

U.S. DEPARTMENT OF COMMERCE

NATIONAL BUREAU OF STANDARDS

National Standard Reference Data Series National Bureau of Standards

- National Standard Reference Data System, Plan of Operation, NSRDS-NBS 1-15 cents*
- Thermal Properties of Aqueous Uni-univalent Electrolytes NSRDS-NBS 2-45 cents*
- Selected Tables of Atomic Spectra, Atomic Energy Levels and Multiplet Tables-Si II, Si III, Si IV, NSRDS-NBS 3, Section 1-35 cents*
- Atomic Transition Probabilities, Volume I, Hydrogen Through Neon, NSRDS-NBS 4-\$2.50*
- The Band Spectrum of Carbon Monoxide, NSRDS-NBS 5-70 cents*
- Tables of Molecular Vibrational Frequencies. Part 1, NSRDS-NBS 6-40 cents*
- High Temperature Properties and Decomposition of Inorganic Salts. Part 1. Sulfates, NSRDS-NBS 7-35 cents*
- Thermal Conductivity of Selected Materials. NSRDS-NBS 8-\$1.00*
- Tables of Biomolecular Gas Reactions. NSRDS-NBS 9-In press.
- Selected Values of Electric Dipole Moments for Molecules in the Gas Phase. NSRDS-NBS 10-40 cents*

^{*}Send orders with remittance to: Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402. Remittances from foreign countries should include an additional one-fourth of the purchase price for postage.

UNITED STATES DEPARTMENT OF COMMERCE

ALEXANDER B. TROWBRIDGE, Secretary,

11. S. NATIONAL BUREAU OF STANDARDS · A. V. ASTIN, Director

Selected Values of Electric Dipole Moments for Molecules in the Gas Phase

Ralph D. Nelson, Jr.

Chemistry Department Middlebury College Middlebury, Vermont 05753

AND

David R. Lide, Jr. and Arthur A. Maryott

Institute for Basic Standards National Bureau of Standards Washington, D.C. 20234

t. NSRDS-NBS 10 National Standard Reference Data Series-National Bureau of Standards 10

(Category 3-Atomic and Molecular Properties)

Issued September 1, 1967

(Supersedes the data on dipole moments included in NBS Circular 537)

For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C., 20402 - Price 40 cents

NATIONAL BUREAU OF STANDARDS

JUL 2 3 1970

QC 100 .U573 no.10 1967 cop.2

Library of Congress Catalog Card Number: 67-60055

.

Foreword

The National Standard Reference Data System is a government-wide effort to give to the technical community of the United States optimum access to the quantitative data of physical science, critically evaluated and compiled for convenience. This program was established in 1963 by the President's Office of Science and Technology, acting upon the recommendation of the Federal Council for Science and Technology. The National Bureau of Standards has been assigned responsibility for administering the effort. The general objective of the System is to coordinate and integrate existing data evaluation and compilation activities into a systematic, comprehensive program, supplementing and expanding technical coverage when necessary, establishing and maintaining standards for the output of the participating groups, and providing mechanisms for the dissemination of the output as required.

The NSRDS is conducted as a decentralized operation of nation-wide scope with central coordination by NBS. It comprises a complex of data centers and other activities, carried on in government agencies, academic institutions, and nongovernmental laboratories. The independent operational status of existing critical data projects is maintained and encouraged. Data centers that are components of the NSRDS produce compilations of critically evaluated data, critical reviews of the state of quantitative knowledge in specialized areas, and computations of useful functions derived from standard reference data.

For operational purposes, NSRDS compilation activities are organized into seven categories as listed below. The data publications of the NSRDS, which may consist of monographs, looseleaf sheets, computer tapes, or any other useful product, will be classified as belonging to one or another of these categories. An additional "General" category of NSRDS publications will include reports on detailed classification schemes, lists of compilations considered to be Standard Reference Data, status reports, and similar material. Thus, NSRDS publications will appear in the following eight categories:

Category	Title
1	General
2	Nuclear Properties
3	Atomic and Molecular Properties
4	Solid State Properties
5	Thermodynamic and Transport Properties
6	Chemical Kinetics
7	Colloid and Surface Properties
8	Mechanical Properties of Materials

The present compilation is in category 3 of the above list. It constitutes the tenth publication * in the new NBS series known as the National Standard Reference Data Series.

A. V. ASTIN, Director.

-

Contents

	Page
Foreword	vi
1. Introduction	1
2. Arrangement and explanation of table	1
2.1. Ordering of compounds	1
2.2. Nomenclature	1
2.3. Units and corrections	1
2.4. Selected values	1
2.5. Basic references	2
2.6. Other data	2
3. Bibliographic compilation procedure	2
4. Definition of dipole moment	3
5. Principal methods of dipole moment measurement	4
5.1. Microwave spectroscopy (MW)	4
5.2. Molecular beam electric resonance (MB)	5
5.3. Dielectric (DT, DR, NR)	5
5.4. Temperature-variation procedure (DT)	6
5.5. Indirect (optical) procedure (DR)	6
5.6. Nonresonant microwave absorption or dispersion (NR)	6
5.7. Comments on dielectric methods	6
6. Criteria for evaluation	7
6.1. Microwave measurements	7
6.2. Molecular beam measurements	7
6.3. Dielectric methods	7
6.4. Choice of selected value	8
7. Tables of selected dipole moments	9
7.1. Selected dipole moments (compounds not containing carbon)	9
7.2. Selected dipole moments (compounds containing carbon)	15
7.3. Appendix I. Variation of dipole moment with vibrational state	35
7.4. Appendix II. Isotopic dependence of dipole moment	34
8. Bibliography	41

 \mathbf{v}

Selected Values of Electric Dipole Moments for Molecules in the Gas Phase

Ralph D. Nelson, Jr., David R. Lide, Jr., and Arthur A. Maryott

This table revises, brings up to date, and extends the coverage on numerical values for dipole moments which was included in NBS Circular 537, Tables of Dielectric Constants and Electric Dipole Moments of Substances in the Gaseous State, prepared by Maryott and Buckley in 1953. A recommended value with an estimate of accuracy is presented for more than five hundred organic and inorganic compounds. Extensive comments are given on the definition of dipole moment and principal methods of dipole moment measurement, as well as an exposition of the criteria employed in selecting the tabulated data.

Key Words: Dielectric constant, electric dipole moments, gas phase, microwave, microwave absorption, molecular beam, permittivity, refractive index, spectroscopy.

1. Introduction

This table of selected values of electric dipole moments for molecules in the gas phase was prepared under a program for the critical evaluation of the data of science and technology sponsored by the National Bureau of Standards through the National Standard Reference Data System. The table revises and brings up to date the data on dipole moments included in the National Bureau of Standards Circular 537, prepared by A. A. Maryott and F. Buckley in 1953. It gives a recommended value for each compound and an estimate of the accuracy of this value. The most significant experimental values and the methods used to obtain them are tablulated, as well as a complete list of references. Where precise information on two or more vibrational states or isotopic species is available, it has been included in supplemental tables in the appendices.

2. Arrangement and Explanation of Table

2.1. Ordering of Compounds

Compounds are divided into two groups: (a) those containing no carbon atoms (inorganic), arranged with the elemental symbols of the empirical formulas in alphabetical order, and listed alphabetically, and in ascending order of the empirical formula subscripts; (b) compounds containing carbon, ordered as in (a) with the exceptions that carbon is listed first and hydrogen second. Monatomic and homonuclear diatomic molecules, which have no dipole moment in the ground electronic state because of symmetry considerations, are not included.

2.2. Nomenclature

The recommendations of the International Union of Pure and Applied Chemistry Reports on Symbolism and Nomenclature published in J. Am. Chem. Soc. 82, 5517-84 (1960), are followed. The common, or trivial, names are sometimes included in parentheses.

2.3. Units and Corrections

Values of the dipole moment, μ , are expressed in the cgs system of units, since this is the system universally used by workers in the field. The numerical values are in debye units, D, $(1 D = 10^{-18} electrostatic units of charge \times centimeters)$. The conversion factor to the Système International is $1 D = 3.33564 \times 10^{-24}$ coulomb-meter.

Appropriate corrections have been made to values reported in the original literature. In particular, dipole moments which were measured relative to some secondary standard (for example, the OCS molecule) have been corrected in accordance with the best current value for the reference dipole moment (0.7124 D in the case of OCS). Corrections have also been made for changes in the fundamental physical constants. In some cases the primary experimental data have been reanalyzed. Therefore, many of the dipole moments listed in this table differ slightly from the values reported by the original authors.

2.4. Selected Moments

The recommended value of the dipole moment of each compound is listed in the column headed *Selected Moment* and is accompanied by a letter code indicating its estimated accuracy. The selected values are arbitrarily rounded off to 0.01 D except for moments less than 1 D, where an additional significant figure has been given when warranted. The accuracy code and related notation are given in the following table; a discussion of the basis for assigning the reliability is given in section 6.

Code symbol	Estimated accuracy of value
A B C D Q S i	$\pm 1\% \text{ or, for } \mu < 1.0 \text{ D}, \pm 0.01 \text{ D}$ $\pm 2\% \text{ or, for } \mu < 1.0 \text{ D}, \pm 0.02 \text{ D}$ $\pm 5\% \text{ or, for } \mu < 1.0 \text{ D}, \pm 0.05 \text{ D}$ $\pm 10\% \text{ or, for } \mu < 1.0 \text{ D}, \pm 0.10 \text{ D}$ Questionable value $\mu \equiv 0 \text{ on grounds of molecular}$ symmetry The significance of these values may involve some ambiguity because of the possibility of different confor-
+	mations of spatial isomers.

The O code symbol has been used where there is a serious question about the best value to select or where there is insufficient information on which to base a meaningful estimate of accuracy. The symbol is also used when only one component of the dipole moment vector has been measured. All values in this category have been placed in parentheses to emphasize their questionable nature. They may be regarded as giving a rough estimate of the magnitude of the moment but are not of sufficient accuracy for quantitative use. The symbol xQ, without a numerical value being given, indicates that the reported values of the dipole moment are so doubtful that they could be misleading. When the symbol i appears without a numerical value, it indicates the probable presence, in significant amounts, of two or more conformational isomers which may have quite different dipole moments. In such cases the average moment and its temperature dependence are indicated in a footnote.

Further discussion regarding the definition and significance of the dipole moment, the experimental

methods for its determination, and the criteria for evaluation of the data may be found in sections 4, 5, and 6.

2.5. Basic References

The column headed *Basic References* lists the reference number to the Bibliography (sec. 8), the experimental method, and the dipole moment (in that order) of all sources that were taken into consideration in arriving at the selected value and the estimate of its accuracy. The method code is

- MW = microwave spectroscopy
- MB = molecular beam electric resonance
- DT = permittivity (dielectric constant) as a function of temperature
- DR = permittivity and refractive index data
- NR=nonresonant microwave absorption or dispersion
- > = an arrow following the listed value of the moment indicates that the reference contains information about its orientation relative to the molecular framework.

2.6. Other Data

The last column lists additional references not used in obtaining the selected value. These include published reports of a preliminary nature, other articles which contain essentially the same information as in the *Basic References*, or work considered to be of lesser reliability. Reference to supplemental information contained in the appendices is noted by

- Vib-refers to data on dipole moments in excited vibrational states (appendix I)
- Iso-refers to data on dipole moments of different isotopic species (appendix II).

3. Bibliographic Compilation Procedure

A number of literature searches for information on dipole moments have previously been carried out. We have made use of these in collecting the bibliography on which the present table is based. The following compilations were particularly helpful:

Tables of Experimental Dipole Moments by A. L. McClellan (W. H. Freeman and Co., San Francisco, 1963).

Tables of Dielectric Constants and Electric Dipole Moments of Substances in the Gaseous State by A. A. Maryott and F. Buckley (U.S. National Bureau of Standards Circular 537, 1953).

Digest of Literature on Dielectrics, 29 volumes (National Academy of Sciences-National Research Council publication, annual) (order from the Staff Executive, Conference on Electrical Insulation, N.A.S.-N.R.C., 2101 Constitution Ave., NW., Washington, D.C. 20418). Microwave Spectral Tables NBS Monograph 70 (Diatomic Molecules, Vol. 1) by P. F. Wacker, M. Mizushima, J. D. Peterson, and J. R. Ballard (U.S. Government Printing Office, 1964).

Microwave Gas Spectroscopy Bibliography 1954-1964, by Paolo G. Favero (Laboratorio di Spettroscopia a Radiofrequenza, University of Bologna, Bologna, Italy, 1963, 1966).

Bibliographie mikrowellenspektroskopischer Untersuchungen an Molekülen in den Jahren 1945–1962 by B. Starck (Physikalisches Institut der Universität, Freiburg i. Br., Germany, 1963).

Table of Electric Dipole Moments by L. G. Wesson (The Technology Press, Cambridge, Mass., 1948).

Landolt-Börnstein Tabellen (6 Auflage) (1951) Parts 142061–142063 (H. Stuart).

Microwave Spectroscopy by C. H. Townes and A. L. Schawlow (McGraw-Hill Book Co., Inc., New York, 1955) Appendix VI (by G. C. Dousmanis). Molecular Microwave Spectra Tables by P. Kisliuk and C. H. Townes (U.S. National Bureau of Standards Circular 518, 1952).

Table of Electric Dipole Moments by S. Crompton, Master's Thesis, Duke Univ. (Durham, N.C., 1948).

Several of the above compilations were based on comprehensive searches of *Chemical Abstracts* and similar sources. As a result of this overlap, we may have a high degree of confidence that very few references have been overlooked. This conclusion was supported by a check of the 1952 and 1953 *Chemical Abstracts* in which no new references were uncovered. A certain number of incorrect or irrelevant references were discovered in previous compilations. These have been corrected or eliminated in the present bibliography.

The bibliography has been limited, as far as possible, to the regular published literature. References to theses, reports, abstracts of meetings, and private communication are included in only a few cases where they cover important data which are not otherwise available. Certain preliminary notes on results which were later published in more detail have also been excluded.

An effort has been made to provide complete coverage of the literature through the end of 1965. Some references to papers appearing in 1966 are also included, but the coverage for this year is not complete.

The bibliography (sec. 8) is ordered primarily by year of publication, secondarily by the firstnamed author's last name, and finally by the nextnamed authors. The references are numbered serially, the most recent references having the highest numbers. Since some additions and deletions in the bibliography were made prior to publication of the tables, there are several reference numbers which are unused, and several 1966 references are not ordered according to the above scheme. The journal names have been abbreviated according to the 1961 listing in *Chemical Abstracts*.

4. Definition of Dipole Moment

We have attempted in this tabulation to select the best value of the dipole moment of each compound on which measurements have been made. Some discussion is therefore in order concerning the extent to which the electric dipole moment can be considered a well-defined molecular property. The permanent dipole moment of an isolated molecule is normally defined as

$$\boldsymbol{\mu} = \left\langle \sum_{i} e_{i} \mathbf{r}_{i} \right\rangle, \tag{1}$$

where the summation extends over all charges e_i (nuclei and electrons) in the molecule. The position vectors \mathbf{r}_i may be referred to any origin as long as the molecule has no net charge. Since the expectation value in eq (1) implies a particular stationary state, an important question arises concerning the dependence of μ on rotational, vibrational, and electronic state. At present there is no evidence of significant variation of dipole moment with rotational state. The variation with vibrational state would be expected to be larger, and, indeed, changes of 1 to 2 percent per quantum of vibrational excitation have been observed (see appendix I). The dependence on electronic state is much more critical; changes of 30 percent or more have been reported (see CH₂O). Another source of variation lies in isotope effects. Replacement of hydrogen by deuterium has been found to change dipole moments by several percent in some cases. However, for atoms other than hydrogen, the effect is very much smaller (see appendix II).

In view of these considerations we have chosen to define the dipole moment of a compound as the

moment of a molecule of the dominant isotopic species of that compound in its ground electronic and vibrational state. The selected values in the present table are, in principle, based on this definition. This allows the dipole moment of a compound to be uniquely specified, at least to the extent that the influence of molecular rotation can be ignored. Dipole moments determined by spectroscopic methods (see sec. 5) always refer to a particular vibrational and electronic state and to a single isotopic species; the present definition is therefore the most convenient one to use when dealing with spectroscopic results. However, moments determined from measurements of bulk dielectric properties represent an average over the equilibrium population of vibrational (and, in principle, electronic) states and over the natural abundance of the various isotopic species. While this introduces a certain ambiguity in the comparison of moments determined by the two methods, an examination of the best available data indicates that the distinction is of little practical importance except in special cases. That is, the average moment determined from bulk dielectric properties at ordinary temperatures is unlikely to differ by more than 1 percent from the moment of the dominant isotopic species in its ground state.

Certain difficulties do arise in comparing spectroscopic and dielectric results on molecules which can rapidly interconvert between spatially distinct forms. For example, two conformational isomers of a compound may have quite different dipole moments. Spectroscopic measurements permit the moments of the individual isomers to be determined, while dielectric measurements yield an average moment appropriate to a particular temperature. Where spectroscopic results were available, we have treated such conformational isomers as separate compounds and listed the individual dipole moments in the table. However, where there were only dielectric measurements, an average moment has been listed with a notation

that conformational isomers are probably present; information on temperature dependence of the average moment is given in footnotes. The problem of dealing with conformational isomerism is discussed in more detail in sections 5 and 6.

5. Principal Methods of Dipole Moment Measurement

5.1. Microwave Spectroscopy (MW)

When a polar molecule is placed in an external electric field of magnitude E, the rotational energy levels of the molecule are split through the Stark effect. If the total angular momentum of the molecule in the absence of the field is described by the quantum number J, application of the field results in 2J + 1 states which are designated by a quantum number $M = J, J - 1, \ldots, -J$. In the most common case, where the Stark splitting can be adequately described by second-order perturbation theory, the correction ΔW to the rotational energy has the form

$$\Delta W = (A + BM^2)E^2. \tag{2}$$

Thus each rotational level splits into J + 1 distinct sublevels, and the magnitude of this splitting is quadratic in the applied field. For easily obtainable laboratory fields the splitting is large enough to be resolved in pure rotational transitions observed in the microwave region of the spectrum. Measurement of the splitting of a spectral line as a function of the applied field allows an accurate determination of the coefficients A and B in eq (2).

The A and B coefficients depend upon the dipole matrix elements connecting the level in question with all other rotational levels and upon the corresponding energy separations. If the dipole moment μ is resolved into components μ_g along suitable molecule-fixed axes (usually the principal inertial axes a, b, c, each dipole matrix element may be written as the product of μ_g times a matrix element of a direction cosine between the moleculefixed and external axis systems. A complete analysis of the microwave spectrum provides enough information to calculate the direction cosine matrix elements by well-known methods; likewise, the energy-level separations can be accurately calculated. It is therefore possible to extract the dipole components μ_g from the experimentally determined A and B coefficients.

A special case arises when degeneracies exist among the rotational levels. If the degenerate levels are connected by a dipole matrix element, a first-order Stark effect occurs which is of the form

$$\Delta W = \pm CME. \tag{3}$$

The coefficient C is proportional to μ_g and can be readily calculated. Degeneracies which lead to first-order Stark effects occur systematically in symmetric-top molecules, and they are frequently present in asymmetric rotors as well. When there is a near, but not exact, degeneracy, the Stark effect may be neither linear nor quadratic but can have a more complicated form.

The first and second-order Stark perturbation terms are almost always sufficient to permit a measurement of the dipole moment with an uncertainty of 1 percent or less. However, for more accurate work, and in a few special cases, higher order terms must be considered. The next important terms are the fourth-order contribution from the permanent dipole moment and the secondorder contribution from the induced moment. These may be of comparable magnitude. In calculating direction cosine matrix elements and energy separations it is sometimes necessary to take centrifugal distortion into account.

The microwave method of measuring dipole moments offers many advantages. Determination of the moment with an uncertainty of 1 percent (which requires that the Stark splittings be measured to within only 2 percent if the Stark effect is second-order) can generally be done without particular difficulty. The same percentage accuracy is possible with small moments, even those less than 0.1 D. The purity of the sample is not important. The measurement is made on a specific vibrational state and isotopic species, so that variation of the moment with these factors can be studied. Where two or more rotational isomers are present in significant concentrations, their moments may be individually measured. Finally, since the separate components of the dipole moment vector are determined, information is available on the orientation of the moment relative to the molecular framework.

In spite of these advantages, a fair number of dipole moments measured by the microwave method are not accurate to within 1 percent, and the uncertainty is quite large in some reported values. There are several reasons for this. Many spectra are complicated by nuclear quadrupole hyperfine structure, which introduces another perturbation which may be comparable in magnitude to the Stark effect. If the Stark shifts can be made much larger or much smaller than the hyperfine structure, the analysis is fairly straightforward, and the accuracy of measurement should be as high as when hyperfine structure is absent. In the intermediate case, however, the analysis of the data is more complicated, and misleading results can be obtained unless the calculations are done very accurately. In some of the earlier microwave measurements this problem does not appear to have been sufficiently appreciated, and the resulting dipole moments are correspondingly less reliable.

Another difficulty sometimes arises when the Stark effects of all accessible transitions are sensitive to one dipole component but quite insensitive to the others. Thus only one component can be determined with high accuracy, and the total moment is subject to a sizable uncertainty. A high density of lines in the spectrum also presents problems, since it is sometimes difficult to avoid the overlapping of Stark components from different lines.

The accuracy of a dipole moment determined from the Stark effect is dependent, of course, on the measurement of the electric field strength. While there is no problem in measuring the applied voltage accurately, the effective spacing between electrodes is not so easily determined. This problem has been discussed in several places (222, 360, 712). It has become common practice to calibrate the effective electrode spacing by measuring the Stark effect of the OCS molecule, whose dipole moment is accurately known. Most of the dipole moments determined by the microwave method have, in fact, been measured relative to OCS. In view of this practice, it seems highly desirable to use OCS as the primary standard for field-strength calibration whenever possible, in order that all reported moments be on a common basis.

The most accurate determination of the OCS dipole moment is that of Marshall and Weber, who obtained 0.7124 D. Independent measurements in other laboratories indicate that the uncertainty of this value is no greater than 0.1 percent. Other convenient molecules for use as secondary standards are CH₃CN (3.918 D), CH₃F (1.847 D), and CHF₃ (1.646 D). These values should be accurate to within at least 0.5 percent. Full references to these compounds may be found in the main table.

5.2. Molecular Beam Electric Resonance (MB)

This method is very similar in principle to that discussed under microwave spectroscopy, since it makes use of the Stark effect of rotational transitions. However, the measurement is carried out on a molecular beam, where the spectral line widths are much smaller, and the accuracy with which the Stark splittings can be measured is greatly improved. Furthermore, the apparatus can be designed so that the electric field is more uniform and its absolute value more accurately measureable than is possible in the normal microwave absorption cell. The transitions which are studied can lie anywhere in the radiofrequency or microwave regions. It is thus possible to measure the Stark splittings within a single rotational level as well as the Stark effect of rotational transitions. The accuracy is usually greater for the former measurement; however, in order to extract the dipole moment from the Stark splittings it is necessary to know accurately the spacing between rotational levels. This may be determined by measurement of rotational transitions, either by beam techniques or by conventional microwave spectroscopy. Some very accurate dipole moments have been derived from a combination of molecular beam measurements in the radiofrequency region and conventional microwave measurements of rotational transitions.

The molecular beam technique offers the highest inherent accuracy of any known method of dipole moment determination. Uncertainties approaching 0.02 percent have been claimed by some investigators, and the precision is an order of magnitude higher than this. It is thus possible to detect very small changes of dipole moment with vibrational state and isotopic species.

The chief limitation of the molecular beam technique is the very restricted class of molecules to which it can be applied. Practically all measurements reported so far have been on diatomic molecules, except for a very few triatomics. This limitation results from the fact that the population is distributed over a large number of states in more complicated molecules, with a resulting loss of sensitivity.

A few early measurements of dipole moments were based on the deflection of molecular beams by static electric fields (017, 018, 086, 107, 114, and other references). This is a much cruder technique than the electric resonance method discussed above, since the measurements were of limited accuracy and there was little control of the constitution of the beam. Determinations of this type have been given no weight in the present tabulation, but the references are included in the Other Data column.

5.3. Dielectric (DT, DR, NR)

Prior to the development of microwave and molecular beam techniques in the late 1940's, the more reliable determinations of dipole moments were all based upon application of the Debye equation to measurements of the low frequency, or "static" permittivity (dielectric constant). The molar polarization, P, is defined by

$$P = \frac{\epsilon - 1}{\epsilon + 2} V = \frac{4\pi N\alpha}{3} + \frac{4\pi N\mu^2}{9kT} = A + \frac{B}{T}$$
(4)

where

 $\epsilon =$ permittivity (dielectric constant)

V = molar volume

 $\alpha =$ molecular polarizability (electronic plus vibrational)

N =Avogadro's number

k = Boltzmann's constant

T = temperature, absolute (°K).

Equation (4) has been used in two ways, one direct and the other indirect, to derive values for the dipole moment. Recently a third procedure, based on measurements of the complex permittivity (dispersion or absorption) at the lower microwave frequencies, has been used to a limited extent. The latter method is limited primarily to symmetric top molecules (symmetry C_{nv} with $n \ge 3$).

5.4. Temperature-Variation Procedure (DT)

In this method P is measured as a function of 1/T and the dipole moment obtained from the slope B and the relation

$$\mu = 0.01281 \text{ (B)}^{1/2}$$

if B is given in $cm^3 mol^{-1}$ °K. This is the direct and preferred procedure, but it requires precise data over an extended temperature range. In addition the mean squared moment, averaged over the thermal distribution of vibrational and rotational states must be essentially independent of temperature. Under favorable conditions, values accurate to within 1 percent are obtained.

5.5. Indirect (Optical) Procedure (DR)

In some instances available data are either limited to one temperature or are of limited precision and scope and do not permit a reliable determination of B. The substance may, for example, have a low volatility and restricted range of thermal stability. In other cases there may be an equilibrium between different conformational isomers with different dipole moments which is temperature dependent. An effective dipole moment is then computed for any given temperature by

$$\mu = 0.01281 [(P - A)T]^{1/2}$$
(5)

with an assumed value for *A*. Since direct knowledge of the vibrational contribution to the polarization is generally lacking, various arbitrary or empirical assumptions have been made. Sometimes the vibrational polarization is taken as a fixed percentage of the electronic contribution (e.g., 5, 10, or 15 percent). Theoretically, however, the vibrational and electronic polarizations are unrelated. The most common convention has been to ignore the vibrational contribution to the polarizability and to replace A by the molar refraction, R_D , for the sodium line. If R_D is not known directly, it can usually be estimated with sufficient reliability (especially for organic compounds) by summing tabulated atomic or bond refractions. Then

$$\mu \le 0.01281 [(P - R_D)T]^{1/2}, \tag{6}$$

since this convention tends to set an upper limit to the value for the dipole moment consistent with the experimental data. Equation (6) is used in the present tabulation unless otherwise noted. In structurally simple molecules with relatively large dipole moments, the uncertainty in the use of Equation (6) may be less than 2 percent.

5.6. Nonresonant Microwave Absorption or Dispersion (NR)

This method is applicable in special cases where there are nonvanishing dipole matrix elements connecting degenerate or nearly degenerate rotational states, in particular symmetric-top molecules. The resulting absorption and dispersion are characterized by a relaxation, or Debye-type, spectrum. By suitable choice of frequencies and pressures, this spectrum can be observed without significant interference from the ordinary rotational spectrum. Details of the method applied to absorption are contained in references [337] and [343] of the Bibliography and in reference [416] for the case of dispersion. In essence, the method enables one to obtain a fractional part of the total dipolar polarization in eq (4), namely fB/T, the fraction f being readily computed provided the moments of inertia are known. The method is particularly useful for substances with very small values of the dipole moment. Values as low as 0.1 D may be determined with an uncertainty of the order of 2 percent, and values much smaller than this may be determined with somewhat poorer accuracy.

5.7. Comments on Dielectric Methods

Compared to the spectroscopic techniques, the dielectric methods have certain limitations and disadvantages. Since they involve bulk property measurements, substances of high purity and chemical stability are required and the experimental variables, density and temperature, must be accurately known. In addition the derived moments represent averages over the various molecular states of the system and, as noted previously, cannot be as precisely defined as the spectroscopic values. For relatively simple rigid molecules this ambiguity is probably trivial for most purposes. This is borne out by intercomparison of results in the more favorable cases where the value of the dipole moment is greater than one debye. In such cases agreement between the spectroscopic and dielectric (DT) methods is usually of the order of 1-2 percent, the differences being comparable with the overall experimental uncertainties.

Dielectric methods, on the other hand, have frequently been applied to molecules of greater molecular complexity than those ordinarily studied by spectroscopic methods. In many instances such molecules can exist, at least in principle, in two or more spatial conformations with different dipole moments. The analysis and interpretation in such cases may be somewhat arbitrary, depending on intuitive judgment or additional independent information. We may define two rather limiting situations. (I) The molar polarization varies with temperature but definitely not in the manner shown explicitly by eq (4), so that $\langle \mu^2 \rangle$ is a function of temperature. Simple examples are the 1,2-disubstituted ethanes (XCH₂CH₂X') which exist in equilibrium mixtures of "trans" (nonpolar if X = X') and dipolar "gauche" isomers.

(II) The polarization varies inversely with T and gives a reasonable value for the intercept A so that there appears to be no significant variation of $\langle \mu^2 \rangle$ with T. Alternative interpretations of case II are: (a) only one conformation exists to a significant extent over the temperature range of observation, (b) the different conformations have essentially the same dipole moment, (c) differences in energies of the various conformations are small and the equilibrium distribution insensitive to temperature.

6. Criteria for Evaluation

The evaluation of the data on dipole moments was carried out in two stages. It was first necessary to assess the accuracy of results obtained by each experimental technique and to rationalize discrepancies in duplicate measurements by the same method. This was done for each compound by an evaluator who was familiar with the particular technique. Secondly, in cases where results had been reported by more than one technique, a decision had to be made on the final selected value and its accuracy. The factors which were taken into account in the evaluation process are discussed below.

6.1. Microwave Measurements

When the original investigator has given an uncertainty with his dipole moment value (and this is not always the case), this fact has been taken into consideration. However, the primary data have also been examined whenever they were published in order to obtain some independent feeling for the overall accuracy of the measurement. The following factors were taken into account:

1. Number of Stark components whose shifts were measured.

- 2. Number of data points for each component.
- 3. Scatter of these data points.
- 4. Range of frequency shifts.

5. Internal consistency among the different components (when the number of components measured was greater than the minimum required for the dipole moment determination).

6. Approximations used in the Stark effect calculation.

7. Complicating effects such as hyperfine structure and internal rotation (and the degree to which these effects were considered in the calculations). 8. Method of calibration of field strength.

Consideration of the above factors gave some feeling, at least in a subjective way, of the confidence which could be placed in the reported dipole moment. In addition, the general pattern of results from a given laboratory during a given period was studied. When comparisons could be made on molecules which were subsequently remeasured with greater accuracy, it sometimes became obvious that the original error estimates were too low. These observations were taken into account in the assignment of reliability to results obtained in that laboratory.

Unfortunately, many papers do not give enough details for a meaningful evaluation to be made. This is particularly true in abstracts and short notes published during the 1945–50 period. In such cases the evaluators have been conservative in estimating the reliability.

6.2. Molecular Beam Measurements

The uncertainty in most dipole moments measured by molecular beam techniques is appreciably less than 1 percent (see sec. 5). These values have been placed in category A, and no further evaluation has been made. In one or two cases where discrepancies of more than 1 percent occur between duplicate measurements, the more recent results have been accepted.

6.3. Dielectric Methods

Only a few values of dipole moments have been reported from the study of nonresonant spectra (NR). These have usually been obtained from measurements of the imaginary part of the complex permittivity (loss index, ϵ'') but occasionally from the dispersion of the real part, ϵ' . Precise resonant cavity techniques, which should be relatively free of systematic errors, have been used. The method has been applied primarily to substances having dipole moments substantially less than 1 D. The accuracy of these values are generally regarded as in the A or B categories.

In the case of low frequency measurements of permittivity, the original data have been reexamined to determine, in the opinion of the evaluator, the best procedure for analysis (DT or DR). Preference has been given to the temperature-variation procedure (DT), where warranted by the precision and scope of the data, where there appeared to be no thermal decomposition, and where there was no evidence that the effective dipole moment varied with temperature. In these cases values of A and B (eq (4)) were obtained by the method of least squares, if this was not done in the original reports.

Values analyzed by the indirect procedure (DR) were recomputed, where necessary, to conform to the present convention (i.e., $A = R_D$). Values averaged over the temperature range are listed. If there appears to be a significant variation of dipole moment with temperature, no value is listed in the main table. The effective values obtained at the extreme ends of the temperature range are then given in footnotes.

The above procedures were used in the previous tabulation, NBS Circular 537, and most of the values included in the Basic References during the period prior to 1953 are identical with these. In some instances, however, a reconsideration of the data has led to a change in the method of analysis. It should be emphasized that the dipole moment attributed to a given reference is not necessarily the same as the value originally reported, either because of a difference in our treatment of the data or because of the small corrections to the moments resulting from changes in the values of the physical constants.

In estimating accuracy consideration is given to various factors such as

1. Chemical purity.

2. Scope and precision of data (statistical precision index in least squares for DT method).

3. Likely uncertainty in use of DR method due to neglect of vibrational polarization (depending on molecular type and magnitude of the moment).

4. Overall consistency and agreement of work in given laboratory with reliable, independently established data.

6.4. Choice of Selected Moments

In many cases where results on the same compound had been obtained by more than one method there was a fairly obvious choice of the most accurate value. For example, with moments less than about 0.5 D microwave (MW) values are known to be significantly more accurate than DR or DT values. In other cases the microwave determination was complicated by hyperfine structure or other factors, and the dielectric values were clearly more reliable. In such situations the selection of the best value was fairly straightforward. In other cases different values of comparable reliability were in agreement within their estimated uncertainties. Here an average value was adopted, weighted in favor of the method which seemed more accurate. Finally, there were a few compounds for which unresolved discrepancies existed between the moments obtained by two techniques. In such cases an average was taken, and an uncertainty which was large enough to include both values was assigned.

We feel that this procedure leads to the most meaningful set of selected values which can be obtained from a collection of data from such diverse sources. However, it is obvious that no well-defined statistical estimator can be assigned to specify the uncertainty of the final selected value. We have therefore used an accuracy code A, B, C, D to indicate the limits within which, in our best judgment, the selected value can be trusted. The code is explained in section 2. If a value is placed in category A, for example, it can be concluded with high confidence that the true dipole moment does not differ by more than 1 percent from the value given (or by more than 0.01 D, in case of moments less than 1 D).¹ While this procedure involves many subjective factors and rests heavily on the judgment of the evaluators, it is felt to be the most useful way of presenting the results.

Where the selected value is based solely on dielectric methods, and the presence in significant amounts of two or more conformational isomers is possible, the value is followed by the symbol i. Such values are conditional in two respects: (a) if only one conformation is present in significant amounts, independent data may be needed to specify the particular conformation; and (b) the dipole moment may be more uncertain than suggested by the reliability code because of a small, but not obvious, variation of $\langle \mu^2 \rangle$ with T. Therefore, the interpretation of these dipole moments as specific molecular properties should be made with caution.

 $^{^{1}}$ It should be pointed out that the uncertainty in some of the A values is appreciably less than 1 percent.

7. Table of selected dipole moments

Formula	Compound name	Selected moment (debyes)	Basic references	Other data
AgCl AlCl AlF AsCl ₃ AsF ₃	Silver chloride Aluminum chloride Aluminum fluoride Arsenic trichloride Arsenic trifluoride	5.73 C x Q 1.53 D 1.59 C 2.59 B	580 MW 5.73 564 MW 1 to 2 564 MW 1.53 117 DT 1.59 485 MW 2.61 446 DT 2.57	512 219 ,
AsH_3	Arsine	0.20 C	239 MW 0.22 ^a 016 DT 0.16	
$\begin{array}{c} \mathrm{As_2O_3}\\ \mathrm{BCl_3}\\ \mathrm{BF_3} \end{array}$	Diarsenic trioxide Boron trichloride Boron trifluoride	x Q 0 S 0 S	298 DT 0 115 DT 0 123 DT 0	028 117
B₂H6 B₃H6N₃ B₅H9 BaO BrCl BrF BrF3	Diborane Triborotriazine (Borazine) Pentaborane Barium oxide Bromine chloride Bromine fluoride Bromine trifluoride	0 S 0 S 2.13 B 7.95 A (0.6) Q (1.3) Q (1.1) Q	102 DT 0 102 DT 0.7 b 294 MW 2.13 526 MB 7.954 224 MW 0.57 223 MW 1.29 358 MW 1.0 326 DR 1.19	259 500, Vib
BrF₅ BrH	Bromine pentafluoride Hydrogen bromide	1.51 D 0.82 B	339 DT 1.51 007 DT 0.80 392 MW 0.83 ^c	
BrH₃Si BrK BrLi BrNO BrRb Br₂Hg Br₄Sn ClCs	Bromosilane Potassium bromide Lithium bromide Nitrosyl bromide Rubidium bromide Mercury dibromide Tin tetrabromide Cesium chloride	1.33 B 10.41 B 7.27 A (1.8) Q x Q 0 S 0 S 10.42 A	265 MW 1.33 274 MB 10.41 535 MB 7.2680 ^d 579 MW 1.80 ^e 095 DT 0 131 DT 0 341 MB 10.42	217 114, 107, Vib 293, Vib, Iso 396 017 284, 241, 017, Vib
ClF	Chlorine fluoride	0.88 C	190 MW 0.881	

7.1. Selected moments (compounds not containing carbon)

^a For ¹H₂ ²H⁷⁵As.

^b The finite reported value is probably due to thermal instability.

^c For ²H⁷⁹Br.

^e Component along *a* axis.

^d For ⁷⁹Br⁶Li.

Formula	Compound name	Selected moment (debyes)	Basic references	Other data
ClFO ₃	Perchloryl fluoride	0.023 A	361 NR 0.023 595 MW ^a 0.025	335, 565
ClF ₃	Chlorine trifluoride	0.6 D	326 DT 0.65 336 DT 0.56	264
ClGeH ₃	Chlorogermane	2.13 A	265 MW 2.13 b 150 DR 2.03	188
СІН	Hydrogen chloride	1.08 B	128DT1.08050DT1.08007DT1.05344DT1.10392MW1.12	067, 015, 005, 006
ClH ₃ Si	Chlorosilane	1.31 A	265 MW 1.310 129 DT 1.29	189, 188, 215
ClI	Iodine chloride	(0.6) Q	181 MW ^a 0.65 073 DT 0.54	
ClK	Potassium chloride	10.27 A	282 MB 10.48 306 MW 10.1 591 MB 10.2688	086, 114, 107, Vib
ClLi	Lithium chloride	7.13 A	537 MB 7.1195° 591 MB 7.1289°	Vib, Iso
ClNa	Sodium chloride	9.00 A	306 MW 8.5 473aMB 9.002	Vib
CINO	Nitrosyl chloride	(1.9) Q	391 MW 1.86 ^d	244
ClNO ₂	Nitryl chloride	0.53 A	579 MW 0.53 393 MW 0.53	386
CITI	Thallium chloride	4.44 B	254 MB 4.444 379 MW 5.1	
$\begin{array}{c} Cl_2F_3P\\ Cl_2H_2Si\\ Cl_2Hg \end{array}$	Dichlorotrifluorophosphorus Dichlorosilane Mercury dichloride	0.68 C 1.17 B 0 S	561 DT 0.68 129 DT 1.17 095 DT 0	

^a Calculated from microwave intensities.

^b For ³⁷Cl⁷⁴Ge¹H₃.

^c For ³⁵Cl⁶Li.

^d Component along a axis.

Formula	Compound name	Selected moment (debyes)	Basic references	Other data
Cl_2OS Cl_2O_2S Cl_3F_2P Cl_3HSi Cl_3P Cl_4FP Cl_4Ge Cl_4Si Cl_4Si Cl_4Sn Cl_4Sn Cl_4Ti CsF	Thionyl chloride Sulfuryl chloride Trichlorodifluorophosphorus Trichlorosilane Phosphorus trichloride Tetrachlorofluorophosphorus Germanium tetrachloride Silicon tetrachloride Tin tetrachloride Tin tetrachloride Cesium fluoride	1.45 B 1.81 B 0 S 0.86 B 0.78 C 0.21 B 0 S 0 S 0 S 0 S 0 S 7.88 A	143 DT 1.45 143 DT 1.81 561 DT 0 129 DT 0.86 072 DT 0.78 567 NR 0.21 131 DT 0 298 DT 0 131 DT 0 131 DT 0 341 MB 7.875	293, 203, 167, 169, 192, Vib
FH	Hydrogen fluoride	x Q 1.82 A	525 MB 1.8195 163 DT 1.91 176 DT 1.91 532 MB 1.83	465, 462
FH₃Si FH₅Si₂ FK FLi	Fluorosilane Fluorodisilane Potassium fluoride Lithium fluoride	1.27 B 1.26 A 8.60 A 6.33 A	218 MW 1.268 578 MW 1.26 ↗ 421 MB 8.60 527 MB 6.328 ^a 591 MB 6.325	210 309, Vib, Iso, 268
FMnO₃ FNO FNO₂ FNa	Permanganyl fluoride Nitrosyl fluoride Nitryl fluoride Sodium fluoride	(1.5) Q 1.81 B (0.47) Q 8.16 A	296 MW 1.5 b 242 MW 1.81 ≯ 267 MW 0.47 536 MB 8.1558 528 MB 8.19	501, Vib
FO ₃ Re FRb	Perrhenyl fluoride Rubidium fluoride	0.85 D 8.55 A	406 MW 0.85 ^b 382 MB 8.80 591 MB 8.5465	385 Vib
FTI	Thallium fluoride	4.23 A	397 MB4.2282379 MW3.99	374, 380, Vib, Iso
$\begin{array}{c} F_2HN\\F_2H_2Si\\F_2N_2\\F_2O\end{array}$	Difluoramine Difluorosilane <i>cis</i> -Difluorodiazine Oxygen difluoride	1.92 A 1.55 A 0.16 A 0.297 A	513 MW 1.921 353 MW 1.55 510 MW 0.16 460 MW 0.297 419 DR 0.4	417

^a For ¹⁹F⁶Li. ^b In excited vibrational state $v_5 = 1$.

Formula	Compound name	Selected moment (debyes)	Basic references	Other data
$\begin{array}{c} F_2OS\\F_2O_2\\F_2O_2S\\F_2S_2\\F_2S_2\\F_2S_2\\F_2S_1\\F_3HS_1\end{array}$	Thionyl fluoride Dioxygen difluoride Sulfuryl fluoride Sulfur monofluoride (S=SF ₂ isomer). Sulfur monofluoride (FSSF isomer) Silicon difluoride Trifluorosilane	1.63 A 1.44 C 1.12 B 1.03 C 1.45 B 1.23 B 1.27 B	290 MW 1.627 ∧ 478 MW 1.44 355 MW 1.116 536aMW 1.03 ∧ 536aMW 1.45 571 MW 1.23 275 MW 1.27	256 257
$\mathrm{F_{3}N}$	Nitrogen trifluoride	0.235 A	297 MW 0.236 275 MW 0.235 a 115 DT 0.25 102 DT 0.22	
F ₃ NS F ₃ OP	Nitridotrifluorosulfur Phosphoryl fluoride	1.91 B 1.76 B	481 MW 1.91 275 MW 1.78 258 MW 1.70 216 MW 1.735	
F ₃ P	Phosphorus trifluoride	1.03 A	275 MW 1.03 219 MW 1.030	
F_3PS F_4N_2	Thiophosphoryl fluoride Tetrafluorohydrazine, gauche conformation	0.64 B 0.26 B	258 MW 0.636 405 MW 0.26	
F ₄ S	Sulfur tetrafluoride	0.632 A	498 MW 0.632 419 DR 1.0	
F4Si F5P F5I F6S	Silicon tetrafluoride Phosphorus pentafluoride Iodine pentafluoride Sulfur hexafluoride	0 S 0 S 2.18 C 0 S	094 DT 0 123 DT 0 326 DR 2.18 546 DT 0 446 DT 0 094 DT 0	149, 133
F ₆ Se F ₆ Te F ₆ U	Selenium hexafluoride Tellurium hexafluoride Uranium hexafluoride	0 S 0 S 0 S	336 DT 0 243 DT 0 171 DT 0	149 149
F ₁₀ S ₂ HI	Disulfur decafluoride Hydrogen iodide	x Q 0.44 B		235 375, 487a

 a For $^{19}F_{3}^{15}N.$ b For $^{2}H^{127}I.$

Formula	Compound name	Selected moment (debyes)	Basic references	Other data
HLi HN HNO ₃	Lithium hydride Imidyl radical Nitric acid	5.88 A 2.17 A	442 MB 5.882 561b (^a) 556 MW 2.17 ≠ 435 MW 2.17 ≠	462, Vib, Iso
HN ₃ HO	Hydrogen azide (hydrazoic acid) Hydroxyl radical	(0.8) Q 1.66 A	205 MW 0.847 b 570 MW 1.660 455 MW 1.65 506 MW 1.60	322, 568a
$\begin{array}{c} H_2N_2O_2\\ H_2O\end{array}$	Nitroamine (nitramide) Water	(3.6) Q 1.85 A	522MW3.57 b062DT1.85097DT1.84106DT1.84157DT1.85253DT1.85594MW1.85	001, 023, 033a, 044, 091, 092, 173, 174, 178, 179, 197, 209, 252, 539
H_2O_2	Hydrogen peroxide	2.2 D	323 MW 2.26	301
H ₂ S	Hydrogen sulfide	0.97 A	561aMW0.974344 DT0.98027 DT0.92250 DT0.89	234, 015
H ₂ Se	Hydrogen selenide	x Q	331 MW 0.24 368 MW 0.62	369, 390, 414
H ₃ N	Ammonia	1.47 A	230 MW1.468013 DT1.47096 DT1.47170 DT1.46182 DT1.44342 DT1.44	168, 161, 561, 001, 016, 040, 078, 493, 047 055
H ₃ P	Phosphine	0.58 A	285 MW0.575 °375 MW0.576239 MW0.55016 DT0.55	
H_3Sb	Stibine	0.12 C	239 MW 0.116 ^d	

^a The following values have been obtained for excited electronic states by observing the Stark effect of the electronic emission spectrum: $\mu(A^3\Pi) = 1.31$, $\mu(c^1\Pi) = 1.70$, $\mu(a^1\Delta) = 1.49$ D.

^b Component along a axis. ^c Average for ${}^{2}\text{H}{}^{2}\text{H}{}_{2}\text{P}$ and ${}^{1}\text{H}{}_{2}{}^{2}\text{HP}$.

^d For ¹H₂²H¹²¹Sb.

Formula	Compound name	Selected moment (debyes)	Basic references	Other data
$\begin{array}{c} H_4N_2\\ H_4Si\\ H_6OSi_2\\ H_6Si_2\\ H_9NSi_3\\ HgI_2\\ IK\end{array}$	Hydrazine Silane Disilyl ether (disiloxane) Disilane Trisilylamine Mercury diiodide Potassium iodide	$\begin{array}{cccc} 1.75 & C \\ 0 & S \\ 0.24 & B \\ 0 & S \\ \leqslant 0.1 & D \\ 0 & S \\ x & Q \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	114, 107, 086, 017
ILi INa ITI I4Sn NO	Lithium iodide Sodium iodide Thallium iodide Tin tetraiodide Nitrogen monoxide (nitric oxide)	7.43 A x Q x Q 0 S 0.153 A	552 MB 7.4285 ^a 376 MW 0.158 407 NR 0.148 094 DT 0.16	293, Vib 086, 017 017 131 075
NO ₂	Nitrogen dioxide	0.316 A	508 MW 0.316 0.294 b 0.294 b 0.294 b 0.294 b 0.29 0.29 0.01 0.29 0.01 <th0.01< th=""> <th0.01< th=""> <th0.01< th=""></th0.01<></th0.01<></th0.01<>	116
N ₂ O	Dinitrogen oxide (nitrous oxide)	0.167 A	219MW0.167187MW0.16094DT0.17083DT0.14	202, 045, 031, 015
OS OS ₂ OSr O ₂ S	Sulfur monoxide Disulfur monoxide Strontium oxide Sulfur dioxide	1.55 A 1.47 B 8.90 A 1.63 A	543 MW1.55408 MW1.47 ↗562 MB8.900231 MW1.60487bMW1.615126 DT1.59213 DT1.63344 DT1.63013 DT1.63	Vib 566, 015, 010, 001, 003, 240, Vib
O_3	Ozone	0.53 B	286 MW 0.53 209 DT 0.52	279, 260, 236, 330
O_3S O_4Os	Sulfur trioxide Osmium tetroxide	0 S 0 S	126 DT 0 149 DT 0	

^a For ¹²⁷I⁶Li. ^b For ¹⁵N¹⁶O₂.

Formula	Compound name	Selected moment (debyes)	Basic references	Other data
CBrF ₃ CBr ₂ F ₂ CClF ₃	Bromotrifluoromethane Dibromodifluoromethane Chlorotrifluoromethane	0.65 C 0.66 C 0.50 A	314 DT 0.65 314 DT 0.66 434 NR 0.496 451 MW 0.50 343 NR 0.50 314 DT 0.46	133 475, 450, 209, 133
CCIN CCl ₂ F ₂ CCl ₂ O	Cyanogen chloride Dichlorodifluoromethane Carbonyl chloride (phosgene)	2.82 B 0.51 C 1.17 A	219 MW 2.82 ° 076 DT 0.51 477 MW 1.17 472 DT 1.18 088 DT 1.19	180 209, 133
CCl₂S CCl₃F CCl₃NO₂ CCl₄	Thiocarbonyl chloride Trichlorofluoromethane Trichloronitromethane Carbon tetrachloride	0.29 C 0.45 C 1.89 C 0 S	143 DT 0.29 076 DT 0.45 088 DR 1.89 298 DT 0 113 DT 0	133 112, 012, 115
CFN CF2 CF2O CF3I	Cyanogen fluoride Carbon difluoride Carbonyl fluoride Iodotrifluoromethane	2.17 C 0.46 B 0.95 A 0.92 C	523MW2.17588MW0.46483MW0.95314DT0.92305MW1.0	439
CF3NO CF3NO2 CF4	Triflurornitrosomethane Trifluoronitromethane Carbon tetrafluoride	(0.3) Q 1.44 C 0 S	530 DR 0.31 576 MW 1.44 115 DT 0 102 DT 0 546 DT 0	133
CN₄O ₈ CO	Tetranitromethane Carbon monoxide	0 S 0.112 A	375 MW 0.112 344 DT 0.14 094 DT 0.10 182 DT 0.12 027 DT 0.10	131 019, 015, 002, 004, 558, ^b 487a
COS	Carbonyl sulfide	0.712 A	360 MB0.7124525 MW0.7120222 MW0.7085246 MW0.712175 DT0.72027 DT0.67	200, 566, 162, 180
COSe	Carbonyl selenide	0.73 B	199 MW 0.73	Vib

^a For ¹²C³⁶Cl¹⁴N. ^b $\mu = 1.38 \pm 0.02$ D. in the excited $a^3\Pi$ electronic state.

Formula	Compound name	Selected moment (debyes)		Selected moment (debyes)		Basic ref	erences	Other data
CO ₂	Carbon dioxide	0	S	025 DT 050 DT 125 DT	0 0 0	$\begin{array}{c} 001, \ 004, \ 013, \\ 015, \ 019, \ 041, \\ 056, \ 094, \ 115 \end{array}$		
$\begin{array}{c} \mathrm{CS} \\ \mathrm{CSTe} \\ \mathrm{CS}_2 \end{array}$	Carbon monosulfide Thiocarbonyl telluride Carbon disulfide	1.98 0.17 0	A A S	324 MW 291 MW 298 DT	1.98 0.173 ^a 0	112, 031, 027, 045, 048		
CHBrF ₂	Bromodifluoromethane	1.50	D	133 DR	1.50			
CHBr₃ CHClF₂	Tribromomethane Chlorodifluoromethane	0.99 1.42	B B	271 DT 471 MW 076 DT	0.99 1.43 1.41	015 487, 133, 441		
CHCl₂F CHCl₃	Dichlorofluoromethane Trichloromethane (chloroform)	1.29 1.01	B B	076 DT 153 DT 113 DT	1.29 1.01 1.02	133 446, 112, 024, 012		
CHFO CHF₃	Formyl fluoride Trifluoromethane	2.02 1.65	A A	430 MW 587 MW 246 MW 446 DT 257 MW 314 DT 102 DT	2.02 ≯ 1.646 1.646 1.65 1.65 1.62 1.60	420 Iso, 191		
CHN	Hydrogen cyanide	2.98	A	415 MW 275 MW 088 DT 115 DR 050 DT	2.986 3.01 2.95 3.00 2.91	221, 037		
CHNO CHNS CHP	Hydrogen isocyanate Hydrogen isothiocyanate Methylidyne phosphide	(1.6) (1.7) 0.390	Q Q A	246 MW 207 MW 547 MW	1.592 ^ь 1.72 ^ь 0.390	248		
CH_2Br_2	Dibromomethane	1.43	В	153 DT 271 DT	$1.43 \\ 1.43$	022		
CH ₂ ClF	Chlorofluoromethane	1.82	В	344 DT	1.82			

^a In excited vibrational state 010. ^b Component along a axis.

Formula	Compound name	Selected moment (debyes)		Basic ref	erences	Other data
$\begin{array}{c} CH_2ClNO_2\\ CH_2Cl_2 \end{array}$	Chloronitromethane Dichloromethane	2.91 1.60	B B	157 DR 266 MW 153 DT 113 DT	2.91 1.63 1.57 1.54	112, 022, 012
$\begin{array}{c} CH_2F_2\\ CH_2N_2 \end{array}$	Difluoromethane Cyanogen amide (cyanamide)	1.97 4.27	A C	262 MW 413 MW 494 MW	1.97 4.3 4.24 ^a	
$\begin{array}{c} CH_2N_2\\ CH_2N_2\\ CH_2O \end{array}$	Diazomethane Diazirine Methanal (formaldehyde)	1.50 1.59 2.33	A C A	493aMW 490 MW 246 MW 428 MW 237 MW 160 DR	1.50 1.59 2.34 2.33 2.31 2.29	377 534, 184, 584 ^b
$\rm CH_2O_2$	Methanoic acid (formic acid)	1.41	A	480 MW 058 DR 130 DR	1.415 ≯ 1.52 1.4	378
CH ₃ BF ₂	Methyl difluoroborane	1.66	В	364 MW 342 DT	1.67 1.62	
CH₃BO CH₃Br	Carbonyl borane Bromomethane	1.80 1.81	B A	198 MW 219 MW 089 DT 113 DR 271 DT 118 DT	1.795 ° 1.81 1.80 1.81 1.83 1.76	100, 042, 566
CH₃Cl	Chloromethane	1.87	A	193 MW 219 MW 113 DR 038 DT 062 DT	1.87 1.88 1.89 1.87 1.87	100. 042, 043, 024, 012, 035
CH ₃ F	Fluoromethane	1.85	A	511 MW 113 DT 089 DT 587 MW	1.8555 1.85 1.81 1.8471	Iso, 191, 275
CH ₃ F ₃ Ge	Methyl trifluorogermane	x	Q	424 MW	3.8	

^a For ${}^{12}C^2H_2{}^{14}N_2$. ^b μ = 1.56 ± 0.07 D in the excited ${}^{1}A_2$ electronic state. ^c For ${}^{12}C^1H_3{}^{10}B{}^{16}O$.

Formula	Compound name	Selected moment (debyes)	Basic references	Other data
CH3I	Iodomethane	1.62 B	321 DT 1.64 113 DR 1.62 089 DT 1.60 219 MW 1.65 118 DR 1.67	100, 042, 021
CH₃NO	Hydroxyliminomethane (formaldoxime).	0.44 A	484 MW 0.44 ≯ 491 MW 0.46 ≯	
CH ₃ NO	Formyl amide (formamide)	3.73 B	351 MW 3.73 <i>∧</i> 064 DR 3.25	
CH ₃ NOS CH ₃ NO ₂	Methyl sulfinylamine Nitritomethane (methyl nitrite)	1.70 B i	572 MW 1.70 507 DR (^a)	
CH ₃ NO ₂	Nitromethane	3.46 A	340 MW3.48298 DT3.43088 DT3.44118 DR3.57	
${ m CH_3NO_3}\ { m CH_3N_3}\ { m CH_4}\ { m CH_4F_2Si}\ { m CH_4O}$	Methyl nitrate Methyl azide Methane Methyl difluorosilane Methanol	3.12 B 2.17 B 0 S 2.11 A 1.70 A	448 MW 3.12 589 MW 2.17 094 DT 0 389 MW 2.11 ↗ 140 DT 1.71 113 DT 1.70 098 DT 1.70 033 DT 1.70	012, 078 141, 229, 280, 001, 172
CH₄S CH₅FSi CH₅N	Methanethiol (methyl mercaptan) Methyl monofluorosilane Methyl amine	1.52 C 1.71 A 1.31 B	427 MW 1.52 ≠ 387 MW 1.71 ≠ 354 MW 1.33 b ≠ 170 DT 1.30 113 DT 1.26 119 DT 1.35 062 DT 1.24	350, 245 263, 137, 052, 055, 047
CH₅P CH6Ge	Methyl phosphine Methyl germane	1.10 A 0.643 A	452 MW1.10401 MW0.635444 MW0.644587 MW0.6425	372, 373, Iso
CH ₆ OSi CH ₆ Si	Methoxysilane Methyl silane	1.17 B 0.735 A	548 DT1.17349 MW0.73214 MW0.73587 MW0.7351	Iso

^a $\mu = 2.22$ D at 308 °K. ^b For ¹²C²H₃¹⁴N²N₂.

Formula	Compound name	Selected moment (debyes)		Basic ref	erences	Other data
CH₀Sn C₂ClF₃	Methyl stannane Chlorotrifluoroethylene	0.68 0.40	C D	238 MW 325 DT 344 DR 314 DT	0.68 0.38 0.58 0.40	
$\begin{array}{c} C_2 Cl F_5 \\ C_2 Cl_2 F_4 \end{array}$	Chloropentafluoroethane 1,2-Dichlorotetrafluoroethane	0.52 (0.5)	C Qi	314 DT 336 DT 344 DT	0.52 0.53 0.46	133 133, 416
$\begin{array}{c} C_2F_3N \\ C_2F_6 \\ C_2F_6O \\ C_2N_2 \\ C_2N_2S \end{array}$	Trifluorocyanomethane Hexafluoroethane Bis(trifluoromethyl) ether Dicyanogen (cyanogen) Dicyano sulfide	$ \begin{array}{r} 1.33 \\ 0 \\ 0.54 \\ 0 \\ 3.02 \end{array} $	D S D S A	499 DR 314 DT 115 DT 569 MW	1.33 0.54 0 3.04 2.01	133 050
C₂HBr C₂HCl	Bromoacetylene Chloroacetylene	≤0.10 0.44	D A	129 DT 204 MW 129 DT	3.01 0.0 ª 0.44 0.45	
$\begin{array}{c} C_2HCl_5\\ C_2HF\\ C_2HF_3\\ C_2HF_3\\ C_2HF_3O_2\end{array}$	Pentachloroethane Fluoroacetylene Trifluoroethylene Trifluoroethanoic acid (trifluoroacetic acid).	0.92 0.73 1.40 2.28	C C C D	201 DT 523 MW 518 MW 233 DR	0.92 0.73 1.40 2.28	413, 440
$\begin{array}{c} C_2 HF_5 \\ C_2 H_2 \end{array}$	Pentafluoroethane Acetylene	1.54 0	C S	314 DT 009 DT 094 DT	1.54 0 0	540 ^b
$C_{2}H_{2}Cl_{2}$ $C_{2}H_{2}Cl_{2}$ $C_{2}H_{2}Cl_{2}F_{2}$ $C_{3}H_{4}Cl_{2}O$	1,1-Dichloroethylene <i>cis</i> -1,2-Dichloroethylene 1,1-Dichloro-2,2-difluoroethane	1.34 1.90	A B i	477 MW 153 DT 315 DR 065 DT	1.34 1.90 (°)	
$\begin{array}{c} C_2H_2Cl_2O\\ C_2H_2Cl_3F\\ C_2H_2Cl_4\end{array}$	1,1,2.Trichloro-2-fluoroethane 1,1,2,2-Tetrachloroethane	1.32	i Ci	315 DR 201 DT 104 DR	(^d) 1.32 1.36	
$\begin{array}{c} C_2H_2FN\\ C_2H_2F_2 \end{array}$	Fluorocyanomethane 1,1-Difluoroethylene	3.43 1.38	C A	474 MW 196 MW 587 MW 445 DR	3.43 ≯ 1.366 1.385 1.41	Iso
$C_2H_2F_2$	cis-1,2-Difluoroethylene	2.42	Α	453 MW	2.42	

^a Although the structure is unsymmetric, the dipole moment appears to be virtually zero. ^b Observation of a microwave transition of ${}^{12}C_2 {}^{1}H^2H$ indicates that the dipole moment of this unsymmetric isotopic species is on the order of 0.01 D.

^c $\mu = 1.34$ D at 334 °K; 1.47 D at 474 °K. ^d $\mu = 1.38$ D at 379 °K; 1.44 D at 512 °K.

Formula	Compound name	Selected moment (debyes)		Basic ref	erences	Other data
$\begin{array}{c} C_{2}H_{2}N_{2}O\\ C_{2}H_{2}N_{2}O\\ C_{2}H_{2}N_{2}S\\ C_{2}H_{2}N_{2}S\\ C_{2}H_{2}N_{2}S\\ C_{2}H_{2}O\end{array}$	1,2,5-Oxadiazole 1,3,4-Oxadiazole 1,2,5-Thiadiazole 1,3,4-Thiadiazole Methylene carbonyl (ketene)	3.38 3.04 1.56 3.29 1.42	A B A B B	573 MW 582 MW 505 MW 468 MW 261 MW 166 DR 227aDR	$\begin{array}{c} 3.38\\ 3.04\\ 1.565\\ 3.29\\ 1.414\\ 1.45\\ 1.46\end{array}$	Vib
$\begin{array}{c} C_2H_3Br\\ C_2H_3Cl \end{array}$	Bromoethylene Chloroethylene	1.42 1.45	B B	135 DT 135 DT 426 MW	1.42 1.45 1.420 ^a	
$\begin{array}{c} C_2H_3ClF_2\\ C_2H_3ClO\\ C_2H_3ClO_2\\ C_2H_3ClO_2\\ C_2H_3Cl_3\end{array}$	1-Chloro-1,1-difluoroethane Acetyl chloride Methyl chloroformate 1,1,1-Trichloroethane	2.14] 2.72 (1.78]	B C i B	315 DT 065 DT 138 DR 153 DT 155 DR	2.14 2.72 (^b) 1.79 1.77	133
$\begin{array}{c} C_2H_3Cl_3\\ C_2H_3F\\ C_2H_3FO\\ C_2H_3FO\\ C_2H_3F_3\end{array}$	1,1,2-Trichloroethane Fluoroethylene Acetyl fluoride 1,1,1-Trifluoroethane	1.43 2.96 2.32	i A B	 315 DR 456 MW 409 MW 219 MW 257 MW 133 DR 	(°) 1.427 ≯ 2.96 ≯ 2.33 2.28 2.35	195, 201
$C_2H_3F_3$	1,1,2-Trifluoroethane	1.58	В	516 MW	1.58 ^d	541,° 515,° 517,° 488
C2H3I C2H3N	Iodoethylene Cyanomethane (acetonitrile)	1.30 1 3.92 .	D A	 135 DR 275 MW 446 DR 118 DT 113 DR 592 MW 	1.30 3.94 3.90 3.96 3.84 3.918	208
$\begin{array}{c} C_2H_3N\\ C_2H_3NO\\ C_2H_3NS\\ C_2H_4 \end{array}$	Isocyanomethane Methyl isocyanate Methyl thiocyanate Ethylene	3.85 (2.8) (4.0) 0	B Q Q S	275 MW 504aMW 568 MW 009 DT 094 DT	3.85 2.81 ^f 4.03 ^f 0 0	

^a Component along *a* axis.

^b $\mu = 2.41$ D at 308 °K; 1.55 D at 481 °K. ^c $\mu = 1.41$ D at 363 °K; 1.48 D at 513 °K.

^d For the *gauche* rotational isomer, which belongs to point group C₁. ^e These references give measurements on different rotational isomers of several isotopic species.

^f Component along *a* axis.

Formula	Compound name	Selected moment (debyes)	Basic references	Other data
$\begin{array}{c} C_2H_4BrCl\\ C_2H_4Br_2 \end{array}$	1-Bromo-2-chloroethane 1,2-Dibromoethane	i i	063 DR (^a) 063 DR (^b) 151 DR (^b)	059
C ₂ H ₄ ClF	1-Chloro-2-fluoroethane, gauche conformation.	2.72 C	567aMW 2.72	
$\begin{array}{c} C_2H_4ClF\\ C_2H_4ClNO_2\\ C_2H_4Cl_2\\ C_2H_4Cl_2\\ C_2H_4Cl_2 \end{array}$	1-Chloro-2-fluoroethane 1-Chloro-1-nitroethane 1,1-Dichloroethane 1,2-Dichloroethane	i 3.27 B 2.06 B i	315 DR (°) 157 DT 3.27 153 DT 2.06 057 DR (^d) 158 DR (^d) 151 DR (^d)	032 032, 053, 059, 061
$\begin{array}{c} C_2H_4Cl_2O\\ C_2H_4F_2 \end{array}$	Bis(chloromethyl) ether 1,1-Difluoroethane	i 2.27 B	312 DR (^e) 429 MW 2.30 <i>才</i> 233 DT 2.24	
C ₂ H ₄ Ge	Germyl acetylene	0.136 A	581 MW 0.136	
C ₂ H ₄ O	Oxirane (ethylene oxide)	1.89 A	232 MW 1.89 026 DT 1.90 113 DR 1.91 346 DT 1.91	
C_2H_4O	Ethanal (acetaldehyde)	2.69 B	348 MW 2.69 ≠ 160 DR 2.72 065 DR 2.72	
$\begin{array}{c} C_2H_4O_2\\ C_2H_4O_2 \end{array}$	Ethanoic acid (acetic acid) Methyl methanoate (methyl formate)	1.74 C 1.77 B	058 DR 1.74 394 MW 1.77 ↗	049
C_2H_4S	Thiirane (ethylene sulfide)	1.85 A	232 MW 1.85	
C2H4Si C2H5Br	Silyl acetylene Bromoethane	0.316 A 2.03 A	514 MW0.316118 DT2.02089 DT2.03	$042, 112, 100, \\021$
C ₂ H ₅ BrO	Bromomethoxymethane	2.05 Ci	312 DR 2.05 ^f	

^a $\mu = 1.16$ D at 339 °K: 1.35 D at 436 °K.

^b Reference 063 gives $\mu = 1.02$ D at 339 °K; 1.19 D at 436 °K; reference 151 gives $\mu = 0.91$ D at 339 °K; 1.19 D at 496 °K.

^c $\mu = 1.84$ D at 309 °K: 1.97 D at 506 °K.

^d Reference 057 gives $\mu = 1.19$ D at 305 °K: 1.63 D at 544 °K: reference 151 gives $\mu = 1.24$ at 308 °K: 1.60 D at 525 °K: reference 158 gives $\mu = 1.24$ D at 307 °K: 1.46 D at 412 °K.

^e $\mu = 1.78$ D at 296 °K: 1.92 D at 467 °K.

^f μ seems to be constant in the temperature range 301 °K to 412 °K.

Formula	Compound name	Selected moment (debyes)		Basic ref	erences	Other data
C ₂ H ₅ Cl	Chloroethane	2.05	A	371 MW 038 DT 062 DT 113 DR 175 DR	1.745 ^a 2.06 2.03 2.07 1.98	035, 308, 024, 042, 043, 100
C ₂ H ₅ ClO C ₂ H ₅ ClO	2-Chloroethanol Chloromethoxymethane	1.78	Ci i	064 DR 315 DR 312 DR	1.78 (^b) (^b)	
C_2H_5F	Fluoroethane	1.94	В	320 MW 089 DT	1.96 ≯ 1.92	
C ₂ H ₅ I	Iodoethane	1.91	В	425 MW 089 DT 118 DR	1.77 ≯ 1.92 1.90	021, 042, 100, 112
$\begin{array}{c} C_2 H_5 N \\ C_2 H_5 N \\ C_2 H_5 N O \\ C_2 H_5 N O \\ C_2 H_5 N O \end{array}$	Iminoethane (ethyleneimine) Methyliminomethane (CH ₃ N = CH ₂) Acetyl amine (acetamide) Methylaminomethanal (<i>N</i> -methyl- formamide)	1.90 1.53 3.76 3.83	A B Bi Bi	281 MW 545 MW 539 DR 539 DR	1.90 1.53 3.76 3.83	
$C_2H_5NO_2$	Nitritoethane (ethyl nitrite)	2.40	Ci	083 DR 313 DR	2.38 2.42	
$C_2H_5NO_2$	Nitroethane	3.65	В	157 DR 118 DR	3.69 3.61	
C ₂ H ₆	Ethane	0	S	009 DT 094 DT	0 0	
$\begin{array}{c} C_2H_6AlCl\\ C_2H_6BF\\ C_2H_6O \end{array}$	Dimethylaluminum chloride Dimethyl fluoroborane Ethanol	x 1.32 1.69	Q C Bi	342 DT 033 DR 060 DT 098 DT	1.32 1.69 1.70 1.68	154 509, 014, 411 140
C ₂ H ₆ O	Dimethyl ether	1.30	A	 503 MW 026 DT 062 DT 113 DT 119 DT 561 DT 	1.302 1.30 1.30 1.29 1.31 1.29	034, 043

^a Component along a axis. ^b Reference 315 gives $\mu = 2.03$ D at 347 °K; 2.07 D at 507 °K; reference 312 gives $\mu = 1.77$ D at 296 °K; 1.92 D at 467 °K.

Formula	Compound name	Selected moment (debyes)	Basic references	Other data
$\begin{array}{c} C_2H_6OS\\ C_2H_6O_2\\ C_2H_6O_2S\end{array}$	Dimethylsulfoxide 1,2-Ethanediol (ethylene glycol) Dimethyl sulfoxylate (dimethyl sulfone)	3.96 A 2.28 Ci 4.49 B	532aMW 3.96 ⊅ 064 DR 2.28 143 DR 4.49	
$\begin{array}{c} C_{2}H_{6}S\\ C_{2}H_{6}S\\ C_{2}H_{6}Si\\ C_{2}H_{7}B_{5}\\ C_{2}H_{7}N\\ C_{2}H_{7}N\\ \end{array}$	Ethanethiol Dimethyl sulfide Silyl ethylene 2,4-Dicarbaheptaborane Aminoethane (ethyl amine) Dimethyl amine	1.58 Bi 1.50 A 0.66 A 1.32 B 1.22 Ci 1.03 B	108 DT 1.58 459 MW 1.50 457 MW 0.662 550 MW 1.32 206 DT 1.22 170 DT 1.03 119 DT 1.03	$052 \\ 137, 055, 052, \\ 047$
$\begin{array}{c} C_2H_7P\\ C_2H_7P\\ C_2H_8N_2\\ C_2H_8Si\\ C_2H_8Si\\ C_2H_8Si\end{array}$	Ethyl phosphine Dimethyl phosphine 1,2-Diaminoethane Dimethyl silane Ethyl silane	1.17 Bi 1.23 A 1.99 Ci 0.75 A 0.81 B	062 DT 0.97 352 DT 1.17 519 MW 1.23 064 DR 1.99 458 MW 0.75 436 MW 0.81	
C ₃ Cl ₃ F ₃ C ₃ O ₂ C ₃ HF ₃ C ₃ HF ₇ C ₃ HN	 1,1,2-Trichloro-3,3,3-trifluoropropene Dicarbonyl carbon (carbon suboxide). 3,3,3-Trifluoropropyne 1,1,2,2,3,3,3-Heptafluoropropane Cyanoacetylene 	1.28 D 0 S 2.36 B 1.62 Di 3.72 A	273 DR 1.28 352 DT 0 247 MW 2.36 325 DT 1.62 226 MW 3.6	
$\mathrm{C}_3\mathrm{H}_2\mathrm{N}_2$	Dicyanomethane	3.73 A	593 MW 3.724 422 MW 3.735	
$\begin{array}{c} C_3H_2O\\ C_3H_2O_3\end{array}$	Propynal Vinylene carbonate	2.47 B 4.55 A	319 MW 2.47 ≯ 304 MW 4.53 583 MW 4.57	585 ^a
C ₃ H ₃ Br C ₃ H ₃ Cl	3-Bromopropyne 3-Chloropropyne	1.54 C 1.68 C	345 DR1.54449 MW1.68 ≠345 DR1.67	381
$\begin{array}{c} C_3H_3F_3\\ C_3H_3N \end{array}$	3,3,3-Trifluoropropene Cyanoethylene	2.45 B 3.87 B	273 DR 2.45 307 MW 3.91 ≁ 160 DT 3.83	
C ₃ H ₃ NO C ₃ H ₃ NS C ₃ H ₄ C ₃ H ₄	Acetyl cyanide Thiazole Cyclopropene Propyne	3.45 B 1.62 B 0.45 A 0.781 A	400 MW3.45 ≯467 MW1.62398 MW0.454136 DR0.78115 DT0.72275 MW0.75587 MW0.781	257, Iso

^a In the excited ¹A" electronic state, the *a* component of the moment is 0.7 ± 0.2 D.

Formula	Compound name	Select mome (debye	ed ent es)	Basic references		Other data
$egin{array}{c} C_{3}H_{4} \ C_{3}H_{4}Cl_{2} \ C_{3}H_{4}Cl_{2} \end{array}$	Propadiene (allene) 1,1-Dichlorocyclopropane 1,3-Dichloropropene, bp 104 °C isomer	0 1.58	S B i	115 DT 473 MW 195 DR	0 1.58 1.79	
$C_3H_4Cl_2$	1,3-Dichloropropene, bp 112 °C		i	195 DR	1.81	
$C_{3}H_{4}Cl_{2}$ $C_{3}H_{4}Cl_{2}O$ $C_{3}H_{4}Cl_{4}$ $C_{3}H_{4}O$ $C_{3}H_{4}O$	2,3-Dichloropropene 1,1-Dichloropropanone 1,1,2,2-Tetrachloropropane Ethylidene carbonyl (methyl ketene) Propenal, <i>trans</i> conformation (acrolein).	1.79 3.12	i i B B	195 DR 311 DR 362 DR 590 MW 370 MW 166 DR	(^a) (^b) (^c) 1.79 ≯ 3.12 ≯ 3.04 ^d	302 469
$C_3H_4O_2$	2-Oxoöxetane (β-propiolactone)	4.18	А	333 MW 551 MW	4.20 ≯ 4.17	
$egin{array}{c} C_3H_4O_2\ C_3H_5Br\ C_3H_5Cl \end{array}$	Vinyl formate 3-Bromopropene 2-Chloropropene	1.49 (1.9) 1.66	A Q B	544 MW 020 DR 165 DT 020 DR	1.49 ≯ 1.93 1.66 1.66	
C ₃ H ₅ Cl	<i>cis</i> -1-Chloropropene	1.67	С	529 MW 165 DR	1.64 ⊅ 1.71	
C₃H₅Cl C₃H₅Cl	trans-1-Chloropropene 3-Chloropropene	1.97 1.94	C Ci	165 DR 121 DT 165 DR	1.97 1.90 1.98	100, 042
$\begin{array}{c} C_{3}H_{5}ClO\\ C_{3}H_{5}ClO_{2}\\ C_{3}H_{5}Cl_{3}\\ C_{3}H_{5}F\\ C_{3}H_{5}F\\ C_{3}H_{5}F\\ C_{3}H_{5}F\\ C_{3}H_{5}F\\ C_{3}H_{5}F\\ C_{3}H_{5}F\\ \end{array}$	Chloropropanone Ethyl chloroformate 1,2,2-Trichloropropane <i>cis</i> -1-Fluoropropene <i>trans</i> -1-Fluoropropene 2-Fluoropropene 3-Fluoropropene, <i>cis</i> conformation 3-Fluoropropene, <i>gauche</i>	1.46 (1.9) 1.61 1.76 1.94	i i B Q B A A	065 DR 138 DR 362 DR 470 MW 365 MW 410 MW 560 MW 560 MW	(°) (^f) (^g) 1.46 ≁ 1.86 ^h 1.61 ≁ 1.765 ≁ 1.939 ≁	303

^a $\mu = 1.74$ D at 397 °K; 1.77 D at 518 °K.

^b $\mu = 1.93$ D at 338 °K; 2.07 D at 468 °K.

 $^{c}\mu = 1.56$ D at 372 °K: 1.59 D at 467 °K.

^d There was no apparent change in the average value of the dipole moment over the temperature range 377 to 478 °K. Although other conformations are possible, the microwave spectrum indicates that the trans conformation is predominant at room temperature.

- ^e $\mu = 2.21$ D at 336 °K: 2.29 D at 454 °K. ^f $\mu = 1.57$ D at 308 °K: 1.47 D at 480 °K.

^g $\mu = 1.63$ D at 354 °K: 1.67 D at 468 °K.

^hComponent along a axis.

Formula	Compound name	Selected moment (debyes)	Basic references	Other data
C_3H_5N	Cyanoethane (propionitrile)	4.02 A	402 MW 4.02 ≯ 118 DT 4.05 160 DR 4.00	
$C_{3}H_{5}NO_{2} \ C_{3}H_{6} \ C_{3}H_{6}$	3-Nitritopropene (allyl nitrite) Cyclopropane Propene	i 0 S 0.366 A	507 DR (ª) 113 DT 0 356 MW 0.366 ≠ 074 DT 0.35 094 DT 0.34	
$\begin{array}{c} C_{3}H_{6}Br_{2} \\ C_{3}H_{6}ClNO_{2} \\ C_{3}H_{6}Cl_{2} \\ C_{3}H_{6}Cl_{2} \\ C_{3}H_{6}Cl_{2} \\ C_{3}H_{6}Cl_{2} \\ C_{3}H_{6}O \end{array}$	1,2-Dibromopropane 1-Chloro-1-nitropropane 1,2-Dichloropropane 1,3-Dichloropropane 2,2-Dichloropropane Oxetane (trimethylene oxide)	i 3.48 Bi i 2.08 Bi 2.27 C 1.94 A	362 DR (^b) 157 DT 3.48 195 DR (^c) 104 DT 2.08 ^d 153 DR 2.27 418 MW 1.94 346 DT 1.94	303 317
C ₃ H ₆ O C ₃ H ₆ O	Methyl oxirane (propylene oxide) Propanone (acetone)	2.01 A 2.88 A	367 MW 2.01 ∧ 412 MW 2.90 344 DT 2.88 272 DT 2.89 026 DT 2.87 113 DR 2.87 065 DR 2.88	112
$\begin{array}{c} C_{3}H_{6}O\\ C_{3}H_{6}O\end{array}$	2-Propen-1-ol (allyl alcohol) Propanal, <i>cis</i> conformation (propionaldehyde).	1.60 C 2.52 B	099 DT 1.60 531 MW 2.52 ≯ 160 DT 2.72 ^e	
$\begin{array}{c} C_3H_6O_2\\ C_3H_6O_2 \end{array}$	Propanoic acid Methyl acetate	1.75 Ci 1.72 Ci	058 DR1.75138 DT1.72066 DR1.72	
$\begin{array}{c} C_{3}H_{6}O_{2}\\ C_{3}H_{6}O_{3}\\ C_{3}H_{6}O_{3}\end{array}$	Ethyl formate Dimethyl carbonate 1,3,5-Trioxane	1.93 Ci i 2.08 A	066 DT 1.93 122 DR (^f) 542 MW 2.07 227 MW 2.09	

^a $\mu = 2.25$ D at 298 °K.

^b $\mu = 1.17$ D at 354 °K; 1.41 D at 467 °K.

^c μ = 1.46 D at 345 °K; 1.68 D at 506 °K. ^d The value of the dipole moment appears to be constant over the temperature range 374 to 485 °K.

^e Equilibrium mixture of conformations in which the average dipole moment is essentially constant over the temperature range 354 to 508 °K. ^f μ =0.90 D at 328 °K; 1.05 D at 479 °K.

Formula	Compound name	Selected moment (debyes)	Basic references	Other data
$\begin{array}{c} C_3H_6S\\ C_3H_6S\\ C_3H_7Br\\ C_3H_7Br\\ C_3H_7Br\\ C_3H_7Cl \end{array}$	Thietane (trimethylene sulfide) Methyl thiirane (propylene sulfide) 1-Bromopropane 2-Bromopropane 1-Chloropropane	1.85 C 1.95 A 2.18 Ci 2.21 C 2.05 Bi	577 MW 1.85 504 MW 1.95 118 DR 2.18 118 DR 2.21 062 DT 2.05	100, 042 112, 100, 043, 042, 053, 035
C ₃ H ₇ Cl C ₃ H ₇ F	2-Chloropropane 1-Fluoropropane, <i>gauche</i> conformation.	2.17 C 1.90 C	118 DR 2.17 476 MW 1.90 ↗	
C ₃ H ₇ F	1-Fluoropropane, <i>trans</i> conformation.	2.05 B	476 MW 2.05 ≯	
C ₃ H ₇ I C ₃ H ₇ N C ₃ H ₇ NO C ₃ H ₇ NO	1-Iodopropane 3-Aminopropene N,N-Dimethylformamide Acetyl methylamine (N-Methylacetamide).	2.04 Ci (1.2) Q 3.82 Bi 3.73 Bi	118 DR 2.04 020 DR 1.20 539 DR 3.82 539 DR 3.73	100, 042
$\begin{array}{c} \mathrm{C_3H_7NO_2}\\ \mathrm{C_3H_7NO_2}\\ \mathrm{C_3H_7NO_2} \end{array}$	1-Nitritopropane (<i>n</i> -propyl nitrite) 2-Nitritopropane (isopropyl nitrite) 1-Nitropropane	i i 3.66 Bi	507 DR (a) 313 DR (b) 118 DR 3.60 155 DR 3.72	
$\begin{array}{c} C_3H_7NO_2\\ C_3H_8 \end{array}$	2-Nitropropane Propane	3.73 B 0.084 A	155 DR3.73431 MW0.083587 MW0.085	352, 277, 094, 074, Iso
C_3H_8O	1-Propanol	1.68 Bi	033 DT 1.69 099 DT 1.67	
C ₃ H ₈ O	2-Propanol	1.66 Bi	098 DT 1.60 127 DT 1.69	
$egin{array}{cc} C_3H_8O\\ C_3H_8O_2\\ C_3H_9A1 \end{array}$	Methoxyethane (methyl ethyl ether) Dimethoxymethane Trimethyl aluminum	1.23 Ci i x Q	194 DT 1.23 109 DR (°)	154
C ₃ H ₉ As C ₃ H ₉ BF ₃ N	Trimethyl arsine Trimethyl amine – boron trifluoride complex.	0.86 B (5) Q	404 MW 0.86 438 MW 5	
C ₃ H ₉ N	Trimethyl amine	0.612 A	383 MW 0.612 423 NR 0.61 343 NR 0.60 170 DT 0.65 119 DT 0.67 062 DT 0.61	137, 055, 052, 047
C_3H_9N	1-Aminopropane (<i>n</i> -propylamine)	1.17 Ci	228 DT 1.17	020

^a $\mu = 2.42$ D at 298 °K. ^b $\mu = 2.58$ D from 256 to 332 °K. ^c $\mu = 0.77$ D at 307 °K: 1.17 D at 482 °K.

Formula	Compound name	Selected moment (debyes)	Basic references	Other data
$\begin{array}{c} C_{3}H_{9}P\\ C_{3}H_{10}Si\\ C_{4}Cl_{3}F_{7}\\ C_{4}F_{8}\\ C_{4}F_{8}O\\ C_{4}F_{8}O\\ \end{array}$	Trimethyl phosphine Trimethyl silane 2,2,3-Trichloroheptafluorobutane Perfluorocyclobutane Perfluoroöxolane (perfluorotetra- methylene oxide). Perfluoro(ethoxyethane)	1.19 A 0.525 A (0.9) Qi 0 S 0.56 D 0.47 Di	384 MW 1.192 437 MW 0.525 336 DT 0.85 314 DT 0 325 DT 0.56 325 DT 0.51 314 DT 0	
$\begin{array}{c} C_{4}H_{2}N_{2}\\ C_{4}H_{4}\\ C_{4}H_{4}Cl_{2}\\ C_{4}H_{4}F_{2} \end{array}$	trans-1,2-Dicyanoethylene 1-Buten-3-yne 1,4-Dichloro-2-butyne 1,1-Difluoro-1,3-butadiene (trans conformation).	0 S (0.4) Q 2.10 Bi 1.29 A	496 MW 0.43 a 363 DR 2.10 549 MW 1.29	151
$\begin{array}{c} C_4H_4N_2\\ C_4H_4O \end{array}$	1,2-Dicyanoethane Furan	i 0.66 A	151 DR (^b) 249 MW 0.664 278 DT 0.72	
C4H4O C4H4O2 C4H4S	3-Butyne-2-one Diketene Thiophene	(2.4) Q 3.53 B 0.55 C	521 MW2.4160 DR3.53278 DT0.55108 DT0.56	
C4H5Cl C4H5Cl C4H5F	 4-Chloro-1,2-butadiene 1-Chloro-2-butyne 2-Fluoro-1,3-butadiene (<i>trans</i> conformation) 	2.02 Ci 2.19 C 1.42 A	165 DR 2.02 345 DR 2.19 486 MW 1.417 ↗	
$\begin{array}{c} C_4 H_5 N \\ C_4 H_5 N \\ C_4 H_5 N \\ C_4 H_5 N \\ C_4 H_6 \end{array}$	Pyrrole cis-1-Cyanopropene trans-1-Cyanopropene (methacrylonitrile) 2-Cyanopropene (methacrylonitrile) Cyclobutene 1-Butyne 1,2-Butadiene 1,3-Butadiene	1.84 C 4.08 B 4.50 B 3.69 C 0.132 A 0.80 C 0.403 A 0 S	270 DT 1.84 502 MW 4.08 ✓ 160 DR 4.50 166 DR 3.69 563 MW 0.132 136 DR 0.80 357 MW 0.403 ✓ 159 DT 0 ^c	327

^a Component along *a* axis. ^b μ =3.47 D at 443 °K; 3.59 D at 513 °K. ^c Although unsymmetric conformations may exist, the *trans* conformation predominates at normal temperatures.

Formula	Compound name	Selected moment (debyes)		Basic ref	erences	Other data
C_4H_6O C_4H_6O C_4H_6O C_4H_6O $C_4H_6O_2$ $C_4H_6O_3$ C_4H_6S	Cyclobutanone trans-2-Butenal (crotonaldehyde) 2-Methylpropenal (methacrolein) 3-Butene-2-one 2,3 -Butanedione Acetyl acetate (acetic anhydride) Divinyl sulfide	2.99 3.67 2.68 3.16 (0) (2.8) 1.20	B Bi Ci B Qi Qi D	500aMW 160 DR 166 DR 557 MW 151 DT 082 DR 165 DR	2.99 3.67 2.68 3.16 ∧ (^a) 2.8 1.20	063
C₄H7Cl -	1-Chloro-2-methylpropene	1.95	Bi	160 DT 165 DR	1.95 1.85	
$C_4H_7Cl_3$ C_4H_7F C_4H_7N C_4H_8	1,1,2-Trichloro-2-methylpropane Fluorocyclobutane 1-Cyanopropane 1-Butene	1.86 1.94 4.07 0.34	Ci A Bi Ci	362 DR 586 MW 118 DR 009 DT 115 DT	1.86 1.94 4.07 0.38 0.30	
$C_4H_8 \\ C_4H_8 \\ C_4H_8$	<i>cis</i> -2-Butene <i>trans</i> -2-Butene 2-Methylpropene	$0.3 \\ 0 \\ 0.50$	D S A	344 DT 115 DT 454 MW 115 DT	$0.33 \\ 0 \\ 0.503 \\ 0.49$	
$\begin{array}{c} C_4H_8Br_2\\ C_4H_8Cl_2\\ C_4H_8Cl_2\\ C_4H_8O\\ C_4H_8O\\ C_4H_8O\\ C_4H_8O\\ C_4H_8O_2 \end{array}$	1,2-Dibromo-2-methylpropane 1,4-Dichlorobutane 1,2-Dichloro-2-methylpropane Tetrahydrofuran <i>cis</i> -2,3-Dimethyloxirane Butanal 1,4-Dioxane	2.22 1.63 2.03 2.72 0	i Ci C A Bi S	 362 DR 195 DR 362 DR 346 DT 464 MW 160 DR 111 DT 087 DT 	(^b) 2.22 (^c) 1.63 2.03 ≯ 2.72 0 0	303
$egin{array}{c} C_4H_8O_2\ C_4H_9Br\ C_4H_9Br\end{array}$	Ethyl acetate 1-Bromobutane 2-Bromobutane	$1.78 \\ 2.08 \\ 2.23$	Ci Ci Ci	066 DT 118 DT 118 DR	1.78 2.08 2.23	
C4H9Cl	1-Chlorobutane	2.05	Bi	105 DT 118 DR	$2.05 \\ 2.14$	
C ₄ H ₉ Cl	2-Chlorobutane	2.04	Ci	155 DT	2.04	

^a Although unsymmetric *gauche* conformations are possible, the polarization shows no dependence on temperature and is consistent with the *trans* conformation. This interpretation, however, implies an exceptionally large vibrational polarization.

^b $\mu = 1.20$ D at 354 °K; 1.27 D at 412 °K.

^c $\mu = 1.56$ D at 339 °K: 1.66 D at 467 °K.

Formula	Compound name	Selected moment (debyes)		Basic refe	erences	Other data
$\begin{array}{c} C_4H_9Cl\\ C_4H_9Cl\\ C_4H_9F\\ C_4H_9F\\ C_4H_9I\\ C_4H_9NO \end{array}$	 1-Chloro-2-methylpropane 2-Chloro-2-methylpropane 2-Fluoro-2-methylpropane 1-Iodobutane Propanoyl methylamine (N-methylpropionamide). 	$2.00 \\ 2.13 \\ 1.96 \\ 2.12 \\ 3.61$	Ci B A Ci Bi	155 DT 155 DR 384 MW 118 DR 539 DR	2.00 2.13 1.959 2.12 3.61	269
C₄H ₉ NO	Acetyl dimethylamine (N,N-dimethylacetamide).	3.81	Bi	539 DR	3.81	
$C_4H_9NO_2$	2-Nitrito-2-methylpropane (t-butyl nitrite).	2.74	Ci	508 DR 313 DR	2.77 2.71	
$C_4H_9NO_2 \\ C_4H_9NO_2 \\ C_4H_{10} \\ C_4H_{10} \\ C_4H_{10}$	1-Nitrobutane 2-Nitro-2-methylpropane Butane 2-Methylpropane	3.59 3.71 ≤ 0.05 0.132	Bi B Ci A	118 DR 155 DR 277 DT ≤ 384 MW 337 NR 277 DT	3.59 3.71 0.05 0.132 0.132 0.13	115 432, 115, Iso
$C_4H_{10}O$	1-Butanol	1.66	Bi	099 DT 033 DT	$\begin{array}{c} 1.65\\ 1.67\end{array}$	112
C₄H10O C₄H10O	2-Methylpropan-1-ol (isobutanol) Diethyl ether	1.64 1.15	C Bi	098 DT 194 DT 026 DT 062 DT 119 DT	1.64 1.13 1.15 1.11 1.19	146, 044, 038, 034, 014
$\begin{array}{c} C_{4}H_{10}S\\ C_{4}H_{11}N\\ C_{4}H_{11}N\\ C_{5}F_{12}\\ C_{5}F_{12}\\ C_{5}F_{12}\\ C_{5}H_{5}N\end{array}$	Diethyl sulfide 1-Aminobutane (n-butylamine) Diethyl amine Perfluoropentane Perfluoro (2-methylbutane) Pyridine	$\begin{array}{c} 1.54 \\ (1.0) \\ 0.92 \\ \leqslant 0.10 \\ \leqslant 0.10 \\ 2.19 \end{array}$	Ci Qi Ci Di Di B	 108 DT 228 DT 206 DT 233 DT 233 DT 329 DT 289 MW 	$1.54 \\ 1.00^{a} \\ 0.92 \\ 0^{b} \\ 2.23 \\ 2.15$	052
$\begin{array}{c} C_5H_5N\\ C_5H_6\end{array}$	1-Cyano-1,3-butadiene 1,3-Cyclopentadiene	3.90 0.419	Ci A	166 DR 164 DR 574 MW 334 MW	3.90 0.53 0.419 0.418	

^a The extrapolated value of polarization (vs 1/T) determined for this compound is inconsistent with the other aminoalkanes. The dipole moment given is probably low. ^b Although unsymmetric conformations are likely, the dipole moment appears to be virtually zero.

Formul a	Compound name	Selected moment (debyes)		Basic references	Other data
C_5H_8	Cyclopentene	0.20 H	В	555 MW 0.190 ^a 492 MW 0.22	
C_5H_8	1-Pentyne	0.81 (Ci	136 DR 0.86 559 DR 0.81 ^b	
$\begin{array}{c} C_5H_8\\ C_5H_8\end{array}$	<i>trans</i> -1,3-Pentadiene 2-Methyl-1,3-butadiene (<i>trans</i> conformation).	0.68 0.25 /	Di A	159 DR 0.68 538 MW 0.25 ⊅	159
$C_5H_8Br_4$	1,3-Dibromo-2,2-bis(bromomethyl)	x	Q		068
$C_{5}H_{8}O$ $C_{5}H_{8}O_{2}$ $C_{5}H_{9}N$ $C_{5}H_{9}N$ $C_{5}H_{10}$ $C_{5}H_{10}$ $C_{5}H_{10}O_{2}$	propane. Cyclopentanone Acetylacetone 1-Cyanobutane 2-Cyano-2-methylpropane Ethylcyclopropane 1-Pentene Diethyl carbonate.	(3.3) (4.12] 3.95 ((0.5) (1.10)	Q Ci Bi A Q Q Ci	399 MW 3.30 ° 082 DR 3.05 ° 097 DT 4.12 489 MW 3.95 020 DR 0.47 020 DR 0.51 110 DT 1.10	
$C_5H_{11}Br$ $C_5H_{11}Cl$	1-Bromopentane 1-Chloropentane	2.20 2.16	Ci Ci	314 DR 2.20 118 DR 2.16	
C_5H_{12}	Pentane	< 0.1	Di	$\begin{array}{rrr} 277 \ \mathrm{DT} \ < 0.07 \\ 352 \ \mathrm{DT} \ < 0.05 \end{array}$	098, 020, 112
$C_{5}H_{12}$	2-Methylbutane	0.13	C	352 DT 0.13 277 DT 0.1	
$\begin{array}{c} C_5H_{12}\\ C_5H_{12}O_2\\ C_5H_{12}O_4\\ C_6H_2Cl_2O_2\\ C_6H_4BrF\\ C_6H_4ClNO_2\\ C_6H_4ClNO_2\\ C_6H_4ClNO_2\\ C_6H_4ClNO_2\\ C_6H_4Cl_2 \end{array}$	2,2-Dimethylpropane Diethoxymethane Tetramethoxymethane 2,5-Dichloro-1,4-cyclohexadienedione p-Bromofluorobenzene o-Chloronitrobenzene m-Chloronitrobenzene p-Chloronitrobenzene o-Dichlorobenzene	0 9 0 9 (0.5) 9 4.64 1 3.73 1 2.83 1 2.50 1	S Qi S Q B B B B B	277 DT 0 110 DR (e) 038 DT \approx 0 131 DT 0 156 DR 0.5 120 DR 4.64 120 DR 3.73 120 DR 2.83 194 DR 2.48 156 DT 2.52	030 120
$\begin{array}{c} C_{6}H_{4}Cl_{2} \\ C_{6}H_{4}Cl_{2} \\ C_{6}H_{4}Fl \\ C_{6}H_{4}FNO_{2} \\ C_{6}H_{4}F_{2} \end{array}$	 m-Dichlorobenzene p-Dichlorobenzene p-Iodofluorobenzene p-Fluoronitrobenzene m-Difluorobenzene 	1.72 0 0.89 2.87 1.58	C S D B B	120 DR 1.72 120 DR 0 156 DR 0.89 156 DR 2.87 194 DT 1.58	

^a Component along b axis. The component along c axis was estimated to be 0.05 to 0.10 D.

^b Allowance for vibrational polarization has been made. See reference 559.

^c Component along *a* axis.

^d Mixture of enol and keto forms.

 $^{e} \mu = 1.26$ D at 329 °K; 1.32 D at 476 °K.

Formula	Compound name	Selected moment (debyes)		Basic ref	erences	Other data
$\begin{array}{c} C_6H_4N_2O_4\\ C_6H_4O_2 \end{array}$	<i>p</i> -Dinitrobenzene 1,4-Cyclohexadienedione (<i>p</i> -benzoquinone).	0 S 0 S	5 5	131 DT 131 DT	0 0	068
C_6H_5Br	Bromobenzene	1.70 H	В	097 DT 321 DT 156 DR	1.70 1.70 1.77	
C ₆ H ₅ Cl	Chlorobenzene	1.69 H	В	101 DT 084 DT 194 DT 520 MW	$1.71 \\ 1.70 \\ 1.67 \\ 1.78$	156, 273, 539
C_6H_5ClO C_6H_5ClO C_6H_5F	<i>o</i> -Chlorophenol <i>p</i> -Chlorophenol Fluorobenzene	2.11 (1.60 (i C C	148 DR 148 DR 101 DT 194 DR 395 MW	(^a) 2.11 1.58 1.60 1.66	
C ₆ H ₅ I	Iodobenzene	1.70 (С	156 DR 321 DT	1.70 1.71	
$C_6H_5NO_2$	Nitrobenzene	4.22 H	В	101 DT 084 DR	4.22 4.27	
C_6H_6	Benzene	`0 S	S	084 DT 113 DT 074 DT	0 0 0	157, 112, 011, 336
$\begin{array}{c} C_{6}H_{6}N_{2}O_{2}\\ C_{6}H_{6}O\\ C_{6}H_{6}O_{2}\\ C_{6}H_{7}N\\ C_{6}H_{8}\\ C_{6}H_{8}\\ C_{6}H_{8}N_{2}\\ C_{6}H_{8}N_{2}\\ C_{6}H_{8}N_{2}\\ C_{6}H_{8}O_{2}\\ C_{6}H_{8}O_{2}\\ C_{6}H_{10}\\ C_{6}H_{10}\\ \end{array}$	p-Aminonitrobenzene (p-nitroaniline)Phenolp-DihydroxybenzeneAminobenzene (aniline)1,3-Cyclohexadiene1,5-Hexadiyneo-Diaminobenzenem-Diaminobenzenep-Diaminobenzene1,4-CyclohexanedioneCyclohexene1,4-Hexyne	x (1.45 (x (1.53 (0.44 H 1.53 H 1.81 H 1.53 H (1.4) (0.55 H 0.83 (Q C C B i D D D D C C C	120 DR 120 DR 553 MW 559 DR 148 DR 148 DR 148 DR 148 DR 148 DR 148 DR 148 DR 121 DR 559 DR 136 DR	$\begin{array}{c} 1.45\\ 1.53\\ 0.437\\ 0.57^{\mathrm{b,c}}\\ 1.53\\ 1.81\\ 1.53\\ 1.41\\ 0.55\\ 0.83^{\mathrm{b}}\\ 0.89\end{array}$	068, 080 068

^a $\mu = 1.24$ D at 421 °K; 1.37 D at 562 °K. ^b An allowance has been made for vibrational polarization. See reference 559.

^c At 308 °K.

Formula	Compound name	Selected moment (debyes	d t s)	Basic references	Other data
$\begin{array}{c} C_{6}H_{10} \\ C_{6}H_{10} \\ C_{6}H_{10} \\ C_{6}H_{10} \\ C_{6}H_{10} \\ C_{6}H_{10}BrCl \\ C_{6}H_{10}Br_{2} \\ C_{6}H_{10}Cl_{2} \\ C_{6}H_{10}Cl_{2} \end{array}$	2-Methyl-1,3-pentadiene 3-Methyl-1,3-pentadiene 3,3-Dimethyl-1-butyne 2-Ethyl-1,3-butadiene 2,3-Dimethyl-1,3-butadiene <i>trans</i> -1-Bromo-2-chlorocyclohexane <i>trans</i> -1,2-Dibromocyclohexane <i>cis</i> -1e,2a-Dichlorocyclohexane <i>trans</i> -1,2-Dichlorocyclohexane	0.65 0.63 0.66 (0.45) (0.52 3.11 (D Di A Qi Di i C	164 DR 0.65 164 DR 0.63 489 MW 0.661 164 DR 0.45 159 DR 0.52 463 DR 2.19 a 463 DR 2.00 a 287 DR 3.11 287 DR 2.31 a 463 DR 2.29 a	
$\begin{array}{c} C_{6}H_{10}O_{3}\\ C_{6}H_{12}N_{2}\\ \end{array}\\ C_{6}H_{12}O_{2}\\ C_{6}H_{12}O_{3}\\ \end{array}$	Ethyl acetoacetate Diisopropylidene hydrazine (dimethyl ketazine). Pentyl formate (n-amyl formate) 2,4,6-Trimethyl-1,3,5-trioxane	1.53 I 1.90 (1.43 (i Bi Ci C	082 DR 2.98 ^b 151 DT 1.53 066 DT 1.90 212 DT 1.43	
C_6H_{14}	(paraldehyde). Hexane	≤0.1 I	Di	$\begin{array}{l} 090 \ \mathrm{DT} \approx 0\\ 098 \ \mathrm{DR} \approx 0 \end{array}$	
$C_6H_{14}O$	Dipropyl ether	1.21 (Ci	119 DT 1.21 062 DR 1.30	034
$\begin{array}{c} C_{6}H_{14}O\\ C_{6}H_{14}O_{2}\\ C_{6}H_{15}N\\ C_{6}H_{18}OSi_{2}\\ C_{7}H_{4}ClF_{3}\\ C_{7}H_{4}ClF_{3}\\ C_{7}H_{4}N_{2}O_{2}\\ C_{7}H_{5}F_{3}\\ C_{7}H_{5}N \end{array}$	Diiospropyl ether 1,1-Diethoxyethane Triethyl amine Bis(trimethylsilyl) ether o-Chloro(trifluoromethyl)benzene p-Chloro(trifluoromethyl)benzene p-Cyanonitrobenzene (Trifluoromethyl)benzene Cyanobenzene (benzonitrile)	1.13 I 0.66 ((0.66) (3.46 H 1.58 ((0) (2.86 H 4.18 H	Di i Ci Qi B C Q B B	251 DT 1.13 110 DR (°) 206 DT 0.66 318 DR 0.66 273 DR 3.46 273 DR 1.58 131 DT ≈ 0 273 DR 2.86 299 MW 4.18 ^d 084 DR 4.42	052
C7H7Cl C7H7Cl	<i>o</i> -Chlorotoluene <i>p</i> -Chlorotoluene	1.56 (2.21 H	C B	273 DR 1.56 273 DR 2.21	

^a Mixture of *ee* and *aa* conformational isomers.

^b Mixture of keto and enol forms. ^c $\mu = 1.11$ D at 328 °K: 1.22 D at 476 °K. ^d Recalculated from the original data.

Formula	Compound name	Selected moment (debyes)	Basic references	Other data
C_7H_7F C_7H_7F C_7H_7F $C_7H_7NO_3$ $C_7H_7NO_3$ $C_7H_7NO_3$ C_7H_8 C_7H_8	o-Fluorotoluene m-Fluorotoluene p-Fluorotoluene o-Nitro(methoxy)benzene m-Nitro(methoxy)benzene p-Nitro(methoxy)benzene 1,3,5-Cycloheptatriene Toluene.	1.37 C 1.86 C 2.00 C 4.83 Bi 4.55 Bi 5.26 B 0.25 C 0.36 C	194 DR 1.37 194 DR 1.86 194 DR 2.00 120 DR 4.83 120 DR 4.55 120 DR 5.26 554 MW 0.25 142 DT 0.36 074 DT 0.36	
C_7H_8O C_7H_8O C_7H_9NO C_7H_{10} C_7H_{12}	Phenylmethanol (benzyl alcohol) Methoxybenzene (anisole) o-Amino(methoxy)benzene 1,6-Heptadiyne 1-Heptyne	1.71 C 1.38 C 1.61 Ci i 0.86 i	288 DR 1.71 120 DR 1.38 148 DR 1.61 559 DR 0.81 a, b 136 DR 0.87 559 DR 0.85 b	
C_7H_{14} $C_7H_{14}O$ $C_7H_{14}O_2$ $C_7H_{15}Br$ C_7H_{16}	Methylcyclohexane Methoxycyclohexane Pentyl acetate (<i>n</i> -amyl acetate) 1-Bromoheptane Heptane	(0) Qi 1.35 Di 1.75 Ci 2.16 Ci ≤ 0.1 Di	142 DT ≈ 0 120 DR 1.35 066 DT 1.75 105 DR 2.16 098 DT ≈ 0 090 DT ≈ 0	112, 020
$C_8H_4N_2 \\ C_8H_8 \\ C_8H_8O \\ C_8H_8O_2 \\ C_8H_9NO_2 \\ C_8H_9NO_2 \\ C_8H_9NO_2 \\ C_8H_1O \\ C_8H_{10} \\ C_8H_{10} \\ C_8H_{10} \\ C_8H_{10} \\ C_8H_{10} \\ C_8H_{10} \\ C_8H_{12} \\ C_8H_{12}O_2 \\ C_8H_{12$	p-Dicyanobenzene.Styrene.Acetylbenzene (acetophenone).2,5-Dimethyl-1,4-cyclohexadienedione.Methyl (o-aminophenyl)formate.Methyl (m-aminophenyl)formate.Methyl (p-aminophenyl)formate.Methyl (p-aminophenyl)formate.Ethylbenzene.o-Xylene.p-Xylene.Ethoxybenzene (phenetole).(Dimethylamino)benzene.1,7-Octadiyne.Tetramethylcyclobutane-1,3-dione.	0 S (0) Q 3.02 B 0 S x Q x Q x Q x Q 0.59 C 0.62 C 0 S 1.45 Di 1.68 D i 0 S	131 DT 0 164 DR ≈ 0 097 DT 3.02 131 DT 0 142 DT 0.59 156 DR 0.62 ^c 156 DR 0 120 DR 1.45 120 DR 1.68 559 DR 0.88 ^{a,b} 131 DT 0	018 018 018

^a At 308 °K.

^b An allowance has been made for vibrational polarization. See reference 559.

 $^{\rm c}$ The vibrational polarization plus electronic polarization was set equal to the total polarization for p-xylene.

Formula	Compound name	Select mome	ted ent	Basic references	Other data
		(deby	es)		_
 $C_8H_{12}O_2$	Ethyl 2,4-hexadienoate (ethyl	(2.07)	Qi	166 DR 2.07	
$C_8H_{14}O_4$	Diethyl butanedioate (diethyl succinate).		i	064 DR (^a)	
C_8H_{16}	Ethylcyclohexane	(0)	Q	142 DT ≈ 0	
C_8H_{18}	Octane	≤ 0.1	Di	157 DR ≈ 0	
$C_8H_{18}O$	Dibutyl ether	1.17	Ci	119 DT 1.17	
C_9H_7N	Quinoline	2.29	C	329 DR 2.29	
C_9H_7N	Isoquinoline	2.73	C	329 DR 2.73	
$C_9H_{10}O_2$	Ethyl phenylformate (ethyl benzoate)	2.00	Ci	097 DR 2.00	
C_9H_{12}	Isopropylbenzene	(0.79)	Q	142 DR 0.79	
$C_9H_{12}O_8$	l etrakis(methyl carboxylate)methane.	x	Q		068
C_9H_{14}	1,8-Nonadiyne	(0)	1	559 DR 1.09 ^{0, c}	
C_9H_{18}	Isopropylcyclohexane	(0)	Q	$ 142 \text{ D} 1 \approx 0$	
$C_{10}H_8$	Azulene	0.80	В	575 MW 0.796	
$C_{10}\Pi_{14}$	<i>t</i> -Butylbenzene	(0.83)	Q	142 DK 0.83	
$C_{10}H_{14}BeU_4$	Bis(2,4-pentanedionato) beryllium		5	131 D1 0	
C ₁₀ H ₁₈ U	oxabicyclo[2.2.2]octane.	1.42	D	255 DR 1.42	
$C_{10}H_{20}$	<i>t</i> -Butylcyclohexane	(0)	Q	142 DT ≈ 0	
$C_{11}H_{16}$	<i>p-t</i> -Butyltoluene	X	Q		142
$C_{12}H_8Br_2O$	Bis(<i>p</i> -bromophenyl) ether	1.02	D	132 DR 1.02	
$C_{12}H_9BrO$	<i>p</i> -Bromophenoxybenzene	1.98	C	132 DR 1.98	
$C_{12}H_9NO_3$	<i>p</i> -Nıtrophenoxybenzene	4.54	B	132 DR 4.54	
$C_{12}H_{10}$	Acenaphthene	(0.85)	Q	347 DR 0.93	
				310 DR 0.81	
$C_{12}H_{10}$	Phenylbenzene (diphenyl)	0	S		029, 030
$C_{12}H_{10}O$	Diphenyl ether	(1.3)	Q	120 DR 1.43	018
		2		132 DR 1.23	
		8	0		010
$C_{13}H_{10}U$	Dipnenyi carbonyi	X 9.45	Q	120 DD 945	018
$C_{13}\Pi_{11}$ BrU	<i>p</i> -Bromopnenoxy- <i>p</i> -toluene	2.45	C	132 DK 2.45	010
$C_{13}\Pi_{12}$		X	Q Q	•••••	
$C_{13}\Pi_{20}O_8$	Dis(retails) actions		Q C	120 DD 1 54	008
$C_{14}\Pi_{14}U$	Tric(2.4 pontonodionato) aluminum	1.54	S	132 DR 1.54	
$C_{15}\Pi_{21}\Lambda IO_6$	Tris(2,4-pentanedionato) aluminum		S	$\begin{array}{c} 131 \text{ D1} & 0 \\ 131 \text{ DT} & 0 \end{array}$	
$C_{15}T_{21}C_{1}O_{6}$	chromium (III)	0	3		
C. H. FeO.	Tris(2 4-pentanedionato) iron (III)	0	S		131
$C_{20}H_{20}O_{0}Th$	Tetrakis(2,4-pentanedionato)	0	S		131
020112808111	thorium.		U		101

^a $\mu = 2.35$ D at 430 °K; 2.41 D at 519 °K. ^b At 308 °K.

^c An allowance for vibrational polarization has been made. See reference 559.

7.3. Appendix I. Variation of Dipole Moment With Vibrational State

The following table summarizes the best available information on the vibrational dependence of dipole moments. Only those cases are included where the precision of the measurement was high enough to make a meaningful comparison of the dipole moment in different vibrational states. A few other cases have been reported in the literature, but the changes were not felt to be experimentally significant. All results in this table were obtained from Stark effect measurements.

The table includes the original investigator's estimate of the precision of his measurements. Since very few authors have specified the statistical estimator used in stating their precision, the precision entries for different compounds are in general not comparable. However, the data in

this table on different vibrational states of a single compound were always obtained by the same investigator on the same apparatus. The precision quoted by the investigator can thus be regarded as a rough indication of the reproducibility of a measurement on a given vibrational state. Since systematic errors should be virtually the same for all states, the quoted precision gives an idea of the significance of the variation of the dipole moment with vibrational state.

It should be emphasized that the accuracy of the dipole moments given in this table is much lower than the precision. In most cases the uncertainty resulting from possible systematic errors is at least an order of magnitude greater than the precision which is guoted.

APPENDIX I.	Variation	of	dipole	moment	with	vibrational	state

Compound	Vibrational state	Dipole moment (debyes)	Precision (debyes)	References
BaO–Barium oxide	v = 0 v = 1 v = 2 v = 3	7.954 7.997 8.039 8.079	$\begin{array}{c} 0.002 \\ 0.002 \\ 0.002 \\ 0.002 \\ 0.002 \end{array}$	526, 500
BrK–Potassium bromide	v = 0 $v = 2$	10.41 9.93	0.02 0.02	274
⁷⁹ Br ⁶ Li–Lithium bromide	v = 0 $v = 1$ $v = 2$	7.2680 7.3523 7.4377	0.0001 0.0001 0.0001	535
⁸¹ Br ⁶ Li—Lithium bromide	v = 0 $v = 1$ $v = 2$	7.2678 7.3521 7.4376	0.0001 0.0001 0.0001	535
ClCs—Cesium chloride	v = 0 $v = 1$	10.420ª 10.476	0.001 0.001	341
ClK–Potassium chloride	v = 0 $v = 1$ $v = 2$	10.2688 ^b 10.3288 10.3877	0.001 0.001 0.001	591

^a Calculated from the equation $\mu_v = 10.42 + 0.056 v$, which was obtained from measurements on the v=0 through v=6 states.

^b Different values are reported in reference 282 but are believed to be of lower accuracy and precision.

Compound	Vibrational state	Dipole moment (debyes)	Precision (debyes)	References
³⁵ Cl ⁶ Li–Lithium chloride	v = 0 $v = 1$ $v = 2$ $v = 3$	7.1195 ^a 7.2069 7.2964 7.3865	0.0006 0.0008 0.0012 0.0018	537
³⁷ Cl ⁶ Li–Lithium chloride	v = 0 v = 1 v = 2	7.1192 ª 7.2071 7.2972	$0.0008 \\ 0.0012 \\ 0.0014$	537
ClNa–Sodium chloride	v = 0 $v = 1$ $v = 2$	9.002 9.060 9.119	$0.004 \\ 0.004 \\ 0.004$	473a
CsF–Cesium fluoride	v = 0 $v = 1$	7.8750 ^ъ 7.9472	0.0002 0.0002	341
¹⁹ F ⁶ Li—Lithium fluoride	v = 0 v = 1 v = 2 v = 3	6.3276 ° 6.4151 6.5034 6.5933	$\begin{array}{c} 0.0001 \\ 0.0001 \\ 0.0001 \\ 0.0001 \end{array}$	527
FNa–Sodium fluoride	v = 0 $v = 1$ $v = 2$	8.1558 8.2209 8.2867	0.0001 0.0001 0.0001	536
FRb–Rubidium fluoride	v = 0 $v = 1$ $v = 2$	8.5465 8.6135 8.6810	$\begin{array}{c} 0.0002 \\ 0.0002 \\ 0.0002 \end{array}$	591
FTl—Thallium fluoride	v = 0 $v = 1$ $v = 2$	4.2282 4.2971 4.3665	$0.0001 \\ 0.0001 \\ 0.0004$	397
HLi–Lithium hydride	v = 0 $v = 1$	5.882 5.990	0.003 0.003	442
¹²⁷ I ⁶ Li – Lithium iodide	v = 0 $v = 1$	7.4285 7.5120	0.0002 0.0002	552
OSr-Strontium oxide	v = 0 $v = 1$	8.900 8.874	0.003 0.003	562

APPENDIX I. Variation of dipole moment with vibrational state-Continued

^a Slightly different values have been reported in reference 591, but the change with vibrational state is not significantly different.

^b Calculated from the equation $\mu_v = 7.875 + 0.0722 v$, which was obtained from measurements on the v=0 through v=4 states.

^c Essentially the same values have been reported in reference 591.

Compound	Vibrational state	Dipole moment (debyes)	Precision (debyes)	References
O2S – Sulfur dioxide	000 010	$1.615 \\ 1.575$	(^a)	487b
Carbon compounds:				
COSe–Carbonyl selenide	000 100 010	0.754 0.728 0.730	(^b)	199
C ₂ H ₂ O—Methylene carbonyl (ketene)	$v = 0^{c}$ $v_{7} = 1$ $v_{8} = 1$ $v_{9} = 1$	1.414 1.430 1.386 1.387	$\begin{array}{c} 0.010 \\ 0.012 \\ 0.010 \\ 0.010 \end{array}$	261

APPENDIX I. Variation of dipole moment with vibrational state-Continued

^a Precision was not stated.

^b Precision was not stated but is estimated to be about 1 percent. Because of a probable systematic error in calibration, all values are about 3 percent high.

^c The vibrational assignment has been revised in accordance with A. P. Cox and A. S. Esbitt, J. Chem. Phys. **38**, 1636 (1963).

7.4. Appendix II. Isotopic Dependence of Dipole Moment

This table lists molecules in which isotope shifts in the dipole moment have been accurately measured by microwave or molecular beam techniques. All measurements refer to the ground vibrational state. As in appendix I, only those measurements are included which are felt to be precise enough to give an experimentally significant difference in dipole moments of different isotopic species. This requires that the precision of the measurement be better than 0.01 D. Other cases of measurements on several isotopic species have been reported in the literature, but the uncertainties were too large to give meaningful shifts. Dielectric measurements of deuterium isotope shifts have been reported in HCl (128) and NH_3 (096).

The comments on precision and accuracy made in appendix I apply to this table.

Compound	Isotopic species	Dipole moment (debyes)	Precision (debyes)	Reference
Lithium bromide	⁷⁹ Br ⁶ Li ⁸¹ Br ⁶ Li	7.2680ª 7.2678	0.0001 0.0001	535
	⁷⁹ Br ⁶ Li ⁷⁹ Br ⁷ Li	7.2680 7.2648	0.0002 0.0002	591
Lithium chloride	³⁵ C] ⁶ Li ³⁷ Cl ⁶ Li	7.1195ª 7.1192	0.0006 0.0008	537
Lithium fluoride	¹⁹ F6Li	6.3275	0.0002	591
	¹⁹ F ⁷ Li	6.3248	0.0002	
Thallium fluoride	¹⁹ F ²⁰⁵ T] ¹⁹ F ²⁰³ T]	4.2282 ^ь 4.2282	$0.000001 \\ 0.000001$	397
Lithium hydride	¹ H ⁶ Li ¹ H ⁷ Li	5.884 5.882	$0.003 \\ 0.003$	442
Carbon compounds:				
Trifluoromethane	¹² C ¹ H ¹⁹ F ₃	1.6460	0.001	587
	$^{12}C^{2}H^{19}F_{3}$	1.6470 °	0.001	
Fluoromethane	$^{12}C^{1}H_{3}^{19}F_{12}C^{2}H_{2}^{19}F_{12}C^{2}H_{2}^{19}F_{12}F_{12}$	1.8471	0.001 0.001	587
M .1 1		0.6405	0.001	507
Methyl germane	$^{12}C^{1}H_{3}^{10}Ge^{1}H_{3}$	0.6425	0.001	507
	$^{12}C^{1}H_{3}^{70}Ge^{2}H_{3}$	0.6295	0.001	
	$^{12}C^{1}H_{3}^{74}Ge^{2}H_{3}$	0.6298	0.001	
	$^{12}C^{2}H_{3}{}^{70}Ge^{1}H_{3}$	0.6548	0.001	
	$^{12}C^{2}H_{3}^{74}Ge^{1}H_{3}$	0.6539	0.001	
Methyl silane	¹² C ¹ H ₂ ²⁸ Si ¹ H ₂	0.7351	0.001	587
	$^{12}C^{1}H_{3}^{28}Si^{2}H_{3}$	0.7236	0.001	
1,1-Difluoroethylene	$^{1}H_{2}^{12}C^{12}C^{19}F_{2}$	1.385	0.001	587
	$^{2}H_{2}^{12}C^{12}C^{19}F_{2}$	1.391	0.001	

APPENDIX II. Isotopic dependence of dipole moment

Compound	Isotopic species	Dipole moment (debyes)	Precision (debyes)	Reference
Propyne	${}^{12}C^{1}H_{3}{}^{12}C^{12}C^{1}H$ ${}^{12}C^{1}H_{3}{}^{12}C^{12}C^{2}H$ ${}^{12}C^{2}H_{3}{}^{12}C^{12}C^{1}H$ ${}^{12}C^{2}H_{3}{}^{12}C^{12}C^{2}H$	0.781 0.768 0.784 0.772	0.001 0.001 0.001 0.001	587
Propane	${}^{12}C^{1}H_{3}{}^{12}C^{1}H_{2}{}^{12}C^{1}H_{3}$ ${}^{12}C^{1}H_{3}{}^{12}C^{2}H_{2}{}^{12}C^{1}H_{3}$ ${}^{12}C^{2}H_{3}{}^{12}C^{1}H_{2}{}^{12}C^{2}H_{3}$	0.0848 0.0948 0.0758	$0.001 \\ 0.001 \\ 0.001$	
2-Methylpropane	$ \begin{array}{l} ({}^{12}C{}^{1}H_{3}){}_{3}{}^{12}C{}^{1}H\\ ({}^{12}C{}^{1}H_{3}){}_{3}{}^{12}C{}^{2}H \end{array} $	$0.1320 \\ 0.1406$	0.0006 0.0006	432

APPENDIX II. Isotopic dependence of dipole moment-Continued

^a See also appendix I. ^b μ (¹⁹F²⁰³Tl) $- \mu$ (¹⁹F²⁰⁵Tl) = (33±3)×10⁻⁶ D. ^c The direction of the isotope shift is felt to be significant.

- 001 Jona. M.:
- Physik. Z. 20, 14-21 (1919). 002 Riegger, H.: Ann. Physik. 59, 753-60 (1919).

1921

- Frivold, O.E.: 003 Physik. Z. 22, 603-10 (1921). 604 Weigt, H.:
 - Physik. Z. 22, 643 (1921).

1922

005 Falkenhagen, H.: Physik. Z. 23, 87 (1922).

1923

006 Frivold, O. E. and Hassel. O .: Physik. Z. 24, 82-6 (1923).

1924

007 Zahn, C. T.: Phys. Rev. 24, 400-17 (1924).

1925

- 008 Deleted.
- Smyth, C. P. and Zahn, C. T .: 009 J. Am. Chem. Soc. 47, 2501-6 (1925).

1926

- Kliefoth, W .: 010 Z. Physik 39, 402-14 (1926).
- 011 Sänger, R.: Physik. Z. 27, 165-74 (1926). 012
- Sänger, R.: Physik. Z. 27, 556-63 (1926). Zahn. C. T.: 013
- Phys. Rev. 27, 455-9 (1926).

1927

- 014 Sänger, R.:
- Physik. Z. 28, 455-7 (1927).
- 015 von Braunmühl. H.-J.: Physik. Z. 28, 141-9 (1927).
- 016 Watson, H. E .:
- Proc. Roy. Soc. (London) A117, 43-62 (1927). 017 Wrede. E .:
- Z. Physik 44, 261-8 (1927).

1928

- 018 Estermann. I.:
- Z. Physik. Chem. (Leipzig) B1, 161-9 (1928). 019 Forró, M.:
- Z. Physik 47, 430-45 (1928). 020
 - Höjen lahl. K .: "Studies of Dipole Moments," Thesis. Kopenhagen. 1928 (as referred to by Landolt Bornstein Tabellen, Parts 142061-3, 6 Auflage, 1951).
- 021 Mahanti. P. C. and Sen-Gupta, D. N .:
- Indian J. Phys. **3**, 181–96 (1928). Mahanti. P. C. and Sen-Gupta, D. N.: 022
- J. Indian Chem. Soc. 5, 673-81 (1928). Sänger, R. and Steiger, O .:
- Helv. Phys. Acta 1, 369-84 (1928). 024 Sircar, S. C.:
 - Indian J. Phys. 3, 197-208 (1928).

025 Stuart, H. A .:

- Z. Physik 47, 457-78 (1928). 026 Stuart, H. A .:
- Z. Physik **51**, 490–510 (1928). Zahn, C. T. and Miles, J. B.: 027
- Phys. Rev. 32, 497-504 (1928).

1929

- 028 Clark, R. J.:
- Proc. Roy. Soc. (London) A124, 689-98 (1929). 029 Estermann, I.:
 - Leipziger Vorträge 17 (1929).
- Estermann, I.: 030
- Z. Physik. Chem. (Leipzig) **B2**, 287-8 (1929). Ghosh, P. N., Mahanti, P. C. and Mukhergee, B. C.: 031 Z. Physik 58, 200-4 (1929).
- Ghosh, P. N., Mahanti, P. C. and Sen-Gupta. D. N.: 032 Z. Physik 54, 711-4 (1929).
- 033 Miles. J. B.:
- Phys. Rev. 34, 964 (1929).
- 033a Sänger. R.: Leipziger Vorträge 29, 1 (1929).
- 034 Sänger. R. and Steiger, O .: Helv. Phys. Acta 2, 136-44 (1929).
- 035 Sänger. R. and Steiger, O.: Helv. Phys. Acta 2, 411-8 (1929).
- 036 Deleted.

1930

- 037 Fredenhagen, K. and Maske, F .:
- Z. Physik. Chem. (Leipzig) B10, 142-8 (1930).
- 038 Fuchs. O.:
- Z. Physik 63, 824-48 (1930).
- 039 Deleted.
- Keyes, F. G. and Kirkwood, J. G.: 040 Phys. Rev. 36, 1570-5 (1930).
- Kirkwood, J. G. and Keyes, F. G.: 041 Phys. Rev. 36, 754 (1930).
- Mahanti, P. C.: 042 Physik. Z. 31, 546-55 (1930).
- 043 Sänger, R.: Helv. Phys. Acta 3, 162 (1930).
- 044 Sänger, R.:
- Physik. Z. 31, 306–15 (1930). Schwingel, C. H. and Williams, J. W.: Phys. Rev. **35**, 855-62 (1930). 045
- 046 Deleted.
- Steiger, O.: 047
- Helv. Phys. Acta 3, 161 (1930). Zahn, C. T.: 048
- Phys. Rev. 35, 848-54 (1930). 049 Zahn, C. T.:
 - Phys. Rev. 35, 1047-55 (1930).

1931

- Braune, H. and Asche, T.: 050
- Z. Physik. Chem. (Leipzig) B14, 18-26 (1931). 051 Deleted.
- Ghosh. P. N. and Chatterjee. T. P.: 052
 - Phys. Rev. 37, 427-9 (1931).

Sänger, R .: 053 Physik. Z. 32, 21-6 (1931).

- 054 Deleted.
- 055 Steiger, O.:
- Physik. Z. **32**, 425 (1931). Watson, H. E., Rao, G. G. and Ramaswamy, K. L.: 056 Proc. Roy. Soc. (London) A132, 569-85 (1931).
- 057 Zahn, C. T.: Phys. Rev. 38, 521-7 (1931).
- Zahn, C. T.: 058 Phys. Rev. 37, 1516-26 (1931).

- Greene, E. W. and Williams, J. W .: 059 Phys. Rev. 42, 119-40 (1932).
- Knowles. H. L.: 060 J. Phys. Chem. 36, 2554-66 (1932).
- Mizushima, S. and Higashi, K .: 061 Proc. Imp. Acad. (Tokyo) 8, 482 (1932).
- Sänger, R., Steiger, O. and Gächter, K .: 062 Helv. Phys. Acta 5, 200-10 (1932).
- Zahn, C. T.: 063 Phys. Rev. 40, 291-8 (1932).
- 064 Zahn, C. T.: Physik. Z. 33, 525-30 (1932).
- Zahn, C. T.: 065 Physik. Z. 33, 686-7 (1932).
- 066 Zahn, C. T.: Physik. Z. 33, 730-1 (1932).

1933

- 067 Estermann, I. and Fraser, R. G. J.: J. Chem. Phys. 1, 390-9 (1933).
- Estermann, I. and Wohlwill, M .: 068
- Z. Physik. Chem. (Leipzig) B20, 195-208 (1933). 069 Deleted.
- 070 Deleted.
- 071 Deleted.
- 072 Grassi, U.:
- Nuovo Cimento 10, 3-20 (1933). 073 Luft, K. F.:
- Z. Physik 84, 767-82 (1933). 074 McAlpine, K. B. and Smyth, C. P.:
- J. Am. Chem. Soc. 55, 453-62 (1933). Smyth, C. P. and McAlpine, K. B.: 075
- J. Chem. Phys. 1, 60–1 (1933). 076 Smyth, C. P. and McAlpine, K. B.:
- J. Chem. Phys. 1, 190-6 (1933).
- Deleted. 077
- Uhlig, H. H., Kirkwood, J. G. and Keyes, F. G.: 078 J. Chem. Phys. 1, 155-9 (1933).
- 079 Deleted.
- Wohlwill, M .: 080
 - Z. Physik 80, 67-79 (1933).
- 081 Zahn, C. T.: Physik. Z. 34, 461-2 (1933).
- 082 Zahn, C. T.: Physik. Z. 34, 570-4 (1933).

1934

- 083 Czerlinsky, E.:
- Z. Physik 88, 515-21 (1934).
- 084 Groves, L. G. and Sugden, S.: J. Chem. Soc. 1934, 1094-8 (1934).
- 085 Deleted.
- 086 Scheffers, H.:
- Physik. Z. 35, 425-33 (1934). 087
- Schwingel, C. H. and Greene, E. W.: J. Am. Chem. Soc. 56, 653-4 (1934).
- 088 Smyth, C. P. and McAlpine, K. B.: J. Am. Chem. Soc. 56, 1697–700 (1934).
- Smyth, C. P. and McAlpine, K. B.: 089 J. Chem. Phys. 2, 499-502 (1934).
- 090 Smyth, C. P. and McAlpine, K. B.:
- J. Chem. Phys. 2, 571-3 (1934).
- Stranathan, J. D.: 091
- Bull. Am. Phys. Soc. 9, No. 2, 7, 10/4 (1934). 092 Stranathan, J. D.:
- Phys. Rev. 45, 741 (1934).
- 093 Deleted.
- 094 Watson, H. E., Rao, G. G. and Ramaswamy, K. L.: Proc. Roy. Soc. (London) A413, 558-88 (1934).

1935

095 Braune, H. and Linke, R.: Z. Physik. Chem. (Leipzig) **B31**, 12–17 (1935).

- 096 de Bruyne, J. M. A. and Smyth, C. P.: J. Am. Chem. Soc. 57, 1203-5 (1935).
- 097 Groves, L. G. and Sugden, S.: J. Chem. Soc. 1935, 971-4 (1935).
- 098 Kubo, M.:
- Sci. Papers Inst. Phys. Chem. Res. (Tokyo) 26, 242-57 (1935).099 Kubo, M.:
 - Sci. Papers Inst. Phys. Chem. Res. (Tokyo) 27, 65-73 (1935)
- 100 Mahanti, P. C.:
- Phil. Mag. (7) **20**, 274–87 (1935). McAlpine, K. B. and Smyth, C. P.:
- 101 J. Chem. Phys. 3, 55-7 (1935).
- Ramaswamy, K. L .: 102
- Proc. Indian Acad. Sci., Sect. A, 2A, 364-77 (1935). 103 Deleted.
- Smyth. C. P. and McAlpine, K. B.: 104 J. Am. Chem. Soc. 57, 979–83 (1935).
- Smyth, C. P. and McAlpine, K. B.: 105 J. Chem. Phys. 3, 347-50 (1935).
- 106 Stranathan, J. D.: Phys. Rev. 48, 538-44 (1935).

1936

- 107 Fraser, R. G. J. and Hughes, J. V.:
- J. Chem. Phys. 4, 730 (1936). 108 Kubo, M.:
 - Sci. Papers Inst. Phys. Chem. Res. (Tokyo) 29, 122-8 (1936).
- 109 Kubo, M.: Sci. Papers Inst. Phys. Chem. Res. (Tokyo) 29, 178-87 (1936).
- 110 Kubo, M.: Sci. Papers Inst. Phys. Chem. Res. (Tokyo) 30, 169-79 (1936).
- 111 Kubo, M.: Sci. Papers Inst. Phys. Chem. Res. (Tokyo) 30, 238-43 (1936).
- 112 Niini, A.: Ann. Acad. Sci. Fennicae, Ser. A. II, A46, 1 (1936).
- 113 Ramaswamy, K. L .: Proc. Indian Acad. Sci., Sect. A, 4A, 108-33 (1936).
- 114 Rodenbush, W. H., Murray, L. A. and Bixler, M. E.: J. Chem. Phys. 4, 372-6 (1936).
- Watson, H. E., Kane, G. P. and Ramaswamy, K. L.: 115
- Proc. Roy. Soc. (London) **A156**, 137–43 (1936). 116 Williams, J. W., Schwingel, C. H. and Winning, C. H.: J. Am. Chem. Soc. 58, 197–203 (1936).

- 117 Grassi, U.:
- Nuovo Cimento 14, 461-73 (1937).
- Groves, L. G. and Sugden, S.: 118 J. Chem. Soc. 1937, 158-62 (1937).
- 119 Groves, L. G. and Sugden, S.: J. Chem. Soc. 1937, 1779-82 (1937).
- Groves, L. G. and Sugden, S.: 120J. Chem. Soc. 1937, 1782-4 (1937).
- 121 Kubo, M.: Sci. Papers Inst. Phys. Chem. Res. (Tokyo) 32, 26-32 (1937).
- 122 Kubo, M., Morino, Y. and Mizushima, S.: Sci. Papers Inst. Phys. Chem. Res. (Tokyo) 32, 129-37 (1937).
- Linke, R. and Rohrmann, W.: 123Z. Physik. Chem. (Leipzig) B35, 256-60 (1937).
- 124 Deleted. 125
- Ramaswamy, K. L.: Proc. Indian Acad. Sci. 6, 301 (1937). Smits, A., Moerman, N. F. and Pathius, J. C.: 126
- Z. Physik. Chem. (Leipzig) B35, 60-8 (1937). 127
- Stranathan, J. D.: J. Chem. Phys. 5, 828-30 (1937).

- Bell, R. P. and Coop, I. E.: 128 Trans. Faraday Soc. 34, 1209-14 (1938).
- Brockway, L. O. and Coop, I. E.: Trans. Faraday Soc. **34**, 1429–39 (1938). Coop, I. E., Davidson, N. R. and Sutton, L. E.: 129
- 130 J. Chem. Phys. 6, 905 (1938).
- Coop, I. E. and Sutton, L. E .: 131 J. Chem. Soc. 1938, 1269-86 (1938).
- Coop, I. E. and Sutton, L. E.: 132 J. Chem. Soc. 1938, 1869-72 (1938),
- Fuoss, R. M.: 133 J. Am. Chem. Soc. 60, 1633-7 (1938).
- Deleted. 134 135
- Hugill, J. A. C., Coop, I. E. and Sutton, L. E.: Trans. Faraday Soc. 34, 1518-34 (1938). Krieger, F. J. and Wenzke, H. H.:
- 136 J. Am. Chem. Soc. 60, 2115-9 (1938).
- LeFèvre, R. J. W. and Russell, P.: Nature 142, 617 (1938). 137
- Mizushima, S. and Kubo, M .: 138
- Bull. Chem. Soc. Japan 13, 174-81 (1938). Schulz, R. W.: 139
- Z. Physik 109, 517-37 (1938). Stranathan, J. D.: 140
- J. Chem. Phys. 6, 395-8 (1938).
- Stranathan, J. D.: 141 Phys. Rev. 53, 323 (1938).

1939

- 142 Baker, J. W. and Groves, L. G.:
- J. Chem. Soc. 1939, 1144-50 (1939).
- Coop, I. E. and Sutton, L. E .: 143
- Trans. Faraday Soc. 35, 505–11 (1939). 144 Deleted.
- 145 Deleted.

1940

- Hobbs, M. E., Jacokes, J. W. and Gross, P. M.: 146 Rev. Sci. Instr. 11, 126-33 (1940).
- Linke, R.: 147
- Z. Physik. Chem. (Leipzig) B46, 251-60 (1940). Linke, R.: 148
- Z. Physik. Chem. (Leipzig) B46, 261-9 (1940). 149 Linke, R.:
- Z. Physik. Chem. (Leipzig) B48, 193-6 (1940). 150 Smyth, C. P., Grossman, A. J. and Ginsberg, S. R.:
- J. Am. Chem. Soc. 62, 192-5 (1940).

1941

- 151 Bloom, G. I. M. and Sutton, L. E .:
- J. Chem. Soc. 1941, 727-42 (1941). 152Deleted.
- 153 Maryott, A. A., Hobbs, M. E. and Gross, P. M.: J. Am. Chem. Soc. 63, 659-63 (1941).
- Wiswall, R. H., Jr. and Smyth, C. P .: 154
- J. Chem. Phys. 9, 352 (1941). 155 Wiswall, R. H., Jr. and Smyth, C. P.:
- J. Chem. Phys. 9, 356-61 (1941).

1942

- 156 Hurdis, E. C. and Smyth, C. P .:
- J. Am. Chem. Soc. 64, 2212-6 (1942).
- 157 Hurdis, E. C. and Smyth, C. P .:
- J. Am. Chem. Soc. 64, 2829-34 (1942). Watanabe, I., Mizushima, S. and Morino, Y.: 158 Sci. Papers Inst. Phys. Chem. Res. (Tokyo) 39, 401-9

1943

159 Hannay, N. B. and Smyth, C. P.: J. Am. Chem. Soc. 65, 1931–4 (1943). 160 Hurdis, E. C. and Smyth, C. P.: J. Am. Chem. Soc. 65, 89-96 (1943).

1946

- 161 Coles, D. K. and Good, W. E .: Phys. Rev. 70, 979L (1946).
- Dakin, T. W., Coles, D. K. and Good, W. E .: 162 Phys. Rev. 70, 560 (1946).
- Hannay, N. B. and Smyth, C. P .: 163 J. Am. Chem. Soc. 68, 171-3 (1946).
- Hannay, N. B. and Smyth, C. P.: 164 J. Am. Chem. Soc. 68, 244-7 (1946).
- 165 Hannay, N. B. and Smyth, C. P.: J. Am. Chem. Soc. 68, 1005-8 (1946).
- Hannay, N. B. and Smyth, C. P .: 166 J. Am. Chem. Soc. 68, 1357-60 (1946).
- Hughes, H. K.: Phys. Rev. **70**, 570 (1946). 167
- Townes, C. H .: 168 Phys. Rev. 70, 665-71 (1946).

1947

- 169 Hughes, H. K.:
- Phys. Rev. **72**, 614–23 (1947). LeFèvre, R. J. W. and Russell, P.: 170
- Trans. Faraday Soc. 43, 374-93 (1947).

1948

- 171 Amphlett, C. B., Mallinger, L. W. and Thomas, L. F.: Trans. Faraday Soc. 44, 927-38 (1948).
- 172 Coles, D. K.: Phys. Rev. 74, 1194L (1948).
- 173 Crain, C. M.: Phys. Rev. 74, 691-3 (1948).
- Golden, S., Wentink, T., Jr., Hillger, R. E. and Strandberg, M. W. P.: 174
 - Phys. Rev. 73, 92-3 (1948). Jelatis, J. G .:
- 175 J. Applied Phys. 19, 419-25 (1948). 176
 - Oriani, R. A. and Smyth, C. P.: J. Am. Chem. Soc. **70**, 125-30 (1948).
- Smith, A. G., Ring, H., Smith, W. V. and Gordy, W .: 177 Phys. Rev. 74, 370-2 (1948). Strandberg, M. W. P.:
- 178 Phys. Rev. 74, 1245 (1948).
- Strandberg, M. W. P., Wentink, T., Jr., Hillger, R. E., Wan-179 nier, G. H. and Deutsch, M. L.: Phys. Rev. 73, 188 (1948).
- Townes, C. H., Holden, A. N. and Merritt, F. R.: 180 Phys. Rev. 74, 1113 (1948).
- 181 Townes, C. H., Merritt, F. R. and Wright, B. D.: Phys. Rev. 73, 1334-7 (1948).
- 182 van Itterbeek, A. and de Clippeleir, K.: Physica 14, 349-56 (1948).

1949

- Deleted.
- 184 Bragg, J. K. and Sharbaugh, A. H.: Phys. Rev. 75, 1774-5 (1949).
- 185 Deleted.

- 186 Deleted.
- Coles, D. K. and Hughes, R. H.: 187
- Phys. Rev. **76**, 178 (1949). Dailey, B. P., Mays, J. M. and Townes, C. H.: 188 Phys. Rev. 76, 136-7 (1949).
- Dailey, B. P., Mays, J. M. and Townes, C. H .: 189 Phys. Rev. 76, 472 (1949).
- Gilbert, D. A., Roberts, A. and Griswold, P. A.: 190 Phys. Rev. 76, 1723 (1949).
- Gilliam, O. R., Edwards, H. D. and Gordy. W.: Phys. Rev. 75, 1014-6 (1949). 191 192
 - Hughes, H. K .: Phys. Rev. 76, 1675-7 (1949).

- 193 Karplus, R. and Sharbaugh, A. H.: Phys. Rev. 75, 889, 1449 (1949).
- Moore, E. M. and Hobbs, M. E .: 194 J. Am. Chem. Soc. 71, 411-13 (1949).
- Oriani, R. A. and Smyth, C. P. 195 J. Chem. Phys. 17, 1174-8 (1949).
- Roberts, A. and Edgell, W. F .: 196 J. Chem. Phys. 17, 742-3 (1949). Strandberg, M. W. P.: 197
- J. Chem. Phys. 17, 901-4 (1949). 198
- Strandberg, M. W. P., Pearsall, C. S. and Weiss, M. T.: J. Chem. Phys. 17, 429 (1949). Strandberg, M. W. P., Wentink, T., Jr. and Hill, A. G.; 199
- Phys. Rev. 75, 827–32 (1949). Strandberg, M. W. P., Wentink, T., Jr. and Kyhl, R. L.: 200
- Phys. Rev. 75, 270 (1949) Thomas, J. R. and Gwinn, W. D.:
- 201 J. Am. Chem. Soc. 71, 2785-90 (1949).
- Townes, C. H., Shulman, R. G. and Dailey, B. P.: Phys. Rev. **76**, 472 (1949). Trischka, J. W.: 202
- 203
- Phys. Rev. 76, 1365-8 (1949).
- Westenberg, A. A., Goldstein, J. H. and Wilson, E. B., Jr.: 204 J. Chem. Phys. 17, 1319-21 (1949).

- 205 Amble, E. and Dailey, B. P.:
- J. Chem. Phys. 18, 1422 (1950). Barclay, G. A., LeFèvre, R. J. W. and Smythe, B. M.: 206 Trans. Faraday Soc. 46, 812-20 (1950).
- 207 Beard, C. I. and Dailey, B. P.: J. Chem. Phys. 18, 1437-41 (1950), errata in J. Chem.
 - Phys. 19, 975 (1951). Coles, D. K., Good, W. E. and Hughes, R. H.:
- 208 Phys. Rev. **79**, 224 (1950). Epprecht, G. W.: 209
- Z. Angew. Math. Phys. 1, 138-47 (1950). 210
- Grabner, L. and Hughes, V. Phys. Rev. 79, 819-28 (1950).
- 211 Deleted.
- 212 LeFèvre, R. J. W., Mulley, J. W. and Smythe, B. M.: J. Chem. Soc. 1950, 290-5 (1950).
- LeFèvre, R. J. W. and Smythe, B. M.: 213 J. Chem. Soc. 1950, 276-83 (1950).
- 214 Lide, D. R., Jr. and Coles, D. K .: Phys. Rev. 80, 911 (1950).
- 215 Mays, J. M.:
- Thesis, Columbia University, (New York, 1950). Senatore, S. J .: 216
- Phys. Rev. 78, 293-4 (1950).
- Sharbaugh, A. H., Pritchard, B. S., Thomas, V. G., Mays, 217 J. M. and Dailey, B. P .: Phys. Rev. 79, 189 (1950).
- 218 Sharbaugh, A. H., Thomas, V. G. and Pritchard, B. S.: Phys. Rev. 78, 64-5 (1950).
- Shulman, R. G., Dailey, B. P. and Townes, C. H.: 219
- Phys. Rev. 78, 145-8 (1950). 220 Deleted.
- 221
- Shulman, R. G. and Townes, C. H.: Phys. Rev. 77, 421-2 (1950).
- 222 Shulman, R. G. and Townes, C. H.:
- Phys. Rev. 77, 500-6 (1950). Smith, D. F., Tidwell, M. and Williams, D. V. P.: 223 Phys. Rev. 77, 420-1 (1950).
- Smith, D. F., Tidwell, M. and Williams, D. V. P.: 224
- Phys. Rev. 79, 1007-8 (1950).
- 225 Deleted.
- Westenberg, A. A. and Wilson, E. B., Jr.: 226 J. Am. Chem. Soc. 72, 199-200 (1950).

1951

- 227 Amble, E.:
 - Phys. Rev. 83, 210 (1951).
- 227a Angyal, C. L., Barclay, G. A., Hukins, A. A. and LeFèvre, R. J. W.:
 - J. Chem. Soc. 1951, 2583-8 (1951).

- 228 Barclay, G. A., LeFèvre, R. J. W. and Smythe, B. M.: Trans. Faraday Soc. 47, 357-65 (1951).
- Burkhard, D. G. and Dennison, D. M.: 229 Phys. Rev. 84, 408 (1951).
- Coles, D. K., Good, W. E., Bragg, J. K. and Sharbaugh, 230 A. H.:
 - Phys. Rev. 82, 877-8 (1951).
- Crable, G. F. and Smith, W. V.: J. Chem. Phys. **19**, 502 (1951). 231
- Cunningham, G. L., Jr., Boyd, A. W., Myers, R. J., Gwinn, 232 W. D. and Le Van, W. I.
- J. Chem. Phys. **19**, 676–85 (1951). Gibbs, J. H. and Smyth, C. P.: 233
- J. Am. Chem. Soc. 73, 5115-8 (1951). Hillger, R. E. and Strandberg, M. W. P.: 234
- Phys. Rev. 83, 575-81 (1951 Hollis, N. R. S. and McIntosh, R. L.:
- 235 Can. J. Chem. 29, 494-7 (1951).
- 236 Hughes, R. H.:
- Bull. Am. Phys. Soc. 26, 21 (1951). Lawrance, R. B. and Strandberg, M. W. P.: 237
- Phys. Rev. 83, 363-9 (1951).
- 238 Lide, D. R., Jr.: J. Chem. Phys. 19, 1605-6 (1951)
- Loomis, C. C. and Strandberg, M. W. P .: 239
- Phys. Rev. 81, 798-807 (1951).
- Lovering, W. F. and Wiltshire, L.: 240 Proc. Inst. Elec. Engrs. (London), Pt. II, **98**, 557 (1951). Luce, R. G. and Trischka, J. W.: 241
- Phys. Rev. 83, 851-2 (1951).
- Magnuson, D. W .: 242 J. Chem. Phys. 19, 1071 (1951).
- Magnuson, D. W .: 243 J. Chem. Phys. 19, 1614 (1951).
- Rogers, J. D., Pietenpol, W. J. and Williams, D.: 244 Phys. Rev. 83, 431-4 (1951). Shaw, T. M. and Windle, J. J.:
- 245 J. Chem. Phys. 19, 1063-4 (1951).
- Shoolery, J. N. and Sharbaugh, A. H.: 246 Phys. Rev. 82, 95 (1951).
- Shoolery, J. N., Shulman, R. G. and Sheehan, W. F., Jr.: 247 J. Chem. Phys. 19, 1364-9 (1951).
- Shoolery, J. N., Shulman, R. G. and Yost, D. M.: 248 J. Chem. Phys. 19, 250-1 (1951).
- 249 Sirvetz, M. H .: J. Chem. Phys. 19, 1609-10 (1951).

- Angyal, C. L. and LeFèvre, R. J. W .: 250 J. Chem. Soc. 1952, 1651-3 (1952).
- Barclay, G. A. and LeFèvre, R. J. W .: 251
- J. Chem. Soc. 1952, 1643-8 (1952). Beard, C. I. and Bianco, D. R.: 252
- J. Chem. Phys. 20, 1488-9 (1952).
- Birnbaum, G. and Chatterjee, S. K .: 253
- J. Appl. Phys. 23, 220-3 (1952).
- Carlson, R. O., Lee, C. A. and Fabricand, B. P.: 254 Phys. Rev. 85, 784-7 (1952)
- Freeman, H. C., LeFèvre, R. J. W. and Maramba, F.: 255 J. Chem. Soc. 1952, 1649-51 (1952).
- 256 Fristrom, R. M.: J. Chem. Phys. 20, 1 (1952), corrected in J. Chem. Phys. 26, 734 (1957).
- Ghosh, S. N., Trambarulo, R. and Gordy, W .: 257
- Phys. Rev. 87, 172 (1952). 258 Hawkins, N. J., Cohen, V. W. and Koski, W. S.:
- J. Chem. Phys. 20, 528 (1952). Hrostowski, H. J. and Pimentel, G. C .: 259
- J. Chem. Phys. 20, 518 (1952). Hughes, R. H. 260
- Phys. Rev. 85, 717 (1952).
- Johnson, H. R. and Strandberg, M. W. P.: 261 J. Chem. Phys. 20, 687-95 (1952).
- Lide, D. R., Jr.: 262 J. Am. Chem. Soc. 74, 3548-52 (1952). 263
 - Lide, D. R., Jr.: J. Chem. Phys. 20, 1812-3 (1952).

- 264
- Magnuson, D. W.: J. Chem. Phys. **20**, 229–32 (1952). Mays, J. M. and Dailey, B. P.: 265
- J. Chem. Phys. 20, 1695-702 (1952). Myers, R. J. and Gwinn, W. D.: 266
- J. Chem. Phys. 20, 1420-7 (1952). Smith, D. F. and Magnuson, D. W .: 267
- Phys. Rev. 87, 226 (1952). Trischka, J. W.: 268
 - J. Chem. Phys. 20, 1811-12 (1952).

- 269 Andersen, F. A., Bak, B. and Rastrup-Andersen, J.: Acta Chem. Scand. 7, 643-51 (1953).
- Buckingham, A. D., Harris, B. and LeFèvre, R. J. W.: J. Chem. Soc. **1953**, 1626-7 (1953). 270
- Buckingham, A. D. and LeFèvre, R. J. W .: 271
- J. Chem. Soc. **1953**, 3432-5 (1953). Buckingham, A. D. and LeFèvre, R. J. W.: 272 J. Chem. Soc. 1953 4169-70 (1953).
- Conradi, J. J. and Li, N. C.: 273
- J. Am. Chem. Soc. 75, 1785-8 (1953).
- Fabricand, B. P., Carlson, R. O., Lee, C. A. and Rabi, I. I.: Phys. Rev. **91**, 1403–8 (1953). 274
- Ghosh, S. N., Trambarulo, R. and Gordy, W.: 275J. Chem. Phys. 21, 308-10 (1953). 276
- Deleted.
- 277 Habgood, H. W .:
- Dissertation Abstr. 13, 296 (1953). Harris, B., LeFèvre, R. J. W. and Sullivan, E. P. A.: 278 J. Chem. Soc. 1953, 1622-6 (1953).
- 279 Hughes, R. H.:
- J. Chem. Phys. **21**, 959–60 (1953). Ivash, E. V. and Denninson, D. M.: 280
- J. Chem. Phys. 21, 1804 (1953). 281
- Johnson, R. D., Myers, R. J. and Gwinn, W. D.: J. Chem. Phys. **21**, 1425 (1953). Lee, C. A., Fabricand, B. P., Carlson, R. O. and Rabi, I. I.:
- 282 Phys. Rev. 91, 1395-403 (1953).
- 283 Lide, D. R., Jr.:
- J. Chem. Phys. 21, 571 (1953). Luce, R. G. and Trischka, J. W.: 284
- J. Chem. Phys. 21, 105-9 (1953).
- Sirvetz, M. H. and Weston, R. E., Jr.: J. Chem. Phys. **21**, 898–902 (1953). 285
- Trambarulo, R., Ghosh, S. N., Burrus, C. A. and Gordy, W .: 286 J. Chem. Phys. 21, 851-5 (1953).
- Tulinskie, A., DiGiacomo, A. and Smyth, C. P.: 287 J. Am. Chem. Soc. 75, 3552-4 (1953).

1954

- Buckingham, A. D., Holland, H. G. and LeFèvre, R. J. W .: 288 J. Chem. Soc. 1954, 1646-8 (1954).
- De More, B. B., Wilcox, W. S. and Goldstein, J. H.: 289 J. Chem. Phys. 22, 876-7 (1954).
- Ferguson, R. C.: 290
- J. Am. Chem. Soc. 76, 850-3 (1954). Hardy, W. A. and Silvey, G .: 291
- Phys. Rev. 95, 385-8 (1954). 292 Deleted.
- 293 Honig, A., Mandel, M., Stitch, M. L. and Townes, C. H.: Phys. Rev. 96, 629-42 (1954).
- 294 Hrostowski, H. T. and Myers, R. J .:
- J. Chem. Phys. 22, 262-5 (1954).
- 295 Deleted.
- 296 Javan, A. and Engelbrecht, A.:
- Phys. Rev. 96, 649-58 (1954). 297 Kisliuk. P .:
- J. Chem. Phys. **22**, 86–92 (1954). LeFèvre, R. J. W. and Rao, D. A. A. S. N.: 298 Australian J. Chem. 7, 135-45 (1954).
- 299 Lide, D. R., Jr.:
- J. Chem. Phys. **22**, 1577-8 (1954). Magnuson, D. W.: 300
 - "Microwave Dielectric Constant Measurements in Hydrogen Fluoride Vapor," Union Carbide Nuclear Co.

(Oak Ridge, Tenn.), Aug. 9, 1954 (O. R. N. L. Rept. K1180), as reported in Kuipers, G. A., J. Mol. Spectry. 2, 75 (1958).

- 301 Massey, J. T. and Bianco, D. R.:
- J. Chem. Phys. 22, 442-8 (1954). 302 Miyagawa, I.:
- J. Chem. Soc. Japan, Pure Chem. Sect. 75, 1162-5 (1954).
- 303 Miyagawa, I.: J. Chem. Soc. Japan, Pure Chem. Sect. 75, 1165-9 (1954).
- 304 Slayton, G. R., Simmons, J. W. and Goldstein, J. H .: J. Chem. Phys. 22, 1678-9 (1954).
- Sterzer, F.: 305
- J. Chem. Phys. 22, 2094 (1954), corrected in J. Chem. Phys. 23, 762 (1955).
- Tate, P. A. and Strandberg, M. W. P .: 306 J. Chem. Phys. 22, 1380–3 (1954).
- Wilcox, W. S., Goldstein, J. H. and Simmons, J. W .: 307 J. Chem. Phys. 22, 516-8 (1954).

1955

- Barchukov, A. I., Minaeva, T. M. and Prokhorov, A. M .: 308 Zh. Eksperim. i Teor. Fiz. 29, 892 (1955).
- 309 Braunstein, R. and Trischka, J. W .: Phys. Rev. 98, 1092-8 (1955).
- 310 Chau, J. Y. H. and LeFèvre, R. J. W .: Australian J. Chem. 8, 562-4 (1955).
- Chiba, T.: 311
- Bull. Chem. Soc. Japan 28, 19-24 (1955). Chiba, T.: 312
- Bull. Chem. Soc. Japan 28, 295-9 (1955). Chiba, T.: 313
- Bull. Chem. Soc. Japan 28, 505-9 (1955). DiGiacomo, A. and Smyth, C. P.: 314
- J. Am. Chem. Soc. 77, 747 (1955).
- 315 DiGiacomo, A. and Smyth, C. P.: J. Am. Chem. Soc. 77, 1361-4 (1955). Deleted. 316
- 317 Fernandez, J., Myers, R. J. and Gwinn, W. D.: J. Chem. Phys. 23, 758-9 (1955).
- 318 Holland, R. S. and Smyth, C. P.: J. Am. Chem. Soc. 77, 268-71 (1955).
- 319 Howe, J. A. and Goldstein, J. H .: J. Chem. Phys. 23, 1223-5 (1955).
- Kraitchman, J. and Dailey, B. P.: 320J. Chem. Phys. 23, 184-90 (1955).
- LeFèvre, R. J. W. and Rao, D. A. A. S. N .: 321Australian J. Chem. **8**, 140-2 (1955). Madden, R. P. and Benedict, W. S.:
- 322 J. Chem. Phys. 23, 408-9 (1955).
- 323 Massey, J. T. and Hart, R. W.:
- J. Chem. Phys. 23, 942 (1955). Mockler, R. C. and Bird, G. R.: 324
- Phys. Rev. 98, 1837-9 (1955). Rogers, M. T. and Pruett, R. D.: 325
- J. Am. Chem. Soc. 77, 3686-8 (1955). Rogers, M. T., Pruett, R. D. and Speirs, J. L.: 326
- J. Am. Chem. Soc. 77, 5280-2 (1955). 327
 - Tuomikoski, P.: J. Phys. Radium 16, 347-8 (1955).

- Barchukov, A. I., Minaeva, T. and Prokhorov, A. M.: 328
- Soviet Phys. JETP. (English Transl.) 2, 760L (1956). Buckingham. A. D., Chau, J. Y. H., Freeman, H. C., LeFèvre, R. J. W., Rao, D. A. A. S. N. and Tardif, J.: 329J. Chem. Soc. 1956, 1405-11 (1956).
- 330 Hughes, R. H.:
- J. Chem. Phys. 24, 131-8 (1956).
- Jache, A. W., Moser, P. W. and Gordy, W.: J. Chem. Phys. 25, 209-10 (1956). 331
- 332 Deleted. 333
- Kwak, N., Goldstein, J. H. and Simmons, J. W .: J. Chem. Phys. 25, 1203-5 (1956).

- Laurie, V. W .: 334
- J. Chem. Phys. 24, 635-6 (1956).
- Lide, D. R., Jr. and Mann, D. E .: 335 J. Chem. Phys. 25, 595 (1956).
- Magnuson, D. W .: 336 J. Chem. Phys. 24, 344-7 (1956).
- Maryott, A. A. and Birnbaum, G.: 337 J. Chem. Phys. 24, 1022-6 (1956).
- Deleted. 338
- 339 Rogers, M. T., Pruett, R. D., Thompson, H. B. and Speirs. J. L.:
 - J. Am. Chem. Soc. 78, 44-5 (1956).
- Tannenbaum, E., Myers, R. J. and Gwinn, W. D.: 340 J. Chem. Phys. 25, 42-7 (1956).
- Trischka, J. W .: 341 J. Chem. Phys. 25, 784-5 (1956).
- 342 Uenishi, R. K.: Dissertation Abstr. 16, 1327-8 (1956).

- 343 Birnbaum, G.:
- J. Chem. Phys. 27, 360-8 (1957).
- Boggs, J. E., Crain, C. M. and Whiteford, J. E .: 344
- J. Phys. Chem. **61**, 482-4 (1957). Chiba, T., Shimozawa, T., Miyagawa, I. and Morino, Y.: 345 Bull. Chem. Soc. Japan 30, 223-7 (1957).
- Gent, W. L. G.: 346
- J. Chem. Soc. 1957, 58-62 (1957).
- Ishiguro, T., Chiba, T., and Gotoh, N.: 347 Bull. Chem. Soc. Japan 30, 25-7 (1957).
- Kilb, R. W., Lin, C. C. and Wilson, E. B., Jr.: 348 J. Chem. Phys. 26, 1695-703 (1957).
- Kilb, R. W. and Pierce, L .: 349 J. Chem. Phys. 27, 108-12 (1957).
- Kojima, T. and Nishikawa, T.: 350 J. Phys. Soc. Japan 12, 680 (1957).
- Kurland, R. J. and Wilson, E. B., Jr.: 351
- J. Chem. Phys. 27, 585-90 (1957).
- 352 La Rochelle, J. H.: Dissertation Abstr. 17, 46 (1957). Laurie, V. W .: 353
- J. Chem. Phys. 26, 1359-62 (1957). 354Lide. D. R., Jr.:
- J. Chem. Phys. 27, 343 (1957).
- 355 Lide, D. R., Jr., Mann, D. E. and Fristrom, R. M.: J. Chem. Phys. 26, 734-9 (1957).
- 356 Lide. D. R., Jr. and Mann, D. E.:
- J. Chem. Phys. **27**, 868-73 (1957). Lide. D. R., Jr. and Mann, D. E.: 357 J. Chem. Phys. 27, 874-7 (1957).
- Magnuson, D. W .: 358 J. Chem. Phys. 27, 223-6 (1957).
- 359 Deleted.
- Marshall, S. A. and Weber, J.: 360 Phys. Rev. 105, 1502-6 (1957).
- 361 Maryott, A. A. and Kryder, S. J.: J. Chem. Phys. 27, 1221-2 (1957).
- Miyagawa, I., Chiba, T., Ikeda, S. and Morino, Y.: 362 Bull. Chem. Soc. Japan 30, 218-22 (1957).
- Morino, Y., Miyagawa, I., Chiba, T. and Shimozawa, T.: Bull. Chem. Soc. Japan **30**, 222-3 (1957). 363
- Naylor, N. E., Jr. and Wilson, E. B., Jr.: 364
- J. Chem. Phys. 26, 1057-60 (1957).
- Siegel, S.: 365
- J. Chem. Phys. 27, 989-90 (1957). Deleted. 366
- Swalen, J. D. and Herschbach, D. R.: 367
- J. Chem. Phys. 27, 100-8 (1957).
- Veselago. V. G. 368
- Soviet Phys. JETP (English transl.) 5, 513L (1957). 369 Veselago, V. G.:
- Zh. Eksperim. i Teor. Fiz. **32**, 620 (1957). 370. Wagner, R., Fine, J., Simmons, J. W. and Goldstein, J. H.: J. Chem. Phys. 26, 634-7 (1957).

- Barchukov, A. I., Murina, T. M. and Prokhorov, A. M.: 371 Opt. i Spektroskopiya 4, 521-3 (1958).
- Barchukov, A. I. and Prokhorov, A. M .: 372 Opt. i Spektroskopiya 5, 530-4 (1958). Barchukov, A. I. and Prokhorov, A. M.:
- 373 Opt. i Spektroskopiya 4, 799 (1958).
- Barrett, A. H. and Mandel, M.: 374 Phys. Rev. 109, 1572-89 (1958).
- Burrus, C. A.: 375 J. Chem. Phys. 28, 427-9 (1958).
- 376 Burrus, C. A. and Graybeal, J. D.: Phys. Rev. 109, 1553-6 (1958).
- Cox, A. P., Thomas, L. F. and Sheridan, J.: 377 Nature 181, 1000L (1958).
- Erlandson, G. and Selén, H.: 378
- Arkiv Fysik 14, 61–4 (1958). Fritsky, H. G.: 379
- Z. Physik 151, 351 (1958). Gräff, G., Paul, W., and Schlier, Ch.: 380
- Z. Physik 153, 38 (1958). Hirota, E., Oka, T. and Morino, Y .: 381 J. Chem. Phys. 29, 444-5 (1958).
- Lew, H., Morris, D., Geiger, F. E. and Eisinger, J. T.: 382
- Can. J. Phys. **36**, 171–83 (1958). Lide, D. R., Jr. and Mann, D. E.: 383 J. Chem. Phys. 28, 572-6 (1958).
- Lide, D. R., Jr. and Mann, D. E .: 384 J. Chem. Phys. 29, 914-20 (1958).
- 385 Lotspeich, J. F. Dissertation Abstr. 19, 340-1 (1958).
- Millen, D. J. and Sinnott, K. M.: 386
- J. Chem. Soc. 1958, 350-5 (1958). Pierce, L.: 387
- J. Chem. Phys. 29, 383-8 (1958). 388 Deleted.
- Swalen, J. D. and Stoicheff, B. P.: 389
- J. Chem. Phys. 28, 671-4 (1958). 390 Veselago, V. G.:
- Izv. Akad. Nauk SSSR Ser. Fiz. 22, 1150-3 (1958).

- Beeson, E. L., Williams, Q. and Weatherly, T. L .: 391 Bull. Am. Phys. Soc. 4, 291 (1959).
- 392 Burrus, C. A.: J. Chem. Phys. 31, 1270-2 (1959).
- 393 Clayton, L., Williams, Q. and Weatherly, T. L .:
- J. Chem. Phys. 30, 1328-34 (1959).
- Curl, R. F., Jr.: 394 J. Chem. Phys. 30, 1529-36 (1959).
- 395 de Kowalewski, D. G., Kökeritz, P. and Selén, H.: J. Chem. Phys. 31, 1438 (1959).
- Eagle, D. F., Weatherly, T. L. and Williams, Q.: J. Chem. Phys. **30**, 603-4 (1959). 396
- Gräff, G.: 397
- Z. Physik 155, 433-40 (1959).
- Kasai, P. H., Myers, R. J., Eggers, D. F., Jr. and Wiberg, 398 K. B.:
- J. Chem. Phys. 30, 512-6 (1959).
- Kökeritz, P. G. and Selén, H.: 399
- Arkiv Fysik 16, 197-8 (1959). Krisher, L. C. and Wilson, E. B., Jr.: 400
- J. Chem. Phys. 31, 882-9 (1959).
- Laurie, V. W .: 401 J. Chem. Phys. 30, 1210-4 (1959).
- Laurie, V. W .: 402
- J. Chem. Phys. 31, 1500-5 (1959).
- Deleted. 403
- Lide, D. R., Jr.: 404
 - Spectrochim. Acta 1959, 473-6 (1959).
- Lide, D. R., Jr. and Mann, D. E .: 405J. Chem. Phys. 31, 1129-30 (1959).
- 406 Lotspeich, J. F., Javan, A. and Engelbrecht, A.: J. Chem. Phys. 31, 633-43 (1959).

- Marvott, A. A. and Kryder, S. J .: 407 J. Chem. Phys. 31, 617-21 (1959).
- Meschi, D. J. and Myers, R. J.: 408 J. Mol. Spectry. 3, 405-16 (1959).
- Pierce, L. and Krisher, L. C .: 409 J. Chem. Phys. 31, 875-82 (1959).
- Pierce, L. and O'Reilly, J. M .: 410 J. Mol. Spectry. 3, 536-47 (1959).
- Schafer, G. E.: 411 Dissertation Abstr. 19, 2631 (1959).
- Swalen, J. D. and Costain, C. C.: 412 J. Chem. Phys. 31, 1562-74 (1959).
- Tyler, J. K., Thomas, L. F. and Sheridan, J.: 413 Proc. Chem. Soc. 1959, 155-6 (1959).
- Veselago, V. G.: 414 Opt. i Spektroskopiya 6, 450-7 (1959).

- Bhattacharya, B. N. and Gordy, W .: 415 Phys. Rev. 119, 144-9 (1960).
- Boggs, J. E. and Deam, A. P.: 416 J. Chem. Phys. 32, 315-6 (1960).
- Bransford, J. W., Kunkle, A. C. and Jache, A. W.: 417 J. Inorg. Nucl. Chem. 14, 159-60 (1960).
- Chan, S. I., Zinn, J., Fernandez, J., and Gwinn, W. D.: 418 J. Chem. Phys. 33, 1643-55 (1960).
- Dodd, R. E. and Little, R.: Nature **188**, 737 (1960). 419
- Favero, P. and Baker, J. G .: 420 Nuovo Cimento 17, 734 (1960).
- Green, G. W. and Lew, H.: Can. J. Phys. **38**, 482-94 (1960). 421
- Hirota, E. and Morino, Y .: 422 Bull, Chem. Soc. Japan 33, 158-62 (1960).
- Ilias, D. and Boudouris, G .: 423 Compt. Rend. 250, 1833-5 (1960). Irisova, N. A. and Dianov, E. M.: 424
- Opt. Spectry. (USSR) (English transl.) 9, 136A (1960). Kasuya, T. and Oka, T.: 425
- J. Phys. Soc. Japan 15, 296-303 (1960).
- Kivelson, D., Wilson, E. B., Jr. and Lide, D. R., Jr.: 426 J. Chem. Phys. 32, 205-9 (1960).
- 427 Kojima, T.:
- J. Phys. Soc. Japan 15, 1284 (1960). Kondo, K. and Oka, T .: 428
- J. Phys. Soc. Japan 15, 307 (1960).
- Kwei, G. H. and Hershbach, D. R.: 429 J. Chem. Phys. **32**, 1270–1 (1960).
- Le Blanc, O. H., Laurie, V. W. and Gwinn, W. D.: 430J. Chem. Phys. 33, 598-600 (1960).
- Lide, D. R., Jr.: 431 J. Chem. Phys. 33, 1514-8 (1960).
- 432 Lide, D. R., Jr.: J. Chem. Phys. 33, 1519-22 (1960).
- 433 Deleted.
- Maryott, A. A. and Birnbaum, G.: 434 J. Phys. Chem. 64, 1778 (1960).
- Millen, D. J. and Morton, J. R.: 435 J. Chem. Soc. **1960**, 1523-8 (1960). Petersen, D. H. and Pierce, L.:
- 436 Spectrochim. Acta 16, 1272 (1960).
- Pierce, L. and Petersen, D. H.: 437
- J. Chem. Phys. 33, 907-13 (1960). Prokhorov, A. M. and Shipulo, G. P.: 438
- Opt. Spectry. (USSR) (English transl.) 8, 218-9 (1960). Sheridan, J., Tyler, J. K., Aynsley, E. E. and Dodd, R. E.: Nature 185, 96 (1960). 439
- Tyler, J. K. and Sheridan, J.: 440 Proc. Chem. Soc. 1960, 119-20 (1960).
- 441 Weatherly, T. L. and Williams, Q.: Bull. Am. Phys. Soc. 5, 228 (1960).
- 442 Wharton, L., Gold, L. P. and Klemperer. W .: J. Chem. Phys. 33, 1255 (1960).

- 443 Deleted.
- Barchukov, A. I. and Petrov, U. N.: 444
- Opt. i Spektroskopiya 11, 129 (1961).
- 444a Deleted. Boggs, J. E. and Deam, A. P .: 445
- J. Chem. Phys. 35, 1178-80 (1961).
- 446 Buckingham, A. D. and Raab, R. E.: J. Chem. Soc. 1961, 5511-23 (1961).
- 447 Deleted.
- Dixon, W. B. and Wilson, E. B., Jr.: 448 J. Chem. Phys. 35, 191-8 (1961).
- Hirota, E. and Morino, Y .: 449 Bull. Chem. Soc. Japan 34, 341-8 (1961).
- Johnson, R. C., Weatherly, T. L. and Williams, Q .: 450 Bull. Am. Phys. Soc. 6, 270 (1961).
- Johnson, R. C., Weatherly, T. L. and Williams, Q.: J. Chem. Phys. **35**, 2261-2 (1961). 451
- Kojima, T., Breig, E. L. and Lin, C. C.: 452 J. Chem. Phys. 35, 2139-44 (1961).
- Laurie, V. W. 453
- J. Chem. Phys. 34, 291-4 (1961).
- Laurie, V. W .: 454
- J. Chem. Phys. 34, 1516-9 (1961). 455 Meyer, R. T. and Myers, R. J.:
- J. Chem. Phys. 34, 1074-5 (1961). 456 Mirri, A. M., Gaurnieri, A. and Favero, P.:
- Nuovo Cimento 19, 1189–94 (1961). O'Reilly, J. M. and Pierce, L. 457 J. Chem. Phys. 34, 1176-81 (1961).
- 458 Pierce, L.:
- J. Chem. Phys. 34, 498-506 (1961). 459 Pierce, L. and Hayashi, M.:
- J. Chem. Phys. 35, 479-85 (1961). 460 Pierce, L. and Jackson, R.:
- J. Chem. Phys. 35, 2240-1 (1961). 461 Deleted.
- Ramsey, N. F.: 462
- Amer. Scientist 49, 509 (1961). Rogers, M. T. and Canon, J. M .: 463
- J. Phys. Chem. 65, 1417-9 (1961). Sage, M. L .: 464
 - J. Chem. Phys. 35, 142-8 (1961).
- Weiss, R. E.: 465
- Thesis, Mass. Inst. of Tech. (Cambridge, Mass.), 1961. Deleted. 466

- Bak, B., Christensen, D., Hansen-Nygaard, L. and Rastrup-467 Andersen, J.:
- J. Mol. Spectry. 9, 222 (1962). Bak, B., Christensen, D., Hansen-Nygaard, L., Lipschitz, L. 468 and Rastrup-Andersen, J .:
 - J. Mol. Spectry. 9, 225 (1962).
- 469 Bak, B., Christensen, D., Hansen-Nygaard, L. and Rastrup-Andersen, J.:
 - Spectrochim. Acta 18, 1421 (1962).
- Beaudet, R. A. and Wilson, E. B. Jr.: 470 J. Chem. Phys. 37, 1133-8 (1962).
- Beeson, E. L., Weatherly, T. L. and Williams, Q.: J. Chem. Phys. **37**, 2926 (1962). 471
- Davidson, D. W.: 472
- Can. J. Chem. 40, 1721 (1962). 473
- Flygare, W. H., Narath, A. and Gwinn, W. D.: J. Chem. Phys. 36, 200-8 (1962). 473a Gold, L. P .:
- Thesis, Harvard Univ. (Cambridge, Mass.), 1962. 474 Graybeal, J. D. and Roe, D. W .:
- J. Chem. Phys. 37, 2503 (1962).
- Hess, W. N., Mather, R. L. and Nobles, R. A.: 475 J. Chem. Eng. Data 7, 317-9 (1962).
- 476 Hirota, E.:
- J. Chem. Phys. 37, 283 (1962).
- Howe, J. A. and Flygare, W. H.: 477 J. Chem. Phys. 36, 650-2 (1962).

- 478 Jackson, R. H.:
- J. Chem. Soc. 1962, 4585 (1962). 479 Kasuya, T.:
 - Sci. Papers Inst. Phys. Chem. Res. (Tokyo) 56, No. 1, 1 (1962)
- 480Kim, H., Keller, R. and Gwinn, W. D.: J. Chem. Phys. 37, 2748 (1962).
- Kirchoff, W. H. and Wilson, E. B., Jr.: 481 J. Am. Chem. Soc. 84, 334-6 (1962).
- 482 Deleted.
- Laurie, V. W., Pence, D. T. and Jackson, R. H.: 483 J. Chem. Phys. 37, 2995 (1962). 484
- Levine, I. N.: J. Mol. Spectry. 8, 276–84 (1962).
- 485Levine, I. N.:
- Thesis, Harvard Univ. (Cambridge, Mass.), 1962. 486
- Lide, D. R., Jr.: J. Chem. Phys. 37, 2074 (1962).
- McLay, D. B. and Mann, C. R.: 487
- Can. J. Phys. 40, 61-73 (1962).
- 487a Mizushima, S.:
 - Advances in Molecular Spectroscopy, Proc. 3, 1167, International Meeting on Molecular Spectra (Pergamon Press, 1962).
- 487b Morino, Y., Oka, T., Kikuchi, Y., Matumura, C. and Saito, S .:
 - Symposium on Molecular Structure and Spectroscopy, Part C, 312 (Tokyo, 1962).
- 488 Mukhtarov, I. A.: Izv. Akad. Nauk. Azerb. SSR, Ser. Fiz. Mat. i Tekhn. Nauk No. 4, 59 (1962).
- 489 Nugent, L. J., Mann, D. E. and Lide, D. R., Jr.:
- J. Chem. Phys. 36, 965-71 (1962). 490 Pierce, L. and Dobyns, V.:
- J. Am. Chem. Soc. 84, 2651-2 (1962). 491
- Pillai, M. G. N.: J. Phys. Chem. **66**, 178–80 (1962). Rathjens, G. W .: 492
- J. Chem. Phys. 36, 2401-6 (1962). 493 Regnier, J. F. and Daum, A.:
- Compt. Rend. 255, 247 (1962). 493a Sheridan, J.:
 - Advances in Molecular Spectroscopy, Proc. 4, 139, International Meeting on Molecular Spectra (Pergamon Press, 1962).
- Shipulo, G. P.: 494
- Opt. i Spektroskopiya 13, 593 (1962).
- Shipulo, G. P.: 495
- Opt. Spectry. (USSR) (English transl.) 13, 335 (1962). Sobolev, G. A., Shcherbakov, A. M. and Akishim, P. A.: 496
- Opt. i Spektroskopiya **12**, 147 (1962).
- 497 Monatsh. Chem. 93, 600-5 (1962).
- 498 Tolles, W. M. and Gwinn, W. D.:
- J. Chem. Phys. 36, 1119-21 (1962).
- 499 van der Kelen, G. P. Bull. Soc. Chim. Belges 71, 421 (1962).
- 500 Wharton, L., Kaufman, M. and Klemperer, W.: J. Chem. Phys. 37, 621 (1962).

- 500a Bauder, A., Tank, F. and Gunthard, H. S.: Helv. Chim. Acta 46, 1453 (1963).
- 501 Bauer, R. K. and Lew, H .: Can. J. Phys. 41, 1461 (1963).
- Beaudet, R. A .: 502
- J. Chem. Phys. 38, 2548 (1963). Blukis, U., Kasai, P. H. and Myers, R. J .: 503
- J. Chem. Phys. 38, 2753 (1963). Butcher, S. S.: 504
- J. Chem. Phys. 38, 2310 (1963).
- 504a Curl, R. F., Rao, V. M. Sastry, K. V. L. N. and Hodgeson, J. A.: J. Chem. Phys. 39, 3335 (1963).
- 505 Dobyns, V. and Pierce, L .: J. Am. Chem. Soc. 85, 3553-6 (1963).

- 506 Ehrenstein, G.: Phys. Rev. 130, 669 (1963).
- 507 Gray, P. and Pearson, M. J .:
- Trans. Faraday Soc. **59**, 347 (1963). Hodgeson, J. A., Sibert, E. E. and Curl, R. F., Jr.: 508 J. Phys. Chem. 67, 2833-5 (1963).
- 509 Imanov, L. M. and Kadzhar, Ch. O. Opt. i Spektroskopiya 14, 300 (1963).
- 510 Kuczkowski, R. L. and Wilson, E. B., Jr.: J. Chem. Phys. 39, 1030 (1963).
- Larkin, M. and Gordy, W.: J. Chem. Phys. **38**, 2329 (1963). 511
- 512Lide, D. R., Jr.: J. Chem. Phys. 38, 2027 (1963).
- 513 Lide, D. R., Jr:
- J. Chem. Phys. 38, 456 (1963).
- Muenter, J. S. and Laurie, V. W .: 514 J. Chem. Phys. 39, 1181 (1963). Mukhtarov, I. A.: 515
- Dokl. Akad. Nauk SSSR 148, 566 (1963). 516 Mukhtarov, I. A.:
- Dokl. Akad. Nauk SSSR 151, 1076-8 (1963). 517 Mukhtarov, I. A.:
- Opt. i Spektroskopiya 14, 728 (1963).
- 518 Mukhtarov, I. A.: Opt. i Spektroskopiya 15, 563-4 (1963).
- 519 Nelson, R.: J. Chem. Phys. 39, 2382-3 (1963).
- 520 Poynter, R. L.: J. Chem. Phys. 39, 1962 (1963).
- Stiefvater, O. L. and Sheridan, J.: 521 Proc. Chem. Soc. 1963, 368 (1963).
- 522 Tyler, J. K.:
- J. Mol. Spectry. 11, 39 (1963). Tyler, J. K. and Sheridan, J.: 523
- Trans. Faraday Soc. 59, 2661 (1963). Varma, R., MacDiarmid, A. G. and Miller, J. G.: 524 J. Chem. Phys. 39, 3157-8 (1963).
- 525 Weiss, R.:
- Phys. Rev. 131, 659 (1963).
- Wharton, L. and Klemperer, W .: 526 J. Chem. Phys. 38, 2705 (1963).
- Wharton, L., Klemperer, W., Gold, L. P., Strauch, R., Gallager, J. J. and Derr, V. E.: J. Chem. Phys. 38, 1203 (1963). 527

1964

- 527a Arnold, W., Dreizler, H. and Rudolph, H. D.: Z. Naturforsch. 19a, 1428 (1964).
- Bauer, R. K. and Lew, H.: Can. J. Phys. 42, 830-1 (1964). 528
- 529 Beaudet, R. A.: J. Chem. Phys. 40, 2705 (1964).
- Boggs, J. E., Coffey, D. and Davies, J. C., Jr.: J. Phys. Chem. **68**, 2383-4 (1964). 530
- Butcher, S. S. and Wilson, E. B., Jr.: 531 J. Chem. Phys. 40, 1671-8 (1964).
- 532 Chan, S. I., Ikenberry, D. and Das, T. P.: J. Chem. Phys. 41, 2107 (1964).
 532a Dreizler, H. and Dendl, G.:
- Z. Naturforsch. 19a, 512-14 (1964). 533 Esterowitz, L. and Rosenthal, J.:
- J. Chem. Phys. 40, 1986-7 (1964). Freeman, D. E. and Klemperer, W.: 534
- J. Chem. Phys. **40**, 604–5 (1964). Hebert, A. J., Breivogel, F. W., Jr. and Street, K., Jr.:
- 535 J. Chem. Phys. 41, 2368-76 (1964).
- 536 Hollowell, C. D., Hebert, A. J. and Street, K., Jr.: J. Chem. Phys. 41, 3540 (1964).
- 536a Kuczowski, R. L .: J. Am. Chem. Soc., 86, 3617 (1964).
- 537 Lide, D. R., Jr., Cahill, P. and Gold, L. P.: J. Chem. Phys. 40, 156-9 (1964).
- 538 Lide, D. R., Jr. and Jen, M.: J. Chem. Phys. 40, 252-3 (1964).
- Meighan, R. M. and Cole, R. H.: 539 J. Phys. Chem. 68, 503-8 (1964).

Tarnawski, A.:

- Muenter, J. S. and Laurie, V. W .: 540
- J. Am. Chem. Soc. 86, 3901-2 (1964). Mukhtarov, I. A.: 541
- Opt. i Spektroskopiya **16**, 360 (1964). ka, T., Tsuchiya, K., Iwata, S. and Morino, Y.: 542 Oka, T., Bull. Chem. Soc. Japan 37, 4-7 (1964).
- 543 Powell, F. X. and Lide, D. R., Jr.: J. Chem. Phys. 41, 1413-19 (1964).
- Rao, V. M. and Curl, R. F., Jr.: 544 J. Chem. Phys. 40, 3688-90 (1964).
- Sastry, K. V. L. N. and Curl, R. F., Jr.: 545 J. Chem. Phys. 41, 77-80 (1964).
- 545a Deleted.
- Tipton, A. B., Deam, A. P. and Boggs, J. E.: 546 J. Chem. Phys. 40, 1144 (1964).
- 547 Tyler, J. K .:
- J. Chem. Phys. 40, 1170-1 (1964). 548 Varma, R., MacDiarmid, A. G. and Miller, J. G.: Inorg. Chem. 3, 1754 (1964).

- 549 Beaudet, R. A.:
- J. Chem. Phys. 42, 3758 (1965). 550 Beaudet, R. A. and Poynter, R. L.:
- J. Chem. Phys. 43, 2166 (1965).
- Boone, D. W., Britt, C. O. and Boggs, J. E .: 551 J. Chem. Phys. 43, 1190 (1965).
- Breivogel, F. W., Jr., Hebert, A. J. and Street, K., Jr.: 552 J. Chem. Phys. 42, 1555 (1965).
- 553 Butcher, S. S.:
- J. Chem. Phys. 42, 1830 (1965). Butcher, S. S.: 554
- J. Chem. Phys. 42, 1833 (1965). Butcher, S. S. and Costain, C. C. 555
- J. Mol. Spectry. 15, 40-50 (1965). Cox, A. P. and Riveros, J. M.: 556
- J. Chem. Phys. 42, 3106 (1965). Foster, P. D., Rao, V. M. and Curl, R. F., Jr.: 557 J. Chem. Phys. 43, 1064 (1965).
- 558 Freund, R. S. and Klemperer, W .: J. Chem. Phys. 43, 2422 (1965).
- Hayman, H. J. G. and Weiss, S.: 559 J. Chem. Phys. 42, 3701 (1965).
- Hirota, E.: 560
- J. Chem. Phys. 42, 2071 (1965). Holmes, R. R. and Carter, R. P., Jr.: 561
- J. Chem. Phys. 43, 1645 (1965).
- 561a Huiszoon, C. and Dymanus, A.: Physica **31**, 1049 (1965).
- 561b Irwin, T. A. R. and Dalby, F. W.: Can. J. Phys. 43, 1766 (1965).
- Kaufman, M., Wharton, L. and Klemperer, W.: J. Chem. Phys. **43**, 943-52 (1965). 562
- Kim, H. and Gwinn, W. D.: 563
- J. Chem. Phys. 42, 3728 (1965). 564
- Lide, D. R., Jr.: J. Chem. Phys. 42, 1013 (1965). 565 Lide, D. R., Jr.:
- J. Chem. Phys. 43, 3767-8 (1965).
- 566 Lindfors, K. R. and Cornwell, C. D.:
- J. Chem. Phys. 42, 149 (1965) 567 Maryott, A. A., Kryder, S. J. and Holmes, R. R.:
- J. Chem. Phys. 43, 2556-7 (1965).
- 567a Meighan, R. M .:
- Dissertation Abstr. 25, 4427 (1965). 567b Mukhtarov, I. A .:
 - Izv. Akad. Nauk. Azerb. SSR, Ser. Fiz. Tekhn., Mat. Nauk 1965, 71 (1965).

- Nakagawa, S., Takahashi, S., Kojima, T. and Lin, C. C.: 568 J. Chem. Phys. 43, 3583-6 (1965).
- 568a Phelps, D. H. and Dalby, F. W.: Can. J. Phys. 43, 144 (1965).
- 569 Pierce, L., Nelson, R. and Thomas, C.: J. Chem. Phys. 43, 3423-41 (1965).
- Powell, F. X. and Lide, D. R., Jr.: 570 J. Chem. Phys. 42, 4201 (1965).
- Rao, V. M., Curl, R. F., Jr., Timms, P. L. and Margrave, 571 J. L.:
 - J. Chem. Phys. 43, 2557 (1965).
- Rao, V. M., Yardley, J. T. and Curl, R. F., Jr.: 572 J. Chem. Phys. 42, 284 (1965).
- 573 Saegebarth, E. and Cox, A. P.: J. Chem. Phys. 43, 166 (1965).
- 574Scharpen, L. H. and Laurie, V. W.: J. Chem. Phys. 43, 2765-6 (1965).
- Tobler, H. J., Bauder, A. and Günthard, Hs. H.: 575 J. Mol. Spectry. 18, 239-46 (1965).
- Tolles, W. M., Handelman, E. T. and Gwinn, W. D.: 576 J. Chem. Phys. 43, 3019 (1965).
- White, M. S. and Beeson, E. L., Jr.: 577 J. Chem. Phys. 43, 1839 (1965).

1966

- 578 Cox, A. P. and Varma, R.: J. Chem. Phys. 44, 2619 (1966).
- Eagle, D. F., Weatherly, T. L. and Williams, Q.: 579 J. Chem. Phys. 44, 847 (1966).
- Krisher, L. C. and Norris, W. G.: 580
- J. Chem. Phys. 44, 391 (1966). Thomas, E. C. and Laurie, V. W .: 581
- J. Chem. Phys. 44, 2602 (1966).
- Bak, B., Nielsen, J. T., Nielsen, O. F., Nygaard, L., Ras-582 trup-Andersen, J. and Steiner, P. A.: J. Mol. Spectry. 19, 458 (1966).
- Dorius, K. L., Britt, C. O. and Boggs, J. E.: J. Chem. Phys. 44, 1352 (1966). 583
- Freeman, D. E. and Klemperer, W.: 584
- J. Chem. Phys. 45, 52 (1966).
- Freeman, D. E., Lombardi, J. R. and Klemperer, W.: 585 J. Chem. Phys. 45, 58 (1966).
- Kim, H. and Gwinn, W. D.: 586 J. Chem. Phys. 44, 865 (1966).
- 587
- Muenter, J. S. and Laurie, V. W.: J. Chem. Phys. 45, 855 (1966).
- Powell, F. X. and Lide, D. R., Jr.: 588 J. Chem. Phys. 45, 1067 (1966).
- Salathiel, W. M. and Curl, R. F., Jr.: 589 J. Chem. Phys. 44, 1288 (1966).
- Bak, B., Christiansen, J. J., Kunstman, K., Nygaard, L. and 590 Rastrup-Andersen, J.:
 - J. Chem. Phys. 45, 883 (1966).
- 591 Hebert, A. J.: Symposium on Molecular Structure and Spectroscopy, Ohio State University, 1966, Paper O-1. 592 Beers, Y. and Russell, T. W.:
- - IEEE Trans. on Instrumentation and Measurement IM-15, 380 (1966).
- Lafferty, W. J. and Lide, D. R., Jr.: 593 Private communication.
- 594 Kirchhoff, W. H. and Lide, D. R., Jr.: Private communication.
- Frenkel, L., Smith, W. and Gallagher, J. J.: J. Chem. Phys. 45, 2251 (1966). 595

U.S. GOVERNMENT PRINTING OFFICE : 1967 OL-256-963

Announcement of New Publications in

National Standard Reference Data Series

Superintendent of Documents, Government Printing Office, Washington, D.C. 20402

Dear Sir:

Please add my name to the announcement list of new publications to be issued in the series: National Standard Reference Data Series-National Bureau of Standards.

Name		
Company		
Address	••••••	
City	State	Zip Code
(Notification key N-337)		

the second secon

THE NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards¹ provides measurement and technical information services essential to the efficiency and effectiveness of the work of the Nation's scientists and engineers. The Bureau serves also as a focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. To accomplish this mission, the Bureau is organized into three institutes covering broad program areas of research and services:

THE INSTITUTE FOR BASIC STANDARDS . . . provides the central basis within the United States for a complete and consistent system of physical measurements, coordinates that system with the measurement systems of other nations, and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. This Institute comprises a series of divisions, each serving a classical subject matter area:

—Applied Mathematics—Electricity—Metrology—Mechanics—Heat—Atomic Physics—Physical Chemistry—Radiation Physics—Laboratory Astrophysics ²—Radio Standards Laboratory,² which includes Radio Standards Physics and Radio Standards Engineering—Office of Standard Reference Data.

THE INSTITUTE FOR MATERIALS RESEARCH . . . conducts materials research and provides associated materials services including mainly reference materials and data on the properties of materials. Beyond its direct interest to the Nation's scientists and engineers, this Institute yields services which are essential to the advancement of technology in industry and commerce. This Institute is organized primarily by technical fields:

—Analytical Chemistry—Metallurgy—Reactor Radiations—Polymers—Inorganic Materials—Cryogenics ²—Office of Standard Reference Materials.

THE INSTITUTE FOR APPLIED TECHNOLOGY . . . provides technical services to promote the use of available technology and to facilitate technological innovation in industry and government. The principal elements of this Institute are:

-Building Research-Electronic Instrumentation-Technical Analysis-Center for Computer Sciences and Technology-Textile and Apparel Technology Center-Office of Weights and Measures -Office of Engineering Standards Services-Office of Invention and Innovation-Office of Vehicle Systems Research-Clearinghouse for Federal Scientific and Technical Information ³-Materials Evaluation Laboratory-NBS/GSA Testing Laboratory.

¹Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted; mailing address Washington, D.C. 20234.

² Located at Boulder, Colorado 80302.

³ Located at 5285 Port Royal Road, Springfield, Virginia 22151.

U.S. DEPARTMENT OF COMMERCE

WASHINGTON, D.C. 20230

OFFICIAL BUSINESS

•

.

POSTAGE AND FEES PAID U.S. DEPARTMENT OF COMMERCE