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A Method for the Dynamic Determination of the Elastic, Dielectric,

and Piezoelectric Constants of Quartz

Saul A. Basri

Several dynamic determinations have been made of the constants of quartz. Most of
these determinations do not take into account the piezoelectric effect; those that do, suffer

from certain deficiencies which are discussed in this paper.
Taking into account the piezoelectric effect, expressions for the frequency of longitudinal

\"ibration of rectangular bars and thickness shear vibration of infinite plates are derived
and applied to the determination of the constants of quartz. On the basis of present theoret-

ical knowledge, it is suggested that the best procedure is to measure the frequency of vibra-

tion of 2 particular cuts for rectangtilar bars, and 7 cuts for plates, and to measure the capaci-

tance at zero frequency- of a rectangular bar. These 10 measurements provide the data for

determining the 6 elastic, 2 dielectric, and 2 piezoelectric constants of quartz uniquely.
For accurate measurements, it will first be necessary to determine the linear coefficients

of expansion of quartz to higher accuracy than is available at present.

Conventions

The following conventions will be used through-
out this report

:

1. The word "quartz" shall denote "a-quartz."

2. Xi, Xo, X3 are, respectively, the coordinates

along the electrical, mechanical, axid optical

axes of quartz.

3. {X'l, X'2, X's} is a rectangular coordiaate sys-

tem rotated \vith respect to {Xi, Xo, X3]

.

4. All imprimed tensor components are referred

to {Xi, X2, X3} and primed tensor components
to{X[,XiX3}.

5. Latin indices such as i, j, k, • take the

values 1 to 3, and Greek indices such as /x, v,

• • • take the values 1 to 6. The usual cor-

respondences
11^1, 22^2, 33^^3, 23^4, 31^5, 12<-^6

are adopted here.

6. All repeated indices shall be summed over

unless otherwise indicated (summation con-

vention).

7. All the constants of quartz discussed in the

report are assumed to be adiabatic constants

unless otherwise mentioned.

8. Electrostatic units will be used throughout

this report.

1. General Considerations

1.1. Introduction

Alpha-quartz is characterized by 6 independent
elastic constants, 2 iadependent dielectric con-

stants, and 2 independent piezoelectric constants,

or 10 constants in all. For the complete descrip-

tion of quartz, it is also necessary- to know the

mass density and the linear coefficients of expan-

sion along the optical and mechanical axes.

There are essentially two methods for the

measurement of the above-mentioned 10 constants

of quartz, the static method and the d>aiamic

method. The static method yields the isothermal

constants, whereas the dynamic method ^aelds the

adiaV)atic constants. The isothermal and adia-

batic constants are related through the specific

heat constants. Since the specific heat constants

of quartz are not accurately known, and the main
interest is in the vibrating quartz cr^'stal, the

dAnamic method is indicated.

In order to be able to make use of the dynamic
method to determme the constants of quartz, it is

necessary to have theoretical formulas that relate

the frequency of vibration of the quartz cr^^stal

used to the constants of interest. At present, such

formulas exist only for very simple shapes of

crA'stals such as the rectangular bar and the infinite

plate. There are many simplifications and as-

sumptions made in the derivation of these

formulas. Consequently, the determination of

the constants of quartz with the help of these

formulas is trustworthy only if the conditions

under which these formulas are valid are met

experimentally. For this reason, a careful analysis

of the conditions of vahdity of these formulas is

necessary before these formulas can be used.

Smce the dvTiamic method is chosen, aU of the

constants used in the following ^vill be understood

to be the adiabatic constants.
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1.2. Equations of Motion and Boundary
Conditions

The equations of motion of a vibrating crystal

are given by

dX'j

where T'u are the stress components in an arbitrary

coordinate system {X[,X2 X3}
, ^'i the components

of displacement along X'i, p the mass density and
t the time. The time variable t in (1) can be
eliminated by setting

^i=miX',, Xi X's)e'^'. (2)

Substituting (2) into (1) leads to the equation

(3)

If we write these equations explicitly, we get, with
the help of convention (5),

pw^U[=0, (4a)
dX'i

ciX{ dX',
pwW,=0, (4b)

(4c)

The stress components T'tj are given by the
expression

Tij=Cij)ctSki e'kijE'k, (5)

or equivalently by

(5')

C'liv are the elastic stiffness constants, e'i^ the
stress piezoelectric constants, the strain com-
ponents and E'i the ith component of the electric

field inside the crystal. S'ij are related to U't by

-''-2\dXi^^J

Written explicitly, (6) becomes

S' Q' C)U I Q, „, C)U 2 Q/ Q'
_i— £11 — ^ Y'' _2

—£22

—

^x'' —
^——

~

(6)

dX'^

Si— 2So5
3 Q'
ny 05— ^ox3

E'i consists of two terms, namely

E'i=E^'^Ef'.

(7)

(8)

Ef is due to the piezoelectric effect of a freely

vibratmg crystal and Ef are the components of;

the applied field. The relation between Ef and
SJ, or T'^ will be derived in the next section.

If the surfaces of the crystal are free, the
boundary conditions that must be satisfied are

T'ijn'j=Q on all surfaces, (9)

where n'j are the components of the unit normal toiis

the surface imder consideration, and T'ij are given
j

by (5). In the case of the rectangular crystal (I

shown in figure 1, (9) becomes
\i

r;=r;=T;=oatx;=±^

T:=r'=T'=Oat x'.= ±k. (10)

Notice that it is important that all the equations I

(4) and all the conditions (10) must be satisfied, ;

and not only some of them. This fact is too
frequently forgotten in the literature, even by
well-known authors.

FiGUEE 1.

1.3. Piezoelectric Effect in Thin Plates

We shall now derive the expression of E'i in

terms of Si_,- and T'ij for a freely vibrating crystal

plate whose thiclaiess h, is much smaller than the
lateral dimensions.

Consider a central region R (see fig. 2) whose
boundary has a distance from the edges of the
crystal which is mucli larger than thickness h.

If the crystal is isolated, the total charge inside

R will be approximately zero, and the charge
inside R will be expected to vary along X'-i only.

We may thus think of the charge distribution

inside R to consist of plane sheets normal to X'z,

and such that to every sheet having a uniform
surface charge density +o- there is another sheet

of uniform surface cliarge density —a. In other
words, the region R can be considered to be com-
posed of an infinite number of parallel plate

condensers.



FiGrRE 2.

Let us consider one of these parallel condensers
with a surface charge density a (see fig. 3). Ap-
plying Gauss' law to two pill boxes about the two
plates, in a region far from the edges, we come to
the conclusion that the electric displacement D
is normal to the surfaces and has the magnitude
4x0" between the two plates, but vanishes outside
them. From this it follows that the normal com-
ponent of D outside the crystal vanishes at the
surfaces of the crystal over a central region such
as R.

D3 -- 0 1 2 rra

+ cr

D3 4 77- cr

I
-2 v a

03= 0 I
2 77-a

- cr

X3 .0

Figure 3.

Since the only surface charges on the crystal are
polarization charges, it follows from the boundary
conditions on D that the normal component of D
inside the crystal ^viU also vanish at the surfaces.

Consequently, if we take a pill box inside the
crystal whose top is adjacent to the top of the
crvstal and whose bottom is insde the cr\"stal (see

fig. 4), the total electrical flux through the top
vnH be zero. Since the crystal is homogeneous,
the total flux entering the sides of the pill box will

be equal to the total flux leaving the sides; in

other words, the total flux through the sides is

zero. Furthermore, since all the charges inside

the piU box are polarization charges, it follows

from Gauss' law that the total flux out of the
whole box must be zero. Therefore, the flux

through the bottom of the pifl box will be zero.

From this we can conclude that the normal com-
ponent of D vanishes everj-where within the
region R, i.e..

Figure 4.

Since the charge within R does not vary with
X'l and X'2, we conclude from symmetry that the
electric field should be along X'3 everywhere
within R, i.e.,

Ef'=Er8,„ (2)

where Stj is the Kronecker delta.

In general,

D's=eiiEf'+47re'^,S:

=^;Er^^d^,T:, (3)

where efj and ef/ are, respectively, the dielectric

constants at constant stram and constant stress,

and e'iy., d'ly. are piezoelectric constants. Making
use of (1) and (2), we get from (3)

and

Therefore,

or

ef3'^3^'+4xe^.S;=0.

e3^3'^r'+4,r(^^,T;=0.

TTip/ 47r / Q

'

—— S' ^3iiQ.ii
€33

47r „,

633

(4)

(5)

D'z=0 everywhere inside R. (1)

Either (5) or (4) can be used in (2.8) to evaluate
the piezoelectric effect in a plate whose thickness

is along the Xs-direction.

Cady [1, p. 312] obtains, instead of (4), the
result

C33

where C is a constant determined b}^ conditions on
the boundaries of the crystal. Cady finds C^^O,
whereas our derivation shows that (7=0. In his

derivation, Cady makes use of special assumptions
with regard to the charge and potential distribu-

tions inside the crystal, some of which are not
justified. In contrast, the derivation of (4) or (5)

is based on very general argiunents which are fully

stated. Our results are in agreement with those

obtained by Koga et al. [5].

1.4. Constants of Quartz and Their
Transformations

Due to the fact that quartz has 3-fold symmetry
about the Xa-axis and 2-fold symmetr^^ about the

Xi-axis, the constants of quartz are given by the

follo^ving matrices

:

3



Elastic Constants

<- 11
nop n n u u

0 0
0 0 0

0 C44 0 0

0 0 0 0 C44 Ci4

0 0 0 0 Ci4
Cii C12

2

^11 »S'i2 »S'l3 Su 0 0

Su 'S'13 —Su 0 0

Si3 S33 0 0 0

Sli —Su 0 Su 0 0

0 0 0 0 'S'44 2Su
0 0 0 0 <S'i4 2(*S'ii— (Sia)

Siijj=S^p, Sujk=lS^,{j9^k), Siju=\S^S^J, tc9^l).

Piezoelectric Constants

eii — ^11 0 eu 0 0

0 0 0 0 — eu — Cii

0 0 0 0 0 0

du —du 0 du 0 0

0 0 0 0 ~du -2d
0 0 0 0 0 0

dijj— di^, dfjic— idifi(j ^k).

Dielectric Constants

0 0

0 €11 0
0 0 €33



Suppose we wish to transform from the crystal

axes Xi to an arbitrary rectangular coordinate
system X'j. Let

Xi=a]Xj, (6)

and
ajafa- • • • =ajf-

; ; ;
• (7)

Since the elastic, piezoelectric, and dielectric

constants are the components of tensors of the
4th, 3d, and 2d rank, respectively, it follows that:

jkl ^mnpQ^ mnpfj

=[(ai^f^+MlD+i(«j^^2+a^^fi+ai^f^+a|^l^)]c^l

~r ("l 133+ "331 1 ~f" 0^2233+ <^332 2 ) C'l 3+ 0:3333 ^-^33

_J_ {nijkl I ijkt I ijkl
\

ijkl \ ijkl
\

ijkl
l<a!ll23 «23 11 n «1132 T^<^3211 i^«1312 n^«132

1

"2223 "2322 <^2232 <^3222/'-^14

l«2323 +«3223 ~r«2332 +«3232

i^Q;i313 0:3113 i^«1331 "r«3131 J '^U- (8)

The transformation of S,'^fci is the same as (8)
except for the replacements,

Cn~^Si\, Ci2^Si2, Ciz-^Cii, C33-

' ijk p

= (ain-al^-4ii-c^ en

(9)

(10)

The transformation of d'ijk is the same as

(10) except for the replacements,

€u=aiUki= (aii+aiQeu+aUez3. (12)

2. Longitudinal Vibration of Rectangular Bars

2.1. Zeroth Order Solution

Consider a quartz rectangular bar such as that
shown in figure 1. It will be assumed that

Zl»/2»^3 (1)

The reason for taking li and is to satisfy the
conditions for the validity of the expressions

(sec. 1.3, eq. 4 or 5), which will make it possible

to evaluate the piezoelectric effect. The assump-
tion Zi»/2 is made in order to minimize coupling
with other modes of vibartion and thus makes it

possible to simplify the problem and get a suffi-

ciently reliable solution. The effect on the

frequency of small but appreciable values of

{I2II1) will be given in the following section.

We are interested here in a solution of the form

U[=A cos kX{,

which satisfies the equation

5^^71/5:^(2=- (constant) C/;.

Since

S[=W[/bX[,

this equation can be written as

5S;/dX;=-(constant)C7i. (2)

In order to relate (2) to the equations of motion
(sec. 1.2, eq 4) it is necessary to find the relation

between S^ and T,'. This, we shall do now.

In general,

(3)

where S^^ are the elastic compliance coefficients,

d'i^ the strain piezoelectric constants, and E'i is

given by (sec. 1.2; eq 8). For a freely vibrating
crystal,

£:f=0,and E'i=Er.

Because of (1), we can use (sec. 1.3 eq 2 and 5)

and get

E',^-{4^/e^M.T'A,.

Substituting this expression into (3), we find

If we let

we can write

SI O' 'T"

(4)

(5)

which is the desired expression. In particular, we
have

SI O' T"

Substituting this expression into (2), gives

S;;.dr;/d.Y;=- (constant)^/;.

5



In order to make this equation agree with (sec. 1.2,

eq 4a), it is necessary to assume that

and also

T[-^T', for all M 5^1.

(6)

(7)

The assumption (7) is quite frequently made in

the literature. Some authors erroneously justify

(7) as follows: The boundary conditions at

±^2/2 and X3=±l3/2 are given by (sec. 1.2,

eq 10). Since lo and Z3 are taken to be small, the
stresses T^(M=trl) cannot differ appreciably from
zero in the interior and therefore can be assumed
to be zero everywhere. If this argument is correct

then one may conclude, in the case of a crystal

plate whose thickness is in the X2 direction, that

T8=r2=^4—0 everywhere. This is in conflict

with the well established fact that Tg is the prin-

ciple stress in the thickness-shear vibration of such
a plate. The main justification of (6) and (7),

would be whether it is possible with their help,

to satisfy all of the equations of motion (sec. 1.2,

eq 4) and all of the boundary conditions (sec. 1.2,

eq 10), at least approximately.
As far as the boundary conditions are con-

cerned, all of the conditions imposed on T"^ (;u =}= 1

)

will be at least approximately satisfied because of

(7). The remaining boundary condition

T[=0 at X[=±h/2, (8)

can be exactly satisfied, as will be shown later.

Equation (sec. 1.2, eq 4a) becomes, with the

help of (6),

^+pw^U[=0. (9)

Furthermore, (5) and (7) yield

and in particular

SI^SnTl,

(10)

or

T'-^S'-^^.

Substituting (11) into (9) gives the equation

(11)

(12)

The solution of (12) is of the form

U[=A cos kX[-hB sin kX[, (13)

k=w(pS'u)\ (14)

where

Making use of (11) the boundary condition (8)

becomes

^=0 atX;=±^i/2.

Imposing this condition on (13) yields

-A sin k'^+B cos k^^=0, (15a)

+A sin k^^+B cos k^^=0- (15b)

The only way to get nonzero values for A and B
is to set

-sin k ~ cos k

+sin k 7^ cos k

which implies

--—2 sin k^ cosk ^==—sin kli=0,

kli=ms-

or

k=mr/li, n= l, 2, 3, . . (16)

We can evaluate B from either (15a) or (15b)."

Using (15a), we get

B=A sin k^l cos k ~

Substituting this value of B into (13) we get

U[=(aIcos k
1^

(^cos kX[ cos k I

-fsin kX[ sin k

If we set

Ajcos k ^=a=constant,

we can write U[ in the form

U[=^a cos k(^X[--^- (17)

The frequency of vibration, /„, can be obtained

from (14) and (16).
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Thus

where we have from (4),

S'n= S'n-{^i^le^i){d'uY.

(18)

(19)

The solution obtained here is only a zeroth
order solution. For this reason, from now on we
shall denote U[ \iv (17) by L'?' and /„ in (18) by
fn- The 1st order solution and the two remaining
equations (sec. 1.2, eq b and c) will be discussed

in the next section.

Cady [1, p. 317] states that the piezoelectric

correction is zero for the longitudinal vibration of a
quartz bar. The above result does not seem to

bear out this conclusion. The origin of this dis-

agreement was discussed at the end of section 1.3.

2.2. First Order Solution

We now have to find a solution which is con-

sistent with (sec. 2.1, eqs 6 and 7) and satisfies equa-
tions (sec. 1.2, eq b and c) to terms of the order
of ihlh) or less. We have seen in section 1 that

one of the consequences of (sec. 2.1, eq 7) is (sec.

2.1 eq 10), nameh^

and in particular,

Eliminating T[ between these two expressions gives

For convenience, we shall let

s^=S'^i/S'n, (1)

s;~s,s;~5,sr. (2)

and get

We shall now make use of (2) and the assump-
tion

u[=ur+MX[,x'„x',) (3)

in order to calculate the first order solution. It

should be noticed that

U'i'=a cos h (x[-^^y

Si ' =

—

akn sinh (^X [

dXrdX['~

539046—60 2

(4a)

(4b)

(4c)

^2=^'^ssr~^m=s,x'sr+f2(x[,x',). (5a)

Q^=f^^^s,sr-^m=.ssX',sr+ux[,x'^. m

-'~dxrdx'~^x',^dx',-^' ^^""^

^,_du[ din ^fi

dx'jdxrbx',

+ssX',{-km +^~.9,,sr. (5d)

-'^dx'jdxrdx',

+s,X',{-klUr)+^^^sSr. (5e)

From (5d) and (5e) we get, respectively,

f,=s,X'Sr+iszX',VdUr-^^X',+g{X[,X',),

fi=s,x'sr+hs2X'^kiur-^^x',+h{x[,x',).

Comparing these two expressions for^i, we get

giX[,Xd=s,X'Sr+ hs2X'^klUr,

KX'uXd

=

55X38?'

+

h^xmur

,

X',df^/dX[=X',df2/dX[.

The last equation yields

f2=f{X[)X's,f,=fiX[)X',.

Substituting these expressions into (5c), we find

2f{X[)=sSr ovf(X[)=hsSl'.

Gathering all of the above results, we get

U[^Ur+{s,X',+s,X^)Sr+iis,X','

+SsX'^'+s,X',X's)klUr (6a)

U',^(s,X',+is,X's)^r (6b)

mc^is,X'^+is,X',)Sr. (6c)

It remains to find the first order correction

to the frequency and satisfy (sec. 1.2, eq b and c).

For this purpose, it is necessary to calculate

T'^. Making use of (2) and (3), we get

s;=m=s?'+5/i/d.Y;,s;~s,ss'(M?^i). (7)



From (sec. 1.2, eq 5) and (sec. 1.3, eq 4) we have

^33

Til us if we let.

€33

we can write

T' AT' O'

Making use of (sec. 2.1, eq 5), we get

(8)

(9)

T' ri' Q' ri' Q' T" t T'

which implies

0'^yS'y\=8i^X. (10)

Substituting the values of given in (7)

into (9), and making use of (3), (6a), (10), and
(1), we get

+ Us2X','+s,X','+s,X',X',)SV], (11a)

and for

T:=C',M[-{seX',+sM)UV

+i(s2z;2+,vY;2+s,x;.Y3)s?']. (iib)

If we now substitute (11) into (sec. 1.2, eq 4)

and make use of (1), (sec. 2.1, eq 14), and assume
that

^,=m{X[,X'„X',)e'"", (12)

where U'i are given by (6) and w is the corrected
frequency, we get

['^^- hHGn{S'i2X2--\- S'i3X3--\- 81^X2X3)

+ (CUS'n+ C'uSU)]m'+ [C'n{SUX'2+SUX3)

—
-I Oi'e (2<S'(2^2+ jSuXs)— 2 '^15 (tSu^2+ 25'!3X3 )] S?

'

=(^j {[l+ h^(S[2X'2'+ S[3X',
^'2
^3

1 /o.+S'uX'2X'3)]Ur+^{SUX'2-^SUX',)S,r}, (13a)

Su

[iklCUS[2X'2'+ S[3X'3'+ S'uX'2X'3) + (C[2S[,

+ G'uS'i5)]Ui' -\-lC'i^{S 'uX'2-\-S 'iiiXs)— ^C'i2i2S'i2X'2

+ S'uX's) -iC'u {S'uX'2 +2S[sX'3) ]Sr

=(^y'^(S[2X'2+hS'uXdS^,', (13b)

[ikoC[s{S[2X2^'\- S'i3X3^-\-S'uX2X3)-\- {C'uS'lg

+r^;3s;5)]c/r+[C';5(s;6x;+*s;5YD

— hG'u{2S[2X2-\-SuX'3)— ^C[i{S'iiX2-\-2S'i3X'3)]Si'

=(^)^ihS[,X2+S\3X'3)Sr- (13c)

From (4) we have

i

J-

_\'lj^^imydx[=a%/2,

J^''J^{^mX[=kla%l2,

^_\f^U\'^,'dX[=Q.

Multiplying equations (13) by

and making use of the above integrals, we get

1+ (Cl5'S'l5+ C'i6<S'i6)+ 2^ C'ii(5'i2/2+'S'l3?3)

(c;2S;,+^u<§;5)+^^;6(§iVi+syi)=o, (i4b)

(6\',s','6+c';3S;5)+ ^ ^i'5(<s;2/i+>s;3/i)=o. (hc)

According to (sec. 2.1, eq 16)

Substituting this value into (14) and setting

A-n^24 (15)

we get from (14a)

1+A (!)•



Equations (14b) and (14c) can be solved for S'l^

and S'i6, and yield

^ n' fi' c ^
?!' 12'- 15 Ll4"-16 o' A
«J15= ~ 'Jll'^)

'-14 L i2<^13

X'l3^'l6 ^'u^'lj

(17a)

(17b)

which show that S'15 and S[e are of the order of,

d or {hlhy^. In practice, since all the constants of

quartz are not known to much better than about
1 percent, it is not feasible to try to find the orien-

tations at which (17) is satisfied. If (^2/^i)^<C0.01,

then (16) should provide a satisfactory approxi-
mation at orientations such that

Si'5~0 and Si'e^O. (18)

From this we see that the assumptions (sec. 2.1,

eq 6 and 7) are only valid at the orientations where

(18) holds, contrary to the usual belief that they
are good for any orientation. The terms in (16)

containing S[;, and S'l^, will take care of tlie fact

that these coefficients may not be exactly zero.

The solutions (16) will be reliable provided orien-

tations are used for which (18) is fufilled.

It should be mentioned that the type of calcula-

tion used by Davies [6] to estimate the correction

to the frequency due to the other modes of vibra-

tion is wrong, since it is assumed in this calcula-

tion that only the kinetic energy changes, due to

these extra modes. An examination of the deriva-

tion here would show that the change in potential

energy is equally important and cannot be neg-
lected. In fact, all the terms in (16) containing
C^p are due to the change in potential energy.

2.3. Optimum Orientations of Bars

We have seen in the previous section that the
only orientations for which (sec. 2.2, eq 16) is

reliable, are those for which (sec. 2.2, eq 18) is

satisfied, namely

and S'u'^Q.

From (sec. 2.1, eq 4) and the approximately known
values of the constants of quartz, it can be verified

that

[{Ai^ieiM,di]is:.<:m.

We are thus justified in replacing the above con-
ditions by the simpler ones

S[f^O and S[,'^Q. (1)

We shall now find out the orientations at which
(1) is satisfied and for which the longitudinal
vibration can be excited piezoelectrically.

Consider the bar shown in figure 5. If we let

X'i— a.)Xj,

then we have from figure 5

where

:

SeC^ SeS0 Ce

— (JeC\—- CeS 4, Se (2)

—-G^ 0 _

Se --sin d, Ce= cos Q,

Sij,-= sin </), C4= cos 0.

The matrix (2) can be obtained as the product
of three rotation matrices representing the three

successive rotations shown in the figures below.



Thus

— o A""u
~ rr

(J 0 1 u

-Ce 0 0 1 0 0 0 1

0 0 1_
n

_— L-0 0 _i 0 0_

In the primed coordinate system we have, using

(sec. 1.4. eq 8, 9) and (2),

la' 0 / ozrn o 03 03/^ ^ 1 o ( c<3/~r3 o

+ SeSI C4,) -\- SiziOgSeC^iS^— CIS$84, f\)

-'rh SnidSlSlCeC^,— SS^C^Ce) + ^844

(

—

2SdS^ClC^-^2SeC4,ClS,j>) -\-jSqs

(

—

2SeClS4.-{-2SlO^S^)

O QSri Q I fit Q2\ O QS/T O I ni 02\

+-|-<S'i4*S'jC(5(70(4*S'0— 1) — \S^^S\C4,S^{C'\— iS'l)

= ('S'n— »S'i2

—

\S^^ S\C\S,^{C\— S"^

-^^,s,4S\(:\t\{^si~\).

For quartz,

S^^=2{S S \2i

.

Thus

S'x^=— ZS]^4 sin - d cos ^ cos 30, (3)

from which we conclude that

S'Js^O when 0=0, 90° for all values of 0,

and 0=30, 90° for all values of Q. (4)

Similarly, it can be shown that

S[,=2S"'''-=2a\a)aWiS'^'''

= sin 6>{cos (9 [2(5'33 cos- B—S^^ sin^ Q)—

{S44^2Sn) cos 2Q\~Sx4 sin 30 sin 30}. (5)

Probably the most reliable values of S^^^ are

those given by Koga et al. [5] (with a correction

in sign). In units of 10-" cm-/dyne, these values
are:

;Sn= 12.8, <S33=9.7, ^44=20.0, S'lo^-l.S,

^,3= -1.2, ^^u=-4.5, *S66=29.2. (6)

Substituting these values into (5), we get

-Siec^sin Q [cos 0(19.4 cos^ 0—25.6 sin^ 0

— 17.8 cos 20) + 4.5 sin 30 sin 30],

10

from which we conclude that

iSlo^O when 0=0 for all 0,

0=90 for 0= 0, 60,

0=90 for 0=70, 7r-49,

0=30 for 0=7r-7O, 49. (7)

No other values of 0 are listed in (7) since, accord-
ing to (4), S\^= ^ only at 0= 30° and 90°.

Examination of figure 6 wUl show that 0= 30°,

0= 7r— 70° is the same orientation as 0= 9O°+ 12O°,

0=+7O°. Since quartz has trigonal symmetry
about Xz, it follows that all the properties of
quartz at 0= 30°, 0= x— 70°, are the sume as those
at 0= 90°, 0= 70°. In the same way, it can be
sliowu that the properties of quartz at 0= 30°,

0=49°, are the same as they are at 0= 90°,

0=7r— 49°. Consequently, the orientations in (7)

at 0= 30°, give no more information than those ^

at 0= 90°, and need not be considered further.
\

\

\

\

120°

\
\/90°

30° \

Figure 6.

It remains now to find out at which of the
orientations listed in (7) it is possible to excite

longitudinal vibrations piezoelectrically. Since

T\x is the stress mainly responsible in exciting

the longitudinal vibration, the driving electric

field is taken along the thickness direction of the
bar, i.e., along the X3 direction, we have from
(sec. 1.2, eq 5),

T\i= ~ e'zxJi'o,.

Consequently, it is possible to excite the longitu-

dinal vibration piezoelectrically for all orientations

at which fsuJ^O.
Making use of (2), we have, with the help of

(sec. 1.4, eq 10),

e3i= sin 0 (sin 30 «ii+ 2 cos 0 eij.

Making use of the values of en and by Koga
et al. [5] (with correction in sign) we get in cgs

units

631 ^ sin 0 (5.25 sin 0 sin 30+ 2.44 cos 0)X1O*.



From this, we conclude that

e^i= 0 when 6i=0° for all 0,
0=90° for 4>=0, 60°, (8)
0=25° for 0= 90°.

Comparmg (4), (7), and (8), we see that the

orientation at which S'l^^O, SJe—0, and longitu-

dinal vibrations can be excited piezoelecti'ically,

are:

0= 90°, 0=70°, 7r-49°. (9)

At 0=90°, there is the additional advantage that

514= 0 for all 6.

2.4. Constants of Quartz at 0=90°

We have seen in the previous section that all

the orientations that can be used, occur at 0= 90°

(see figure 5). ^Ye shall, therefore, write down
all the constants of quartz occurring in (sec. 2.2,

eq 16) for these orientations.

Making use of (sec. 2.3, eq 2) and letting

sin n d=Sn, cos n 6=Cn,
we get

0 S (J-

c s

0 0

for 0=90°. (1)

Substituting the values of a) given by (1) into

(sec. 1.4, eq 8 to 12), we get

Sn=S'Su+ C'S^,+S'CK2S,^+Su)-2S'CS,,.

*S' 1
3

=

S^S12 -\- C'Si 3
-\-SCSu

SU=o.

cu=o.

r[,=2S[S'C(-a,+C^.+2Cu)

+ C^(C33-Ci3-2C44)+Wl4].

d',,= -S'-dr^+ SCd^,.

d3z=dn.

d'z^— Szdu— ^2(^14.

ezi^—Shn+ S^eu-

4= 0.

^33— ^U-

IT T
*33 — ^ll-

Si^— S'ly,— (4x/csD^siC^sji

C'i';x= C[^— (47r/e3f)e3ie3^.

It was stated at the outset that there are only 6

independent elastic constants, 2 piezoelectric

constants, and 2 dielectric constants. The
equations that relate C^^ and S^^ are given by
[2, p. 207]:

O/O ^33
I
^44 o/O ^33 ^44 ri '-'13

^L 11 r-5-' ^(-12= 13=
a p a p a

/o 'S'14 ^ 'S'n~l~'S'i2 ^, Sii S12
^- 14— L-33— ) L.44

)3

Cu C12 Sn
2

where
2i3'

a= 5*33 ((Sn+ (Si 2)— 2<S'i 3

,

(2)

O O ^33
I

C'n DQ C'33 C44

a p a p

rt Cl4 Q ^11 "I
"" C12— *J33— ! Si

C:3
7>

a

S(j&= 2(Sii— *S'i2)= 2 -r^J

where

(3)

a'= C^3(C^^+C,2)-2Ch,

0'— Cu{ Cii C12) 2 C'14. ^

The equations that relate c?,>, tfj, and e'fj

are given by [2, p. 452]

:

611= (f11— Cl2)c^ll~l~^^H<^14) 6i4= 2Ci4(Zii+ C44(ii4.

(4)

^=r^-(2en(/ii+ ei4(^i4), ^iz= 4z. (5)
47r 47r

Since 5(5=0, (^35=0, ^"(5=0, and 6^5=0, it follows

that S[~0 and C'i'5=0 for 0=90° at any value of 0.

Consequently, the expression (sec. 2.2, eq 16) for

the frequency becomes

(1+A) (j-J=l+CA+C'nS'nA.

11



Making use of (sec. 2.1, eq 18) and (sec. 2.2, eq 15), i.e.

(6)

and

ll / TT \ - - ~

.

and letting;

7=(2/J)-V (7)

we get, for n=l, the equation

ySn+{y- On) ^ (0(/iS;,+ /iSJa)- CuS[,= 1

.

(8)

Equation (8) yields 2 independent equations,

one for each of the 2 orientations given in (sec. 2.3,

eq 9). Therefore, at least 8 more equations are
necessary to determine ail of the 10 constants.

2,5. Concluding Remarks

In order to be able to use (sec. 2.4, eq 16) it is

necessary to use a rectangular bar for which
(see fig. 1)

/2</, and /a-C/a-

The bar must be fully plated on the surfaces A^3=
it/3/2. The lowest mode of vibration (^^=1)
should be used, since the correction factor A in

(sec. 2.2, eq 15) depends on n^.

The mass density p occurring in (4.7) can be
obtained from the data in [4, p. 288]. An equation
of the form

can be used to obtain an exact fit of this data, and
the result valid for the range —200° r'<r< + 100°

C, is

p=2.6510- 10-M9. 167+ 10-2r-0.167(10--V)-] (1)

where t is the temperature in degrees centigrade
and p is in gm/cm^
The dimensions li, I2, h of the bar should be

measured accurately before plating at some tem-
perature To, say room temperature. The dimen-
sions at any other temperature can be calculated
from the curves given in [4, p. 384] for the expan-
sivity

_l{r)-m-C).
1{0°C)

.A fit to 2 or 3 significant figures (the same accuracy
to which the curves can be read) can be obtained
with an equation of the form

a={A^BT+ CT')T.

The result of such fitting valid for the range
-200° (:'<r< + 100° C, is given by

= [1.282+ 0. 117(10--+) +0.028(10-2t)2

+ 0.023(10-+^3](io-2^).

(3a)

103a3(r)= [0.687+ 0.087(10-2r)+0.003(10-2r)2

+ 0.003(10-+)3](10--t),

(3b)

where ^^(t) is the expansivity associated with the

Xi direction.

From (I) we have

/(r)=Z(0)[l+air)],

Z(ro)=Z(0)[l+a(ro)].

and

Thus

/(r) l+a(r) ri 1 / Mn / m

~l-a(To)+aCr;,

from which we obtain

/(T) = /(r„ni-a(ro)+a(rj]. (4)

Let e,, e'i be the unit vectors along Xi and X'i,

respectively. We can expand the U dimension
along the crystal axes as follows (not using the
summation convention)

:

l(ro)= /i(ro)e'i= /,(ro) 2,.a,-^^e,=2;^Z|(ro)e,-. (5a)
1

where

(5b)

and a,-
'-^ is the inverse of a). Since (ap is ortho-

gonal, aY'^=a), and we get from C4.8j

"0 0 1

(a7i')= S -C 0 for<A=90°. (6)

_C S 0,

According to (4) we have with the help of (5b)

lKr)= l{(To)[l-aj{ro)+ajiT)]

Consequently,

1,(T)= 2,/Kr)e,

= /,(r„)2,[l-a,(To)+a/r)]ar^^e, (7)

12



which shows that /i(r) is not parallel to liiT^), i.e.,

the orientation of the bar changes slightly with
temperature. Strictly speaking, a correction should
be made for this, but this correction is <^0.1

percent, as can be seen from (.3), and is thus of the
same order of magnitude as the terms we have been
neglecting.

From (7) we have

|l.(T)i-'=l,(T)-l.(r)

1

or

^.(r)=/.(ro)^|, [l-a,(ro)+aXr)]-'(ar^O'}^ (8)

which is the desired expression for at any tem-
peratui-e r.

The frequency will be shifted due to plating,
and the frequency for zero plating can best be
obtained by measuring the frequency as a function
of plating thickness and extrapolating to zero
thickness.

3. Thickness Vibration of Quartz Plates

3.1. Thickness Vibration of an Infinite Plate where

TTe saw in the last chapter that we have to find

at least 8 more trustworthy formulas relating the
frequency of vibration to the constants of quartz.
The thickness vibration of infinite plates has been
studied extensively and thus offers a possibUit}-

for obtaining a few more reliable formiilas, if the
conditions of validity of the formulas can be met
experimentall3^ We shall see that this is possible.

Much of the theor\' of thickness vibration of

infinite plates can be found in [1]. However, for

ease of reference, and in order to have a theoiy
in the form we have been developing, we shall

present this theor\' in this section.

Consider a quartz plate of lateral dimensions
much larger than the thickness h. It is customary
to choose X'2 along the thickness; and we shall

follow this custom here.

FlGUBE 7.

The equations of motion are given hy (sec. 1.2,

eq 3J, i.e.,

|^^+pw2L^,=0. (1)

The expression for T<_, can be obtained from (sec.

2.2, eq 8 and 9) by replacing the index '3' by '2'.

The result is

T ij— CijtiSki- (2)

47r
C ijkl CfjA-Z~l~ S' ^llj^ikl (3)

Making use of (sec. 1.2, eq 6) and the s^-mmetry

properties of C'iju, we can write (2) in the form

Substituting (4) into (1), we get

C' ijkl
bX'dXi

(4)

(5)

If the lateral dimensions of the plate are suf-

ficiently large compared to the thickness, the
edge effects can be neglected, and we can assume
that

Ui=U',{X',).

Thus, (5) becomes

(6)

Equation (6) constitutes 3 coupled equations of

the second order. In order to solve these equa-
tions, we use the usual method of transforming

to 'normal' coordinates in which the equations are

decoupled. For this pui'pose it is necessary to

rem-ite (6) -with due attention to contravarient

and covarient components, and get

(6')

If /3j are the coefficients of an orthogonal trans-

formation, then we have

and

(7)

(8)
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We shall assume that /Sj is so chosen, that

•0 if k9^l
7

rO if k9^lA
(9)

Substituting these expressions into (6'), and dis-

continuing the summation convention for the

time being, we get

Multiplying both sides of last equality by j3i and
summing over i, we get

Thus
^Vi

I 2 » n
(10)

which are the desired decoupled equations. Tiie

solution of (10) can be readily written as

where
ypi=Ai sin kiX'z-^-Bi cos ki X'2,

kl=^ip|y^ w

(11)

(12)

The problem now is to calculate /3j, yi and ki.

Multiplying both sides of (8) by /3', summing over

j, and making use of (9), we get

2,5' ^2^-2^^.= ' ^/3,- ''^]yk= ^k^-k''^{yk=^T''yi.

Since jSf is orthogonal, ^T^'= fi\, and we get

or (13)

i:,{C'^''^'-bhkWi=Q.

Equation (13) represents 3 homogeneous linear

equations, and thus has a nonzero solution only if

det {C'''^'—b{y,)=0, (14)

which is the well known secular equation. Ex-
panding (14) and making use of convention (5),

we get

C'es "Yk C'26 C'46

C',, C',,-y, C',, =0. (14')

^'46 ^24 ^^44 "Yk

Which is a cubic equation in y^ and has the three
real roots Ti , 72, and 73. For each of the roots 7^, two
of equations (13) and the normalization condition

2,
1

:1 (15)

can be solved unic^uely for /3|, 183. Thus with
each value of 7^ there is associated a frequency of

vibration given by (12) and a direction of vibration
given by

e:=2,ftr''e;=2,)3?e;. (16)

The only thing remaining to complete the solu-

tion is to solve for ki, using the boundary condi-

tions on the surfaces X'^^ ±.hl2, given by the
second equation of sec. 1.2, eq 10. Making use of

(4) and (7), the boundary conditions take the
form

7^/2! V ruiijk j y nnijt j

^ -^'"'^ dxr ' ^x',

-2,.5^^^-^^5^,=0atA=±|

Since these constitute homogeneous linear equa-

tions, and det(S;5'^'^-i3*)±0, it follows that

dX.
(17)

Because the crystal is driven by electrodes of

opposite polarity, only that part of the solution

(11) which is antisymmetric in X'2 is of interest,

and thus

\pi=Ai sin kiX'2. (18)

Applying (17) to (18), we get

cos^"jA/2=0,

from which it follows that

h

or

^^=(2^+1)2' w=0, 1,2,

kin=n ijjh), n=l, 3, 5, . (19)

Substituting (19) into (12), we get finally for

the frequency of vibration

where

i=l, 2, 3, n=l, 3, 5, (20b)

In order to find out whether any of the normal
modes described by (18) and (20) can be excited

piezoelectrically, we have to calculate the piezo-

electric coefficients pertaining to these modes.

14



Making use of (1) and (7) we get

2y

from which we get

Thus the effective stress components that excite

the mode are not T^-j but 2i/3^T-2. Making
use of (sec. 1.2, eq 5) and recaUing that the applied
field is along the X'^ direction, we get

and
T;-2=— el-j2£"fc=— esta-E" (21)

where E is the magnitude of the applied field, and

e'i= &\en2 (22)

is the desired piezoelectric coefiicient. Making
use of convention (5), we can write (22) in the
form

e;=j8l4+/3^4+^34. (23)

3.2. Rotated Y-Cut plates-

The secular equation (sec. 3.1, eq 14') is very
complicated in general, and it is deskable to find

special cases in which (sec. 3.1, eq 14') gets simpli-

fied. A well known special case in which this

occurs is the case of the so-called "rotated Y-cut
plates" or "Y'-cut plates" shown in figure 8. For
such plates, we have from figure 7.

where
X'i=a)Xj

"1 0 0"

0 c -s

0 s c

•I , ''I

Figure 8.

and

(S'=sin e, C=cos 6.

Furthermore, according to [3, p. 247, 248],

C;5=C;6=0 for M= 1,2,3,4 (la)

621=622=623=^24=0 (lb)

It thus follows from (1) and (sec. 3.1, eq 3) that

^26= 0, 645= 0, 622= C22, C2i=C2i, Cii=Cii

and (sec 3.1, eq 14') becomes

^6-7. 0 0

0 6^22— 7ft = 0.

0 C24 ^^44-7.-

Expanding this secular equation, we get

(C^;6-Tft)[7|-(t';2+f'44)7ft+(a2C':4-C24)^]= 0

whose roots are

^C22'\~Ci4\
I
r"/C22 ^24

and

(2a)

;b)72.3=(^—^—j±L(^—
^;+t^24j • (2

Equations (sec 3.1, eq 13 and 15) can be

written as

(<5;6-7ft) /3f=o

(O^2-7ft)^f+C^4ft*= 0

C'^4i8|+(<^:4-7ft)ft'=0

(|Sf)^+(^l)'+(/3|)-^=l.

When k=l, we notice that

(^"22^71) C21

C 2i (C44 I'l)

(3a)

(3b)

(3c)

(3d)

0

and thus

(4a)

On the other hand when k^2 and [3, C66?^72,3

and thus = We then get from (3b, c, d),

after a little algebra.

/3!=0, /3i=
^^24

m+{C22-y2y^' [C'2l+C'22-l2y]^'

(4b)

15
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and eq 5) we have

C —22— Ts

(4c)

Since the direction of vibration is given by (sec.

3.1, eq 16), we see from (4) that

el=0\e[, eI=/3^e;+^^e3(for k=2,3),

and thus
\f/i represents thickness-shear vibration

in the XJ^Yg-plane and \p2, 'As represent vibrations
in^ mutually perpendicular directions in the
XjXs-plane.
Making use of (lb) the piezoelectric excitation

coefficient given in (sec. 3.1, eq 23) becomes

«*=/3lC26-

It thus follows from (4) that

^1= 626, 62=63=0. (5)

Consequently
\l/2

and rp^ cannot be excited piezo-
electrically, i.e., the only mode which can be
excited piezoelectrically is the thickness-shear
mode

77/TT

,;':„=^sinyA';,(w=l,3,5, . . .) (6)

which has a frequency of vibration

(7)

where we have made use of (sec. 3.1, eq 18 to 20),
and (2a).

From [3, p. 247 and 248] we have

G^5=S^0n-\-C^C^Q—2SC Cii, (8<i)

e'2,= CiSeu~Ceu), (8b)

e2i=C'ef,+ S'ei,. (8c)

We thus get from (8), (7) and (2a)

^66= S'^C44-[- C^Cge

—

2SC Ci4

=p(2hfnln)\ (9)

From (9) we see that by cutting Y'-cut plates at
7 different orientations, we can evaluate all of
the dielectric constants, all of the piezoelectric
coefficients and three of the elastic constants.
The question now is what are the orientations

that give minimum coupling with other modes
of vibration. Let us first find out what stresses

can be excited piezoelectrically. From (sec. 1.2,

or

Making use of (lb), we see that T[, T'^, T^, and
T'i cannot be excited piezoelectrically, and we only
need to worry about T'^ and T'^. Furthermore,
from (sec. 3.1, eq 2) and (1) we get

5— '^55*-'5~r'^56*~>6»

-^6— 56^5~r "-^ 66*->6-

(10a)

(10b)

The only strain component which is involved in

the thickness-shear mode in the X'l Xj-plane, is S'^.

It thus follows from (10) that the interfering mode
is determined by S5, which is coupled to S'^ by

means of C^g. We can thus reduce coupling to

other modes to a minimum by choosing such
orientations as to make

&55=t^;6+(47rA;f)44=0.

Since the second term is less than 1 percent of C56

and the constants of quartz are not known to better

than 1 percent, we can neglect the second term in

the preceeding equation and get [3, p. 247].

C',,=(C- S')Cu- SC(Cu- CJc^O. (11)

This is exactly the condition that leads to the AC
and BC cuts [1, p. 454] . Making use of the values
of C^, given by Koga et al, [5] (after a correction

in sign),

(7i4=18.06X 101° dynes/cm^, C44-C66

= 18.39X101° dynes/cm^,

we find that (11) is satisfied for

0= + 31.5°,-58.5°.

However, since these values depend upon tem-
perature, we shall use, for convenience, the angles

?=+30°,-60' (12)

It will be shown in (4.2) that this choice will make
it much easier to obtain a solution for the elastic

constants in terms of the frequencies of vibration.

3.3. Rotated X-Cut Plates

For the rotated A"-cut plates shown in figure 9,

we have
S 0 c

{a))= C 0 -S , (1)

0 1 0
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Figure 9.

where S=sm 6 and C=cos 6, as before. Making
use of (1), we obtain, for the constants occurring

I

in (sec. 3.1, eq 14)

^22 — C^^n,

e26=(ySen,

As in the previous section,

/^i I
47r / /

*22
(2)

From these expressions, it can be seen that, in

general, none of the C^p's are zero; which implies
that the equation for is cubic. Thus, the
formula for the frequency will be very compli-
cated, and it becomes difficult to solve for the con-
stants of quartz.

_
At 0=90° (C=0, S=l), the situation becomes

simpler; but e22=62'4=e26=0 and, according to
(sec. 3.1, eq 23), thickness vibration cannot be
excited piezoelectrically.

The X-cut plate 0=0, 5=0, C= 1) is more prom-
ising, and, in fact, is the only simple case among
the X'-cut plates which can be excited piezoelec-
trically. If we set S=0, (7=1 in the above equa-
tions, we get for an X-cut.

6*22= Ci 1 ,
C44= Cei

^24= 0, C26= 0,

622=611, 624=0, 626=0

,'S_ s
*22 —

Consequently, (sec. 3.1, eq 14') becomes

C44-7*

0

C14

0 Cu

C'22-jk 0

0 Cee-Tft

= 0, (3)

where

^^22— C'li—g ell,
til

and (sec 3.1, eq 23) becomes

6l=i3|6ii.

Solving (3) for j/., we get:

y,=pi2hfJny=C:,2=Cn- eh'
en

(4)

(5^

In exactly the same way as'in (sec. 3.2, eq 3 and
4), it can be shown that:

^1=131=0, 131=1; 131=^1=0.

Therefore, it follows from (4) that only the mode
for k=2 can be excited piezoelectrically. The fre-

quency of this mode is given by (5) and the
direction of vibration by:

62 = ^ i0iBi= G2-

Consequently this mode represents thickness exten-

sional vibration.



4. Determination of the Constants of Quartz

4.1. Program

In the last two chapters, we found 4 different

crystal cuts for which we have reliable formulas
relating the frequency of vibration to the 10

elastic, dielectric, and piezoelectric constants of

quartz. They were rectangular bars cut at (see

sec. 2.3, eq 9, and fig. 8)

i=90°, 6=70°, 131°, (1)

and Y'-cut plates oriented at (see 3.2, eq 12, and
fig. 8)

d=+30, -60°. (2)

Solutions for other modes of vibration, such as

flexure and face shear, are not as reliable as the
ones we have obtained so far, and will therefore

not be considered.

Since 4 out of 6 of the stress components (T'l,

T2, T'z, T'i) are zero for Y'-cut plates, and the
expression for the frequency of vibration of these

plates is relatively simple (see sec 3.2, eq 9) it is

advisable to make as much use of Y'-cut plates as

is possible.

From (sec. 3.2, eq 9), i.e.,

— »S'"'C44-1- C^Cgs

—

ISC Cli

-Pi2hfjny, (3)

we see that 7 constants are involved, namely;
C44, Cee, Cu, efi, efa, Cu, and eu. Thus, all the
information that can be obtained from such plates,

should be possible to obtain from 7 different

orientations. We already have 2 orientations in

(2), and we need to choose 5 more. For simplicity

and convenience, we shall take the following values
of 6:

0°, 45°, 60°,-30°,-45= (4)

However, because the dielectric constants occur
in the denominator of the last term of (3), we shall

see in the following section that this will make it

possible to determine all the constants in (3)

except efi.

The elastic constant Cu can be determined from
the formula for the extensional-thickness vibration
of an X-cut plate (sec. 3.3, eq 5), namely

C',,= Cu-^eh=p{2hfn/ny, (5)
€11

in conjunction^with the information obtained
from (3).

In order to determine efi, a method used by
Mason [2, p. 65] is probably as good as any.
This method will be described in section 3.

The only constants that remain to be determined''

are C13 and C33. These two constants can be ob-

tained from the formula for the longitudinal vibra- 1

j

tion of a rectangular bar given by (sec. 2.4, eq 7!i

and 8), as will be shown in section 4.

4.2. C44, Cee. Ci4, and Cn

For convenience, let

efi/47r=€i, e|i/47r=e3. (1)

)

Evaluating (sec. 4.1, eq 3) at the angles in (sec. 4.1,

eq 1 and 4), we get

^1

^66(45)= I (C44+ C,,-2Cu)+ h

^66(-45)= KC4.+ ^6+ 2^14)+ i ^^^4^

(2)

cum=HCu+sc,,-2./3Cu)+m
3ei+ €3

g-,(-30)= i(6^44+3<:^56+2V3(7i4)+ 3/4^%+^'"^'

cum= i (3(744+ c,,-2^cu)+ 1 ^^^"'r;'"^'

C';6(-60)= K3C44+C66+2V3C7h)+ |

From these equations, we have

A=UCU-i5)-CU45)]^C,,^
^11^14

(3)

A,=^[C',,i-SO)-C',,m]=Ci,+P^ (4)
3€i+ e3

(5)

B,= \CU-^5)+ CU'^5)]=C,,+Ce,+'^^ (6)

B,=2[cu(-m+oum=Cu+3Ce,+3
3ei+£3

(7)

g3=2[(7;e(-60)+ 6';e(60)]=3C44+^a6+ '^To («)
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Equations (3 to 5) can be rewritten as

Aiei-\-Aie3= €iCii+e3Cu+eueii, (9)

3^2ei+^2€3=3eiC'i4+ e3Cu+3enei4, (10)

^361+ 3^363= eiCu+ 3 €3^14+ 611^14. (11)

Multiplying (9) by 3, and subtracting it from (10),
we get

3(yl2-vli)£i+(^2-3^i)e3=-263Ci4. (12)

Moreover, if sve subtract (9) from (11), we obtain

(yl3-^i)€i+ (3^3-^1)63= +2e3(7i4. (13)

Adding (12) and (13), we find the following
relation between ei and €3:

(3^2+^3-4^1)61+ (A2+3^3-4^i)e3=0,

or

where

63=— aei.

4^1—3^2—^3
'4^1-^2-3^3

(14)

(15)

We can now obtain Cu by substituting the
value of €3 given by (14) into (13). Thus

Ci4=K3^3-^i)+^ (A-A). (16)

From (2), we have

^0— <-^6l

fl
(17)

Furthermore, solving (3) for enCu, we get with the
help of (14),

—= (l-a)(^i-a4).
*i

(18)

Squaring both sides of (18), and making use of

(17), we obtain

^1 Aq— Cee
(19)

Consequently, if ei is determined, €3, Cu, and eu
can be calculated from (14), (17), and (18),
respectively. We shall show how ei=en/4ir can be
determined in the following section.

If we substitute the value of €3 given by (14)
into (6) to (8), and then the value of en/ei given
by (17) into these equations, we get after a little

algebra,

5i(l-a)-A=(l-a)C44-«a6+-> (20)
€1

(l-^)-3vlo=(l-^) C,,-aC,,+'f\ (21)

Bz A=(l-Sa)Cu-aCe,+'f- (22)

C44 can now be obtained, by subtracting (20)
from (21) and then solving for C44. Thus

<^44=^ [B,(3-a)-3B,{l-a)-6Ao]. (23)

Substituting this value of C44, and the value of
ef4/ei, given by (19) into (20), we get after a httle
algebraic manipulation,

aC'i6+[(l-a)(5i-C44)-(l+a)A]a6

+ [{'i--c,y{A,-C,,y-(l-oc)A,(B,-C,d+Al]=0.

The solution to this quadratic equation can be
written in the form

•^ee^^ [(l+a)Ao~(l-a){B,-Cu)

±(l-a)^{B,-C,,-A,y-MA-Cuy]. (24)

Only one of the signs in (24) will give the correct
answer. Cu can be obtained by eliminating

efi/ei from (sec. 4.1, eq 5) and (2). Thus

Cii— C22 Aq C^^. (25)

From the values of 6*14, C44, C^s, and Cu obtained
in this section, we can calculate the following
constants (see sec. 2.4, eq 2 and 3):

C'i2=C'n 2CgS) (26)

Si,= -Cu/P', Su=2aS'> S,,=2C,S' (27)

where

/3 /2

—

C(i^Cn C14. (28)

4.3. Dielectric and Piezoelectric Constants

Since the plated rectangular bar can be con-
sidered as a parallel plate condenser, it should be
possible to determine the dielectric constant of the
bar by measuring the capacitance between the two
electrodes at zero frequency. This method was
already used by Mason [2. p. 65] ; but he employed
a roundabout method of obtaining the relation

between the capacitance C and the dielectric con-
stant. We shall give here a more straight-forward

derivation of the same result.

As usual, the capacitance C is defined by

(1)
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where Q is the total electric charge on one elec-

trode, V the potential difference between the two
electrodes, a the surface real charge density on the

electrodes, and E is the static electric field inside

the crystal. The problem now is to evaluate ajE.

Since the situation in figure 3 is applicable here,

we have for the normal component of the electric

displacement inside the crystal,

where

In our case,

Thus,

Z>3=47ro-, or (t^DzIAtt, (2)

(3a)

(3b)

(4)

Since T'l is the only important stress,

^\=S'ii,TlArd'nE'i= S'nT[-^dziE,
or

(5)

The equation of motion is given by

dT[ 1 dS[ 1 d'U[

dX[ s[,dX[ s[,dX?'

The solution to this equation is

U[=A cos kX[-^B sin kX[
where

as was shown in (sec. 2.1, eq 13 and 14). How-
ever, in this case, the boundary conditions are

1T[=^ iS[-dnE)= 0 at X[=±h/2,
Cff —
Oil

or

dU[S[=^=ki-A sin kX[+B cos kX[)

=d'siE&t X[=±^^,

instead of S'i= 0, as before. The solution obtained
here is the particular integral, whereas the solution
(sec. 2.1, eq 17) was the complementary function.
Writing down the boundary conditions explicitly,

we have

k(^-A sin k 1+5 cos k ^^=d'uE,

k(^Asmk^^+B cos k ^-^=duE.

20

Thus

and

yl=0, kB=dnE/cosk^^,

'^i=kB cos kX[=dziE cos kX'ijcoB k ^ .

1
At w=n, k=0, ^i=dziE and, according to (5),

T[= Q. Thus, we have from (4),

0-=— E,.
4t

Substituting this value of cr into (1), we get

(7=-

or
1f-U _f3_

A-K III',
(6)

in agreement with the result obtained by Mason i

[2, p. 65]. The same result would have been ob-
tained, had we used (3b) instead of (3a).

The relation between efi and efi is given by (sec.

2.4, eq 5) to be

Cu fa— (2eiic?ii+eH(^i4). (7)
47r 47r

Making use of the relations

din— ^ivSvfjtj

and the symmetry properties of quartz, we get

dn= £n(Sn— S12) -\- euSu='^euS^s-\- CuSu, (8a)

'^14=eil('S'i4 »S'24) +ei4*S'44= ^en*S'i4+ ei4*S'44. (8b)

We thus have, with the help of (sec. 4.2, eq 17,

18, and 19)

2eiiC?n+ 614^14= A^eeeii +4S'i4eiiei4

+^44e?4=/3efi/4x, (9)

where

An—Cr

From (7), (9), and (6), we have finally,

^3 C_efi_
4x 1+ ^

(10)

(11)

Now that efi and efi can be calculated from
(11) and (6), e33= ef3 can be obtained from
(Sec. 4.2, eq 14). Furthermore, en, can be cal-

culated from (sec. 4.2, eq 17 and 19) and dn, du
from (8). Thus, all the dielectric and piezoelectric

constants can be determined.



4.4. Ci3 and Q where

The only remammg mdependent constants to

,
be determined are C13 and C33. As was abeady
pomted out m section 1, these constants can be

obtained from (sec. 2.4, eq 8), evaluated at the

two angles in (sec. 4.1, eq 1).

We notice from (sec. 2.4) that we can write

^"'~(Cn+C,,) C33-2Cf3"^"" ^
^

and

Ci=E,,C^s+F,,Css+G,„ (2)

where aU the constants Ai^ • are known.
In view of (1) and (2), (sec 2.4, eq 8) has the

following form

:

A.1C13 -|-A2C33 -\-A3C13 -|-A4C13C33 -(-A5C33

-\-A.sCi3C33-\-A.-!Cis=As. (3)

It is difficult to see how to solve simultaneously

l|| two equations of the form (3) for the two unkno%vns

ji Ci3 and C33. For this reason, we shaU use the

If following iteration method for solving (Sec. 2.4,

eq 8) : First of aU, we use the best known values

of Ci3, C33 only in (2), i.e., in the correction terms

containing C{i and Ci'g. This will make (sec. 2.4, eq

8) take the simple form

has+b2Q3+hCh=h.
'

(4)

Two equations of this form can be easily solved

for Ci3 and C33 by eliminating C33 first. The solu-

tion obtained in this wslJ, can then be used in (2)

and the process repeated. This method is expected

to lead quickly to the correct values for C13 and

,

C33, since the terms containing Cu and C'iq in
'

(sec. 2.4, eq 8) are about 1 percent of the other
! terms, and the error made by using the best known
I values of C13 and C33 in (2) is probably no greater

i than 1 percent. Thus the error in the first solution

obtained wiU be about 0.01 percent.

Probably the best values available for Cn and
633, are those given by Koga et al. [5], namely

C,3= 1.193 X 10" djmes/cm^, (5)

(733=10.59X10" dynes/cm^.

After C13 and C33 are evaluated, Su, Su, S13, S33

can be evaluated from (sec. 2.4, eq 3), i.e.,

a'={a^+ 0,2)0,3-20,3, &'= 2{0,,0,,-Cu). (10)

With this, aU the elastic, dielectric, and piezo-
electric constants of quartz can be determined. It

should be recalled that the elastic constants are
the adiabatic ones at constant electric field.

4.5. Experimental Conditions

The following conditions must be fulfilled in

using Y'-cut plates: (1) The plates must be flat

on both sides. (2) The ratio of lateral dimensions
to thickness should be as large as possible (perhaps
about 20:1); (3) The plates must be excited at
a harmonic high enough so that/„/n. is a constant.
One should measure experimentallj' , and find

out the value of n at which this occurs. (4) The
thickness of the plates before plating must be
measured accurately. (5) The electrodes should
cover the fuU surfaces of the plates. (6) The
frequency for zero plating must be determined by
extrapolation of the curve of frequency versus
plating thickness. (7) Both chcular and square
plates should be tried. Theoretically, if the
harmonic is high enough, the shape of the plate

should not make any difference.

The conditions for longitudinal vibration or
rectangular bars are as follows: (1) Zi/Z2>10 and
h/ky^O (see fig. 10). The bars should be fully

plated at the top and bottom smiaces. (3) The
fundamental frequency of vibration must be used.

(4) The recommended values of d, 70° and 131°

are only rough, and a little experimentation with
the value of 6 about these values, will determine
the best cut for minimum coupling with other
modes of vibration. (5) AU dimensions should
be measm^ed accurately before plating. (6) As
condition 6 above.

Figure 10.

C33 . C44 It is imderstood that all the crystals are made to
=—r+-;^' (t»;

sions at r can be calculated from the measm-ed
vibrate at the same temperature r. The dimen-

Si2=Su— iSt,i, (7) dimensions at room temperatm-e tq by means of

(sec. 2.5, eq 8).

5-53= — Cu/a', (8) If the variation of the constants of quartz with

temperature is desii-ed, then all the constants

S33={On-'rOi'^)la', (9) must be determined at different temperatures, and
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a plot for the temperature variation of each con-

stant can be obtained. The temperature coeffi-

cients can then be calculated from the definition,

4.6. Recent Determinations of the Constants
of Quartz

Several authors have tried to determine dynam-
ically the constants of quartz, e.g., Anatasoff and
Hart [7] and Mason [8] and other authors men-
tioned in Cady's book [1]. Most of these authors

have not taken the piezoelectric effect into account
and have used expressions for the frequency of

vibration which were not too reliable for the

experimental conditions they had.

Recently, Koga et al., [5] have evaluated the

constants of quartz taking the piezoelectric effect

into account. However, they used the value 4.50

for the dielectric constant in all their formulas;
whereas it is clear from the formulas of section

4.2 that the dielectric constant €22 is not the same

for aU the plates, but depends upon the angle of

cut. Furthermore, Koga et al., only determined
the constants of quartz in the neighborhood of
20° C; and there is much need for the evaluation
of these constants at low temperatures, where the
aging characteristics of quartz improve consid-
erably.

The particular choice of crystal cuts recom-
mended in this report should give a closer estimate

|{

of the actual values of the constants of quartz
than those used by other authors; at least for the
cutsin (sec. 4.1, eq 1 and 2). It thus seems that
the determination of the constants of quartz by
the method proposed here, in the temperature
range -200° C to +100° C will be a valuable
contribution to our knowledge of quartz.

It should be mentioned here that the linear

coefficients of expansion of quartz, given by (sec.

2.5, eq 3), are only known to three significant

figures, and there does not seem to be any data on
the subject beyond that given in Sosman's book
[4] since 1927. Thus, for highly accurate deter-

minations of the constants of quartz, it seems that
more accurate data on the linear coefficients of

expansion of quartz is necessary.
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