National Bureau of Standards Library, N.W. Bldg JUL 1 1 1963

NBS MONOGRAPH 63

Tensile and Impact Properties of Selected Materials From 20 to 300 °K

U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

Ē

THE NATIONAL BUREAU OF STANDARDS

Functions and Activities

The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to government agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. Research projects are also performed for other government agencies when the work relates to and supplements the basic program of the Bureau or when the Bureau's unique competence is required. The scope of activities is suggested by the listing of divisions and sections on the inside of the back cover.

Publications

The results of the Bureau's research are published either in the Bureau's own series of publications or in the journals of professional and scientific societies. The Bureau itself publishes three periodicals available from the Government Printing Office: The Journal of Research, published in four separate sections, presents complete scientific and technical papers; the Technical News Bulletin presents summary and preliminary reports on work in progress; and CRPL Ionospheric Predictions provides data for determining the best frequencies to use for radio communications throughout the world. There are also five series of nonperiodical publications: Monographs, Applied Mathematics Series, Handbooks, Miscellaneous Publications, and Technical Notes.

A complete listing of the Bureau's publications can be found in National Bureau of Standards Circular 460, Publications of the National Bureau of Standards, 1901 to June 1947 (\$1.25), and the Supplement to National Bureau of Standards Circular 460, July 1947 to June 1957 (\$1.50), and Miscellaneous Publication 240, July 1957 to June 1960 (includes Titles of Papers Published in Outside Journals 1950 to 1959) (\$2.25); available from the Superintendent of Documents, Government Printing Office, Washington 25, D.C.

Tensile and Impact Properties of Selected Materials From 20 to 300 °K

K. A. Warren and R. P. Reed

National Bureau of Standards Monograph 63 Issued June 28, 1963

For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, D.C. - Price 35 cents

Library of Congress Catalog Card Number: 63-60026

Introduction	1
Equipment	1
Specimens	2
Experimental procedure	2
Reduction of data	3
Results	3
References	3
Data (tables I to VII)	4
Tensile properties (figures 1 to 6)	26
Impact properties (figures 7 to 13)	30
Identification table (table 8)	36
Specimen designs (figures 14 to 30)	37
III	ſ

Contents

Page

Tensile and Impact Properties of Selected Materials from 20 to 300 °K

K. A. Warren^{*} and R. P. Reed

The tensile and impact properties of structural materials were experimentally determined at temperatures from 20 to 300 °K. Tensile properties of a few materials were also determined at 4 °K. The materials included forty-two commercial alloys of iron, aluminum, titanium, copper, nickel, and cobalt, and two metal-bonded carbides. The properties experimentally determined were the yield strength, tensile strength, elongation, and reduction of area, the stress versus strain curve, and the impact energy. The test equipment and procedures are described. The individual data are presented in tables, and the average results are displayed in graphs.

Introduction

There has been a lack of information on the low-temperature mechanical and physical properties of certain materials that might be used in cryogenic devices. Even where data existed, they were not always available in convenient form. Also the designer was sometimes faced with the necessity of choosing between conflicting data.

In order to remedy these problems insofar as certain missile applications were concerned, the Cryogenic Engineering Laboratory of the Bureau was requested by the Air Force Ballistic Missile Division to search the literature published between 1940 and 1960 for pertinent mechanical and physical properties data on selected materials at low temperatures, to evaluate these data, and to supplement them with experimental measurements at room and low temperatures where deemed advisable. This program was initiated early in 1959 under Air Force Contract Number AF 04(647)-59-3. It led to preparation of a Cryogenic Materials Data Handbook which had a limited distribution to the Air Force and some of its contractors.

This Monograph is presented to provide more detailed documentation of the experimental portion of the program and to make the results more generally available. Included are tensile strength, yield strength, elongation, and reduction of area values, stress-strain curves, and impact data for alloys of aluminum, cobalt, copper, iron, nickel, and titanium, and two metal-bonded carbides. Only one condition of each material was tested (except for beryllium copper). The condition selected was the one thought to be the most useful for low temperature missile applications. The materials were tested at four temperatures: 300 °K (room), 195 °K (dry ice and alcohol), 76 °K (boiling liquid nitrogen), and 20 °K (boiling liquid hydrogen). A few results are reported for tests made at 4 °K (boiling liquid helium).

To implement the testing program a tensile cryostat, which has been described in the literature [1]¹, was designed and built. This cryostat is capable of transmitting tensile forces up to a maximum of 5,000 pounds. This load limit influenced the specimen design as will be subsequently described. Later in the program another cryostat [2], of a different design and capable of sustaining tensile forces of more than 10,000 pounds, was designed and built for another project. This cyrostat was also used, and its use significantly accelerated the experimental program.

The tensile tests were performed using two universal testing machines, one a 60,000 pound hydraulic machine, the other a 10,000 pound mechanical machine. Both machines were equipped with 10,000 pound load cells. The load versus extension curve was plotted automatically on an x-y recorder. The recorders used were equipped with time plotting devices for the x axis so that load versus crosshead travel (time) could be recorded after the limit of travel of the extensioneter was reached.

Nearly all of the specimens were equipped during testing with an extensioneter to allow an accurate determination of yield strength and stress versus strain. Three types of extensioneters were available. Initially a commercial clip-on strain gage extensometer built for 1-inch gage length was used. Because of the desirability of conforming to the convention that the initial gage length should equal four times the diameter of the specimen, two strain-gage type extension meeting this requirement were developed (fig. 1) that fit respectively the two principal types of specimens. At the same time it proved possible to greatly extend the strain range, inasmuch as the commercial extensometer had only utilized a small portion of the elastic region of the strain gages and beams. By using a different method of transmitting the strain of the specimen to the strain

Equipment

^{*}Present address: Granville-Phillips Co., Boulder, Colo.

¹ Figures in brackets indicate the literature references on page 3.

gage sensing elements of the extensometer, the full elastic region was utilized. In this method the knife edges are attached rigidly to the ends of thin beams on which are mounted the strain gages. As the specimen extends, the knife edges rotate about the contact points where they grip the specimen. Whereas the commercial extensometer was limited to measuring only slightly over 10 percent elongation, the new extensometers are linear and reproducible up to about 85 percent elongation. The strain sensitivities are about the same.

A simple cryostat was built for calibration of the extensioneters at cryogenic temperatures. It consisted of a commercially available stainless steel widemouth Dewar with a cover fabricated mainly from plastic components and provided with suitable fittings, such as electrical connector, vent tube, fill tube, and calibration extension member tube, all with seals to permit use with liquid hydrogen.

The extensioneters were calibrated prior to the tests by mounting them on a calibration device incorporating a precision micrometer accurate to 1×10^{-5} inches over a 2 inch range. The motion of the micrometer was transmitted into the calibration cryostat by stainless steel extension members. For low temperature calibrations the extensioneter was immersed in an appropriate cryogen in the calibration cryostat. The decrease in sensitivity of the extensioneters in going from room temperature to liquid hydrogen temperature was about 8 percent. This figure varied slightly with changes in, or replacements of, the strain gage transducing elements of the extensioneters.

A measuring microscope was used for determining the initial and final gage lengths needed for calculation of percent elongation values. The specimen diameters were measured with a precision micrometer.

The impact measurements were conducted using a standard impact testing machine with a 15 or 30 pound hammer, and a drop in height of the hammer of 2 or 4 fect. The resulting velocity at impact is 11.3 or 16.0 feet per second.

Specimens

Because of the limited load capacity of the first tensile cryostat, as mentioned earlier, it was necessary to use subsize tensile specimens, since the tensile strengths of some of the materials were expected to approach 300,000 psi and many would approach 200,000 psi at low temperatures. Thus, these two strength values and the 5000 pound load limit were used as a basis for determining two tensile specimen designs which incorporated nominal reduced section diameters of 0.144 inches and 0.177 inches respectively (fig. 2). Selection of the particular diameter to be used for each material was based on its expected maximum tensile strength at low temperatures. Exceptions to these standard specimen designs were the Elgiloy and 301 XFH specimens.

Initial tests of Elgiloy showed it to be considerably stronger than anticipated at low temperatures; thus a reduced section diameter of 0.125 inch was used. Since the 301 XFH stainless steel was available only in sheet form, flat tensile specimens 0.040 inch thick were used for this material (fig. 2).

The reduced section of each specimen was tapered slightly toward the center (by about 0.003 inch on the diameter or width) in an attempt to prevent the occurrence of fractures outside the gage length markings. A tolerance of ± 0.1 inch was placed on the axial location of the minimum diameter. Very short and shallow gage length marks were put on each specimen using a carbide scribe and a guide. Measuring reference points were indicated with short marks applied normal to and across the gage marks. The tolerance on coaxiality of thread axis and reduced section axis was set at 0.0002 inch. This close tolerance was provided to reduce the effects of eccentricity which would be accentuated by the smallness of the specimens.

The impact specimen designs were standard Charpy U, Charpy V, and subsize ($\frac{1}{2}$) Charpy V (fig. 2). Subsize specimens were used for materials which exhibited an impact strength greater than 110 foot-pounds or which did not completely fracture during preliminary tests with standard size specimens. The notch contour of the specimens was checked using an optical comparator. The tolerances of the notch radius, specimen width, and specimen thickness from the bottom of the notch to the opposite side were ± 0.001 inch.

It was necessary to heat treat some of the materials (A286, 17–4PH, 17–7PH, 1075, Unimach #1) before specimen manufacture. The data spread which occurred in some of these materials can probably be attributed to variations in microstructure that were found to exist. The condition of each material is recorded in table I.

Experimental Procedure

The extensioneter was mounted on the specimen, and the specimen placed in the cryostat. Parts of the cryostat were then installed in their respective locations, all electrical and mechanical connections were made and checked, and the cryostat was filled with refrigerant if a low temperature run was to be made. In using liquid hydrogen, suitable safety precautions were observed [3]. With solid CO₂-ethyl alcohol mixtures, the temperature was checked with a liquid-in-glass thermometer. Nearly all tensile tests were run with a crosshead velocity of 0.02 inch per minute. Exceptions to this are indicated.

After fracture, the broken specimen was assembled in a holder, and the final gage length was determined with the measuring microscope. An average was taken of two traverses made in opposite directions. Final diameter determinations were made by using another fixture and the precision hand micrometer. Because necking occurred in most materials, $\frac{1}{16}$ inch diameter wires were placed between the specimen and the micrometer spindle and anvil to obtain a reliable reduced-diameter measurement.

The extensioneters were calibrated periodically at all test temperatures to ensure accuracy of strain measurement recording. Also they were always calibrated after replacing component parts such as beams and strain gages. For the commercial extensioneter it was often necessary to sharpen the knife edges; this change had little effect on the calibration of the extensioneter.

The impact tests were conducted with the aid of a combination specimen aliner and holder which could be inserted while containing the specimen into a refrigerant bath and cooled down to the test temperature. This cool down took place quite rapidly, but extra time at temperature was allowed before removing the specimen from the bath. The transfer from the bath to the impact machine was made within 3 seconds. As the holding fixture was withdrawn it positioned the specimen properly in the supports. Immediately thereafter the hammer was allowed to drop. The liquid hydrogen tests on the subsize Charpy V specimens were performed in the same manner except that the tests were conducted outdoors for reasons of safety. Paper boats were glued to these specimens prior to the tests for the purpose of retaining the liquid hydrogen around the specimen until fracture. Without the paper boats the temperature rise of the specimens prior to fracture would have been about 30 degrees K.

Reduction of Data

The tensile strength values were computed by dividing the maximum load sustained by the specimen by its initial minimum cross-sectional area. All yield-strength values were obtained by using the 0.2 percent offset method. In a few instances where the initial portion of the stressstrain curve was distorted due to back lash in the recording system, an accurate value of the modulus of elasticity, when known for the particular material at the particular temperature, was used in conjuction with the extension to locate the 0.2 percent offset point on the curve. The yield strength values were computed by dividing the yield load by the initial minimum cross-sectional area. The stress-strain curves in figures 3 to 30 were derived from the continuously recorded load versus strain and crosshead extension plots and were adjusted to the average values of yield strength, tensile strength, and elongation.

The percent elongation values are based on a 4D gage length. The one exception to this is the 301 XFH stainless steel for which a 1-inch gage length was used.

For high elongation materials it was often necessary to switch to a crosshead movement measurement system before fracture occurred, due to the limited travel of the extensioneters. The effective gage length was somewhat indefinite for this portion of the stress-strain curve. For this reason some of the tabulated elongations do not agree exactly with those that might be calculated from the stress-strain diagrams. The latter should be given no weight.

Careful consideration was given to data accuracy. Stress data are reported to 4 place accuracy and elongation and reduction of area data are reported to 3 places. When experimental results occurred which could be attributed to a variation in experimental procedure (such as fracturing on the gage length marking) the results were not reported. The authors conclude that the reason for the data spread is specimen material inconsistency, not experimental technique.

The averages of the impact energies in some cases include both "high drop" and "low drop" readings. However the results are not indexed as to height of drop inasmuch as no significant effect due to this variable was found. In cases where a large spread in the impact data exists, this can again be partially attributed to variations of microstructure. Where fracture was incomplete the percent fracture reported in the impact results is an approximate figure based on visual estimation of the fracture surfaces of the specimens which had been tested. The energy absorbed values are reported to the nearest 0.5 foot-pound of energy in tables II–VIII.

Results

The results of the tests performed on individual specimens are reported and averaged in tables II-VIII. The material condition and tensile specimen configuration (with reference to fig. 2) are noted in the "Material" column.

Figures 3 through 30 show typical stress-strain curves, the temperature dependences of the average tensile properties, and the average values of impact energy absorbed for each material. Chemical composition, condition, grain size, and roomtemperature hardness for each material are listed in table I.

The authors acknowledge the assistance of the following who contributed to the experimental program: R. P. Mikesell, R. M. McClintock, T. F. Durham, C. J. Guntner, R. L. Greeson, G. W. Pickering, F. M. Reames, H. P. Gibbons, and many others. Of particular help in preparation of this Monograph was Mrs. C. J. Dallman, who did the typing.

References

- R. M. McClintock and K. A. Warren, Tensile cryostat for the temperature range 4 to 300 °K, Materials Research and Standards, ASTM Bulletin, V. 1, 82, p. 95-98 (1961).
- [2] R. P. Reed, A cryostat for tensile tests in the temperature range 300 to 4 °K, Advances in Cryogenic Engineering, V. 7, paper K-3, p. 448-454, (Plenum Press, 1961).
- [3] D. Chelton, Safety in the use of liquid hydrogen, The Technology and Use of Liquid Hydrogen, Editors W. H. Denton, R. B. Scott, and C. M. Nicholls (Pergamon Press, London, to be published).

Materials	Form	Condition	U	Ti	Mn	Si	Ni	Cr	mical C Fe	ompos Mg	ition (C <u>u</u>	per we Zn	ight) Co	M	Others	Hard- ness	ASTM Grain Size
Aluminum Alloy	'S																
TENS-50	Specimen	Sand cæst, T6 *		. 2		8.2			. 2	.4		-			Be 1	R _B 60	
356	3/4" bar	Chill cast, T6 *		. 1		ó. 9			. 2	. 2	. 1					R_B^{41}	
1100	3/4" bar	* 0				. 1			. 6		. 2					R _H 53	3.5
2020	3/4" bar	T6 *			.5	.1			.1		4.3				Li-1.1 Cd2	R_B^{-91}	2
2024	3/4" bar	T86 *			.5	.1			. 2	1.4	4.1	.1				R _B 83	8
6061	3/4" bar	T6 *		. 2	. 2	. 6		. 3	. 7	1.0	.3	. 3				R _B 51	5
7075	3/4" bar	T6 *		. 2	.3	.5		. 3	. 7	2.5	1.6	5.6				в _В 90	7
Cobalt Alloys)	
Elgiloy	3/8" bar	Cold reduced 45%	.15		2.0		15.0	20.0	16.0				10.0		Mo-7.0	R_{C}^{46}	4
Stellite 3	3/4" bar	Sand cast	2.45				3.0	30.5	3.0					12.5		R _C 55	
Stellite 25	3/4" bar	Cold reduced 26%	.07		1.6	. 6	10.0	20.2	2.4					15.2	P01	$^{\rm R}_{\rm C}^{\rm 41}$	2
Copper Alloys															S01	1	
Berylco 25	3/4" bar	Annealed *				.1			.1				. 2		Be-1.8 A <i>f</i> 1	R _B 55	6
Berylco 25	3/4" bar	Hard *				.1			.1				.2		Be-1.8 A <i>t</i> 1	R _B 95	9.5
70/30 Brass	3/4" bar	3/4 Hard *								7	0.3 2	9.6				R _B 88	8.5
OFHC Copper	3/4" bar	"Soft" Annealed *						Copper	and Silv	rer = 9	9.99					R _H 86	5
		the second secon															

TABLE I. IDENTIFICATION OF THE MATERIALS.

Material	Form	ج Condition	υ	Ч	s	Chemic Ni	al Com Cr N	positic Ao N	on (per o An Si	cent) A <i>l</i>	Cu	Others	Hard- ness	ASTM Grain Size
Iron Alloys Invar 36	3/4" bar	12-15% cold drawn	. 08	. 01	. 01	36.0			8. 4.			Se 2	R., 95	7
NiSpan "C"	3/4" bar	Age hardened 1200°F - 5 hrs., AC, tempered	. 03		.01	42.7	5.1		, 2		.1	Ti-2.5	RC ³⁵	œ
Unimach #1 (Vascojet 1000)	3/4" bar	Heat treated 1850°F - 1 hr., AC, Double tempered 1025°F - 3/4 hr.**	.41	.02	.01		4.9 1	4	. 3.9			V4	R 52 tensile, R 56	ى ئى
17-4PH	3/4" bar	H 1100 **	.03	.02	.01	4.3 1	6. Q		.2.5		3.6	Cb 2	RC ³⁸	8
17-7PH	3/4" bar	TH 1050 **	.07	.02	.01	7.4 1	7.2		.7.4	1.2			$^{R}C^{42}$	7
A-286	3/4" bar	Solution treated 1800°F - 1-1/2 hrs., AC, Aged 1350°F - 16 hrs., AC **	.04	.01	.01	25.4 l	4.8 1	.2 1	.4.6	.2		Ti-2.1 V3	$^{R}C^{30}$	7
301	.039" sheet	Extra full hard	60.	.02	.01	6.8 1	7.6	. 2	. 7 . 4		.1			
302	3/4" bar	Cold drawn to 125,000 psi. *	.08	.02	.01	8.7 1	8.6		. 6 6				$^{R}C^{31}$	4
303	3/4" bar	Annealed *	.10	.03	.29	8.7.1	7.6	.4 1	.2.6		.4		R_R^{95}	7
304L	3/4" bar	Annealed *	.02	.02	.01	9.7 1	8.4	1	.4.6				к _в 94	3
310	3/4" bar	Annealed *	. 08	.02	.02	20.8 2	4.8	.1	.7.7.		.1		г В в 79	2
321	3/4" bar	Annealed *	.06	.02	.02	9.8 1	7.9	.2 1	.4.6		. 3	Ti4	R _R 97	9
347	3/4" bar	Annealed *	.06	.02	.02	10.3 1	8.0	.2 1	.5.6		. 2	Cb9	г В 195	6
410	3/4" bar	Heat treated 1800°F - 1 hr., OQ, tempered 700°F - 4 hrs., AC	.12	.02	.01	1	2.2		. 5 . 2				R_C ⁴²	4
416	3/4" bar	Heat treated 1800°F - 1 hr., OQ, tempered 700°F - 4 hrs., AC	.13	.02	. 22	1	2.6	4.	.5.6				$^{R}_{C}$ ⁴¹	6
440C	3/4" bar	Heat treated 1875°F - 1/2 hr., OQ, Double tempered 1000°F - 6 hrs. and 1050°F - 6 hrs.	1,08	.02	.01	1	7.3	. 6	. 5				R _C ⁴⁰	Ŷ
1075	3/4" hex. bar	Heat treated 1450°F - 1 hr., OQ, tempered 720°F - 1 hr., AC	.80						. 30 . 15	10			$^{R}C^{43}$	6
2800 (9% Ni)	3/4" bar	Double normalized 1650°F and 1450°F, tempered 1050°F - 2 hrs.	.09	.02	.02	8.8	. 2		. 71 .1				$^{R}c^{29}$	6
4340	3/4" bar	Cold drawn and annealed *	.39	.02	.02	1.8	8.	• 3	.7 .3				R _C ³²	x

TABLE I. IDENTIFICATION OF THE MATERIALS (Continued)

- ----

5

el Allive $3/4^{\circ}$ bar 20% Cold drawn * 0.4 1.2 $1.5.7$ 7.3 $.01$ eel $3/4^{\circ}$ bar 20% Cold drawn * $.05$ $.01$ $.2$ $1.5.4$ $.2$ 7.0 2.5 eel "XY" $3/4^{\circ}$ bar Hot rolled, direct aged $1300^{\circ}F - 1$ hrs., 3 $.05$ $.01$ $.3$ $.6$ 15.4 $.9$ 7.0 2.5 Monel $3/4^{\circ}$ bar Age hardened $100^{\circ}F - 1$ hrs., 0.3 $.4.1$ $.7$ $.2.9$ 1.2 $.2.9$ $2.7.7$ Monel $3/4^{\circ}$ bar Moneled $1725^{\circ}F - 1/2$ hr., 0.0 $.01$ $.2$ $.14$ $.18$ $.14$ $.13$ $.27.7$ $.556$ $.24^{\circ}$ bar Moneled $1725^{\circ}F - 1/2$ hr., 0.0 $.01$ $.2$ $.18$ $.12$ $.12$ $.27.7$ $.556$ $.256$ $.26$ $.01$ $.27$ $.28$ $.216^{\circ}$ $.29^{\circ}$ $.27.7$ $.556$ $.27^{\circ}$ $.28^{\circ}$ $.28^{\circ}$ $.28^{\circ}$ $.28^{\circ}$ $.28^{\circ}$ $.28^{\circ}$ $.28^{\circ}$ $.28^{\circ}$ $.28^{\circ}$	erial	Form	Condition	U	S	Si	Cher Mn	nical Co Cr	mposi A <i>l</i>	tion (p Fe	er cent Ti	Cu	н,	Others	Hard- ness	ASTM Grain Size
3/4 bar $20%$ Cold drawn * 04 01 2 5.5 7.3 01 X'' $3/4'$ bar Hotrolled, direct aged 1300°F - 05 01 3 5 15.4 20 2.5 3.6 1 $3/4''$ bar Age bardened 1100°F - 21 hrs., 15 01 3 41 7 2 1 2 2 1 2 2 10 20	loys				{											
X'' $3/4$ '' bar Hot rolled, direct aged $130^{\circ} F - 1$ $.05$ $.01$ $.3$ $.6$ 1.5 $.0$ 2.5 a) $3/4$ '' bar Hot rolled, direct aged $130^{\circ} F - 1$ hr., $.13$ $.01$ $.3$ $.4$ $.2$ $.12$ $.$		3/4" bar	20% Cold drawn *	.04	.01	. 2	. 2	15.5		7.3		.01			R _C ²⁷	6
1 34^{41} bar Age hardened 1100°F - 21 hr., in the state is a state in the state in	×	3/4" bar	Hot rolled, direct aged 1300°F - 20 hrs., AC, tempered	05	.01	б.	. 6	15.4	6.	7.0	2.5			Cb7	${}^{R}C^{39}$	7
1 Rough Cast Cast, annealed 1600* - 1 hr., OQ -1 -1 -7 1.8 27.7 2 Specimen 1300° F - 1/2 hr., OQ .00 .01 .3 .1<	el	3/4" bar	Age hardened 1100°F -21 hrs., 1000°F - 8 hrs.,AC	.15	.01	÷.	.4		2.9	1.2	°.	30.9			$^{R}C^{35}$	2
ed $3/4"$ bar Annealed $1725^{\circ}F - 1/2$ hrs., $.06$ $.01$ $.3$ $.1$ $3/4"$ bar Solution treated $1975^{\circ}F - 4$ hrs., $.09$ $.01$ $.2$ 18.8 1.4 1.3 3.2 $3/4"$ bar Solution treated $1975^{\circ}F - 4$ hrs., $.09$ $.01$ $.2$ 18.8 1.4 1.3 3.2 $3/4"$ bar Annealed $*$ $.07$ $.07$ $.25$ $.2$ $.02$ 7.3 $3/4"$ bar Solution treated $*$ $.07$ $.01$ $.2$ $.02$ $.01$ 7.3 $3/4"$ bar Solution treated $*$ $.03$ $.02$ $.02$ $.02$ 7.3 $3/4"$ bar Solution treated $*$ $.01$ $.55$ $.2$ $.01$ $.01$ $.03$ $.01$ $.02$ $.02$ $.02$ $.01$ 7.3 $.34"$ bar $.01$ $.02$ $.02$ $.01$ $.01$ $.01$ $.01$ $.01$ $.02$ $.02$ $.01$ $.01$ $.01$ $.02$	6	Rough Cast Specimen Configuration	Cast, annealed 1600°F -1 hr., 1300°F -1/2 hr., OQ	.03		4,1	. 7			1.8		27.7			$^{R}C^{25}$	
$ \frac{3/4" \text{ bar}}{\text{wQ}} \frac{3/4" \text{ bar}}{\text{wQ}} \frac{5/4" \text{ bar}}{\text{wQ}} \frac{5/4" \text{ bar}}{\text{wQ}} \frac{5/4" \text{ bar}}{\text{wQ}} \frac{5/4" \text{ bar}}{\text{bar}} \frac{1.4}{3.4} \frac{1.3}{3.2} \frac{3.2}{3.2} \frac{1.4}{3.4} \frac{1.3}{3.2} \frac{3.2}{3.2} \frac{1.4}{3.4} \frac{1.3}{3.4} \frac{3.2}{3.2} \frac{1.4}{3.4} \frac{1.3}{3.4} \frac{3.2}{3.2} \frac{1.4}{3.4} \frac{1.3}{3.4} \frac{1.3}{3.4} \frac{1.4}{3.4} \frac{1.3}{3.4} \frac{1.4}{3.4} \frac{1.3}{3.4} \frac{1.4}{3.4} \frac{1.4}{3.4} \frac{1.4}{3.4} \frac{1.3}{3.4} \frac{1.4}{3.4} \frac{1.4}{$	el	3/4" bar	Annealed 1725°F - $1/2$ hr.	.06	.01		۶.			. 1					R_B^{70}	2
111 $3/4^{11}$ bar Annealed * $.07$ 5.5 $.2$ $.02$ 17 $3/4^{11}$ bar Solution treated * $.03$ 10.8 3.0 $.2$ $.01$ $CA)$ $3/4^{11}$ bar Solution treated * $.03$ 10.8 3.0 $.2$ $.01$ $V)$ $3/4^{11}$ bar Annealed * $.01$ 6.2 $.1$ $.01$ $V)$ Specimen Sintered * 9.2 2.5 2.5 41.0 0 Specimen Sintered * 9.2 2.5 2.5 41.0 0 Specimen Sintered $*$ 9.2 2.5 2.5 41.0 0 Specimen Sintered $*$ 9.2 2.5 2.5 41.0	3110114	3/4" bar	Solution treated 1975°F - 4 hrs., WQ	60.	.01	. 2		18.8	1.4	1.3	3.2			Mo-9.7 Co-10.5	$^{R}C^{39}$	œ
r-3Al 3/4" bar Solution treated * .03 .0.8 3.0 .2 .01 CA) 3/4" bar Annealed * .01 6.2 .1 .01 .V) 3/4" bar Annealed * .01 6.2 .1 .01 .V) Specimen Sintered * .01 6.2 .1 .01 .V) Specimen Sintered * 9.2 2.5 2.5 41.0 .0 Specimen Sintered * 9.2 13% Cobalt, Balance Tungsten Carbide .01	Sn, T)	3/4" bar	Annealed *	.07					5.5	. 2			.02	Sn-2.5	$^{R}C^{35}$	
3/4" bar Annealed * .01 6.2 .1 .01 . Specimen Sintered * 9.2 2.5 2.5 41.0 10 Specimen Sintered * 13% Cobalt, Balance Tungsten Carbide	r-3Al CA)	3/4" bar	Solution treated *	.03				10,8	3.0	• 2			.01	N202 V-13.5	$^{R}c^{34}$	
- Specimen Sintered * 9.2 2.5 2.5 41.0 10 Specimen Sintered * 13% Cobalt, Balance Tungsten Carbide	(A	3/4" bar	Annealed *	.01					6.2	Γ.			. 01	V-4.0 N201	RC ³⁶	7, 5
10) Specimen Sintered * 13% Cobalt, Balance Tungsten Carbide		Specimen	Sintered *	9.2				2.5	2.5		41.0			Mo-3.0 Cb-7.5 Ni-32.0	R C ⁶⁰	
	10)	Specimen	Sintered *		13	3% Cob	alt, Bala	ance Tun	ıgsten	Carbic	le				R _C ⁷²	

TABLE 1. IDENTIFICATION OF THE MATERIALS (Continued)

* Reported condition represents standard mill heat treating procedure. General data regarding this procedure may be found in the company brochures. ** Heat treatment performed at NBS.

TABLE II ALUMINUM ALLOYS

TENSILE PROPERTIES

IMPACT PROPERTIES

MATERIAL	Test Temp	Crosshead Velocity	Tensile Strength	Yield Strength (0.2% offset)	Elongation	Reduction of Area	Energy Absorbed	Charpy Geometry	Fracture Area
	°K	in/min	psi	psi	% in 4D	%	ft-lb		%
***		0.01	44,200				2.5		
		0.01	41,100	31,500	4.3	8.7	2.5		
	Room	0.01	40,400	32,200	3.3	9.8	2.5		
		0.01	39,300	32,200		9.7			
		0.01	42,500	33,200	5.5	9.7			
		0.01	42,400	33,000					
	<u></u>	avg	41,600	32,400	4.4	9.4	2.5	V	100
		0.01	43,000	35,400	3.4	5.9	2.5		
		0.01	43,100		3.9	8.8	2.5		
	195	0.01	47,200	37,800	4.8	10.8	2.5		
TENS 50							2.5		
Sand Cast TV		avg	44,400	36,600	4.0	8.5	2.5	v	100
Sand Cast 10		0.01	55,400	38,300	6.2	9.1	2.0		
Specimen		0.01	52,100		3.6	6.9	1.0		
Type A		0.01	46.300	38.800	2 5	6.6	1.5		
1)po 11		0.01	53, 400	50,000		3.6	1.5		
	76	0.01	47 600	39 400		9.5	1.5		
	10	0.01	45,000	38 300	1.4	3.0	1.5		
		0.01	51 000	50,500	3 1	17			
		0.01	50,200	35 700	2.4	7 1			
		0.01	51,300		2.4	6.7			
		avg	50,300	38,100	3.1	6.4	1.5	v	100
		0.01	55 900	43 600	2 6	4.4			
	20	0.01	57,000	44,600	3.0	5.1			
		avg	56,400	44,100	2.8	4.8			
······									
		0.02	40,500	28,700	10.7	11.8	2.0		
	Room	0.02	36,500	23,300	12.0	13.6	2.0		
		0.02	36,100	22,700	15.8	18.4	2.0		
		avg	37,700	24,900	12.8	14.6	2.0	V	100
		0.02	39,300		12.3	12.5	2.0		
		0.02	38,200	24,700			3.5		
	195	0.02	38,300	24,800	11.7	13.4	2.5		
							2.0		
25/							2.0		
350		avg	38,600	24,800	12.0	13.0	2.5	v	100
Cast T6		0.02	48 800	28 400	11.1	11.6	2.5		
Specimen		0.02	48 600	25,800		12 3	2.5		
Turne	76	0.02	40,000	27,100	10.0	9.6	1.5		
Type A	(0	0.02	47,000	27,100	10.0	7.0	2.5		
		avg	48,100	27,100	10.6	11.2	2.5	V	100
		0.02	60,700	35,600	7.2	6.9			
	20	0.02	60,400	33,200	10.9	11.2			
			60 600	34 400	9.0	9.0			
		avg	00,000	54,400	/.0	7.0			

ĩ

 TABLE II
 ALUMINUM ALLOYS (Continued)

			TEI	SILE PROPE	RTIES		IMPAC	T PROPER	TIES
MATERIAL	Test Temp	Crosshead Velocity	Tensile Strength	Yield Strength (0.2% offset)	Elongation	Reduction of Area	Energy Absorbed	Charpy Geometry	Fracture Area
	۴K	in/min	ps1	psi	% IN 4D	70	11-15		-70
	Room	0.02 0.02 0.02	13,500 13.400 13,500	7,400 6,900 6,500	46.8 44.1 46.7	88.8 86.8 89.7	23.0 22.5 23.0		
		avg	13,500	6,900	45.9	88.4	23.0	1/2 V	50
	105	0.02	16,100	7,300	47.4	85.6	27.5		
	195	0.02	16,900	7,100	52.5	85. 7	29.0		
1100		avg	16, 500	7,200	50.0	85.6	28.0	1/2 V	50
0		0.02	27.800		55.8	81.6	35.5		
	76	0.02	27,900	9,100	57.0	82.2	36.5		
Specimen		0.02	27,300	8,900		79.7	33.5		
Туре д		avg	27,700	9,000	56.4	81.2	35.0	1/2 V	50
		0.02	47,400	9,600	52,6	57.8	33.5		
	20	0.02	47,700	9,300	55.7	62.1	31.5 30,0		
		avg	47,600	9,400	54.2	60.0	31.5	1/2 V	75
		0.02	83,400	74,900	9.9	16.4	1.5		
	Room	0.02	82,600	74,100	9.8	16.6	1.5		
		0.02	82,000	73,400	10.4	16.8	1.5		
		avg	82,700	74,100	10.0	16.6	1,5	v	100
		0.02	89,400	78,100	6.9	8.8	1.5		
	195	0.02	90,200	79,600	6.5	7.5	1.5		
2020			N /-				1.5		
2020 T6 Specimen Type A		avg	89,800	78,800	6.7	8.2	1.5	v	100
2020 T6 Specimen Type A		0.02	99,300	86,800	5.3	6.2	1.5		
2020 T6 Specimen Type A	76	0.02	99,400	87,300	5.2	6.6	1.5		
		avg	99,400	87,000	5.2	6.4	1.5	v	100
		0.02	110.300	93,300	7.3	9.0			
	20	0.02	108,600	92,400	7.9	10.2			
		avg	109,400	92,800	7.6	9.6			
		0.02	74,300		9.9	25.7	3.5		
	Room	0.02	73,900	71,600	9.4	26.5	3.0		
		0.02	74,300	71,500	9.5	26.8	3.5		
		0.02 avg	74 200	71 600	9.5	26.6	3.5	v	100
		0.02	79,900	76, 500	9.6	24.1	3.0		
	195	0.02	80,100	78,100	9.1	22.J	3.0		
2024	- / -						3.0		
		avg	80,000	76,300	9.4	23.2	3,0	v	100
Т86		0.02	91.100	85,500	10.8	20.8	3.5		
Specimen Type A	76	0.02	92,400	85,700	10.6	21.9	3.5 3.5		
		avg	91,800	85,600	10.7	21.4	3.5	v	100
		0.02	104 400	93 000	14 6	25.8			
	20	0.02	105, 400	93,300	15.6	23.1			
		avø	104.900	93.200	15.1	24.4			

TABLE II

ALUMINUM ALLOYS (Continued)

TENSILE PROPERTIES

IMPACT	PROPERTIES	
--------	------------	--

MATERIAL	Test Temp	Crosshead Velocity	Tensile Strength	Yield Strength (0.2% offset)	Elongation	Reduction of Area	Energy Absorbed	Charpy Geometry	Fracture Area
	°K	in/min	psi	psi	% in 4D	%	ft-lb		%
	Room	0.02 0.02	44,600 44,200	39,300 39,200	18.5 17.7	56.3 55.7	16.0 16.0		
		avg	44,400	39,200	18.1	56.0	16.0	V	100
	195	0.02 0.02	48,600 48,600	42,100 42,100	19.4 19.8	54.2 54.0	16.0 16.0		
6061							16.0		
т6		avg	48,600	42,100	19.6	54.1	16.0	v	100
Specimen Type A	76	0.02	59,900 59,700	47,900 47,700	24.7 24.2	51.4 51.0	16.5 16.0 16.0 17.0 16.5		
		avg	59,800	47,800	24.4	51.2	16.5	v	100
	20	0.02	75,400 76,000	51,700 51,900	29.4 30.2	45.8 43.4			
		avg	75,800	51,800	29.8	44.6			
	Room	0.02 0.02 0.02 .	80,600 82,100 81,800	72,100 73,900	15.3 15.2 15.3	35.8 34.6 34.3			
		avg	81,500	73,000	15, 3	34.9			
	195	0.02 0 02	87,200 87,800	79,000 78,900	14.4 13.9	27.7 27.2			
7075		avg	87, 500	79,000	14.2	27.4			
T6 Specimen	76	0.02 0.02	99,700 99,400	89, 700 89, 300	14.2 14.9	24.2 24.6			
Туре А		avg	99,600	89,500	14.6	24.4			
	20	0.02 0.02	115,000 115,700	97,900 101,400	15.2 15.0	21.3 21.4			
		avg	115,400	99,600	15.1	21.4			

9

TABLE III COBALT ALLOYS

TENSILE PROPERTIES

IMPACT PROPERTIES

MATERIAL	Test Temp	Crosshead Velocity	Tensile Strength	Yield Strength (0.2% offset)	Elongation	Reduction of Area	Energy Absorbed	Charpy Geometry	Fracture Area
	°K	in/min	psi	psi	% in 4D	%	ft-lb		%
	Room	0.02 0.02	245,700 251,000	209,200 210,000	12.0 10.4	47.2 45.7			
		avg	248,400	209,600	11.2	46.4			
	195	0.02 0.02	271,400 271,700	2 1 0,800 213,500	11.7 13.2	44.6 44.1			
ELGILOY		avg	271,600	212,200	12.4	44.4			
Cold reduced 45%	76	0.02 0.02	321,700 326,000	251,500 255,600	14.7 14.5	32.8 34.7			
Specimen		avg	323,800	253,600	14.6	33.8			
Туре С	20	0.02 0.02	362,300 361,300	284,000 278,900	6.4 7.0	32.3 30.4			
		avg	361,800	281,400	6.7	31.4			
	Room						0.5 1.0 1.0 0.5 1.0		
		avg		<u></u>			1.0	v	100
STELLITE 3	195						0.5 0.5 0.5		
		avg					0.5	v	100
	76						0.5 0.5 0.5		
		avg					0.5	v	100
STELLITE 25	Room						35.0 38.0 37.0		
		avg					36.5	U	100
26%	195						31.5 33.0 3 3. 0		
		avg					32.5	U	100
	76						22.5 25.0 23.0		
		avg					23.5	U	100

TABLE IV COPPER ALLOYS

			TEI	SILE PROPER	RTIES		IMPAC	T PROPER	TIES
MATERIAL		Energy Absorbed	Charpy Geometry	Fracture Area					
	°K	in/min	psi	psi	TIES IMPACT PROPERTIE Elongation Reduction of Area Energy Absorbed Charpy Geometry Fragge $\frac{7}{6}$ in 4D $\frac{7}{6}$ ft-lb 62.4 79.7 102.0 62.9 79.4 101.5 103.5 62.6 79.6 102.5 U 68.9 77.6 90.5 103.0 103.5 97.5 69.0 80.5 103.0 103.5 97.5 69.0 79.0 98.5 U 72.8 75.7 83.5 66.5 66.7 69.9 86.5 90.0 69.8 72.8 86.5 U 69.9 71.0 68.5 0 69.0 69.8 37.5 10 19.6 68.0 37.5 0 19.2 68.0 37.5 U 23.7 69.6 39.5 0 22.9 69.8 40.0 U 31.5 66.1 34.0 35.0 31.0 66.0 34.5 U	%			
	Room	0.02 0.02	Interval Yield Elongation Reduction of Area IMPACT PROPERTIES id Tensile Yield Elongation Reduction of Area Energy Charpy Fr psi psi % in 4D % ft-lb Absorbed Geometry A 69,200 26,900 62.4 79.7 102.0 101.5 103.5 69,900 27,400 62.6 79.6 102.5 U U 74,700 34,500 68.9 77.6 90.5 103.0 103.5 97.5 74,900 34,700 69.0 79.0 98.5 U 98.90 99.00 90.0 99.00 99.00 99.00 99.00 99.00 99.00 90.0 90.0 90.0 </td <td></td>						
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	U	50						
BERYLCO 25	195	0.02 0.02	74,700 75,100	34,500 34,900	68.9 69.0	77.6 80.5	90.5 103.0 103.5 97.5		
DERTECC IV		avg	74,900	34,700	69.0	79.0	98.5	U	50
Annealed Specimen Type A	76	0.02 0.02	i Tensile Yield Strength Elongation of Area Energy (0.2% offset) Charpy for Area Energy Absorbed Charpy Geometry Area psi psi $\%$ in 4D $\%$ ft-lb 9 69,200 26,900 62.4 79.7 102.0 103.5 69,900 27,400 62.6 79.6 102.5 U 74,700 34,500 68.9 77.6 90.5 103.0 75,100 34,900 69.0 79.0 98.5 U 98,900 49,700 72.8 75.7 83.5 90.0 99,200 49,200 66.7 69.9 90.5 103.0 117,900 58,500 69.9 71.0 86.5 U 117,200 58,200 69.0 69.8 37.5 39.0 101,800 96,100 19.6 68.0 37.5 39.0 101,800 96,700 19.2 68.0 37.5 39.0 101,800 96,00 19.2 68.0 37.5 39.0 101,800 96,700						
		avg	99,000	49,400	69.8	72.8	IMPACT PROPERT Impact of Property Absorbed Geometry ft-lb 102.0 101.5 103.5 102.5 U 90.5 103.0 103.5 97.5 98.5 U 83.5 86.5 90.0 86.5 90.0 86.5 37.5 36.5 39.0 37.5 39.5 42.0 38.0 40.0 40.0 U 34.0 35.0 35.0 34.5	75	
	20	0.02 0.02 avg	117,900 116,600 117.200	58,500 57,800 58,200	69.9 68.1 69.0	71.0 68.5 69.8		Frgy Charpy D 22.0 Geometry 1.5 1.5 3.5 1.5 12.5 U 1.5 13.5 1.5 1.5 13.5 1.5 1.5 13.5 1.5 1.5 13.5 1.5 1.5 13.5 1.5 1.5 13.5 1.5 1.5 13.5 1.5 1.5 13.5 1.5 1.5 13.5 1.5 1.5 13.5 1.5 1.5 13.5 1.5 1.5 13.5 1.5 1.5 13.5 1.5 1.5 13.5 1.5 1.5 13.5 1.5 1.5 13.7.5 1.5 1.5 13.7.5 1.5 1.5 13.7.5 1.5 1.5 13.7.5 1.5 1.5 13.7.5 1.5 1.5 13.7.5 1.5 1.5 13.7.5 1.5 1.5	
BERYLCO 25	Room	0. 02 0. 02	101,800 101,700	96,100 97,200	19.6 18.8	68.0 68.0	37.5 36.5 39.0		75
Hard Specimen	195	0.02	107,700 109,200	99,200 101,000	23.7	69.6 70.1	39.5 42.0 38.0		
Type A		avg	108,400	100,100	22.9	69.8	40.0	U	75
	76	0.02 0.02	131,000 132,800	120, 300 117, 200	31.5 30.5	66. 1 65. 8	34.0 35.0 35.0		
		avg	131,900	118,800	31.0	66.0	34.5	U	100
	20	0.02 0.02	153,700 153,800	117,900 120,200	31.4 31.4	60.0 60.0			
		avg	153,800	119,000	31.4	60.0			

TABLE IV COPPER ALLOYS (Continued)

TENSILE PROPERTIES

IMPACT PROPERTIES

MATERIAL	Test Temp °K	Crosshead Velocity in/min	Tensile Strength psi	Yield Strength (0.2% offset) psi	Elongation % in 4D	Reduction of Area %	Energy Absorbed ft-lb	Charpy Geometry	Fracture Area %
	Room	0.02 0.02 0.02 0.05	96,100 95,100 94,900 94,600	66, 400 57, 300 58, 900 	14. 2 14. 2 14. 2 	58.3 58.2 58.4 	14.0 14.0 15.5 18.0	Y	100
20 /20 PP 4 55	195	0.02 0.02 0.02 0.02 0.02 0.02	100,700 100,800 100,700 100,500 101,400	60,400 68,500 63,500 64,100 65,100	16.6 16.8 18.2 17.9 17.2	62. 8 61. 6 63. 3 61. 2 62. 4	15.5 15.5 16.0	•	100
70/30 BRASS		avg	100,800	64,300	17.3	62.3	15.5	v	100
3/4 Hard Specimen Type A	76	0.02 0.02	118,500 115,400	70,400 66,800	27.6 29.1	63.0 63.8	15.0 14.5 18.5 15.5 14.0		
		avg	117,000	68,600	28.4	63.4	15.5	v	100
	20	0.02 0.02	133,200 131,800	74,200 72,600	32.4 32.1	58.5 58.0			
		avg	132,500	73,400	32.2	58.2			
	Room	0.02 0.02 0.2 0.2 0.2 0.2 avg	31,800 31,900 32,500 32,500 32,500 32,200	10,700 10,800 10,500 10,600 12,000 10,900	54. 2 53. 4 53. 8	85. 1 87. 7 85. 4 86. 5 86. 2	52.5 52.0 53.0 52.5	1/2 V	25
OFHC	195	0.02 0.02 0.2 0.2 0.2 0.2 avg.	38, 500 39, 200 39, 800 39, 400 38, 800 39, 100	10,300 9,200 14,600 11,100 12,700 11,600	53. 1 53. 3 53. 2	83. 8 84. 0 84. 3 85. 7 84. 5	57.0 56.5 57.5 57.0	1/2 V	25
Soft Specimen Type A	76	0.02 0.02 0.02 0.2 0.2 0.2 0.2	51,500 51,100 52,300 52,500 52,700 53,100	13,100 10,100 15,600 12,300 12,800	59.8 60.8 59.7	82.6 85.4 85.6 84.3 82.8	67.0 62.0 66.5		
		avg	52,200	12,800	60.1	84.1	65.5	1/2 V	25
	20	0.02 0.02 0.02 0.2 0.2	59,400 59,900 61,300 61,800 61,000	14,900 10,200 10,800 13,500 15,900	70.7 67.8 68.1	83. 4 83. 8 82. 6 82. 3	64.0 62.5 64.5		
		avg	60,700	13,100	68.9	83.0	63.5	1/2 V	25

TABLE V IRON ALLOYS

TENSILE PROPERTIES IMPACT PROPERTIES

MATERIAL	Test Temp	Crosshead Velocity	Tensile Strength	Yield Strength (0.2% offset)	Elongation	Reduction of Area	Energy Absorbed	Charpy Geometry	Fracture Area
	°K	in/min	psi	psi	% in 4D	%	ft-lb		%
	Room	0.01 0.01 0.01 0.01 0.05	93,600 94,400 93,900 93,200 95,400	90,100 91,500 91,900 89,900 92,100	21.5 19.5 21.5	61.6 62.4 62.1 61.1	27.5 28.5 25.5		
		avg	94,100	91,100	20.8	61.8	27.0	U	75
INVAR 36	195	0.01 0.01 0.01 0.01 0.02 0.02 0.02	111,900 115,100 115,400 113,600 114,500 115,200 116,300	104,400 105,200 105,000 106,800 105,000 104,500 106,600	27.6 27.9 28.4 27.9 32.0 	61.2 60.4 58.3 59.7 60.0 59.9	26.0 21.0 24.5 23.0 24.0	II	95
12-15% Cold drawn Specimen Type A		0.01 0.01 0.01 0.01 0.01	157,800 156,300 155,700 155,700	133,600 134,100 132,700	25.5	59.9 61.8 62.3 61.7	21.5 23.5 23.0 24.0 23.5		
		avg	156,400	133, 500	26.6	61.4	23.0	U	100
	20	0.02 0.01 0.05 0.02 avg 0.05	171, 300 170, 300 172, 500 174, 300 172, 100 172, 100	163,900 156,800 161,300 164,500 161,600 160,900	27.0 25.0 17.6 22.9 23.1 19.8	57.1 59.9 59.7 53.6 57.8 57.6 51.8			
		avg	177,800	160,900	19.8	51.8			
N	Room	0.02 0.02 0.02 avg	174,500 174,100 174,400 174,300	112,200 112,100 112,200	24.2 23.9 24.0	51.0 48.9 50.0	18.0 18.0 18.0 18.0	U	100
NiSpan ''C''	195	0.02 0.02 0.02	196,700 188,600 189,500	121,300 119,200 120,200	24.7 29.7 26.8	47.6 49.7 48.1	17.0 17.5 18.0		
Age hardened		avg	191,600	120,200	27.1	48.5	17.5	U	100
Specimen Type B	76	0.02 0.02 0.02 avg	222, 300 225,000 226,800 224,700	132,500 132,300 128,700 131,200	30.9 29.8 34.1 31.6	47.6 45.1 48.4 47.0	17.0 17.0 17.0 17.0	υ	100
	20	0.02	243,400 245,600	145,700 144,000	31.6 29.0	43.1 43.5			
		avg	244,500	144,900	30.3	43.3			

TABLE V IRON ALLOYS (Continued)

			TE	NSILE PROPE	RTIES IMPACT PROPER			TIES	
MATTRIAL.	Test Temp	Crosshead Velocity	Tensile Strength	Yield Strength (0.2% offset)	Elongation	Reduction of Area	Energy Absorbed	Charpy Geometry	Fracture Area
WINT DIGMD	°K	in/min	psi	psi	% in $4D$	%	ft-lb		%
	Room	0.02 0.02	299,000 300,900	236,100 239,500	10.3 10.0	38.1 37.2	8.0 8.0 8.0		
		avg	300,000	237,800	10.2	37.6	8.0	v	100
UNIMACH #1 (Vascojet 1000)	195	0.02 0.02 0.02 0.02	318,500 317,400 318,000 312,100	275,200 257,400 262,400	7.4 6.7 8.8 7.0	21.9 22.3 29.1 19.7	7.0 6.5 5.5 5.5 4.5		
Heat treated		avg	316,500	265,000	7.5	23.3	6.0	v	100
at 1850°F, 1025°F double temper	76	0.02 0.02 0.02	365,400 350,900 340,600	324,000 302,000 300,700	1.4 0.5 0.3	1.1 0 0	1.5 3.0 3.0 2.5		
Specimen Tupe B		avg	352,300	308,900	0.7	0.4	2.5	v	100
	20	0.02 0.02 avg	350,800 353,200 352,000	350,800 350,100 350,500	0.3	0 0			
	Room	0.02 0.02	187,800 183,700	179,500 176,600	15.4 15.8	56.3 59.4	64.0 47.0 50.5 61.0 46.5		
		avg	185,800	178,100	15.6	57.8	54.0	v	100
17-4 PH	195	0.02 0.02	213,300 213,300	206,600 206,200	15.0 14.6	55.6 54.9	14.5 16.5 15.0 14.0		
H 1100		avg	213,300	206,400	14.8	55.2	15.0	v	100
Specimen Type B	76	0.02 0.02 0.02	233,400 246,600 257,900	230,300 241,300 251,100	12.9 10.4 2.7	44.7 30.2 5.0	2.5 3.0 3.0		
		avg	246,000	240,900	8.7	26.6	3.0	V	100
	20	0.02 0.02 0.02	293,100 289,900	293,100	0.7 1.0 0.8	3.7 5.0 5.1			
		avg	291,500	290,100	0.8	4.6			

TABLE V

IRON ALLOYS (Continued)

			TE	NSILE PROPE		IMPACT PROPERTIES			
MATERIAL	Test Temp	Crosshead Velocity	Tensile Strength	Yield Strength (0.2% offset)	Elongation	Reduction of Area	Energy Absorbed	Charpy Geometry	Fracture Area
	°K	in/min	psi	psi	% in 4D	%	ft-lb		%
		0.02	97,900	62,800	55.7	80.4	48.5		
	Room	0.02	97,200	61,600	54.5	78.4	46.5		
		avg	97,600	62,200	55.1	79.4	49.0	1/2 V	100
		0.02	151,300	53,800	44.6	72.9	42.5		
	195	0.02	153,000	54,900 59,100	46.4 46.1	73,3 71,8	42.5		
321		avg	152,800	55,900	45.7	72.7	42.5	1/2 V	100
Annealed		0.02	229 400		37.8	62 9	30 0		
		0.02	220,700	64.600	38.2	58.0	34.0		
Specimen	76	0.02	219,800	66,200	37.1	53.3	34.5		
Туре В		0.02	221,700	46,400	38.6	65.6			
		avg	222,900	59,100	37.9	60.0	33.0	1/2 V	100
		0.02	267,400	58,300			27.0		
	20	0.02	271,700	58,600	34.7	43.6	35.5		
		avg	269,600	58,500	34.7	43.6	31.0	1/2 V	100
		0.02	103 300	64 000	55 3	76.8	52 0		
		0.02	104,200	62,800	55.4	75.5	59.5		
	Room						49.0		
							51.0		
		avg	103,800	63,400	55.4	76.2	53.0	1/2 V	100
		0.02	148,400	67,200	50.2	70.6	56.0		
	195	0.02	143,900	69,500	50.5	70.4	57.5		
347		0.02	149,100	69,700	49.9	70 1	58 5	1/2 W	100
Annealed		avg	147,100		50,2	70.1	50.5	1/2 V	
mineared		0.02		60,100			53.0		
Specimen	- /	0.02	217,400	62,500	41.7	60.0	56.0		
Туре В	76	0.02	218,400	60,500	41.7	57.5	54.5		
		ave	217,500	62,200	41.5	57.9	54.5	1/2 V	75
		0.00	2// 100		20.2	42.2	14.5		
	20	0.02	266,400	72,100	38.3	42.5	44.5		
	20	0.02	269,200	82,200	37.6	45.5	, 5		
		avg	268,100	76,400	38.0	45.3	44.5	1/2 V	75

TABLE V IRON ALLOYS (Continued)

			TE	NSILE PROPE		IMPACT PROPERTIES			
MATERIAL	Test Temp	Crosshead Velocity	Tensile Strength	Yield Strength (0.2% offset)	Elongation	Reduction of Area	Energy Absorbed	Charpy Geometry	Fracture Area
	°K	in/min	psi	psi	% in 4D	%	ft-lb		%
	Room						3.5 3.0 3.0		
		avg		_			3.0	v	100
440 C	195						1.0 2.0 2.0 2.0		
Heat treated		avg					2.0	V	100
at 1875°F; 1000°F, 1050°F double temper	76				-		1.0 1.0 1.0 1.0 1.0		
		avg					1.0	v	100
	Room	0.02 0.02 0.02	151,100 142,800 152,000	106,200 93,400 103,000	17.3 17.8	57. 2 59. 2	12.5 18.0 15.5 16.0 17.5		
		avg	148,600	100,900	17.6	58.2	16.0	v	100
Heat treated at 1450°F,	195	0.02 0.02 0.02	164,700 162,400 173,600	112,100 109,300 127,000	18.7 17.9	51.8 51.8 57.5	7.0 7.0		
720°F temper		avg	166,900	116,100	18.3	53.7	7.0	v	100
Specimen Type B	76	0.02 0.02 0.02 0.02	224,400 218,900 228,500 214,600	189,300 201,000 187,000	14.5 15.3 8.3	40.9 38.3 11.7 33.8	1.5 1.5		
		avg	221,600	192,400	12.7	31,2	1.5	v	100
	20	0.02 0.02	268,300 271,200	262,900	1.5 1.4	5.5 5.7			
		avg	269,800	262,900	1.4	5.6			

16

TABLE V

IRON ALLOYS (Continued)

			TE	NSILE PROPE		IMPACT PROPERTIES			
MATERIAL	Test Temp	Crosshead Velocity	Tensile Strength	Yield Strength (0.2% offset)	Elongation	Reduction of Area	Energy Absorbed	Charpy Geometry	Fracture Area
	°K	in/min	psi	psi	% in 4D	%	ft-lb		%
	Room	0.02 0.02	219,200 219,500	204,700 207,200	11.3 10.4	35.8 31.2	2.5 3.5 5.5 5.5 6.0 5.0		
		avg	219,400	206,000	10.8	33.5	4.5	v	100
	195	0.02	246,600 244,000	228,100 229,100	10.4 8.0	24.0 17.3	2.5 2.5		
17-7 PH		avg	245,300	228,600	9.2	20.6	2.5	v	100
TH 1050 Specimen	76	0.02 0.02	271,800 273,000	265,700 267,600	0.4 0.4	0 0	1.5 1.5 1.5		
Type D		avg	272,400	266,600	0.4	0	1.5	v	100
	20	0.02 0.02 0.02	239,100 258,500 237,400		0,3 0.2 0	0 0 0			
		avg	245,000		0.2	0			
		0.02	160,600	111,400	25.4	49.9	57.0		
	Room	0.02	159,500	110,800		48. (55.0		
		avg	160,000	111,100	25.4	49.3	55.5	v	100
A 204	195	0.02 0.02	176,000 175,600	120,200 120,400	29.0 29.1	51.6 52.0	55.0 57.0 58.0		
A - 280		avg	175,800	120,300	29.0	51.8	56.5	v	100
Solution treated at 1800°F, Aged at 1350°F	76	0.02 0.02	209,100 209,700	135,300 135,500	36.2 35.3	48.3 50.0	52.0 52.5 52.0		
Specimen	_	avg	209,400	135,400	35.8	49.2	52.0	v	100
Туре В	20	0.02 0.02	235,100 235,500	150,600 149,800	36.8 35.5	43.9 41.8			
		avg	235,300	150,200	36.2	42.8			
	Room	0.02	240,300 241,800	218,900	14.1 13.5	25.2			
		0.02	241,200	221,200	18.3	26.4			
		avg	241,100	220,000	15.3	25.8			
301	195	0.02 0.02	267,300 268,000	222,100 218,800	16.8	25.9 26.3			
Extra full		avg	201,600	220,500	17.0	20.1			
hard	76	0.02	329,100 327,500	280,000 264,500	19.1 18.7	24.7 24.8			
Type D		avg	328,300	272,200	18.9	24.8			
	20	0.02	352,700	314,700	2.7 2.7	13.2 11.6			
		avg	352 ,6 00	314,700	2.7	12.4			-

TABLE V IRON ALLOYS (Continued)

			TEN	SILE PROPE		IMPACT PROPERTIES			
MATERIAL	Test Temp	Crosshead Velocity	Tensile Strength	Yield Strength (0.2% offset)	Elongation	Reduction of Area	Energy Absorbed	Charpy Geometry	Fracture Area
	°K	in/min	psi	psi	% in 4D	%	ft-lb		%
	Room	0.02	126,800 124,000	119,600 117,200	24.6 23.8	70.3 70.4	52.0 53.0 51.0		
		avg	125,400	118,400	24.2	70.4	52.0	U	75
2800 (9% Nickel Steel)	195	0.02 0.02	145,900 147,000	131,400 127,700	25.1 25.6	67.3 67.7	50.5 50.0 47.0		
Double normal-		avg	146,500	129,600	25.4	67.5	49.0	U	75
ized 1650°F and 1450°F; 1050°F temper	76	0.02 0.02 0. 02	180,600 180,100 176,800 [*]	159,200 159,900 _* 160,100	27.1 27.2 25.7*	59.6 60.2 _* 62.0*	25.0 25.0 26,0		
Specimen		avg	179,200	159,700	26.7	60.6	25.5	U	100
Type A (except (*) type B)	20	0.02 0.02 0.02	218,600 [*] 220,100 [*] 217,700 [*]	206,400 [*] 210,100 [*]	13.5 [*] 23.1	36.9* 58.6 			
		avg	218, 800 [*]	208,300*	18.3*	47.8*			
	Room						11.0 11.5 11.5 10.5		
		avg					11.0	v	100
4340 Annealed	195						3.5 3.0 3.0 3.0		
		avg					3.0	v	100
	76						1.5 1.5 2.0 1.0		
		avg					1.5	v	100

TABLE V IRON ALLOYS (Continued)

TENSILE PROPERTIES

IMPACT PROPERTIES

l

MATERIAL	Test Temp °K	Crosshead Velocity	Tensile Strength	Yield Strength (0.2% offset) psi	Elongation	Reduction of Area	Energy Absorbed	Charpy Geometry	Fracture Area
			P31	por	70 III ID	/0	1(-10		70
	Room	0.02 0.02	129,700 133,000	97,200 97,600	62.9 57.2	75.1 76.9	54.0 52.0 53.5		
		avg	131,400	97,400	60.0	76.0	53.0	U	100
	195	0.02 0.02	187,200 189,000	95,700 97,300	44.7 45.0	67.7 69.5	57.0 56.0 55.5		
302		avg	188,100	96,500	44.8	68.6	56.0	U	100
Cold Drawn Specimen Type B	- 76	0.02 0.02	258,200 260,600	101,300 102,700	37.4 37.8	56.1 56.0	46.0 47.0 51.0 48.5		
		avg	259,400	102,000	37.6	56.0	48.0	U	100
	20	0.02 0.02 0.02 avg	312,300 315,000 313,600	114,400 117,300 115,800	33.3 31.1 32.2	35. 2 37. 8 36. 5			
	Room	0.02 0.02	109,000 109,800	60,600 62,100	71.6 70.4	71.1 71.6	34.5 33.0 34.5 36. 5		
		avg	109,400	61,400	71.0	71.4	34.5	U	100
303	195	0.02 0.02	177,600 176,400	62,200 64,300	43.5 42.8	61.6 61.0	60.0 60.0 51.0 48.0 71.0 53.0		
Annealed		avg	177,000	63,200	43.2	61.3	57.0	U	25
Specimen Type B	76	0.02 0.02	245,300 240,600	69,000 65,500	37.1 37.0	56.9 55.2	87.0 93.5 83.0 91.0		
		avg	243,000	67,200	37,0	56.0	88.5	U	25
	20	0.02 0.02 0.02	297,400 298,400 296,600	82,700 82,500	32. 9 33. 0	36.8 38.0			
		avg	297,500	82,600	33.0	37.4			

TABLE V IRON ALLOYS (Continued)

TENSILE PROPERTIES IMPACT PROPERTIES Test Crosshead Tensile Yield Elongation Reduction Energy Charpy Fracture Temp Velocity Strength Strength of Area Absorbed Geometry Area MATERIAL (0.2% offset) °K in/min psi % in 4D % psi ft-lb % 0.02 56,700 83.7 98,300 79.2 65.0 0.02 98,400 57,000 Room 78.6 83.0 65.5 66. 0 56,900 98,400 78.9 83.4 65.5 avg 1/2 V 75 0.02 153,500 61,100 71.8 76.8 102.0 0.02 152,500 62,100 67.6 82.0 76.7 195 71.5 90.5 304 LC 77.0 61,600 avg 153,000 69.7 76.8 84.5 1/2 V 75 Annealed 0.02 222,300 66.900 42.3 69.6 80.5 Specimen 0.02 221,400 65,700 43.6 68.9 74.5 Туре В 76 0.02 221,000 ---42.9 69.1 70.5 76.0 avg 221,600 66,300 42.9 69.2 75.5 1/2 V 75 0.02 272,900 75,400 47.8 38.6 63.0 20 0.02 273,300 75,800 36.7 42.1 63.0 62.0 273,100 4**2.** 2 62,5 avg 75,600 40.4 1/2 V 100 0.20 241,800 77,900 33.6 58.6 4 0.20 242,600 77,900 ---55.8 242,200 77,900 33.6 57.2 avg 0.02 84,900 31,800 62.1 70.2 70.0 0.02 31,700 Room 84,200 56.3 72.2 71.0 31,500 0.02 84,400 58.4 71.0 70.0 avg 84,500 31,700 58.9 71.1 70.5 1/2 V 100 0.02 106,700 43,500 69.8 67.7 66.0 195 0.02 107,300 44,300 73.3 68.4 71.0 67.0 310 107,000 71.6 avg 43,900 68.0 68.0 1/2 V100 Annealed 0.02 157,700 76,500 68.8 46.2 51.0 Specimen 0.02 156,600 75,600 66.6 53.0 55.0 Туре В 76 46.0 55.5 49.6 157,200 76,000 67.7 52.0 1/2 V 100 avg 0.005 99,300 181,100 41.9 48.5 34.8 0.02 185,000 100,200 46.8 38.5 44.5 20 0.02 185,800 99,400 49.3 34.1 44.0 1.0 164,500 103,900 50.3 --avg 179,100 100,700 46.0 39.4 45.5 1/2 V 100 4 0.02 186,700 102,100 49.8 41.0

186,700

avg

102,100

49.8

41.0

TABLE V IRON ALLOYS (Continued)

TENSILE PROPERTIES IMPACT PROPERTIES

		1							
MATERIAL	Test Temp	Crosshead Velocity	Tensile Strength	Yield Strength (0.2% offset)	Elongation	Reduction of Area	Energy Absorbed	Charpy Geometry	Fracture Area
	°K	in/min	psi	psi	% in 4D	%	ft-lb		%
	Room	0.02 0.02 0.02	201,400 194,700 205,700	201,400 194,700 205,700	14.5 13.9 14.6	67. 1 68. 2 66. 2	20.5 26.0 16.5 34.0 21.0 21.5 17.0		
		avg	200,600	200,600	14.3	67.2	22.5	v	100
410	195	0.02 0.02 0.02	216,400 205,800 214,300	216,400 205,800 214,300	15.6 15.8 13.8	63.7 66.3 63.2	6.0 8.0 12.0 6.5 13.0 9.5 11.0 9.0 12.0		
Heat treated		avg	212,200	212,200	15.1	64.4	9.5	v	100
700°F temper Specimen Type B	76	0.02 0.02	258,900 269,300	258,900 269,300	6. 2 5. 4	20.6 20.7	3.0 2.0 2.0 3.0 2.0		
		avg	264,100	264,100	5,8	20.6	2.5	v	100
	20	0.02 0.02 avg	327.600 315,900 321,800		0.7 0.8 0.8	6.0 5.2 5.6			
·	Room	0.02 0.02 0.02 avg	205,600 201,300 202,500 203,100	165,600 179,100 177,500 174,100	15.6 14.9 14.9 15.1	53.9 53.8 52.2 53.3	33.5 33.5 34.0 33.5	v	100
416	195	0.02 0.02	217,300 218,900	182,300 182,900	15.5 15.3	51.6 52.5	10.0 9.5 10.0		
		avg	218,100	182,600	15.4	52.0	10.0	V	100
Heat treated at 1800°F, 700°F temper Specimen Type B	76	0.02 0.02 0.02 0.02	258,300 262,300 260,700 263,000	230,200 233,400 	8.4 11.1 8.2	18.8 29.8 27.1* 18.2	2.0 2.5 3.0 2.5 2.5		
(except (*)		avg	261,100	231,800	9.2	23.5	2.5	V	100
SPC A	20	0.02 0.02	290,100 295,100	290,100 295,100	0.4	2.1 2.5			
		avg	292,600	292,600	0.4	2.3			

÷

TABLE VI NICKEL ALLOYS

			TE	NSILE PROPE		IMPACT PROPERTIES			
MATERIAL	Test Temp	Crosshead Velocity	Tensile Strength	Yield Strength (0.2% offset)	Elongation	Reduction of Area	Energy Absorbed	Charpy Geometry	Fracture Area
	°K	in/min	psi	psi	% in 4D	%	ft-lb		%
	Room	0.02 0.02	131,900 130,600	124,200 122,700	17.2 16.8	58.8 56.9	62.0 80.5 72.5 84.0 86.5		
		avg	131,200	123,400	17.0	57.9	77.0	v	75
INCONEL	195	0.02 0.02	143,700 142,800	133,600 130,400	19.7 - 20.5	57.8 58.9	88.5 91.0 89.0		
Cold drawn 20%		avg	143,300	132,000	20.1	58.4	89.5	v	100
Specimen Type A	76	0.02 0.02	167,700 168,900	150,500	26.2 26.6	62.1 61.7	77.0 86.0 85.0		
		avg	168,300	150,500	26.4	61.9	82.5	v	100
	20	0.02 0.02 avg	180,400 181,700 181,100	160,000 160,700 160,400	30.4 30.6 30.5	55. 5 55. 9 55. 7			
	Room	0.02 0.02 0.02 0.02	191,600 191,900 188,600 191,600	136, 300 136, 300 136, 900 136, 900	24. 1 26. 5 25. 6 27. 2	47.5 46.6 44.6 47.6	40.5 40.0 40.0	J.	100
INCONEL "X"	195	0.02 0.02	204,900 203,100	143,500 143,700	30.1 30.0 30.0	49.1 47.4	40.0	V	100
Direct aged 1300°F, AC, tempered Specimen Type B	76	0.02 0.02 0.02 0.02 0.02	227, 500 226, 500 226, 500 228, 100	151, 300 150, 200 150, 200	31.7 32.4 32.9 33.5	45. 6 45. 7 45. 4 44. 6	35. 0 34.5 35.0		
		avg	227,200	150,600	32.6	45.3	35.0	v	100
	20	0.02 0.02 0.02 0.02	248,500 247,200 241,000 243,600	156,100 155,300 155,400 153,800	33.3 34.0 34.7 35.6	43.6 40.0 43.3 42.2			
		avg	245,100	155,200	34.4	42.3			

TABLE VI

۰.

NICKEL ALLOYS (Continued)

			TE	NSILE PROPE	IMPACT PROPERTIES				
MATERIAL	Test Temp	Crosshead Velocity	Tensile Strength	Yield Strength (0.2% offset)	Elongation	Reduction of Area	Energy Absorbed	Charpy Geometry	Fracture Area
	°K	in/min	psi	psi	% in 4D	%	ft-lb		%
		0.02	62,700				89.5		
	Room	0.02	64,000	21,400	49.1	66.2	94.5		
		0.02	64,300	20,400	47.8	66.2	94.5		
		avg	63,700	20,900	48.4	66.2	93.0	1/2 V	50
		0.02	71,100	21,100	51.4	69.2	79.0		
	105	0.02	69,900	22,200	48.8	64.1	92.5		
"A" NICKEL	195	0.02	71,300	22,800	50.6	63.5	88.0		
A NICKEL		240	70 800	22 000	50 3	45.4	86.0	1/2 V	50
Annealed		avg	10,800		50.5	05.0	00.0	1/2 V	50
Specimen		0.02	93,200	28,400	62.1	76.2	86.5		
Type A		0.02	92,200	28,000	60.8	75.1	90.0		
1) 10 11	76	0.02	93,600	29,000	60.7	74.3	87.0		
							81.0		
		avg	93,000	28,500	61.2	75.2	86.0	1/2 V	75
		0.02	112,400	37,300	59.2	68.2	99.5		
	20	0.02	111,400	39,600	59.1	67.5	93.5		
							100.5		
		avg	111,900	38,400	59.2	67.8	98.0	1/2 V	75
		0.02	192,300	138,000	28.9	32.3	15.0		
	Room	0.02	191,900		24.6	33.0	15.5		
		0.02	191,000	140,300	25.2	33.2	14.5		
		avg	191,700	139,200	26.2	32.8	15.0	1/2 V	100
		0.02	207,600				13.0		
		0.02	197,100	140,000	30.3	34.8	12.0		
	195	0.02	202,400	143,800	28.9	33.1	13.5		
RENE 41 (R41)							12.5		
		avg	202,400	141,900	29.6	34.0	12.5	1/2 V	100
at 1975°F. WQ		0.02	238,900	162,200	27.7	24.6	11.5		
	76	0.02	240,500	164,400	29.3	26.6	10.5		
Specimen							10.5		
Type B							10.5		
		avg	239,700	163,300	28.5	25.6	10.5	1/2 V	100
		0.02	254,000		27.4	26.6	11.5		
	20	0.02	254,200	172,900	24.9	24.3	10.0		
							11.5		
		avg	254,100	172,900	26.2	25.4	11.0	1/2 V	100

23

			TE	NSILE PROPER	IMPACT PROPERTIES				
MATERIAL	Test Temp	Crosshead Velocity	Tensile Strength	Yield Strength (0.2% offset)	Elongation	Reduction of Area	Energy Absorbed	Charpy Geometry	Fracture Area
MATERIAL	°K	in/min	psi	psi	% in 4D	%	ft-lb		%
	Room	0.02 0.02	169,100 170,900	118,700 119,700	26.6 27.6	51.6 53.7	35.0 41.5 32.0 41.5 34.0		
		avg	170,000	119,200	27.1	52,6	37.0	v	100
"K" MONEL Age hardened	195	0.02 0.02 0.02	178,100 179,000 176,100	128,700 130,900 129,000	30.3 28.3 27.3	54.2 54.5 54.3	37.5 37.5 30.5 28.0 36.5		
at 1100°F and 1000°F, AC		avg	177,700	129,500	28.6	54.3	34.0	v	100
Specimen Type B	76	0.02 0.02	199,500 196,100	142,900 142,700	33.4 33.2	54.3 54.3	30.5 36.5 28.5 28.5		
		avg	197,800	142,800	33.3	54.3	31.0	V	100
	20	0.02 0.02	212,300 214,400	152,900 152,000	34.3 33.8 34.0	52.6 52.1			
		4+5	213, 100	100, 100	54.0	56.1			
	Room	0.02 0.02 0.02	115,100 102,800 111,600	78,600 74,100	4.5 9.0	36.0 28.0 27.4	26.0 54.5 39.5 46.5 39.5		
		avg	109,800	76,400	6.8	30,5	41.0	v	100
"S" MONEL	195	0.02 0.02 0.02	117,100 126,700 126,800	83,700 86,200	12.5 9.3 17.0	26.0 21.6 32.0	43.5 37.0 53.0 41.5		
Cast, annealed 1600°F, 1300°F,		avg	123,500	85,000	12.9	26.5	43.5	V	100
OQ . Specimen Type A	76	0.02 0.02 0.02	127,800 137,200 135,700	97,100 97,200 	18.5	32.8 17.4 18.0	30.0 43.0 43.5	V	100
	20	0,02 0,02	135,400 145,100	106,500	17.4	28.1 23.4	37.0	•	
		0.02 avg	168,500	106,500	12.4	20.8			
		°		-,			1		

TABLE VI NICKEL ALLOYS (Continued)

TABLE VII TITANIUM ALLOYS

IMPACT PROPERTIES

TENSILE PROPERTIES

MATERIAL	Test Temp	Crosshead Velocity	Tensile Strength	Yield Strength (0.2% offset)	Elongation	Reduction of Area	Energy Absorbed	Charpy Geometry	Fracture Area
	°K	in/min	psi	psi	% in 4D	%	ft-lb		%
	Room	0.02	135,200 133,000	127,800 126,000	17.4 20.5	42.4 44.7	17.5 17.5 18.0		
		avg	134,100	126,900	19.0	43.6	17.5	V	100
5A1-2.5Sn,	195	0.02 0.02	159,700 160,500	150,400 150,600	13.2 14.0	37.5 39.5	14.5 15.0 13.5		
		avg	160,100	150,500	13.6	38.5	14.5	v	100
Annealed Specimen Type B	76	0.02 0.02	208,100 208,800	200,000 200,300	13.5 14.2	29.2 29.8	11.5 11.5 10.5		
		avg	208,400	200,200	13.8	29.5	11.0	V	100
	20	0.02	250,900 250,800	242,900 242,200	10.7 12.3	17.2 19.4			
		avg	250,800	242,600	11.5	18.3			
	Room	0.02	136,900 137,400	136,900 137,600	27.4 25.6	56.2 55.6	20.0 18.5 20.5		
		avg	137,200	137,200	26.5	55.9	19.5	v	100
13V-11Cr-3A1 (B-120 VCA)	195	0.02	182,800 183,900	181,900 183,900	17.3 16.1	48.0 46.0	11.5		
Solution treated		avg	183,400	182,900	16.7	47.0	9.5	v	100
Specimen Type B	76	0.02 0.02	279,400 279,600	273,200 273,500	6. 1 7. 3	20.5 21.4	4.0 5.0 2.5 5.0 4.5		
		avg	279,500	273,400	6.7	21.0	4.0	V	100
	20	0.02 0.02	327,100 338,900		0.3 0.6	2.5 4.4			
		avg	333,000		0.4	3.4			
	Room	0.02 0.02	147,900 149,100	138,000 138,000	17.0 16.1	48.4 46.3	28.5 28.0 26.0		
		a vg	148,500	138,000	16.6	47.4	27.5	v	100
6A1-4V (C-120 AV)	195	0.02 0.02	173,500 174,300	163,900 164,400	12.5 13.3	41.5 41.6	22.5 22.0 22.5		
Annealed		avg	173,900	164,200	12.9	41.6	22.5	V	100
Specimen Type B	76	0.02 0.02	236,800 239,500	227,200 230,000	10.0 10.4	40.7 40.5	14.5 16.0 16.5 14.5		
		avg	238,200	228,600	10.2	40.6	15.5	v	100
	20	0.02 0.02	285,900 286,400	277,200 278,400	6.7 6.7	32.3 29.8			
		avg	286,200	277,800	6.7	31.0			

FIGURE I HIGH-ELONGATION EXTENSOMETER

FIGURE 2 TEST SPECIMEN CONFIGURATION

Tensile

Impact 45% .010 R 2,160 .394

CHARPY V

CHARPY V (1/2 SIZE)

CHARPY U

DRAWN TO SCALE

356, CHILL CAST T6

27

2020 , Тб

606I, T6

29

FIGURE 8. TENSILE PROPERTIES OF THE COBALT ALLOYS.

FIGURE 9. IMPACT PROPERTIES OF THE COBALT ALLOYS.

FIGURE IO. TENSILE PROPERTIES OF THE COPPER ALLOYS.

BERYLCO 25, HARD

FIGURE II. TENSILE PROPERTIES OF THE COPPER ALLOYS.

OFHC , SOFT

FIGURE 13. TENSILE PROPERTIES OF THE IRON ALLOYS.

NISPAN "C", AGE HARDENED 1200°F - 5 HR , AC, TEMPERED

35

Ξ

			TE	NSILE PROPE		IMPACT PROPERTIES			
MATERIAL	Test Temp °K	Crosshead Velocity	Tensile Strength	Yield Strength (0.2% offset)	Elongation	Reduction of Area ø	Energy Absorbed	Charpy Geometry	Fracture Area
	17		psi	psi	70 III 4D	*/0	It-lb		%
	Room						.30 .25 .25		
		avg					. 25	v	100
TITANIUM CARBIDE	195						. 20 . 20 . 20		
Sintered (32% Ni)		avg			· · · · · · · · · · · · · · · · · · ·		. 20	v	100
	76	_					. 20 . 20 . 20		
		avg					. 20	v	100
	Room						1.0 1.0 1.0		
		avg					1.0	v	100
TUNGSTEN	195						1.0 1.0 1.0		
CARBIDE		avg					1.0	v	100
(CA-10) Sintered	76						1.0 1.0 1.0		
(13% Co)		avg					1.0	v	100

TABLE VIII CARBIDES

FIGURE 14. TENSILE PROPERTIES OF THE IRON ALLOYS.

UNIMACH #I (VASCOJET 1000), HEAT TREATED 1850 °F-I HR, AC, DOUBLE TEMPERED 1025 °F - 3/4 HR

17-4 PH , H 1100

37

Ē

FIGURE 15. TENSILE PROPERTIES OF THE IRON ALLOYS.

A-286, SOLUTION TREATED 1800°F -1 1/2 HR, AC, AGED AT 1350 °F - 16HR, AC

302, COLD DRAWN

39

Ē

FIGURE 17. TENSILE PROPERTIES OF THE IRON ALLOYS.

304 L, ANNEALED

FIGURE 18. TENSILE PROPERTIES OF THE IRON ALLOYS.

321, ANNEALED

41

Ĩ

FIGURE 19. TENSILE PROPERTIES OF THE IRON ALLOYS.

42

FIGURE 20. TENSILE PROPERTIES OF THE IRON ALLOYS.

416, HEAT TREATED 1800 °F - IHR, OQ, TEMPERED 700 °F - 4HR, AC

1075, HEAT TREATED 1450 °F - IHR, OQ, TEMPERED 720 °F - IHR, AC

43

:

2800 (9 % Ni), DOUBLE NORMALIZED 1650 °F AND 1450 °F, TEMPERED 1050 °F - 2 HR

FIGURE 22. IMPACT PROPERTIES OF THE IRON ALLOYS.

45

E

INCONEL "X", HOT ROLLED, DIRECT AGED 1300 °F - 20 HR. AC TEMPERED

FIGURE 24. TENSILE PROPERTIES OF THE NICKEL ALLOYS.

"S" MONEL , CAST, ANNEALED 1600 °F-1HR, 1300 °F-1/2 HR, 00

47

Ē;

FIGURE 25. TENSILE PROPERTIES OF THE NICKEL ALLOYS.

RENE 41, SOLUTION TREATED 1975 °F-4HR , WQ

FIGURE 26. IMPACT PROPERTIES OF THE NICKEL ALLOYS.

49

.

:,*

FIGURE 27. TENSILE PROPERTIES OF THE TITANIUM ALLOYS.

13V - 11Cr - 3AI, SOLUTION TREATED

FIGURE 28. TENSILE PROPERTIES OF THE TITANIUM ALLOYS.

:.:

.

ILS. DEPARTMENT OF COMMERCE Luther H. Hodges, Secretary

NATIONAL BUREAU OF STANDARDS A. V. Astin. Director

THE NATIONAL BUREAU OF STANDARDS

The scope of activities of the National Bureau of Standards at its major laboratories in Washington, D.C., and Boulder, Colorado, is suggested in the following listing of the divisions and sections engaged in technical work. In general, each section carries out specialized research, development, and engineering in the field indicated by its title. A brief description of the activities, and of the resultant publications, appears on the inside of the front cover,

WASHINGTON, D.C.

Electricity. Resistance and Reactance. Electrochemistry. Electrical Instruments. Magnetic Measurements. Dielectrics. High Voltage. Absolute Electrical Measurements.

Metrology. Photometry and Colorimetry. Refractometry. Photographic Research. Length. Engineering Mctrology.

Mass and Scale. Volumetry and Densimetry. Refractometry. Flotographic Research. Length. Engineering Mctrology. Mass and Scale. Volumetry and Densimetry. Heat. Temperature Physics. Heat Measurements. Cryogenic Physics. Equation of State. Statistical Physics. Radiation Physics. X-ray. Radioactivity. Radiation Theory. High Energy Radiation. Radiological Equipment. Nucleonic Instrumentation.

Analytical and Inorganic Chemistry. Pure Substances. Spectrochemistry. Solution Chemistry. Standard Reference Materials. Applied Analytical Research. Crystal Chemistry.

Mechanics. Sound. Pressure and Vacuum. Fluid Mechanics. Engineering Mechanics. Rheology. Combustion Controls.

Polymers. Macromolecules: Synthesis and Structure. Polymer Chemistry. Polymer Physics. Polymer Characteriza-tion. Polymer Evaluation and Testing. Applied Polymer Standards and Research. Dental Research.

Metallurgy. Engineering Metallurgy. Microscopy and Diffraction. Metal Reactions. Metal Physics. Electrolysis and Metal Deposition.

Inorganic Solids. Engineering Ceramics. Glass. Solid State Chemistry. Crystal Growth. Physical Properties. Crystallography.

Building Research. Structural Engineering. Fire Research. Mechanical Systems. Organic Building Materials. Codes and Safety Standards. Heat Transfer. Inorganic Building Materials. Metallic Building Materials.

Applied Mathematics, Numerical Analysis, Computation, Statistical Engineering, Mathematical Physics, Operations Research.

Data Processing Systems. Components and Techniques. Computer Technology. Measurements Automation. Engineering Applications. Systems Analysis.

Atomic Physics. Spectroscopy. Infrared Spectroscopy. Far Ultraviolet Physics. Solid State Physics. Electron Physics. Atomic Physics. Plasma Spectroscopy.

Instrumentation. Engineering Electronics. Electron Devices. Electronic Instrumentation. Mechanical Instruments. Basic Instrumentation.

Physical Chemistry. Thermochemistry. Surface Chemistry. Organic Chemistry. Molecular Spectroscopy. Elementary Processes. Mass Spectrometry. Photochemistry and Radiation Chemistry.

Office of Weights and Measures.

BOULDER, COLO.

Cryogenic Engineering Laboratory. Cryogenic Equipment. Cryogenic Processes. Properties of Materials. Cryogenic Technical Services.

CENTRAL RADIO PROPAGATION LABORATORY

lonosphere Research and Propagation. Low Frequency and Very Low Frequency Research. Ionosphere Research. Prediction Services. Sun-Earth Relationships. Field Engineering. Radio Warning Services. Vertical Soundings Research.

Radio Propagation Engineering. Data Reduction Instrumentation. Radio Noise. Tropospheric Measurements. Tropospheric Analysis. Propagation-Terrain Effects. Radio-Meteorology. Lower Atmosphere Physics.

Radio Systems. Applied Electromagnetic Theory. High Frequency and Very High Frequency Research. Frequency Utilization. Modulation Research. Antenna Research. Radiodetermination.

Upper Atmosphere and Space Physics. Upper Atmosphere and Plasma Physics. High Latitude Ionosphere Physics. Ionosphere and Exosphere Scatter. Airglow and Aurora. Ionospheric Radio Astronomy.

RADIO STANDARDS LABORATORY

Radio Physics. Radio Broadcast Service. Radio and Microwave Materials. Atomic Frequency and Time-Interval Standards. Radio Plasma. Millimeter-Wave Research.

Circuit Standards. High Frequency Electrical Standards. High Frequency Calibration Services. High Frequency Impedance Standards. Microwave Calibration Services. Microwave Circuit Standards. Low Frequency Calibration Services.

,

•