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Introduction

The physical properties of ceramic materials are in some ways very different from
those of metals, and in other ways surprisingly similar. Ceramic materials tend to
be strong but brittle, to be electrical insulators and rather poor thermal conductors,
and to possess generally high melting points. Metals, on the other hand, are often
ductile, possess appreciable electrical conduction, and have generally lower melting
points than do ceramic materials. However, real similarities exist, and in particular
it is found that the same general physical and chemical processes occur in both, alike
in kind but differing in detail. Both are crystalline solids, and the physical prop-
erties of both are strongly sensitive to the presence of crystal imperfections, such
as vacant lattice sites, interstitial atoms, and dislocations. These imperfections
can be described in somewhat the same terms in both kinds of materials, and react in
much the same ways to external influences, producing much the same effects.

Hence there has built up, in recent years, a science of the defect properties of
solids. This science deals in a rather generalized way with imperfect crystalline
solids, and its application to metals, or ceramics, or even, probably, to polymers,
is more a matter of detail than of basic principle. In order to review this science
with respect to mechanical behavior, and in particular for ceramic materials, the
Symposium of which this book forms the Proceedings was held.

The Symposivrai was designed to present a review of dislocations and dislocation
behavior, and how these are related to the mechanical behavior of ceramic materials.
Prof. Parker, in the first chapter, reviews general ideas relating to strain hardening,
recovery, creep, and fracture, and introduces the concept of dislocations as used to
understand these phenomena. In Chapter 2, Dr. de Wit discusses dislocations as en-
tities in themselves, with particular emphasis on their geometrical aspects. Dr. Wils-
dorf, in the third chapter, describes methods of observing and studying dislocations,
with examples drawn from metals and nonmetals.

These first three chapters form a background of introduction and general ideas
about dislocations. The next two chapters are concerned specifically with properties
of ceramic materials, with emphasis on single crystals. In Chapter Four, Dr. Johnston
discusses the mechanism of fracture and the role played by dislocations in the initia-
tion and propagation of fracture. Dr. Oilman, in Chapter Five, considers the problem
of obtaining high strengths, a problem for which dislocation motion is important but
not dominant. In the last chapter. Profs. Kingery and Coble leave the properties of
single crystals and review the ways in which the microstructure of polycrystalline ce-
ramics influence the mechanical properties.

Joseph A. Pask, Chairman
University of California

Alan D. Franklin, Cochairman
National Bureau of Standards

W. Wurth Kriegel
North Carolina State College

Karl Schwartzwalder
AC Spark Plug Division

General Motors Corporation
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PLASTIC FLOW AND FRACTURE OF CRYSTALLINE SOLIDS

Earl R. Parker

Introduction

Utiy should ceramists be interested in dislocations? Are not ceramic products
truly brittle solids, except perhaps at high temperatures where plastic or viscous
flow can occur? And even the high- temperature flow need not be associated with dislo-
cations, as is evidenced by the case of glass which flows by a viscous, rather than
plastic, process. Why then, should the subject of dislocations be of more than casual
interest to those concerned with the use of inorganic nonmetallic materials near ambi-
ent temperature? The answer is that the world of materials is changing. Leaders in
this field can no longer be just "ceramists" or just "metallurgists '; they must become
materials engineers or materials scientists. The dislocations that bestow the invalu-
able properties of toughness and ductility upon metals also exist in nonmetallic crys-
tals. The differences between the dislocations in metals and nonmetals are small.
The fundamental characteristics of dislocations evaluated by studies with lithium flu-
oride apply equally well to metals. As a matter of fact, metallurgists during the
past decade have learned more about flow and fracture from studies of nonmetallic crys
tals than they have from metals.

Gradually the realization has developed that nonmetallic crystals are not neces-
sarily brittle at normal temperatures. From the facts accumulated over a period of
about forty years, it seemed reasonable to conclude that certain nonmetallic materials
particularly cubic ionic crystals, should exhibit plastic properties like those nor-
mally associated with metals. The work of Joffe [l]-"- in 1924 on sodium chloride and
the later work of Nye [2] on silver chloride strongly supported this conclusion, as
did the recent extensive classical studies of Oilman [e.g., 3, 4, 5] on lithium fluo-
ride. Exploratory investigations [6, 7] revealed that many of the cubic ionic crys-
tals, including magnesium oxide, were ductile at room temperature when they were care-
fully prepared. Tests in compression, bending, and tension yielded elongations well
in excess of ten percent. The problem of brittleness evolved into one of crack nu-
cleation, because if cracking was suppressed, flow was found to be extensive. The
studies of fracture that followed the earlier work on flow have shed a great deal of
light on the mysteries that enshroud fracture processes. This subject will be re-
viewed in detail in a later chapter by T. L. Johnston.

There are at least two worthwhile objectives to this kind of research. One is
purely scientific--a quest for knowledge about the physical phenomena involved in flow
and fracture processes; the second is technological in nature and is concerned with
exploring the possibility of producing useful ductile polycrystalline nonmetallic ma-
terials that can be processed by methods such as rolling, forging, extruding, machin-
ing, and welding, that are now applicable only to metals. Although advancement toward
the latter goal has been slow and many people have become discouraged because of the
lack of spectacular and rapid progress, the picture is far from hopeless. Little by
little, as more is learned, the end point comes nearer. Optimism, however, should be
tempered with judgment. No one versed in the field expects ionic crystals to exhibit
the extensive ductility characteristic, for example, of copper and aluminum. However,
it is well within the realm of possibility that polycrystalline magnesium oxide can
be produced with ductility comparable with that of tungsten, once thought to be a
hopelessly brittle metal, or, for that matter, with ductility similar to that of ordi-
nary structural steel at low temperatures. In any event, the time has come when ceram
ists must be familiar with dislocation concepts of flow and fracture if they are to
compete in the rapidly advancing field of materials.

Dislocations

The story of dislocations goes back about thirty years. Physicists [8] studying
the mechanical behavior of crystals had concluded by 1926 that the yield strength
should be about one-sixth of the shear modulus. Refinements [9] in the calculations
indicated that the theoretical strength might be as low as one-thirtieth of the shear
modulus, but even this figure was several orders of magnitude higher than the measured
strengths. It seemed reasonable to assume, therefore, that the weakness of real crys-
tals was due to some sort of structural defect--a conclusion supported by X-ray dif-
fraction evidence which clearly showed that crystal lattices are not perfect. The
problem thus resolved itself into answering the question: What sort of crystalline

^Figures in brackets indicate the literature references on page 6.
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defect would have the characteristics necessary to account for the low value of yield
strength and the phenomenon of strain hardening? The answer was provided in 1934 by
Taylor [10], Orowan [11!, and Polanyi [12], who independently concluded that the de-
fect conceived by Prandtl [13] and Dehlinger [14] about 1928 had the required proper-
ties. This imperfection has since become known as the edge or line dislocation. An
elementary form of the dislocation is shown in figure 1. Here it consists of an im-
perfect square grid, the top half containing one more vertical row of atoms than the
bottom half. In a three-dimensional model there would be a large number of identical
planes evenly spaced in front of and behind the one shown; thus the defect would con-
sist of a missing sheet of atoms in the lower half of the crystal model. A straight
line through the lattice along the top of the missing sheet would coincide with the
region of maximum lattice disturbance. It is for this reason that the defect is
called a line or edge dislocation. (A dislocation of the "opposite sign" would exist
if the missing sheet were above instead of below the slip plane.) Above and below
the dislocation line, the lattice spacing gradually returns to the normal value. In
the center of the disturbed region, the lattice is extremely distorted, atoms being
squeezed together above the line and spread apart below it. This defect has the
unique characteristic of being able to move through the lattice on a plane perpendic-
ular to the plane of the missing sheet of atoms and in a direction perpendicular to
the line of the dislocation. Very low stresses are required to cause dislocations to
glide through a crystal lattice, and when such defects emerge on a free surface a
slip" offset one atomic spacing wide is produced. When many dislocations operate on

the same plane, the slip offset becomes large enough to see with a light microscope,
or even by eye. These large offsets are called "slip lines," and "slip bands" are
groups of closely spaced slip lines.

The edge dislocation alone is not enough to account for plastic flow, because
gross shearing of a slip plane must proceed gradually across the entire area, not only
in the direction perpendicular to the edge dislocation but at right angles to this
direction as well. It was for this reason that Burgers [15] in 1939 conceived of the
screw dislocation. Unlike the edge dislocation, which extends perpendicular to the
direction of slip, the screw dislocation is a lattice defect extending parallel to the
slip direction. This second type of dislocation permits a wave of plastic flow to
travel through the lattice in a direction at right angles to the direction of the
slip movement. Figure 2 illustrates how this can happen. In this figure, the vector,
b, (called the Burgers vector) represents the magnitude and direction of slip.

Conceding the existence of dislocations, a necessary step in the early develop-
ment of the theory, the next question to be answered was: Where do dislocations come
from? Calculations clearly showed that there could not possibly be enough disloca-
tions preexisting in metal crystals to account for the observed extensive plastic flow.
Furthermore, X-ray examination showed without a doubt that the number of defects in
crystals actually increased, rather than decreased, as plastic flow progressed. All
available evidence indicated that dislocations actually multiply during deformation.
How could this be? Again, the ingenuity of the theorist provided the answer. Simul-
taneously, F. C. Frank and W. T. Read [16] conceived of the now familiar Frank-Read
source, a dislocation generator capable of creating an unlimited number of moving or
"slip" dislocations. The Frank-Read concept is based upon the assumption (since
verified) that dislocations that form in crystals during growth do not lie entirely on
a single slip plane. In fact, some portions of the grown-ln dislocations were pre-
sumed to have portions lying in planes where slip was virtually Impossible. Thus, only
the part lying in the slip plane was free to move under an applied stress, but this
part, being constrained at the ends where the line left the slip plane, could only bow
as shown in figure 3. To understand this action, it is necessary to appreciate that,
while dislocations can move through a lattice on any plane, the shear stress necessary
to cause movement varies by several orders of magnitude for different planes. The
easiest direction of movement is always in the direction of closest like neighbors,
and the planes of easiest slip are those that have the highest density of atoms. It
is natural, therefore, that slip will almost Invariably occur only on those planes re-
quiring the minimum stress for dislocation movement. These are the characteristic
slip planes" observed to operate when crystals are deformed. Rarely does the stress

rise high enough to move dislocations on the "nonslip" planes.

Returning to figure 3, the loop of the bowing dislocation line grows with in-
creasing stress until it begins to swing around the pinned end points. This process
continues until the line, growing and moving together behind the pinning points,
eventually becomes a complete circle. At this stage, it breaks away from the source
and becomes a freely moving dislocation "loop" that can continue outward to produce
slip offsets on external surfaces. In the meantime, the process of the joining of
the dislocation line to form a loop also recreates the source, as indicated in the
sketches in figure 3. Thus the source can begin again to form a second loop, to be

2



followed thereafter by an indefinite number of others. Conclusive evidence for the
existence of Frank-Read sources is now available and, in addition, other kinds of
sources have been discovered [17],

As inevitably happens, the solution of the source problem raised other questions.
For example, why did a source stop functioning after a few hundred dislocations had
been generated? It was known from electron microscope examinations of surfaces of
deformed crystals that slip offsets might be hundreds, or even a thousand, of atomic
distances, but that slip always stopped after relatively limited amounts of flow on
any given slip plane. This is a manifestation of the phenomenon of strain hardening,
which even today is not clearly understood.

Strain Hardening

The questions of what is strain hardening, and how and why does it occur have
been the subject of speculation and analysis ever since its existence was recognized.
G. I. Taylor [10] was the first to treat this problem quantitatively, and it has been
the subject of repeated probes since his classical analysis in 1934. Examples of re-
cent attempts to explain strain hardening are those of Basinski [18] and Seeger et al
[19]. It is interesting to note that after nearly thirty years of theoretical develop-
ment, there is no general agreement among experts as to the details of what goes on
inside crystals to cause them to become stronger when they are deformed. However, no
one questions the seemingly self-evident fact that strain hardening is due to the in-
teraction of the stress fields that surround dislocations. Stresses in the immediate
vicinity of dislocations may reach values of a million pounds per square inch, and
even though these stresses decrease inversely with the distance from the dislocation
core, they may still be thousands of pounds per square inch many atomic distances away.
This subject will be more fully discussed by R. deWit in the next chapter, so it will
not be pursued here. The important point to remember is that strain hardening is
caused by interactions of the stress fields that encircle dislocations.

The problem of strain hardening is complicated by the fact that this process in-
volves the action of large groups of dislocations. Group behavior is complex because
of the large number of ways in which dislocations can arrange themselves. Many kinds
of interactions are possible, and it has been difficult to decide which interactions
are important and which are trivial. Part of the confusion has arisen because of er-
roneous or misleading interpretation of experimental results; the trouble has been
largely due to the fact that it has not been possible, until recently when transmission
electron microscopy was developed, to see individual dislocations in action. Con-
sequently, theories of strain hardening had to be based on an assumed arrangement of
dislocations in strained crystals. One of the most logical assumptions was that a
series of dislocations emanating from a single source would pile up on the slip plane
if the first dislocation encountered a barrier, such as a grain boundary or precip-
itated particle, through which it could not penetrate. This effect is shown schemat-
ically in figure 4, and figure 5 is a transmission electron micrograph showing an
actual pileup of this type. Thus, both theory and experiment show that pileups are
important. The analysis of this situation was first made by Burgers and Burgers [20]
in 1938 who showed that a pileup would produce a "back stress" which would oppose the
applied stress. Thus the stress acting on the source and causing the generation of
dislocations would tend to become neutralized and the source would eventually cease to
function. This concept has been extended further by others and has been pretty well
substantiated experimentally (for more details, see reference [21]). This theory
accounts well for the behavior of certain crystals, such as the hexagonal metals, that
normally slip on only one plane, but does not satisfactorily explain the strain harden-
ing behavior of cubic crystals which can slip simultaneously on several planes.

The cubic crystals, like the hexagonal metals, exhibit a low rate of strain hard-
ening when slip occurs on a single plane. But, as figure 6 shows, when multiple slip
occurs, the rate of hardening is much higher. What is the reason for this? The an-
swer obviously must be associated with the interaction of dislocations generated and
moving on intersecting slip planes. Such dislocations can react in several ways; one
of the important reactions was proposed by Lomer [22] in 1951. He showed that two
straight dislocations having Burgers vectors a/2[10T] and a/2 [Oil] can unite to form
a new dislocation having the vector a/2[110]. This new disTocation is of the edge
type and could only glide on the (OOT) plane—a nonslip plane. The Lomer dislocation
thus cannot move through the lattice and therefore can act as a barrier to slip dis-
locations moving toward it on the two intersecting slip planes. In this manner, new
barriers can be created by the action of slip dislocations and it is barriers of this
general type that are responsible for the higher rate of strain hardening exhibited
by cubic crystals.
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strain hardening is more complex than just described, but it is clear that it is
due to the interactions of the stress fields that surround dislocations. In crystals
where slip on several planes is possible, dislocations interact and become tangled in
a complex manner, as illustrated by the transmission electron micrograph in figure 7.
Slip dislocations find it more and more difficult to penetrate these tangled barriers,
and higher and higher stresses must be applied to cause flow to continue as the tan-
gles develop.

Recovery

When a ductile crystalline material is deformed at room temperature and then re-
heated to successively higher temperatures, several changes occur to relieve the in-
ternal stresses generated by the presence of the strain- induced dislocation networks.
Dislocation loops tend to become smaller and some may even disappear. This process
happens rather rapidly and when it occurs the hardness drops, the internal stresses
diminish, and, in metals, the electrical resistivity is lowered.

A second recovery process is the combination and annihilation of dislocations of
opposite sign. This event generally requires the movement of dislocations in the di-
rection perpendicular to the slip plane by a process known as "climb." Dislocation
climb is necessary before unlike dislocations can unite because they are generally not
located on the same slip plane. In order for dislocations such as the one shown sche-
matically in figure 1 to climb out of the active slip plane, lattice vacancies must
deposit all along the dislocation line. When this occurs, the line will move one
plane higher in the lattice. A continuation of this process will cause the disloca-
tion to migrate onto other parallel slip planes far removed from the one on which it
was generated. It is also possible, by the addition of extra atoms, for a dislocation
to migrate downward through the lattice. The climb process is relatively slow and its
temperature dependence is exponential because its rate is governed by self-diffusion.

A third phenomenon contributing to recovery is the rearrangement of like disloca-
tions into a boundary of the kind shown schematically in figure 8. As predicted by
theory, the arrangement shown in figure 8(b) is a low energy metastable configuration.
Figure 9 is a transmission electron micrograph showing boundaries of this kind in an
actual crystal. Boundaries of this kind form only where there is an excess of dislo-
cations of one sign. Dislocation boundaries of this sort are called subboundaries

,

and the portions of relatively dislocation free crystal surrounded by such networks
are called subgrains. The entire structure is called a "substructure."

Simple boundaries of the kind sketched in figure 8(b) are not barriers to moving
dislocations, but the more complex types normally present in deformed and heated crys-
tals are good barriers. Subboundaries are very stable. They often remain in deformed
metals even after heating to temperatures far above the normal recrystallization tem-
perature. For example, in zinc single crystals such boundaries are stable at temper-
atures approaching the melting point; in nickel, subboundaries remain in polycrystal-
line material even after heating to temperatures in excess of 800 °C. Because sub-
boundaries are relatively stable and because they resist penetration by moving disloca-
tions, it is possible to increase the strength of an annealed commercial material by
introducing a substructure in the grains. An example of the change in strength that
can be thus produced is shown in figure 10. Polycrystalline nickel [23] was pre-
strained various amounts and then reheated one hour at 800 °C. The amount of substruc-
ture increased with increasing amounts of prestrain, and the yield strength increased
proportionally. Similar results were obtained with other metals. The presence of a
substructure also has a profound effect upon the creep behavior of a material, as will
be shown in the next section.

Creep

Many theories of creep have been formulated to explain the mechanical behavior of
materials at elevated temperatures. Although these will not be discussed in detail,
the important basic concepts will be considered. Dislocation climb seems clearly to
be the rate controlling process. The activation energy for high-temperature creep
[24] has been found experimentally to be the same as that for self-diffusion, the
basic process regulating climb. Climb gives dislocations the degree of freedom re-
quired for them to detour around the barriers that had stopped their movements on their
slip planes. As stuck dislocations leave their slip planes, the back stress at the
dislocation source is reduced so that additional dislocations can be generated. Con-
tinuous operation of this process is responsible for creep.
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At cre.ep temperatures, recovery can occur spontaneously. Experiments have shown
that a substructure develops as creep progresses. The formation of a substructure
will strengthen a material at high temperatures, just as it does at low temperatures,
and the creep rate can be expected to decrease with time, as is normally the case. To
check the effect of substructure on the shape of the creep curve [21], tests were made
in which various amounts of substructure were introduced by straining at room temper-
ature and recovering at 800 °C prior to creep testing at 700 °C. The results are
shown in figure 11. The normal concave downward shape of the creep curve was altered
by the presence of the substructure. When the equilibrium substructure state was
present at the beginning of the test, the creep curve was a straight line. When an
excess of substructure was present, the curve became concave upward.

Fracture

While the understanding of plastic flow has gradually improved during the past
quarter of a century, the concepts of fracture have remained relatively obscure. This
situation is changing rapidly and it should not be long before fracture processes are
well understood. Experiments with nonmetallic crystals, particularly magnesium oxide,
have shed considerable light upon the failure problem. Ionic crystals are ideal for
fracture studies. They develop cracks at small strains; the dislocation arrays can be
revealed by simple etch pit techniques; stress concentrations in such crystals cause
light polarization, and this can be utilized to reveal local stress concentrations;
and the crystals are transparent so the progress of growing cracks can easily be fol-
lowed. The evidence now seems conclusive that cracks form as a result of dislocation
interactions in regions where the motion of dislocations is impeded by some sort of
barrier. In relatively pure materials, the barriers that lead to crack formation are
slip bands and grain boundaries "25]. Fracture in single crystals of magnesium oxide
is initiated by dislocations that have piled up at the intersections of slip bands;
hence plastic flow is responsible for the nucleation of cracks in ductile ionic crys-
tals [25, 26, 27]. Theoretical studies and experimental work have both shown that
many dislocations may accumulate on a single slip plane when a barrier is present to
impede the motion of dislocations. Pileups cause high local stress concentrations,
and such stresses may reach values hundreds of times greater than the average stress
[91. Zener [28] in 1948 suggested that these high stresses might cause the leading
dislocations to coalesce. Although dislocations normally repel each other when they
are on the same slip plane, they can be forced together to form a crack nucleus in
the manner shown in figure 12. After the first few dislocations have been united,
coalescence becomes easier. The formation of a microcrack does not necessarily lead
to immediate failure, however, because the opening will normally extend only through
the region of high stress at the end of the slip band. Then the tiny crack will cease
to grow unless its length is greater than the critical value needed for spontaneous
propagation. Shear stresses are effective in nucleating cracks, but the growth of a
crack is clearly dependent upon the hydrostatic component of the applied stress. The
extension of a crack is hindered by hydrostatic pressure [29].

The concept of crack nucleation by the coalescence of dislocations at the head of
a pileup was developed quantitatively by Stroh [30]. He concluded that the stress
would be high enough to cause a crack to form if N dislocations were piled up under an
average shear stress, a, when Nbo = 12^, where y is the surface energy and b is the
Burgers vector. In deriving this equation, Stroh considered that all of the disloca-
tions on the slip plane contributed to the nucleation of the crack. In a subsequent
analysis [31] the problem was considered in greater detail, and the view was expressed
that a crack is nucleated because of the interaction of a few dislocations at the head
of the pile. The remaining dislocations were presumed to cause the high stress con-
centration necessary to collapse the leading dislocations into a crack nucleus. Micro-
cracks of this type have been observed in crystals of magnesium oxide r26]; an example
is shown in figure 13.

Cleavage cracks on (100) type planes form in magnesium oxide as a result of inter-
actions of dislocations moving on two mutually perpendicular slip planes. This is il-
lustrated by the sketch in figure 14, and photomicrographs showing cracks in magnesium
oxide that had been formed by this process are shown in figure 15.

Grain boundaries can also act as barriers to dislocations and can thus contribute
to crack formation. Figure 16 is a photograph taken by Westwood r32] which shows how
slip interference at boundaries can cause cracking.
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Conclusions

Great progress has been made toward a clear understanding of flow and fracture
phenomena, particularly during the past decade wherein dislocation studies made on non-
metallic crystals contributed largely to the advanced knowledge of today. As an out-
growth of such work, it has become evident that major advantages may accrue in the
field of ceramics because of the research on dislocation behavior.
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SLIP VECTOR

FIGURE 1. Sketch of section
through a simple cubic lat-
tice showing nature of
structural defect called an
edge or line dislocation.

FIGURE 3. Sketches showing
how a dislocation can be
generated by the action of a
stress when a crystal con-
tains a grown-in dislocation
loop, part of which lies in
a slip plane.
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BARRIER

PRIMARY
SLIP PLANE ± XXX XXI

FIGURE 4. Sketch showing how
dislocations pileup at
barrier.

FIGURE 5. Trans-
mission electron
micrograph show-
ing dislocations
piledup at grain
boundary in cop-
per-aluminum al-
loy 45,000X.

(courtesy P.
Swann.)
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for high purity aluminum
crystal showing difference in
rate of strain hardening for
single and multiple slip.
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and B shown in stereographic
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Lange [33]).
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(b)

FIGURE 8. Sketch illustrating
change in structure of dis-
location boundary produced
by heating. (a) Before
heating; (b) after heating
to a temperature high enough
for rapid dislocation climb.

FIGURE 9. Transmission elec-
tron micrograph showing dis-
location subboundaries formed
by heating deformed molybde-
num to a high temperature
75,000X.

(courtesy G. Thomas.)
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0.05 FIGURE 12. Sketch illustrat-
ing how dislocations can
coalesce to form a crack
nucleus
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FIGURE 13. Photomicrograph of deformed
magnesium oxide showing microcrack
formation at intersections of slip
bands, 187X (Stokes, Johnston, and
Li [26]).

t

FIGURE 14. Sketch showing how disloca-
tions pileup at intersection of slip
bands can lead to cleavage cracks.
Bands AC and BC intersect at point C
where crack nucleation occurs.
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FIGURE 16. Photomi-
crograph of poly-
crystalline magne-
sium oxide showing
examples of micro

-

cracks formed where
slip bands intersect
grain boundary
(Westwood [32]).
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THEORY OF DISLOCATIONS: AN ELEMENTARY INTRODUCTION

Roland de Wit

The paper starts by pointing out the nature of a dislocation as a region of non-
uniform slip. The emphasis is on a pictorial representation to clarify the three
dimensional aspects of the theory. Examples of dislocations in the simple cubic crys-
tal structure are presented, such as the edge, screw, and bent dislocation. A defini-
tion of the dislocation with its associated Burgers or slip vector is given in terms
of a geometrical construction. There is a discussion of the two kinds of dislocation
motion: (1) glide, which is progressive slip, and (2) climb, which is nonconservative
motion. The nature of the force on a dislocation is described. Finally, kinks and
jogs are considered; these are offsets in a dislocation line which result from nonuni-
form motion or dislocation intersections.

Introduction

This symposium will introduce the idea of a dislocation as a physically observed
entity that plays a very important role in the macroscopic mechanical behavior of
crystalline solids. The first paper gave a broad review of the field of dislocations.
This paper will serve to introduce a clear and descriptive definition of a dislocation.
This should be helpful when trying to determine whether an observed imperfection of
unknown origin is a dislocation or not. The paper following this one will present ex-
perimental evidence for believing in the existence of dislocations, and it will treat
in detail some of the techniques for observing individual dislocations.

Though some readers may already be quite familiar with the field, this paper is
addressed primarily to those for whom the concept of a dislocation is a new one. That
is, we shall assume that most readers are wholly unacquainted with the theory of dis-
locations. The paper will be concerned primarily with the geometry of dislocations.
It emphasises a simple physical way of thinking based on pictures, which, it is hoped,
will help clarify the three dimensional concepts that are essential for an understand-
ing of dislocation theory. To illustrate the crystallographic features of a disloca-
tion the simple cubic crystal structure is used, where atomic arrangements in three
dimensions are relatively easy to visualize. The justification for using a simple
cubic for introductory and illustrative purposes is twofold: (1) many calculations
based on it lead to fairly good results, and (2) dislocation theory in other types of
crystal structures is a simple extension of the theory in the simple cubic. This is
so because the concept of a dislocation as such is simply a certain type of imperfec-
tion in a lattice, irrespective of the particular type of lattice under consideration.
A crystal is called perfect if the atoms are arranged in a regular pattern based on a
lattice. By an imperfection is meant a small region where the regular pattern breaks
down and some atoms are not properly surrounded by their neighbors. To study the per-
fect crystal and the crystal imperfection is the primary interest of a field called
solid state physics. The effort in this field is about equally divided between the
two; the perfect crystal is usually studied by quantum mechanical methods, while clas-
sical physics is normally used for studying the crystal imperfection.

The Concept of a Dislocation as Localized Slip

The plastic deformation of crystalline solids is highly anisotropic and inhomo-
geneous. It has been found that deformation does not take place by a uniform shear
of the crystal, but rather by the atoms sliding over one another along well-defined
crystallographic planes, like cards in a deck. This is shown in figure 1. The planes
on which the slip occurs ( slip planes ) are usually the close packed planes (those
planes which are most densely packed with atoms). The directions in which the slip
occurs (slip directions) are usually the close packed directions in the slip planes
(the directions of most densely packed atom rows) . The magnitude of the slip is usu-
ally many interatomic distances in the slip direction. However, it can be considered
to be made up of units equal to a primitive translation vector of the lattice on which
the crystal is based ( slip vectors ) . There is one unit of slip on a slip plane if
every atom on one side of that plane has moved into position originally occupied by
its nearest neighbor in the slip direction.

The basic idea of dislocation theory is that slip is a local process, and that
plastic deformation occurs by the gradual extension of regions of local slip and not
by simultaneous and uniform slip over the whole slip plane. It is apparent that there
must be boundaries separating the slipped regions from the unslipped. These boundaries
are called dislocations and slip proceeds by the motion of these dislocations. Figure
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2 shows how the motion of the boundary of a slipped region extends the slip through
the crystal, until it finally covers the whole slip plane.

Edge Dislocation

When the boundary between the slipped and unslipped regions lies perpendicular to
the slip direction this boundary is called an edge dislocation (or Taylor-Orowan dis-
location) , This is shown in figure 3. Unit slip has occurred over the area ABCD of
the slip plane. The boundary CD of the slipped area is the dislocation. Figure 4
shows the atomic planes above and below the slip plane, which is parallel to the plane
of the figure, the open circles represent atoms just above the slip plane, and the sol-
id circles, atoms just below. Notice that at the dislocation CD three rows of open
circles must join onto two rows of solid circles; the middle row of open circles is
therefore the edge of an extra atomic plane.

If the crystal is viewed along the dislocation line CD, we see the picture shown
in figure 5, which is a photograph of a model of an edge dislocation. The model shows
that the dislocation is the edge of an incomplete atomic plane; hence, the name edge
dislocation. The center (or core ) of the dislocation is a region of severe atomic mis-
fit, where atoms are not properly surrounded by their neighbors in the simple cubic
pattern. The atoms at the edge of the incomplete atomic plane do not even have the
right number of nearest neighbors. The exact arrangements of atoms at the core is not
known.

Across the slipped region to the left of the dislocation the atoms are in register
again across the slip plane, though slightly sheared. This is so because the slip
vector equals a translation vector of the lattice. Unit slip does not disturb the crys
tal perfection across the slip plane. Therefore a dislocation is a structural line
imperfection. Observe that, if the dislocation were to move across the slip plane
(from one side of the crystal to the other), the crystal would deform.

Figure 5 shows that an alternative way of forming an edge dislocation is to re-
move half a plane of atoms below the slip plane or insert an extra half plane above.
This view helps to visualize another way of forming a dislocation namely, by mass
transport. In real crystals this might occur by the diffusion of vacancies or inter-
stitial atoms.

Figures 4 and 5 show that the concept of a dislocation (or any other imperfection
of crystal structure) is really a shorthand for describing the positions of a large
number of atoms - it is much easier to describe crystals by listing the imperfections
than by giving the position of every atom.

Screw Dislocation

If the boundary line of the slipped region lies parallel to the slip direction,
as shown in figure 6, it is called a screw dislocation (or Burgers dislocation). Again
unit slip has occurred over the area ABCD and the boundary AD is the dislocation. Fig-
ure 7 shows the arrangement of atoms. As before, the plane of the drawing is the slip
plane; the open circles represent atoms directly above the slip plane, and the closed
circles, atoms directly below.

Viewing the crystal along a line parallel to CD, we see the picture shown in fig-
ure 8, a model of a screw dislocation. Again, the core of the dislocation is a region
of severe atomic misfit. However, the atoms at the core do have the right nvimber of
nearest neighbors. The atoms nearest to the dislocation are arranged on a regular
helix; hence, the name screw dislocation. In fact, the whole crystal is a single atom-
ic plane in the form of a helicoid, or spiral ramp. This can be seen by carefully
studying figure 8. The distortion around the screw dislocation is a rotationally sym-
metric pattern.^ The strain is pure shear. The slip plane is therefore not uniquely
defined. The same screw dislocation in figure 6 can be produced by slip on any plane
ending on AD.

The method of representing the distortion in these figures makes the dislocation
appear to have a unique slip plane. This is related to the following interesting prop-
erty of a screw dislocation: wherever it intersects the surface of the crystal there
is the beginning of an atomic step on the surface. This incomplete step is typical of
a screw dislocation. A different slip plane would leave the form of the screw disloca-

^A symmetrical screw dislocation might be able to lower its energy by spreading out
in one slip plane; the resulting asymmetric screw will move most easily on that slip
plane.
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tion unaltered, but would change the direction of the step on the surface.

The screw dislocation may be right-handed, as in these figures, or left-handed.

Arbitrary Dislocation on Slip Plane

A slipped region can be bounded by an edge and a screw dislocation as shown in
figure 9. Here unit slip has occurred over the area ABCD and the boundary CD is an
edge dislocation, while AD is a screw dislocation. The two different types of dislo-
cations join each other in a right angle at D. Another way of looking at this situa-
tion is to say that the dislocation changes its character from edge to screw as it
bends through a right angle. Figure 10 shows the atoms just above (open circles) and
just below (solid circles) the slip plane ABCD. Note that the atomic arrangement a-
long CD is similar to that along CD in figure 4 while the arrangement along AD is sim-
ilar to that along AD in figure 7. Figure 11 is a model of this dislocation viewed
along the line CD. Note that the left hand part of the model is similar to figure 8
and the front part similar to figure 5.

There is no reason to expect that an edge and a screw dislocation will join each
other in an abrupt right angle. Rather, the dislocation will tend to curve gradually,
as shown in figure 12. A detailed drawing of the arrangement of atoms near the slip
plane for this curved dislocation is shown in figure 13. The atomic disorder varies
continuously along the curve. At C the dislocation is in the edge orientation and the
atomic arrangement is the same as at C in figure 10; at A it is in the screw orienta-
tion, the same as at A in figure 10. Between C and A the dislocation changes its
character continuously from edge to screw as it turns through a right angle. Follow
the extra plane of atoms starting at C into the crystal and observe that, as the dislo-
cation curves and ceases to be pure edge, the extra plane ceases to be "extra," but
joins onto an atomic plane below the slip plane. This curved dislocation shows that
the edge and screw refer not to properties of the whole dislocation, but to the local
orientations. Another way to view this dislocation is to observe again that it is the
boundary of the slipped area ABC. However, slip has proceeded by different amounts on
different parts of the slip plane.

A dislocation that is neither pure edge nor pure screw is called a mixed disloca-
tion. This type of dislocation may be considered to be made up of elements of edge
and screw dislocation. The amount of mixture of each type is specified by giving the
angle between the dislocation line and the slip direction. For example, we could dis-
cuss the properties of a 60° dislocation.

Even if plastic deformation occurs on a single slip plane, the slipped area may
have an arbitrary shape on that plane. Its boundary is then an arbitrary plane curve,
in other words, a dislocation of continuously changing orientation and character.

Are there any limitations on the curvature of a dislocation? There is good reason
to expect that dislocations will straighten out as much as possible. This will reduce
the amount of elastic strain in the crystal. That is, a dislocation tries to reduce
its energy by being as short as possible. The effect is as if there is a line tension
on the dislocation.

Arbitrary Slip Surface

The dislocations discussed above all lie in a single plane; that plane contains
the slip vector and is therefore the slip plane. However, the most general slipped
area is a surface which everywhere contains the slip vector.

An example of a segmented slip surface is shown in figure 14. Here the slipped
area consists of two planes, ABCD and DEFA, which both contain the slip vector. There-
fore the intersection AD is parallel to the slip vector. The dislocation line CDE is
shaped like an L; it is everywhere perpendicular to the slip vector and therefore edge.
If we look down the line ED from above and concentrate our attention on the slip plane
ABCD, we see the arrangement of atoms shown in figure 15. The section of dislocation
CD (in the plane of the figure) and the section DE (normal to the figure) are both
edges of the same extra plane. This shows, as before, that an alternative way of form-
ing this dislocation is to insert an extra quarter plane of atoms into a perfect crys-
tal. Note also that the atomic arrangement at C in figure 15 is similar to that at C
in figure 4.
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A more general slip surface is shown in figure 16. It contains the slip vector
everywhere, but otherwise follows the arbitrary step AB on the surface. The slipped
area is ABCD and CD is the dislocation. The curve CD is everywhere perpendicular to
the slip vector and therefore an edge dislocation. Again, this dislocation can be ob-
tained by slipping into the crystal an incomplete plane of atoms, whose incomplete
edge follows the curve CD.

More generally, slip may proceed by different amounts on different parts of the
slip surface as shown in figure 17. Here again, the slip surface ABCD contains the
slip vector everywhere and follows the arbitrary step AB, but now terminates in the
arbitrary curve CD, the dislocation. The dislocation has also some screw character in
addition to the edge character of figure 16. The construction of figure 17 allows us
to form by slip a dislocation following any arbitrary curve in a crystal. One can
therefore always visualize dislocations in terms of slip without loss of generality.

However, on an atomic scale, the most general slip surface is made up of segments
of slip planes, which intersect along lines parallel to their common slip vector.
Thus we can resolve any dislocation into straight line segments, which may only be a
few atoms long.

In the discussions so far the dislocation was the boundary of a slipped region on
a slip surface. The dislocation is defined by the slip vector and the dislocation
line. However, we have also seen that dislocations can be created by inserting incom-
plete atomic planes, rather than pure slip. In the next section we shall consider a
more general definition of a dislocation in terms of a more general surface, which how
ever will not necessarily be the slip surface.

General Definition of a Dislocation^

A general definition of a dislocation will now be given in terms of a geometrical
construction. We can visualize a dislocation by imagining that it is made as follows:
Start with a perfect crystal. Make a cut in it along a surface S bounded by a closed
curve C, as shown in figure 18. The curve may intersect the surface of the crystal
in special cases. The positive direction of the normal n to the surface S is related
to the direction of the curve C by the right-hand screw rule. Next, imagine that the
portion of the crystal on the negative side of the surface S is displaced by a vector
distance b with respect to the positive side, b being the same over the entire surface
The vector b is called the Burgers vector and equals a primitive translation vector of
the lattice (slip vector). Examples of it are shown in figure 19 and 20, which will
be discussed below. Unless the surface S contains b (a slip surface) , the relative
displacement of the crystal on each side of the cut either produces a gap or causes
the two sides to overlap. Imagine that atomic layers are added or removed to produce
continuity. The end result is a general dislocation line along the curve C.^

Since b is a lattice vector the atoms are in register again over all the surface
S, except at the region near the dislocation C, where there is appreciable disregistry
and strain. The dislocation is characterized by the curved line C and the Burgers
vector b; it is independent of the surface S. Two results that follow directly from
this deTinition are that (1) a dislocation line cannot end inside a crystal, and (2)
the Burgers vector of a dislocation is constant.

Figure 19 shows how the above general construction applies to the particular case
of an edge dislocation. Part (a) shows the three dimensional relationships similar to
those in figure 3. Part (b) shows a plane of atoms normal to the dislocation line.
The symbol _L (resembling an extra half plane) denotes the dislocation. The surface S

of the definition is taken to be the slipped region of the slip plane. If the disloca
tion runs out of the paper in (b) , then the normal n points down. The upper left hand
part of the crystal, which is also the negative side of S, has been displaced by a
Burgers vector (slip vector) with respect to the lower left hand part.

^Other definitions are often used that are equally satisfactory; for example, in
terms of a Burgers circuit.

^This construction gives a definite direction to the Burgers vector in relation to
the direction of the dislocation. This relationship is the reverse of that adopted by
W. T. Read, Jr. The literature of this field is about evenly divided between the two
choices of the sign of the Burgers vector.

16



Figure 20 shows an example where the surface S is taken to be the extra half plane
above the dislocation. The normal n now points to the left in (b) . In order to per-
form the construction in this case, a cut is made along S and the extra half plane in-
serted. Therefore it is necessary to wedge the crystal apart, displacing the upper
right hand part of the crystal, which is the negative side of S, by a Burgers vector
with respect to the upper left hand part.

In both the above particular cases we see that the crystal is in register again
across the surface S after the introduction of the dislocation. Also, we see that the
atomic arrangement is the same at the core of the resulting edge dislocation, independ-
ent of the choice of the surface S.

This section has emphasized a sign convention. A consistent use of signs and di-
rections is important in the mathematical development of dislocation theory. However,
for the rest of this paper we shall treat directions in space from an intuitive rather
than a mathematical point of view.

Structure of a Dislocation

This section mentions in a qualitative way what has become known as the "disloca-
tion core problem." This is the question of what is the form or fine structure of a
dislocation, i.e., the detailed atomic arrangement at the center or core of the dislo-
cation. Since the distortion is so severe, it is not possible to use classical elas-
ticity theory, which can be applied successfully to small deformations of crystals.
It is necessary to take into account the periodic nature of the crystal. Several ap-
proximate approaches have been made, based on the idea of interatomic forces. The
simplest of these is the one by R. Peierls, who assumed a sinusoidal variation of shear
stress across the slip plane. It led to what is known as the Peierls -Nabarro model of
a dislocation. Though this model is used extensively in the field, any results of it
should be regarded with caution because of the unrealistic sine law assumption.

One of the most important results to come out of a dislocation core calculation
is the dislocation width . This is the area on the slip plane where the atoms are out
of register by more than a certain amount, which is conventionally taken as one-half
the maximum shear strain. Usually it amounts to a few Burgers vectors. Its major im-
portance is in connection with dislocation glide to be covered next.

Dislocation Motion

A dislocation is a configuration of atoms that can move through the crystal. The
motion of a dislocation is a convenient shorthand for describing the motions of a
large ninnber of atoms; each atom moves only a fraction of an interatomic distance as
the dislocation configuration moves through many atomic spacings. Moving dislocations
are responsible for plastic deformation. A dislocation can move either in its slip
plane or normal to it. Motion on the slip plane (or surface) simply enlarges the
slipped area; since only slip is involved, the motion is called slipping or gliding,
or just glide . Hence the name glide plane is sometimes used for slip plane. Motion
normal to the slip plane is called climb .

Figure 21 shows glide of an edge dislocation by one interatomic spacing. The
solid circles represent the positions of the atoms before motion, the open circles,
the positions after. The motion of the dislocation involves only a minor rearrange-
ment of the atoms. Therefore a dislocation is highly mobile. It is easy to see why
the stress required to move a dislocation is at least several orders of magnitude
smaller than the stress required to shear one entire plane of atoms simultaneously over
another in a perfect crystal. Consider the shear on the slip plane. On the unslipped
side of the dislocation, the atoms want to return to the perfect unslipped state; on
the slipped side, the atoms want to go on to the completely slipped state. The atom
at the center of the dislocation is in dead-center position. When the dislocation is
moved from a symmetric position, the work done against the interatomic forces on one
side of the center equals the work done by the interatomic forces on the other side.
Thus the dislocation moves under zero applied stress. However, before the dislocation
can move to the next symmetric position, it has to go through asymmetric positions,
where the interatomic forces do not balance out and an applied stress is needed to
move the dislocation. The same general discussion also applies to glide of a screw
dislocation.

Figure 22 shows climb of an edge dislocation by one interatomic spacing. Again
the solid circles represent the positions before motion, the open circles, after. The
motion results in the extra half plane of atoms extending down to the next lower slip
plane; hence there is one more row of atoms. The motion therefore requires some meth-
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od of adding atoms. If the dislocation moved up, atoms would have to be removed from
the edge of the extra plane. So climb requires mass transport. The climb in figure
22 could take place in two ways: (1) Interstitial atoms could diffuse to the disloca-
tion and join the extra half plane, or (2) atoms from the surrounding crystal could
join the extra plane, leaving lattice vacancies to diffuse away. Climb in the other
direction, when atoms are removed, could also occur in two ways: (1) Vacancies could
diffuse to the dislocation and remove atoms from the extra half plane, or (2) atoms
could break loose from the extra half plane, become interstitial atoms and diffuse a-
way. Thus an edge dislocation is both a source and a sink for both vacancies and in-
terstitial atoms. Climb is often called nonconservative motion (with reference to the
conservation of mass), since atoms must be added or removed from the extra half plane.
Glide is called conservative motion, because it does not require any change in the
number of atoms at the dislocation core.

Resistance to Glide

This section considers the resistance to glide or plastic resistance that a crys-
tal presents to motion of a dislocation. Figure 21 showed how the atoms move when the
dislocation moves one interatomic spacing. The atomic misfit varies periodically with
the period b as the dislocation moves; the configuration repeats itself every time the
dislocation moves a Burgers vector. The energy of atomic misfit varies with the same
period. When the dislocation is in either of the two positions shown in figure 21,
the configuration of atoms is S3nnmetric. The misfit energy is then a minimum.* Be-
tween the minima in energy, there are maxima, which provide the resistance to disloca-
tion motion. The theoretical stress to move a dislocation over this energy hump is a
sensitive function of the dislocation width. This stress is often called the Peierls
force. It can be shown that the energy and hence the plastic resistance decreases as
the width of the dislocation increases. We see now the importance of a core calcula-
tion to estimate the theoretical strength of crystals with dislocations. The same ar-
guments about resistance to glide also apply to the screw dislocation.^

Force on a Dislocation

A moving dislocation can cause the crystal to yield under an applied stress. There-
fore, we can say that the applied stress produces a force on the dislocation. However,
this concept of force is different from the familiar one of Newtonian force on a mass.
It is, rather, the force on a geometrical configuration in a crystal, to which we have
given the name dislocation. So the force on a dislocation should not be confused with
the force on an atom. The two are different, as will be shown below.

Figures 21 and 22 show the type of stresses that are responsible for dislocation
motion and forces on dislocations. The glide in figure 21 takes place as a result of
the applied shear stress t on the upper and lower faces of the crystal. The shear
stress on the left and right faces are necessary to keep the crystal in equilibrium.
The stress is transmitted through the crystal and produces the same shear stress t on
the slip plane. It is seen that the stress results in forces on the atoms that make
them move in the direction of the applied stress; to the right in the upper part of
the crystal, and to the left in the lower part. The dislocation, however, moves only
to the right. This shows that the type of shear stress shown in the figure produces
a force to the right on the type of dislocation shown.

Figure 22 shows that climb takes place as a result of an applied tensile stress
a, which again propagates and produces the same tensile stress on the extra half plane
of the dislocation.^ Again, the atoms experience a force that makes them move in the

*There is another symmetric position, also with a minimum in the energy, at a posi-
tion halfway between the two shown in figure 21.

^The arguments in this section apply to dislocations lying in close packed directions.
The simple cubic crystal structure is a special case where the pure edge dislocation
does lie in a close packed direction. In other structures a screw will always lie in
a close packed direction, but an edge usually does not. It can be shown that the re-
sistance to motion is greatest for a dislocation in a close packed direction.

^The faces of a crystal do not necessarily run parallel to the slip planes or other
special planes inside the crystal. An applied tensile stress may produce a shear
stress on certain planes in a crystal and vice versa. Both glide and climb can there-
fore take place under both shear and tensile stress.
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direction of the applied stress; to the left in the left part, and to the right in the
right part of the crystal. The dislocation now moves down, so that the tensile stress
shown produces a force down on the type of dislocation shown. A compressive stress in
figure 22 would make the dislocation move up, hence produce a force u£ on the disloca-
tion. This last result shows that reversing the applied stress reverses the force on
the dislocation.

Macroscopic Deformation from Dislocation Motion

This section discusses how the crystal deforms macroscopically as a dislocation
moves through it. Figure 23 shows four successive positions of an edge dislocation
as it glides all the way across a crystal, beginning with a perfect unslipped crystal
and ending with a perfect slipped crystal. In the final state (d) , the upper half of
the crystal is offset by one interatomic spacing b relative to the lower half. As
the dislocation moves and the crystal deforms, the applied stress t does work. When
the dislocation moves all the way across the slip plane, the work done is xb per unit
area (the upper surface is offset by b; the force on it is t per unit area). The
force (per unit length) on the dislocation is defined as the work done when a unit
length of dislocation moves a unit distance. So the force on the dislocation in this
example is also rb; the direction of the force is in the direction of motion of the
dislocation, that is from front to back.

Figure 24 shows a screw dislocation as it glides all the way across the crystal.
The symbol $ denotes the dislocation. The slip vector and applied shear stress is the
same as in figure 23, and the associated macroscopic strain is also the same; the
crystal in the final state (d) is offset by a spacing b, which is the same as in fig-
ure 23 (d). This result shows that the macroscopic strain associated with the glide
of a dislocation through a crystal is a shear strain corresponding to the slip plane
and slip direction of the dislocation. Thus the macroscopic strain is independent of
the orientation of the dislocation. This point is often a source of confusion. When
a dislocation sweeps out an area on its slip plane, the slip in the slipped area is
uniquely determined by the slip vector. By the same general argument as for the edge
dislocation above we can also show that the force on this screw dislocation is rb,
but the direction is now from right to left.

In general, the force on a dislocation in glide is equal to the magnitude of the
Burgers vector times the component of the applied stress in the slip plane and slip
direction. The magnitude does not depend on the orientation of the dislocation in the
slip plane. The direction of the force is at right angles to the dislocation, inde-
pendent of the applied stress. A common error is to give the force the direction of
the Burgers vector.

Figure 25 shows the climb of an edge dislocation. In the final state (d) , a plane
(the extra half plane that was above the dislocation) has been added to the crystal;
the crystal has been increased in size by one interatomic spacing b in the direction
of the applied tensile stress. Again, as the dislocation moves an^ the crystal deforms,
the applied stress ct does work. When the dislocation moves all the way across the crys-
tal, the work done is ab per unit area (the back face is moved by b relative to the
front face; the force on it is a per unit area). So the force on the dislocation is
ab and its direction is down.

Here is a simple way to find the direction of the force on a dislocation from an
applied stress on the crystal. If the dislocation were to move in the direction of
the force on it, then the crystal would deform in such a way as to yield to the applied
stress. This is clearly illustrated in figures 23, 24, and 25.

Kinks and Jogs

In the above discussion of motion the dislocation was considered to be a straight
line. However, if the motion takes place nonuniformly along the length of the disloca-
tion, it results in kinks and jogs.

Figure 26 shows kinks in an edge and a screw dislocation. A kink is simply an
offset in the dislocation line lying in the slip plane. It can be readily formed and
annihilated by glide. Kinks arise because a dislocation generally prefers to lie a-
long close packed directions in the crystal. A mixed dislocation making an angle with
a close packed direction can be viewed as small segments lying along close packed
directions, connected by kinks. The dislocation then has a zigzag form. The glide
of the dislocation can be considered to occur by the motion of its kinks. As a kink
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moves along the length of the dislocation, the dislocation moves up by one Burgers
vector.'

Figure 27 shows jogs in an edge and a screw dislocation. A jog is an offset in
the dislocation line that does not lie in the slip plane. For the edge dislocation
in figure 27 (a) the jogs can only be eliminated by adding or removing vacancies or
interstitial atoms at the edge of the extra half plane, i.e., by nonconservative mo-
tion. The climb of an edge dislocation can be considered to occur by the motion of
its jogs. As a jog moves along the length of the dislocation, the dislocation moves
up by one Burgers vector.^

The term jog for a screw dislocation is not so clear, but is generally used. The
jogs in figure 27 (b) could be eliminated by glide, but this glide must occur on another
slip plane. ^ If the screw glides on its original slip plane, then the jogs can only
move along by nonconservative motion. Jogs in screw dislocations may arise by a proc-
ess known as cross glide, i.e., the gliding screw dislocation crosses from one slip
plane onto another.

Another way in which kinks and jogs may arise is by the intersection of disloca-
tions. If one dislocation is intersected by another, the first dislocation acquires
an offset equal in magnitude and direction to the Burgers vector of the second, and
vice versa. This is easy to see in terms of the picture of slip. As the second dis-
location moves, it extends the region of slip over the slip plane. Any line inter-
secting its slip plane, such as the first dislocation, will be offset by b after pass-
age of the second dislocation past the intersection point. The first disTocation will
be kinked by an amount equal to the component of the offset parallel to its slip plane;
it will be jogged by the component normal to its slip plane.

Limit of Dislocation Velocity

Finally let me advance another plausible reason for believing that slip occurs in
a nonuniform way. A disturbance in a solid usually travels at a speed less than that
of sound in the material. Therefore if stresses are applied to a crystal that make it
deform plastically, the effect of the stresses on the surface will not propagate into
the crystal any faster than the speed of sound. So at least for a sufficiently short
time, one has to accept the idea that parts of the crystal have slipped and other
parts have not. XJhen the forces of deformation are withdrawn the crystal is left with
many planes that have undergone partial slip; it is full of dislocations. The speed
of sound is expected to be an upper limit on the dislocation velocity.

Conclusion

This has been an elementary paper. We have simplified certain concepts somewhat
for the sake of clarity. There are many effects in the field of dislocations we have
not discussed. To go into them would have led too far from the basic principles with-
in the space allotted for this paper. It is hoped, however, that this paper has pro-
vided the foundation for understanding dislocation theory. We discussed how plastic
deformation takes place through the motion of dislocation lines. The picture of slip
has been emphasized, because it lends itself to a pictorial representation designed
to give a physical feeling for dislocations. Another approach could have been used,
emphasizing another aspect of dislocation theory. The basic ideas are illustrated by
concrete examples which are physically possible, but somewhat simpler than actual crys-
tals. The subsequent lectures of this symposium will undoubtedly introduce some of the
more subtle aspects of dislocation theory.

'The kinks discussed here form abrupt right angles in the dislocation line as illus-
trated in figure 26. However, the line tension discussed earlier will tend to smooth
these out somewhat.

^ There is an analogy between the following two concepts: Slip proceeds by the mo-
tion of dislocations, and dislocation motion proceeds by the motion of kinks or jogs.

^ In some crystals there are secondary slip planes which present more resistance to
dislocation glide than the primary slip planes. If a screw dislocation has jogs on
such a secondary slip plane they will not so readily be eliminated by glide.
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I am indebted to A. W. Ruff, Jr. , for showing me the general method of constructing
crystal models, and to R. Price for constructing the model of a bent dislocation shown
in figure 11. L. M. Kushner kindly loaned me the slides from which figures 1 and 2

were made. I thank Gloria, my wife, for very helpful discussions and suggestions.
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FIGURE 1. Plastic deformation of a crystalline solid does
not take place by a uniform shear, as shown at the top;
rather, it takes place by planes sliding over one another
along well-defined crystallographic directions, as shown
at the bottom.

FIGURE 2. Plastic deformation by slip is not simultaneous
and uniform over the whole slip plane, as shown at the top;
rather, it is a local process and it proceeds by the
gradual extension of regions of local slip, as shown at
the bottom. The boundary between the slipped and unslipped
regions is a dislocationo.



FIGURE 4. Arrangement of atoms
around the edge dislocation
shown in figure 3 . The plane
of the figure is parallel to
the slip plane. ABCD is the
slipped area and CD the dis-
location. The open circles
represent atoms in the atomic
plane just above the slip
plane and the solid circles,
atoms in the plane just below
the slip plane.
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FIGURE 5. Photograph of a crystal model of an edge dislocation. The crystal
is oriented so that it is viewed parallel to the dislocation line (CD in fig-
ures 3 and 4). The dislocation is a region of severe atomic misfit, where
atoms are not properly surrounded by their neighbors. Note that the disloca-
tion is the edge of an incomplete atomic plane; hence, the name edge disloca-
tion.

FIGURE 6. The slip that produces
a screw dislocation. Unit slip
has occurred over ABCD, The
screw dislocation AD is parallel
to the slip vector. (From Dis-
locations in Crystals by W. T.
Read, Jr., copyright 1953

,

McGraw-Hill Book Co., Inc. Used
by permission.)
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FIGURE 7. Arrangement of atoms
around the screw dislocation shown
in figure 6. Open circles repre-
sent the atomic plane just above
the slip plane; solid circles rep-
resent the atomic plane just below.
(From Dislocations in Crystals by
W. T. Read, Jr., copyright 1953,
McGraw-Hill Book Co., Inc. Used
by permission.)

SLIP
VECTOR

FIGURE 8. Crystal model of a screw
dislocation. The model is viewed
perpendicular to the dislocation
line (or parallel to CD in figures
6 and 7) . The dislocation runs
horizontally through the center of
the crystal, parallel to the slip
vector. Note that the crystal is
a single atomic plane in the form
of a helicoid, or spiral ramp;
hence, the name screw dislocation.
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FIGURE 9. Dislocation with right
angle bend. Unit slip has oc-
curred over the area ABCD. The
dislocation line is CDA; CD is
in edge and AD in screw orien-
tation. (Adapted from Disloca-
tions in Crystals by W. T.
Read, Jr., copyright 1953,
McGraw-Hill Book Co., Inc. Used
by permission.)

ECTOR

SLIP
VECTOR

FIGURE 10. Arrangement of atoms for the dislocation shown in
figure 9. The open circles represent atomic planes above
the slip plane ABCD, the solid circles, those below.
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FIGURE 11. Model of dislocation with right angle bend. The model is viewed
parallel to the edge and perpendicular to the screw component of the disloca-
tion (along the line CD in figures9 and 10). Compare this figure with figures
5 and 8.

FIGURE 12. Unit slip in the area
ABC produces a curved dislocation
AC lying in a single slip plane.
(From Dislocation in Crystals by
W. T. Read, Jr., copyright 1953,
McGraw-Hill Book Co., Inc. Used
by permission.

)
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FIGURE 13. Arrangement of atoms for the curved dislocation
shown in figure 12. Open and solid circles represent
atoms just above and just below the slip plane. (From
Dislocations in Crystals by W. T. Read, Jr., copyright
1953, McGraw-Hill Book Co., Inc. Used by permission.)

FIGURE 14. An example of slip
that produces a bent dis-
location which does not lie
in a single slip plane. The
boundary CDE of the slipped
area is an edge dislocation.
(From Dislocation in Crys-
tals by W. T. Read, Jr.

,

copjrright 1953, McGraw-Hill
Book Co., Inc. Used by
permission.

)
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FIGURE 15. Arrangement of
atoms in a plane parallel to
ABCD of figure 14. The sec-
tion of dislocation CD lies
in the plane of the drawing;
the section DE is normal to
the drawing. (From Disloca-
tions in Crystals by W. T.
Read, Jr», copyright 1953,
McGraw-Hill Book Co., Inc.
Used by permission.)

SLIP
VECTOR

FIGURE 16. A general slip sur-
face. The surface contains
the slip vector everywhere,
but otherwise has an arbi-
trary shape. Unit slip has
occurred over the area ABCD.
The curve CD is everywhere
perpendicular to the slip
vector, and hence an edge
dislocation.

FIGURE 17. A general disloca-
tion. Slip on the same
general slip surface as
shown in figure 16, has pro-
ceeded by different amounts
on different parts of the
surface. The curve CD is a
dislocation of continuously
varying orientation. A dis-
location following a com-
pletely arbitrary curve in
the crystal can be formed by
the appropriate choice of
the slip surface and the
extent of slip on it. ^ SLIP^ VECTOR
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FIGURE 18. Construction of a gener-
al dislocation. The surface S,
bounded by the closed curve C, is
shown with the sign convention for
the normal n to S. A cut is made
along S, ariS the negative side of
the cut is displaced by b relative
to the positive side. TEe result
is a general dislocation along C.

DISLOCATION
SURFACE

S

DISLOCATION

LINE C

^ BURGERS^ VECTOR

(a)

FIGURE 19. Construction of an edge
dislocation. The surface S is
the slipped region of the slip
plane. The symbol X denotes the
dislocation. (a) Three dimen-
sional view (similar to figure 3);
the symbols defined in figure 18
are shown for this particular
case. (b) A plane of atoms
normal to the dislocation line
(similar to figure 5). Note that
the crystal is in register across
the surface S. (Part (b) is
adapted from Dislocations in
Crystals by W. T. Read, Jr.

,

copyright 1953, McGraw-Hill Book
Co., Inc. Used by permission.)

BURGERS
VECTOR

(b)

31



BURGERS
VECTOR

BURGERS
VECTOR

(a)

BURGERS
VECTOR T

FIGURE 21. An edge dislocation
moves one interatomic spacing
to the right on its slip plane
by glide. The solid circles
represent the positions of the
atoms before motion, the open
circles, the positions after.
The sheer stress t is respon-
sible for the glide. (Adapted
from Dislocations in Crystals by
W. T. Read, Jr., copyright iy53,
McGraw-Hill Book Co., Inc. Used
by permission.)

FIGURE 20. Another construction
of an edge dislocation. The
surface S is the extra half
plane above the dislocation,
(a) Three dimensional view
showing the symbols defined in
figure 18. (b) A plane normal
to the dislocation. The atoms
are in register across S. Note
that the resulting dislocation
is identical to the one in fig-
ure 19 (b). (Part (b) is
adapted from Dislocations in
Crystals by W. T. Read, Jr.,
copyright 1953, McGraw-Hill
Book Co., Inc. Used by per-
mission, )

(b)

FIGURE 22. An edge dislocation moves
one interatomic spacing down to the
next slip plane by climb. The solid
and open circles represent, respec-
tively, the positions before and after
motion. The tensile stress a is re-
sponsible for the climb.
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OFFSET= b

(a) (b) (c)

FIGURE 23 „ Macroscopic deformation from edge dislocation glide. When the dislocation
moves on its slip plane, the crystal deforms; an applied stress can do work in the
deformation, (a) The applied shear stress that does work when the dislocation of
figure 21 glides. (b) An edge dislocation, coming in from the front face of the
crystal, has moved ;one-third of the way across the slip plane. (c) The same, except
that the dislocation has moved two-thirds of the way across, (d) The dislocation
has moved all the way across; the offset of the upper surface relative to the lower
is equal to the slip vector b.

OFFSET = b

FIGURE 24. Macroscopic deformation from screw dislocation glide, (a) The same applied
shear stress as in figure 23(a). (b) A screw dislocation, coming in from the right
face, has moved one-third of the way across the slip plane. The symbol f denotes the
screw dislocation. (c) The same, except that the dislocation has moved two-thirds of
the way across, (d) T'he dislocation has moved all the way across; the offset b is
the same as in figure 23(d).

(a) (b) (c) (d)

FIGURE 25. Macroscopic deformation from edge dislocation climb. (a) The applied
tensile stress that does work when the dislocation in figure. 22 climbs. (b) An edge
dislocation, coming in from the upper face, has climbed one-third of the way down
into the crystal. (c) The same, except that the dislocation has climbed two-thirds
of the way down. (d) The dislocation has climbed all the way through the crystal;
as a result, an extra atomic plane (shaded) has been added to the crystal, displacing
the back face by a distance b relative to the front face of~~-the crystal.
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(b)

FIGURE 26. Kinks in dislocations. The kink is an offset of the dislocation in the
slip plane, (a) Edge dislocation with two kinks. (b) Screw dislocation with two
kinks

.

(b)

FIGURE 27. Jogs in dislocations. The jog is an offset of the dislocation not in the
slip plane, (a) Edge dislocation with two jogs, (b) Screw dislocation with two jogs.
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OBSERVATIONS OF DISLOCATIONS

H. G. F. Wilsdorf

The Franklin Institute Laboratories
Philadelphia 3, Pennsylvania

1. Experimental Techniques

I. 1. Introduction

Methods for the direct examination of dislocations have only been developed since
1953, but dislocation theory had already existed for two more decades. Thus, as soon
as each experimental method became available, it was immediately employed to test the
various tenets of dislocation theory. This process is still going on, but the theoret-
ical predictions concerning the basic properties of dislocations have now been con-
firmed.

Above all, the fundamental hypothesis that glide deformation in crystals is prop-
agated by moving dislocations, each associated with a smallest unit of slip comparable
to atomic distances, needed confirmation. The first part of this proof came compara-
tively late in the whole development, and only with the advent of diffraction electron
microscopy. Several motion pictures were prepared within a short period of time show-
ing dark lines which were moving at varying speeds in thin metal foils a few thousand
Angstroms thick [1,2].^ However, much basic information had already been obtained
earlier by other means.

It is the aim of this paper to describe the experimental techniques which have
made the most significant contributions and to discuss their applications and limita-
tions. Taking into account the purpose of this series of lectures, the reader will
not expect completeness of literature quotations; however, his attention will be drawn
to more detailed articles which do exist for some of the methods described. Concerning
the properties of dislocations, as deduced by theoretical considerations, reference is
made to the preceding article by R. deWit on "Theory of Dislocations."

1.2. Decoration Techniques

The early attempts to study dislocations experimentally were made with light micro-
scopes. In these the investigator was greatly concerned with "magnifying" dislocations
by some means in order to bring these atomistic line defects into the range of his in-
strument's resolving power. One powerful method of achieving this end makes use of the
known fact that foreign atoms are drawn into the cores of dislocations [3]. In edge
dislocations, atoms larger than those of the host crystal are attracted to the regions
of dilatations, small atoms into the regions of compression expansion. In this way
the free lattice energy is reduced. Although normal stresses are absent in the stress
field of screw dislocations, these, too, attract foreign atoms, particularly when ex-
tended, since their stress fields may be reduced by the shear strains of interstitial
foreign atoms [4], and because their free energy may be reduced in the atomic layers
bordering the stacking fault [5]. The predicted accumulation of impurity atoms at dis-
location lines as well as the high stresses in their immediate vicinity make disloca-
tions the preferred nucleation sites for precipitates. As a consequence, by control-
ling the nucleation and growth of precipitates through proper heat treatments, it is
possible to "decorate" the dislocations with particles which are large enough to be
seen with a light microscope, but still small enough to afford the requisite resolu-
tion. The techniques of observation as well as the precipitation methods vary consid-
erably as to whether the specimens are ionic crystals, semiconductors, or metallic
crystals, and, therefore, they will be treated separately for these three classes of
materials.

The optical transparency of most ionic crystals represents a considerable advan-
tage since it makes it possible to see decorated dislocation lines in their three-
dimensional distribution. Partly for this reason, dislocations in alkali and other
metal halides have been studied by many investigators. This whole field of investiga-
tion was first opened up by Hedges and Mitchell [6], who discovered in 1953 that sub-
boundaries in silver bromide single crystals can be made visible and appear as parallel
lines or networks after suitable treatments. Figure 1 is one of their later micro-
graphs and is representative of the beautiful results obtained by Mitchell and his
group. The method employed to decorate the dislocations is as follows: Crystals,

^Figures in brackets indicate the literature references on page 48.

35



studied either after deformation or in the as-grown state, are subjected to a heat
treatment 350 °C) in bromine vapor under pressure of a few atmospheres, for various
lengths of time, and then cooled rapidly. After a subsequent short exposure to filtered
light, photolytic silver appears along dislocation lines. The decoration process is
effective within a 40p, thick layer from the surface, and thin wafers may be cleaved
from the crystal surface for detailed light microscopical studies of dislocation sub-
bbundaries and dislocation reactions.

A few years later Amelinckx [7] described similar experiments on sodium chloride.
Figure 2 illustrates the essential features of his preparation technique. A hole is
drilled into a single crystal of NaCl and filled with sodium. After annealing the
crystal at a temperature of 750 °C, many fine precipitates of soditnn are observed dis-
tributed throughout area B of the specimen (indicated by dots in figure 2) but are ab-
sent in area A. At the boundary between A and B, preferred precipitation, not masked
by random precipitation, is fovmd along dislocation lines. They are studied in thin
wafers cleaved from the interface area C. An example of decorated dislocations is
shown in figure 3

.

Amelinckx [7] has summarized considerations on a decoration mechanism which appar-
ently causes the segregation of colloidal sodium at dislocation lines. On the arrival
of F-centers at jogs, sodium ions are believed to be neutralized, and rows of sodium
atoms along the dislocation lines are formed as a consequence. High mobility of sodivim
atoms along the dislocation axis leads to segregation as the supersaturation of F-cen-
ters increases with continued cooling. However, during cooling from as high a temper-
ature as 750 °C, there exists also a supersaturation of vacancies. Pratt [8] has elab-
orated on the decoration process by considering the arrival of vacancies at negatively
charged jogs. It is a feature of both mechanisms that the sodivrai in contact with the
crystal provides chlorine vacancies and electrons that move through the crystal and
are finally attracted to dislocations.

These early papers stimulated much work to improve decoration techniques for dis-
locations in ionic crystals, and many attempts have been made to eliminate or to re-
duce the major shortcomings of the technique, namely the high annealing temperature
and the necessity of small impurity concentrations in the original crystal. Mitchell
with his coworkers and the School at Gent have achieved many Improvements in techniques
[9,10,11,12] and extended them to a number of alkali and silver halides [13,14]. These
studies have yielded valuable information on dislocation boundaries and dislocation re-
actions [15,16,17,18,19,20,21]. Most recently, Childs and Slifkin [22] succeeded in
decorating dislocations in large crystals of silver chloride by subjecting the speci-
mens to short light pulses with a synchronous driving electric field. This procedure
[23] produces electrons which are swept into the crystal and, when trapped, convert
silver ions into atoms. Aging at room temperature results in the decoration of dis-
locations .

Silicon, a semiconductor , although opaque to visible light, is transparent to in-
frared light, and it is this property which made it possible to study decorated dislo-
cations in this material by a novel technique. The method was developed by Dash, em-
ploying a microscope in conjunction with an infrared image tube [24]. The decoration
of dislocations occurs in silicon crystals of about 1 mm in thickness, when the etched
crystal, whose surface has been wetted with a dilute copper nitrate solution, is heated
at temperatures around 1,200 °C for about an hour and then cooled within minutes.
Copper diffuses into the crystal during the heat treatment, and during the period of
rather rapid cooling small precipitates form along the dislocations. The size of the
particles (a few microns) and the resolving power of the infrared equipment limit the
resolution of the method severely. In this respect it is fortunate that single crys-
tals of Si can be grown with very low dislocation densities [25], and the most inter-
esting results have been obtained in specimens with p ~ 10"* cm-^ .

Figure 4 is an example of the results that have been obtained. This particular
micrograph is of special interest since, at the same time, it is proof for a 1:1 corre-
lation between dislocations and etch pits, which will be discussed in the following
chapter. Recently, the infrared technique was applied to a detailed study of the
climb of dislocations induced by the diffusion of gold into silicon [26].

In applying the decoration principle to metals, it becomes necessary to add one
more step to the preparation procedure. Optical observations on metals are limited
to their surfaces, and the minute precipitates, present where decorated dislocations
intersect surfaces, cannot be distinguished from the matrix with a light microscope.
This fact makes it imperative either to etch the specimens or to make replicas of elec-
tropolished surfaces, suitable for investigation with the electron microscope, after
the decoration treatment.
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It had been observed as early as 1936 that indistinct rows of precipitates some-
times formed parallel to slip planes in aluminum rich aluminvrm-copper alloys, and addi-
tional work confirmed that preferred precipitation may take place in slip bands [27,28,
29]. Later Castaing and Guinier [30] and Lacombe and Berghezan [31], partly using
replicas examined in the electron microscope, detected sub-boundaries which were out-
lined by copper rich precipitates in Al-4 percent Cu. In 1954 Wilsdorf and Kuhlmann-
Wilsdorf [32] decorated dislocations in deformed polycrystalline Al-2 percent Cu and
provided for the first time experimental evidence for single dislocations in a metal.
Moreover, they found segments of concentric loops outlined by fine precipitates and
identified them as sequences of dislocations emitted by a dislocation source (figure
5). In further similar work these authors [33], as well as Thomas and Nutting [34]
and Takeyama and Koda [35], investigated decorated single dislocations in networks and
low angle boundaries in alviminum-copper alloys. A few years later Jaquet and Weill
[36], using the same technique, published additional evidence for the operation of
Frank-Read dislocation sources within grains of Al-4 percent Cu. The technique yielded
only very limited results on dislocation arrangements in slip bands.

The decoration and preparation of specimens used in all of the above investiga-
tions proceeded in the following sequence: (1) rapid water quench after solution
treatment at 530 °C; (2) plastic deformation; (3) anneal at 180 °C (or up to 230 °C)
for a few hours; (4) electrolytic polish-etch; (5) replication for examination with
electron microscope. Although the technique is limited to surface observations, it
is also suitable for obtaining information on dislocations within crystals, since the
specimens can be electropolished progressively.

Another alloy, 3 percent silicon- iron, has been extensively studied by a decora-
tion-etch pit technique [37,38]. Suits and Low found that the decoration of disloca-
tions in this material was due to the segregation of carbon [39]. An amount of 0.0005
atomic percent C and a heat treatment at 160 °C for 15 min are sufficient to decorate
dislocations to the extent that they can be detected by a subsequent etch, even though
no precipitates have formed on them. Studies of dislocations introduced during deforma
tion or growth produced interesting results on polygonization. and small angle bounda-
ries. Later, Low and Guard [40] succeeded in observing dislocation arrangements in
active slip planes by replicating surfaces parallel to these planes.

The decoration and etching of dislocations in a 70/30 brass (again without the
formation of actual precipitates) is possible when 0.6 percent cadmium is added to the
melt [41]. Quenching from 600 °C, defomnation, annealing for a few hours at 200 °C
and electro-etching results in patterns as illustrated by figure 6. The small size of
the etch pits obtained in conjunction with the use of replicas for electron microscopy
allows a very high resolution, namely, up to dislocation densities of p = 10^° cm~^

.

The results obtained from these studies range from information on dislocation networks
and subboundaries to the distribution of dislocations on active slip planes and to
measurements of dislocation densities and other parameters of importance to the theory
of plastic flow in metals [42].

Cadmium added in amoimts of 0.1 percent to zinc is effective in decorating dislo-
cations in growth boundaries [43,44,45] which formed during solidification. The micro-
graphs taken with the light microscope (see figure 7) are somewhat similar in appear-
ance to those shown in figures 1 and 3 obtained on ionic crystals in transmitted light.
However, while the lines seen in the latter are due to single dislocations, the dotted
lines in figure 7 represent the intersection of boundaries with the surface, which
generally are not resolved into single dislocations. A subsequent refinement permitted
Damiano [46] to decorate and etch single dislocations (see figure 8). While the spa-
tial distribution of decorated dislocations in ionic crystals can be investigated sim-
ply by moving the column of the microscope, complex techniques had to be devised for
similar studies on metals. One of these, for the continuous recording of etch patterns
[47], will be described in section 1.3. Also, the electron microscope has been success
fully employed when it became possible to keep the size of etch pits small enough,
i.e., ~0 . 5)j,.

1.3. Etching Techniques

Efforts to mark the emergence of dislocations at surfaces represent refinements
of etching techniques which had been known for many decades to crystallographers and
metallurgists. If a crystal sphere is etched with a suitable reagent, its surface is
attacked with varying speed, depending on the differences in chemical potential be-
tween surface atoms in crystallographic planes of different orientations.
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Similarly, it is possible to reveal even undecorated dislocations by means of
etching, since the chemical potential of atoms at the point of emergence of a disloca-
tion at the surface is higher than those at a perfect surface. Experience has shown
that under suitable conditions etch pits may be formed at edge as well as at screw dis-
locations. Since the shear strains in the elastic stress field of a screw dislocation
are zero at a free surface, it thus appears certain that it is not the elastic energy
but the core energy of a dislocation which provides the necessary increase in free en-
ergy for preferential etching at dislocation sites [48],

It is generally agreed that the removal of atoms from a crystal surface proceeds
along atomistic steps which contain kinks [49]. The first requirement for the produc-
tion of isolated etch pits at dislocations is, then, the preferential formation of
two-dimensional nuclei at dislocation sites, and the second requirement is a suitable
ratio between the removal rate of atoms from the steps, V , and the nucleation rate
of new steps, V . According to Johnston [50], the condition for producing visible pits
is satisfied when V /V is smaller than 10. In controlling this ratio one is obviously
limited in changing^V , since the difference in chemical potential between a perfect
surface and a surface'^at the point of a dislocation's emergence is small. Therefore,
attempts have been made to affect the rate of dissolution along atomistic steps. Gil-
man, Johnston, and Sears [51] have shown experimentally that the etch pit formation at
dislocation sites in LiF can be influenced by changing the under- saturation of the
etchant as well as by adding foreign ions to it. They found that distilled water with
an addition of about 2 x 10~^ mole fraction of FeFg was the most effective etchant,
and that above 25 percent LiF saturation the solution ceased to etch preferentially
at dislocation sites. Recently, Ives and Hirth have studied the dissolution kinetics
of dislocation etch pits in LiF and determined the variables -- time, temperature,
undersaturation, crystal perfection, and orientation [52]. Similar studies have been
carried out on Ge by Riessler [53]. Theoretical considerations on etching at disloca-
tion sites may be found in papers by Cabrera et al. [54,55,56].

The major prerequisite for producing etch pits preferentially at dislocation sites
is a very smooth and clean surface. For most metals and alloys this condition cannot
be satisfied easily, and chemical and electrolytic polishing techniques are frequently
employed. Ideal surfaces for this purpose, however, can be obtained by cleavage. It
is rather fortunate that many ionic crystals cleave easily and that these cleavage sur-
faces are not parallel to active slip planes. On metals, etching solutions attack the
surface at dislocation sites only if they are parallel within a few degrees to low in-
dexed planes. This is understandable from Cabrera's analysis [55], because nonclose-
packed planes consist practically of monoatomic steps, and the dissolution proceeds
without the necessity of forming nuclei. In fact, all detailed results, so far, on
pure metals have been obtained on {111] planes^, which indicates a severe limitation
of the etching technique as applied to metals.

The shape of etch pits allows conclusions to be drawn regarding certain charac-
teristics of dislocations. Primarily, the shape of a dislocation etch pit reflects
the symmetry of the respective surface, provided a suitable etchant is applied. Devi-
ations from symmetry, however, may be interpreted in terms of the orientation of the
dislocation at the surface. Figure 9a shows a drawing of square pits which may be ob-
tained on a {100} plane of NaCl. The pits are symmetrical with regard to their apex,
and it can be deduced that dislocations meet the surface perpendicularly. On the other
hand, if dislocation lines include an angle a with the normal to the surface, one finds
a, being the distance from the apex to the symmetry center of the pit, related to d,
the depth of the pit as a = a/d (see figure 9b). The arrangements of pits in rows at
regular intervals indicate in most cases the presence of a dislocation boundary or a
hexagonal network. The latter would show pits with the apex shifted to one side in
alternating fashion, as drawn in figure 9c. Concerning the analysis of tilt and twist
botmdaries, Amelinckx [57] was able to distinguish between screw and edge dislocations,
since they gave rise to pits of different depth. Gilman, Johnston, and Sears [51] con-
firmed this result on LiF showing explicitly that edge dislocations produce deeper pits
than screw dislocations.

^However, F. W. Young has been able to obtain etch pits in copper on {100} and {110}
faces (J. Appl. Phys. 32, 192 (1961)).
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The depth of an etch pit, moreover, can also be influenced by the presence of
impurities, to the extent that in many instances it has become possible to differen-
tiate between "old" and "new" dislocations [58,59]. Depending on the experimental con-
ditions (choice of etchant and particular effect of the impurities), "old" dislocations,
i.e., dislocations which remain in the crystal after a heat treatment or which have
been formed during solidification and which, by inference, contain impurity atmospheres,
may be deeper or shallower than dislocations newly introduced by plastic flow. The
decision as to whether "old" or "new" dislocations have given rise to etch pits can
normally be made by evaluating their arrangements. Recently, Livingston [60] found
that positive and negative edge dislocations produce etch pits of different depth on
{111} planes of copper under carefully controlled conditions; again, the distribution
of pits in conjunction with planned experiments on single crystals enabled the inves-
tigator to arrive at unambiguous conclusions. A further refinement in applying the
etch pit technique to studies of dislocations during plastic flow in crystals allowed
Oilman and Johnston [581 to follow the path of dislocations in LiF. Etching the spec-
imens before and after straining produced etch pits of different shape, namely, the
usual sharp pits and others with a flat bottom. The latter arise because a pit ceases
to grow in depth after the dislocation is removed from its original site. Repeated
etching after the dislocation has moved away will only widen the original pit, which
now develops a flat bottom, while a sharp but smaller pit indicates the new site of
the dislocation (figure 10). Equivalent experiments on copper were also successful
[61,62].

Earlier investigators were greatly interested in finding conclusive evidence as
to whether or not there existed a 1:1 correspondence between etch pits and dislocations.
Ionic crystals were found very suitable for such investigations and provided proof that
in many, but not all, techniques, every pit marks the point of emergence of a disloca-
tion and every dislocation is marked by a pit. One method used to investigate this
point is as follows: After cleaving a deformed crystal, the two surfaces were etched,
and the resulting patterns were compared. From the perfect agreement of the pit dis-
tribution (see figure 11), it was concluded that with suitable etchants the pits in-
dicated the emergence of dislocations at the surface in a 1:1 ratio [58]. Another
method is to etch ionic crystals after decorating the dislocations in them. The test
procedures just described cannot be applied in general, and a comparison of dislocation
density and dislocation patterns as shown by experiment with estimated data is usually
made as a check.

Most etch pit studies have been carried out with light microscopes since it is
very difficult to obtain etch pits with diameters less than l\x. This limits the appli-
cation of etching techniques to crystals containing less than 10® dislocations per
cm^ . For a number of applications it is most desirable to follow the progress of etch
patterns by cinemicrographic recording techniques [47]. Damiano and Herman [63] showed
that the apparatus was capable of recording 2 frames per second and permitted meaning-
ful enlargements of up to 200X.

To date, it is not possible to predict a successful etchant for dislocations, and
no attempt will be made here to list the numerous solutions which have been described
in the literature. There are a number of excellent review articles on the subject which
contain detailed information and many literature references. Johnston's paper [50]
specialized in non-metallic crystals and contains, in addition to 337 references, tables
with etching solutions. A Russian review article [64] covers metals, semiconductors,
and ionic crystals, and lists many etching solutions and 264 references.

The great value of the etching technique with regard to the exploration of specif-
ic properties of dislocations is obvious from the above discussion. In addition,
studies of sub-structures, polygonization, fracture, dislocation movements and others
have been aided by this technique, some of which will be mentioned in section 2 of
this paper.

Other etching techniques, such as thermal etching [65,66,67,68,69], ionic etching
(sputtering) [70,71,72], and etch pit formation by the condensation of vacancies [73]
have met with some success, but it appears at present that their application is rather
limited.

1.4. Diffraction Techniques

X-rays and electrons are diffracted by crystal lattices. Atoms in a lattice are
arranged in planes, and the direction of the diffracted beams is given by Bragg 's law

2*d sin 9 = xi'X,
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where d is the distance between the reflecting lattice planes , 9 the angle subtended
between those planes and the incident beam, X the wavelength, and n is an integer.
For exploring the lattice structure, it is equally of importance to know the intensity
of the diffracted beams, which can be calculated with the help of the structure factor
F. In exponential form, F can be written as

f being the atomic scattering factor, hkl the indices of the reflection, and uvw in-
dicating the coordinates of the atoms in the unit cell. The above expression applies
only to the perfect crystal lattice. Distortions of the lattice in the vicinity of
dislocations can result in a change in the amplitude of the diffracted waves and hence
in a change in the diffracted beam's intensity. This is the basis for the diffraction
techniques discussed in the following paragraphs.

It is advantageous to treat the formation of dislocation images by X-rays and
electrons separately. Although the diffraction mechanism for X-rays and electrons is
basically the same, there exists, however, a distinct difference in the image forming
capability of X-rays and electrons. While the former cannot be focused properly by
applying conventional optical principles, the path of electrons can be readily influ-
enced by magnetic fields, and images of high resolution and quality may be obtained.
Obviously, then, the experimental techniques for these two radiations in the study of
single dislocations must be substantially different. Also, the penetration power
through matter is much higher for X-rays than for electrons, so that specimens of dif-
ferent thickness have to be used.

Considering the propagation of X-rays through crystals, one has to remember their
high penetration power, which makes X-ray techniques a very suitable tool for studying
dislocations within thick crystals. Diffracted X-ray beams, transmitted through single
crystals, suffer an intensity loss which, for equal thickness, becomes larger with in-
creasing lattice perfection. This attenuation of X-ray beams is known as primary ex-
tinction" and is caused by interference between repeatedly reflected X-rays at the
Bragg angle. Since, usually, the distorted crystal volume around a dislocation upsets
the phase relationship between diffracted beams, X-rays passing close by dislocations
are transmitted with much higher intensity than those passing through the perfect lat-
tice. The result is that beams of parallel, monochromatic X-rays, being reflected
from a set of crystal planes in an otherwise rather perfect crystal, exhibit zones of
high intensities which are a direct projection of dislocations in the crystal.

The behavior of diffracted X-ray beams described above applies only if the Burgers
vector has a normal component with respect to the reflecting lattice planes, as will
be discussed with the help of figure 12 (an analytical description is beyond the scope
of this article) . The figure shows part of a dislocation loop in the simple cubic
lattice with the screw component lying vertical and the edge component being parallel
to the horizontal direction. It is immediately seen that --at least within the ac-
curacy of representation of this figure -- all planes containing the Burgers vector
remain undistorted while those which deviate from this orientation are curved. The
lattice curvature becomes larger the more normal the planes are with respect to the
Burgers vector. Consequently, dislocations become visible only if the reflecting fam-
ily of lattice planes makes a significant angle with the Burgers vector. This is a
most important condition; moreover, it may be utilized to determine the dislocation's
Burgers vector which cannot be simply obtained from micrographs. Conversely, in the
majority of cases the glide plane of the dislocations is known or can be guessed. This
then leaves the choice of three Burgers vectors in the case of {111} slip planes in
fee crystals, or two 1/2 <111> and one <100> Burgers vectors for a {110} slip plane in
bcc, etc. In order to decide among the various possibilities, the specimen may be
oriented for various Bragg angles until the dislocations in question become invisible,
while others with different Burgers vectors must still appear on the photographic
plate. In this way the Burgers vector can be determined, the knowledge of which often
is of utmost importance for the analysis of dislocation patterns.

Of the methods based on the above principles, the one to be described first is

due to Lang [74,75], who named it "projection topography." A schematic illustration
of the technique is given in figure 13. A collimated, monochromatic X-ray beam of
parallel rays is directed onto the crystal specimen, which is oriented for Bragg re-
flection. A lead screen prevents the primary beam from reaching the photographic
plate, allowing only the diffracted beam to sensitize the film. In order to obtain

n

(1)

a. X-ray Techniques
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a topograph of the whole crystal, the specimen and film are put on a carriage so that
they may be moved together parallel to the crystal. The thickness of the specimen is

in the order of 1 mm. Great care has to be taken to produce smooth surfaces, since
small pits and scratches will show in the photographs and cannot be distinguished from
the contrast caused by dislocations without additional experiments.

A perfect surface is even more important when using a reflection technique which
is known as the "Berg-Barrett" technique (figure 14) [76]. Here a monochromatic X-
ray beam collimated by a narrow slit strikes the surface of a crystal, and the dif-
fracted beam is reflected onto a photographic plate which has to be as close to the
specimen as is possible. The latter condition is dictated by the fact that the dif-
fracted X-rays, owing to the slightly divergent beam, are lying on a cone so that the
image of a point in the specimen will appear as a short arc on the photographic plate.
In order to keep this distortion to a minimum, the distance between photographic plate
and specimen should be as small as possible. In principle, this applies also to Lang's
technique

.

Figures 15 and 16 illustrate the results which can be obtained with the trans-
mission and reflection technique, respectively. In both photographs single disloca-
tions are easily discernible and show up either as long lines or as slightly elongated
spots. Figure 16, in addition, demonstrates a high density of dislocations in sub-
boundaries. These two examples are suitable for estimating the resolution that may
be attained. It is seen that, in average, the dislocations are recorded with a width
of about 20|j,. In exceptional cases, dislocations separated 3 to 5ii can be detected
[77] and this represents the ultimate obtainable. The conclusion can be drawn that
X-ray techniques may resolve dislocation patterns at densities of not more than 10^

to 10^ cm~^ and, therefore, are largely restricted to the exploration of dislocation
arrangements in as-grown or annealed crystals.

The major advantages of using X-ray techniques are (1) that the investigation is
non-destructive ; (2) that thick crystals (0.3 - 2 mm) and large areas (1 cm^) can be
examined; (3) that the Burgers vector of the dislocations can be determined with rel-
ative ease; and (4) that it is possible to produce stereo-topographs

.

During the past five years the electron microscope has become the most prominent
tool for the experimental study of dislocations. This development started with the
observations of Bollmann [78] and Hirsch, Home and Whelan [1] in 1956 who recognized
that certain contrast effects obtained from thin metal foils were caused by stacking
faults and dislocations.

The contrast in electron micrographs of amorphous specimens is due to electron
scattering, which depends on differences of the specimen s atomic composition and
specimen thickness. If the specimen is crystalline, additional contrast may be pro-
duced by interference phenomena between electron waves. Since objective apertures in
electron microscopes are in the order of 10-^ rad, even first-order diffracted beams
are not permitted to contribute to the final image, as illustrated in figure 17. An
electron beam, coming from the condenser, passes through a single crystal which is
buckled in a central portion. Due to the buckling, a certain zone of the crystal is
accidentally oriented so that some low- index plane makes the Bragg angle with the in-
cident electron beam. In this zone electrons are diffracted out of the primary beam
and are held back by the objective aperture. The photographic plate shows an under-
exposed area where electrons have been reflected out of the image forming beam cor-
responding to the projection of the diffracting specimen volume. Such bands or broad
lines are called "extinction contours"; they can be seen to move on the fluorescent
screen when the specimen is tilted and indicate that crystal volume which happens to
be oriented for diffraction.

The path of electrons responsible for dislocation images is similar to those
shown in figure 17. However, the contrast produced by dislocations is due to phase
changes of the incident electron waves, as may be seen by the following consideration:
Employing the concept of the "reciprocal lattice," formula (1) can be written as

where f^ is now the scattering factor for electrons, k and k are the wave vectors
for the incident and diffracted wave, respectively, an9 r a lattice vector. Equa
(2) may be rewritten as ^

b. Diffraction Electron Microscopy

(2)
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(see the drawing, figure 18). The atomic displacements around a dislocation are now
taken into account by a phase factor a so that the amplitude of a diffracted wave in
an imperfect crystal is given by

The phase factor a = 2ngx, where x represents the displacement vector from the ideal
lattice position. Inserting the proper value for the displacement vector x and inte-
grating over the diffracting crystal volume yields the amplitude of the diffracted
wave. For a detailed analytical treatment the reader is referred to a recent book by
Thomas [79] who has summarized the relevant work by Hirsch, Howie and Whelan.

Figure 19a shows an example of the appearance of dislocations in an electron mi-
crograph taken from a thin foil of stainless steel. It can be seen that the "image"
of the dislocations has a width of 100 - 200 R, and further that the intensity dis-
tribution along the dislocation line varies considerably, often giving rise to a
dotted appearance. This is true, however, only for dislocations which are inclined
against the incident beam, and it should be pointed out that the dottiness in the dis-
location contrast does not allow us to draw conclusions with regard to the dislocation'
fine structure. The effect is due to a diffraction phenomenon which can be explained
only by the dynamic theory of electron diffraction. The spatial arrangement of the
dislocations in figure 19a has been drawn in figure 19b.

The technique is also capable of determining the presence and position of single
stacking faults as well as of sub-boundaries and grain boundaries which are inclined
against the foil normal. Examples of the appearance of these lattice defects are
shown in figures 20 and 21. Stacking faults as observed in figure 20 are rarely pro-
duced by plastic deformation of bulk samples but often occur when the dislocations
move in thin foils. In equilibrium, stacking fault ribbong of extended glide dislo-
cations in most pure metals have a width of less than 100 A and cannot be made visible
by this technique, except, sometimes, as little triangles in extended nodes formed by
dislocation networks. Examples of stacking faults in nonmetals will be given in sec-
tion 2.

The preparation of specimens for transmission electron microscopy is difficult.
Three rather stringent requirements have to be satisfied: (1) specimen thickness has
to be in the order of a few thousand angstroms and should be uniform; (2) the surfaces
should be atomistically smooth and may not be covered with irregular surface films;
(3) the preparation has to be done with great care so as not to disturb the disloca-
tion arrangement in the specimen.

The technique most commonly used for preparing the thin films is electromachining
and electropolishing. A small piece (3x3 mm) is cut by a narrow liquid beam from
the bulk sample, shaped to fit the specimen holder and finally "polished" with a cir-
cular jet of electrolyte directed to its center in order to produce the thin part in
the specimen which will be used for observation with the electron microscope. An
apparatus for final polishing is illustrated in figure 22. A great niimber of tech-
niques for metals and ionic crystals have been described in the literature [79]; for
a svramiary of the techniques used at The Franklin Institute Laboratories for many years
the reader is referred to an article by Strutt [80].

As might be expected, electron diffraction microscopy is predominantly employed
for studying dislocations and dislocation behavior in bulk crystals. However, atten-
tion should be drawn to a unique feature of the technique, namely, the possibility of
observing directly the dislocations in motion. This can be achieved by increasing
the intensity of the electron beam [1] and thereby inducing undefined stresses on the
specimen, or by actually straining a thin crystal in the electron microscope [81].
The different makes of electron microscopes require custom made straining devices be-
cause of the different specimen stage designs. A straining device for the Philips
EM lOOB is shown in figure 23 [82].

Other auxiliary devices which enable the experimentalist to influence the dislo-
cation patterns in the microscope include heating and cooling stages [79], as well as
a combination of a heating stage with a straining device [83]. It has been tempting

n
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to record the dynamic behavior of dislocations by cine techniques, and motion picture
studies on the mobility of dislocations in strained foils [1,2] and on twin formation
[84] have been made.

The applications of diffraction electron microscopy to problems in materials sci-
ence are more varied than those of any other technique mentioned above. Considering
the high resolution for dislocations, which can exceed 150 A, this is hardly surpris-
ing. On the other hand, the limitation of "seeing" dislocations in a small area of
only, say lOjj,^ , makes it difficult to produce reliable dislocation density measure-
ments. Statements regarding the dislocation distribution of bulk specimens have to be
based on hundreds of electron micrographs taken from many specimens. Since the prepar-
ation of the actual specimens is delicate and often cumbersome, comprehensive studies
carried out with this technique are time consuming.

Critics of the technique have questioned the reliability of the information that
can be gained by diffraction electron microscopy. It can be reasoned that "image
forces" [85] will move dislocations during the thinning process out to the surface so
that the dislocation density is reduced, or that at least rearrangements of disloca-
tions will occur. Schmitz and Wilsdorf [86] have investigated this problem experimen-
tally and found that the essential features of dislocation patterns „in aluminum crys-
tals were retained if the thickness of the ^hin specimens was 2000 A or more. If the
thickness was reduced to values below 1500 A, dislocations straightened out, oriented
themselves to be perpendicular to the surface, and small prismatic dislocation loops
were absent. For different materials, different minimum thicknesses are indicated.
Since all commercially made electron microscopes are limited in the acceleration volt-
age to 10^ v, it may be rather difficult to obtain reliable results on dislocation pat-
terns in metals with high atomic number. The development of electron microscopes with
higher penetration power is urgently needed. Very clear micrographs from stainless
steel 2-3[x thick have been taken by Dupouy and Perrier with their 1,000,000 v elec-
tron microscope [87].

2. Applications

2.1. Introduction

In this chapter some of the most important experimental evidence which has been
accumulated during the past years will be reviewed.

Beginning with a description of results relating to the most fundamental proper-
ties of dislocations, the discussion will then concentrate on the behavior of glide
dislocations, since our understanding of plastic flow in crystals has predominantly
profited from experimental dislocation studies.

Only results obtained by decoration, etch pit, and diffraction techniques will be
given. There are other methods which have been used for the investigation of the dis-
location's stress field: for example, by Bond and Andrus working with polarized in-
frared light [88]; or the beautiful investigations, using high resolution diffraction
microscopy, by Menter and his coworkers, who have resolved lattice planes in certain
crystals and studied the fine structure of dislocations in very thin films [89,90];
or the elegant technique of field ion microscopy by Muller who achieves magnifications
of more than 10® with a resolution of about 3 A and observed not only dislocations
but also single point defects on metal surfaces [91]. However, these are very special-
ized studies, and it remains to be seen how general their application may become.

2.2. Evidence on the Burgers Vectors of Perfect Dislocations

In a historical experiment, Vogel, Pfann, Corey, and Thomas [92] examined a row
of almost uniformly spaced etch pits on germanium, representing as it turned out, a
low angle tilt boundary. The lattice misorientation due to a subboundary can be cal-
culated from the assumption that the etch pits represented single edge dislocations
with 1/2 <110> Burgers vectors. The angle of misfit 6 b/h, where h is the distance
between two dislocations in the boundary and b, the Burgers vector [93]. Comparing
the result obtained by the etch pit technique (figure 24) with an independent measure-
ment of the lattice tilt using a conventional X-ray method, the agreement was found
to be excellent, as may be seen from figure 25 [94]. This experiment gave proof that
the theoretical predictions regarding the Burgers vector of perfect dislocations was
correct -- at least for edge dislocations in germaniim.

The above result has since been substantiated with respect to the Burgers vectors
of glide dislocations in many different substances.
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2.3. Evidence on the Stress Field of Perfect Dislocations

The same experiment by Vogel, Pfann, Corey, and Thomas [92] also represents evi-
dence that the stress field of dislocations is as derived theoretically: It is in
accordance with the theoretical result that parallel edge dislocations assemble into
uniformly spaced arrays, normal to their common Burgers vector, constituting tilt boun-
daries .

Figure 26 illustrates this point further. Here, part of this kind of a disloca-
tion boundary, named "polygonization wall" [95], is seen in an electron transparent
foil in aluminum. During the time of observation dislocations were captured in the
boundary so as to accommodate the additional ones. Note, for example, the dislocation
"pair," almost symmetrical with respect to the boundary.

However, investigations on polygonization were first performed much earlier [96].
Although not resolving individual dislocations, the earliest results already were in
such excellent agreement with predictions that, even then, little doubt remained that
the vertical arrangement of edge dislocations into walls represented an equilibrium
position with respect to glide.

The perfection of low-angle boundaries in recrystallized metals depends, of course
on the annealing treatment. Figure 27 gives an impression of subboundaries in Al-27o
Cu, after a heat treatment of 1 hr at 530 °C.

Additional evidence to show that the stress field of dislocations in their own
slip planes was also exactly as derived from elasticity theory came from studies of
isolated dislocation pileups, i.e., groups of dislocations on one slip plane pushed
against an obstacle (figure 28). The resultant shear stress on any one dislocation
in the pileup resulting from the others is given by

i=n

T. = A I 1 , (5)

the dislocations being numbered 1, 2, i,....n, with the first one at x = 0; A =

nb for screw dislocations and A = u-h for edge dislocations; \i is the modulus of% 2Tr(i-v)
rigidity, b the Burgers vector, and v Poisson's ratio. Although the problem cannot be
solved for the general case, Eshelby, Frank, and Nabarro [97] have proposed a satis-
factory estimate, provided the pileup contains many dislocations:

-i =^ (-1)^ (6)

Figure 29 shows the positions of the dislocations as found by a decoration-etch pit
technique in a-brass [42] together with the EFN solution indicated by the dotted line.
The unbroken curve is based on values obtained by a computer calculation [98] and gives
the exact solution of the above formula. The excellent agreement proves that the
stress field of dislocations had been predicted correctly by the theory.

2.4. Dislocation Networks and Dislocation Interactions

The polygonization wall discussed in the previous section is only one special
case of subboundaries. In general, they consist of dislocation networks of fair reg-
ularity. In 1953 such networks had already been observed by Hedges and Mitchell [6],
and their theoretical interpretation was given by Frank [99]. Subsequently, other
investigators, particularly Amelinckx and Dekeyser [100], made detailed comparisons
between theoretical predictions and experiments. They have explored ionic crystals
experimentally in great detail and have been able to explain networks, including the
occasional irregularities in networks.

Among other results, such investigations have provided positive proof of the iden-
tity of the Burgers vectors found with those predicted and also for the occurrence of
predicted dislocation reactions. In particular, hexagonal networks can be formed from
two sets of straight intersecting dislocations with different Burgers vectors, through
their reaction at the nodes.

Figures 1, 3, and 30 give some examples of dislocation networks in silver chloride
sodium chloride and bismuth telluride.

44



An extensive study of dislocation interactions in stainless steel has been car-
ried out by Whelan [101], and Mitchell and his co-workers found evidence for a number
of dislocation interactions in ionic crystals (see references in 1.2).

2.5. Cross-Slip and Dislocation "Trails" in Thin Foils

Unextended screw dislocations in isotropic materials have radial symmetry and
can, in principle, move in any plane containing their axis. In actual fact, the choic
of slip planes, even for screw dislocations, is more restricted. Nonetheless, since
the discovery of slip lines on the so-called "cross-slip" system by Maddin, Mathewson,
and Hibbard [102] in a-brass and Cahn's investigations of similar nature in aluminum
[103], it is recognized that screw dislocations may abruptly move from one slip plane
into another one which is inclined to the first. This process is called cross-slip,
and many micrographs are now available demonstrating it in electron transparent foils
[1,81,104].

One such example is given in figure 31 in which the motion executed by the dislo-
cation before reaching its final position is clearly marked by a trail. The nature of
such trails, very prevalent in thin foils, is still open to dispute. Depending on the
material of the foil, or possibly its surface film, the trails are stronger or weaker
and "bleach" out after shorter or longer periods of time, remaining visible up to a
few minutes

.

2.6. Dislocation Velocities

While moving dislocations can only be seen directly in the electron microscope,
thin film techniques do not lend themselves easily to quantitative measurements of
the dependence of dislocation velocity on stress. The reason for this is mainly that
it is very difficult to determine the stresses in thin foils. On the other hand, re-
peated etching experiments have been successfully applied to different materials.
The results obtained so far are most intriguing, since i^ some crystals with diamond
lattices, the dislocation velocity v rises only as v °^ t with n = 1.5, while in some
ionic crystals and metals n «i 25 and higher. Figures 32, 33, and 34 show the measure-
ments obtained on lithium fluoride [105], silicon-iron [106], and germanium [107].

2.7. Dislocation Densities

On first thought one would expect that the measurement of dislocation densities
by diffraction electron microscopy provides more accurate data than any other tech-
nique.

Indeed, the approach is simple and direct as was shown recently [108]. Measur-
ing Rp, the total projected length of dislocation line in an area A, the dislocation
density p is found as

^ _ (4/tt) Rp t being the film thickness. However, the measure

A t
ment of Rn is time consuming and may be replaced by counting the number of intersec-
tions N or dislocations with a random set of lines with a total length L [109,110].
With = NA/2L, the density p = 2 N/Lt. This method works best in the range from
10^ to^lO^" dislocations per cm^ , since N has to be large (about 50). The practical
limitations of the method are the following: For high densities R is determined with
a considerable error, because in foils with t > 2 x 10-^ cm (as is^required [86]),
the overlap of dislocation images becomes rather serious; this will be the case for
dislocation densities p s 10-'-° cm~^ . On the other hand, for t < lO'*^ cm, p is reduced
by dislocations leaving through the surface [111,86] and because of rearrangements
within the foil. Also, the magnification required for these measurements is 20,000x
and higher so that only small areas become available for measurement. Obviously, many
micrographs have to be taken in order to obtain a representative cross section of the
crystal's dislocation density. In addition to these shortcomings, it should be kept
in mind that the specimen preparation for diffraction electron microscopy is a de-
structive one.

The latter difficulty is not inherent in X-ray techniques (see 1.4. a) which offer
in addition, the easy examination of large areas and, therefore, a time saving coupled
with higher accuracy. However, the drawback of X-ray methods is that their optimum
application is in the range of p 10^ cm"^ which is rather low for most practical
cases. It thus becomes apparent that thin film and X-ray techniques for the determin-
ation of dislocation densities have severe drawbacks, so that for many applications
the extra experimental effort is not justified, and etch pit techniques are used in-
stead wherever feasible.

I 1
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Finally, the distribution of dislocations is often far from random. A portion of
the dislocations is usually concentrated in networks or other dislocation arrays of
high density, a feature which complicates dislocation counts rather seriously (see
also the review article by Hirsch [112]).

2.8. Dislocation Climb

Climb, the motion of dislocations normal to their slip planes, takes place when
dislocations either absorb or emit vacancies or interstitials. In the case of metals,
because of the high energy of interstitials » it is primarily vacancy absorption and
emission which causes climb.

The process of polygonization in itself is powerful evidence for climb. More re-
cently, climb has been observed directly in the electron microscope and was described
in a number of papers [113,114,115,116].

2.9. The Origin of Dislocations

a. Grown- in Networks

In the process of crystallization, subboundaries are formed which consist of dis-
location arrays. In a recent study, Damiano has followed the various stages of sub-
boundaries in zinc [46], beginning with their generation during solidification, through
the cooling process, until (under suitable conditions) they apparently disappeared.

The subboundaries observed by Mitchell and coworkers and Amelinckx and coworkers
were formed during recrystallization and cooling [100]. Random dislocations are also
formed during crystallization, many of them originating at irregular sites in the mold
material. Lang has been able to obtain stereo-topographs of dislocations in as-grown
crystals of various materials with his X-ray technique [75]; these photographs give a
most vivid impression of the arrangements of in-grown dislocations, partly forming sub-
boundaries, partly arranged at random.

b. Frank-Read Sources

On applying a stress in the plastic region, the dislocation content of crystals
is known to rise dramatically. Just how the requisite dislocation multiplication could
take place was a mystery until Frank and Read proposed their source mechanism [117].

The first direct evidence obtained for this mechanism in a metal is represented
in figure 5, in which concentric decorated dislocations are seen by means of a replica
technique. Only arcs are visible on the micrograph because the plane of the replicated
surface is slightly inclined against the active slip plane. Since then, decorated dis-
locations arranged in patterns expected from the Frank-Read mechanism have been found
repeatedly [36]. A beautiful example in silicon is shown in figure 35 [24],

The action of such sources was finally observed and photographed in thin foils of
stainless steel [118] (figures 36 and 37).

c. Dislocations Releas.ed from Subboundaries

Dislocation links, acting as Frank-Read sources, may be identical with disloca-
tion links in subboundaries. However, although this may be true occasionally, it seems
to be more common that dislocations in subboundaries leave these altogether on applica-
tion of a stress, so that the subboundaries dissolve gradually. The sequence of micro-
graphs in figure 38 shows this phenomenon [81]. It is also substantiated by the obser-
vation that subboundaries seem to disappear after small plastic strains [33] and that
thin foils obtained from lightly deformed crystals do not show any dislocation net-
works of the type found in as-grown specimens.

d. Dislocations in Interfaces

As was first pointed out by van der Merwe and Frank [119], the misfit which ex-
ists between crystals of two different materials adjoining on a plane with almost
matching atomic configurations (as for example happens in oriented overgrowth) is ex-
pected to be concentrated in the cores of spontaneously formed dislocations. The un-
derlying principle is the same as for the formation of dislocation networks where
slightly misoriented crystals meet (i.e., subboundaries).

Dislocations which apparently are formed in this way have now been observed on
chromium bromide platelets by diffraction electron microscopy [120].
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e. Spontaneous Generation of Dislocations at Stress Peaks

If, locally, a stress arises which is larger than the theoretical stress that an
ideal crystal could support, then dislocations may be generated spontaneously.

Striking examples of this phenomenon, resulting from stresses associated with
precipitates, were found in crystals by Jones and Mitchell [16], and others have been
reported by various authors [121,122], Figure 39 shows this spontaneous generation of
dislocations in the form of sequences of loops originating at the site of a precipitate
in beryllium.

Similarly, when fine hard particles are sprinkled onto ionic crystals [58] and
metals [60], rosettes" of pits are produced by subsequently etching the surface (fig-
ure 40) . At least a fraction of such rosettes seem to be due to spontaneous generation
of dislocations.

f . Dislocations Formed by the Condensation of Thermal Vacancies

When thermal vacancies condense in the form of a continuous layer on a close-
packed crystal plane, the sides of the missing layer of atoms will collapse, once its
area has exceeded a critical size. The rim of the area in which one layer of atoms is
missing constitutes a prismatic dislocation loop. Prismatic loops of this kind were
actually observed in some rapidly quenched metals after fairly detailed predictions
had been made regarding their formation [123]. Gratifyingly, all predictions have
since been found correct [124,125] with the exception of the size of the loops, which
is smaller than had been expected. Figure 41 shows the discussed kind of "quench loops"
in aluminum.

One prediction regarding quench loops was that they should act as dislocation
sources when of sufficient size, or would emit dislocation loops when other glide dis-
locations passed near them [123]. This, too, has since been observed [115], as can be
seen from figure 42.

Vacancies in supersaturation do not always condense in the form of isolated pris-
matic loops, but often condense in contact with existing dislocations. However, while
earlier theory [126] had predicted a continuous climb of dislocations resulting from
such vacancy condensation, the direct experimental results usually show prismatic loops
in contact with already existing dislocations [115].

A third mode of vacancy condensation is observed in connection with screw dislo-
cations. In several quenched fee alloys and in silicon, screw dislocations are found
to climb into long, rather regular helices when vacancies condense on them [15,127,
128,26].

g. Dislocation Multiplication in Slip Bands

As first shown by Johnston and Gilman [129], even a single, isolated loop of a
glide dislocation expanding on its own slip plane under the action of an applied stress
can multiply and give rise to a densely populated glide band. Figure 43 illustrates
this phenomenon in LiF. We will limit ourselves to giving the experimental evidence
since the details of the mechanisms involved are still under dispute.

2.10. Evidence on the Burgers Vector of Imperfect Dislocations

Whenever atomic positions of relative energy minimum exist on a slip plane, as,
for example, the so-called stacking fault positions on {111} planes in fee crystals,
imperfect dislocations are theoretically possible. Imperfect dislocations are those
dislocations which must exist at the boundaries between faulted regions and perfect
regions, as well as at the boundaries of regions faulted in different ways. From a
theoretical standpoint such imperfect dislocations and their possible Burgers vectors
were examined long before it became possible to observe them in the electron microscope
[130].

The most simple kind of imperfect dislocations are the partials into which a per-
fect glide dislocation in a fee crystal may split to form an extended dislocation.
Their existence is now established beyond any doubt through diffraction electron mi-
croscopy (see 1.4.b, figure 20). As can be seen, the stacking fault ribbons in ex-
tended dislocations appear clearly as striae when viewed with the electron microscope
under suitable diffraction conditions.

47



The existence of another kind of imperfect dislocation, the so-called simple
stair rod dislocation, has also been observed. It arises at the lines of intersection
between stacking faults on different planes. Examples of stair rod dislocations are
found in evaporated films [131], and, moreover, they form the edges of the stacking
fault tetrahedra into which quench loops may transform [132].

The study of imperfect dislocations is particularly rewarding in layer structures.
Thin foils are readily prepared from them by cleavage. Furthermore, the orientation
of the plane of the foil is always parallel to the preferred crystal plane which car-
ries the dislocations, and stacking fault energies are low so that the equilibriim
widths of the stacking faults are large. Amelinckx and Delavignette have made careful
studies of dislocation configurations in layer crystals and were able to accoxmt for
the bulk of the observations [133,134].

2.11. Dislocation Tangling and Long Prismatic Loops

Almost all phenomena discussed up to this point had been theoretically derived or
had been predicted on the basis of indirect experimental evidence. Only one very strik-
ing major phenomenon is observed extensively, the existence of which had not been an-
ticipated. This is "dislocation tangling." Electron transparent foils, obtained from
previously deformed specimens of pure metals, do not exhibit the orderly sequences of
smooth dislocation lines as anticipated, but instead are filled with tangles of ir-
regularly kinked and intertwined dislocations, interspersed with tiny prismatic dislo-
cation loops [135]. Figure 44 demonstrates that a tangled group of dislocations is
three-dimensional in character, which is an important characteristic. Dislocation
tangles are found in aluminum after elongations of 1 percent or even less [86]. This
is in sharp contrast to dislocation structures arising in foils when strained while
under observation in the electron microscope. In the latter case the dislocations re-
main straight [87,104], even when they are oriented almost parallel to the foil sur-
face so that they are quite long [136]. Tangles are in contrast with dislocation con-
figurations observed in 70/30 brass (figure 45), ordered and disordered Cu-Au (figures
46 and 47), all of which were deformed as crystals thicker than 1 mm [137,138].

Although there is not as yet a clear understanding of the origin of the tangles,
much evidence has been accumulated which indicates that they are due to dislocation-
point defect interactions [139].

Another unexpected feature of dislocations due to deformation is that they often
form long, narrow prismatic loops [136,140,141] trailing behind screw dislocations,
as shown in figure 48. Also their origin is still under dispute, although various
theories have been proposed.

2.12. Radiation Damage

Point defects cannot directly be observed by any of the techniques discussed in
detail in section 1. However, if vacancies agglomerate and condense, their detection
is indirectly possible as shown in 2.9. f. In studies of radiation damage by pile neu-
trons, a number of metals have been examined by etch pit techniques [142] and by dif-
fraction electron microscopy [143,144]. Often, irradiated metals exhibit small dislo-
cation loops of about 200 A in diameter, as well as unresolved dark spots whose diameter
is less than 100 A or even 50 A. In other cases, irradiated, undeformed metals such
as nickel or stainless steel do not contain any tj^e of defect which could be observed
by means of electron microscopy [145,146]. Subsequent deformation produces in nickel
dislocation tangles which contain dislocations with very short link length and many
small prismatic dislocation loops. It is remarkable that the passage of glide dis-
locations through irradiated specimens removes visible evidence of radiation damage
[144].

I have greatly profited from many discussions with my wife. Dr. Doris Wilsdorf,
University of Pennsylvania, Philadelphia, whom I thank for her contribution.
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FIGURE 5. Decorated dislocation
loops in Al-27c, Cu; since surface
is somewhat inclined against
(111) plane, only segments of
dislocations are seen. Direct
silicon monoxide replica (15,000X
[32]).

FIGURE 4. Dislocations in silicon
ending at the surface which was
etched. Decoration was achieved
by the diffusion of copper.
Photographic technique used
infrared light.

(courtesy of W. C. Dash [24].)
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FIGURE 6. Decorated dislocations in
a-brass [41]. Note that etch pits
become smaller if distance between
dislocations decreases (30,000x).

FIGURE 7. Dislocation subboundaries
in as-grown zinc. Single disloca-
tions are not resolved. Basal
plane parallel to growth direction
(30X).
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*. '--^ ' / , FIGURE 10. Effect of etching on
" shape of pits after moving the

- • dislocation.
(courtesy of J. J. Gilman and

. W. G. Johnston [58].)
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(a) (b) (c)

FIGURE 9. Illustration of connec-
tion between shape of etch pits
and angle under which dislocations
meet the surface,
(courtesy of S. Amelinckx [7].)

FIGURE 11. Identical etch pits on
cleavage faces of LiF provide
proof that 1:1 ratio between dis-
locations and pits can be obtained
(a and b represent matching faces
of the cleaved crystal).

(courtesy of J. J. Gilman and
W. G. Johnston [58].)
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SPECIMEN

PHOTOGRAPHIC
PLATE

COLLIMATOR
SLITS

SHIELD

FIGURE 13. Schematic drawing
to Lang's "projection topog-
raphy" method.

FIGURE 12. Schematic illustration of
atomic positions along dislocation in
cubic lattice,

(courtesy of W. T. Read [147].)

Slit

FIGURE 14. Principle of Berg-
Barrett technique.

FIGURE 15. Projection topo-
graph showing dislocations
in silicon (13X).
(courtesy of A.R. Lang [75],)

FIGURE 16, Single dislocations
and subboundaries in aluminum,
obtained by an improved Berg-
Barrett technique,
(courtesy of J.M. Lommel [77].)
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Reflecting

sphere

SPECIMEN

OBJECTIVE LENS

OBJECTIVE

APERTURE

Deviation from exact

Bragg condition

INTERMEDIATE
I MAGE

FIGURE 18. Drawing explaining sym-
bols used in eqs (2) and (3).

(courtesy of G. Thomas [79].)

FIGURE 17. Schematic drawing of
path of electrons in electron
microscope which are reflected
under Bragg angle by part of
single crystal specimen, and
which are held back by the
objective aperture.

(a) (b)

FIGURE 19.

a Glide dislocations in a thin foil of stainless steel as seen with
the electron microscope (37,500x).

b Schematic drawing showing spatial distribution of dislocations in
figure 19a.

FIGURE 20. Stacking fault in thin
foil of stainless steel deformed
in the electron microscope
(SO.OOOX).
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FIGURE 22.

a Schematic drawing of polishing
apparatus for preparing thin
specimens used in diffraction
electron microscopy,
(courtesy of I, Greenfield.)

b Overall view of polishing
apparatus

.

FIGURE 21. Low-angle dislocation
boundaries in annealed aluminum.

FIGURE 23. Device for strain-
ing thin foils in the
electron microscope [82].

FIGURE 24. Tilt boundary in
germanium outlined by etch
pits.
(courtesy of F. Vogel [94].)
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ANGLE OF TILT,0,IN RADIANS X lO""*

FIGURE 25. Comparison of angle of
tilt obtained by etch pit technique
and X-ray method,

(courtesy of F. Vogel [94].)

FIGURE 26. Position of dislocations
in polygonization wall; transmission
electron microscopy (52,500x).

' "•»>.
i • ' ^ .•• ' - > j' • ' - .

' ' J iH

'J"

FIGURE 27. Dislocations in subboundaries
marked by precipitates. Al-27o Cu
(7,500X [33]).

FIGURE 28. Pileup of dis-
locations in a -brass,
indicated by etch pits
after decoration.

(Micrograph by J.D. Meakin
[42].)

FIGURE 29. Positions of dislo-
cations in pileups found by
experiment agree with values
deduced theoretically [42],

0 12 3 4

Xi (fJ.)
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FIGURE 30. Dislocation network
parallel to cleavage plane in
67 Bis Tea - 33 SbsTeg
(30,000X).

(courtesy of J. Bierly
and B . H . Kear .

)

FIGURE 31. Repeated cross- s '

. ^ . •

slip of screw dislocation 0 '

• « * * *

caused by obstacles in its *
'

i

path. Quenched aluminum | » »# • •* •

('30,000X). » * J ' f •

• ••• • (

10"

o

^ 10^

E
u

g 10

I

CO

-6

i

1 300 °K

NEUTRON
IRRADIATED

300»K .gOO-K 77; K

SOFTENED aS-GROWN
10" r (SCREW COMPONENT)

I I I I I I I ll

1000 10,000
2,

APPLIED SHEAR STRESS (G/ mm'

)

FIGURE 32. Dependence of disloca-
tion velocity on stress in lithium
fluoride.

(courtesy of W. G. Johnston
and J. J. Gilman [105].)
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FIGURE 33. Dependence of disloca-
tion velocity on stress in
silicon- iron,
(courtesy of D. F. Stein and

J. R. Low [106].)
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FIGURE 34. Dependence of dis-
location velocity on stress
in germanium.
(courtesy of A. R. Chaudhuri,

J. R. Patel, and
L. G. Rubin [107].)

FIGURE 35. Frank- Read source
in silicon. Photograph
obtained by infrared tech-
nique.
(courtesy of W.C. Dash [24].)

(a) (b)

FIGURE 36. Spiral Frank-Read source operating in
a thin foil of stainless steel strained in the
electron microscope [118] (30,000X) (a and b
represent two stages in the operation of the
source)

.

D

FIGURE 37. Drawing of spiral
Frank-Read source as shown
in figure 36.
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FIGURE 38. Dislocations are emitted
from subboundaries in thin foil of
aluminum [81] (37,500x) (a and b
represent successive stages in
this process)

.

«

FIGURE 41. "Quench loops" in
aluminum [125] (45,000X).

FIGURE 42. Operation of "quench
loops" as dislocation source in
thin aluminum foil [115]
(33,750X) (a and b represent
successive stages).

FIGURE 39. Emission of pris
matic dislocation loops in
bulk specimen of beryllium
due to stresses at pre-
cipitate .

(courtesy of
F. Wilhelm [122].)

y . . » v'
• v^i. vt « I »

«

FIGURE 40. Dislocation
"rosette" on copper sur-
face.

(courtesy of J. D.
Livingston [60].)
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(b)

FIGURE 43. Sequence of micrographs
demonstrates the multiplication
of dislocations in a "slip line"
(a and b represent successive
stages)

.

(courtesy of W. G. Johnston and
J. J. Gilman [129].)

FIGURE 45. Dislocations in a-brass
are arranged in large numbers on
one glide plane. Elongation 87o

(30,000X)

.

(courtesy of J. Campbell.)

I

0.25 p..

1
1

101

- c
r

oTo

1

D •

nilw

1 i.

FIGURE 47. Dislocations in ordered
CUgAu. Note that the super dis-
locations are clearly resolved
when not parallel to [101]; paral-
lel to this direction, they have
cross-slipped and are seen "head
on

.

(courtesy of B. H. Rear [138].)

FIGURE 44. Dislocation "tangle" in
aluminum single crystal deformed
107o in single slip (37,500x).

FIGURE 46, Dislocations in dis-
ordered CugAu. Note that dislo-
cations are arranged in groups on
slip planes,
(courtesy of B. H. Kear [138].)

FIGURE 48. Long, narrow disloca-
tion loops formed behind screw
dislocations in aluminum single
crystal. Long loops are paral-
lel to <112> [136].
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FRACTURE MECHANISMS IN CRYSTALLINE CERAMICS

T. L. Johnston
Scientific Laboratory
Ford Motor Company
Dearborn, Michigan

A description is given of the observed modes by which cracks
form in crystalline ceramics as a consequence of mechanical dam-
age and plastic flow. The stress necessary to form and propagate
a crack is considered in terms of the stress concentrations which
exist at the tip of a blocked glide band and at the edge of an ad-
vancing crack; particular attention is given to the influence of
plastic flow at the crack tip.

Introduction

Brittleness represents the most striking feature of the mechanical behavior of
crystalline ceramics. The explanation of this unfortunate characteristic is often
based upon the broad generalization that ceramics are brittle because they are incapa-
ble, of deformation. Although this explanation is adequate for many materials, such
as barium titanate, titanium carbide, and sapphire (at low temperatures), it is not
correct for magnesixnn oxide. In the latter solid, dislocations are mobile, and mac-
roscopic deformation can precede fracture under certain conditions. The reason why
magnesium oxide is still quite brittle in an engineering sense is more particularly
related to the inability to deform where it counts the most, namely, at the tip of a
running crack.

In this paper the underlying factors which control fracture behavior of ionic
solids will be described in three principal sections. In the first, an estimate is
given of the theoretical strength of a solid. The second section considers how cracks
are introduced and how they affect the behavior of crystals in which dislocations are
essentially immobile and those in which dislocations move at relatively low stresses.
The third deals with the stress required to extend a crack, and a discussion is given
of the effect of plastic deformation which may accompany crack growth.

1. Theoretical Bond Strength

Since both the nucleation and the growth of a crack in a crystal requires that
bonds be successively stretched and broken, it is important to appreciate the physical
parameters which determine cohesive strength. A means by which the strength of inter-
atomic bonds may be estimated, [1,2]^ is provided by the change in potential energy
u(r) as two adjacent planes in an ionic crystal are pulled beyond their equilibrivrai
distance "a," (see figure la). The increase in potential energy arises from the work
done against the electrostatic attraction which varies as -az^e^/r per ion pair where
a is the Madelung constant, z the valence nuiriber, e the unit of electrostatic charge,
and r the distance between the adjacent planes.

The stress necessary to separate such adjacent surfaces varies as the slope du/dr.
At the equilibrium interionic distance, the stress is zero and rises to a maximum a
at the point of inflection on the potential energy curve, (see figure lb). It is
generally assumed that the form of the a(x) curve is sinusoidal for values of o<x>a,
i.e.,

^ = ^m ^ '
(1)

where X is a separation parameter in the direction of x which describes the range of
force interaction between the surfaces. For small displacements,

E •

f , (2)

_ 2TTa

T

^Figures in brackets indicate the literature references on page 72.

a =

where E is Young's modulus.

-c^/^,.. o« da _ 2tt „„„ 2TrxFrom eq. (1), ^ - j- cos
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for small displacements. From eq. (2), cTjj, = ^ ,

- EX-
-2171: . (3)

For an order of magnitude estimate of ajjj, x/2 may be taken as equal to a, so that
c^m E/TT. The extent to which X/2 deviates from a will depend on the degree of ionic
or covalent bonding. One can avoid the difficulty of assigning a value to X by assum-
ing further that the work done to create unit area of surface reappears as the surface
energy, 2y, of the two surfaces produced. Thus, T^/^ct™ sin 2t2E ^ 2X. i.e.
X "m = 2X. From eq. (3), X = ^n&ma go that, »

% = (EtA)^/^ . (4)

It is well known that the cohesive strength of a crystal is anisotropic — most
ionic crystals having well defined planes of easy cleavage. According to eq. 3, the
preferred cleavage plane should be that with minimum elastic stiffness normal to it-
self, maximum equilibriiim separation distance, and minimum force-interaction distance.
On this basis, the observed planes of easy cleavage can be correctly predicted for
simple ionic solids [3]. Structural defects such as a grain boundary, an interphase
boimdary, or a sheet of dislocations may introduce surfaces across which the cohesive
strength is lower than that of the observed cleavage plane. Defect surfaces can there
fore play an important role in influencing the path taken by an advancing crack.

For the separation of {100} planes in magnesium oxide, (4) gives a value of ct

equal to 3.7 x 10^^ dynes/cm^ , or 5 x 10® psi, if one takes values of 24.5 x 10^^
dynes/cm^ for E^^qq^, 2.1 x 10-^ cm for a

j^oO} » 1200 ergs/cm^ for y. The latter

value for y is one measured experimentally [4] which agrees fairly well with an approx
imate value of 1400 ergs/cm^ obtained by calculation on the basis of ionic theory [5].
In practice the bulk strength of magnesiinn oxide, like other crystalline solids, falls
far short of the theoretical strength. The difference, or gap, between the experimen-
tal and theoretical values is, in fact, made up by concentrations of stress provided
by pre-existing flaws and cracks or by heterogeneous plastic shear. An appreciation
of the nature of the source of stress concentration and the manner in which such
sources are introduced is important to an understanding of the mechanical behavior of
ceramic materials.

2. Crack Formation

2.1. Mechanical Damage

The most important source of cracks or flaws in crystalline ceramics is the ex-
ternal surface, which is readily prone to damage by mechanical contact or abrasion.
The mere act of handling a single or polycrystalline material can introduce cracks or
microindentation. The final shaping of a ceramic component is frequently accomplished
by a grinding process in which the surface is abraded, for example, by hard silicon
carbide particles embedded in a rapidly rotating wheel. Figure 2a shows the damage
introduced into the surface of a polished magnesium oxide crystal by the impact of a
single silicon carbide particle about 1/16 in. in diameter dropped from a height of
2 in. The crater can be seen to be associated with many cracks several microns in
length and an extensive zone of plastic deformation (figure 2b). Even with relatively
gentle polishing procedures adopted for subsequent microscopic observation, surface
damage in polycrystals may take the form of grain pull-out by which whole grains are
removed by intergranular separation. In sintered materials, additional but less
severe flaws are inevitably present; residual pores and thermal grooves at grain-bovmd
ary-extemal surface intersections serve as moderate stress raisers.

The surface condition of a ceramic is extremely important, for the existence or
absence of flaws determine in large measure the subsequent mechanical behavior of the
material. In those solids in which dislocations are difficult to move, for example,
aluminum oxide at low temperatures, barium titanate, titanium carbide, the size and
distribution of pre-existing cracks determine in a statistical sense [6] the effec-
tive fracture strength. For this class of materials, particularly those having a
high modulus, it is significant that if one takes care to prepare single crystals with
flaw free surfaces, extremely high strengths can be obtained. This topic will be dis-
cussed further by J. J. Oilman at this Symposium.

2.2. The Role of Plastic Flow

The effects of surface condition are rather more complicated in ceramics such as
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magnesium oxide which are capable of plastic deformation. In these materials, plastic
flow processes themselves are capable of nucleating cracks so that even in the absence
of flaws, the fracture stress may be quite low if dislocations can move and interact
at low shear stresses. For clarity, crack formation will be discussed in two general
cases, I, solids having flaw- free chemically polished surfaces and II, solids having
surface cracks.

2.3. Behavior of Polished Crystals

There are three aspects of fracture behavior which merit separate attention:

(a) The observed modes of crack nucleation.

(b) The total plastic strain which precedes fracture.

(c) The stress level at which cracks form.

a. Crack Nucleation as a Consequence of Plastic Flow

The process of plastic deformation or slip can generate a cleavage crack in a
nvimber of ways. In each case a tensile stress concentration is provided by a region
of localized shear, such as a glide band, embedded in a matrix which may be plasti-
callystrained to a smaller degree or only elastically strained. For example, figure
3 shows the stress concentrations (revealed by stress- induced birefringence) which
arise when slip bands in magnesium oxide are blocked at a grain boundary. Concentra-
tions of stress such as these have been observed [7] to nucleate cracks (see figure 4)
provided that stress relaxation does not occur first through the nucleation of glide
in the neighboring grain; the propagation of glide rather than fracture is favored at
simple tilt or small angle boundaries.

Various crack configurations have been observed some of which are shown schemati-
cally in figure 5. For example the crack may grow along the boundary as in figures 4,
5a, and 5c, or it may propagate into the neighboring grain by {100} or [110] cleavage
(figure 5b). Furthermore, it is sometimes observed that cracks spread from the bound-
ary along the nucleating glide band itself. The choice of configuration appears to
depend upon the direction and sign of the principal tension stress with respect to
the plane of the boxmdary and upon the degree of misorientation across the boundary
(see figure 5). It will be noted that in tens ion, cracks may grow intergranularly from
the nucleating glide band for moderate misorientations whereas in compression the in-
tergranular path is possible only for large angle boundaries.

A crack formed at a grain boundary in magnesium oxide may also result from the
interaction of two edge slip bands (one from each grain) which intersect the boundary
a few microns (or less) apart (see figure 6) [8]. For this mode of crack formation
to be observed the two bands must be so disposed that the concentrated tensile stresses
associated with each band superimpose. In figure 6, if the intersection b' of glide
band A'b' had been on the right-hand side of B, a crack would not form by this mech-
anism.

Surface deposits or reaction products [9] can provide interfaces at which cracks
may form. For sodixnn chloride and magnesium oxide, it has been demonstrated that when
a stain or deposit arises from inadequate washing and drying procedures, cracks de-
velop after plastic yielding at the interface between the crystal and the deposit and
spread into the crystal (figure 7) [10]. Only those deposits which lie on surfaces
through which edge dislocations emerge are effective in forming cracks.

Another example of crack nucleation at a boundary is one in which the latter is
a kink (across which there is lattice rotation) generated by plastic flow itself. When
cubically oriented rock-salt type single crystals are plastically compressed [11,12]
or bent [13], kinks may develop as a result of loading (grip) or geometrical con-
straints. In bending, the constraints arise from a gradient in lateral contraction
accompanying pronounced curvature. Figure 8 is the cleavage fracture surface of a
sodium chloride crystal which had been bent at liquid nitrogen temperature [13]. A
kink boundary CD extending across one of the comers on the tension side of the speci-
men is clearly evident. The kink consists of an array of edge dislocations having
<110> Burgers vector and [112] slip planes which result from the reaction or combina-
tion of <110> edge dislocations gliding on non-orthogonal {110} planes. (See Kear et
al. [14] for a discussion of the relevant dislocation reactions.) Under certain com-
binations of strain rate and temperature [13] (100) cleavage may originate at some
point along such a kink or it may spread along the beam parallel to the plane of the
kink.
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The intersection of orthogonal {110} glide bands provides a source of crack for-
mation which has been observed by a number of investigators. Two configurations are
possible. In one, the crack which forms initially lies along a {110} plane at the
edge of one of the intersecting bands as shown schematically in figure 9a [15,16];
figure 9b illustrates the second configuration in which the crack lies on a {100} plane
and spreads across the boimdary of the slip band intersection [17,18].

Adams and Murray [19] have shown that at temperatures in excess of 0.5 T , mag-
nesium oxide and sodium chloride bicrystals can undergo grain boundary shear at remark-
ably high strain rates. The actual value depends upon the stress, temperature, and
nature of the boundary. Simple small angle boundaries have the greater resistance to
shear. In polycrystals , a result of this phenomenon is the creation of wedge-shaped
voids along triple lines where a number of grains are in juxtaposition. This mode of
crack formation is commonly observed in metals loaded at high temperatures at very low
strain rates, but in ionic polycrystals this mode can be operative also at moderately
high strain rates. Figure 10 shows the intergranular cracking produced by boundary
sliding in the tension surface of a polycrystalline rod of lithium fluoride strained
at 10-V sec at 400 °C [20].

b. Degree of Deformation Preceding Complete Fracture

Single crystals . Cracks which form in MgO at the intersection of two orthogonal
{110} slip bands and propagate over a {110} plane as in figure 9a are often blocked by
a neighboring glide band [15]. A crack will spread in the channel between two slip
bands to form a narrow {110} slit lying in a <100> direction. (Subsequent crack growth
at a higher stress tends to occur on the customary {100} plane.) Figure 11 shows the
relation of a nvimber of such slits to the distribution of slip bands. The ability of
a glide band to arrest the growth of a crack was first observed in sodium chloride by
Melankholin and Kegel [21] and stems from the fact that the crack has to cut through
the screw components of the very large number of dislocations (~10^/cm®) making up
the band (see section 3.3). A consequence of this form of crack stabilization is that
the total deformation which precedes complete fracture depends critically on the dis-
tribution of slip at the onset of yielding [22]. Sometimes, for example, deformation
in magnesium oxide proceeds by the nucleation and growth of a single glide band which
spreads along the gauge length, in which case a glide band intersection is avoided:
Such a crystal may exhibit as much as 7 percent plastic strain in tension before frac-
ture. However, if just two glide bands happen to intersect at the onset of yielding
before many other glide bands are formed, complete fracture can occur with very small
macroscopic strain. Figure 12 is a macrophotograph of a polished monocrystal of mag-
nesium oxide which failed in this way in tension after only 0.2 percent strain. On
the other hand, if slip is finely spaced on two orthogonal systems respectively, not
only can cracks be stabilized (allowing continued deformation up to ~5 percent strain
in tension) , the nucleation of cracks by this mechanism may even be suppressed alto-
gether. When the suppression of slit formation occurs in bending, longitudinal cracks
may form at comers due to kinking as shown in figure 13.

Just as the total amount of deformation preceding fracture is controlled, in part,
by the distribution of slip, so does the number and spacing of slip bands depend upon
the distribution of active dislocation sources. There is evidence [23] that in mag-
nesium oxide, precipitate particles serve to nucleate dislocations internally by act-
ing as shear stress raisers. (Oilman [24] has pointed out a similar possibility in
lithium fluoride.) In the as-received condition, one cannot predict what the initial
slip distribution will be. However, one can exercise a certain degree of control by
altering the number of dislocation sources. For example. Stokes [23] has shown that
by annealing polished magnesium oxide at 2000 °C in nitrogen for 1/2 hr. one can, in
effect, prevent slip from starting from "natural" sources. This is believed to be
due to the dissolution of the precipitates. Crystals heat treated in this way are
quite strong, having yield and fracture stresses in excess of 100,000 psi. One can
choose the opposite alternative of insuring a fine distribution of slip by deliber-
ately introducing many dislocation sources at the surface by sprinkling the specimen
with 200 mesh silicon carbide [22] powder. Furthermore, an increase in temperature
appears to accomplish an increase in the number of slip bands. For example, lithiinn
fluoride fractures at liquid nitrogen temperature by the formation of stable slits in
the manner of polished magnesium oxide at room temperature, but lithium fluoride at
room temperature behaves like magnesium oxide in which slip is very finely spaced [20].

Polished polycrystals . Since the mechanical behavior of polycrystals will be dis-
cusse'STy'TIngeryandCoETe at this Symposium the only point which needs stressing in
this paper is that the amount of deformation which precedes complete fracture of a
rock-salt type material of given purity depends upon strain rate and temperature. Ex-
periments with silver chloride and sodium chloride polycrystals have shown [20] that
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if the loading conditions are such that the corresponding single crystal form is notch
Insensitive

,

the polycrystals are quite ductile and localised necking precedes fracture
(provided the temperature is not so high that grain boundary shear takes place). If,
on the other hand, the strain rate and temperature are such that cleavage cracks can
propagate readily in the single crystal, the presence of grain boundaries decreases
the ductility and little or no localised necking is possible at the point of fracture.
The total elongation, which reflects the amount of strain preceding crack nucleation,
decreases with a decrease in temperature,

c. Fracture Stress

In section 2.3a a description is given of the disposition of the crack with re-
spect to the local distribution of plastic flow and the structural features resisting
dislocation motion. It should be emphasized that the corresponding underlying mech-
anisms in terms of dislocation interactions are by no means clear.

The generation of a crack at the tip of a blocked glide band (first suggested by
Zener [24]) as illustrated in figure 5 is probably the simplest one to consider in
terms of dislocations. The most straightforward criterion for crack formation is that
the stress concentration at the tip of the band must locally exceed the cohesive strength
of the material. Since it can be shown [26] that the stress concentration factor is
equal to n, the number of dislocations piled up against the barrier, it follows that

a + n (a - o^)^ , (5)

where a is the applied tension stress and a is the tension stress whose shear compo-
nent is sufficient to move dislocatbns. The value of a will depend upon whichever
initial crack path is manifested (intergranular, glide Sand or transgranular cleavage).
Furthermore

,

n = <1^^>.L [27] (6)

M-

where t is the applied shear stress, t is the shear stress to expand dislocation loops,
(J, is the shear modulus, b the Burger's vector, and L is the distance between the initial
dislocation source and the barrier.

The essential feature of "n" is that it is structure- sensitive , and therefore de-
pends upon the thermal-mechanical history of the solid. In other words, n is influ-
enced by purity, heat treatment, distribution of dislocation sources, precipitates,
and grain size. For example, an increase in purity will decrease t ; a decrease in
grain size and a fine slip distribution will decrease the value of £ and therefore in-
crease the stress necessary to cause fracture. When cracks form at grain boundaries
in magnesium oxide bicrystals the fracture stress is little more than the stress re-
quired to nucleate and multiply dislocations to form a densely populated glide band.
Stokes and Li [28] have shown that a magnesivnn oxide bicrystal which has been heat
treated at 2000 °C to eliminate "natural" dislocation sources can sustain stresses in
excess of 110,000 psi in tension. An identical bicrystal, similarly heat treated, in
which fresh dislocations had been introduced within the gauge length suffered inter-
granular fracture at tensile stresses in the range 8,000 ~ 10,000 psi which is pre-
cisely the stress range necessary to generate slip bands from active dislocation loops.
The fracture stress is therefore clearly dependent on the stress to generate a glide
band.

Why cracks are nucleated at glide band intersections still awaits an unequivocal
interpretation. It has been suggested [15] for example, that {110} cracks form as a
result of the pileup of dislocations moving at the edge of one of the [110] glide
bands against the orthogonal band. However, one cannot explain why many slip band
intersections do not lead to the formation of cracks and why cracks form only after
glide bands pass through one another. Argon and Orowan [29] have recently shown that
the material in the parallelogram of the slip band intersection (see figure 9) under-
foes lattice rotation; its boundaries therefore are kinks which can play a role simi-
ar to those described in section 2.3a.

The minimum stress required for complete fracture of polished monocrystals is
that required for slip band generation; slightly higher stresses may be necessary ac-
cording to the total amount of plastic strain, which depends on the distribution of
slip and the rate of strain hardening as shown diagramatically in figure 14. Our
limited understanding of the dislocation reactions involved precludes the calculation
of fracture stress on the basis of a specific model.
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2.4. Crystals Containing Microcracks

As one might expect, the presence of cracks limits the extent of deformation
prior to fracture by providing regions of high tensile stress concentration. If large
cracks are present, fracture can occur at macroscopic stresses lower than that neces-
sary to nucleate glide bands (taking into account strain rate effects to be discussed
later) in which case they behave in a totally brittle fashion. When small cracks are
present, and if stresses are applied slowly enough, slip can start from active dislo-
cation loops already present in both the surface and at the tips of the pre-existing
microcracks. Clarke and Sambell [16] have studied in some detail the role of micro-
cracks too small to initiate premature fracture. They have shown that in magnesium
oxide loaded at low strain rates, cracks can grow slowly upon gradually increasing the
load after they have nucleated glide bands. It is not certain yet why they can grow
in this manner; the reason may be related to the drop in the effective value of a ,

the cohesive strength, across the nucleated glide bands at the tip. The crack grSws
therefore at a rate controlled by the progressive nucleation of slip until a size is
reached at which the crack can propagate elastically.

Miles and Clarke [30] have recently emphasized the importance of microcracks in
relation to the thermal shock resistance of magnesium oxide. Quenching crystals con-
taining microcracks from 1000 °C into water at room temperature leads to shattering
which can- be traced back to a single microcrack nucleus. Polished crystals do not
fracture, instead thermal stresses induce finely spaced slip. In contrast, biorystals
fracture upon quenching whether they are polished or not due to the greater ease with
which grain boundary cracks form compared to those generated at slip band intersections.

The well-known Joffe effect [31] observed originally in sodium chloride monocrys-
tals when they were immersed in a solvent, is due unequivocally to the elimination of
surface microcracks [10]. In the case of sodivrai chloride at room temperature, such
elimination always leads to an enhancement of ductility. In magnesium oxide on the
other hand, the removal of microcracks does not necessarily lead to an increase in
ductility at room temperature at low strain rates for the ductility depends also on
the distribution of slip. Nevertheless, the source of fracture is always changed from
a point at the surface associated with a defect to a point on an internal slit or
kink boundary.

Even when dislocation mobility is sensibly zero as in silica or aluminum oxide
at room temperature, cracks too small to propagate spontaneously can grow progressively
at a constant stress through the action of an active environment such as water vapor.
(Charles has discussed this topic in detail [32].) The effect is associated with chem-
isorption of active molecules in the region of the crack tip which results in a drop
in the binding energy of the unbroken ionic bonds which constitute the crack edge.
This change in binding energy leads to a different value of o_ obtained from eqs. (3)
and (4).

™

3. Crack Propagation

3.1. Stress Concentration Factor

Inglis [33] pointed out that flaws or cracks which exist either internally or at
the surface of a solid serve to concentrate or magnify the applied stress. For ex-
ample, if a plate containing an elliptical crack of length 2c is subjected to a ten-
sile stress a, perpendicular to the major axis of the crack, the local stress at the
ends of the major axis is

^c
= 2a(£)^/2 , (7)

where p is the radius of curvature at the ends of the major axis. Orowan [2] has em-
phasized that there is no physical sense in considering radii of curvature less than
the interionic distance. The sharpest possible cleavage crack therefore will have a
value of p equal to a the interionic distance. The condition for elastic crack ex-
tension is that the stress concentration at the ends of the crack having p = a
must exceed the theoretical bond strength ct^, i.e.,

2a
(|)l/2

. (|l)l/2

from eqs. (4) and (7) , or

cTf ^ (Ey/4c)^/2_ (8)

The distribution of normal stress and the actual atom positions at the tip of a
crack of length 2c equal to 1000a is shown in figure 15 based upon the calculations
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of Elliot [341 for a simple cubic crystal, whose modulus E = 10^^ dynes/cm^, under an
applied stress of O.OlE. The maximum stress can be seen to be of the order of a^.
Elliot pointed out that the variation of stress with atomic displacement at the edge
of the crack, correspond to an effective force-distance law very similar in form to
that shown in figure lb. It is important to remember therefore that the ions such as
A B which constitute the unbroken bonds defining the edge of the crack undergo the
same force-displacement curve as they are pulled apart. The values of E, X, a, and y
which determine apply to the unbroken bonds such as A-B at the crack tip.

Griffith [35] showed that it was possible to obtain eq. (8) without consideration
of the geometry of the crack tip. The premise was made that the rate of elastic ener-
gy release during crack propagation must be equal to or greater than the rate of in-
crease of surface energy of the crack surface area. The relief of strain energy asso-
ciated with a crack of length 2c in a thin plate subjected to a tensile stress a nor-
mal to the plane of the crack is given by -ttc^ct^/e per unit thickness. The increase
in surface energy equals 4 yc. The equilibrium crack length may be foimd by differen-
tiating these expressions with respect to crack length and equating the results, i.e.,

Ztto^c/E = 4^

1/2
or for a given crack length, c, the critical stress for propagation = (27E/nc) '

.

In this case, the value of y refers to an equilibrivnn value with respect to the en-
vironment and E corresponds to the bulk value.

For the fracture of an elastic solid in vacuo, the respective "stress-concentra-
tion" and "thermodynamic" approaches are equivalent except for a minor nvraierical dif-
ference. However, if an active environment is present which has access to the crack
tip or if plastic relaxation occurs there, the most straightforward way to consider
such effects is use the stress-concentration method which takes into account events
at the crack tip.

It should be noted that eq. (8) indicates that an atomically sharp crack will
grow at those stresses normally observed (i.e., E x 10"^ to E x 10~^) if internal or
surface cracks about 1 |j, in length are present to serve as stress concentrators.

3.2. The Effect of Plastic Flow

In those crystalline ceramic materials capable of plastic flow, for example, mag-
nesium oxide at room temperature and alvtminum oxide at temperatures higher than 1000
°C, the shape of a crack tip may be modified as shown in figure 16. The modification
arises from the nucleation and movement of dislocations from the crack tip, a process
demonstrated experimentally by Oilman [36]. The process of blunting the crack tip
replaces the concentration of elastic stress by a more diffuse distribution of stress
associated with dislocations lying along a cylinder whose radius, R, depends upon dis-
location mobility, see reference [37]. For a surface crack of maximum width h, plas-
tic relaxation csin increase the radius of curvature at the tip from the minimum value
p = a to p = h at which value the crack becomes parallel sided. This configuration
may be observed readily in soft sodivnn chloride. Any blunting of the crack makes it
necessary to apply a stress greater than that given by eq. (8) which requires that
p = a. Provided that no additional relaxation takes place when a stress is applied,
it is better to consider the fracture stress in terms of

-f = (^)'/'
> (9)

from which it may be seen that a fully blunted crack only 200 atom spacings wide re-
quires an order of magnitude increase in the fracture stress.

The above discussion of the stress necessary to extend a crack does not take into
account important dynamic effects. How rapidly is the applied stress increased from
zero to (jj? Is the crack tip advancing at high speed or is it creeping forward?
Such questions require consideration for an understanding of the fracture process.

The reason why dynamic effects arise is that the rupture of an atomic or ionic
bond is essentially an athermal process whereas plastic flow is thermally activated.
The former process depends almost exclusively on the attainment of a critical stress
(determined by eqs. (3) or (4)) and is only affected by temperature to a small degree
through the corresponding dependence of E, X, and a on temperature. For an elastic
crack whose shape approximates that in figure 15, the rate at which new bonds are
broken, namely the crack velocity, is limited only by the rate at which the applied
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stress is transmitted to the crack tip. A crack cannot travel faster than the velocity
of elastic waves in a solid. Stroh [38] has pointed out that the limiting or terminal
crack velocity is given by the Rayleigh surface wave velocity. The latter has been cal-
culated by Stoneley [39] to be 2.95 x 10^ cm/sec for waves on {100} faces of lithium
fluoride crystals. This value is in good agreement with a terminal crack velocity of
2 X 10^ cm/sec measured experimentally by Oilman et al. [40] in lithium fluoride mono-
crystals .

In contrast to the rupture of an atomic bond, plastic flow (embracing the processes
of dislocation nucleation, movement, and multiplication) is a thermally activated phe-
nomenon. The important quantity is the plastic strain rate at the crack tip given by
c = bnv. n, the number of mobile dislocations per unit area, depends in a complex fash-
ion upon the number of dislocation sources, dislocation multiplication processes, the
number of slip systems brought into operation near the crack tip, and most important, on
the ability of screw dislocations to cross slip from one slip plane to another, b is
the Burgers vector of the moving dislocations and v, their average velocity, depends
exponentially upon both the shear stress t and temperature T [41] through an expression

V = Vq exp (A/bxkT)

,

where Vq and A are constants. A incorporates factors resisting dislocation motion asso-
ciated with impurities, point defects and the inherent resistance of the lattice.

Even though the shear stresses just beyond the tip of an elastic crack attain very
high values, they must be applied long enough on the same volume of material for stable
dislocation loops to form and multiply; in other words the crack must propagate slowly
enough for plastic flow to occur at the crack tip. It has been demonstrated [36] that
in rock-salt type crystals, dislocation loops may be nucleated on four possible [100]
planes passing through a region very near to a [100] cleavage crack tip as illustrated
in figure 16. In a lithium fluoride crystal (tjrpical of those available at the time of
investigation) at room temperature Oilman et al. [41] found a critical crack velocity
above which stable dislocation loops were not generated; the value was 6 x 10° cm/sec,
i.e., 0.01 times the terminal speed. At velocities Just below this value, cleavage
cracks left a trail of dislocation half loops in the fracture surfaces. Under these
conditions, the steady state radius of curvature of the crack tip during propagation was
therefore slightly greater than the interionic distance. At a smaller average velocity of
3 X 10° cm/sec, the crack propagation was found to be unstable. The velocity oscillated
between high values to very small values approaching zero. At each point where the
crack slowed down, a large number of dislocations were nucleated leading to a substan-
tial blunting of the crack tip (leaving steps in the fracture surface) and a correspond-
ing increase in propagation stress. It is interesting to note that those lithium
fluoride crystals which are available commercially today contain less divalent cation
impurities than those investigated above and are much more difficult to cleave at room
temperature without introducing many dislocations. This increased resistance to cleav-
age is a direct consequence of the increased dislocation mobility in the higher purity
material.

An increase in temperature has a qualitatively similar effect on crack propagation
as a decrease in crack velocity. Just as there is a critical crack velocity below
which propagation becomes unstable, so there is a critical or transition temperature
above which crack propagation becomes difficult [42], The strain rate applied during
crack propagation controls the transition temperature above which the material becomes
notch insensitive. For example, at low strain rates of 10~^/min one cannot cleave
silver chloride monocrystals at temperatures as low as 0.1 Tjjj (liquid nitrogen tempera-
ture) but at high strain rates of 10°/min, crystals cleavage at 0.4 T^. A similar
transition has been observed in sodium chloride [20] at a strain rate of 10^/min but it
occurs at a much higher homologous temperature, namely, 0.95 Tjjj. Lithium fluoride and
magnesium oxide behave similarly to sodium chloride.

The improvement in resistance to cleavage which accompanies an increase in tem-
perature is certainly a reflection of increased dislocation mobility. However, this
explanation is not really adequate. There is reason to believe that in rock-salt
type crystals, an explanation must also include the corresponding effect of tempera-
ture on the relative ease with which dislocations move on, and cross slip between,
slip planes other than those of the [110] type, namely [100] and [111}.

Silver chloride is capable of deforming readily on many slip systems simultane-
ously (yielding "wavy glide" traces) at very low homologous temperatures, ~0.1 T™,
whereas in lithium fluoride it is not until 0.4 1^ is reached that the possibility of
gross cross slip between [110] and {100} becomes significant. Figure 17 shows that
in the range 300 to 400 °C, there is a rapid decrease in the ratio of the stress re-

70



quired for glide on [001] planes to that required for [110} glide [43]. The important
feature is that the ability to slip on many slip systems endows a solid with more
(plastic) degrees of freedom to relax shear stresses at the tip of a running crack.
It should also be noted that cross slip is probably important in crack nucleation, in
that the increased ability to cross slip should increase the possibility of stress re-
laxation at the ends of blocked glide bands and other plastically induced stress con-
centrations .

The value of p , in eq. (9), which determines the applied stress necessary for
crack propagation, will have an instantaneous value which is determined by the crack
velocity, temperature and the magnitude and extent of the shear stress near the crack
tip. Unfortunately it is difficult to determine the actual shape of a crack and there-
fore the magnitude of the stress at the tip. This problem is often avoided by regard-
ing plastic flow as a means of absorbing energy, and to include it as an extra term in
the Griffith equation as Orowan [44] suggested (even though we cannot predict the
amount). In this way, the equation is modified by replacing the surface energy term

Y by P, a term which is the sum of y, and the plastic work done per unit area of frac-
ture surface, D. However, it should be remembered that for propagation to continue,
a stress of the order of (£7/3)2 must be applied at the crack tip regardless of the
shape of the edge of the crack. It may be more straightforward, therefore, to regard
the term P, not as 7 + D, but as y-p/a, in which case the modified Griffith equation
is identical to eq. (9). When sufficient plastic flow accompanies crack propagation
to yield a value of p — 100a, so the effective fracture surface energy will be 10^ x y.

3.3. Fracture Surface Topography

During propagation, there is a tendency for a crack to spread on more than one
plane. The boundaries between neighboring levels of the fracture surface define steps
which always lie perpendicular to the advancing crack front. Cleavage steps, some-
times called "river patterns" or tear lines, provide an excellent means of determining
the direction of crack propagation so that one can often find where a crack has started.

These are several reasons why steps form:

1. At high crack velocities, there is rotation of the maximum tension stress at
the tip from a direction perpendicular to the plane of the crack [45]. This rotation
has the effect of causing the crack to deviate from a flat plane surface. When the
deviation varies from point to point along a curved crack front, steps are generated.
Smekal [46] has pointed out that lines or steps are formed also by the interaction of
the moving crack edge and elastic waves originating from secondary sources. Steps of
this kind ("Wallner lines" [47]) are a common feature of the conchoidal fracture of
brittle materials in which the cohesive strength is essentially isotropic. If there
is a pronounced anisotropy of cohesive strength, cracks are more constrained to lie
parallel to certain crystallographic planes; nevertheless, steps can still form by
the following second mechanism.

2. It will be recalled that a screw dislocation is one in which the lattice
planes normal to it constitute a helical ramp centered about the dislocation. When
a crack intersects a screw dislocation, the plane of the crack is offset by an amount
equal to the Burgers vector of the dislocation. Gilman r48] correlated the formation
of steps with screw dislocations present in (a) twist boundaries (made up of crossed
grids of screws) , (b) glide bands formed prior to crack formation, and (c) disloca-
tions formed just ahead of the crack tip during propagation.

3. In a polycrystalline material the opportunity for step formation is magnified.
Where the orientation across the boundary between two adjoining grains changes very
little, cleavage steps can originate there in a manner similar to that associated with
simple twist boundaries or because the crack crosses the boundary by the nucleation
of a series of new cracks at many points along the boundary. The presence of large
angle boundaries increases the probability of a crack spreading by the successive nu-
cleation and joining together of new cracks formed ahead of the principal crack front.
Cracks formed in this way will rarely be on the same plane as the main crack so that
very large steps or tear lines are likely to form.

4. Steps can form as a consequence of the intersection of a crack with inclu-
sions, a second phase or large pores.

The ability of a glide band to block the growth of a small crack is related to
the formation of a large number of steps by mechanism 2 as the crack crosses the
glide band. To calculate the increase in the stress necessary to extend a crack due
to step formation one, in principle, could analyse the problem in terms of the change
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in the shape of the crack front. However, such an analysis is clearly very difficult.
It is more convenient to look upon step formation as an increase in fracture surface
area per unit length of crack. In other words, the effective fracture surface energy
is increased by the creation of steps. It has been estimated [37] that in the absence
of plastic relaxation during crack growth, y can increase to a maximum value of ly.
If the crack velocity is low enough or the temperature high enough, the threads of
material connecting the different levels of fracture surface may rupture by plastic
shearing so that Ay will be greater than y. Figure 18 illustrates the difference in
appearance of cleavage steps in silver chloride monocrystal produced at two different
temperatures. Those formed at the higher temperature are discontinuous and severely
distorted.

Summary

A description has been given of the introduction of cracks into solids by mech-
anical damage and by plastic flow processes. In the harder materials, the strength
is controlled primarily by the state of the surface, in other words, by the number,
distribution and size of the pre-existing cracks. In soft crystals, the strength is
still influenced by the state of the surface but it is dependent also on the stress
to initiate yielding and on the distribution of slip. No attempt has been made to
set up a comprehensive fracture criterion because it is premature to do so - even
though we probably know more about the details of fracture processes in ionic materials
than we do in metals.

Although detailed consideration has been given to the nucleation of cracks in
magnesium oxide-type crystals as a result of plastic deformation, it should not be
overlooked, that from a pragmatic point of view, the most important source of cracks
are those introduced by mechanical contact or abrasion just as in the case of sapphire
or titanium carbide. Both classes of ionic materials presently available are notch
sensitive to a degree far in excess of most metals. The magnesium oxide which is
presently available suffers from the fact that dislocations can move and interact to
form cracks at low stress levels, yet dislocation mobility on a sufficient number of
slip systems is not adequate enough to blunt the tip of a running crack.

The author thanks Dr. A. J. McEvily for helpful discussions.
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FIGURE 1. Schematic representation
of (a) the change in potential
energy and (b) the force required,
to separate adjacent planes in an
ionic crystal.

(b)

73



FIGURE 2(a) . Damage produced on
the surface of a polished mag-
nesium oxide crystal by the impact
of a silicon carbide particle 1/16
in. diameter dropped from a height
2 in. (X 562).

(b) Dislocation arrays associated
with crater shown in figure 2(a)
(X 562).

FIGURE 4. Intergranular crack
formed at the tip of a blocked
glide in magnesium oxide (X 562)

(After Johnston et al.)C20].

I

FIGURE 3. Stress concentrations
revealed by stress birefringence
associated with glide bands
blocked at a grain boundary in
magnesium oxide (X 75)

.
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1

1

\

(b) (c)

FIGURE 5. Schematic diagrams showing
observed crack positions with respect
to the nucleating glide band AB. Dotted
lines are secondary glide bands gener-

• ated by the cracks. Configuration (a)
applies to medium and large angle bound-
aries, configurations (b) and (c) apply
to medium and large angle boundaries
respectively.
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FIGURE 7. Microcracks formed in
the tension surface of a bent
sodium chloride crystal. Cracks
are centered on rim of deposit
(X 37).

(After Stokes et al.)[10].

FIGURE 8. Fracture surface of a
sodium chloride crystal bent at
liquid nitrogen temperature in
which kink had formed across a
comer on the tension side (X 52).

(After Stokes et al.)[13].
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FIGURE 11. Stabilization of [110]
microcracks at slip band inter-
sections in magnesium oxide (X 112).

(After Stokes et al.)[15].

FIGURE 10. Intergranular cracking
produced by grain boundary sliding
in the tension surface of a lith-
ium fluoride polycrystalline rod,
loaded in simple bending at 400 °C
at a nominal maximum strain rate
of 10-Vsec (X 75).

(After Johnston et al.)[20].

i

FIGURE 12. Photomicrograph showing the dis-
tribution of slip after fracture in a
magnesium oxide crystal (X 7).

(After Stokes et al.X22].

FIGURE 13. Tension surface of a
magnesium oxide crystal fractured
in bending; slip was very finely
spaced. Note longitudinal cracks
at specimen comers (X 4).

(After Stokes et al.)[22].
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FIGURE 14. T3T3ical stress-elongation curve for a chemically
polished magnesium oxide crystal loaded at room temperature,
and are the fracture stresses of specimens in which very
few, ^and a large number of slip bands, were formed repective-
ly at the onset of yielding.

FIGURE 15. Atomic positions and distribution of normal stress at
the edge of a crack of length 2c = 1000a for an applied stress
a = O.OlE where E = 10^^ dynes/cm=^ .
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FIGURE 16. The tip of a (100) cleavage crack modified by the nucle-
ation of dislocations from the tip and their movement on four
possible {110} glide planes. The dislocations lie along a cylin-
der of radius R.
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FIGURE 18. Electron micrograph show-
ing the discontinuance and highly
distorted tear lines produced by
(100) cleavage in silver chloride
at room temperature (upper part
of figure) . The tear lines gener- -

ated at liquid nitrogen temperature
are smooth and continuous (lower
part of figure). X 1500.

(After Johnston et al.)[20].

FIGURE 17. Stress necessary for
glide in lithium fluoride on {110}
and {001} planes respectively as a
function of temperature.

(After Oilman) [43].
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STRENGTH OF CERAMIC CRYSTALS

John J. Gilman
Division of Engineering, Brown University

Introduction

Most scientific interpretations of phenomena pass through three periods of devel-
opment. The first is a period of conceptual elaboration of the initial idea to im-
prove its clarity and determine its scope of applicability. Next is a period of pro-
bation during which the validity of the interpretation is tested. Finally, if it
proves to be valid, enough confidence is generated for the idea to be used as a basis
for newer interpretations, and for technological inventions.

The concept of crystal dislocations has recently reached the end of the second
stage in its development as an idea, and is currently passing into the third stage.
Although studies of dislocations were initially devoted to metals, it seems likely
that some of the most important applications of our knowledge of them will be applied
to ceramic crystals. Therefore, this Sj^posium seems to be an appropriate place to
discuss what some of the technological consequences of dislocation physics might be.
If these consequences prove to be only partially as important as those of electron
physics, they will cause major technological changes.

The further we get from 1934 - the birthyear of crystal dislocations-^ - the more
simple the essence of a dislocation line seems. At the same time, the consequences
of the idea have become more and more subtle. This accounts, at least in part, for
the relatively slow maturation of the subject.

Before the conception of crystal dislocations, people had tried to treat plastic
flow as a homogeneous process. This point-of-view was fruitless because the process
is, in fact, a highly heterogeneous one. Orowan, Polanyi, and Taylor postulated that
it is heterogeneous even on an atomic scale. That is, the shearing action that re-
sults in plastic deformation does not occur homogeneously everywhere on a glide plane.
Instead, it starts at some special place and gradually propagates over the remainder
of the plane. The boundary of the area over which gliding has occurred is the dislo-
cation line.

As the glided area spreads, displacement of the top of the crystal relative to
the bottom increases in proportion to the growth of the glided area. The maximum
value that the displacement reaches is b, the unit glide displacement. Thus the dis-
placement, 6, at any time is:

6 = b (a/Aq) ,

where A is the area of the entire glide plane. Several dislocations usually move at
the sami time during plastic deformation so the total displacement. A, is the sum of
the individual ones:

n
b

^
A = E6 = -r EA. ,

i i ^o i
^

replacing the sum by n times the average value. A:

A = nbA
A
o

then, if h is the height of the crystal, the plastic strain is:

_ A _ nbA

where A^ = wL (w = width; L = length of crystal). But the area density of disloca-
tions, p, is equal to n/hL, and, letting w be a unit width:

'There are a variety of priority claims, but this year marks the appearance of
clear expositions of the idea in the public literature by Orowan, Polanyi, and Tay-
lor.
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Y = bpA

The average area swept out by dislocations, A, is difficult to determine experimentally,
so the strain-rate is considered rather than the strain. Taking the time derivative^

:

dt - ^ ° dt

This is the most fundamental relationship of the dislocation theory of plastic defor-
mation. It has been verified experimentally in considerable detail (see, e.g., Gil-
man and Johnston, 1962), so that one can consider that the theory is not only plausible,
but also unique in the sense that no additional mechanisms of plastic flow need to be
postulated.

The firm establishment of dislocation theory has filled in the last remaining
large gap in fundamental understanding of the mechanical behavior of solids. The
elastic behavior has been understood for some time both macroscopically (Hooke's Law
and its consequences), and microscopically (Bom's ionic crystal theory, Wigner-Seitz
theory of metals) . The Griffith crack theory forms the basis of understanding frac-
ture phenomena. Thus all of the elements of mechanical science now exist, and the
time has come to combine them so as to produce exceptionally strong materials, and
make other advances.

When steel became an inexpensive article of commerce in the 1860's, it was an or-
der of magnitude stronger than anything else at that time (150,000 psi as compared to
15,000 psi for wrought iron). It is not surprising, therefore, that it revolution-
ized every industry that it touched. Materials with strengths an order of magnitude
greater than the best steel would certainly have major consequences at the present
time. This would require strengths to increase into the millions of pounds per square
inch range.

Just as the advent of steel required new manufacturing and structural design con-
cepts, a new jump in mechanical strength will require changes. A higher level of
sophistication will be needed in order to have precisely controlled manufacturing op-
erations, and adequate designs.

The remainder of this discussion will be concerned with the problems associated
with ultra-strong materials. Some questions are: what is the best chemical composi-
tion for ultra- strength? What would be the best internal structure? How must the
surface be prepared? What manufacturing and design difficulties can be expected to
arise? If an ultra-strong material existed, what devices really require it? Sen-
sible, although perhaps not final, answers to these questions can be obtained from
modern knowledge of the mechanical behavior of solids and some intuitive guesses.

The Limit of Cohesive Strength

Materials that already exist, such as steel, have great strength. Therefore, the
room that is available for improvement is not large. In order to produce something
that is substantially stronger than existing materials, it will be necessary to care-
fully optimize all possible factors. The primary thing to be optimized is the intrin-
sic cohesion of the material: First, because it would be foolish to try to produce
ultra-strength in a substance whose atoms are not tightly bound; and second, because
one should be aware of the absolute upper limit on strength set by the laws of chem-
ical binding. This limit is only one or two orders of magnitude higher than the
strength of steel. Thus, one must work as near the upper limit as possible.

In principle, one might calculate cohesive stresses from the theory of chemical
binding. However, this is not a practical procedure because such calculations would
be exceedingly tedious and not highly reliable; especially for anisotropic crystals.
A better procedure is to find relations between measurable physical properties and
cohesive stresses. By using properties that are anisotropic, one can obtain cohesive
stresses for various crystallographic directions.

Four methods for detennining cohesive stresses are illustrated in figure 1. The
first (figure la) takes the cohesive stress to be a certain fraction of the Young's
modulus, E^j^]^j in a particular crystallographic direction. It is useful as a rule of

^Note that the term, bA 4^ = 0, because the creation of a new dislocation is a dis-
continuous process.
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thumb, but rather crude. Usually the cohesive stress, , is taken to equal 10 per-
cent of the modulus (M = 10)

.

The second method (figure iB) uses some additional information to yield an im-
proved estimate. Common sense tells us that the net stress between the atoms in a
crystal must be zero in the absence of applied stresses; must rise to some maximum
value as the atoms are pulled apart; and then must fall to zero again as the crystal
breaks into two or more pieces. The rise and fall of the stress is often represented
by one-half of a sine curve (figure iB) . For small increases in the distance between
atoms, the stress will obey Hooke ' s Law; '^ui-i

^ %kl w ^' ^° cohesive stress will

%kl a
°

be: a = (— ); where y is the initial separation of the atoms, and a is the
c TT yo ' •'o

"range" of interatomic forces.

A third method (figure IC) relates a to the surface energy of the planes across
which a crystal is pulled apart. A somewfiat improved interatomic force law is used
which expresses the fact that the force is not expected to suddenly drop to zero as
in figure IB. Using the initial slope condition, the constant A is found to equal
E/y . The constant, a, is determined by the surface energy, Yj^j^j^j since:

y = 1/2 ady = fp

where the integral is the work required to separate the surfaces and the factor, 1/2,
takes into account the fact that two surfaces are produced. Another condition is
that a = a , when da/dy = 0. From this it follows that y* = 1/a and

A
ae

where e is the base of natural logarithms. Hence:

= e-V2E7/yQ = 0.52/E^i7y^ (2)

The fourth method (figure ID) uses the well-known Morse potential function to
represent the potential energies of atoms in a crystal. This can be evaluated in
terms of the thermal expansion coefficient as follows. The energy, U, as a function
of separation distance, y, is written:

u(y-yQ)
-2S(y-y^)

2e
S(y-y„)

o^
J

where U^ is the binding energy between surfaces per average atomic area, S is the
reciprocal of the "range" of the interatomic forces, and y^ is the initial separation
distance. Then, the stress between two internal surfaces is:

o(y-y^) = T Cay; = -7—

The maximum (cohesive) stress occurs when

2S^U„
Sg _ r, _ o

3y A_
.2e

-s(y-yo) -2S{y-y^)
I

e - e J .

2S(y-yQ) ^-S(y-y^)
"J

Hence, the bracketed term must equal zero. Taking logarithms, at the maximum:

Substituting this, to find the maximum stress:

SU_

"c - ^ •

o

Next, the constants are evaluated. A change in stress, according to Hooke 's
Law, is given by:

da = C'
11 ^o
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where is the crystal elastic stiffness in the direction of interest. Then:

^11 - A- Sy=^ _ -

o ' y=y o
-^o

This gives one relation between U >S, and physical properties. Another relation is
obtained by considering thermal expansion, as it relates to the first anharmonic term.

At y = y , the Morse potential and its first three derivatives have the follow-
ing values: °

U(0) = -Uq

U'(0) = 0

U'
' (0) = ZS^Uq

U'"(0) = -6S=Uo

Therefore, the Taylor expansion about the point y = y^j is:

U(y-yo) = -Uo + C(y--yo)= - G(y-yo)°

where

:

C T U^S=

G
=f

UqS=

This represents an anharmonic oscillator whose average displacement during thermal
excitation at high temperatures [Kittel, 1956; p. 152] is:

3kT

where k = Boltzman's constant, and T = absolute temperature. Thus, the thermal ex-
pansion coefficient normal to the plane of interest is:

= _i_ = 3k
°o y^T 4y^U S

-' o o o

Using this second relation for and S, we can solve for the cohesive stress:

- 3k
-^ (3)

where y A = average atomic volume and it is concluded that the cohesive stress
should Be inversely proportional to the high-temperature thermal-expansion coefficient

The inverse relation between cohesive stress and thermal expansion coefficient
is not unexpected since empirical relations between such properties as hardness and
melting point have been described in the past (see, for example, Zwikker [1954], p.
159). However, the author is not aware of previous use of the anisotropy of the eas-
ily measured thermal expansion coefficient to estimate the anisotropic cohesive stress

All of the calculations listed above have not taken into account the Poisson
contraction of a crystal as it is extended. Therefore, to obtain the cohesive stress
for unaxial tension, all the cr^ ' s should be increased by about 10 percent.

In order to compare the various estimates of cohesive stress and to indicate the
extreme upper limit that can be expected, values for the cases of diamond and NaCl
are listed in table I. Method 3 is the most conservative and in best agreement with
the detailed calculation of Zwicky for NaCl. Therefore, it is considered to be the
best estimate. This means that the absolute upper limit of tensile strength for the
foreseeable future is about 10^^ d/cm^; or about 14 x 10^ psi. This is about an or-
der of magnitude greater than the highest stress that has been observed up to now.

^High temperature means above the Debye temperature where the Dulong-Petit Law
holds

.
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strength and Chemical Constitution

Consideration of the relations between chemical constitution and strength is im-
portant for two reasons. First, because it indicates what compounds are likely to
have the greatest strength; and second because it shows why careful attention to phys-
ical structure is so important for high strength.

As measures of chemical bond strengths, the elastic moduli of crystals are con-
venient. Numerous measurements have been made since the advent of the ultrasonic
pulse-echo method, and as was discussed in the last section, the cohesive stress equals
approximately 10 percent of the modulus. One relationship that is pertinent is that
between cohesive stress and interatomic spacing which arises because of the fact that
the primary cause of binding is electrostatic attraction. This is particularly clear
in the case of ionic crystals where 90 percent of the binding energy results from
attraction between the oppositely charged ions. In metals, the binding results from
electrostatic attraction between the positive ions and the free electron gas. The
quality of electrostatic forces that is of special interest here is their sensitive
dependence on the distance between charged particles.

The electrostatic forces between atomic particles are inversely proportional to
the square of the distance between particles; and, since the cross-sectional diameter
of a pair of atoms is approximately equal to the distance between them in a molecule,
the electrostatic stress becomes inversely porportional to the fourth power of the in-
teratomic distance. This puts a premium on having small tightly packed atoms in a
material in order to acheive high strength. Figures 2, 3, 4, 5, 6, and 7 show, for
several types of binding and crystal structure, that the elastic moduli are indeed
very sensitive to interatomic spacing and often inversely proportional to the inverse
fourth power of the interatomic distance.

For atoms of a given size, chemical valence is also important in determining bond
strengths. This is illustrated by the case of MgO in figure 2 whose modulus (open
circle) lies well above the line for the other rock-salt type crystals when it is not
corrected for the valence factor. When the measured value is divided by four to cor-
rect for the divalence it falls near the line for monovalent crystals (solid circle).
The importance of valence is also shown in figure 8 which compares the variation of
atomic radii with atomic number and elastic moduli. Where the variation of the radii
is least, the variation of the modulus is greatest.

Of the elements, the light ones such as Be, B, and C are strong because of their
small sizes; and the transition metals are strong because of their high effective va-
lences. It is not surprising therefore that compounds formed between these substances
are among those having the highest known elastic moduli. Certain other combinations
of elements e.g., CaO, ThO, form very stable molecules, but relatively weakly bonded
crystals. The compounds with highest cohesive strengths are of the interstitial type
(BeO, AlgOa, TiC, WC, TiBg ,

etc.), plus a few covalent compounds (SiC, AlP, etc.).

Carbon appears to be more effective in forming strong interstitial compounds than
boron or nitrogen as shown by a comparison of melting points in table 2. This table
shows that in the case of three transition metals (Ti, V, and Ta) the carbide always
has a higher melting point than the boride or nitride. Furthermore, it is known that
carbon is not only effective in raising the elastic moduli of crystals, but is also
effective in raising the resistance of crystals to plastic flow.

The effect of adding carbon to various metals on their elastic moduli is shown in
table 3. The strength improvement is substantial in most cases, and on the average is
more than a factor of two. From this it may certainly be concluded that the ultimate
in strength will not be obtained using pure metals, but will require compounds. Whether
simple metallic carbides are the most strongly bonded of all crystals is not known at
present. There are some indications that mixed carbides, carboborides , or carboni-
trides might be stronger. Carbon-carbide (diamond) is the hardest material that is
known, but its ultimate strength in tension might not be as great as that of some an-
isotropic crystals. An extreme example is graphite which has a higher elastic modulus
than diamond in the direction parallel to the graphite layers. However, some crystal
that is not so weak as graphite in the direction perpendicular to its layers would
seem to be more useful. Hexagonal SiC, or TiBg ,

might be an example.

Crystals that hold the most promise as ultra- strong materials are listed in
table 4. Only those with known elastic moduli are considered, so many materials have
been overlooked. The various crystals are ranked on the basis of their absolute strength
(5 percent of E) , and on the basis of their anticipated strength/weight ratios (Young's
modulus divided by density). From the standpoint of absolute strength, some of the
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transition metal carbides like WC and TiC appear superior to nonmetallic crystals. How-
ever, because of the small masses of their atoms, the nonmetallic crystals have better
strength/weight ratios. Amongst the more or less isotropic crystals, diamond is the
king from both the standpoint of absolute strength and strength/weight. As crown princes
things like cubic BN, TiBs , SiC, B^C, and B also look very good.

The atomic properties that confer high strength are illustrated by table 4. It
was mentioned earlier that, since the binding in crystals is primarily electrostatic
in character, small interatomic spacings and high valence tend to give high strength.
Both of these factors are involved in the strengths of table 4. The small size and
relatively high valence of carbon atoms give diamond its high strength. One whole group
of high- strength crystals is formed from various combinations of the small atoms (N, B,
Si, Al, P, etc.) that lie near carbon in the periodic table of elements. Another group
is made up of atoms that are larger in size, but have higher valence to compensate.
These are the transition metals that form carbides, nitrides, borides, etc.

The data of table 4 indicate that, without being unduly optimistic, it should be
possible to make materials with strengths up to 5,000,000 psi. This is 10 times better
than present steels, and from the point of view of strength/weight is more than 20 times
better. Furthermore, it is important to note that strong crystals can be formed from
very inexpensive raw materials. In the beginning, fabrication costs will be high, but
there is no apparent reason why the cost of these materials cannot eventually be quite
low.

It is likely that crystals with higher strengths than some of those listed in
table 4 will be synthesized in the future. It is considerably less likely that any-
thing with a strength greater than that of diamond will be formed. Nevertheless, since
understanding of the chemical factors that provide high strength is meager, chemical
studies should guide progress toward the highest possible strength.

Weakening Effects of Grain Boundaries

Since the bonding of atoms in crystals depends very strongly on interatomic spac-
ings, and the spacings are disturbed near grain boundaries, it is expected that boun-
daries will have less strength than the crystals themselves. The effect is rather
small in the case of metals so it is not difficult to obtain high-strength polycrys-
talline metals. The reason that the effect is small is that the cohesive energy in
metals is insensitive to the exact arrangement of the atoms, much of it originating
from long range interactions. However, in ceramic crystals, atomic arrangements are
far more important because of the directionality of covalent bonding, and its short
range character. Therefore, it is expected that the energies of grain boundaries in
ceramics will be higher relative to free surface energies than in the case of metals.
As will be shown shortly, this will cause severe weakening.

In addition to structural weakness, boundaries between anisotropic crystals are
subject to severe thermal stresses. These are difficult to calculate accurately, but
an estimate suggests that they can be extremely high. For example, consider two crys-
tals bound together across a boundary that is three atoms (7A) thick. Suppose that the
difference in thermal expansion coefficients between the two crystals is moderate, say
10'"®/°C. Then a temperature change of 100 °C will produce a displacement difference of
10~* cm/cm. Suppose the grain size is such that the boundary is 10~^ cm in length.
Then the maximum displacement will be 10~^ cm. This could cause a displacement gradi-
ent (shear strain) across the boundary as large as 1300 percent which would be cer-
tain to cause shear fracture. Of course, elastic strains in the crystals adjacent to
the boundary might relieve some of this strain, but a large fraction of it would still
remain.

There are various ways for estimating the structural weakening at grain boundaries.
A few of these will be considered in turn:

(a) Examination of the bubble raft photographs of Lomer and Nye (1947) suggests
that about 35 percent of the atomic bonds are completely missing in a high-angle grain
boundary. Thus a strength reduction of at least this amount must occur, even in metals.
However, this would be an underestimate for a covalent or ionic crystal because it
does not take into account the abnormal atomic positions.

(b) A formal method consists of considering the energetics of crack foirmation at
a boundary. The geometric situation is shown in figure 9, The applied stress, o,
produces a strain energy density in the material of a^/2E where E is the elastic mod-
ulus. Introduction of a crack of length, 2L causes three changes. First, the strain
energy in a volume of -ttL^ (for unit thickness) is relaxed. This amount of energy is:

84



-TTCJ^L^/2E. Second, some grain boundary, of energy -2Ly„k, is eliminated. Third, two
new free surfaces, of energy +4Ly , are created. In order for the crack to propagate
there must be a net decrease in tne energy of the system. That is:

_fb_^
(27s - ^gb)

2L

where a„ is the stress for fracture in the presence of the grain boundary. If no
boundary is present Ygb = 0 the stress for fracture is a^. Thus the ratio of the
fracture stresses in the two cases (eliminating the approximation made for the strain
energy term) is:

^ L . / (4)
V 'gb' 's

and we see that, if the grain boundary energy equals twice the free surface energy,
the strength of the boundary is zero.

For metals, eq. (4) predicts only a small change in strength at grain boundaries
because the ratio y , /2Yg is quite small. In the case of copper [McLean, 1957J, y^ =

650 ergs/cm^ and y ^= 1700 ergs/cm^ , so y^/y^ ^ 0.9. Unfortunately, there are no^
data for adequatelf pure ceramics. The data of Kingery [1954] are the only ones avail-
able and they were obtained for material of ordinary purity.

In covalent substances, one expects that Ygb for high angle boundaries will be
quite large because very few of the bond distances or angles will have their normal
values. This is very important in this case because the cohesive forces are short
range ones between individual pairs of atoms [Leman and Friedel, 1961]. Changes in
the bond distances and angles are not nearly so important in metals. In a random poly-
crystal, there will exist some boundaries across which the misorientation angle, 9 is
at least 2n/2n where n is the maximum rotational symmetry of the crystal (for a cubic
crystal n = 4) . The shear strain corresponding to such a misorientation will be ~tan
6 or tan tt/4 = 1/ Such a large strain exceeds the strain for the maximum cohesive
stress, so the strain energy density will be approximately equal to the cohesive stress.
Therefore, such a boundary would have zero strength.

On the basis of the argument just above, it seems quite probable that some of the
grain boundaries in polycrystals of a substance such as diamond would be quite weak,
even in a very pure specimen. This will be equally true of any substance whose co-
hesion is based on nearest neighbor interactions.

(c) A general argument can be based on the behavior of twin boundaries in non-
metallic substances. It is extremely difficult to obtain unambiguous information a-
bout the strength of grain boundaries because there is a strong tendency for impurities
to segregate at them. Twin boundaries, however, can sometimes be produced mechanically
at temperatures that are low enough to prevent any impurity segregation. It is ob-
served, for example in Alg O3 [Stofel and Conrad, 1962], that fracture occurs prefer-
entially at such twin boundaries. In comparison with a general grain boundary, a twin
boundary has considerable symmetry and hence lower energy. Therefore, if twin boundaries
in a material are weak, it is expected that general high-angle boundaries will be even
weaker

.

Although it is not conclusive evidence, the fact that polycrystalline nonmetallic
substances commonly fracture intergranularly suggests boundary weakness as would be
expected from the previous arguments. This may result from impurity effects, but it
is the opinion of the present author that grain boundary weakness is an intrinsic char -

acteristic of refractory nonmetallic substances.

Dislocations in Ceramic Crystals

Although the general geometric features and overall behavior of dislocations are
independent of crystal type, certain properties are qualitatively different between
metallic crystals on the one hand, and nonmetallic ones on the other. This results
from the prime importance of nearest neighbor interactions in nonmetallic crystals.
It is strikingly illustrated by figure 10 which compares the variation of hardness with
elastic modulus for covalent and metallic crystals fQilman, I960].

The upper line in figure 10 is drawn through the data for crystals with the zinc-
blende structure which are insulators or semiconductors. The lower line correlates
data for several face-centered-cubic metals. In both cases the hardness is propor-
tional to the elastic modulus, but the proportionality constants differ by a factor of
500.
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Hardness is a measure of the yield stress, or the ease with which dislocations
move in a crystal. Thus for metals, in which dislocations move easily, the hardness
value is a small fraction of the elastic modulus (about 5 x 10-^ for the data shown).
In contrast, the hardnesses of covalent crystals are a much larger fraction of the mod-
uli (about 10 percent). Since this is close to what the cohesive shear strength is ex-
pected to be, it is concluded that dislocations have great difficulty in moving through
covalent crystals. The reason for this is suggested by figure 11.

The solid circles in figure 11 are arranged as the atoms are along the direction
of glide in the diamond (or zincblende) crystal structure. The central core of a dis-
location line is shown at two positions of symmetry. Only one atomic plane is shown,
but the next one behind the one shown has the same geometric form; it is simply shifted
by b/2 with respect to the ribbon shown. Since nearest neighbor interactions determine
the behavior, only the one strip needs to be considered. According to the data of table
1, a covalent bond breaks at a strain of about 65 percent. Therefore, the energy of the
dislocation core changes markedly between the two configurations, B and C. In the con-
figuration B, the equivalent of one bond is broken and at C, roughly two bonds are bro-
ken. As the dislocation moves along then, its energy fluctuates by an amount equal to
one C-C bond. The period of the fluctuations is b/2, and very little of the energy is
conserved, most of it being converted directly into heat. Then, since the force that
acts per atomic plane is approximately rb^ (where t is the applied shear stress), the
work done per fluctuation is Tb^/4. This must equal the bond energy of 6.22 x 10^^

ergs, so the required shear stress is ~10^^ d/cm^ or about C /lO as suggested by fig-
ure 10.

**

The idea that nearest neighbor interactions control dislocation motions in cova-
lent crystals is given further support by recent measurements of Chaudhuri, Patel, and
Rubin [1962]. They measured the velocities of individual dislocations in several crys-
tals (Ge, Si, GaSb, and InSb) as a function of stress and temperature. They found that
the temperature dependences of the dislocation velocities in these crystals can be de-
scribed by Arrhenius equations. The activation energies that they determined from these
equations are shown in figure 12 to be proportional to the elastic shear stiffnesses of
the crystals. Furthermore, it may be noted that the activation energies for disloca-
tion glide are quite nearly equal to the energies of single bonds in Ge and Si as giv-
en by Pauling [1961]. Thus the rate determining step for dislocation glide through
these crystals is the breaking of individual chemical bonds.

Again it should be emphasized that many of the properties of dislocations are
quite different in nonmetals than in metals because of the short range cohesive forces.
This not only makes it difficult for dislocations to move in these crystals, but
also makes the physical properties of the crystals very sensitive to the presence of
dislocations. There is much evidence that the electrical, magnetic, and chemical prop-
erties of nonmetallic crystals are strongly affected by dislocations. There is also
some evidence that the cohesion may be strongly affected [Gilman, 1961]. Since, ac-
cording to eq. (3) , the cohesive stress depends directly on the thermal expansion co-
efficient, a simple method for studying the effect of dislocations on cohesion would
be to measure the thermal expansion coefficient as a function of dislocation density.
This should yield the relative reduction in cohesive stress per dislocation which is
expected to be higher for nonmetals than for metals. Plastic strains are known to pro-
duce distinct, but small(3 to 5 percent), increases in the thermal expansion coeffi-
cients of metals [Hordon, Lement, and Averbach, 1958].

Strength and Structure

Since a material can be no stronger than its weakest part, and it has been em-
phasized above that interatomic distances are of prime importance in determining strength,
it follows that the internal structure of a strong material should consist of atoms that
are packed together as closely as possible. This demands that the material be crys-
talline because the atoms in crystals are in a state of maximum packing density. Also,
it rules out glasses and high polymers because they are not sufficiently dense.

It is quite clear that an ultra-strong material cannot contain gross defects such
as voids, cracks, or foreign inclusions. As was discussed in a previous section, it
probably cannot contain grain boundaries either. These are not severe defects in metals,
but the available evidence indicates that they severely weaken many nonmetals. Defects
that are still less severe than grain boundaries are individual dislocations and atomic
vacancies. If these defects are present in a crystal in high concentration, or if they
can move around readily, there is no doubt that they cause a substantial loss of strength.
However, if they are few in number and not mobile, they can probably be tolerated with-
out a severe loss of strength.
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A structure that has often been suggested and discussed in recent years is that
of a composite consisting of a bundle of very fine whisker-like crystals embedded in
a polycrystalline or glassy matrix. There have been many observations that crystals
in whisker form have very high strength, and the hope is that this strength can be ex-
ploited in a composite. The author has no confidence in this approach. It might be
useful in very special situations, but it has serious difficulties as an approach to
ultra-strength. The first difficulty, and perhaps the easiest to overcome, is the
problem of obtaining a high packing- fraction for small fibers through an economic proc-
ess that does not spoil the high strength of the fibers. Another serious difficulty
is that if the matrix is softer than the reinforcement fibers, stress concentrations
will inevitably arise when the material is stressed and these are likely to lead to
fracture. If the matrix has a hardness similar to or greater than the fibers, then
there is little point in putting fibers into the matrix. A third difficulty is that
of forming strong interfaces between the matrix and the fibers. The interfaces can be
expected to behave no better than grain boundaries which at best do not seem to have
great strength.

It is concluded that ultra-strong materials will take the form of monocrystals

.

The monocrystals must be structurally sound and have very high elastic stiffnesses.
Defects no larger than atomic dimensions (dislocations, impurities, vacancies) may be
present in them, but nothing larger.

Feasible Strengths for Monocrystals

It might be thought that some elaborate method of preparation would be required
to produce an ultra- strong material. Actually, quite simple methods suffice. The sol-
id itself must be of high structural quality, and then it is simply necessary to put
very smooth surfaces on it. Surface notches would severely lower the strength so they
must be eliminated by various methods described below.

Crystal "whiskers" grow with very good surfaces so no further preparation is nec-
essary for them to be very strong (Brenner, 1958). However, it is difficult to grow
sufficiently large whiskers for most practical uses.

Another method that yields smooth surfaces is that of drawing out a slender rod.
Hillig [1961] has shown that if commercial fused silica rods are drawn down from 13 mm
diam to 0.5 to 3.0 mm diam in an oxyhydrogen flame, they exhibit strengths up to
1,900,000 psi at 78 °K. Figure 13 shows one of his rods bent to a maximum elastic
strain of about 10 percent. This is the largest elastic strain that has ever been ob-
served in such a large specimen.

Perhaps the most versatile method for preparing smooth surfaces is chemical pol-
ishing. This allows a desired shape to be cut out first and then polished to give it
high strength. Dash [1958] has shown that strong beams of silicon can be produced in
this way, and Oilman [1961] has done the same for rings. One of the latter, prepared
by abrasive cutting from a commercial silicon crystal is shown in figure 14. It with-
stood a maximum stress of about 500,000 psi before it broke.

Since the elementary structural members described above have already been made
from strong brittle materials, there is no reason to doubt the general feasibility of
using strong monocrystals in mechanical structures. The only real questions that re-
main with respect to practicality concern reliability, and the cost of producing mono-
crystals in large sizes and quantities.

The maximum strengths that have already been observed for various substances are
listed in table 5. These data are quite encouraging to the idea that strengths up to
e/10 can be attained. When carbides (and diamond) become available in large enough
sizes to make machine elements, crystals will become increasingly attractive as engi-
neering materials. The vision of diamonds or other crystals being used in extremely
strong tensile structures is an exciting one. If it becomes a reality in the relatively
near future, the interest of many men in understanding the mechanical behavior of crys-
tals will have been vindicated in the most concrete of terms.

The Ductility Problem

There is no doubt that it will be difficult to design machines that use ultra-
strong materials for structural parts. It cannot be expected that these materials
will have ductility because ultra-high strength and ductility are incompatible proper-
ties. In order to compete successfully, an ultra-strong material must have signifi-
cantly greater strength than steel. It would be ideal if this could be achieved with-
out sacrificing ductility, but this cannot be done and still compete with steel. Steel
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is a material with remarkable strength. Not only is its elastic modulus relatively high,
but also men have learned how to work it and heat treat it very skillfully in order to
optimize its strength.

In order to make something that has substantially more strength than steel it be-
comes necessary to take considerable pains. A chief difficulty is that no material has
an elastic modulus that is an order of magnitude greater than that of steel. Ductile
behavior requires that a material be able to resist crack propagation by flowing plas-
tically so as to blunt the tips of any incipient cracks. But this means that the materi-
al must flow plastically at stresses at least one (and more realistically two) orders
of magnitude lower than its cohesive stress. This would wipe out any elastic modulus
advantage that a material had compared to steel.

It might be argued that one should be able to match the combination of ductility
and strength that is possessed by steel, relative to its elastic modulus. However, such
a material would necessarily be metallic and tungsten is the only one that is reason-
able in cost and significantly higher in modulus (by a factor of two). But unlike iron,
tungsten is not allotropic so the microstructures that are present in steel could not
be produced in it. Even if they could the result would give only a factor of two in-
crease in the strength and, because of the high density of tungsten, the strength-weight
ratio would decrease.

It is concluded that ultra-high strength can only be achieved at the sacrifice of
ductility. This means no ductility at all because the crystals that we have discussed
are frankly and unequivocally brittle.

When a brittle material is highly stressed it contains an enormous energy density.
If it fractures, this stored energy is released in an uncontrolled fashion that pulver-
izes the material. For example, the author has seen a bar of silicon all but disappear
in a cloud of dust when it fractured at a stress level of 750,000 psi. In a ductile
material, stored strain energy can be converted into heat through plastic flow, but in
a brittle material it can only be converted into surface and kinetic energy of the bro-
ken pieces; hence shattering occurs.

It is understandable that the catastrophic way in which brittle materials fracture
should be disquieting to the emotions of an engineer. Nevertheless, since the use of
such materials will make new engineering ventures possible, and will markedly improve
old machines, it will be worthwhile to face the problem squarely. Gradually one can
learn how to design structures that will perform reliably in spite of brittleness.

The virtues of a ductile material are chiefly two in number. One is that such a
material can absorb impact loadings, and the other is that surface scratches on duc-
tile materials cause negligible lowering of the load carrying capacity. Lack of plas-
tic flow in a brittle material makes it vulnerable to undamped impact loads, and espe-
cially to surface scratches. Impact loads can be absorbed to some extent by brittle
materials as increased elastic strain-energy. However, since elastic waves are not
appreciably damped when plastic flow is absent, the danger is always present that a
wave will become so intensified during a series of reflections that it will cause frac-
ture. Thus sharp impulsive loads are to be avoided, and provisions for damping reflec-
tions at free surfaces are important.

A helpful circumstance in the problem of surface scratches is the fact that the
stronger a material gets, the more difficult it becomes to scratch it, and the fewer
is the number of materials that are able to scratch it. Surface scratches and other
damage that is initially present on a surface can be removed by some form of chemical
polishing (mechanical polishing is not suitable because it invariably leaves a damaged
surface layer) . Once a scratch-free surface has been prepared, it should be possible
to protect it against subsequent damage.

There are at least two approaches to surface protection. One is to put a very
hard abrasion-resistant-coating on a softer surface in order to prevent scratching.
The other is to put a coating of a relatively soft, ductile metal on the surface in or-
der to spread out the stresses produced by an abrading particle. It seems likely that
the second of these two approaches is the better one. A hard surface layer might pre-
vent scratching, but it would allow local compressive stresses to be transmitted almost
unabated to the load bearing material. In combination with tensile stresses due to the
main load, such compressive stresses would tend to produce high local shear stresses
that might result in failure.
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Uses for Ultra-Strong Crystals

In general terms, the primary function of strength is containment. The stress
field within a strong solid is used to contain some other kind of field of force. The
field being contained might be pressure, a magnetic field, a gravitational field, or
an electric field. The stress levels that are required to contain such fields can be
calculated for specific devices.

It would be pleasant to be able to use stronger materials in almost any engineer-
ing structure. However, cost dictates the use of steel in many applications, and re-
liability is of prime concern in almost all of the remaining ones. For example, one
can hardly expect to use brittle materials for highly stressed aircraft parts at the
present time, because not enough can be done to ensure reliable performance. Very
strong, but brittle, materials are feasible for use in less vital machinery, however.
In some cases the improvement in performance would be trivial, but in many cases a
large forward stride could be made.

An example of a machine whose performance is critically dependent on the strength
of materials is a high-pressure press. At present, materials such as sintered tungsten
carbide that are used in such presses are many times stronger in compression than ten-
sion. Therefore, presses are designed to make the ratio of compressive stresses to
tensile stresses as large as possible, and this severely limits the size of the high-
pressure chamber that can be used. If materials with the same or greater strength in
tension were available, the chamber size would be unlimited. This could greatly im-
prove present methods of high-pressure chemical synthesis, and it would become possible
to measure new physical properties at superpressures

.

Present pressure vessels are limited to pressures less than about 500,000 psi so
the existence of materials with strengths up to 5,000,000 psi could open up a new
realm for high-pressure research.

Another machine that is limited by strength is the ultra-centrifuge. One of the
best of present ultra-centrifuges produces a force 1,000,000 times gravity in a few
cubic centimeters of material. If a material with a strength of 7 x 10^ psi were avail
able, this could be increased to 500,000,000 times gravity, and thereby open a whole
new realm to experimentation on the effects of high gravitational fields.

This is a case where performance is absolutely limited by strength. Many machine
parts can be given adequate strength for a given application simply by increasing their
dimensions. This is not the case for a centrifuge, however, because the maximum speed
depends only on the fracture stress of the rotor material and not upon its size.

The calculations of Chree [1895] show that the most favorable shape for high-speed
rotations is an elongated ellipsoidal disk rotating about its shortest axis. The max-
imum angular velocity for such a disk is:

where a is the maximum radius, p is the density, and o is the maximum strength of the
material. The corresponding angular acceleration is:

™

Taking values for a diamond rotor of: o = 10^^ d/cm^
, p = 3.5 g/cm^, and letting

a = 1 cm, the angular acceleration is abSut 10^^ cm/sec^ or about 10^ times the accel-
eration of gravity.

According to the general theory of relativity, centrifugal accelerations are equiv
alent to gravitational accelerations in their effects on physical properties. Thus
the above acceleration might be used to study the effect of gravity on properties. For
example, the frequency of some process occurring at the outer edge of a spinning disk
might be studied. The shift in frequency of such a process would be:

a. Pressure Vessels

b. Centrifuges

o
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where w is the gravitational potential equal to and c is the velocity of light.
For the numerical values given in the paragraph above and c = 3 x 10^° cm/sec;

Av = ^^m = 2x10^^ = 6.3 X 10-^°
.

^ "7^ 3.5x9x102°

This is a very small frequency shift, but is accessible to measurement by modem meth-
ods .

Another application of high speed rotation is for producing high pressures. The
pressure at any radial distance from the center of rotation is - pep. Since cp =
2crm/o, the maximum possible pressure is 2a^, or about 14,000,000 psi.

c. Gyroscopes

The restoring force on a perturbed gyroscope is proportional to its rotational
speed. Thus, it should be possible to reduce the size or improve the performance of
gyroscopes through the use of high-strength materials. The improvement could be at
least a factor of ten, and even better on a strength-weight basis.

d. Energy Storage in Flywheels

Storage of energy could be done quite efficiently by means of flywheels or springs
made of high-strength materials. Table 6 compares the volume energy densities that
can be stored in various nonnuclear ways. It may be seen from these data that a high-
strength flywheel has higher volume efficiency than almost any other method. Also the
energy in a flywheel is readily available because it can be made part of an electrical
generator, or perhaps Operated directly as a homopolar generator so the energy can be
extracted directly.

e. Cutting Tools

Since cutting tools often fail because of overloading in tension, such things as:
lathe bits, drawing dies, and extrusion dies represent another large group of devices
that could be strikingly improved by materials with ultra-strength and high hardness.

f. Ultra-High-Field Magnets

The pressure that a magnetic field exerts on the boundary of a region that con-
tains it is B2/8n(d/cm^) where the magnetic flux, B is given in gauss. This is a
primary limitation on the maximum field that can be produced, because the coil that
generates the field must have enough strength to withstand this pressure as a bearing
load. It limits the fields in long-lived pulsed-magnets to about 200,000 gauss [Kus-
kowski, Novey, and Warshaw, 1961] where beryllium-copper is used for the coil. It
limits the field in short-lived magnets to 1 to 3,000,000 gauss [Furth, I960].

If a high- strength, high-conductivity crystal were available with a strength of
5,000,000 psi it should be able to support continuous magnetic fields up to 3,000,000
gauss, and pulsed fields about twice as large; say 6,000,000 gauss*. Crystals of the
transition metal carbides look promising for this application because of their metallic
electrical conductivity.

g. Electrostatic Fields

Analogous with the case of a magnetic field, the stress required to contain an
electrostatic field is E^/Stt where E is the electric field in electrostatic volts/cm.
Thus an insulator such as diamond, with a strength of 8.5 x 10® psi could, in prin-
ciple, contain an electric field of 3.9 x 10*^ esu v/cm or about 10^ C/cm. This is far
in excess of anything that has been observed as yet, and should allow the production
of some interesting physical effects.

Very high electric fields, such as mentioned above, should allow the construction
of very efficient electro-mechanical transducers because forces of several million pounds
per square inch could be exerted by vacuum capacitors.

* If the coil were precompressed, this might be increased to 10,000,000 gauss.
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TABLE 1. Cohesive stresses estimated in various ways

Expression ^ Cohesive stress (10^" d/cm^)
for a

c
Diamond 1 NaCl

I) e/10 [ 120 4.9

II)
E fa ^
TT vyoV

; 140 7.8

III) 0.52 (|X)* 94 2.7

IV)
3k

270 5.7

Zwicky calc
1

2.0

References for Table 1:

Ym (diamond) = 5650 ergs/cm^ - w» D. Harkin s , J. Chem„ Phys. 10, 269 (1942).

a (diamond) = 3.4 x 10"'= /°K - J. Thewlis and A. R. Davey, Phil. Mag. I, 409 (1956).

Em (diamond) = 1.2 x 10^=^ d/cm^
;

d^ = 3.57A; a = 0.77A.
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El 00 (NaCl) = 4.9 x lO^^ d/cm^
; y^^^ = 2.81A; = 5.63A.

a (NaCl) = 41 X 10-^/°K - A. Eucken, and W. Dannohl, Z. Elektrochem. 40, 814, 1934).

Yioo (NaCl) = 155 ergs/cm^ - Ro Shuttleworth, Proc. Phys. Soc. A62, 167 (1949).

(calc. ionic theory) - Zwicky, Physik. Z. 24, 131 (1923).

TABLE 2. Comparison of the melting points (°C) of
borides, carbides, and nitrides of some metals

Metal B 1 C
1

Ti 2020*
I

3250 2950

V 2250
1

2830 2030
i

j

Ta 2420 3875 3100

*Decomposes

TABLE 3. Effect of carbide formation on the bond strength
(elastic modulus) of various metals

Elastic modulus (mpsi)*
Metal Carbide

w 60 100

B 50 65

Ta 27 43

V 24 40

Nb 23 50

Si 23 70

Ti 16 45

Zr 10 50

^Million psi

References for Table J>:

Wo Koster, Z. Metallk. 39, 1 (1949).

Ro Kleffer and P. Schwarzkopf, Hartstoffe und Hartmetalle , Springer-Verlag (Vienna
1953).
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TABLE 4. Possible strengths of various crystals

Crystal

Young '

s

modulus
(mpsi)

"

Density
(s.§.)

Maximum
strength

(57,, strain-mpsi)

Strength: density
ratio

(arbitrary units)

Diamond 170 3.5 8.5 48

WC 104 15.8 5.2 7

TlBa 94 4.5 4.7 21

Als O3 76 4.0 3.8 19

Tic 72 4.9 3.6 15

Sic 71 3.2 3.5 22

B,C 66 2.5 3.3 26

ZrBg 64 5.6 3.2 11

w^c 62 17.3 3.1 4

W 60 19.3 3.0 3

MoSia 55 6.0 2.8 9

Mo 54 10.2 2.7 5

B 51 2.3 2.6 22

BeO 51 3.0 2.6 17

FeSs 50 5.0 2.5 10

ZrC 50 6.8 2.5 7

NbC 50 7.8 2.5 6

Be^C 46 2.4 2.3 19

Be 45 1.8 2.2 25

MgO 35 3.5 1.8 10

Si 23 2.3 10

Steel 28 7.8 1.7 i 4

••Million psi

676617 O - 63 - 7
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TABLE 5 . Highest strengths attained by various forms of solids

Material

= maximum
observed strength

(mpsi) E (mpsi)
e/ct£

.. , .,
Reference

1

Music wire 0.4 20 72 NBS (1943)

Silica fibers 3.5 14 4
1

Anderegg (1939)

Silica rods 1.9 14 7 Hillig (1961) i

Iron whisker 43 23 Brenner (1950)

AlsOg whisker 2.2 72 -3-533 Brenner (1958)

NaCl whisker U , io 0.3 40 Gyulai (1954)

BeO whisker 1 "7
i/ RysuKewltcn (^lybz)

Silicon whisker n OA 9/i24 25 nvans (, ly j o J

blilCOn (^DUlKj n *7 R 32 Fearson (.lyi/)

Tic (bulk) 0.80 70 87 Williams (1961)

Boron 0.35 51 145 Talley (1959)

Mica- 0.43 - Orowan (1933)

Austformed steel 0.45 29 64 Shine (1959)

References for Table 3:

F. 0. Anderegg, Ind. Eng. Chem. 31, 290 (1939).

S. S. Brenner, Growth and Perfection of Crystals , p. 157, John Wiley & Sons (New
York, 1958).

C. C. Evans, reported by J. E. Gordon, in Growth and Perfection of Crystals , p. 219

Z. Gyulai, Z. Physik. 138, 317 (1954).

W. B. Hillig, J. Appl. Physo 32, 741 (1961).

NBS Circ. 447, U. S. Govt. Print. Off. (1943).

E. Orowan, Z. Physik. 82, 235 (1933).

G. L. Pearson, W. T. Read, and W. L. Feldman, Acta Met. _5j 1^1 (1957).

E. Ryshkewitch, Science and Technology (Feb. 1962).

J. C. Shine, V. F. Zackay, and D. J. Schmatz, ASM Preprint No. 163 (1959).

C. P. Talley, J. Appl. Phys. 30, 1144 (1959).
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TABLE 6 „ Comparison of modes of energy storage

Mode

Density of energy
storage

(ft-lb/ft=)

Gasoline fuel 682 X 10^*

Solid propellant 105

Gasoline engine 99

Ag-Zn cell 15

Pb-acid cell 5

Compressed gas 2.5

Capacitor 0.2

Steel flywheel (0.5 mpsi)*'- 45

Silicon flywheel (0.75 mpsi) 68

Quartz flywheel (l^O mpsi) 90

Silicon carbide flywheel (4.0 mpsi) 360

Diamond flywheel (7«0 mpsi) 650

*First group of data from: Kline, Marco, and Starkey, Trans. ASME, 80
909 (1958).

FIGURE 1. Schematic
diagrams tor find-
ing cohesive
stresses in terms
of various measur-
able physical
properties

.

(a) Elastic modulus.
(b) iilastic modulus
plus interatomic
spacing.

(C) Elastic modulus,
spacing, and sur-
face energy.

(D) Elastic modulus,
spacing, and
thermal expansion
coefficient

.
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FIGURE 4. Face-centered-cubic
metals
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FIGURE 8. Periodic variation of the atomic radius and
elastic modulus with atomic number for the first,
second, and third long periods.
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FIGURE 10. Hardness vs.
elastic modulus compared
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(A) Strip of atoms lying
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FIGURE 12. Correlation be-
tween activation energies
for dislocation motions
and elastic stiffness.

(Data from Chaudhuri,
Patel, and Rubin.)
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FIGURE 13. Drawn fused silica rod of large diameter bent to
elastic strain of about 10 percent.

(courtesy of W. B. Hillig.)

FIGURE 14. Ring made
from a silicon crystal
and chemically polished.
The ring is about 1.5 in.
long and 1/16 in. square
in cross section.

(a) No load.
(b) Just prior to
fracture - 500,000 psi
maximum tensile stress.

(a) (b)
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A REVIEW OF THE EFFECT OF MICROSTRUCTURE ON
MECHANICAL BEHAVIOR OF POLYCRYSTALLINE CERAMICS

W. D. Kingery and R. L. Coble

Ceramics Division, Department of Metallurgy
Massachusetts Institute of Technology

Cambridge, Massachusetts

In polycrystalline ceramics, grain boundaries and porosity
occur and their effects must be explicitly evaluated to properly
interpret experimental property measurements. The effects of these
variables on ductility, brittle fracture, and creep fracture proc-
esses are substantial and must be considered in addition to
observations on single crystal behavior. In addition to fracture
phenomena, the rate of deformation of polycrystalline materials is
generally different from that observed for single crystals of the
same composition. The resultant properties of these materials thus
are more complex than single crystals; the effect of the added vari-
ables is important for all mechanical behavior and controls the
observed behavior for many systems

»

The present review is not exhaustive, but rather considers
typical results on which is based current understanding of effects
of porosity and grain size on strength, elasticity, creep, and
creep rupture. Effects of porosity on elasticity and of grain size
on strength and creep rate are now understood; effects of porosity
on strength and creep rate and of grain size on fracture are not
well imderstood, but useful empirical correlations are available.

1. Introduction

Any understanding of the mechanical behavior of complex ceramics must be based on
investigations of the simplest systems available. Variables of stress, strain, strain
rate, composition, temperature, and environment are in themselves sufficiently complex
that additional microstructural variables make understanding extremely difficult. The
earliest characterization of ceramic mechanical properties was developed for single
crystals and homogeneous glasses in which microstructure and orientation variations
were absent; even now it cannot be said that we completely understand the deformation
behavior of these relatively simple systems in a quantitative way. Most of the dis-
cussion in the present Sjraiposium has thus properly dealt with the behavior of well-
defined single crystals leading to an understanding of the deformation and fracture
processes that occur in them.

In some materials quantitative understanding of single-crystal deformation and
fracture phenomena must be developed before microstructural variables can be understood,
because the presence of pores or grain boundaries or other phases simply modifies the
single crystal behavior. For example, flow and fracture in MgO is modified by the
presence of grain boundaries, but the same mechanism for flow and cleavage criteria for
fracture apply to both single and polycrystalline specimens = In other materials the
deformation or fracture mechanism may be completely altered by the microstructure

o

Polycrystalline alumina deforms by a diffusional process because the basal slip process
which operates in single crystals is inhibited by the presence of grain boundaries. In
cases such as this, direct study of microstructural variables is essential, and under-
standing of the single crystal behavior only delineates the regions of temperature and
stress where different processes are rate controlling.

Real ceramic systems are complex in composition and structure with one or more
crystalline phases and porosity normally present in variable form and distribution. A
complete quantitative treatment of the effects of these variables on mechanical proper-
ties is beyond the scope of the present discussion, although this must be an aim of
future ceramic research. Ultimately, we want to be able to predict and improve on the
behavior of complex real ceramic systems by applying a thorough understanding of their
limitations and capabilities.

In the present discussion we will extend our consideration beyond single crystals
and homogeneous glasses to polycrystalline ceramics, which include as new variables
the effects of grain boundaries, grain size, grain orientation, and porosity. These
additional variables have a significant effect on almost all mechanical behavior and a
controlling effect on many important characteristics. In order to summarize our pres-
ent understanding, correlations between mechanical properties and physical models will
be presented, and empirical relationships will be shown where no physical models now
available appear applicable.
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2 . Fracture

A discussion of fracture requires separate consideration of the different possible
modes of fracture in order to evaluate properly the effects of specific variables.
The fracture mechanism usually changes with temperature, and we will discuss effects
of microstructure on brittle fracture, which is commonly observed for ceramic materials

'

at low temperatures, and creep fracture, which is observed at high temperatures.

2.1. Brittle Fracture

Brittle fracture, that is, low-energy fracture accompanied by little or no plastic
deformation, is commonly observed for polycrystalline oxides and other more complex
ceramic materials. As has been discussed previously [I]-'- ,the minimum requirement for
crack propagation is that the strain energy released be equal to the new surface energy
formed. Because observed strengths of typical ceramics are less than e/100, various
imperfections are assumed to be present, with crack propagation the important fracture
criterion. In readily deformable ceramics (MgO, NaCl) crack nucleation resulting from
plastic deformation is an important part of the overall fracture process.

a. Effect of Porosity

Porosity is a phase almost always present in polycrystalline ceramics and decreases
in strength with increasing porosity have been observed in many single phase and poly-
phase metal and ceramic materials. In general, the effect of porosity has not been
totally separated from the combined effect of porosity and grain size. Samples pre-
pared by sintering or by hot pressing powder compacts generally exhibit an optimum
strength under particular fabrication conditions. Porosity is the principal variable
at low temperature and short processing times and grain size is the principal vari-
able at high temperatures and long times. Samples with small initial particle size
generally exhibit higher strengths at their optimum preparation treatment than samples
prepared with larger particle size [2,31. At the present time, changes in strength
with porosity have only been treated empirically, although various structural factors
such as pore shape and distribution which cause changes in the average stress level with-
in the matrix in terms of the applied stress, and stress concentration factors associ-
ated with pores and surface features are recognized. These have not, however, been
assembled into a unified model by which observed strength changes with porosity can
be predicted.

One of the difficulties in evaluating strength data results from the fact that
the pore shape changes during the course of sintering and it is by sintering that most
samples have been prepared. Stress concentration factors change from high values (~1000)
for flat elliptical cracks to low values (2 to 3) for cylindrical or spherical cavities.
Though the pore shape changes in a definite way during firing, the exact shapes or
distribution of shapes have not been sufficiently well studied, nor have the associated
stress concentration factors for those shapes been elucidated. Both are necessary to
combine the stress concentration factors with average stress calculations for predict-
ing changes in strength with porosity.

Perhaps the best way of illustrating the problem of analyzing the effects of po-
rosity on strength is to show the variability of elastic modulus changes with porosity.
The influence of changing porosity on the elastic modulus has been analyzed by Mackenzie
for spherical pores [41. For Poisson's ratio equal 0.3 and semi-empirical evaluation
of the constant for the quadratic term, he found that the ratio E/Ep^|-,=1 - 1.91 P +
0.91 P^ where P is the volume fraction porosity. Good agreement between experimental
and predicted changes in elastic modulus with changing porosity was reported by Coble
and Kingery in specially prepared samples having a continuous solid phase containing
nearly spherical pores [5]. Other measurements of changes in elastic modulus with
porosity have used samples prepared by normal sintering or hot pressing [7]. As a
consequence, the pores are not all of equivalent shape and produce different stress
concentration effects. Empirical treatment of data for alumina has been done b^-Knud-
sen [8] and Spriggs [9], They find that the data can be expressed as E/Ep_|-.=e where
the empirical constant b determined from different investigators' data varies between
2.37 and 4.35. The lowest value, 2.37 (excluding Lang's data, whose samples only
covered the range from 0.11 to 2.78 7o porosity), corresponds to the elastic modulus
changes for a discontinuous pore phase in a continuous solid matrix; the higher values
presumably result from changes in pore shape. Knudsen [8] grouped all the data together

Figures in brackets indicate the literature references on page 110.
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and calculated an average single empirical constant of 3.95.

Assuming that the average stress in the matrix changes inversely with the elastic
modulus, the strength might also be assumed to be directly proportional to the change
in elastic modulus times a stress concentration factor associated with the pores. How-_
ever, strength data follow an exponential function, a/op^^ = ^xp (-bP) with an empirical
coefficient, b, about twice that observed for elastic modulus changes in equivalent
bodies. Thus, for Coble and Kingery's results [5], e/e„ = exp (-2.5 P) , (for the
specimens on'which the strength measurements were made), while cr/cJp=Q = exp (-3.7 P)

.

The maximum value reported for strength changes with porosity is b = 8 for compression
strength [10,11]. These relationships are illustrated in figure 1. There is only a
small difference between the theoretical elasticity relationship of Mackenzie for iso-
lated spherical pores and the values most commonly observed in sintered or hot pressed
bodies. However, strength data show a much stronger dependence in porosity. Expected
changes in pore shape as a function of firing time and temperature would increase the
stress concentration factors with increasing porosity. Without specific knowledge of
the shape change, the change in stress concentration factors, and the strength changes
as functions of porosity cannot be predicted. In some cases, such as stainless steel
formed under pressure giving flat elliptical pores and materials like graphite, titania,
and aluminum titanate which form flat grain boundary cracks as a result of anisometric
contraction during cooling, a small fractional volume of porosity can have a disas-
trous effect on strength.

We may summarize the effects of porosity on strength by noting that these are
qualitatively understood. They are generally larger than the effects predicted for
single shapes of pores. So far as we are aware there has not been a quantitative in-
vestigation of the effect of pore morphology on the fracture process.

The large effect of porosity on mechanical properties leads to difficulties in
the interpretation of other variables affecting fracture processes in most ceramic sys-
tems. Because of changes in pore morphology with different firing treatments, an un-
controlled variable of substantial importance is normally included. This has frequent-
ly not been explicitly considered in interpretation of the mechanical properties of
polycrystalline ceramics.

b. Effect of Grain Size

Decreases in strength with increasing grain size have been observed in aluminum
oxide [3,7,12], beryllium oxide [13], thorium oxide [8], uranium oxide [14], magnesium
oxide [7], and chromium carbide [8]. Decreases in strength as a function of precipitate
crystal size in crystal-glass composites have also been observed in silicate porcelains
and in Pyrocerams. Most of the data is available on samples that have been sintered
or hot pressed such that there is a simultaneous change in porosity and grain_gize.
For these, empirical formuli have been developed of the form [8] a/c-g_„ = k e G
With simultaneous changes in porosity and grain size, calculations of che constants
from the above equation leads to values of b a: 8 and n = 1/2 or n = 1/3.

At high density the change in grain size is the most important variable. For ex-
ample, above about 95 percent porosity, the strengths of alumina samples exhibit val-
ues ranging from 70-80,000 psi at 1

[j, grain size down to 20,000 psi at about 100
|j, [7].

In this density range, the exponent for the grain size dependence of strength only
changes from n = 1/4 to n = l/3 when the porosity correction is introduced as shown
in figure 2, The exponent n = 1/3 is not understood on a theoretical basis. It has
been reported for hot pressed aluminum oxide [7], and magnesium oxide [7] and for
sintered aluminum oxide [21; Knudsen has found that n = 0.4 and 0.55 for thoria and
chromium carbide respectively [17]. For one group of beryllium oxide specimens [13]
it was reported that n = 1.

A value of n = 1/2 is predicted from a model based on fracture propagation follow-
ing cleavage where the initial cleavage crack is equal to the grain size. The n = 1

value observed in beryllia is understandable on the basis of internal stresses on the
grain boundaries which result from anisotropy in thermal expansion. However, with the
later report that the grain size dependence of the strength in other sintered beryllia
specimens gave n = 1/3, the applicability of the boundary stress model is not easily
decided. The n = 1/3 value is not predicted at the present time by any simple model.
For magnesium oxide it is possible that this dependence is based on dislocation pile-
up which produces cleavage either in the grain beyond the boundary or at the grain
boundary itself [15]. Whether or not this is an appropriate functional dependence must
await further clarification of the stresses involved in dislocation pile-ups as a func-
tion of grain size.
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Extrapolation of the strength as a function of grain size to one micron for alumi-
num oxide specimens g:ves 60,000to 110,000 psi. Measurements of the strength of 60°
sapphire single crystals abraded and annealed at room temperature and at liquid nitro-
gen temperature give strengths which vary from 40,000 psi to 100,000 psi [17]. Wacht- ,

man has observed aluminum oxide single crystal strengths up to 140,000 psi [18], The
equivalence of the strength of one micron polycrystalline samples with single crystal
data suggests that the fracture origin is not significantly influenced by internal
stresses in micron-size polycrystalline materials „ Oilman [19] has analyzed the situa-
tion for brittle materials and concluded no grain size effect occurs without a second
phase at boundaries.

c. Boundary Processes

There are several ways in which grain boundaries may be considered to contribute
to the fracture process. The simplest is the influence that the boundaries have on
the surface topography of an equilibrium fired body. The interaction of the surface
energy with the grain boundary energy results in grooves etched on the surface that
cause stress concentrations. Equilibrium grooves should be geometrically equivalent
regardless of grain size. It is therefore difficult to understand how these grooves
would introduce a grain size dependence of strength. A second effect which the bound-
aries can introduce is to provide obstacles for gliding. The influence of boundaries
on inhibition of dislocation movement has been observed as a direct source of cracks
leading to failure. Johnston et alo [20] have observed in magnesia bicrystals that the
crack which formed at a dislocation pileup at the boundary changed from being inter-
granular to a cleavage crack in the grain ahead of the dislocation pileup, depending
upon the orientation difference between the crystals. They also observe that the stress
level at which cracking first occurred was essentially equal to the yield stress and
that fracture would ensue at a stress not much higher than the yield stress. For many
magnesia specimens on which strength data have been reported, strength values observed
were 20,000 psi in agreement with the observed yield strength. On the other hand, for
small grain size specimens of hot pressed magnesia, the strengths observed by Spriggs
and Vasilos [7] were 40,000 psi. This higher strength may result from the fact that
the length of the pileup required to produce a sufficient stress concentration to
cause subsequent failure in the bicrystal experiments exceeds the grain size and the
pileups essentially cannot or do not form in small grain sized specimens unless a
higher stress is present.

The influence of the boundary on stopping a cleavage crack from penetrating the
next grain provided the basis for a model by which Orowan [21] rationalized the effect
of grain size on the strengths of steels at low temperatures. That model leads to a
predicted grain size dependence on strength of n = 1/2. Finally, a model for the in-
fluence of boundaries on fracture, based on internal stresses resulting from thermal
expansion anisotropy present in many ceramic materials, has been developed [23].
Shear stresses are present at the boundaries and the change in shear stress as a func-
tion of grain size leads to a prediction that strength should change as the grain size
with n = 1.

From the variable behavior observed experimentally, it is clear that fracture proc-
esses for a range of materials are more varied than was assumed earlier. None of
the simple models based on crack initiation due to internal stresses, or fracture
propagation based on existing cleavage cracks equivalent to the grain size, or of frac-
ture initiation by dislocation pileups explain all the existing data.

In cases where fracture is preceded by plastic deformation within individual grains
and with dislocation pileups and stress concentrations at grain boundaries, the result-
ant stress concentration will increase as the grain size increases, such that finer
grain samples will have higher fracture strength than large grain size samples. In an
analysis of this process, J. J. Oilman [23] estimated an optimum grain size of about
one micron for typical materials. Polycrystalline oxide samples have not been inves-
tigated in this size range free from effects of variables such as porosity. Observa-
tions of stress-strain curves of bicrystals of lithium fluoride by Feuerstein [24]
indicate that grain boundaries in ionic crystals are not inherently weak. He found
that plastic deformation in at least one grain always preceded fracture, but that the
presence of grain boundaries was a strong barrier to dislocation motion, leading to
stress concentrations. As a result, failures took place in a brittle fashion.

2.2. Delayed Fracture (Static Fatigue)

Single crystal aluminum oxide exhibits static fatigue; that is, the strength de-
creases as a function of stress duration or with decreased loading rates [25]. The
effect is attributed to corrosion by water vapor. High strengths are observed in low
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temperature or vacuum testing, and the fatigue coefficient is essentially eliminated in
comparison with room or higher temperature measurements. Polycrystalline samples sim-
ilarly exhibit fatigue [17]. It is significant that there is essentially no difference
in the fatigue behavior between polycrystalline and single crystalline samples. Thus
the presence of the grain boundaries does not provide a site which, because of its high-
er energy, is preferentially attacked and does not preferentially weaken the alumina
matrix.

2.3. Ductile Fracture

In single crystals of alkali halides and magnesium oxide at room temperature sub-
stantial ductility is observed prior to fracture, and crack initiation results from the
interaction of slip bands. The tensile strain of favorably oriented crystals reaches
above 20 percent before failure occurs. In some cases, brittle fractures result from
surface imperfections.

In contrast, polycrystalline materials are observed to show little ductility prior
to brittle fracture. This results from the fact that grain boundaries act as barriers
to deformation, giving rise to stress concentrations and crack initiation after small
amounts of deformation. The difficulty in transmission of slip across grain boundaries
suggests that while ductile polycrystalline oxide ceramics are not likely to be achieved
at room temperature, a decrease in grain size so that stress concentrations from slip
are smaller can lead to higher strengths as already found for MgO [7], Thus, higher
strengths can be achieved for some polycrystalline ceramics than is found for single
crystals, even though little deformation occurs and the fracture is "brittle."

2.4. Creep Fracture

The strength of polycrystalline ceramics consistently decreases at approximately
half the melting point. The most frequent interpretation of the change in strength with
temperature is that fracture changes from transcrystalline at low temperatures to inter-
crystalline at temperatures where creep occurs. Considerable evidence has been accumu-
lated to support this model from the creep and fracture behavior of metals. There are
few studies of the fracture of ceramic specimens at high temperatures, and it is not
known whether or not the fracture process generally changes from a transgranular to an
intergranular one. For high density polycrystalline alumina specimens, Folweiler [26]
has observed that the strength is independent of the strain rate at constant grain size
and temperature. For high density alumina the strength is approximately 25,000 psi for
small grain size material at 1400 °C and decreases to approximately 15,000 psi for large
grain size material at 1700 °C. These strengths are approximately one-third of the
values measured for equivalent grain size specimens at room temperature. Metallographic
examinations of specimens tested in bending revealed that pores and cracks were nucleated
in a way depending on the stress level. At the neutral axis of the specimens, no pores
or cracks were visible even after extensive strain. In tensile regions near the neutral
axis isolated pores were observed to form on grain boundaries and at three grain cor-
ners. In regions further from the neutral axis, whole planar faces of boundaries per-
pendicular to the tensile stress separated from the adjacent grain. These cracks be-
tween grains subsequently became connected, forming continuous cracks. In the regions
of maximum tensile stress cracks were present in profusion. This is unlike the room
temperature behavior where essentially a single crack causes complete failure of the
specimen.

Intrater and Machlin [27] conducted measurements on grain boundary sliding processes
between metal bicrystals. They observed that the deformation was not entirely local-
ized to the boundary. They found that jogs would occur in the plane of sliding leading
to small gaps between the ends of the slide segments. It was their interpretation that
the non-coplanar sliding process provided the source of pores and cracks frequently ob-
served in creep measurements in metals.

In stress-rupture experiments with polycrystalline hydrogen oxide at temperatures
near its melting point, behavior was observed similar to that found for many metals as
shown in figure 3. There seems to be no indication that the correlation found for met-
als between creep strength and grain size is not also applicable to ceramics.

3. Deformation

Deformation in ceramic systems can occur by dislocation movement, by diffusional
processes, and by localized grain boundary deformation. Each of these processes is im-
portant for polycrystalline ceramics under some circumstances.
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3.1. Dislocation Processes

Dislocation configurations and their movement through crystals to give deformation
on certain slip systems have been discussed in detail in previous papers in this Sjrtn-

posium. Deformation rates depend on the stress, temperature, crystal structure, sam-
ple prior history, and the presence of impurities. In general, because of the directed
bond nature of covalent structures and the electrostatic requirements in ionic materials,
there are greater restrictions on dislocation configurations and movement in ceramic
materials than are present in metals. Dislocations tend to have complex structure with
large Burgers' vectors, are often split into partials separated by stacking faults, and
operate only on a relatively few crystallographic planes. For ionic materials when one
ion is highly polarizable, as is the case for silver chloride and mercury chloride,
there is less resistance to dislocation movement, giving slip on more crystallographic
planes than in highly ionic structures such as lithium fluoride and magnesium oxide.

It has been shown by Taylor [29] that the plastic deformation of a polycrystal ag-
gregate by slip is subject to the restriction that each grain must remain in contact
with adjoining grains at the boundary, and in the absence of grain boundary slip or
twinning requires five independent modes of slip to occur. This result is particularly
important for ceramic systems where the number of slip systems with easy slip is re-
stricted. In hexagonal structures such as Ala O3 and BeO, basal slip is the only mode
commonly observed except at very high temperatures. In sodium chloride structure sys-
tems, such as magnesium oxide, [110] slip is the only system commonly observed at room
temperature. Thus, the operation of plastic flow mechanisms leads to stress concentra-
tions at boundaries and cleavage fracture at small amounts of plastic deformation in
polycrystalline ceramics at room temperature.

As a result, even for materials showing high ductility in single crystal form, we
cannot anticipate the formation of ductile polycrystal bodies even when impurities are
eliminated and grain size is controlled.

Inasmuch as secondary slip systems are often highly temperature dependent, the pos-
sibility of deformation of polycrystalline materials by plastic flow increases greatly
when the temperature is raised. In sodium chloride and lithium fluoride single crys-
tals, slip only occurs on (110) planes at room temperatures. When deformation is carried
out at temperatures above about 300 °C, however, concurrent slip occurs on (100) planes
[30]. At temperatures above about 300 °C, (100) slip has also been observed in poly-
crystalline samples of lithium fluoride which then becomes ductile [31]. Similarly,
in magnesium oxide [32], evidence of (100) slip has been observed at temperatures above
400 °C with a critical resolved shear stress which decreases rapidly with temperature
until at temperatures about 1000 °C plastic deformation has been observed with (100)
slip occurring in polycrystalline samples.

At high temperatures, even though dislocation motion is severely reduced through
pileup on slip planes, steady-state deformation occurs by means of dislocation climb
such as occurs during polygonization [33]. For dislocation climb Weertman [34] has
proposed that the creep rate should be proportional to the resolved shear stress raised
to the 9/2 power; in general, creep data for metals at high temperature show a strain-
rate stress dependence having some exponent greater than one and near four. Chang's
data for single crystal sapphire and ruby show this general stress dependence [351,

Creep data [36] for polycrystalline magnesia containing 2 to 5 percent porosity
showed a stress dependence in the range l~a^*^-^'^. For large grain-size samples of
aluminum oxide Warshaw [37] observed e~a* at temperatures greater than 1800 °C, His
observed creep rates were also significantly larger than those given by extrapolation
of the diffusional creep process discussed in the next section. Thus, it seems clear
that plastic deformation by dislocation processes occurs at high temperatures for mag-
nesium oxide. Deformation of polycrystalline AI3 O3 at high temperatures is controlled
by dislocation processes together with either co-operative grain boundary deformation
or slip on prismatic or pyramidal planes giving multiple slip systems.

3.2. Diffusion Creep Processes

An additional deformation process that can occur in polycrystalline materials is
diffusional or Nabarro-Herring creep where self-diffusion within the grains of a poly-
crystalline solid permits the solid to yield under an applied stress. Deformation re-
sults from diffusional flow of atoms within each crystal grain away from those bound-'
aries where there is a normal compressive stress (high chemical potential) toward
boundaries having a normal tensile stress. According to Herring [381, this leads to a
viscous flow (strain rate directly proportional to stress) of polycrystalline samples
with an effective viscosity given by
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r]
= kTr^ ^ 2/3 kT

Da (1)

where k is the Boltzman constant, T the absolute temperature, D the diffusion coeffi-
cient, a the atomic volume, r the radius of a spherical grain, and V the grain vol-
ume .

°

Creep data at high temperatures for polycrystalline AlsOg [37,35,40,41] and BeO
[35] support the diffusional creep model over wide ranges of stress (10^-10* psi) and
temperature (1200 to 1800 °C) . The creep rates in high-density polycrystalline alumi-
na at equivalent temperatures and stresses are one to several orders of magnitude lower
than those observed for single crystals. In addition, the character of the stress de-
pendence at a fixed temperature and grain size is different from that in single crys-
tals. In the polycrystalline samples the creep rate varies directly with the stress
and the strain rate at constant stress is inversely proportional to the grain size
squared in accordance with the diffusional model. While the stress and grain size de-
pendence and magnitude of the creep rate are in reasonable agreement between different
investigators, the absolute rates of creep deformation have varied by an order of mag-
nitude .

Chang [35] found good agreement between the creep deformation rate of beryllium
oxide and measured diffusion coefficients. Recently, Paladino and Coble [42] have
found reasonable agreement between the diffusional creep rate of polycrystalline aluminum
oxide and directly measured diffusion coefficients in this system. It thus seems clear
that the microstructure of polycrystalline ceramics at elevated temperatures must be
directly considered in determining deformation characteristics, and at high temperatures
the deformation behavior of fine grain-size polycrystalline oxides is directly related
to the grain size. This is particularly the case for aluminum oxide where the measure-
ments of Warshaw indicate that different deformation mechanisms occur for the fine grain
and large grain samples leading to differences in temperature dependence, grain-size
dependence, and stress dependence of the deformation rate. The inclusion of microstruc-
ture as a variable is essential for proper interpolation and extrapolation of available
experimental data.

3.3. Grain Boundary Sliding

A third process by which deformation can occur in polycrystalline ceramics is grain
boundary sliding. High-angle grain boundaries are areas of poor lattice fit or high
dislocation concentration which give rise to complex deformation processes intimately
associated with the presence of a grain boundary. It was shown by Ke [43] that grain
boundaries behave viscously with the strain rate proportional to the stress when a shear-
ing stress is applied, but that the deformation process in grain boundaries is strongly
structure sensitive depending on cold work and impurity additions [44], The detailed
mechanism of grain-boundary deformation is not clear at the present time, and indeed
the detailed structure of grain-boundary configurations in ceramic systems is not clear-
ly understood. By itself, without auxiliary deformation processes, grain-boundary slid-
ing cannot contribute to deformation of a continuing nature since interior deformation
or diffusion processes must occur coincidentally to fulfill geometric continuity re-
quirements. Thus grain-boundary sliding can have an indirect effect in cooperation
with diffusional creep mechanisms or plastic flow processes to increase the deformation
rate and reduce the geometric restrictions on other deformation processes. Probably,
its most important effect is the added degree of freedom with regard to interior slip
processes in grains. Mullendore and Grant [45] have recently concluded from studies of
tensile creep in metals that grain-boundary sliding is a consequence of interior slip,
since it provides an additional degree of freedom for slip crossing at grain boundaries.
Slip in one grain proceeds to the next by slip on one system plus boundary sliding.

3.4. Influence of Porosity on High Temperature Deformation

The influence of porosity on deformation has not been systematically studied in
many materials over a wide range of porosity. Coble and Kingery [5] have reported on
the influence of 4 to 50 volume percent porosity in polycrystalline alumina. These
measurements were conducted in torsional creep, and it was found that the maximum shear
stress at a constant creep rate decreased by a factor of 50 as porosity increased from 5
to 50 percent (figure 4). Conversely, the creep rate at constant stress increased by a
factor of 30 from 8 percent to 50 percent pores. In their specimens the pore size was
large in comparison to the grain size and this large effect may result from offsetting
of individual grains into the pores in order to relieve the stress. Since the equivalent
changes in elastic modulus were a factor of five for equivalent changes in porosity, it
is seen that the influence on creep rates or on maximum shear stress at constant creep
rate is larger by a factor of ten than the change in the average stress level within the
matrix.
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There have been a few other observations of creep rates in slightly porous speci-
mens such as Wygant's data for magnesium oxide [36]; he also observed that porosity had
a markedly deleterious effect on the creep resistance. Other effects of porosity on
creep rate can be inferred from comparing the works of individual investigators, but
such a comparison is not warranted because of the general scatter in results. Chang,
for example, observed that the addition of chrome oxide to polycrystalline alumina slight
ly increased the creep rate; this might be interpreted as an effect of porosity because
the chrome-containing samples • contained a slightly higher pore content than the non-
chrome-containing samples.

The large influence of porosity in alumina can be interpreted on the basis of a
diffusional creep mechanism with grain boundary sliding as an accessory process. In
fully dense specimens the maximum contribution by grain boundary sliding is limited to
the contribution resulting from diffusional creep. If pores are present at three grain
corners, the amount of material which must be diffused away in order to relieve the
stresses which accumulate by the boundary sliding process will be much reduced. Con-
sequently, the contribution of grain boundary sliding can be significantly enhanced when
pores are present.

4 . Summary

From available experimental data, it is clear that microstructure features have a
strong effect on the mechanical properties of polycrystalline oxides. In particular,
the presence of porosity in almost all ceramics formed in the usual manner leads to
substantial changes in both fracture and deformation as compared to completely dense
samples. This effect of porosity obscures detailed evaluation of grain size in much of
the experimental data that is available. There is a real need for better data on pore-
free polycrystalline samples in order to separate out the effects of porosity and grain
size.

Grain boundaries influence both fracture and deformation properties. They lead to
limitations on the ductility of ceramic oxides at room temperature, since dislocations
are effectively halted at boundaries between crystals. In addition, stress concentra-
tions resulting from anisometric expansion are effective in changing properties. Defor-
mation of polycrystalline oxides is less rapid than single crystals at high temperatures,
since deformation commonly occurs by boundary sliding and Nabarro-Herring diffusional
creep rather than plastic slip processes. Data available for polycrystalline oxides
indicate that microstructure characteristics are often more important in determining
overall behavior than is the chemical composition or crystal structure.

This paper was prepared at the Massachusetts Institute of Technology as part of a
research program sponsored by the U. S. Atomic Energy Commission under Contract No.
AT(30-1) -1852. Jerry E. Turnbaugh assisted in collecting and correlating the data and
critically reviewed the final manuscript.

References

[1] T. L. Johnston, "Mechanisms of Frac-
ture," this Sjmiposium.

[2] R. Charles and R. Shaw, G. E. Research
Laboratory Final Report Task No. 9,
Armour Research Foundation Project
No. 8203 (1961).

[31 I. B. Cutler, J. Am. Ceram. Soc. 40,
20 (1957).

[41 J. K. Mackenzie, Proc. Phys. Soc.
(London) 63B, 2 (1950)

.

[5] R. L. Coble and W. D. Kingery, J. Am.
Ceram. Soc. 39, 377 (1956).

[6] S. M. Lang, NBS Mono. 6, 45 pp. (1960).

[7] R. M. Spriggs and T. Vasilos, Bull.
Am. Ceram„ Soc. 40, 187 (19 61).

[8] F. P. Knudsen, J. Am. Ceram. Soc,
45, 94 (1962).

[9] R, M. Spriggs, J. Am. Ceram, Soc.
44, 628 (1961).

nO] W. Duckworth, J. Am. Ceram. Soc. 36,
68 (1953).

~
[11] E. Ryschewitch, J. Am. Ceram. Soc.

36, 65 (1953).

[12] W. B. Crandall, D, H. Chung, and T.
J. Gray, The Mechanical Properties
of Ultra Fine Hot-Pressed Alumina,
State University of New York, Col-
lege of Ceramics at Alfred Univer-
sity, February 29, 1960.

[13] W. H. Duckworth and A. Rudnick, in
Symposium Design with Brittle
Materials , MAB Report MAB-175-M ,

Washington, D. C. (ISeTT.

110



[14] F. P. Knudsen, H. S. Parker, and M. [301
D. Burdick, J. Am. Ceram. Soc. 43,
641 (1960).

~

[15] R. J. Stokes and T. L. Johnston, and [31]
C. H. Li, Phil Mag. 31, 718 (1958).

[16] M. L. Kronberg, Acta Met. 5, 507 [32]
(1957).

[17] F. P. Knudsen, J. Am. Ceram. Soc. 42, [33]
376 (1959).

[18] J. B. Wachtman, Jr., and L. H. Max- [34]
well, J. Am. Ceram. Soc, 37, (7),
291 (1954).

[35]
[19] J. J. Oilman, Acta Met. 8^, 665 (1960).

[20] T. L. Johnston, personal communication. [36]

[21] E. Orowan, Reports on Prog. Phys.
XII . p. 185 (1949). [37]

[221 R. L. Coble, Ch. 22, Ceramic Fabrica-
tion Processes, W. D. Kingery, Ed., [38]
John Wiley & Sons (New York, 1958).

[23T J. J. Oilman, Acta Met. 8, 665 (1960). [39]

[24] S. Feuerstein, Ph.D. Thesis, Univer-
sity of California (1962). [40]

[25] R. J. Charles, Fracture, p. 225-249,
John Wiley & Sons (New York, 1959). [41]

[26] R. Folweiler, private communication.

[27] J. Intrater and E. S. Machlin, Acta [42]
Met. 7, 140 (1959).

[28] W. D. Kingery, unpublished data. [43]

[29] 0. I. Taylor, J. Inst. Metals, 62,
307 (1938).

"~
[44]

[45]

R. D. Carnahan, T. L. Johnston, R. J.
Stokes, and C. Niki, Trans. Met.
Soc. AIME, _221 (2) (1961).

W. D. Scott and J. A. Pask, private
communication.

C. 0. Hulse, S. M. Copley, and J. A.
Pask, private communication.

M. L. Kronberg, Science 122, 599
(1955).

J. Weertman, J. Appl. Phys. 28, 363
(1957).

~
R. Chang, J. Nuclear Materials 1,

174 (1959).

J. F. Wygant, J. Am. Ceram. Soc. 34,
374 (1951).

S. I. Warshaw, Sc.D. Thesis, M.I.T.
(1961).

C. Herring, J. Appl. Phys. 21, 423
(1950) .

~
R. Chang, J. Nuclear Materials 1,

174 (1959).

R. C. Folweiler, J. Appl» Phys. 32,
773 (1961).

~
E. K. Beauchamp, 0. S. Baker, and P.

Oibbs, WADC Project No. 0(7-7350)
(Sept. 1961).

A. E. Paladino and R. L. Coble, per-
sonal communication.

T. S. Ke, Phys. Rev. 71, 41, 533
(1951) .

—
T. S. Ke, J. Appl. Phys. 21, 415

(1950).
~

A. W. Mullendore and N. J. Orant,
Trans. Metals AIME, in press (1962).

Ill



E = Ep,o{ 1-1.91 P + 0.91

0.5

o
II

0.2

Q.

b

b
0.1

o
II

Q.

LJ\
LU

0.05

0.02

0.01

\ E=Ep.oexp(-3P)

\
\

\
\ ^ a- = o-p,oexp(-7P)

\

^Theory and experiment, isolated spherical pores

Empirical results, sintered samples

0

FIGURE 1.

100,

0.1 0.2 0.3 0.4 0.5

Volume fraction porosity

0.6 0.7

Effect of porosity on the elastic modulus and fracture strength of
ceramics.

lO
I

o
X

Q.

<D
i_
=5
+— '

Q.
3

o
O

1 1 1 II 1 1 1 1
-

— O // 11
II

1

I

o-

1
II 1 1 1 1 1 1 II 1

4 6 8 10 20 40 60 80 \QQ 200

Grain size (microns)

FIGURE 2. Effect of grain size on strength of polycrystalline aluminum oxide [7]<

112



300

250

2^200

CO
150

100

50

o
o

o ^Transverse '

est

o

" •.^ Tensile test

—•— •

—

•

1 1
1 1

•

1 1
1

1

•

1

0.01 025 .05 0.1 .25 2.5 10 25 50 100 250 500

40,000

Rupture time (hours)

FIGURE 3. Stress-
rupture behavior
of polycrystalline
hydrogen oxide at
-20 °C.

10

10-^ I

FIGURE 4. Effect of
porosity on creep
of polycrystalline
aluminum oxide.
(After Coble and
Kingery [5]).

0.2 0.3 0.4

Volume fraction pores

10
-6

113
U. S. GOVERNMENT PRINTING OFFICE : 1963 O - 676617
















