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Foreword

The problem of providing protection against the radiations generated by
nuclear weapons is of much concern to the Federal Government and to the

people of the United States. A great deal of eflfort and money is being spent

currently on attempts to analyze existing structures for shielding properties,

and plans are being carried forward to design and build special shelters of

many kinds.

The National Bureau of Standards has maintained a continuing research

program directed to the development of engineering data and methods basic

to the solution of these radiation shielding problems. Most of the work of the

past few years on this project has been concerned with gamma rays from radio-

active fallout. This Monograph summarizes both the methods and the data

which have been generated as a result of research on the penetration of fallout

radiations.

Financial support for this project has come primarily from the Office of

Civil and Defense Mobilization and from the Defense Atomic Support Agency
of the Department of Defense.

A. V. AsTiN, Director.
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Structure Shielding Against Fallout Radiation From Nuclear
Weapons

L. V. Spencer

The theory of structure shielding from fallout gamma radiation is developed to the point
of applications to elementary structure types. Examples discussed in the text include the
density interface, foxhole, shielded foxhole or basement, light superstructure, vertical wall,

blockhouse, vents, compartmentalization effects, and mazes. A large number of engineer-
ing charts and graphs are presented for engineering calculations, including many obtained
from angular distributions of the exposure dose. Results are given for a fission spectrum,
and for Co^" and Cs'*^ sources. This information has been obtained almost completely
by machine calculations utilizing basic cross section data. A number of sources of experi-
mental data are mentioned, but detailed comparisons with experiment are not included.

I. Introduction

1. Purpose

This Monograph is to assist scientists and engi-

neers in the solution of problems of protection
from ionizing radiation, particularly radiation
from fallout. Important activities in which such
problems arise include (a) the design of new pro-
tective structures, (b) analysis of existing struc-

tures to determine the natuie of their shielding

capabilities, and (c) assessing the possibilities for

improvising shelter.

2. Comments about Radiation Shielding

Problems and Publications

The analysis of structures for their protection
against ionizing radiation represents a new field

of engineering which has many similarities to
illuminating engineering. Estimating radiation
levels at different locations in a complex structure
is comparable to the problem of determining the
illumination levels in a similar stiucture on a
cloudy day, but with all partitions and walls
having varying degrees of transparency or trans-
lucence rather than being opaque. The com-
plexity of the problems is such that, despite
intensive research, significant gaps in our knowl-
edge still remain.

Reactor shielding problems are rather different

from the problems of shielding against nuclear
weapons. The former involve a localized source
and shield whose various aspects are readily
available for study and possible modification.
Further, both source and shield differ in many
ways from the sources and the barrier configura-
tions encountered in weapons shielding problems.
For these and other reasons the different reactor
shielding handbooks are not an adequate basis for
the study of weapons shielding problems, though
they do contain a great deal of useful information
[1-5].*

The joint AEC, DOD, and OCDM publication,
"The Effects of Nuclear Weapons," gives a general
description of all aspects of nuclear explosions,

•Figures in brackets indicate the literature references at the end of this
Monograph.

together with many tables and graphs relevant to

radiation shielding [6]. However, the material
included in the book on the subject of protection
against fallout constitutes an introduction to the
problems rather than a detailed methodology for

their solution.

A number of reports have been published in the
past three years on shielding against fallout

radiation [7-11]. The problems and the different

approaches to their solution contained in these

reports tend to have close similarities to each
other and to the material in this monograph.
Nevertheless, there are differences worth noting.

The approach taken here is less empirical, relying

on basic data derived from first principles rather
than on field test experiments. This has the
advantage of providing moie diffeient types of

data, as well as a basis for different kinds of

estimates. Enough experimental confirmations of

the basic data exist to give confidence in its overall

accuracy [12] ; but further research can be expected
to complement and modify this information in

various ways.^

3. Choice and Presentation of IVlaterial

The contents and organization of this Mono-
graph have been influenced by the fact that the
analysis of structure shielding may properly be
considered a branch of either nuclear or civil

engineering. It is, however, a subject with which
few people are familiar; hence it has seemed worth
while to include general information about fallout

radiation and its characteristic properties. Thus,
Part II describes fallout in an elementary way and
Part III gives properties of gamma radiation.

Part IV introduces the formal approach to

structure shielding analysis adopted in this

manuscript together with the basic parameters of

' Recently, OCDM has published a series of manuals, prepared by L. N.
FitzSimons of that agency, and based on the methods and data presented in
this monograph. See, e.g., "Fallout Shelter Surveys: Guide for Architects
and Engineers," Report No. NP-10-2 (May 1960), and "OCDM Engineering
Manual," (Dec. 1, 1960).
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description and measurement. Part V is a dis-

cussion of graphical data for use in applications.

Part VI gives an analysis of elementary structures.

Finally, Part VII presents a methodology for

generalizing the calculations to a wide group of

barrier shapes.

It was originally intended to incorporate into

this Monograph analyses of a number of complex

structures in terms of the data presented here.

However, this has been omitted for a number of
reasons. Instead, we include an appendix which
gives two additional sets of graphical data, one
for Co^° and the other for Cs^", for use in analyzing
experiments. The data contained in the body of
the manuscript are for radiation from fission

products.

II. Description of Fallout

4. Fallout vs Initial Effects

Whenever a nuclear bomb is exploded, a tre-

mendous pressure wave, large quantities of heat
and light, and a vast amount of radiation and
radioactive material are produced concurrently

[6, Chapters II and III]. Where these three

effects are all important, their interrelations com-
plicate nearly all protection problems. For ex-

ample, completely protective structures must be
blast resistant as well as radiation resistant, and
they must be built with due consideration for the

possibility of a fire storm. Furthermore, the

nature of blast and heat phenomena affect the

radiation problem, e.g., through vertical drafts

which alter the spatial distribution of radioactive

material.

Exposure to the initial radiations ceases about
a minute after the explosion, by which time the
radioactive material from the explosion is carried

out of range by the upward drafts. Large
amounts of earth and debris are also drawn up-
ward, and the resulting mushroom-shaped cloud
may rise 80,000 feet or more. This cloud contains

particles ranging in size from submicroscopic
specks to grains as large as coarse sand. Radio-
active residue from the bomb and its surroundings
adheres to these particles. The general term for

this particulate matter, as it is brought to earth

again, is "fallout."

5. Regional Variations in Fallout

Some of the fallout particles rise higher than
others; and some are more buoyant than others,

thus falling to earth less rapidly [6, Sections
10.1-10.24]. Close to the explosion there occurs
the "throwout"— rocks blown out by the blast;

while at the other extreme are particles so small
and raised so high above the earth that they are in

the stratosphere above the weather and are little

influenced by gravitational forces. It takes years
for these tiniest particles to settle to earth again,
and they may come down anywhere on the earth.

We shall not discuss this long-duration "world-
wide" faUout, nor shall we be concerned with the
"throwout" [6].

A large fraction of the fallout material is big
enough to come to earth within hours or days, yet
small enough to be easily blown about by winds.
Correspondingly, the distribution of particle
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sizes and the regional wind structure determine
the spatial distribution of the deposit. Sustained
strong winds may carry fallout in lethal amounts
for hundreds of miles, whereas light winds may
leave most of it much closer to the explosion.

Figure 5.1 gives idealized contours of total fall-

out exposure from a large (multi-megaton) ex-

plosion, indicating how the fallout was carried by
winds away from the point of explosion.

Attempts to calculate such gross variations have
had some success, at least to the point of being
useful in estimations for broad planning purposes

[6, Sections 9.55-9.138].

It is clear from figure 5.1 that intense fallout

can occur in wide areas far beyond blast and heat
effects. This makes it reasonable to consider the

fallout as a problem separate from blast and heat
complications. In this Monograph, problems of

protection from fallout radiation are discussed
without reference to the effects of blast and heat;

it should be remembered, however, that intense

fallout also occurs in the proximity of the
explosion.

6. Local Variations in Fallout

Just as the gross features of fallout spatial

distributions are affected by the general wind
pattern over a large area, so the fine features

depend on the local winds. For example, fallout

may collect more on one side of a building than
on another, or blow down one set of streets more
than another, more or less in the manner that the
drifting of snow is determined by local variations
in the surface winds. We do not have explicit

data on the effects of such variations, and a
thorough analysis of the problem is needed before
a reliable estimation of the magnitude of these

"micro-meteorological" effects can be established

[13]. In the absence of specific information we
assume for the present that fallout will be uniformly
distributed horizontally over exposed surfaces.

A question of particular importance relates to

the amount of fallout material which may remain
suspended above the earth in trees and shrubbery.
This has not been accurately determined. There
is evidence that not more than a few percent of
the material descending, e.g., upon a tree will

remain on the limbs and leaves of the tree if the
surfaces are dry [14-15]. But the possibility of
weather conditions which will cause fallout to
adhere even to vertical wall surfaces, and the
sensitivity of basement protection to the amount
of suspended source material, make this a major
problem for future research.

7. Types of Fallout Radiation

Two types of radiation are emitted by radio-
active fallout materials,^ namely, (a) gamma rays
and (b) fast charged particles (alpha and beta
rays). Both types are biologically destructive;
however, the charged particle ladiations are not

' Neutrons are not emitted by fallout particles.

very penetrating. The fast beta-rays (electrons)

can produce burns on unprotected skin, especially
when fallout material is in contact witli the skin

;

but very little shielding, such as is pi'ovided by
average to heavy clothing, is capable of providing
almost complete protection. The alpha rays are
not even able to penetrate through the external
layer of skin. In problems of ingestion of con-
taminated food, water, and air, however, both
alpha and beta rays must be considered, because
when taken internally their full energy is effective

in causing damage to the internal tissues [16].

The gamma rays present the primary shielding
problem because they are extremely penetrating
as well as biologically destructive. They may be
described as high energy X-rays, but for historical

reasons the term "7-rays" is frequently used when
the radiation is produced by nuclear processes
and "X-rays" when it is produced by electron
bombardment of an anode.

8. Characteristics of Fallout Gamma Rays

Both the quality and the quantity of fallout

gamma rays have been investigated in many
research studies [17-23].

Gamma radiation may be visualized as a stream
of individual "energy packets," called "photons."
The energy content of each packet may be re-

ferred to as the "photon energy." Quantitative
descriptions of fallout gamma rays may utilize

directly the total photon energy crossing unit area
of a surface per second; alternately they may
involve a standard detector whose response is in

some way descriptive of the strength of the beam,
as discussed in Sections 9 and 15.

Qualitative descriptions are nearly always in

terms of the "spectrum," which gives the relative

importance of the different gamma ray photon
energies present. A typical spectrum will be a

list of numbers or a graph giving, e.g., the fraction

of the total beam energy in the form of photon
energies between 1 and 2 Mev, between 2 and 3

Mev, etc.

Radioactive material is a mixture of many types
of atoms, each emitting characteristic photon
energies. These radioactive atoms originated in

one of two ways: (1) Some were originally part
of an atom which fissioned in the nuclear explo-

sion (mixed fission products); (2) others were part of

the bomb or were nearby and were made radio-

active through capture of a neutron (neutron in-

duced activities). The mixed fission products
have usually been considered the most important
radiation source, to the extent that the neutron-
induced activities have often been neglected in

calculations pertaining to fallout. From both
sources a variety of photon enei'gies is generated
over a range extending up to perhaps 3 Mev.

9. Exposure to Gamma Rays

Biological effects depend upon the energy ab-
sorbed from the gamma rays per unit mass of

3



biological material [24]. This absorbed energy is

usually measured in "rads" (1 rad=100 ergs/

gram).
The energy absorbed in biological material de-

pends in turn on the strength of the radiation

field and the duration of exposure. For protection

puiposes, this is measured in terms of the cumu-
lative effect of the field on a standard material,

namely air, in units of roentgens (r) or milli-

roentgens (mr)}
Though the roentgen is a measure of exposure

to a radiation field, whereas the rad is a measure
of the result of this exposure, it has long been
common practice to blur this distinction by speak-
ing of the biological effect of a "dose" of y roent-

gens, meaning the effect resulting from energy
absorbed during an exposure totalling y roentgens.

The International Commission on Radiological

Units has recommended that the term "exposure
dose" be used in this context to prevent confusion

with the energy absorbed in the biological (or

other) material.*

The strength of a gamma ray field at a given
time is frequently measured in terms of the "dose-
rate," in units of roentgens per hour (r/hr) or, in

weak fields, in units of milliroentgens per hour
(mrfhx)

.

Perhaps the best way to gain a feel for the mag-
nitude of different exposure dose rates and total

doses is by noting the effects upon human beings,

insofar as this is known or surmised. Specific

effects depend upon the health of the individual

the time-duration of exposure, etc., but some gen-
eralized statements about the effects caused by
short-duration exposures can be made, as in Table
9.1 below.

Table 9.1. Probable Effects of Fallout Gamma Radiation
on Humans "

Short Term
Whole-Body
Exposure
(roentgens)

Probable Effect

0 to 100
100 to 200
200 to 300
300 to 600
Over 600

No obvious effects

Some sickness
Sickness and some deaths
Severe sickness and many deaths
Few, if any, survivors

Note that the effects given all refer to the extent of

general incapacitation following exposure. Effects on the
gonads, the eyes, etc., which may be extremely important
but not immediately obvious, have not been included.

10. Decrease of Fallout Radioactivity With
Time

When fallout material has stopped falling upon
a given location gamma ray intensities produced

' Exposure dose of X- or gamma radiation at a certain place Is a measure of
the radiation that is based upon its ability to produce ionization. The unit
of exposure dose of X- or gamma radiation is the roentgen (r). One roentgen
is an exposure dose of (X or) gamma radiation such that the associated cor-

puscular emission per 0.001293 g (ram) of air produces, in air, ions carrying 1

electrostatic unit of quantity of electricity of either sign [24].
' See footnote 3, above.

by the fallout can be observed to decrease with
time. If the fallout is not being spatially displaced
by winds, this decrease is described roughly by
the following formula:

D{U)^{t2lU)-'-'D{U), (10.1)

where U, t-i represent different elapsed times fol-

lowing the explosion and D{t) is the dose-rate at
time t [6, Sections 9.4-9.17]. Equation (10.1)
can be roughly described in another way: For
every sevenfold increase in -time there is a tenfold
decrease in radiation intensity. For example,
if the radiation dose-rate in a given location is

1,000 r/hr four hours after the explosion, the
dose-rate twenty-eight hours after the explosion
would be about 100 r/hr.

Another convenient rule-of-thumb relates radia-
tion dose-rate (r/hr) to total exposure (r): The
total exposure dose (r) over a very long time
interval beginning one hour after the explosion
is numerically about five times the dose-rate
(r/hr) at one hour in the same place, assuming
that no displacement or arrival of the fallout

material has taken place after one hour. Thus,
if the dose-rate one hour after the explosion
were measured to be 30 r/hr, the total exposure
at the same location over a very long time interval

following this measurement would be about
150 r. A more general expression is

E{U,U)= ^UD{U)[l - {Ulur% (10.2)

where E{ti,t2) is the total exposure dose accumulated
between times <i and ^2 following an explosion.

Note that if ti= l and ^2=°°, E(l,o=)= 5D(l),

in agreement with the special rule-of-thumb
mentioned. These rules do not apply if the

shielding conditions are changed during the time

interval.

The functions of the ratio (^2/^1) appearing in

eqs (10.1) and (10.2) are given in figure 10.1.

It should be remembered that the time variation

expressed by the foregoing expressions is only ap-
proximate, that it depends upon the predominance

of fission product radiation over induced radiation,

and that it becomes a very poor approximation

when times after the explosion stretch out into many
months or years [25].^

EXAMPLE. The dose-rate of radiation in a

given place 4 hours after an explosion is measured
to be 32 r/hr. (a) What will the dose-rate be

48 hours after the burst; and (b) what will be

the total accumulated exposure dose during the

time interval from 4 to 48 hours?

(a) Taking <i= 4 hours, ^2= 48 hours, one ob-

tains t2/ti= 12. According to figure 10.1,

{t./ti)-' -'={12)-' -'=0.053. Multiplying this by
D{ti)= 32 r/hr, one obtains D(t2)= 1.7 r/hr at 48

hours. ANSWER.

5 For a recent investigation of this time variation see the report USNRDL-
TR-425, by Carl Miller (U.S. Naval Radiological Defense Laboratory,

May 27, 1960).
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tz/t,

FiGUBE 10.1. Functions for obtaining the radiation dose rates and cumulative dose at different times after fission.

(b) To obtain the accumulated exposure dose,

one determines from figure 10.1 that [1— (^2/^1)" -^]=
1- (12)- -2=0.39. The product (5)X(4 hr)X(32
r/hr)X(0.39) then yields the value 250 r.

ANSWER.

11. Time Variation of the Fallout Spectrum

The fallout gamma ray spectrum changes with
time [17-23, 25-27]. This nnportant feature comes
about because many varieties of fission fragments
are contained in the fallout mateiral, and each

goes through a succession of transformations.

Thus the very nature of the radiating material

changes with time, and this affects the spectrum
emitted.

An example of these spectral changes is given
in figure 11.1. At one hour after fission (top

figure) the total energy is fairly evenly distributed

among gamma rays with photon energies from
about 0.5 Mev to 2.5 Mev. At the end of a day,
however, most of the radiation is made up of

photons below 1 Mev. With further increase in

elapsed time following the fission process, higher
energies again become very important. Finally,

although not shown, the lower portions of the
spectrum increase in importance.
The intense, high energy component M hich dom-

inates the spectrum about a week following the



PHOTON ENERGY (Mev)
FiGUBE 11.1. The relative intensities of different spectral components at several times after fission. The height of each box

is proportional to the (energy content) of gamma rays in the energy interval, and the central line indicates an energy assumed
for all photons in the interval for purposes of calculation. The lines do not correspond to spectral energies actually present.
The total intensity is unity for each spectrum. (Ref. 18, Table 11. Volatile components have been removed from the fission
products.)

fission is due to an isotope of Lanthanum, which
is the fourth member of a radioactive family which
begins with Xenon fission fragment. The spectral
energy of these gamma rays is 1.6 Mev, and they
are important over a time interval of more than
two weeks.

^

Because of the tim.e variations of the gamma
ray spectrum, it is necessary to make some decision
regarding choice of a spectrum to be used as the
basis for shielding calculations'. It turns out that
penetration properties of fallout gamma rays are
less sensitive to spectral changes than might be
supposed, except for very large penetrations— this

will be discussed in the next Sections. The data in

s Note that Xenon is a rare gas, so that when this type of fission fragment
is initially formed, it will not enter into chemical combination. The Xenon
quickly (in a few seconds) disintegrates to produce Cesium, which is very
active chemically and which should become attached to fallout material.
Thus Lanthanum and other daughter products of this chain should contri-
bute to the fallout spectrum.

this monograph correspond to the spectrum exist-

ing 1.12 hours after the fission process. This spec-
trum is the one given in figure 11.1 (top curve),

with no additions for neutron capture components.
This choice results from, two considerations: (1) A
large part of the exposure to radiation is apt to

occur during the first few hours; and (2) the spec-
trum one hour after the explosion is representative
of other early times in the sense of having about
the same penetrability.

12. Magnitude of Fallout Gamma Ray In-

tensities and Exposures

Precise information about likely fallout dose-

rates is not available; but there is some information

about possible dose-rates produced by large (mega-
ton) explosions. These vary up to thousands of

6



r/hr at early times after the explosion, and could

result in accumulated exposures up to tens of

thousands of roentgens for unprotected people,

even outside blast areas (see fig. 5.1). Further-

more, there exists strong likelihood of overlapping

fallout fields, increasing total intensities additivel}'.

Since a hmnan exposure to a few hundred roent-

gens is considered very severe, one attempts to

provide shielding sufficient to reduce radiation in-

tensities by "protection" factors of the order of

1000 to insure in practically all cases reduction of
exposures to an order of magnitude below the dan-
ger levels. In different types of structures, dif-

ferent "protection factors" turn out to be feasible.

For exam.ple, in an underground shelter it may be
relativel}' easy to incorporate a protection factor
of 5000, whereas in an above-ground shelter, it

ni.ay be difficult to incorporate more than a factor
of, say, 100. Figure 5.1 illustrates the value of
protection factors still lower than 100.

III. Description and Measurement of the Radiation

13. Introductory Remarks

This part contains a brief outline of terms and
ideas used in the latter parts of this Monograph.
Also included is a description of some of the char-

acteristic physical properties of gamma radiation.

References are given to other publications con-

taining a more complete discussion of some of the

topics.

14. Physical Properties

Gani.m.a ray photons act in many ways as if they
were tiny "bullets." They travel in a straight line

until they "collide" with an atom. When a "colli-

sion" takes place the photon may vanish alto-

gether, or it m.ay "ricochet" and continue traveling

in a new direction with lower energy. The "colli-

sions" are usually referred to as interactions.

Those in which the photon disappears altogether

are called absorptive interactions. The others in

which the photon "ricochets," are called scattering

interactions [12, Part A].

As a photon moves along its trajectory, there is

always a possibility that in the next segment of

the path an interaction of some type may take
place. Although the nature and location of an
interaction is a matter of chance, the probability
of occurrence for each interaction type per unit

path length traveled depends upon the photon
energy and the type of material being traversed.
At very low photon energies an absorptive inter-

action has such a large probability that a long
path unimpeded by such an interaction is ex-

tremely unlikely.

The average distance between interactions in a
given type of material is called the "mean free

path." The mean free path is proportional to the
density of the material traversed, and this is the
main reason why the gamma rays travel about
700 times farther between interactions in air than
in water. Mean free paths in air for fallout

gamma rays are of the order of several hundred
feet, i.e., large compared with the dimensions of

most buildings. This has the consequence that
most gamma ray interactions within buildings do
not take place in the air, but in the walls, floors,

and objects of furniture.

When gamma rays "scatter" tlie>" continue
with lower energy in a new direction, so that they
may undergo one or more additional interactions.

There is a correlation between the angle of de-
flection and the energy loss which accompanies a
scattering interaction. On the basis of this cor-
relation the following statements can be made:
Gamma rays deflected through 90° by a scattering
interaction cannot have a residual photon energy
above 0.511 Mev. Sunilarly, gamma rays which
have been deflected through 180° by a scattering
interaction cannot retain an energy above 0.256
Mev. Thus, gamma rays which have undergone
large changes in direction are apt to be much
lower in energy than unscattered gamma rays.
This is the case even when the direction change is

the cumulative result of several interactions.

15. Radiation Detectors

An object which is affected by radiation to a
measurable extent can be used as a radiation
detector [28]. Since the effect of radiation on
human beings is of primary interest, one might
wish to discuss all shielding problems in terms
of tissue damage to the exposed human body.
This is impractical because the body does not
make a very suitable detector for experimental or
theoretical investigations. Instead, detectors are
used whose response has similarities to the response
of a human body, while being more easily measured
and interpreted. These detectors tell us about
the radiation field. The tissue damage caused by
exposure to a known radiation field is treated as

a separate problem, and we do not concern our-
selves with it further.

Every detector is characterized by its "response
function," which is the "efficiency" of gamma
rays of photon energy E, incident on the detector
from various directions, in producing the measured
effect. It is frequently advantageous to have
an "isotropic" detector, i.e., one equally efficient

regardless of the direction of incidence of the
photons.^

The most commonly used radiation detector
consists of an enclosed air space containing a

pair of oppositely charged electrodes. Wlien
exposed to radiation, the gamma rays interact

with the material surrounding the air space,

producing high-velocity recoil electrons, some of

' Note that the response function depends, in general, on both direction
and photon energy and might be denoted by e{E,$,<t>). An isotropic detector
would correspondingly have a response function «(£), i.e., independent of e, .
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which traverse the cavity and ionize the air

within. A measurable electron current is pro-

duced as the ions travel to the electrodes and
deposit their charge. It is this current, divided

by the volume of the air space, which constitutes

the response of the instrument.

These so-called "cavity ionization chambers"
are usually constructed in such a way that their

response is nearly isotropic. But the current

per cm^ measured by the instruments is not pro-

portional to the total energy incident upon the

detector. Instead it h nearly proportional to the

energy deposited per gram of detector material, as

a result of gamma ray interactions occurring

within the detector. When such detectors have
cavity walls of a material similar to air in its

reaction to irradiation, the response can be
measured in roentgens and referred to as "dose,"
or more precisely as the "exposure dose," as ex-

plained in Section 9.

Reference to the "detector response" in this

monograph will always imply an isotropic de-

tector of this type, i.e., of air-equivalent material,

whose response in roentgens is called the "exposure
dose."

16. Measurement of the Radiation Flux From
Particular Directions

To determine the flux of radiation traversing a

given region one needs to introduce a suitable

detector as a probe. For this purpose one of the
isotropic detectors just described can be used,

with a response calibrated in roentgens. The
detector should be small enough so that all parts

of it are exposed to the same radiation flux, and
also so that its presence does not appreciably
disturb the flux distribution.

The response measured is due to photons which
traverse the detector material. These photons
are characterized by the direction of their trajec-

tory at the time they enter the detector. We
identify direction by means of polar coordinates

0,0 which are measured with respect to an
arbitrary polar axis through the center of the
detector and a reference half-plane terminating
along the polar axis. Both "obliquity," d, and
"azimuth," 0, are determined from a line extending
out from the center of the detector parallel to the
trajectory but opposite the direction of travel of
the photon.* The angle which this line forms
with the polar axis is 6, while 0 is the angle between
the reference plane and the plane terminating
along the polar axis which contains the line.

(See fig. 16.1.) Any direction of incidence is

uniquely specified by values for these two direction
coordinates.

Note that the coordinate pairs {9,4>) are in

one-to-one correspondence with points on a sphere

* It would seem more natural, perhaps, to identify (9,*) with the direction
of photon travel rather than its inverse. We would do this if the current of
radiation were to be our focus of attention. But we will be more directly
concerned with radiation sources than with radiation fields. It is therefore
natural to refer directions to a polar axis extending from the detector outwards
towards the radiation source, since this is the reference system which is easy
to use in solid angle calculations of radiation sources.

of unit radius centered at the detector. We can
refer to (9,</)) either as a direction or as a point
on such a unit sphere.

The total detector response D is made up of
contributions from all {9,<p): li D{d,4>)sineddd<i)

is the contribution to the detector response due
to gamma rays with incident trajectories between
6 and d+dd, and between 0 and 0+ c^<A, the total
response from all directions is expressed by the
integral

D-- sinddd d(pD{d,4>)
Jo Jo

(cos 61)

J
d4>D{e,4>). (16.1)

We refer to 0(6,4)) f^s the detector dose angvlar
(or directional) distribution.

One reason for introducing D{6,4>) is simply
that the radiation aff'ecting a detector may be
analyzed into components coming, say, from a wall
or a ceiling. If there is negligible air scattering,

the photon trajectories of importance all intercept
both detector and wall or ceiling surface of interest.

We designate this surface by S, and define a func-
tion gs{S,<f) which is to be unity if a direction (0,0)

can intercept both surface and detector, but zero
otherwise. Then if Ds is the detector response to

radiation from S,

Ds= j'_^d (cos d) j'J d<t>D(e,4>)gs{e,cf>). (16.2)

This expression reduces to (16.1) if contributions
from all (0,0) are included. If D{d,4>) does not
depend upon 0, we write D{d,<f)) = (2ir)~^D(d) , and

gs{9) ^1/2t£ d4>gs{d,<t>)

to obtain

D. cos e)D{d)gs{e) (16.3)

Note that gs[,d) is the fraction of the azimuth con-
tributing, at obUquity d [29, 30].

The directions (0,0) which intercept both a given
surface {S) and a point at the center of a sphere
of unit radius form a kind of cone with apex at

the point. (See fig. 16.2.) The aperture of this

cone is measured by the size of the area intercepted

on the unit sphere; if unit area is intercepted, the

surface is said to "subtend a solid angle of one
steradian at the point." Since the area of the

unit sphere is 47r, the solid angle subtended at any
point cannot exceed 47r steradians. We shall find
it convenient to use a different measure of the solid

angle in this Monograph: Our unit will equal 2-k

steradians. We shall designate the solid angle in

these units by w, and to avoid confusion will refer

to CO as the "solid angle fraction."

The solid angle fraction ws subtended by a sur-

face S can be obtained from eq (16.2) by replacing

8



POLAR AXIS

Figure 16.1. A detector about to be traversed by a photon.
The photon path passes through the edge of the detector.

The polar angles {d,4>) correspond to the line parallel to the

photon trajectory which passes through the reference point
at the center of the detector.

POLAR AXIS

UNIT SPHERE

Figure 16.2. A surface subtending at the center of a detector

a solid angle whose magnitude in steradians is equal to

the shaded area on the unit sphere.

Figure 16.3. A circular aperture of radius 3 feet, through
which radiation passes towards a detector placed 4 feet

from the aperture and on the perpendicular line through
its center.

9



D{e,ii>) by the constant (27r)~^ or from eq (16.3)

by replacing D{e) with 1.

=J'
(Z(cos 6) d4>{\l2iT)gs{9,<i>)

d{cosd)gs{e). (16.4)

For a plane surface extending in all directions to

infinity, with polar axis taken along the perpen-

dicular to this surface, 6^s=l for O^cos e<l, so

that both expressions in eq (16.4) give ws=l for

this case. Any single plane surface of finite

extent will subtend an co smaller than 1

.

EXAMPLE. Calculate the detector response D
at a position opposite the center of a circular

aperture of radius 3 ft through which radiation is

entering a building, and distant 4 ft from the

aperture. Assume that the dose angular distri-

bution from all points of the aperture has the

constant value Da, that only radiation entering

through the aperture contributes to the detector

response (see fig. 16.3), and neglect air scattering.

We choose as polar axis the direction from the

detector through the center of the aperture. Then
the angular distribution of the dose becomes Da for

(9<^max=tan-i 3/4 and zero for e>(?max=tan~i 3/4.

Since tan"' 3/4= cos"' (4/5), we write

gs{e,4>)
_l,cose>4/5
"0, cos 6i<4/5.

Since both gs and D are independent of 0, eq

(16.2) reduces to eq (16.3), and

Ds= r d (cos e) Da=1/5 Da. answer
J 4/5

Note that for constant Da, as in this case, Ds is

always given by Dacos, i-e., that cos=l/5 for the
aperture of this example.

17. Radiation Sources

Fallout material has already been referred to

as the "source" of the fallout gamma rays. We
often refer to the gamma ray generating material
as the primary source, because it is a convenience
at times to treat any interface through which
radiation emerges as a "source." If the radiation
is not actually produced at such an interface, it is

termed a secondary source. Note that the aperture
of the preceding example acts as a secondary
source.

Fallout material can be spatially distributed
into almost any geometric configuration con-
ceivable; but two configurations are of special
importance because they occur frequently and also

because many others of real importance can be
obtained from these two. One of these is called a
point source and is approximated by a local con-
centration of fallout material into a volume of

negligible dimensions. The other is called a plane

source and corresponds to a uniform spread of
fallout material in a plane. If the source is as-
sumed to cover the whole plane, one speaks of the
source as an infinite plane source; but if the source
has finite area it is called a finite plane source.
The strength of a radiation source can be de-

scribed in various ways. It is customary in physics
to measure the source strength in terms of the
number of nuclear disintegrations occurring every
second. A source is said to have a strength of one
curie if 3.7X10'° nuclear disintegrations occur per
second. On the other hand, in radiology one
speaks of a source which produces an exposure dose
of one roentgen per hour at a location one meter
from the source [see, e.g., 31]. Since protection is

a relative matter, we discuss source strengths in

this Monograph in terms of the exposure dose they
produce at fixed positions ; and we do not attempt
to specify source strengths in curies even though
this is possible. Our practice here is thus akin
to that just attributed to radiologists. More
specifically, the real problem in radiation pro-
tection is to determine how much safer one loca-
tion is than another. We therefore define a
standard "unprotected" position and measure the
protection according to reduction of the exposure
dose below that experienced in the standard
position.

18. Protection and Reduction Factors

We wish to introduce a quantitative measure of

the protection afforded by structures, by one
structure relative to another, or one location in a
structure relative to another. Also, in order to

gauge the overall effectiveness of protective con-
struction, a standard "unprotected" position is

needed for comparison.
Fallout is assumed to cover uniformly all siu"-

faces according to their horizontal projection, as

already mentioned. From this primary source
the radiation travels to the detector, wherever it

may be. A fairly obvious choice for a completely
unprotected detector location would be above
ground in a large, open field. This choice has
been made frequently; but it has two difficulties:

One is that the detector response depends upon
the "roughness" of the ground surface; and the
other is that location of the source at the ground-
air interface makes it very difficult to calculate

the detector response accurately even if the spec-

trum and strength of the primary soiu'ce are

completely known. The first difficulty makes it

hard to "standardize the standard," so to speak,

while the second makes it hard to evaluate the

standard.

For these reasons we have chosen as a "standard

unprotected position" a detector location three

feet above a hypothetical source of the same
character as the fallout on the ground, but at a

hypothetical smooth, infinite plane "interface"

with the ground replaced by compressed air of
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the same density.' By making the source plane

ideally smooth we avoid the ground roughness

difficulty; and by replacing the ground by "com-
pressed air" we make an accurate theoretical

analysis possible in a fairly realistic case and thus

avoid the second difficulty. To complete the

description of the "standard unprotected position"

it is necessary to add that the 3 ft separation is in

dry air at 76 cm Hg pressure and a temperature

of 20° centigrade.

There are at least three additional reasons for

this choice of reference detector location: (1) It

gives an extreme, but not imrealistic estimate of

the dose to which the centroid of the body is

exposed in an open contaminated field. (2)

Given the spectrum and strength of the gamma
rays emitted per unit area of the primary source,

the reference dose rate can be calculated to about
2-3 percent accuracy, which is an order of magni-
tude more accurate than necessary for most
shielding estimates. (3) It appears easier and
more natural to consider ground roughness as an
additional "bonus" shielding from fallout on the

ground, because the same "bonus" protection

does not exist against the fallout on top of the

protective structure.

We define the "protection factor," P, as the

ratio of the detector response A in the standard
improtected position to the detector response D
in a protected position, i.e.,

P=Do/D. (18.1)

The reciprocal quantity is what is actually deter-

mined in structure analysis, and for easy reference

it \vill be termed the "reduction factor" and
usually referred to simply as D/Dq. In this

monograph Do always refers to detector response
at the "standard unprotected position."

Note that the protection factor is not defined in

terms of a "standard" spectrum, so that it is a
quantity which will vary, e.g., with time after

fission, weapon type, etc. This reflects accurately
the situation because the protection which a struc-

ture gives will itself vary with circumstances ; and
in all likelihood, the actual variation will cover a
wider range than given by a variety of different

estimates. All fission data in this monograph
correspond to a spectrum calculated for 1.12 hour
old mixed fission products, as already indicated.

19. Attenuation of Gamma Rays

Before proceeding to the discussion of structure
analysis, we wish to examine briefly what happens
to gamma rays emitted by a point som"ce em-
bedded in som.e material, in order to form, a pic-
ture of their "history" and an appreciation of the
different factors leading to their attenuation (re-

duction in strength). [See also 12, Section 5.]

Very near to the source most of the gamma rays
are diverging radially away from their point of

origin. As they diverge from the common source,

' Note that the density of the "compressed air" is immaterial except for

purposes of visualization, so that the reference configuration is actually an
jnfinite plane source in an infinite homogeneous medium. (See Section 25.)

they also tend to spread apart from, each other.
The effect can be visualized by thinking of con-
centric spheres surrounding the radiation source,
with radii designated by r. As gamma rays from,
the source travel outwards they will intercept
spheres of increasing radii which have an ever
greater surface area. Even if all the gamma rays
pass unhindered through the spheres, they will be
spread ever n^ore thinly the farther out they travel,

simpl>" because they will be distributed over a
larger area. This has the consequence that the
exposure dose measured by a small detector of
cross sectional area a will decrease with distance r

from the source in proportion to r~^, because the
detector can only respond to a fraction a/iTrr^ of

the total flux emerging from the sources. This is

the inverse square law of attenuation with distance
from a source.

Each gamma ray photon from the source pene-
trates unhindered through the surrounding mate-
rial until an interaction occurs, but the interactions

are chance occurrences. There is a fixed prob-
ability determined by the photon energy and type
of material traversed that in a given segment of

the path an interaction will occur. This means
that in each succeeding layer of m.aterial a fraction

of the photons undergo their first interaction, and
the number of photons penetrating the layer with-
out interaction is correspondingly reduced. We
say that the "unscattered beam." undergoes expo-
nential attenuation. Successive layers of material
equally thick reduce the number of unscattered
photons by the same fraction, assuming the layers

to be homogeneous and equally dense. Tables of

attenuation coefficients are given in [32].

If the first interaction is a scattering, the gamma
ray photon may travel further, though with re-

duced photon energy and changed direction.

Other interactions follow, separated by path seg-

ments which tend to become shorter as the photon
energy becomes smaller. Eventually an absorp-
tive interaction terminates each photon "history."

Many of the gamma ray photons continue to

increase their distance from the source even after

a number of scattering interactions. Thus, at

any fixed distance there will be gamma rays which
have been scattered once, twice, many times,

in addition to some which have not been scattered

at all. Because all "orders of scattering" must
be considered as giving a contribution to the

detector response, the exponential attenuation of

the unscattered gamma rays does not describe

accurately the law of attenuation due to the

combined effect of all interactions. It is customary
to modify the exponential law (accurate for

unscattered photons) by a factor called the

build-up factor to take into account the presence

of scattered gamma rays. (Tables of build-up

factors are given in [33].)

If the primary source is located in the air,

gamma rays from the source may strike a wall.

Because gamma rays can have scattering inter-

actions which completely reverse their direction,
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some of the radiation will be "backscattered"
from the wall, re-emerging again into the air.

A great deal of interest attaches to the fraction

of the gamma ray energy entering the wall which
comes back out again in this way, i.e., the "energy
albedo." If the different spectral components
are weighted according to the efficiency of de-

tection by an air-equivalent detector, an analogous
"dose albedo" may be determined. We view

this latter ratio as a type of reduction factor for
purpose of comparison with the other factors,
and refer to it simply as the albedo [34].^°

Other definitions might be useful, but for the
most part these four—the inverse square law,
the exponential factor, the build-up factor, and
the albedo—are sufficient for discussion purposes.
Figure 19.1 illustrates the first three factors in a
particular case.

IV. Introduction to Structure Shielding Analysis

20. Basic Approach

The analysis of structure shielding can best be
described in connection with a typical, but ele-

mentary example. Figure 20.1 shows a "block-
house," i.e., a building with four walls and a roof.

Fallout rests on the roof and on the ground around
the structure. We are primarily interested in the

dose measured at detector position A.
Radiation contributing to the detector response

comes from all directions. Because of the low den-
sity of air, most of the detected radiation moves in

straight lines to the detector from points of emer-
gence at the walls. Thus it is natural to speak of

detector response due to radiation "from the
walls," "from the roof," "from the window," etc.

We expect that radiation "from the walls" will

have little resemblance to radiation "from the
roof" in intensity or directional distribution. Ra-
diation "from the roof" originates from the fallout

resting on top of the roof, while radiation "from
the walls" originates from fallout on the ground,
possibly a long distance from the structure. These
marked differences make it reasonable to differ-

entiate between detector response "components"
from the different wall surfaces.

Radiation from a wall ordinarily has entered the
wall from the outside. Thus when one speaks of

radiation "from a wall," the reference may be
either to the radiation passing from wall to detec-
tor or to radiation initially incident upon the ex-

terior surface of the wall in question. In other
words, one can classify the detector response com-
ponents according to interior or exterior surface
crossed. For our purposes the latter is usually pref-

erable and can be expressed as follows: If that
part of the detector response due to radiation en-
tering the "^"-th distinct wall section from the
outside is designated Di, the total detector re-

sponse wiU be

D=JlDi, (20.1)

matter to treat backscattering from interior sur-
faces by a simple corrective factor."

We next select a particular wall surface, namely
that adjacent to detector positions B and C in

figure 20.1; only radiation entering and leaving
this wall surface is to be considered for the
moment. To contribute to the detector response,
radiation must first pass through the wall and
then "locate" the detector. The detector re-

sponse at B divided by the response at position C
is approximately the reduction factor due to
interactions within the wall material. If the
detector is moved away from B towards A, the
detector response will decrease further. This
additional "attenuation" is due to the "inverse
square" effect described in the preceding Section.

We distinguish between these two types of

attenuation and refer to them separately. The
first, attenuation by interactions with wall ma-
terial, we shall call harrier reduction due to harrier

shielding. The second, accompanying a displace-

ment of the detector farther from the wall, we
shall call geometry reduction and speak of it as due
to geometry shielding. The following subsections

describe these quantities in greater detail and give

reasoning which leads to their introduction. Here
it will suffice to say that geometry reduction can
often be considered as mainly a limited-source

effect. The wall acts as a secondary source; and
if this source were constant on a plane extending
laterally to infinity, there would be no appreciable

difference in intensity between detector positions

A and B. The geometry reduction comes about
primarily because the wall, being finite, subtends
a smaller sohd angle at A than at B.

If a reduction Bi of the detector response occiu-s

between C and B. and a further reduction G\

occurs when the detector is moved from B to A,
the detector response Di at A may be written

D^=6,BiDc (20.2)

where the sum extends over all distinct exterior
wall surfaces. Such a classification is useful for
many reasons. In addition to differences in inci-

dent radiation characteristics, the attenuation is

apt to differ widely from one wall section to an-
other. This has the consequence that the dominant
source of radiation can be a particular wall or wall
section. Further, it is usually a straightforward

where Dc is the detector response at a reference

i» still other types of albedo factor have been defined, using number of

photons in place of energy or dose. Only the "dose albedo" appears in this

manual, so that the use of "albedo" to refer to dose albedo should not be

confusing.
II By classifying according to exterior surfaces one estimates that a certain

fraction of the radiation entering the room from one wall will affect the de-

tector after backscattering from other walls. An estimate of this corrective

factor is then made with little concern about the detailed history of the radia-

tion or about effects due to radiation entering through the other walls.
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Figure 20.1. A blockhouse, with fallout on roof and ground.

position C, which is here shown as just outside
the wall.

The dose from a wall section nearly always will

be written in the form eq (20.2), so that calcula-

tion of the Dt involves determination of appro-
priate barrier and geometry reduction factors for

each type of wall surface.

Though Dc in this example is the dose just

outside the exterior wall, the comparison with the

standard value Do is of most fundamental interest.

This change requires definition of a modified
barrier factor B'i= BiDclDo, which expresses the

combined reduction due to attenuation in the wall

and exterior air. Henceforth barrier factors will

be of this type, i.e., ratios of the detector response
at position adjacent to a barrier to the standard
response Dq.

The approach described here depends for its

success on the fact that only ~15 percent of the
radiation energy incident on a surface is back-
scattered. This relatively low albedo insures that
most of the detector response is due to radiation
which has had contact with only one wall.

21. Discussion of Barrier and Geometry Re-
duction Factors

In the preceding Section a distinction was made
between two types of reduction in the detector
response. The reasoning which leads to this

distinction is essentially as follows:

Most theoretical data derives from the study of
an especially simple case in which the medium has
no irregularities (infinite homogeneous medium).
The source may be concentrated on a plane in the
medium or localized at a point. Calculations of
the detector response as a function of distance
from the source in such an elementary case can
be done to within a precision of a few percent.
Because these calculations have internal consist-
ency and reliabihty, and also because they
usually represent a good approximation to the
reduction in intensity due to actual slab barriers,
we nearly always find it convenient to consider
ratios between actual detector response due to
radiation from a particular wall, say, and detector
response as estimated by such infinite medium
calculations. The resulting ratios express nearly
all the special characteristics of the configuration,
but they vary slowly as the position or the con-
figuration is changed. It is possible to estimate
these ratios with calculations for an infinite

mediimi, since they express effects such as source
"finiteness."

Thus, the detector response is expressed as the
product of two factors: One gives the attenuation
in the wall material which would occur if the
source were of a particularly simple type and the
medium everywhere uniform in density; and the
other is a ratio which expresses all the other
features of the actual configuration. For con-
venience we give these two factors names. The
name "barrier factor" for the first is a fairly

obvious choice. The name "geometry factor" is

chosen for lack of a more accurate term of reason-
able length. (Note that the term "configuration
factor" would be more appropriate but is not used
here because of its length.)

One more aspect of this development deserves
comment. In practice, structure shielding anal-
ysis requires a great variety of standardized
functions expressible in the form of tables, graphs,
and possibly empirical formulas. Many of these
functions are rather naturally classified as geom-
etry or barrier factors. We make the attempt to

carry this classification as far as possible, with the
consequence that standard functions may be
referred to as "geometry factors" which are not
obviously related to other functions also referred

to as geometry factors. The next two sections

describe some of the independent variables which
determine these factors both as to type and as to

nimierical value.

22. Barrier Shielding and Effective Mass
Thickness (X)

The shielding provided by a barrier depends
upon many variables, among which are

(1) the weight per unit area of the barrier,

(2) the type of barrier material,

(3) the gamma ray spectrum, and
(4) the directional distribution of the radiation

striking the barrier.

We discuss items (3) and (4) first: Data will be
given only for a single fixed spectrum, namely
that of figure 11.1, (top); variations of the fallout

gamma spectrum with time after the burst are

not taken into account. The directional dis-

tributions of incident gamma rays vary widely,
so that results for each of the most important
cases will be identified with a special symbol.

Item.s (1) and (2), the type and thickness of the
barrier, can be treated together because of a
fortunate circum.stance : Nearly all important
construction materials have atomic numbers low
enough so that the attenuation is due primarily to

scattering interactions, which are independent of

the energy states occupied by the electrons.

Thus, the attenuation produced by a barrier

depends almost com.pletely on how m.any electrons

it puts in the path of the gam.m.a rays, and this is

12 Basically, reduction due to attenuation in barriers is exponential, while
reduction due to configuration is a power function. We are in fact using
the same ideas that lead to the introduction of the Build-up Factor concept.
Estimation of these new ratios requires a knowledge of dose angular
distributions.
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simply the product of the number of electrons per

unit volume with the thickness of the barrier.

Therefore, to measure the effectiveness of bar-

rier shielding a parameter X is used which is pro-

portional to A (barrier thickness), and to p<^Z/A'^
where p is the density and <Z/A> is the ratio of

atomic charge to atomic mass number, averaged
over the constituent elements of the barrier.'^

(Note that p<Z/A> is proportional to electrons

per unit volume, the proportionality constant

being Avogadro's number.) In particular, we
define X by the expression

Z=2<ZM>pA. (22.1)

The factor of two is introduced because <Z/A>
is nearly 0.5 for such important construction

materials as brick and concrete, so that 2<^Z/A^
= 1 for those materials. If the factor 2<Z/A> ~
1 is treated as a dimensionless proportionality

constant, X can be measured in units Ib/ft^ (psf),

since the unit weight is usually given in lbs/ft^,

thickness in feet, and lb/ft" x ft= lb/ft^. Because
X is nearly always close to the weight per unit

area, or mass thickness, we call this quantity the

effective mass thickness}'^ Table 22.1 gives

2<Z/A> for a number of common materials,

together with the density of the solid material.

Table 22.1. Values of 2<_ZIAy and p

Material 2 <ZIA> p, Density in pcf

Water 1. 11 62.4
Wood 1. 06 34.0 (average)
Air 1. 0 0.076
Brick 1. 0 115
Concrete 1. 0 144
Soil (depend-

ing on water
content) 1. 00-1. 02 100 (average)

Steel 0. 931 480
Lead" 0. 791 710

" Lead is included strictly for comparison. It should be
remembered that the data in this monograph do not apply
to lead because it absorbs rather than scatters the radi-
ation. See the last paragraph of this section.

Table 22.2. Mass thickness of common building materials
used in various building components.

INDIVIDUAL BUILDING MATERIALS

Item Thickness Weight Psf Component

Inches
Adobe.. _ 12 116 Wall

Asbestos board Me 1. 7 Do.
Asbestos, corrugated.. 4 Roof, wall
Asbestos shingles 1.8 Do.

Asphalt roofing, 3-ply 1 Roof
ready.

Asphalt roofing, 4-ply 5.5 Do.
& gravel.

13 In particular, <Z/A> = 2 f<, where /, is the fraction of the mass

due to the ith constituent.
1*" Effective mass thickness" and "equivalent thickness of concrete," a

term used in the ODM report [7] are different names for essentially the same
quantity.

Table 22.2 Mass thickness of common building materials
used in various building components—Continued

INDIVIDUAL BUILDING MATERIALS

Item 1 nicKness vv tjigjit i SI \_'u 111puiie11

1

-

Inches
Asphalt roofing, 5-ply 6. 2 Do.
& gravel.

Asphalt shingles 2.3 Do.

-DliCK » OA
1 ,

1 WallVV dll
Q Do

T)rt Tin
TinUiJ 1 7 Do

Clay tile shingles. 15±5 Roof
^ld,y Lllc, Oil ULtUl d.l._ _

A
'± 1 fi VV dll

Concrete block, hol- 4 30±4 Do.

vinxJU^ Q 00±0
Do 12 85±10 Do.

Concrete, reinforced.

,

1 12^2
Do 12 144

Fiber board K> 0.8 Wall
T llJ\il oilcditlllllg K> u. y Do.

yj y |JDlliii UlUlyK. 2 y. 0 Do.
Do 19 t=,-i-9

1^1. O^lZ. D Do.
\Ji y poUlJX UUdl U 1/. 2 1

u^ypbuiii, blieallllllg Mi 9 nu Wall

iV^ O I'V* Irfl lO n GTIVidl IJlV IdUillg o 9fi Do.

Plaster, directly ap- H 5 Wall, ceiling

5 0 Do
Plaster on gypsum Vi Do!

lath.

X lobier uii iiieiai laLii-- ¥i D. U Tin

Plaster on wood lath /* 5.

0

Do.
X^idrOlCl, OUilU. z\j Wall

Do 4 30 Do.

x^iyWOOQ, llXlloli 1 n1. u Do.
Do 1.5 Ceiling

Plywood, sheathing-

.

n 1.1 Wall, roof

Slate Me 7.3 Roof
Steel, corrugated, 20 2 Roof, wall

ga.

Steel panel, 18 ga... 3. 26 Wall, roof

1 9 1 Wall
stone, cast, facing oz Do.

3A

yi

9 0 Do.
stucco, wood lath Do.

11 Do.

Wood block, flooring.. 3 10 Floor
Wood finish flooring. . 2^2 2. 5 Do.
Wood sheathing H 2.5 Floor, roof

Wood shingles 2.5 Roof
Wood shingles in. 1. 1 Wall

to weather.
Wood siding, 8 in. 1.5 Do.

bevel.
Wood siding, 6 in. 2.5 Do.
drop.

COMPOSITE MATERIALS

Brick 4
and structural clay 4 60 Wall

tile.

Ceramic tile... Me
on mortar bed H 11 Do.

Do
{ 23 Floor

Concrete, reinforced Do.
ribbed slabs (see

section on compo-
nents).

Marble or terrazzo 4 50 Do.
on concrete fill.

Plaster, hollow wall 4 22 Wall
with steel studs.

Plaster on suspended 10 Ceiling
metal lath.

Wood finish floor H
on wood sleepers 4

Lightweight concrete 4 23 Floor
fill.
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Table 22.2 Mass thickness of common building materials

used in various building components—Continued

DOORS AND GLASS

Item Thickness Weight Psf Component

Inches

Door, wood exterior, m 4. 5 Small buildings

standard 3 ft-0 in. x
6 lt-8 in. solid core
flush panel.

Door, wood interior. 1. 9

standard 2 ft-6 in. x
6 ft-8 in. hollow
core.

solid core m 4.0 Do.
Door, glass, exterior. 5.1 Large buildings

d 1 li 111 1 11 U 111 cUgCf
standard 3 ft-0 in. x

7ft-0in.
Do.Door, glass, exterior H 11.0

standard, 3 ft-0 in.

X 7 ft-0 in.

Glass, double H 1.6 Small buildings

strength.
Large buildingsGlass, plate 3.5

• Glass.

Barrier shielding factors are considered func-

tions of the effective mass thickness, i.e., B=B{X).
Use of the concept of effective mass thickness

makes it possible to perform calculations even
when barriers are composed of several layers of

different materials. One merely sums the effec-

tive mass thickness (Xi) of the different layers to

obtain the total effective mass thickness X^ZXi.
i

It should be remembered that the effective mass
thickness is not pA, the weight per unit area,

though the two can be numerically equal. Table
22.2 summarizes effective mass thickness data for

a variety of common construction materials and
combinations. This data is taken from the com-
pilation of [35]. It is important to realize also

that the mass thickness of a wall, floor, etc., can
ordinarily be obtained by use of the usual dead
load tables in engineering handbooks, though for

very thick walls (several hundred psf), one may
have to adjust for hollow spaces within the

construction (see Section 36).

EXAMPLE: A barrier is composed of wood and
concrete layers having weights per unit area 5

Ib/ft^ and 50 Ib/ft^, respectively. Find the
effective mass thickness for the barrier.

X={5 lb/ft2)X1.06+(50 lb/ft^)X 1.00= 55.3 psf.

ANSWER.

Figure 22.1 illustrates the dependence of barrier

attenuation on the mass thickness and atomic
number. Notice that even steel (atomic number
26) gives only slightly more protection than con-
crete of the same effective mass thickness. If

desired, the ratio between the curves in figure

22.1 can be applied as a correction to take into
account the minor differences between low atomic
number material; but with composite barriers this

must be done with care.

Materials with high atomic numbers, such as

Pb, give additional protection; but the difference

is not so great as is commonly supposed. To

reduce the intensity of 1 Mev radiation by a fac-
tor of 1,000 requires a concrete barrier having
X=305 psf as compared with a Pb barrier hav-
ing X=190 psf. But the weight per unit area
is Xi2<CZ/A»-\ which for Pb is 190/.791=240
Ib/ft^ while for concrete it is 305/1.0= 305 Ib/ftl
Thus nearly % as much Pb (by weight) is required
as concrete.

23. Geometry Reduction and Solid Angle
Fraction

To identify other important variables on which
the detector response depends, we consider again
the blockhouse illustration and in particular the
detector response at position A due to tlie wall
on the right (fig. 20.1).

(1) Solid angle fraction: It is clear that the
detector response will depend on the "apparent"
size of the wall, as seen from the detector.

Since "apparent size" is conveniently measured
in terms of solid angle or solid angle fraction, we
say that the detector response will depend upon
the solid angle fraction co subtended at the
detector by the radiation source.

(2) Barrier thickness: The thickness of the wall
(X) will have an effect upon the detector response
over and above the attenuation which we describe
by a barrier factor. This is because the direc-

tional distribution of radiation emerging from the
wall affects the detector response but is in turn
affected by the wall thickness. In most cases and
up to a limit, thicker walls tend to produce direc-

tional distributions more and more concentrated
along the perpendicular to the wall surface.

(3) Wall shape and detector position: The
dependence on detector position is easy to demon-
strate in the blockhouse illustration by the fact

that one can find detector positions at the ceiling

and floor in which the wall subtends the same co,

but in which the detector response is expected to

differ considerably. Shape effects can also be
easily demonstrated: A detector 10 ft out from
the center of the wall will have one response if the

wall is long and narrow and another if the wall is

square, though subtending the same solid angle.

(4) Type of source: The type of primary source,

as in the case of barrier factors, varies widely
enough so that we identify each with a special

symbol.

(5) Type of wall material: We treat for the

present only the case of materials of atomic num-
ber ~30 or below, this range including the most
important materials commonly employed in con-

struction. As indicated in the preceding Section,

these low-Z materials have a certain equivalence

which we utilize.

In line with the discussion of Sections 20 and 21,

we consider all effects other than that due to

15 The detector response could equally well, be said to be a sum of con-

tributions from each element of the source. Following this idea, the detector

response could be written in terms of the radiation current flowing through

the differential area elements of the wall. This point of view is equivalent

to one we adopt, in which the emphasis is on flux directional distributions

at the detector, provided the radiation current emerging from the wall is

independent of position on the wall. We make this assumption throughout

this manuscript.
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X,psf

Figure 22.1. Attenuation of 1 Mev gamma rays in different materials (plane perpendicular source). Notice that Fe, concrete,

and H2O are separated by small, nearly constant factors.
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simple attenuation in the wall as expressed by a

single "geometry" factor G. Variations due to X
and CO are taken into account by writiag

G=G{X,w). (23.1)

To take shape dependence into account we repre-

sent actual source shapes as superpositions of

simpler, and different, source shapes. This makes
it possible to estimate geometry reduction factors

for a set of "standard shapes" which can be com-
bined to approximate most of the important
shapes encounteied in practice (see Part VII).

Formally, this means that we write

G{X,o>)= J:G{X,o>,), (23.2)

where G{X,Wi) is the geometry factor for one of the

"standard shapes." Note that to insure the

correct solid angle fraction, the condition

03=^^03 i must be imposed.'®
i

Although the blockhouse illustration is useful

for purposes of identifying variables, it does not
show how one might refer to quite different

quantities as "geometry factors." For this piir-

pose we use a different example: Consider a heavy
multistory buUding with fallout on the (flat)

roof and detector in the basement. Radiation
can reach the detector only after passing through
several heavy floor slabs. To account for barrier

attenuation and remove it from consideration, we
may divide the detector response by the expected
response if the material between source and
detector were uniformly distributed, and if the

radiation source extended unchanged in the plane
of the roof to infinity in all directions (infinite

plane source). The resulting ratio, which we
consider a type of geometry factor, would depend
upon the following things: (1) The extent of the
roof, which can be expressed in terms of the

solid angle fraction subtended by the roof at the
detector; (2) the thickness {X) of the barrier

between roof and detector ; and (3) the shape and
position of the roof relative to the detector.

Equations (23.1) and (23.2) are as applicable to

this case as to the blockhouse wall. The chief

difference is that w is determined for the faUout
on the roof, a primary radiation source, in contrast

to the blockhouse waU example in which co is

subtended by a secondary radiation source.

V.

25. Introductory Comments

In Part IV a formal approach to shielding

calciilations has been described. This approach
developed out of a study of simple configurations
to be described in Part VI; but it has also been
designed to emphasize the use of quantities which
can be estimated theoretically.

'« For an alternative procedure, see Section 49 and references 29, 30, and 41.

The preceding illustration also makes it clear
that the estimation of actual barrier and geometry
factors consists mainly in finding a simpler con-
figuration, resembling the actual one in important
respects, which is amenable to a detailed theo-
retical or experimental analysis. This point is

elaborated in Parts V and VI.

24. Brief Summary of the Analysis Procedure

The preceding discussion may be summarized
by stating that the dose D measured in a structure
(such as a blockhouse) will be represented as the
sum of contributions Di entering through different
wall sections and ceiling. Each of the Di wiU be
the product of a barrier factor B(Xt) and a geom-
etry factor G(Xi,o}i). Each geometry factor
consists of one or more terms corresponding to
"partial surfaces" chosen to represent approxi-
mately the actual source surface whether primary
or secondary. If the reference detector response
for the barrier factors is taken to be the standard
value Dq three feet above an infinite, smooth,
air-air interface having uniform contamination
equal to that on and aroimd the structure, the
complete expression for the detector response
takes the form

D=DoJ:B(X,)j^^G(Xi,o:ij)^ (24.1)

Structure configurations exist which call for
more complicated expressions than this. For
example, in maze-type geometries the radiation
may have to turn corners to reach the detector.
In basements below grade the detector response
may consist largely of contributions due to gamma
rays which have scattered downwards from the
exposed superstructure through intervening floor

slabs. Such "higher order" contributions give
terms involving additional factors, but otherwise
of the same type as the terms in eq (24.1).

To differentiate between different types of

data, we will replace "B" and "G" by a variety
of other symbols, each referring to a single type
of data, as indicated in the preceding Sections.

We discuss next the theoretical methods for

estimating B's and G's, i.e., the derivation of

data for applications.

Data

In Part V we turn to the presentation and
discussion of data for applications. First we
give a description of the "basic" data used to

obtain the fvmctions for applications, so that an
appreciation of the limitations of the graphs of

barrier and geometry factors is possible and also

so that one can get an idea how additional in-

formation might be obtained. This discussion can
probably be skipped or skimmed by readers

interested in a particular application, though the
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"basic" data have some fairly direct applications

to shielding problems.
Not all the factors which one might desire can

be easily obtained theoretically, or even experi-

mentally. In applications, the graphs of the

various factors will no doubt be used in cases

beyond their range of applicability. This makes
it especially important to give a clear statement
of their origin and interpretation. Because this

type of background information is least ambiguous
when stated mathematically, no attempt is made
to avoid mathem.atical terminology.

26. Basic Data

To produce varied types of basic data, digital

computers have proved essential. They are used
to generate solutions of the integral equations
describing the transport, diffusion, and energy
loss of gamma radiation. These "transport
equations" have been solved by "moment
methods" and by "Monte Carlo methods." The
former yield solutions for a source in a medium
without boundaries, while the latter permit calcu-

lation of boundary effects [12, Section 7].

All tables and graphs presented here have been
obtained from four types of basic data: (1) Plane
isotropic source case; (2) point isotropic source
case; (3) plane oblique source case; and (4) albedo
results. The first three were obtained using
moment methods; while the last required Monte
Carlo calculations. We discuss each type briefly

here. Appendix A contains an outline of the
actual moment calculations of the first three data
types.

(1) Plane isotropic source case: Consider an
infinite, plane source of fallout radiation imbedded
in an infinite, homogeneous medium. Distance of

the detector from the source plane is represented
by d. Alternately, distances may be referred to

in terms of X, Ib/ft^ effective mass thickness
between source and detector. If the medium is

air (at 20°, 76 cm Hg), the relation between the
two is

d/X=n.S ft of air/psf. (26.1)

At a distance d from the source plane, the radia-

tion produces a dose angular distribution which
we refer to as l{d,cosd), where d is the obliquity

measured from the perpendicular from the de-

tector to the source plane.'' We fix the scale of

l(d,cosd) so that an isotropic detector which
registers Dq roentgens three feet above the source
will register dD=Dol(d,cosd)sinddd roentgens due
to gamma rays striking the detector between
obliquities 6 and d+dd. This implies that'*

" See Section 16, including the footnote.
" We assume here that the function l(d, cos 9) corresponds to penetration

in air. Analogous functions corresponding to penetration in other materials
such as concrete, will also be referred to as, e.g., l(X, cos $). They will cor-
respond to the same source strength as in (26.2) (air penetration easel,
but this implies a difTerent value for the integral over all angles.

j dicos 6)1(3 ft, COS 9)= 1. (26.2)

Computations of these angular distributions
have usually involved their representation as a
sum of Legendre polynomials,

l(d, cos e)=f: in+l/2)l,{d)P, (cosd). (26.3)
71= 0

In one type of calculation the first seven or eight
functions l^id) were determined. An extrapola-
tion n-^co was then performed using the fact
that l{d, cos d) resembles (cos d)~^ exp (— o/cos 6) for
cos 0>O when the unscattered component is im-
portant. In another type of calculation the
unscattered component was calculated exactly and
the scattered component determined by sum-
ming a series of the type eq (26.3) up to seven or
eight terms. (See Appendix A.)

Figure 26.1 illustrates the appearance and
behavior of l{d,cosd).^^ The various features of
these curves have fairly simple interpretations:
Near the source plane (small d), l{d,cosd) is pro-
portional to (cos 6)"^ for angles approaching but
less than r/2 (i.e., cos 0^0+). This results in

large values for directions nearly parallel to the
source plane, an important feature of the radiation
from this type of source. With increasing pene-
tration the directional distributions become nearly
isotropic in the forward direction (for d^l50 ft,

corresponding to about 0.3 mean free paths for a
photon of average energy). For still greater
penetrations the distributions become increasingly
peaked at cos 0= 1, as the initially dominant oblique
components are preferentially removed.

(2) Point isotropic som"ce case: A source con-
centrated in a region of negligible dimensions
generates gamma rays which penetrate outwards
into an infinite, homogeneous medium. At a
penetration distance d from, the source, the dose
angular distribution is identified by p(d,cosd),

where 6 is measured relative to the axis from
detector to source.^" The scale of p(d, cos 6) can be
fixed conveniently relative to l{d,cos6) by con-
sidering a small contaminated area ^ of a plane
surface located a radial distance r from an isotropic

detector, with A/r^^l. We identify Dop{r,cose) X
A/4:Trr^ with the dose angular distribution at the

detector due to this source; but if the whole plane
surface were similarly contaminated, we would
want the total detector response to be Do at a

distance of 3 ft from the plane. To write this

condition in the form of an integral we take A to

be an annular sector of width dp and length pd(l>, as

shown in figure 26.2. The detector response Do
at height 3 ft is then given by the integral over

19 These curves represent actual results for penetration by a 1.12 hr fission

spectrum in an infinite medium of water, which is so similar to air in regards

to interaction probabilities that these curves have been scaled to correspond
to feet of air.

2» See Section 16, including the footnote.
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COS 9

Figure 26.1. Dose angular d-islributions l{d,cosd) for an idealized plane fallout source, at different heightsin air (d) above the

source. (H2O, 1.12 hr fission. See also Jigs. Rl and B2.)
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Figure 26.2. A small annular sector of a source plane located a distance

r= VS^+ p^ ft from a detector 3 ft above the plane.

obliquities d and the total contribution from all

area elements

:

Z?o=J d<p j d (cos e)Dop{r, cos 6)

where P{r) = fLxd (cos d)p{r, cos 6). Cancelling Dq
from eq (26.4) we obtain the normalizing condition
on p(r,cos0) in terms of its integral over all

obliquities.^^

The scattered and unscattered components of

p(r, cos 6) have quite different characteristic fea-

tures. The unscattered component, p^^\r, cos d) is

concentrated at the angle 0=0, while the scattered
component, designated p''\(r, cos0), is distributed
over all obliquities. As in the case of the plane
isotropic source, p{r, cos 6) has been calculated by
using its Legendre polynomial representation.^^

The calculation proceeds more or less as follows:

A digital computer determines the total strength
of the unscattered component and also the first

seven or eight functions p„'*'(r) by standard
techniques [12, Part C]. An extrapolation in n
is then performed, which uses a resemblance of

21 As in the case of l(d, cos 9), other functions, corresponding to penetration
in other materials than air (or water), will be called p(A', cos B) if the source
strength is the same as that implied by eq (26.4).
" Do not confuse the Legendre polynomial P„(cos 9) with P(r) of eq (26.4).

Note that P(r)=pci(r).

^'"'(rjcos^) to the function (a+cos d)~^''^. (See
Appendix A.)

Figure 26.3 shows curves of p{r, cosd) for several
values of r, but rescaled so that the integral of
p'-^^ (r,cos6) over all obliquities is unity. All

the distributions are strongly peaked at cos0=l;
but the truly remarkable feature is the similarity

of trends. About the only change worth noting
from one value of r to the next is in the relative

strengths of scattered and unscattered compo-
nents, which is indicated by the separation of the
curves vertically and (qualitatively) by the lengths
of the arrows at cos0=l. With increasing pene-
tration the unscattered copmonent steadily de-
creases in importance.

(3) Plane oblique source case: Radiation from
a plane source goes in all directions; but for some
purposes it is advantageous to consider only those
gamma rays which go initially at an obliquity do

relative to the normal to the source plane. The
detector response at different distances from a
plane source originating gamma rays with the

fixed obliquity will be designated s{X, cos^o),

with X measuring distance from, the source in

terms of the effective mass thickness (psf). For
our purpose it is convenient to fix the scale of this

function so that cos^os'"' (-^'jcos^o) is unity at

X=0, where s^°'' (X ,c.osdo) is the detector re-

sponse to the unscattered component.

'3 Note that Lim cosSm"') (,X,cosei) is independent of cosSo, for cose(i>0.

X-)0
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COS 6
Figure 26.3 Dose angular distributions p{r,cos6) for a point fallout source, normalized by dividing by the total intensity of

scattered gamma rays. The arrows at cos6= 1 indicate the unscattered component. The arrow lengths have no quantitative

significance. {H2O, 1.12 hr fission. See also figs. BS and B4.)

Figure 26.4 gives this function for different

values of cos^o, corresponding to penetration by
a 1.12 hr spectrum of fission gamma rays in H2O
(or air). Special features exhibited by these

curves have interpretations as follows: The curves
correspounding to cos&o~l describe gamma rays
initially traveling directly away from the source
plane. These curves lie above the others for large

X because a large part of the "path length"
traversed by each gamma ray contributes to dis-

tance from the source plane. Conversely, when
gamma rays initially move almost parallel to the
source plane (cos6o<C<^l)) the initial layers of

barrier material greatly reduce the radiation

intensity.

It is possible for radiation from, a plane oblique

source to be scattered back into the region behind
the source plane. The characteristics of this

back-penetrating radiation are of considerable

interest and have applications to shielding prob-

lems. It is possible to view such cases either as

corresponding to obliquity angles greater than

Tr/2 (cosS<0) or as corresponding to negative

values of X, with cosSo>0. The terminology is

a little easier to manage in the former case and
so we adopt that point of view. Figure 26.5 gives
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X.psf

FiGtFEE 26.4. Gamma ray attenuation curves for monodirectional gamma rays from a plane source, for incident obliquities

6o<.90° relative to the normal to the source plane. (H2O, 1.12 hr fission. See also figs. B5 and B6.)
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curves of s(X,cosdo) for negative cos^o- Only
scattered radiation contributes to the detector

response. The curves are continued to X=0,
although strictly speaking the detector response
changes discontinuously at this point because the
contribution due to unscattered gamma rays

begins here. Data for grazing incidence (cos^o) =0
is included. The various curves are seen to be
rather rough. High accuracy is difficult to obtain
in this type of calculation because a differencing

of large numbers is involved, and the irregularities

reflect the inaccuracy of the calculation.

It is by means of the plane oblique data that

we mqst easily make comparisons of the penetra-
bility and scattering properties of fallout gamma
rays at different times after fission, together with
similar comparisons involving Co^° and other
radioactive materials. Figures 26.6 and 26.7 give

curves proportional to s{X,l) and s{X,0) for differ-

ent fission sources, with data also for Co^". In
figure 26.6, marked differences appear only for

rather large penetrations (X>144 psf). Differ-

ences in scattering properties are indicated in fig-

ure 26.7. The calculations are less reliable, and
these differences may be exaggerated by the in-

accuracy of the data for X near 0. All curves
correspond to penetration in water-equivalent
materials.

(4) Albedo or backscattering data [34]. The
gamma ray albedo has been mentioned in Section
19. If a plane gamma ray source is incident on a
thick slab, a detector at the interface will observe
a dose angular distribution D{cosd). The albedo
(a) to which we refer is defined by

a-
j d (cos e) cos d Z>(cos d)

d (cos e) cos dDicos 6)

(26.6)

This ratio depends on the incident source, and for
monodirectional sources is a function of the angle
of incidence (^o) relative to the normal to the slab
face.

Berger and Raso have made machine Monte
Carlo calculations, for monoenergetic sources, of
this function [34]. Figure 26.8 gives data for a
1.12 hr fission spectrum incident on a concrete
slab, as calculated from their data.

27. Catalogue of Functions

The detector response to radiation from an
arbitrary souice is represented by an expression
like eqs (16.2) or (16.3), which sums contributions
from different parts of the source. Source shapes
can vary enormously, and to cut down the number
of variables, we do calculations for circular sources,
illustrated by figure 16.3, with the detector directly
opposite the center of the circle. Applying eqs
(16.2) and (16.3) to this simple case, we find that

d{cosd)\ d<pDs(d,,p),
1- u Jo

, Dsio:)=( d (cos 6) Ds(e), (27.1)
«/ 1— fc)

where w=l— cos 6^^^ as discussed in Section 40.
We approximate both barrier and geometry fac-
tors by use of integrals of this type with the
integrand taken as one or another of the functions
described in Section 26. Interpretation of these
integrals is given mostly in the next section; here
we simply list them for intercomparison and
reference.

(1) Barrier Factors: The following expressions
define functions which we use to approximate
different types of barrier factors: 2*

X (rf)=
J d (cos e) I (d, cos 6) , (27 . 2)

S {d)=
J d (cos e) I {d, cos 6) , (27.3)

r d (cos do) s {X, cos do)

S'{X)=^ , (27.4)

J
rf(cos ^o)s(0, cos ^o)

P(.d)=j c?(cos e)pid, cos e), (27.5)

P«(cO=J'^(^ (cos e)p^'^(d, cos d), (27.6)

W(X,d)=j^ d (cos d) cos d s (X, cos 6)

X (l/27r)

J
d^ I (d, sin d cos ^) . (27.7)

Most of these quantities have fairly obvious
designations and interpretations. "L" stands for
"layer," "S" stands for "skyshine," "P" stands
for "point," and "W" stands foi "wall." P^'^
and p'-^^ refer to the scattered component only
from a point source.

(2) Geometry Factors: The ratios to be used
in estimating geometry factors are listed below:

£.U.„)=^[i(X)-i(j^)}

(27.8)

(27.9)

2< Notes: P<»'(d) is the same as pSf'W in eq (26.5). Pand should not
be confused with the Legendre polynomials P„. We consider these defini-
tions to hold even when the /, p, and s data corresponds to materials other
than air (or H2O).

25 It is assumed that both denominator and numerator in these ratios
correspond to penetration in the same material, by gamma rays from the same
source.
Note that in the alternative approach mentioned in Section 49 and de-

scribed in references 29, 30, and 41, it would be logical to use Legendre coeffi-

cient ratios in a manner closely analogous to the use of the ratios defined here.
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X,psf

Figure 26.6. Penetration of fallout gamma rays at different times after fission. Also included for comparison is a curve
for Co^". The curves are normalized to equal total energy dissipation, integrated over all penetrations. (H2O, plane
perpendicular source.)
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Figure 26.7. Penetration of gamma rays from a plane, monodirectional source generating gamma rays only in directions
along the source plane. Substantial penetrations away from the source plane presuppose large scattering angles. {H2O.)
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(27.10)

Xj dtp lid, sine con <p), (27.11)

W^, (c?,co)

J' ^
(cos 0) (l/2x)

/"2!r

X
J

c?<p ^(c?, sin 6/ cos ^), (27.12)

1 r-i+'^
A^a (C^,C0)

J
(cos e) ^ (d, COS 0) ,

(27.13)

Pa id,w)=pj^ d (cos e)p (d, cos (?)

,

(27.14)

P'-' ((/,a;)=p(S^
^

0? (cos 0)p<»' («5, cos 6)

,

(27.15)

{d,o^)=pij^£ ^
d (cos e) (l/2,r)

Xj dtp p{d, sm e COS ip) . (27.16)

All these definitions are complete except for eq
(27.10). The factor v multiplying the right side
of eq (27.10) is chosen so that i6(A"2) = l, i.e., so
that the integral over all directions gives the plane
isotropic source result, L{X). Since L{X), P{X),
and s{X, cos 6) are connected by the relations

L(X)= l/2\^~r P(X')=u\ (/(cos ^)s(^,cos e),

(27.17)

it turns out that f=(l/2)P(0).2^
The names assigned to the ratios eqs (27.8) to

(27.16) are less obvious than in the case of barrier
factors. In general the letter used, "L", "P",
etc., is determined by the type of barrier factor
appearing in the denominator. A more detailed
description of these quantities is reserved for the
next Section.

2' This is easily seen for monoenergetic sources, for wliicli

P<«)(AD = P(0)e-f^; si«i{X, cos e) = (cos 9)-ie-fJr/oo. », cos 9>0.

Inserting these functions into eq (27.17), and remembering that the unscat-
tered component is completely dominant in the limit the value for u
is immediately obtained. But eq (27.17) holds for all X and for scattered as
well as unscattered radiation, since both integrals represent the plane iso-
tropic dose rigorously. Extension of the argument to include polychromatic
sources is therefore straightforward.

Notice that in sorne cases d and in some cases

X is the penetration variable. The two are inter-

changeable, provided the proper conversion is

used (eq (26.1)).

28. Description of Graphical Data

We next take each of the functions given in the
preceding Section, describe the physical situation

for which it applies most accurately, present one
or more graphs, and discuss important features

exhibited by these graphs.

(1) L{d), L{X): In eq _(27_.2), L(d) is defined

as the integral over all obliquities of the quantity
l(d, cos 6). Therefore Z(c?) is simply the total de-
tector response at a distance d (in air) from an
infinite, plane, isotropic source, divided by the
total detector response at 3 ft in air from the same
source. L{X) is the same function except that
"distance from the source" is expressed in terms
of the effective mass thickness. Figure 28.1a is a
sketch of the simple configuration for which this

quantity is directly applicable. The absorbing
medium is homogeneous, and the detector response
is isotropic. Figures 28.2a and 28.2b give typical

curves of this quantity. Both figures show that
near the source plane the radiation intensity falls

rapidly with increasing distance from the source.

This is characteristic of gamma rays having initial

directions nearly parallel to the source plane (see

fig. 26.1). After considerable penetration, the
trend of the curves is nearly that for gamma rays
which leave the source plane perpendicularly (see

fig. 26.3).

(2) S{d): The definition of this quantity given
in eq (27.3) differs from the definition of L{d) in

regards to the limits of integration. Only obliq-

uity angles greater than 90° are included. Since
gamma rays with these obliquities are traveling

towards the source plane, they have been back-
scattered. Thus this function gives the total de-
tector response to skyshine radiation at a distance
d in air from an infinite, plane, isotropic source in

a homogeneous medium. Figure 28.1b sketches
the physical situation. Figure 28.3 gives a curve
of S(d), obtained from the data of figure 26.1.

The intensity of the backscattered radiation can
be seen to change rather slowly with distance from
the source out to perhaps a mean free path of the
source radiation. As indicated on the graph,
.S(O) =0.098.

(3) S'(X) : This quantity (eq 27.4) is a ratio of

integrals and is unity for A''=0. Both integrals

sum over negative cosd, i.e., over gamma ray slant

sources of radiation which travels initially away
from the detector. The configuration is sketched
in figure 28.1c, which shows a plane source emitting
gamma rays isotropically in an upward direction

into an infinite homogeneous medium. The de-
tector is below the source plane, separated from it

by an effective mass thickness X. Radiation can
be backscattered to the detector, giving a response
measured b}' the function S'(X). The normal-
ization to unity at X—0 is for convenient use as

622827 0--62——3



a reduction factor in the applications. Data are
given in figure 28.4. The curve bears a consid-
erable similarity to s{X,0) as given in figure 26.5;
but this is not sm^prising, since the grazing inci-

dence com.ponent of the source contributes strongly
to this function.

(4) P(d), P{X)-. The integral in eq (27.5) in-

cludes all obliquities, so that P{d) relates to the
total detector response at a distance d from, a point
isotropic source in an infinite homogeneous me-
dium (see fig. 28. Id). Results obtained from, the
data of figure 26.2 are given in figures 28.5a and
28.5b. The scale has been chosen to simplify the
use of the curve in determining detector response
due to a small plane area (A) of contamination, as

discussed in Section 26

:

D/Do^P(d)A/4wd'. (28.1)

(5) The only difference between P'"(X) and
P{X) is omission of unscattered gamm.a ray con-
tributions to the integrand. Thus P^^''iX) re-

lates to the total detector response due to scat-

tered gamma rays. Graphs of this function and
also of P<"' (^)=F(Z)-P<«(X) are given in

figure 28.6, as obtained from, the data which also

yielded figure 26.2.

(6) W{X,d) : This is a more complicated quan-
tity than those preceding. Figure 28. le is a
sketch of the relevant physical situation. The
angular distribution of radiation incident on a
vertical wall is assumed to be the same as if the wall

were not present. This distribution, Z(d,sin6cos^),

corresponds to a distance d in air from, an in-

finite plane source in a homogeneous m.edium.,

but with directions referred to a polar axis perpen-
dicular to the vertical wall (i.e., parallel to the
source plane)." Assuming the spectrum, incident
on the wall to be that generated by the prim.ary

source on the ground, an integral over all oblique
angles of incidence is made, each weighted accord-
ing to our information about oblique penetration
(fig. 26.4). The result approximates the total de-
tector response at a height d above the source
plane and with a thickness X of barrier material
between detector and external barrier surface.

Errors in this calculation arise from, inaccuracies
in the angular distribution, changes in the incident
spectrum, as the scattered radiation com.ponent be-
comes m.ore important, and incorrect correlation

of spectrum, with direction. In general, this func-
tion is expected to represent the vertical wall bar-
rier factor accurately for d sm.all compared with a
mean free path of the source radiation, i.e., (Z^IOOO
ft. Data are given in figure 28.7. The curves
have a m.aximum. value of W{0,d) ~{ll2)L{d),
corresponding to radiation froni. halj an infinite

plane, namely the half beyond the wall. Notice
that the bottom curves are not expected to be
reliable.

" Notice that l(d,cosQ) becomes Z(d,cosecosai+sinesinacos<^>) relative to a
second polar a.xis inclined at an angle a to the original axis, with it> measured
relative to the plane of the two reference axes. When a= jr/2, this reduces to
Ud,sinflcos0).

(7) Lc{d,(ji),Lc{X,o3): The significance of Zc(X,w)
is illustrated in figure 28.8a: A circular area of

fallout has its center directly opposite a detector
and separated by a layer of air of thickness d and
equivalent mass thickness X. Noting eq (26.4),

together with the relation cosSinax=l— w, we
represent the detector response due to the circular

area in the form

fx/a-o.) ^X' / X \
D/Do=l/2j^ ^PiX')=L {X)-l(j^J •

(28.2)

Equation (27.8) is the ratio of the response due to

the circular area to the response due to fallout on
the whole plane. Data corresponding to penetra-
tion in water-equivalent materials are given in fig-

ure 28.9. While this quantity is easily obtained
from figures 28.2a and 28.2b by differencing, and
is included in the data of figure 28.18, the curves
of figure 28.9 are convenient for comparison
purposes.

(8) Laid,u), La{X,o>): The integral in eq (27.9) is

over a cone of obliquities of incidence on the detector.

Thus, this ratio expresses the reduction in detector

response which occurs if an isotropic detector

(separated from an infinite plane source of fallout

gamma rays by a distance d in air, or a correspond-
ing barrier thickness X) is replaced by a detector

responding only to gamma rays incident within a

particular cone of directions, as indicated in

figure 28.8b. The response cone has aperture

^max and subtends solid angle fraction w at the

detector, with w=l— cos^max- Curves of this

ratio are given in figure 28.10, as obtained
from the data of figure 26.1. Notice that these

curves go to unity only for i.e., including
backscattered contributions for which l^u<2,
and amounting to ~15 percent.

(9) L,{d,w), U{X,oi)-. The integral of eq (27.10)

is over a cone of initial source obliquities. The
function Lb{d,u)) therefore expresses the fractional

reduction in detector response occurring if an
(infinite plane) isotropic source is suddenly
allowed to emit radiation only into a limited cone
of directions about the perpendicular toward the

detector (see fig. 28.8c). The cone of emission
has an aperture ^max defined by cosdmax— 1

—
where co is the solid angle fraction of the cone of

emission, subtended at the detector. Graphs of

Li,, obtained from the data of figure 26.4, are

given in figure 28.11. These bear a noteworthy
resemblance to the curves for Lc and La. As in

the case of figure 28.10, the curves go to unity only

as w^2, although figure 28.9 doesn't give data
for the region of emission in directions away
from the detector (i.e., w>l).

(10) Equation (27.11) defines Wa{d,u>) as a ratio

whose numerator is an integral over a cone of

obliquities of incidence on the detector. The cone

axis is parallel to the source plane and the cone

angle (^max) is related to the solid angle fraction
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subtended by the aperture by the usual relation

cos0max= (1— w), as in figure 28.8d. The de-

nominator of eq (27.11) has the same interpreta-

tion but with cone angle d^^-^=Tr/2, so that' all

radiation incident on one side of the detector is

included in the response. Curves of Waid,ui)

are presented in figure 28.12, as obtained from the

data of figure 26.1 for penetration in water-
equivalent materials.

(11) In some cases one wants to know the

amount of skyshine radiation passing through a

vertical aperture. The function Wi,{d,ui), defined

by eq (27.12) , is presented here because of possible

applications of this type. The definition of is

like the definition of Wa except for integration

limits which include only skyshine contributions.

Thus Wi refers to a half-cone of skyshine radia-

tion of aperture ^max about an axis parallel to the

source plane, with cos0inax= 1 — where co is the

solid angle fraction subtended by the whole cone

(see fig. 28.13a). The denominator is the total

(a) (b)

^< )» -K » >» -X -X ^ H H

(d) (e)

Figure 28.1. Simple detector-source-medium arrangements:

(a) Isotropic detector, plane isotropic source; (6) inotropic detector shielded on the sxde toionrd the source, plave isotropic source; (c) isotropic detector, source "isotropic"
only in directions pointing away from detector; (d) isotropic detector, point isotropic source; (e) isotropic detector and plane isotropic source: The radiation field at
heiqht d above the primary source is taiten as a new source at a penetration distance X to the right of the detector. In all cases the calculations are Jor infinite homo-
geneous media, and all cases but (.d) also correspond to media with plane density variations.
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FiGTJRE 28.2a. Plane source of fallout radiation: The (isotropic) detector response ratio D/Do as a function of height d
air above the source plane. {H2O, 1.12 hr fission. See also Jigs. Bll and B12.)
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X.psf

Figure 28.2b. Plane source of fallout radiation: The (isotropic) detector response ratio DI as a function of effective mass

thickness separating the detector and the source plane. {H2O, 1.12 hr fission. See also figs. BIS and BI4.)
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Figure 28.4. Attenuation curve for radiation backscattered from a plane source isotropic over one hemisphere only, corre-

sponding to skyshine radiation incident on the ground. {H2O, 1.12 hr fission. See also figs. B17 and B18.)

35



d,ft.

FiGrRE 28.5a. Point source oj fallout radiation: P(d) as a function of distance d in air between detector and source. (H2O,
1.12 hr fission. See also figs. B19 and B20.)
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Figure 28 5b Point source oj fallout radiation: F(X) as a function of effective mass thickness between source and detector.

{H2O, 1.12 hr fission. See also figs. B21 and B22.)
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Figure 28.7. Detector response ratio for effective mass thickness X separating the detector from a plane fallout source
1

angular distribution — I d<t>lid,sindcos<t>). {H2O, 1.12 hr fission. See also figs. B25 and B26.)
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(a) (b)

(c)

Figure 28.8. Simple detector-source-medium arrangements:

(a) Isotropic detector, isotropic circular source; (6) conical detector pointed towards the source plane, plane isotropic source; (c) isotropic detector, conical source pointed
towards the detector; (d) conical detector pointed parallel to the source plane, plane isotropic source. All configurations correspond to an infinite homogeneous medium
and the latter three to an infinite medium loith plane density variations.
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Figure 28 9 Geometry factor describing detector response due to circular plane sources of fallout radiation, as shown in

figure 28.8a. {H2O, 1.12 hr fission. See also figs. B27 and B28.)
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Figure 28.11. Geometry factor for response of an isotropic detector adjacent to a plane source emitting radiation in a limited
cone of directions, as sketched in figure 28.8c. {H2O, 1.12 hr fission. See also figs. B31 and BS2.)
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Figure 28.12. Geometry factor describing detector response to radiation incident in a limited cone of directions about an axis
parallel to the primary source plane, at height d, as shown in figure 28.8d. {H2O, 1.12 hr fission. See also figs. BSS
and B34.)
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(a)

(c)

FiGUBE 28.13. Simple detector-source-medium arrangements:

(o) Detector which responds to the upper halj of a cone of directions with axis parallel to a plane isotropic source: (b) conical detector pointed away from a plane
isotropic source; (c1 conical detector pointed towards a point isotropic source; (d) conical source pointed 90° awayfrom the source-detector line, point isotropic source.
All media may be considered infinite and homogeneous; and the first two may be considered infinite with plane density variations.

622,827 0—^62—4
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Figure 28.14. Geometry factor describing detector response to skyshine radiation incident in a limited cone of directions about
an axis parallel to the primary source plane, as sketched in figure 28.13a. This graph is accurate for d 200 ft of air.

{H2O, 1.12 hr fission. See also figs. B35 and BS6.)
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Figure 28.15. Geometry factor describing detector response to skyshine radiation incident in a limited cone of directions about
an axis perpendicular to the primary plane, at height d above ground, as sketched in figure 28.13b. (H^O, 1.12 hr fission.
See also figs. BS7 and B38.)
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Figure 28.16. Geometry factor describing detector response to scattered gamma rays from a point source of radiation, striking
the detector in a limited cone of directions about the line from source to detector, as sketched in figure 28.13c. {H2O, 1.12
hr fission. See also figs. B39 and B40.)
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Figure 28.17. Geometry factor describing detector response to fallout ganmia rays from a point source, striking the detector

in a limited cone of directions about an axis perpendicular to the line from source to detector, as sketched in figure 28.13d.
(H2O, 1.12 hr fission. See also figs. B4I and B42.)
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skyshine intensity. Data for this function ob-

tained from the data of figure 26.1 are given in

figure 28.14. Notice that co=l corresponds to an
aperture passing skyshine from one side only, i.e.,

only halj the total skyshine; this is reason for

the factor 2 in eq (27.12). The variations with d

were too small to warrant separate curves for

different d values.

(12) Sa(d,oo) : This function is defined by an
integral over a cone of obliquities of incidence

pointed away from the source plane (see eq

(27.13)). Thus only skyshine contributes to the

detector response. The relevant configuration is

sketched in figure 28.13b. The allowed cone has
aperture angle ^max and subtends solid angle frac-

tion a)=l — cos^max- The denominator is the

response to all backscattered gamma rays inci-

dent on the detector. Data, given in figure 28.15,

have been obtained from the data of figure 26.1.

Note the steepness of the curves near co=l, ex-

pressing the strong component of the gamma ray
directional distribution in directions parallel to

the source plane.

(13) Paid,u) and P^''(rf,w): All preceding ratios

are for plane sources. The Pa ratios defined by
eqs (27.14) and (27.15) are like the La ratios, but
with reference to a point source. The numerator
is the response of a detector to scattered radiation

incident within a cone of directions about the

radial axis from detector to source (see fig. 28.13c).

The denominator is the total response of an
isotropic detector to the scattered radiation.

Data obtained from figure 26.3 is given in figure

28.16. Note that the curves go to unity only
for w^2, so that the backscattered contributions

are not included in figure 28.16. The following
expression relates Pa and ' •

Pa(X,o:) [P«> iX) -fP<^' (X)Pi" {X,c.)].

(28.4)

This merely expresses total detector response as
the sum of responses due to scattered gamma rays
and to unscattered gamma rays. The latter are

always concentrated along the radial line con-
necting source and detector.

(14) P^''(X,co): For completeness we include
the point source analogue to the Wa (plane source)
function. The function is defined by eq (27.16)
and illustrated by figure 28.13d. It has in the
numerator the response of a detector to scattered
gamma radiation incident within a cone of

directions perpendicular to the radial line from
detector to source. The aperture angle ^^ax

is related to the solid angle fraction w by
cos9max=l— Thc denominator represents the
total response of an isotropic detector to scattered

radiation, while the numerator never represents
more than half, hence the factor of 2. Data is

presented in figure 28.17, as calculated from the
basic data of figure 26.3.

(15) L(X)L,{X,w), L{X)La{X,o>), L{X)L,{X,o^y.
These combinations of barrier and geometry
factors come up so frequently in applications that

contour diagrams have been prepared to permit
direct determination of the product. Figures

28.18, 28.19, and 28.20 present the diagrams.
Radial lines have been superimposed and cali-

brated to permit accurate interpolation. Use of

French curves facilitates this interpolation.

VI. Elementary Structure Types

29. Comments

A number of elementary barrier arrangements
have been the subject of special studies. Because
of their simplicity they permit a fairly complete
analysis, both experimentally and theoretically;
and they appear over and over again in various
combinations in nearly all structures. One might
say that complicated structures are a composite
of these simpler types. As an example, the block-
house described already in Section 20 combines
vertical walls (Section 33) with a fallout-covered
shelter (Section 32).

In this part we discuss these configurations with
the help of the data and approach already pre-
sented. Our intention is to describe them sche-

matically in a manner which leads to numeiical
values for the detector response. At the same
time we hope to give an appreciation for the nature
for the approximations involved, so that a feeling

for size of possible errors can be achieved.
Because this Part is intended to be illustrative

rather than exhaustive, we limit the examples to

circular source and barrier shapes. The general'
ization to arbitrary detector position relative to
arbitrary rectangular shapes is given in Part VII

.

30. Density Interface

The simplest configurations of real importance
comprise a radiation source at a density interface,

with the detector placed some distance above in

air (see fig. 30.1a). One may visualize a vast,

smooth, level field supporting the radiating
material.

(1) Air-air, infinite plane source case: In the

simplest of these cases, the interface is smooth
and separates two semi-infinite regions, one of

air at standard pressure and the other of com-
pressed air of the same density as earth. We
have already commented that reference to "com-
pressed" air has importance only as aid to visual-

ization, if the source covers the plane uniformly.
This is because of a scaling principle which
guarantees that compression of the material into

plane layers of different density does not alter
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Figure 30.1. (a) Plane, isotropic fallout source at a simple
density interface; (b) fallout source on rough ground.

Figure 30.2. (a) Detector above an area cleared of fallout;
(b) detector below a finite source on the ground.

the radiation flux anywhere, in intensity, spectrum,
or angular distribution, if "distance from the
source" is measured in mean free paths, lbs/ft^
gm/cm^, effective mass thickness, or other indi-
cators of the amount of material between source
and detector.^** Thus, this case is just the one
to which calculations of L(X) and L(d) apply
precisely, and the detector response as a function
of distance from the source is simply

D/Do=L{d). (30.1)

28 Note that this scaling principle does not hold for non-uniform or finite
source spatial distributions.

Figure 30.3. Geometry of a defector above a circular fallout-
free area, when the fallout elsewhere is considered to be
buried beneath a hypothetical layer of thickriess A.

(2) Air-earth or air-concrete case, infinite plane
source: If instead of the location at an interface
between air and compressed air the source is at
an interface between air and earth, or air and
concrete, a modification of the detector response
is expected. This is because the interaction
probabilities for gamma rays in earth and con-
crete differ from those of air, for low energy gamma
rays. This has the consequence that near an
air-earth interface the flux of low energy photons
falls a little below the flux near the source in an
air-air case. The effect is small, a few percent,
and is due to photons which in earth or concrete
undergo absorptive interactions at higher energies

than in air.

This same effect is expected for the flux pene-
trating downward into earth or concrete. By
and large, earth and concrete can be treated as

if they were equivalent to water in penetration
properties, because the differences in interaction

probabilities give differences in detector response
which are significant only for very large penetra-
tions, or for very low energy photons. For our
purposes it is sufficient to write

Z)/Z)o«0.9Z(JO, (30.2)

within or at the surface of the semi-infinite earth
or concrete region, if the L{X) data is for pene-
tration in H2O, as in figure 28.2b. The factor

0.9 allows for the lower flux of low energy photons
in concrete, and should be omitted if the data
is for penetration in concrete. For an experiment
of this type see [36].

(3) Ground roughness : If the interface between
earth and air is rough, rather than smooth, a
reduction in intensity is to be expected. The
reason for this can be appreciated with the aid of

figure 30.1b. That part of the radiation source

which falls into "pockets" cannot contribute as

much to the radiation component nearly parallel

to the source plane. The gamma rays emitted
nearly parallel to the source plane must penetrate
a substantial amount of dense material before

emerging into the air, and are correspondingly
reduced in intensity.
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One expects all earth surfaces to be rough to

some extent; but this effect will be larger in the

case of a ploughed field than a carefully smoothed

baseball diamond. Investigation of ground

roughness effects is still in a fairly rudimentary

state. We note, however, that raising the detec-

tor height above a smooth interface has a similar

effect of reducing the contribution of the unscat-

tered "grazing" component through attenuation

along the elongated path from the point of genera-

tion. Because of the importance of some type of

rule for obtaining intensities and angular distribu-

tions corrected somehow for ground roughness,

we tentatively adopt the simple procedure, sug-

gested by Ksanda, Moshkin, Shapiro, and others,

of writing
DIDo=L{d+T), (30.3)

where r is a constant which is characteristic of the

local terrain [37]. Values of r are not available

for widely different terrains. At least one case

has been investigated experimentally, however,

and for this case it has been calculated that ts=40

ft.2^ The experiments were performed in an open

Nevada field without special treatment either to

increase or decrease roughness. Equation (30.3)

has no real justification beyond the comment that

introduction of the parameter r affects both in-

tensity and angular distributions the way ground
roughness affects them. The argument can be

made to sound shghtly more convincing by de-

scribing the fallout as effectively buried beneath

a thin layer of earth.

(4) Finite plane sources: The preceding dis-

cussions assume that the source covers the plane of

the interface uniformly. If the region of contam-
ination does not cover the source plane, new and
complicating aspects to the problem appear.

Consider, for example, a circular clearing in a

fallout field, with the detector above the center of

the field (fig. 30.2a). Due to ground roughness,

the detector response will be far from the value

expected for a smooth source plane. Hardly any
unscattered radiation will reach the detector

because it will be blocked on its path along the

ground by irregularities.

Another complicating feature of this type of

problem involves the scattered component of the

radiation. Gamma rays which travel long dis-

tances on a path which is always not far above
ground have a large probability of being deflected

into the ground. When this happens, distances

between successive interactions shrink from hun-
dreds of feet to inches. If the photon is to travel

any significant distance farther, it must re-emerge
into the air. This effect reduces the detector

response in just the sort of configuration illus-

trated in figure 30.2a by an amount which is not
well known but which depends on the radius of

the clearing. Studies of this "path foreshorten-

ing" effect have been made, both theoretically

and experimentally; but results for clearings are

not available.

2' C. M. Eisenhauer, private communication.

In spite of these difficulties it is possible to

obtain estimates of a sort of the detector response
to radiation above a clearing, taking ground
roughness into account. To accomplish this we
follow consistently the schematization in which the
effect of ground roughness is approximated by
performing a calculation at an increased height
above ground. This implies that ground rough-
ness has effects similar to those due to "burying"
the source under a thin layer of earth, as already
mentioned. In figure 30.3 a detector is pictured
at a height d above ground. The source is buried
under a layer of earth which has effective mass
thickness A, equivalent to a layer of air of thick-
ness T. The clearing is circular, with the edge of

the source at a radius d/tsnxd out from the point
below the detector. The distance in air from the
detector to the edge of the contamination is

d/cosd, and the additional penetration through the
covering layer is A/cos0, which is equivalent to a
distance in air of t/cosO. The penetration from
the edge of the source to the detector is thus

d-\-T
equivalent to

^^^^
feet of air. If we use this pene-

tration distance in the expression for the detector
response above a cleared area, we obtain the
desired approximation:

D/Do^L(^^y (30.4)

where co=l— cos0. No allowance is made in this

expression for path foreshortening.

One advantage of this simple approximation is

the possibility of using it to calculate anisotropic

detector responses above clearings; but we don't
pursue this here.

The accuracy of our predictions of detector
response above a clearing is limited by lack of

knowledge of ground roughness and path fore-

shortening; but in a related problem which is

perhaps of greater practical importance these

complicating effects are not operative. This
problem is the calculation of the detector response
in earth (or concrete) below the source plane, when
the source is of limited extent. Figure 30.2b
illustrates this case. Radiation from the source
traveling initially upward goes such long distances

througli tlie air that it doesn't come back to the

same locality. Thus the detector response will

be lower than in cases which are similar but
without the density interface. But this is a small
effect even when the barrier thickness between
source and detector is not very great. It is possible

to determine the detector response fairly accurately'

from the expression

D/Do=0.9LiX)Lc{X,o:), (30.5)

where w is tlie solid angle fraction of the source as

seen from the detector. (The factor .9 is a rough
correction when L{X) and Lc{X,oi) represent H2O
penetration data.) This expression can be seen to
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include a contribution due to radiation just men-

tioned as being, in fact, absent. Thus it will be

an overestimate, particularly for X~0.

EXAMPLE 1: Calculate the reduction factor

due to ground roughness, for a detector 3 ft above

a contaminated area, if the "roughness" parame-

ter T has a value of 40 ft for this type of surface.

From eq (30.3) and figure 28.2a we obtain

L(3+40)=0.52. ANSWER.

EXAMPLE 2: How high above the ground must

a detector be raised to reduce its response by a

factor of 1000?
Applying eq (30.2), but omitting the factor 0.9

because of the height above the interface, we see

from figure 28.2a that Z(rf)= 0.001 for rf= 2950

ft. ANSWER.

EXAMPLE 3: Assuming a ground surface such

that T= 40 ft, calculate the radius of a clearing

sufficient to reduce the detector response to

Do/1000, at a height of 3 ft above ground.

Applying eq (30.4), using figure 28.2a, we find

that L f7^V 0.001 for -^=2940 ft. From
\1 — CO/ 1—0)

this we see that 1— co~3/p=43/2940, giving p=
3(2940)/43^200 ft. ANSWER.

This last should be considered only the crudest

sort of estimate, in view of the state of knowledge

of ground roughness effects.

31. Foxhole Problems

A typical foxhole configuration is shown in

figure 31.1. Radiation generated at the ground-

air interface can enter the aperture even though
it faces away from the primary source, by back-

scattering from the air. This backscattered com-
ponent of the radiation is also called the "sky-

shine". Normally the aperture will permit

sk\ shine radiation to strike the detector only if it

travels in an allowed cone of directions as indi-

cated in figure 31.1 by the dashed line on the right.

The configuration bears a close correspondence

to that of figure 28.13b, in which the detector is

/
/

/

/

Figure 31.1. Detector on the centerline oj a cylindrical

foxhole.

in an infinite medium but is sensitive only to radia-
tion incident within an allowed cone. We there-
fore make estimates of detector response in fox-
holes by means of the functions S{d) and Sa{d,u),
which represent infinite medium data relevant to
the case sketched in figure 28.13b.

It should be noted that in the foxhole configura-
tion there will be contributions to the detector
response due to radiation backscattered from the
bottom and sides of the foxhole. This introduces
a correction factor of magnitude~ 1.2. Taking
this into account, our exj)ression for the skyshine
detector response becomes

D/Do=l.2S{d-\-r)Sa{d+T,co), (31.1)

where d refers to height above ground, r is the
ground roughness coefficient and w is the solid

angle fraction of the aperture as seen from the
detector.

Note that foxhole-type problems can occur at
great heights as, for example in the case of a sky-
light in the roof of a tall building. (See Section
35.)

One complicating feature of the foxhole geome-
try is the possibility that radiation may go directly

from fallout near the "lip" of the hole to the de-
tector. Strictly speaking, eq (31.1) applies only
if the radiation source has been removed to such a
distance from the edge that it cannot penetrate
through the earth to the detector.

Attempts have been made to ascertain whether
direct radiation from fallout near the lip is signifi-

cant in comparison with the skyshine radiation.

This will certainly depend upon the size of the fox-

hole. The coQtribution "through the lip" should
increase as foxhole size decreases, with the ratio of

lip contribution to total response approaching
unity as the foxhole size approaches zero. There
should also be effects due to foxhole shape: An
elongated foxhole, or one with the edges of the lip

rounded off should differ from a cylindrical fox-

hole, or one with a sharply defined lip. It appears
that for the ideal case of a foxhole large enough to

hold a man, with vertical walls and a sharp lip, the

direct radiation penetrating through the lip is com-
parable in importance with the skyshine.^°

Calculations of the lip contribution involve inte-

grals of the type (see fig. 31.1)

JCOS^min
d{cosd)l[Xid),cose], (31.2)

which sums the contributions from radiation

emerging into the foxhole at various depths (X)

below the ground siu-face, assuming that the direc-

tional distribution as a function of depth is not

affected by the interface at the foxhole wall. Eq
(31.2) appHes only to a detector on the centerline

of a cyhndrical foxhole; but the generalization to

other "cases is fairly obvious and, in fact, great

variations are not expected (a) if the detector is

3» C. M. Eisenhauer, private communication .
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I moved off-center or (b) if the foxhole is not cylin-

drical, so long as the solid angle subtended at the

II detector by the aperture is held constant.

[
For most purposes the integral of eq (31.2) can

, . , , . • 7/ «N d(cosd) j„
t be approxunated by writmg d{cosd)=— dX

and assigning ^^^j^^^ ^ constant value correspond-

ing to the edge of the lip. This leads to an expres-

sion for Dc, dose through the lip:

Z^^/A ^
" ^

^

~
"^^^

~

" (X, 1- CO)
,

(31.3)

in which p is the density of the ground, co=
1 — cos^min is the solid angle fraction of the aperture

and d is the depth below the ground surface.

Values of the integral in eq (31.3) can be obtained

from figure 32.2. Clifford, Carruthers, and Cun-
ningham have very recently reported foxhole ex-

periments [38].

EXAMPLE: Calculate the protection factor pro-

vided by a cylindrical foxhole 3 ft in diameter and
4 ft deep at a point on the centerline and 1 ft above
the bottom of the foxhole.

The solid angle fraction w= 1 -3/(3^+ (3/2)^)^

=0.106. We obtain the skyshine contribution

using this value and X=0 in eq (31.1). From
figure 28.3 we obtain »S'(0)= 0.098, and from figure

28.15 we obtain <S„(0,0. 106) -0.044. Thus DjDo
= 1.2<S(0)^a(0,0.106)= 0.0052.

We calculate the lip contribution assuming that
the densitv of earth is p=100 pcf. From figure

32.2 we obtain using cose= 1 — 0.106= 0.894 the

value 13.1 for the integral in eq (31.3). Thus

O,/Z,,=i«:lM«L^)(:3.1)«0.008.

Thus the two contributions are of the same order
of magnitude and the total response is given bv
Z>/7)o«0.013. ANSWER.

32. Shelter Covered with Fallout

Figure 32.1 is a sketch of a typical shelter cov-
ered with fallout. A different example of a
similar configuration is the blockhouse illustration

in figure 20.1, which has fallout on the roof. In
both cases the radiation penetrates through the
roof slab almost as if the source were imbedded
in an infinite medium. The emerging flux and
directional distribution both can be well repre-
sented by infinite medium calculation, and we
make use of the analogy between figure 32.1 and
the directional detector illustrated in figure 28.8b.
Data for the latter case are employed.
The detector in figure 32.1 is exposed to back-

scattered radiation and to a total spectrum deter-
mined for concrete ratlicr than for air. As in the
foxhole configuration one sliould presumably in-

FiGUHE 32.1. Detector on the centerline of a cylindrical
fallout shelter.

elude a backscattering correction (1.15) and a
correction (0.9) which takes into account the lack
of low energy photons in concrete. These two
corrections almost neutralize one another; and
since our schematization is not expected to be
accurate to 5 percent, we omit them both and write

D/Do=L(X)La{X,w), (32.1)

where X is the effective mass thickness of the
roof slab and w is the solid angle fraction of the
roof as subtended at the detector.

It can be seen in figure 32.1 that radiation can
contribute to the detector response by entering
through the basement walls rather than through
the ceiling. To take account of this one should
include a correction very similar to the "foxhole
lip" correction discussed in the preceding Section.

In fact, almost identically the same argument can
be made, and it leads to an expression more gen-
eral than eq (31.3), namely

Z>,/Z}o= "^^^~"^^i^~"^ rdX'l(X',l-<.), (32.2)
pd Jx

where w= l— cos0 and d is distance below the roof

slab. Values for this integral are to be found in

figure 32.2. Fortunately, this correction tends to

be relatively small if the slab is moderately thick.

Experiments on structures equivalent to source-

covered fallout shelters have been performed by
Clarke, Batter, and Kaplan [39].

EXAMPLE 1: Calculate the reduction factor in a

cylindrical basement 10 ft in diameter, covered by
a roof slab of concrete 1 ft thick, and with the

detector positioned on the centerline 9 ft below
the roof slab.

For this case, w= 1 -9/(92+ 5^)^^= 0.126. This
value of o), and a value J^=144 psf can be inserted

into eq (32.1). From figures 28.2b and 28.10, we
then obtain L(144) = 0.0067 and i:a(144, 0.126) =
0.257, so that Z)/Do= (0.0067) (0.257) =0.00172.
ANSWER

Tt is of interest to calculate the correction due
to radiation entering the compartnu>nt through
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COS 6

Figure 32.2. Data for calculating "lip penetration" in foxholes and the wall contribution in shelters. {H2O, 1.12 hr fission.

See also figs. B49 and B50.)
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the walls instead of the ceiling. From figure

32.2 we obtain, using cos0=l — 0.126= 0.874, the

value (0.69) (0.73) - .5 for the integral in eq (32.2).

Thus,

0./Z,.„
0^«1KO||(1^)

(0.6) »0.00008.

The correction is about 5 percent.

33. Vertical Walls

The case of a vertical barrier between a detector

and a fallout source on the ground is well illus-

trated by the vertical wall in figure 20.1. Radia-
tion from the source on the ground penetrates

upward into the air, so that at different heights

about the ground there are directional distributions

similar to those given in figure 26.1 for an infinite

homogeneous medium. The actual distributions

are only "similar" because of modifications due
to ground roughness and the perturbing effect

of air-wall and air-ground interfaces.

Radiation from fallout penetrates vertical walls

with surprising ease. This is because penetration

into the wall depends on incident obliquity, i.e.,

the angle of incidence relative to an axis perpen-
dicular to the wall (and therefore parallel to the
source plane). The main feature of the radiation

incident on the wall can be appreciated by making
a simple approximation. Referring to figure 26.1,

note a high concentration of radiation with cosffs^O,

thus travelling nearly parallel to the source plane.

Suppose all radiation should travel parallel to the
source plane, with directions uniformly distributed

otherwise. If obliquity angles 9' are measured
relative to an axis which is itself parallel to the
source plane, the corresponding distribution,

l{d,cosd'), would be uniform in 6'
. In other words,

so that
l{d,cosd')dicosd') xde',

l{d,cos6') oc
sine'

(33.1)

This illustrates that near the ground (small d)

the actual function l{d,cosd') should have a peak
value for 6' near zero. Since decreasing 6'

corresponds to increasing penetrability, the con-
sequence is that fallout radiation from the ground
and incident upon vertical walls is very
penetrating.

For our purposes it seems reasonable to neglect
the perturbation in the radiation field due to
air-wall and air-ground interfaces, and to take
ground roughness into account in the manner
indicated by eq (30.3). Thus we apply to this

problem the data represented by the function
W{X,d) ; and we write for the detector response
at height d above ground and behind a thickness
X of wall,

DIDo=0.9W{X,d+T). (33.2)

The factor 0.9 corrects for the deficiency of low
energy photons when the material adjacent to the
detector is concrete rather than air, water, or
wood. It should be omitted if the calculated
W{X,d-^T) already assumes a concrete wall.

If backseat tered photons should make no contri-

bution, the factor should probably be closer to

0.85; but in general backscattering will occur,
even for a configuration like the blockhouse of
figure 20.1, in which there is no material im-
mediately behind the detector (Position B).
Thus the corrective factor 0.9 is to be preferred.

Equation (33.2) does not apply to the detector
response some distance behind a wall of limited
size. For example, the detector response at B
in figure 20.1 due to radiation from the adjacent
wall is given by eq (33.2) but the detector response
at A due to radiation from the same wall contains
a further reduction, as discussed in Section 20.

At present we do not have directional distributions
for radiation emerging from such a vertical wall,

so that at best we can only prescribe rough guesses
for this reduction factor.

Various methods can be used to construct
functions for estimating the detector response
behind a vertical wall. We can, for example,
interpolate between Waid,u), which is reasonably
accurate in the limit of zero wall thickness, and
f*a^'H°° ! '^)) which represents an upper limit to
the geometry factor in the limit of very thick
walls. To accomplish this we assume that
radiation not scattered in the walls contributes
according to the thin-wall function, while radiation
scattered in the walls contributes according to the
thick-wall function. Assuming the proportion of

unscattered gamma rays to be given roughly by
the ratio P'°'(Z)/P(X), which we designate
b{X), we arrive at a function Wai defined by

Wai(XM=b(X)Wa{d,o^)
+ 1.15[l-6(Z)]P<.<*>(co,co). (33.3)

The factor (1.15) in this expression is to normalize
Pa^" to unity at co=l, to make it comparable
with Wa.

According to figure 28.16, the function Pa^'^ id,w)

varies slowly with d (or X) ; and we use the
bottom curve (for c^=1000 ft) to represent
Pa'-^\<^,u) in calculations of Wai without ex-

pecting to introduce errors more serious than
those inherent in eq (33.3). In general, eq
(33.3) is expected to give conservative estimates
of the geometry reduction factor because Pa'"
overestimates the factors expected for thick walls.

Using eq (33.3) in lieu of a better estimate of

the wall geometry factors, we represent the
detector response in the form

D/Do=0.9WiX,d+T)Wai{X,d+T,^), (33.4)

where d and X are height above the ground and
wall thickness, respectively, and co is the solid

angle fraction subtended at the detector by the
wall, and the factor 0.9 estimates the correction
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of H2O wall data to concrete wall data. Equa-
tion (33.4) is intended to apply only to walls

nearly circular (or square), with the detector oppo-
site the center of such a wall. It may certainly

be greatly in error if applied indiscriminately to

eccentric wall shapes and to off-center detector

locations. (Note that a correction for backscatter-

ing has been included implicitly.)

EXAMPLE 1: How thick must a vertical wall

be to reduce the detector response immediately
behind the wall to 0.00 IDq, if the front of the

wall faces a fallout field 6 ft below the detector
and having a ground roughness coefficient r= 40 ft?

Making use of eq (33.2), we examine figure

28.7 to find that value oiXfor which W{X,4:Q ft) =
0.001/0.9. This value turns out to be approxi-

mately X=23S psf, which is just under 20 in.

of concrete. ANSWER.

EXAMPLE 2 : If the wall of the preceding exam-
ple is square, 12 ft on a side, and if the detector

is 12 ft behind the wall, opposite its center, what
wall thickness would be required to reduce the
detector response to 0.00 IDq?

This calculation is considerably more compli-
cated. To begin with, it is necessary to calculate

the solid angle fraction subtended by the wall at

the detector. This can be most easily done by
the method to be outlined in Section 41 ; but it

could also be done by replacing the square with
a circle having the same area. Using the method
of Section 41, we note that for squares, e= l, and
for a distance from the square equal to the length
of a side, 77= 2. From figure 41.2 we then read
off the value co=.13. Inserting this value, to-

gether with the value (d+ T)=4:Q into eq (33.4),

we select several values . of X which we expect to

bracket the desired value, namely X=144, 192,
and 240. For these values we obtain from
figures 28.6, 28.7, 28.12, and 28.16 the following
information:

X b(X) Tr„(46',.13) Pa'">(",.13) Ty„i(JSf,46',.13) WiX.iG') D/Do
144 0.182 0.18 0.46 0.47 0.0085 0.0040
192 .152 .18 .46 .48 .003 .0014
240 .127 .18 .46 .49 .00105 .00051

Plotting these values for D/Dq on double-log paper
we find by interpolation that D/Dq=0.001 for
^5=^207 psf, corresponding to about 17 in. of
concrete. ANSWER

34. Light Superstructure with Shielded
Basement

Figure 34.1 is a sketch of a structure which is

similar to the blockhouse of figure 20.1 except
that walls and roof are thin and the configuration
includes a shielded basement. Our primary inter-
est is in the detector response in the basement ; and
radiation penetrating into the basement may have
originated either at the roof or on the surrounding
contaminated ground.

Because the roof is thin it is no obstacle to
radiation. Therefore the floor slab protecting
the basement is subjected to a beam of gamma
rays from the roof ; and this radiation is incident
on the floor slab along lines intercepting some
part of the roof. Penetration through the floor

slab proceeds as if there were a source located at
the slab which could emit gamma rays only in

directions corresponding to the directions of travel
of radiation from the roof. Moreover, the cone
of incident directions doesn't change significantly

within a few feet of any point on the floor slab.

For these reasons we consider the actual configura-
tion to be in close correspondence with the infinite

medium arrangement of figure 28.8c, and we esti-

mate the detector response by means of data from
figure 28.11. If we include a factor 0.9 to account
for suppression of low energy components in

concrete as compared with water or air when the
L(X) data is for penetration in water, the detector
response (roof contribution only) is obtained from

D/Do=0.9LiX)L^(X,c^). (34.1)

Here co is the solid angle fraction of the roof as
seen from the opposite point on the other side of

the barrier from the detector, as shown in figure

34.1.

In figure 34.1 it is clear that lowering the
detector from its position adjacent to the slab

will not change much the response to radiation
from the roof because the floor slab will still

subtend a large solid angle fraction. But it is

easy to visualize configurations of this general
type in which the detector response is sensitive

to the distance from the barrier. (As a simple
example one need only reduce the length and
width of the structure pictured in figure 34.1

while keeping the height constant.) One may
wish to include another factor in the expressions

for D/Dq to account for this variation:

D/Do=L(X)L^(X,o,)L^(X,o:'), or (34.2a)

^L(X)L^{X,c^)P,(X,o,'), (34.2b)

depending on whether w is nearly unity eq (34.2a)

or much smaller eq (34.2b). Here, co' is the solid

angle fraction of the protecting floor slab as

subtended at the detector. The factor 0.9, which
corrects the data to concrete, has been omitted
from expressions eq (34.2) because backscattered
radiation has been omitted altogether through
the special normalization used for La and Pa',

this backscattered radiation gives an increase of

about a factor 1.15, thus slightly more than
canceling the 0.9 factor. If data for concrete is

used, a backscattering factor is appropriate.

The second part of this problem has to do with
radiation which originates at the ground and pene-
trates "in and down." This is much more difficult

to analyze. We proceed by trying to account for

major factors one by one: If the heavy protecting

floor slab were absent the problem would reduce
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Figure 34.1. Fallout on and around a light cylindrical superstructure covering
a shelter. The radiation incident on the barrier slab is largely confined to a
cone of aperture 6.

to a fox-hole problem and the detector response
would be given by an expression like eq (31.1).

The floor slab introduces an extra attenuation,
and the real problem is to estimate this attenuation
as a function of slab thickness X. To this end
we note that radiation from ground contamination
must be scattered downwards to be incident on
the floor slab, and that such incident radiation is

not greatly affected by the clear area covered by
the superstructure, for structures of average size.

Therefore, we expect this radiation to resemble
the skyshine both in intensity and directional

distribution. This suggests use of the function
S'{X) to estimate the reduction of the detector
response below that expected for a foxhole
geometry with no floor slab (see Section 28,
paragraph (3), and fig. 28.1c):

D/Do=S{d+r)S,id+T,c,)S'iX), (34.3)

where d, r, and w all have the interpretations of the
foxhole configuration.

Use of the function Sa in eq (34.3) is justifiable

if the fioor slab does not greatly modify the sky-
shine directional distribution, i.e., if the floor

slab is thin. If X is substantial and w isn't small,

it would be better to omit this factor.

EXAMPLE 1 : Consider a light, cylindrical super-
structure rising 25 ft above ground level, and
having a diameter of 35 ft. Underneath this

superstructure there is a basement of depth 10 ft,

as shown in figure 34.2. Calculate the protection
factor at the center of the basement floor with
and without a 6 in. first-floor slab {X=72 psf).

Assume a ground roughness coefficient t= 40 ft.

Figure 34.2. Light superstructure geometry of Example 1.

First we calculate the roof contribution for the

two cases, using a,= 1-25/ V(25)^+ (17.5)^=0.181

and co' = 1-10/ V(10)'+ (17.5)2= 0.504, together

with A'=72 for the case with floor slab, and using

co=l-35/> (35)2+ (17.5)2=0. 106, a)'= l, and X=Q
for the case without a floor slab. From figure

28.20 we obtain L(0)Z6(0,0. 106) =0.023 and
L(72)L6(72,0.181)=0.0125. Using eq (34.2b) for

both cases we must next determine appropriate

values of Pa(A» : We note that P„(0,1) = 1,

and that according to eq (28.4), Pa(72,0.504) =
(0.166)-^ [0.049+ 0.1 18(0. 71)]= . 8. Therefore, the

roof contribution turns out to be
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No floor slab : Z)/I>o= (0.023) 1 =0.023,

6 in. floor slab: D/Z)o= (0.0125) (0.8) =0.010.

Next we perform the "foxhole" type calcula-

tion of eq (34.3). The values S{46 ft) =0.068,
Sai^O ft, 0.504) =0.29, and -S' (72) =0.027 give

No floor slab : D/Do= (0.068) (0.29) =0.020,

6 in. floor slab : D/Do= (0.068)

(0.29) (0.027) =0.00054.

Combining the two contributions, we obtain

No floor slab: P=Z>o/i>= (0.023+ 0.020) "'= 23,

6 in. floor slab: P=Z>o/-D= (0.010+ 0.00054)
= 95. ANSWER.

Note (a) that the floor slab is most effective

against radiation from the ground, and (b) that in

the absence of the floor slab approximately half

the detector response is from the ground
component.

35. Apertures

The analogy between gamma rays and visible

light may be used to clarify the effect of openings
upon the detector response within a structure.

Just as doors and windows permit light to enter
a room from outside, according to their size and
location, so also do doors and windows permit
radiation to enter when fallout covers the sur-

rounding ground. In one respect this analogy
breaks down, however: Radiation from fallout

can penetrate through opaque walls, so that if thin

they may be almost as transparent to radiation
as windows. In this case the size and location
of windows makes very little difference.

This illustrates that there is a connection
between effective mass thickness of a barrier and
the permissible design of openings in the barrier
from the point of view of radiation protection.
When radiation enters a structure mostly through
windows, the advantages of heavy walls are
negated; and conversely, if the walls are very
thin the window design matters little.

Openings of many different types occur normally
in construction, and there doesn't exist much
information, either experimental or theoretical,

about aperture effects. Nevertheless, some gen-
eral rules can be given for estimating their contri-

bution to the detector response. In this section
we discuss briefly openings in' walls and roof; and
we distinguish between two different cases:

Apertures between source and detector, and
apertures not between source and detector.

Figure 35.1 is a sketch of circular windows in a

blockhouse wall and ceiling, with the detector
placed opposite the center of each. In botli cases
the window represents a type of surface which
differs from the main wall or ceiling in that the

effective mass thickness is nearly zero and the
solid angle fraction subtended at the detector is

apt to be small.

In the skylight case the detector will receive a
contribution due to skyshine in addition to a
contribution from fallout on the skylight. The
relative sizes of these two contributions is of some
interest. For purposes of determining the sky-
shine contribution the skylight can be viewed as a
special type of foxhole, so that the detector
response is given essentially by eq (31.1):

D/Do=S{d)Sa{d,o,), (35.1)

where d is the height above the surrounding ground
and CO is the solid angle fraction of the skylight
subtended at the detector. Equation (35.1)

applies only for very small oi zero effective mass
thickness of window. If there is a covering of
fallout on the skylight, its contributipn plus the
skyshine contribution can be estimated by viewing
the configuration as an example of a fallout-

covered shelter and applying tjie arguments
leading to eq (32.1)

:

D/Do=L(X)La(X,o:). (35.2)

Here co is again the solid angle fraction subtended
by the skylight at the detector, and X, the effec-

tive mass thickness of the window, is very small.^^

The case of a window in a vertical wall bears a

close relation to the directionally dependent
detector pictured in figure 28.8d. Radiation at

the window entrance (fig. 35.1) should have a

directional distribution much like that above an
infinite plane source in an infinite medium, if we
consider only gamma rays traveling towards the

window. The detector behind the window in

figure 35.1 "sees" only that part of the radiation

field at the opening which travels in an "allowed"
cone of directions, very much in the manner of the

detector in figure 28.8d. We therefore apply the

data obtained using eq (27.11) to obtain the

detector response to radiation passing through the

window, just as in the case of a thin vertical wall

(eq (33.4)):

D/Do-^0.9W(X, d)Waid,w) (35.3)

where d is the height of the window above ground,

0) is the solid angle fraction of the window sub-

tended at the detector, and X is the window
thickness, which is presumed to be small or zero.

Note that it may be desirable to take account of

ground roughness by increasing the value of d, and
that the factor 0.9 is to be omitted if the W{X,d)
data is for a concrete wall.

Figure 35.2 shows openings in partitions which
lie between the source and the detector. Radiation

entering through these openings can reach the

31 Backscattering has been omitted in both eqs 35.1 and 35.2. Strictly

spealiing a factor 1,15 should be incorporated in eq 35.2 and a factor perhaps

as big as 1 3 in eq 35.1. The latter is larger because the radiation is lower m
energy. Xote, however, that if H2O data is used a factor of 0.9 or so is also

needed.
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Figure 35.2. Apertures directly between source and detector.

FiGtTKE 35.1. Apertures in a blockhouse wall and roof.

detector without penetrating as niucli material as

radiation which passes through the partitions to

the detector. If the partitions are very hght, one
can probably take the openings into account by
assigning an average value to the effective mass
thickness between source and detector. On the

other hand, the partitions may be thick, so that
radiation penetrating through the partitions is

significantly reduced in comparison with that
passing through an opening. In this case the

opening can be considered as giving a separate
term in eq (20.1), in which term the effective

mass thickness between source and detector is

given a value equal to the combined thickness of

partitions between source and detector along lines

through the opening, and the solid angle fraction

is that subtended at the detector by the opening.
If more than one opening lies between source and
detector, additional terms may be required, each
nivolving effective mass thickness and solid angle
fraction determined by overlapping or non-
overlapping parts of these openings.

Figure 35.3 shows an example of openings
which are not between source and detector.

If the partitions are heavy, the presence of these
openings can be expected to modify the detector
response significantly. For example, trie floor

opening permits a substantial increase hi the
strength of the radiation field directly below,
while the wall opening gives ready access lateially

to the detector.

Notice that the radiation must turn the corner
in order to take advantage of these openhigs,
so that a scattering must occur at some position

which is favored in the sense of being below the
floor openings and (or) hi front of the wall opening.
This is actually a "maze" problem, and is quite
different from the case of openings which permit
radiation to travel directly from source to detector.

'2 We say here that the openings "overlap" when a straight line from source
to detector can pass through more than one opening.

Figure 35.3. Apertures not directly between source and
detector.

Methods for treatuig this case are essentially

those used in maze problems, which are discussed

hi Section 38.

EXAMPLE: A radiation detector is at the center

of a cubical blockhouse of side length 10 ft, and
with very heavy walls. Small, circular wnidows
of equal radius are placed hi the center of the

roof and one wall. Compare the contributions

to the detector response from skyshine and direct

radiation through the roof window and from
radiation through the whidow in the wall.

For definiteness assume X~0 and aj= 0.05.

We then obtain the following:

Figures

Roof, skvshine: D/Do=S ilOh)Sa (lOft, 0.05)

= (0.084) (0.021)= 0.0018 28.3,28.15

Roof, direct: D/Z)o=Lim L (X) La (X, 0.05)

=0.014 28. 19

Wall: DID,= W{0, 5ft) Wa (5ft, 0.05)

= (0.45)(0.125)= 0.056. 28.7,28.12
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From this we see that 0.056/ (0.056+ 0.014+ 0.002)
= 0.78 of the detector response is from the window
in the wall, and that of the remainder only about
1 1 percent is due to skyshine. ANSWER.
Note that backscattering corrections would

change these figures somewhat.

36. Gompartmentalization

From the point of view of radiation shielding,

the single most prominent characteristic of

ordinary buildings might be termed compart-
mentalization. Most of the mass of the building

which may be expected to act as a radiation

shield is concentrated in the floors and walls,

which divide the building into compartments.
Consider a multi-story building, as schematized

in figure 36.1, with fallout on the roof and on the

surrounding ground. Radiation from the roof

fallout penetrates the building traveling down-
wards. As this radiation penetrates deeper into

the building, it must pass through successive

layers of material, namely the floors. On the

other hand, depending on the trajectory, the
radiation may or may not pass through the walls.

Thus the floors represent a sort of divided shield,

while the walls act as a collimator which favors

some trajectories over others.

Notice that the same effects are present also

in the case of radiation originating on the ground
around the building. As this radiation penetrates
into the building it must pass through a set of

walls. But the floors and the other set of walls

Figure 36.1. Multistory, compartmentalized structure with
fallout on roof and (/round.

are so oriented that the radiation may miss them
altogether if it follows an appropriate trajectory.
Thus one set of walls forms a divided barrier
while the other partitions lie more or less parallel
to the direction of penetration and give advantage
to radiation traveling directly inwards.

In addition to the compartmentalization of
buildings into rooms and corridors, maay or even
most types of wall and floor construction involve
compartmentalization on a smaller scale, because
of voids introduced to reduce weight. The most
obvious examples are hollow concrete blocks,
hollow tile, and hollow bricks. Another example
of slightly different type is that of floor joists,

which have the effect of collimation on the down-
ward-penetrating radiation. Such compartmen-
talization can cause overestimation of the
protection afforded by a wall.

The simplest way to take account of compart-
mentalization in building materials is that of using
approximations based on a more uniform distribu-
tion of material. For example, in the case of
compartmentalized walls one might estimate the
effective mass thickness by using weight/volume
ratios, thus assuming the material in the wall to be
spread uniformly through its volume. Experi-
ments tend to confirm that such estimates are
accurate enough for most purposes, largely because
the barriers so constructed are usually rather
light-weight. The effective mass thicknesses
given in Table 22.2 were obtained from weight-
volume ratios.

Approximations in which the material is as-

sumed to be uniformly distributed can also be
used in large, multi-room structures, depending on
partition thicknesses. The method is essentially

the same as for a single compartmentalized wall:

One calculates the total mass of material between
detector and roof, say, and assumes it to be dis-

tributed uniformly between. The accuracy of
such a simple approximation depends primarily
on the partition thicknesses. In general, one
expects it to be accurate when the partitions do
not individually reduce the radiation intensity by
as much as a factor of e^2.7. From figure 28.2b
we find that this means partitions of less than
about 40 psf effective mass thickness. It should
be remembered, however, that such a limit is, for

the present, more of a guess than an accurately
known figure; and that it depends very much on
the configuration, as will be indicated more
clearly in the next Section in the discussion of
other simple types of approximate calculations
for compartmentalized structures.

37. Collimation and Divided Barrier Effects in
Compartmentalized Structures

In a more detailed analysis of compartmental-
ization, it is advantageous to consider collimation

and divided barrier effects separately, since they
are quite different, even though they depend on
tlie existence of particular directions of interest,

such as "downward" and "inward." In this
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Section we make the distinction by giving separate
consideration to partitions placed "parallel" and
"perpendicular" to the direction of interest. (We
include floors when we speak of "partitions.")

(1) Partitions perpendicular to the direction of

penetration: When a barrier is divided into layers

through which radiation must penetrate succes-

sively, the mass distribution can usually be ex-

pected to affect the detector response. But there

is one case in which this is not so. When layers

of material and a plane source do not terminate,

but extend unchanged over the whole plane, as

indicated in Section 30, the dose measured by a
detector is independent of the particular manner
in which the division into layers takes place, or
even the existence of a layered structure, so long
as the total effective mass thickness between
source and detector remains fixed.

When the radiation source is finite in extent,

or non-uniformly distributed, the nature of the
layering must be taken into account. We con-
sider three extreme cases, namely (a) the total

barrier mass confined to a layer adjacent to the
source; (b) the total barrier mass confined to a
layer adjacent to the detector, and (c) the barrier

material spread uniformly between source and de-
tector. Other situations can arise which are com-
binations, or which can be expected to lie some-
where between the extremes just indicated. For
example, the mass may be concentrated in a layer
half-way between source and detector, or it may
be divided into two layers, one adjacent to the
source and one adjacent to the detector.

When the total barrier mass is confined to a
layer adjacent to the source, one has essentially

the fallout-covered shelter discussed in Section 32;
and the analysis utilizes data for La(X,u).

Cases in which the total barrier mass is confined
to a layer adjacent to the detector have already
been discussed in Section 34. They correspond to
a radiation source emitting only within a restricted

cone of directions, so that calculations for this

configuration utilize data for L,,{X,a}).

Distributed barriers have been discussed in Sec-
tion 30. The finite source cases of interest utilize

data for the Lc{X,ui).

Very general arguments indicate that the de-
tector readings in these three cases shouldn't differ

greatly, a factor of two usually being sufficient to
onconipass the spread of values. Tliis is essen-
tially because the barrier and geometry reduction
factors account for the large part of the barrier
effectiveness, and these do not change significantly

from one mass distribution to another. There-
fore, these tliree extreme cases can be used m
representing the different cases of layering in

practical problems. We do not expect a slight

mismatch of schematization and configuration to

result in significant errors.

Notice that if the barrier is finite, as in figure

37.1, radiation can escape out the sides, lowering
the observed dose and giving a slight increase to
tlie barrier effectiveness.

(2) Partitions parallel to the direction of pene-

FiGURE 37.1. Fallout on a finite divided harrier.

,\ « *
V

! T

Figure 37.2. Fallout on a simple structure with parallel

partitions.

tration: Collimation effects are more difficult to

estimate than divided barrier effects. At present

neitlier experimental nor theoretical studies are

available. The discussion given here is mainly
confined to limiting cases and is therefore incom-
plete even though indicating the nature of some
of the main effects.

In the compartmentalized structure of figure

36.1, consider penetration by radiation from fall-

out on the roof. It is clear that collimation effects

will depend on wall tliickness, floor thickness, wall

spacing and tlie distance of the detector from the

source in terms of the number of compartments.
Various limiting cases can be considered:

(1) The walls may be very thick, so that radi-

ation can hardly penetrate into adjacent compart-
ments. In this case the detector sees mainly
radiation which has not penetrated througli the

walls, and the problem reduces to one of the

divided barrier problems with a finite source.

(2) The fioors may be very thick: In tliis case

the radiation only penetrates tln-ough the floors

if it travels always in a nearly vertical direction.

This is because radiation traveling at a substantial

obliquity has slight chance of getting througli the
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barrier, except when the obUque portion of the
trajectory occurs near the exit surface of the bar-

rier. The very thickness of the floors provides a

sort of colhmation in this way. It is possible,

though very unhkely, for this type of colhmation
to be stronger than that provided by the walls,

so that it doesn't matter when the walls are

present.

(3) The walls may be thin, so that radiation

readily travels from one "channel" to the next.

In this case the collimation effect is slight unless

the radiation can penetrate to distances large

compared with the "channel width."
The most difficult cases concern walls and floors

which are neither thick nor thin. It may be
possible in such cases to justify the approxima-
tion in which all material between source and
detector is distributed uniformly throughout the

intervening space. But this approximation can
lead to an overestimate of the shielding provided
by the compartment partitions. A safer estimate

can be obtained as follows: If the radiation cannot
travel from source to detector without passing
through parallel partitions, the total effective

mass thickness of these parallel partitions is added
to that of the perpendicular partitions; and the
detector response is determined with this aug-
mented barrier thickness.

To apply this rule the primary radiation source
is divided into components according to the num-
ber and type of parallel partitions which must be
penetrated, as shown in figure 37.2. Radiation
from that part of the source directly above the
detector is not shielded by parallel partitions;

whereas radiation originating far to one side of

the detector may have to go through several
partitions to contribute to the detector response.
The detector response for the simple case pictured
in figure 37.2 would thus be estimated by

D=UX+i)La{X^M+ L{X)L,{X,o>2)
+L{X+t)La{X+t,o:,), (37.1)

wliere coi, W2, ^3 are the solid angle fractions sub-
tended by Su Si, S3 at the detector.

Notice that even when the radiation might be
expected to penetrate parallel partitions at a

slant angle we do not use the slant penetration
thickness, but rather the normal thickness of these
partitions in equation (37.1). There are several
reasons for this, but the weightiest is our desire not
to over-estimate the protection factor seriously.

We are treating parallel portions as if they were
part of the divided barrier, and this procedure
under-estimates their efl'ect somewhat.

This approach to the parallel partition shielding
increases the amount of calculation necessary
because each component requires a separate
calculation.

38. Mazes

P"'igui'e 38.1 shows an elementary maze. To
pass from source to detector the racHation must
follow openings, because tlie barrier is nuich too

Figure 38.1. A simple maze with two 90° bends. The
solid angle fractions u>' and u are subtended at the detector

by the near and far sides of the bend.

thick to permit "shortcuts." At least two
changes of direction are necessary for the gamma
rays contributing to the detector response in this

example.
Radiation readily passes down the initial pas-

sageway leading from the source. The intensity

of the radiation diminishes steadily with distance
from the source, maintaining a rough proportion-
ality with the solid angle fraction which the source
subtends at the detector.^^ At the end of the
first passageway, as at positions all along, the

detector response is partially due to scattered

gamma rays, though mostly to gamma rays coming
directly from the source. Once the corner has
been turned, direct radiation can no longer reach
the detector in significant amounts, and the

detector response is due to scattered radiation

almost entirely.

It is possible to examine this scattered radiation

to determine where it "turned the corner."

This leads to the conclusion that the wall surface

at the corner which can "see" both source and
detector contributes a substantial fraction of the

scattered gamma rays which go down the second

corridor. It follows that maze shielding can be

enhanced somewhat by removing or recessing

these scattering areas so that they no longer have
access to both source and detector, or by covering

the walls at the corner with a layer of tin or lead

sufficiently thick to reduce the albedo considerably.

Experiments now in progress are leading to a

further analysis of radiation "turning the corner"

into contributions from individual wall surfaces,

and a report on this subject by J. C Le Doux

M This dcpciidi'iicc upon solid ansjlo would not hold for an anisotropic

source. In an cxlrcme case, for a jilanc-parallcl source, the detector response

is independent of the length of the first corridor.
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and A. Chilton is to be published.^* The results

are by no means simple. Apparently three differ-

ent components are distinguishable: (1) Radiation

scattering from ceiling, floor, and the end wall of

the first corridor; (2) radiation scattering from

the end wall of the second corridor, i.e. the side

wall of the first corridor; and (3) radiation "cut-

ting the corner." Wall positions contributing to

each component can be seen using figure 38.1.

As the detector is moved down the second corri-

dor, each component is expected to be reduced in

strength according to the solid angle fraction sub-

tended by the scattering surface at the detector.

This means that components (1) and (3) vary
inversely with the cube of the distance and com-
ponent (2) with the square of the distance of the

detector from the corner. On the other hand,

components (1) and (2) do not depend on the

absolute dimensions of the maze, while component
(3) decreases in inverse proportion to the magni-
tude of an increase of scale. That is, if the maze
size is doubled without change in shape, and with

the detector in the same relative position, the

third component will contribute only half as much
to the detector response at the corresponding
position in the larger maze, but the other two
components are unaffected. The third component
is very important for small mazes and ducts, but
relatively unimportant for large mazes.

This type of analysis suggests a simple expres-

sion for representing the detector response in

mazes, namely

VII. Rectangular

39. Introduction

Most of the surfaces of interest in radiation
shielding are rectangular or representable by
rectangles. On the other hand, it is much easier

to generate data for circular surface sliapes, with
the detector opposite the center of the circle; and
many, even most, calculations can be carried out
with acceptable accuracy by applying circular-

shape-data to rectangular-shape-walls. There-
fore, in this and tlie following sections we discuss
methods for doing this. In tlie last section we
consider the problem of rectangular-source-data
more generally.

The use of circular-source-data to obtain tfic

detector response to a rectangular-shape-sourcc
involves several steps and a number of simple
types of calculations, which we list below:

(1) Calculation of tlie solid angle fraction of
circular sectors;

(2) determination of the solid angle fraction
subtended by any rectangle at a point on tlie

central axis of symmetry ("centered rectangle"
case;)

"Private commuiiiciitioris from .1. C. I.f Doux to C, M. Eiscnhaucr,
Added Note: Very recent puhliciitions on this subject are: C. M. Eisenhauer,
Scattering of Co-CiO (iamiiia Itadiation in Air Ducts, MiS Tech. Note 74
(I'liKilf)-.';), Oct. lyiid (Olliceof 'I'echnical Services, U.S. Dept. of Commerce)

,

C". \V. Terrell, A. .). .leris, R. O. Lyday, D. Sperher, Radiation Streaming
in Shelter f:ntraMcesvays, AR1''-11S8-12, Oct. (Armour Research
KoundatioM, Chicago, 111. J.

Table 38.1. Albedo coefficients Ai, Bi for mazes with a
long first corridor and large, square cross sec'ion. wg is

the solid angle of the entrance as subtended at the first bend.

0)0 A, B,

0. 007 0. 056 0. 08
. 063 . 04 . 19
. 165 . 054 . 27

jy^j^ n [(^,C0,+5,(C0',-C.,)] (38.1)
1-^0 i^O i=l

in a maze with N bends, where coj,co'i are the solid

angle fractions subtended by the far and near
ends, respectively, of the i'th corner at the l)'st

corner on the detector; and Di is the detector
response at the midpoint of the first corner.
(See fig. 38.1. Note that coq is taken to be 0.)

The two terms represent the and com-
ponents mentioned in the preceding paragraph,
and Ai, Bt can be considered effective albedos for

these two components. Experiments with single

bend mazes, using Co-60 and a long first corridor,

give estimates of Ai, 5, as listed in Table 38.1.^^

Corresponding estimates for later bends are not
available, but for a safe overestimate the values
A{=1, Bi=0, i^l, can be used. A closer estimate

A B
for i>l might be Ai=-^— Bi—-:— which

relies on the assumption that {Ai/B{) = {AijBi).

Source Shapes

(3) determination of the solid angle fraction

subtended by any rectangle at any point, in

terms of a linear combination of the simpler
"centered rectangle" cases;

(4) approximation of a "centered rectangle" by
circles or circular sectors, so that the approxima-
tion iias the same solid angle fraction and perhaps
the same "elongation" as the rectangle;

(5) determination of geometry factors for

circular sectors. It is not difficult to see how these

different t>pcs of calculations can be combined
into a fairly accurate procedure for utilizing the
circular data: We represent the general rectangle
case first as a combination of "centered rec-

tangles" and then, by representing each "centered
rectangle" as a combination of circular sectors,

we obtain the general case as a combination of

circular sectors. Then we calculate the geometry
factor for each circular sector independently and
combine these results to obtain a value for the

rectangle.

40. Solid Angle Calculations for Circles and
Annular Sectors

Tlu' solid angle fraction w subtended by a cir-

cular or annular sector is easy to calculate if the

Private communication from C. .VI. Eisenhauer, based on analysis of

the data of Terrell, et al., of the [irecedinn footnote and as yet unpuhli.shed
data duo to F. X. Riz/.o and .\. Ciuadrado, lirookhavon National Laboratory.
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Figure 40.1. Coordinates describing circles and circular

sectors for calculations of the solid angle fraction subtended
at detector D.

reference point is on the axis (see fig. 40.1). This
is the only case we consider here.

If p is the radius of a circular area, z the distance

of the reference point from the sufrace plane,

and cos a= z/-^2^-\- p^, then

1 — cos a.Ci)-- (40.1)

If two concentric circles have radii pi and P2 and
subtend solid angle fractions coi and uo, then the
solid angle fraction of the annulus between the
circles is (for 0)2^0^1)

--(1)2— a)i= cos «!— cos a2. (40.2)

Similarly, the solid angle fraction of the
annular sector between circles of radii pi and p2,

and between azimuths (pi and v'2, is (p2^Pi)

W= 7n(c02— Wi), (40.3)

where m is the fraction of the azimuth occupied
by the sector, i.e..

-<P\)- (40.4)

EXAMPLE: Calculate the solid angle fraction
subtended by a 30° sector of the annulus between
two concentric disks of radii 5 ft and 7 ft, as sub-
tended at a point on the axis 10 ft from the plane
of the disks.

Since cos a2= 10/V7'+10^=0.820, and cos ai=
10^/125= 0.894, while v52-v5i= 30°=7r/6, we have

ir/6
and w= 0.08333X (0.894 -0.820)= 0.0062.

ANSWER.

41. Solid Angle Fractions for Rectangular
Surfaces

It is particularly fortunate that the solid angle
fraction for a rectangular surface can always be
calculated analytically. The calculation is simpli-
fied if the conventions of Cartesian geometry are
observed. The notation in the following para-
graphs is that of figure 41.1, with the origin of

coordinates in the plane of the rectangle and
opposite the reference point (usually the detector
location). The perpendicular distance from the
plane of the rectangle to the reference point is

z; and Xi, yt {1=1, 2, 3, 4) are the coordinates of

the four corners of the rectangle. The coordinate
s.ystem is chosen so that the x and y axes are
parallel to the sides of the rectangle; and the
corners are numbered in counter-clockwise suc-

cession.

Having specified a coordinate system, we next
list several important parameters, namely.

ti=\yilxi\,

rii= \z/Xi\,

qi=^yihi3!i-

(41.1)

The first two of these are referred to as "eccen-
tricity ratios," while the last is ±1, depending on
the quadrant in which the corner is located.

Finallv, we define the function

r(e,?7)=-tan ^ — , (41.2)

which has the synmietry property

r(e,,)=TQ,j). (41.3)

In terms of these quantities, the following gen-

eral rules hold precisely:

(1) Reference point opposite the center of the

rectangle: For this case ei= ei and ni='ni- The
solid angle fraction w subtended by the rectangle

is given by
o^= r{e„m). (41.4)

Extensive tabulations of T{e,r]) have been made
and are presented in figures 41.2a and 41.2b.

(2) Reference point opposite one corner: The
solid angle fraction w is given by

(41.5)

This result is easily obtained from symmetry by
combining the rectangle of interest with three

31" For a discussion of comparable problems in illumination see reference 40.

Note, however, that in illumination the integrals are somewhat modified
because the detectors are usually plane surfaces, having a response function

which is not isotropic but is proportional to the cosine of the angle of inci-

dence relative to the normal to the detector surface.
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Figure 41.1. Cartesian coordinate system used to describe a rectangle and a
reference point {or detector), for calculations of the solid angle fraction.

other identically shaped rectangles in the other

quadrants (see fig. 41.3). The value of t in eq

(41.5) pertains to the larger rectangle comprising

the four parts together.

(3) Reference point opposite the center of one

edge: This arrangement is shown in figure 41.4.

The detector can be considered opposite the corner

of two similar, adjoining rectangles, each with
eccentricity ratios ei, tji, so that

(41.6)

(4) Reference point on a plane of symmetry:
An example of this case is pictured in figure 41.5.

The detector can be considered at the corner of

two similar, adjoining pairs of overlapping rec-

tangles. The combination yields the result

<^=\ l2i^(ei)'?i) + 23r(€3,'73)|. (41.7)

Notice that the terms add when the origin of co-

ordinates is inside the rectangle and subtract when
it is outside.

(5) General case: Figure 41.6 illustrates the im-
portant fact that a symmetric combination of

rectangles can always be constructed which per-
mits determination of the solid angle fraction sub-
tended by an\' rectangular surface at any reference
point whatsoever. One obtains therefrom the
general expression

^=i\giTiei,Vi)—g2r{€2,V2)+ qzT(e3,V3)—gir{€i,rn)\.

(41.8)

Each term on the right corresponds to the solid

angle fraction for one of the rectangles with a
corner at the point opposite the detector. The
terms all add if the origin of coordinates falls

inside the rectangle; while two terms add and two
subtract if the origin is outside the rectangle.

Since the T(ei,r?,) correspond to solid angle frac-

tions for "centered" rectangles, they are referred
to frequently. We shall therefore make use of the
shorter notation

ri= r{et,vt) (41.9)

for these "partial solid angle fractions."

EXAMPLE. Find the solid angle fraction sub-
tended by a rectangular roof with dimensions 25
ft by 35 ft at points (a) 24 ft below the center,

(b) 24 ft below one corner, (c) 24 ft below the
middle of one of the short sides, (d) 24 ft below
the roof and 10 ft out from one of the short sides,

on the plane of symmetry, and (e) 24 ft below the
roof and half-way between the center and one
corner. All five positions are shown in figure 41.7.

Calculation of the solid angle fractions can pro-
ceed in two, sometimes three ways. For many, or
most, cases it is sufficient to determine the param-
eters €i, til and then refer to figure 41.2. Thus,
for the point designated (a) one has ei=(25/2)/
(35/2)= 0.7143, r7i=(24)/(35/2)= 1.371. One then
locates the point having these coordinates on fig-

ure 41.2, places alongside this point a French curve
which approximately matches the neighboring con-
tours, and reads from a nearby radial line the
value 0.173. ANSWER.
By comparison, for point (b) one first can de-

termine the values ei= |25/(— 35)| = 0.7143, =
l(24)/(— 35)1= 0.6857, and then calculate numeri-
cally the result CO= 0 .2 5 (2 /tt) tan

-
' (0 .7402 )= 0 . 1 0 14

.

ANSWER.
Notice that in all these calculations the co-

ordinate svstem is oriented in the same way. For
point (c),' usiiig €i= 12.5/35= 0.357, »;i

= 24/35=
0.686, one obtains from figure 41.2 the value w=
0.124. ANSWER.
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Figure 1:1.2b. Conlours of constant T{e,ri),e'> 1. This function is the solid angle fraction subtended by "centered rectangles."—
Continued
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Figure 41.3. Reference point {or detector) opposite one corner of a rectangle.

Figure 41.4. Reference point {or detector) opposite the center of one
edge of a rectangle.

41.5. Reference point {or detector) on a plane of
symmelnj of a rectangle.

To calculate the solid angle fraction for point
(d), one first lists

ei= 12.5/(35-10)= 0.5

€3=l(-12.5)/(-10)|= 1.25

T?i= 24/(35-10)= 0.96; 2i= l

rj3=i24/(-10)|=2.4;g3=l.

Figure 41.2 then provides the results r(0.5, 0.96)—
0.216, t(1.25, 2.4)= 0.111, so that a;=0. 5(0.216+
0.111)= 0.164. More precise numerical evalua-
tion gives the result w= 0.1059. ANSWER.

Finally, for point (e), one has

6:=|(3/4)(25)/(3/4)(-35)|= 0.714

62=|(-l/4)(25)/(3/4)(-35)|= 0.238

e3=|(-l/4)(25)/(l/4)(35)|= 0.714
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e4=l(3/4)(25)/(l/4)(35)|= 2.143

T,i-|24/(3/4)(-35)|= 0.914;2i= -l

772= '?i; 92=1

„3=l24/(l/4)(35)|=2.743;g3=-l

Numerical evaluation of the r(e,,i7,), followed by
combination as indicated in eq (41.8), yields the

result w= 0.1 524. A trial calculation using figure

41.2 as a shortcut gave the less precise value 0.153.

ANSWER.

X

(a)

42. Approximation of Rectangles by Circular
Sectors

We next consider simple methods for represent-
ing rectangles as combinations of annular and
circular sectors. If this can be accomplished for

"centered rectangles" the extension to the general
case is straightforward. Of course, it is in prin-
ciple possible to make such representations with
any accuracy desired, by using many small
annular sectors. But this amounts to a form of

numerical integration, which we seek to avoid.
To be acceptable, a representation must use a
minimum number of sectors.

Three methods will be discussed, each illus-

trated by one of the sketches on the left in figure

42.1. In the first, the elongation of the rectangle
is neglected altogether. In the second, the elonga-
tion is accounted for by the use of two circular

sectors. In the third, mainly for use with rec-

tangles far off center, annular sectors are used.

(1) Approximation by circles: In some cases,

eccentricity effects can be shown to be weak, so
that two surfaces can be considered equivalent if

they subtend the same solid angle fraction. One
can then calculate the solid angle fraction T{e,r]) of

a "centered rectangle," and replace the rectangle
with a circle subtending u= T(e,rj) (see fig. 42.1a).

In the general case of an off-center rectangle, each
of the four "centered rectangles" is replaced in

this way by a circle, and the corresponding ap-
proximation has the form

i=l
(42.1)

Ficii RE 41. G. Reference point {or deleclor) opposite arbitrary

localions: (a) inside and (h) outside a rectangle.

in analogy with eq (41.8), with the Wj representing

circles. The combination can be viewed as a pair

of annular sectors whose combined solid angle

fraction is equal to that subtended by the off-

center rectangle.

(2) Approximation by two circular sectors:

This method attempts to obtain greater accuracy
through an attempt to take eccentricity effects

into account. In figure 42.1b the rectangle is

indicated by a solid line. The dashed lines indi-

cate two squares, one having its sides equal to the

length of the rectangle, while the other has its

sides equal to the width of the rectangle. The
circular arcs represent parts of circles which, if

complete, would subtend solid angle fractions

equal to values for the squares. The representa-

tion consists of the complete smaller circle plus

enough of the annular ring between the circles to

give the combination a total solid angle fraction

equal to that of the rectangle.

IF tlio solid angle fraction of the rectangle is

r(e,77), the solid angle fractions subtended by the

two scjuares are T{\,ri), and t (1,17/6). It is easy to

show that the api)roxiniation takes the form

FifM HE 41.7. Detector positions for the Example, relative

to a 2-') ft 1)1/ !') ft rectanr/ular roof. co= aw'+ (1 — <7)c (42.2)

V
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j COS d

\

Figure 42.1. Approximation of a "centered rectangle" by circles and annual sectors:

(a) Neglecting elongation (Method 1): (b) taking elongation into account in a simple two-term approximation {yiethod 2); (c) using an annular sector to represent an
off-center case (Methods). The graphs onthe right show qualitatively the circular sector approximations (dashed lines) totheg,(B) functions (solid lines) which correspond
to the sketches on the left.
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where w is the soUd angle fraction of the ("cen-

tered") rectangle, w' and w" represent circles

having solid angle fractions 7(1,77) and T{l,r]/e),

respectively, and

a=
T(e,T?)— T(l,T?/e)

7(1,77)
— t(1,77/€)

(42.3)

Extension to the general case of off-center rec-

tangle is accomplished by the use of eq (42.1),

with each of the aj< referring to a sector-represented

"centered rectangle."

(3) Approximation by annular sectors: This
method is for use when the four terms in the

general case cancel strongly against one another,

as when the rectangle is far to one side of the origin

of coordinates.

Concentric circles passing through the farthest

and nearest corners of the rectangle subtend

solid angle fractions w 1-

1}
and

V3

V'73^+ e3^+

V'7i='+ 6i'+
respectively. A sector

of the annulus between these circles can represent the

rectangle if it has the same solid angle fraction.

Our representation thus takes the form

CO= m(co'- (42.4)

where w' , w" represent the two circles, with solid

angle fractions as indicated, and

1=1

/ ^3 _ \
(42.5)

Since this last method is applied to off-center

rectangles primarily, there is no reason to consider
combinations of such representations.

Similarly, in method (2)

sectors, eq (42.2) becomes
utilizing circular

6?(Z,co) = a G{X,co') + (1- o) G(X,c^")

,

(43.2)

where the value of a is given by eq (42.3). Com-
bination of the four results of the type eq (43.2)

into an expression of the form eq (43.1) gives the
circular sector approximation for the general case.

Finally, the annular sector approximation (3)

for a geometry factor is obtained by translating

eq (42.4) into

GiX,o^)=m[G{X,c^')-G(X,^")], (43.3)

where m is given by eq (42.5).

These methods can be applied to any of the ge-

ometry factors represented generically by G{X,o)),

with greater accuracy in some cases than in others.

No attempt has been made to compare system-
atically the accuracy of the different approxima-
tion methods in different types of calculations.

EXAMPLE 1 : A rectangular underground shelter

40 ft X 20 ft is covered with a concrete slab of

effective mass thickness X=150 psf. Fallout on
the slab emits gamma radiation of intensity suffi-

cient to give a response Do to a detector 3 ft above
an idealized plane similarly contaminated. Cal-
culate the detector response 10 ft below the slab,

half-way between the center and one corner, using
the circular approximation. Figure 43.1 illus-

trates the configuration.

To determine the detector response one first

calculates the parameters €«, 77^, and t; for each of

the corners of the roof slab, using figure 41.2.

I

1

2
3
4

30/15
|30/(-5)|

|(-10)/(-5)
l(-10)/15|

7?.- T, Qi

10/15 0. 58 1

10/(-5) . 278 -1
10/(-5) . 205 1

10/15 . 40 -1

43. Calculation of Geometry Factors for
Rectangles

As a last step in the calculation of geometry
factors for rectangles, we replace w in the preceding
section by G{X,w), a geometry factor. We can
do this because the (j's combine linearly just like

the co's. Thus, (42.1) takes the form

Using figure 28.10 we next calculate La for circles

having the same solid angle fraction

:

1

2
3
4

0. 58
. 278
. 205
. 40

L„(150,a),)

0. 73
. 49
. 39
. 61

G{X,<^)=
i=l

(43.1)

where the term on the left is the approximate
geometry factor for the rectangle, and the terms
on the right are geometry factors for circles sub-
tending solid angle fractions co<."

" Note that eq (43.1) is exact when the G(.Y,u,) correspond to the centered
rectangles determined by the four corners of the ofl-center rectangle, rather
than to circular sector approximations to these centered rectangles.

Figure 43.1. Detector below the roof slab of an underground
shelter, as in Examples 1, 2, and 3.

11
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Finally, we make the combination for the general

case:

!=1

=Z>o(-0057) (.555)=0.0032Z?o. ANSWER.

The circular approximation has fairly obvious
limitations. It cannot be applied accurately for

length/width ratios which differ by more than
perhaps a factor of three from unity, unless the

directional distribution involved is either nearly
isotropic or nearly monodirectional. In the

example just worked, the term Zia( 150,£02) is

expected to be rather inaccurate because €2 is

6; but this term contributes only about 10 percent
of the final result.

Clearly this method can be expected to become
more inaccurate when the terms cancel rather

than add, i.e., if the detector is to one side of the

roof slab. Also, values obtained will represent

an overestimate or underestimate depending on
whether radiation contributes more at angles

near perpendicularity or at angles nearly grazing
the source plane. Thus the value obtained in

this example is an overestimate because radiation

emerges from the roof slab with greater intensity

at angles near the perpendicular.

EXAMPLE 2 : Re-calculate the detector response
for the preceding example, using a circular sector

approximation.
Using the e*, and Xj values already deter-

mined, the following table is easy to calculate:

1 u' w" a l-a £„(150,u') i.(150,u")

1 0.48 0.71 0. 569 0.431 0.68 0. 78
2 .128 .71 .743 .257 .26 .78
3 .128 .336 .630 .370 .26 .55
4 .336 .48 .656 .444 .55 .68

From these values, using eq (43.2), we obtain

i o>i La{150,u>i)

1

2
3
4

0. 58
. 278
. 205
. 40

0. 723
. 394
. 367
. 608

The final combination then yields

Z>=I>oX(150)(l/4) 2 (-)*+'2.L„(150,co,)
j=i

=/?o(0.0057) (0.523) =0.0030Z?o. ANSWER.

The value is to be compared with 0.0032Z>o,
which was obtained by the circular method. The
agreement is surprisingly good, considering that
the length/width ratio of the roof slab is 2. The
largest part of the disagreement appears to come
from the term corresponding to the second corner,
with its length/width ratio of 6. The ratio of
values given by the two approximations for this

term is about 0.81.

EXAMPLE ?, : Consider the rectangular roof slab
of the preceding examples as two adjacent squares,
and calculate the contribution to the detector
response from the square farthest from the
detector. The detector is still considered to be
10 ft below the roof, halfway between center and
corner.

The values of the parameters 77,, and turn
out to have the same magnitudes as before; the
only changes are in the g,, which affect the value
of m:

t «i Vi Ti 5.

1 30/15 10/15 0. 58 1

2 30/(-5)| 10/(-5) . 278 -1
3 10/(-5)| 10/(-5) . 205 — 1

4 10/15 10/15 . 40 1

The sign changes lead to increased cancellation,

so that the resulting solid angle fraction is reduced
to 0.063.

The values of w' and co" can now be calculated:

co'= l-
10/15

15/ ^15/ ^

5

V22+2='+l

1

'3

Inserting these values into eq (42.5), we obtain
m= .063 (2 1/8) = .165.

We next obtain the values

L«(150,a;') = .78,L,(150,w") = .54,

from figure 28.10, and make the final combination
indicated by eq (43.3),

D=DoL(150) (0.165) (0.78-0.54) =0.00023Z?o.
ANSWER.

This result is much smaller than the value
obtained in the preceding examples partly because
the solid angle fraction is much smaller and partly

because the radiation tends to go downward
rather than sideways after emergence from the

roof slab.

44. Further Discussion of Geometry Factors

It is possible to calculate geometry factors while

avoiding the use of approximations like those de-

scribed in the preceding Sections. To accomplish this,

the circular source data obtained from expressions

typified by eq (27.1) must be replaced bv calcu-

lations using more general integral forms of types
eqs (16.2) and (16.3), with gs{d,<p) and gs{0) cor-

responding to rectangles rather than circles.^**

The "centered rectangle" case is the only one
that need be considered in this connection be-

cause off-center cases are always obtainable as

linear combinations. Because e and 77 uniquely

3' For an alternative and different approach to the calculation of geometry
factors see Section 49 and references 29, 30, and 41.
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specify a centered rectangle configuration, it is in

principle possible to make extensive tabulations

of geometry factors G{X,e,r}), using these variables

in place of co. Presumably G{X,€,r}) can be pre-

sented, for each X, by means of contour diagrams
similar to figure 41.2. In the future this may
prove to be a desirable way of presenting geometry
factor data, particularly for radiation directional

distributions which depend on an azimuthal angle

(p as well as a polar angle 6, as in the case of radia-

tion emerging from a vertical wall adjacent to a
fallout field.

It is instructive to discuss once more the approx-
imations of the preceding Sections, using the

functions' find gX^)- In figure 42.1, the

points within the rectangle correspond to {d,tp)

combinations for which gsid,(p) = l; while the

points outside the rectangle correspond to gs{d,ip)=
0. The circles similarly divide the points in the

plane into two sets, one giving ^s(0,<^) = l, the

other giving j/,(0,<p)=O. But that of sketch (a)

leads to a function g
1

gsid,(p)d<p which

looks like the solid line of figure 42.1, (a), right;

while the circular approximation (dashed line)

resembles a step function. Note that the area

under both curves must be about the same, since

it corresponds approximately to the solid angle
fraction. The circular sector and annular sector

approximations are similarly compared with the

functions they represent in the sketches (b) and

(c), right, of the same figure. Thus all three
approximations are seen to be combinations of
step functions.

Presumably greater accuracy is obtainable by
use of approximations which involve more terms;
but the greater effort is a serious impediment, and
other sources of error tend to be large enough to
make such refinements have questionable sig-

nificance.
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Appendix A. Computations

46. Preparation of Data: Use of Digital
Computers

To obtain most of the data presented in this

manuscript, it was necessary to rely on digital

computer programs. A family of these programs
was written for the IBM 704 computer at the
National Bureau of Standards, using the SAP
system of orders. Because so much of the desired

data involved angular distributions of a fairly

general type, many of these computer programs
involved extensive development and experimen-
tation. Figure Al is a block diagram showing the
system in its final form, and indicating by means
of arrows the order followed.

The first to be constructed was the general
MOMENTS routine, whose output is a large

tabulation of values for coefficients /^", (Ef) , as

well as dose integrals Dl,°i, for a given monoener-
getic gamma ray source in a given material. Here,
Ei is the i'th scattered energy and the indices n,

I, lo refer to the n'th spatial moment, the Vth
Legendre coefficient of the directional distribution,

resulting from a plane source emitting gamma rays
having initial directional distribution Pi^{cos Oo),

where is the initial obliquity angle relative to

the normal to the source plane [12]. The calcu-

lation is carried out using photon wavelength (in

Compton units) as a variable. For most calcula-

tions the basic integration interval was AX=0.025.
This interval was doubled at X~Xo+2, and re-

doubled at X«;Xo+4, to keep the total down to

manageable proportions. For l<lo<l2, values

of n up to 12 were calculated; while for ^o=0, the

calculation was extended to n= 18. Output was

MOMENTS

ABSTRACTOR

SORT

SEEK

ISOTROPIC PARAMETERS SLANT PARAMETERS

ISOTROPIC DISTRIBUTIONS SLANT DISTRIBUTIONS

Figure Al. Flow diagram for the computer programs.
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to magnetic tape, and totaled the order of 10^

numbers. After a number of time-saving modi-
fications of the code, calculations for a single

source energy and material took about one half

hour of machine time.
The purpose of the ABSTRACTOR code was

to make a selection of data from the tape generated
by the MOMENTS code. Two types of selection

were considered, one essentially linear in the

photon wavelength and the other essentially log-

arithmic and including all the source wavelengths
to be used. Both selections included the integral

data, treating it as if it corresponded to spectral

energies. (Four types of integral data were in-

cluded: Data for the total dose, the total scattered
dose, the once-scattered dose, and the multiply
scattered dose.) By selecting about 1/10 of the
scattered energies, it was possible to put on a
single magnetic tape results for the following source
wavelengths:

Xo= 0.05, 0.075, 0.1, 0.125, 0.15, 0.2, 0.25,

0.3, 0.4, 0.5, 0.6, 0.8, 1.0, 1.2, 1.6, 2.0,

2.4, 3.0, 4.0, 5.0, 7.0, 9.0, 12.0, 15.0.

On another tape was put data for the source wave-
lengths 0.384, 0.434, and 0.77, corresponding to

Co^° and Cs^". Initial calculations were for pene-
tration in H2O. These were followed eventually
by calculations for concrete, and still later by
calculations for Fe.

Following the abstraction, the SORT code re-

ordered the data from

{E,(Un.{l{Em)
to

(£0(^0(^(^^(71))))),

because it was thought that the tape search time
would be cut down by having all the spatial

moments in a group together. (This was probably
an ineffective modification, all things considered.)
From the basic moment-coefficient data it was

possible to construct spatial and directional dis-

tributions corresponding to many different source
configurations. Of these configurations, two types
had special importance: (a) those corresponding
to isotropic sources (Zo=0), and (b) those corre-
sponding to plane sources emitting at a fixed
obliquity angle do relative to the normal to the
source plane. Accordingly a tape search sub-
routine called SEEK was written, which, for

specified Eg, Ef, I would yield a set of moments
describing one or the other type of distribution.
Two codes were then constructed to determine

actual distribution parameters. In the first, called
ISOTROPIC PARAMETERS, the isotropic dis-

tribution moments weie used to calculate the
coefficients of a power series representation of the
point, isotropic build-up factor. In other words,
the (plane source) moments were turned into point
source moments, and were used to determine

coefficients A, in the representation ^

/r"(S0=4^g ^,W)^e-W), (Al)f
of the rth Legend re coefficient of the point iso- M
tiopic source angular distribution. The Aj co- ^
efficients, for a specified set of l,Ei, and Eq values,

were punched on an IBM card, together with the
descriptive l,Ei, and Eq values. It may be of

interest to note that this calculation involved a
matrix inversion, which was accomplished in a
very simple way by hand, using the bi-orthogonal
polynomial system of Ref. 12. Equation
(Al) refers also to the integral data, which, in

fact, was utilized almost exclusively.

In the second program of this type, called

SLANT PARAMETERS, calculations were made
of the constants A% A% B^j, and B°j in a repre-

sentation

S A^je ±2 A'^je
)

(A2)

of the I'ih harmonic coefficient of the angular
distribution corresponding to a plane oblique (or

slant) source at specified initial obliquity angle do.

In this calculation the values of Bq, Bq were
fixed at the value (mo/cos do) and the values of

Bl, B\ could be assigned arbitrarily. The other
constants were all determined so that the moments
of the approximate distribution agreed with the
known values and with the known value of the
source strength. The coefficients for "even" and
"odd" component distributions, as indicated by
the superscripts, were calculated separately and
punched on separate IBM cards, together with
identifying data for Eo, E,, cos 60, and a parity

indicator which was zero or one.

The calculation of slant distribution parameters
was a fairly tricky business, because the B/s were
determined as the roots of polynomial equations.

These roots could always turn out to be imaginary,
signifying an oscillatory and therefore nonphysical
distribution. The arbitrary Bi coefficient was
sometimes given a variety of values in the search

for a reasonable, real set of roots.

Many sets of parameter cards were punched,
mostly corresponding to integral (dose) data, with
^=0. Sets were prepared for values of I up to

1=7 for isotropic sources, dose data, and various

Ei spectral energies. Vames for I greater than
zero were not calculated for oblique sources, nor
were calculations made for more than a very few
Ei values. This was partly because most relevant

shielding data did not require these details, and
partly because the slant parameter calculations

were expensive as well as tricky, and required care-

ful examination of results.

Tne final machine programs calculated spatial

distributions, and in the case of the isotropic

source cases, directional distributions. Specifi-

cally, the SLANT DISTRIBUTIONS program
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could calculate penetration data for an arbiti'ary

combination of source obliquities, source energies,

and scattered energies, so long as these obliquities

and energies were represented in the deck of

binary parameter cards. In general, dose param-
eter cards for the source energies already men-
tioned were available, and the source directions

included cos do— ±1,±.9, . . . ±.1, 0.

The ISOTKOPIC DISTRIBUTIONS program
was much more complicated. Initially, this pro-

gram determined the total intensity or an angular

distribution resulting from a Legendre sum, for a

point isotropic source or a plane isotiopic source.

Superposition of different source energies was pos-

sible. All the angular distributions for the fission

source were obtained with this early form of the

code. The resulting angular distributions were
mostly not directly usable because of large oscilla-

tions; it was a case of too few coefficients to

describe a peaked distribution. These angular

distributions were smoothed by adding angular

functions of the forms

a(cosh /3-cos d)-'"'-J2 (^+ 1/2) a,P, (cos d),
1=0

Point Isotropic Source, (A3)

and

a (cos 6)-'e-»"''°'^-^ {l+ l/2)biPiicos 6),

Plane Isotropic Source. (A4)

where a, /3 are arbitrary constants, and the a/s
and .hi's are the expansion coefficients of the

accompanying function. Itwill be seen that addi-

tions of this type do not affect the values of the

first 8, machine-calculated Legendre coefficients.

The resulting, hand-calculated angular distri-

butions are those of figures 26.1 and 26.3. Be-
cause of the work involved in obtaining these dis-

tributions from the machine output, it appeared
highly desirable to include methods for obtaining

such distributions in the machine code itself. Ac-
cordingly, a series of modifications was incor-

porated in the code: (1) For the plane, isotropic

calculations, the unscattered component was cal-

culated exactly, and the scattered component was
represented by a simple Legendre sum. (2) For
the point isotropic calculations, the Legendre co-

efficients were first calculated. Then the ^=3 and
^=5 coefficients were used to obtain coefficients

a and /3 for a function a(cosh /3— cos 0)""^'^ so as to

make the corresponding coefficients in the Legen-
dre sum of that function equal to the known co-

efficients. Finally, the angular distribution was
calculated using the expression

/?(cos e)=a (cosh iS— cos e)~^''^

+Z; (^+ 1/2) [D,-a,]/^, (cose). (A5)
;=()

(3) Provisions were made to extend all calculations
to include ring source, circular soiu'ce, and circular

clearing source types, and another modification
was made to provide for the determination of both
unscattered and scattered components of the point
isotropic source (total dose).

Since this code provided for superposition of dif-

ferent source energies, and for modification of the
output angular distribution (Legendre sum only)
to correspond to different reference axes, it made
possible calculations for different spectra as well as
the calculations of angular distributions incident
on vertical walls (See eq 27.7). The angular dis-

tributions in Appendix B were calculated using
this code.

Because of the extensive development work
that accompanied the writing of these codes, they
included many features which turned out not to
be useful or desirable. They have never been put
in such a form that general circulation appeared
desirable. An effort is presently underway to

rewrite the best features of this series, using the
Fortran system, for general use.

47. Preparation of Data : Hand Computations

For the most part, the hand computations were
perfectly straightforward integrations over the
machine-produced data. One exception is to be
noted: Integration of expressions eqs (27.11),

(27.12), and (27.16) was accomplished in the most
obvious way only once, namely for the fission

data. Thereafter it was noted that one could
obtain the same result in a far easier way by using
integral data such as La, Sa, and Pa. The ad-
vantage is twofold: The azimuthal integration is

carried out analytically and the obliquity inte-

gration does not involve extremely peaked func-

tions. The trick involves using an identity such
as

dcosOlid, cosd)= S{d)dSa,cosd<0, (A6)

to write the expression for in the form

Wb{d,l—cos a)=- [ dSa cos-'f-^SL^n
,

T' J Said.l-Blna) LV2'<'— " J

(A7)

where dSa—d[Said,o:)].
In future calculations it would be highly de-

sirable to arrange it so that all the integrations
aie carried out by machine. This will probably
involve angular distribution output either in the
form of punched cards or on magnetic tape.

48. Comments on Accuracy

In discussing the material of this manuscript in

regards to accuracy, it is convenient to distinguish

three types of error: (1) errors due to inaccurate

input int'oniiation; (2) errors due to the procedure
used to calculate distributions and produce the

graphs; and (3) errors due to procedures for using
tlie data, which are traceable to tlie inadequacies
of tlie sclieniatization.
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It is clear that the use of a particular approxi-
mate fission spectrum, namely that for 1.12 hour
old fission products, to represent all practical situ-

ations, is by far the largest error of the first type.

The magnitude of such errors can be estimated
roughly from data such as that in figure 26.6.

For planning purposes the shielding factors may
be defined relative to a particular spectrum. This
doesn't alter the fact that the data may not rep-

resent an experimental situation exactly, but it

does encourage a shift of attention to other parts

of the problem, since then the validity of the

spectrum and the accuracy of shielding factor cal-

culations are considered separately.

The other major type of input information is

the cross sectional data. We expect small inac-

curacies in the differential scattering cross section

due, e.g., to atomic binding corrections in the
Klein-Nishina expression, to have negligible effect

on the accuracy of the calculations. On the other
hand, errors in the total cross sections which, gen-
erally speaking, are expected to be less than 1

percent in magnitude, can result in errors in the
barrier factors at the deeper penetrations which
are up to 10 times larger, i.e., 5 to 10 percent.

A change in air density has the effect of a change
in total cross section; and this can be brought
about by temperature or altitude variations. Fi-

nally, not all data was prepared using precisely

the conversion factor of eq 26.1 ; there were dif-

ferences of a few tenths of a percent. For this

reason, and due also to the use of overlays in

preparing the graphs, the data are not expected
to be internally consistent to better than about
5 percent.

Generally speaking, the attenuation data repre-

sented in the barrier factors can be calculated
with much greater accuracy than the angular dis-

tributions which are used to obtain geometry
factors. Calculations of barrier factors for point
and plane isotropic sources, i.e., the L{X) and
P{_X) curves, are probably accurate to within 5

percent, assuming that the input data is exactly
correct. Considering the different sources of error

together except for the spectrum assumption, these

curves should be correct to within, say 8 percent.
On the other hand, the S{d), and W{X,d)
are appreciably less accurate; and it is difficult to

assess quantitatively the accuracy of these curves
even though some of the major sources of error

are known. Perhaps for guidance purposes it may
be useful to give "educated guesses" that excluding
the assumption of spectrum, errors in S((i) may
be in the range of 10 to 15 percent; errors in

W{X,d) for small X are perhaps 10 percent and
for large X may be two or three times larger; and
errors in S' {X) can be expected to increase roughly
linearly with X, from 0 at jS"=1 to perhaps as

much as 100 percent at S'= 10-*.3»

Errors in S(d) stom from iiiodenitely rough caloulalions of tlie angular
distribution; errors in Il'(-V,d) come largely from the .spectrum and anguler
distribution assumed as source for tlie wall penetration; and errors in .S"(.V)

are dua to its calculation as a small difference between large numbers.

Turning to angular distributions and geometry
factors, the inherent inaccuracies of the calcula-

tions can be seen visually in the Co®° and Cs^^^

angular distributions in Appendix B, which have
not been smoothed. The distributions of figures.

26.1 and 26.3 originally looked very much the
same but were arbitrarily smoothed with french
curves. Errors in the range of 20 to 25 percent,
perhaps even greater, can be expected at places

in these data. However, the integrations which
yield geometry factors improve the situation some-
what. Generally speaking, we expect the geom-
etry factors to be quite accurate when they are

large and to approach the accuracy of the angular
distributions from which they were obtained when
they are very small. Thus, from right to left the
geometry factor curves vary from no error to

errors of perhaps as much as 25 percent, with
the Lb and Lc curves being more reliable than
this because they were not obtained from angular
distributions. Combinations of geometry and bar-

rier factors, such as in figures 28.18, 28.19, and
28.20 have different accuracy in different regions

as determined by the separate errors inherent in

the two ingredient factors.

Finally, in regards to the utilization of the

data, there are several comments which can be
made. Use of water data to represent concrete

gives results normally within the accuracy of the
calculations if the 0.9 factor differences are cor-

rectly applied. But it should be remembered that
near the source, where the total contribution of

scattered photons is a relatively small part of

the detector response, the difference between water
and concrete is negligible, certainly not as large

as 10 percent; and at great penetrations the differ-

ence can be larger than 10 percent. Errors due
to estimation of boundary effects probably ap-

proach the magnitude of tlie total boundary effect.

And errors due to the use of circular source data
to represent rectangular source geometry factors

will vary greatly with the situation. They can

perhaps be estimated by the use of several calcu-

lations using different superpositions of data, as

was indicated in the problem worked out in

vSection 43.

49. Alternative Data Types and Procedures

The use of circular source data for computa-
tion of geometry factors is only one of several

possible procedures involving different data types.

For example, in Section 44 it was indicated that

geometry factors for rectangular source types

could be calculated directly.

An interesting alternative procedure has been

explored by Berger, Hubbell, and Lamkin [29,

30, 41]. This consists of using the Legendre coeffi-

cients of the directional distributions rather than

the directional distributions themselves. If, in

eqs (16.2) and (16.3) the dose angular distribu-

tion (D) is written in the form of a Legendre

series, the detector response Ds takes the form

of a sum of products in which one factor is a
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Legendre coefficient of the series and the other

factor is the corresponding coefficient of the

Legendre seiies representation of gs- Hubbell,
Lamkin, and Bach [41] have prepared extensive

tables of the gs Legendre coefficients to make
such calculations feasible; but tables of Legendre
coefficients for the relevant dose angular distribu-

tions have never been prepared.

The Legendre coefficient approach needs more
attention. It is easy to apply, and has as its

main limitation a tendency for the series of prod-
ucts to converge slowly when the angular distri-

bution has a sharp peak, as it often does (figs.

26.1 and 26.3), and when the solid angle fraction

of gs is at the same time small, as it often is.

This limitation may prove moie apparent than real.

Appendix B. Data for GO*' and CS^^'

50. Introductory Comments

Procedures for the calculation of the data rep-

resented in the figures Bl through B50 have
already been described. The main differences

from the fission source data stem from the use
of desk computers in that case for some calcula-

tions performed by digital computer in the case

of Co*° and Cs'^'', the procedures involved not
being entirely identical.

The figures given here are in the same sequence
as the corresponding fission source figures in the
main text ; and data for the two source types have
been placed adjacent to one another.

No attempt has been made to analyze the obvi-

ous similarities between the figures for the differ-

ent source types. It is clear that many of the

geometry factors are quite insensitive to source

spectrum.
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Figure B2. Cs-137, concrete.
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Figure B3. Co-60, concrete.
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Figure B4. Cs-137, concrete.
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Figure B5. Co-60, concrete.
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Figure B6. Cs-137, concrete.

89



0 20 40 60 80 100 120 140

X,psf

Figure B7. Co-60, concrete.

90





92



COS 9o

Figure BlO. Cs-137, hackscatter from concrete.
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Figure B12. Cs-lS7, H2O.
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FiGUKE B14. Cs-137, concrete.
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Figure BIT. Co-60, concrete.
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Figure B18. Cs-137, concrete.
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FiGUBE B19. Co-60, H2O.
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FiGUKE B21. Co-60, concrete.
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Figure B22. Cs-137, concrete.
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Figure B24. Cs-137, concrete.

107



X.psf

FiGUEE B25. Co-60, H2O data for l{d,cosd), concrete data for s{X,cos9o)-
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Figure B26. Cs-137, H2O data for l{d,cos0), concrete data for s{X,coseo).
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FiGtTBE B27. Co-60, concrete.
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Figure B28. Cs-137, concrete.
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Figure B30. Cs-137, concrete.
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Figure B31. Co-60, concrete.
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FiGUHE B32. Cs-137, concrete.
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Figure B33. Co-60, H2O.
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Figure B34. Cs-lS7, H2O.
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Figure B36. Cs-137, H2O.
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Figure B38. Cs-137, H2O.
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Figure B39. Co-60, H2O.
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Figure B40. Cs-187, H2O.
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Figure B41. Co-60, H2O.
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