NBS MONOGRAPH 25-section 4

Standard X-ray Diffraction Powder Patterns

U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

THE NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards is a principal focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. Its responsibilities include development and maintenance of the national standards of measurement, and the provisions of means for making measurements consistent with those standards; determination of physical constants and properties of materials; development of methods for testing materials, mechanisms, and structures, and making such tests as may be necessary, particularly for government agencies; cooperation in the establishment of standard practices for incorporation in codes and specifications; advisory service to government agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; assistance to industry, business, and consumers in the development and acceptance of commercial standards and simplified trade practice recommendations; administration of programs in cooperation with United States business groups and standards organizations for the development of international standards of practice; and maintenance of a clearinghouse for the collection and dissemination of scientific, technical, and engineering information. The scope of the Bureau's activities is suggested in the following listing of its three Institutes and their organizatonal units.

Institute for Basic Standards. Applied Mathematics. Electricity. Metrology. Mechanics. Heat. Atomic Physics. Physical Chemistry. Laboratory Astrophysics.* Radiation Physics. Radio Standards Laboratory:* Radio Standards Physics; Radio Standards Engineering. Office of Standard Reference Data.

Institute for Materials Research. Analytical Chemistry. Polymers. Metallurgy. Inorganic Materials. Reactor Radiations. Cryogenics.* Materials Evaluation Laboratory. Office of Standard Reference Materials.

Institute for Applied Technology. Building Research. Information Technology. Performance Test Development. Electronic Instrumentation. Textile and Apparel Technology Center. Technical Analysis. Office of Weights and Measures. Office of Engineering Standards. Office of Invention and Innovation. Office of Technical Resources. Clearinghouse for Federal Scientific and Technical Information.**

^{*}Located at Boulder, Colorado, 80301.

^{**}Located at 5285 Port Royal Road, Springfield, Virginia, 22151.

Standard X-ray Diffraction Powder Patterns

Howard E. Swanson, Marlene C. Morris, and Eloise H. Evans

National Bureau of Standards Monograph 25 — Section 4 Issued June 28, 1966

Library of Congress Catalog Card No. 53-61386

	Page
Introduction	1
Cell determination for internal standards	3
Standard x-ray powder patterns:	
*Barium Boron Oxide, high form, BaB_2O_4	
(trigonal)	4
Barium Boron Oxide, BaB ₄ O ₇ (monoclinic)	6
Barium Fluosificate, BaSiF ₆ (trigonal)	7
*Cerium Arsenate, CeAsO ₄ (monoclinic)	8
*Cesium Fluoantimonate, CsSbF ₆ (trigonal)	9
*Cobalt, Co (cubic)	10
Cobalt Diarsenide, CoAs ₂ (monoclinic) (re-	10
Visea)	10
Cobalt Sincate, Co25IO4 (orthornomole)	11
*Cohalt Tungstate CoWO (monoclinic)	13
*Dysprosium Vanadate, DyVO (totragonal)	15
*Europium(III) Vanadate EuVO. (tetra-	10
gopal)	16
*Gadolinium Arsenate GdAsO. (tetragonal)	17
*Holmium Vanadate HoVO, (tetragonal)	18
*Iridium Dioxide. IrO_2 (tetragonal)	19
*Lead Boron Oxide, PbB ₄ O ₇ (orthorhombic)	19
Lithium Phosphate, low form, (lithiophos-	10
phate),** Li ₂ PO ₄ (orthorhombic) (revised)	21
Lithium Sulfate Monohydrate, Li ₂ SO ₄ ·H ₂ O	
(monoclinic)	22
*Magnesium Aluminum Silicate (pyrope),	
$Mg_3Al_2(SiO_4)_3$ (cubic)	24
Magnesium Boron Oxide, Mg ₂ B ₂ O ₅ (triclinic)	25
*Metaboric Acid, HBO ₂ (cubic)	27
*Neodymium Arsenate, NdAsO ₄ (monoclinic) _	28
Neodymium Vanadate, NdVO ₄ (tetragonal)	30
Potassium Acid Phthalate,	
$C_{6}H_{4}(COOH)$ (COOK) (orthorhombic)	30
*Praseodymium Arsenate, PrAsO ₄ (mono-	
clinic)	32
*Samarium Arsenate, SmAsO ₄ (tetragonal)	33
*Samarium Oxide, Sm ₂ O ₃ (cubic)	34
*Scandium Arsenate, ScAsO ₄ (tetragonal)	35
*Strontium Boron Oxide, SrB_4O_7 (orthorhom-	9.0
	30 97
*Tin Arsenide, SnAs (cubic)	
Zine Antimony Oride ZnSh O (tetragonal)	
*Calculated newdor nattorns:	59
Antimony Corium CoSh	40
Antimony Dysprosium Dysh	41
Antimony Erbium ErSh	41
Antimony Gadolinium, GdSb	42
Antimony Lanthanum, LaSh	42
Antimony Neodymium, NdSb	43
Antimony Praseodymium, PrSb	43
Antimony Scandium, SbSc	44
Antimony Thorium, SbTh	44
Antimony Thulium, SbTm	45
Antimony Ytterbium, SbYb	45
Antimony Yttrium, SbY	46
Bismuth Cerium, BiCe	46
Bismuth Dysprosium, BiDy	47

	rage
Bismuth Erbium, BiEr	47
Bismuth Holmium, BiHo	48
Bismuth Lanthanum, BiLa	48
Bismuth Neodymium, BiNd	49
Bismuth Praseodymium, BiPr	49
Bismuth Telluride, BiTe	50
Calcium Telluride, CaTe	50
Cerium Arsenide, CeAs	51
Cerium Nitride, CeN	51
Cerium Phosphide, CeP	52
Cobalt Iodide, CoI2	52
Dysprosium Arsenide, DyAs	53
Dysprosium Nitride, DyN	53
Dysprosium Telluride, DyTe	54
Erbium Arsenide, ErAs	54
Erbium Nitride, ErN	55
Erbium Telluride, ErTe	55
Europium Nitride, EuN	56
Europium Oxide, EuO	56
Gadolinium Arsenide, GdAs	57
Gadolinium Nitride, GdN	57
Germanium Iodide, GeI2	58
Holmium Nitride, HoN	58
Holmium Selenide, HoSe	59
Iron Bromide, FeBr ₂	59
Iron Iodide, FeI2	60
Lanthanum Arsenide, LaAs	60
Lanthanum Nitride, LaN	61
Lanthanum Selenide, LaSe	61
Lutetium Nitride, LuN	62
Magnesium Bromide, MgBr ₂	62
Manganese Bromide, MnBr ₂	63
Manganese Iodide, MnI ₂	63
Neodymium Arsenide, NdAs	64
Neptunium Nitride, NpN	64
Plutonium Arsenide, PuAs	65
Plutonium Phosphide, PuP	65
Plutonium Telluride, PuTe	66
Potassium Hydroxide, KOH at 300 °C	66
Praseodymium Arsenide, PrAs	67
Praseodymium Sulfide, PrS	67
Samarium Arsenide, SmAs	68
Scandium Arsenide, ScAs	68
Sodium Hydroxide, NaOH at 300 °C	69
Strontium Telluride, SrTe	69
Terbium Nitride, TbN	70
Thorium Arsenide, ThAs	70
Thulium Arsenide, TmAs	71
Thulium Nitride, TmN	71
Thulium Telluride, TmTe	72
Titanium Sulfide, TiS ₂	72
Uranium Telluride, UTe	73
Ytterbium Arsenide, YbAs	73
Ytterbium Nitride, YbN	74
Yttrium Arsenide, YAs	74
Yttrium Telluride, YTe	75
Zirconium Phosphide, ZrP	75
Cumulative index to Circular 539, Volumes 1, 2, 3,	
4, 5, 6, 7, 8, 9, and 10, and Monograph 25,	
Sections 1, 2, 3, and 4	77
Cumulative mineral index	82

*Not previously listed in Powder Diffraction File. **Mineral name in parentheses indicates a synthetics sample.

Errata

Monograph 25, Section 4

Circular 539

Vol. 3, p. 33; The space group should be $D_{3d}^3 - P\overline{3}m1$.

Vol. 4, p. 26; The space group should be $D_{3d}^3 - P\overline{3}m1$.

Vol. 6, p. 3; The space group should be T_h^6 -Pa3.

p. 35; The space group should be D_{2d}^{12} -I $\overline{4}2d$.

Monograph 25

Sec. 1, p. 2; In the left-hand column, the sentence beginning in the seventh line from the bottom should read: "Factors for converting integrated intensities to peak height intensities are on the left side of the chart.

Sec. 3, p. 7; The *d*-spacing 1.568 should be 1.537.

p. 5; *hkl* 341 should be 203.

p. 16; The *d*-spacing 2.113 should be 2.013.

p. 49; In the text for NBS sample, the first sentence should be corrected to read: ". . . by heating sodium trimetaphosphate sesquihydrate above the melting . . ."

p. 51; The NBS value for β for SnF₂ should be 109° 6.5′±0.3′.

Standard X-ray Diffraction Powder Patterns

The thirteen previous volumes in this series are available from the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 20402, as follows:

- NBS Circular 539, Volume 1, Standard X-ray Diffraction Powder Patterns (Data for 54 inorganic substances) 45 cents
- NBS Circular 539, Volume 2, Standard X-ray Diffraction Powder Patterns (Data for 30 inorganic substances) 45 cents
- NBS Circular 539, Volume 3, Standard X-ray Diffraction Powder Patterns (Data for 34 inorganic substances) 45 cents
- NBS Circular 539, Volume 4, Standard X-ray Diffraction Powder Patterns (Data for 42 inorganic substances) 45 cents
- NBS Circular 539, Volume 5, Standard X-ray Diffraction Powder Patterns (Data for 45 inorganic substances) 45 cents
- NBS Circular 539, Volume 6, Standard X-ray Diffraction Powder Patterns (Data for 44 inorganic substances) 40 cents

NBS Circular 539, Volume 7, Standard X-ray Diffraction Powder Patterns (Data for 53 substances) 40 cents
NBS Circular 539, Volume 8, Standard X-ray Diffraction Powder Patterns (Data for 61 substances) 45 cents
NBS Circular 539, Volume 9, Standard X-ray Diffraction Powder Patterns (Data for 43 substances) 40 cents
NBS Circular 539, Volume 10, Standard X-ray Diffraction Powder Patterns (Data for 40 substances) 40 cents
NBS Monograph 25, Section 1, Standard X-ray Diffraction Powder Patterns (Data for 46 substances) 40 cents
NBS Monograph 25, Section 2, Standard X-ray Diffraction Powder Patterns (Data for 46 substances) 40 cents
NBS Monograph 25, Section 3, Standard X-ray Diffraction Powder Patterns (Data for 37 substances) 35 cents
NBS Monograph 25, Section 3, Standard X-ray Diffraction Powder Patterns (Data for 51 substances) 40 cents
NBS Monograph 25, Section 3, Standard X-ray Diffraction Powder Patterns (Data for 51 substances) 40 cents

D.C., 20402. Remittances from foreign countries should include an additional one-fourth of the purchase price for postage.

Those wishing to be notified of future issues should send mailing address to the Government Printing Office.

STANDARD X-RAY DIFFRACTION POWDER PATTERNS

Section 4—Data for 103 Substances

Howard E. Swanson, Marlene Cook Morris,¹ and Eloise H. Evans¹

Standard x-ray diffraction powder data are presented for 103 substances. Thirty-two of these patterns represent experimental data and 71 are calculated. Ten experimental patterns replace eleven cards already in the X-ray Powder Diffraction File published by the American Society for Testing and Materials; twenty-two experimental patterns and seventy-one calculated patterns are for substances not previously included in the File. The experimental x-ray powder diffraction patterns were made with a Geiger counter x-ray diffractometer, using samples of high purity. All d-values were assigned Miller indices determined by comparison with theoretical interplanar spacings and from space group extinctions. The densities and lattice constants were calculated, and the refractive indices were measured whenever possible. The calculated x-ray powder diffraction patterns were obtained from single crystal structure data. The reported peak height intensities for calculated patterns were converted from integrated intensities.

Accurate cell determination measurements for the internal standards were obtained by using a flat-plate back reflection focusing camera.

Key Words: standard, x-ray, diffraction, powder, patterns, crystal, structure, measurements, lattice, constants

INTRODUCTION

The X-ray Powder Diffraction File [1]² is a compilation of diffraction patterns from many sources and is used for the identification of unknown crystalline materials by matching spacing and intensity measurements. The National Bureau of Standards in its program³ for the revision and evaluation of published x-ray data for the X-ray Powder Diffraction File presents data in this report for 103 compounds. This compilation is the fourteenth of a series of "Standard X-ray Diffraction Powder Patterns."⁴ The designation "Circular 539" used for the first ten volumes has been discontinued in favor of the series, "Monograph 25." This compilation is the fourth section of the series Monograph 25. Included are patterns recommended to replace data on 11 cards now present in the File. The other patterns are for 93 compounds not included in the File. In this group of compounds, 22 patterns are experimental and 71 are calculated.

Experimental Powder Patterns

Powder data cards. Under this heading are given the Powder Diffraction File Card numbers and the literature reference for each card. Cards listed through the 1964 index to the Powder Diffraction File are included in the table.

Additional published patterns. Literature references for patterns that have not been published as Powder Diffraction cards are listed.

NBS sample. Many of the samples used to make NBS patterns were special preparations of high purity obtained from a variety of sources or prepared in small quantities in our laboratory. Unless otherwise noted, the spectrographic anal-yses were done at NBS after preparation of the sample was completed. The limit of detection for the alkali elements was 0.05 percent for the spectrographic analyses. A microscopic inspection for phase purity was made on the nonopaque materials during the refractive index determination. Another check of phase purity was usually provided by the x-ray pattern itself, when it was indexed by comparison with theoretical d-values. Treating the sample by appropriate annealing, recrystallization, or heating in hydrothermal bombs improved the definition of most of the patterns. The refractive index measurements were made by grain-immersion methods in white light, using oils standardized in sodium light, and covering the range 1.40 to 2.00.

Structural data. For cubic materials a value for the lattice constant was calculated for each d-value. However, the constant reported is that obtained by averaging the constants for the last five lines because of the greater accuracy of calculation in the large-angle region of the pattern. The unit cell values for noncubic substances were determined by means of a least-squares calculation made on the IBM 7094, using those d-values for which only one set of Miller indices could be assigned. The number of significant figures reported for the *d*-values in the NBS patterns varies slightly with the symmetry and crystallinity of each sample. A portion of the indexing and cell

¹ Research Associate at the National Bureau of Standards sponsored by the Joint Committee on Chemical Analysis by Powder Diffraction Methods. ² Figures in brackets indicate the literature references at the end of each

² Figures in brackets indicate the literature references at the end of each section of this paper.
³ This project is sponsored by the Joint Committee on Chemical Analysis by Powder Diffraction Methods. This committee is composed of members from the American Society for Testing and Materials, the American Crystallographic Association, and the British Institute of Physics. Financial support is also provided by the National Bureau of Standards.
⁴ Other volumes were published as follows: Circular 539 Vol. 1 and Vcl. 2, June 1953; Vol. 3, June 1954; Vol. 4, March 1955; Vol. 5, October 1955; Vol. 6, September 1956; Vol. 7, September 1957; Vol. 8, April 1959; Vol. 9, February 1960; Vol. 10, September 1960; Monograph 25, Section 1, March 1962; Section 2, May 1963; and Section 3, July 1964.

refinement calculation was performed on a Burroughs B 220 computer at the United States Geological Survey using a program developed by H. T. Evans, Jr., D. E. Appleman, and D. Handwerker [2]. Lattice constant errors are given only for data refined on that program and are based on least squares refinement of the variance-covariance matrix derived from the unweighted $\Delta\theta$ residuals.

Published unit cell data in kX units and data given in angstrom units prior to 1947 were converted to angstrom units using the factor 1.00202 as recommended by an international conference of crystallographers [3].

The space groups are listed with both the Schoenflies and short Hermann-Mauguin symbols as well as the space group numbers given in the International Tables for X-ray Crystallography [4].

Orthorhombic cell dimensions are presented according to the Dana convention b > a > c [5].

The densities calculated from the NBS lattice constants are expressed in grams per cubic centimeter and are computed with atomic weights based on carbon 12 [6], and the Avogadro number (6.02252×10^{23}) .

Intensity measurements. At least three patterns for intensity measurements were prepared to check reproducibility. Samples that gave satisfactory intensity patterns usually had an average particle-size smaller than 10 μ [7]. In order to avoid the orientation effects which occur when samples are packed or pressed, a sample holder was made that had an extended rectangular cavity opened on its top face and at the end. To prepare the sample, a glass slide was clamped over the top face to form a temporary cavity wall (see fig. 1). The powdered sample was then drifted into the remaining end opening while the holder was held in a vertical position. With the sample holder returned to a horizontal position, the glass slide was carefully removed so that the sample surface could be exposed to the x-ray beam (as shown in fig. 2). To powders that did not flow readily, or were prone to orient excessively, approximately 50 volume percent of finely ground silica-gel was added as a diluent. The intensities of the diffraction lines were measured as peak heights above background and were expressed in percentages of the intensity of the strongest line.

Interplanar spacings. Specimens for the interplanar spacing patterns were prepared by packing into a shallow holder a sample containing approximately 5 wt percent tungsten powder that served as an internal standard. When tungsten lines were found to interfere, 25 percent silver was used in place of tungsten. If the internal standard correction varied along the length of the pattern, linear interpolations were used for the regions between the peaks of the standard. For low values of 2θ , the pattern peak was measured in the center, at a place averaging about 75 percent of the peak height. For higher values of 2θ , where the α_1 and α_2 peaks were separated, the α_1 peak was measured in the same way. The internal standard correction appropriate to each region was then applied to the measurement of 2θ . The internal standard lattice constants used were 3.1648 Å for tungsten and 4.0861 Å for silver at 25 °C, as determined by Jette and Foote [8]. All of the NBS patterns, unless otherwise noted, are made at 25 °C using either filtered copper or cobalt radiation $(K\alpha_1)$, having the wavelengths 1.5405 Å, and 1.7889 Å, respectively.

FIGURE 1

FIGURE 2

Calculated Powder Patterns

Some substances are not readily available for experimental powder measurements. Therefore, patterns were calculated from single crystal structure data, using a FORTRAN program developed by Smith [9].

Scattering factors were obtained from The In-ternational Tables [10].

Intensity calculations were based upon copper wavelength, 1.5405 Å. The integrated intensities were converted to peak height values by means of a graph [11]. Data with peak height intensities less than 0.1 were omitted. Peak height intensities from 0.1 to 0.9 were recorded as <1. Those intensities with *d*-values close enough to be unresolved were summed.

No temperature corrections were included.

Literature references are compiled at the end of the section of calculated patterns.

The authors are indebted to H. F. McMurdie for measurement of indices of refraction and for his continuous interest and supervision in this work, to J. H. deGroot for the preparation of many of the samples used, and to S. J. Carmel for his assistance on the work using the back reflection camera.

References

- [1] Index to the X-ray Powder Diffraction File, (1964) American Society for Testing and Materials, 1916
- [2] H. T. Evans, D. E. Appleman, and D. S. Handwerker. The least-squares refinement of crystal unit cells with powder diffraction data by an automatic computer indexing method, (abs.) Am. Crystal. Assoc. Annual Meeting, Cambridge, Mass. Program 42– 43, March (1963).
- [3] The conversion factor for kX units to angstrom units, J. Sci. Instr. 24, 27 (1947).
 [4] International Tables for X-ray Crystallography, I
- (1952).
- [5] Dana's System of Mineralogy, I, 6 (John Wiley & Sons, New York, 7th ed., 1944). [6] International Union of Pure and Applied Chemistry,
- Chem. Eng. News, Nov. 20, 43 (1961). [7] L. Alexander, H. P. Klug, and E. Kummer, Statistical
- factors affecting the intensity of X-rays diffracted by crystalline powders, J. Appl. Phys. 19, No. 8, 742-
- 753 (1948).
 [8] E. R. Jette and F. Foote, Precision determination of lattice constants, J. Chem. Phys. 3, 605-616 (1935).
 [9] D. K. Smith, A FORTRAN program for calculating UCRL 7106
- X-ray powder diffraction patterns, UCRL-7196 (1963) University of California, Lawrence Radiation
- Laboratory, Livermore, Calif. [10] International Tables for X-ray Crystallography, III
- 202 (1962).
 [11] H. E. Swanson, M. C. Morris, R. P. Stinchfield, and E. H. Evans, Standard X-ray Diffraction Powder Patterns, Natl. Bur. Std. Monograph 25, Sec. 1, 3 (1962).

Cell Determination for Internal Standards

In the search for new sources of supply for silver and tungsten which we have used to reference 2θ measurements, we became interested in obtaining lattice values of the various samples of high purity silver and tungsten. The cell values for these internal standards, adopted by this laboratory in 1950, will be changed after this issue from 3.1648 to 3.16504 Å for tungsten, and from 4.0861 to 4.08625 Å for silver. The greater change in tungsten is due to higher purity (four 9's) of the newer tungsten sample. The purity of the old tungsten sample is approximately three 9's.

A flat plate back reflection camera was specially constructed for these measurements. With this type of camera only one diffraction ring is in sharp focus with each setting. This tends to limit its use to cubic materials. For each sample, a radiation was selected which produced a back reflection ring between 165° and 178° (2 θ). A micro focus tube was chosen partly because of the ease with which targets may be changed and partly because the small external tube dimension allowed the glass photographic plate to be close enough to the 0.1 mm X-ray target to satisfy focusing. The sample powders were mounted on a 5 cm diam rotating holder that was spherically shaped for the 50 cm focus. Samples of tungsten were run on a shorter focus of 25 cm with a shaped holder to fit a 25 cm sphere. The 10 in. \times 2 in. photographic plates had a hole cut in the center prior to the emulsion coating.

An insulated box enclosed the camera and made possible the circulation of air or helium at $25.00 \pm$ 0.02° C. A steady cooling effect was obtained by using a fin containing 18° C water in a circulated air stream. The temperature was controlled by a proportioning device that allowed varying amounts of current to heat a 7W light bulb also in the air flow. Temperature was read from two Beckmann thermometers calibrated at 25° C. The diffraction ring recorded on the photographic plate was scanned with a densitometer driven manually by a comparator. Densitometer readings were plotted for the $K\alpha_1$ portion of the peak and the center was chosen at the point where the center line intersected the top of the peak.

Measurements of the distance from sample to the photographic plate emulsion were made by an inside micrometer and end measuring rods. Calculation of *d*-values without sine tables was

possible using the formula
$$d = rac{\lambda}{2\sqrt{rac{h+b}{2h}}}$$

given: $a = \frac{1}{2}$ diam of diffraction ring

$$b =$$
 the distance from sample to the center
of the plate

and
$$h = \sqrt{a^2 + b^2}$$
.

Samples of high purity tungsten and silver were obtained from several suppliers, but only three tungsten and four silver samples gave sufficiently sharp diffraction peaks for measurement of cell values. Since the variation of cell values for these samples was within the reproducibility of the equipment, it appears that most samples of tungsten or silver of four or five 9's purity and producing sharp diffraction peaks would be suitable for x-ray spacing reference standards.

Cadmium oxide was also considered and measured as a spacing standard, but the cell size was obtained from only one high purity sample.

Lattice c	onstants
-----------	----------

Sample source	λª		Corrected for index of refraction [1]
Tungsten: Spex ¹ Spex Parrish ² Fairmount ³ Fairmount Present NBS Standard	Co Ni Ni Co Ni Co	\rat{A} 3. 16501 3. 16508 3. 16506 3. 16501 3. 16503 3. 16493	$\overset{\rat{A}}{3.16522}\ 3.16526\ {}^{b}3.16524\ 3.16522\ 3.16522\ 3.16521\ 3.16514$
Silver: Cominco ⁴ Johnson & Matthey ⁵ Engelhard ⁶ Present NBS Standard	Ni Ni Ni Ni	4. 08625 4. 08625 4. 08623 4. 08623	4. 08639 4. 08639 4. 08637 4. 08637 4. 08640
Cadmium oxide: Fairmount Fairmount	Co Ni	4. 69559 4. 69558	4. 69573 4. 69570

^a CoK α_1 =1.78890 Å, NiK α_1 =1.65783 Å [2].

^b a=3.16522 Å, mean value obtained in I.U. Cr. project using same tungsten

¹ Spex Industries, Inc., 3880 Park Avenue, Metuchen, N.J.
 ¹ Spex Industries, Inc., 3880 Park Avenue, Metuchen, N.J.
 ² Dr. William Parrish. Philips Laboratories, Briarcliff Manor, N.Y.
 ³ Fairmount Chemical Co., Inc, 136 Liberty Street, New York, N.Y.,

⁴ Cominco Products, Inc., Electronic Materials Division, 933 West Third Avenue, Spokane 4, Washington.
 ⁵ Johnson, Matthey & Co., Ltd., c/o Jarrell-Ash Co., Newtonville 60, Mass.
 ⁶ Engelhard Industries, Inc., 113 Astor Street, Newark 14, N.J.

Barium Boron Oxide, high form, BaB₂O₄ (trigonal)

Powder data cards. No. 6-0220 and No. 6-0224, Levin and McMurdie [1] 1949. The data on card No. 6-0220 was taken at 700 °C. Card No. 6-0224 is for a lower temperature form of BaB_2O_4 .

Additional published patterns. None.

NBS sample. The sample of barium boron oxide was prepared at NBS by C. E. Weir from barium carbonate and boric acid. It was heated at 1,000 °C, then alternately ground and reheated several times. Spectrographic analysis showed the following major impurities: 0.01 to 0.1 percent each of calcium, silicon, and strontium; and

New lattice measurements will be used with the recently obtained standard reference samples beginning with the next Section of this Mono-graph. These changes will increase d-values by a factor of 1.00004 compared to the *d*-values obtained with the older standard samples.

The following 2θ angles for high purity tungsten, silver, and cadmium oxide are computed using copper radiation $K_{\alpha_1} = 1.5405$ Å and the cell dimensions without index of refraction corrections.

Calculated 20 Angles				
hkl	a=3.16504 Å	$\substack{\text{Ag}\\a=4.08625 \mathring{A}}$	CdO a=4.69558 Å	
$110\\111\\200\\211\\220\\310\\311\\222\\321\\400\\331\\420\\422\\511\\440\\531\\600$	40. 262 ° 58. 252 73. 187 87. 000 100. 630 114. 922 131. 171 153. 533	38. 112° 44. 295 64. 440 77. 390 81. 530 97. 874 110. 498 114. 914 134. 897 156. 735	$\begin{array}{c} 33.\ 012°\\ 38.\ 304\\ 55.\ 286\\ 65.\ 920\\ 69.\ 256\\ 82.\ 014\\ 91.\ 290\\ 94.\ 378\\ 106.\ 954\\ 116.\ 939\\ 136.\ 230\\ 152.\ 076\\ 159.\ 618\\ \end{array}$	

References

- H. Lipson and A. J. C. Wilson, The derivation of lattice spacings from Debye-Scherrer photographs, J. Sci. Instr. 18, 144 (1944).
- [2] The conversion factor for kX units to angstrom units, J. Sci. Instr. 24, 27 (1947).
- [3] W. Parrish, Results of the I. U. Cr. precision lattice parameter project, Acta Cryst. 13, 838 (1960).

0.001 to 0.01 percent each of aluminum, sodium, and nickel.

The sample is colorless and optically negative. The indices of refraction are $N_e = 1.530$ and

 $N_o = 1.658$. The *d*-values of the three strongest lines are 3.619, 3.324, and 5.98 Å.

Structural data. Block, Perloff, and Weir [2] in 1964 reported that there appear to be two polymorphic forms of barium boron oxide, the high form being trigonal having the space group C_{3v}-R3c (No. 161) or D_{3d}⁶-R3c (No. 167) with 18 (BaB_2O_4) per unit hexagonal cell.

Barium Boron Oxide, BaB₂O₄ (trigonal)

hkl (hex)	Internal Sta a=3.1648 Å; Cu λ 1.5	Internal Standard W, a=3.1648 Å; temp. 25 °C Cu λ 1.5405 Å	
	d	I	
006 012 018 110 1.0.10	$ \begin{array}{c} $	17 53 17 100 83	
1160.1.11, 202024205119	$\begin{array}{c} 3.\ 164\\ 3.\ 094\\ 2.\ 986\\ 2.\ 912\\ 2.\ 783 \end{array}$	$\begin{array}{c} 6\\ 26\\ 3\\ 2\\ 4\\ \end{array}$	
$\begin{array}{c} 208 \\ 0.2.10 \\ 1.1.12 \\ 211 \\ 2.0.11 \end{array}$	$\begin{array}{c} 2.\ 639\\ 2.\ 448\\ 2.\ 425\\ 2.\ 365\\ 2.\ 352 \end{array}$	$16 \\ 33 \\ 31 \\ 2 \\ 23$	
$\begin{array}{c} 214 \\ 1 \cdot 0 \cdot 16 \\ 217 \\ 0 \cdot 0 \cdot 18 \\ 128 \end{array}$	$\begin{array}{c} 2.\ 302\\ 2.\ 282\\ 2.\ 180\\ 2.\ 177\\ 2.\ 131 \end{array}$	8 5 3 6 18	
$1.1.15 \\ 300, 2.0.14 \\ 2.1.10 \\ 306 \\ 1.2.11$	$\begin{array}{c} 2.120 \\ 2.088 \\ 2.0268 \\ 1.9897 \\ 1.9721 \end{array}$	$<\!$	
$0.2.16 \\ 0.1.20 \\ 0.0.21, 1.1.18 \\ 220, 1.2.14 \\ 224$	$\begin{array}{c} 1.\ 9301 \\ 1.\ 8699 \\ 1.\ 8653 \\ 1.\ 8087 \\ 1.\ 7784 \end{array}$	$2 \\ 18 \\ 16 \\ 12 \\ < 2$	
$\begin{array}{c} 3.0.12 \\ 312 \\ 1.0.22 \\ 2.0.20 \\ 318 \end{array}$	$\begin{array}{c} 1.\ 7599\\ 1.\ 7314\\ 1.\ 7133\\ 1.\ 6614\\ 1.\ 6377\end{array}$	$\begin{array}{c} 8\\12\\4\\7\\4\end{array}$	600,
$\begin{array}{c} 1.3.10\\ 042\\ 0.2.22\\ 1.2.20\\ 1.3.13\end{array}$	$\begin{array}{c} 1.5883\\ 1.5613\\ 1.5487\\ 1.5098\\ 1.5060 \end{array}$	$ \begin{array}{c} 12 \\ <2 \\ 4 \\ 6 \\ 9 \\ \end{array} \\ }$	

hkl (hex)	a = 3.1648 Å; temp. 25 °C Cu λ 1.5405 Å		
	<i>d</i>	Ι	
$1.1.24 \\ 3.1.14 \\ 4.0.10 \\ 232 \\ 2.1.22$	$\rarkspace{1.4882} 1.4882 1.4763 1.4541 1.4332 1.4238 1.4238$	${<}^2_{{<}^2_{{6}}}_{{6}^2_{{5}}}$	
2.2.18238410 $3.2.100.0.30$	$\begin{array}{c} 1.\ 3910\\ 1.\ 3790\\ 1.\ 3670\\ 1.\ 3493\\ 1.\ 3060 \end{array}$	${3\atop <2}{14}{8\atop <2}$	
$\begin{array}{c} 3 \cdot 1 \cdot 20 \\ 0 \cdot 2 \cdot 28 \\ 1 \cdot 4 \cdot 12 \\ 1 \cdot 3 \cdot 22 \\ 1 \cdot 1 \cdot 30 \end{array}$	$\begin{array}{c} 1.\ 3004\\ 1.\ 2775\\ 1.\ 2610\\ 1.\ 2442\\ 1.\ 2284 \end{array}$	$\overset{8}{\overset{22}{\overset{22}{\overset{6}{\overset{6}{}}}}}}_{4}$	
$\begin{array}{c} 0.4.20 \\ 2.1.28 \\ 0.1.32 \\ 0.5.10 \\ 422 \end{array}$	$\begin{array}{c} 1.\ 2239\\ 1.\ 2051\\ 1.\ 2020\\ 1.\ 1937\\ 1.\ 1817 \end{array}$	$\overset{4}{\underset{<2}{\overset{2}{\underset{<2}{\overset{2}{}}}}}$	
$\begin{array}{r} 4.0.22\\ 2.3.20,274\\ 428\\ 2.4.10\\ 0.3.30\end{array}$	$\begin{array}{c} 1.\ 1760\\ 1.\ 1586\\ 1.\ 1511\\ 1.\ 1334\\ 1.\ 1074 \end{array}$	$\overset{2}{\underset{2}{\overset{6}{\overset{2}{\overset{2}{\overset{2}{\overset{2}{\overset{2}{\overset{2}{\overset$	
$158 \\ 1\cdot 3\cdot 28 \\ 1\cdot 2\cdot 32 \\ 0\cdot 2\cdot 34 \\ 2\cdot 2\cdot 30$	$\begin{array}{c} 1.\ 0964\\ 1.\ 0900\\ 1.\ 0876\\ 1.\ 0814\\ 1.\ 0588 \end{array}$	$\overset{<2}{\underset{4}{\overset{2}{\overset{2}{\overset{4}{\overset{2}{\overset{2}{\overset{2}{\overset{2}{\overset$	
5.0.20600, 1.0.37, 1.5.144.0.284.2.20 $3.2.28$	$\begin{array}{c} 1.\ 0558\\ 1.\ 0440\\ 1.\ 0436\\ 1.\ 0134\\ 1.\ 0026 \end{array}$	2 2 2 4 4	

Internal Standard W,

Lattice constants

		a	с
$\begin{array}{c} 1964 \\ 1965 \end{array}$	Block, Perloff, and Weir [2]_ National Bureau of	Å 7. 23	<i>Å</i> 39. 17
	Standards, sample at 25 °C	7. 2351	39. 192

The density of the high form of barium boron oxide calculated from the NBS lattice constants is 3.751 g/cm³ at 25 °C.

Reference

E. M. Levin and H. F. McMurdie, The system BaO·Ba₂O₃, J. Res. NBS 42, 131-7 (1949) RP 1956.
 S. Block, A. Perloff, and C. E. Weir, The crystal-lography of some M⁺² borates, Acta Cryst. 17, 314 (1964).

Powder data card. No. 6–0334, Levin and McMurdie [1].

Additional published pattern. None.

NBS sample. The sample of barium boron oxide was prepared at NBS from boric acid and barium carbonate, in a solid state reaction below the melting point of 910 °C. Spectrographic analysis showed the following major impurities: 0.1 to 1.0 percent silicon, and 0.01 to 0.1 percent each of aluminum, calcium, cobalt, and strontium. The sample was colorless and optically positive with medium 2V. The indices of refraction are $N_{\alpha}=1.594\pm0.004$, $N_{\beta}=1.610\pm0.004$, and $N_{\gamma}=1.666\pm0.004$.

The *d*-values of the three strongest lines are 3.130, 3.805, and 4.908 Å.

Structural data. Block, Perloff, and Weir [2] in 1964 determined that barium boron oxide has the space group C_{2h}^{5} —P2₁/c (No. 14) and 8(BaB₄O₇) per unit cell.

hkl	Internal Standard W, a=3.1648 Å; temp. 25 °C Cu λ 1.5405 Å		hkl	Internal Standard W, a=3.1648 Å; temp. 25 °C Cu λ 1.5405 Å	
	d	Ι		d	Ι
$100 \\ \overline{102}, \overline{111} \\ 200 \\ 012 \\ \overline{112}$	$\begin{matrix} \overset{A}{10.22} \\ 6.120 \\ 5.113 \\ 4.995 \\ 4.908 \end{matrix}$	8 49 24 39 72	$230 \\ 223 \\ \overline{232} \\ 214, 231, + \\ \overline{404} $	$\overset{A}{}$ 2. 410 2. 365 2. 348 2. 316 2. 299	22 12 49 40 38
$ \begin{array}{r} \frac{102}{211} \\ 210 \\ 112 \\ 020 \end{array} $	4. 831 4. 410 4. 335 4. 160 4. 096	42 14 64 45 40	$\begin{array}{r} \frac{313}{315}, \frac{322}{324}\\ \overline{421}\\ 402\\ 133, 420\end{array}$	2. 266 2. 247 2. 219 2. 177 2. 168	$14 \\ 16 \\ 25 \\ 18 \\ 25$
$\begin{array}{c} \overline{2}12\\021\\211\\\overline{1}13,120\\\overline{1}21,013\end{array}$	$\begin{array}{c} 4.\ 010\\ 3.\ 897\\ 3.\ 847\\ 3.\ 805\\ 3.\ 742 \end{array}$	5 54 24 94 24	$\begin{array}{r} \overline{2}25\\ \overline{4}23, \overline{3}32\\ 412\\ \overline{1}34\\ \overline{2}16\end{array}$	2. 158 2. 128 2. 104 2. 094 2. 077	19 44 27 17 19
$\begin{array}{c} \frac{121}{302} \\ 212\\ \overline{2}21\\ 220 \end{array}$	3. 548 3. 388 3, 246 3. 229 3. 196	65 63 65 35 49	$\begin{array}{r} \underline{421},\underline{304}\\ \overline{511},\overline{333}\\ 016\\ 140\\ 314 \end{array}$	$\begin{array}{c} 2.\ 060\\ 2.\ 039\\ 2.\ 033\\ 2.\ 008\\ 1.\ 997 \end{array}$	$\Big\} \\ \begin{array}{c} 13 \\ 37 \\ 21 \\ 40 \\ \end{array}$
$\begin{array}{r} & \overline{3}12 \\ \overline{2}04, \overline{2}22 \\ & \overline{1}14 \\ & 221 \\ & \overline{1}23 \end{array}$	3, 130 3. 060 3. 029 2. 983 2. 967	$ \begin{array}{r} 100 \\ 55 \\ 6 \\ 12 \\ 12 \\ 12 \end{array} $	$\overline{3}16$ 134 042 422 413	$\begin{array}{c} 1.\ 980\\ 1.\ 958\\ 1.\ 946\\ 1.\ 922\\ 1.\ 914 \end{array}$	21 5 7 8 14
$014 \\ 311 \\ \overline{3}13, \overline{2}14 \\ 104 \\ 302$	2. 939 2. 894 2. 870 2. 810 2. 712	$32 \\ 11 \\ 12 \\ 65 \\ 10$	$\begin{array}{r} \overline{1}35, 511\\ \overline{5}21, \overline{2}42\\ 225\\ 315, 512\\ 044 \end{array}$	1.887 1.873 1.837 1.768 1.718	$7 \\ 7 \\ 7 \\ 10 \\ 15$
$\begin{array}{r} \frac{123}{321}\\ 130\\ 320. \ \overline{1}31\\ \overline{322}\end{array}$	2. 691 2. 674 2. 638 2. 620 2. 614	$\begin{cases} 27 \\ 29 \\ 7 \\ 17 \end{cases}$	$\begin{array}{r} \overline{236} \\ 325 \\ \overline{3}27, 334 \\ 530, 226 \\ \overline{3}44, \overline{2}08 \end{array}$	$\begin{array}{c} 1.\ 688\\ 1.\ 657\\ 1.\ 644\\ 1.\ 636\\ 1.\ 629 \end{array}$	$9\\16\\4\\6\\15$
	2. 549 2. 507 2. 495 2. 452 2. 439	20 48 58 32 27	$\overline{6}22, \overline{4}41 \\ \overline{2}45$	1. 620 1. 593	14 13

		a	b	с	β
1964 1965	Block, Perloff, and Weir [2] National Bureau of Standards, sample at 25 °C	${}^{\AA}_{10.56}$	Å 8. 20 8. 194	${}^{\AA}_{13.\ 01}$ 13. 045	104. 95° 105. 150°

The density of barium boron oxide calculated from the NBS lattice constants is 3.558 g/cm³ at 25 °C.

References

 E. M. Levin and H. F. McMurdie, The system BaO·B₂O₃, J. Res. NBS 42, 131-7 (1949) RP1956.
 S. Block, A. Perloff, and C. E. Weir, The crystallog-raphy of some M⁺² borates, Acta Cryst. 17, 314 (1964).

Barium Fluosilicate, BaSiF₆ (trigonal)

Powder data card. No. 1–0534, Hanawalt, Rinn, and Frevel [1] 1938.

Additional published patterns. None.

NBS sample. The sample of barium fluosilicate was prepared at NBS from barium chloride and hydrofluosilic acid. The precipitate was dried at 60 °C. Spectrographic analysis showed the following impurities: 0.1 to 1.0 percent sodium; 0.01 to 0.1 percent each of aluminum, calcium, potassium, magnesium, and strontium; and 0.001 to 0.01 percent each of iron, nickel, lead, titanium, and zirconium.

The sample was colorless. The refractive indices could not be determined because the sample was too fine-grained.

The *d*-values of the three strongest lines are 3.593, 1.953, and 3.055 Å.

				Internal Sta a=3.1648 Å: t	ndard W, emp. 25 °C
	Internal Standard W,		hkl (hex)	Cu λ 1.5405 Å	
hkl (hex)	Cu λ 1.5	5405 Å		d	Ι
	d	· I	134	Å 1 2206	5
			051	1. 2258	4
	Å		125	1. 2043	4
101	4.650	30	330	1. 1974	5
110	3. 593	100	413	1. 1738	6
012	3. 055	60			
021	2.845	11	502	1. 1729	5
003	2. 330	42	006	1. 1684	4
202	0 207	97	404	1. 1632	5
202	2.041	21 59	241	1. 1597	4
300	2. 200	0	422	1. 1148	4
113	1 958	29	116	1 1110	4
122	1 953	$\frac{29}{62}$	110		4 9
	1,000	02	024 511		0 9
220	1, 796	13	011 215	1.1039	1
104	1. 686	5	222	1.0655	5
131	1.676	4	000	1. 0000	U
303	1. 550	6	152	1. 0648	4
312	1. 548	9	045	1. 0416	ī
			600	1. 0373	1
024	1. 5269	7	306	1. 0180	2
401	1. 5187	7	054	1. 0148	3
223	1. 4242	8			
042	1. 4219	10	431	1. 0122	3
214	1. 4050	14	235	1. 0004	2
201	1 2000	1	520	0. 9965	3
521 015	1. 3992		342	. 9821	3
010	1.3079	3	226	. 9796	3
410	1. 0084	9	244	0505	0
202	1.0220	1	244	. 9765	2
200	1. 2100	I			

Structural data. Hoard and Vincent [2] in 1940 determined that barium fluosilicate has the space group D_{3d}^5 —R3m (No. 166), with 3(BaSiF₆) per unit hexagonal cell.

References

- J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemical analysis by x-ray diffraction, Anal. Chem. 10, 457-512 (1938).
- [2] J. L. Hoard and W. B. Vincent, Structures of complex fluorides. Barium fluosilicate and barium fluogermanate, J. Am. Chem. Soc. 62, 3126-3129 (1940).

Powder data cards. None. Additional published patterns. None.

NBS sample. The sample of cerium arsenate was precipitated at NBS from a water solution of arsenic pentoxide and cerium trichloride. It was heated to 930 °C for 1 hr to sharpen the pattern. Spectrographic analysis showed the following major impurities: 0.01 to 0.1 percent each of calcium and antimony; and 0.001 to 0.01 percent

hkl	Internal Stat a=4.0861 Å; to Cu λ 1.5	ndard Ag, emp. 25 °C 405 Å
	d	Ι
T01 110 011 T11 101	$\begin{array}{c} \mathring{A} \\ 5. \ 420 \\ 4. \ 908 \\ 4. \ 820 \\ 4. \ 324 \\ 4. \ 183 \end{array}$	$5 \\ 14 \\ 12 \\ 11 \\ 4$
$111 \\ 020 \\ 200 \\ 002 \\ 120$	3. 610 3. 581 3. 368 3. 260 3. 161	$10 \\ 16 \\ 58 \\ 8 \\ 100$
$\begin{array}{c} 210, \overline{2}11\\ 112\\ 012\\ \overline{2}02\\ \overline{2}12 \end{array}$	3. 046 2. 978 2. 966 2. 710 2. 533	24 34 77 25 22
$112 \\ 220, \overline{2}21 \\ \overline{1}22 \\ \overline{3}01 \\ 130 \\ 031, \overline{1}03 \\ \overline{3}11 \\ 221 \\ \overline{2}22 \\ 122, 310 \\ 12$	$\begin{array}{c} 2.\ 507\\ 2.\ 451\\ 2.\ 417\\ 2.\ 310\\ 2.\ 247\\ 2.\ 240\\ 2.\ 198\\ 2.\ 167\\ 2.\ 161\\ 2.\ 142 \end{array}$	$16 \\ 6 \\ 7 \\ 4 \\ 6 \\ 19 \\ 8 \\ 8 \\ 5 \\ 5 \\ 5$
$\begin{array}{c} 131\\ \overline{3}12\\ 212\\ 301\\ 230, \overline{2}31\\ 103, \overline{1}32\\ 311, 320\\ 023\\ \overline{3}22\\ \overline{3}03\\ \end{array}$	$\begin{array}{c} 2.\ 072\\ 2.\ 029\\ 2.\ 008\\ 1.\ 972\\ 1.\ 945\\ 1.\ 930\\ 1.\ 902\\ 1.\ 857\\ 1.\ 822\\ 1.\ 807 \end{array}$	$\begin{array}{r} 4\\5\\31\\4\\11\\31\\15\\4\\20\\1\end{array}$

a С Å Å Hoard and Vincent [2]. 1940 7.19 7.01 1965 National Bureau of Standards, sample at 25 °C..... 7.1854 7.0102 ± 0.0004 ± 0.0003

The density of barium fluosilicate calculated from NBS lattice constants is 4.440 g/cm³ at 25 °C.

Cerium Arsenate, CeAsO₄ (monoclinic)

hkl	Internal Standard Ag, a=4.0861 Å; temp. 25 °C Cu λ 1.5405 Å	
-	d	I
$ar{2}23\\231\\040\\132\\140$	$\overset{\rat{A}}{1.799}$ 1.794 1.7892 1.7817 1.7293	$\begin{array}{c}2\\4\\8\\25\\12\end{array}$
$\begin{array}{r} 400\\ \overline{4}04\\ \overline{2}04, 410\\ \overline{4}12, 330\\ 004\end{array}$	$\begin{array}{c} 1.\ 6825\\ 1.\ 6791\\ 1.\ 6385\\ 1.\ 6345\\ 1.\ 6294 \end{array}$	8 12 16 14 8
$\begin{array}{r} 312\\ \overline{2}14\\ 014\\ \overline{3}32\\ 240, \overline{2}41\end{array}$	$\begin{array}{c} 1.\ 6184\\ 1.\ 5973\\ 1.\ 5883\\ 1.\ 5830\\ 1.\ 5796 \end{array}$	4 7 4 8 6
$\begin{array}{r} \overline{1}42 \\ \overline{1}24, 420 \\ \overline{4}22 \\ \underline{3}22 \\ \overline{2}42 \end{array}$	$\begin{array}{c} 1.\ 5700\\ 1.\ 5235\\ 1.\ 5197\\ 1.\ 5067\\ 1.\ 4931 \end{array}$	3 7 4 3 5
$egin{array}{c} \overline{3}14 \\ 421 \\ \overline{4}23 \\ \overline{4}31 \\ 340 \end{array}$	1. 4809 1. 4127 1: 4086 1. 4058 1. 3989	3 1 1 1 4
$egin{array}{c} \overline{3}24,303\ 124\ \overline{1}34\ 332\ 151,233 \end{array}$	$\begin{array}{c} 1. \ 3941 \\ 1. \ 3824 \\ 1. \ 3661 \\ 1. \ 3634 \\ 1_{+} \ 3542 \end{array}$	${ > 9 \\ 7 \\ 9 \\ < 1 }$
$204 \\ 412 \\ \overline{414} \\ 510 \\ 250$	1. 3392 1. 3369 1. 3315 1. 3230 1. 3176	6 6 7 4 4
$052 \\ 323 \\ 513 \\ \overline{3}34 \\ \overline{2}52$	$\begin{array}{c} 1.\ 3109\\ 1.\ 2986\\ 1.\ 2809\\ 1.\ 2784\\ 1.\ 2658 \end{array}$	7 1 5 8 3

Lattice constants

Lattice constants

		a	ь	с	β
1965	National Bureau of Standards, sample at 25 °C	\AA 6. 9596 $\pm 0. 0005$	\mathring{A} 7. 1576 ± 0.0005	\dot{A} 6. 7378 ± 0.0005	104°42. 7' ± 0. 3'

each of aluminum, iron, magnesium, and silicon. Rare-earth impurities were less than 0.1 percent of total rare-earth content.

The sample was colorless. The indices of refraction could not be determined because the sample was too fine-grained.

The *d*-values of the three strongest lines are 3.161, 2.966, and 3.688 Å.

Structural data. Schwarz [1] in 1963 reported that cerium arsenate is isostructural with huttonite, with the space group C_{2h}^5 —P2₁/n (No. 14) and 4(CeAsO₄) per unit cell.

The density of cerium arsenate calculated from the NBS lattice constants is 5.709 g/cm³ at 25 °C.

Reference

[1] H. Schwarz, Über die Chromate (V) der Seltenen Erden, I. Lanthanchromat (V), LaCrO₄, Z. Anorg Allgem. Chem. **322**, 1-14 (1963).

Cesium Fluoantimonate, CsSbF₆ (trigonal)

Powder data cards. None.

Additional published patterns. None.

NBS sample. The sample of cesium fluoantimonate was prepared at NBS by treating a mixture of antimony and cesium nitrates with hydrofluoric acid. The sample was dried at 100 °C. Spectrographic analysis showed the following major impurities: 0.1 to 1.0 percent rubidium; 0.01 to 0.1 percent each of aluminum and nickel; and 0.001 to 0.01 percent each of silver, calcium. copper, iron, potassium, sodium, silicon, and thallium.

The sample is colorless. It is optically positive with the indices $N_0=1.400$ and $N_e=1.406$.

The *d*-values of the three strongest lines are 3.948, 3.534, and 2.192 Å.

Structural data. Schrewelius [1] in 1943 determined that cesium fluoantimonate has the space group D_{3d}^{5} —R3m (No. 166) and 3(CsSbF₆) per unit hexagonal cell. The rhombohedral cell reported by Schrewelius has been converted to the equivalent hexagonal cell for comparison with the NBS values.

Lattice of	constants
------------	-----------

		a	c
1943 1965	Schrewelius [1] National Bureau of	<i>Å</i> 7. 98	Å 8. 05
	at 25 °C	7. 9026 ± 0. 0006	8.252 ± 0.001

The density of cesium fluoantimonate calculated from the NBS lattice constants is 4.115 g/cm³ at 25 °C.

hkl (hex.)	Internal Standard Ag, a=4.0861 Å; temp. 25 °C Cu 1.5405 Å	
	d	Ι
$101 \\ 110 \\ 012 \\ 021 \\ 003$	\AA 5. 273 3. 948 3. 534 3. 161 2. 751	$\begin{array}{r}5\\100\\69\\1\\2\end{array}$
$202 \\ 211 \\ 300 \\ 122 \\ 220, 104$	2. 634 2. 467 2. 282 2. 192 1. 976	$17 \\ 5 \\ 14 \\ 35 \\ 15$
$\begin{array}{c} 024 \\ 312 \\ 214 \\ 042 \\ 410 \end{array}$	1. 767 1. 724 1. 613 1. 580 1. 494	6 8 9 5 8
$\begin{array}{c} 232 \\ 134 \\ 006 \\ 330, 404 \\ 502, 116 \end{array}$	$\begin{array}{c} 1.\ 468\\ 1.\ 396\\ 1.\ 375\\ 1.\ 318\\ 1.\ 2991 \end{array}$	$\overset{5}{\overset{3}{\overset{1}{\overset{3}{\overset{3}{}}}}}_{4}$
$\begin{array}{r} 324 \\ 422 \\ 152, 306 \\ 600, 054 \\ 520, 244 \end{array}$	$\begin{array}{c} 1.\ 2497\\ 1.\ 2338\\ 1.\ 1781\\ 1.\ 1402\\ 1.\ 0956 \end{array}$	$2 \\ 2 \\ 2 \\ 1 \\ 1$
$\begin{array}{c} 612,416\\ 440,434,208\\ 532,336\\ 164\\ 710,318\end{array}$	$\begin{array}{c} 1. \ 0119 \\ 0. \ 9874 \\ . \ 9512 \\ . \ 9310 \\ . \ 9068 \end{array}$	$\begin{pmatrix} 1 \\ 1 \\ < 1 \\ 1 \\ 1 \end{pmatrix}$

Reference

 N. Schrewelius, X-ray analyses of thallium fluoantimonate TlSbF₆ and some isomorphous alkali compounds, Arkiv Kemi, 16B No. 7, 1-6 (1943). **Powder data cards.** None.

Additional published patterns. Hull [1] 1921, Sekito [2] 1927, and Hofer and Peebles [3] 1947.

NBS sample. The sample of cubic cobalt was prepared at NBS by heating cobalt oxalate in a stream of hydrogen at 800 °C for about 10 min. Spectographic analysis showed the following major impurities: 0.1 to 1.0 percent each of nickel and antimony; and 0.01 to 0.1 percent each of aluminum and iron.

The sample was a dark grey opaque powder. The *d*-values of the three strongest lines are 2.0467, 1.7723, and 1.0688 Å.

Structural data. Hull [1] in 1921 determined that the cubic form of cobalt has the copper structure, the space group O_h^5 —Fm3m (No. 225) and 4(Co) per unit cell. There also exists a hexagonal close-packed form of cobalt and the forms commonly occur together.

hkl	a=3.1	rnal Standar 648 Å; temp. Co λ 1.7889 Å	d W, 25 °C
	d	Ι	a
$ \begin{array}{r} 111\\ 200\\ 220\\ 311\\ 222 \end{array} $	$\begin{array}{c} \mathring{A}\\ 2.\ 0467\\ 1.\ 7723\\ 1.\ 2532\\ 1.\ 0688\\ 1.\ 0233 \end{array}$	$100 \\ 41 \\ 23 \\ 29 \\ 11$	$\begin{matrix} \mathring{A} \\ 3.5449 \\ 3.5446 \\ 3.5446 \\ 3.5448 \\ 3.5448 \\ 3.5448 \end{matrix}$
Average	value of last five	e lines	3. 5447

The lattice constant reported by Hull has been recalculated with a Mo wavelength of 0.711 Å. The lattice constant reported by Sekito could not be converted because the wavelength used for iron radiation was not given.

Lattice	const	lants	
 -			

1921 1927 1947 1950 1965	Hull [1] Sekito [2] Hofer and Pebbles [3] Taylor and Floyd [4] NationalBureau of Standards, sample at 25 °C	Å 3.546 3.558 3.546 3.5442 3.5442
--------------------------------------	--	--

The density of cubic cobalt calculated from the NBS lattice constant is 8.788 g/cm³ at 25 °C.

References

- [1] A. W. Hull, X-ray crystal analysis of thirteen common metals, Phys. Rev. 17, 571-587 (1921).
- [2] S. Sekito, On the lattice constants of metallic cobalt, Sci. Repts. Tohoku Imp. Univ. 16, 545-53 (1927).
- [3] L. J. E. Hofer and W. C. Pebbles, X-ray diffraction studies of the action of carbon monoxide on cobaltthoria-kieselguhr catalyst. I., J. Am. Chem. Soc. 69, 2497-2500 (1947).
- [4] A. Taylor and R. W. Floyd, Precision measurements of lattice parameters of non-cubic crystals, Acta Cryst. 3, 285–289 (1950).

Cobalt Diarsenide, CoAs₂ (monoclinic), revised

Powder data card. The following pattern is the same pattern shown on No. 11-115 prepared in 1960 by NBS*; however, it has been reindexed using recent data from the literature.

Additional published pattern. Quesnel and Heyding [1] 1962.

NBS sample. Minor corrections and additions were made to the original patterns.

Structural data. Quesnel and Heyding [1] in 1962 reported that cobalt diarsenide was isostructural with rhodium diphosphide, with the space group C_{2h}^5 —P2₁/c (No. 14) and 4(CoAs₂) per unit cell. However, the unit cell measurements reported by Quesnel and Heyding are not in close agreement with the indexing reported by them.

	Lattice	constants
--	---------	-----------

		a	ь	с	β
1962 1965	Quesnel and Heyding [1] National Bureau of Standards, sample at 25 °C	Å 5. 853 5. 916	Å 5. 805 5. 872	Å 5. 885 5. 960	114°11' 116°27'

The density of cobalt diarsenide calculated from the NBS lattice constants is 7.480 g/cm³ at 25 °C.

^{*}NBS Circular 539, 10, 26 (1961).

hkl	Internal Standard W, a=3.1648 Å; temp. 25 °C Co λ 1.7889 Å	
	d	I
	$ \begin{array}{r} $	8 11 18 47 44
$ \begin{array}{r} \overline{121} \\ 012 \\ 210 \\ \overline{212} \\ \overline{221} \\ \overline{221} \end{array} $	2. 536 2. 429 2. 413 2. 319 2. 083	$ \begin{array}{r} 100 \\ 60 \\ 52 \\ 26 \\ 4 \end{array} $
$ \begin{array}{r} 102 \\ 022 \\ 220 \\ \overline{2}22 \\ \overline{1}13 \end{array} $	$\begin{array}{c} 2.\ 045\\ 1.\ 974\\ 1.\ 966\\ 1.\ 913\\ 1.\ 870 \end{array}$	$ \begin{array}{r} 6 \\ 6 \\ 4 \\ 10 \\ 28 \end{array} $
$ \begin{array}{r} \overline{3}11 \\ \overline{2}13 \\ \overline{1}31 \\ 013 \\ 131 \end{array} $	$1.856 \\1.829 \\1.825 \\1.702 \\1.658$	$28 \\ 16 \\ 23 \\ <3 \\ 35 \\ 35$
$ \begin{array}{r} \overline{1}23 \\ \overline{3}21 \\ \overline{3}13 \\ 032 \\ 230 \\ \end{array} $	$\begin{array}{c} 1.\ 6370\\ 1.\ 6274\\ 1.\ 6176\\ 1.\ 5777\\ 1.\ 5744 \end{array}$	13 18 18 9 13

Internal Standard W, <i>a</i> =3.1648 Å; temp. 25 °C Co λ 1.7889 Å	
d	I
\mathring{A} 1. 5637 1. 5463 1. 5217 1. 4869 1. 4767 1. 4680 1. 4600 1. 4098 1. 3694 ' 1. 3336 1. 3285 1. 3239 1. 3189 1. 3010	$ \begin{array}{c} 16 \\ 5 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 4 \\ 3 \\ 12 \\ 12 \\ 7 \\ 7 \\ 3 \\ 12 \\ 12 \\ 7 \\ 7 \\ 3 \\ 12 \\ 12 \\ 7 \\ 7 \\ 3 \\ 12 \\ 12 \\ 12 \\ 7 \\ 7 \\ 3 \\ 12 \\ 12 \\ 7 \\ 7 \\ 3 \\ 12 \\ 12 \\ 7 \\ 7 \\ 3 \\ 12 \\ 12 \\ 7 \\ 7 \\ 3 \\ 12 \\ 12 \\ 7 \\ 7 \\ 3 \\ 12 \\ 12 \\ 12 \\ 7 \\ 7 \\ 3 \\ 12 \\ 12 \\ 12 \\ 7 \\ 7 \\ 3 \\ 12 \\ 12 \\ 12 \\ 7 \\ 7 \\ 3 \\ 12 \\ 12 \\ 12 \\ 7 \\ 7 \\ 3 \\ 12 \\ 12 \\ 12 \\ 12 \\ 7 \\ 7 \\ 3 \\ 12 \\ 12 \\ 12 \\ 7 \\ 7 \\ 3 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12$
	$a=3.1648 \text{ Å}; \text{ t}$ $Co \lambda 1.7$ d 1.5637 1.5463 1.5217 1.4869 1.4767 1.4680 1.4680 1.4680 1.4680 $1.3694'$ 1.3336 1.3285 1.3239 1.3189 1.3010 1.2689

Reference

 J. C. Quesnel and R. D. Heyding, Transition metal arsenides V. A note on the rhodium arsenic system and the monoclinic diarsenides of the cobalt family, Can. J. Chem. 40, 814-818 (1962).

Cobalt Silicate, Co₂SiO₄ (orthorhombic)

Powder data cards. None.

Additional published pattern. Gallitelli and Cola [1] 1954.

NBS sample. The sample of cobalt silicate was obtained from Alfa Inorganics Inc., Beverly, Mass. Spectrographic analysis showed the following major impurities: 0.1 to 1.0 percent aluminum, and 0.01 to 0.1 percent each of calcium, copper, iron, sodium, nickel, lead, titanium, and zircon.

The color of the sample was pink. The indices of refraction could not be determined because the sample was too fine-grained. The *d*-values of the three strongest lines are 2.469, 2.790, and 3.516 Å.

Structural data. Gallitelli and Cola [1] in 1954 determined that cobalt silicate has the olivine structure, the space group D_{2h}^{16} —Pmnb (No. 62) and 4(Co₂SiO₄) per unit cell. Ringwood [2] in 1963 determined that the olivine form of cobalt silicate converts to a spinel form at 60 kilobars of pressure and over, at 700 °C.

The density of cobalt silicate calculated from the NBS lattice constants is 4.708 g/cm³ at 25 °C.

Lattice constants

		a	b	с
1954 1963 1965	Gallitelli and Cola [1] Ringwood [2] National Bureau of Standards, sample at 25 °C	$\overset{\AA}{5.99}$ 5.996 6.0074	$\overset{\AA}{10.27}$ 10.340 10.310	Å 4. 77 4. 779 4. 7823

hkl	Internal Sta a=3.1648 Å; Co λ 1.7	endard W, cemp. 25 °C 7889 Å
	d	I
$\begin{array}{c} 020\\ 011\\ 120\\ 101\\ 111 \end{array}$	$\begin{matrix} & \mathring{A} \\ & 5.151 \\ & 4.336 \\ & 3.910 \\ & 3.739 \\ & 3.516 \end{matrix}$	$ \begin{array}{c} 11 \\ 13 \\ $
$121 \\ 200 \\ 031 \\ 220 \\ 040$	$\begin{array}{c} 3.\ 026\\ 3.\ 004\\ 2.\ 790\\ 2.\ 594\\ 2.\ 578 \end{array}$	7 < 5 90 35 24
$131 \\ 211 \\ 002 \\ 140 \\ 012$	$\begin{array}{c} 2.530 \\ 2.469 \\ 2.392 \\ 2.369 \\ 2.330 \end{array}$	$74\\100\\17\\14\\10$
$221 \\ 041 \\ 112 \\ 022 \\ 231$	$\begin{array}{c} 2.\ 282\\ 2.\ 270\\ 2.\ 172\\ 2.\ 168\\ 2.\ 045 \end{array}$	24 16 7 5 9
$051 \\ 311 \\ 151 \\ 222 \\ 042$	$1.895 \\1.818 \\1.807 \\1.759 \\1.754$	$\left. \begin{array}{c} 6 \\ 12 \\ 6 \\ 72 \end{array} \right\}$
$321 \\ 142 \\ 160 \\ 331 \\ 251$	$\begin{array}{c} 1.\ 739\\ 1.\ 683\\ 1.\ 652\\ 1.\ 627\\ 1.\ 602 \end{array}$	$<5 \\ 11 \\ 10 \\ 14 \\ 12$
$340 \\ 013 \\ 113,023 \\ 312 \\ 242$	$1.581 \\ 1.576 \\ 1.523 \\ 1.518 \\ 1.515$	6 6 5 5 5

Cobalt Silicate, CoSiO₄ (orthorhombic)—Continued

hkl	Internal Standard W, a=3.1648 Å; temp. 25 °C Co λ 1.7889 Å	
	d	I
152 400, 341 260 033 071 062, 213 351 223 143 360 402 303 004 333 253 511 442 214, 531	$\begin{matrix} \mathring{A} \\ 1.511 \\ 1.502 \\ 1.492 \\ 1.446 \\ 1.407 \\ 1.3954 \\ 1.3761 \\ 1.3580 \\ 1.3226 \\ 1.3037 \\ 1.2718 \\ 1.2474 \\ 1.1956 \\ 1.1723 \\ 1.1630 \\ 1.1578 \\ 1.1403 \\ 1.1039 \end{matrix}$	$5 \\ 19 \\ 25 \\ <5 \\ 13 \\ 7 \\ 5 \\ 7 \\ 14 \\ 5 \\ <5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ $
$\begin{array}{c} 224\\ 291 \end{array}$	$1.\ 0856 \\ 1.\ 0446$	10 8
433 471 611	$\begin{array}{c} 1.\ 0421 \\ 1.\ 0270 \\ 0.\ 9758 \end{array}$	8 8 8

References

P. Gallitelli and M. Cola, Synthesis and crystal-lographic and structural properties of cobalt ortho-silicate (olivine type), Atti Accad. Nazl. Lincei Rend. Classe Sci. Fis. Mat. Nat. 17, 172-7 (1954).
 A. E. Ringwood, Olivine-spinel transformation in cobalt orthosilicate, Nature 198, 79-80 (1963).

Powder data card. No. 1–1040, New Jersey Zinc Co.

Additional published pattern. Barth and Posnjak [1] 1934.

NBS sample. The sample of cobalt titanate, obtained from Alfa Inorganics Inc., Beverly, Mass., was pressed into a pellet and heated 4½ hr at 1,350 °C. Spectrographic analysis showed the following major impurities: 0.01 to 0.1 percent each of aluminum, calcium, copper, iron, nickel, and silicon.

The color of the sample was dark green. The indices of refraction could not be determined because the sample was too fine-grained.

The *d*-values of the three strongest lines are 2.727, 2.5340, and 1.7114Å.

Structural data. Barth and Posnjak [1] in 1934 determined that cobalt titanate has the ilmenite structure, the space group C_{3i}^2 —R3 (No. 148) and 6(CoTiO₃) per unit hexagonal cell.

The rhombohedral cell reported by Barth and Posnjak was converted to the equivalent hexagonal cell for comparison with the NBS values.

Lattice constants

		a	с
1934	Barth and Posnjak [1]	<i>Å</i> 5. 054	<i>Å</i> 13. 989
1965	ards, sample at 25 °C	5. 0683	13. 9225

The density of cobalt titanate calculated from the NBS lattice constants is 4.980 g/cm³ at 25 °C.

hkl (hex)	Internal Standard W, a=3.1648 Å; temp. 25 °C Co λ 1.7889 Å	
	d	Ι
$012\\104\\110\\006\\113$	$\overset{\rat{A}}{3.717}$ 3.717 2.727 2.5340 2.3202 2.2240	$37 \\ 100 \\ 73 \\ < 5 \\ 26$
$202 \\ 024 \\ 107 \\ 116 \\ 018 \\ 122$	$\begin{array}{c} 2. \ 0934 \\ 1. \ 8566 \\ 1. \ 8114 \\ 1. \ 7114 \\ 1. \ 6178 \\ 1. \ 6140 \end{array}$	$\begin{cases} < 5 \\ 30 \\ < 5 \\ 39 \\ \end{cases} \\ \\ \end{cases}$
$214 \\ 300 \\ 208 \\ 1.0.10 \\ 119$	$\begin{array}{c} 1.\ 4974\\ 1.\ 4628\\ 1.\ 3636\\ 1.\ 3272\\ 1.\ 3203 \end{array}$	25 29 5 7 7 7
$220 \\ 306 \\ 128 \\ 0.2.10 \\ 134$	$\begin{array}{c} 1.\ 2672\\ 1.\ 2379\\ 1.\ 2007\\ 1.\ 1756\\ 1.\ 1488 \end{array}$	
$226 \\ 042 \\ 2 \cdot 1 \cdot 10 \\ 404 \\ 318$	$\begin{array}{c} 1.\ 1124\\ 1.\ 0840\\ 1.\ 0664\\ 1.\ 0465\\ 0.\ 9977 \end{array}$	
0.1.143244100.0.15, 0481.3.10	. 9699 . 9675 . 9578 . 9283 . 9165	

Reference

 T. F. W. Barth and E. Posnjak, Notes on some structures of the ilmenite type, Z. Krist. A88, 271 (1934).

Cobalt Tungstate, CoWO₄ (monoclinic)

Powder data cards. None.

Additional published pattern. Broch [1] 1929. NBS sample. The sample of cobalt tungstate was obtained from Alfa Inorganics Inc., Beverly, Mass. Spectrographic analysis showed the following major impurities: 0.01 to 0.1 percent each of nickel and silicon, and 0.001 to 0.01 percent each of calcium, copper, iron, magnesium, manganese, lead, and vanadium. The sample was a blue opaque powder.

The *d*-values of the three strongest lines are 2.916, 3.733, and 3.608 Å.

Structural data. Broch [1] in 1929 determined that cobalt tungstate is isostructural with magnesium tungstate, with the space group C_{2h}^4 —P2/a (No. 13) and 2(CoWO₄) per unit cell. Since monoclinic doublets were not seen in the NBS pattern, it was indexed as orthorhombic.

Cobalt Tungstate, CoWO₄ (monoclinic)—Continued

Lattice constants

		a	b	с	β
1929	Broch [1]	Å 4.93	Å 5. 68	Å 4. 66	90. 0°
1965	National Bureau of Standards, sample at 25 °C	4.9478	5. 6827	4.6694	90. 0°

The density of cobalt tungstate calculated from the NBS lattice constants is 7.760 g/cm^3 at 25 °C.

hkl (ortho.)	Internal Standard W, a=3.1648 Å; temp. 25 °C Co λ 1.7889 Å		
	d	Ι	
$\begin{array}{c} 010 \\ 001 \\ 110 \\ 011 \\ 111 \end{array}$	\AA 5. 683 4. 673 3. 733 3. 608 2. 916		
$\begin{array}{c} 020 \\ 200 \\ 120 \\ 021 \\ 002 \end{array}$	$\begin{array}{c} 2.842 \\ 2.473 \\ 2.464 \\ 2.428 \\ 2.335 \end{array}$	$ \begin{array}{r} 10 \\ 20 \\ 22 \\ 6 \\ 10 \end{array} $	
$\begin{array}{c} 210 \\ 201 \\ 121 \\ 012 \\ 211 \end{array}$	$\begin{array}{c} 2.\ 269\\ 2.\ 185\\ 2.\ 180\\ 2.\ 160\\ 2.\ 041 \end{array}$	$ \begin{array}{c} <1 \\ 14 \\ 14 \\ <1 \\ 8 \end{array} $	
$\begin{array}{c} 112 \\ 030 \\ 220 \\ 022 \\ 031 \end{array}$	$1.979 \\1.894 \\1.866 \\1.803 \\1.755$	8 1 7 5 13	
$221 \\ 202 \\ 122 \\ 131 \\ 212$	$1.733 \\ 1.698 \\ 1.695 \\ 1.654 \\ 1.626$	$ \begin{array}{c} 4 \\ 24 \\ 24 \\ 1 \\ 2 \end{array} $	
$310 \\ 003 \\ 311 \\ 032 \\ 222$	$\begin{array}{c} 1.583 \\ 1.556 \\ 1.500 \\ 1.471 \\ 1.457 \end{array}$	$\begin{vmatrix} 3\\<1\\14\\3\\6 \end{vmatrix}$	
$ \begin{array}{c} 113\\ 231\\ 320\\ 132\\ 140,023 \end{array} $	$1. 436 \\ 1. 432 \\ 1. 426 \\ 1. 410 \\ 1. 365$	$ \begin{array}{c c} 10 \\ 14 \\ 8 \\ 1 \\ 7 \end{array} $	

hkl (ortho.)	Internal Standard W, a=3.1648 Å; temp. 25 °C Co λ 1.7889 Å		
	d	Ι	
$123 \\ 312, 141 \\ 213 \\ 232 \\ 400$	$\overset{\rat{A}}{1.3162}\ 1.3108\ 1.2833\ 1.2644\ 1.2370$	$\begin{array}{c} 4\\7\\3\\4\\<1\end{array}$	
$322 \\ 033, 331 \\ 401 \\ 142 \\ 411$	$\begin{array}{c} 1.\ 2172\\ 1.\ 2024\\ 1.\ 1956\\ 1.\ 1788\\ 1.\ 1701 \end{array}$	4 4 3 6 3	
$\begin{array}{c} 004 \\ 420 \\ 114 \\ 313 \\ 051 \end{array}$	$\begin{array}{c} 1.\ 1673\\ 1.\ 1342\\ 1.\ 1140\\ 1.\ 1101\\ 1.\ 1043 \end{array}$	3 3 5 3	
$\begin{array}{c} 402 \\ 233 \\ 151 \\ 124 \\ 341 \end{array}$	$1.0933 \\ 1.0815 \\ 1.0777 \\ 1.0552 \\ 1.0489$	3 5 6 2	
$\begin{array}{c} 430 \\ 143 \\ 052 \\ 422 \\ 431 \end{array}$	$\begin{array}{c} 1.\ 0356\\ 1.\ 0265\\ 1.\ 0215\\ 1.\ 0201\\ 1.\ 0112 \end{array}$	$\overset{<1}{\overset{~}_{\sim}}_{\overset{~}_{\sim}}_{\overset{~}_{\sim}}_{\overset{~}_{\sim}}_{\overset{~}_{\sim}}$	
$\begin{array}{c} 251 \\ 224 \end{array}$	1.0086 0.9897	5 3	

Reference

 E. K. Broch, Untersuchungen über Kristallstrukturen des Wolframittypus und des Scheelittypus, Skrifter Norske Videnskaps-Akad. Oslo I: Mat.-Naturv. Kl. No. 8, (1929). Powder data cards. None. Additional published patterns. None.

NBS sample. The sample of dysprosium vanadate was prepared at NBS by adding hot sodium orthovanadate solution to a hot acidic solution of dysprosium chloride. After the sample was dried at 110 °C for 1 hr, it was heated for 20 min at 700 °C to improve the crystallinity. Spectrographic analysis showed the following impurities: 0.1 to 1.0 percent iron; 0.01 to 0.1 percent each of aluminum, calcium, and silicon; and 0.001 to 0.01 percent each of copper, manganese, and antimony. Rare-earth impurities were less than 0.1 percent of total rare-earth content.

The color of the sample was brown. The indices of refraction could not be determined because the sample was too fine-grained.

The *d*-values of the three strongest lines are $3.571, 2.675, \text{ and } 1.837 \text{ }_{\text{A}}$.

Structural data. Milligan, Watt, and Rachford [1] in 1949 determined that dysprosium vanadate has the zircon structure, the space group D_{4h}^{19} —I4₁/amd (No. 141) and 4(DyVO₄) per unit cell.

Lattice	constants
Laurove	00100001000

		a	с
1949 1965	Milligan, Watt, and Rachford [1] National Bureau of Standards, sample at 25 °C	\mathring{A} • 7.09 7.1434 ± 0.0004	Å 6. 27 6. 313 ± 0.001

The density of dysprosium vanadate calculated from the NBS lattice constants is 5.720 g/cm³ at 25 °C.

hkl	Internal Standard W, <i>a</i> =3.1648 Å; temp. 25 °C Cu λ 1.5405 Å	
	d	Ι
$101 \\ 200 \\ 211 \\ 112 \\ 220$	$\overset{i}{A}$ 4. 728 3. 571 2. 851 2. 675 2. 525	$36 \\ 100 \\ 12 \\ 65 \\ 23$
$202 \\ 301 \\ 103 \\ 321 \\ 312$	$\begin{array}{c} 2.\ 363\\ 2.\ 227\\ 2.\ 018\\ 1.\ 890\\ 1.\ 837 \end{array}$	7 12 12 12 12 58
$ \begin{array}{r} 400\\ 213\\ 411\\ 420\\ 004 \end{array} $	$\begin{array}{c} 1.\ 786 \\ 1.\ 758 \\ 1.\ 671 \\ 1.\ 597 \\ 1.\ 579 \end{array}$	$13 \\ 6 \\ 5 \\ 14 \\ 6$
$332 \\ 204 \\ 501 \\ 413 \\ 512$	$\begin{array}{c} 1.\ 4856 \\ 1.\ 4435 \\ 1.\ 3937 \\ 1.\ 3377 \\ 1.\ 2805 \end{array}$	$ \begin{array}{c} 12 \\ 11 \\ 7 \\ 9 \\ 9 \\ 9 \end{array} $
$\begin{array}{c} 440 \\ 600 \\ 404 \\ 503 \\ 532 \end{array}$	1. 2627 1. 1904 1. 1830 1. 1821 1. 1420	7 8 8 7 9
$\begin{array}{r} 620 \\ 424, 523 \\ 305 \\ 116 \\ 640 \end{array}$	$\begin{array}{c} 1.\ 1296\\ 1.\ 1225\\ 1.\ 1158\\ 1.\ 0297\\ 0.\ 9909 \end{array}$	5 7 3 5 4
$\begin{array}{c} 444,543\\ 552\end{array}$. 9858 . 9622	4 6

Reference

 W. O. Milligan, L. M. Watt, and H. H. Rachford, X-ray diffraction studies on heavy metal orthovanadates, J. Phys. Chem. 53, 227-234 (1949).

Europium(III) Vanadate, EuVO₄ (tetragonal)

Powder data cards. None.

Additional published patterns. None.

NBS sample. The sample of europium(III) vanadate was prepared at NBS by adding a hot solution of sodium orthovanadate to a hot acidic solution of europium chloride. After the sample was dried at 110° C for 1 hr., it was heated for 10 min at 700° C to improve the crystallinity. Spectrographic analysis showed the following major nonrare-earth impurities: 0.1 to 1.0 percent silicon; 0.01 to 0.1 percent each of aluminum and magnesium; and 0.001 to 0.01 percent each of cadmium, iron, and antimony. Rare-earth impurities were less than 0.2 percent of total rare-earth content.

The sample was colorless. The indices of refraction could not be determined because the sample was too fine-grained.

sample was too fine-grained. The *d*-values of the three strongest lines are 3.619, 2.703, and 1.858 Å.

Structural data. Milligan, Watt, and Rachford [1] in 1949 determined that europium(III) vanadate has the zircon structure, the space group D_{4h}^{19} —I4₁/amd (No. 141) and 4(EuVO₄) per unit cell.

Lattice	constants

		a	с
1949	Milligan, Watt, and	Å	Å
1965	Rachford [1] National Bureau of	7.19	6. 33
at 25 °C	$7.\ 2365 \\ \pm \ 0.\ 0002$	6.3675 ± 0.0003	

The density of europium(III) vanadate calculated from the NBS lattice constants is 5.316 g/cm³ at 25 °C.

hkl	Internal Star a=3.1648 Å; t Cu λ 1.5	ndard W, emp. 25 °C 405 Å
	d	I
$101 \\ 200 \\ 211 \\ 112 \\ 220$	d 4. 779 3. 619 2. 884 2. 703 2. 559	$30 \\ 100 \\ 12 \\ 65 \\ 21$
202 301 103 321 312	$\begin{array}{c} 2.\ 390\\ 2.\ 256\\ 2.\ 037\\ 1.\ 914\\ 1.\ 858 \end{array}$	8 17 11 11 49
400 213 411 420 303	$\begin{array}{c} 1.\ 810 \\ 1.\ 7752 \\ 1.\ 6923 \\ 1.\ 6179 \\ 1.\ 5930 \end{array}$	18 5 6 11 5
332 204 501 224 512	$\begin{array}{c} 1.\ 5034\\ 1.\ 4570\\ 1.\ 4112\\ 1.\ 3515\\ 1.\ 2963 \end{array}$	14 11 4 10 10
440 600 404 215 611	$\begin{array}{c} 1.\ 2794\\ 1.\ 2062\\ 1.\ 1953\\ 1.\ 1854\\ 1.\ 1696 \end{array}$	4 4 5 4 3
532620523, 424325116	$\begin{array}{c} 1.\ 1565\\ 1.\ 1444\\ 1.\ 1349\\ 1.\ 0753\\ 1.\ 0390 \end{array}$	$ \begin{array}{c} 6 \\ 2 \\ 6 \\ 4 \\ 4 \end{array} $
$\begin{array}{c} 640 \\ 552 \\ 316 \\ 604 \\ 624 \end{array}$	$\begin{array}{c} 1.\ 0034\\ 0.\ 9742\\ .\ 9626\\ .\ 9613\\ .\ 9291 \end{array}$	4 5 8 6 5
732 820 516, 653	. 9104 . 8774 . 8496	4 2 7

Reference

 W. O. Milligan, L. M. Watt, and H. H Rachford, X-ray diffraction studies on heavy metal orthovanadates, J. Phys. Chem. 53, 227-234 (1949). Powder data cards. None. Additional published patterns. None.

NBS sample. The sample of gadolinium arsenate was prepared at NBS from a water solution of gadolinium trichloride and arsenic pentoxide and heated for 30 min at 900 °C. Spectrographic analysis showed the following major nonrareearth impurities: 0.01 to 0.1 percent each of aluminum and antimony, and 0.001 to 0.01 percent each of iron, magnesium, lead, silicon, and titanium. Rare-earth impurities were less than 0.1 percent of total rare-earth content.

The sample is colorless. The indices of refraction could not be determined because the sample was too fine-grained.

The *d*-values of the three strongest lines are 3.566, 2.689, and 1.8395 Å.

Structural data. Durif and Forrat [1] in 1957 determined that gadolinium arsenate has the zircon structure with the space group D_{4h}^{19} — I4₁/amd (No. 141) and 4(GdAsO₄) per unit cell.

Lattice constants

		a	c
$1957 \\ 1965$	Durif and Forrat [1] National Bureau of	$\overset{\AA}{7.14}$	Å 6. 34
Standards, sample at 25° C	7.1326 ± 0.0002	6.3578 ± 0.0003	

The density of gadolinium arsenate calculated from the NBS lattice constants is 6.082 g/cm³ at 25 °C.

	d	
	a	Ι
	Å	
101	4.747	10
200	3. 566	100
112	2.689	64
220	2.522	20
202	2.374	4
301	2.228	6
103	2.032	6
321	1.888	5
312	1.8395	46
400	1.7832	13
420	1.5948	10
332	1.4859	11
204	1.4517	9
501	1.3915	< 1
224	1.3444	8
512	1.2805	11
440	1.2608	2
600	1.1890	6
404	1.1866	∫ U
532	1.1419	7
424	1.1258	11
116	1.0367	5
640	0.9891	5
444	. 9876	
712	. 9614	10
316	. 9591	10
624	. 9196	7

Reference

 A. Durif and F. Forrat, Sur quelques arséniates des terres rares à structure zircon, Compt. Rend. 245, 1636-38 (1957).

Holmium Vanadate, HoVO₄ (tetragonal)

Powder data cards. None.

Additional published patterns. None.

NBS sample. The sample of holmium vanadate was precipitated at NBS by adding hot sodium orthovanadate solution to a hot acidic solution of holmium chloride. The sample was first dried at 110 °C for 1 hr. To improve the crystallinity, the sample was heated at 600 °C for 2 hr. Spectrographic analysis showed the following major impurities: 0.01 to 0.1 percent each of iron and silicon, and 0.001 to 0.01 percent each of silver, aluminum, calcium, copper, magnesium, and antimony. Rare-earth impurities were less than 0.1 percent of total rare-earth content.

The color of the sample was dark brown. The indices of refraction could not be determined because the sample was too fine.

The *d*-valves of the three strongest lines are 3.564, 2.668, and 1.8311 Å.

Structural data. Milligan and Vernon [1] in 1952 determined that holmium vanadate has the zircon structure, the space group D_{4h}^{19} —I4₁/amd (No. 141) and 4(HoVO₄) per unit cell.

Lattice constants

		a	с
1952 1965	Milligan and Vernon [1] National Bureau of	^Å 7. 06	Å 6. 25
	Standards, sample at 25 °C	$7.\ 1214 \\ \pm \ 0.\ 0002$	$\begin{array}{c} 6.\ 2926 \\ \pm \ 0.\ 0005 \end{array}$

The density of holmium vanadate calculated from the NBS lattice constants is 5.825 g/cm³ at 25 °C.

Reference

 W. O. Milligan and L. W. Vernon, Crystal structure of heavy metal orthovanadates, J. Phys. Chem. 56, 145-148 (1952).

hkl	Internal Stand a=3.1648 å; ter Cu λ 1.540	lard W, np. 25 °C 05 Å
	d	I
$101 \\ 200 \\ 211 \\ 112 \\ 220$	$\overset{A}{4}$ 4. 716 3. 564 2. 841 2. 668 2. 517	$27 \\ 100 \\ 7 \\ 66 \\ 18$
202 301 103 321 312	2. 358 2. 221 2. 0111 1. 8841 1. 8311	$egin{array}{c} 6 \\ 15 \\ 9 \\ 9 \\ 51 \end{array}$
$\begin{array}{r} 400\\ 213\\ 411\\ 420\\ 004, 303\end{array}$	$\begin{array}{c} 1.\ 7807\\ 1.\ 7511\\ 1.\ 6659\\ 1.\ 5926\\ 1.\ 5722 \end{array}$	$15 \\ 3 \\ 2 \\ 10 \\ 5$
$\begin{array}{r} 332\\204,323\\501\\413\\314\end{array}$	$\begin{array}{c} 1.\ 4809\\ 1.\ 4385\\ 1.\ 3888\\ 1.\ 3334\\ 1.\ 2899 \end{array}$	13 9 3 10 1
$512 \\ 440 \\ 600 \\ 503 \\ 215$	$\begin{array}{c} 1.\ 2765\\ 1.\ 2590\\ 1.\ 1870\\ 1.\ 1783\\ 1.\ 1709 \end{array}$	$9 \\ 2 \\ 4 \\ 5 \\ 1$
442 611 532 620 523	1. 1694 1. 1511 1. 1385 1. 1259 1. 1188	$\begin{array}{c}2\\1\\6\\3\\11\end{array}$
$325 \\ 631 \\ 116 \\ 613 \\ 640$	$\begin{array}{c} 1.\ 0609\\ 1.\ 0470\\ 1.\ 0261\\ 1.\ 0223\\ 0.\ 9874 \end{array}$	$\overset{2}{\overset{4}{\overset{1}{\overset{1}{}}}}$
$\begin{array}{r} 444,543\\712\\316\\633,604\\703\end{array}$	$\begin{array}{c} . \ 9826 \\ . \ 9592 \\ . \ 9508 \\ . \ 9473 \\ . \ 9153 \end{array}$	3 4 3 3 4
732	. 8964	4

Powder data cards. None.

Additional published patterns. None.

NBS sample. The sample of iridium dioxide was obtained from K&K Laboratories Inc., Jamaica, N.Y. It was heated in an evacuated sealed Vycor tube for 6 hrs at 900 °C. Spectrographic analysis showed the following major impurities: 0.01 to 0.1 percent each of sodium, lead, and platinum.

The sample was a black opaque powder.

The *d*-values of the three strongest lines are 3.178, 2.582, and 1.6960 Å.

Structural data. Goldschmidt [1] in 1926 determined that iridium dioxide has the rutile structure, the space group D_{4h}^{14} —P4₂/mnm (No. 136), and 2(IrO₂) per unit cell.

Lattice constants

		a 	с
1926 1965	Goldschmidt [1] National Bureau of Standards, sample at 25 °C	 4. 50 4. 4983 	 3. 15 3. 1544

The density of iridium dioxide calculated from the NBS lattice constants is 11.665 g/cm³ at 25 °C.

Reference

[1] V. M. Goldschmidt, Crystal structure of the rutile type with remarks on the geochemistry of the bivalent and quadrivalent elements, Skrifter Norske Videnskaps-Akad. Oslo I: Mat. Naturv. K1. No. 1 (1926)

hkl	Internal Standard Ag, <i>a</i> =4.0861 Å; temp. 25 °C Cu λ 1.5405 Å	
	d	Ι
$ \begin{array}{r} 110 \\ 101 \\ 200 \\ 210 \\ 211 \\ 220 \\ \end{array} $	\AA 3. 178 2. 582 2. 2488 2. 0119 1. 6960 1. 5903	$ \begin{array}{r} 100 \\ 92 \\ 26 \\ <1 \\ 56 \\ 12 \end{array} $
$002 \\ 310 \\ 112 \\ 301$	$\begin{array}{c} 1.\ 5771\\ 1.\ 4227\\ 1.\ 4133\\ 1.\ 3542 \end{array}$	$\begin{array}{c} 6\\ 12\\ 13\\ 14 \end{array}$
$202 \\ 321 \\ 400 \\ 222 \\ 330$	$\begin{array}{c} 1.\ 2914\\ 1.\ 1604\\ 1.\ 1247\\ 1.\ 1199\\ 1.\ 0602 \end{array}$	
$312 \\ 411 \\ 103 \\ 420 \\ 213$	$\begin{array}{c} 1. \ 0563 \\ 1. \ 0310 \\ 1. \ 0240 \\ 1. \ 0058 \\ 0. \ 9318 \end{array}$	9 8 4 4 8
$\begin{array}{c} 402 \\ 510 \\ 332 \\ 501 \\ 303 \end{array}$	$\begin{array}{c} . \ 9157 \\ . \ 8822 \\ . \ 8799 \\ . \ 8652 \\ . \ 8609 \end{array}$	$\begin{array}{c}3\\4\\4\\11\\5\end{array}$
$\begin{array}{c} 422 \\ 521 \\ 323 \\ 440 \\ 004 \end{array}$	$\begin{array}{c} . \ 8480 \\ . \ 8075 \\ . \ 8040 \\ . \ 7953 \\ . \ 7886 \end{array}$	7 9 8 3 2

Lead Boron Oxide, PbB₄O₇ (orthorhombic)

Powder data cards. None. **Additional published patterns.** None.

NBS sample. The sample of lead boron oxide was prepared at NBS from lead oxide and boric acid. It was heated at temperatures below the melting point (768 °C), ground, and then alternately reheated and reground several times. Spectrographic analysis showed the following major impurities: 0.01 to 0.1 percent silicon and 0.001 to 0.01 percent each of aluminum, iron, magnesium, and nickel. The sample was colorless. The indices of refraction could not be determined because the sample was too fine-grained.

The *d*-values of the three strongest lines are 2.673, 3.952, and 4.122 Å.

Structural data. Block, Perloff, and Weir [1] in 1964 determined that lead boron oxide has the space group C_{2v}^{7} —Pnm2₁ (No. 31) and 2(PbB₄O₇) per unit cell.

Lattice constants				
1964	Block, Perloff, and Weir [1]	a 	b 10,840	c Å 4 244
1965	National Bureau of Standards, sample at 25 °C	$\begin{array}{c} 4. \ 4562 \\ \pm \ 0. \ 0002 \end{array}$	$ 10.8401 \\ \pm 0.0005 $	$\begin{array}{c} 4.2434 \\ \pm 0.0002 \end{array}$

Lead Boron Oxide, PbB₄O₇ (orthorhombic)—Continued

The density of lead boron oxide calculated from the NBS lattice constants is 5.872 g/cm³ at 25 °C.

Reference

 S. Block, A. Perloff, and C. E. Weir, The crystallography of some M⁺² borates, Acta Cryst. 17, 314 (1964).

d

Å 1. 3568

1. 3546 1. 3481 1. 3366 1. 3328 1. 3169

1. 3081 1. 3026 1. 2715 1. 2538 1. 2453

1. 2399 1. 2254 1. 2177 1. 2090

1. 2069 1. 2043 1. 1942 1. 1871 1. 1847

 $\begin{array}{c} 1.\ 1772\\ 1.\ 1704\\ 1.\ 1663\\ 1.\ 1632\\ 1.\ 1581 \end{array}$

1.1529

 $\begin{array}{c} 1.\ 1473\\ 1.\ 1421\\ 1.\ 1340\\ 1.\ 1172 \end{array}$

1. 1101 1. 1078 1. 0927 1. 0905 1. 0841

 $\begin{array}{c} 1.\ 0807\\ 1.\ 0778\\ 1.\ 0721\\ 1.\ 0646\\ 1.\ 0612 \end{array}$

 $\begin{array}{c} 1.\ 0570\\ 1.\ 0460\\ 1.\ 0412\\ 1.\ 0393\\ 1.\ 0277 \end{array}$

1.0222

1. 0198 1. 0164 1. 0093

Internal Standard W, a=3.1648 å; temp. 25 °C Cu λ 1.5405 å

Ι

56586

 $\mathbf{5}$

 ${}^{3}_{{6}\atop{4}\atop{7}\atop{8}}$

32424

1

 $< \stackrel{1}{\overset{3}{_{4}}}$

5522<1

 ${{}^{4}_{{3}}_{{1}}}_{{1}_{{2}}}$

 $\begin{array}{c} 5\\ 3\\ 2\\ 3\\ 4 \end{array}$

hkl	Internal Sta a=3.1648 Å; t Cu λ 1.5	ndard W, emp. 25 °C 405 Å	hkl
	d	Ι	
$\begin{array}{c} 020 \\ 100 \\ 110 \\ 011 \\ 120 \end{array}$	$\begin{matrix} \mathring{A} \\ 5. \ 423 \\ 4. \ 456 \\ 4. \ 122 \\ 3. \ 952 \\ 3. \ 442 \end{matrix}$	73 10 74 80 4	321080103242261
$101 \\ 111 \\ 130 \\ 031 \\ 040$	$\begin{array}{c} 3.\ 072\\ 2.\ 955\\ 2.\ 806\\ 2.\ 752\\ 2.\ 709 \end{array}$	52 21 57 62 22	$\begin{array}{c} 033 \\ 123 \\ 340 \\ 270 \\ 252 \end{array}$
$121 \\ 131 \\ 140 \\ 200 \\ 210$	$\begin{array}{c} 2.\ 673\\ 2.\ 341\\ 2.\ 315\\ 2.\ 229\\ 2.\ 182 \end{array}$	$ \begin{array}{r} 100 \\ 5 \\ 13 \\ 20 \\ 8 \end{array} $	341 181 350 271 312
$\begin{array}{c} 002 \\ 220 \\ 141 \\ 022 \\ 201 \end{array}$	$\begin{array}{c} 2. \ 121 \\ 2. \ 061 \\ 2. \ 033 \\ 1. \ 976 \\ 1. \ 972 \end{array}$	18 14 53 26 21	$143 \\ 172 \\ 203 \\ 322, 213 \\ 053$
$150 \\ 211 \\ 051 \\ 102 \\ 230$	$\begin{array}{c} 1. \ 949 \\ 1. \ 941 \\ 1. \ 931 \\ 1. \ 916 \\ 1. \ 896 \end{array}$	$ \begin{array}{c} 17 \\ 21 \\ 19 \\ <1 \\ 11 \end{array} $	351262223190280
$112 \\ 221 \\ 060, 122 \\ 151 \\ 231$	1.8871.8541.8071.7721.7317	$34 \\ 12 \\ 13 \\ 2 \\ 14$	332 360 082 233 281
$240 \\ 132 \\ 042 \\ 241 \\ 142$	$\begin{array}{c} 1.\ 7211\\ 1.\ 6929\\ 1.\ 6709\\ 1.\ 5950\\ 1.\ 5642 \end{array}$	$\begin{smallmatrix}&6\\15\\10\\5\\4\end{smallmatrix}$	$\begin{array}{r} 342 \\ 410, 361 \\ 243 \\ 272 \\ 0.10.0 \end{array}$
$161 \\ 202 \\ 212 \\ 300 \\ 222$	$\begin{array}{c} 1. \ 5575 \\ 1. \ 5366 \\ 1. \ 5215 \\ 1. \ 4852 \\ 1. \ 4782 \end{array}$	$ \begin{array}{c} 16 \\ 5 \\ 6 \\ 3 \\ 9 \end{array} $	$163 \\ 401 \\ 411, 370 \\ 430 \\ 352, 004$
170 251 071 152 320	$\begin{array}{c} 1.\ 4625\\ 1.\ 4592\\ 1.\ 4551\\ 1.\ 4357\\ 1.\ 4322 \end{array}$	$ \begin{array}{r} 7 \\ 11 \\ 9 \\ 12 \\ 10 \\ \end{array} $	421 253 024 371 291
$232 \\ 013, \ 301 \\ 311 \\ 171 \\ 062$	$\begin{array}{c} 1.\ 4135\\ 1.\ 4024\\ 1.\ 3902\\ 1.\ 3826\\ 1.\ 3751 \end{array}$	$\begin{array}{c c} 4\\10\\8\\2\\5\end{array}$	$\begin{array}{c}1.10.1\\313, 192\\173, 282\\362\end{array}$

Lithium Phosphate, low form (lithiophosphate), Li₃PO₄ (orthorhombic) revised

This compound was described in earlier work [1] from this laboratory. Recently the structure of the low form was determined by Keffer, Mighell, Mauer, Swanson, and Block [2]. The following pattern is intended to replace the earlier one in Monograph 25, Section 3.

Powder data card. No. 12–230, Fisher [3] 1958

Additional published patterns. Matias and Bondareva [4] 1957 and National Bureau of Standards [1] 1964.

NBS sample. The sample of lithium phosphate was obtained from the City Chemical Co., New York, N.Y. Spectrographic analysis showed the following major impurities: 0.1 to 1.0 percent calcium; 0.01 to 0.1 percent each of aluminum, sodium, and strontium; and 0.001 to 0.01 percent

each of barium, iron, magnesium, and silicon. The sample was colorless. Two indices of refraction are $N_{\alpha}=1.550$ and $N_{\gamma}=1.538$. It is optically negative with a large 2V. N_{β} could not be determined because of the crystal shape.

The *d*-values of the three strongest lines are 3.973, 3.797, and 2.640 Å.

Structural data. Keffer, Swanson, Mighell, Mauer, and Block [2] in 1964 determined that low form lithium phosphate has the space group C_{2v}^7 -Pmn2₁ (No. 31) and 2(Li₃PO₄) per unit cell.

References

- [1] H. E. Swanson, M. C. Morris, E. H. Evans, and L. [1] H. E. Swanson, M. C. Mollis, E. H. Evans, and E. Ulmer, Standard X-ray Diffraction Powder Patterns, NBS Mono. 25, Sec. 3, 38 (1964).
 [2] C. Keffer, A. Mighell, F. Mauer, H. Swanson, and S. Block, The crystal structure of low temperature of low tempe

- [3] D. J. Fisher, Note on lithiophosphate, Am. Mineral-ogist 43, 761-2 (1958).
 [4] V. V. Matias and A. M. Bondareva, Lithiophosphate, a new mineral, Dokl. Akad. Nauk SSSR 112, 124-6 (1957); an English abstract exists in Am. Mineral-
- ogist 42, 585 (1957).
 [5] F. Zambonini and F. Laves, Über die Kristallstruktur des Li₃PO₄ und seine Beziehung Zum Strukturtyp des Olivin, Z. Krist. 83, 26-28 (1932).

hkl	Internal Sta a=4.0861 Å; Cu λ 1.	andard Ag, temp. 25 °C 5405 Å
	d	I
$\begin{array}{c} 010 \\ 110 \\ 101 \\ 011 \\ 111 \\ 200 \end{array}$	Å 5. 232 3. 973 3. 797 3. 554 3. 071 3. 059	$\left.\begin{array}{c} 34 \\ 100 \\ 98 \\ 56 \\ \end{array}\right\} 26 \\ \end{array}\right\}$
210 020 002 211 021	2. 640 2. 616 2. 423 2. 318 2. 303	$\left. \begin{array}{c} 64 \\ 36 \\ 47 \\ \end{array} \right\} \qquad 31 \\ \end{array} \right.$
$012\\121\\112\\310, 202\\301$	2. 199 2. 155 2. 070 1. 899 1. 879	$<1 \\ 4 \\ 3 \\ 1 \\ 2$
$221 \\ 212 \\ 311 \\ 122 \\ 130$	1. 839 1. 785 1. 769 1. 7074 1. 6777	$\begin{array}{c} 4\\14\\9\\1\\2\end{array}$
031 320 131 103 013	$\begin{array}{c} 1.\ 6415\\ 1.\ 6083\\ 1.\ 5855\\ 1.\ 5616\\ 1.\ 5431 \end{array}$	$\begin{array}{c}1\\3\\2\\4\\3\end{array}$
400 230 113 410 411	1. 5287 1. 5152 1. 4959 1. 4675 1. 4043	11 16 1 1 2
$213 \\ 123 \\ 420 \\ 040 \\ 402$	$\begin{array}{c} 1.\ 3776\\ 1.\ 3409\\ 1.\ 3203\\ 1.\ 3078\\ 1.\ 2931 \end{array}$	$ \begin{array}{c} 14 \\ 2 \\ 2 \\ <1 \\ 4 \end{array} $
232 331 303 412 223	$\begin{array}{c} 1.\ 2848\\ 1.\ 2788\\ 1.\ 2656\\ 1.\ 2550\\ 1.\ 2533\end{array}$	8 4 2 1 1
240 510 501 241 422	1. 2027 1. 1909 1. 1860 1. 1676 1. 1591	$<1 \\ 2 \\ 2 \\ 3 \\ 2 \\ 3 \\ 2$
430 323 340	$\begin{array}{c} 1.\ 1498\\ 1.\ 1394\\ 1.\ 1014 \end{array}$	$\gtrsim^1_{\frac{1}{2}}$

Lattice Constants

		a	ь	с
1932 1965	Zambonini and Laves [5] National Bureau of Standards, sample at 25 °C	$ \begin{array}{c} \overset{\hat{A}}{6.08}\\ 6.1155\\ \pm 0.0004 \end{array} $	$ \begin{array}{r} \overset{\hat{A}}{10.28} \\ 5.2340 \\ \pm 0.0005 \end{array} $	$\begin{array}{r} \overset{\hat{A}}{4.87} \\ 4.87 \\ 4.8452 \\ \pm 0.0005 \end{array}$

The density of lithium phosphate, low form, calculated from the NBS lattice constants is 2.479 g/cm³ at 25 °C.

Lithium Sulfate Monohydrate, $Li_2SO_4 \cdot H_2O$ (monoclinic)

Powder data card. No. 1-0425, Hanawalt, Rinn, and Frevel [1] 1938.

Additional published patterns. None.

NBS sample. The sample of lithium sulfate monohydrate was prepared at NBS from lithium metal and sulfuric acid, using enough heat to fume off the excess acid. Spectrographic analysis showed the following major impurities: 0.01 to 0.1 percent each of silver, calcium, sodium, and tungsten; and 0.001 to 0.01 percent each of aluminum, barium, iron, potassium, magnesium, silicon, and strontium. The sample was colorless and optically negative. The indices of refraction are $N_{\alpha}=1.460$, $N_{\beta}=1.477$, and $N_{\gamma}=1.487$; 2V is large.

The *d*-values of the three strongest lines are 5.084, 4.133, and 3.559 Å.

Structural data. Ziegler [2] in 1934 determined that lithium sulfate monohydrate has the space group C_2^2 —P2₁ (No. 4) with 2(Li₂SO₄·H₂O) per unit cell.

Lattice Constants

		a	Ь	с	β
1934 1952 1954 1965	Ziegler [2] Bechmann [3] Larson and Helmholz [4] National Bureau of Standards, sample at 25 °C_		$ \begin{array}{c} \mathring{A} \\ 4.84 \\ 4.87 \\ 4.836 \\ 4.8707 \\ \pm 0.0004 \end{array} $	$\begin{matrix} \mathring{A} \\ 8. \ 16 \\ 8. \ 18 \\ 8. \ 140 \\ 8. \ 175 \\ \pm \ 0. \ 001 \end{matrix}$	$\begin{array}{c} 107^{\circ}35'\\ 107^{\circ}18'\\ 107^{\circ}14'\\ 107^{\circ}19.\ 8'\\ \pm\ 0.\ 4' \end{array}$

The density of lithium sulfate monohydrate calculated from the NBS lattice constants is 1.939 g/cm³ at 25° C.

References

- J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemical analysis by x-ray diffraction, Anal. Chem. 10, 457-512 (1938).
- 457-512 (1938).
 [2] G. E. Ziegler, The crystal structure of lithium sulphate monohydrate, Li₂SO₄·H₂O, Z. Krist. 89, 456-459 (1934).
 [3] R. Bechmann, Elastic and piezoelectric coefficients of
- [3] R. Bechmann, Elastic and piezoelectric coefficients of lithium sulphate monohydrate, Proc. Phys. Soc. 65B, 375-77 (1952).
- [4] A. C. Larson and L. Helmholz, Redetermination of the crystal structure of lithium sulfate monohydrate, Li₂SO₄·H₂O, J. Chem. Phys. 22, 2049-2050 (1954).

Lithium Sulfate Monohydrate, Li₂SO₄ · H₂O (monoclinic)—Continued

hkl	Internal Standard W, a=3.1648 Å; temp. 25 °C Cu λ 1.5405 Å		hkl	Internal Sta a=3.1648 Å; t Cu λ 1.	Internal Standard W, a=3.1648 Å; temp. 25 °C Cu λ 1.5405 Å		
	d	Ι		d	I		
$\begin{array}{c} 001\\ 100\\ 101\\ 002\\ 101\\ 002\\ 110\\ 110\\$	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	$\left.\begin{array}{c}11\\31\\100\\95\\35\\86\\34\\92\\3\\61\\8\\52\\19\\52\\16\\6\\34\\10\\6\\15\\4\\19\\7\\8\\8\\\end{array}\right\}$	$\begin{array}{c} \overline{211}\\ \overline{301, 014}\\ \overline{123, 302}\\ 212\\ 220, 023\\ \overline{222}\\ 300\\ \overline{214}\\ 104\\ 221\\ 310\\ \overline{223}\\ 203\\ \overline{313}\\ 301\\ 031\\ 114\\ 005\\ \overline{115, 130}\\ \overline{304}\\ 213\\ 304\\ 213\\ 304\\ 213\\ 311\\ 032\\ \overline{132, 015}\\ \overline{314}\\ \overline{321}\\ 302\\ 320\\ \overline{132}\\ 231\\ \overline{133}\\ \overline{305}\\ 204, 312\\ \overline{232}\\ \overline{106}\\ \overline{201}\\ \end{array}$	$ \begin{array}{c} \mathring{\mathcal{A}} \\ 1. 815 \\ 1. 815 \\ 1. 811 \\ 1. 797 \\ 1. 784 \\ 1. 778 \\ 1. 759 \\ 1. 7344 \\ 1. 772 \\ 1. 6701 \\ 1. 6617 \\ 1. 6342 \\ 1. 6310 \\ 1. 6150 \\ 1. 6342 \\ 1. 6310 \\ 1. 6150 \\ 1. 5893 \\ 1. 5893 \\ 1. 5800 \\ 1. 5613 \\ 1. 55613 \\ 1. 5496 \\ 1. 5451 \\ 1. 5331 \\ 1. 5167 \\ 1. 4992 \\ 1. 4860 \\ 1. 5451 \\ 1. 5331 \\ 1. 5167 \\ 1. 4992 \\ 1. 4860 \\ 1. 4723 \\ 1. 4537 \\ 1. 4343 \\ 1. 4129 \\ 1. 3983 \\ 1. 3983 \\ 1. 3946 \\ 1. 3822 \\ 1. 3765 \\ 1. 3686 \\ 1. 3609 \\ 1. 3505 \\ \end{array} $	$\left. \begin{array}{c} 5 \\ 5 \\ 5 \\ 2 \\ < 1 \\ 7 \\ 4 \\ < 1 \\ 1 \\ 3 \\ 2 \\ 1 \\ 5 \\ 6 \\ 3 \\ 2 \\ 8 \\ < 1 \\ 1 \\ 4 \\ 4 \\ 3 \\ 2 \\ 2 \\ 2 \\ 2 \\ 3 \\ 3 \\ 3 \\ 2 \\ 8 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$		

Powder data cards. None. Additional published patterns. None.

NBS sample. The sample of pyrope was obtained from Dr. F. R. Boyd [5] at the Geophysical Laboratory, Carnegie Institute, Washington, D.C. The sample was prepared from magnesium silicate and aluminum silicate glasses at 40 kilobars of pressure and at 1,400 °C for 1 hr. Spectrographic analysis showed the following major impurities: 0.1 to 1.0 percent each of bismuth and iron; and 0.01 to 0.1 percent each of calcium, nickel, titanium and vanadium. The sample was colorless. The index of refraction is 1.702.

The *d*-values of the three strongest lines are 2.562, 2.865, and 1.5312 Å.

Structural data. Menzer [1] in 1926 determined that pyrope was an end-member of the garnet group, having the space group O_h^{10} —Ia3d (No. 230) with $8[Mg_3Al_2(SiO_4)_3]$ per unit cell.

The density of pyrope calculated from the NBS lattice constant is 3.563 g/cm³ at 25 °C.

				ì	<u> </u>		
hkl	a=4.03	nal Standa 361 Å; temp Cu λ 1.5405	rd Ag, 5. 25 °C Å	hkl	a=4.03	nal Stands 861 Å; tem Cu λ 1.540	ard Ag, pp. 25 °C 5 Å
	d	Ι	a		d	Ι	a
$\begin{array}{c} 211\\ 220\\ 321\\ 400\\ 420\\ \end{array}\\ \begin{array}{c} 332\\ 422\\ 431\\ 521\\ 440\\ \end{array}\\ \begin{array}{c} 611\\ 620\\ 541\\ 631\\ 444\\ \end{array}\\ \begin{array}{c} 543\\ 640\\ 721\\ 642\\ 732\\ \end{array}\\ \begin{array}{c} 800\\ 741\\ 820\\ 653\\ 822\\ \end{array}\\ \begin{array}{c} 831\\ 752\\ \end{array}$	$ \begin{array}{c} \mathring{A} \\ 4.\ 677 \\ 4.\ 053 \\ 3.\ 063 \\ 2.\ 865 \\ 2.\ 562 \\ 2.\ 443 \\ 2.\ 339 \\ 2.\ 247 \\ 2.\ 092 \\ 2.\ 0256 \\ 1.\ 8588 \\ 1.\ 8120 \\ 1.\ 7678 \\ 1.\ 6894 \\ 1.\ 6540 \\ 1.\ 6205 \\ 1.\ 5890 \\ 1.\ 5594 \\ 1.\ 5594 \\ 1.\ 5312 \\ 1.\ 4320 \\ 1.\ 4320 \\ 1.\ 4102 \\ 1.\ 3897 \\ 1.\ 3696 \\ 1.\ 3506 \\ 1.\ 3323 \\ 1.\ 2976 \\ 1.\ 3323 \\ 1.\ 1.\ 1.\ 1.\ 1.\ 1.\ 1.\ 1.\ 1.\ 1.\$	$ \begin{array}{c} 8 \\ 4 \\ 8 \\ 61 \\ 100 \\ 40 \\ 22 \\ 27 \\ 13 \\ 8 \\ 16 \\ 7 \\ 1 \\ 12 \\ 1 \\ 32 \\ 2 \\ 52 \\ 2 \\ 9 \\ 4 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \end{array} $	\mathring{A} 11. 46 11. 46 11. 46 11. 46 11. 46 11. 45 11. 458 11. 459 11. 459 11. 459 11. 459 11. 458 11. 458 11. 458 11. 458 11. 458 11. 458 11. 459 11. 458 11. 459 11. 458 11. 459 11. 458 11. 459 11. 459 11. 459 11. 458 11. 459 11. 458 11. 459 11. 458 11. 459 11. 458 11. 459 11. 458 11. 459 11. 458 11. 459 11. 456 11. 456 11. 456 11. 456 11. 460 11. 460	$\begin{array}{c} 10.3.1\\ 871\\ 10.4.0\\ 10.4.2\\ 11.1.0\\ 880\\ 11.3.2\\ 10.6.0\\ \hline \\ 11.4.1\\ 10.6.2\\ 12.0.0\\ 12.1.1\\ 12.2.0\\ \hline \\ 11.5.2\\ 12.2.2\\ 12.3.1\\ 12.4.0\\ 11.6.3\\ \hline \\ 13.2.1\\ 12.4.0\\ 11.6.3\\ \hline \\ 13.2.1\\ 12.4.4\\ 12.5.3\\ 12.6.0\\ 12.6.2\\ \hline \\ 11.4.1\\ 888\\ 13.4.3\\ 14.1.1\\ \hline \\ 14.0\\ 14$	$\rarcsize A$ 1. 0927 1. 0729 1. 0638 1. 0459 1. 0374 1. 0126 0. 9897 . 9826 . 9751 . 9685 . 9548 . 9482 . 9418 . 9355 . 9293 . 9230 . 9057 . 8892 . 8685 . 8634 . 8539 . 8445 . 8399 . 8268 . 8224 . 8141	$ \begin{array}{c} <1\\ 1\\ 7\\ 7\\ 1\\ 6\\ 1\\ 1\\ <1\\ 2\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\$	\cancel{A} 11. 460 11. 455 11. 459 11. 457 11. 458 11. 457 11. 456 11. 457 11. 457 11. 457 11. 459 11. 455 11. 457 11. 457 11. 457 11. 457 11. 457 11. 456 11. 456 11. 456 11. 456 11. 455 11.
842 921 664 851	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9 5 6 3	11. 459 11. 458 11. 460 11. 459	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$. 8060 . 7981 . 7943 . 7906	$\begin{array}{c} 1\\ 2\\ 2\\ 1\\ 10 \end{array}$	11. 455 11. 455 11. 456 11. 457 11. 457
941 941 10·1·1 10·2·0 943	$ \begin{array}{c} 1.1693\\ 1.1575\\ 1.1343\\ 1.1235\\ 1.1128\\ \end{array} $	$\begin{array}{c} <1\\5\\1\\\\ \\<1\\\\ \\<1\end{array}$	11. 457 11. 459 11. 456 11. 457 11. 457	Average value	of last five lin	es	11. 454

Lattice constants

1926	Menzer (natural) ^a [1]	$\overset{A}{11.53}$
1927	Stockwell ^b [2]	11.453
1937	Fleischer ^b [3]	11.463
1956	Skinner [5]	11.463
1959	Boyd and England [6]	11.459
1965	National Bureau of Standards,	11.456
1900	sample at 25 °C	

^a Natural pyrope contains iron.

^b Extrapolated from natural garnets.

References

- [1] G. Menzer, Die Gitterkonstanten der Granate, Centr. Mineral. Geol. A and B, 343-344 (1926).
- [2] C. H. Stockwell, An x-ray study of the garnet group, Am. Mineralogist 12, 327-344 (1927).
- [3] M. H. Fleischer, The relation between chemical composition and physical properties in the garnet group, Am. Mineralogist 22, 751-759 (1937).
 [4] B. J. Skinner, Physical properties of end-members of end-members of end-members.
- [4] B. J. Skinner, Physical properties of end-members of the garnet group, Am. Mineralogist 41, 428-436 (1956).
- (1956).
 [5] F. R. Boyd and J. L. England, Experimentation at high pressures and temperatures, Pyrope, Ann. Rept. Director Geophys. Lab. No. 1320, 82-87 (1958-1959).

Magnesium Boron Oxide, $Mg_2B_2O_5$ (triclinic)

Powder data cards. No. 3–0841, Dow Chemical Co., Midland, Mich. This card is called magnesium metaborate, MgO·B₂O₃; however, the data is comparable to ours. Two other cards, Nos. 10–327 and 11–427, by Takéuchi [1] 1952 give patterns for a monoclinic and the triclinic form.

Additional published patterns. None.

NBS sample. The sample of magnesium boron oxide was prepared at NBS by C. E. Weir from a slurry of magnesium carbonate and boric acid in water. The sample was alternately fired and ground several times reaching a maximum temperature of 1,150 °C. Spectrographic analysis showed the following major impurities: 0.001 to 0.01 percent each of barium, beryllium, calcium, iron, silicon, and strontium. The sample was colorless. The indices of refraction could not be determined because the sample was too fine-grained.

The *d*-values of the three strongest lines are 2.579, 2.536, and 2.009 Å. Structural data. Block, Burley, Perloff and

Structural data. Block, Burley, Perloff and Mason [2] in 1959 determined that magnesium boron oxide is isomorphous with cobalt boron oxide having the space group C_i^1 —PI (No. 2) with $2(Mg_2B_2O_5)$ per unit cell.

The density of magnesium boron oxide calculated from NBS lattice constants is 2.910 g/cm³ at 25 °C.

		a	Ь	с	α	β	γ
1952 1959 1965	Takéuchi [1] Block, Burley, Perloff & Mason [2] National Bureau of Standards, sample at 25 °C	$\begin{array}{c} \mathring{A} \\ 5. 93 \\ 6. 187 \\ 6. 155 \\ \pm 0. 001 \end{array}$	$\begin{array}{c} \mathring{A}\\ 9.\ 03\\ 9.\ 219\\ 9.\ 220\\ \pm\ 0.\ 002 \end{array}$	$ \begin{array}{r} \overset{\mathring{A}}{3.12} \\ 3.119 \\ 3.122 \\ \pm 0.001 \\ \end{array} $	90°54' 90°24' 90°28' ±1'	90°0' 92°08' 92°09' ±1'	103°54′ 104°19′ 104°25′ ±1′

Lattice constants

hkl	Internal Sta a=3.1648 Å; Cu λ 1.	andard W, temp. 25 °C 5405 Å
	d	I
$010\\100\\110,020\\120\\120\\120$	$\overset{\r{A}}{8.94}$ 5.96 4.473 4.099 3.211	
$\begin{array}{c} 001\\ \overline{210}\\ 200,\ 030,\ \overline{1}30\\ 011\\ \overline{220}\end{array}$	3. 121 3. 065 2. 979 2. 928 2. 824	9 4 26 3 46
$101 \\ 1\overline{1}1 \\ 210 \\ 0\overline{2}1 \\ 021$	2. 717 2. 700 2. 635 2. 579 2. 536	$3 \\ 22 \\ 14 \\ 100 \\ 54$
$111 \\ 130, \overline{2}30 \\ \overline{1}40 \\ 040 \\ 0\overline{3}1$	2. 513 2. 431 2. 287 2. 232 2. 173	8 7 6 6 2
$\bar{131}\\031\\201\\2\bar{221}\\\overline{310}, \bar{2}40$	2. 155 2. 134 2. 111 2. 066 2. 050	$2 \\ 20 \\ 4 \\ 2 \\ 7 \end{cases}$
$ \begin{array}{r} \overline{3}20 \\ 211 \\ \overline{131} \\ 131 \\ \overline{221} \end{array} $	2.009 1.973 1.948 1.888 1.850	$47 < 1 \\ 30 \\ 25 \\ 11$
${\begin{array}{c} \overline{150},\overline{141}\\ 221\\ \overline{241}\\ \overline{321}\\ \end{array}}$	1. 842 1. 783 1. 721 1. 717	16 8 } 8
$\begin{array}{r} \overline{301} \\ 2\overline{41} \\ 3\overline{11} \\ \overline{141}, 320 \\ \overline{231} \end{array}$	1. 707 1. 704 1. 683 1. 667 1. 640	$\left. \begin{array}{c} 11 \\ 1 \\ 1 \\ 3 \end{array} \right $
$\begin{array}{r} 141\\ 3\overline{1}1\\ 240,150\\ 1\overline{5}1\\ 002,311\end{array}$	1. 624 1. 616 1. 604 1. 589 1. 558	$\begin{array}{c}1\\6\\10\\4\\24\end{array}$
$\begin{array}{c} 051,\ \overline{1}60\\ \overline{410},\ \overline{420}\\ 251\\ \overline{112},\ \overline{3}41\\ 2\overline{51}\end{array}$	$\begin{array}{c} 1.\ 537\\ 1.\ 532\\ 1.\ 519\\ 1.\ 514\\ 1.\ 512 \end{array}$	$\left. \begin{array}{c} 4 \\ 10 \\ 10 \\ 12 \end{array} \right\}$
$\begin{array}{c}\overline{430,060}\\3\overline{41}\end{array}$	1. 489 1. 486	} 10

References

- Y. Takéuchi, The crystal structure of magnesium pyroborate, Acta Cryst. 5, 574-581 (1952).
 S. Block, G. Burley, A. Perloff, and R. Mason, Re-finement of the crystal structure of triclinic mag-nesium pyroborate, J. Res. NBS 62, No. 3, (1959) RP2936.

Powder data cards. None. Nos. 1–0409 and 9–15 are for other modifications of metaboric acid.

Additional published patterns. None. NBS sample. The sample of cubic metaboric acid was prepared at NBS by Kilday and Prosen [1] 1964 by holding orthoboric acid in a vacuum with orthorhombic metaboric acid followed by heating at 180 °C. Spectrographic analysis of the starting materials showed no impurity greater than 0.001 percent.

hkl	Internal Sta a=3.1648 Å; f Cu λ 1.5		
	d	Ι	a
110 200 210 211 220	$ \begin{array}{c} \overset{a}{4} \\ 6. 280 \\ 4. 442 \\ 3. 973 \\ 3. 627 \\ 3. 140 \end{array} $	47 100 43 50 26	$ \begin{array}{c} \overset{A}{\mathcal{A}} \\ 8.881 \\ 8.884 \\ 8.884 \\ 8.884 \\ 8.884 \\ 8.881 \\ \end{array} $
310 222 320 321 400	2. 809 2. 565 2. 464 2. 374 2. 221	42 26 4 32 20	8. 883 8. 885 8. 884 8. 883 8. 883 8. 884
410 411 420 421 332	2. 155 2. 094 1. 986 1. 939 1. 894	8 36 6 93 17	8. 885 8. 884 8. 882 8. 886 8. 884
422 500 510 520 521	$\begin{array}{c} 1.8134\\ 1.7768\\ 1.7424\\ 1.6496\\ 1.6215\end{array}$	5 2 5 3 5	8. 884 8. 884 8. 882 8. 883 8. 881
$\begin{array}{c} 440 \\ 530 \\ 531 \\ 600 \\ 611 \end{array}$	$\begin{array}{c} 1.\ 5708\\ 1.\ 5232\\ 1.\ 5016\\ 1.\ 4805\\ 1.\ 4411 \end{array}$	$\begin{array}{c}2\\13\\6\\2\\6\end{array}$	8. 886 8. 882 8. 884 8. 883 8. 883 8. 884
$\begin{array}{c} 620 \\ 621 \\ 541 \\ 622 \\ 630 \end{array}$	$\begin{array}{c} 1.\ 4044\\ 1.\ 3877\\ 1.\ 3714\\ 1.\ 3395\\ 1.\ 3245 \end{array}$	${6 \atop 4} \\ 2 \\ 11 \\ 14$	8. 882 8. 886 8. 888 8. 885 8. 885 8. 885
631 444 700 710 720	$\begin{array}{c} 1.\ 3103\\ 1.\ 2824\\ 1.\ 2693\\ 1.\ 2567\\ 1.\ 2205 \end{array}$	5 4 1 4 1	8. 887 8. 885 8. 885 8. 886 8. 885
721 731 650 732 800	$\begin{array}{c cccc} 1.\ 2090\\ 1.\ 1567\\ 1.\ 1374\\ 1.\ 1283\\ 1.\ 1106 \end{array}$	7 5 1 3 3	8. 884 8. 885 8. 883 8. 884 8. 885

The sample was colorless. The refractive index is 1.616.

The *d*-values of the three strongest lines are 4.442, 1.939, and 3.627 Å. Structural data. Zachariasen [2] in 1963 de-

Structural data. Zachariasen [2] in 1963 determined that cubic metaboric acid has the space group T_d^4 —P43n (No. 218) with 24(HBO₂) per unit cell. Three other forms of metaboric acid have been reported in the literature: a monoclinic, an orthorhombic, and a tetragonal.

hkl	Internal Sta a=3.1648 Å; t Cu λ 1.5	undard W, cemp. 25 °C 5405 Å	
	d	Ι	a
810 811 820 821 653	$\begin{matrix} \cancel{A} \\ 1. \ 1022 \\ 1. \ 0937 \\ 1. \ 0774 \\ 1. \ 0695 \\ 1. \ 0620 \end{matrix}$	4 4 4 7 4	Å 8. 886 8. 885 8. 884 8. 884 8. 884 8. 885
822 830 831 751 662	1. 0472 1. 0397 1. 0326 1. 0260 1. 0190	4 5 4 4 3	8. 885 8. 883 8. 883 8. 885 8. 885 8. 883
832 752 840 900 910	$\begin{array}{c} 1.\ 0124\\ 1.\ 0058\\ 0.\ 9934\\ .\ 9875\\ .\ 9811 \end{array}$	1 1 1 1 2	8. 884 8. 883 8. 885 8. 888 8. 888 8. 884
911 920 921 922 930	. 9753 . 9639 . 9581 . 9418 . 9366	$ \begin{array}{c} 3 \\ 1 \\ 5 \\ 2 \\ 1 \end{array} $	8. 885 8. 887 8. 885 8. 885 8. 885 8. 885
931 852 932 844 941	. 9313 . 9212 . 9164 . 9064 . 8976	$2 \\ 2 \\ 2 \\ 1 \\ 1$	8. 884 8. 884 8. 885 8. 886 8. 886
$\begin{array}{c} 10\cdot 1\cdot 0\\ 10\cdot 1\cdot 1\\ 10\cdot 2\cdot 0\\ 10\cdot 2\cdot 1\\ 950 \end{array}$. 8842 . 8799 . 8712 . 8670 . 8630	$\begin{array}{c}2\\1\\2\\2\\2\\2\end{array}$	8. 886 8. 887 8. 884 8. 884 8. 884 8. 885
$951 \\ 10 \cdot 2 \cdot 2 \\ 10 \cdot 3 \cdot 0$. 8590 . 8549 . 8510	$\begin{array}{c}3\\2\\1\end{array}$	8. 886 8. 884 8. 885
Average valu	8. 885		

1963 1965	Zachariasen [2] National Bureau of Standards, sample at 25° C	<i>Å</i> 8. 886 8. 885
--------------	---	------------------------------

The density of cubic metaboric acid calculated from the NBS lattice constant is 2.489 g/cm³ at 25 °C.

References

- [1] M. V. Kilday and E. J. Prosen, Heats of solution, transition, and formation of three crystalline forms of metaboric acid, J. Res. NBS 68A (Phys. and Chem.) No. 1, 127-137 (1964). [2] W. H. Zachariasen, The crystal structure of cubic
- metaboric acid, Acta Cryst. 16, 380-384 (1963).

Neodymium Arsenate, NdAsO₄ (monoclinic)

Powder data cards. None. Additional published patterns. None.

NBS sample. The sample of neodymium arsenate was precipitated at NBS from a water solution of arsenic pentoxide and neodymium trichloride. It was heated 1 hr at 930 °C. Spectrographic analysis showed the following major nonrare-earth impurities: 0.01 to 0.1 percent antimony and 0.001 to 0.01 percent each of aluminum, calcium, iron, lead, and silicon. Rare-

earth impurities were less than 0.1 percent of total rare-earth content.

The sample was colorless. The indices of refraction could not be determined because the sample was too fine-grained.

The *d*-values of the three strongest lines are 3.129, 2.941, and 3.331 Å.

Structural data. Schwarz [1] in 1963 determined that neodymium arsenate has the huttonite structure, the space group C_{2h}^5 —P2₁/n (No. 14), and 4(NdAsO₄) per unit cell.

Lattice constants

		а	b	с	β
1965	National Bureau of Standards, sample at 25 $^{\circ}C_{}$	$6.897 \\ \pm 0.001$	$\overset{\AA}{12} 7.094 \pm 0.001$	$\begin{array}{c} \mathring{A} \\ 6.\ 6849 \\ \pm\ 0.\ 0007 \end{array}$	104°54. 0′ ± 0. 7′

The density of neodymium arsenate calculated from the NBS lattice constants is 5.950 g/cm³ at 25 °C.

Reference

[1] H. Schwarz, Über die Chromate (V) der Seltenen Erden, III Neodymchromat (V), NdCrO₄, Z. Anorg. Allgem. Chem. 322, 129 (1963).

hkl	Internal Standard Ag, a=4.0861 Å; temp. 25 °C Cu λ 1.5405 Å		hkl	Internal Standard Ag, a=4.0861 Å; temp. 25 °C Cu λ 1.5405 Å	
	d	I		d	I
T01 110 011 T11 101	$\begin{array}{c} \overset{\AA}{5.378} \\ 4.860 \\ 4.774 \\ 4.287 \\ 4.137 \end{array}$	$\begin{array}{r}5\\10\\11\\11\\11\\4\end{array}$	$\begin{array}{r} 023\\ 322\\ 040\\ 132\\ 140 \end{array}$	$\overset{\AA}{1.842}$ 1.807 1.773 1.765 1.713	3 17 9 19 8
111 020 200 002 120	3. 573 3. 546 3. 331 3. 227 3. 129	8 14 57 7 100	$\begin{array}{r} 400,\overline{4}02\\ \overline{2}04,\overline{1}14\\ 410,\overline{4}12\\ 004\\ 312,\overline{3}23\end{array}$	$\begin{array}{c} 1. \ 666 \\ 1. \ 626 \\ 1. \ 622 \\ 1. \ 614 \\ 1. \ 601 \end{array}$	$10 \\ 5 \\ 10 \\ 4 \\ 3$
$210, \overline{2}11 \\ \overline{1}12 \\ 012 \\ 121, \overline{2}02 \\ 211, \overline{2}12$	$\begin{array}{c} 3. \ 017 \\ 2. \ 958 \\ 2. \ 941 \\ 2. \ 691 \\ 2. \ 516 \end{array}$	21 34 68 24 17	$213, \overline{2}14 \\ 014 \\ \overline{3}32 \\ 240, \overline{2}41 \\ \overline{1}42, 232$	$\begin{array}{c} 1. \ 586 \\ 1. \ 575 \\ 1. \ 570 \\ 1. \ 566 \\ 1. \ 557 \end{array}$	5 4 4 2
$\begin{array}{r} 112\\ 220, \overline{2}21\\ \overline{1}22\\ \overline{3}01\\ 130\\ \overline{1}03, 031\end{array}$	$\begin{array}{c} 2. \ 484 \\ 2. \ 428 \\ 2. \ 397 \\ 2. \ 289 \\ 2. \ 230 \\ 2. \ 221 \end{array}$	$\begin{array}{c c} & 14 \\ & 6 \\ & 5 \\ < 2 \\ \end{array} \\ \begin{array}{c} & 14 \end{array}$	$\begin{array}{c} \overline{1}24\\ 322\\ \overline{2}42, 223\\ 340, 051\\ 124, 043\end{array}$	$\begin{array}{c} 1. \ 512 \\ 1. \ 491 \\ 1. \ 480 \\ 1. \ 386 \\ 1. \ 369 \end{array}$	$<^4_2$ 4_2 2_6
$\begin{array}{r} \overline{3}11\\ 221, \overline{2}22\\ \overline{1}13, 310\\ 131\\ \overline{3}12 \end{array}$	$\begin{array}{c} 2.\ 180\\ 2.\ 145\\ 2.\ 120\\ 2.\ 053\\ 2.\ 013\\ \end{array}$	$\begin{array}{c} 6\\7\\3\\<2\\<2\\<2\end{array}$	$ \begin{array}{r} \overline{134} \\ \overline{342} \\ \overline{332} \\ 034 \\ 204 \end{array} $	$ \begin{array}{c} 1. 365 \\ 1. 355 \\ 1. 350 \\ 1. 333 \\ 1. 325 \\ \end{array} $	$\begin{pmatrix} 6\\ 2\\ 7\\ <2\\ \end{pmatrix}$
$\begin{array}{r} 212\\ 301\\ 230, 231\\ \overline{132}\\ 320, 311\end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	27 2 4 25 15	412, 414 115	1. 322 1. 311	

Powder data card. No.6-0217, Milligan, Watt, and Rachford [1] 1949.

Additional published patterns. None.

NBS sample. The sample of neodymium vanadate was prepared at NBS by adding a hot solution of sodium orthovanadate to a hot acidic solution of neodymium chloride. After the sample was dried at 110 °C for 1 hr, it was heated for 20 min at 700 °C to improve the crystallinity. Spectrographic analysis showed the following major impurities: 0.1 to 1.0 percent silicon and 0.001 to 0.01 percent each of aluminum, calcium, copper, and magnesium. Rare-earth impurities were less than 0.1 percent of total rare-earth content.

The color of the sample was pale blue. The indices of refraction could not be determined because the sample was too fine-grained.

The *d*-values of the three strongest lines are 3.664, 2.732, and 1.881 Å

Structural data. Milligan, Watt, and Rachford [1] in 1949 determined that neodymium vanadate has the zircon structure, the space group D_{4h}^{19} —I4₁/amd (No. 141) and 4(NdVO₄) per unit cell.

Lattice	constants
---------	-----------

		a	С
1040		Å	Å
1949 1965	Milligan, Watt, and Rachford [1] National Bureau of	7. 31	6. 42
Standards, sample at 25 °C	7. 3290 ± 0. 0003	6. 4356 ± 0. 0006	

The density of neodymium vanadate calculated from the NBS lattice constants is 4.979 g/cm³ at 25 °C.

Reference

 W. O. Milligan, L. M. Watt and H. H. Rachford, X-ray diffraction studies on heavy metal orthovanadates, J. Phys. Chem. 53, 227-234 (1949).

hkl	Internal Standard W, a=3.1648 Å; temp. 25 °C Cu λ 1.5405 Å	
	d	Ι
$101 \\ 200 \\ 211 \\ 112 \\ 220$	Å 4. 835 3. 664 2. 921 2. 732 2. 590	31 100 11 73 19
202 301 103 321 312	2. 419 2. 284 2. 059 1. 938 1. 881	5 16 10 12 57
400 213 411 420 303	1.8325 1.7951 1.7131 1.6391 1.6122	$16 \\ 5 \\ 2 \\ 13 \\ 3$
004 332 204 501 224	1. 6086 1. 5219 1. 4733 1. 4293 1. 3670	$egin{array}{c} 6 \\ 16 \\ 13 \\ 6 \\ 12 \end{array}$
$512 \\ 440 \\ 600 \\ 404 \\ 215$	1. 3121 1. 2954 1. 2214 1. 2086 1. 1977	12 5 5 6 5
611 532 620 424 325	1. 1840 1. 1704 1. 1584 1. 1481 1. 0874	$3 \\ 10 \\ 5 \\ 10 \\ 2$
$\begin{array}{r} 613,116\\ 640\\ 543,444\\ 552\\ 633,316\end{array}$	1. 0504 1. 0163 1. 0094 0. 9867 . 9734	6 4 4 5 6
624 732 723, 336 660 653, 516	. 9404 . 9220 . 9113 . 8637 . 8596	6 3 2 3 9

Potassium Acid Phthalate, C₆H₄(COOH)(COOK) (orthorhombic)

Powder data card. Nó. 1-0020, Hanawalt, Rinn, and Frevel [1] 1938.

Additional published patterns. None. NBS sample. The sample of potassium acid phthalate was obtained from J. T. Baker Chemical Co., Phillipsburg, N.J. Spectrographic analysis showed the following major impurities: 0.001 to 0.01 percent each of aluminum, sodium, and rubidium.
Potassium Acid Phthalate, C₆H₄(COOH)(COOK) (orthorhombic)—Continued

Lattice constants

		a	ь	с
1957 1963 1965	Okaya and Pepinsky [2] Bearden and Huffman [3] National Bureau of Standards, sample at 25 °C	Å 9. 61 9. 62 9. 607	Å 13. 26 13. 3164 13. 312	$\overset{\AA}{6.47}$ 6.47 6.47 6.47

The sample is colorless and optically negative. The refractive indices are

 $N_{\alpha} = 1.500, N_{\beta} = 1.653, N_{\gamma} = 1.660, 2V \simeq 10^{\circ}.$

The *d*-values of the three strongest lines are 13.32, 4.982, and 4.030 Å. Structural data. Okaya and Pepinsky [2] in

Structural data. Okaya and Pepinsky [2] in 1957 reported that potassium acid phthalate has the space group* D_2^3 — $P2_122_1$ (No. 18) with $4[C_6H_4(COOH)(COOK)]$ per unit cell.

The density of potassium acid phthalate calculated from the NBS lattice constants is 1.638 g/cm³ at 25 °C.

References

- J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemical analysis by X-ray diffraction, Anal. Chem. 10, 457-512 (1938).
- [2] Y. Okaya and R. Pepinsky, The crystal structure of ammonium acid phthalate, Acta Cryst. 10, 324-328 (1957).
- [3] A. J. Bearden and F. N. Huffman, Precision measurement of the cleavage plane grating spacing of potassium acid phthalate, Rev. Sci. Instr. 34, No. 11, 1233-1234 (1963).
- [4] Y. Okaya, The crystal structure of potassium acid phthalate, KC₆H₄COOH-COOK, Acta Cryst. 19, 879 (1965).

*Okaya [4] in 1965 reported that the revised space group is C_{2v} -Pca2, (No. 29).

hkl	Internal Standard Ag, a=4.0861 Å; temp. 25 °C Cu λ 1.5405 Å	
	d	Ι
010 110 020 111 200	$\begin{array}{c} \stackrel{A}{13.32} \\ 7.80 \\ 6.651 \\ 4.982 \\ 4.802 \end{array}$	$ \begin{array}{r} 100 \\ 2 \\ 1 \\ 36 \\ 4 \end{array} $
030 121 130 220 211	4. 438 4. 179 4. 030 3. 894 3. 705	$ \begin{array}{c} <1 \\ 14 \\ 20 \\ 4 \\ 9 \end{array} $
131 221 002 012, 140 112	3. 423 3. 338 3. 240 3. 145 2. 990	6 12 2 14 18
$231,022 \\ 320 \\ 141 \\ 122 \\ 202$	2. 912 2. 886 2. 830 2. 787 2. 684	$\begin{array}{c}12\\5\\4\\6\\2\end{array}$
$\begin{array}{c} 050\\ 321,212\\ 032\\ 150\\ 132,241\end{array}$	2. 663 2. 632 2. 615 2. 566 2. 522	$ \begin{array}{c} 10 \\ 6 \\ 6 \\ 2 \\ 7 \end{array} $
222331151142411, 060	2. 488 2. 410 2. 386 2. 257 2. 219	$\begin{array}{c}2\\4\\6\\4\\2\end{array}$
251 160 242 161 152	2. 191 2. 161 2. 090 2. 050 2. 010	2 2 2 6 4
203 351 440 261 133, 070, 510	1. 969 1. 953 1. 946 1. 924 1. 902	$\overset{3}{\underset{\scriptstyle \begin{array}{c} 2\\ 1\\ 1\\ 1\end{array}}{}^1$
$170, 441 \\ 062 \\ 233 \\ 162 \\ 171$	1. 866 1. 829 1. 800 1. 797 1. 792	$<1 \\ <1 \\ <1 \\ 1 \\ 1 \\ 1$

Powder data cards. None.

Additional published patterns. None. NBS sample. The sample of praseodymium arsenate was precipitated at NBS from a water solution of arsenic pentoxide and praseodymium trichloride. It was dried at 110 °C. Spectrographic analysis showed the following major impurities: 0.01 to 0.1 percent antimony and 0.001 to 0.01 percent each of calcium, iron, magnesium, lead, and silicon. Rare-earth impurities were less than 0.1 percent of total rare-earth content.

The color of the sample was light green. The indices of refraction could not be determined because the sample was too fine-grained.

The *d*-values of the three strongest lines are 3.141, 2.953, and 3.349 Å.

Structural data. Schwarz [1] in 1963 reported that praseodymium arsenate is isostructural with huttonite with the space group C_{2h}^{5} —P2₁/n (No. 14) and 4(PrAsO₄) per unit cell.

The density of praseodymium arsenate calculated from the NBS lattice constants is 5.804 g/cm³ at 25 °C.

hkl	Internal Sta a=4.0861 Å; t Cu λ 1.5	andard Ag, jemp. 25 °C 5405 å
	d	Ι
Ī01 110 011 Ī11 101	$\begin{array}{r} .\mathring{A} \\ 5. \ 404 \\ 4. \ 878 \\ 4. \ 799 \\ 4. \ 304 \\ 4. \ 158 \end{array}$	$5\\12\\11\\12\\5$
111 020 200 002 120	3. 591 3. 560 3. 349 3. 246 3. 141	
$\begin{array}{c} 210, \overline{2}11\\ \overline{1}12\\ 012\\ \overline{2}02\\ \overline{2}12\\ \end{array}$	3. 031 2. 967 2. 953 2. 701 2. 525	24 40 82 29 22
$\begin{array}{c c} 112\\ 220, \overline{2}21\\ \overline{1}22\\ \overline{3}01\\ \overline{1}03, 031 \end{array}$	2. 497 2. 440 2. 405 2. 299 2. 231	16 8 8 4 23

hkl	Internal Standard Ag, a=4.0861 Å; temp. 25 °C Cu λ 1.5405 Å	
	d	Ι
$\begin{array}{r} \overline{3}11\\ \overline{2}22,\ 221\\ 122\\ \overline{1}13,\ 310\\ 131 \end{array}$	$\overset{\rat{A}}{2.188}\ 2.155\ 2.134\ 2.130\ 2.061$	$10 \\ 9 \\ 2 \\ 5 \\ 4$
$\begin{array}{r} \overline{3}12\\212\\301\\230, \overline{2}31\\103, \overline{1}32\end{array}$	2. 021 1. 997 1. 962 1. 935 1. 920	$6 \\ 39 \\ 4 \\ 11 \\ 35$
$\begin{array}{c} 311, \ \overline{1}23, \ 320 \\ 023 \\ \overline{3}22 \\ \overline{3}03 \\ 222 \end{array}$	1.892 1.848 1.814 1.802 1.797	$ \begin{array}{r} 18 \\ 6 \\ 25 \\ 2 \\ 2 \\ 2 \end{array} $
$\begin{array}{c} \overline{2}23\\ 231\\ 040\\ 132\\ 140 \end{array}$	1. 793 1. 785 1. 7794 1. 7726 1. 7202	3 4 8 30 13
$\begin{array}{r} {411}\\ {402}\\ {410}\\ {133,330}\\ {004} \end{array}$	$\begin{array}{c} 1.\ 6828\\ 1.\ 6729\\ 1.\ 6300\\ 1.\ 6265\\ 1.\ 6231 \end{array}$	$2 \\ 13 \\ 14 \\ 16 \\ 12$
$\begin{array}{r} 312\\ 014\\ \overline{332}\\ 240, \overline{2}41\\ \overline{1}42 \end{array}$	$\begin{array}{c} 1.\ 6101\\ 1.\ 5823\\ 1.\ 5761\\ 1.\ 5722\\ 1.\ 5632 \end{array}$	5 5 8 9 2
$ \begin{array}{r} 1 \\ \overline{424} \\ 422 \\ 322 \\ 223, 241 \\ 314 \\ \end{array} $	$\begin{array}{c} 1.5185 \\ 1.5140 \\ 1.4994 \\ 1.4871 \\ 1.4758 \end{array}$	7 5 3 8 5
$\begin{array}{r} \overline{431}\\ \overline{1}43,340\\ 303\\ 124,\overline{1}51\\ \overline{1}34\end{array}$	1. 3995 1. 3922 1. 3871 1. 3767 1. 3709	$5 \\ 6 \\ 5 \\ 11 \\ 10$
$\frac{\overline{3}42}{\overline{3}32}$	1. 3602 1. 3568	

Reference

 H. Schwarz, Über die Chromate (V) der Seltenen Erden, II. Praseodymchromat (V) PrCrO₄, Z. Anorg. Allgem. Chem. 322, 15-24 (1963).

		a	Ь	С	β
1965	National Bureau of Standards, sample at 25 $^{\circ}C_{}$	Å 6. 929 ± 0. 001	$\overset{\AA}{119} \pm 0.001$	$\overset{\hat{A}}{6.715} \pm 0.001$	104°48. 2′ ±0. 6′

Samarium Arsenate, SmAsO₄ (tetragonal)

Powder data cards. None. **Additional published patterns.** None.

NBS sample. The sample of samarium arsenate was prepared at NBS from a water solution of samarium trichloride and arsenic pentoxide. The sample was heated to 900 °C for 20 hrs to sharpen the pattern. Spectrographic analysis showed the following major nonrare-earth impurities: 0.1 to 1.0 percent silicon: 0.01 to 0.1 percent aluminum; and 0.001 to 0.01 percent each of calcium, iron, and magnesium. Rare-earth impurities were less than 0.1 percent of total rare-earth content.

The sample had a cream color. The indices of refraction could not be determined because the sample was too fine-grained.

The *d*-values of the three strongest lines are 3.594, 2.708, and 1.853 Å.

Structural data. Durif and Forrat [1] in 1957 determined that samarium arsenate has the zircon structure with the space group D_{4h}^{19} —I4₁/amd (No. 141) and 4(SmAsO₄) per unit cell.

Liunino constanto	Lattic	e constants
-------------------	--------	-------------

		a	с
$1957 \\ 1965$	Durif and Forrat [1] National Bureau of	Å 7. 20	$\overset{\r{A}}{6.40}$
	Standards, sample at 25 °C	$7.\ 1865 \\ \pm \ 0.\ 0004$	$\begin{array}{c} 6.\ 3999 \\ \pm\ 0.\ 0005 \end{array}$

The density of samarium arsenate calculated from NBS lattice constants is 5.813 g/cm³ at 25 °C.

Reference

 A. Durif and F. Forrat, Sur quelques arséniates des terres rares à structure zircon, Compt. Rend. 245, 1636-38 (1957).

hkl	Internal Standard Ag, <i>a</i> =4.0861 Å; temp. 25 °C Cu λ 1.5405 Å	
	d	Ι
	Å	
101	4. 784	14
200	3. 594	100
112	2.809	60
220^{112}	2. 540	19
202	2. 390	4
301	2.244	10
103		5
312	1. 853	49 5
400	1. 7967	16
213	1. 7778	$\frac{1}{2}$
411	1. 6817	2
420	1. 6068	11
004	1. 6004	10
332	1. 4973	12
204	1.4017	10
501 224	1.4020	8
512	1. 2901	12
440	1. 2709	2
600	1. 1980	5
404	1. 1949	7
503	1.1922	5 2
210	1. 1094	0
532	1. 1504	6
620	1. 1362	3
424	1. 1341	6
206	1. 0225	1
640	0. 9965	1
444	. 9948	1
552	. 9686	2
316	. 9655	2
004	. 9,580	1
624	. 9263	5
732	. 9054	4
336	. 9029	2
516	. 8712 . 8504	6
	0.150	

Powder data cards. None. Nos. 9–201, 11–412, and 13–244 are for the monoclinic B form of samarium oxide.

Additional published patterns. Zachariasen [1] 1927.

NBS sample. The sample of samarium oxide was obtained from the Lindsay Chemical Co., West Chicago, Ill. The cubic form was obtained when the sample was heated at 800 °C for 19 hrs. The analysis by Lindsay Chemical Co. showed the rare-earth impurities to be less than 0.1 percent of total rare-earth content.

The sample was cream colored. The index of refraction is about 1.97.

The *d*-values of the three strongest lines are 3.155, 1.9317, and 2.731 Å.

Structural data. Zachariasen [1] in 1927 determined that the C-modification of samarium oxide has the manganese dioxide structure, the space group T_h^{-} -Ia3 (No. 206) with $16(Sm_2O_3)$ per unit cell.

Lattice constants

1925 1927 1939 1954 1954 1965	Goldschmidt, Barth, and Ulrich [2] Zachariasen [1] Bommer [3] Templeton and Dauber [4] Brauer and Gradinger [5] National Bureau of Standards, sample at 25 °C	\AA 10. 87 10. 89 10. 915 10. 932 10. 928 10. 927
	sample at 25 °C	10. 927

The density of samarium oxide calculated from NBS lattice constant is 7.100 g/cm³ at 25 °C.

References

- W. H. Zachariasen, The crystal structure of the modification C of the sesquioxides of the rare-earth metals and of indium and thallium, Norsk Geol. Tidsskr. 9, 310-316 (1927).
- Tidsskr. 9, 310-316 (1927).
 [2] V. M. Goldschmidt, T. Barth, and F. Ulrich, Geochemische Verteilungsgesetze der Elemente IV,-Zur Krystallstruktur der Oxyde der selten Erdmetalle Skrifter Norske Videnskaps-Akad. Oslo I Mat. Naturv. Kl. (1925).
- [3] H. Bommer, Die Gitterkonstanten der C-Formen der Oxyde der seltenen Erdmetalle, Z. Anorg. Allgem. Chem. 241, 273-280 (1939).
 [4] D. H. Templeton and C. H. Dauben, Lattice param-
- [4] D. H. Templeton and C. H. Dauben, Lattice parameters of some rare-earth compounds and a set of crystal radii, J. Am. Chem. Soc. 76, 5237-5239 (1954).
- [5] I. G. Brauer and H. Gradinger, Über heterotype Mischphasen bei Seltenerdoxyden, Z. Anorg. All-gem. Chem. 276, 209–226 (1954).

hkl	a=3.10	Internal Standards W, a=3.1648 Å; temp. 25 °C Cu λ 1.5405 Å	
	d	I	a
$211 \\ 222 \\ 321 \\ 400 \\ 411$	$\begin{matrix} \overset{A}{4} \\ 4. \ 460 \\ 3. \ 155 \\ 2. \ 920 \\ 2. \ 731 \\ 2. \ 575 \end{matrix}$	$\begin{array}{c}11\\100\\4\\33\\8\end{array}$	$\begin{matrix} \mathring{A} \\ 10. \ 925 \\ 10. \ 929 \\ 10. \ 926 \\ 10. \ 924 \\ 10. \ 925 \end{matrix}$
$\begin{array}{c} 420\\ 332\\ 510\\ 521\\ 440 \end{array}$	2. 444 2. 330 2. 143 1. 995 1. 9317	$\begin{array}{c}1\\4\\7\\2\\40\end{array}$	$\begin{array}{c} 10.\ 930\\ 10.\ 928\\ 10.\ 927\\ 10.\ 927\\ 10.\ 929 \end{array}$
$530 \\ 600 \\ 611 \\ 541 \\ 622$	$\begin{array}{c} 1. \ 8739 \\ 1. \ 8212 \\ 1. \ 7723 \\ 1. \ 6857 \\ 1. \ 6474 \end{array}$	$\begin{array}{c} 4\\1\\5\\4\\29\end{array}$	$\begin{array}{c} 10. \ 927 \\ 10. \ 927 \\ 10. \ 925 \\ 10. \ 925 \\ 10. \ 925 \\ 10. \ 928 \end{array}$
$\begin{array}{c} 631 \\ 444 \\ 710 \\ 640 \\ 721 \end{array}$	$\begin{array}{c} 1. \ 6111 \\ 1. \ 5776 \\ 1. \ 5454 \\ 1. \ 5154 \\ 1. \ 4871 \end{array}$	7 8 2 2 2	$10. 927 \\ 10. 930 \\ 10. 928 \\ 10. 928 \\ 10. 928 \\ 10. 928$
$732 \\800 \\811 \\831 \\662$	$\begin{array}{c} 1. \ 3880 \\ 1. \ 3663 \\ 1. \ 3450 \\ 1. \ 2703 \\ 1. \ 2536 \end{array}$	3 4 4 3 6	$10. 929 \\ 10. 930 \\ 10. 927 \\ 10. 928 \\ 10. 929$
840 921 930 844 941	$\begin{array}{c} 1.\ 2218\\ 1.\ 1785\\ 1.\ 1521\\ 1.\ 1152\\ 1.\ 1040 \end{array}$	5346	$10. 928 \\ 10. 929 \\ 10. 930 \\ 10. 927 \\ 10. 929$
$10.2.0 \\ 10.2.2 \\ 10.3.1 \\ 871 \\ 10.4.0$	$\begin{array}{c} 1.\ 0714\\ 1.\ 0516\\ 1.\ 0418\\ 1.\ 0234\\ 1.\ 0145 \end{array}$	3 4 1 3	$\begin{array}{c} 10. \ 926 \\ 10. \ 928 \\ 10. \ 926 \\ 10. \ 927 \\ 10. \ 926 \end{array}$
$10.3.3 \\ 11.2.1 \\ 880 \\ 10.6.2 \\ 12.0.0$	$\begin{array}{c} 1.\ 0060\\ 0.\ 9736\\ .\ 9660\\ .\ 9236\\ .\ 9106 \end{array}$	$1\\3\\2\\2\\2$	$\begin{array}{c} 10. \ 929 \\ 10. \ 929 \\ 10. \ 929 \\ 10. \ 929 \\ 10. \ 928 \\ 10. \ 927 \end{array}$
$12.1.1 \\ 11.5.2 \\ 12.4.2$. 9043 . 8921 . 8532	$\begin{array}{c}2\\1\\2\end{array}$	$\begin{array}{c} 10. \ 927 \\ 10. \ 926 \\ 10. \ 926 \end{array}$
Average val	ue of last five li	ines	. 10. 927

Powder data cards. None. Additional published patterns. None.

NBS sample. The sample of scandium arsenate was prepared at NBS from a water solution of arsenic pentoxide and scandium trichloride. It was heated 30 min at 900 °C. Spectrographic analysis showed the following major impurities: 0.01 to 0.1 percent each of antimony, silicon, and vanadium; and 0.001 to 0.01 percent each of aluminum, chromium, copper, iron, magnesium, lead and tin.

The sample was colorless. The indices of refraction could not be determined because the sample was too fine-grained.

The *d*-values of the three strongest lines are 3.354, 2.569, and 1.742 Å. Structural data. No reference to the structure

Structural data. No reference to the structure of scandium arsenate was found, but it is apparently isostructural with yttrium arsenate with the space group D_{4h}^{19} —I4₁/amd (No. 141) and 4(ScAsO₄) per unit cell.

Luuice constants	Lattice	constants
------------------	---------	-----------

		a	с
1965	National Bureau of	Å	Å
	Standards, sample at 25 °C	6.7101 ± 0.0001	6.1126 ± 0.0002

The density of scandium arsenate calculated from the NBS lattice constants is 4.437 g/cm³ at 25 °C.

hkl	Internal Standards W, a=3.1648 Å; temp. 25 °C Cu λ 1.5405 Å	
	d	Ι
$101 \\ 200 \\ 211 \\ 112 \\ 220$	$\begin{array}{c} A\\ 4.\ 516\\ 3.\ 354\\ 2.\ 693\\ 2.\ 569\\ 2.\ 371 \end{array}$	$10\\100\\22\\48\\11$
$202 \\ 301 \\ 312 \\ 213 \\ 400$	2. 259 2. 100 1. 742 1. 6854 1. 6777	$7 < 1 \\ 40 \\ 4 \\ 10$
411 004 420 332 204	$\begin{array}{c} 1.\ 5727\\ 1.\ 5283\\ 1.\ 5008\\ 1.\ 4048\\ 1.\ 3908 \end{array}$	3 3 7 12 7
323 501 224 314 521	$\begin{array}{c} 1.\ 3744\\ 1.\ 3111\\ 1.\ 2851\\ 1.\ 2400\\ 1.\ 2210 \end{array}$	$\overset{3}{\overset{1}{\overset{2}{\overset{2}{\overset{2}{}}}}}}}_{2}$
$512 \\ 105 \\ 440 \\ 404 \\ 600$	$\begin{array}{c} 1.\ 2090\\ 1.\ 2032\\ 1.\ 1864\\ 1.\ 1299\\ 1.\ 1186 \end{array}$	5 3 2 3 3
$532 \\ 424 \\ 620 \\ 541 \\ 116$	$\begin{array}{c} 1. \ 0771 \\ 1. \ 0709 \\ 1. \ 0611 \\ 1. \ 0332 \\ 0. \ 9960 \end{array}$	5 6 2 1 3
$\begin{array}{c} 444 \\ 640 \\ 316 \\ 552 \\ 604 \end{array}$	$\begin{array}{c} . \ 9370 \\ . \ 9305 \\ . \ 9184 \\ . \ 9062 \\ . \ 9025 \end{array}$	1 3 3 4 2
624 336 732 800 811	$\begin{array}{c} . \ 8715 \\ . \ 8565 \\ . \ 8466 \\ . \ 8388 \\ . \ 8246 \end{array}$	$4 \\ 1 \\ 5 \\ 1 \\ < 1$
$\begin{array}{c} 615 \\ 820, \ 307 \\ 516 \\ 644 \\ 660 \\ 327 \end{array}$	$\begin{array}{c} . \ 8190 \\ . \ 8137 \\ . \ 8056 \\ . \ 7948 \\ . \ 7909 \\ . \ 7905 \end{array}$	$ \begin{cases} <1 \\ 1 \\ 6 \\ 3 \\ 1 \end{cases} $

Powder data cards. None.

Additional published patterns. None. NBS sample. The sample of strontium boron oxide was prepared at NBS from strontium carbonate and boric acid. It was heated to 1,000 °C, ground, and then alternately reheated and reground several times. Spectrographic analysis showed the following major impurities: 0.01 to 0.1 percent each of barium, calcium, and silicon; and 0.001 to 0.01 percent each of aluminum, iron, and magnesium.

	Internal Star a=3.1648 Å; te	ndard W, emp. 25 °C	hkl	Internal Sta a=3.1648 Å; t Cu λ 1.5	ndard W, emp. 25 °C 405 å
hkl	Cu λ 1.54	405 Ă		d	I
020 100 110 011	$\begin{array}{c} d \\ & \overset{A}{5.35} \\ & 4.43 \\ & 4.10 \\ & 3.940 \\ & 2.061 \end{array}$	I 24 4 29 31 98	$ \begin{array}{r} 103 \\ 080 \\ 242 \\ 261 \\ 033 \\ \end{array} $	$\rarcsin field for the second state of the se$	3 5 4 3 3
101 111 130 031 040	2. 942 2. 778 2. 729 2. 677		$ \begin{array}{r} 123, 162 \\ 340 \\ 270, 133 \\ 252 \\ 341 \\ \end{array} $	$\begin{array}{c} 1.\ 3040\\ 1.\ 2919\\ 1.\ 2584\\ 1.\ 2450\\ 1.\ 2360 \end{array}$	$\overset{7}{<1}_{1}_{2}^{7}$
121 131 140 200 210	$\begin{array}{c} 2.657 \\ 2.324 \\ 2.292 \\ 2.214 \\ 2.168 \end{array}$	$ \begin{array}{c} 100 \\ <1 \\ 17 \\ 26 \\ 2 \end{array} $	181 350 271 312 172	$\begin{array}{c} 1.\ 2264\\ 1.\ 2150\\ 1.\ 2062\\ 1.\ 2026\\ 1.\ 1940 \end{array}$	3 2 2 4 4
002 220 141 022 201	$\begin{array}{c} 2.118 \\ 2.046 \\ 2.015 \\ 1.969 \\ 1.962 \end{array}$	30 11 63 13 16	213 053 223, 262 091, 280 082	$\begin{array}{c} 1.\ 1825\\ 1.\ 1784\\ 1.\ 1616\\ 1.\ 1456\\ 1.\ 1313 \end{array}$	3 4 3 3 3
211 051 230 221 122	1. 929 1. 911 1. 881 1. 842 1. 7990	20 8 25 3 2	$233 \\ 342 \\ 361 \\ 420 \\ 163$	$\begin{array}{c} 1.\ 1288\\ 1.\ 1030\\ 1.\ 0982\\ 1.\ 0837\\ 1.\ 0739 \end{array}$	$\overset{4}{\overset{3}{_{3}}}_{\overset{3}{_{3}}}$
060 231 240 132 042	$ \begin{array}{c} 1.7846\\ 1.7187\\ 1.7060\\ 1.6839\\ 1.6609 \end{array} $	5 8 4 7 4	$\begin{array}{c} 0\cdot 10\cdot 0,401\\ 411\\ 352\\ 421\\ 253\end{array}$	$\begin{array}{c} 1.\ 0710\\ 1.\ 0652\\ 1.\ 0540\\ 1.\ 0498\\ 1.\ 0402 \end{array}$	$< 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2$
241 142 161 202 212	$ \begin{array}{c} 1.5818\\ 1.5549\\ 1.5419\\ 1.5301\\ 1.5147 \end{array} $	1 4 8 6 1	$\begin{array}{c} 024\\ 371\\ 114\\ 303\\ 291 \end{array}$	$\begin{array}{c} 1.\ 0379\\ 1.\ 0300\\ 1.\ 0247\\ 1.\ 0198\\ 1.\ 0173 \end{array}$	$\overset{2}{\underset{1}{\overset{2}{\underset{1}{\underset{1}{\atop}}}}}$
$222 \\ 251, 170 \\ 071 \\ 152 \\ 232$	1.4708 1.4461 1.4385 1.4252 1.4059	5 6 3 6 2	$\begin{array}{c} 313\\124,1\cdot10\cdot1\\282\\323,362\\441\end{array}$	$\begin{array}{c} 1.\ 0152\\ 1.\ 0107\\ 1.\ 0076\\ 1.\ 0016\\ 0.\ 9942 \end{array}$	$\overset{2}{\overset{4}{\overset{4}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{1$
013 260 311 171 062 321	$ \begin{array}{c c} 1. 3990 \\ 1. 3893 \\ 1. 3817 \\ 1. 3677 \\ 1. 3644 \\ 1. 3481 \end{array} $	$\begin{array}{c c} <1 \\ 3 \\ 3 \\ 5 \\ 6 \end{array}$	$263 \\ 134 \\ 044 \\ 412 \\ 381, 422$. 9899 . 9892 . 9843 . 9766 . 9650	$\left. \begin{array}{c} 1 \\ 1 \\ 1 \\ 2 \end{array} \right.$

The sample was colorless. The indices of refraction could not be determined because the sample was too fine-grained.

The *d*-values of the three strongest lines are 2.657, 2.015, and 2.729 Å.

Structural data. Block, Perloff, and Weir [1] in 1964 determined that strontium boron oxide has the space group C_{2v}^7 —Pnm2₁ (No. 31) and $2(SrB_4O_7)$ per unit cell.

Lattice	const	ants
---------	-------	------

		a	b	с
$1964 \\ 1965$	Block, Perloff, and Weir [1] National Bureau of Standards, sample at 25 °C	$\begin{array}{c} \overset{\r{A}}{4.431} \\ 4.4263 \\ \pm 0.0002 \end{array}$	$\begin{matrix} \mathring{A} \\ 10.\ 706 \\ 10.\ 7074 \\ \pm 0.\ 0005 \end{matrix}$	$\begin{array}{r} \overset{\AA}{4.237} \\ 4.2338 \\ \pm 0.0002 \end{array}$

The density of strontium boron oxide calculated from the NBS lattice constants is 4.019 g/cm³ at 25 °C.

Reference

[1] S. Block, A. Perloff, and C. E. Weir, The crystallography of some M⁺² borates, Acta Cryst. 17, 314 (1964).

Tin Arsenide, SnAs (cubic)

Powder data cards. None.

Additional published patterns. Willott and Evans [1] 1934.

NBS sample. The sample of tin arsenide was prepared at NBS in a solid state reaction by heating a mixture of arsenic and tin in an evacuated Pyrex tube at 500 °C. Spectrographic analysis showed the following major impurities: 0.01 to 0.1 percent lead, and 0.001 to 0.01 percent each of aluminum, antimony, bismuth, copper, indium, iron, magnesium, nickel, and silicon.

The sample was a gray opaque powder.

The *d*-values of the three strongest lines are 2.862, 2.024, and 1.652 Å.

Structural data. Goldschmidt [2] in 1928 determined that tin arsenide has the sodium chloride structure, the space group O_{h}^{5} —Fm3m (No. 225) and 4(SnAs) per unit cell.

Lattice	constants

1928 (1934) 1935 H 1965 H	Goldschmidt [2] Willott and Evans [1] Hägg and Hybinette [3] National Bureau of Standards, sample at 25 °C	\mathring{A} 5. 720 5. 692 5. 728 5. 7248
--------------------------------------	--	---

The density of tin arsenide calculated from the NBS lattice constant is 6.854 g/cm³ at 25 °C.

hkl	Internal Standard W, a=3.1648 Å; temp. 25 °C Cu λ 1.5405 Å		
	d	Ι	a
$ \begin{array}{c} 111\\200\\220\\311\\222\\400\\331\\420\\422\\511\end{array} $	$\begin{matrix} \mathring{A} \\ 3. 306 \\ 2. 862 \\ 2. 024 \\ 1. 726 \\ 1. 652 \\ 1. 4310 \\ 1. 3129 \\ 1. 2800 \\ 1. 1684 \\ 1. 1015 \end{matrix}$	$ \begin{array}{c} 13\\ 100\\ 55\\ 4\\ 17\\ 8\\ 2\\ 16\\ 10\\ <1\\ \end{array} $	$ \begin{array}{c} \overset{}{A} \\ 5.725 \\ 5.725 \\ 5.725 \\ 5.723 \\ 5.724 \\ 5.724 \\ 5.724 \\ 5.723 \\ 5.724 \\ 5.7$
$\begin{array}{c} 440 \\ 531 \\ 600 \\ 620 \\ 622 \\ 444 \\ 711 \\ 640 \end{array}$	$\begin{array}{c} 1.\ 0120\\ 0.\ 9676\\ .\ 9540\\ .\ 9052\\ .\ 8630\\ .\ 8263\\ .\ 8017\\ .\ 7939 \end{array}$	216644	5. 725 5. 724 5. 724 5. 7247 5. 7247 5. 7244 5. 7248 5. 7252 5. 7250
Average	value of last fiv	ve lines	5. 7248

References

- [1] W. H. Willott and E. J. Evans, X-ray investigation of the arsenic-tin system of alloys, Phil. Mag. 18, 114 (1934).
- [2] V. M. Goldschmidt, Atomic distances in metals, Z.
- Physik. Chem. (Leipzig) 133, 397 (1928).
 [3] G. Hägg and A. G. Hybinette, X-ray studies on the systems Sn-Sb and Sn-As, Phil. Mag. 20, 913 (1935).

Powder data cards. None. Additional published patterns. None.

NBS sample. The sample of ytterbium arsenate was precipitated at NBS from a water solution of arsenic pentoxide and ytterbium trichloride. It was dried 1 hr at 880 °C. Spectrographic analysis showed the following major nonrare-earth impurities: 0.01 to 0.1 percent each of antimony and titanium and 0.001 to 0.01 percent each of aluminum, calcium, iron, nickel, lead, and silicon. Rare-earth impurities were less than 0.1 percent of total rare-earth content.

The sample was colorless. The indices of refraction could not be determined because the sample was too fine-grained.

The *d*-values of the three strongest lines are 3.486, 2.6375, and 1.8004 Å.

Structural data. Durif and Forrat [1] in 1957 determined that ytterbium arsenate has the zircon structure with the space group D_{4h}^{19} —I4₁/amd (No. 141) and 4(YbAsO₄) per unit cell.

Lattice	constants

		<i>a</i>	<i>c</i>
$1957 \\ 1965$	Durif and Forrat [1] National Bureau of	Å 6. 99	$\overset{\AA}{6.24}$
	Standards, sample at 25 °C	$\begin{array}{c} 6. \ 9716 \\ \pm \ 0. \ 0002 \end{array}$	6.2437 ± 0.0003

The density of ytterbium arsenate calculated from the NBS lattice constants is 6.828 g/cm^3 at 25 °C.

Reference

 A. Durif and F. Forrat, Sur quelques arséniates des terres rares à structure zircon, Compt. Rend. 245, 1636-38 (1957).

hkl	Internal Standard W, a=3.1648 Å; temp. 25 °C Cu λ 1.5405 Å	
	d	Ι
$101 \\ 200 \\ 211 \\ 112 \\ 220$	$\overset{A}{4.652}$ 3.486 2.788 2.6375 2.4648	$22 \\ 100 \\ 5 \\ 74 \\ 24$
$202 \\ 301 \\ 103 \\ 321 \\ 312$	$\begin{array}{c} 2. \ 3258 \\ 2. \ 1781 \\ 1. \ 9939 \\ 1. \ 8468 \\ 1. \ 8004 \end{array}$	$ \begin{array}{r} 3 \\ 10 \\ 7 \\ 7 \\ 56 \end{array} $
$\begin{array}{r} 400 \\ 213 \\ 411 \\ 420 \\ 332 \end{array}$	$\begin{array}{c} 1.\ 7424\\ 1.\ 7308\\ 1.\ 6316\\ 1.\ 5587\\ 1.\ 4541 \end{array}$	$16 \\ 3 \\ 1 \\ 15 \\ 14$
$204 \\ 501 \\ 224 \\ 512 \\ 440 \\ 105$	$\begin{array}{c} 1.\ 4250\\ 1.\ 3604\\ 1.\ 3188\\ 1.\ 2524\\ 1.\ 2322\\ 1.\ 2289 \end{array}$	$\left.\begin{array}{c} 11 \\ 2 \\ 8 \\ 11 \\ \end{array}\right\} 3 \\ \end{array}$
$\begin{array}{r} 404 \\ 503 \\ 611 \\ 532 \\ 424 \end{array}$	$\begin{array}{c} 1.\ 1625\\ 1.\ 1582\\ 1.\ 1271\\ 1.\ 1166\\ 1.\ 1029 \end{array}$	$\left. \begin{array}{c} 7 \\ < 1 \\ 7 \\ 12 \end{array} \right $
$325 \\ 631 \\ 116 \\ 613 \\ 444, 640$	$\begin{array}{c} 1.\ 0491\\ 1.\ 0250\\ 1.\ 0187\\ 1.\ 0039\\ 0.\ 9669 \end{array}$	$< 1 \\ < 1 \\ 3 \\ < 1 \\ 5 $
543 721 552 604 633	$\begin{array}{c} . \ 9647 \\ . \ 9464 \\ . \ 9403 \\ . \ 9321 \\ . \ 9302 \end{array}$	${ < 1 \atop 9 \atop 2 \atop 2}$
$624 \\ 703 \\ 732 \\ 800 \\ 820$	$\begin{array}{c} . \ 9004 \\ . \ 8984 \\ . \ 8784 \\ . \ 8715 \\ . \ 8456 \end{array}$	$\overset{5}{\overset{3}{\overset{5}{\overset{5}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{1$
$\begin{array}{c} 516\\644\\536\end{array}$. 8282 . 8220 . 7849	5 5 7

Powder data cards. No. 4–0563, Stahl [1] 1943. No. 1–0678 is probably $ZnO \cdot Sb_2O_5$ and not $ZnO \cdot Sb_2O_3$.

Additional published patterns. None.

NBS sample. The sample of zinc antimony oxide was prepared at NBS from zinc oxide and antimony trioxide. The mixture was wrapped in gold foil and sealed in a nitrogen filled quartz tube. It was heated to 700 °C for ¾ of an hour. Spectrographic analysis showed the following major impurities: 0.01 to 0.1 percent each of arsenic, magnesium, lead, and silicon.

hkl	Internal Standard W, α=4.0861 Å; temp. 25 °C Cu λ 1.5405 Å	
	d	Ι
$110 \\ 200 \\ 210 \\ 211 \\ 220$	$\begin{matrix} \overset{A}{A} \\ 6. \ 021 \\ 4. \ 261 \\ 3. \ 811 \\ 3. \ 206 \\ 3. \ 011 \end{matrix}$	
$\begin{array}{c} 002 \\ 310 \\ 112 \\ 202 \\ 212 \end{array}$	$\begin{array}{c} 2. \ 964 \\ 2. \ 694 \\ 2. \ 662 \\ 2. \ 434 \\ 2. \ 341 \end{array}$	$10 \\ 29 \\ 11 \\ 19 \\ 7$
$ \begin{array}{r} 400 \\ 410 \\ 330 \\ 312 \\ 411 \end{array} $	$\begin{array}{c} 2. \ 129 \\ 2. \ 066 \\ 2. \ 008 \\ 1. \ 995 \\ 1. \ 9509 \end{array}$	$\begin{array}{c}1\\2\\6\\3\\29\end{array}$
$\begin{array}{c} 420 \\ 213 \\ 402 \\ 430 \\ 332 \end{array}$	$\begin{array}{c} 1. \ 9042 \\ 1. \ 7552 \\ 1. \ 7296 \\ 1. \ 7033 \\ 1. \ 6625 \end{array}$	$egin{array}{c} 6 \\ 14 \\ 6 \\ <1 \\ 19 \end{array}$
$511 \\ 520 \\ 521 \\ 440 \\ 004$	$\begin{array}{c} 1.\ 6075\\ 1.\ 5815\\ 1.\ 5283\\ 1.\ 5056\\ 1.\ 4833 \end{array}$	$\begin{array}{c} \overset{1}{\overset{1}{\overset{1}{\overset{6}{\overset{1}{}}}}}_{1} \\ \overset{6}{\overset{1}{}} \\ 4 \end{array}$
$\begin{array}{c} 432 \\ 530 \\ 512 \\ 413 \\ 600 \end{array}$	$\begin{array}{c} 1.\ 4775\\ 1.\ 4607\\ 1.\ 4551\\ 1.\ 4283\\ 1.\ 4192 \end{array}$	3 7 3 8 5
$610 \\ 620 \\ 224, 540 \\ 532 \\ 541$	$\begin{array}{c} 1.\ 4000\\ 1.\ 3469\\ 1.\ 3302\\ 1.\ 3104\\ 1.\ 2980 \end{array}$	$\begin{vmatrix} 1 \\ 1 \\ < 1 \\ 3 \\ 6 \end{vmatrix}$
$602 \\ 523 \\ 622 \\ 334 \\ 424$	$\begin{array}{c} 1.\ 2805\\ 1.\ 2350\\ 1.\ 2264\\ 1.\ 1933\\ 1.\ 1704 \end{array}$	$\begin{vmatrix} 3\\ 4\\ 4\\ \leq 1\\ 1 \end{vmatrix}$

The color of the sample was off-white. The indices of refraction could not be determined because the sample was too fine-grained.

The *d*-values of the three strongest lines are 3.206, 2.694, and 1.9509 Å.

Structural data. Stahl [1] in 1943 determined that zinc antimony oxide has the space group D_{4h}^{13} —P4/mbc (No. 135) with 4(ZnSb₂O₄) per unit cell.

hkl	Internal Standard W, a=4.0861 Å; temp. 25 °C Cu λ 1.5405 Å	
	d	I
$721 \\ 215 \\ 730 \\ 712 \\ 543$	$\overset{\hat{A}}{1.1477} 1.1327 1.1184 1.1159 1.1035$	$2 \\ 4 \\ 2 \\ 3 \\ 2$
$731 \\ 642 \\ 650 \\ 651 \\ 800$	$\begin{array}{c} 1.\ 0989\\ 1.\ 0972\\ 1.\ 0904\\ 1.\ 0728\\ 1.\ 0648 \end{array}$	$<1 \\ 1 \\ 1 \\ 1 \\ <1$
$\begin{array}{r} 444,810\\ 811\\ 820\\ 415,713\\ 604 \end{array}$	$\begin{array}{c} 1.\ 0565\\ 1.\ 0400\\ 1.\ 0328\\ 1.\ 0288\\ 1.\ 0258 \end{array}$	${\overset{1}{\overset{5}{<}1}}_{1}$
$653 \\ 821 \\ 425, 723 \\ 660 \\ 751$	$\begin{array}{c} 1.\ 0232\\ 1.\ 0174\\ 1.\ 0068\\ 1.\ 0037\\ 0.\ 9765 \end{array}$	$\overset{<1}{\underset{2}{\overset{2}{\overset{2}{\atop}}}}_{1}$
$822 \\ 206 \\ 840 \\ 662 \\ 525$	$\begin{array}{c} . \ 9754 \\ . \ 9633 \\ . \ 9523 \\ . \ 9508 \\ . \ 9493 \end{array}$	\leq^1_1 2_2 1_1
$910 \\ 841 \\ 752 \\ 813 \\ 644, 920$	$\begin{array}{c} . \ 9405 \\ . \ 9400 \\ . \ 9390 \\ . \ 9318 \\ . \ 9239 \end{array}$	$\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{3}{\overset{3}{\overset{3}{\overset{1}{\overset{3}{\overset{1}{\overset{3}{\overset{1}{\overset{3}{\overset{1}{\overset{3}{\overset{1}{\overset{3}{\overset{1}{\overset{3}{\overset{1}{\overset{3}{\overset{1}{\overset{3}{\overset{1}{\overset{3}{\overset{1}{\overset{3}{\overset{1}{1$
$921 \\ 930 \\ 406, 912 \\ 851 \\ 336$. 9128 . 8977 . 8966 . 8925 . 8870	$<1 \\ <1 \\ <1 \\ 3 \\ 2$
$753 \\ 932 \\ 10.0.0 \\ 10.0.1 \\ 10.1.1$	$\begin{array}{c} . \ 8852 \\ . \ 8593 \\ . \ 8517 \\ . \ 8432 \\ . \ 8390 \end{array}$	$24 \\ 41 \\ <12 \\ 2$

Zinc Antimony Oxide, ZnSb₂O₄ (tetragonal)—Continued

Lattice constants

		a	С
$1943 \\ 1965$	Stahl [1] National Bureau of	Å 8. 508	Å 5. 932
	Standards, sample at 25 °C	$\begin{array}{c} 8.\ 5168 \\ \pm \ 0.\ 0002 \end{array}$	$5.9331 \\ \pm 0.0003$

The density of zinc antimony oxide calculated from the NBS lattice constants is 5.754 g/cm³ at 25 °C.

Reference

 S. Stahl, The crystal structure of ZnSb₂O₄, Arkiv Kemi, Bd. 17B No. 5, (1943-44).

CALCULATED POWDER PATTERNS

Antimony Cerium, CeSb (cubic)

Calculated Pattern

Additional published pattern. Iandelli and Botti [8] 1937.

Structural data. Iandelli and Botti [8] in 1937 determined that antimony cerium is isomorphous with sodium chloride with the space group O_h^5 —Fm3m (No. 225) and 4(CeSb) per unit cell. The atoms occupy the special positions:

Ce: 0 0 0 Sb: $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$.

Lattice constants

1937 Iandelli and Bo	tti [8] 6. 412
1963 Kuz'min and N	ikitina [32] 6. 41

The lattice constant used in this calculated pattern is a=6.412 Å.

No temperature correction was included.

The calculated *d*-values of the three strongest lines are 3.21, 2.27, and 1.434 Å.

The calculated density is 6.598 g/cm^3 .

hkl	d	Peak height
		Ι
$ \begin{array}{c} 111\\200\\220\\311\\222\\400\\331\\420\\422\\511\\440\\531\\600\\600\\600\\\end{array} $	$ \begin{array}{r} \overset{a}{\mathcal{A}} \\ 3, 70 \\ 3, 21 \\ 2, 27 \\ 1, 933 \\ 1, 851 \\ 1, 603 \\ 1, 471 \\ 1, 434 \\ 1, 309 \\ 1, 234 \\ 1, 133 \\ 1, 084 \\ 1, 069 \\ 1, 214 \\ \end{array} $	$ \begin{array}{c} <1 \\ 100 \\ 69 \\ <1 \\ 23 \\ 10 \\ <1 \\ 27 \\ 19 \\ <1 \\ 6 \\ <1 \\ 12 \\ 8 \end{array} $
620	0. 967	8
$ \begin{array}{r} 444 \\ 711 \\ 640 \\ 642 \\ 731 \\ 800 \\ \end{array} $. 925 . 898 . 889 . 857 . 835 . 802	$2 < 1 \\ 7 \\ 14 < 1 \\ 2$

Brixner [30] in 1960 determined that antimony dysprosium is isomorphous with sodium chloride with the space group O_h^5 —Fm3m (No. 225) and 4(DySb) per unit cell. The atoms occupy the special positions:

Dy: 0 0 0
Sb:
$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{1}{2}$.

Brixner [30] reports the lattice constant a=6.153 Å.

No temperature correction was included.

The calculated *d*-values of the three strongest lines are 3.08, 2.18, and 1.376 Å.

The density of antimony dysprosium calculated from the constant of Brixner is 8.104 g/cm^3 .

Calculated Pattern

Brixner [30] in 1960 determined that antimony erbium is isomorphous with sodium chloride with the space group O_h^5 —Fm3m (No. 225) and 4(ErSb) per unit cell. The atoms occupy the special positions:

Er: 0 0 0 Sb: $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$.

Brixner [30] reports the lattice constant a=6.106 Å.

No temperature correction was included.

The calculated *d*-values of the three strongest lines are 3.05, 2.16, and 1.365 Å.

The density of antimony erbium calculated from the constant of Brixner is 8.432 g/cm³.

Соррсі х		
hkl	d	Peak height I
$ \begin{array}{c} 111\\200\\220\\311\\222\\400\\331\\420\\422\\511\\440\\531\\600\\620\\533\\622\\444\\711\\640\\642\\731\end{array} $	$ \begin{array}{c} \mathring{A} \\ 3.55 \\ 3.08 \\ 2.18 \\ 1.855 \\ 1.776 \\ 1.538 \\ 1.412 \\ 1.376 \\ 1.256 \\ 1.184 \\ 1.088 \\ 1.040 \\ 1.026 \\ 0.973 \\ .938 \\ .928 \\ .888 \\ .862 \\ .853 \\ .822 \\ .801 \\ \end{array} $	$\begin{array}{c} & 4 \\ 100 \\ 68 \\ 2 \\ 222 \\ 10 \\ <1 \\ 26 \\ 19 \\ <1 \\ 6 \\ <1 \\ 13 \\ 9 \\ <1 \\ 8 \\ 3 \\ <1 \\ 8 \\ 16 \\ <1 \end{array}$

Calculated Pattern Copper λ

Calculated Pattern

Copper A	
----------	--

hkl	d	Peak height
		Ι
111	Å 3. 53	4
$\begin{array}{c} 200\\ 220\\ 311 \end{array}$	3. 05 2. 16 1. 841	68
222	1. 763	22
$\begin{array}{c} 400\\ 331\\ 420\end{array}$	$ \begin{array}{c} 1.526 \\ 1.401 \\ 1.365 \end{array} $	
$\begin{array}{c} 422 \\ 511 \end{array}$	$\begin{array}{c} 1.\ 246 \\ 1.\ 175 \end{array}$	$^{19}_{<1}$
440 531	$\begin{array}{c} 1.\ 079 \\ 1.\ 032 \end{array}$	
600 620 533	1. 018 0. 965 . 931	
622 444	. 921	9
$711 \\ 640$. 855 . 847	$<^{3}_{8}$
642 731	. 816 . 795	$^{17}_{<1}$

Brixner [30] in 1960 determined that antimony gadolinium is isomorphous with sodium chloride with the space group O_h^5 —Fm3m (No. 225) and 4(GdSb) per unit cell. The atoms occupy the special positions:

Gd: 0 0 0 Sb: $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$.

Brixner [30] reports the lattice constant a = 6.217 Å. No temperature correction was included.

The calculated d-values of the three strongest lines are 3.11, 2.20, and 1.390 Å.

The density of antimony gadolinium calculated from the constant of Brixner is 7.712 g/cm^3 .

hkl	d	Peak height I
$ \begin{array}{r} 111 \\ 200 \\ 220 \\ 311 \\ 222 \\ \end{array} $	$\begin{matrix} \mathring{A} \\ 3.59 \\ 3.11 \\ 2.20 \\ 1.874 \\ 1.795 \end{matrix}$	$3 \\ 100 \\ 69 \\ 1 \\ 23$
400 331 420 422 511	$\begin{array}{c} 1.554\\ 1.426\\ 1.390\\ 1.269\\ 1.196\end{array}$	$10 < 1 \\ 26 \\ 19 < 1$
$\begin{array}{c} 440 \\ 531 \\ 600 \\ 620 \\ 533 \end{array}$	$\begin{array}{c} 1. \ 099 \\ 1. \ 051 \\ 1. \ 036 \\ 0. \ 983 \\ . \ 948 \end{array}$	${ < 1 \atop 12 \\ 9 \\ < 1 }$
$\begin{array}{c} 622 \\ 444 \\ 711 \\ 640 \\ 642 \\ 731 \end{array}$	$\begin{array}{r} .937\\ .897\\ .870\\ .862\\ .831\\ .809\end{array}$	${ { 8 \atop { 3 \atop { 8 \atop { 16 \atop { < 1 } } } } } } } $

Calculated Pattern Copper λ

Calculated Pattern

Additional published pattern. Iandelli and Botti, [8] 1937.

Structural data. Iandelli and Botti [8] in 1937 determined that antimony lanthanum is isomorphous with sodium chloride with the space group O_h^s —Fm3m (No. 225) and 4(LaSb) per unit cell. The atoms occupy the special positions:

La: 0 0 0 Sb: $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$.

Lattice	constant
---------	----------

193' 196:	Iandelli and Botti [8] Kuz'min and Nikitina [32]	Å 6. 488 6. 49
--------------	---	----------------------

The lattice constant used in this calculated pattern is a=6.488 Å.

No temperature correction was included.

The calculated d-values of the three strongest lines are 3.24, 2.29, and 1.451 Å.

The calculated density is 6.339 g/cm^3 .

hkl	d	Peak height
$111 \\ 200 \\ 220 \\ 311 \\ 222$	$\overset{A}{3.75}$ 3.24 2.29 1.956 1.873	$<1\ 100\ 69\ <1\ 23$
$ \begin{array}{r} 400 \\ 331 \\ 420 \\ 422 \\ 440 \\ \end{array} $	$\begin{array}{c} 1. \ 622 \\ 1. \ 488 \\ 1. \ 451 \\ 1. \ 324 \\ 1. \ 147 \end{array}$	10 < 1 27 19 6
$ \begin{array}{r} 600\\ 620\\ 622\\ 444\\ 640 \end{array} $	$\begin{array}{c} 1. \ 081 \\ 1. \ 026 \\ 0. \ 978 \\ . \ 936 \\ . \ 900 \end{array}$	12 8 8 2 7
642 800 820	. 867 . 811 . 787	$\begin{array}{c} 13\\2\\16\end{array}$

Additional published pattern. Iandelli and Botti, [9] 1937.

Structural data. Iandelli and Botti [9] in 1937 determined that antimony neodymium is isomorphous with sodium chloride with the space group O_h^5 —Fm3m (No. 225) and 4(NdSb) per unit cell. The atoms occupy the special positions:

Nd: 0 0 0 Sb: $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$.

Lattice constants

1937 1963	Iandelli and Botti [9] Kuz'min and Nikitina [32]	$\overset{\AA}{6.322}_{6.32}$

The lattice constant used in this calculated pattern is a=6.322 Å.

No temperature correction was included.

The calculated d-values of the three strongest lines are 3.16, 2.24, and 1.414 Å.

The calculated density is 6.992 g/cm^3 .

Calculated Pattern Copper λ

hkl	d	Peak height I
$111 \\ 200 \\ 220 \\ 311 \\ 222 \\ 400 \\ 331 \\ 420 \\ 422 \\ 511 \\ 440 \\ 531 \\ 600 \\ 620 \\ 533 \\ 622 \\ 444 \\ 711 \\ 640 \\ 642 \\ 42$	\AA 3. 65 3. 16 2. 24 1. 906 1. 825 1. 580 1. 450 1. 414 1. 290 1. 217 1. 118 1. 069 1. 054 1. 000 0. 964 . 953 . 912 . 885 . 877 . 845	$ \begin{array}{c} 1\\ 100\\ 69\\ <1\\ 23\\ 10\\ <1\\ 26\\ 19\\ <1\\ 6\\ <1\\ 12\\ 9\\ <1\\ 8\\ 3\\ <1\\ 7\\ 15\\ \end{array} $
731 800	. 823 . 790	$<^{1}_{2}$

Calculated Pattern

Additional published pattern. Iandelli and Botti [8] 1937.

Structural data. Iandelli and Botti [8] in 1937 determined that antimony praseodymium is isomorphous with sodium chloride with the space group O_h^5 —Fm3m (No. 225) and 4(PrSb) per unit cell. The atoms occupy the special positions:

 $\begin{array}{cccc} Pr: & 0 & 0 & 0 \\ Sb: & \frac{1}{2} & \frac{1}{2} & \frac{1}{2}. \end{array}$

Lattice constants

$1937 \\ 1963$	Iandelli and Botti [8] Kuz'min and Nikitina [32]	6.3666.37

The lattice constant used in this calculated pattern is a=6.366 Å.

No temperature correction was included.

The calculated *d*-values of the three strongest lines are 3.18, 2.25, and 1.423 Å.

The calculated density is 6.762 g/cm^3 .

hkl	d	Peak height
		Ι
$\frac{111}{200}$	Å 3. 68 3. 18	$1 \\ 100$
$220 \\ 311 \\ 222$	$\begin{array}{c} 2. \ 25 \\ 1. \ 919 \\ 1. \ 838 \end{array}$	$\overset{69}{<1}_{23}$
$400 \\ 331 \\ 420 \\ 422$	$\begin{array}{c} 1.592 \\ 1.460 \\ 1.423 \\ 1.299 \end{array}$	$ \begin{array}{c} 10 \\ <1 \\ 26 \\ 19 \end{array} $
511 440	$ \begin{array}{c} 1.225 \\ 1.125 \\ 1.125 \\ 1.076 \end{array} $	<1
$531 \\ 600 \\ 620 \\ 533$	$ \begin{array}{c} 1.076\\ 1.061\\ 1.007\\ 0.971 \end{array} $	12 9 <1
$622 \\ 444 \\ 711$. 960 . 919 . 891	
$640\\642\\731$. 883 . 851 . 829	7 14 <1
800	. 796	2

Brixner [30] in 1960 determined that antimony scandium is isomorphous with sodium chloride with the space group O_h^5 —Fm3m (No. 225) and 4(SbSc) per unit cell. The atoms occupy the special positions:

Sb: $0 \ 0 \ 0$ Sc: $\frac{1}{2} \frac{1}{2} \frac{1}{2}$.

Brixner [30] reports the lattice constant a=5.859 Å.

No temperature correction was included.

The calculated *d*-values of the three strongest lines are 2.93, 2.07, and 3.38 Å.

The density of antimony scandium calculated from the constant of Brixner is 5.505 g/cm^3 .

Calculated Pattern

Ferro [22] in 1956 determined that antimony thorium is isomorphous with sodium chloride with the space group O_h^5 —Fm3m (No. 225) and 4(SbTh) per unit cell. The atoms occupy the special positions:

Sb: 0 0 0 Th: $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$.

Ferro [22] reports the lattice constant a=6.318 Å.

No temperature correction was included.

The calculated *d*-values of the three strongest lines are 3.16, 2.23, and 1.413 Å.

The density of antimony thorium calculated from the constant of Ferro is 9.317 g/cm^3 .

Calculated Pattern Copper λ

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Copper λ			
$\begin{tabular}{ c c c c c c c c c c } \hline I \\ \hline & & & & & & \\ \hline 111 & & & & & & & & \\ 111 & & & & & & &$	hkl	d	Peak height	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			Ι	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Å		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	111	3. 38	39	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	200	2.93	100	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	220		65	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	311		10	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	244	1. 091	21	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	400	1, 465	9	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	331	1. 344	ő	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	420	1. 310	23	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	422	1. 196	16	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	511	1. 128	4	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	440	1. 036	5	
$ \begin{array}{ c c c c c c c c } 600 & & .976 & & 12 \\ 620 & & .926 & & 9 \\ 533 & & .893 & & 2 \\ \hline 622 & & .883 & & 8 \\ 444 & & .846 & & 3 \\ 711 & & .820 & & 4 \\ 640 & & .812 & & 9 \\ \hline \end{array} $	531	0. 990	5	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	600	. 976	12	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	620	. 926	9	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	533	. 893	2	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	622	. 883	8	
$\begin{array}{ c c c c c c }\hline 711 & . & 820 & 4 \\ 640 & . & 812 & 9 \\ \hline \end{array}$	444	. 846	3	
640 . 812 9	711	. 820	4	
	640	. 812	9	
642 . 783 21	642	. 783	21	

hkl	d	Peak height
		Ι
	Å	
$111 \\ 200 \\ 220 \\ 311 \\ 222$	$\begin{array}{c} 3.\ 65\\ 3.\ 16\\ 2.\ 23\\ 1.\ 905\\ 1.\ 824 \end{array}$	$ \begin{array}{r} 16 \\ 100 \\ 69 \\ 7 \\ 23 \end{array} $
$400 \\ 331 \\ 420 \\ 422 \\ 511$	$1.580 \\ 1.449 \\ 1.413 \\ 1.290 \\ 1.216$	$10 \\ 3 \\ 27 \\ 20 \\ 2$
$ \begin{array}{r} 440 \\ 531 \\ 600 \\ 620 \\ 533 \\ \end{array} $	$1.\ 117 \\ 1.\ 068 \\ 1.\ 053 \\ 0.\ 999 \\ .\ 963$	
$622 \\ 444 \\ 711 \\ 640 \\ 642$	$\begin{array}{c} . \ 952 \\ . \ 912 \\ . \ 885 \\ . \ 876 \\ . \ 844 \end{array}$	9 3 2 8 16
731 800	. 823 . 790	$\frac{3}{2}$

Calculated Pattern

Brixner [30] in 1960 determined that antimony thulium is isomorphous with sodium chloride with the space group O_h^5 —Fm3m (No. 225) and 4(SbTm) per unit cell. The atoms occupy the special positions:

Sb: 0 0 0 Tm: $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

Brixner [30] reports the lattice constant a=6.083 Å.

No temperature correction was included.

The calculated d-values of the three strongest lines are 3.04, 2.15, and 1.360 Å.

The density of antimony thulium calculated from the constant of Brixner is 8.577 g/cm³.

hkl	d	Peak height
		-
	Å	
111	3. 51	5
200	3.04	100
220	2.15	68
311	1.834	2
222	1. 756	22
400	1 591	10
221	1.021 1.206	10
420	1.350	26
420	1.300 1 242	18
511	1, 171	<10
011	1.1.1	
440	1.075	6
531	1.028	< 1
600	1.014	13
620	0.962	9
533	. 928	< 1
699	017	0
022	. 917	9
711	. 010	<1
640	. 002 844	
642	813	17
731	. 792	<1
.51	. 102	\ ¹

$\begin{array}{c} \textbf{Calculated Pattern} \\ Copper \ \lambda \end{array}$

Calculated Pattern

Brixner [30] in 1960 determined that antimony ytterbium is isomorphous with sodium chloride with the space group O_b^5 —Fm3m (No. 225) and 4(SbYb) per unit cell. The atoms occupy the special positions:

Sb: 0 0 0 Yb: $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$.

Brixner [30] reports the lattice constant a=5.922 Å.

No temperature correction was included.

The calculated *d*-values of the three strongest lines are 2.96, 2.09, and 1.324 Å.

The density of antimony ytterbium calculated from the constant of Brixner is 9.427 g/cm³.

hkl	d	Peak height
		Ι
	Å	
111	3 42	6
200	2.96	100
220	2.09	68
311	1. 786	$\frac{1}{2}$
222	1. 710	$2\overline{2}$
400	1.480	10
331	1.359	<1
420	1. 324	26
422	1.209	19
511	1.140	<1
140	1.047	C
440 591	1.047	
001 600		$\begin{pmatrix} < 1 \\ 12 \end{pmatrix}$
620	0.907	10
522	. 930	10
999	. 905	<1
622	. 893	9
444	. 855	3
711	. 829	<1
640	. 821	9
642	. 791	21

Domange, Flahaut, Guittard and Loriers [27] in 1958 determined that antimony yttrium is isomorphous with sodium chloride with the space group O_h^5 —Fm3m (No. 225) and 4(SbY) per unit cell. The atoms occupy the special positions:

Sb: 0 0 0

Y: $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$.

Brixner [30] reports the lattice constant a=6.163 Å.

No temperature correction was included.

The calculated d-values of the three strongest lines are 3.08, 2.18, and 1.378 Å.

The density of antimony yttrium calculated from the constant of Brixner is 5.977 g/cm³.

hkl	d	Peak height I
$111 \\ 200 \\ 220 \\ 311 \\ 222$	$\overset{A}{3.56}$ 3.08 2.18 1.858 1.779	$\begin{array}{r} 4\\100\\67\\2\\2\\2\end{array}$
$\begin{array}{c} 400\\ 331\\ 420\\ 422\\ 511 \end{array}$	$\begin{array}{c} 1.\ 541 \\ 1.\ 414 \\ 1.\ 378 \\ 1.\ 258 \\ 1.\ 186 \end{array}$	$10 < 1 \\ 25 \\ 18 < 1$
$\begin{array}{c} 440 \\ 531 \\ 600 \\ 620 \\ 553 \end{array}$	$\begin{array}{c} 1. \ 089 \\ 1. \ 042 \\ 1. \ 027 \\ 0. \ 974 \\ . \ 940 \end{array}$	${{<}^{5}_{11}}{{}^{12}_{81}}{{<}^{8}_{11}}$
$\begin{array}{c} 622 \\ 444 \\ 711 \\ 640 \\ 642 \\ 731 \end{array}$	$\begin{array}{c} . \ 929 \\ . \ 890 \\ . \ 863 \\ . \ 855 \\ . \ 824 \\ . \ 802 \end{array}$	

$\begin{array}{c} \textbf{Calculated Pattern} \\ \text{Copper } \lambda \end{array}$

Calculated Pattern

Additional published pattern. Iandelli and Botti, [10] 1937.

Structural data. Iandelli and Botti [10] in 1937 determined that bismuth cerium is isomorphous with sodium chloride with the space group O_h^5 —Fm3m (No. 225) and 4(BiCe) per unit cell. The atoms occupy the special positions:

Bi: $0 \ 0 \ 0$ Ce: $\frac{1}{2} \frac{1}{2} \frac{1}{2}$.

The lattice constant used in this calculated pattern is a=6.500 Å, as reported by Iandelli and Botti [10].

No temperature correction was included.

The calculated d-values of the three strongest lines are 3.25, 2.30, and 1.453 Å.

The calculated density is 8.443 g/cm^2 .

hkl	d	Peak height
		Ι
$111 \\ 200 \\ 220 \\ 311 \\ 222$	${\it \AA} \\ 3.\ 75 \\ 3.\ 25 \\ 2.\ 30 \\ 1.\ 960 \\ 1.\ 876 \\ \end{array}$	$\begin{array}{c} 7\\100\\71\\3\\24\end{array}$
$ \begin{array}{r} 400 \\ 331 \\ 420 \\ 422 \\ 511 \end{array} $	$1. \ 625 \\ 1. \ 491 \\ 1. \ 453 \\ 1. \ 327 \\ 1. \ 251$	$11 \\ 128 \\ 20 \\ <1$
$\begin{array}{c} 440 \\ 531 \\ 600 \\ 620 \\ 533 \end{array}$	$\begin{array}{c} 1.\ 149\\ 1.\ 099\\ 1.\ 083\\ 1.\ 028\\ 0.\ 991 \end{array}$	${{<}^6_{-1}} _{{13}} _{{9}} _{<1}$
$\begin{array}{c} 622 \\ 444 \\ 711 \\ 640 \\ 642 \end{array}$. 980 . 938 . 910 . 901 . 869	${}^{8}_{3}_{7}_{15}$
731 800 733 820	. 846 . 812 . 794 . 788	$\overset{1}{\underset{17}{\overset{2}{<}1}}$

Structural data. Kuz'min and Nikitina [32] in 1963 determined that bismuth dysprosium is isomorphous with sodium chloride with the space group O_h^5 —Fm3m (No. 225) and 4(BiDy) per unit cell. The atoms occupy the special positions:

Bi: 0 0 0 Dy: $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$.

The lattice constant used in this calculated pattern is a=6.20 Å, as reported by Kuz'min and Nikitina [32].

No temperature correction was included.

The calculated d-values of the three strongest lines are 3.10, 2.19, and 1.39 Å.

The calculated density is 10.35 g/cm^3 .

Calculated	Pattern
Coppe	er λ

Calculated Pattern

Structural data. Kuz'min and Nikitina [32] in 1963 determined that bismuth erbium is isomorphous with sodium chloride with the space group O_h^5 —Fm3m (No. 225) and 4(BiEr) per unit cell. The atoms occupy the special positions:

Bi: 0 0 0 Er: $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$.

642

731

The lattice constant used in this calculated pattern is a=6.22 Å, as reported by Kuz'min and Nikitina [32].

No temperature correction was included.

The calculated *d*-values of the three strongest lines are 3.11, 2.20, and 1.39 Å.

The calculated density is 10.38 g/cm^3 .

Calculated Pattern Copper λ

Соррст и		
hkl	d	Peak height
		Ι
$111 \\ 200 \\ 220 \\ 311 \\ 222$	$\begin{matrix} \mathring{A} \\ 3.59 \\ 3.11 \\ 2.20 \\ 1.88 \\ 1.80 \end{matrix}$	$2 \\ 100 \\ 70 \\ 1 \\ 23$
$\begin{array}{c} 400 \\ 331 \\ 420 \\ 422 \\ 511 \end{array}$	$\begin{array}{c} 1.56\\ 1.43\\ 1.39\\ 1.27\\ 1.20\end{array}$	$egin{array}{c} 10 \\ <1 \\ 28 \\ 20 \\ <1 \end{array}$
$\begin{array}{c} 440 \\ 531 \\ 600 \\ 620 \\ 533 \end{array}$	$\begin{array}{c} 1.\ 10\\ 1.\ 05\\ 1.\ 04\\ 0.\ 983\\ .\ 949 \end{array}$	$ \begin{array}{c c} 6 \\ <1 \\ 13 \\ 10 \\ <1 \end{array} $
$622 \\ 444 \\ 711 \\ 640$	$ \begin{array}{r} .938 \\ .898 \\ .871 \\ .863 \end{array} $	$9 \\ 3 \\ <1 \\ 9$

. 831

. 810

18

< 1

Copper A		
hkl	d	Peak height
		Ι
$111 \\ 200 \\ 220 \\ 311 \\ 222$	${}^{\hat{\mathcal{A}}}_{3.58}$ 3.10 2.19 1.87 1.79	$\begin{array}{c}3\\100\\70\\1\\23\end{array}$
$\begin{array}{c} 400\\ 331\\ 420\\ 422\\ 511 \end{array}$	1.551.421.391.271.19	$10 < 1 \\ 28 \\ 20 < 1$
$\begin{array}{c} 440 \\ 531 \\ 600 \\ 620 \\ 533 \end{array}$	$1.\ 10\\ 1.\ 05\\ 1.\ 03\\ 0.\ 980\\ .\ 945$	${ \begin{array}{c} 6 \\ <1 \\ 13 \\ 10 \\ <1 \end{array} }$
$\begin{array}{c} 622 \\ 444 \\ 711 \\ 640 \\ 642 \\ 731 \end{array}$	$\begin{array}{c} . \ 935 \\ . \ 895 \\ . \ 868 \\ . \ 860 \\ . \ 829 \\ . \ 807 \end{array}$	$9 \\ 3 \\ < 1 \\ 8 \\ 17 \\ < 1$

Additional published pattern. Bruzzone [31] 1961.

Structural data. Bruzzone [31] in 1961 determined that bismuth holmium is isomorphous with sodium chloride with the space group O_h^5 —Fm3m (No. 225) and 4(BiHo) per unit cell. The atoms occupy the special positions:

Bi: 0 0 0 Ho: $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$.

Lattice constants

		Å
$\begin{array}{c}1961\\1963\end{array}$	Bruzzone [31] Kuz'min and Nikitina [32]	б. 228 6. 23

The lattice constant used in this calculated pattern is a=6.228 Å.

No temperature correction was included.

The calculated *d*-values of the three strongest lines are 3.11, 2.20, and 1.393 Å.

Calculated Pattern

The calculated density is 10.280 g/cm^3 .

Copper λ				
hkl	d	Peak height		
$ \begin{array}{c} 111\\ 200\\ 220\\ 311\\ 222 \end{array} $	$\begin{array}{c} \overset{\mathring{A}}{3.60}\\3.11\\2.20\\1.878\\1.798\end{array}$	$ \begin{array}{c} 2 \\ 100 \\ 70 \\ 1 \\ 24 \end{array} $		
$ \begin{array}{r} 400\\331\\420\\422\\511\end{array} $	$1.557 \\1.429 \\1.393 \\1.271 \\1.199$	$ \begin{array}{c} 10 \\ <1 \\ 28 \\ 20 \\ <1 \end{array} $		
$440 \\ 531 \\ 600 \\ 620 \\ 533$	$\begin{array}{c} 1. \ 101 \\ 1. \ 053 \\ 1. \ 038 \\ 0. \ 985 \\ . \ 950 \end{array}$	$\begin{array}{c} 6 \\ <1 \\ 13 \\ 10 \\ <1 \end{array}$		
$\begin{array}{c} 622 \\ 444 \\ 711 \\ 640 \\ 642 \\ 731 \end{array}$	$\begin{array}{c} . \ 939 \\ . \ 899 \\ . \ 872 \\ . \ 864 \\ . \ 832 \\ . \ 811 \end{array}$	$ \begin{array}{c c} 9 \\ 3 \\ <1 \\ 8 \\ 17 \\ <1 \end{array} $		

Calculated Pattern

Additional published pattern. Iandelli and Botti [10] 1937.

Structural data. Iandelli and Botti [10] in 1937 determined that bismuth lanthanum is isomorphous with sodium chloride with the space group O_h^5 —Fm3m (No. 225) and 4(BiLa) per unit cell. The atoms occupy the special positions:

Bi: $0 \ 0 \ 0$ La: $\frac{1}{2} \frac{1}{2} \frac{1}{2}$.

Lattice	constants

1937 1963	Iandelli and Botti [10] Kuz'min and Nikitina [32]	Å 6. 578 6. 58
--------------	--	----------------------

The lattice constant used in this calculated pattern is a=6.578 Å.

No temperature correction was included.

The calculated *d*-values of the three strongest lines are 3.29, 2.33, and 1.471 Å.

The calculated density is 8.118 g/cm^2 .

hkl	d	Peak height
		Ι
	Å	
111	3. 80	7
200	3. 29	100
220	2. 33	72
311	1. 983	3
222	1. 899	24
400	1. 644	11
331	1. 509	1
420	1. 471	29
422	1. 343	21
511	1. 266	1
440	1. 163	6
531	1. 112	1
600	1. 096	13
620	1. 040	9
533	1. 003	<1
622	0. 992	8
444	. 949	3
711	. 921	$<\underline{1}$
640	. 912	7
642	. 879	14
731	. 856	1
800	. 822	2
733	. 804	<1
820	. 798	16

Bismuth Neodymium, BiNd (cubic)

Bismuth Praseodymium, BiPr (cubic)

Calculated Pattern

Structural data. Iandelli [23] in 1956 deter-mined that bismuth neodymium is isomorphous with sodium chloride with the space group O_h^5 —Fm3m (No. 225) and 4(BiNd) per unit cell. The atoms occupy the special positions:

Bi: 0 0 0 Nd: $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$.

Lattice constants

1956 Iandelli [23] 1963 Kuz'min and Nikitina [32]	<i>Å</i> 6. 424 6. 42
---	-----------------------------

The lattice constant used in this calculated pattern is a = 6.424 Å.

No temperature correction was included.

The calculated *d*-values of the three strongest lines are 3.21, 2.27, and 1.436 Å. The calculated density is 8.849 g/cm³.

hkl	d	Peak height I
$111 \\ 200 \\ 220 \\ 311 \\ 222 \\ 400 \\ 331 \\ 420 \\ 422 \\ 511 \\ 440 \\ 531 \\ 600 \\ 620 \\ 533 \\ 622 \\ 444 \\ 100 $	$ \overset{\r{A}}{J} \\ \begin{array}{c} 3.71 \\ 3.21 \\ 2.27 \\ 1.937 \\ 1.854 \\ 1.606 \\ 1.474 \\ 1.436 \\ 1.311 \\ 1.236 \\ 1.136 \\ 1.086 \\ 1.071 \\ 1.016 \\ 0.980 \\ .968 \\ .927 \\ \end{array} $	$ \begin{array}{c} 6\\ 100\\ 70\\ 3\\ 24\\ 11\\ 1\\ 28\\ 20\\ <1\\ 6\\ <1\\ 13\\ 9\\ <1\\ 8\\ 3\\ \end{array} $
711 640 642	. 900 . 891 . 858	$< 1 \\ 8 \\ 15$
731 800 733	. 836 . 803 . 785	< 1 2 < 1

Calculated Pattern Copper λ

Calculated Pattern

Additional published pattern. Iandelli and Botti [10] 1937.

Structural data. Iandelli and Botti [10] in 1937 determined that bismuth praseodymium is isomorphous with sodium chloride with the space group O_h^5 —Fm3m (No. 225) and 4(BiPr) per unit cell. The atoms occupy the special positions:

Bi: 0 0 0 Pr: $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

Lattice constants

1937 1963	Iandelli and Botti [10] Kuz'min and Nikitina [32]	$\overset{\AA}{6.461}_{6.46}$
--------------	--	-------------------------------

The lattice constant used in this calculated pattern is a=6.461 Å.

No temperature correction was included.

The calculated *d*-values of the three strongest lines are 3.23, 2.28, and 1.445 Å.

The calculated density is 8.616 g/cm^3 .

hkl	d	Peak height
		Ι
	Å	
111	3 73	6
200	3. 23	100
220	2. 28	71
311	1. 948	3
222	1. 865	24
400	1. 615	11
331	1. 482	1
420	1. 445	28
422	1. 319	20
511	1. 243	<1
440	1. 142	6
531	1. 092	<1
600	1.077	13
620	1. 022	9
533	0. 985	<1
622	. 974	8
444	. 933	3
711	. 905	< 1
640	. 896	8
642	. 863	15
731	. 841	<1
800	. 808	2
733	. 789	<1
820	. 784	18
	1	

Semiletov [18] in 1954 determined that bismuth telluride is isomorphous with sodium chloride with the space group O_h^5 —Fm3m (No. 225) and 4(BiTe) per unit cell. The atoms occupy the special positions:

Bi:	0	0	0
Te:	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$.

Semiletov [18] reports the lattice constant a = 6.47 Å.

No temperature correction was included.

The calculated *d*-values of the three strongest lines are 3.24, 2.29, and 1.45 Å. The density of bismuth telluride calculated

from the constant of Semiletov is 8.25 g/cm^3 .

Ca]	lcu	lated	P	attern	
	(Coppe	er	λ	

hkl	d	Peak height	
		Ι	
$ \begin{array}{r} 111 \\ 200 \\ 220 \\ 311 \\ 222 \end{array} $	$ \begin{array}{c} $	$11 \\ 100 \\ 70 \\ 5 \\ 24$	
$ \begin{array}{r} 400 \\ 331 \\ 420 \\ 422 \\ 511 \\ \end{array} $	$ \begin{array}{c} 1. 62 \\ 1. 48 \\ 1. 45 \\ 1. 32 \\ 1. 25 \end{array} $	11 2 28 20 1	
440 531 600 620 533	$1. 14 \\ 1. 10 \\ 1. 08 \\ 1. 02 \\ 0. 987$	${6 \\ 2 \\ 13 \\ 9 \\ < 1}$	
$\begin{array}{c} 622 \\ 444 \\ 711 \\ 640 \\ 642 \end{array}$. 975 . 934 . 906 . 897 . 865	8 3 1 7 15	
731 800 733 820	. 842 . 809 . 790 . 785	$2 \\ < 2 \\ < 1 \\ 17 \\ 17$	

Calculated Pattern

Additional published pattern. Oftedal [2] 1927. Structural data. Oftedal [2] in 1927 determined that calcium telluride is isomorphous with sodium chloride with the space group O_{h}^{5} —Fm3m (No. 225) and 4(CaTe) per unit cell. The atoms occupy the special positions:

Ca:	0	0	0
Гe:	$\frac{1}{2}$	12	$\frac{1}{2}$.

1927 Oftedal [2] 1939 Senff and Klemm [12]	Å 6. 358 6. 354
--	-----------------------

The lattice constant used in this calculated pattern is the average value a = 6.356 Å.

No temperature correction was included.

The calculated *d*-values of the three strongest lines are 3.18, 2.25, and 3.67 Å.

The calculated density is 4.337 g/cm^3 .

hkl	d	Peak height
		Ι
111	Å 2.67	46
200	3.18	100
220	2, 25	68
311	1, 917	20
222	1. 835	22
400	1. 590	10
331	1. 459	7
420	1. 422	25
422	1. 298	17
511	1. 224	Э
440	1. 124	5
531	1.075	5
600	1.060	11
620	1.005	8
533	0. 970	z
622	. 958	7
444	. 918	2
711	. 890	4
640	. 882	7
642	. 850	13
731	. 828	6
800	. 795	2

Additional published pattern. Iandelli and Botti [8] 1937.

Structural data. Iandelli and Botti [8] in 1937 determined that cerium arsenide is isomorphous with sodium chloride with the space group O_b^5 —Fm3m (No. 225) and 4(CeAs) per unit cell. The atoms occupy the special positions:

Ce: 0 0 0 As: $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$.

The lattice constant used in this calculated pattern is a=6.072 Å, as reported by Iandelli and Botti [8].

No temperature correction was included.

The calculated *d*-values of the three strongest lines are 3.04, 2.15, and 1.358 Å.

The calculated density is 6.380 g/cm³.

Calculated Pattern

Calculated Pat	tern	
----------------	------	--

Additional published pattern. Iandelli and Botti [7] 1937.

Structural data. Iandelli and Botti [7] in 1937 determined that cerium nitride is isomorphous with sodium chloride with the space group O_{h}^{5} —Fm3m (No. 225) and 4(CeN) per unit cell. The atoms occupy the special positions:

The lattice constant used in this calculated pattern is a=5.021 Å, as reported by Iandelli and

Botti [7].

No temperature correction was included.

The calculated *d*-values of the three strongest lines are 2.90, 2.51, and 1.775 Å.

The calculated density is 8.087 g/cm^3 .

Calculated Pattern Copper λ

hkl	d	Peak height
		Ι
	Å	
111	2.90	100
200	2. 51	72
220	1. 775	44
311	1. 514	35
222	1. 449	13
400	1.255	6
331	1. 152	13
420	1. 123	16
422	1. 025	12
511	0. 966	11
440	. 888	5
531	. 849	16
600	. 837	13
620	. 794	11

hkl d Peak height height 111 3.51 17 200 3.04 100 220 2.15 67 311 1.831 7 222 1.753 22 400 1.518 9 331 1.393 3 420 1.358 25 422 1.239 17 511 1.026 2 600 1.012 12 620 0.960 9 533 $.926$ <1 622 $.915$ 8 444 $.876$ 3 711 $.850$ 2 640 $.842$ 8 642 $.811$ 16	Copper λ		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	hkl	d	Peak height
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Ι
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Å	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	111	3. 51	17
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	200	3. 04	100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	220	2.15	67
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	311	1.831	7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	222	1. 753	22
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	400	1. 518	9
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	331	1. 393	3
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	420	1.358	25
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	422	1. 239	17
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	511	1. 169	2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	440	1. 073	6
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	531	1. 026	2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	600	1.012	12
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	620	0.960	9
	533	. 926	< 1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	622	. 915	8
$ \begin{array}{ c c c c c c c c } \hline 711 & .850 & 2 \\ \hline 640 & .842 & 8 \\ \hline 642 & .811 & 16 \\ \hline 731 & .791 & 3 \\ \hline \end{array} $	444	. 876	3
640 . 842 8 642 . 811 16 731 . 791 3	711	. 850	2
642 . 811 16 731 . 791 3	640	. 842	8
731 . 791 3	642	. 811	16
	731	. 791	3

Ce: 0 0 0 N: $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$.

Additional published pattern. Iandelli and Botti [6] 1937.

Structural data. Iandelli and Botti [6] in 1937 determined that cerium phosphide is isomorphous with sodium chloride with the space group O_h^5 —Fm3m (No. 225) and 4(CeP) per unit cell. The atoms occupy the special positions:

The lattice constant used in this calculated pattern is a=5.909 Å, as reported by Iandelli and Botti [6].

No temperature correction was included.

The calculated *d*-values of the three strongest lines are 2.95, 3.41, and 209 Å.

The calculated density is 5.508 g/cm^3 .

Calculated Pattern Copper λ

Calculated Pattern

Ferrari and Giorgi [4] in 1929 determined that cobalt iodide is isomorphous with cadmium iodide with the space group $D_{3d}^3 - P\overline{3}m1$ (No. 164) and 1(CoI₂) per unit cell. The atoms occupy the special positions:

Co: 0 0 0 I: $\frac{1}{3} \frac{2}{3} u; \frac{2}{3} \frac{1}{3} \bar{u}$ with u=0.25.

Ferrari and Giorgi [4] report the lattice constants a=3.97 Å and c=6.66 Å.

No temperature correction was included.

The calculated d-values of the three strongest lines are 3.06, 2.39 and 1.98 Å.

The density of cobalt iodide calculated from the constants of Ferrari and Giorgi is 5.712 g/cm^3 .

hkl	d	Peak height
		Ι
001 100 002 101 102	Å 6. 66 3. 44 3. 33 3. 06 2. 39	9 6 15 100 32
$\begin{array}{c} 003 \\ 110 \\ 111 \\ 103 \\ 200 \end{array}$	2. 22 1. 98 1. 90 1. 86 1. 72	${<1\atop {24\atop {2}\\ {2}\\ {20\\ {<}1}}}$
112004, 201202104113	$ \begin{array}{c} 1. \ 71 \\ 1. \ 66 \\ 1. \ 53 \\ 1. \ 50 \\ 1. \ 48 \\ \end{array} $	
$203 \\ 005 \\ 210 \\ 114, 211 \\ 105$	$ \begin{array}{c} 1.36\\ 1.33\\ 1.30\\ 1.28\\ 1.24 \end{array} $	$\overset{6}{\underset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{1$
212 204 300 301 213	$1. 21 \\ 1. 20 \\ 1. 15 \\ 1. 13 \\ 1. 12$	${ < 1 \atop $
115, 006 302	1. 11 1. 08	$<^{1}_{2}$

Copper λ		
hkl	d	Peak height
		Ι
111	Å 2.41	70
111	0.41	100
200	2.95	
220	2.09	00
011	1. 706	34
222	1. 700	21
400	1, 477	9
331	1. 356	11
420	1. 321	24
422	1. 206	18
511	1. 137	8
440	1.045	6
531	0. 999	9
600	. 985	13
620	. 934	9
533	. 901	4
622	. 891	9
444	. 853	3
711	. 827	8
640	. 819	9
642	. 790	20

Brixner [30] in 1960 determined that dysprosium arsenide is isomorphous with sodium chloride with the space group O_h^5 —Fm3m (No. 225) and 4(DyAs) per unit cell. The atoms occupy the special positions:

Brixner [30] reports the lattice constant a=5.780 Å.

No temperature correction was included.

The calculated d-values of the three strongest lines are 2.89, 2.04, and 3.34 Å.

The density of dysprosium arsenide calculated from the constant of Brixner is 8.166 g/cm³.

Calculated	Pattern
Coppe	rλ

Calculated Pattern

Klemm and Winkelmann [24] in 1956 determined that dysprosium nitride is isomorphous with sodium chloride with the space group O_h^5 —Fm3m (No. 225) and 4(DyN) per unit cell. The atoms occupy the special positions:

Klemm and Winkelmann [24] report the lattice constant a=4.905 Å.

No temperature correction was included.

The calculated *d*-values of the three strongest lines are 2.83, 2.45, and 1.734 Å.

The density of dysprosium nitride calculated from the constant of Klemm and Winkelmann is 9.934 g/cm^3 .

Calculated Pattern Copper λ

hkl	d	Peak height I
111 200 220 311 222 400 331	$\overset{\AA}{2.83}$ 2.45 1.734 1.479 1.416 1.226 1.125	100 69 42 36 13 6 13
$ \begin{array}{r} 331 \\ 420 \\ 422 \\ 511 \\ 440 \\ 531 \\ 600 \\ \end{array} $	$ \begin{array}{r} 1.123\\ 1.097\\ 1.001\\ 0.944\\ .867\\ .829\\ .818\\ \end{array} $	$ \begin{array}{r} 13 \\ 16 \\ 13 \\ 12 \\ 5 \\ 18 \\ 14 \\ \end{array} $

hkl	d	Peak height
		Ι
	Å	
111	3. 34	25
200	2.89	100
220	2, 04	65
311	1. 743	10
222	1.669	21
400	1.445	9
331	1. 326	4
420	1. 292	24
422	1. 180	17
511	1. 112	3
440	1.022	6
531	0.977	3
600	. 963	13
620	. 914	10
533	. 881	1
622	. 871	9
444	. 834	3
711	. 809	3
640	. 802	10

Erbium Arsenide, ErAs (cubic)

Calculated Pattern

Brixner [30] in 1960 determined that dysprosium telluride is isomorphous with sodium chloride with the space group O_h^5 —Fm3m (No. 225) and 4(DyTe) per unit cell. The atoms occupy the special positions:

Dy: 0 0 0 Te: $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$.

Brixner [30] reports the lattice constant a=6.092 Å.

No temperature correction was included.

The calculated *d*-values of the three strongest lines are 3.05, 2.15, and 1.362 Å.

The density of dysprosium telluride calculated from the constant of Brixner is 8.522 g/cm³.

Calculated	Pattern
Coppe	er λ

Calculated Pattern

Brixner [30] in 1960 determined that erbium arsenide is isomorphous with sodium chloride with the space group O_h^5 —Fm3m (No. 225) and 4(ErAs) per unit cell. The atoms occupy the special positions:

Er: 0 0 0 As: $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$.

Brixner [30] reports the lattice constant a=5.732 Å.

No temperature correction was included.

The calculated *d*-values of the three strongest lines are 2.87, 2.03, and 3.31 Å.

The density of erbium arsenide calculated from the constant of Brixner is 8.541 g/cm³.

hkl	d	Peak height
		Ι
$ \begin{array}{c} 111\\200\\220\\311\\222\\400\\331\\420\\422\\511\end{array} $	$ \overset{\rat{A}}{3.52} \\ 3.05 \\ 2.15 \\ 1.837 \\ 1.759 \\ 1.523 \\ 1.398 \\ 1.362 \\ 1.244 \\ 1.172 $	$\begin{array}{c} 3\\100\\68\\1\\22\\10\\<1\\26\\18\\<1\end{array}$
$\begin{array}{c} 440\\ 531\\ 600\\ 620\\ 533\\ 622\\ 444\\ 711\\ 640\\ 642\\ 731\\ \end{array}$	$\begin{array}{c} 1.\ 077\\ 1.\ 030\\ 1.\ 015\\ 0.\ 963\\ .\ 929\\ \hline \\ .\ 918\\ .\ 879\\ .\ 853\\ .\ 845\\ .\ 814\\ .\ 793\\ \end{array}$	$ \begin{array}{c} 6 \\ <1 \\ 12 \\ 9 \\ <1 \\ 9 \\ <1 \\ 8 \\ 18 \\ <1 \end{array} $

Copper **A**

		1
hkl	d	Peak height I
$ \begin{array}{c} 111\\ 200\\ 220\\ 311\\ 222\\ 400\\ 331\\ 420\\ 422\\ 511\\ \end{array} $	$ \begin{array}{c} \overset{{}^{}}}}}}}}$	$27 \\ 100 \\ 66 \\ 11 \\ 21 \\ 9 \\ 4 \\ 24 \\ 18 \\ 3 \\ 3$
440 531 600 620 533 622 444 711 640	$ \begin{array}{c} 1. 013 \\ 0. 969 \\ . 955 \\ . 906 \\ . 874 \\ . 864 \\ . 827 \\ . 803 \\ . 795 \\ \end{array} $	$ \begin{array}{c} 6 \\ 4 \\ 13 \\ 10 \\ 2 \\ 10 \\ 3 \\ 4 \\ 11 \\ \end{array} $

Klemm and Winkelmann [24] in 1956 determined that erbium nitride is isomorphous with sodium chloride with the space group $O_{\rm b}^{5}$ —Fm3m (No. 225) and 4(ErN) per unit cell. The atoms occupy the special positions:

Er: 0 0 0 N: $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$.

hkl

 $111 \\ 200 \\ 220$

311

222

400

331

420

422

511

440 531 600

Klemm and Winkelmann [24] report the lattice constant a=4.839 Å.

No temperature correction was included.

The calculated *d*-values of the three strongest lines are 2.79, 2.42, and 1.711 Å.

The density of erbium nitride calculated from the constant of Klemm and Winkelmann is 10.63 g/cm³.

Calcu	lated	Pattern
C	oppe	er λ

d

Å 2. 79

2. 42 1. 711

1.459

1.397

1.210

1. 110

1.082

0.988

. 931 . 855

. 818

. 806

Peak height

I

100

68 41

35

13

6

14

 $\frac{16}{13}$

13

6

19 15

Calculated Pattern

Brixner [30] in 1960 determined that erbium telluride is isomorphous with sodium chloride with the space group O_h^5 —Fm3m (No. 225) and 4(ErTe) per unit cell. The atoms occupy the special positions:

Er: 0 0 0 Te: $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$.

Brixner [30] reports the lattice constant a=6.063 Å.

No temperature correction was included.

The calculated d-values of the three strongest lines are 3.03, 2.14, and 1.356 Å.

The density of erbium telluride calculated from the constant of Brixner is 8.787 g/cm^3 .

hkl	d	Peak height I
111 200 220 311 222	$ \overset{\AA}{3.50} \\ 3.03 \\ 2.14 \\ 1.828 \\ 1.750 $	$\begin{array}{r} 4\\100\\68\\2\\23\end{array}$
400 331 420 422 511	1.516 1.391 1.356 1.238 1.167	$10 < 1 \\ 26 \\ 18 < 1$
440 531 600 620 533	$\begin{array}{c} 1. \ 072 \\ 1. \ 025 \\ 1. \ 010 \\ 0. \ 959 \\ . \ 925 \end{array}$	${ < 1 \\ < 1 \\ 13 \\ 9 \\ < 1 }$
622 444 711 640 642 731	. 914 . 875 . 849 . 841 . 810 . 789	$9 \\ <1 \\ 8 \\ 18 \\ <1$

Klemm and Winkelmann [24] in 1956 determined that europium nitride is isomorphous with sodium chloride with the space group O_h^{s} —Fm3m (No. 225) and 4(EuN) per unit cell. The atoms occupy the special positions:

Eu: 0 0 0 N: $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$.

Klemm and Winkelmann [24] report the lattice constant a=5.014 Å.

No temperature correction was included.

The calculated *d*-values of the three strongest lines are 2.89, 2.51, and 1.773 Å.

The density of europium nitride calculated from the constant of Klemm and Winkelmann is 8.745 g/cm^3 .

hkl	d	Peak height
	Å	
111	2. 89	100
200	2. 51	69
220	1. 773	43
311	1. 512	36
222	1. 447	33
400	1. 254	6
331	1.150	13
420	1. 121	16
422	1. 023	12
511	0. 965	12
440	. 886	5
531	. 848	16
600	. 836	13
620	. 793	11

Calculated Pattern Copper λ

Calculated Pattern

Structural data. Eick, Baenziger, and Eyring [21] in 1956 determined that europium oxide is isomorphous with sodium chloride with the space group O_{h}^{5} —Fm3m (No. 225) and 4(EuO) per unit cell. Atoms occupy the special positions:

Eu: $0 \ 0 \ 0$ O: $\frac{1}{2} \frac{1}{2} \frac{1}{2}$.

The lattice constant used in this calculated pattern is a=5.1439 Å, as reported by Eick, Baenziger, and Eyring [21].

No temperature correction was included.

The calculated *d*-values of the three strongest lines are 2.970, 2.572, and 1.819 Å.

The calculated density is 8.196 g/cm³.

hkl	d	Peak height
		I
$ \begin{array}{r} 111\\ 200\\ 220\\ 311\\ 222\\ 400\\ 331\\ 420\\ 422\\ 511 \end{array} $	\mathring{A} 2. 970 2. 572 1. 819 1. 551 1. 485 1. 286 1. 180 1. 150 1. 050 0. 990	$ \begin{array}{r} 100 \\ 77 \\ 47 \\ 37 \\ 15 \\ 6 \\ 14 \\ 17 \\ 13 \\ 12 \\ 12 \\ \end{array} $
440 531 600 620 533	. 909 . 869 . 857 . 813 . 784	

Brixner [30] in 1960 determined that gadolinium arsenide is isomorphous with sodium chloride with the space group O_h^5 —Fm3m (No. 225) and 4(GdAs) per unit cell. The atoms occupy the special positions:

Gd: 0 0 0 As: $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$.

Brixner [30] reports the lattice constant a = 5.854 Å.

No temperature correction was included.

The calculated *d*-values of the three strongest lines are 2.93, 2.07, and 1.309 Å.

The density of gadolinium arsenide calculated from the constant of Brixner is 7.687 g/cm³.

hkl	d	Peak height I
	2	
		00
111	3. 38	23
200	2. 93	100
220	2.07	66
311	1. 765	9
222	1. 690	21
400	1. 464	9
331	1, 343	4
420	1, 309	25
422	1 195	17
511	1 127	3
511	1. 12.	0
440	1 035	6
531	0.000	3 a
600	0. 550	13
690	. 970	10
020	. 920	9
233	. 893	1
699	002	0
022	. 000	9
444	. 840	0
711	. 820	3
640	. 812	9
642	. 782	22

Calculated Pattern Copper λ

Calculated Pattern

Klemm and Winkelmann [24] in 1956 deter-mined that gadolinium nitride is isomorphous with sodium chloride with the space group O_h⁵-Fm3m (No. 225) and 4(GdN) per unit cell. The atoms occupy the special positions:

Gd: 0 0 0 N: $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$.

Klemm and Winkelmann [24] report the lattice constant a=4.999 Å.

No temperature correction was included. The calculated d-values of the three strongest lines are 2.89, 2.50, and 1.767 Å.

The density of gadolinium nitride calculated from the constant of Klemm and Winkelmann is 9.105 g/cm^3 .

Cal	cu	lated	P	attern	l
	C	opp	\mathbf{er}	λ	

hkl	d	Peak height
		Ι
	Å	
111	2.89	100
200	2.50	69
220	1. 767	42
311	1. 507	35
222	1. 443	13
400	1, 250	6
331	1. 147	13
420	1. 118	16
422	1. 020	12
511	0. 962	12
440	. 884	5
531	. 845	16
600	. 833	13
620	. 790	11

Holmium Nitride, HoN (cubic)

Calculated Pattern

Powell and Brewer [11] in 1938 determined that germanium iodide is isomorphous with cadmium iodide with the space group D_{3d}^3 —P3m1 (No. 164) and 1(GeI₂) per unit cell. The atoms occupy the special positions:

Ge: 0 0 0 I: $\frac{1}{3} \frac{2}{3} u$; $\frac{2}{3} \frac{1}{3} \overline{u}$ with u=0.25.

Powell and Brewer [11] report the lattice constants a=4.14 Å and c=6.80 Å.

No temperature correction was included.

The calculated *d*-values of the three strongest lines are 3.17, 2.47, and 2.07 Å.

The density of germanium iodide calculated from the constants of Powell and Brewer is 5.369 g/cm^3 .

hkl	d	Peak height
		I
001 100 002 101 102	Å 6. 80 3. 59 3. 40 3. 17 2. 47	$12 \\ 4 \\ 12 \\ 100 \\ 35$
003 110 111 103 200	2. 27 2. 07 1. 98 1. 92 1. 79	$<1 \\ 26 \\ 2 \\ 20 \\ <1$
112 201 004 202 104	1.77 1.73 1.70 1.59 1.54	$9 \\ 14 \\ 4 \\ 8 \\ < 1$
$113 \\ 203 \\ 005, 210 \\ 211 \\ 114$	1.53 1.41 1.36 1.33 1.31	$<1 \\ 6 \\ <1 \\ 10 \\ 10$
105 212 204 300 301	1. 27 1. 26 1. 23 1. 20 1. 18	${4 \atop {6 \atop {<1 \atop {3 \atop {<1 \atop {-3 \atop {<1 \atop {-3 \atop {<1 \atop {-3 \atop {-5 \atop {-3 \atop {-5 \atop {-5}\atop {-5 \atop {-5 \atop {-5}\atop {-5 \atop {-5}\atop {$
$213 \\ 115 \\ 006, 302 \\ 205, 106$	$ \begin{array}{c} 1. \ 16\\ 1. \ 14\\ 1. \ 13\\ 1. \ 08 \end{array} $	$\overset{6}{\overset{1}{\underset{2}{5}}}$

Calculated Pattern Copper λ

Calculated Pattern

Klemm and Winkelmann [24] in 1956 determined that holmium nitride is isomorphous with sodium chloride with the space group O_{h}^{5} —Fm3m (No. 225) and 4(HoN) per unit cell. The atoms occupy the special positions:

Ho: $0 \cdot 0 = 0$ N: $\frac{1}{2} = \frac{1}{2} = \frac{1}{2}$.

Klemm and Winkelmann [24] report the lattice constant a=4.874 Å.

No temperature correction was included.

The calculated *d*-values of the three strongest lines are 2.81, 2.44, and 1.723 Å.

The density of holmium nitride calculated from the constant of Klemm and Winkelmann is 10.26 g/cm³.

hkl	d	Peak height I
111 200 220 311 222	$ \begin{array}{c} $	100 68 41 35 13
400 331 420 422 511	1. 218 1. 118 1. 090 0. 995 . 938	6 14 16 12 12
440 531 600	. 862 . 824 . 812	5 18 14

Additional published pattern. Bruzzone [31] 1961.

Structural data. Bruzzone [31] in 1961 determined that holmium selenide is isomorphous with sodium chloride with the space group O_h⁵-Fm3m (No. 225) and 4(HoSe) per unit cell. The atoms occupy the special positions:

Ho: 0 0 0 Se: $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$.

The lattice constant used in this calculated pattern is a=5.680 Å, as reported by Bruzzone [31]. No temperature correction was included.

The calculated *d*-values of the three strongest lines are 2.84, 2.01, and 1.270 Å.

The calculated density is 8.840 g/cm^3 .

Calculated Pattern Conner λ

Calculated Pattern

Ferrari and Giorgi [3] in 1929 determined that iron bromide is isomorphous with cadmium iodide with the space group D_{3d}^3 —P3m1 (No. 164) and 1(FeBr₂) per unit cell. The atoms occupy the special positions:

Fe: 0 0 0 Br: $\frac{1}{3} \frac{2}{3} u$; $\frac{2}{3} \frac{1}{3} \bar{u}$ with u = 0.25.

Ferrari and Giorgi [3] report the lattice constants a = 3.748 Å and c = 6.183 Å.

No temperature correction was included.

The calculated *d*-values of the three strongest lines are 2.87, 2.24, and 1.87 Å.

The density of iron bromide calculated from the constants of Ferrari and Giorgi is 4.761 g/cm³.

hkl	d	Peak height
		Ι
	Å	
001	6.18	19
100	3. 25	2
002	3. 09	10
101	2.87	100
102	2. 24	38
003	2.06	<1
110	1.87	25
111	1. 79	3
103	1. 74	18
200	1. 62	<1
112	1. 60	7
201	1. 57	12
004	1. 55	4
202	1.437	7
104	1. 396	<1
113	1. 387	1
203	1. 275	6
005	1. 237	≤ 1
210	1. 227	<1
211	1. 203	9
114	1. 192	9
105	1.156	4
212	1. 140	6
204	1. 119	<1
300	1. 082	3

hkl	d	Peak height
		Ι
111	Å	02
111	0. 28 0. 04	23
200	2.84	100
220	2.01	66
311	1. 713	9
222	1.640	21
400	1 490	0
400	1. 420	9
331	1. 303	05
420	1. 270	20
422	1. 159	18
511	1. 093	3
440	1 004	6
531	0.960	š
600	947	14
620	808	10
522	. 050	10
000		I
622	. 856	10
444	. 820	3
711	. 795	3
640	. 788	11

Ferrari and Giorgi [4] in 1929 determined that iron iodide is isomorphous with cadmium iodide with the space group D_{3d}^3 —P3m1 (No. 164) and 1(FeI₂) per unit cell. The atoms occupy the special positions:

Fe: 0 0 0 I: $\frac{1}{3} \frac{2}{3} u$; $\frac{2}{3} \frac{1}{3} \bar{u}$ with u=0.25.

Ferrari and Giorgi [4] report the lattice constants a=4.05 Å and c=6.76 Å.

No temperature correction was included.

The calculated d-values of the three strongest lines are 3.11, 2.43, and 2.02 Å.

The density of iron iodide calculated from the constants of Ferrari and Giorgi is 5.354 g/cm³.

 $\begin{array}{c} \textbf{Calculated Pattern} \\ Copper \ \lambda \end{array}$

hkl	d	Peak height
		Ι
$001 \\ 100 \\ 002 \\ 101 \\ 102$	$\overset{A}{6.76}$ 3.51 3.38 3.11 2.43	8 6 15 100 32
$\begin{array}{c} 003 \\ 110 \\ 111 \\ 103 \\ 200 \end{array}$	$\begin{array}{c} 2.\ 25\\ 2.\ 02\\ 1.\ 94\\ 1.\ 90\\ 1.\ 75 \end{array}$	$<1 \\ 24 \\ 1 \\ 20 \\ <1$
$112 \\ 201 \\ 004 \\ 202 \\ 104$	$\begin{array}{c} 1.\ 74\\ 1.\ 70\\ 1.\ 69\\ 1.\ 56\\ 1.\ 52 \end{array}$	
$113 \\ 203 \\ 210 \\ 211, 114 \\ 105$	$\begin{array}{c} 1.51\\ 1.38\\ 1.33\\ 1.30\\ 1.26 \end{array}$	$<1 \\ 6 \\ <1 \\ 19 \\ 4$
$212 \\ 204 \\ 300 \\ 301 \\ 213$	$\begin{array}{c} 1.\ 23\\ 1.\ 22\\ 1.\ 17\\ 1.\ 15\\ 1.\ 14 \end{array}$	${{<}^{5}_{1}}_{{<}^{3}_{1}}_{{<}^{6}_{6}}$
$006 \\ 115 \\ 302$	$1. 13 \\ 1. 12 \\ 1. 10$	\leq^1_1

Calculated Pattern

Additional published pattern. Iandelli and Botti [8] 1937.

Structural data. Iandelli and Botti [8] in 1937 determined that lanthanum arsenide is isomorphous with sodium chloride with the space group O_h^5 —Fm3m (No. 225) and 4(LaAs) per unit cell. The atoms occupy the special positions:

La:	0	0	0
As:	1	1	1

The lattice constant used in this calculated pattern is a=6.137 Å, as reported by Iandelli and Botti [8].

No temperature correction was included.

The calculated *d*-values of the three strongest lines are 3.07, 2.17, and 1.372 Å.

The calculated density is 6.144 g/cm^3 .

Calculated Pattern Copper λ

hkl	d	Peak height I
111 200 220 311 222	Å 3. 54 3. 07 2. 17 1. 850 1. 772	15 100 67 7 22
400 331 420 422 511	1. 534 1. 408 1. 372 1. 253 1. 181	10 3 25 18 2
$440 \\ 531 \\ 600 \\ 620 \\ 533$	$\begin{array}{c} 1.083\\ 1.037\\ 1.023\\ 0.970\\ .936\end{array}$	$^{5}_{2}_{12}_{9}_{<1}$
$\begin{array}{c} 622 \\ 444 \\ 711 \\ 640 \\ 642 \\ 731 \end{array}$. 925 . 886 . 859 . 851 . 820 . 799	8 3 2 8 16 3

Additional published patterns. Iandelli and Botti [7] 1937, and Young and Ziegler [15] 1952. Structural data. Iandelli and Botti [7] in 1937 determined that lanthanum nitride is isomorphous

with sodium chloride with the space group O_h^5 —Fm3m (No. 225) and 4(LaN) per unit cell. The atoms occupy the special positions:

La: 0 0 0 N: $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$.

Lattice constants

1937 Iandelli and Botti [7] 1952 Young and Ziegler [15] 1956 Klemm and Winkelmann [24] 1963 Lyutaya and Samsonov [33]	$\overset{A}{5.286}$ 5.295 5.30 5.302
---	--

The lattice constant used in this calculated pattern is the average value a = 5.30 Å.

No temperature correction was included.

The calculated d-values of the three strongest lines are 3.06, 2.65, and 1.87 Å.

The calculated density is 6.822 g/cm^3 .

Calculated	Pattern
Coppe	rλ

1		
hkl	d	Peak height
		1
	Å	
111	3.06	100
200	2.65	74
220	1.87	46
311	1.60	37
222	1. 53	14
400	1 29	6
331	1, 32 1 22	14
420	1, 19	16
422	1.08	12
511	1. 02	11
440	0. 937	5
531	. 896	14
600	. 883	11
620	. 838	0
033 600	. 808	10
022	. 799	10

Calculated Pattern

Structural data. Iandelli [20] in 1955 determined that lanthanum selenide is isomorphous with sodium chloride with the space group O_h^5 —Fm3m (No. 225) and 4(LaSe) per unit cell. The atoms occupy the special positions:

La: 0 0 0 Se: $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$.

1955 Iandelli [20] Å 1959 Guittard and Benacerraf [28] 6. 063

The lattice constant used in this calculated pattern is the average value a=6.062 Å.

No temperature correction was included. The calculated *d*-values of the three strongest

lines are 3.03, 2.14, and 1.356 Å. The calculated density is 6.496 g/cm³.

hkl	d	Peak height I
111 200 220 311 222	$\begin{matrix} \mathring{A} \\ 3.50 \\ 3.03 \\ 2.14 \\ 1.828 \\ 1.750 \end{matrix}$	$\begin{array}{r}14\\100\\68\\6\\22\end{array}$
400 331 420 422 511	$\begin{array}{c} 1.516\\ 1.391\\ 1.356\\ 1.238\\ 1.167\end{array}$	$10 \\ 2 \\ 25 \\ 18 \\ 1$
440 531 600 620 533	$\begin{array}{c} 1.\ 072\\ 1.\ 025\\ 1.\ 010\\ 0.\ 959\\ .\ 925 \end{array}$	${{6}\atop{2}\atop{12}\\9}{<}1$
622 444 711 640 642 731	. 914 . 875 . 849 . 841 . 810 . 789	8 3 1 8 17 2

Klemm and Winkelmann [24] in 1956 determined that lutetium nitride is isomorphous with sodium chloride with the space group O_h^5 —Fm3m (No. 225) and 4 (LuN) per unit cell. The atoms occupy the special positions:

Lu: 0 0 0 N: $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$.

Klemm and Winkelmann [24] report the lattice constant a=4.766 Å.

No temperature correction was included.

The calculated *d*-values of the three strongest lines are 2.75, 2.38, and 1.685 Å.

The density of lutetium nitride calculated from the constant of Klemm and Winkelmann is 11.59 g/cm³.

hkl	d	Peak height
		Ι
	Å	
111	2.75	100
$\overline{200}$	2.38	67
220	1.685	40
311	1. 437	35
222	1. 376	12
400	1. 192	5
331	1. 093	14
420	1. 066	16
422	0. 973	13
511	. 917	13
440	. 843	6
531	. 806	20
600	. 794	16

$\begin{array}{c} \textbf{Calculated Pattern} \\ Copper \ \lambda \end{array}$

Calculated Pattern

Ferrari and Giorgi [3] in 1929 determined that magnesium bromide is isomorphous with cadmium iodide with the space group D_{3d}^3 — $P\overline{3}m1$ (No. 164) and $1(MgBr_2)$ per unit cell. The atoms occupy the special positions:

Mg: 0 0 0 Br: $\frac{1}{3}\frac{2}{3}u$; $\frac{2}{3}\frac{1}{3}\bar{u}$ with u=0.25.

Ferrari and Giorgi [3] report the lattice constants a=3.822 Å and c=6.269 Å.

No temperature correction was included.

The calculated d-values of the three strongest lines are 2.93, 2.28, and 1.91 Å.

The density of magnesium bromide calculated from the constants of Ferrari and Giorgi is 3.855 g/cm³.

hkl	d	Peak height I
$001 \\ 100 \\ 002 \\ 101 \\ 102$	$ \begin{array}{c} $	$4 \\ 11 \\ 19 \\ 100 \\ 25$
$\begin{array}{c} 003 \\ 110 \\ 111 \\ 103 \\ 200 \end{array}$	2.09 1.91 1.83 1.77 1.65	$<1 \\ 21 \\ <1 \\ 18 \\ 1$
$ 112 \\ 201 \\ 004 \\ 202 \\ 104 $	$\begin{array}{c} 1.\ 63\\ 1.\ 60\\ 1.\ 57\\ 1.\ 464\\ 1.\ 416 \end{array}$	12 13 3 5 1
113 203 210 211 114	$\begin{array}{c} 1.\ 410\\ 1.\ 297\\ 1.\ 251\\ 1.\ 227\\ 1.\ 212 \end{array}$	$<1 \\ 6 \\ <1 \\ 9 \\ 8$
$105 \\ 212 \\ 204 \\ 300$	$\begin{array}{c} 1.\ 172\\ 1.\ 162\\ 1.\ 138\\ 1.\ 103 \end{array}$	

Ferrari and Giorgi [3] in 1929 determined that manganese bromide is isomorphous with cadmium iodide with the space group D_{3d}^3 — $P\overline{3}m1$ (No. 164) and 1(MnBr₂) per unit cell. The atoms occupy the special positions:

Mn: 0 0 0 Br: $\frac{1}{3} \frac{2}{3} u$; $\frac{2}{3} \frac{1}{3} \tilde{u}$ with u=0.25.

Ferrari and Giorgi [3] report the lattice constants a=3.828 Å and c=6.200 Å.

No temperature correction was included.

The calculated d-values of the three strongest lines are 2.92, 2.26, and 1.91 Å.

The density of manganese bromide calculated from the constants of Ferrari and Giorgi is 4.532 g/cm³.

hkl	d	Peak height I	
$\begin{array}{c} 001\\ 100\\ 002\\ 101\\ 102\\ 003\\ 110\\ 111\\ 103\\ 200\\ 112\\ 201\\ 004\\ 202\\ 113, 104\\ 203\\ 210\\ 005\\ \end{array}$	$ \overset{\mathring{A}}{6.20} \\ 3.32 \\ 3.10 \\ 2.92 \\ 2.26 \\ 2.07 \\ 1.91 \\ 1.83 \\ 1.75 \\ 1.66 \\ 1.63 \\ 1.60 \\ 1.55 \\ 1.462 \\ 1.404 \\ 1.293 \\ 1.253 \\ 1.240 $	$ \begin{array}{c} 17\\ 2\\ 10\\ 100\\ 36\\ <1\\ 26\\ 3\\ 18\\ <1\\ 7\\ 13\\ 4\\ 7\\ 1\\ 6\\ <1\\ \\ \\ 6\\ <1\\ \\ \\ \\ \\ 1 \end{array} $	
211 114	$ \begin{array}{c} 1.228\\ 1.205 \end{array} $	9	
$212, 105 \\ 204 \\ 300 \\ 301$	$1.162 \\ 1.132 \\ 1.105 \\ 1.088$	${ > 1 \\ > 3 \\ < 1 }$	

$\begin{array}{c} \textbf{Calculated Pattern} \\ Copper \ \lambda \end{array}$

Calculated Pattern

Ferrari and Giorgi [4] in 1929 determined that manganese iodide is isomorphous with cadmium iodide with the space group D_{3d}^3 —P3m1 (No. 164) and 1(MnI₂) per unit cell. The atoms occupy the special positions:

Mn: 0 0 0 I: $\frac{1}{3} \frac{2}{3} u$; $\frac{2}{3} \frac{1}{3} \bar{u}$ with u=0.25.

Ferrari and Giorgi [4] report the lattice constants a=4.17 Å and c=6.83 Å.

No temperature correction was included.

The calculated *d*-values of the three strongest lines are 3.19, 2.48, and 2.08 Å. The density of magnanese iodide calculated

The density of magnanese iodide calculated from the constants of Ferrari and Giorgi is 4.984 g/cm³.

hkl	d	Peak height I
$001 \\ 100 \\ 002 \\ 101 \\ 102$	$ \begin{array}{c} \overset{A}{}\\ 6.83\\ 3.61\\ 3.42\\ 3.19\\ 2.48 \end{array} $	$7 \\ 7 \\ 15 \\ 100 \\ 30$
$\begin{array}{c} 003 \\ 110 \\ 111 \\ 103 \\ 200 \end{array}$	$\begin{array}{c} 2. \ 28 \\ 2. \ 08 \\ 1. \ 99 \\ 1. \ 93 \\ 1. \ 81 \end{array}$	$<1 \\ 25 \\ 1 \\ 20 \\ <1$
112201004202104, 113	1.78 1.75 1.71 1.60 1.54	$\begin{array}{c} 12\\14\\4\\6\\1\end{array}$
$203 \\ 005, 210 \\ 211 \\ 114 \\ 105 \\ 212 \\ 000 \\$	$ \begin{array}{c} 1. 41 \\ 1. 36 \\ 1. 34 \\ 1. 32 \\ 1. 28 \\ \end{array} $	
$212 \\ 204 \\ 300 \\ 301 \\ 213$	$\begin{array}{c} 1. \ 27 \\ 1. \ 24 \\ 1. \ 20 \\ 1. \ 19 \\ 1. \ 17 \end{array}$	${{<}^{5}_{1}}_{{<}^{3}_{1}}_{{6}}$
115, 006, 302 106, 205	1. 14 1. 09	2 3

Additional published pattern. Iandelli and Botti [9] 1937.

Structural data. Iandelli and Botti [9] in 1937 determined that neodymium arsenide is isomorphous with sodium chloride, with the space group O_h^5 —Fm3m (No. 225) and 4(NdAs) per unit cell. The atoms occupy the special positions:

Nd: 0 0 0 As: $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$.

The lattice constant used in this calculated pattern is a=5.970 Å, as reported by Iandelli and Botti [9].

No temperature correction was included.

The calculated *d*-values of the three strongest lines are 2.98, 2.11, and 1.335 Å.

The calculated density is 6.841 g/cm^3 .

Calculated Pattern Copper λ

hkl	d	Peak height I
$111 \\ 200 \\ 220 \\ 311 \\ 222$	$\overset{A}{3.45}$ 2.98 2.11 1.800 1.723	$19 \\ 100 \\ 67 \\ 8 \\ 22$
$400 \\ 331 \\ 420 \\ 422 \\ 511$	$\begin{array}{c} 1. \ 492 \\ 1. \ 370 \\ 1. \ 335 \\ 1. \ 219 \\ 1. \ 149 \end{array}$	$10 \\ 3 \\ 24 \\ 18 \\ 2$
440 531 600 620 533	$\begin{array}{c} 1.\ 055\\ 1.\ 009\\ 0.\ 995\\ .\ 944\\ .\ 910 \end{array}$	$6 \\ 2 \\ 12 \\ 9 \\ 1$
$\begin{array}{c} 622 \\ 444 \\ 711 \\ 640 \\ 642 \end{array}$. 900 . 862 . 836 . 828 . 798	8 3 2 9 18

Calculated Pattern

Zachariasen [14] in 1949 determined that neptunium nitride is isomorphous with sodium chloride with the space group O_{h}^{5} —Fm3m (No. 225) and 4(NpN) per unit cell. The atoms occupy the special positions:

Np: 0 0 0 N: $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$.

Zachariasen [14] reports the lattice constant a=4.897 Å.

No temperature correction was included.

The calculated *d*-values of the three strongest lines are 2.83, 2.45, and 1.731 Å.

The density of neptunium nitride calculated from the constant of Zachariasen is 14.20 g/cm³.

hkl	d	Peak height
		Ι
	Å	
111	2. 83	100
200	2.45	62
220	1. 731	39
311	1. 476	36
222	1. 414	12
400	1. 224	5
331	1. 123	14
420	1. 095	15
422	1. 000	12
511	0. 942	13
440	. 866	5
531	. 828	19
600	. 816	14

Gorum [26] in 1957 determined that plutonium arsenide is isomorphous with sodium chloride with the space group O_h^5 —Fm3m (No. 225) and 4(PuAs) per unit cell. The atoms occupy the special positions:

Pu: 0 0 0 As: $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$.

Gorum [26] reports the lattice constant a = 5.855 Å.

No temperature correction was included.

The calculated *d*-values of the three strongest

lines are 2.93, 2.07, and 3.38 Å. The density of plutonium arsenide calculated from the constant of Gorum is 10.487 g/cm^3 .

hkl	d	Peak height
		Ι
	•	
111		50
111	3.38 9.02	00 100
200	2.95 2.07	100
220	1 765	21
222	1.600	23
222	1. 000	20
400	1. 464	10
331	1. 343	8
420	1. 309	26
422	1. 195	19
511	1. 127	6
110	1 025	6
531	0.000	7
600	976	14
620	. 926	10
533	. 893	3
622	. 883	10
444	. 845	3
711	. 820	6
640	. 812	10
642	. 782	24

Calculated Pattern Copper λ

Calculated Pattern

Gorum [26] in 1957 determined that plutonium phosphide is isomorphous with sodium chloride with the space group O_h^5 —Fm3m (No. 225) and 4(PuP) per unit cell. The atoms occupy the special positions:

Gorum [26] reports the lattice constant a = 5.644 Å.

No temperature correction was included.

The calculated *d*-values of the three strongest lines are 3.26, 2.82, and 1.995 Å. The density of plutonium phosphide calculated

from the constant of Gorum is 10.08 g/cm³.

Calculated Pattern Copper λ

	· · · · · · · · · · · · · · · · · · ·	
hkl	d	Peak height I
$ \begin{array}{c} 111\\ 200\\ 220\\ 311\\ 222 \end{array} $	$ \overset{\AA}{3.26} \\ 2.82 \\ 1.995 \\ 1.702 \\ 1.629 $	$100 \\ 86 \\ 58 \\ 41 \\ 19$
400 331 420 422 511	$\begin{array}{c} 1. \ 411 \\ 1. \ 295 \\ 1. \ 262 \\ 1. \ 152 \\ 1. \ 086 \end{array}$	
$\begin{array}{c} 440 \\ 531 \\ 600 \\ 620 \\ 533 \end{array}$	$\begin{array}{c} 0. \ 998 \\ . \ 954 \\ . \ 941 \\ . \ 892 \\ . \ 861 \end{array}$	
$622 \\ 444 \\ 711 \\ 640$. 851 . 815 . 790 . 783	$10 \\ 3 \\ 14 \\ 12$

Gorum [26] in 1957 determined that plutonium telluride is isomorphous with sodium chloride with the space group O_h^5 —Fm3m (No. 225) and 4(PuTe) per unit cell. The atoms occupy the special positions:

Pu:	0	0	0
Te:	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$.

Gorum [26] reports the lattice constant a=6.183 Å.

No temperature correction was included.

The calculated d-values of the three strongest lines are 3.09, 2.19, and 1.383 Å.

The density of plutonium telluride calculated from the constant of Gorum is 10.385 g/cm³.

hkl	d	Peak height I
$ \begin{array}{c} 111\\200\\220\\311\\222\\400\\331\\420\\422\\511\\440\\531\\600\\620\end{array} $	$ \overset{\mathring{A}}{3.57} \\ 3.09 \\ 2.19 \\ 1.864 \\ 1.785 \\ 1.546 \\ 1.418 \\ 1.383 \\ 1.262 \\ 1.190 \\ 1.093 \\ 1.045 \\ 1.030 \\ 0.978 $	$ \begin{array}{r} 18 \\ 100 \\ 70 \\ 8 \\ 23 \\ 10 \\ 3 \\ 28 \\ 20 \\ 2 \\ 6 \\ 2 \\ 13 \\ 10 \\ \end{array} $
533 622 444 711 640 642 731	. 943 . 932 . 892 . 866 . 857 . 826 . 805	1 9 3 2 9 18 3

$\begin{array}{c} \textbf{Calculated Pattern} \\ Copper \ \lambda \end{array}$

Potassium Hydroxide, KOH, at 300 °C (cubic)

Calculated Pattern

Structural data. Teichert and Klemm [13] in 1939 determined that potassium hydroxide at 300 °C is isomorphous with sodium chloride with the space group O_h^5 —Fm3m (No. 225) and 4(KOH) per unit cell. The atoms occupy the special positions:

K: 0 0 0 O: $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ H: undefined.

The lattice constant used in this calculated pattern is a=5.79 Å, as reported by Teichert and Klemm [13].

No temperature correction was included.

The calculated *d*-values of the three strongest lines are 2.90, 2.05, and 3.34 Å.

The calculated density is 1.920 g/cm^3 .

hkl	d	Peak height
		Ι
$111 \\ 200 \\ 220 \\ 311 \\ 222$	$\begin{matrix} \overset{A}{4} \\ 3. 34 \\ 2. 90 \\ 2. 05 \\ 1. 75 \\ 1. 67 \end{matrix}$	$25 \\ 100 \\ 56 \\ 10 \\ 16$
$\begin{array}{c} 400\\ 331\\ 420\\ 422\\ 511 \end{array}$	$ \begin{array}{c} 1. 45 \\ 1. 33 \\ 1. 29 \\ 1. 18 \\ 1. 11 \end{array} $	
$\begin{array}{c} 440 \\ 531 \\ 600 \\ 620 \\ 533 \end{array}$	$\begin{array}{c} 1. \ 02 \\ 0. \ 979 \\ . \ 965 \\ . \ 915 \\ . \ 883 \end{array}$	3 3 7 5 2
$622 \\ 444 \\ 711 \\ 640$	$\begin{array}{c} . \ 873 \\ . \ 836 \\ . \ 811 \\ . \ 803 \end{array}$	524 6
Additional published pattern. Iandelli and Botti [8] 1937.

Structural data. Iandelli and Botti [8] in 1937 determined that praseodymium arsenide is isomorphous with sodium chloride with the space group O_{h}^{5} —Fm3m (No. 225) and 4(PrAs) per unit cell. The atoms occupy the special positions:

 $\begin{array}{cccc} Pr: & 0 & 0 & 0 \\ As: & \frac{1}{2} & \frac{1}{2} & \frac{1}{2}. \end{array}$

The lattice constant used in this calculated pattern is a=6.009 Å, as reported by Iandelli and Botti [8].

No temperature correction was included.

The calculated *d*-values of the three strongest lines are 3.00, 2.12, and 1.344 Å.

The calculated density is 6.607 g/cm^o.

Ca)	cu	late	d P	attern	
	C	Copp	ber	λ	

hkl	d	Peak height I
$ \begin{array}{c} 111\\ 200\\ 220\\ 311\\ 222\\ 400\\ 331\\ 420\\ 422\\ 511\\ 440\\ 531\\ 600\\ 620\\ 533\\ 622\\ \end{array} $	$\begin{array}{c} \mathring{A}\\ 3.47\\ 3.00\\ 2.12\\ 1.812\\ 1.735\\ 1.502\\ 1.379\\ 1.344\\ 1.227\\ 1.156\\ 1.062\\ 1.016\\ 1.002\\ 0.950\\ .916\\ 006\end{array}$	$ \begin{array}{r} 18 \\ 100 \\ 67 \\ 8 \\ 22 \\ 10 \\ 3 \\ 25 \\ 18 \\ 2 \\ 6 \\ 2 \\ 12 \\ 9 \\ 1 \\ 8 \end{array} $
$ \begin{array}{r} & 444 \\ & 711 \\ & 640 \\ & 642 \\ & 731 \\ \end{array} $. 800 . 867 . 841 . 833 . 803 . 782	$\begin{array}{c} & \circ \\ & 3 \\ & 2 \\ & 8 \\ & 18 \\ & 4 \end{array}$

Calculated Pattern

Structural data. Iandelli [20] in 1955 determined that praseodymium sulfide is isomorphous with sodium chloride, with the space group O_h^5 —Fm3m (No. 225) and 4(PrS) per unit cell. The atoms occupy the special positions:

Lattice constants

1955 1956	Iandelli [20] Picon and Patrie [25]	Å 5. 739 5. 747

The lattice constant used in this calculated pattern is the average value a=5.743 Å.

No temperature correction was included.

The calculated *d*-values of the three strongest lines are 2.87, 3.31, and 2.03 Å.

The calculated density is 6.065 g/cm^3 .

hkl	d	Peak height
		Ι
$ \begin{array}{c} 111\\ 200\\ 220\\ 311\\ 222\\ 400\\ 331\\ 420\\ 402 \end{array} $	\mathring{A} 3. 31 2. 87 2. 03 1. 730 1. 657 1. 435 1. 317 1. 283 1. 171	$75 \\ 100 \\ 65 \\ 30 \\ 21 \\ 9 \\ 11 \\ 24 \\ 17 \\ 17 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$
$422 \\ 511 \\ 440 \\ 531 \\ 600 \\ 620 \\ 533 \\ 533$	$ \begin{array}{c} 1. 171 \\ 1. 104 \\ 1. 015 \\ 0. 970 \\ . 956 \\ . 907 \\ . 875 \\ \end{array} $	
622 444 711 640	. 865 . 828 . 804 . 796	$\begin{array}{c}10\\3\\9\\11\end{array}$

Iandelli [23] in 1956 determined that samarium arsenide is isomorphous with sodium chloride with the space group O_h^5 —Fm3m (No. 225) and 4(SmAs) per unit cell. The atoms occupy the special positions:

Sm: 0 0 0 As: $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$.

Iandelli [23] reports the lattice constant a=5.921 Å.

No temperature correction was included.

The calculated *d*-values of the three strongest lines are 2.96, 2.09, and 1.324 Å.

The density of samarium arsenide calculated from the constant of Iandelli is 7.208 g/cm³.

 $\begin{array}{c} \textbf{Calculated Pattern} \\ Copper \ \lambda \end{array}$

Peak height hkl d I Å 3.42 21111 2. 96 2. 09 100200 67 2201. 785 1. 709 9 31122222 $9\\3\\25$ 400 1.480 $\begin{array}{c} 1.358\\ 1.324 \end{array}$ 331 4201.209 42218 $\overline{2}$ 1.140 5111.047 6 $\mathbf{440}$ 531 1.001 3 13 0.987 600 620 . 936 9 1 . 903 533 . 893 9 622 $\frac{3}{2}$ 444 . 855 . 829 711 . 821 9 640 . 791 19642

Calculated Pattern

Brixner [30] in 1960 determined that scandium arsenide is isomorphous with sodium chloride with the space group O_h^5 —Fm3m (No. 225) and 4(ScAs) per unit cell. The atoms occupy the special positions:

Sc: 0 0 0 As: $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$.

Brixner [30] reports the lattice constant a=5.487 Å.

No temperature correction was included.

The calculated d-values of the three strongest lines are 2.74, 1.940, and 1.227 Å.

The density of scandrum arsenide calculated from the constant of Brixner is 4.820 g/cm³.

hkl	d	Peak height
		Ι
111	Å 2 17	19
900	3.17 9.74	100
200	1 040	62
311	1 654	4
222	1. 584	19
400	1, 372	8
331	1. 259	$\overline{2}$
420	1. 227	21
422	1. 120	15
511	1. 056	1
440	0. 970	5
531	. 927	1
600	. 914	12
620	. 868	9
533	. 837	<1
622	. 827	9
444	. 792	3

Structural data. West [5] in 1935 determined that sodium hydroxide at 300 °C is isomorphous with sodium chloride with the space group O_h^5 —Fm3m (No. 225) with 4(NaOH) per unit cell. The atoms occupy the special positions:

Na: 0 0 0 O: $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ H: undefined.

The lattice constant used in this calculated pattern is a=5.01 Å, as reported by West [5].

No temperature correction was included.

The calculated d-values of the three strongest lines are 2.50, 1.77, and 1.45 Å.

The calculated density is 2.112 g/cm^3 .

Calcu	lated	Pattern
(Coppe	er λ

Peak height hkl d Ι Å 111 2.89 1 2. 50 100 2002201.77 52311 3 1.512221.45 14 400 1.25 $\mathbf{5}$ 331 1.15 1 420 1.12 129 422 1.02511 0.964 < 1 $<^{3}_{1}_{7}$. 886 440 531. 847 600 . 835 6 620 .792

Calculated Pattern

Goldschmidt [1] in 1926 determined that strontium telluride is isomorphous with sodium chloride with the space group O_h^5 —Fm3m (No. 225) and 4 (SrTe) per unit cell. The atoms occupy the special positions:

Sr: 0 0 0 Te: $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$.

Goldschmidt [1] reports the lattice constant a=6.660 Å.

No temperature correction was included.

The calculated d-values of the three strongest lines are 3.33, 2.35, and 1.489 Å.

The density of strontium telluride calculated from the constant of Goldschmidt is 4.839 g/cm³.

hkl	d	Peak height
		Ι
111	Å 3 85	5
200	3, 33	100
$\bar{2}20$	2, 35	69
311	2. 01	2
222	1. 923	23
400	1. 665	10
331	1. 528	<1
420	1. 489	27
422	1. 359	19
911	1. 282	<1
440	1. 177	6
531	$1.\ 126$	<1
600	1. 110	11
620	1. 053	8
533	1. 016	<1
622	1.004	7
444	0.961	2
711	. 933	<1
640	. 924	6
642	. 890	12
731	. 867	<1
800	. 832	2
733	. 814	<1
820	. 808	13
822	. 785	10

Klemm and Winkelmann [24] in 1956 determined that terbium nitride is isomorphous with sodium chloride with the space group O_{b}^{5} —Fm3m (No. 225) and 4(TbN) per unit cell. The atoms occupy the special positions:

Tb: 0 0 0 N: $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$.

Klemm and Winkelmann [24] report the lattice constant a=4.933 Å.

No temperature correction was included.

The calculated *d*-values of the three strongest lines are 2.85, 2.47, and 1.744 Å.

The density of terbium nitride calculated from the constant of Klemm and Winkelmann is 9.568 g/cm³.

hkl	d	Peak height
	Å	
111	2. 85	100
200	2.47	69
220	1. 744	42
311	1. 487	36
$\overline{222}$	1. 424	13
400	1. 233	6
331	1. 132	14
420	1. 103	16
422	1. 007	12
511	0.949	12
440	. 872	5
531	. 834	17
600	. 822	13

$\begin{array}{c} \textbf{Calculated Pattern} \\ Copper \ \lambda \end{array}$

Calculated Pattern

Ferro [19] in 1955 determined that thorium arsenide is isomorphous with sodium chloride with the space group O_h^5 —Fm3m (No. 225) and 4(ThAs) per unit cell. The atoms occupy the special positions:

Th: 0 0 0
As:
$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{1}{2}$.

Ferro [19] reports the lattice constant a=5.972 Å.

No temperature correction was included.

The calculated d-values of the three strongest lines are 2.99, 2.11, and 3.45 Å.

The density of thorium arsenide calculated from the constant of Ferro is 9.572 g/cm^3 .

hkl	d	Peak height
		Ι
111	Å 3. 45	47
$\overline{2}\overline{0}\overline{0}$	2, 99	100
220	2.11	68
311	1. 801	20
222	1. 724	23
400	1. 493	10
331	1. 370	8
420	1. 335	26
422	1. 219	19
511	1. 149	6
440	1. 056	6
531	1. 009	6
600	0. 995	13
620	. 944	10
533	. 911	3
622	. 900	10
444	. 862	3
711	. 836	5
640	. 828	10
642	. 798	20

Brixner [30] in 1960 determined that thulium arsenide is isomorphous with sodium chloride with the space group O_h^5 —Fm3m (No. 225) and 4(TmAs) per unit cell. The atoms occupy the special positions:

Tm: 0 0 0 As: $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$.

Brixner [30] reports the lattice constant a=5.711 Å.

No temperature correction was included.

The calculated d-values of the three strongest lines are 2.86, 2.02, and 3.30 Å.

The density of thulium arsenide calculated from the constant of Brixner is 8.695 g/cm³.

hkl	d	Peak height I
	Å	
111	3 30	97
200	2.20	100
200	2. 00	65
220	2.02	11
000	1. 722	11
222	1. 649	21
400	1 498	0
221	1.420	9
420	1.010	24
420	1. 277	24 17
511	1. 100	17
911	1. 099	Э
440	1 010	6
531	0 965	4
600	952	13
620	903	10
533	871	
000	. 0/1	2
622	. 861	10
444	. 824	3
711	. 800	4
640	. 792	11
0.20		

Calculated Pattern Copper λ

Calculated Pattern

Klemm and Winkelmann [24] in 1956 determined that thulium nitride is isomorphous with sodium chloride with the space group O_h^5 —Fm3m (No. 225) and 4(TmN) per unit cell. The atoms occupy the special positions:

 $\begin{array}{cccc} Tm: & 0 & 0 & 0 \\ N: & \frac{1}{2} & \frac{1}{2} & \frac{1}{2}. \end{array}$

Klemm and Winkelmann [24] report the lattice constant a=4.809 Å.

No temperature correction was included.

The calculated d-values of the three strongest lines are 2.78, 2.40, and 1.700 Å.

The density of thulium nitride calculated from the constant of Klemm and Winkelmann is 10.93 g/cm³.

hkl	d	Peak height
		Ι
	Å	
111	2.78	100
200	2, 40	67
220	1. 700	40
311	1. 450	35
222	1. 388	12
400	1. 202	5
331	1. 103	14
420	1. 075	16
422	0. 982	13
511	. 925	13
440	. 850	6
531	. 813	19
600	. 802	15

Brixner [30] in 1960 determined that thulium telluride is isomorphous with sodium chloride with the space group O_h^5 —Fm3m (No. 225) and 4(TmTe) per unit cell. The atoms occupy the special positions:

Tm: $0 \ 0 \ 0$ Te: $\frac{1}{2} \ \frac{1}{2} \ \frac{1}{2}$.

Brixner [30] reports the lattice constant a=6.042 Å.

No temperature correction was included.

The calculated d-values of the three strongest lines are 3.02, 2.14, and 1.351 Å.

The density of thulium telluride calculated from the constant of Brixner is 8.929 g/cm³.

hkl	d	Peak height
		Ι
	ø	
111		A
111	J. 49	4
200	3. 02 9. 14	100
220	2. 14 1 999	07
999	1. 022	2
222	1. / 11	22
400	1, 510	10
331	1. 386	<1
420	1. 351	$2\overline{6}$
422	1. 233	18
511	1. 163	< 1
4.40	1 000	0
440	1.068	6
001 600	1. 021	< 1
620	1.007	15
533	0. 900	9
000	. 321	
622	. 911	9
444	. 872	3
711	. 846	<1
640	. 838	9.
642	. 807	18
731	. 787	< 1

 $\begin{array}{c} \textbf{Calculated Pattern} \\ Copper \ \lambda \end{array}$

Calculated Pattern

Jeannin and Bénard [29] in 1959 determined that titanium sulfide is isomorphous with cadmium iodide with the space group D_{3d}^3 —P $\overline{3}m1$ (No. 164) and 1(TiS₂) per unit cell. The atoms occupy the special positions:

Ti: 0 0 0 S: $\frac{1}{3} \frac{2}{3} u$; $\frac{2}{3} \frac{1}{3} \bar{u}$ with u=0.25.

Jeannin and Bénard [29] report the lattice constants a=3.4049 Å and c=5.6912 Å.

No temperature correction was included.

The calculated d-values of the three strongest lines are 2.62, 5.69, and 2.05 Å.

The density of titanium sulfide calculated from the constants of Jeannin and Bénard is 3.255 g/cm³.

		the second se
hkl	d	Peak height I
001 100 002 101 102	Å 5. 69 2. 95 2. 85 2. 62 2. 05	55 2 2 100 47
$\begin{array}{c} 003 \\ 110 \\ 111 \\ 103 \\ 200 \end{array}$	1.90 1.70 1.63 1.60 1.474	$223 \\ 7 \\ 15 \\ <1$
$ 112 \\ 201 \\ 004 \\ 202 \\ 104 $	$1. \ 461 \\ 1. \ 427 \\ 1. \ 423 \\ 1. \ 309 \\ 1. \ 281$	$<1 \\ 9 \\ 4 \\ 8 \\ <1$
113 203 005 210 211 114	$\begin{array}{c} 1.\ 267\\ 1.\ 164\\ 1.\ 138\\ 1.\ 114\\ 1.\ 094\\ 1.\ 092 \end{array}$	$2 \\ 5 \\ <1 \\ <1 \\ 7 \\ 9$

Ferro [16] in 1954 determined that uranium telluride is isomorphous with sodium chloride with the space group O_h^5 —Fm3m (No. 225) and 4(UTe) per unit cell. The atoms occupy the special positions:

U: 0 0 0
Te:
$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{1}{2}$.

Ferro [16] reports the lattice constant a=6.163 Å.

No temperature correction was included.

The calculated d-values of the three strongest lines are 3.08, 2.18, and 1.378 Å.

The density of uranium telluride calculated from the constant of Ferro is 10.374 g/cm^3 .

Calcu	lated	Pattern
(Coppe	er λ

Calculated Pattern

Brixner [30] in 1960 determined that ytterbium arsenide is isomorphous with sodium chloride with the space group O_h^5 —Fm3m (No. 225) and 4(YbAs) per unit cell. The atoms occupy the special positions:

Yb: 0 0 0 As: $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$.

Brixner [30] reports the lattice constant a=5.698 Å.

No temperature correction was included.

The calculated *d*-values of the three strongest lines are 2.85, 2.01, and 3.29 Å.

The density of ytterbium arsenide calculated from the constant of Brixner is 8.902 g/cm³.

hkl	d	Peak height I
$ \begin{array}{c} 111\\200\\220\\311\\222\\400\\331\\420\\422\end{array} $	$\begin{array}{c} \mathring{A}\\ 3. 29\\ 2. 85\\ 2. 01\\ 1. 718\\ 1. 645\\ 1. 424\\ 1. 307\\ 1. 274\\ 1. 163\\ \end{array}$	$ \begin{array}{c} 29\\ 100\\ 66\\ 12\\ 21\\ 9\\ 4\\ 24\\ 18\\ \end{array} $
511 440 531 600 620 533 622 444 711 640	$ \begin{array}{c} 1. 097 \\ 1. 007 \\ 0. 963 \\ . 950 \\ . 901 \\ . 869 \\ . 859 \\ . 822 \\ . 798 \\ . 790 \\ \end{array} $	$ \begin{array}{r} 3 \\ 6 \\ 4 \\ 13 \\ 10 \\ 2 \\ 10 \\ 3 \\ 4 \\ 11 \\ 11 \\ \end{array} $

hkl	d	Peak height		
		Ι		
$111 \\ 200 \\ 220 \\ 311 \\ 222$	\AA 3. 56 3. 08 2. 18 1. 858 1. 779	$ \begin{array}{r} 17 \\ 100 \\ 70 \\ 8 \\ 23 \\ \end{array} $		
$ \begin{array}{r} 400 \\ 331 \\ 420 \\ 422 \\ 511 \end{array} $	$\begin{array}{c} 1.541 \\ 1.414 \\ 1.378 \\ 1.258 \\ 1.186 \end{array}$	$10 \\ 3 \\ 27 \\ 19 \\ 2$		
$\begin{array}{c} 440 \\ 531 \\ 600 \\ 620 \\ 533 \end{array}$	$\begin{array}{c} 1. \ 089 \\ 1. \ 042 \\ 1. \ 027 \\ 0. \ 974 \\ . \ 940 \end{array}$	$egin{array}{c} 6 \\ 2 \\ 13 \\ 10 \\ 1 \end{array}$		
$\begin{array}{c} 622 \\ 444 \\ 711 \\ 640 \\ 642 \\ 731 \end{array}$	$\begin{array}{c} . \ 929 \\ . \ 890 \\ . \ 863 \\ . \ 855 \\ . \ 824 \\ . \ 802 \end{array}$	9 3 2 9 18 3		

Klemm and Winkelmann [24] in 1956 determined that ytterbium nitride is isomorphous with sodium chloride with the space group O_h^5 —Fm3m (No. 225) and 4(YbN) per unit cell. The atoms occupy the special positions:

Yb: 0 0 0 N: $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$.

Klemm and Winkelmann [24] report the lattice constant a=4.786 Å.

No temperature correction was included.

The calculated d-values of the three strongest lines are 2.76, 2.39, and 1.692 Å.

The density of ytterbium nitride calculated from the constant of Klemm and Winkelmann is 11.33 g/cm^3 .

hkl	d	Peak height I
$ \begin{array}{c} 111\\ 200\\ 220\\ 311\\ 222\\ 400\\ 331\\ 420\\ 422\\ 511\\ 440\\ 531\\ 600\\ \end{array} $	$ \begin{array}{c} \mathring{A} \\ 2.76 \\ 2.39 \\ 1.692 \\ 1.443 \\ 1.382 \\ 1.196 \\ 1.098 \\ 1.070 \\ 0.977 \\ .921 \\ .846 \\ .809 \\ .798 \\ \end{array} $	$ \begin{array}{r} 100 \\ 66 \\ 40 \\ 35 \\ 12 \\ 5 \\ 14 \\ 16 \\ 13 \\ 13 \\ 6 \\ 20 \\ 16 \\ \end{array} $

$\begin{array}{c} \textbf{Calculated Pattern} \\ Copper \ \lambda \end{array}$

Calculated Pattern

Brixner [30] in 1960 determined that yttrium arsenide is isomorphous with sodium chloride with the space group O_h^5 —Fm3m (No. 225) and 4(YAs) per unit cell. The atoms occupy the special positions:

Y: 0 0 0
As:
$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{1}{2}$.

Brixner [30] reports the lattice constant a=5.786 Å.

No temperature correction was included.

The calculated *d*-values of the three strongest lines are 2.89, 2.05, and 1.294 Å.

The density of yttrium arsenide calculated from the constant of Brixner is 5.617 g/cm^3 .

hkl	d	Peak height I
$ \begin{array}{c} 111\\200\\220\\311\\222\\400\\331\\420\\422\\511\\440\\531\\600\\620\\533\end{array} $	\hat{A} 3. 34 2. 89 2. 05 1. 745 1. 670 1. 446 1. 327 1. 294 1. 181 1. 114 1. 023 0. 978 964 915 . 882	$\begin{array}{c} 2\\ 100\\ 63\\ <1\\ 20\\ 9\\ <1\\ 22\\ 16\\ <1\\ 5\\ <1\\ 12\\ 9\\ <1\\ \end{array}$
$622 \\ 444 \\ 711 \\ 640$. 872 . 835 . 810 . 802	${ { { 8 } \atop { 3 } \atop { 3 } \atop { 3 } \atop { 9 } } } $

Brixner [30] in 1960 determined that yttrium telluride is isomorphous with sodium chloride with the space group O_h^5 —Fm3m (No. 225) and 4(YTe) per unit cell. The atoms occupy the special positions:

Y: 0 0 0 Te: $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$.

hkl

111

200

220

311

222

400

 $\begin{array}{c} 331\\ 420 \end{array}$

422

511

440

 $\begin{array}{c} 531 \\ 600 \end{array}$

620

533

622

444

 $\frac{711}{640}$

 $\begin{array}{c} 642 \\ 731 \end{array}$

Brixner [30] reports the lattice constant a=6.095 Å.

No temperature correction was included.

The calculated *d*-values of the three strongest lines are 3.05, 2.15, and 1.363 Å.

The density of yttrium telluride calculated from the constant of Brixner is 6.351 g/cm³.

Calcu	lated	Pattern
(Coppe	er λ

d

Å 3. 52

3.05

 $\begin{array}{c} 2. \ 15 \\ 1. \ 838 \end{array}$

1.759

1. 524

1.398

1.363

1.244

1. 173
 1. 077

1.030

1.016

0.964

. 929 . 919

. 880

. 853

. 845 . 814

. 794

Peak height

Ι

 $\mathbf{5}$

100

 ${}^{67}_{2}$

 $2\overline{2}$

9

< 1

Calculated Pattern

Schönberg [17] in 1954 determined that zirconium phosphide is isomorphous with sodium chloride with the space group O_h^5 —Fm3m (No. 225) and 4(ZrP) per unit cell. The atoms occupy the special positions:

Schönberg [17] reports the lattice constant a=5.27 Å.

No temperature correction was included.

The calculated d-values of the three strongest lines are 2.63, 1.86, and 3.04 Å.

The density of zirconium phosphide calculated from the constant of Schönberg is 5.54 g/cm³.

Calculated Pattern Copper λ

hkl	d	Peak height I
111 200 220 311 222	$\overset{A}{3.04}$ 3.04 2.63 1.86 1.59 1.52	$ \begin{array}{r} 51\\ 100\\ 61\\ 18\\ 19\\ \end{array} $
$\begin{array}{c} 400\\ 331\\ 420\\ 422\\ 511 \end{array}$	$\begin{array}{c} 1. \ 32 \\ 1. \ 21 \\ 1. \ 18 \\ 1. \ 07 \\ 1. \ 01 \end{array}$	
$\begin{array}{r} 440 \\ 531 \\ 600 \\ 620 \\ 533 \\ 622 \end{array}$	$\begin{array}{c} 0. \ 931 \\ . \ 890 \\ . \ 878 \\ . \ 833 \\ . \ 803 \\ . \ 794 \end{array}$	$ \begin{array}{c} 6 \\ 6 \\ 14 \\ 11 \\ 3 \\ 12 \end{array} $

- [1] V. M. Goldschmidt, Researches on the structure and properties of crystals, Skrifter Norske Videnskaps-Akad. Oslo I. Mat.-Naturv. Kl. #8 (1926).
- [2] I. Oftedal, The lattice constants of CaO, CaS, CaSe, and CaTe, Z. Physik Chem. (Leipzig) 128, 154 (1927).
- [3] A. Ferrari and F. Giorgi, The crystal structure of bromides of bivalent metals, Atti Accad. Nazl. Lincei Rend. Classe Sci. Fis. Mat. Nat. 9, 1134 (1929).
- [4] A. Ferrari and F. Giorgi, The crystal structure of the anhydrous iodides of bivalent metals I. Iodides of cobalt, iron, and manganese. Ibid. 10, 522 (1929).
- [5] C. D. West, Thermochemistry and physical properties of bromides and hydrosulfides, J. Phys. Chem. 39, 493-507 (1935).
- [6] A. Iandelli and R. Botti, On the crystal structure of compounds of the rare earths with metalloids of the V group. Phosphides of La, Ce, and Pr. Atti Accad. Nazl. Lincei Rend. Classe Sci. Fis. Mat. Nat. 24, 459 (1936). [7] A. Iandelli and R. Botti, On the crystal structure of
- compounds of the rare earths with metalloids of the V group. Nitrides of La, Ce, and Pr. Ibid. 25, 129 (1937).
- [8] A. Iandelli and R. Botti, On the crystal structure of compounds of the rare earths with metalloids of the V group. Arsenides and antimonides of lanthanum, cerium, and praseodymium, Ibid. 25, 498-502 (1937).
- [9] A. Iandelli and R. Botti, On the crystal structure of compounds of the rare earths with metalloids of the V group. Compounds of neodymium, Ibid. 25, 638-640 (1937).
- [10] A. Iandelli and R. Botti, On the crystal structure of compounds of the rare earths with metalloids of the V group. Compounds 1:1 with Bi, Ibid. 26, 233 (1937)
- [11] H. M. Powell and F. M. Brewer, The structure of germanous iodide, J. Chem. Soc. 1938 Part I, 197 (1938)
- [12] H. Senff and W. Klemm, Ytterbochalkogenide, Z. Anorg. Allgem. Chem. 242, 92 (1939).
 [13] W. Teichert and W. Klemm, Das Gitter der Hoch-
- temperaturform von Kaliumhydroxyd, Ibid. 243, 138 (1939). [14] W. H. Zachariasen, Crystal chemical studies of the
- 5-f series of elements. XII. New compounds representing known structure types, Acta Cryst. 2,
- 388 (1949).
 [15] R. A. Young and W. T. Ziegler, Crystal structure of lanthanum nitride, J. Am. Chem. Soc. 74, 5251 (1952).

- [16] R. Ferro, Several selenium and tellurium compounds of uranium, Z. Anorg. Allgem. Chem. 275, 320 (1954).
- [17] N. Schönberg, An x-ray investigation of transition
- [11] R. Beneficier, And Artay Investigation of maintain metal phosphides, Acta Chem. Scand. 8, 226 (1954).
 [18] S. A. Semiletov, Diffraction investigation of the structure of sublimed films of the composition Bi-Se and Bi-Te, Trudy Inst. Krist. Akad. Nauk
- SSSR 10, 76 (1954).
 [19] R. Ferro, The crystal structure of thorium arsenide, Acta Cryst. 8, 360 (1955).
- [20] A. Iandelli, Monochalcogenides of lanthanum, cerium, praseodymium, and neodymium, Gazz. Chim. Ital.
- 85, 881 (1955).
 [21] H. A. Eick, N. C. Baenziger, and L. Eyring, Lower oxides of samarium and europium. The preparation and crystal structure of SmO_{0.4-0.6}, SmO, and EuO, J. Am. Chem. Soc. 78, 5147 (1956).
- [22] R. Ferro, The crystal structures of thorium antimonides, Acta Cryst. 9, 817 (1956).
 [23] A. Iandelli, Some samarium compounds of NaCl-Type, Z. Anorg. Allgem, Chem. 288, 81 (1956).
 [24] W. Klemm and G. Winkelmann, Nitrides of the rare conthermatic the structure of the structure of
- earth metals. Ibid. 288, 87 (1956). [25] M. Picon and M. Patrie, Sur les sous-sulfures des
- terres rares cériques, Compt. Rend. 242, 1321 (1956)
- [26] A. E. Gorum, Crystal structure of PuAs, PuTe, PuP, and PuOSe, Acta Cryst. 10, 144 (1957).
 [27] L. Domange, J. Flahaut, M. Guittard, and J. Loriers,
- Ytterbium sulfides, Compt. Rend. 247, 1614 (1958). [28] M. Guittard and A. Benacerraf, The selenides, MSe,
- of the lanthanides from lanthanum to gadolinium, Ibid. 248, 2589 (1959).
- [29] Y. Jeannin and J. Bénard, The non-stoichiometric phase TiS_2 : Extent of the domain and nature of the defects, Ibid. 248, 2875 (1959).
- [30] L. H. Brixner, Structure and electrical properties of some new rare-earth arsenides, antimonides, and tellurides, J. Inorg. Nucl. Chem. 15, 199 (1960).
- [31] G. Bruzzone, Structure and magnetic properties of MX compounds from holmium and metalloids of the fifth and sixth groups, Atti Accad. Nazl. Lincei Rend. Classe Sci. Fis. Mat. Nat. 30, 208-213. (1961).
- [32] R. N. Kuz'min and S. V. Nikitina, The structures of compounds of composition AB of rare-earth metals with antimony and bismuth, Kristallografia 8(3), 453-4 (1963). English translation in Crystallography 8(3), 354 (1963).
 [33] M. D. Lyutaya and G. V. Samsonov, Preparation
- and properties of lanthanum nitride, Ukr. Khim. Zh. 29(3), 251-5 (1963).

CUMULATIVE INDEX TO CIRCULAR 539, VOLUMES 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, MONOGRAPH 25, SECTIONS 1, 2, 3, AND 4 5

	Vol. or	Domo	·	Vol. or	Dom
Aluminum Al	sec.	Page 11	Antimony dysprosium DySh	sec.	Page A1
Aluminum antimony. AlSb	4	$\frac{11}{72}$	Antimony erbium, ErSb	4m	41
Aluminum calcium sulfate hydrate (ettring-		. 2	Antimony (III) fluoride. SbF ₃	2m	4
ite), $Al_2O_3 \cdot 6CaO \cdot 3SO_3 \cdot 31H_2O_{$	8	3	Antimony gadolinium, GdSb	4m	$4\overline{2}$
Aluminum chloride hexahydrate (chlor-			Antimony(III) iodide, SbI ₃	6	16
aluminite), AlCl ₃ .6H ₂ O	7	3	Antimony lanthanum, LaSb	4m	42
Aluminum fluosilicate, topaz, Al ₂ SiO ₄ (F,OH) ₂	1m	4	Antimony neodymium, NdSb	4m	43
Aluminum metaphosphate, Al(PO ₃) ₃	$2\mathrm{m}$	3	Antimony(III) oxide (senarmontite), Sb ₂ O ₃		
Aluminum orthophosphate (berlinite), AlPO ₄			(cubic)	3	31
(trigonal)	10	3	Antimony (III) oxide, valentinite, Sb_2O_3	10	0
Aluminum orthophosphate, AIPO ₄ (ortho-	10		(orthorhombic)	10	6
rhompic)	10	4 2	Antimony($1V$) oxide (cervantite), SD_2O_4	10	8
Aluminum oxide, (corunaum), alpha Al ₂ O ₃	9	0	Antimony presodumium PrSh	Am	10
alpha Al.O. H.O	3	38	Antimony scandium ShSe	Am	40
Aluminum oxide monohydrate diaspore	U	00	Antimony selenide ShoSe	3m	7
beta Al ₂ O ₂ ·H ₂ O	3	41	Antimony (III) sulfide (stibnite). Sb ₂ S ₂	5	6
Aluminum 3:2 silicate (mullite)			Antimony telluride, Sb ₂ Te ₃	3m	8
$3Al_2O_3 \cdot 2SiO_2$	3m	3	Antimony thorium, SbTh	4m	44
Ammonium aluminum sulfate dodecahy-			Antimony thulium, SbTm	4m	45
drate (teschermigite), NH ₄ Al(SO ₄) ₂ ·12H ₂ O ₋	6	3	Antimony ytterbium, SbYb	4m	45
Ammonium azide, NH ₄ N ₃	9	4	Antimony yttrium, SbY	4m	46
Ammonium bicarbonate (teschemacherite),			Arsenic, As	3	6
$(NH_4)HCO_3$	9	5	Arsenic(111) iodide, Asl ₃	6	17
Ammonium bromide, NH ₄ Br	2	49	Arsenic trioxide, claudetite, As_2O_3 (mono-	0	•
Ammonium bromoosmate, $(NH_4)_2OSBr_{6}$	3	71	Clinic)	3m	- 9 = 1
Ammonium bromogolonate, $(N \Pi_4)_2 P \iota B r_{6}$	9	0	Arsenic trioxide (arsenonce), As_2O_3 (cubic)	1	51
Ammonium bromotellurate (NH.) TeBr.	8	4 5	Barium arsenate Ba_{ASO}	2m	6
Ammonium chloride (sal-ammoniac).	0	0	Barium boron oxide, high form, BaB ₀ O ₄	4m	4
NH ₄ Cl	1	59	Barium boron oxide, BaB ₄ O ₇	4m	6
Ammonium chloroiridate (NH ₄) ₂ IrCl ₆	8	6	Barium bromide monohydrate, BaBr ₂ ·H ₂ O	3m	10
Ammonium chloroosmate, (NH ₄) ₂ OsCl ₆	1m	6	Barium carbonate (witherite), BaCO ₃ (ortho-		
Ammonium chloropalladate, (NH ₄) ₂ PdCl ₆	8	7	rhombic)	2	54
Ammonium chloropalladite, (NH ₄) ₂ PdCl ₄	6	6	Barium carbonate, $BaCO_3$ (cubic) at		
Ammonium chloroplatinate, $(NH_4)_2PtCl_{6}$	5	3	1075 °C	10	11
Ammonium chlorostannate $(NH_4)_2SnCl_{6}$	5	4	Barium fluoride, BaF ₂	1	70
Ammonium chlorotellurate, $(NH_4)_2$ TeCl ₆	8	8	Barium fluosilicate, BaSiF ₆	4m	7
Ammonium chromium sullate dodecany- droto NH $Cr(SO)$ 12H O	C	7	Barium molypdate, Bamou ₄	1	01
A mmonium dibydrogon phosphate	0	1	Barium mitrate (introducte), $Da(NO_3)_{2}$	1	01
NH ₄ H ₂ PO ₄	4	64	$Ba(ClO_1)_{a}$ 3H ₂ O	2m	7
Ammonium fluobervllate, (NH ₄) ₂ BeF ₄	3m	5	Barium peroxide. BaOs	6	18
Ammonium fluoborate, NH ₄ BF ₄	3m	ĕ	Barium stannate, BaSnO ₃	3m	11
Ammonium fluogermanate, (NH ₄) ₂ GeF ₆	6	8	Barium sulfate (barite), BaSO ₄	3	65
Ammonium fluosilicate (cryptohalite),			Barium sulfide, BaS	7	8
$(\mathrm{NH}_4)_2\mathrm{SiF}_6$	5	5	Barium titanate, BaTiO ₃	3	45
Ammonium gallium sulfate dodecahydrate,			Barium tungstate, BaWO ₄	7	9
$NH_4Ga(SO_4)_2 \cdot 12H_2O_{$	6	9	Barium zirconate, BaZrO ₃	5	8
Ammonium inon sulfate dedeeshudrate	4	20	Be ALO	0	10
NH.Fe(SO.), 12H.O	6	10	Beryllium aluminum silieste beryl	9	10
Ammonium metavanadate NH.VO.	8	9	$Be_2Al_2(SiO_2)_{\ell}$	9	13
Ammonium nitrate (ammonia-niter).	0	0	Bervllium chromium oxide, BeCr ₂ O ₄	10	12
NH4NO3	7	4	Beryllium germanate. Be ₂ GeO ₄	10	$1\bar{3}$
Ammonium oxalate monohydrate (oxam-		_	Beryllium orthosilicate, phenacite, $BeSi_2O_{4}$	8	11
mite), $(NH_4)_{\downarrow}C_2O_4 \cdot H_2O_{$	7	5	Beryllium oxide (bromellite), BeO	1	36
Ammonium perchlorate, NH ₄ ClO ₄ (ortho-			Bismuth, Bi	3	20
rhombic)	7	6	Bismuth cerium, BiCe	4m	46
Ammonium perrhenate, NH ₄ ReO ₄	9	7	Bismuth dysprosium, BiDy	4m	47
drate (NH) DO (M O) due tetrahy-	0	10	Bismuth erbium, BiEr	4m	47
Ammonium sulfate (magazite) (NIII) do	8	10	Bismuth fluoride, BiF ₃	lm	7
(revised) (NH_4) ₂ SO ₄	0	0	Bismuth holmium, BiHo	4m	48
Ammonium zirconium fluoride (NH.). ZrF	9	14	Bismuth(III) iodide, BiI ₃	6	20
Antimony, Sb	3	14	Bismuth lanthanum, BiLa	4m	48
Antimony cerium, CeSb	4m	40	Bismuth neodymium, BiNd	4m	49
,		-0	Bismuth orthophosphate, BiPO ₄ (mono-		
Kurther work on this means is to see 1 to the			alinia)	2m	11

Further work on this program is in progress, and it is anticipated that additional sections will be issued. Therefore, the accumulative index here is not necessarily the concluding index for the project.
 m—Monograph 25.
 A mineral name in () indicates a synthetic sample.

Bismuth orthophosphate, BiPO₄ (trigonal)_

Bismuth orthovanadate, low form, BiVO₄

(tetragonal)_____

3m

3m

13

14

CUMULATIVE INDEX TO CIRCULAR 539, VOLUMES 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, MONOGRAPH 25, SECTIONS 1, 2, 3, AND 4—Continued

	vol. or sec.	Page		Vol. or sec.	Page
Bismuth orthovanadate, high form, BiVO ₄		_	Cerium phosphide, CeP	4m	52
(monoclinic)	3m	14	Cerium(III) vanadate, CeVO ₄	$1 \mathrm{m}$	9
Bismuth oxybromide, BiOBr	8	14	Cesium aluminum sulfate dodecahydrate,	_	
Bismuth oxychloride (bismoclite), BiOCI	4	54	$CsAl(SO_4)_2 \cdot 12H_2O$	6	25
Bismuth oxylodide, BiOI	4m	10	Cesium bromate, CSBrU ₃	8	18
Bismuth praseodymum, DIFr	4111	49	Cosium bromocomete (IV) Ca OsBr	ა ელ	49
Bismuth folluride BiTe	4 m	20 50	Cosium bromonlatinate (1V), Cs2OSDI6	2111	10
Bismuth telluride (tellurobismuthite).	1111	50	Cesium bromoselenate Cs.SeBr	8	19
BisTres	3m	16	Cesium bromotellurate. Cs. TeBr.	g	20
Bismuth trioxide (bismite), alpha Bi ₂ Ú ₃	3	16	Cesium chlorate, CsClO ₃	8	$\tilde{20}$
Cadmium, Cd	3	10	Cesium chloride, CsCl	$\tilde{2}$	44
Cadmium bromide, CdBr ₂	9	17	Cesium chloroosmate (IV), Cs ₂ OsCl ₆	2m	11
Cadmium carbonate (otavite), CdCO ₃	7	11	Cesium chloroplatinate, Cs ₂ PtCl ₆	5	14
Cadmium chloride, CdCl ₂	9	18	Cesium chlorostannate, Cs_2SnCl_{6}	5	16
Cadmium cyanide, Cd(CN) ₂	2m	8	Cesium chromate, Cs_2CrO_4	$3\mathrm{m}$	25
Cadmium molybdate, CdMoO ₄	6	21	Cesium chromium sulfate dodecahydrate,	0	0.1
Cadmium oxide, CdU	2	27	$CsCr(SO_4)_2 \cdot 12H_2O_{$	8	21
$C_{1}(C_{1}(C_{1})) \in H_{0}$	2m	10	Cesium dichiorologide, USICi2	3	50
Cadmium salanida, CdSa (havaganal)	311 7	19	Cosium fuoborate. CaBE.	4111	9
Cadmium sulfate CdSO.	3m	$\frac{12}{20}$	Cesium fluogermanate Cs.GeF.	5	17
Cadmium sulfide (greenockite). CdS	4	15	Cesium fluoplatinate, Cs ₂ PtF ₆	6	27
Cadmium telluride. CdTe	3m	$\frac{10}{21}$	Cesium fluoride. CsF	3m	26
Cadmium tungstate, CdWO4	2m	8	Cesium fluosilicate, Cs ₂ SiF ₆	5	19
tri-Calcium aluminate, 3CaO·Al ₂ O ₃	5	10	Cesium gallium sulfate dodecahydrate,		
Calcium aluminate 12:7, 12CaO·7Al ₂ O ₃	9	20	$CsGa(SO_4)_2 \cdot 12H_2O_{$	8	23
Calcium aluminum germanate,			Cesium iodide, CsI	4	47
$Ca_3Al_2(GeO_4)_3$	10	15	Cesium iron sulfate dodecahydrate,	0	
Calcium bromide hexahydrate, $CaBr_2 \cdot 6H_2O$	8	15	$CsFe(SO_4)_2 \cdot 12H_2O_{$	6	28
Calcium carbonate (aragonite), CaCO ₃ (or-	2	5 9	Cesium nitrate, USNU ₃	9	25
Calcium carbonate (calcite) CaCO, (bayon	3	0 ð	bia)	1m	10
onal)	2	51	Cesium sulfate Cs-SQ.	7	17
Calcium chromate. CaCrO ₄	$\frac{2}{7}$	13	Cesium vanadium sulfate dodecahydrate.	•	11
Calcium chromium germanate.		10	$C_{\rm SV}({\rm SO}_4)_2$: 12H ₂ O	$1 \mathrm{m}$	11
$Ca_3Cr_2(GeO_4)_3$	10	16	Chromium, Cr	5	$\overline{20}$
Calcium chromium silicate (uvarovite),			Chromium orthophosphate, alpha, CrPO ₄	$2\mathrm{m}$	12
$Ca_3Cr_2(SiO_4)_{3}$	10	17	Chromium orthophosphate, beta, $CrPO_{4}$	9	26
Calcium fluoride (fluorite), CaF ₂	1	69	Chromium (III) oxide, Cr ₂ O ₃	5	22
Calcium fluoride phosphate (fluorapatite),	0	00	Chromium silicide, Cr ₃ Si	6	29
$Ca_5 F(PO_4)_3$	3m	22	Cobalt, Co (cubic)	4m	10
Calcium formate, $Ca(HCU_2)_2$	10	10	Cobalt aluminum oxide, $CoAl_2O_4$	10	27
Calcium gamum germanate, $Ca_3Ca_2(GeO_4)_3$ _	10	10	Cobalt arsenide (skutterudite), COAs ₃	10	21
Calcium iron germanate CarFee(GeO.)	10	19	CoCO.	10	24
Calcium iron silicate (andradite).	10	10	Cobalt diarsenide, CoAs ₂ (revised)	4m	10
Ca ₂ Fe ₂ Si ₂ O ₁₂	9	22	Cobalt fluosilicate hexahydrate,		
Calcium molybdate (powellite), CaMoO ₄	6	22	$\text{CoSiF}_{6}\cdot 6\text{H}_{2}\text{O}_{$	3m	27
Calcium nitrate, Ca (NO ₃) ₂	7	14	Cobalt gallate, CoGa ₂ O ₄	10	27
Calcium oxide, CaO	1	43	Cobalt germanate, Co ₂ GeO ₄	10	27
Calcium sulfate (anhydrite), CaSO ₄	4	65	Cobalt iodide, CoI2	4m	52
Calcium sulfide (oldhamite), CaS	7	15	Cobalt iron arsenide (safflorite), CoFeAs ₄	10	28
Calcium telluride, Cale	4m	50	Cobalt mercury thiocyanate,	9m	12
Calcium tungstate, scheelite, Caw O ₄	0	23	Coholt (II) orido CoO	2111	28
Carbon, diamond, C	4m	2 8	Cobalt (II) Oxide, Cool.	ğ	29
Cerium arsenide CeAs	4m	51	Cobalt perchlorate hexahydrate.	U	20
Cerium (III) chloride. CeCl ₂	1m	8	$Co(ClO_4)$ \circ $6H_2O_{}$	3m	28
Cerium(III) fluoride, CeF ₃ , CeF_3	8	$1\check{7}$	Cobalt silicate, Co ₂ SiO ₄ (orthorhombic)	4m	11
Cerium, magnesium nitrate 24-hydrate,			Cobalt sulfate, beta, CoSO4	$2\mathrm{m}$	14
$Ce_2Mg_3(NO_3)_{12}:24H_2O_{$	10	20	Cobalt titanate, CoTio ₃	4m	13
Cerium niobium titanium oxide (eschynite),			Cobalt tungstate, CoWO ₄	4m	13
CeNbTiO ₆	$3\mathrm{m}$	24	Copper, Cu	1	15
Cerium nitride, CeN	4m	51	Copper(1) bromide, CuBr	4	36
Cerium(IV) oxide (cerianite) CeO_{2}	1	56	Copper carbonate basic, azurite,	10	20
			$Coppor_{arbonate} = basis (malashita)$	10	00
m-Monograph 25.			Cu _s (OH) _s CO _s	10	31
A mineral name in () indicates a synthetic sample.				- •	

 $\rm m-Monograph$ 25. A mineral name in () indicates a synthetic sample.

CUMULATIVE INDEX TO CIRCULAR 539, VOLUMES 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, MONOGRAPH 25, SECTIONS 1, 2, 3, AND 4—Continued

	Vol. or sec.	Page		Vol. or sec.	Page
Copper(I) chloride (mantokite), CuCl	10	35	Iodic acid, HIO ₃	5	28
Copper(I) iodide (marchite), CuI	4	38	Iodine, I_2	3	16
Copper(I) oxide (cuprite), Cu ₂ O	2	23	Iridium, Ir	4	9
Copper(II) oxide (tenorite), CuO	1	49	Iridium dioxide, IrO ₂	4m	19
Copper sulfate (chalcocyanite), $CuSO_{4}$	3m	29	Iron, alpha Fe	4	3
Copper (11) suinde (covenite), Cus	4 2m	13	Iron arsenide, reas	1 <u>m</u>	19
Dysprosium arsenide DyAs	4m	53	Iron bromide FeBr	10 4 m	04 50
Dysprosium allium oxide 3:5.	1111	00	Iron jodide. Fel2	4m	60
$Dv_3Ga_2(GaO_4)_3$	2m	15	Iron sulfide (pyrite), FeS ₂	5	29
Dysprosium nitride, DyN	4m	53	Lanthanum arsenate, LaAsO4	$3\mathrm{m}$	36
Dysprosium sesquioxide, Dy ₂ O ₃	9	30	Lanthanum arsenide, LaAs	$4 \mathrm{m}$	60
Dysprosium telluride, DyTe	4m	54	Lanthanum borate, LaBO ₃	1m	20
Expressium vanadate, Dy VO4	4m 2m	10 21	Lanthanum Chloride, LaCla	Im 7	20
Erbium arsenide ErAs	4m	54	Lanthanum magnesium nitrate 24-hydrate	4	21
Erbium gallium oxide 3:5. $Er_3Ga_2(GaO_4)_{3-1}$	1m	12^{11}	La $Mg_2(NO_2)_{12}$. 24H $_2O_2$	1m	22
Erbium manganite, ErMnO ₃	$2\mathrm{m}$	16	Lanthanum niobium titanium oxide.		
Erbium nitride, ErN	4m	55	LaNbTiO ₆	$3\mathrm{m}$	37
Erbium phosphate, ErPO ₄	9	31	Lanthanum nitride, LaN	4m	61
Erbium sesquioxide, Er ₂ O ₃	8	$25 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5 \\ $	Lanthanum oxide, La ₂ O ₃	3	33
Erbium telluride, Erle	4m 2m	20	Lanthanum oxychloride, LaOCI	4	22
Europium (III) chlorido EuCl	lm	13	Lanthanum seienide, Labe	4m 1	01 34
Europium gallium oxide 3.5 Ella Gaa (GaQ)	2m	17	Lead boron oxide PhB.O.	4m	19
Europium nitride. EuN	4m	$\overline{56}$	Lead bromide. PbBr ₂	2	47
Europium oxide, EuO	4m	56	Lead carbonate (cerrussite), PbCO ₃	2	56
Europium oxychloride, EuOCl	$1 \mathrm{m}$	13	Lead chloride (cotunnite), PbCl ₂	2	45
Europium (III) vanadate, EuVO ₄	4m	16	Lead formate, Pb(HCO ₂) ₂	8	30
Gadolinium arsenate, GdAsO ₄	4m	17	Lead fluochloride (matlockite), PbFCl	1	76
Gadolinium fuorido, CdF	4m 1m	07 14	Lead fluoride, alpha PbF ₂ (orthorhombic)	5	31 99
Gadolinium gallium oxide 3:5	1111	14	Lead Huoride, beta PDr ₂ (cubic)	5	ээ 34
Gd_3Ga_2 (GaO ₄) ₃	$2\mathrm{m}$	18	Lead molybdate (wulfenite). PbMoO	7	23
Gadolinium nitride, GdN	4m	57	Lead monoxide (litharge), PbO (red) tetrag-		
Gadolinium oxide, Gd ₂ O ₃	$1 \mathrm{m}$	16	onal	2	30
Gadolinium oxychloride, GdOCl	1m	17	Lead monoxide (massicot), PbO (yellow)		
Gallium, Ga	2	99	(orthorhombic)	2	32
Gallium arsenide, GaAs	эш б	30 30	Lead nitrate, $Pb(NO_3)_2$	5	30
Gallium oxide alpha GaoO	4	25	Lead (11, 111) Oxide (inimum), $r D_3 O_{4}$	8	33
Gallium phosphate (a-quartz type), GaPO ₄	8	$\overline{27}$	Lead selenide (clausthalite). PbSe	5	38
Germanium, Ge	1	18	Lead sulfate (angelsite), PbSO4	3	67
Germanium dioxide, GeO ₂ (hexagonal)			Lead sulfide (galena), PbS	2	18
(low form)	1	51	Lead titanate, PbTiO ₃	5	39
Germanium dioxide, GeO_2 (tetragonal)	0	90	Lead tungstate (stolzite), PbWO ₄	7	24
(nign form)	ð Am	40 58	Lithium arsenate, Li ₃ AsO ₄	Zm	19
Germanium (IV) jodide GeL	5	$\frac{33}{25}$	Lithium promide Libr	1	62
Gold. Au	1	33	Lithium fluoride. LiF	î	61
Gold antimony 1:2 (aurostibite), AuSb ₂	7	18	Lithium iodate. LiIO ₃	7	26
Gold (I) cyanide, AuCN	10	33	Lithium molybdate, Li2MoO4 (trigonal)	$1 \mathrm{m}$	23
Gold tin, 1:1 AuSn	7	19	Lithium oxide, Li ₂ O	1m	25
Hafnium, Hf	ే గాల	18	Lithium nitrate, LiNO ₃	7	27
Holmium arsenate, HoAsU4	3m	34	Lithium perchlorate trihydrate,	8	34
Holmium etnylsulfate nonanydrate,	1	10	Lithium phospheto low form (lithiophos-	0	JI
$Ho[(C_2H_5)SO_4]_39H_2O_1$	1111	10	phate) Li ₂ PO, (orthorhombic) revised	4m	21
Holmium nitride, HoN	4111	50	Lithium phosphate, high form, Li ₃ PO ₄	3m	39
Holmium serenide, Hose	4111	39	Lithium sulfate monohydrate, Li2SO4.H2O-	4m	22
Holmium vonadata, HoVO	Am	18	Lithium trimetaphosphate trihydrate,	0	00
Indium In	3	10	$Li_3P_3O_9\cdot 3H_2O_1$	2m	20
Indium antimony Inch	3	73	Lithium tungstate, Li_2WO_4 (trigonal)	Im	25
Indium aronida (nAs	3m	35	Lithum tungstate neminydrate,	2m	20
Indium arsenide, InAs	5	26	Lutetium gallium oxide 3:5. Lu ₂ Ga ₂ (GaO ₄) ₂	2m	22
Indium phosphate InPO.	8	29	Lutetium manganite. LuMnO ₃	2m	23
monum phosphate, mi 04	0	20	Lutetium nitride, LuN	4m	62
m—Monograph 25. A mineral name in () indicates a synthetic sample.			Lutetium oxide, Lu ₂ O ₃	1m	27

CUMULATIVE INDEX TO CIRCULAR 539, VOLUMES 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, MONOGRAPH 25, SECTIONS 1, 2, 3, AND 4-Continued

	Vol. or	Dogo		Vol. or	
Magnosium Mg	sec.	Page 10	Needurnium horate NdBO	sec.	Page
Magnesium aluminate (spinel) MgAl _o O	2	35	Neodymium chloride NdCl.	1m 1m	- 32
Magnesium aluminum silicate (pyrope).	-	00	Neodymium ethylsulfate nonahydrate.	1111	00
$Mg_3Al_2(SiO_4)_3$	4m	24	$Nd[(C_2H_5)SO_4]_3 \cdot 9H_2O$	9	41
Magnesium aluminum silicate (low cordi-			Neodymium fluoride, NdF ₃	8	36
erite), $Mg_2Al_4Si_5O_{18}$ (orthorhombic)	$1 \mathrm{m}$	28	Neodymium gallium oxide 3:5,		
Magnesium aluminum silicate (high cordi-	_	0.0	$Nd_3Ga_2(GaO_4)_3$	1m	34
erite), $Mg_2AI_4Si_5O_{18}$ (hexagonal)	lm	29	Neodymium oxide, Nd ₂ O ₃	4	26
Magnesium ammonium phosphate nexany-	9m	41	Neodymium oxychloride, NdUCI	8	37
Magnesium boron oxide Mg.B.O. (triclinic)	4m	41 25	Nentunium nitride NnN	4m	30
Magnesium bromide $M\sigma Br_{0}$	4m	62	Nickel Ni	4m 1	12
Magnesium carbonate (magnesite), MgCO ₃	7	28	Nickel aluminate. NiAl ₂ O ₄	9	42
Magnesium chromite (picrochromite).			Nickel arsenic 1:2 (rammelsbergite), NiAs ₂	10	42
$MgCr_2O_4$	9	34	Nickel arsenic sulfide (gersdorffite), NiAsS	1m	35
Magnesium fluoride (sellaite), MgF ₂	4	33	Nickel(II) carbonate, NiCO ₃ (trigonal)	1m	36
Magnesium gallate, MgGa ₂ O ₄	10	36	Nickel ferrite (trevorite), NiFe ₂ O ₄	10	44
Magnesium germanate, Mg_2GeO_4 (cubic)	10	37	Nickel fluosilicate hexahydrate, $NiSiF_{6}-6H_{2}O_{-}$	8	38
Magnesium germanate, Mg_2GeO_4 (ortho-	10	90	Nickel gallate, NiGa ₂ O_4	10	45
Magnosium hudrovido (hrusito) Mg(OH)	10	38 20	Nickel germanate, $N_2 GeO_4$	9	43
Magnesium nyuroxide (bruche), $Mg(OII)_{2-1}$	1	37	Nickel sulfate NiSO.	2m	47
Magnesium silicate enstatite MgSiO ₂	6	32	Nickel sulfate hexahydrate (retgersite)	2111	20
Magnesium silicate (forsterite). Mg ₂ SiO ₄	1	83	NiSO4.6H2O	7	36
Magnesium silicate fluoride (norbergite),			Nickel sulfide, millerite, NiS	1m	37
$Mg_2SiO_4 \cdot MgF_2$	10	39	Nickel tungstate, NiWO ₄	2m	27
Magnesium silicate fluoride (humite),			Niobium silicide, NbSi ₂	8	39
$3Mg_2SiO_4 \cdot MgF_2$	1m	30	Osmium, Os	4	8
Magnesium sulfate heptahydrate (epsomite),	-	90	Palladium, Pd	1	21
MgSO ₄ ·7H ₂ O	7	30	Palladium Oxide, PdO	4	27
Magnesium tin Masn	5	01 /1	Plutonium arsenide PuAs	1 1m	65
Magnesium titanate (geikielite) MgTiO	5	43	Plutonium nhosphide PuP	4m	65
Magnesium tungstate. MgWO4	1	84	Plutonium telluride. PuTe	4m	66
Manganese aluminate (galaxite), MnAl ₂ O ₄	$\overline{9}$	35	Potassium acid phthalate,		
Manganese bromide, MnBr2	4m	63	$C_{6}H_{4}(COOH)(COOK)$	4m	30
Manganese(II) carbonate (rhodochrosite),			Potassium aluminum sulfate dodecahydrate		
MnCO ₃	7	32	(alum), $KAl(SO_4)_2 \cdot 12H_2O_{$	6	36
Manganese ferrite (jacobsite), $MnFe_2O_4$	9	36	Potassium borohydride, KBH4	9	44
Manganese lodide, Mn12	4m	03	Potassium bromate, KBrO ₃	7	38
Manganese(II) oxide (manganosite), MnO	0 0	40 37	Potassium bromide, KBr		66
Manganese selenide MnSe	10	41	Potassium bromosolonate, K ₂ r tDr ₆	0	40
Manganese sulfide (alabandite), alpha MnS.	4	11	Potassium chlorate KClO	3m	41
Manganese(II) tungstate (huebnerite).	_		Potassium chloride (svlvite), KCl	1	65
MnWO ₄	2m	24	Potassium chloroplatinate, K ₂ PtCl ₆	$\overline{5}$	49
Mercury(I) bromide, Hg ₂ Br ₂	7	33	Potassium chlororhenate, K ₂ ReCl ₆	$2\mathrm{m}$	28
Mercury(I) chloride (calomel), Hg ₂ Cl ₂	1	72	Potassium chlororuthenate (IV), K ₂ RuCl ₆	10	46
Mercury(II) chloride, HgCl ₂	1	73	Potassium chlorostannate, K ₂ SnCl ₆	6	38
Mercury(II) cyanide, Hg(UN) ₂	0	35	Potassium chromium sulfate dodecahydrate,	0	
Moreury(I) indide, HgI	2m 4	20 40	$KOr(SO_4)_2 \cdot 12H_2O_{$	0	39
Mercury(I) jodide Hole	-#	43 74	Potassium evanate KCNO	97	40
Mercury(II) oxide (montrovdite), HgO (re-	1		Potassium evanide KCN	i	77
vised)	9	39	Potassium dihvdrogen arsenate, KH ₂ AsO ₄	1m	38
Mercury(II) selenide (tiemannite), HgSe	7	35	Potassium dihydrogen phosphate, KH ₂ PO ₄₋	3	69
Mercury(II) sulfide (cinnabar), HgS (hex-			Potassium fluogermanate, K ₂ GeF ₆	6	41
agonal)	4	17	Potassium fluoplatinate, K ₂ PtF ₆	6	42
Mercury(II) sulfide (metacinnabar), HgS		01	Potassium fluoride, KF	1	64
(cubic)	4	21	Potassium fluosilicate (hieratite), K_2SiF_{6}	5	50
Molyhdonum Mo	4111	21	Potassium hoptofluogizanate, K211F6		40
Molybdenum disulfide (molybdenite) MoS	5	47	Potassium hydroxide KOH at 200 ° C	4m	40
Molybdenum trioxide (molybdenite), MoO ₂	3	30	Potassium hydroxy-chlororuthenate.	m	00
Neodynium arsenate. NdAsO4	4m	28	$K_4 \cdot Ru_2 Cl_{10} O \cdot H_2 O$	10	47
Neodymium arsenide, NdAs	4m	64	Potassium iodide, KI	1	68
			Potassium lithium sulfate, KLiSO ₄	3m	43
m-Monograph 25.			Potassium metaperiodate, KIO ₄	7	41
A mineral name in () indicates a synthetic sample.			Potassium nitrate (niter), KNO ₃	3	58

CUMULATIVE INDEX TO CIRCULAR 539, VOLUMES 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, MONOGRAPH 25, SECTIONS 1, 2, 3, AND 4—Continued

	Vol. or	Page		Vol. or	Dogo
Potossium nitrosa chlararuthenate	Sec.	1 age	Silver carbonate, Ag.CO.	lm	rage 44
K.BuCl.NO	2m	29	Silver chlorate. AgClO ₃	7	44
Potassium perchlorate, KClO	6	$\bar{43}$	Silver chloride, (cerargyrite), AgCl	4	44
Potassium perchromate, K ₃ CrO ₈	3m	44	Silver iodide (iodyrite), AgI (hexagonal)	8	51
Potassium permanganate, KMnO ₄	7	42	Silver iodide, gamma, AgI (cubic)	9	48
Potassium perrhenate, KReO4	8	41	Silver metaperiodate, AgIO ₄	9	49
Potassium phosphomolybdate tetrahydrate,			Silver molybdate, Ag ₂ MoO ₄	7	45
$K_2PO_4(MoO_3)_{12} \cdot 4H_2O_{$	8	43	Silver nitrate, AgNO ₃	5	59
Potassium sulfate (arcanite), K ₂ SO ₄	3	62	Silver nitrite, AgNO ₂	5	60
Potassium thiocyanate, KCNS	8	44	Silver oxide, $Ag_2O_{$	1m	45
Potassium zinc decavanadate 16 hydrate,	0	4.5	Silver (11) oxynitrate, $Ag_7O_8NO_3$	4	61
$K_2Zn_2V_{10}O_{28}\cdot 16H_2O_{$	3m	45	Silver permenate, Ag ReO ₄	8	53
Potassium zinc fluoride, KZnF ₃	5 4 m	21	Silver phosphate, Ag ₃ PO ₄	5	62
Praseodymium arsenate, PrAsO ₄	4111 4m	32 67	Silver selenate, Ag_2SeO_4	2m	32
Praseodymium arsenide, Pras	4111 1 m	20	Silver sulfide (argentite) Ag S	10	40
Praseodymium fuorido PrF.	5	59	Sodium acid fluoride NaHE	10	63
Proceedymium avychloride PrOCI	g	47	Sodium borohydride, NaBH	ğ	51
Prosodymium sulfide PrS	4m	67	Sodium bromate. NaBrO2	5	65
Rhenium Re	2	13	Sodium bromide, NaBr	3	47
Rhodium Rh	3	- 9	Sodium carbonate monohydrate	J.	
Rubidium aluminum sulfate dodecahydrate.		, i i i i i i i i i i i i i i i i i i i	(thermonatrite), Na ₂ CO ₃ ·H ₂ O	8	54
$RbAl(SO_4)_2 \cdot 12H_2O_{$	6	44	Sodium chlorate, NaClO ₃	3	51
Rubidium bromate, RbBrO ₃	8	45	Sodium chloride (halite), NaCl	2	41
Rubidium bromide, RbBr	7	43	Sodium cyanate, NaCNO	$2\mathrm{m}$	- 33
Rubidium bromotellurate, Rb ₂ TeBr ₆	8	46	Sodium cyanide, NaCN (cubic)	1	78
Rubidium chlorate, RbClO ₃	8	47	Sodium cyanide, NaCN (orthorhombic) at		
Rubidium chloride, RbCl	4	41	6 ° C	1	79
Rubidium chloroplatinate, Rb ₂ PtCl ₆	5	53	Sodium fluoride (villiaumite), NaF	1	63
Rubidium chlorostannate, Rb ₂ SnCl ₆	6	46	Sodium hydroxide, NaOH at 300 ° C	4m	69
Rubidium chlorotellurate, Rb ₂ TeCl ₆	8	48	Sodium iodate, NaIO ₃	7	47
Rubidium chromate, $Rb_2 CrO_4$	3m	40	Sodium iodide, Nal	4	31
Rubidium chromium suitate dodecanydrate, DhCr(SO) 19HO	6	47	drouw ailioata drouita		
RUOF(SU4)2.12H2U	6	47	No M α Al B Si O (OH)	9	47
Rubidum fluosiliente Rh-SiF.	6	40	Sodium metaporiodato NaIO.	$\frac{3m}{7}$	41
Rubidium iodide RbI	4	43	Sodium melybdate, NarO4	1m	40
Rubidium perchlorate. RbClO	2m	30	Sodium nitrate (soda-niter) NaNO	6	50
Rubidium periodate. RbIO ₄	$\overline{2m}$	31	Sodium nitrite. NaNO ₂	4	62
Rubidium sulfate, Rb ₂ SO ₄	8	48	Sodium orthotungstate (VI) dihydrate.	-	01
Ruthenium, Ru	4	5	$Na_2WO_4 \cdot 2H_2O_{}$	$2\mathrm{m}$	- 33
Samarium arsenate, SmAsO ₄	4m	33	Sodium perchlorate, NaClO ₄ (orthorhombic)	7	49
Samarium arsenide, SmAs	4m	68	Sodium sulfate (thenardite), Na ₂ SO ₄	$\dot{2}$	$\overline{59}$
Samarium chloride, SmCl ₃	$1 \mathrm{m}$	40	Sodium sulfite, Na ₂ SO ₃	$\overline{3}$	60
Samarium fluoride, SmF ₃	1m	41	Sodium tetrametaphosphate tetrahydrate,		
Samarium gallium oxide 3:5, $Sm_3Ga_2(GaO_4)_{3-}$	1m	42	alpha, $Na_4P_4O_{12}\cdot 4H_2O$ (monoclinic)	10	52
Samarium oxide, Sm_2O_3 (cubic)	4m	34	Sodium tetrametaphosphate tetrahydrate,		
Samarium oxychloride, SmOCI	Im	43	beta, $Na_4P_4O_{12}$ ·4H ₂ O (triclinic)	$2\mathrm{m}$	35
Scandium arsenate, ScAsO ₄	4m	30	Sodium trimetaphosphate, Na ₃ P ₃ O ₉	$3\mathrm{m}$	49
Scandium arsenide, ScAs	4m 2	08 97	Sodium trimetaphosphate monohydrate,		
Scandium phosphato SoPO	ວ 0	50	$Na_3P_3O_9 H_2O_1$	3m	50
Selenium Se	5	54	Socium tungstate, $Na_2 W O_4$	Im	47
Selenium dioxide (selenolite) SeO	1	53	Strontium arsenate, Sr ₃ (ASO ₄) ₂	2m	30
Silicon. Si	$\frac{1}{2}$	6	Strontium horon oxide SrB O	3III 4mi	00 26
Silicon dioxide, alpha or low quartz, SiO ₂	-	v	Strontium bromide hevelydrate SrBr 6H.O.	4111	00 60
(hexagonal)	3	24	Strontium carbonate (strontianite) SrCO.	2	56
Silicon dioxide (alpha or low cristobalite).	_		Strontium chloride SrCl.	4	40
SiO ₂ (revised) (tetragonal)	10	48	Strontium chloride hexahydrate, SrCl.6H.0	4	58
Silicon dioxide (beta or high cristobalite),			Strontium fluoride. SrF2	5	67
SiO ₂ (cubic)	1	42	Strontium formate, Sr (CHO ₂) ₂	8	55
Silver, Ag	1	23	Strontium formate dihydrate.	Ŭ	00
Silver antimony telluride, AgSbTe ₂	$3\mathrm{m}$	47	Sr(CHO ₂) ₂ ·2H ₂ O (orthorhombic)	8	56
Silver arsenate, Ag ₃ AsO ₄	5	56	Strontium iodide hexahydrate, SrI2.6H2O	8	58
Silver bromate, AgBrO ₃	5	57	Strontium molybdate, SrMoO ₄	7	50
Suver bromide (bromyrite), AgBr	4	40	Strontium nitrate, Sr(NO ₃) ₂	1	80
m-Monograph 25			Strontium oxide, SrO	5	68
A mineral name in () indicates a synthetic sample.			Strontium peroxide, SrO ₂	6	52
-					

CUMULATIVE INDEX TO CIRCULAR 539, VOLUMES 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, MONOGRAPH 25, SECTIONS 1, 2, 3, AND 4-Continued

	Vol. or	D		Vol. or	
	sec.	Page		sec.	Page
Strontium sulfate (celestite), SrSO ₄	2	61	Tin (11) oxide, SnO	4	28
Strontium sulfide, SrS	7	52	Tin (IV) oxide (cassiterite), SnO_2	1	54
Strontium telluride, SrTe	4m	69	Tin (11) telluride, SnTe	7	61
Strontium titanate, SrTiO ₃	3	44	Titanium, Ti	3	1
Strontium tungstate, SrWO ₄	7	53	Titanium dioxide (anatase), TiO ₂ (tetra-		
Strontium zirconate, SrZrO ₃	9	51	gonal)	1	46
Sulfamic acid, NH ₃ SO ₃	7	54	Titanium dioxide, brookite, TiO ₂ (ortho-	_	10
Sulfur, S	9	54	rhombic)	3m	57
Tantalum, Ta	1	29	Titanium dioxide (rutile), TiO ₂ (tetragonal)	1	44
Tantalum Silicide, TaSi2	8	59	Titanium (III) oxide, TiO, 515	å	50
Tellurium. Te	ĭ	26	Titanium silicide. Ti Si	9	64
Tellurium (IV) oxide (paratellurite). TeO	-		Titanium sulfide. TiS	Am	79
(tetragonal)	7	56	Tungsten. W	1	14
Tellurium (IV) oxide, paratellurite, TeO	•	00	Tungsten sulfide (tungstenite) WS	0	40
(totragonal)	10	55	Uranium dioxide (uraninite) UO	0	00
Tollurium (IV) oxide tollurite ToO. (ortho-	10	00	Uranium telluride UTe	4 700	33
rhombia)	0	57	Uroe CO (NH)	411	13
Tarbium ercenete Th AgO	2	54	Vanadium (V) orida $V O$	(61
Terbium nitride ThN	5m 4	70	Vitarbium arcanata Vh A_2O_5	8	66
The line along in the second s	$4 \mathrm{m}$	70	Vtterbium ansenate, YDASO4	4m	- 38
Thallium aluminum sulfate dodecanydrate,	0	50	Ytterbium arsenide, YDAs	4m	- 73
$11AI(SO_4)_2 \cdot 12H_2O_{$	6	23	Ytterblum gaillum oxide 3:5,		
Thallium (1) arsenate, TI_3ASO_4	2m	31	$Y D_3 Ga_2 (Ga U_4)_3$	lm	49
Thallium (1) bromate, TIBrO ₃	8	60	Ytterblum nitride, YbN	4m	74
Thallium bromide, TIBr	7	57	Yttrium arsenate, YAsO ₄	2m	- 39
Thallium (1) chlorate, TIClO ₃	8	61	Yttrium arsenide, YAs	4m	74
Thallium (I) chloride, TlCl	4	51	Yttrium gallium oxide 3:5, $Y_3Ga_2(GaO_4)_{3}$	1m	50
Thallium chloroplatinate, Tl ₂ PtCl ₆	5	70	Yttrium, oxide, Y_2O_3	3	28
Thallium chlorostannate, Tl ₂ SnCl ₆	6	54	Yttrium oxychloride, YOCl	1m	51
Thallium chromate, Tl ₂ CrO ₄	$3\mathrm{m}$	54	Yttrium phosphate (xenotime), YPO ₄	8	67
Thallium chromium sulfate dodecahydrate,			Yttrium telluride, YTe	4m	75
$TlCr(SO_4)_2 \cdot 12H_2O_{$	6	55	Zinc, Zn	1	16
Thallium fluosilicate, Tl ₂ SiF ₆	6	56	Zinc aluminate (gahnite), ZnAl ₂ O ₄	$\overline{2}$	38
Thallium gallium sulfate dodecahydrate.			Zinc antimony oxide, ZnSb ₂ O ₄	4m	39
$TlGa(SO_4)_{2}$, $12H_2O_{2}$	6	57	Zinc borate, ZnB ₂ O ₄	1	83
Thallium (I) jodate, TIIO ₃	8	62	Zinc carbonate, smithsonite, ZnCO ₃	8	69
Thallium (I) jodide, TII (orthorhombic)	4	53	Zinc cyanide, Zn (CN) ₂	5	73
Thallium (I) nitrate, TINO ₂	6	58	Zinc fluoride, ZnF ₂	ĕ	60
Thallium (III) oxide. Tho	2	28	Zinc fluosilicate hexahydrate, ZnSiF.6H.O	8	70
Thallium (I) percholorate, TICIO	2m	38	Zinc germanate, Zn ₂ GeO ₄	10	56
Thallium (I) phosphate Tl.PO.	7	58	Zinc jodide ZnL	10	60
Thallium (III) phosphate TIPO	7	59	Zinc orthosilicate (willemite) Zn-SiO	7	62
Thallium (I) sulfate TI SO.	ĥ	50	Zinc oxide (zincite) ZnO	5	25
Thallium (I) thicavanata TICNS	0	63	Zinc pyrosilicate hydrate hemimorphite	2	20
Thallium (I) tungstate TI WO	1m	18	$Z_{n}(OH)$ Si O_{n} H O	9	60
Thanium (1) tungstate, 112 W 04	1111	40	Zina solonido $ZnSo$	4	02
Thorium arida (theriarita) ThO	4m	10	Zine sulfate (gipkosite) ZnSO	37	23
Thorium oxide (thorianite), $1 \Pi O_2$	<u>, 1</u>	- 07 50	Zine sulfate (Zinkosite), Zinso4	4	04
I nullum arsenate, $TmAsO_4$	3m	50	Zine suitate neptanyurate (gosiarite),	0	
Inulium arsenide, ImAs	4m	71	$ZnSO_4 \cdot (H_2O_{1})$	8	71
Thulium nitride, TmN	4m	71	Zinc suinde, (wurtzite), alpha ZnS (hexag-	-	
Thulium sesquioxide, Tm_2O_3	9	58	onal)	2	14
Thulium telluride, TmTe	4m	72	Zinc sulnde, (sphalerite), beta ZnS (cubic)	2	16
Tin, alpha, Sn (cubic)	2	12	Zinc telluride, ZnTe	3m	58
Tin, beta, Sn (tetragonal)	1	24	Zinc tungstate, (sanmartinite), $ZnWO_{4}$	$2\mathrm{m}$	40
Tin arsenide, SnAs	4m	37	Zirconium, alpha, Zr	2	11
Tin (II) fluoride, SnF ₂	3m	51	Zirconium iodate, $Zr(IO_3)_{4}$	1m	51
Tin (IV) iodide, SnI_4	5	71	Zirconium phosphide, ZrP	4m	75
			Zirconium silicate, zircon, ZrSiO	4	68
			Zirconium sulfate tetrahydrate		
m—Monograph 25.			$7_{r}(SO) AUO$	7	66
in model in a mane in () multicates a synthetic sample.			21(004)2.41120	1	00

CUMULATIVE MINERAL INDEX

	Vol. or sec.	Page		Vol. or sec.	Page
Alabandite MnS Alum, KAl(SO ₄) ₂ ·12H ₂ O Ammonia-niter, NH ₄ NO ₃	$\begin{array}{c} 4\\ 6\\ 7\end{array}$	$\begin{array}{c}11\\36\\4\end{array}$	Andradite, Ca ₃ Fe ₂ Si ₃ O ₁₂ Anglesite, PbSO ₄ Anhvdrite, CaSO ₄	9 3 4	22 67 65
Anatase, TiO ₂	1	46	Aragonite, CaCO ₃	3	53

⁷

CUMULATIVE MINERAL INDEX—Continued

	Vol. or sec.	Page		Vol. or	Page
Argentite, Ag ₂ S	10	51	Mascagnite, $(NH_4)_2SO_4$ (revised)	9	1 age
Arcanite, K ₂ SO ₄	3	$\tilde{62}$	Massicot, PbO (yellow)	$\overset{0}{2}$	32
Arsenolite, As ₂ Ô ₃	1	51	Matlockite, PbFCl	1	76
Aurostibite, AuSb2	7	18	Metacinnabar, HgS	4	21
*Azurite, Cu ₃ (OH) ₂ (CO ₃) ₂	10	30	*Millerite, NiS	1m	37
Barite, BaSO ₄	3	65	Minium, PD_3O_4	8	32
Berlinite, AIP O_4	10	చ 19	Molybdenite, Moo	5	47
*Beryl, De_3Al_2 (SIO ₃) ₆	3m	15	Montroydite Hg() (revised)	3 0	30
Bismoclite BiOCl	4	54	Mullite, 3Al ₂ O ₂ ·2SiO ₂	3m	3
Bismuthinite. Bi ₂ S ₃	4	$\tilde{23}$	Nantokite. CuCl	4	35
Böhmite, Al ₂ O ₃ ·H ₂ O	3	38	Niter, KNO ₃	3	58
Bromellite, BeO	1	36	Nitrobarite, $Ba(NO_3)_2$	1	81
Bromyrite, AgBr	4	46	Norbergite, Mg ₂ SiO ₄ ·MgF ₂	10	39
*Brookite, TiO ₂	3m	57	Oldhamite, CaS	$\frac{7}{2}$	15
Brucite, Mg(OH) ₂	6	30	Otavite, $CdCO_3$	7	11
Calaita CaCO	1 9	47 51	$\nabla xammite, (N \Pi_4)_2 \cup_2 \cup_4 \cdot \Pi_2 \cup_4 \cup_4 \cdot \Pi_2 \cup_4 \cup_4 \cup_4 \cup_4 \cup_4 \cup_4 \cup_4 \cup_4 \cup_4 \cup_4$	10	5
Calomel HasCla	1	72	Paratellurite $T_0 O_0$	10	56
Cassiterite. SnO_2	1	54	Partridgeite, Mn ₂ O ₂	ģ	37
Celestite, SrSO ₄	$\hat{2}$	61	Periclase. MgO	ĭ	37
Cerargyrite, AgCl	4	44	*Phenacite, Be ₂ SiO ₄	8	11
Cerianite, CeO ₂	1	56	Picrochromite, MgCr ₂ O ₄	9	34
Cerussite, PbCO ₃	2	56	Portlandite, Ca(OH) ₂	1	58
Cervantite, Sb ₂ O ₄	10	8	Powellite, CaMoO ₄	6	22
Chalcocyanite, CuSO ₄	3m	29	Pyrite, FeS ₂	5	29
Chloraluminite, AlCl ₃ ·6H ₂ O	7	3	Pyrope, $Mg_3Al_2(SiO_4)_3$	4m	24
Chrysoberyl, BeAl ₂ O ₄	9	10	*Quartz, SiO ₂ (alpha or low)	3	24
*Claudotito As O	3m	17	Rammersberghe, NIAS2	10	42
Clausthalite PhSe	5	38	Rhodochrosite MnCO ₂	7	30
Cordierite, Mg ₂ Al ₄ Si ₅ O ₁₈ (orthorhombic)	1m	28	Rutile. TiO ₂	i	44
Cordierite, Mg ₂ Al ₄ Si ₅ O ₁₈ (hexagonal)	1m	$\frac{1}{29}$	Safflorite. CoFeAs4	10	28
Corundum, Al ₂ O ₃	9	3	Sal-ammoniac, NH ₄ Cl	1	59
Cotunnite, PbCl ₂	2	45	Sanmartinite, ZnWO4	$2\mathrm{m}$	40
Covellite, CuS	4	13	*Scheelite, CaWO ₄	6	23
Cristobalite, (alpha or low) SiO_2 (revised)	10	48	Selenolite, SeO ₂	1	53
Cristobalite, (beta or high) SiO ₂	1	42	Sellaite, MgF ₂	4	33
Cryptohalite, $(NH_4)_2SiF_6$	5	5	Senarmontite, SD_2O_3	3	31
*Diamond C	2 9	20 5	*Smithaanita ZnCO	10	21
*Diaspore Alco. Ho	23	41	Sold-niter NaNO.	6	- 09 50
*Dravite, NaMg ₂ Al ₆ B ₂ Si ₆ O ₂₇ (OH) ₄	3m	47	Sphalerite, ZnS	2	16
*Enstatite. MgSiO	6	32	Spherocobaltite. CoCO ₃	10	24
Epsomite, MgSO ₄ ·7H ₂ O	7	30	Spinel, MgAl ₂ O ₄	$\frac{10}{2}$	35
Eschynite, CeNbTiO ₆	3m	24	Stibnite, Sb ₂ S ₃	5	6
Ettringite, Al ₂ O ₃ ·6CaO·3SO ₃ ·31H ₂ O	8	3	Stolzite, PbWO ₄	7	24
Fluorapatite, Ca ₅ F(PO ₄) ₃	3m	22	Strontianite, SrCO ₃	3	56
Fluorite, CaF ₂	1	69	Struvite, MgNH ₄ PO ₄ ·6H ₂ O	3m	41
Forsterite, Mg_2SiO_4	1	83 2 #	Sylvite, KOL	1	65
Colone PhS	9	00 19	Tellurobismuthito Bi To	3m	- 16
Gabnite Zn Al-O.	2	38	Tenorite CuO	1	49
Geikielite, MgTiO ₂	$\frac{2}{5}$	43	Teschemacherite. NH ₄ HCO ₂	9	5
Gersdorffite, NiAsS	1m	35	Teschermigite, NH ₄ Al(SO ₄) ₂ ·12H ₂ O	6	3
Goslarite, ZnSO ₄ ·7H ₂ O	8	71	Thenardite, Na ₂ SO ₄	2	59
Greenockite, CdS	4	15	Thermonatrite, Na ₂ CO ₃ ·H ₂ O	8	54
Halite, NaCl	2	41	Thorianite, ThO ₂	1	57
*Hemimorphite, $Zn_4(OH)_2Si_2O_7 \cdot H_2O$	2	62	Tiemannite, HgSe	7	35
Hieratite, K ₂ SiF ₆	5	50	*Topaz, $Al_2SlO_4(F, OH)_2$	lm	4
Humito $2M\pi$ SiO M π E	2m 1m	24	Trevorite, NiFe $_2O_4$		44
Indurite Agl	8	51	Urapinite UO.	2	33
Jacobsite. MnFe.O.	9	36	Uvarovite, Ca ₂ Cr ₂ (SiO ₄) ₂	10	17
Litharge, PbO (red)	$\frac{1}{2}$	30	*Valentinite. Sb ₀ O ₂	10	6
Lithiphosphate, Li ₃ PO ₄	$4\mathrm{m}$	21	Villiaumite, NaF	1	63
Loellingite, FeÁs2	10	34	Willemite, Zn ₂ SiO ₄	7	62
Magnesite, MgCO ₃	7	28	Witherite, BaCO ₃	2	54
Malachite, Cu ₂ (OH) ₂ CO ₃	10	31	Wulfenite, PbMoO ₄	7	23
Manganosite, MnO	5	45	Wurtzite, ZnS	2	14
Marshite, Cul	4	38	Xenotime, YPO ₄	8	- 67
			Zincite, ZnO	27	20
* Natural mineral.			*Zincon ZrSiO	A	69
m-monograph 25.			$\Delta 110011$, $\Delta 10104$	T	00

U.S. DEPARTMENT OF COMMERCE

WASHINGTON, D.C. 20230

POSTAGE AND FEES PAID U.S. DEPARTMENT OF COMMERCE

•

OFFICIAL BUSINESS