of Harrap and Heymann [72] (773.2 to 973.2 °K, 6 points, vertical capillary viscometer). The exponential equation expresses the data of Harrap and Heymann with a precision s = 0.0091 (0.33%). The uncertainty of the viscosity data is estimated to be about 1.5 percent.

The viscosities of the second study (Lorenz and Kalmus [8]; horizontal capillary viscometer) are consistently higher than those of Harrap and Heyman. The maximum departure from the tabulated values is 15 percent (781 °K).

Bismuth (III) Chloride

[Refer: Table 58, p. 63, for numerical values]

The specific conductance of molten BiCl₃ has been determined by Voigt and Biltz [32] and Grantham [114]. The tabulated values were calculated from the data of Grantham [114] (502.2 to 898.2 °K, 11 points). Using the cubic equation for specific conductance the precision is $s = 10.7 \cdot 10^{-4}$ (0.18%). The maximum departure between the specific conductance values of Grantham [114] and Voigt [32] is 2.4 percent (519.2 °K). The uncertainty of the specific conductance values is estimated to be about 2.3 percent.

The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 1.58 (9.6%).

Of the two density investigations [25, 32], the data of Voigt and Biltz [32] were selected to generate the tabulated values. The maximum departure between the densities reported by Voigt [32] and Jaeger [25] is 0.34 percent (655.2 °K). The uncertainty of the density values is estimated to be about 0.4 percent.

The tabulated values of viscosity were calculated from the data of Aten [16] (553.2 to 613.2 °K, 9 points, Ubbelohde viscometer). The cubic equation expresses the data of Aten with a precision s = 0.1592(0.70%). The uncertainty of the viscosity values is estimated to be about (1.5%).

Tellurium (II) Chloride

[Refer: Table 59, p. 63, for numerical values]

The tabulated values of specific conductance for molten TeCl₂ have been calculated from the data of Voigt and Biltz [32] (479 to 578 °K, 11 points). Using the quadratic equation for specific conductance the precision is $s = 8.0 \cdot 10^{-4}$ (0.80%). The uncertainty of the specific conductance values is estimated to be about (10%).

Tellurium (IV) Chloride

[Refer: Table 60, p. 63, for numerical values]

The tabulated values of specific conductance

for molten TeCl₄ were calculated from the data of Voigt and Biltz [32] (509 to 589 °K, 5 points). Using the quadratic equation for specific conductance the precision is $s = 6.09 \cdot 10^{-4}$ (0.38%). The uncertainty of the specific conductance values is estimated to be about (9%).

Lithium Bromide

[Refer: Table 61, p. 64, for numerical values]

The tabulated values of specific conductance for molten LiBr were calculated from the data of van Artsdalen and Yaffe [82] (831.2 to 1022.2 °K, 11 points). Using the quadratic equation for specific conductance the precision is s = 0.00254 (0.47%). The uncertainty of the specific conductance values is estimated to be about (1.5%).

The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 0.318 (0.17%).

Of the three density studies [3, 81, 82] the data of van Artsdalen and Yaffe [82] were selected to calculate the tabulated values. The maximum departure between the density values of van Artsdalen [82] and Brunner [3] is 3.3 percent (880 °K). The studies of Schinke and Sauerwald [81] were to establish volume change on fusion. No estimate of accuracy was attempted owing to the limited information.

Two investigations of the viscosity have been reported [47, 102]. The tabulated values were calculated from the data of Murgulescu and Zuca [102] (862.2 to 1046.2 °K, 13 points, oscillating ball technique). The exponential equation expresses the data of Murgulescu and Zuca with a precision s = 0.0180 (1.56%). The uncertainty of the viscosity values is estimated to be about 2.0 percent.

The viscosities of the second study (Karpachev and Stromberg [47], oscillating ball technique) are consistently higher than those of Murgulescu and Zuca. The maximum departure from the tabulated values is 51.6 percent (873 °K).

Sodium Bromide

[Refer: Table 62, p. 64, for numerical values]

Five investigations of the specific conductance for molten NaBr have been reported [10, 52, 82, 129, 199]. The tabulated values were calculated from the data of van Artsdalen [82] (1017.2 to 1229.0 °K, 15 points). Using the exponential equation for specific conductance the precision is s=0.00322(0.10%). The maximum percent departure between the data of van Artsdalen [82] and Arndt and Gessler [10] is -1.8 percent (1173 °K); the results of the other investigators show larger departures. The uncertainty of the specific conductance values is estimated to be about 7 percent.

The exponential equation expresses the tabulated values of equivalent conductance with a precision $s = 0.179 \ (0.12\%)$.

Of the four density investigations [3, 25, 81, 82], the data of van Artsdalen and Yaffe [82] were selected to calculate the tabulated values. The maximum departure between the density values of van Artsdalen [82] and Brunner [3] is -0.3 percent (1050 °K); the results of Jaeger [25] show larger departures. The studies of Schinke and Sauerwald [86] were to establish the volume change on fusion. The uncertainty of the density values is estimated to be about 1 percent.

Two investigations of the viscosity have been reported [12, 102]. The tabulated values were calculated from the data of Murgulescu and Zuca [102] (1053.7 to 1212.7 °K, 10 points, oscillating ball technique). The cubic equation expresses the data of Murgulescu and Zuca with a precision s=0.0040(0.38%). The uncertainty of the viscosity values is estimated to be about 1.0 percent.

The viscosities of the second study (Fawsitt [12], oscillating disk technique) show departures of -2.29 percent (1053 °K) and +5.83 percent (1153 °K) from those of Murgulescu and Zuca.

Potassium Bromide

[Refer: Table 63, p. 65, for numerical values]

Nine investigations of the specific conductance for molten KBr have been reported [10, 26, 33, 52, 66, 82, 100, 125, 129]. The tabulated values were calculated from the data of van Artsdalen and Yaffe [82] (1011.0 to 1229.5 °K, 23 points). Using the quadratic equation for specific conductance the precision is s = 0.00465 (0.26%). The maximum departure between the results of van Artsdalen and Murgulescu and Zuca [129] is -0.8 percent (1140 °K); the results of the other investigators show larger departures. The uncertainty of the specific conductance values is estimated to be about 1.3 percent.

The exponential equation expresses the tabulated values of equivalent conductance with a precision $s = 0.578 \ (0.53\%)$.

Of the six investigations of density [3, 15, 26, 66, 81, 82], the most thorough appears to be that of van Artsdalen and Yaffe [82]. Compared to the data of van Artsdalen [82] the results of various investigators show the following maximum departures: Jaeger and Kapma [26], -0.4 percent (1018.4 °K); Brunner [3], -0.1 percent (1050 °K); Bloom et al. [66], 0.9 percent (1120 °K); and Lorenz, Frei, and Jabs [15], -4.6 percent (1073 °K). The studies of Schinke and Sauerwald [81] were to establish the volume change on fusion. The uncertainty of the density values is estimated to be about 0.4 percent.

Three investigations of the viscosity have been reported [12, 47, 102]. The tabulated values were calculated from the data of Murgulescu and Zuca [102] (1017.8 to 1181.2 °K, 11 points, oscillating ball technique). The cubic equation expresses the data of Murgulescu and Zuca with a precision s=0.0056 (0.59%). The uncertainty of the viscosity values is estimated to be about 1.0 percent.

The investigator, reference, experimental method, and the maximum departure from the values of Murgulescu and Zuca are as follows: Fawsitt [12], oscillating disk, +24.9 percent; and Karpachev and Stromberg [47], oscillating ball, -19.1 percent.

Rubidium Bromide

[Refer: Table 64, p. 65, for numerical values]

The tabulated values of specific conductance for molten RbBr were calculated from the data of van Artsdalen and Yaffe [82] (968.9 to 1178.6 °K, 11 points). Using the quadratic equation for specific conductance the precision is s=0.00248 (0.18%). The uncertainty of the specific conductance values is estimated to be about 3.5 percent.

The exponential equation expresses the tabulated values of equivalent conductance with a precision $s = 0.798 \ (0.91\%)$.

Of the two density investigations [25, 82], the data of van Artsdalen [82] were selected to calculate the tabulated values. The maximum departure between the densities reported by Jaeger [25] and van Artsdalen [82] is 0.53 percent (1104.2 °K). The uncertainty of the density values is estimated to be about 0.4 percent.

The tabulated values of viscosity were calculated from the data of Murgulescu and Zuca [102] (959.7 to 1139.5 °K, 11 points, oscillating ball technique). The cubic equation expresses the data of Murgulescu and Zuca with a precision s = 0.0046 (0.38%). The uncertainty of the viscosity values is estimated to be about 1.0 percent.

Cesium Bromide

[Refer: Table 65, p. 66, for numerical values]

Two investigations of the specific conductance for molten CsBr have been reported [82, 199]. The tabulated values were calculated from the data of van Artsdalen and Yaffe [82]. Using the quadratic equation for specific conductance the precision is s=0.0025 (0.22%). The specific conductance values of Markov and Prisyazhunyii [199] are lower than those of van Artsdalen (e.g., -9.1% 1123 °K). The uncertainty of specific conductance values is estimated to be about (5%).

The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 0.317 (0.42%).

Of the three density investigations [25, 74, 82], the data of van Artsdalen [82] were selected to calculate the tabulated values. The maximum departure between the densities of Jaeger [25] and van Artsdalen is 0.7 percent (941 °K); the results of Johnson et al. [74] show larger departures. The uncertainty of the density values is estimated to be about 0.5 percent.

Magnesium Bromide

[Refer: Table 66, p. 66, for numerical values]

The tabulated values of specific conductance for molten MgBr₂ were calculated from the data of Bockris et al. [94] (987.5 to 1244.3 °K, 25 points). Using the quadratic equation for specific conductance the precision is s=0.000232 (0.021%). The uncertainty of the specific conductance values is estimated to be about (1.0%).

The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 0.101 (0.29%).

The density equation of Bockris, Pilla, and Barton [113], based on the data of Ellis and Smith [91], was used to calculate the tabulated values; no estimate of accuracy was attempted owing to the limited information.

Calcium Bromide

[Refer: Table 67, p. 67, for numerical values]

The tabulated values of specific conductance for molten CaBr₂ were calculated from the data of Bockris et al. [94] (1013 to 1290.8 °K, 36 points). Using the exponential equation for specific conductance the precision is s = 0.00397 (0.22%). The uncertainty of the specific conductance values is estimated to be about (2.5%).

The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 0.0535 (0.087%).

The density equation of Bockris, Pilla, and Barton [113], based on the data of Ellis and Smith [91], was used to calculate the tabulated values; no estimate of accuracy was attempted owing to the limited information.

Strontium Bromide

[Refer: Table 68, p. 67, for numerical values]

The tabulated values of specific conductance for molten $SrBr_2$ were calculated from the data of Bockris et al. [94] (928.8 to 1185.9 °K, 30 points). The quadratic equation expresses the data of Bockris with a precision s = 0.00196 (0.14%). The uncertainty of the specific conductance values is estimated to be about (6%).

The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 0.436 (1.0%).

The density equation of Bockris, Pilla, and Barton [113], based on the data of Ellis and Smith [91], was used to calculate the tabulated values: no estimate of accuracy was attempted owing to the limited information.

Barium Bromide

[Refer: Table 69, p. 68, for numerical values]

The tabulated values of specific conductance for molten BaBr₂ were calculated from the data of Bockris et al. [94] (1126.3 to 1338.5 °K, 13 points). The quadratic equation expresses the data of Bockris with a precision s=0.00501 (0.34%). The uncertainty of the specific conductance values is estimated to be about (10%).

The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 0.0390 (0.07%).

Of the two density studies [66, 91], the data of Bloom et al. [66] were selected to calculate the tabulated values. The maximum departure between the densities reported by Bloom [66] and Ellis and Smith [91] is 1.06 percent (1160 °K). The uncertainty of the density values is estimated to be about 1 percent.

Lanthanum (III) Bromide

[Refer: Table 70, p. 68, for numerical values]

Two investigations of the specific conductance for molten LaBr₃ have been reported [83, 171]. The tabulated values were calculated from the quadratic equation of Yaffe and van Artsdalen [83] for the temperature range of 1050.2 to 1185.2 °K. The precision reported by Yaffe and van Artsdalen is s = 0.003 (0.3%). The maximum departures between the results of Dworkin, Bronstein, and Bredig [171] and van Artsdalen [83] is 23.3 percent (1100 °K). Similar disagreement between investigators is also observed for the conductance data of NdBr₃, LaCl₃, PrCl₃, and CeCl₃; hence van Artsdalen's results should be viewed with reservation. The uncertainty of the specific conductance values is estimated to be about 23 percent.

The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 0.0874 (0.32%).

The density data of van Artsdalen [83] were used to calculate the tabulated values: no estimate of accuracy was attempted owing to the limited information.

Praseodymium (III) Bromide

[Refer: Table 71, p. 68, for numerical values]

The tabulated values of specific conductance for molten PrBr₃ were calculated from the data of Dworkin, Bronstein, and Bredig [171] (1000 to 1043 °K, 3 points). The linear equation for specific conductance expresses the data with a precision s = 0.00228 (0.40%). The uncertainty of the specific conductance values is estimated to be about 20 percent.

Neodymium (III) Bromide

[Refer: Table 72, p. 69, for numerical values]

Two investigations of the specific conductance for molten NdBr₃ have been reported [83, 171]. The tabulated values were calculated from the quadratic equation of Yaffe and van Artsdalen [83] for thetemperature range of 963.2 to 1143.2 °K. The precision reported by Yaffe and van Artsdalen is s = 0.0036 (0.80%). The maximum departure between the results of Dworkin, Bronstein, and Bredig [171] and van Artsdalen [83] is 58 percent (1020 °K). Similar disagreement between these investigators is also observed for the conductance data of LaBr₃, LaCl₃, PrCl₃, and CeCl₃: hence, van Artsdalen's results should be viewed with reservation. The uncertainty of the specific conductance values is estimated to be about 50 percent.

The exponential equation expresses the tabulated values of equivalent conductance with a precision $s = 0.101 \ (0.67\%)$.

The density data of van Artsdalen [83] were used to calculate the tabulated values: no estimate of accuracy was attempted owing to the limited information.

Gadolinium (III) Bromide

[Refer: Table 73, p. 69, for numerical values]

The tabulated values of specific conductance for molten GdBr₃ were calculated from the data of Dworkin, Bronstein, and Bredig [171] (1073 to 1115 °K, 3 points). The linear equation for specific conductance expresses the data with a precision s = 0.00109 (0.23%). The uncertainty of the specific conductance values is estimated to be about 2.0 percent.

Copper (I) Bromide

[Refer: Table 74, p. 69, for numerical values]

The tabulated values of specific conductance for molten CuBr were calculated from the data of Tubandt [41] (764 to 823 °K, 3 points). Using the exponential equation for specific conductance the precision is s = 0.00533 (0.20%). The uncertainty of the specific conductance values is estimated to be about (8%).

Silver Bromide

[Refer: Table 75, p. 70, for numerical values]

Six investigations of the specific conductance for molten AgBr have been reported [1, 10, 21, 23, 72, 100]. The tabulated values were calculated from the data of Doucet and Bizouard [100](773.2 to 1073.2 °K, 7 points) and Harrap and Heymann [72] (one point at 723.2 °K). Using the quadratic equation for specific conductance the precision is s = 0.00348 (0.12%). The maximum departures between the tabulated values based on the results of Doucet [100] and Harrap [72], and the data of other investigators are as follows: Kohlrausch [1], 3.4 percent (723 °K); Arndt and Gessler [10], 1.0 percent (723 °K); Lorenz and Höchberg [23], -4.1 percent (873 °K). The uncertainty of the specific conductance values is estimated to be about 0.5 percent.

The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 0.108 (1.01%).

Of the four density studies [2, 22, 54, 81] the data of Boardman et al. [54] and Lorenz and Höchberg [22] were selected to calculate the tabulated values. The maximum departure between the densities reported by Boardman [54] and Lorenz [22] is 0.08 percent (930 °K). The uncertainty of the density values is judged to be about 0.08 percent.

The high accuracies and good reproducibilities obtained for both the specific conductance and density by several investigators indicate the possible use of AgBr as a calibration standard for specific conductance.

Two investigations of the viscosity have been reported [24, 72]. The tabulated values were calculated from the data of Harrap and Heymann [72] (713.2 to 873.2 °K, 9 points, vertical capillary viscometer). The cubic equation expresses the data of Harrap and Heymann with a precision s = 0.0067 (0.25%). The uncertainty of the viscosity data is estimated to be about 1.5 percent.

The viscosity study by Lorenz and Kalmus [24] (oscillating disk technique) was carried out at temperatures higher (882.2 to 1076.2 °K) than those of Harrap and Heymann. The extrapolated value at 860 °K is lower (16%) than the tabulated value.

Zinc Bromide

[Refer: Table 76, p. 70, for numerical values]

Two investigations of the specific conductance for molten ZnBr₂ have been reported [94, 98]. The tabulated values were calculated from the data of Bockris et al. [94] (671.2 to 912.8 °K, 23 points). Using the quadratic equation for specific conductance the precision is s = 0.0012 (1.48%). Mackenzie and Murphy [98] have determined the specific conductance at one temperature (673.2 °K) (κ =0.014) which is 18 percent below the value found by Bockris. The uncertainty of the specific conductance values is estimated to be about (18%).

The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 0.3248 (21.0%).

Of the two density studies [43, 113] the data of Bockris, Pilla, and Barton [113] were selected to calculate the tabulated values. The maximum departure between the results of Salstrom [43] and Bockris [113] is 2.0 percent (712.1 °K). The uncertainty of the density values is judged to be about 1.7 percent.

The viscosity of $ZnBr_2$ was determined by Mackenzie and Murphy [98] at one temperature (673.2 °K) using the restricted falling ball technique. The uncertainty of the viscosity value is estimated to be about (8.0%).

Cadmium Bromide

[Refer: Table 77, p. 71, for numerical values]

The tabulated values of specific conductance for molten CdBr₂ were calculated from the data of Bockris et al. [94] (849.6 to 1055.6 °K, 23 points).

Using the quadratic equation for specific conductance the precision is s = 0.00161 (0.13%). The uncertainty of the specific conductance values is estimated to be about (1.5%).

The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 0.0263 (0.06%).

The tabulated values of density were calculated from the data of Boardman et al. [54]; no estimate of accuracy was attempted owing to the limited information.

The tabulated values of viscosity were calculated from the data of Bloom, Harrap, and Heymann [53] (853.2 to 949.2 °K, 7 points, vertical capillary viscometer). The cubic equation expresses the data with a precision s = 0.0072 (0.30%). The uncertainty of the viscosity values is judged to be about (1.5%).

Mercury (II) Bromide

[Refer: Table 78, p. 71, for numerical values]

Three investigations of the specific conductance for molten HgBr₂ have been reported [94, 103, 189]. The tabulated values were calculated from the data of Grantham and Yosim [189] (528.2 to 729.2 °K, 9 points). Using the cubic equation for specific conductance the precision is $s = 8.65 \cdot 10^{-7}$ (0.21%). Grantham's [189] results in the temperature range 528.2 to 853.2 °K exhibit a maximum value at 723 °K. Compared to the data of Grantham [189] the results of Bockris et al. [94] and Janz and McIntyre [103] show maximum departures of 1.0 percent (560 °K) and 0.8 percent (563 °K) respectively. The uncertainty of the specific conductance values is estimated to be about 1.5 percent.

The exponential equation expresses the tabulated values of equivalent conductance with a precision $s = 8.6 \cdot 10^{-4}$ (7.0%).

Of the two density studies [18, 103], the data of Janz and McIntyre [103] were selected to calculate the tabulated values. The maximum departure between the results of Prideaux [18] and Janz [103] is 0.1 percent. The uncertainty of the density values is judged to be about 0.1 percent.

Two investigations of the viscosity have been reported [6, 58]. The tabulated values were calculated from the data of Jander and Broderson [58] (528.2 to 548.2 °K, 3 points, vertical capillary viscometer). The exponential equation expresses the data of Jander [58] with a precision s = 0.0078 (0.39%). The uncertainty of the viscosity values is considered to be about 1.5 percent.

The viscosities of the second study (Beck [6] vertical capillary method) show considerable departure from those of Jander [58] (e.g., 15.5%, 528 °K: -47.0%, 548 °K).

Aluminum Bromide

[Refer: Table 79, p. 72, for numerical values]

Two investigations of the viscosity for molten AlBr₃ have been reported [138, 203]. The tabulated values were calculated from the data of Grothe and Kleinschmit [138] (373 to 523 °K, 4 points, oscillating hollow cylinder technique (with modification)). The exponential equation expresses the data of Grothe and Kleinschmit with a precision s = 0.0152 (1.32%). The uncertainty of the viscosity values is estimated to be about 1.5 percent.

The results of the second study (Gorenbein [203]; capillary viscometer technique) are in good agreement with those of Grothe and Kleinschmit (e.g., 3.0% at 383 °K; 1.4% at 423 °K).

Indium (III) Bromide

[Refer: Table 80, p. 72, for numerical values]

The tabulated values of specific conductance for molten InBr₃ were calculated from the data of Klemm [34] (709.2 to 813.2 °K, 6 points). Using the quadratic equation for specific conductance the precision is s = 0.00178 (1.07%). The uncertainty of the specific conductance values is estimated to be about (12%).

The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 0.0260 (0.38%).

The density data of Klemm [34] were used to calculate the tabulated values: no estimate of accuracy was attempted owing to the limited information.

Thallium (I) Bromide

[Refer: Table 81, p. 73, for numerical values]

Two investigations of the specific conductance for molten TlBr have been reported [21, 189]. The tabulated values were calculated from the data of Grantham and Yosim [189] (745.2 to 1127.2 °K, 20 points). Using the quadratic equation for specific conductance the precision is $s = 4.87 \cdot 10^{-3}$ (0.38%). The maximum departure between the data of Tubandt and Lorenz [21] and Grantham [189] is 0.96 percent (740 °K). The uncertainty of the specific conductance values is estimated to be about 1 percent. The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 0.0982 (0.16%).

The data of Buckle, Tsaoussoglou, and Ubbelohde [196] were used to calculate the densities; no estimate of accuracy was attempted owing to the limited information.

Lead (II) Bromide

[Refer: Table 82, p. 74, for numerical values]

The specific conductance of molten PbBr₂ has been determined by Lorenz and Kalmus [7] and Harrap and Heymann [72]. The tabulated values were calculated from the data of Lorenz [7] (655 to 765 °K, 12 points). Using the quadratic equation for specific conductance the precision is s=0.00164(0.19%). The maximum departure between the specific conductance values of Harrap [72] and Lorenz [7] is 2.6 percent (773.2 °K). The uncertainty of the specific conductance values is estimated to to be about 2.7 percent.

At high temperatures the following quadratic equation for specific conductance based on the data of Harrap [72] (698.2 to 823.2 °K, 6 points) is recommended :

 $\kappa = -1.90813 + 4.23738 \cdot 10^{-3}T - 5.70634 \cdot 10^{-7}T^2.$

The precision is s = 0.0132 (1.7%).

The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 0.265 (1.0%).

Of the two density studies [15, 54], the data of Boardman, Dorman and Heymann [54] were selected to calculate the tabulated values. The density reported by Boardman [54] is 0.80 percent (873.2 °K) higher than the value of Lorenz, Frei, and Jabs [15]. The uncertainty of the density values is judged to be about 0.8 percent for the temperature range of 778.2 to 873.2 °K.

Three investigations of the viscosity have been reported [8, 72, 142]. The tabulated values were calculated from the data of Murgulescu and Zuca [142] (698 to 1023 °K, 14 points, oscillating ball technique). The cubic equation expresses the data of Murgulescu and Zuca with a precision s=0.0191 (0.71%). The uncertainty of the viscosity values is estimated to be about 1.0 percent.

The investigator, reference, experimental method, and the maximum percent departure from the values of Murgulescu and Zuca are as follows: Lorenz and Kalmus [8], capillary viscometer, 11.5 percent at 705 °K; Harrap and Heymann [72], capillary viscometer, 3.9 percent at 823 °K.

Bismuth (III) Bromide

[Refer: Table 83, p. 75, for numerical values]

The tabulated values of specific conductance for molten BiBr₃ were calculated from the data of Grantham [114] (496.2 to 998.2 °K, 17 points). Using the quadratic equation for specific conductance the precision is s = 0.00132 (0.38%). The specific conductance increases with temperature until a maximum is reached near 710 °K and then decreases with further increasing temperature. The uncertainty of the tabulated specific conductance values is estimated to be about (3.0%).

The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 1.30 (10%).

The density data of Jaeger [25] were used to calculate the tabulated values; no estimate of accuracy was attempted owing to the limited information.

Lithium Iodide

[Refer: Table 84, p. 75, for numerical values]

Three investigations of the specific conductance of molten LiI have been reported [82, 108, 227]. The recent results of Johnson [227] (756.2 to 876.5 °K, 15 points) were selected to generate the best equation. Using the quadratic equation for specific conductance the precision is s = 0.0026(0.61%). The specific conductance values of Karl and Klemm [108] extends to very high temperatures (767 to 1163 °K). Compared to the data of Johnson, the results of Karl and Klemm and Yaffe and van Artsdalen [82] are lower by 5.6 to 5.0 percent and 7.2 to 10.6 percent respectively. The uncertainty is estimated to be about 5.0 percent.

The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 0.0659 (0.04%).

The density data of van Artsdalen [82] were used to calculate the tabulated values. The values should be considered with reservation due to partial decomposition of LiI, as reported by the authors, at higher temperatures.

The tabulated values of viscosity were calculated from the data of Karpachev and Stromberg [47] (723.2 to 923.2 °K, 5 points, oscillating ball technique). The cubic equation expresses the data with a precision s = 0.0095 (0.57%). The uncertainty is judged to be about (5.0%).

Murgulescu and Zuca [122] attempted to determine the viscosity of molten LiI but could not obtain reproducible results due to decomposition of the melt; no experimental data were reported.

Sodium Iodide

[Refer: Table 85, p. 76, for numerical values]

Five investigations of the specific conductance for molten Nal have been reported [2, 10, 66, 82, 129]. The tabulated values were calculated from the data of van Artsdalen and Yaffe [82] (936.2 to 1187.3 °K, 15 points). Using the quadratic equation for specific conductance the precision is s = 0.00263(0.10%). Compared to the specific conductance data of Bloom et al. [66] the results of Murgulescu and Zuca [129] show departures of ± 5.2 percent to -3.2 percent over a temperature range of 940 to 1140 °K while that of van Artsdalen [82] shows a maximum departure of 3.5 percent at 940 °K. The uncertainty of the specific conductance values is estimated to be about 3.5 percent.

The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 0.0127 (0.0084%).

Of the three density studies [25, 66, 82], the data of yan Artsdalen [82] were selected to calculate the tabulated values. The maximum percent departure between the density data of van Artsdalen [82] and Bloom et al. [66] is 0.4 percent (940 °K) while that between van Artsdalen and Jaeger [25] is 1.0 percent (1133 °K). The uncertainty of the density values is judged to be about (0.4%).

Two investigations of the viscosity have been reported [47, 122]. The tabulated values were calculated from the data of Murgulescu and Zuca [122] (946.4 to 1107.8 °K, 13 points, oscillating ball technique). The exponential equation expresses the data of Murgulescu and Zuca with a precision s=0.00847 (0.72%) and the estimated uncertainty is about 1.0 percent.

The viscosities of the second study (Karpachev and Stromberg [47], oscillating ball technique) are consistently higher than those of Murgulescu and Zuca (e.g., 16.0%, 946.4 °K; 4.7%, 1107.8 °K).

Potassium Iodide

[Refer: Table 86, p. 76, for numerical values]

Seven investigations of the specific conductance for molten KI have been reported [10, 26, 33, 66, 79, 125a, 129]. The tabulated values were calculated from the data of van Artsdalen and Yaffe [79] (958.6 to 1183.9 °K, 21 points). Using the quadratic equation the precision is s=0.0075 (0.48%). Compared to the data of van Artsdalen the results of Murgulescu and Zuca [129], Buckle and Tsaoussoglou [125a] and Bloom et al. [66] show departures of 0.5 percent (1000 °K), 0.9 percent (1000 °K), and 1.3 percent (1000 °K); the results of the other investigators show larger departures. The uncertainty of the specific conductance values is estimated to be about 0.9 percent.

The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 0.758 (0.68%).

Of the four density studies [26, 66, 79, 81], the most thorough appears to be that of van Artsdalen and Yaffe [79]. The maximum departure between the densities of van Artsdalen [79] and Bloom et al. [66] is 0.3 percent (1080 °K) while that between van Artsdalen and Jaeger and Kapma [26] is -0.8 percent (1070 °K). The studies of Schinke and Sauerwald [81] were to establish the volume change on fusion. The uncertainty of the density values is judged to be about 0.25 percent.

Two investigations of the viscosity have been reported [47, 122]. The tabulated values were

calculated from the data of Murgulescu and Zuca [122] (975.1 to 1165.2 °K, 13 points, oscillating ball technique). The exponential equation expresses the data of Murgulescu and Zuca with a precision s = 0.00851 (0.70%). The uncertainty of the viscosity values is estimated to be about 1.0 percent.

The viscosities of the second study (Karpachev and Stromberg [47], oscillating ball technique) are consistently higher than those of Murgulescu and Zuca (e.g., 27.2%, 1034.4 °K; 3.9%, 1165.2 °K).

Rubidium Iodide

[Refer: Table 87, p. 77, for numerical values]

The tabulated values of specific conductance for molten RbI were calculated from the data of van Artsdalen and Yaffe [82] (929.5 to 1158.2 °K, 17 points). Using the quadratic equations for specific conductance the precision is s = 0.00169(0.16%). The uncertainty of the specific conductance values is estimated to be about (3.5%).

The exponential equation expresses the tabulated values of equivalent conductance with a precision $s = 0.378 \ (0.45\%)$.

Of the two density studies [25, 82], the data of van Artsdalen [82] were selected to calculate the tabulated values. The maximum departure between the densities reported by Jaeger [25] and van Artsdalen [82] is 1.4 percent (950 °K). The estimated uncertainty of the density values is about 0.7 percent.

The tabulated values of viscosity were calculated from the data of Murgulescu and Zuca [122] (922.2 to 1126.4 °K, 16 points, oscillating ball technique). The cubic equation expresses the data of Murgulescu and Zuca with a precision s = 0.0037(0.34%). The uncertainty of the viscosity values is judged to be about (1.0%).

Cesium Iodide

[Refer: Table 88, p. 77, for numerical values]

The tabulated values of specific conductance for molten CsI were calculated from the data of van Artsdalen and Yaffe [82] (932.0 to 1137.2 °K, 14 points). Using the quadratic equation for specific conductance the precision is $s = 1.40 \cdot 10^{-4}$ (0.16%). The uncertainty of the specific conductance values is estimated to be about (5.0%).

The exponential equation expresses the tabulated values of equivalent conductance with a precision $s = 0.378 \ (0.48\%)$.

Of the three density studies [25, 74, 82]. the data of van Artsdalen [82] were selected to calculate the tabulated values. The maximum departure between the densities reported by Jaeger [25] and van Artsdalen [82] is 0.42 percent (950 °K). The data of Johnson et al. [74] are insufficient to calculate departure values. The estimated uncertainty of the density values is about 0.4 percent.

The tabulated values of viscosity were calculated

from the data of Murgulescu and Zuca [122] (910.2 to 1126.9 °K, 14 points, oscillating ball technique). The cubic equation expresses the data of Murgulescu and Zuca with a precision s = 0.0163 (1.24%). The estimated uncertainty of the viscosity values is judged to be about (1.5%).

Magnesium Iodide

[Refer: Table 89, p: 78, for numerical values]

The tabulated values of specific conductance for molten MgI₂ were calculated from the data of Bockris et al. [94] (910.2 to 1176.5 °K, 21 points). Using the quadratic equation for specific conductance the precision is s = 0.00110 (0.18%). The uncertainty of the specific conductance values is estimated to be about (1.3%).

The exponential equation expresses the tabulated values of equivalent conductance with a precision $s = 0.0810 \ (0.29\%)$.

The density equation of Bockris, Pilla, and Barton [113], based on the data of Ellis and Smith [91], was used to calculate the tabulated values; no estimate of accuracy was attempted owing to the limited information.

Calcium Iodide

[Refer: Table 90, p. 78, for numerical values]

The tabulated values of specific conductance for molten CaI₂ were calculated from the data of Bockris et al. [94] (1058.7 to 1286.6 °K, 26 points). Using the quadratic equation for specific conductance the precision is s = 0.00055 (0.041%). The uncertainty of the specific conductance values is estimated to be about (2.0%).

The exponential equation expresses the tabulated values of equivalent conductance with a precision $s = 0.422 \ (0.69\%)$.

The density equation of Bockris, Pilla, and Barton [113], based on the data of Ellis and Smith [91], was used to calculate the tabulated values; no estimate of accuracy was attempted owing to the limited information.

Strontium Iodide

[Refer: Table 91, p. 79, for numerical values]

The tabulated values for specific conductance for molten SrI_2 were calculated from the data of Bockris et al. [94] (821.6 to 1270.4 °K, 28 points). Using the quadratic equation for specific conductance, the precision is s=0.00139 (0.13%). The uncertainty of the specific conductance values is estimated to be about (6.0%).

The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 0.571 (1.28%).

The density equation of Bockris, Pilla, and Barton [113], based on the data of Ellis and Smith [91],

was used to calculate the tabulated values; no estimate of accuracy was attempted owing to the limited information.

Barium Iodide

[Refer: Table 92, p. 79, for numerical values]

The tabulated values of specific conductance for molten BaI₂ were calculated from the data of Bockris et al. [94] (991.7 to 1292.3 °K, 26 points). Using the quadratic equation for specific conductance the precision is s = 0.0035 (0.35%). The uncertainty of the specific conductance values is estimated to be about (10%). It should be noted that the specific conductance values are reported at temperatures below the established melting point (mp 1013 °K) [130, 131].

The exponential equation expresses the tabulated values of equivalent conductance with a precision $s = 0.250 \ (0.5\%)$.

The density equation of Bockris, Pilla, and Barton [113], based on the data of Ellis and Smith [91], was used to calculate the tabulated values; no estimate of accuracy was attempted owing to the limited information.

Aluminum (III) Iodide

[Refer: Table 93, p. 79, for numerical values]

The tabulated values of specific conductance for molten AlI₃ were calculated from the data of Biltz and Klemm [35] (464.2 to 543.2 °K, 9 points). Using the quadratic equation for specific conductance the precision is $s = 1.25 \cdot 10^{-7}$ (3.2%). The uncertainty of the specific conductance values is estimated to be about (20%).

The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 0.121 (7.2%).

The density data of Biltz and Klemm [35] were used to calculate the tabulated values; no estimate of accuracy was attempted owing to the limited information.

Lanthanum (III) Iodide, Cerium (III) Iodide, Praseodymium (III) Iodide, and Neodymium (III) Iodide

[Refer: Tables 94 to 97, p. 80, for numerical values]

The tabulated values of specific conductance for molten LaI₃, CeI₃, PrI₃, and NdI₃ were calculated from the data of Dworkin, Sallach, and Bronstein [106]. The number of data points, the temperature range, the precision (s) and the estimated uncertainty of the specific conductance values are as follows: LaI₃-4 points, 1069 to 1144 °K, s=0.0003 (0.06%), (10%).

CeI₃-4 points, 1069 to 1133 °K, s=0.0003 (0.06%), (18%).

 $PrI_3 - 3$ points, 1036 to 1082 °K, s = 0.0003 (0.07%), (15%).

NdI₃-3 points, 1072 to 1115 °K, s=0.0003 (0.07%), (15%).

Silver Iodide

[Refer: Table 98, p. 81, for numerical values]

Six investigations of the specific conductance for molten AgI have been reported [1, 10, 11, 21, 23, 35]. The tabulated values were calculated from the data of Biltz and Klemm [35] (825.2 to 923.2 °K, 4 points), Gessler and Arndt [11] (823.2 to 1073.2 °K, 5 points) and Kohlrausch [1] (823.2 to 973.2 °K, 4 points). Using the exponential equation for specific conductance the precision is s = 0.111(4.3%). Compared to the data of Biltz the results of Gessler [11] and Kohlrausch [1] show departures of +5 percent and -6.5 percent respectively for the temperature range 825 to 923 °K. The maximum departure between the tabulated values based on the results of Biltz [35], Gessler [11], Kohlrausch [1], and the values of Tubandt and Lorenz [21] is -1.2 percent (923 °K); the results of Lorenz and Höchberg [23], and Arndt and Gessler [10], show larger departures. It should be noted that specific conductance values are reported at temperatures below the established melting point (mp 831 °K) [130]. The uncertainty of the specific conductance values is estimated to be about 12 percent.

The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 0.122 (0.10%).

The density data of Lorenz and Höchberg [22] were used to calculate the tabulated values; no estimate of accuracy was attempted owing to limited information.

The tabulated values of viscosity were calculated from the data of Lorenz and Höchberg [24] (878.2 to 1100.2 °K, 8 points, oscillating disk technique). The cubic equation expresses the data of Lorenz with a precision s=0.058 (2.6%). The uncertainty of the viscosity values is judged to be about (3.0%).

Zinc Iodide

[Refer: Table 99, p. 81, for numerical values]

Two investigations of the specific conductance for molten ZnI₂ have been reported [94, 189]. The tabulated values were calculated from the data of Bockris et al. [94] (717.7 to 870.6 °K, 28 points). Using the quadratic equation for specific conductance the precision is $s = 1.10 \cdot 10^{-3}$ (0.78%). The maximum departure between the data of Bockris [94] and Grantham and Yosim [189] is 1.2 percent (753.2 °K). The uncertainty of the specific conductance values is estimated to be about 1.5 percent.

For temperatures above 870 °K values of specific conductance can be gained from the following cubic equation (s = 0.00271 (0.54%)) based on the data of Grantham [189] (724.2 to 1262.2 °K, 27 points): $\kappa = 2.09556 - 9.20558 \cdot 10^{-3}T + 1.218344 \cdot 10^{-5}T^2$

 $-4.631264 \cdot 10^{-6}T^{3}$.

The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 0.222 (3.37%).

The density equation of Bockris, Pilla, and Barton [113], based on the data of Ellis and Smith [91], was used to calculate the tabulated values; no estimate of accuracy was attempted owing to the limited information.

Cadmium Iodide

[Refer: Table 100, p. 82, for numerical values]

The specific conductance of molten CdI_2 has been investigated by Bloom et al. [66] and Bockris et al. [94]. The tabulated values were calculated from the data of Bockris [94] (674.9 to 912.8 °K, 32 points). Using the quadratic equation for specific conductance the precision is s = 0.0020 (0.47%). The maximum departure between the specific conductance values of Bockris [94] and Bloom [66] is 6 percent (730 °K). The uncertainty of the tabulated specific conductance values is estimated to be about 4.5 percent.

The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 0.450 (2.27%).

The density data of Bloom et al. [66] were used to calculate the tabulated values; no estimate of accuracy was attempted owing to the limited information.

Mercury (II) Iodide

[Refer: Table 101, p. 82, for numerical values]

Four investigations of the specific conductance for molten HgI₂ have been reported [29, 94, 103, 189]. The tabulated values were calculated from the data of Grantham and Yosim [189] (532.2 to 724.2 °K, 13 points). Using the cubic equation for specific conductance the precision is $s = 1.61 \cdot 10^{-4}$ (0.89%). Grantham's [189] investigation of specific conductance extends up to 905.2 °K and the negative temperature coefficient persists at the highest temperatures. The maximum departure between the data of Grantham [189] and Bockris et al. [96] is 2.3 percent; the results of the other investigators show larger departures. The uncertainty of the specific conductance values is estimated to be about 2.5 percent.

The exponential equation expresses the tabulated

values of equivalent conductance with a precision s = 0.0313 (3.3%).

Of the three density studies [18, 78, 103], the data of Janz and McIntyre [103] were selected to calculate the tabulated values. Compared to the data of Janz and McIntyre [103] the results of Prideaux [18] and Polyakov [78] show maximum departures of 0.4 percent (596 °K) and 1.0 percent (573 °K) respectively. The uncertainty of the density values is judged to be about 0.1 percent.

Three investigations of viscosity have been reported [6, 78, 103]. The tabulated values were calculated from the data of Janz and McIntyre [103] (541.6 to 631.3 °K, 5 points, oscillating hollow sphere method). The exponential equation expresses the data of Janz with a precision s = 0.0195 (1.02%). The uncertainty of the viscosity values is estimated to be about 3.0 percent.

Beck [6] and Polyakov [78] measured the viscosity of molten HgI_2 at 531.2 and 533.2 °K respectively. These two values differ markedly from each other.

Gallium (II) Iodide

[Refer: Table 102, p. 83, for numerical values]

The tabulated values of specific conductance for molten GaI₂ were generated from the data of Riebling and Erickson [105] (423.2 to 623.2 °K, 9 points). Riebling [105] has reported three exponential equations for specific conductance for the temperature ranges (423 to 484 °K), (484 to 552 °K) and (552 to 623 °K) respectively. Using these equations the specific conductance values were gained at 423.2, 453.2, 483.2, 493.2, 518.2, 543.2, 563.2, 593.2, and 623.2 °K. These data were least squared to develop a linear equation and the precision is s = 0.0050 (3.6%). The uncertainty of the specific conductance values is estimated to be about (15%).

The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 0.453 (7.7%).

The density data of Riebling [105] were used to calculate the tabulated values; no estimate of accuracy was attempted owing to the limited information.

Indium (III) Iodide

[Refer: Table 103, p. 83, for numerical values]

Two investigations of the specific conductance for molten InI₃ have been reported [34, 189]. The tabulated values were calculated from the data of Grantham and Yosim [189] (504.2 to 880.2 °K, 18 points). Using the cubic equation for specific conductance the precision is $s = 6.3 \cdot 10^{-4}$ (0.60%). The maximum departure between the data of Klemm [34] and Grantham [189] is 8 percent (560 °K). The uncertainty of the specific conductance values is estimated to be about 6 percent. The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 0.233 (4.6%).

The data of Klemm [34] were used to calculate the densitites; no estimate of accuracy was attempted owing to the limited information.

Thallium (I) Iodide

[Refer: Table 104, p. 84, for numerical values]

Three investigations of the specific conductance for molten TlI have been reported [21, 125c, 189]. The tabulated values were calculated from the data of Grantham and Yosim [189] (721.2 to 1333.2 °K, 23 points). Using the quadratic equation for specific conductance the precision is $s = 2.65 \cdot 10^{-3}$ (0.35%). The maximum departure between the results of Ubbelohde [125c] and Grantham [189] is 1.5 percent (760 °K); the results of Tubandt and Lorenz [21] show larger departures. The uncertainty of the specific conductance values is estimated to be about 1.5 percent.

Lead (II) Iodide

[Refer: Table 105, p. 84, for numerical values]

The tabulated values of specific conductance for molten PbI₂ were calculated from the data of Karl and Klemm [108] (676 to 873 $^{\circ}$ K, 5 points). The quadratic equation expresses the data with a precision s = 0.0018 (0.32%). The uncertainty of the specific conductance values is estimated to be about (5%).

Bismuth (III) Iodide

[Refer: Table 106, p. 85, for numerical values]

The tabulated values of the specific conductance for molten BiI₃ were calculated from the data of Grantham and Yosim [104] (686.2 to 775.2 °K, 5 points). The quadratic equation expresses the data of Grantham with a precision $s = 2.13 \cdot 10^{-3}$ (0.71%). The uncertainty of the specific conductance values is estimated to be about (3%).

Lithium Carbonate

[Refer: Table 107, p. 85, for numerical values]

The tabulated values of specific conductance for molten Li₂CO₃ were calculated from the data of Janz and Lorenz [101] (1017.9 to 1117.7 °K, 7 points, omitting the value at 1017.4 °K). Using the quadractic equation for specific conductance the precision is $s=3.00 \cdot 10^{-4}$ (0.0066%). The uncertainty of the specific conductance values is estimated to be about (1.5%).

The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 0.140 (0.15%). Of the two density studies [3, 101], the data of Janz [101] were selected to calculate the tabulated values. The maximum departure between the densities reported by Janz [101] and Brunner [3] is 0.3 percent (1012 °K). The uncertainty of the density values is judged to be about 0.2 percent.

Two investigations of the viscosity have been reported [107, 128]. The tabulated values of viscosity were calculated from the data of Janz and Saegusa [107] (1046.2 to 1122.2 °K, 7 points, oscillating hollow cylinder technique). The cubic equation expresses the data of Janz and Saegusa with a precision s=0.1022 (2.90%). The estimated uncertainty of the viscosity values is about (3.0%).

The viscosities of the second study (Karpachev et al. [128], oscillating ball technique) are consistently higher than those obtained by Janz and Saegusa (e.g., 27.7%, 1050 °K; 64.7%, 1120 °K).

Sodium Carbonate

[Refer: Table 108, p. 85, for numerical values]

Two investigations of the specific conductance for molten Na₂CO₃ have been reported [4, 101]. The tabulated values were calculated from the data of Janz and Lorenz [101] (1138.0 to 1239.7 °K, 10 points). Using the exponential equation for specific conductance the precision is s = 0.00420 (0.13%). The departure between the specific conductance values of Janz [101] and Arndt [4] is 2.3 percent (1173.2 °K). The uncertainty of the specific conductance values is estimated to be about 1.5 percent.

The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 0.035 (0.040%).

Of the two density studies [3, 101], the data of Janz [101] were selected to calculate the tabulated values. The maximum departure between the densities reported by Janz [101] and Brunner [3] is 0.41 percent (1170 °K). The uncertainty of the density values is judged to be about 0.2 percent.

Two investigations of the viscosity have been reported [107, 128]. The tabulated values were calculated from the data of Janz and Saegusa [107] (1152.2 to 1245.2 °K, 6 points, oscillating hollow cylinder technique). The exponential equation expresses the data of Janz and Saegusa with a precision s = 0.0112 (0.49%). The estimated uncertainty of the viscosity values is about 3.0 percent.

The viscosities of the second study (Karpachev et al. [128], 1123.2 to 1173.2 °K, 2 points, oscillating ball technique) show departures of about 25 percent from those of Janz and Saegusa.

Potassium Carbonate

[Refer: Table 109, p. 86, for numerical values]

Two investigations of the specific conductance for molten K_2CO_3 have been reported [4, 101]. The tabulated values were calculated from the data of Janz and Lorenz [101] (1183.7 to 1279.1 °K, 14 points). Using the exponential equation for specific conductance the precision is s = 0.00173 (0.12%). The maximum departure between the specific conductance values of Janz [101] and Arndt [4] is 3.9 percent (1173.2 °K). The uncertainty of the specific conductance values is estimated to be about 1.5 percent.

The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 0.0175 (0.021%).

Of the two density studies [3, 101] the data of Janz and Lorenz [101] were selected to calculate the tabulated values. The maximum departure between the densities reported by Janz [101] and Brunner [3] is 0.43 percent (1240 °K). The uncertainty of the density values is judged to be about 0.2 percent.

Two investigations of the viscosity have been reported [107, 128]. The tabulated values of viscosity were calculated from the exponential equation using the data of Janz and Saegusa [107] (1186.2 to 1257.2 °K, 5 points, oscillating hollow cylinder technique). The precision is s = 0.0272 (1.23%). The estimated uncertainty of the viscosity values is about 3.0 percent. Karpachev et al. [128], using the oscillating ball technique, reports one viscosity point at a temperature (1173.2 °K) which is lower than the measurement of Janz and Saegusa.

Lithium Nitrite

[Refer: Table 110, p. 86, for numerical values]

The tabulated values of specific conductance for molten LiNO₂ were calculated from the data of Protsenko, Protsenko, and Razumovskaya [207] (502.7 to 727.2 °K, 6 points). Using the quadratic equation for specific conductance the precision is $s=4.14 \cdot 10^{-4}$ (0.056%). The maximum departure between the data of Protsenko [207] and Bloom, Knaggs, Molloy, and Welch [66] is 5.6 percent (570 °K). The uncertainty of the specific conductance values is estimated to be about (6%).

The tabulated values of viscosity have been calculated from the data of Protsenko, Protsenko, and Razumovskaya [207] (502.7 to 527.2 °K, 6 points, capillary viscometer). The cubic equation expresses the data with a precision s = 0.0354 (0.39%). The uncertainty of the viscosity values is considered to be about (1.0%).

Sodium Nitrite

[Refer: Table 111, p. 86, for numerical values]

Three investigations of the specific conductance for molten NaNO₂ have been reported [66, 110, 125c, 207]. The tabulated values were calculated from the exponential specific conductance equation reported by Bloom et al. [66] for the temperature range 554 to 723 °K. Neither the precision nor the experimental data were given. Compared to the data of Bloom et al. [66] the results of Ubbelohde [125c] and Protsenko et al. [207] show maximum departures of -1.6 percent (572.2 °K) and 5.6 percent (570 °K) respectively. The uncertainty of the specific conductance values is estimated to be about 1.6 percent.

The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 0.108 (0.15%).

Of the two density studies [66, 110] the data of Bloom et al. [66] were selected to calculate the tabulated values. The maximum departure between the densities reported by Bloom [66] and Ubbelohde [110] is 0.99 percent (720 °K). The uncertainty of the density values is judged to be about 1.0 percent.

Two investigations of the viscosity for this salt have been reported [110, 125c, 207]. The tabulated values were calculated from the data of Protsenko, Protsenko, and Razumovskaya [207] (563 to 613 °K, 6 points, capillary viscometer). The cubic equation expresses the data with a precision s = 0.0187(0.70%). The uncertainty of viscosity values is considered to be about 1.0 percent.

The results of the second study (Frame, Rhodes, Ubbelohde [110, 125c] capillary viscometer) are consistently lower than those of Protsenko (e.g., 4.0%, 572.7 °K; 1.4%, 583.5 °K).

Potassium Nitrite

[Refer: Table 112, p. 87, for numerical values]

The tabulated values of specific conductance for molten KNO₂ were calculated from the data of Protsenko, Protsenko, and Razumovskaya [207] (713 to 743 °K, 4 points). Using the quadratic equation for specific conductance the precision is $s=4.70 \cdot 10^{-4}$ (0.058%). The uncertainty of the specific conductance values is estimated to be about (6%).

The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 0.0617 (0.075%).

The data of Protsenko and Malakhova [173] were used to calculate the densities: no estimate of accuracy was attempted owing to the limited information.

Two investigations of the viscosity have been reported [110, 125c, 207, 208]. The tabulated values were calculated from the data of Frame, Rhodes, and Ubbelohde [110, 125c] (686.8 °K to 725.4 °K, 9 points, capillary viscometer). The cubic equation expresses the data of Ubbelohde with a precision s=0.0055 (0.30%). The uncertainty of the viscosity values is judged to be about 1.5 percent.

The viscosities of the second study (Protsenko, Protsenko, and Razumovskaya [207] and Protsenko and Shokina [208], capillary viscometer), are consistently lower than those of Ubbelohde (e.g., 5.7%, 713 °K).

Rubidium Nitrite

[Refer: Table 113, p. 87, for numerical values]

The tabulated values of specific conductance for molten RbNO₂ were calculated from the data of Protsenko, Protsenko, and Razumovskaya [207] (712 to 758 °K, 7 points). Using the quadratic equation for specific conductance the precision is s = 0.0025 (0.25%). The uncertainty of the specific conductance values is estimated to be about (6%).

The tabulated values of viscosity have been calculated from the data of Protsenko, Protsenko, and Razumovskaya [207] (712 to 758 °K, 7 points, capillary viscometer). The exponential equation expresses the data with a precision s=0.0054(0.28%). The uncertainty of the viscosity values is considered to be about (1.0%).

Cesium Nitrite

[Refer: Table 114, p. 87, for numerical values]

The tabulated values of specific conductance for molten CsNO₂ were calculated from the data of Protsenko, Protsenko, and Razumovskaya [207] (688 to 739 °K, 9 points). Using the linear equation for specific conductance the precision is $s = 7.41 \cdot 10^{-4}$ (0.096%). The uncertainty of the specific conductance values is estimated to be about (6%).

The tabulated values of viscosity have been calculated from the data of Protsenko, Protsenko, and Razumovskaya [207] (688 to 739 °K, 9 points, capillary viscometer). The cubic equation expresses the data with a precision s = 0.0080 (0.39%). The uncertainty of the viscosity values is considered to be about (1.0%).

Barium Nitrite

[Refer: Table 115, p. 87, for numerical values]

The tabulated values of specific conductance for molten Ba(NO₂)₂ were calculated from the data of Protsenko and Shokina [185] (553.2 and 573.2 °K, 2 points). Only a linear equation for specific conductance was used to calculate the values. The uncertainty of the specific conductance values is estimated to be about (6%).

The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 0.0601 (0.80%).

The data of Protsenko and Malakhova [173] were used to calculate the densities; no estimate of accuracy was attempted owing to the limited information.

Lithium Nitrate

[Refer: Table 116, p. 88, for numerical values]

Five investigations of the specific conductance for molten $LiNO_3$ have been reported [26, 93, 116,

194, 224]. The tabulated values were calculated from the quadratic equation reported by King and Duke [116] (558 to 653 °K). Using the quadratic equation the precision is s = 0.001 (0.083%). Compared to the data of King and Duke [116], the results of de Nooijer and Ketelaar [224], Doucet and Bizouard [93], Cowen and Axon [194] and Jaeger and Kapma [26] show maximum departures of 0.4 percent (631 °K), -0.9 percent (579.8 °K), -0.8percent (573 °K) and 0.9 percent (640 °K) respectively. The uncertainty of the specific conductance values is estimated to be about 0.4 percent.

The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 0.326 (0.60%).

Three density studies have been reported [26, 180, 224]. The density data of Jaeger and Kapma [26] were selected to generate the tabulated values. The more recent results of Smith and Petersen [180] and de Nooijer and Ketelaar [224] are in good agreement with the data of Jaeger, the agreement being better than 0.1 percent over the entire temperature range.

Four investigations of the viscosity have been reported [5, 38, 139, 228]. The results of Dantuma [38] (533.2 to 702.2 °K, 37 points, oscillating ball technique) appear to be the most thorough. The more recent investigation of Murgulescu and Zuca [139] lacks details on the preparation, purity and melting point of the salt. Protsenko and Razumovskaya [228] reported a higher (5 degrees) melting point for LiNO₃ and lower melting points for the other alkali nitrates (except KNO₃), silver nitrate and thallous nitrate than the generally accepted values; this may imply an error in thermometry and/or impurities in the salts. Goodwin and Mailey [5] reported a lower melting point for LiNO₃.

Judging from the above considerations and in view of the most precise work for the other nitrates (NaNO₃ and KNO₃) the data of Dantuma were selected to calculate the tabulated values. Using the cubic equation for viscosity the precision is s = 0.1143 (3.12%). The uncertainty of the viscosity values is estimated to be about 3.5 percent.

The investigator, reference, experimental method and the maximum percent departure are as follows: Goodwin and Mailey [5], vertical capillary, -24 percent; Murgulescu and Zuca [139], oscillating ball, -14 percent; and Protsenko and Razumovskaya [228], vertical capillary, -23 percent.

Sodium Nitrate

[Refer: Table 117, p. 88, for numerical values]

Ten investigations of the specific conductance for molten NaNO₃ have been reported [7, 26, 27, 61, 66, 71, 75, 93, 192, 224]. The tabulated values were calculated from the data of Byrne et al. [61] (583.2 to 643.2 °K, 7 points) and Lorenz and Kalmus [7] (591.2 to 691.2 °K, 11 points). Using the linear equation for specific conductance the precision is $s = 7.83 \cdot 10^{-4}$ (0.06%). Compared to the data of Lorenz [7] the results of Byrne [61], de Nooijer and Ketelaar [224] and Sandonnini [27] show maximum departures of 0.4 percent (633 °K), 0.6 percent (694 °K) and 0.9 percent (623 °K) respectively; the results of the other investigators show larger departures. The uncertainty of the specific conductance values is estimated to be about 1.0 percent.

The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 0.0160 (0.028%).

Of the four density studies [15, 26, 61, 66], the data of Bloom et al. [66] and Byrne [61] were selected to generate the tabulated values. The density equation has been calculated from the average of the coefficients of the linear density equations reported by Bloom [66] and Byrne [61]. Compared to the combined data of Bloom [66] and Byrne [61] the results of Jaeger [26] and Lorenz, Frei, and Jabs [15] show maximum departures of 0.7 percent (700 °K) and 0.1 percent (673 °K) respectively. The uncertainty of the density values is judged to be about 1 percent.

Six investigations of the viscosity have been reported [5, 8, 12, 38, 102, 228]. The tabulated values were calculated from the data of Dantuma [38] (589.2 to 731.2 °K, 33 points, oscillating ball technique). The exponential equation expresses the data of Dantuma with a precision s = 0.0284 (1.41%). The departures of various viscosity determinations of NaNO₃ from the values of Dantuma are presented in figure 2. The estimated uncertainty of the viscosity values is about 1.5 percent.

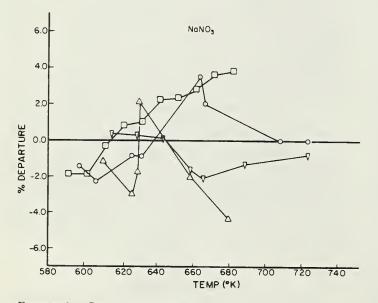


FIGURE 2. Comparison of percent departure of the data of various investigators with the Dantuma viscosity data for $NaNO_3$

Base line-Dantuma	[38]
△ Goodwin and Mailey	[5]
Lorenz and Kalmus	[8]
○ Fawsitt	[12]
	[102]

The results of Protsenko and Razumovskaya [228] show departures of up to -0.4 percent from the base line.

The investigator, reference, experimental method, and the maximum percent departure from the values of Dantuma are as follows: Goodwin and Mailey [5], vertical capillary, -4.3 percent; Lorenz and Kalmus [8], horizontal capillary, +3.9 percent; Fawsitt [12], oscillating disk, +3.6 percent; Murgulescu and Zuca [102], oscillating ball, -2.1 percent; and Protsenko and Razumovskaya [228], vertical capillary, -0.4 percent.

The uncertainty of the viscosity of NaNO₃ could be greater than 3.0 percent at higher temperatures due to partial decomposition of the melt. All the investigations of NaNO₃ were carried out in a normal atmosphere; the agreement was good between the different methods. If decomposition occurred in the melt it does not appear significantly greater in any one method. While molten NaNO₃ undergoes decomposition at elevated temperatures (> 660 °K) it has been generally used as a calibration fluid for high temperature viscosity studies.

Potassium Nitrate

[Refer: Table 118, p. 89, for numerical values]

Twelve investigations of the specific conductance for molten KNO_3 have been reported [7, 20, 26, 27, 66, 84, 92, 116, 192, 193, 194, 224]. The tabulated values were calculated from the data of Aten [20] (613.2 to 773.2 °K, 9 points) and Bloom et al. [66] (800 to 880 °K, 5 points, gained from Bloom's exponential equation at 20 deg intervals). Using the quadratic equation for specific conductance the precision is s = 0.00369 (0.37%). Compared to the data of Aten [20] and Bloom et al. [66], the results of King and Duke [116], Sandonnini [27], and Lorenz and Kalmus [7] show maximum departures of 0.3 percent (620 °K), -0.2 percent (673 °K) and -1.6 percent (686 °K) respectively. The departures of the various specific conductance determinations of KNO₃ from the tabulated values are in figure 3A. The uncertainty of the tabulated specific conductance values is estimated to be about 0.8 percent.

Values of specific conductance ($s = 8.10^{-4}$, 0.1%) for the temperature range 623 to 698 °K should be calculated from the following equation reported by Duke [116]: $\kappa = -2.4566 + 6.72893 \cdot 10^{-3}T$ $-2.7583 \cdot 10^{-6}T^2$. The uncertainty of the specific conductance values calculated from the equation of Duke [116] is estimated to be about 0.3 percent. The data of Duke [116] appears highly suitable for a high temperature calibration reference standard.

The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 0.0832 (0.14%).

Of the ten density studies [15, 26, 38, 66, 84, 173, 177, 184, 192, 210] the data of Bloom et al. [66] were selected to calculate the tabulated values. Compared to the density data of Bloom et al. [66] the results of other investigators are as follows: Dantuma [38], -0.2 percent (660 °K); Smith and

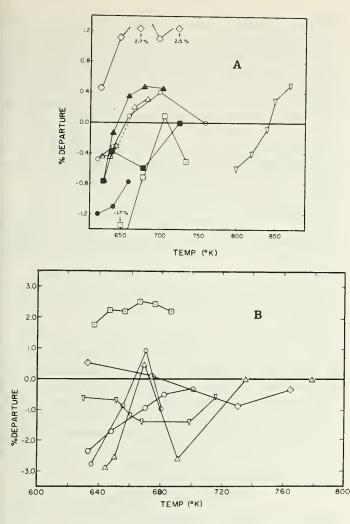


FIGURE 3. Comparison of percent departures of the data for KNO₃

A.	Specific Conduc	tance:	B. Viscosity:	
	Base Line-Ate	n [20] and	Base Line-Dantum	a [38]
	Bloom [66]		△ Goodwin and Mailey	[5]
	Angell	[193]	Lorenz and Kalmus	[8]
·	de Nooijer and F	Ketelaar[224]	⊙ Fawsitt	[12]
	Jaeger and Kapi	ma [26]	 Ogawa 	[57]
۸	King and Duke	[116]		ca [102]
	Aten	[20]	◊ Janz and Saegusa	
2	Bloom, Knaggs,		The results of Protser	iko and
	and Welch	[66]	Razumovskaya [228] show
	Murgulescu and		departures of up t	0 + 0.5
٠	Smith and van A	rtsdalen [84]	percent from the ba	

van Artsdalen [84], 0.2 percent (620 °K); Protsenko and Malakhova [173], -0.3 percent (673 °K); Murgulescu and Zuca [192], -0.2 percent (673 °K); and Polyakov and Berul [184], -0.4 percent (713 to 773 °K). The uncertainty of the density values is judged to be about 0.2 percent.

Eight investigations of the viscosity have been reported [5, 8, 12, 38, 57, 102, 107, 228]. The tabulated values of viscosity were calculated from the data of Dantuma [38] (671.2 to 815.2 °K, 35 points, oscillating ball technique). The cubic equation expresses the data with a precision s = 0.0234 (1.38%). The departures of the various viscosity determinations of KNO₃ from the values of Dantuma are presented in figure 3B. The uncertainty of the viscosity data is estimated to be about 1.5 percent.

The investigator, reference, experimental method, and the maximum percent departure from the values of Dantuma are as follows: Goodwin and Mailey [5], vertical capillary, -2.9 percent; Lorenz and Kalmus [8], horizontal capillary, +2.5 percent; Fawsitt [12], oscillating disk, -2.8 percent; Ogawa [57], restricted falling sphere, -2.4 percent; Murgulescu and Zuca [102], oscillating ball, -1.4 percent; Janz and Saegusa [107], oscillating hollow sphere, -0.9 percent; and Protsenko and Razumovskaya [228], vertical capillary, +0.5 percent.

The uncertainty of the viscosity of KNO_3 could be greater than 2.7 percent at higher temperatures due to partial decomposition of the melt. All the investigations of KNO_3 were carried out in a normal atmosphere; the agreement was good between the different methods. Hence if decomposition occurred in the melt, it does not appear significantly greater in any one method. While molten KNO_3 decomposes at elevated temperature (> 780 °K), it has been used as a high temperature viscosity calibration fluid.

Rubidium Nitrate

[Refer: Table 119, p. 89, for numerical values]

Two investigations of the specific conductance for molten RbNO₃ have been reported [26, 224]. The tabulated values were calculated from the data of Jaeger and Kapma [26] (592.0 to 766.2 °K, 12 points). Using the quadratic equation for specific conductance the precision is s=0.00153(0.25%). The uncertainty of the specific conductance values is estimated to be about 6 percent.

De Nooijer and Ketelaar [224] report results for the specific conductance for the temperature range 588.6 to 724.0 °K (10 points) which fall within the limits of the above accuracy estimate.

The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 0.226 (0.57%).

The density data of Jaeger and Kapma [26] were used to calculate the tabulated values; no estimate of accuracy was attempted owing to the limited information.

Two investigations of the viscosity have been reported [139, 228]. The tabulated values were calculated from the data of Murgulescu and Zuca [139] (623 to 698 °K, 5 points, oscillating ball technique). The cubic equation expresses the data with a precision s = 0.00717 (0.25%). The uncertainty of the viscosity values is estimated to be about 1.0 percent.

The results of the second study (Protsenko and Razumovskaya [228], vertical capillary viscometer), are consistently lower (about 7%) than those of Murgulescu and Zuca. Protsenko reported a lower melting point (158 °K) for RbNO₃ than the generally accepted value (589 °K).

297-268 O-68-3

m

m

ni

m

ed

d

Cesium Nitrate

[Refer: Table 120, p. 90, for numerical values]

Three investigations of the specific conductance for molten CsNO₃ have been reported [26, 84, 224]. The tabulated values were calculated from the linear equation reported by van Artsdalen [84] for the temperature range of 688.2 to 764.2 °K. No precision was reported. Compared to the data of van Artsdalen the results of de Nooijer and Ketelaar [224] and Jaeger and Kapma [26] show maximum departures of 0.5 percent (735 °K) and -2.0 percent (745.9 °K) respectively. The uncertainty of the specific conductance values is estimated to be about 0.6 percent.

The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 0.00503 (0.019%).

Of the two density studies [26, 84] the data of van Artsdalen [84] were selected to calculate the tabulated values. The maximum departure between the densities reported by van Artsdalen [84] and Jaeger [26] is 0.15 percent (780 °K). The uncertainty of the density values is judged to be about 0.15 percent.

Two investigations of the viscosity have been reported [139, 228]. The tabulated values were calculated from the data of Protsenko and Razumovskaya [228] (698.2 to 776.2 °K, 15 points, vertical capillary viscometer). Using the cubic equation for viscosity the precision is s = 0.0033 (0.18%). The uncertainty of the viscosity values is judged to be about 4.5 percent.

The study of Murgulescu and Zuca [138] (oscillating ball method) is limited to one temperature: their value (2.43 cp, at 698 °K) is higher (12.5%) than those of Protsenko and Razumovskaya.

Silver Nitrate

[Refer: Table 121, p. 90, for numerical values]

Eight investigations of the specific conductance for molten AgNO₃ have been reported [5, 60, 78, 135, 181, 194, 219, 224]. The tabulated values were calculated from the data of Spooner and Wetmore [60] (483.2 to 603.2 °K, 13 points). Using the quadratic equation for specific conductance the precision is $s = 1.11 \cdot 10^{-3}$ (0.12%). Compared to the data of Spooner and Wetmore the results of other investigators show the following maximum departures: Goodwin and Mailey [5] -1.0 percent (526 °K); de Nooijer and Ketelaar [226], -1.0 percent (523 °K); Polyakov [78], -1.7 percent (513 °K); Bizouard [181], 0.2 percent (573 °K); Duke and Fleming [135], -1.6 percent (598 °K); the results of Sundheim and Berlin [219], and Cowen and Axon [194] show larger departures. The uncertainty of the specific conductance values is estimated to be about 1 percent.

The exponential equation expresses the tabulated

values of equivalent conductance with a precision s = 0.178 (0.45%).

Of the five density studies [25, 36, 54, 60, 224] the data of Jaeger [25] were selected to calculate the tabulated values. Compared to the density data of Jaeger [25] the results of Klemm [36], Spooner and Wetmore [60], Boardman et al. [54] and de Nooijer and Ketelaar [224] show maximum departures of -0.1 percent (600 °K), -0.4 percent (500 °K), -0.4 percent (600 °K), and 1.5 percent (548 °K) respectively. The uncertainty of the density values is judged to be about 0.3 percent.

Five investigations of the viscosity have been reported [5, 65, 69, 219, 228]. The tabulated values were calculated from the data of Pugsley and Wetmore [69] (530.0 to 593.4 °K, 13 points, Ostwald viscometer). The cubic equation for viscosity expresses the data with a precision s = 0.0054 (0.18%). The uncertainty of the viscosity data is estimated to be about 1.0 percent.

The investigator, reference, experimental method, and the maximum percent departure from the values of Pugsley and Wetmore are as follows: Goodwin and Mailey [5], vertical capillary viscometer, -5.3percent; and Davis, Rogers, and Ubbelohde [65], Ostwald type viscometer, -30 percent; Sundheim and Berlin [219], Ostwald type viscometer, 8.6 percent; and Protsenko and Razumovskaya [228], vertical capillary, +3.4 percent.

Thallium (I) Nitrate

[Refer: Table 122, p. 91, for numerical values]

Seven investigations of the specific conductance for molten TINO₃ have been reported [110, 125c, 191, 215, 216, 217, 219, 224]. The tabulated values were calculated from the data of Janz and Timidei [191] (485.5 to 554.5 °K, 17 points). Using the linear equation for specific conductance the precision is $s = 9.59 \cdot 10^{-4}$ (0.212%). Compared to the data of Janz and Timidei [191] the results of other investigators show the following maximum departures: Frame, Rhodes and Ubbelohde [110, 125c], 1.0 percent (524.4 °K); Sundheim and Berlin [219], 0.7 percent (491.9 °K); Bergman and Chagin [215], 5.9 percent (498 °K); and Bokhovkin [216], -4.6 percent (523 °K, 548 °K). Brillant [217] claims agreement with Ubbelohde but the results are insufficiently reported for a critical evaluation. The uncertainty of the specific conductance values is estimated to be about 0.7 percent.

The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 0.0843 (0.35%).

Of the two density studies [25, 191], the data of Janz [191] were selected to calculate the tabulated values. The maximum departure between the densities reported by Jaeger [25] and Janz [191] is 0.18 percent (552.6 °K). The estimated uncertainty of the density values is about 0.15 percent.

Four investigations of the viscosity have been reported [110, 191, 219, 228]. The tabulated values were calculated from the data of Janz and Timidei [191] (492.5 to 553.7 °K, 16 points, modified Martin vsicometer). The cubic equation expresses the data of Janz and Timidei with a precision s=0.00876 (0.31%). The uncertainty of the data is judged to be about 1.0 percent.

The investigator, reference, experimental method and the maximum percent deviation from the values of Janz and Timidei are as follows: Frame, Rhodes, and Ubbelohde [110], Ubbelohde viscometer, 5.3 percent; Sundheim and Berlin [219], Ostwald viscometer, 7.1 percent; and Protsenko and Razumovskaya [228], vertical capillary viscometer, + 12.0 percent.

Vanadium Pentoxide and Chromium Trioxide

[Refer: Tables 123 to 124, p. 91, for numerical values]

The tabulated values of specific conductance for molten V_2O_5 and CrO_3 were calculated from the data of van Arkel, Flood and Bright [68]. The number of data points, the temperature range, the precision and the best equation are as follows:

 $V_2O_5 - 8$ points, 1140–1237 °K, s = 0.00575 (2.87%), linear equation.

 $CrO_3 - 7$ points, 491–535 °K, $s = 3.31 \cdot 10^{-7}$ (0.007%), quadratic equation.

Molybdenum Trioxide

[Refer: Table 125, p. 91, for numerical values]

Two investigations of the specific conductance for molten MoO₃ have been reported [68, 76]. The tabulated values were calculated from the data of Morris et al. [76] (1096 to 1187 °K, 5 points). The exponential equation for specific conductance expresses the data of Morris with a precision s = 0.00208 (0.22%). The maximum departure between the specific conductance values of Morris [76] and van Arkel [68] is 58 percent (1168 °K). The uncertainty of the specific conductance values is estimated to be about 60 percent.

Wüstite ($Fe_{0.95}O$)

[Refer: Table 126, p. 92, for numerical values]

The tabulated values of specific conductance for molten FeO were calculated from the data of Inouye, Tomlinson and Chipman [159] (1648 to 1773 °K). To cover the entire range it became necessary to generate two equations: the number of data points, the temperature range, the precision appropriate to this sub-division are as follows: quadratic equation; 5 points, 1648–1713 °K, s = 16.1 (6.0%) linear equation; 5 points, 1713–1773 °K, s = 1.18 (0.37%)

Liquid wüstite is a nonstoichiometric melt since an increase in temperature above the melting point results in an increase in the Fe/O ratio although the latter remains less than unity. Chipman [159] has estimated an overall error of less than 8 percent for his results. No estimate of the accuracy was attempted owing to the limited information.

Boron Oxide

[Refer: Table 127, p. 92, for numerical values]

Two investigations of the density for molten B_2O_3 have been reported [144, 201]. The density data of Reibling [144] (1410 to 1890 °K, 14 points) were selected to calculate the tabulated values. Using the quadratic equation for density the precision is $s=1.11 \cdot 10^{-3}$ (0.074%). The maximum departure between the densities reported by Riebling [144] and Napolitano, Macedo and Hawkins [201] is 0.82 percent (1473 °K). The estimated uncertainty of the density values is about 0.8 percent. Densities $(s=4.52 \cdot 10^{-3}$ (0.28%)) in the range 723 to 1400 °K can be gained from the following quadratic equation based on the data of Napolitano [201] (723 to 1673 °K, 12 points):

$$\rho = 2.03833 - 6.67971 \cdot 10^{-4}T - 2.08005 \cdot 10^{-7}T^2$$
.

Six investigations of the viscosity have been reported [137, 144, 145, 200, 201, 209, 222]. The tabulated values were calculated from the data of Riebling [137] (1410 to 1893 °K, 14 points, restricted falling ball viscometer). The cubic equation expresses the data of Riebling with a precision s = 70.8 (3.27%). The uncertainty of the viscosity values is estimated to be about 5.0 percent.

The investigator, reference, temperature range studied, experimental method and the departure from the values of Riebling [137] are as follows: Riebling [222] 1303 to 1583 °K, restricted falling ball, +20 percent at 1550 °K; Arndt [200], 1023 to 1388 °K, restricted falling ball, -30 percent at 1410 °K (extrapolated); Napolitano, Macedo, and Hawkins [201], 730 to 1677 °K, concentric cylinder technique, -90 percent at 1677 °K; Li, Ghose, and Su [209], 784 to 1516 °K, concentric cylinder technique, -8 percent at 1516 °K; Mackenzie [145], 786 to 1309 °K, restricted falling ball viscometer, extrapolated values of Mackenzie agree with those of Riebling [137] (1% at 1410 °K).

Silicon Dioxide

[Refer: Table 128, p. 93, for numerical values]

Two investigations of the viscosity for molten

SiO₂ have been reported [205, 206]. The tabulated values were calculated from the data of Bacon, Hasapis, and Wholley [205] (2208 to 2595 °K, 12 points, restricted falling ball viscometer). The cubic equation expresses the data of Bacon, Hasapis, and Wholley with a precision s=55,900 (49.3%). The uncertainty of the viscosity values is estimated to be about 60 percent.

The viscosities of the second study (Bockris, Mackenzie, and Kitchener [206]: torque viscometer) are consistently lower than those of Bacon, Hasapis, and Wholley (e.g., 84% at 2210 °K; 90% at 2330 °K).

Germanium Dioxide

[Refer: Table 129, p. 93, for numerical values]

Two investigations of the specific conductance for molten GeO₂ have been reported [146, 163]. The tabulated values were calculated from the exponential equation reported by Riebling and Gabelnick [163] (1389 to 1623 °K). No precision was given. Comparison of the data of Riebling [163] and Mackenzie [146] shows the maximum departure to be 60 percent (1523 °K). The uncertainty of the specific conductance values is estimated to be about 20 percent.

Three investigations of the viscosity have been reported [137, 140, 141, 146]. The tabulated values were calculated from the combined data of Kurkjian and Douglas [140] (1423 to 1773 °K, 8 points, concentric cylinder viscometer) and Riebling [137] (1745 to 1991 °K, 28 points, restricted falling ball viscometer). The exponential equation generated from the data of Kurkjian and Douglas expresses the viscosity values in the range 1430 to 1750 °K with a precision $s = 7.61 \cdot 10^5$ (41.6%) and the uncertainty of the data is considered to be about 50 percent, while the exponential equation from the data of Riebling expresses the viscosities in the range 1760 to 1990 °K with a precision s = 8376 (10.4%) and the uncertainty of the data is estimated to be about 15 percent. The values generated from Riebling's data are higher than those of Kurkjian and Douglas in the region of overlap (e.g., 7.6%, 1750 °K, 10.7%, 1770 °K).

The results of the third study (Mackenzie [146]: counter balance viscometer) are consistently higher than those of Kurkjian and Douglas, and Riebling (e.g., 100%, 1623 °K; 123%, 1823 °K).

Lead Oxide

[Refer: Table 130, p. 94, for numerical values]

The tabulated values of specific conductance for molten PbO were calculated from the data of van Arkel, Flood and Bright [68] (1164 to 1260 °K, 9 points). The exponential equation for specific conductance expresses the data with a precision s = 0.010 (0.55%). No estimate of accuracy was attempted owing to the limited information.

Arsenic Trioxide

[Refer: Table 131, p. 94, for numerical values]

The tabulated values of viscosity for molten As_2O_3 were calculated from the data of Karutz and Stranski [202] (601.1 to 702.9 °K, 6 points, restricted falling ball viscometer). The exponential equation expresses the data with a precision s=7,681.9(1.76%). No estimate of accuracy was attempted owing to the limited information.

Antimony Sesquioxide, Bismuth Sesquioxide, and Tellurium Dioxide

[Refer: Tables 132 to 134, pp. 94 to 95, for numerical values]

The tabulated values of specific conductance for molten Sb_2O_3 , Bi_2O_3 and TeO_2 were calculated from the data of van Arkel, Flood and Bright [68]. The number of data points, the temperature range, the precision and the best equation are as follows:

 $Sb_2O_3 - 6$ points, 1101–1161 °K, s = 0.0038 (3.0%), linear equation. $Bi_2O_3 - 18$ points, 1102–1228 °K,

s = 0.0816 (11.5%), linear equation. TeO₂-18 points, 1023-1233 °K,

s = 0.0384 (2.0%), exponential equation.

Iron (II) Sulfide

[Refer: Table 135, p. 95, for numerical values]

Two investigations of the specific conductance for molten FeS have been reported [153, 154, 155]. The tabulated values were calculated from the quadratic specific conductance equation reported by Velikanov [154, 155] for the temperature range 1469.2 to 1493.2 °K. Neither the precision nor the experimental data were given. Argyriades, Derge and Pound [153] reported a value of 400 Ω^{-1} cm⁻¹ (1473.2 °K) for the specific conductance of iron sulfide: this value is 72 percent lower than that of Velikanov [155]. The uncertainty of the specific conductance values is estimated to be about 50 percent.

Cobalt (II) Sulfide

[Refer: Table 136, p. 95, for numerical values]

The tabulated values of specific conductance for molten CoS were calculated from the graphical data of Velikanov [155] (1461.2 to 1497.2 °K, 5 points). The data points, interpolated from Velikanov's graph, were least squared to develop the exponential equation. The uncertainty of the specific conductance values is estimated to be about (50%).

Nickel (II) Sulfide

[Refer: Table 137, p. 95, for numerical values]

The tabulated values of specific conductance for molten NiS were calculated from the quadratic equation reported by Velikanov [154] for the temperature range 1153.2 to 1398.2 °K. Neither the precision nor the experimental data were given. The uncertainty of the specific conductance values is estimated to be about (50%).

Copper (I) Sulfide

[Refer: Table 138, p. 96, for numerical values]

Two investigations of the specific conductance for molten Cu₂S have been reported [155, 152]. The tabulated values were calculated from the data of Velikanov [155] (1402.2 to 1523.3 °K, 10 points). Using the quadratic equation for specific conductance the precision is s = 1.44 (2.3%). The maximum departure between the results of Velikanov [155] and Bourgon, Derge and Pound [152] is 33 percent. The uncertainty of the specific conductance values is estimated to be about 40 percent.

Silver Sulfide

[Refer: Table 139, p. 96, for numerical values]

Two investigations of the specific conductance for molten Ag₂S have been reported [156, 166]. The tabulated values were calculated from the data of Velikanov [156] (1105.2 to 1352.2 °K, 12 points). Using the exponential equation for specific conductance the precision is s=0.783 (0.66%). The maximum departure between the results of Velikanov [155] and Bell and Flengas [166] is 70 percent (1233 °K). The uncertainty of the specific conductance values is estimated to be about 50 percent.

Germanium (II) Sulfide

[Refer: Table 140, p. 96, for numerical values]

The tabulated values of specific conductance for molten GeS were calculated from the data of Velikanov [155] (873.2 to 1073.2 °K, 3 points). The quadratic equation expresses the data with an exact fit. The uncertainty of the specific conductance values is estimated to be about (50%).

Tin (II) Sulfide

[Refer: Table 141, p. 97, for numerical values]

The tabulated values of specific conductance for molten SnS were calculated from the data of Velikanov [155] (1158.2 to 1411.2 °K, 13 points). Using the quadratic equation for specific conductance the precision is s = 0.363 (1%). The uncertainty of the specific conductance values is estimated to be about (50%).

The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 18.2 (1.4%).

The density data of Velikanov [158] were used to calculate the tabulated values; no estimate of accuracy was attempted owing to the limited information.

Lead Sulfide

[Refer: Table 142, p. 97, for numerical values]

Two investigations of the specific conductance for molten PbS have been reported [151, 154, 155]. The tabulated values were calculated from the quadratic equation reported by Velikanov [154, 155] for the temperature range 1388.2 to 1490.2 °K. Neither the precision nor the experimental data were given. The maximum departure between the results of Velikanov [154] and Bell and Flengas [151] is 22 percent (1420 °K). The uncertainty of the specific conductance values is estimated to be about 20 percent.

The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 12.3 (0.66%).

The data of Bell and Flengas [150] were used to calculate the densities; no estimate of accuracy was attempted owing to the limited information.

Antimony (III) Sulfide

[Refer: Table 143, p. 98, for numerical values]

The tabulated values of the specific conductance for molten Sb₂S₃ were calculated from the data of Velikanov [155] (830.2 to 1076.2 °K, 13 points). Using the quadratic equation for specific conductance the precision is s = 0.00901 (1.7%). The uncertainty of the specific conductance values is estimated to be about (50%).

The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 0.247 (1.4%).

The density data of Velikanov [158] were used to calculate the tabulated values; no estimate of accuracy was attempted owing to the limited information.

Bismuth (III) Sulfide

[Refer: Table 144, p. 98, for numerical values]

The tabulated values of the specific conductance for molten Bi₂S₃ were calculated from the data of Velikanov [157] (973.2 to 1198.2 °K, 10 points). Using the linear equation for specific conductance the precision is s = 4.87 (0.12%). The accuracy of the specific conductance values has not been estimated due to unreliability of the data. Since the measurements were carried out in an atmosphere of air, the decomposition of sulfides may have resulted in the formation of metal molten sulfide solutions; a small increase in the metal content of many sulfide melts, in which electronic as well as ionic conduction is known to occur, causes a large increase in the electrical conductance.

The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 10.6 (0.012%).

The density data of Velikanov [158] were used to calculate the tabulated values; no estimate of accuracy was attempted owing to the limited information.

Lithium Sulfate

[Refer: Table 145, p. 99, for numerical values]

The tabulated values of specific conductance for molten Li_2SO_4 were calculated from the quadratic specific conductance equation (converted to absolute temperature scale) reported by Kvist and Lunden [115] for the temperature range of 848.3 to 1243.2 °K. No precision was given by Kvist and Lunden. The uncertainty of the specific conductance values is estimated to be about (5%).

The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 0.482 (0.42%).

The density data of Jaeger [25] were used to calculate the tabulated values. The uncertainty of the density values is judged to be about (1%).

Sodium Sulfate

[Refer: Table 146, p. 99, for numerical values]

Two investigations of the specific conductance for molten Na₂SO₄ have been reported [4, 226]. The tabulated values were calculated from the data of Kvist [226] (1189.2 to 1232.0 °K, 4 points). Using the exponential equation for specific conductance the precision is s=0.00119 (0.05%). The specific conductance values of Arndt [4] are all lower than those of Kvist: the maximum departure between their values is 4.5 percent (1220 °K). The uncertainty of the specific conductance values is estimated to be 2 percent.

The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 0.0077 (0.0092%).

The density data of Jaeger [25] were used to calculate the tabulated values. The uncertainty of the density values is judged to be about (1%).

Potassium Sulfate

[Refer: Table 147, p. 99, for numerical values]

Two investigations of the specific conductance for molten K_2SO_4 have been reported [4, 161]. The

tabulated values were calculated from the data of Kvist [161] (1341.5 to 1359.6 °K, 7 points). Using the quadratic equation for specific conductance the precision is s = 0.00259 (0.13%). The specific conductance value of Arndt [4] (1373.2 °K) is lower (5.6%, 1372.2 °K) than that of Kvist [161]. The uncertainty of the specific conductance values is estimated to be about 3 percent.

The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 0.070 (0.05%).

Of the two density studies [25, 178] the data of Neithamer and Peake [178] were selected to calculate the tabulated values. The maximum departure between the density data of Jaeger [25] and Peake [178] is 0.96 percent (1350 °K). The uncertainty of the density values is judged to be about 0.4 percent. For temperatures above 1450 °K densities may be calculated using the following equation based on the data of Jaeger [25] (1343 to 1929 °K, 15 points):

 $\rho = -0.900 + 2.00 \cdot 10^{-3}T.$

Rubidium Sulfate

[Refer: Table 148, p. 99, for numerical values]

The tabulated values of specific conductance for molten Rb₂SO₄ were calculated from the data of Kvist [226] (1340.2 to 1395.2 °K, 8 points). The exponential equation for specific conductance expresses the data with a precision s = 0.00183(0.13%). The uncertainty of the specific conductance values is estimated to be (3%).

The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 0.00709 (0.0093%).

The tabulated values of density were calculated from the density equation reported by Jaeger [25]. The uncertainty of the density values is estimated to be about (1%).

Cesium Sulfate

[Refer: Table 149a, p. 100, for numerical values]

The tabulated values of specific conductance for molten Cs_2SO_4 were calculated from the data of Kvist [226] (1286.7 to 1354.7 °K, 6 points). The linear equation for specific conductance expresses the data with a precision s = 0.0035 (0.30%). The uncertainty of the specific conductance values is estimated to be (3%).

The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 0.0223 (0.032%).

The tabulated values of density were calculated from the density equation reported by Jaeger [25]. The uncertainty of the density values is estimated to be about (1%).

Silver Sulfate

[Refer: Table 149b, p. 100, for numerical values]

The tabulated values of specific conductance for molten Ag₂SO₄ were calculated from the data of Kvist [226] (942.0 to 1017.4 °K, 6 points). The exponential equation for specific conductance expresses the data with a precision s = 0.00203(0.11%). The uncertainty of the specific conductance values is estimated to be (3%).

The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 0.0067 (0.018%).

The tabulated values of density were calculated from the density equation reported by Kvist [226]. The uncertainty of the density values is estimated to be about (0.8%).

Tetrapropylammonium Tetrafluoroborate

[Refer: Table 150, p. 100, for numerical values]

The tabulated values of specific conductance for molten Pr₄NBF₄ were calculated from the data of Lind, Abdel-Rehim and Rudich [190, 221] (522.73 to 554.58 °K, 16 points). Using the exponential equation for specific conductance the precision is $s = 1.88 \cdot 10^{-3}$ (1.7%). The uncertainty of the specific conductance values is estimated to be about (10%) (see discussion for Bu₄NI).

The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 0.0108 (0.035%).

The density data of Lind [190, 221] (525.6 to 547.3 °K, 14 points) were used to calculate the tabulated values. The uncertainty of the density values is judged to be about (1%).

The tabulated values of viscosity were calculated from the data of Lind, Abdel-Rehim and Rudich [190, 221] (522.8 to 546.7 °K, 5 points, capillary viscometer). The cubic equation expresses the data with a precision s = 0.00032 (0.017%). While the information is insufficient to estimate the accuracy, the data can be considered reliable.

Tetrapropylammonium Hexafluorophosphate

[Refer: Table 151, p. 100, for numerical values]

The tabulated values of specific conductance for molten Pr_4 NPF₆ were calculated from the data of Lind, Abdel-Rehim and Rudich [190, 221] (511.03 to 545.15 °K, 15 points). Using the exponential equation for specific conductance the precision is $s = 8.86 \cdot 10^{-5}$ (0.11%). The uncertainty of the specific conductance values is estimated to be about (6%) (see discussion for Bu₄NI).

The exponential equation expresses the tabulated values of equivalent conductance with a precision $s = 3.24 \cdot 10^{-3}$ (0.013%).

The density data of Lind [190, 221] were used to

calculate the tabulated values. The uncertainty of the density values is estimated to be about (1%).

The tabulated values of viscosity were calculated from the data of Lind, Abdel-Rehim, and Rudich [190, 221] (517.5 to 541.9 °K, 5 points, capillary viscometer). The cubic equation expresses the data with a precision s = 0.00031 (0.012%). While the information is insufficient to estimate the accuracy, the data can be considered reliable.

Tetrapropylammonium Tetraphenylborate

[Refer: Table 152, p. 101, for numerical values]

The density data of Lind, Abdel-Rehim and Rudich [190, 221] for molten Pr_4NBPh_4 were used to calculate the tabulated values. The uncertainty of the density values is estimated to be about (1%).

The tabulated values of viscosity were calculated from the data of Lind, Abdel-Rehim, and Rudich [190, 221] (483.5 to 529.2 °K, 11 points, capillary viscometer). The cubic equation expresses the data with a precision s = 0.0166 (0.28%). While the information is insufficient to estimate the accuracy, the data can be considered reliable.

Tetrabutylammonium Bromide

[Refer: Table 153, p. 101, for numerical values]

The tabulated values of specific conductance for molten Bu₄NBr were calculated from the data of Lind, Abdel-Rehim and Rudich [190, 221] (390.3 to 407.7 °K, 7 points). Using the exponential equation for specific conductance the precision is $s = 9.42 \cdot 10^{-6}$ (0.35%). The uncertainty of the specific conductance values is estimated to be about (7%) (see discussion for Bu₄NI).

The exponential equation expresses the tabulated values of equivalent conductance with a precision $s = 1.29 \cdot 10^{-4}$ (0.017%).

The density data of Lind [190, 221] were used to calculate the tabulated values. The uncertainty of the density values is estimated to be about (1%).

Tetrabutylammonium Iodide

[Refer: Table 154, p. 101, for numerical values]

Two investigations of the specific conductance for molten Bu₄NI have been reported [190, 220, 221]. The tabulated values were calculated from the data of Lind, Abdel-Rehim and Rudich [190, 221] (420.70 to 440.13 °K, 13 points). Comparison of the data of Walden and Birr [220] and Lind [190, 221] shows the maximum departure to be 2.4 percent (423 °K). Although the linear equation for specific conductance expresses the data with a precision $s = 2.43 \cdot 10^{-4}$ (3.6%), the reproducibility is particularly poor near 428 °K (3.0% at 428.13 °K and -7.6% at 428.66 °K). Lind attributes this poor reproducibility to the decomposition of the salt. The tetrafluoroborates are the most stable and the halides are the least stable of the quaternary ammonium salts. The uncertainty of the specific conductance values is estimated to be about 10 percent.

The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 0.047 (2.0%).

Of the two density studies [190, 220, 221], the data of Lind [190, 221] were selected to calculate the tabulated values. The maximum departure between the densities reported by Lind [190, 221] and Walden [220] is 1.0 percent (423.2 °K). The estimated uncertainty of the density values is 1 percent.

Tetrabutylammonium Tetrafluoroborate

[Refer: Table 155, p. 101, for numerical values]

The tabulated values of density for molten Bu₄NBF₄ were calculated from the data of Lind, Abdel-Rehim and Rudich [190, 221]. The uncertainty of the density values is estimated to be about (1%).

The tabulated values of viscosity were calculated from the data of Lind, Abdel-Rehim and Rudich [190, 221] (435.4 to 539.1 °K, 17 points, capillary viscometer). The cubic equation expresses the data with a precision s = 0.0446 (1.22%). While the information is insufficient to estimate the accuracy, the data can be considered reliable.

Tetrabutylammonium Hexafluorophosphate

[Refer: Table 156, p. 102, for numerical values]

The tabulated values of specific conductance for molten Bu₄NPF₆ were calculated from the data of Lind, Abdel-Rehim and Rudich [190, 221] (529.5 to 548.5 °K, 5 points). Using the linear equation for specific conductance the precision is $s = 1.06 \cdot 10^{-4}$ (0.010%). The uncertainty of the specific conductance values is estimated to be about (6%) (see discussion for Bu₄NI).

The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 0.041 (0.22%).

The density data of Lind [190, 221] were used to calculate the tabulated values. The uncertainty of the density values is estimated to be about (1%).

The tabulated values of viscosity were calculated from the data of Lind, Abdel-Rehim, and Rudich [190, 221] (529.4 to 554.1 °K, 5 points, capillary viscometer). The exponential equation expresses the data with a precision s = 0.0035 (0.14%). While the information is insufficient to estimate the accuracy, the data can be considered reliable.

Tetrabutylammonium Tetraphenylborate

[Refer: Table 157, p. 102, for numerical values]

The tabulated values of specific conductance for molten Bu₄NBPh₄ were calculated from the data of Lind, Abdel-Rehim and Rudich [190, 221] (514.3 to 540.4 °K, 12 points). Using the exponential equation for specific conductance the precision is $s = 1.95 \cdot 10^{-5}$ (0.14%). The uncertainty of the specific conductance values is estimated to be about (6%) (see discussion for Bu₄NI).

The exponential equation expresses the tabulated values of equivalent conductance with a precision $s = 1.62 \cdot 10^{-3}$ (0.018%).

The density data of Lind [190, 221] were used to calculate the tabulated values. The uncertainty of the density values is estimated to be about (1%).

The tabulated values of viscosity were calculated from the data of Lind, Abdel-Rehim, and Rudich [190, 221] (516.8 to 541.8 °K, 5 points, capillary viscometer). The exponential equation expresses the data with a precision s = 0.0064 (0.16%). While the information is insufficient to estimate the accuracy, the data can be considered reliable.

Tetrahexylammonium Tetrafluoroborate

[Refer: Table 158, p. 102, for numerical values]

The density data of Lind, Abdel-Rehim and Rudich [190, 221] for molten Hex₄NBF₄ were used to calculate the tabulated values. The uncertainty of the density values is estimated to be about (1%).

The tabulated values of viscosity were calculated from the data of Lind, Abdel-Rehim, and Rudich [190, 221] (376.0 to 502.8 °K, 27 points, capillary viscometer). The exponential equation expresses the data with a precision s=2.90 (20.7%). While the information is insufficient to estimate the accuracy, the data can be considered reliable.

Tetra-n-amylammonium Thiocyanate

[Refer: Table 159, p. 102, for numerical values]

The tabulated values of specific conductance for molten $(n\text{-amyl})_4\text{NSCN}$ were calculated from the data of Kenausis, Evers and Kraus [172] (325.2 to 383.2, 7 points). The specific conductance values, gained from the equivalent conductance and density data of Kraus [172] were least squared to generate the quadratic equation. The precision is $s=2.77 \cdot 10^{-5}$ (2.4%). No attempt to estimate the accuracy was made owing to insufficient information; however, judging the experimental techniques the results can be considered reliable.

The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 0.0532 (13%).

The density data of Kraus [172] (325.2 to 383.2, 7 points) were used to calculate the tabulated values. No estimate of accuracy was attempted owing to the limited information.

The tabulated values of viscosity were calculated from the data of Kenausis, Evers, and Kraus [172] (325.2 to 383.2 °K, 7 points, Cannon-Ubbelohde viscometer). The cubic equation expresses the data with a precision s = 3.93 (5.18%). No estimate of accuracy was made owing to the limited information.

Lithium Molybdate

[Refer: Table 160, p. 103, for numerical values]

The tabulated values of specific conductance for molten Li_2MoO_4 were calculated from the quadratic equation reported by Kvist and Lunden [117] for the temperature range 977 to 1223 °K. The precision is s = 0.017 (0.79%). No estimate of accuracy was attempted owing to the limited information.

Sodium Molybdate

[Refer: Table 161, p. 103, for numerical values]

The specific conductance of molten Na₂MoO₄ has been determined by Jaeger and Kapma [26] and Morris et al. [76]. The tabulated values were calculated from the data of Morris [76] (1024.2 to 1237.2 °K, 6 points). Using the quadratic equation for specific conductance the precision is s = 0.00282(0.18%). The maximum departure between the specific conductance values of Morris [76] and Jaeger [26] is 13.6 percent (1198 °K). The uncertainty of the specific conductance values is estimated to be about 10 percent.

The exponential equation expresses the tabulated values of equivalent conductance with a precision $s = 0.142 \ (0.23\%)$.

The density data of Jaeger and Kapma [26] were used to calculate the tabulated values; no estimate of accuracy was attempted owing to the limited information.

Potassium Molybdate

[Refer: Table 162, p. 104, for numerical values]

The tabulated values of density for molten K_2MO_4 were calculated using the quadratic equation (after conversion to the absolute temperature scale) given by Jaeger [25]. No attempt to estimate the accuracy was made due to insufficient information.

Sodium Tungstate

[Refer: Table 163, p. 104, for numerical values]

The tabulated values of specific conductance for molten Na₂WO₄ were calculated from the data of Jaeger and Kapma [26] (925.7 to 1774 °K, 11 points). Using the quadratic equation for specific conductance the precision is s = 0.0064 (0.48%).

The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 0.0352 (0.065%).

The density data of Jaeger and Kapma [26] were used to calculate the tabulated values; no estimate of accuracy was attempted owing to the limited information.

Potassium Tungstate

[Refer: Table 164, p. 104, for numerical values]

The tabulated values of density for molten K_2WO_4 were calculated using the quadratic equation (after conversion to the absolute temperature scale) given by Jaeger [25]. No attempt to estimate the accuracy was made due to insufficient information.

Sodium Thiocyanate

[Refer: Table 165, p. 105, for numerical values]

The tabulated values of specific conductance for molten NaSCN were calculated from the exponential equation reported by Ubbelohde et al. [112]. Since the upper temperature limit was not given, it was presumed that the equation is valid over the temperature range cited for the viscosity studies by the same authors [112]. Neither the precision nor the experimental data was reported.

The tabulated values of viscosity were calculated from the data of Plester, Rogers, and Ubbelohde [112] (578.0 to 634.1 °K, 9 points, Ostwald viscometer). The cubic equation expresses the data with a precision s = 0.0128 (0.57%). The uncertainty of the viscosity values is estimated to be about (1.5%).

Potassium Thiocyanate

[Refer: Table 166, p. 105, for numerical values]

The tabulated values of specific conductance for molten KSCN were calculated from the exponential equation given by Plester, Rogers and Ubbelohde [112]. Since the upper temperature limit was not reported, it was presumed that the equation is valid over the temperature range cited for viscosity studies by the same authors [112]. Neither the precision nor the experimental data was reported.

The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 0.00708 (0.053%).

The tabulated values of density were calculated from the linear equation reported by Ubbelohde et al. [110]. The upper temperature limit for this density equation was not reported.

The tabulated values of viscosity were calculated from the data of Plester, Rogers, and Ubbelohde [112] (448.8 to 523.8 °K, 13 points, Ostwald viscometer). The cubic equation expresses the data with a precision s = 0.0899 (1.33%). The uncertainty of the viscosity values is estimated to be about (1.5%).

Sodium Hydroxide

[Refer: Table 167, p. 105, for numerical values]

The tabulated values of specific conductance for molten NaOH were calculated from the linear equation reported by Arndt and Ploetz [37] (593.2 to 723.2 °K). Neither the precision nor an accuracy estimate can be gained owing to the limited information.

The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 0.0128 (0.020%).

The density data of Arndt and Ploetz [37] were used to calculate the tabulated values; no estimate of accuracy was attempted owing to the limited information.

The tabulated values of viscosities were calculated from the data of Arndt and Ploetz [37] (623.2 to 823.2 °K, 5 points, vertical capillary viscometer). The cubic equation expresses the data with a precision s = 0.0359 (1.66%). The uncertainty of the viscosity values is estimated to be about (1.5%).

Potassium Hydroxide

[Refer: Table 168, p. 106, for numerical values]

The tabulated values of specific conductance for molten KOH were calculated from the linear equation reported by Arndt and Ploetz [37] (673 to 873 °K). Neither the precision nor an accuracy estimate can be gained owing to the limited information.

The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 0.490 (0.50%).

The density data of Arndt and Ploetz [37] were used to calculate the tabulated values; no estimate of accuracy was attempted owing to limited information.

The tabulated values of viscosity were calculated from the data of Arndt and Ploetz [37] (673.2 to 873.2 °K, 5 points, vertical capillary viscometer). The cubic equation expresses the data with a precision s = 0.0120 (0.93%). The uncertainty of the viscosity values is estimated to be about (1.5%).

Potassium Dichromate

[Refer: Table 169, p. 106, for numerical values]

Two investigations of the specific conductance for molten $K_2Cr_2O_7$ have been reported [8, 110]. The tabulated values were calculated from the exponential equation for specific conductance reported by Frame, Rhodes, and Ubbelohde [110]. No precision was given. The maximum departure between the values reported by Lorenz and Kalmus [8] and Ubbelohde [110] is 15.5 percent (780 °K). The uncertainty of the specific conductance values is estimated to be about 8.0 percent.

The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 0.0144 (0.056%).

Of the two density studies [25, 110], the data of Jaeger [25] were selected to calculate the tabulated values. The maximum departure between the densities reported by Jaeger and Ubbelohde et al. [110] is less than 0.02 percent over the temperature range of 690 to 710 °K. The uncertainty of the density values is judged to be about 0.1 percent.

Two investigations of the viscosity have been reported [8, 110]. The tabulated values were calculated from the data of Lorenz and Kalmus [8] (670.2 to 780.2 °K, 12 points, horizontal capillary viscometer). Using the cubic equation for viscosity the precision is s = 0.0084 (0.092%). The uncertainty of the viscosity values is estimated to be about 1.5 percent.

The viscosities of the second study (Ubbelohde et al. [110, 125c]; Ubbelohde viscometer) show increasing departure from those of Lorenz and Kalmus (e.g. -6% at 700 °K).

Sodium Metaphosphate

[Refer: Table 170, p. 107, for numerical values]

The tabulated values of viscosity for molten NaPO₃ were calculated from the data of Arndt [200] (916 to 1029 °K, 4 points, restricted falling ball method). The exponential equation expresses the data of Arndt with a precision s = 63.3 (8.62%). No estimate of accuracy was attempted owing to the limited information.

Uranyl Chloride

[Refer: Table 171, p. 107, for numerical values]

The tabulated values of specific conductance for molten UO_2Cl_2 were calculated from the linear equation given by Ochs and Strassmann [64] (851 to 953 °K). No attempt to calculate the precision was made due to lack of experimental data.

Lithium Hydride

[Refer: Table 172, p. 107, for numerical values]

The tabulated values of specific conductance for molten LiH were calculated from the data of Moers [165] (958.2 to 1027.2 °K, 5 points). Using the quadratic equation for specific conductance the precision is $s = 9.89 \cdot 10^{-3}$ (12%). The recent work of Johnson and Cairns [213] indicates a need for additional studies since the specific conductivities are higher than those of Moers [165]. An estimate of accuracy was not attempted owing to the limited information of this private communication [213].

Lithium Chlorate

[Refer: Table 173, p. 107, for numerical values]

The tabulated values of specific conductance were calculated from the data of Campbell and Williams [164, 174] (404.6 to 446.7 °K, 10 points). Using the linear equation for specific conductance the precision is $s = 1.99 \cdot 10^{-3}$ (1.1%). Since no other conductance measurements are available for comparison a critical estimate of the accuracy is not possible; however, judging the experimental techniques of Campbell and Williams, these results can be considered reliable.

The exponential equation expresses the tabulated values of equivalent conductance with a precision s = 0.218 (3.2%).

The density data of Campbell [164, 175] were used to calculate the tabulated values; no estimate of accuracy was attempted owing to the limited information.

The tabulated values of viscosity were calculated from the data of Campbell and Williams [175] (404.9 to 440.0 °K, 13 points, capillary viscometer). The cubic equation expresses the data with a precision s = 0.446 (2.17%). No estimate of accuracy was attempted owing to the limited information.

Lithium Perchlorate

[Refer: Table 174, p. 108, for numerical values]

The density data of Peterson, Ewing and Smith [177] for molten $LiClO_4$ were used to calculate the tabulated values; no estimate of accuracy was attempted owing to the limited information.

List of Tables

Table

FLUORIDES

LiF	1	Lithium fluoride	42
NaF	$\overline{2}$	Sodium fluoride	42
KF	3	Potassium fluoride	43
CsF	4	Cesium fluoride	43
BeF ₂	5	Beryllium fluoride	44
MgF_2	6	Magnesium fluoride	44
CaF ₂	7	Calcium fluoride	44
SrF_2	8	Strontium fluoride	45
BaF_2	9	Barium fluoride	45
LaF ₃	10	Lanthanum (III) fluoride	45
CeF ₃	11	Cerium (III) fluoride	45
ThF4	12	Thorium (IV) fluoride	46
UF ₄	13	Uranium (IV) fluoride	46
MnF ₂	14	Manganese (II) fluoride	46
CuF ₂	15	Copper (II) fluoride	46
AgF	16	Silver fluoride	47
ZnF_2	17	Zinc fluoride	47
PbF_2	18	Lead (II) fluoride	47

CHLORIDES

LiCl	19	Lithium chloride	47
NaCl	20	Sodium chloride	48
KCl	21	Potassium chloride	48
RbCl	22	Rubidium chloride	49
CsCl	23	Cesium chloride	49
BeCl ₂	24	Beryllium (II) chloride	50
$MgCl_2$	25	Magnesium chloride	50
CaCl ₂	26	Calcium chloride	50
SrCl ₂	27	Strontium chloride	51
BaCl ₂	28	Barium chloride	51
ScCl ₃	29	Scandium (III) chloride	51
YCl ₃	30	Yttrium (III) chloride	52
LaCla	31	Lanthanum (III) chloride	52
CeCl	32	Cerium (III) chloride	53
PrCl	33	Praseodymium (III) chloride	53
NdCl₃	34	Neodymium (III) chloride	53
GdCl ₃	35	Gadolinium (III) chloride	54
DvCl ₃	36	Dysprosium (III) chloride	-54
HoCla	37	Holmium (III) chloride	54
ErCla	38	Erbium (III) chloride	54
ThCL	39	Thorium (IV) chloride	-55
UCL	40	Uranium (IV) chloride	55
MnCl	41	Manganese (II) chloride	55
TiCL	42	Titanium (IV) chloride	55
CuCl	43	Copper (I) chloride	56
AgCl	44	Silver chloride	56
ZnCl ₂	45	Zinc chloride	57
CdCl	46	Cadmium chloride	57
HgCl	47	Mercury (I) chloride	58
HgCl ₂	48	Mercury (II) chloride	-58
AlCla	49	Aluminum (III) chloride	58
GaCla	50	Gallium (III) chloride	- 59
InCl	51	Indium chloride	- 59
InCl ₂	52	Indium (II) chloride	60
InCl ₃	53	Indium (III) chloride	60
FICI	54	Thallium (I) chloride	61
$SnCl_2$	55	Tin (II) chloride	61
SnCl ₄	56	Tin (IV) chloride	62
PbCl ₂	57	Lead (II) chloride	62
BiCl₃	58	Bismuth (III) chloride	63
TeCl ₂	59	Tellurium (II) chloride	63
ΓeCl₄	60	Tellurium (IV) chloride	63

Table

Page

BROMIDES

LiBr	61	Lithium bromide	6
NaBr	62	Sodium bromide	6
KBr	63	Potassium bromide	6
RbBr	64	Rubidium bromide	6
CsBr	65	Cesium bromide	6
$MgBr_2$	66	Magnesium bromide	6
CaBr	67	Calcium bromide	6
$SrBr_2$	68	Strontium bromide	6
$BaBr_2$	69	Barium bromide	6
LaBr ₃	70	Lanthanum (III) bromide	6
$PrBr_3$	71	Praseodymium (III) bromide	6
$NdBr_3$	72	Neodymium (III) bromide	6
$GdBr_3$	73	Gadolinium (III) bromide	6
CuBr	74	Copper (I) bromide	6
AgBr	75	Silver bromide	7
$ZnBr_2$	76	Zinc Bromide	7
$CdBr_2$	77	Cadmium bromide	7
$HgBr_2$	78	Mercury (II) bromide	7
AlBr ₃	79	Aluminum bromide	7
InBr ₃	80	Indium (III) bromide	7
TlBr	81	Thallium (I) bromide	7
PbBr ₂	82	Lead (II) bromide	7
$BiBr_3$	83	Bismuth (III) bromide	7
IODIDES			
TODIDLS			
LiI	84	Lithium iodide	7
Nal	85	Sodium iodide	7
KI	86	Potassium iodide	7
RbI	87	Rubidium iodide	7
CsI	88	Cesium iodide	7
MgI_2	89	Magnesium iodide	7
CaI_2	90	Calcium iodide	7
\mathbf{SrI}_2	91	Strontium iodide	7
BaI_2	92	Barium iodide	7
AlI_3	93	Aluminum (III) iodide	7
Lal ₃	94	Lanthanum (III) iodide	8
Cel_3	95	Cerium (III) iodide	8
$\Pr{I_3}$	96	Praseodymium (III) iodide	8
NdI_3	97	Neodymium (III) iodide	8
AgI	98	Silver iodide	8
ZnI_2	99	Zinc iodide	8
CdI_2	100	Cadmium iodide	8
HgI_2	101	Mercury (II) iodide	8
Gal ₂	102	Gallium (II) iodide	8
$\ln l_3$	103	Indium (III) iodide	8
TH	104	Thallium (I) iodide	8
PbI2 BiI3	$105 \\ 106$	Lead (II) iodide Bismuth (III) iodide	8
			0
CARBONATES	5		
1:00	107	Lithium amhanata	0
${ m Li_2CO_3}\ { m Na_2CO_3}$		Lithium carbonate Sodium carbonate	8
	108 109		8
K_2CO_3	109	Potassium carbonate	8
NITRITES			
LiNO ₂	110	Lithium nitrite	- 80
$NaNO_2$	111	Sodium nitrite	- 80
KNO ₂	112	Potassium nitrite	- 8′
RbNO ₂	113	Rubidium nitrite	8
$CsNO_2$	114	Cesium nitrite	87
$Ba(NO_2)_2$	115	Barium nitrite	87
NITRATES			
LiNO ₃	116	Lithjum nitrate	04
$NaNO_3$	110	Sodium nitrate	88 88
KNO ₃	117	Potassium nitrate	38 89
RbNO ₃	110	Rubidium nitrate	- 89
CsNO ₃	120	Cesium nitrate	
AgNO ₃	$120 \\ 121$	Silver nitrate	- 90
TINO ₃	122	Thallium nitrate	- 9
- 0			

Table

OXIDES			
$\begin{array}{c} V_2O_5 \\ CrO_3 \\ M_0O_3 \\ FeO \\ B_2O_3 \\ SiO_2 \\ GeO_2 \\ PbO \\ As_2O_3 \\ Sb_2O_3 \\ Sb_2O_3 \\ Bi_2O_3 \\ TeO_2 \end{array}$	123 124 125 126 127 128 129 130 131 132 133 134	Vanadium pentoxide Chromium trioxide Molybdenum trioxide Wustite (Fe _{0.95} O) Boron oxide Silicon dioxide Germanium dioxide Lead oxide Arsenic trioxide Antimony sesquioxide Bismuth sesquioxide Tellurium dioxide	91 91 92 92 93 93 94 94 94 94 95
SULFIDES			
$FeS \\ C_0S \\ NiS \\ CuS \\ Ag_2S \\ GeS \\ SnS \\ PbS \\ Sb_2S_3 \\ Bi_2S_3$	135 136 137 138 139 140 141 142 143 144	Iron (II) sulfide Cobalt (II) sulfide Nickel (II) sulfide Copper (I) sulfide Silver sulfide Germanium (II) sulfide Tin (II) sulfide Lead sulfide Antimony (III) sulfide Bismuth (III) sulfide	95 95 96 96 96 97 97 97 98 98
SULFATES			
$\begin{array}{c} Li_{2}SO_{4} \\ Na_{2}SO_{4} \\ K_{2}SO_{4} \\ Rb_{2}SO_{4} \\ Cs_{2}SO_{4} \\ Ag_{2}SO_{4} \end{array}$		Lithium sulfate Sodium sulfate Potassium sulfate Rubidium sulfate Cesium sulfate Silver sulfate	99 99 99 100 100
QUATERNARY A	MMO	DNIUM SALTS	
Pr4NBF4 Pr4NPF6 Pr4NBPh4 Bu4NBr Bu4NI Bu4NBF4 Bu4NPF6 Bu4NBPh4 Hex4NBF4 (n-Amyl)4NSCN	150 151 152 153 154 155 156 157 158 159	Tetrapropylammonium tetrafluoroborate Tetrapropylammonium hexafluorophosphate Tetrapropylammonium tetraphenylborate Tetrabutylammonium bromide Tetrabutylammonium iodide Tetrabutylammonium tetrafluoroborate Tetrabutylammonium hexafluorophosphate Tetrabutylammonium tetraphenylborate Tetrahexylammonium tetrafluoroborate Tetrahexylammonium tetrafluoroborate Tetrahexylammonium tetrafluoroborate Tetrahexylammonium tetrafluoroborate Tetra-n-amylammonium thiocyanate	100 100 101 101 101 102 102 102 102
MISCELLANEOU	S		
$\begin{array}{c} Li_2MoO_4\\ Na_2MoO_4\\ K_2MoO_4\\ Na_2WO_4\\ K_2WO_4\\ NaSCN\\ KSCN\\ KSCN\\ NaOH\\ KOH\\ K_2Cr_2O_7\\ NaPO_3\\ UO_2Cl_2\\ LiH\\ LiClO_3\\ LiClO_4\\ \end{array}$	160 161 162 163 164 165 166 167 168 169 170 171 172 173 174	Lithium molybdate Sodium molybdate Potassium molybdate Sodium tungstate Potassium tungstate Sodium thiocyanate Potassium thiocyanate Sodium hydroxide Potassium dichromate Sodium metaphosphate Uranyl chloride Lithium hydride Lithium perchlorate	$103 \\ 103 \\ 104 \\ 104 \\ 105 \\ 105 \\ 105 \\ 106 \\ 106 \\ 107 \\ 107 \\ 107 \\ 107 \\ 108 \\ 108 \\ 108 \\ 108 \\ 100 $
SUMMARY TAB			100
	175 176 177	Specific conductance – best equations Density – best equations Equivalent conductance	$109 \\ 114 \\ 117$

6. Numerical Values of Electrical Conductance, Density, and Viscosity

Eq wt 41.99

TABLE 1.Lithium fluoride

TABLE 2.Sodium fluoride

$$\begin{split} \kappa &= 1.4605 + 2.7374 \cdot 10^{-3}T \\ \rho &= 2.655 - 0.54 \cdot 10^{-3}T \end{split}$$

Eq wt 25.94

mp 845 °C (1118 °K)

	.		
Т	Λ	к	ρ
1270	106.7	4.937	1.94
1280	107.6	4.964	1.93
1290	108.5	4.992	1.93
1300	109.4	5.019	1.92
1310	110.3	5.047	1.92
1320	111.2	5.074	1.91
1330	112.2	5.101	1.91
1340	113.1	5.129	1.90
1350	114.0	5.156	1.89
1360	115.0	5.183	1.89
1370	115.9	5.211	1.88
1380	116.9	5.238	1.88
1390	117.8	5.265	1.87
1400	118.8	5.293	1.87
1410	119.8	5.320	1.86
1420	120.8	5.348	1.85

$$\begin{split} \kappa = & -15.0389 + 3.53546 \cdot 10^{-2}T - 1.28145 \cdot 10^{-5}T^2 \\ \rho = & 2.3581 - 0.4902 \cdot 10^{-3}T \\ \Lambda = & 320.71 ~ \exp{(-2143.3/RT)} \end{split}$$

Т	Λ	к	ρ
1140	124.0	8.602	(1.7993)
1150	125.2	8.662	1.7944
1160	126.4	8.719	1.7895
1170	127.5	8.774	1.7846
1180	128.7	8.826	1.7797
1190	129.7	8.876	1.7748
1200	130.8	8.923	1.7699
1210	131.8	8.968	1.7650
1220	132.8	9.010	1.7601
1230	133.7	9.050	1.7552
1240	134.7	9.087	1.7502
1250	135.6	9.121	1.7454
1260	136.4	9.153	1.7404
1270	137.2	9.182	1.7355
1280	138.0	9.209	1.7306
1290	138.7	9.233	1.7257
1300	139.5	9.254	1.7208
1310	140.2	9.273	1.7159

Density: [25, 81, <u>83</u>]. Conductance: [42, 83, <u>86</u>, 88]. Melting point: [130]. Density: [<u>25</u>, 31]. Conductance: [31, 46, 67, <u>86</u>, 88]. Melting point: [131]. mp 980 °C (1253 °K)

Eq wt 58.10

Eq wt 151.90 mp 856 °C (1129 °K)

mp 681 °C (955 °K)

 $\kappa = 9.2728 \cdot 10^{-2} + 3.0628 \cdot 10^{-3}T$ $\rho = 2.6464 - 0.6515 \cdot 10^{-3}T$ $\Lambda = 480.27 \exp(-3354.9/RT)$

 $\kappa = -1.47691 + 3.997 \cdot 10^{-3}T$ $\rho = 4.8985 - 1.2806 \cdot 10^{-3}T$ $\Lambda = 817.76 \exp(-4068.2/RT)$

Т	Λ	к	ρ	Т	Λ	к	ρ
1130	108.1	3.554	1.9102	1010	107.9	2.560	3.605
1140	109.4	3.584	1.9037	1020	110.0	2.600	3.592
1150	110.7	3.615	1.8972	1030	112.0	2.640	3.579
1160	112.0	3.646	1.8907	1040	114.1	2.680	3.567
1170	113.4	3.676	1.8841	1050	116.3	2.720	3.554
1180	114.7	3.707	1.8776	1060	118.4	2.760	3.541
1190	116.1	3.737	1.8711	1070	120.6	2.800	3.528
1200	117.4	3.768	1.8646	1080	122.7	2.840	3.515
1210	118.8	3.799	1.8581	1090	124.9	2.880	3.503
1220	120.2	3.829	1.8516	1100	127.1	2.920	3.490
1230	121.5	3.860	1.8451	1110	129.3	2.960	3.477
1240	122.9	3.891	1.8385	1120	131.5	3.000	3.464
1250	124.4	3.921	1.8320	1130	133.8	3.040	3.451
1260	125.8	3.952	1.8255				
1270	127.2	3.982	1.8190				
1280	128.6	4.013	1.8125	Density: [25,	<u>83</u>].		
1290	130.1	4.044	1.8060	Conductance	e: [83, <u>182</u>].		

Melting point: [130].

Density: [26, 81, 83].

Conductance: [26, 31, 42, 73, 83, 86, 88, 198]. Melting point: [130].

Eq wt 31.16

Eq wt 39.04

mp 1263 °C (1536 °K)

				$\rho = 3.235 - 5.$	$24 \cdot 10^{-4}T$
	Table	5. Beryllium	fluoride	Т	ρ
Eq wt 23.5	51		mp 540 °C (813 °K)	1650	0.070
				1650	2.370
κ was obta	ained from	a smooth curv	e through the experi-	1700	2.344
	mental	l points of Mac	kenzie.	1750	2.318
				1800	2.292
	$\eta = 1.756$	$5 \cdot 10^{-7} \exp(58)$	566/RT)	1850	2.266
				1900	2.239
-	7 .	$\kappa \cdot 10^5$	$\eta \cdot 10^3$	1950	2.213
_		K 10	η 10 	2000	2.187
				2050	2.161
	850		190,000.	2100	2.135
	870		85,600.		<u> </u>
	890		40,000.		
	910		19,400.	Density: [9	<u>5</u>].
	930		9,660.	Melting poir	nt: [130].
	950		4,960.		
	970	0.61	2,620.		
	990	1.36	1,420.		
	1010	2.63	788.		
	1010	2.03 4.64	448.	TABLE 7.Cale	cium fluori
	1050	4.04	440.		

090	,	40,000.
910		19,400.
930	••••••	9,660.
950		4,960.
970	0.61	2,620.
990	1.36	1,420.
1010	2.63	788.
1030	4.64	448.
1050	7.87	260.
1070	13.77	154.
1090	22.3	92.9
1110	33.9	57.1
1130	51.9	35.7
1150	75.7	22.7
1170	106.2	14.7
1190	144.7	9.61
1210	194.5	6.39
1230	• • • • • • • • • • • • • • • • • • • •	4.30
1250 .		2.93

Conductance: [143]. Viscosity: [143, <u>225</u>]. Melting Point: [143].

mp 1418 °C (1691 °K)

 $\rho = 3.179 - 3.91 \cdot 10^{-4} T$

Т	ρ
$ \begin{array}{r} 1650 \\ 1700 \\ 1750 \\ 1800 \\ 1850 \\ 1900 \\ 1950 \\ 2000 \\ 2050 \\ 2100 \\ 2150 \\ 2200 \\ 2250 \\ 2300 \\ \end{array} $	$\begin{array}{c} 2.534\\ 2.514\\ 2.495\\ 2.475\\ 2.456\\ 2.436\\ 2.417\\ 2.397\\ 2.377\\ 2.358\\ 2.338\\ 2.319\\ 2.299\\ 2.280\end{array}$

Density: [95, 197]. Melting point: [130]. Eq wt 65.30

mp $\,<\,1477$ °C ($<\,1750$ °K)

T	0
1	ρ
1750	3.470
1800	3.432
1850	3.395
1900	3.357
1950	3.320
2000	3.282
2050	3.244
2100	3.207
2150	3.169
2200	3.132

Density: [95]. Melting point: [130].

$\rho = 5.793 - 6.82 \cdot 10^{-4} T$		
Т	ρ	
1750 1800 1850 1900 1950 2000 2050 2100 2150 2200 2250 2300 2350 2400 2450	$\begin{array}{c} 4.600\\ 4.565\\ 4.531\\ 4.497\\ 4.463\\ 4.429\\ 4.395\\ 4.361\\ 4.327\\ 4.293\\ 4.259\\ 4.224\\ 4.190\\ 4.156\\ 4.122\end{array}$	

Density: [<u>95</u>]. Melting point: [95].

TABLE 11. Cerium (III) fluoride

TABLE 9.Barium fluoride

Eq wt 65.70

mp 1460 °C (1733 °K)

Eq wt 87.68

mp 1320 °C (1593 °K)

 $\rho = 5.775 - 9.99 \cdot 10^{-4}T$

Т	ρ
1600 1650 1700 1750 1800 1850 1900 1950 2000	4.177 4.127 4.077 4.027 3.977 3.927 3.877 3.827

Density: [95]. Melting point: [130]. $\rho \!=\! 6.253 \!-\! 9.36 \cdot 10^{-4} T$

Т	ρ
1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200	4.662 4.615 4.568 4.521 4.475 4.428 4.381 4.334 4.287 4.241 4.194

Density: [<u>95</u>]. Melting point: [130]. Eq wt 77.03

mp 1110 °C (1383 °K) Eq wt 78.52

mp 1036 °C (1309 °K)

ho =	7.108 —	7.590 ·	$10^{-4}T$

ρ 6.0530 6.0454 6.0202
6.0454
6.0302 6.0150 5.9999 5.9847 5.9695 5.9543 5.9391 5.9240 5.9088 5.8936 5.8784

Density: [<u>167</u>]. Melting point: [<u>167</u>].

$\rho =$	7.	784 -	9.920	$\cdot 10^{-4}$	¥7
----------	----	-------	-------	-----------------	----

=

Т	ρ
1310	6.4845
1320	6.4746
1340	6.4547
1360	6.4349
1380	6.4150
1400	6.3952
1420	6.3754
1440	6.3555
1460	6.3357
1480	6.3158
1500	6.2960
1520	6.2762
1540	6.2563
1560	6.2365
1580	6.2166
1600	6.1968
1620	6.1770

Density: [<u>167</u>]. Melting point: [<u>167</u>].

 TABLE 14.
 Manganese (II) fluoride

mp 856 °C (1129 °K)

Eq wt 46.46

$\kappa = 4.0 \cdot 10^{-3}T$		
Т	к	
1200 1250 1300	4.8 5.0 5.2	

Conductance: [86]. Melting point: [130].

 TABLE 15.
 Copper (II) fluoride

Eq wt 50.77

mp 856 °C (1129 °K)

$\kappa = 0.93 + 1.0 \cdot 10^{-3}T$		
Т	к	
1270 1320 1370	2.2 2.3 2.4	

Conductance: [86]. Melting point: [130]. Eq wt 126.88

$$\frac{\kappa}{\kappa} = -5.2 + 12.0 \cdot 10^{-3}T$$

$$\frac{T}{\kappa}$$

$$\frac{800}{850}$$

$$\frac{4.4}{850}$$

$$\frac{5.0}{5.6}$$

Conductance: [86]. Melting point: [130].

κ=

TABLE 17.Zinc fluoride

Eq wt 51.69

	mp 872 °C (1145 °K)
= -3.75 + 6.0 ·	10 ⁻³ T	

Т	к
1150	3.15
1200	3.45

Conductance: [<u>86</u>]. Melting point: [130].

TABLE 18. Lead (II) fluoride

Eq wt 122.60

mp 822 °C (1095 °K)

$\kappa = 0.7 + 4.0 \cdot 10^{-3}T$		
Т	к	
1150 1200 12 <mark>5</mark> 0	5.3 5.5 5.7	

Conductance: [86]. Melting point: [130]. TABLE 19. Lithium chloride

Eq wt 42.4

mp 610 °C (883 °K)

$$\begin{split} \kappa &= -2.0647 + 12.1271 \cdot 10^{-3}T - 3.7641 \cdot 10^{-6}T^2 \\ \rho &= 1.8842 - 0.4328 \cdot 10^{-3}T \\ \Lambda &= 508.2 \ \exp{(-2015/RT)} \\ \eta &= 3.306 \cdot 10^{-2} \ \exp{(7007/RT)} \end{split}$$

Т	Λ	к	ρ	η	Т	η
910 920 930 940 950 960 970 980 990 1000 1010 1020 1030 1040 1050	$166.8_{3} \\ 168.8_{1} \\ 170.7_{8} \\ 172.7_{4} \\ 174.6_{9} \\ 176.6_{3} \\ 178.5_{6} \\ 180.4_{8} \\ 182.3_{9} \\ 184.2_{9} \\ 184.2_{9} \\ 186.1_{7} \\ 188.0_{5} \\ 189.9_{2} \\ 191.7_{7} \\ 193.6_{1} \\ 10000000000000000000000000000000000$	5.864 5.916_5 5.968 6.019 6.069 6.118_5 6.167 6.215 6.262 6.308_5 6.354 6.399 6.443 6.486 6.529	1.4904 1.4860 1.4817 1.4774 1.4730 1.4687 1.4644 1.4601 1.4557 1.4514 1.4427 1.4384 1.4341 1.4298	$\begin{array}{c} 1.59\\ 1.53\\ 1.47\\ 1.41\\ 1.35\\ 1.30\\ 1.25\\ 1.21\\ 1.16\\ 1.12\\ 1.09\\ 1.05\\ 1.01\\ 0.98\\ .95\end{array}$	1060 1070 1080	0.92 .89 .87

Density: [3, 25, 55, 62, 66, <u>79</u>, 81]. Conductance: [33, 42, 44, 45, 55, <u>62</u>, 66, <u>79</u>, 85]. Viscosity: [12, 45, 47, <u>121</u>]. Melting point: [130]. Eq wt 58.45

Eq wt 74.55

mp 800 °C (1073 °K)

mp 770 °C (1043 °K)

$$\begin{split} &\kappa = -2.4975 + 8.0431 \cdot 10^{-3}T - 2.2227 \cdot 10^{-6}T^2 \\ &\rho = 2.1393 - 0.5430 \cdot 10^{-3}T \\ &\Lambda = 544.6 \ \exp\left(-2990/RT\right) \\ &\eta = 81.9007 - 0.185538 \ T + 1.42786 \cdot 10^{-3}T^2 \\ &- 3.70073 \cdot 10^{-8}T^3 \end{split}$$

Т	Λ	к	ρ	η
$\begin{array}{c} 1080\\ 1090\\ 1100\\ 1110\\ 1120\\ 1130\\ 1140\\ 1150\\ 1160\\ 1170\\ 1180\\ 1190\\ 1200\\ 1210\\ 1220\\ 1220\\ 1230\\ 1240\\ 1250\\ 1260\\ 1270\\ 1280\\ 1290\\ 1290\\ \end{array}$	$\begin{array}{c} 135.4\\ 137.1\\ 138.8\\ 140.4\\ 142.1\\ 143.8\\ 145.4\\ 147.1\\ 148.8\\ 150.4\\ 152.1\\ 153.7\\ 155.3\\ 157.0\\ 158.6\\ 160.2\\ 161.8\\ 163.4\\ 165.0\\ 166.6\\ 168.2\\ 169.8\\ \end{array}$	$\begin{array}{c} 3.596\\ 3.629\\ 3.660\\ 3.692\\ 3.723\\ 3.753\\ 3.783\\ 3.813\\ 3.842\\ 3.870\\ 3.898\\ 3.926\\ 3.954\\ 3.980\\ 4.007\\ 4.033\\ 4.058\\ 4.003\\ 4.008\\ 4.108\\ 4.132\\ 4.156\\ 4.179\end{array}$	$\begin{array}{c} 1.553\\ 1.547\\ 1.542\\ 1.537\\ 1.531\\ 1.526\\ 1.520\\ 1.515\\ 1.509\\ 1.504\\ 1.499\\ 1.493\\ 1.488\\ 1.483\\ 1.477\\ 1.471\\ 1.466\\ 1.461\\ 1.455\\ 1.450\\ 1.444\\ 1.439\end{array}$	1.38 1.32 1.27 1.22 1.17 1.12 1.08 1.04 1.01 0.98 .95 .92 .89 .87 .84 .82
1270	10,10			

Density: [3, 11, 25, 55, 62, 66, <u>79</u>, 80, 81, 96, 126].
Conductance: [2, 4, 10, 27, 33, 42, 49, 52, 55, 62, 63, 71, <u>79</u>, 82, 85, 199].

Viscosity: [12, 38, 57, <u>121</u>]. Melting point: [130]. $\kappa = -3.99005 + 9.0222 \cdot 10^{-3}T - 3.000 \cdot 10^{-6}T^{2}$

 $\rho = 2.1359 - 0.5831 \cdot 10^{-3}T$

 $\Lambda = 548.0 \exp(-3415.2/RT)$

 $\eta = 55.5632 - 0.127847T + 9.99580 \cdot 10^{-5}T^2$

 $-2.62035 \cdot 10^{-8}T^{3}$

Т	Λ	к	ρ	η
1060 1070 1080 1090 1100 1110 1120 1130 1140 1150 1160	108.2 109.9 111.6 113.3 114.9 116.6 118.2 119.8 121.4 123.0 124.6	2.203 2.229 2.255 2.280 2.304 2.328 2.352 2.374 2.396 2.418 2.439	$\begin{array}{c} 1.5178\\ 1.5120\\ 1.5062\\ 1.5003\\ 1.4945\\ 1.4887\\ 1.4828\\ 1.4770\\ 1.4712\\ 1.4653\\ 1.4595\end{array}$	$\begin{array}{c} 1.14_9\\ 1.10_8\\ 1.07_1\\ 1.03_6\\ 1.00_4\\ 0.97_5\\ .94_8\\ .92_4\\ .90_1\\ .88_1\\ .86_3\end{array}$
1170 1180 1190 1200	126.1 127.6 129.1 130.6	2.459 2.479 2.498 2.517	1.4537 1.4478 1.4420 1.4362	.847 .832 .819 .807

Density: [3, 11, 26, 62, 66, 70, 79, 80, 81, 126, 178].
Conductance: [2, 4, 10, 26, 27, 42, 44, 49, 50, 55, 62, 63, 66, 79, 85, 123, 124, 125, 129].

Viscosity: [12, <u>102</u>, 111].

Melting point: [130].

TABLE 22.Rubidium chloride

Eq wt 120.94

 $\kappa\!=\!-3.2034\!+\!6.0802\cdot10^{-3}T\!-\!1.5216\cdot10^{-6}T^{2}$

 $\eta = 30.0396 - 7.09298 \cdot 10^{-2}T + 5.80038 \cdot 10^{-5}T^{2}$

 $\rho = 3.7692 - 1.065 \cdot 10^{-3}T$

 $\Lambda = 1102 \exp\left(-5110/RT\right)$

mp 645 °C (918 °K)

 $-1.60636 \cdot 10^{-8}T^{3}$

 $\kappa\!=\!-3.6290+7.3405\cdot10^{-3}T\!-\!2.1918\cdot10^{-6}T^2$

 $\rho = 3.1210 - 0.8832 \cdot 10^{-3}T$

 $\Lambda = 754.1 \exp(-4401/RT)$

 $\eta = 40.8082 - 9.61807 \cdot 10^{-2}T + 7.83918 \cdot 10^{-5}T^2$

 $-2.16855 \cdot 10^{-8}T^{3}$

Т	Λ	к	ρ	η
990 1000 1010 1020 1030 1040 1050 1060 1070 1080 1090 1100 1110 1120 1130 1140 1150 1160	$\begin{array}{c} 80.2\\ 82.1\\ 84.0\\ 86.0\\ 87.9\\ 89.8\\ 91.6\\ 93.5\\ 95.4\\ 97.2\\ 99.1\\ 100.9\\ 102.7\\ 104.6\\ 106.4\\ 108.2\\ 119.9\\ 111.7\end{array}$	1.490 1.520 1.549 1.578 1.606 1.634 1.662 1.689 1.716 1.742 1.768 1.793 1.818 1.843 1.867 1.891 1.914 1.937	2.2466 2.2378 2.2290 2.2201 2.2113 2.2025 2.1936 2.1848 2.1760 2.1671 2.1583 2.1495 2.1406 2.1318 2.1230 2.1142 2.1053 2.0965	η 1.29 1.25 1.21 1.18 1.14 1.11 1.08 1.05 1.03 1.00 0.98 .95 .93 .91
1170 1180 1190 1200 1210 1220	113.5 115.2 117.0 118.7	1.959 1.981 2.002 2.023	2.0877 2.0788 2.0700 2.0612	· · · · · · · · · · · · · · · · · · ·

Density: [25, 35, 36, <u>82</u>]. Conductance: [33, <u>82</u>, 129]. Viscosity: [109, <u>121</u>]. Melting point: [131].

Density: [25, 59, 80, 81, 82]. Conductance: [33, 82, 129, 199]. Viscosity: [109, 121]. Melting point: [130].

Т	Λ	к	ρ	η
940	71.0	1.167	2.7681	1.28
950	73.2_5	1.200	2.7575	1.23
960	75.4_{5}	1.231	2.7468	1.19
970	77.7	1.263	2.7362	1.15
980	79.9 ₅	1.294	2.7255	1.12
99 0	82.1_{5}	1.325	2.7149	1.08
1000	84.4	1.355	2.7042	1.05
1010	86.6	1.385	2.6936	1.02
1020	88.8	1.415	2.6829	0.99
1030	91.0_{5}	1.445	2.6723	.97
1040	93.2_{5}	1.474	2.6616	.94
1050	95.5	1.503	2.6510	.82
1060	97.7	1.532	2.6403	.90
1070	99.9	1.560	2.6297	.88
1080	100.2	1.588	2.6190	.86
1090	104.3	1.616	2.6084	.84
1100	106.5	1.644	2.5977	.82
1110	108.7	1.671	2.5871	.80
1120	110.9	1.698	2.5764	
1130	113.2	1.724	2.5658	
1140	115.3	1.751	2.5551	
1150	117.6	1.777	2.5445	
1160	119.8	1.802	2.5338	
1170	122.0	1.828	2.5232	

988 °K) Eq wt 168.37

Eq wt 39.96

mp 440 °C (713 °K) Eq wt

TABLE 26.Calcium chloride

Eq wt 55.49

mp 782 °C (1055 °K)

$$\begin{split} \kappa &= -\ 0.075392 + 1.0576 \cdot 10^{-4}T \\ \rho &= 2.276 - 1.10 \cdot 10^{-3}T \\ \Lambda &= 5.3567 \cdot 10^{13} \exp{(-50479/RT)} \end{split}$$

Т	$\Lambda \cdot 10^2$	$\kappa \cdot 10^3$	ρ
720	2.03	0.755	$1.484 \\ 1.473 \\ 1.462 \\ 1.451 \\ 1.440$
730	4.92	1.81	
740	7.84	2.87	
750	10.8	3.93	
760	13.8	4.99	

Density: [<u>36</u>]. Conductance: [32, <u>186</u>]. Melting Point: [131].

TABLE 2	25.	Magnesium	chloride
---------	-----	-----------	----------

Eq wt 47.62

mp 714 °C (987 °K)

$$\begin{split} \kappa &= -0.6049 + 1.352 \cdot 10^{-3} T + 0.2911 \cdot 10^{-6} T^2 \\ \rho &= 1.976 - 0.302 \cdot 10^{-3} T \\ \Lambda &= 263.7 \exp (-4363/RT) \end{split}$$

Т	Λ	к	ρ
1000			
1000	(29.51)	1.038	(1.675)
1020	30.75	1.077	1.668
1040	31.98	1.116	1.662
1060	33.21	1.155	1.656
1080	34.49	1.195	1.650
1100	35.77	1.235	1.644
1120	37.04	1.274	1.638
1140	38.37	1.315	1.632
1160	39.68	1.355	1.626
1180	(41.04)	1.396	(1.620)
1200	(42.40)	1.437	(1.614)
1220	(43.77)	1.478	(1.608)
1240	(45.15)	1.519	(1.602)

Density: [36, 63, 91, <u>113</u>]. Conductance: [35, 63, <u>94</u>]. Melting Point: [130]. $\begin{aligned} \kappa &= 19.628 \exp \left(-4749/RT\right) \\ \rho &= 2.5261 - 0.4225 \cdot 10^{-3}T \\ \Lambda &= 675.3 \exp \left(-5285/RT\right) \\ \eta &= 619.541 - 1.54489 \quad T + 1.29259 \cdot 10^{-3}T^2 \\ &\quad -3.61856 \cdot 10^{-7} T^3 \end{aligned}$

Т	Λ	к	ρ	η
$ \begin{array}{r} 1060\\ 1070\\ 1080\\ 1090\\ 1100\\ 1110\\ 1120\\ 1130\\ 1140\\ 1150\\ 1160\\ 1170\\ 1180\\ 1190\\ 1200\\ 1210 \end{array} $	54.9_8 56.2_6 57.5_5 58.8_5 60.1_6 61.4_8 62.8_0 64.1_3 65.4_6 66.8_1 68.1_6 69.5_1 70.8_7 72.24 73.6_1 74.9_9	2.059 2.103 2.147 2.191 2.235 2.279 2.323 2.368 2.412 2.456 2.501 2.545 2.590 2.634 2.679 2.723	2.0783 2.0740 2.0698 2.0656 2.0614 2.0571 2.0529 2.0487 2.0445 2.0402 2.0360 2.0318 2.0276 2.0233 2.0191 2.0149	$\begin{array}{c} 3.34\\ 3.11\\ 2.90\\ 2.72\\ 2.57\\ 2.43\\ 2.31\\ 2.20\\ 2.11\\ 2.03\\ 1.96\\ 1.89\\ 1.83\\ 1.77\\ 1.72\\ 1.66\end{array}$
1220 1230 1240	76.3 ₈ 77.7 ₆	2.767 2.812	2.0107 2.0064	1.59 1.52 1.44

Density: [11, 17, 63, <u>83</u>]. Conductance: [2, 4, 11, 35, 42, 50, 71, 83, 85, <u>94</u>]. Viscosity: [47, <u>109</u>]. Melting Point: [130]. Eq wt 79.27

mp 875 °C (1148 °K) Eq wt 104.14

mp 962 °C (1235 °K)

$$\begin{split} \kappa &= 17.792 \ \exp{(-4987/RT)} \\ \rho &= 3.3896 - 0.5781 \cdot 10^{-3} \ T \\ \Lambda &= 689.6 \ \exp{(-5646/RT)} \\ \eta &= 4.401 \cdot 10^{-4} \ \exp{(20655/RT)} \end{split}$$

Т	Λ	к	ρ	η
1160 1170 1180 1190 1200 1210 1220 1230 1240 1250 1260 1270 1280 1290 1300	60.85 62.09 63.35 64.61 65.88 67.15 68.43 69.72 71.01 72.31 73.61 74.92 76.23 77.55	$\begin{array}{c} 2.082_5\\ 2.120_8\\ 2.159_0\\ 2.197_3\\ 2.235_6\\ 2.274_0\\ 2.312_3\\ 2.350_7\\ 2.389_1\\ 2.427_4\\ 2.465_8\\ 2.504_2\\ 2.542_5\\ 2.580_9\end{array}$	2.7132 2.7074 2.7017 2.6959 2.6901 2.6843 2.6785 2.6728 8.6670 2.6612 2.6554 2.6439 2.6439 2.6381	3.43 3.18 2.95 2.74 2.54 2.37 2.21 2.06 1.92 1.80
1310	78.88	2.619_{2}	2.6323	

 $\begin{aligned} \kappa &= 17.479 \exp \left(-5274/RT\right) \\ \rho &= 4.0152 - 0.6813 \cdot 10^{-3} T \\ \Lambda &= 772.5 \exp \left(-6004/RT\right) \\ \eta &= 1.643 \cdot 10^{-3} \exp \left(20029/RT\right) \end{aligned}$

Т	Λ	к	ρ	η
1240	67.5_{8}	2.058	3.1704	
1250	68.9 ₀	2.093	3.1636	
1260	70.2_{2}	2.129	3.1568	
1270	71.5_{5}	2.164	3.1499	4.60
1280	72.8_{9}	2.200	3.1431	4.32
1290	74.2_{3}	2.236	3.1363	4.07
1300	75.5_{8}	2.271	3.1295	3.83
1310	76.9 ₃	2.307	3.1227	3.61
1320	78.2_{9}	2.343	3.1159	
1330	79.66	2.378	3.1091	
1340	81.0_{3}	2.414	3.1023	
1350	82.4_{1}	2.450	3.0954	
1360	8 3.8 ₀	2.485	3.0886	

Density: [11, 63, 70, 81, <u>83</u>]. Conductance: [4, 63, 83, 85, <u>94</u>]. Viscosity: [<u>109</u>, 210]. Melting Point: [130].

Density: [11, 81, <u>83</u>, 91]. Conductance: [4, 83, <u>94</u>]. Viscosity: [<u>109</u>]. Melting Point: [130].

 TABLE 29.
 Scandium (III) chloride

Eq wt 50.49

mp 939 °C (1212 °K)

$\kappa = -2.890 + 2.796 \cdot 10^{-3}T$			
<i>T</i> °K	к	ρ	
1213 1223 1273	0.53 .67	1.67	

Density: [<u>36</u>]. Conductance: [<u>30</u>]. Melting Point: [131].

51

Eq wt 65.09

mp 700 °C (973 °K) Eq. w

 TABLE 31.
 Lanthanum (III) chloride

Eq wt 81.76

mp 870 °C (1143 °K)

$$\begin{split} \kappa = & -3.7071 + 5.9576 \cdot 10^{-3}T - 1.8199 \cdot 10^{-6}T^{z} \\ \rho = & 3.007 - 0.50 \cdot 10^{-3}T \\ \Lambda = & 959.2 \ \exp{(-8827/RT)} \end{split}$$

		104 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	
Т	Λ	к	ρ
980	9.9	0.384	2.517
99 0	10.55	.407	2.512
1000	11.2	.431	2.507
1010	11.8	.454	2.502
1020	12.4	.476	2.497
1030	13.0	.498	2.492
1040	13.6	.520	2.487
1050	14.2	.542	2.482
1060	14.8	.563	2.477
1070	15.4	.584	2.472
1080	15.9 ₅	.604	2.467
1090	16.5	.624	2.462
1100	17.05	.644	2.457
1110	17.6	.664	2.452
1120	18.15	.683	2.447
1130	(18.7)	.701	(2.442)
1140	(19.2)	.719	(2.437)
1150	(19.75)	.737	(2.432)
1160	(20.2_5)	.755	(2.427)

$$\begin{split} \kappa &= -13.538 + 22.487 \cdot 10^{-3}T - 8.167 \cdot 10^{-6}T^2 \\ \rho &= 4.0895 - 0.7774 \cdot 10^{-3}T \\ \Lambda &= 469.4 \exp(-5678/RT) \\ \eta &= 2.061 \cdot 10^{-2} \exp(13049/RT) \end{split}$$

Т	Λ	к	ρ	η
1140 1150 1160 1170 1180 1190 1200 1210 1220 1230 1240 1250	$\begin{array}{c} 37.86\\ 38.92\\ 39.95\\ 40.93\\ 41.88\\ 42.79\\ 43.67\\ 44.50\\ 45.30\\ 46.06\\ 46.78\\ 47.46\end{array}$	1.483 1.521 1.557 1.592 1.625 1.656 1.686 1.714 1.740 1.765 1.788 1.810	3.2033 3.1955 3.1877 3.1799 3.1722 3.1644 3.1566 3.1488 3.1411 3.1333 3.1255 3.1178	5.14 4.91 4.69 4.49 4.29 4.11 3.94
1260	48.10	1.830	3.1100	3.78

Density: [36, <u>83</u>].

Conductance: [35, <u>83</u>, 118]. Viscosity: [<u>136</u>]. Melting Point: [130].

Density: [<u>36</u>]. Conductance: [<u>35</u>]. Melting Point: [130].
 TABLE 32.
 Cerium (III) chloride

 $\kappa = 36.17 \exp(-8258/RT)$

κ

0.827

 $.85_{6}$

.885

.914

.944

.975

 1.00_{5}

 1.03_{7}

1.068

 1.10_{1}

 1.13_{3}

 1.16_{6}

1.199

 1.23_{3}

1.267

T

1100

1110

1120

1130

1140

1150

1160

1170

1180

1190

1200

1210

1220

1230

1240

Eq wt 82.17

Eq wt 82.43

mp 823 °C (1096 °K)

 $\kappa = -10.03815 + 1.707017 \cdot 10^{-2} T - 6.301668 \cdot 10^{-6} T^{2}$ $\rho = 4.248 - 0.920 \cdot 10^{-3} T$ $\Lambda = 460.7 \exp(-6078.0/RT)$

Т	Λ	к	ρ
1100	20.0		0.000
1100	28.3	1.114	
1110	29.2	1.145	3.227
1120	30.0	1.176	3.218
1130	30.8	1.204	3.208
1140	31.6	1.232	3.199
1150	32.4	1.259	3.190
1160	33.2	1.284	3.181
1170	33.9	1.308	3.172
1180	34.6	1.330	3.162
1190	35.2	1.352	3.153
1200	35.8	1.372	3.144
1210`	36.4	1.390	3.135

Density: [99]. Conductance: [99, 119]. Melting Point: [130].

Conductance: [32, 120]. Melting Point: [130].

Table 34.	Neodymium	(III)	chloride
-----------	-----------	-------	----------

Eq wt 83.55

mp 760 °C (1033 °K)

 $\kappa = -2.018 + 2.527 \cdot 10^{-3}T$

Т	к
1050	0.635
1060	.661
1070	.686
1080	.712
1090	.736
1100	.762
1110	.787
1120	.812
1130	.838
1140	.863
1150	.888
1160	.913
1170	.939

Conductance: [32, 118]. Melting Point: [130].

 $\kappa = -1.4081 + 1.79896 \cdot 10^{-3} T$

κ

0.432

.450

.468

.486

.504

.522

.540

.558

.576

Т

1020

1030

1040

1050

1060

1070

1080

1090

1100

Eq wt 87.7

mp 602 °C (875 °K) Eq wt 90.45

mp 720 °C (993 °K)

ĸ

к	Т
0.375	900
.392	910
.410	920
.428	930
.446	940
.465	950
.484	960
.504	970
.524	980

Conductance: [<u>171</u>]. Melting Point: [170].

TABLE 36.	Dysprosium	(III)	chloride	
-----------	------------	-------	----------	--

 TABLE 38.
 Erbium (III) chloride

Conductance: [171].

Melting Point: [170].

Eq wt 89.61

mp 647 °C (910 °K) $\kappa\!=\!-1.37966+1.8417\cdot10^{-3}\ T$ Т κ 950 0.370 960 .388 970 .407 980 .425 990 .4441000.462 1010 .480

> Conductance: [<u>171</u>]. Melting Point: [<u>170</u>].

•) Eq wt 91.22

mp 776 °C (1046 °K)

 $\kappa = -1.31353 + 1.6584 \cdot 10^{-3} T$

Т	к
1070 1080 1090 1100 1110 1120	0.461 .478 .494 .511 .527 .544

Conductance: [<u>171</u>]. Melting Point: [<u>170</u>].

Eq wt 93.49

mp 770 °C (1043 °K)

Eq wt 62.92

mp 650 °C (923 °K)

$$\begin{split} \kappa &= -13.1887 + 22.5705 \cdot 10^{-3}T - 9.0973 \cdot 10^{-6}T^2 \\ \rho &= 3.3_2 \; (1090 \; ^{\circ}\text{K} - 1190 \; ^{\circ}\text{K}) \\ \Lambda &= 395.0 \; \exp \; (-6764/RT) \end{split}$$

1	r	Λ	к	ρ
1 1 1 1 1 1 1	090 100 110 120 130 140 150 160 170 180 190	17.0 17.8 18.5 19.1 19.7 20.2 20.7 21.2 21.6 21.9 22.2	0.60 .63 .66 .70 .72 .74 .75 .77 .78 .79	$\begin{array}{c} 3.3_2\\ 3.3_2\\ 3.3_2\\ 3.3_2\\ 3.3_2\\ 3.3_2\\ 3.3_2\\ 3.3_2\\ 3.3_2\\ 3.3_2\\ 3.3_2\\ 3.3_2\\ 3.3_2\\ 3.3_2\\ 3.3_2\end{array}$

Density: [<u>36</u>]. Conductance: [<u>32</u>]. Melting Point: [130].
$$\begin{split} \kappa &= 1.572640 - 1.669355 \cdot 10^{-3}T + 1.698935 \cdot 10^{-6}T^2 \\ \rho &= 2.75701 - 4.3766 \cdot 10^{-4}T \end{split}$$

 $\Lambda = 169.53 \exp(-2694.3/RT)$

Т	Λ	к	ρ
930	39.88	1.490	2.350
940 950	40.36 40.85	1.505 1.520	2.346 2.341
930 960	40.85	1.520	2.341
970	41.86	1.552	2.332
980 990	42.39 42.92	1.569 1.585	2.328 2.324
1000	43.47	1.602	2.319
$1010 \\ 1020$	44.02 44.59	1.620 1.638	2.315 2.311
1020	45.17	1.656	2.306
$\frac{1040}{1050}$	45.76 46.37	1.674 1.693	2.302 2.297
1050	40.37 46.98	1.695	2.297
1070	47.60	1.732	2.289
1080 1090	48.24 48.89	1.752 1.772	2.284 2.280
1100	49.55	1.792	2.276
$1110 \\ 1120$	50.2 50.9	1.813 1.834	2.271 2.267
1120	51.6	1.854	2.267

Conductance: [85, <u>192</u>]. Density: [<u>192</u>]. Melting Point: [130].

 TABLE 42.
 Titanium (IV) chloride

Eq wt 94.98

mp < 570 °C (< 843 °K)

Eq wt 47.43

mp - 23 °C (250 °K)

T	
Т	к
850	0.360
860	.388
870	.416
880	.444
890	.472

 TABLE 40.
 Uranium (IV) chloride

 $\kappa\!=\!-2.023\!+\!2.803\cdot10^{-3}T$

Conductance: [32]. Melting Point: [32]. $\eta = 4.952 \cdot 10^{-2} \exp(1643/RT)$

Т	η
300 310 320 330	0.779 .713 .656 .607

Viscosity: [204]. Melting Point: [130]. TABLE 43.Copper (I) chloride

TABLE 44.Silver chloride

 $\kappa\!=\!-1.578\!+\!1.0697\cdot10^{-2}T\!-\!4.51\cdot10^{-6}T^2$

 $\eta = 6.91305 - 4.47411 \cdot 10^{-3}T - 6.49368 \cdot 10^{-6}T^2$

Eq wt 143.34

 $\rho = 5.505 - 8.7 \cdot 10^{-4}T$

 $\Lambda = 268.22 \exp(-1252.3/RT)$

mp 422 °C (695 °K)

mp 455 °C (728 °K)

 $+5.41584 \cdot 10^{-9}T^{3}$

 $\begin{aligned} \kappa &= -1.290779 + 1.2137306 \cdot 10^{-2}T - 9.126581 \cdot 10^{-6}T^2 \\ &+ 2.196380 \cdot 10^{-9}T^3 \end{aligned}$

 $\rho = 4.226 - 0.76 \cdot 10^{-3}T$

Eq wt 99.00

$$\begin{split} &\Lambda = 153.6 \exp \left(-650.4/RT\right) \\ &\eta = 50.4565 - 0.140175 \ T + 1.37677 \ \cdot \ 10^{-4}T^2 \end{split}$$

$$-4.66667 \cdot 10^{-8}T^3$$

Т	Λ	к	ρ	η
	. <u> </u>			
740	96.83	3.583	3.664	
760	98.40	3.626	3.648	
780	99.89	3.666	3.633	
800	101.3	3.703	3.618	2.54
810	102.0	3.720	3.610	2.44
820	102.7	3.736	3.603	2.36
830	103.3	3.752	3.595	2.27
840	103.9	3.767	3.588	2.19
850	104.6	3.781	3.580	2.12
860	105.1	3.794	3.572	2.05
870	105.7	3.807	3.565	1.98
880	(106.3)	3.819	(3.557)	1.92
890	(106.8)	3.831	(3.550)	1.86
900	(107.4)	3.841	(3.542)	1.80
910	(107.9)	3.852	(3.534)	1.74
920	(108.4)	3.861	(3.527)	1.69
930	(108.9)	3.870	(3.519)	1.63
940	(109.3)	3.878	(3.512)	1.58
950	(109.8)	3.886	(3.504)	1.53
960	(110.2)	3.893	(3.496)	1.48
970	(110.7)	3.900	(3.489)	1.44
1000	(111.9)	3.916	(3.466)	
1050	(113.6)	3.934	(3.428)	
1100 -	(115.1)	3.940	(3.390)	
1150	(116.3)	3.938	(3.352)	
1200	(117.3)	3.927	(3.314)	
1250	(118.2)	3.910	(3.276)	
1300	(118.9)	3.889	(3.238)	
1350	(119.6)	3.865	(3.200)	
1400	(120.2)	3.840	(3.162)	
1430	(120.6)	3.825	(3.139)	

Т	Λ	к	ρ	η
73.0				0.00
730	1141	2.000	4.0(1	2.29
740	114.1	3.868	4.861	2.24
750 760	115.4	3.908	4.852 4.844	2.19
760 770	116.8 118.1	3.947	4.844 4.835	2.14 2.09
770	110.1	3.985	4.826	
780 790	119.4	4.022 4.058	4.820	2.04 2.00
800	120.7	4.058	4.809	1.95
800 810	122.0 123.3	4.093	4.809	1.95
810	125.5 125.5	4.120	4.800	1.91
820	125.5 125.7	4.101	4.792	1.80
840	125.7	4.194	4.774	1.02
850	120.9	4.225	4.765	1.70
860	120.0	4.286	4.757	1.74
870	130.3	4.315	4.748	1.67
880	131.3	4.343	4.739	1.64
890	132.4	4.370	4.731	1.61
900	133.5	4.396	4.722	1.57
910	134.5	4.422	4.713	1.55
920	135.5	4.446	4.705	1.52
930	136.4	4.470	4.696	1.49
940	137.4	4.492	4.687	1.47
950	138.3	4.514	4.678	1.45
960	139.2	4.535	4.670	1.43
970	140.1	4.555	4.661	1.41
980	140.9	4.574	4.652	
1000	142.5	4.609	4.635	
1020	144.1	4.641	4.618	

Density: [22, 54, 60, 81, <u>166</u>, 212]. Conductance: [1, 10, 21, 23, 60, 72, 100, <u>166</u>, 212]. Viscosity: [24, <u>72</u>]. Melting Point: [130].

Density: [<u>36</u>, 212]. Conductance: [<u>33</u>, <u>35</u>, <u>85</u>, <u>189</u>, 212]. Viscosity: [<u>47</u>]. Melting Point: [<u>131</u>]. Eq wt 68.15

Λ

mp 275 °C (548 °K)

mp 568 °C (841 °K)

$\kappa = 0.423433 - 1.53761 \cdot 10^{-3}T + 1.3939$	$93 \cdot 10^{-6} T^2$
	(593.3-672.5 °K)
$\kappa = 1.51396 - 4.77073 \cdot 10^{-3}T + 3.79161$	$1 \cdot 10^{-6} T^2$
	(672.5-824.7 °K)
$\kappa = 1.3084 - 4.33201 \cdot 10^{-3}T + 3.56250$	$\cdot 10^{-6}T^2$
	(824.7-969.7 °K)
$p = 2.7831 - 4.48 \cdot 10^{-4}T$	
$\Lambda = 5.3419 \cdot 10^7 \exp(-24343/RT)$	(593.3-672.5 °K)
$A = 4.8591 \cdot 10^4 \exp(-15153/RT)$	(672.5–824.7 °K)
$A = 6096.5 \exp(-11785/RT)$	(824.7–969.7 °K)

η	Obtair	ned	from	smoo	oth	curve	thro	ugh	expe	rim	ental	
	points	of	Macke	enzie	and	l Murj	p hy ,	since	e fit	to	both	
	expone	entia	al and	cubic	equ	ations	is p	oor.				

Т	Λ .	ĸ	ρ	η
590	0.0398	0.00147	2.519	
600	.0727	.00268	2.514	2900
610	.113	.00417	2.510	1760
620	.162	.00594	2.505	1100
630	.218	.00799	2.501	810
640	.282	.0103	2.496	635
650	.353	.0129	2.492	515
660	.433	.0158	2.487	424
670	.521	.01897	2.483	360
680	.635	.0231	2.478	
700	.892	.0323	2.469	
720	1.235	.0446	2.461	
740	1.665	.0599	2.452	
760	2.183	.0782	2.443	
780	2.789	.0996	2.434	
800	3.485	.1240	2.425	
820	(4.272)	.1514	(2.416)	
840	(5.189)	.1832	(2.407)	
860	(6.188)	.2177	(2.398)	
880	(7.277)	.2551	(2.389)	
900	(8.455)	.2953	(2.380)	
920	(9.724)	.3383	(2.371)	
940	(11.08)	.3842	(2.362)	
960	(12.54)	.4329	(2.353)	

Density: [36, 40, 56, 87, 91, 98, 113]. Conductance: [33, 87, 94, 98, 189]. Viscosity: [98]. Melting Point: [130].

 $\kappa\!=\!-1.9571\!+\!6.1834\cdot10^{-3}T\!-\!1.9576\cdot10^{-6}T^2$ $\rho = 4.078 - 0.82 \cdot 10^{-3}T$ $\Lambda = 224.4 \exp(-2499/RT)$ $\eta = 24.05 \cdot 10^{-2} \exp (3912/RT)$

Т	Λ	к	ρ	η
840	50.19	1.8557	3.389	
850	51.09	1.8844	3.381	
860	51.98	1.9128	3.373	
870	52.87	1.9408	3.365	2.31
880	53.75	1.9683	3.356	2.25
890	54.63	1.9955	3.348	2.20
900	55.50	2.0223	3.340	2.14
910	56.36	2.0487	3.332	2.09
920	57.22	2.0747	3.324	2.04
930	58.06	2.1003	3.315	2.00
940	58.91	2.1256	3.307	1.95
950	59.75	2.1504	3.299	1.91
960	60.58	2.1748	3.291	1.87
970	61.40	2.1989	3.283	
980	62.22	2.2226	3.274	
990	63.02	2.2458	3.266	
1000	63.83	2.2687	3.258	
1010	64.62	2.2912	3.250	
1020	65.41	2.3133	3.242	
1030	66.19	2.3350	3.233	
1040	66.97	2.3563	3.225	
1050	67.73	2.3772	3.217	
1060	68.49	2.3977	3.209	
1070	69.24	2.4179	3.201	

Density: [15, 54, 66]. Conductance: [19, 27, 33, 51, 66, 94]. Viscosity: [47, <u>53</u>]. Melting Point: [130].

Eq wt 236.07

mp 306 °C (579 °K)

 $\kappa = 5.255 \exp(-2644/RT)$ $\rho = 9.0928 - 4.0 \cdot 10^{-3}T$ $\Lambda = 353.5 \exp(-3469/RT)$

Т	Λ	к	ρ
800	39.88	0.995	5.89
810	40.96	1.015	5.85
820	42.06	1.035	5.81

Density: [<u>36</u>]. Conductance: [<u>35</u>]. Melting Point: [131].

TABLE 49.Aluminum (III) chloride

Eq wt 44.45

mp 191.8 °C (465.0 °K)

$$\begin{split} \rho = & -5.711383 + 2.859744 \cdot 10^{-2}T - 2.953960 \cdot 10^{-5}T^2 \\ \eta = & 10.5980 - 5.14676 \cdot 10^{-2}T + 8.59674 \cdot 10^{-5}T^2 \\ & -4.86480 \cdot 10^{-8}T^3 \end{split}$$

T	ρ	η
470		0.348
480	1.2094	.320
490	1.2088	.296
500	1.2024	.275
510	1.1900	.256
520	1.1717	.240
530	1.1476	.226
540	1.1175	.213
550	1.0815	.202
560	1.0395°	
570	0.9917	
580	.9380	
590	.8784	
600	.8128	
610	.7413	
620	.6640	
630	.5807	

Density: [<u>149</u>]. Viscosity: <u>[149</u>]. Melting Point: [130].
 TABLE 48.
 Mercury (II) chloride

Eq wt 135.76

mp 277 °C (550 °K)

 $\begin{aligned} \kappa &= 2.060513 \cdot 10^{-3} - 1.061468 \cdot 10^{-5}T + 1.793902 \cdot 10^{-8}T^2 \\ &- 9.720443 \cdot 10^{-12}T^3 \end{aligned}$

 $\rho = 5.9391 - 2.8624 \cdot 10^{-3}T$

 $\Lambda = 0.1775 \, \exp \left(-5626.7/RT\right)$

 $\eta = - 4341.632 + 22.96096 T - 4.043872 \cdot 10^{-2}T^{2} + 2.372690 \cdot 10^{-5}T^{3}$

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	η	ρ	$\kappa \cdot 10^5$	$\Lambda \cdot 10^3$	Т
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.74 1.63 1.54	$\begin{array}{c} 4.336\\ 4.306\\ 4.279\\ 4.250\\ 4.222\\ (4.193)\\ (4.164)\\ (4.136)\\ (4.107)\\ (4.079)\\ (4.050)\\ (4.050)\\ (4.021)\\ (3.993)\\ (3.964)\\ (3.935)\end{array}$	3.490 3.837 4.211 4.605 5.014 5.431 5.852 6.270 6.678 7.073 7.447 7.795 8.111 8.390 8.624	$\begin{array}{c} 1.093\\ 1.209\\ 1.336\\ 1.471\\ 1.612\\ (1.758)\\ (1.907)\\ (2.058)\\ (2.207)\\ (2.354)\\ (2.496)\\ (2.632)\\ (2.758)\\ (2.873)\\ (2.975)\end{array}$	560 570 580 590 600 610 620 630 640 650 660 670 680 690 700

Density: [18, <u>103</u>, 127]. Conductance: [35, 94, 103, <u>189</u>]. Viscosity: [<u>103</u>]. Melting Point: [130]. Eq wt 58.69

mp 77.6 °C (350.7 °K) Eq wt 150.22

mp 225 °C (498 °K)

$$\rho = 2.7841 - 2.0826 \cdot 10^{-3}T$$

$$\eta = 42.1652 - 0.251746 T + 5.13276 \cdot 10^{-4}T^{2}$$

$$-3.53160 \cdot 10^{-7}T^{3}$$

Т	ρ	η
$\begin{array}{c} 360\\ 370\\ 380\\ 390\\ 400\\ 410\\ 420\\ 430\\ 440\\ 450\\ 460\\ 470\\ 480 \end{array}$	2.034 2.014 1.993 1.972 1.951 1.930 1.909	$1.58 \\ 1.40 \\ 1.24 \\ 1.10 \\ 0.99 \\ .89 \\ .81 \\ .74 \\ .68 \\ .64 \\ .60 \\ .56 \\ .53 $
490 500		.50 .47 .43
510 520		.43 .39

Density: [148, 149]. Viscosity: [149, 148]. Melting Point: [130].

$\kappa = -2.0281 + 5.2188 \cdot 10^{-1}$	${}^{3}T + 1.0942 \cdot 10^{-6}T^{2}$
$\rho = 4.43_7 - 1.40 \cdot 10^{-3}T$	
$\Lambda = 1208 \exp(-3528/RT)$	

Т	Λ	к	ρ
$ 500 \\ 510 \\ 520 \\ 530 \\ 540 \\ 550 \\ 560 \\ 570 \\ 580 \\ 590 \\ 600 \\ 610 \\ 620 $	(34.4) (37.0) (39.8) (42.5) (42.5) (45.3) (42.5) (45.3) (45.3) (45.3) (45.3) (45.3) (45.3) (45.5)	$\begin{array}{c} 0.85\\.92\\.98\\1.05\\1.11\\1.17\\1.24\\1.30\\1.37\\1.43\\1.50\\1.56\\1.63\end{array}$	$\begin{array}{c} (3.73_7)\\ (3.72_3)\\ (3.70_9)\\ (3.69_5)\\ 3.68_1\\ 3.66_7\\ 3.65_3\\ 3.66_7\\ 3.65_3\\ 3.63_9\\ 3.62_5\\ 3.61_1\\ 3.59_7\\ 3.58_3\\ 3.56_9\end{array}$

Density: [<u>34</u>]. Conductance: [<u>34</u>]. Melting Point: [130]. Eq wt 92.84

mp 235 °C (508 °K)

Eq wt 73.71

mp 586 °C (859 °K)

$\kappa = -1.2783 + 3.6986 \cdot 10^{-3}T - 1.4444 \cdot 10^{-6}T^{2}$
$\rho = 3.86_3 - 1.60 \cdot 10^{-3}T$
$\Lambda = 288.4 \exp(-3687/RT)$

Density: [<u>34</u>]. Conductance: [<u>34</u>]. Melting Point: [130].

$\kappa = 1.184 - 0.883 \cdot 10^{-3}T$
$\rho = 3.94_4 - 2.10 \cdot 10^{-3}T$
$\Lambda = 4.112 \exp(+2181/RT)$

Т	Λ	к	ρ
860 870 880 900 910 920 930 940 950 960 970	$14.6_4 \\ 14.4_8 \\ 14.3_1 \\ 14.1_4 \\ 13.9_7 \\ 13.7_9 \\ 13.6_2 \\ 13.4_3 \\ 13.2_4 \\ (13.0_5) \\ (12.8_6) \\ (12.6_6)$	0.425 .416 .407 .398 .389 .380 .372 .363 .354 .345 .336 .327	$\begin{array}{c} 2.13_8\\ 2.11_7\\ 2.09_6\\ 2.07_5\\ 2.05_4\\ 2.03_3\\ 2.01_2\\ 1.99_1\\ 1.97_0\\ (1.94_9)\\ (1.92_8)\\ (1.90_7)\end{array}$
		1	

Density: [<u>34</u>]. Conductance: [34]. Melting Point: [130].

TABLE 55.Tin (II) chloride

 $\kappa = -4.734129 - 1.434825 \cdot 10^{-2}T - 7.776484 \cdot 10^{-6}T^{2}$

Eq wt 239.85

mp 245 °C (518 °K)

 $+ 8.757843 \cdot 10^{-10} T^{3}$

 $\kappa = -2.073997 + 4.839529 \cdot 10^{-3}T + 4.677176 \cdot 10^{-10}T^2$ $-6.884975 \cdot 10^{-10}T^{3}$

 $a = 4.016 - 1.253 \cdot 10^{-3}T$

$\rho = 6.893 - 1.80 \cdot 10^{-3}T$ $\Lambda = 546.0 \exp(-3421.0/RT)$		$\rho = 4.016 - 1.253 \cdot 10^{-3}T$ $\Lambda = 361.8 \exp(-2726.9/RT)$					
T	Λ	к	ρ	Т	Λ	к	ρ
720	49.44	1.154	5.597	520	21.06	0.7473	(3.364)
740	52.99	1.228	5.561	540	25.10	.8842	3.339
760	56.53	1.302	5.525	560	29.06	1.016	3.314
780	60.06	1.374	5.489	580	32.94	1.143	3.289
800	63.58	1.445	5.453	600	36.73	1.264	3.264
820	67.09	1.515	5.417	620	40.43	1.381	3.239
840	70.58	1.583	5.381	640	44.04	1.493	3.214
860	74.06	1.650	5.345	660	47.57	1.600	3.189
880	77.52	1.716	5.309	680	51.01	1.702	3.164
900	80.97	1.780	5.273	700	54.36	1.800	3.139
920	84.39	1.843	5.237	720	57.61	1.892	3.114
940	(87.79)	1.904	(5.201)	740	60.78	1.980	3.089
960	(91.17)	1.963	(5.165)	760	63.85	2.063	3.064
980	(94.52)	2.021	(5.129)	780	66.83	2.142	(3.039)
1000	(97.84)	2.078	(5.093)	800	69.71	2.216	(3.014)
1020	(101.13)	2.132	(5.057)	820	72.50	2.2 <mark>85</mark>	(2.989)
1040	(104.38)	2.185	(5.021)	840	75.20	2.350	(2.963)
1060	(107.60)	2.236	(4.985)	860	77.79	2.411	(2.938)
1080	(110.79)	2.286	(4.949)	880	80.29	2.467	(2.913)
1100	(113.93)	2.334	(4.913)	900	82.68	2.519	(2.888)
1120	(117.03)	2.380	(4.877)	950	88.22	2.629	(2.826)
1140	(120.08)	2.424	(4.841)	1000	93.11	2.713	(2.763)
1160	(123.09)	2.466	(4.805)	1050	97.32	2.772	(2.700)
				1100	100.8	2.805	(2.638)
				1150	103.6	2.814	(2.575)

Density: [36]. Conductance: [21, 189]. Melting Point: [130].

> Density: [25, 36]. Conductance: [35, 189]. Melting Point: [131].

1200

1220

1240

105.6

106.2

106.7

2.799

2.787

2.770

(2.512)

(2.487)

(2.462)

Eq wt 65.13

mp - 33.3 °C (239.9 °K)

Eq wt 139.06

mp 498 °C (771 °K)

$\rho = 3.0185 - 2.0185 - 2.0185 - 2.00000000000000000000000000000000000$	$.687 \cdot 10^{-3}T$
$\eta = 3.187 \cdot 10^{-1}$	$^{2} \exp (1928/RT)$

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Т	ρ	η
	$\begin{array}{c} 290\\ 300\\ 310\\ 320\\ 330\\ 340\\ 350\\ 360\\ 370\\ 380\\ 390\\ 400\\ 410\\ \end{array}$	2.159 2.132 2.105 2.078 2.051 2.024 1.997 1.971 1.944 1.917	$1.02 \\ 0.90 \\ .81 \\ .73 \\ .66 \\ .60 \\ .55 \\ .51 \\ .47 \\ .44 \\ .41 \\ .38 \\ .36 \\ .34$

Density: [<u>147</u>]. Viscosity: [<u>147</u>, 204]. Melting Point: [130].
$$\begin{split} \kappa &= -\ 0.487664 + 11.2124 \cdot 10^{-3}\ T - 3.9156 \cdot 10^{-6}\ T^2 \\ \rho &= 6.112 - 1.50 \cdot 10^{-3}\ T \\ \Lambda &= 588.1\ \exp\ (-4093/RT) \\ \eta &= 5.619 \cdot 10^{-2}\ \exp\ (6762/RT) \end{split}$$

Т	Λ	к	ρ	η
780	41.8	1.486	4.942	4.41
790	43.4	1.537	4.927	4.17
800	44.9	1.586	4.912	3.95
810	46.4	1.635	4.897	3.75
820	48.0	1.684	4.882	3.56
830	49.5	1.731	4.867	3.39
840	51.0	1.778	4.852	3.23
850	52.4	1.824	4.837	3.08
860	53.9	1.869	4.822	2.94
870	55.4	1.913	4.807	2.81
880	56.8	1.957	4.792	2.69
890	58.2	2.000	4.777	2.57
900	59.6	2.042	4.762	2.47
910	61.0	2.083	4.747	2.36
920 930 940 950 960	62.4 63.8 65.1	2.123 2.163 2.202	4.732 4.717 4.702 4.687 4.672	2.27 2.18 2.10 2.02 1.95

Density: [15, 40, <u>54</u>, 150, 212]. Conductance: [7, 51, 72, 85, <u>97</u>, 151, 212]. Viscosity: [8, <u>72</u>]. Melting Point: [130].
 TABLE 58.
 Bismuth (III) chloride

Eq wt 105.12

mp 175 °C (448 °K)

$$\begin{split} \kappa = & -4.0243 + 1.6574 \cdot 10^{-2}T - 1.9059 \cdot 10^{-5} \ T^2 \\ & + 6.8368 \cdot 10^{-9} \ T^3 \end{split}$$

 $\rho = 5.073 - 2.30 \cdot 10^{-3} T$ $\Lambda = 32.36 \exp (-981.3/RT)$ $\eta = 0.3787 \exp (4693/RT)$

Density: [25, <u>32</u>]. Conductance: [<u>114</u>, 32]. Viscosity: [<u>16</u>]. Melting Point: [130].

$\kappa = -0.2949 + 0.3715 \cdot 10^{-3}T + 0.6918 \cdot 10^{-6}T^{2}$

 TABLE 59.
 Tellurium (II) chloride

Т	к
$\begin{array}{r} 480\\ 490\\ 500\\ 510\\ 520\\ 530\\ 540\\ 550\\ 560\\ 570\\ 580\end{array}$	0.043 .053 .064 .075 .085 .096 .107 .119 .130 .142 .153

Conductance: [<u>32</u>]. Melting Point: [131].

TABLE 60. Tellurium (IV) chloride

Eq wt 67.36

mp 224 °C (497 °K)

 $\kappa\!=\!-0.6702\!+\!1.930\cdot10^{-3}T\!-\!0.7617\cdot10^{-6}T^2$

Т	к
510 520 530 540 550 560 570 580 590	$egin{array}{c} 0.116_0\ .127_5\ .138_5\ .150_0\ .161_0\ .171_5\ .182_5\ .193_0\ .203_5 \end{array}$

Conductance: [<u>32</u>]. Melting Point: [130]. TABLE 61.Lithium bromide

TABLE 62.Sodium bromide

Eq wt 86.86

mp 550 °C (823 °K)

Eq wt 102.91

mp 750 °C (1023 °K)

$$\begin{split} \kappa = & -1.1362 + 8.6159 \cdot 10^{-3}T - 1.86212 \cdot 10^{-6}T^2 \\ \rho = & 3.0658 - 0.6520 \cdot 10^{-3}T \\ \Lambda = & 585.3 \text{ exp } (-\ 2117/RT) \\ \eta = & 6.868 \cdot 10^{-2} \text{ exp } (5355/RT) \end{split}$$

Т	Λ	к	ρ	η
T 830 840 850 860 870 880 890 900 910 920 930 940 950 960 970 980 990 1000	Λ 162.83 165.16 167.47 169.79 172.11 174.43 176.75 179.06 181.38 183.69 186.01 188.34 190.63 192.94 195.25 197.57 199.88 202.18	κ 4.7328 4.7879 4.8426 4.8969 4.9509 5.0045 5.0577 5.1105 5.1630 5.2151 5.2668 5.3187 5.3692 5.4198 5.4700 5.5199 5.5694 5.6185	ρ 2.5246 2.5181 2.5116 2.5051 2.4986 2.4920 2.4855 2.4790 2.4725 2.4660 2.4594 2.4529 2.4464 2.4399 2.4334 2.4268 2.4203 2.4138	η 1.521 1.469 1.419 1.372 1.327 1.285 1.246 1.208 1.171 1.138 1.105 1.074 1.045 1.016
$1010\\1020$	204.48 206.79	5.6672 5.7156	2.4073 2.4008	0.990
1030	200.79	5.7150	2.4008	$.96_5$ $.94_0$
1040				.917

Density: [3, 81, <u>82</u>]. Conductance: [<u>82</u>]. Viscosity: [47, <u>102</u>]. Melting Point: [130].
$$\begin{split} \kappa &= 9.097 \, \exp{(-2324/RT)} \\ \rho &= 3.1748 - 0.8169 \cdot 10^{-3}T \\ \Lambda &= 622.7 \, \exp{(-3228/RT)} \\ \eta &= 64.3240 - 0.152525 \, T + 1.23215 \cdot 10^{-4}T^2 \end{split}$$

 $-3.34241 \cdot 10^{-8}T^{3}$

Т	Λ	к	ρ	η
1030	128.9	2.92Ż	2.3334	
1040	130.8	2.954	2.3252	
1050	132.6	2.986	2.3171	
1060	134.5	3.018	2.3089	1.28_{3}
1070	136.4	3.049	2.3007	1.245
1080	138.3	3.080	2.2925	1.210
1090	140.1	3.111	2.2844	1.178
1100	142.0	3.141	2.2762	1.149
1110	143.9	3.172	2.2680	1.123
1120	145.8	3.202	2.2599	1.098
1130	147.7	3.231	2.2517	1.076
1140	149.6	3.261	2.2435	1.056
1150	151.5	3.290	*2.2353	1.03_{8}
1160	153.4	3.319	2.2272	1.02_{2}
1170	155.3	3.348	2.2190	1.006
1180	157.2	3.376	2.2109	0.992
1190	159.1	3.404	2.2027	.979
1200	161.0	3.432	2.1945	.967
1210	162.9	3.460	2.1864	.955
1220	164.8	3.488	2.1782	•••••

Density: [3, 25, 81, <u>82</u>]. Conductance: [10, 52, <u>82</u>, 129, 199]. Viscosity: [12, <u>102</u>]. Melting Point: [130].

TABLE 63.Potassium bromide

TABLE 64.Rubidium bromide

 $\kappa = -5.6453 + 11.1780 \cdot 10^{-3}T - 4.3285 \cdot 10^{-6}T^2$

 $\eta = 51.9396 - 0.131564 T + 1.14887 \cdot 10^{-4}T^2$

Eq wt 119.01

mp 735 °C (1008 °K)

Eq wt 165.40

 $\rho = 3.7390 - 1.0718 \cdot 10^{-3}T$

 $\lambda = 611.1 \exp(-4171/RT)$

mp 680 °C (953 °K)

 $-3.39298 \cdot 10^{-8}T^{3}$

 $\kappa = -6.6001 + 13.1823 \cdot 10^{-3}T - 5.0051 \cdot 10^{-6}T^2$

 $\rho = 2.9583 - 0.8253 \cdot 10^{-3}T$

 $\Lambda = 591.1 \exp(-3747/RT)$

 $\eta = 128.399 - 0.334905 T + 2.94450 \cdot 10^{-4} T^{2}$

$$-8.66540 \cdot 10^{-8}T^{3}$$

Т	Λ	к	ρ	η
1020	92.1	1.639	2.1165	1.183
1030	94.1	1.668	2.1082	1.14_{0}
1040	96.1	1.696	2.1000	1.101
1050	98.0	1.723	2.0917	1.067
1060	99.9	1.749	2.0835	1.037
1070	101.8	1.775	2.0752	1.01_{2}
1080	103.6	1.799	2.0670	0.989
1090	105.3	1.822	2.0587	.969
1100	107.0	1.844	2.0505	$.95_{2}$
1110	108.7	1.865	2.0422	.936
1120	110.3	1.886	2.0340	.921
1130	111.9	1.905	2.0257	.907
1140	113.4	1.923	2.0175	.893
1150	114.9	1.940	2.0092	.878
1160	116.4	1.957	2.0010	.863
1170	117.8	1.972	1.9927	.847
1180	119.1	1.986	1.9844	.828
1190	120.4	1.999	1.9762	
1200	121.6	2.011	1.9679	

Density: [3, 15, 26, 66, 81, 82].

Conductance: $[10, 26, 33, 52, 66, \underline{82}, 100, 125, 129]$. Viscosity: $[12, 47, \underline{102}]$. Melting Point: $[130]_{\cdot_{4}}$

Т	Λ	к	ρ	η
960	• • • • • • • • • • • • • • • •	•••••	•••••	1.499
970	68.9	1.125	2.6994	1.45_{3}
980	70.9	1.152	2.6886	1.41_{0}
990	72.8	1.179	2.6779	1.37_{0}
1000	74.7	1.204	2.6672	1.33_{3}
1010	76.5	1.229	2.6565	1.29_{8}
1020	78.3	1.253	2.6458	1.26_{6}
1030	80.1	1.276	2.6350	1.23_{6}
1040	81.8	1.298	2.6243	1.20_{8}
1050	83.5	1.319	2.6136	1.18_{2}
1060	85.1	1.340	2.6029	1.15_{8}
1070	86.7	1.359	2.5922	1.13_{5}
1080	88.3	1.378	2.5815	1.11_{3}
1090	89.8	1.396	2.5707	1.09_{2}
1100	91.3	1.413	2.5600	1.07_{2}
1110	92.7	1.429	2.5493	1.05_{2}
1120	94.1	1.444	2.5386	1.03_{3}
1130	95.4	1.459	2.5279	1.01_{4}
1140	96.7	1.472	2.5171	
1150	98.0	1.485	2.5064	
1160	99.2	1.497	2.4957	
1170	100.4	1.508	2.4850	
1180	101.5	1.518	2.4743	

Density: [25, <u>82</u>]. Conductance: [<u>82</u>]. Viscosity: [<u>102</u>]. Melting Point: [130]. Eq wt 212.83

mp 636 °C (909 °K) Eq wt 92.08

mp 711 °C (984 °K)

$$\begin{split} \kappa = & -2.5553 + 4.7068 \cdot 10^{-3}T - 1.1218 \cdot 10^{-6}T^2 \\ \rho = & 4.2449 - 1.2234 \cdot 10^{-3}T \\ \Lambda = & 1169 \exp\left(-5533/RT\right) \end{split}$$

Т	Λ	к	ρ
910	54.3	0.799	3.1316
920	56.3	.826	3.1194
920	58.3	.852	3.1071
930 940	50.5 60.4	.878	3.1071
940 950	62.4	.904	3.0949
960	64.4	.929	3.0704
970	66.4 ₅	.955	3.0582
980	68.5	.980	3.0460
990	70.5	1.005	3.0337
1000	72.5	1.030	3.0215
1010	74.6	1.054	3.0093
1020	76.6	1.079	2.9970
1030	78.6	1.103	2.9848
1040	80.65	1.126	2.9726
1050	82.7	1.150	2.9603
1060	84.7	1.173	2.9481
1070	86.75	1.197	2.9359
1080	88.8	1.220	2.9236
1090	90.8	1.242	2.9114
1100	92.8 ₅	1.265	2.8992
1110	94.9	1.287	2.8869
1120	96.9	1.309	2.8747
1130	99.0	1.331	2.8625
1140	101.0	1.353	2.8502
1110	101.0	1000	2.0002

Density: [25, 74, <u>82</u>]. Conductance: [<u>82</u>, 199]. Melting Point: [130].
$$\begin{split} \kappa = & -0.4257 + 0.5717 \cdot 10^{-3}T + 0.5784 \cdot 10^{-6}T^2 \\ \rho = & 3.087 - 0.478 \cdot 10^{-3}T \\ \Lambda = & 385.5 \ \exp \ (-5404/RT) \end{split}$$

Т	Λ	к	ρ
1000	(25.5_6)	0.724	(2.510)
1020	(26.8_9)	.759	(2.600)
1040	28.24	.795	2.590
1060	29.6_2	.830	2.581
1080	31.0_{2}	.866	2.571
1100	32.4_{6}	.903	2.562
1120	33.9_{2}	.940	2.552
1140	35.4_{1}	.978	2.542
1160	36.9 ₃	1.016	2.533
1180	38.47	1.054	2.523
1200	40.04	1.093	2.514
1220	(41.6_5)	1.133	(2.504)
1240	(43.2_8)	1.173	(2.495)

Density: [91, <u>113</u>]. Conductance: [94]. Melting Point: [130].

Eq wt 99.91

mp 730 °C (1003 °K) Eq wt 123.73

mp 643 °C (916 °K)

$$\begin{split} \kappa &= 12.820 \ \exp{(-4475/RT)} \\ \rho &= 3.618 - 0.500 \cdot 10^{-3}T \\ \Lambda &= 506.7 \ \exp{(-4901/RT)} \end{split}$$

Λ	к	ρ
$\begin{array}{c} 45.3_{0} \\ 47.4_{2} \\ 49.5_{6} \\ (51.7_{1}) \\ (53.8_{8}) \\ (56.0_{7}) \\ (58.2_{8}) \\ (60.5_{0}) \\ (62.7_{3}) \\ (64.9_{7}) \\ (67.2_{2}) \\ (69.4_{8}) \end{array}$	$\begin{array}{c} 1.409\\ 1.470\\ 1.532\\ 1.593\\ 1.655\\ 1.716\\ 1.778\\ 1.840\\ 1.901\\ 1.963\\ 2.024\\ 2.085\end{array}$	3.108 3.098 3.088 (3.078) (3.068) (3.058) (3.048) (3.038) (3.028) (3.018) (3.008) (2.998)
(71.7_6) (74.0_4)	$2.146 \\ 2.207$	(2.988) (2.978)
	$\begin{array}{c} 45.3_{0} \\ 47.4_{2} \\ 49.5_{6} \\ (51.7_{1}) \\ (53.8_{8}) \\ (56.0_{7}) \\ (58.2_{8}) \\ (60.5_{0}) \\ (62.7_{3}) \\ (64.9_{7}) \\ (67.2_{2}) \\ (69.4_{8}) \\ (71.7_{6}) \end{array}$	$\begin{array}{c cccc} 45.3_0 & 1.409 \\ 47.4_2 & 1.470 \\ 49.5_6 & 1.532 \\ (51.7_1) & 1.593 \\ (53.8_8) & 1.655 \\ (56.0_7) & 1.716 \\ (58.2_8) & 1.778 \\ (60.5_0) & 1.840 \\ (62.7_3) & 1.901 \\ (64.9_7) & 1.963 \\ (67.2_2) & 2.024 \\ (69.4_8) & 2.085 \\ (71.7_6) & 2.146 \end{array}$

Density: [91, <u>113</u>]. Conductance: [<u>94</u>]. Melting Point: [132].
$$\begin{split} \kappa = & -4.0086 + 6.8056 \cdot 10^{-3}T - 1.7296 \cdot 10^{-6}T^2 \\ \rho = & 4.390 - 0.745 \cdot 10^{-3}T \\ \Lambda = & 806.5 \ \exp{(-6183/RT)} \end{split}$$

Т	Λ	к	ρ
940	28.8_{5}	0.800	3.690
960	31.3_{3}	.931	3.675
980	33.7_{9}	1.000	3.660
1000	36.2_3	1.067	3.646
1020	38.6_3	1.134	3.631
1040	41.0_{1}	1.198	3.616
1060	43.3_{6}	1.262	3.601
1080	45.6_{9}	1.324	3.586
1100	47.9_{8}	1.385	3.571
1120	50.2_{4}	1.444	· 3.556
1140	52.4_{8}	1.502	3.541
1160	54.6_{9}	1.559	3.526
1180	56.86	1.614	3.511

Density: [91, <u>113</u>]. Conductance: [<u>94</u>]. Melting Point: [130]. Eq wt 148.60

mp 850 °C (1123 °K) Eq

Eq wt 126.22

mp 783 °C (1056 °K)

$$\begin{split} \kappa = & -2.4631 + 3.736 \cdot 10^{-3}T - 0.4410 \cdot 10^{-6} \ T^2 \\ \rho = & 5.035 - 0.924 \cdot 10^{-3}T \\ \Lambda = & 691.8 \ \exp{(-6153/RT)} \end{split}$$

$\kappa = 4.7336 - 10.8289 \cdot 10^{-3}T + 6.700 \cdot 10^{-6}T^{2}$
$\rho = 5.0351 - 0.096 \cdot 10^{-3} T$
$\Lambda = 2652 \exp(-10296/RT)$

Т	Λ	к	ρ	T	Λ	к	ρ
1150	46.8	1.250	3.972	1060	20.0	0.783	4.9333
1160	47.9	1.277	3.963	1070	20.9	. 8 18	4.9324
1170	49.0	1.304	3.954	1080	21.8	.853	4.9314
1180	50.1	1.331	3.945	1090	22.8	.890	4.9305
1190	(51.3)	1.358	(3.935)	1100	23.8	.929	4.9295
1200	(52.4)		(3.926)	1110	24.8	.969	4.9285
1210	(53.6)		(3.917)	1120	25.9	1.010	4.9276
1220	(54.7)	1.438	(3.908)	1130	27.0	1.052	4.9266
1230	(55.8)	1.465	(3.898)	1140	28.1	1.096	4.9257
1240	(57.0)	1.491	(3.889)	1150	29.2	1.141	4.9247
1250	(58.1)	1.518	(3.880)	1160	- 30.4	1.188	4.9237
1260	(59.3)	1.544	(3.871)	1170	31.7	1.236	4.9228
1270	(60.4)	1.570	(3.862)	1180	32.95	1.285	4.9218
1280	(61.6)	1.596	(3.852)	1190	34.2	1.335	4.9209
1290	(62.7)	1.622	(3.843)		<u> </u>		
1300	(63.9)	1.648	(3.834)				
1310	(65.1)	1.674	(3.825)	Density: [<u>83</u>	3].		
1320	(66.2)	1.700	(3.815)	Conductanc	e: [<u>83</u> , 171].		
1330	(67.4)	1.726	(3.806)	Melting Poi	-		

Density: [<u>66</u>, 91]. Conductance: [<u>94</u>]. Melting Point: [130].

1....

 TABLE 71.
 Praseodymium (III) bromide

Eq wt 126.89

mp 691 °C (964 °K)

к=-	1.3387	+1.85	$74 \cdot 10$	-3 T
-		· _ · ·		=

Т	к
1000 1010 1020 1030 1040 1050	0.519 .537 .556 .574 .593 .612

Conductance: [<u>171</u>]. Melting Point: [170].

68

Eq wt 128.01

mp 684 °C (957 °K) Eq wt 132.2

mp 770 °C (1043 °K)

 $\begin{aligned} \kappa &= 3.2271 - 7.6760 \cdot 10^{-3} T + 4.800 \cdot 10^{-6} T^2 \\ \rho &= 4.9750 - 0.7779 \cdot 10^{-3} T \\ \Lambda &= 3973 \exp(-11749/RT) \end{aligned}$

T Λ κ 960 8.53 0.282 970 9.03 .298	ρ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 4.2282\\ 4.2204\\ 4.2127\\ 4.2049\\ 4.1971\\ 4.1893\\ 4.1815\\ 4.1738\\ 4.1660\\ 4.1582\\ 4.1504\\ 4.1582\\ 4.1504\\ 4.1426\\ 4.1349\\ 4.1271\\ 4.193\\ 4.1115\\ 4.1038\\ 4.0960\\ 4.0882\\ 4.0804\end{array}$

Density: [<u>83</u>]. Conductance: [<u>83</u>, 171]. Melting Point: [130].

$\kappa\!=\!-\,0.98898 + 1.3356\,\cdot\,10^{-3}\;T$

Т	к
$1070 \\ 1080 \\ 1090 \\ 1100 \\ 1110 \\ 1120$	0.440 .453 .467 .480 .493 .507

Conductance: [<u>171</u>]. Melting Point: [<u>170</u>].

TABLE 74. Copper (I) bromide

mp 488 °C (761 °K)

 $\kappa = 6.342 \exp(-1416/RT)$

Eq wt 143.46

Т	к
770 780 790 800 810 820	$2.514 \\ 2.544 \\ 2.573 \\ 2.602 \\ 2.631 \\ 2.659$

Conductance: [<u>41</u>]. Melting Point: [130]. TABLE 75.Silver bromide

mp 430 °C (703 °K) Eq wt 112.61

mp 394 °C (667 °K)

 $\kappa = 0.32105 + 4.8157 \cdot 10^{-3} T - 1.72064 \cdot 10^{-6} T^2$ $\rho = 6.307 - 1.035 \cdot 10^{-3} T$ $\Lambda = 210.2 \exp(-1104/RT)$ $\eta = 37.1747 - 0.100768 T + 9.80868 \cdot 10^{-5}T^2$

2	95071	10-8	722
- 3	.25971	$\cdot 10^{-8}$	10

Т	Λ	к	ρ	η
720	97.4	2.896	5.562	3.30
730	98.35	2.920	5.551	3.20
740	99.3	2.942	5.541	3.11
750	100.2_{5}	2.965	5.531	3.02
760	101.2	2.987	5.520	2.94
770	102.1	3.009	5.510	2.86
780	103.0	3.030	5.500	2.78
790	104.0	3.052	5.489	2.71
800	104.9	3.072	5.479	2.65
810	105.8	3.093	5.469	2.58
820	106.6	3.113	5.458	2.53
830	107.5	3.133	5.448	2.47
840	108.4	3.152	5.438	2.42
850	109.3	3.171	5.427	2.37
860	110.1	3.190	5.417	2.33
870	111.0	3.208	5.407	
880	111.8	3.226	5.396	•
890	112.6	3.244	5.386	
900	113.5	3.261	5.376	
910	114.3	3.278	5.365	
920	115.1	3.295	5.355	
930	115.9	3.311	5.344	

Density: [2, <u>22</u>, <u>54</u>, 81]. Conductance: [1, 10, 21, 23, 72, 100]. Viscosity: [24, <u>72</u>]. Melting Point: [130].

Density: [43, <u>113</u>]. Conductance: [94, 98]. Viscosity: [<u>98</u>]. Melting Point: [130].

$\kappa = 1.2220 - 3.9416 \cdot 10^{-3}T + 3.1971 \cdot 10^{-6}T^2$
$\rho = 4.113 - 0.959 \cdot 10^{-3}T$
$\Lambda = 35684 \exp(-14604/RT)$

 $\eta = 400$ cp at 400 °C.

T	Λ	к	ρ
670	(0.52_9)	0.016	(3.470)
680	$(.65_2)$.020	(3.461
690	(.797)	.024	(3.451
700	.964	.029	3.442
710	1.15_{2}	.035	3.432
720	1.363	.041	3.423
730	1.596	.048	3.413
740	1.85_{1}	.056	3.403
750	2.129	.064	3.394
760	2.430	.073	3.384
770	2.75_{4}	.083	3.375
780	3.101	.093	3.365
790	3.47_{2}	.103	3.355
800	3.866	.115	3.346
810	4.284	.127	3.336
820	4.726	.140	3.327
830	5.19_{3}	.153	3.317
840	5.684	.167	3.307
850	6.199	.182	3.298
860	6.74_{0}	.197	3.288
870	7.305	.213	3.279
880	7.896	.229	3.269
890	(8.51_3)	.246	(3.259)
900	(9.155)	.264	(3.250)

Eq wt 187.0

TABLE 77.Cadmium bromide

TABLE 78.Mercury (II) bromide

 $\kappa \cdot 10^4$

1.505

1.688

1.872

2.056

2.239

2.419

2.596

2.769

2.935

3.095

3.247

3.389

3.522

3.642

3.750

3.845

3.924

3.987

4.033

4.061

4.069

4.056

ρ

5.090

5.057

5.025

4.993

4.961

4.928

4.896

4.864

4.831

4.799

(4.767)

(4.735)

(4.702)

(4.670)

(4.638)

(4.605)

(4.508)

(4.476)

(4.449)

(4.411)

Eq wt 136.12

mp 237 °C (510 °K)

 η

.

.

.

.

.

.

.

.....

.....

.....

.....

.

.

.

.....

(4.573)

(4.541)

2.16

1.98

1.81

 $\kappa = -1.6351 + 4.1892 \cdot 10^{-3}T - 1.1777 \cdot 10^{-6}T^2$

 $\rho = 4.9831 - 1.08 \cdot 10^{-3}T$

 $\Lambda = 243.4 \exp(-3226/RT)$

$$\begin{split} \eta = & -110.000 + 0.409042T - 4.84560 \cdot 10^{-4}T^2 \\ & + 1.87613 \cdot 10^{-7}T^3 \end{split}$$

+ 3.099289 \cdot 10⁻⁸ T^2 - 1.913523 \cdot 10⁻¹¹ T^3 ρ =6.7715 - 3.2331 \cdot 10⁻³T Λ = 0.310523 exp (-4065.3/RT)

 $\eta = 1.801 \cdot 10^{-2} \exp (5040/RT)$

 $\kappa \!=\! 2.203887 \cdot 10^{-3} \!-\! 1.489099 \cdot 10^{-5}T$

T	Λ	к	ρ.	η	Т	$\Lambda \cdot 10^2$
850 860 870 880 890	35.99 36.82 37.64 38.46 39.27	1.075 1.097 1.118 1.139 1.160	4.065 4.054 4.043 4.033 4.022	2.73 2.65 2.57 2.49	520 530 540 550 560	0.5328 .6013 .6712 .7419 .8132
900 910 920 930	$\begin{array}{c} 40.09 \\ 40.89 \\ 41.70 \\ 42.50 \end{array}$	1.181 1.202 1.222 1.242	4.011 4.000 3.990 3.979	2.41 2.34 2.28 2.22	570 580 590 600	.8845 .9556 1.026 1.095
940 950 960 970	43.30 44.09 44.88 45.67	1.262 1.282 1.301 1.320	3.968 3.957 3.946 3.936	2.17 2.13	610 620 630 640	$ \begin{array}{c} 1.162 \\ (1.227) \\ (1.290) \\ (1.350) \\ (1.406) \end{array} $
980 990 1000 1010 1020	46.45 47.23 48.00 (48.77) (49.54)	1.339 1.358 1.376 1.395 1.413	3.925 3.914 3.903 (3.892) (3.882)		650 660 670 680 690	$(1.406) \\ (1.457) \\ (1.505) \\ (1.546) \\ (1.583)$
1030 1040 1050 1060	(50.30) (51.06) (51.81) (52.56)	1.430 1.448 1.465 1.482	(3.871) (3.860) (3.849) (3.838)		700 710 720 730	(1.612) (1.635) (1.650) (1.657)

Density: [<u>54</u>]. Conductance: [<u>94</u>]. Viscosity: [<u>53</u>]. Melting Point: [130]. Density: [18, <u>103</u>]. Conductance: [94, 103, <u>189</u>]. Viscosity: [6, <u>58</u>]. Melting Point: [131]. Eq wt 88.91

mp 97.5 °C (370.7 °K) Eq wt 118.17

mp 436 °C (709 °K)

 $\eta = 3.491 \cdot 10^{-2} \exp(3123/RT)$

; T	η	
380 390 400 410 420 430	2.18 1.96 1.78 1.61 1.47 1.35	
440 450 460 470 480 490 500 510 520	$1.24 \\ 1.15 \\ 1.06 \\ 0.99 \\ .92 \\ .86 \\ .81 \\ .76 \\ .72$	

Viscosity: [<u>138</u>, 203]. Melting Point: [130].
$$\begin{split} \kappa = &-0.1914 + 1.0056 \cdot 10^{-3}T - 0.7065 \cdot 10^{-6}T^2 \\ \rho = &4.184 - 1.50 \cdot 10^{-3}T \\ \Lambda = &6.766 \ \exp{(-91/RT)} \end{split}$$

T	Λ	к	ρ
710 720 730 740 750 760 770 780 790 800 810	$\begin{array}{c} 6.31 \\ 6.33 \\ 6.36 \\ 6.38 \\ 6.39 \\ 6.40 \\ 6.40 \\ 6.40 \\ 6.39 \\ 6.37 \\ 6.35 \end{array}$	$\begin{array}{c} 0.166_4\\.166_2\\.165_9\\.165_9\\.165_4\\.164_8\\.164_8\\.164_0\\.163_1\\.162_1\\.160_9\\.159_6\end{array}$	$\begin{array}{c} 3.11_9\\ 3.10_4\\ 3.08_9\\ 3.07_4\\ 3.05_9\\ 3.04_4\\ 3.02_9\\ 3.01_4\\ 2.99_9\\ 2.98_4\\ 2.96_9\end{array}$

Density: [<u>34</u>]. Conductance: [<u>34</u>]. Melting Point: [130].
 TABLE 81.
 Thallium (I) bromide

Eq wt 284.31

mp 459 °C (732 °K)

$$\begin{split} \kappa &= -1.663401 + 4.171786 \cdot 10^{-3}T - 1.098403 \cdot 10^{-6}T^2 \\ \rho &= 7.4335 - 1.922 \cdot 10^{-3}T \\ \Lambda &= 425.8 \, \exp{(-3510.8/RT)} \end{split}$$

Т	Λ	к	ρ
540		0.0000	(011
740	38.89	0.8222	6.011
760	41.54	.8727	5.973
780	44.19	.9223	5.934
800	46.82	.9710	5.896
820	49.46	1.0189	5.857
840	52.08	1.0659	5.819
860	54.69	1.1120	5.781
880	57.29	1.1572	5.742
900	59.89	1.2015	5.704
920	62.48	1.2450	5.665
940	65.06	1.2875	5.627
960	67.62	1.3292	5.588
980	70.18	1.3700	5.550
1000	72.73	1.4100	5.511
1020	75.27	1.4490	5.473
1040	77.80	1.4872	5.435
1060	(80.32)	1.525	(5.396)
1080	(82.83)	1.561	(5.358)
1100	(85.33)	1.596	(5.319)
1120	(87.82)	1.631	(5.281)

Density: [<u>196</u>]. Conductance: [21, <u>189</u>]. Melting Point: [130]. Eq wt 183.52

mp 370 °C (643 °K)

$$\begin{split} \kappa &= -3.4892 + 8.7490 \cdot 10^{-3} \ T - 3.7998 \cdot 10^{-6} \ T^2 \\ \rho &= 6.789 - 1.65 \cdot 10^{-3} \ T \\ \Lambda &= 660.8 \ \exp{(-4559/RT)} \\ \eta &= 112.439 - 0.329572 \ T + 3.31646 \cdot 10^{-4} \ T^2 - 1.12536 \cdot 10^{-7} \ T^3 \end{split}$$

Density: [15, <u>54</u>]. Conductance: [<u>7</u>, 72]. Viscosity: [8, 72, <u>142</u>], Melting Point: [130].

TABLE 84.Lithium iodide

Eq wt 149.58

mp 218 °C (491 °K) Eq wt 133.86

mp 449 °C (722 °K)

$$\begin{split} \kappa = & -1.99453 + 8.17416 \cdot 10^{-3}T - 8.99735 \cdot 10^{-6}T^2 \\ & + 3.02196 \cdot 10^{-9}T^3 \end{split}$$

 $\rho = 5.958 - 2.6 \cdot 10^{-3}T$ $\Lambda = 16.67 \exp(-535.6/RT)$

Т	Λ	к	ρ
510	7.587	0.2349	4.632
530	8.502	.2603	4.580
550	9.327	.2823	4.528
570	10.064	.3011	4.476
590	10.714	.3169	4.424
610	11.281	.3297	4.372
630	11.765	.3398	4.320
650	12.168	.3472	4.268
670	12.494	.3521	4.216
690	12.743	.3547	4.164
710	12.919	.3551	4.112
730	(13.024)	.3535	(4.060)
750	(13.061)	.3500	(4.008)
770	(13.032)	.3447	(3.956)
790	(12.941)	.3378	(3.904)
810	(12.790)	.3294	(3.852)
830	(12.583)	.3197	(3.800)
850	(12.323)	.3088	(3.748)
870	(12.014)	.2969	(3.696)
890	(11.660)	.2841	(3.644)
910	(11.265)	.2705	(3.592)
930	(10.832)	.2564	(3.540)
950	(10.368)	.2418	(3.488)
970	(9.876)	.2269	(3.436)

 $-1.34806 \cdot 10^{-11}T^{3}$

Т	Λ	κ	ρ	η
760 770 780 790 800 810 820 830 830 840 850 860 870 880	171.7 174.4 177.1 179.8 182.4 185.0 187.6 190.1 192.6 195.0 197.5 199.8 202.2	3.9668 4.0182 4.0683 4.1173 4.1651 4.2117 4.2571 4.3013 4.3444 4.3862 4.4268 4.4268 4.4663 4.5045	3.0928 3.0836 3.0745 3.0653 3.0561 3.0469 3.0378 3.0286 3.0194 3.0102 3.0011 2.9919 2.9827	2.17 2.09 2.01 1.94 1.87 1.81 1.75 1.69 1.63 1.58 1.53 1.48 1.44

Density: [<u>82</u>].

Conductance: [82, 108, <u>227</u>]. Viscosity: [<u>47</u>].

Melting Point: [130].

Density: [25]. Conductance: [114]. Melting Point: [130]. TABLE 85.Sodium iodide

TABLE 86.Potassium iodide

Eq wt 149.92

mp 662 °C (935 °K) Eq wt 166.02

mp 685 °C (958 °K)

$\kappa \!=\! -2.8948 + 7.5861 \cdot 10^{-3}T \!-\! 2.2381 \cdot 10^{-6} T^2$
$ ho = 3.6274 - 0.9491 \cdot 10^{-3}T$
$\Lambda = 694.5 \exp(-3221/RT)$
$\eta = 7.171 \cdot 10^{-2} \exp(5673/RT)$

Т	Λ	к	ρ	η
940	123.8	2.259	2.7352	
950	126.1	2.292	2.7258	1.45
960	128.3	2.325	2.7163	1.40
970	130.6	2.358	2.7068	1.36
980	132.8	2.390	2.6973	1.32
990	135.1	2.422	2.6878	1.28
1000	137.3	2.453	2.6783	1.25
1010	139.5	2.484	2.6688	1.21
1020	141.8	2.514	2.6593	1.18
1030	144.0	2.545	2.6498	1.15
1040	146.2	2.574	2.6403°	1.12
1050	148.3	2.603	2.6308	1.09
1060	150.5	2.632	2.6214	1.06
1070	152.7	2.660	2.6119	1.03
1080	154.8	2.688	2.6024	1.01
1090	157.0	2.715	2.5929	0.98
1100	159.1	2.742	2.5834	.96
1110	161.2	2.768	2.5739	
1120	163.3	2.794	2.5644	
1130	165.4	2.820	2.5549	
1140	167.5	2.845	2.5454	
1150	169.6	2.869	2.5359	
1160	171.7	2.894	2.5264	
1170	173.8	2.917	2.5170	
1180	175.8	2.940	2.5075	
1190	177.8	2.963	2.4980	

$\kappa = -6.1952 + 12.6232 \cdot 10^{-3}T - 5.0591 \cdot 10^{-6}T^{2}$
$ ho = 3.3594 - 0.9557 \cdot 10^{-3}T$
$\Lambda = 541.2 \exp(-3442/RT)$
$\eta = 9.836 \cdot 10^{-2} \exp(5343/RT)$

Т	Λ	ĸ	ρ	η
980				1.53
990				1.49
1000	94.5	1.36_{9}	2.4037	1.45
1010	96.6	1.39_{3}	2.3941	1.41
1020	98.7	1.41_{7}	2.3846	1.37
1030	100.6	1.43_{9}	2.3750	1.34
1040	102.5	1.461	2.3655	1.30
1050	104.4	1.48_{2}	2.3559	1.27
1060	106.2	1.50_{1}	2.3464	1.24
1070	108.0	1.51_{9}	2.3368	1.21
1080	109.6	1.53_{7}	2.3272	1.19
1090	111.3	1.55_{3}	2.3177	1.16
1100	112.8	1.56_{9}	2.3081	1.13
1110	114.4	1.58_{3}	2.2986	1.11
1120	115.8	1.597	2.2890	1.09
1130	117.2	1.60,	2.2795	1.06
1140	118.5	1.62_{0}	2.2699	1.04
1150	119.8	1.631	2.2603	1.02
1160	121.0	1.64_{0}	2.2508	1.00
1170	122.1	1.64_{9}	2.2412	
1180	123.2	1.65_{6}	2.2317	•••••

Density: [26, 66, <u>79</u>, 81]. Conductance: [10, 26, 33, 66, <u>79</u>, 125, 129]. Viscosity: [47, <u>122</u>]. Melting Point: [130].

Density: [25, 66, <u>82</u>]. Conductance: [2, 10, 66, <u>82</u>, 129]. Viscosity: [47, <u>122</u>]. Melting Point: [130]. TABLE 87.Rubidium iodide

 $\kappa = -2.4630 + 4.5942 \cdot 10^{-3}T - 1.2749 \cdot 10^{-6}T^{2}$

 $\eta = 41.8211 - 0.101156T + 8.49570 \cdot 10^{-5}T^2$

 $\rho = 4.2410 - 1.1834 \cdot 10^{-3}T$

 $\Lambda = 1125 \exp(-5450/RT)$

Eq wt 212.40

mp 640 °C (913 °K) Eq wt 259.83

mp 621 °C (894 °K)

 $-2.42543 \cdot 10^{-8}T^{3}$

2.9038

 $\kappa = -2.5050 + 5.3229 \cdot 10^{-3}T - 1.8114 \cdot 10^{-6}T^2$

 $\rho = 3.9499 - 1.1435 \cdot 10^{-3}T$

 $\Lambda = 568.1 \exp((-3999/RT))$ $\eta = 35.1934 - 8.85769 \cdot 10^{-2}T + 7.79282 \cdot 10^{-5}T^{2}$

 $-2.34005 \cdot 10^{-8} T^3$

Т	Λ	к	ρ	η
930	64.7	0.879	2.8864	1.39
940	66.3	.898	2.8750	1.35
950	68.0	.917	2.8636	1.31
960	69.7	.936	2.8521	1.27
970	71.3	.954	2.8407	1.24
980	73.0	.972	2.8293	1.21
990	74.6	.989	2.8178	1.17
1000	76.2	1.007	2.8064	1.14
1010	77.8	1.023	2.7950	1.12
1020	79.3	1.040	2.7835	1.09
1030	80.9	1.056	2.7721	1.06
1040	82.4	1.072	2.7607	1.04
1050	84.0	1.087	2.7492	1.01
1060	85.5	1.102	2.7378	0.99
1070	87.0	1.117	2.7264	.97
1080	88.5	1.131	2.7149	.95
1090	89.9	1.145	2.7035	.93
1100	91.4	1.158	2.6921	.91
1110	92.8	1.172	2.6806	.89
1120	94.3	1.184	2.6692	.86
1130	95.7	1.197	2.6577	
1140	97.0	1.209	2.6463	
1150	98.4	1.221	2.6349	
1160	99.8	1.232	2.6234	

Т	Λ	к	ρ	η
910				1.84
920				1.78
930	58.49	0.7069	3.1404	1.72
940	60.55	.7290	3.1286	1.66
950	72.60	.7509	3.1168	1.60
960	64.64	.7725	3.1049	1.55
970	66.68	.7938	3.0931	1.50
980	68.71	.8149	3.0813	1.45
990	70.75	.8357	3.0694	1.41
1000	72.77	.8563	3.0576	1.37
1010	74.78	.8766	3.0458	1.33
1020	76.79	.8967	3.0339	1.29
1030	78.80	.9165	3.0221	1.26
1040	80.79	.9360	3.0103	1.23
1050	82.78	.9553	2.9984	1.19
1060	84.77	.9744	2.9866	1.17
1070	86.75	.9932	2.9748	1.14
1080	88.72	1.0117	2.9629	1.11
1090	90.68	1.0300	2.9511	1.09
1100	92.64	1.0480	2.9393	1.06
1110	94.59	1.0658	2.9274	1.04
1120	96.54	1.0833	2.9156	1.02

1.1005

Density: [25, <u>82</u>]. Conductance: [<u>82</u>]. Viscosity: [<u>122</u>]. Melting Point: [130]. Density: [25, 74, <u>82</u>]. Conductance: [<u>82</u>]. Viscosity: [<u>122</u>]. Melting Point: [130].

98.48

1130

Eq wt 146.96

mp 575 °C (848 °K)

$$\begin{split} \kappa = & -0.7656 + 0.8785 \cdot 10^{-3}T + 0.4299 \cdot 10^{-6}T^2 \\ \rho = & 3.642 - 0.651 \cdot 10^{-3}T \\ \Lambda = & 751.1 \ \exp{(-6752/RT)} \end{split}$$

Т	Λ	к	ρ
920 940 960 980 1000 1020 1040 1060 1080 1100	$18.5_8 \\ 20.2_0 \\ 21.8_5 \\ 23.5_3 \\ 25.2_4 \\ 26.9_8 \\ 28.7_6 \\ 30.5_6 \\ (32.4_0) \\ (34.2_7)$	0.406 .440 .474 .508 .543 .578 .613 .649 .685 .721	3.043 3.030 3.017 3.004 2.991 2.978 2.965 2.952 (2.939) (2.926)
1120 1140 1160 1180	$(36.1_7) (38.1_1) (40.0_8) (42.0_9)$.758 .795 .832 .870	$(2.913) \\ (2.900) \\ (2.887) \\ (2.874)$

Density: [91, <u>113</u>]. Conductance: [<u>94</u>]. Melting Point: [94].

$\kappa = -4.6282 + 8.2567 \cdot 10^{-3}T - 2.6610 \cdot 10^{-6}T^{2}$
$\rho = 4.233 - 0.751 \cdot 10^{-3}T$
$\Lambda = 440.3 \exp(-4617/RT)$

Т	Λ	к	ρ	
1060	48.49	1.134_{0}	3.437	
1070	49.70	1.159_{9}	3.429	
1080	50.90	1.185_{2}	3.422	
1090	52.08	1.210_{1}	3.414	
1100	53.25	1.234_4	3.407	
1110	54.39	1.258_{1}	3.399	
1120	55.52	1.281_{3}	3.392	
1130	56.63	1.304_{0}	3.384	
1140	57.72	1.326_{2}	3.377	
1150	58.79	1.347_{8}	3.369	
1160	59.84	1.368_{9}	3.362	
1170	60.88	1.389_{5}	3.354	
1180	61.89	1.409_{5}	3.347	
1190	62.89	1.429_{0}	3.339	
1200	63.86	1.448_{0}	3.332	
1210	64.83	1.466_{4}	3.324	
1220	65.76	1.484_{3}	3.317	
1230	66.96	1.501_{7}	3.309	
1240	67.59	1.518_{6}	3.302	
1250	68.48	1.534_{9}	3.294	
1260	69.33	1.550_{6}	3.287	
1270	70.18	1.565_{9}	3.279	
1280	70.99	1.580_{6}	3.272	
1290	71.81	1.594_{8}	3.264	

Density: [91, <u>113</u>]. Conductance: [<u>94</u>]. Melting Point: [131]. TABLE 91.Strontium iodide

Eq wt 170.74

mp 515 °C (788 °K)

Eq wt 195.59

mp 740 °C (1013 °K)

$$\begin{split} \kappa = & -1.8747 + 3.3276 \cdot 10^{-3}T - 0.5169 \cdot 10^{-6}T^2 \\ \rho = & 4.803 - 0.885 \cdot 10^{-3}T \\ \Lambda = & 610.1 \text{ exp } (-5409/RT) \end{split}$$

Т	Λ	κ	ρ
820	21.2_{0}	0.506	4.077
840	23.37	.556	4.060
860	25.5_{5}	.605	4.042
880	27.7_2	.653	4.024
900	29.89	.701	4.007
920	32.07	.749	3.989
940	34.2_{5}	.797	3.971
960	36.4_3	.843	3.953
980	38.61	.890	3.936
1000	40.7_{9}	.936	3.918
1020	42.97	.982	3.900
1040	45.1_{6}	1.027	3.883
1060	47.3_{5}	1.072	3.865
1080	49.5_{4}	1.116	3.847
1100	51.7_{3}	1.160	3.830
1120	53.9_{2}	1.204	3.812
1140	56.1_{2}	1.247	3.794
1160	58.3_{1}	1.290	3.776
1180	60.5_{1}	1.332	3.759
1200	62.7_{1}	1.374	3.741
1220	64.9_{2}	1.416	3.723
1240	67.1_{2}	1.457	3.706
1260	69.3_{3}	1.497	3.688
1280	71.54	1.538	3.670

Density: [91, <u>113</u>]. Conductance: [<u>94</u>]. Melting Point: [130].
$$\begin{split} \kappa &= -2.1845 + 3.3755 \cdot 10^{-3}T - 0.4666 \cdot 10^{-6}T^2 \\ \rho &= 5.222 - 0.977 \cdot 10^{-3}T \\ \Lambda &= 831.2 \ \exp{(-6367/RT)} \end{split}$$

Т	Λ	к	ρ
$1020 \\ 1040 \\ 1060 \\ 1080 \\ 1100 \\ 1120 \\ 1140 \\ 1160 \\ 1180 \\ 1200 \\ 1220$	$(35.7_8) \\ 38.2_0 \\ 40.6_1 \\ 43.0_3 \\ 45.4_6 \\ 47.8_9 \\ 50.3_3 \\ 52.7_7 \\ 55.2_2 \\ 57.6_8 \\ 60.1_4 \\ $	$\begin{array}{c} 0.77_{3} \\ .82_{1} \\ .86_{9} \\ .91_{7} \\ .96_{4} \\ 1.01_{1} \\ 1.05_{7} \\ 1.10_{3} \\ 1.14_{9} \\ 1.19_{4} \\ 1.23_{9} \end{array}$	(4.225) 4.206 4.186 4.167 4.147 4.128 4.108 4.089 4.069 4.069 4.050 4.030
1240 1260 1280	$\begin{array}{c} 62.6_{0} \\ (65.0_{8}) \\ (67.5_{5}) \end{array}$	$\frac{1.28_4}{1.32_8}\\1.37_2$	4.011 (3.991) (3.971)

Density: [91, <u>113</u>]. Conductance: [<u>94</u>]. Melting Point: [130].

TABLE 93. Aluminum (III) iodide

Eq wt 135.91

mp 191 °C (464 °K)

$$\begin{split} \kappa &= -0.1721 \cdot 10^{-4} + 0.8131 \cdot 10^{-8}T + 0.6801 \cdot 10^{-10}T^2 \\ \rho &= 4.38_3 - 2.50 \cdot 10^{-3}T \\ \Lambda &= 118670 \ \exp \left(-11160/RT \right) \end{split}$$

T	$\Lambda \cdot 10^4$	$\kappa \cdot 10^{6}$	ρ
470	$\begin{array}{c} 0.69 \\ 1.01 \\ 1.33 \\ 1.67 \\ 2.02 \\ 2.38 \\ 2.75 \end{array}$	1.6_3	3.20_8
480		2.3_6	3.18_3
490		3.1_0	3.15_8
500		3.8_6	3.13_3
510		4.6_3	3.10_8
520		5.4_1	3.08_3
530		6.2_0	3.05_8

Density: [<u>35</u>]. Conductance: [<u>35</u>]. Melting Point: [130].

 TABLE 96.
 Praseodymium (III) iodide

Eq wt 173.23

mp 761 °C (1034 °K) Eq wt 173.89

mp 743 °C (1006 °K)

 $\kappa\!=\!-0.9535\!+\!1.319\cdot10^{-3}T$

, T	к
$ 1070 \\ 1080 \\ 1090 \\ 1100 \\ 1110 \\ 1120 \\ 1130 \\ 1140 $	$\begin{array}{c} 0.457_8 \\ .471_0 \\ .484_2 \\ .497_4 \\ .510_6 \\ .523_8 \\ .537_0 \\ .550_2 \end{array}$

Conductance: [106]. Melting Point: [130].

TABLE 95.Cerium (III) iodide

Eq wt 173.63

mp 752 °C (1025 °K)

$\kappa = -0.8580 + 1.221 \cdot 10^{-3}T$					
Т	к				
$ 1070 \\ 1080 \\ 1090 \\ 1100 \\ 1110 \\ 1120 \\ 1130 $	$\begin{array}{c} 0.448_5 \\ .460_7 \\ .472_9 \\ .485_1 \\ .497_3 \\ .509_5 \\ .521_7 \end{array}$				

Conductance: [<u>106</u>]. Melting Point: [130].

$\kappa = -$	0.7724 +	$\cdot 1.1304 \cdot$	$10^{-3}T$

Т	к
1030 1040 1050 1060 1070 1080 1090	$\begin{array}{c} 0.3919 \\ .4033 \\ .4146 \\ .4259 \\ .4372 \\ .4485 \\ .4598 \end{array}$

Conductance: [106]. Melting Point: [130].

TABLE 97. Neodymium (III) iodide

Eq wt 175.01

mp 775 °C (1048 °K)

 $\kappa\!=\!-0.7193\!+\!1.040\cdot10^{-3}T$

Т	к
1080 1090 1100 1110	$\begin{array}{c} 0.403_9\ .414_3\ .424_7\ .435_1\end{array}$

Conductance: [<u>106</u>]. Melting Point: [130].

 $\kappa \!=\! 0.6723 \!-\! 2.6838 \cdot 10^{-3}T \!+\! 2.5446 \cdot 10^{-6}T^2$

 $\rho = 4.856 - 1.360 \cdot 10^{-3}T$

 $\Lambda = 17880 \exp(-12636/RT)$

Eq wt 234.80

mp 558 °C (831 °K) Eq wt 159.61

mp 446 °C (719 °K)

$$\begin{split} \kappa &= 4.674 \, \exp \, \left(- 1146/RT \right) \\ \rho &= 6.415 - 1.01 \cdot 10^{-3}T \\ \Lambda &= 239.9 \, \exp \left(- 1475/RT \right) \\ \eta &= 116.161 - 0.333640T + 3.30383 \cdot 10^{-4}T^2 \end{split}$$

 $-1.10721 \cdot 10^{-7}T^3$

Т	Λ	к		η
		2.05		
840	(99)	2.35	(5.567)	•••••
850	(100)	2.37	(5.557)	
860	(101)	2.39	(5.546)	•••••
870	102	2.41	5.536	2.05
880	103	2.43	5.526	2.95
890	104	2.45	5.516	2.86
900	105	2.46	5.506	2.78
910	106	2.48	5.496	2.70
920	107	2.50	5.486	2.63
930	108	2.52	5.476	2.56
940	109	2.53	5.466	2.50
950	110	2.55	5.456	2.44
960	$110{5}$	2.56	5.445	2.39
970	$111{5}$	2.58	5.435	2.34
980	112	2.60	5.425	2.28
990	113	2.61	5.415	2.23
1000	114	2.63	5.405	2.18
1010	115	2.64	5.395	2.13
1020	116	2.66	5.385	2.08
1030	117	2.67	5.375	2.03
1040	$117{5}$	2.69	5.365	1.97
1050	118.5	2.70	5.355	1.91
1060	119	2.71	5.344	1.85
1070	120	2.73	5.334	1.78
1080	121	2.74	5.324	1.71
1090				1.63
1100				1.55

Т Λ κ ρ 720 0.059 2.433.877 7302.86.069 3.864740 3.30.080. 3.850750 3.78 .091 3.837 760 4.27.102 3.823 770 4.80 .114 3.809 780 5.34.127 3.796790 5.92 .140 3.782800 6.51 .154 3.767 810 7.14.168 3.755820 7.79 .1833.741830 8.47 .198 3.7289.17 840 .213 3.714850 9.90 .230 3.701860 10.66 .246 3.687 870 11.45 .263 3.673

Density: [91, <u>113</u>]. Conductance: [<u>94</u>, 189]. Melting Point: [130].

Density: [<u>22</u>]. Conductance: [1, 10, <u>11</u>, 21, 23, <u>35</u>]. Viscosity: [<u>24</u>]. Melting Point: [130]. Eq wt 183.13

T

680

690

700

710 720

730

740

750

760 770

780

790

800

810

820

830

840

850

860

870

880

890

900

910

 Λ

9.4

10.3

11.2

12.1

 13.0_{5}

 13.9_{5}

14.9

15.8₅ 16.8

 17.7_{5}

18.7

19.7

 20.6_{5}

 21.6_{5}

 22.6_{5}

 23.6_{5}

 24.6_{5}

25.7

26.7

 27.7_{5}

 28.7_{5}

29.8

 30.8_{5}

 31.9_{5}

mp 387 °C (660 °K)

 ρ

4.373

4.362

4.351

4.340

4.329

4.318

4.306

4.295

4.284

4.273 4.262

4.251

4.239

4.228

4.217

4.206 4.195

4.184

4.172

4.161

4.150

4.139

4.128

4.117

(660 °K) Eq wt 227.23

mp 257 °C (530 °K)

$$\begin{split} \kappa = & -1.0841 + 1.7574 \cdot 10^{-3}T + 0.2449 \cdot 10^{-6}T^2 \\ \rho = & 5.133 - 1.117 \cdot 10^{-3}T \\ \Lambda = & 1109.0 \text{ exp} \ (-6365/RT) \end{split}$$

κ

0.224

.245

.266

.287

.308

.329

.351

.372

.393

.414

.436

.457

.479

.500

.522

.543

.565

.587

.608

.630

.652

.674

.696

.718

 $\kappa = 0.3033113 - 1.075096 \cdot 10^{-3}T + 1.411112 \cdot 10^{-6}T^{2} - 6.651402 \cdot 10^{-10}T^{3}$

 $\rho = 6.9435 - 3.2351 \cdot 10^{-3}T$

 $\Lambda = 0.07345 \exp (3114.3/RT)$

 $\eta \!=\! 4.00\cdot 10^{-2} \, \exp{(4531/RT)}$

<i>(</i> 7)				
Т	Λ	к	ρ	η
		``````````````````````````````````````		
530	1.341	0.03087	5.229	
540	1.290	.02950	5.197	• • • • • • • • • • • • • • • • •
550	1.241	.02821	5.164	2.53
560	1.194	.02697	5.132	2.35
570	1.150	.02580	5.099	2.19
580	1.107	.02468	5.067	2.04
590	1.065	.02361	5.035	1.91
600	1.026	.02258	5.002	1.79
610	0.9877	.02160	4.970	1.68
620	.9508	.02066	4.938	1.58
630	.9151	.01975	4.905	1.49
640	.8803	.01888	4.873	
650	.8463	.01803	4.841	
660	(.8130)	.01720	(4.808)	
670	(.7800)	.01640	(4.776)	
680	(.7474)	.01560	(4.744)	
690	(.7148)	.01482	(4.711)	
700	(.6821)	.01405	(4.679)	
710	(.6491)	.01327	(4.647)	
720	(.6156)	.01250	(4.614)	
730	(.5813)	.01172	(4.582)	
			. ,	

Density: [<u>66</u>]. Conductance: [66, <u>94</u>]. Melting Point: [130]. Density: [18, 78, <u>103</u>]. Conductance: [29, 94, 103, <u>189</u>]. Viscosity: [6, 78, <u>103</u>]. Melting Point: [130].

 TABLE 102.
 Gallium (II) iodide

 TABLE 103.
 Indium (III) iodide

Eq wt 161.78

$$mp < 150 \ ^{\circ}C \ (< 423 \ ^{\circ}K)$$
 Eq wt 165.17

mp 210 °C (483 °K)

 $\kappa = -0.4546 + 1.149 \cdot 10^{-3}T$   $\rho = 4.841 - 1.688 \cdot 10^{-3}T$  $\Lambda = 771.8 \exp(-5121/RT)$ 

		F=	
Т	Λ	к	ρ
430	$1{6}$	0.04	4.115
440	2.0	.05	4.098
450	2.5	.06	4.081
460	2.9	.07	4.064
470	3.4	.08	4.048
480	3.9	.10	4.031
490	4.4	.11	4.014
500	4.9	.12	3.997
510	5.3	.13	3.980
520	5.8	.14	3.963
530	6.3	.15	3.946
540	6.8	.17	3.929
550	(73)	.18	(3.913)
560	(7.8)	.19	(3.896)
570	(8.4)	.20	(3.879)
580	(8.9)	.21	(3.862)
590	(9.4)	.22	(3.845)
600	(9.9)	.23	(3.828)
610	(10.4)	.25	(3.811)
620	(10.4) (11.0)	.26	(3.794)
020	(11.0)	.20	(0.174)

Density: [105]. Conductance: [105]. Melting Point: [105]. 
$$\begin{split} \kappa \!=\! - \, 0.4380474 + 1.734687 \cdot 10^{-3}T \!-\! 1.759083 \cdot 10^{-6}T^2 \\ &+ 5.775249 \cdot 10^{-10}T^3 \end{split}$$

 $\rho = 4.5448 - 1.50 \cdot 10^{-3}T$ 

$\Lambda = 18.26 \exp($	(-1779.9/RT)
-------------------------	--------------

Т	Λ	к	ρ	
500	2.686	0.06172	3.795	
520	3.051	.06954	3.765	
540	3.391	.07667	3.735	
560	3.707	.08315	3.705	
580	4.000	.08900	3.675	
600	4.271	.09424	3.645	
620	4.519	.09891	3.615	
640	4.747	.1030	3.585	
660	(4.954)	.1066	(3.555)	
680	(5.142)	.1097	(3.525)	
700	(5.311)	.1124	(3.495)	
720	(5.462)	.1146	(3.465)	
740	(5.596)	.1164	(3.435)	
760	(5.714)	.1178	(3.405)	
780	(5.817)	.1188	(3.375)	
800	(5.905)	.1196	(3.345)	
820	(5.980)	.1200	(3.315)	
840	(6.043)	.1202	(3.285)	
860'	(6.095)	.1201	(3.255)	
880	(6.136)	.1198	(3.225)	

Density: [<u>34</u>]. Conductance: [34, <u>189</u>]. Melting Point: [130]. Eq wt 331.31

Eq wt 230.53

mp 402 °C (675 °K)

$$\kappa = -1.261276 + 3.023831 \cdot 10^{-3}T - 7.494862 \cdot 10^{-7}T^2$$

-----

Т	к
720	0.527
740	.566
760	.604
780	.641
800	.678
820	.714
840	.750
860	.785
880	.819
900	.853
920	.886
940	.919
960	.951
980	.982
1000	1.013
1020	1.043
1040	1.073
1060	1.102
1080	1.130
1100	1.158
1120	1.185
1140	1.212
1160	1.238
1180	1.263
1200	1.288
1250	1.347
1300	1.403
1340	1.445
	<u> </u>

Conductance: [21, 125c, <u>189</u>]. Melting Point: [130].  $\kappa\!=\!-0.6501\!+\!1.0054\cdot10^{-3}T\!+\!0.7888\cdot10^{-6}T^2$ 

T	к
680 690	0.399 .419
700 710	.440
720 730	.483
740 750	.526
760	.570
770 780	.592
790 800	.636 .659
810 820	.682 .704
830 840	.727 .751
850 860	.775 .798
870	.822

Conductance: [108]. Melting Point: [131]. Eq wt 199.59

mp 418 °C (681 °K) Eq wt 53.00

mp 854 °C (1127 °K)

$$\kappa = -0.9306 + 3.0374 \cdot 10^{-3}T - 1.8477 \cdot 10^{-6}T^{2}$$

Т	к
690	0.286
700	.290
710	.295
720	.298
730	.302
740	.305
750	.308
760	.311
770.	.313
,	1010

Conductance: [104]. Melting Point: [104].

Eq wt 36.94

mp 618 °C (891 °K)

 $\kappa = 0.9877 - 1.3529 \cdot 10^{-3}T + 4.3873 \cdot 10^{-6}T^{2}$   $\rho = 2.2026 - 0.3729 \cdot 10^{-3}T$   $\Lambda = 754.5 \exp(-4438/RT)$   $\eta = -5259.12 + 14.8091 T - 1.38581 \cdot 10^{-2}T^{2}$ + 4.21900

$0^{-2}I^{2}$		
+4.31294	•	$10^{-6}T^{3}$

Т	Λ	к	ρ	η
1010				
1010	82.88	4.097	1.8260	
1020	84.58	4.172	1.8222	
1030	86.31	4.249	1.8185	
1040	88.06	4.326	1.8148	
1050	89.83	4.404	1.8111	4.64
1060	91.63	4.483	1.8073	4.34
1070	93.46	4.563	1.8036	4.01
1080	95.31	4.644	1.7999	3.67
1090	97.19	4.726	1.7961	3.36
1100	99.09	4.808	1.7924	3.10
1110	101.02	4.892	1.7887	2.91
1120	102.98	4.976	1.7850	2.83

Density: [3, <u>101</u>]. Conductance: [<u>101</u>]. Viscosity: [<u>107</u>, <u>128</u>]. Melting Point: [<u>131</u>]. 
$$\begin{split} \kappa &= 13.758 \, \exp \, (-3527/RT)^{\bullet} \\ \rho &= 2.4797 - 0.4487 \cdot 10^{-3}T \\ \Lambda &= 550.2 \, \exp \, (-4199/RT) \\ \eta &= 3.832 \cdot 10^{-5} \, \exp \, (26260/RT) \end{split}$$

Т	Λ	к	ρ	η
1140 1150 1160 1170 1180 1190 1200 1210 1220 1230 1240 1250 1260	$\begin{array}{c} 78.0_8 \\ 79.3_3 \\ 80.5_7 \\ 81.8_2 \\ 83.0_7 \\ 84.3_2 \\ 85.5_7 \\ 86.8_3 \\ 88.0_8 \\ 89.3_4 \\ 90.5_9 \end{array}$	2.900 2.939 2.978 3.018 3.057 3.096 3.134 3.173 3.211 3.249 3.288	1.9682 1.9637 1.9592 1.9547 1.9502 1.9457 1.9413 1.9368 1.9323 1.9278 1.9233 1.9278 1.9188 1.9143	3.40 3.08 2.80 2.55 2.32 2.12 1.94 1.78 1.63
1270 1280			1.9099 1.9054	

Density: [3, <u>101</u>]. Conductance: [4, <u>101</u>]. Viscosity: [<u>107</u>, <u>128</u>]. Melting Point: [130].

TABLE 111.Sodium nitrite

Eq wt 69.1

mp 896 °C (1169 °K)

$$\begin{split} \kappa &= 11.027 \, \exp{(-3941/RT)},\\ \rho &= 2.4141 - 0.4421 \cdot 10^{-3}T,\\ \Lambda &= 544.6 \, \exp{(-4650/RT)},\\ \eta &= 1.161 \cdot 10^{-5} \, \exp{(29.487/RT)}. \end{split}$$

Т	Λ	к	ρ	η
1180 1190 1200 1210 1220 1230 1240 1250 1260 1270	$\begin{array}{c} 74.9_8 \\ 76.2_2 \\ 77.4_7 \\ 78.7_2 \\ 79.9_7 \\ 81.2_3 \\ 82.4_9 \\ 83.7_5 \\ 85.0_1 \\ 86.2_8 \end{array}$	2.053 2.083 2.112 2.141 2.170 2.199 2.227 2.256 2.285 2.313	1.8924 1.8880 1.8836 1.8792 1.8747 1.8703 1.8659 1.8615 1.8571 1.8526	3.03 2.73 2.46 2.23 2.02 1.83 1.66
1280	87.5 ₅	2.342	1.8482	

Density: [3, <u>101</u>]. Conductance: [4, <u>101</u>]. Viscosity: [<u>107</u>, 128]. Melting Point: [130].

# Eq wt 69.01

mp 285 °C (558 °K)

$$\begin{split} \kappa &= 13.2 \ \exp \ (-2600/RT) \\ \rho &= 2.226 - 0.746 \cdot 10^{-3}T \\ \Lambda &= 685.7 \ \exp \ (-2949/RT) \\ \eta &= 187.118 - 0.876094T + 1.41024 \cdot 10^{-3}T^2 \ T^2 - 7.71 \\ &- 7.71608 \cdot 10^{-7}T^3 \end{split}$$

Т	Λ	к	ρ	η
7 570 580 590 600 610 620 630 640 650 660 670 680 690 700	A 50.9 53.2 55.5 57.9 60.2 62.6 65.0 67.4 69.9 72.4 74.9 77.4 79.9 82.5	$\kappa$ 1.329 1.383 1.437 1.491 1.545 1.600 1.654 1.709 1.763 1.818 1.872 1.927 1.981 2.036	ho 1.801 1.793 1.786 1.778 1.778 1.771 1.763 1.756 1.749 1.741 1.734 1.726 1.719 1.711 1.704	η 3.04 2.84 2.66 2.48 2.31
710 720	85.0 87.6	$2.09_0$ $2.14_4$	1.696 1.689	

Eq wt 52.94

mp 220 °C (493 °K)

$$\begin{split} \kappa = & - \, 0.397585 - 1.51836 \cdot 10^{-3}T + 7.33374 \cdot 10^{-6}T^2 \\ \eta = & - \, 14909.1 + 87.5812T - 0.171073T^2 \\ & + \, 1.11184 \cdot 10^{-4}T^3 \end{split}$$

Т	к	η
510 520 530	0.7356 .7959 .8577	9.89 8.36

Conductance: [66, <u>207</u>]. Viscosity: [<u>207</u>]. Melting Point: [207]. Density: [<u>66</u>, 110]. Conductance: [<u>66</u>, 110, 125c, 207]. Viscosity: [110, 125c, <u>207</u>]. Melting Point: [207].

#### TABLE 112.Potassium nitrite

TABLE 114.Cesium nitrite

κ

0.7328

.7568

.7808

.8048

.8288

. . . . . . . . . . .

 $\kappa = -0.92278 + 2.39945 \cdot 10^{-3} T$ 

T

690

700

710

720

730

740

Conductance: [207]. Viscosity: [207]. Melting Point: [207].

 $\eta = -\,182.963 + 0.828051T - 1.21823\,\cdot\,10^{-3}T^2$ 

#### Eq wt 105.11

mp 406 °C (679 °K)

 $+5.90224 \cdot 10^{-7}T^{3}$ 

 $\eta$ 

2.29

2.19 2.09

2.00

1.93

1.86

 $\kappa = -4.167433 + 1.148389 \cdot 10^{-2}T - 5.451471 \cdot 10^{-6}T^{2}$ 

 $\rho = 2.167 - 6.6 \cdot 10^{-4}T$  $\Lambda = 776.99 \exp(-3267.2/RT)$ 

 $\eta = 864.798 - 3.61760T + 5.06274 \cdot 10^{-3}T^2$ 

 $-2.36530 \cdot 10^{-6}T^{3}$ 

mp 418 °C (691 °K)

Т	Λ	к	ρ	η
700 710 720 730 740 750	76.62 79.21 81.75 84.25 86.69	1.238 1.275 1.311 1.345 1.379	$1.698 \\ 1.692 \\ 1.685 \\ 1.679 \\ 1.672$	1.92 1.86 1.81

Conductance: [207]. Density: [173]. Viscosity: [110, <u>125</u>c, 207, 208]. Melting Point: [110].

Eq wt 131.49

LABIE	113	Ruhidium	nitrite

### TABLE 115.Barium nitrite

 $\begin{aligned} \kappa &= -4.54416 + 1.189408 \cdot 10^{-2}T - 5.890905 \cdot 10^{-6}T^2 \\ \eta &= 8.754 \cdot 10^{-2} \exp (4495/RT) \end{aligned}$ 

Т	к	η .
720 730 740 750 760	0.966 .999 1.031 1.063 1.093	2.03 1.94 1.86 1.79

Conductance: [207]. Viscosity: [207]. Melting Point: [207].  $\kappa = -1.2$ 

Eq wt 114.69

mp 267 °C (540 °K)

 $\begin{aligned} \kappa &= -1.284 + 2.65 \cdot 10^{-3} T \\ \rho &= 3.639 - 7.0 \cdot 10^{-4} T \\ \Lambda &= 10217 \exp(-8103.8/RT) \end{aligned}$ 

Т	Λ	к	ρ
550 560 570 580 590 600 610 620	6.115 7.064 8.017 8.975	0.1735 .2000 .2265 .2530	3.254 3.247 3.240 3.233 3.226 3.219 3.212 3.205

Conductance: [185]. Density: [173]. Melting Point: [39]. Eq wt 68.95

mp 254 °C (527 °K) Eq

Eq wt 85.01

mp 310 °C (583 °K)

$$\kappa = -1.5242 + 3.4674 \cdot 10^{-3}T + 1.8027 \cdot 10^{-6} T^{2}$$

$$\rho = 2.068 - 0.546 \cdot 10^{-3}T$$

$$\Lambda = 967.8 \exp(-3589/RT)$$

$$\eta = 20.4645 + 1.34189 \cdot 10^{-2}T - 1.31061 \cdot 10^{-4}T^{2}$$

 $+1.06106 \cdot 10^{-7}T^{3}$ 

Т	Λ	к	ρ	η
550	36.2	0.928	1.768	5.85
560	38.5	.983	1.762	5.51
570	40.7	1.038	1.757	5.18
580	43.0	1.093	1.751	4.86
590	45.4	1.149	1.746	4.55
600	47.7	1.205	1.740	4.25
610	50.1	1.262	1.735	3.97
620	52.6	1.318	1.729	3.69
630	55.0	1.376	1.724	3.43
640	57.5	1.433	1.719	3.18
650			1.713	2.95
660			1.708	2.74
670			1.702	2.53
· 680			1.697	2.35
690			1.691	2.18
700				2.03

Density: [<u>26</u>, 180, 224]. Conductance: [26, 93, <u>116</u>, 195, 224]. Viscosity: [5, <u>38</u>, 139, 228]. Melting Point: [130]. 
$$\begin{split} \kappa &= -1.5713 + 4.3835 \cdot 10^{-3} T \\ \rho &= 2.320 - 0.715 \cdot 10^{-3} T \\ \Lambda &= 705.6 \exp(-3215/RT) \\ \eta &= 10.41 \cdot 10^{-2} \exp(3886/RT) \end{split}$$

Т	Λ	к	ρ	η
590 600 610 620 630 640 650 660 670 680 690 700 710 720	$\begin{array}{c} 45.4_{5} \\ 47.6 \\ 49.7_{5} \\ 51.9_{5} \\ 54.1 \\ 56.3_{5} \\ (58.5_{5}) \\ (60.8 ) \\ (63.0_{5}) \\ (65.3_{5}) \\ (67.6_{5}) \\ (69.9_{5}) \end{array}$	$1.015 \\ 1.059 \\ 1.103 \\ 1.146 \\ 1.190 \\ 1.234 \\ 1.278 \\ 1.322 \\ 1.366 \\ 1.409 \\ 1.453 \\ 1.497 \\ 1.497 \\ 1.497 \\ 1.497 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.00$	1.898 1.891 1.884 1.877 1.870 1.862 (1.855) (1.848) (1.841) (1.834) (1.827) (1.820)	$2.86 \\ 2.71 \\ 2.57 \\ 2.44 \\ 2.32 \\ 2.21 \\ 2.11 \\ 2.01 \\ 1.93 \\ 1.85 \\ 1.77 \\ 1.70 \\ 1.63 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ $
730				1.52

Density: [15, 26, <u>61</u>, <u>66</u>].

Conductance: [7, 26, 27, <u>61</u>, 66, 71, 75, 93, 192, 224]. Viscosity: [5, 8, 12, <u>38</u>, 102, 228]. Melting Point: [130].

#### TABLE 118.Potassium nitrate

#### Eq wt 101.10

Eq wt 147.49

mp 316 °C (589 °K)

 $\kappa = -1.4347 + 3.7376 \cdot 10^{-3}T - 0.5779 \cdot 10^{-6}T^2$ 

 $\rho = 2.315 - 0.729 \cdot 10^{-3}T$ 

 $\Lambda = 657.4 \exp(-3577/RT)$ 

$$\begin{split} \eta = 50.1676 - 0.164572 \ T + 1.86335 \ \cdot \ 10^{-4} \ T^2 \\ - 7.12497 \ \cdot \ 10^{-8} \ T^3 \end{split}$$

$$\begin{split} \kappa &= -1.3769 + 3.8156 \cdot 10^{-3}T - 1.2658 \cdot 10^{-6}T^2 \\ \rho &= 3.049 - 0.972 \cdot 10^{-3}T \\ \Lambda &= 515.7 \text{ exp } (-3496/RT) \\ \eta &= 190.972 - 0.791802 \ T + 1.11940 \cdot 10^{-3}T^2 \\ &- 5.33333 \cdot 10^{-7}T^3 \end{split}$$

	1	T	T	
Т	Λ	к	ρ	η
620	35.8 ₅	0.660	1.863	
630 640	37.6 39.4	.691 .721	1.856 1.848	2.63 2.49
650	41.2	.751	1.841	2.36
660	43.0	.780	1.834	2.23
670	$44.8_{5}$	.810	1.827	2.12
680	46.65	.840	1.819	2.02
690	48.5	.869	1.812	1.92
700	50.3 ₅	.898	1.805	1.88
710	52.2	.928	1.797	1.75
720	$54.0_{5}$	.957	1.790	1.69
730	55.9	.986	1.783	1.61
740	57.8	1.015	1.776	1.55
750	$59.6_{5}$	1.043	1.768	1.49
760	$61.5_{5}$	1.072	1.761	1.44
770	$63.4_{5}$	1.101	1.754	1.40
780	65.3 ₅	1.129	1.746	1.36
790	67.3	1.157	1.739	1.32
800	69.2	1.186	1.732	1.28
810	$71.1_{5}$	1.214	1.725,	1.25
820	73.1	1.242	1.717	•••••
830	$75.0_5$	1.269	1.710	•••••
840	77.0	1.297	1.703	•••••
850	79.0	1.325	1.695	•••••
860	81.0	1.352	1.688	••••
870	83.0	1.380	1.681	•••••
		-		A

Т	Λ	κ	ρ	η
590 600 610 620 630 640 650 660 670 680 690 700 710 720 730 740 750 760	$\begin{array}{c} 25.8\\ 27.3\\ 28.8\\ 30.3\\ 31.7\\ 33.2\\ 34.7\\ 36.1\\ 37.6\\ 39.1\\ 40.5\\ 42.0\\ 43.4\\ 44.8\\ 46.3\\ 47.7\\ 49.1\\ 50.6\end{array}$	0.434 .457 .480 .502 .525 .547 .568 .590 .611 .632 .653 .673 .694 .714 .734 .753 .773 .792	2.476 2.466 2.456 2.446 2.437 2.427 2.417 2.407 2.398 2.388 2.378 2.369 2.359 2.349 2.339 2.330 2.320 2.310	3.68 3.45 3.24 3.07 2.92 2.78 2.66 2.56 2.46 2.37
700	50.0	.192	2.510	

Density: [<u>26</u>]. Conductance: [<u>26</u>, 224]. Viscosity: [<u>139</u>, 228]. Melting Point: [130].

Density: [15, 26, 38, <u>66</u>, 84, 173, 177, 184, 192, 210]. Conductance: [7, <u>20</u>, 26, 27, <u>66</u>, 84, 92, 116, 192, 193, 194, 224].

Viscosity: [5, 8, 12, <u>38</u>, 57, 102, 107, 228]. Melting Point: [130]. Eq wt 194.92

mp 414 °C (687 °K)

$$\begin{split} \kappa &= -0.7610 + 1.887 \cdot 10^{-3}T \\ \rho &= 3.6206 - 1.16605 \cdot 10^{-3}T \\ \Lambda &= 552.4 \ \exp{(-3688/RT)} \\ \eta &= -41.3159 + 0.21403T - 3.32966 \cdot 10^{-4}T^2 \end{split}$$

 $+1.65583 \cdot 10^{-7}T^{3}$ 

Т	Λ	к	ρ	η
690 700 710 720 730 740 750 760	37.49 38.96 40.44 41.93 43.44 44.95 46.48 48.03	0.5416 .5605 .5794 .5983 .6171 .6360 .6549 .6738	2.8160 2.8044 2.7927 2.7810 2.7694 2.7577 2.7461 2.7344	2.23 2.15 2.06 1.98 1.90 1.83 1.77 1.71

Density: [26, <u>84</u>]. Conductance: [26, <u>84</u>, 224]. Viscosity: [139, <u>228</u>]. Melting Point: [131]. Eq wt 169.89

mp 210 °C (483 °K)

$$\begin{split} \kappa &= -1.9314 + 6.2321 \cdot 10^{-3}T - 1.7924 \cdot 10^{-6}T^2 \\ \rho &= 4.454 - 1.02 \cdot 10^{-3}T \\ \Lambda &= 587.9 \text{ exp } (-2898/RT) \\ \eta &= 81.7743 - 0.336741T + 4.80289 \cdot 10^{-4}T^2 \end{split}$$

 $-2.32448 \cdot 10^{-7} T^{3}$ 

Т	Λ	к	ρ	η
490 500 510 520 530 540 550 560 570 580 590 600	$\begin{array}{c}(29.7_3)\\(31.7_3)\\(33.7_2)\\(35.7_1)\\(37.6_9)\\(39.6_6)\\41.6_3\\43.6_0\\45.5_6\\47.5_2\\49.4_7\\51.4_1\end{array}$	$\begin{array}{c} 0.692 \\ .737 \\ .781 \\ .825 \\ .868 \\ .911 \\ .954 \\ .996 \\ 1.038 \\ 1.080 \\ 1.122 \\ 1.163 \end{array}$	$\begin{array}{c}(3.954)\\(3.944)\\(3.934)\\(3.924)\\(3.913)\\(3.903)\\3.893\\3.883\\3.873\\3.862\\3.852\\3.852\\3.842\end{array}$	3.61 3.38 3.18 3.00 2.83 2.68 2.55

Density: [25, 36, 54, 60, 224]. Conductance: [5, <u>60</u>, 78, 135, 181, 194, 219, 224]. Viscosity: [5, 65, <u>69</u>, 219, 228]. Melting Point: [130].

#### TABLE 122.Thallium nitrate

#### Eq wt 266.40

 $\begin{aligned} \kappa &= -0.906043 + 2.6094 \cdot 10^{-3}T \\ \rho &= 5.8041 - 1.8737 \cdot 10^{-3}T \\ \Lambda &= 633.25 \exp\left(-3348.3/RT\right) \end{aligned}$ 

 $\eta = -26.2068 + 0.276304T - 7.00275 \cdot 10^{-4}T^2$ 

 $+ 5.31820 \cdot 10^{-7}T^{3}$ 

Т	Λ	к	dπ	η
480 490 500 510 520 530 540 550 560	18.82 20.31 21.82 23.34 24.87 26.41 27.96 29.53 31.11	0.3465 .3726 .3987 .4248 .4508 .4769 .5030 .5291 .5552	4.905 4.885 4.867 4.849 4.830 4.811 4.792 4.773 4.755	3.35 3.11 2.90 2.70 2.54 2.41

Density: [25, <u>191</u>, 224].

Conductance: [110, 125c, <u>191</u>, 215, 216, 217, 219, 224]. Viscosity: [110, <u>191</u>, 219, <u>228</u>]. Melting Point: [130].

# TABLE 123. Vanadium pentoxide

mp 670 °C (943 °K)

 $\kappa = -2.056 + 1.890 \cdot 10^{-3}T$ 

Т	к
1140 1150 1160 1170 1180 1190 1200 1210 1220 1230 1240	$\begin{array}{c} 0.09_9\\.11_8\\.13_6\\.15_5\\.17_4\\.19_3\\.21_2\\.23_1\\.25_0\\.26_9\\.28_8\end{array}$

Conductance: [68]. Melting Point: [130].

#### TABLE 124.Chromium trioxide

# mp 196 °C (469 °K)

 $\kappa\!=\!-0.1952\!+\!0.4032\cdot10^{-3}T\!-\!0.0391\cdot10^{-6}T^2$ 

Т	к
510 520 530 540	0.00026 .00389 .00751 .01113

Conductance: [<u>68</u>]. Melting Point: [133].

 TABLE 125.
 Molybdenum trioxide

# mp 795 °C (1068 °K)

### $\kappa = 11.642 \exp(-5586/RT)$

Т	κ
1080 1090 1100 1110 1120 1130 1140 1150 1160 1170	0.862 .883 .904 .925 .946 .967 .989 1.010 1.032 1.053
1180	1.075

Conductance: [76, 68]. Melting Point: [130].

# TABLE 127.Boron oxide

mp 450 °C (723 °K)

#### mp 1368 °C (1641 °K)

$$\kappa = -31771.7 + 36.3092 T - 0.0102617 T^2 (1648 - 1700 \text{ °K})$$
  

$$\kappa = -171.25 + 0.27981 T (1710 - 1773 \text{ °K})$$

Т	к
1650 1660 1670 1680 1690 1700 1710 1720 1730 1730 1740 1750	201 225 246 265 283 298 307 310 313 316 318
1760 1770	321 324

Conductance: [159]. Melting Point: [130].  $\begin{aligned} \rho &= 1.82216 - 3.45772 \cdot 10^{-4}T + 8.71571 \cdot 10^{-8}T^2 \\ \eta &= 97913.6 - 135.257 \ T + 6.32685 \cdot 10^{-2}T^2 \\ &- 9.97755 \cdot 10^{-6}T^3 \end{aligned}$ 

Eq wt 23.21

Т	ρ	η
1410	1.508	5020
1430	1.506	4700
1450	1.504	4400
1470	1.502	4110
1490	1.500	3840
1510	1.499	3580
1530	1.497	3340
1550	1.496	3110
1570	1.494	2900
1590	1.493	2700
1610	1.491	2510
1630	1.490	2330
1650	1.489	2170
1670	1.488	2010
1690	1.487	1870
1710	1.486	1740
1730	1.485	1610
1750	1.484	1500
1770	1.483	1400
1790	1.482	1300
1810	1.482	1210
1830	1.481	1130
1850	1.481	1050
1870	1.480	981
1890	1.480	918

Density: [<u>144</u>, 201]. Viscosity: [<u>137</u>, 144, 145, 200, 201, 209, 222]. Melting Point: [133].

92

# Eq wt 15.02

mp 1723 °C (1996 °K)

Eq wt 26.15

mp 1116 °C (1389 °K)

$$\begin{split} \eta &= 2.52255 \, \cdot \, 10^8 - 294897 \, \, T + \, 114.935 \, \, T^2 \\ &- 1.49316 \cdot 10^{-2} \, \, T^3 \end{split}$$

	<b>*</b>		
Т	η	Т	η
$\begin{array}{c} T \\ 2210 \\ 2220 \\ 2230 \\ 2240 \\ 2250 \\ 2260 \\ 2270 \\ 2280 \\ 2290 \\ 2300 \\ 2310 \\ 2320 \\ 2330 \\ 2340 \\ 2350 \\ 2360 \end{array}$	$\eta$ 717,000 663,000 610,000 561,000 515,000 472,000 432,000 394,000 359,000 325,000 295,000 267,000 241,000 217,000 195,000 176,000	$\begin{array}{c c} T \\ 2390 \\ 2400 \\ 2410 \\ 2420 \\ 2430 \\ 2440 \\ 2450 \\ 2440 \\ 2450 \\ 2460 \\ 2470 \\ 2480 \\ 2490 \\ 2500 \\ 2510 \\ 2520 \\ 2530 \\ 2540 \end{array}$	$\begin{array}{c c} \eta \\ 127,000 \\ 114,000 \\ 102,000 \\ 91,900 \\ 83,400 \\ 75,400 \\ 69,000 \\ 63,700 \\ 59,100 \\ 55,100 \\ 55,100 \\ 52,300 \\ 50,200 \\ 48,900 \\ 47,700 \\ 46,900 \\ 46,500 \end{array}$
2350	195,000	2530	46,90

Viscosity: [<u>205</u>, 206]. Melting Point: [133].

$\kappa = 29.758 \exp(-37957/RT)$	
$\eta = 1.316 \cdot 10^{-4} \exp((74254/RT))$	(1430–1750 °K)
$\eta = 1.967 \cdot 10^{-3} \exp(65143/RT)$	(1760–1990 °K)

Т	$\kappa \cdot 10^{+4}$	$\eta \cdot 10^{-3}$
1390	0.320	
1420	.428	
1450	.565	20,500
1480	.738	12,200
1510	.954	7,370
1540	1.220	4,550
1570	1.547	2,860
1600	1.943	1,830
1630	$2.420 \cdot$	1,190
1660		787
1690		528
1720		359
1750		247
1760		242
1790		177
1820		131
1850		97.7
1880		73.7
1910		56.0
1940		43.0
1970		33.2
1990		28.1

Conductance: [<u>163</u>, 146]. Viscosity: [<u>137</u>, <u>140</u>, 141, 146]. Melting Point: [133]. TABLE 130.Lead oxide

mp 886 °C (1159 °K)

 $\kappa = 1.750 \cdot 10^5 \exp(-27629/RT)$ 

T	к
$     \begin{array}{r}       1170\\       1180\\       1190\\       1200\\       1210\\       1220\\       1230\\       1240\\       1250\\       1260     \end{array} $	$\begin{array}{c} 1.2_{1} \\ 1.3_{3} \\ 1.4_{7} \\ 1.6_{2} \\ 1.7_{9} \\ 1.9_{6} \\ 2.1_{6} \\ 2.3_{6} \\ 2.5_{8} \\ 2.8_{2} \end{array}$
	-

Conductance: [68]. Melting Point: [130]. mp 655 °C (928 °K)

 $\kappa = -1.086 + 1.062 \cdot 10^{-3}T$ 

Т	к
1110 1120 1130 1140 1150 1160	$\begin{array}{c} 0.09_{3} \\ .10_{3} \\ .11_{4} \\ .12_{5} \\ .13_{5} \\ .14_{6} \end{array}$

Conductance: [<u>68</u>]. Melting Point: [130].

TABLE 131.Arsenic trioxide

Eq wt 65.94

mp 312.3 °C (585.5 °K)

 $\eta = 1.679 \cdot 10^{-2} \exp((22,211/RT))$ 

Т	η	
610	1,550,000	
620	1,150,000	
630	841,000	
640	617,000	
650	460,000	
660	354,000	
670	285,000	
680	236,000	
690	195,000	
700	145,000	

Viscosity: [202]. Melting Point: [133]. TABLE 133.Bismuth sesquioxide

mp 817 °C (1090 °K)

 $\kappa = -11.668 + 10.764 \cdot 10^{-3}T$ 

Т	к			
1100	0.17			
1110	.28			
1120	.39			
1130	$.5_{0}$			
1140	.60			
1150	.71			
1160	$.8_{2}$			
1170	.93			
1180	$1.0_{3}$			
1190	$1.1_{4}$			
1200	$1.2_{5}$			
1210	$1.3_{6}$			

Conductance: [68]. Melting Point: [130]. mp 733 °C (1006 °K)

Eq wt 45.50

mp 1100 °C (1373 °K)

Т	к
1020	1.24
1030	1.30
1040	1.36
1050	1.42
1060	1.48
1070	1.55
1080	1.62
1090	1.68
1100	1.75
1110	1.82
1120	1.90
1130	1.97
1140	2.05
1150	2.12
1160	2.20
1170	2.28
1180	2.37
1190	2.45
1200	2.53
1210	2.62
1220	2.71
1230 .	2.80

Conductance: [68]. Melting Point: [133].

TABLE 135. Iron (II) sulfide

 $\kappa = 24462.0 - 30.289 T + 9.9715 \cdot 10^{-3}T^2$ 

Т

1460

1470

1480

1490

1500

mp 1195 °C (1468 °K)

Eq wt 43.96

 $\kappa = 6.2884 \exp(-15494/RT)$ 

Т	к
1460	1312
1470	1265
1480	1221
1490	1178
1500	1138

Conductance: [155]. Melting Point: [130].

 TABLE 137.
 Nickel (II) sulfide

Eq wt 48.38

mp 797 °C (1070 °K)

 $\kappa = 19337.0 - 20.810 T + 6.000 \cdot 10^{-3} T^{2}$ 

Т	к
1150	3340
1160	3271
1170	3203
1180	3136
1190	3070
1200	3005
1210	2941
1220	2879
1230	2818
1240	2758
1250	2699
1260	2642
1270	2586
1280	2531
1300	2424
1320	2322
1340	2225
1360	2134
1380	2045
1400	1963

Conductance: [153, <u>154</u>, 155]. Melting Point: [132].

κ

1495

1485

1476

1469

1464

Conductance: [<u>154</u>]. Melting Point: [130].

# 95

Eq wt 47.81

# mp 1127 °C (1400 °K) Eq wt 123.91

mp 825 °C (1098 °K)

$$\kappa = 1923.06 - 2.8871 T + 1.1055 \cdot 10^{-3} T^{2}$$

· T	к		
1400	47.94		
1410	50.13		
1420	52.55		
1430	55.19		
1440	58.04		
1450	61.12		
1460	64.42		
1470	67.94		
1480	71.69		
1490	75.65		
1500	79.83		
1510	84.24		
1520	88.86		
1530	93.71		

 $\kappa = 41.5109 \exp(2569.13/RT)$ 

Т	к
1120	131.7
1140	129.0
1160	126.5
1180	124.2
1200	121.9
1220	119.8
1240	117.8
1260	115.8
1280	114.0
1300	112.2
1320	110.6
1340	108.9
1360	107.4

Conductance: [<u>156</u>, 166]. Melting Point: [166].

Conductance: [<u>155</u>, 152]. Melting Point: [130].

 TABLE 140.
 Germanium (II) sulfide

Eq wt 52.33

mp 625 °C (898 °K)

 $\kappa \!=\! 0.616343 \!-\! 1.56399 \cdot 10^{-3}T \!+\! 1.009032 \cdot 10^{-6}T^2$ 

Т	к
870	0.01939
890	.02363
910	.02868
930	.03453
950	.04119
970	.04866
990	.05693
1010	.06601
1030	.07590
1050	.08660
1070	.09810

Conductance: [<u>155</u>]. Melting Point: [130].

TABLE 141. Tin (II) sulfide

TABLE 142.Lead sulfide

# Eq wt 150.77

# mp 880 °C (1153 °K) Eq wt 119.64

mp 1114 °C (1387 °K)

$$\begin{split} \kappa &= -12.948 - 6.28321 \cdot 10^{-2}T + 7.81646 \cdot 10^{-5}T^2 \\ \rho &= 5.111 - 6.83 \cdot 10^{-4}T \\ \Lambda &= 25730 \exp\left(-13618/RT\right) \end{split}$$

Т	Τ Λ κ		ρ		
1160	675	19.35	(4.319)		
1170	718	20.54	4.312		
1180	762	21.75	4.305		
1190	806	22.97	4.298		
1200	851	24.21	4.291		
1210	896	25.47	4.285		
1220	942	26.74	4.278		
1230	989	28.02	4.271		
1240	1037	29.33	4.264		
1250	1085	30.64	4.257		
1260	1134	31.98	4.250		
1270	1184	33.33	4.244		
1280	1235	34.69	4.237		
1290	1286	36.07	4.230		
1300	1338	37.47	4.223		
1320	1444	40.31	4.209		
1340	1553	43.21	4.196		
1360	1665	46.17	(4.182)		
1380	1780	49.20	(4.168)		
1400	1897	52.29	(4.155)		
1420	2019	55.44	(4.141)		

$$\begin{split} \kappa &= 1815.4 - 2.2606T + 7.4254 \cdot 10^{-4}T^2 \\ \rho &= 7.260 - 5.400 \cdot 10^{-4}T \\ \Lambda &= 338.66 ~\exp{(4867.0/RT)} \end{split}$$

Т	Λ	к	ρ
$     \begin{array}{r}       1390 \\       1400 \\       1410 \\       1420 \\       1420 \\       1430 \\       1440 \\       1440 \\       1450 \\       1460 \\       1470 \\       1480 \\       1490 \\     \end{array} $	1982 1949 1918 1891 1866 1843 1824 1807 1792 1781 1772	$107.8 \\ 105.9 \\ 104.2 \\ 102.6 \\ 101.2 \\ 99.87 \\ 98.72 \\ 97.72 \\ 96.87 \\ 96.17 \\ 95.62$	6.509 6.504 6.499 6.493 6.488 6.482 6.477 6.472 6.466 6.461 6.455

Density: [150].

Conductance: [151, <u>154</u>, 155].

Melting Point: [132].

Density: [<u>158</u>]. Conductance: [<u>155</u>]. Melting Point: [130]. 
 TABLE 143.
 Antimony (III) sulfide

 TABLE 144.
 Bismuth (III) sulfide

Eq wt 113.25

mp 547 °C (820 °K) Eq wt 171.40

mp 747 °C (1020 °K)

$$\begin{split} \kappa &= 4.0712 - 1.12847 \cdot 10^{-2} T + 7.9857 \cdot 10^{-6} T^2 \\ \rho &= 4.387 - 6.5 \cdot 10^{-4} T \\ \Lambda &= 14940 \exp(-12846/RT) \end{split}$$

$\kappa = 3955.2 - 0.598558 T$
$\rho = 7.237 - 9.72 \cdot 10^{-4} T$
$\Lambda = 89320 \exp(55.18/RT)$

Т	Λ	к	ρ	Т	Λ	к	ρ
830	6.07	0.206	3.847	<b>97</b> 0	91893	3374	(6.294)
840	6.69	.227	3.84		91872	3369	(6.284)
850	7.35	.249	3.834		91851	3363	(6.275)
860	8.06	.273	3.828		91829	3357	6.265
870	8.83	.298	3.82		9180 ₈	3351	6.255
880	9.64	.325	3.815	1020	91787	3345	6.246
890	10.51	.353	3.808	1030	91765	3338	6.236
900	11.42	.383	3.802		91744	3333	6.226
910	12.39	.415	3.795		91722	3327	6.216
920	13.40	.448	3.789	1060	91701	3321	6.207
930	14.47	.483	3.782	1070	9167,9	3315	6.197
940	15.59	.520	3.776	1080	91657	3309	6.187
950	16.76	.558	3.769	1090	9163 ₅	3303	6.177
960	17.98	.598	3.763	1100	91613	3297	6.168
970	19.26	.639	3.756	1110	9159 ₁	3291	6.158
980	20.59	.682	3.750	1120	9156 ₉	3285	6.148
1000	23.40	.772	3.737	1130	91547	3279	6.139
1020	26.43	.869	3.724	1140	91525	3273	6.129
1040	29.67	.972	3.711	1150	9150 ₃	3267	6.119
1060	33.14	1.082	3.698	1160	91480	3261	(6.109)
1080	36.83	1.198	3.685	1170	9145 ₈	3255	(6.100)
				. 1180	91435	3249	(6.090)
				1190	91413	3243	(6.080)
Density: [158	8].			1200	9139 ₀	3237	(6.071)

Density: [158]. Conductance: [155]. Melting Point: [130].

Density: [<u>158</u>]. Conductance: [<u>157</u>]. Melting Point: [132]. Eq wt 54.97

mp 859 °C (1132 °K)

mp 1069 °C (1342 °K)

$$\begin{split} \kappa &= -24.544 + 4.4630 \cdot 10^{-2}T - 1.7251 \cdot 10^{-5} \ T^2 \\ \rho &= 2.464 - 0.000407 \ T \\ \Lambda &= 394.8 \ \exp{(-2932/RT)} \end{split}$$

T	Λ	к	ρ
$ \begin{array}{c} 1140\\ 1150\\ 1160\\ 1170\\ 1180\\ 1190\\ 1200\\ 1210\\ 1220\\ 1230\\ 1240\\ 1250\\ \end{array} $	107.5 109.1 110.6 112.1 113.5 114.7 115.9 117.0 118.0 118.9 119.7 120.4	$\begin{array}{c} 3.915\\ 3.966\\ 4.014\\ 4.058\\ 4.099\\ 4.136\\ 4.170\\ 4.201\\ 4.228\\ 4.252\\ 4.272\\ 4.289\end{array}$	$\begin{array}{c} 2.000\\ 1.996\\ 1.992\\ 1.987\\ 1.984\\ 1.980\\ 1.976\\ 1.972\\ 1.967\\ 1.964\\ 1.959\\ 1.955\end{array}$

$$\begin{split} \kappa &= -23.5770 + 3.57269 \cdot 10^{-2} T - 1.24807 \cdot 10^{-5} T^2 \\ \rho &= 2.4697 - 4.473 \cdot 10^{-4} T \\ \Lambda &= 814.95 \exp\left(-4721.6/RT\right) \end{split}$$

Т	Λ	к	ρ
1350 1360 1370 1380 1390 1400 1410	140.2 142.0	1.908 1.927	$1.866 \\ 1.861 \\ 1.857 \\ 1.853 \\ 1.848 \\ 1.843 \\ 1.839$

Density: [25, 178].

Conductance: [4, 161].

Melting Point: [130].

#### TABLE 148. Rubidium sulfate

Density: [25]. Conductance: [115]. Melting Point: [130].

Eq wt 71.03

Eq wt 133.52

T

1340

1350

1360

1370

1380

1390

1400

1450

1500

1550

1600

1650

1700

1750

1800

Eq wt 137.13

mp 1074 °C (1347 °K)

ρ

2.551

2.544

2.538

2.531

2.524

2.518

2.511

2.478

2.445

2.411

2.378

2.345

2.312

2.278

2.245

 $\kappa = 6.2394 \exp(-3977.2/RT)$   $\rho = 3.442 - 6.65 \cdot 10^{-4}T$  $\Lambda = 471.72 \exp(-4956.6/RT)$ 

κ

1.401

1.416

1.432

1.447

1.463

1.478

1.493

Λ

73.33

74.34

75.35

76.36

77.38

78.40

79.42

.....

.....

.....

. . . . . . . . . . . . . . . .

$\kappa = 11.893$	exp	(

mp 889 °C (1157 °K)

 $\kappa = 11.893 \exp(-3819.9/RT)$   $\rho = 2.628 - 4.83 \cdot 10^{-4}T$  $\Lambda = 550.19 \exp(-4507.0/RT)$ 

 TABLE 146.
 Sodium sulfate

_				
_	Т	Λ	к	ρ
	1180	80.48	2.332	2.058
	1180	81.79	2.352	2.053
	1200	83.09	2.396	2.048
	1210	84.40	2.428	2.044
	1220	85.71	2.460	2.039
	1230	87.02	2.492	2.034
	1240	88.34	2.523	2.029
	1250			2.440
	1300			2.576
	1350	· · · · · · · · · · · · · · · · · · ·	•••••	2.712

Density: [25].

Conductance: [4, 226].

Melting Point: [131].

Density: [25]. Conductance: [226]. Melting Point: [130].

TABLE 149b.Silver sulfate

Eg. wt 180.05

mn 1019 °C (1292 °K) Eq wt 101.97

mp 660 °C (933 °K)

```
\kappa = 7.4568 \exp(-2754.1/RT)
\rho = 5.843 - 1.089 \cdot 10^{-3}T
\Lambda = 199.04 \exp(-3188.5/RT)
```

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Eq wt 180.95	mp 1019 °C (1292 °F				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\rho = 3.116 + 5.86 \cdot 10^{-4}T - 4.94 \cdot 10^{-7}T^2$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Т	Λ	к	ρ		
2.02)	$\begin{array}{c} 1310\\ 1320\\ 1330\\ 1340\\ 1350\\ 1360\\ 1400\\ 1450\\ 1500\\ 1550\\ 1600\\ 1650\\ \end{array}$	68.01 68.90 69.80 70.71 71.63	1.141 1.153 1.166 1.178 1.190	3.036 3.029 3.021 3.014 3.007 2.999 2.968 2.927 2.884 2.837 2.789 2.738		

Т	Λ	к	ρ
940 950 960 970 980 990 1000 1010 1020	$\begin{array}{c} 36.11\\ 36.76\\ 37.41\\ 38.06\\ 38.70\\ 39.35\\ 40.00\\ 40.64\\ 41.29\end{array}$	1.707 1.733 1.760 1.786 1.813 1.839 1.865 1.890 1.916	$\begin{array}{r} 4.819\\ 4.808\\ 4.798\\ 4.787\\ 4.787\\ 4.776\\ 4.765\\ 4.754\\ 4.754\\ 4.743\\ 4.732\end{array}$

Density: [226].

Conductance: [226].

Melting Point: [130].

Density: [25]. Conductance: [226]. Melting Point: [130].

 TABLE 150.
 Tetrapropylammonium tetrafluoroborate

Eq wt 273.17

mp 248 °C (521 °K)

 $\kappa = 6.6731 \exp(-4472.7/RT)$  $\rho = 1.2467 - 6.415 \cdot 10^{-4}T$  $\Lambda = 2973.9 \exp(-4884.8/RT)$  $\eta = 539.745 - 2.88873T + 5.20040 \cdot 10^{-3}T^2$  $-3.13987 \cdot 10^{-6}T^{3}$ 

T	Λ	к	ρ	η
530 540 550 560	28.76 31.34 34.04 36.89	0.09546 .10328 .11141 .11985	0.9067 .9003 .8939 .8875	2.06 1.85

Density: [190, 221]. Conductance: [190, 221]. Viscosity: [190, 221].

Melting Point: [190].

 TABLE 151.
 Tetrapropylammonium hexafluorophosphate

Eq wt 331.30

mp 237.0 °C (510.2 °K)

 $\kappa = 21.0096 \exp(-5902.52/RT)$  $\rho = 1.2433 - 3.224 \cdot 10^{-4}T$  $\Lambda = 7610.3 \exp(-6070.0/RT)$  $\eta = 900.654 - 4.87945T + 8.87944 \cdot 10^{-3}T^2$ 

 $-5.41472 \cdot 10^{-6}T^{3}$ 

Т	Λ	к	ρ	η
520 530 540 550	21.38 23.88 26.58 29.46	0.06941 .07731 .08577 .09479	1.0757 1.0724 1.0692 1.0660	2.99 2.65 2.37

Density: [190, 221]. Conductance: [190, 221]. Viscosity: [190, 221]. Melting Point: [190].

TABLE152.Tetrapropylammoniumtetraphenylborate

TABLE 154.Tetrabutylammonium iodide

Eq wt 505.57

mp 205.7 °C (478.9 °K)

$$\begin{split} \rho &= 0.14613 + 3.70736 \cdot 10^{-3}T - 4.29706 \cdot 10^{-6}T^2 \\ \eta &= 2348.89 - 12.9447T + 2.39385 \cdot 10^{-2}T^2 \\ &- 1.48320 \cdot 10^{-2}T^3 \end{split}$$

Т	ρ	η
490 500 510 520 530	0.9310 .9255 .9192 .9120	8.65 7.16 6.02 5.12 4.38

Density: [<u>190</u>, <u>221</u>]. Viscosity: [<u>190</u>, <u>221</u>]. Melting Point: [190].  $\kappa = -6.48575 \cdot 10^{-2} + 1.66797 \cdot 10^{-4}T$  $\rho = 1.446 - 8.388 \cdot 10^{-4}T$ 

 $\Lambda = 136940 \, \exp \, \left( - 9394.2/RT \right)$ 

Т	Λ	к	ρ
420	1.755	0.005197	1.0937
430	2.336	.006865	1.0853
440	2.927	.008533	1.0769

Density: [<u>190</u>, 220, <u>221</u>]. Conductance: [<u>190</u>, 220, <u>221</u>]. Melting Point: [<u>190</u>].

Eq wt 369.37

Eq wt 329.28

### TABLE 155. Tetrabutylammonium tetrafluoroborate

TABLE 153.Tetrabutylammonium bromide

Eq wt 322.37

mp 119-5 °C (392.7 °K)

$$\begin{split} \kappa &= 1926.41 \, \exp \, (-10818.4/RT) \\ \rho &= 1.287 - 7.039 \cdot 10^{-4}T \\ \Lambda &= 817140 \, \exp \, (-11041/RT) \end{split}$$

Т	Λ	к	ρ
400	0.7575	0.002362	1.0054
410	1.0631	.003293	0.9984

Density: [<u>190</u>, <u>221</u>]. Conductance: [<u>190</u>, <u>221</u>]. Melting Point: [<u>190</u>].  $\begin{aligned} \rho &= 1.1906 - 5.812 \therefore 10^{-4} T \\ \eta &= 1099.50 - 6.25565 T + 1.19468 \cdot 10^{-2} T^2 \end{aligned}$ 

 $-7.64127 \cdot 10^{-6} T^{3}$ 

mp 162 °C (435 °K)

mp 146.0 °C (419.2 °K)

Т	ρ	η
$\begin{array}{r} 440\\ 450\\ 460\\ 470\\ 480\\ 490\\ 500\\ 510\\ 520\\ 530\\ \end{array}$	0.9349 .9291 .9232 .9174 .9116 .9058 .9000 .8942 .8884 .8826	9.00 7.37 6.07 5.05 4.27 3.67 3.22 2.86 2.55 2.25
540	.8768	1.91

Density: [<u>190</u>, <u>221</u>]. Viscosity: [<u>190</u>, <u>221</u>]. Melting Point: [<u>190</u>]. Eq wt 387.43

mp 247 °C (520 °K)

 $\begin{aligned} \kappa &= -0.193219 + 4.43623 \cdot 10^{-4} T \\ \rho &= 1.3252 - 6.557 \cdot 10^{-4} T \\ \Lambda &= 4743.7 \exp(-5954.3/RT) \\ \eta &= 3.173 \cdot 10^{-3} \exp(7159/RT) \end{aligned}$ 

Т	Λ	к	ρ	η
530	16.60	0.04190	0.9777	2.84
540	18.49	.04634	.9711	2.51
550	20.39	.05077	.9646	2.22

Density: [<u>190</u>, <u>221</u>]. Conductance: [<u>190</u>, <u>221</u>]. Viscosity: [<u>190</u>, <u>221</u>]. Melting Point: [190].

TABLE 157.	Tetrabutylammonium	tetraphenylborate
------------	--------------------	-------------------

Eq wt 561.68

mp 236.5 °C (509.7 °K)

$$\begin{split} \kappa &= 8.0270 \, \exp\left(-6587.0/RT\right) \\ \rho &= 1.1435 - 4.945 \cdot 10^{-4} \, T \\ \Lambda &= 6841.1 \, \exp\left(-6893.0/RT\right) \\ \eta &= 1.588 \cdot 10^{-3} \, \exp\left(8235/RT\right) \end{split}$$

Т	Λ	к	ρ	η
510 520 530 540	7.605 8.665 9.828 11.10	0.01207 .01367 .01542 .01732	0.8913 .8864 .8814 .8765	4.59 3.95 3.42

Density: [<u>190</u>, <u>221</u>]. Conductance: [<u>190</u>, <u>221</u>]. Viscosity: [<u>190</u>, <u>221</u>]. Melting Point: [190]. Eq wt 441.48

mp 91 °C (364 °K)

$$\rho = 1.1296 - 5.772 \cdot 10^{-4} T$$

$$n = 1.806 \cdot 10^{-4} \exp((9841/RT))$$

Т	ρ	η
370	0.9161	
380	.9103	82.61
390	.9045	59.14
400	.8987	43.06
410	.8930	31.83
420	.8872	23.88
430	.8814	18.15
440	.8757	13.97
450	.8699	10.88
460	.8641	8.56
470	.8583	6.81
480	.8526	5.47
490	.8468	4.43
500	.8410	3.62

Density: [<u>190</u>, <u>221</u>]. Viscosity: [<u>190</u>, <u>221</u>]. Melting Point: [190].

#### TABLE 159. Tetra-n-amylammonium thiocyanate

Eq wt 356.64

mp 50.5 °C (323.7 °K)

 $\kappa = 0.0621247 - 3.93243 \cdot 10^{-4}T + 6.24733 \cdot 10^{-7}T^{2}$   $\rho = 1.0774 - 5.3662 \cdot 10^{-4}T$  $\Lambda = 5.7747 \cdot 10^{5} \exp(-9882.2/RT)$ 

$$\eta = 116917 - 941.774T + 2.53276T^2 - 2.27331 \cdot 10^{-3}T^2$$

Т	Λ	к · 104	ρ	η
330 340 350 360 370 380 390	$\begin{array}{c} 0.1540 \\ .2558 \\ .4090 \\ .6145 \\ .8731 \\ 1.1860 \\ 1.5540 \end{array}$	3.887 6.420 10.20 15.24 21.51 29.05 37.83	0.9003 .8950 .8896 .8842 .8789 .8735 .8681	$253 \\ 151 \\ 91.1 \\ 60.6 \\ 45.4 \\ 32.3$

Density: [<u>172</u>]. Conductance: [<u>172</u>]. Viscosity: [<u>172</u>]. Melting Point: [218]. Eq wt 86.90

mp 705 °C (978 °K)

78 °K) Eq wt 102.97

=

mp 687 °C (960 °K)

 $\kappa\!=\!-4.531\!+\!7.740\cdot10^{-3}T\!-\!1.356\cdot10^{-6}T^2$ 

Т	к
980	1.752
990	1.803
1000	1.853
1010	1.903
1020	1.953
1030	2.003
1040	2.052
1050	2.101
1060	2.150
1070	2.198
1080	2.247
1090	2.295
1100	2.342
1120	2.437
1140	2.530
1160	2.623
1180	2.714
1200	2.804
1220	2.893

Conductance: [117]. Melting Point: [130]. 
$$\begin{split} \kappa &= -3.1705 + 5.2419 \cdot 10^{-3}T - 0.8970 \cdot 10^{-6}T^2 \\ \rho &= 3.407 - 0.629 \cdot 10^{-3}T \\ \Lambda &= 779.9 ~ \exp{(-5713/RT)} \end{split}$$

Т	Λ	к	ρ
1020	(46.3)	1.243	(2.765)
1030	(47.7)	1.277	(2.759)
1040	(49.0)	1.311	(2.753)
1050	(50.4)	1.345	(2.747)
1060	(51.8)	1.378	(2.740)
1070	(53.2)	1.411	(2.734)
1080	(54.5)	1.444	(2.728)
1090	(55.9)	1.477	(2.721)
1100	(57.3)	1.510	(2.715)
1110	(58.6)	1.543	(2.709)
1120	60.0	1-575	2.703
1130	61.4	1.607	2.696
1140	62.8	1.640	2.690
1150	64.1	1.671	2.684
1160	65.5	1.703	2.677
1170	66.9	1.735	2.671
1180	68.2	1.767	2.665
1190	69.6	1.797	2.658
1200	71.0	1.828	2.652
1210	72.3	1.859	2.646
1220	73.7	1.890	2.640
1230	75.1	1.920	2.633

Density: [<u>26</u>]. Conductance: [26, <u>76</u>]. Melting Point: [130].

 $\begin{aligned} \kappa \! = \! 7.541 \, \exp \left( - 3931 / RT \right) \\ \rho \! = \! 4.629 \! - \! 0.797 \cdot 10^{-3}T \end{aligned}$ 

Eq wt 119.08

mp 926 °C (1199 °K)

Eq wt 146.96

mp 698 °C (971 °K)

	a - 2	000	9.22.	$10^{-4}T -$	1.98.	$10 - 7T^2$
1	ho – 2.	000 -	2.05 .	$10 \cdot 1 - 1$	1.20	10 .1-

۶T	ρ
1250	2.334
1230	2.334
1350	2.273
$1400 \\ 1450$	2.241 2.209
1500	2.209
1550	2.142
$\frac{1600}{1650}$	$2.108 \\ 2.073$
1700	2.073
1750	2.001

Density: [<u>25</u>]. Melting Point: [130].

$\Lambda = 381.7 \exp\left(-4491/RT\right)$			
Т	Λ	к	ρ
$\begin{array}{c} 1050\\ 1060\\ 1070\\ 1080\\ 1090\\ 1100\\ 1100\\ 1110\\ 1120\\ 1130\\ 1140\\ 1150\\ 1160\\ 1170\\ 1180\\ 1190\\ 1200\\ 1210\\ 1220\\ 1230\\ \end{array}$	$\begin{array}{c} 44.4\\ 45.3\\ 46.2\\ 47.1\\ 48.0\\ 48.9\\ 49.8\\ 50.7\\ 51.6\\ 52.5\\ 53.4\\ 54.4\\ 55.3\\ 56.2\\ 57.1\\ 58.0\\ 59.0\\ 59.0\\ 59.9\\ 60.8\\ \end{array}$	$\begin{array}{c} 1.14_{5} \\ 1.16_{5} \\ 1.18_{5} \\ 1.20_{5} \\ 1.23 \\ 1.25 \\ 1.27 \\ 1.29 \\ 1.31 \\ 1.33 \\ 1.35 \\ 1.37 \\ 1.39 \\ 1.41 \\ 1.43 \\ 1.45 \\ 1.47 \\ 1.49 \\ 1.51 \end{array}$	3.792 3.784 3.776 3.768 3.760 3.752 3.744 3.736 3.728 3.728 3.720 3.712 3.704 3.697 3.689 3.681 3.673 3.665 3.657 3.649
1240	61.7	1.53	3.641

Eq wt 163.07

mp 930 °C (1203 °K)

Density: [<u>26</u>]. Conductance: [<u>26</u>]. Melting Point: [131].

TABLE 164.Potassium tungstate

Т	ρ
1250 1300 1350 1400 1450 1500 1550 1600 1650 1700 1750	$\begin{array}{c} 3.131\\ 3.090\\ 3.050\\ 3.010\\ 2.972\\ 2.934\\ 2.897\\ 2.861\\ 2.826\\ 2.791\\ 2.757\end{array}$
1750	2.757

Density: [25]. Melting Point: [130].

### Eq wt 81.08

mp 310 °C (583 °K)

mp 318 °C (591 °K)

 $\kappa = 43.0 \exp(-4740/RT)$ 

 $\eta = 526.399 - 2.49292 T + 3.96856 \cdot 10^{-3} T^2$ 

 $-2.11546 \cdot 10^{-6} T^{3}$ 

Eq wt 40.01

Т	к	η
590 600 610 620 630 640 650	0.754 .807 .861 .917 .974 1.035 1.096	2.56 2.39 2.25 2.13 2.02

Conductance: [<u>112</u>]. Viscosity: [<u>112</u>]. Melting Point: [112].

### TABLE 166.Potassium thiocyanate

Eq wt 97.18

mp 172 °C (455 °K)

$$\begin{split} \kappa &= 100 \; \exp \; (-5850/RT) \\ \rho &= 1.9581 - 0.800 \cdot 10^{-3}T \\ \Lambda &= 7874 \; \exp \; (-6082/RT) \\ \eta &= 1935.08 - 11.1776 \; T + 2.16788 \cdot 10^{-2} \; T^2 \end{split}$$

- ]	1.40826	$\cdot 10^{-5}T^{3}$
-----	---------	----------------------

Т	Λ	к	ρ	η
450 460 470 480 490 500 510 520	8.8 10.2 11.7 (13.4) (15.3) (17.3) (19.5)	0.144 .166 .190 .217 .246 .277 .311	$\begin{array}{c} 1.5981 \\ 1.5901 \\ 1.5821 \\ (1.5741) \\ (1.5661) \\ (1.5581) \\ (1.5501) \end{array}$	$11.8 \\ 9.87 \\ 8.36 \\ 7.20 \\ 6.33 \\ 5.65 \\ 5.09 \\ 4.55$

Density: [<u>110</u>]. Conductance: [<u>112</u>]. Viscosity: [<u>112</u>]. Melting Point: [131].

$\kappa = -3.23 + 9.0 \cdot 10^{-3}T$	
$\rho = 2.068 - 0.4784 \cdot 10^{-3}T$	
$\Lambda = 668.2 \exp(-3120/RT)$	
$\eta = 164.771 - 0.614833T + 7.80340$	$10^{-4}T^2$
	$-3.33334 \cdot 10^{-7} T^3$

Т	Δ	к	ρ	η
1		n n	P	''
600	(48.7)	2.17	(1.781)	•••••
610	(50.9)	2.26	(1.776)	
620	53.1	2.35	1.771	
630	55.3	2.44	1.767	3.79
640	57.5	2.53	1.762	3.52
650	59.7	2.62	1.757	3.28
660	61.9	2.71	1.752	3.07
670	64.1	2.80	1.747	2.87
680	66.4	2.89	1.743	2.70
690	68.6	2.98	1.738	2.55
700	70.9	3.07	1.733	2.42
710	73.2	3.16	1.728	2.31
720	75.4	3.25	1.724	2.20
730	77.7	3.34	1.719	2.11
740				2.03
750				1.96
760				1.90
770				1.84
780				1.78
790				1.72
800				1.66
810				1.59
820				1.52
				·

Density: [<u>37</u>]. Conductance: [<u>37</u>]. Viscosity: [<u>37</u>]. Melting Point: [131]. Eq wt 56.10

mp 360 °C (633 °K)

 TABLE 169.
 Potassium dichromate

Eq wt 147.11

mp 398 °C (671 °K)

 $\kappa = -1.38 + 5.80 \cdot 10^{-3}T$  $\rho = 2.013 - 0.4396 \cdot 10^{-3}T$  $\Lambda = 520.2 \exp(-2467/RT)$ 

 $\eta = 52.7561 - 0.166134T + 1.80314 \cdot 10^{-4}T^2$ 

 $-6.66494 \cdot 10^{-8}T^{3}$ 

Т	Λ	к	ρ	η
640 650 660 670 680 690 700 710 720 730 740 750 760 770 780 790 800	81.883.986.088.290.392.594.696.899.0 $101.2103.4105.6107.8110.1$	2.51 2.56 2.62 2.68 2.74 2.80 2.85 2.91 2.97 3.03 3.09 3.14 3.20 3.26	$\begin{array}{c} 1.732\\ 1.727\\ 1.723\\ 1.718\\ 1.718\\ 1.714\\ 1.710\\ 1.705\\ 1.701\\ 1.696\\ 1.692\\ 1.688\\ 1.683\\ 1.683\\ 1.679\\ 1.675\\ 1.670\\ 1.666\\ 1.661\\ \end{array}$	2.21 2.08 1.96 1.84 1.74 1.64 1.55 1.46 1.39 1.31 1.25 1.18 1.13
810 820 830 840 850 860 870	$     112.3 \\     114.6 \\     116.9 \\     119.2 \\     121.5 \\     123.8 \\     126.1 $	3.32 3.38 3.43 3.49 3.55 3.61 3.67	$1.657 \\ 1.653 \\ 1.648 \\ 1.644 \\ 1.639 \\ 1.635 \\ 1.631$	1.07 1.02 0.97 .93 .89 .85 .81

Density: [<u>37</u>]. Conductance: [37]. Viscosity: [37]. Melting Point: [132].

$\kappa = 73.0 \exp(-7800/RT)$	
$\rho = 2.753 - 0.695.10^{-3}T$	
$\Lambda = 6052 \exp(-8141/RT)$	
$\eta = 79.5667 - 0.110600T - 1.12662 \cdot 10^{-5}T^2$	

 $+4.25741 \cdot 10^{-8}T^{3}$ 

Т	Λ	к	ρ	η
690 700 710 720 730 740 750 760 770 780	16.0 17.4 18.9 20.4 22.1 23.8 25.7 27.6 29.6 31.7	$\begin{array}{c} 0.24_7 \\ .26_8 \\ .29_0 \\ .31_3 \\ .33_7 \\ .36_3 \\ .38_9 \\ .41_7 \\ .44_6 \\ .47_6 \end{array}$	2.273 2.267 2.260 2.253 2.246 2.239 2.232 2.225 2.218 2.211	$11.87 \\ 11.23 \\ 10.60 \\ 9.99 \\ 9.39 \\ 8.81 \\ 8.24 \\ 7.69 \\ 7.16 \\ 6.65 \\ 11.27 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.23 \\ 11.$
790 800	33.9 36.1	$.50_7$ $.54_0$	2.204 2.197	•••••

Density: [25, 110]. Conductance: [8, 110]. Viscosity: [8, 110]. Melting Point: [130].

Eq wt 101.98

### mp 625 °C (898 °K) Eq wt 7.948

mp 688 °C (961 °K)

$\eta = 2.412 \cdot 10^{-3}$	$^{2} \exp(19899/RT)$
------------------------------	-----------------------

Т	η
920 930 940 950 960 970 980 990 1000 1010 1020	1290 1150 1020 913 818 735 661 597 539 488 443

 $\kappa = 37.4709 - 7.75006 \cdot 10^{-2}T + 4.01118 \cdot 10^{-6}T^{2}$ 

980         .0438           990         .0590           1000         .0822           1010         .1134		
980         .0438           990         .0590           1000         .0822           1010         .1134	Т	к
	980 990 1000 1010 1020	0.0366 .0438 .0590 .0822 .1134 .1527 .2000

Conductance: [<u>165</u>]. Melting Point: [211].

Viscosity: [200]. Melting Point: [130].

TABLE	173.	Lithium	chlorate

Eq wt 90.39

mp 127.8 °C (401.0 °K)

TABLE 171.Uranyl chloride

Eq wt 170.49

mp 588 °C (851 °K)

 $\kappa\!=\!-0.273\!+\!0.371\cdot10^{-3}T$ 

Т	к
860 870 880 890 900 910 920 930 940 950	0.046 .050 .053 .057 .061 .065 .068 .072 .076 .079

Conductance: [64]. Melting Point: [64].  $\begin{aligned} \kappa &= -0.95475 + 2.6390 \cdot 10^{-3}T \\ \rho &= 2.3936 - 7.5702 \cdot 10^{-4}T \\ \Lambda &= 9394.7 \text{ exp} (-6072.1/RT) \end{aligned}$ 

 $\eta = 13199.6 - 88.4573 T + 0.198361 T^2 - 1.48684 \cdot 10^{-4}T^3$ 

Т	Λ	к	ρ	η
410 420 430 440 450	5.52 6.69 7.87 9.05 10.25	0.1272 .1536 .1800 .2064 .2328	2.0832 2.0756 2.0681 2.0605 2.0529	29.14 22.72 18.49 15.58

Density: [164, <u>175</u>]. Conductance: [164, <u>174</u>]. Viscosity: [<u>175</u>]. Melting Point: [174].

### Eq wt 106.40

mp 236 °C (509 °K)

$\rho = 2.337 - 0.612 \cdot 10^{-3}T$					
T	ρ				
530	2.013				
540	2.007				
550	2.000				
560	1.994				
570	1.988				
580	1.982				
590	1.976				
600	1.970				
610	1.964				
620	1.958				
630	1.951				
640	1.945				
650	1.939				
 Density: [	1771.				

Density: [<u>177</u>]. Melting Point: [130].

## 7. Cumulative Tables of Temperature Dependent Equations

The best temperature dependent equations for specific conductance, density, equivalent conductance and viscosity (tables 1-174) are summarized in tables 175-178 respectively. Tables 179-182 contain sets of exponential and power series equations for specific conductance and viscosity. The precisions marked with asterisks (*) in table 179 are approximate; the values in these instances may be 2 to 5 times larger than the table entries. The uncertainties in brackets, being based on minimal information, are more qualitative than the unbracketed values.

297-268 O-68-	Salt	Best equation	Temperature range, °K	(s(ohm ⁻¹ cm ⁻¹ )	Reference	Uncertainty estimate (percent)
	LiF NaF	$\kappa = -15.0389 + 3.5354 \cdot 10^{-2}T - 1.28145 \cdot 10^{-5}T^{2}$ $\kappa = 1.4605 + 2.7374 \cdot 10^{-3}T$	1148.2 - 1310.2 $1276 - 1411$	0.0237 0179	[86] [86]	12 3.5
	KF	$\kappa = 9.2728 \cdot 10^{-2} + 3.0628 \cdot 10^{-3}T$	1132.2-1285.2	.0201	[86]	12
•	CsF	$\kappa = -1.47691 + 3.997 \cdot 10^{-3}T$	1010 -1125	.0456	[182]	S
-	$CuF_2$	$\kappa = 0.93 + 1.0 \cdot 10^{-3}T$	1270 -1370		[86]	(20)
7	AgF	$\kappa = -5.2 + 12.0 \cdot 10^{-3}T$			[86]	(20)
	ZnF ₂	$\kappa = -3.75 + 6.0 \cdot 10^{-3}T$			[86]	(20)
_	$PbF_2$	$\kappa = 0.7 + 4.0 \cdot 10^{-3}T$			[86]	(20)
_	$MnF_2$	$\kappa = 4.0 \cdot 10^{-3}T$				(20)
_	LiCI	$\kappa = -2.064t + 12.12t1 \cdot 10^{-3}t - 3.1641 \cdot 10^{-9}t^2$		.000.4	[62, 79]	0.7
7 1	Naci	$\kappa = -2.49.(5 + 8.0451 \cdot 10^{-9}) - 2.222.( \cdot 10^{-9})^{-2}$	1079 -1294	.00104	[6/]	×.
	BPCI	$K = -3.99003 \pm 9.0222 \cdot 10^{-3} T = 3.000 \cdot 10^{-6} T^2$		1600.	[67]	0. c
	CsCl	$\kappa = -3.0230 \pm 1.03403 \pm 10^{-1} - 2.1210 \pm 10^{-1}$ $\kappa = -3.2034 \pm 6.0802 \pm 10^{-3}T - 1.5216 \pm 10^{-6}T^{2}$		.00280	[02]	5.0
09	BeCl ₂	$\kappa = -0.075392 + 1.0576 \cdot 10^{-4}T$		$9.70 \cdot 10^{-5}$	[186]	(20)
	$MgCl_2$	$\kappa = -0.6049 + 1.352 \cdot 10^{-3}T + 0.2911 \cdot 10^{-6}T^{2}$	987 -1252	0.00300	[94]	, I
-	$CaCl_2$	$\kappa = 19.628 \exp(-4749/RT)$	1046 - 1291	.00587	[94]	2.5
	SrCl ₂	$\kappa = 17.792 \exp(-4987/RT)$		.0012	[94]	4.0
-1	BaCl ₂	$\kappa = 17.479 \exp(-5274/RT)$		.00254	[94]	9.0
	ScCl ₃	$\kappa = -2.890 + 2.796 \cdot 10^{-3}T$			[30]	
	YCI ₃	$\kappa = -3.7071 + 5.9576 \cdot 10^{-3}T - 1.8199 \cdot 10^{-6}T^{2}$		.00428	[35]	(10)
	LaCIs	$\kappa = -13.538 + 22.487 \cdot 10^{-3}I - 8.167 \cdot 10^{-6}I^2$	1146 -1260	-000. 5 00 10-3	[83]	10
	LeUis PrCI.	$\kappa = -10.03613 \pm 1.10111 + 10^{-2}I = 0.301008 + 10^{-9}I^{-2}$	• •	0.0039	[119] [39]	el R
	NdCl ₃	$\kappa = -2.018 + 2.527 \cdot 10^{-3}T$		.0024	[32]	(12)
-	GdCl ₃	$\kappa = 22.247 \exp(7300.6/RT)$	902.2- 971.2	.00525	[121]	20
. 4	DyCl ₃	$\kappa = -1.37966 + 1.8417 \cdot 10^{-3}T$	952 - 1003	.00483	[171]	20
	H ₀ Cl ₃	$\kappa = -1.40281 + 1.79896 \cdot 10^{-3}T$		.00289	[171]	20
	ErCl ₃			.000150	[121]	20
	ThCl ₄	$\kappa = -13.1887 + 22.5705 \cdot 10^{-3}T - 9.0973 \cdot 10^{-6}T^{2}$	·	.0140	[32]	(15)
	UCI4	$\kappa = -2.023 + 2.803 \cdot 10^{-3}T$		.00130	[32]	(6)
`	MnCl ₂	_		$3.66 \cdot 10^{-4}$	[192]	20
-	CuCl	$-1.290/79 + 1.213/306 \cdot 10^{-2} V - 9.12$		$6.40 \cdot 10^{-3}$	[189]	ں م
4.6	AgCI	$\kappa = -1.5/8 + 1.069/ \cdot 10^{-2}/ - 4.51 \cdot 10^{-6}/^{-2}$	(53 -1013 503 3 573 5	3.5 · 10-3	[166]	0.7
	ZnCl ₂	$\kappa = 0.423433 - 1.53/61 \cdot 10^{-5}I + 1.39393 \cdot 10^{-5}I^{2}$	6.270 - 2.266	$4.00 \cdot 10^{-4}$	[94]	30

TABLE 175. Specific conductance – Best equations

Uncertainty estimate (percent)	$\begin{array}{c} 5 \\ 5 \\ 0.6 \\ (20) \\ 3 \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) \\ (10) $
Reference	$\begin{bmatrix} 94\\ [94]\\ [94]\\ [94]\\ [94]\\ [94]\\ [35]\\ [35]\\ [35]\\ [35]\\ [35]\\ [34]\\ [34]\\ [32]\\ [34]\\ [32]\\ [34]\\ [32]\\ [34]\\ [17]\\ [33]\\ [17]\\ [17]\\ [17]\\ [17]\\ [100, 72]\\ [189]\\ [169]\\ [189]\\ [189]\\ [189]\\ [189]\\ [189]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]\\ [14]$
.s(ohm ^{−1} cm ^{−1} )	$\begin{array}{c} 8.38\cdot 10^{-4}\\ 1.60\cdot 10^{-3}\\ 1.49\cdot 10^{-4}\\ 0.00604\\ 3.87\cdot 10^{-7}\\ 0.0176\\ .0074\\ .00235\\ 5.52\cdot 10^{-3}\\ 4.41\cdot 10^{-3}\\ 0.00802\\ 1.7\cdot 10^{-4}\\ 6.09\cdot 10^{-4}\\ 6.09\cdot 10^{-4}\\ 6.09\cdot 10^{-4}\\ 6.09\cdot 10^{-4}\\ 0.00269\\ .00248\\ .00254\\ .00248\\ .00254\\ .00232\\ .00269\\ .00253\\ .00233\\ .00397\\ .00196\\ .00233\\ .0038\\ .00233\\ .0038\\ .00109\\ .00161\\ 8.65\cdot 10^{-7}\\ 0.00164\\ .00132\\ .00164\\ .00132\\ .00132\\ .00164\\ .000164\\ .00132\\ .00132\\ .00132\\ .00132\\ .00132\\ .00132\\ .00132\\ .00132\\ .00132\\ .00132\\ .00132\\ .000164\\ .000164\\ .000164\\ .000164\\ .000164\\ .000164\\ .000132\\ .000164\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000132\\ .000122\\ .000122\\ .000122\\ .000122\\ .000122\\ .000122\\ .000122\\ .000122\\ .000122\\ .000122\\ .000122\\ .000122\\ .000122\\ .000122\\ .000122\\ .000122\\ .000122\\ .000122\\ .000122\\ .000122\\ .000122\\ .000122\\ .000122\\ .000122\\ .000122\\ .000122\\ .000122\\ .000122\\ .000122\\ .000122\\ .000122\\ .000122\\ .000122\\ .000122\\ .000122\\ .000122\\ .000122\\ .000122\\ .000122\\ .000122\\ .000122\\ .000122\\ .000122\\ .000122\\ .000122\\ .000122\\ .000122\\ .000122\\ .000122\\ .000122\\ .000122\\ .000122\\ .000122\\ .000122\\ .000122\\ .000122\\ .000122\\$
Temperature range, °K	
Best equation	$ \begin{split} \kappa = 1.51396 - 4.7703 \cdot 10^{-3}T + 3.79161 \cdot 10^{-6}T^2 \\ \kappa = 1.3614 - 4.33201 \cdot 10^{-3}T + 3.56250 \cdot 10^{-6}T^2 \\ \kappa = 1.3671 + 6.1834 \cdot 10^{-3}T - 1.9576 \cdot 10^{-6}T^2 \\ \kappa = 1.36511 + 6.1834 \cdot 10^{-3}T + 1.9576 \cdot 10^{-6}T^2 \\ \kappa = 5.255 \exp\left(-2.9641/8T\right) \\ \kappa = 2.026153 \cdot 10^{-3}-1.061468 \cdot 10^{-7}T + 1.0942 \cdot 10^{-7}T^2 \\ \kappa = 1.2783 + 3.6986 \cdot 10^{-7}T - 1.4444 \cdot 10^{-7}T^2 \\ \kappa = 1.2783 + 3.6986 \cdot 10^{-7}T - 1.4444 \cdot 10^{-7}T^2 \\ \kappa = 1.184 - 0.383 \cdot 10^{-3}T + 1.0942 \cdot 10^{-7}T^2 \\ \kappa = 1.1284 - 0.383 \cdot 10^{-3}T - 7.776489 \cdot 10^{-7}T^2 \\ \kappa = 1.1273 + 3.6986 \cdot 10^{-7}T - 1.9059 \cdot 10^{-7}T^2 \\ \kappa = 1.1273 + 3.6986 \cdot 10^{-7}T - 7.776489 \cdot 10^{-7}T^2 \\ \kappa = 1.1273 + 1.33252 \cdot 10^{-7}T - 7.776489 \cdot 10^{-7}T^2 \\ \kappa = -2.07397 + 4.839529 \cdot 10^{-7}T - 7.776489 \cdot 10^{-7}T^2 \\ \kappa = -1.2233 + 1.6574 \cdot 10^{-2}T - 1.9059 \cdot 10^{-7}T^2 \\ \kappa = -1.2284 \cdot 1.0527 + 1.9030 \cdot 10^{-3}T - 0.7617 \cdot 10^{-7}T^2 \\ \kappa = -0.2994 + 0.3715 \cdot 10^{-7}T - 1.8612 \cdot 10^{-7}T^2 \\ \kappa = -0.2994 + 0.3715 \cdot 10^{-7}T - 1.8612 \cdot 10^{-7}T^2 \\ \kappa = -0.2994 + 0.3717 \cdot 10^{-7}T^2 \\ \kappa = -0.2994 + 0.3717 \cdot 10^{-7}T^2 \\ \kappa = -0.2949 + 0.3717 \cdot 10^{-7}T^2 \\ \kappa = -0.2948 + 1.3325 \cdot 10^{-7}T - 1.7264 \cdot 10^{-7}T^2 \\ \kappa = -2.4631 + 3.736 \cdot 10^{-7}T - 1.7296 \cdot 10^{-7}T^2 \\ \kappa = -2.4631 + 3.736 \cdot 10^{-7}T - 1.7296 \cdot 10^{-7}T^2 \\ \kappa = -2.4631 + 3.736 \cdot 10^{-7}T - 1.7296 \cdot 10^{-7}T^2 \\ \kappa = -2.4631 + 3.736 \cdot 10^{-7}T - 1.7296 \cdot 10^{-7}T^2 \\ \kappa = -2.40388 + 1.3356 \cdot 10^{-7}T - 1.7296 \cdot 10^{-7}T^2 \\ \kappa = -2.4631 + 4.1802 \cdot 10^{-7}T - 1.7296 \cdot 10^{-7}T^2 \\ \kappa = -2.403887 \cdot 10^{-3}T - 1.72064 \cdot 10^{-7}T^2 \\ \kappa = -2.403887 \cdot 10^{-3}T - 1.72064 \cdot 10^{-7}T^2 \\ \kappa = -2.403887 \cdot 10^{-3}T - 1.72064 \cdot 10^{-7}T^2 \\ \kappa = -2.403887 \cdot 10^{-3}T - 1.72064 \cdot 10^{-7}T^2 \\ \kappa = -2.403887 \cdot 10^{-3}T - 1.72064 \cdot 10^{-7}T^2 \\ \kappa = -2.403887 \cdot 10^{-3}T - 1.72064 \cdot 10^{-7}T^2 \\ \kappa = -2.403887 \cdot 10^{-3}T $
Salt	ZnCl ₂ ZnCl ₂ ZnCl ₂ ZnCl ₂ ZnCl ₂ ZnCl ₂ HgCl HgCl ₃ hgCl ₂ hgCl ₃ hgCl ₃ h

TABLE 175. Specific conductance – Best equations – Continued

Salt	Best equation	Temperature range, °K	s(ohm ⁻¹ cm ⁻¹ )	Reference	Uncertainty estimate (percent)
LiI NaI	$\kappa = -3.4283 + 1.4264 \cdot 10^{-2}T - 0.59652 \cdot 10^{-5}T^{2}$ $\kappa = -2.8948 + 7.5861 \cdot 10^{-3}T - 2.2381 \cdot 10^{-6}T^{2}$	756 - 877 936 -1187	0.0026 .00263	[227] [82]	5.0 3.5
KI	$\kappa = -6.1952 + 12.6232 \cdot 10^{-3}T - 5.0591 \cdot 10^{-6}T^2$		.0075	[62]	0.9
RbI	$\kappa = -2.5050 + 5.3229 \cdot 10^{-3}T - 1.8114 \cdot 10^{-6}T^{2}$		.00169	[82]	(3.5)
CsI	$\kappa = -2.4630 + 4.5942 \cdot 10^{-3}T - 1.2749 \cdot 10^{-6}T^{2}$	932 -1137 010 -1176	$1.40 \cdot 10^{-4}$	[82]	(5.0)
Mg12 Cal2	$\kappa = -0.030 + 0.803 + 10^{-3} + 0.4299 + 10^{-3} - 1$ $\kappa = -4.6282 + 8.2567 + 10^{-3}T - 2.6610 + 10^{-6}T^{2}$		$5.5 \cdot 10^{-4}$	[94] [94]	(1.3) (2.0)
$Srl_2$	$\kappa = -1.8747 + 3.3276 \cdot 10^{-3}T - 0.5169 \cdot 10^{-6}T^2$	821 -1270	0.00139	[94]	(6.0)
Bal2	$\kappa = -2.1845 + 3.3755 \cdot 10^{-3}T - 0.4666 \cdot 10^{-6}T^{2}$	Т	.0035	[94]	(10)
	$\kappa = -0.1/21 \cdot 10^{-4} + 0.8131 \cdot 10^{-8}I + 0.6801 \cdot 10^{-10}I^{-4}$	404 - 543	.125 · 10 ⁻⁰	[35]	(07)
La13 CeI3	$\kappa = -0.9535 \pm 1.519 \cdot 10^{-3}I$ $\kappa = -0.8580 \pm 1.221 \cdot 10^{-3}T$		.0003 0003	[106]	(10)
PrI ₃	$\kappa = -0.7724 + 1.1304 \cdot 10^{-3}T$	1036 - 1082	.0003	[106]	(15)
^c IPN 11	$\kappa = -0.7193 + 1.040 \cdot 10^{-3}T$	1072 -1115	.0003	[106]	(15)
IgA 1	$\kappa = 4.674 \exp(-1146/RT)$	Γ	.111	[11, 35]	12
$ZnI_2$	$\kappa = 0.6723 - 2.6838 \cdot 10^{-3}T + 2.5446 \cdot 10^{-6}T^2$	I	1100.	[94]	1.5
$CdI_2$	$\kappa = -1.0841 + 1.7574 \cdot 10^{-3}T + 0.2449 \cdot 10^{-6}T^{2}$	I	.0020	[94]	4.5
Hgl2 Cal	$\kappa = 0.3033113 - 1.075096 \cdot 10^{-3}I + 1.411112 \cdot 10^{-9}I^{-2} - 6.651402 \cdot 10^{-10}I^{-3}$	532 - 724 493 - 693	$.01 \cdot 10^{-4}$	[105]	2.5 (15)
InIa	$\kappa = -0.4380474 + 1.734687 \cdot 10^{-3}T - 1.759083 \cdot 10^{-6}T^2 + 5.775249 \cdot 10^{-10}T^3$	I	$6.30 \cdot 10^{-4}$	[189]	9
III	$\kappa = -1.261276 + 3.023831 \cdot 10^{-3}T - 7.494862 \cdot 10^{-7}T^{2}$	721 -1333	$2.65\cdot 10^{-3}$	[189]	1.5
$PbI_2$	$\kappa = -0.6501 + 1.0054 \cdot 10^{-3}T + 0.7888 \cdot 10^{-6}T^{2}$	T	0.0018	[108]	(5)
Bil ₃	$\kappa = -0.9306 + 3.0374 \cdot 10^{-3}T - 1.8477 \cdot 10^{-6}T^{2}$		$2.13 \cdot 10^{-3}$	$\begin{bmatrix} 104 \end{bmatrix}$	(3)
$Li_2CO_3$	$\kappa = 0.9877 - 1.3529 \cdot 10^{-3}T - 4.3873 \cdot 10^{-6}T^2$		$3.0 \cdot 10^{-4}$		(1.5)
Na ₂ CO ₃ K _a CO ₂	$\kappa = 13.758 \exp(-352t/KT)$ $\kappa = 11.027 \exp(-3041/RT)$	1138 -1240 1184 -1279	0 0017		1.5 1.5
$LiNO_2$	$\kappa = -0.397585 - 1.51836 \cdot 10^{-3}T + 7.33374 \cdot 10^{-6}T^{2}$	~	$4.14 \cdot 10^{-4}$	[207]	9
$NaNO_2$	$\kappa = 13.2 \exp(-2600/RT)$	554 - 723.2		[99]	1.6
$KNO_2$	$\kappa = -4.167433 + 1.148389 \cdot 10^{-2}T - 5.451471 \cdot 10^{-6}T^{2}$		$4.70 \cdot 10^{-4}$	[207]	9
$RbNO_2$	$\kappa = -4.54416 + 1.189408 \cdot 10^{-2}T - 5.890905 \cdot 10^{-6}T^{2}$		0.0025	[207]	9
$C_{s}NO_{2}$	$\kappa = -0.92278 + 2.39945 \cdot 10^{-3}T$		$7.41 \cdot 10^{-4}$	[207]	9
$Ba(NO_2)_2$	$\kappa = -1.284 + 2.65 \cdot 10^{-3}T$ $\kappa = -1.5949 \pm 2.4674 \cdot 10^{-3}T \pm 1.9097 \cdot 10^{-6}T^{2}$	553.2- 573.2 558 - 652	0.00	[185]	9
NaNO ₃	$\kappa = -1.5713 + 4.3835 \cdot 10^{-3}T$	I	$7.83 \cdot 10^{-4}$	[011] [61.7]	1
KNO ₃	$\kappa = -1.4347 + 3.7376 \cdot 10^{-3}T - 0.5779 \cdot 10^{-6}T^{2}$	613 - 880	0.00369	[66, 20]	0.8

TABLE 175. Specific conductance – Best equations – Continued

Uncertainty estimate (percent)	6 0.6 0.7 0.7 0.7 0.7 0.7 50 50 50 50 50 50 50 50 50 50
Reference	[26] [84] [60] [68] [68] [76] [159] [159] [154] [154] [154] [155] [155] [155] [155] [155] [155] [155] [155] [155] [156] [157] [155] [156] [157] [156] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [155] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157] [157]
$s(\text{ohm}^{-1} \text{ cm}^{-1})$	$\begin{array}{c} 0.00153\\ 0.00575\\ 3.31\cdot 10^{-7}\\ 0.00575\\ 3.31\cdot 10^{-7}\\ 0.0021\\ 16.1\\ 1.18\\ 16.1\\ 1.18\\ 16.1\\ 1.18\\ 0.0038\\ 0.0384\\ 0.0384\\ 0.0384\\ 0.384\\ 0.384\\ 0.384\\ 0.384\\ 0.038\\ 0.0388\\ 0.0388\\ 0.00119\\ 2.59\cdot 10^{-3}\\ 0.00203\\ 1.88\cdot 10^{-5}\\ 9.42\cdot 10^{-6}\\ 2.43\cdot 10^{-6}\\ 2$
Temperature range, °K	$\begin{array}{llllllllllllllllllllllllllllllllllll$
Best equation	$\begin{aligned} \kappa = -1.3769 + 3.8156 \cdot 10^{-3}T - 1.2658 \cdot 10^{-6}T^2 \\ \kappa = -0.7610 + 1.887 \cdot 10^{-3}T \\ \kappa = -0.7610 + 1.887 \cdot 10^{-3}T \\ \kappa = -1.9314 + 6.2321 \cdot 10^{-3}T - 1.7924 \cdot 10^{-6}T^2 \\ \kappa = -0.906043 + 2.6094 \cdot 10^{-3}T \\ \kappa = -0.906043 + 2.6094 \cdot 10^{-3}T \\ \kappa = -0.1952 + 0.4032 \cdot 10^{-3}T - 0.0391 \cdot 10^{-6}T^2 \\ \kappa = -171.25 + 0.27981 T \\ \kappa = -31771.7 + 36.3092 T - 0.0102617 T^2 \\ \kappa = -31771.7 + 36.3092 T - 0.0102617 T^2 \\ \kappa = -171.56 \cdot 10^6 \text{ exp} (-5586/\text{RT}) \\ \kappa = -3757/\text{RT} \\ \kappa = -1750 \cdot 10^6 \text{ exp} (-5586/\text{RT}) \\ \kappa = -11.668 + 10.764 \cdot 10^{-3}T \\ \kappa = -11.668 + 10.764 \cdot 10^{-3}T \\ \kappa = -1.086 + 10.62 \cdot 10^{-3}T \\ \kappa = -1.086 + 10.62 \cdot 10^{-3}T \\ \kappa = -1.086 + 10.62 \cdot 10^{-3}T \\ \kappa = -11.668 + 10.764 \cdot 10^{-3}T \\ \kappa = -10.666.1 \cdot 1062 \cdot 10^{-3}T \\ \kappa = -11.668 + 10.764 \cdot 10^{-3}T \\ \kappa = -12.600 T + 7.4254 \cdot 10^{-4}T \\ \kappa = -23.5706 \cdot 10^{-2}T + 7.9857 \cdot 10^{-6}T^2 \\ \kappa = -23.5706 \cdot 10^{-2}T + 7.9857 \cdot 10^{-5}T^2 \\ \kappa = -23.5706 \cdot 10^{-2}T + 7.9857 \cdot 10^{-5}T^2 \\ \kappa = -23.5706 \cdot 10^{-2}T + 7.9857 \cdot 10^{-7}T \\ \kappa = -23.5706 \cdot 10^{-2}T + 7.9857 \cdot 10^{-7}T \\ \kappa = -23.5706 \cdot 10^{-2}T + 7.9857 \cdot 10^{-7}T \\ \kappa = -23.5706 \cdot 10^{-2}T + 7.9857 \cdot 10^{-7}T \\ \kappa = -23.5706 \cdot 10^{-2}T + 7.9857 \cdot 10^{-7}T \\ \kappa = -23.5706 \cdot 10^{-2}T + 7.9857 \cdot 10^{-7}T \\ \kappa = -23.5706 \cdot 10^{-2}T + 7.9857 \cdot 10^{-7}T \\ \kappa = -24.544 + 4.630 \cdot 10^{-2}T + 7.9857 \cdot 10^{-7}T \\ \kappa = -24.544 + 4.630 \cdot 10^{-2}T + 7.9857 \cdot 10^{-7}T \\ \kappa = -24.544 + 4.630 \cdot 10^{-2}T + 7.9857 \cdot 10^{-7}T \\ \kappa = -24.544 + 4.630 \cdot 10^{-2}T + 7.9857 \cdot 10^{-7}T \\ \kappa = -24.544 + 4.630 \cdot 10^{-2}T + 7.9857 \cdot 10^{-7}T \\ \kappa = -24.544 + 4.630 \cdot 10^{-2}T + 7.9857 \cdot 10^{-7}T \\ \kappa = -24.544 + 4.630 \cdot 10^{-2}T + 7.9857 \cdot 10^{-7}T \\ \kappa = -24.544 + 4.630 \cdot 10^{-2}T + 7.9857 \cdot 10^{-7}T \\ \kappa = -24.544 + 4.630 \cdot 10^{-2}T + 7.9857 \cdot 10^{-7}T \\ \kappa = -24.544 + 4.630 \cdot 10^{-2}T + 7.9857$
Salt	RbN0 ₃ CsN0 ₃ CsN0 ₃ CsN0 ₃ TIN0 ₃ TIN0 ₃ V ₂ 0 ₅ Cr0 ₃ Mo0 ₃ Fe0 Fe0 Fe0 Cr0 ₃ No0 ₃ Fe0 Fe0 Cr0 ₃ Sb ₂ 0 ₃ Fe0 Cr0 ₃ Sb ₂ 0 ₃ Fe0 Cr0 ₃ Sb ₂ 0 ₃ Fe0 Fe0 Sb ₂ 0 ₃ Sb ₂ 0 ₄ Sb ₂ S0 ₄ Sb ₂ S0 ₄ Sb ₂ S0 ₄ Sb ₄ NBF ₄ Pr ₄ NDF ₆ Bu ₄ ND Bu ₄ NDF ₆

TABLE 175. Specific conductance-Best equations-Continued

Salt	Best equation	Temperature range, °K	s(ohm ⁻¹ cm ⁻¹ )	Reference	Uncertainty estimate (percent)
Bu4NBPh4 $\kappa = 8.027$ Bu4NBPh4 $\kappa = 0.062$ Li ₂ MoO4 $\kappa = -4.5$ Li ₂ MoO4 $\kappa = -4.5$ Na ₂ MoO4 $\kappa = -3.1$ Na ₂ WO4 $\kappa = -3.1$ NaSCN $\kappa = -3.2$ KSCN $\kappa = -3.2$ KOH $\kappa = -3.2$ KOH $\kappa = -3.2$ LiH $\kappa = 73.0$ LiH $\kappa = 73.0$ LiClO ₃ $\kappa = -0.2$	$\begin{aligned} \kappa = 8.0270 \exp(-6587.0/RT) \\ \kappa = 0.0621247 - 3.93243 \cdot 10^{-4}T + 6.24733 \cdot 10^{-7}T^{2} \\ \kappa = -4.531 + 7.740 \cdot 10^{-3}T - 1.356 \cdot 10^{-6}T^{2} \\ \kappa = -3.1705 + 5.2419 \cdot 10^{-3}T - 0.8970 \cdot 10^{-6}T^{2} \\ \kappa = -3.1705 + 5.2419 \cdot 10^{-3}T - 0.8970 \cdot 10^{-6}T^{2} \\ \kappa = -3.1705 + 5.2419 \cdot 10^{-3}T - 0.8970 \cdot 10^{-6}T^{2} \\ \kappa = -3.1705 + 5.2419 \cdot 10^{-3}T - 0.8970 \cdot 10^{-6}T^{2} \\ \kappa = -1.38 + 5.80 \cdot 10^{-3}T \\ \kappa = -1.38 + 5.80 \cdot 10^{-3}T \\ \kappa = -0.273 + 0.371 \cdot 10^{-3}T \\ \kappa = -0.95475 + 2.6390 \cdot 10^{-3}T \\ \kappa = -0.95475 + 2.6390 \cdot 10^{-3}T \end{aligned}$	514.3 - 540.4 $325.2 - 383.2$ $977 - 1223$ $1024.2 - 1237.2$ $925.7 - 1774$ $583 - 643$ $583 - 643$ $583 - 643$ $583 - 643$ $583 - 643$ $583 - 643$ $7851 - 953$ $958.2 - 1027$ $404.6 - 446.7$	$\begin{array}{c} 1.95 \cdot 10^{-5} \\ 2.77 \cdot 10^{-5} \\ 0.017 \\ 0.0282 \\ .00637 \\ .00637 \\ .00637 \\ 1.99 \cdot 10^{-3} \\ 1.99 \cdot 10^{-3} \end{array}$	[190, 221] [172] [117] [76] [76] [76] [26] [112] [112] [37] [37] [37] [110] [64] [110] [64] [174]	6 10 8

TABLE 175. Specific conductance – Best equations – Continued

TABLE 176.	Density-Best	equations
------------	--------------	-----------

C - h	$\rho = a - bT$		Temperature range °K	Deferrer	Uncertainty
Salt	a	$b\cdot 10^3$	Temperature range K	Reference	estimate (percent)
LiF	2.3581	0.4902	1149–1320	[83]	0.5
NaF	2.655	.54	1283-1819	[25]	
KF	2.6464	.6515	1154-1310	[83]	.6
CsF	4.8985	1.2806	985-1185	[83]	.8
$MgF_2$	3.235	0.524	1650-2100	[95]	
CaF ₂	3.179	.391	1640-2300	[95]	
SrF ₂	4.784	.751	1750-2200	[95]	
BaF ₂	5.775	.999	1600-2000	[95]	
LaF ₃	5.793	.682	1750-2450	[95]	
CeF ₃	6.253	.936	1700-2200	[95]	
ThF ₄	7.108	.7590	1393-1651	[167]	(1)
UF ₄	7.784	.9920	1309–1614	[167]	(1)
LiCl	1.8842	.4328	894-1054	[79]	0.2
NaCl	2.1393	.5430	1076-1301	[79]	.4
KCl	2.1359	.5831	1053-1212	[79]	.5
RbCl	3.1210	.8832	996-1196	[82]	.4
CsCl	3.7692	1.065	945-1179	[82]	.1
BeCl ₂	2.276	1.10	706-746	[36]	
MgCl ₂	1.976	0.302	1021-1159	[113]	.2
CaCl ₂	2.5261	.4225	1060-1223	[83]	.9
SrCl ₂	3.3896	.5781	1167-1310	[83]	.7
BaCl ₂	4.0152	.6813	1239-1354	[83]	5.0
YCl ₃	3.007	.50	998-1118	[36]	
LaCl ₃	4.0895	.7774	1146-1246	[83]	0.6
CeCl ₃	4.248	.920	1123-1223	[99]	
MnCl ₂	2.75701	.43766	923-1123	[192]	
CuCl	4.226	.76	709-858	[36]	
AgCl	5.505	.87	759–1073	[166]	0.1
ZnCl ₂	2.7831	.448	593-673	[98]	.2
CdCl ₂	4.078	.82	840-1080	[54, 66]	.3
HgCl	9.0928	4.0	799-850	[36]	
HgCl ₂	5.9391	2.8624	550-577	[103]	.5
AlCl ₃	Quadratic equati	on*	480.1-623.2	[149]	
GaCl ₃	2.7841	2.0826	360-414	[148]	.4
InCl	4.437	1.40	542-638	[34]	
InCl ₂	3.863	1.60	541-710	[34]	
InCl ₃	3.944	2.10	870-939	[34]	
TICI	6.893	1.80	708-915	[36]	
SnCl ₂	4.016	1.253	580-753	[25]	1.3
SnCl ₄	3.0185	2.687	309.4-411.2	[147]	(0.8)
PbCl ₂	6.112	1.50	789–983	[54]	.3
BiCl ₃	5.073	2.30	523-623	[32]	.4
LiBr	3.0658	0.6520	825-1012	[82]	• • • • • • • • • • • • • • • • • • • •
NaBr	3.1748	.8169	1027-1218	[82]	1.0
KBr	2.9583	.8253	1014-1203	[82]	0.4
RbBr	3.7390	1.0718	977-1180	[82]	.4
CsBr	4.2449	1.2234	910-1133	[82]	.5
$MgBr_2$	3.087	0.478	1040-1208	[113]	
CaBr ₂	3.618	.500	1036-1064	[113]	

<b>TABLE</b> 176.	Density-Best	equations – Continued
-------------------	--------------	-----------------------

A	$\rho = a - bT$				Uncertainty
Salt	a	$b\cdot 10^3$	Temperature range °K	Reference	estimate (percent)
SrBr ₂	4.390	0.745	950-1277	[113]	
$BaBr_2$	5.035	.924	1123-1173	[66]	
LaBr ₃	5.0351	.096	1069-1185	[83]	
NdBr ₃	4.9750	.7779	968 -1133	[83]	
AgBr	6.307	1.035	720 -940	[22, 54]	0.08
ZnBr ₂	4.113	0.959	707 -875	[113]	2.0
CdBr ₂	4.9831	1.08	853 -993	[54]	
$HgBr_2$	6.7715	3.2331	511 -592	[103]	0.1
InBr ₃	4.184	1.50	721 -801	[34]	
TlBr	7.4335	1.922	766 -1023	[196]	
PbBr ₂	6.789	1.65	778 -873	[54]	.8
BiBr ₃	5.958	2.6	525 -715	[25]	
LiI	3.7902	0.9176	748 -940	[82]	
NaI	3.6274	.9491	945 -1185	[82]	.4
KI	3.3594	.9557	955 -1177	[79]	.25
RbI	3.9499	1.1435	928 -1175	[82]	.7
CsI	4.2410	1.1834	919 -1126	[82]	.4
$MgI_2$	3.642	0.651	965 -1161	[113]	
CaI ₂	4.233	.751	1059 -1301	[113]	
$\mathrm{SrI}_2$	4.803	.885	789 -1299	[113]	
BaI ₂	5.222	.977	1043 -1248	[113]	
AlI ₃	4.383	2.50	473 -513	[35]	
AgI	6.415	1.01	870 -1075	[22]	
$ZnI_2$	4.856	1.360	729 -861	[113]	••••••
CdI ₂	5.133	1.117	673 -973	[66]	
$HgI_2$	6.9435	3.2351	532 -627	[103]	.1
GaI ₂	4.841	1.688	454 -538	[105]	
InI ₃	4.5448	1.50	503 -633	[34]	
Li ₂ CO ₃	2.2026	0.3729	1012 -1115	[101]	.2
$Na_2CO_3$	2.4797	.4487	1138 -1277	[101]	.2
K ₂ CO ₃	2.4141	.4421	1181 -1283	[101]	.2
NaNO ₂	2.226	.746	553 - 723	[66]	1.0
KNO ₂	2.167	.66	713 - 733	[173]	
$Ba(NO_2)_2$	3.639	.70	573 - 613	[173]	
LiNO ₃	2.068	.546	545 - 714	[26]	1.0
NaNO ₃	2.320	.715	583 - 643	[61, 66]	1.0
KNO ₃	2.315	.729	620 - 880	[66]	0.2
RbNO ₃	3.049	.972	592 - 766	[26]	15
CsNO ₃	3.6206	1.16605	688 - 764	[84]	.15
AgNO ₃ TINO ₃	4.454	1.02	553 - 683	[25]	.3
$B_2O_3$	5.8041 Quadratic equati	`1.8737	$\begin{array}{r} 484.4 - 552.6 \\ 723 - 1673 \end{array}$	[191]	.15
$B_2O_3$ $B_2O_3$	Quadratic equati Quadratic equati		123 -1673 1410 -1890	[201]	.8
SnS	5.111	0.683	1410 - 1890 1193 - 1324	[144] [158]	6.
PbS	7.260	.5400	1193 - 1324 1393 - 1473	[158]	
$Sb_2S_3$	4.387	.65	1393 - 1473 826 - 1091	[150]	
$\operatorname{Bi}_2S_3$	7.237	.03	1016 -1136	[158]	
$Li_2SO_4$	2.464	.407	1010 - 1130 1133 - 1487	[156]	(1)
$Na_2SO_4$	2.628	.483	1173 -1350	[25]	
142004	2.020	.700	1170 1000	[20]	

	$\rho = a - bT$		The second se	D. C	Uncertainty
Salt	а	$b\cdot 10^3$	Temperature range °K	Reference	estimate (percent)
K ₂ SO ₄	2.4697	0.4473	1348 -1411	[178]	0.4
$Rb_2SO_4$	3.442	.665	1359 -1818	[25]	(1)
$Cs_2SO_4$	Quadratic equat	ion*	1309 -1803	[25]	(1)
$Ag_2SO_4$	5.843	1.089	953 -1043	[226]	(0.8)
Pr ₄ NBF ₄	1.2467	0.6415	525.6- 547.3	[190, 221]	(1)
$Pr_4NPF_6$	1.2433	.3224	513 - 545	[190, 221]	(1)
Pr ₄ NBPh ₄	Quadratic equat	ion*	482 - 512	[190, 221]	(1)
Bu ₄ NBr	1.287	0.7039	392 - 408	[190, 221]	(1)
Bu ₄ NI	1.446	.8388	420 - 435	[190, 221]	(1)
Bu ₄ NBF ₄	1.1906	.5812	436 - 539	[190, 221]	(1)
$Bu_4NPF_6$	1.3252	.6557	529 - 548	[190, 221]	(1)
Bu ₄ NBPh ₄	1.1435	.4945	514.3- 540.4	[190, 221]	(1)
Hex ₄ NBF ₄	1.1296	.5772	375 - 491	[190, 221]	(1)
(n-Amyl) ₄ NSCN	1.0744	.53662	325.2- 383.2	[172]	
Na ₂ MoO ₄	3.407	.629	116 -1681	[26]	
K ₂ MoO ₄	Quadratic equat	ion*	1203 -1795	[25]	
$Na_2WO_4$	4.629	0.797	1025 - 1774	[26]	
$K_2WO_4$	Quadratic equat	ion*	1198 -1794	[25]	
$K_2Cr_2O_7$	2.753	0.695	693 - 808	[25]	
KSCN	1.9581	.800	447 -	[110]	
NaOH	2.068	.4784	623 - 723	[37]	
КОН	2.013	.4396	673 - 873	[37]	
LiClO ₃	2.3936	.75702	406.3- 426.6	[175]	
LiClO ₄	2.337	.612	534 - 644	[177]	

 TABLE 176.
 Density - Best equations - Continued

# *Quadratic Equations: $\rho = a + bT + cT^2$

	a	$b \cdot 10^3$	$c \cdot 10^6$	Temperature range °K		Uncertainty estimate (percent)
AlCl ₃ B ₂ O ₃ B ₂ O ₃ Cs ₂ SO ₄ Pr ₄ NBPh ₄ K ₂ MoO ₄ K ₂ WO ₄	-5.711383 2.03833 1.82216 3.116 0.14613 2.888 4.419	$\begin{array}{r} 28.59744 \\ -0.667971 \\345772 \\ .586 \\ 3.70736 \\ -0.283 \\ -1.233 \end{array}$	-0.2953960 .208005 .0871571 494 -4.29706 -0.128 .162	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	[149] [201] [144] [25] [190, 221] [25] [25]	0.8 .8 (1) (1)

		1		<u>,                                    </u>
Salt	$A_{\Lambda}(\mathrm{ohm^{-1}cm^{2}equip^{-1}})$	$E_{\Lambda}(\text{cal mol}^{-1})$	s(ohm ⁻¹ cm ² equiv ⁻¹ )	s%
LiF	320.71	2143.3	0.303	0.23
NaF	344.7	2964.	.1187	.10
KF	480.27	3354.9	.188	.16
CsF	817.76	4068.2	.118	.97
LiCl	508.2	2015	.0847	.048
NaCl	544.6	2990	.0870	.057
KCl	548.0	3415.2	.109	.092
RbCl	754.1	4401	.192	.19
CsCl	1102	5110	.25	.26
$BeCl_2$	$5.3567 \cdot 10^{13}$	50479	.0169	21.6
$MgCl_2$	263.7	4363	.105	0.28
CaCl ₂	675.3	5285	.0344	.046
$SrCl_2$	689.6	5646	.0247	.036
BaCl ₂	772.5	6004	.0195	.025
YCl ₃	959.2	8827	.276	1.8
LaCl ₃	469.4	5678	.277	0.63
CaCl ₃	460.7	6078.0	.188	.58
ThCl ₄	395.0	6764	.273	1.2
MnCl ₂	169.53	2694.3	.265	.59
CuCl	153.6	650.4	.968	.84
AgCl	268.22	1252.3	.279	0.21
$ZnCl_2$	$5.3419 \cdot 10^{7}$	24343	.040	18
(593-672 °K)				
ZnCl ₂	48591	15153	.062	3.3
(672-825 °K)				
ZnCl ₂	6096.5	11785	.080	0.94
(825-970 °K)				
CdCl ₂	224.4	2499	.0200	.035
HgCl	353.5	3469	.00732	.017
HgCl ₂	0.1775	5626.7	$8.5\cdot10^{-5}$	4.2
InCl	1208	3528	0.205	0.39
InCl ₂	288.4	3687	.389	2.37
InCl ₃	4.112	-2181	.0580	0.426
TlCl	546.0	3421.0	.363	.43
$SnCl_2$	361.8	2726.9	4.95	7.4
$PbCl_2$	588.1	4093	0.301	0.53
BiCl ₃	32.36	981.3	1.58	9.6
LiBr	585.3	2117	0.32*	0.17
NaBr	622.7	3228	.179	.12
KBr	591.1	3747	.578	.53
RbBr	611.1	4171	.800	.91
CsBr	1169	5533	.317	.42
MgBr ₂	385.5	5404	.101	.29
CaBr ₂	506.7	4901	.053	.087
$\mathrm{SrBr}_2$	806.5	6183	.44	1.0
$BaBr_2$	691.8	6153	.0390	0.068
LaBr ₃	2652	10296	.0874	.32
NdBr ₃	3973	11749	.101	.67
AgBr	210.2	1104	.108	1.0

TABLE 177. Equivalent conductance  $\Lambda = A_{\Lambda} e^{-E_{\Lambda}/RT}$  (ohm⁻¹cm²equiv⁻¹)

		r		
Salt	A _A (ohm ⁻¹ cm ² equiv ⁻¹ )	$E_{\Lambda}(\mathrm{cal} \mathrm{mol}^{-1})$	s(ohm ⁻¹ cm ² equiv ⁻¹ )	s%
$ZnBr_2$	35684	14604	0.325	21.0
$CdBr_2$	243.4	3226	.0263	0.06
$HgBr_2$	0.31052	4065.3	8.6 · 10-4	7.0
InBr ₃	6.766	91.0	0.0259	.38
TlBr	425.8	3510.8	.0982	.16
PbBr ₂	660.8	4559	.265	1.0
BiBr ₃	16.67	535.6	1.30	10
LiI	569.5	1809.9	0.0659	0.04
NaI	694.5	3221	.0127	.0085
KI	541.2	3442	.758	.68
RbI	568.1	3999	.378	.45
CsI	1125	5450	.378	.48
$MgI_2$	751.1	6752	.081*	.29
$CaI_2$	440.3	4617	.421	.69
$SrI_2$	610.1	5409	.57*	1.3
$BaI_2$	831.2	6367	.25*	0.50
AlI ₃	118670	11160	.121	7.2
AgI	239.9	1475	.122	0.10
$ZnI_2$	17880	12636	.222	3.3
$CdI_2$	1109.0	6365	.448*	2.2
$HgI_2$	0.07345	- 3114.3	.0313	3.3
GaI ₂	771.8	5121	.453	7.7
InI ₃	18.26	1779.9	.233	4.6
Li ₂ CO ₃	754.5	4438	.140	0.15
Na ₂ CO ₃	550.2	4199	.035	.040
K ₂ CO ₃	544.6	4650	.0175	.021
NaNO ₂	685.7	2949	.108	.15
KNO ₂	776.99	3267.2	.0617	.075
$Ba(NO_2)_2$	10217	8103.9	.0601	.80
LiNO ₃	967.8	3589	.0515	.095
NaNO ₃	705.6	3215	.0160	.028
KNO ₃	657.4	3577	.0832	.14
RbNO ₃	515.7	3496	.226	.57
CsNO ₃	552.4	3688	.00503	.019
AgNO ₃	587.9	2898	.178	.45
TINO ₃	633.25	3348.3	.0843	.35
SnS	25730	13618	18.2	1.4
PbS	338.66	-4867.0	12.3	0.61
$Sb_2S_3$	14940	12846	0.247	1.4
$Bi_2S_3$	89320	- 55.18	10.6	0.012
Li ₂ SO ₄	394.8	2932	0.482	.42
$Na_2SO_4$	550.19	4507.0	.0077	.092
$K_2SO_4$	814.95	4721.6	.070	.05
$Rb_2SO_4$	471.72	4956.6	.00709	.009
$Cs_2SO_4$	387.47	4528.7	.0067	.018
$Ag_2SO_4$	199.04	3188.5	.0223	.032
Pr ₄ NBF ₄	2973.9	4884.8	.0108	.035
Pr ₄ NPF ₆	7610.3	6070.0	$3.24 \cdot 10^{-3}$	.013
Bu₄NBr	817140	11041	1.29 · 10-4	.017

# TABLE 177. Equivalent conductance – Continued $\Lambda = A_{\Lambda} e^{-E_{\Lambda}/RT}$ (ohm⁻¹cm²equiv⁻¹)

>

Salt	$A_{\Lambda}(\text{ohm}^{-1}\text{cm}^2\text{equiv}^{-1})$	$E_{\Lambda}(\mathrm{cal} \mathrm{mol}^{-1})$	s(ohm ⁻¹ cm ² equiv ⁻¹ )	s%
Bu₄NI	136940	9394.2	0.047	2.0
$Bu_4NPF_6$	4743.7	5954.3	.041	0.22
Bu ₄ NBPh ₄	6841.1	6893.0	$1.62 \cdot 10^{-3}$	.018
(n-Amyl) ₄ NSCN	577470	9882.2	0.0532	13
$Na_2MoO_4$	779.9	5713	.142*	0.23
$Na_2WO_4$	381.7	4491	.0352	.060
KSCN	7874	6082	.00708	.053
NaOH	668.2	3120	.0128	.020
КОН	520.2	2467	.490	.50
$K_2Cr_2O_7$	6052	8141	.0144	.056
LiClO ₃	9394.7	6072.1	.218	3.2

TABLE 177.Equivalent conductance - Continued $\Lambda = A_{\Lambda} e^{-E_{\Lambda}/RT}$  (ohm⁻¹cm²equiv⁻¹)

Uncertainty estimate (percent)	$\begin{array}{c} 3.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1$
Reference	$\begin{bmatrix} 225\\ [121]\\ [121]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ [122]\\ $
s Centipoise	3.08 · 10* 3.08 · 10* 0.0057 0.0058 0.058 0.0756 0.075 0.075 0.0159 0.0159 0.0159 0.0159 0.0152 0.0152 0.025 0.0256 0.0152 0.0256 0.0152 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005
Temperature range, °K	$\begin{array}{c} 846.9 - 1252.2\\ 902.9 - 1082.9\\ 1085.9 - 1243.2\\ 1056.5 - 1202.0\\ 1056.5 - 1202.0\\ 1056.5 - 1242.6\\ 1150.5 - 1242.6\\ 1150.5 - 1242.6\\ 1150.5 - 1242.6\\ 1261.4 - 1313.9\\ 1183 - 1276\\ 293 - 333\\ 773.2 - 973.2\\ 593.2 - 673.2\\ 593.2 - 673.2\\ 593.2 - 673.2\\ 593.2 - 673.2\\ 593.2 - 673.2\\ 553.2 - 973.2\\ 553.2 - 973.2\\ 553.2 - 973.2\\ 553.2 - 973.2\\ 553.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 553.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 573.2 - 973.2\\ 57$
Best equation	$ \begin{array}{l} \eta = 1.756 \cdot 10^{-4} \exp (58466/R') \\ \eta = 1.756 \cdot 10^{-4} \exp (7007/R') \\ \eta = 3.306 \cdot 10^{-2} \exp (7007/R') \\ \eta = 55.5632 - 0.127847 T + 9.9580 \cdot 10^{-5}T^2 - 2.60355 \cdot 10^{-5}T^3 \\ \eta = 55.5632 - 0.127847 T + 9.9580 \cdot 10^{-5}T^2 - 2.60355 \cdot 10^{-5}T^3 \\ \eta = 55.5632 - 0.127847 T + 9.9580 \cdot 10^{-5}T^2 - 2.60355 \cdot 10^{-5}T^3 \\ \eta = 30.3096 - 7.02298 \cdot 10^{-7}T + 5.8038 \cdot 10^{-5}T^2 - 1.60555 \cdot 10^{-7}T^3 \\ \eta = 4.401 \cdot 10^{-4} \exp (20625/R') \\ \eta = 4.2061 \cdot 10^{-2} \exp (1043/R') \\ \eta = 2.061 \cdot 10^{-2} \exp (1643/R') \\ \eta = 2.065 \cdot 10^{-1} \exp (1643/R') \\ \eta = 2.0155 \cdot 10^{-2} \exp (1643/R') \\ \eta = 2.0155 \cdot 10^{-2} \exp (1643/R') \\ \eta = 2.015 \cdot 10^{-2} \exp (1043/R') \\ \eta = 2.015 \cdot 10^{-2} \exp (132/R') \\ \eta = 2.010 \cdot 10^{-2} \exp (535/R') \\ \eta = 2$
Salt	BeF ₂ LtiCl NaCl KCl RbCl CsCl SrCl ₂ SrCl ₂ SrCl ₂ SrCl ₂ SrCl ₂ CaCl ₂ SrCl ₂ SrCl ₂ SrCl ₂ CaCl ₂ SrCl ₃ SrCl ₃

TABLE 178. Viscosity-Best equations

		Temnerature			Incontainty
Salt	Best equation	range, °K	s Centipoise	Reference	estimate
					(percent)
AgI	$\eta = 116.161 - 0.333640 T + 3.30383 \cdot 10^{-4}T^2 - 1.10721 \cdot 10^{-7}T^3$	878.2-1100.2	0.0577	[24]	(2.5)
Hgl2	$\eta = 4.00 \cdot 10^{-2} \exp(4531/RT)$	541.2-631.2	.0367	[103]	3.0
$Li_2CO_3$	$\eta = -5259.12 + 14.8091 T - 1.38581 \cdot 10^{-2}T^{2} + 4.31294 \cdot 10^{-6}T^{3}$	1046.2-1122.2	.1022	[107]	3.0
$Na_2CO_3$	$\eta = 3.832 \cdot 10^{-5} \exp (26260/RT)$	1152.3-1245.2	.0112	[107]	3.0
$K_2CO_3$	$\eta = 1.161 \cdot 10^{-5} \exp (29487/RT)$	1186.2-1257.2	.0207	[107]	3.0
$LiNO_2$	$\eta = -14909.1 + 87.5812T - 0.171073 T^{2} + 1.11184 \cdot 10^{-4}T^{3}$	502.7- 527.2	.0354	[207]	1.0
$NaNO_2$	$\eta = 187.118 - 0.876094 T + 1.41024 \cdot 10^{-3}T^2 - 7.71608 \cdot 10^{-7}T^3$	563 - 613	.0187	[207]	1.0
KNO2	$\eta = 864.798 - 3.61760 T + 5.06274 \cdot 10^{-3}T^2 - 2.36530 \cdot 10^{-6}T^3$	686.8- 725.4	.0055	[125]	(1.5)
$RbNO_2$	$\eta = 8.754 \cdot 10^{-2} \exp (4495/RT)$	712 - 758	.0054	[207]	(1.0)
$CsNO_2$	$\eta = -182.963 + 0.828051 T - 1.21823 \cdot 10^{-3}T^{2} + 5.90224 \cdot 10^{-7}T^{3}$		.0080	[207]	(1.0)
LiNO ₃	$\eta = 20.4645 + 1.34189 \cdot 10^{-2}T - 1.31061 \cdot 10^{-4}T^2 + 1.06106 \cdot 10^{-7}T^3$	533.2- 702.2	.1143	[38]	3.5
$NaNO_3$	$\eta = 10.41 \cdot 10^{-2} \exp(3886/RT)$		.0282	[38]	1.5
KNO ₃		5	.0234	[38]	1.5
L RbNO ₃	$\eta = 190.972 - 0.791802 T + 1.11940 \cdot 10^{-3}T^2 - 5.33333 \cdot 10^{-7}T^3$	598 - 698	.00717	[139]	(1.0)
$^{\circ}$ CsNO ³	$\eta = 41.3159 + 0.21403 T - 3.32966 \cdot 10^{-4}T^{-2} + 1.65583 \cdot 10^{-7}T^{-3}$	698.2- 776.2	.033	[228]	4.5
$AgNO_3$	$\eta = 81.7743 - 0.336741 T + 4.80289 \cdot 10^{-4}T^2 - 2.32448 \cdot 10^{-7}T^3$	530.0-593.4	.0054	$[\dot{6}\dot{0}]$	1.0
TINO ₃	$\eta = -26.2068 + 0.276304 T - 7.00275 \cdot 10^{-4}T^2 + 5.31820 \cdot 10^{-7}T^3$	492.5- 553.7	.00876	[191]	(1.0)
$B_2O_3$	$\eta = 97913.6 - 135.257 T + 6.32685 \cdot 10^{-2}T^{2} - 9.97755 \cdot 10^{-6}T^{3}$	1410 - 1893	70.8	[137]	8.0
$SiO_2$	$\eta = 2.52255 \cdot 10^8 - 294897 T + 114.935 T^2 - 1.49316 \cdot 10^{-2}T^3$	2208 -2595	55.9	[205]	6.0
$GeO_2$	$\eta = 1.316 \cdot 10^{-4} \exp(74254/RT)$	1423 -1773	$7.61 \cdot 10^{5}$	[140]	5.0
$GeO_2$	$\eta = 1.967 \cdot 10^{-3} \exp(65143/RT)$	Т	8380	[137]	1.5
$As_2O_3$			7680	[202]	
$Pr_4NBF_4$			0.00032	[190]	
$Pr_4NPF_6$	1		.00031	[190]	
$Pr_4NBPh_4$	$= 2348.89 - 12.9447 T + 2.39385 \cdot 10^{-2}T^{2} - 100000000000000000000000000000000000$		.0166	[190]	•••••••••••••••••••••••••••••••••••••••
Bu4NBF4			.0440	[061]	
Bu4NFF6 D. MDDL			.00351	[061]	
DU4INDF II4	$\eta = 1.300 \cdot 10^{-3} \exp (8233/KI)$		.00038		•
Hex4NBF4			2.90	[190]	
(n-Amyl)4NSCN			3.93	[172]	
NaSCN			0.0128	$\begin{bmatrix} 112 \end{bmatrix}$	(1.5)
KSCN	$\eta = 1935.08 - 11.1776 T + 2.16788 \cdot 10^{-2}T^{2} - 1.40826 \cdot 10^{-5}T^{3}$		.0899	[112]	(1.5)
NaOH	$\eta = 164.771 - 0.614833 T + 7.80340 \cdot 10^{-4}T^2 - 3.33334 \cdot 10^{-7}T^3$		.0359	[37]	(1.5)
KOH	$\eta = 52.7561 - 0.166134$ $T + 1.80314 \cdot 10^{-4}T^2 - 6.66494 \cdot 10^{-8}T^3$		.0120	$\begin{bmatrix} 37 \end{bmatrix}$	(1.5)
$K_2Cr_2O_7$	$\eta = 79.5667 - 0.110600 T - 1.12662 \cdot 10^{-5}T^2 + 4.25741 \cdot 10^{-8}T^3$	$\sim$	.0084	[8]	1.5
NaPO ₃	$\eta = 2.412 \cdot 10^{-2} \exp(19899/KT)$		55.2 2	[200]	
LIUU3	$h_{1} = 1^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^{1} + 10^$	404.9- 440.0	0.440	10/11	

TABLE 178. Viscosity-Best equations-Continued

equations
Specific conductance-exponential equations
Specific
<b>TABLE 179.</b>

Uncertainty estimate (percent)	12 3.5 12	S				0.7	ω, νο	3.5	5.0	(20)	2.5	4.0	9.0	10	10	15	15		202	20	20		• • • • • • • • • • • • • • • • • • • •	20 5	30
Reference	[86] [86] [86]	[182]	0 <u>8</u> 0 <u>8</u>	[86]	[98]	[62, 79]	[62]	[82]	[82]	[186] [041]	[64]	[94]	[94]	[30]	[83]	[119]	[32]	[32]			[171]	[32]	[32]	[192]	[166]
s(ohm ⁻¹ cm ⁻¹ )	0.035 .00992 .0212	.0457				.0015*	.0024* 00469	.0039*	.0064*	$7.06 \cdot 10^{-4}$	.00587	.0012	.00254	.024*		$8.81 \cdot 10^{-3}$	0.0032	.0061*	67600.	.00371	.000210	.0217*	.0108*	.0135 $7.67 \cdot 10^{-2}$	$1.72 \cdot 10^{-3}$
Temperature range °K	$\begin{array}{c} 1148.2 - 1310.2 \\ 1276 & -1411 \\ 1132.2 - 1285.2 \end{array}$	1010 -1125					1079 -1294 1063 -1108		926 -1170	718 - 761				1213 -1264 973 -1148				1048 -1173	902.2- 911.2	1020.2-1092.2	1074.2-1112.2	1087 -1195		923 -1123 746 -1430	593.3- 672.5
Specific conductance (ohm ⁻¹ cm ⁻¹ )	$\kappa = 15.287 \exp (-1287.4/RT)$ $\kappa = 10.49 \exp (-1904/RT)$ $\kappa = 10.002 \exp (-2325.9/RT)$	$\kappa = 12.890 \exp(-3245.0/RT)$				$\kappa = 2.580 \exp(-1469/RT)$	$\kappa = 2.204 \exp((-1981/RT))$ $\kappa = 6.0475 \exp((-3414/RT))$	$\kappa = 8.621 \exp(-3440/RT)$	$\kappa = 11.698 \exp(-4293/RT)$	$\kappa = 6.690 \cdot 10^{12} \exp \left(-52349/RT\right)$	$\kappa = 19.628 \exp(-4749/RT)$	1	<u> </u>	$\kappa = 2.309 \exp(-3162/RT)$ $\kappa = 32.755 \exp(-8624/RT)$	$\sim \sim$	$\kappa = 13.107 \exp(-5366.2/RT)$	$\kappa = 36.17 \exp(-8258/RT)$	$\kappa = 28.58 \exp(-7934/RT)$	$\kappa = -22.24i$ exp (1300.0/N1) $\kappa = 3150$ evn ( $-83875/RT$ )	$\kappa = 23.29 \exp(-8078.3/RT)$	, <u> </u>	$\kappa = 10.25 \exp(-6063/RT)$	$\kappa = 166.7 \exp(-10360/RT)$	$\kappa = 4.9986 \exp(-2246.6/RT)$ $\kappa = 4.238 \exp(-196.56/RT)$	$\kappa = 1.2127 \cdot 10^6 \text{ exp} (-23747/RT)$
Salt	LiF NaF KF	CsF	CuF ₂ AgF	ZnF ₂	$PbF_2$ MnF ₂	LiCI	NaCI KCI	RbCl	CsCl	BeCl ₂ MrCl		SrCl ₂	BaCl ₂	SeCI ₃ YCI ₂	LaCl ₃	CeCl ₃	PrCl ₃	NdCl ₃	GaCI ₃ DvCl	HoCla	ErCl ₃	ThCl4	UC14	MnCl ₂ CuCl	AgCl ZnCl ₅

Salt	Sneetfo conductance (ahm-1 am-1)	Temperature	11-md 11-md 11-md	D. C.	Uncertainty
				materence	esumate (percent)
ZnCl ₂	$\kappa = 1577.4 \exp(-15013/RT)$	672.5- 824.7	$2.61 \cdot 10^{-3}$	[94]	5
ZnCl ₂	$\kappa = 184.26 \exp(-11531/RT)$	824.7-969.7	$4.08 \cdot 10^{-3}$	[94]	5
CdCl ₂	$\kappa = 1.849 \exp(-2050/RT)$	Γ	$0.0021^{*}$	[94]	0.6
HgCl	$\kappa = 5.255 \exp(-2644/RT)$	I	.00604	[35]	
HgCl ₂	$\kappa = 1.1911 \cdot 10^{-3} \exp(-3781.5/RT)$	I	8.08 · 10 ⁻⁶	[189]	ŝ
InCl	$\kappa = 24.148 \exp(-3314/RT)$	T	$0.0192^{*}$	[34]	
InCl ₂	<u> </u>	I	.0416*	[34]	
InCl ₃	0.045 exp (-		.0124*	[34]	•
	<u> </u>	•	.0234	[189]	0.7
SnC12 Pi Ci	1.432 exp (-	Т	.201	[189]	4
B:CL2	$k = 15.35 \exp(-3629/KI)$	I	.0130	[26]	ດີ
		I	0710.	[4]14]	2.3
TeC12		4/9 - 5/8	-07CU.	[32]	• • • • • • • • • • • • • • • • • • •
1 iBr		ı T	1010.	[32]	•••••••••••••••••••••••••••••••••••••••
	ĿĿ		.00322	[82]	1.3
KBr	J	•	*9600.	[82]	1.5
RbBr	$\kappa = 6.174 \exp(-3247/RT)$	969 -1179	$.0131^{*}$	[82]	
CsBr	$\smile$		.0068*	[82]	
$MgBr_2$			.0042*	[94]	•••••••••••••••••••••••••••••••••••••••
CaBr ₂	$\kappa = 12.820 \exp(-4475/RT)$		.00397	[94]	
$SrBr_2$	$\kappa = 3.022 \text{ exp} (-5905/RT)$	929 -1186	.0177*	[94]	• • • • • • • • • • • • •
$BaBr_2$	$\sim$		.00588	[64]	
LaBr ₃	$\smile$			[83]	23
PrBr ₃ M ID	$\kappa = 16.62 \exp(-6888.2/RT)$		.00181	[171]	20
GdBr.	K = 100.01  exp (-11301/KI)	903 -1143 1079 -1115	~6/00. 66100	[83]	23
CuBr			.00133		01
AgBr	exp (-	'	.00600	[100, 72]	0.5
$ZnBr_2$	/		.0644*	[94]	18
$CdBr_2$	$\kappa = 5.488 \text{ exp} (-2749/RT)$	I	.0021*	[94]	
$HgBr_2$	$\kappa = 1.0836 \cdot 10^{-3} \exp(-1663.0/RT)$	528 - 853	$6.88 \cdot 10^{-5}$	[189]	1.5
$InBr_3$		I	0.0067*	[34]	
TIBr	$\kappa = 6.184 \text{ exp} (-2941.6/RT)$	Т	$9.55 \cdot 10^{-3}$	[189]	1
$PbBr_2$	$\kappa = 16.726 \exp(-4290/RT)$	Ι	0.0083*	[2]	2.7
B1Br ₃	$\kappa = 0.2384 \text{ exp} (251/RT)$	496 - 998	.057	[114]	• • • • • • • • • • • • • • • • • • • •

¥ =

TABLE 179. Specific conductance-exponential equations – Continued

Uncertainty estimate (percent)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	D
Reference	[227] [227] [82] [79] [79] [79] [79] [79] [79] [79] [79	[ [07]
s(ohm ⁻¹ cm ⁻¹ )	$\begin{array}{c} 0.0047\\ 0.00622\\ 0.0069*\\ 0.0057*\\ 0.0077*\\ 0.0077*\\ 0.0077*\\ 0.0077*\\ 0.0069*\\ 0.077*\\ 0.008*\\ 0.077*\\ 0.008*\\ 0.078*\\ 0.008*\\ 0.008*\\ 0.008*\\ 0.008*\\ 0.008*\\ 0.008*\\ 0.008*\\ 0.008*\\ 0.008*\\ 0.008*\\ 0.008*\\ 0.0028*\\ 0.0028*\\ 0.0028*\\ 0.0028*\\ 0.0028*\\ 0.0012*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0078*\\ 0.0008*\\ 0.0008*\\ 0.0008*\\ 0.0008*\\ 0.00$	
ons – Continued Temperature range °K	756 - 877 959 -1187 929 -1158 929 -1158 932 -1137 910 -1176 1059 -1287 821 -1270 991 -1292 464 - 543 1069 -1144 1069 -1144 1069 -1144 1069 -1133 718 - 870 675 - 913 532 - 905 423 - 623 532 - 905 423 - 623 532 - 913 532 - 913 532 - 913 533 - 1073 713.1 - 743.1 713.1 - 743.1 713.1 - 743.1 713.1 - 743.1 713.1 - 743.1 713.1 - 743.1 713.1 - 743.1 713.1 - 758.2 583 - 691 613 - 880 513 - 880 513 - 880 513 - 880 513 - 880 513 - 880 513 - 880 513 - 880 513 - 880 513 - 880 513 - 880 513 - 880 513 - 880 513 - 880 513 - 880 513 - 880 513 - 880 513 - 880 513 - 880 513 - 880 513 - 880 513 - 880 513 - 880 513 - 880 513 - 880 513 - 880 513 - 880 513 - 880 513 - 880 513 - 880 513 - 880 513 - 880 513 - 880 513 - 880 513 - 880 513 - 880 513 - 880 513 - 880 513 - 880 513 - 880 513 - 880 513 - 880 513 - 880 513 - 880 513 - 880 513 - 880 513 - 880 513 - 880 513 - 880 513 - 880 513 - 880 513 - 880 513 - 880 513 - 880 513 - 880 513 - 880 513 - 880 513 - 880 513 - 880 513 - 880 513 - 880 513 - 880 513 - 880 513 - 880 513 - 880 513 - 880 513 - 880 513 - 880 513 - 880 513 - 880 513 - 880 513 - 880 513 - 880 513 - 880 513 - 880 513 - 880 513 - 800 513 - 800 513 - 800 513 - 800 513 - 800 513 - 800 513 - 800 513 - 800 513 - 800 513 - 800 513 - 800 513 - 800 513 - 800 513 - 800 513 - 800 513 - 800 513 - 800 513 - 800 514 - 800 515 - 527 516 - 517 517 - 527 518 - 527 518 - 527 518 - 527 518 - 527 518 - 527 518 - 527 518 - 527 518 - 527 518 - 527 518 - 527 518 - 527 518 - 527 518 - 527 518 - 527 518 - 527 518 - 527 518 - 527 518 - 527 518 - 527 518 - 527 518 - 527 518 - 527 518 - 527 518 - 527 518 - 527 518 - 527 518 - 527 518 - 527 518 - 527 518 - 527 518 - 527 518 - 527 518 - 527 518 - 527 518 - 527 518 - 527 518 - 527 518 - 527 518 - 527 518 - 527 518 - 527 518 - 527 518 - 527 518 - 527 518 - 527 518 - 527 518 - 527 518 - 527 518 - 527 518 - 527 518 - 527 518	00/ - 269
TABLE 179. Specific conductance-exponential equations – Continued         Temperature         Specific conductance (ohm ⁻¹ cm ⁻¹ )	$ \begin{array}{l} \kappa = 10.113 \exp\left(-1411/KT\right) \\ \kappa = 8.508 \exp\left(-2423/KT\right) \\ \kappa = 8.608 \exp\left(-2423/KT\right) \\ \kappa = 5.608 \exp\left(-2423/KT\right) \\ \kappa = 5.082 \exp\left(-233/KT\right) \\ \kappa = 5.082 \exp\left(-333/KT\right) \\ \kappa = 2.147 \exp\left(-333/KT\right) \\ \kappa = 13.070 \exp\left(-4932/KT\right) \\ \kappa = 10.90 \exp\left(-932/KT\right) \\ \kappa = 10.90 \exp\left(-932/KT\right) \\ \kappa = 10.90 \exp\left(-932/KT\right) \\ \kappa = 0.12807 \exp\left(-5331/KT\right) \\ \kappa = 0.12807 \exp\left(-533/KT\right) \\ \kappa = 0.12807 \exp\left(-530/KT\right) \\ \kappa = 0.12807 \exp\left(-10449/KT\right) \\ \kappa = 0.12807 \exp\left(-6240/KT\right) \\ \kappa = 2.333 \exp\left(-500/KT\right) \\ \kappa = 2.333 \exp\left(-500/KT\right) \\ \kappa = 2.333 \exp\left(-4478/KT\right) \\ \kappa = 11.05 \exp\left(-1473.8/KT\right) \\ \kappa = 11.027 \exp\left(-335/KT\right) \\ \kappa = 11.077 \exp\left(-335/KT\right) \\ \kappa = 11.077 \exp\left(-335/KT\right) \\ \kappa = 1$	$\kappa = 0.302 \text{ exp} (-3117/KI)$
Salt	LiI KI KI KI KI KI KI Cals Srls Srls Srls Srls Srls Srls Cals Cals Cals Cals Frls Srls Srls Cals Cals Cals Cals Cals Cals Cals Ca	RDINU ₃

Salt	Specific conductance (ohm ⁻¹ cm ⁻¹ )	Temperature range °K	s(ohm ⁻¹ cm ⁻¹ )	Reference	Uncertainty estimate
					(percent)
CsNO ₃	$\kappa = 5.804 \text{ exp} (-3251/RT)$	688 - 764	0.00028	[84]	0.6
$AgNO_3$	$\kappa = 11.745 \text{ exp} (-2749/RT)$	483 - 603	.0053*	[09]	1.0
TINO ₃	$\kappa = 9.416 \text{ exp} (-3142.9/RT)$	485.5- 554.5	$1.81 \cdot 10^{-3}$	[101]	0.7
$V_2O_5$	$\kappa = 4.692 \cdot 10^4 \exp(-29422/RT)$	Т	0.058*	[68]	
$CrO_3$	$\kappa = 36.807 \text{ exp} (-43998/RT)$		$.2381^{*}$	[68]	•
MoO ₃	$\kappa = 11.642 \exp(-5586/RT)$		.0021	[92]	60
FeO	$\kappa = 6.1951 \exp(-41394/RT)$		21.0	[159]	
FeO	$\kappa = 1482.3 \exp(-5347.7/RT)$	1713 -1773	1.16	[159]	
$GeO_2$	$\kappa = 29.758 \exp(-37957/RT)$	$\sim$		[163]	20
PbO	$\kappa = 1.750 \cdot 10^5 \exp(-27629/RT)$	1164 -1260	0.010	[68]	
$\mathrm{Sb}_2\mathrm{O}_3$	$\kappa = 6.799 \cdot 10^3 \exp(-24716/RT)$		.0529*	[68]	
$Bi_2O_3$	$\kappa = 2.654 \cdot 10^7 \exp(-40138/RT)$		.0937*	[68]	
$TeO_2$	$\kappa = 1.454 \cdot 10^2 \exp(-9656/RT)$	1023 -1233	.0384	[68]	
CoS	$\kappa = 6.2884 \exp(-15494/RT)$	1461.2-1497.2	18.95	[155]	50
Cu ₂ S	$\kappa = 130294 \exp(-22050/RT)$	1402.2-1523.3		[155]	40
Ag2S	$\kappa = 41.5109 \exp(2569.13/RT)$	1105 - 1352	0.783	[156]	50
GeS	$\kappa = 114.82 \exp(-15003/RT)$	873.2-1073.2	.00144	[155]	50
SnS	$\kappa = 6194 \exp(-13231/RT)$	1158.2-1411.2	.706	[155]	50
PbS				[154]	
$\mathrm{Sb}_2\mathrm{S}_3$	$\kappa = 435.58 \exp(-12600/RT)$	830.2-1076.2	.0129	[155]	50
$Bi_2S_3$	$\kappa = 2717.9 \exp(420.0/RT)$	973.2-1198.2	5.23	[157]	• • • • • • • • • • • • • • • • • • • •
LI2OU4	11 0029 (	1180 -1939	1 19 . 10-3	[1]	6
V SO	h = 11.0200  GAP (-0012.7)(M)		9 66 - 10-3		ണ
Rh SO	k = 1.345 CAP ( $-3020.2/101$ ) k = 6.9204 with ( $-3077.93/RT$ )		$183 \cdot 10^{-3}$	[104]	(3)
CesSO.	v = 4.2013  exp (-3685 6/RT)		$3.52 \cdot 10^{-3}$	[220]	(9)
Ag ₃ SO ₄	$\kappa = 7.4568 \text{ exp} (-2754.15/RT)$		$2.03 \cdot 10^{-3}$	[226]	(3)
$Pr_4NBF_4$	$\kappa = 6.6731 \exp(-4472.7/RT)$	522.7- 554.6	$1.88 \cdot 10^{-3}$	[190, 221]	10
$Pr_4NPF_6$	$\kappa = 21.0096 \text{ exp} (-5902.52/RT)$	511.03- 545.15	$8.86\cdot10^{-5}$	[190, 221]	9
$Bu_4NBr$	$\kappa = 1926.41 \text{ exp} (-10818.4/RT)$	390.3- 407.7	$9.42\cdot 10^{-6}$	[190, 221]	2
Bu ₄ NI	$\kappa = 281.56 \exp(-9082.1/RT)$		$2.65 \cdot 10^{-4}$		10
$Bu_4NPF_6$	$\kappa = 8.654 \exp(-5613.1/RT)$		$1.22 \cdot 10^{-4}$	[190, 221]	9
$Bu_4NBPh_4$	$\kappa = 8.0270 \text{ exp} (-6587.0/RT)$		$1.95 \cdot 10^{-5}$	[190, 221]	9
$(n-\operatorname{Amyl})_4\mathrm{NSCN}$	$\kappa = 1603.72 \exp(-9955.7/RT)$	325.2- 383.2	$7.8 \cdot 10^{-5}$	[172]	
Li2M0U4 NaºMnO4	$\kappa = 15.609 \text{ exp} (-5112/RT)$	1024 -1237	0.0049*	[92]	10
E ) ) +		_			

TABLE 179. Specific conductance-exponential equations – Continued

s(ohm ⁻¹ cm ⁻¹ ) Reference estimate (percent)		$\begin{array}{c c}                                    $	$\begin{array}{c c} 8.58 \cdot 10^{-3} \\ 2.19 \cdot 10^{-3} \\ \hline 11 \\ \hline$
	926 –1774 0.0060 583 – 643	0.00137	958.2–1027 8.58 404.6– 446.7 2.19
Specific conductance (ohm ⁻¹ cm ⁻¹ ) Temperature range °K		$\kappa = 112.7 \exp(-8419/RT)$	$\kappa = 2.257 \exp (-47552/RT)$ $\kappa = 166.87 \exp (-5849.9/RT)$
Salt	Na ₂ WO ₄ NaSCN KSCN NaOH	K0H K2Cr2O7 110.Cl2	LiCl0 ₃

TABLE 180. Specific conductance-Power series equations

					and the second
Salt	Specific conductance (ohm ⁻¹ cm ⁻¹ )	Temperature range, °K	s(ohm-1 cm-1)	Reference	Uncertainty estimate (percent)
	$\kappa = -15.0389 + 3.534 \cdot 10^{-3}T - 1.28145 \cdot 10^{-5}T^{2}$	1148.2-1310.2	0.0237	[86]	12
	$\kappa = 1.4605 + 2.7374 \cdot 10^{-3}T$	1276 -1411	.0089	[86]	3.5
	$\kappa = -9.2728 \cdot 10^{-2}T + 3.0628 \cdot 10^{-3}T$	1132.2-1285.2	.0201	[86]	12
	$\kappa = -1.47691 + 3.997 \cdot 10^{-3}T$	1010 -1125	.0456	[182]	5
$CuF_2$	$\kappa = 0.93 + 1.0 \cdot 10^{-3}T$	1270 -1370		[86]	
	$\kappa = -5.2 + 12.0 \cdot 10^{-3}T$	773 - 923		[86]	
$ZnF_2$	$\kappa = -3.75 + 6.0 \cdot 10^{-3}T$	1173 -1223		[86]	
	$\kappa = 0.7 + 4.0 \cdot 13^{-3}T$	1123 -1273		[86]	
	$\kappa = 4.0 \cdot 10^{-3}T$	1223 -1273		[86]	
	$\kappa = -2.0647 + 12.1271 \cdot 10^{-3}T - 3.7641 \cdot 10^{-6}T^2$	917.1-1056.5	.00074	[62, 79]	0.7
	$\kappa = -2.4975 + 8.0431 \cdot 10^{-3}T - 2.2227 \cdot 10^{-6}T^2$	1079 -1294	.00164	[62]	8.
	$\kappa = -3.99005 + 9.0222 \cdot 10^{-3}T - 3.000 \cdot 10^{-6}T^{2}$	1063 -1198	.0030	[62]	9.
	$\kappa = -3.6290 + 7.3405 \cdot 10^{-3}T - 2.1918 \cdot 10^{-6}T^{2}$	1003 -1197	.00255	[82]	3.5
	$\kappa = -3.2034 + 6.0802 \cdot 10^{-3}T - 1.5216 \cdot 10^{-6}T^{2}$	926 -1170	.00280	[82]	5.0
BeCl ₂	$\kappa = -0.075392 + 1.0576 \cdot 10^{-4}T$	718 - 761	$9.70 \cdot 10^{-5}$	[186]	50
$MgCl_2$	$\kappa = -0.6049 + 1.352 \cdot 10^{-3}T + 0.2911 \cdot 10^{-6}T^{2}$	987 -1252	0.00300	[94]	1
				•	

Uncertainty estimate (percent)	2.5 4.0 9.0	10 18	15 20 20	20 20 20	5 0.7 5 6 0.6 3 3 2.3 2.3 2.3
Reference	[94] [94] [94]	[35] [83] [99]	[32] [32] [171] [171]	$\begin{bmatrix} 1/1 \\ 1/1 \end{bmatrix} \\ \begin{bmatrix} 171 \\ 32 \end{bmatrix} \\ \begin{bmatrix} 32 \\ 32 \end{bmatrix} \\ \begin{bmatrix} 192 \end{bmatrix} \end{bmatrix}$	[189] [166] [94] [94] [94] [35] [34] [34] [34] [34] [34] [34] [34] [34
(s(ohm ⁻¹ cm ⁻¹ )	.00573 .0068 .0561	.00428 .009 .0006	.0044 .0024 .00586 .00483	.00281 .000150 .0114 .00130 $3.66 \cdot 10^{-4}$	$6.40 \cdot 10^{-3}$ $3.5 \cdot 10^{-4}$ $4.66 \cdot 10^{-4}$ $8.38 \cdot 10^{-4}$ $1.60 \cdot 10^{-3}$ $1.49 \cdot 10^{-4}$ 0.00604 $3.87 \cdot 10^{-7}$ 0.0176 .0074 .00235 $5.52 \cdot 10^{-3}$ $4.41 \cdot 10^{-3}$ 0.00802 $10.7 \cdot 10^{-4}$ $8.0 \cdot 10^{-4}$ $6.09 \cdot 10^{-4}$ 0.00269 .0025
Temperature range, °K	1046 -1291 1146 -1357 1233 -1359 1213 -1264		2		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Specific conductance (ohm ⁻¹ cm ⁻¹ )	$\kappa = -2.71401 + 4.58035 \cdot 10^{-3}T - 7.23848 \cdot 10^{-8}T^{2}$ $\kappa = -2.1052 + 3.44860 \cdot 10^{-3}T + 1.13958 \cdot 10^{-7}T^{2}$ $\kappa = -3.29723 + 3.77582 \cdot 10^{-3}T + 3.97985 \cdot 10^{-7}T^{2}$ $\kappa = -2.890 + 2.796 \cdot 10^{-3}T$	$\begin{aligned} \kappa &= -3.7071 + 5.9576 \cdot 10^{-3}T - 1.8199 \cdot 10^{-6}T^2 \\ \kappa &= -13.538 + 22.487 \cdot 10^{-3}T - 8.167 \cdot 10^{-6}T^2 \\ \kappa &= -1.426 + 2.125 \cdot 10^{-3}T \\ \kappa &= -2.624 + 3.134 \cdot 10^{-3}T \end{aligned}$		$\begin{aligned} \kappa &= -1.40261 + 1.79890 \cdot 10^{-3}I \\ \kappa &= -1.31353 + 1.6584 \cdot 10^{-3}T \\ \kappa &= -13.1887 + 22.5705 \cdot 10^{-3}T - 9.0973 \cdot 10^{-6}T^2 \\ \kappa &= -2.023 + 2.803 \cdot 10^{-3}T \\ \kappa &= 1.572640 - 1.669355 \cdot 10^{-3}T + 1.698935 \cdot 10^{-6}T^2 \end{aligned}$	$ \begin{split} \kappa = -1.290779 + 1.2137306 \cdot 10^{-2}T - 9.126581 \cdot 10^{-6}T^2 + 2.196380 \cdot 10^{-9}T^3 \\ \kappa = -1.578 + 1.0697 \cdot 10^{-2}T - 4.51 \cdot 10^{-6}T^2 \\ \kappa = 0.423433 - 1.53761 \cdot 10^{-3}T + 1.39393 \cdot 10^{-6}T^2 \\ \kappa = 1.51396 - 4.77073 \cdot 10^{-3}T + 3.79161 \cdot 10^{-6}T^2 \\ \kappa = 1.51396 - 4.77073 \cdot 10^{-3}T + 3.56250 \cdot 10^{-6}T^2 \\ \kappa = 1.3084 - 4.33201 \cdot 10^{-3}T + 3.56250 \cdot 10^{-6}T^2 \\ \kappa = 1.3084 - 4.33201 \cdot 10^{-3}T + 3.56250 \cdot 10^{-6}T^2 \\ \kappa = 1.3084 - 4.33201 \cdot 10^{-3}T + 3.56250 \cdot 10^{-6}T^2 \\ \kappa = 1.3084 - 4.33201 \cdot 10^{-3}T + 3.56250 \cdot 10^{-6}T^2 \\ \kappa = 1.2081 + 5.2188 \cdot 10^{-3}T + 1.0942 \cdot 10^{-6}T^2 \\ \kappa = 2.060513 \cdot 10^{-3} - 1.061468 \cdot 10^{-5}T + 1.793902 \cdot 10^{-5}T^2 - 9.720443 \cdot 10^{-12}T^3 \\ \kappa = -2.0281 + 5.2188 \cdot 10^{-3}T + 1.0942 \cdot 10^{-6}T^2 \\ \kappa = 1.184 - 0.883 \cdot 10^{-3}T \\ \kappa = -1.2783 + 3.6986 \cdot 10^{-3}T + 1.0942 \cdot 10^{-6}T^2 \\ \kappa = -1.2783 + 3.6986 \cdot 10^{-3}T + 1.0942 \cdot 10^{-6}T^2 \\ \kappa = -1.2783 + 3.6986 \cdot 10^{-3}T + 1.0942 \cdot 10^{-6}T^2 \\ \kappa = -0.487664 + 11.2124^{\circ} 10^{-3}T - 3.9156 \cdot 10^{-6}T^2 \\ \kappa = -0.487664 + 11.2124^{\circ} 10^{-3}T - 0.61918 \cdot 10^{-6}T^2 \\ \kappa = -0.487664 + 11.2124^{\circ} 10^{-3}T - 0.61918 \cdot 10^{-6}T^2 \\ \kappa = -0.2949 + 0.3715 \cdot 10^{-3}T + 0.6918 \cdot 10^{-6}T^2 \\ \kappa = -0.2949 + 0.3715 \cdot 10^{-3}T - 0.7617 \cdot 10^{-6}T^2 \\ \kappa = -0.2949 + 0.3715 \cdot 10^{-3}T - 0.7617 \cdot 10^{-6}T^2 \\ \kappa = -0.5702 + 1.930 \cdot 10^{-3}T - 0.7617 \cdot 10^{-6}T^2 \\ \kappa = -0.11362 + 8.6159 \cdot 10^{-3}T - 0.7617 \cdot 10^{-6}T^2 \\ \kappa = -0.1563 + 2.994 \cdot 10^{-3}T \\ \kappa = -0.5702 + 1.930 \cdot 10^{-3}T - 0.7617 \cdot 10^{-6}T^2 \\ \kappa = -0.5702 + 1.930 \cdot 10^{-3}T - 0.7617 \cdot 10^{-6}T^2 \\ \kappa = -0.5702 + 1.930 \cdot 10^{-3}T - 0.7617 \cdot 10^{-6}T^2 \\ \kappa = -0.5702 + 1.930 \cdot 10^{-3}T - 0.7617 \cdot 10^{-6}T^2 \\ \kappa = -0.5702 + 1.930 \cdot 10^{-3}T - 0.7617 \cdot 10^{-6}T^2 \\ \kappa = -0.5702 + 1.930 \cdot 10^{-3}T - 0.7617 \cdot 10^{-6}T^2 \\ \kappa = -0.5702 + 1.930 \cdot 10^{-3}T - 0.7617 \cdot 10^{-6}T^2 \\ \kappa = -0.5702 + 1.940 \cdot 10^{-3}T - 0.7617 \cdot 10^{-6}T^2 \\ \kappa = -0.5702 + 1.940 \cdot 10^{-3}T - 0.7617 \cdot 10^{-6}T^2 \\ \kappa = -0.5702 + 1.940 \cdot 10^{-3}T - 0.7617 \cdot 10^{-6}T^2 \\ \kappa = -0.5702 + 10^{-3}T - 1.9610 \cdot 10^{-2}T -$
alt 297-268 O-68-	01 ⁻ SrCl ₂ BaCl ₂ ScCl ₃	YCI ₃ LaCI ₃ CeCI ₃ PrCI ₄	NdCl ₃ DyCl ₃ HSC	ErCl ₃ ErCl ₃ MnCl ₄ 151	CuCl ZnCl ₂ ZnCl ₂ ZnCl ₂ LiCl ₂ HgCl ₂ HgCl ₂ TeCl ₂ PbCl ₂ TeCl ₂ TeCl ₂ NaBr VDC VDC

TABLE 180. Specific conductance – Power series equations – Continued

1

Uncertainty estimate (percent)	$\begin{array}{c} 23\\ 20\\ 50\\ 50\\ 20\\ 5.0\\ 3.5\\ 0.9\\ 0.9\\ 0.9\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5$
Reference	$\begin{bmatrix} 82\\ 82\\ 94\\ 94\\ 94\\ 94\\ 94\\ 94\\ 94\\ 94\\ 94\\ 171\\ 83\\ 171\\ 83\\ 171\\ 83\\ 171\\ 189\\ 83\\ 171\\ 114\\ 171\\ 189\\ 183\\ 179\\ 189\\ 182\\ 189\\ 182\\ 182\\ 194\\ 194\\ 194\\ 106\\ 106\\ 106\\ 106\\ 106\\ 106\\ 106\\ 106$
s(ohm ⁻¹ cm ⁻¹ )	$\begin{array}{c} 0.00248\\0025\\0026\\0036\\0036\\0036\\0036\\0036\\0036\\0038\\0038\\0038\\00109\\00169\\0012\\0012\\0012\\0012\\0012\\0012\\0012\\00132\\00132\\00139\\0013\\00139\\0013\\0003\\0003\\0003\\0003\\0003\\0003\\0003\\0003\\0003\\0003\\0011\\0001\\0011\\0000\\0011\\0001\\0000\\0011\\0000\\0011\\0000\\0011\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\0000\\ $
Temperature range, °K	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Specific conductance (ohm ⁻¹ cm ⁻¹ )	$\begin{aligned} \kappa = -5.6433 + 11.1780 \cdot 10^{-3}T - 4.3455 \cdot 10^{-6}T^2 \\ \kappa = -0.25533 + 4.7068 \cdot 10^{-3}T - 1.1218 \cdot 10^{-6}T^2 \\ \kappa = -0.22553 + 3.071 \cdot 10^{-3}T + 0.5781 \cdot 10^{-6}T^2 \\ \kappa = -0.2553 + 3.071 \cdot 10^{-3}T - 0.5781 \cdot 10^{-6}T^2 \\ \kappa = -1.723 + 3.071 \cdot 10^{-3}T - 0.7410 \cdot 10^{-6}T^2 \\ \kappa = -2.4631 + 3.756 \cdot 10^{-3}T - 0.7410 \cdot 10^{-6}T^2 \\ \kappa = -2.4631 + 3.756 \cdot 10^{-3}T - 0.7410 \cdot 10^{-6}T^2 \\ \kappa = -2.4631 + 3.756 \cdot 10^{-3}T - 0.7410 \cdot 10^{-6}T^2 \\ \kappa = -2.4631 + 3.756 \cdot 10^{-3}T - 7.706 \cdot 10^{-7}T^2 \\ \kappa = -1.3387 + 11.8754 \cdot 10^{-3}T + 4.800 \cdot 10^{-6}T^2 \\ \kappa = -2.3637 + 3.356 \cdot 10^{-3}T - 7.706 \cdot 10^{-7}T^2 \\ \kappa = -1.3387 + 11.8756 \cdot 10^{-3}T + 3.092196 \cdot 10^{-9}T^2 \\ \kappa = 0.2265 + 2.92 \cdot 10^{-3}T \\ \kappa = 0.2265 + 2.92 \cdot 10^{-3}T \\ \kappa = 0.2265 + 2.92 \cdot 10^{-3}T - 1.777 \cdot 10^{-6}T^2 \\ \kappa = -1.653101 + 4.171766 \cdot 10^{-3}T - 8.09236 \cdot 10^{-9}T^2 \\ \kappa = -1.653101 + 4.171766 \cdot 10^{-3}T - 8.09236 \cdot 10^{-9}T^2 \\ \kappa = -2.29487 \cdot 7.5661 \cdot 10^{-3}T - 1.09403 \cdot 10^{-7}T^2 \\ \kappa = -2.93487 \cdot 10^{-3}T - 2.5361 \cdot 10^{-7}T - 1.09403 \cdot 10^{-7}T^2 \\ \kappa = -2.93487 \cdot 10^{-3}T - 2.5561 \cdot 10^{-7}T - 2.92381 \cdot 10^{-9}T^2 \\ \kappa = -2.9360 + 5.3229 \cdot 10^{-3}T - 1.274910 \cdot 10^{-7}T^2 \\ \kappa = -2.9360 + 4.5922 \cdot 10^{-3}T - 0.25652 \cdot 10^{-7}T^2 \\ \kappa = -2.9360 + 4.5922 \cdot 10^{-3}T - 0.2565 \cdot 10^{-7}T^2 \\ \kappa = -2.9360 + 4.5922 \cdot 10^{-3}T - 0.2560 \cdot 10^{-7}T^2 \\ \kappa = -2.8360 + 4.5922 \cdot 10^{-3}T - 0.466 \cdot 10^{-7}T^2 \\ \kappa = -2.8360 + 4.5922 \cdot 10^{-3}T - 0.466 \cdot 10^{-7}T^2 \\ \kappa = -2.6360 + 4.5922 \cdot 10^{-3}T - 0.466 \cdot 10^{-7}T^2 \\ \kappa = -2.8380 + 1.221 \cdot 0^{-7}T - 0.5160 \cdot 10^{-7}T^2 \\ \kappa = -0.7724 + 1.1304 \cdot 10^{-7}T \\ \kappa = -0.7724 + 1.1304 \cdot 10^{-7}T \\ \kappa = -0.7724 + 1.1304 \cdot 10^{-7}T \\ \kappa = 0.7724 + 1.1304 \cdot 10^{-7}T \\ \kappa = 0.7724 + 1.1304 \cdot 10^{-7}T \\ \kappa = 0.7724 + 1.1304 \cdot 0^{-7}T - 5.6407 \cdot 10^{-7}T^2 \\ \kappa = 0.7724 + 1.1304 \cdot 0^{-7}T - 5.6407 \cdot 10^{-7}T^2 \\ \kappa = 0.7724 + 1.1304 \cdot 0^{-7}T - 5.6407 \cdot 10^{-7}T^2 \\ \kappa = 0.7724 + 1.1304 \cdot 0^{-7}T - 0.5160 \cdot 10^{-7}T^2 \\ \kappa = 0.7724 + 1.1304 \cdot 0^{-7}T - 0.5160 \cdot 10^{-7}T^2 \\ \kappa = 0.7724 + 1.1304 \cdot 0^{-7}T - 0.5160 \cdot 10^{-7}T^2 \\ \kappa = 0$
Salt	RbBr CsBr CaBr ² SrBr ² SrBr ² SrBr ² SrBr ² SrBr ² SrBr ³ SrBr ³ CaBr ³ CdBr ³ CdBr ³ CdBr ³ CdBr ³ CdBr ³ CdBr ³ Cal ³ Srl ² Srl ² Srl ² Srl ² Srl ² Srl ² Cal ³ Srl ² Cal ³ Srl ² Cal ³ Cal ³

TABLE 180. Specific conductance-Power series equations-Continued

range, °K	<i>s</i> (ohm ⁻¹ cm ⁻¹ )	Reference	Uncertainty estimate (percent)
532 - 724	$1.61 \cdot 10^{-4}$ 0.0050	[189]	2.5
504 - 880	$6.30 \cdot 10^{-4}$	[189]	9
721 -1333	$2.65 \cdot 10^{-3}$	[189]	1.5
676 - 873	0.0018	[108]	
686 - 775	$2.13 \cdot 10^{-3}$	[104]	
1018 -1118	$3.0 \cdot 10^{-4}$	[101]	
	0.0049		1.5
1104 -12/9 500 7 507 0			c.1
1	· 01 · 41.4	[702]	0
	$4.70 \cdot 10^{-4}$	[207]	9
712.2- 758.2	0.0025	[207]	9
688.2- 739.2	$7.41 \cdot 10^{-4}$	[207]	9
553.2- 573.2	0.00	[185]	9
558 - 653	100.	[116]	0.4
Ŧ	$7.83 \cdot 10^{-4}$	[61, 7]	1
T	0.00369	[99]	0.8
L	.00153	[26]	9
I		. [84]	0.6
483 - 603	11100.	[09]	1
485.5 - 554.4 1140 -1237	$9.59 \cdot 10^{-4}$ 0 00575	[191]	0.7
	$3.31 \cdot 10^{-7}$	[68]	
1096 -1187	0.0028	[76]	60
1648 -1713	16.1	[159]	
1713 -1773	1.18	[159]	
1164 - 1260	0.080	[68]	
1101 -1161	.0038	[68]	
1102 -1228	.0816	[68]	
1023 -1233	.0470	[68]	•••••••••••••••••••••••••••••••••••••••
1469 -1493		[154]	50
1461.2-1497.2	20.72	[155]	50
1153.2-1398.2		[154]	50
1402.2-1523.3	1.44	[155]	40
$\begin{array}{c} 3033113 - 1.075096 \cdot 10^{-3}T + 1.411112 \cdot 10^{-2}T^2 - 6.651402 \cdot 10^{-10}T^3 \\ 0.4546 + 1.149 \cdot 10^{-3}T \\ 0.4546 + 1.149 \cdot 10^{-3}T \\ 0.453047 + 1.734687 \cdot 10^{-3}T - 1.759083 \cdot 10^{-6}T^2 + 5.775249 \cdot 10^{-10}T^3 \\ 0.6501 + 1.0054 \cdot 10^{-3}T - 1.5888 \cdot 10^{-6}T^2 \\ 0.05501 + 1.0054 \cdot 10^{-3}T - 1.5887 \cdot 10^{-6}T^2 \\ 0.9506 + 3.0374 \cdot 10^{-3}T - 1.5817 \cdot 10^{-6}T^2 \\ 0.9506 + 3.0374 \cdot 10^{-3}T - 1.5817 \cdot 10^{-6}T^2 \\ 0.9505 + 3.0374 \cdot 10^{-3}T - 1.54177 \cdot 10^{-6}T^2 \\ 0.397585 - 1.51836 \cdot 10^{-3}T + 7.33374 \cdot 10^{-6}T^2 \\ 1.339 + 2.876 \cdot 10^{-3}T \\ 1.339 + 2.876 \cdot 10^{-3}T \\ 0.397585 - 1.51836 \cdot 10^{-3}T + 7.33374 \cdot 10^{-6}T^2 \\ 0.397585 - 1.51839 \cdot 10^{-2}T - 5.451471 \cdot 10^{-6}T^2 \\ 0.5071 + 3.1148399 \cdot 10^{-2}T - 5.451471 \cdot 10^{-6}T^2 \\ 0.5071 + 3.1148399 \cdot 10^{-2}T - 5.451471 \cdot 10^{-6}T^2 \\ 0.5071 + 3.1148399 \cdot 10^{-2}T - 5.451471 \cdot 10^{-6}T^2 \\ 0.92778 + 2.39945 \cdot 10^{-3}T \\ 1.5242 + 3.4674 \cdot 10^{-3}T + 1.8027 \cdot 10^{-6}T^2 \\ 1.5242 + 3.4674 \cdot 10^{-3}T + 1.8027 \cdot 10^{-6}T^2 \\ 1.5713 + 4.3335 \cdot 10^{-3}T \\ 1.717 + 5.40230 + 10^{-3}T \\ 1.717 + 5.40230 + 10^{-3}T \\ 1.717 + 5.40230 + 10^{-3}T \\ 1.256 + 1.0^{-3}T \\ 1.266 + 1.062 \cdot 10^{-3}T \\ 2.056 + 1.800 $	<pre>. 532 - 532 - 504 - 504 - 721 -1 1018 -1 1018 -1 1018 -1 1018 -1 1018 -1 1018 -1 1018 -1 1018 -1 1018 -1 1018 -1 1018 -1 1018 -1 1018 -1 1018 -1 1018 -1 1018 -1 1018 -1 1018 -1 1006 -1 104 -1 1006 -1 1006 -1 1006 -1 1006 -1 1006 -1 1006 -1 1006 -1 1006 -1 1006 -1 10006 -1 10006 -1 10006 -1 10006 -1 10006 -1 10006 -1 10006 -1 10006 -1 10006 -1 10006 -1 10006 -1 10006 -1 10006 -1 10006 -1 10006 -1 10006 -1 10006 -1 10006 -1 10006 -1 10006 -1 10006 -1 10006 -1 10006 -1 10006 -1 10006 -1 10006 -1 10006 -1 10006 -1 10006 -1 10006 -1 10006 -1 10006 -1 10006 -1 10006 -1 10006 -1 10006 -1 10006 -1 10006 -1 10006 -1 10006 -1 10006 -1 10006 -1 10006 -1 10006 -1 10006 -1 10006 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 10000 -1 100000 -1 100000 -1 100000 -1 100000 -1 100000 -1 100000 -1 100000 -1 10000000 -1 100000000</pre>	<ul> <li>532 - 724</li> <li>504 - 880</li> <li>504 - 880</li> <li>721 -1333</li> <li>676 - 873</li> <li>676 - 873</li> <li>686 - 775</li> <li>1018 -1118</li> <li>1138 -1240</li> <li>1138 -1240</li> <li>1138 -1240</li> <li>1138 -1279</li> <li>502.7 - 527.2</li> <li>502.7 - 527.2</li> <li>502.7 - 527.2</li> <li>553 - 691</li> <li>613 - 880</li> <li>558 - 603</li> <li>613 - 880</li> <li>558 - 603</li> <li>558 - 603</li> <li>558 - 603</li> <li>491 - 535</li> <li>1096 -1187</li> <li>1140 -1237</li> <li>491 - 535</li> <li>1096 -1187</li> <li>1161 -1161</li> <li>1101 -1161</li> <li>1102 -1228</li> <li>1023 -12398.2</li> <li>1460 -1497.2</li> <li>1461.2-1497.2</li> <li>1462.2-1523.3</li> <li>1462.2-1523.3</li> </ul>	Indige, N       Nomination       Nomination $532 - 724$ $1.61 \cdot 10^{-4}$ $1.61 \cdot 10^{-4}$ $504 - 880$ $6.30 \cdot 10^{-4}$ $1.61 \cdot 10^{-4}$ $721 - 1333$ $2.65 \cdot 10^{-3}$ $676 - 873$ $0.0018$ $676 - 873$ $0.0018$ $6.30 \cdot 10^{-4}$ $1.13$ $676 - 873$ $0.0018$ $6.00149$ $1.138 - 1270$ $676 - 175$ $2.13 \cdot 10^{-3}$ $0.0049$ $1.138 - 1270$ $1138 - 1270$ $0.0020$ $502.7 - 527.2$ $4.14 \cdot 10^{-4}$ $513.2 - 743.2$ $4.70 \cdot 10^{-4}$ $1.132 - 743.2$ $0.0020$ $513.2 - 743.2$ $0.0020$ $502.7 - 527.2$ $4.14 \cdot 10^{-4}$ $713.2 - 743.2$ $0.0025$ $554 - 733.2$ $0.00153$ $554 - 753.2$ $0.0025$ $0.0025$ $553 - 733.2$ $558 - 653$ $0.00369$ $555$ $554 - 733.2$ $558 - 653$ $0.0025$ $554 - 733.2$ $0.00111$ $558 - 554.4$ $9.59 \cdot 10^{-4}$ $10^{-4}$ $10^{-4}$ $583 - 10.3$ $0.000575$ $4.14 \cdot 10^{-4}$ $1140 - 1237$ $588 - 764$

TABLE 180. Specific conductance-Power series equations-Continued

		Temperature			Uncertainty
Salt	Specific conductance (ohm ⁻¹ cm ⁻¹ )	range, °K	$s(ohm^{-1} \text{ cm}^{-1})$	Reference	estimate
					(percent)
Ag ₂ S	$\kappa = 402.352 - 0.357742 T + 1.03507 \cdot 10^{-4}T^{2}$	1105 -1352	0.791	[156]	50
GeS	$\kappa = 0.616343 - 1.56399 \cdot 10^{-3}T + 1.009032 \cdot 10^{-6}T^{2}$	873.2-1073.2	00.	[155]	50
SnS	$\kappa = 12.948 - 6.28321 \cdot 10^{-2}T + 7.81646 \cdot 10^{-5}T^{2}$	1158.2-1411.2	.363	[155]	50
PbS	$\kappa = 1815.4 - 2.2606 T + 7.4254 \cdot 10^{-4}T^{2}$	1388.2-1490.2	•	[154]	20
$\mathrm{Sb}_2\mathrm{S}_3$	$\kappa = 4.0712 - 1.12847 \cdot 10^{-2}T + 7.9857 \cdot 10^{-6}T^{2}$	830.2-1076.2	10600.	[155]	50
$Bi_2S_3$	$\kappa = 3955.2 - 0.598558 T$	973.2-1198.2	4.87	[157]	•
$Li_2SO_4$	$\kappa = -24.544 + 4.4630 \cdot 10^{-2}T - 1.7251 \cdot 10^{5}T^{2}$	848 -1243	$2.68 \cdot 10^{-4}$	[115]	•
$Na_2SO_4$	$\kappa = -1.4267 + 3.18583 \cdot 10^{-3}T$	1189 -1232	$1.26\cdot10^{-3}$	[226]	2
$K_2SO_4$	$\kappa = -23.5770 + 3.57269 \cdot 10^{-2}T - 1.24807 \cdot 10^{-5}T^{2}$	1341 -1360	$2.59 \cdot 10^{-3}$	[161]	3
$Rb_2SO_4$	$\kappa = -0.66619 + 1.54277 \cdot 10^{-3}T$	1340 -1395	$1.869 \cdot 10^{-3}$	[226]	(3)
$Cs_2SO_4$	$\kappa = -0.46852 + 1.22866 \cdot 10^{-3}T$	1287 -1355	$3.499 \cdot 10^{-3}$	[226]	(3)
$Ag_2SO_4$	$\kappa = -0.74866 + 2.61307 \cdot 10^{-3}T$	942 -1017	$2.457 \cdot 10^{-3}$	[226]	(3)
$P_{r_4}NBF_4$	$\kappa = -0.326452 + 7.96087 \cdot 10^{-4}T$	522.7- 554.6	$1.90 \cdot 10^{-3}$	[190, 221]	10
	$\kappa = -0.156384 + 7.32730 \cdot 10^{-5}T + 6.94502 \cdot 10^{-7}T^{2}$	511.03- 545.15	$1.77 \cdot 10^{-4}$	[190, 221]	9
00 Bu4NBr	$\kappa = -2.91625 \cdot 10^{-2} + 7.89162 \cdot 10^{-5}T$	390.3- 407.7	$3.53 \cdot 10^{-5}$	[190, 221]	2
Bu ₄ NI	$\kappa = -6.48575 \cdot 10^{-2} + 1.66797 \cdot 10^{-4}T$	420.7-440.13	$2.43 \cdot 10^{-4}$	[190, 221]	10
$Bu_4NPF_6$	$\kappa = -0.193219 + 4.43623 \cdot 10^{-4}T$	529.5 - 548.5	$1.06 \cdot 10^{-4}$	[190, 221]	9
$Bu_4NBPh_4$	$\kappa = -3.74270 \cdot 10^{-2} + 2.05165 \cdot 10^{-5}T + 1.49552 \cdot 10^{-7}T^{2}$	514.3 - 540.4	$4.47 \cdot 10^{-5}$	[190, 221]	9
$(n-Amyl)_4NSCN$	$\kappa = 0.0621247 - 3.93243 \cdot 10^{-4}T + 6.24733 \cdot 10^{-7}T^{2}$	2	$2.77 \cdot 10^{-5}$	[172]	• • • • • • • • • • • • •
$Li_2M_0O_4$	$\kappa = -4.531 + 7.740 \cdot 10^{-3}T - 1.356 \cdot 10^{-6}T^{2}$		0.017	[117]	
$Na_2MoO_4$	$\kappa = -3.1705 + 5.2419 \cdot 10^{-3}T - 0.8970 \cdot 10^{-6}T^{2}$		.00282	[92]	10
$Na_2WO_4$	$\kappa = -1.6253 + 3.11866 \cdot 10^{-3}T - 4.58768 \cdot 10^{-7}T^{2}$	926 -1774	.00637	[26]	•••••••••••
NaSCN		. 583 - 643		[112]	• • • • • • • • • • • • • •
NaOH	$\kappa = -3.23 + 9.0 \cdot 10^{-3}T$	593 - 723		[37]	* * * * * * * * * * * * * * * * * *
КОН	$\kappa = -1.38 + 5.80 \cdot 10^{-3}T$	673 - 873		[37]	
$K_2Cr_2O_7$		:			•
UO ₂ Cl ₂	$\kappa = -0.273 + 0.371 \cdot 10^{-3}T$	851 - 953 050 9_1097	0 80 . 10-3	[64]	• • • • • • • • • • • • •
LIH LiCIO.	$ \kappa = 34.09 - 153000 \cdot 10^{-1} + 4.01119 \cdot 10^{-1}$ $\nu = -0.05475 + 9.6300 \cdot 10^{-3}T$	404.6- 446.7	7.07 IO-3		
TICIO3				· [	• • • • • • • • • • • • • • • • • • • •
				•	

5	Salt	Viscosity (centipoise)	Temperature range °K	s Centipoise	Reference
$BeF_2$		$\eta = 1.756 \cdot 10^{-7} \exp(58466/RT)$	846.9-1252.2	$3.08 \cdot 10^{6}$	[225]
LiCl		$\eta = 3.306 \cdot 10^{-2} \exp(7007/RT)$	902.9-1082.9	0.0092	[121]
NaCl		$\eta = 1.860 \cdot 10^{-2} \exp((9308/RT))$	1085.9-1243.2	.0109	[121]
KCl		$\eta = 4.984 \cdot 10^{-2} \exp(6586/RT)$	1056.5 - 1202.0	.0167	[102]
RbCl		$\eta = 6.170 \cdot 10^{-2} \exp (6094/RT)$	1005.2-1148.2	.0064	[121]
CsCl		$\eta = 6.036 \cdot 10^{-2} \exp (5687/RT)$	928.0-1110.2	.0094	[121]
$CaCl_2$		$\eta = 1.088 \cdot 10^{-2} \exp (11997/RT)$	1058.7-1242.6	.087	[109]
$SrCl_2$		$\eta = 4.401 \cdot 10^{-4} \exp (20655/RT)$	1150.5-1258.6	.0706	[109]
BaCl ₂		$\eta = 1.643 \cdot 10^{-3} \exp (20029/RT)$	1261.4-1313.9	.0651	[109]
LaCl ₃		$\eta = 2.061 \cdot 10^{-2} \exp (13049/RT)$	1183 -1276	•••••	[136]
TiCl ₄		$\eta = 4.952 \cdot 10^{-2} \exp(1643/RT)$	293 - 333	.0095	[204]
CuCl		$\eta = 10.42 \cdot 10^{-2} \exp(5075/RT)$	773.2-973.2	.0115	[47]
AgCl		$\eta = 30.98 \cdot 10^{-2} \exp (2915/RT)$	723.2-973.2	.0059	[72]
$ZnCl_2$		$\eta = 2.476 \cdot 10^{-5} \exp((24843/RT))$	593.2-673.2	578.8	[98]
$CdCl_2$		$\eta = 24.05 \cdot 10^{-2} \exp (3912/RT)$	863.2-963.2	0.0075	[53]
$HgCl_2$ AlCl ₃		$\eta = 6.585 \cdot 10^{-2} \exp (3624/RT)$	554.0-579.3	.0195	[103]
GaCl ₃		$\eta = 7.928 \cdot 10^{-3} \exp (3528/RT)$ $\eta = 1.804 \cdot 10^{-2} \exp (3193/RT)$	$\begin{array}{r} 461.5-549.2\\ 355.9-519.7\end{array}$	.00199 .0138	[149] [149]
SnCl ₄		$\eta = 3.187 \cdot 10^{-2} \exp((3193/RT))$ $\eta = 3.187 \cdot 10^{-2} \exp((1928/RT))$	273 - 423	.0059	[147]
PbCl ₂		$\eta = 5.619 \cdot 10^{-2} \exp(6762/RT)$	773.2-973.2	.0091	[141]
BiCl ₃		$\eta = 37.87 \cdot 10^{-2} \exp((4693/RT))$	533.2- 613.2	.2205	[16]
LiBr		$\eta = 6.868 \cdot 10^{-2} \exp(5355/RT)$	862.2 - 1046.2	.0180	[10]
NaBr		$\eta = 11.09 \cdot 10^{-2} \exp(5132/RT)$	1053.7-1212.7	.0127	[102]
KBr		$\eta = 9.083 \cdot 10^{-2} \exp(5161/RT)$	1017.8-1181.2	.0139	[102]
RbBr		$\eta = 11.58 \cdot 10^{-2} \exp (4863/RT)$	959.7-1139.5	.0076	[102]
AgBr		$\eta = 38.06 \cdot 10^{-2} \exp (3088/RT)$	713.2- 873.2	.0105	[72]
ZnBr ₂			673.2		[98]
$CdBr_2$		$\eta = 18.93 \cdot 10^{-2} \exp (4556/RT)$	853.2- 949.2	.0102	[53]
$HgBr_2$		$\eta = 1.801 \cdot 10^{-2} \exp (5040/RT)$	528.2- 548.2	.0078	[58]
AlBr ₃		$\eta = 3.491 \cdot 10^{-2} \exp (3123/RT)$	373 - 523	.00152	[138]
PbBr ₂		$\eta = 16.51 \cdot 10^{-2} \exp(4855/RT)$	698.2-1023.2	.1115	[142]
LiI		$\eta = 11.51 \cdot 10^{-2} \exp (4423/RT)$	723.2- 923.2	.0078	[47]
NaJ		$\eta = 7.171 \cdot 10^{-2} \exp((5673/RT))$	946.4-1107.8	.00847	[122]
KI		$\eta = 9.836 \cdot 10^{-2} \exp (5343/RT)$	975.1-1165.2	.00851	[122]
RbI		$\eta = 8.514 \cdot 10^{-2} \exp (5165/RT)$	922.2-1126.4	.00418	[122]
CsI		$\eta = 7.796 \cdot 10^{-2} \exp (5706/RT)$ $\eta = 14.81 \cdot 10^{-2} \exp (5259/RT)$	910.2-1126.9	.0168	[122]
AgI		$\eta = 4.000 \cdot 10^{-2} \exp((323)/RT)$	878.2-1100.2	.0831	[24] [103]
$HgI_2$ Li ₂ CO ₃		$\eta = 1.406 \cdot 10^{-3} \exp((4331/RT))$ $\eta = 1.406 \cdot 10^{-3} \exp((16893/RT))$	$541.2 - 631.2 \\1046.2 - 1122.2$	.0367 .1057	[103]
$Na_2CO_3$		$\eta = 3.832 \cdot 10^{-5} \exp((26260/RT))$	$1040.2-1122.2 \\1152.2-1245.2$	.0112	[107]
$K_2CO_3$		$\eta = 1.161 \cdot 10^{-5} \exp(29487/RT)$	1132.2 1245.2	.0207	[107]
LiNO ₂		$\eta = 2.971 \cdot 10^{-3} \exp((8208/RT))$	502.7- 527.2	.0816	[207]
NaNO ₂		$\eta = 4.876 \cdot 10^{-2} \exp (4680/RT)$	563 - 613	.192	[207]
KNO ₂		$\eta = 16.45 \cdot 10^{-2} \exp (3424/RT)$	686.8- 725.4	.00767	[125]
$RbNO_2$		$\eta = 8.754 \cdot 10^{-2} \exp (4495/RT)$	712 - 758	.0054	[207]
$CsNO_2$		$\eta = 0.1058 \exp(4213/RT)$	688 - 739	.0082	[207]
LiNO ₃		$\eta = 5.663 \cdot 10^{-2} \exp (5103/RT)$	533.2- 702.2	.2283	[38]
NaNO ₃		$\eta = 10.40 \cdot 10^{-2} \exp (3886/RT)$	589.2- 731.2	.0282	[38]
$KNO_3$		$\eta = 8.384 \cdot 10^{-2} \exp (4301/RT)$	621.2- 815.2	.0278	[38]
RbNO ₃		$\eta = 12.96 \cdot 10^{-2} \exp (3976/RT)$	598 - 698	.0395	[139]
CsNO ₃		$\eta = 0.1284 \exp(3914/RT)$	698.2- 776.2	.0074	[228]

TABLE	181.	Viscosity-exponential	equations
-------	------	-----------------------	-----------

Salt	Viscosity (centipoise)	Temperature range °K	s Centipoise	Reference
AgNO ₃	$\eta = 11.59 \cdot 10^{-2} \exp (3620/RT)$	530.0- 593.4	0.0054	[69]
TINO ₃	$\eta = 8.430 \cdot 10^{-2} \exp (3657/RT)$	492.5- 553.7	.0141	[191]
$B_2O_3$	$\eta = 6.738 \exp(18695/RT)$	,1410 -1893	162.	[137]
$SiO_2$	$\eta = 9.004 \cdot 10^{-4} \exp((89236/RT))$	2208 -2595	65,800	[205]
$GeO_2$	$\eta = 1.316 \cdot 10^{-4} \exp((74254/RT))$	1423 -1773	$7.610 \cdot 10^{5}$	[140]
$GeO_2$	$\eta = 1.967 \cdot 10^{-3} \exp(65143/RT)$	1745 -1991	8380.	[137]
$As_2O_3$	$\eta = 1.679 \cdot 10^{-2} \exp((22211/RT))$	601 - 703	7680.	[202]
Pr ₄ NBF ₄	$\eta = 6.663 \cdot 10^{-3} \exp(6037/RT)$	522.8- 546.7	0.00147	[190]
Pr ₄ NPF ₆	$\eta = 5.752 \cdot 10^{-3} \exp(6461/RT)$	517.5- 541.9	.00358	[190]
Pr ₄ NBPh ₄	$\eta = 9.287 \cdot 10^{-4} \exp((8897/RT))$	483.5- 529.2	.0398	[190]
Bu4NBF4	$\eta = 0.2222 \exp(7245/RT)$	435.4- 539.1	.129	[190]
$Bu_4NPF_6$	$\eta = 3.173 \cdot 10^{-3} \exp((7159/RT))$	529.4- 554.1	.00351	[190]
Bu ₄ NBPh ₄	$\eta = 1.588 \cdot 10^{-3} \exp((8235/RT))$	516.8- 541.8	.00638	[190]
Hex ₄ NBF ₄	$\eta = 1.806 \cdot 10^{-4} \exp (9841/RT)$	376.0- 502.8	2.90	[190]
(n-Amyl) ₄ NSCN	$\eta = 2.512 \cdot 10^{-5} \exp(10551/RT)$	325.2- 383.2	6.49	[172]
NaSCN	$\eta = 4.935 \cdot 10^{-2} \exp (4636/RT)$	578.0- 634.1	0.0223	[112]
KSCN	$\eta = 8.580 \cdot 10^{-3} \exp(6454/RT)$	448.8- 523.8	.1792	[112]
NaOH	$\eta = 7.211 \cdot 10^{-2} \exp (4937/RT)$	623.2- 823.2	.0881	[37]
КОН	$\eta = 2.295 \cdot 10^{-2} \exp(6177/RT)$	673.2-873.2	.0201	[37]
$K_2Cr_2O_7$	$\eta = 8.051 \cdot 10^{-2} \exp((6879/RT))$	670.2-780.2	.1537	[8]
NaPO ₃	$\eta = 2.412 \cdot 10^{-2} \exp((19899/RT))$	916 -1029	63.3	[200]
LiClO ₃	$\eta = 1.942 \cdot 10^{-3} \exp((7832/RT))$	404.9- 440.0	0.564	[175]

 TABLE 181.
 Viscosity-exponential equations - Continued

Reference	[225]	[121]	[102]	[121]	[121]	[109]	[109]	[109]	[402]	[72]	[98]	[53]	[103]	[149]	[149]	[147]	[72]	[16]	[102]	[102]	[102]	[102]	[72]	[98] [53]	[58]	[138]	[142]	[47]	[122]	[122]	[122]	[122]	[24]
s Centipoise	2.17 · 107	0.0057	.0132	.0058	.0067	.0738	.0750	.0899	0012	.0033	181.3	0.0102	.0080	.00159	.0120	.0067	9600.	.1592	.0198	.0040	.0056	.0046	.0067	.0072		0.	1610.	.0095	0600.	.0086	.0037	.0103	.0346
Temperature range °K	846.9-1252.2	1085.9-1243.2	1056.5-1202.0	1005.2-1148.2	928.0-1110.2	1058.7-1242.6	1150.5-1258.6	1261.4 - 1313.9	I		593.2- 673.2	863.2- 963.2	554.0- 579.3	461.5- 549.2	355.9- 519.7	273 - 423		533.2- 613.2	862.2-1046.2	1053.7-1212.7	1017.8-1181.2	959.7-1139.5	713.2- 873.2	853.2-949.2	528.2- 548.2	373 - 523	698.2-1023.2	723.2- 923.2	946.4-1107.8	975.1–1165.2	922.2-1126.4	910.2-1120.9	878.2-1100.2 541.6- 631.3
Viscosity (centipoise)	$\eta = 2.38371 \cdot 10^{10} - 6.63685 \cdot 10^{7}T - 6.12351 \cdot 10^{4}T^{2} - 18.7266T^{3}$ $\eta = 67.5978 - 0.179904 T + 1.64202 \cdot 10^{-4}T^{2} - 5.07737 \cdot 10^{-8}T^{3}$	$-0.185538 T + 1.42786 \cdot 10^{-3}T^{2} -$		1		$\eta = 019.341 - 1.34489$ $I + 1.29239 \cdot 10^{-9}I = 3.61856 \cdot 10^{-7}3$ $m = 677 104 - 1.55710$ $T \pm 1.90516 \cdot 10^{-3}T^2 = 3.01850 \cdot 10^{-7}T^3$			$\eta = 50.4565 - 0.140175 \ T + 1.37677 \cdot 10^{-4}T^2 - 4.66667 \cdot 10^{-8}T^3$	$\eta = 6.91305 - 4.47411 \cdot 10^{-3}T - 6.49368 \cdot 10^{-6}T^2 + 5.41584 \cdot 10^{-9}T^3$	$\eta = 5935513 - 27386.5 T + 42.1217 T^2 - 2.15935 \cdot 10^{-2}T^3$	$\eta = -11.4379 + 6.44636 \cdot 10^{-2}T - 8.70654 \cdot 10^{-5}T^2 + 3.57878 \cdot 10^{-8}T^3$	$\eta = -4341.63 + 22.9610 T - 4.04387 \cdot 10^{-2}T + 2.37269 \cdot 10^{-5}T^3$	$-5.14676 \cdot 10^{-2}T + 8.5967$	$=42.1652 - 0.251746 T + 5.13276 \cdot 10^{-4}T^2 - $		$-0.175011 T + 1.39742 \cdot 1$	$-6.91223$ $T + 1.05882 \cdot 10$	$-3.27860 \cdot 10^{-2}T + 2.1796$	$-0.152525 T + 1.23215 \cdot 10^{-4}T^{2}$	$128.399 - 0.334905 T + 2.94450 \cdot 10^{-4}T^2 - 5100000000000000000000000000000000000$	$1.9390 - 0.131504 T + 1.14887 \cdot 10^{-4}T^2 - 0.131504 T + 0.000000000000000000000000000000000$	$\eta = 3.1.1/4.1 - 0.100/68$ $T + 9.80868 \cdot 10^{-5}T^2 - 3.25971 \cdot 10^{-8}T^3$	$\eta = -110.000 + 0.409042 \ T - 4.84560 \cdot 10^{-4}T^{2} + 1.87613 \cdot 10^{-7}T^{3}$		$\eta = 52.8403 - 0.296704 T + 5.71984 \cdot 10^{-4}T^2 - 3.73333 \cdot 10^{-7}T^3$	$\eta = 112.439 - 0.329572 T + 3.31646 \cdot 10^{-4}T^2 - 1.12536 \cdot 10^{-7}T^3$	$\eta = 17.1272 - 3.14251 \cdot 10^{-2}T + 1.54596 \cdot 10^{-5}T^2 - 1.34806 \cdot 10^{-11}T^3$	$= 55.2389 - 0.144406 T + 1.30328 \cdot 1$	$\eta = 48.3150 - 0.119506 T + 1.02512 \cdot 10^{-4}T^2 - 2.98741 \cdot 10^{-8}T^3$	$\eta = 35.1934 - 8.85/69 \cdot 10^{-2}I + 1.79282 \cdot 10^{-5}I^2 - 2.34005 \cdot 10^{-8}I^3$ $m = 41\ 8211 - 0\ 101156 \cdot T + 8\ 40570 \cdot 10^{-5}T^2 - 9\ 405549 \cdot 10^{-8}T^3$	$m = 116 161 - 0.333640 T + 3.30383 \cdot 10^{-4}T^2 - 1.10791 \cdot 10^{-7}T^3$	$\eta = 134.514 - 0.629538 T + 1.01199 \cdot 10^{-3}T^2 - 5.52269 \cdot 10^{-7}T^3$
Salt	BeF ₂ LiCl	NaCl	KCI	KDCI	C ^a Cl	SrCl.	BaCl.	TiCl4	CuCl	AgCI	ZnCl ₂	CdCl ₂	HgCl ₂	AICI ₃	GaU ₃	SnC14	PDC12	1C13	LJBT M.a.D.	Nabr	Nbr Di Di	A D	Agbr ZnBr,	CdBr ₂	$HgBr_2$	AlBr ₃	PbBr ₂	,	al		10		Hgl2
4	ВЦ	4	× c	4(				Ē	0	A	2	5:	± - 18		50	N F			J Z			4 -	A Z	Ü	H	A	7	Lill L	Nal	IN A	Cal	AgI	H

TABLE 182. Viscosity power series equations

-Continued
equations-
<i>Tiscosity power series equati</i>
Viscosity
<b>TABLE 182.</b>

Salt	Viscosity (centipoise)	Temperature range °K	s Centipoise	Reference
Li ₂ CO ₃	$\eta = -5259.12 + 14.8091 T - 1.38581 \cdot 10^{-2}T^2 + 4.31294 \cdot 10^{-6}T^3$	1046.2-1122.2	0.1022	[107]
K _a CO ₃	$\eta = 1404.04 = 3.44322$ $I = 2.0002$ $I = 1.002$ $I = 1.01829 \cdot 10^{-1}$	1132.2-1243.2	.0114	[201]
LiNO ₂	$\eta = -14909.1 + 87.5812 T - 0.171073 T^2 + 1.11184 \cdot 10^{-4}T^3$	502.7- 527.2	.0354	[207]
$NaNO_2$	$\eta = 187.118 - 0.876094 T + 1.41024 \cdot 10^{-3}T^2 - 7.71608 \cdot 10^{-7}T^3$	563 - 613	.0187	[207]
KNO ₂	$\eta = 864.798 - 3.61760 T + 5.06274 \cdot 10^{-3}T^2 - 2.36530 \cdot 10^{-6}T^3$	686.8- 725.4	.0055	[125c]
$RbNO_2$		T	9200.	[207]
$C_{SNO_2}$	$\eta = -182.963 + 0.828051 T - 1.21823 \cdot 10^{-3}T^{2} + 5.90224 \cdot 10^{-7}T^{3}$		.0080	[207]
LiNO ₃	$\eta = 20.4645 + 1.34189 \cdot 10^{-2} I - 1.31061 \cdot 10^{-4} I^{-2} 1.00106 \cdot 10^{-1} 3$ $m - 71 1469 - 0.984133 T + 3.77585 \cdot 10^{-4} T^{2} - 1.70748 \cdot 10^{-2} T^{3}$	533.2- 702.2 590 9 791 9	.1143	[38]
KNO.	$\eta = (7, 17, 17, 0)$ $\eta = (7, 17, 10)$ $\eta = (1, 10, 17, 10)$ $\eta = (1, 10, 17, 10)$ $\eta = 10^{-1}$		.0204 0934	[38]
RbNO			71700.	[139]
CsNO ₃		2-	.0033	[228]
	$\eta = 81.7743 - 0.336741 T + 4.80289 \cdot 10^{-4}T^2 - 2.32448 \cdot 10^{-7}T^3$	530.0 - 593.4	.0054	[69]
[°] ONIL 13	$\eta = -26.2068 + 0.276304 T - 7.00275 \cdot 10^{-4}T^2 + 5.31820 \cdot 10^{-7}T^3$	492.5- 553.7	.00876	[191]
$^{+}$ B ₂ O ₃	$\eta = 97913.6 - 135.257 T + 6.32685 \cdot 10^{-2}T^2 - 9.97755 \cdot 10^{-6}T^3$	1410 -1893	70.8	[137]
$SiO_2$	$\eta = 2.52255 \cdot 10^8 - 294897 T + 114.935 T^2 - 1.49316 \cdot 10^{-2}T^3$	2208 -2595	55.9	[205]
$GeO_2$	$\eta = 1.04032 \cdot 10^{10} - 1.87387 \cdot 10^{7} + 11245.2 T^{2} - 2.24808 T^{3}$	1423 -1773	$1.53 \cdot 10^6$	[140]
$GeO_2$	$\eta = 1.50831 \cdot 10^8 - 2.31573 \cdot 10^5T + 118.726 \ T^2 - 2.03212 \cdot 10^{-2}T^3$	1745 -1991	8570.	[137]
$As_2O_3$	28.29		15,900.	[202]
$Pr_4NBF_4$	$\eta = 539.745 - 2.88873 T + 5.20040 \cdot 10^{-3}T^2 - 3.13987 \cdot 10^{-6}T^3$		0.00032	[190]
$Pr_4NPF_6$	-3T ² -	517.5- 541.9	.00031	[190]
$Pr_4NBPh_4$	-2T2-		.0166	[190]
$Bu_4NBF_4$			.0446	[190]
Bu4NPF6	$\eta = -80.3582 + 0.663637 T - 1.54727 \cdot 10^{-3}T^{2} + 1.11571 \cdot 10^{-6}T^{3}$		.00450	[190]
Bu4NBFh4	$\eta = 10^{-0.1} + 1.52982 \cdot 10^{-2} $		.00949	[061]
Hex4NBF4	$\eta = 12888.7 - 83.1100.7 + 0.178817.7^2 - 1.28290 \cdot 10^{-4}7^3$		2.30	[061]
(n-Amyl),NSCN	$\eta = 116917 - 941.774 T + 2.53276 T^2 - 2.27331 \cdot 10^{-3}T^3$		3.93	[172]
NaSCN	$\eta = 526.399 - 2.49292 T + 3.96856 \cdot 10^{-3}T^2 - 2.11546 \cdot 10^{-6}T^3$		0.0128	[112]
KSCN	$\eta = 1935.08 - 11.1776 T + 2.16788 \cdot 10^{-2}T^2 - 1.40826 \cdot 10^{-5}T^3$		.0899	[112]
NaOH	$\eta = 164.771 - 0.614833 T + 7.80340 \cdot 10^{-4}T^2 - 3.33334 \cdot 10^{-7}T^3$		.0359	[37]
КОН	$\eta = 52.7561 - 0.166134 T + 1.80314 \cdot 10^{-4}T^2 - 6.66494 \cdot 10^{-8}T^3$		.0120	[37]
$K_2Cr_2O_7$	$\eta = 79.5667 - 0.110600 T - 1.12662 \cdot 10^{-5}T^2 + 4.25741 \cdot 10^{-8}T^3$	$\sim$	.0084	[8]
NaPO ₃	$\eta = 82024.7 - 158.652 T + 7.71136 \cdot 10^{-2}T^2$	916 -1029	55.2	[200]
LiCi0 ₃	$\eta = 13199.6 - 88.4573 T + 0.198361 T^2 - 1.48684 \cdot 10^{-4}T^3$	404.9- 440.0	0.446	[175]

[References which are marked marginally have data for molten salt mixtures; *, specific conductance; †, density and ‡, viscosity.]

- F. W. G. Kohlrausch, Wied. Ann. 17, 642 (1882).
- [2] L. Poincaré, Ann. Chim. Phys. 21, 289 (1890).

- [13] E. Brunner, Z. angew. Chem. 38, 350 (1904).
  [4] K. Arndt, Z. Elektrochem. 12, 337 (1906).
  ‡[5] H. M. Goodwin and R. D. Mailey, Phys. Rev. 23, 22 (1906); 25, 469 (1907); 26, 28 (1908).
- ‡[6] K. Beck, Z. physik. Chem. 58, 425 (1907).
  [7] R. Lorenz and H. T. Kalmus, ibid. 59, 17 (1907).
- [8] idem, ibid. 59, 244 (1907).
- *†[9] H. M. Goodwin and R. D. Mailey, Trans. Am. Electrochem. Soc. 11, 211 (1907). *[10] K. Arndt and A. Gessler, Z. Elektrochem. 14, 662
- (1908).
- *†[11] idem, ibid. 14, 665 (1908).
- ‡[12] C. E. Fawsitt, J. Chem. Soc. 93, 1299 (1908).
- [13] idem, Proc. Roy. Soc. A80, 290 (1908).
- ‡[14] K. Arndt, Z. Apparatekunde 3, 549 (1908).
- †[15] R. Lorenz, H. Frei and A. Jabs, Z. physik. Chem. 61, 468 (1908).
- ‡[16] A. H. W. Aten, ibid. 66, 641 (1909).
- *†[17] K. Arndt and W. Löwenstein, Z. Elektrochem. 15, 789 (1909).
- [18] E. Prideaux; J. Chem. Soc. 97, 2032 (1910).
- *†[19] A. H. W. Aten, Z. physik. Chem. 73, 578 (1910).
  - [20] idem, ibid. 78, 1 (1912).
- [21] C. Tubandt and E. Lorenz, ibid. 87, 513 (1914).
- [22] R. Lorenz and A. Höchberg, Z. anorg. Chem. 94, 288 (1916).
- [23] idem, ibid. 94, 305 (1916).
- [24] idem, ibid. 94, 317 (1916).
- [25] F. M. Jaeger, ibid. 101, 1 (1917).
  [26] F. M. Jaeger and B. Kapma, ibid. 113, 27 (1920).
- *†[27] A. Sandonnini, Gazz. Chim. Ital. 501, 289 (1920).
- [28] A. Fleck and T. Wallace, Trans. Faraday Soc. 16, 346 (1920).
- [29] G. V. Hevesy, Kgl. Danske Videnskab. Selskab. Medd. **III**, 13 (1921)
- [30] W. Biltz and W. Klemm, Z. anorg. Chem. 131, 22 (1923).
- [31] K. Arndt and W. Kalass, Z. Elektrochem. 30, 12 (1924).
- [32] A. Voigt and W. Biltz, Z. anorg. Chem. 133, 277 (1924).
- [33] W. Biltz and W. Klemm, Z. physik. Chem. 110, 318 (1924).
- [34] W. Klemm, Z. anorg. Chem. 152, 252 (1926).
- [35] W. Biltz and W. Klemm, ibid, 152, 225, 267 (1926).
- [36] W. Klemm, ibid. 152, 235, 295 (1926). *†‡[37] K. Arndt and G. Ploetz, Z. physik. Chem. 121, 439 (1926).
  - [38] R. S. Dantuma, Z. anorg. Chem. 175, 1 (1928).
     [39] J. Bureau, Ann. Chim. 8, 5 (1937).

  - †[40] A. Wachter and J. H. Hildebrand, J. Am. Chem. Soc. **52**, 4655 (1930).
  - [41] C. Tubandt, Landolt-Börnstein, Erg.-Bd. II, p. 1042 (Springer-Verlag, Berlin, 1931).
  - *[42] E. Ryschkewitsch, Z. Elektrochem. 39, 531 (1933).
- [†][43] E. J. Salstron, J. Am. Chem. Soc. **55**, 1029 (1933). ^{*}‡[44] S. Karpachev, A. Stromberg and V. N. Podchainova,
- Zhur. Obshchei Khim. 5, 1517 (1935).
- [45] S. Karpachev, Zhur. Fiz. Khim. 6, 1079 (1935).
- *[46] K. P. Batashev, Legkie Metal. 5, 48 (1936).
- [47] S. Karpachev and A. Stromberg, Zhur. Fiz. Khim. 11, 852 (1938).
- [48] K. E. Schwarz, Z. Elektrochem. 45, 740 (1939). *‡[49] V. P. Barzakovskii, Bull. Acad. Sci. URSS, Classe Sci. Chim. 825 (1940).
- *[50] E. Lee and E. P. Pearson, Trans. Electrochem. Soc. 88, 171 (1945).
- *[51] H. Bloom and E. Heymann, Proc. Roy. Soc. (London) A188, 392 (1947).
- *[52] H. R. Bronstein and M. A. Bredig, J. Am. Chem. Soc. 80, 2077 (1959).

- ‡[53] H. Bloom, B. S. Harrap and E. Heymann, Proc. Roy. Soc. (London) A194, 237 (1948).
- †[54] N. K. Boardman, F. H. Dorman and E. Heymann, J. Phys. Chem. 53, 375 (1949).
- *†[55] H. Grothe, Z. Elektrochem. 53, 362 (1949).
- [†][56] S. P. Pavlenko, Izvest. Sektora Fiz.-Khim. Anal., Inst, Obshch, Neorg. Khim. Akad. Nauk SSSR 17, 220 (1949).
- ‡[57] K. Ogawa, Nippon Kinzoku Gakkaishi (J. Japan Inst. Metals) 14B, No. 2, 49 (1950).
- *†‡[58] G. Jander and K. Broderson, Z. anorg. Chem. 264, 57 (1951).
  - [59] J. W. Menary, A. R. Ubbelohde and I. Woodward, Proc. Roy. Soc. (London) A203, 158 (1951).
- *†[60] R. C. Spooner and F. E. W. Wetmore, Can. J. Chem. 29, 777 (1951).
- *†[61] J. Byrne, H. Fleming and F. E. W. Wetmore, ibid. 30, 922 (1952).
- [62] J. D. Edwards, C. S. Taylor, A. S. Russel and L. F. Maranville, J. Electrochem. Soc. **99**, 527 (1952). *†[63] P. W. Huber, E. V. Potter and H. W. St. Clair, U.S.
- Bur. Mines, Rept. of Investigations 4858 (1952).
- [64] L. Ochs and F. Strassmann, Z. Naturforsch 7b, 637 (1952).
- [65] W. J. Davis, S. E. Rogers and A. R. Ubbelohde, Proc. Roy. Soc. (London) A220, 14 (1953).
- *†[66] H. Bloom, I. W. Knaggs, J. J. Molloy, and D. Welch, Trans, Faraday Soc. 49, 1458 (1953).
   *†[67] J. D. Edwards, C. S. Taylor, L. A. Cosgrove, and
- A. S. Russell, J. Electrochem. Soc. 100, 508 (1953).
- [68] A. E. van Arkel, E. A. Flood, and N. A. H. Bright, Can. J. Chem. 31, 1009 (1953).
- [69] F. A. Pugsley and F. E. W. Wetmore, ibid. 32, 839 (1954).
- [†][70] J. S. Peake and M. R. Bothwell, J. Am. Chem. Soc. 76, 2653 (1954).
- *†‡[71] I. P. Vereschetina and N. P. Luzhnaya, Izvest. Sektora Fiz.-Khim. Anal., Inst. Obshch. Neorg. Khim., Akad., Nauk, SSSR. 25, 188 (1954).
- *‡[72] B. S. Harrap and E. Heymann, Trans. Faraday Soc. **51**, 259 (1955).
- [73] D. Argyriades, Dissertation, Aachen (1955).
- [74] J. W. Johnson, P. A. Agron and M. A. Bredig, J. Am. Chem. Soc. 77, 2734 (1955).
  [75] C. Kroger and P. Weisgerber, Z. physik. Chem. (Frank-
- furt) 5, 3 (1955).
- *†[76] K. B. Morris, M. I. Cook, C. Z. Sykes, and M. C. Templeman, J. Am. Chem. Soc. 77, 851 (1955).
- *[77] P. I. Protsenko, Izvest. Sektora Fiz.-Khim. Anal., Inst. Obshchei Neorg. Khim., Akad Nauk SSSR. 26, 173 (1955).
- *†‡[78] V. D. Polyakov, ibid. 26, 191 (1955).
- *†[79] E. R. van Artsdalen and I. S. Yaffe, J. Phys. Chem. 59, 118 (1955).
- [80] E. Vogel, H. Schinke and F. Sauerwald, Z. anorg. allgem. Chem. 284, 131 (1956).
- [81] H. Schinke and F. Sauerwald, ibid. 287, 313 (1956).
- [82] I. S. Yaffe and E. R. van Artsdalen, J. Phys. Chem. 60, 1125 (1956).
- [83] idem; Chemistry Division Semiannual Progress Report, Oak Ridge National Laboratory, ORNL-2159, p. 77 (1956).
- [84] D. F. Smith and E. R. van Artsdalen, ibid., ORNL-2159, p. 80 (1956).
- Winterhager and L. Werner; Forschungsber. [85] H. Wirtsch. Verkehrsministeriums Nordrhein-Westfalen, No. 341 (1956).
- *[86] idem., ibid. No. 438 (1957).
- *†[87] F. R. Duke and R. A. Fleming, J. Electrochem. Soc. 104, 251 (1957)
- *†[88] E. W. Yim and M. Feinleib, ibid. 104, 622, 662 (1957). [89] R. B. Ellis, J. E. Smith and E. B. Baker, J. Phys. Chem. **62**, 766 (1958).

- *†‡[90] N. N. Greenwood and I. J. Worrall, J. Chem. Soc. 1680 (1958)
  - †[91] R. B. Ellis and J. E. Smith, Prog. Rep. U.S.A.E.C., Contract No. AT(40-1)-2073, March 1958; ibid. December 1958.
- *†[92] Y. Doucet and M. Bizouard, Compt. rend. 248, 1328 (1959).
- *†[93] idem, Bull. soc. chim. France 1570 (1959).
- [94] J. O'M. Bockris, E. H. Crook, H. Bloom and N. E. Richards, Proc. Roy. Soc. (London) A255, 558 (1960).
- [95] A. D. Kirshenbaum, J. A. Cahill, and C. S. Stokes, J. Inorg. Nucl. Chem. 15, 297 (1960). [96] J. O'M. Bockris, A. Pilla and J. L. Barton, J. Phys.
- Chem. 64, 507 (1960).
- *†‡[97] M. F. Lantratov and O. F. Moiseeva, Zhur. Fiz. Khim. 34, 367 (1960).
  - [98] J. D. Mackenzie and W. K. Murphy, J. Chem. Phys. 33, 366 (1960).
- *†[99] G. W. Mellors and S. Senderoff, J. Phys. Chem. 64, 294 (1960).
- *[100] Y. Doucet and M. Bizouard, Compt. rend. 250, 73 (1960).
- †[101] G. J. Janz and M. R. Lorenz, J. Electrochem. Soc. 108, 1052 (1961).
- [102] I. G. Murgulescu and S. Zuca, Z. physik. Chem. 218, 379 (1961).
- [103] G. J. Janz and J. D. E. McIntyre, J. Electrochem. Soc. 109,842 (1962).
- *[104] L. F. Grantham and S. J. Yosim, J. Chem. Phys. 38, 1671 (1963).
- *†[105] E. F. Riebling and C. E. Erickson, J. Phys. Chem. 67, 307 (1963).
- *[106] A. S. Dworkin, R. A. Sallach, H. R. Bronstein, M. A. Bredig and J. D. Corbett, ibid, 67, 1145 (1963).
- ‡[107] G. J. Janz and F. Saegusa, J. Electrochem. Soc. 110, 452 (1963).
- [108] W. Karl and A. Klemm, Z. Naturforsch. 19a, 1619 (1964).
- [109] G. J. Janz and R. D. Reeves, Trans. Faraday Soc. 61, 2305 (1965).
- [110] J. P. Frame, E. Rhodes and A. R. Ubbelohde, Trans. Faraday Soc. 55, 2039 (1959). [111] S. Karpachev, Zhur. Obshch. Khim. 5, 625 (1935).
- [112] D. W. Plester, S. E. Rogers and A. R. Ubbelohde, Proc. Roy. Soc. A235, 469 (1956). [113] J. O'M. Bockris, A. Pilla, and J. L. Barton, Rev. Chim.
- Acad. Rep. Populaire Roumaine 7, No. 1, 59 (1962).
- *[114] L. F. Grantham, J. Chem. Phys. 43, 1415 (1965).
- [115] A. Kvist and A. Lunden, Z. Naturforsch. 20a, 235 (1965).
- *[116] L. A. King and F. R. Duke, J. Electrochem. Soc. 111, 712 (1964).
- [117] A. Kvist and A. Lunden, Z. Naturforsch 20a, 102 (1965).
- *[118] A. S. Dworkin, H. R. Bronstein, and M. A. Bredig, Discussions Faraday Soc. 32, 188 (1961).
- *[119] H. R. Bronstein, A. S. Dworkin and M. A. Bredig, J. Phys. Chem. **66**, 44 (1962).
- *[120] A. S. Dworkin, H. R. Bronstein, and M. A. Bredig, J. Phys. Chem. 66, 1201 (1962).
- [121] I. G. Murgulescu and S. Zuca, Z. physik. Chem. 222, 300 (1963).
- ‡[122] I. G. Murgulescu and S. Zuca, Revue Roumaine de Chimie. 10, 123 (1965).
- [123] E. H. Crook, Ph. D. Thesis, University of Pennsylvania, Philadelphia, Pa. (1958).
- *[124] F. R. Duke and L. Bissell, J. Electrochem. Soc. 111, 717 (1964).
- [125a] E. R. Buckle and P. E. Tsaoussoglou, unpublished work (1966).
- [125b] E. R. Buckle and P. E. Tsaoussoglou, J. Chem. Soc. 667 (1964); Trans Faraday Soc. 60, 2144 (1964).
- [125c] A. R. Ubbelohde, Imperial College, London (private communication, 1966).
- [126] A. D. Kirshenbaum, J. A. Cahill, P. J. Gonigal, and
- A. V. Grosse, J. Inorg. Nucl. Chem. 24, 1287 (1962).
  [127] J. W. Johnson, W. J. Silva, and D. Cubicciotti, Tech. Report No. 38 (1965) Stanford Research Inst., Menlo Park, California.

- ‡[128] G. V. Voroliev, S. F. Pal'guev, and S. V. Karpachev, Trudy No. 6 (1965); Inst. Electrochem. Urals. Acad. Sci., Eng. Trans 1. Electrochem. Solid and Liq. Electrolytes 3, 33 (1966). Consultants Bureau, New York (1966).
- [129] I. G. Murgulescu, and S. Zuca, private communication, June 1966; S. Zuca and L. Ionescu, Revue Roumaine de Chimie, to be published.
- [130] Selected Values of Chemical Thermodynamic Properties, NBS Circular 500, United States Government Printing Office, Washington, D.C. (1952).
- *†‡[131] Edward W. Washburn, Ed., International Critical Tables of Numerical Data Physics, Chemistry and Technology (McGraw-Hill Book Company, Inc., New York, N.Y., 1926).
  - [132] K. K. Kelly, Contributions to the Data on Theoretical Metallurgy, Bureau of Mines Bulletin 393, United States Government Printing Office, Washington, D.C. (1936).
  - [133] Samuel J. Schneider, Compilation of the melting points of the metal oxides, NBS Mono. 68, United States Government Printing Office, Washington, D.C. (1963).
- *†‡[134] M. Blander, Ed., Molten Salt Chemistry (Interscience Publishers, New York, 1964).
- *†[135] F. R. Duke and R. A. Fleming, J. Electrochem. Soc.
- 105, 412 (1958). ‡[136] M. V. Smirnov, V. A. Khokhlov and V. P. Stepanov, Russ. J. Phys. Chem. 40, 671 (1966).
- [137] E. F. Riebling, Corning Glass Works, Corning, New York (private communication 1966).
- [138] K. H. Grothe and P. Kleinschmit, Institut für Anorganische Chemie der Technischen Hochschule Hannover (private communications, 1966).
- ‡[139] I. G. Murgulescu and S. Zuca, Electrochimica Acta 11, 1383 (1966).
- ‡[140] C. R. Kurkjian and R. W. Douglas, Phys. and Chem. Glasses 1, 19 (1960).
- ‡[141] E. F. Riebling, J. Chem. Phys. 39, 1889 (1963).
- ‡[142] I. G. Murgulescu and S. Zuca, Revue Roumaine de Chimie 10, 129 (1965).
- [143] J. D. Mackenzie, J. Chem. Phys. 32, 1150 (1960).
- †‡[144] E. F. Riebling, J. Amer. Ceram. Soc. 49, 19 (1966).
- [145] J. D. Mackenzie, Trans. Faraday Soc. 52, 1564 (1956).
   [146] J. D. Mackenzie, J. Chem. Phys. 29, 605 (1958).
   [147] P. Pugachevich, L. Nisel'son, T. Sokolova, and N.
- Anurov, Russ. J. Inorg. Chem. 8, 404 (1963). [148] N. N. Greenwood and K. Wade, J. Inorg. and Nucl.
- Chem. 3, 349 (1957).
- [149] L. A. Nisel'son and T. D. Sokolova, Russ. J. Inorg. Chem. 10, 827 (1965).
- †[150] M. C. Bell and S. N. Flengas, J. Electrochem. Soc. 113, 27 (1966).
- *[151] M. C. Bell and S. N. Flengas, J. Electrochem. Soc. 113, 31 (1966).
- *[152] M. Bourgon, G. Derge and G. M. Pound, AIME Trans., Journal of Metals 1454 (Nov. 1957).
- *[153] D. Argyriades, G. Derge, and G. M. Pound, AIME Trans. 215, 909 (1959).
- *[154] A. A. Velikanov, Ph. D. Thesis, Kiev State University,
- [154] A. A. VEIKANOV, TH. D. THOSS, LEV CLARK STREET, KIEV, U.S.S.R. (1962).
   *[155] A. A. Velikanov, Transactions of the All-State Conference on the Physical Chemistry of Fused Salts and Slags, Moscow (Nov. 22-25, 1960).
- *[156] A. A. Velikanov, Ukrain. Khim. XXVI, 319 (1960). [157] Yu. K. Delimarskii and A. A. Velikanov, Akad. Nauk. SSR. Zhurnal Neorg. Khimii. III, 1075 (1958).
- [158] A. A. Velikanov, Visnif Kievskogo Universitetu No. 3, 1960 Seriya Fizikh, Khimii, vip. 1, Khimiya. 123 (1960).
- *[159] H. Inoye, J. W. Tomlinson and J. Chipman, Trans. Faraday Soc. 49, 796 (1953).
- [160] H. H. Baumbach and C. Wagner, Z. Physik. Chem. B22, 199 (1933).
- *[161] A. Kvist, Z. Naturforsch. 21a, 1221 (1966); 21a, 1601 (1966).
- [162] A. Kvist and A. Lunden; Z. Naturforch. 21a, 1509 (1966).
- *†[163] E. F. Riebling and S. D. Gabelnick, J. Electrochem. Soc. 112, 822 (1965).

- *†‡[164] D. F. Williams, Ph. D. Thesis, University of Manitoba, Canada (1963).
- [165] K. Moers, Z. anorg. Chem. 113, 179 (1920). *†[166] M. C. Bell and S. N. Flengas, J. Electrochem. Soc. 111, 569, 575 (1964).
- [167] A. D. Kirshenbaum and J. A. Cahill, J. Inorg. Nucl. Chem. 19, 65 (1961).
- *[168] G. M. Pound, G. Derge, and G. Osuch, Trans. AIME 203, 481 (1955).
- Yang, G. M. Pound, and G. Derge, Trans. AIME **204**, 783 (1956). *[169] L.
- [170] F. H. Spedding and A. H. Daane, Met. Rev. 5, 297 (1960).
- *[171] A. S. Dworkin, H. R. Bronstein, and M. A. Bredig, J. Phys. Chem. **67**, 2715 (1963). [172] L. C. Kenausis, E. C. Evers, and C. A. Kraus, Proc.
- Nat. Acad. Sc. 49, 141 (1963).
- †[173] P. I. Protsenko and A. Ya. Malakhova, Russ. J. Inorg. Chem. 6, 850 (1961).
- *[174] A. N. Campbell, E. M. Kartzmark, and D. F. Williams, Can. J. Chem. 40, 890 (1962).
- [†][‡][175] A. N. Campbell and D. F. Williams, Can. J. Chem. 42, 1779 (1964).
- [176] L. J. B. Husband, J. Sci. Inst. **35**, 300 (1958). †[177] G. F. Petersen, W. M. Ewing, and G. P. Smith, J. Chem. and Eng. Data 6, 540 (1961).
- †[178] R. W. Neithamer and J. S. Peake, J. Chem. and Eng. Data 6, 197 (1961).
- *[179] P. I. Protsenko and R. P. Shisholina, Ukr. Khim. Zh. **31**, 1048 (1965).
- †[180] G. P. Smith and G. F. Petersen, J. Chem. and Eng. Data 6, 493 (1961).
- *†[181] M. Bizouard, Ann. Physique 6, 851 (1961).
- [182] H. R. Bronstein, A. S. Dworkin, and M. A. Bredig, Chemistry Division Annual Progress Report, Oak
- Ridge National Laboratory, ORNL-2983 (1960). *[183] M. F. Lantratov and O. F. Moiseeva, Zhur. Prikl. Khim. **34,** 1169 (1961).
- *[184] V. D. Polyakov and S. I. Berul, Izvest. Sektora Fiz.-Khim. Anal. Akad. Nauk SSSR. 26, 164 (1955).
- *[185] P. I. Protsenko and O. N. Shokina, Russ. J. Inorg. Chem. 5, 208 (1960).
- *[186] Yu. K. Delimarskii, I. N. Sheiko, and V. G. Feshchenko, Zhur. Fiz. Khim. 29, 1499 (1955).
- *[187] M. F. Lantratov and O. F. Moiseeva, Zhur. Prikl. Khim.
- 36, 2201 (1963).
  *[188] I. N. Belaev, Izvest Sektora Fiz.-Khim. Anal. Akad. Nauk SSSR 23, 176 (1953).
- [189] L. F. Grantham and S. J. Yosim, J. Chem. Phys. 45, 1192 (1966).
- [190] J. E. Lind, Jr., H. A. A. Abdel-Rehim, and S. W. Rudich, J. Phys. Chem. 70, 3610 (1966).
   [191] G. J. Janz and A. Timidei, Trans. Faraday Soc. (in
- publication, 1968).
- *†‡[192] I. G. Murgulescu and S. Zuca, Rev. Chim. Acad. Rep. Populaire Roumaine 2, 227 (1959).
  - [193] C. A. Angell, J. Electrochem. Soc. 112, 956 (1965). *[194] H. C. Cowen and H. J. Axon, Trans. Faraday Soc. 52,
  - 242 (1956). *[195] E. R. Buckle and P. E. Tsaoussoglou, Trans. Faraday Soc. 60, 2144 (1964).
  - †[196] E. R. Buckle, P. E. Tsaoussoglou, and A. R. Ubbelohde, Trans. Faraday Soc. 60, 684 (1964).

- [197] V. P. Mashovetz and Z. F. Lundina, Ukrain. Akad. Nauk. Inst., Proc. First All Union Conf. on Aqueous Solutions, 191 (1935).
- *[198] H. R. Bronstein and M. A. Bredig, Chemistry Division Semiannual Progress Report, Oak Ridge National Laboratory, ORNL-2782, 59 (1959).
- *[199] B. F. Markov and V. D. Prisyazhnyii, Ukrain. Khim, Zhur. 28, 268 (1962).
- ‡[200] K. Arndt; Z. Elektrochem. 13, 578 (1907).
- [201] A. Napolitano, P. Macedo, and E. Hawkins, J. Amer. Ceram. Soc. 48, 613 (1965).
- [202] I. Karutz and I. Stranski, Z. Anorg. Chem. 292, 330 (1957).
- *†‡[203] E. J. Gorenbein, Zhur. Obshchei Khim. 17, 871 (1947).
- †‡[204] A. P. Toropov, J. Gen. Chem. (U.S.S.R.) 26, 3635 (1956). ^[205] J. F. Bacon, A. A. Hasapis and J. W. Wholley, Jr., Phys. and Chem. of Glasses 1, 90 (1960).
- ‡[206] J. O'M. Bockris, J. D. Mackenzie and J. A. Kitchener, Trans. Faraday Soc. 51, 1734 (1955).
- [207] P. I. Protsenko, A. V. Protsenko and O. N. Razumous-kaya, Russ. J. Inorg. Chem. 10, 405 (1965).
- ‡[208] P. I. Protsenko and O. N. Shokina, Russ. J. Inorg. Chem. 9, 82 (1964). ‡[209] P. C. Li, A. C. Ghose, and G. J. Su, J. Amer. Ceram.
- Soc. 47, 478 (1964).
- [210] V. T. Slavyanskii, Dokl. Akad. Nauk. SSSR 58, 1077 (1947) (Translation available as AEC-tr-3785).
- [211] C. E. Messler, E. B. Damon, P. C. Maybury, J. Mellor, and R. A. Seales, J. Phys. Chem. 62, 220 (1958).
- [212] S. N. Flengas, University of Toronto, Toronto, Canada (private communication 1967).
- [213] T. F. Young, Argonne National Laboratory, Argonne, Illinois (private communication 1966).
- *†[214] S. I. Sklyarenko and I. E. Krauze, Zhur. Fiz. Khim. 13, 1315 (1939).
- *[215] A. G. Bergman and I. M. Chagin, Izvest. Akad. Nauk. S.S.S.R., Ser. Khim. 5, 727, 738 (1940).
- †[216] I. I. Bokhovkin, J. Gen. Chem. (U.S.S.R.) 19, 805 (1949).
- [217] S. Brillant, Compt. Rend. Ser. C. 262, 447 (1966).
- [218] L. C. Kenausis, E. C. Evers and C. A. Kraus, Proc. Nat. Acad. Sci. 48, 121 (1962).
- [219] B. R. Sundheim and A. Berlin, J. Phys. Chem. 68, 1266 (1964).
- [220] P. Walden and E. J. Birr, Z. Physik. Chem. 160, 57 (1932).
- [221] J. E. Lind, Cornell University, Ithaca, New York (private communication 1966).
- ‡[222] E. F. Riebling, J. Am. Ceram. Soc. 47, 478 (1964).
- [223] E. A. Ukshe, Russian Chemical Reviews 34, 141 (1965).
- *†[224] B. de Nooijer and J. A. A. Ketelaar, unpublished work (1967); B. de Nooijer, Ph. D. Thesis. Amsterdam (1965).
- [225] C. T. Moynihan and S. Cantor, Oak Ridge National Laboratory, Oak Ridge, Tennessee (private communication, 1967).
- [226] A. Kvist, Z. Naturforsch. 22a, 208, 467 (1967).
- [227] C. E. Johnson, private communication to G. J. Janz (1968).
- [228] P. I. Protsenko and O. N. Razumovskaya, Zh. Prikl. Khim. 38, 2355 (1965).

# 9. Additional Data Sources

- [1] L. S. Charnoff, An Annotated Bibliography of Molten Salts; Univ. Microfilms Inc., Ann Arbor, Mich. (1958).
- [2] G. J. Janz, Bibliography on Molten Salts, Rensselaer Polytechnic Inst. Tech. Bull. Series, Troy, N.Y. (1961).
- [3] C. J. Smithells, Metals Reference Book (Butterworths Sci. Public. (London), 1955).
- [4] Toshio Ishino et al. Ed., Physico-chemical constants of fused salts, Electrochem. Soc. Japan, Osaka (1964).
- [5] G. Petit, La Cryométrie A Haute Température et ses Applications, Masson et Cie, Editeurs (Paris) 1965.
- [6] T. Førland, K. Grojtheim, K. Motzfeld, and S. Urnes, Eds., Selected Topics in High Temperature Chemistry, Univesitetsforloget (Oslo), 1966; Scandinavian Univ. Books (Boston).
- [7] G. J. Janz, Molten Salt Handbook (Academic Press Inc., Publ., N.Y., 1967).

- [8] Electrochemistry of Molten and Solid Electrolytes, Engl. Transl., Trudy No. 1, Vol. 1 (1961); Trudy No. 4, Vol. 2 (1964) and Trudy No. 6, Vol. 3., Consultants Bureau, N.Y. (1961-1966).
- [9] A. G. Morachevskii, Review of electrochemistry of molten salts, J. Appl. Chem. U.S.S.R. (Engl. Transl.) 33, 1422 (1960); 34, 1339 (1961); 35, 1337 (1962); 36, 1325 (1963).
- [10] Landolt-Börnstein, Vol. 2, Pt. III (Springer-Verlag, Berlin, 1956).
- [11] International Critical Tables, (McGraw-Hill Book Co., New York, N.Y., 1933).
- [12] J. Lunsden, Thermodynamics of Molten Salt Mixtures (Academic Press (London and N.Y.) 1966).
- [13] M. R. Lorenz and G. J. Janz, Molten Carbonates, Bibliography, U.S. Dept. Commerce, O.T.S. Rpt. P.B. 151991, Washington (1958).
- [14] G. J. Janz, R. D. Reeves, and A. T. Ward, Molten Salt Data: Electrical Conductance, Density, and Viscosity; Rensselaer Polytechnic Institute Technical Bulletin Series
- (1964), Troy, N.Y.[15] M. Blander, Ed., Molten Salt Chemistry (Interscience Publishers, New York, 1964).
- [16] B. R. Sundheim, Ed., Fused Salts (McGraw-Hill Book Co., New York, N.Y., 1964).
- [17] Yu. K. Delimarskii and B. F. Markov, Electrochemistry of Fused Salts, translated by A. Peiperel and R. E. Wood, Eds. (Sigma Press, Washington, D.C., 1961).

- [18] H. Bloom and J. O'M. Bockris, Eds., Advances in Electrochemistry, Vol. II (Butterworth Publ., N.Y., 1959).
- [19] A. D. Graves, D. J. Inman, and G. J. Hills, in P. Delahay and C. Tobias (ed.) Advances in Electrochemistry and Electrochemical Engineering, Vol. 4 (Interscience-Wiley, N.Y., 1965).
- [20] J. D. Corbett and F. R. Duke, in H. B. Jonassen and A. Weissberger, Eds. Technique of Inorganic Chemistry, Vol. 1 (Interscience Publishers, 1963).
- [21] J. O'M. Bockris, J. L. White, J. D. Mackenzie, Eds., Physico-Chemical Measurements of High Temperatures (Academic Press Inc., New York, 1959).
- [22] R. A. Bailey and G. J. Janz, in J. Lagowski, ed., Non-Aqueous Chemistry (Academic Press, Inc., N.Y., 1965).
- [23] J. D. Corbett in A. F. Scott, Ed., Survey of Progress in Chemistry. Vol. 2 (Academic Press, Inc., N.Y., 1965).
  [24] G. J. Janz and S. C. Wait, in H. A. Symanski (ed.,) Raman Spectroscopy (Plenum Press, N.Y., 1966).
- [25] R. D. Reeves and G. J. Janz, in P. Delahay and C. Tobias (eds.) Advances in Electrochemistry and Electrochemical Engineering, Vol. 5 (Interscience-Wiley, N.Y., 1966). [26] D. Inman and N. S. Wrench, Corrosion In Fused Salts,
- Brit. Corros. J. 1, 246 (1966).
- [27] Soviet Research on Corrosion of Special Alloys, 1950-1960 U.S. Dept. Commerce, O.T.S. Report 61-31480, Washington (1961).
- [28] V. S. Bagotskii and Yu. B. Vasilev, Fuel Cells; Eng. Transl., Consultants Bur. N.Y. (1966).

## **10.** Compound Index

#### Page

AgBr..... 16, 70, 110, 115, 117, 120, 123, 128, 131, 133 AgCl..... 10, 56, 109, 114, 117, 120, 122, 127, 131, 133 AgNO₃..... 28, 90, 112, 115, 118, 121, 125, 129, 132, 134 Ag₂SO₄...... 33, 100, 112, 116, 118, 125, 130 AlBr₃..... 18, 72, 120, 131, 133 AlCl₃..... 11, 58, 114, 116, 120, 131, 133 AlI₃...... 21, 79, 111, 115, 118, 124, 128 (n - Amyl)₄NSCN... 34, 102, 113, 116, 119, 121, 125, 130, 132, 134  $B_2O_3$ ..... 29, 92, 115, 116, 121, 132, 134 BaBr₂..... 16, 68, 110, 115, 117, 123, 128 BaCl₂...... 7, 51, 109, 114, 117, 120, 122, 127, 131, 133 BaF₂..... 4, 45, 114 Bal221, 79, 111, 115, 118, 124, 128Ba(NO2)225, 87, 111, 115, 118, 124, 129 BeCl₂..... 6, 50, 109, 114, 117, 122, 126 BiI₃..... 23, 85, 111, 124, 129 Bu₄NBPh₄......34, 102, 113, 116, 119, 121, 125, 130, 132, 134 Bu₄NBr...... 33, 101, 112, 116, 118, 125, 130 Bu₄NI...... 33, 101, 112, 116, 119, 125, 130 Bu₄NPF₆ ...... 34, 102, 112, 116, 119, 121, 125, 130, 132, 134 CaBr₂..... 15, 67, 110, 114, 117, 123, 128 CaCl₂..... 7, 50, 109, 114, 117, 120, 122, 127, 131, 133 CaI₂..... 20, 78, 111, 115, 118, 124, 128 CdBr₂..... 17, 71, 110, 115, 118, 120, 123, 128, 131, 133 CdCl₂..... 11, 57, 110, 114, 117, 120, 123, 127, 131, 133 CdI₂..... 22, 82, 111, 115, 118, 124, 128 

CeF₃...... 4, 45, 114

Cel ₃
CoS
$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $
CrO ₃
CsBr 15, 66, 110, 114, 117, 123, 128
CsCl 6, 49, 109, 114, 117, 120, 122, 126, 131, 133
CsF 3, 43, 109, 114, 117, 122, 126
CsI 20, 77, 111, 115, 118, 120, 124, 128, 131, 133
CsNO ₂ 25, 87, 111, 121, 124, 129, 131, 134 CsNO ₃ 28, 90, 112, 115, 118, 121, 125, 129, 131, 134
CsNO ₃
$C_{s_2}SO_4$
CuBr 16, 69, 110, 123, 128
CuCl
CuF ₂
$\operatorname{Cur}_2$
$Cu_2S31, 96, 112, 125, 129$
DyCl ₃
ErCl ₃
· · · · · · · · · · · · · · · · · · ·
FeO 29, 92, 112, 125, 129
FeS
100
GaCl ₃ 12, 59, 114, 120, 131, 133
GaCi3 12, 39, 114, 120, 151, 155
$GaI_2$ 22, 83, 111, 115, 118, 124, 129
GdBr ₃ 16, 69, 110, 123, 128
GdCl ₃
GeO ₂ 30, 93, 112, 121, 125, 132, 134
GeO ₂ 30, 93, 112, 121, 125, 132, 134 GeS 31, 96, 112, 125, 130
GeO ₂ 30, 93, 112, 121, 125, 132, 134 GeS 31, 96, 112, 125, 130
GeO ₂ 30, 93, 112, 121, 125, 132, 134 GeS 31, 96, 112, 125, 130 Hex ₄ NBF ₄ 34, 102, 116, 121, 132, 134
GeO ₂
GeO2
GeO2
GeO2
GeO2
$ \begin{array}{c} GeO_230, 93, 112, 121, 125, 132, 134\\ GeS31, 96, 112, 125, 130\\ Hex_4NBF_417, 71, 110, 115, 118, 120, 123, 128, 131, 133\\ HgCl11, 58, 110, 114, 117, 123, 127\\ HgCl_211, 58, 110, 114, 117, 120, 123, 127, 131, 133\\ HgI_222, 82, 111, 115, 118, 121, 124, 129, 131, 133\\ HoCl_39, 54, 109, 122, 127\\ \end{array} $
$ \begin{array}{c} GeO_230, 93, 112, 121, 125, 132, 134\\ GeS31, 96, 112, 125, 130\\ Hex_4NBF_434, 102, 116, 121, 132, 134\\ HgBr_217, 71, 110, 115, 118, 120, 123, 128, 131, 133\\ HgCl11, 58, 110, 114, 117, 123, 127\\ HgCl_211, 58, 110, 114, 117, 120, 123, 127, 131, 133\\ HgI_222, 82, 111, 115, 118, 121, 124, 129, 131, 133\\ HoCl_39, 54, 109, 122, 127\\ lnBr_318, 72, 110, 115, 118, 123, 128\\ \end{array}$
$ \begin{array}{c} GeO_230, 93, 112, 121, 125, 132, 134\\ GeS31, 96, 112, 125, 130\\ Hex_4NBF_417, 71, 110, 115, 118, 120, 123, 128, 131, 133\\ HgCl11, 58, 110, 114, 117, 123, 127\\ HgCl_211, 58, 110, 114, 117, 120, 123, 127, 131, 133\\ HgI_222, 82, 111, 115, 118, 121, 124, 129, 131, 133\\ HoCl_39, 54, 109, 122, 127\\ \end{array} $
$ \begin{array}{c} GeO_230, 93, 112, 121, 125, 132, 134\\ GeS31, 96, 112, 125, 130\\ Hex_4NBF_434, 102, 116, 121, 132, 134\\ HgBr_217, 71, 110, 115, 118, 120, 123, 128, 131, 133\\ HgCl11, 58, 110, 114, 117, 123, 127\\ HgCl_211, 58, 110, 114, 117, 120, 123, 127, 131, 133\\ HgI_222, 82, 111, 115, 118, 121, 124, 129, 131, 133\\ HoCl_39, 54, 109, 122, 127\\ lnBr_318, 72, 110, 115, 118, 123, 128\\ InCl12, 59, 110, 114, 117, 123, 127\\ \end{array}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c} GeO_230, 93, 112, 121, 125, 132, 134\\ GeS31, 96, 112, 125, 130\\ Hex_4NBF_434, 102, 116, 121, 132, 134\\ HgBr_217, 71, 110, 115, 118, 120, 123, 128, 131, 133\\ HgCl11, 58, 110, 114, 117, 123, 127\\ HgCl_211, 58, 110, 114, 117, 120, 123, 127, 131, 133\\ HgI_222, 82, 111, 115, 118, 121, 124, 129, 131, 133\\ HoCl_39, 54, 109, 122, 127\\ lnBr_318, 72, 110, 115, 118, 123, 128\\ InCl12, 59, 110, 114, 117, 123, 127\\ \end{array}$

Page

### Pag

	Page
VD.	14, 65, 110, 114, 117, 120, 123, 127, 131, 133
VCl	.5, 48, 109, 114, 117, 120, 122, 126, 131, 133
	$\dots 23, 86, 111, 115, 118, 121, 124, 129, 131, 133$
$K_2 C O_3 \dots \dots$	26, 00, 111, 113, 110, 121, 124, 129, 131, 135
$K_2 Ur_2 U_7 \dots$	$\dots$ 36, 106, 113, 116, 119, 121, 126, 130, 132, 134 $\dots$ 36, 106, 113, 116, 119, 121, 126, 130, 132, 134
Kľ	
KI	$\dots$ 19, 76, 111, 115, 118, 120, 124, 128, 131, 133
K ₂ M0U ₄	
KINO ₂	$\dots 24, 87, 111, 115, 118, 121, 124, 129, 131, 133$
KNO ₃	26, 89, 111, 115, 118, 121, 124, 129, 131, 134
КОН	. 36, 106, 113, 116, 119, 121, 126, 130, 132, 134
KSCN	35, 105, 113, 116, 119, 121, 126, 132, 134
$K_2SO_4$	
$K_2WO_4$	
LD	16 60 110 115 117 109 100
LaBr ₃	
Lal ₃	
LiBr	14, 64, 110, 114, 117, 120, 123, 127, 131, 133
	. 4, 47, 109, 114, 117, 120, 122, 126, 131, 133
LiClO ₃	$\dots 37, 107, 113, 116, 119, 121, 126, 130, 132, 134$
LiClO ₄	
Li ₂ CO ₃	$\dots 23, 85, 111, 115, 118, 121, 124, 129, 131, 134$
LiF	
LiH	
LiI	19, 75, 111, 115, 118, 120, 124, 128, 131, 133
Li ₂ MoO ₄	
1.110	
LiNO ₂	$\dots 24, 86, 111, 121, 124, 129, 131, 134$
LiNO ₂ LiNO ₃	
LiNO ₃	25, 88, 111, 118, 121, 124, 129, 131, 134
LiNO ₃	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
LiNO3 Li2SO4	25, 88, 111, 118, 121, 124, 129, 131, 134 32, 99, 112, 115, 118, 125, 130
LiNO ₃ Li ₂ SO ₄ MgBr ₂ MgCl ₂	25, 88, 111, 118, 121, 124, 129, 131, 134
LiNO ₃ Li ₂ SO ₄ MgBr ₂ MgCl ₂ MgF ₂ .	25, 88, 111, 118, 121, 124, 129, 131, 134
LiNO ₃ Li ₂ SO ₄ MgBr ₂ MgCl ₂ MgF ₂ .	25, 88, 111, 118, 121, 124, 129, 131, 134
LiNO ₃ Li ₂ SO ₄ MgBr ₂ MgCl ₂ MgF ₂ MgI ₂	
LiNO ₃ Li ₂ SO ₄ MgBr ₂ MgCl ₂ MgF ₂ MgI ₂ MnCl ₂	
LiNO ₃ Li ₂ SO ₄ MgBr ₂ MgF ₂ MgI ₂ MnCl ₂ MnF ₂	
LiNO ₃ Li ₂ SO ₄ MgBr ₂ MgF ₂ MgI ₂ MnCl ₂ MnF ₂	
LiNO ₃ Li ₂ SO ₄ MgBr ₂ MgCl ₂ MgF ₂ MnCl ₂ MnCl ₂ MnF ₂ MoO ₃	25, 88, 111, 118, 121, 124, 129, 131, 134         32, 99, 112, 115, 118, 125, 130         15, 66, 110, 114, 117, 123, 128         6, 50, 109, 114, 117, 122, 126         4, 44, 114         20, 78, 111, 115, 118, 124, 128         9, 55, 109, 114, 117, 122, 127         4, 46, 109, 122, 126         29, 91, 112, 125, 129
LiNO ₃ Li ₂ SO ₄ MgBr ₂ MgCl ₂ MgF ₂ MnCl ₂ MnCl ₂ MnF ₂ MoO ₃ NaBr	25, 88, 111, 118, 121, 124, 129, 131, 134         32, 99, 112, 115, 118, 125, 130         15, 66, 110, 114, 117, 123, 128         6, 50, 109, 114, 117, 122, 126         4, 44, 114         20, 78, 111, 115, 118, 124, 128         9, 55, 109, 114, 117, 122, 127         4, 46, 109, 122, 126         29, 91, 112, 125, 129         14, 64, 110, 114, 117, 120, 123, 127, 131, 133
LiNO ₃ Li ₂ SO ₄ MgBr ₂ MgF ₂ MgF ₂ MnCl ₂ MnCl ₂ MnCl ₂ MoO ₃ NaBr NaCl	25, 88, 111, 118, 121, 124, 129, 131, 134         32, 99, 112, 115, 118, 125, 130         15, 66, 110, 114, 117, 123, 128         6, 50, 109, 114, 117, 122, 126         4, 44, 114         20, 78, 111, 115, 118, 124, 128         9, 55, 109, 114, 117, 122, 127         4, 46, 109, 122, 126         20, 78, 111, 115, 118, 124, 128         20, 78, 111, 115, 118, 124, 128         20, 78, 111, 115, 118, 124, 128         20, 78, 111, 115, 118, 124, 128         20, 78, 111, 115, 118, 124, 128         20, 78, 111, 115, 118, 124, 128         20, 78, 111, 115, 118, 124, 128         20, 78, 111, 115, 118, 124, 128         20, 78, 111, 115, 118, 124, 128         20, 78, 111, 115, 118, 124, 128         20, 78, 111, 115, 118, 124, 128         20, 78, 111, 114, 117, 120, 123, 127, 131, 133         21, 14, 64, 110, 114, 117, 120, 122, 126, 131, 133         21, 48, 109, 114, 117, 120, 122, 126, 131, 133
$\label{eq:generalized_states} \begin{split} LiNO_3Li_2SO_4MgBr_2MgCl_2MgF_2MgF_2MgI_2MnCl_2MnCl_2MnCl_2MnF_2MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MoO_3MOO_3MOO_3MOO_3MOO_3MOO_3MOO_3MOO_3MOO_3MOO_3MOO_3MOO_3MOO_3MOO_3MOO_3MOO_3MOO_3MOO_3MOO_3MOO_3MOO_3MOO_3MOO_3MOO_3MOO_3MOO_3MOO_3MOO_3MOO_3MOO_3MOO_3MOO_3MOO_3MOO_3MOO_3MOO_3MOO_3MOO_3MOO_3MOO_3MOO_3MOO_3MOO_3MOO_3MOO_3MOO_3MOO_3MOO_3MOO_3MOO_3MOO_3M$	25, 88, 111, 118, 121, 124, 129, 131, 134
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
LiNO ₃ Li ₂ SO ₄ MgBr ₂ MgCl ₂ MgI ₂ MnCl ₂ MnCl ₂ MnCl ₂ MnG ₃ NaBr NaCl NaCl NaCl NaCl NaI NaI NaNO ₂	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
LiNO ₃ Li ₂ SO ₄ MgBr ₂ MgCl ₂ MgI ₂ MnCl ₂ MnCl ₂ MnCl ₂ MnG ₃ NaBr NaCl NaCl NaCl NaCl NaCl Naf NaI NaJ NaI NaNO ₂ NaNO ₃	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
LiNO ₃ Li ₂ SO ₄ MgBr ₂ MgCl ₂ MgL ₂ MnCl ₂ MnCl ₂ MnF ₂ MoO ₃ NaBr NaCl Na ₂ CO ₃ NaF Na ₂ MoO ₄ Na ¹ Na ₂ MoO ₄ NaNO ₂ NaOH	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
LiNO ₃ Li ₂ SO ₄ MgBr ₂ MgCl ₂ MgF ₂ MnCl ₂ MnCl ₂ MnF ₂ MnO ₃ NaBr NaCl Na ₂ CO ₃ NaF Na ₂ MoO ₄ NaNO ₂ NaOH	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c} LiNO_{3}Li_{2}SO_{4}MgBr_{2}.MgCl_{2}.MgCl_{2}.MgF_{2}.MgI_{2}.MnCl_{2}.MnCl_{2}.MnF_{2}.MnO_{3}.MaBr.NaCl.Na_{2}CO_{3}.MaF.NaCl.Na_{2}CO_{3}.MaF.NaI.Na_{2}MoO_{4}NaNO_{2}.NaNO_{3}.NaOH.NaNO_{3}.NaOH.NaPO_{3}.NaOH.NaPO_{3}.NaSCNMaSCNMaSCNMaSCNMaSCNMaSCNMaSCNMaSCNMaSCNMaSCNMaSCNMaSCNMaSCNMaSCNMaSCNMaSCNMaSCNMaSCNMaSCNMaSCNMaSCNMaSCNMaSCNMaSCNMaSCNMaSCNMaSCNMaSCNMaSCNMaSCNMaSCNMaSCNMaSCNMaSCNMaSCNMaSCNMaSCNMaSCNMaSCNMaSCNMaSCNMaSCNMaSCNMaSCNMaSCNMaSCNMaSCNMaSCNMaSCNMaSCNMaSCNMaSCNMaSCNMaSCNMaSCNMaSCNMaSCNMaSCNMaSCNMaSCNMaSCNMaSCNMaSCNMaSCNMaSCNMaSCNMaSCNMaSCNMaSCNMaSCNMaSCNMaSCNMaSCNMaSCNMaSCNMaSCNMaSCNMaSCNMaSCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASCNMASC$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c} LiNO_{3}Li_{2}SO_{4}MgBr_{2}.MgCl_{2}.MgF_{2}.MgF_{2}.MgF_{2}.MnCl_{2}.MnF_{2}.MnO_{3}.MnF_{2}.MnO_{3}.MaBr.NaCl.Na_{2}CO_{3}.MaF.NaI.Na_{2}MoO_{4}NaNO_{2}.MaNO_{2}.MaNO_{2}.MaNO_{3}.MaOH.NaPO_{3}.MaSCN.Ma_{2}SO_{4}MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaSO_{4}.MaS$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c} LiNO_{3}Li_{2}SO_{4}\\MgBr_{2}\\MgCl_{2}\\MgF_{2}\\MgF_{2}\\MnCl_{2}\\MnCl_{2}\\MnF_{2}\\MnO_{3}\\NaBr\\NaCl\\Na_{2}CO_{3}\\NaF\\Naf\\Na_{2}MoO_{4}\\NaNO_{2}\\NaNO_{2}\\NaNO_{3}\\NaOH\\NaPO_{3}\\NaSCN\\Na_{2}SO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\N$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c} LiNO_{3}Li_{2}SO_{4}\\MgBr_{2}\\MgCl_{2}\\MgF_{2}\\MgF_{2}\\MnCl_{2}\\MnCl_{2}\\MnF_{2}\\MnO_{3}\\NaBr\\NaCl\\Na_{2}CO_{3}\\NaF\\Naf\\Na_{2}MoO_{4}\\NaNO_{2}\\NaNO_{2}\\NaNO_{3}\\NaOH\\NaPO_{3}\\NaSCN\\Na_{2}SO_{4}\\Na_{2}WO_{4}\\NdBr_{3}\\\end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c} LiNO_{3}Li_{2}SO_{4}\\MgBr_{2}\\MgF_{2}\\MgF_{2}\\MnCl_{2}\\MnCl_{2}\\MnF_{2}\\MnF_{2}\\MnF_{2}\\MnF_{2}\\MnF_{2}\\MnG_{3}\\NaCl\\Na_{2}CO_{3}\\NaF\\NaI\\Na_{2}MoO_{4}\\NaF\\NaI\\Na_{2}MoO_{4}\\NaNO_{3}\\NaNO_{3}\\NaOH\\NaPO_{3}\\NaOH\\NaPO_{3}\\Na_{2}SO_{4}\\Na_{2}WO_{4}\\Na_{2}WO_{4}\\NdBr_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\NdCl_{3}\\N$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c} LiNO_{3}\\ Li_{2}SO_{4}\\ MgBr_{2}\\ MgCl_{2}\\ MgF_{2}\\ MgF_{2}\\ MnCl_{2}\\ MnCl_{2}\\ MnF_{2}\\ MoO_{3}\\ NaBr\\ NaCl\\ Na_{2}CO_{3}\\ NaF\\ NaCl\\ Na_{2}CO_{3}\\ NaF\\ NaI\\ Na_{2}CO_{3}\\ NaF\\ NaI\\ Na_{2}MoO_{4}\\ NaNO_{2}\\ NaNO_{3}\\ NaNO_{3}\\ NaO_{4}\\ NaPO_{3}\\ NaOH\\ NaPO_{3}\\ Na_{2}SO_{4}\\ Na_{2}WO_{4}\\ NdBr_{3}\\ NdCl_{3}\\ NdI_{3}\\ NdI_{3}\\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

PbBr ₂ 18, 74, 110, 115, 118, 120, 123, 128, 131, 133
$\Gamma DDI_2$ 10, 74, 110, 113, 110, 120, 123, 120, 131, 133
PbCl ₂ 13, 62, 110, 115, 118, 120, 123, 127, 131, 133
$PbF_2$
PbI ₂ 23, 84, 111, 124, 129
1
PbO 30, 94, 112, 125, 129
PLC 21 07 112 115 110 125 120
PbS 31, 97, 112, 115, 118, 125, 130
PrBr ₃ 16, 68, 110, 123, 128
D Cl 0, 50, 100, 100, 107
PrCl ₃
PrI ₃ 21, 80, 111, 124, 128
<b>D</b> NDD 00 100 110 110 101 105 100 100 104
Pr ₄ NBF ₄ 33, 100, 112, 116, 118, 121, 125, 130, 132, 134
Pr ₄ NBPh ₄ 33, 101, 116, 121, 132, 134
Pr ₄ NPF ₆ 33, 100, 112, 116, 118, 121, 125, 130, 132, 134
RbBr 15, 65, 110, 114, 117, 120, 123, 128, 131, 133
RbCl 6, 49, 109, 114, 117, 120, 122, 126, 131, 133
RbI 20, 77, 111, 115, 118, 120, 124, 128, 131, 133
RbNO ₂ 25, 87, 111, 121, 124, 129, 131, 133
DI NO. 07 00 110 117 110 101 127, 127, 101, 100
RbNO ₃ 27, 89, 112, 115, 118, 121, 124, 129, 131, 134
Rb ₂ SO ₄ 32, 99, 112, 116, 118, 125, 130
$MD_2 SO_4 \dots SO_5 SO_6 \dots SO_5 SO_6 \dots SO_5 SO_6 \dots SO_5 ND_2 SO_6 \dots SO_5 $
Sb ₂ O ₃
$Sb_2S_3$ 31, 98, 112, 115, 118, 125, 130
ScCl ₃
0, 01, 109, 122, 121
SiO ₂ 29, 93, 121, 132, 134
SnCl ₂ 12, 61, 110, 114, 117, 123, 127
12, 01, 110, 114, 111, 120, 121
SnCl ₄ 13, 62, 114, 120, 131, 133
SnS 31, 97, 112, 115, 125, 130
51, 57, 112, 110, 120, 130
$S_{r}R_{r}$ 15.67 110 115 117 193 198
$O(D)_{2}, O(1)_{1}, O$
SrBr ₂ 15, 67, 110, 115, 117, 123, 128 SrCl 7, 51, 100, 114, 117, 120, 122, 127, 131, 133
SrCl ₂
SrCl ₂ 7, 51, 109, 114, 117, 120, 122, 127, 131, 133 SrF ₂ 4, 45, 114
SrCl ₂ 7, 51, 109, 114, 117, 120, 122, 127, 131, 133 SrF ₂ 4, 45, 114
SrCl ₂
SrCl ₂ 7, 51, 109, 114, 117, 120, 122, 127, 131, 133 SrF ₂ 4, 45, 114
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
SrCl2
SrCl2
SrCl2
$\label{eq:strong} \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\label{eq:strong} \begin{split} & SrCl_2, \dots, 7, 51, 109, 114, 117, 120, 122, 127, 131, 133\\ & SrF_2, \dots, 4, 45, 114\\ & SrI_2, \dots, 20, 79, 111, 115, 118, 124, 128\\ & TeCl_2, \dots, 13, 63, 110, 123, 127\\ & TeCl_4, \dots, 13, 63, 110, 123, 127\\ & TeO_2, \dots, 30, 95, 112, 125, 129\\ & ThCl_4, \dots, 9, 55, 109, 117, 122, 127 \end{split}$
$\label{eq:strong} \begin{split} & SrCl_2, \dots, 7, 51, 109, 114, 117, 120, 122, 127, 131, 133\\ & SrF_2, \dots, 4, 45, 114\\ & SrI_2, \dots, 20, 79, 111, 115, 118, 124, 128\\ & TeCl_2, \dots, 13, 63, 110, 123, 127\\ & TeCl_4, \dots, 13, 63, 110, 123, 127\\ & TeO_2, \dots, 30, 95, 112, 125, 129\\ & ThCl_4, \dots, 9, 55, 109, 117, 122, 127 \end{split}$
$\label{eq:stress} \begin{split} & SrCl_2, \dots, 7, 51, 109, 114, 117, 120, 122, 127, 131, 133\\ & SrF_2, \dots, 4, 45, 114\\ & SrI_2, \dots, 20, 79, 111, 115, 118, 124, 128\\ & TeCl_2, \dots, 13, 63, 110, 123, 127\\ & TeCl_4, \dots, 13, 63, 110, 123, 127\\ & TeO_2, \dots, 30, 95, 112, 125, 129\\ & ThCl_4, \dots, 9, 55, 109, 117, 122, 127\\ & ThF_4, \dots, 4, 46, 114 \end{split}$
$\label{eq:stress} \begin{split} & SrCl_2, \dots, 7, 51, 109, 114, 117, 120, 122, 127, 131, 133\\ & SrF_2, \dots, 4, 45, 114\\ & SrI_2, \dots, 20, 79, 111, 115, 118, 124, 128\\ & TeCl_4, \dots, 13, 63, 110, 123, 127\\ & TeCl_4, \dots, 13, 63, 110, 123, 127\\ & TeO_2, \dots, 30, 95, 112, 125, 129\\ & ThCl_4, \dots, 9, 55, 109, 117, 122, 127\\ & ThF_4, \dots, 4, 46, 114\\ & TiCl_4, \dots, 9, 55, 117, 120, 131, 133\\ \end{split}$
$\label{eq:stress} \begin{split} & SrCl_2, \dots, 7, 51, 109, 114, 117, 120, 122, 127, 131, 133\\ & SrF_2, \dots, 4, 45, 114\\ & SrI_2, \dots, 20, 79, 111, 115, 118, 124, 128\\ & TeCl_4, \dots, 13, 63, 110, 123, 127\\ & TeCl_4, \dots, 13, 63, 110, 123, 127\\ & TeO_2, \dots, 30, 95, 112, 125, 129\\ & ThCl_4, \dots, 9, 55, 109, 117, 122, 127\\ & ThF_4, \dots, 4, 46, 114\\ & TiCl_4, \dots, 9, 55, 117, 120, 131, 133\\ \end{split}$
$\label{eq:stress} \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\label{eq:split} \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\label{eq:split} \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\label{eq:split} \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\label{eq:split} \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\label{eq:split} \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\label{eq:split} \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\label{eq:split} \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\label{eq:split} \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\label{eq:split} \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\label{eq:split} \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\label{eq:split} \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\label{eq:split} \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\label{eq:split} \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\label{eq:split} \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\label{eq:split} \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\label{eq:split} \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\label{eq:split} \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\label{eq:split} \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\label{eq:splitch} \begin{array}{c} {\rm SrCl}_2, \ldots, \ldots, 7, 51, 109, 114, 117, 120, 122, 127, 131, 133\\ {\rm SrF}_2, \ldots, 4, 45, 114\\ {\rm SrI}_2, \ldots, 20, 79, 111, 115, 118, 124, 128\\ \\ {\rm TeCl}_4, \ldots, 20, 79, 111, 115, 118, 124, 128\\ \\ {\rm TeCl}_4, \ldots, 20, 79, 111, 115, 118, 124, 128\\ \\ {\rm TeCl}_4, \ldots, 20, 79, 111, 115, 118, 123, 127\\ \\ {\rm TeC}_2, \ldots, 30, 95, 112, 125, 129\\ \\ {\rm ThCl}_4, \ldots, 9, 55, 109, 117, 122, 127\\ \\ {\rm ThF}_4, \ldots, 9, 55, 109, 117, 122, 127\\ \\ {\rm ThF}_4, \ldots, 9, 55, 117, 120, 131, 133\\ \\ {\rm TICl}, \ldots, 28, 91, 112, 115, 118, 121, 125, 129, 132, 134\\ \\ {\rm UCl}_4, \ldots, 28, 91, 112, 115, 118, 121, 125, 129, 132, 134\\ \\ {\rm UCl}_4, \ldots, 28, 91, 112, 115, 118, 121, 125, 129, 132, 134\\ \\ {\rm UCl}_4, \ldots, 29, 55, 109, 112, 125, 129\\ \\ {\rm UCl}_4, \ldots, 28, 91, 112, 115, 118, 121, 125, 129, 132, 134\\ \\ {\rm UCl}_4, \ldots, 29, 91, 112, 125, 129, 132, 134\\ \\ {\rm UCl}_4, \ldots, 29, 91, 112, 125, 129, 132, 134\\ \\ {\rm UCl}_4, \ldots, 29, 91, 112, 125, 129, 132, 134\\ \\ {\rm UCl}_4, \ldots, 29, 91, 112, 125, 129, 132, 134\\ \\ {\rm UCl}_4, \ldots, 29, 91, 112, 125, 129, 132, 134\\ \\ {\rm UCl}_4, \ldots, 29, 91, 112, 125, 129, 132, 134\\ \\ {\rm UCl}_4, \ldots, 29, 91, 112, 125, 129\\ \\ {\rm YCl}_3, \ldots, 28, 91, 110, 115, 118, 120, 123, 128, 131, 133\\ \\ {\rm YCl}_3, \ldots, 17, 70, 110, 115, 118, 120, 123, 128, 131, 133\\ \\ {\rm UCl}_4, \ldots, 29, 91, 112, 125, 129\\ \\ {\rm YCl}_3, \ldots, 17, 70, 110, 115, 118, 120, 123, 128, 131, 133\\ \\ {\rm UCl}_4, \ldots, 28, 91, 112, 115, 118, 120, 123, 128, 131, 133\\ \\ {\rm UCl}_4, \ldots, 28, 91, 112, 115, 118, 120, 123, 128, 131, 133\\ \\ {\rm UCl}_4, \ldots, 28, 91, 112, 115, 118, 120, 123, 128, 131, 133\\ \\ {\rm UCl}_4, \ldots, 28, 91, 110, 115, 118, 120, 123, 128, 131, 133\\ \\ {\rm VCl}_4, \ldots, 28, 91, 110, 115, 118, 120, 123, 128, 131, 133\\ \\ {\rm UCl}_4, \ldots, 28, 91, 110, 115, 118, 120, 123, 128, 131, 133\\ \\ {\rm UCl}_4, \ldots, 28, 91, 110, 115, 118, 120, 123, 128, 131, 133\\ \\ {\rm UCl}_4, \ldots, 28, 91, 110, 115, 118, 120, 123, 128, 131, 133\\ \\ {\rm UCl}_4, \ldots, 28, 91, 110, 115, 118, 120, 123, 128, 131, 133\\ \\ {\rm UCl}_4, \ldots, 28, 91, 110, 115, 118, 120, 123, 128, 131, 133\\ \\ {\rm UCl}_4, \ldots, 28, 91, 120, 123, 128, 131, 133\\ \\ {\rm UCl}_4$
$\label{eq:splitch} \begin{array}{c} {\rm SrCl}_2, \ldots, \ldots, 7, 51, 109, 114, 117, 120, 122, 127, 131, 133\\ {\rm SrF}_2, \ldots, 4, 45, 114\\ {\rm SrI}_2, \ldots, 20, 79, 111, 115, 118, 124, 128\\ \\ {\rm TeCl}_4, \ldots, 20, 79, 111, 115, 118, 124, 128\\ \\ {\rm TeCl}_4, \ldots, 20, 79, 111, 115, 118, 124, 128\\ \\ {\rm TeCl}_4, \ldots, 20, 79, 111, 115, 118, 123, 127\\ \\ {\rm TeC}_2, \ldots, 30, 95, 112, 125, 129\\ \\ {\rm ThCl}_4, \ldots, 9, 55, 109, 117, 122, 127\\ \\ {\rm ThF}_4, \ldots, 9, 55, 109, 117, 122, 127\\ \\ {\rm ThF}_4, \ldots, 9, 55, 117, 120, 131, 133\\ \\ {\rm TICl}, \ldots, 28, 91, 112, 115, 118, 121, 125, 129, 132, 134\\ \\ {\rm UCl}_4, \ldots, 28, 91, 112, 115, 118, 121, 125, 129, 132, 134\\ \\ {\rm UCl}_4, \ldots, 28, 91, 112, 115, 118, 121, 125, 129, 132, 134\\ \\ {\rm UCl}_4, \ldots, 29, 55, 109, 112, 125, 129\\ \\ {\rm UCl}_4, \ldots, 28, 91, 112, 115, 118, 121, 125, 129, 132, 134\\ \\ {\rm UCl}_4, \ldots, 29, 91, 112, 125, 129, 132, 134\\ \\ {\rm UCl}_4, \ldots, 29, 91, 112, 125, 129, 132, 134\\ \\ {\rm UCl}_4, \ldots, 29, 91, 112, 125, 129, 132, 134\\ \\ {\rm UCl}_4, \ldots, 29, 91, 112, 125, 129, 132, 134\\ \\ {\rm UCl}_4, \ldots, 29, 91, 112, 125, 129, 132, 134\\ \\ {\rm UCl}_4, \ldots, 29, 91, 112, 125, 129, 132, 134\\ \\ {\rm UCl}_4, \ldots, 29, 91, 112, 125, 129\\ \\ {\rm YCl}_3, \ldots, 28, 91, 110, 115, 118, 120, 123, 128, 131, 133\\ \\ {\rm YCl}_3, \ldots, 17, 70, 110, 115, 118, 120, 123, 128, 131, 133\\ \\ {\rm UCl}_4, \ldots, 29, 91, 112, 125, 129\\ \\ {\rm YCl}_3, \ldots, 17, 70, 110, 115, 118, 120, 123, 128, 131, 133\\ \\ {\rm UCl}_4, \ldots, 28, 91, 112, 115, 118, 120, 123, 128, 131, 133\\ \\ {\rm UCl}_4, \ldots, 28, 91, 112, 115, 118, 120, 123, 128, 131, 133\\ \\ {\rm UCl}_4, \ldots, 28, 91, 112, 115, 118, 120, 123, 128, 131, 133\\ \\ {\rm UCl}_4, \ldots, 28, 91, 110, 115, 118, 120, 123, 128, 131, 133\\ \\ {\rm VCl}_4, \ldots, 28, 91, 110, 115, 118, 120, 123, 128, 131, 133\\ \\ {\rm UCl}_4, \ldots, 28, 91, 110, 115, 118, 120, 123, 128, 131, 133\\ \\ {\rm UCl}_4, \ldots, 28, 91, 110, 115, 118, 120, 123, 128, 131, 133\\ \\ {\rm UCl}_4, \ldots, 28, 91, 110, 115, 118, 120, 123, 128, 131, 133\\ \\ {\rm UCl}_4, \ldots, 28, 91, 110, 115, 118, 120, 123, 128, 131, 133\\ \\ {\rm UCl}_4, \ldots, 28, 91, 110, 115, 118, 120, 123, 128, 131, 133\\ \\ {\rm UCl}_4, \ldots, 28, 91, 120, 123, 128, 131, 133\\ \\ {\rm UCl}_4$
$\label{eq:splitch} \begin{array}{c} SrCl_27, 51, 109, 114, 117, 120, 122, 127, 131, 133\\ SrF_24, 45, 114\\ SrI_220, 79, 111, 115, 118, 124, 128\\ \hline TeCl_413, 63, 110, 123, 127\\ TeCl_413, 63, 110, 123, 127\\ TeO_230, 95, 112, 125, 129\\ ThCl_49, 55, 109, 117, 122, 127\\ ThF_49, 55, 109, 117, 122, 127\\ ThF_418, 73, 110, 115, 118, 123, 128\\ TICl12, 61, 110, 114, 117, 123, 128\\ TICl23, 84, 111, 124, 129\\ TINO_328, 91, 112, 115, 118, 121, 125, 129, 132, 134\\ UCl_49, 55, 109, 122, 127\\ UF_44, 46, 114\\ UO_2Cl_228, 91, 112, 115, 118, 121, 125, 129, 132, 134\\ UCl_49, 55, 109, 112, 125, 129, 132, 134\\ UCl_{49, 55, 109, 112, 125, 129, 131, 133\\ Therefore the set of the s$
$\label{eq:splitch} \begin{array}{llllllllllllllllllllllllllllllllllll$
$\label{eq:splitch} \begin{array}{c} SrCl_2$

## Page

# National Standard Reference Data Series National Bureau of Standards

National Standard Reference Data System, Plan of Operation, NSRDS-NBS 1-15 cents*

Thermal Properties of Aqueous Uni-univalent Electrolytes, NSRDS-NBS 2-45 cents*

- Selected Tables of Atomic Spectra, Atomic Energy Levels and Multiplet Tables Si II, Si III, Si IV, NSRDS-NBS 3, Section 1–35 cents*
- Selected Tables of Atomic Spectra, Atomic Energy Levels and Multiplet Tables Si I, NSRDS-NBS 3, Section 2-20 cents*
- Atomic Transition Probabilities, Volume I, Hydrogen Through Neon, NSRDS-NBS 4-\$2.50*

The Band Spectrum of Carbon Monoxide, NSRDS-NBS 5-70 cents*

Tables of Molecular Vibrational Frequencies. Part 1, NSRDS-NBS 6-40 cents*

High Temperature Properties and Decomposition of Inorganic Salts. Part 1. Sulfates, NSRDS-NBS 7-35 cents*

Thermal Conductivity of Selected Materials. NSRDS-NBS 8-\$1.00*

Tables of Biomolecular Gas Reactions. NSRDS-NBS 9-\$2.00*

Selected Values of Electric Dipole Moments for Molecules in the Gas Phase. NSRDS-NBS 10-40 cents*

Tables of Molecular Vibrational Frequencies, Part 2, NSRDS-NBS 11-30 cents*

Tables for the Rigid Asymmetric Rotor: Transformation Coefficient for Symmetric to Asymmetric Bases and Expectation Values of  $P_z^2$  and  $P_z^4$ . NSRDS-NBS 12-60 cents*

Hydrogenation of Ethylene on Metallic Catalysts. NSRDS-NBS 13- \$1.00*

X-Ray Wavelengths and X-Ray Atomic Energy Levels, NSRDS-NBS 14-40 cents*

^{*}Send orders with remittance to: Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402. Remittances from foreign countries should include an additional one-fourth of the purchase price for postage.

## NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards¹ was established by an act of Congress March 3, 1901. Today, in addition to serving as the Nation's central measurement laboratory, the Bureau is a principal focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. To this end the Bureau conducts research and provides central national services in three broad program areas and provides central national services in a fourth. These are: (1) basic measurements and standards, (2) materials measurements and standards, (3) technological measurements and standards, and (4) transfer of technology.

The Bureau comprises the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, and the Center for Radiation Research.

THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement, coordinates that system with the measurement systems of other nations, and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of an Office of Standard Reference Data and a group of divisions organized by the following areas of science and engineering:

Applied Mathematics—Electricity—Metrology—Mechanics—Heat—Atomic Physics—Cryogenics²—Radio Physics²—Radio Engineering²—Astrophysics²—Time and Frequency.²

THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to methods, standards of measurement, and data needed by industry, commerce, educational institutions, and government. The Institute also provides advisory and research services to other government agencies. The Institute consists of an Office of Standard Reference Materials and a group of divisions organized by the following areas of materials research:

Analytical Chemistry—Polymers—Metallurgy — Inorganic Materials — Physical Chemistry.

THE INSTITUTE FOR APPLIED TECHNOLOGY provides for the creation of appropriate opportunities for the use and application of technology within the Federal Government and within the civilian sector of American industry. The primary functions of the Institute may be broadly classified as programs relating to technological measurements and standards and techniques for the transfer of technology. The Institute consists of a Clearinghouse for Scientific and Technical Information,³ a Center for Computer Sciences and Technology, and a group of technical divisions and offices organized by the following fields of technology:

Building Research—Electronic Instrumentation — Technical Analysis — Product Evaluation—Invention and Innovation— Weights and Measures — Engineering Standards—Vehicle Systems Research.

THE CENTER FOR RADIATION RESEARCH engages in research, measurement, and application of radiation to the solution of Bureau mission problems and the problems of other agencies and institutions. The Center for Radiation Research consists of the following divisions:

Reactor Radiation—Linac Radiation—Applied Radiation—Nuclear Radiation.

¹ Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted; mailing address Washington, D. C. 20234. ² Located at Boulder, Colorado 80302.

³ Located at 5285 Port Royal Road, Springfield, Virginia 22151.



Alter and the second second

and a second second

μ

.

.