

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards ¹ was established by an act of Congress March 3, 1901. Today, in addition to serving as the Nation's central measurement laboratory, the Bureau is a principal focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. To this end the Bureau conducts research and provides central national services in four broad program areas. These are: (1) basic measurements and standards, (2) materials measurements and standards, (3) technological measurements and standards, and (4) transfer of technology.

The Bureau comprises the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Center for Radiation Research, the Center for Computer Sciences and Technology, and the Office for Information Programs.

THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of an Office of Measurement Services and the following technical divisions:

Applied Mathematics—Electricity—Metrology—Mechanics—Heat—Atomic and Molecular Physics—Radio Physics ²—Radio Engineering ²—Time and Frequency ²—Astrophysics ²—Cryogenics.²

THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to improved methods of measurement standards, and data on the properties of well-characterized materials needed by industry, commerce, educational institutions, and Government; develops, produces, and distributes standard reference materials; relates the physical and chemical properties of materials to their behavior and their interaction with their environments; and provides advisory and research services to other Government agencies. The Institute consists of an Office of Standard Reference Materials and the following divisions:

Analytical Chemistry—Polymers—Metallurgy—Inorganic Materials—Physical Chemistry. **THE INSTITUTE FOR APPLIED TECHNOLOGY** provides technical services to promote the use of available technology and to facilitate technological innovation in industry and Government; cooperates with public and private organizations in the development of technological standards, and test methodologies; and provides advisory and research services for Federal, state, and local government agencies. The Institute consists of the following technical divisions and offices:

Engineering Standards—Weights and Measures — Invention and Innovation — Vehicle Systems Research—Product Evaluation—Building Research—Instrument Shops—Measurement Engineering—Electronic Technology—Technical Analysis.

THE CENTER FOR RADIATION RESEARCH engages in research, measurement, and application of radiation to the solution of Bureau mission problems and the problems of other agencies and institutions. The Center consists of the following divisions:

Reactor Radiation—Linac Radiation—Nuclear Radiation—Applied Radiation.

THE CENTER FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides technical services designed to aid Government agencies in the selection, acquisition, and effective use of automatic data processing equipment; and serves as the principal focus for the development of Federal standards for automatic data processing equipment, techniques, and computer languages. The Center consists of the following offices and divisions:

Information Processing Standards—Computer Information — Computer Services — Systems Development—Information Processing Technology.

THE OFFICE FOR INFORMATION PROGRAMS promotes optimum dissemination and accessibility of scientific information generated within NBS and other agencies of the Federal government; promotes the development of the National Standard Reference Data System and a system of information analysis centers dealing with the broader aspects of the National Measurement System, and provides appropriate services to ensure that the NBS staff has optimum accessibility to the scientific information of the world. The Office consists of the following organizational units:

Office of Standard Reference Data—Clearinghouse for Federal Scientific and Technical Information ^a—Office of Technical Information and Publications—Library—Office of Public Information—Office of International Relations.

Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted; mailing address Washington, D.C. 20234.

² Located at Boulder, Colorado 80302.

³ Located at 5285 Port Royal Road, Springfield, Virginia 22151.

NATIONAL BUREAU OF STANDARDS

J. PR

. 100

10.25, Sec.7

Copy

UNITED STATES DEPARTMENT OF COMMERCE

Maurice H. Stans, Secretary National Bureau of Standards

Standard X-ray Diffraction

Powder Patterns

H. E. Swanson, H. F. McMurdie, M. C. Morris, and E. H. Evans

U.S., National Bureau of Standards, Monograph 25—Section 7 Nat. Bur. Stand. (U.S.), Monogr. 25 Section 7, 188 pages (Sept. 1969) CODEN: NBSMA

Issued September 1969

For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price \$1.50

Library of Congress Catalog Card Number: 53-61386

Contents

-	

	1 ago
Introduction Experimental patterns:	1
Ammonium Cadmium Sulfate,	_
$(NH_4)_2$ Cd ₂ $(SO_4)_3$ Ammonium Copper Chloride, NH_4 CuCl ₃	5
(NIL) Ma (CO)	0
$(N\Pi_4)_2 M\Pi_2 (SU_4)_3$	10
Cesium Calcium Sulfate C_{2} (SO)	12
Cesium Copper Sulfate, Os_2Oa_2 ($SO_4/_3$ Cesium Copper Sulfate Hexahydrate,	14
Cesium Iron Sulfate Hexahydrate, $C = E_2(SO_4)_2 + OH_2OH_2OH_2OH_2OH_2OH_2OH_2OH_2OH_2OH_2$	14
$Cs_2Fe(SU_4)_2 \circ OH_2O$	10
$Cs_{\circ}Mg(SO_{\circ})$, • 6H ₀ O	18
Cesium Manganese Sulfate Hexahydrate, $C_{\rm S}$ Mr(SO ₂), • 6H O	20
Cesium Mercury Chloride, CsHgCl	20
Cesium Nickel Sulfate Hexahydrate,	22
Cesium Zinc Sulfate Hexabydrate.	20
$Cs_2Zn(SO_4)_2 \cdot 6H_2O_2$	25
Imidazole Nickel Nitrate,	
$(C_{3}H_{4}N_{2})_{6}Ni(NO_{3})_{2}$	27
Magnesium Molybdate, MgMoO ₄ Magnesium Perchlorate Hexahydrate,	28
$Mg(ClO_4)_2 \cdot 6H_2O$	30
Mercuric Iodide, HgI ₂ (tetragonal) (re-	
vised)	32
Potassium Cadmium Sulfate, K_2Cd_2 (SO ₄) ₃ Potassium Calcium Chloride (chlorocal-	34
cite), KCaCl ₃	36
Potassium Calcium Magnesium Sulfate,	0.7
$K_2 \text{ CaMg}(SO_4)_3$	37
Potassium Calcium Sulfate, $K_2Ca_2(SO_4)_3$	39
Potassium Nickel Eluoride, KUUCI ₃	41
Potassium Zinc Sulfate Heyahydrate	74
$K_{a}Zn(SO_{a})_{a} \cdot 6H_{a}O_{a}$	43
Rubidium Cadmium Sulfate, $Rb_{2}Cd_{3}(SO_{4})$.	45
Rubidium Calcium Chloride, RbCaCl,	47
Rubidium Calcium Sulfate, Rb ₂ Ca ₂ (SO ₄) ₃ .	48
Rubidium Magnesium Sulfate,	
Rb_2Mg_2 (SO ₄) ₃	50
Rubidium Manganese Sulfate,	
Rb_2Mn_2 (SO ₄) ₃	52
Rubidium Strontium Chloride, RbSrCl ₃	54
Rubidium Zinc Sulfate Hexanydrate, Ph $7n(50)$, 6U O	==
$RD_2 Z \Pi (SO_4)_2 \circ O \Pi_2 O \dots$ Rubidium Zinc Eluorido, RhZnE	57
Scandium Silicate (thortveitite) ScaSio	58
Selenium Oxide (selenolite), SeQ. (re-	00
vised)	60
Sodium Dichromate Dihydrate,	
$Na_2Cr_2O_7 \cdot 2H_2O$	62
Sodium Lanthanum Fluosilicate,	
$Na_{2}La_{8}$ (SiO ₄) ₆ F ₂	64
Sodium Neodymium Fluosilicate, -	
$Na_{8}Nd_{8}$ (SiO ₄) ₆ F ₂	66
No. Br. (SiO.) F	4.0
$\operatorname{Na}_2\operatorname{Pr}_8(\operatorname{SIU}_4)_6\operatorname{P}_2$	08
$T_{1}C_{0}(S_{1})_{0} \cdot 6H_{0}$	70
1 12 00(004/2 01120	10

	Page
Thallium Copper Sulfate Hexahydrate,	=0
Thallium Magnesium Sulfate Hexahydrate,	- 12
$TI_2Mg(SO_4)_2 \circ 6H_2O_{1}$	74
Thallium Nickel Sulfate Hexahydrate,	/0
$TI_2Ni(SO_4)_2 \circ 6H_2O$ Thallium Zinc Sulfate Hexahydrate,	78
$Tl_2Zn(SO_4)_2 \cdot 6H_2O$	80
Titanium Oxide (anatase), TiO_2 (revised)	82
Titanium Oxide (rutile), TiO ₂ (revised) Calculated patterns:	83
Arsenic Acid, $H_5As_3O_{10}$	84
Azobenzene, $C_{10} H_{12} N_2$	86
Beryllium Michium P_2 Nh	89
Cadmium Nitrate Tetrahydrate,	92
$Ca(NO_3)_2 \cdot 4H_2O$	93
Calcium Phosphate, beta-pyro-, $Ca_2P_2O_7$	95
Cesium Cerium Chlorido, Ca. CoCl	101
Cesium Iodine Bromide, Cs_2CeCl_6	103
Cesium Lithium Fluoride, CsLiF.	105
Chromium Fluoride, Cr. F.	108
Copper Glutamate Dihydrate,	
$CuC_5H_7NO_4 \circ 2H_2O_{1}$	110
Copper Phosphate, alpha-pyro-, $Cu_2P_2O_7$	115
Gadolinium Chloride Hexahydrate,	115
GdCl ₃ • 6H ₂ O Hexamethylenediammonium Adipate,	118
$C_{12}H_{26}N_2O_4$	121
Imidazole Zinc Chloride, $(C_3H_4N_2)_2ZnCl_2$	123
Lithium Beryllium Fluoride, Li ₂ BeF ₄	126
Lithium Rubidium Fluoride, LiKbF ₂	128
Magnesium Chloride Dodecahydrate,	101
MgCl ₂ • 12H ₂ O Magnesium Hydrogen Phosphate Trihy-	135
drate, newberyite, MgHPO ₄ • 3H ₂ O	139
Manganese, alpha, Mn	142
Polledium (C U NO) Pd	1.4.4
N-methylphenazinium Tetracyanoquinodi-	144
Nichium Owichlorida, NhOCl	140
Phoenhorus Promide PPr	140
Pimelic Acid C H O	153
Silver Permanganate $A \sigma Mn O$	155
Sodium Aluminum Chloride Silicate, soda-	150
Sodium Poreto Ne P O	158
Sodium Hydrogen Silicate Tetrahydrate,	100
$Na_2H_2SIO_4 \cdot 4H_2O$	163
d-Tartaric Acid. $C_4 H_2 O_6$	168
Zinc Glutamate Dihydrate,	
$ZnC_5H_7NO_4 \cdot 2H_2O$	170
Zinc Molybdate, Zn ₂ Mo ₃ O ₈	173
Cumulative index to Circular 539, Volumes 1 through 10, and Monograph 25, Sections 1	
through 7	177
Cumulative mineral index	185

Errata

Monograph 25, Section 7

Monograph 25

Sec. 4, p. 4, column 2; at line 4 in the table, for hkl (211), the 2θ value for Tungsten (W) should be 73.184

Sec. 4, p. 23, *hkl's* for 2.036, 1.815, and 1.3505 should be 104, 221, and 401 respectively.

Sec. 6, p. 4; in the 13th line from the end, the formula should be MgF_2

Sec. 6, p. 22; the space group symbol should be $C_3^6 v - R3c$

Sec. 6, p. 42; the error for the NBS lattice constant in the table should be ±.0001

Sec. 6, p. 63; the second word of the title should be Magnesium

STANDARD X-RAY DIFFRACTION POWDER PATTERNS

Information on ten volumes in this series listed as follows is available from Mr. Howard E. Swanson, Room A221, Materials Building, National Bureau of Standards, Washington, D. C., 20234:

NBS Circular 539, Volume 1, Standard X-ray Diffraction Powder Patterns (Data for 54 substances). NBS Circular 539, Volume 2, Standard X-ray Diffraction Powder Patterns (Data for 30 substances). NBS Circular 539, Volume 3, Standard X-ray Diffraction Powder Patterns (Data for 34 substances). NBS Circular 539, Volume 4, Standard X-ray Diffraction Powder Patterns (Data for 42 substances). NBS Circular 539, Volume 5, Standard X-ray Diffraction Powder Patterns (Data for 45 substances). NBS Circular 539, Volume 6, Standard X-ray Diffraction Powder Patterns (Data for 45 substances). NBS Circular 539, Volume 6, Standard X-ray Diffraction Powder Patterns (Data for 44 substances). NBS Circular 539, Volume 7, Standard X-ray Diffraction Powder Patterns (Data for 53 substances). NBS Circular 539, Volume 8, Standard X-ray Diffraction Powder Patterns (Data for 61 substances). NBS Circular 539, Volume 9, Standard X-ray Diffraction Powder Patterns (Data for 61 substances). NBS Circular 539, Volume 9, Standard X-ray Diffraction Powder Patterns (Data for 43 substances). NBS Circular 539, Volume 9, Standard X-ray Diffraction Powder Patterns (Data for 61 substances). NBS Circular 539, Volume 9, Standard X-ray Diffraction Powder Patterns (Data for 43 substances). NBS Circular 539, Volume 9, Standard X-ray Diffraction Powder Patterns (Data for 43 substances).

The following five volumes in this series are available from the Superintendent of Documents, U.S. Government Printing Office, Washington, D. C., 20402, as follows:

- NBS Monograph 25, Section 1, Standard X-ray Diffraction Powder Patterns (Data for 46 substances) 40 cents.
- NBS Monograph 25, Section 2, Standard X-ray Diffraction Powder Patterns (Data for 37 substances) 35 cents.
- NBS Monograph 25, Section 3, Standard X-ray Diffraction Powder Patterns (Data for 51 substances) 40 cents.
- NBS Monograph 25, Section 4, Standard X-ray Diffraction Powder Patterns (Data for 103 substances) 55 cents.
- NBS Monograph 25, Section 5, Standard X-ray Diffraction Powder Patterns (Data for 60 substances) 55 cents.

NBS Monograph 25, Section 6, Standard X-ray Diffraction Powder Patterns (Date for 60 substances) 60 cents.

Send orders with remittance for the above six Monographs to Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 20402. Remittance from foreign countries should include an additional one-fourth of the purchase price for postage.

Those wishing to be notified of future issues should send mailing address to the Government Printing Office.

STANDARD X-RAY DIFFRACTION POWDER PATTERNS

Section 7.—Data for 81 substances

Howard E. Swanson, Howard F. McMurdie,¹ Marlene C. Morris,¹ and Eloise H. Evans¹

Standard x-ray diffraction powder patterns are presented for 81 substances. Forty-five of these patterns represent experimental data and 36 are calculated. The experimental x-ray powder diffraction patterns were obtained with a Geiger or proportional counter x-ray diffractometer, using samples of high purity. All d-values were assigned Miller indices determined by comparison with computed interplanar spacings and from consideration of space group extinctions. The densities and lattice constants were calculated, and the refractive indices were measured whenever possible. The calculated x-ray powder diffraction patterns were computed from published crystal structure data. Both peak height and integrated intensities are reported for the calculated patterns.

Key words: Crystal structure; integrated intensities; peak intensities; reference intensities; lattice constants; powder patterns; standard; x-ray diffraction.

INTRODUCTION

The Powder Diffraction File $[1968]^2$ is a compilation of diffraction patterns, gathered from many sources and produced under the auspices of the Joint Committee on Powder Diffraction Standards.³ The File is used for identification of crystalline materials by matching d-spacings and diffraction intensity measurements. Under the partial sponsorship of the Joint Committee, our program at the National Bureau of Standards contributes new data for this File. Our work also aids in the evaluation and revision of published x-ray data and in the development of diffraction techniques. This report presents information for 81 compounds (45 experimental and 36 calculated patterns), and is the seventeenth of the series of "Standard X-ray Diffraction Powder Patterns."

EXPERIMENTAL POWDER PATTERNS

Sample. The samples used to make NBS patterns were special preparations of high purity obtained from a variety of sources or prepared in small quantities in our laboratory. Treating the sample by appropriate annealing, recrystallizing, or heating in hydrothermal bombs improved the definition of most of the patterns. A check of phase purity was usually provided by the x-ray pattern itself, when it was indexed by comparison with computed d-values.

⁴See previous page for listing of other published volumes.

Optical data, color. A microscopic inspection for phase purity was made on the nonopaque materials during the refractive index determination. The latter was done by grain-immersion methods in white light, with oils standardized in sodium light, in the range 1.40 to 2.1.

The names of the sample colors were selected from the ISCC-NBS Centroid Color Charts [1965].

Structure, lattice constants. The space groups are listed with short Hermann-Mauguin symbols as well as the space group numbers given in the International Tables for X-ray Crystallography Vol. 1 [1952].

Orthorhombic cell dimensions are presented according to the Dana convention b>a>c [Palache et al., 1944].

A computer program [Evans et al., 1963] assigned hkl's and refined the lattice constants. Cell refinement was based only upon 2θ values which could be indexed without ambiguity. The number of significant figures reported for d-values varies slightly with the symmetry and crystallinity of each sample. Unit cell constants and their standard errors are based on least squares refinement of the variance-covariance matrix derived from the unweighted $\Delta\theta$ residuals.

Published unit cell data in kX units and data given in angstrom units prior to 1947 were converted to angstrom units using the factor 1.00206 reported by Bearden [1964].

Density. The densities calculated from the NBS lattice constants are expressed in grams per cubic centimeter and are computed using the Avogadro number (6.02252×10^{23}) and using atomic weights based on carbon 12 [International Union, 1961].

Interplanar spacings. Specimens for the interplanar spacing patterns were prepared by packing into a shallow holder a sample containing approximately 5 wt. percent tungsten powder that served as an internal standard. When tungsten lines were found to interfere, 25 percent silver was used in

¹Research Associate, at the National Bureau of Standards, sponsored by the Joint Committee on Powder Diffraction Standards.

²Dates in brackets indicate the literature references at the end of each section of this paper.

³This committee is sponsored jointly by the American So-Ciety for Testing and Materials, the American Crystallographic Association, the (British) Institute of Physics, and The National Association of Corrosion Engineers.

place of tungsten. If the internal standard correction varied along the length of the pattern, linear interpolations were used. To avoid aberrations at the top of the peak, the reading for low values of 2θ was taken at a position about 25% of the way down from the top, and in the center of the peak width. For higher values of 2θ , where α_1 and α_2 peaks were resolved, the α_1 peak was measured in the same way. The internal standard correction appropriate to each region was then applied to the measurement of 2θ . The internal standard lattice constants used were 3.16516 Å for tungsten and 4.08641 Å for silver at 25 °C, as determined by Swanson, Morris, and Evans [1966] and modified to correspond with the Bearden [1964] wavelength. (Prior to this, the internal standard constants used were 3.1648 Å and 4.0861 Å, through June 1966, and then 3.16504 Å and 4.08625 Å until June 1968.) All of the NBS patterns, unless otherwise noted, were made on a diffractometer at 25 °C using copper radiation with a monochromator having a curved lithium fluoride crystal. The wavelength of $CuK\alpha_1$ was assumed to be 1.54056 Å [Bearden, 1964].

Intensity measurements. At least three patterns for intensity measurements were prepared for each sample to check reproducibility. It was found that samples which gave satisfactory intensity patterns usually had an average particle size smaller than 10 μ as recommended by Alexander et al. [1948]. In order to avoid the orientation effects which occur when powdered samples are packed or pressed, a sample holder was made that had in its top face a rectangular cavity which extended to one end of the holder. To prepare the sample, a glass slide was clamped over the top face to form a temporary cavity wall (see Fig. 1), and the powdered sample was drifted into the end opening while the holder was held in a vertical position. With the sample holder returned to a horizontal position, the glass slide was carefully removed so that the sample could be exposed to the x-ray beam (as shown in Fig 2). If the sample powder did not flow readily, or was prone to orient excessively, approximately 50 volume percent of finely ground silica-gel was added as a diluent. The intensities of the diffraction lines were measured as peak heights above background and were expressed in percentages of the intensity of the strongest line.

Reference intensity. For reference intensity measurements, $\alpha A l_2 O_3$ (corundum) was chosen as an internal standard to be mixed 1:1 by weight with the sample. This mixture is mounted in our regular intensity sample holder (illust. pg. 3). Only the portion of the x-ray pattern that includes the strongest line of each component is run; for the standard, the (113) reflection with d=2.085 Å is used. The direct ratio of the heights of the two lines is then reported as $1/I_{corundum}$. In a few instances the strongest line of one of the materials may fall on a line of the other. In this case, the second strongest line is measured, and based upon previous knowledge of the relative peak heights, a correction is made, thus enabling one to calculate the value for the strongest line.

CALCULATED POWDER PATTERNS

Since some substances are not readily available for experimental work, calculated powder patterns were made. These were based on published crystal structure data using a FORTRAN program developed by Smith [1967].

Lattice parameters. Before the computations of the patterns, corrections were made as necessary in the published lattice parameters so that they would correspond to the Bearden [1964] value of the copper wavelength; specifically, the published parameter in Å was multiplied by 1.00004. Both the altered parameter and the original published value are given.

Scattering factors. Whenever possible, the same scattering factors were used which the author of the reference article specified. Otherwise, they were used directly from the International Tables [1962]. We have referred to this source by table number 3.3.1A or 3.3.1B, and 3.3.2A or 3.3.2B; they are found respectively on pages 202, 210,213, and 214 of the International Tables, Vol. III [1962]. Corrections were made for dispersion if the authors had done so.

Thermal parameters. When these parameters were used directly as given by the authors, the reference is specified. When, for reasons necessitated by the computer program, the parameters were modified here, no reference is given.

Scale factors. For each compound, this conversion factor when multiplied by the scaled *integrated* intensities will reproduce the unscaled intensities derived from the structure factors for a single unit cell for the copper K_{α_1} wavelength. The scale factors are not usable for comparisons between compounds since they have not been standardized for the effects of volume and absorption.

Integrated intensities. Intensity calculations were based on the copper K_{α_1} wavelength, 1.54056 Å, determined by Bearden [1964]. The integrated intensities were computed from the formula:

$$l = F^2$$
 (Lp) (FAC)

where F is the standard structure factor FAC is the powder multiplicity

and
$$Lp = \frac{1+2\cos^2 2\theta}{\sin^2 \theta \cos \theta}$$

The intensities are scaled to the strongest line as 100. Reflections with intensities equal to or less than 0.7 are not reported.

Peak intensities. In the Smith program, the integrated intensities can be assigned a Cauchy profile, and a half-width can be designated so as to simulate a trace from diffractometers in current use. The value of the half-width used here was 0.075° at 40° (2 θ). The program then sums the intensities from the overlapping peak profiles and scales the resulting peak intensities to the strongest peak height. Reflections are not reported which had peak heights equal to or less than 0.7. When adjacent peaks have nearly equal 2θ values, resolution of individual peaks in the powder pattern would be unlikely; therefore, one composite peak is given. The angle of this peak is assigned the hklof the reflection with the greatest integrated intensity.

The authors are indebted to J. H. deGroot for the preparation of many samples used, and to S. J. Carmel for his assistance with the work, particularly in performing intensity measurements.

REFERENCES

- Alexander, L., H. P. Klug, and E. Kummer (1948). Statistical factors affecting the intensity of x-rays diffracted by
- crystalline powders, J. Appl. Phys. 19, No. 8, 742-753. Bearden, J. A. (1964). X-ray Wavelengths, U.S. At. Energy Comm. NYO-10586.
- Evans, H. T. Jr., D. E. Appleman, and D. S. Handwerker (1963). The least-squares refinement of crystal unit cells with powder diffraction data by an automatic computer indexing method, (abs.) Am. Crystal. Assoc. Annual Meeting, Cambridge, Mass. Program 42-43.
- International Tables for X-ray Crystallography, 1(1952). (The Kynoch Press, Birmingham, England.) [bid. III (1962). Pgs. 202, 210, 213, 214. International Union of Pure and Applied Chemistry, (1961). Chem. Eng. News. 39(4), Nov. 20, 42. ISCC-NBS Centroid Color Charts, Standard Sample No. 2106, Obtained from the Office of Canadard Mathematical
- obtained from the Office of Standard Reference Materials,
- Room B328, Chemistry Building, National Bureau of Standards, Washington, D.C. 20234. \$3.00 per set. Palache, C., H. Berman, and C. Frondel (1944). Dana's Sys-tem of Mineralogy (John Wiley & Sons, New York, 7th Ed.), 1, 6.
- Powder Diffraction File (1968). American Society for Testing and Materials, 1916 Race St., Philadelphia, Pa. 19103, Smith, D. K. (1967). A revised program for calculating x-ray
- powder diffraction patterns, UCRL 50264, University of California, Lawrence Radiation Laboratory, Livermore, Calif. 94551.
- Swanson, H. E., M. C. Morris, and E. H. Evans (1966). Standard X-ray Diffraction Powder Patterns, Natl. Bur. Std. U.S. Monograph 25, Sec. 4, 3.

Figure 1

The sample was prepared at NBS by partial evaporation at 90° C of a water solution of $(NH_4)_2SO_4$ and $CdSO_4$, in a 2:1 weight ratio. The resulting double salt was washed with water and alcohol.

Major impurities

0.001-0.01% each: Ca, Mg, and Mn

Color

Colorless

Optical data

Isotropic, N=1.603

Structure

Cubic, P2₁3 (198) Z=4, langbeinite type, [Gattow and Zemann, 1958].

Lattice constants

	a(Å)
Jona and Pepinsky [1956]	10.35
	±.005
Gattow and Zemann [1958]	10.350
	±.003
NBS, sample at 25 °C	10.3511
	±.0001
NBS, sample at 25 °C	±.003 10.3511 ±.0001

Density

(calculated) 3.288 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 3.8$

Polymorphism

Inverts below -186° C to a ferroelectric form [Jona and Pepinsky, 1956].

- Gattow, G.and J.Zemann(1958). Über Doppelsulfate vom Langbeinit-Typ, A⁺₂ B²⁺₂ (SO₄)₃, Z. Anorg. Allgem. Chem. 293, 233-240.
- Jona, F. and R. Pepinsky (1956). Ferroelectricity in the langbeinite system, Phy. Rev. 103, 1126.

Internal standard W, a = 3.16516 Å CuK a_1 λ = 1.54056 Å; temp. 25 °C							
d (Å)	I	hkl	20(°)				
5.973	50	111	14.82				
4.628	63	210	19.16				
4.225	11	211	21.01				
3.449	20	221	25.81				
3.271	100	310	27.24				
3.121	11	311	28.58				
2.870	9	320	31.14				
2.765	65	321	32.35				
2.587	1	400	34.65				
2.511	9	410	35.73				
2.441	1	411	36.79				
2.375	5	331	37.85				
2.259	6	421	39.88				
2.207	1	332	40.86				
2.113	20	422	42.76				
2.071	10	430	43.68				
2.030	20	510	44.59				
1.993	13	511	45.48				
1.922	18	520	47.26				
1.890	1	521	48.10				
1.831	1	440	49.77				
1.801	10	522	50.64				
1.774	6	530	51.46				
1.750	1	531	52.22				
1.703	1	610	53.80				
1.6788	17	611	54.62				
1.6364	7	620	56.16				
1.6166	8	621	56.91				
1.5974	6	541	57.66				
1.5786	2	533	58.41				
1.5606	1	622	59.15				
1.5433	3	630	59.88				
1.5260	7	631	60.63				
1.4938	2	444	62.08				
1.4784	5	632	62.80				
1.4640	5	710	63.49				
1.4497	3	711	64.19				
1.4360	1	640	64.88				
1.4219	5	720	65.60				
1.4086	3	721	66.30				

Ammonium	Cadmium	Sulfate,	(NH_4)	₂ Cd ₂ (SO	4) ₃	(cubic) -	 continued
----------	---------	----------	----------	----------------------------------	-----------------	-----------	-------------------------------

Internal standard W, a = 3.16516 Å CuK a_1 λ = 1.54056 Å; temp. 25 °C		Inte CuK	rnal star $a_1 \lambda = 1$	ndard W, a = 3.165 .54056 Å; temp. 2	516 Å 25 °C		
d (Å)	I	hkl	20(°)	d (Å)	Ι	hkl	20(°)
1.3832	2	642	67.68	.9654	<1	953	105.86
1.3709	2	722	68.37	.9611	1	10•4•0	106.54
1.3591	1	730	69.05	.9569	1	10•4•1	107.21
1.3478	1	731	69.71	.9528	1	10•3•3	107.88
1.3252	2	650	71.08	.9449	1	10•4•2	109.21
1.3144	2	732	71.75	.9410	1	962	109.89
1.2841	3	810	73.72	.9371	1	11°1•0°	110.57
1.2742	2	811	74.39	.9333	1	11°1•1	111.25
1.2649	1	733	75.03	.9257	2	11°2°0	112.63
1.2556	1	820	75.68	.9221	1	11°2•1	113.30
1.2463	1	821	76.35	.9150	<1	880	114.67
1.2374	1	653	77.00	.9113	2	11 • 2 • 2	115.40
1.2203	3	822	78.28	.9078	1	11 • 3 • 0	116.11
1.2114	1	830	78.96	.9042	1	11 • 3 • 1	116.83
1.2034	4	831	79.60	.9009	1	10 • 4 • 4	117.53
1.1952	3	751	80.25	.8976	1	964	118.23
1.1796	2	832	81.54	.8943	2	11•3•2.	118.94
1.1721	2	752	82.17	.8876	1	10•6•0	120.41
1.1573	1	840	83.45	.8844	1	11•4•0	121.14
1.1502	1	841	84.09	.8813	<1	11•4•1	121.87
1.1428 1.1362 1.1294 1.1225 1.1160	<1 1 1 3	910 911 842 920 921	84.76 85.37 86.00 86.66 87.29	.8780 .8716 .8687 .8626 .8596	1 1 <1 1 2	11·3·3 11·4·2 965 12·0·0 12·1·0	122.64 124.19 124.92 126.49 127.29
1.1034	1	664	88.55	.8567	2	12 • 1 • 1	128.09
1.0971	4	922	89.19	.8538	2	11 • 5 • 1	128.90
1.0910	2	930	89.83	.8480	2	12 • 2 • 1	130.55
1.0849	1	931	90.47	.8451	1	11 • 5 • 2	131.41
1.0732	1	852	91.74	.8395	1	12 • 2 • 2	133.13
1.0676	1	932	92.36	.8369	2	12.3.0	133.97
1.0565	1	844	93.62	.8341	1	12.3.1	134.87
1.0509	<1	940	94.27	.8315	1	11.5.3	135.76
1.0455	2	941	94.91	.8261	1	12.3.2	137.64
1.0404	2	933	95.53	.8235	2	11.6.1	138.59
1.0298 1.0249 1.0150 1.0101 1.0054	3 2 <1 1 1	$ \begin{array}{c} 10 \cdot 1 \cdot 0 \\ 10 \cdot 1 \cdot 1 \\ 10 \cdot 2 \cdot 0 \\ 10 \cdot 2 \cdot 1 \\ 950 \end{array} $	96.83 97.45 98.73 99.38 100.02	.8183 .8158 .8133 .8108 .8083	1 2 1 1 <1	$12 \cdot 4 \cdot 0 \\ 12 \cdot 4 \cdot 1 \\ 12 \cdot 3 \cdot 3 \\ 991 \\ 12 \cdot 4 \cdot 2$	140.53 141.54 142.58 143.62 144.73
1.0006	1	951	100.67	.8059	<1	10 • 8 • 1	145.82
0.9915	<1	10・3・0	101.95	.8034	2	11 • 6 • 3	146.98
.9869	1	10・3・1	102.61	.7986	1	10 • 8 • 2	149.38
.9739	1	10・3・2	104.55	.7963	1	12 • 5 • 0	150.65
.9694	1	871	105.24	.7939	1	13 • 1 • 0	152.00

Needle shaped crystals were obtained after partial evaporation of a solution of equimolar amounts NH_4 Cl and $CuCl_2$ in anhydrous ethyl alcohol. X-ray patterns were produced from samples in a dry-air mounting to prevent hydration.

Major impurities

0.001-0.01% each: Ca, Cr, Fe, and Mg

0.1 -1.0 % each: Ni

Color

Moderate reddish brown

Optical data

Anisotropic, $N_{\alpha}{=}1.660$, $N_{\gamma}{=}1.850.Strongly$ pleochroic. Crystals were very fine.

Structure

Monoclinic, P2₁/c (14) Z=4.Structure was determined by Willett et al.,[1963]

	a(Å)	b (Å)	c(Å)	β(°)
Willett et al [1963] NBS	4.066 ±.005	14.189 ±.003	9.003 ±.004	97°30′ ±5′
sample at 25 °C	4.030 ±.001	14.187 ±.002	8.978 ±.002	96°28′ ± 1′

Lattice constants

Density

(calculated) 2.447 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 0.6$

References

Willett, R.D., C.Dwiggens Jr., R.F. Kruh, and R. E. Rundle (1963). Crystal structures of KCuCl₃ and NH₄ CuCl₃, J.Chem. Phys.38, 2429-2436.

Internal standard W, a = 3.16516 Å CuKa, λ = 1.54056 Å; temp. 25 °C							
d (Å)	I	hkl	20(°)				
7.54	88	011	11.73				
7.08	100	020	12.50				
5.552	58	021	15.95				
4.462	17	002	19.88				
4.257	10	012	20.85				
4.178	18	031	21.25				
3.688	47	111	24.11				
3.546	10	040	25.09				
3.244	17	032	27.47				
3.161	52	102	28.21				
3.088	35	Ī12	28.89				
2.967	10	Ī31	30.09				
2.888	49	Ī22	30.94				
2.818	25	131	31.73				
2.777	58	042	32.21				
2.743	18	023	32.62				
2.704	22	051	33.10				
2.656	12	140	33.72				
2.626	28	132,122	34.11				
2.395	18	052	37.52				
2.363	8	060	38.05				
2.315	19	151	38.87				
2.286	25	061	39.39				
2.209	6	142	40.82				
2.127	11	024	42.47				
2.089	12	062	43.27				
2.058	16	143	43.95				
2.017	16	034	44.89				
1.976	10	071	45.88				
1.961	9	161	46.25				
1.911	15	143	47.53				
1.887	17	044,Ī53	48.17				
1.846	13	114,072	49.32				
1.808	19	170	50.42				
1.791	11	Ī71	50.94				
1.7739	11	144,080	51.47				
1.7549	11	171,202	52.07				
1.6746	5	073	54.77				

d (Å)

5.87

4.55

4.156

3.600

3.396

3.220

3.071

2.825

2.722

2.473

2.402

2.338

2.223

2.172

2.080

2.038

1.999

Internal standard W, a = 3.16516 Å

CuK a_1 $\lambda = 1.54056$ Å; temp. 25 °C

hkl

111

210

211

220

221

310

311

320

321

410

411

331

421

332

422

430

510

20(°)

15.07

19.49

21.36

24.71

26.22

27.68

29.05

31.65

32.88

36.30

37.41

38.48

40.54

41.54

43.48

44.41

45.34

67.49

Ι

33

23

25

14

100

13

55

4

2

3

4

2

7

9

13

6

5

Sample

The material was crystallized at 100 $^{\circ}$ C from an aqueous solution of stoichiometric amounts of (NH₄)₂SO₄ and MnSO₄.

Color

Colorless

Optical data

Isotropic, N=1.602

Structure

Cubic, P2₁3 (198),Z=4, langbeinite type, [Gattow and Zemann,1958].The langbeinite structure was described by Zemann and Zemann [1957].

		1 1.901	/	511	46.25
		1.892	17	520	48.05
	a(Å)	1.861	4	521	48.91
Gattow and Zemann [1958]	10.192	1.774	14	522	51.47
	±.003	1.748	5	530	52.30
NBS, sample at 25 °C	10.1892	1.722	<1	531	53.15
	±.0001	1.699	<1	600	53.91
		1.6749	3	610	54.76
		1.6527	17	611	55.56
Density	1.6109	5	620	57.13	
(calculated) 2.726 g/cm ³ at 25° C.		1.5916	4	621	57.89
	1.5728	3	541	58.65	
Reference intensity	1.5540	1	533	59.43	
$I/I_{conjundum} = 2.4$					
		1.5362	<1	622	60.19
		1.5193	7	630	60.93
		1.5023	7	631	61.69
References		1.4711	2	444	63.15
Gattow, G. and J. Zemann (1958). I pelsulfate vom Langbeinit-Typ	1.4560	5	632	63.88	
(SO ₄) ₃ , Z. Anorg. Allgem. Chem.	293, 233-	1.4413	4	710	64.61
240.		1.4272	2	711	65.33
Zemann, A. and J. Zemann (1957).	Die Kris-	1.4128	2	640	66.08
tallstruktur vom Langbeinit, K ₂ M	1.3997	5	720	66.78	

Acta Cryst. 10, 409-413.

1.3866

4

721

Ammonium Manganese Sulfate, (N	$H_{A})_{2}Mn_{2}(SO_{A})$	$\frac{1}{3}$ (cubic) -	continued
--------------------------------	----------------------------	-------------------------	-----------

Internal standard W, a = 3.16516 Å CuKa, λ = 1.54056 Å; temp. 25 °C					
d (Å)	I	hkl	20(°)		
1.3617	3	642	68.90		
1.3498	2	722	69.59		
1.3378	1	730	70.31		
1.3266	4	731	70.99		
1.3047	2	650	72.37		
1.2942	2	732	73.05		
1.2733	<1	800	74.45		
1.2639	3	810	75.10		
1.2544	2	811	75.77		
1.2446	1	733	76.47		
1.2356 1.2268 1.2180 1.2008 1.1926	1 1 2 1	820 821 653 822 830	77.13 77.79 78.46 79.80 80.46		
1.1844	4	831	81.14		
1.1765	3	751	81.80		
1.1611	2	832	83.12		
1.1536	2	752	83.78		
1.1392	<1	840	85.09		
1.1321 1.1250 1.1184 1.1118 1.1053	1 <1 1 1	841 910 911 842 920	85.75 86.42 87.06 87.71 88.36		
1.0987 1.0860 1.0800 1.0740 1.0681	3 1 3 2	921 664 922 930 931	89.03 90.35 91.00 91.65 92.30		
1.0567	1	852	93.60		
1.0510	2	932	94.26		
1.0399	1	844	95.59		
1.0345	1	940	96.25		
1.0293	2	941	96.90		
1.0241	1	$932 \\ 10 \cdot 0 \cdot 0 \\ 10 \cdot 1 \cdot 0 \\ 10 \cdot 1 \cdot 1 \\ 10 \cdot 2 \cdot 0$	97.56		
1.0189	1		98.23		
1.0138	4		98.89		
1.0089	2		99.55		
0.9993	1		100.86		

Internal standard W, a = 3.16516 Å CuKa, $\lambda = 1.54056$ Å; temp. 25 °C						
d (Å)	I	hkl	20(°)			
.9943	3	10.2.1	101.55			
.9897	2	950	102.21			
.9851	1	951	102.87			
.9805	<1	10.2.2	103.55			
.9760	2	10.3.0	104.23			
.9714	2	$ \begin{array}{r} 10 \cdot 3 \cdot 1 \\ 10 \cdot 3 \cdot 2 \\ 871 \\ 953 \\ 10 \cdot 4 \cdot 0 \end{array} $	104.92			
.9585	2		106.95			
.9544	2		107.63			
.9503	2		108.31			
.9460	1		109.02			
.9420 .9380 .9302 .9264 .9224	2 1 1 1	960 10•3•3 10•4•2 962 11•1•0	109.72 110.41 111.80 112.50 113.25			
.9188 .9114 .9078 .9006 .8971	<1 1 1 2	$ \begin{array}{c} 11 \cdot 1 \cdot 1 \\ 11 \cdot 2 \cdot 0 \\ 11 \cdot 2 \cdot 1 \\ 880 \\ 11 \cdot 2 \cdot 2 \end{array} $	113.93 115.38 116.10 117.59 118.32			
.8938	1	$ \begin{array}{c} 11 \cdot 3 \cdot 0 \\ 11 \cdot 3 \cdot 1 \\ 10 \cdot 4 \cdot 4 \\ 964 \\ 11 \cdot 3 \cdot 2 \end{array} $	119.05			
.8902	<1		119.82			
.8868	1		120.59			
.8835	2		121.35			
.8802	3		122.11			
.8737	1	10.6.0 $11.4.0$ $11.4.1$ $11.3.3$ $11.4.2$	123.68			
.8705	1		124.48			
.8673	2		125.28			
.8642	2		126.09			
.8581	1		127.71			
.8550	1	965	128.55			
.8491	1	12•0•0	130.24			

Barium Borate, BaB_8O_{13} (orthorhombic)

Sample					
The sample was prepared	at NBS by E. Le-	internal standard Ag, a = 4.08041 A			
vin. Stoichiometric a	mounts of barium	CuK	$\alpha_1 \lambda = 1.$	54056 A; temp. 2	S ℃
nitrate and boric acid gether and heated near	d were ground to- 800°C.	d (Å)	Ι	hkl	20(°)
		7.25	10	021	12.20
Color		6.09	55	120	14.54
Colorless		5.24	100	102	16.92
		4.35	6	032,040	20.42
		4.277	5	200,013	20.75
Optical data					
Biaxial (-) N_{α} =1.558,	$N_{\gamma} = 1.590$, 2V is	4.120	13	041	21.55
small.		4.068	8	201	21.83
		3.916	6	103	22.69
Structure		3.872	13	132,140	22.95
Orthorhombic, Z=8 [Kro	gh-Moe, 1960].	3.836	6	220	23.17
		2 714	12	141	23 9/
		3 682	5	221	24 15
		3 625	5	042	24.13
		3 590	7	202	24.78
		3.572	9	123	24.91
Lattice consta	ints	5.572		110	
		3.515	2	212	25.32
a(A)	b(A) $c(A)$	3.337	95	142	26.69
		3.316	100	222	26.86
Krogh-Moe[1960] 8.56	17.38 13.20	3.124	3	151	28.55
NBS,		3.081	14	104	28,96
sample at 25°C 8.550	17.352 13.211				
±.001	±.002 ±.003	3.047	30	232,240	29.29
		2.965	2	241	30.12
		2.904	1 80 {	124	30.77
Donaiter		2.895	1001	060,223	30.86
(calculated) 2 927 g/cm ³	at 25° C	2.826	4	061	31.64
(carculated, 2.52, g/cm	at 20 (),	2 740	25	160	22.65
R eference intensity		2.740	25	733 220 TOO	32.05
I/I , -1.4		2.703	11	161	33.04
-/ corundum		2.005	16	321 062 1	33.37
		2.617	25	302	34 24
Polymorphism		2.01/	23	502	51.21
A high temperature te	tragonal form is	2.531	5	162	35,43
being studied by Levin a	and Robbins [pri-	2.524	6	105	35.54
vate communication]		2.510	7	144,331	35.75
		2.502	9	243,224	35.86
		2.418	5	063	37.15
Additional patterns					
L. PDF card 6-027/ [Mcl	murdie and Levin,	2.393	4	303,054	37.56
1949].		2.380	3	234,170,+	37.76
	r	2.346	3	341,171	38.34
		2.326	4	163	38.68
		2.306	4	323	39.02

Internal standard Ag, $a = 4.08641 \text{ Å}$					
d (Å)		hkl	20(°)		
2.251 2.241 2.238 2.169 2.138	30 } 50 { 14 20	262 342,172 244 080 400	40.02 40.20 40.27 41.60 42.23		
2.132	25	026,106	42.35		
2.122	8	410	42.56		
2.111	11	401,164	42.81		
2.105	17	263,180,+	42.93		
2.094	19	173,324,+	43.17		
2.076	7	181,420	43.57		
2.050	6	421	44.13		
2.033	3	402	44.52		
2.003	10	182,136	45.24		
1.980	12	422	45.79		
1.945	5	083,216	46.67		
1.938	6	264,305	46.83		
1.935	7	280	46.91		
1.922	5	403	47.25		
1.918	7	432,440	47.37		
1.913	11	281,146,+	47.48		
1.907	13	091	47.64		
1.898	6	441,183	47.88		
1.878	2	423,017	48.43		
1.856	3	282	49.04		
1.841	2	442	49.46		
1.813	3	084	50.28		
1.794	4	404,037	50.85		
1.774	5	265,184	51.46		
1.769	5	345,175	51.61		
1.741	5	306,291	52.51		
1.729	6	193,364	52.92		
1.719	3	460,217	53.25		
1.712	3	381	53.49		
1.702	3	510,1.10.0	53.83		
1.687	5	511,1.10.1	54.34		
1.679	7	0.10.2,520	54.61		
1.670	6	382,284,+	54.95		
1.665	9	094,275,+	55.11		
1.657	7	502	55.42		

- Krogh-Moe, J. (1960). A note on the structure of barium tetraborate, Acta Chem. Scand. 14, No. 5, 1229-1230.
- Levin, E.M. and H.F. McMurdie (1949). The system $BaO-B_2O_3$, J. Res. Natl. Bur. Std. 42, (RP1956) 131-138.

The sample was prepared by melting a stoichiometric mixture of Cs_2SO_4 and $CaSO_4$ followed by annealing for 18 hours at 700 $^\circ$ C.

Color

Colorless

Optical data

Isotropic, N=1.549

Structure

Cubic, P2₁3 (198), Z=4, langbeinite type [Gattow and Zemann,1958]. The langbeinite structure was determined by Zemann and Zemann [1957].

Lattice constants

		a(Å)
Gattow and Zemann	[1958]	10.724 ±.005
NBS, sample at 25	°C	10.7213 ±.0001

Density

(calculated) 3.417 g/cm³ at 25° C.

Reference intensity

 $I/I_{commutum} = 4.8$

ĸ	e	Ŀ	e	r	e	n	С	e	S	

- Gattow, G. and J. Zemann (1958). Über Doppelsulfate vom Langbeinit-typ, $A_2^+ B_2^{2+} (SO_4)_3$, Z.Anorg. Allgem. Chem. 293, 233-240.
- Zemann, A. and J. Zemann (1957). Die Kristallstructur vom Langbeinit,K₂Mg₂ (SO₄)₃, Acta Cryst. 10, 409-413.

Internal standard Ag, $a = 4.08641$ Å						
d (Å)	I	hkl	2θ(°)			
6.18	16	111	14.32			
4.79	9	210	18.51			
4.373	7	211	20.29			
3.792	12	220	23.44			
3.574	8	221	24.89			
3.391	100	310	26.26			
3.234	18	311	27.56			
3.095	1	222	28.82			
2.973	21	320	30.03			
2.865	53	321	31.19			
2.599	23	410	34.48			
2.525	1	411	35.52			
2.460	8	331	36.50			
2.397	3	420	37.49			
2.339	7	421	38.45			
2.286	9	332	39.38			
2.188	16	422	41.22			
2.145	2	430	42.10			
2.102	30	510	43.00			
2.063	2	511	43.84			
1.991	8	520	45.52			
1.958	2	521	46.33			
1.897	<1	440	47.92			
1.866	4	522	48.75			
1.839	1	530	49.52			
1.812	2	531	50.30			
1.788	1	600	51.05			
1.762	4	610	51.84			
1.739	17	611	52.59			
1.695	6	620	54.05			
1.675	9	621	54.77			
1.654	8	541	55.50			
1.635	2	533	56.23			
1.617	1	622	56.89			
1.598	7	630	57.64			
1.5806	5	631	58.33			
1.5471	4	444	59.72			
1.5318	2	632	60.38			
1.5163	1	550	61.06			
1.5010	1	711	61.75			
1.4867 1.4723 1.4589 1.4328 1.4208	1 2 6 4	640 720 721 642 722	62.41 63.09 63.74 65.04			

Cesium Calcium Sulfate, $Cs_2Ca_2(SO_4)_3$ (cubic) – continued

Inte		Int			
CuK	25 °C		Cu		
d (Å)	Ι	hkl	20(°)		d (Å)
1.4079 1.3958 1.3729 1.3612 1.3403	3 3 2 3 1	730 731 650 732 800	66.34 66.99 68.26 68.93 70.16		.9955 .9912 .9871 .9788 .9746
1.3299 1.3198 1.3097 1.3002 1.2909	2 1 1 4	810 811 733 820 821	70.79 71.41 72.05 72.66 73.27		.9707 .9669 .9590 .9551 .9475
1.2814 1.2636 1.2548 1.2464 1.2382	2 2 1 5 2	653 822 830 831 751	73.90 75.12 75.74 76.34 76.94		.9439 .9368 .9332 .9296 .9262
1.2220 1.2139 1.1913 1.1838 1.1767	<1 2 1 1 2	832 752 841 910 911	78.15 78.77 80.57 81.19 81.78		.9192 .9159 .9127 .9029 .8998
1.1696 1.1628 1.1560 1.1431 1.1365	1 1 3 1 3	842 920 921 664 922	82.38 82.97 83.57 84.73 85.34		.8934 .8904 .8873 .8844 .8814
1.1302 1.1241 1.1119 1.1059 1.0886	3 <1 1 2 1	930 931 852 932 940	85.93 86.51 87.70 88.30 90.08		.8782 .8754 .8696 .8668 .8639
1.0831 1.0778 1.0722 1.0668 1.0618	1 1 1 <1	941 933 10.0.0 10.1.0 10.1.1	90.66 91.23 91.85 92.45 93.01		.8612 .8556 .8529 .8475 .8449
1.0514 1.0464 1.0415 1.0365 1.0317	1 2 2 1 1	$ \begin{array}{c} 10 \cdot 2 \cdot 0 \\ 10 \cdot 2 \cdot 1 \\ 950 \\ 951 \\ 10 \cdot 2 \cdot 2 \end{array} $	94.21 94.81 95.39 96.00 96.59		.8423 .8398 .8371 .8347 .8321
1.0270 1.0221 1.0086 1.0041 0.9998	1 2 1 <1 <1	10·3·0 10·3·1 10·3·2 871 953	97.19 97.81 99.59 100.19 100.79	10	

Internal standard Ag, a = 4.08641 Å					
CuK	$a_1 \lambda = 1$.54056 Å; temp.	25 °C		
d (Å)	Ι	hkl	20(°)		
.9955 .9912 .9871 .9788 .9746	1 1 1 1	$ \begin{array}{r} 10 \cdot 4 \cdot 0 \\ 960 \\ 10 \cdot 3 \cdot 3 \\ 10 \cdot 4 \cdot 2 \\ 962 \end{array} $	101.39 102.00 102.59 103.81 104.44		
.9707 .9669 .9590 .9551 .9475	2 1 1 2 <1	11.1.0 11.1.1 11.2.0 11.2.1 880	105.04 105.63 106.88 107.51 108.78		
.9439 .9368 .9332 .9296 .9262	1 1 <1 2	$ \begin{array}{c} 11 \cdot 2 \cdot 2 \\ 11 \cdot 3 \cdot 1 \\ 10 \cdot 4 \cdot 4 \\ 964 \\ 11 \cdot 3 \cdot 2 \end{array} $	109.38 110.62 111.26 111.91 112.54		
.9192 .9159 .9127 .9029 .8998	1 1 1 1	$ \begin{array}{c} 10 \cdot 6 \cdot 0 \\ 11 \cdot 4 \cdot 0 \\ 11 \cdot 4 \cdot 1 \\ 11 \cdot 4 \cdot 2 \\ 965 \end{array} $	113.85 114.49 115.12 117.11 117.76		
.8934 .8904 .8873 .8844 .8814	<1 1 1 <1	$ \begin{array}{c} 12 \cdot 0 \cdot 0 \\ 12 \cdot 1 \cdot 0 \\ 12 \cdot 1 \cdot 1 \\ 11 \cdot 5 \cdot 1 \\ 12 \cdot 2 \cdot 0 \end{array} $	119.12 119.79 120.47 121.15 121.84		
.8782 .8754 .8696 .8668 .8639	2 2 1 1 1	$12 \cdot 2 \cdot 1$ $11 \cdot 5 \cdot 2$ $12 \cdot 2 \cdot 2$ $12 \cdot 3 \cdot 0$ $12 \cdot 3 \cdot 1$	122.58 123.27 124.70 125.41 126.17		
.8612 .8556 .8529 .8475 .8449	1 <1 1 1	$11 \cdot 5 \cdot 3$ $12 \cdot 3 \cdot 2$ $11 \cdot 6 \cdot 1$ $12 \cdot 4 \cdot 0$ $12 \cdot 4 \cdot 1$	126.86 128.40 129.15 130.70 131.48		
.8423 .8398 .8371 .8347 .8321	1 1 <1 2	$ \begin{array}{c} 12 \cdot 3 \cdot 3 \\ 991 \\ 12 \cdot 4 \cdot 2 \\ 10 \cdot 8 \cdot 1 \\ 11 \cdot 6 \cdot 3 \end{array} $	132.25 133.04 133.89 134.70 135.54		

The material was made by slow evaporation at room temperature of an equimolar solution of $Cs_2\,(SO_4\,)$ and $CuSO_4$.

Color

Unground: brilliant greenish blue Ground: very pale greenish blue

Optical data

Biaxial (+) ${\rm N}_{\alpha}{=}1.504$, ${\rm N}_{\beta}{=}1.506$, ${\rm N}_{\gamma}{=}1.514$ 2V is medium

Structure

Monoclinic, $P2_1/a$ (14), Z=2. $Cs_2Cu(SO_4)_2 \cdot 6H_2O$ is a "Tutton Salt"[Tutton, 1893]. The structure of a "Tutton Salt", $(NH_4)_8 Mg(SO_4)_2 \cdot 6H_2O$ was determined by Margulis and Templeton, [1962].

Lattice constants

	a(Å)	b (Å)	c(Å)	β(°)
NBS, sample at 25°C	9.439 ±.001	12.762 ±.002	6.310 ±.001	106°11′ ±1′

Density

(calculated) 2.864 g/cm³ at 25° C.

Reference intensity

$$1/1_{\text{corundum}} = 2.2$$

Internal standard Ag, a = 4.08641 Å					
CuKa	$\lambda = 1.$	54056 A; temp. 2	5 °C		
d (A)	I	hkl	20(°)		
7.37	11	110	11.98		
6.06	4	001	14.60		
5.47	4	111	16.18		
5.21	8	120	16.99		
4.54	6	200	19.55		
4.39	13	$\begin{array}{c} 021\\ \overline{1}21\\ \overline{2}01,111\\ \overline{2}11\\ 130\end{array}$	20.19		
4.31	40		20.61		
4.25	100		20.90		
4.026	14		22.06		
3.852	60		23.07		
3.696	5	220	24.06		
3.439	8	131	25.89		
3.227	25	201	27.62		
3.192	25	040	27.93		
3.126	16	211	28.53		
3.089	25	131	28.88		
3.030	25	112	29.16		
3.027	4	002	29.48		
2.984	12	311	29.92		
2.948	20	012	30.29		
2.939	20	310	30.39		
2.926	25	202	30.53		
2.878	15	221	31.05		
2.825	25	122,041	31.65		
2.799	9	141	31.95		
2.765	10	321	32.35		
2.732	9	320	32.75		
2.658	5	222	33.69		
2.609	3	240	34.35		
2.603	4	112,141	34.43		
2.569	6	231	34.90		
2.553	6	241	35.16		
2.531	10	132	35.43		
2.488	25	331	36.07		
2.456	13	150,122	36.56		
2.403 2.348 2.311 2.284 2.266	2 17 5 12	$ \begin{array}{c} 311\\ 401\\ 411\\ 321\\ 241 400 \end{array} $	37.40 38.30 38.94 39.41		

Internal standard Ag, a = 4.08641 Å CuKa, λ = 1.54056 Å; temp. 25 °C						
$d(\mathbf{A})$ I hkl $2\theta(\circ)$						
2.247	8	202	40.10			
2.225	8	250	40.54			
2.198	9	042	41.03			
2.187	12	251	41.25			
2.156	11	242	41.87			
2.135	10	420	42.30			
2.129	5	060	42.43			
2.092	5	412	43.21			
2.072	6	203,113,+	43.65			
2.055	4	431	44.02			
2.020	6	003	44.84			
2.014	3	422	44.97			
2.002	5	251,430	45.26			
1.996	6	013,123	45.39			
1.961	4	351	46.25			
1.951	12	401,350	46.50			
1.927	6	313,023,+	47.13			
1.898	4	432	47.89			
1.882	8	133	48.32			
1.871	5	312	48.63			
1.865	7	323,233	48.80			
1.847	9	440	49.30			
1.842	5	152	49.44			
1.813	3	322	50.27			
1.809	6	521	50.41			
1.789	10	123,170	51.02			
1.775	5	261,512	51.44			
1.763	5	162	51.80			
1.7562	5	413	52.03			
1.7281	9	451,332	52.94			
1.7072	6	133,043	53.64			
1.6890	9	171	54.26			
1.6634	5	343	55.17			
1.6505	4	532	55.64			
1.6362	3	433	56.17			
1.6308	4	452	56.37			
1.6090	6	143,253	57.20			

Tutton, A. E. (1893). Connection between the atomic weight of contained metals and the magnitude of the angles of crystals of isomorphous series. A study of the potassium, rubidium and cesium salts of the monoclinic series of double sulphates $R_2 M(SO_4)_2 \cdot 6H_2O$, J. Chem. Soc. 63, 337-423.

Margulis, T.N. and D. H. Templeton (1962). Crystal structure and hydrogen bonding of magnesium ammonium sulfate hexahydrate, Z. Krist. 117, 334-357.

The sample was made by slow evaporation at room temperature of an equimolar solution of $\rm Cs_2\,SO_4$ and $\rm FeSO_4$.

Color

Unground: very pale green Ground: colorless

Optical data

Biaxial(+) $N_{\alpha}{=}1.501,~N_{\beta}{=}1.504,~N_{\gamma}{=}1.516.$ 2V is medium

Structure

Monoclinic, $P2_1/a$ (14), Z=2, Isostructural with other "Tutton Salts" [Tutton, 1893]. The structure of a "Tutton Salt", $(NH_4)_2 Mg(SO_4)_2 \cdot 6H_2O$, was determined by Margulis and Templeton [1962].

Lattice constants

	a(Å)	b (Å)	c(Å)	β(°)
NBS, sample at 25°C	9.355 ±.001	12.893 ±.002	6.378 ±.001	106°53′ ±1′

Density

(calculated) 2.805 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 2.8$

Internal standard W, a = 3.16516 Å CuKa ₁ λ = 1.54056 Å; temp. 25 °C					
d (Å)		hkl	20(°)		
7.34 6.10 5.518 5.233 4.478	12 5 3 12 5	110 001 011 120 200	12.04 14.52 16.05 16.93 19.81		
4.438 4.356 4.247 4.227 4.033		021 Ī21 201 210,111 Ī11	19.99 20.37 20.90 21.00 22.02		
3.877 3.681 3.475 3.221 3.194	75 4 10 30 20	130 220,121 Ī31 040 201	22.92 24.16 25.61 27.67 27.91		
3.101 3.091 3.033 2.970 2.954	<pre></pre>	211,230,+ 112 140 311,012 202	28.77 28.86 29.43 30.06 30.23		
2.907 2.860 2.851 2.830 2.761	13 } 30 { 6 2	310 221 041 141 321,022	30.73 31.25 31.35 31.59 32.40		
2.707 2.683 2.614 2.567 2.557	6 3 6 17 17	320 222 240,141 241 132	33.07 33.37 34.27 34.93 35.06		
2.489 2.461 2.453 2.374 2.358	35 9 8 12 8	331,032 122 330 051 322	36.06 36.48 36.61 37.87 38.14		
2.330 2.296 2.267 2.264 2.235	2 7 20 17 14		38.61 39.21 39.73 39.79 40.32		

Inter	nal stan	dard W, a = 3.1651	l6 Å
CuK	$a_1 \lambda = 1.$	54056 Å; temp. 25	5 °C
d (Å)	Ι	hkl	20(°)
2.215	5	341,042	40.69
2.204	9	212,251,+	40.92
2.176	13	242	41.47
2.149	3	060	42.02
2.114	8	420,222	42.74
2.094	6	$ \begin{array}{r} \overline{412},\overline{113},+\\ \overline{431}\\ 003\\ \overline{422},\overline{123}\\ 251 \end{array} $	43.16
2.050	3		44.14
2.035	7		44.48
2.017	3		44.91
2.006	6		45.16
1.992 1.970 1.946 1.918 1.903	2 12 6 8	223,342 351,052 313 261 432,133	45.50 46.04 46.64 47.36 47.75
1.882	5	233,323	48.32
1.853	3	152,511	49.14
1.838	11	440,242	49.56
1.803	5	170,322	50.57
1.796	10	521,123	50.78
1.785	4	403	51.13
1.781	5	162	51.25
1.773	6	510,442,+	51.50
1.759	3	431,171	51.93
1.725	5	520	53.05
1.721	9	332,423,+	53.17
1.703	8	270,171	53.78
1.664	2	213	55.15
1.650	7	532	55.65
1.638	2	362,153	56.11
1.626	2	253	56.56
1.606	1	361	57.32

- Margulis, T.N. and D. H. Templeton (1962). Crystal structure and hydrogen bonding of magnesium ammonium sulfate hexahydrate, Z. Krist. 117, 334-357.
- Tutton, A. E. (1893). Connection between the atomic weight of contained metals and the magnitude of the angles of crystals of isomorphous series. A study of the potassium, rubidium and cesium salts of the monoclinic series of double sulphates $R_2 M(SO_4)_2 \cdot 6H_2O$, J.Chem. Soc. 63, 337-423.

Sample The sample was made by slow evaporation at room temperature of an equimolar so- lution of Cs ₂ SO ₄ and MqSO ₄ .			Inte Cuk	Internal standard W, a = 3.16516 Å CuK a_1 λ = 1.54056 Å; temp. 25 °C				
TULION	UL CS2BC	14 and Mo	1004 •		d (Å)	Ι	hkl	20(°)
Color Colorle	255				7.31	45 5	110 020	12.09 13.78
Optical data Biaxial (+) N_{α} =1.481, N_{β} =1.485, N_{γ} =1.492			5.50	6 19	011 120	16.11 16.99		
Structure Monocli Cs2Mg(S ton, 18 Salt", mined h	.nic, P2 ₁ 30 ₄) ₂ • 6H ₂ 393]. Th (NH ₄) ₂ N	/a (14), 0 is a " ne struct 1g(SO ₄)2 • is and T	Z=2. Tutton source of a $6H_2O$ was	Salt"[Tut- a "Tutton as deter- o [1962]	4.42 4.34 4.23 4.026 3.860	10 31 100 8 83 4	$ \begin{array}{c} 021\\ \bar{1}21\\ \bar{2}01\\ \bar{2}11\\ 130\\ \bar{2}21\\ \end{array} $	20.09 20.44 20.98 22.06 23.02 25.16
mined i	y margui	.15 4110 1	empreco	, [IJU2].	3.463 3.210 3.181 3.087	9 46 36 97	131 040 201 131,211	25.70 27.77 28.03 28.90
	Lati	tice consta	ants		3.041 3.010 2.965 2.948 2.899	7 5 39 38 11	$ \begin{array}{r} 002 \\ \overline{231} \\ \overline{311} \\ \overline{202} \\ 310 \end{array} $	29.35 29.65 30.12 30.29 30.82
NBS, sample at 25°C	a(Å) 9.330 + 001	<i>b</i> (Å) 12.848 + 003	<i>c(Å)</i> 6.360 + 001	β(°) 107°2′ ±1′	2.846 2.822 2.753 2.699 2.607	38 10 3 8 6	Ī22 Ī41 321 320 240,141	31.41 31.68 32.50 33.16 34.37
Density (calcula	ated) 2.68	39 g/cm ³	at 25° C		2.559 2.553 2.485 2.450 2.443	29 31 33 16 18	241 231 331,312 122 330	35.03 35.12 36.12 36.66 36.75
Reference intensity I/I _{corundum} = 1.8			2.367 2.352 2.289 2.259 2.230	13 10 9 22 17	$ \begin{array}{r} 051,311\\322\\411\\241,\overline{1}42\\400\end{array} $	37.98 38.23 39.33 39.88 40.42		
				,	2.197 2.172 2.107 2.092	11 13 6 6	$ \begin{array}{r} 410,\overline{2}51\\ \overline{2}42\\ 420\\ \overline{2}03,\overline{4}12\\ \overline{1}12\end{array} $	41.04 41.55 42.88 43.22

Internal standard W, a = 3.16516 Å CuK a_1 λ = 1.54056 Å; temp. 25 °C				
d (Å)	I	hkl	20(°)	
2.063	1	213	43.83	
2.046	5	142,431	44.24	
2.027	8	003	44.67	
1.998	7	152,251	45.35	
1.963	10	351,052	46.21	
1.943 1.912 1.879 1.8326 1.7918	6 5 12 12	350 261 233,323 033,440 521	46.71 47.51 48.39 49.71 50.92	
1.7886	11	$123 \\ \overline{3}33 \\ \overline{4}42,510 \\ 360 \\ 520,\overline{5}22$	51.02	
1.7847	11		51.14	
1.7689	7		51.63	
1.7382	2		52.61	
1.7203	6		53.20	
1.7143	7	043,332	53.40	
1.6970	6	270,171	53.99	
1.6480	8	441,530	55.73	
1.6354	3	452,362	56.20	
1.6213	3	253	56.73	

- Margulis, T.N. and D. H. Templeton (1962). Crystal structure and hydrogen bonding of magnesium ammonium sulfate hexahydrate, Z. Krist. 117, 334-357.
- Tutton, A. E. (1893). Connection between the atomic weight of contained metals and the magnitude of the angles of crystals of isomorphous series. A study of the potassium, rubidium and cesium salts of the monoclinic series of double sulphates $R_2 M(SO_4)_2 \cdot 6H_2 O$, J. Chem. Soc. 63, 337-423.

The sample was made by slow evaporation at room temperature of an equimolar solution of $\rm Cs_2\,SO_4$ and $\rm MnSO_4$.

Color

Unground: purplish white Ground: colorless

Optical data

Biaxial (+) ${\tt N}_{\alpha}{=}1.495,~{\tt N}_{\beta}{=}1.497,~{\tt N}_{\gamma}{=}1.502$ 2V is large

Structure

Monoclinic, P2₁/a (14), Z=2 Isostructural with other "Tutton Salts" [Tutton, 1893] The structure of a "Tutton Salt", $(NH_4)_2 -$ Mg(SO₄)₂.6H₂O, was determined by Margulis and Templeton [1962].

Lattice constants

	a(Å)	b (Å)	c(Å)	β (°)
NBS, sample at 25 °C	9.425 ±.001	12.976 ±.002	6.389 ±.001	107°10′ ±1′

Density

(calculated) 2.763 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 2.2$

Inter	Internal standard Ag, a = 4.08641 Å			
d (Å)	I = I	hkl	2θ(°)	
7.41	17	110	11.94	
6.11	7	001	14.48	
5.524	4	011	16.03	
5.273	15	120	16.80	
4.510	5	200	19.67	
4.442	11	021	19.97	
4.384	22	121	20.24	
4.281	100	201	20.73	
4.261	59	210	20.83	
4.241	61	111	20.93	
4.064	5	211	21.85	
3.899	76	130	22.79	
3.693	3	220	24.08	
3.497	10	131	25.45	
3.244	33	040	27.47	
3.201 3.111 3.103 3.049 2.993	23 } 72 { 3 20	201 131,211 112 002,140 311	27.85 28.67 28.75 29.27 29.83	
2.965	29	202	30.12	
2.927	15	310	30.52	
2.894	1	212	30.87	
2.869	42	221	31.15	
2.861	11	041,122	31.24	
2.778	2	$\overline{321}$	32.19	
2.723	6	320	32.86	
2.699	5	$\overline{222}$	33.17	
2.632	7	240	34.04	
2.624	3	141	34.14	
2.583	15	$ \begin{array}{r} \overline{2}41 \\ \overline{1}32 \\ \overline{3}31 \\ \overline{3}12 \\ 330,122 \end{array} $	34.70	
2.568	17		34.91	
2.507	41		35.79	
2.501	30		35.88	
2.464	14		36.44	
2.388	12	$ \begin{array}{r} 051 \\ \overline{3}22 \\ 401 \\ \overline{4}11 \\ 241 \end{array} $	37.63	
2.374	9		37.87	
2.349	2		38.28	
2.311	11		38.94	
2.277	22		39.54	

Interr	Internal standard Ag, $a = 4.08641 \text{ Å}$				
Cuka	1 = 1.0	4050 A; temp. 20			
d (Å)	Ι	hkl	20(°)		
2.271	20	$ \begin{array}{r} 321 \\ 400 \\ 202 \\ \overline{3}41 \\ 410, \overline{2}51 \end{array} $	39.65		
2.250	12		40.04		
2.239	11		40.25		
2.232	3		40.38		
2.218	13		40.64		
2.187	15	$ \begin{array}{r} \overline{2}42 \\ 060 \\ 420 \\ \overline{4}12 \\ 160, \overline{2}03 \end{array} $	41.24		
2.162	2		41.74		
2.127	8		42.47		
2.110	6		42.82		
2.103	7		42.98		
2.075	2	213	43.59		
2.065	3	431	43.81		
2.035	10	003	44.49		
2.016	7	251	44.93		
2.005	6	342	45.19		
1.984	6	351	45.69		
1.977	12	052	45.86		
1.953	8	313,252	46.45		
1.929	7	261	47.08		
1.907	10	133	47.66		
1.891	5	323,233	48.07		
1.866	3	511	48.75		
1.849	11	113,440	49.24		
1.843	6	242,033	49.40		
1.817	3	352	50.16		
1.810	8	521	50.37		
1.796	11	123,403	50.78		
1.783	8	512,510	51.19		
1.771	3	351	51.57		
1.740	2	451	52.55		
1.735	5	522,520	52.72		
1.730	5	423	52.87		
1.725	6	332,043	53.06		
1.712	9	171	53.49		

- Margulis, T.N. and D. H. Templeton (1962). Crystal structure and hydrogen bonding of magnesium ammonium sulfate hexahydrate, Z. Krist. 117, 334-357.
- Tutton, A.E. (1893). Connection between the atomic weight of contained metals and the angles of crystals of isomorphous series. A study of the potassium, rubidium and cesium salts of the monoclinic series of double sulphates R₂M(SO₄)₂-6H₂O J. Chem. Soc. 63, 337-423.

The sample was prepared by mixing saturated solutions of HgCl_2 and CsCl at room temperature.

Color

Colorless

Optical data

Very low birefringence, №1.790

Structure

CsHgCl₃ has been reported as cubic [Natta and Passerini, 1928]. Náray-Szabó [1947], found it to be monoclinic with a=b=c and β ~90°. In this work it is considered as a distorted perovskite and has been tentatively indexed as orthorhombic, isostructural with NaMnF₃ and RbCaCl₃. Very weak lines at 26.82, 27.94 and 29.50 °(20) suggest that a small amount of a second phase may be present, or that the material has a larger supercell. The assumed space group is Pnma (62) with Z equal to 4.

Lattice constants

	a(Å)	b(Å)	c(Å)
Natta and Passerini [1928] ¹ Náray-Szabó	5.45*		
$[1947]^2$ NBS, sample	10.92*	10.92*	10.92*
at 25° C	7.688 ±.002	10.878 ±.002	7.669 ±.001

*from kX

¹ indexed as cubic

 $^2\,\text{indexed}$ as monoclinic with $\beta{\sim}90\,^\circ.$

Density

(calculated) 4.555 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 3.0$

Internal standard Ag, a = 4.08641 Å				
$CuKa_1 = 1.54050 \text{ A}; \text{ temp. } 25 \text{ °C}$				
d (Å)	Ι	hkl	20(°)	
5.42 3.834 3.132 2.715 2.428	15 100 1 45 11	101 002 022 202 301,222,+	16.34 23.18 28.47 32.96 37.00	
2.217 1.920 1.894 1.810 1.717	45 25 1 5 25	042,123 242 250,410 303,143,+ 402,323,+	40.67 47.30 48.00 50.38	
1.570 1.567 1.506 1.453 1.451	6 2 15 17	440 044 501,343 442,521,+ 244	58.75 58.90 61.51 64.03 64.14	
1.357 1.319 1.317 1.279 1.214	3 2 2 5 6	404 460,181 064,424 325 444	69.16 71.45 71.59 74.05 78.74	
1.187 1.184 1.159 1.157 1.110	1 2 2 3	381 226 640,561,+ 046 480,642	80.94 81.16 83.27 83.50 87.89	
1.108 1.087 1.065 1.064 1.010	3 1 5 4 1	264 464 604 406 662,741,+	88.10 90.30 92.59 92.73 99.43	
1.008 .9921 .9911	1 2 2	266 644,723 446	99.65 101.86 102.01	

- Natta, G. and L. Passerini (1928). Isomorfismo, polimorfismo e morfotropia I.Composti del tipo ABX₃. Gazz.Chim.Ital. 58, 472-484.
- Náray-Szabó, S. (1947). The perovskite structure family, Müegyetemi, Kozlemen. No. 1, 30-41.

The sample was prepared by slow evaporation at room temperature of an equimolar solution of $\text{Cs}_2\,\text{SO}_4$ and NiSO_4 .

Color

Unground: strong bluish green Ground: very pale green

Optical data

Biaxial (-) ${\rm N}_{\alpha}{=}1.507,~{\rm N}_{\beta}{=}1.512,~{\rm N}_{\gamma}{=}1.516$ 2V is very large

Structure

Monoclinic, $P2_1/a$ (14), Z=2. Cs₂Ni(SO₄)₂ · 6H₂O is a "Tutton Salt"[Tutton, 1893]. The structure of a "Tutton Salt", (NH₄)₂Mg(SO₄)₂ · 6H₂O was determined by Margulis and Templeton, [1962].

Lattice constants

	a(Å)	b (Å)	c(Å)	β(°)
NBS, sample at 25°C	9.264 ±.001	12.773 ±.002	6.359 ±.001	106°59′ ±1′

Density

(calculated) 2.883 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 2.7$

Inter	Internal standard Ag, a = 4.08641 Å				
CuKa	$\lambda_1 \lambda = 1.$	54056 Å; temp. 2	25 °C		
d (Å)	Ι	hkl	20(°)		
7.284 6.083 5.487 5.184 4.405	10 6 12 12	110 001 011 120 021	12.14 14.55 16.14 17.09 20.14		
4.327 4.215 4.201 4.001 3.837	18 } 100 { 6 70	Ī21 201 111 211 130	20.51 21.06 21.13 22.20 23.16		
3.641	4	220	24.43		
3.448	10	Ī31	25.82		
3.193	25	040	27.92		
3.168	20	201	28.14		
3.074	70	I31,211,+	29.02		
3.005	2	140	29.71		
2.961	12	012	30.16		
2.943	30	311,202	30.35		
2.877	14	310	31.06		
2.839	30	221	31.49		
2.806	7	141	31.87		
2.738	1	321	32.68		
2.681	8	320	33.40		
2.673	6	222	33.50		
2.591	6	112,240,+	34.59		
2.545	25	Ī32,241,+	35.24		
2.468	30	312,331	36.37		
2.447	11	122	36.69		
2.428	4	330	37.00		
2.354	12	051,311	38.20		
2.342	10	151,322	38.41		
2.310	2	401	38.96		
2.272	9	411	39.64		
2.249	20	132,241	40.06		
2.243	20	321	40.17		
2.222	7	$202 \\ 151,250,+ \\ 042 \\ \overline{2}51,410 \\ \overline{2}42 $	40.57		
2.213	13		40.73		
2.201	5		40.97		
2.184	9		41.30		
2.163	13		41.73		

Internal standard Ag, a = 4.08641 Å CuKa, λ = 1.54056 Å; temp. 25 °C				
$d(\hat{A})$ I hkl $2\theta(\circ)$				
2.130	2	060	42.41	
2.106	2	402	42.91	
2.093	9	420	43.19	
2.079	6	412	43.49	
2.070	4	160	43.69	
2.062	2	213	43.86	
2.029	10	431,003	44.63	
2.007	4	061,123	45.14	
2.001	6	161,422	45.29	
1.989	4	251	45.58	
1.977	3	342	45.87	
1.955	12	052	46.42	
1.952	12	351	46.49	
1.937	7	313	46.87	
1.916	2	341	47.40	
1.910	3	401	47.58	
1.898	8	261	47.89	
1.894	11	133	48.00	
1.873	6	323	48.56	
1.839	1	152	49.53	
1.830	4	033,421	49.79	
1.819	10	440	50.10	
1.787	12	170,123	51.07	
1.767	5	162,261	51.69	
1.755	6	510	52.08	
1.743	5	171,431,+	52.47	
1.728	1	360	52.96	
1.710	6	043,423	53.53	
1.707	12	520,332	53.65	
1.688	8	171,270	54.31	
1.659	2	162	55.32	
1.654	2	213	55.50	
1.636	6	532,530	56.16	
1.625	3	362,452	56.58	
1.616	4	253	56.92	
1.591 1.587 1.582 1.571 1.563	4 3 4 3	361 053,204 172,271 180,513,+ 371	57.92 58.06 58.27 58.74 59.04	
1.552	7	370,443	59.52	

- Margulis, T.N. and D. H. Templeton (1962). Crystal structure and hydrogen bonding of magnesium ammonium sulfate hexahydrate, Z. Krist. 117, 334-357.
- Tutton, A. E. (1893). Connection between the atomic weight of contained metals and the magnitude of the angles of crystals of isomorphous series. A study of the potassium, rubidium and cesium salts of the monoclinic series of double sulphates $R_2 M(SO_4)_{2*} 6H_2O$, J. Chem. Soc. 63, 337-423.

The sample was prepared by slow evaporation at room temperature of an equimolar solution of $\text{Cs}_2\,\text{SO}_4$ and ZnSO_4 .

Color

Colorless

Optical data

Biaxial (-) ${\tt N}_{\alpha}{=}1.594$, ${\tt N}_{\beta}{=}1.610$, ${\tt N}_{\gamma}{=}1.615$ 2V is large.

Structure

Monoclinic, $P2_1/a$ (14), Z=2. $Cs_2Zn(SO_4)_2 \cdot 6H_2O$ is a "Tutton Salt" [Tutton, 1893]. The structure of a "Tutton Salt", $(NH_4)_2Mg(SO_4)_2 \cdot 6H_2O$ was determined by Margulis and Templeton, [1962].

Lattice	constants

	a(Å)	b (Å)	c(Å)	B(°)
NBS, sample at 25°C	9.316 ±.001	12.815 ±002	6.373 ±.001	106°57′ ±1′

Density

(calculated) 2.881 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 2.3$

Internal standard Ag, a = 4.08641 Å				
$CuKa_1 \lambda = 1.54056 \text{ Å}; \text{ temp. } 25 \text{ °C}$				
d (Å)	Ι	hkl	20(°)	
7.31 6.095 5.504 5.202 4.451	8 3 9 7	110 001 011 120 200	12.10 14.52 16,09 17.03 19.93	
4.416	10	021	20.09	
4.337	16	121	20.46	
4.227	100	201	21.00	
4.019	5	211	22.10	
3.854	60	130	23.06	
3.660	4	121,220	24.30	
3.461	9	131	25.72	
3.204	25	040	27.82	
3.185	15	201	27.99	
3.087	65	131,112,+	28.90	
2.962	20	311	30.15	
2.951	20	202	30.26	
2.896	11	310	30.85	
2.850	30	122,221	31.36	
2.816	6	141	31.75	
2.749	2	321,022	32.54	
2.695	5	320	33.21	
2.678	4	222	33.43	
2.601	6	240,112,+	34.45	
2.552	18	231,132	35.13	
2.479	30	331,312	36.21	
2.452	8	122	36.62	
2.439	4	330	36.82	
2.362	9	051	38.07	
2.351	8	322,151	38.25	
2.321	2	401	38.76	
2.284	7	411	39.41	
2.256	19	132,142,+	39.92	
2.229	8	400	40.43	
2.222	9	151,250	40.56	
2.209	4	042	40.81	
2.194	7	410,251	41.11	
2.170	11	242	41.59	
2.135	2	060	42.30	
2.105	8	420	42.94	

Internal standard Ag, a = 4.08641 Å				
CuKa	$\lambda = 1.5$	54056 Å; temp. 25	5 °C	
đ (Å)	Ι	hkl	20(°)	
2.092	4	113	43.22	
2.088	3	412	43.30	
2.040	3	431	44.37	
2.032	7	003	44.55	
2.009	3	422,161	45.09	
1.996	3	251, Ī52	45.39	
1.978	1	232	45.83	
1.962	8	052	46.24	
1.941	6	350	46.75	
1.907	5	261	47.64	
1.900	8	Ī33,411	47.84	
1.878	4	323	48.42	
1.844	2	511,152	49.38	
1.839	2	421	49.53	
1.829	9	440	49.81	
1.792	9	123,170	50.93	
1.773	2	162,261	51.49	
1.765	5	512,413,+	51.76	
1.755	3	351	52.06	
1.751	3	431	52.21	
1.7161	8	043,522,+	53.34	
1.6938	5	171,270	54.10	
1.6596	1	212	55.31	
1.6442	7	433,532,+	55.87	
1.6319	3	452,362	56.33	
1.6208 1.6161 1.5981 1.5871 1.5779	2 2 5 7	253 342 361 271,172 513,511	56.75 56.93 57.63 58.07 58.44	
1.5583	6	370,233	59.25	
1.5422	5	523,460,+	59.93	

- Margulis, T.N. and D. H. Templeton (1962). Crystal structure and hydrogen bonding of magnesium ammonium sulfate hexahydrate, Z. Krist. 117, 334-357.
- Tutton, A. E. (1893). Connection between the atomic weight of contained metals and the magnitude of the angles of crystals of isomorphous series. A study of the potassium, rubidium and cesium salts of the monoclinic series of double sulphates $R_2 M(SO_4)_2.6H_2O$, J. Chem. Soc. 63, 337-423.

```
The sample was prepared at NBS by C. W. Reimann. It was precipitated from water solutions of imidazole and Ni(NO_3)<sub>2</sub>.
```

Color

Unground - very purplish blue

Optical data

Uniaxial (-) $N_{e} = 1.582, N_{o} = 1.594$

Structure

Hexagonal, R3 (148), Z=3, structure determined by Santoro et al., [1969].

Lattice constants

	a(Å)	c(Å)
NBS, sample at 25°C	12.353 ±.001	14.804 ±.002

Density		
(calculated) 1.505	g/cm ³ at 25° C.	

Reference intensity

 $I/I_{corundum} = 3.0$

References

Santoro,A., A.D. Mighell, M. Zocchi and C. W. Reimann (1969). The crystal and molecular structure of hexakis(imidazole) nickel(II) nitrate, (C₃H₄N₂)₆Ni(NO₃)₂, Acta Cryst. B25,842-847.

Internal standard W, a = 3.16516 Å CuK q , λ = 1.54056 Å; temp. 25 °C			
d (Å)	I	hkl	2θ(°)
8.67	20	101	10.19
6.17	50	110	14.34
6.08	100	012	14.56
5.03	3	021	17.60
4.94	3	003	17.94
4.333	6	202	20.48
3.899	35	211	22.79
3.854	40	113	23.06
3.549	30	122	25.07
3.497	25	104	25.45
3.090	3	220	28.87
3.047	2	024	29.29
2.910	6	131	30.69
2.892	8	303	30.89
2.855	9	015	31.30
2.754	5	312	32.48
2.732	4	214	32.75
2.619	8	223	34.21
2.592	6	205	34.57
2.514	1	042	35.68
2.467	1	006	36.39
2.422	3	321	37.08
2.389	6	125	37.61
2.330	8	232	38.60
2.313	5	134	38.90
2.168	2	404	41.63
2.119	4	051	42.64
2.111	5	413	42.80
2.095	2	315	43.15
2.046	2	324	44.23
2.030 2.003 1.985 1.967 1.950	2 3 1 3	306 241 045 027 422	44.59 45.24 45.67 46.11 46.54
1.900	3	333	47.83
1.889	2	235	48.13
1.874	1	217	48.54
1.782	2	600	51.22
1.774	2	244	51.46
1.748	1	208,431	52.29
1.734	2	505	52.75
1.722	2	137	53.15
1.713	2	520	53.45
1.696	2	416	54.02

The sample was prepared by W. S. Brower as a single crystal pulled from a melt. After grinding the effect of very strong cleavage, {110}, was noted in some sample mountings.

Color

Colorless

Optical data

Biaxial (-) $N_{\Omega}{=}1.82,~N_{\beta}{=}1.83,~N_{\gamma}{=}1.84$ 2V is medium large

Structure

Monoclinic, C2/m (l2),Z=8, isostructural with $MnMoO_4$, structure of $MnMoO_4$ determined by Abrahams and Reddy [1965].

Density

(calculated) 3.809 g/cm³ at 25° C.

Reference intensity

 $I/I_{conundum} = 2.6$

Polymorphism

Another monoclinic form is described as the high pressure modification, (wolframite type), PDF card 16-308. [Young and Schwartz, 1963].

Internal standard Ag, a = 4.08641 Å CuKa, λ = 1.54056 Å; temp. 25 °C			
d (Å)	I	hkl	<i>2θ</i> (°)
6.727	4	110,001	13.15
5.323	7	111	16.64
4.667	29	201	19.00
4.354	3	111	20.38
3.823	46	021	23.25
3.513	25	201	25.33
3.374	100	220	26.39
3.283	32	112	27.14
3.252	15	202	27.40
3.156	20	311	28.25
3.091	4	310	28.86
2.795	14	112,Ī31	31.99
2.724	6	022	32.85
2.669	13	312	33.55
2.663	10	222	33.62
2.623	3	131	34.16
2.556	<1	311	35.08
2.460	8	400	36.50
2.322	8	040,Ī32	38.74
2.275	2	331	39.58
2.252	10	330	40.00
2.176	9	222	41.47
2.128	4	132	42.44
2.112	4	313	42.79
2.100	3	240	43.04
2.086 2.080 2.068 2.018 2.011	8 10 8 5 8	422 241 223 312,331,+	43.35 43.48 43.73 44.88 45.05

Lattice constants

	a(Å)	b(Å)	c(Å)	β(°)
Pakhomov and Medvedev [1968] NBS, sample at 25 °C	10.35 10.281 ±.001	9.23 9.291 ±.001	7.12 7.030 ±.001	106°30′ 106°54′ ±1′

Internal standard Ag, $a = 4.08641 \text{ Å}$				
Cuk	$a_1 \wedge = 1$.	54056 A; temp. 2	15 °C	
d (Å)	I	hkl	20(°)	
1.966 1.938 1.928 1.924 1.911	5 11 12 10 4	403 241 421 510,512 042	46.14 46.84 47.09 47.21 47.53	
1.890 1.867 1.848 1.825 1.787	2 2 2 2 2 2	242 133 203 150 151	48.09 48.74 49.27 49.94 51.06	
1.755 1.739 1.720 1.714 1.689	10 2 6 8 10	204 151 441,332 114,531 242,440	52.07 52.58 53.21 53.42 54.28	
1.678 1.660 1.646 1.642 1.638	2 4 3 3	602 530,532 442 152,224 243	54.66 55.31 55.79 55.95 56.09	
1.625 1.616 1.612 1.607 1.5811	2 4 4 2 6	351,404 313,350 043 621 024	56.59 56.94 57.08 57.30 58.31	
1.5696 1.5602 1.5457 1.5341 1.5092	2 2 6 4	$ 152 114 \overline{352,620} 424 061 $	58.78 59.17 59.78 60.28 61.38	
1.5006 1.4960 1.4767 1.4661 1.4505	4 4 6 2 4	443 601 260 204 333	61.77 61.98 62.88 63.39 64.15	
1.4457	6	243,711	64.39	

- Abrahams, S.C. and J.M. Reddy(1965). Crystal structure of the transition-metal molybdates. I.paramagnetic alpha-MnMoO₄, J. Chem. Phys. 43, No.7, 2533-2543.
- Pakhomov, V. I. and A. V. Medvedev (1968). Preliminary data on the crystal structure of magnesium molybdate, Soviet Phys. Cryst. (English Transl.) 12, No.6, 925.
- Young, A.P. and C.M. Schwartz (1963).Highpressure synthesis of molybdates with the wolframite structure, Science 141, 348-349.

Crystals of the hexahydrate were formed very slowly when anhydrous magnesium perchlorate hydrated in a loosely stoppered bottle.

Major impurities

0.001-0.01% each: Ca

Color

Colorless

Optical data

Uniaxial (-) $N_0 = 1.484$, $N_e = 1.468$

Structure

Hexagonal, P6/mmm (191), Z=4 or orthorhombic, Pmn2₁ (31), Z=2Structure determined by West, [1935]

Lattice constants

	a(Å)	c(Å)
West [1935] NBS, sample at 25 °C	15.55 15.606 ±.001	5.27 5.2788 ±.0005

Density

(calculated) 1.976 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 1.7$

Additional patterns

1. PDF card 14-22 [Hanawalt et al., 1938]

Internal standard W, a = 3.16516 Å					
CuK a_1 λ = 1.54056 Å; temp. 25 °C					
d (Å)	Ι	hkl	20(°)		
6.75	6	200	13.11		
4.92	4	101	18.03		
4.37	6	111	20.29		
4.15	90	201	21.37		
3.90	100	220	22.80		
3.670	2	211	24.23		
3.424	2	301	26.00		
3.377	4	400	26.37		
3.054	1	311	29.22		
2.843	85	401	31.44		
2.671 2.638 2.573 2.552 2.458	<1 11 20 3	321 002 411 420 202	33.52 33.95 34.83 35.13 36.52		
2.332	1	331	38.58		
2.297	13	421	39.18		
2.292	2	600	40.01		
2.205	<1	511	40.90		
2.1862	<1	222	41.26		
2.0796	4	402	43.48		
2.0715	4	601	43.66		
2.0474	<1	431	44.20		
2.0023	1	521	45.25		
1.9501	10	440	46.53		
1.9202	1	611	47.30		
1.8740	2	620	48.54		
1.8354	9	422	49.63		
1.8135	<1	531	50.27		
1.7872	<1	512	51.06		
1.7660	11	621	51.72		
1.7134	1	602	53.43		
1.7025	2	203,630	53.80		
1.6897	1	800	54.24		
1.6440	<1	541	55.88		
1.6208	<1	631	56.75		
1.6089	1	801	57.21		
1.5931	<1	313	57.83		
1.5684	<1	442	58.83		
1.5609	3	403,550	59.14		
1.5499	<1	640	59.60		
Internal standard W, a = 3.16516 Å					
--	---	---	---	--	--
Cuk	$CuKa_1 \lambda = 1.54056 A; temp. 25 °C$				
d (Å)	I	hkl	20(°)		
1.5283 1.4874 1.4746 1.4493 1.4451 1.4229 1.4200	2 4 4 <1 <1 2 2	622 641 503,820 423 901 802 821	60.53 62.38 62.98 64.21 64.42 65.55 65.70		
1.3866	1	603	67.49		
1.3686	<1	651	68.50		
1.3550	1	741	69.29		
1.3517	1	10.0.0	69.48		
1.3378	<1	613	70.31		
1.3005	4	533,660	72.64		
1.2829	1	623,10.1.0	73.80		
1.2503	1	224	76.06		
1.2412	1	841	76.72		
1.2184	<1	803	78.43		
1.2161	<1	931	78.60		
1.2032	<1	10・0・2	79.61		
1.1829	2	10・2・1	81.26		
1.1665	1	662	82.65		
1.1634	<1	643	82.92		
1.1496	<1	842	84.14		
1.1388	<1	604	85.13		
1.1263	<1	524,12•0•0	86.30		
1.1027	<1	10.2.2	88.62		
1.0931	<1	444	89.61		
1.0872	<1	861	90.22		
1.0820	1	833,10.4.0	90.78		

- Hanawalt, J.D., H.W. Rinn, and L.K. Frevel (1938). Chemical analysis by x-ray diffraction, Ind. Eng. Chem. Anal. Ed. 10, 457-513.
- West, C.D. (1935). Crystal structures of hydrated compounds. II structure type Mg(ClO₄)₂·6H₂O, Z.Krist. (A)91,480-493

The sample was obtained from Mallinckrodt Chemical Works.

Major impurities

trace amounts of Fe, Ca, Cr, and Mg.

Color

Orange-red

Structure

Tetragonal,	P42	/nmc	(137)	, Z=2,	structure,
determined	by	Bijvo	et et	al.,	[1926].

Lattice constants

	a(Å)	c(Å)
Havighurst* [1925] Bijvoet et al.* [1926] Huggins and Magill*[1927]- Swanson and Tatge [1953] Vlasse [1963] NBS, sample at 25 °C	4.356 4.357 4.34 4.390 4.361 4.3693 ±.0001	12.3412.3612.3412.3812.45012.4399±.0004
*values as published		
Density		

(calculated) 6.354 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 3.8$

Polymorphism

Goya et al.[1962] reported a yellow, orthorhombic form stable above 127 °C. Vlasse [1963] also notes a metastable orange, cubic or pseudo cubic form.

Additional patterns

Havighurst [1925]
 Hanawalt, Rinn, and Frevel [1938]

3. PDF card 4-454 [Swanson and Tatge, 1953]

Inte	516 Å		
CuK	25 °C		
d (Å)	I	hkl	20(°)
6.223	55	002	14.22
4.122	70	101	21.54
3.577	100	102	24.87
3.113	3	004	28.65
3.092	2	110	28.85
3.009	40	103	29.66
2.768	30	112	32.32
2.534	7	104	35.39
2.192	60	114	41.14
2.186	55	200	41.27
2.163	17	105	41.73
2.074	14	006	43.60
2.062	6	202	43.87
1.931	9	211	47.02
1.874	15	106	48.55
1.865	14	212	48.79
1.789	1	204	51.02
1.768	6	213	51.65
1.722	1	116	53.14
1.6543	3	214	55.50
1.6464	5	107	55.79
1.5554	5	008	59.37
1.5450	4	220	59.81
1.5371	5	215	60.15
1.5039	6	206	61.62
1.4655	2	108	63.42
1.4469	2	301	64.33
1.4221	4	216	65.59
1.4181	5	302	65.80
1.3745	2	303	68.17
1.3490	2	312	69.64
1.3176	3	109	71.55
1.3144	4	217	71.75
1.2669	5	208	74.89
1.2629	7	314	75.17
1.2570 1.2389 1.2168 1.2061 1.1966	3 2 1 1	305 226 218 321 1.0.10	75.58 76.89 78.55 79.38 80.14

Mercuric lodide, Hgl	(tetragonal) (revised	d) — continued
----------------------	-----------------------	----------------

Internal standard W, a = 3.16516 Å					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
1.1917	2	3.0.6	80.54		
1.1895	2	322	80.72		
1.1631	1	323	82.95		
1.1542	3	1.1.10	83.73		
1.1285	1	219	86.09		
1.0958 1.0926 1.0893 1.0759 1.0630	2 2 1 1	228 400 325 402 308	89.33 89.66 90.00 91.44 92.88		
1.0559 1.0494 1.0462 1.0448 1.0266	1 1 2 1	411 2·1·10 326 412 413	93.69 94.45 94.83 95.00 97.24		
1.0160	<1	332	98.60		
1.0087	1	1.0.12	99.57		
1.0027	<1	309	100.38		
0.9828	2	1.1.12	103.21		
.9777	1	334	103.97		
.9770 .9664 .9435 .9244 .9157	2 1 1 2 2	$319,4204064163 \cdot 1 \cdot 102 \cdot 1 \cdot 12$	104.08 105.70 109.45 112.87 114.54		
.9101	2	417	115.63		
.8938	2	408	119.03		
.8838	1	426	121.27		
.8653	<1	432	125.79		
.8550	1	433,511	128.56		
.8489	2	$5123 \cdot 1 \cdot 124285144 \cdot 1 \cdot 10$	130.29		
.8291	1		136.56		
.8272	2		137.25		
.8261	1		137.63		
.8067	<1		145.44		
.8052	<1	$ \begin{array}{r} 436 \\ 522 \\ 523 \\ 3 \cdot 3 \cdot 10 \\ 3 \cdot 2 \cdot 12 \end{array} $	146.12		
.8045	<1		146.43		
.7963	<1		150.63		
.7933	1		152.32		
.7878	2		155.82		

References

- Bijvoet, J. M., A. Claassen, and A. Karssen (1926). The crystal structure of red mercuric iodide, Koninkl. Ned. Akad. Wetenschap. Proc. B 29, 529-546.
- Goya H.,J.L.T. Waugh and H. Zeitlin (1962) The color of mercuric iodide on alumina, J. Phys. Chem. 66, 1906-1907.
- Hanawalt J.D., H.W. Rinn, and L. K. Frevel (1938). Chemical analysis by x-ray diffraction, Ind. Eng. Chem., Anal. Ed. 10, 457-512.
- Havighurst R.J. (1925). X-ray reflections from mercuric iodide, Am. J. Sci. 10, 556-558.

Huggins, M. L. and P. L. Magill(1927). The crystal structures of mercuric and mercurous iodides, J. Am. Chem. Soc. 49, 2357-2367.

- Swanson, H.E. and E. Tatge (1953).Standard x-ray diffraction powder patterns, Natl. Bur. Std. U.S. Circ. 539, Vol. I, 74-76.
- Vlasse, Marcus (1963) The structure of the crystalline phases in the mercuric iodide system, 21st Annual Pittsburgh Diffraction Conference, (Abstracts).

Sample The sample was prepared at NBS by melt- ing a stoichiometric mixture of $K_2 SO_4$ and CdSO, and annealing for 18 hours at	Internal standard W, a = 3.16516 Å CuK a_1 λ = 1.54056 Å; temp. 25 °C			
300 °C and then for 3 days at 150 °C.	d (Å)	Ι	hkl	20(°)
Major impurities 0.001-0.01% each: Na 0.01 -0.1 % each: Ca and Al	7.23 5.90 5.11 4.572	<1 33 3 35	110,011 . 111 200 210,201	12.23 15.00 17.34 19.40
Color Yellowish white	3.607 3.413	4 27	202 221,122	24.66 26.09
$Optical data$ Very low double refraction. $N_{\alpha}{=}1.588$ and $N_{\gamma}{=}1.592$ (data limited by small grain	3.245 3.227 3.216	80 }100 {	130,031 310,301 013,103	27.46 27.62 27.72
Size of the sample). Structure Orthorhombic, probably P2, 2, 2, (19), Z=4 Distorted langbeinite-type. A cubic cell	3.094 3.077 2.841 2.830 2.737 2.727	15 22 8 12 } 82 {	131 311 032,320 023,302 231,132,+ 312,123,+	28.83 28.99 31.46 31.59 32.69 32.81
was reported by Gattow and Zemann [1958]	2.568 2.551 2.483 2.475 2.468	4 <1 8 12 8	040 400 232 401,223 014,104	34.91 35.15 36.15 36.27 36.37
Lattice constants $a(\mathring{A})$ $b(\mathring{A})$ $c(\mathring{A})$ Gattow and $a(\mathring{A})$ $b(\mathring{A})$ $b(\mathring{A})$	2.404 2.346 2.340 2.295 2.276	3 10 8 3 <1	303 133 313 240,042 024,204	37.38 38.33 38.44 39.22 39.57
Zemann [1958] 10.28 ±.05 NBS, sample at 25 °C 10.212 10.280 10.171 ±.001 ±.001 ±.001	2.237 2.231 2.226 2.176 2.092	11 } 8{ 12 15	241,142 421 412,124 323 242	40.28 40.40 40.49 41.46 43.21
Density (calculated) 3.677 g/cm ³ at 25 °C. Reference intensity $I/I_{corundum} = 2.7$	2.084 2.081 2.051 2.039 2.016	<pre>} 28 { 5 11 10</pre>	422 224 340 403 150,051	43.38 43.46 44.12 44.39 44.92
Polymorphism DTA measurements show a reversible in-	2.009 2.001 1.977 1.966 1.959	28 32 6 } 8 {	143,431 413 151 333,511 115	45.10 45.29 45.85 46.13 46.31
version at 166 °C. This is interpreted as a change to the undistorted langbein- ite structure on heating. 34	1.906 1.896 1.890 1.875 1.865	5 } 22 { 1 2	250,052 234,423,+ 025,205 251,152 521,512	47.68 47.93 48.09 48.52 48.79

Internal standard W, a = 3.16516 Å CuKa, λ = 1.54056 Å; temp. 25 °C				
d (Å)	I	hkl	20(°)	
1.802 1.783 1.778 1.775 1.760	1 } 8 { 8 4	404 441 522 414,225 350	50.62 51.20 51.33 51.45 51.91	
1.755	5	343,530	52.07	
1.749	5	503,035	52.26	
1.734	3	351,153	52.75	
1.729	2	531	52.90	
1.725	1	513,135	53.05	
1.706	1	442	53.67	
1.690	2	160,061	54.24	
1.678	3	610,601	54.65	
1.666	9	161	55.06	
1.663	17	352,253	55.20	
1.658	12	532,611	55.38	
1.650	13	116	55.64	
1.624	6	260,062	56.61	
1.614	<1	602	57.01	
1.609	6	026,206	57.20	
1.605	6	261,162	57.37	
1.597	6	443,344,+	57.69	
1.591	<1	405,126,+	57.93	
1.579	8	541,154	58.38	
1.575	8	145	58.55	
1.573	7	514,415	58.63	
1.558	3	533	59.26	
1.539	3	622	60.05	
1.535	2	226	60.23	
1.527	3	452	60.57	
1.524	3	630	60.71	
1.520	<1	425,036	60.91	
1.514	2	361	61.16	
1.508	2	631	61.45	
1.504	5	136	61.63	
1.475	5	444	62.95	
1.465	4	362,263	63.42	
1.459	<1	632,623	63.72	
1.455	4	326	63.92	
1.444	5	701,534,+	64.48	

References

Gattow,G.and J.Zemann (1958). Über Doppelsulphate vom Langbeinit-Typ, A⁺₂B²⁺₂ (SO₄)₃ Z. Anorg. Allgem. Chem. 293, 233-240.

The sample was prepared by melting a mixture of KCl and anhydrous $CaCl_2$ at 750 °C. The material is hygroscopic and the patterns were made with the sample enclosed in a dry-mount.

Color

Colorless

Optical data

Very low birefringence, N=1.568, shows polysynthetic twinning.

Structure

Orthorhombic, Pnma (62), Z=4, by analogy with $NaZnF_3$ and similar distorted perov-skites.

Lattice constants

	a(Å)	b(Å)	c(Å)
NBS, sample	7.551	10.442	7.251
at 25 °C	±.001	±.001	±.001

Density

(calculated) 2.155 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundu.} = 1.0$

Internal standard W, a = 3.16516 Å							
CuK	$CuKa_1 \lambda = 1.54056 \text{ Å}; \text{ temp. 25 °C}$						
$d(\mathring{A})$ I hkl 20							
5.227	25	101,020	16.95				
4.679	6	111	18.95				
3.776	9	200	23.54				
3.697	30	121	24.05				
3.622	5	002	24.56				
3.348	7	201	26.60				
3.270	12	102	27.25				
3.188	14	211	27.96				
3.137	35	031	28.43				
3.119	30	112	28.60				
3.058	18	220	29.18				
2.978	12	022	29.98				
2.896	14	131	30.85				
2.819	13	221	31.72				
2.770	8	122	32.29				

d (Å)	Ι	hkl	20(°)
2.614 2.610 2.559 2.537 2.414	<pre>} 100 7 10 4</pre>	202 040 230 212 231	34.27 34.33 35.03 35.35 37.21
2.377	15	301	37.82
2.338	13	222,141	38.48
2.318	13	311	38.81
2.248	4	113	40.07
2.163	8	321	41.72
2.146	13	240	42.06
2.119	14	042	42.64
2.107	25	123	42.89
2.037	5	203	44.45
2.006	3	051	45.16
1.963	3	331	46.21
1.920	4	133	47.31
1.887	5	400	48.19
1.857	2	410	49.00
1.847	12	242	49.30
1.827 1.812 1.778 1.772 1.758 1.744 1.740 1.720 1.674 1.670	6 1 7 10 10 1 <1 <1 <1 <1 2	250,401 004 332 251 341,233 303 060 313 402 124	49.87 50.31 51.35 51.52 51.97 52.43 52.55 53.21 54.81 54.94
1.652	3	161	55.59
1.632	4	252	56.32
1.615	<1	214	56.96
1.606	<1	243	57.34
1.569	1	351,062	58.80
1.559	2	224,333	59.22
1.547	2	153	59.74
1.530	2	440	60.45
1.509	3	432	61.40
1.489	1	044	62.30
1.479	2	234,501	62.78
1.474	<1	413	63.03
1.464	1	511	63.49
1.461	1	071,144	63.64
1.434	<1	171	64.96
1.4311 1.4164 1.4103 1.3998	1 <1 <1 <1 <1	423 324 115 450	

d (Å)

Sample

The $K_2 \operatorname{CaMg}(\operatorname{SO}_4)_3$ was prepared by melting a stoichiometric mixture of $K_2 \operatorname{SO}_4$, CaSO₄, and MgSO₄. The sample was annealed for 20 hours at 800°C and 17 hours at 400°C.

Major impurities

0.01 -0.1 % each: Cs, Cu, Na, and Rb

0.1 -1.0 % each: Fe

Color

Yellowish white

Optical data

Isotropic, N=1.525

Structure

Cubic, $P_{2_1}3$ (198), Z=4 by analogy with langbeinite, $K_2 Mg_2$ (SO₄)₃. The langbeinite structure was determined by Zemann and Zemann [1957].

	5.86	4	111	15.11
	4.544	1	210	19.52
	4.149	21	211	21.40
	3.596	<1	220	24.74
	3.388	2	221	26.28
	3.212	100	310	27.75
	3.066	9	311	29.10
	2.819	7	320	31.72
	2.717	34	321	32.94
	2.540	<1	400	35.30
with bein-	2.466 2.333 2.273 2.219 2.168	4 2 1 2 4	322 331 420 421 332	36.40 38.56 39.61 40.63 41.63
	2.075	7	422	43.59
	2.033	1	430	44.54
	1.994	10	510	45.45
	1.957	1	511	46.35
	1.888	4	520	48.16
662 003	1.856 1.769 1.743 1.718 1.695	1 3 1 <1 <1	521 522 530 531 600	49.04 51.61 52.44 53.27 54.06
	1.671	1	610	54.90
	1.649	8	611	55.69
	1.608	2	620	57.26
	1.588	2	621	58.04
	1.569	2	541	58.82

Internal standard W, a = 3.16516 A

CuK a_1 $\lambda = 1.54056$ Å; temp. 25 °C

hkl

20(0)

Lattice constants

				a(Å)
NBS,	sample	at	25°C	10.1662 ±.0003

Density

(calculated) 2.723 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 2.6$

Internal standard W, a = 3.16516 Å CuK a_1 λ = 1.54056 Å; temp. 25 °C					
$d(\hat{A})$ I hkl $2\theta(\circ)$					
1.550 1.532 1.5154 1.4986 1.4678	<1 <1 2 2 1	533 622 630 631 444	59.58 60.37 61.10 61.86 63.31		
1.4522 1.4380 1.4096 1.3967 1.3834	1 <1 1 1 2	632 550 640 720 721	64.07 64.78 66.25 66.94 67.67		
1.3586 1.3468 1.3348 1.3234 1.3014	1 <1 <1 1 1	642 722 730 731 650	69.08 69.77 70.49 71.19 72.58		
1.2909 1.2612 1.2517 1.2423 1.2328	1 	732 810 811 733 820	73.27 75.29 75.96 76.64 77.34		
1.2240 1.2154 1.1985 1.1817 1.1740	<1 <1 <1 1 <1	821 653 822 831 751	78.00 78.66 79.99 81.36 82.01		
1.1513 1.1290 1.1223 1.1158 1.1090	<1 <1 <1 <1 <1 <1	752 841 910 911 842	83.99 86.04 86.68 87.31 87.99		
1.0961 1.0836 1.0774 1.0717 1.0545	1 <1 <1 <1 <1 <1	921 664 922 930 852	89.30 90.61 91.28 91.90 93.85		

References

Zemann,A. and J. Zemann (1957). Die Kristallstruktur vom Langbeinit,K₂Mg₂ (SO₄)₃, Acta Cryst. 10, 409-413.

The sample was prepared at NBS by melting a stoichiometric mixture of $K_{\rm 2} \, {\rm SO}_4$ and ${\rm CaSO}_4$. This was then annealed for 18 hours at 700 °C.

Major impurities

0.01 -0.1 % each: Ag and Cu.

0.1 -1.0 % each: Cs and Na.

Color

Colorless.

Optical data

Biaxial(-) $N_{\alpha}{=}1.522$, $N_{\beta}{=}1.526$, $N_{\gamma}{=}1.527$, 2V is small.

Structure

Orthorhombic, probably $P2_12_12_1$ (19),Z=4. Distorted langbeinite type. K_2Ca_2 (SO₄)₃ has been reported as cubic [Ramsdell, 1935].

Lattice constants

	a(Å)	b(Å)	c(Å)
Ramsdell [1935] NBS, sample at	10.35		
25° C	10.334 ±.001	10.501 ±.001	10.186 ±.001

Density

(calculated) 2.683 g/cm³ at 25 °C.

Reference intensity

 $1/I_{corundum} = 0.9$

Polymorphism

Inverts to a cubic langbeinite form at 200 °C [Morey et al., 1964]. An inversion at 940 °C has also been reported [Bell-anca, 1942].

Internal standard W, a = 3.16516 Å					
CuK	$a_1 \lambda = 1$.54056 A; temp. 2	:5 ℃		
d (Å)	Ι	hkl	20(°)		
7.32	4	011	12.08		
5.969	8	111	14.83		
4.665	3	021	19.01		
4.574	6	012,102	19.39		
4.255	28	121	20.86		
4.221 4.189 3.462 3.315 3.272 3.263	23 16 12 93 } 79 {	211 112 221 130,031 310 301	21.03 21.19 25.71 26.87 27.23 27.31		
3.225	100	013,103	27.64		
3.152	18	131	28.29		
3.116	18	311	28.62		
3.082	3	113	28.95		
2.987	2	222	29.89		
2.881 2.853 2.786 2.776 2.750 2.743	18 6 43 49 } 43 {	032,320 302,023 231 132 312,123 213	31.02 31.33 32.10 32.22 32.53 32.62		
 2.543	6	140,041	35.26		
2.510	4	410,322	35.75		
2.497	4	223	35.93		
2.471	4	104,141	36.32		
2.436	2	033,411	36.86		
2.406	2	114	37.35		
2.387	3	331	37.65		
2.372	7	133	37.90		
2.357	2	313	38.15		
2.341	2	240	38.42		
2.333	2	042	38.55		
2.276	5	142	39.56		
2.250	2	412	40.04		
2.232	3	214	40.38		
2.213	4	332	40.74		
2.204	8	233	40.91		
2.196	11	323	41.07		
2.125	4	242	42.50		
2.109	18	422	42.84		

Internal standard W, a = 3.16516 Å CuK a_1 λ = 1.54056 Å; temp. 25 °C					
d (Å)	Ι	hkl	20(°)		
2.093	22	224	43.18		
2.058	8	150,051,+	43.97		
2.044	6	341	44.27		
2.037	14	431,143	44.44		
2.018	19	413,151,+	44.88		
2.010	14	314	45.06		
1.990	4	333,511	45.55		
1.941	2	052	46.75		
1.932	5	342	47.00		
1.924	6	432,520	47.21		
1.914	6	502,423,+	47.46		
1.908	4	152,324	47.62		
1.891	3	521	48.08		
1.884	1	512	48.26		
1.818	2	252	50.14		
1.811	6	441	50.33		
1.799	2	144,522	50.71		
1.793	3	350	50.88		
1.786	4	414,053	51.09		
1.780	4	530,343	51.27		
1.765 1.753 1.730 1.725 1.700	2 2 2 6	503,035 305,531 315 160,061 161,610	51.75 52.13 52.89 53.04 53.87		
1.697 1.692 1.688 1.675 1.664	6 8 5 4	601,006 352 253 016,106,+ 325	53.98 54.17 54.30 54.74 55.16		
1.654 1.635 1.631 1.610 1.604	5 2 7 6	062,116 162 602 434,045 504,541	55.51 56.22 56.35 57.15 57.40		
1.600	4	154,405	57.55		
1.594	2	216	57.78		

Additional patterns 1.PDF card 17-0741 [Morey et al.,1964]

- Bellanca,A. (1942) L'aftitalite nel sistema ternario K₂ SO₄ -Na₂ SO₄ -CaSO₄, Periodico Mineral. (Rome) 13, 21-85.
- Morey, G.W., J.J. Rowe, and R.O. Fournier (1964). The system K₂ Mg₂ (SO₄)₃ (langbeinite) - K₂ Ca₂ (SO₄)₃ (calcium-langbeinite), J. Inorg. Nucl. Chem. 26, 53-58.
- Ramsdell, L.S. (1935). An x-ray study of the system K_2SO_4 -MgSO₄ -CaSO₄, Am. Mineralogist. 20, 569-574.

The sample was crystallized from a mixture of concentrated hydrochloric acid, KCl and $CuCl_2$ by dehydration in a desiccator.

Major impurities

less than 0.001% each of Al, Ba, Ca, Mg,

and Si

Color

Strong brown

Optical data

Anisotropic, $N_{\alpha}{=}1.670,~N_{\gamma}{=}1.890.Crystals$ were very fine and needle shaped.

Structure

Monoclinic, $P2_1/c$ (14), Z=4, Structure determined by Willett et al. [1963]

Lattice constants

	a(Å)	b (Å)	c(Å)	β (°)
Willett et al [1963] NBS	4.029 ±.005	13.785 ±.003	8.736 ±.004	97°20′ ±5′
sample at 25 °C	4.031 ±.001	13.788 ±.002	8.732 ±.001	97°10′ ± 1′

Density

(calculated) 2.883 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 1.0$

References

Willett, R. D., C. Dwiggins, Jr., R. F. Kruh and R. E. Rundle (1963). Crystal structures of KCuCl₃ and NH₄ CuCl₃. J. Chem. Phys. 38, 2429-2436.

Internal standard W, a = 3.16516 Å					
$\operatorname{CuK}a_1 \lambda = 1.54056 \text{ A}; \text{ temp. } 25 \ ^{\circ}\mathrm{C}$					
d (Å)	I	hkl	20(°)		
7.33	65	011	12.06		
6.89	100	020	12.84		
5.40	55	021	16.41		
4.33	14	002	20.47		
4.13	30	012	21.48		
4.06	40	031	21.87		
3.67	75	022	24.20		
3.45	8	040	25.81		
3.366	15	111	26.46		
3.342	12	121	26.65		
3.178	80	IO2	28.42		
3.061	95	I12	29.15		
2.937	15	I31	30.41		
2.856	90	I22	31.29		
2.772	40	102,131	32.27		
2.714	90	112	32.98		
2.698	75	042	33.18		
2.665	40	023	33.60		
2.629	60	051	34.07		
2.572	60	122	34.85		
2.454	6	Ī13	36.58		
2.374	25	132	37.87		
2.346	30	Ī23	38.34		
2.326	17	052	38.67		
2.271	45	150	39.66		
2.222	45	061	40.57		
2.215	45	043	40.69		
2.186	11	113	41.26		
2.158	13	142,151	41.83		
2.142	4	014	42.16		
2.110	12	123	42.83		
2.066	20	024	43.77		
2.020	17	143	44.83		
2.001	40	200	45.29		
1.959	25	034	46.30		
1.932	12	124	46.99		
1.921	20	071	47.28		
1.863	30	143	48.84		
1.850	17	153	49.22		
1.844	16	134	49.38		
1.792	18	072	50.90		
1.767	17	170	51.69		
1.750	19	171	52.21		
1.703	9	054	53.78		

The sample was prepared by adding hydrofluoric acid to a mixture of $K_{\rm 2}\,CO_3$ and $\rm NiCO_3$. The material was then heated to about 200 $^\circ C$.

Color

Pale yellow green

Structure

Cubic, perovskite type, Pm3m (221) Z=1[Rüdorff et al., 1958]. KNiF₃ was reported by Martin et al., [1956] as pseudocubic.

	a(Å)
Martin et al.[1956]	4.01*
Rüdorff et al.[1959]	4.009
Hirakawa et al.[1960]	4.015
	±.001
Okazaki and Suemune[1961]	4.014
	±.001
Knox [1961]	4.012
NBS, sample at 25 °C	4.0127
	±.0001

Internal standard W, a = 3.16516 Å CuKa₁ λ = 1.54056 Å; temp. 25 °C d (Å) Ι hkl 20(°) 4.02 30 100 22.12 100 110 2.84 31.48 2.317 12 111 38.83 2.006 65 200 45.15 1.795 11 210 50.83 1.639 30 211 56.07 1.418 25 220 65.80 1.3376 4 300 70.32 1.2686 10 310 74.77 1.2096 2 311 79.11 1.1581 8 222 83.38 1.1129 2 87.60 320 1.0726 9 321 91.80 1.0032 4 400 100.32 .9732 2 410 104.65 .9457 6 411 109.08 .9206 2 331 113.59 .8973 8 420 118.29 .8757 2 421 123.20 .8554 4 332 128.45 .8190 5 422 140.27 .7870 3 510 156.35

*pseudocubic

Density

(calculated) 3.978 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 3.0$

Additional patterns

l.PDF card 1-0985 Dow Chemical Co., Midland, Michigan.

- Hirakawa, K., K.Hirakawa and T. Hashimoto (1960). Magnetic properties of potassium iron group fluorides, KMF₃, J.Phy. Soc. Japan 15, 2063-2068.
- Knox, K.(1961). Perovskite-like fluorides, I. Structures of KMnF₃, KFeF₃, KCoF₃, KNiF₃, and KZnF₃. Crystal field effects in the series and in KCrF₃ and KCuF₃, Acta Cryst. 14, 583-585.
- Martin, R.L., R.S. Nyholm and N. C. Stephenson (1956). Antiferromagnetism in complex fluorides with perovskite structure Chem. Ind. (London) 1956, 83-85.
- Okazaki,A. and Y. Suemune(1961). The crystal structures of KMnF₃, KFeF₃, KCoF₃, KNiF₃ and KCuF₃ above and below their Néel temperatures, J. Phys. Soc. Japan 16, 671-675.
- Rüdorff, W., J. Kändler, G. Lincke and D. Babel (1959). Über Doppelfluoride von Nickel und Kobalt, Angew. Chem. 71, 672.

The sample was prepared at NBS by slow evaporation of an equimolar solution of $K_2\,SO_4$ and $ZnSO_4$.

Major impurities

less than 0.001 % each: Ca, Cu, Li, Mg, Mn, Rb, and Si

Color

Colorless

Optical data

Biaxial(+) N $_{\alpha}$ =1.478, N $_{\beta}$ =1.481, N $_{\gamma}$ =1.496 2V is large

Structure

Monoclinic, P_{2_1}/a (14), Z=2. Isostructural with other"Tutton's salts"[Tutton, 1893]. The structure of a "Tutton Salt", (NH₄)₂Mg(SO₄)₂.6H₂O, was determined by Margulis and Templeton [1962].

Lattice constants

	a(Å)	b (Å)	c(Å)	β(°)
Kohler, Franke* [1965] NBS,	9.04	12.20	6.15	104°48′
at 25 °C	9.041 ±.001	12.215 ±.001	6.156 ±.001	104°49′ ±1′

*PDF card 18-1074

Density

(calculated) 2.242 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 1.3$

Internal standard W, a = 3.16516 Å CuKa ₁ λ = 1.54056 Å; temp. 25 °C						
$d(A)$ I hkl $2\theta(\circ)$						
6.12	14	020	14.46			
5.96	6	001	14.86			
5.35	12	011	16.57			
5.13	12	Ī11	17.28			
5.00	4	120	17.72			
4.38	25	200	20.27			
4.265	28	021	20.81			
4.154	87	111	21.37			
4.051	82	201	21.92			
3.845	4	211	23.11			
3.691	100	130	24.09			
3.581	10	121	24.84			
3.552	10	220	25.05			
3.374	4	221	26.39			
3.362	12	031	26.49			
3.303	25	131	26.97			
3.159	18	201	28.23			
3.058	41	211,040	29.18			
2.975	64	002,112	30.01			
2.872	4	231	31.11			
2.846	8	311	31.40			
2.832	17	310	31.56			
2.806	29	221	31.86			
2.742	21	122	32.63			
2.684	7	141	33.35			
2.640	7	321	33.93			
2.557	6	222	35.06			
2.513	5	141	35.70			
2.502	10	240	35.86			
2.495	13	231	35.97			
2.448 2.406 2.401 2.380 2.260	<2 5 { 46 7	132 122 032 331 051	36.68 37.34 37.43 37.77 39.86			
2.244	6	401,322,+	40.15			
2.203	9	132	40.93			
2.195	23	241	41.09			
2.176	<2	212	41.46			
2.150	3	410	41.98			

Potassium Zinc Sulfate Hexahydrate	$K_2 Zn(SO_4)_2 \cdot 6H_2O$	(monoclinic) -	continued
------------------------------------	------------------------------	----------------	-----------

Internal standard W, a = 3.16516 Å CuKa ₁ λ = 1.54056 Å ; temp. 25 °C				
$d(\mathring{A})$ I hkl $2\theta(\circ)$				
2.137 2.131 2.114 2.107 2.093	} 16 { <2 4 3	$ \begin{array}{r} 151 \\ 250,042 \\ \overline{341} \\ 340,\overline{421} \\ \overline{251} \end{array} $	42.26 42.37 42.73 42.88 43.19	
2.071	$ 12 \\ 14 \\ < 2 \\ 2 $	242	43.66	
2.058		331,420	43.95	
2.037		060	44.44	
2.024		402,113	44.74	
2.010		203	45.07	
1.984	13	003,213	45.69	
1.945	<2	123,232	46.67	
1.932	2	251	47.00	
1.926	5	061,430	47.16	
1.910	<2	152,223	47.57	
1.893	6	342	48.03	
1.889	8	052	48.14	
1.876	8	411,351	48.49	
1.871	8	350	48.61	
1.856	8	313	49.03	
1.849	3	161	49.23	
1.831	6	133	49.75	
1.820	8	261	50.09	
1.815	4	113,421,+	50.23	
1.803	5	233	50.59	
1.783	7	033	51.18	
1.776	8	322,440	51.41	
1.758	2	123	51.96	
1.731	6	510	52.85	
1.722	<2	431	53.15	
1.707	3	351,333	53.66	
1.696	2	162	54.02	
1.691	4	332	54.21	
1.680	4	520,062,+	54.58	
1.674	4	071,133	54.79	
1.654	<2	203,451	55.51	
1.650	<2	262	755.66	
1.639	<2	213,423,+	56.07	
1.628	2	450	56.46	
1.623	4	171	56.68	

Internal standard W, a = 3.16516 Å CuK a_1 λ = 1.54056 Å; temp. 25 °C				
d (Å)	$d(\hat{A})$ I hkl $2\theta(\circ)$			
1.608	2	162 223 532 412 452,511	57.23	
1.597	<2		57.68	
1.577	3		58.47	
1.566	<2		58.93	
1.559	<2		59.20	
1.555	<2	541	59.39	
1.539	<2	053	60.05	
1.533	2	204,233	60.32	
1.522	<2	214,114	60.83	
1.517	2	540,172	61.05	
1.505	2	072,180	61.59	
1.496	<2	370,611	62.00	
1.486	2	124,443	62.46	
1.474	<2	181,523	63.02	
1.472	<2	432	63.09	
1.467	<2	153,531	63.35	
1.463	<2	313,621	63.52	
1.452	<2	551,172	64.06	
1.445	<2	024,163,+	64.42	

Additional patterns

PDF card 1-421, [Hanawalt et al., 1938]
 PDF card 18-1074, [Kohler and Franke, 1965]

- Hanawalt, J.D., H.D. Rinn, and L.K. Frevel (1938). Chemical analyses by x-ray diffraction, Ind. Eng. Chem. Anal. Ed. 10, 457-512.
- Kohler, K. and W. Franke (1965). Mineralogisches Institut Freie Universität, Berlin, Germany.
- Margulis, T. N. and D.H. Templeton (1962). Crystal structure and hydrogen bonding of magnesium ammonium sulfate hexahydrate, Z. Krist. 117, 344-357.
- Tutton, A. E. (1893).Connection between the atomic weight of contained metals and the magnitude of the angles of crystals of isomorphous series. A study of the potassium, rubidium, and cesium salts of the monoclinic series of double sulphates $R_2 M(SO_4) \cdot 6H_2O$, J. Chem. Soc. 63, 337-423.

The sample was prepared by melting a stoichiometric mixture of $Rb_2 SO_4$ and $3CdSO_4 \cdot 8H_2O$, which was then air quenched and annealed at 700 °C for 18 hours.

Color

Colorless

Optical data

Isotropic, N=1.590

Structure

Cubic, P2₁3 (198), Z=4, langbeinite type [Gattow and Zemann, 1958]. The langbeinite structure was determined by Zemann and Zemann, [1957].

Lattice constants

	a(Å)
Gattow and Zemann[1958] NBS, sample at 25 °C	10.382 10.3810 ±.0002

Density

(calculated) 4.060 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 5.3$

Internal standard Ag, a = 4.08641 Å CuKa, λ = 1.54056 Å; temp. 25 °C			
d (Å)	I	hkl	20(°)
5.98	4	111	14.80
4.64	9	210	19.12
4.23	15	211	20.96
3.669	5	220	24.24
3.460	2	221	25.73
3.283	100	310	27.14
3.130	11	311	28.50
2.881	5	320	31.02
2.773	65	321	32.25
2.593	1	400	34.56
2.517	3	410	35.64
2.380	2	331	37.76
2.321	1	420	38.77
2.265	1	421	39.77
2.214	4	332	40.72
2.119	24	422	42.63
2.076	3	430	43.57
2.037	31	510	44.44
1.997	4	511	45.38
1.927	7	520	47.11
1.895	1	521	47.97
1.806	5	522	50.48
1.779	3	530	51.30
1.706	2	610	53.68
1.6840	19	611	54.44
1.6413	8	620	55.98
1.6208	6	621	56.75
1.6017	8	541	57.49
1.5476	3	630	59.70
1.5304	6	631	60.44
1.4978 1.4829 1.4680 1.4538 1.4397	3 3 1 1	444 632 710 711 640	61.90 62.59 63.30 63.99 64.69
1.4260	2	720	65.39
1.4126	5	721	66.09
1.3874	2	642	67.45
1.3748	1	722	68.15
1.3631	2	730	68.82

Internal standard Ag, $a = 4.08641$ Å			
CuKa	$1_1 \land = 1.$	54056 A; temp. 2	
d (Å)	I	hkl	20(°)
1.3514 1.3291 1.3182 1.2971 1.2877	2 1 3 1 2	731 650 732 800 810	69.50 70.84 71.51 72.86 73.48
1.2779 1.2684 1.2598 1.2499 1.2409	1 2 <1 1 1	811 733 820 821 653	74.14 74.79 75.43 76.09 76.74
1.2236 1.2148 1.2068 1.1990 1.1827	4 1 5 2 1	822 830 831 751 832	78.03 78.70 79.33 79.95 81.28
1.1754 1.1534 1.1465 1.1395 1.1261	3 1 . <1 1 1	752 841 910 911 920	81.89 83.80 84.42 85.06 86.32
1.1196 1.1068 1.1003 1.0943 1.0882	2 1 2 3 1	921 664 922 930 931	86.94 88.21 88.86 89.48 90.12
1.0767 1.0706 1.0596 1.0541 1.0486	1 1 <1 1	852 932 844 940 941	91.35 92.02 93.26 93.90 94.54
1.0434 1.0331 1.0278 1.0179 1.0130	1 2 1 1	933 $10 \cdot 1 \cdot 0$ $10 \cdot 1 \cdot 1$ $10 \cdot 2 \cdot 0$ $10 \cdot 2 \cdot 1$	95.16 96.42 97.09 98.35 99.00
1.0083	1	950	99.62

Rubidium Cadmium Sulfate, $Rb_2Cd_2(SO_4)_3$ (cubic) – continued

References

Gattow,G.and J.Zemann (1958). Über Doppelsulfate vom Langbeinit-typ, A⁺₂B²⁺₂ (SO₄)₃, Z. Anorg. Allgem. Chem. 293, 233-240. Zemann,A. and J. Zemann (1957). Die Kristallstruktur vom Langbeinit,K₂Mg₂ (SO₄)₃, Acta Cryst. 10, 409-413.

The material was made by melting a stoichiometric mixture of RbCl and CaCl₂. The sample was very hygroscopic.

Color

Colorless

Optical data

Very low birefringence, № 1.576, polysynthetic twinning was noted.

Structure

Orthorhombic, distorted perovskite, Pnma (62), Z=4, by analogy with $NaZnF_{3}$.

Lattice constants

	a(Å)	b(Å)	c(Å)
NBS,	7.541	10.667	7.469
sample at 25 °C	±.001	±.001	±.001

Density

(calculated) 2.564 g/cm³ at 25° C.

Internal standard W, a = 3.16516 Å			
CuK	$a_1 \lambda = 1$.54056 Å; temp. 2	25 °C
d (Å)	Ι	hkl	20(°)
4.751	5	111	18.66
3.765	85	200,121	23.61
3.740	25	002	23.77
3.557	3	210	25.01
3.366	6	201	26.46
3.351	7	102	26.58
3.208	12	031,211	27.79
3.194	11	112	27.91
3.077	45	220	28.99
3.059	45	022	29.17
2.952	7	131	30.25
2.846	9	221	31.41
2.837	13	122	31.51
2.667	65	040	33.58
2.653	100	202	33.75

Internal standard W, a = 3.16516 Å CuK a_1 λ = 1.54056 Å; temp. 25 °C			
d (Å)	Ι	hkl	28(°)
2.588	5	230	34.63
2.577	7	212	34.79
2.443	5	231	36.76
2.438	4	132	36.84
2.382	3	141,301	37.73
2.326	9	311	38.68
2.307	3	113	39.01
2.174	30	321	41.50
2.163	45	123	41.73
2.086	3	142,302	43.34
2.078	3	203	43.52
2.052	3	051	44.10
2.039	2	033,213	44.39
1.978	4	151,331	45.83
1.882	35	242	48.33
1.866	8	004	48.75
1.827	1	401	49.86
1.812	2	104	50.32
1.800	4	152,332	50.68
1.745	1	313	52.40
1.730	2	421	52.88
1.686	8	161	54.38
1.683	7	402	54.47
1.663	2	252,412	55.20
1.615	2	134	56.98
1.605	4	062,422	57.38
1.585	4	153,333	58.16
1.539	3	440	60.05
1.529	3	044	60.50
1.521	4	432	60.86
1.465 1.447 1.4429 1.4235 1.4208	2 2 4 4	511,171 423 324 442 163	63.45 64.31 64.53 65.52 65.66
1.4133	6	270,125,+	66.05
1.3865	<1	172,512	67.50
1.3646	2	531	68.73
1.3333	2	080	70.58
1.2569	5	280,600	75.59
1.2539 1.2482 1.1917 1.1878 1.1310	5 4 3 2	363,523 325,610 282,602 444 290,165	75.80 76.21 80.54 80.86 85.85

Sample The material was prepared by melting a 1:2 mixture of Rb ₂ SO ₄ and CaSO ₄ . This	Internal standard Ag, a = 4.08641 Å CuK a_1 λ = 1.54056 Å; temp. 25 °C			
was followed by quenching in air, grind- ing, and then annealing at 650 °C for several days.	d (Å)	Ι	hkl	20(°)
Color Colorless	6.09 4.726 4.312 3.734	4 2 6 5	111 210 211 220	14.54 18.76 20.58 23.81
Optical data Isotropic, N=1.520	3.519	3	221	25,29
Structure Cubic, P2 ₁ 3 (198), Z=4, langbeinite type [Gattow and Zemann, 1958]. The langbein- ite structure was described by Zemann	3.340 3.185 2.928 2.821 2.641	100 11 12 45 2	310 311 320 321 400	26.67 27.99 30.50 31.69 33.91
and Zemann, [1957].	2.564 2.424 2.364 2.306 2.252	12 4 1 3 7	410 331 420 421 332	34.97 37.05 38.03 39.03 40.00
Lattice constants	2.157 2.113 2.073 2.033	12 2 20 1	422 430 510 511	41.85 42.75 43.63 44.52
Gattow and Zemann [1958] 10.57 NBS, sample at 25 °C 10.5687 ±.0002	1.963 1.929 1.840 1.813 1.787 1.760 1.738	5 1 3 1 1 1 2	520 521 522 530 531 600 610	46.22 47.06 49.51 50.28 51.06 51.90 52.63
(calculated) 3.034 g/cm ³ at 25° C. Reference intensity $I/I_{corundum} = 4.6$	1.714 1.6710 1.6502 1.6311 1.6120	12 5 5 4 1	611 620 621 541 533	53.42 54.90 55.65 56.36 57.09
References Gattow, G. and J. Zemann (1958). Über Dop- pelsulfate vom Langbeinit-Typ, A ₂ ⁺ B ₂ ²⁺ - (SO ₄) ₃ , Z.Anorg. Allgem. Chem. 293, 233-	1.5931 1.5752 1.5580 1.5251 1.5096	1 4 4 2 2	622 630 631 444 632	57.83 58.55 59.26 60.67 61.36
240. Zemann, A. and J. Zemann (1957). Die Kris- tallstruktur vom Langbeinit, K ₂ Mg ₂ (SO ₄) ₃ , Acta Cryst. 10, 409-413.	1.4943 1.4799 1.4651 1.4516 1.4380	1 1 1 4	710 711 640 720 721	62.06 62.73 63.44 64.10 64.78

Internal standard Ag, $a = 4.08641 \text{ Å}$			
	$t_1 \wedge = 1$.	54050 A; temp. 2	5 .0
d (A)	Ι	hkl	20(°)
1.4122 1.3997 1.3879 1.3755 1.3531	2 1 2 1	642 722 730 731 650	66.11 66.78 67.42 68.11 69.40
1.3421 1.3211 1.3106 1.3010 1.2912	2 <1 1 1 1	732 800 810 811 733	70.05 71.35 71.99 72.61 73.25
1.2820 1.2724 1.2633 1.2454 1.2370	1 2 1 1	820 821 653 822 830	73.86 74.51 75.14 76.41 77.03
1.2288 1.2203 1.2047 1.1966 1.1741	2 1 1 1	831 751 832 752 663	77.64 78.28 79.49 80.14 82.00
1.1601 1.1533 1.1465 1.1397 1.1270	1 1 1 1	911 842 920 921 664	83.21 83.81 84.42 85.04 86.23
1.1202 1.1140 1.1080 1.0958 1.0900	2 2 1 1	922 930 931 852 932	86.89 87.49 88.09 89.33 89.93
1.0732 1.0674 1.0624 1.0568 1.0516	1 1 1 1	940 941 933 10・0・0 10・0・1	91.74 92.38 92.94 93.58 94.19
1.0466 1.0364 1.0316 1.0267	1 1 1	10.1.1 10.2.0 10.2.1 950	94.78 96.01 96.61 97.22

\mathbf{S} ample

The sample was prepared by melting a stoichiometric mixture of Rb_2SO_4 and $MgSO_4 \cdot 7H_2O$. The melt was cooled quickly and annealed at 800 °C for 18 hours.

Color

Colorless

Optical data

Isotropic, N=1.556

Structure

Cubic, $P2_1 3$ (198), Z=4, langbeinite type [Gattow and Zemann, 1958]. The langbeinite structure was determined by Zemann and Zemann, [1957].

Lattice constants

		a(Å)
Gattow and Zemann	[1958]	10.005
NBS, sample at 25	°C	10.0051
		±.0003

Density

(calculated) 3.367 g/cm^3 at 25° C.

Reference intensity

 $1/I_{\text{corundum}} = 3.3$

References

Gattow,G.and J.Zemann (1958). Über Doppel-sulfate vom Langbeinit-typ, A⁺₂B²⁺₂ (SO₄)₃, Z. Anorg. Allgem. Chem. 293, 233-240.
Zemann,A. and J. Zemann (1957). Die Kristallstruktur vom Langbeinit,K₂Mg₂ (SO₄)₃, Acta Cryst. 10, 409-413.

Internal standard W, a = 3.16516 Å			
CuKa	$\lambda = 1.5$	54056 Å; temp. 25	°C
d (Å)	Ι	hkl	20(°)
5.76	6	111	15.36
4.47	7	210	19.86
4.086	6	211	21.73
3.537	5	220	25.16
3.336	6	221	26.70
3.162	100	310	28.20
3.015	22	311	29.60
2.890	3	222	30.92
2.772	25	320	32.27
2.673	41	321	33.50
2.500	2	400	35.89
2.424	24	410	37.05
2.356	2	411	38.15
2.294	10	331	39.24
2.237	4	420	40.29
2.184	8	421	41.31
2.133	9	332	42.33
2.043	10	422	44.30
2.001	2	430	45.27
1.961	19	510	46.25
1.926	2	511	47.15
1.857	7	520	49.00
1.827	2	521	49.88
1.741	6	522	52.52
1.716	2	530	53.34
1.691	2	531	54.18
1.668	2	600	55.01
1.645	6	610	55.84
1.623	15	611	56.66
1.582	4	620	58.26
1.563	10	621	59.06
1.544	7	541	59.86
1.526	3	533	60.62
1.508	2	622	61.40
1.492	8	630	62.17
1.475	5	631	62.96
1.444	4	444	64.50
1.429	3	632	65.24
1.415	2	710	65.97
1.400	2	711	66.74

Rubidium Magnesium Sulfate, $Rb_2Mg_2(SO_4)_3$ (cubic) - continued

Internal standard W, a = 3.16516 Å CuK $a_1 \lambda$ = 1.54056 Å ; temp. 25 °C			
d (Å)	I	hkl	20(°)
1.387	1	640	67.47
1.374	2	720	68.21
1.3613	6	721	68.92
1.3366	3	642	70.38
1.3250	2	722	71.09
1.3136	3	730	71.80
1.3025	4	731	72.51
1.2807	3	650	73.95
1.2705	4	732	74.64
1.2413	3	810	76.71
1.2313	2	811	77.45
1.2224	1	733	78.12
1.2137	2	820	78.79
1.2049	3	821	79.48
1.1956	2	653	80.22
1.1790	3	822	81.59
1.1709	1	830	82.26
1.1630	4	831	82.95
1.1551	3	751	83.65
1.1473	1	662	84.33
1.1327	2	752	85.69
1.1117	2	841	87.72
1.1049	1	910	88.40
1.0982	2	911	89.08
1.0915	2	842	89.77
1.0853 1.0788 1.0666 1.0606 1.0548	1 2 3 2	920 921 664 922 930	90.43 91.13 92.47 93.15 93.82
1.0491 1.0376 1.0321 1.0161 1.0108	1 2 2 3	931 852 932 940 941	94.49 95.87 96.55 98.59 99.29
1.0057	1	933	99.98

Sample The sample was prepared at NBS by melt- ing an equimolar mixture of Rb ₂ SO ₄ and MpSO	Inte Cuk	rnal star $a_1 \lambda = 1$	ndard W, a = 3.16 .54056 Å; temp. :	516 Å 25 °C
M160 ₄ .	d (Å)	Ι	hkl	20(°)
Major impurities	5 901	2	111	15.00
0.01 -0.1 % each: Ag, Al, Cu, Na, and Sr	4.170	6	211	21.29
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3.613	6	220	24.62
0.1 -1.0 % each: Cs	3.405 3.230	2 100	221 310	26.15 27.59
Color		1-	0.1.1	
Colorless	3.081		311	28.96
	2.950	1 I I	320	31 55
Optical data	2.731	50	321	32.76
Isotropic, N=1.590	2.554	2	400	35.11
Structure	2.479	12	410	36.21
Cubic, $P2_1 3$ (198), $Z=4$, langbeinite-type	2.344	4	331	38.37
[Gattow and Zemann, 1958]. The langbein-	2.284	2	420	39.41
ite structure was determined by Zemann	2.228	3	421	40.45
and Zemann [1957].	2.179	7	332	41.40
	2.086	15	422	43.34
	2.043	2	430	44.30
	2.004	22	510	45.21
	1.967	2	511	46.11
	1.898	7	520	47.89
Lattice constants	1.866	2	521	48.76
	1.805	1	440	50.52
a(A)	1.778	5	522	51.33
	1.752	2	530	52.16
Gattow and Zemann [1958] 10.218	1./2/	2	231	52.99
±.004	1.703	1	600	53.79
NBS, sample at 25 °C 10.2147	1.679	4	610	54.60
±.0001	1.658	15	611	55.37
	1.615	5	620	56.96
	1.595	7	621	57.74
	1.576	6	541	58.50 /
Density	1.557	2	533	59.29
(calculated) 3.546 g/cm ³ at 25° C.	1.540	2	622	60.02
Defense interester	1.523	6	630	60.76
	1.506	Э	63 T	61.52
$^{\prime}$ corundum = 3.6	1.474	3	444	62.99
, , , , , , , , , , , , , , , , , , ,	1.459	3	632	63.72
	1.445	2	710	64.43
References	1.431	1	711	65.15
Gattow,G. and J.Zemann(1958). Über Doppel-	1.41/	2	640	65.85
sulfate vom Langbeinit-typ, $A_2^+ B_2^{3+} (SO_4^-)_3$,	1,403	2	720	66 60
Z. Anorg. Allgem. Chem. 293, 233-240.	1.390	6	721	67.30
Zemann,A. and J. Zemann (1957). Die Kris-	1.365	3	642	68.71
tallstruktur vom Langbeinit, K_2Mg_2 (SO ₄) ₃ ,	1.353	2	722	69.43
Acta Cryst. 10, 409-413.	1.341	2	730	70.13

Internal standard W, a = 3.16516 Å CuKa, λ = 1.54056 Å; temp. 25 °C			
d (Å)	I	hkl	20(°)
1.3297	3	731	70.80
1.3080	2	650	72.16
1.2973	2	732	72.85
1.2771	1	800	74.19
1.2670	2	810	74.88
1.2572	2	811	75.57
1.2477	2	733	76.25
1.2389	1	820	76.89
1.2297	2	821	77.57
1.2208	2	653	78.24
1.2040	2	822	79.55
1.1954	1	830	80.24
1.1875	4	831	80.88
1.1793	2	751	81.56
1.1642	1	832	82.85
1.1563	2	752	83.54
1.1352	2	841	85.46
1.1278	1	910	86.15
1.1211	2	911	86.80
1.1143	2	842	87.46
1.1081	2	920	88.08
1.1013	3	921	88.76
1.0891	4	664	90.03
1.0826	4	922	90.72
1.0766	2	930	91.36
1.0708	2	931	92.00
1.0592	1	852	93.31
1.0536	3	932	93.96
1.0374	2	940	95.89
1.0319	2	941	96.57
1.0267 1.0216 1.0166 1.0116 1.0017	1 2 <1 1	933 $10 \cdot 0 \cdot 0$ $10 \cdot 1 \cdot 0$ $10 \cdot 1 \cdot 1$ $10 \cdot 2 \cdot 0$	97.22 97.88 98.53 99.19 100.53
0.9969	2	$ \begin{array}{r} 10 \cdot 2 \cdot 1 \\ 950 \\ 951 \\ 10 \cdot 3 \cdot 0 \\ 10 \cdot 3 \cdot 1 \end{array} $	101.19
.9923	3		101.84
.9873	1		102.55
.9784	2		103.87
.9738	2		104.54
.9608 .9568 .9525 .9485 .9445 Plus 15	1 2 1 2 3 lines	10.3.2 871 953 10.4.0 10.4.1 to 0.8369	106.58 107.23 107.93 108.61 109.28

Rubidium Manganese Sulfate, $Rb_2Mn_2(SO_4)_3(cubic)$ – continued

The sample was prepared by fusion of RbCl and $SrCl_2$. The material was hygroscopic.

Color

Colorless

Optical data

Very low birefringence, N \cong 1.550; polysynthetic twinning.

Structure

Orthorhombic, Pnma (62), Z=4, distorted perovskite, by analogy with $RbCaCl_3$ and other ABX₃ compounds.

Lattice constants

	a(Å)	b(Å)	c(Å)
NBS, sample	7.924	10.973	7.631
at 25 °C	±.001	±.002	±.001

Density

(calculated) 2.797 g/cm³ at 25° C.

Internal standard Ag, $a = 4.08641 \text{ Å}$				
d (Å)	I I	hkl	2θ(°)	
5.49	11	101,020	16.14	
4.91	10	111	18.06	
3.962	30	200	22.42	
3.885	100	121	22.87	
3.818	35	002	23.28	
3.521	4	201	25.27	
3.435	6	102	25.92	
3.350	8	211	26.59	
3.296	10	031	27.03	
3.282	12	112	27.15	
3.211	7	220	27.76	
3.134	6	022	28.46	
3.043	12	131	29.33	
2.960	11	221	30.17	
2.910	9	122	30.70	
2.744	80	040	32.60	
2.686	10	230	33.33	
2.666	10	212	33.59	
2.534	4	231	35.40	
2.497	11	301	35.94	
2.455	12	222,141	36.57	
2.435	15	311	36.89	
2.273	20	321	39.62	
2.256	20	240	39.92	
2.227	25	042	40.48	
2.217	40	123	40.67	
2.141	4	203	42.17	
2.109	3	051	42.84	
2.062	6	331	43.88	
1.980	9	400	45.78	
1.941	20	242	46.75	
1.907	11	004	47.65	
1.863	6	420,251	48.85	
1.848	7	233,341	49.28	
1.758	4	402	51.96	
1.737	12	323,412	52.65	
1.715	5	252	53.37	

The sample was prepared by slow evaporation at room temperature of an equimolar solution of $Rb_2 SO_4$ and $ZnSO_4$.

Color

Colorless

Optical data

Biaxial (+) ${\tt N}_{\alpha}{=}1.483$, ${\tt N}_{\beta}{=}1.489,$ ${\tt N}_{\gamma}{=}1.497$ 2V is large.

Structure

Monoclinic, P_{2_1}/a (14), Z=2. $Rb_2 Zn (SO_4)_2 \cdot 6H_2 O$ is a "Tutton Salt"[Tutton, 1893]. The structure of a "Tutton Salt", $(NH_4)_2 Mg (SO_4)_2 \cdot 6H_2 O$ was determined by Margulis and Templeton, [1962].

Lattice constants

	a(Å)	b (Å)	c(Å)	B(°)
NBS sample at 25°C	9.185 ±.001	12.450 ±.002	6.242 ±.001	105°54.6′ ±.5

Density

(calculated) 2.596 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 1.6$

Internal standard Ag, a = 4.08641 Å CuKa, $\lambda = 1.54056$ Å; temp 25 °C				
d (Å)	Ι	hkl	20(°)	
7.20	6	110	12.28	
6.23	3	020	14.20	
6.00	2	001	14.74	
5.23	5	111	16.94	
5.084	4	120	17.43	
4.416	11	200	20.09	
4.318	20	021	20.55	
4.176	90	111	21.26	
4.139	100	201	21.45	
3.754	95	130	23.68	
3.607	8	121,220	24.66	
3.411	3	031	26.10	
3.367	17	I31	26.45	
3.170	20	201	28.13	
3.114	25	040	28.64	
3.070	25	211	29.06	
3.021	55	112,230	29.54	
2.933	5	231,140	30.45	
2.905	10	311	30.75	
2.876	20	202	31.07	
2.868	20	310	31.16	
2.822	20	221	31.68	
2.801	8	212	31.93	
2.785	15	122	32.11	
2.763	4	041	32.38	
2.738	7	141	32.68	
2.694	3	321	33.23	
2.662	2	320	33.64	
2.611	4	222	34.31	
2.546	7	141,240	35.22	
2.518	5	231	35.63	
2.491	9	132,241	36.03	
2.424	40	331,122	37.05	
2.400	4	330	37.44	
2.300	10	051	39.14	
2.293 2.248 2.237 2.221 2.217	10 6 20 7	$ \overline{322} 411 321 132,241 202 202 $	39.25 40.07 40.29 40.58 40.67	

Internal standard Ag, a = 4.08641 Å			
	I I I	hkl	20(°)
2.182	3	212	41.35
2.168	9	250	41.62
2.160	8	042	41.78
2.134	6	251	42.32
2.112	11	242	42.78
2.081	10	420	43.46
2.076	6	331,060	43.56
2.070	3	<u>4</u> 02	43.69
2.045	4	203	44.26
2.020	3	160,213	44.84
2.001 1.962 1.958 1.934 1.916	9 5 3 8	431,003 061 251 342 052	45.28 46.23 46.34 46.95 47.42
1.911	4	401	47.55
1.899	9	341	47.85
1.896	6	313	47.95
1.857	10	133	49.00
1.854	5	261	49.09
1.843	2	233	49.66
1.817	3	511	50.16
1.801	8	440	50.65
1.784	2	322	51.17
1.769	3	123	51.63
1.762	2	521	51.86
1.749	5	510	52.27
1.735	2	261,431	52.73
1.727	4	351,162	52.98
1.710	2	243	53.56
1.699 1.686 1.682 1.675 1.650	5 5 3 6	Ī71,332,+ 133 043,262,+ 423 171,270	53.93 54.37 54.50 54.77 55.66
1.633	1	343,271	56.28
1.625	2	530	56.60
1.6091	5	532	57.20
1.5979	2	342	57.64

- Margulis, T.N. and D. H. Templeton (1962). Crystal structure and hydrogen bonding of magnesium ammonium sulfate hexahydrate, Z. Krist. 117, 334-357.
- Tutton, A. E. (1893). Connection between the atomic weight of contained metals and the magnitude of the angles of crystals of isomorphous series. A study of the potassium, rubidium and cesium salts of the monoclinic series of double sulphates $R_2 M(SO_4)_2 \cdot 6H_2O$, J. Chem. Soc. 63, 337-423.

The sample was prepared at NBS by adding a solution of ZnCl_2 to one of RbF in HF. The precipitate was washed in water and alcohol.

Major impurities

0.01 -0.1 % each: Al,Ca,Cr,Cu,Fe,and Pt

0.1 -1.0 % each: Ba and Mg

Color

Colorless

Optical data

Isotropic, N=1.508

Structure

Cubic, Pm3m (221), Z=1. Perovskite-type. Various distortions of the perovskite structure have been reported as shown in the lattice constant table. The NBS pattern was indexed with the smaller cubic cell; however diffraction peaks were not sharp which may indicate that there was a slight degree of distortion.

Internal standard W, a = 3.16516 Å				
CuK	$a_1 \lambda = 1.$	54056 Å; temp. 23	5 °C	
d (Å)	Ι	hkl	20(°)	
4.13	<1	100	21.52	
2.914	100	110	30.66	
2.380	17	111	37.77	
2.062	53	200	43.88	
1.6829	38	211	54.48	
1.4574	25	220	63.81	
1.3033	13	310	72.46	
1.2427	3	311	76.61	
1.1899	6	222	80.68	
1.1014	12	321	88.75	
1.0307	2	400	96.76	
0.9717	6	330	104.89	
.9457	1	331	109.08	
.9217	6	420	113.39	
.8788	3	332	122.44	
.8413	4	422	132.58	
.8084	7	510	144.69	

Lattice constants

	a(Å)	c(Å)
Ludekens and Welch [1952]- Klasens et al. [1953] Schmitz-DuMont and Bornefeld [1956] Crocket and Haendler [1960] NBS, sample at 25 °C	8.71* 4.10** 8.25* 4.116 4.1215 + 0001	8.03*

*from kX

**pseudocubic

Density

(calculated) 4.929 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 5.6$

Additional patterns

 PDF card 12-0039 [Schmitz-DuMont and Bornefeld]

- Crocket, D.S. and H.M. Haendler(1960). Synthesis of fluorometallates in methanol. Some structure relationships, J.Am.Chem. Soc., 82,4158-4162.
- Klasens, H. A., P. Zalm, and F. O. Huysman (1953). The manganese emission in ABF₃ compounds, Philips Res. Rept. 8,441-451.
- Ludekens, W.L.W., and A.J.E. Welch (1952). Reactions between metal oxides and fluorides: some new double-fluoride structures of type ABF₃, Acta Cryst., 5, 841.
- Schmitz-DuMont,O. and H. Bornefeld (1956). Die Systemreihe Alkalifluorid/Zinkfluorid, Z.Anorg.Allgem.Chem.,287,120-137.

The sample of chortveitite was synthesized hydrothermally by Jun Ito. A stoichiometric mixture of Sc_2O_3 and SiO_2 was heated to 700 °C at a pressure of 2 ki-lobars for 20 hours.

Color

Yellowish white

Optical data

Birefringent, N_{α} =1.745, N_{γ} =1.760

Structure

Monoclinic, C2/m (12), Z=2 [Gossner and Mussgnug, 1929]. Structure determined by [Zachariasen, 1930].

Density

(calculated) 3.394 g/cm³ at 25° C.

Additional patterns

- 1. PDF card 15-383 [Sakurai et al. 1962]
- 2. PDF card 15-798 [Toporov et al. 1962]
- 3. PDF card 19-1125 [Horne, 1966]
- 4. Sabina and Traill, [1960]
- 5. Sakurai et al. [1962] 2nd pattern

References

- Gossner, B. and F. Mussgnug (1929). Beitrag zur Kenntnis des Thortveitites, Centr. Mineral., Geol. A, 1-5.
- Horne,J.E.T.(1966). X-ray diffraction data for thortveitite, Bull. Geol. Surv. Gt. Brit. No.25, 97-99.
- Sabina, A.P.and R.J.Traill (1960). Catalog of X-ray Diffraction Patterns and Specimen Mounts on File at the Geol. Surv. of Canada, Geol. Surv. Paper 60-4, 104.
- Sakurai, K., K. Nagashima, and A. Kato (1962). Thortveitite from Kobe, Omiya, Kyoto, Japan, Bull.Chem.Soc. Japan 35, 1776-1779.
- Toporov, N. A. and V. A. Vasil'eva (1962). Equilibrium diagram of the scandium oxide-silica binary system, Russ.J.Inorg. Chem. 7, 1001-1005.
- Zachariasen, W. H. (1930). The structure of thortveitite, Sc₂Si₂O₇, Z.Krist.73, 1-6.

Lattice constants

	$a(\stackrel{\circ}{A})$	b(Å)	c(Å)	β(°)
Gossner et al. [1929]**	*6.57	8.60.	4.75	103° 8′
Horne [1966]**	6.65	8.62	4.68	102°12′
	±.01	±.01	±.01	± 30′
NBS, sample at 25 °C	6.508	8.506	4.677	102°43′
	±.001	±.001	±.001	±1′

*as published

**natural mineral

Internal standard W, a = 3.16516 Å CuKa ₁ λ = 1.54056 Å; temp. 25 °C			
d (Å)	I	hkl	20(°)
5.09	$ 15 7 3 100 { } $	110	17.40
4.57		001	19.41
4.257		020	20.85
3.131		111	28.48
3.114		021	28.64
2.926	47	201	30.53
2.588	15	130	34.63
2.543	13	220	35.26
2.373	3	201	37.89
2.279	2	002	39.50
2.236	2	Ī12	40.29
2.169	18	131	41.60
2.126	3	040	42.48
2.084	10	202	43.39
2.073	8	221	43.62
2.043 2.010 1.957 1.927 1.870	16 1 5 14	$\overline{311}$ 022 112 041 $\overline{222}$	44.29 45.06 46.35 47.12 48.64
1.794	2	Ī32	50.85
1.737	3	311	52.62
1.720	4	241,312	53.21
1.696	7	330	54.01
1.690	10	331	54.22
1.685	9	202	54.40
1.640	19	132	56.02
1.587	5	400	58.08
1.519	6	151	60.96
1.507	9	203	61.49
1.493	6	332	62.14
1.489	5	242	62.32
1.462	2	402	63.59
1.418	7	060	65.83
1.391	3	113	67.24
1.366	7	133	68.64
1.335	3	421	70.46
1.323	5	351	71.20

Color

Structure

Lattice constants

	a(Å)	c(Å)
McCullough [1937] Swanson and Tatge [1953]- NBS, sample at 25 °C	8.370 8.35 8.3635 ±.0001	5.061 5.08 5.0635 ±.0002

Density

Reference intensity

Additional patterns

A sample of SeO ₂ from the Mallinckrodt Chemical Works was dried at 220 °C. The	Inte CuK	Internal standard W, a = 3.16516 Å CuKa ₁ λ = 1.54056 Å; temp. 25 °C			
material was hygroscopic and the pat- terns were made with the sample enclosed in a dry mount	d (Å)		hkl	20(°)	
in a dry mount.	5,909	12	110	14.98	
Color	4.180	55	200	21.24	
Colorless	3.742	60	210	23.76	
001011005	3.227	55	201	27.62	
Structure	3.008	100	211	29.67	
Totragonal PA/mbg (125) 7-9 structure					
determined by MaCullough [1927]	2.644	9	310	33.87	
determined by Mccurrough [1957].	2.531	25	002	35.43	
	2.345	10	311	38.36	
	2.327	10	112	38.66	
	2.321	10	320	38.77	
Lattice constants					
· · · · · · · · · · · · · · · · · · ·	2.167	11	202	41.65	
	2.110	6	321	42.83	
	2.092	5	400	43.21	
	2.029	<1	410	44.63	
McCullough [1937] 8.370 5.061 Swanson and Tatge [1953]- 8.35 5.08	1.972	2	330	45.98	
NBS, sample at 25 °C 8.3635 5.0635	1.933	18	401	46.98	
±.0001 ±.0002	1.883	14	411	48.30	
	1.870	5	420	48.65	
D. II	1.829	14	312	49.82	
(calculated) 4.161 g/cm ³ at 25° C.	1.754	10	421	52.09	
	1.710	11	322	53.53	
Reference intensity	1.673	1	430	54.83	
$1/1_{\text{corundum}} = 2.6$	1.640	2	510	56.03	
	1.589	1	431	58.00	
Additional patterns	1.566	5	203	58.94	
1. PDF card 4-429 [Swanson and Tatge,1953]				į.	
	1.5599	8	511	59.18	
	1.5528	8	520	59.48	
	1.5387	TT	213	60.08	
	1.5041	3	422	61.61	
	1.4850	<1	521	62.49	
	1.4784	1	440	62.80	
	1.4340	1	530	64.98	
	1.4225	1	313	65.57	
Deferences	1.3956	2	432	67.00	
References	1.3800	6	531	67.86	
McCullough, J.D. (1937). The crystal struc-					
ture of selenium dioxide, J. Am. Chem.	1.3748	9	610	68.15	
Soc. 59, /89-/94.	1.3268	2	611	70.98	
Swanson, H.E. and E. Tatge (1953). Stand-	1.3237	5	522	71.17	
Ald A-Tay Diffraction Powder Patterns,	1.3135	4	403	71.81	
Mac1.Bur.Std.U.S. Circ.539.Vol.I, 53-54.	1.3064	1	540	72.26	

Internal standard W, a = 3.16516 Å				
CuKa	$a_1 \lambda = 1.$	54056 Å; temp. 25	°C	
_ d (Å)	I	hkl	20(°)	
1.2974	2	413	72.84	
1.2798	1	621	74.01	
1.2768	3	442	74.21	
1.2646	4	541	75.05	
1.2528	2	423	75.88	
1.2105	5	631	79.04	
1.2083	7	612	79.21	
1.1826	1	550	81.29	
1.1760	2	513	81.84	
1.1608	2	542	83.15	
1.1516	1	711	83.96	
1.1112	2	324	87.77	
1.0982	1	730	89.08	
1.0929	2	533	89.63	
1.0732	3	731	91.74	
1.0709	2	650	91.99	
1.0651	1	334	92.64	
1.0546	<1	642	93.84	
1.0475	2	651	94.67	
1.0375	1	740	95.88	
1.0331	<1	543	96.42	
1.0238	<1	801	97.59	
1.0162	<1	741	98.58	
1.0143	1	820	98.83	
1.0027	2	633	100.38	
.9945 .9862 .9687 .9611 .9598	1 1 1 1	821 652 713 831 742	101.52 102.72 105.35 106.54 106.75	
.9550	<1	751	107.53	
.9457	1	315	109.07	
.9415	1	822	109.79	
.9351	1	840	110.92	
.9314	3	614	111.59	

Internal standard W, a = 3.16516 Å				
Ource	1	01000 m, comp. =-		
d (Å)	I	hkl	20(°)	
.9236	1	910	113.02	
.9204	2	733	113.62	
.9113	1	405	115.40	
.9089	2	544	115.88	
.9073	2	760	116.20	
.9041	1	653	116.85	
.8930	1	921	119.22	
.8815	1	930	121.82	
.8772	1	842	122.83	
.8732	1	851	123.81	
.8684	<1	931	124.99	
.8643	<1	554	126.06	
.8539	1	762	128.85	
.8492	1	940	130.20	
.8466	<1	833	130.95	
.8447	1	770	131.53	
.8374	1	941	133.80	
.8325	1	932	135.42	
.8251	2	861	137.98	
.8176	1	654	140.84	
.8095	2	10.2.1	144.17	
.8051	1	942	146.18	
.8024	2	744	147.45	
.8021	2	951	147.60	
.8011	2	10.3.0	148.10	
.7991	1	763	149.15	

The sample was recrystallized from a water solution of reagent grade material from J.T.Baker Chemical Co.,Phillipsburg, N.J.

Color

Unground: deep orange Ground: vivid orange

Optical data

Biaxial (+) N_{α} =1.660, N_{β} =1.698, N_{γ} =1.743 2V \cong 90 °

Structure

Monoclinic, $P2_1/m$ (11), Z=4, [Campbell, 1956]

Lattice constants

	a(Å)	b (Å)	c(Å)	β(°)
Campbell [1956] NBS,	12.6	10.5	6.05	94°54′
sample at 25℃	12.740 ±.001	10.778 ±.001	6.132 ±.001	95°7′ ±1′

Density

(calculated) 2.360 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 0.8$

Internal standard W, a = 3.16516 Å CuK a_1 λ = 1.54056 Å; temp. 25 °C				
d (Å)	I	hkl	20(°)	
8.20	5	110	10.78	
6.34	5	200	13.95	
5.70	20	101	15.54	
5.47	25	210	16.19	
5.40	80	020	16.40	
5.31	20	101,011	16.69	
5.041	20	<u>111</u>	17.58	
4.957	10	120	17.88	
4.772	20	<u>111</u>	18.58	
4.607	10	<u>2</u> 01	19.25	
4.239	40	211	20.94	
4.105	10	220	21.63	
4.042	10	021	21.97	
3.924	85	211, 121	22.64	
3.786	25	121	23.48	
3.632	5	301	24.49	
3.502	30	221	25.41	
3.444	5	311	25.85	
3.321	20	221	26.82	
3.175	20	400	28.08	
3.041	100	410, Ī31	29.35	
3.013	15	321	29.62	
2.976	10	131	30.00	
2.937	5	012	30.41	
2.927	10	401	30.52	
2.911	25	102	30.69	
2.852	10	202	31.34	
2.834	40	231	31.54	
2.821	30	411	31.69	
2.812	40	112	31.80	
2.760	10	212	32.41	
2.735	25	231,420	32.72	
2.716	10	401	32.95	
2.696	20	040	33.20	
2.642	3	122	33.90	
2.635 2.589 2.582 2.560 2.516	5 10 10 5	140,411 302 212 . 122 312	34.00 34.62 34.71 35.02	

Internal standard W, a = 3.16516 Å					
Cuk	$a_1 \lambda = 1.$.54056 A; temp. 2	o °C		
d (Å)	Ι	hkl	20(°)		
2.471	5	510	36.32		
2.447	3	331	36.69		
2.438	5	141	36.84		
2.428	5	421	37.00		
2.403	5	141	37.39		
2.384	5	222	37.70		
2.362	5	511	38.07		
2.332	3	322	38.57		
2.320	2	312	38.78		
2.305	2	402	39.05		
2.271	10	340,241	39.66		
2.263	5	132	39.80		
2.233	3	232	40.35		
2.223	3	511	40.55		
2.209	3	521	40.81		
2.168	2	431	41.63		
2.115	5	600	42.72		
2.100	5	332	43.04		
2.095	5	521	43.14		
2.074	<1	610,530	43.60		
2.053	5	440	44.07		
2.041	3	250	44.35		
2.017	3	151	44.91		
2.009	3	531,512	45.08		
2.001	3	013	45.27		
1.977	5	142	45.85		
1.969	5	620	46.06		
1.959	2	242,213	46.31		
1.953	2	251	46.47		
1.920	10	531,35Q,+	47.30		
1.914	10	611,441	47.47		
1.907	15	123	47.65		
1.902	15	303	47.77		
1.871	10	502	48.61		
1.867	10	223,342	48.74		
1.861	5	213,123	48.91		
1.847	5	540	49.31		
1.843	3	512	49.40		
1.830	4	621	49.79		
1.811	3	700,351	50.33		

Internal standard W, a = 3.16516 Å CuK a_1 λ = 1.54056 Å; temp. 25 °C				
d (Å)	Ι	hkl	20(°)	
1.800	5	541	50.66	
1.796	5	060	50.80	
1.783	5	342,701	51.20	
1.775	5	532	51.43	
1.763	3	413	51.82	
1.758	5	711,152	51.96	
1.752	3	442	52.15	
1.732	10	152	52.81	
1.720	10	622,252	53.22	
1.692	2	721	54.17	
1.673	10	261,233	54.83	
1.663	5	640,503	55.20	
1.657	10	352	55.41	
1.642	5	550,513	55.94	

Additional patterns

1. PDF card 1-0460 [Hanawalt et al., 1938].

References

Campbell, J.A. (1956). Note on the crystal structure of sodium dichromate dihydrate Acta Cryst. 9, 192.

Hanawalt, J.D., H.W. Rinn, and L.K. Frevel (1938). Chemical analysis by x-ray diffraction, Ind. Eng. Chem. Anal. Ed. 10, 457-512.

Sample Internal standard W, a = 3.16516 A J. Ito prepared the sample by heating lanthanum oxide and silicic acid with CuKa, $\lambda = 1.54056$ A; temp. 25 °C excess NaF. The crystals were removed from the molten NaF bath after several $d(\mathring{A})$ T days. 4.195 24 4.013 25 *Exact analysis of percentages of Na and 3.622 4 La is not known. 3.594 32 3.300 41 Color Colorless 3.172 31 2.901 100 Optical data 70 2.883 Uniaxial (-) $N_0 = 1.838$, $N_e = 1.816$ 2.798 28 2.727 3 Structure 2.378 2 Hexagonal, P63 (173), Z=1, closely anal-9 2.328 ogous to hydroxyapatite [Bowen and Dick-2.296 3 ens, 1968]. 2.207 4 2.146 15 2.098 7 Lattice constants 2.080 3 2.009 21 $a(\tilde{A})$ C(Å) 1.953 16 1.926 6 Bowen and Dickens [1968]-- 9.72 7.16 1.910 36 9.68 7.19 1.860 17 NBS, Sample at 25 °C-----9.6890 7.1805 1.831 17 ±.0002 ±.0002 1.811 22 1.795 19 Density 1.774 2 (calculated) 4.971^{\dagger} g/cm³ at 25° C. 1.697 1 1.683 Т [†] assuming Na₂La₈ (SiO₄)₆F₂ 1.679 1.668 1.651 1.6314 1.5858 1.5755 References 1.5626 Bowen, J. S. and B. Dickens (1968). Private communication. 1.5488 Ito, J. (1968). Private communication. 1.5206

1	114
1	500
1	313
2	204
3	204
2	412
5	420
7	331
10	214
1	421
8	502
8	304
8	323
8	511

hkl

200

111

201

002

102

210

211

112

300

202

212

310

221

302

113

400

203

222

312

320

213

321

410

402

004

411

322

20(°)

21.16

22.13

24.56

24.75

27.00

28.11 30.80

30.99

31.96

32.81

37.80

38.64

39.20

40.85

42.08

43.08

43.47 45.10

46.45

47.16

47.56

48.93

49.76

50.33

50.82

51,47

53.98

54.48

54.63

55.01

55.62

56.35

58.12

58.54

59.07

59.65

60.87

61.29

61.81

62.99

1.5112

1.4997

1.4744

Internal standard W, a = 3.16516 Å CuKa ₁ λ = 1.54056 Å; temp. 25 °C					
d (Å)	I	hkl	2θ(°)		
1.4728	9	332	63.07		
1.4213	1	314	65.64		
1.3896	1	512	67.33		
1.3768	2	115	68.04		
1.3732	2	601	68.25		
1.3638	3	404	68.78		
1.3546	1	431	69.31		
1.3431	2	520	69.99		
1.3389	3	333	70.24		
1.3207	5	521	71.36		
1.3128	3	324	71.85		
1.3081	9	215	72.15		
1.3031	6	602	72.47		
1.2874	3	432	73.49		
1.2817	10	414	73.88		
1.2755	5	513	74.30		
1.2597	8	611	75.39		
1.2582	9	522	75.50		
1.2356	1	225	77.13		
1.2261	1	504	77.84		
1.2112	4	440	78.98		
1.1985	1	530	79.99		
1.1967	2	006	80.13		
1.1954	3	433	80.24		
1.1888	3	424	80.77		
1.1853	4	405,106	81.06		
1.1824	1	531	81.30		
1.1718	2	523	82.20		
1.1635	1	620	82.91		
1.1620	4	116	83.04		
1.1541	2	514	83.74		
1.1509	5	325,206	84.02		
1.1473	2	442	84.35		
1.1369	4	532	85.30		
1.1286	2	613	86.08		

Internal standard W, a = 3.16516 Å CuKa ₁ λ = 1.54056 Å; temp. 25 °C					
d (Å)	Ι	hkl	20(°)		
1.1198	<1	216	86.92		
1.1115	2	710	87.74		
1.0758	1	524	91.45		
1.0730	4	335,226	91.76		
1.0644	4	425,316	92.72		
1.0619	2	712	93.00		
1.0489	1	800	94.51		
1.0460	2	631	94.85		
1.0420	3	614	95.33		
1.0393	6	515,406	95.66		
1.0290 1.0250 1.0141 1.0068 1.0040	3 1 3 3	542 720 632 802 444	96.93 97.44 98.85 99.83		
0.9968	1	534	101.20		
.9949	1	435	101.47		
.9811	2	525	103.47		
.9759	5	217	104.24		
.9743	3	506	104.49		
.9688	1	550	105.33		
.9670	1	633	105.61		
.9623	2	640	106.34		
.9613	2	336	106.50		
.9551	2	615,426	107.51		
.9539	1	641 .	107.70		
.9472	3	812	108.83		
.9446	5	227	109.26		

Sample source			· ·			°	
Ito prepared the sample by heating neo-			Inter	Internal standard W, $a = 3.10510 \text{ A}$			
dymium oxide and silici	c acid	with an	CuK	$a_1 \lambda = 1.$.54056 Å; temp. 2	5 °C	
excess of NaF. The cryst from the molten NaF bat days	als were h after	removed several	d (Å)	Ι	hkl	20(°)	
uays.			4.769	3	110	18.59	
*Exact analysis of perce	ntages c	f Na and	4.130	26	200	21.50	
Nd is not known.	j		3.948	24	111	22.50	
			3.513	22	002	25.33	
Color			3.235	42	102	27.55	
Unground- moderate purple	ish blue		2 100	22	210	20 57	
Ground- pale purplish blu	ıe		3.122	100	210	28.57	
			2.855	52	211	31 50	
Optical data			2.051	29	300	32 48	
Uniaxial (-) N _O =1.884, N _O	_e =1.860		2.677	2	202	33.45	
Structure			2,336	2	212	38.51	
Hexagonal, P6. (173) 7=		lv anal-	2.293	8	310	39.26	
ogous to hydroxyapatite	e. [Boy	wen and	2.258	5	221	39.89	
Dickens, 19681	c. [D0	weni ana	2.180	2	311	41.39	
			2.169	4	302	41.60	
			2.105	12	113	42.94	
			2.067	6	400	43.77	
			2.039	2	203	44.40	
			1.974	23	222	45.93	
Lattice constan	ets		1.921	16	312	47.28	
·			1.896	6	320	47.94	
	a(Å)	c(A)	1.875	31	213	48.52	
			1.831	16	321	49.77	
Bowen and Dickens [1968]	9.51	7.02	1.803	20	410	50.59	
Ito [1968]	9.55	7.03	1.781	23	402	51.26	
NBS, sample at 25 °C	9.5411	7.0331	1				
	±.0001	±.0002	1.757	14	004	51.99	
		J	1.6500		322	54.97	
			1.6177	3	204	56 87	
			1.6048	1	412	57.37	
Donsity			1.5614	4	420	59.12	
$(calculated) = 362^{\ddagger} \sigma/cm^{3}$	at 25° C		1.5511	8	331	59.55	
(calculated) 5.562 g/elli a	at 20 °C.		1.5322	8	214	60.36	
^{$\ddaggerassuming Na2 Nd8 (SiO4)6 F$}	S		1.5240	2	421	60.72	
			1.4960	10	502	61.98	
R eference intensity			1 4020	-	204	<u> </u>	
$I/l_{corundum} = 3.2$,		1.4743	/ Q	304	63 00	
			1.4518	6	525	64 09	
			1.4487	8	332	64.24	
			1.4291	2	413	65.23	
References			1.3948	2	314	67.04	
Bowen, J.S. and B. Dickens	(1968).	Private	1.3674	1	512	68.57	
communication.			1.3490	2	115	69.64	
Ito, J. (1968). Private con	nmunicat	ion.	1.3389	3	404	70.24	
			1.3338	3	431	70.55	
20(°)

97.95

98.14 98.99

99.47

101.00

102.03

102.59 103.19

105.12

105.58

106.11

106.72

107.29

108.12 108.74

109.42

110.16

110.29

111.39

111.89

112.01

112.34

113.41

114.07

115.74

116.37 116.84

118.61 118.95

119.30

119.76

120.40

121.29

122.36 122.79

123.78

125.57 126.11

127.27

128.57 129.83

130.15

					_				
T	Inter	mal stan	dard W, a = 3.163	516 Å		Inter	nal stan	dard W, a = 3.165	16 Å
	CuK	$a_1 \lambda = 1.$	54056 Å; temp. 2	25 °C		CuK	$\alpha_1 \lambda = 1.$	54056 Å; temp. 2	5°C
	d (Å)	Ι	hkl	20(°)		d (Å)	I	hkl	2
	1.3234	1	520	71.19	1	1.0210	4	515	9
1	1.3162	3	333	71.64		1.0195	3	406	9
П	1 3003	4	521,423	72.65	1	1 0131	3	542	
R	1 2893	2	324	73 37		1 0005	2	720	
	1 2020	10	215 602	73.07		1.0095	5	720	1 10
k	1.2829	10	215,602	/3.80		0.9983	4	632	
4	1.2673	2	432	74.86		.9910	4	802	10
	1.2605	1 125	610	75.34		.9871	5	444	10
	1.2586	1 -2 1	414	75.47	1	.9830	4	117,416	10
1	1.2541	6	513	75.79		.9701	1	722	10
	1.2401	6	611	76.80		.9672	2	810	10
	1 2205	<u>م</u>	500	76.92		0629	2	5.25	10
	1 2117	1	225	70.52		.9636	2	525	
	1.211/		225	78.94		.9600	2	624	
1	1.2041	2	504	79.54		.9564	6	217	10
	1.1991	1 I	315	79.94		.9514	1	633	10
1	1.1930	4	440	80.43		.9477	1	640	10
	1.1862	2	612	80.99		.9437	1	307,336	10
1	1.1804	2	530	81.47		.9394	1	641	11
	1,1756	2	441,433	81.87		.9387	3	615	1 11
	1 1723	2	006	82 15		9325	2	812	1 11
	1 1676	2	424	02.15		.9323	2	720	1 11
	1.10/0	3	424	02.50		.9297	2	730	1 11
1	1.1608	2	106	83.15		.9291	2	714	11
	1.1522	3	523	83.91		.9272	1	723	11
	1.1458	2	620	84.48		.9215	2	731	11
J.	1.1381	4	116	85.19		.9181	1	900	11
	1.1339	3	514	85.58		.9096	1	445	11
							_		
U.	1.1307	4	621	85.88		.9065	1	544	1 11
	1.1293	4	325,442	86.01		.9042	1	535	11
	1.1190	4	532	87.00		.8958	<1	634	11
	1.1100	3	613	87.89		.8942	3	821	1]
	1.0974	1	216	89.16		.8926	2	606	11
	1 0944	2	710	89 47		8905	1	804	1 11
	1 0894	1	622	89 99		.0505 9077	2	307	1 1
	1.0094		622	00 56		+00//	1	527	
	1.0841	<1	604	90.56		.8838	<1	553	
	1.0813	<1	711	90.86		.8792	3	008	
	1.0785	1	306	91,16		.8774	3	. 526	12
	1.0751	1	434	91.53		.8733	2	822	12
	1.0579	1	540	93.46		8662	1	650	1 12
	1 05/3	3	533	93.87		8641	- 2	733	1 12
	1 0510	2	226	94 15		9507	2	651	1 1
	1.0452	2	125 712	91 91		.0397	2	0.02	1 1
	1.0453	3	425,712	54.94		.8550	T	903	
	1.0435	3	316	95.15		.8505	1	741	12
	1.0409	1	630	95.47		.8494	1	337	13
	1.0329	<1	800	96.45					
	1.0299	3	631	96.82					
	1.0244	4	614	97.52					

Sample source								
Ito prepared the sample by heating pra-								
seodymium oxide and silicic acid with an								
excess of NaF. The crystals were removed								
from the molten NaF bath after several								
days.								
*Exact analysis of per	centage	s of Na						
and Pr is not known.	-							
Color								
Unewound brilliont wolld								
Cround worw light wollow	Sw green							
Gibund- very right yerio	w green							
Ontion 1 data								
Uptical data	1 055							
$M_0 = 1.874, M_e =$	T.022							
2								
Structure								
Hexagonal, $P6_3$ (173) Z=1.	.Closely	analo-						
gous to hydroxyapatite, []	Bowen an	d Dick-						
ens,1968].								
Lattice constan	te							
Luttice constan	15							
	a (Å)	0(1)						
	u(A)	C(A)						
	0 50	7 05						
Bowen and Dickens [1968]	9.58	7.05						
11to 1968	9.60	7 7 1 1 4 1						
100 [1900]		7.09						
NBS, sample at 25 °C	9.5828	7.0728						
NBS, sample at 25 °C	9.5828 ±.0002	7.0728 ±.0002						
NBS, sample at 25 °C	9.5828 ±.0002	7.0728 ±.0002						
NBS, sample at 25 °C	9.5828 ±.0002	7.0728 ±.0002						
NBS, sample at 25 °C	9.5828 ±.0002	7.0728 ±.0002						
NBS, sample at 25 °C	9.5828 ±.0002	7.0728 ±.0002						
NBS, sample at 25 °C	9.5828 ±.0002	7.0728 ±.0002						
Density (calculated) 5.207 [‡] g/cm ³ a	9.5828 ±.0002	7.0728 ±.0002						
Density (calculated) 5.207 [‡] g/cm ³ a	9.5828 ±.0002	7.0728 ±.0002						
Density (calculated) 5.207 [‡] g/cm ³ a	9.5828 ±.0002	7.0728 ±.0002						
Density (calculated) 5.207 [‡] g/cm ³ a [‡] assuming Na ₂ Pr ₈ (SiO ₄) ₆	9.5828 ±.0002	7.0728 ±.0002						
Density (calculated) 5.207 [‡] g/cm ³ a [‡] assuming Na ₂ Pr ₈ (SiO ₄) ₆	9.5828 ±.0002	7.0728 ±.0002						

eference intensity I/I_{corundum} = 1.9

Internal standard Ag, $a = 4.08641$ Å						
d (Å)	I	hkl	20(0)			
4.80	3	110	18.48			
4.149	19	200	21.40			
3.969	20	111	22.38			
3.531	14	002	25.20			
3.252	29	102	27.40			
3.136	27	210	28.44			
2.866	100	211	31.18			
2.846	46	112	31.41			
2.764	26	300	32.36			
2.693	3	202	33.24			
2.395	2	220	37.52			
2.302	8	310	39.09			
2.268	3	221,103	39.70			
2.188	4	311	41.23			
2.179	4	302	41.41			
2.115	14	113	42.71			
2.075	6	400	43.59			
2.051	2	203	44.12			
1.983	28	222	45.72			
1.929	17	312	47.08			
1.904	7	320	47.73			
1.885	40	213	48.25			
1.838	20	321	49.54			
1.811	20	410	50.34			
1.789	32	402	51.00			
1.768	14	004	51.65			
1.680	1	223	54.57			
1.677	2	322	54.70			
1.660	2	500,114	55.30			
1.626	3	204	56.55			
1.613	2	412	57.06			
1.5681	6	420	58.84			
1.5575	9	331,403	59.28			
1.5403	10	214	60.01			
1.5315	6	421	60.39			
1.5023	12	502	61.69			
1.4895	11	510,304	62.28			
1.4810	10	323	62.68			
1.4581	11	511	63.78			
1.4556	11	332	63.90			

-11									
Internal standard Ag, $a = 4.08641 \text{ Å}$ CuK $a_1 \lambda = 1.54056 \text{ Å}$; temp. 25 °C			ard Ag, a = 4.086 54056 Å; temp. 2	41 Å 5 °C	Internal standard Ag, $a = 4.08641 \text{ Å}$ CuK $a_1 \lambda = 1.54056 \text{ Å}$; temp. 25 °C				
	d (Å)	I	hkl	20(°)	$d(\mathring{A})$ I hkl $2\theta($	•)			
and the second s	1.4366 1.4334 1.4026 1.3738 1.3643	2 2 1 1 1	413 422 314 512 430	64.85 65.01 66.62 68.21 68.75	1.0591 7 533,335 93. 1.0575 6 226 93. 1.0495 5 712,316 94. 1.0375 2 800 95. 1.0340 3 631,623 96.	32 51 44 88 31			
and the second se	1.3574 1.3460 1.3399 1.3294 1.3224	2 4 3 2 4	601,503,+ 404 431 520 333	69.15 69.82 70.18 70.82 71.25	1.0290561496.1.02616801,51597.1.0250640697.1.0176554298.1.0139172098.	93 30 44 40 88			
	1.3059 1.2956 1.2894 1.2729 1.2655	7 4 13 2 18	521,423 324 215 432 610,414	72.29 72.96 73.37 74.48 74.99	1.0036 3 721 100. 1.0027 5 632 100. 0.9954 5 802 101. .9916 5 444 101. .9847 2 534 102.	26 39 40 94 93			
A REAL PROPERTY AND A REAL	1.2600 1.2460 1.2439 1.2185 1.2105	6 14 8 1 2	513,305 611 522 225 504	75.37 76.37 76.52 78.42 79.04	.9819 2 435,207 103. .9746 1 722 104. .9686 3 543,525 105. .9644 2 624 106. .9617 5 217 106.	35 44 36 01 44			
Significant and significant an	1.1975 1.1913 1.1851 1.1809 1.1788	5 2 1 3 4	440 612 530,334 441,433 006	80.07 80.57 81.08 81.43 81.60	.9584 2 550 106. .9520 <1	98 02 61 51 67			
and the second se	1.1735 1.1687 1.1671 1.1576 1.1508	5 3 2 5 3	424 405 106 523 620	82.05 82.46 82.60 83.43 84.03	.9334 4 730,714 111. .9310 3 227 111. .9258 2 731 112. .9220 1 900 113. .9193 1 642 113.	23 65 62 32 84			
the second se	1.1446 1.1397 1.1354 1.1240 1.1151	5 4 8 7 6	116 514 325 532 613,415	84.59 85.04 85.44 86.52 87.38	.90852535,40711589802821,813118897126061188947380411889255327119.	97 13 32 84 32			
	1.0995 1.0944 1.0864 1.0765	4 1 1 2	710 622 711 505	88.95 89.47 90.31 91.37	References Bowen,J.S.and B.Dickens(1968) Private com munication. Ito, Jun (1968). Private communication				

a 1									
The sample was prepared by slow evapora- tion at room temperature of an aqueous						Internal standard Ag, $a = 4.08641 \text{ Å}$			
solution of Tl_2SO_4 and $CoSO_4$ in a 1:8						$Ka_1 \lambda = $	1.54056 A; temp.	25 °C	
solution of TL ₂ SO4 and CoSO4 in a 1:8 molar proportion. The first crystals formed were used						Ι	hkl	20(°)	
			7.213	22	110	12.26			
Color					6.219	1	020	14.23	
IIngrall	nd. dork	vollowi	ah nink		5.977	11	001	14.81	
Cround	nu: uaik	yerrowr:	an bruv.		5.388	16	011	16.44	
Ground	: IIgnt	PTIK			5.089	26	120	17.41	
Optical dat	ta				4.429	2	200	20.03	
Biaxia	$1 (-) N\alpha$	=1.599.1	√e=1.613	$N_{\rm V} = 1.624$	4.310	9	021	20.59	
2V is	medium l	arge	np 10010	,,	4.225	35	ī21	21.01	
21 10	incortain r				4.154	100	111	21.37	
Structure					3.952	5	211	22.48	
Managli	ata Do	(2 (14)	77	Teetwood					
Monocia	$\operatorname{Lnic}, \operatorname{PZ}_1$	/d (14),		ISOSCIUC-	3.757	55	130	23.66	
LUIAL W	The star		n Saits	[TULLON,	3.611	2	220	24.63	
1925J.	The stru	CH O WO	a Tuto	con Salt,	3.463	1	221	25.70	
$(NH_4)_2 Mg(SO_4)_2 \cdot 6H_2O$ was determined by				3.368	6	Ī31	26.44		
Marguils and Templeton, [1962].					3.159	16	201	28.23	
					0.110	0.5			
					3.112	25	040	28.66	
					3.059	15	211	29.17	
	Tatt	kan anuala			3.019	46	131,112	29.56	
	Lati	ace consta	nts		2.991	3	002	29.85	
	•				2.935	8	140	30.43	
	a(Ă)	b (Å)	C(Å)	β(°)	2 022	14	511	20 57	
					2.922	14	311	30.57	
NBS.					2.907		202	21 01	
sample	9.235	12,442	6.227	106°24′	2.001	23	202	21.01	
at 25 °C	±.001	±.002	±.001	±1'	2.01/	10	221	31.74	
					2.701	12	122	32.10	
•					2,756	7	041	32.44	
					2.737	8	141	32.69	
Density			- 0		2.669	6	320	33.55	
(calcula	ited) 4.1	80 g/cm ³	at 25° C.		2.617	2	222	34.24	
					2.560	1	112	35.03	
Reference	intensity								
I/I corundur	n = 3.7				2.542	1	141	35.28	
					2.513	5	231	35.70	
References					2.490	15	241,132	36.04	
Margulis.	T.N. an	d D. H. 7	Cempleto	n (1962).	2.433	27	331,312	36.91	
Crystal	structu	re and l	nydrogen	bonding	2.412	11	122	37.25	
of mag	nesium a	mmonium	sulfate	hexahy-					
drate,	Z. Krist	. 117, 33	34-357.	-	2.406	10	330	37.34	
Tutton, A	.E. (192	5). The 1	nonoclin	ic double	2.302	16	322	39.10	
sulphat	es conta	ining the	allium,	thallium	2.298	15	401,051	39.17	
nickel	and th	allium	cobalt	sulphate,	2.261	7	411	39.84	
Proc.Roy.Soc. London, Ser.A 108, 240-261.					2.232	10	321	40.37	

Internal standard Ag, a = 4.08641 Å CuK a_1 λ = 1.54056 Å; temp. 25 °C						
d (Å)	Ι	hkl	20(°)			
2.214	19	400,132	40.72			
2.170	8	212,250	41.58			
2.155	5	042,340	41.88			
2.136	5	251	42.27			
2.114	10	242	42.73			
2.086 2.075 2.053 2.043 2.019	5 5 3 5	420 060 412 I13,203 160,213	43.34 43.59 44.07 44.29 44.86			
1.991	7	003	45.52			
1.965	3	013,Ī23	46.14			
1.954	5	251,430	46.43			
1.939	3	342	46.81			
1.912	10	052	47.52			
1.899	5	313	47.85			
1.886	3	411	48.21			
1.856	8	261	49.05			
1.853	8	133	49.13			
1.835	4	323,312	49.63			
1.804	7	440	50.54			
1.776	3	322	51.38			
1.771	5	521	51.56			
1.759	4	123	51.93			
1.743	4	333,170	52.44			
1.725	1	Ī62,351+	53.03			
1.704	3	520,071	53.74			
1.692	5	332,522	54.16			
1.6772	4	133,043	54.68			
1.6489	5	270,171	55.70			
1.6290	3	530	56.44			
1.6179	4	532	56.86			
1.5969	2	452	57.68			
1.5801	3	143,253	58.35			
1.5660	3	412	58.93			
1.5554	3	080,053	59.37			
1.5422	5	214	59.93			
1.5299	4	371	60.46			

The sample was prepared by slow evaporation at room temperature of an aqueous solution of Tl_2SO_4 and $CuSO_4$ in a 1:8 molar proportion. The first crystals formed were used.

Color

Unground: brilliant greenish blue Ground: greenish white

Optical data

Biaxial, $N_{\rm C}{=}1.600,~N_{\rm \beta}{=}1.610,~N_{\rm \gamma}{=}1.620$ 2V is very large.

Structure

Monoclinic, $P2_1/a$ (14), Z=2. Isostructural.with other "Tutton" salts [Tutton, 1928]. The structure of a "Tutton" salt, $(NH_4)_2 Mg(SO_4)_2 \cdot 6H_2 O$ was determined by Margulis and Templeton, [1962].

Lattice constants

	a(Å)	b (Å)	c(Å)	β(°)
NBS, sample at 25°C	9.268 ±.001	12.364 ±.001	6.216 ±.001	105°33.3′ ±.5′

Density

(calculated) 3.740 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 4.5$

Internal standard Ag, a = 4.08641 Å CuKa, $\lambda = 1.54056$ Å; temp. 25 °C						
d (Å)	I	hkl	20(°)			
7.22	26	110	12.24			
5.98	13	001	14.79			
5.394	20	011	16.42			
5.084	22	120	17.43			
4.467	4	200	19.86			
4.302	10	021	20.63			
4.197	100	111,210,+	21.15			
4.153	70	201	21.38			
3.940	13	211	22.55			
3.742	64	130	23.76			
3.623	3	220	24.55			
3.450	1	221	25.80			
3.399	2	031	26.20			
3.350	8	131	26.59			
3.195	28	201	27.90			
3.091	38	040,211	28.86			
3.024	36	230,131	29.51			
3.008	37	ī12	29.67			
2.920	22	140,3ī11	30.59			
2.910	19	012	30.70			
2.894	13	310	30.87			
2.868	26	202	31.16			
2.837	11	221	31.51			
2.795	3	212	32.00			
2.773	16	122	32.25			
2.746	7	041	32.58			
2.721	9	141	32.89			
2.682	10	320	33.38			
2.603	4	222	34.43			
2.523	4	231	35.55			
2.477	18	241,132	36.23			
2.428	37	331	36.99			
2.421	35	032,312	37.11			
2.412	15	330	37.24			
2.375	2	311	37.85			
2.304	7	401	39.06			
2.291	16	322	39.29			
2.286	17	051	39.39			
2.265	8	411	39.77			

Internal standard Ag, a = 4.08641 Å CuK a_1 λ = 1.54056 Å; temp. 25 °C						
d (Å)	I	hkl	20(°)			
2.232	8	400	40.38			
2.221	23	241,132	40.58			
2.191	2	212,Ī42	41.17			
2.162	9	250,151	41.74			
2.154	5	341	41.91			
2.124	8	251	42.53			
2.117	6	332	42.67			
2.102	16	242	43.00			
2.061	4	060	43.89			
2.047	6	412	44.20			
2.041 2.009 2.005 1.996 1.964	6 6 10 2	Ī13 Ā31,213,+ 142 003 Ī23,430	44.34 45.08 45.19 45.40 46.19			
1.959	4	232	46.32			
1.939	3	161	46.81			
1.928	4	401,342	47.10			
1.907	12	052,411	47.64			
1.890	5	313	48.11			
1.850	10	Ī33	49.21			
1.846	9	441,261	49.33			
1.827	5	323,233	49.86			
1.809	10	440	50.40			
1.794	2	322	50.86			
1.775	6	521	51.45			
1.769	10	123	51.64			
1.766	6	510	51.71			
1.747	2	431,352	52.33			
1.737	4	403,512	52.65			
1.733	5	170	52.79			
1.715	4	162,520	53.38			
1.705	7	332	53.70			
1.687	4	171,522	54.34			
1.684	6	451,133	54.43			
1.674 1.649 1.644 1.641 1.638	4 2 4 6	262,423 213 270 171 530	54.80 55.71 55.89 56.00 56.10			

Internal standard Ag, a = 4.08641 Å CuKa, $\lambda = 1.54056$ Å; temp 25 °C								
d (Å)	Ι	hkl	20(°)					
1.626	2	343,271	56.55					
1.614	4	532	57.01					
1.590	3	452,541	57.95					
1.582	4	412,362	58.27					
1.5725	4	253	58.66					
1.5502	2	204	59.59					
1.5455	3	271,080,+	59.79					
1.5378	4	214	60.12					
1.5338	6	Ī72,Ī14	60.29					
1.5229	5	180,371	60.77					
		_						
1.5143	6	443,460	61.15					
1.4995	5	124,314	61.82					
1.4889	4	432,600	62.31					
1.4732	2	313	63.05					
1.4538	2	533	63.99					
1 4244		704.050	64.06					
1.4344	4	404,063	64.96					
1.4264	2	371	65.37					
1.4179	3	442,334	65.81					
1.4067	T	034,114	66.40					

References

Ma	argulis,	T.N.	and D	. н.	Templeton	(1962).
	Crystal	struc	ture	and	hydrogen	bonding
	of magne	esium	ammo	nium	sulfate	hexahy-
	drate, 2	Z. Kri	ist. 1	17,	334-357.	

Tutton, A. E.(1928). The hexahydrated double sulphates containing thallium, Proc. Roy. Soc. London, Ser. A 118, 367-392.

The sample was prepared by slowly evaporating a 1:8 mixture of molar solutions of Tl_2SO_4 and $MgSO_4$, and using the first crystals formed.

Color

Colorless

Optical data

Biaxial, ${\rm N}_{\alpha}{=}1.570,~{\rm N}_{\beta}{=}1.588,~{\rm N}_{\gamma}{=}1.595,$ 2V is very large.

Structure

Monoclinic, $P2_1/a$ (14), Z=2, isostructural with other "Tutton Salts" [Tutton, 1928]. The structure of a Tutton salt, $(NH_4)_2Mg(SO_4)_2 \cdot 6H_2O$, was determined by Margulis and Templeton [1962].

Lattice constants

	a(Å)	b (Å)	c(Å)	β(°)
Hoffman [1932] NBS,	9.24	12.44	6.197	106° 30′
sample at 25°C	9.273 ±.001	12.472 ±.002	6.214 ±.001	106°23′ ±1′

Density

(calculated) 3.532 g/cm^3 at 25° C.

Reference intensity

 $I/I_{corundum} = 2.6$

Internal standard Ag, a = 4.08641 Å CuKa ₁ λ = 1.54056 Å; temp. 25 °C				
d (Å)	I	hkl	20(°)	
7.24	50	110	12.22	
6.24	2	020	14.19	
5.95	19	001	14.87	
5.37	19	011	16.48	
5.10	33	120	17.37	
4.44	2	200	19.97	
4.30	8	021	20.62	
4.227	53	121	21.00	
4.162	100	111	21.33	
3.957	8	211	22.45	
3.764	66	130	23.62	
3.467	2	221	25.67	
3.369	6	131	26.43	
3.164	25	201	28.18	
3.117	40	040	28.61	
3.065	21	211	29.11	
3.025	47	230,131	29.50	
3.010	39	I12	29.65	
2.982	5	002	29.94	
2.931	26	311	30.47	
2.897 2.882 2.820 2.808 2.777	21 35 8 7 18	012 202,310 221 212 122 122	30.84 31.00 31.70 31.84 32.21	
2.742	11	141	32.63	
2.678	13	320	33.43	
2.614	1	222	34.27	
2.555	4	112,240	35.09	
2.517	7	231	35.64	
2.499	21	241	35.91	
2.488	20	132	36.07	
2.442	35	331	36.77	
2.412	18	330,122	37.25	
2.302	24	051	39.10	
2.270	10	411	39.68	
2.239	11	321	40.24	
2.222	25	241	40.57	
2.205	9	202	40.86	
2.171	9	212,151	41.57	
2.155	3	042	41.88	

Internal standard Ag, a = 4.08641 Å					
CuK	$CuKa_1 \lambda = 1.54056 \text{ Å}; \text{ temp. } 25 \text{ °C}$				
d (Å)	Ι	hkl	20(°)		
2.141	8	251	42.18		
2.116	10	242	42.70		
2.096	3	420	43.12		
2.079	2	222,060	43.50		
2.058	5	412	43.97		
2.039	3	113	44.39		
2.024	3	160	44.75		
2.018	4	431	44.89		
1.987	6	003	45.62		
1.960	7	251,430	46.29		
1.955	6	161	46.40		
1.942	3	342	46.74		
1.913	9	401,052	47.48		
1.898	4	313	47.90		
1.862	4	261	48.88		
1.851 1.835 1.811 1.801 1.778	5 5 2 5	133 323 440 242 521	49.17 49.63 50.35 50.64 51.35		
1.760	5	352	51.91		
1.757	5	123	51.99		
1.746	7	403,170	52.35		
1.724	1	162	53.00		
1.711	1	520,361	53.52		
1.695	5	332,451	54.07		
1.676	3	133,043	54.72		
1.651	6	252,171	55.61		
1.635	4	213,343	56.20		
1.622	3	532	56.72		

References

Hoffman, W. (1931). Die Struktur der Tuttonschen Salze, Z. Krist, 78, 279-333.

- Margulis, T.N. and D. H. Templeton (1962). Crystal structure and hydrogen bonding of magnesium and ammonium suflate hexahydrate, Z. Krist, 117, 344-357. Tutton, A.E. (1928). The hexahydrated dou-
- Tutton, A.E. (1928). The hexahydrated double sulphates containing thallium, Proc. Roy. Soc. London Ser. A 118 367-392.

The $\text{Tl}_{2} \text{Mn}_{2} (SO_{4})_{3}$ was crystallized by e-vaporation at 90°C from a stoichiometric aqueous solution of $\text{Tl}_{2} SO_{4}$ and MnSO_{4} .

Major impurities

0.01 -0.1 % each: Al, Cu, and K

0.1 -1.0 % each: Mg

Color

Colorless

Optical data

Isotropic, N=1.722

Structure

Cubic, $P2_1/3$ (198),Z=4,langbeinite type, structure of langbeinite, $K_2 Mg_2$ (SO₄)₃, determined by Zemann and Zemann [1957].

	a(Å)
Zemann and Zemann [1957]	10.223 ±.006
Gattow and Zemann [1958]	10.229 ±.004
NBS, sample at 25 °C	10.2236 ±.0002

Lattice constants

Density

(calculated) 5.015 g/cm³ at 25° C.

Reference intensity

 $I/I_{contradum} = 4.3$

Inter	Internal standard W, a = 3.16516 Å				
CuK	CuK α_1 λ = 1.54056 Å; temp. 25 °C				
d (Å)	I	hkl	28(°)		
5.90	27	111	15.01		
5.110	2	200	17.34		
4.574	12	210	19.39		
4.172	18	211	21.28		
3.613	22	220	24.62		
3.407	12	221	26.13		
3.232	100	310	27.58		
3.082	18	311	28.95		
2.951	1	222	30.26		
2.834	22	320	31.54		
2.731	58	321	32.76		
2.479	24	410	36.20		
2.409	1	411	37.29		
2.356	7	331	38.34		
2.286	2	420	39.38		
2.231	8	421	40.39		
2.180	8	332	41.39		
2.087	17	422	43.31		
2.045	3	430	44.26		
2.005	33	510	45.18		
1.968	2	511	46.09		
1.899	9	520	47.87		
1.867	3	521	48.74		
1.807	1	440	50.46		
1.779	4	522	51.31		
1.754 1.729 1.704 1.681 1.659	1 1 4 17	530 531 600 610 611	52.10 52.92 53.76 54.56 55.34		
1.617	5	620	56.91		
1.596	12	621	57.70		
1.577	9	541	58.46		
1.559	3	533	59.21		
1.541	<1	622	59.96		
1.524	7	630	60.73		
1.507	5	631	61.46		
1.476	4	444	62.91		
1.461	2	632	63.63		
1.446	2	550	64.37		

L	1				
	Inter	mal stand $\lambda = 1$.	dard W, a = 3.1651 54056 Å: temp. 25	16 Å	I
	d (Å)	I	hkl	20(°)	d (Å)
	1.432 1.4179 1.4045 1.3912 1.3664	2 1 2 7 2	711 640 720 721 642	65.07 65.81 66.52 67.24 68.63	1.0172 1.0122 1.0025 0.9976 .9930
	1.3541 1.3428 1.3310 1.3092 1.2983	1 3 2 3	722 730 731 650 732	69.34 70.01 70.72 72.08 72.78	.9884 .9838 .9792 .9747 .9617
	1.2783 1.2682 1.2586 1.2493 1.2401	1 3 1 2 1	800 810 811 733 820	74.11 74.80 75.47 76.13 76.80	.9576 .953 .9493 .9451 .9411
and the second s	1.2308 1.2223 1.2050 1.1966 1.1885	4 2 2 1 5	821 653 822 830 831	77.49 78.13 79.47 80.14 80.80	.9333 .9294 .925 .9219 .9219
	1.1809 1.1729 1.1652 1.1576 1.1359	1 1 2 1	751 662 832 752 841	81.43 82.10 82.76 83.43 85.39	.9108 .9030 .9000 .8932 .8898
	1.1290 1.1221 1.1158 1.1089 1.1025	1 2 1 1 2	910 911 842 920 921	86.04 86.70 87.31 88.00 88.64	.8864 .883 .876 .876 .873
	1.0898 1.0837 1.0776 1.0717 1.0601	1 3 2 <1 1	664 922 930 931 852	89.95 90.60 91.25 91.90 93.21	.867 .860 .858 .8520 .8490
	1.0545 1.0381 1.0326 1.0275	2 1 1	932 940 941 933	93.85 95.80 96.48 97.12	Reference Gattow, pelsu (SO ₄)

Internal standard W, a = 3.16516 Å				
d (Å)	Ι	hkl	20(°)	
1.0172	1	10.1.0	98.45	
1.0122	<1	10.1.1	99.11	
1.0025	1	10.2.0	100.42	
0.9976	1	10.2.1	101.09	
.9930	1	950	101.74	
.9884	<1	951	102.40	
.9838	1	10.2.2	103.06	
.9792	1	10.3.0	103.74	
9747	1	10.3.1	104.42	
.9617	1	10.3.2	106.44	
0576	. 7	071	107 10	
.9576	<1	8/1	107.10	
.9535	1	953	10/.//	
.9493	L	10.4.0	108.47	
.9451	1	960	109.18	
.9411	<1	10•3•3	109.86	
.9333	1	10•4•2	111.25	
.9294	<1	962	111.95	
.9255	2	11.1.0	112.67	
.9219	1	11.1.1	113.34	
.9145	1	11.2.0	114.77	
.9108	2	11•2•1	115.50	
.9036	<1	880	116.95	
.9001	2	11.2.2	117.69	
.8932	1	11.3.1	119.16	
.8898	1	10.4.4	119.91	
.8864	1	964	120.69	
.8831	2	11.3.2	121.44	
.8766	2	10.6.0	122.98	
8735	<1	11.4.0	123.74	
.0733	1	11.4.1	124.54	
.0/02	T	TT. 4. T	127.37	
.8671	1	11.3.3	125.32	
.8609	1	11.4.2	126.94	
.8580	1	965	127.74	
.8520	1	12.0.0	129.41	
.8490	1	12.1.0	130.26	

es

G. and J. Zemann (1958). Über Dop-llfate vom Langbeinit-Typ, $A_2^+ B_2^{2+} -$ 3, Z. Anorg. Allgem. Chem. 293,233-240.

Zemann, A. and J. Zemann (1957). Die Kris-tallstruktur vom Langbeinit, K₂Mg₂ (SO₄)₃ Acta Cryst. 10, 409-413.

The sample was prepared by slowly evaporating an equimolar solution of ${\rm Tl}_2\,{\rm SO}_4$ and ${\rm NiSO}_4$.

Color

Unground: strong bluish green Ground: very pale green

Optical data

Biaxial (-) ${\rm N}_{\alpha}{=}1.602,~{\rm N}_{\beta}{=}1.615,~{\rm N}_{\gamma}{=}1.620$ 2V is large

Structure

Monoclinic, P_{2_1}/a (14), Z=2, isostructural with other "Tutton's salts" [Tutton, 1925]. The structure of a Tutton salt, $(NH_4)_2 Mg(SO_4)_2 \cdot 6H_2O$, was determined by Margulis and Templeton [1962].

Lattice constants

	a(Å)	b (Å)	c(Å)	β(°)
NBS, sample at 25 °C	9.166 ±.001	12.392 ±.002	6.216 ±.001	106°20' ±1'

Density

(calculated) 3.763 g/cm^3 at 25° C.

Reference intensity

 $I/I_{corundum} = 3.8$

References

- Margulis, T. N. and D.H. Templeton (1962). Crystal structure and hydrogen bonding of magnesium ammonium sulfate hexahydrate, Z. Krist. 117, 344-357.
- Tutton, A.E.H. (1925). The monoclinic double sulfates containing thallium - thallium nickel and thallium cobalt sulphates. Proc. Roy. Soc.London Ser.A 118, 240-261.

Internal standard Ag, $a = 4.08641$ Å CuKa, $\lambda = 1.54056$ Å; temp. 25 °C				
d (Å)		hkl	2θ(°)	
7.18	18	110	12.31	
5.95	8	001	14.88	
5.37	13	011	16.49	
5.06	22	120	17.50	
4.39	2	200	20.20	
4.294	8	021	20.67	
4.209	30	Ī21	21.09	
4.139	100	111,201,+	21.45	
3.926	5	211	22.63	
3.740	51	130	23.77	
3.587 3.396 3.353 3.142 3.097	1 6 15 22	220,121 031 I31 201 040	24.80 26.22 26.56 28.38 28.80	
3.046	16	211	29.30	
3.007	47	131,Ī12,+	29.68	
2.982	5	002	29.94	
2.923	6	231,140	30.56	
2.901	18	311,012	30.80	
2.872	16	202	31.11	
2.853	11	310	31.33	
2.802	9	221	31.91	
2.774	10	122	32.24	
2.749	6	041	32.54	
2.727	7	141	32.81	
2.651	5	320	33.78	
2.607	2	222	34.37	
2.554	1	112	35.11	
2.534	2	240,141	35.40	
2.501	5	231	35.87	
2.480	16	Ī32,241	36.19	
2.421	24	331,312,+	37.11	
2.406	12	122	37.35	
2.391	6	330	37.58	
2.290	16	322,051	39.31	
2.244	6	411	40.15	
2.221	8	321	40.59	
2.205	15	132,241	40.90	
2.199	14	400,202	41.00	
2.160	8	250,151	41.79	
2.148	6	341,042	42.02	
2.126	4	251	42.48	
2.106	8	242	42.91	
2.071	5	420,222,+	43.66	

Internal standard Ag, a = 4.08641 Å CuK a_1 λ = 1.54056 Å; temp. 25 °C				
d (Å)	I	hkl	20(°)	
2.065	5	060	43.80	
2.042	5	412,113,+	44.33	
2.012	4	213,160	45.02	
1.997	3	431,142	45.37	
1.988	5	003	45.60	
1.963	2	013,Ī23,+	46.22	
1.945	5	251,Ī61	46.66	
1.929	2	342	47.07	
1.906	7	351,052	47.68	
1.893	4	023,350	48.02	
1.887	4	341	48.18	
1.875	2	411,252	48.50	
1.849	9	133,261	49.24	
1.829	3	323,233	49.81	
1.793	8	440,242,+	50.89	
1.770	2	322	51.59	
1.757	5	521,123	52.00	
1.742	4	510	52.50	
1.737	5	333,170	52.66	
1.724	3	431	53.09	
1.720	3	Ī43,Ī62	53.22	
1.692	3	520,Ī71	54.15	
1.687	5	332	54.34	
1.680	4	522,Ā51	54.59	
1.673	5	Ā23,043,+	54.82	
1.642	5	270,171	55.95	
1.618	2	530,441	56.84	
1.608	4	532	57.25	
1.589	2	$\overline{4}52,\overline{1}53$	58.01	
1.576	3	$143,\overline{2}53$	58.53	
1.558	3	511,412	59.24	
1.551	3	204,053	59.57	
1.538	5	214,172	60.10	
1.526	3	601,180	60.64	
1.523	4	371,072,+	60.78	
1.516	5	443,370,+	61.07	
1.505	4	523,262,+	61.56	

The sample was prepared by slowly evaporating a 1:8 mixture of molar solutions of Tl_2SO_4 and $ZnSO_4$, and using the first crystals formed.

Color

Colorless

Optical data

Biaxial (-) ${\rm N}_{\alpha}{=}1.592,~{\rm N}_{\beta}{=}1.610,~{\rm N}_{\gamma}{=}1.615$ 2V is large.

Structure

Monoclinic, $P2_1/a$ (14), Z=2, isostructural with other "Tutton's salts" [Tutton, 1910]. The structure of a Tutton salt, $(NH_4)_2 Mg(SO_4)_2 \cdot 6H_2O$, was determined by Margulis and Templeton [1962].

Lattice constants

	a(Å)	b (Å)	c(Å)	β(°)
NBS, sample at 25°C	9.219 ±.001	12.433 ±.002	6.2317 ±.0005	106°17.6′ ±.4′

Density

(calculated) 3.763 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 3.8$

References

- Margulis, T.N. and D. H. Templeton (1962). Crystal structure and hydrogen bonding of magnesium and ammonium sulfate hexahydrate, Z. Krist, 117, 344-357.
- Tutton, A. E. H. (1910). The relation of thallium to the alkali metals: a study of thallium-zinc sulphate and selenate, Proc. Roy. Soc. London Ser.A 83 221-226.

Internal standard Ag, $a = 4.08641 \text{ Å}$			
CuK	$\alpha_1 \lambda = 1$.54056 A; temp.	25 °C
d (Å)	Ι	hkl	20(°)
7.20	22	110	12.28
5.98	8	001	14.79
5.39	15	011	16.42
5.09	23	120	17.40
4.421	3	200	20.07
4.310	10	021	20.59
4.229	32	Ī21	20.99
4.164	100	210,111,+	21.32
3.943	5	Ī11	22.53
3.751	52	130	23.70
3.606	2	220,121	24.67
3.363	6	<u>1</u> 31	26.48
3.161	14	201	28.21
3.109	17	040	28.69
3.062	14	211	29.14
3.018	40	131, 112	29.57
2.991	3	002	29.85
2.932	6	231, 140	30.46
2.916	10	311	30.63
2.909	15	012	30.71
2.880	16	202	31.03
2.872	15	310	31.12
2.816	8	221	31.75
2.809	6	212	31.83
2.782	9	122	32.15
2.758 2.737 2.666 2.614 2.543	6 4 2 2	$ \begin{array}{r} 041 \\ 141 \\ 320 \\ \overline{2}22 \\ 240,141 \end{array} $	32.44 32.69 33.59 34.27 35.26
2.512	4	231	35.71
2.488	12	241, I32	36.07
2.429	24	331, 312	36.98
2.424	15	032	37.06
2.414	10	122	37.22
2.404	8	330	37.38
2.300	14	322	39.13
2.296	16	051,401	39.20
2.256	6	411	39.92
2.233	8	321	40.35

Inter	mal stan	dard Ag, a = 4.086	641 Å	1
CuK	$\alpha_1 \lambda = 1.$.54056 A; temp. 2	25 °C	
d (Å)	I	hkl	20(°)	
2.215 2.208 2.179 2.173 2.168	18 14 2 4 7	241,132 202,400 410 212 250,151	40.70 40.83 41.41 41.53 41.62	
2.155 2.133 2.112 2.084 2.079	4 4 8 4 4	042 251 242 420 222,402	41.88 42.33 42.77 43.39 43.49	1 1 1 1
2.072 2.050 2.046 2.018 2.007	3 4 4 4 3	060,331 412 113,203 213,160 431	43.64 44.13 44.23 44.88 45.14	1 1 1 1
2.003 1.994 1.967 1.954 1.950	4 5 2 4 4	142 003 Ī23 251 430,Ī61	45.23 45.46 46.12 46.43 46.53	
1.937 1.912 1.908 1.897 1.885	2 6 5 4 2	342 052 401 341,313,+ 411	46.87 47.52 47.62 47.92 48.23	1 1 1 1
1.854 1.835 1.802 1.799 1.778	8 3 6 4 2	261,133 312,323,+ 152,440 242 322	49.09 49.65 50.61 50.71 51.33	1 1 1 1
1.767 1.762 1.752 1.742 1.738	4 4 3 3 3	521 123 510 333,170 512	51.68 51.83 52.15 52.47 52.63	
1.733 1.724 1.702 1.694 1.687	2 2 3 4 3	431,261 162,351,+ 071,520 332 451	52.78 53.06 53.81 54.08 54.35	

Inter	rnal stan	dard Ag, a = 4.086	641 Å
CuK	$\alpha_1 \lambda = 1$.54056 Å; temp. 2	25 °C
d (Å)	Ι	hkl	20(°)
1.733	2	431,261	52.78
1.724	2	162,351,+	53.06
1.702	3	071,520	53.81
1.694	4	332	54.08
1.687	3	451	54.35
1.679	4	423,043	54.63
1.648	4	270,171	55.74
1.638	2	213	56.12
1.633	2	343,271	56.28
1.627	2	530	56.50
1.615	3	532	56.98
1.595	2	452	57.74
1.593	1	342,153	57.85
1.586	2	541	58.13
1.580	2	253,402	58.37
1.567	2	412,361	58.90
1.554	2	204,080	59.41
1.546	2	513	59.78
1.542	4	214,172	59.92
1.535	2	601,233	60.26
1.528	2	371,542	60.54
1.521	4	443,353	60.86
1.511	2	523,262,+	61.29
1.500	3	181,602	61.79
1.490	1	621	62.24
1.477	2	531	62.88
1.473	2	324	63.04
1.464	1	610	63.48
1.461	2	313	63.65
1.458	2	533,622,+	63.76
1.441	1	404,631	64.65
1.433	1	552	65.02
1.424	2	334	65.50

The sample was obtained from the National Lead Company, South Amboy, N.J.

Major impurities

No impurities greater than 0.001 percent

Color

Colorless

Structure

Tetragonal, $I4_1$ /amd (141), Z=4 [Huggins, 1926]

Lattice constants

	a(Å)	c(Å)
Swanson and Tatge (1953),	3.783	9.51
sample at 26-27°C	3.7852	9.5139
NBS, sample at 25°C	±.0001	±.0004

Density

(calculated) 3.893 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 4.3$

Polymorphism

Anatase and another mineral form, brookite (orthorhombic), are converted to a third mineral form, rutile (tetragonal), by heating to temperatures above 700 °C.

References

Huggins, M. L. (1926). The crystal structure of anatase and rutile, the tetragonal forms of TiO₂, Phys. Rev. 27, 638.
Swanson, H.E. and E. Tatge (1953) Standard X-ray Diffraction Powder Patterns, Natl. Bur. Std. U.S. Circ. 539, Vol. I, 46-47.

Internal standard W, $a = 3.16516$ Å				
CuKa	$\alpha_1 \lambda = 1.$	54056 A; temp. 23	5 °C	
d (Å)	Ι	hkl	20(°)	
3.515	100	101	25.32	
2.431	9	103	36.95	
2.378	22	004	37.80	
2.332	9	112	38.57	
1.892	33	200	48.05	
1.6999	21	105	53.89	
1.6665	19	211	55.06	
1.4930	4	213	62.12	
1.4808	13	204	62.69	
1.3641	5	116	68.76	
1.3378	5	220	70.31	
1.2795	<1	107	74.03	
1.2649	10	215	75.03	
1.2509	3	301	76.02	
1.1894	<1	008	80.72	
1.1725	2	303	82.14	
1.1664	5	224	82.66	
1.1608	3	312	83.15	
1.0600	1	217	93.22	
1.0517	3	305	94.18	
1.0436 1.0182 1.0070 .9967 .9555	3 2 1 4	321 109 208 323 316	95.14 98.32 99.80 101.22 107.45	
.9464	3	400	108.96	
.9246	<1	307	112.84	
.9192	2	325	113.85	
.9138	2	411	114.91	
.8966	3	219,1•1•10	118.44	
.8890	2	228	120.11	
.8819	<1	413	121.73	
.8793	2	404	122.34	
.8464	2	420	131.02	
.8308	<1	327	135.98	
.8268	3	415	137.38	
.8102	1	309	143.86	
.7974	3	424	150.04	
.7928	1	0•0•12	152.62	

The sample was obtained from the National Lead Company, South Amboy, N.J.

Major impurities

No impurities greater than 0.001 percent

Color

Colorless

Structure

Tetragonal, P4₂/mnm (136), Z=2 [Huggins, 1926]

Lattice constants

			a(Å)	c(Å)
Swanson and NBS, sample	Tatge at 25	[1953]- °C	4.594 4.5933 ±.0001	2.958 2.9592 ±.0001

Density

(calculated) 4.250 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 3.4$

Polymorphism

The two other mineral forms, anatase (tetragonal) and brookite (orthorhombic), are converted to rutile by heating to temperatures above 700 °C.

References

Huggins, M. L. (1926). The crystal structure of anatase and rutile, the tetragonal forms of TiO₂, Phys. Rev. 27, 638.
Swanson, H.E. and E. Tatge (1953).Standard X-ray Diffraction Powder Patterns, Natl. Bur. Std. U.S. Circ. 539, I, 44-46.

Internal standard W, a = 3.16516 Å CuKa, λ = 1.54056 Å; temp. 25 °C				
d (Å)	I	hkl	20(°)	
3.247	100	110	27.45	
2.487	51	101	36.09	
2.297	7	200	39.19	
2.188	25	111	41.23	
2.054	9	210	44.06	
1.6874	60	211	54.32	
1.6237	20	220	56.64	
1.4797	9	002	62.74	
1.4528	9	310	64.04	
1.4243	1	221	65.48	
1.3598	20	301	69.01	
1.3465	11	112	69.79	
1.3041	1	311	72.41	
1.2441	3	202	76.51	
1.2006	2	212	79.82	
1.1702	5	321	82.33	
1.1483	3	400	84.26	
1.1143	2	410	87.46	
1.0936	8	222	89.55	
1.0827	4	330	90.71	
1.0425	6	411	95.27	
1.0364	6	312	96.01	
1.0271	3	420	97.17	
0.9703	1	421	105.09	
.9644	2	103	106.01	
.9438 .9072 .9009 .8892 .8774	1 4 8 8	113 402 510 212 431	109.40 116.22 117.53 120.06 122.79	
.8738	8	332	123.66	
.8437	6	422	131.83	
.8292	8	303	136.55	
.8196	12	521	140.05	
.8120	2	440	143.09	
.7877	2	530	155.85	

Triclinic, PI (2), Z=1 [Jost et al., 1966]

Lattice parameters

a=7.25, b=5.70, c=4.67Å, α=99.8°, β=98.0°, γ=99.7° [ibid.]

Scattering factors

H°, O° [3.3.1A] As° [3.3.1B]

Thermal parameters

Isotropic [Jost et al., 1966]

Density

(calculated) 3.45 g/cm³ [ibid.]

Scale factor

 1.431×10^4

Reference

Jost,K.-H., H. Worzala, and E. Thilo (1966). Die Struktur des As₂O₅·⁵₃H₂O, Acta Cryst. **21**, 808-813.

-					
Calculated Pattern (Peak heights)					
d (Å)	Ι	hkl	$\frac{2\theta(°)}{\lambda = 1.54056 \text{ Å}}$		
7.05	24	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12.54		
5.51	13		16.08		
4.85	100		18.36		
4.53	4		19.58		
3.98	4		22.34		
3.54	40	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	25.10		
3.43	39		25.98		
3.28	2		27.18		
3.20	13		27.84		
3.05	23		29.24		
2.754	6	$\begin{array}{ccccccc} 0 & 2 & 0 & + \\ 2 & 1 & 0 \\ -2 & 1 & 1 \\ 1 & 1 & 1 \\ -2 & -1 & 1 \end{array}$	32.48		
2.736	5		32.70		
2.712	1		33.00		
2.687	15		33.32		
2.629	3		34.08		
2.605	10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	34.40		
2.593	10		34.56		
2.414	3		37.22		
2.353	1		38.22		
2.336	2		38.50		
2.275	2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	39.58		
2.265	2		39.70		
2.260	0		39.86		
2.253	11		39.98		
2.229	1		40.44		

Calculated Pattern (Peak heights)					
đ (Å)	Ι	hkl	$\frac{2\theta(^{\circ})}{\lambda = 1.54056 \text{ Å}}$		
2.170	1i	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	41.58		
2.154	4		41.90		
2.082	2		43.42		
2.057	1		43.98		
2.024	2		44.74		
2.009	3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	45.10		
1.9894	3		45.56		
1.9545	1		46.42		
1.9028	3		47.76		
1.8747	6		48.52		
1.8315	3	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	49.74		
1.8226	2		50.00		
1.7860	1		51.10		
1.7782	1		51.34		
1.7730	1		51.50		
1.7647 1.7275 1.7215 1.7131 1.7096	2 1 2 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	51.76 52.96 53.16 53.44 53.56		
1.6996	1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	53.90		
1.6967	3		54.00		
1.6397	2		56.04		
1.6036	2		57.22		
1.5989	1		57.60		
1.5750	5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	58.56		
1.5633	2		59.04		
1.5594	1		59.20		
1.5341	1		60.28		
1.5258	2		60.64		
1.5217 1.5079 1.4980 1.4809 1.4763	2 2 2 3 2	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	60.82 61.44 61.86 62.40 62.90		
1.4568	2	$\begin{array}{ccccc} -4 & -1 & 2 \\ -1 & -2 & 3 \\ -5 & 1 & 0 \\ 3 & 2 & 1 \\ 1 & 0 & 3 \end{array}$	63.84		
1.4395	2		64.70		
1.4372	2		64.82		
1.4340	2		64.98		
1.4277	1		65.30		
1.4231 1.4101 1.4034 1.3883 1.3847	1 1 1 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	65.54 66.22 66.58 67.40 67.60		
1.3768	2	$\begin{array}{ccccccc} 0 & 4 & 0 \\ -5 & 2 & 0 \\ 2 & -4 & 1 \\ -3 & -3 & 1 \\ 4 & -3 & 1 \end{array}$	68.04		
1.3704	1		68.40		
1.3693	1		68.46		
1.3644	1		68.74		
1.3603	1		68.98		
1.3507	1	2 -1 3	69.54		

Arsenic Acid, $H_5As_3O_{10}$ (triclinic) – continued

Ca	Calculated Pattern (Integrated)			Calculated Pattern (Integrated)			uted)
d (Å)	Ι	hkl	$2\theta(°)$ $\lambda = 1.54056 \overset{\circ}{A}$	d (Å)	Ι	hkl	$2\theta(°)$ $\lambda = 1.54056 \stackrel{\circ}{A}$
7.06 5.51 4.83 4.53 3.98	21 18 100 4 4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12.53 16.08 18.36 19.57 22.33	1.7134 1.7097 1.7001 1.6970 1.6395	2 4 1 4 3	$\begin{array}{ccccc} -2 & -2 & 2 \\ -3 & -1 & 2 \\ 2 & -2 & 2 \\ 1 & 3 & 0 \\ -1 & 3 & 1 \end{array}$	53.43 53.56 53.86 53.99 56.05
3.55 3.53 3.43 3.40 3.28	42 4 42 2 2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	25.10 25.21 25.98 26.19 27.17	1.6091 1.6080 1.5992 1.5748 1.5632	2 1 4 2	-3 3 0 -2 2 2 -2 3 1 2 1 2 -4 2 1	57•20 57•24 57•59 58•57 59•05
3.22 3.20 3.05 2.755 2.753	1 14 26 3 4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	27.72 27.84 29.24 32.47 32.49	1.5599 1.5340 1.5260 1.5213 1.5081	1 2 2 1	3 -1 2 -1 -3 2 -4 0 2 4 -2 1 -3 -2 2	59.18 60.28 60.63 60.84 61.43
2.737 2.712 2.686 2.629 2.605	5 1 17 4 12	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32.70 33.00 33.32 34.08 34.40	1.5073 1.4987 1.4872 1.4763 1.4759	1 2 4 2 1	3 0 2 -3 2 2 1 2 2 2 -3 2 -2 -1 3	61.47 61.86 62.39 62.90 62.92
2 • 593 2 • 414 2 • 353 2 • 336 2 • 275	11 3 1 3 2	0 -2 1 -2 2 0 3 0 0 -3 1 0 -1 0 2	34 • 57 37 • 22 38 • 22 38 • 50 39 • 58	1.4654 1.4569 1.4396 1.4372 1.4341	1 2 2 2	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	63.43 63.84 64.70 64.82 64.98
2.266 2.259 2.253 2.228 2.170	1 6 10 1 14	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	39.74 39.86 39.98 40.44 41.58	1.4278 1.4228 1.4107 1.4099 1.4033	2 1 1 1 1	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	65.30 65.56 66.19 66.23 66.58
2.155 2.083 2.057 2.024 2.009	5 2 1 3 3	-3 1 1 -2 2 1 1 0 2 3 1 0 -1 1 2	41.89 43.41 43.99 44.73 45.09	1.3884 1.3848 1.3767 1.3705 1.3690	1 1 2 1 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	67.39 67.59 68.04 68.39 68.48
2.008 2.006 1.9892 1.9546 1.9025	1 2 3 1 4	-2 -2 1 3 -1 1 2 2 0 3 0 1 -2 1 2	45.11 45.15 45.57 46.42 47.77	$1 \cdot 3643$ $1 \cdot 3001$ $1 \cdot 3506$ $1 \cdot 3413$ $1 \cdot 3328$	1 1 2 1 1	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	68.75 68.99 69.54 70.10 70.61
1.8751 1.8326 1.8311 1.8226 1.7857	8 2 3 3 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	48.51 49.71 49.75 50.00 51.11	1.3313 1.3140 1.3054 1.3036 1.2999	1 1 1 2	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	70.70 71.78 72.33 72.44 72.68
1.7781 1.7728 1.7646 1.7278	1 1 3 2	$\begin{array}{cccc} -2 & 3 & 0 \\ 2 & 0 & 2 \\ 4 & 0 & 0 \\ -4 & 1 & 1 \\ -1 & -3 & 1 \end{array}$	51.34 51.51 51.77 52.95	L		L	

Azobenzene, $C_{12}H_{10}N_2$ (monoclinic)

20(°) $\lambda = 1.54056 \text{ Å}$ 25.34 27.06 27.12 27.96 28.14 28.46 28.78 29.14 29.40 29.56 29.78 29.98 31.14 31.72 32.08 33.12 33.34 33.42 33.48 33.62 33.88 34.06 34.46 35.02 35.34 35.84 35.94 36.62 36 • 7 4 38 • 3 8

> 38.50 38.86 39.50 39.66 39.72 39.90 41.32 41.60 41.84 42.64 43.10 43.28 43.72 44.22 44.48 44.90 45.06 45.40 46.12 46.46

5

Structure Monoclin	ic, P2	/a (14), Z=4	[Brown, 1966]	Ca	alculated	l Pattern <i>(Peak he</i>	ights)
		d (Å)	I	hkl	2		
a=12.144 (publish	ameters , b=5.7 ed valu	56, c=15.397Å, e: c=15.396)	, β=114°8' [ibid.]	3.51	15	0 0 4	$\lambda = 1$ 25 27
Scattering factors H° , C° , N° [3.3.1A]				3.285 3.188 3.168	8 32 7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27 27 28
Thermal pa Anisotro tropic f Density (calculat	rameter pic for or hydr ed) 1.2	s carbon and c oqen [Brown,19 30 g/cm ³	oxygen, iso- 966]	3 • 13 4 3 • 09 9 3 • 06 2 3 • 03 5 3 • 01 9	5 26 17 4 8	2 1 -4 + 2 1 2 2 0 -5 4 0 -2 2 0 3	28 28 29 29 29
Scale factor 1.478 × 1	10 ⁴			2.998 2.978 2.870 2.819 2.788	10 2 3 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	29 29 31 31 32
Additional p 1.PDF card boro, N.	atterns 3-0172 J.]	2 [Socony-Vacu	uum, Pauls-	2.703 2.685 2.679 2.674 2.664	4 9 8 8	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	33 33 33 33 33
Brown, C.J crystal Cryst. 2	. (1966 struct 1, 146-). A refiner ure of azober 152.	ment of the nzene, Acta	2 • 64 4 2 • 63 0 2 • 60 0 2 • 56 0 2 • 53 8	2 2 3 4 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	33 34 34 35 35
Ca	lculated	Pattern (Peak he	eights)	2.503 2.497	3	122	35 35
d (Å)	Ι	hkl	$\frac{2\theta(^{\circ})}{\lambda = 1.54056 \lambda}$	2 • 45 2 2 • 44 4 2 • 34 3	1 1 5	0 2 3 2 2 - 3 2 1 - 6	36 36 38
1 4 • 06 7 • 02 5 • 60 5 • 54 5 • 32	6 36 13 12 10	0 0 1 0 0 2 2 0 -2 2 0 0 0 1 1	6 • 2 8 12 • 6 0 15 • 8 0 15 • 9 8 16 • 6 4	2 • 336 2 • 316 2 • 279 2 • 271 2 • 267	5 3 2 2 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38 38 39 39 39
5.11 4.63 4.56 4.53 4.45	100 46 70 95 77	1 1 0 + 2 0 -3 2 0 1 + 1 1 1 0 1 2	17.34 19.16 19.46 19.56 19.92	2.258 2.183 2.169 2.157 2.119	2 1 1 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	39 41 41 41 42
4 • 18 4 • 02 3 • 99 3 • 83 3 • 80	24 15 50 61	2 1 -1 2 1 -2 2 1 0 1 1 -3 1 1 2	21 • 26 22 • 12 22 • 24 23 • 20 23 • 36	2 • 097 2 • 089 2 • 069 2 • 047 2 • 035	2 1 4 1 1	2 2 -5 4 2 -2 5 1 0 4 0 3 3 1 -7	43 43 43 44
3.74 3.68 3.63 3.61 3.57	74 66 14 9 4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	23 • 8 0 24 • 1 6 24 • 4 8 24 • 6 6 24 • 9 0	2.017 2.010 1.9960 1.9665 1.9529	1 4 2 3 2	3 2 2 3 1 4 + 4 2 0 5 1 -6 6 0 -5	44 45 45 46

Azobenzene, $\mathrm{C_{12}H_{10}N_2}$ (monoclinic) – continued

Calculated Pattern (Peak heights)					
d (Å)	Ι	hkl	$\frac{2\theta(°)}{\lambda = 1.54056 \text{ A}}$		
1.9364 1.9279 1.9095 1.9020 1.8908 1.8842 1.8682 1.8582 1.8469 1.8399 1.8206 1.8018 1.7945 1.7775 1.7757 1.7527 1.7465 1.7197 1.7066	1 1 2 3 2 2 1 1 2 5 2 1 1 2 1 1 2 1 1 1 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	x = 1.54056 A 46 .8 8 47 .1 0 47 .5 8 47 .7 8 48 .0 8 48 .2 6 48 .9 8 49 .3 0 49 .5 0 50 .0 6 50 .6 2 50 .8 4 51 .3 6 52 .1 4 52 .3 4 53 .2 2 53 .6 6		
1.6593	1	7 1 -4	55.32		

Calculated Pattern (Integrated)					
d (Å)	I	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \stackrel{\circ}{A}$		
14.05	5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5.28		
7.03	32		12.59		
5.61	12		15.80		
5.54	11		15.98		
5.33	9		16.53		
5.12	2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	17.30		
5.11	100		17.35		
4.63	44		19.15		
4.56	15		19.45		
4.56	46		19.46		
4.53	82	1 1 1	19.56		
4.45	78	0 1 2	19.92		
4.18	25	2 1 -1	21.25		
4.02	15	2 1 -2	22.12		
3.99	3	2 1 0	22.25		
3.83	49	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	23.20		
3.80	59		23.36		
3.74	81		23.79		
3.68	70		24.16		
3.63	13		24.48		
3.61	7	2 1 -3	24.56		
3.57	3	2 1 1	24.90		
3.51	16	0 0 4	25.33		
3.293	11	3 1 -2	27.05		
3.283	2	3 1 -1	27.14		
3.189 3.168 3.135 3.134 3.101	35 6 3 2 30	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	27.96 28.15 28.45 28.45 28.45 28.77		
3.062	19	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29.14		
3.036	3		29.40		
3.020	8		29.56		
2.999	11		29.77		
2.977	1		29.99		
2.878	1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31.05		
2.859	4		31.15		
2.819	1		31.71		
2.788	1		32.38		
2.703	5		33.11		
2.686	1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	33 • 3 3		
2.685	7		33 • 3 4		
2.685	2		33 • 3 4		
2.680	2		33 • 4 0		
2.674	6		33 • 4 8		
2.653 2.644 2.631 2.601 2.550	5 2 3 4	0 2 2 4 1 -3 4 1 -1 2 2 -1 2 2 -2	33.62 33.67 34.05 34.46 35.02		

Azobenzene,	C_H_N_2	(monoclinic)	-	continued
-------------	---------	--------------	---	-----------

$d(\hat{A})$		Calculated Pattern (Integrated)			Calculated Pattern (Integrated)			
	Ι	hkl	$\frac{2\theta(°)}{\lambda = 1.54056 \text{ Å}}$	d (Å)	Ι	hkl	$\frac{2\theta(°)}{\lambda = 1.54056 \stackrel{\circ}{A}}$	
2 • 538 2 • 503 2 • 496 2 • 452 2 • 444 2 • 344 2 • 339 2 • 336	2 3 2 1 1 5 1 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	35.33 35.65 35.94 36.62 36.74 38.38 38.45 38.51	1.9960 1.9667 1.9520 1.9365 1.9279 1.9092 1.9023 1.8908	3 4 2 1 1 1 2 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	45.40 46.12 46.46 46.88 47.10 47.59 47.77 48.38	
2.320 2.315	1 3	2 1 4 4 0 -6	38.78 38.87	1.8685	1	1 2 5	48.27	
2.279 2.270 2.267 2.257 2.184	1 1 2 2	4 D 2 3 2 D 2 2 2 3 1 3 5 1 -4	39.51 39.67 39.73 39.91 41.31	1.8685 1.8671 1.8584 1.8471	1 1 1	6 D -6 3 2 3 1 3 -2 6 D D	48.59 48.73 48.97 49.29	
2.159 2.158 2.119 2.097 2.089	1 1 2 2	0 1 6 3 2 1 4 1 2 2 2 -5 4 2 -2	41.50 41.83 42.53 43.10 43.28	1.8401 1.8249 1.8209 1.8131 1.8015	2 1 6 1 2	4 0 4 5 2 - 4 3 1 - 8 2 3 0 2 1 6	49.49 49.94 50.05 50.28 50.63	
2.068 2.046 2.035 2.017 2.010	4 1 1 4	5 1 0 4 0. 3 3 1 -7 3 2 2 3 1 4	43.73 44.23 44.47 44.50 45.07	1.7945 1.7773 1.7527 1.7462 1.7199 1.7069	1 1 2 1 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	50.84 51.37 52.14 52.35 53.21 53.65	

Cubic, F43m (216), Z=4 [Harris and Yakel, 1966].

Lattice parameters

a=14.024±0.005 Å (published value, 14.023 Å [ibid.])

Atomic positions

The parameters used are those in table 2 [ibid.]

Scattering factors

Be²⁺, Ca²⁺ [Cromer and Waber, 1964] O⁻ [3.3.1A]

Thermal parameters

Overall temperature factor=0.41679 [Harris and Yakel, 1966] Density

(calculated) 2.64 g/cm³ [ibid.]

Scale factor

 85.75×10^4

Reference

Cromer, D.T. and J.T. Waber (1965). Scattering factors computed from relativistic Dirac-Slater wave functions, Acta Cryst. 18, 104-109.

Harris, L. A. and H. L. Yakel (1966). The crystal structure of calcium beryllate, Ca₁₂Be₁₇O₂₀, Acta Cryst. 20, 295-301.

Calculated Pattern (Peak heights)								
d (Å)	Ι	h	kl	$\frac{2\theta(^{\circ})}{\lambda = 1.54056 A}$				
8 • 10 7 • 01 4 • 96 4 • 23 4 • 05	100 26 34 6 3	1 2 3 2	1 1 2 0 1 1 2 2	10.92 12.62 17.88 21.00 21.94				
3.51 3.218 3.136 2.863 2.699	40 13 15 21 19	4 (3 4 3	D D 3 1 2 D 2 2 3 3 +	25.38 27.70 28.44 31.22 33.16				
2.479 2.371 2.338 2.217 2.139	39 3 38 3 1	4 5 4 6 5	4 0 3 1 4 2 + 2 0 3 3	36 • 20 37 • 92 38 • 48 40 • 66 42 • 22				
2.114 2.024 1.9641 1.9450 1.8740	4 51 14 4 6	6 4 5 6	22 44 51+ 40 42	42.74 44.74 46.18 46.66 48.54				
1.8261 1.7527 1.7131 1.7008 1.6527	9 17 7 7 18	7 8 7 8 8	3 1 + 0 0 3 3 2 0 2 2 +	49.90 52.14 53.44 53.86 55.56				
1.6195 1.6086 1.5681 1.5392 1.5299	4 3 6 1 1	5 6 8 9	5 5 + 6 2 4 0 1 1 4 2	56.80 57.22 58.84 60.06 60.46				
1.4951 1.4313 1.4094 1.4023 1.3750	1 4 1 3 2	6 8 7 8 8	6 4 4 4 7 1 + 6 D 6 2	62.02 65.12 66.26 66.64 68.14				
1.3558 1.3493 1.3076 1.3020 1.2395	6 2 1 3 6	9 6 9 10 8	5 1 + 6 6 + 5 3 4 0 8 0	69.24 69.62 72.18 72.54 76.84				
1.2253 1.2206 1.1895 1.1853 1.1687	2 4 1 6 1	9 8 9 10 12	5 5 + 8 2 + 7 3 + 6 2 0 0	77.90 78.26 80.72 81.06 82.46				
1.1568 1.1376 1.1087 1.0984	1 2 1 1	7 12 12 9	7 7 + 2 2 + 4 0 9 1 4 2 +	83.50 85.24 88.02 89.06 89.40				

Beryllium Calcium Oxide, $Be_{17}Ca_{12}O_{29}$ (cubic) – continued

Ca	lculated	Pattern (Peak he	eights)	Ca	alculated	Pattern (Integra	ted)
d (Å)	Ι	hkl	$\frac{2\theta(°)}{\lambda = 1.54056 \text{ Å}}$	đ (Å)	Ι	hkl	$\frac{2\theta(^{\circ})}{\lambda = 1.54056 \overset{\circ}{A}}$
1.0820 1.0724 1.0694 1.0570 1.0481	1 1 2 4 1	10 8 2 11 5 5 10 6 6 12 4 4 11 7 3	90.78 91.82 92.16 93.56 94.60	8.10 7.01 4.96 4.23 4.05	100 27 38 7 4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10.92 12.61 17.87 20.99 21.94
1.0339 1.0255 1.0017 .9819 .9632	3 1 1 2 2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	96.32 97.38 100.52 103.34 106.20	3.51 3.217 3.136 2.863 2.699	51 17 19 29 11	4 0 0 3 3 1 4 2 0 4 2 2 5 1 1	25.38 27.70 28.44 31.22 33.17
.9542 .9477 .9308 .9280 .9129	1 1 1 4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107.66 108.74 111.70 112.10 115.08	2.699 2.479 2.370 2.337 2.337	16 56 4 4 51	3 3 3 4 4 0 5 3 1 6 0 0 4 4 2	33 • 1 7 36 • 2 0 37 • 9 2 38 • 4 8 38 • 4 8
.8978 .8852 .8765 .8697 .8631	1 1 2 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	118.18 120.96 123.00 124.66 126.36	2.217 2.139 2.114 2.024 1.9637	5 1 6 79 3	6 2 D 5 3 3 6 2 2 4 4 4 7 1 1	40.65 42.22 42.73 44.73 46.19
8566 8503 8457 8264 8207	1 2 2 2	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	128.10 129.88 131.24 137.54 139.62	1 • 96 37 1 • 94 48 1 • 87 40 1 • 82 53 1 • 82 58	21 5 10 11 4	5 5 1 6 4 0 6 4 2 7 3 1 5 5 3	46.19 46.67 48.54 49.91 49.91
.8151 .8110 .8097 .8043 .8004	1 4 1 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	141.82 143.52 144.10 146.54 148.46	1 • 75 30 1 • 71 33 1 • 70 07 1 • 65 27 1 • 65 27	29 12 12 22 8	8 0 0 7 3 3 8 2 0 8 2 2 6 6 0	52.13 53.43 53.86 55.56 55.56
.7840 .7791	2 4	16 8 0 16 8 2 +	158.56 162.74	1.6193 1.6193 1.6087 1.5679 1.5393	2 4 6 11 1	7 5 1 5 5 5 6 6 2 8 4 0 9 1 1	56.81 ,56.81 57.22 58.85 60.05
				1.5301 1.4950 1.4313 1.4095 1.4095	2 3 8 1 1	8 4 2 6 6 4 8 4 4 7 7 1 7 5 5	60.45 62.03 65.12 66.26 66.26
			,	1 • 4 0 2 4 1 • 37 5 2 1 • 35 5 7 1 • 35 5 7 1 • 34 9 5	5 3 7 4 2	8 6 0 8 6 2 9 5 1 7 7 3 10 2 2	66.63 68.13 69.24 69.24 69.61
				1.3495 1.3077 1.3021 1.2802 1.2645	2 2 6 1 1	6 6 6 9 5 3 10 4 0 10 4 2 7 7 5	69.61 72.17 72.54 73.98 75.06

20(°)

 $\lambda = 1.54056 \text{ Å}$

124.66

126.36

126.36

127.66

128.10

129.88

131.24 131.24

131.71

133.59

135.03 137.54

137.54

139.63

139.63

141.81

141.81

143.52 143.52

143.52

144.11

144.11

146.54

148.47

148.47 151.95

154.24

158.56

161.60

161.60

162.73

162.73

162.73 162.73

	Cá	alculated	l Pattern (Integ	rated)	С	alculated	d Pattern (Integra	ated)
0 -	d (Å)	Ι	hkl	$\frac{2\theta(^{\circ})}{\lambda = 1.54056 ^{\circ}}$	d (Å)	Ι	hkl	λ =
	1.2396 1.2253 1.2253 1.2206 1.2206	12 1 3 6 3	8 8 0 11 3 1 9 5 5 8 8 2 10 4 4	76.84 77.90 77.90 78.26 78.26	.8697 .8631 .8631 .8582 .8586	2 3 1 1 3	14 8 D 16 2 2 14 8 2 13 7 7 14 6 6	
	1 • 18 95 1 • 18 95 1 • 18 52 1 • 16 87 1 • 15 67	1 1 12 2 1	11 3 3 9 7 3 10 6 2 12 0 0 11 5 1	80.72 80.72 81.07 82.46 83.51	.8503 .8457 .8457 .8441 .8381	4 2 3 2 1	16 4 0 13 9 5 15 5 5 16 4 2 12 10 6	1 1 1 1
	1.1567 1.1375 1.1375 1.1087 1.0984	2 4 1 2 1	7 7 7 12 2 2 10 6 4 12 4 0 9 9 1	83.51 85.25 85.25 88.02 89.05	•8336 •8264 •8264 •8207 •8207	2 5 1 8 2	15 7 3 16 4 4 12 12 0 12 12 2 16 6 0	1 1 1 1 1
5 2 3 9	1.0951 1.0951 1.0820 1.0724 1.0693	7 5 2 1 4	12 4 2 8 8 6 10 8 2 11 5 5 10 6 6	89.40 89.40 90.78 91.82 92.17	.8151 .8151 .8110 .8110 .8110	3 2 1 2 2	16 6 2 14 8 6 13 11 3 17 3 1 15 7 5	1 1 1 1 1
9 7 4 8	1.0571 1.0482 1.0339 1.0255 1.0255	10 2 7 2 1	12 4 4 11 7 3 12 6 2 13 3 3 9 9 5	93.55 94.59 96.33 97.37 97.37	.8097 .8097 .8043 .8004 .8004	15 2 3 2 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1 1 1
3 3 6 6 6	1.0121 1.0017 .9819 .9819 .9632	1 2 2 3 1	8 8 8 12 6 4 14 2 2 10 10 2 14 4 0	99.12 100.52 103.35 103.35 106.21	.7939 .7902 .7840 .7803 .7803	1 14 2 1	14 10 4 15 9 3 16 8 0 17 5 3 15 7 7	1 1 1 1 1
1 1 2 5 5	.9632 .9542 .9542 .9542 .9476 .9476	4 3 1 1 1	12 8 2 10 10 4 14 4 2 13 7 1 13 5 5	106.21 107.65 107.65 108.75 108.75	.7791 .7791 .7791 .7791	4 1 8 17	12 12 6 18 0 0 14 8 8 16 8 2	
5 3 2 6 6	.9476 .9370 .9308 .9308 .9308	2 1 2 1 1	11 7 7 12 8 4 13 7 3 15 1 1 11 9 5	108.75 110.58 111.69 111.69 111.69				
3	.9288 .9207 .9129 .9129 .8978	1 1 3 8 3	14 4 4 14 6 0 14 6 2 10 10 6 12 8 6	1 12 • 0 7 1 13 • 5 7 1 15 • 0 8 1 15 • 0 8 1 18 • 1 8				
51 17 54 98 06	.8852 .8852 .8765 .8714 .8697	2 1 3 1 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	120.96 120.96 123.00 124.24 124.66				

Cubic, Fd3m(227), Z=8 [Sands et al., 1959]

Lattice parameters

a=6.535±0.002Å [ibid.]

Scattering factors

Nb^o [3.3.1B] Be^o [3.3.1A]

Thermal parameters

Isotropic [Sands et al., 1959]

Density

(calculated) 5.28 g/cm³ [ibid.]

Scale factor

 11.88×10^{4}

Additional patterns

 PDF 12-593 [Wright Air Development Center, Dayton, Ohio].

Reference

Sands. D.E., A. Zalkin, and O.H. Krikorian (1959). The crystal structures of NbBe₂ and NbBe₃, Acta Cryst. 12, 461-464.

Calculated Pattern (Peak heights)								
d (Å)	Ι	hkl	$\frac{2\theta(°)}{\lambda = 1.5405} \stackrel{\circ}{A}$					
3.773	100	1 1 1	23.56					
2.311	78	2 2 0	38.94					
1.9705	54	3 1 1	46.02					
1.6337	8	4 0 0	56.26					
1.4990	12	3 3 1	61.84					
1.3339	18	4 2 2	70.54					
1.2576	11	5 1 1 +	75.54					
1.1552	6	4 4 0	83.64					
1.1046	7	5 3 1	88.42					
1.0332	7	6 2 0	96.40					
0.9966	3	5 3 3	101.22					
.9432	1	4 4 4	109.50					
.9151	4	7 1 1 +	114.64					
.8733	10	6 4 2	123.78					
.8508	9	7 3 1 +	129.74					
.8169	2	8 0 0	141.10					
.7984	2	7 3 3	149.50					

Calculated Pattern (Integrated)								
d (Å)	Ι	hkl	$\frac{2\theta(°)}{\lambda = 1.5405} \stackrel{\circ}{A}$					
3.773	100	1 1 1	23.56					
2.310	95	2 2 0	38.95					
1.9704	68	3 1 1	46.02					
1.6338	12	4 0 0	56.26					
1.4992	19	3 3 1	61.83					
1.3340	29	4 2 2	70.54					
1.2577	14	5 1 1	75.53					
1.2577	5	3 3 3	75.53					
1.1552	11	4 4 0	83.63					
1.1046	13	5 3 1	88.42					
1.0333	14	6 2 0	96.40					
0.9966	8	5 3 3	101.23					
.9432	3	4 4 4	109.49					
.9151	5	7 1 1	114.65					
.9151	5	5 5 1	114.65					
.8733	26	6 4 2	123.78					
.8508	17	7 3 1	129.74					
.8508	8	5 5 3	129.74					
.8169	6	8 0 0	141.10					
.7984	9	7 3 3	149.49					

Cadmium Nitrate Tetrahydrate, Cd(NO₃)₂ · 4H₂O (orthorhombic)

Structure

Orthorhombic, Fdd2 (43),Z=8 [Matković et al., 1966]

Lattice parameters

a=5.828±0.005, b=25.86±0.03, c=11.002± 0.005Å [ibid.]

Scattering factors

O⁻¹, N° [3.3.1A]; Cd° [3.3.1B]

Thermal parameters

Isotropic.Cd(1) 2.2; 0(2) 3.0; 0(3) 5.5; 0(4) 4.3; 0(5) 4.7; 0(6) 3.7; N(7) 3.1 Density (calculated) 2.47 g/cm³ [Matković et al.,

1966]

Scale factor

 67.04×10^4

Additional patterns

1.PDF card 1-0242 [Hanawalt et al. 1938]

Reference

C

Hanawalt, J.D., H.W. Rinn, and L.K. Frevel (1938). Chemical analysis by x-ray diffraction, Ind. Eng. Chem. Anal. Ed. 10, 457-513.

Matković, B., B. Ribar, B.Zelenko, and S.W. Peterson (1966).Refinement of the structure of Cd(NO₃)₂·4H₂O, Acta Crvst. 21, 719-725.

Calculated Pattern (Peak heights)									
d (Å)	I	hkl			$\frac{2\theta(°)}{\lambda = 1.54056 \text{ A}}$				
6 • 46 5 • 06 4 • 42 3 • 65 3 • 39 3	28 1 00 46 24 3	0 0 1 1 0	4 2 3 5 6	0 2 + 1 2	13 • 7 0 17 • 5 2 20 • 0 8 24 • 3 8 26 • 2 4				
3 • 23 2 3 • 08 3 3 • 00 2 2 • 92 1 2 • 84 3	5 8 13 15 1	0 1 1 1 2	8 1 7 3 2	0 3 1 3 0	27 •5 8 28 • 9 4 29 • 7 4 30 • 5 8 31 • 4 4				
2.751 2.662 2.574 2.531 2.525	4 16 8 2 3	0 1 2 0 2	0 5 0 4 2	4 3 + 2 4 2	32 • 5 2 33 • 6 4 34 • 8 2 35 • 4 4 35 • 5 2				
2.509 2.414	4	1 2	9 6	1 0	35.76 37.22				

Calculated Pattern (Peak heights)								
d (Å)	Ι	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \stackrel{\circ}{A}$					
2 • 39 3 2 • 37 7 2 • 34 0	8 3 9	2 4 2 1 7 3 0 10 2	37.56 37.62 38.44					
2.211 2.155 2.139 2.108 2.095	1 1 7 5 5	2 6 2 0 12 0 1 11 1 1 9 3 0 8 4	43.78 41.88 42.22 42.86 43.14					
2.052 2.014 2.002 1.9763 1.9341	2 9 5 7 3	1 1 5 2 8 2 1 3 5 2 2 4 2 10 3	44.10 44.98 45.26 45.88 46.94					
1 • 91 26 1 • 90 80 1 • 87 40 1 • 86 75 1 • 85 53	2 3 3 4 2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	47 •50 47 •62 48 •54 48 •72 49 •06					
1.8145 1.7984 1.7938 1.7509 1.7131	Б 3 1 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50 • 2 4 50 • 7 2 50 • 8 6 52 • 2 0 53 • 4 4					
1.6961 1.6874 1.6834 1.6749 1.6527	2 1 2 2 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	54 .02 54 .32 54 .46 54 .76 55 .56					
1.6348 1.6295 1.5824 1.5599 1.5566	1 2 1 1 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	56 • 2 2 55 • 4 2 58 • 2 6 59 • 1 8 59 • 3 2					
1 • 55 23 1 • 54 85 1 • 50 92 1 • 50 70 1 • 4947	1 1 1 1	2 U 6 1 11 5 2 4 6 1 15 3 1 3 7 +	59.50 59.66 61.38 61.48 62.04					
1.4840 1.4560 1.4540 1.4305 1.3993	1 1 1 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	62.54 63.88 63.98 65.16 66.80					
1 • 3934 1 • 3901 1 • 3690 1 • 3386 1 • 2993	1 1 1 1	0 16 4 0 18 2 2 16 2 4 6 2 3 9 5 +	67.12 67.30 68.48 70.26 72.72					
1.2376 1.1951	1 1	4 10 2 + 4 8 4 +	76.98 80.26					

Cadmium Nitrate Tetrahydrate, $Cd(NO_{3})_2 \cdot 4H_2O$ (orthorhombic) – continued

С	alculated	d Pattern (Integra	ated)	C	Calculate	d Pattern (Integr	ated)
đ (Å)	I	hkl	$\begin{array}{c} 2 \theta(°) \\ \lambda = 1.54056 \stackrel{\circ}{A} \end{array}$	d (Å)	I	hkl	$\frac{2\theta(°)}{\lambda = 1.54056 ^{\circ}}$
6 • 46	33	0 4 0	13.69	1.6348	2	1 15 1	56.22
5 • 06	100	0 2 2	17.51	1.6293	2	3 5 3	56.43
5 • 05	43	1 1 1	17.54	1.5924	1	3 9 1	57.86
4 • 42	60	1 3 1	20.07	1.5822	2	2 10 4	58.27
3 • 65	33	1 5 1	24.37	1.5601	2	2 14 0	59.17
3 • 3 9 3	5	0 6 2	26 • 2 5	1 • 55 68	1	3 7 3	59.31
3 • 23 3	7	0 8 0	27 • 5 7	1 • 55 20	1	2 0 6	59.51
3 • 08 2	12	1 1 3	28 • 9 5	1 • 54 87	1	1 11 5	59.65
3 • 00 2	18	1 7 1	29 • 7 4	1 • 51 49	1	1 1 7	61.12
2 • 92 0	23	1 3 3	30 • 5 9	1 • 50 91	2	2 4 6	61.38
2.843	2	2 2 0	31 • 4 4	1.5071	1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	61.47
2.750	7	0 0 4	32 • 5 3	1.4956	2		61.99
2.661	23	1 5 3	33 • 6 5	1.4945	2		62.05
2.657	2	2 4 0	33 • 7 1	1.4838	2		62.55
2.575	12	2 0 2	34 • 8 1	1.4561	2		63.88
2 • 53 1	2	0 4 4	35 • 4 4	1.4540	1	3 1 5	63.98
2 • 52 5	3	2 2 2	35 • 5 2	1.4360	1	3 3 5	64.88
2 • 50 9	6	1 9 1	35 • 7 5	1.4305	2	1 13 5	65.16
2 • 41 4	9	2 6 0	37 • 2 2	1.4213	1	4 4 0	65.63
2 • 39 2	13	2 4 2	37 • 5 7	1.4037	1	1 7 7	66.56
2.376	4	1 7 3	37.83	1 • 40 18	1	3 5 5	66.66
2.340	14	0 10 2	38.43	1 • 40 01	1	4 2 2	66.75
2.211	1	2 6 2	40.79	1 • 39 91	3	2 8 6	66.81
2.155	1	0 12 0	41.89	1 • 39 35	1	0 16 4	67.12
2.139	12	1 11 1	42.22	1 • 39 00	1	0 18 2	67.30
2 • 10 9	7	1 9 3	42 •8 5	1.3789	1	3 13 1	67.92
2 • 09 5	8	0 8 4	43 •1 5	1.3689	3	2 16 2	68.48
2 • 05 2	3	1 1 5	44 • 0 9	1.3570	1	2 14 4	69.17
2 • 01 4	14	2 8 2	44 • 9 7	1.3388	2	4 6 2	70.25
2 • 00 2	7	1 3 5	45 • 2 5	1.3283	1	4 8 0	70.89
1.9767 1.9342 1.9126 1.9079 1.8748	12 5 3 5	2 2 4 2 10 0 1 5 5 3 1 1 1 11 3	45.87 46.94 47.50 47.62 48.54	1.3159 1.2996 1.2990 1.2886 1.2807	1 1 1 1 1	1 19 1 3 13 3 3 9 5 2 18 0 3 15 1	71 •6 6 72 •70 72 •74 73 •4 2 73 •95
1 • 86 76	5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	48.72	1 • 26 55	1	0 8 8	74 •9 9
1 • 85 56	3		49.05	1 • 26 27	1	4 4 4	75 •1 8
1 • 81 55	4		50.21	1 • 25 94	1	2 12 6	75 •4 2
1 • 81 43	8		50.24	1 • 23 80	1	3 11 5	76 •9 5
1 • 79 82	4		50.73	1 • 23 80	1	2 2 8	76 •9 5
1.7943 1.7511 1.7129 1.6988 1.6963	3 2 4 2 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50.85 52.19 53.45 53.93 54.01	1.2369 1.2234 1.1961 1.1949 1.1751	1 1 1 1	4 10 2 1 17 5 4 8 4 2 6 8 3 13 5	77.04 78.04 80.18 80.27 81.92
1 • 68 73 1 • 68 36 1 • 67 48 1 • 67 34 1 • 65 26	2 3 1 2	0 6 6 3 3 3 1 13 3 1 9 5 2 12 2	54 • 3 2 54 • 4 5 54 • 7 6 54 • 8 1 55 • 5 6	1.1669 1.1363 1.1200 1.1194	1 1 1 1	2 18 4 4 2 6 4 14 2 2 16 6	82.62 85.36 86.90 86.96

Tetragonal, P4, (76), Z=8 [Webb, 1966]

Lattice parameters

a=6.684±0.006, c=24.145±0.015 Å [ibid.] (published value, $c=24.144\pm0.015$ Å)

Scattering factors Ca⁺², P⁰ [3.3.1A] O, an average of O° and O^{-} [3.3.1A]

Thermal parameters

Isotropic [Webb, 1966]

Density

(calculated) 3.128 g/cm³ [ibid.]

Scale factor

 8.642×10^4

Additional patterns

1. PDF card 11-177 [St. Pierre, Dept. of Mines, Canada, Tech. paper No.2, p.105, 1953]

Reference

Webb, N.C. (1966). The crystal structure of β-Ca₂ P₂O₇, Acta Cryst. 21, 942-948.

Calculated Pattern (Peak heights)								
d (Å)	Ι		hk l	$\frac{2\theta(°)}{\lambda = 1.54056} \overset{\circ}{A}$				
6.037 5.847 4.726 4.480 4.401	9 4 16 2 13	0 0 1 0 1	0 1 1 1	4 2 0 4 2	14.66 15.14 18.76 19.80 20.16			
4.074 3.720 3.448 3.378 3.341	5 3 12 42	1 1 0 1 0	1 1 1 2	3 4 5 0	21.80 23.90 25.82 26.36 26.66			
3.309 3.220 3.087 3.064 3.017	36 56 54 7 100	0 0 0 1 0	2 2 1 0	1 2 3 6 + 8	26.92 27.68 28.90 29.12 29.58			
2.990 2.966 2.923 2.901 2.801	23 37 18 35 27	2 2 0 2 1	1 2 1 2	0 + 1 + 4 2 + 3 +	29.86 30.10 30.56 30.80 31.92			

Calculated Pattern (Peak heights)								
d (Å)	Ι	hkl	$\frac{2\theta(^{\circ})}{\lambda = 1.54056 \text{ Å}}$					
2.786	31	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	32.10					
2.748	54		32.56					
2.679	18		33.42					
2.572	7		34.86					
2.542	23		- 35.28					
2.490	1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36.04					
2.400	11		37.44					
2.352	6		38.24					
2.333	20		38.56					
2.319	4		38.80					
2.267	9	2 2 3 4	39.72					
2.260	7	2 1 7	39.86					
2.240	14	0 2 8	40.22					
2.228	8	0 3 0	40.46					
2.218	11	0 3 1	40.64					
2.201 2.147 2.123 2.114 2.105	4 9 11 4 9	2 2 4 0 3 3 4 2 1 8 4 3 1 0 4 1 3 1 4	40.98 42.04 42.54 42.74 42.74 42.92					
2.092	14	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	43.22					
2.086	10		43.34					
2.082	8		43.42					
2.044	5		44.28					
2.038	7		44.42					
2.023	5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	44.76					
2.012	3		45.02					
1.9960	18		45.40					
1.9910	20		45.52					
1.9569	9		46.36					
1.9498 1.9364 1.8784 1.8711 1.8603	17 5 6 2	2 2 7 1 3 5 4 2 1 10 3 1 6 4 2 2 8	46.54 46.88 48.42 48.62 48.92					
1.8539	13	3 2 0 +	49.10					
1.8490	11	3 2 1	49.24					
1.8343	12	0 2 11	49.66					
1.8322	12	2 3 2 +	- 49.72					
1.8064	2	2 3 3	50.48					
1.8024	3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	50.60					
1.7925	2		50.90					
1.7692	14		51.62					
1.7312	5		52.84					
1.7137	4		53.42					
1.6886 1.6840 1.6693 1.6671 1.6604	4 8 3 4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	54.28 54.44 54.96 55.04 55.28					
1.6327	7	3 2 7 +	56.30					
1.6232	6	0 2 13	56.66					

Calcium Phosphate, beta-pyro-,	, Ca, P, O,	(tetragonal) -	continued
--------------------------------	-------------	----------------	-----------

Ca	lculated	Pattern (Peak he	rights)] [Calculated	l Pattern <i>(Integr</i>	ated)
d (Å)	I	hkl	$\frac{2\theta(°)}{\lambda = 1.54056 \text{ Å}}$	d (Å)	Ι	hkl	$\begin{array}{c} 2 \theta(^{\circ}) \\ \lambda = 1.54056 \stackrel{\circ}{A} \end{array}$
1.6200 1.6174 1.6066	7 8 6	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	56.78 56.88 57.30	6.036 5.848 4.726 4.480 4.401	7 4 14 2 11	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14.66 15.14 18.76 19.80 20.16
1.5794 1.5754 1.5720 1.5623	7 6 4 6	3 2 8 + 3 3 0 3 3 1 3 3 2 +	58.38 58.54 58.68 59.08	4.076 3.721 3.448 3.378	5 3 2 10	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	21.79 23.89 25.82 26.36
1.5434 1.5368 1.5322 1.5240 1.5092	2 7 6 8 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	59.88 60.16 60.36 60.72 61.38	3.342 3.310 3.221 3.086	41 34 55 54	0 2 0 0 2 1 0 2 2 0 2 3 0 1 7	26.65 26.91 27.67 28.90 29.11
1.5039 1.4934 1.4831 1.4671 1.4601	6 6 1 5 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	61.62 62.10 62.58 63.34 63.68	3.018 2.989 2.989 2.967	100 19 1 20	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	29.12 29.57 29.87 29.87 30.10
1.4572 1.4507 1.4328 1.4281 1.4162	4 3 1 3 4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	63.82 64.14 65.04 65.28 65.90	2.967 2.924 2.902 2.902 2.802	15 17 29 7 1	1 2 1 0 2 4 2 1 2 1 2 2 2 1 3	30.10 30.55 30.79 30.79 31.91
1.4011 1.3963 1.3952 1.3930 1.3875	1 2 2 3	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	66.70 66.96 67.02 67.14 67.44	2.802 2.786 2.748 2.679 2.679	26 28 54 4 14	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	31.91 32.10 32.56 33.42 33.42
1.3750 1.3743 1.3715 1.3634 1.3599	1 2 2 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	68.14 68.18 68.34 68.80 69.00	2.571 2.542 2.542 2.490 2.400	8 7 16 1 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	34.87 35.28 35.28 36.04 37.44
1.3460 1.3393 1.3366 1.3304 1.3287	3 1 2 3 4	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	69.82 70.22 70.38 70.76 70.86	2.400 2.400 2.352 2.333	3 4 21	2 1 6 1 2 6 2 2 1 1 1 9 2 2	37.45 37.45 38.24 38.56 38.56
1.3194 1.3155 1.3117 1.3042 1.2904	3 2 8 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	71.44 71.68 71.92 72.40 73.30	2.319 2.271 2.267 2.259 2.240	5 2 8 5 16	2 2 2 0 1 10 2 2 3 2 1 7 0 2 8	39.66 39.72 39.87 40.23
1.2883 1.2805 1.2685 1.2653 1.2627	2 2 3 2 3 3	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	73.44 73.96 74.78 75.00 75.18	2•228 2•219 2•201 2•150 2•147	7 11 4 2 9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40.45 40.63 40.98 41.98 42.04
1.2495 1.2464 1.2404 1.2347	2 3 1 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	76.12 76.34 76.78 77.20	2.124 2.124 2.123 2.114	7 4 1 2	2 1 8 1 2 8 2 2 5 3 1 0	42.53 42.53 42.56 42.74

20(°) $\lambda = 1.54056 \stackrel{\circ}{A}$ 55.04 55.28 55.28 56.29 56.29 56.65 56.74 56.78 56.88 56.88 57.23 57.30 57.94 57.99 57.99 58.37 58.39 58.45 58.54 58.68 59.03 59.09 59.89 60.16 60.16 60.34 60.37 60.67 60.70 60.73 60.79 60.79 61.39 61.62 61.63 61.63 62.08 62.11 62.18 62.57 63.34 63.34 63.35 63.67 63.82 63.82 64.14 64.17

> 65.03 65.28

> 65.30

Calculated Pattern (Integra	uted)	C	Calculated Pattern (Integrate		
d (Å) I hkl	$\frac{2\theta(^{\circ})}{\lambda = 1.54056 \stackrel{\circ}{A}}$	d (Å)	Ι	hkl	λ =
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	42.74 42.92	1.6670	2	0 4 1	
2.106 6 1 3 1	42.92	1.6603 1.6603	4 1	1 3 9 3 1 9	
2.092 10 0 2 9 2.090 8 0 3 4	43.21	1.6329	6	327	
2.085 1 0 1 11	43.35	1.6234	6	0 2 13	
2.082 2 3 1 2 2.082 4 1 3 2	43.43 43.43	1.6211	2	140	
		1.6201	4	1 1 14	
	44.27	1.6175			
2.038 6 2 2 6	44.42	1.6083	3	2 2 11	
2.023 5 0 3 5	44.76	1 (0) 7			
2.012 3 0 0 12	45.02	1.5904	6		
1.9966 10 1 2 9	45.39	1.5892	2	4 1 3	
1.9966 8 2 1 9	45.39	1.5892	5	1 4 3	
	45.43	1.5796	6	328	!
1.9571 9 0 2 10	46.35	1.5791	1	045	
		1.5776	3	1 2 13	
	46.55	1.5754	2		
1.9363 3 1 3 5	46.88	1.5636	3	0 3 11	
1.8783 5 2 1 10	48.42	1 5(00			1.
1.8/12 3 3 1 6	40.02	1.5432		046	
1.8712 2 1 3 6	48.62	1.5368	2	4 1 5	(
	48.91	1.5368		1 4 5	6
1.8538 5 2 3 0	49.10	1.5520		0 2 14	'
1.8513 2 1 1 12	49.17	1.5320	3	2 2 12	
1 9/1 9/1 5 3 2 1	49.26	1.5251		239	
1.8347 11 0 2 11	49.65	1.5237	4	1 1 15	
1.8323 4 3 2 2	49.72	1.5225	1	1 3 11	(
	49.72	1.5225	1	3 1 11	
		1.5091	1	0 0 16	
1.8022 1 3 1 7	50.61	1.5038	2		
1.7925 2 0 3 8	50.81	1.5037	2	1 4 6	
1.7733 1 2 2 9	51.49	4 4 9 7 9			
1.7721 2 3 2 4	51.53	1.4938			
1.7721 3 2 3 4	51.53	1.4917	1	4 2 1	
1.7692 6 2 1 11	51.62	1.4833	1	2 4 2	
	51.62	1.46/1	4	4 1 /	
1.7313 2 1 3 8	52.84	1.4671	2	1 4 7	
	50.06	1.4670	2	3 3 6	
1.7307 2 3 2 5 1.7307 2 2 3 5	52.86	1.4573	4	$\begin{array}{c} 2 & 2 & 13 \\ 3 & 1 & 12 \end{array}$	
1.7238 1 0 2 12	53.08	1.4573	1	1 3 12	
1.7140 5 0 3 9	53.41	1.4508	2	2 4 4	
1.0009 4 2 2 10	54.27	1.4502	2	0 2 15	
	54.45	1.4330	1	3 3 7	
1.6699 2 0 1 14	54.94	1.4281	2	4 2 5	
1.6692 1 1 2 12	54.96		1		1

3

10 4

Calcium Phosphate, beta-pyro-, $Ca_2P_2O_7$ (tetragonal) – continued

Calculated Pattern (Integrated)							
d (Å)	Ι	hkl	$\frac{2\theta(°)}{\lambda = 1.54056 \text{ Å}}$				
1.4134	2	0 4 9	65.79				
1.4103	2	3 2 11	65.90				
1•4163	3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	65.90				
1•4011	1		66.70				
1•3966	1		66.94				
1.3952	1	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	67.02				
1.3931	1		67.14				
1.3893	1		67.35				
1.3875	3		67.44				
1.3875	1		67.44				
1.3753	2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	68.12				
1.3740	1		68.19				
1.3714	1		68.34				
1.3634	2		68.80				
1.3602	2		68.98				
1.3585	2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	69.08				
1.3471	1		69.75				
1.3459	3		69.82				
1.3394	1		70.21				
1.3368	2		70.37				
1.3363	1	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	70.40				
1.3304	3		70.76				
1.3287	4		70.86				
1.3287	1		70.86				
1.3194	4		71.44				
1.3152 1.3121 1.3108 1.3056 1.3056	1 1 2 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	71.70 71.90 71.98 72.31 72.31				
1.3052	2	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	72.34				
1.3048	1		72.36				
1.3040	2		72.41				
1.3040	8		72.41				
1.2904	1		73.30				
1.2333 1.2333 1.2806 1.2806 1.2686	1 1 1 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	73.44 73.44 73.95 73.95 74.77				
1.2686 1.2651 1.2627 1.2627 1.2627 1.2494	1 2 1 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	74.77 75.02 75.18 75.18 76.12				
1.2465 1.2465 1.2404 1.2347 1.2282	1 1 2 2	$\begin{array}{cccccc} 4 & 3 & 7 \\ 0 & 5 & 7 \\ 3 & 3 & 12 \\ 5 & 2 & 2 \\ 3 & 1 & 16 \end{array}$	76.34 76.34 76.77 77.20 77.68				
1.2272	1	1 1 19	77.76				

Orthorhombic, Pnma(62), Z=4 [Cromer et al., 1960]

Lattice parameters

a=8.112±0.001, b=5.102±0.001, c=10.162±0.005Å [ibid.]

Scattering factors

Ce°, Cu° [3.3.1B]

Thermal parameters

Isotropic [Cromer et al., 1960]

Density

(calculated) 8.23 g/cm³ [ibid.]

Scale factor

 13.17×10^{4}

Atomic positions

The positions used in these calculations are those in table 5 in the given reference.

Reference

Cromer, D.T., A.C. Larson, and R.B. Roof, Jr. (1960). The crystal structure of CeCu_e, Acta Cryst. **13**, 913-918.

Calculated Pattern (Peak heights)							
d (Å)	Ι	$\frac{2\theta(°)}{\lambda = 1.5405} \stackrel{\circ}{A}$					
6.338	3	1 0 1	13.96				
4.304	7	1 0 2	20.62				
4.055	3	2 0 0	21.90				
3.973	9	1 1 1	22.36				
3.767	1	2 0 1	23.60				
3.171	12	2 0 2 +	28.12				
3.031	9	2 1 1	29.44				
2.822	29	0 1 3	31.68				
2.693	1	2 1 2	33.24				
2.665	8	1 1 3	33.60				
2.614	2	3 0 1	34.28				
2.552	35	0 2 0	35.14				
2.425	50	1 0 4	37.04				
2.386	15	3 0 2	37.66				
2.367	9	1 2 1	37.98				
2.326	100	3 1 1	38.68				
2.317	97	2 1 3	38.84				

Calculated Pattern (Peak heights)							
d (Å)	Ι	hkl	$\frac{2\theta(^{\circ})}{\lambda = 1.5405} \stackrel{\circ}{A}$				
2.279	27	0 2 2	39.50				
2.194	15	1 2 2	41.10				
2.159	34	2 2 0 +	41.80				
2.112	29	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	42.78				
1.9885	27		45.58				
1.9835	47		45.70				
1.9762	44		45.88				
1.9713	42		46.00				
1.9521	4	3 1 3	46.48				
1.8841	4	4 1 0 +	48.26				
1.8517	1	3 0 4	49.16				
1.8391	2	1 1 5	49.52				
1.8205	6	2 2 3	50.06				
1.7672 1.7571 1.7403 1.7119 1.6581	1 11 3 2	4 1 2 1 2 4 4 0 3 2 1 5 1 0 6	51.68 52.00 52.54 53.48 55.36				
1.6466	5	4 1 3 +	55.78				
1.6428	4	1 3 1	55.92				
1.6019	2	5 0 1	57.48				
1.5628	5	2 0 6	59.06				
1.5499	2	2 3 1	59.60				
1.5480 1.5456 1.5285 1.5199 1.5154	2 4 4 3	3 1 5 5 0 2 5 1 1 0 3 3 4 2 2	59.68 59.78 60.52 60.90 61.10				
1.4986	10	3 2 4	61.86				
1.4942	6	1 3 3	62.06				
1.4355	3	3 0 6	64.90				
1.4254	15	3 3 1	65.42				
1.4230	14	2 3 3	65.54				
1.4108	5	0 2 6	66.18				
1.3963	2	0 1 7	66.96				
1.3900	6	1 2 6	67.30				
1.3853	3	3 3 2	67.56				
1.3817	9	4 1 5	67.76				
1.3760	9	1 1 7	68.08				
1.3672	6	5 0 4	68.58				
1.3568	1	5 2 1	69.18				
1.3520	2	6 0 0	69.46				
1.3402	1	6 0 1	70.16				
1.3346	6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	70.50				
1.3219	14		71.28				
1.3067	2		72.24				
1.3032	2		72.46				
1.2998	3		72.68				

C	alculated	l Pattern <i>(Integro</i>	nted)		Calculated Pattern (Integrated)			ated)
d (Å)	Ι	hkl	$2\theta(^{\circ})$ $\lambda = 1.5405 \stackrel{\circ}{A}$		d (Å)	Ι	hkl	$\frac{2\theta(°)}{\lambda = 1.5405} \stackrel{\circ}{A}$
6.340	2	1 0 1	13.96		1.5152	1	4 2 2	61.11
4.306	6	1 0 2	20.61		1.4984	13	3 2 4	61.87
4.056	3	2 0 0	21.89		1.4939	1	1 3 3	62.08
3.975	9	1 1 1	22.35		1.4354	4	3 0 6	64.91
3.767	1	2 0 1	23.60		1.4254	17	3 3 1	65.42
3.175	1	2 1 0	28.08		1.4232	15	2 3 3	65.53
3.170	11	2 0 2	28.13		1.4110	6	0 2 6	66.17
3.030	9	2 1 1	29.45		1.3963	2	0 1 7	66.96
2.822	28	0 1 3	31.68		1.3901	7	1 2 6	67.30
2.693	1	2 1 2	33.25		1.3851	2	3 3 2	67.57
2.665	9	1 1 3	33.60		1.3819	11	4 1 5	67.75
2.613	2	3 0 1	34.29		1.3761	12	1 1 7	68.08
2.551	37	0 2 0	35.15		1.3674	8	5 0 4	68.57
2.424	55	1 0 4	37.05		1.3567	1	5 2 1	69.18
2.387	16	3 0 2	37.65		1.3520	3	6 0 0	69.46
2.367	9	1 2 1	37.99		1.3402	2	6 0 1	70.16
2.326	100	3 1 1	38.68		1.3345	8	2 3 4	70.50
2.316	84	2 1 3	38.84		1.3327	1	2 2 6	70.62
2.280	29	0 2 2	39.49		1.3249	1	3 3 3	71.09
2.195	17	1 2 2	41.09		1.3219	19	5 2 2	71.28
2.162 2.159 2.113 2.112 1.9888	13 31 6 28 25	3 1 2 2 2 0 3 0 3 2 2 1 4 0 1	41.74 41.80 42.75 42.77 45.57		1.3065 1.3031 1.3000 1.2755 1.2693	2 1 3 13 3	$\begin{array}{ccccccc} 6 & 0 & 2 \\ 4 & 3 & 0 \\ 4 & 0 & 6 \\ 0 & 4 & 0 \\ 5 & 2 & 3 \end{array}$	72.25 72.47 72.67 74.30 74.72
1.9874	3	2 2 2	45.61		1.2680	1	5 0 5	74.81
1.9836	35	2 1 4	45.70		1.2597	7	4 1 6	75.39
1.9764	40	1 2 3	45.88		1.2557	1	6 0 3	75.67
1.9715	24	1 0 5	46.00		1.2467	2	1 2 7	76.31
1.9524	4	3 1 3	46.47		1.2417	1	2 3 5	76.68
1.8846	3	4 1 0	48.25		1.2406	2	3 1 7	76.76
1.8835	2	4 0 2	48.28		1.2186	2	1 1 8	78.40
1.8515	1	3 0 4	49.17		1.2162	2	4 3 3	78.59
1.8390	2	1 1 5	49.52		1.2048	2	2 2 7	79.48
1.8209	7	2 2 3	50.05		1.1833	1	2 4 2	81.22
1.7670	1	4 l 2	51.69		1.1748	1	3 3 5	81.94
1.7574	14	l 2 4	51.99		1.1661	2	5 3 1	82.68
1.7400	2	4 0 3	52.55		1.1629	11	6 2 2	82.96
1.7117	4	2 l 5	53.48		1.1582	4	4 2 6	83.37
1.6579	2	l 0 6	55.37		1.1371	1	0 2 8	85.28
1.6469 1.6453 1.6426 1.6021 1.5629	6 1 2 6	4 1 3 2 2 4 1 3 1 5 0 1 2 0 6	55•77 55•83 55•93 57•47 59•06	l				
1.5500 1.5481 1.5455 1.5285 1.5199	1 2 4 5 4	2 3 1 3 1 5 5 0 2 5 1 1 0 3 3	59.59 59.68 59.78 60.52 60.90					

Hexagonal, P3ml (164), Z=1 [Kaatz and Marcovich, 1966]

Lattice parameters

a=7.476±0.002, c=6.039±0.002 Å, [ibid.]

Scattering factors

Cl⁻ [Dawson, 1960] Cs⁺, Ce⁴⁺ [Thomas and Umeda, 1957] All factors were corrected for anomalous dispersion using values given by Cromer [1965].

Thermal parameters

Isotropic [Kaatz and Marcovitch, 1966]

Density

(calculated)				
3.52 g/cm^3	[Kaatz	and	Marcovich,	1966]
Scale factor				
10.44×10^{4}				

Reference

- Cromer, D.T. (1965). Anomalous dispersion corrections computed from self-consistent field relativistic Dirac-Slater wave functions, Acta Cryst. 18, 17-23.
- Dawson,B.(1960). Atomic scattering factors from wave functions calculated by the poly-detor method:Cl,Cl⁻,S and S⁻, Acta Cryst. 13, 403-408.
- Kaatz, T. and M.Marcovich (1966). The crystal structure of the compound Cs₂CeCl₆, Acta Cryst. 21, 1011.
- Thomas, L. H. and K. Umeda (1957). Atomic scattering factors calculated from the TFD atomic model, J. Chem. Phys. 26,293-303.

Calculated Pattern (Peak heights)							
d (Å)	I	hkl	$\frac{2\theta(°)}{\lambda = 1.54056 \text{ Å}}$				
6.468	68	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13.68				
6.037	22		14.66				
4.414	100		20.10				
3.739	29		23.78				
3.236	1		27.54				
3.177	24	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	28.06				
2.854	20		31.32				
2.736	20		32.70				
2.447	9		36.70				
2.349	5		38.28				
2.267	22	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	39.72				
2.208	20		40.84				
2.158	5		41.82				
2.033	5		44.54				
2.013	1		45.00				
1.9225	6	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	47.24				
1.9013	9		47.80				
1.8689	10		48.68				
1.7958	2		50.80				
1.7853	3		51.12				
1.7724	3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	51.52				
1.7559	2		52.04				
1.7209	7		53.18				
1.7096	2		53.56				
1.5633	2		59.04				
1.5547	4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	59.40				
1.5434	4		59.88				
1.5096	1		61.36				
1.4852	1		62.48				
1.4721	1		63.10				
1.4705 1.4423 1.4266 1.4128 1.4000	1 3 2 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	63.18 64.56 65.30 66.08 66.76				
1.3757	2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	68.10				
1.3697	1		68.44				
1.3399	2		70.18				
1.3327	2		70.62				
1.2850	1		73.66				
1.2662 1.1991 1.1951 1.1873 1.1743	1 1 1 2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	74.94 79.94 80.20 80.90 81.98				
1.1419	1	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	84.84				
1.1339	2		85.58				
1.0829	1		90.68				

Cesium Cerium	Chloride,	Cs ₂ CeCl _c	(hexagonal) -	continued
---------------	-----------	-----------------------------------	---------------	-----------

C	Calculated Pattern (Integrated)			Calculated Pattern (Integrated)			
d (Å)	Ι	hkl	$\frac{2\theta(°)}{\lambda = 1.54056 \text{ Å}}$	d (Å)	Ι	hkl	$\frac{2\theta(°)}{\lambda = 1.54056 \text{ Å}}$
6.474 6.039 4.416 4.416 3.738	64 20 2 100 31	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13.67 14.66 20.09 20.09 23.78	1.4266 1.4128 1.3999 1.3757 1.3757	2 2 1 2	$\begin{array}{cccc} 4 & 0 & 2 \\ 4 & 1 & 0 \\ 1 & 1 & 4 \\ 4 & 1 & 1 \\ 1 & 4 & 1 \end{array}$	65.36 66.08 65.77 68.10 68.10
3.237 3.178 2.853 2.853 2.737	1 28 5 19 11	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27.53 28.05 31.33 31.33 32.70	1.3697 1.3400 1.3328 1.3328 1.2849	2 3 2 2 1	2 2 3 1 3 3 3 2 2 2 3 2 1 2 4	68.44 70.18 70.61 70.61 73.67
2.737 2.447 2.349 2.268 2.268	13 11 6 1 27	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32.70 36.69 38.29 39.71 39.71	1.2661 1.2460 1.2203 1.1992 1.1952	1 1 1 2	$5 0 1 \\ 3 3 0 \\ 3 3 1 \\ 2 4 1 \\ 3 2 3 $	74.95 76.37 78.28 79.93 80.25
2.208 2.208 2.158 2.032 2.032	13 12 6 4 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40.83 40.83 41.82 44.55 44.55	1.1873 1.1744 1.1564 1.1419 1.1340	1 3 1 2 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	80.90 81.97 83.53 84.84 85.57
2.013 1.9222 1.9011 1.9011 1.8690	2 8 7 6 13	$\begin{array}{ccccccc} 0 & 0 & 3 \\ 1 & 0 & 3 \\ 2 & 1 & 2 \\ 1 & 2 & 2 \\ 2 & 2 & 0 \end{array}$	45.00 47.25 47.80 47.80 48.68	1.1340 1.0831 1.0791 1.0482 1.0069	1 1 1 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	85.57 90.67 91.10 94.59 99.81
1.7957 1.7854 1.7723 1.7558 1.7558	3 4 4 1 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50.80 51.12 51.52 52.04 52.04	1.0022 .9744 .9409 .9371 .9345	1 1 1 1 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100.46 104.47 109.89 110.57 111.03
1.7212 1.7094 1.7094 1.5634 1.5634	10 2 1 2 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	53.17 53.56 53.56 59.03 59.03	•9142 •8864 •8606 •8404 •8377	1 1 1 1 1	$5 3 1 \\ 1 6 3 \\ 2 6 2 \\ 3 5 3 \\ 1 5 5 \\ \end{bmatrix}$	114.81 120.67 127.03 132.84 133.71
1.5546 1.5434 1.5434 1.5097 1.4853	6 3 2 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	59.40 59.88 59.88 61.35 62.48	.8213 .8136 .7985 .7946 .7843	1 1 2 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	139.41 142.42 149.42 151.58 158.32
1.4720 1.4720 1.4703 1.4423 1.4266	1 1 5 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	63.10 63.10 63.19 764.56 65.36	L			
7

Orthorhombic, Pmcn (62), Z=4 [Carpenter, 1966].

Lattice parameters

a=6.634, b=9.567, c=10.958Å [ibid.]

Scattering factors

Cs°, I°, Br° [3.3.1B]

Thermal parameters

Isotropic: Cs 3.22; Br 2.31; I(2) 2.08; I(3) 2.80 Density

(calculated) 4.456 g/cm³ [Carpenter, 1966]

Scale factor

 40.80×10^{4}

Reference

Carpenter, G.B. (1966). The crystal structure of CsI₂Br, Acta Cryst. 20, 330-334.

Calculated Pattern (Peak heights)							
d (Å)	Ι		hk	1	$\frac{2\theta(^{\circ})}{\lambda = 1.54056 \text{ Å}}$		
5.45 4.88 4.78 4.76 4.38	10 2 6 4 2	1 1 0 0 0	1 2 1 2	0 1 0 2 1	16.24 18.16 18.54 15.64 20.24		
4.22 3.86 3.66 3.60 3.41 1	6 31 44 12 6	1 1 0 0	0 1 2 2 1	2 2 1 2 3	21.02 23.00 24.32 24.68 25.10		
3.316 3.166 3.033 2.873 2.779	69 100 5 11 2	2 1 1 1 1	0 2 1 3 3	0 2 3 0 1	26.86 28.16 29.42 31.10 32.18		
2.756 2.740 2.731 2.659 2.633	8 14 9 25 8	0 2 1 0	3 0 2 2 1	2 4 3 4	32 • 4 6 32 • 6 6 32 • 7 6 33 • 6 8 34 • 0 2		
2 • 53 2 2 • 44 0 2 • 391 2 • 37 8 2 • 33 6	7 7 2 7 10	1 2 3 2 0	0 2 4 1 4	4 2 3 + 1	35 • 4 2 36 • 8 0 37 • 5 8 37 • 8 0 38 • 5 0		
2.259 2.204 2.192 2.136 2.120	3 3 1 4 7	1 0 0 2	3 4 4 1 3	3 1 2 5 2	39.88 40.92 41.14 42.28 42.52		

Calculated Pattern (Peak heights)						
d (Å)	I	hkl	$\frac{2\theta(°)}{\lambda = 1.54056 \text{ Å}}$			
2 • 11 2	11	2 0 4	42 • 7 8			
2 • 07 8	4	0 3 4	43 • 5 2			
2 • 06 2	5	2 1 4	43 • 8 6			
2 • 00 5	3	3 1 2	45 • 1 8			
2 • 00 1	4	0 4 3	45 • 2 8			
1.9746	5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	45.92			
1.9403	2		46.78			
1.9325	3		46.98			
1.9156	8		47.42			
1.9103	12		47.56			
1.8849	15	3 2 2	48.24			
1.8560	1	3 1 3	49.04			
1.8385	2	1 5 0	49.54			
1.8286	1	2 4 2	49.82			
1.8172	2	3 3 0	50.16			
1 • 81 31	2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	50 • 28			
1 • 8064	1		50 • 4 8			
1 • 7958	4		50 • 8 9			
1 • 7597	7		51 • 9 2			
1 • 7428	3		52 • 4 6			
1.7385	6	1 4 4	52.60			
1.7318	6	1 1 6	52.82			
1.7209	7	3 C 4	53.18			
1.7131	3	2 4 3	53.44			
1.7060	3	0 2 6	53.58			
1.6587	5	4 0 0	55.34			
1.6386	1	2 5 1	56.08			
1.6159	1	0 4 5	56.94			
1.6360	1	3 4 1	57.32			
1.5863	1	2 5 2	58.10			
1 • 57 79	3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	58.44			
1 • 53 50	2		60.24			
1 • 52 67	1		60.60			
1 • 51 72	2		61.02			
1 • 50 65	1		61.50			
1.5048 1.4835 1.4524 1.4479 1.4250	1 2 1 2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	61.58 62.56 64.06 64.28 65.44			
1.4212	2	4 3 2	65.64			
1.4185	2	4 C 4	65.78			
1.4082	1	3 C 6	66.32			
1.4034	1	4 1 4	66.58			
1.3967	2	5 4 4	66.94			
1 • 39 34	2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	67 •1 2			
1 • 37 46	1		68 •1 6			
1 • 36 03	1		68 •9 8			
1 • 35 24	2		69 •4 4			
1 • 34 93	2		69 •6 2			
1.3297	1	2 4 6	79.80			

Calculated Pattern (Integrated)			uted)	C	alculated	l Pattern (Integro	uted)
d (Å)	Ι	hkl	$\frac{2\theta(^{\circ})}{\lambda = 1.54056 \stackrel{\circ}{A}}$	d (Å)	Ι	hkl	$\frac{2\theta(°)}{\lambda = 1.54056 \stackrel{\circ}{A}}$
5.45	9	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16.25	1 • 80 64	1	0 5 2	50.48
4.88	1		18.10	1 • 7960	5	2 1 5	50.79
4.78	5		18.53	1 • 79 39	1	0 1 6	50.86
4.75	3		18.65	1 • 76 10	4	2 3 4	51.88
4.38	2		20.24	1 • 76 08	2	1 0 6	51.68
4 • 22	6	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	21.01	1 • 75 91	6	3 2 3	51.94
3 • 36	29		22.99	1 • 74 29	1	1 5 2	52.45
3 • 66	42		24.32	1 • 74 27	2	1 3 5	52.46
3 • 60	12		24.69	1 • 73 87	6	1 4 4	52.59
3 • 41 2	6		26.09	1 • 73 17	6	1 1 6	52.82
3 • 31 7 3 • 16 6 3 • 03 4 2 • 87 4 2 • 78 0	68 100 5 12 2	2 0 0 1 2 2 1 1 3 1 3 0 1 3 1	26 • 8 6 28 • 1 6 29 • 4 1 31 • 0 9 32 • 1 7	1.7207 1.7133 1.7062 1.6585 1.6388	2 3 6 1	3 0 4 2 4 3 0 2 6 4 0 0 2 5 1	53.19 53.43 53.67 55.35 56.07
2.756 2.740 2.726 2.720 2.660	8 14 2 1 27	3 2 0 0 2 2 2 1 2 3	32 • 4 6 32 • 6 6 32 • 8 3 32 • 9 0 33 • 6 7	1.6270 1.6158 1.6061 1.5864 1.5779	1 1 1 1	3 3 3 0 4 5 3 4 1 2 5 2 2 1 6	56 • 5 2 56 • 9 4 57 • 3 2 58 • 1 0 58 • 4 4
2 • 64 5	1	2 2 1	33 •8 6	1.5779	2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	58 .44
2 • 63 4	6	0 1 4	34 •0 1	1.5351	3		60 .24
2 • 53 2	7	1 0 4	35 •4 2	1.5266	1		60 .61
2 • 44 0	7	2 2 2	36 •8 0	1.5172	3		61 .02
2 • 39 2	2	0 4 0	37 •5 7	1.5056	1		61 .50
2 • 378	4	2 1 3	37 • 7 9	1.5046	2	1 1 7	61.59
2 • 377	4	0 2 4	37 • 8 1	1.4837	3	3 4 3	62.55
2 • 337	11	0 4 1	38 • 4 9	1.4526	2	2 4 5	64.05
2 • 259	3	1 3 3	39 • 6 8	1.4517	1	1 2 7	64.09
2 • 204	3	1 4 1	40 • 9 1	1.4469	1	3 5 0	64.33
2.192	1	0 4 2	41 • 15	1.4271	1	1 6 3	65 • 3 3
2.136	5	0 1 5	42 • 27	1.4249	3	2 6 1	65 • 4 5
2.120	7	2 3 2	42 • 5 1	1.4211	1	4 3 2	65 • 6 5
2.112	12	2 0 4	42 • 7 7	1.4188	2	4 0 4	65 • 7 7
2.081	1	1 4 2	43 • 4	1.4082	1	3 0 6	66 • 3 2
2.078 2.063 2.005 2.001 1.9744	4 5 4 3 6	G 3 4 2 1 4 3 1 2 0 4 3 3 2 1	43.51 43.86 45.16 45.28 45.93	1 • 40 34 1 • 396 6 1 • 3931 1 • 37 47 1 • 35 02	1 2 1 1	4 1 4 3 4 4 3 1 6 1 3 7 4 2 4	66.58 66.94 67.13 68.15 68.99
1 • 94 00	1	2 4 0	46.79	1.3525	2	4 4 1	69.44
1 • 93 22	4	2 2 4	45.93	1.3493	1	1 6 4	69.62
1 • 91 57	9	1 4 3	47.42	1.3298	1	2 4 6	70.80
1 • 91 03	11	2 4 1	47.56	1.3100	1	4 1 5	72.03
1 • 88 4 7	18	3 2 2	48.25	1.2963	1	4 3 4	72.92
1.8557	1	3 1 3 1 5 0 2 4 2 3 3 0 1 5 1	49.35	1.2957	1	1 5 6	72.95
1.8385	3		49.54	1.2894	2	0 6 5	73.37
1.8288	1		49.82	1.2850	1	1 4 7	73.66
1.8172	2		50.16	1.2844	1	3 6 1	73.70
1.8131	1		50.23	1.2769	1	4 4 3	74.20

Monoclinic, C2/c (15), Z=8 [Burns and Busing, 1965].

Lattice parameters

a=6.01±0.02, b=11.64±0.02, c=8.18±0.02Å, β =90°45'±5' [ibid.]

Scattering factors

Li⁺¹ [3.3.1A]; Cs°,F⁻¹[3.3.1A], corrected for real and imaginary dispersion [3.3.2B]

Thermal parameters

Isotropic: Cs 1.96; Li 2.50; F(1) 2.20; F(2) 2.40; F(3) 3.00. Density (calculated) 4.130 g/cm³

Scale factor

 10.28×10^{4}

Reference

Burns, J.H. and W.R. Busing (1965). Crystal structures of rubidium lithium fluoride, RbLiF₂, and cesium lithium fluoride, CsLiF₂, Inorg. Chem. 4, 1510-1512.

Ca	Calculated Pattern (Peak heights)						
d (Å)	Ι	hkl	$\frac{2\theta(^{\circ})}{\lambda = 1.54056 \text{ Å}}$				
5.82	28	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15.22				
4.74	42		18.70				
4.49	47		19.74				
4.45	42		19.94				
4.09	42		21.72				
3.35	16	0 2 2 -1 1 2 1 1 2 -1 3 1 1 3 1	26 .6 2				
3.26	51		27 .3 0				
3.23	51		27 .6 0				
3.04	91		29 .4 0				
3.02	100		29 .5 4				
3.01	74	2 0 6	29 • 7 0				
2.910	44	0 4 0	30 • 7 0				
2.741	17	0 4 1	32 • 6 4				
2.670	13	2 2 0	33 • 5 4				
2.547	21	-2 2 1	35 • 2 0				
2.529	29	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	35 • 4 6				
2.469	86		36 • 3 6				
2.436	25		36 • 8 6				
2.416	3		37 • 1 8				
2.406	19		37 • 3 4				
2.371	8	0 4 2 -2 2 2 2 2 2 -1 5 1 1 5 1	37 • 9 2				
2.248	2		40 • 08				
2.223	1		40 • 5 4				
2.100	7		43 • 0 4				
2.095	9		43 • 1 4				
2.091	18	2 4 G	43.24				
2.084	10	1 3 3	43.38				
2.030	1	-2 4 1	44.60				
2.021	2	2 4 1	44.82				
1.9894	9	9 4 3	45.56				
1.9403	7	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	46.78				
1.9187	32		47.34				
1.9141	31		47.46				
1.9020	15		47.78				
1.8968	24		47.92				
1.8682 1.8546 1.7866 1.7692 1.7527	8 6 7 7	-2 4 2 2 4 2 -3 1 2 3 1 2 0 6 2	48.70 49.08 51.08 51.62 52.14				
1.7434	13	-3 3 1	52.44				
1.7348	11	3 3 1	52.72				
1.7008	1	-2 0 4	53.86				
1.6803	2	2 0 4	54.58				
1.6665	7	-2 4 3	55.06				
1.6516	8	2 4 3	55.60				
1.6300	11	2 6 0	56.40				
1.5964	1	2 6 1	57.70				
1.5809	2	0 6 3	58.32				
1.5740	8	0 2 5 +	58.60				

Ca	lculated	Pattern (Peak he	eights)	C	Calculate	d Pattern (Integr	ated)
d (Å)	Ι	hkl	$\frac{2\theta(^{\circ})}{\lambda = 1.54056 \stackrel{\circ}{A}}$	d (Å)	Ι	hkl	$\frac{2\theta(°)}{\lambda = 1.54056 ^{\alpha}}$
1.5715 1.5590 1.5177 1.5105 1.5026	8 1 2 2 5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	58.70 59.22 61.00 61.32 61.68	5.82 4.74 4.50 4.45 4.09	25 40 45 41 42	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15.21 18.70 19.73 19.95 21.71
1.4917 1.4904 1.4848 1.4663 1.4581	9 7 3 3	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	62 • 1 8 62 • 2 4 62 • 5 0 63 • 3 8 63 • 7 8	3 • 35 3 • 27 3 • 23 3 • 04 3 • 02	16 56 55 92 96	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	26 • 6 2 27 • 2 9 27 • 6 0 29 • 4 0 29 • 5 5
1.4544 1.4324 1.4293 1.4258 1.4189	2 2 5 4	4 2 0 + 0 8 1 -3 1 4 + 0 4 5 3 5 2	63 • 9 6 65 • 0 6 65 • 2 2 65 • 4 0 65 • 7 6	3.00 2.910 2.742 2.670 2.547	70 48 19 15 25	2 0 0 0 4 0 0 4 1 2 2 0 -2 2 1	29.71 30.70 32.63 33.54 35.21
1.4154 1.4113 1.4075 1.4023 1.3945	3 3 2 5 1	-4 0 2 3 1 4 0 6 4 -2 2 5 + 2 6 3	65 •9 4 66 •1 6 66 •3 6 66 •6 4 67 • 0 6	2.529 2.469 2.440 2.437 2.437 2.417	32 1 00 1 27 1	2 2 1 0 2 3 -1 1 3 -2 0 2 1 1 3	35.46 36.36 36.81 36.86 37.17
1 • 38 75 1 • 36 31 1 • 33 50 1 • 32 00 1 • 31 52	4 3 1 1	2 2 5 0 0 6 4 4 0 -4 4 1 4 4 1	67.44 68.82 70.48 71.40 71.70	2 • 406 2 • 371 2 • 248 2 • 224 2 • 101	22 9 2 1 5	2 0 2 0 4 2 -2 2 2 2 2 2 -1 5 1	37.34 37.92 40.08 40.53 43.02
1 • 2941 1 • 2904 1 • 2835 1 • 2767 1 • 2734	1 4 2 4 3	-2 4 5 -4 2 3 G 8 3 + 4 2 3 -4 4 2	73.06 73.30 73.76 74.22 74.44	2.099 2.096 2.090 2.084 2.045	2 5 19 1 1	-1 3 3 1 5 1 2 4 0 1 3 3 0 0 4	43.07 43.13 43.24 43.38 44.26
1 • 26 56 1 • 26 27 1 • 25 93 1 • 25 00 1 • 24 92	2 3 4 4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	74 • 98 75 • 18 75 • 42 76 • 08 76 • 14	2.030 2.021 1.9696 1.9400 1.9247	2 2 12 9 4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	44.61 44.81 45.55 46.79 47.18
1 • 24 72 1 • 23 47 1 • 22 48 1 • 21 82 1 • 21 33	3 2 3 1 2	-2 0 6 0 4 6 + -3 5 4 + 3 7 2 3 5 4	76 •28 77 •20 77 •94 78 •44 78 •82	1.9212 1.9188 1.9171 1.9137 1.9134	15 24 16 14 4	-1 5 2 -2 2 3 -1 1 4 1 5 2 3 1 1	47.27 47.34 47.38 47.47 47.48
1.2115 1.2044 1.1976 1.1936 1.1877	1 1 1 2	-3 3 5 + -4 4 3 3 3 5 4 4 3 4 6 D	78.96 79.52 ,80.06 80.38 80.86	1.9022 1.8966 1.8876 1.8682 1.8545	16 24 1 10 8	1 1 4 2 2 3 0 6 1 -2 4 2 2 4 2	47.77 47.93 48.17 48.70 49.08
1 • 18 31 1 • 17 79 1 • 15 16 1 • 14 67 1 • 14 39	2 2 1 2 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	81.24 81.68 83.96 84.40 84.66	1.7869 1.7685 1.7528 1.7434 1.7350	8 9 17 14	-3 1 2 3 1 2 0 6 2 -3 3 1 3 3 1	51.07 51.63 52.14 52.44 52.71

Calculated Pattern (Integrated)		ated)	С	alculate	d Pattern (Integr	ated)	
d (Å)	I	hkl	$\frac{2\theta(^{\circ})}{\lambda = 1.54056 \text{ Å}}$	d (Å)	Ι	hkl	$\frac{2\theta(°)}{\lambda = 1.54056 \text{ Å}}$
1.7009 1.6803 1.6662 1.6516 1.6298	2 2 11 11 16	-2 0 4 2 0 4 -2 4 3 2 4 3 2 6 0	53.86 54.57 55.07 55.60 56.41	1 • 28 26 1 • 27 6 7 1 • 27 34 1 • 26 5 7 1 • 26 35	1 7 1 3 3	2 4 5 4 2 3 -4 4 2 -3 7 1 -1 7 4	73.82 74.22 74.44 74.97 75.13
1.6006 1.5962 1.5807 1.5748 1.5738	1 1 3 7 6	$\begin{array}{cccc} -2 & 6 & 1 \\ 2 & 6 & 1 \\ 0 & 6 & 3 \\ 0 & 2 & 5 \\ -1 & 7 & 1 \end{array}$	57 • 5 3 57 • 7 1 58 • 3 3 58 • 5 7 58 • 6 1	1.2625 1.2592 1.2501 1.2490 1.2476	2 3 4 4 2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	75.20 75.42 76.08 76.15 76.26
1.5717 1.5692 1.5590 1.5177 1.5103	7 1 1 2 2	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	52.69 58.79 59.22 61.00 61.33	1.2354 1.2345 1.2249 1.2240 1.2199	2 3 4 2 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	77.15 77.21 77.93 78.00 78.31
1.5024 1.4955 1.4939 1.4920 1.4920	9 1 4 9 5	4 0 0 -3 5 1 -1 7 2 -1 5 4 1 7 2	61.69 62.00 62.03 62.17 62.24	1.2182 1.2133 1.2115 1.2084 1.2045	2 4 1 2	3 7 2 3 5 4 -3 3 5 2 2 6 -4 4 3	78.44 78.82 78.96 79.20 79.51
1.4903 1.4849 1.4662 1.4579 1.4551	1 10 4 4 1	3 5 1 1 5 4 -1 3 5 1 3 5 2 4 4	62.25 62.49 63.38 63.79 63.92	1.1975 1.1935 1.1878 1.1831 1.1778	2 2 3 4	3 3 5 4 4 3 4 6 D +2 8 3 2 8 3	80.07 80.39 80.85 81.25 81.69
1.4547 1.4325 1.4295 1.4291 1.4281	1 2 5 2 4	4 2 0 9 8 1 -3 1 4 4 2 1 -3 5 2	63.95 65.06 65.21 65.23 65.28	1.1640 1.1569 1.1516 1.1468 1.1466	1 1 1 1	$\begin{array}{ccccc} 0 & 1 & 0 & 0 \\ -1 & 5 & 6 \\ -5 & 1 & 2 \\ -1 & 7 & 5 \\ -2 & 4 & 6 \end{array}$	82.67 83.49 83.96 84.39 84.41
1.4260 1.4189 1.4162 1.4112 1.4074	3 5 2 5 1	0 4 5 3 5 2 -4 0 2 3 1 4 0 6 4	65.39 65.76 65.90 66.16 66.37	1.1442 1.1439 1.1435 1.1428 1.1389	1 2 2 1 3	$ \begin{array}{ccccc} -1 & 1 & 7 \\ -4 & 6 & 2 \\ 5 & 1 & 2 \\ 1 & 7 & 5 \\ -5 & 3 & 1 \end{array} $	84.63 84.66 84.69 84.76 85.12
1.4043 1.4033 1.4021 1.3946 1.3877	1 1 7 1 6	4 0 2 -2 6 3 -2 2 5 2 6 3 2 2 5	66.53 66.58 66.65 67.06 67.43	1.1387 1.1375 1.1371 1.1350 1.1350	1 1 1 2 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	85.13 85.24 85.28 85.48 86.95
1.3761 1.3632 1.3350 1.3273 1.3245	1 5 5 1	-4 2 2 0 0 6 4 4 0 0 2 6 -1 1 6	68.08 68.81 70.48 70.95 71.12	1.1154 1.1024 1.0975 1.0940	2 3 3 2	0 6 6 -1 3 7 1 3 7 -4 2 5	87.36 88.65 89.15 89.52
1.3200 1.3151 1.2943 1.2902 1.2836	1 1 1 7 3	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	71.40 71.71 73.06 73.31 73.75				

Monoclinic, C2/c(15), Z=4 [Steinfink and Burns, 1964]

Lattice parameters

 $a=7.773\pm.005, b=7.540\pm.005, c=7.440\pm.005\AA$, $\beta=124.25\pm0.1^{\circ}$ [ibid.]

Scattering factors

 F^{-1} [3.3.1A]; Cr^{+2} , Cr^{+3} [3.3.1B]

Thermal parameters

Isotropic:Cr⁺³ 0.49;Cr⁺² 0.77;F⁻(1) 1.41
F⁻(2) 1.19; F⁻(3) 1.64

Density

(calculated) 3.667 g/cm³

Scale factor

 3.008×10^4

Reference

Steinfink,H. and J.H.Burns(1964).The crystal structure of Cr₂F₅, Acta Cryst. 17, 823-826.

Ca	Calculated Pattern (Peak heights)							
d (Å)	Ι		hk	l		$2\theta(^{\circ})$ $\lambda = 1.54056 \stackrel{\circ}{A}$		
4.89 3.77 3.358 3.321 3.213	2 1 00 68 5 70	1 0 -2 -1 2	1 2 0 1 0	0 0 2 2 0		18 • 1 2 23 • 5 8 26 • 5 2 26 • 8 2 27 • 7 4		
3 • 07 4 2 • 70 4 2 • 50 7 2 • 44 5 2 • 42 3	35 1 14 9 11	3 -2 -2 2 -3	0 2 2 2 1	2 1 2 0 2		29.02 33.10 35.78 36.72 37.08		
2 • 38 3 2 • 35 4 2 • 26 8 2 • 21 1 2 • 14 6	3 4 3 4 2	0 -1 -1 1 -3	2 3 1 1 1	2 1 3 2 3	*	37 • 7 2 38 • 2 0 39 • 7 0 40 • 7 8 42 • 3 8		
2.079 2.060 1.9411 1.8849 1.8504	1 4 12 22 18	-1 3 -4 0 -2	3 0 4 0	2 2 0 4		43.50 43.92 46.76 48.24 49.20		
1.7925 1.7769 1.7257 1.7019 1.6961	2 14 7 1 1	-3 2 -4 1 -2	3 2 3 4	2 2 2 2 1	+	50 • 90 51 • 38 53 • 0 2 53 • 8 2 54 • 0 2		

Ca	Calculated Pattern (Peak heights)						
d (Å)	Ι	hkl	$\frac{2\theta(^{\circ})}{\lambda = 1.54056 \text{ Å}}$				
1.6789	4	-4 0 4	54 •6 2				
1.6609	13	-2 2 4	55 •2 6				
1.6434	12	-2 4 2	55 •9 0				
1.6258	11	2 4 0	56 • 5 6				
1.6066	20	4 0 0 +	57 • 3 0				
1.5373	5	0 0 4	60 • 1 4				
1.5336	6	-4 2 4	60 • 3 0				
1.5181	1	-5 1 3	60 • 9 8				
1.4776	5	4 2 0	62 • 8 4				
1.4235	3	8 2 4	65 • 5 2				
1 • 35 24	5	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	69.44				
1 • 32 06	6		71.36				
1 • 31 46	1		71.74				
1 • 29 31	6		73.12				
1 • 27 87	3		74.08				
1 • 27 37	1	-1 5 3	74.42				
1 • 25 68	1	0 6 0	75.60				
1 • 25 37	3	-4 4 4 +	75.82				
1 • 23 49	1	-4 0 6	77.18				
1 • 22 27	4	4 4 0	78.10				
1.2118	4	-6 2 4	79.00				
1.1914	3	0 4 4	80.56				
1.1897	2	-6 2 2 +	80.70				
1.1769	2	-2 6 2 +	81.76				
1.1736	3	-4 2 6	82.04				
1.1703	2	2 6 0	82.32				
1.1632	1	0 6 2	82.94				
1.1563	1	2 0 4	83.54				
1.1055	1	2 2 4	88.34				
1.0728	1	-6 2 6	91.78				
1.0708	1	6 0 0	92.00				
1.0582	2	-6 4 4	93.42				
1.0549	1	-4 6 2	93.80				
1.0441	1	-6 4 2	95.08				
1.0396	1	-2 6 4	95.62				
1.0329	1	-4 4 6	96.44				
1.0302	2	6 2 0	96.78				
1.0261	1	2 6 2	97.30				
1.0250	1	0 0 6	97.44				
1.0250	1	-2 4 6 +	99.94				
• 99 87 • 98 91 • 98 57 • 97 05 • 93 99	1 1 1 1	4 4 2 0 2 6 + 2 4 4 -8 0 4 -8 2 4	100.94 102.30 102.78 105.06 110.08				
.9311	1	6 4 0	111.64				
.9109	1	-8 2 6	115.48				
.9074	1	-2 8 2	116.18				
.9044	1	2 8 0	116.80				
.9011	1	0 8 2	117.48				
• 90 05	1	346	117.60				

Calculated Pattern (Integrated)			C	alculate	d Pattern (Integra	ated)	
d (Å)	Ι	hkl	$\frac{2\theta(^{\circ})}{\lambda = 1.54056 \text{ Å}}$	d (Å)	Ι	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \stackrel{\circ}{A}$
4.89 3.77 3.357 3.322 3.213	2 I OO 73 4 77	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18.12 23.58 26.53 26.81 27.75	1.2349 1.2226 1.2111 1.1914 1.1899	2 7 6 5 1	-4 0 6 4 4 0 -6 2 4 0 4 4 -6 2 2	77 •18 78 •11 78 •99 80 •56 80 •69
3.075 2.734 2.507 2.445 2.422	37 1 16 11 13	0 0 2 -2 2 1 -2 2 2 2 2 0 -3 1 2	29.01 33.10 35.78 36.72 37.03	1.1894 1.1775 1.1769 1.1735 1.1703	1 2 4 1	-2 0 6 4 0 2 -2 6 2 -4 2 6 2 6 0	80 •7 3 81 •7 1 81 •7 6 82 •0 5 82 •3 2
2.383 2.380 2.354 2.269 2.211	3 2 5 4 5	0 2 2 -3 1 1 -1 3 1 -1 1 3 1 1 2	37.72 37.77 38.20 39.70 40.78	1 • 16 33 1 • 15 64 1 • 13 43 1 • 11 92 1 • 13 55	2 2 1 1 2	0 6 2 2 0 4 -2 2 6 -6 0 6 2 2 4	82 • 9 3 83 • 5 4 85 • 5 5 86 • 9 9 88 • 3 3
2.146 2.079 2.060 1.9973 1.9409	3 1 5 1 16	-3 1 3 -1 3 2 3 1 0 2 2 1 -4 0 2	42.07 43.49 43.91 45.37 46.76	1.0729 1.0708 1.0583 1.0549 1.0440	2 4 2 2	-6 2 6 6 0 0 -8 4 4 -4 6 2 -6 4 2	91.77 92.00 93.41 93.81 95.09
1.8850 1.8504 1.7927 1.7772 1.7766	28 23 3 17 2	0 4 0 -2 0 4 -3 3 2 2 0 2 -3 1 4	48.24 49.20 50.89 51.37 51.39	1.0396 1.0330 1.0301 1.0261 1.0250	2 3 2 2 2	-2 6 4 -4 4 6 6 2 D 2 6 2 0 0 6	95.62 96.44 96.80 97.30 97.44
1.7257 1.7318 1.6956 1.6787 1.6611	10 1 1 5 18	-4 2 2 1 3 2 -2 4 1 -4 0 4 -2 2 4	53.02 53.82 54.04 54.63 55.25	1.0050 1.0059 .9987 .9898 .9891	1 1 2 2 2	-4 6 4 -2 4 6 4 4 2 4 6 3 0 2 6	99.93 99.95 100.54 102.20 102.30
1.6437 1.6301 1.6258 1.6075 1.6071	17 1 14 8 12	-2 4 2 3 3 0 2 4 0 2 2 2 0 4 2	55 • 8 9 56 • 4 0 56 • 5 6 57 • 2 6 57 • 2 8	• 98 57 • 97 30 • 97 05 • 96 23 • 94 25	3 1 1 1	2 4 4 0 6 4 -8 0 4 -6 4 6 0 8 0	102.79 104.68 105.07 106.34 109.63
1.6063 1.5375 1.5336 1.5182 1.4777	13 7 5 1 8	4 0 0 0 0 4 -4 2 4 -5 1 3 4 2 0	57.31 60.13 60.30 60.98 62.83	.9398 .9311 .9252 .9128 .9109	2 3 1 1 2	-8 2 4 6 4 0 -4 0 8 -8 0 2 -8 2 6	110.09 111.64 112.72 115.11 115.48
1.4236 1.3522 1.3205 1.3144 1.2931	5 8 3 1 9	0 2 4 -4 4 2 -2 4 4 1 1 4 2 4 2	65.51 69.45 71.37 71.75 73.12	• 90 74 • 90 44 • 90 11 • 90 05 • 89 85	3 2 3 3 3	-2 8 2 2 8 0 0 8 2 0 4 6 -4 2 8	116.18 116.80 117.48 117.51 118.02
1.2789 1.2736 1.2567 1.2539 1.2536	4 1 2 1 3	$ \begin{array}{ccccc} -6 & 0 & 4 \\ -1 & 5 & 3 \\ 0 & 6 & 0 \\ -6 & 0 & 2 \\ -4 & 4 & 4 \end{array} $	74.07 74.43 75.61 75.80 75.82	.8963 .8886 .8883 .8876 .8871	2 2 1 2	-6 6 4 4 0 4 -6 2 8 -6 6 2 -8 2 2	118.49 120.19 120.25 120.41 120.52

ł

.

109

20(°) $\lambda = 1.54056 \text{ Å}$ 29.78

30.10

30.50

30.72

31.20 32.28

32.96

33.46

34.26

34.66

35.76 35.94 36.76 36.86 37.78

38.28

38.90 39.16 39.56 40.40 40.76 41.26 41.72 41.94 42.08 42.62 42.94 43.54 43.70

43.72

44.50 44.72 45.54 45.72 46.10 46.30 48.10 48.32 48.56

48.94 49.06 49.28 49.80

50.10

50.50 50.76 50.90

51.48 51.78 51.92 52.16

Chanadana								_	_	
Orthorho	mbic, P	Ca	lculated	Patter	n (F	Peal	k he	eights)		
cioli an	d Marsh	1, 1966]	-	0	1					2
T attac mana				đ (A)	I		hk	1		$\lambda = 1$
	h=10	250 9-7 228	libid 1							
a=11.064	, D=IO	.350, C=7.236	a [IDIG.]	2.998	26	1	3	1		29
Southaning fo	ators			2.966	4		2	2		30
H° C°	N° O°	[3 3]A] Cu	°[3 3]Alcor-	2.908	1	2	1	2		30
rected	for the	e real part	of the anoma-		_					
lous dis	persion	n effect [3.3	.2B]	2.854	14	1	2	2		31
	1			2.771	4	4	0	0	+	32
Thermal par	rameter	S		2. 115	4	4	1	- 1		33
Isotropi	c:Cu l.	$71 \cdot C(1) = 7$	$1 \cdot C(2) = 1 - 70 \cdot 1$	2.615	2	2	2	2		34
C(3) 1.9	6: C(4)	$2.19 \cdot C(5)$	1.96: N 1.95:							
0(1) 2.1	8; 0(2)	2.31; 0(3)	2.09;	2.586	11	3	0	2	+	34
0(4) 2.5	0; 0(5)	2.71; 0(6)	2.39; H(1)	2.509	5		- *	2		35
to H(11)	inclus	sive, as given	n in Gramac-	2.443	1	4	2	0		36
cioli an	d Marsh	[1966]		2.436	3	0	4	1		36
					1.2	, I		,		27
Density				2.319	7	â	1	3		38
(calculat	ed) 1.9	957 g/cm [°] [Gra	amaccioli and	2.313	18	3	2	2	+	38
Marsh,	1966]			2.299	8	1	1	3		39
Scale factor				2.276	12	2	3	2		39
4.281 ×	10^{4}			2 271	6	2	u	1		40
Defense				2.212	2	2	0	3		40
Cramaggial	icM	and P F March	(1966) The	2.186	1	0	2	3		41
crystal	struct	ure of coppe	r glutamate	2.163	9	2	1	3		41
dihvdrat	e, Acta	Crvst. 21 59	4-600.	2.152	5	4	1	2		41
		-1		2.146	8	1	2	3		42
	loulated	Dattorn (Dach	had a later	2.120	3	5	٥	1		42
Ca	iculated	Pattern (Pear I	leights)	2.105	1	0	4	2		42
	I	hbl	2θ(°)		9	5	1	1		43
u (A)		1111	$\lambda = 1.54056 \ A$	2.000		, in the second s		-	·	
7 50	72	1 1 0	11 70	2.069	7	1	4	2		43
5.93	17		14.92	2.025	3	4	2	2	*	44
5.54	52	2 0 0	15.98	1.9902	2	C	5	1		45
5.23	100	1 1 1	16.94	1.9828	2	3	1	3		45
5.18	23	0 2 0	17.12	1 05 77	2	2		2		
4.89	38	210	18,14	1.9593	2	1	5	1		40
4.69	2	1 2 0	18.92	1.8901	3	5	D	2		48
4.40	1	2 0 1	20.16	1.8820	2	3	2	3		48
4.21	42	0 2 1	21.08	1.8733	3	2	5	1		48
4.05	63		21.94	1,8596	9	5	1	2	+	48
3.93	63	1 2 1	22.58	1.8553	6	4	3	2		49
3.78	3	2 2 0	23.50	1.8476	1	6	0	0		49
3.62	6	0 0 2	, 24 .58	1.8295	2	4	4	1		49
3.440	18		25.88	1.8192	'	4	U	د	•	50
20221			20050	1.8058	4	5	3	1	+	50
3.290	12	3 0 1 +	27.08	1.7971	4	0	5	2		50
3.264	12	1 1 2	27.30	1.7925	4	4	1	3		50
3.114	5		28.54	1.7737	5	5	5 1	2	*	51
3.029	1	2 0 2	29.46	T. 104T	5	0	•	*		51
				1.7597	2	1	1	4		51
3.006	15	320	29.70	1.7521	2	3	5	1		52

Ca	lculated	Pattern (Peak he	ights)
d (Å)	Ι	hkl	$\frac{2\theta(^{\circ})}{\lambda = 1.54056 \text{ Å}}$
1.7428	3	1 4 3 +	52.46
1.7251	1	0 6 0	53.04
1.7203	1	2 0 4	53.20
1.7167	1	4 2 3	53.32
1.7090	3	2 5 2 +	53.58
1.6967	1	2 1 4	54.00
1.6915	1	6 2 1	54.18
1.6880	2	1 2 4	54.30
1.6817 1.6760 1.6587 1.6472 1.6322	1 2 2 3	2 4 3 4 4 2 + 1 6 1 2 6 0 2 2 4	54 •52 54 •72 55 •34 55 •76 56 •32
1.6164 1.6096 1.6055 1.5923 1.5883	1 1 3 4	4 5 1 4 3 3 3 1 4 3 4 3 6 3 1	56 • 9 2 57 • 1 8 57 • 3 4 57 • 8 6 58 • D 2
1.5858	5	1 3 4	58 • 1 2
1.5681	2	6 2 2	58 • 8 4
1.5566	1	5 2 3	59 • 3 2
1.5504	1	3 2 4	59 • 5 8
1.5466	2	7 0 1	59 • 7 4
1.5424	2	1 6 2	59.92
1.5392	2	2 3 4	60.06
1.5276	1	3 6 1	60.56
1.5127	1	5 5 0	61.22
1.5079	1	4 5 2	61.44
1.4991 1.4818 1.4703 1.4646 1.4540	2 2 1 1	4 1 4 + 7 2 1 + 3 3 4 4 6 0 4 2 4	61 • 8 4 62 • 6 4 63 • 2 D 63 • 4 6 63 • 9 8
1.4364	3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	64.86
1.4113	1		65.16
1.3960	1		66.98
1.3883	2		67.40
1.3761	1		68.08
1.3732	1	8 1 0	68 • 2 4
1.3575	1	4 6 2	69 • 1 4
1.3538	1	6 5 1	69 • 3 6
1.3521	2	2 2 5	69 • 4 6
1.3507	2	7 4 0	69 • 5 4
1.3490	2	8 1 1 +	69.64
1.3379	1	5 6 1	70.30
1.3366	1	3 1 5	70.38
1.3045	1	4 7 0	72.38
1.2820	1	5 5 3	73.86
1.2784	1	3 5 4	74.10
1.2607	1	0 7 3	75.32
1.2453	1 =	4 2 5	76.42

Calculated Pattern (Integrated)							
d (Å)	Ι	hkl	$\frac{2\theta(^{\circ})}{\lambda = 1.54056 \stackrel{\circ}{A}}$				
7.56	66	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11.69				
5.93	17		14.92				
5.54	51		15.93				
5.23	100		16.94				
5.17	19		17.12				
4.89	40	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18.14				
4.69	2		18.91				
4.40	1		20.16				
4.21	47		21.09				
4.05	69		21.93				
3 • 94	69	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	22 • 5 7				
3 • 78	4		23 • 5 0				
3 • 62	7		24 • 5 8				
3 • 44 0	21		25 • 8 8				
3 • 35 2	4		26 • 5 7				
3.294	2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	27 • 0 5				
3.291	13		27 • 0 7				
3.265	13		27 • 2 9				
3.136	13		28 • 4 4				
3.114	5		28 • 6 4				
3.030	1	2 0 2	29.45				
3.007	14	3 2 0	29.69				
2.998	24	1 3 1	29.77				
2.966	8	0 2 2	30.11				
2.929	5	2 3 0	30.50				
2.908	1	2 1 2	30.72				
2.865	17	1 2 2	31.19				
2.777	1	3 2 1	32.21				
2.771	4	4 0 0	32.28				
2.715	1	2 3 1	32.96				
2.677	5	4 1 0	33 •4 5				
2.615	2	2 2 2	34 • 2 6				
2.588	5	4 0 1	34 • 6 3				
2.587	1	0 4 0	34 • 6 4				
2.585	10	3 0 2	34 • 6 7				
2.508	9	3 1 2 0 3 2 4 2 0 0 4 1 3 3 1	35 • 7 7				
2.497	6		35 • 9 3				
2.443	1		36 • 7 6				
2.436	3		36 • 8 6				
2.381	3		37 • 7 5				
2 • 38 0	13	1 4 1	37.77				
2 • 35 7	1	1 0 3	38.14				
2 • 35 0	8	0 1 3	38.27				
2 • 31 5	4	4 2 1	38.88				
2 • 31 3	21	3 2 2	36.91				
2.299	9	1 1 3	39.16				
2.277	15	2 3 2	39.55				
2.230	8	2 4 1	40.41				
2.212	3	2 0 3	40.76				
2.187	1	0 2 3	41.25				

C	alculated	l Pattern (Integra	uted)	Ca	alculated	l Pattern (Integra	ated)
d (Å)	Ι	hkl	$\frac{2\theta(°)}{\lambda = 1.54056 \stackrel{\circ}{A}}$	d (Å)	Ι	hkl	$\begin{array}{c} 2 \theta(°) \\ \lambda = 1.54056 \stackrel{\circ}{A} \end{array}$
2 • 16 3 2 • 15 2 2 • 14 5 2 • 12 0 2 • 10 5	11 3 10 4 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	41.72 41.95 42.08 42.62 42.93	1.6471 1.6323 1.6165 1.6095 1.6054	3 3 2 1 1	2 6 0 2 2 4 4 5 1 4 3 3 3 1 4	55.77 56.31 56.92 57.19 57.35
2 • 07 7 2 • 07 0 2 • 06 9 2 • 06 8 2 • 03 5	12 1 3 4 7	5 1 1 4 3 1 3 3 2 1 4 2 1 5 0	43.55 43.69 43.72 43.74 44.49	1.5923 1.5888 1.5860 1.5680 1.5568	5 2 6 2 1	3 4 3 6 3 1 1 3 4 6 2 2 5 2 3	57.86 58.00 58.11 58.84 59.31
2 • 03 4 2 • 03 4 2 • 02 5 1 • 99 02 1 • 98 27	1 4 3 2	2 2 3 3 4 1 4 2 2 0 5 1 3 1 3	44.50 44.51 44.72 45.54 45.72	1.5504 1.5468 1.5420 1.5394 1.5278	2 3 2 2 1	3 2 4 7 D 1 1 6 2 2 3 4 3 6 1	59.58 59.73 59.94 60.05 60.55
1.9677 1.9589 1.8903 1.8818 1.8731	2 1 4 3 4	2 4 2 1 5 1 5 0 2 3 2 3 2 5 1	46.09 46.31 48.09 48.33 48.56	1.5129 1.5076 1.4991 1.4991 1.4820	1 1 2 2	5 5 0 4 5 2 2 6 2 4 1 4 7 2 1	61.21 61.45 61.84 61.84 62.63
1 • 86 22 1 • 85 96 1 • 85 50 1 • 84 73 1 • 82 98	3 11 2 1 2	2 3 3 5 1 2 4 3 2 6 0 0 4 4 1	48.87 48.34 49.07 49.29 49.79	1.4809 1.4701 1.4644 1.4540 1.4457	1 3 1 1 1	5 5 1 3 3 4 4 6 0 4 2 4 3 5 3	62 • 6 8 63 • 2 0 63 • 4 7 63 • 9 8 64 • 3 9
1.8196 1.8186 1.8060 1.8059 1.7968	5 5 3 2 5	4 0 3 6 1 0 5 3 1 3 5 0 0 5 2	\$0.09 50.12 50.49 50.50 50.77	1.4366 1.4364 1.4353 1.4349 1.4349	2 3 1 1	7 1 2 1 7 1 4 6 1 3 6 2 6 2 3	64.85 64.86 64.91 64.93 66.17
1.7921 1.7756 1.7737 1.7638 1.7598	3 1 6 4 1	4 1 3 5 2 2 1 5 2 6 1 1 1 1 4	50.91 51.42 51.48 51.79 51.91	1 • 3959 1 • 38 84 1 • 38 72 1 • 37 62 1 • 37 32	1 3 2 1 2	5 5 2 6 4 2 4 3 4 3 4 4 8 1 0	66 • 98 67 • 39 67 • 4 6 68 • 0 7 68 • 2 4
1 • 75 22 1 • 74 32 1 • 74 26 1 • 72 50 1 • 72 01	3 2 3 1 1	3 5 1 3 3 3 1 4 3 0 6 0 2 0 4	52 • 1 6 52 • 4 5 52 • 4 7 53 • 0 4 53 • 2 1	1.3575 1.3540 1.3520 1.3506 1.3492	1 2 1 1	4 6 2 6 5 1 2 2 5 7 4 0 8 1 1	69.14 69.35 69.47 69.55 69.63
1.7166 1.7092 1.7081 1.6969 1.6916	1 4 1 1	4 2 3 2 5 2 0 2 4 2 1 4 6 2 1	53.32 53.57 53.61 53.99 54.17	1.3487 1.3379 1.3365 1.3045 1.2818	1 2 1 1 1	3 7 1 5 6 1 3 1 5 4 7 0 5 5 3	69.66 70.30 70.38 72.38 73.88
1.6882 1.6814 1.6780 1.6761 1.6591	2 1 1 2 2	1 2 4 2 4 3 0 6 1 4 4 2 1 6 1	54 • 2 9 54 • 5 3 54 • 6 5 54 • 7 2 55 • 3 3	1 • 27 82 1 • 26 07 1 • 24 54 1 • 24 21 1 • 23 59	1 1 1 1	3 5 4 0 7 3 4 2 5 6 6 1 7 3 3	74.11 75.32 76.42 76.65 77.11

Monoclinic, C2/c (15),Z=4 [Robertson and Calvo, 1967]

Lattice parameters

a=6.876, b=8.113, c=9.162Å, β =109.54° [ibid.]

Polymorphism

The polymorph β -Cu₂ P₂O₇ occurs at temperatures higher than about 66°C [ibid.]

Scattering factors

 P° , O^{-1} [3.3.1A] Cu⁺² [3.3.1A] corrected for anomalous dispersion [3.3.2B]

Thermal parameters

Isotropic: Cu 0.94; P 0.75; O(1) 2.21; O(2) 1.29; O(3) 0.95; O(4) 1.36

Density

(calculated) 4.151 g/cm³

Scale factor

 6.635×10^4

Reference

Robertson, B.E. and C. Calvo (1967). The crystal structure and phase transformation of α -Cu₂P₂O₇, Acta Cryst.22,665-72.

Note:

Using the structure data of Robertson and Calvo [1967], we were unable to duplicate their calculated structure factors, but the scaled integrated intensities agreed within 2%.

Calculated Pattern (Peak heights)									
d (Å)	Ι	hkl	$\frac{2\theta(^{\circ})}{\lambda = 1.54056 \stackrel{\circ}{A}}$						
5.06	6	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	17.50					
4.97	6		1	17.84					
4.32	11		2	20.56					
3.94	1		1	22.54					
3.81	6		2	23.30					
3.67	2	0 2	1	24 •2 2					
3.241	2	2 0	0	27 •5 0					
3.144	1 00	-2 0	2	28 •3 6					
2.957	79	6 2	2	30 •2 0					
2.928	46	1 1	2	30 •5 0					
2.841	4	$ \begin{array}{ccc} -1 & 1 \\ -2 & 2 \\ 2 & 2 \\ 1 & 3 \\ -1 & 3 \end{array} $	3	31 • 4 6					
2.621	2		1	34 • 1 8					
2.532	18		0	35 • 4 2					
2.495	18		0	35 • 9 6					
2.489	18		1	36 • D 6					

Calculated Pattern (Peak heights)									
d (Å)	Ι		hkl			$2\theta(^{\circ})$ $\lambda = 1.54056 \text{ Å}$			
2 • 29 3 2 • 27 4 2 • 25 4 2 • 20 5 2 • 17 5	2 1 2 3 7	-1 2 2 -1 -3	3 2 0 1 1	2 1 2 4 2		39.26 39.60 39.96 40.90 41.48			
2.160 2.087 2.049 2.030 1.9706	9 7 17 3 7	-2 3 1 -3 2	0 1 3 1 2	4 0 2 3 2	+	41.78 43.32 44.16 44.60 46.02			
1.9065 1.8357 1.7478 1.7330 1.7043	16 3 6 8 1	-2 0 -1 -3 -2	2 4 3 3 4	4 2 4 2 2	+	47.66 49.62 52.30 52.78 53.74			
1.6874 1.6200 1.6107 1.5814 1.5725	6 3 2 4 7	3 4 -3 -4 -4	3 0 1 2 0	0 5 2 4	+	54 • 3 2 56 • 7 8 57 • 1 4 58 • 3 D 58 • 6 6			
1 • 57 01 1 • 56 67 1 • 54 48 1 • 53 78 1 • 51 90	9 5 1 13 3	2 -4 -4 1 -1	0 2 3 5	4 1 3 4 2	+	58 • 7 6 58 • 9 D 59 • 8 2 60 • 1 2 60 • 9 4			
1.5168 1.5043 1.4784 1.4646 1.4487	2 2 1 5	-2 4 -2 2 3	0 2 4 2 3	6 0 4 4 2		61.04 61.60 62.80 63.46 64.24			
1 • 44 15 1 • 43 83 1 • 42 08 1 • 37 32 1 • 35 51	4 3 1 2 2	1 -2 -5	5 0 2 0 1	2 6 2 2	+	64 • 6 0 64 • 7 6 65 • 6 6 68 • 2 4 69 • 2 8			
1 • 35 21 1 • 34 60 1 • 33 13 1 • 32 26 1 • 31 78	4 1 6 2	0 -5 -1 -3	6 1 1 3 5	0 3 1 6 2	+	69.46 69.82 70.70 71.24 71.54			
1 • 3045 1 • 3008 1 • 2974 1 • 2895 1 • 2539	1 1 4 1	3 -4 -4 -3	1 2 5 4 1	4 2 3 7	+	72 • 3 8 72 • 6 2 72 • 8 4 73 • 3 6 75 • 8 0			
1 • 25 23 1 • 24 23 1 • 22 58 1 • 18 87 1 • 16 87	2 4 1 1	-4 -2 -3 -5 5	2 6 5 3 3	6 2 4 4 0	+	75 • 9 2 76 • 6 4 77 • 8 6 80 • 7 8 82 • 4 6			
1.1305	1	2	2	6		85.90			

113

Ca	alculated	l Pattern (Integro	ated)]	C	Calculated	d Pattern (Integra	ated)
d (Å)	Ι	hkl	$\begin{array}{c} 2 \theta(^{\circ}) \\ \lambda = 1.54056 \stackrel{\circ}{A} \end{array}$		đ (Å)	Ι	hkl	$2\theta(°)$ $\lambda = 1.54056 \stackrel{\circ}{A}$
5 • 06 4 • 97 4 • 32 3 • 94 3 • 81	5 5 10 1 6	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	17.50 17.83 20.56 22.54 23.30		1.4487 1.4415 1.4391 1.4207 1.3732	7 6 1 1 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	64 •2 4 64 •6 D 64 •7 2 65 •6 6 68 •2 4
3.67 3.240 3.145 2.956 2.929	2 2 100 62 44	0 2 1 2 0 0 -2 0 2 0 2 2 1 1 2	24 • 22 27 • 5 1 28 • 3 5 30 • 2 1 30 • 5 0		1.3633 1.3562 1.3550 1.3522 1.3460	1 1 2 5 1	-4 2 5 0 2 6 -5 1 2 0 6 0 -5 1 3	58.81 69.21 69.29 69.45 69.82
2.841 2.621 2.532 2.496 2.484	4 2 20 19 1	-1 1 3 -2 2 1 2 2 0 1 3 0 -1 3 1	31.46 34.18 35.43 35.95 36.12		1 • 33 13 1 • 32 40 1 • 32 26 1 • 31 75 1 • 30 45	1 3 8 2 1	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	70.70 71.15 71.24 71.55 72.38
2.292 2.274 2.255 2.204 2.175	2 1 2 3 8	-1 3 2 2 2 1 2 0 2 -1 1 4 -3 1 2	39.27 39.60 39.96 40.91 41.49		1.3007 1.2979 1.2973 1.2895 1.2798	1 2 4 2 1	4 2 2 1 1 6 3 5 0 -4 4 3 5 1 0	72.63 72.81 72.85 73.36 74.01
2 • 16 1 2 • 15 9 2 • 08 7 2 • 04 9 2 • 03 0	9 3 8 2D 3	$\begin{array}{cccc} -2 & 0 & 4 \\ 0 & 0 & 4 \\ 3 & 1 & 0 \\ 1 & 3 & 2 \\ -3 & 1 & 3 \end{array}$	41.77 41.81 43.31 44.16 44.60		1.2542 1.2522 1.2428 1.2422 1.2422	1 4 1 5 1	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	75.78 75.92 76.60 76.64 77.85
2.028 1.9706 1.9069 1.9056 1.8357	1 7 18 2 3	0 4 0 2 2 2 -2 2 4 0 2 4 0 4 2	44.64 46.02 47.65 47.68 49.62		1 • 20 33 1 • 18 88 1 • 17 72 1 • 16 87 1 • 13 05	1 2 1 2 2	5 1 1 -5 3 4 2 0 6 5 3 0 2 2 6	79 • 1 3 80 • 7 8 81 • 7 4 82 • 4 6 85 • 90
1.7478 1.7329 1.7045 1.6877 1.6579	6 10 2 8 1	-1 3 4 -3 3 2 -2 4 2 3 3 0 0 4 3	52 • 3 0 52 • 7 8 53 • 7 3 54 • 3 1 55 • 3 7		1 • 12 95 1 • 11 68 1 • 10 43 1 • 09 88 1 • 08 61	1 1 1 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	85.99 87.22 88.45 89.02 90.34
1.6200 1.6105 1.5815 1.5740 1.5726	3 2 5 4 6	4 0 0 -3 1 5 -4 2 2 1 5 0 -4 0 4	56 •7 8 57 •1 5 58 •2 9 58 •6 0 58 •6 6		1 • 08 50 1 • 08 03 1 • 08 00 1 • 07 93 1 • 07 72	1 1 1 1 1	-5 1 7 -4 0 8 6 0 0 0 0 8 -3 5 6	90 •4 5 90 •9 7 91 •0 0 91 •0 7 91 •3 0
1 • 57 03 1 • 56 67 1 • 54 48 1 • 53 90 1 • 53 76	7 2 1 2 17	2 0 4 -4 2 1 -4 2 3 -3 3 4 1 3 4	58.75 58.90 59.82 60.07 60.13		1.0487 1.0430 1.0411 1.0253 1.0248	1 1 2 1 2	-5 5 2 0 2 8 -3 3 8 -4 6 4 3 5 4	94 •5 3 95 •2 1 95 •4 4 97 •4 0 97 •4 7
1 • 51 90 1 • 51 68 1 • 50 45 1 • 47 87 1 • 46 44	4 1 2 3 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	60.94 61.04 61.59 62.79 63.47		1.0245 1.0215	1 2	2 6 4 1 5 6	97 • 4 8 97 • 2 8

d (Å)

12.20

Structure

Orthorhombic, Pbca (61), Z=8 [Williams, 1966]

Lattice parameters

a=10.857±0.002, b=24.447±0.005, c=8.756± 0.002Å (published value,b=24.446±0.005Å) [ibid.]

Scattering factors

H°, O°, C° [Hanson et al., 1964]

Thermal parameters

Isotropic C(1) 4.04; C(2) 5.17; C(3) 5.47; C(4) 5.56; C(5) 5.44; C(6) 4.75; C(7) 4.22; C(8) 5.18; C(9) 6.12; O(10) 6.06; O(11) 5.71; O(12) 4.87; O(13) 4.22; O(14) 4.15; O(15) 4.37; O(16) 5.71; O(17) 5.86; H(18) through H(29) as given by Williams [1966]

Density

Scale factor

Reference

 13.32×10^{4}

should be -0.07535.

Hanson, H.P., F. Herman, J.D. Lea, and S. Skillman (1964). HFS atomic scattering factors, Acta Cryst. 17, 1040-1044.
Williams, D.E. (1966). Crystal structure of dibenzoylmethane, Acta Cryst.21,340-9.
Note: There has been a correction in this last reference. The <u>x</u> parameter for C(3)

2 • 54 7 2 • 53 8 2 • 52 4 2 • 44 2 2 • 31 8	2 • 63 9 2 • 61 4 2 • 58 4 2 • 57 9 2 • 55 7	2.840 2.830 2.789 2.714 2.664	3 • 09 3 2 • 97 6 2 • 93 4 2 • 88 4 2 • 87 7	3 • 28 3 3 • 25 9 3 • 22 7 3 • 14 4 3 • 12 5	3 • 56 3 • 406 3 • 381 3 • 376 3 • 356	3.97 3.85 3.69 3.68 3.63	4.52 4.38 4.32 4.12 4.07	5 • 43 5 • 30 5 • 23 5 • 01 4 • 53	7.11 6.56 6.11 5.35
3 5 2 5 6	1 1 2 2 2	3 1 2 2 1	5 17 4 3 2	5 2 3 42 8	10 3 15 14 3	29 21 6 7 100	46 5 21 37 3	70 15 99 3 50	3 2 4 4
2 3 1 1	3 2 3 4 2	0 1 3 4 2	3 2 3 0 1	2 2 3 2 1	0 2 1 2 2	1 1 2 1	2 2 2 2 2	2 2 1 0 2	0 1 9 1
8 4 9 5 6	3 6 1 1	2 1 0 8	3 4 4 8 6	2 6 2 3 5	4 0 4 1 5	5 2 6 4 3	3 2 2 6	0 1 3 4 1	2 1 4 2
$ \begin{array}{c} 1 \\ 2 \\ + \\ 1 \\ 3 \\ + \\ 3 \end{array} $	2 2 1 1 3 +	3 3 2 0	1 2 + 1 1 2	2 0 1 2 2	2 2 2 2 1	1 2 1 1 2	0 2 1 2 0	0 1 1 1	1 1 0 1
35 • 2 0 35 • 3 4 35 • 5 4 35 • 7 8 38 • 8 2	33 • 9 4 34 • 2 8 34 • 5 8 34 • 7 6 35 • 3 5	31 • 4 8 31 • 9 4 32 • 0 6 32 • 9 8 33 • 6 2	28.84 30.00 30.44 30.98 31.06	27.14 27.34 27.62 28.36 28.54	25.00 26.14 26.34 26.38 26.54	22.36 23.06 24.08 24.14 24.48	19.62 20.28 20.56 21.54 21.80	16.32 16.72 16.94 17.68 19.56	12.44 13.48 14.48 14.88

Calculated Pattern (Peak heights)

hkl

2 3

I

36

2θ(°)

 $\lambda = 1.54056 A$

7.24

DibenzoyImethane, $C_{15}H_{12}O_2$ (orthorhombic) – continued

Calculated Pattern (Peak heights)									
d (Å)	Ι	hkl	$\frac{2\theta(^{\circ})}{\lambda = 1.54056 ^{\circ}A}$						
2.219	1	4 3 2	40.62						
2.193	1	1 7 3	41.12						
2.188	2	3 3 3	41.22						
2.180	1	3 7 2	41.38						
2.160	3	2 10 1	41.78						
2 • 13 4	1	0 10 2	42 • 32						
2 • 12 9	2	3 4 3	42 • 42						
2 • 12 4	1	2 9 2	42 • 52						
2 • 13 8	2	3 9 1	42 • 8 6						
2 • 09 4	1	1 10 2	43 • 1 6						
2 • 07 1	1	1 8 3	43.66						
2 • 02 5	1	1 4 4	44.72						
2 • 03 3	2	2 11 1	45.24						
1 • 98 44	2	0 12 1	45.68						
1 • 96 73	1	2 8 3	46.10						
1 • 92 86	1	D 6 4	47 • 08						
1 • 90 43	2	3 7 3	47 • 7 2						
1 • 89 23	1	5 3 2	48 • 0 4						
1 • 87 47	1	2 5 4	48 • 5 2						
1 • 82 33	1	3 8 3	49 • 98						
1.8172 1.8125 1.8091 1.8051 1.7866	1 1 1 1	2 6 4 1 13 1 6 0 0 6 1 0 4 6 3	50.16 50.30 50.40 50.52 51.08						
1.7788	1	4 10 1	51.32						
1.7553	2	2 7 4	52.06						
1.7490	2	3 5 4	52.26						
1.7019	2	3 6 4	53.82						

Dibenzoylmethane, $\rm C_{15}H_{12}O_2$ (orthorhombic) – continued

Cal	lculated	Pattern (Integrat	ed)	Ca	lculated	Pattern (Integra	ted)
d (Å)	Ι	hkl	$\frac{2\theta(°)}{\lambda = 1.54056 A}$	d (Å)	Ι	hkl	$\frac{2\theta(°)}{\lambda = 1.54056 \text{ Å}}$
12.22	27	0 2 0	7 • 2 3	2 • 53 6	1	4 2 1	35 • 3 6
7.12	3	0 2 1	12 • 4 2	2 • 52 3	1	1 9 1	35 • 5 5
6.57	1	1 1 1	13 • 4 8	2 • 44 5	2	0 10 0	36 • 7 3
6.11	3	0 4 0	14 • 4 8	2 • 44 2	3	1 5 3	36 • 7 8
5.95	3	1 2 1	14 • 8 7	2 • 44 2	2	1 8 2	36 • 7 8
5 • 43	62	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16.32	2.318	7	1 6 3	38 • 8 2
5 • 30	11		16.72	2.220	1	4 3 2	40 • 6 1
5 • 23	92		16.94	2.193	1	1 7 3	41 • 1 2
5 • 01	3		17.68	2.188	2	3 3 3	41 • 2 2
4 • 55	1		19.49	2.180	1	3 7 2	41 • 3 9
4.53	44	2 1 1	19.56	2.160	3	2 10 1	41.78
4.52	17	2 3 0	19.63	2.134	1	0 10 2	42.31
4.38	4	0 0 2	20.27	2.130	1	3 4 3	42.41
4.32	20	2 2 1	20.56	2.124	1	2 9 2	42.52
4.12	36	0 2 2	21.54	2.109	2	3 9 1	42.85
4 • 07	2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	21.79	2 • 09 4	1	1 10 2	43 • 1 6
3 • 97	28		22.36	2 • 07 2	1	1 8 3	43 • 6 5
3 • 85	20		23.06	2 • 02 5	1	1 4 4	44 • 7 2
3 • 69	5		24.07	2 • 00 2	2	2 11 1	45 • 2 5
3 • 68	3		24.15	1 • 98 42	2	0 12 1	45 • 6 8
3.63	100	1 3 2	24.47	1 • 96 72	1	2 8 3	46.10
3.56	10	0 4 2	25.00	1 • 92 83	1	D 6 4	47.09
3.408	2	2 0 2	26.13	1 • 90 44	3	3 7 3	47.72
3.382	14	1 4 2	26.33	1 • 89 21	1	5 3 2	48.05
3.375	4	2 1 2	26.38	1 • 87 50	1	2 5 4	48.51
3.356	2	2 5 1	26 • 5 4	1 • 82 32	1	3 8 3	49.98
3.283	5	2 2 2	27 • 1 4	1 • 81 71	1	2 6 4	50.16
3.259	1	2 6 0	27 • 3 5	1 • 81 28	1	1 13 1	50.29
3.226	3	3 2 1	27 • 6 3	1 • 80 95	1	6 0 0	50.39
3.144	44	2 3 2	28 • 3 6	1 • 80 46	1	6 1 0	50.54
3 • 12 4	5	1 5 2	28.55	1.7864	2	4 6 3	51.09
3 • 09 4	4	3 3 1	28.83	1.7786	1	4 10 1	51.33
2 • 98 3	3	0 6 2	29.93	1.7552	2	2 7 4	52.06
2 • 97 6	16	2 4 2	30.00	1.7491	2	3 5 4	52.26
2 • 93 4	3	3 4 1	30.44	1.7016	3	3 6 4	53.82
2 • 88 5 2 • 87 6 2 • 83 3 2 • 80 0 2 • 78 9	3 1 4 1 2	0 8 1 1 6 2 0 2 3 1 1 3 3 0 2	30.97 31.07 31.49 31.94 32.06	L		J	
2 • 71 4 2 • 66 3 2 • 63 9 2 • 61 4 2 • 58 5	2 2 1 1 2	4 0 0 2 8 0 3 3 2 2 6 2 3 6 1	32 • 97 33 • 6 3 33 • 9 4 34 • 2 8 34 • 6 7				
2 • 57 8 2 • 56 0 2 • 55 7 2 • 54 8 2 • 53 8	1 1 1 2 4	4 1 1 1 4 3 2 1 3 2 8 1 3 4 2	34.77 35.03 35.07 35.20 35.34				

Monoclinic, Pn(7) or P2/n(13), Z=2 [Marezio et al., 1961].

Lattice parameters

a=9.651±0.001, b=6.525±0.001, c=7.923±0.001Å, β=93.65±0.02° [ibid.]

Scattering factors

Gd° [Thomas and Umeda, 1957], corrected for dispersion [Dauben and Templeton, 1955] H° , O^{-1} , $C1^{-1}$ [3.3.1A]

Thermal parameters

Isotropic [Marezio et al., 1961]

Density (calculated) 2.478 g/cm³ [Marezio et al., 1961]

Scale factor

 2.514×10^{4}

Additional patterns

 P.D.F. card 3-0392 [Dow Chemical Co., Midland, Mich.]

Reference

- Dauben, C.H. and D.H. Templeton (1955). A table of dispersion corrections for xray scattering of atoms, Acta Cryst. 8, 841-842.
- Marezio, M.,H.A. Plettinger, and W.H.Zachariasen (1961). The crystal structure of gadolinium trichloride hexahydrate, Acta Cryst. 14, 234-236.
- Thomas, L. H. and K. Umeda (1957). Atomic scattering factors calculated from the TFD atomic model, J. Chem. Phys. 26, 293-303.

Calculated Pattern (Peak heights)										
d (Å)	Ι		hkl		$\frac{2\theta(°)}{\lambda = 1.54056 \text{ Å}}$					
6.525 6.312 5.925 5.401 5.029	41 100 100 71 66	0 -1 1 1 0	1 0 1 1	0 1 1 0 1	13.56 14.02 14.94 16.40 17.62					
4.813 4.535 4.388 3.952 3.874	49 36 43 59 11	2 -1 1 0 2	0 1 1 0 1	0 1 1 2 0	18.42 19.56 20.22 22.48 22.94					

Calculated Pattern (Peak heights)								
d (Å)	Ι	hkl	$2\theta(°)$ $\lambda = 1.54056 \stackrel{\circ}{A}$					
3.550	71	-2 1 1	25.06					
3.411	63	2 1 1	26.10					
3.381	16	0 1 2	26.34					
3.262	3	0 2 0	27.32					
3.252	2	-1 1 2	27.40					
3.155	7	-2 0 2	28.26					
3.138	7	1 1 2	28.42					
3.089	27	1 2 0	28.88					
3.044	4	-3 0 1	29.32					
2.965	7	2 0 2	30.12					
2.910	5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30.70					
2.881	17		31.02					
2.859	17		31.26					
2.841	3		31.46					
2.758	5		32.44					
2.699	3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	33.16					
2.659	7		33.68					
2.584	23		34.68					
2.528	18		35.48					
2.517	11		35.64					
2.502	10	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	35.86					
2.460	16		36.50					
2.444	2		36.74					
2.407	22		37.32					
2.403	31		37.40					
2.395	25	$\begin{array}{cccccc} -3 & 1 & 2 \\ 1 & 1 & 3 \\ 3 & 2 & 0 \\ 3 & 1 & 2 \\ 4 & 1 & 0 \end{array}$	37.52					
2.336	20		38.50					
2.288	40		39.34					
2.267	11		39.72					
2.260	9		39.86					
2.233	23	$\begin{array}{cccccccc} -2 & 1 & 3 \\ -4 & 1 & 1 \\ 2 & 2 & 2 \\ 0 & 3 & 0 & + \\ 4 & 1 & 1 \end{array}$	40.36					
2.207	13		40.86					
2.194	4		41.10					
2.175	5		41.48					
2.139	5		42.22					
2.129	20	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	42.42					
2.123	12		42.54					
2.118	11		42.66					
2.104	3		42.96					
2.098	3		43.08					
2.056	16	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	44.00					
2.051	12		44.12					
2.042	12		44.32					
2.021	10		44.82					
2.001	4		45.28					
1.9820	3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	45.74					
1.9771	9		45.86					
1.9427	17		46.72					
1.9372	11		46.86					
1.9209	7		47.28					
1.9156	5	4 1 2	47.42					
1.9058	13	0 3 2 +	47.68					

	~~~~						and a second sec
Ca	lculated	Pattern (Peak he	ights)	C	alculated	d Pattern (Integra	ated)
d (Å)	I	hkl	$\frac{2\theta(^{\circ})}{\lambda = 1.54056 ^{\circ}A}$	d (Å)	I	hkl	$\frac{2\theta(°)}{\lambda = 1.54056 \stackrel{\circ}{A}}$
1.8998 1.8916 1.8784	11 7 2	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	47.84 48.06 48.42	6.525 6.312 5.929 5.402	39 97 100 72	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13.56 14.02 14.93 16.40
1.8711 1.8596 1.8539 1.8483 1.8448	3 4 6 4 3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	48.62 48.94 49.10 49.26 49.36	5.033 4.816 4.537 4.388 3.953	70 53 38 46 68	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	17.61 18.41 19.55 20.22
1.8357 1.8240 1.7984 1.7892 1.7756	1 7 1 4 4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	49.62 49.96 50.72 51.00 51.42	3.955 3.875 3.411 3.381 3.263 3.246	86 73 16 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22.93 25.05 26.10 26.34 27.31
1.7685 1.7534 1.7422 1.6903 1.6806	1 3 1 6	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	52.12 52.48 54.22 54.56 54.74	3.156 3.137 3.090 3.043 2.965	7 8 34 4 8	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	28.26 28.42 28.87 29.33 30.12
1.6665 1.6643 1.6593 1.6499 1.6413	5 6 4 4	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	55.06 55.14 55.32 55.66 55.98	2.911 2.881 2.858 2.841 2.758	6 20 21 3 6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30.69 31.02 31.27 31.46 32.44
1.6311 1.6138 1.6050 1.5883 1.5779	2 2 7 4	$\begin{array}{ccccccc} 0 & 4 & 0 \\ 4 & 3 & 0 \\ 6 & 0 & 0 & + \\ 3 & 1 & 4 & + \\ -4 & 0 & 4 & + \\ \end{array}$	56.36 57.02 57.36 58.02 58.44	2.701 2.699 2.658 2.584 2.584	2 2 10 5 24	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	33.14 33.16 33.69 34.68 34.68
1.5735 1.5585 1.5476 1.5448	3 3 2 3	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	58.62 59.24 59.70 59.82	2.529 2.516 2.502 2.459 2.444	23 12 11 22 2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	35.47 35.65 35.86 36.51 36.75
				2.411 2.408 2.403 2.394 2.336	15 14 25 25 27	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	37.27 37.31 37.40 37.54 38.50
				2.288 2.267 2.259 2.233 2.207	52 12 9 30 18	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	39.34 39.72 39.87 40.36 40.85
				2.194 2.175 2.172 2.139 2.129	5 6 1 6 25	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	41.11 41.48 41.54 42.22 42.42

Calculated Pattern (Integrated)								
d (Å)	Ι	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \stackrel{\circ}{A}$					
2.122	2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	42.58					
2.117	13		42.67					
2.104	3		42.95					
2.097	2		43.10					
2.056	22		44.00					
2.050	5	$\begin{array}{cccccc} 0 & 2 & 3 \\ 1 & 3 & 1 \\ -3 & 2 & 2 \\ -3 & 1 & 3 \\ 4 & 0 & 2 \end{array}$	44.14					
2.042	15		44.32					
2.021	13		44.82					
2.002	2		45.25					
2.001	5		45.29					
1.9854 1.9822 1.9767 1.9763 1.9426	2 2 10 3 24	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	45.66 45.73 45.87 45.88 45.88 46.72					
1.9373	1	$\begin{array}{ccccccc} 4 & 2 & 0 \\ -2 & 3 & 1 \\ -2 & 2 & 3 \\ 4 & 1 & 2 \\ 0 & 3 & 2 \end{array}$	46.86					
1.9347	6		46.92					
1.9210	10		47.28					
1.9128	1		47.49					
1.9056	16		47.68					
1.9044	3	$\begin{array}{cccc} -4 & 2 & 1 \\ -5 & 0 & 1 \\ 0 & 1 & 4 \\ 3 & 1 & 3 \\ -1 & 1 & 4 \end{array}$	47•72					
1.8996	7		47•85					
1.8918	6		46•05					
1.8915	3		48•06					
1.8781	3		48•43					
1.8710	4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	48.62					
1.8598	5		48.93					
1.8536	7		49.11					
1.8475	1		49.28					
1.8447	4		49.36					
1.8353	1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	49.63					
1.8238	10		49.96					
1.7985	1		50.72					
1.7909	3		50.95					
1.7891	4		51.00					
1.7760	2	-4 2 2	51.41					
1.7751	4	5 1 1	51.43					
1.7695	3	-3 3 1	51.61					
1.7681	6	-4 1 3	51.65					
1.7536	1	2 3 2	52.11					
1.7423	5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	52.48					
1.6906	1		54.21					
1.6808	9		.54.55					
1.6775	1		54.67					
1.6751	6		54.75					
1.6667	6	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	55.05					
1.6641	7		55.15					
1.6587	4		55.34					
1.6499	5		55.66					
1.6416	2		55.97					

Calculated Pattern (Integrated)								
d (Å)	Ι	hkl	$\frac{2\theta(°)}{\lambda = 1.54056  \mathring{A}}$					
1.6415	7	1 3 3	55.97					
1.6312	3	0 4 0	56.35					
1.6140	2	4 3 0	57.01					
1.6083	1	1 4 0	57.23					
1.6058	3	5 2 <b>1</b>	57.33					
1.6046 1.6045 1.6006 1.5881	5 3 1 1 7	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	57.35 57.38 57.38 57.53 58.03					
1.5793	2	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	58.38					
1.5779	5		58.44					
1.5766	1		58.49					
1.5728	2		58.65					
1.5604	2		59.16					
1.5588	2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	59.23					
1.5582	3		59.25					
1.5476	2		59.70					
1.5450	2		59.81					

Monoclinic,  $P2_1/a$  (14), Z=2 [Brown, 1966]

# Lattice parameters

a=8.489, b=15.581, c=5.598Å,  $\beta$ =102.9° (published value: b=15.580Å) [ibid.]

# Scattering factors

 $H^{\circ}$ ,  $C^{\circ}$ ,  $N^{\circ}$ ,  $O^{\circ}$  [3.3.1A]

## Thermal parameters

Anisotropic for carbon, nitrogen, and oxygen, isotropic for hydrogen [Brown, 1966] Density

(calculated) 1.207 g/cm³

# Scale factor

 $1.235 \times 10^4$ 

# Reference

Brown, C.J. (1966). Further refinement of the crystal structure of hexamethylenediammonium adipate, Acta Cryst.21, 185-190

Calculated Pattern (Peak heights)							
d (Å)	Ι	hkl	$\frac{2\theta(°)}{\lambda = 1.54056 \text{ A}}$				
7.78	37	0 2 0	11.36				
7.31	11	1 1 0	12.10				
5.67	2	1 2 0	15.62				
5.45	1	0 0 1	16.24				
4.85	8	1 1 -1	18.26				
4.40	17	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20 • 1 8				
4.27	93		20 • 7 8				
4.01	99		22 • 1 6				
4.00	96		22 • 2 0				
3.72	2		23 • 9 0				
3.65	72	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24 • 3 4				
3.64	100		24 • 4 2				
3.52	10		25 • 26				
3.358	3		26 • 5 2				
3.236	20		27 • 5 4				
3.097 2.992	2 1 5	1 4 -1 2 0 1	28.80 29.84				

Calculated Pattern (Peak heights)							
d (Å)	Ι	hkl	$\frac{2\theta(^{\circ})}{\lambda = 1.54056 \text{ Å}}$				
2•915.	1 1	2 5 0	30 • 6 4				
2•738		1 1 - 2	32 • 6 8				
2 • 72 8	4	0 0 2	32 • 8 0				
2 • 72 0	2	3 1 0	32 • 9 0				
2 • 70 6	3	0 5 1	33 • 0 8				
2 • 68 7	7	0 1 2 +	33 • 3 2				
2 • 66 0	14	1 5 -1	33 • 6 6				
2.596 2.566 2.555 2.521 2.489	7 2 5 9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	34 • 5 2 34 • 9 4 35 • 1 0 35 • 5 8 36 • 0 6				
2.482	5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	36 • 1 6				
2.428	2		37 • 0 0				
2.405	1		37 • 3 6				
2.389	1		37 • 6 2				
2.324	1		38 • 7 2				
2 • 31 4	2	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	38 • 8 8				
2 • 29 3	9		39 • 2 6				
2 • 26 4	1		39 • 7 8				
2 • 24 2	2		40 • 1 8				
2 • 22 9	9		40 • 4 4				
2.199	1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	41.00				
2.129	2		42.42				
2.064	3		43.82				
2.060	3		43.92				
2.056	3		44.00				
2.051	4	4 1 0 +	44 •12				
2.005	2	2 2 2 +	45 •18				
1.9754	1	2 5 -2	45 •90				
1.9593	2	3 4 1 +	46 •30				
1.8476	3	4 1 -2	49 •28				
1.8329	1	3 5 1	49.70				
1.8267	3	4 4 0	49.88				
1.8064	2	0 1 3 +	50.48				
1.7628	3	1 8 1	51.82				
1.7251	1	2 3 -1	53.04				
1.7215	1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	53.16				
1.7072	2		53.64				
1.6829	1		54.48				
1.6637	1		55.16				
1.6380	1		56.10				
1.6009	1	1 5 - 3	57.52				

Hexamethylenediammonium	Adipate,	C ₁₂	H _%	N_04	(monoclinic)		continued
-------------------------	----------	-----------------	----------------	------	--------------	--	-----------

Ca	alculated	l Pattern <i>(Integro</i>	ated)	C	alculate	d Pattern (Integr	ated)
d (Å)	Ι	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \stackrel{\circ}{A}$	d (Å)	Ι	hkl	$\begin{array}{c} 2\theta(°)\\ \lambda = 1.54056 \stackrel{\circ}{A} \end{array}$
7.79 7.31 5.67 5.46 4.86	34 10 2 1 8	0 2 0 1 1 0 1 2 0 0 0 1 1 1 -1	11.35 12.10 15.61 16.23 18.26	2 • 23 2 2 • 26 4 2 • 24 3 2 • 22 9 2 • 13 9	12 1 2 12 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	39.27 39.78 43.17 40.43 41.30
4 • 4 0 4 • 27 4 • 01 4 • 0C 3 • 72	18 100 93 41 2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20.17 20.77 22.15 22.21 23.59	2.179 2.149 2.129 2.065 2.054	1 1 2 2 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	41.40 42.00 42.41 43.80 43.82
3.65 3.64 3.52 3.358 3.242	67 80 12 4 4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	24.34 24.42 25.25 26.53 27.49	2.061 2.057 2.053 2.051 2.048	2 3 2 2 2	0 7 1 2 1 2 0 5 2 4 1 0 3 5 -1	43.90 43.99 44.08 44.13 44.18
3.236 3.098 2.931 2.937 2.916	21 3 1 7 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	27.54 28.80 29.85 30.41 30.63	2.041 2.026 2.005 1.9757 1.9614	1 2 2 1 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	44.36 44.68 45.19 45.89 46.25
2.739 2.728 2.716 2.706 2.691	1 4 1 3 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	32.67 32.80 32.95 33.08 33.27	1.9589 1.9434 1.9101 1.8957 1.8473	1 1 1 5	3 4 1 4 3 -1 2 7 -1 1 8 0 4 1 -2	46.31 46.70 47.57 47.95 49.29
2.687 2.650 2.600 2.597 2.556	8 17 3 7 2	$\begin{array}{ccccccc} 0 & 1 & 2 \\ 1 & 5 & -1 \\ 3 & 2 & 0 \\ 0 & 6 & 0 \\ 3 & 2 & -1 \end{array}$	33.31 33.66 34.47 34.51 34.93	1.8328 1.8270 1.8065 1.8054 1.7630	1 3 2 1 4	3 5 1 4 4 0 0 1 3 4 0 1 1 8 1	49.70 49.87 50.47 53.51 51.81
2.555 2.521 2.492 2.489 2.478	2 5 1 11 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	35.39 35.68 36.31 36.05 36.23	1.7255 1.7220 1.7075 1.6828 1.6639	2 1 3 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	53.03 53.14 53.63 54.48 55.15
2.428 2.405 2.389 2.324 2.315	2 1 1 1 2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	37.00 37.35 37.62 38.72 38.87	1.6396 1.6380 1.6009	1 1 2	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	56.34 56.10 57.52

Monoclinic,  $P2_1/c$  (14), Z=4 [Lundberg, 1966]

# Lattice parameters

a=7.956, b=11.856, c=12.078 Å, β=113°58' ±.005 ±.005 ±.005 ±2' [ibid.]

## Scattering factors

 $Zn^{\circ}$  [Thomas, and Umeda, 1957], corrected for the real part of the dispersion correction, [Dauben and Templeton, 1955].  $N^{\circ}$ ,  $C^{\circ}$ ,  $C1^{-}$  [Berghuis et al., 1955]

#### Thermal parameters

Isotropic [Lundberg, 1966]

# Density

(calc	ulat	ed)	
1.73	g/c	rm ³	[Lundberg, 1966]
Scale fa	ctor		
7.339	ЭХ	$10^{4}$	

#### Reference

ture of Di-imidazole-zinc(II) Dichloride Acta Cryst. 21, 901-909.

Thomas, L. H. and K. Umeda (1957). Atomic scattering factors calculated from the TFD atomic model, J.Chem. Phys. 26, 293-303.

Calculated Pattern (Peak heights)							
d (Å)	Ι	hkl	$\frac{2\theta(°)}{\lambda = 1.54056 \text{ Å}}$				
7.261	2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12.18				
6.440	13		13.74				
6.197	100		14.28				
5.925	5		14.94				
5.514	11		16.06				
5.224	48	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16.96				
5.087	92		17.42				
4.746	2		18.68				
4.691	1		18.90				
4.081	2		21.76				
4.037	21	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22.00				
3.900	12		22.78				
3.792	2		23.44				
3.760	10		23.64				
3.720	50		23.90				
3.648	15	$\begin{array}{c ccccc} -2 & 1 & 2 \\ 2 & 0 & 0 \\ 1 & 1 & 2 \\ -1 & 3 & 1 & + \\ 2 & 1 & 0 \end{array}$	24.38				
3.636	28		24.46				
3.553	29		25.04				
3.512	16		25.34				
3.474	7		25.62				
3.316	17	$\begin{array}{ccccc} -1 & 2 & 3 \\ -2 & 2 & 2 & + \\ 1 & 3 & 1 \\ 0 & 2 & 3 \\ 2 & 1 & 1 \end{array}$	26.86				
3.220	15		27.68				
3.142	1		26.38				
3.125	5		28.54				
2.998	1		29.78				
2.965	16	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	30.12				
2.925	2		30.54				
2.863	8		31.22				
2.817	4		31.74				
2.800	1		31.94				
2.769	3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	32.30				
2.759	4		32.42				
2.753	5		32.50				
2.744	4		32.60				
2.741	5		32.64				
2.693	4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	33.24				
2.676	2		33.46				
2.650	3		33.80				
2.611	1		34.32				
2.586	11		34.66				
2.545 2.531 2.501 2.399 2.379	2 4 2 4	-2 2 4 2 1 2 0 2 4 -1 3 4 -3 2 1 +	35.24 35.44 35.88 37.46 37.78				
2.374	8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37.86				
2.319	4		38.80				
2.311	12		38.94				
2.294	2		39.24				
2.290	2		39.32				

Berghuis, J., IJ.M.Haanappel, M.Potters, B.O. Loopstra, C.H.MacGillavry, and A.L.Veenendaal (1955). New calculations of atomic scattering factors, Acta Cryst. 8, 478-483. Dauben, C.H. and D.H. Templeton (1955). A ta-

ble of dispersion corrections for x-ray scattering of atoms,Acta Cryst.8,841-842 Lundberg,B.K.S.(1966). The crystal struc-

Ca	lculated	Pattern (Peak he	rights)		Ca	alculated	l Pattern (Integro	nted)
d (Å)	Ι	hkl	$\frac{2\theta(°)}{\lambda = 1.54056 \text{ Å}}$		d (Å)	Ι	hkl	$2\theta(°)$ $\lambda = 1.54056  \mathring{A}$
2.265 2.254 2.248 2.221 2.192	3 2 4 3 3	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	39.76 39.96 40.08 40.58 41.14		7•270 6•439 6•198 5•928 5•518	2 13 100 5 11	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12.16 13.74 14.28 14.93 16.05
2.186 2.170 2.156 2.146 2.146	4 2 3 3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	41.26 41.58 41.86 42.06 42.16	~~	5.222 5.088 4.747 4.690 4.084	51 97 2 1 2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16.96 17.41 18.68 18.91 21.74
2.052 2.047 2.040 2.017 2.001	2 3 4 1 3	$ \begin{array}{ccccccc} -1 & 3 & 5 \\ 2 & 2 & 3 \\ -1 & 5 & 3 \\ -2 & 5 & 2 \\ 1 & 5 & 2 + \end{array} $	44.10 44.22 44.36 44.90 45.28		4.039 3.901 3.792 3.759 3.726	25 13 2 11 18	0 2 2 1 2 1 -1 1 3 -2 1 1 1 0 2	21.99 22.78 23.44 23.65 23.86
1.9919 1.9820 1.9763 1.9209 1.9171	1 2 4 . 1 3	$\begin{array}{ccccc} -3 & 2 & 5 \\ -4 & 0 & 2 \\ 0 & 6 & 0 & + \\ 3 & 1 & 2 \\ -4 & 0 & 4 & + \end{array}$	45.50 45.74 45.88 47.28 47.38		3.721 3.648 3.635 3.555 3.514	44 12 29 <b>3</b> 5 8	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	23.90 24.38 24.47 25.03 25.33
1.8827 1.8798 1.8646 1.8603 1.8553	1 2 3 3 3	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	48.30 48.38 48.80 48.92 49.06		3.513 3.475 3.317 3.295 3.229	11 7 20 1 1	-1 3 1 2 1 0 -1 2 3 -2 2 1 -2 1 3	25.33 25.61 26.86 27.04 27.60
1.8462 1.8413 1.8288 1.8233 1.8172	2 2 2 2 4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	49.32 49.46 49.82 49.98 50.16		3.220 3.142 3.126 2.998 2.964	18 1 6 1 20	$\begin{array}{cccccc} -2 & 2 & 2 \\ 1 & 3 & 1 \\ 0 & 2 & 3 \\ 2 & 1 & 1 \\ 0 & 4 & 0 \end{array}$	27.68 28.38 28.53 29.78 30.13
1.8131 1.7775 1.7679 1.7565 1.7490	3 1 2 2	-2 5 4 2 2 4 -2 6 1 + 2 4 3 + 2 5 2 +	50.28 51.36 51.66 52.02 52.26		2.925 2.863 2.817 2.799 2.770	2 10 5 1 4	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	30.54 31.22 31.74 31.95 32.29
1.7379 1.7306 1.7179 1.7025 1.6715	2 1 4 1 2	-3 5 3 + -4 2 5 1 3 5 -2 6 3 -3 5 4 +	52.62 52.86 53.28 53.80 54.88		2.759 2.752 2.745 2.741 2.693	3 4 1 4 5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	32.42 32.51 32.60 32.65 33.24
1.6665 1.6560 1.6505 1.6467 1.6221	2 1 3 3 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	55.06 55.44 55.64 55.78 56.70		2.675 2.650 2.611 2.590 2.586	2 3 1 2 14	2 3 0 -3 0 2 0 4 2 2 0 2 -3 1 2	33.47 33.79 34.31 34.60 34.65
1.6174 1.6081 1.5710 1.5585 1.5495	2 1 1 1 1	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	56.88 57.24 58.72 59.24 59.24 59.62		2.544 2.531 2.501 2.399 2.382	2 5 3 3 2	-2 2 4 2 1 2 0 2 4 -1 3 4 -1 4 3	35.25 35.44 35.87 37.46 37.74

Imidazole Zinc Chloride,	$(C_{3}H_{4}N_{2})$	ZnCl	(monoclinic) -	continued
--------------------------	---------------------	------	----------------	-----------

Ca	lculated	Pattern (Integra	nted)	C	Calculated Pattern (Integrated)			
d (Å)	Ι	hkl	$\frac{2\theta(^{\circ})}{\lambda = 1.54056 \stackrel{\circ}{A}}$	d (Å)	Ι	hkl	$\frac{2\theta(°)}{\lambda = 1.54056 \text{ Å}}$	
2.380 2.374 2.374	3 5 2	$   \begin{array}{cccc}     -3 & 2 & 1 \\     3 & 1 & 0 \\     2 & 2 & 2 \\     1 & 4 & 2   \end{array} $	37 • 77 37 • 86 37 • 87	1.8291 1.8226 1.8175	2 1 4	$ \begin{array}{rrrrr} -4 & 2 & 1 \\ 1 & 5 & 3 \\ 4 & 0 & 0 \end{array} $	49.81 50.00 50.15	
2.320	4 7	$\begin{array}{ccc} 1 & 4 & 2 \\ 1 & 3 & 3 \end{array}$	38.79 38.94	1.8140 1.7887	1 1	-2 5 4 -4 1 5	50.25 51.02	
2.311 2.308 2.294	8 3 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	38•94 38•99 39•24	1.7775 1.7718 1.7703	1 1 2	2 2 4 -1 6 3 0 4 5	51.36 51.54 51.58	
2.265	23	-1 5 1	39.32 39.76	1.7685 1.7671	3 2 1	-2 6 1 -3 5 2 -2 6 2	51.64 51.68 52.02	
2.254 2.248 2.225 2.221	2523	1 5 0 1 1 4 -1 2 5 -2 4 3	40.08 40.51	1.7564 1.7515	1	2 4 3 -3 5 1	52.02	
2.186	4	-2 4 3	40.58	1.7490 1.7384 1.7376	2 1 1	2 5 2 -3 5 3 4 2 0	52.26 52.60 52.63	
2.171 2.170	4 1 2	-1 5 2 -3 3 1 0 1 5	41.27 41.56 41.58	1.7306 1.7179	2	-4 2 5 1 3 5	52.86 53.28	
2.146	2 3	-3 3 3	41.86	1.7027 1.6870 1.6741	2 1	-2 6 3 -1 5 5 0 7 1	53.79 54.34 54.79	
2.142 2.069 2.052	3 1 2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	42.15 43.72 44.10	1.6714 1.6661	2	-3 5 4 2 6 1	54.89 55.08	
2.040	4	-1 5 3	44.22	1.6560 1.6506 1.6476	2 2 1	-2 2 7 -3 1 7 -4 4 2	55.44 55.64 55.75	
2.001 2.001 2.001	1 1 3	-2 5 2 -2 0 6 1 5 2 -3 2 5	44.91 45.28 45.29 45.50	1.6470 1.6464	1	1 5 4 -4 4 3	55 <b>.77</b> 55 <b>.7</b> 9	
1.9820	2	-4 0 2	45.74	1.6451 1.6220 1.6177	1 1 1	-4 3 5 -1 7 2 -2 6 4	55.84 56.71 56.87	
1.9757 1.9209 1.9172	2	-3 4 2 3 1 2 -4 0 4	45.89 47.28 47.38	1.6172 1.6030	1	$\begin{array}{cccc}1&1&6\\3&5&1\end{array}$	56.89 57.24	
1.8834	1	3 3 1	47.46	1.5711 1.5605 1.5585	1 1 2	2 6 2 2 2 5 -5 1 2	58.72 59.16 59.24	
1.8797 1.8645	2 3 2	-4 2 2 -3 3 5	48 • 38 48 • 80 48 • 92	1.5494 1.5444	1 1	4 4 0 -4 4 5	59.62 59.84	
1.8548	3	-3 1 6	49.08	1.5358 1.5237 1.4770	2 1 1	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	60.20 60.74 62.87	
1.8406	1	2 1 4	49.48	_				

Structure Hexagonal, B3 (148),Z=18 [Burns and Gor-	Calculated Pattern (Peak heights)					
don,1966]	d (Å)	Ι	hkl	20(°)		
Lattice parameters a=13.29±0.01, c=8.91±0.01Å [ibid.]	6.64 4.15 3.91	38 9 23	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13.32 21.38 22.74		
Scattering factors Li ⁺ , Be ⁺² , F ⁻ [3.3.1A]	3.84 3.52	20	3 0 0 2 0 2	23 • 16 25 • 26		
Thermal parameters Anisotropic [Burns and Gordon,1966]	3.321 3.112 3.006 2.738	56 4 1 2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	26 •8 2 28 •6 6 29 •7 0 32 •6 8		
Density (calculated) 2.169 g/cm ³	2 • 712 2 • 512	31	1  1  -3  + 4 $1  0  +$	33.00 35.72		
Scale factor 9.496 × 10 ⁴	2.348 2.272 2.215 2.187	100 1 95 3	0 3 3 + 3 2 -2 3 3 0 + 1 0 4	38 • 3 0 39 • 6 4 40 • 7 0 41 • 2 4		
Additional patterns 1.PDF card 6-0557 [Thilo and Lehmann,1949]	2.045 1.9545 1.9179 1.8427 1.8267	2 2 15 8 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	44.26 46.42 47.36 49.42 49.88		
	1.7756 1.7416 1.7221 1.7025 1.6489	2 2 1 2 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	51.42 52.50 53.14 53.80 55.70		
<pre>Reference Burns, J.H. and E.K.Gordon (1966). Refine- ment of the crystal structure of Li₂BeF₄ Acta Cryst. 20, 135-138. Thilo, E. and HA. Lehmann (1949). Über</pre>	1.6112 1.5710 1.5561 1.5245 1.5150	15 2 4 5 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	57.12 58.72 59.34 60.70 61.12		
das System LiF-BeF2 und seine Beziehung- en zum System MgO-SiO2, Z. Anorg. Chem., 258, 332-355.	1 • 50 26 1 • 48 48 1 • 45 40 1 • 35 62 1 • 35 00	1 7 2 14 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	61 •68 62 •5 0 63 •9 8 69 •2 2 69 •5 8		
	1 • 30 30 1 • 27 87 1 • 23 33 1 • 21 30	6 4 4 3	3 6 3 + 9 0 0 3 3 6 + 5 5 -3 +	72 • 4 8 74 • 0 8 77 • 3 0 78 • 8 4		

Å

Calculated Pattern (Integrated)			C	alculated	l Pattern (Integro	ated)		
	d (Å)	Ι	hkl	$\frac{2\theta(^{\circ})}{\lambda = 1.54056 \text{ Å}}$	d (Å)	Ι	hkl	$\frac{2\theta(^{\circ})}{\lambda = 1.54056}$
	6.64	34	1 1 0	13.31	1.7025	1	2 3 -4	53.80
	4.15	10	0 1 2	21.37	1.0023	2	1 2 5	55.01
	3.91	15		22.73	1.0450	1	2 1 -5	55.69
	3.91			22.73	1.0430	1	2 1 - 5	33.03
	3.84	21	300	23.16	1.5114	12	6 0 3	57.11
	3 63	2	2 0 2	25.20	1.6114	10	0 6 3	57.11
	3.52	6		25.20	1.5711	3	6 2 1	58.72
	3.322	2		20.01	1.5562	3	244	59.34
	3.112	2		20.00	1.5562	1	4 2 -4	59.34
	3.112	1		20.50	100000	-		
	5.005	-		23.10	1.5560	1	1 3 -5	59.35
	2.738	1	4 11 1	32.58	1.5560	2	3 1 5	59.35
	2.711	18	1 1 3	33-01	1.5245	5	170	60.70
	2.711	19	1 1 - 3	33-01	1.5245	3	7 1 0	60.70
	2.512	17	4 1 0	35.72	1.5152	1	1 5 -4	61.1
	2.512	īi	1 4 0	35.72				
	LUSIL				1.5150	1	0 4 5	61.12
	2.349	58	3 0 3	38.29	1.5026	1	262	61.68
	2.349	67	0 3 3	38.29	1.4850	11	0 0 6	62.49
	2.271	1	3 2 - 2	39.55	1.4539	2	4 5 -1	63.98
	2.229	1	0 5 1	40.44	1.4539	1	5 4 1	63.98
	2.215	100	3 3 0	40.70				
					1.3562	3	1 7 - 3	69.22
	2.214	11	2 2 3	40.71	1.3562	7	7 1 3	69.22
	2.214	9	2 2 - 3	40.71	1.3562	3	1 7 3	69.22
	2.187	2	1 0 4	41.25	1.3560	8	7 1 - 3	69.22
	2.045	3	502	44.25	1.3557	2	226	69.24
	1.9546	3	4 2 2	46.42				
					1.3557	2	2 2 - 6	69.24
	1.9178	9	1 4 3	47.36	1.3497	1	5 1 -5	69.00
	1.9178	9	1 4 - 3	47.36	1.3030	1	6 3 3	72.48
	1.8430	8	520	49.41	1.3030	4	3 6 3	72.40
	1.8430	4	2 5 0	49.41	1.3030	5	3 6 - 3	12.40
	1.8267	1	3 1 -4	49.88				72 44
					1.3030	2	6 3 - 3	7/ 03
	1.7756	2	3 3 3	51.42	1.2788	6	9 0 0	75.67
	1.7758	1	3 3 - 3	51.42	1.2558		280	77.20
	1.7614	1	4 0 4	51.8/	1.2334	4	3 3 6	77.20
	1.7415	1	3 4 2	52.50	1.2334	4	3 3 - 6	
	1.7415	2	4 3 -2	52.50	1 2171	7	5 5 - 7	78.84
				62.14	1.2131	2	5 5 - 5	78,80
	1.7221	2	6 1 -1	55.14	1.2131	2	5 3 3	,

Structure Monoclinic, C2/c (15), Z=8 [Burns and	Ca	lculated	Pattern (Peak he	ights)
Busing, 1965]	đ (Å)	Ι	hkl	$\frac{2\theta(°)}{\lambda = 1.54056 \text{ Å}}$
Lattice parameters a=5.83±0.01, b=11.16±0.02, c=7.86±0.02Å, $\beta$ =94°55′ [ibid.] Scattering factors	5.58 5.15 4.54 4.46 4.16	29 6 31 39 22	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15.88 17.20 19.52 19.88 21.34
<pre>Li⁺¹[3.3.lA]; Rb°,F⁻¹[3.3.lA], corrected for real and imaginary dispersion, [3.3.2B]</pre> Thermal parameters	3.91 3.24 3.20 3.01 2.955	32 50 18 36	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	22.70 27.52 27.82 29.66 30.22
Isotropic: Rb 1.73; Li 2.50; F(1) 1.40; F(2) 1.80; F(3) 2.10 Density (calculated) 3.40 g/cm ³	2 • 90 4 2 • 86 3 2 • 78 9 2 • 62 9 2 • 576	63 90 52 16 13	2 0 0 1 3 1 0 4 0 0 4 1 2 2 0	30 • 7 6 31 • 2 2 32 • 0 6 34 • 0 8 34 • 8 0
Scale factor 4.815 $\times$ 10 ⁴	2 • 50 5 2 • 43 5 2 • 39 4 2 • 36 5 2 • 27 2	15 45 51 100 7	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	35 • 8 2 36 • 8 8 37 • 5 4 38 • 0 2 39 • 6 4
Reference Burns,J.H. and W.R. Busing (1965). Crystal structures of rubidium lithium fluoride, BbLiFe and cesium lithium fluoride	2 • 26 1 2 • 24 2 2 • 23 2 2 • 08 3 2 • 05 3	3 12 3 3 5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	39.84 40.18 40.38 43.40 44.08
CsLiF ₂ , Inorg. Chem. 4, 1510-1512.	2.029 2.012 1.9985 1.9217 1.9073	9 15 7 4 23	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	44.62 45.02 45.34 47.26 47.64
	1.8908 1.8784 1.8632 1.8596 1.8343	2 10 14 12 13	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	48 •08 48 •4 2 48 •8 4 48 •9 4 49 •5 6
	1.8165 1.8111 1.7853 1.7749 1.7679	6 3 9 4 15	1 5 2 + 0 6 1 1 1 4 -3 1 2 2 2 3	50.18 50.34 51.12 51.44 51.66
· ·	1.7478 1.7049 1.6920 1.6800 1.6604	4 15 1 6 5	2 4 2 -3 3 1 -2 0 4 0 6 2 3 1 2	52.30 53.72 54.16 54.58 55.28
	1.6516 1.6413 1.5662 1.5623 1.5495	5 8 8 6	3 3 1 -2 4 3 2 6 0 2 0 4 2 4 3	55.60 55.98 58.92 59.08 59.62

	Ca	lculated	Pattern (Peak he	rights)	C
	d (Å)	Ι	hkl	$\frac{2\theta(°)}{\lambda = 1.54056 ^{\circ}}$	d (Å)
	1.5222 1.5150 1.5079 1.5021 1.4878	1 4 4 6 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	60.80 61.12 61.44 61.70 62.36	5.58 5.15 4.54 4.46 4.16
	1 • 47 80	3	-2 6 2	62 .82	3.92
	1 • 45 48	3	-3 5 1	63 .94	3.24
	1 • 45 20	7	4 0 0	64 .08	3.21
	1 • 44 87	7	-1 5 4	64 .24	3.01
	1 • 44 23	3	-1 7 2	64 .56	2.956
	1.4316	2	2 6 2	65 • 1 0	2.904
	1.4277	6	-3 1 4 +	65 • 3 0	2.863
	1.4200	5	1 7 2 +	65 • 7 0	2.790
	1.4052	7	1 5 4	56 • 4 8	2.628
	1.4015	6	-4 0 2	66 • 6 8	2.576
	1.3857 1.3757 1.3715 1.3655 1.3634	7 1 1 2 4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	67 • 5 4 65 • 1 0 68 • 3 4 68 • 6 6 68 • 8 0	2 • 50 4 2 • 43 5 2 • 40 3 2 • 39 4 2 • 36 4
	1 • 35 99	2	-4 2 2	69.00	2 • 27 2
	1 • 34 19	4	3 5 2	70.06	2 • 26 0
	1 • 33 83	3	-1 7 3	70.28	2 • 24 2
	1 • 31 21	2	3 1 4	71.90	2 • 23 1
	1 • 30 51	3	0 0 6	72.34	2 • 08 3
	1 • 2953 1 • 2883 1 • 2826 1 • 2732 1 • 2559	3 3 4 1 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	72 • 9 8 73 • 4 4 73 • 8 2 74 • 4 6 75 • 6 6	2.081 2.053 2.029 2.012 1.9982
	1 • 25 23	2	-4 4 2	75.92	1.9214
	1 • 23 41	1	2 8 1	77.24	1.9075
	1 • 23 04	4	0 8 3 +	77.52	1.9061
	1 • 22 61	3	-3 7 1	77.84	1.8906
	1 • 22 29	3	-1 7, 4	78.08	1.8781
man i an M-	1.2100	3	-3 5 4	75.08	1 • 86 32
	1.2016	4	-1 3 1	79.74	1 • 86 03
	1.1966	5	4 2 3 *	80.14	1 • 83 44
	1.1934	3	-3 7 2	80.40	1 • 81 85
	1.1822	2	0 4 6	81.32	1 • 81 63
A	1.1561	2	3 7 2	83.56	1 • 80 97
	1.1541	2	2 0 6	83.74	1 • 78 5 •
	1.1496	1	-2 3 3	84.14	1 • 77 50
	1.1445	1	4 6 0	84.60	1 • 76 76
	1.1369	1	3 5 4	85.30	1 • 74 79
A THE AND	1.1259	1	-2 4 6	86 • 3 4	1.7049
	1.1217	2	-1 5 6 +	86 • 7 4	1.6923
	1.1190	2	-4 6 2	87 • 0 0	1.6801
	1.1161	3	2 8 3 +	87 • 2 8	1.6606
	1.1107	2	-5 3 1 +	87 • 8 2	1.6515
	1.0920	1	-4 2 5	89.72	

Calculated Pattern (Integrated)										
d (Å)	Ι	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \overset{\circ}{A}$							
5.58	22	$\begin{array}{ccccccc} 0 & 2 & 0 \\ 1 & 1 & 0 \\ 0 & 2 & 1 \\ -1 & 1 & 1 \\ 1 & 1 & 1 \end{array}$	15 .6 7							
5.15	4		17 .20							
4.54	24		19 .5 2							
4.46	31		19 .8 8							
4.16	18		21 .3 3							
3.92	28	0 0 2	22 • 5 9							
3.24	44	-1 1 2	27 • 5 2							
3.21	16	J 2 2	27 • 8 1							
3.01	32	1 1 2	29 • 6 6							
2.956	53	-1 3 1	30 • 2 1							
2 • 90 4	56	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	30 • 7 ÷							
2 • 86 3	84		31 • 2 1							
2 • 79 0	49		32 • 0 5							
2 • 62 8	15		34 • 0 9							
2 • 57 6	13		34 • 7 9							
2 • 50 4	15	$\begin{array}{cccc} -2 & 2 & 1 \\ -2 & 0 & 2 \\ -1 & 1 & 3 \\ 2 & 2 & 1 \\ 0 & 2 & 3 \end{array}$	35 •8 3							
2 • 43 5	46		36 •8 9							
2 • 40 3	1		37 •3 9							
2 • 39 4	49		37 •5 4							
2 • 36 4	100		38 •0 3							
2 • 27 2	7	0 4 2	39.63							
2 • 26 0	2	1 1 3	39.65							
2 • 24 2	12	2 0 2	40.18							
2 • 23 1	2	-2 2 2	40.39							
2 • 08 3	3	1 5 0	43.40							
2.081	1	2 2 2	43.46							
2.053	5	-1 3 3	44.08							
2.029	9	-1 5 1	44.62							
2.012	16	2 4 0	45.02							
1.9982	7	1 5 1	45.35							
1.9214	4	2 4 1	47 •2 7							
1.9075	18	-2 2 3	47 •6 3							
1.9061	10	0 4 3	47 •5 7							
1.8906	2	-3 1 1	48 • 3 9							
1.8781	11	-1 1 4	48 • 4 3							
1.8632	14	-1 5 2	48.84							
1.8600	7	0 6 0	48.93							
1.8344	14	-2 4 2	49.56							
1.8185	3	3 1 1	50.12							
1.8163	5	1 5 2	50.19							
1.8097	1	0 6 1	50 • 3 8							
1.7855	11	1 1 4	51 • 1 1							
1.7750	3	-3 1 2	51 • 4 4							
1.7676	17	2 2 3	51 • 6 7							
1.7479	4	2 4 2	52 • 3 0							
1.7049	18	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	53.72							
1.6920	1		54.16							
1.6801	6		54.58							
1.6606	7		55.27							
1.6515	5		55.60							

Calculated Pattern (Integrated)									
d (Å)	Ι	hkl	$\frac{2\theta(°)}{\lambda = 1.54056 \stackrel{\circ}{A}}$						
1.6414	9	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	55 • 9 3						
1.5663	9		58 • 9 2						
1.5625	4		59 • 0 7						
1.5497	7		59 • 6 1						
1.5224	2		60 • 7 9						
1.5151	2	$ \begin{array}{ccccc} -1 & 7 & 1 \\ 0 & 5 & 3 \\ 0 & 2 & 5 \\ 1 & 7 & 1 \\ -3 & 3 & 3 \end{array} $	61 • 1 1						
1.5148	2		61 • 1 3						
1.5079	5		61 • 4 4						
1.5022	6		61 • 7 0						
1.4876	1		62 • 3 7						
1.4780 1.4548 1.4521 1.4491 1.4422	4 3 5 3	$\begin{array}{ccccc} -2 & 6 & 2 \\ -3 & 5 & 1 \\ 4 & 0 & 0 \\ +1 & 5 & 4 \\ -1 & 7 & 2 \end{array}$	62 •8 2 63 •9 4 64 •0 7 64 •2 2 64 •5 6						
1.4316	1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	65 • 1 0						
1.4279	5		65 • 2 9						
1.4275	3		65 • 3 1						
1.4212	1		65 • 6 4						
1.4201	6		65 • 6 9						
1.4053	8	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	65 • 4 8						
1.4012	3		66 • 6 3						
1.3859	10		67 • 5 3						
1.3757	2		68 • 1 0						
1.3734	1		68 • 2 3						
1 • 37 13	1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	68 • 3 5						
1 • 36 57	2		68 • 6 7						
1 • 36 37	3		68 • 7 8						
1 • 36 33	2		68 • 8 1						
1 • 35 93	1		69 • 0 5						
1 • 34 19	5	3 5 2	70.06						
1 • 33 81	1	-1 7 3	70.29						
1 • 31 20	2	3 1 4	71.90						
1 • 30 52	4	0 0 6	72.34						
1 • 29 53	3	2 2 5	72.98						
1.2888	1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	73 •4 1						
1.2881	3		73 •4 5						
1.2826	5		73 •8 2						
1.2731	1		74 •4 6						
1.2558	2		75 •6 7						
1 • 25 22 1 • 23 44 1 • 23 05 1 • 23 03 1 • 22 61	2 1 3 3	-4 4 2 2 3 1 -2 0 6 0 8 3 -3 7 1	75 • 9 3 77 • 2 2 77 • 5 0 77 • 5 2 77 • 8 4						
1.2227	3	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	78.10						
1.2099	4		79.09						
1.2016	5		79.74						
1.1967	5		30.13						
1.1960	2		80.13						

Calculated Pattern (Integrated)										
d (Å)	Ι	hkl	$\frac{2\theta(°)}{\lambda = 1.54056 \stackrel{\circ}{A}}$							
1.1952	3	1 9 1	80 • 2 6							
1.1928	1	-3 7 2	80 • 4 4							
1.1916	1	-4 4 3	80 • 5 4							
1.1822	3	0 4 6	81 • 3 2							
1.1562	2	3 7 2	83 • 5 5							
1.1541	1	2 0 6	83 • 7 4							
1.1497	2	-2 8 3	84 • 1 3							
1.1446	2	4 6 0	84 • 5 9							
1.1369	2	354	85.30							
1.1259	1	-246	86.33							
1.1218	1	4 4 3	86 • 7 3							
1.1217	1	-1 5 6	86 • 7 4							
1.1132	2	-4 6 2	85 • 9 8							
1.1168	2	2 8 3	87 • 2 2							
1.1160	1	G 10 0	87 • 2 9							
1.1158	2	3 3 5	87.31							
1.1106	2	-5 3 1	87.82							
1.1098	1	-1 7 5	87.90							
1.0929	2	-4 2 5	89.72							

Tetragonal, 14, /a (88), Z=16[Brunton, 1966]

#### Lattice parameters

a=14.885±0.002, c=6.547±0.001Å (published value: a=14.884Å) [ibid.]

#### Scattering factors

Li⁺¹, and  $F^{-1}$  [3.3.1A] U⁺⁴ [Cromer and Waber, 1965], corrected for dispersion using  $\Delta f' = -4$  and  $\Delta f'' = 16$ 

# Thermal parameters

Anisotropic for uranium, isotropic for fluorine and lithium [Brunton, 1966] Density (calculated) 6.23 g/cm³ [ibid.]

#### Scale factor

 $205.3 \times 10^4$ 

# Additional patterns

1. PDF card 10-121 [Insley et al.,1956]. This card represents data for  $Li_7 U_6 F_{31}$  which is very close in composition.

#### Reference

Brunton,G. (1966). The crystal structure of LiUF₅, Acta Cryst. 21, 814-817.

- Cromer, D.T. and J.T. Waber (1965). Scattering factors computed from relativistic Dirac-Slater wave functions, Acta Cryst. 18, 104-109.
- Insley, H., T.N. McVay, R.E. Thoma and G. D. White (1956). Optical properties and x-ray diffraction data for some inorganic fluoride and chloride compounds,ORNL-2192, pg.30, Oak Ridge National Laboratory, Tennessee.

Calculated Pattern (Peak heights)										
d (Å)	I	hkl	$\frac{2\theta(^{\circ})}{\lambda = 1.54056 \stackrel{\circ}{A}}$							
7.44	1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11.88							
5.99	24		14.78							
5.26	88		16.84							
4.67	100		19.00							
3.96	50		22.46							
3.493	49	2 3 1 +	25.48							
3.329	64	4 2 0 +	26.76							
3.162	46	1 4 1 *	28.20							
2.996	52	0 2 2	29.80							
2.779	18	2 2 2	32.18							
2 • 71 1	20	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	33 • 0 2							
2 • 54 6	11		35 • 2 2							
2 • 48 1	1		36 • 1 8							
2 • 35 4	8		38 • 2 0							
2 • 33 4	2		38 • 5 4							
2.292	9	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	39.28							
2.179	1		41.40							
2.102	16		43.00							
2.073	10		43.62							
2.064	29		43.82							
2.051	47	4 4 2	44 •1 2							
2.022	2	0 7 1	44 •7 8							
1.9977	10	0 3 3	45 •3 6							
1.9771	13	0 6 2	45 •8 6							
1.9513	11	7 2 1	46 •5 0							
1 • 92 94	8	2 3 3 +	47.06							
1 • 91 10	18	6 2 2 +	47.54							
1 • 86 75	15	4 1 3 +	48.72							
1 • 86 10	20	0 8 0	48.90							
1 • 83 02	7	6 5 1 +	49.78							
1.7769	11	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	51.38							
1.7603	11		51.90							
1.7553	7		52.06							
1.7125	5		53.46							
1.6834	8		54.46							
1.6370	4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	56 •1 4							
1.6290	4		56 •4 4							
1.5809	13		58 •3 2							
1.5676	7		58 •8 6							
1.5633	7		59 •0 4							
1.5561 1.5462 1.5341 1.5231 1.4921	3 6 1 4	3 6 3 6 6 2 5 8 1 + 0 7 3 7 2 3	59.34 59.76 60.28 60.76 62.16							
1.4835	1	8 4 2	62 • 5 6							
1.4725	6	4 9 1 +	63 • 0 8							
1.4688	11	4 2 4 +	63 • 2 6							
1.4597	5	10 2 0 +	63 • 7 0							
1.4447	2	10 1 1 +	64 • 4 4							

Calculated Pattern (Peak heights)			Calculated Pattern (Integrated)				
d (Å)	Ι	hkl	$\frac{2\theta(°)}{\lambda = 1.54056 \text{ A}}$	d (Å)	Ι	hkl	$\frac{2\theta(°)}{\lambda = 1.54056 \stackrel{\circ}{A}}$
1.4356 1.4094 1.3930 1.3821 1.3693	2 3 2 3 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	64 •90 65 •26 67 •14 67 •74 68 •46	7.44 5.93 5.26 4.67 4.67	1 27 100 91 25	0 2 0 0 1 1 2 2 0 2 1 1 1 2 1	1 <b>1.88</b> 14.77 16.83 19.30 19.00
1 • 36 17 1 • 35 51 1 • 34 66 1 • 34 36 1 • 33 30	4 10 2 4 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	68.90 69.28 69.78 69.96 70.60	3 • 95 3 • 4 9 2 3 • 4 9 2 3 • 3 2 8 3 • 3 2 8	63 3 62 46 37	0 3 1 3 2 1 2 3 1 4 2 0 2 4 0	22.47 25.49 25.49 26.76 26.76
1.3252 1.3155 1.3045 1.2980 1.2847	1 3 3 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	71.08 71.68 72.38 72.80 73.68	3.161 3.161 2.996 2.780 2.710	31 31 71 25 3	4 1 1 1 4 1 0 2 2 2 2 2 4 3 1	28.20 28.20 29.79 32.18 33.03
1 • 28 26 1 • 27 87 1 • 27 64 1 • 27 32 1 • 26 62	6 5 3 2 1	6 4 4 + 8 5 3 + 10 6 0 + 4 10 2 0 3 5	73 •82 74 •08 74 •24 74 •4 6 74 •94	2.710 2.710 2.546 2.546 2.546 2.481	3 23 11 4 2	3       4       1         0       5       1         5       2       1         2       5       1         0       6       0	33.03 33.03 35.21 35.21 35.21 36.18
1 • 24 84 1 • 24 25 1 • 23 09 1 • 22 90 1 • 22 55	3 3 4 5 4	2 3 5 + 4 9 3 + 1 4 5 + 0 8 4 10 1 3	76 •20 76 •52 77 •4 8 77 •52 77 •88	2 • 35 4 2 • 35 4 2 • 33 4 2 • 29 2 2 • 29 2	7 6 3 3 11	6 2 0 2 6 0 4 2 2 6 1 1 1 6 1	38.21 38.21 38.54 39.27 39.27
1 • 22 35 1 • 21 46 1 • 1986 1 • 1959 1 • 1936	3 2 3 2 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	78 • 0 4 78 • 7 2 79 • 98 80 • 2 0 80 • 3 8	2.179 2.102 2.102 2.074 2.074	2 1 23 1 13	5 1 2 6 3 1 3 6 1 1 2 3 2 1 3	41.41 43.00 43.00 43.51 43.61
1.1892 1.1834 1.1786 1.1689 1.1641	2 2 1 1 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	80 • 7 4 81 • 2 2 81 • 6 2 82 • 4 4 82 • 8 6	2.054 2.064 2.051 2.022 1.9976	22 21 70 2 15	6 4 0 4 6 0 4 4 2 0 7 1 0 3 3	43.82 43.82 44.12 44.78 45.36
1.1545 1.1365 1.1278 1.1151 1.1095	1 2 2 3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	83 •7 0 85 •3 4 86 •1 6 87 •3 8 87 •9 4	1.9772 1.9516 1.9293 1.9293 1.9109	19 17 1 11 15	0 6 2 7 2 1 3 2 3 2 3 3 6 2 2	45.86 46.49 47.06 47.06 47.54
1.1075 1.1027 1.0988 1.0953 1.0909	7 1 2 5 1	4 12 2 + 7 2 5 11 4 3 + 10 8 2 + 10 9 1 +	88 • 1 4 88 • 6 2 89 • 0 2 89 • 3 8 89 • 8 4	1.9109 1.8575 1.8575 1.8505 1.8505 1.8299	13 12 10 29 10	2 6 2 4 1 3 1 4 3 0 8 0 6 5 1	47.54 48.72 48.72 48.91 49.79
1.0893 1.0794 1.0757 1.0681 1.0646	3 3 2 2 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	90.00 91.06 91.46 92.30 92.70	1.8299 1.7769 1.7769 1.7769 1.7769 1.7769	1 1 7 8 2	5 6 1 8 1 1 7 4 1 4 7 1 1 8 1	49.79 51.38 51.38 51.38 51.38

Calculated Pattern (Integrated)			Calculated Pattern (Integrated)				
d (Å)	Ι	hkl	$\frac{2\theta(^{\circ})}{\lambda = 1.54056 \text{ Å}}$	d (Å)	I	hkl	$\frac{2\theta(°)}{\lambda = 1.54056 \text{ Å}}$
1.7601 1.7601 1.7601 1.7542 1.7128	3 4 13 1 5	4 3 3 3 4 3 0 5 3 6 6 0 5 2 3	51.91 51.91 51.91 52.J9 53.45	1 • 33 31 1 • 33 31 1 • 3252 1 • 3157 1 • 3046	2 1 2 7 1	10 2 2 2 10 2 0 11 1 8 8 0 10 5 1	70.59 70.59 71.08 71.57 72.37
1.7128 1.6835 1.6835 1.6367 1.6287	3 7 6 7 2	2 5 3 8 3 1 3 8 1 0 0 4 6 1 3	53.45 54.46 54.46 56.15 56.35	1.3045 1.3045 1.2979 1.2979 1.2979	2 4 1 3 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	72.37 72.37 72.81 72.81 72.81
1.6287 1.5807 1.5807 1.5675 1.5675	5 8 16 3 5	1 6 3 8 2 2 2 8 2 9 2 1 6 7 1	56.45 58.33 58.33 58.86 58.86	1 • 28 48 1 • 28 25 1 • 28 25 1 • 27 86 1 • 27 86	2 7 4 3	2 1 5 6 4 4 4 6 4 8 5 3 5 8 3	73.67 73.83 73.83 74.09 74.09
1 • 56 75 1 • 56 29 1 • 55 59 1 • 54 62 1 • 53 39	2 6 5 1 0 5	2 9 1 2 2 4 3 6 3 6 5 2 8 5 1	58.86 59.36 59.35 59.76 60.29	1 • 2764 1 • 2764 1 • 2732 1 • 2560 1 • 2484	2 1 1 2 1	10 6 0 6 10 0 4 10 2 0 3 5 11 4 1	74。24 74。24 74。46 74。95 76。20
1.5339 1.5230 1.4921 1.4835 1.4726	6 1 6 1 4	5 8 1 D 7 3 7 2 3 8 4 2 9 4 1	60.29 60.76 62.16 62.56 63.08	1 • 2484 1 • 2481 1 • 2425 1 • 2425 1 • 2309	1 3 3 3	4 11 1 2 3 5 9 4 3 4 9 3 4 1 5	76.20 76.22 76.53 76.53 77.48
1.4725 1.4688 1.4688 1.4596 1.4596	5 6 9 5 4	4 9 1 2 4 4 4 2 4 10 2 0 2 10 0	63.08 63.26 63.26 63.71 63.71	1 • 2309 1 • 2289 1 • 2255 1 • 2235 1 • 2235	3 11 3 3 1	1 4 5 0 8 4 10 1 3 12 2 0 2 12 0	77.48 77.63 77.88 78.33 78.33
1.4445 1.4445 1.4355 1.4355 1.4095	4 1 2 2 3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	64.45 64.45 64.90 64.90 66.25	1.2147 1.2147 1.1988 1.1986 1.1967	3 2 3 2 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	78.71 78.71 79.96 79.98 80.13
1 • 4 095 1 • 39 3 1 1 • 38 20 1 • 38 20 1 • 36 93	3 4 2 3 1	4 7 3 10 3 1 10 4 0 4 10 0 8 7 1	66.25 67.14 67.75 67.75 68.46	1 • 1 9 35 1 • 1 8 92 1 • 1 8 92 1 • 1 8 35 1 • 1 8 33	2 1 3 1 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	80.38 80.74 80.74 81.21 81.22
1 • 36 93 1 • 36 15 1 • 36 15 1 • 35 50 1 • 35 50	1 3 7 4	7 8 1 8 3 3 3 8 3 8 6 2 6 8 2	68.46 68.91 68.91 69.29 69.29	1 • 1833 1 • 1785 1 • 1689 1 • 1640 1 • 1640	2 1 3 1 1	5 2 5 7 8 3 11 6 1 9 6 3 6 9 3	81.22 81.53 82.45 82.87 82.87
1 • 35 50 1 • 3467 1 • 3467 1 • 3438 1 • 3438	10 1 2 3 4	0 10 2 9 6 1 6 9 1 6 2 4 2 6 4	69.29 69.78 69.78 69.95 69.95	1.1546 1.1500 1.1365 1.1365 1.1365	1 1 1 2	1 6 5 0 11 3 10 5 3 5 10 3 2 11 3	83.70 84.10 85.33 85.33 85.33

Calculated Pattern (Integrated)									
0									
đ (Å)	Ι	hkl	$\frac{2\theta(°)}{\lambda = 1.54056 ^{\circ}}$						
1.1279 1.1277 1.1151 1.1150 1.1095	2 2 1 1 2	0 13 1 3 6 5 2 13 1 0 7 5 12 6 0	86.15 86.17 87.38 87.40 87.94						
1.1095 1.1074 1.1074 1.1074 1.1027 1.0988	3 8 8 2 1	6 12 0 12 4 2 4 12 2 7 2 5 11 4 3	87.94 88.15 88.15 88.62 89.32						
1.0988 1.0953 1.0953 1.0909 1.0909	1 7 4 1 1	4 11 3 10 8 2 8 10 2 10 9 1 9 1C 1	89°32 89°38 89°38 89°33 89°83						
1.0894 1.0894 1.0795 1.0794 1.0794	2 3 1 1	10 2 4 2 10 4 0 2 6 11 8 1 8 11 1	90.00 90.00 91.04 91.06 91.06						
1.0792 1.0755 1.0755 1.0755 1.0584 1.0581	2 1 2 2 1	6 5 5 12 1 3 1 12 3 2 2 6 4 7 5	91.08 91.48 91.48 92.26 92.31						
1.0581 1.0545 1.0574 1.0574 1.0559	1 3 1 2 2	7 4 5 7 10 3 12 7 1 7 12 1 10 4 4	92.31 92.70 93.52 93.52 93.68						
1.0559 1.0526 1.0469 1.0467 1.0467	3 2 1 1 1	4 10 4 10 10 0 1 14 1 3 8 5 8 3 5	93.68 94.08 94.75 94.77 94.77						
1.0434 1.0267 1.0267 1.0267	2 1 1 2	11 6 3 13 6 1 6 13 1 3 14 1	95.17 97.22 97.22 97.22						

Monoclinic,  $P2_1/c$  (14), Z=2 [Sasvari and Jeffrey, 1966]

#### Lattice parameters

a=8.59±0.05, b=14.40±0.03, c=8.75±0.05Å  $\beta$ =129.6°±0.2° [ibid.]

# Scattering factors

Mg⁺², C1⁻, 0° [3.3.1A]

## Thermal parameters

Isotropic: Mg 0.86; Cl 1.74; O(1) 2.12 O(2) 2.42; O(3) 1.81; O(4) 2.42; O(5) 2.03; O(6) 2.32

# Density

(calculated) 1.241 g/cm³

# Scale factor

 $1.198 \times 10^{4}$ 

# Reference

Sasvari, K. and G.A. Jeffrey (1966). The crystal structure of magnesium chloride dodecahydrate, MgCl₂ · l2H₂O, Acta Cryst. 20, 875-881.

Calculated Pattern (Peak heights)									
d (Å)	Ι	hkl	$\frac{2\theta(°)}{\lambda = 1.54056 A}$						
7.20	5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12.28						
6.89	23		12.84						
6.61	20		13.38						
6.10	47		14.50						
6.01	34		14.72						
5.30	2	$ \begin{array}{cccccc} -1 & 2 & 1 \\ 0 & 2 & 1 \\ 1 & 2 & 0 \\ -1 & 0 & 2 \\ -1 & 3 & 1 \end{array} $	16.70						
4.92	17		18.02						
4.87	28		18.20						
4.32	26		20.56						
4.09	100		21.70						
4.05 3.92 3.89 3.78 3.78 3.70	25 61 17 4 17	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21 • 9 4 22 • 6 6 22 • 8 6 23 • 5 0 24 • 0 2						
3.64	33	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	24 • 4 4						
3.60	8		24 • 7 2						
3.58	50		24 • 6 8						
3.44	46		25 • 8 6						
3.37	30		26 • 4 2						
3.31	18	2 0 0	26 • 9 2						
3.28	51	1 2 1 +	27 • 1 4						
3.27	52	-1 4 1	27 • 2 2						
3.22	4	2 1 0	27 • 6 4						
3.21	9	-1 3 2	27 • 7 8						
3 • 17	42	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28 • 1 4						
3 • 05	31		29 • 22						
3 • 04	21		29 • 3 2						
2 • 927	14		30 • 5 2						
2 • 855	10		31 • 3 0						
2 • 80 8	6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31.84						
2 • 76 4	9		32.36						
2 • 73 8	4		32.58						
2 • 72 5	3		32.84						
2 • 70 3	10		33.12						
2.673	2	-1 1 3	33 • 5 0						
2.660	9	-3 2 2	33 • 6 6						
2.653	6	0 5 1	33 • 7 6						
2.612	1	-3 1 1	34 • 3 0						
2.577	1	1 4 1	34 • 7 8						
2.545	6	$\begin{array}{cccccc} -1 & 2 & 3 \\ -3 & 2 & 1 \\ -3 & 3 & 2 & * \\ 0 & 6 & 0 \\ -1 & 5 & 2 \end{array}$	35 • 2 4						
2.491	1		36 • 0 2						
2.458	28		36 • 5 2						
2.400	13		37 • 4 4						
2.395	16		37 • 5 2						
2.367	5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37 • 9 8						
2.324	∠1		36 • 7 2						
2.295	48		39 • 2 2						
2.271	23		39 • 6 6						
2.261	29		35 • 8 4						

Calculated Pattern (Peak heights)			Calculated Pattern (Peak heights)				
d (Å)	Ι	hkl	$\frac{2\theta(^{\circ})}{\lambda = 1.54056 \stackrel{\circ}{A}}$	d (Å)	Ι	hkl	$\frac{2\theta(°)}{\lambda = 1.54056 \ A}$
2 • 22 C 2 • 20 7 2 • 18 D 2 • 17 5 2 • 16 2	18 2 17 30 8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40.60 40.86 41.38 41.48 41.48 41.74	1.6402 1.6359 1.6269 1.6232 1.6164	4 3 2 2	0 6 3 -2 8 2 -5 1 2 3 6 0 -3 7 3 +	56 • 0 2 56 • 1 8 55 • 5 2 55 • 6 6 55 • 9 2
2 • 15 8 2 • 14 6 2 • 13 8 2 • 11 5 2 • 11 3	15 11 15 4 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	41 • 8 2 42 • 0 8 42 • 2 4 42 • 7 2 42 • 8 2	1.6071 1.5878 1.5814 1.5730 1.5681	1 3 7 2 3	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	57 • 28 58 • 0 4 58 • 30 58 • 5 4 58 • 8 4
2 • 097 2 • 087 2 • 067 2 • 067 2 • 047 2 • 042	6 12 19 8 7	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	43.10 43.32 43.76 44.20 44.32	1.5594 1.5552 1.5410 1.5299 1.5276	1 2 2 2	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	59.20 59.38 59.98 60.46 60.56
2.036 2.025 2.020 2.004 1.9779	4 9 7 2 4	0 3 3 -4 2 2 1 4 2 3 3 0 -1 5 3	44 • 46 44 • 7 2 44 • 8 4 45 • 2 0 45 • 8 4	1.5186 1.5343 1.5304 1.4951 1.4912	4 2 3 5	-4 6 4 + 3 7 0 -1 9 2 -3 5 5 + -5 3 5 +	60.96 61.60 61.78 62.02 62.20
1.9641 1.9601 1.9529 1.9474 1.9419	3 4 7 6 4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	46 • 1 8 46 • 2 8 46 • 4 6 46 • 4 6 46 • 7 4	1 • 48 31 1 • 47 97 1 • 47 34 1 • 46 80 1 • 46 34	2 2 4 3 2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	62 • 5 8 62 • 7 4 63 • 0 4 63 • 3 0 63 • 5 2
1 • 93 17 1 • 89 75 1 • 89 01 1 • 88 13 1 • 86 17	3 1 1 3	-4 3 2 -4 1 1 -1 2 4 3 4 0 1 5 2	47.00 47.90 48.10 48.34 48.88	1 • 45 93 1 • 45 36 1 • 44 35 1 • 43 79 1 • 42 74	2 5 1 1 2	3 1 2 -1 3 5 2 2 3 -5 4 5 -4 2 6	63.72 64.00 64.50 64.78 65.32
1.8518 1.8469 1.8309 1.6206 1.7971	19 13 3 4 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	49.16 45.30 49.76 50.06 50.76	1 • 42 31 1 • 41 89 1 • 41 05 1 • 40 52 1 • 40 15	4 3 1 4 4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	65.54 65.76 66.20 65.48 66.58
1 • 78 79 1 • 77 17 1 • 75 46 1 • 73 91 1 • 73 67	1 5 1 2 2	2 2 2 0 5 3 + -1 6 1 0 8 1 1 8 0	51.04 51.54 52.08 52.58 52.66	1.3967 1.3949 1.3857 1.3821 1.3786	2 2 1 3 2	-3 9 2 3 8 0 4 2 1 -2 8 4 -5 5 5 +	66 • 94 67 • 04 67 • 54 67 • 7 4 67 • 94
1.7209 1.7025 1.6903 1.6863 1.6806	5 2 6 5 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	53.18 53.80 54.22 754.36 54.56	1.3746 1.3693 1.3655	2 2 1	-2 6 5 -4 8 2 -3 9 3	68.16 68.46 68.58
1.6755 1.6710 1.6615 1.6543 1.6429	5 4 7 3 5	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	54.74 54.90 55.24 55.48 55.92				

Calculated Pattern (Integrated)					Calculated Pattern (Integrated)			
d (Å)	Ι	hkl	$\frac{2\theta(°)}{\lambda = 1.54056 \text{ Å}}$		d (Å)	Ι	hkl	$\frac{2\theta(°)}{\lambda = 1.54056 \text{ Å}}$
7.20 6.89 6.62 6.11 6.01	4 20 17 40 28	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12.28 12.84 13.37 14.49 14.72		2.459 2.457 2.406 2.400 2.396	24 9 4 10 12	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	36 •5 2 36 •5 4 37 • 3 5 37 • 4 4 37 •5 1
5.30 4.92 4.87 4.32 4.13	2 15 26 25 2	$ \begin{array}{ccccc} -1 & 2 & 1 \\ 0 & 2 & 1 \\ 1 & 2 & 0 \\ -1 & 0 & 2 \\ -1 & 1 & 2 \end{array} $	16.70 18.01 18.19 20.56 21.48		2 • 36 7 2 • 32 4 2 • 32 1 2 • 29 6 2 • 29 6	6 24 1 43 10	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	37.99 38.71 38.76 39.21 39.21
4.09 4.05 3.92 3.91 3.89	100 22 56 11 14	$ \begin{array}{ccccccc} -1 & 3 & 1 \\ -2 & 1 & 1 \\ -2 & 0 & 2 \\ 0 & 3 & 1 \\ 1 & 3 & 0 \end{array} $	21.69 21.93 22.66 22.72 22.87		2 • 295 2 • 271 2 • 264 2 • 261 2 • 220	6 25 29 21	$ \begin{array}{cccccc} -1 & 6 & 1 \\ 1 & 5 & 1 \\ -2 & 4 & 3 \\ 0 & 6 & 1 \\ 0 & 1 & 3 \end{array} $	39 • 2 2 39 • 6 6 39 • 7 8 39 • 8 4 40 • 6 0
3.78 3.70 3.64 3.60 3.58	3 17 33 5 50	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	23.49 24.02 24.43 24.71 24.88		2.206 2.190 2.181 2.175 2.173	1 17 25 3	3 0 0 0 5 2 3 1 0 1 3 2 2 5 0	40.67 41.19 41.37 41.48 41.53
3 • 44 3 • 37 3 • 31 3 • 28 3 • 28	49 30 16 44 8	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	25 • 8 5 26 • 4 2 26 • 9 2 27 • 1 3 27 • 1 5		2.162 2.159 2.158 2.145 2.137	5 2 13 11 15	2 3 1 -3 0 4 -2 0 4 0 2 3 -3 4 1	41.73 41.81 41.83 42.09 42.25
3.27 3.23 3.21 3.18 3.17	36 2 8 19 26	-1 4 1 2 1 0 -1 3 2 0 4 1 -2 3 1	27 • 2 3 27 • 6 3 27 • 7 7 28 • 0 8 28 • 1 3		2.135 2.115 2.110 2.109 2.107	2 4 1 2 1	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	42.30 42.71 42.83 42.83 42.83 42.88
3.16 3.05 3.04 2.926 2.863	18 34 3 16 1	1 4 0 0 2 2 -2 3 2 1 3 1 -3 0 2	28 • 1 9 29 • 2 3 29 • 3 9 30 • 5 3 31 • 2 2		2.097 2.087 2.086 2.068 2.067	7 11 3 7 17	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	43.09 43.31 43.34 43.74 43.76
2 • 85 5 2 • 80 8 2 • 76 4 2 • 73 9 2 • 72 5	10 6 9 4 3	$\begin{array}{cccccccc} -2 & 1 & 3 \\ -3 & 1 & 2 \\ -1 & 4 & 2 \\ -2 & 4 & 1 \\ 2 & 3 & 0 \end{array}$	31 • 31 31 • 85 32 • 36 32 • 6 7 32 • 8 4		2.048 2.047 2.043 2.035 2.025	3 6 4 3 11	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	44 • 1 9 44 • 2 1 44 • 3 1 44 • 4 8 44 • 7 3
2.703 2.700 2.673 2.660 2.648	9 3 1 10 2	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	33 • 1 1 33 • 1 5 33 • 4 9 33 • 6 6 33 • 8 2		2.020 2.012 2.035 1.9776 1.9644	2 1 1 5 2	1 4 2 1 6 1 3 3 0 -1 5 3 1 7 0	44.84 45.02 45.19 45.85 46.17
2.612 2.577 2.545 2.492 2.461	2 1 7 1 1	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	34 • 30 34 • 7 8 35 • 2 4 36 • 0 1 36 • 4 9		1.9607 1.9551 1.9525 1.9463 1.9412	3 1 7 3 2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	46.27 46.41 46.47 46.61 46.76

# Magnesium Chloride Dodecahydrate, $MgCl_2 \cdot 12H_2O$ (monoclinic) – continued

C	alculated	l Pattern <i>(Integro</i>	ated)	Calculated Pattern (Integrated)			
d (Å)	Ι	hkl	$\frac{2\theta(^{\circ})}{\lambda = 1.54056 \text{ Å}}$	đ (Å)	Ι	hkl	$\begin{array}{c} 2\theta(°) \\ \lambda = 1.54056 \stackrel{\circ}{A} \end{array}$
1 • 93 14	3	-4 3 2	47.01	1.5593	1	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	59.21
1 • 89 73	1	-4 1 1	47.90	1.5552	2		59.38
1 • 89 04	2	-1 2 4	48.09	1.5412	3		59.97
1 • 88 11	1	3 4 0	48.35	1.5302	2		60.45
1 • 86 17	3	1 5 2	48.88	1.5277	2		60.56
1 • 85 21	19	-2 6 3	49.15	1.5265	1	0 4 4	60.61
1 • 85 13	1	-3 4 4	49.17	1.5201	3	-2 4 5	60.89
1 • 85 08	5	-2 4 4	49.19	1.5184	2	3 5 1	60.97
1 • 84 98	1	-4 2 1	49.22	1.5164	3	-4 6 4	60.97
1 • 84 91	4	-2 7 1	49.24	1.5046	2	3 7 0	61.59
1.8456 1.8306 1.8217 1.8202 1.7963	3 3 4 3	2 0 2 2 1 2 -2 7 2 -4 4 2 1 7 1	49.34 49.77 50.03 50.07 50.77	1.5002 1.4964 1.4960 1.4949 1.4919	1 1 2 2	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	61.79 61.96 61.98 62.03 62.17
1.7878 1.7734 1.7717 1.7544 1.7391	1 6 2 2	2 2 2 3 1 1 0 5 3 -1 8 1 8 1	51.04 51.49 51.54 52.09 52.58	1.4909 1.4892 1.4831 1.4797 1.4733	4 2 1 5	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	62 • 21 62 • 30 62 • 5 8 62 • 7 4 63 • 0 4
1.7369	2	1 8 0	52.65	1 • 46 80	2	1 9 1	63 • 30
1.7219	1	-4 4 4	53.15	1 • 46 74	2	-4 5 5	63 • 33
1.7208	5	-1 4 4	53.18	1 • 46 30	2	2 6 2	63 • 5 4
1.7026	3	-5 1 3	53.80	1 • 45 91	2	3 1 2	63 • 7 3
1.6905	6	1 3 3	54.22	1 • 45 34	7	-1 3 5	64 • 01
1 • 69 00 1 • 68 72 1 • 68 55 1 • 68 03 1 • 67 57	2 2 1 5	-4 4 1 -5 0 4 0 0 4 -2 7 3 -5 1 4	54 • 2 3 54 • 3 3 54 • 3 9 54 • 5 7 54 • 7 3	1 • 44 33 1 • 43 80 1 • 42 73 1 • 42 43 1 • 42 39	1 2 1 1	2 2 3 -5 4 5 -4 2 6 -6 1 4 -5 3 1	64.51 64.78 65.32 65.48 65.50
1.6747	3	3 3 1	54 •7 7	1.4234	1	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	65.52
1.6705	2	-3 7 2	54 •9 2	1.4229	3		65.55
1.6613	2	-1 8 2	55 •2 5	1.4187	2		65.77
1.6547	3	4 0 0	55 •4 9	1.4107	1		66.19
1.6439	2	4 1 0	55 •8 8	1.4082	1		66.32
1.6433	1	-3 3 5	55.91	1.4053	4	4 1 1	66 • 4 7
1.6427	4	-5 2 4	55.93	1.4023	1	-2 9 3	66 • 6 4
1.6423	1	2 4 2	55.94	1.4013	2	-4 7 1	66 • 6 9
1.6404	2	0 6 3	56.01	1.3966	2	-3 9 2	66 • 9 4
1.6359	1	-2 8 2	56.18	1.3947	2	3 8 0	67 • 0 5
1.6269	4	-5 1 2	56.52	1.3857	1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	67.54
1.6242	1	3 6 0	56.62	1.3822	3		67.73
1.6166	2	-3 7 3	56.91	1.3775	1		68.00
1.6144	1	1 4 3	57.00	1.3775	1		68.00
1.6069	1	-4 3 5	57.29	1.3746	2		68.16
1.5878 1.5812 1.5732 1.5680 1.5677	4 10 1 2 1	0       8       2         2       8       0         -3       4       5         2       7       1         -1       9       1	58.04 58.31 58.63 58.85 58.85 58.86	1 • 36 93 1 • 36 4 7	2	-4 8 2 -3 9 3	68.46 68.73
Orthorhombic, Pbca (61), Z=8 [Sutor, 1967]

#### Lattice parameters

a=10.215±0.002, b=10.681±0.002, c=10.014±0.002Å [ibid.]

#### Scattering factors

 $Mg^{\circ}$ ,  $P^{\circ}$ ,  $O^{-1}$  [3.3.1A]

#### Thermal parameters

Isotropic [Sutor, 1967]

#### Density

(calculated) 2.119 g/cm³ [ibid.]

#### Scale factor

 $4.210 \times 10^{4}$ 

#### Additional patterns

- 1. PDF card 19-762 [Cohen and Ribbe, 1966] 2. PDF card 19-763[Rassonskaya and Noviko-
- va,1965]

#### References

- Cohen, L.H. and P.H. Ribbe (1966). Magnesium phosphate mineral replacement at Mono Lake, California, Am. Mineralogist 51, 1755-1765.
- Rassonskaya, N.S. and O.S. Novikova(1965). Dehydration of magnesium hydrogen phosphate crystal hydrates, Russ. J. Inorg. Chem. 10, 774-776.
- Sutor, D.J. (1967). The crystal and molecular structure of newberyite, MgHPO₄ · 3H₂O Acta Cryst. 23, 418-422.

Calculated Pattern (Peak heights)						
d (Å)	Ι		hk	1	$\frac{2\theta(^{\circ})}{\lambda = 1.54056 \text{ Å}}$	
5.941 5.336 5.104 4.711 4.609	100 60 9 95 28	1 0 2 0 2	1 2 0 2 1	1 0 0 1 0	14.90 16.60 17.36 18.82 19.24	
4.494 4.145 3.690 3.654 3.576	37 35 12 14 13	1 2 0 2	0 1 2 2 0	2 2 0 2 2	19.74 21.42 24.10 24.34 24.88	
3.463 3.440 3.391 3.186 3.087	81 22 2 15 55	2 1 2 1 3	2 2 1 3 1	1 2 1 1	25.70 25.88 26.26 27.98 28.90	
3.042 2.970 2.829 2.815 2.806	66 3 2 18 12	1 2 0 3 2	1 2 0 3	3 2 3 2 1	29.34 30.06 31.60 31.76 31.86	
2.791 2.722 2.703 2.670 2.580	26 30 9 5 35	1 3 2 0 0	3 1 4 4	2 2 3 0 1	32.04 32.88 33.12 33.54 34.74	
2.553 2.523 2.502 2.483 2.431	3 11 5 4 7	4 2 1 4 1	0 3 4 1 0	0 2 1 0 4	35.12 35.56 35.86 36.14 36.94	
2.411 2.390 2.371 2.366 2.326	10 12 12 13 1	4 3 1 2 3	1 3 1 4 1	1 1 4 + 0 3	37.26 37.60 37.92 38.00 38.68	
2.304 2.296 2.275 2.240 2.224	2 2 3 1 1	4 1 4 4 4	2 4 0 2 1	0 2 1 2	39.06 39.20 39.58 40.12 40.52	
2.213 2.203 2.199 2.176 2.140	3 5 9 7 6	1 3 2 3 2	2 3 1 2 4	4 2 4 + 3 2	40.74 40.84 41.00 41.45 42.20	
2.093 2.071 2.056 2.043 2.033	8 6 4 11 2	4 2 3 1	2 2 4 4 3	2 4 1 3	43.18 43.66 44.00 44.30 44.54	

Calculated Pattern (Peak heights)			C	Calculated Pattern (Integrated)			
d (Å)	Ι	hkl	$\frac{2\theta(^{\circ})}{\lambda = 1.54056 ^{\circ}A}$	d (Å)	Ι	hkl	$\begin{array}{c} 2 \theta(^{\circ}) \\ \lambda = 1.54056 \stackrel{\circ}{A} \end{array}$
1.9812 1.9706 1.9673 1.9294 1.9171	6 3 2 15 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	45.76 46.02 46.10 47.06 47.38	5.942 5.341 5.107 4.712 4.608	99 65 10 100 31	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14.90 16.59 17.35 18.82 19.25
1.9005 1.8960 1.8871 1.8747 1.8625	1 4 7 8 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	47.82 47.94 48.18 48.52 48.86	4.496 4.144 3.691 3.653 3.575	41 40 13 16 15	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	19.73 21.43 24.09 24.35 24.88
1.7978 1.7879 1.7717 1.7628 1.7603	10 4 1 5 5	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	50.74 51.04 51.54 51.82 51.90	3.403 3.439 3.391 3.187 3.086	94 20 2 18 68	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25.70 25.88 26.26 27.97 28.91
1.7553 1.7318 1.7197 1.7025 1.6973	8 2 6 2 2	3 3 4 + 4 4 2 2 4 4 + 6 0 0 + 2 5 3	52.06 52.62 53.22 53.80 53.98	3.042 2.971 2.851 2.816 2.804	79 4 2 21 4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	29.34 30.05 31.58 31.75 31.89
1.6812 1.6704 1.6570 1.6549 1.6386	12 7 6 5 6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	54.54 54.92 55.38 55.46 56.08	2.791 2.723 2.703 2.670 2.530	32 39 9 6 45	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	32.04 32.87 33.11 33.53 34.74
1.6169 1.6122 1.6050 1.6009 1.5974	1 3 5 5	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	56.90 57.08 57.36 57.52 57.66	2.554 2.523 2.502 2.484 2.432	4 14 6 5 9	$\begin{array}{ccccccc} 4 & 0 & 0 \\ 2 & 3 & 2 \\ 1 & 4 & 1 \\ 4 & 1 & 0 \\ 1 & 0 & 4 \end{array}$	35.11 35.55 35.87 36.13 36.94
1.5935 1.5863 1.5828 1.5691 1.5657	5 6 5 2 6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	57.82 58.10 58.24 58.80 58.94	2.411 2.390 2.371 2.369 2.366	14 16 14 1 8	4 1 1 3 3 1 1 1 4 1 3 3 2 4 0	37.27 37.61 37.92 37.95 37.99
1.5571	Ż	452	59.30	2.326 2.304 2.296 2.275 2.245	1 3 2 4 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38.67 39.06 39.21 39.58 40.13
				2.225 2.213 2.208 2.200 2.198	1 3 4 8 6	4 1 2 1 2 4 3 3 2 2 1 4 2 3 3	40.51 40.74 40.83 40.99 41.03
				2.177 2.139 2.093 2.072 2.056	9 8 11 9 5	3 2 3 2 4 2 4 2 2 2 2 4 3 4 1	41.45 42.20 43.19 43.65 44.00

С	alculated	d Pattern (Integra	ated)	
d (Å)	Ι	hkl	$\frac{2\theta(°)}{\lambda = 1.54056 ^{\hat{A}}}$	d (1
2.043 2.032 1.9820 1.9807 1.9708	16 2 6 3 3	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	44.30 44.55 45.74 45.77 46.02	1.70 1.70 1.69 1.68 1.68
1.9675 1.9375 1.9337 1.9329 1.9305	1 2 4 1	$5 1 1 \\ 3 4 2 \\ 2 5 1 \\ 1 1 5 \\ 2 4 3 $	46.10 46.85 46.95 46.97 47.03	1.65 1.65 1.65 1.65
1.9295 1.9170 1.9008 1.8961 1.8869	18 1 1 4 10	1 5 2 4 3 2 2 3 4 4 2 3 3 2 4	47.06 47.38 47.81 47.94 48.19	1.65 1.65 1.65 1.63 1.61
1.8753 1.8744 1.8626 1.7978 1.7877	3 10 1 15 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	48.50 48.53 48.86 50.74 51.05	1.60 1.60 1.60 1.59
1.7720 1.7632 1.7604 1.7549 1.7527	1 6 5 10 1	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	51.53 51.81 51.90 52.07 52.14	1.59 1.59 1.58 1.58 1.56
1.7317 1.7198 1.7197	2 4	4 4 2 5 1 3 2 4 4	52.82 53.22	1.56 1.55

Calculated Pattern (Integrated)						
d (Å)	Ι	hkl	$\frac{2\theta(^{\circ})}{\lambda = 1.54056 \stackrel{\circ}{A}}$			
1.7042	1	$\begin{array}{cccc} 3 & 1 & 5 \\ 6 & 0 & 0 \end{array}$	53 <b>.7</b> 4			
1.7025	2		53.80			
1.6971	1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	53.99			
1.6813	6		54.54			
1.6810	12		54.55			
1.6705	9		54.92			
1.6690	1		54.97			
1.6581 1.6578 1.6566 1.6551 1.6518	4 1 5 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	55.36 55.37 55.42 55.47 55.59			
1.6385	9	$\begin{array}{ccccc} 4 & 5 & 0 \\ 4 & 5 & 1 \\ 6 & 0 & 2 \\ 1 & 5 & 4 \\ 0 & 4 & 5 \end{array}$	56.08			
1.6170	2		56.90			
1.6119	1		57.09			
1.6048	3		57.37			
1.6022	1		57.47			
1.6012	6	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	57.51			
1.5976	3		57.65			
1.5938	1		57.80			
1.5930	6		57.83			
1.5864	8		58.10			
1.5828	3	5 0 4	58•24			
1.5692	2	2 1 6	58•79			
1.5657	8	5 1 4	58•94			
1.5651	1	5 3 3	58•96			
1.5573	2	4 5 2	59•29			

Cubic, I43m (217), Z=58 [Gazzara et al., 1967]

#### Lattice parameters

a=8.9129Å (published value: a=8.9125Å) [ibid.]

#### Scattering factors

Mn° [Freeman and Watson, 1961], corrected for dispersion [Dauben and Templeton, 1955]

#### Thermal parameters

Isotropic [Gazzara et al., 1967]

#### Density

(calculated) 7.472 g/cm³

#### Scale factor

 $62.21 \times 10^4$ 

#### Additional patterns

1. PDF 1-1237 [Hanawalt et al., 1938]

#### Reference

- Dauben, C.H. and D.H. Templeton (1955). A table of dispersion corrections for xray scattering of atoms, Acta Cryst. 8, 841-842.
- Freeman, A.J. and R.E. Watson (1961). Hartree-Fock atomic scattering factors for the neutral atom iron transition series, Acta Cryst. 14, 231-234.
- Gazzara, C.P., R.M. Middleton, R.J. Weiss, and E.O.Hall (1967). A refinement of the parameters of  $\alpha$  manganese,Acta Cryst.22, 859-862.
- Hanawalt, J.D., H.W. Rinn, and L.K. Frevel (1938). Chemical analysis by x-ray diffraction, Ind. Eng. Chem. Anal. Ed. 10, 457-513.

Calculated Pattern (Peak heights)						
d (Å)	Ι	hkl	$\frac{2\theta(^{\circ})}{\lambda = 1.54056 \stackrel{\circ}{A}}$			
3.639 3.151 2.573 2.382 2.229	1 1 1 1 4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24.44 28.30 34.84 37.74 40.44			
2.101 1.9005 1.8192 1.7478 1.6274	100 21 8 12 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	43.02 47.82 50.10 52.30 56.50			
1.4857 1.4459 1.3436 1.2865 1.2604	1 1 3 4	4 4 2 5 3 2 6 2 2 4 4 4 5 5 0	62.46 64.38 69.96 73.56 75.34			
1.2128 1.1909 1.1703 1.1320 1.0809	14 2 1 2 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	78.86 80.60 82.32 85.76 90.90			
1.0653 1.0503 .9842 .9611 .9501	1 4 1 1	6 5 3 8 2 2 + 8 3 3 7 6 1 + 6 6 4	92.62 94.34 103.00 106.54 108.34			
•9395 •9003 •8498 •8348 •8205	3 1 2 3	7 5 4 + 8 5 3 + 9 5 2 + 7 7 4 + 9 6 1 +	110.14 117.64 130.02 134.66 139.70			
•8136 •8069 •7940	2 3 3	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	142.42 145.32 151.90			

Calculated Pattern (Integrated)		nted)	C	Calculated Pattern (Integrated)			
d (Å)	Ι	hkl	$\frac{2 \theta(°)}{\lambda = 1.54056 ^{\circ}A}$	d (Å)	Ι	hkl	$\frac{2\theta(^{\circ})}{\lambda = 1.54056 \text{ Å}}$
3.639 3.151 2.573	1 1 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	24.44 28.30 34.84	1.0224 1.0092 .9843	1 1 3	6 6 2 7 5 2 8 3 3	97.77 99.51 103.00
2.228	6	4 0 0	40.45	•9725 •9611	1 1	842 921	104.76 106.54
2.101 2.101 1.9002	49 100 35	$     \begin{array}{ccccccccccccccccccccccccccccccccc$	43.02 43.02 47.83	•9611 •9611 •9501	2 1 2	7 6 1 6 5 5 6 6 4	106.54 106.54 106.33
1.7480	15 16	4 2 2 4 3 1	52.29	• 9395 • 9395	3 1	8 5 1 9 3 0	110.15 110.15
1.6273 1.5285	1	5 2 1 4 3 3	56.51 60.52	•9395 •9193 •9003	4 1 3	7 6 3 8 5 3	110.15 113.84 117.64
1.4459	1	5 3 2	64.38	• 9003 • 8825	1 1	9 4 1 10 1 1 (3 - 2)	117.64 121.58
1.3141 1.2865	1 7 9	6 3 1 4 4 4 5 5 0	71.77 73.56 75.34	• 8657 • 8576	1	9 4 3 10 2 2	125.69 127.83
1.2129	19	7 2 1	78.85	• 8498 • 8498	1 3 5	10 3 1 9 5 2 7 7 4	130.03 130.03 134.66
1.2129 1.2129 1.1910	6 5 3	6 3 3 6 4 2 7 3 0	78.85 80.59	•8348 •8205	3 12	8 5 5 9 6 1	134.66 139.70
1.1319	3	6 5 1	85.76	•8205 •8136	1 9 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	139.70 142.42 145.33
1.0971 1.0808 1.0653	1 2 2	7 3 2 7 4 1 8 2 0 6 5 3	89.19 90.90 92.62	•8069 •8069	3		145.33 145.33
1.0504	6	8 2 2	94.33	•7940 •7940 •7940	5 7 7	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	151.91 151.91 151.91
1.0361	1	8 3 1	96.05				

Monoclinic,  $P2_1/a$  (14), Z=2 [Braun and Lingafelter, 1967]

Lattice parameters a=10.672±0.002, b=13.064±0.002, c=7.998± 0.001Å, β=98.09±0.01° (published value, b=13.063) [ibid.]

#### Scattering factors

N°,0⁻¹ [3.3.1A]; Pd°,C°[Berghuis et al., 1955]; H°[Stewart et al.,1965]

#### Thermal parameters

Isotropi	ic:				
Pd	2.71	0	3.34	N	2.87
C(1)	3.11	C(2)	2.97	C(3)	3.48
C(4)	4.28	C(5)	4.56	C(6)	3.91
C(7)	3.21	C(8)	3.79	C(9)	5.39
C(10)	6.01	C(11)	4.29	C(12)	6.31
H(4) th	rough	H(123)	as give	en by	Braun
and Lind	felter	[1967]			

#### Density

(calculated) 1.465 g/cm³ [ibid.]

#### Scale factor

 $21.84 \times 10^{4}$ 

#### Reference

Berghui	s, J.,	IJ. M.	Haanap	el, M.	Potter	s,
в.О.	Loopst:	ra, C.H	. MacGi	llavry,	and	Α.
L. Ve	enenda	al (195	5). Nev	v cald	culatio	ons
of at	omic s	catteri	ng facto	ors,Act	a Crys	st.
8, 47	8-483.					

- Braun,R.L. and E.C.Lingafelter (1967). The crystal structure of bis-(N-isopropyl-3-ethylsalicylaldiminato)palladium, Acta Cryst. 22, 787-792.
- Stewart, R.F., E.R.Davidson, and W.T.Simpson (1965). Coherent x-ray scattering for the hydrogen atom in the hydrogen molecule, J. Chem. Phys. 42, 3175-3187.

Calculated Pattern (Peak heights)				
d (Å)	I	hkl	$\frac{2\theta(^{\circ})}{\lambda = 1.54056 \text{ Å}}$	
8 • 22	100	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10.76	
7 • 91	9		11.18	
6 • 77	4		13.06	
6 • 52	14		13.56	
6 • 04	4		14.66	
5.41	16	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16 • 36	
5.28	4		16 • 7 8	
5.03	2		17 • 6 0	
4.71	2		18 • 8 2	
4.43	2		20 • 0 2	
4 • 40	8	1 2 1	20 • 1 8	
4 • 11	3	2 2 0	21 • 5 2	
3 • 96	5	0 0 2	22 • 4 4	
3 • 94	6	2 1 1	22 • 5 4	
3 • 82	10	2 2 -1 +	23 • 26	
3.79	2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	23 • 4 6	
3.73	7		23 • 8 4	
3.67	2		24 • 2 4	
3.51	18		25 • 3 4	
3.493	18		25 • 4 8	
3.422	1	1 1 2	26 • 0 2	
3.401	2	3 1 0	26 • 1 8	
3.361	1	2 3 0	26 • 5 0	
3.290	2	3 1 -1	27 • 0 8	
3.266	1	0 4 0	27 • 2 8	
3.019	2	0       4       1       +         2       3       1       1         3       1       1       2         2       0       2       2         1       3       -2       2	29.56	
2.998	1		23.73	
2.982	4		29.94	
2.974	3		30.02	
2.902	2		30.78	
2 • 77 3 2 • 74 9 2 • 70 € 2 • 68 4 2 • 63 9	3 1 1 1	2 4 0 + 1 3 2 2 2 2 2 4 -1 0 0 3	32 • 2 6 32 • 5 4 33 • 0 8 33 • 3 6 33 • 9 4	
2 • 59 8 2 • 56 3 2 • 53 6 2 • 52 0 2 • 50 5	1 2 1 4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	34 • 5 0 34 • 9 8 35 • 3 6 35 • 6 0 35 • 8 2	
2.448 2.431 2.423 2.393 2.356	1 1 1 2	3       2       3         4       2       -1         3       1       2         1       5       1         4       0       -2	36 . 5 5 36 . 9 4 37 . 0 8 37 . 5 6 38 . 1 5	
2.340	2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38.44	
2.258	1		39.90	
2.237	2		40.28	
2.216	1		40.68	
2.198	1		41.02	

Calculated Pattern (Peak heights)					
d (Å)	Ι	hkl	$\frac{2\theta(^{\circ})}{\lambda = 1.54056 \text{ A}}$		
2.177 2.155 2.146 2.118 2.104 2.099 2.014 1.9746 1.9706 1.9609	1 1 1 1 1 2 2 1 1 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	41.44 41.88 42.08 42.66 42.96 43.06 44.98 45.92 46.02 46.26		
1.9248 1.9043 1.8646 1.7998 1.7932 1.7465	1 1 1 1 1	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	47.18 47.72 48.80 50.68 50.88 50.88		

Ca	Calculated Pattern (Integrated)				
d (Å)	Ι	hkl	$\frac{2\theta(^{\circ})}{\lambda = 1.54056 \stackrel{\circ}{A}}$		
8 • 22	100	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10.76		
7 • 92	9		11.16		
6 • 77	5		13.06		
6 • 53	15		13.54		
6 • 04	4		14.65		
5.41	19	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16.36		
5.28	5		16.77		
5.04	3		17.59		
4.72	1		18.80		
4.71	2		18.82		
4.43	1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20.02		
4.40	9		20.18		
4.11	3		21.62		
3.96	6		22.44		
3.94	5		22.54		
3.82 3.82 3.75 3.73 3.67	11 1 1 9 2	2 2 -1 0 3 1 G 1 2 1 1 -2 1 3 -1	23.26 23.29 23.40 23.84 23.84 24.24		
3.51	23	1 3 1	25 . 3 3		
3.493	20	2 2 1	25 . 4 8		
3.423	1	1 1 2	26 . 0 1		
3.431	3	3 1 0	26 . 1 3		
3.360	2	2 3 0	26 . 5 0		
3.291	2	3 1 -1	27.87		
3.266	1	0 4 0	27.28		

Calculated Pattern (Integrated)						
d (Å)	Ι	hkl	$\begin{array}{c} 2\theta(°) \\ \lambda = 1.54056 \stackrel{\circ}{A} \end{array}$			
3.021	1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	29.55			
3.019	1		29.56			
2.996	1		29.77			
2 • 98 1	5	3 1 1	29.95			
2 • 97 4	1	2 C 2	30.02			
2 • 902	3	1 3 -2	30.79			
2 • 77 8	2	2 4 0	32.20			
2 • 77 3	2	3 1 -2	32.26			
2.772 2.750 2.706 2.684 2.635	1 2 1 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32 • 26 32 • 5 3 33 • 0 7 33 • 35 33 • 94			
∠.597	2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	34.51			
2.553	?		34.93			
∠.536	2		35.36			
2.519	1		35.61			
∠.505	5		35.82			
2 • 44 7 2 • 43 1 2 • 42 2 2 • 39 2 2 • 37 7	1 1 2 1	G 2 3 4 2 -1 3 1 2 1 5 1 3 3 -2	36.69 36.95 37.03 37.57 37.61			
2.356	2	4 0 -2	38 • 1 7			
2.340	2	2 2 -3	38 • 4 4			
2.258	1	4 2 1	39 • 9 0			
2.238	3	3 1 -3	4 0 • 2 7			
2.215	1	4 2 -2	4 0 • 6 6			
2.199	2	2 4 2	41.01			
2.177	7	5 0	41.44			
2.155	1	1 3 3	41.39			
2.145	1	3 3 2	42.09			
2.115	1	2 2 3	42.66			
2 • 10 4	1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	42.96			
2 • 09 9	2		43.05			
2 • 09 8	1		43.07			
2 • 01 4	1		44.98			
2 • 01 3	1		44.99			
i.9743 1.9708 1.9613 1.9372 1.9247	1 1 1 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	45.93 46.01 46.25 46.86 47.18			
1.9041 1.8649 1.8000 1.7929 1.7807	1 1 1 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	47.72 46.79 50.67 50.89 51.26			
1.7457	1	4 4 2	52.34			
1.6717	1	2 4 -4	54.23			

Structure Triclinic, PI (2), Z=1 [Fritchie,1966]	Calculated Pattern (Peak heights)			
Lattice parameters	d (Å)	Ι	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \text{ Å}$
a= $3.8684\pm0.0004\text{\AA}$ , $\alpha=91.67^{\circ}\pm0.01^{\circ}$ b= $7.7810\pm0.0008$ , $\beta=92.67^{\circ}\pm0.01^{\circ}$ c= $15.736\pm0.002$ , $\gamma=95.38^{\circ}\pm0.01^{\circ}$ at $23^{\circ}$ C (published values: a= $3.8682$ , b= $7.7807$ , c= $15.735\text{\AA}$ ) [ibid.]	7 • 85 7 • 74 7 • 03 6 • 85 5 • 60	16 13 33 100 11	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11.26 11.42 12.58 12.92 15.80
Scattering factors $H^{\circ}$ , $C^{\circ}$ , $N^{\circ}$ [3.3.1A] Thermal parameters	5.42 4.41 3.87 3.85	5 1 2 3	0 1 2 0 -1 3 0 2 0 1 0 0	16.34 20.14 22.96 23.10
Anisotropic for carbon and nitrogen,iso- tropic for hydrogen [Fritchie,1966]	3 • 78 3 • 73 3 • 69	2	-1 D 1 D 2 1 1 D 1	23.52 23.84 24.08
Density (calculated) 1.4090 g/cm ³ [ibid.]	3.55 3.52 3.471	6 7 8	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	25.06 25.30 25.64
Scale factor 0.9160 × 10 ⁴	3.427 3.297 3.288 3.222 3.213	2 7 5 4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25 • 9 8 27 • 0 2 27 • 1 0 27 • 6 6 27 • 7 4
Reference Fritchie, C.J.Jr.(1966).The crystal struc-	3 • 17 5 3 • 14 2 3 • 12 3 3 • 06 4 3 • 02 9	61 8 43 2 1	$ \begin{array}{ccccc} -1 & 0 & 3 \\ 0 & 0 & 5 \\ -1 & -1 & 2 \\ 0 & 2 & 3 \\ 1 & 0 & 3 \end{array} $	28 • 0 8 28 • 3 8 28 • 5 6 29 • 1 2 29 • 4 6
ture of N-methylphenazinium tetracyano- quinodimethanide, Acta Cryst.20 892-898.	2.945 2.827 2.820 2.805 2.735	3 3 1 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30.32 31.62 31.70 31.88 32.72
	2 • 60 8 2 • 56 0 2 • 53 4 2 • 50 3 2 • 47 7	2 5 1 1 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	34 •36 35 •0 2 35 •4 0 35 •8 4 36 •2 4
	2 • 46 8 2 • 37 7 2 • 20 4 2 • 15 7 2 • 13 6	3 1 1 2 2	1 1 4 1 0 5 0 -2 6 -1 3 2 0 1 7 +	36 • 3 8 37 • 8 2 40 • 9 2 41 • 8 4 42 • 2 8
,	2 • 106 1 • 95 29 1 • 78 53 1 • 76 22 1 • 61 79	1 1 1 2	1 -2 5 1 2 5 -1 4 1 -2 0 4 -2 -1 5	42.90 46.46 51.12 51.84 56.86
L				

## N-methylphenazinium Tetracyanoquinodimethanide, $C_{25}H_{15}N_6$ (triclinic) - continued

С	alculated	l Pattern (Integro	ated)	
d (Å)	Ι	hkl	$\frac{2\theta(°)}{\lambda = 1.54056 \stackrel{\circ}{A}}$	d (1
7.85 7.74 7.04 6.85 5.61	14 11 32 100 11	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11.26 11.42 12.56 12.91 15.79	3.0 3.0 2.9 2.8
5.42 4.41 3.87 3.85 3.78	6 1 2 3 10	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16.33 20.13 22.95 23.10 23.52	2 • 8 2 • 8 2 • 7 2 • 6 2 • 5
3.73 3.69 3.55 3.52 3.52 3.52	3 2 5 4 2	0 2 1 1 0 1 0 -1 4 -1 0 2 0 -2 2	23.84 24.07 25.05 25.25 25.28	2 • 5 2 • 5 2 • 4 2 • 4 2 • 3
3.52 3.471 3.456 3.427 3.299	3 9 2 2 8	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	25 • 3 0 25 • 5 4 25 • 7 6 25 • 9 8 27 • 3 1	2 • 2 2 • 1 2 • 1 2 • 1 2 • 1
3.288 3.223 3.212 3.176 3.142	3 5 2 7 6 6	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	27.10 27.55 27.75 28.07 28.38	2.0 1.9 1.9 1.8 1.7
3.124	53	-1 -1 2	28.55	1.7

Calculated Pattern (Integrated)						
d (Å)	Ι	hkl	$\frac{2\theta(°)}{\lambda = 1.54056  \mathring{A}}$			
3.064 3.029 2.946 2.828	2 1 3 4	0 2 3 1 0 3 0 -1 5 -1 2 1	29.12 29.46 30.31 31.61			
2.819 2.805 2.735 2.608 2.550	1 1 3 2 7	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	31.72 31.68 32.72 34.36 35.32			
2 • 53 3 2 • 50 3 2 • 47 7 2 • 45 7 2 • 37 6	1 1 4 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	35.41 35.84 36.24 36.38 37.83			
2.204 2.158 2.136 2.136 2.136	2 3 1 1	0 -2 6 -1 3 2 0 1 7 0 2 6 1 -2 5	43.32 41.83 42.27 42.28 42.91			
2.084 1.9531 1.9355 1.8617 1.7859	1 1 1 1	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	43.38 46.45 46.90 48.88 51.10			
1.7521 1.6181	1 3	-2 0 4 -2 -1 5	51.84 55.85			

Structure	[					
Tetragonal, P42/mnm(136), Z=4, [Sands, et al.,	Calculated Pattern (Peak heights)					
19591	d (Å)	Ι	hkl	$\begin{array}{c} 2\theta(^{\circ}) \\ \lambda = 1.54056 \stackrel{\circ}{A} \end{array}$		
Lattice parameters a=10.87±0.01Å, c=3.96±0.01Å [ibid.] Scattering factors	7.69 4.86 3.72 3.52 3.44	80 100 83 36 7	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11.50 18.24 23.90 25.28 25.90		
Cl ⁻¹ , O ⁻¹ [3.3,1A] Nb ⁰ [3.3.1B] Thermal parameters	3.67 3.62 2.758 2.717 2.673	2 1 1 59 9	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	29.06 29.60 32.44 32.94 33.50		
Isotropic [Sands et al., 1959] Density (calculated) 3.04 g/cm ³ [ibid.]	2.636 2.590 2.562 2.399 2.194	2 11 2 1 17	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	33.98 34.52 35.00 37.46 41.10		
7.198 × 10 ⁴	2.132 2.019 1.9803 1.9217 1.9171	3 9 10 11 5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	42.36 44.86 45.78 47.26 47.38		
Sands, D.E., A. Zalkin, and R.E. Elson (1959). The crystal structure of NbOCl ₃ , Acta Cryst. 12, 21-23.	1.9050 1.8769 1.8639 1.8336 1.7873	15 5 1 6 4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	47.68 48.46 48.82 49.68 51.06		
	1.7155 1.6809 1.6200 1.6004 1.5764	1 3 1 11 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	53.36 54.34 56.76 57.54 58.50		
	1.5604 1.5373 1.4507 1.4467 1.4332	7 2 2 1 1	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	59.16 60.14 64.14 64.34 65.02		
	1.4274 1.4135 1.3919 1.3739 1.3536	1 3 1 4 1	7 3 0 5 2 2 6 5 0 4 4 2 8 0 0 +	65.32 66.04 67.20 67.92 69.08		
	1.3265 1.3105 1.2764 1.2151 1.2143	2 1 1 2	6 1 2 1 0 3 7 4 1 + 8 4 0 5 5 2	71.00 72.00 74.24 78.68 78.74		
	1.1803 1.1791 1.1552 1.1386 1.1284	1 1 1 1 1	4 1 3 9 2 0 9 0 1 6 5 2 5 0 3	81.48 81.58 83.64 85.14 86.10		

Calculated Pattern (Integrated)			ated)	Calculated Pattern (Integrated)			ited)
d (Å)	Ι	hkl	$\frac{2\theta(°)}{\lambda = 1.54056 \text{ Å}}$	d (Å)	Ι	hkl	$\frac{2\theta(°)}{\lambda = 1.54056 \text{ Å}}$
7.69 4.86 3.72 3.52 3.44	79 100 90 39 7	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11.50 18.23 23.90 25.28 25.90	1.4135 1.3918 1.3789 1.3587 1.3573	5 2 6 2 1	5 2 2 6 5 0 4 4 2 8 0 0 5 3 2	66.04 67.21 67.92 69.07 69.15
3.07 3.02 2.758 2.717 2.673	3 1 72 10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29.06 29.61 32.44 32.93 33.49	1.3266 1.3104 1.3009 1.2763 1.2763	3 2 1 1 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	70.99 72.01 72.61 74.24 74.24
2.636 2.596 2.562 2.399 2.195	2 13 2 1 22	$\begin{array}{ccccc} 4 & 1 & 0 \\ 3 & 1 & 1 \\ 3 & 3 & 0 \\ 3 & 2 & 1 \\ 4 & 1 & 1 \end{array}$	33.98 34.52 34.99 37.46 41.10	1.2540 1.2188 1.2153 1.2142 1.2038	1 2 2 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	75 • 80 78 • 39 78 • 66 78 • 75 79 • 56
2.132 2.019 1.9800 1.9216 1.9174	11 13 14 14 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	42.36 44.87 45.79 47.26 47.37	1.2004 1.1803 1.1790 1.1552 1.1386	1 1 2 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	79.84 81.48 81.59 83.64 85.14
1.9057 1.9057 1.8771 1.8642 1.8337	19 5 9 2 9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	47.68 47.68 48.46 46.81 49.68	1.1283 1.1223 1.1203 1.0632 1.0558	2 1 2 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	86.11 86.68 86.87 92.86 93.70
1.7370 1.7157 1.6866 1.6288 1.6204	6 2 5 1 2	$\begin{array}{cccccc} 6 & 1 & 0 \\ 3 & 1 & 2 \\ 5 & 3 & 1 \\ 6 & 1 & 1 \\ 6 & 3 & 0 \end{array}$	51.07 53.35 54.35 56.45 56.77	1.0420 1.0358 1.0293 1.0265 1.0130	2 1 1 1 1	5 4 3 8 4 2 10 2 1 9 1 2 9 2 2	95.33 96.09 96.90 97.25 99.00
1.6003 1.5766 1.5603 1.5372 1.5372	16 2 11 1 3	$\begin{array}{cccc} 4 & 0 & 2 \\ 6 & 2 & 1 \\ 5 & 4 & 1 \\ 7 & 1 & 0 \\ 5 & 5 & 0 \end{array}$	57.55 58.49 59.17 60.14 60.14	•9492 •9316 •9302 •9073 •8911	1 1 1 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	108.48 111.55 111.80 110.20 119.64
1.4997 1.4508 1.4457 1.4331 1.4273	1 4 1 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	61.81 64.14 64.39 65.03 65.32	•8801 •8467 •7842 •7834	1 1 1 1	4 4 4 9 4 3 9 9 2 11 8 1	122.15 130.94 158.38 159.01

suuciure
----------

r

Structure Orthorhombic, Pnma(62),Z=4 [Breneman and Willett, 1967]	
Lattice parameters a=9.35±0.02, b=7.94±0.01, c=14.69±0.02Å [ibid.]	
Scattering factors P°, Br° [3.3.1A]	
Thermal parameters Isotropic: P .90; Br(1) 2.01;Br(2) 2.71; Br(3) 2.73; Br(4) 2.57; Br(5) 1.90; Br(6) 3.58	
Density (calculated) 3.60 g/cm ³ [Breneman and Wil- lett, 1967] Scale factor 37.67 × 10 ⁴	
Reference Breneman, G.L. and R.D.Willett (1967). The crystal structure of phosphorus hepta- bromide, PBr ₇ , Acta Cryst. 23, 467-471.	
Calculated Pattern (Peak heights)	

Calculated Pattern (Peak heights)						
d (Å)	Ι		hk	l	$\frac{2\theta(^{\circ})}{\lambda = 1.54056 ^{\circ}A}$	
6.99 5.77 5.60 4.67 4.45	3 4 2 15 3	0 1 1 1 2	1 0 1 1 3	1 2 1 2 + 1	12.56 15.34 15.82 18.98 19.92	
4 • 34 4 • 17 4 • 03 3 • 97 3 • 88	7 2 17 51 6	1 2 0 2	0 1 1 2 1	3 3 0 1	20.46 21.30 22.04 22.38 22.88	
3.80 3.67 3.53 3.49 3.42	37 10 18 2 7	1 0 2 0 1	1 C 1 2 0	3 4 2 2 4	23.36 24.22 25.20 25.48 26.04	
3 • 27 3 • 14 3 • 03 2 • 92 8	100 48 33 3	1 1 2 1 2	2 1 2 2	2 4 0 3	27.24 28.40 29.50 30.50 30.94	

Calculated Pattern (Peak heights)						
d (Å)	Ι	hkl	$2\theta(°)$ $\lambda = 1.54056 \stackrel{\circ}{A}$			
2 • 87 0	26	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31.14			
2 • 84 7	27		31.40			
2 • 80 3	6		31.90			
2 • 71 4	23		32.98			
2 • 698	15		33.18			
2 • 64 4	4	1 1 5	33 • 8 8			
2 • 60 5	1	C 3 1	34 • 4 0			
2 • 57 4	2	2 2 3	34 • 8 2			
2 • 50 9	4	1 3 1	35 • 7 6			
2 • 49 5	5	3 1 3	35 • 96			
2.487	7	2 0 5	36 • 0 8			
2.417	1	3 2 1	37 • 1 6			
2.406	1	1 3 2	37 • 3 4			
2.368	5	1 0 6	37 • 9 6			
2.326	2	3 2 2 +	38 • 6 8			
2.309 2.303 2.290 2.275 2.270	2 3 7 10	4 0 1 2 3 0 1 2 5 2 3 1 1 1 6	38 • 9 8 39 • 0 8 39 • 3 2 39 • 5 8 39 • 6 8			
2.260	3	1 3 3	39.86			
2.242	9	4 1 0	40.18			
2.197	4	2 3 2	41.04			
2.169	2	2 0 6	41.60			
2.145	1	4 1 2	42.10			
2.108	10	4 0 3 +	42.86			
2.092	19	1 3 4 +	43.20			
2.086	12	2 3 3 +	43.34			
2.047	2	1 0 7	44.20			
2.039	5	3 2 4	44.40			
2 • 03 4	6	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	44.50			
2 • 01 5	15		44.96			
1 • 99 85	2		45.34			
1 • 98 53	16		45.66			
1 • 97 22	3		45.98			
1.9513 1.9458 1.9141 1.9035 1.8820	8 2 1 3	2 3 4 3 3 2 2 0 7 + 2 2 6 3 2 5	46.50 46.64 47.46 47.74 48.32			
1.8711	2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	48.62			
1.8653	4		48.78			
1.8199	2		50.08			
1.8125	2		50.30			
1.8064	2		50.48			
1.7654	3	4 2 4 +	51.74			
1.7571	3	1 1 8	52.00			
1.7521	5	4 3 0	52.16			
1.7471	3	5 0 3 +	52.32			
1.7324	10	3 2 6	52.80			

20(°)

 $\lambda = 1.54056 \text{ Å}$ 

12.66

15.33

15.82

18.97

18.98

19.91

20.46

21.30

22.05

22.38

22.53 22.87

23.35

24.21

25.09

25.19

25.48 26.05

27.23

28.40

29.49

30.50 30.94

31.15 31.40

31.90

32.98

33.17

33.20

33.89

34.40

34.82

35.76

35.95

36.08

37.15 37.34

37.96

38.64

38.69

36.98

39.08

39.32 39.57

39.68

39.87

40.18

41.04

41.60

42.10

	Ca	lculated	Pattern (Peak he	ights)	С	alculated	l Pattern <i>(Integro</i>	ated)
	d (Å)	Ι	hkl	$\frac{2\theta(^{\circ})}{\lambda = 1.54056         $	d (Å)	Ι	hkl	λ =
	1.7167 1.7090 1.6909 1.6806 1.6777	1 2 1 2 4	1 4 4 2 0 8 4 0 6 5 2 1 2 3 6	53 • 32 53 • 5 8 54 • 2 0 54 • 5 6 54 • 6 6	6.98 5.76 5.60 4.68 4.67	2 3 1 3 11	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	1.6665 1.6626 1.6538 1.6489 1.6407	2 2 4 7	5 0 4 3 3 5 4 1 6 5 2 2 + 1 2 8	55.06 55.20 55.52 55.70 56.00	4.45 4.34 4.17 4.03 3.97	2 7 1 15 47	2 0 1 1 0 3 0 1 3 2 1 0 0 2 0	
	1.6359 1.6316 1.6200 1.5989 1.5819	7 7 2 4 5	2 4 4 3 4 2 + 1 4 5 5 2 3 + 3 0 8	56 • 1 8 56 • 3 4 56 • 7 8 57 • 6 0 58 • 2 8	3.94 3.89 3.81 3.67 3.55	2 5 37 10 2	2 0 2 2 1 1 1 1 3 0 0 4 1 2 1	
	1.5580 1.5514 1.5208 1.5190 1.5039	3 4 2 3 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	59.26 59.54 60.86 60.94 61.62	3.53 3.49 3.42 3.27 3.14	17 2 7 100 49	2 1 2 0 2 2 1 0 4 1 2 2 1 1 4	
and the second se	1.4908 1.4861 1.4692 1.4659 1.4597	3 2 3 4 1	1 5 3 + 5 0 6 0 0 10 + 5 2 5 6 1 3	62 • 2 2 62 • 4 4 63 • 2 4 63 • 4 0 63 • 7 0	3.03 2.929 2.888 2.869 2.846	34 3 31 26 27	2 2 0 1 2 3 2 0 4 3 0 2 3 1 1	
	1.4455 1.4403 1.4250 1.4212 1.4101	2 2 1 1 2	4 4 3 + 1 5 4 4 3 6 3 1 9 5 3 4	64 • 4 D 64 • 5 6 65 • 4 4 65 • 6 4 66 • 2 2	2 • 80 3 2 • 71 4 2 • 698 2 • 696 2 • 64 3	5 24 9 8 5	1 0 5 2 1 4 3 1 2 0 2 4 1 1 5	
	1.4082 1.3916 1.3894 1.3818 1.3490	3 1 2 2 3	3 5 1 2 5 4 3 5 2 1 5 5 6 2 4	65.32 67.22 67.34 67.76 69.64	2.605 2.574 2.509 2.496 2.488	1 2 4 4 7	0       3       1         2       2       3         1       3       1         3       1       3         2       0       5	
とうしゃ われ しった 一部で	1 • 34 53 1 • 32 32 1 • 32 16 1 • 31 84 1 • 31 71	2 1 2 1 1	4 3 7 0 6 0 2 2 10 1 5 6 0 1 11	69.86 71.20 71.30 71.50 71.58	2.418 2.406 2.368 2.328 2.325	2 1 5 1 2	3 2 1 1 3 2 1 0 6 0 3 3 3 2 2	
	1.2953 1.2925 1.2898 1.2814 1.2602	1 1 1 1 1	2 4 8 5 1 8 1 6 2 2 5 6 3 2 10	72.98 73.16 73.34 73.90 75.36	2 • 30 8 2 • 30 3 2 • 29 0 2 • 27 5 2 • 27 0	2 2 3 7 7	4 0 1 2 3 0 1 2 5 2 3 1 1 1 6	
	1.2442 1.2398 1.2371 1.2256	1 1 3 2	5 2 8 7 1 4 3 4 8 + 6 4 0	76.50 76.82 77.02 77.88	2.259 2.242 2.198 2.169 2.145	3 10 4 2 2	1 3 3 4 1 0 2 3 2 2 0 6 4 1 2	

Ca	alculated	l Pattern (Integra	ated)	С	alculated	l Pattern (Integra	ated)
d (Å)	Ι	hkl	$\frac{2\theta(^{\circ})}{\lambda = 1.54056 \stackrel{\circ}{A}}$	d (Å)	Ι	hkl	$\frac{2\theta(°)}{\lambda = 1.54056 \text{ Å}}$
2.109 2.108 2.093 2.092 2.092 2.084	7 6 12 10 5	4 0 3 2 2 5 1 3 4 2 1 6 2 3 3	42.83 42.37 43.19 43.20 43.38	1 • 5988 1 • 5821 1 • 5583 1 • 5568 1 • 5516	1 7 4 1 2	0 1 9 3 0 8 6 0 0 1 5 1 2 4 5	57.60 58.27 59.25 59.31 59.53
2 • 08 4 2 • 04 8 2 • 03 9 2 • 03 4 2 • 01 4	2 2 5 4 18	D       2       6         1       D       7         3       2       4         1       2       6         4       2       0	43.39 44.19 44.39 44.51 44.97	1 • 55 12 1 • 54 96 1 • 52 13 1 • 52 09 1 • 51 91	3 1 1 3	2 3 7 6 0 1 1 4 6 6 1 1 5 3 1	59.55 59.61 60.84 60.86 60.94
1 • 99 85 1 • 98 50 1 • 98 28 1 • 97 19 1 • 95 12	2 19 1 3 9	3 3 1 0 4 0 1 1 7 4 0 4 2 3 4	45.34 45.67 45.72 45.99 46.50	1.5036 1.4912 1.4903 1.4894 1.4861	1 3 2 1 1	2 5 0 1 5 3 1 2 9 1 3 8 5 0 6	61.63 62.20 62.24 62.28 62.44
1 • 94 53 1 • 91 45 1 • 91 38 1 • 90 34 1 • 88 23	1 1 1 3	3 3 2 2 0 7 4 1 4 2 2 6 3 2 5	46.65 47.45 47.47 47.74 48.31	1.4697 1.4690 1.4660 1.4596 1.455	1 2 4 1 3	3 2 8 0 0 10 5 2 5 6 1 3 4 4 3	63 •2 2 63 •2 5 63 •3 9 63 •7 0 64 •4 0
1.8711 1.8653 1.8628 1.8198 1.8122	2 4 2 2 2	3 1 6 3 3 3 4 2 3 1 2 7 5 0 2	48.62 48.78 48.85 50.08 50.31	1.4440 1.4402 1.4248 1.4225 1.4102	1 3 1 1 3	4 () 8 1 5 4 4 3 6 3 1 5 5 3 4	64 • 4 8 64 • 6 7 65 • 4 5 65 • 5 7 66 • 2 2
1.8064 1.8050 1.7661 1.7649 1.7571	2 1 2 2 2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	50 • 4 8 50 • 5 2 51 • 7 2 51 • 7 5 52 • 0 0	1 • 40 84 1 • 39 90 1 • 39 15 1 • 38 94 1 • 38 17	4 1 1 2	3 5 1 4 4 4 2 5 4 3 5 2 1 5 5	66.31 66.82 67.22 67.34 67.77
1.7520 1.7469 1.7462 1.7323 1.7165	5 1 12 1	4 3 0 5 0 3 0 4 4 3 2 6 1 4 4	52 • 1 6 52 • 3 3 52 • 3 5 52 • 8 0 53 • 3 2	1.3491 1.3449 1.3233 1.3215 1.3190	4 1 1 2 1	5 2 4 4 3 7 0 6 0 2 2 10 1 5 6	69.63 69.88 71.19 71.31 71.46
1.7091 1.6907 1.6806 1.6776 J.6664	3 1 2 5 1	2 D 8 4 O 6 5 2 1 2 3 6 5 O 4	53.58 54.21 54.56 54.67 55.06	1.3170 1.2952 1.2927 1.2839 1.2813	1 1 1 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	71.59 72.99 73.15 73.33 73.91
1.6631 1.6536 1.6496 1.6486 1.6407	1 2 3 8	3 3 5 4 1 6 4 3 3 5 2 2 1 2 8	55 • 1 8 55 • 5 3 55 • 6 7 55 • 7 1 56 • 3 0	1.2601 1.2442 1.2399 1.2372 1.2359	2 1 1 4 1	3 2 10 5 2 8 7 1 4 3 4 8 6 1 7	75.37 76.50 76.62 77.01 77.11
1.6358 1.6324 1.6309 1.6199 1.5990	5 4 4 1 3	2 4 4 3 4 2 5 1 4 1 4 5 5 2 3 •	56 • 1 8 56 • 3 1 56 • 3 7 56 • 7 8 57 • 6 0	1.2257	2	640	77.87

Monoclinic,  $P2_1/c$  (14), Z=4 [Housty and Hospital, 1966]

Lattice parameters

a=5.65±0.01, b=9.68±0.02, c=22.33±0.05Å  $\beta$ =137° [ibid.]

#### Scattering factors

 $H^{\circ}$ ,  $C^{\circ}$ ,  $O^{\circ}$  [3.3.1A]

#### Atomic positions

Table 1 [Housty and Hospital, 1966]

#### Thermal parameters

Isotropic:  $B=4.0^{Å^2}$  for carbon and oxygen  $B=3.0^{Å^2}$  for hydrogen **Density** 

(calculated) 1.275 g/cm³ [ibid.]

#### Scale factor

 $2.867 \times .10^{4}$ 

#### Polymorphism

The existence of a second polymorph has been reported by Dupré la Tour [1935].

#### Additional patterns

 PDF card 9-721[Whitney and Corvin,1949] It may represent a different polymorph.

#### Reference

```
Dupré la Tour, F. (1935).Polymorphisme dans
la série des diacides gras normaux,
Compt. Rend. 201, 479-481.
```

- Housty, J. and M. Hospital (1966). Localisation des atomes d'hydrogène dans l'acide pimélique,COOH-[CH₂]₅-COOH, Acta Cryst. 21, 29-34.
- Whitney, J. and I. Corvin (1949). Pimelic acid, Anal. Chem. 21, 191-192.

Calculated Pattern (Peak heights)						
d (Å)	Ι	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \text{ A}$			
7.61	36	0 0 2	11.62			
5.98	2	0 1 2	14.80			
5.22	1	-1 0 4	16.96			
4.84	28	C 2 0	18.32			
4.69	2	-1 1 2	18.90			
4 • 61	74	0       2       1         0       2       2         1       0       0         -1       0       6         -1       2       3	19.22			
4 • 08	1		21.74			
3 • 85	100		23.06			
3 • 70	5		24.02			
3 • 67	8		24.20			
3 • 59 3 • 50 3 • 34 3 3 • 276 3 • 15 7	4 62 3 2	$ \begin{array}{cccccc} -1 & 2 & 2 \\ 0 & 2 & 3 \\ -1 & 2 & 1 \\ -1 & 2 & 5 \\ 0 & 3 & 1 \end{array} $	24 • 7 6 25 • 4 0 26 • 6 4 27 • 2 0 28 • 2 4			
3.054	12	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	29.22			
3.015	4		29.60			
2.992	2		29.84			
2.940	5		30.38			
2.822	3		31.68			
2.801	2	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	31 • 9 2			
2.764	5		32 • 3 6			
2.744	3		32 • 6 0			
2.711	1		33 • 0 2			
2.647	2		33 • 8 4			
2.612	7	-2 () 8 +	34 • 3 D			
2.438	1	*2 2 6	36 • 8 4			
2.431	2	-1 3 6	36 • 9 4			
2.420	1	0 4 0	37 • 1 2			
2.353	1	-2 1 9	38 • 2 2			
2 • 31 4	8	-1 2 8 +	38 • 8 8			
2 • 29 9	10	-2 2 8	39 • 1 6			
2 • 285	2	1 1 3	39 • 4 0			
2 • 24 8	1	0 2 6	40 • 0 8			
2 • 22 4	1	-2 0 10	40 • 5 2			
2 • 21 9	2	-1 1 9	40.62			
2 • 20 6	1	-1 4 2	40.88			
2 • 16 8	1	-2 2 9	41.62			
2 • 11 3	1	-2 3 5	42.76			
2 • 06 3	2	-1 2 9 +	43.84			
2.042	1	0       4       4         -2       2       10         -2       2       1         2       0       0         -1       2       10	44 .32			
2.021	1		44 .80			
1.9372	3		46 .86			
1.9263	1		47 .14			
1.8511	1		49 .18			
1 • 81 11	1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	50 • 3 4			
1 • 78 27	1		51 • 2 0			
1 • 72 93	2		52 • 9 0			
1 • 71 31	2		53 • 4 4			
1 • 66 71	1		55 • 0 4			
1.6598	1	-1 4 9	55.30			

Calculated Pattern (Integrated)			Calculated Pattern (Integrated)				
d (Å)	Ι	hkl	$\frac{2\theta(°)}{\lambda = 1.54056 \text{ Å}}$	d (Å)	Ι	hkl	$\begin{array}{c} 2\theta(°) \\ \lambda = 1.54056 \stackrel{\circ}{A} \end{array}$
$d(\mathring{A})$ 7.61 5.98 5.22 4.84 4.69 4.61 4.08 3.85 3.70 3.67 3.59 3.50 3.34 4 3.276 3.157 3.053 3.015 2.992 2.940 2.823 2.801	I 29 2 1 26 1 7 3 1 100 5 7 4 1 65 3 2 13 4 2 6 3 2	hkl           0         0         2           0         1         2           -1         0         2           -1         1         2           0         2         1           0         2         1           0         2         1           0         2         1           0         2         1           0         2         1           -1         2         2           -1         2         3           -1         2         3           -1         2         3           1         1         1           1         2         4           -1         2         4           -1         2         4           -1         2         4           -1         2         4           -1         2         4           -1         3         3           -1         3         3           -1         3         3	$2 \theta(°)$ $\lambda = 1.54056 \text{ Å}$ 11.51 14.79 16.96 18.31 18.90 19.23 21.74 23.06 24.33 24.20 24.75 25.41 26.53 27.20 28.25 29.22 29.61 29.83 30.38 31.67 31.92	<i>d</i> (Å) 2.432 2.420 2.353 2.315 2.313 2.299 2.285 2.248 2.225 2.220 2.206 2.168 2.113 2.065 2.063 2.042 2.021 1.9369 1.9265 1.8507 1.8117	I 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$2\theta(°)$ $\lambda = 1.54056 Å$ $36 \cdot 93$ $37 \cdot 12$ $38 \cdot 22$ $38 \cdot 87$ $38 \cdot 91$ $39 \cdot 15$ $39 \cdot 11$ $43 \cdot 93$ $40 \cdot 52$ $40 \cdot 51$ $40 \cdot 51$ $40 \cdot 87$ $41 \cdot 51$ $42 \cdot 76$ $43 \cdot 81$ $43 \cdot 85$ $44 \cdot 32$ $44 \cdot 80$ $46 \cdot 67$ $47 \cdot 13$ $49 \cdot 19$ $50 \cdot 32$
2.745 2.745 2.710 2.646 2.612 2.610 2.438	3 1 2 7 1 2	-1 3 4 -2 1 6 -1 3 1 -2 0 6 -1 2 7 -2 2 6	32 • 5 9 33 • 0 3 33 • 8 4 34 • 3 0 34 • 3 3 36 • 8 3	1.7827 1.7297 1.7131 1.6568 1.6597	1 2 1 1	-1 4 8 2 1 1 -2 4 9 0 1 9 -1 4 9	51.20 52.89 53.44 55.05 55.30

Monoclinic,  $P2_1/n(14)$ , Z=4, [Boonstra, 1968]

## Lattice parameters

a=5.64, b=8.33, c=7.12 ±0.02Å β=92.25±0.25° [ibid.]

### Scattering factors

0° [3.3.1A] Ag°, Mn° [3.3.1B]

Thermal parameters Anisotropic, Table 4 [Boonstra, 1968]

#### Atomic positions Table 3 [ibid.]

#### Density

(calculated) 4.507 g/cm³

#### Scale factor

 $3.101 \times 10^4$ 

#### Reference

Boonstra, E.G. (1968). The crystal structure of silver permanganate, Acta Cryst. B24, 1053-1062.

Calculated Pattern (Peak heights)						
d (Å)	Ι	hkl	2θ(°) λ = 1.54056 Å			
5.41	63	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16.38			
4.50	13		19.70			
4.33	10		20.48			
4.16	24		21.32			
3.96	10		22.42			
3.84	10	1 1 1	23 •1 2			
3.56	31	0 0 2	25 •0 2			
3.348	79	1 2 0	26 •6 0			
3.271	50	0 1 2	27 •2 4			
3.058	100	-1 2 1	29 •1 8			
3.004	97	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	29.72			
2.875	62		31.08			
2.819	64		31.72			
2.786	50		32.10			
2.670	5		33.54			
2 • 586	9	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	34 •6 6			
2 • 531	1		35 •4 4			
2 • 468	14		36 •3 8			
2 • 334	26		38 •5 4			
2 • 281	32		39 •4 8			
2.252 2.195 2.189 2.174 2.158	2 2 10 8	-2 0 2 2 2 1 0 3 2 -2 1 2 2 0 2	40.00 41.06 41.20 41.50 41.62			
2.156	1	1 0 3	41.85			
2.098	7	2 1 2	43.08			
2.087	4	1 1 3	43.32			
2.082	5	0 4 0	43.42			
2.057	3	-1 3 2	43.98			
2.024	4	1 3 2	44 • 7 4			
1.9985	21	0 4 1	45 • 3 4			
1.9812	3	-2 2 2	45 • 7 6			
1.9537	3	1 4 0	46 • 4 4			
1.9194	7	-2 3 1	47 • 3 2			
1.8908	9	-1 4 1 +	48 •0 8			
1.8769	7	1 4 1	48 •4 6			
1.8343	3	-3 0 1	49 •6 6			
1.8064	11	-2 1 3	50 •4 8			
1.8031	23	0 3 3	50 •5 8			
1.7984	14	0 4 2 +	50.72			
1.7918	3	-3 1 1	50.92			
1.7788	4	0 0 4	51.32			
1.7490	2	-2 3 2	52.26			
1.7410	11	2 1 3 +	52.52			
1.7324	8	-1 3 3	52.80			
1.7125	7	3 2 0	53.46			
1.7084	6	2 3 2	53.60			
1.7031	9	1 3 3	53.78			
1.6789	14	-3 2 1 +	54.62			

Ca	lculated	Pattern (Peak he	ights)	Ca	alculated	Pattern (Integro	ated)
d (Å)	Ι	hkl	$\frac{2\theta(^{\circ})}{\lambda = 1.54056  A}$	d (Å)	Ι	hkl	$\begin{array}{c} 2 \theta(°) \\ \lambda = 1.54056 \stackrel{\circ}{A} \end{array}$
1.6749 1.6545 1.6516 1.6445 1.6391	11 14 17 10 10	2 4 0 -3 1 2 3 2 1 1 1 4 -2 4 1	54 • 7 6 55 • 4 8 55 • 6 0 55 • 8 6 56 • 0 6	5 • 4 1 4 • 50 4 • 3 4 4 • 17 3 • 96	54 11 9 22 10	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16.37 19.59 20.47 21.32 22.42
1.6216 1.6040 1.5863 1.5623 1.5556	7 9 1 3 . 2	2 4 1 3 1 2 -1 2 4 -1 5 1 1 2 4 +	56 •7 2 57 •4 0 58 •1 0 59 •0 8 59 •3 6	3 • 85 3 • 56 3 • 35 0 3 • 27 1 3 • 05 8	10 31 80 49 100	1 1 1 0 0 2 1 2 0 0 1 2 1 2 1	23.11 25.01 26.59 27.24 29.18
1.5401 1.5313 1.5087 1.5061 1.4986	12 2 2 8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	60.02 60.40 61.40 61.52 61.86	3.004 2.875 2.818 2.786 2.669	98 64 70 51 5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	29.72 31.38 31.73 32.10 33.55
1.4780 1.4634 1.4552 1.4515 1.4090	3 2 5 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	62.82 63.52 63.92 64.10 66.28	2 • 587 2 • 530 2 • 469 2 • 468 2 • 338	10 2 4 12 9	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	34.65 35.45 36.36 36.38 38.47
1.3927 1.3883 1.3764 1.3624 1.3613	1 1 1 1	$ \begin{array}{ccccc} -1 & 0 & 5 \\ 0 & 6 & 0 \\ -3 & 4 & 1 \\ 0 & 6 & 1 \\ 3 & 4 & 1 \end{array} $	67.16 67.40 68.06 68.86 68.92	2 • 334 2 • 291 2 • 252 2 • 197 2 • 189	24 35 2 2 1	2 2 0 0 1 3 -2 0 2 2 2 1 0 3 2	38.54 39.48 40.00 41.06 41.21
1 • 34 80 1 • 33 93 1 • 33 46 1 • 33 20 1 • 32 81	5 1 4 2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	69.70 70.22 70.50 70.66 70.90	2 • 174 2 • 168 2 • 156 2 • 098 2 • 087	10 3 1 8 4	-2 1 2 2 0 2 1 0 3 2 1 2 1 1 3	41.50 41.63 41.87 43.08 43.32
1 • 32 06 1 • 32 06 1 • 31 81 1 • 31 14 1 • 30 48	6 6 1 1	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	71.36 71.36 71.52 71.94 72.36	2.083 2.057 2.024 1.9385 1.9811	3 4 4 25 3	0 4 0 -1 3 2 1 3 2 0 4 1 -2 2 2	43 • 42 43 • 98 44 • 74 45 • 34 45 • 76
1 • 3014 1 • 2986 1 • 2928 1 • 2820 1 • 2773	3 5 1 1 1	-3 1 4 1 2 5 4 0 2 3 3 3 4 1 2	72 •5 8 72 •7 6 73 •1 4 73 •8 6 74 •1 8	1.9534 1.9229 1.97192 1.8921 1.8903	3 1 8 6 8	1 4 J 2 2 2 -2 3 1 2 3 1 -1 4 1	46.45 47.23 47.33 48.05 48.10
1 • 26 62 1 • 25 65 1 • 25 25 1 • 24 50 1 • 23 36	1 1 2 2 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	74 .94 75 .62 75 .90 76 .44 77 .28	1.8772 1.8342 1.8065 1.8033 1.7989	9 4 10 24 1	1 4 1 -3 0 1 -2 1 3 0 3 3 3 0 1	48.45 49.56 50.48 50.57 50.70
1.2301 1.2195 1.2161	2 1 1	4 3 1 * -4 1 3 0 5 4	77 •5 4 78 •3 4 78 •6 D	1.7972 1.7912 1.7785 1.7492 1.7410	2 2 5 2 12	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	50.76 50.94 51.33 52.25 52.52

Calculated Pattern (Integrated)					
d (Å)	Ι	hkl	$\frac{2\theta(^{\circ})}{\lambda = 1.54056 \stackrel{\circ}{A}}$		
1.7394	3	0 1 4	52.57		
1.7326	10	-1 3 3	52.79		
1.7124	9	3 2 0	53.46		
1.7087	2	2 3 2	53.59		
1.7028	11	1 3 3	53.79		
1.6803	10	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	54.57		
1.6785	13		54.53		
1.6748	4		54.77		
1.6550	16		55.47		
1.6515	15		55.60		
1.6444	11	1 1 4	55.87		
1.6388	11	-2 4 1	56.37		
1.6218	9	2 4 1	56.71		
1.6042	13	3 1 2	57.39		
1.5863	1	-' 2 4	58.10		
1.5525 1.5559 1.5551 1.5399 1.5314	4 1 16 2	-1 5 1 1 2 4 1 5 1 -2 3 3 -2 0 4	59.07 59.35 59.38 60.03 60.39		
1.5304	1	-3 3 1	60.44		
1.5087	2	0 5 2	61.40		
1.5062	1	-2 1 4	61.51		
1.4987	11	2 3 3	61.86		
1.4781	3	2 0 4	62.82		
1.4777	1	-3 1 3	62.84		
1.4635	4	-1 5 2	63.51		
1.4554	2	2 1 4	63.91		
1.4514	6	1 5 2	64.11		
1.4089	7	4 0 0	66.28		
1.3925 1.3883 1.3764 1.3625 1.3513	1 1 1 1	$ \begin{array}{ccccc} -1 & 0 & 5 \\ 0 & 6 & 0 \\ -3 & 4 & 1 \\ 0 & 6 & 1 \\ 3 & 4 & 1 \end{array} $	67.16 67.40 68.06 68.84 68.92		
1.3480	8	1 6 9	69.70		
1.3394	1	-2 5 2	70.21		
1.3346	1	4 2 0	70.50		
1.3319	5	-1 5 3	70.67		
1.3279	1	-4 0 2	70.91		
1.3210	1	2 5 2	71.34		
1.3208	4	-1 2 5	71.35		
1.3203	3	-3 3 3	71.35		
1.3182	6	1 5 3	71.51		
1.3113	2	-4 1 2	71.95		
1.3047	1	2 3 4	72.37		
1.3015	4	-3 1 4	72.58		
1.2988	5	1 2 5	72.75		
1.2925	1	4 0 2	73.15		
1.2819	2	3 3 3	73.66		

Calculated Pattern (Integrated)					
đ (Å)	Ι	hkl			$\frac{2\theta(°)}{\lambda = 1.54056 \text{ Å}}$
1 • 2774 1 • 2563 1 • 2566 1 • 2563 1 • 2563	1 1 1 3	4 0 1 - 3 3	1 3 6 2 1	2 5 2 4	74.17 74.93 75.51 75.53 75.90
1 • 24 54 1 • 24 48 1 • 23 33 1 • 23 04 1 • 22 93	1 2 1 1 2	2 -4 -2 -2 4	6 3 4 6 3	0 1 4 1	76.41 76.46 77.27 77.52 77.55
1.2194 1.2159	2 1	-4 0	1 5	3 4	78.35 78.52

## Silver Permanganate, ${\rm AgMnO}_4$ (monoclinic) - continued

Structure	Ca	lculated	Pattern (Peak he	ights)
1967]	đ (Å)	Ι	hkl	$\frac{2\theta(°)}{\lambda = 1.54056 \text{ Å}}$
Lattice parameters a=8.870 ±.004 Å [ibid.]	6.267 4.436 3.966	40 7	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14.12 20.00
Scattering factors Na ⁺¹ ,Al ^o ,Si ^o ,Cl ⁻¹ ,O ⁻¹ [3.3.1A]	3.622 2.805	100 8		24.56 31.88
Thermal parameters Isotropic [Löns and Schuiz, 1967] Density	2.560 2.371 2.217 2.091 1.9836	16 18 1 26 4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	35.02 37.92 40.66 43.24 45.70
(calculated) 2.306 g/cm ³ Scale factor $11.30 \times 10^4$	1.8908 1.8104 1.7397 1.6195	3 3 2 2	332 422 431 521	48.08 50.36 52.56 56.80
Additional patterns 1. PDF card 3-0338 [Dow Chemical Co., Mid- land, Michigan]	1.5681 1.5213 1.4784 1.4387 1.3686 1.3373	7 4 6 2 2	4 4 0 5 3 0 + 4 4 2 + 5 3 2 5 4 1 6 2 2	58.84 60.84 62.80 64.74 68.50 70.34
	1.3076 1.2802 1.2071 1.1648 1.1265	2 2 5 1 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	72.18 73.98 79.30 82.80 86.28
<pre>Reference Löns,J. and H. Schulz (1967). Strukturver- feinerung von Sodalith, Na₈Si₆Al₆O₂₄Cl₂, Acta Cryst. 24, 434-436.</pre>	1.0918 1.0757 1.0174 .9917 .9565	1 1 2 1	7 4 1 + 8 2 0 6 6 2 8 4 0 9 2 1 +	89.74 91.46 98.42 101.92 107.28
	•9052 •8457 •8308 •8235 •7902	1 2 1 1	8 4 4 9 5 2 + 8 7 1 + 8 6 4 + 9 6 3 +	116.62 131.24 136.00 138.56 154.22

Calculated Pattern (Integrated)

hkl

1 5

ó

7

I

2

3 2

2

20(°)

 $\lambda = 1.54056 \text{ Å}$ 

86.28

86.28

89.74

89.74

91.47

98.41

100.16

101.92

103.70

107.28

107.28

114.69

116.61

122.58

122.58

128.97

131.23

131.23

131.23

136.01

136.01

138.56

138.56 141.24

154.21

154.21

154.21

	C	alculated	l Pat	ter	n <i>(1</i>	ntegr	ra	ted)		
	d (Å)	Ι			hkl			$\frac{2\theta(°)}{\lambda = 1.54056 \text{ Å}}$		d (Å)
	6.272	34		1	1	0		14.11		1.1265
	4.435	7		2	0	0		20.00		
1	3.967	1		2	1	0		22.39		1.1265
L	3.621	100		2	1	1		24.56		1.0918
L	2.805	8		3	1	0		31.88		1.0918
ł								75 04		1.0756
1	2.561	18		2	2	2		35.01		1.0175
	2.371	20		3	2	1		37.92		
	2.217	1		4	0	0		40.65		1.0043
	2.091	13		3	3	0		43.24		•9917
	2.091	18		4	1	1		43.24		.9795
					_	_				• 9565
	1.9834	5		4	2	0		45.71		.9565
	1.8911	3		3	3	2		48.07		0.1.10
	1.8106	3		4	2	2		50.55		•9149
	1.7395	3		4	3	1		52+57		
	1.6194	3		5	2	1		20.00		•8783
						•		EO GE		•8/83
	1.5680	10		4	4	0				• 8555
1	1.5212	3		5	3	0		60 9/		0.057
	1.5212	2		4	2	2		62 90		•8457
	1.4783	3		6	0	0		62.80	l	•8457 9/157
	1.4785	6		4	4	2		02.000		0307
	4 4 7 9 9			F	7	2		611 73		0307
	1.4389	9		5	3	2		68.50		•8507
	1.3687	4		5	4	T.		70.34		
	1.3372	3	1	D C	2	2		72.17	1	•8236
	1.3078	4		0	5	1		73.98		• 8236
	1.2803	3		4	4	4		10000		•8165
	1 2070			7	2	1		79.31		•7902
	1.2070	4		5	2 5	2		79.31		.7902
	1 2070			6	3	3		79.31		7000
	1.1647	2		7	3	ő		82.81		• /902

Structure Monoclinic, P2,/c (14), Z=4 [Hyman et al.	Ca	lculated	Pattern (Peak he	ights)
1967].	d (Å)	Ι	hkl	$\frac{2\theta(°)}{\lambda = 1.54056  \mathring{A}}$
Lattice parameters a= 6.507±0.001 Å, b=17.797±0.002, (published value, 17.796) c= 8.377±0.001 β=96° 34'±2' [ibid.]	8 • 8 9 8 • 32 7 • 5 3 6 • 0 8 5 • 2 3	6 13 4 4 1	$\begin{array}{ccccccc} 0 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 2 & 1 \\ 1 & 2 & 0 \end{array}$	9.94 10.62 11.74 14.56 16.94
Scattering factors $B^{\circ}$ , Na ⁺ , O ⁻ [3.3.1A]	4.62 4.37 4.25 4.16 4.05	38 3 14 30 21	1 2 -1 1 3 0 1 2 1 0 0 2 0 1 2	19.18 20.30 20.86 21.34 21.92
Thermal parameters Isotropic [Hyman et al., 1967]	4.00 3.77 7.75	5 41 77	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	22.22
Density (calculated) 2.346 g/cm ³	3.67 3.406	3 63	1 3 1 1 4 0 0 3 2 +	23.68 24.26 26.14
Scale factor $3.040 \times 10^4$	3.273 3.232 3.180 3.136 3.119	15 100 30 19 9	1 1 2 + 2 0 0 2 1 0 2 0 -1 1 2 2	27.22 27.58 28.04 28.44 28.50
Additional patterns 1. PDF card 16-199. [Bouaziz, 1962]	3.038 2.974 2.966 2.959 2.902	78 11 13 26 12	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29.38 30.02 30.10 30.18 30.78
	2.864 2.795 2.773 2.759 2.704	8 5 6 18 23	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31.20 32.00 32.26 32.42 33.10
<b>Reference</b> Bouaziz, R.(1962). Contribution à l'étude radiocrystallographique de quelques bor-	2.696 2.676 2.648 2.633 2.615	15 2 1 1 3	1 6 0 2 1 -2 0 2 3 1 1 -3 2 4 0	33.20 33.46 33.82 34.02 34.26
ates de lithium et de sodium, Bull. Soc. Chim. France 1962, 1451. Hyman, A., A.Perloff, F.Mauer, and S.Block (1967). The crystal structure of sodium tetraborate, Acta Cryst. 22, 815-821.	2.608 2.590 2.563 2.550 2.529	3 1 2 11 4	2 3 1 2 2 -2 1 5 -2 1 2 -3 1 6 1	34.36 34.60 34.98 35.16 35.46
	2.426 2.421 2.415 2.361 2.354	6 5 11 9	1 1 3 * 2 0 2 0 6 2 1 2 3 + 0 4 3 +	37.02 37.10 37.20 38.08 38.20
	2.313 2.264 2.251 2.215 2.169	10 2 5 4 11	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	38.90 39.78 40.02 40.70 41.60

Sodium	Borate,	Na2B8013	(monoclinic)		continued
--------	---------	----------	--------------	--	-----------

20(°)

 $\lambda = 1.54056 \text{ Å}$ 

9.93

10.62

11.73

14.56

16.94

19.17

20.30

20.86

21.34

21.92

22.21

23.58

23.69

24.26

26.08

26.14

27.19

27.22

27.23

27.57

28.03

28.43

28.60

29.36

29.38

30.02

30.10

30.19

30.77

30.77

31.19 32.01

32.26

32.41

33.06

33.09

33.20

33.46

33.82

34.03

34.26

34.36

34.61

34.97

35.16

35.46

36.94

36.94

37.01

37.09

Calculated	Pattern (Peak he	eights)	Ca	lculated	Pattern (Integra	ited)
d (Å) I	hkl	$\frac{2\theta(°)}{\lambda = 1.54056}$	d (Å)	Ι	hkl	
2.154       6         2.149       5         2.139       14         2.103       1         2.094       12	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	41.90 42.00 42.22 42.98 43.16	8 • 90 8 • 32 7 • 54 6 • 08 5 • 23	5 10 3 3 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
2.081 8 2.075 6 2.066 15 2.036 2 2.021 25	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	43.46 43.58 43.78 44.46 44.82	4 • 6°3 4 • 37 4 • 25 4 • 16 4 • 05	34 2 12 28 19	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
1.9994 10 1.9828 3 1.9617 8 1.9466 2 1.9395 4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	45.32 45.72 46.24 46.62 46.80	4.00 3.77 3.75 3.67 3.414	4 38 23 3 12	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
1.9240 5 1.9126 2 1.9058 9 1.8923 5 1.8747 6	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	47.20 47.50 47.68 48.04 48.52	3 • 4 0 7 3 • 27 7 3 • 27 3 3 • 27 3 3 • 27 3 3 • 23 2	54 2 9 3 100	0 3 2 1 4 1 1 1 2 0 5 1 2 0 0	
1.8532 9 1.8497 10 1.8448 5 1.8385 18 1.8329 13	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	49.12 49.22 49.36 49.54 49.70	3.180 3.136 3.119 3.039 3.038	29 18 6 45 39	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
1.8267 6 1.8206 4 1.8098 1 1.7958 3 1.7925 7	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	49.88 50.06 50.38 50.80 50.90	2 • 97 4 2 • 96 6 2 • 95 8 2 • 90 4 2 • 90 3	9 3 25 3 9	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
1.7641 5 1.7609 6 1.7534 6 1.7496 9 1.7354 2	2 3 -4 + 1 4 4 2 7 2 3 5 -2 + U 8 3	51.78 51.88 52.12 52.24 52.70	2 • 86 5 2 • 79 4 2 • 77 3 2 • 76 0 2 • 70 7	8 5 5 18 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
1.7161         2           1.7031         2           1.6869         3           1.6727         2           1.6637         6	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	53.34 53.78 54.34 54.84 55.16	2.705 2.696 2.676 2.648 2.633	25 1 1 1 1	0 5 2 1 6 0 2 1 -2 0 2 3 1 1 -3	
1.6593 4 1.6440 1 1.6364 1 1.6216 3 1.6148 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	55.32 55.88 56.16 56.72 56.98	2.615 2.607 2.590 2.564 2.550	3 1 1 1 1	2 4 0 2 3 1 2 2 -2 1 5 -2 1 2 -3	
1.6102       2         1.5964       3         1.5878       2         1.5838       2         1.5764       1	0 7 4 2 9 -2 + 1 9 -3 + 3 1 -4 3 7 -2	57.16 57.70 58.04 58.20 58.50	2.530 2.431 2.431 2.427 2.422	4 2 1 4 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	

Ca	lculated	Pattern (Integro	uted)	C	alculated	d Pattern (Integra	ated)
d (Å)	Ι	hkl	$\frac{2\theta(°)}{\lambda = 1.54056 \stackrel{\circ}{A}}$	d (Å)	Ι	hkl	$\frac{2\theta(°)}{\lambda = 1.54056 \text{ Å}}$
2 • 4 1 5	4	0 6 2	37 • 1 9	1.8745	7	1 2 4	48.53
2 • 36 6	2	1 7 0	38 • 00	1.8574	1	1 9 -1	49.00
2 • 36 2	11	1 2 3	38 • 07	1.8532	9	2 7 -2	49.12
2 • 35 4	3	0 4 3	38 • 20	1.8498	7	1 8 2	49.22
2 • 35 3	3	2 5 -1	38 • 21	1.8483	2	2 0 -4	49.26
2 • 31 3	7	1 6 -2	38.90	1 • 84 33	1	3 5 0	49.40
2 • 31 3	5	2 4 -2	38.91	1 • 8 3 86	2	1 7 -3	49.54
2 • 30 1	1	1 7 -1	39.11	1 • 3 3 84	18	2 1 -4	49.54
2 • 26 4	2	1 3 3	39.78	1 • 8 3 25	4	2 8 0	49.71
2 • 25 1	6	1 7 1	40.02	1 • 8 3 14	6	3 4 -2	49.74
2 • 21 8	1	2 1 -3	40 •65	1.8246	2	1 3 4	49.94
2 • 21 5	5	1 6 2	40 •70	1.8203	3	3 1 2	50.07
2 • 16 9	12	0 7 2	41 •59	1.8096	1	2 2 -4	50.38
2 • 15 5	3	2 6 -1	41 •88	1.7962	3	0 5 4	50.79
2 • 15 5	4	2 5 -2	41 •89	1.7924	7	3 2 2	50.90
2.149	1	0 3 1	42.01	1 • 76 46	3	2 3 -4	51.76
2.139	16	3 1 0	42.21	1 • 76 41	1	1 7 3	51.78
2.127	1	2 4 2	42.46	1 • 76 10	5	1 4 4	51.88
2.104	1	1 8 0	42.96	1 • 75 36	5	2 7 2	52.11
2.094	12	3 2 0	43.16	1 • 74 99	7	3 5 -2	52.23
2.092	6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	43 • 22	1 • 74 86	1	3 3 2	52 • 27
2.387	1		43 • 33	1 • 73 55	2	0 8 3	52 • 70
2.381	8		43 • 46	1 • 71 59	2	1 10 0	53 • 35
2.375	1		43 • 5 9	1 • 70 33	2	0 6 4	53 • 77
2.066	17		43 • 7 7	1 • 68 82	1	1 5 4	54 • 30
2.037 2.026 2.022 2.021 2.018	1 4 25 1	1 1 -4 C 6 3 1 8 1 1 7 2 1 5 3	44 •45 44 •69 44 •7 9 44 •81 44 •88	1.6868 1.6727 1.6649 1.6637 1.6577	3 2 6 1	2 9 0 2 9 -1 2 0 4 3 6 -2 2 1 4	54.34 54.84 55.12 55.16 55.38
2.017	1	3 1 1	44 • 8 9	1.6438	1	3 7 0	55.89
2.002	4	2 5 2	45 • 2 5	1.6365	1	2 2 4	56.16
1.9995	8	2 6 -2	45 • 3 2	1.6215	3	4 0 -1	56.72
1.9973	1	2 4 -3	45 • 3 7	1.6148	1	4 1 -1	56.98
1.9969	1	3 1 -2	45 • 3 8	1.6101	2	0 7 4	57.16
1 • 98 29	4	2 1 3	45.72	1 • 5968	2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	57.68
1 • 96 33	2	0 3 4	46.20	1 • 5952	2		57.74
1 • 96 18	8	0 8 2	46.24	1 • 5882	1		58.03
1 • 96 02	1	3 2 -2	46.28	1 • 5874	1		58.06
1 • 94 69	2	2 2 3	46.61	1 • 5840	1		58.19
1 • 93 93	4	3 4 0	46 • 8 1	1.5766	1	3 7 -2	58.50
1 • 93 76	1	1 3 -4	46 • 8 5	1.5695	2	1 11 0	58.78
1 • 92 39	5	0 9 1	47 • 2 0	1.5641	1	4 3 -1	59.00
1 • 91 26	2	2 7 1	7 47 • 5 0	1.5590	1	2 10 0	59.22
1 • 90 65	2	1 1 4	47 • 6 6	1.5574	4	3 6 2	59.29
1.9061 1.9033 1.8929 1.8909 1.3750	8 2 5 3 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	47.67 47.74 48.02 48.08 48.49	1.5535 1.5477 1.5307 1.5304 1.5195	1 3 1 1 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	59.45 59.70 60.43 60.44 60.92

Triclinic, PI (2), Z=2 [Jost and Hilmer, 1966]

#### Lattice parameters

a=7.96, b=9.61, c=6.67 Å α=70.1°, β=104.3°, γ=122.5°[ibid.]

#### Scattering factors

 $Na^{+1}$ ,  $Si^{\circ}$ ,  $O^{-1}$  [3.3.1A]

#### Thermal parameters

Isotropic [Jost and Hilmer, 1966]

#### Density

(calculated) 1.747 g/cm³

#### Scale factor

 $0.3695 \times 10^4$ 

#### Additional patterns

- PDF card 2-0465 [Michigan Alkali Co., Wyandotte, Michigan]
- PDF card 3-0432 [Dow Chemical Co., Midland, Michigan]
- 3. PDF card 19-1241 [Jamieson and Dent Glasser, 1966]

Rei	fere	ence
1001	CT C	

- Jamieson,P.B. and L.S. Dent Glasser (1966) Sodium silicate hydrates. I. Crystallographic data, Acta Cryst. 20, 373-376.
- Jost,K.-H. and W. Hilmer(1966). Die Struktur von Na₂H₂SiO₄·4H₂O, Acta Cryst. 21, 583-589.

Calculated Pattern (Peak heights)									
d (Å)	Ι	hkl	$\frac{2\theta(^{\circ})}{\lambda = 1.54056 \text{ A}}$						
7.64	2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11.25						
7.13	10		12.40						
6.69	39		13.22						
6.25	100		14.16						
5.68	41		15.60						
5.63	25	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15.72						
4.76	4		18.62						
4.49	20		19.74						
4.45	17		19.94						
4.17	20		21.30						
4 • 10	53	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	21.66						
3 • 92	39		22.68						
3 • 84	14		23.12						
3 • 7 8	29		23.52						
3 • 53	20		24.48						
3.35 3.27 3.17 3.12 3.12 3.12	სპ 50 გვ კ	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26.62 27.26 28.16 28.56 28.56						
3.05	5	$\begin{array}{ccccc} -2 & 0 & 1 \\ -2 & 3 & 1 \\ 0 & -2 & 1 & + \\ 2 & 0 & 1 & + \\ -2 & 2 & 2 \end{array}$	29.22						
3.03	30		29.44						
2.990	28		29.80						
2.855	9		31.30						
2.840	13		31.48						
2.817	32	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31.74						
2.745	30		32.58						
2.731	54		32.70						
2.679	4		33.42						
2.664	19		33.62						
2.639	10	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	33.94						
2.621	7		34.16						
2.609	9		34.34						
2.577	2		34.78						
2.563	1		34.98						
2.502 2.469 2.452 2.407 2.405	24 24 5 6	$\begin{array}{cccccc} -3 & 5 & 1 \\ -3 & 1 & 1 \\ 2 & 1 & 1 \\ 1 & -3 & 1 \\ -1 & -1 & 2 \end{array}$	35.80 30.30 36.62 37.32 37.36						
2.316	5	2 -3 1	38.86						
2.294	9	-3 2 2	39.24						
2.272	3	-3 3 2	39.64						
2.230	12	1 -2 2	40.42						
2.225	11	-2 4 2	40.50						
2.202	11	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40.96						
2.197	15		41.04						
2.181	3		41.36						
2.155	7		41.86						
2.136	12		42.24						

Ca	lculated	Pattern (Peak he	ights)	Ca	alculated	Pattern (Integra	ated)
đ (Å)	Ι	hkl	$\frac{2\theta(^{\circ})}{\lambda = 1.54056 \text{ Å}}$	d (Å)	Ι	hkl	$\frac{2\theta(^{\circ})}{\lambda = 1.54056 \stackrel{\circ}{A}}$
2.115 2.084 2.071 2.055 2.052	3 7 2 8 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	42.72 43.36 43.68 44.08 44.10	7.94 7.14 6.69 6.25 5.68	2 16 39 100 42	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11.28 12.39 13.22 14.16 15.59
2.037 2.020 1.9952 1.9601 1.9553	ο 14 9 7	$\begin{array}{ccccccc} -1 & 0 & 3 & + \\ 3 & -3 & 1 & + \\ -2 & -1 & 2 \\ 0 & 4 & 0 \\ -1 & -2 & 2 \end{array}$	44.44 44.84 45.42 46.28 46.40	5.64 4.76 4.49 4.45 4.17	22 5 22 18 22	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15.71 18.61 19.73 19.93 21.30
1.9302 1.9225 1.9141 1.9095 1.8975	3 2 5 7 1ర	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	47.04 47.24 47.46 47.58 47.90	4.10 3.92 3.34 3.78 3.65	61 48 15 35 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	21.65 22.67 23.12 23.51 24.38
1.8931 1.8879 1.8798 1.8798 1.8718 1.8483	13 11 9 10 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	48.02 48.16 48.38 48.60 49.20	3.64 3.61 3.35 3.34 3.27	24 3 74 6 70	$\begin{array}{cccc} -2 & 2 & 1 \\ 1 & 1 & 1 \\ 2 & 0 & 0 \\ -1 & -1 & 1 \\ -1 & 1 & 2 \end{array}$	24.47 24.63 26.62 26.67 27.25
1.8364 1.8288 1.8226 1.8058 1.793∠	1 2 19 24 3	-2 0 3 -3 5 2 -1 4 3 + -2 5 0 + 0 -3 2	49.60 49.82 50.00 50.50 50.88	3.17 3.12 3.12 3.05 3.03	79 1 1 5 38	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	28.15 28.56 28.57 29.21 29.43
1.7564 1.7502 1.7293 1.7076 1.6984	3 3 4 5 N	$\begin{array}{cccccc} -3 & 5 & 0 \\ \hline 3 & 0 & 2 \\ -1 & 5 & 0 \\ 2 & 0 & 3 \\ 1 & 4 & 1 \end{array}$	51.96 52.22 52.90 53.62 53.94	2.997 2.996 2.303 2.855 2.840	17 18 2 9 15	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29.79 29.80 31.22 31.30 31.47
1.6944 1.6857 1.6710 1.6665 1.6587	いういい	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	54.08 54.38 54.90 55.06 55.34	2.824 2.818 2.746 2.733 2.731	1 41 35 13 57	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	31.65 31.73 32.58 32.73 32.76
1.6560 1.6499 1.6391 1.6348 1.6311	3 7 2 7 4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	55.44 55.66 56.06 56.22 56.36	2.679 2.604 2.639 2.621 2.613	4 24 12 7 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	33.43 33.52 33.94 34.18 34.29
1.6242 1.6185 1.6133 1.5898 1.5863	1 + + 5 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	56.62 56.84 57.04 57.96 58.10	2.611 2.609 2.578 2.562 2.503	5 6 2 1 2	-2 3 2 1 1 2 1 -1 2 -3 2 0 -3 3 1	34.32 34.35 34.77 34.99 35.85
1.5838 1.5809 1.5710 1.5618 1.5555	7 2 2 1	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	58.20 58.32 58.72 59.10 59.36	2.469 2.451 2.408 2.405 2.316	32 1 7 5 4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	36.35 36.64 37.31 37.37 38.85

## Sodium Hydrogen Silicate Tetrahydrate, $Na_2H_2SiO_4 \cdot 4H_2O$ (triclinic) - continued

Calculated Pattern (Integrated)		Calculated Pattern (Integrated)					
d (Å)	Ι	hkl	$\frac{2\theta(^{\circ})}{\lambda = 1.54056 \stackrel{\circ}{A}}$	d (Å)	Ι	hkl	$\frac{2\theta(°)}{\lambda = 1.54056 ^{\circ}}$
2.294 2.272 2.230 2.225 2.202	13 3 15 6 1	-3 2 2 -3 3 2 1 -2 2 -2 4 2 2 -1 2	39.24 39.63 40.41 40.50 40.95	1.8224 1.8131 1.8111 1.8062 1.8059	18 1 2 19 15	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	50.01 50.28 50.34 50.49 50.50
2.202 2.199 2.197 2.197 2.197 2.188	10 5 9 3 1	-3 4 1 -1 4 0 2 0 2 -1 1 3 0 -2 2	40.96 41.01 41.05 41.06 41.23	1.8058 1.7930 1.7586 1.7499 1.7294	3 3 4 4 6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50.50 50.88 51.95 52.23 52.90
2.181 2.157 2.133 2.115 2.113	7 9 16 3 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	41.36 41.85 42.24 42.71 42.77	1.7079 1.6987 1.6941 1.6860 1.6848	8 3 6 3 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	53.62 53.93 54.09 54.37 54.41
2.105 2.085 2.084 2.084 2.084 2.084	1 3 4 4 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	42.93 43.36 43.39 43.39 43.39 43.67	1.6722 1.6711 1.6697 1.6655 1.6590	1 4 1 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	54.86 54.89 54.94 55.10 55.33
2.053 2.050 2.039 2.037 2.026	10 2 3 6 3	-1 3 3 2 -2 2 2 1 2 -1 0 3 -2 1 3	44.07 44.13 44.40 44.44 44.70	1.6562 1.6511 1.6496 1.6393 1.6357	3 4 9 2 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	55.43 55.62 55.67 50.06 56.19
2.022 2.020 1.9953 1.9597 1.9556	4 18 1 13 3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	44.77 44.83 45.42 46.29 46.39	1.6350 1.6349 1.6307 1.6244 1.6192	8 1 1 1 1	-3 -1 2 -2 2 4 -2 3 4 3 1 2 -1 3 4	50.21 56.22 56.38 56.61 56.31
1.9303 1.9284 1.9220 1.9146 1.9119	4 1 2 4 3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	47.04 47.08 47.25 47.45 47.52	1.6134 1.6132 1.6119 1.5902 1.5834	4 4 3 3 1	$\begin{array}{ccccccc} -2 & -1 & 3 \\ 0 & 1 & 4 \\ -4 & 5 & 0 \\ -5 & 3 & 1 \\ 3 & 2 & 1 \end{array}$	56.34 57.04 57.09 57.95 58.02
1.9098 1.8976 1.8973 1.8948 1.8933	7 19 5 6 9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	47.57 47.90 47.91 47.97 45.01	1.5375 1.5866 1.5861 1.5843 1.5840	1 2 3 3 2	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	53.05 58.09 58.11 58.18 58.19
1.8392 1.8876 1.8801 1.8783 1.8718	4 6 10 3 10	$\begin{array}{cccc} -3 & 0 & 2 \\ -2 & 4 & 3 \\ -4 & 4 & 1 \\ 0 & 3 & 3 \\ -4 & 3 & 2 \end{array}$	48.12 45.17 48.37 48.42 48.60	1.5836 1.5808 1.5719 1.5710 1.5517	2 8 1 1 2	2 -4 2 -3 6 2 -2 1 4 2 3 2 -2 6 2	58.21 58.32 58.69 58.72 59.11
1.8716 1.8435 1.8366 1.8294 1.8227	2 8 1 1 11	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	48.61 49.25 49.59 49.80 50.00	1.5556 1.5530 1.5498 1.5428 1.5424	1 2 1 5 2	$\begin{array}{ccccc} -4 & 5 & 3 \\ -3 & -2 & 1 \\ -1 & 0 & 4 \\ -5 & 4 & 2 \\ -5 & 3 & 0 \end{array}$	59.35 59.47 59.50 59.91 59.92

Tetragonal, P4 ₂ /nbc (133), Z=8 [McDonald	Calculated Pattern (Peak heights)					
et al., 1964]	d (Å)	Ι	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \stackrel{\circ}{A}$		
Lattice parameters						
a=9.020±0.003, c=13.686±0.003Å [ibid.]	6.84	2	0 0 2	12.94		
	4.51	42	2 0 0	19.68		
Posttoning factors	4.28	1	2 0 1	20.72		
scattering factors	3.474	100	2 1 2	25.52		
Sn [*] [3.3.1B];	3.422	23	0 0 4	26.02		
Na°, F 🖞 [Berghuis et al., 1955]						
	3.188	9	2 2 0	27.96		
Thermal parameters	3.015	5	1 1 4 +	29.60		
$\frac{1}{1000} = \frac{1}{1000} = 1$	2.852	10	3 1 0	31.34		
$T(2) = 2 T_1 \cdot T_2(1) = 1 = 0 = T_2(2) = 0 = 0$	2.725	15	204	32.84		
F(3) 2.71; Nd(1) 1.92; Nd(2) 1.97	2.265	4	2 1 5	39.76		
			· ·			
(Calculated) 4.24g/cm ³ [McDonald et al.,	2.255	3	4 0 0	35.94		
1964]	2.224	1	4 0 1	40.52		
Scale factor	2.191	5	3 1 4	41.16		
$125.3 \times 10^{4}$	2.160	1	4 1 1	41.78		
	2.126	5	3 3 0	42.48		
	2.084	30	4 1 2	43.33		
	2.035	1	_ 0 6	44.43		
	2.017	2	4 2 0	44.90		
Additional pattorns	1.9853	17	2 1 6	45.66		
Additional patterns	1.8827	4	4 3 4	48.30		
1.PDF card 15-619[Kriegsmann and Kessler,						
1962]	1.8058	14	3 3 4	50.50		
2.PDF card 16-796[Donaldson and O'Donoghue	1.7108	5	0 0 8	53.52		
1964]	1.6269	4	5 2 2	56.52		
	1.5994	1	208	57.58		
	1.5/85	8	4 1 6	58.40		
	1.5750	5	2 1 8	54 56		
	1.5715	3	514	58.70		
Reference	1.5471	3	5 3 0	59.72		
Berghuis, J., IJ. M. Haanapel, M. Potters,	1.5074	1	2 2 8	61.46		
B.O. Loopstra, C.H. MacGillavry, and A.	1.5034	3	6 0 0	61.64		
L. Veenendahl (1955). New calculations						
of atomic scattering factors,Acta Crvst.	1.4671	2	3 1 8	63.34		
8. 478-483.	1.4262	1	6 Z D	65.38		
Donaldson $J$ D and $J$ D O'Donachue(1964)	1.4094	3	534	66.26		
Complex tip fluerides I Chem Sec 1964	1.3796	4	5 4 2	67.88		
comptex tin fidorides, 5. chem.soc.1904,	1.3764	4	604	68.06		
Z/I-280.						
Kriegsman, H. and G. Kessler (1962).Fluor-	1.3500	1	526	09.58		
komplexverbindungen des zwei- und vier-	1.3327	2	3 3 8	70.62		
wertigen Zinns und die partielle Hydro-	1.3165	2	b 2 4	71.62		
lyse des SnClF, Z. Anorg. Allgem. Chem.	1.2959	2	2 1 10	72.94		
318, 266-276.	1.2193	2	7 2 2	78.36		
McDonald, R.R., A.C. Larson, and D.T.Cromer	1 10.00			20.00		
(1964). The crystal structure of sodium	1.1986	1	5 4 6	/9.98		
pentafluorodistannate(TT), NaSnoF-, Acta	1.1602	2	4 1 10	83.20		
2rvet 17 1104-1108	1.1474		5 3 8	84.34		
Cryst. 1, 1104-1100.	1.12.92		6 U 8	86.02		
	1.1041	2	1 4 2 +	88.48		
	1.7888	1	7 2 6	90.05		
	1.0045	2	746+	100.14		
	100040	-	. , , , ,	100017		

Calculated Pattern (Integrated)									
d (Å)	Ι	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \stackrel{\circ}{A}$						
6 • 84	1	0 0 2	12.93						
4 • 51	40	2 0 0	19.67						
4 • 28	1	2 0 1	20.72						
3 • 47 5	100	2 1 2	25.61						
3 • 42 2	22	0 4	26.02						
3. 189	9	2 2 0	27 • 9 5						
3. 022	1	2 1 3	29 • 5 3						
3. 015	5	1 1 4	29 • 6 0						
2. 852	10	3 1 0	31 • 3 3						
2. 726	18	2 0 4	32 • 8 3						
2 • 2 • 5 2 • 2 5 5 2 • 2 2 5 2 • 1 9 1 2 • 1 6 0	5 2 5 1	2 1 5 4 0 0 4 0 1 3 1 4 4 1 1	33.76 39.95 40.51 41.17 41.78						
2.126	5	3 3 0	42 • 4 8						
2.084	37	4 1 2	43 • 3 9						
2.035	1	2 0 6	44 • 4 7						
2.017	3	4 2 0	44 • 9 0						
1.9853	21	2 1 6	45 • 6 5						
1.8828	5	4 0 4	48 •3 0						
1.8058	17	3 3 4	50 •5 0						
1.7107	4	0 0 8	53 •5 2						
1.6269	6	5 2 2	56 •5 2						
1.5995	2	2 0 8	57 •5 8						
1.5789	11	4 1 6	58.40						
1.5750	1	2 1 8	58.56						
1.5714	3	5 1 4	58.71						
1.5469	4	5 3 0	59.73						
1.5075	1	2 2 8	61.45						
1 • 50 33	4	6 U D	61 •6 5						
1 • 46 71	3	3 1 8	63 •34						
1 • 44 92	1	6 1 2	64 •21						
1 • 42 62	1	6 2 D	65 •38						
1 • 40 95	4	5 3 4	66 •2 5						
1.3798	5	5 4 2	67 • 6 7						
1.3763	3	6 0 4	68 • 0 6						
1.3501	2	5 2 6	69 • 5 3						
1.3328	3	3 3 8	70 • 6 1						
1.3164	2	6 2 4	71 • 6 3						
1.2960	3	2 1 10	72 • 5 3						
1.2192	3	7 2 2	78 • 3 7						
1.1985	2	5 4 6	79 • 9 8						
1.1748	1	6 4 4	81 • 9 4						
1.1603	3	4 1 10	83 • 1 9						
1.1474	2	5 3 8	84 • 3 4						
1.1293	2	6 0 8	86 • 0 2						
1.1041	1	8 1 2	88 • 4 7						
1.1041	2	7 4 2	88 • 4 7						
1.0887	2	7 2 6	90 • 3 6						

	Calculated Pattern (Integrated)									
	d (Å)	Ι	hkl	$\frac{2\theta(°)}{\lambda = 1.54056 \stackrel{\circ}{A}}$						
	1.07 08 1.05 93 1.00 50 1.00 45 1.00 45	1 1 2 1	8 0 4 5 2 10 3 3 12 7 4 6 6 1 6	92.00 93.24 105.07 100.14 103.14						
l	T + UJ + D	1	ε Ι ε	103.14						

#### d-Tartaric Acid, $C_4 H_6 O_6$ (monoclinic)

#### Structure

Monoclinic,  $P2_1$  (4), Z=2, [Okaya and Stemple, 1966]

#### Lattice parameters

 $\begin{array}{ll} a=\!7.715 \pm\!0.003\,, \ b=\!6.004 \pm\!0.003\,, \\ c=\!6.231 \pm\!0.003 \, ^{\text{Å}}, \ \beta=\!100.1 \pm\!0.1^{\circ} & \text{[ibid.]} \end{array}$ 

#### Scattering factors

 $H^{\circ}$ ,  $C^{\circ}$ ,  $O^{\circ}$  [3.3.1A]

#### Thermal parameters

Anisotropic for oxygen and carbon, isotropic for hydrogen, Tablel(b)[Okaya and Stemple, 1966]

#### Atomic positions

Table 1(a)[ibid.]

#### Density

(calculated) 1.754 g/cm³

#### Scale factor

 $0.4175 \times 10^4$ 

#### Additional patterns

 PDF card 4-0333 [Inst. Phys. Univ. College, Cardiff, Wales]. This card may represent a different polymorph.

#### Reference

Okaya,H. and N.R. Stemple (1966). Refinement of the structure of d-tartaric acid by x-ray and neutron diffraction, Acta Cryst. 21, 237-243.

Calculated Pattern (Peak heights)										
d (Å)	Ι	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \stackrel{\circ}{A}$							
7 • 63	13	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11.64							
5 • 24	7		16.90							
4 • 71	20		18.82							
4 • 41	18		20.12							
4 • 29	100		20.68							
3 • 95	18	$ \begin{array}{ccccc} -1 & 1 & 1 \\ 2 & 0 & 0 \\ 1 & 1 & 1 \\ 2 & 1 & 0 \\ 0 & 0 & 2 \end{array} $	22 •5 0							
3 • 80	4		23 •4 0							
3 • 55	26		25 •0 4							
3 • 20 9	5		27 •7 8							
3 • 06 6	15		29 •1 0							
3.033	5	-2 1 1 +	29 •4 2							
3.002	36	0 2 0 +	29 •7 4							
.2.791	24	1 2 0	32 •0 4							

Calculated Pattern (Peak heights)										
d (Å)	Ι		hkl		$\frac{2\theta(°)}{\lambda = 1.54056 \text{ Å}}$					
2.731 2.709	2	0 -1	1 1	2 2	32 •7 6 33 •0 4					
2 • 696 2 • 685 2 • 605 2 • 532 2 • 499	1 7 2 8 24	0 1 -1 3 -3	2 0 2 0	1 2 + 1 0 1	33 • 2 0 33 • 3 4 34 • 4 0 35 • 4 2 35 • 9 0					
2 • 48 2 2 • 45 1 2 • 40 3 2 • 35 5 2 • 33 3	11 21 17 1 2	1 1 -2 2 3	2 1 1 2 1	1 2 2 0	36 • 1 6 36 • 6 4 37 • 4 0 38 • 1 8 38 • 5 6					
2 • 30 8 2 • 28 3 2 • 14 6 2 • 12 2 2 • 06 8	7 1 1 4 2	-3 -2 -3 2 -1	1 2 0 2 0	1 1 2 1 3 +	39 • 0 0 39 • 4 4 42 • 0 8 42 • 5 6 43 • 7 4					
2.021 1.9746 1.9490 1.9356 1.9209	3 2 2 5 5	-3 -2 -2 3 -3	1 2 0 2 2	2 2 3 0 + 1	44 •8 2 45 •9 2 46 •5 6 46 •9 0 47 •2 8					
1 • 90 28 1 • 86 96 1 • 85 32 1 • 82 13 1 • 80 5 8	3 1 3 2 1	0 -1 -2 -4 1	3 3 1 1 1	1 1 3 1 + 3	47.76 48.66 49.12 50.04 50.50					
1.7769 1.7705 1.7584 1.7269 1.6897	1 2 1 1 1	2 2 -4 3 0	2 3 0 1 2	2 0 2 2 3	51 • 38 51 • 5 8 51 • 9 6 52 • 9 8 54 • 2 4					
1.6626 1.6045 1.6009 1.5908 1.5701	4 1 1 1	4 4 1 -2 3	1 2 3 3	1 0 3 2 0	55 •20 57 •38 57 •52 57 •92 58 •76					
1 5623 1.5457 1.5336 1.5008 1.4827	1 1 1 1	-3 3 0 0 3	3 2 0 4 3	1 + 2 4 0 1	59.08 59.78 60.30 61.76 62.60					
1.4725 1.3821 1.3803 1.3102 1.3048	1 1 1 1	1 -1 -2 2 -5	4 2 4 1 1	0 4 1 4 3	63.08 67.74 67.84 72.02 72.36					
1.2874 1.2853	1 1	2 -6	3 0	3 1	73.50 73.64					

Calculated Pattern (Integrated)									
d (Å)	Ι	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \text{ Å}$						
7.60	11	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11.64						
5.24	6		16.90						
4.71	20		13.82						
4.41	17		20.12						
4.29	100		20.58						
3.95	18	-1 1 1	22.50						
3.80	4	2 0 3	23.40						
3.55	27	1 1 1	25.04						
3.210	6	2 1 3	27.77						
3.067	17	0 0 2	29.39						
3.035	1	-1 0 2	29.41						
3.035	4	-2 1 1	29.41						
3.002	35	0 2 0	29.74						
3.002	4	2 0 1	23.74						
2.792	28	1 2 0	32.03						
2.731	3	0 1 2	32.76						
2.709	1	-1 1 2	33.05						
2.696	1	0 2 1	33.20						
2.685	5	1 0 2	33.34						
2.685	2	2 1 1	33.34						
2.605	2	-1 2 1	34.40						
2.532	9	3 0 0	35.42						
2.500	23	-3 0 1	35.69						
2.481	12	1 2 1	36.17						
2.451	26	1 1 2	36.53						
2.402	20	-2 1 2	37.40						
2.355	1	2 2 3	38.18						
2.333	2	3 1 3	38.56						
2.308	8	-3 1 1	38.99						
2.283	1	-2 2 1	39.43						
2.146	1	-3 0 2	42.07						
2.123	6	2 2 1	42.55						
2.070	1	2 1 2	43.70						
2.058	2	-1 0 3	43.75						
2.021	4	-3 1 2	44.81						
1.9745 1.9487 1.9355 1.9354 1.9211	2 2 3 6	-2 2 2 -2 0 3 0 1 3 3 2 9 -3 2 1	45.92 45.57 %6.90 41.91 47.28						
1.9025	3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	47.76						
1.8697	1		48.66						
1.8535	4		49.11						
1.8224	1		50.01						
1.8211	2		50.35						
1.8053	1	1 1 3	50.51						
1.7769	1	2 2 2	51.38						
1.7705	3	2 3 3	51.58						
1.7584	1	-4 0 2	51.96						
1.7272	1	3 1 2	52.97						

Calculated Pattern (Integrated)								
d (Å)	Ι	h	kl	$\frac{2\theta(^{\circ})}{\lambda = 1.54056 \stackrel{\circ}{A}}$				
1.6900 1.6525 1.6345 1.6048 1.6012	1 5 1 1	0 4 - 2 4 1	2 3 1 1 2 3 2 0 2 3	54 • 2 3 55 • 2 0 56 • 2 3 57 • 3 7 57 • 5 1				
1 • 59 07 1 • 57 00 1 • 56 24 1 • 55 7/2 1 • 54 59	1 1 1 1	-2 3 -3 -1 3	3       2         3       1         0       4         2       2	57.92 58.76 59.08 59.29 59.77				
1.5335 1.5073 1.5010 1.4828 1.4725	1 1 1 1	0 -1 0 3 1	0 4 1 4 4 3 3 1 4 0	60.30 61.46 61.75 62.60 63.08				
1.4635 1.4209 1.3823 1.3805 1.3103	1 1 1 1	-3 1 -1 -2 2	3 2 4 1 2 4 4 1 1 4	63.51 65.65 67.73 67.83 72.01				
1.3048 1.2874 1.2852	1 1 1	-5 2 -6	1 3 3 3 0 1	72.36 73.50 73.55				

#### Structure Calculated Pattern (Peak heights) Orthorhombic, $P2_1 2_1 2_1$ (19), Z=4, [Gramaccioli, 1966] 2θ(°) hkl d (A) Ι $\lambda = 1.54056 \stackrel{\circ}{A}$ Lattice parameters 7.64 -5 a=11.190, b=10.463, c=7.220Å [ibid.] 1 3 1 11.58 5.94 32 Π 1 1 14.90 5.59 45 2 Û n 15.84 Scattering factors 5.25 1001 1 1 1 + 15.88 $C^{\circ}$ , $N^{\circ}$ , $H^{\circ}$ , [3.3.1A]; Zn° [3.3.1A], corrected for the real 4.93 51 2 1 ۵ 17.96 4.23 48 9 2 1 part of the dispersion effect [3.3.2B] 20.96 4.07 74 2 1 1 21.80 3.96 87 1 2 1 26.42 Thermal parameters 3.82 2 2 2 G 23.26 Isotropic: Zn 1.93; C(1) 1.94; C(2)1.95; 3.61 2 0 0 2 24.54 C(3) 2.19; C(4) 2.68; C(5) 2.35; N 2.20; 3.435 21 1 n 2 0(1) 2.33; 0(2) 2.25; 0(3) 2.61; 25.92 3.378 2 2 2 1 O(4) 2.88; O(5) 3.08; O(6) 2.86; H(1) 26.36 3.329 u 1 3 0 25.76 through H(11) as given by Gramaccioli 3.314 15 3 0 1 26.88 [1966]. 3.264 7 1 1 2 27.30 3.160 6 3 1 1 28.22 Density 3.140 7 C 3 1 28.40 (calculated) 1.937 g/cm³ [Gramaccioli, 1966] 3.038 18 3 2 n 29.38 3.023 23 1 3 1 29.52 Scale factor 2.970 10 J 2 2 30.36 $3.869 \times 10^4$ 2.963 7 Ż 3 П 39.14 2.914 2 1 1 2 30.56 2.872 12 1 2 2 31.12 2.798 u 4 G 0 + 31.96 2.738 2 2 3 1 32.58 Reference 2.703 8 4 1 Э Gramaccioli, C.M. (1966). The crystal struc-33.12 2.624 4 2 2 2 34.14 ture of zinc glutamate dihydrate, Acta 2.617 4 С 4 G 34.24 Cryst. 21, 600-605. 2.508 G 4 3 1 34.36 2.595 7 7 2 34.54 2.517 E 3 1 2 35.64 2.509 13 0 3 2 35.76 2.466 1 4 2 Э 36.40 2.460 7 Э 4 1 35.50 2.448 1 1 3 2 36.68 2.403 15 1 4 1 + 37.40 2.370 1 ц 2 Э 37.94 2.346 3 1 9 3 38.34 2.334 3 4 Ż 1 38.54 2.324 11 3 2 2 38.72 2.295 17 1 1 3 39.22 2.290 22 2 3 2 39.32 2.251 6 4 1 Ž 40.02 2.211 2 2 ۵ 3 40.78 2.163 8 4 1 2 + 41.72 2.146 9 1 2 3 42.38 2.138 8 5 J 1 42.24 2.118 2 0 4 2 42.66 2.094 5 6 1 1 43.16

2.083

5

4.3 1

43.28

Ca	lculated	Pattern (Peak he	eights)	Ca	alculated	Pattern (Integra	nted)
d (Å)	I	hkl	$\frac{2\theta(°)}{\lambda = 1.54056 \text{ Å}}$	d (Å)	Ι	hkl	$\frac{2\theta(^{\circ})}{\lambda = 1.54056 \text{ Å}}$
2.081 2.057 2.053 2.037 2.022	7 8 7 8 2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	43.44 43.98 44.08 44.44 44.78	7.64 5.94 5.59 5.25 5.23	91 32 50 100 22	1 1 0 0 1 1 2 U 0 1 1 1 0 2 0	11.57 14.90 15.83 16.83 16.93
2.009 1.9853 1.9803 1.9020 1.8916	3 4 7 1 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	45.08 45.66 45.78 47.78 48.06	4.93 4.24 4.07 3.96 3.82	56 54 34 1 30 2	2 1 0 0 2 1 2 1 1 1 2 1 2 2 0	17.96 20.95 21.80 22.42 23.26
1.8864 1.8711 1.8668 1.8469 1.8420	6 10 7 1 2	3 2 3 5 1 2 4 3 2 + 4 4 1 3 4 2	48 • 2 G 48 • 5 2 48 • 7 4 49 • 3 0 49 • 4 4	3 • 61 3 • 43 6 3 • 37 7 3 • 33 C 3 • 31 4	2 25 3 3 18	0 U 2 1 0 2 2 2 1 1 3 0 3 0 1	24 •6 4 25 •9 1 26 •3 7 26 •7 5 26 •8 3
1.8364 1.8233 1.3104 1.8058 1.7971	6 7 5 4 2	6 1 0 5 3 1 + 0 5 2 6 0 1 + 4 1 3	49.60 49.98 50.36 50.50 51.76	3 • 26 4 3 • 15 9 3 • 14 0 3 • 03 7 3 • 02 4	8 7 ≥1 ≥5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	27 • 3 0 26 • 2 2 28 • 4 0 29 • 3 6 29 • 5 2
1 • 78 73 1 • 77 95 1 • 76 92 1 • 75 65 1 • 74 96	3 3 1 3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	51.36 51.30 51.62 52.02 52.24	2.971 2.960 2.913 2.872 2.799	12 4 1 15 2	D       2       2         2       3       0         2       1       2         1       2       2         3       2       1	30 •0 5 30 •1 7 30 •6 ö 31 •1 2 31 •9 4
1.7440 1.7227 1.7179 1.7066 1.7008	2 3 3 2 2	0 6 0 2 5 2 + 2 0 4 0 2 4 + 5 4 0	52.42 53.12 53.28 53.66 53.86	2.797 2.733 2.733 2.624 2.616	3 2 10 5 1	4 G D 2 <b>3 1</b> 4 <b>1</b> D 2 2 2 0 4 D	31 • 9 7 32 • 6 7 33 • 1 2 34 • 1 4 34 • 2 5
1.6949 1.5886 1.6760 1.6648 1.6391	2 4 2 2 2	2 1 4 4 4 2 + 1 6 1 + 2 6 0 5 0 3	54 • 0 6 54 • 2 8 54 • 7 2 55 • 1 2 56 • 0 6	2.639 2.594 2.518 2.538 2.467	11 8 7 12 1	4 C 1 3 C 2 3 1 2 0 3 2 4 2 0	34 • 3 5 34 • 5 5 35 • 6 3 35 • 7 7 36 • 3 9
1.6322 1.6285 1.6164 1.6035 1.5999	4 3 2 2 3	2 2 4 + 3 5 2 4 3 3 6 3 1 3 4 3	56 • 3 2 56 • 4 6 56 • 9 2 57 • 4 2 57 • 5 6	2 • 45 9 2 • 44 6 2 • 40 2 2 • 40 2 2 • 40 2 2 • 37 0	4 1 4 16 1	0 4 1 i 3 2 3 3 1 1 4 1 2 4 0	36 .51 36 .69 37 .4 J 37 .41 37 .94
1.5868 1.5794 1.5638 1.5604 1.5552	5 3 2 2 2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	58.08 58.38 59.02 59.16 59.38	2 • 34 5 2 • 33 4 2 • 32 4 2 • 29 6 2 • 28 9	4 3 15 21 20	i     1     3       4     2     1       3     2     2       1     1     3       2     3     2	38 • 3 5 38 • 5 3 38 • 7 1 39 • 2 1 39 • 3 3
1.5514 1.5434 1.5286 1.5119 1.5008	2 1 1 1 2	3 2 4 3 6 1 5 5 0 2 6 2 4 1 4	59.54 59.88 60.52 61.26 61.76	2.251 2.211 2.163 2.163 2.146	8 3 5 12	2 4 1 2 G 3 4 1 2 2 1 3 1 2 3	40.01 40.78 41.71 41.72 42.07

Ca	alculated	Pattern (Integra	nted)		Calculated	d Pattern <i>(Integra</i>	ated)
d (Å)	Ι	hkl	$\frac{2\theta(°)}{\lambda = 1.54056 \stackrel{\circ}{A}}$	d (Å)	Ι	hkl	$\frac{2\theta(°)}{\lambda = 1.54056 \text{ Å}}$
2.138	8	5 0 1	42.24	1.6885	2	2 4 3	54 • 2 8
2.118	2	0 4 2	42.65	1.6868	1	1 2 4	54 • 3 4
2.094	8	5 1 1	43.16	1.6760	2	1 6 1	54 • 7 2
2.089	2	4 3 1	43.28	1.6757	1	4 5 0	54 • 7 3
2.081	?	3 3 2	43.44	1.6643	3	2 6 0	55 • 1 2
2. 08 1	8	1 4 2	43.45	1.6389	2	5 0 3	56 • 0 7
2. 05 8	2	5 2 0	43.97	1.6323	2	4 5 1	56 • 3 2
2. 05 7	8	1 5 0	43.38	1.6321	4	2 2 4	56 • 3 2
2. 05 3	5	3 4 1	44.07	1.6287	1	3 5 2	56 • 4 5
2. 03 7	10	4 2 2	44.44	1.6166	3	4 3 3	56 • 9 1
2.036 2.022 2.010 1.9855 1.980∃	1 5 5 5	2 2 3 3 0 3 0 5 1 3 1 3 2 4 2	44 。45 44 。78 45 。07 45 。65 45 。77	1 • 60 35 1 • 59 59 1 • 58 68 1 • 57 96 1 • 56 39	3 3 8 4 1	6 3 1 3 4 3 1 3 4 6 2 2 5 2 3	57.42 57.56 58.06 58.37 53.31
1.9808	1	0 3 3	45.77	1.5636	1	1 5 3	59.03
1.9738	2	5 2 1	45.82	1.5608	3	7 0 1	59.15
1.9732	3	1 5 1	45.83	1.5550	3	1 6 2	59.39
1.9721	2	5 0 2	47.78	1.5516	2	3 2 4	59.53
1.8915	6	2 5 1	48.06	1.5432	2	3 6 1	59.89
1.8862	5	3 2 3	48.20	1.5285	1	5 5 0	60.52
1.8715	15	5 1 2	48.61	1.5113	1	2 6 2	61.26
1.8675	2	4 3 2	48.72	1.5310	3	4 1 4	61.75
1.8673	1	2 3 3	48.73	1.4956	1	7 2 1	62.00
1.8471	1	4 4 1	49.29	1.4954	2	5 5 1	62.01
1.8413	g g S S	3 4 2	49.44	1.4833	1	5 3 3	62.57
1.8361		6 1 0	49.61	1.4799	1	4 6 0	62.73
1.8250		3 5 0	49.53	1.4728	3	3 3 4	63.07
1.8244		4 0 3	49.55	1.4542	2	3 5 3	63.97
1.8226		5 3 1	50.00	1.4513	3	1 7 1	64.11
1 • 81 04	7	0 5 2	50.36	1.4497	1	4 6 1	64.19
1 • 80 57	1	6 0 1	50.50	1.4476	2	7 1 2	64.30
1 • 80 50	1	0 0 4	50.52	1.4472	1	3 6 2	64.31
1 • 79 73	2·	4 1 3	53.75	1.4304	1	3 i 5	65.16
1 • 78 72	4	1 5 2	51.06	1.4304	1	7 3 1	65.46
1.7794	3	6 1 1	51.30	1.4189	1	5 2 3	65.76
1.7711	1	C 4 3	51.56	1.4160	1	2 7 1	65.91
1.7594	4	3 5 1	51.61	1.4075	2	5 5 2	66.36
1.7567	1	I 1 4	52.01	1.3997	4	6 4 2	66.76
1.7494	2	3 3 3	52.25	1.3864	1	8 1 D	67.50
1.7493	2	1 4 3	52 • 2 5	1.38 02	2	3 4 4	67.85
1.7438	2	0 6 0	52 • 4 3	1.36 92	1	2 6 3	63.47
1.7227	1	4 2 3	53,• 1 2	1.36 71	1	6 5 1	68.59
1.7225	4	2 5 2	53 • 1 3	1.36 40	2	7 4 0	68.76
1.7178	2	2 0 4	53 • 2 8	1.35 79	1	6 3 3	63.12
1.7069 1.7063 1.7005 1.6951 1.6887	1 2 2 4	6 2 1 0 2 4 5 4 0 2 1 4 4 2	53 •6 5 53 •6 7 53 •8 7 54 •0 5 54 •2 8	1 • 35 69 1 • 35 12 1 • 35 08 1 • 33 56 1 • 33 16	1 2 2 1 1	5 2 4 5 6 1 2 2 5 3 1 5 7 0 3	69.18 69.51 69.54 70.44 70.69

Hexagonal,  $P_{6_3}mc$  (186), Z=2 [Ansell and Katz, 1966]

#### Lattice parameters

a=5.759±0.004, c=9.903±0.005Å [ibid.]

#### Scattering factors

O⁻¹ [3.3.1A]; Zn⁺² and Mo⁺⁴ [Thomas and Umeda 1957], corrected for the real part of the anomalous dispersion [Dauben and Templeton,1955]

#### Thermal parameters

Isotropic [Ansell and Katz, 1966]

#### Density

(calculated) 6.381 g/cm³

#### Scale factor

 $4.920 \times 10^{4}$ 

#### Additional patterns

1. PDF card 16-663 [Donohue and Katz, 1964]

# Reference Ansell,G.B. and L. Katz (1966). A refinement of the crystal structure of zinc molybdenum(IV) oxide, Zn₂Mo₃O₆, Acta Cryst. 21, 482-485.

- Dauben, C.H. and D.H. Templeton (1955). A table of dispersion corrections for x-ray scattering of atoms, Acta Cryst. 8, 841-842.
- Donohue, P.C. and L. Katz (1964). A lithium-scandium-molybdenum(IV) oxide, Nature 201, 180-181.
- Thomas, L. H. and K. Umeda (1957). Atomic scattering factors calculated from the TFD atomic model,J.Chem.Phys.26,293-303.

Calculated Pattern (Peak heights)											
d (Å)	Ι		hkl		$2\theta(^{\circ})$ $\lambda = 1.54056 \stackrel{\circ}{A}$						
4.95 4.45 3.51 2.879 2.753	78 18 100 3 37	0 1 1 1 1	0 0 0 1 0	2 1 2 0 3	17.90 19.92 25.32 31.04 32.50						
2.489 2.475 2.419 2.228 2.220	85 24 75 16 10	1 0 2 2 1	1 0 0 0	2 4 1 2 4	36 • 0 6 36 • 2 6 37 • 1 4 40 • 4 6 40 • 6 0						
1.9894 1.8849 1.8776 1.8518 1.8406	39 7 3 12 2	2 2 1 2 1	0 1 1 1 0	3 0 4 1 5	45.56 48.24 48.44 49.16 49.48						
1.7571 1.6505 1.6370 1.5759 1.5672	21 4 33 17 5	2 0 2 3 1	0 1 0 0	4 6 3 2 6	52.00 55.64 56.14 58.52 58.88						
1.5509 1.4999 1.4848 1.4399 1.4320	41 3 23 3	2 2 3 2 1	C 1 0 2 1	5 4 3 0 6	59.56 61.80 62.50 64.68 65.08						
1.3825 1.3793 1.3764 1.3655 1.3610	5 3 5 3 4	2 3 2 2 1	2 0 1 0	2 4 5 7	67.72 67.90 62.06 68.68 68.94						
1 • 3323 1 • 2758 1 • 2732 1 • 2467 1 • 2445	4 2 3 2 7	3 3 4 2	1 1 0 2	2 3 5 0 4	70 • 6 4 74 • 2 8 74 • 4 6 76 • 3 2 76 • 4 8						
1.2371 1.2304 1.2092 1.2013 1.1713	5 4 1 1 2	4 2 4 1 3		1 + 7 2 8 6	77 •02 77 •52 79 •14 79 •76 82 •24						
1.1664 1.1441 1.1371 1.1341 1.1316	3 2 1 2 7	4 3 1 3 2	0 2 1 1	3 0 8 5 7	82 •66 84 •64 85 •28 85 •56 85 •8 D						
1.1147 1.1089 1.0850 1.0820 1.0774	10 1 3 3 2	3 2 4 3	2 J 2 1 G	2 + 8 6 1 + 7	87.42 88.00 90.46 90.78 91.28						

Calculated Pattern (Peak heights)		Calculated Pattern (Integrated)					
d (Å)	Ι	hkl	$\frac{2\theta(°)}{\lambda = 1.54056 \text{ Å}}$	d (Å)	Ι	hkl	$\frac{2\theta(^{\circ})}{\lambda = 1.54056 \stackrel{\circ}{A}}$
1.0746 1.0630 1.0603 1.0551 1.0386	1 4 3 6 4	1 0 9 4 1 2 3 1 6 4 0 5 3 2 4	91 •5 8 92 •8 8 93 •1 8 93 •7 8 95 •7 4	4.99 4.95 4.45 3.51 2.880	4 68 17 100 3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	17.77 17.90 19.92 25.33 31.03
1.0336 1.0067 .9975 .9950 .9926	2 4 1 3	4 1 3 2 0 9 5 0 0 4 0 6 5 0 1 +	96 • 3 € 99 • 8 4 101 • 10 101 • 4 6 101 • 80	2.753 2.494 2.489 2.476 2.418	39 27 78 19 86	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	32.50 35.98 36.05 36.25 37.15
• 99 03 • 98 91 • 95 48 • 95 39 • 95 03	3 2 4 2 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	102 •12 102 •30 107 •56 107 •70 108 •30	2.227 2.213 1.989B 1.8851 1.8773	19 5 47 8 2	2 0 2 1 0 4 2 0 3 2 1 0 1 1 4	40.47 40.55 45.55 48.24 48.45
。9424 。9403 。9385 。9361 。9252	1 6 7 4 1	4 2 0 3 2 6 2 2 8 ↓ 4 0 7 ↓ 5 0 4	109.64 110.00 110.32 110.74 112.72	1.8518 1.8408 1.7569 1.6506 1.6395	15 2 27 5 12	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	49.16 49.47 52.01 55.54 56.04
• 92 28 • 92 03 • 91 76 • 90 63 • 89 09	1 1 2 2	3 1 8 2 0 10 3 0 9 4 2 3 5 0 5	113.18 113.64 114.16 116.40 119.68	1.6370 1.5760 1.5669 1.5509 1.4998	38 22 7 56 4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	56.14 58.52 58.89 59.56 61.81
- 8896 - 8809 - 8785 - 8645 - 8626	1 1 1 2	3 2 7 4 2 4 4 0 8 5 1 3 4 1 7	119.96 121.96 122.52 126.00 126.50	1.4848 1.4397 1.4319 1.3825 1.3802	7 34 4 6 1	3 0 3 2 2 0 1 1 6 2 2 2 3 0 4	62.50 64.69 65.08 67.72 67.85
• 8611 • 8511 • 8468 • 8423 • 8403	1 7 3 1 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 26 •9 0 1 29 •6 6 1 30 •9 2 1 32 •2 6 1 32 •9 0	1.3763 1.3655 1.3610 1.3323 1.2758	646 62	2 0 6 2 1 5 1 0 7 3 1 2 3 1 3	68.06 68.58 68.94 73.54 74.28
• 8312 • 8250 • 8199 • 8185 • 8171	2 2 1 3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 35 .8 4 1 38 .0 2 1 39 .9 2 1 40 .4 8 1 41 .0 0	1.2734 1.2469 1.2445 1.2375 1.2371	4 2 10 4 6	3 0 5 4 0 0 2 2 4 0 0 8 4 0 1	74.45 76.31 76.47 76.96 77.02
.8159 .8152 .8139 .8124 .7960	5 5 3 8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	141.50 141.78 142.30 142.94 150.80	1.2305 1.2091 1.2014 1.1713 1.1664	6 1 2 3 4	2 0 7 4 0 2 1 0 8 3 0 6 4 0 3	77.51 79.15 79.75 82.24 82.56
.7916 .7884 .7873 .7844 .7835	1 5 1 1 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	153.32 155.38 156.12 158.24 158.94	1.1442 1.1372 1.1341 1.1315 1.1149	3 1 2 11 18	3       2       0         1       1       8         3       1       5         2       1       7         3       2       2	84.53 85.27 85.57 85.81 87.41
Zinc	Molybdate,	Zn2Mo308	(hexagonal) -	<ul> <li>continued</li> </ul>			
------	------------	----------	---------------	-------------------------------			
------	------------	----------	---------------	-------------------------------			

Calculated Pattern (Integrated)		ated)	Calculated Pattern (Integrated)				
d (Å)	Ι	hkl	$\frac{2\theta(^{\circ})}{\lambda = 1.54056 \text{ Å}}$	d (Å)	Ι	hkl	$\frac{2\theta(^{\circ})}{\lambda = 1.54056 \text{ Å}}$
1.1135	4	4 0 4 2 0 8 2 2 5	87.53 88.01	.8909 .8895	4	5 0 5 3 2 <b>7</b>	119.58 119.96
1.0818	4		90.80	.8859	1	1 0 11	120.79
1.0811	1	3 2 3	90.88	.8785		4 0 8	122.53
1.0745	1		91.59	•8645	2	5 1 3	126.00
1.0502	2	3 1 6	93.20	.8525	4	4 1 7	125.49
1.0552	10	2 2 6	05.74	.8537	1	506	128.92
1.0335	3		96.36	• 85 0/8	2	3 0 10	129.75
.9975	2	500	101.11	- 8468 - 8423	8	2 0 11	13D.92 132.26
·90.20	2	то 5 то 8	101.76	-8402 -8312	12	3 2 8	132.91 135.84
• 9925	4	501	101.91	.8252	2	0 0 12	137.94
•9903	2		102.12	.8250 .8199	64	4 0 9 4 3 0	138.02 139.92
9598	1	3 3 0	105.74	.8185 .8174	2	426 418	140.48 140.92
• 95 48	9	5 0 3	107.55	.8171	6	4 3 1	141.01
• 95 03	3	2 1 9	108.30	•8162 •8159	1 14	5 1 5 2 2 10	141.39
.9403	12	3 2 6	110.06	.8152 .8142	12	5 0 7 1 0 12	141.77 142.20
• 9385	9	2 2 8	110.30	.8124	9	2 1 11	142.95
.9365	1	1 1 10	110.68 110.87	.8089 .7960	2 24	4 3 2 5 2 1	144.44
• 9252	2	504	112.72	•7957 •7933	21	4 3 3 1 1 12	150.93
• 9224 • 9204	1 3	3 1 8 2 0 10	113.24 113.53	.7931	3	329	152.44
•9175 •9086	3 1	309 416	114.17 115.94	•7915 •7884 •7880	5 24 5	3 0 11 5 2 2 6 0 4	153.31 155.36 155.65
.9063	4	4 2 3	116.40	.7873	1	5 1 6 4 2 7	156.13 156.23
.8949	1	3 3 4	116.79	.7835	7	2 0 12	158.95



# **CUMULATIVE INDEX TO CIRCULAR 539, VOLUMES 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, MONOGRAPH 25, SECTIONS 1, 2, 3, 4, 5, 6, and 7⁵**

4m

2m

	Vol. or		Vc	1. or
	sec.	Page		sec.
Aluminum, Al	1	11	Ammonium iron sulfate dodecahydrate,	
Aluminum antimony, AlSb	4	72	$NH_{4}Fe(SO_{4})_{2} \cdot 12H_{2}O$	6
Aluminum calcium sulfate hydrate (ettring-			Ammonium manganese sulfate, (NH ₄ ) ₂ Mn ₂ (SO ₄ ) ₃	7m
ite), Al ₂ O ₃ ·6CaO·3SO ₃ ·31H ₂ O	8	3	Ammonium manganese(II) trifluoride, NH_MnF ₃	5m
Aluminum chloride hexahydrate (chlor-			Ammonium mercury(II) trichloride, NH ₄ HgCl ₃	5m
aluminite), AlCl, 6H,O	7	3	Ammonium metavanadate, NH, VO,	8
Aluminum fluosilicate, topaz, Al,SiO ₄ (F,OH),	1m	4	Ammonium nickel (II) trichloride, NH, NiCl.	6m
Aluminum metaphosphate, Al(PO,),	2m	3	Ammonium nitrate (ammonia-niter), NH, NO,	7
Aluminum nickel. AlNi	6m	82	Ammonium oxalate monohydrate (oxammite).	
Aluminum orthophosphate (berlinite), AlPO,		0 -	(NH) CO.HO	7
(trigonal)	10	3	Ammonium perchlorate NH $ClO$ (ortho-	
Aluminum orthophosphate, AlPO, (ortho-		0	rhombic)	7
rhombic)	10	4	Ammonium porrhonato NH PoO	0
Aluminum oxide (corundum) alpha Al O	9	3	Ammenium phermelate, NI ₄ NeO ₄	3
Aluminum oxide monohydrate (böhmite) alpha	5	5	Ammonium phosphomolybuate tetranyulate,	0
	2	20	$(NH_4)_3 PO_4 (MOO_3)_{12} \cdot 4H_2 O$	0
Aluminum avida monohydrata diagnora beta	э	30	Ammonium sullate (mascagnite), $(NH_4)_2SO_4$	0
Alo uo	0		(revised)	9
$Al_2 O_3 \cdot H_2 O$	3	41	Ammonium zirconium fluoride, (NH ₄ ) ₃ ZrF ₇	6
Aluminum silicate (mullice) $3A1_2O_3 \cdot 2SiO_2 \dots$	Зm	3	Antimony, Sb	3
Ammonium aluminum sulfate dodecahydrate			Antimony(III) fluoride, SbF ₃	2m
(teschermigite), $NH_4Al(SO_4)_2 \cdot 12H_2O \dots$	6	3	Antimony(III) iodide, SbI ₃	6
Ammonium azide, $NH_4N_3$	9	4	Antimony(III) oxide (senarmontite), Sb ₂ O ₃	
Ammonium bicarbonate (teschemacherite),			(cubic)	3
(NH ₄ )HCO ₃	9	5	Antimony(III) oxide, valentinite, Sb ₂ O ₃	
Ammonium bromide, NH, Br	2	49	(orthorhombic)	10
Ammonium bromoosmate, (NH ₄ ) ₂ OsBr ₆	3	71	Antimony(IV) oxide (cervantite), Sb ₂ O ₄	10
Ammonium bromoplatinate, (NH,), PtBr,	9	6	Antimony(V) oxide, Sb ₂ O ₅	10
Ammonium bromoselenate. (NH.), SeBr.	8	4	Antimony scandium, SbSc	4m
Ammonium bromotellurate. (NH.), TeBr.	8	5	Antimony selenide, Sb,Se,	3m
Ammonium cadmium sulfate (NH) Cd (SO)	7m	5	Antimony (III) sulfide (stibnite), Sb ₂ S,	5
Ammonium cadmium trichloride NH CdCl	5m	6	Antimony telluride, Sb. Te.	3m
Ammonium chloride (sal-ammoniac) NH Cl	1	59	Antimony terhium ShTb	5m
Ammonium chloroiridato (NH) IrCl	0	6	Animony thorium ShTh	4m
Ammonium chloroosmate $(NH_4)_2 HCI_6 \dots$	0 1m	6	Antimony thulium ShTm	4m
Ammonium chloropolladata ( $MI_4$ ) ₂ OSCI ₆	100	7	Antimony uttorbium ShVb	4m
Ammonium chloropalladite ( $NH_4$ ) ₂ PdCl ₆	0	( (	Antimony ytterbruin, Sorb	.1m
Ammonium chloropalladite, $(NH_4)_2PaCl_4$	6	0	Antimony yturium, SD1	-1111 -7.m
Ammonium chloroplatinate, $(NH_4)_2 PtCl_6$	5	3	Arsenic acid, $H_5$ : $AS_3O_{10}$	2
Ammonium chlorostannate $(NH_4)_2$ SnCl ₆	5	4	Arsenic, As	S
Ammonium chlorotellurate, $(NH_4)_2$ leCl ₆	8	8	Arsenic(III) loalde, Asi,	1
Ammonium chromium sulfate dodecahydrate,		_	Arsenic trioxide (arsenolite), $As_2O_3$ (cubic).	1
$NH_4Cr(SO_4)_2 \cdot 12H_2O$	6	7	Arsenic trioxide, claudetite, As ₂ O ₃ (mono-	0
Ammonium cobalt (II) trichloride, $NH_4$ CoCl ₃	6m	5	clinic)	3111
Ammonium copper chloride, NH ₄ CuCl ₃	7m	7	Azobenzene, C ₁₀ H ₁₂ N ₂	7m
Ammonium dihydrogen phosphate, NH ₄ H ₂ PO ₄	4	64	Barium, Ba	- +
Ammonium fluoberyllate, $(NH_4)_2BeF_4$	3m	5	Barium aluminum oxide, BaAl ₂ O ₄	5m
Ammonium fluoborate, NH ₄ BF ₄	3m	6	Barium arsenate, $Ba_3(AsO_4)_2$	2m
Ammonium fluogermanate, $(NH_4)_2 GeF_6 \dots$	6	8	Barium borate, BaB ₈ O ₁₃	7m
Ammonium fluosilicate (cryptohalite),			Barium boron oxide, high form, $BaB_2O_4$	4m
$(\mathrm{NH}_4)_2\mathrm{SiF}_6\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots$	5	5	Barium boron oxide, BaB ₄ O ₇	4m
Ammonium gallium sulfate dodecahydrate,			Barium bromide monohydrate, BaBr ₂ .H ₂ O	3m
$NH_4Ga(SO_4)_2 \cdot 12H_2O \dots \dots \dots \dots \dots$	6	9	Barium carbonate (witherite), BaCO ₃ (ortho-	
Ammonium iodide, NH ₄ I	4	56	rhombic)	2
			Barium carbonate, BaCO ₃ (cubic) at 1075 °C	10
⁵ Further work on this program is in progress, and	it is anti	ic-	Barium fluoride, BaF ₂	1

³ Further work on this program is in progress, and it is anticipated that additional sections will be issued. Therefore, the accumulative index here is not necessarily the concluding index for the project.

m_Monograph 25.

A mineral name in ( ) indicates a synthetic sample.

Barium fluosilicate, BaSiF₆.....

Barium molybdate, BaMoO₄ .....

Barium nitrate (nitrobarite),  $Ba(NO_3)_2$  .....

Barium perchlorate trihydrate, Ba(ClO₄)₂.3H₂O

Barium peroxide, BaO₂.....

	Vol. or	
	sec.	Page
Barium selenide, BaSe	5m	61
Barium stannate, BaSnO ₃	3m	11
Barium sulfate (barite), BaSO ₄	3	65
Barium sulfide, BaS	7	8
Barium titanate, BaTiO ₃	3	45
Barium tungstate, BaWO,	7	9
Barium zirconate, BaZrO ₃	5	8
Beryllium aluminum oxide (chrysoberyl),	0	10
BeAl ₂ O ₄	9	10
Beryllium aluminum silicate, beryl,	0	10
$\operatorname{Be}_{3}\operatorname{Al}_{2}(\operatorname{SlO}_{3})_{6}$	9	13
Beryllium calcium oxide, Be ₁₇ Ca ₁₂ O ₂ ,	10 10	89
Beryllium chromium oxide, $BeCr_2O_4$	10	14
Beryllium comanete. Be CoO	10	12
Beryllium germanate, Be ₂ GeO ₄	10	13
Beryllium nioblum, Be,No	-7111 •	92
Beryllium orthosinicate, phenacite, $BeSi_2O_4$	0	36
Berymun oxide (bromenne), BeO	5m	.30
<b>Berymun panaurum</b> , Beru	6m	7
BIS (0-dodecacarborane), $C_4 D_{20} \Pi_{22} \dots \dots$	2	20
Dismuth corium BiCo	ن مار	46
Pigmuth dysprosium PiDy	4m	10
Bismuth orbium BiEr	4m	41
Dismuth fluorido PiF	-1m	40
Dismuth bolmium DiHo	4m	10
Pismuth (III) iodide Bil		20
Bismuth lanthanum Bil.a	4m	49
Bismuth neodymium BiNd	4m	40
Bismuth orthophosphate BiPO (monoclinic)	3m	11
Bismuth orthophosphate, BiPO (trigonal)	3m	13
Bismuth orthoganadate low form BiVO	om	10
(tetragonal)	3m	14
Bismuth orthovanadate high form BiVO	Joint	
(monoclinic)	3m	14
Bismuth oxybromide. BiOBr	8	14
Bismuth oxychloride (bismoclite), BiOCl	4	54
Bismuth oxviodide. BiOI	9	16
Bismuth praseodymium, BiPr	4m	49
Bismuth sulfide (bismuthinite), Bi,S, (revised)	5m	13
Bismuth telluride, BiTe	4m	50
Bismuth telluride (tellurobismuthite), Bi, Te,	3m	16
Bismuth trioxide (bismite), alpha Bi,O,	3	16
Cadmium, Cd	3	10
Cadmium bromide, CdBr,	9	17
Cadmium carbonate (otavite), CdCO,	7	11
Cadmium cerium, CdCe	5m	63
Cadmium chloride, CdCl,	9	18
Cadmium chromite, CdCr,O,	5m	16
Cadmium cyanide, Cd(CN),	2m	8
Cadmium lanthanum, CdLa	5m	63
Cadmium molybdate, CdMoO ₄	6	21
Cadmium nitrate tetrahydrate,		
$Cd(NO_3)_2 \cdot 4H_2O$	7m	93
Cadmium oxide, CdO	2	27
Cadmium oxide, CdO (ref. standard)	4m	4
Cadmium perchlorate hexahydrate,		
$Cd(ClO_4)_2 \cdot 6H_2O$	3m	19
Cadmium praseodymium, CdPr	5m	64
Cadmium selenide, CdSe (hexagonal)	7	12
Cadmium sulfate, CdSO ₄	3m	20
Cadmium sulfate hydrate, 3CdSO ₄ •8H ₂ O	6m	8

m-Monograph 25. A mineral name in ( ) indicates a synthetic sample.

	Vol. or	
	sec.	Page
Cadmium sulfate monohydrate, CdSO, H.O	6m	10
Cadmium sulfide (greenockite), CdS	4	15
Cadmium telluride CdTe	3m	21
Cadmium tungstate CdWO	2m	21
tri Coloium aluminata 2000 Al O	2111	10
Galaium aluminate, 30a0.Al ₂ 0 ₃	5	10
Calcium aluminate, $12CaO \cdot 7AI_2O_3$	9	20
Calcium aluminum germanate, $Ca_3Al_2(GeO_4)_3$	10	15
Calcium bromide hexahydrate, CaBr ₂ ·6H ₂ O	8	15
Calcium carbonate (aragonite), CaCO ₃ (or-		
thorhombic)	3	53
Calcium carbonate (calcite) CaCO, (hexagonal	) 2	51
Calcium chromate. CaCrO	7	13
Calcium chromium germanate Ca.Cr. (GeO.)	10	16
Calcium chromium silicate (uvarovite)	10	10
Co Cr (SiO)	10	17
$Ca_3 Cl_2(SIO_4)_3$	10	11
Calcium fluoride (fluorite), Car ₂	1	69
Calcium fluoride phosphate (fluorapatite),		
$\operatorname{Ca}_{s} F(\operatorname{PO}_{4})_{3} \dots \dots$	3m	22
Calcium formate, Ca(HCO ₂ ) ₂	8	16
Calcium gallium germanate, Ca,Ga,(GeO,),	10	18
Calcium hydroxide (portlandite), Ca(OH),	1	58
Calcium iron germanate, Ca.Fe.(GeO.),	10	19
Calcium iron silicate (andradite)	10	
Ca Fe Si O	0	22
Coloium magnesium silicate (dionside)	5	22
Calcium magnesium sincate (diopside),	Em	17
$Camg(SIO_3)_2$	DIII	17
Calcium molybdate (powellite), CamoO ₄	6	22
<b>Calcium</b> nitrate, Ca $(NO_3)_2$	7	14
Calcium oxide, CaO	1	43
Calcium phosphate, beta-pyro-, Ca ₂ P ₂ O ₇	7m	95
Calcium selenide, CaSe	5m	64
Calcium sulfate (anhydrite), CaSO,	4	65
Calcium sulfide (oldhamite), CaS	7	15
Calcium telluride. CaTe	4m	50
Calcium tungstate scheelite CaWO	6	23
Carbon diamond C	2	5
Corium ontimony CoSh	4	40
Cerium, antimony Cess	4	40
	4111	- 1
Cerium arsenide, CeAs	4m	51
Cerium(III) chloride, $CeCl_3$	1m	8
Cerium copper, CeCu ₆	7m	99
Cerium(III) fluoride, CeF ₃	8	17
Cerium magnesium, CeMg	5m	65
Cerium magnesium nitrate 24-hydrate,		
Ce_Mg_(NO_)24H_O	10	20
Cerium niobium titanium oxide (eschynite)	10	
CeNhTiO	3m	24
Corium nitrido. CoN	4m	21 E1
Certum Intilue, Celv	4111	51
Certum( $1V$ ) oxide (certainte), CeO ₂	1	56
Cerium phosphide, CeP	4m	52
Cerium(III) vanadate, CeVO ₄	1m	9
Cerium zinc, CeZn	5m	65
Cesium aluminum sulfate dodecahydrate,		
$CsAl(SO_{4})_{2} \cdot 12H_{2}O$	6	25
Cesium bromate, CsBrO,	8	18
Cesium bromide. CsBr	3	49
Cesium bromoosmate(IV) Cs OsBr	2m	10
Cesium bromonlatinate Cs PtBr	8	10
Cosium bromosolonate Co SoPr	0	20
Cogium bromotollurate Co ToDr	0	20
Cesium promoteriurate, CS ₂ TeBr ₆	9	24
(base and b)	-	10
(nexagonal)	5m	19
Cesium calcium sulfate, $Cs_2Ca_2(SO_4)_3$	7m	12
Cesium calcium trichloride, CsCaCl ₃	5m	21
Cesium cerium chloride. Cs.CeC1	7m	101

	Vol. or	
	sec.	Page
Cesium chlorate, CsClO ₃	8	20
Cesium chloride, CsCl	2	44
Cesium chloroosmate(IV), $Cs_2OsCl_6$	<b>2</b> m	11
Cesium chloroplatinate, Cs ₂ PtCl ₆	5	14
Cesium chlorostannate, $Cs_2SnCl_6$	5	16
Cesium chromate, Cs ₂ CrO ₄	3m	25
Cesium chromium sulfate dodecahydrate,		
$CSCF(SO_4)_2 \cdot 12H_2O$	8	21
Cesium cobait (II) tricnioride, CSCoCla	6m	11
Cesium copper sulfate hexanydrate,		
$Cs_2Cu(SO_4)_2 \cdot 6H_2O$	7m	14
Cesium copper(11) tricnioride, CSCuCi ₃	5m	22
Cosium flucontinonate, CSICI ₂	3	50
Cosium fluckareta, CaBE	4m	9
Cesium fluonorate, CSBF4	8	22
Cosium fluoplatinate, Cs ₂ GeF ₆	5	17
Cosium fluorida Call	6	27
Cogium fluoride, CSF	3m	26
Cogium collium culfate dedecebudrate	5	19
Cestum garnum sunate dodecanydrate,		
Cooline indian hermide Col De	8	23
Consignation for the formulae, CSI2Br	'/m	103
Consign founde, CSI	4	47
Cestum from suitate dodecanydrate,	0	00
$CSFP(SO_4)_2 \cdot 12\Pi_2 O \dots \dots \dots \dots \dots \dots \dots$	0	28
Cesium fron suffate nexanydrate,	-	4.0
$Cs_2 Fe(SO_4)_2 \cdot 6H_2O \cdot CaDhCl$	7m	16
(totragonal)	Em	04
(reuagonai)	2111	24
Cosium magnasium sulfata havabudaata	Υm	105
Cestum magnestum surfate nexanyurate,		10
$Cs_2 Mg(SO_4)_2 \cdot 6H_2 O \dots O H_2 O$	.7 m	18
Cestum manganese surfate nexanyurate,	17 m	00
$C_{2}$ MI( $SO_{4}$ ) ² OI ² O	(111 17 m	20
Cesium nickol sulfate beyehudrate	7111	22
Cesium model sufface negativulate,	7 m	
Cesium nickel (II) trichlaride CsNiCl	6m	23 12
Cesium nitrate CsNO	0	25
Cesium perchlorate CsClO (orthorhombic)	1m	10
Cesium strontium trichloride CsSrCl	6m	13
Cesium sulfate Cs.SO	7	17
Cesium vanadium sulfate dodecahydrate.	•	
CsV(SO.).12H.O	1 m	11
Cesium zinc sulfate hexabydrate		
Cs. Zn(SO)6H.O.	7m	25
Chromium. Cr	5	20
Chromium fluoride, Cr.F.	7m	108
Chromium(III) fluoride trihydrate, CrF. 3H.O	5m	25
Chromium iridium 3:1. Cr.Ir	6m	14
Chromium orthophosphate, alpha, CrPO,	<b>2</b> m	12
Chromium orthophosphate, beta, CrPO,	9	26
Chromium(III) oxide, Cr.O.	5	22
Chromium rhodium 3:1, Cr, Rh	6m	15
Chromium silicide, Cr.Si	6	29
Cobalt, Co (cubic)	4m	10
Cobalt aluminum oxide, CoAl,O,	9	27
Cobalt antimony oxide, CoSb,O.	5m	26
Cobalt arsenide (skutterudite), CoAs,	10	21
Cobalt(II) carbonate (spherocobaltite),		
CoCO ₃	10	24

0.5

m-Monograph 25. A mineral name in ( ) indicates a synthetic sample.

<b>DEX–Continued</b>		
	Vol. or	
Cobalt diarsenide, CoAs ₂ (revised) Cobalt fluosilicate hexahydrate	sec. 4m	Page 10
CoSiF ₄ ·6H ₂ O	3m	27
Cobalt gallate, CoGa ₂ O ₄	10	27
Cobalt germanate, Co ₂ GeO ₄	10	27
Cobalt iodide, Col ₂	4m	52
Cobalt from arsenide (satilorite), CoFeAs ₄	10	28
Cobalt mercury unocyanate, Co[Hg(CNS) ₄ ]	2111	13
Cobalt(II, III) oxide, Co ₃ O ₄ Cobalt perchlorate hexahydrate,	9	29
$Co(ClO_4)_2 \cdot 6H_2O$	3m	28
Cobalt silicate, $Co_2SiO_4$ (orthorhombic)	4m	11
Cobalt sulfate, beta, CoSO ₄	2m	14
Cobalt tungstate. CoWO	4m 4m	13
Copper Cu	9100 1	15
Copper antimony oxide, CuSb ₂ O ₂	5m	27
Copper(I) bromide, CuBr	4	36
Copper carbonate, basic, azurite,		
$CU_{3}(OH)_{2}(CO_{3})_{2}$	10	30
Copper carbonate, basic, (malachite),	10	
$CU_2(OH)_2CU_3$	10	31
Copper (I) children (hallokite), CuCr	4	35
$CuC_{\rm r}$ H-NO ·2H-O	7 m	110
Copper(I) iodide (marchite), CuI	4	38
Copper (I) oxide (cuprite), Cu ₂ O	2	23
Copper(II) oxide (tenorite), CuO	1	49
Copper phosphate, alpha-pyro-, $Cu_2P_2O_7$	7m	113
Copper Sulfate (charcocyanite), CuSO ₄	3m	29
Dihenzovlmethane C H O	12 17 m	115
Dysprosium antimony. DySb	4m	41
Dysprosium arsenate, DyAsO ₄	3m	30
Dysprosium arsenide, DyAs	4m	53
Dysprosium gallium oxide, $Dy_3Ga_2(GaO_4)_3$	2m	15
Dysprosium nitride, DyN	4m	53
Dysprosium sesquioxide, $Dy_2O_3$	4m	30 54
Dysprosium vanadate. DyVO	4m	15
Erbium antimony. ErSb	4m	41
Erbium arsenate, ErAsO ₄	3m	31
Erbium arsenide, ErAs	4m	54
Erbium gallium oxide, Er ₃ Ga ₂ (GaO ₄ ) ₃	1m	12
Erbium manganite, ErMnO ₃	2m 4m	16
Erbium nhosphate ErPO	4111	20
Erbium sesquioxide. Er.O.	8	25
Erbium telluride, ErTe	4m	55
Erbium vanadate, ErVO ₄	5m	29
Europium arsenate, EuAsO ₄	3m	32
Europium(III) chloride, EuCl ₃	1m	13
Europium gallium oxide, $Eu_3Ga_2(GaO_4)_3$	2m	17
Europium nitride, Euro	4111 .1m	56
Europium oxychloride EuOCl	1m	13
Europium(III) vanadate, EuVO,	4m	16
Gadolinium antimony, GdSb	4m	42
Gadolinium arsenate, GdAsO ₄	4m	17
Gadolinium arsenide, GdAs	4m	57
Gadolinium chloride hexahydrate,	-	1.0.0
Gadolinium fluoride GdF	1m	118
Gadolinium gallium oxide. Gd.Ga.(GaO.)	2m	18
Gadolinium indium, GdIn	5m	67

Vol. or sec.

Lutetium vanadate, LuVO₄.....

Magnesium, Mg.....

5m

1m

3m

4m

3

7

5m

4m

5m

1

4m

2

2

 $\mathbf{2}$ 

8

1

5

5

5

7

2

2

5

8

8

5

3

2

5

5m

2m

5m

7m

.4

1

1

7

1m

6m

7

1m

8 4m

3m

7m

6m

6m

4m 2m

1m 2m

7m

5m

2m

2m

4m

1m

5m

1

5m

Page

69

22

37

61

33

22

69

61

70

34

19

47

56

45

30

76

31

33

34

23

30

32

36

32

32

33

38

67

18 39

34

19

35

62

61

26

23

22

27

25

34.

21

39

128

24

26

22

20

25

20

131

36

22

23

62

27

37

10

126 30

	VOI. OF		
	sec,	Page	
Gadolinium nitride, GdN	4m	57	Lanthanum magnesium, LaMg
Gadolinium oxide, Gd,O,	1m	16	Lanthanum magnesium nitrate 24-hydrate,
Gadolinium oxychloride, GdOCl	1m	17	$La_{Mg}(NO_{2})_{1,2} \cdot 24H_{2}O \dots$
Gadolinium vanadate, GdVO	5m	30	Lanthanum niobium titanium oxide, LaNbTiO,
Gallium, Ga	2	9	Lanthanum nitride, LaN
Gallium arsenide. GaAs	3m	33	Lanthanum oxide. La.O.
Gallium antimonide. GaSb	6	30	Lanthanum oxychloride. LaOCl
Gallium oxide alpha Ga O.	4	25	Lanthanum phosphide LaP
Gallium phosphate (~ouartz type) GaPO	8	27	Lanthanum selenide LaSe
Germanium Ge	1	18	Lanthanum zine LaZn
Germanium diovide GeO (bevagonal)	-	10	Load Ph
(low form)	1	51	Lead heren evide DhP O
Germanium diovide GeO (tetragonal)	1	01	Lead bromide, $PDB_4O_7$
(high form)	Q	20	Lead parhamete (compagite) $BbCO$
Germanium iodide. Gel	4m	58	Lead chlorida (cetuppita) BhCl
Germanium (IV) jodide Gel		25	Lead chioride (cotumitte), $FDCI_2$
Gold Au	1	20	Lead formate, $PD(HCO_2)_2$
Gold antimony 1.2 (aurostihite) Aush	7	18	Lead Huochloride (matlockite), PDFC1
Cold dysprosium AuDy	5m	66	Lead fluoride, alpha PbF ₂ (orthornombic)
Gold(I) evenide AuCN	10	22	Lead fluoride, beta $PbF_2$ (cubic)
Cold holmium AuHo	10 5m	55 68	Lead(II) iodide, PbI ₂
Cold magnagium AuMa	0111 Em	00	Lead molybdate (wulfenite), PbMoO ₄
Gold magnesium, Aumg	Cm	00	Lead monoxide (litharge), PbO (red) tetrag-
Gold modium 1:3, $\operatorname{AuND}_3$	010	10	onal
Gold tin, 1:1 Ausn		19	Lead monoxide (massicot), PbO (yellow)
Gold titanium 1:3, $Au11_3$	6m	17	(orthorhombic)
Gold vanadium 1:3, $AuV_3$	6m	18	Lead nitrate, Pb(NO ₃ ) ₂
Hafnium, Hf	3	18	Lead(II, III) oxide (minium), Pb ₃ O ₄
Hexamethylenediammonium adipate,			Lead oxybromide, Pb ₃ O ₂ Br ₂
$C_{12}H_{26}N_2O_4$	$7\mathrm{m}$	121	Lead phosphate hydrate, Pb ₅ (PO ₄ ) ₃ OH
Holmium arsenate, HoAsO ₄	3m	34	Lead selenide (clausthalite), PbSe
Holmium ethylsulfate nonahydrate,			Lead sulfate (anglesite), PbSO,
$\operatorname{Ho}[(C_2H_5)SO_4]_3 \cdot 9H_2O \dots$	1m	18	Lead sulfide (galena), PbS
Holmium nitride, HoN	4m	58	Lead titanate, PbTiO ₃
Holmium selenide, HoSe	4m	59	Lead tungstate (stolzite), PbWO ₄ (tetragonal)
Holmium sesquioxide, Ho ₂ O ₃	9	32	(revised)
Holmium vanadate, HoVO ₄	4m	18	Lithium arsenate, Li ₃ AsO ₄
Imidazole nickel nitrate, $(C_3H_4N_2)_6Ni(NO_3)_2$	7m	27	Lithium barium trifluoride, LiBaF ₃
Imidazole zinc chloride, $(C_3H_4N_2)_2$ ZnC1 ₂	$7 \mathrm{m}$	123	Lithium beryllium fluoride, Li ₂ BeF ₄
Indium, In	3	12	Lithium bromide, LiBr
Indium antimony, InSb	4	73	Lithium chloride, LiCl
Indium arsenide, InAs	3m	35	Lithium fluoride, Li F
Indium oxide, In ₂ O ₃	5	26	Lithium iodate, LiIO,
Indium phosphate, InPO ₄	8	29	Lithium molybdate, Li ₂ MoO ₄ (trigonal)
Iodic acid, HIO ₃	5	28	Lithium niobate, LiNbO,
Iodine, I ₂	.3	16	Lithium nitrate, LiNO,
Iridium, Ir	4	9	Lithium oxide, Li ₂ O
Iridium dioxide, IrO ₂	4m	19	Lithium perchlorate trihydrate, LiC10, 3H,O
Iridium niobium 1:3, $IrNb_3$	6m	19	Lithium phosphate, low form (lithiophos-
Iridium titanium 1:3, IrTi ₃	6m	20	phate), Li PO, (orthorhombic) revised
Iridium vanadium 1:3, $IrV_3$	6m	21	Lithium phosphate, high form, Li.PO,
Iron, alpha Fe	4	3	Lithium rubidium fluoride. LiBhF
Iron arsenide, FeAs	1m	19	Lithium sodium sulfate LiNaSO
Iron arsenide (loellingite), FeAs ₂	10	34	Lithium sulfate Li SO
Iron bromide, $FeBr_2$	4m	59	Lithium sulfate monohydrate. Li.SO. H.O
Iron iodide, FeI ₂	4m	60	Lithium trimetaphosphate trihydrate.
Iron(II,III) oxide (magnetite), Fe ₃ O ₄	5m	31	LiPO,3HO
Iron sulfide (pyrite), FeS ₂	5	29	Lithium tungstate Li.WO. (trigonal)
Lanthanum antimony, LaSb	4m	42	Lithium tungstate hemihydrate. Li WO . ¹ /H.O
Lanthanum arsenate, LaAsO ₄	3m	36	Lithium uranium fluoride LiUF
Lanthanum arsenide, LaAs	4m	60	Lutetium arsenate. LuAsO.
Lanthanum borate, LaBO ₃	1m	20	Lutetium gallium oxide Lu Ga (GaO)
Lanthanum chloride, LaCl ₃	1m	20	Lutetium manganite LuMnO
Lanthanum fluoride, LaF ₃	7	21	Lutetium nitride LuN
			Lutetium oxide Lu.O.

m-Monograph 25.

A mineral name in ( ) indicates a synthetic sample.

	Vol. or	
	sec.	Page
Magnesium aluminate (spinel), MgAl ₂ O ₄	2	35
Magnesium aluminum silicate (pyrope),		
$Mg_{3}Al_{2}(SiO_{4})_{3}$	4m	24
Magnesium aluminum silicate (low cordi-		
erite), Mg ₂ Al ₄ Si ₅ O ₁₈ (orthorhombic)	1m	28
Magnesium aluminum silicate (high cordi-		
erite), Mg ₂ Al ₄ Si ₅ O ₁₈ (hexagonal)	1m	29
Magnesium ammonium phosphate hexahy-		
drate (struvite), MgNH ₄ PO ₄ ·6H ₂ O	3m	41
Magnesium boron oxide, $Mg_2B_2O_5$ (triclinic).	4m	25
Magnesium bromide, MgBr ₂	4m	62
Magnesium carbonate (magnesite), MgCO ₃	7	28
Magnesium chloride dodecahydrate,		
MgC1, • 12H ₂ O	$7 \mathrm{m}$	135
Magnesium chromite (picrochromite),		
MgCr ₂ O ₄	9	<b>34</b>
Magnesium fluoride (sellaite), MgF ₂	4	33
Magnesium gallate, MgGa ₂ O ₄	10	36
Magnesium germanate, Mg ₂ GeO ₄ (cubic)	10	37
Magnesium germanate, Mg ₂ GeO ₄ (ortho-		
rnombic)	10	38
Magnesium hydrogen phosphate trihydrate,	_	
newberyite, $MgHPO_4 \cdot 3H_2O$	7m	139
Magnesium hydroxide (brucite), $Mg(OH)_2$	- 6	30
Magnesium molybdate, $MgMOO_4$	'/m	28
Magnesium oxide (periciase), MgO	1	31
Magnesium perchlorate nexanydrate,		
$Mg(CIO_4)_2 \cdot bH_2O$	7m	30
Magnesium siliente, mgSe	- D111 - C	10
Magnesium silicate, enstance, mgSiO ₃	1	32 02
Magnesium silicate (loistelite), $Mg_2SIO_4$	1	00
Magnesium sincate nuonue (norbergite),	10	20
Magnesium silicate fluoride (humite)	10	55
3Mg.SiO.MgF.	1m	30
Magnesium sulfate heptahydrate (epsomite).	1	00
MgSO, ·7H,O	7	30
Magnesium sulfide, MgS	7	31
Magnesium tin, Mg ₂ Sn	5	41
Magnesium titanate (geikielite), MgTiO,	5	43
Magnesium tungstate, MgWO,	1	84
Manganese, alpha, Mn	7m	142
Manganese aluminate (galaxite), MnAl ₂ O ₄	9	35
Manganese bromide, MnBr ₂	4m	63
Manganese(II) carbonate (rhodochrosite),		
MnCO ₃	7	32
Manganese ferrite (jacobsite), MnFe ₂ O ₄	9	36
Manganese iodide, MnI ₂	4m	63
Manganese(II) oxide (manganosite), MnO	5	45
$Manganese(III)$ oxide (partridgeite), $Mn_2O_3$	9	37
Manganese selenide, MnSe	10	41
Manganese sulfide (alabandite), alpha MnS	4	11
Manganese(II) tungstate (huebnerite), MnWO ₄	2m	24
Mercuric iodide, HgI ₂ (tetragonal) (revised)	7m	32
Mercury magnesium, HgMg	6m	84
Mercury(I) bromide, Hg ₂ Br ₂	7	33
Mercury(I) chloride (calomel), $Hg_2Cl_2$	1	72
Mercury(II) chloride, HgCl ₂	1	73
Mercury(II) cyanide, Hg(CN) ₂	6	35
Mercury(II) Huoride, HgF ₂	2m	25
Mercury(I) roulde, ngr	4	49
Mercury(II) selenide (tiemannite) HgSe	7	35
interesting (ar) souther (tremaining), ingoe		00

m-Monograph 25.

A mineral name in ( ) indicates a synthetic sample.

	Vol. or	
	sec.	Page
Mercury(II) sulfide (cinnabar), HgS (hex-		
agonal)	4	17
Mercury(II) sulfide (metacinnabar), HgS		
(Cubic).	. 4	21
Metaboric acid, HBO ₂ (cubic)	. 4m	27
Molybdenum, Mo	. 1	20
Molybdenum disulfide (molybdenite), $MoS_2$	. 5	47
Molybdenum osmium 3:1, Mo ₃ Os	. 6m	28
Molybdenum trioxide (molybdite), MoO ₃	. 3	30
2-Naphthylamine, n-phenyl-, C ₁₆ H ₁₃ N	. 6m	29
Neodymium antimony, NdSb	. 4m	43
Neodynium arsenate, NdAsO,	. 4m	28
Neodymium arsenide, NdAs	. 4m	64
Neodymium borate, NdBO,	. 1m	32
Neodymium chloride, NdCl ₃	. 1m	33
Neodymium ethylsulfate nonahydrate,		
$Nd[(C_2H_5)SO_4]_3 \cdot 9H_2O$	. 9	41
Neodymium fluoride, NdF ₃	. 8	36
Neodymium gallium oxide, $Nd_3Ga_2(GaO_4)_3$	. 1m	34
Neodymium oxide, Nd ₂ O ₃	. 4	26
Neodymium oxychloride, NdOCl	. 8	37
Neodymium selenide, NdSe	<b>5</b> m	71
Neodymium vanadate, NdVO.	. 4m	30
Neptunium nitride, NpN	4m	64
Nickel, Ni	. 1	13
Nickel aluminate, NiAl ₂ O ₄	. 9	42
Nickel arsenic 1:2 (rammelsbergite), NiAs,	. 10	42
Nickel arsenic sulfide (gersdorffite), NiAsS.	1m	35
Nickel(II) carbonate, NiCO, (trigonal)	. 1m	36
Nickel ferrite (trevorite), NiFe.O.	. 10	44
Nickel fluosilicate hexahydrate, NiSiF. 6H.O	8	38
Nickel gallate, NiGa.O.	10	45
Nickel germanate Ni GeO	9	43
Nickel(II) oxide (bunsenite). NiO	1	47
Nickel sulfate NiSO	 2m	26
Nickel sulfate hexabydrate (retgersite)		
Niso .6H O	7	36
Nickel sulfide millerite NiS	. 1m	37
Nickel tungstate NiWO	2m	27
Nichium osmium 3:1 Nh Os	6m	30
Nichium ovychloride NbOC1	7m	148
Niobium platinum 3.1 Nh Pt	6m	31
Niobium silicide NbSi		39
his-(N-isopropyl-3-ethylsalicylaldiminato)	. 0	
palledium (C H NO) Pd	7 m	144
N-mothylphonozinium tetracyanoguinodi-	,	171
mothenide C H N	7m	146
$Osmium \ Os$	4	8
Osmium titanium OsTi	. <u>6</u> m	85
Palladium Pd	. 0	21
Palladium hydride PdH	5m	72
Palladium ovide PdO	4	27
Palladium vanadium 1:3 PdV	6m	32
<b>Falladium</b> valadium 1.0, $1 \text{ uv}_3$	. 0.11 7m	150
Phosphorus biolilide, PBI7	7m	152
Platinum $Dt$	1	31
Distinum titonium 1.2 Dt/Di	. 6m	33
Platinum utanium 1.3, Ft113	. 0111 6m	34
<b>Plaunum vanaumin 1.5,</b> $Ptv_3$	. Om 	65
Plutonium alseniue, russ	. 4m	65
Plutonium pilospilue, 1 ul	. <u>1</u> m	66
Potossium acid phthalato		00
C H (COOH) (COOK)	dm	20
Detersion aluminum sulfate dedesahudrate	2111	50
(olum) KAI(SO), 194 O	F	36
$(a_{1}u_{1}), A_{1}(OU_{4})_{2} \cdot 12\Pi_{2}U \dots \dots$	0	44
Potacsium bromate KPrO		28
rotassium promate, ADIO3		00

		Vol. or		
		sec.	Page	
Potassium	bromide, KBr	1	66	Pot
Potassium	bromoplatinate, K ₂ PtBr ₆	8	40	K
Potassium	bromoselenate, K ₂ SeBr ₆	8	41	Pot
Potassium	cadmium sulfate, $K_2Cd_2(SO_4)_3$	$7 \mathrm{m}$	34	Pota
Potassium	cadmium trichloride, KCdCl ₃	5m	38	K
Potassium	calcium chloride (chlorocalcite),			Pot
KCaCl ₃ .		$7 \mathrm{m}$	36	Pras
Potassium	calcium magnesium sulfate,			Pra
K ₂ CaMg(	(SO ₄ ) ₃	$7 \mathrm{m}$	37	Pra
Potassium	calcium sulfate, $K_2Ca_2(SO_4)_3$	7m	39	Pra
Potassium	chlorate, KClO ₃	3m	42	Pra
Potassium	chloride (sylvite), KCl	1	65	Pras
Potassium	chloroplatinate, K ₂ PtCl ₆	5	49	Pra
Potassium	chlororhenate, K ₂ ReCl ₆	2m	28	Pras
Potassium	chlororuthenate( $IV$ ), $K_2RuCl_6$	10	46	Pra
Potassium	chlorostannate, K ₂ SnCl ₆	6	38	Rhe
Potassium	chromium sulfate dodecahydrate,			Rho
KCr(SO4	$)_2 \cdot 12H_2O$	6	39	Rho
Potassium	cobalt (II) suffate, $K_2CO_2(SO_4)_3$	6m	35	Rub
Potassium	cobalt (II) trilluoride, $KCoF_3$	6m	37	R
Potassium	cobaltinitrite, $K_3 Co(NO_2)_6 \dots$	_ 9	45	Rub
Potassium	copper chloride, KCuCl,	'/m	41	Rub
Potassium	copper (II) trilluoride, KCuF ₃	6m	38	Rub
Potassium	cyanate, KCNO	1	39	Rub
Potassium	dibudrogen engenete KU Ago	1	20	$\mathbf{R}$ ub
Potassium	dihydrogen alsenate, $KH_2ASO_4$	1111	38	Rub
Potassium	fluorormanato K CoE	3 C	09	R
Potassium	fluoplatinata $K$ DtE	0 C	41	Rub
Potassium	fluorido $KE$	0	44	R
Potassium	fluosilicate (hieratite) K SiF	5	50	Rub
Potassium	fluotitanate $K$ TiE	7	40	Rub
Potassium	heptafluozirconate K ZrF	9	46	Rub
Potassium	hydroxide KOH at 300 °C	4m	-10	Rub
Potassium	hydroxy-chlororuthenate	-1111	00	Rub
K Bu Cl	O.H O	10	47	Rub
Potassium	iodide KI	1	68	Rub
Potassium	iron (II) trifluoride KFeF.	6m	39	Rub
Potassium	lithium sulfate. KLiSO	3m	43	Rub
Potassium	magnesium sulfate (langbeinite).		10	R
K.Mg. (S	(D.).	6m	40	Rub
Potassium	magnesium trifluoride, KMgF,	6m	42	Rub
Potassium	manganese (II) sulfate	0		Rub
(mangano	plangbeinite), K.Mn.(SO.),	. 6m	43	Rub
Potassium	manganese (II) trifluoride, KMnF,	6m	45	$\mathbf{R}$ ub
Potassium	nickel fluoride, KNiF	7m	42	Rub
Potassium	nickel (II) sulfate, K.Ni.(SO.),	6m	46	Rub
Potassium	nitrate (niter), KNO,	3	58	Rub
Potassium	nitroso chlororuthenate,			Rub
K,RuCl	NO	2m	2 <b>9</b>	Rub
Potassium	perchlorate, KClO ₄	6	43	Rub
Potassium	perchromate, K, CrO,	.3m	44	Rub
Potassium	periodate, KIO,	7	41	Rub
Potassium	permanganate, KMnO ₄	7	42	Rub
Potassium	perrhenate, KReO ₄	8	41	R
Potassium	phosphomolybdate tetrahydrate,	,		Rub
K ₂ PO ₄ (M	00 ₃ ) ₁₂ ·4H ₂ O	8	43	Rut
Potassium	sodium sulfate, K .67 Na1.35 SO4	6m	48	Rut
Potassium	sodium sulfate, KNaSO ₄	6m	50	Sam
Potassium	sodium sulfate (aphthitalite),			Sam
K,Na(SC	0,4)2	6m	52	Sam
Potassium	sulfate (arcanite), $K_2SO_4$	.3	62	Sam
Potassium	thiogyanate, KCNS	8	44	Sam

m-Monograph 25.

A mineral name in ( ) indicates a synthetic sample.

	Vol. or	
	sec.	Page
Potassium zinc decavanadate 16 hydrate,		
$K_2Zn_2V_{10}O_{28} \cdot 16H_2O$	3m 5	45
Potassium zinc sulfate hexahydrate	5	51
K-Zn(SO.).•6H-O.	<b>7</b> m	43
Potassium zinc sulfate, $K_2 Zn_2(SO_4)_3$	6m	54
Praseodymium antimony, PrSb	4m	43
Praseodymium arsenate, PrAsO ₄	4m	32
Praseodymium arsenide, PrAs	4m	67
Praseodymium chloride, PrCl ₃	1m	39
Praseodymium fluoride, PrF ₃	5	52
Praseodymium oxychioride, Proci	9 4m	47
Preseodymium vanadate PrVO	5m	40
Praseodymium zinc $\Pr Zn$	5m	40 72
Rhenium Re	2	13
Rhodium. Rh	3	9
Rhodium vanadium 1:3, RhV,	6m	56
Rubidium aluminum sulfate dodecahydrate,		
$RbAl(SO_4)_2 \cdot 12H_2O$	6	44
Rubidium amide, RbNH ₂	<b>5</b> m	73
Rubidium bromate, RbBrO ₃	. 8	45
Rubidium bromide, RbBr	. 7	<del>1</del> 3
Rubidium promotellurate, Rb ₂ leBr ₆	. 8 7m	40
Rubidium cadmium suffate, $RD_2CU_2(SO_4)_3$	7111	45
BbCdCl. (tetragonal)	5m	43
Rubidium cadmium trichloride, low form,	0	10
RbCdCl _a (orthorhombic)	5m	41
Rubidium calcium chloride, RbCaCl ₃	7m	47
Rubidium calcium sulfate, $Rb_2Ca_2(SO_4)_3$	$7\mathrm{m}$	48
Rubidium chlorate, RbClO ₃	. 8	47
Rubidium chloride, RbCl	4	41
Rubidium chloroplatinate, Rb ₂ PtCl ₆	. 5	53
Rubidium chlorostannate, $Rb_2SnCl_6$	6	46
Rubidium chiorotellurate, $Rb_2 1eCl_6 \dots Decl_6 \dots$	. ð ?m	48
Rubidium chromium sulfate dodecabydrate	5111	10
BbCr(SO.)-12H.O	6	47
Rubidium cobalt (II) trichloride, RbCoC1,	6m	57
Rubidium fluoplatinate, Rb, PtF,	6	48
Rubidum fluosilicate, Rb ₂ SiF ₆	6	49
Rubidium iodide, RbI	4	43
Rubidium magnesium sulfate, $Rb_2Mg_2(SO_4)_3$	$7\mathrm{m}$	50
Rubidium manganese sulfate, $Rb_2Mn_2(SO_4)_3$ .	7m	52
Rubidium manganese(II) trifluoride, RbMnF ₃	5m	44
Rubidium nickel (II) trichloride, $RbNiCl_3$	6m	58
Rubidium nitrate, $RDNO_3$ (trigonal)	2m	4)
Rubidium periodate, RbCiO ₄	2m	31
Rubidium strontium chloride BbSrC1	7m	54
Rubidium sulfate. Rb.SO	8	48
Rubidium zinc sulfate hexahydrate,		
$Rb_2Zn(SO_4)_2 \cdot 6H_2O$	$7 \mathrm{m}$	55
Rubidium zinc fluoride, RbZnF ₃	7m	57
Ruthenium, Ru	4	5
Ruthenium titanium, RuTi	6m	86
Samarium arsenate, SmAsO ₄	410 4m	33 69
Samarium chloride SmCl	1m	40
Samarium fluoride SmF	1m	41
Samarium gallium oxide. Sm.Ga.(GaO.)	1m	42
Samarium oxide, Sm,O, (cubic)	4m	34
Samarium oxychloride, SmOCl	1m	43
Samarium vanadate, SmVO ₄	5m	47
Scandium arsenate, ScAsO ₄	4m	35

#### Vol. or sec. Page Scandium arsenide, ScAs ..... 4m 68 Scandium oxide, $Sc_2O_3$ ..... 273 Scandium phosphate, ScPO, ..... 8 50 Scandium silicate (thortveitite), Sc₂Si₂O₇.... 58 7m Selenium oxide (selenolite), SeO, (revised). 7m 60 Selenium, Se..... 5 54 Silicon, Si ..... 2 6 Silicon dioxide, alpha or low quartz, SiO, (hexagonal)..... 3 24 Silicon dioxide (alpha or low cristobalite), SiO₂ (tetragonal) (revised) ..... 10 48 Silicon dioxide (beta or high cristobalite), SiO₂ (cubic) ..... 1 42 Silver, Ag ..... 23 1 Silver, Ag (reference standard)..... 4m 4 Silver antimony sulfide, AgSbS₂ (cubic)..... 5m 48 Silver antimony sulfide (miargyrite). AgSbS, (monoclinic)..... 49 5m Silver antimony sulfide (pyrargyrite), Ag₃SbS₃ (trigonal)..... 5m 51 Silver antimony telluride, AgSbTe₂..... 3m 47 Silver arsenate, Ag, AsO, ..... 5 56 Silver bromate, AgBrO₃..... 5 57 Silver bromide (bromyrite), AgBr ..... 4 46 Silver carbonate, Ag₂CO₃ ..... 1m 44 Silver chlorate, AgClO₃ ..... 7 44 Silver chloride, (cerargyrite), AgCl ..... 4 44 Silver dysprosium, AgDy ..... 5m 66 Silver erbium, AgEr ..... 5m 67 Silver gadolinium, AgGd..... 6m 87 Silver holmium, AgHo ..... 5m 68 Silver iodide (iodyrite), AgI (hexagonal) ..... 8 51 Silver iodide, gamma, AgI (cubic) ..... 9 48 Silver molybdate, Ag,MoO,.... 7 45 Silver neodymium, AgNd..... 5m 71 Silver nitrate, AgNO₃ ..... 5 59 Silver nitrite, AgNO₂..... 60 5 Silver oxide, Ag₂O ..... 45 1m Silver(II) oxynitrate, Ag₇O₈NO₃..... 61 4 Silver periodate, AgIO, ..... 9 49 Silver permanganate, AgMnO, ..... 155 7m Silver perrhenate, AgReO₄ ..... 8 53 Silver phosphate, Ag₃PO₄..... 5 62 Silver samarium, AgSm ..... 5m 73 2m 32 Silver selenate, Ag₂SeO₄ ..... 5m 53 Silver subfluoride, Ag₂F..... Silver sulfate, Ag₂SO₄..... 7 46 Silver sulfide (argentite), Ag,S ..... 10 51Silver terbium, AgTb..... 5m 74 Silver thulium, AgTm ..... 5m 74 5m 75 Silver yttrium, AgY ..... Sodium acid fluoride, NaHF, ..... 5 63 Sodium aluminum chloride silicate, sodalite, 7m 158 $\operatorname{Na}_{\mathbf{s}}\operatorname{Si}_{\mathbf{6}}\operatorname{A1}_{\mathbf{6}}\operatorname{O}_{\mathbf{24}}\operatorname{C1}_{\mathbf{2}}$ Sodium borate, Na₂B₈O₁₃.... 160 7m Sodium borohydride, NaBH, ..... 9 51 5 Sodium bromate, NaBrO₃..... 65 3 47 Sodium bromide, NaBr..... Sodium calcium sulfate (glauberite). 6m 59 $Na_2Ca(SO_4)_2$ .... Sodium carbonate monohydrate (thermonatrite), Na₂CO₃·H₂O .... 8 54 Sodium chlorate, NaClO₃ ..... 3 51

m-Monograph 25.

A mineral name in () indicates a synthetic sample.

	Vol. or	
	sec.	Page
Sodium chloride (halite), NaCl Sodium cobalt (II) sulfate tetrahydrate,	2	41
$Na_2Co(SO_4)_2 \cdot 4H_2O$	6m	61
Sodium cyanate, NaCNO	2m	33
Sodium cyanide, NaCN (cubic)	1	70
Sodium cyanide, NaCN (cubic)	1	18
Sodium cyanide, NaCN (orthorhombic) at $6 \degree C$	1	79
Sodium dichromate dihydrate, Na ₂ Cr ₂ O ₇ ·2H ₂ O	7m	62
Sodium fluoride (villiaumite), NaF	1	63
Sodium hexametaphosphate hexahydrate		
No DO GUO	<b>F</b> ===	<b>F</b> 4
$1/a_{6}^{-1} + 60_{16}^{-16} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011_{2}^{-0} + 011$	DIII	54
Sodium hydrogen silicate tetrahydrate,		
$Na_{H_2}SiO_{4} \cdot 4H_{1}O$	7m	163
Sodium hydroxide, NaOH at 300 ° C	4m	69
Sodium iodate NaIO	7	47
Sodium iodido. Nel	1	11
Sourum rounde, Nat	4	31
Sodium lanthanum fluosilicate,		
$(Na_{a}La_{a})$ $(SiO_{a})_{\delta}F_{2}$	7m	64
Sodium magnesium aluminum boron hydroxy		
silicate dravite NaMg ALB Si O (OH)	3m	47
Sincure, diatite, range $n_6 D_3 O_6 O_{27} O_{174}$ .	om	71
Sourum magnesium sulfate tetranydrate,		
bloedite, $Na_2Mg(SO_4)_2 \cdot 4H_2O \dots$	6m	63
Sodium manganese (II) trifluoride, NaMnF,	6m	65
Sodium mercury (II) trichloride dihydrate	0111	00
Nell-Cl. 24.0	0	0.0
NaHgCl ₃ · $2H_2O$	6m	66
Sodium molybdate, Na ₂ MoO ₄	1m	46
Sodium neodymium fluosilicate.		
(Na Nd) (SiO) F	7m	66
$\operatorname{Codium}_{2}\operatorname{Nu}_{0}$ ( $\operatorname{SIO}_{4}$ ) $\operatorname{SIO}_{4}$ $\operatorname{SIO}_{2}$ $\operatorname{Codium}_{2}\operatorname{Nu}_{0}$ $\operatorname{SIO}_{4}$ $S$	4 111	00
Sourum nicker (II) suitate tetranydrate,		
$Na_2Ni(SO_4)_2 \cdot 4H_2O \dots \dots \dots \dots \dots \dots$	6m	68
Sodium nitrate (soda-niter), NaNO,	6	50
Sodium nitrite NaNO	4	62
Sodium arthoungstate( $\mathbf{I}$ ) dividents	1	02
Sodium orthotungstate(IV) dinydrate,		
$Na_2WO_4 \cdot 2H_2O$	2m	33
Sodium oxalate, Na C.O.	6m	70
Sodium perchlorate NaClO (orthorhombic)	7	49
Sodium percinolate, Nacio ₄ (ormonomole)		10
Soutum periodate, $NalO_4$	4	48
Sodium praseodymium fluosilicate,		
$(Na_{1}Pr_{1})$ $(SiO_{1})_{\epsilon}F_{2}$	7m	68
Sodium sulfate (thenardite), Na.SO.	2	59
Sodium culfito. No SO	2	60
Southin summe, $Na_2SO_3$	J	00
Sodium tetrametaphosphate tetrahydrate,		
alpha, Na ₄ P ₄ O ₁₂ ·4H ₂ O (monoclinic)	10	52
Sodium tetrametaphosphate tetrahydrate, beta,		
Na PO .4HO (triclinic)	2m	35
$Na_4 \Gamma_4 O_{12} \cdot 4 \Pi_2 O (UTCHINC) \cdot \dots \cdot $	2111	00
Sodium tin fluoride, $NaSn_2F_5$	7m	166
Sodium trimetaphosphate, Na ₃ P ₃ O ₉	3m	49
Sodium trimetaphosphate monohydrate,		
Na PO HO	3m	50
$1\sqrt{a_3}1_3O_9 \cdot 11_2O_9 $	1	47
Sodium tungstate, $Na_2WO_4$	TIU	47
Sodium zinc sulfate tetrahydrate,		
Na $Zn(SO_{1})$ $\cdot 4H_{2}O_{1}$ $\cdot \cdot \cdot$	6m	72
Sodium ring triflugride NoZnE	Gm	7.1
Sodium zine trinuonde, Nazir ₃	om	14
Strontium arsenate, $Sr_3(AsO_4)_2$	2m	36
Strontium boron oxide, SrB ₂ O ₄	3m	53
Strontium boron oxide SrB O	4m	36
Strontium bromido hovehydreto SrPr 6H O	4	60
Otrestium conhenote (strestication) 0r00	T O	50
Strontium carbonate (strontianite), SrCO ₃	3	26
Strontium chloride, SrCl ₂	4	40
Strontium chloride hexahydrate, SrCl. 6H.O	4	58
Strontium fluoride SrF	5	67
Strontium formato Sr (OHO)	0	55
Strontium formate, Sr $(CHO_2)_2$	0	55
Strontium formate dihydrate, Sr(CHO ₂ ) ₂ ·2H ₂ O		
(orthorhombic)	8	56
Strontium indium hydroxide Sr.In.(OH)	6m	76
Strontium indide hovehydrate SrI SHO	8	50
Strontium route nexaligurate, Sh ₂ ·on ₂ O	0	00
Strontium molybdate, SrMoO ₄	1	50

	Vol. or			Vol. or	
	sec.	Page		sec.	Page
Strontium nitrate, Sr(NO ₃ ) ₂	1	80	Thallium(I) thiocyanate, TICNS	8	63
Strontium oxide, Sro	5	68	Thallium(1) tungstate, 11, WO ₄	Im	48
Strontium peroxide, SrO ₂	6	52	Thallium zinc sulfate hexahydrate,		0.0
Strondum scandium oxide nexanydrate,	0	=0	$TI_2Zn(SO_4)_2.6H_2O$	7m	80
$Sr_3SC_2O_6 \cdot bH_2O \dots C = C = C = C$	6m	78	Thorium arsenide, InAs	4111	10
Strontium sulfate (celestite), SrSO ₄	2	61	Thorium oxide (thorianite), $1nO_2$	2m	50
Strontium telluride Come	4	52	Thulium arsenate, ThASO4	4m	71
Strontuum tenuriue, Srie	4m	69	Thulium arsenide, ImAs	4m	71
Strontium tungstate. S-WO	3	44	Thullum nitride, This	411	50
Strontium zirconato STRO	1	53	Thullum sesquioxide, $\operatorname{Im}_2O_3$	3 4m	
Sulfamia agid NH SO	9	51	Thulium tenuride, Imie	5m	57
Sulfur S (orthorhombic)	1	54	Thum variable, $\min_{4} \cdots \cdots$	5111	10
Tentalum Te	9	54	Tin, alpha, Si (cubic)	4	24
Tentalum Silicido TaSi	1	29	Tin, beta, Sil (tetragonal)	4m	27
d-Tartaria Acid C H O	0	100	Tin(II) fluorido SnF	3m	51
Tellurium Te	1	108	Tin(IV) indide SnI	5	71
Tellurium(IV) oxide (paratellurite) TeO	1	20	Tin(II) oxide SnO	4	28
(tetragonal)	7	56	Tin(II) oxide (cassiferite) SnO	1	54
Tellurium(IV) ovide paratellurite TeO		50	Tin(IV) tolluride SnTe	7	61
(tetragonal)	10	55	Titanium Ti	3	1
Tellurium(IV) oxide tellurite TeO (ortho-	10	55	Titanium, internet to control to control	~	-
rhombic)	٩	57	rhombic)	3m	57
Terbium arsenate ThAsO	3m	54	Titanium ovide (anatase) TiO (revised)	7m	82
Terbium arsenide TbAs	5m	75	Titanium oxide (utile) TiO (revised)	7m	83
Terbium nitride TbN	4m	70	Titanium (III) oxide TiO	9	59
Terbium phosphide. ThP	5m	76	Titanium silicide. Ti. Si	8	64
Terbium selenide ThSe	5m	76	Titanium sulfide TiS	4m	72
Terbium sulfide. TbS	5m	77	Tungsten W	1	28
Terbium telluride. TbTe	5m	77	Tungsten, W (reference standard)	4m	4
Terbium vanadate. TbVO.	5m	56	Tungsten sulfide (tungstenite), WS,	8	65
Thallium aluminum sulfate dodecahydrate.	0	00	Uranium dioxide (uraninite). UO,	2	33
$TlAl(SO_{2})$ , 12H, O	6	53	Uranium oxide. UO	5m	78
Thallium(I) arsenate, TLASO	2m	37	Uranium selenide, USe	<b>5</b> m	78
Thallium(I) bromate, TlBrO,	8	60	Uranium telluride, UTe	4m	73
Thallium bromide, TlBr	7	57	Urea, CO(NH ₂ ),	7	61
Thallium(I) chlorate, TlClO,	8	61	Vanadium(V) oxide, V ₂ O ₅	8	66
Thallium(I) chloride, TlCl	4	51	Ytterbium arsenate, YbAsO ₄	4m	38
Thallium chloroplatinate, Tl ₂ PtCl ₆	5	70	Ytterbium arsenide, YbAs	лт	73
Thallium chlorostannate, Tl ₂ SnCl ₆	6	54	Ytterbium gallium oxide, Yb ₃ Ga ₂ (GaO ₄ ),	1m	49
Thallium chromate, Tl ₂ CrO ₄	3m	54	Ytterbium nitride, YbN	4m	74
Thallium chromium sulfate dodecahydrate,			<b>Ytterbium</b> oxide, $Yb_2O_3$	<b>6</b> m	80
$T1Cr(SO_4)_2 \cdot 12H_2O$	6	55	Ytterbium selenide, YbSe	<b>5</b> m	79
Thallium cobalt sulfate hexahydrate,			Ytterbium telluride, YbTe	5m	79
$T1_2Co(SO_4)_2 \cdot 6H_2O$	7m	70	Ytterbium(III) vanadate, YbVO ₄	5m	58
Thallium copper sulfate hexahydrate,			Yttrium arsenate, YAsO,	2m	39
$T1_2 Cu(SO_4)_2 \cdot 6H_2O$	7m	72	Yttrium arsenide, YAs	4m	74
Thallium fluosilicate, Tl ₂ SiF ₆	6	56	Yttrium gallium oxide, Y,Ga ₂ (GaO ₄ ),	. 1m	50
Thallium gallium sulfate dodecahydrate,			Yttrium oxide, $Y_2O_3$	3	28
$TlGa(SO_4)_2 \cdot 12H_2O$	6	57	Yttrium oxychloride, YOCl	<b>1</b> m	51
Thallium(I) iodate, TlIO ₃	8	62	Yttrium phosphate (xenotime), YPO,	. 8	67
Thallium(I) iodide, TlI (orthorhombic)	4	53	Yttrium sulfide, YS	. 5m	80
Thallium magnesium sulfate hexahydrate,			Yttrium telluride, YTe	. 4m	75
$T1_2Mg(SO_4)_2$ · $6H_2O$	7m	74	Yttrium vanadate, YVO ₄	5m	59
Thallium manganese sulfate, T1 ₂ Mn ₂ (SO ₄ ) ₃	7m	76	Zinc, Zn	1	16
Thallium nickel sulfate hexahydrate,	r		Zinc aluminate (gahnite), ZnAl ₂ O ₄	. 2	38
$T1_2Ni(SO_4)_2$ $GH_2O$	7m	78	Zinc antimony oxide, ZnSb ₂ O ₄	4m	39
Thallium(I) nitrate, TINO,	6	58	Zinc borate, ZnB ₂ O ₄	. 1	83
Thallium(III) oxide, Tl ₂ O ₃	2	28	Zinc carbonate, smithsonite, ZnCO,	8	69
Thallium(I) percholorate, TlClO,	2m	38	Zinc cyanide, Zn(CN) ₂	. 5	7.
Thallium(I) phosphate, Tl ₃ PO ₄	7	58	Zinc fluoride, ZnF ₂	6	60
Inallum(III) phosphate, TIPO,	7	59	Zinc fluosilicate hexahydrate, $ZnSiF_6.6H_2O$	8	70
Thallium(I) sulfate, Tl ₂ SO ₄	6	59	Zinc germanate, Zn ₂ GeO ₄	10	56
			Zinc glutamate dihydrate, ZnC _s H ₂ NO ₄ ·2H ₂ O	7m	170
			Zinc iodide, ZnI ₂	9	0
m-Monograph 25.			Zinc molybdate, Zn ₂ Mo ₃ O ₈	7m	173
A mineral name in () indicates a synthetic sample			Zinc orthosilicate (willemite), $Zn_2SiO_4$	. 1	02

	Vol. or	
	sec.	Page
Zinc oxide (zincite), ZnO	2	25
Zinc pyrosilicate hydrate, hemimorphite,		
$Zn_4(OH)_2Si_2O_7 \cdot H_2O \dots$	2	62
Zinc selenide, ZnSe	3	23
Zinc sulfate (zinkosite), ZnSO,	7	64
Zinc sulfate heptahydrate (goslarite),		
ZnSO ₄ ·7H ₂ O	8	71
Zinc sulfide (wurtzite), alpha ZnS (hexag-		
onal)	2	14

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Vol. or	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		sec.	Page
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Zinc sulfide (sphalerite), beta ZnS (cubic)	2	16
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Zinc telluride, ZnTe	3m	58
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Zinc tungstate (sanmartinite), ZnWO ₄	2m	40
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Zirconium, alpha, Zr	2	11
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Zirconium dihydride, ZrH ₂	5m	60
	Zirconium iodate, Zr(IO ₃ ) ₄	1m	51
	Zirconium nitride, ZrN	5m	80
	Zirconium oxide, ZrO	5m	81
	Zirconium phosphide, ZrP	4m	75
Zirconium sulfate tetrahydrate, $Zr(SO_4)_2 \cdot 4H_2O$ 7 66	Zirconium silicate, zircon, ZrSiO,	4	68
	Zirconium sulfate tetrahydrate, $Zr(SO_4)_2 \cdot 4H_2O$	7	66

m_Monograph 25.

A mineral name in ( ) indicates a synthetic sample.

## **CUMULATIVE MINERAL INDEX**

	Vol. or			Vol. or	
	sec	Page		sec.	Page
Alabandite, MnS	4	11	Cordierite, Mg_A1_Si, O,, (orthorhombic)	1m	28
Alum, $KAl(SO_4)_2 \cdot 12H_2O \dots$	6	36	Cordierite, Mg, A1, Si, O,, (hexagonal)	1m	29
Ammonia-niter, NH ₄ NO ₃	7	4	Corundum, Al.O.	9	3
Anatase, TiO, (revised)	7m	82	Cotunnite, PbCl,	2	45
Andradite, Ca ₃ Fe ₂ Si ₃ O ₁₂	9	22	Covellite, CuS	4	13
Anglesite, PbSO4	3	67	Cristobalite, (alpha or low) SiO, (revised)	10	48
Anhydrite, CaSO	4	65	Cristobalite. (beta or high) SiO	1	42
Aphthitalite, K, Na(SO ₄ ),	6m	52	Cryptohalite. (NH.),SiF	5	5
Aragonite, CaCO,	3	53	Cuprite. Cu ₂ O	2	23
Argentite, Ag.S	10	51	*Diamond. C	2	5
Arcanite, K.SO.	3	62	*Diaspore, Al.O., H.O.	3	41
Arsenolite, As.O.	1	51	Diopside, CaMg(SiO ₂ ),	5m	17
Aurostibite, AuSb.	7	18	*Dravite, NaMg, Al, B, Si, O., (OH),	3m	47
*Azurite Cu (OH) (CO)	10	30	*Enstatite. MgSiO.	6	32
Barite BaSO	20	65	Ensomite MgSO.7H.O	7	30
Barlinita AIDO	10	00	Eschynite CeNhTiO	3m	24
*Porvi Do Al (SO)	10	ა 10	Ettringite Al O 6CaO 3SO 31H O	8	3
$\operatorname{Beryl, Be_3Al_2(SIO_3)_6} \dots \dots$	9	13	Fluorapatite Ca F(PO)	3m	22
Bismite, (alpha) $Bl_2O_3$	3m	17	Fluorite CaF	1	69
Bismoclite, BIOCI	4	54	Forsterite Mg SiO	1	83
Bismuthinite, $Bi_2S_3$ (revised)	5m	13	Colorito $MpAl O$	1	25
*Bloedite, $Na_2Mg(SO_4)_2 \cdot 4H_2O \dots$	6m	63	Galaxie, $\operatorname{Min}_2O_4$	9	10
Böhmite, $Al_2O_3 \cdot H_2O \dots$	3	38	Galella, PDS	2	10
Bromellite, BeO	1	36	Gannite, $\Sigma nAI_2O_4$	2	38
Bromyrite, AgBr	4	46	Geikielite, MgTiO ₃	5	43
*Brookite, TiO ₂	3m	57	Gersdorflite, NIASS	Im	35
Brucite, Mg(OH) ₂	6	30	Glauberite, $Na_2Ca(SO_4)_2$	6m	59
Bunsenite, NiO	1	47	Goslarite, $ZnSO_4 \cdot 7H_2O$	8	71
Calcite, CaCO,	2	51	Greenockite, CdS	4	15
Calomel, Hg,Cl,	1	72	Halite, NaCl	2	41
Cassiterite, SnO	1	54	*Hemimorphite, Zn ₄ (OH) ₂ Si ₂ O ₇ ·H ₂ O	2	62
Celestite, SrSO,	2	61	Hieratite, K ₂ SiF ₆	5	50
Cerargyrite, AgCl	4	44	Huebnerite, MnWO,	2m	24
Cerianite, CeO.	1	56	Humite, $3Mg_2SiO_4 \cdot MgF_2 \dots \dots \dots \dots$	1m	30
Cerussite, PbCO.	2	56	Iodyrite, AgI	8	51
Cervantite Sh O	10	8	Jacobsite, MnFe ₂ O ₄	9	36
Chalcocyanite CuSO	3m	20	Langbeinite, K,Mg,(SO ₄ ),	6m	40
Chloraluminite AlCl 6H O	7	20	Litharge, PbO (red)	. 2	30
Chlorocolaita KGaGI	1 17 m	00	Lithiphosphate, Li.PO.	4m	21
Chrysoparyl Roll O	7111	36	Loellingite, FeAs.	10	34
Cimpoher $H_{2}C_{4}$	9	10	Magnesite MgCO.	7	28
*Claudatita Ac O	4	11	Magnetite Fe O	5m	31
Claudelite, $AS_2O_3$	Jm	9	Malachite Cu (OH) CO	10	31
Clausinanie, Pose	Э	30	Mangapolangheinite $K Mn (SO)$	6m	13
-			Monganogito MnO	5	45
* Natural mineral.			Manganosite, Mino	0	10

* Natural mineral.

m-Monograph 25.

Marshite, CuI ..... 4

38

### **CUMULATIVE MINERAL INDEX–Continued**

7	Vol. or			Vol. or	
	sec.	Page		sec.	Page
Mascagnite, (NH ₄ ) ₂ SO ₄ (revised)	9	8	Sellaite, MgF ₂	4	.33
Massicot, PbO (yellow)	2	32	Senarmontite, Sb ₂ O ₃	3	31
Matlockite, PbFCl	1	76	Skutterudite, CoAs,	10	21
Metacinnabar, HgS	4	21	*Smithsonite, ZnCO,	8	69
Miargyrite, AgSbS ₂	5m	49	*Sodalite, Na Si A1 O C1,	7m	158
*Millerite, NiS	1m	37	Soda-niter, NaNO,	6	50
Minium, Pb ₃ O ₄	8	32	Sphalerite, ZnS	2	16
Molybdenite, MoS,	5	47	Spherocobaltite, CoCO ₃	10	24
Molybdite, MoO,	3	30	Spinel, MgAl ₂ O ₄	2	35
Montroydite, HgO (revised)	9	39	Stibnite, Sb ₂ S ₃	5	6
Mullite, 3Al ₂ O ₃ ·2SiO ₂	3m	3	Stolzite, PbWO ₄ (revised)	5m	.34
Nantokite, ČuČl	4	35	Strontianite, SrCO ₃	.3	56
*Newberyite, MgHPO ₄ ·3H ₂ O	$7 \mathrm{m}$	139	Struvite, MgNH ₄ PO ₄ .6H ₂ O	.3m	41
Niter, KNO,	3	58	Sylvite, KCl	1	65
Nitrobarite, Ba(NO ₃ ) ₂	1	81	*Tellurite, TeO,	9	57
Norbergite, Mg ₂ SiO ₄ ·MgF ₂	10	39	Tellurobismuthite, Bi, Te,	3m	16
Oldhamite, CaS	7	15	Tenorite, CuO	1	.49
Otavite, CdCO ₃	7	11	Teschemacherite, NH ₄ HCO,	9	5
Oxammite, $(NH_4)_2C_2O_4 \cdot H_2O \dots$	7	5	Teschermigite, NH ₄ Al(SO ₄ ) ₂ , 12H ₂ O	6	3
*Paratellurite, TeO ₂	10	55	Thenardite, Na, SO,	2	59
Paratellurite, TeO ₂	7	56	Thermonatrite, Na ₂ CO ₃ ·H ₂ O	8	54
Partridgeite, Mn ₂ O ₃	9	37	Thorianite, ThO,	1	57
Periclase, MgO	1	37	Thortveitite, Sc,Si,O,	$7 \mathrm{m}$	58
*Phenacite, Be ₂ SiO ₄	8	11	Tiemannite, HgSe	7	35
Picrochromite, MgCr ₂ O ₄	9	34	*Topaz, Al,SiO ₄ (F,OH),	1m	4
Portlandite, Ca(OH) ₂	1	58	Trevorite, NiFe ₂ O ₄	10	44
Powellite, CaMoO ₄	6	22	Tungstenite, WS,	8	65
Pyrite, FeS ₂	5	29	Uraninite, UO ₂	2	33
Pyrope, $Mg_3Al_2(SiO_4)_3$	4m	24	Uvarovite, $Ca_3Cr_2(SiO_4)_3$	10	17
*Quartz, SiO ₂ (alpha or low)	3	24	*Valentinite, Sb ₂ O ₃	10	6
Rammelsbergite, NiAs ₂	10	42	Villiaumite, NaF	1	63
Retgersite, NiSO ₄ ·6H ₂ O	7	36	Willemite, Zn ₂ SiO ₄	7	62
Rhodochrosite, MnCO ₃	7	32	Witherite, BaCO ₃	2	54
Rutile, TiO ₂ (revised)	7m	83	Wulfenite, PbMoO ₄	7	23
Safflorite, CoFeAs ₄	10	28	Wurtzite, ZnS	2	14
Sal-ammoniac, NH ₄ Cl	1	59	Xenotime, YPO,	8	67
Sanmartinite, ZnWO ₄	2m	40	Zincite, ZnO	2	25
*Scheelite, CaWO ₄	6	23	Zinkosite, ZnSO4	7	64
Selenolite, SeO ₂ (revised)	$7\mathrm{m}$	60	*Zircon, ZrSiO ₄	4	68

.



### **NBS TECHNICAL PUBLICATIONS**

#### PERIODICALS

JOURNAL OF RESEARCH reports National Bureau of Standards research and development in physics, mathematics, chemistry, and engineering. Comprehensive scientific papers give complete details of the work, including laboratory data, experimental procedures, and theoretical and mathematical analyses. Illustrated with photographs, drawings, and charts.

Published in three sections, available separately:

#### • Physics and Chemistry

Papers of interest primarily to scientists working in these fields. This section covers a broad range of physical and chemical research, with major emphasis on standards of physical measurement, fundamental constants, and properties of matter. Issued six times a year. Annual subscription: Domestic, \$9.50; foreign, \$11.75*.

#### • Mathematical Sciences

Studies and compilations designed mainly for the mathematician and theoretical physicist. Topics in mathematical statistics, theory of experiment design, numerical analysis, theoretical physics and chemistry, logical design and programming of computers and computer systems. Short numerical tables. Issued quarterly. Annual subscription: Domestic, \$5.00; foreign, \$6.25*.

#### • Engineering and Instrumentation

Reporting results of interest chiefly to the engineer and the applied scientist. This section includes many of the new developments in instrumentation resulting from the Bureau's work in physical measurement, data processing, and development of test methods. It will also cover some of the work in acoustics, applied mechanics, building research, and cryogenic engineering. Issued quarterly. Annual subscription: Domestic, \$5.00; foreign, \$6.25*.

#### **TECHNICAL NEWS BULLETIN**

The best single source of information concerning the Bureau's research, developmental, cooperative and publication activities, this monthly publication is designed for the industry-oriented individual whose daily work involves intimate contact with science and technology—for engineers, chemists, physicists, research managers, product-development managers, and company executives. Annual subscription: Domestic, \$3.00; foreign, \$4.00*.

* Difference in price is due to extra cost of foreign mailing.

Order NBS publications from:

#### **NONPERIODICALS**

Applied Mathematics Series. Mathematical tables, manuals, and studies.

Building Science Series. Research results, test methods, and performance criteria of building materials, components, systems, and structures.

**Handbooks.** Recommended codes of engineering and industrial practice (including safety codes) developed in cooperation with interested industries, professional organizations, and regulatory bodies.

**Special Publications.** Proceedings of NBS conferences, bibliographies, annual reports, wall charts, pamphlets, etc.

**Monographs.** Major contributions to the technical literature on various subjects related to the Bureau's scientific and technical activities.

National Standard Reference Data Series. NSRDS provides quantitive data on the physical and chemical properties of materials, compiled from the world's literature and critically evaluated.

**Product Standards.** Provide requirements for sizes, types, quality and methods for testing various industrial products. These standards are developed cooperatively with interested Government and industry groups and provide the basis for common understanding of product characteristics for both buyers and sellers. Their use is voluntary.

**Technical Notes.** This series consists of communications and reports (covering both other agency and NBS-sponsored work) of limited or transitory interest.

Federal Information Processing Standards Publications. This series is the official publication within the Federal Government for information on standards adopted and promulgated under the Public Law 89–306, and Bureau of the Budget Circular A–86 entitled, Standardization of Data Elements and Codes in Data Systems.

#### CLEARINGHOUSE

The Clearinghouse for Federal Scientific and Technical Information, operated by NBS, supplies unclassified information related to Government-generated science and technology in defense, space, atomic energy, and other national programs. For further information on Clearinghouse services, write:

> Clearinghouse U.S. Department of Commerce Springfield, Virginia 22151

Superintendent of Documents Government Printing Office Washington, D.C. 20402

#### U.S. DEPARTMENT OF COMMERCE WASHINGTON, D.C. 20230

OFFICIAL BUSINESS

1



POSTAGE AND FEES PAID U.S. DEPARTMENT OF COMMERCE

·香田 - 聯