


# THE NATIONAL BUREAU OF STANDARDS

# **Functions and Activities**

The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to government agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. Research projects are also performed for other government agencies when the work relates to and supplements the basic program of the Bureau or when the Bureau's unique competence is required. The scope of activities is suggested by the listing of divisions and sections on the inside of the back cover.

### **Publications**

The results of the Bureau's research are published either in the Bureau's own series of publications or in the journals of professional and scientific societies. The Bureau itself publishes three periodicals available from the Government Printing Office: The Journal of Research, published in four separate sections, presents complete scientific and technical papers; the Technical News Bulletin presents summary and preliminary reports on work in progress; and CRPL Ionospheric Predictions provides data for determining the best frequencies to use for radio communications throughout the world. There are also five series of nonperiodical publications: Monographs, Applied Mathematics Series, Handbooks, Miscellaneous Publications, and Technical Notes.

A complete listing of the Bureau's publications can be found in National Bureau of Standards Circular 460, Publications of the National Bureau of Standards, 1901 to June 1947 (\$1.25), and the Supplement to National Bureau of Standards Circular 460, July 1947 to June 1957 (\$1.50), and Miscellaneous Publication 240, July 1957 to June 1960 (includes Titles of Papers Published in Outside Journals 1950 to 1959) (\$2.25); available from the Superintendent of Documents, Government Printing Office, Washington, D.C., 20402.

# Compilation of the Melting Points of the Metal Oxides

Samuel J. Schneider



# National Bureau of Standards Monograph 68

Issued October 10, 1963

For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C., 20402 - Price 25 cents

Library of Congress Catalog Card Number: 63-60078

# Compilation of the Melting Points of the Metal Oxides

# Samuel J. Schneider

A compilation has been made of the melting points of 70 metal oxides published prior to January 1963. Both the original melting point and the equivalent value based on the International Practical Temperature Scale of 1948 are presented. Included in the survey is information on pertinent experimental details such as the method of temperature measurement, purity, furnace type, and environmental conditions.

The melting points of the metal oxides are perhaps one of the most studied but least known of the physical properties. Seldom have two investigators completely agreed upon a single melting point value for a specific oxide. Many reported values were derived from excellent research and are quite reliable. Others are obviously in gross error. The result of this general disagreement has been that over the years a myriad of melting point values has been perpetuated through the literature. To complicate matters, necessary conversion from one temperature scale <sup>1</sup> to another has led to incorrect reporting of original data. Furthermore, various compilations of criti-cal data have listed "best values" for the melting points of the metal oxides which often have been misinterpreted as unquestionably accurate and valid. At the present time our knowledge of the true melting points of the oxides can be regarded as in no less than a state of utter confusion.

The National Bureau of Standards has recently initiated a program of reevaluation of the melting points of the metal oxides. The program tentatively includes the acceptance of previously published values after experimental verification as well as accurate determinations of ill-defined or completely unknown melting points. The ultimate goal of the work is to have national and perhaps international recognition of the melting points of several specific oxides for use as calibration standards.

The initial effort in this program has been placed in making a comprehensive literature survey of previously published melting points of the various oxides. The results of this compilation of data are presented in table 1. The information given in table 1 was taken from the original published papers whenever possible. General surveys [1, 2, 3, 4]<sup>2</sup> are referred to only when the original source could not be established. Five primary sources [5, 6, 7, 8, 9] were used initially to obtain a bibliography of papers dealing with oxide melting point determinations. Reference to these papers in turn yielded another bibliography of reports which again supplied additional literature sources. The entire process was repeated until no new references were obtained. Through this cascading method of obtaining references it is believed that a majority of all published data on oxide melting points up to January 1963 is included in the present work.

The oxides given in table 1 are arranged alphabetically according to the chemical symbol of the metal element. Excluded from consideration are oxides which are not solids at room temperature. Only oxides having stoichiometric metal to oxygen ratios are listed. Identifying symbols such as mineral names, crystal symmetry, etc., are given only to those oxides which are known to have polymorphs that melt metastably. In instances where an oxide has more than one reported melting point, individual values are given in the order of increasing magnitude according to the value based on the International Practical Temperature Scale of 1948 (Text Revision of 1960) [10].

Several criteria must be carefully considered in obtaining accurate melting point data. These factors in a general way are reflected by the column headings of table 1. Because of the wide divergence of melting point values, it is believed worthwhile, and in order, to discuss briefly each of these criteria more than normally would seem warranted in a compilation of data.

Purity. The ultimate accuracy with which any melting point can be determined is directly associated with the purity of the material. It would seem that this fact need not be emphasized; however, reports are frequently found in the literature in which purity was not considered or even mentioned. Terms such as "chemically pure," "pure," and "reagent grade" are generally meaningless unless specifically defined. Reasonable estimates of the percentages and types of impurities must be known along with their possible effect upon the melting point. Sufficient attention also must be given to the effects of contamination of the sample by its container during actual experimentation.

*Furnace type.* For obvious reasons it is particularly important in determining melting points to insure against thermal gradients throughout the sample as well as between the sample and adjacent areas where actual temperature measurements are made. Uniformity of temperature can be completely assured only by the attainment of blackbody conditions, which, of course, can never be entirely realized in practice. Excellent papers by Gouffé [11] and by De Voss [12] give methods for estimating the effective spectral emittance of several types of enclosures and cavities.

Resistance-type furnaces such as the wirewound quench or tube furnace can be constructed

<sup>&</sup>lt;sup>1</sup> Temperature scale refers not to the symbols denoting temperature (°K, °C, and °F) but to an actual scale with defining fixed points and formulas for interpolating between such points. <sup>2</sup> Figures in brackets indicate the literature references at the end of this

Monograph.

so as to have small gradients between the specimen and thermoelement. However, because of the close proximity of the specimen and thermoelement the deleterious effect of a gradient is usually negligible.

Whenever radiation pyrometry is employed for temperature measurements, near-blackbody conditions are considered to be a necessity. The induction furnace is generally one of the most suitable for approximating blackbody conditions. Temperature uniformity, with corresponding high emittance, is easily obtained through the use of inductively heated crucibles and cylinders. Another furnace frequently used for high-temperature application is the strip furnace. It usually consists of a narrow, short strip of refractory metal sometimes necked down at its center to provide a high-resistance area. Power is supplied to the strip through water-cooled leads. To facilitate temperature measurements, the strip is generally made into the shape of a V (or U). Specimens are generally placed at the apex of the V or at the midportion of a flat strip. Temperature measurements are made on areas immediately adjacent to the specimen.

The strip furnace provides an easy effective means of attaining high temperatures; however, it is not particularly conducive to accurate melting point determinations. Inherent with this furnace are the inevitable extreme thermal gradients throughout the specimen and area of measurement. Tungsten strip lamps used for calibration of optical pyrometers, although not strictly comparable, have thermal gradients along the filament which may amount to as much as 5 °C per millimeter [13]. Placement of a specimen on the strip will, in all probability, seriously alter the thermal gradient of the bare strip. The magnitude of this change will vary, depending upon such factors as the location, volume, thermal conductivity, and emissivity of the specimen.

It is a generally false assumption to consider that a V-shaped metal strip approximates a blackbody enclosure. As long as there is any deviation from isothermal conditions about the enclosure, blackbody conditions cannot be realized. However, brightness temperatures can approach true temperatures if the emittance of the strip is near unity. The use of a substance having a high natural emittance (i.e., graphite) as strip material is not always feasible.

Temperature measurement. The theory, use, and calibration of various temperature-measuring devices have been well documented [13, 14, 15, 16]. The optical pyrometer or thermocouple is only one part of an entire temperature-measuring system. Often, little attention has been given to the effect of auxiliary equipment or associated apparatus on temperature measurements. An inadequate reference junction of a thermocouple circuit can cause errors as serious as those produced by thermal gradients in a furnace. The effect of stray or induced voltage from furnace windings or other power sources can be very harmful and yet go undetected.

The position of windows or enclosures relative to the target area is extremely important in making brightness temperature measurements with an optical pyrometer. Gross errors are produced by the reflection of radiation by the windows, enclosures, or associated pieces into the field of view of the pyrometer. Indiscriminate use of published spectral emissivity values to convert brightness temperatures to true temperatures should be avoided. Emissivity refers to a property of an opaque material whose surface has been polished optically flat. Unless the target area of the pyrometer conforms to these conditions, errors will result. The emittance of any enclosure supposedly built as a blackbody is extremely dependent upon the nature of internal reflections. Even an enclosure in which the geometric design is suitable <sup>3</sup> can have low emittance if the internal reflections are predominantly specular rather than diffuse [12, 13].

Method. It is not uncommon to observe that oxides appear to melt over a range of temperatures with a marked hysteresis between the apparent melting and freezing points. The magnitude of the hysteresis may vary from negligible quantities to many degrees. Whatever the reason for the hysteresis, whether it be partial dissociation, influence of impurities, or other causes, the melting point must be defined with respect to experimental conditions. The melting point of an oxide can be specified as that temperature at which solid and liquid are in equilibrium for a given confining pressure and for given partial pressures of environmental gases.

Obvious difficulties are inherent in establishing the melting temperature. Experimentally it can be taken as the temperature at which the last solid disappears on heating at a sufficiently slow rate to insure temperature uniformity. Conversely, the freezing point is the temperature at which crystallization first begins. Dynamic methods such as differential thermal analysis and heating or cooling curves have the advantage of the utilization of heat effects but the distinct disadvantage of being rate-dependent. Cooling curve methods have been successfully applied in the determination of the freezing points of palladium, platinum, rhodium, and iridium (secondary reference points on the International Temperature Scale of 1948 [10]). Pronounced supercooling and superheating tendencies of many oxides make this method somewhat less applicable, although it may be the best available.

The method of visual observation of a specimen during heating is generally unacceptable as an accurate means of establishing the melting point. If the specimen is visible, it is quite probable that thermal gradients are present, thereby preventing

<sup>&</sup>lt;sup>3</sup> A large ratio of internal area of cavity to area of opening is required. The ratio is sometimes expressed in terms of depth of cavity and diameter of opening.

accurate temperature measurements. The attainment of blackbody conditions renders the visual method ineffectual, inasmuch as the specimen would be indistinguishable from adjacent areas.

The static method in which a specimen is heated and cooled prior to examination has proved satisfactory in many instances. Temperature measurement is not as much a problem as with dynamic methods. Auxiliary equipment such as the microscope and X-ray diffraction can be readily applied to aid in determining the degree of melting.

Calibration points. The determination of a melting point can be only thought of as being obtained through the use of an integral system of various types of equipment and procedures. The mere use of previously calibrated thermocouples and pyrometers does not insure accurate measurement of temperature. It is highly desirable to calibrate the entire system against the known melting points of several standards. Insofar as possible, the overall characteristics of the standards should conform to those of the test material. Because of the present lack of recognized standards, calibration materials should generally be limited to those defining the International Practical Temperature Scale [10]. It is as undesirable to use substances having ill-defined melting points as it is to use standards which have different characteristics than those of the test material.

*Environment.* The effect of environmental gas as well as the confining pressure on the melting points of oxides has been generally disregarded or considered noninfluential. Extensive studies have been made only on those oxides (i.e., iron and manganese oxides) which are pronouncedly affected. It is conceivable that most oxides are distinctly influenced by various gas partial pressures more than previously realized and partial dissociation always occurs to some degree. If dissociation exists, an oxide can be expected to melt incongruently.

Melting point and temperature scale. Sosman [17], in his paper "Temperature Scales and Silicate Research," has extensively discussed the development of temperature scales, especially during the period 1907 to 1948. In essence, a single scale had not been recognized until about 1910 to 1914, when the Geophysical Temperature Scale [18] was established. In 1927, the first internationally recognized scale [19] was adopted. A major revision of the 1927 scale was made in 1948 [20], with subsequent text revision in 1960 [10]. Some of the principal fixed and secondary reference points of the three scales are given in table 2. The Geophysical Scale is, for consistency of data, still being used by a few investigators. The 1948 scale has entirely superseded the 1927 scale as being a closer approach to the thermodynamic scale. Numerical differences between the three scales generally amount to less than one degree at temperatures below the gold point. At higher temperatures, the variance becomes much greater. The Geo-

TABLE 2. Some fixed and secondary points of the geophysical and international temperature scales

| Material                                              | Prop-<br>erty <sup>a</sup>           | Int.<br>1927<br>[19]                                                        | Int.<br>1948<br>[10]                                                         | Geo-<br>physical<br>[17]                                                                |
|-------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Naphthalene<br>Tin<br>Benzophenone<br>Cadmium<br>Lead | B.P.<br>M.P.<br>B.P.<br>M.P.<br>M.P. | $^{\circ}C$ 217. 96 231. 85 305. 9 320. 9 327. 3                            | $^{\circ}C$ 218. 0 231. 91 305. 9 321. 03 327. 3                             | °C<br>217, 95<br>231, 9<br>305, 9<br>320, 9                                             |
| Zinc<br>Sulfur<br>Antimony<br>Silver<br>Gold          | M.P.<br>B.P.<br>M.P.<br>M.P.<br>M.P. | $\begin{array}{r} 419.\ 45\\ 444.\ 6\\ 630.\ 5\\ 960.\ 5\\ 1063\end{array}$ | $\begin{array}{c} 419.\ 505\\ 444.\ 6\\ 630.\ 5\\ 960.\ 8\\ 1063\end{array}$ | $\begin{array}{r} 419. \ 4\\ 444. \ 5_{5}\\ 630. \ 0\\ 960. \ 2\\ 1062. \ 6\end{array}$ |
| Copper<br>Diopside<br>Nickel<br>Pallaqium<br>Platinum | M.P.<br>M.P.<br>M.P.<br>M.P.<br>M.P. | 1083<br>1555                                                                | $1083 \\ 1453 \\ 1552 \\ 1769$                                               | $\begin{array}{c} 1082. \ 8\\ 1391. \ 5\\ 1452. \ 4\\ 1549. \ 5\\ 1755 \end{array}$     |
| Rhodium<br>Iridium<br>Tungsten                        | M.P.<br>M.P.<br>M.P.                 | 3400                                                                        | $1960 \\ 2443 \\ 3350$                                                       |                                                                                         |

<sup>a</sup> The symbols B.P. and M.P. roughly signify boiling point and melting point, respectively. For exact designation of the property under considera-tion, reference should be made to the appropriate publication.

physical Scale has an upper limit at the melting point of platinum, defined as 1755 °C. Approximate differences between the Geophysical and 1948 scales at various temperatures can be obtained from appropriate plots of the data given in table 2. The 1927 scale above the gold point is based on the Wien radiation formula,<sup>4</sup> which is not strictly valid at extremely high temperatures. The 1948 scale utilizes the Planck equation <sup>4</sup> for temperatures above the gold point. The equation is applicable to indefinitely high temperatures.

Conversion from the 1927 scale to the 1948 scale, above the gold point, can be accomplished through the use of the following equation as derived by Corruccini [21].<sup>5</sup>

4 (Wien)

$$\log_{e} \frac{J_{t}}{J_{Au}} = \frac{C_{2}}{\lambda} \left[ \frac{1}{1336} - \frac{1}{(t+273)} \right]$$
(1)

If  $\lambda(t+273)$  is less than 0.3 cm deg the resulting error is less than 1 °C.

(Planck)

$$\frac{J_t}{J_{A_u}} = \frac{\exp\left[\frac{C_2}{\lambda(t_{A_u} + T_0)}\right] - 1}{\exp\left[\frac{C_2}{\lambda(t + T_0)}\right] - 1}$$
(2)

where

 $J_{Au}$  and  $J_t$  = radiant energies per unit wavelength interval emitted per unit

the radiant energies per unit wavelength interval enrited per unit the gold point t<sub>4</sub>.
 λ=wavelength (approximately 0.65×10<sup>-4</sup> cm for most optical pyrometers)
 C<sub>2</sub>=second radiation constant=
 1.432 cm deg (1927) or

1.432 cm deg (1927) or 1.438 cm deg (1948)

$$T_0 = 273.15 \text{ deg}.$$

<sup>5</sup> The equation is derived hy equating the right side of eq (1) with the logarithm of the right side of eq (2), expressing in exponential form and substituting appropriate values for  $T_{\rm C_2}$ , and  $t_{A*}$  (1063 °C).

$$\frac{\exp\left[\frac{1.438}{1336.15\lambda}\right] - 1}{\exp\left[\frac{1.438}{(T+273.15)\lambda}\right] - 1}$$

where

 $\lambda$ =wavelength (approximately  $0.65 \times 10^{-4}$  cm for most optical pyrometers)

 $=\exp\left[\frac{1.432}{\lambda}\left(\frac{1}{1336}-\frac{1}{T'+273}\right)\right]$ 

- T=a temperature above the gold point, °C (Int. 1948)
- T'=a temperature above the gold point, °C (Int. 1927).

Approximate conversion from other temperature scales in use prior to 1927 can be accomplished in a similar manner. To ease calculations only Wien's relationship is utilized. The resulting equation necessary for the conversion is:

$$\frac{1.438}{\lambda} \left[ \frac{1}{1336} - \frac{1}{(T+273)} \right] = \frac{C_2'}{\lambda'} \left[ \frac{1}{(t_{Au'}+273)} - \frac{1}{(T'+273)} \right]$$

where

- $C_2'$  = second radiation constant originally employed
- T=a temperature above the gold point, °C (Int. 1948)
- T'=a temperature above the gold point, °C (original scale)
- $t_{Au}' =$ gold point originally employed (generally 1063  $^{\circ}\overline{C}$ )
- $\lambda$  and  $\lambda'$ =wavelength ( $\lambda$  and  $\lambda'$  can be assumed to be equal).

In the present work, all original melting points have been converted, whenever possible, to values based on the 1948 temperature scale by methods previously described. Unfortunately, some published papers fail to state the temperature scale utilized. Conversion to the 1948 scale was impossible in these instances unless the scale could be unambiguously assumed from information such as the date of publication or listed calibration temperatures and radiation constant.

*Comments.* Other than for the obvious purpose of the compilation of critical data, the present survey has another important function, in that it vividly illustrates the variance of melting point values found in the literature. No attempt will be made for the present to select one value over another as being absolutely correct. It is quite difficult to ascertain completely the validity of published data without additional experimental work. However, it is believed appropriate to make pertinent comments about the less obvious shortcomings inherent in any published work and to designate the preferred values with an asterisk.

Many thanks are due to J. L. Waring for the collection of many of the original papers and to Mrs. J. Marcus for her excellent partial translations of foreign articles. Without their help, this publication would have been impossible.

#### References

- [1] K. K. Kelley, U.S. Bur. Mines, Bull. 393, Pt. V, 1 - 165 (1936)
- 2] F. Trombe, Bull. Soc. franc. Ceram. 3, 18-26 (1949).
- [3] F. C. Kracek, Geol. Soc. Am. No. 36, Pt. II, 140-174 (1942).
- [4] Handbook of Chemistry and Physics, 38th ed., Chemical Rubber Publ. Co., Cleveland, Ohio (1956-57).
- [5] Ceram. Abstr. (Jan. 1955 through Dec. 1962, inclusive)
- [6] A. Goldsmith, T. E. Waterman, and H. J. Hirsch-horn, Handbook of Thermophysical Properties of Solid Materials, 3, The MacMillan Co. (New York, N.Y., 1961).
- Bull. Nat. Research Council, No. 118 (1949).
  E. M. Levin, H. F. McMurdie, and F. P. Hall, Phase Diagrams for Ceramists, Am. Ceram. Soc. (1956); also, E. M. Levin and H. F. McMurdie, Phase Diagrams for Ceramists, Pt. II, Am. Ceram. [8] E.
- [9] F. D. Rossini, D. D. Wagman, W. H. Evans, S. Levine, and I. Jaffe, NBS Circ. 500 (1952).
   [10] H. F. Stimson, J. Research NBS 65A, 139–145
- (1960).
- [11] A. Gouffé, Rev. Opt. 24, 1-10 (1945).
- [12] J. C. DeVoss, Physica 20, 669–689 (1954).
  [13] H. J. Kostkowski and R. D. Lee, NBS Mono. 41
- (1962). [14] W. R. Roeser and S. T. Lonberger, NBS Circ. 590
- (1958).
- [15] F. R. Caldwell, NBS Mono. 40 (1962).
- [16] R. L. Weber, Heat and Temperature Measurement, Prentice-Hall, Inc. (New York, N.Y., 1950). [17] R. B. Sosman, Am. J. Sci., Bowen Vol., 517-528
- (1952).
- [18] (a) A. L. Day and R. B. Sosman, Am. J. Sci. 29 (4th ser.), 93-161 (1910).
  - (b) R. B. Sosman, Am. J. Sci. 30 (4th ser.), 1-15 (1910).

  - (c) Carnegie Inst. Wash. Publ. 157 (1911).
    (d) L. H. Adams, J. Am. Chem. Soc. 36, 65-72 (1914).
- [19] G. K. Burgess, BS J. Research 1, 635–640 (1928).
   [20] H. F. Stimson, J. Research NBS 42, 209–217 (1949).
- [21] R. J. Corruccini, J. Research NBS 43, 133-136 (1949).
- [22] Shun-ichiro Iijima, Bull. Inst. Phys. & Chem. Research (Tokyo) 17, 40 (1938).
- [23] E. Tiede and E. Birnbrauer, Z. Anorg. Chem. 87, 129–168 (1914). [24] R. F. Geller and P. J. Yavorsky, J. Research NBS
- 34, 395-401 (1945).
- [25] O. Ruff and G. Lauschke, Z. Anorg. Chem. 97. 73-113 (1916). [26] O. Weigel and F. Kaysser, Neues Jahrb. Mineral
- Geol. 64, 321-396 (1931).
- [27] S. D. Mark, Jr., J. Am. Ceram. Soc. 42, 208 (1959).
   [28] J. J. Diamond and S. J. Schneider, J. Am. Ceram.
- Soc. 43, 1-3 (1960).
- [29] R. F. Geller and E. N. Bunting, J. Research NBS 31, 255-270 (1943).
- [30] W. A. Lambertson and F. H. Gunzel, Jr., A.N.L., U.S. AEC Publ. AECD-3465, 1-4 (1952).
- [31] O. Ruff, Z. Anorg. Allgem. Chem. 82, 373-400 (1913).
- [32] E. N. Bunting, J. Research NBS 6, 947-949 (1931).
- [33] R. N. McNally, F. I. Peters, and P. H. Ribbe, J. Am. Ceram. Soc. 44, 491–493 (1961).
- [34] O. Ruff and O. Goecke, Z. Angew. Chem. 24, 1459-1465 (1911).

- [35] S. M. Lang, F. P. Knudsen, C. L. Filmore, and R. S. Roth, NBS Circ. 568, 1-32 (1956).
- [36] H. v. Wartenberg, H. Linde, and R. Jung, Z. Anorg. Allgem. Chem. 176, 349-362 (1927).
- [37] C. W. Kanolt, Bull. BS 10, 295–313 (1914); also, J. Wash. Acad. Sci. 3, 315–318 (1913); also, Z. Anorg. Chem. 85, 1–19 (1914).
- [38] A. Smits and E. Beljaars, Proc. Roy. Acad. Amsterdam 34, 1141-1155 (1931).
- [39] H. V. Welsch and L. H. Duschak, U.S. Bur. Mines Tech. Paper 81, 5-20 (1915). [40] E. R. Rushton and F. Daniels, J. Am. Chem. Soc.
- 48, 384-389 (1926).
- [41] F. C. Kracek, G. W. Morey, and H. E. Merwin, Am. J. Sci. 35, (5th ser.), 143-171 (1938).
  [42] L. McCulloch, J. Am. Chem. Soc. 59, 2650-2652
- (1937)
- [43] E. E. Schumacher, J. Am. Chem. Soc. 48, 396-405 (1926)
- [44] H. v. Wartenberg, H. J. Reusch, and [E. Saran, Z. Anorg. Allgem. Chem. 230, 257-276 (1937).
  [45] H. v. Wartenberg and H. Werth, Z. Anorg. Allgem. Chem. 190, 178-184 (1930).
  [47] V. J. O'Sharabi', Bergerata, Sei, USSB, 200
- [46] Ya. I. Ol'Shanskii, Reports Acad. Sci. USSR 59, 1105-1107 (1958). [47] L. Belladen, Gazz. Chim. Ital. **52**, 160-164 (1922).
- [48] W. Guertler, Z. Anorg. Chem. 37, 222-224 (1903).
   [49] E. M. Levin and C. McDaniel, J. Am. Ceram. Soc.
- **45**, 355–360 (1962). [50] R. C. Doman, J. B. Barr, N. R. McNally, and A. M.
- Alper, Bull. Am. Ceram. Soc. 41, 584 (1962) (abstract). [51] R. S. Roth, J. Am. Ceram. Soc. **44**, 49–50 (1961).
- [52] H. v. Wartenberg and W. Gurr, Z. Anorg. Allgem. Chem. 196, 374-383 (1931).
- [53] H. v. Wartenberg and E. Prophet, Z. Anorg. Allgem. Chem. 208, 369-379 (1932); also H. v. Wartenberg and H. J. Reusch, Z. Anorg. Allgem. Chem. **208**, 380-381 (1932). [54] W. T. Wilde and W. J. Rees, Trans. Brit. Ceram.
- Soc. 42, 123-155 (1943). [55] E. N. Bunting, BS J. Research 5, 325-327 (1930). [56] H. v. Wartenberg and H. J. Reusch, Z. Anorg.
- Allgem. Chem. 207, 1-20 (1932)
- [57] H. v. Wartenberg and K. Eckhardt, Z. Anorg. Allgem. Chem 232, 179–187 (1937).
- [58] M. E. Rengade, Bull. Soc. Chim. France 5, 994-1003 (1909).
- [59] R. . Ruer and M. Nakamoto, Rec. Trav. Chim. 42, 675-682 (1923).
- [60] H. S. Roberts and F. H. Smyth, J. Am. Chem. Soc.
- 43, 1061-1079 (1921).
   [61] L. G. Wisnyi and S. Pijanowski, Metal. Rept. of Tech. Dept., Mar., Apr. and May, U.S. AEC Publ. Kapl-1564 19-20 (1956).
   [61] L. G. Wisnyi and S. Pijanowski, Metal. Rept. of Tech. Dept., Mar., Apr. and May, U.S. AEC
- [62] S. J. Schneider, J. Research NBS 65A (Phys. & Chem.), 429-434 (1961).
- [63] J. Chipman and S. Marshall, J. Am. Chem. Soc. 62, 299-305 (1940). [64] R. Hay, D. D. Howat, and J. White, J. West Scot.
- Iron & Steel Inst. 40, 97-108 (1932-1933).
- [65] L. S. Darken and R. W. Gurry, J. Am. Chem. Soc. 68, 798-815 (1946)
- [66] N. L. Bowen and J. F. Schairer, Am. J. Sci. 24, 177-
- 213 (1932).
  L. Moruzzi and M. W. Shafer, J. Am. Ceram. Soc. 43, 367–372 (1960). [67] V.
- [68] J. W. Greig, E. Posnjak, H. E. Merwin, and R. B. Sosman, Am. J. Sci. (5th ser.) 30, 239-316 (1935).
  [69] V. G. Hill, R. Roy, and E. F. Osborn, J. Am. Ceram. Soc. 35, 135-142 (1952).
- [70] S. J. Schneider and J. L. Waring, J. Research NBS 67A (Phys. & Chem.), 19-25 (1963).
- [71] C. E. Curtis and J. R. Johnson, J. Am. Ceram. Soc. 40, 15-19 (1957)
- [72] R. Schwarz, P. W. Schenk, and H. Giese, Ber. deut. Chem. Ges. 64, 362-368 (1931).
- [73] A. W. Laubengayer and D. S. Morton, J. Am. Chem. Soc. 54, 2303-2320 (1932).

- [74] P. Clausing, Z. Anorg. Allegem. Chem. 204, 33-39 1932).
- [75] F. Henning, Naturwissenschaften 13, 661 (1925).
- [76] C. E. Curtis, L. M. Doney, and J. R. Johnson, J. Am. Ceram. Soc. 37, 458-465 (1954).
   [71] J. H. D. Cardinals and O. Managara, Characterization and Computer Science (1998).
- [77] E. H. P. Cordfunke and G. Meyer, Rec. Trav. Chim. 81, 495-504 (1962).
- [78] J. White, D. D. Howat, and R. Hay, J. Royal Tech. Coll. (Glasgow) 3, 231-240 (1933).
  [79] H. J. Van Hook and M. L. Keith, Am. Mineralogist
- 43, 69-83 (1958).
- [80] T. Ranganathan, B. E. MacKean, and A. Muan, J. Am. Ceram. Soc. 45, 279-281 (1962).
- [81] T. Carnelley, J. Chem. Soc. (London) 33, 273-284 (1878).
- [82] E. Groschuff, Z. Anorg. Chem. 58, 113-119 (1908).
   [83] F. M. v. Jaeger and H. C. Germs, Z. Anorg. Allgem.
- Chem. 190, 145-173 (1921). [84] F. Hoermann, Z. Anorg. Allgem. Chem. 177, 145-186 (1929).
- [85] G. D. Rieck, Rec. Trav. Chim. 62, 427-430 (1943).
   [86] L. A. Cosgrove and P. E. Snyder, J. Am. Chem. Soc. 75, 1227-1228 (1953).
- [87] G. Brauer, Z. Anorg. Allgem. Chem. 248, 1-31 (1941). [88] M. W. Shafer and R. Roy, Z. Krist. **110**, 241–248
- (1958).
- (1995).
  [89] M. Ibrahim, N. F. Bright, and J. F. Rowland, J. Am. Ceram. Soc. 45, 329-334 (1962).
  [90] R. S. Roth and J. L. Waring, J. Research NBS 66A (Phys. & Chem.), 451-463 (1962).
  [91] A. Reisman and F. Holtzberg, J. Am. Chem. Soc. 77, 2115 (1955).
- 2115-2119 (1955).
- [92] R. S. Roth and J. L. Waring, J. Research NBS 65A (Phys. & Chem.), 337-344 (1961).
  [93] F. Holtzberg, A. Reisman, M. Berry, and M. Berkenblit, J. Am. Chem. Soc. 79, 2039-2043 (1957).
  [94] R. S. Roth and L. W. Coughanour, J. Research NDS 55 200 212 (1957).
- NBS 55, 209-213 (1955).
- [95] R. L. Orr, J. Am. Chem. Soc. 75, 2808–2809 (1953).
   [96] P. D. Merica and R. G. Waltenberg, Tech. Pap. BS
- **19**, 155–182 (1925). [97] H. v. Wartenberg, Ann. Chem. Liebigs **440**, 97–110
- (1924).[98] J. M. A. Hoeflake and M. F. C. Scheffer, Rec. Trav.
- Chim., 45, 191-200 (1926). [99] S. Hilpert and P. Weiller, Ber. Deut. Chem. Ges.
- 42, 2969-2977 (1909). [100] R. Schenck and W. Rassbach, Ber. Deut. Chem. Ges. 42, 2917-2925 (1908).
- (101) R. F. Geller, A. S. Creamer, and E. N. Bunting, J. Research NBS 13, 237–244 (1934).
  [102] K. A. Krakau, Ann. Secteur Anal. Physico. Chim., Inst. Chim. Gen. (USSR) 8, 331–350 (1936).
  [103] V. A. Kroll, Z. Anorg. Chem. 78, 95–133 (1912).
  [104] H. C. Cooper, L. I. Shaw, and N. E. Loomis, Ber. Deut. Chem. Ges. 42, 3991–3993 (1909).
  [105] W. B. Hingko, L. Am. Chem. Soc. 52, 2360–3877.

- [105] W. B. Hincke, J. Am. Chem. Soc. 52, 3869-3877 (1930). [106] R. Wietzel, Z. Anorg. Allgem. Chem. **116**, 71-95
- (1921).
- [107] K. Endell and R. Rieke, Z. Anorg. Chem. 79, 239-359(1913).
- [108] J. B. Ferguson and H. E. Merwin, Am. J. Sci. (4th ser.) 46, 417-426 (1918). [109] J. W. Greig, Am. J. Sci. (5th ser.) 13, 1-44 (1927). [110] N. Zhirnova, J. Gen. Chem. USSR 4, 1455-1470
- (1934). [111] V. J. Barczak and R. H. Insley, J. Am. Ceram. Soc.
- 45, 144 (1962)
- [112] A. Reisman, F. Holtzberg, M. Berkenblit, and M.
- Berry, J. Am. Chem. Soc. 78, 4514–4520 (1956). [113] O. Ruff, F. Ebert, and H. Woitinek, Z. Anorg. Allgem. Chem. 180, 252–256 (1929).
- [114] W. O. Statton, J. Chem. Phys. 19, 33-40 (1951).
- [115] H. Sigurdson and S. S. Cole, J. Metals 1, 905-908 (1949).
- [116] D. E. Rase and R. Roy, J. Am. Ceram. Soc. 38, 102-113 (1955).

- [117] L. W. Coughanour and V. A. DeProsse, J. Research NBS 51, 85-88 (1953).
  [118] P.D.S. St. Pierre, J. Am. Ceram. Soc. 35, 188 (1952).
  [119] S. M. Lang, C. L. Fillmore, and L. H. Maxwell, J. Research NBS 48, 298-312 (1952).
  [120] G. Brauer and W. Littke, J. Inorg. Nucl. Chem. 16, 67-76 (1960)

- 67-76 (1960).
- [121] A.B.F. Duncan, J. Am. Chem. Soc. 51, 2697-2705 (1929).
- [122] T. C. Ehlert and J. L. Margrave, J. Am. Ceram. Soc., 41, 330 (1958).
- [123] O. A. Cook, J. Am. Chem. Soc. 69, 331-333 (1947).

| Oxide | Reference                                   | Purity <sup>2</sup>                                                                                            | Furnace type                                                        | Temperature measurement                                                                   | Method                                                                                                          |
|-------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
|       |                                             |                                                                                                                |                                                                     |                                                                                           |                                                                                                                 |
| .g₂O  | Kracek [3]                                  | Not stated                                                                                                     | Not stated                                                          | Not stated                                                                                | Not stated                                                                                                      |
|       | Shun-ichiro Iijima [22]_                    | Not stated                                                                                                     | Not stated                                                          | Not stated                                                                                | Weight loss measurements                                                                                        |
| 12O2  | Tiede and Birnbrauer<br>[23].               | Not stated                                                                                                     | Arc                                                                 | Optical pyrometer sighted on specimen.                                                    | Observation of specimen during heating.                                                                         |
|       | Geller and Yavorsky<br>[24].                | Three samples: (a) Soda<br>free, 0.05% carbon; (b)<br>0.01% impurities; (c)<br><0.01% each of seven<br>metals. | Resistance; ThO <sub>2</sub> -CeO <sub>2</sub><br>heating elements. | Optical pyrometer sighted on specimen.                                                    | Observation of pyramic<br>shaped specimen durin<br>heating. Rounded corner<br>indicated melting.                |
|       | Ruff and Lauschke [25].                     | Commercially pure                                                                                              | Resistance; graphite tube<br>heating element.                       | Optical pyrometer sighted on specimen.                                                    | Observation of specimen dur<br>ing heating.                                                                     |
|       | Weigcl and Kaysser<br>[26].                 | Two samples: (a) Not<br>stated (b) Alkali free.                                                                | Resistance; graphite tube<br>heating element.                       | Optical pyrometer sighted on specimen.                                                    | Observation of specimen dur<br>ing heating.                                                                     |
|       | Mark [27]                                   | Not stated                                                                                                     | Resistance; graphite tube<br>heating element.                       | Optical pyrometer sighted on specimen.                                                    | Observation of specimen during heating.                                                                         |
|       | Diamond and<br>Schneider [28].              | About 99.9%                                                                                                    | Solar                                                               | Optical pyrometer sighted on specimen.                                                    | Observation of bar-shaped<br>specimen during cooling.                                                           |
|       | Geller and Bunting<br>[29].                 | 99.98%                                                                                                         | Resistance                                                          | Optical pyrometer sighted on specimen.                                                    | Observation of specimer<br>during heating.                                                                      |
|       | Lambertson and<br>Gunzel [30].              | 99.5%                                                                                                          | Resistance; W heating element.                                      | Optical pryometer sighted on<br>specimen. Specimen not<br>visible.                        | Examination of specimer<br>after heating.                                                                       |
|       | Ruff [31]                                   | Pure                                                                                                           | Resistance; graphite tube<br>heating element.                       | Optical pyrometer sighted on specimen.                                                    | Observation of specimen dur<br>ing heating.                                                                     |
|       | Bunting [32]                                | 99.95%                                                                                                         | Induction; Ir alloy suscep-<br>tor, button-shaped.                  | Optical pyrometer sighted on<br>small cavity in susceptor<br>adjacent to specimen cavity. | Examination of specimen afte<br>heating.                                                                        |
|       | McNally, Peters, and<br>Ribbe [33].         | Not stated                                                                                                     | Induction; graphite tube susceptor.                                 | Optical pyrometer sighted on specimen.                                                    | Observation of specimen su<br>pended in furnace durin<br>heating.                                               |
|       | Ruff and Goecke [34]                        | Not stated                                                                                                     | Resistance; graphite tube<br>heating element.                       | Optical pyrometer sighted on specimen.                                                    | Observation of cone-shape<br>specimen during heating<br>Fusion of cone tip indicate<br>melting.                 |
|       | Lang, Knudsen, Fil-<br>more, and Roth [35]. | 99.9%                                                                                                          | Resistance; graphite tube<br>heating element.                       | Optical pyrometer sighted on specimen.                                                    | Observation of pyrami-<br>shaped specimen durin<br>heating. Deformation of<br>pyramid tip indicated mel<br>ing. |
|       | v. Wartenberg, Linde,<br>and Junq [36].     | Pure                                                                                                           | Flame; oil-oxygen                                                   | Optical pyrometer sighted on specimen.                                                    | Observation of specimen sus<br>pended in furnace durin<br>heating.                                              |

- [124] V. V. Illarionov, R. P. Ozeron, and E. V. Kil'-disheva, Zh. Neorgan. Khim. 1, 777-782 (1956).
- [125] F. Holtzberg, A. Reisman, M. Berry, and M. Berkenblit, J. Am. Chem. Soc. 78, 1536-1540 (1956).
- [126] C. McDaniel, NBS, personal communication.
- [127] A. Burdese, Ann. Chim. (Rome) 47, 785-796 (1957).
- [128] E. N. Bunting, J. Am. Ceram. Soc. 13, 5–10 (1930).
   [129] E. Podszus, Z. Angew. Chem. 30, 17–19 (1917).
- [130] S. J. Schneider, J. Am. Ceram. Soc. 43, No. 7, 354-355 (1963).
- [131] G. Gattow and H. Schroder, Z. Anorg. Allgem. Chem. 318, 176-189 (1962).

| Calibrat                                     | ion Points                                    | Environment                                                                                               | Original Temp.                  | Melting Points                                                                                   |               | Comments                                                                                                       | Oxio              |
|----------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------|---------------|----------------------------------------------------------------------------------------------------------------|-------------------|
| Materials                                    | Temp.                                         |                                                                                                           | Scale <sup>3</sup>              | Original                                                                                         | Int. 1948 4   |                                                                                                                | ,                 |
| Not stated                                   | °C                                            | Not stated                                                                                                | Not stated                      | °C<br>191 dissociates                                                                            | °C            | Survey; not original data.                                                                                     | Ag <sub>2</sub> O |
| Not stated                                   |                                               | Not stated                                                                                                | (Int. 1927)                     | 230 dissociates                                                                                  | 230           |                                                                                                                |                   |
| Not stated                                   |                                               | Vacuum                                                                                                    | Not stated                      | 1890                                                                                             |               | <sup>5</sup> ; partial dissociation probably occurred.                                                         | Al <sub>2</sub> O |
| 60Pt-40Rh<br>80Pt-20Rh<br>90Pt-10Rh<br>100Pt | 1905<br>1845                                  | (Air)                                                                                                     | Int. 1927                       | 2000 to 2030                                                                                     | 1994 to 2024  | (š)                                                                                                            |                   |
| Au<br>CaF2                                   |                                               | (a) Air at 7.5 mm Hg<br>(b) Air at 7.7 mm Hg                                                              | C <sub>2</sub> =1,437 cm<br>deg | (a) 2005<br>(b) 2008                                                                             |               | δ; partial dissociation probably<br>occurred; reaction between<br>specimen and graphite sup-<br>port probable. |                   |
| Au<br>Pd<br>Pt                               | 960.5<br>1063<br>1557<br>1770<br>1970<br>2415 | <ul> <li>(a1) Nitrogen at 1<br/>atm</li> <li>(a2) Air</li> <li>(b1) Reducing</li> <li>(b2) Air</li> </ul> | C2=1.44 cm deg                  | <ul> <li>(a1) 2007±4</li> <li>(a2) 2010</li> <li>(b1) 2001</li> <li>(b2) 2005 to 2010</li> </ul> | 2012          | <sup>5</sup> ; reaction between specimen<br>and charcoal support proba-<br>ble.                                |                   |
| Not stated                                   |                                               | Neutral                                                                                                   | (Int. 1948)                     | 2020                                                                                             | 2020          | <sup>5</sup> ; reflection errors possible.                                                                     |                   |
| None                                         |                                               | Air                                                                                                       | Int. 1948                       | 2025                                                                                             | 2025          | <sup>5</sup> ; emissivity stated by authors<br>to be about unity.                                              |                   |
| Pt<br>90Pt-10Rh                              | Not stated<br>Not stated                      | Air                                                                                                       | Int. 1927                       | $2035 \pm 10$                                                                                    | 2029 ±10      | <sup>5</sup> ; reflection errors possible                                                                      |                   |
| Pt                                           | (1769)                                        | Helium                                                                                                    | (Int. 1948)                     | $2034 \pm 16$                                                                                    | 2034 ±16      | t<br>                                                                                                          |                   |
| Pt                                           | 1755                                          | Not stated                                                                                                | C <sub>2</sub> =1.46 cm deg.    | 2010 ±10                                                                                         | 2035 ±10      | <sup>5</sup> ; reaction between specimen and<br>graphite support probable.                                     |                   |
| Not stated                                   |                                               | (Air)                                                                                                     | Int. 1927                       | $2045 \pm 25$                                                                                    | $2038 \pm 25$ | Temperature uniformity be-<br>tween specimen and target<br>area of pyrometer not verified.                     |                   |
| Al2O3                                        | 2044                                          | Air, argon, nitrogen                                                                                      | Int. 1948                       | 2043 ±10                                                                                         | 2043 ±10      | (δ)                                                                                                            |                   |
| Au<br>Pt                                     | 1071<br>1757                                  | Nitrogen                                                                                                  | (C <sub>2</sub> =1.48 cm deg).  | 2020                                                                                             | 2044          | <sup>8</sup> ; reaction between specimen<br>and graphite support probable.                                     |                   |
| Al <sub>2</sub> O <sub>3</sub><br>BeO        | 2035<br>2510                                  | Argon                                                                                                     | Int. 1948                       | 2049                                                                                             | 2049          | (5)                                                                                                            |                   |
| Pt<br>Mo                                     | Not stated<br>Not stated                      | Air                                                                                                       | (Int, 1927)                     | 2055                                                                                             | 2049          | ( <sup>3</sup> )                                                                                               |                   |

| Oxide                                    | Reference                                      | Purity <sup>2</sup>                                                                   | Furnace type                                                            | Temperature measurement                                                                                 | Method                                                                                                                     |
|------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Al <sub>2</sub> O <sub>3</sub> —<br>Con. | Kanolt [37]                                    | Fe-0.001%<br>Cu-none<br>SiO <sub>2</sub> -0.001%<br>Chloride-0.005%<br>Sulfate-0.001% | Resistance; graphite tube<br>heating element.                           | Optical pyrometer sighted on<br>blackbody cavity immersed<br>in specimen.                               | Thermal analysis, heating curves.                                                                                          |
| As2O3<br>Mono-<br>clinic                 | Smits and Beljaar [38].                        | Not stated                                                                            | NaNO3-NaNO2 bath                                                        | Pt resistance thermometer                                                                               | Intersection of vapor pressure<br>curve.                                                                                   |
| type.                                    | Welch and Duschak<br>[39].                     | C. P. grade                                                                           | Not stated                                                              | Copper-constantan thermo-<br>couple.                                                                    | Thermal analysis, heating<br>curves; also examination<br>of specimen after heating.                                        |
|                                          | Rushton and Daniels<br>[40].                   | Not stated                                                                            | Resistance; iron pot heat-<br>ing element.                              | Copper-constantan thermo-<br>couple.                                                                    | Intersection of vapor pressure<br>curves.                                                                                  |
| B <sub>2</sub> O <sub>3</sub>            | Kracek, Morey, and<br>Merwin [41].             | $100 \pm 0.1\%$                                                                       | Resistance; quench type,<br>wire-wound ceramic<br>tube heating element. | Thermocouple                                                                                            | Examination with microscope<br>of quenched specimen after<br>heating. Last trace of crys-<br>tals indicated mclting point. |
|                                          | McCulloch [42]                                 | 99.6%                                                                                 | Not stated                                                              | Not stated                                                                                              | Observation of specimen dur-<br>ing heating.                                                                               |
| BaO                                      | Schumacher [43]                                | Not stated                                                                            | Resistance; boat-shaped<br>W strip heating element.                     | Optical pyrometer sighted on<br>W strip adjacent to speci-<br>men. Spectral emissivity<br>equals 0.431. | Observation of specimen dur-<br>ing heating.                                                                               |
| BeO                                      | Tiede and Birnbrauer<br>[23].                  | Not stated                                                                            | Arc                                                                     | Optical pyrometer sighted on specimen.                                                                  | Observation of specimen dur-<br>ing heating.                                                                               |
|                                          | Ruff and Lauschke<br>[25].                     | Pure                                                                                  | Resistance; graphite tube<br>heating element.                           | Optical pyrometer sighted on specimen.                                                                  | Observation of specimen dur-<br>ing heating.                                                                               |
|                                          | Lang, Knudsen, Fil-<br>more, and Roth<br>[35]. | 99.9+%                                                                                | Resistance; graphite tube<br>heating element.                           | Optical pyrometer sighted on<br>specimen.                                                               | Observation of pyramid<br>shaped specimen during<br>heating. Deformation of<br>pyramid tip indicated<br>melting.           |
|                                          | v. Wartenberg,<br>Reusch, and Saran<br>[44].   | Commercially pure                                                                     | Flame; gas-oxygen                                                       | Optical pyrometer                                                                                       | Observation of specimen<br>during heating, Rounded<br>corners of suspended speci-<br>men indicated melting.                |
|                                          | v. Wartenberg and<br>Werth [45].               | Commercially pure                                                                     | (Flame); "ZrO2 oven"                                                    | Optical pyrometer                                                                                       | Not stated.                                                                                                                |
|                                          | Ol'Shanskil [46]                               | Not stated                                                                            | Resistance; quench type,<br>graphite tube heating<br>element.           | Optical pyrometer sighted on<br>hole in side of heating<br>element.                                     | Examination of quenched<br>specimen after heating.<br>Formation of round balls<br>indicated melting.                       |
|                                          | Ruff [31]                                      | Pure                                                                                  | Resistance; carbon tube<br>heating element.                             | Optical pyrometer sighted on specimen.                                                                  | Observation of specimen dur-<br>ing heating.                                                                               |
| Bi <sub>2</sub> O <sub>3</sub>           | Belladen [47]                                  | Not stated                                                                            | Resistance                                                              | Pt-PtRh thermocouple im-<br>mersed in specimen.                                                         | Thermal analysis, cooling curves.                                                                                          |
|                                          | Gattow and Schroder<br>[131]                   | 100±0.1%                                                                              | Not stated                                                              | Pt-PtRh thermocouple im-<br>mersed in specimen.                                                         | Thermal analysis, cooling curves.                                                                                          |

---Continued

| Calibrati                         | on Points                | Environment                     | Original Temp.                          | Melting Points         |                | Comments                                                                                                                                 | Oxid                                                  |
|-----------------------------------|--------------------------|---------------------------------|-----------------------------------------|------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| Materials                         | Temp.                    |                                 | Scale 3                                 | Original               | Int. 1948 4    |                                                                                                                                          |                                                       |
|                                   | °C                       |                                 |                                         | °C                     | °C             |                                                                                                                                          |                                                       |
| Sb                                | 630                      | (a) Vacuum at 2 mm<br>Hg,       |                                         | 2050                   | 2072 *         |                                                                                                                                          | Al <sub>2</sub> O                                     |
| Cu-Ag                             | 779                      | (b) Hydrogen                    |                                         |                        |                | occurred at reduced pressure.                                                                                                            | Co                                                    |
| eutectic.                         |                          | (-, -,                          |                                         |                        |                |                                                                                                                                          |                                                       |
| Ag                                | 960.5                    |                                 |                                         |                        |                |                                                                                                                                          | `                                                     |
| Cu<br>Diopside                    | 1083<br>1391             |                                 |                                         |                        |                |                                                                                                                                          |                                                       |
| -                                 | 1755                     |                                 |                                         |                        |                |                                                                                                                                          | 1                                                     |
|                                   |                          |                                 |                                         |                        |                |                                                                                                                                          |                                                       |
| Not stated                        |                          | 66.1 mm Hg                      | (Int. 1927)                             | 312.3<br>Triple point. | _ 312.3 *      |                                                                                                                                          | As <sub>2</sub> O <sub>3</sub><br>Mo<br>clini<br>type |
| Water                             | (100 °C)                 | Not stated                      | Not stated                              | 313                    |                | Pressure at melting not stated;                                                                                                          |                                                       |
| Napbtbalene<br>Benzopbe-<br>none. | Not stated<br>Not stated |                                 |                                         |                        |                | melting point should be desig-<br>nated as triple point.                                                                                 |                                                       |
| Not stated                        |                          | Not stated                      | Not stated                              | 315                    |                | Pressure at melting not stated;                                                                                                          |                                                       |
|                                   |                          |                                 |                                         |                        |                | melting point should be desig-<br>nated as triple point.                                                                                 |                                                       |
| Not stated                        |                          | (Air)                           | (Geophysical)                           | 450±2                  | 450±2*         |                                                                                                                                          | $B_2O_3$                                              |
|                                   |                          |                                 |                                         |                        |                |                                                                                                                                          |                                                       |
| Vot stated                        | Not stated               | Not stated                      | Not stated                              | 460 to 470             |                | Reaction between specimen and SiO <sub>2</sub> container probable.                                                                       |                                                       |
|                                   |                          |                                 |                                         |                        |                |                                                                                                                                          |                                                       |
| Not stated                        |                          | Hydrogen at 0.2<br>atmospheres. | C <sub>2</sub> =1.433 cm<br>deg.        | 1923                   | 1918           | <sup>5</sup> ; temperature uniformity be-<br>tween specimen and target<br>area of pyrometer not verified;<br>reflection errors probable. | BaO                                                   |
| Jot stated                        |                          | Vacuum                          | Not stated                              | $2400 \pm 100$         |                | (5)                                                                                                                                      | BeO                                                   |
|                                   |                          |                                 |                                         |                        |                |                                                                                                                                          |                                                       |
|                                   | 1062.4<br>1398           | Air at 15 mm Hg                 | C <sub>2</sub> =1.437 cm deg.           | 2410                   | 2410           | <sup>5</sup> ; reaction between specimen<br>and graphite support probable.                                                               |                                                       |
|                                   | 2035<br>2510             | Argon                           | Int. 1948                               | 2452                   | 2452           | ( <sup>δ</sup> )                                                                                                                         |                                                       |
|                                   |                          |                                 |                                         |                        |                |                                                                                                                                          |                                                       |
| Tot stated                        |                          | Oxidizing                       | (Int. 1927)                             | 2520±30                | 2508±30        | (5)                                                                                                                                      |                                                       |
|                                   |                          |                                 |                                         |                        |                |                                                                                                                                          |                                                       |
| lot stated                        |                          | Oxidizing                       | (Int. 1927)                             | 2570                   | 2557           |                                                                                                                                          |                                                       |
| Tot stated                        |                          | Nitrogen                        | (Int. 1948)                             | 2570±30                | 2570±30        | Specimen dropped tbrougb beat-<br>ed furnace; tbermal lag be-<br>tween specimen and measured<br>temperature probable.                    |                                                       |
| 't                                | 1755                     | Nitrogen at 4 to 10<br>mm Hg.   | C <sub>2</sub> =1.46 cm deg.            | 2525                   | 2573           | Reaction between specimen and graphite support probable.                                                                                 |                                                       |
| ot stated                         |                          | Not stated                      | Not stated                              | 817                    |                |                                                                                                                                          | Bi <sub>2</sub> O <sub>2</sub>                        |
| fot stated                        |                          | (Air)                           | (Int 1948)                              | 824+2                  | 824+2          |                                                                                                                                          |                                                       |
|                                   |                          | (****/                          | (************************************** | 0-1-1-4                | 0#7 <u>1</u> # |                                                                                                                                          |                                                       |

| Oxide                                    | Reference                                     | Purity <sup>2</sup>                                                                  | Furnace type                                                                        | Temperature incasurement                                                                                                       | Method                                                                                                    |
|------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Bi <sub>2</sub> O <sub>3</sub> —<br>Con. | Guertler [48]                                 | Not stated                                                                           | Not stated                                                                          | Thermocouple immersed in specimen,                                                                                             | Thermal analysis, cooling curves,                                                                         |
|                                          | Levin and McDanicl<br>[49].                   | Si and Fe<0.01%<br>Al and Pb<0.001%<br>Ag, Ca, Cr, Mg, and Mn<br><0.0001%.           | Resistance; quench type,<br>Pt alloy wire-wound<br>ceramic tube heating<br>element. | Pt-90Pt10Rh thermocouple<br>adjacent to specimen.                                                                              | Examination with microscope<br>of quenched specimen after<br>heating.                                     |
| CaO                                      | Schumacher [43]                               | C.P. grade                                                                           | Resistance; boat-shaped<br>W strip heating element.                                 | Optical pyrometer sighted on<br>W strip adjacent to speci-<br>men; spectral emissivity<br>equals 0.418.                        | Observation of specimen dur-<br>ing heating.                                                              |
|                                          | Kanolt [37]                                   | Na and K—nil<br>Mg—trace<br>H <sub>2</sub> S metals—nil<br>Cl—0.004%<br>Sulfate—nil  | Resistance; graphite tube<br>heating element.                                       | Optical pyrometer sighted on<br>blackbody cavity immersed<br>in specimen. Also, speci-<br>men acted as blackbody<br>enclosure. | Thermal analysis, heating<br>curves.                                                                      |
|                                          | O1'Shanskil [46]                              | Not stated                                                                           | Resistance; quench type,<br>graphite tube heating<br>element.                       | Optical pyrometer sighted on<br>hole in side of heating ele-<br>ment.                                                          | Examination of quenched<br>specimen after heating.<br>Formation of round balls<br>indicated melting.      |
|                                          | Doman, Barr, Mc-<br>Nally, and Alper<br>[50]. | Not stated                                                                           | Not stated                                                                          | Not stated                                                                                                                     | Not stated                                                                                                |
| CdO                                      | Roth [51]                                     | Si-0.001 to 0.01%<br>Al, B, Ca, Cu, Fe, Mg<br>and Pb-0.0001 to 0.001%<br>Ag-<0.0001% | Resistance; quench type,<br>Pt alloy wire-wound<br>ceramic tube heating<br>element. | Pt-90Pt10Rh thermocouple<br>adjacent to specimen.                                                                              | Examination of quenched specimen after heating.                                                           |
| CeO <sub>2</sub>                         | Ruff [31]                                     | Not stated                                                                           | Resistance; carbon tube<br>heating element.                                         | Optical pyrometer sighted on specimen.                                                                                         | Observation of specimen dur-<br>ing heating.                                                              |
|                                          | v. Wartenberg and<br>Gurr [52].               | Not stated                                                                           | Flame; acetylene-O <sub>2</sub>                                                     | Not stated                                                                                                                     | Observation of specimen dur-<br>ing heating.                                                              |
|                                          | Trombe [2]                                    | Not stated                                                                           | Not stated                                                                          | Not stated                                                                                                                     | Not stated                                                                                                |
| CoO                                      | v. Wartenberg,<br>Reusch, and Saran<br>[44].  | Ni Free                                                                              | Flame; oil                                                                          | Optical pyrometer sighted on specimen.                                                                                         | Observation of specimen sus-<br>pended in furnace during<br>heat. Rounded corners in-<br>dicated melting. |
|                                          | v. Wartenberg and<br>Prophet [53].            | 99.9%                                                                                | Flame; oxyhydrogen or<br>gas-air.                                                   | Optical pyrometer                                                                                                              | Not stated                                                                                                |
|                                          | v. Wartenberg and<br>Gurr [52],               | Pure                                                                                 | Not stated                                                                          | Optical pyrometer                                                                                                              | Not stated                                                                                                |
| Cr <sub>2</sub> O <sub>3</sub>           | Ruff [31]                                     | Not stated                                                                           | Resistance; carbon tube<br>heating element.                                         | Optical pyrometer sighted on specimen.                                                                                         | Observation of specimen dur-<br>ing heating.                                                              |
|                                          | Kanolt [37]                                   | Iron—0.01%.<br>Chromate—trace<br>Sulphate—0.005%.                                    | Resistance; graphite tube<br>heating element.                                       | Optical pyrometer sighted on<br>blackbody cavity immersed<br>in specimen.                                                      | Thermal analysis, heating<br>curves.                                                                      |
|                                          |                                               |                                                                                      |                                                                                     |                                                                                                                                |                                                                                                           |
|                                          |                                               |                                                                                      |                                                                                     |                                                                                                                                |                                                                                                           |

-Continued

| Cumprati                                         | on Points                                   | Environment                                      | Original Temp.                   |                              | g Points             | Comments                                                                                                                                 | Oxid                                  |
|--------------------------------------------------|---------------------------------------------|--------------------------------------------------|----------------------------------|------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Materials                                        | Temp.                                       |                                                  | Scale <sup>3</sup>               | Original                     | Int. 1948 4          |                                                                                                                                          |                                       |
| Not stated                                       | ° <i>C</i>                                  | Not stated                                       | Not stated                       | °C<br>820±2                  | ° <i>C</i>           |                                                                                                                                          | Bi <sub>2</sub> O <sub>3</sub><br>Con |
|                                                  | 800.4<br>1063                               | Air                                              | Int. 1948                        | 825±3                        | 8 <b>2</b> 5±3*      |                                                                                                                                          |                                       |
| Not stated                                       |                                             | Hydrogen at 0.2 atm                              | C <sub>2</sub> =1.433 cm<br>deg. | 2576                         | 2565                 | <sup>5</sup> ; temperature uniformity be-<br>tween specimen and target<br>area of pyrometer not verified;<br>reflection errors probable. | CaO                                   |
|                                                  | 630<br>779<br>960.5<br>1083<br>1391<br>1755 | Hydrogen                                         | (*)                              | 2572                         | 2614*                |                                                                                                                                          |                                       |
| Not stated                                       |                                             | Nitrogen                                         | (Int. 1948)                      | 2620                         | 2620                 | Specimen dropped tbrougb<br>heated furnace; thermal lag<br>between specimen and meas-<br>ured temperature probable.                      |                                       |
| Not stated                                       |                                             | Not stated                                       | (Int. 1948)                      | 2630                         | 2630                 | Melting point taken from ab-<br>stract.                                                                                                  |                                       |
| Not stated                                       |                                             | Not stated                                       | Int. 1948                        | >1500                        | >1500                | Author noted that CdO sub-<br>limes rapidly.                                                                                             | CGO                                   |
| Pt                                               | 1755                                        | Not stated                                       | C3=1.46 cm<br>deg.               | 1950                         | 1973                 | Reaction between specimen and ZrO2 support prohable.                                                                                     | CeO                                   |
| Not stated                                       |                                             | Air                                              | (Int. 1927)                      | >2600                        | >2600                |                                                                                                                                          |                                       |
| Not stated                                       |                                             | Not stated                                       | Not stated                       | 2800.                        |                      | Survey; not original data.                                                                                                               |                                       |
| Not stated                                       |                                             | Oxidizing                                        | (Int. 1927)                      | 1800±20                      | 1795±20              | (5)                                                                                                                                      | C00                                   |
| Not stated                                       |                                             | Air                                              | (Int. 1927)                      | 1810                         | 1805                 | Oxidation state of cobalt not investigated.                                                                                              |                                       |
| Not stated                                       |                                             | Air                                              | (Int. 1927)                      | 1935                         | 1929                 | Authors stated this melting,<br>point to be in error; see pre-<br>ceding reference [53] for cor-<br>rected value.                        |                                       |
| Pt                                               | 1755                                        | Nitrogen at<br>(a) 30 mm Hg<br>(b) 1 atmosphere. | C <sub>2</sub> =1.46 cm deg_     | (a) 1830 to 2080<br>(b) 1960 | 1849 to 2107<br>1983 | <sup>5</sup> ; reaction between specimen<br>and graphite support proba-<br>ble. Author concluded re-<br>duction of specimen occurred.    | Cr2O                                  |
| Sb<br>Cu-Ag<br>Eutectic,<br>Ag<br>Cu<br>Diopside | 630<br>779<br>960.5<br>1083<br>1391         | Vacuum                                           | (%)                              | 1990                         | 2011                 | Oxidation state of cbromium<br>not investigated. Reduction<br>is probable.                                                               |                                       |

|                   |                                              | ······································                                                                                                                                                                                                                   |                                                    |                                                                              |                                                                                                            |
|-------------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Oxide             | Reference                                    | Purity 2                                                                                                                                                                                                                                                 | Furnace type                                       | Temperature measurement                                                      | Method                                                                                                     |
| Cr2O3-<br>Con.    | Wilde and Rces [54]                          | Not stated                                                                                                                                                                                                                                               | Resistance; graphite tube<br>heating element.      | Photoelectric pyrometer<br>sighted on specimen.                              | Thermal analysis, heating<br>curves. Also, observation<br>of specimen during heating.                      |
|                   | Bunting [55]                                 | 99.9%                                                                                                                                                                                                                                                    | Induction; Ir ailoy suscep-<br>tor, button-shaped. | Optical pyrometer sighted on<br>smail cavity adjacent to<br>specimen cavity. | Examination of specimen after<br>heating.                                                                  |
|                   | Bunting [32]                                 | C, P. grade                                                                                                                                                                                                                                              | Induction; Ir susceptor,<br>button-shaped.         | Optical pyrometer sighted on<br>smail cavity adjacent to<br>specimen cavity. | Examination of specimen after heating.                                                                     |
|                   | v. Wartenberg and<br>Reusch [56].            | Analyticai grade                                                                                                                                                                                                                                         | (Flamc); "Fletscher<br>oven".                      | Optical pyrometer sighted on specimen.                                       | Observation of specimen sus-<br>pended in furnace during<br>heating.                                       |
|                   | McNaiiy, Peters, and<br>Rihhe [33].          | Co <sub>3</sub> O <sub>4</sub> , SiO <sub>2</sub> , and V <sub>1</sub> O <sub>3</sub><br>0.01-0.1%<br>Al <sub>2</sub> O <sub>3</sub> , MgO, and Fe <sub>2</sub> O <sub>3</sub><br>0.005-0.05%<br>NiO0.001-0.01%<br>MnO and TiO <sub>2</sub> 1-10<br>ppm. | Induction; graphite tuhe<br>susceptor.             | Optical pyrometer sighted on<br>specimen.                                    | Ohservation of specimen sus-<br>pended in furnace during<br>heating.                                       |
|                   | v. Wartenberg and<br>Eckhardt [57].          | Not stated                                                                                                                                                                                                                                               | Flame; acetylene-O2                                | Optical pyrometer sighted on<br>specimen.                                    | Ohservation of specimen sus-<br>pended in furnace during<br>heating.                                       |
| Cs <sub>2</sub> O | Rengade [58]                                 | Purified                                                                                                                                                                                                                                                 | Fiame-heated Al block                              | Thermocouple                                                                 | Thermal analysis, cooling<br>curves. Also, observation<br>of specimen during heating.                      |
| Cu <sub>2</sub> O | Ruer and Nakamoto<br>[59j.                   | Not stated                                                                                                                                                                                                                                               | Resistance; carbon tube<br>heating element.        | Pt-PtRh thermocoupie im-<br>mersed in specimen.                              | Examination of specimen after heating.                                                                     |
|                   | v. Wartenberg,<br>Reusch, and Saran<br>[44]. | Pure                                                                                                                                                                                                                                                     | Flame; gas-oxygen                                  | Optical pyrometer                                                            | Ohservation of specimen sus-<br>pended in furnace during<br>heating.                                       |
|                   | Roberts and Smyth [60].                      | 0.0083% impurities                                                                                                                                                                                                                                       | Not stated                                         | Pt-PtRh thermocouple                                                         | Intersection of pressure-tem-<br>perature-composition curves.                                              |
| DygO3             | Wisnyi and Pijanow-<br>ski [61].             | Not stated                                                                                                                                                                                                                                               | Resistance; V-shaped W strip heating element.      | Optical pyrometer sighted on<br>specimen.                                    | Ohservation of specimen dur-<br>ing heating. Apparent dis-<br>appearance of specimen<br>indicated melting. |
| Er2O3             |                                              |                                                                                                                                                                                                                                                          |                                                    |                                                                              |                                                                                                            |
| Eu2O3             | Wisnyi and Pijan-<br>owski [61].             | Not stated                                                                                                                                                                                                                                               | Resistance; V-shaped W<br>strip heating element.   | Optical pyrometer sighted on<br>specimen.                                    | Observation of specimen dur-<br>ing heating. Apparent dis-<br>appearance of specimen<br>indicated melting. |
|                   | Schneider [62]                               | Ba, Cu, Er, and Si-<br><0.01%;<br>Cr, Cu, Fe, Mg, and Ni-<br><0.001%.                                                                                                                                                                                    | Induction; crucible-shaped<br>Ir susceptor.        | Optical pyrometer sighted on<br>small hole in crucible iid.                  | Examination of specimen af er<br>heating. Flat hutton indi-<br>cated melting.                              |

-Continued

| Calibrati                        | ion Points           | Environment                              | Original Temp. | Meltin               | g Points              | Comments                                                                                                                                                                                                | Oxid                      |
|----------------------------------|----------------------|------------------------------------------|----------------|----------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| Materials                        | Temp.                |                                          | Scale 3        | Original             | Int. 1948 4           |                                                                                                                                                                                                         |                           |
| Al2O3                            | ° <i>C</i><br>2040   | Air                                      | (Int. 1927)    | °C<br>2060±25        | ° <i>C</i><br>2053±25 | <sup>5</sup> ; reduction of specimen proba-<br>ble.                                                                                                                                                     | Cr <sub>2</sub> O;<br>Cor |
| Al2O3                            | 2040                 | (Air)                                    | (Int. 1927)    | 2140 <u>+2</u> 5     | 2133±25               | Temperature uniformity be-<br>tween specimen and target<br>area of pyrometer not verified,<br>Bunting in later publication<br>[32]stated2140 °C value is low<br>because of reduction during<br>calcine. | x                         |
| Not stated                       |                      | (Air)                                    | (Int. 1927)    | 2275±25              | 2266±25               | Temperature uniformity be-<br>tween specimen and target<br>area of pyrometer not verified.                                                                                                              |                           |
| Pt                               | (1773)               | Air                                      | (Int. 1927)    | 2275±25              | 2266 <b>±25</b>       | (5)                                                                                                                                                                                                     |                           |
| Al2O3                            | 2044                 | (a) Nitrogen<br>(b) Air                  | Int. 1948      | (a) 2315<br>(b) 2330 | 2315<br>2330          | <sup>5</sup> ; reduction of specimen is<br>probable.                                                                                                                                                    |                           |
| Not stated                       |                      | Air                                      | (Int. 1927)    | 2435±10              | 2424±10               | <sup>5</sup> ; reduction of specimen is prob-<br>able.                                                                                                                                                  |                           |
| Not stated                       |                      | Nitrogen                                 | Not stated     | 49 <b>0±</b> 10      |                       |                                                                                                                                                                                                         | Cs <sub>2</sub> O         |
| Cu<br>Ni<br>Fe                   | 1451                 | Nitrogen                                 | Not stated     | 1222                 | 1222                  |                                                                                                                                                                                                         | Cu <sub>2</sub> O         |
| Not stated                       |                      | Oxidizing                                | (Int. 1927)    | 1230±20              | 1229±20               | ( <sup>5</sup> )                                                                                                                                                                                        |                           |
| Quartz trans-<br>formation<br>Au | Not stated           | 0.6 mm Hg Pressure                       | Geopbysical    | 1235                 | 1236*                 |                                                                                                                                                                                                         |                           |
| Al2O3                            | 2040                 | Either belium, hydro-<br>gen, or vacuum. | Int. 1948      | 2340±10              | 2340±10               | <sup>8</sup> ; author's stated emissivity of<br>approximately 0.9 to 0.95 is<br>probably overestimated. Re-<br>flection error probable.                                                                 | Dy <sub>2</sub> O;        |
|                                  |                      |                                          |                |                      |                       | No melting point data located<br>in the literature.                                                                                                                                                     | Er2O3                     |
| A12O3                            | 2040                 | Eitber belium, bydro-<br>gen or vacuum.  | Int. 1948      | 2050±30              | 2050±30               | <sup>3</sup> ; author's stated emissivity of<br>approximately 0.9 to 0.95 is<br>probably over estimated.<br>Reflection errors and reduc-<br>tion in vacuum or bydrogen<br>probable.                     | Eu2O                      |
| Au<br>Pt<br>Rb                   | 1063<br>1769<br>1960 | Air                                      | Int. 1948      | 2240±10              | 2240±10*              |                                                                                                                                                                                                         |                           |

| Oxide                     | Reference                                       | Purity 3                                                                                                      | Furnace type                                                                             | Temperature measurement                                                                          | Method                                                                                                       |
|---------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| FcO                       | Chipman and Mar-<br>shall [63].                 | Fe and C-<0.005%; S<br><0.004%; Si<0.008%;<br>Mn<0.003%; Cu<0.004<br>%; Cu<0.004%; P<<br>0.002%; Ni<0.031%.   | Resistance; SiC tube heat-<br>ing element.                                               | Pt-90Pt10Rh thermocouple<br>adjacent to specimen.                                                | Weight loss data; specimen<br>suspended from balance arm,<br>Sudden weight loss indicated<br>melting.        |
|                           | Hay, Howat, and<br>White [64].                  | Not stated                                                                                                    | Resistance; Mo wire-<br>wound ceramic tube<br>hcating element.                           | Mo-Wthermocouple adjacent<br>to the specimen.                                                    | Differential thermal analysis.                                                                               |
|                           | Darken and Gurry<br>[65].                       | Fe and C-0.012%;<br>Mn<0.01%;<br>P-0.004%;<br>S-0.003%;<br>Cu-0.045%;<br>Si-0.007%;<br>Ni-0.02%;<br>Pb-0.04%. | Resistance; quench type,<br>Pt wire-wound ceramic<br>tube heating element.               | Pt-PtRh thermocouple; tem-<br>perature measured before<br>and after each determina-<br>tion.     | Examination of specimen after<br>heating.                                                                    |
|                           | Bowen and Schairer<br>[66]                      | Not stated                                                                                                    | Resistance; quench type,<br>Pt wire-wound ceramic<br>tube heating element.               | Pt-90Pt10Rh thermocouple;<br>temperature measured be-<br>fore and after each determi-<br>nation. | Examination with microscope<br>of quenched specimen after<br>heating.                                        |
| Fe3O4                     | Moruzzi and Shafer<br>[67]                      | High purity                                                                                                   | Resistance; quench type,<br>Pt wire-wound ceramic<br>tube heating element.               | Thermocouple adjacent to specimen.                                                               | Observation of rod-shaped<br>specimen during heating.<br>Rounded corners indicated<br>melting.               |
|                           | Darken and Gurry<br>[65]                        | Not stated                                                                                                    | Resistance; quench type,<br>Pt wire-wound ceramic<br>tube heating element.               | Pt-PtRh thermocouple; tem-<br>perature measured before<br>and after each determina-<br>tion.     | Examination of specimen after<br>heating. Formation of<br>droplets indicated melting.                        |
|                           | Greig, Posnjak, Mer-<br>win, and Sosman<br>[68] | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                       | Resistance; quench type,<br>Pt wire-wound ceramic<br>tube heating element.               | Pt-90Pt10Rh thermocouple<br>adjacent to specimen.                                                | Examination with microscope<br>of quenched specimen after<br>heating.                                        |
|                           | v. Wartenberg and<br>Eckhardt [57]              | Commercially pure                                                                                             | Flame; acetylene-oxygen.                                                                 | Optical pyrometer sighted on specimen.                                                           | Observation of specimen sus-<br>pended in furnace during<br>heating.                                         |
| G <b>a<sub>2</sub>O</b> 3 | Hill, Roy, and<br>Osborn [69].                  | Not stated                                                                                                    | Resistance, U-shaped 60<br>Pt-40Rh strlp heating<br>element.                             | Optical pyrometer                                                                                | Examination with microscope<br>of specimen after heating.                                                    |
|                           | v. Wartenberg and<br>Reusch [56].               | Not stated.                                                                                                   | (Flame) ''Fletscher<br>Oven''.                                                           | Optical pyrometer sighted on specimen.                                                           | Observation of specimen sus-<br>pended in furnace during<br>heating.                                         |
|                           | Schnelder and<br>Waring [70].                   | 99.9%                                                                                                         | (a) Induction; crucible-<br>shaped Ir susceptor.                                         | (a) Optical pyrometer sighted<br>on small hole in crucible<br>lid.                               | (a) and (b) Examination of specimen after heating.                                                           |
|                           |                                                 |                                                                                                               | (b) Resistance; quench<br>type, Pt alloy wire-<br>wound ceramle tube<br>heating element. | (b) 95Pt5Rh-80Pt20Rh ther-<br>mocouple adjacent to<br>specimen.                                  |                                                                                                              |
| Gd₃O₂                     | Wisnyi and Pijanow-<br>ski [61].                | Not stated                                                                                                    | Resistance; V-shaped W<br>strip heating element.                                         | Optical pyrometer sighted on specimen.                                                           | Observation of specimen dur-<br>ing heating. Apparent dis-<br>appearance of specimen in-<br>dicated melting. |

-Continued

| Calibratio                                                                                             | on Points                            | Environment                                                                                              | Original Temp.     | Melting                 | Points                                       | Comments                                                                                                                                | Oxide                          |
|--------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------|-------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| Materials                                                                                              | Temp.                                |                                                                                                          | Scale <sup>3</sup> | Original                | Int. 1948 4                                  |                                                                                                                                         |                                |
| Cu<br>NL<br>Pd                                                                                         | Not stated                           | Slightly oxidizing                                                                                       | (Int. 1927)        | °C<br>1369              | °C<br>1368                                   |                                                                                                                                         | FeO                            |
| Not stated                                                                                             |                                      | Nitrogen at one atm                                                                                      | (Int. 1927)        | 1370                    | 1368                                         |                                                                                                                                         |                                |
| Not stated                                                                                             |                                      | Nitrogen at one atm                                                                                      | (Int. 1927)        | 1371±1                  | 1369±1*                                      |                                                                                                                                         |                                |
| Li2SiO2<br>Diopside<br>Pd                                                                              | 1391.5                               | Nitrogen—slightly<br>oxidizing.                                                                          | Geophysical        | 1380±5                  | 1382±5                                       |                                                                                                                                         |                                |
| Not stated                                                                                             |                                      | Air                                                                                                      | (Int. 1948)        | 1591                    | 1591                                         |                                                                                                                                         | Fe <sub>3</sub> O <sub>4</sub> |
| Not stated                                                                                             |                                      | <ul> <li>(a) Oxygen at 1 atm</li> <li>(b) Air at 1 atm</li> <li>(c) Oxygen at 0.0575<br/>atm.</li> </ul> |                    | (b) 1594±2              | $1580\pm2^*$<br>$1591\pm2^*$<br>$1594\pm2^*$ |                                                                                                                                         |                                |
| Au.<br>Diopside<br>Pd<br>Pt                                                                            | 1549.5                               | Small oxygen pres-<br>sure                                                                               | Geophysical        | 1591±5                  | 1594±5*                                      |                                                                                                                                         |                                |
| Not stated                                                                                             |                                      | Air                                                                                                      | (Int. 1927)        | 1650                    | 1647                                         | (5)                                                                                                                                     |                                |
| 15% CaO<br>85% SiO2                                                                                    | 1710                                 | Not stated                                                                                               | Int. 1948          | 1725±15                 | 1725±15                                      | <sup>5</sup> ; temperature uniformity be-<br>tween specimen and target<br>area of pyrometer not verified.                               | Ga <sub>2</sub> O3             |
| Not stated                                                                                             |                                      | Air                                                                                                      | (Int. 1927)        | 1740±25                 | 1736 <u>+</u> 25                             | (5)                                                                                                                                     |                                |
| <ul> <li>(a) Au</li> <li>Pd</li> <li>Pt</li> <li>Rb</li> <li>(b) Au</li> <li>Pd</li> <li>Pt</li> </ul> | 1552<br>1769<br>1960<br>1063<br>1552 | (a) and (b) Air                                                                                          | Int. 1948          | (a) and (b)<br>1795±15. | 1795±15*                                     |                                                                                                                                         |                                |
| Al202                                                                                                  | 2040                                 | Either helium, hy-<br>drogen, or vacuum.                                                                 | Int. 1948          | 2330±20                 | 2330±20                                      | <sup>5</sup> ; authors stated emissivity of<br>approximately 0.9 to 0.95 is<br>probably overestimated. Re-<br>flection errors probable. | Gd2O                           |

|                                |                                     |                                                                                                                                                                                       |                                                                            |                                                                              | 111040                                                                                                                         |
|--------------------------------|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Oxide                          | Reference                           | Purity <sup>2</sup>                                                                                                                                                                   | Furnace type                                                               | Temperature measurement                                                      | Method                                                                                                                         |
| Gd₂O₃—<br>Con.                 | Curtis and Johnson<br>[71].         | $\begin{array}{c} Y-0.2\%; La<0.05\%; Ce-\\ 0.5\%; Pr<0.1\%; Nd-\\ 0.5\%; Sm-0.5\%; Eu-\\ 0.5\%; Dy-0.5\%; Tb-\\ 2.0\%; Ho<0.5\%; Fr<\\ 0.05\%; Yb<0.05\%; Lu-\\ 0.05\%. \end{array}$ | Not stated                                                                 | Optical pyrometer sighted on specimen.                                       | Observation of rod shaped<br>specimen during heating.<br>Definite fluidity of specimen<br>indicated melting.                   |
| GeO2<br>Quartz<br>type.        | Schwarz, Schenk,<br>and Giese [72]  | Not stated                                                                                                                                                                            | Resistance; quench type,<br>Pt wire-wound ceramic<br>tube heating element. | Thermocouple                                                                 | Examination with microscope<br>of quenched spectmen after<br>heating. Disappearance of<br>last crystal indicated melting.      |
|                                | Laubengayer and<br>Morton [73].     | <0.01% impurities                                                                                                                                                                     | Resistance; quench typc,<br>Pt wire-wound ceramic<br>tube heating element. | Pt-PtRh thermocouple adja-<br>cent specimen.                                 | Eaxmination with microscope<br>of quenched specimen after<br>heating. Disappearance of<br>last crystal indicated melt-<br>ing. |
| HfO3                           | Clausing [74]                       | Zr O2<1%                                                                                                                                                                              | Resistance; bar-shaped W<br>strip heating clement.                         | Optical pyrometer sighted on<br>small cavity adjacent to<br>specimen cavity. | Observation of specimen dur-<br>ing heating. Flowing speci-<br>men indicated melting.                                          |
|                                | Mark [27]                           | Fe and Si-0.5-1%; Zr-<br>5%.                                                                                                                                                          | Resistance; graphite or<br>metal strip heating ele-                        | Optical pyrometer sighted on specimen.                                       | Observation of specimen dur-<br>ing heating.                                                                                   |
|                                | Henning [75]                        | "Pure theoretical"                                                                                                                                                                    | ment.<br>Resistance; W tube heat-<br>ting element.                         | Optical pyrometer sighted on specimen.                                       | Observation of specimen dur-<br>ing heating.                                                                                   |
|                                | Curtis, Doney, and<br>Johnson [76]. | Zr-2 ppm; T1-1000 ppm;<br>Al-600 ppm; Fe-100<br>ppm; Si-100 ppm.                                                                                                                      | Flame; oxyacetylene                                                        | Optical pyrometer                                                            | Not stated                                                                                                                     |
| Ho <sub>2</sub> O <sub>3</sub> |                                     |                                                                                                                                                                                       |                                                                            |                                                                              |                                                                                                                                |
| In2O3                          | Schneider [62]                      | Al, Ca, Cu, Fe, Mg, Ni,<br>P, and Si, each <0.01%;<br>Er <0.001%;<br>Ag and Mn <0.00001%                                                                                              | Induction; crucible-shaped<br>Ir susceptor.                                | Optical pyrometer sighted on<br>small hole in crucible lid.                  | Examination of specimen after<br>heating. Flat button indi-<br>cated melting.                                                  |
| IrO2                           | Cordfunke and<br>Meyer [77].        | Not stated                                                                                                                                                                            | Resistance; "Silibar"                                                      | Pt-90Pt10Rh thermocouple                                                     | Vapor pressure data                                                                                                            |
| K <sub>2</sub> O               |                                     |                                                                                                                                                                                       |                                                                            |                                                                              |                                                                                                                                |
| La <sub>2</sub> O <sub>3</sub> | Ruff [31]                           | Contained didymium im-<br>purities.                                                                                                                                                   | Resistance; carbon tube<br>heating element.                                | Optical pyrometer sighted on specimen.                                       | Observation of specimen<br>during heating.                                                                                     |
|                                | Lambertson and<br>Gunzel [30].      | 99%                                                                                                                                                                                   | Resistance; W heating element.                                             | Optical pyrometer sighted on<br>specimen. Specimen not<br>visible.           | Examination of specimen after heating.                                                                                         |
|                                | v. Wartenberg and<br>Reusch [56].   | 100%                                                                                                                                                                                  | (Flame) "Fletscher oven"_                                                  | Optical pyrometer sighted on specimen.                                       | Observation of specimen<br>during heating.                                                                                     |
| Li <sub>2</sub> O              | Chemistry and<br>Physics Handbook   | Not stated                                                                                                                                                                            | Not stated                                                                 | Not stated                                                                   | Not stated                                                                                                                     |

| Calibrati                  | ion Points | Environment           | Original Temp.              | Meltin                | g Poin <b>ts</b> | Comments                                                                                                                                                                                   | Oxid                           |
|----------------------------|------------|-----------------------|-----------------------------|-----------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| Materials                  | Temp.      |                       | Scale <sup>3</sup>          | Original              | Int. 1948 4      |                                                                                                                                                                                            |                                |
| Not stated                 | ° <i>C</i> | Air                   | (Int. 1948)                 | ° <i>C</i><br>2350±50 | °C<br>2350±50    | <sup>5</sup> ; authors stated an attempt was<br>made to correct for nonblack-<br>body conditions.                                                                                          | Gd2O<br>Con                    |
| Na2SO4<br>K2SO4<br>Li2SiO3 |            | Air                   | (Geophysical)               | 1115±3                | 1115±3*          |                                                                                                                                                                                            | GeO3<br>Quart<br>type          |
| Not stated                 |            | (Air)                 | (Int. 1927)                 | 1116±4                | 1116±4*          |                                                                                                                                                                                            |                                |
| Not stated                 |            | Hydrogen              | (Int. 1927)                 | 2774 <u>+</u> 25      | 2758±25          | <sup>5</sup> ; temperature uniformity be-<br>tween specimen and target<br>area of pyrometer not verified.                                                                                  | HfO2                           |
| Not stated                 |            | Neutral               | (Int. 1948)                 | 2770                  | _ 2770           | <sup>5</sup> ; reflection errors probable.                                                                                                                                                 |                                |
| Not stated                 |            | Nitrogen or hydrogen_ | Not stated                  | 2812±25               |                  | <sup>8</sup> ; melting point determind for<br>impure HfO <sub>2</sub> sample and<br>extrapolated to 100% es                                                                                |                                |
| Not stated                 |            | Not stated            | (Int. 1948)                 | 2900±25               | 2900±25          |                                                                                                                                                                                            |                                |
|                            |            |                       |                             |                       |                  | No melting point data located in the literature.                                                                                                                                           | Ho1O                           |
| Au<br>Pt<br>Rh             |            | Air                   | Int. 1948                   | 1910±10               | - 1910±10        |                                                                                                                                                                                            | In <sub>2</sub> O <sub>3</sub> |
| Not stated                 |            | Oxygen at 1 atm       | Int. 1948                   | 1100 dissociates_     | _ 1100           |                                                                                                                                                                                            | IrO2                           |
|                            |            |                       |                             |                       |                  | <ul> <li>No melting point data located in<br/>the literature. Because of the<br/>reactivity of K<sub>2</sub>O, it is un-<br/>likely that a melting point can<br/>be determined.</li> </ul> | K2O                            |
| Pt                         | 1755       | Not stated            | C <sub>2</sub> =1.46 cm deg | 1840                  | 1859             | - <sup>\$</sup> ; reaction between specimen<br>and ZrO <sub>2</sub> support probable.                                                                                                      | La <sub>2</sub> O              |
| Pt                         | (1769)     | Helium                | (Int. 1948)                 | 2210±20               | _ 2210±20        |                                                                                                                                                                                            |                                |
| Pt                         | (1773)     | Air                   | (Int. 1927)                 | 2315                  | _ 2307           | _ (5)                                                                                                                                                                                      | -                              |
| Not stated                 |            | Not stated            | Not stated                  | >1700                 |                  | <ul> <li>Survey, not original data. Be-<br/>cause of the reactivity of Li<sub>2</sub>O<br/>it is unlikely that a melting<br/>point can be determined.</li> </ul>                           | Li2O                           |

| Oxide                          | Reference                                   | Purity <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                     | Furnace type                                                               | Temperature measurement                                                                   | Method                                                                           |
|--------------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Lu <sub>2</sub> O <sub>3</sub> |                                             |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                            |                                                                                           |                                                                                  |
| MgO                            | Ruff [31]                                   | Contained: H <sub>2</sub> CO <sub>3</sub> , H <sub>2</sub> O,<br>Fe <sub>3</sub> O <sub>3</sub> , Si(OH) <sub>4</sub> and<br>NaCl.                                                                                                                                                                                                                                                      | Resistance; carbon tube<br>heating element.                                | Optical pyrometer sighted on specimen.                                                    | Observation of specimen<br>during heating.                                       |
|                                | Kelley [1]                                  | Not stated                                                                                                                                                                                                                                                                                                                                                                              | Not stated.                                                                | Not stated                                                                                | Not stated.                                                                      |
|                                | McNally, Peters, and<br>Ribbe [33].         | Co <sub>3</sub> O <sub>4</sub> and WO <sub>3</sub> -0.01-<br>0.1%;<br>SiO <sub>2</sub> and Fc <sub>2</sub> O <sub>3</sub> -0.005-<br>0.05%;<br>Al <sub>2</sub> O <sub>3</sub> and Cr <sub>2</sub> O <sub>3</sub> -0.001-<br>0.01%;<br>B <sub>2</sub> O <sub>3</sub> , V <sub>2</sub> O <sub>3</sub> , TiO <sub>2</sub> , and<br>CuO-5-50 ppm;<br>MnO and Ag <sub>2</sub> O-1-10<br>ppm. | Induction; graphite tube<br>susceptor.                                     | Optical pyrometer sighted on<br>small hollow graphite cyl-<br>inder adjacent to specimen. | Observation of specimen<br>during heating.                                       |
|                                | Kanolt [37]                                 | CaOnone<br>Al $_2O_3$ 0.0002%.<br>Fe0.0005%.<br>CO $_2$ 0.130%.<br>Cl0.275%.<br>SO $_3$ 0.001%.<br>H NO $_3$ none.                                                                                                                                                                                                                                                                      | Resistance; graphite tube<br>heating element.                              | Optical pyrometer sighted on<br>blackbody cavity immersed<br>in specimen.                 | Thermal analysis; heating curves.                                                |
| MnO                            | Tiede and Birnbrauer<br>[23].               | Not stated                                                                                                                                                                                                                                                                                                                                                                              | Arc                                                                        | Optical pyrometer sighted on specimen.                                                    | Observation of specimen during heating.                                          |
|                                | White, Howat and<br>Hay [78].               | Not stated                                                                                                                                                                                                                                                                                                                                                                              | Resistance; Mo wire-<br>wound ceramic tube<br>heating element.             | Mo-W thermocouple adjacent<br>to the specimen.                                            | Differential thermal analysis.                                                   |
| Mn3O4                          | v. Wartenberg and<br>Prophet [53].          | Not stated                                                                                                                                                                                                                                                                                                                                                                              | Flame; oxyhydrogen or<br>gas-air.                                          | Optical pyrometer                                                                         | Not stated                                                                       |
|                                | Van Hook and Keith<br>[79].                 | Not stated                                                                                                                                                                                                                                                                                                                                                                              | Resistance; quench type,<br>Pt wire-wound ceramic<br>tube heating element. | Pt-90Pt10Rh thermocouple<br>adjacent to specimen.                                         | Examination with microscope<br>of quenched specimen after<br>heating.            |
|                                | Ranganathan, Mac-<br>kean and Muan [80].    | Reagent grade                                                                                                                                                                                                                                                                                                                                                                           | Resistance; Mo wire-<br>wound ceramic tube<br>heating element.             | Pt-90Pt10Rh thermocouple<br>adjacent to specimen.                                         | Examination with X-rays<br>and microscope of quenched<br>specimen after heating. |
|                                | v. Wartenberg,<br>Reusch and Saran<br>[44]. | Commercially pure                                                                                                                                                                                                                                                                                                                                                                       | Flame; oil-oxygen                                                          | Optical pyrometer                                                                         | Observation of specimen sus-<br>pended in furnace during<br>heating.             |
|                                | v. Wartenberg and<br>Gurr [52].             | Pure                                                                                                                                                                                                                                                                                                                                                                                    | Not stated                                                                 | Optical pyrometer                                                                         | Not stated                                                                       |
| MoO3                           | Carnellcy [81]                              | Not stated                                                                                                                                                                                                                                                                                                                                                                              | Flame; "Bunsen lamp"                                                       | Mercury thermometer                                                                       | Not stated                                                                       |
|                                | Groschuff [82]                              | Not stated                                                                                                                                                                                                                                                                                                                                                                              | Not stated                                                                 | Not stated                                                                                | Thermal analysis; heating and cooling curves.                                    |
|                                | v. Jacger and Germs<br>[83].                | Purified                                                                                                                                                                                                                                                                                                                                                                                | Resistance; nichrome wire<br>hcating element.                              | Thermocouple immersed in specimen.                                                        | Thermal analysis, heating curves.                                                |
|                                | Hoermann [84]                               | Not stated                                                                                                                                                                                                                                                                                                                                                                              | Resistance; Pt wire heat-<br>ing element.                                  | Pt-PtRh thermocouple im-<br>mersed in specimen.                                           | Observation of specimen dur-<br>ing heating.                                     |

| Calibratio                                               | on Points                                   | Environment                                                                                                                                                                                | Original Temp.     | Meltin                                                                                                    | g Points                                  | Comments                                                                                                                                                                                  | Oxid               |
|----------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Materials                                                | Temp.                                       |                                                                                                                                                                                            | Scale <sup>3</sup> | Original                                                                                                  | Int. 1948 4                               |                                                                                                                                                                                           |                    |
|                                                          | °C                                          |                                                                                                                                                                                            |                    | °C                                                                                                        | °C                                        | No melting point data located<br>in the literature.                                                                                                                                       | Lu <sub>2</sub> O3 |
| Pt                                                       | 1755                                        | <ul> <li>(a) Nitrogen at 10-30 mm Hg.</li> <li>(b) Nitrogen at 1 atm</li> <li>(c) Nitrogen at 10-30 mm Hg.</li> <li>(d) Nitrogen at 1 ātm</li> <li>(e) Nitrogen at 10-30 mm Hg.</li> </ul> | C2=1.46 cm deg_    | <ul> <li>(a) 2120</li> <li>(b) 2250-2280</li> <li>(c) 2450</li> <li>(d) 2500</li> <li>(e) 2550</li> </ul> | 2150<br>2285-2316<br>2494<br>2546<br>2599 | <sup>5</sup> ; various melting points ob-<br>tained using different shaped<br>specimens and graphite sup-<br>ports. Reaction with graph-<br>ite and partial reduction of<br>MgO occurred. | MgO                |
| Not stated                                               |                                             | Not stated                                                                                                                                                                                 | Not stated         | 2642                                                                                                      |                                           | Survey; not original data.                                                                                                                                                                |                    |
| Al2O3                                                    | 2044                                        | Nitrogen                                                                                                                                                                                   | Int. 1948          | 2825±20                                                                                                   | . 2825±20                                 | Temperature uniformity be-<br>tween specimen and target<br>area of pyrometer not verified.                                                                                                |                    |
| Sb<br>Cu-Ag eu-<br>tectic.<br>Ag<br>Cu<br>Diopside<br>Pt | 630<br>779<br>960.5<br>1083<br>1391<br>1755 | Carbon monoxide and<br>nitrogen at atmos-<br>pheric pressure.                                                                                                                              | (ð)                | 2800                                                                                                      | 2852*                                     |                                                                                                                                                                                           |                    |
| Not stated                                               |                                             | Vacuum                                                                                                                                                                                     | Not stated         | 1650                                                                                                      | -                                         | (5)                                                                                                                                                                                       | MnO                |
| Fe trans-<br>formation.<br>Fe                            | 1400<br>1530                                | Not stated                                                                                                                                                                                 | (Int. 1927)        | 1785                                                                                                      | . 1781                                    |                                                                                                                                                                                           |                    |
| Not stated                                               |                                             | Air                                                                                                                                                                                        | (Int. 1927)        | 1560                                                                                                      | . 1557                                    |                                                                                                                                                                                           | Mn₃(               |
| CaSiO3                                                   | 1544                                        | Air                                                                                                                                                                                        | (Geophysical)      | 1562                                                                                                      | 1564*                                     |                                                                                                                                                                                           |                    |
| CaSiO2<br>90SiO2:10CaO_<br>Pt                            | 1546<br>1707<br>1769                        | Air                                                                                                                                                                                        | Int. 1948          | 1567±5                                                                                                    | - 1567±5*                                 |                                                                                                                                                                                           |                    |
| Not stated                                               |                                             | Air                                                                                                                                                                                        | (Int. 1927)        | 1590±20                                                                                                   | 1587±20                                   | (5)                                                                                                                                                                                       |                    |
| Not stated                                               |                                             | Air                                                                                                                                                                                        | (Int. 1927)        | 1705                                                                                                      | . 1701                                    |                                                                                                                                                                                           |                    |
| Not stated                                               |                                             | Not stated                                                                                                                                                                                 | Not stated         | 759                                                                                                       |                                           |                                                                                                                                                                                           | MoO                |
| Not stated                                               |                                             | Air                                                                                                                                                                                        | Not stated         | 791                                                                                                       |                                           |                                                                                                                                                                                           |                    |
| Not stated                                               |                                             | Oxidizing                                                                                                                                                                                  | Not stated         | 795                                                                                                       |                                           |                                                                                                                                                                                           |                    |
|                                                          |                                             | Not stated                                                                                                                                                                                 |                    |                                                                                                           |                                           |                                                                                                                                                                                           |                    |

| Oxlde                      | Reference                                               | Purity <sup>2</sup>               | Furnace type                                                                        | Temperature measurement                                              | Method                                                                                            |
|----------------------------|---------------------------------------------------------|-----------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| MoO <sub>3</sub> —<br>Con. | Rieck [85]                                              | Purified                          | Flamc; gas-air                                                                      | Pt-PtRh thermocouple im-<br>mersed in specimen,                      | (Thermal analysis)                                                                                |
|                            | Cosgrove and Snyder<br>[86].                            | Trace—heavy and alkali<br>metals. | Resistance; nichrome wire-<br>wound ceramic tuhe<br>heating element.                | Pt-PtRh thermocouple                                                 | Thermal analysis, cooling<br>curves.                                                              |
| Na <sub>2</sub> O          |                                                         |                                   |                                                                                     |                                                                      |                                                                                                   |
| √b₂Oş                      | Brauer [87]                                             | TiO2—0.28%                        | "Tammann oven"                                                                      | Optical pyrometer sighted on specimen.                               | Observation of specimen dur<br>ing heating, Flowing speci<br>men indicated melting,               |
|                            | Shafer and Roy [88]                                     | Ta₂O₅<0.2%                        | Resistance; Pt wire-wound<br>ceramic tube heating<br>element.                       | Thermocouple                                                         | Not stated                                                                                        |
|                            | Ihrahim, Bright, and<br>Rowland [89].                   | 99+%                              | Resistance; Pt wire-wound<br>tube heating element.                                  | Pt-90Pt10Rh thermocouple                                             | Observation of cone shaped<br>specimen during heating<br>Complete slumping indi<br>cated melting. |
|                            | Roth and Waring [90].                                   | Si <0.01%;                        | Resistance; quench type<br>Pt alloy wire-wound<br>ceramic tube heating<br>element.  | Pt-90Pt10Rh thermocouple<br>adjacent to the specimen.                | Examination of quenche<br>specimen after heating.                                                 |
|                            | Reisman and Holtz-<br>berg [91].                        | Ta2O3<0.2%                        | Resistance; Pt wire-wound<br>ceramic tuhe heating<br>element.                       | Pt-90Pt10Rh thermocouple<br>immersed in specimen.                    | Differential thermal analysis                                                                     |
|                            | Roth and Waring [92].                                   | 99.7+%                            | Resistance; quench type,<br>Pt alloy wire-wound<br>ceramic tuhe heating<br>element. | Pt-90Pt10Rh thermocouple<br>adjacent to specimen.                    | Examination of quenche<br>specimen after heating.                                                 |
|                            | Holtzherg, Reisman,<br>Berry, and Berken-<br>blit [93]. | Ta<0.2%                           | Resistance; kanthal wire<br>heating element.                                        | Pt-90Pt10Rh thermocouple<br>immersed in specimen.                    | Differential thermal analysis                                                                     |
|                            | Dlamond and Schnei-<br>der [28].                        | 99.7+%                            | Solar                                                                               | Optical pyrometer sighted on specimen.                               | Ohservation of har-shape<br>specimen during cooling.                                              |
|                            | Roth and Cougha-<br>nour [94].                          | 99. 7+%                           | Resistance; Pt alloy heat-<br>ing element.                                          | Pt-90Pt10Rh thermocouple                                             | Examination of pyramid<br>shaped specimen after heat<br>ing.                                      |
|                            | Orr [95]                                                | Si<0.03%; Mg<0.05%;<br>Ti<0.01%   | Not stated                                                                          | Thermocouple                                                         | Not stated                                                                                        |
|                            | Ruff [31]                                               | Ta2O5-1-2%                        | Resistance; carbon tube<br>heating element.                                         | Optical pyrometer sighted on specimen.                               | Observation of specimen dur<br>ing heating.                                                       |
| Nd2O3                      | Lambertson and Gun-<br>zel [30].                        | 99%                               | Resistance; W heating element.                                                      | Optical pyrometer sighted on<br>specimen. Specimen not vis-<br>ihle. | Examination of specimen afte<br>heating.                                                          |
| NiO                        | Merica and Walten-<br>herg [96],                        | Not stated                        | Not stated                                                                          | Optical pyrometer                                                    | Not stated                                                                                        |
|                            | v. Wartenberg and<br>Prophet [53].                      | 99. 9%                            | Flame; oxyhydrogen or<br>gas-air.                                                   | Optical pyrometer                                                    | Not stated                                                                                        |
|                            |                                                         |                                   |                                                                                     |                                                                      | Not stated                                                                                        |

| Calibrati                            | on Points                              | Environment        | Original Temp.               | Melting             | g Points    | Comments                                                                                                                                                              | Oxid              |
|--------------------------------------|----------------------------------------|--------------------|------------------------------|---------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Materials                            | Temp.                                  |                    | Scale 3                      | Original            | Int. 1948 4 |                                                                                                                                                                       |                   |
| NaCl                                 | °C<br>Not stated                       | Air                | (Int. 1927)                  | ° <i>C</i><br>795±2 | °C<br>795±2 |                                                                                                                                                                       | MoO<br>Cor        |
| Sn, Pb, Al,<br>Cu, Ag, Si.           | Not stated                             | Nitrogen at 1 atmo |                              |                     |             |                                                                                                                                                                       |                   |
| Steam                                |                                        | -                  |                              |                     |             | No melting point data located in<br>the literature. Because of the<br>reactivity of Na <sub>2</sub> O, it is un-<br>likely that a melting point can<br>be determined. | Na <sub>2</sub> O |
| Not stated                           |                                        | Oxygen             | (Int. 1927)                  | 1460±5              | 1458±5      | (§)                                                                                                                                                                   | Nb2O              |
| Not Stated                           |                                        | Not Stated         | (Int. 1948)                  | 1465±5              | 1465±5      |                                                                                                                                                                       |                   |
| Au<br>Pd<br>Pseudowol-<br>lastonite. | Not stated<br>Not stated<br>Not stated | Air                | Int. 1948                    | 1479                | 1479        | Authors stated that recorded<br>temperatures may be as much<br>as 20 °C low.                                                                                          |                   |
| Au                                   | 1063                                   | Air                | Int. 1948                    | 1485±5              | 1485±5*     |                                                                                                                                                                       |                   |
| K₂CO₃<br>NaC1                        | Not stated<br>Not stated               | Oxygen plus air    | (Int. 1948)                  | 1486±5              | 1486±5*     |                                                                                                                                                                       |                   |
| Au<br>Barium disili-<br>cate.        | 1063<br>1420                           | Air                | Int. 1948                    | 1487                | 1487        | <br>·                                                                                                                                                                 |                   |
| KNbO3<br>Transforma-<br>tions.       | 215<br>425                             | (Air)              | (Int.1948)                   | 1491±2              | 1491±2*     |                                                                                                                                                                       |                   |
| None                                 |                                        | Аи                 | Int. 1948                    | 1496                | 1496        | <sup>5</sup> ; emissivity stated by authors<br>to be about unity.                                                                                                     |                   |
| Not stated                           |                                        | Air                | Int. 1948                    | 1500 ± 10           | 1500 ± 10   |                                                                                                                                                                       |                   |
| Au                                   | (1063)                                 | Not stated         | (Int. 1948)                  | 1512                | 1512        |                                                                                                                                                                       |                   |
| Pt                                   | 1755                                   | Not stated         | C <sub>2</sub> -1. 46 cm deg | 1520                | 1530        | <sup>5</sup> ; reaction between specimen<br>and Mgo support probable.                                                                                                 |                   |
| Pt                                   | (1769)                                 | Helium             | (Int. 1948)                  | $2272 \pm 20$       | 2272 ± 20   |                                                                                                                                                                       | Nd2C              |
| Not stated                           |                                        | (a) Vacuum (b) Air | Not stated                   | (a) 1552 (b) 1660   |             |                                                                                                                                                                       | NiO               |
| Not stated                           |                                        | Air                | (Int. 1927)                  | 1990                | 1984        | (5)                                                                                                                                                                   |                   |
| Not stated                           |                                        | Air                | (Int. 1927)                  | 2090                | 2083        | <sup>5</sup> ; authors stated this melting<br>point to be in error. See pre-<br>ceding reference [53] for cor-<br>rected value.                                       |                   |

|                                |                                          |                              |                                            |                                                 | 1110-101                                                                                              |
|--------------------------------|------------------------------------------|------------------------------|--------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Oxide                          | Reference                                | Purity <sup>2</sup>          | Furnace type                               | Temperature measurement                         | Method                                                                                                |
| OsO₄<br>yellow-<br>type        | v. Wartenberg [97]                       | Not stated                   | Resistance                                 | Thermocouple adjacent to specimen.              | Observation of specimen dur-<br>ing beating. Also from in-<br>tersection of vapor pressure<br>curves. |
|                                | Chemistry and Phys-<br>ics Handbook [4]. | Not stated                   | Not stated                                 | Not stated                                      | Not stated                                                                                            |
|                                | Kellcy [1]                               | Not stated                   | Not stated                                 | Not stated                                      | Not stated                                                                                            |
| P <sub>2</sub> O <sub>5</sub>  | Hoeflake and Scheffer<br>[98].           | Purified                     | Resistance; "oven"                         | Pt-PtRh thermocouple                            | Observation of specimen dur-<br>ing heating, Also from<br>vapor pressure data,                        |
| PbO<br>yellow<br>type.         | Balladen [47]                            | Not stated                   | Resistance                                 | Pt-PtRh thermocouple im-<br>mersed in specimen. | Thermal analysis, cooling<br>curves.                                                                  |
|                                | Hilpert and Weiller<br>[99].             | Not stated                   | Resistance                                 | Pt-PtRh thermocouple im-<br>mersed in specimen. | Thermal analysis                                                                                      |
|                                | v. Jaeger and Germs<br>[83].             | <ul> <li>(a) 99.2%</li></ul> | Resistance; nichrome heat-<br>ing element. | Thermocouple immersed in specimen.              | Thermal analysis.                                                                                     |
|                                | Schenck and Rass-<br>hach [100].         | Purc                         | Resistance                                 | Pt-PtRh thermocouple                            | Thermal analysis, cooling<br>curves.                                                                  |
|                                | Geller, Creamer, and<br>Bunting [101].   | 0.02% total impurities       | Not stated                                 | Pt-PtRh thermocouple                            | Differential thermal analysis                                                                         |
|                                | Krakau [102]                             | 0.1-0.2% impurities          | Not stated                                 | Pt-PtRh thermocouple                            | Thermal analysis, cooling<br>curves.                                                                  |
|                                | Kroll [103]                              | Not stated                   | Resistance; Pt heating element.            | Thermocouple immersed in specimen.              | Thermal analysis, cooling<br>curves; also observation of<br>specimen.                                 |
|                                | Cooper, Shaw, and<br>Loomis [104].       | Pure                         | Resistance                                 | Pt-PtRh thermocouple                            | (Thermal analysis,)                                                                                   |
| PdO2                           |                                          |                              |                                            |                                                 |                                                                                                       |
| ProOil                         |                                          |                              |                                            |                                                 |                                                                                                       |
| PtO <sub>2</sub>               | Chemistry and Phys-<br>ics Handhook [4]. | Not stated                   | Not stated                                 | Not stated                                      | Not stated                                                                                            |
| Rb <sub>2</sub> O              |                                          |                              |                                            |                                                 |                                                                                                       |
| Re <sub>2</sub> O7             | Kelley [1]                               | Not stated                   | Not stated                                 | Not stated                                      | Not stated                                                                                            |
| Rh <sub>2</sub> O <sub>3</sub> |                                          |                              |                                            |                                                 |                                                                                                       |
|                                |                                          |                              |                                            |                                                 |                                                                                                       |

-Continued

| Calibrati                                                               | ion Points                 | Environment    | Original Temp. | Melti                                                         | ng Points   | Comments                                                                                                                                         | Oxide                 |
|-------------------------------------------------------------------------|----------------------------|----------------|----------------|---------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Materials                                                               | Temp.                      |                | Scale 3        | Original                                                      | Int. 1948 4 |                                                                                                                                                  |                       |
| Not stated                                                              | °C                         | About 11 mm Hg | Not stated     | °C<br>40.1                                                    | ° <i>C</i>  | Crystal form not indicated. The<br>reported melting point is prob-<br>ably determined from mix-<br>ture of both the white and yel-<br>low types. | OsO4<br>yello<br>type |
| Not stated                                                              |                            | Not stated     | Not stated     | 41                                                            |             | Survey, not original data                                                                                                                        |                       |
| Not stated                                                              |                            | Not stated     | Not stated     | 56                                                            |             | _ Survey, not original data                                                                                                                      |                       |
| Naphthaline<br>Benzo-<br>phenone.<br>Sulphur<br>Sb                      | 218<br>306<br>444.5<br>630 | 4600 mm Hg     | Not stated     | 569<br>Triple point.                                          | 569         |                                                                                                                                                  | P2O5.                 |
| Not stated                                                              |                            | Not stated     | Not stated     | 870                                                           | -           |                                                                                                                                                  | PbO<br>yello<br>type. |
| Not stated                                                              |                            | Air            | Not stated     | 876                                                           | -           |                                                                                                                                                  | :                     |
| Not stated                                                              |                            | Oxidizing      | Not stated     | <ul> <li>(a) 877</li> <li>(b) 879</li> <li>(c) 879</li> </ul> |             |                                                                                                                                                  |                       |
| Not stated                                                              |                            | Air            | Not stated     | 879                                                           |             |                                                                                                                                                  |                       |
| K <sub>2</sub> SO <sub>4</sub> Trans-<br>formation.<br>KC1 <sub>4</sub> | 583±1<br>770.3<br>1069.1   | Air            | Int. 1927      | 886                                                           | . 886*      |                                                                                                                                                  |                       |
| Not stated                                                              |                            | Air            | (Int. 1927)    | 886                                                           | 886         |                                                                                                                                                  |                       |
| Not stated                                                              |                            | Air            | Not stated     | 888                                                           |             |                                                                                                                                                  |                       |
| Not stated                                                              |                            | (Air)          | Not stated     | 888                                                           |             |                                                                                                                                                  |                       |
|                                                                         |                            |                |                |                                                               |             | No melting point data located<br>in the literature. The oxide<br>probably dissociates to the<br>metal before melting.                            | PdO <sub>2</sub>      |
|                                                                         |                            |                |                |                                                               | -           | No melting point data located in the literature.                                                                                                 | Pr6O11                |
| Not stated                                                              |                            | Not stated     | Not stated     | 450                                                           |             | Survey; not original data. The<br>oxide probably dissociates to<br>the metal before melting.                                                     | PtO <sub>2</sub>      |
|                                                                         |                            |                |                |                                                               |             | No melting point data located<br>in the literature.                                                                                              | Rb2O                  |
| Vot stated                                                              |                            | Not stated     | Not stated     | 296                                                           |             | Survey, not original data                                                                                                                        | Re <sub>2</sub> O7    |
|                                                                         |                            |                |                |                                                               |             | No melting point data located<br>in the literature. The oxide<br>probably dissociates to the<br>metal before melting.                            | Rh2O3                 |

| Oxide                             | Reference                                | Purity <sup>2</sup>                                                                                                                                                                       | Furnace type                                                                        | Temperature measurement                                                                          | Metbod                                                                                                               |
|-----------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| RuO4                              |                                          |                                                                                                                                                                                           |                                                                                     |                                                                                                  |                                                                                                                      |
| Sb2O3 or-<br>thorom-<br>bic type  | Hincke [105]                             | Not stated                                                                                                                                                                                | Not stated                                                                          | Not stated                                                                                       | Calculated from vapor pres-<br>sure data.                                                                            |
| Sc <sub>2</sub> O <sub>3</sub>    | Schneider and War-<br>ing [70].          | 99.9%                                                                                                                                                                                     | Induction; crucible<br>shaped Ir susceptor,                                         | Optical pyrometer sighted on<br>small hole in crucible lid.                                      | Examination of specimen after<br>heating.                                                                            |
| SeO <sub>2</sub>                  | Cbemistry and Phys-<br>ics Handbook [4]. | Not stated                                                                                                                                                                                | Not stated                                                                          | Not stated                                                                                       | Not stated                                                                                                           |
| SiO2<br>cristo-<br>balite<br>type | Wietzel [106]                            | Not stated                                                                                                                                                                                | Resistance; Ir heating ele-<br>ment.                                                | Optical pyrometer sighted on<br>Pt blacked with Fe2O.                                            | Examination of specimen after<br>heating. First glass forma-<br>tion indicated melting.                              |
|                                   | Endell and Rieke<br>[107]                | 99.9%                                                                                                                                                                                     | Resistance; Ir heating ele-<br>ment.                                                | Ir-IrRh thermocouple adja-<br>cent to specimen.                                                  | Examination of specimen after heating.                                                                               |
|                                   | White, Howat, and<br>Hay [78]            | Not stated                                                                                                                                                                                | Resistance; Mo wire-<br>wound ceramic tube<br>beating element.                      | Mo-W thermocouple                                                                                | Observation of specimen during heating.                                                                              |
|                                   | Ferguson and<br>Merwin [108]             | Not stated                                                                                                                                                                                | Resistance; quench type,<br>Pt alloy wire-wound<br>ceramic tube heating<br>element. | Pt-90Pt10Rh tbermocouple.<br>Temperature measured be-<br>fore and after each determi-<br>nation. | Examination with microscope<br>of quenched specimen after<br>heating. Last trace of crys-<br>tals indicated melting. |
|                                   | Greig [109]                              | Very pure                                                                                                                                                                                 | Resistance; quench type,<br>Pt alloy wire-wound<br>ceramic tube heating<br>element. | Pt-90Pt10Rh thermocouple<br>adjacent to the specimen.                                            | Examination with microscope<br>of quenched specimen after<br>heating. Last trace of crys-<br>tais indicated melting. |
|                                   | Zhirnova [110]                           | Not stated                                                                                                                                                                                | Flame; acetylene-O <sub>2</sub>                                                     | Optical pyrometer sighted on specimen.                                                           | Observation of cone shaped<br>specimen during heating.<br>Slumping of the cone indi-<br>cated melting.               |
|                                   | Ruff and Lauschke<br>[25]                | Not stated                                                                                                                                                                                | Resistance; graphite tube beating element.                                          | Optical pyrometer sighted on specimen.                                                           | Observation of specimen during heating.                                                                              |
| Sm2O3                             | Wisnyi and<br>Pijanowski [61]            | Not stated                                                                                                                                                                                | Resistance; V-sbaped W<br>strip heating element.                                    | Optical pyrometer sighted on specimen.                                                           | Observation of specimen<br>during heating. Apparent<br>disappearance of specimen<br>indicated melting.               |
|                                   | Curtis and Johnson<br>[71]               | $\begin{array}{l} Y{<}0.05\%;\ La{<}0.05\%;\\ Pr{<}0.2\%;\ Nd{<}0.05\%;\\ Ho{<}0.02\%;\ Er{<}0.05\%;\\ Eu{=}0.4\%;\ Gd{=}0.03\%;\\ Tb{<}0.01\%;\ Dy{=}0.02\%;\\ Yb{<}0.05\%. \end{array}$ | Not stated                                                                          | Optical pyrometer sigbted on<br>specimen.                                                        | Observation of rod shaped<br>specimen during heating.<br>Definite fluidity of speci-<br>men indicated melting.       |
| SnO1                              | Ruff [31]                                | Not stated                                                                                                                                                                                | Resistance, carbon tube heating element.                                            | Optical pyrometer sighted on specimen.                                                           | Observation of specimen dur-<br>ing beating.                                                                         |
|                                   | Barczak and Insley<br>[111].             | Not stated                                                                                                                                                                                | Not stated                                                                          | Not stated.                                                                                      | Differential thermal analysis.<br>Also examination of speci-<br>men after heating.                                   |

| Calibrati                     | on Points                     | Environment                             | Original Temp.                     | Meltin               | g Poin <b>ts</b>      | Comments                                                                                                                                 | Oxid                                              |
|-------------------------------|-------------------------------|-----------------------------------------|------------------------------------|----------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| Materials                     | Temp.                         |                                         | Scale 3                            | Original             | Int. 1948 4           |                                                                                                                                          |                                                   |
|                               | °C                            |                                         |                                    | °C                   | °C                    | No melting point data located<br>in the literature.                                                                                      | RuO                                               |
| Not stated                    |                               | 8,5 mm Hg                               | (Int. 1927)                        | 655                  | 635                   |                                                                                                                                          | Sb <sub>2</sub> O3<br>orth<br>rhoi<br>bic<br>type |
| Au<br>Pd<br>Pt<br>Rh          | 1063<br>1552<br>1769<br>1960  | Air                                     | Int. 1948                          | <2405                | <2405                 |                                                                                                                                          | Sc <sub>2</sub> O <sub>3</sub>                    |
| Not stated                    |                               | Not stated                              | Not stated                         | 240-250              |                       | Survey, not original data. The oxide is extremely volatile.                                                                              | SeO2                                              |
| Pd                            | 1556                          | Atr                                     | (C <sub>2</sub> =1.437 cm deg).    | 1696±10              | 1691±10               |                                                                                                                                          | SiO2<br>crist<br>balit<br>type                    |
| An<br>Pd<br>Pt                | 1063<br>1549<br>1755          | Nitrogen                                | (Geophysical)                      | 1685                 | 1692                  |                                                                                                                                          |                                                   |
| Fe trans-<br>formation.<br>Fe | 1400<br>1530                  | Not stated                              | (Int. 1927)                        | 1705                 | 1701                  |                                                                                                                                          |                                                   |
| Pd                            | 1549.5                        | Air                                     | Geophysical                        | 1710±10              | 1720±10               |                                                                                                                                          |                                                   |
| Ice<br>Au<br>Pd<br>Pt         | 0<br>1062.6<br>1549.5<br>1755 | Air                                     | Geophysical                        | 1713±5               | 1723±5*               |                                                                                                                                          |                                                   |
| Pt<br>AlgO3<br>CaO            | 1755<br>2050<br>2570          | Air                                     | (C <sub>2</sub> =1.457 cm deg).    | 1715±20              | 1728±20               | (8)                                                                                                                                      |                                                   |
| An<br>CaF:                    | 1062.4<br>1398                | 17.0 mm Hg                              | (C <sub>2</sub> =1.437 cm<br>deg.) | 1850                 | 1850                  | <sup>5</sup> ; reaction between specimen<br>and graphite support probable.                                                               | 1                                                 |
| Al3O3                         | 2040                          | Either helium, hydro-<br>gen, or vacuum | Int. 1948                          | 2300±50              | 230 <mark>0±50</mark> | <sup>5</sup> ; authors' stated emissivity of<br>approximately 0.9 to 0.95 is<br>probably overestimated. Re-<br>flection errors probable. | Sm2O                                              |
| Not given                     |                               | Air                                     | (Int. 1948)                        | 2350±50              | 2350±50               | 5; authors' stated an attempt<br>was made to correct for non-<br>blackbody conditions.                                                   |                                                   |
| ?t                            | 1755                          | Not stated                              | C2=1.46 cm deg_                    | (a) 1385<br>(b) 1625 | 1391<br>1637          | <sup>5</sup> reaction between specimen and<br>(a) MgO or (b) ZrO <sub>2</sub> supports<br>probable.                                      | SnO <sub>2</sub>                                  |
| Not stated                    |                               | Not stated                              | (Int. 1948)                        | $1630 \pm 5$         | 1630±5                | Possible reaction of SnO <sub>2</sub> with<br>Pt container probable.                                                                     |                                                   |

| Oxide                               | Reference                                              | Purity <sup>2</sup>              | Furnace type                                                     | Temperature measurement                                                                                         | Method                                                        |
|-------------------------------------|--------------------------------------------------------|----------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| SrO                                 | Schumacher [43]                                        | C. P. grade                      | Reslstance; boat-shaped<br>W strlp heating element.              | Optical pyrometer sighted on<br>W strip adjacent to speci-<br>mcn; spectral emissivity<br>equals 0.431.         | Observation of specimen dur-<br>ing heating.                  |
| Ta <sub>2</sub> O5<br>alpha<br>type | Rcisman, Holtzberg,<br>Berkenblit, and<br>Bcrry [112]. | TiO2<0.001%                      | Resistance, U-shaped Rh<br>or Pt alloy strip heating<br>element. | Optical pyrometer sighted on specimen.                                                                          | Observation of specimen dur-<br>ing heating.                  |
|                                     | Ruff [31]                                              | Nb2O5-7.1%                       | Resistance; carbon tube<br>heating element.                      | Optical pyrometer slghtcd on specimen.                                                                          | Observation of specimen dur-<br>ing heating.                  |
| TbiO7                               |                                                        |                                  |                                                                  |                                                                                                                 |                                                               |
| TeO <sub>2</sub>                    | Kracek [3]                                             | Not stated                       | Not stated                                                       | Not stated                                                                                                      | Not stated                                                    |
| ThO2                                | Tiede and Birnbrauer<br>[23].                          | Commercially pure                | Arc                                                              | Optical pyrometer sighted on specimen.                                                                          | Observation of specimen dur-<br>ing heating.                  |
|                                     | Ruff [31]                                              | Pure                             | Resistance; carbon tube<br>heating element.                      | Optical pyrometer sighted on specimen.                                                                          | Observation of specimen dur-<br>ing heatiing.                 |
|                                     | Trombe [2]                                             | Not stated                       | Not stated                                                       | Not stated                                                                                                      | Not stated                                                    |
|                                     | Ruff, Ebert, and<br>Woitinek [113].                    | "Pure"                           | Flame; oxyacetylene                                              | Optical pyrometer                                                                                               | Not stated                                                    |
|                                     | Lambertson and<br>Gunzel [30].                         | 99.7%                            | Resistance; W heating clement.                                   | Optical pyrometer slghted on<br>specimen. Specimen not<br>visible.                                              | Examination of specimen after heating.                        |
| TiO₂                                | Statton [114]                                          | Reagent grade                    | Resistance; Mostripheat-<br>ing element.                         | Optical pyrometer sighted on<br>Mo strip adjacent to speci-<br>men. Corrected for spectral<br>emissivity of Mo. | Observation of specimen dur-<br>ing heating.                  |
|                                     | v. Wartenberg and<br>Prophet [53].                     | Not stated                       | Flame; oxyhydrogen or<br>gas-air.                                | Optical pyrometer                                                                                               | Not stated                                                    |
|                                     | Sigurdson and Cole<br>[115].                           | Not stated                       | Resistance; Pt strip heat-<br>ing element.                       | Optical pyrometer sighted on<br>Pt strip adjacent to speci-<br>men. Corrected for spectral<br>emissivity of Pt. | Observation of specimen dur-<br>ing heating.                  |
|                                     | Rase and Roy [116]                                     | Not stated                       | Resistance; U-shaped Pt<br>alloy heating element.                | Optical pyrometer sighted on<br>Pt alloy strlp.                                                                 | Observation of specimen dur-<br>ing heating.                  |
|                                     | Coughanour and<br>De Prosse [117].                     | 99.9%                            | Resistance; ThO <sub>2</sub> heating element.                    | Optical pyrometer sighted on specimen.                                                                          | Observation of pyramid-<br>shaped specimen during<br>heating. |
|                                     | St. Pierre [118]                                       | Si—0.04%; Mg—0.02%;<br>Ca—0.01%. | Induction; carbon tube susceptor.                                | Optical pyrometer sighted on specimen.                                                                          | Observation of specimen dur-<br>ing heating.                  |
|                                     | Diamond and Schnel-<br>der [28].                       | About 99.9%                      | Solar                                                            | Optical pyrometer sighted on specimen.                                                                          | Observation of bar-shaped specimen during cooling.            |

-Continued

| Calibrati                                                                                                                                          | ion Points                           | Environment                   | Original Temp.               | Meltin               | g Points             | Comments                                                                                                                                                       | Oxide                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------|------------------------------|----------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Materials                                                                                                                                          | Temp.                                |                               | Scale <sup>3</sup>           | Original             | Int. 1948 4          | -                                                                                                                                                              |                       |
| Not stated                                                                                                                                         | ° <i>C</i>                           | Hydrogen at 0.2 atm           | C2=1.433 cm<br>deg.          | °C<br>2430           | °C<br>2420           | <sup>5</sup> ; temperature uniformity be-<br>tween specimen and target<br>area of pyrometer not verified;<br>reflection errors probable.                       | SrO                   |
| Diopside<br>15% CaO:<br>85% SiO <sub>2</sub>                                                                                                       | 1392<br>1712                         | (Air)                         | Int. 1948                    | 1872±10              | 1872±10              | (8)                                                                                                                                                            | Ta2O5<br>alph<br>type |
| Pt                                                                                                                                                 | 1755                                 | pressure.                     | C <sub>2</sub> =1,46 cm deg_ |                      | 1895                 | <sup>5</sup> ; reaction between specimen and<br>ZrO <sub>2</sub> support probable.                                                                             |                       |
|                                                                                                                                                    |                                      |                               |                              |                      |                      | No melting point data located<br>in the literature.                                                                                                            | Tb₄Oı                 |
| Not stated                                                                                                                                         |                                      | Not stated                    | Not stated                   | 732, 6               |                      | Survey; not original data. This<br>oxide is very volatile and has<br>a tendency to sublime rather<br>than to melt.                                             | TeO2                  |
| Not stated                                                                                                                                         |                                      | Vacuum                        | Not stated                   | 2000                 |                      | (5)                                                                                                                                                            | ThO <sub>3</sub>      |
| Pt                                                                                                                                                 | 1755                                 | Nitrogen at reduced pressure. | C2=1.46 cm deg_              | 2425<br>2440<br>2470 | 2468<br>2483<br>2515 | 5; reaction between specimen<br>and ceramic supports probable.                                                                                                 |                       |
| Not stated                                                                                                                                         |                                      | Not stated                    | Not stated                   | 3000                 |                      | Survey, not original data                                                                                                                                      |                       |
| Not stated                                                                                                                                         |                                      | Not stated                    | (Int. 1927)                  | 3050±50              | 3030±50              | Melting point extrapolated from<br>liquidus curves of the ZrO <sub>2</sub> -<br>ThO <sub>2</sub> system,                                                       |                       |
| Pt                                                                                                                                                 | (1769)                               | Helium                        | (Int. 1948)                  | 3220±50              | 3220±50*             |                                                                                                                                                                |                       |
| Pd<br>Pt                                                                                                                                           | 1555<br>1774                         | Vacuum                        | (Int, 1927)                  | 1720                 | 1716                 | <sup>5</sup> ; temperature uniformity be-<br>tween specimen and target<br>area of pyrometer not verified.<br>Reduction of TiO <sub>2</sub> very prob-<br>able. | TiO3                  |
| Not stated                                                                                                                                         |                                      | Air                           | (Int. 1927)                  | 1825                 | 1820                 | <sup>5</sup> ; partial reduction of TiO <sub>2</sub> prob-<br>ably occurred.                                                                                   |                       |
| Au<br>Na <sub>2</sub> Ti <sub>3</sub> O <sub>7</sub><br>BaF <sub>2</sub><br>CaMgSi <sub>2</sub> O <sub>8</sub><br>MgTi <sub>2</sub> O <sub>2</sub> | 1063<br>1128<br>1280<br>1391<br>1660 | Oxidizing                     | (Int. 1948)                  | 1825                 | 1825                 | (ð)                                                                                                                                                            |                       |
| Diopside<br>Pseudo-<br>wollas-                                                                                                                     | 1391.5                               | (Air)                         | (Geophysical)                | 1830                 |                      | (5)                                                                                                                                                            |                       |
| tonite.<br>15% CaO:<br>85% SiO2.                                                                                                                   | 1544<br>1698                         |                               |                              |                      |                      |                                                                                                                                                                |                       |
| Pt                                                                                                                                                 | 1769                                 | Air                           | Int. 1948                    | 1839±10              | 1839±10              | (8)                                                                                                                                                            |                       |
| Not stated                                                                                                                                         |                                      | Air                           | (Int. 1948)                  | 1840 <b>±10</b>      | 1840±10              | (5)                                                                                                                                                            |                       |
| None                                                                                                                                               |                                      | A ir                          | Int. 1948                    | 1840                 | 1840                 | 5; emissivity stated by authors<br>to be about unity.                                                                                                          |                       |

-

| Oxide                      | Reference                                                | Purity 2                    | Furnace type                                                         | Tempcrature measurement                                                               | Method                                                                                                 |
|----------------------------|----------------------------------------------------------|-----------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| riO <sub>2</sub> —<br>Con. | v. Wartenberg and<br>Gurr [52].                          | Not stated                  | Not stated                                                           | Optical pyrometer                                                                     | Not stated                                                                                             |
|                            | Lang, Fillmore, and<br>Maxwell [119].                    | 99.9%                       | Resistance; ThO <sub>2</sub> heating elements.                       | Optical pyrometer sighted on specimen.                                                | Observation of pyramic<br>shaped specimen durin<br>heating.                                            |
|                            | v. Wartenberg and<br>Eckhardt [57].                      | Pure; SiO <sub>2</sub> free | Flame; acetylene-O2                                                  | Optical pyrometer sighted on specimen.                                                | Observation of specimen su<br>pended in furnace durin<br>heating.                                      |
|                            | Brauer and Littke<br>[120].                              | >99.8%                      | Solar                                                                | Radiation pyrometer sighted<br>on specimen.                                           | Observation of specimen du<br>ing heating.                                                             |
|                            |                                                          |                             |                                                                      |                                                                                       |                                                                                                        |
| ۲l <sub>2</sub> O3         | Duncan [121]                                             | Not stated                  | Not stated                                                           | Pt-90Pt10Rh thermocouple<br>immersed in specimen.                                     | Thermal analysis, coolin<br>curves.                                                                    |
| Γm₂O₃                      |                                                          |                             |                                                                      |                                                                                       |                                                                                                        |
| UO2                        | Ruff and Goecke [34]                                     | Not stated                  | Resistance; graphite tube<br>heating element.                        | Optical pyrometer sighted on specimen.                                                | Observation of cone-shap<br>specimen during heating.                                                   |
|                            | Wisnyi and Pijanow-<br>ski [61].                         | Not stated                  | Resistance; V-shaped W<br>strip heating element.                     | Optical pyrometer sighted on specimen.                                                | Observation of specimen du<br>ing heating. Apparent of<br>appearance of specimen i<br>dicated melting. |
|                            | Ehlert and Margrave<br>[122].                            | Not stated.                 | Induction; graphite sus-<br>ceptor.                                  | Optical pyrometer sighted on<br>specimen. Correction made<br>for spectral emissivity. | Observation of specimen du<br>ing heating.                                                             |
|                            | Lambertson and<br>Gunzel [30].                           | Very pure                   | Resistance; W heating element.                                       | Optical pyrometer sighted on<br>specimen. Specimen not<br>visible.                    | Examination of specimen du<br>ing heating.                                                             |
| $V_2O_5$                   | Kracek [3]                                               | Not stated                  | Not stated.                                                          | Not stated                                                                            | Not stated                                                                                             |
|                            | Carnelley [81]                                           | Not stated                  | Flame; "bunsen lamp"                                                 | Mercury thermometer                                                                   | Not stated                                                                                             |
|                            | Cook [123]                                               | Purified                    | Not stated                                                           | Thermocouple                                                                          | Heat content curves                                                                                    |
|                            | Illarionov, Ozeron,<br>and Kil'disheva<br>[124].         | Not stated                  | Not stated                                                           | Pt-PtRh thermocouple                                                                  | Differential thermal analysi                                                                           |
|                            | Holtzberg, Reisman,<br>Berry, and Berken-<br>blit [125]. | 99.94%                      | Not stated                                                           | Pt-90Pt10Rh thermocouple<br>immersed in specimen.                                     | Thermal analysis                                                                                       |
|                            | McDaniel [1 <mark>26]</mark>                             | 99.5%                       | Resistance; Pt alloy wire-<br>wound ceramic tube<br>heating element. | Pt-90Pt10Rh thermocouple<br>immersed in specimen.                                     | Thermal analysis; electric<br>conductance versus tempe<br>ature curves.                                |
|                            | Burdese [127]                                            | Not stated                  | Not stated                                                           | Not stated                                                                            | Examination with microscop<br>of specimen after heating.                                               |
|                            | Chemistry and<br>Physics Handbook<br>[4].                | Not stated                  | Not stated                                                           | Not stated                                                                            | Not stated                                                                                             |
| WO3                        | v. Jaeger and Germs<br>[83].                             | Fe-0.05%                    | Resistance; nichrome wire heating clement.                           | Thermocouple immersed in specimen.                                                    | Thermal analysis, heatin<br>curves.                                                                    |

| Calibration Points             |                  | Environment                                                                                         | Original Temp.                 | Melting Points             |                    | Comments                                                                                                                | Oxid              |
|--------------------------------|------------------|-----------------------------------------------------------------------------------------------------|--------------------------------|----------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------|
| Materials                      | Temp.            |                                                                                                     | Scale <sup>3</sup>             | Orlginal                   | Int. 1948 4        |                                                                                                                         |                   |
| Not stated                     | °C               | Air                                                                                                 | (Int. 1927)                    | °C<br>1850                 | °C<br>1845         |                                                                                                                         | TiOr              |
| Not stated                     |                  | Air                                                                                                 | Int. 1948                      | 1845                       | 1845               | (8)                                                                                                                     | Co                |
| Not stated                     |                  | Air                                                                                                 | (Int. 1927)                    | 1855                       | 1850               | (8)                                                                                                                     |                   |
|                                |                  | -                                                                                                   | (110. 100/)                    | 1000                       |                    | ()                                                                                                                      |                   |
| CaF2<br>NiO<br>Cr2O3           |                  | <ul> <li>(a) Oxygen at 300 torr.<br/>Argon at 460 torr.</li> <li>(b) Oxygen at 500 torr.</li> </ul> | (Int. 1948)                    | (a) $1840 \pm 15$          | 1840±15            | (5)                                                                                                                     |                   |
| Al <sub>2</sub> O <sub>3</sub> |                  | Argon at 260 torr.<br>(c) Oxygen at 600 torr.                                                       |                                | (c) $1870 \pm 15$          | 1870±15            |                                                                                                                         |                   |
|                                |                  | Argon at 160 torr.<br>(d) Oxygen at 760 torr.<br>(e) Oxygen at 1140<br>torr.                        |                                | (d) 1870±15<br>(e) 1870±15 | 1870±15<br>1870±15 |                                                                                                                         |                   |
| Not stated                     |                  | Oxygen at 1 atm                                                                                     | (Int. 1927)                    | 717±5                      | 717±5              |                                                                                                                         | Tl <sub>2</sub> O |
|                                |                  |                                                                                                     |                                |                            |                    | No melting point data located<br>in the literature.                                                                     | Tm20              |
| Au<br>Pt                       |                  | Nitrogen                                                                                            | (C <sub>2</sub> =1,48 cm deg). | 2176                       | 2208               | <sup>8</sup> ; reaction hetween specimen<br>and uranium carbide support<br>prohable.                                    | UO                |
| Al2O3                          | 2040             | Either helium, hy-<br>drogen, or vacuum.                                                            | Int. 1948                      | 2760±30                    | 2760 <u>±</u> 30   | <sup>8</sup> ; author's stated emissivity of<br>0.9 to 0.95 prohably overesti-<br>mated. Reflection errors<br>prohable. |                   |
| Not stated                     |                  | Vacuum                                                                                              | (Int. 1948)                    | 2860±45                    | 2860 <u>+</u> 45   |                                                                                                                         |                   |
| Pt                             | (1769)           | Helium                                                                                              | (Int. 1948)                    | 2878±22                    | 2878±22*           |                                                                                                                         |                   |
| Not stated                     |                  | Not stated.                                                                                         | Not stated                     | 656                        |                    | Survey; not original data                                                                                               | V₂O               |
|                                |                  |                                                                                                     |                                |                            |                    |                                                                                                                         |                   |
| Au<br>Pd                       | (1063)<br>(1555) | Not stated                                                                                          | (Int. 1927)                    | 670                        | 670                |                                                                                                                         |                   |
| Not stated                     |                  | Not stated                                                                                          | (Int. 1948)                    | 672                        | 672                |                                                                                                                         |                   |
| NaCl<br>K₂SO₄                  | 800.4<br>1069    | Air + Oxygen                                                                                        | Int. 1948                      | 674±5                      | 674±5*             |                                                                                                                         |                   |
| NaCl                           | 800              | Air                                                                                                 | Int. 1948                      | 675±3                      | 675±3*             |                                                                                                                         |                   |
| Not stated                     |                  | Carhon dioxide                                                                                      | (Int. 1948)                    | 685±5                      | 685±5              |                                                                                                                         |                   |
| Not stated                     |                  | Not stated                                                                                          | Not stated                     | 690                        |                    | Survey, not original data                                                                                               |                   |
|                                |                  | Oxidizing                                                                                           |                                |                            |                    |                                                                                                                         | WOa               |

| Oxide                     | Reference Purity <sup>2</sup>            |                                                                  | Furnace type                                       | Temperature measurement                                                          | Mcthod                                                                                                |  |
|---------------------------|------------------------------------------|------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--|
| WO <sub>3</sub> —<br>Con. | Hoerman [84]                             | Not stated.                                                      | Resistance; Pt wire heat-<br>ing element.          | Pt-PtRh thermocouple im-<br>mersed in specimen.                                  | Observation of specimen dur-<br>ing heating.                                                          |  |
| Y2O3                      | Ruff and Lausche [25]. Commercially pure |                                                                  | Resistance; graphite tube<br>heating element.      | Optical pyrometer sighted on specimen.                                           | Observation of specimen dur<br>ing heating.                                                           |  |
|                           | Ruff [31]                                | Traces of impurities                                             | Resistance; carbon tube<br>heating element.        | Optical pyrometer sighted on specimen.                                           | Observation of specimen dur-<br>ing heating.                                                          |  |
| Yb2O3                     |                                          |                                                                  |                                                    |                                                                                  |                                                                                                       |  |
| ZnO                       | Bunting [128]                            | >99,9%                                                           | Induction, button-shaped<br>Ir-Pt susceptor.       | Optical pyrometer sighted on<br>small cavity adjacent to<br>specimen cavity.     | Examination of specimen after<br>heating.                                                             |  |
| ZrO2                      | Tiede and Birnbrauer<br>[23].            | Very pure                                                        | Arc                                                | Optical pyrometer sighted on specimen.                                           | Observation of specimen<br>during heating,                                                            |  |
|                           | Ruff and Lauschke<br>[25].               | SiO <del>2</del> —0.95%<br>Fe <sub>2</sub> O <sub>3</sub> —0.27% | Resistance; graphite tube<br>heating element.      | Optical pyrometer sighted on specimen.                                           | Observation of specimen<br>during heating.                                                            |  |
|                           | Ruff [31]                                | 93%                                                              | Resistance; graphite tube<br>heating element.      | Optical pyrometer sighted on specimen.                                           | Observation of specimen<br>during heating.                                                            |  |
|                           | Clausing [74]                            | HfO2<1%                                                          | Resistance; bar-shaped W<br>strip heating element. | Optical pyrometer sighted on<br>small cavity adjacent to the<br>specimen cavity. | Observation of specimen<br>during heating. Flowing<br>specimen indicated melting.                     |  |
|                           | Podszus [129]                            | Pure                                                             | Arc, carbon electrodes                             | Optical pyrometer sighted on specimen.                                           | Ohservation of specimen during heating.                                                               |  |
|                           | Henning [75]                             | Pure                                                             | Resistance; W tube heat-<br>ing element.           | Optical pyrometer sighted on specimen.                                           | Observation of specimen<br>during heating.                                                            |  |
|                           | Mark [27]                                | Not stated                                                       | Resistance; graphite or metal heating element.     | Optical pyrometer sighted on specimen.                                           | Observation of specimen during heating.                                                               |  |
|                           | Trombe [2]                               | Not stated                                                       | Not stated                                         | Not stated                                                                       | Not stated                                                                                            |  |
|                           | Lambertson and<br>Gunzel [30].           | HfO <sub>2</sub> —2.03%<br>Others— <b>0.03</b> %                 | Resistance, W heating ele-<br>ment.                | Optical pyrometer sighted on<br>specimen. Specimen not<br>visible.               | Examination of specimen<br>after heating.                                                             |  |
|                           | Zhirnova [110]                           | Not stated                                                       | Flame; acetylene–O <sub>2</sub>                    | Optical pyrometer sighted on specimen.                                           | Observation of cone shaped<br>specimen during heating<br>Slumping of the cone indi-<br>cated melting. |  |
|                           | Curtis, Doney, and<br>Johnson [76].      | Hf-80 ppm<br>Ti-60 ppm<br>Al-150 ppm<br>Fe-600 ppm<br>Si-200 ppm | Flame; oxyacetylene                                | Optical pyrometer                                                                | Not stated                                                                                            |  |

<sup>1</sup> All phrases, numbers, words, etc., enclosed in parentheses indicate that these items are not directly expressed in the quoted reference. However, based on information contained in the published report, the enclosed items can be reasonably assumed to be valid.

<sup>2</sup> Purities are listed as quoted in the reference. No attempt has been made to convert them to a common basis.

<sup>3</sup> Int. 1927—The International Temperature Scale (of 1927) [19].

Int. 1948—The International Practical Temperature Scale of 1948 [10].

 $\begin{array}{l} \mbox{Geophysical-Geophysical Temperature Scale [18].} \\ \mbox{C}_2\mbox{-second radiation constant.} & \mbox{This constant is required in the definition of the temperature scale.} & \mbox{See text for more complete description of approximately a$ priate equations.

-Continued

| Calibration Points |                        | Environment                                                                        | Original Temp.                   | Melting Points                                    |                       | Comments                                                                                               | Oxide                          |
|--------------------|------------------------|------------------------------------------------------------------------------------|----------------------------------|---------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------|--------------------------------|
| Materials          | Temp.                  |                                                                                    | Scale 3                          | Original                                          | Int. 1948 4           |                                                                                                        |                                |
| Not stated         | °C                     | Not stated                                                                         | (Int. 1927)                      | ° <i>C</i><br>1473                                | °C<br>1471            |                                                                                                        | WO3-<br>Con                    |
| Au<br>CaF2         |                        | Air at 21.5 mm Hg                                                                  | C <sub>2</sub> =1.437 cm<br>deg. | 2410                                              | 2410                  | <sup>5</sup> ; reaction between specimen<br>and graphite support prob-<br>able.                        | ¥2O3,                          |
| Pt                 | 1755                   | Nitrogen at 15 mm Hg_                                                              | C <sub>2</sub> =1.46 cm deg_     | 2415                                              | 2458                  | $5$ ; reaction between specimen and $ZrO_2$ support probable.                                          |                                |
|                    |                        |                                                                                    |                                  |                                                   |                       | - No melting point data located in literature.                                                         | Yb <sub>2</sub> O <sub>3</sub> |
| Not stated         |                        | Air                                                                                | (Int. 1927)                      | 1975 <del>±</del> 25                              | 1969±25               | - Temperature uniformity be-<br>tween specimen cavity and<br>target area of pyrometer not<br>verified. | ZnO                            |
| Not stated         |                        | Vacuum                                                                             | Not stated                       | 2430                                              |                       | . (5)                                                                                                  | ZrO2                           |
| Au<br>CaF2         | 1062. <b>4</b><br>1398 | <ul> <li>(a) Hydrogen at 760<br/>mm Hg.</li> <li>(b) Air at 8.22 mm Hg.</li> </ul> | C <sub>2</sub> =1.437 cm<br>deg. | <ul> <li>(a) 2519</li> <li>(b) 2563±10</li> </ul> |                       | <ul> <li><sup>5</sup>; reaction between specimen<br/>and graphite support prob-<br/>able.</li> </ul>   |                                |
| Pt                 | 1755                   | Nitrogen                                                                           | C <sub>2</sub> =1.46 cm deg.     | 2585                                              | 2636                  | (*)                                                                                                    |                                |
| Not stated         |                        | Hydrogen                                                                           | (Int. 1927)                      | $2677 \pm 25_{}$                                  | 2663±5                | (9)                                                                                                    |                                |
| Pt                 | Not stated             | Air                                                                                | Not stated                       | (a) 2677<br>(b) 2727                              |                       | (5)                                                                                                    |                                |
| Not stated         |                        | Hydrogen and nitro-<br>gen.                                                        | Not stated                       | 2687                                              |                       | (5)                                                                                                    |                                |
| Not stated         |                        | Neutral                                                                            | (Int. 1948)                      | 2690                                              | 2690                  | ( <sup>6</sup> )                                                                                       |                                |
| Not stated         |                        | Not stated                                                                         | Not stated                       | 2700                                              |                       | Survey; not original data                                                                              |                                |
| Pt                 | (1769)                 | Helium                                                                             | (Int. 1948)                      | 2710±15                                           | 2710±15               |                                                                                                        |                                |
| Pt<br>Al2O3<br>CaO |                        | Air                                                                                | (C <sub>2</sub> =1.457 cm deg.). | 2715                                              | 2765                  | (§)                                                                                                    |                                |
| Not stated         |                        | Not stated                                                                         | (Int. 1948)                      | 2850±25                                           | 28 <mark>50±25</mark> | ( <sup>8</sup> )                                                                                       |                                |
|                    |                        |                                                                                    |                                  |                                                   |                       |                                                                                                        |                                |

• (A) The melting points marked with an asterisk are considered to be the better values of those listed. The values so designated do not necessarily represent the true melting points, but merely highlight those values believed to be more reliable.

(B) See text for method of conversion to values based on International Practical Temperature Scale of 1948. No entry in this column indicates insufficient data in original paper to permit conversion of melting point to 1948 basis.

<sup>5</sup> A close enough approach to blackbody conditions to facilitate accurate temperature measurement probably has not been obtained. As a general guideline, it should be noted that if an object in an enclosure is distinguishable from its surroundings, blackbody conditions probably have not been realized.

<sup>6</sup> Kanolt did not specifically employ Wien's equation in the measurement of high temperatures. A complete discussion of the method of conversion to temperatures on the 1948 scale is given elsewhere [130].

## U.S. DEPARTMENT OF COMMERCE Luther H. Hodges, Secretary

#### NATIONAL BUREAU OF STANDARDS

A. V. Astin, Director



# THE NATIONAL BUREAU OF STANDARDS

The scope of activities of the National Bureau of Standards at its major laboratories in Washington, D.C., and Boulder, Colorado, is suggested in the following listing of the divisions and sections engaged in technical work. In general, each section carries out specialized research, development, and engineering in the field indicated by its title. A brief description of the activities, and of the resultant publications, appears on the inside of the front cover.

#### WASHINGTON, D.C.

Electricity. Resistance and Reactance. Electrochemistry. Electrical Instruments. Magnetic Measurements. Dielectrics. High Voltage. Absolute Electrical Measurements.

Metrology. Photometry and Colorimetry. Refractometry. Photographic Research. Length. Engineering Metrology. Mass and Volume.

Heat. Temperature Physics. Heat Measurements. Cryogenic Physics. Equation of State. Statistical Physics. Radiation Physics. X-ray. Radioactivity. Radiation Theory. High Energy Radiation. Radiological Equipment. Nucleonic Instrumentation. Neutron Physics.

ment. Nucleonic Instrumentation. Neutron Physics. Analytical and Inorganic Chemistry. Pure Substances. Spectrochemistry. Solution Chemistry. Standard Reference Materials. Applied Analytical Research. Crystal Chemistry.

Mechanics. Sound. Pressure and Vacuum. Fluid Mechanics. Engineering Mechanics. Rheology. Combustion Controls.

Polymers. Macromolecules: Synthesis and Structure. Polymer Chemistry. Polymer Physics. Polymer Characterization. Polymer Evaluation and Testing. Applied Polymer Standards and Research. Dental Research. Metallurgy. Engineering Metallurgy. Metal Reactions. Metal Physics. Electrolysis and Metal Deposition.

Inorganic Solids. Engineering Ceramics. Glass. Solid State Chemistry. Crystal Growth. Physical Properties. Crystallography.

Building Research. Structural Engineering. Fire Research. Mechanical Systems. Organic Building Materials. Codes and Safety Standards. Heat Transfer. Inorganic Building Materials. Metallic Building Materials.

Applied Mathematics. Numerical Analysis. Computation. Statistical Engineering. Mathematical Physics. Operations Research.

Data Processing Systems. Components and Techniques. Computer Technology. Measurements Automation. Engineering Applications. Systems Analysis.

Atomic Physics. Spectroscopy. Infrared Spectroscopy. Far Ultraviolet Physics. Solid State Physics. Electron Physics. Atomic Physics. Plasma Spectroscopy.

Instrumentation. Engineering Electronics. Electron Devices. Electronic Instrumentation. Mechanical Instruments. Basic Instrumentation.

Physical Chemistry. Thermochemistry. Surface Chemistry. Organic Chemistry. Molecular Spectroscopy. Elementary Processes. Mass Spectrometry. Photochemistry and Radiation Chemistry.

Office of Weights and Measures.

# **BOULDER, COLO.**

#### CRYOGENIC ENGINEERING LABORATORY

Cryogenic Processes. Cryogenic Properties of Solids. Cryogenic Technical Services. Properties of Cryogenic Fluids.

## CENTRAL RADIO PROPAGATION LABORATORY

Ionosphere Research and Propagation. Low Frequency and Very Low Frequency Research. Ionosphere Research. Prediction Services. Sun-Earth Relationships. Field Engineering. Radio Warning Services. Vertical Soundings Research.

Troposphere and Space Telecommunications. Data Reduction Instrumentation. Radio Noise. Tropospheric Measurements. Tropospheric Analysis. Spectrum Utilization Research. Radio-Meteorology. Lower Atmosphere Physics.

Radio Systems. Applied Electromagnetic Theory. High Frequency and Very High Frequency Research. Frequency Utilization. Modulation Research. Antenna Research. Radiodetermination.

**Upper Atmosphere and Space Physics.** Upper Atmosphere and Plasma Physics. High Latitude Ionosphere Physics. Ionosphere and Exosphere Scatter. Airglow and Aurora. Ionospheric Radio Astronomy.

#### RADIO STANDARDS LABORATORY

Radio Standards Physics. Frequency and Time Disseminations. Radio and Microwave Materials. Atomic Frequency and Time-Interval Standards. Radio Plasma. Microwave Physics.

Radio Standards Engineering. High Frequency Electrical Standards. High Frequency Calibration Services. High Frequency Impedance Standards. Microwave Calibration Services. Microwave Circuit Standards. Low Frequency Calibration Services.

Joint Institute for Laboratory Astrophysics-NBS Group (Univ. of Colo.).