NBS MONOGRAPH 25-SECTION 19

U.S. DEPARTMENT OF COMMERCE/National Bureau of Standards

Standard X-ray Diffraction Powder Patterns

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards' was established by an act of Congress on March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau's technical work is performed by the National Measurement Laboratory, the National Engineering Laboratory, and the Institute for Computer Sciences and Technology.

THE NATIONAL MEASUREMENT LABORATORY provides the national system of physical and chemical and materials measurement; coordinates the system with measurement systems of other nations and furnishes essential services leading to accurate and uniform physical and chemical measurement throughout the Nation's scientific community, industry, and commerce; conducts materials research leading to improved methods of measurement, standards, and data on the properties of materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; develops, produces, and distributes Standard Reference Materials; and provides calibration services. The Laboratory consists of the following centers:

Absolute Physical Quantities² — Radiation Research — Chemical Physics — Analytical Chemistry — Materials Science

THE NATIONAL ENGINEERING LABORATORY provides technology and technical services to the public and private sectors to address national needs and to solve national problems; conducts research in engineering and applied science in support of these efforts; builds and maintains competence in the necessary disciplines required to carry out this research and technical service; develops engineering data and measurement capabilities; provides engineering measurement traceability services; develops test methods and proposes engineering standards and code changes; develops and proposes new engineering practices; and develops and improves mechanisms to transfer results of its research to the ultimate user. The Laboratory consists of the following centers:

Applied Mathematics — Electronics and Electrical Engineering² — Manufacturing Engineering — Building Technology — Fire Research — Chemical Engineering²

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides scientific and technical services to aid Federal agencies in the selection, acquisition, application, and use of computer technology to improve effectiveness and economy in Government operations in accordance with Public Law 89-306 (40 U.S.C. 759), relevant Executive Orders, and other directives; carries out this mission by managing the Federal Information Processing Standards Program, developing Federal ADP standards guidelines, and managing Federal participation in ADP voluntary standardization activities; provides scientific and technological advisory services and assistance to Federal agencies; and provides the technical foundation for computer-related policies of the Federal Government. The Institute consists of the following centers:

Programming Science and Technology - Computer Systems Engineering.

¹Headquarters and Laboratories at Gaithersburg, MD, unless otherwise noted; mailing address Washington, DC 20234. ²Some divisions within the center are located at Boulder, CO 80303.

Standard X-ray Diffraction Powder Patterns Section 19 — Data for 51 Substances

Marlene C. Morris, Howard F. McMurdie, Eloise H. Evans, Boris Paretzkin, Harry S. Parker, and Nikos P. Pyrros

International Centre for Diffraction Data 1601 Park Lane Swarthmore, PA 19081

and

Camden R. Hubbard

National Measurement Laboratory National Bureau of Standards Washington, DC 20234

U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

Issued December 1982

Library of Congress Catalog Card Number: 53-61386

National Bureau of Standards Monograph 25 Section 19—Data for 51 Substances Natl. Bur. Stand. (U.S.), Monogr. 25—Sec. 19, 118 pages (Dec. 1982) CODEN: NBSMA6

> U.S. GOVERNMENT PRINTING OFFICE WASHINGTON: 1982

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402 Price \$5.50 (Add 25 percent for other than U.S. mailing)

Experimental patterns:	
Aluminum yttrium oxide, AlYO ₃	7
Aluminum yttrium oxide, Al ₂ Y ₄ O ₉	9
Aluminum yttrium oxide, Al ₅ Y ₃ O ₁₂	11
Ammonium cadmium phosphate hydrate,	
$NH_4CdPO_4 \cdot H_2O$	13
Barium aluminum titanium oxide,	1/
$BaA1_6T10_{12}$	14
Barlum aluminum titanium oxide,	16
Barium horide. BaBc	18
Barium neodymium titanium oxide,	
BaNd ₂ Ti ₅ O ₁₄	19
Barium tungsten oxide, Ba ₃ WO ₆	21
Beryllium carbide, Be ₂ C	23
Cadmium iodide, α-CdI ₂	24
Calcium aluminum oxide hydrate,	
$Ca_4A1_6O_{13}$ * $3H_2O$	25
chobogite Co. Al Si O t12H O	27
Calcium silicate (larnite)	21
B-CaoSiQ	29
Calcium silicon fluoride hydrate,	
$CaSiF_6 \cdot 2H_2O$	31
Cesium iodide, CsI ₃	33
Cesium molybdenum oxide, Cs ₂ Mo ₃ O ₁₀	35
Chromium boride, CrB ₂	37
Chromium niobium oxide, CrNbO ₄	38
Cobalt arsenate hydrate (erythrite),	
$Co_3(ASU_4)_2 \cdot SH_2U$	39
Co. (PO.). +8H.O	40
Erbium iron ErFe	40
Ethylenediamine Hydrochloride.	72
$C_2H_8N_2 \cdot 2HC1$	43
Ethylenediaminetetraacetic Acid,	
C ₁₀ H ₁₂ N ₂ O ₈	45
Hafnium nitride, HfN	46
p-Iodobenzoic Acid, C ₇ H ₅ IO ₂	47
Iron aluminum oxide (hercynite),	10
$reA1_2U_4$	40
Iron chromium oxide (chromite)	
FeCr ₂ O ₄	50
Lithium zirconium oxide, Li ₂ ZrO ₃	51
Magnesium arsenate hydrate	
(hoernesite), $Mg_3(AsO_4)_2 \cdot 8H_2O$	53
Magnesium phosphate (farringtonite),	
$Mg_3(PO_4)_2$	55
Manganese tartrate, C ₄ H ₄ MnO ₆	57
Nickel expension bydrate (expensional)	29
Nickel alsenate hydrate (annabergite),	60
Nickel molybdenum oxide. NiMoO4	62
Nickel phosphate hydrate.	
$Ni_3(PO_4)_2 \cdot 8H_20$	64
Nickel sulfate hydrate (nickel-hexa-	
hydrite), β -NiSO ₄ ·6H ₂ O	65
Niobium, Nb	67
Potassium barium phosphate,	(0
NDarU4	68
KCaPO4	70
	70

Introduction

Page

Potassium strontium phosphate,	
KSrPO ₄	71
Silver telluride (hessite), Ag ₂ Te	73
Sodium barium phosphate, NaBaPO ₄	75
Sodium strontium phosphate,	
NaSrPO ₄	77
Sodium titanium phosphate,	
$NaTi_2(PO_4)_3$	79
Sodium zirconium phosphate,	
$NaZr_2(PO_4)_3$	81
Yttrium chromium oxide, YCrO ₃	83
Zinc arsenate hydrate (koettigite),	
$Zn_3(AsO_4)_2 \cdot 8H_2O$	85
Zinc sulfate hydrate (gunningite),	
$ZnSO_4 \cdot H_2O$	86
Calculated pattern:	
Phenobarbital hydrate,	
$C_{12}H_{12}N_2O_3 \cdot H_2O$	88
Cumulative indices	
(Circular 539, Volumes 1-10 and Monograph	25,
Sections 1-19 inclusive)	
1 To const	0.0
1. Inorganic	90
2. Organic formula	106
3. Urganic name	109
4. mineral	112

Publications Available

Previous work has been published as a book entitled <u>Powder Diffraction Data from the Joint Committee</u> on <u>Powder Diffraction Standards Associateship at the National Bureau of Standards</u> (1976) (obtainable from the publisher: JCPDS--International Centre for Diffraction Data, 1601 Park Lane, Swarthmore, PA 19081, price furnished on request). The volume is sold with an accompanying search manual, and contains 949 card images of patterns of experimental data, published originally as Circular 539 (vols. 1-10) and Monograph 25, Sections 1-12, and most of Section 13.

Individual copies of the Circular and Monograph are still available and may be obtained from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161. If a publication listed below is identified with a number, use this number in ordering. All are available in photocopy or microfiche; the price is not fixed and will be furnished on request.

NBS Publicatio	on	Orden	c Nur	nber	NBS Publicatio	n Order Num	ber
Circular 539,	Volume Volume Volume Volume Volume Volume Volume Volume	1	178 178 178 178 178 178 178 178 178 178	902 903 904 905 906 907 908 909 910 911	Monograph 25,	Section 1PB 178 4 Section 2PB 178 4 Section 3PB 178 4 Section 4 (order by section Section 5 " Section 6 " Section 7 " Section 8PB 194 8 Section 9COM 72-50 Section 10COM 72-51 Section 11COM 74-50 Section 13PB 254 0 Section 14PB 272 3 Section 15	29 30 31 #) 72 002 079 183 162 73 72 82
						Decercia is	~-

Also, until the present supply is exhausted, the following issues are for sale from the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402. Order by given catalog number, and add 25% to the price, for other than U.S. mailing.

		calog Number	Price
Section	12SN	003-003-01376-5	\$1.50
Section	14SN	003-003-01842-2	2.75
Section	15SN	003-003-01986-1	4.00
Section	16SN	003-003-02128-8	5.00
Section	17SN	003-003-02253-5	4.50
Section	18SN	003-003-02370-1	5.50

ERRATA

Circular 539

Volume 8, p. 67: A least squares refinement of the d's gives results: a=6.8837(2), c=6.0197(5). Several of the hkl's need to be changed for angles higher than 100°.

Monograph 25

Section 11, p. 18: Density should be 2.197.

,	τ.		
	p.	56:	Density should be 2./33.
Section 17,	p.	3:(The correct formula for σ_i^2 is: $\sigma_i^2 = \frac{1}{n-1} \sum_{k=1}^n \left(I_i^{rel}(k) - \langle I \rangle_i \right)^2$
	p.	32:	Z should be 4.
	р.	34:	Density should be 1.608.
Section 18,	р.	3:	Figure 2 is upside down.
	р.	9:	The value c/b should be 0.3548, and the calculated density should be 3.876.
	р.	10:	Add to the sample description "A final heating was made at 1350 °C for 2 days."
	р.	35:	The value c/b should be 0.5356.
	р.	63:	In the reference to Bouaziz, delete the volume number 7.
	р.	63:	In the table, at d=1.5509, the intensity should be 14.

STANDARD X-RAY DIFFRACTION POWDER PATTERNS

Section 19 --- Data for 51 Substances

by

Marlene C. Morris, Howard F. McMurdie, Eloise H. Evans, Boris Paretzkin, Harry S. Parker, and Nikos P. Pyrros JCPDS--International Centre for Diffraction Data

and

Camden R. Hubbard National Bureau of Standards

Standard x-ray powder diffraction patterns are presented for 51 substances. These patterns, useful for identification, were obtained by manual or automated diffractometer methods, or were calculated from published crystal structure data. The lattice constants from the experimental work were refined by least-squares methods, and reflections were assigned Miller indices consistent with space group extinctions. Relative intensities, calculated densities, literature references, and other relevant data are included.

Key words: Crystal structure; densities; lattice constants; powder patterns; reference intensities; standard; x-ray diffraction.

INTRODUCTION

The Powder Diffraction File (PDF) is a continuing compilation of diffraction patterns gathered from many sources. Produced and published by the JCPDS--International Centre for Diffraction Data¹, the PDF is used for identification of crystalline materials by matching d-spacings and diffraction intensity measurements. Under the partial sponsorship of the JCPDS, the program at the National Bureau of Standards contributes new or improved data to the PDF. Our work also aids in the development of diffraction techniques. This report presents information for one calculated and 50 experimental patterns, and is the twenty-ninth of the series of <u>Standard X-ray Diffraction Powder</u> Patterns².

EXPERIMENTAL POWDER PATTERNS

<u>Names</u>. The nomenclature follows the current practice of the PDF. A mineral name in () indicates a synthetic sample.

CAS registry number. The Chemical Abstracts Service Registry Number is included, when available, to help identify the sample. This number forms the basis for computer aided searching of Chemical Abstracts. [Chemical Abstracts Service Registry Handbook-Number Section, 1974]

TJCPDS--International Centre for Diffraction Data, 1601 Park Lane, Swarthmore, PA 19081. This Pennsylvania non-profit corporation functions in cooperation with the American Ceramic Society, the American Crystallographic Association, the American Society for Testing and Materials, The Clay Minerals Society, The Institute of Physics, the Mineralogical Association of Canada, the Mineralogical Society of America, The Mineralogical Society of Great Britain and Ireland, the National Association of Corrosion Engineers, and the Société Française de Minéralogie et de Cristallographie.

²See previous page for other published volumes.

Sample. The samples used to make NBS patterns were obtained from a variety of sources or were prepared in small quantities in our laboratory. Appropriate annealing or recrystallization of the samples improved the quality of many of the patterns. A check of phase purity was provided by indexing the x-ray pattern and by optical examination.

Optical data. When reported, optical measurements were made by grain immersion methods, in white light, using oils standardized in sodium light, in the refractive index range 1.40 to 2.1 [Hartshorne and Stuart, 1970].

The names of the sample colors are selected from the ISCC-NBS Centroid Color Charts [1965].

Interplanar spacings. All spacing determinations were made using an internal standard mixed with the sample, packed in a shallow holder. Choice of the standard was determined by the need for low angle and unobstructed reflections. The amount of standard was estimated so that the intensity of its strongest peak would be about equal to the intensity of the strongest peak of the sample. The internal standards used were of high purity (99.99%). The lattice constants used for them at 25 °C are given in Table 1; the 20 angles were computed using cell dimensions uncorrected for index of refraction.

Standard Reference Material 640, Si powder (a=5.43088Å), was used for many patterns. This SRM is now out of stock and has been replaced by SRM 640a (a=5.430825Å), [1982; Hubbard, 1982a]. The SRM 640a lattice constant for Si was refined from multiple powder data measurements made with tungsten and silver as internal standards. Single crystal cell parameter data were also collected. The lattice parameters from the two methods agreed within three parts in 10^5 . D-spacing results using SRM 640a will be in agreement with patterns recorded in this series of Monographs since 1966. A second internal standard, fluorophlogopite (FP), is available as Standard Reference Material 675 [1982]. The d(001) spacing was refined from multiple powder data measurements using SRM 640a (Si), and tungsten as internal standards [Hubbard, 1982b]. The calculated 2θ values of the d(00 ℓ) lines are given in Table 2.

Fable 🔅	1
---------	---

Ca	lculated 20 Ang	les, $CuK\alpha_1 \lambda = 1$.540598Å
hk£	W ° a=3.16524A ±.00004	Ag a=4.08651A ±.00002	Si ° a=5.430825A ±.000011 . (SRM 640a)
110	40.262		
111		38.112	28.443
200	58.251	44.295	
211	73.184		
220	86.996	64.437	47.304
310	100.632		
311		77.390	56.124
222	114.923	81.533	
321	131.171		
400	153.535	97.875	69.132
331		110.499	76.378
420		114.914	
422		134.871	88.033
511/33	3	156.737	94.955
440			106.712
531			114.096
620			127.550
533			136.900
444			158.644

^{*}Data for SRM 640 can be found in previous monographs of this series.

Table 2

SRM 675, F1	uorophlogopite (FP)				
$d_{001} = 9.98104 \text{\AA}$ ± 0.00007					
Calculated 20 Ang	les, CuK $\alpha_1 \lambda = 1.540598 \mathring{A}$				
00£ 1 2 3 4 5	20 8.853 17.759 26.774 35.962 45.397				
6 7 8 10 11 12	55.169 65.399 76.255 101.025 116.193 135.674				

All data were collected at 25 \pm 1 °C on a diffractometer equipped with a focusing graphite crystal monochromator located between the sample

and the scintillation counter. Pulse height discrimination was used as well. The data were collected using copper radiation: $\lambda(CuK\alpha_1, peak)$ = 1.540598Å [Deslattes and Henins, 1973].

Due to a transition from strip chart to digital recording the majority of the patterns reported in this monograph were measured both manually and automatically.

Manual patterns were measured on a diffractometer equipped with a strip chart recorder. The readings of 20 were taken at positions about 20% of the way down from the top, and in the center of the peak width. This avoided errors associated with aberrations at the very top of the peaks. The $K\alpha_2$ peaks were occasionally read to assist in establishing a $K\alpha_1$ peak position, but $K\alpha_2$ peaks are not reported.

Automatic patterns were measured with a computer controlled diffractometer. Digital data were measured on one of two diffractometers controlled by the AUTO program. [Snyder et al., 1981]. All the patterns were measured in stepscan mode with a step width of 0.01 degrees and counting times at each point greater than or equal to 3 sec.

The data were processed with the JCPDS-NBS POWPAT82 system of processing programs. First the raw data were processed by the program POWDER.PATTERN that locates peaks with the second derivative algorithm of Savitzky and Golay [1964]. A three point Newton-Gregory interpolation [Daniels, 1978] was used to locate the derivative minimum. For some patterns, weak peaks were located with the interactive graphics program PLOT.PATTERN/INT. This program displays the spectrum on a Tektronix graphic terminal. The user can locate peaks by positioning a cursor at the peak. The peak position is defined either as the position of the cursor or as the minimum of the second derivative nearest to the cursor.

All patterns were plotted on paper with the plot program PLOT.PATTERN/HRD on a scale of one degree per inch and were visually inspected. The program POWDER.REFLEC was used to calculate a polynominal correction curve from the expected and observed 20 peak positions of the internal standard reflections and to correct the observed 20 values of the sample. The program POWDER.EDTPKS was used to flag reflections to be used in the least-squares cell parameter refinement. Reflections due to CuK α_2 radiation were excluded from the refinement.

Comparisons between the two sets of 20 peak positions of patterns that were processed both manually and automatically showed agreement within the estimated standard deviations. In most cases the results of the digital processing are reported.

At low angles, $K\alpha_1$ and $K\alpha_2$ peaks were unresolved for both the sample and the internal standard. Internal standard corrections were established from the theoretical values for $K\alpha_1$ and were applied to the unresolved low angle peaks, as well as to the resolved $K\alpha_1$ peaks in the higher angle regions. For the manual patterns, if the internal standard correction varied along the length of the pattern, linear interpolations were used. Structure, lattice constants. The space group symbols are given in the short Hermann-Mauguin notation. Also given are the space group numbers listed in the <u>International</u> <u>Tables for X-ray</u> <u>Crystallography</u>, Vol. I [1965]. When the space group symbol is not known, the lattice centering symbol or the diffraction aspect for the Laue class may be given [Donnay and Kennard, 1964; Mighell et al., 1981].

Orthorhombic cell dimensions are arranged according to the Dana convention b>a>c [Palache et al., 1944]. Monoclinic and triclinic lattice constants are transformed if necessary in order to follow the convention of <u>Crystal Data</u> [1973]. The lattice constant ratios, a/b, c/b, and c/a, also follow the conventions used for the determinative ratios in <u>Crystal Data</u> [1973].

In most cases, preliminary lattice constants were available in the literature, and were used for the initial indexing and refinement. In cases where such data were not available, other methods were tried. If suitable single crystals were available, the lattice constants were obtained by use of a four-circle diffractometer. Axial ratios and densities from Groth [1908] were sometimes useful. Cell constants were also found in some instances by use of the Visser computer program [1969].

A least squares program [Evans et al., 1963] assigned hkl's and refined the lattice constants. Cell refinement was based only upon 20 values which could be indexed without ambiguity. The program minimized the value $\Sigma(\theta_{obs}-\theta_{calc})^2$... Generally, when two or more calculated 20's were within 0.04 degrees of the observed 20, unique indices were not assigned. The possible multiple indices are reported. A plus sign (+) indicates more than 2 possible indices. In indexing cubic patterns, for a given reflection multiple hkl's were not utilized or reported. Instead, a single appropriate index was used.

The estimated standard deviations (e.s.d.'s) of the reciprocal cell parameters were determined from the inverse matrix of the normal equations. The program calculated the e.s.d.'s of the direct cell constants by the method of propagation of errors. Since 1973, the e.s.d.'s derived by the computer program have been increased by 50% in order to reflect more truly the uncertainty in the lattice constants. A similar increase should also be applied to all lattice constants published in this series of NBS publications prior to 1973. The e.s.d.'s in the least significant figures are given in parentheses following the lattice constants.

For each d-value, the number of significant figures was derived from the average error in $|2\theta_{obs} - 2\theta_{calc}|$ and the equation $\Delta d/d = -(\cot\theta)\Delta\theta$. With these conditions, the rounded value of <u>d</u> agrees with its appropriate 20 within the average error in 20. The value of $\Delta\theta$ varies with the symmetry and crystallinity of each sample.

<u>Densities</u>. These were calculated from the specified lattice constants, the Avogadro number 6.0220943×10^{23} [Deslattes et al., 1974] and 1977 atomic weights published by the International Union of Pure and Applied Chemistry [1979].

Figure of merit. Several figures of merit ratings are available for assessing indexed powder data. M_{20} [de Wolff, 1968] is a criterion for the reliability of the unit cell and indexing. A value of $M_{20} > 10$ will guarantee the essential correctness of the indexing provided there are not more than 2 spurious lines ($X_{20} \leq 2$) [de Wolff, 1968]. In general, patterns reported in this publication had $M_{20} > 20$ and $X_{20} = 0$. M_{20} is reported if a cell was derived only through computer indexing from powder data, without further confirmation.

The accuracy and completeness of measured interplanar spacings is conveniently reported using the format:

F = overall value
$$(\overline{\Delta 2\theta}, N_{\text{poss}})$$

The "overall" value is the figure of merit of Smith and Snyder [1979] defined by:

$$\frac{1}{|\Delta 2\theta|} \cdot \frac{N}{N_{poss}}$$

N, the number of observed reflections was chosen as 30, or as the maximum number of lines of the pattern if the pattern had fewer than 30 lines. $\boxed{\Delta 2\theta}$ is the average absolute magnitude of discrepancy between observed and calculated 20 values for each reported hkl. When multiple indices are reported for an observed reflection, then each possible $\Delta 2\theta$ is included in the $\boxed{\Delta 2\theta}$. N_{poss} is the number of diffraction lines allowed in the space group, up to the Nth observed and indexed line. Co-positional lines such as the cubic 221 and 300 are counted as one possible line.

Intensity measurements. The intensities of the diffraction lines were measured as peak heights above background and were expressed in percentage of the strongest line. It has been found that samples which give satisfactory intensity patterns usually have an average particle size smaller than 10 µm, as recommended by Alexander et al. [1948]. In order to avoid the orientation effects which occur when powdered samples are packed or pressed, a sample holder was made that had in its top face a rectangular cavity which extended to one end of the holder. To prepare the sample, a glass slide was clamped over the top face to form a temporary cavity wall (see Figure 1), and the powdered sample was allowed to drift into the end opening while the holder was held in a vertical position.

Figure 1.

With the sample holder returned to a horizontal position, the glass slide was carefully removed so that the sample could be exposed to the x-ray beam (see Figure 2).

Figure 2.

As a general practice, approximately 50 volume percent of finely ground silica-gel was added as a diluent. Occasionally, a rotating sample holder was used.

As a check on reproducibility, each sample was mounted at least 3 times. The intensity values were determined for each of the mountings. The reported I^{rel} value for each observed spacing is the average of 3 or more observations and is rounded to the nearest integer. Theta-compensating (variable divergence) slits were sometimes used to gather the intensity data. In that case, the average I(comp) for each spacing was converted to an equivalent fixed slit value, using the approximate equation:

$$I(fixed) = \frac{I(comp)}{\sin \theta}$$

The estimated standard deviation, σ , in the relative intensity values was calculated from the values of the five strongest lines, excluding the line with I^{rel}=100.

$$\sigma_{i}^{2} = \frac{1}{n-1} \sum_{k=1}^{n} (I_{i}^{rel}(k) - \langle I \rangle_{i})^{2}$$

and

$$\sigma = \left\{ \frac{1}{m} \quad \sum_{i=1}^{m} \sigma_i^2 \right\}^{\frac{1}{2}}$$

where

m is the number of strong lines
 (usually 5), and
n is the number of independent
 observations i, per line.

Where conversion of intensities for effects of theta-compensating slits was required, each σ_i was multiplied by the conversion factor

$$f = \frac{I(comp)}{I(fixed)}$$

Reference intensity ratio, $I/I_{corundum}$. The reference intensity ratio, I/I_c , has been defined as the direct ratio of the intensity of the strongest reflection of a sample, to the intensity of the 113 (hexagonal) reflection of corundum (α -Al₂O₃) [Visser and de Wolff, 1964]. In this publication the ratios I/I_c are tabulated for copper K α_1 radiation, for a 1:1 mixture by weight of the sample and corundum. I/I_c was determined only for very common phases.

A procedure has been adopted to achieve greater statistical accuracy [Hubbard and Smith, 1977]. For any weight fractions of sample and corundum, X_s and X_c ($X_s = 1-X_c$), the intensities for reflection \underline{h}_1 of the sample and \underline{h}_2 of corundum were measured for several combinations of \underline{h}_1 and \underline{h}_2 usually within the same region of 20, to provide indications of possible preferred orientation, extinction, or other systematic errors. The reference intensity ratio is then given by

$$\frac{I(h_o)}{I_c(113)} = \frac{X_c}{X_s} \cdot \frac{I_c^{rel}(\underline{h}_2)}{I^{rel}(\underline{h}_1)} \cdot \frac{I(\underline{h}_1)}{I_c(\underline{h}_2)}$$

where (h_o) indicates specifically which reflection was chosen for tabulation purposes. For each of our patterns, the reflection (h_o) will be the one with I = 100 since only copper radiation was used. Typically, at least 3 sets of reflections and 2 mountings of the mixture were used to obtain 6 or more values for the reference intensity ratio, I/I_c . These values yielded the tabulated average $\langle I/I_c \rangle$. From these data, the standard deviation, σ , was obtained from

$${}^{2} = \frac{\sum_{i=1}^{n} \left((I/I_{c})_{i} - \langle I/I_{c} \rangle \right)^{2}}{n(n-1)}$$

where <u>n</u> was the number of measurements of the reference intensity ratio. The standard deviation in the least significant figures is given in parentheses.

Format of tables. The printing of the data has been computerized. Superimposed reflections are treated in one of two ways. If a d-spacing has only two possible indices, an <u>M</u> is added to the d-spacing which is repeated on the next line, but with the second index. However, if there are more than two possible indices, a plus sign is used in like manner. In both cases, the composite intensity is printed only once and aligned with the first reflection. The symbol "1L" in the intensity column is used to indicate "less than 1".

UNITS

σ

In this publication the Angström unit $(1\text{\AA} = 100 \text{ pm})$ was selected for presentation of the d-spacings and lattice parameters. This maintained consistency with (a) the earlier publications of Standard X-ray Diffraction Powder Patterns [1982] (b) the publications of the International Union of Crystallography, and (c) the continuing publication of cards and search manuals of the PDF (now consisting of over 40,000 entries). The PDF search manuals are based on the d-spacings in Å of the 3 strongest lines. Consistent with the choice of the Å unit for length, the volume of the unit cell is expressed in Å³ $(1\text{\AA}^3 = 1 \times 10^{-30} \text{ m}^3)$. Densities are reported in g/cm³ $(1 \text{ gm/cm}^3 = 10^3 \text{ kg/m}^3)$.

ACKNOWLEDGMENTS

We would like to thank Carolyn Wingo and Donna Gladhill of the JCPDS Associateship for their assistance, particularly for keyboarding the data and helping with the proofreading of this manuscript. Appreciation is also expressed to the Text Editing Facility of the National Measurement Laboratory of NBS for typing the manuscript.

REFERENCES

- Alexander, L., Klug, H. P., and Kummer, E. (1948). J. Appl. Phys., <u>19</u>, No. 8, 742.
- <u>Chemical Abstracts Service Registry Handbook -</u> <u>Number Section</u> (1974), (The American Chemical Society, Chemical Abstracts Service, The Ohio State Univ., Columbus, OH 43210).
- Crystal Data (1973). (3rd Ed. Published jointly by the U.S. Dept. of Commerce, Natl. Bur. of Stand., Washington, D.C. 20234, and the Joint Committee on Powder Diffraction Standards, 1601 Park Lane, Swarthmore, PA 19081).
- Daniels, R. W. (1978). <u>An Introduction to Numerical</u> <u>Methods and Optimization Techniques</u>, (Elsevier North-Holland Inc., New York), 78.
- Deslattes, R. D. and Henins, A. (1973). Phys. Rev. Lett. <u>31</u>, 972.
- Deslattes, R. D., Henins, A., Bowman, H. A., Schoonover, R. M., Carroll, C. L., Barnes, I. L., Machlan, L. A., Moore, L. J., and Shields, W. R. (1974). Phys. Rev. Lett. <u>33</u>, 463.
- Donnay, J. D. H. and Hennard, O. (1964). Acta Crystallogr. <u>17</u>, 1337.
- Evans, H. T., Jr., Appleman, D. E., and Handwerker, D. S. (1963). Report #PB216188, U.S. Dept. of Commerce, National Technical Information Center, 5285 Port Royal Rd., Springfield, VA 22151, \$3.50.
- Groth, P. (1908). <u>Chemische Kristallographie II</u>, (Engelmann, Leipzig, Germany).
- Hartshorne, N. H. and Stuart, A. (1970). <u>Crystals</u> and the Polarizing <u>Microscope</u>, (Edward Arnold and Co., London, 4th Ed.).
- Hubbard, C. R. (1982a). J. Appl. Cryst. Accepted for Publication.
- Hubbard, C. R. (1982b). J. Appl. Cryst. Submitted for Publication.
- Hubbard, C. R. and Smith, D. K. (1977). <u>Advances</u> <u>in X-ray Analysis</u>, (Plenum Publishing Corporation, 227 West 17th St., New York, NY 10011), <u>20</u>, 27.
- International Tables for X-ray Crystallography, I (1965), (The Kynoch Press, Birmingham, Eng.).
- International Union of Pure and Applied Chemistry (1979). Pure Appl. Chem. <u>51</u>, No. 2, 407.
- ISCC-NBS Centroid Color Charts, SRM 2106 (1965), or Color Kit, SRM 2107 (1977) which contains both SRM 2106 and Color, an NBS Special Publication #SP 440. These can be obtained from the Natl. Bur. of Stand., Office of Standard Reference Materials, Washington, DC 20234. Current prices will be quoted on request.
- Mighell, A. D., Hubbard, C. R., and Stalick, J. K. (1981). NBS Technical Note 1141, U. S. Dept. of Commerce, Natl. Bur. Stand., Washington, DC 20234.
- Palache, C., Berman, H., and Frondel, C. (1944). <u>Dana's System of Mineralogy I</u>, (John Wiley and Sons, New York, 7th Ed.), 6.

- Savitzky, A. and Golay, M. J. E. (1964). Anal. Chem. <u>36</u>, 1627.
- Smith, G. S. and Snyder, R. L. (1979). J. Appl. Crystallogr. 12, 60.
- Snyder, R. L., Hubbard, C. R., and Panagiotopoulos, N. C. (1981). <u>Auto: A Real Time Diffractometer</u> <u>Control System Report</u>, NBSIR <u>81-2229</u>, U. S. Dept. of Commerce, Natl. Bur. Stand., Washington, DC 20234).
- Standard Reference Material 640a (1982), Silicon Powder X-ray Diffraction Standard, obtainable from the Natl. Bur. of Stand., Office of Standard Reference Materials, Washington, DC 20234. Current price will be quoted on request.
- Standard Reference Material 675 (1982), Fluorophlogopite Powder X-ray Diffraction Standard. To obtain, see procedure above for SRM 640a.
- Standard X-ray Diffraction Powder Patterns (1982), see page iv of this Monograph.
- Visser, J. W. (1969). J. Appl. Crystallogr. <u>2</u>, 89.
- Visser, J. W. and de Wolff, P. M. (1964). "Absolute Intensities," Report 641.109, Technisch Physische Dienst, Delft, Netherlands.
- Wolff, de, P. M. (1968). J. Appl. Crystallogr. <u>1</u>, 108.

Synonym

Yttrium aluminate

CAS registry no. 12003-86-0

Sample

The sample was prepared at NBS. Calculated amounts of Al_2O_3 and Y_2O_3 were mixed and heated at 1675 °C for 1 day. The composition was adjusted to approach the 1:1 phase, and the mixture was reheated at 1600 °C for 4 days and at 1675 °C for 3 days. The compound was ground daily during the process.

Color

Yellowish white

Structure

Orthorhombic, Pnma (62), Z = 4, isostructural with GdFeO₃ and YFeO₃ (Geller and Wood, 1956). The structure of GdFeO₃ was determined by Geller (1956). Coppens and Eibschütz (1965) refined the centric structure of GdFeO₃ and YFeO₃. The latter was refined also in the alternative non-centrosymmetric space group Pn2₁a (33), and that refinement showed small, possibly real, deviations from a centric structure.

Lattice constants of this sample

a = 5.3286(4)A b = 7.3706(5) c = 5.1796(3)

a/b = 0.7230c/b = 0.7027

Volume

203.43 A³

Density

(calculated) 5.351 g/cm³

Polymorphism

```
Bertaut and Mareschal (1963) reported a hex-
agonal form that occurred at temperatures of
900 to 950 °C. Their powder pattern appears on
PDF card 16-219.
```

```
Figure of merit
F_{30} = 92.6(0.010, 33)
```

```
Additional patterns
PDF card 11-662 (Roth, 1957)
```

PDF card 28-37 (Abell et al., 1972). The pattern appears to contain 2nd phase lines.

Geller and Wood (1956)

Keith and Roy (1954). The pattern in table 4 labeled $3Y_2O_3 \cdot 5Al_2O_3$, YCrO₃ type, seems to be the phase reported here.

References

Abell, J. S., Harris, I. R., and Cockayne, B. (1972). J. Mater. Sci. <u>7</u>, 1088.

Bertaut, F. and Mareschal, J. (1963). C. R. Hebd. Séances Acad. Sci. <u>257</u>, 867.

Coppens, P. and Eibschütz, M. (1965). Acta Crystallogr. <u>19</u>, 524.

Geller, S. (1956). J. Chem. Phys. 24, 1236.

Geller, S. and Wood, E. A. (1956). Acta Crystallogr. <u>9</u>, 563.

Keith, M. L. and Roy, R. (1954). Am. Mineral. 39, 1.

Roth, R. (1957). J. Res. Natl. Bur. Stand. 58, 75.

$CuK\alpha_1 \lambda = 1.540598 \text{ Å};$				temp. 25±1 °C			
Inter	nal standard	Ag,	a =	4.	08651 Å		
d(Å)	I ^{rel}		hkl		20(°)		
	σ = ±2						
4.233	1	0	1	1	20.97		
3.711	29	1	0	1	23.96		
3.085	10	0	2	0	24.13		
2 664	19	1	1	1	20.80		
2.004	22	2	U	U	33.02		
2.617	100	1	2	1	34.24		
2.589	24	0	0	2	34.62		
2.505	11	2	1	0	35.82		
2.368	1L	2	0	1	37.97		
2.329	1	1	0	2	38.63		
2.255	1	2	1	1	39.94		
2.220M	9,	1	1	2	40.60		
2.220M		0	3	1	40.60		
2.1588	23	2	2	0	41.81		
2.1192	25	0	2	2	42.63		
2.0483	8	1	3	1	44.18		
1.9923	2	2	2	1	45.49		
1.9686	2	1	2	2	46.07		
1.8565	31	2	0	2	49.03		
1.8424	18	0	4	0	49.43		
1.8051	9	2	3	0	50.52		
1.8005	15	2	1	2	50.66		
1.7055	1 L	2	3	1	53.70		
1.6904	1	1	3	2	54.22		
1.6579	3	2	2	2	55.37		
1.6505	6	1	4	1	55.64		
1.6424	6	1	0	3	55.94		
1.6381	17	3	1	1	56.10		
1.6030	3	1	1	3	57.44		
1.5286	10	3	2	1	60.52		

Aluminum Yttrium Oxide, $AlYO_3$ - (continued)

	d(Å)	Irel	hkl	20(°)
-		$\sigma = \pm 2$		
	1.5155	9	2 4 0	61.10
	1.5006M	32	0 4 2	61.77
	1.5006M	4	1 2 3	61.//
	1.4814	4	232	62.66
	1.4492	1	205	04.22
	1.4368	-1L	3 1 2	64.84
-	1.4181	1L	0 5 1	65.80
	1.3869	8	3 3 1	67.48
	1.3701	1	1 5 1	68.42
	1.3655	1L	1 3 3	68.68
	1.3320	2	4 0 0	70.66
	1.3108	6	4 1 0	71.98
	1.3082	17	2 4 2	72.15
	1.2950	5	0 0 4	73.00
	1.2901M	3	4 0 1	73.32
	1.2901M		2 5 0	73.32
	1.2581M	1	1 0 4	75.51
	1.2581M		3 3 2	75.51
	1.2517	1L	2 5 1	75.96
	1.2456	1L	152	76.40
	1.2403	1	1 1 4	76.79
	1.2281	2	0 6 0	77.69
	1.2260	4	1 4 3	77.85
	1.2209	6	3 1 3	78.24
	1.1845	1	4 0 2	81.13
	1,1734	3	3 2 3	82.06
	1.1696	7	4 1 2	82.39
	1.1663	11	1 6 1	82.67
	1.1645	5	204	82.83
	1.1547	4	2 5 2	83.69
	1.1503	3	2 1 4	84.08
	1.1391	1L	2 4 3	85.10
	1.1200	1	1 3 4	86.91
	1.1155	2	260	87.35
	1.1102M	3	224	87.87
	1.1102M		0 6 2	87.87
	1.1080	5	3 5 1	88.09
	1.1056	8	3 3 3	88.33
	1.0970	1	1 5 3	89.20
	1.0796	1	4 4 0	91.04
	1.0671	· 5	4 3 2	92.42
	1.0596	4	0 4 4	93.27
	1.0524	2	2 3 4	94.10
	1.0439M	1L	4 1 3	95.11
	1.0439M		5 0 1	95.11

d(A)	Irel		hkl		20(°)
	$\sigma = \pm 2$				
1.0335M	4	5	1	1	96.37
1.0335M		2	5	3	96.37
1.0278	1L	3	4	3	97.09
1.0247	1	2	6	2	97.48
1.0170	1	1	0	5	98.48
1.0141	1	4	2	3	98.86
1.0129	1	1	7	1	99.02
1.0067	1L	3	2	4	99.84
.9966	1	4	4	2	101.24
.9918	2	3	6	1	101.91
.9885	3	4	5	0	102.38
.9842	6	2	4	4	103.01

.

Synonym Yttrium Aluminate	CuK $\alpha_1 \lambda = 1.540598 \text{ Å}; \text{ temp. } 25\pm1 \text{ °C}$ Internal standard Si, a = 5.43088 Å				5±1 °C 3088 Å	
Sample The sample was made from stoichiometric	0	rel				
amounts of Y_2O_3 and Al_2O_3 . The mixture was heated at 1600 °C for 2 days, ground	d(A)	$\sigma = \pm 1$		hkl		20(*)
and reneated at 10/5 t for 5-2 days. After	7 / 1	17	1	1	0	11 02
adjusting the composition, the material was	6.00	17	1	1	1	11.95
and heated periodically, if days at	5.99	1	0	0	1	14.00
1600 °C and finally in two stages at 1675 °C.	5.204	3	2	0	1	10.83
Calan	5.040	1	-2	1	1	17.50
Very nale vellowish white	4.701	23	2	T	0	10.00
tery part yerrowing white	4.551	4	-2	1	1	19.49
Structure	4.188	2	0	2	1	21.20
Monoclinic, $P2_1/a$ (14), $Z = 4$ (Reed and Chase,	3.713	6	2	2	0	23.95
1962).	3.682	4	2	0	1	24.15
	3.494	2	0	0	2	25.47
Comment						
Reed and Chase (1962) report that due to the	3.470M	2	2	1	1	25.65
complexity of the monoclinic calculated pat-	3.470M		-2	0	2	25.65
tern, they found it virtually impossible to	3.330	24	3	1	0	26.75
index the powder pattern.	3.017	100	-1	2	2	29.59
	2.919M	78	1	1	2	30.60
Lattice constants of this sample	and a second second					
0	2.919M		3	2	0	30.60
a = 11.1150(10)A	2.892	9	-2	2	2	30.90
D = 10.4689(16)	2.615	18	0	4	0	34.26
C = 7.3/91(9)	2.561	13	2	0	2	35.01
$\beta = 108.61(1)^{\circ}$	2.538M	8	1	4	0	35.34
a/b = 1.0618						
c/b = 0.7049	2.538M		-1	3	2	35.34
	2.527	12	-4	0	2	35.49
Volume	2.487	5	2	1	2	36.09
813.79 A ³	2.470M	7	0	3	2	36.34
	2.470M		3	2	1	36.34
Density	2 458M	6	-2	3	2	36 53
(calculated) 4.518 g/cm ³	2.458M	Ŭ	-4	1	2	36 53
	2.4501	1T.	4	2	0	38 23
Figure of merit	2.35	2	-2	4	1	38 69
$F_{30} = 22.9(0.015, 86)$	2.292	7	1	3	2	39.27
			_	-	_	
Additional patterns	2.276+	6	-4	2	2	39.57
PDF card 22-987 (Schneider et al. 1961)	2.276+		0	1	3	39.57
Wanshaw and Par (1050)	2.256	2	-3	1	3	39.93
warshaw and Roy (1959)	2.210	2	-2	2	3	40.79
Abell et al (1974)	2.174	2	-5	1	1	41.51
References	2.133M	1	-1	4	2	42.33
Abell, J. S., Harris, L. R., Cockayne, B., and	2.133M		2	4	1	42.33
Lent, B. (1974). J. Mater. Sci. 9, 527.	2.129	2	0	2	3	42.43
	2.095M	2	0	4	2	43.15
Reed, J. W. and Chase, A. B. (1962). Acta	2.095M		1	1	3	43.15
Crystallogr. 15, 812.			_		•	10.00
	2.088M	2	-2	4	2	43.29
Schneider, S. J., Roth, R. S., and Waring.	2.088M	- •	-5	1	2	43.29
J. L. (1961). J. Res. Natl. Bur. Stand. A65.	2.066	18	5	1	0	43.78
345.	2.053	5	1	5	0	44.07
	2.04/M	9	-4	3	2	44.22
Warshaw, I. and Roy, R. (1959). J. Am. Ceram.	2.047M		-5	2	1	44.22
Soc. <u>42</u> , 434.	1.984	3	1	4	2	45.69
	1.973M	2	-3	4	2	45.97
	1.973M		-5	2	2	45.97
	1,955	1	5	2	0	46.41

Aluminum Yttrium Oxide, $Al_2Y_40_9$ - (continued)

$\sigma = \pm 1$ $1.946 2 2 5 0$ $1.939M 1 0 3 3$ $1.939M 1 5 1$ $1.904 2 -4 4 1$ $1.885M 1 2 1 3$	46.64 46.82 46.82 47.74 48.23 48.23 48.23 48.52 49.03 49.36 49.75
1.946 2 2 5 0 1.939M 1 0 3 3 1.939M 1 5 1 1.904 2 -4 4 1 1.885M 1 2 1 3	46.64 46.82 46.82 47.74 48.23 48.23 48.23 48.52 49.03 49.36 49.75
1.939M 1 0 3 3 1.939M 1 5 1 1.904 2 -4 4 1 1.885M 1 2 1 3	46.82 47.74 48.23 48.23 48.52 49.03 49.36 49.75
1.939M 1 5 1 1.904 2 -4 4 1 1.885M 1 2 1 3	46.82 47.74 48.23 48.23 48.52 49.03 49.36 49.75
1.904 2 -4 4 1 1.885M 1 2 1 3	47.74 48.23 48.23 48.52 49.03 49.36 49.75
1.885M 1 2 1 3	48.23 48.23 48.52 49.03 49.36 49.75
	48.23 48.52 49.03 49.36 49.75
1.885M 4 3 1	48.52 49.03 49.36 49.75
1.875 2 -5 3 1	49.03 49.36 49.75
	49.36
	49.75
1.831M 1/ 5 1 1	
1.831M 2 4 2	49.75
1.818+ 17 -5 3 2	50.15
1.818+ -4 4 2	50.15
1.7998 4 2 2 3	50.68
1.7929M 4 -2 5 2	50.89
1.7929M -6 1 2	50.89
1.7798 1L -5 2 3	51.29
1.7562 1 6 0 0	52.03
1.7522 1L 5 2 1	52.16
1.7450 2 0 6 0	52.39
1.7410 1 0 4 3	52.52
1.7324M 6 -3 4 3	52.80
1.7324M 6 1 0	52.80
1.7248M 10 1 5 2	53.05
1.7248M 0 1 4	53.05
1.7200 10 -1 2 4	53.21
1.7180M 10 -6 2 2	53.28
1.7180M -3 5 2	53.28
1.6930M 1L 0 6 1	54.13
1.6930M -1 6 1	54.13
1.6843M 1 3 1 3	54.43
1.6843M -6 0 3	54.43
1.6643+ 1L 3 4 2	55.14
1.6643+ 6 2 0	55.14
1.6588 1 0 2 4	55.34
1.6566 2 2 6 0	55.42
1.6516M 2 -5 4 2	55.60
1.6516M 1 6 1	55.60
1.6462 1 -4 2 4	55.80
1.6386 2 4 5 0	56.08

d(Å)	Irel	hk	2	20(°)
	$\sigma = \pm 1$			_
1.6285	4	4 3	2	56.46
1.6235	4	32	3	56.65
1.6133	3	-6 3	2	57.04
1.6046	2	-5 1	4	57.38
1.5889	1L	-2 5	3	58.00
1.5772M	9	-1 6	2	58.47
1.5772M		26	1	58.47
1.5670	9	1 2	4	58.89
1.5631M	12	03	4	59.05
1.5631M		36	0	59.05
1.5607M	8	06	2	59.15
1.5607M		-7 1	1	59.15
1.5512M	8	-3 5	3	59.55
1.5512M		-5 2	4	59.55
1.5293	2	4 5	1	60.49
1.5249	2	52	2	60.68
1.5159	2	54	1	61.08
1.5110	3	-7 2	1	61.30
1.5072	4	-2 4	4	61.47
1.5015	3	-6 0	4	61.73
1.4896	2	71	0.	62.28
1.4859+	3	-7 1	3	62.45
1.4859+		1 3	4	62.45
1.4812M	3	3 6	1	62.67
1.4812M		17	0	62.67
1.4589	2	-2 1	5	63.74
1.4548	3	4 6	0	63.94
1.4386M	4	27	0	64.75
1.4386M		-7 3	1	64.75

ر

Synonyms						
Yttrium aluminate	$CuK\alpha_{2}$ $\lambda = 1.540598$ Å; temp. 25±1 °C					±1 °C
Yttrogarnet	Inter	nal standar	d Si,	a =	5.43	088 Å
CAS registry no.						
12005-21-9	d(Å)	Irel		hkl		20(°)
Sample	$\sigma = \pm 2$					
The sample was prepared at NBS. Stoichio-		· · · ·				
metric amounts of the constituent oxides were	4.905	27	2	1	1	18.07
blended and calcined at 1650 °C for two hours.	4.247	7	2	2	0	20.90
After grinding, the resultant product was	3.210	19	3	2	1	27.77
placed in an iridium crucible, fused in an	3.002	27	4	0	0	29.74
induction heater and several single crystal boules grown using the Czochralski technique.	2.687	100	4	2	0	33.32
	2.561	1L	3	3	2	35.01
Color	2.452	20	4	2	2	36.62
Colorless	2.355	6	4	3	1	38.18
	2.192	23	5	2	1	41.15
Structure	2.122	5	4	4	0	42.56
Cubic, Ia3d (230), $Z = 8$. The structure was						
studied by Yoder and Keith (1951). It has	1.9474	26	5	3	2	46.60
the garnet structure type.	1.8994	1L	6	2	0	47.85
	1.8536	1L	5	4	1	49.11
Lattice constant of this sample	1.7705	2	6	3	1	51.58
a = 12.0089(3)Å	1.7330	17	4	4	4	52.78
Value	1.6988	1L	5	4	3	53.93
	1.6652	31	6	4	0	55.11
1/51.05 A-	1.6338	9	7	2	1	56.26
Dengity	1.6046	28	6	4	2	57.38
(calculated) 4.552 g/cm ³	1.5247	4	6	5	1	60.69
Palyman hian	1.5006	10	8	0	0	61.77
Voder and Keith (1051) reported that uttra-	1.4780	1L	7	4	1	62.82
arrest inverts to a high temperature form	1.4561	1L	8	2	0	63.88
wttroalumite at 1070° + 50 °C	1.4352	1	6	5	3	64.92
yttioaiumite, at 1970 2 30 C.	1.4157	1	6	6	0	65.93
Figure of merit	1.3962	1L	7	4	3	66.97
$r_{30} = 91.8(0.011, 50)$	1.3598	1L	7	5	2	69.01
Additional nattorna	1.3423	7	8	4	0	70.04
BDF card 9-178 (Keith and Roy 105/4)	1.3102	17	8	4	2	72.02
FDF Card 8-178 (Kerth and Koy, 1954)	1.2949	2	7	6	1	73.01
PDF card 30-51 (Abell et al., 1974)	1.2800	6	6	6	4	74.00
P. f. marter	1.2656	1	8	5	1	74.98
Aball I C Haunia I P Casharma P	1.2388	2	9	3	2	76.90
ADELL, J. S., MARTIS, I. K., COCKAYLE, D.,	1.2257	1L	8	4	4	77.87
and Lent, B. (1974). J. Mater. Sci. <u>9</u> , 327.	1.2128	1L	9	4	1	78.86
Keith M. L. and Roy, R. (1954). Am. Mineral.						
39. 1	1.2011	1L	8	6	0	79.78
<u></u> , 1.	1.1889	1L	10	1	1	80.77
Yoder, H. S. and Keith, M. L. (1951). Am.	1.1776	2	10	2	0	81.71
Mineral. 36, 519.	1.1665	1L	9	4	3	82.65
	1.1451	3	10	3	1	84.55
	1.1249	1L	8	7	1	86.44
	1.1151	14	10	4	1	87.39
	1.1056	2	9	0	1	88.33
	1.0964	0	10	4	2	89.27
	1 1.00/4	بلا	9	5	-	90.21

Aluminum Yttrium Oxide, $Al_5Y_3O_{12}$ - (continued)

d(Å)	Irel		hkl		20(°)
	$\sigma = \pm 2$	_			
1.0698	3	10	5	1	92.12
1.0616	6	8	8	0	93.04
1.0373	2	9	7	2	95.91
1.0298	1	10	6	0	96.84
1.0223	1L	11	4	1	97.79
1.0150	1L	10	6	2	98.74
1.0077	1L	9	6	5	99.71
1.0007	1	12	0	0	100.66
.9939	1L	9	7	4	101.62
.9872	3	12	2	0	102.58
.9805	2	11	5	2	103.55
.9741	6	10	6	4	104.51
.9676	1L	12	3	1	105.51

The sample was prepared at NBS. Water solutions of CdCl ₂ and (NH ₄) ₂ HPO ₄ were	d(Å)	Irel	hkl	20(°)
mixed. NH_4OH was added to the mixture dropwise, until the pH reached 9.		$\sigma = \pm 3$		
dropwide, andri one ph reached y.	2.885	63	1 2 1	30.97
Color	2.764	10	2 1 0	32 37
Colorless	2.637	3	1 3 0	33 97
	2 549	5	0 3 1	35 18
Structure	2 506	6	0 0 2	35 80
Orthorhombic, $Pmn2_1$ (31), $Z = 2$, (Tranqui	2.500	U	0 0 2	33.00
et al., 1968).	2 433	7	2 2 0	36 02
	2 4 2 0	8	2 2 0	30.92
Lattice constants of this sample	2 413	7		37.12
0	2 33/	18	1 2 1	37.24
a = 5.8173(10)A	2 2187	2		/0 63
b = 8.8797(8)	2.2107	2	040	40.05
c = 5.0134(8)	2 1883	٥	2 2 1	61 22
	2.1005	10		41.22
a/b = 0.6551	2.1022 2.0738M	0	2 2 0	41.54
c/b = 0.5646	2.0738M	0	2 5 0	43.01
	2.07301	2	1 4 0	43.01
Volume	2.0433	2	1 2 2	44.29
258.97 A ³	2 0 2 0 0	1	0 / 1	11 (0
	2.0300	10	0 4 1	44.60
Density	1.9164M	13	2 3 1	47.40
(calculated) 3.122 g/cm ³	1.91041	10	1 4 1	47.40
	1.9122	10	0 3 2	4/.51
Figure of merit	1.8991	1	2 0 2	4/.86
$F_{30} = 98.2(0.009, 34)$	1 05 (0	0		10.00
	1.8568	8	2 1 2	49.02
Additional patterns	1.8109	3	1 3 2	50.17
PDF card 14-397 (Ropp et al., 1961)	1.7753	1	0 5 0	51.43
	1./456	5	2 2 2	52.37
Ropp and Mooney (1960)	1.6982	3	1 5 0	53.95
		•		
References	1.6/44M	8	3 2 1	54.78
Ropp, R. C. and Mooney, R. W. (1960). J. Am.	1.6/44M		0 5 1	54.78
Chem. Soc. 82, 4848.	1.6624	3	0 4 2	55.21
—	1.6224	2	3 3 0	56.69
Ropp, R. C., Mooney, R. W., and Hoffman,	1.5984M	5	2 3 2	57.62
C. W. W. (1961). Anal. Chem. 33, 1687.				
	1.5984M		142	57.62
Tranqui, D., Durif, A., Guitel, J. C., and	1.5809	3	1 1 3	58.32
Averbuch-Pouchot, M. T. (1968). Bull. Soc.	1.5434	3	3 3 1	59.88
Chim. Fr., 1759.	1.5161	3	2 5 0	61.07
,	1.4802	1L	060	62.72
	1.4599	1	340	63.69
$Cuk\alpha_1 = 1.540598 \text{ A}; \text{ temp. } 25\pm1 \text{ °C}$	1.4508	4	2 5 1	64.14
Internal standard Si, a = 5.430825 A	1.4344	2	1 6 0	64.96
,	1.4193	2	061	65.74
rel	1.4070	1	152	66.39
$d(A)$ 1^{-1} $hk\ell$ $2\theta(3)$				
$\sigma = \pm 3$	1.4019	2	3 4 1	66.66
	1.3789	3	1 6 1	67.92
8.87 100 0 1 0 9.96	1.3196	1L	260	71.43
4.868 4 1 1 0 18.21	1.3097	1L	3 5 0	72.05
4.436 11 0 2 0 20.00	1.2978	2	2 5 2	72.82
4.367 13 0 1 1 20.32				
3.799 13 1 0 1 23.40	1.2760	2	2 6 1	74.27
3.528 7 1 2 0 25.22				
3,493 38 1 1 1 25,48				
3.324 3 0 2 1 26.80				
2.957 1L 0 3 0 30.20				
2.908 36 2 0 0 30.72				

Synonym		<u></u>	· · · · · · · · · · · · · · · · · · ·	
Barium aluminum titanate	d(Å)	Irel	hkl	20(°)
CAS registry no.		$\sigma = \pm 2$		
58834-02-9				
	2.8152	50	2 1 1	31.76
Sample	2.6506	2	2 2 1	33.79
The sample was synthesized by melting, then	2.5954	80	1 4 1	34.53
very slowly cooling, stoichiometric amounts	2.5412	17	150	35.29
of $BaTiO_3$, AI_2O_3 , and TiO_2 . After heating at 1275 °C for 16.5 days, the sample was reheated	2.4610	3	2 4 0	36.48
at 1350 °C for 23 days. The material was	2 / 333	24	0 0 2	36 01
around overy 2/ hours	2.4333	24	0 5 1	37.87
ground every 24 nours.	2.3750	11	3 1 0	38 37
Color	2 3025	8	1 0 2	39 09
Colorless	2.2901	6	0 2 2	39.31
Other street	0.0700			20 (7
Structure $D_{\rm res} = 2$ The structure	2.2702	22		39.6/
orthornombic, rn^n , $2 - 2$. The structure	2.2003	22	1 5 1	39.74
studied by Koth et al. (1961) was based on	2.252/	17		39.99
single crystal precession data.	2.1905	10	2 4 1	41.00
Lattice constants of this sample	2.1373	11	501	42.23
7 1275(2)	2.1064	8	3 3 0	42.90
a = 1.13/3(3) A b = 12.5070(9)	2.0532	5	1 3 2	44.07
D = 13.39/8(8)	2.0391	6	3 2 1	44.39
c = 4.8051(2)	2.0103	12	2 0 2	45.06
a/b = 0.52/0	1.9886	6	2 1 2	45.58
c/b = 0.3578				
0,0,0,0,0,0	1.9763	24	2 5 1	45.88
Volume	1.9743	24	1 6 1	45.93
472.18 A ³	1.9275	33	222	47.11
	1.8748	5	170	48.52
Density	1.8095	39	3 4 1	50.39
(calculated) 3.792 g/cm ³	1 7006	(2 5 0	50.00
	1.7900	0	3 3 0	51 15
Figure of merit	1.708	3 7	2 6 1	51.15
$F_{30} = 152.7(0.006, 36)$	1.77569	11	1 5 2	52 01
	1.7300	4	2 4 2	52.88
Additional pattern	1.7500			52.00
PDF card 29-14/ (Guna et al., 1976)	1.7258	4	4 2 0	53.02
Pafaranaa	1.6996	2	080	53.90
Cuba I P Kalar D and Valaysak P	1.6875	1	3 1 2	54.32
(1076) I Solid State Chem 16 /9	1.6627	5	4 1 1	55.20
(1)/0). 0. Dolla Deace Onem. <u>10</u> , 4).	1.6579	11	0 6 2	55.37
Roth, R. S., Parker, H. S., and Koob, M. M.	1 6267	1	4 2 1	56 53
(1981). 12th Intl. Congress of Cryst.	1.615/	1	4 2 1	56 96
Ottawa, C-167.	1.6100M	3	0 1 3	57 17
	1 6100M	5	2 7 1	57.17
A	1.5924	11	3 3 2	57.86
CuKa, $\lambda = 1.540598$ Å; temp. 25±1 °C				
$\frac{1}{1 + 1} = \frac{1}{1 + 1} = $	1.5799	2	4 4 0	58.36
Incernal Scandard Ag, a = 4.00051 A	1.5716M	6	1 1 3	58.70
° rel	1.5716M		4 3 1	58.70
$d(A)$ I ^{ref} hkl $2\theta(^{\circ})$	1.5655	6	1 8 1	58.95
$\sigma = \pm 2$	1.5550	24	3 6 1	59.39
	1 5404	7	1 2 3	60 01
6.799 22 0 2 0 13.01	1.5346	16	2 8 0	60.26
6.316 2 1 1 0 14.01	1.5268	6	0 3 3	60.60
4.581 15 0 1 1 19.36	1.5046M	2	3 7 0	61.59
	1.5046M		2 6 2	61.59
3.020 13 1 3 0 23.22				
3.570 9 2 0 0 24.92				
3.462 82 1 2 1 25.71				
3.401 4 0 4 0 26.18				
3.318 51 0 3 1 26.85				
3.161 100 2 2 0 28.21				

d(Å)	Irel		hkl	20(°)
	$\sigma = \pm 2$		•	
1.5028	1	4 4	1	61.67
1.4844	2	1 7	2	62.52
1.4678	5	2 1	3	63.31
1.4428+	6	0 9	1	64.54
1.4428+		22	3	64.54
1 (200	15			(1 -1
1.4300	15	4 0	2	64.74
1.4337	20	14	2	65.00
1.4200	0	4 J 5 1	1	65.39
1.4195	4	4 2	2	66.35
			-	
1.4040	4	2 3	3	66.55
1.4015	4	4 6	0	66.68
1.3929M	4	0 8	2	67.15
1.3929M	0	0 5	3	67.15
1.3/11	Z	4 3	2	68.30
1.3696	2	5 0	1	68.45
1.3598M	5	36	2	69.01
1.3598M		0 10	0	69.01
1.3428	7	52	1	70.01
1.3252	2	4 4	2	71.08
1.3146	3	32	3	71.74
1.2978M	18	2 8	2	72.82
1.2978M		2 5	3	72.82
1.2880	2	1 10	1	73.46
1.2797	3	3 7	2	74.02
1				-
1.2/54	3	3 9	0	74.31
1.2/06	9	2 10	0	74.04
1.2/000	2	54	1	74.04
1.2039	2	2 4	2	75.10
1.2400	5	54	J	10.55
1.2307M	1	50	2	77.50
1.2307M		4 8	0	77.50
1.2235	2	55	1	78.04
1.2162	3	0 0	4	78.60
1.2148	4	4 6	2	78.71
1.2079	1۲.	2 9	2	79.24
1,1991	11.	1 0	4	79.94
1.1956	2	4 1	3	80.22
1.1942	- 1L	1 1	4	80.34
1.1896	3	6 0	0	80.71
1 10(0	2	0 10	-	00.00
1.1809	3	0 10	2	80.93
1.1/21ri	3	5 0	0	02.1/ 82.17
1 1602	3	4 2	3	83 20
1.1576M	2	1 8	3	83.43
1.13701	2	1 0	3	03.45
1.1576M		5 4	2	83.43
1.1533	2	3 6	3	83.81
1.1514M	3	6 1	1	83.98
1.1514M	2	2 0	4	83.98
1.14/3M	2	3 10	1	84.35
1.1473M		2 1	4	84.35

Synonym Barium aluminum titanate	0	rel				
Dallum aluminum titanate	d(A)	Iter		hk	e	20(°)
CAS registry no. 58834-01-8		$\sigma = \pm 3$				
50054 01 0	3.723	5	4	0	0	23.88
Sample	3.673	5	1	3	0	24.21
The sample was synthesized by melting together,	3.642	5	-1	2	1	24.42
then very slowly cooling stoichiometric amounts	3.541	6	-3	0	1	25.13
of Ballu ₃ , Al ₂ U ₃ , and 110_2 . The sample was bested at 1000 °C for 20 hours, then at 1275 °C	3.490	8	3	0	T	25.50
for 14 days and finally at 1350 °C for 23 days.	3 113	57	4	2	0	28.65
The material was ground after each 24 hour	3.015M	100	0	3	1	29.61
period.	3.015M		3	3	0	29.61
	2.974	38	3	2	1	30.02
Color	2.903	30	-4	1	1	30.77
Colorless	0.000	1/	-	,	^	21 01
Structure	2.002	28	2 4	1	1	31.01
Monoclinic, $I^*/^*$, $Z = 2$. The structure	2.803	8	0	4	0	31.45
studied by Roth et al. (1981) was based	2.805	22	-2	3	1	31.88
on single crystal precession data.	2.787	9	2	3	1	32.09
Lattice constants of this sample	2 572	2	-5	0	1	34 86
	2.538	1L	5	õ	1	35.33
a = 14.8884(12)A b = 11.2676(12)	2.489	25	Õ	Õ	2	36.05
b = 11.3070(13) c = 4.9781(5)	2.432	7	1	4	1	36.93
$\beta = 90.84(1)^{\circ}$	2.404	8	-1	1	2	37.37
	2 352M	17	-4	3	1	38 2/
a/b = 1.3097	2.352M	17	2	0	2	38.24
C/D = 0.4379	2.334	1L	4	3	1	38.55
Volume	2.280	9	0	2	2	39.49
842.43 Å ³	2.259	7	4	4	0	39.88
Density	2.204	20	3	4	1	40.91
(calculated) 4.138 g/cm ³	2.1707M	7	2	2	2	41.57
	2.1707M		3	1	2	41.57
Figure of merit	2.0906	20	-/-	1	0	43.24
$F_{30} = 53.24(0.010, 55)$	2.0824	11	-4	U	2	43.42
Additional pattern	2.0675M	18	0	5	1	43.75
PDF card 29-148 (Guha et al., 1976)	2.0675M		3	5	0	43.75
	1.9948	2	-2	5	1	45.43
References	1.9903	8	-7	0	1	45.54
Guha, J. P., Kolar, D., and Volavsek, B. (1076) J. Solid State Chem. 16 (0	1.5070	U	'	v	1	40.11
(1970). J. Solid State chem. <u>10</u> , 49.	1.9562	13	-4	2	2	46.38
Roth. R. S., Parker, H. S., and Koob.	1.9455	4	7	0	1	46.65
M. M. (1981). 12th Intl. Congress of	1.9326	8	4	2	2	46.98
Cryst. Ottawa, C-167.	1.92/1	/ 7	-3	3	2	4/.12
•	1.9100	/	5	5	2	47.57
	1.8942M	12	0	6	0	47.99
$CuK\alpha_1 \lambda = 1.540598 \text{ A}; \text{ temp. } 25\pm1 \text{ °C}$	1.8942M		5	4	1	47.99
Internal standard Ag, $a = 4.08651$ A	1.8719	6	0	4	2	48.60
	1.869/M	5	5	1	2	48.60
$d(A)$ I ^{rel} hkl $2\theta(\circ)$	1.009/11		0	4	U	40.00
σ = +3	1.8600	8	8	0	0	48.93
	1.8572	7	-7	2	1	49.01
5.683 23 0 2 0 15.58	1.8547	8	7	3	0	49.08
4.741 2 -1 0 1 18.70	1.8403	/	_/.	2 5	1	49.49
4.560 34 0 1 1 19.45	1.0125	10	-4	5	1	30.30
3.869 1 2 1 1 22.71 3.869 1 2 1 1 22.97	1.8031	3	4	5	1	50.58
	1.7692M	1	-6	0	2	51.62
	1.7692M	3.7	8	2	0	51.62
	1.7591	3 1F	-1	0	1	51.94
	1 1 . / 4 4 4	5	0	0	4	J2.41

d(Å)	Irel	hkl	20(°)
	$\sigma = \pm 3$		
1.7309	1	-8 1 1	52.85
1.6950	1L	532	54.06
1.6881	5	4 6 0	54.30
1.6798	5	-4 4 2	54.59
1.6702M	5	-3 6 1	54.93
1.6702M		-1 5 2	54.93
1.6652M	6	4 4 2	55.11
1.6652M		361	55.11
1.6416	2	0 1 3	55.97
1.6367	2	9 1 0	56.15
1.6167	19	-7 4 1	56.91
1.6051	16	741	57.36
1.5949	5	-3 5 2	57.76
1.5894M	8	-8 3 1	57.98
1.5894M		7 1 2	57.98
1.5854M	9	-1 2 3	58.14
1.5854M		3 5 2	58.14
1.5807M	3	123	58.33
1.5807M		-3 0 3	58.33
1.5665	2	3 0 3	58.91
1.5531	1	7 5 0	59.47
1.5436M	3	071	59.87
1.5436M		370	59.87
1.5225	3	-3 2 3	60.79
1.5193+	8	0 3 3	60.93
1.5193+		-9 2 1	60.93
1.5101+	11	271	61.34
1.5101+		-4 1 3	61.34
1.5070M	11	0 6 2	61.48
1.5070M		921	61.48
1.5006	5	-8 0 2	61.77
1.4965	5	-7 3 2	61.96
1.4935M	8	4 1 3	62.10
1.4935M		-2 3 3	62.10
1.4800M	5	-2 6 2	62.73
1.4800M		8 0 2	62.73
1.4783	5	7 3 2	62.81
1.4514	1	-8 2 2	64.11
1.4402M	2	503	64.67
1.4402M		10 2 0	64.67
1.4282M	8	-4 7 1	65.28
1.4282M		-1 4 3	65.28
1.4245M	9	1 4 3	65.47
1.4245M		471	65.47
1.4206M	9	080	65.67
1.4206M		-10 1 1	65.67
1.4096	2	10 1 1	66.25
1.4015	2	-4 6 2	66.68
1.3931	1	4 6 2	67.14
1.3770	1L	-9 1 2	68.03
1.3720	2	3 4 3	68.31
1.3641	2	-7 6 1	68.76
1.3608	1	-1 8 1	68.95

Synonym						
Barium hexaboride	CuK α , $\lambda = 1.540598$ Å; temp. 25±1 °C					
Sample	I	al standar	1 64		5 43	00005
The sample was obtained from Alfa Products.	inceri	lai stanuaro	1 51,	a –	5.45	0023 A
Thiokol/Ventron Division, Danvers, MA.			W	, а	= 3.	16524 A
Color		Trel		h	k 9.	28(9)
Very dark gray		+2				20()
		0 = I3				
Structure	4.261	54	1	0	0	20.83
Cubic, Pm3m (221), $2 = 1$, isostructural with	3.014	100	1	1	0	29.62
Case. The structure was determined by	2.462	45	1	1	1	36.47
Stackelberg and Neumann (1932). Keissling	2,1311	21	2	0	ō	42.38
the hexaborides.	1.9069	48	2	1	0	47.65
	1 7/0/		•			50 54
Lattice constant of this sample	1.7404	24	2	1	1	52.54
$a = \frac{1}{262} \frac{0}{10}$	1.50/2	9	2	2	0	61.4/
a = 4.2024(1)A	1.4206	25	3	0	0	65.67
Value	1.3480	20	3	1	0	69.70
77.44 Å ³	1.2850	11	3	1	1	73.66
	1.2304	2	2	2	2	77.52
Density	1.1822	7	3	2	0	81.32
(calculated) 4.336 g/cm ³	1.1393	13	3	2	1	85.08
	1.0657	2	4	0	0	92.57
Figure of merit	1.0338	10	4	1	0	96.34
$F_{24} = 106.1(0.009, 24)$						
	1.0047	9	3	3	0	100.12
Additional pattern	.9780	3	3	3	1	103.93
PDF card 11-213 (Amendola, Polytechnic Inst.	.9532	5	4	2	ō	107.82
of Brooklyn, N.Y., 1959)	.9301	12	4	2	1	111.83
	.9088	4	3	3	2	115.91
References			-	-	-	
Bertaut, F. and Blum, P. (1954). Acta	.8701	2	4	2	2	124.58
Crystallogr. 7, 81.	.8524	3	5	ō	ō	129.28
• • • =/	8359	13	5	1	õ	134.31
Kiessling, R. (1950). Acta. Chem. Scand. <u>4</u> , 209.	.8203	6	5	1	1	139.79
Stackelberg, M. V. and Neumann, F. (1932).	L					

Z. Phys. Chem. B, <u>19</u>, 314.

2θ(°)

16.53 17.44 18.79 21.15 22.19

23.13

23.26

24.47 24.66

24.96

24.96

25.55

27.42

27.73 28.05

28.88

29.13 29.96

30.36

31.57

31.63

32.28

33.05

33.46

33.46

34.09

34.29

34.29

35.31

35.63

35.93

37.71

37.84

38.51

39.14

39.56

39.56

39.90

40.59

41.08

42.15

42.65

42.65

43.08

44.53

45.24

45.32

45.96

46.27

46.84

Synonym Barium neodymium titanate	d(A)	I ^{rel}	ł	nkl	
Comple		$\sigma = \pm 4$			
The sample was prepared at NBS from a mixture					
of BaO, Nd ₂ O ₂ , and TiO ₂ (rutile). The mixture	5.359	3	2	2	0
was heated at 1250 °C for 1 day. After being	5.081	18	1	4	0
around the sample was heated further at 1350 °C	4.719	4	2	3	0
for / days ground and heated at 1365 °C for	4,197	12	1	5	0
6 days.	4.003	7	3	1	0
Two known phases, rutile and $Ba_2Ti_9O_{20}$, were	3.842	15	0	0	1
present as impurities. Corrections were made	3.821	11	3	2	0
for the overlap of intensities.	3.635	4	0	2	1
	3.607	4	2	5	0
Color	3.565M	1	3	3	0
Colorless					
	3.565M		1	6	0
Structure	3.484	6	1	2	1
Orthorhombic Pham (55) or Pha? (32) The	3.250	14	2	0	1
space eroup summetry was determined from a	3.214	6	2	1	1
single crustal by Kolor et al (1001) 7 - 4 in	3,179	16	2	6	0
single crystal by Kolar et al. (1961). $Z = 4$ is	5.175	10	-	Ŭ.	Ŭ
consistent with the density of 5.44, measured	3 089	12	1	7	0
by Kolar et al. (1981).	3 063	12	1	1.	1
	2 000	44	1	-	1
Lattice constants of this sample	2.960	12	2	2	1
a = 12.1983(13)A	2.942	20	4	2	1
h = 22.347(3)	2.832	100	1	2	T
c = 3.8403(6)				_	
	2.826	85	2	7	0
a/b = 0.5/50	2.771	28	3	1	1
a/b = 0.3439	2.708	58	3	2	1
C/D = 0.1/18	2.676M	13	4	4	0
V-1	2.676M		0	6	1
1040.8 A	2.628	18	2	5	1
Density	2.613M	27	3	3	1
Density $(1, 1, 1, 1) \in (1, 2, 1, \dots, 3)$	2.613M		1	6	1
(calculated) 5.643 g/cm ²	2.540	4	2	8	0
(measured) 5.44 g/cm ³ (Kolar et al., 1981)	2.518	3	4	5	0
Figure of merit	2.497	3	3	4	1
$F_{30} = 50.1(0.012,50)$	2.384	1	5	2	0
	2.376	11.	4	1	1
Additional pattern	2 336	6	4	2	1
Kolar et al. (1981)	2.300	8	2	9	0
Reference	2 276M	26	n	7	1
Kolar, D., Gaberšček, S., Volavšek, B.,	2.2701	20	2	2	1
Parker, H. S., and Roth, R. S. (1981), J.	2.2/01		4	3	1
Solid State Chem. 2. 89.	2.258	1	0	8	1
	2.221	4	I (8	1
	2.195	11	4	4	1
$CuK\alpha_{\lambda} = 1.540598 \text{ Å}; temp. 25\pm1 °C$	2.142	6	5	5	0
	2.118M	10	3	9	0
Internal standard Ag, a = 4.08651 A	2.118M		2	8	1
	2.098	18	2 1	.0	0
d(A) I ^{rel} hkl 20(°)	2.033	1L	6	0	0
$\sigma = \pm 4$	2.003	8	1 1	.1	0
	1.999	7	6	2	0
11.20 12 0 2 0 7.89	1.9730	3	2	9	1

.

9 8

1.9605

1.9380

6

5 7

3 0

0

8.23

10.71

13.91

14.51

10.73

8.25

6.36

6.10

5

1L

3

1

1 1 0

1 2 0

1

2

3 0

0

0

Barium Neodymium Titanium Oxide, $BaNd_2Ti_5O_{14}$ - (continued)

d(Å)	Irel	hkl	20(°)
	$\sigma = \pm 4$		
1,9195	40	0 0 2	47.32
1,9103	16	6 4 0	47.56
1 8701M	4	5 5 1	48.65
1 8701M	-	1 2 2	40.05
1 9501	5	6 5 0	40.03
1.0301	5	0 5 0	49.21
1.8410M	2	2 10 1	49.47
1.8410M		1 12 0	49.47
1.8309	1L	2 0 2	49.76
1.8172	3	3 11 0	50.16
1.7965M	5	601	50.78
1 7065M		1 / 2	50 78
1.79031	14	6 2 1	50.70
1.7750	14	6 2 1	51.44
1.7405H	5		52.35
1.7403M		1 5 2	52.35
1./306M	17	3 1 2	52.86
1.7306M		571	52.86
1.7215+	9	7 2 0	53.16
1.7215+	-	4 9 1	53.16
1.7167	7	3 2 2	53.32
1 7108	11.	6 4 1	53 52
1.7100	112	v + 1	33.52
1.6959M	2	7 3 0	54.03
1.6959M		2 5 2	54.03
1.6758	6	0 12 1	54.73
1.6599	6	1 12 1	55.30
1.6437+	5	680	55.89
1 6/37+		262	55 80
1.6200M	2	2 0 2	55.09
1.03091	2	4 10 1	50.37
1.63091	0	1 / 2	50.37
1.6240M	3	4 0 2	56.63
1.6240M		750	56.63
1.6079	6	4 2 2	57.25
1.5874	30	4 3 2	58.06
1.5841M	33	591	58.19
1.5841M		3 13 0	58,19
1.5706	11	7 2 1	58.74
1 5 (0 0) (,	F 11 A	50.47
1.5602M	4	5 11 0	59.17
1.5602M		4 4 2	59.17
1.5564	5	1 13 1	59.33
1.5526	4	7 3 1	59.49
1.5316	1	282	60.39
1.5279	1	4 5 2	60.55
1.5249M	11.	3 7 2	60.68
1.5249M		8 0 0	60.68
1 5030	11	6 10 0	61 62
1 4037	1	8 3 0	62 00
1.4937	1	0 5 0	02.09

ſ	å(Å)	Irel		hkl		20(°)
l		$\sigma = \pm 4$				
ſ	1.4859	3	3	14	0	62.45
I	1.4741+	3	0	14	1	63.01
1	1.4741+		2	9	2	63.01
1	1.4686	3	4	12	1	63.27
	1.4559+	1	0	10	2	63.89
	1.4559+		6	9	1	63.89
L	1.4429	1L	8	5	0	64.53
	1.4293	1	5	5	2	65.22
	1.4235	1	3	9	2	65.52
	1.3962M	2	0	16	0	66.97
	1.3962M		6	0	2	66.97
	1.3856M	8	3	14	1	67.55
I	1.3856M		6	2	2	67.55
	1.3761	4	8	7	0	68.08
	1.3722	6	6	3	2	68.30
	1.3640	4	5	7	2	68.77

Synonyms						
Barium tungstate	CuKa,	$\lambda = 1.5405$	98 Å;	temp	. 25	5±1 ℃
Tribarium tungstate	Intern	al standar	d Si,	a =	5.40	388 Å
Sample						
The sample was prepared at NBS by T. Negas	(Å)b	Irel		hk	2	20(9)
from spectrographic grade $BaCO_3$ and WO_3		*			~	
(73:27 mol ratio). It was heated in a Au crucible in air at 950 °C for 48 hours.		$\sigma = \pm 2$				
This sample is approximately 2 mol % richer	0 80	2	1	1	1	8 93
in WQ, then the true 3.1 ovide	6.075	2	2	2	ñ	14 57
III HO3 CHAIL CHE CLUE J.I ORIGE.	4 062	0	2	2	2	17.86
Calar	4.902	5	2	2	2	20 66
Color	4.290	5	4	0	1	20.00
Coloriess	3.942	3	3	3	1	22.54
Structure	3.509	5	4	2	2	25.36
Cubic, $Fm3m$ (225), $Z = 32$. Negas (private	3.307	25	5	1	1	26.94
communication, 1982).	3.036	100	4	4	0	29.40
	2 905	1	5	3	1	30 75
Lattice constants of this sample	2.963	3	6	ñ	ñ	31 22
	2.805	5	0	U	U	51.22
a = 1/.1/05(5)A	2.716	1	6	2	0	32.95
	2.620	2	5	3	3	34.20
Comment	2 590	8	6	2	2	34.60
There are 4 lines with $I_{re1} \approx 1$ that do not	2 405	3	5	5	1	37 36
index satisfactorily on this unit cell.	2.405	1/	7	2	1	60.20
Several unit cells have been reported in the	2.230	14	'	2	1	40.30
literature for Ba ₃ WO ₆ ; Kreidler (1972), Kovba	0.1/6	17	0	^	^	(0.07
et al. (1971), and Steward and Rooksby (1951).	2.140	17	8	0	0	42.07
None of the unit cell values reported by these	2.084	IL	6	4	4	43.39
authors will adequately index their data.	2.024	3	6	6	0	44.73
Some of these patterns appear to be mixed with	1.9841	5	7	5	1	45.69
the off stoichiometric phase reported here.	1.9694	5	6	6	2	46.05
Structural data for the true 3:1 oxide have	1 9206	4	8	4	0	47.29
not been published.	1 8850	1	7	5	3	47.25
	1 9727	2	, 0	1	2	40.24
Volume o	1.0/5/	11	٥ ۲	4	2	40.33
5067.6 Å ³	1.8306	11	0	0	4	49.77
	1.8005	4	9	3	1	20.00
Density	1.7522	21	8	4	4	52.16
(calculated) 7.254 g/cm ³ (based on 3:1 ratio)	1 7261	1	7	7	1	53.01
	1 6840	2	10	2	0	54.44
Figure of merit	1 6602	a -		5	1	55 29
$F_{30} = 68.2(0.012, 38)$	1 6522	6	10	2	2	55 58
	1.0522	0	10	2	2	22.20
Additional patterns	1.6018	1	9	5	3	57.49
PDF card 25-82 (Kreidler, 19/2)	1.5949	11.	10	4	0	57.76
	1 5486	11.		7	5	59.66
PDF card 26-195 (Kovba et al., 1971)	1 5179	7	, 8	Ŕ	0	60 99
	1.5009	1	9	5	5	61.76
Chang et al., (1966)						
References	1.4952	1L	10	4	4	62.02
Chang L L V Scroger M G and Phillins	1.4567	3	9	7	3	63.85
P (1066) T Am Communication Sec. (0) No. 7	1.4516	7	10	6	2	64.10
B. (1900) . J. Am. Celam. Soc. 49 , No. 7.	1.4313	2	12	0	0	65.12
V h T M Turkeys T M and Chauchasha	1.4166	1	11	5	1	65.88
Kovba, L. M., Lykova, L. N., and Snevchenko,						
N. N. (19/1). Russ. J. Inorg. Chem. <u>16</u> ,	1.3934	3	10	6	4	67.12
1150.	1.3797	1L	11	5	3	67.88
	1 3457	7	q	9	1	69.84
Kreidler, E. (1972). J. Am. Chem. Soc. <u>55</u> ,	1 3415	17.	10	8	0	70 09
No. 10.	1 313/	2	13	1	1	71 82
	1.5154	2	15	1	•	/1.02
Steward, E. G. and Rooksby, H. P. (1951). Acta Crystallogr. <u>4</u> , 503.						

Barium Tungsten Oxide, Ba_3WO_6 - (continued)

•

d(Å)	Irel			hkl	20(°)
	$\sigma = \pm i$	2			
1.3097	2	10	6	6	72.05
1.2840	1	13	3	1	73.73
1.2665	1	12	6	2	74.92
1.2564	2	13	3	3	75.63
1.2397	2	8	8	8	76.83
1.2301	1	13	5	1	77.54
1.2145	1L	10	10	ō	78.73
1.2055	1	13	5	3	79.43
1.2024	4	10	10	2	79.68
1.1908	1	12	8	0	80.61
1.1826	2	11	9	3	81 20
1.1797	1	14	4	õ	81 53
1.1687	1	14	4	2	82 46
1.1607	1	13	7	1	83 16
1.1476	3	12	8	4	84.32
1.1401	2	15	1	1	85 01
1.1277	1	14	6	Ō	86 17
1.1181	4	14	6	2	87.09

CAS	registr	y no.
50	6-66-1	

Sample

```
The compound was obtained from Alfa Products,
Thiokol/Ventron Division, Beverly, MA.
```

Color

Grayish yellow brown

Structure

Cubic, Fm3m (225), Z = 4. The structure was determined qualitatively by Stachelberg and Quantran (1934).

Lattice constant of this sample

a = 4.3422(1) Å

Volume ° 81.872 Å³

Density (calculated) 2.437 g/cm³

Figure of merit

 $F_{10} = 152.3(0.007, 10)$

Additional pattern PDF card 9-196 (Staritzky, 1956)

References

Stachelberg, M. v. and Quantran, F. (1934). Z. Phys. Chem. Leipzig <u>B27</u>, 50.

```
Staritzky, E. (1956). Anal. Chem. 28, 915.
```

d(Å)	Irel		hkl		20(°)
	$\sigma = \pm 2$				_
2.5069	100	1	1	1	35.79
2.1712	1L	2	0	0	41.56
1.5355	75	2	2	0	60.22
1.3092	12	3	1	1	72.08
1.2537	1L	2	2	2	75.82
1.0856	10	4	0	0	90.40
.9961	6	3	3	1	101.30
.9709	1L	4	2	0	105.00
.8864	31	4	2	2	120.69
.8356	7	5	1	1	134.39

CAS registry no. 7700-80-9	r				
1150 00 5	CuKa	$\lambda = 1.54059$	98 Å;	temp. 2	5±1 °C
Sample The sample was obtained from J. T. Baker	Inter	nal standard	άW,	a = 3.1	6524 Å
Chemical Co., Phillipsburg, N.J.	d(Å)	Irel		hkl	20(°)
Color Colorless		$\sigma = \pm 3$			
	6.87	100	0	02	12.88
Structure	3.433	40	0	0 4	25.93
Hexagonal, $P6_{3}mc$ (186), Z = 2. The structure	3.245	38	1	02	27.46
was qualitatively done by Mitchell (1965). This	2.868	16	1	03	31.16
is the 4H polytype encountered most frequently.	2.287	7	0	06	39.36
Lattice constants of this sample	2.201	7	1	05	40.97
a = 4.2481(3)	2.124	91	1	1 0	42.52
c = 13,7265(8)	2.030	16	1	1 2	44.61
c = 15.7205(0)	1.9435	3	1	06	46.70
c/a = 3.2312	1.8061	15	1	14	50.49
Valume	1.7779	8	2	02	51.35
21/ 52 A3	1.7159	19	0	08	53.35
214.JJ A	1.5564	3	1	1 6	59.33
Density	1.3725	2	0	0 10	68.28
(calculated) 5.669 g/cm ³	1.3622	5	2	1 2	68.87
Polymorphism	1.3347	20	1	18	70.50
Mitchell (1965) reports the existence of 32	1.2859	1L	1	0 10	73.60
polytymes Structural data have been reported	1.2263	6	3	0 0	77.83
for 10 polytypes. From 2H to 1/H where the	1.1820	2	1	0 11	81.34
number indicates the number of iodine layers	1.1530	2	1	1 10	83.84
within the repeat distance above the \underline{c} axis.	1,1441	11.	0	0 12	84 64
	1.0621	3	2	2 0	92 98
Figure of merit	1.0146	1	2	2 4	98 79
$F_{30} = 26.2(0.012, 92)$	1.0070	3	1	1 12	99 80
	.9977	4	3	0 8	101.08
Additional patterns PDF card 3-470 (Dow Chemical Co., Midland MI)				• •	101100
	.9806	1L	0	0 14	103.54
PDF card 12-573 (Institute of Physics Univer-	.9780	1L	3	1 4	103.93
sity College, Cardiff, Wales 1962)	.9474	1L	1	0 14	108.79
are, correct, cararri, wares, 1902)	.9030	2	2	28	117.09
Reference	.8578	1L	0	0 16	127.79
Mitchell, R. S. (1965). Z. Kristallogr. Kristallgeometrie Kristallphys. Kristallchem.					

Synonym Tetracalcium trialuminate trihydrate			0			
	Ουκα	$\lambda = 1.54059$	18 A;	tem	p. 25	6±1 °C
CAS registry no. 12355-68-9	Intern	al standard	l Si,	a =	5.43	3088 A
01-	d(Å)	Irel		hkl		2θ(°)
The sample was made by J. Waring by hydro-		$\sigma = \pm 4$				
for 4 days. It had a few percent of impurity;	4.432	5	0	0	2	20.02
therefore, the intensities may be slightly in	3.639	38	0	2	2	24.44
error.	3.602M	100	2	0	2	24.70
	3.602M		3	1	1	24.70
Color Colorless	3.493	17	1	2	2	25.48
	3.270	86	2	3	1	27.25
Structure	3.199	2	0	4	0	27.87
Urthornombic, AD2a (41), $2 - 4$. (refcival and Terlow 1061)	3.141	14	2	4	2	20.39
laylor, 1901).	3.103	1	4	0	2	20.75
Lattice constants of this sample	5.020	44	5	U	2	27.40
	2.846	46	2	4	0	31.41
a = 12.422(3)A	2.820	72	3	3	1	31.70
b = 12.803(3)	2.805	83	1	1	3	31.88
C = 8.002(2)	2.797	81	4	2	0	31.97
a/b = 0.9702	2.734	4	3	2	2	32.73
c/b = 0.6922			0	-	~	24 01
	2.612	21	2		3	34.31
Volume	2.594 2.541M	13	6	4	2	34.33
1409.45 A ³	2.541M	31	1	4	2	35.29
	2.416	15	4	3	1	37.18
Density						0,,120
(calculated) 2.753 g/cm ²	2.392	11	2	4	2	37.57
Figure of marit	2.383	11	1	3	3	37.72
$F_{} = 52 \ 8(0 \ 014 \ 41)$	2.364	8	4	2	2	38.04
130 - 52.0(0.014,41)	2.351	8	5	1	1	38.25
Additional patterns	2.287	38	2	5	1	39.36
PDF card 14-464 (Pistorius, 1962)	2 261	2	2	2	2	20.82
	2.201	2	4	5	3	39.03
PDF card 16-49 (Percival and Taylor, 1961)	2.229	9	0	0	4	40.69
	2.199	1	3	4	2	41.02
PDF card 24-178 (Ponomarer et al., 1970)	2.181	7	1	0	4	41.36
Johnson and Thorvaldson, (1943)	2 167	14	5	0	2	41 64
	2.133	5	õ	6	0	42.33
References	2.115	2	3	5	1	42.72
Johnson, H. and Thorvaldson, T. (1943). Can.	2.094M	38	3	3	3	43.17
J. Kes. <u>B21</u> , 230.	2.094M		0	2	4	43.17
Percival, A. and Taylor, H. F. W. (1961).	0.007M		F	2	-	(2.22
Acta Crystallogr. <u>14</u> , 324.	2.08/M	44,	5	3	1	43.32
	2.08711	16	6	0	0	43.71
Pistorius, C. W. F. T. (1962). Amer. J. Sci.	2.065	17	1	2	4	43.80
$\frac{260}{221}$, 221.	2.019	1L	2	6	0	44.85
Ponomarer, V. I., Litvin, B. N., and Belov,	1 005	,	0	~	,	(5 (7
N. V. (1970). Inorg. Mater. Engl. Transl.	1.985	4	2	2	4	45.07
<u>6</u> , 1459.	1 928	6	4	5	1	40.03
	1.913M	11	4	3	3	47.49
	1.913M		1	5	3	47.49

I

Calcium Aluminum Oxide Hydrate, Ca4Al6013	•3H ₂ 0 -	(continued)
---	----------------------	-------------

d(Å)	Irel		hkl		20(°)
	$\sigma = \pm 4$				
1.875	1	6	0	2	48.51
1.8368	5	2	6	2	49.59
1.8237	1	6	3	1	49.97
1.8005	9	5	4	2	50.66
1.7737	2	1	7	1	51.48
1.7435	8	3	6	2	52.44
1.7395M	11	6	4	0	52.57
1.7395M		1	1	5	52.57
1.7245	2	7	1	1	53.06

2.

Synonym						
Calcium aluminosilicate hexahydrate	CuKa ₁	$\lambda = 1.54059$	8 Å;	tem	p. 251	±1 °C
CAS registry no. 12251-32-0	Intern	al standard	Si,	a =	5.430	088 Å
	(Å)	Trel		hk9		20(°)
Sample The sample, a natural mineral, from Wasson's		$\sigma = \pm 3$				20(())
Bluff, Nova Scotia, Canada, was obtained from	0.01	- /				0.14
F. G. Gardinier.	9.34	54	1	0	1	9.46
Observice 1 Analysis (est. 91)	6.89	13	1	1	0	12.83
Chemical Analysis (Wt. %)	6.36		0	1	2	13.92
Ca 6.12%, AI 9.67% , Si 22.17% , Na 0.55% ,	5.552	26	0	2	1	15.95
K 0.86%, Sr 0.10%, Fe 0.043%, H ₂ O 22.48%	5.001	29	0	0	3	17.72
Color	4.667	6	2	0	2	19.00
Colorless to salmon pink	4.323	100	2	1	1	20.53
	4.053	2	1	1	3	21.91
Structure	3.978	4	3	0	0	22.33
Rhombohedral, R3m (166) (Calligaris et al., 1982). Single crystal studies (Himes and	3.865	21	1	2	2	22.99
Mighell, 1981) were carried out on a clear	3.576	42	1	0	4	24.88
single crystal selected from the sample.	3.446	19	2	2	0	25.83
A primitive cell was determined with	3.236	5	1	3	1	27.54
lattice parameters: $a = 9.3799(14)A$,	3.176	11	0	2	4	28.07
b = $9.3926(14)$, c = $3918(14)$, α = $94.263(12)^{\circ}$, β = $94.408(12)$, γ = $94.469(12)$. This cell	2.927	93	4	0	1	30.52
differs only slightly from the reduced form	2.908	21	0	1	5	30.72
of the hexagonal cell given below.	2.882	45	2	1	4	31.01
	2.838	6	2	2	3	31.50
Lattice constants of this sample	2.775	4	0	4	2	32.23
Hexagonal axes	2.693	4	3	2	1	33.24
a = 13.784(2)A	2 678	Q	2	0	5	33 /3
c = 14.993(3)	2.070	20	2	1	0	3/ 30
	2.000	20	4	2	2	24.25
c/a = 1.0877	2.572	4	2	2	2	25 04
Z = 3	2.497H 2.497M	21	1	2	5	35.94
			-	-	-	
Volume	2.351	3	1	1	6	38.26
2467.0 A ³	2.310	4	4	1	3	38.96
	2.298	5	3	3	0	39.17
Density	2.275	3	5	0	2	39.58
(calculated) 2.045 g/cm ²	2.231	1L	2	4	1	40.40
(observed) 2.05(2) (nimes and higherr,		,				
1981)	2.159	2	4	2	2	41.80
Pierre of month	2.122	1	5	1	1	42.57
$F = (F \cap (0, 012, 28))$	2.087	9	3	3	3	43.33
$F_{30} = 65.0(0.012, 38)$	2.060	1	1	5	2	43.91
Additional methods	2.013	1	0	5	4	44.99
PDF card 10-208 (Gude and Shennard 1966)						
rbr card 19-208 (dude and Sneppard, 1900)	1.9455	1L	4	3	1	46.65
Poforonoo	1.9126	2	5	2	0	47.50
Colligaria M. Nardin G. Bandaccio I.	1.8664	9	5	0	5	. 48.75
and Chiaramonti P C (1982) Acta	1.8515	4	0	1	8	49.17
Crustallogr B38 602	1.8035M	18	4	1	6	50.57
Grystarrogr. <u>DJ0</u> , 002.						
Gude A. J. and Shennard R. A. (1966)	1.8035M		4	2	5	50.57
Amer. Mineral. 51, 909.	1.7857	2	5	2	3	51.11
	1.7689	3	6	1	2	51.63
Himes, V. and Mighell, A. (1981). Private	1.7306	6	1	2	8	52.86
communication.	1.7236	10	4	4	0	53.09

Calcium Aluminum Silicate Hydrate, Chabazite, $Ca_2Al_4Si_80_{24} \cdot 12H_20$ - (continued)

d(Å)	Irel	hkl			20(°)
	$\sigma = \pm 3$				
1.6921	4	3	3	6	54.16
1.6660	4	0	0	9	55.08
1.6454	7	6	2	1	55.83
1.5864	2	0	4	8	58.10
1.5559M	7	6	0	6	59.35
1.5559M		6	1	5	59.35
1.5204	3	5	4	1	60.88
1.5155	4	5	1	7	61.10

r,

20(°)

18.12 19.11 23.24 23.48 26.36

27.50 28.07 29.27 31.06 31.77

32.05 32.14 32.59 32.93 34.33

35.24 36.68 36.91 37.28 37.40

38.74 39.12 39.48 41.21 41.69

42.42 42.97 43.24 43.40 44.15

44.43 44.68 44.83 45.61 45.75

47.53 47.89 48.01 49.38 49.38

50.05 50.52 50.62 50.98 51.73

Synonyms Reta dicalcium silicate	r	· · · · · · · · · · ·	0			
Belite	CuKa ₁	$\lambda = 1.5405$	98 A;	tem	p. 2	5±1 °C
CAS registry po	Intern	al standar	d Si,	a ≃	5.4	3088 Å
10034-77-2	0	rel				
	d(A)	I'''		hkl		2
Sample		$\sigma = \pm 1$				
The sample was made at the Portland Cement			<u> </u>			
Association Laboratory. $CaCO_3$ and SiO_2 with 0.5% P.O. were bested at 000 %C for 20 minutes	4.892	3	-1	0	1	18
$0.56 B_2 U_3$ were heated at 900 °C for 20 minutes,	4.641	9	2	0	0	19
20 minutes and air quenched. PCA #102381-1.	3 786	5	2	1	1	23
	3.378	7	Ō	2	Ō	26
Chemical analysis			-	_	-	
Wt%: SiO ₂ , 34.56; Al ₂ O ₃ , 0.17; Fe ₂ O ₃ , 0.03;	3.241	6	-2	1	1	27
Ca0, 64.24; SO ₃ , 0.18; Na ₂ O, 0.33; K_2O , 0.01;	3.176	5	1	2	0	28
$T10_2, 0.01; B_20_3, 0.18.$	3.049	9	2	1	1	29
Color	2.877	21	0	2	1	31
Colorless	2.814	22	3	T	0	31
	2,790	.97	-3	0	1	32
Structure	2.783	100	-1	2	î	32
Monoclinic, $P2_1/n$ (14), Z = 4. The structure	2.745	83	Ō	ō	2	32
of β -Ca ₂ SiO ₄ was determined by Midgley (1952).	2.718	30	1	2	1	32
	2.610	42	3	0	1	34
Lattice constants of this sample			_		_	
a = 9.310(2)A	2.545	9	0	1	2	35
b = 6.7565(10)	2.448	12	-2	0	2	36
c = 5.5059(11)	2.433	9 13	3	1	1	30
$\beta = 94.46(2)^{\circ}$	2.403	18	2	2	2	37
a/b = 1.2770	21405	10	-	-	-	57
a/D = 1.37/9 c/b = 0.81/9	2.323	2	4	0	0	38
C/D = 0.8149	2.301	4	-2	1	2	39
Volume	2.281	22	3	2	0	39
345.29 A ³	2.189	51	1	3	0	41
	2.165	13	2	1	2	41
Density	2 120	7	0	2	2	1.2
(calculated) 3.313 g/cm ³	2,103	1	-1	2	2	42
Delementeine	2.091	6	-4	1	1	43
There are a number of forms of Ca SiO The	2.083	6	0	3	1	43
heta form is unstable when it is nure. The	2.050	14	1	2	2	44
present sample was stabilized by 0.18% B ₂ O ₂ .						
	2.037	9	-3	1	2	44
Figure of merit	2.027	15	2	3	0	44.
$F_{30} = 54.5(0.013, 43)$	2.020	15	1	3	1	44.
	1.987	20	-2	2	1	45
Additional patterns	1.502	24	2	2	2	-J.
PDF card 9-351 (Yannaquis, 1955)	1.9115	6	4	2	0	47
PDF card 29-371 (Smith and Fausey 1977)	1.8979	9	3	1	2	47.
(calculated)	1.8935	11	2	2	2	48
(1.8441	4	-4	0	2	49
Brownmiller and Bogue, (1930)	1.8441M		-4	2	1	49.
References	1.8210	3	3	3	0	50
Brownmiller, T. and Rogue, R. H. (1930) Amer	1.8051	9	-3	2	2	50
J. Sci. 20, 241.	1.8018	9	-5	0	1	50
	1.7899	7	5	1	0	50
Midgley, C. (1952). Acta Crystallogr. <u>5</u> , 307.	1.7657	1	0	1	3	51
Smith, D. and Fausey, (1977). Annual Report						
to the Joint Committee on Powder Diffraction Standards.						

Yannaquis, N. (1955). Rev. Mater. Constr. Trav. Publics 1955, 213.

Calcium Silicate, (Larnite), β -Ca₂SiO₄ - (continued)

0	_rel				
d(A)	I	ł	ıkl	20(°)	
	$\sigma = \pm 1$				
1.7270	5	-1	3	2	52.98
1.7067	10	3	2	2	53.66
1.6964	5	1	3	2	54.01
1.6889	5	0	4	0	54.27
1.6282	12	5	2	0	56.47
1.6146	8	0	4	1	56.99
1.6110	10	2	1	3	57.13
1.6040M	11	2	3	2	57.40
1.6040M		-1	2	3	57.40
1.5874	6	2	4	0	58.06
100					
1.5839	7	1	4	1	58.20
1.5738	5	-4	3	1	58.61
				•	
Synonym					
--	---------	------------------	-------------	-------	
Calcium fluorosilicate dihydrate	d(A)	Irel	hkl	20(°)	
		-			
CAS registry no.		$\sigma = \pm 2$			
16961-80-1		······			
	4.598M		0 2 0	19.29	
Sample	4.503	9	2 1 0	19.70	
The sample was obtained from Alfa Products,	4.195	27	1 2 0	21.16	
Thiokol/Ventron Division, Danvers, MA.	4.160	21	$1 \ 1 \ 1$	21.34	
	3.783	19	-2 1 1	23.50	
Color					
Colorless	3.432	100	2 2 0	25.94	
	3.311	41	2 1 1	26.91	
Structure	3.271	13	1 2 1	27.24	
Monoclinic, P_{2}/n (14), $7 = 4$. The cell was	3,228	3	3 1 0	27.61	
obtained by using the Visser program (1969).	3.172	17	-3 0 1	28.11	
The space group was assumed by a study of the			• • •		
extinctions	3,079	12	-2 2 1	28.98	
	3,000	13	-3 1 1	29.76	
Lattice constants of this sample	2 932	4	1 3 0	30.46	
o	2 757M	5	3 0 1	32.45	
a = 10.477(2)A	2.757M	5	3 2 0	32.45	
b = 9.1771(13)	2.73/11		5 2 0	52.45	
c = 5.7281(13)	2 717	Q	-1 1 2	32 0/	
$\beta = 98.98(2)^{\circ}$	2.717	11	0 1 2	33 11	
	2.703	10	0 1 2	22.20	
a/b = 1.1416	2.090	10	-1 2 1	33.20	
c/b = 0.6242	2.052	10	-1 5 1	33.11	
	2.033	3	2 3 0	34.02	
Volume o	2 5504	2	1 2 1	25 04	
543.99 A ³	2.5591	2		35.04	
	2.5591	,	-2 1 2	35.04	
Density	2.491	4	4 1 0	30.03	
(calculated) 2.664 g/cm ³	2.41/M	0	-1 2 2	37.17	
	2.41/M		-4 1 1	37.17	
Figure of merit	0.00/	-		00.55	
$F_{30} = 47.1(0.013, 49)$	2.334			38.55	
$M_{20} = 29.4$	2.318	6	2 3 1	38.82	
20	2.303M	15	-2 2 2	39.08	
Additional pattern	2.303M	- /	-3 1 2	39.08	
PDF card 1-227 (Hanawalt et al., 1938)	2.293	14	0 4 0	39.25	
References	2.279	6	1 2 2	39.51	
Hanawalt, J. D., Rinn, H. W., and Frevel,	2.261	20	2 1 2	39.83	
L. K. (1938). Ind. Eng. Chem. Anal. Ed.	2.252	14	4 2 0	40.00	
10. 457.	2.239	23	1 4 0	40.24	
	2.199	8	-4 2 1	41.01	
Visser, J. W. (1969). J. Appl. Crystallogr.	0.14		/ 1 1	11 71	
2, 89.	2.164	1	4 1 1	41./1	
	2.127	4	0 4 1	42.47	
	2.110	24	-3 2 2	42.83	
0	2.084	2	-1 3 2	43.39	
$CuK\alpha_1 \lambda = 1.540598 \text{ A}; \text{ temp. } 25\pm1 \text{ °C}$	2.079M	3	222	43.50	
Internal standard Si. a = 5.43088 A					
	2.079M		-4 0 2	43.50	
° rel	2.060	3	1 4 1	43.92	
$d(A)$ $I^{}$ $hk\ell$ $2\theta(3)$	2.049M	13	-5 0 1	44.16	
$\sigma = \pm 2$	2.049M		3 3 1	44.16	
	2.020	4	5 1 0	44.84	
6.85 16 1 1 0 12.91					
5.323 43 -1 0 1 16.64	2.009M	13	-2 3 2	45.09	
5,166 5 2'0 0 17,15	2.009M		-2 4 1	45.09	
4 810 23 0 1 1 18.43	1.992	13	1 3 2	45.50	
4 598M 16 -1 1 1 19.29	1.976	15	4 3 0	45.89	
	1.9103	26	3 4 0	47.56	

d(Å)	Irel	hkl	20(°)
	$\sigma = \pm 2$		
1.8865	17	520	48.20
1.8777	13	-3 3 2	48.44
1.8711	11	-5 2 1	48.62
1.8614	9	322	48.89
1.8565	4	2 3 2	49.03
1.7998	19	4 3 1	50.68
1.7860	2	-1 4 2	51.10
1.7760+	10	-5 1 2	51.41
1.7638	6	4 0 2 3 4 1	51.41
1 7438+	13	0 2 3	52 43
1.7438+	15	4 1 2	52.43
1.7285	11	1 4 2	52.93
1.7144	9	5 3 0	53.40
1.7034	6	-5 3 1	53.77
1.6944M	16	3 3 2	54.08
1.6944M		6 1 0	54.08
1.6921	14	-4 4 1	54.16
1.6566M	1	4 2 2	55.42
1.6566M		-3 2 3	55.42
1.6312	3	2 5 1	56.36
1.594/	2	-2 3 3	5/.//
1.58491	2		50.10
1.564911	5	6 1 1	50.10
1.5597	J		39.19
1.5554M	3	3 0 3	59.37
1.5554M		1 3 3	59.37
1.5288M	4	-5 4 1	60.51
1.5288M	•	351	60.51
1.511/	3	-2 5 2	61.27
1.4998	1	-6 2 2	61.81
1.4424	5	2 5 2	64.56
1.4354	4	-2 6 1	64.91
1.4145M	5	-1 1 4	65.99
1.4145M		0 0 4	65.99
1.4045+	1	2 6 1	66.52
1.4045+	0	4 4 2	66.52
1.3871M	3	-7 1 2	67.47
1.3871M	2	3 3 3	67.47
1.3/56	3	-4 5 2	08.11
1.3638M	3	3 5 2	68.78
1.3638M		7 1 1	68.78

Synonym Cesium t:	riiodide			(Å)b	Irel		hkP	2r(°)
CAS regist:	ry no.				$\sigma = \pm 3$			
12527-22	-9							
				2.729	30	2	3 1	32.79
Sample			D 1 4	2.671	9	1	4 0	33.52
The samp.	le was obta	ained from Alfa	Products,	2.568/	5	0	4 1	34.90
Thickol/	Ventron Div	vision, Danvers	, MA. The	2.5185	9	2	2 2	35.62
sample d	ecomposed s	slowly in the o	pen air.	2.4781	1	3	3 0	36.22
Color		lish blue		2.4461	13	4	1 0	36.71
Unground	: dark purp	plish blue.	-	2.4372	12	1	3 2	30.83
Ground:	uark grayis	sh reduish brow		2.4204	3	2	4 U 2 1	37.02
Structure				2.3036	2	4	1 1	39.07
Orthorho	mbic, Pbnm	(62), Z = 4,	The structure	2.5050	-	•		33.07
was dete:	rmined by 1	Tasman and Bosw	ijk (1955).	2.2846M	2	2	4 1	39.41
			• • •	2.2846M		4	2 0	39.41
Lattice con	nstants of	this sample		2.1960	10	3	2 2	41.07
a = 10 0	280(0)			2.1662M	10	4	2 1	41.66
a = 10.0	269(9)A 860(0)			2.1662M		1	50	41.66
c = 6.8	457(8)							
	,(,			2.1544	10	0	4 2	41.90
a/b = 0.9	9062			2.1339	5	3	4 0	42.32
c/b = 0.0	6186			2.1060	8	1	4 2	42.91
				2.0751	5	4	3 0	43.58
Volume o				2.00521	0	1	2 3	43.00
761.17 A	3			2 0652M		1	5 1	43 80
				2.0417	7	2	1 3	44.33
Density				2.0231	2	4	0 2	44.76
(calculat	ted) 4.482	g/cm ³		2.0082	1	3	3 2	45.11
Figure of	manit			1.9898	12	4	1 2	45.55
Figure of $F_{1,2} = 83$	5(0 007 5(n)						
130 - 05	.5(0.007,50			1.9853	11	4	3 1	45.66
Reference				1.9796	5	2	4 2	45.80
Tasman,	H. A. and H	Boswijk, K. W.	(1955).	1.9451M	17	2	2 3	46.66
Acta Crys	stallogr. 8	8, 59.		1.9451M	r	2	5 1	46.66
		-		1.9248	5	Э	0 1	47.18
[0		1.9054	3	1	3 3	47.69
CuKa ₁	$\lambda = 1.5405$	598 A; temp. 25	±1 °C	1.9002	4	4	22	47.83
Inter	nal standar	rd W. $a = 3.165$	24 Å	1.8957	4	5	1 1	47.95
Intern	nut beanau.	24, 4		1.8850M	5	5	2 0	48.24
	_ rel	L1-0	20(8)	1.8850M		3	0 3	48.24
	T	nkt	20(-)	1 8575	2	3	1 2	40.00
	$\sigma = \pm 3$	3		1.8575 1.8476M	1	3	5 0	49.28
				1.8476M	1	0	6 0	49.28
5.658	5	1 0 1	15.65	1.8295	6	1	5 2	49.80
5.542	4	0 2 0	15.98	1.8172M	5	5	2 1	50.16
5.035	26		17.60					
3.959	30		22.44	1.8172M		1	60	50.16
3.000	43	2 1 1	23.39	1.8105M	10	3	4 2	50.36
3 720	15	2 2 0	23.90	1.8105M		2	3 3	50.36
3.468	20	1 3 0	25.67	1.7945	11	4	4 1	50.84
3.423	79	0 0 2	26.01	1.7847M	5	3	2 3	51.14
3.268	100	2 2 1	27.27	1 70/JM		2	5 1	51 14
3.093	10	1 3 1	28.84	1./04/11	3	3	3 2	51.14
				1.7757	7	4	6 1	52 02
3.004	10	3 0 1	29.72	1.7336	2	2	6 0	52.76
2.899	11	3 1 1	30.82	1.7111	8	0	0 4	53.51
2.863	14	3 2 0	31.22					
2.826	4		31.03					
2.112	12	0 4 0	52.21					

ł

d(Å)	Irel			hkl	20(°)
	$\sigma = \pm 3$				
1.6607	2	4	5	0	55.27
1.6524M	4	6	1	0	55.57
1.6524M		5	2	2	55.57
1.6144+	2	4	2	3	57.00
1.6144+		4	5	1	57.00
1.6064	3	6	1	1	57.31
1.5809	2	5	4	1	58.32
1.5465	2	2	6	2	59.75
1.5346M	2	4	3	3	60.26
1.5346M		1	3	4	60.26
1.5247	2	1	7	1	60.69
1.5068	2	5	0	3	61.49
1.4945	3	4	5	2	62.05
1.4881+	4	6	1	2	62.35
1.4881+		5	5	0	62.35
1.4753	1	2	7	1	62.95
1.4688	2	3	2	4	63.26
1.4561	2	0	4	4	63.88
1.4530M	1	5	5	1	64.03
1.4530M		4	6	1	64.03
1.4500	1	6	2	2	64.18
1.4416M	5	4	4	3	64.60
1.4416M		1	4	4	64.60
1.4360M	6	3	5	3	64.88
1.4360M		0	6	3	64.88
1.4212M	3	1	6	3	65.64
1.4212M		7	1	0	65.64
1.4015M	4	4	1	4	66.68
1.4015M		3	7	1	66.68

Synonyms

Cesium molybdate

Dicesium trimolybdate

Sample

The sample was prepared using cesium carbonate and molybdic anhydride. Appropriate amounts were blended by grinding in an agate mortar under acetone. The dried mixture was heated at 500 °C for a total of 16 hours with periodic grinding. After the last heating, the sample was ground to pass a 100 mesh sieve, and the resulting powder was annealed at 240 °C for 19 hours.

Color

Colorless

Structure

Monoclinic, C2/c (15), Z = 4, isostructural with $K_2Mo_3O_{10}$. The structure of $K_2Mo_3O_{10}$ was determined by Gatehouse and Leverett (1968).

Lattice constants of this sample

 $a = 14.469(2) \overset{\circ}{A} \\ b = 8.4022(9) \\ c = 9.4609(14) \\ \beta = 97.73(1)^{\circ}$

a/b = 1.7220 c/b = 1.1260

Volume

1139.7 Å³

Density (calculated) 4.159 g/cm³

Figure of merit $F_{30} = 94.2(0.008, 42)$

Additional pattern PDF card 24-277 (Salmon and Caillet, 1969)

References Gatehouse, B. M. and Leverett, P. (1968). J. Chem. Soc. A, 1398.

Salmon, R. and Caillet, P. (1969). Bull. Soc. Chim. Fr., 1569.

Intern	al standa	-d Si.	a =	- 5.	43088 A
	rel	ru 51,	a		43000 1.
d(A)	1		hKz		20(
	$\sigma = \pm 4$				
7.237	17	1	1	0	12.22
5.933	18	-1	1	1	14.92
5.552	19	0	1	1	15.95
4.155	18	3	1	0	21.37
4 064	8	-1	1	2	21.85
3 975	13	-3	1	1	22.35
3.823	100	1	1	2	23.25
3.699	34	2	0	2	24.04
3.644	88	3	1	1	24.41
3.625	35	2	2	0	24.54
3.586	15	4	0	0	24.81
3.462	93	-2	2	1	25.71
3.306M	14	-3	1	2	26.95
3.306M		2	2	1	26.95
3.127	19	0	2	2	28.52
3.052	50	-4	0	2	29.24
2.966	45	-2	2	2	30.11
2.942M	41	-1	1	3	30.30
2.942m		3	1	2	30.30
2.801	2	1	1	3	31.93
2.778	2	2	2	2	32.20
2.749	5 18	4	3	0	32.33
2.715	32	5	1	0	32.97
0 604	4	-4	2	1	22 23
2.094	4	-1	23	1	33.71
2.620	11	1	3	1	34.20
2.548	3	4	2	1	35.20
2.470	7	-4	2	2	36.35
2.451	4	-2	2	3	36.64
2.416	1	3	3	0	37.18
2.3903	5	6	0	0	37.60
2.3031	20	3	3	1	39.08
2.2762	25	-1	1	4	39.30
2.2565	12	-6	0	2	39.92
2.228/	5 1T	5	1	2	40.44
2.1909	2	-5	1	34	41.17
2.1677	13	-4	2	3	41.63
2 1514	6	-3	1	4	41.96
2.1456	8	2	0	4	42.08
2.0902M	6	-1	3	3	43.25
2.0902M		3	3	2	43.25
0 0001	7	-6	2	1	43.47

Cesium Molybdenum Oxide, $Cs_2Mo_3O_{10}$ - (continued)

d(A)	Irel		hkl		20(°)
	σ =	±4			
2.0497	11	0	4	1	44.15
2.0457	3	0	2	4	44.24
2.0382	29	1	3	3	44.41
2.0223	10	6	0	2	44.78
2.0167	6	2	4	0	44.91
1.9994M	19	-7	1	1	45 32
1 0004M	17	-5	3	1	45 32
1 0861M	10	-6	2	2	45.64
1.98011	10	-0	2	2	43.04
1.9562	8	2	4	1	46.38
1.0/60	,	•		,	14.40
1.9463	6	3	1	4	46.63
1.9310	7	5	1	3	47.02
1.9225	11	5	3	1	47.24
1.8972M	4	-5	1	4	47.91
1.8972M		7	1	1	47.91
1.8773	3	-2	4	2	48.45
1.8515M	8	3	3	3	49.17
1.8515M		4	0	4	49.17
1.8312	2	-6	2	3	49.75
1.8268	2	2	4	2	49.88
1 8122	17.	4	4	0	50 31
1 7078	4	-6	0	4	50.74
1 7873M	7	-7	1	3	51 06
1 7873M	'	1	1	5	51.06
1.7644	1	-5	3	3	51.77
				-	
1.7622	1	1	3	4	51.84
1.7512	3	7	1	2	52.19
1.7129M	1L	-2	2	5	53.45
1.7129M		0	2	5	53.45
1.6938	4	4	2	4	54.10
1.6596M	8	-7	3	1	55.31
1.6596M		-8	2	1	55.31
1.6538M	11	-6	2	4	55.52
1.6538M		7	3	0	55.52
1.6489M	9	8	2	0	55.70
1 6480M		-1	5	1	55 70
1 6/25M	5	-1	2	3	55 00
1.64351	5	-5	1	5	55 00
1.6103M	7	_9	2	2	56 91
1.6193M	1	-8	2	3	56.81
1.6162	15	-4	4	3	56.93
1.5987M	8	-5	3	4	57.61
1.5987M		7	3	1	57.61
1.5896	4	8	2	1	57.97
1.5854	4	3	5	0	58.14
1.5787M	6	-6	4	1	58.41
1.5787M		-9	1	1	58.41
1.5643M	7	1	5	2	59.00
1.5643M		0	4	4	59.00
1.5516	6	3	5	1	59.53

d(Å)	Irel		hkl		20(°)
	$\sigma = \pm 4$				
1.5476	5	-9	1	2	59.70
1.5385	6	-8	2	3	60.09
1.5332M	10	6	4	1	60.32
1.5332M		-3	3	5	60.32
1.5227+	5	-3	5	2	60.78
1.5227+		-3	1	6	60.78
1.5114	2	9	1	1	61.28
1.4982	1	8	2	2	61.88
1.4853	3	2	0	6	62.48
1.4816M	5	-1	5	3	62.65
1.4816M		3	5	2	62.65
1.4718M	1L	-2	2	6	63.12
1.4718M		6	2	4	63.12
1.4634M	4	-7	1	5	63.52
1.4634M		1	5	3	63.52
1.4612	4	-6	4	3	63.63
1.4496	1L	5	5	0	64.20
1.4398	1	-3	5	3	64.69

1

-

20(°)

29.05

34.82

45.96

60.22

62.42

70.30

71.46

73.52

80.89

92.29

97.60

102.67

104.65

108.15

112.26

127.67

132.05

137.50

139.15

148.09

Synonym						
Chromium diboride	CuKa,	$\lambda = 1.54059$	8 Å;	ter	p. 2	5±1 °C
CAS registry no	I	al standard	w a	_	2 161	524 Å
12007-16-8	Incen	ai standard	w, a	-	5.10.)24 A
12007-10-0	•					
Sample	d(A)	Iter		b	kl	:
The sample was obtained from the Metallurgy		a - +1				
aroup at NRS A small admixture of Cr was		0 = 1				
removed by sieving	3 071	20	0	0	1	20
ICMOVED by SIEVING.	2 574	57	1	0	0	2.
Color	1.0720	100	1	0	1	
	1.9750	100	1	0	1	4.
olive gray	1.5555	10	1	1	2	
Structure	1.4000	25	T	T	U	0,
$\frac{1}{2} = 1 (\text{DE cond})$	1 0000	1/	-	-		-
nexagonal, ro/mum (191), 2 - 1, (rDr card	1.3380	14	1	1	1	/
6-119).	1.3191	15	1	0	2	1
Tetting complements of this couple	1.28/1		2	0	0	1.
Lattice constants of this sample	1.18/4	16	2	0	1	8
a = 2.9730(13)A	1.0682	16	1	1	2	9
c = 3.0709(2)						
	1.0238	1	0	0	3	9
c/a = 1.0329	.9865	8	2	0	2	10
	.9732	6	2	1	0	10
Volume	.9512	9	1	0	3	10
23.506 A ³	.9277	20	2	1	1	11:
Density	.8582	7	3	0	0	12
(calculated) 5 200 e/cm ³	.8430	4	1	1	3	13
(carcaraces) 3.200 B/cm	.8265	4	3	0	1	13
Figure of merit	. 8220	11	2	1	2	13
$F_{-} = 0/(0.011.20)$.8012	8	2	0	3	14
$r_{20} = 54.4(0.011,20)$						
Additional nattern						
PDF card 8-110 (Paretokin 1056 Poly-						
1D1 Card O 112 (LarceArth, 12.)O, LUIV ⁻						

technic Institute of Brooklyn, Brooklyn,

20(°)

53.54 55.95 61.50 63.25 64.58

68.02 68.45 71.38 75.11 78.38

81.13 83.10 87.89 89.46 93.79

94.19 95.77 103.39 103.39 112.05

115.51 116.90 120.43 120.91

Niobium chromium oxide		rel		h. b.	,
Chromium niobate	u(R)	$\sigma = \pm 1$		ЦКХ	•
CAS registry no.					
58500-35-9	1.7102	62	2	1	1
	1.6421	18	2	2	0
Sample	1.5066	7	0	0	2
Made by heating Cr_2O_3 and Nb_2O_5 at 1000 °C for	1.4690	13	3	1	0
24 hours. The sample contained some Cr_2O_3 .	1.4419	1L	2	2	1
Color	1.3772	17	3	0	1
Gray olive	1.3696	12	1	1	2
•	1.3204	1	3	1	1
tructure	1.2638	3	2	0	2
Tetragonal, $P4_o/mnm$ (136), $7 = 1$. Rutile	1,2190	ĩ	2	1	2
structure (Brandt 1943) The structure of	1.2150	•	2	-	-
CrNb0, is discussed by Khazai at al (1091)	1 10/5	6	2	2	1
ornbog is discussed by Mazar et al. (1961).	1.1045	0	3	2	1
	1.1014	2	4	0	0
attice constants of this sample	1.1100	6	2	2	2
a = 4.6443(2)Å	1.0945	3	3	3	0
c = 3.0125(3)	1.0551	7	4	1	1
	1.0516	8	3	1	2
c/a = 0.6486	1.0384	3	4	2	0
	0.004	2	4	2	1
'olume o	.90100	2	4	2	2
64.977 Á ³	.9289	1	4	3	3 0
Density	9108	11.	5	1	0
(calculated) 5.338 g/cm ³	. 9100	2	5	1	2
	.9039	3	2	1	5
igure of merit	.8875	4	4	3	1
$\tilde{F}_{28} = 60.94(0.013, 36)$. 8854	4	3	3	2
Additional patterns					
PDF card 20-311 (Young, Battelle Mem. Inst., 1964)					
PDF card 31-927 (Ben-Dor and Shimony, 1978).					
The composition of this phase is $Cr_{0.4}Nb_{0.6}O_2$.					
References					
Ben-Dor, L. and Shimony, Y. (1978). J. Cryst. Growth <u>34</u> , 1.					
Brandt, K. (1943). Ark. Kemi Mineral. Geol.					
<u>1/11</u> , 131					
Khazai, B., Kershaw, R., Dwight, K., and Wold, A. (1981). J. Solid State Chem. <u>39</u> , 395.					
$CuK\alpha_1 \lambda = 1.540598 \text{ A}; \text{ temp. } 25\pm1 \text{ °C}$					
Internal standard $W = -3.1652/\Lambda$					
Incernal standard w, a = 3.10524 A					
d(A) I ^{rel} hkl 20(°)					

 $\sigma = \pm 1$

1

1 2 0 0

1

2

1 0

0 1

1 1

1 0

100

65

15

11

4

3.283

2.528

2.322

2.220

2.077

27.14

35.48

38.75

40.60

~	-		
	1777	Or	1.1711
•	V LL	U L	L V U

ynonym Cobalt orthoarsenate octahydrate

Cobalt orthoarsenate octahydrate	CuKa1	$\lambda = 1.5405$	598 Å;	temp. 2	25±1 °C		
CAS registry no. 54496-59-2	Internal standard S1, a = 5.4308						
	d(Å)	Irel		hk2	20(°		
Sample The sample was made by slowly adding 2 grams		$\sigma = \pm i$	1				
of $Na_2 HASU_4 \cdot / H_2 U$ dissolved in 1 liter of $H_2 U$	7.06	26	1	1 0	11 11		
liquid was kept at about 70 °C for 40 days.	6 72	100	1	2 0	11.11		
Ilquid was kept at about 70 C for 40 days.	4 951	9	2		17 90		
Spectrographic analysis	4,602	2	-1	0 1	19.27		
Major impurities	4,403	19	ō	1 1	20.15		
0.02 to 0.1% Ni			•				
0.01 to 0.05% Cu,Si	4.081	5	1	30	21.76		
0.005 to 0.025% Al,Fe	3.978	7	2	2 0	22.33		
0.002 to 0.01% Mn,Sn,Zn	3.916	12	1	0 1	22.69		
<0.005% Ag,Mg	3.787	· 2	-1	2 1	23.47		
	3.663	7	-2	1 1	24.28		
Color							
Medium purplish pink	3.381	3	1	2 1	26.34		
	3.357	4	0	4 0	26.53		
Structure	3.227	42	0	3 1	27.62		
Monoclinic, $12/m$ (12), $2 = 2$. Vivianite	3.003	47	-3	0 1	29.73		
structure (Wolfe, 1940). The structure of	2.779	9	2	4 0	32.18		
vivianite, $Fe_3(PU_4)_2 \cdot 8H_2U$, was discussed by	0.7/0	•	•		00.00		
Mori and 100 (1950).	2.740	30	-3	2 1	32.66		
Lattice constants of this sample	2.712	24	-1	4 1	33.00		
o	2.030	14	3	5 0	33.09		
a = 10.118(5)A	2.393	9	1	4 1	35 18		
b = 13.433(4)	2.343	,	-	- 1	55.10		
c = 4.762(2)	2,463	18	3	0 1	36.45		
$\beta = 101.90(3)^{\circ}$	2.327	17	ő	5 1	38.66		
	2.238M	3	Ő	6 0	40.26		
a/b = 0.7532	2.238M	3	-3	4 1	40.26		
c/b = 0.3545	2.196	9	-2	5 1	41.06		
II have			_		_		
Kap ap A3	2.094	7	-3	12	43.17		
033.32 A-	2.083	9	3	50	43.41		
Density	2.040	2	2	60	44.36		
$(calculated) 3 1/0 q/cm^3$	2.012	3	-1	61	45.02		
(Calculated) 5.140 g/cm	1.987	5	3	4 1	45.61		
Comment							
Note the similarity between the data	1.954	7,	1	3 2	46.44		
above, and the data for the phase	1.9172	8	-3	32	47.38		
$Zn_3(AsO_4)_2 \cdot 8H_2O$, also appearing in							
this Monograph.							
Figure of merit							
$F_{30} = 43.0(0.013,53)$							
Additional pattern							
PDF card 11-626 (U.S. Bureau of Mines, Albany,							
UR)							
D. C.							
Mari W and Ito T (1050) Acts (swotalless							
nori, n. and ito, i. (1950). Acta crystallogr.							
2, 1.							
Wolfe, C. W. (1940). Am. Mineral. 25 787.							
norre, 0. n. (1940). Am. mineral. 25, 101.							

Synonym Cobalt orthophosphate octahydrate				
	d(A)	1	hkl	20(*)
CAS registry no. 10294-50-5		$\sigma = \pm 3$		
	4.042	15	1 3 0	21.97
Sample	3.832	23	101	23.19
The sample was prepared by dissolving stoi-	3.609	5	-2 1 1	24.65
chiometric amounts of $CoSO_4$ and Na_2HPO_4 in	3.320	5	1 2 1	26.83
water and letting the solution partly evapo- rate at room temperature.	3.187	31	0 3 1	27.97
Color	3.141	4	3 1 0	28.39
Unground: deep red	2.946	32	2 1 1	30.31
Ground: moderate pale red	2.000	2	-2 3 1	22 55
	2.698	27	-3 2 1	33.18
Structure				
Monoclinic, $12/m$ (12), $Z = 2$. The pattern was	2.683	23	-1 4 1	33.37
indexed by analogy with the pattern of the	2.615	11	3 3 0	34.27
structure of vivianite was discussed by Mari	2.572	5	1 5 0	34.86
and Ito (1950)	2.5150	18	$1 \ 4 \ 1$	35.67
and 100 (1950).	2.4981	8	2 3 1	35.92
Lattice constants of this sample	2.4082	17	3 0 1	37.31
a = 9.9265(14) A	2.3036M	13	0 5 1	39.07
b = 13.3360(14)	2.3036M		-1 1 2	39.07
c = 4.6786(7)	2.2647	4	3 2 1	39.77
$\beta = 102.310(12)^{\circ}$	2.2104	12	-3 4 1	40.79
a/b = 0.74/3	2.1727	11	-2 5 1	41.53
c/b = 0.3508	2.1628	6	0 2 2	41.73
	2.1417	3	-2 2 2	42.16
Volume	2.0985	1	1 1 2	43.07
605.11 Å ³	2.0842	2	-4 3 1	43.38
Density	2.0576	8	3 5 0	43.97
(calculated) 2.804 g/cm ³	2.0214	1	260	44.80
	1.9953	3	-1 6 1	45.42
Figure of merit	1.9530	3	4 1 1	46.46
$F_{30} = 97.0(0.007, 43)$	1.9222	8	1 6 1	47.25
Additional pattern	1.9176	11	1 3 2	47.37
PDF card 1-0121 (Hanawalt et al., 1938)	1.8909	7	-3 3 2	48.08
	1.8701	5	1 / 0	48.65
References	1.8632	2	-5 2 1	48.84
Hanawalt, J. D., Rinn, H. W., and Frevel,	1.0424	1	~ ~ ~ ~	49.45
L. K. (1938). Ind. Eng. Chem. Anal. Ed. <u>10</u> , 457	1.8051M	3	4 3 1	50.52
437.	1.8051M		-4 2 2	50.52
Mori, H. and Ito, T. (1950). Acta	1.7785	2	5 3 0	51.33
Crystallogr. 3, 1.	1.7686	5	-4 5 1	51.64
	1.7581M	5	0 7 1	51.97
•	1.7581M		-1 5 2	51.97
$CuK\alpha_1 \lambda = 1.540598 \text{ A}; \text{ temp. } 25\pm1 \text{ °C}$	1.6671	9	0 8 0	55.04
Internal standard Ag. $a = 4.08651$ Å	1.6635M	11	5 0 1	55.17
	1.6635M		1 5 2	55.17
d(A) I ^{rel} hkl 20(°)	1.6440	8	-3 5 2	55.88
$\sigma = \pm 3$	1.6154	2	6 0 0	56.96
	1.5904	5	3 3 2	57.94
7.852 23 1 1 0 11.26	1.5866	5	4 5 1	58.09
6.667 100 0 2 0 13.27	1.5765	2	2 8 0	58.50
4.849 25 2 0 0 18.28	1.5706	/	0 2 0	50.74
4.521 15 -1 0 1 19.62				
4.525 0 0 1 1 20.53				

d(Å)	Irel	hkl	2 0 (°)
	$\sigma = \pm 3$		
1.5694 1.5645 1.5581 1.5367	7 5 2 3	5 5 0 -1 8 1 -5 3 2 -6 3 1	58.79 58.99 59.26 60.17
1.5281	3	1 8 1	60.54
1.5103 1.5079 1.4883 1.4766 1.4728	4 4 2 6 4	$\begin{array}{cccccc} 4 & 0 & 2 \\ -3 & 0 & 3 \\ 5 & 4 & 1 \\ -6 & 0 & 2 \\ 4 & 2 & 2 \end{array}$	61.33 61.44 62.34 62.89 63.07
1.4647 1.4518 1.4418M 1.4418M 1.4352	3 3 2 1L	-2 3 3 2 6 2 -6 2 2 0 3 3 3 5 2	63.46 64.09 64.59 64.59 64.92
1.4247 1.4187 1.4115M 1.4115M 1.4094	2 1 3 3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	65.46 65.77 66.15 66.15 66.26
1.3958 1.3711M 1.3711M 1.3465M 1.3465M	2 2 1	-6 5 1 4 7 1 3 8 1 3 9 0 0 8 2	66.99 68.36 68.36 69.79 69.79
1.3406 1.3334 1.3299 1.3233M 1.3233M	3 4 4 3	-2 5 3 0 10 0 2 9 1 0 5 3 7 3 0	70.14 70.58 70.79 71.20 71.20

Cobalt Phosphate Hydrate, $Co_3(PO_4)_2 \cdot 8H_20$ - (continued)

	Interr	al standard	Ag.	a =	4.08	651 Å
12060-15-4						
Sample	d(Å)	Irel		h	kl	2θ(°)
The sample was obtained from the Solid State Physics Division at NBS.		$\sigma = \pm 3$				
	4.201	9	1	1	1	21.13
Color	2.572	54	2	2	0	34.85
Dark grayish olive	2.193	100	3	1	1	41.13
	2.101	18	2	2	2	43.01
Structure	1.8193	1L	4	0	0	50.10
Cubic, Fd3m (227), $Z = 8$. The structure was						
determined by Wernick and Geller (1960).	1.6699	5	3	3	1	54.94
	1.4861	26	4	2	2	62.44
Lattice constant of this sample	1.4006	32	5	1	1	66.73
0 = 7.0777(0)	1.2862	20	4	4	0	73.58
a = 7.2777(2) A	1.2305	3	5	3	1	77.51
Volume o	1 1500	12		2	0	8/ 03
385.46 A ³	1 1008	12	5	2	3	87 01
	1 0071	6	5	2	2	80 10
Density	1.050/	11		2	4	0/ 22
(calculated) 9.614 g/cm ³	1.0304	2	5	5	1	08 21
	1.0190	2	J	5	T	90.21
Figure of merit	9726	12	6	4	2	104 74
$F_{23} = 63.8(0.014, 26)$	9476	20	7	3	1	108 76
	9096	6	, 8	0	Ō	115 75
Additional pattern	8892	1T.	7	3 3	3	120.06
PDF card 17-32 Dwight, Met. Div., Argonne	8576	8	6	6	0	127.85
Nat. Lab., Argonne, IL.	.0570	0	Ŭ	Ŭ	U	127.05
P. C	.8403	12	7	5	1	132.89
Keierence	.8349	4	6	6	2	134.63
wernick, J. H. and Geller, S. (1960).	.7988	2	9	1	1	149.28
Irans. AIME 218, 866.						

Ethylenediamine Hydrochloride, $C_2H_8N_2\cdot 2HC1$

Synonyms	0					
1,2-Ethanediamine dihydrochloride	d(A)	Irei		hk	L.	20(°)
Ethylene diammonium chloride		$\sigma = \pm 3$				
CAS registry no.	3.256	59	1	2	0	27.37
20273-40-9	3.012	47	-2	1	1	29.64
	2.993	86	3	1	0	29.83
Sample	2.956	59	2	1	1	30.21
The sample was obtained from Sigma Chemical Co., St. Louis, MO. It was recrystallized	2.836	25	2	2	0	31.52
from water.	2.719	47	0	2	1	32.91
	2.633	10	-1	2	1	34.02
Color	2.504	9	-3	1	1	35.83
Colorless	2.491 2.458	8 17	43	0 1	0 1	36.03 36.53
Structure						
Monoclinic, $P2_1/a$ (14), Z = 2. The structure	2.401	15	-2	2	1	37.43
was determined by Ashida and Hirokawa (1963).	2.373	1L	2	2	1	37.88
	2.343	20	4	1	0	38.38
Lattice constants of this sample	2.215	6	0	0	2	40.71
a = 9.9683(13)Å	2.151	9	4	0	1	41.96
h = 6.8913(12)	0.110		2			10.00
c = 4.4293(6)	2.118	6	-3	2	1	42.65
$B = 91.311(12)^{\circ}$	2.10/	6	0	1	2	42.89
P	2.086	25	2	3	0	43.34
a/b = 1.4465	2.0/15	8	-1	1	2	43.00
c/b = 0.6427	2.05411	17	1	1	2	44.05
H-lum-	2.0541M		4	1	1	44.05
Volume o	2.0404M	10	-2	0	2	44.36
304.19 A-	2.0404M		0	3	1	44.36
	2.0066	5	2	0	2	45.15
(calculated) 1.452 g/cm ³	1.9577	2	-2	1	2	46.34
	1.9145	3	5	1	0	47.45
Figure of merit	1.8799	13	2	3	1	48.38
$F_{30} = 57.8(0.011, 49)$	1.8504	3	-4	2	1	49.20
Allister I matterna	1.8375	4	-1	2	2	49.57
PDF card 9-580 (Brock and Hannum, 1955)	1.8244M	5	1	2	2	49.95
DDF cord 20-1602 (Catte Penn State	1.8244M		4	2	1	49.95
PDr card 20-1092 (Gatte, remi. State	1.7972	2	-3	1	2	50.76
Univ., 1907)	1.7721	13	-5	1	1	51.53
De Course of	1.7252	4	5	2	0	53.04
Ashida, T. and Hirokawa, S. (1963). Acta	1.6982	,6	1	4	0	53.95
Crystallogr. <u>16</u> , 841.	1.6881	6	4	3	0	54.30
	1.6750	1L	-4	0	2	54.76
Brock, M. J. and Hannum, M. J. (1955).	1.6610	4	6	0	0	55.26
Anal. Chem. $2/$, 13/4.	1.6381	11	-3	2	2	56.10
	1.6264	3	-4	1	2	56.54
$CuK\alpha_1 \lambda = 1.540598 \text{ Å}; \text{ temp. } 25\pm1 \text{ °C}$	1.6118	7	3	2	2	57.10
Internal standard Si. $a = 5.43088$ Å	1.5969	16	5	2	1	57.68
Internal Scandard Dr, & Strotter.	1.5934	17	0	3	2	57.82
o rel	1.5859	18	-4	3	1	58.12
$d(A)$ I hkl $2\theta(v)$	1.5691M	4	1	3	2	58.80
$\sigma = \pm 3$	1.5691M		4	3	1	58.80
5 669 1 1 1 0 15.62	1.5665	3	-6	0	1	58.91
4.427 5 0 0 1 20.04	1.5436	4	6	0	1	59.87
3.725 15 0 1 1 23.87	1.5284	1	-6	1	1	60.53
3.466 100 1 1 1 25.68	1.5249M	2	-2	3	2	60.68
3.350 89 -2 0 1 26.59						

ł

Ethylenediamine Hydrochloride, $C_2H_8N_2 \cdot 2HC1$ - (continued)

d(Å)	Irel		hk	e	20(°)
	$\sigma = \pm 3$				
1.5249M		2	4	1	60.68
1.5117	3	2	3	2	61.27
1.5061+	5	6	1	1	61.52
1.5061+		-4	2	2	61.52
1.4958	1	6	2	0	61.99
1.4776	2	4	2	2	62.84
1.4643	1	-5	1	2	63.48
1.4502	1	-3	4	1	64.17
1.4434	2	0	1	3	64.51
1.4414	3	3	4	1	64.61
1.4327+	2	-1	1	3	65.05
1.4327+		-5	3	1	65.05
1.4235M	1	-2	0	3	65.52
1.4235M		1	1	3	65.52

Ethylenediaminetetraacetic Acid, $C_{10}H_{16}N_2O_8$

Synonyms N NI-1 2-Etheradivihia (N-(corbovymethyl))				
elvcinel	d(A)	I	hkl	20(°)
Edetic Acid		$\sigma = \pm 4$		
EDTA	2 (02	0.1	/ 0 0	0/ (0
versene	3.603	81	-4 0 2	24.69
CAS registry no	3 323	21	-1 1 3	25.80
60-00-4	3.323	25	-2 1 3	27 20
	3.180	11	-2 0 4	28.04
Sample	0.100			
The sample was prepared at NBS and recrystal-	3.079	22	2 1 3	28.98
lized from water.	3.021	22	-3 1 3	29.54
	2.940	7	2 0 4	30.38
Color	2.773	24	-5 1 1	32.26
Colorless	2.696	9	-4 0 4	33.20
Structure	2 660M	5	6 0 0	33 55
Monoclinic, $A2/a$ (15), $Z = 4$. The structure	2.669M	5	5 1 1	33 55
was determined by Lu and Shao (1962).	2.632	4	2 2 0	34 04
···· ·································	2.574	8	-6 0 2	34.82
Lattice constants of this sample	2.518	4	1 2 2	35.62
a = 16.112(3)Å				
b = 5.5774(15)	2.511	4	4 1 3	35.73
c = 13.287(3)	2.477	7	-2 2 2	36.24
$B = 96.30(2)^{\circ}$	2.456	2	- 5 1 3	36.55
P	2.416	23	2 2 2	37.18
a/b = 2.8890	2.398	9	-1 1 5	37.48
c/b = 2.3825	0.005	0	<pre></pre>	07 (0
	2.385	8	6 0 2	37.68
Volume	2.303M	1	-3 2 2	38.21
1186.8 A^3	2.3531	1	-2 1 5	38.21
	2.320	1	4 2 0	30.05
Density	2.200	2	4 2 0	29.22
(calculated) 1.636 g/cm ³	2.227	5	2 1 5	40 48
	2.201	12	0 0 6	40.97
Figure of merit $E = \sqrt{7} 7(0, 012, E0)$	2.131M	6	-1 2 4	42.38
$F_{30} = 47.7(0.013, 50)$	2.131M		0 2 4	42.38
Additional nattorn	2.125	4	-7 1 1	42.51
PDF card 27-1927 (Wang P Polytechnic				
Institute of Brooklyn, Brooklyn, N.Y.)	2.093	6	124	43.20
institute of blocklyn, blocklyn, witt)	2.065	7	206	43.81
Reference	2.024M	2	-4 0 6	44.73
Lu. Y. T. and Shao. M. C. (1962). Sci. Sin.	2.024M		224	44.73
<u>9,</u> 469.	2.012	4	-5 1 5	45.03
	1 977	4	-8 0 2	45 87
	1.973	4	6 0 4	45.95
CuK α_1 , $\lambda = 1.540598$ A; temp. 25±1 °C	1.964	6	5 2 2	46.18
Internal standard As a = / 00/51 A	1.929	4	6 2 0	47.07
Internal Standard Ag, a - 4.08051 A	1.8593	1	8 0 2	48.95
		,	0	10 50
	1.8389	4	8 1 1	49.53
$\sigma = \pm 4$	1.8025	/	-0 0 4	50.00
8.01 17 2 0 0 11 04				
6.59 23 0 0 2 13.42				
5.394 13 -2 0 2 16.42	L			
5.142 12 0 1 1 17.23				
4.960 40 -1 1 1 17.87				

4.847M

4.847M

4.412

4.003

3.783

4

32

100

12

2 0 2

-3 1 1

18.29

18.29 20.11 22.19

Synonym						
Hafnium mononitride	CuKa,	$\lambda = 1.540598$	Å;	tem	p. 25	±1 °C
CAS registry no.	Inter	nal standard	Ag,	a =	4.08	651 Å
25817-87-2			0,			
		rel		h	L 0	28(9)
Sample		1		'n		20()
The sample was obtained from Alfa Products, Thiokol/Ventron Division, Danvers, MA.		$\sigma = \pm 1$				
	2.612	100	1	1	1	34.31
Color	2.262	62	2	0	0	39.82
Dark olive brown	1.6002	37	2	2	0	57.55
	1.3641	33	3	1	1	68.76
Structure	1.3061	9	2	2	2	72.28
Cubic, $Fm3m$ (225), $Z = 4$. Glaser et al.						
(1953).	1.1314	4	4	0	0	85.82
	1.0379	8	3	3	1	95.84
Lattice constant of this sample	1.0120	10	4	2	0	99.13
	.9237	7	4	2	2	113.01
a = 4.5253(4)A	.8710	7	5	1	1	124.36
Volume 92.67 A ³						
Density						
(calculated) 13.797 g/cm ³						
Figure of merit						
$F_{10} = 63.3(0.016, 10)$						
Additional pattern						
PDF card 25-1410 (Fiala, Central Researcn						
Institute, Skoda, Czechoslovakia, 1973).						
Reference						
Glaser, F. W., Moscowitz, D., and Post, B.						
, , , , , , , , , , , , , , , , , ,						

(1953). J. Metals 5, 1119.

691-58-9	d(Å)	Irel	hkl	20(°)
0la '		σ + +2		
The cample was obtained from Fastman Organic		0 = 13		
Chemicals, Rochester, NY, It was recrystal-	3.501	4	7 1 0	25.42
lized from ethanol.	3.399	36	1 1 1	26.20
	3.334	5	2 1 1	26.72
Color	3.228	15	3 1 1	27.61
Colorless	3.191	25	8 1 0	27.94
Structure	3,109	3	4 1 1	28.69
Monoclinic, $P2_1/n$ (14), $Z = 4$. The structure	3.009	16	10 0 0	29.67
was determined qualitatively by Toussaint	2.974	18	701	30.02
(1950, 1952).	2.964	19	5 1 1	30.13
	2.892	2	320	30.90
Lattice constants of this sample	2 801	2	6 2 0	21 02
a = 30.087(5)A	2.601	2	-7 1 1	33 28
b = 6.0346(12)	2.690	3	7 1 1	33 58
c = 4.1563(9)	2.593	5	9 0 1	34.56
$\beta = 90.55(2)^{\circ}$	2.507	4	12 0 0	35.79
a/b = 4.9857	2 433	5	1 2 1	36 92
c/b = 0.6887	2.401	7	-9 1 1	37 43
	2.382	6	9 1 1	37.73
Volume	2.374	6	-3 2 1	37.86
754.60 A ³	2.295	2	-11 0 1	39.23
Density	2 267	4	-5 2 1	20 72
(calculated) 2.183 g/cm ³	2.207	4	-J 2 1 5 2 1	39.72
	2.257	1	9 2 0	40 20
Figure of merit	2.1480	6	14 0 0	42.03
$F_{30} = 42.1(0.010,69)$	2.1301M	8	10 2 0	42.40
Additional pattern	2 1301M		11 1 1	42 40
PDF card 11-828 (Cherin, Polytechnic Institute	2 1168	4	7 2 1	42.68
of Brooklyn, 1960)	2.0257M	3	11 2 0	44.70
	2.0257M	J.	14 1 0	44.70
Toussaint, J. (1950). Congr. Nat. Sci.	2.0142	3	13 0 1	44.97
Bruxelles Radiologie, p. 169.	0.007()/		1 0 0	15 10
	2.0074M	3	-4 0 2	45.13
Toussaint, J. (1952). Mem. Soc. Roy. Sci.	2.0074M	۷		45.15
Liège <u>12</u> , 1.	1.9050H	07	0 1 2	46 16
	1 9498	5	-2 1 2	46.54
0	1.5450	5		
$CuK\alpha_1 \lambda = 1.540598 \text{ A}; \text{ temp. } 25\pm1 \text{ °C}$	1.9435	6	4 3 0	46.70
Internal standard W, $a = 3.16524$ A	1.9252+	5	-6 0 2	47.17
	1.9252+		3 1 2	47.17
rel $ht (20(8))$	1.9134	4	6 0 2	47.48
	1.8806	11	16 0 0	48.30
$\sigma = \pm 3$	1.8737	1L	-5 1 2	48.55
15.07 100 2.0.0 5.86	1.8672	2	630	48.73
7.53 8 4 0 0 11 75	1.8632	2	5 1 2	48.84
5.604 8 2 1 0 15.80	1.8213	2	7 3 0	50.04
5.175 3 3 1 0 17.12	1.8166	3	11 2 1	50.18
4.706 57 4 1 0 18.84	1.01001	0	15 0 1	F0 01
	1.8122M	3	-15 0 1	50.31
4.261 4 5 1 0 20.83	1.8122M	2	8 U 2	50.31
4.124 8 -1 0 1 21.53	1.7952	2	8 2 0	51 / 9
3.855M 61 6 1 0 23.05	1.7502	1	14 2 0	52 22
3.855M -3 0 1 23.05	1.7505	1	14 2 0	32.22
5.704 7 8 0 0 23.02	1.7478	1	-8 1 2	52.30
	1.7255	2	15 1 1	53.03

Synonym Iron aluminate			0		
	CuKa	$\lambda = 1.5405$	598 A;	temp. 25	s±1 °C °
CAS registry no. 12068-49-4	Intern	nal standaı	d Si,	a = 5.43	30825 A
Second a	d(Å)	Irel		hkl	2θ(°)
Sample The sample was prepared by grinding under		$\sigma = \pm i$	2		
acetone stoichiometric amounts of α -Fe ₂ O ₃					
and γ -Al ₂ O ₃ in an agate mortar. After	4.709	3	1	1 1	18.83
drying, the mixture was transferred to an	2.883	58	2	20	30.99
iron crucible for neat treatment in con-	2.460	100	3		30.50
trolled atmosphere. The sample was heated	2.0382	17	4	2 1	44.41
$\leq 10^{-16}$ stm followed by grinding and	1.0/11	5	3	2 1	40.02
reheating for 8 hours at 1300 °C for 8	1 6649	16	4	2 2	55 12
hours in an ovven pressure $\leq 10^{-16}$ atm	1 5691	36		1 1	58 80
nours in an oxygen pressure _ ro acm.	1 4414	42	4	4 0	64 61
Color	1 2892	5	6	2 0	73 38
Greenish grav	1.2632	8	Š	3 3	76.56
	112.00	U	•		,
Structure	1.2293	3	6	22	77.60
Cubic, Fd3m (227), Z = 8. Isostructural	1.1769	2	4	4 4	81.77
with spinel (Holgersson, 1927). The	1.1417	1	5	51	84.86
structure of spinel was determined by	1.0897	5	6	4 2	89.97
Bragg (1915) and Nishikawa (1915).	1.0614	10	7	3 1	93.06
Lattice constant of this sample	1.0191	5	8	0 0	98.20
0 150/(1)4	. 9962	1L	7	3 3	101.29
a = 8.1534(1)A	. 9608	3	6	60	106.59
V-lum-	.9415	5	7	51	109.81
542.03 A^3	. 9353	1	6	62	110.89
	9116	з	8	4 0	115.35
Density	8949	2	q	1 1	118 80
(calculated) 4.260 g/cm ³	8601	2	6	6 4	124 82
	8547	5	q	3 1	128.64
Figure of merit	.0347	10	8	4 4	135.55
$F_{27} = 112.33(0.008, 32)$		10	U		100.00
Additional patterns PDF card 3-894 (Dow Chemical Co., Midland, MI)	.8195 .7995	1 3	7 10	7 1 2 0	140.10 148.93
Clark, et al. (1931)					
Fischer and Hoffmann (1955)					
Krause and Thiel (1932)					
Bragg, W. H. (1915). Nature London <u>95</u> , 561.					
Clark, G. L., Ally, A., and Badger, A. E. (1931). Am. J. Sci. <u>22</u> , 539.					
Fischer, W. A. and Hoffmann, A. (1955). Arch. Eisenhuettenw <u>26</u> , 43.					
o Holgersson, S. (1927). Lunds Univ. Arsskr. Avd. <u>2</u> , 23 No. 9.					
Krause, O. and Thiel, W. (1932). Z. Anorg. Allgem. Chem. <u>203</u> , 120.					
Nishikawa, S. (1915). Proc. Tokyo Math. Phys. Soc. <u>8</u> , 199.					

Synonym						
Iron antimonate	$CuK\alpha_1 \lambda = 1.540598 \text{ Å}; \text{ temp. } 25\pm1 \text{ °C}$				5±1 °C	
Sample	Inter	nal standard	Ag,	a =	4.0	8651 Å
The sample was prepared at NBS.			0,			
		_ rel				00(0)
Chemical analysis	d(A)	T		n	ĸŁ	20(*)
Chemical analysis showed 22.94 weight percent Fe 49 47 weight percent Sh		$\sigma = \pm 2$				
and by difference, 27,59 weight percent	3,279	100	1	1	0	27.17
oxygen On this basis, the composition	2.562	71	1	ō	1	34,99
most nearly corresponds to the formula	2.318	17	2	Ō	0	38.82
FeSh0.	2.242	8	1	1	1	40.19
10504.	2.0720	3	2	1	0	43.65
Color	2.0720	3	_	-	•	
Medium vellowish brown	1.7185	56	2	1	1	53.26
notium yellowion blown	1.6386	14	2	2	0	56.08
Structure	1.5367	6	0	0	2	60.17
Tetragonal P4 $_{o}$ /mnm (136), 7 = 1, iso-	1 4655	10	3	1	0	63.42
structural with rutile (Brandt 1943)	1 3912	12	1	î	2	67 24
belactulat with fattic (blandt, 1943).	1.5512	12	-	-	~	07.24
Lattice constants of this sample	1 3802	14	3	0	1	67.85
o	1 3231	11.	3	ĩ	1	71.21
a = 4.6352(2) A	1 2806	4	2	Ô	2	73 96
c = 3.0733(2)	1 2344	1T.	2	1	2	75.50
	1 1858	7	2	2	1	81 02
c/a = 0.6630	1.1050	,	J	2	1	01.02
	1,1585	3	4	0	0	83.35
Volume	1,1211	4	2	2	2	86.80
66.030 A ³	1.0925	3	3	3	0	89.67
	1.0606	5	3	1	2	93.15
Density	1.0559	5	4	1	1	93.69
(calculated) 6.076 g/cm ³	110000	3			-	,,,,,,,
	1.0364	2	4	2	0	96.02
Figure of merit	1.0004	2	1	0	3	100.71
$F_{30} = 61.2(0.011, 43)$.9253	2	4	Ō	2	112.71
	.9183	4	2	1	3	114.03
Comment	.9091	2	5	1	0	115.84
PDF card 7-349 (Mason and Vitaliano, 1953)		_		-	•	
requires the value of $c = 9.14$ only because	.8903	3	3	3	2	119.82
of its first reflection. The pattern may	.8877	5	4	3	1	120.40
be a mixture of the rutile and trirutile	.8593	3	4	2	2	127.38
phases of Fe _y Sb _y O ₄ .	8538	2	3	õ	3	128 89
A	8288	4	5	2	1	136 68
References	.0200	-	5	-	•	150.00
Brandt, K. (1943). Ark. Kemi Mineral. Geol.	8104	11.	4	4	٥	140 11
<u>17A</u> , 15.	8012	2	3	2	3	148 06
		2	5	2	5	140.00
Mason, B. and Vitaliano, C. J. (1953). Mineral. Mag. <u>30</u> , 100.)					

20(°)

18.32

30.15 35.51 37.15

43.16

53.53 57.07 62.67 65.90 71.11

74.15 75.15 79.12

82.06 86.94

89.86 94.67 102.56 105.53 106.53

110.64 119.19 122.58 128.50 139.27

143.95 145.65

Iron chromite	CuKa,	$\lambda = 1.5405$	98 Å;	tem	p. 2	5±1 °C
CAS registry no.	Intern	nal standar	d Ag,	a =	4.0	8651 Å
12068-77-8		rel			b 0	
Sample		1		п	K.C.	-
The sample was prepared from a 1:2 molar		$\sigma = \pm 3$	3			
ratio of $re_2 U_3$ and $Cr_2 U_3$ in a controlled	/ 820	12	1	1	1	. 1
from Katsura and Muan (1964) was followed	4.039	13	1	2	0	10
TIOM Racsula and muan (1904) was followed.	2.902	100	2	1	1	31
Color	2.520	7	2	2	2	3
Dark reddish brown	2.0943	22	4	0	0	4:
Structure	1.7105	11	4	2	2	5
Cubic, Fd3m (227), Z = 8. Isostructural	1.6125	39	5	1	1	5
with spinel, Holgersson (1927).	1.4812	48	4	4	0	6:
	1.4162	2	5	3	1	6.
Lattice constant of this sample	1.3247	3	6	2	0	7
a = 8.3790(2)Å						
	1.2777	10	5	3	3	7
Volume	1.2632	5	6	2	2	7.
588.27 Å ³	1.2095	3	4	4	4	79
	1.1/34	1			1	8
Density	1.1197	4	0	4	2	0
(calculated) 5.055 g/cm ³	1 0007	12	7	3	1	- 8
	1.0476	5	8	0	0	Q,
Polymorphism	.9873	2	8	. 2	2	10
Francombe (1958) reports a distorted	.9675	10	7	5	1	10
tetragonal polymorph that exists below -90 °C.	.9612	2	6	6	2	10
Figure of movit	.9367	2	8	4	0	11
F = 87.8(0.000.34)	.8931	1	6	6	4	11
+27 - 07.0(0.007,34)	.8783	5	9	3	1	12
Additional matterns	.8552	12	8	4	4	12
PDF card 3-873 (Clark and Ally, 1932)	.8217	1	10	2	0	13
Holgersson (1927)	.8101	7 .	9	5	1	14
HOTRET220H (1271)	.8063	1L	10	2	2	14
Hilty, et al. (1955)						
Clark, G. L. and Ally, A. (1932). Am.						
Mineral. <u>17</u> , 66.						
Francombe, M. H. (1958). XVIéme Congr. internation. Chim. pure appl., Paris, 1957,						
Mém. Sect. Chim. Minér., Sedes, Paris, 129.						
Hilty, D. C., Forgeng, W. D., and Folkman, R. L. (1955). J. Metals, N.Y. <u>7</u> , 253.						
Holgersson, S. (1927). Lunds Univ. Arsskr., Avd. <u>2</u> , 23, No. 9.						
Katsura, T. and Muan, A. (1964). Trans.						

Synonyms		·			
Lithium zirconate Dilithium sirconate	CuKa,	$\lambda = 1.5405$	598 Å;	temp. 25	5±1 °C
Dilithium zirconium trioxide	Intern	al standa	d W o	- 2 16	524 A
CAS registry no	Incern	al Scanda	iuw, a	- 5.10.	024 A
12031-83-3	0	rel			
12051 05 5	d(A)	I		hkl	20(°)
Sample		$\sigma = \pm 4$	4		
The sample was prepared by L. Martel at NBS.			·		
Equimolar amounts of Li ₂ CO ₂ and ZrO ₂ were	4.512	18	0	2 0	19.66
calcined at 700 °C for one day, then heated	4.377	100	1	1 0	20.27
to 1000 °C for 16 hours and finally heated to	4.037	39	-1	1 1	22.00
1400 °C for several hours in a tightly covered	3.351	56	0	2 1	26.58
platinum crucible.	2.852	13	1	1 1	31.34
					Í
Color .	2.580M	23	1	30	34.74
Colorless	2.580M		-1	12	34.74
	2.504+	24	-1	3 1 [.]	35.84
Structure	2.504+		2	00	35.84
Monoclinic, $C2/c$ (15), $Z = 4$. The structure	2.313	19	-2	21	38.90
was determined by Dittrich and Hoppe (1969)					
and redetermined by Hodeau et al. (1982).	2.258M	33	-2	02	39.90
	2.258M		0	40	39.90
Lattice constants of this sample	2.189M	7	2	20	41.21
a = 5.4266(5)Å	2.189M		0	22	41.21
h = 9.0310(8)	2.127	46	1	31	42.46
c = 5.4227(7)					
$B = 112.720(8)^{\circ}$	2.0590	17	0	41	43.94
p 111.120(0)	2.0197	4	-2	22	44.84
a/b = 0.6009	2.0070	1L	-1	32	45.14
c/b = 0.6005	1.9115	12	1	1 2	47.53
	1.7952	9	2	2 1	50.82
Volume	1 77001	-	•		51.50
245.13 A ³	1.7702M	5	-3		51.59
	1.7702M	,	-1	13	51.59
Density	1./300	4	-2	4 1	52.00
(calculated) 4.148 g/cm ³	1.6991M	20	-3		53.92
	1.09911		1	5 0	55.92
Figure of merit	1 6764+	10	-1	5 1	54 71
$F_{30} = 62.6(0.011, 43)$	1 6764+	10	2	4 0	54.71
	1 6408M	8	3	1 0	56.00
Additional pattern	1 6408M	U	1	3 2	56.00
PDF card 23-372 (Dittrich and Hoppe, 1969)	1.6151	13	-2	23	56.97
	1.0151	15	-		00151
References	1.5969	3,	-2	4 2	57.68
Dittrich, G. and Hoppe, R. R. O. (1969). 2.	1.5643	7	0	2 3	59.00
Anorg. Allg. Chem., $3/1$, 306.	1.5481+	32	-3	3 1	59.68
	1.5481+		1	5 1	59.68
Hodeau, J. L., Marezio, M., Santoro, A., and	1.5048	10	0	6 0	61.58
Roth, R. S. (1982). Accepted for publication					
in the J. Solid State Chem., October 1982.	1.5019	13	2	02	61.71
	1.4998M	10	-3	3 2	61.81
	1.4998M		-1	5 2	61.81
	1.4849	2	-3	1 3	62.50
	1.4785	5	2	4 1	62.80
	1.4414	1L	0	61	64.61
	1.4257	1	2	22	65.41
	1.4081M	3	3	1 1	66.33
	1.4081M		1	1 3	66.33
	1.3727	5	-2	4 3	68.27

-	d(Å)	Irel			hkl	20(°)
		$\sigma = \pm 4$				
	1.3463M	5	-3	3	3	69.80
	1.3463M		-4	0	2	69.80
	1.3413	4	0	4	3	70.10
	1.3268M	8	1	- 5	2	70.98
	1.3268M		-1	1	4	70.98
	1.3138	1L	-2	6	1	71.79
	1.2889M	9	3	3	1	73.40
	1.2889M		1	3	3	73.40
	1.2867	8	-4	2	1	73.55
	1.2766M	1	-3	5	1	74.23
	1.2766M		-1	5	3	74.23
	1.2526	15	-2	6	2	75.90
	1.2492+	13	-3	5	2	76.14
	1.2492+		1	7	0	76.14
	1.2405	2	-1	7	1	76.77
	1.2257	3	3	5	0	77.87
	1.2153	2	-4	2	3	78.67
	1.2059	1	4	2	0	79.40
	1.1854	2	1	7	1	81.06
	1.1814	3	3	1	2	81.39
	1.1632M	1	-3	3	4	82.94
	1.1632M		-1	7	2	82.94
	1.1564M	3	-3	5	3	83.54
	1.1564M		-4	4	2	83.54
	1.1535	4	-4	4	1	83.79
	1.1521	4	2	2	3	83.92

Lithium Zirconium Oxide, Li_2ZrO_3 - (continued)

Synonym	d(Å)	Irel		hk	e	20(°)
Magnesium arsenate octanydrate		+0				()
CAS registry no		$\sigma = \pm 3$				
37541-75-6	2 796	17			-	22 48
57541 75 0	3.700	17	-1	2	1	23.48
Sample	3.035	17	-2	1	1	24.33
A dilute solution of NacHASO, was dropped into	2.307	15	2	4	0	20.45
a dilute solution of MoSO, with a small amount	3.212	50	3	1	0	21.15
of NaOH The precipitate was left in the mother	3.002	20	-3	U	T	29.74
liquor for 3 days at about 80 °C. It was then	2 78%	11	2	1.	•	22 12
filtered and washed with ethanol	2.764	11	- 2	4	1	32.13
filected and washed with conanol.	2.740	42	-3	2	1	32.05
Color	2.714	14	-1	4	1	32.98
Colorless	2.004	14	3 1	5	0	35.01
001011000	2.390	3	T	5	U	54.52
Structure	2 55/	10	1	4	1	35 11
Monoclinic, $I2/m$ (12), $Z = 2$, Isostructural	2.554	18	4	0	0	36 10
with vivianite. (Wolfe, 1940) The structure	2.400	21	3	õ	1	36 38
of vivianite. $Fe_2(PO_4)_2$ *8H ₂ O ₂ is discussed by	2.400	17	-1	1	2	38 42
Mori and Ito (1950) .	2.341 2.331M	1/	-1	5	1	38 60
	2.55111	14	U	5	1	58.00
Lattice constants of this sample	2.331M		4	2	0	38 60
	2 295	5	-2	õ	2	30.23
a = 10.13/(2)A	2 244	5	ñ	6	ñ	40 16
b = 13.455(2)	2 238	4	-3	4	1	40.10
c = 4.7542(10)	2 199M	7	0	2	2	40.20
$\beta = 101.73(2)^{\circ}$	2.19911	'	Ŭ	2	2	41.02
	2.199M		-2	5	1	41.02
a/b = 0.7530	2,170	2	-2	2	2	41.58
c/D = 0.3533	2.090	17	-3	1	2	43.26
X7 1	2.042	4	2	6	ō	44.32
volume o	2.030	4	2	5	1	44.59
634.9 A		·	-	Ŭ	-	
Density	2.015	7	-1	6	1	44.96
(coloulated) 2 580 c/cm ³	1.992	7	3	4	1	45.50
(Calculated) 2.389 g/cm	1.964	9	5	1	0	46.19
Figure of marit	1.955	7	1	3	2	46.42
$F_{-1} = 32.0(0.019.45)$	1.916M	11	-3	3	2	47.42
$r_{30} = 52.0(0.019, 45)$						
Additional pattern	1.916M		0	4	2	47.42
PDF card 19-752 (Koritnii and Susse 1966)	1.882	1	2	2	2	48.32
ibi cara is ,52 (korrentj and Sabbe, 1900)	1.846	3	4	3	1	49.32
References	1.796	1	-3	6	1	50.81
Koritnii, S. and Susse, P. (1966). Neues	1.792	1	-4	5	1	50.92
Jahrb. Mineral. Monatsh. 349.						
	1.776	3	0	7	1	51.41
Mori, H. and Ito, T. (1950). Acta	1.730	2	3	1	2	52.88
Crystallogr. 3. 1.	1.704M	4	5	0	1	53.74
	1.704M		-5	4	1	53.74
Wolfe, C. W. (1940). Am. Mineral. 25, 787.	1.688	10	1	5	2	54.29
· · · · · · · · · · · · · · · · · · ·						
	1.683	11	0	8	0	54.48
	1.660	15	3	6	1	55.29
$CuK\alpha_1 \lambda = 1.540598 \text{ A}; \text{ temp. } 25\pm1 \text{ °C}$	1.657	16	-6	1	1	55.39
Internal standard Si, $a = 5.43088$ Å	1.6180	4	4	5	1	56.86
	1.6154	5	0	6	2	56.96
rel bla 20(9)		,		-	_	
	1.6071	4	6	2	0	57.28
$\sigma = \pm 3$	1.5643M	4	-6	3	1	59.00
	1.5643M	,	-2	1	3	59.00
7.97 31 1 1 0 11.09	1.5457	4	1	8	1	59.78
6.73 100 0 2 0 13.14	1.5413M	4	0	1	3	59.97
4.399 48 0 1 1 20.17	1 5 (10) (~	2	50.07
3.992 26 2 2 0 22.25	1.5413M	0	-1	2	3	59.97
3.916 16 1 0 1 22.69	1.5297	2	-3	0	3	60.4/
	1.5204	5	5	4	1	60.88
	1.4995	8	-6	0	2	61.82
	1.4939	5	-1	1	2	62.08

Magnesium Arsenate Hydrate (Hoernesite), $Mg_3(AsO_4)_2 \cdot 8H_2O$ - (continued)

d(Å)	Ire	1		hkl	20(°)
	σ =	±3			
1.4855	5	-2	3	3	62.47
1.4659	7	0	3	3	63.40
1.4502	4	-4	6	2	64.17
1.4476	4	-4	1	3	64.30
1.4305	4	-5	5	2	65.16
1.4191	3	-6	5	1	65.75 [·]
1.3909M	5	-2	9	1	67.26
1.3909M		3	8	1	67.26
1.3811	1	5	7	0	67.80
1.3694	2	-6	4	2	68.46
1.3577	4	5	6	1	69.13
1.3516	4	7	3	0	69.49
1.3457	5	0	10	0	69.84
1.3440	5	0	5	3	69.94

Synonyms						
Magnesium orthophosphate	$C_{\rm U}K\alpha$ $\lambda = 1.540598$ Å: temp. 25±1 °C					25+1 90
Trimagnesium biphosphate	Intern	al standar	d Si,	a =	۲۰ ۲ 5.4	43088 Å
CAS registry no.						
10043-83-1	d(Å)	Irel		hkl		20(°)
Sample The sample was obtained from the Research		$\sigma = \pm 1$				
Organic/Inorganic Chemical Corp., Sun Valley,	5 576	10	1	1	0	15 88
CA It was bested at NRS at 800 °C for 18	5.570	20	-1	0	1	20.37
	4.330	30	0	1	1	20.57
nours.	4.312	24	0	1	1	20.30
	4.118	30	0	2	0	21.50
Colorless	4.077	28	1	0	1	21.70
1	3.852	84	-1	1	1	23.07
Structure	3.792	6	2	0	0	23.44
Monoclinic, $P2_1/n$ (14), Z = 2. The structure	3.657	28	1	1	1	24.32
of $Mg_3(PO_4)_3$ was determined by Nord and	3.619	6	1	2	0	24.58
Kierkegaard (1968).	3.443	100	2	1	0	25.86
Lattice constants of this sample	3.195	14	0	2	1	27.90
a = 7.5995(8) A	2.992	21	-1	2	1	29.84
h = 8.2355(8)	2.896	4	1	2	1	30.85
c = 5.0762(5)	2.790	16	2	2	0	32.05
$\beta = 94.062(9)^{\circ}$	2.764	3	2	1	1	32.36
a/b = 0.9228	2.533	22	0	0	2	35.41
a/b = 0.5220	2.498	23	-2	2	1	35.92
C/D = 0.0104	2.414M	32	3	1	0	37.22
	2.414M		0	3	1	37.22
317.42 Å ³	2.322	8	-1	3	1	38.75
	2.240	5	-3	1	1	40.22
Density	2.222	4	2	3	0	40.57
(calculated) 2.750 g/cm ³	2,177	3	-2	õ	2	41 45
	2 158	J 1T.	0	2	2	41.43
Polymorphism	2.130	22	3	1	1	41.05
Berak (1958) suggests a second form of $Mg_3(PO_4)_2$ stable above about 1000 °C.	2.125	22	1	1	1	42.51
	2.108	9	-1	2	2	42.87
Figure of merit	2.06/9	10	-2	3	1	43.74
$F_{20} = 57.0(0.011, 47)$	2.0599	8	0	4	0	43.92
30	2.0417	13	1	2	2	44.33
Additional patterns PDF cord 13-554 (Du Fresne and Roy 1961)	1.9866	21	1	4	0	45.63
PDr Calu 15-554 (Du riesue and Roy, 1901)	1.9256	3	-2	2	2	47.16
DDF aard 25-1272 (Nord and Kierkegaard 1968)	1.9077	2	0	4	1	47.63
PDF Card 25-15/5 (Noru and Kreikegaard, 1900)	1.8950	7	4	0	0	47.97
	1.8597	7	3	3	0	48.94
References Berak, J. (1958). Rocz. Chem. <u>32</u> , 19.	1.8275	9	2	2	2	49.86
	1.8108	11.	-3	1	2	50.35
Du Fresne, E. R. and Roy, S. K. (1961).	1 7860	3	1	3	2	51 10
Geochim. Cosmochim. Acta <u>24</u> , 198.	1 7753	8	-3	3	1	51 43
	1 7224M	7	-2	4	1	53 13
Nord, A. G. and Kierkegaard, P. (1968). Acta Chem. Scand. <u>22</u> , 1466.	1.7224M	'	4	2	0	53.13
	1 6976	4	4	1	1	53.97
	1.6018M	10	-3	2	2	5/ 17
	1 6018M	10	3	1	2	54.17
	1.6960	11	2	1	2	5/ 27
	1.0000	11	-1	4	1	54.57
	1.0/2/	1L	-1	0	5	54.84

Magnesium Phosphate (Farringtonite), $Mg_3(PO_4)_2$ - (continued)

d(Å)	Irel	hkl	20(°)
	$\sigma = \pm 1$		
1.6394	7	-1 1 3	56.05
1.6094	3	1 5 0	57.19
1.5982	1L	4 2 1	57.63
1.5619	10	0 2 3	59.10
1.5502M	1L	-1 2 3	59.59
1.5502M		142	59.59
1.5373	11	-3 3 2	60.14
1.5103M	6	2 5 0	61.33
1.5103M		1 2 3	61.33
1.5026	6	3 4 1	61.68
1.4911	2	5 1 0	62.21
1.4780M	2	-2 2 3	62.82
1.4780M		2 1 3	62.82
1.4674M	1	-4 2 2	63.33
1.4674M		4 0 2	63.33
1.4587M	1	-2 5 1	63.75
1.4587M		-5 1 1	63.75
1.4488	3	242	64.24
1.4366	4	2 5 1	64.85
1.4249	1	501	65.45
1.4043	1L	5 1 1	66.53
1.3947M	1	4 4 0	67.05
1.3947M		-5 2 1	67.05
1.3798	1	3 5 0	67.87
1.3724M	1	060	68.29
1.3724M	1	-2 3 3	68.29
1.3638	1	-4 3 2	68.78
1.3509	1	160	69.53
1.3270M	1	5 3 0	70.97
1.3270M		4 4 1	70.97
1.3181M	1	3 5 1	71.52
1.3181M		2 3 3	71.52
1.2770	1L	-5 2 2	74.20
1.2745	3	1 4 3	/4.37
1.2513	3	0 1 4	/5.99
1.2066+	1	0 6 2	79.35
1.2066+		-5 3 2	79.35
1.1854	1	1 6 2	81.06
1.1683	1	4 2 3	82.50
1.1582	1	-5 1 3	83.38

The completions proposed at NPS It contained						
a very small amount of tartaric acid as a	d(Å)	Irel		hkl		20(°)
second phase which did not interfere with		$\sigma = \pm 2$				
measurements.						
	3.008	1L	2	3	0	29.68
Color	2.923	8	0	4	0	30.56
Pale greenish yellow	2.794	1L	1	4	0	32.01
	2.673	27	3	0	1	33.50
Structure	2.585	49	2	3	1	34.67
Orthorhombic, possibly Prinm (58), 2 assumed	0.504	,		•	•	
to be 4. The cell constants were determined	2.536	4	0	0	2	35.36
reflections suggested the space group assign-	2.485	16	2	4	0	36.12
ment which was used for the data analysis that	2.440H	12	3 1	5	1	36.71
follows.	2.430	31	3	2	1	36 96
	21150	01	J	~	•	50.90
Lattice constants of this sample	2.398	5	1	1	2	37.48
$a = 9.4388(8)^{\circ}$	2.359	1L	4	0	0	38.12
h = 11.6925(13)	2.327	2	0	2	2	38.66
c = 5.0706(4)	2.270	11	1	5	0	39.68
	2.233M	16	2	0	2	40.36
a/b = 0.8073	0.0001		•	,		10.01
c/b = 0.4337	2.233M	F	2	4		40.36
	2.100	3	4	5	1	41.23
Volume	2.124	10	4	1	1	42.32
559.61 A ³	2.086	29	2	2	2	43.34
Depaity			-	-	-	10104
(calculated) 2 410 g/cm ³ assuming $7 = 4$	2.0733M	14	1	3	2	43.62
(calculated) 2.410 g/cm , assuming $L = 4.$	2.0733M		1	5	1	43.62
Figures of merit	1.9727	8	3	4	1	45.97
$F_{30} = 57.1(0.011, 49)$	1.9466	13	3	1	2	46.62
$M_{20} = 40.5$	1.9361	19	2	5	1	46.89
	1 0152	1/	0	,	2	17 10
Additional pattern	1.9155 1.9755M	14	0	4	2	47.43
PDF card 1-343 (Hanawalt et al., 1938)	1.8755M	12	5	2	1	48.50
in c	1.8361	7	4	4	0	40.50
References	1.7857	1	1	6	1	51.11
I K (1028) Ind Fra Cham Anal Ed					-	
10. 457	1.7744	3	2	4	2	51.46
10, 407.	1.7699	3	5	0	1	51.60
Visser, J. W. (1969). J. Appl. Crystallogr.	1.7606M	6	3	3	2	51.89
2, 89.	1.7606M		3	5	1	51.89
	1.7273M	16	4	0	2	52.97
	1 7272M		6	1.	1	F2 07
$C_{\rm L}K_{\alpha}$, $\lambda = 1.540598$ Å; temp. 25±1 °C	1.72756	10	4	4	1	52.97
	1 6927	14	5	2	1	54 14
Internal standard Si, a = 5.430825 A	1.6638	3	1	0	3	55.16
9	1.6563M	4	3	6	õ	55.43
$d(A)$ I ^{rel} hkl $2\theta(^{\circ})$						
$\sigma = \pm 2$	1.6563M		4	2	2	55.43
	1.6446	8	1	7	0	55.86
7.34 14 1 1 0 12.04	1.6000	7	1	2	3	57.56
5.843 65 0 2 0 15.15	1.5861M	7	0	7	1	58.11
4.716 12 2 0 0 18.80	1.300IM		5	4	0	58.11
4.653 53 0 1 1 19.06	1 5780	6	4	5	1	58 44
4.467 100 1 0 1 19.86	1.5735	5	6	0	0	58.62
2 672 57 2 2 0 24 21	1.5509	2	Õ	3	3	59.56
3.0/3 $3/$ $2/2$ 0 $24.213.60/$ 20 1.2 0 $2/.60$	1.5450	1L	0	6	2	59.81
3 549 98 1 2 1 25 07	1.5191	4	6	2	0	60.94
3.313 18 2 1 1 26.89						
3.092 3 0 3 1 28.85						

l

Manganese Tartrate, $C_4H_4MnO_6$ - (continued)

d(Å)	Irel	hk	e	20(°)
	$\sigma = \pm 2$	•		
1.5128	7	54	1	61.22
1.5090	8	35	2	61.39
1.5037	6	27	1	61.63
1.4904	2	61	1	62.24
1.4891	3	30	3	62.30
1.4732	5	23	3	63.05
1.4688M	4	55	0	63.26
1.4688M		26	2	63.26
1.4460	4	1 4	3	64.38
1.4021	3	63	1	66.65
1.3887M	3	4 5	2	67.38
1.3887M		1 8	1	67.38
1.3852	2	64	0	67.57
1.3697	2	05	3	68.44
1.3396	2	71	0	70.20
1.3265	1L	34	3	71.00
1.3160M	5	4 7	1	71.65
1.3160M		2 5	3	71.65
1.3033M	5	70	1	72.46
1.3033M		62	2	72.46
1.2927	1L	46	2	73.15
1.2870	1L	19	0	73.53
1.2746M	7	3 7	2	74.36
1.2746M		73	0	74.36
1.2711	4	5 5	2	74.60
1.2675	3	0 0	4	74.85
1.2642M	2	6 3	2	75.08
1.2642M		6 5	1	75.08
1.2589M	4	5 0	3	75.45
1.2589M		0 9	1	75.45
1.2388	2	0 2	4	76.90
1.2308	3	5 2	3	77.49
1.2155M	3	2 9	1	78.65
1.2155M		64	2	78.65
			_	

/

LAS registry no.			0		
12033-40-8	CuKa ₁	$\lambda = 1.5405$	98 A; t	emp. 25	5±1 ℃
Sample	Intern	al standar	d W a	= 3 16	524 A
Stoichiometric amounts of Mo and SiaN, were	Intern	ar scandar	u ", a	- 5.10	JZ4 A
mixed, pelleted and heated in a crucible to	0	rel			
1600 °C for 1 hour while lying on a pellet	d(A)	I		hkl	20(°)
of previously made Mo ₅ Si ₃ which was put on		$\sigma = \pm 2$			
a piece of Mo.					
•	6.820	1	1	1 0	12.97
Color	4.826	2	2	0 0	18.37
Olive black	3.413	5	2	2 0	26.09
	3.242	25	2	1 1	27.49
Structure	3.052	21	3	1 0	29.24
Tetragonal I4/mcm (140), Z = 4. The struc-					
ture was determined qualitatively by	2.457	25	0	0 2	36.54
Aronsson (1955).	2.412	16	4	0 0	37.25
Lattice constants of this comple	2.351	/1	3	$\begin{array}{c} 2 \\ 1 \\ \end{array}$	38.20
o constants of this sample	2.311	12	3	2 0	30.94
a = 9.6483(6) A	2.2/40	10	J	50	59.00
c = 4.9135(5)	2 1903	38	2	0 2	41 18
	2.1578	59	4	2 0	41.83
c/a = 0.5093	2,1130	100	4	1 1	42.76
	1,9940	57	2	2 2	45.45
Volume	1.7955	2	4	3 1	50.81
457.40 A ³					
Densites	1.7209	2	4	02	53.18
(coloulated) 8 100 c/cm ³	1.6835	8	5	2 1	54.46
(calculated) 8.190 g/cm ²	1.6544	1	5	30	55.50
Figure of merit	1.6087	2	6	0 0	57.22
$F_{00} = 98.6(0.009.35)$	1.5314	4	2	1 3	60.40
130 50.0(0.005,55)			_		
Additional patterns	1.5254	10	6	20	60.66
PDF card 8-429 (Schachner et al. 1954)	1.5103	1L	6	1 1	61.33
	1.4991	11	5	1 2	61.84
Nowotny et al. (1956)	1.4406	11	5	4 1	64.65
	1.4012	11	4	4 Z	00.70
References	1 3071	18	з	2 3	66 92
Aronsson, B. (1955). Acta Chem. Scand.	1 3804	12	6	2 3 3	67 84
<u>9</u> , 1107.	1.3724	11	5	3 2	68.29
	1.3643	17	7	1 0	68.75
Nowotny, H., Lux, B., and Kudielka, H.	1.3453	24	6	0 2	69.86
(1956) Monatsh. Chem. 87 , 462.					
Colored H. Conservation France 1 Marsustance	1.3418	33	4	13	70.07
Schachner, H., Lerwenka, E., and Nowothy,	1.2797	2	7	2 1	74.02
n. (1954). Monatsn. Chem. <u>85</u> , 245.	1.2283	9	0	04	77.68
	1.2086M	2	1	14	79.19
	1.2086M		5	2 3	79.19
		_			
	1.1979	1	6	51	80.04
	1.1932	6		1 2	80.42
	1.1/51	11	0	4 Z	81.92
	1.1090	10	0	20 / 1	82.57
	1.1051	2	1	+ 1	02.95
	1.1391M	3	3	1 4	85 10
	1,1391M	Ŭ	6	1 3	85,10
	1.1369	8	6	6 0	85.30
	1.1259	4	7	32	86.34
	1.1087	4	5	4 3	88.02
	1.1004	11	8	3 1	88.86
	1.0945	4	4	04	89.46

Synonym Nickel orthoarsenate octahydrate	CuKa,	$\lambda = 1.540$	598 Å;	temp	. 25±	1 °C
CAS registry no. 54469-74-1	Intern	nal std. F	luoroph	logor	pite	SRM 675
					•	20(8)
Sample The sample was prepared at NBS. A solution of 2 gms Ni(NO ₃) ₂ ·6H ₂ O in 1 liter H ₂ O was	d(A)	$\sigma = \pm$	1	nĸ	٤	20(*)
added dropwise to a solution of 2 gms	7 01	33	1	1 (<u></u>	11 17
Na_2HAsO_4 in $1\frac{1}{2}$ liters of warm H_2O . The	6 66	100	0	$\frac{1}{2}$	י ר	13 29
combined solution was held at 70 to 80 °C	4 919	11	2	0 0	, ,	18.02
for 3 weeks. The crystals were filtered	4 562	4	-1	0	1	19.44
off and washed with H_2O and C_2H_5OH .	4.363	20	0	1	1	20.34
Color						
Light vellow green	4.044	6	1	3 (0	21.96
hight jettow green	3.954	8	2	2 (D	22.47
Structure	3.879	16	1	0	1	22.91
Manaphinia $\frac{12}{m}$ (12) $7 = 2$ (Barth 1027)	3.765	3	-1	2	1	23.61
It is isostructural with vivianite,	3.639	8	-2	1	1	24.44
$Fe_3(PO_4)_2 \cdot 8H_2O$. The structure of vivianite	3,347	5	1	2	1	26.61
was discussed by Mori and Ito (1950).	3 326	4	Ō	4	ō	26 78
	3 198	43	Ő	3	ĩ	27 88
Lattice constants of this sample	2 092M	52	-3	0	1	20 0/
a = 10.05/(2)	2.9021	52	-3	1	1	29.94
b = 13.303(3)	2.9821		2	T	1	29.94
c = 4.7159(10)	2.756	12	2	4	0	32.46
$B = 102.10(2)^{\circ}$	2.721	30	-3	2	1	32.89
p	2 687	21	-1	4	1	33.32
a/b = 0.7558	2.635	1/	3	3	0	34 00
c/b = 0.3545	2.568	14	1	5	0	34.91
Volume	2 5 2 2	9	1	6	1	35 55
616 73 A ³	2.525	17	2	-	1 1	36.80
010.75 A	2.440	17		1	1 2	38 76
Density	2.321	10	-1	2	2 0	20 07
(a = b = b = b = b = b = b = b = b = b =	2.3041	10	4	2 ' E	1	39.07
(calculated) 5.221 g/cm ²	2.3041		0	5	T	39.07
Figure of merit	2.217	3	0	6	0	40.66
$F_{30} = 55.6(0.012, 44)$	2.178M	8	0	2	2	41.43
	2.178M		-2	5	1	41.43
Additional pattern	2.155	1	-2	2	2	41.89
PDF card 11-625 (U.S. Bureau of Mines, Albany Oregon)	2.102	1	-4	3	1	43.00
	2 079	7	-3	1	2	43.49
References	2.066	8	3	5	0	43.79
Rarth T F W (1037) Am Mineral	2.000	1	2	6	0	44 80
22 325	1 0010	2	-1	6	1	45.50
<u>22</u> , 323.	1.9919	3	3	4	1	46.09
Mori, H. and Ito, T. (1950). Acta	1.9078	5	5	-	-	40.05
Crystallogr. <u>3</u> , 1.	1.9463	6	5	1	0	46.63
	1.9322	6	1	3	2	46.99
	1.9006	9	-3	3 .	2	47.82
	1.8240	3	4	3	1	49.96
	1.7756	2	-4	5	1	51.42
	1.7572	3	0	7	1	52.00
	1.6915	1	-5	4	1	54.18
	1.6713	8	1	5	2	54.89
	1.6629	10	0	8	0	55.19
	1.6505	11	-3	5	2	55.64

Г	0	rol				
ł	d(Å)	Iter			hkl	20(°)
		$\sigma = \pm 1$				
T	1.6405	11	3	6	1	56.01
ł	1.6066	4	3	3	2	57.30
	1.6002	5	4	5	1	57.55
	1.5909	4	6	2	0	57.92
	1.5807	2	5	5	0	58.33
	1.5519M	2	-2	1	3	59.52
	1.5519M		-6	3	1	59.52
	1.5281M	3	1	8	1	60.54
	1.5281M		-1	2	3	60.54
	1.5191	2	-3	0	3	60.94
	1.5028	3	5	4	1	61.67
	1.4902	5	4	2	2	62.25
	1.4791	4	-1	7	2	62.77

Nickel Arsenate Hydrate (Annabergite), $Ni_3(AsO_4)_2 \cdot 8H_20$ - (continued)

Molybdenum nickel tetraoxide Nickel molybdate	$CuK\alpha_1 \lambda = 1.540598 \text{ Å}; temp. 25\pm$					
Mickel molybuate	Internal standard W, a = 3.16524					
Sample The sample was prepared at NBS. Stoichio-	0	rel				
metric amounts of NiO and MoO_3 were heated	d(A)	Iter		hkl	2θ(°)	
at 800 °C for 2 hours, then ground and re- heated at 800 °C for 6 hours.		$\sigma = \pm 2$				
	6.19	80	1	1 0	14.29	
Color	5.50	4	0	1 1	16.11	
Brilliant yellow green	4.665	11	1	0 1	19.01	
	4.373M	1	0	20	20.29	
Structure	4.373M		2	0 0	20.29	
Monoclinic, I2/m (12), Z = 8, isostructural						
with low temperature CoMoO ₄ (Smith, 1962).	4.085	3	-2	1 1	21.74	
	3.711	15	-1	2 1	23.96	
Lattice constants of this sample	3.513	48	-1	1 2	25.33	
a = 0.500(2)	3.166	5	-3	0 1	28.16	
h = 8.750(2)	3.095	100	2	2 0	28.82	
c = 7.6678(15)						
$R = 112 12(2)^{\circ}$	3.002	2	2	1 1	29.74	
p = 113.13(2)	2.769M	15	1	3 0	32.31	
-/h = 1.00 f	2.769M		3	1 0	32.31	
a/D = 1.0800	2.746	46	Ő	2 2	32.58	
C/D = 0.8/54	2.727	36	-3	1 2	32.82	
Volume						
587.3 A ³	2.465	1L	-2	3 1	36.42	
	2.331M	8	2	02	38.59	
Density	2.331M		-3	03	38.59	
(calculated) 4.946 a/cm ³	2.323	10	-1	32	38.74	
	2.307	4	-4	02	39.01	
Polymorphism	2 284	1	,		20 (0	
Sleight and Chamberland (1968) report 3 poly-	2.284	1	-4		39.42	
morphs. The one described here occurs at low	2.1880	14	U V	4 0	41.23	
temperature when the heated reactants are	2.188M		4	0 0	41.23	
cooled slowly. A second polymorph exists	2.154	11	2	3 1	41.90	
only at temperatures above 690 °C, and is is $\frac{1}{1000}$ A third polymorph.	2.094	5	3	2 1	43.17	
isostructural with NiWO, can be prepared	2.090	5	-1	4 1	43.26	
hydrothermally at 700 °C with pressures above	2.062	45	3	3 0	43.87	
3 khars	1.998	1	-4	1 3	45.36	
5 Nouis.	1.982	3	1	4 1	45.74	
Figure of merit $F_{} = 27.7(0.017.63)$	1.957M	4	2	4 0	46.37	
*30	1.957M		4	2 0	46.37	
Additional matterns	1.916	24	-2	0 4	47.40	
PDF card 18-879 (Watalar DFW-Tachniacha	1.847M	1	-5	1 2	49.30	
Borichto 1064)	1.847M		4	1 1	49.30	
belichte, 1904)	1.836	3	-1	14	49.60	
PDF card 31-902 (Union Science and Technology						
Division, Union Oil Co. of California, Brea.	1.828	2	-3	1 4	49.85	
CA 92621)	1.801	2	-3	4 1	50.63	
	1.759	1L	2	1 3	51.94	
References	1.727	2	-5	2 1	52.98	
Sleight, A. W. and Chamberland, B. L. (1968). Inorg. Chem. <u>7</u> , 1672.	1.716	10	5	1 0	53.34	
Smith, G. W. (1962). Acta Crystallogr. <u>15</u> , 1054.						

Nickel Molybdenum Oxide, NiMoO₄ - (continued)

d(Å)	Irel		hkl	,	20(°)
	$\sigma = \pm 2$				
1.7002	1	0	5	1	53.88
1.6789	1L	-4	3	3	54.62
1.6560	1L	-1	4	3	55.44
1.6456	1	~5	2	3	55.82
1.6357	9	0	2	4	56.19
1.6232	9	-4	2	4	56.66
1.5969+	11	3	3	2	57.68
1.5969+		2	4	2	57.68
1.5869M	9	-5	3	2	58.08
1.5869M		4	3	1	58.08
1.5602	1L	5	0	1	59.17
1.5472	1	4	4	0	59.72
1.5295M	1L	2	3	3	60.48
1.5295M		-6	1	1	60.48
1.4991	13	1	5	2	61.84
1.4954	10	-3	5	2	62.01
1.4900	8	-6	2	2	62. 26
1.4583	5	-4	1	5	63.77
1.4418M	3	-2	4	4	64.59
1.4418M		-3	2	5	64.59
1.4394	2	-2	5	3	64.71
1.4293	1	-1	6	1	65.22
1.4094	8	1	3	4	66.26
1.3982M	6	-5	0	5	66.86
1.3982M		-5	3	4	66.86
1.3834	1	6	2	0	67.67
1.3711	1L	-6	3	1	68.36

-- e

Synonym Nickel orthophosphate octahydrate						
	1^{1}					0 0
CAS registry no.	Intern	al standard	I Ag,	a =	4.0	8651 A
19033-89-7						
	d(Å)	Irel		h	kl	2θ(°)
Sample		a = +2				
The sample was made by adding a dilute solution of Na_2HPO_4 to dilute solution of		0 - 15				
NiSO ₄ to which a small amount of NaOH had	7.77	36	1	1	0	11.38
been added.	6.62	100	0	2	0	13.36
	4.808	61	2	0	0	18.44
Color	4.480	32	-1	0	1	19.80
Very light yellowish green.	4.277	10	0	1	1	20.75
Structure	4.005	20	1	3	0	22.18
Monoclinic, $I2/m$ (12), $\dot{Z} = 2$. Vivianite	3.799	50	1	0	1	23.40
structure, from the similarity of cell size,	3.576	8	-2	1	1	24.88
space group and chemistry. The structure of	3.297	2	0	4	0	27.02
vivianite, $Fe_3(PO_4)_2 \cdot 8H_2O$, is discussed by Mori and Ito (1950).	3.159	33	0	3	1	28.23
	2.924	72	-3	0	1	30.55
Lattice constants of this sample	2.722	6	2	4	0	32.88
	2.675	46	-3	2	1	33.47
a = 9.840(4) A	2.657	35	-1	4	1	33.71
b = 13.203(4)	2.591	10	3	3	0	34.59
c = 4.0342(15)						
$\beta = 102.27(3)^{\circ}$	2.548	2	1	5	0	35.19
	2.491	19	1	4	1 -	36.03
a/D = 0.7457	2.389	27	3	0	1	37.62
C/B = 0.5510	2.283M	17	-1	1	2	39.44
Volume	2.283M		0	5	1	39.44
300.07 A	2.241	2	-2	0	2	40.20
Density	2.189	18	-3	4	1	41.20
(a = 1 c =	2.153	14	-2	5	1	41.93
(calculated) 2.078 g/cm	2.122	5	-2	2	2	42.56
Figure of merit	2.079	3	1	1	2	43.49
$F_{1,2} = 31 \ 9(0 \ 0.16 \ 5.8)$						
130 - 51.9(0.010,50)	2.039	11	3	5	0	44.39
Additional nattern	1.975	1	-1	6	1	45.92
DDF card 1-0126 (Hanawalt et al., 1938)	1.938	3	4	1	1	46.83
IDF Card I VIZO (Manawart CC ar., 1990).	1.901	19	1	3	2	47.81
Pafarances	1.872	6	-3	3	2	48.61
Hanawalt J D Rinn H. W. and Frevel.						
T K (1938) Ind Eng Chem, Anal. Ed.	1.857	5	-4	0	2	49.01
10 457	1.789	3	4	3	1	51.00
10, 457.	1.6503M	5	0	8	0	55.65
Mori, H. and Ito, T. (1950). Acta Crystallogr. 3. 1.	1.6503M		5	0	1	55.65

~

Nickel Sulfate Hydrate (Nickel-hexahydrite), β -NiSO₄·6H₂O

Synonym							
Nickel sulfate hexahydrate	CuK α_1 λ = 1.540598 Å; temp. 25±1 °C Internal standard Si a = 5.43088 Å						
CAS registry no							
10101-97-0	Inceri		<u> </u>	a -		JU00 A	
Sample	d(Å)	Irel		hkl	,	20(°)	
The sample was prepared by slow evaporation from a solution of nickel sulfate in an aqueous	_	$\sigma = \pm 3$					
solution of H ₂ PO ₄ .	5.98	5	4	0	0	14.80	
	5.824	20	Ó	1	1	15.20	
Color	5.538	6	1	1	1	15.99	
Strong green	5.424	21	-2	1	1	16.33	
	5.061	21	2	1	1	17.51	
Structure							
Monoclinic, $A2/a$ (15), $Z = 8$. Isostructural	4.900M	51	-3	1	1	18.09	
with other divalent hexahydrate sulfates	4.900M		0	0	2	18.09	
(Sutor, 1959). The structure of $MgSO_4 \cdot 6H_2O$	4.782	24	-2	0	2	18.54	
was discussed by Ide (1938).	4.519	6	3	1	1	19.63	
	4.367	100	-4	1	1	20.32	
Lattice constants of this sample							
a = 24.188(5)A	4.314	21	2	0	2	20.57	
b = 7.2410(14)	4.096	22	-4	0	2	21.68	
c = 9.895(2)	4.003	60	4	1	1	22.19	
$\beta = 98.41(2)^{\circ}$	3.865	4	-5	1	1	22.99	
	3.625	14	0	2	0	24.54	
a/b = 3.3404				-		- /	
c/b = 1.3665	3.576	9	1	2	0	24.88	
	3.544M	20	5	1	1	25.11	
Volume	3.544M		4	0	2	25.11	
1714.4 A ³	3.466	3	2	2	0	25.68	
	3.432	8	-6	1	1	25.94	
Density	3 3/0	0	-6	0	2	26 67	
(calculated) 2.037 g/cm ³	2 162	0	-0	1	2	20.07	
	3.102	1	7	1	1	28.20	
Polymorphism	3.000	4	-/	1	1	29.08	
$NiSO_4 \cdot 6H_2O$ also occurs in a tetragonal form	3.001	0	-1	1	3	29.75	
as the mineral retgersite.	2.992	11	0	U	U	29.84	
Pierre for a state	2,979	17	-2	1	3	29.97	
Figure of merit $F = 52.2(0.012.(5))$	2.916M	26	-1	2	2	30.63	
$F_{30} = 52.3(0.013, 45)$	2.916M		-3	1	3	30.63	
A 13*** 1	2.890M	38	6	ō	2	30.92	
Additional patterns	2.890M	50	5	2	ō	30.92	
PDF card 18-891 (Oleinikov et al., 1965)	21050		5	-	Ŭ	50.72	
DDF card 26-1288 (Never 1072)	2.860	1	1	2	2	31.25	
FDF Card 26-1266 (Nawaz, 1975)	2.818	8	-4	1	3	31.73	
Pafaranaa	2.801	1	2	1	3	31.92	
Ido K H (1028) Notumuisconschoften 26	2.774	9	2	2	2	32.25	
$\frac{100}{411}$, K. H. (1936). Maturwissenschaften, $\frac{20}{20}$,	2.737	2	-8	0	2	32.69	
411.							
Nawaz, R. (1973). Mineral. Mag. 39, 246.	2.711	1L	-4	2	2	33.02	
	2.690	5	-5	1	3	33.28	
Oleinikov, B. V., Shvartsev, S. L.,	2.681	5	6	2	0	33.39	
Mandrikova, N. T., and Oleinikova, N. N.	2.660	5	3	2	2	33.66	
(1965). Zap. Vses. Mineral, O-Va. <u>94</u> , 534.	2.588	1L	-5	2	2	34.63	
	2.570	9	8	1	1	34 88	
Sutor, D. J. (1959). Acta Crystallogr. $\underline{12}$,	2.553	2	-6	1	3	35 12	
72.	2.471	12	-2	ō	4	36.33	
	2.454	3	-6	2	2	36 59	
	2.408	2	-7	1	3	37 31	
	2.400	-		-	5	31+31	

1. 10 10/2

Nickel Sulfate Hydrate (Nickel-hexahydrite), β -NiSO₄·6H₂O - (continued)

d(Å)	Irel		hkl		20(°)
	$\sigma = \pm 3$				
2.392M	3	10	0	0	37.57
2.392M		-4	0	4	37.57
2.342+	1	0	3	1	38.41
2.342+		9	1	1	38.41
2.331	1	2	0	4	38.59
2.306	5	8	2	0	39.03
2.285+	4	-10	0	2	39.41
2.285+		2	3	1	39.41
2.272	13	-3	3	1	39.64
2.246	5	6	1	3	40.12
2.229	2	3	3	1	40.44
2.209	5	-4	3	1	40.82
2.183	3	-8	2	2	41.32
2.157M	3	4	0	4	41.85
2.157M		4	3	1	41.85
2.135	1	-5	3	1	42.30
2.098	1L	-11	1	1	43.08
2.076	1	5	3	1	43.57
2.052M	4	-9	2	2	44.09
2.052M		-6	3	1	44.09
2.047	3	-8	0	4	44.22
2.041M	2	-1	2	4	44.35
2.041M		-2	2	4	44.35
2.028	3	0	2	4	44.64
1.995M	7	-4	2	4	45.43
1.995M		12	0	0	45.43
1.990	10	6	3	1	45.55
1.981M	12	11	1	1	45.76
1.981M		8	1	3	45.76
1.954	5	-5	2	4	46.43
1.9199	3	1	3	3	47.31
1.9092	5	-2	1	5	47.59
1.8901M	7	0	1	5	48.10
1.8901M		2	3	3	48.10
1.8791M	4	-4	1	5	48.40
1.8791M		-11	1	3	48.40
1.8769	4	-8	3	1	48.46
1.8536	14	4	2	4	49.11
1.8378	4	12	1	1	49.56
Columbium CAS registry no. 7440-03-1 Sample The sample was obtained from Fansteel Products Co., N. Chicago, IL. Color Dark gray Structure Cubic, Im3m, Z = 2. The structure was determined by McLennan and Monkman (1929), Hägg (1930), and others. Lattice constant of this sample a = 3.30332(13)AVolume 36.046 Å³ Density (calculated) 8.560 g/cm³ Figure of merit $F_8 = 102.8(0.010,8)$ Additional patterns PDF card 16-1 (Hanawalt et al., 1938) Nadler and Kempter (1959) References Hägg, G. (1930). Z. Phys. Chem. B 11, 433. Hanawalt, J. D., Rinn, H. W., and Frevel, L. K. (1938). Ind. Eng. Chem. Anal. Ed. 10, 457. McLennan, J. C. and Monkman, R. J. (1929). Trans. R. Soc. Can. Sec. 3 23, 255. Nadler, M. R. and Kempter, C. P. (1959). Anal. Chem. 31 1922.

Synonym

$CuK\alpha_1 \lambda \approx 1.540598 \text{ Å}; \text{ temp. } 25\pm1 \text{ °C}$ Internal standard W, a = 3.16524 Å							
d(Å)	Irel		h	kl	20(°)		
	$\sigma = \pm 1$	1					
2.336	100	1	1	0	38.51		
1.6519	18	2	0	0	55.59		
1.3484	28	2	1	1	69.68		
1.1678	8	2	2	0	82.54		
1.0446	11	3	1	0	95.02		
.9535	3	2	2	2	107.78		
.8830	13	3	2	1	121.48		
.8258	2	4	0	0	137.74		

Synonym Potassium barium orthophosphate	CuKa,	$\lambda = 1.5405$	98 Å;	temp. 2	5±1 °C
CAS registry no.	Interna	al standar	d Si,	a = 5.43	30825 Å
23040-23-3	o d(A)	Irel		hkl	20(°)
Sample The sample was made by heating a 1:1 molar		$\sigma = \pm 2$			
mixture of $Ba(OH)_2$ and KH_2PO_4 at 750 °C					
for 2 days, regrinding and heating to 900 °C	6.100	8	1	10	14.51
for 1 hour.	4.990	18	0	20	17.76
	4.927	33	0	1 1	17.99
Color.	4.189	4	1	20	21.19
Colorless	4.153	3	1	1 1	21.38
Structure	3.854	6	2	0 0	23.06
Orthorhombic, Pnam (62) , $Z = 4$. (Struck	3.594	4	2	1 0	24.75
and White, 1962). Isostructural with	3.368	40	1	2 1	26.44
β -K ₂ SO ₄ , arcanite.	3.186	3	2	0 1	27.98
	3.052M	94	1	3 0	29.24
Lattice constants of this sample					
a = 7.7084(5)	3.052M		2	20	29.24
h = 0.0783(8)	3.036	100	2	1 1	29.40
c = 5.6649(5)	2.868	41	0	3 1	31.16
c = 3:0049(3)	2.832	39	0	02	31.57
a/b = 0.7725	2.685M	4	1	3 1	33.34
c/b = 0.5677					
	2.685M		2	21	33.34
Volume	2.569	6	1	1 2	34.90
Δ35 73 Δ ³	2.518	4	2	30	35.63
-00.10 A	2.488	19	3	1 0	36.07
Density	2.463	2	0	22	36.45
(calculated) 4.137 g/cm^3					
(curcurated) 4.137 87 cm	2.3732	2	1	4 0	37.88
Polymorphism	2.3464	3	1	22	38.33
KRaPO, is reported to have a high temper-	2.3008	5	2	3 1	39.12
ature form which is hexagonal (Klement and	2.2823M	14	3	20	39.45
Uffelmann, 1941). This is questioned by	2.2823M		2	02	39.45
Struck and White (1962).					
	2.2768	13	3	1 1	39.55
Figure of merit	2.2250	7	2	1 2	40.51
$F_{20} = 111.6(0.008.35)$	2.1888	33	1	4 1	41.21
-30,,	2.1187	3	3	2 1	42.64
Additional patterns	2.0939	4	2	4 0	43.17
PDF card 14-229 (Struck and White, 1962)					10 55
	2.0/65M	54	1	3 2	43.55
Wanmaker and Spier (1962)	2.0/65M	16	2	2 2	43.55
• • •	2.0335	15	3	30	44.52
Majling, et al. (1979) calculated pattern	1.9646	1L 14	2	4 1	46.17
	1.9510	14	-	5 0	47700
Keterences	1.9271	14	4	0 0	47.12
Klement, R. and Uffelmann, R. (1941).	1.9134	1L	3	3 1	47.48
Naturwissenschaften 29, 300.	1.8817M	4	0	51	48.33
Mailing T. Desines C. and Dunamia C.	1.8817M		2	32	48.33
Majling, J., Kaninec, S., and Durovic, S. (1070) Coloulated Davidar Differentian	1.8693	7	3	1 2	48.67
(19/9). Calculated Powder Diffraction					
Proticious Crocheclevelic	1.8557	4	0	1 3	49.05
bralisiova, uzecnosiovakia.j	1.8237	1L	4	0 1	49.97
Struck C W and White I (1962) Acts	1.7942	16	4	1 1	50.85
Cruck, C. W. and While, J. (1902). Acta	1.7724	1L	2	5 0	51.52
Crystarrogr. 13, 290.	1.7218	5	1	2 3	53.15
Wanmaker, W. L. and Spier, H. L. (1962). J. Electrochem. Soc. <u>109</u> , 109.					

d(Å)	Irel			hkl	20(°)
	$\sigma = \pm 2$				
1.7067	19	3	4	1	53.66
1.6719	12	2	1	3	54.87
1.6516	6	3	3	2	55.60
1.6424	6	0	3	3	55.94
1.6000	7	4	3	1	57.56
1.5962	17	1	5	2	57.71
1.5929	11	4	0	2	57.84
1.5765	2	3	5	0	58.50
1.5626	7	1	6	1	59.07
1.5208	'	2	0	U	00.00
1.5182	1	4	2	2	60.98
1.4776	9	1	4	3	62.84
1.4738	9	2	6	1	63.02
1.4554	1	3	2	3	63.91
1.4368	1	4	3	2	64.84
1.4255	3	5	2	1	65.42
1.4164	5	0	0	4	65.89
1.4017	2	1	7	0	66.67
1.3984	3	5	3	0	66.85
1.3823	6	0	7	1	67.73
1.3789	5	1	1	4	67.92
1.3770	1	3	5	2	68.03
1.3555	4	3	6	1	69.26
1.3442	4	2	6	2	69.93
1.3368M	4	2	7	0	70.37
1.3368M		4	1	3	70.37
1.3069	2	5	2	2	72.23
1.3015M	5	4	2	3	72.58
1.3015M		2	7	1	72.58
1.2992	2	3	4	3	72.73
1.2850M	7	1	3	4	73.66
1.2850M		6	0	0	73.66
1.2777	4	5	4	1	74.15
1.2564	5	1	7	2	75.63
1.2544	2	5	3	2	75.77
1.2431	4	6	1	1	76.58
1.2321M	4	1	6	3	77.39
1.2321M		0	4	4	77.39
1.2202	1	5	5	0	78.29
1.2173	1	3	7	1	78.51
1.1929	2	5	5	1	80.44
1.1868M	1	2	8	0	80.94
1.1868M		4	4	3	80.94
1.1728M	1	2	4	4	82.11
1.1728M		6	3	1	82.11
1.1703	2	6	0	2	82.33
1.1624M	2	3	3	4	83.01
1.1624M		6	1	2	83.01

Svnonvm						
Potassium calcium orthophosphate	CuK $\alpha_1 \lambda = 1.540598 \text{ Å; temp. } 25\pm1 ^{\circ}\text{C}$					±1 °C
CAS registry no. 18901-69-4	Inter	nal standard	Si,	a =	5.43	0825 A
Sample	o d(A)	Irel		h	kl	20(°)
The sample was made at NBS by heating		$\sigma = \pm 1$				
800 °C over night, reground, heated to 900°	4.024	8	1	0	1	22.07
over night and then at 1100 °C for 1 hour.	3.750	12	0	0	2	23.71
	2.949	100	1	0	2	30.28
Color	2.754	100	1	1	0	32.49
Coloriess	2.386	2	2	0	0	37.67
Structure _	2.272	17	2	0	1	39.64
Hexagonal, P3ml (164), Z = 2. (Bredig, 1941)	2.0125	39	2	0	2	45.01
Isostructural with aphthitalite, $(K,Na)_3Na(SO_4)_2$	1.8762	6	0	0	4	48.48
The structure of aphthitalite was determined	1.8038	2	2	1	0	50.56
by Gossner (1928).	1.7450	3	1	0	4	52.39
Lattice constants of this sample	1.7255	2	2	0	3	53.03
a = 5.5085(4)	1.6251	14	2	1	2	56.59
a = 5.5005(4)	1.5906	12	3	0	0	57.93
(- 7.5020(0)	1.5497	12	1	1	4	59.61
c/a = 1.3619	1.4643	1L	3	0	2	63.48
Volume	1.3770	9	2	2	0	68.03
	1.2929	1	2	2	2	73.14
137.14 A	1.2478	4	3	1	2	76.24
Density	1.2128	3	3	0	4	78.86
(calculated) 2.934 g/cm ³	1.2097	2	1	0	6	79.10
Polymorphism	1.1365	1	4	0	2	85.34
There are several other forms of KCaPO.	1.1101	1	2	2	4	87.88
(Znamierowska, 1979). Bredig (1941) refers to	1.1073	1	2	0	6	88.16
the present form as α .	1.0507	1	3	2	2	94.30
	1.0410	2	4	1	0	95.46
Figure of merit	1.0275	1T.	2	1	6	97.13
$F_{27} = 38.1(0.011, 65)$	1.0030	1L	4	1	2	100.35
Additional patterns PDF card 3-619 (Bredig, 1942)						
Wanmaker and Spier (1962)						
Defense						
Bredig, J. (1941). J. Am. Chem. Soc. <u>63</u> , 2533.						
Bredig, J. (1942). J. Phys. Chem. <u>46</u> , 747.						
Gossner (1928). Neues. Jahrb. Mineral. Geol. Palaeontol. Abh. Abt. A, <u>57</u> , 89.						
Wanmaker, W. L. and Spier, H. L. (1962). J. Electrochem. Soc. <u>109</u> , 109.						
Znamierowska, T. (1979). Pol. J. Chem. <u>53</u> , 1415.						

Synonym Potassium strontium orthophosphate

Potassium strontium orthophosphate $CuK\alpha_1 \lambda = 1.540598 \text{ Å}; t$			temp. 25±1 °C			
CAS registry no.	Intern	al standard	Si,	a =	5.4	430825 Å
53201-92-6	d(A)	Trel		h	k 9.	28(%)
Sample The sample was made at NBS by heating equil-		$\sigma = \pm 1$				
molar amounts of KH ₂ PO ₄ and SrCO ₃ at 900 °C						
for 1 hour; it was reground and heated to	5.836	5	1	1	0	15.17
1250 °C for 1 hour.	4.813M	19	0	2	0	18.42
0.1	4.813M	0	0	1	1	18.42
Colorion	4.028M	8	1	2	1	22.05
COTOTIESS	4.02011		1	-	-	22.05
Structure	3.433	2	2	1	0	25.93
Orthorhombic, Pnam (62), Z = 4. Iso-	3.263	27	1	2	1	27.31
structural with arcanite, β -K ₂ SO ₄ . (Klement	3.066	5	2	0	1	29.10
and Kresse, 1961) The structure of arcanite	2.943	32	1	3	0	30.35
was determined by Robinson, (1958). This	2.922M	100	2	2	0	30.57
phase of $KSrPO_4$ can also be indexed on a herefore call with a = 11 124 and c =	2 0.22M		2	1	1	30 57
7.350, this being similar to the high form	2.922m	93	0	3	1	32 17
of K_0 SO4, but with a doubled a.	2.780M	,,,	Ő	0	2	32.17
	2.587	3	2	2	1	34.65
Lattice constants of this sample	2.512	4	1	1	2	35.72
a = 7.3507(7)						
h = 9.6340(9)	2.418	8	2	3	0	37.15
c = 5.5621(6)	2.4107M	5	0	4	0	37.27
	2.4107M	10	0	2	2	37.27
a/b = 0.7630	2.3/44 2.2800M	19	1	1	0	3/.80
c/b = 0.5773	2.28901	10	T	4	U	39.33
	2.2890M		1	2	2	39.33
Volume	2.2177M	10	2	3	1	40.65
393.89 A ³	2.2177M		2	0	2	40.65
Density	2.1843M	6	3	2	0	41.30
(calculated) 3.738 g/cm ³	2.1843M		3	1	1	41.30
(carcaraoos) or ios g, am		_		_	•	1
Polymorphism	2.1613	7	2	1	2	41./6
KSrPO ₄ is reported to have several other	2.1108	24	2	4	1	42.08
forms (Klement and Uffelmann, 1941).	2.0330	22	1	2	2	44.55
	2.0150M	36	2	4	õ	44.95
Figure of merit			-	•	•	
$F_{30} = 82.0(0.008, 45)$	2.0150M		2	2	2	44.95
Additional natterns	1.9478	9	3	3	0	46.59
PDF card 14-40 (Klement and Kresse, 1961)	1.8942	1	2	4	1	47.99
	1.8639	8	1	5	0	48.82
Wanmaker and Spier, 1962	1.83/8M	0	3	3	T	49.50
	1.8378M		4	0	0	49.56
References	1.8251	6	2	3	2	49.93
Alle Chem 210 62	1.8203+	6	0	4	2	50.07
Allg. chem. <u>510</u> , 62.	1.8203+		0	1	3	50.07
Klement, R. and Uffelmann, R. (1941).	1.8061M	7	3	1	2	50.49
Naturwissenschaften 29, 300.			,	_	•	
	1.8061M		4	1	0	50.49
Robinson, M. T. (1958). J. Phys. Chem.	1.744/	1	4	2	0	52.40
<u>62</u> , 925.	1.7167+	11	4	1	1	53.32
	1.7064	1	2	5	0	53.67
Wanmaker, W. L. and Spier, H. L. (1962). J.			-			
Electrochem. Soc. 109, 109.						

I

Potassium Strontium Phosphate, $KSrPO_4$ - (continued)

d(Å)	Irel			hkl	2θ(°)
	$\sigma = \pm 1$				
1.6840	3	1	2	3	54.44
1.6552	1	2	ō	3	55.47
1.6413M	12	3	4	ī	55.98
1.6413M		4	2	1	55.98
1.6314M	9	2	4	2	56.35
1.6314M		2	1	3	56.35
1.6056M	6	0	6	0	57.34
1.6056M		0	3	3	57.34
1.5951M	4	3	3	2	57.75
1.5951M		4	3	0	57.75
1.5655	1L	2	2	3	58.95
1.5481	8	1	5	2	59.68
1.5332M	6	4	3	1	60.32
1.5332M		4	0	2	60.32
1.5141M	3	3	5	0	61.16
1.5141M		4	1	2	61.16
1.5101	5	1	6	1	61.34
1.4713M	2	2	6	0	63.14
1.4713M		2	3	3	63.14
1.4610M	4	4	4	0	63.64
1.4610M		4	2	2	63.64
1.4408	4	1	4	3	64.64
1.4222	1	2	6	1	65.59
1.4132M	1	3	2	3	66.06
1.4132M		4	4	1	66.06
1.4058M	3	5	2	0	66.45
1.4058M		5	1	1	66.45
1.3907M	6	0	6	2	67.27
1.3907M		0	0	4	67.27
1.3836	1	4	3	2	67.66
1.3634	1	5	2	1	68.80
1.3526	1	1	1	4	69.43
1.3365M	3	5	3	0	70.39
1.3365M		0	7	1	70.39

```
CAS registry no. 12002-98-1
```

Sample

The sample was obtained from Alfa Products, Thiokol/Ventron Division, Danvers, MA.

```
Color
```

Unground: medium gray Ground: dark gray

Structure

Monoclinic, P2/n (13), Z = 8. The space group was assumed from absences in the present powder data. The cell having "b" equal to half our value below would not allow an index for the very weak line at d = 8.91. This reflection appeared consistently in patterns from randomly oriented samples, but only appeared intermittently from non-randomly oriented mountings. Frueh (1959) gave the space group $P2_1/n$ with b'=b/2.

Lattice constants of this sample

 $a = 8.1698(15) \text{ \AA}$ b = 8.940(2) c = 8.0653(15) $\beta = 112.793(15)^{\circ}$

a/b = 0.9138 c/b = 0.9022

Volume 543.07 Å³

```
Density
```

```
(calculated) 8.399 g/cm<sup>3</sup>
```

Polymorphism

Frueh (1959) uses the following nomenclature. Form III (described here) is stable from room temperature up to a range from 105 °C to 145 °C. Form II is stable between the ranges 105 to 145 °C and 690 to 802 °C. Form I is stable between the range 690 to 802 °C and the melting point.

Figure of merit F₃₀ = 23.1(0.015,89)

Additional patterns PDF card 12-695 (Thompson, 1949)

Frueh (1959)

Tokody (1932)

References Frueh, A. J., Jr. (1959). Z. Kristallogr. Kristallgeom. Kristallphys. Kristallchem. <u>112</u>, 44.

Thompson, R. M. (1949). Am. Mineral. 34, 342.

Tokody, L. (1932). Z. Kristallogr. Kristallgeom. Kristallphys. Kristallchem. <u>82</u>, 154. $CuK\alpha_1 \lambda = 1.540598 \text{ A}; \text{ temp. } 25\pm1 \text{ °C}$

Internal standard Si, a = 5.430825 A

d(Å)	Irel		h	kl	20(°)
	$\sigma = \pm 3$				
8.91	5	0	1	0	9.92
6.76	10	-1	0	1	13.08
4.492	8	1	0	1	19.75
3.764	5	2	0	0	23.62
3.726	7	-1	2	1	23.86
3.382	8	-2	0	2	26.33
3.169	24	1	2	1	28.14
3.003	52	-2	2	1	29.73
2.983M	59	-1	2	2	29.93
2.9830		U	3	U	29.93
2.880	100	2	2	0	31.03
2.037	24	_2	2	2	22 21
2.095	6	-2	2	1	36 60
2.455	6	1	2	2	36.75
2.111	, i i	•	-	-	50.75
2.323M	41	0	3	2	38.73
2.323M		-3	2	1	38.73
2.301	96	-1	2	3	39.12
2.254	58	-3	0	3	39.97
2.246M	61	-3	2	2	40.11
2.246M		2	0	2	40.11
2.235+	30	0	4	0	40.33
2.235+		-2	2	3	40.33
2.189	30	3	2	0	41.21
2.167	12	0	2	3	41.65
2.141+	54	3	0	1	42.17
2.141+		0	4	1	42.17
2.122M	22	1	0	3	42.57
2.122M		-1	4	1	42.57
2.026	15	-4	0	2	44.70
2.012	6	-3	2	3	45.03
2.002M	4	-2	0	4	45.25
2.002M		1	4	1	45.25
1.958M	6	-3	3	2	46.33
1.958M		-2	4	1	46.33
1.953M	5	-2	1	4	46.45
1.953M		-1	4	2	46.45
1.930	10	3	2	1	47.04
1.884	1L	4	0	0	48.27
1.863	3	-2	4	2	48.84
1.858	5	0	0	4	48.98
1.845	2	-4	2	2	49.36
1.821M	4	-1	2	4	50.06
1.821M	11	0	1	4	50.06
1.//3/	11	1	4	2	51.48
1.7355M	2	-3	2	4	52.70
1.7355M		4	2	0	52.70
1.6950	9	-3	4	2	54.06
1.6904	9	-4	0	4	54.22
1.6020	6	-5	0	1	57.48

d(Å)	Irel			hkl	20(*)
	$\sigma = \pm 3$				
1.5874M	5	-2	1	5	58.06
1.5874M		-3	4	3	58.06
1.5839	9	2	4	2	58.20
1.5797M	7	-2	5	2	58.37
1.5797M	·	-1	õ	5	58.37
1 5759	4	- 2	•	c	C0 66
1.5/54	*	-3	2	5	50.55
1.5370	2	1	~	4	59.27
1.5399	2	1	4	3	60.03
1.5077	2	-5	2	1	61.45
1.49/4M	2	3	0	3	61.92
1.4974M		-5	2	3	61.92
1.4573M	2	2	0	4	63.82
1.4573M		3	5	0	63.82
1.4454	11	-4	4	3	64.41
1.4404M	8	-3	4	4	64.66
1.4404M		4	4	0	64 66
1 4107M	3	-5	3	ĩ	66 19
1 4107M	5	ň	2	5	66 10
1 4026	15	-4	2	5	66 67
1.4030	10	-4	2	5	00.57
1.3905m	18	-1	o	. 2	00.95
1.3965M		-1	3	5	66.95
1.3931	4	4	2	2	67.14
1.3761	2	5	0	1	68.08
1.3411+	6	-2	0	6	70.11
1.3411+		4	4	1	70.11
1.3283	3	2	6	1	70.89
1.3263M	2	1	6	2	71.01
1.3263M	_	-2	1	6	71.01
1.3077	10	-2	4	5	72.18
1.3029M	11	1	2	5	72.49
		-	-	•	
1.3029M		-1	6	3	72.49
1.2994	8	-6	0	4	72.71
1.2946	7	-5	2	5	73.03
1.2901+	8	-2	6	3	73.32
1.2901+		-1	4	5	73.32
1.2814	10	3	6	0	73.90
1.2773M	5	0	7	õ	74 18
1 2773M	3	Ň	6	3	74.10
1 2555M	4	6	0	0	75 60
1.2555M	-	-1	7	1	75.69
		_			
1.2489	-	5	4	0	/6.16
1.2390+	5	1	3	5	76.88
1.2390+		-4	2	6	76.88
1.2271+	2	5	1	2	77.77
1.2271+		3	2	4	77.77

Silver Telluride (Hessite), Ag₂Te - (continued)

Synonym Sodium barium orthophosphate CAS registry no. 53201-91-5 Sample The sample was prepared at NBS. Na₂CO₃ and 2BaHPO4 were ground together, heated up gradually to 800 °C, re-ground, returned to oven at 800 °C, heated to 1000 °C, and held there for 1 hour. Color Colorless Optical data Low double refraction with an average value ~1.612. Structure Hexagonal, P3m1 (164), Z = 2, isostructural with aphthitalite, $(K,Na)_3Na(SO_4)_2$. The structure was determined by Calvo and Faggiani (1975). Lattice constants of this sample a = 5.6181(3) Ac = 7.2636(5)c/a = 1.2929Volume 198.55 Å³ Density (calculated) 4.270 g/cm^3 Polymorphism Forms with other than hexagonal symmetry have been reported (Klement and Kresse, 1961; Kolsi et al., 1981; Paques-Ledent, 1974). Their cells may be related to the hexagonal cell above. An unrelated tetragonal form was reported by Klement and Uffelmann (1941). Figure of merit $F_{30} = 82.1(0.010, 38)$ Additional patterns PDF card 14-204 (Wanmaker and Spier, 1962), indexed as orthorhombic Majling et al. (1979) (calculated pattern) Comment A pattern given by Kolsi et al., (1981) is called monoclinic but can be indexed with the hexagonal cell here which has 1/2 the volume of the monoclinic cell. References Calvo, C. and Faggiani, R. (1975). Can. J. Chem. 53, 1849. Klement, R. and Kresse, P. (1961). Z. Anorg. Allg. Chem. 310, 62. Klement, R. and Uffelmann, R. (1941). Naturwissenschaften 29, 300.

Kolsi, A. W., Quarton, M., and Freundlich, W. (1981). Ann. Chim. Paris <u>6</u>, 411.

Majling, J., Raninec, Š., and Ďurovič, S. (1979). <u>Calculated Powder Diffraction</u> <u>Patterns for Anhydrous Phosphates</u> (VEDA, Bratislava, Czechoslovakia).

Paques-Ledent, M.-Th. (1974). Ind. Chim. Belge 39, 845.

Wanmaker, W. L. and Spier, H. L. (1962). J. Electrochem. Soc. 109, 109.

CuKa ₁	$\lambda = 1.540598$	Ă;	tem	p. 2	5±1 °C
Inter	nal std. Fluo	roph	log	opit	e SRM 675
d(Å)	Irel		h	kl	20(°)
	$\sigma = \pm 3$				
7.27	4	0	0	1	12.17
4.868	3	1	0	0	18.21
4.044	59	1	0	1	21.96
3.632	1	0	0	2	24.49
2.910	100	1	0	2	30.70
2.808	100	1	1	0	31.84
2.620	8	1	1	1	34.20
2.423	22	0	0	3	37.08
2.307	32	2	0	1	39.01
2.222	7	1	1	2	40.57
2.1672	6	1	0	3	41.64
2.0210	50	2	0	2	44.81
1.8337	25	1	1	3	49.68
1.8155	3	0	0	4	50.21
1.7824	11	2	1	1	51.21
1.7008	13	1	0	4	53.86
1.6405	24	2	1	2	56.01
1.6219	14	3	0	0	56.71
1.5826	1	3	0	1	58.25
1.5247	3	1	1	4	60.69
1.4802	1	3	0	2	62.72
1.4641	2	2	1	3	63.49
1.4548	10	2	0	4	63.94
1.4045	12	2	2	0	66.52
1.3920	5	1	0	5	67.20
1.3472	6	3	0	3	69.75
1.3265	3	3	1	1	71.00
1,2920	10	2	1	4	73.20
1.2651	8	3	1	2	75.02
1.2474	3	2	0	5	76.27
1.2148	5	2	2	3	78.71
1,2095	2	3	0	4	79.12
1.1996	2	4	0	1	79.90
1,1786	1	3	1	3	81.62
1.1748	1	1	0	6	81.94

d(Å)	Irel			hkl	20(°)
	$\sigma = \pm 3$				
1.1537	2	4	0	2	83.78
1.1400	4	2	1	5	85.02
1.1116	5	1	1	6	87.73
1.1031	2	3	2	1	88.58
1.0868	1L	4	0	3	90.27
1.0831	4	3	1	4	90.66
1.0669	4	3	2	2	92.44
1.0620	3	4	1	0	92.99
1.0150	2	1	0	7	98.74
1.0110	2	2	1	6	99.27
.9887	2	3	1	5	102.36
.9724	3	4	1	3	104.77
.9702	4	3	0	6	105.12
.9546	2	2	0	7	107.60
.9511	3	3	2	4	108.18

Sodium Barium Phosphate, $NaBaPO_4$ - (continued)

Synonym Redium strontium orthophosphate	[·····	· · · · · · · · · · · · · · · · · · ·	0	<u> </u>		
Sourain Strontium orthophosphate	$CuK\alpha_1 \lambda = 1.540598 \text{ A}; \text{ temp. } 25\pm1 \text{ °C}_{\alpha}$					±1 °C °
CAS registry no. 19553-80-1	Intern	al standard	l Si,	a =	5.43	0825 A
Sample	d(A)	Itel		hl	rl	20(°)
The sample was made at NBS by heating a		$\sigma = \pm 5$				
and Na_2CO_3 at 1000 °C for 2 days.	9.98	2	2	0	0	8.85
2 0	8.43M	10	0	0	2	10.48
Color	8.43M		-1	0	2	10.48
Colorless	7.20	2	-2	0	2	12.28
	6.66	4	3	0	0	13.28
Structure Monopolinic $\frac{1}{2}$ 7 = 16 The unit cell	5 996	17	2	0	2	15 04
Monoclinic, A^{n}/n , $Z = 10$. The unit cerr was determined by the Visser program (1969)	5 836	111	_3	0	2	15.04
and the 7 assumed for a reasonable density.	5 166	9	-5	1	1	17 15
and the z assumed for a reasonable density.	5.078	1	-1	1	1	17.45
Lattice constants of this sample	4,930	1	1	i	1	17.98
		-	-	-	-	
a = 20.414(4)A	4.779	3	3	0	2	18.55
D = -3.429(11) a = -17.246(2)	4.709	4	-2	1	1	18.83
C = 17.240(3) R = 101.76(2)9	4.478	6	2	1	1	19.81
p = 101.70(2)	4.209M	5	-3	1	1	21.09
a/b = 3.7602	4.209M		-2	0	4	21.09
c/b = 3.1766			_	•	_	
-,	3.996	3	5	0	0	22.23
Volume	3.961M	/	3	1	1	22.43
1871.21 Å ³	3.961M	0	4	0	2	22.43
	3.931	0	-5	1	2	22.00
Density	5.900	11	U	T	5	22.15
(calculated) 2.919 g/cm ³	3,828	5	-2	1	3	23.22
	3,632	7	2	0	⁴	24.49
Polymorphism	3.602M	12	-4	0	4	24.70
Several other cells have been reported	3.602M		-3	1	3	24.70
(Klement and Uffelmann, 1941; Bredig, 1942).	3.484	10	4	1	1	25.55
Stockoproitor (1940) assume there is a						
transformation The phase in this study is	3.356	6	5	0	2	26.54
assumed to be the low temperature form	3.330	9	6	0	0	26.75
abbaned to be the for temperature form.	3.180	4	3	1	3	28.04
Figure of merit	2.922	30	-6	0	4	30.57
$F_{30} = 43.4(0.011,63)$	2.903	44	6	0	2	30.78
	2 006M	· 55	1.	1	2	20.06
$M_{20} = 20.6$	2.886M	22	-6	1	1	30.90
	2.866M	62	0	1	5	31.18
Additional pattern	2.866M	02	-2	ō	6	31.18
PDF card 14-269 (Wanmaker and Spier, 1962)	2.805	2	-3	Õ	6	31.88
Peference						
Bredia M A $(10/2)$ I Phys Chem 46	2.772	11	1	1	5	32.27
749	2.732	100	-6	1	3	32.75
1.12.	2.715	48	0	2	0	32.97
Klement, R. and Steckenreiter, F. (1940).	2.646		5	0	4	33.85
Z. Anorg. Allg. Chem. 245, 236.	2.615	7	5	1	3	34.26
	2.585M	5	0	2	2	34.67
Klement, K. and Uffelmann, K. (1941).	2.585M		-1	2	2	34.67
Naturwissenschaften 29, 300.	2.576	6	2	0	6	34.80
Wissen I. W. (1960) I. Appl. Constalleer	2.550	4	-5	1	5	35.17
visser, J. W. (1909). J. Appl. Crystallogr.	2.514	1	3	2	0	35.68
<u>_</u> , 0).						
Wanmaker, W. L. and Spier, H. L. (1962).						
J. Electrochem. Soc. <u>109</u> , 109.						

Sodium Strontium Phosp	hate, $NaSrPO_4 - ($	(cont/inued)
------------------------	----------------------	--------------

$\sigma = \pm 5$ 2.464 2 2 2 2 36 2.387M 9 -6 1 5 37	.43 .66 .66 .16 .78
2.464 2 2 2 2 36 2.387M 9 -6 1 5 37	.43 .66 .66 .16 .78
2.387M 9 -6 1 5 37	.66 .66 .16 .78
	.66 .16 .78
2.387M 4 2 0 37	.16 .78
2.356 1 -4 2 2 38	.78
2.320 1 4 1 5 38	
2.306 2 -8 1 1 39	.02
2.282M 2 0 2 4 39	. 45
2.282M -2 2 4 39	. 45
2.262 29 4 0 6 39	.82
2.246M 15 -7 0 6 40	.11
2.246M 5 2 0 40	.11
2.238M 12 -1 1 7 40	.27
2.238M -3 2 4 40	.27
2.219M 2 9 0 0 40	.62
2.219M -3 1 7 40	.62
2.205 3 0 1 7 40	.90
2.196 4 8 1 1 41	.06
2.175 7 2 2 4 41	.49
2.169M 3 -4 2 4 41	.60
2.169M 7 0 4 41	.60
2.148 3 1 1 7 42	.03
2.105M 9 6 2 0 42	.94
2.105M -4 0 8 42	.94
2.092M 3 -8 0 6 43	.22
2.092M 3 2 4 43	.22
2.0550 4 1 0 8 44	.03
2.0466M 7 9 0 2 44	.22
2.0466M -5 0 8 44	.22
2.0409 7 -10 0 2 44	.35

Sedium titanium anthanhanhata			0			
NTD	CuKa,	$\lambda = 1.54059$	98 A;	tem	p. 2	5±1 °C
NIL	Tatom	al etondam	1 64		5 4	0 30825 A
	Intern	al standard	1 51,	a –	5.4.	50625 A
LAS registry no.	0					
22239-24-3	d(A)	I		h	kl	20(°)
Sampla		$\sigma = +2$				
The sample was made at NRS by heating a		02				
1.2.2 molar mixture of NaH-PO. •H-O	6.095	14	0	1	2	14.52
$(NH_{\star})_{\star}HPO_{\star}$ and TiO ₂ (anatase) at 1000 °C.	4.377	20	1	ō	4	20.27
It was then re-ground and heated at 1200° C	4 245	32	1	1	0	20.91
for 18 hours	3 666	100	1	1	3	24.26
IOI 10 HOUIS.	3 632	10	0	<u>^</u>	6	24.20
Color	5.052	10	Ŭ	U	U	24.47
Colorlag	3 485	4	2	٥	2	25 54
COTOTIESS	3 0/8	28	0	2	4	29.34
Structure	2 750M	64	1	1	6	32 42
Phembahadral Pac (167) Isostructural with	2.759M	04	2	1	1	32.42
No $2r$ (PO) and other similar phosphates	2.75511	2	1	2	2	33 23
The atructure of $N_2 Tr$ (PO) was determined	2.094	2	1	2	2	55.25
hu Hacman and Viarkagaard (1968)	2 5522	1	0	1	0	25 12
by nagman and Klerkegaard (1900).	2.3332	1	2	1	6	35.12
Tetting constants of this comple	2.4/01	16	2	1	4	30.23
Lattice constants of this sample	2.4520	10	3	0	0	30.02
nexagonal axes	2.1883	2	2	1	0	41.22
a = 8.4912(3)A	2.1032	/	1	1	9	42.97
c = 21.7858(12)	0.0700	•	•	-	-	10 (0
	2.0733	2	2	1	/	43.62
c/a = 2.5657	2.0378	5	2	2	3	44.42
Z = 6	2.0322M	6	3	0	6	44.55
	2.0322M		1	3	1	44.55
Volume	2.0053	1	3	1	2	45.18
1360.35 A ³			_			
	1.9455	15	1	2	8	46.65
Density	1.9100	3	1	3	4	47.57
$(calculated) 2.957 g/cm^3$	1.8740	2	0	2	10	48.54
	1.8473	2	3	1	5	49.29
Polymorphism	1.8330	16	2	2	6	49.70
Götz and Niebergall (1969) report a cubic						
form of NaTio(PO ₄), in the ternary system	1.8152	5	0	0	12	50.22
NaPO ₂ -NaF-TiO ₂	1.8128	6	0	4	2	50.29
Aurog Aur 1102.	1.7419	1L	4	0	4	52.49
Figure of merit	1.7144	9	2	1	10	53.40
$F_{1,2} = 112 7(0.007.36)$	1.7058	7	1	3	7	53.69
$r_{30} = 112.7(0.007, 30)$						
Additional natterns	1.6821	1L	3	2	1	54.51
PDF card 23-1/10 (Hagman and Kierkegaard	1.6674	1	2	3	2	55.03
1069)	1.6328	6	3	1	8	56.30
1908)	1.6115	5	3	2	4	57.11
Champeruker (1079)	1.6048	11	4	1	0	57.37
Chernolukov (1978)						
Peferran	1.5959	2	2	2	9	57.72
References	1.5733	2	2	3	5	58.63
Chern Fuel Fueral 51 (25	1.5670	4	4	1	3	58.89
Chem. Engl. Transl. 51 , 425.	1.5236	5	0	4	8	60.74
0", U 1.1, 11 D (10(0)	1.4889	6	1	3	10	62.31
Gotz, w. and Miedergall, K. (1969).						
Naturwissenschaften <u>56</u> , 35.	1.4678	6	4	1	6	63.31
	1.4589	2	3	0	12	63.74
Hagman, LU. and Kierkegaard, P. (1968).	1.4331	5	2	0	14	65.03
Acta Chem. Scand. <u>22</u> , 1822.	1.4199	4	0	5	4	65.71
	1.4153	3	3	3	0	65.95
	1.4051	2	4	0	10	66.49
	1.3890	1L	3	3	3	67.36
	1.3798	1	2	2	12	67.87
	1.3741	3	1	1	15	68.19
	1 35.83	2	1	2	4	60 10

Sodium	Titanium	Phosphate,	NaTi ₂ (PO ₄) ₃	-	(continued)
			4 2/3		

d(Å)	Irel		hkl	20(°)
	$\sigma = \pm 2$			
1.3467	1	2	4 4	69.78
1.3373	1	4	19	70.34
1.3338	1	3	2 10	70.55
1.3239	1L	4	25	71.16
1.3183M	1	3	36	71.51
1.3183M		5	1 1	71.51
1.2942M	1	1	3 13	73.05
1.2942M		5	08	73.05
1.2837	9	5	1 4	73.75
1.2642	4	1	55	75.08
1.2371	2	3	1 14	77.02
1.2257	7	6	0 0	77.87
1.2157	3	5	17	78.64
1.2102	1	0	0 18	79.06
1.2014	1L	3	4 2	79.76
1.1886M	1	3	2 13	80.79
1.1886M		1	58	80.79
1.1772	1	5	20	81.74
1.1717	1L	2	4 10	82.21
1.1637M	1	1	1 18	82.90
1.1637M		1	2 17	82.90
1.1438	3	2	3 14	84.67
1.1267	1L	4	3 7	86.26
1.1200M	4	5	26	86.91
1.1200M		1	6 1	86.91
1.1049	2	3	4 8	88.40
1.0984	7	1	64	89.06

Sodium Zirconium Phosphate, $NaZr_2(PO_4)_3$

Synonyms Sodium zirconium orthophosphate	СиКа	$\lambda = 1.540$	598 A:	temp. 25	+1 °C
NZP	Inter	nal standa	rd Si,	a = 5.43	0825 Å
CAS registry no. 19527-81-2	d(Å)	Irel		hkl	2 0 (°)
Sample		- - +	1	1100	20()
The sample was made at NBS by heating a			1		
1:2:2 molar mixture of NaH ₂ PO ₄ ·H ₂ O, $(NH_4)_2$ HPO ₄ ,	6.325	22	0	1 2	13.99
and ZrO ₂ , slowly up to 1000 °C. It was then	4.556	75	1	04	19.47
re-ground and heated to 1200 °C overnight.	4.399	97	1	1 0	20.17
	3.807	100	1	1 3	23.35
Color Colorless	3.614	1	2	02	24.61
	3.166	54	0	24	28.16
Structure	2.873	94	1	16	31.10
Rhombohedral, $R3c(167)$. Isostructural with	2.666	3	0	1 8	33.59
$Mall_2(PU_4)_3$ and many other similar phosphates.	2.571	24	2	14	34.87
and Kierkegaard, (1968) and confirmed by Hong	2.5419	42	3	0 0	35.28
(1976).	2.2801	7	2	08	39.49
Lattice constants of this sample	2.2016	0	2	2 0	40.96
Hexagonal axes	2.1929	3	1	1 9	41.13
	2.1568	2	2	1 7	41.30
a = 8.8048(4)A		-	-	- /	41.05
c = 22.7572(14)	2.1116	10	3	06	42.79
c/a = 2.5846	2.0797	3	3	12	43.48
Z = 6	2.0248	21	1	28	44.72
	1.9824	12	1	34	45.73
Volume 1527.88 Å ³	1.9542	6	0	2 10	46.43
	1.9039	29	2	26	47.73
Density	1.8802	5	0	4 2	48.37
(calculated) 3.198 g/cm ³	1.8078	1	4	0 4	50.44
	1.7800	22	2		51.10
Figure of merit $F_{30} = 103.6(0.007, 43)$	1.7727	4	1	57	51.51
	1.6907	9	3	18	54.00
Additional patterns	1.6638	25	4	1 0	55 16
PDF card 23-1411 (Hagman and Kierkegaard,	1.6328	1	2	3 5	56.30
1968)	1.6251	2	4	1 3	56.59
PDF card 24-1180 (Clearfield et al., 1969)					
	1.5894	5	0	1 14	57.98
Majling, et al. (1979) calculated pattern	1.5834	4	0	4 8	58.22
	1.5490	12	1	3 10	59.64
References	1.5401	1	3	2 /	60.02
Clearfield, A., Duax, W. L., Medina, A. S., Smith, G. D., and Thomas, J. R. (1969). J.	1.5230	14	4	1 6	60.74
Phys. Chem. <u>73</u> , 3424.	1.5197	1	3	0 12	60.91
	1.4950	1	2	0 14	62.03
Hagman, L-O. and Kierkegaard, P. (1968).	1.4730	4	3	5 4	63.06
Acta Chem. Scand. <u>22</u> , 1822.	1.4676	7	3	3 0	63 32
Harry H. V. D. (1076) Materia Dec. Dull	114070		5	5 0	05.52
nong, n. 1-r. (19/0). mater. Kes. Bull.	1.4610	4	4	0 10	63.64
11, 1/3.	1.4406	1	3	3 3	64.65
Mailing, J., Raninec, S., and Durović, S.	1.4340	3	1	1 15	64.98
(1979). Calculated Powder Diffraction	1.4157	9	1	2 14	65.93
Patterns for Anhydrous Phosphates. (VEDA, Bratislava, Czechoslovakia)	1.3969	5	2	4 4	66.93

•

d(Å)	Irel	hkl	2 θ(°)
	$\sigma = \pm 1$		
1.3900	3	4 1 9	67.31
1.3869	5	3 2 10	67.48
1.3738	1	4 2 5	68.21
1.3688	3	336	68.49
1.3487	1	1 3 13	69 .66
1.3314	8	5 1 4	70.70
1.3113	1	1 5 5	71.95
1.2886	1	3 1 14	73.42
1.2855	5	4 2 8	73.63
1.2751	1	2 1 16	74.33
1.2709	7	600	74.62
1.2643	3	0 0 18	75.07
1.2619	2	517	75.24
1.2373M	1	3 2 13	77.01
1.2373M		0 4 14	77.01
1.2243	1	4 3 4	77.98
1.2210	4	520	78.23
1.2176	4	2 4 10	78.49
1.2053M	2	523	79.45
1.2053M		60.6	79.45
1.1907	5	2 3 14	80.62
1.1738	1L	5 1 10	82.03
1.1624	5	526	83.01
1.1473	3	3 4 8	84.35
1.1421	1	1 5 11	84.82
1.1395	2	1 6 4	85.06
1.1319	2	3 0 18	85.77
1.1255	2	0 1 20	86.38
1.1122	3	5 0 14	87.67
1.1039	1	3 2 16	88.50
1.1008	2	4 4 0	88.82
1.0982	6	4 3 10	89.08
1.0903	1L	2 0 20	89.90
1.0879	1L	3 5 1	90.16
	1	0 7 0	00 50

Sodium Zirconium Phosphate, $NaZr_2(PO_4)_3$ - (continued)

Synonym Yttrium orthochromite	$C_{11}K_{02} = 1.540598 \text{ A} \cdot \text{temp} 25 \pm 1.90$					
Sample	Intern	nal standar	d Ag,	a =	4.08	651 Å
The sample was prepared at NBS by T. Negas.	0	rel				
Color	d(A)	ILET		h	kl	20(°)
Medium yellowish green		$\sigma = \pm 2$				
Structure	4.306	2	0	1	1	20.61
Orthorhombic, Pnma (62), $Z = 4$, isostructural	3.805	5	1	0	1	23.36
with $GdFeO_3$ (Geller and Wood, 1956). The	3.770	5	0	2	0	23.58
structure of GdFeO ₃ was determined by Geller	3.396	22	1	1	1	26.22
(1956).	2.762	22	2	0	0	32.39
Lattice constants of this sample	2.676	100	1	2	1	33.46
a = 5.5237(3)	2.621	27	0	0	2	34.18
h = 7.5343(5)	2.593	11	2	1	0	34.56
c = 5 2/27(3)	2.443	1L	2	0	1	36.76
	2.3678	2	1	0	2	37.97
a/b = 0.7331	2.3248	1	2	1	1	38.70
C/D - 0.0956	2.2647	5	0	3	1	39.77
Va luma	2.2592	9	1	1	2	39.87
	2.2276	6	2	2	0	40.46
218.19 A-	2.1509	9	0	2	2	41.97
Density 3	2.0967	11	1	3	1	43.11
(calculated) 5./51 g/cm ^o	2.0497	3	2	2	1	44.15
P1	2.0049	2	1	2	2	45.19
Figure of merit	1.9013	24	2	0	2	47.80
$F_{30} = 116.2(0.008, 31)$	1.8831	18	0	4	0	48.29
Additional patterns	1.8582	8	2	3	0	48.98
PDF card 25-10/8 (Gallagher and McCarthy, Penn	1.8434	13	2	1	2	49.40
State University, University Park, PA)	1.7516	1L	2	3	1	52.18
	1.7376	2	3	0	1	52.63
Geller and Wood (1956)	1.7230	2	1	3	2	53.11
Keith and Roy (1954)	1 7020	1	0	1	3	53 82
	1 6933	20	3	î	1	54.12
Looby and Katz (1954) (indexed with a	1 6878	1	1	Ā	1	54.31
monoclinic supercell)	1.6665	11.	1	0	3	55.06
	1.6264	3	1	1	3	56.54
References		Ū	_	-	•	
Geller, S. (1956). J. Chem. Phys. <u>24</u> , 1236.	1.5772	9	3	2	1	58.47
Celler S and Wood F A (1956) Acta	1.5564	11	2	4	0	59.33
Crystallogr 9 563	1.5291	17	0	4	2	60.50
orystariogr. <u>-</u> , sos.	1.5238	27	1	2	3	60.73
Keith, M. L. and Roy, R. (1954). Am.	1.5157	6	2	3	2	61.09
Mineral. <u>39</u> , 1.	1.5066	1T.	3	0	2	61.50
	1.4764	1	2	õ	3	62.90
Looby, J. T. and Katz, L. (1954). J. Am.	1.4482	1L	0	5	1	64.27
Chem. Soc. <u>76</u> , 6029.	1.4344	1L	0	3	3	64.96
	1.4286	8	3	3	1	65.26
Ruggiero, A. and Ferro, R. (1955). Gazz. Chim. Ital. 85, 892.						
	1.4008	1	1	5	1	66.72
	1.3883	1L	1	3	3	67.40
	1.3809	1L	4	0	0	67.81
	1.3752		2	2	3	68.13
	1.3583	3	4	1	0	69.10

Yttrium	Chromium	Oxide,	YCr03	-	(continued)
---------	----------	--------	-------	---	-------------

d(Å)	Irel	hk	2θ(°)
	$\sigma = \pm 2$		
1.3380 1.3229 1.3107 1.2965 1.2920 1.2825 1.2769 1.2751 1.2713	10 1 4 1 1 1 1L 1L 1 1	2 4 2 2 5 0 4 2 0 3 3 2 2 5 3 3 4 3 1 0 4	2 70.30 71.22 71.99 72.90 2 73.20 1 73.83 1 74.21 4 74.33 2 74.59
1.2574	2	1 1 4	4.39
1.2558 1.2499 1.2481 1.2382 1.2219	1 4 2 1L 1	0 6 0 3 1 3 1 4 3 0 2 4 4 0 3	75.67 76.09 76.22 76.94 76.94 78.16
1.2101 1.2062 1.2015 1.1923 1.1841	1 4 3 7 3	4 3 0 4 1 2 3 2 1 1 6 2 2 0 4	79.07 79.38 79.75 80.49 4
1.1810 1.1699 1.1623M 1.1623M 1.1384	5 3 3 5	2 5 2 2 1 4 4 2 2 2 4 3 3 5 5	2 81.42 4 82.36 2 83.02 3 83.02 1 85.16
1.1315 1.1176 1.1137 1.0987 1.0894	3 1 1L 4 1L	3 3 1 5 4 4 0 4 3 2 4 4 5	8 85.81 8 87.14 8 87.52 8 89.03 90.00
1.0833 1.0809 1.0758 1.0708 1.0699	1L 2 2 3 3	4 0 2 5 0 2 0 4 4 2 3 4 5 1 2	3 90.64 1 90.90 4 91.45 4 92.00 92.10

Synonyms	0	rel			
Zinc arsenate octahydrate	d(A)	I'''		hkl	20(°)
Zinc orthoarsenate octanydrate	$\sigma = \pm 2$				
Sample	1 000	0	-		01.75
The sample was made at NBS by adding a dilute	4.083	9	1	30	21.75
solution of Na ₂ HAsO ₄ dropwise to a slightly	3.987	6	2	2 0	22.28
alkaline dilute solution of ZnSO4.	3.923	15	1	0 1	22.65
	3.660	7	-2	1 1	24.30
Spectrographic analysis	3.385	3	1	21	26.31
Major impurition					
	3.357	4	0	4 0	26.53
	3.229	47	0	3 1	27.60
0.002 to 0.01% B, Cu, Fe, N1, PD, S1	3 013	34	2	1 1	29 63
<0.005% A1, Mg	3 002	36	-3	0 1	20 7/
Color	2.002	1	-0	2 1	29.74
Colorless	2.900	1	-2	5 1	50.81
Structure	2.779	8	2	4 0	32.19
Monoclinic, $I2/m$ (12), $7 = 2$. Vivianite	2.736	28	-3	21	32.70
structure (Wolfe 1040) The structure of	2.711	25	-1	41	33.01
wivianita (Fo (PO) +94 0) was discussed	2.657	16	3	30	33.70
by Mori and Ito (1950).	2.593	2	1	50	34.57
	2.540	0	,	4 1	25 10
Lattice constants of this sample	2.549	9	1	4 1	35.18
	2.468	16	3	0 1	36.38
a = 10.118(2)A	2.343	10	-1	12	38.39
D = 13.431(2)	2.328	22	0	51	38.64
c = 4.7615(12)	2.238M	5	0	60	40.27
$\beta = 101.81(2)^{\circ}$					
	2.238M		-3	4 1	40.27
a/b = 0.7533	2.200	4	0	2 2	40.99
c/b = 0.3545	2,195	9	-2	5 1	41.08
	2 1154	í	-/	3 1	41.00
Volume	2.1134	11		5 0	42.71
633.37 A ³	2.0030	11	3	5 0	45.39
	2 0200	1	0	6 0	11.00
Density	2.0396	1	2	0 0	44.38
$(calculated) = 2/1 c/cm^3$	2.0120	2	-1	6 1	45.02
(calculated) 5.241 g/cm	1.9915	2	4	4 0	45.51
C. mart	1.9874	2	3	4 1	45.61
comment	1.9594M	8	2	02	46.30
Note the similarity between the data above					
and the data for the phase $Co_3(AsO_4)_2 \cdot 8H_2O$	1.9594M		5	1 0	46.30
also appearing in this Monograph.	1.9542	8	1	3 2	46.43
	1,9443	3	1	6 1	46.68
Figure of merit	1.9153M	3	-3	3 2	47 43
$F_{30} = 67.1(0.010, 44)$	1.9153M	5	0	4 2	47.43
Additional nattorn		_			
DDF cond 1-07// (New Janson Zing Co.)	1.8434	7	4	3 1	49.40
rDr card 1-0/44 (New Jersey 21nc to.)	1.7925	2	-3	6 1	50.90
	1.7893	3	-4	51	51.00
Keterences	1.7744	2	0	71	51.46
Mori, H. and Ito, T. (1950). Acta Crystallogr. 3, 1.	1.6884	9	1	52	54.29
	1,6789	11	0	8 0	54.62
Wolfe, C. W. (1940). Am. Mineral. 25, 787.	1.6643	11	-3	5 2	55 14
	1 660%	10		6 0	55 20
	1.0004	2	4	5 1	55.20
0	1.0154	3	4	5 I	50.96
$CuK\alpha_1 \lambda = 1.540598 \text{ A}; \text{ temp. } 25\pm1 \text{ °C}$	1.6023	2	6	2 0	57.47
Internal standard Si, a = 5.43088 Å	1,5941	1	5	5 0	57.79
	1.5621	3	-6	3 1	59.09
rel 110	1 5441	2	1	8 1	50.05
$[a(A)]$ I hk $2\theta(\circ)$	1.3441	2	1	0 1	33.03

Inter	nal standa	rd Si,	a =	5.4	43088 A
d(Å)	Irel		h	kl	20(°)
	$\sigma = \pm$	2			
7.97	24	1	1	0	11.09
6.72	100	0	2	0	13.17
4.951	10	2	0	0	17.90
4.595	5	-1	0	1	19.30
4.403	14	0	1	1	20.15

2.3989 2.3805 2.3678 2.3370 2.1888	$\sigma = \pm 1$	2 1	1 37.46
2.3989 2.3805 2.3678 2.3370 2.1888	3 5	2 1	1 37.46
2.3989 2.3805 2.3678 2.3370 2.1888	3	2 1	1 37.46
2.3805 2.3678 2.3370 2.1888	5		0 07 7(
2.3678 2.3370 2.1888		-2 2	2 3/./0
2.3370	0	-3 1	1 37.97
2.1888	13	-1 3	1 38.49
2.1000	18	-1 1	3 41.21
2 1064	0	1 2	1 (2.00
2.1004	9	-2 2	1 42.90
2.0934	4	-2 3	1 43.10 2 // 06
2.0330	10	-2 2	2 44.00
1.9674	14	-3 1 -3 1	3 46.10
1.9318	2	32	0 47.00
1.9036	7	2 0	2 47.74
1.8979	5	0 4	0 47.89
1.8105	9	3 1	1 50.36
1.7912	1	-4 1	1 50.94
1.7886	1	2 3	1 51.02
1.7753	1	-3 3	1 51.43
1.7330	3	-2 0	4 52.78
1.7011	7	22	2 53.85
1.6964	5	-1 3	3 54.01
1.6909	1L	-4 1	3 54.20
1.6835	4	4 0	0 54.46
1.6/38	15	-4 2	2 54.80
1.6522	8	24	0 55.58
1.6193	10	04	2 56.81
1.6035	1	0 3	3 57.42
1.5861	9	-3 3	3 58.11
1.5765	4	-2 2	4 58.50
1.5557	6	0 0	4 59.36
1.5420	3	-1 2	4 59.94
1.5383	1	4 2	0 60.10
1.5279M	3	-3 2	4 60.55
1.5279M		-4 0	4 60.55
1.5006	7	3 3	1 61.77
1.4857	1L	-3 4	2 62.46
1 / 706	1	1 5	1 62.00
1.4/20	1	-1 3	3 64 00
1.4510	3	1 3	0 64.09
1,4480	2	5 4	64.23
1 4390	5	-5 1	3 64.86
1.4504	4	5 1	04.00
1.4301	1	-5 1	1 65.18
1.4172M	3	-4 2	4 65.85
1.4172M		3 2	2 65.85
1.4094	3	1 5	1 66.26
1.3962	1	-5 2	2 66.97
	_		- (0.0)
1.3541	1	-3 1	o 69.34
1.3302	2	-4 4	2 10.11
1.3024	1	1 2	+ /2.52
1.2795	5	-2 4	4 /4.03
1.2693	2	52	J /4./3
	2.0536 2.0223 1.9674 1.9318 1.9036 1.8979 1.8105 1.7912 1.7886 1.7753 1.7330 1.7011 1.6964 1.6909 1.6835 1.6738 1.6522 1.6193 1.6035 1.5861 1.5765 1.5557 1.5420 1.5383 1.5279M 1.5279M 1.5279M 1.5006 1.4857 1.4726 1.4518 1.4486 1.4390 1.4364 1.4301 1.4172M 1.4172M 1.4094 1.3962 1.3541 1.3024 1.3024 1.2795 1.2693	2.0536102.022321.9674141.931821.903671.897951.810591.791211.788611.775311.733031.701171.696451.69091L1.683541.6738151.652281.6193101.603511.586191.576541.555761.542031.5279M31.5279M31.5279M31.448571L1.4472611.448621.430111.4472M31.396211.30221.302411.279551.26932	2.0536 10 1 2 2.0223 2 -3 2 1.9674 14 -3 1 1.9318 2 3 2 1.9036 7 2 0 1.8979 5 0 4 1.8979 5 0 4 1.8105 9 3 1 1.7912 1 -4 1 1.7886 1 2 3 1.7753 1 -3 3 1.7753 1 -3 3 1.7011 7 2 2 1.6964 5 -1 3 1.6909 1L -4 1 1.6835 4 4 0 1.6522 8 2 4 1.6193 10 0 4 1.5861 9 -3 3 1.5765 4 -2 2 1.5577 6 0 0 1.5420 3 -1 2 <

d(Å)	Irel		hkl		20(°)
	$\sigma = \pm 1$				
1.2646M	5	4	0	2	75.05
1.2646M		0	6	0	75.05
1.2618M	5	-5	3	1	75.25
1.2618M		-2	5	3	75.25
1.2535	2	-3	4	4	75.83
1.2269	1L	-6	1	3	77.78
1.2168	1L	-3	5	3	78.55
1.1998	1L	4	2	2	79.89
1.1949M	1	5	1	1	80.28
1.1949M		-6	0	4	80.28

Zinc Sulfate Hydrate (Gunningite), $ZnSO_4 \cdot H_2O$ - (continued)

This pattern is calculated from published crystal structure data. The calculation procedure follows the method described in previous sections 15 and 16 of NBS Monograph 25. Synonyms 5-Ethyl-5-phenyl-2,4,6(1H,3H,5H)-pyrimidinetrione hydrate Phenobarbitone monohydrate 5-Ethyl-5-phenylbarbituric acid hydrate CAS registry no. 24486-13-3 Structure Orthorhombic, Pbca (61), Z = 8. The structure was refined from single crystal data (Williams, 1973). Atom positions All atoms were in general positions 8(c). Lattice constants a = 7.157 Åb = 30.881c = 10.871(published values: . 7.157 A, 30.879, 10.870 for CuKa = 1.54178; Williams, 1973) CD cell: 10.871 Å, 30.881, 7.157, sp. gp. Pcab; a/b = 0.3520, c/b = 0.2318Volume 2402.7 Å³ Density (calculated) 1.384 g/cm³ Thermal parameters Isotropic for hydrogen atoms (ibid.). Isotropic B. for other atoms, estimated from U, for each atom. Scattering factors Zero ionization (International Tables, 1962) Scale factors $\gamma = 0.2009 \times 10^{-2}$ I/I (calculated) = 0.812 for reflection with $hk\ell = 020$. Comment This phase was earlier thought to be number V of the numerous polymorphs of anhydrous phenobarbitone. It was later referred to as form XIII, but now has been shown to be a monohydrate (Williams, op. cit.). Additional patterns PDF card 22-1883 (Nogami et al., 1969) PDF cards 27-1592 (Cleverly and Williams, 1959) and 27-1848 (Mesley et al., 1968) may be essentially the phase described here, though each card appears to have minor amounts of a 2nd phase.

References

Cleverly, B. and Williams, P. P. (1959).
Tetrahedron 7, 277.

International Tables for X-ray Crystallography III (1962). (The Kynoch Press, Birmingham, England), p. 202.
Mesley, R. J., Clements, R. L., Flaherty, B., and Goodhead, K. (1968). J. Pharm. Pharmacol. 20, 329.
Nogami, H., Nagai, T., and Yotsuyanagi, T. (1969). Chem. Pharm. Bull. Tokyo 17, 499.

Williams, P. P. (1973). Acta Crystallogr. B29, 1572.

Calc	ulated Patter	n (Pea	k h	eights)	
	λ=1.54	0598Å				
d(Å)	Irel	h	kl		20	(°)
15.44	100	0	2	0.	5.	72
8.87	1	0	2	1	9.	96
7.72	30	0	4	0	11.	46
5.863	90	1	1	1	15.	10
5.569	/	1 :	2	1	15.	90
5.434	45	0	0	2	16.	30
5.163	12	1	3	1	17.	16
4.726	9	1 .	4	1	18.	76
4.653	2	0	6	1	19.	06
4.283	2	1	1	2	20.	/2
3.897	80	1	6	1	22.	80
3.773	2	1 -	4	2	23.	56
3.736	3	0	6	2	23.	80
3.548	15	1	7	1	25.	08
3.485	8	2	2	0	25.	54
3.378	6	2	3	0	26.	36
3.312	1	1	6	2	26.	90
3.243+	1	1	8	1	27.	48
3.164	1	1	2	3	28.	18
3.085+	13	1 :	3	3	28.	92
2.976+	22	1	9	1	30.	00
2.938	2	2	6	0	30.	40
2.864+	12	1	5	3	31.	20
2.779+	27	2	7	0	32.	18
2.743+	2	1 1	0	1	32.	62
2.685	5	0 1	0	2	33.	34
2.624	4	2	8	0	34.	14
2.608	7	1	7	3	34.	36
2.585	6	2	6	2	34.	68
2.477+	2	2	9	0	36.	24
2.3624	1	2	8	2	38.	06
2.3376	2	2 1	0	0	38.	48
2.3248+	2	0 1	2	2	38.	70
2.2224	5	0	8	4	40.	56
2.2088	2	2 1	1	0	40.	82

+ More than one hkl possible

Phenobarbital Hydrate, $C_{12}H_{12}N_2O_3 \cdot H_2O$ - (continued)

d(Å)	Irel		hkl		
2.1642	2	2 () 4	41.70	
2.1436	1	2 2	2 4	42.12	
2.0888	1	2 12	2 0	43.28	
2.0751	2	1 :	15	43.58	
2.0616	2	1 2	25	43.88	
2.0129	2	1 12	23	45.00	
1.9953+	1	3 8	81	45.42	
1.9788	1	2 13	30	45.82	
1.9279+	6	3 9	91	47.10	
1.8597	1	3 10	0 1	48.94	
1.8309+	1	1 8	85	49.76	
1.8220	1	1 14	43	50.02	
1.7932	1	3 1	11	50.88	
1.7750	1	2 14	42	51.44	
1.7156	1	0 18	B 0	53.36	
1.6985	1	2 10	50	53.94	
1.6402	1	0 8	86	56.02	
1.6046	1	3	15	57.38	

Calculated Pattern (Integrated) $\lambda = 1.540598 \mathring{A}$						
d(Å)	Irel]	hkl		20(°)	
15.44	100	0	2	0	5.72	
8.891	1	0	2	1	9.94	
7.722	31	0	4	0	11.45	
5.870	97	1	1	1	15.08	
5.573	5	1	2	1	15.89	
5.437	48	0	0	2	16.29	
5.169	11	1	3	1	17.14	
5.148	3	0	6	0	17.21	
5.128	2	0	2	2	17.28	
4.7263	10	1	4	1	18.76	
4.6526	1	0	6	1	19.06	
4.2875	2	1	1	2	20.70	
3.9904	1	1	3	2	22.26	
3.9005	93	1	6	1	22.78	
3.7763	1	1	4	2	23.54	
3.7372	3	0	6	2	23.79	
3.5787	2	2	0	0	24.86	
3.5492	17	1	7	1	25.07	
3.4863	9	2	2	0	25.53	
3.3796	8	2	3	0	26.35	

d(Å)	Irel	hkl	20(°)
3.3129	1	162	26.89
3.2431	1	1 8 1	27.48
3.1641	1	1 2 3	28.18
3.1112	1	2 4 1	28.67
3.0880	6	0 10 0	28.89
3.0849	10	1 3 3	28.92
2.9820	8	1 4 3	29.94
2.9762	19	1 9 1	30.00
2.9752	2	2 1 2	30.01
2.9379	2	260	30.40
2 8707	4	2 3 2	31 13
2.8644	12	1 5 3	31.20
2.7870	23	2 4 2	32.09
2.7794	19	2 7 0	32.18
2.7437	2	1 10 1	32.61
2.7380	1	1 6 3	32.68
2.6853	6	0 10 2	33.34
2.6242	4	280	34.14
2.6079	8	1 7 3	34.36
2.5845	7	262	34.68
2 4788	1	183	36 21
2.4768	2	2 9 0	36.24
2.3630	2	282	38.05
2.3382	2	2 10 0	38.47
2.3260	1	0 12 2	38.68
2.3237	1	3 1 1	38.72
2.2224	7	0 8 4	40.56
2.2088	1	2 11 0	40.82
2.1642	3	2 0 4	41.70
2.1431	2	2 2 4	42.13
2 0803	2	2 12 0	43 27
2.0095	2	1 1 5	43.57
2.0616	2	1 2 5	43.88
2.0133	2	1 12 3	44.99
1.9948	1	3 8 1	45.43
1.9792	2	2 13 0	45.81
1.9287	1	1 6 5	47.08
1.9275	7	3 9 1	47.11
1.8600	1	3 10 1	48.93
1.8220	2	1 14 3	50.02
1.7929	1	3 11 1	50.89
1.7747	ī	2 14 2	51.45
1.7629	1	4 3 0	51.82
1.7156	1	0 18 0	53.36
1.6988	1	2 16 0	53.93
1.6402	1	086	56.02
1.6048	2	3 1 5	57.37

INORGANIC NAMES

Vol.	or	
Sec	:.	Page

Aluminum, Al	1	11
Aluminum antimony, AlSb	4	72
Aluminum bismuth oxide, Al ₄ Bi ₂ O ₉	11m	5
Aluminum borate, $Al_{18}B_40_{33}$	17m	5
Aluminum chloride, AlCl ₃	9m	61
Aluminum chloride hydrate	_	
(chloraluminite), AlCl ₃ ·6H ₂ O		3
Aluminum copper, Al ₄ Cu ₉	11m	79
Aluminum fluoride hydroxide silicate,	1	,
topaz, $AI_2(F, OH)_2SIO_4$	10	4
Aluminum iron, Alfe	18m	5
Aluminum iron antimony oxide, Danianit	e,	67
$A1_{5.66}$ $ee_{0.09}$ $bp_{2.95}$ bp_{16}	100	70
Aluminum iron oxide, Alfe O_3	10m	/
Aluminum litnium, Al ₄ Ll ₉	10m	90
Aluminum nickel, Alvi	om 10m	82
Aluminum nitride, Alv	12m	5
Aluminum nitrate nydrate,	11-	6
$AI(NO_3)_3 \cdot 9H_2O$	IIM	0
Aluminum oxide (corundum), α -Al ₂ O ₃	9	3
Aluminum oxide hydrate (boehmite),	~	
α -A1 ₂ 0 ₃ ·H ₂ 0	3	38
Aluminum oxide hydrate, diaspore,	•	1.
β -Al ₂ U ₃ ·H ₂ U	3	41
Aluminum phosphate, Al(PO ₃) ₃	2m	3
Aluminum phosphate (berlinite),	10	•
AIPO ₄ (trigonal)	10	3
Aluminum phosphate, AlPO ₄		,
(orthornombic)	10	4
Aluminum plutonium, Al ₃ Pu	15m	77
Aluminum rhenium, Alke	15m	/9
Aluminum rhenium, Al ₁₂ Re	15m	80
Aluminum rhodium, Alkh	15m	82
Aluminum ruthenium, Alku	15m	83
Aluminum ruthenium, Al ₆ Ku	15m	84
Aluminum samarium, AlSm ₂	15m	80
Aluminum samarium, AlSm ₃	15m	88
Aluminum samarium, Al_2Sm	15m	90
Aluminum samarium, Al ₃ Sm	15m	91
Aluminum silicate (mullite),		
$Al_6Si_2O_{13}$	3m	3
Aluminum sultate, $Al_2(SO_4)_3$	15m	8
Aluminum technetium, Al ₆ Ic	15m	93
Aluminum terbium, Al ₂ Tb	15m	95
Aluminum terbium, Al ₂ 1D ₃	15m	96
Aluminum thorium uranium, Al ₆ ThU	15m	98
Aluminum tungsten, Al_5W , 0-phase	15m	100
Aluminum tungsten oxide, $Al_2(WO_4)_3$	11m	100
Aluminum vanadium, $AI_{10}V$	15m	102
Aluminum vanadium, Al _{10,25} V	15m	104
Aluminum vanadium, $Al_{23}V_4$	15m	106
Aluminum vanadium, $Al_{45}V_7$, α -phase .	15	108
Aluminum ytterblum, Al ₂ YD	15m	111
Aluminum yttrium, Algi	15m	112
Aluminium yttrium oxide, Alvo ₃	19m	/
Aluminium yttrium oxide, $Al_2 Y_4 U_9 \dots$	19m	9
Aluminium yttrium oxide, Alsi3012	190	11

Further work on this program is in progress, and it is anticipated that additional sections will be issued. Therefore, the cumulative index here is not necessarily the concluding index for the project.

m - Monograph 25.

A mineral name in () indicates a synthetic sample.

Ammonium aluminum fluoride,		
$(\mathrm{NH}_4)_3\mathrm{AlF}_6$	9m	5
Ammonium aluminum selenate hydrate,		
$\mathrm{NH}_{4}\mathrm{Al}(\mathrm{SeO}_{4})_{2} \cdot 12\mathrm{H}_{2}\mathrm{O}$	9m	6
Ammonium aluminum sulfate,	10-	5
$M\pi_4A1(50_4)_2$ auf the hydrote	TOW	5
$(t_{schermigite})$ NH Al(SO) $\rightarrow 12H_0$	6	3
Ammonium azide NH.N.	q	4
Ammonium hervllium fluoride	,	-
(NH ₄) ₂ BeF ₄	3m	5
Ammonium borate hydrate.	0	, in the second s
$NH_4B_50_8 \cdot 4H_20$	17m	7
Ammonium boron fluoride, NH ₄ BF ₄	3m	6
Ammonium bromide, NH ₄ Br	2	49
Ammonium cadmium bromide, (NH ₄) ₄ CdBr ₆	15m	9
Ammonium cadmium chloride, NH ₄ CdCl ₃	5m	6
Ammonium cadmium phosphate hydrate,		
$\rm NH_4CdPO_4 \cdot H_2O$	19m	13
Ammonium cadmium sulfate,		
$(NH_4)_2Cd_2(SO_4)_3$	7m	5
Ammonium cadmium sulfate hydrate,	•	-
$(\mathrm{NH}_4)_2\mathrm{Cd}(\mathrm{SO}_4)_2\cdot\mathrm{6H}_2\mathrm{O}$	8m	5
Ammonium calcium sulfate,	0	7
$(NH_4)_2(a_2(50_4)_3 \dots a_{1})_{1}$	ош	
(NH) Co(NO)	1.8m	6
$(MH_4)_2CE(NO_3)_6$	10Ш	U
(orthorhombic)	7	6
Ammonium chloride (salammoniac).	•	Ũ
NH ₄ Cl	1	59
Ammonium chromium sulfate hydrate.	-	
$NH_4Cr(SO_4)_2 \cdot 12H_2O$	6	7
Ammonium cobalt (II) chloride,		
NH ₄ CoCl ₃	6m	5
Ammonium cobalt fluoride, NH ₄ CoF ₃	8m	9
Ammonium copper bromide hydrate,		
$(\mathrm{NH}_4)_2 \mathrm{CuBr}_4 \cdot 2\mathrm{H}_2 \mathrm{O} \ldots \mathrm{O}$	10m	6
Ammonium copper chloride, NH ₄ CuCl ₃	7m	7
Ammonium copper chloride hydrate,		,
$(\mathrm{NH}_4)_2\mathrm{CuCl}_4\cdot \mathrm{2H}_2\mathrm{O}$	12m	6
Ammonium copper fluoride, NH ₄ CuF ₃	11m	8
Ammonium gallium sullate nydrate,	6	0
$M_4Ga(SO_4)_2$ $12\pi_2O$	0	9
(NH.) - GeF.	6	8
Ammonium hydrogen arsenate.	Ŭ	Ŭ
NH da As04	16m	9
Ammonium hydrogen carbonate		-
(teschemacherite), (NH ₄)HCO ₃	9	5
Ammonium hydrogen phosphate,		
NH ₄ H ₂ PO ₄	4	64
Ammonium iodate, NH ₄ IO ₃	10m	7
Ammonium iodide, NH ₄ I	4	56
Ammonium iridium chloride,		
$(\mathrm{NH}_4)_2\mathrm{IrCl}_6$	8	6
Ammonium iron chloride hydrate,		_
$(\mathrm{NH}_4)_2\mathrm{FeCl}_5\cdot\mathrm{H}_2\mathrm{O}$	14m	7
Ammonium iron fluoride, $(NH_4)_3$ fer ₆	9m	9
Ammonium iron sullate, $NH_4Fe(SU_4)_2$	TOW	ð
MUMBER (SO). 124 O	6	10
Ammonium lead chloride (NU.) PhCl.	11m	10
Ammonium magnesium aluminum fluoride	1 111	10
NH_MgAlFe	10m	9

Vol. or

Sec. Page

Ammonium magnesium chromium oxide		
hydrate, $(NH_4)_2Mg(CrO_4)_2 \cdot 6H_2O \dots$	8m	10
Ammonium magnesium phosphate hydrate		
(struvite), NH ₄ MgPO ₄ ·6H ₂ O	3m	41
Ammonium manganese chloride hydrate,		
$(NH_4)_2MnCl_4 \cdot 2H_2O$	11m	11
Ammonium manganese(II) fluoride,		
NH ₄ MnF ₃	5m	8
Ammonium manganese sulfate,		
$(NH_4)_2Mn_2(SO_4)_3$	7 m	8
Ammonium manganese sulfate hydrate,		
$(NH_4)_2Mn(SO_4)_2 \cdot 6H_2O$	8m	12
Ammonium mercury chloride, NH ₄ HgCl ₃	8m	14
Ammonium molybdenum oxide phosphate		
hydrate, $(NH_4)_3(MoO_3)_{12}PO_4 \cdot 4H_2O$	8	10
Ammonium nickel(II) chloride,		
NH ₄ NiCl ₃	6m	6
Ammonium nickel chromium oxide		
hydrate, $(NH_A)_2Ni(CrO_A)_2 \cdot 6H_2O \dots$	8m	16
Ammonium nickel sulfate hydrate.		
$(NH_{4})_{2}Ni(SO_{4})_{2} \cdot 6H_{2}O$	17m	9
Ammonium nitrate (nitrammite).		-
NH ₄ NO ₃	7	4
Ammonium osmium bromide, (NH ₄) ₂ OsBre	3	71
Ammonium osmium chloride.	-	
$(NH_A)_2 OsCl_6 \dots$	1m	6
Ammonium palladium chloride.		-
$(NH_{4})_{2}PdC1_{4}$	6	6
Ammonium palladium chloride.	•	-
(NH ₄) ₂ PdCl ₆	8	7
Ammonium platinum bromide.	Ū	
(NH ₄) _o PtBrc	9	6
Ammonium platinum chloride.	-	Ŭ
(NH ₄) _o PtCl _c	5	3
Ammonium potassium iron chloride	5	5
hydrate (kremersite).		
(NH4.K) FeCl - HoQ	14m	8
Ammonium rhenium oxide. NH_ReO	9	7
Ammonium selenium bromide.	-	•
(NH ₄) _o SeBrc	8	4
Ammonium silicon fluoride	Ū	•
(cryptobalite) (NH4) SiFe	5	5
Ammonium strontium chromium oxide.	5	3
$(NH_{4})_{o}Sr(CrO_{4})_{o}$	14m	9
Ammonium strontium sulfate.	1 m.	_
$(NH_{4})_{0}Sr(SO_{4})_{0}$	15m	11
Ammonium sulfate (mascagnite)	1011	
(NH ₄) _o SO ₄	9	8
Ammonium sulfate. (NH4) Solo	17m	11
Ammonium sulfate, $(NH_4)_2S_2O_3$	17m	13
Ammonium tellurium bromide	- /	10
(NH.) TeBra	8	5
Ammonium tellurium chloride	U	5
(NH ₄) _a TeCl _a	8	8
Ammonium tin chloride $(NH_{\star})_{s}$ SnClo	5	4
Ammonium tin fluoride NH.SnF.	18m	8
Ammonium titanium fluoride	1011	Ū
(NH ₄) _o TiFo	16m	10
Ammonium vanadium oxide NH.VO.	8	9
Ammonium zinc chloride (NH.) 2nCl-	15m	12
Ammonium zinc fluoride, NH.ZnF.	8m	18
Ammonium zirconium fluoride	On	10
(NH ₄) _o ZrF ₇	6	14
Antimony cohalt. CoSh	15m	121
Antimony cobalt, CoSho	15m	122
Antimony cobalt titanium. CoSbTi	15m	124
or or contraining output	-0	

	Sec.	Page
Antimony cobalt vanadium, CoSbV	15m	125
Antimony dysprosium, DySb	4m	41
Antimony erbium, ErSb	4m	41
Antimony(III) fluoride, SbF ₃	2m	4
Antimony gadolinium, GdSb	4m	42
Antimony gallium, GaSb	6	30
Antimony gold (aurostibite), AuSb ₂	7	18
Antimony indium, InSb	4	73
Antimony(III) iodide, SbI ₃	6	16
Antimony iron titanium oxide		
hydroxide, derbylite,		
SbFe ₄ Ti ₃ O ₁₃ (OH)	16m	89
Antimony lanthanum, LaSb	4m	42
Antimony neodymium, NdSb	4m	43
Antimony(III) oxide (senarmontite),		
Sb ₂ O ₃ (cubic)	3	31
Antimony(III) oxide, valentinite,		
Sb_2O_3 (orthorhombic)	10	6
Antimony(IV) oxide (cervantite),		
Sb ₂ 0 ₄	10	8
Antimony oxide, Sb ₆ O ₁₃	16m	14
Antimony praseodymium, PrSb	4m	43
Antimony scandium, SbSc	4m	44
Antimony selenide, Sb ₂ Se ₃	3m	7
Antimony silver sulfide, AgSbS ₂		
(cubic)	5m	48
Antimony silver sulfide (miargyrite),		
AgSbS ₂ (monoclinic)	5m	49
Antimony silver sulfide (pyrargyrite),		
Ag ₃ SbS ₃ (trigonal)	5m	51
Antimony silver telluride, AgSbTe ₂	3m	47
Antimony(III) sulfide (stibnite),		
Sb ₂ S ₃	5	6
Antimony telluride, Sb ₂ Te ₃	3m	8
Antimony terbium, SbTb	5m	61
Antimony thorium, SbTh	4m	44
Antimony thulium, SbTm	4m	45
Antimony tin, SbSn	16m	15
Antimony ytterbium, SbYb	4m	45
Antimony yttrium, SbY	4m	46
Arsenic, As	3	6
Arsenic bromide, AsBr ₃	18m	9
Arsenic cerium, AsCe	4m	51
Arsenic(111) iodide, $As1_3$	13m	/
Arsenic oxide (arsenolite),		
As_2O_3 (cubic)	1	51
Arsenic oxide, claudetite, As_2O_3	0	•
(monoclinic)	3m	9
Darium, Ba	4	11
Barium aluminum oxide, $BaAI_2O_4$	ЭШ 10	11
Barium aluminum oxide, $Ba_3AI_2O_6$	12m	/
Barium aluminum titanium oxide,	10-	14
DaAl611012	1911	14
Po Al Ti O	10-	10
$Da_{1,23}A1_{2,46}B_{15,54}B_{16}$	10Ш	10
Pa A1 Tio	10m	16
Barium arconato Ba (AcO)	1911 2m	10
Barium borato BaB O	2m	6
Barium borate bigh form BaR O	411	6
Barium borate BaBaO.		10
Barium boride RaRa	10m	18
Barium bromate hydrate	1.711	10
$Ba(BrO_2)_2 \cdot H_2O$	8m	19
Barium bromide. BaBro	10m	63
bullum bromitue, bubig	1 Om	05

Vol. or

Barium bromide fluoride, BaBrF	10m	[.] 10	Ba
Barium bromide hydrate, BaBr ₂ ·H ₂ O	3m	10	B
Barium bromide hydrate, BaBr2 • 2H2	0 16m	16	Ba
Barium cadmium chloride hydrate,			B
$BaCdCl_4 \cdot 4H_2O$. 15m	14	Ba
Barium calcium nitrate,			Ba
$Ba_{25}Ca_{75}(NO_3)_2$	12m	38	Ba
Barium calcium nitrate,			B
$Ba_{50}Ca_{50}(NO_3)_2$	12m	38	Ba
Barium calcium nitrate,			Ba
$Ba_{.75}Ca_{.25}(NO_3)_2$	12m	38	Ba
Barium calcium tungsten oxide,			E
Ba ₂ CaWO ₆	9m	10	Ba
Barium carbonate (witherite), BaC	03		Ba
(orthorhombic)	2	54	Ba
Barium carbonate, BaCO ₃ (cubic)			Ba
at 1075 °C	10	11	Ba
Barium chlorate, Ba(ClO ₃) ₂	16m	17	Be
Barium chlorate hydrate,			Be
$Ba(ClO_3)_2 \cdot H_2O$	8m	21	_ (
Barium chlorate hydrate,		_	Be
$Ba(C10_4)_2 \cdot 3H_20$	2m	7	Ŀ
Barium chloride, BaCl ₂ , (cubic).	9m	13	Be
Barium chloride, BaCl ₂ ,			a
(orthorhombic)	9m	11	h
Barium chloride fluoride, Baclf.	10m	11	t T
Barium chloride hydrate, BaCl ₂ ·2H	₂ 0 12m	9	Be
Barium chromium oxide,	15-	16	a
$Ba_3(CrO_4)_2$	·· 15m	10	Ľ
Barium Hudrowide phoephote	1	70	E
Barrow hydroxide phosphate,	11m	12	r. P.e
Barium iodido Bal	11m	66	DE
Barium iodide bydrate Bal +2W O	10m 16m	18	Be
Barium lead chloride BaPhCl	10m	13	Be
Barium lead nitrate	1111	15	Be
$B_{2} = P_{2} = (NO_{2})$	12m	<i>/</i> 10	Be
Barium lead nitrate	12ш	40	Be
$B_{2} \rightarrow Pb \rightarrow (NO_{2})$	12m	40	Be
Barium manganese oxide BaMnO.	12m	11	Be
Barium manganese oxide, banno4	101		Be
$Ba(MnO_4)_0$		17	Be
Barium molybdenum oxide. BaMoO.		- / 7	Be
Barium molybdenum oxide, BarMoOr		10	F
Barium neodymium titanium oxide.			Be
BaNdoTioOlo		12	Bi
Barium neodymium titanium oxide.			Bi
BaNdoTieO14	19m	19	Bi
Barium nitrate (nitrobarite).			Bi
$Ba(NO_2)_2$	11m	14	E
Barium nitrite hydrate.			Bi
$Ba(NO_2)_2 \cdot H_2O$	15m	18	Bi
Barium oxide, BaO	9m	63	Bi
Barium oxide, BaO ₂	6	18	Bi
Barium phosphate, Ba ₂ P ₂ O ₇ ,			Bi
(high form)	16m	19	Bi
Barium phosphate, Ba3(PO4)2	12m	12	Bi
Barium selenide, BaSe	5m	61	Bi
Barium silicate, β-BaSiO ₃	13m	- 8	Bi
Barium silicate (sanbornite),			Bi
β-BaSi ₂ 0 ₅	13m	10	(
Barium silicate, Ba ₂ SiO ₄	13m	12	Bi
Barium silicate, Ba2Si308	13m	13	Bi
Barium silicate, Ba ₃ SiO ₅	13m	15	Bi
Barium silicate, Ba ₃ Si ₅ O ₁₃	13m	17	E
Barium silicon fluoride, BaSiF ₆ .	4m	7	Bi
Barium strontium nitrate,			I
$Ba_{25}Sr_{75}(NO_3)_2$	12m	42	

	Vol. or	
	Sec.	Page
Barium strontium nitrate,		
$Ba_{.50}Sr_{.50}(NO_3)_2$	12m	42
Barium strontium nitrate,	10-	10
$Ba_{75}Sr_{25}(NO_3)_2$ $Ba_{75}Sr_{25}(NO_3)_2$	12m	42
Barium sulfide Bas	1011	12
Barium thiosulfate hydrate	'	0
BaSolo · Hol	16m	20
Barium tin oxide. BaSnO ₂	3m	11
Barium titanium oxide, BaTiO ₂	3	45
Barium titanium silicate (fresnoite)	,	
Ba ₂ TiSi ₂ O ₈	9m	14
Barium tungsten oxide, BaWO ₄	7	9
Barium tungsten oxide, Ba ₂ WO ₅	12m	14
Barium tungsten oxide, Ba ₃ WO ₆	19m	21
Barium vanadium oxide, $Ba_3(VO_4)_2$	14m	10
Barium zirconium oxide, BaZrO ₃	5	8
Beryllium, alpha, Be	9m	64
Beryllium aluminum oxide	0	10
(chrysoberyl), $BeAl_2U_4$	9	10
Po Al (SiO)	0	12
Berullium calcium iron magnesium	9	15
aluminum phosphate hydroxide		
hydrate, roscherite (monoclinic).		
Be _o Ca(Fe $_{2}Mg$ $_{2})_{o}Al c_{2}(PO_{4})_{o}(OH)_{o}^{2}H$	-0 16m	96
Bervllium calcium manganese	2	
aluminum iron phosphate hydroxide		
hydrate, roscherite (triclinic),		
$Be_4Ca_2(Mn_{3,91}Mg_{04}Ca_{05})(Al_{13}Fe_{42})$		
$Mn_{12})(PO_4)_6(OH)_4 \cdot 6H_20 \dots$	16m	100
Beryllium calcium oxide,		
$Be_{17}Ca_{12}O_{29}$	7m	89
Beryllium carbide, Be ₂ C	19m	23
Beryllium chromium oxide, $BeCr_2O_4$	10	12
Beryllium cobalt, BeCo	5m	62
Beryllium germanium oxide, Be_2GeO_4	10	13
Beryllium nichium Be.Nh	9m 7m	03
Rervllium nitride BeeN	18m	15
Beryllium nicilic, begng	1	36
Beryllium palladium. BePd	.5m	62
Bervllium silicate, phenakite,		
Be ₂ SiO ₄	8	11
Beryllium sulfate, BeSO ₄	15m	20
Bismuth, Bi	3	20
Bismuth bromide oxide, BiOBr	8	14
Bismuth cerium, BiCe	4m	46
Bismuth chloride oxide (bismoclite),		
BiOC1	4	54
Bismuth dysprosium, BiDy	4m	4/
Bismuth erbium, BiEr	4m	47
Bismuth Iluoride, Birg	111	1.8
Bismuth noimium, bino	40	20
Bismuth indide ovide BiOI	9	16
Bismuth lanthanum Bila	4m	48
Bismuth neodymium, Bild	4m	49
Bismuth oxide (bismite). α -Bi ₂ O ₂	3m	17
Bismuth phosphate. BiPO.		
(monoclinic)	3m	11
Bismuth phosphate, BiPO ₄ (trigonal)	3m	13
Bismuth praseodymium, BiPr	4m	49
Bismuth selenide (paraguanajuatite),		
Bi ₂ Se ₃	18m	16
Bismuth sulfide (bismuthinite),		
Bi ₂ S ₃	5m	13

Vol.	or	
Sec	:.	Page

Bismuth telluride, BiTe	4m	50
Bismuth telluride (tellurobis-	Зm	16
Bismuth vanadium oxide, high form,	0	
BiVO ₄ (monoclinic)	3m	14
Bismuth vanadium oxide, low form, BiVO, (tetragonal)	3m	14
Boron oxide, B_2O_3 , phase 1	10m	70
Cadmium, Cd	3	10
Cadmium ammine chloride,	10m	14
Cadmium borate, CdB_4O_7	16m	24
Cadmium bromate hydrate,		
$Cd(Br0_3) \cdot 2H_20$	17m	14
Cadmium bromide, cdbr ₂	9 11m	17
Cadmium carbonate (otavite), CdCO ₃	7	11
Cadmium cerium, CdCe	5m	63
Cadmium chlorate hydrate,	2-	10
Cadmium chloride. CdCl ₂ \dots	9	19
Cadmium chromium oxide, $CdCr_2O_4$	5m	16
Cadmium copper, Cd ₈ Cu ₅	11m	81
Cadmium cyanide, Cd(CN) ₂	2m	8
Cadmium fluoride, CdF ₂	10m	15
Cadmium iron oxide. CdFe ₂ O ₄	19m 9m	16
Cadmium lanthanum, CdLa	5m	63
Cadmium manganese oxide, CdMn ₂ O ₄	10m	16
Cadmium molybdenum oxide, CdMoO ₄	6	21
Cadmium nitrate hydrate,	7m	93
Cadmium oxide, CdO	2	27
Cadmium oxide, CdO (ref. standard)	8m	2
Cadmium phosphate, Cd ₂ P ₂ O ₇	16m	26
Cadmium phosphate, $Cd_3(PO_4)_2$	16m	27
Cadmium praseodymium, curr	2111	04
CdSe (hexagonal)	7	12
Cadmium silicate, Cd ₂ SiO ₄	13m	19
Cadmium silicate, Cd ₃ SiO ₅	13m	20
Cadmium sulfate hydrate $CdSO_4 \cdot H_0$	3m 6m	10
Cadmium sulfate hydrate,	0 m	10
3CdSO ₄ • 8H ₂ O	бm	8
Cadmium sulfide (greenockite), CdS	4	15
Cadmium telluride, CdTe	3m 15m	21
Cadmium tungsten oxide, CdWO ₄	2m	8
Calcium, Ca	9m	68
Calcium aluminum germanium oxide,	10	15
$Ca_3AI_2(GeO_4)_3$	10	15
$Ca_2Al_2(OH)_{12}$	11m	16
Calcium aluminum iron oxide		
(brownmillerite), Ca ₄ Al ₂ Fe ₂ O ₁₀	16m	28
Calcium aluminum oxide, $Ca_3AI_2O_6$	5	10
$Ca_{12}Al_{14}O_{22}$	9	20
Calcium aluminum oxide hydrate,		
$Ca_4Al_6O_{13} \cdot 3H_2O$	19m	25
Calcium aluminum silicate nydrate,	19m	27
Calcium aluminum sulfate hydrate	1.711	- '
(ettringite), $Ca_6Al_2S_3O_{18} \cdot 3lH_2O$	8	3
Calcium borate, CaB_2O_4	18m	17
(calculated pattern)	15m	136
Calcium borate hydrate,	1011	100
hexahydroborite, $Ca[B(OH)_4]_2 \cdot 2H_2O$	16m	104
Calcium boride, CaB ₆	16m	29

	Vol. or	
	Sec.	Page
Calcium bromide. CaBro	11m	70
Calcium bromide hydrate, CaBr ₂ ·6H ₂ O	8	15
Calcium carbonate (aragonite),		
CaCO ₃ (orthorhombic)	3	53
Calcium carbonate (aragonite),		
pattern)	14m	44
Calcium carbonate (calcite),		
CaCO ₃ (hexagonal)	2	51
Calcium chloride (hydrophilite),	11m	10
Calcium chloride fluoride. CaClF	10m	17
Calcium chloride hydrate,		
$CaCl_2 \cdot 4H_2O$	11 m	73
Calcium chloride hydrate	1.0-	16
(antarcticite), CaCl ₂ ·OH ₂ O Calcium chromium germanium oxide	1200	10
$Ca_3Cr_2(GeO_4)_3$	10	16
Calcium chromium iron titanium		
oxide, loveringite, Ca. ₇₂ RE. ₃₃ (Y,		
$M_{9} = 7r = 61 = 8V = 48re_{3.38}Cr_{2.24}$	16m	106
Calcium chromium oxide (chromatite),	1011	100
CaCr0 ₄	7	13
Calcium chromium oxide, $Ca_3(CrO_4)_2$	15m	22
(uverowite) Co Cr (SiO)	10	17
Calcium cvanamide. $CaCN_2 \dots \dots$	18m	19
Calcium fluoride (fluorite), CaF ₂ .	1	69
Calcium fluoride phosphate		
(fluorapatite), $Ca_5F(PO_4)_3$	3m	22
CaFPO ₂ ·2H ₂ O	15m	24
Calcium gallium germanium oxide,		-
$Ca_3Ga_2(GeO_4)_3$	10	1 8
Calcium hydrogen phosphate hydrate,	1.2	0.1
$Ca_8H_2(PO_4)_6$ SH_2O	1.2m	21
hydrate, $Ca_2HPO_4SO_4 \cdot 4H_2O$	16m	109
Calcium hydroxide (portlandite),		
$Ca(OH)_2$	1	58
$Ca(IO_{a})_{a}$	14m	12
Calcium iodate hydrate,	1 110	
$Ca(10_3)_2 \cdot 6H_20$	14m	13
Calcium iron germanium oxide,	10	10
$Ca_3 Fe_2 (GeU_4)_3 \dots GaFe_0$	10 18m	20
Calcium iron silicate (andradite),	10	20
$Ca_3Fe_2Si_3O_{12}$	9	22
Calcium iron silicate		
hydroxide, julgoldite, C_{2} , FesSisO ₁ , (OH O) ₂ (OH) ₂	10m	72
Calcium lead nitrate,	1011	
$Ca_{.33}Pb_{.67}(NO_3)_2$	12m	44
Calcium lead nitrate,	10-	
Ca _{.67} PD _{.33} (NU ₃) ₂ Calcium magnesium silicate	12m	44
(diopside), CaMg(SiO ₃) ₂	5m	17
Calcium molybdenum oxide		
(powellite), $CaMoO_4$	6	22
Calcium nitrate, $Ca(NU_3)_2$	1	43
Calcium oxide (lime), CaO	-	.5
(calculated pattern)	14m	49
Calcium oxide phosphate, $Ca_4O(PO_4)_2$	12m	17
Calcium platinum oxide. Ca.PtO	10m	18
F		

Calcium selenide, CaSe	5m	64
Calcium silicate (larnite), B-CaoSiO	19m	29
Calcium silicon fluoride hydrate,	1 7 11	27
CaSiF ₆ •2H ₂ 0	19m	31
Calcium strontium nitrate, $C_{2} = S_{2} = (NO_{2})_{2}$	12m	46
Calcium strontium nitrate,	120	40
$Ca_{.67}Sr_{.33}(NO_3)_2$	12m	46
Calcium sulfate (anhydrite), CaSO ₄	4	65
$CaSO_4 \cdot 0.5H_2O$	18m	22
Calcium sulfate hydrate (gypsum),		
$\sim CaSO_4 \cdot 2H_2O$	17m	16
Calcium telluride. CaTe	4m	50
Calcium tin oxide, CaSnO ₃	17m	18
Calcium titanium oxide		
$(perovskite), CaTiO_3 \dots$	9m	17
Calcium tungsten oxide, $Ca_{3}wo_{6}$	911	19
CaWO ₄	6	23
Carbon, diamond, C	2	5
Cerium arsenate, CeAsO ₄	4m	8
Cerium cobalt CeCo	1m 13m	8 50
Cerium cobalt, $Ce_{24}Co_{11}$	13m	51
Cerium copper, CeCu ₆	7 m	99
Cerium(III) fluoride, CeF ₃	8	17
Cerium gallium, CeGa ₂	13m	54
Cerium magnesium, Ceng	13m	56
Cerium nickel, CeNi ₂	13m	58
Cerium niobium oxide, CeNbO ₄	18m	25
Cerium niobium titanium oxide	2-	2/
Cerium nitrate hydrate.	200	24
Ce(N0 ₃) ₃ ·6H ₂ 0	17m	20
Cerium nitride, CeN	4m	51
Cerium(IV) oxide (cerianite), CeO_2	1	56
Cerium tantalum oxide. CeTaO	400 1.8m	27
Cerium thallium, CeTl	13m	59
Cerium thallium, CeTl ₃	13m	60
Cerium thallium, Ce ₃ Tl	13m	61
Cerium (III) vanadium oxide, $CeVO_4$	lm 5m	9 65
Cerium zinc, CeZn ₂	14m	50
Cerium zinc, CeZn ₅	14m	53
Cerium zinc, Ce_2Zn_{17}	14m	55
Cesium aluminum sulfate hydrate,	6	25
Cesium antimony fluoride. $CsSbF_{e}$	4m	25
Cesium beryllium fluoride, CsBeF ₃	9m	69
Cesium boron fluoride, CsBF ₄	8	22
Cesium bromate, CsBrO ₃	8	18
Cesium cadmium bromide. CsCdBr ₂	3	49
(hexagonal)	10m	20
Cesium cadmium chloride, CsCdCl ₃		
(hexagonal)	5m	19
Cesium calcium fluoride CsCaFo	5m 8m	21
Cesium calcium sulfate,	0	23
$Cs_2Ca_2(SO_4)_3$	7m	12
Cesium cerium chloride, Cs_2CeCl_6	14m	58
Chromium, Cr	5	20
Chromium boride, ζ-CrB	17m	22

	Vol. or	
	Sec.	Page
Cesium chlorate, $CsClO_4$,		
(orthorhombic)	1m	10
Cesium chloride, CsCl	2 3m	44 25
Cesium chromium sulfate hydrate.	200	23
$CsCr(SO_4)_2 \cdot 12H_2O$	8	21
Cesium cobalt(II) chloride, CsCoCl ₃	6m	11
Cesium cobalt chloride, Cs_2CoCl_4	11m	19
Cesium copper chloride CsoCuCl	ош 11m	22
Cesium copper sulfate hydrate,	1 110	20
$Cs_2Cu(SO_4)_2 \cdot 6H_2O$	7m	14
Cesium fluoride, CsF	3m	26
Cesium gallium sulfate hydrate, $C_{S}C_{2}(SO_{1}) \rightarrow 12H_{1}O_{2}$	Q	22
Cesium germanium fluoride. Cs_0GeF_c	5	17
Cesium iodate, CsIO ₃	15m	26
Cesium iodide, CsI	4	47
Cesium iodide, CsI ₃	19m	33
Cesium iodine bromide, CsICl-	/m 3	103
Cesium iron chloride hydrate.	5	50
$Cs_2FeCl_5 \cdot H_2O$	14m	14
Cesium iron sulfate hydrate,		
$Cs_2Fe(SO_4)_2 \cdot 6H_2O$	7m	16
Cese(SO,) $\sim 12H_{\odot}O$	6	28
Cesium lead(II) chloride. CsPbCl ₂	U	20
(tetragonal)	5m	24
Cesium lead fluoride, CsPbF ₃	8m	26
Cesium lithium cobalt cyanide,	10-	70
Cesium lithium fluoride CsLiFe	10m 7m	105
Cesium magnesium chromium oxide.	7 111	105
$Cs_2Mg_2(Cr0_4)_3$	8m	27
Cesium magnesium chromium oxide		
hydrate, $Cs_2Mg(CrO_4)_2 \cdot 6H_2O$	8m	29
$Cs_{2}Mg(SO_{4})_{2} \cdot 6H_{2}O_{4}$	7m	18
Cesium magnesium titanium oxide,	7	10
$Cs_{1.45}Mg_{0.724}Ti_{7.27}O_{16}$	18m	29
Cesium manganese fluoride, CsMnF ₃	10m	21
Cestum manganese sulfate hydrate,	7m	20
Cesium mercury chloride. CsHgCl ₂	7m	20
Cesium molybdenum oxide,		
$Cs_2Mo_3O_{10}$	19m	35
Cesium nickel(II) chloride, CsNiCl ₃	6m	12
$C_{S_0}Ni(S_{0_0}) \circ 6H_0$	7m	23
Cesium nitrate, CsNO ₃	9	25
Cesium osmium(IV) bromide, Cs ₂ OsBr ₆	2m	10
Cesium osmium chloride, Cs ₂ OsCl ₆	2m	11
Cesium platinum bromide, Cs_2PtBr_6 .	8	19
Cesium platinum chioride, CsoPtFo	6	27
Cesium selenium bromide, Cs ₂ SeBr ₆ .	8	20
Cesium silicon fluoride, Cs ₂ SiF ₆	5	19
Cesium strontium chloride, CsSrCl ₃	6m	13
Cesium sulfate, Cs_2SO_4	/ 0	17
Cesium tin chloride. Cs ₂ SnCl ₆	5	16
Cesium vanadium sulfate hydrate,		
$C_{sV}(SO_4)_2 \cdot 12H_2O$	1m	11
Cesium zinc sulfate hydrate,	7	25
Chromium. Cr \ldots	5	20
Chromium boride, ζ-CrB	17m	22

	Sec.	Page	
	10-	27	
Chromium boride, CrB_2	1911	20	
Chromium boride, Cr_5B_3	100	50	
Chromium chloride, trtl ₂	17m	22	
Chromium chloride, Urula	1/m 16m	20	
Chromium chloride hydrate, CrCl ₃ on ₂ O	15m	140	
Chromium cobalt niobium, cocrist	1.511	140	
Chromium cobait silicide,	14m	62	
Charge applet tentalum CoCrTa	15m	142	
Chromium fluoride CrFe	10m	81	
Chromium fluoride, CroF-	7m	108	
Chromium(III) fluoride hydrate.			
CrFa+3HaQ	5m	25	
Chromium iridium. CraIr	6m	14	
Chromium iron oxide.			
Cr1 3Feo 703	17m	24	
Chromium niobium oxide, CrNbO4	19m	38	
Chromium oxide, Cr03	17m	25	
Chromium(III) oxide, Cr ₂ O ₃	5	22	
Chromium phosphate, α -CrPO ₄	2m	12	
Chromium phosphate, β -CrPO ₄	9	26	
Chromium phosphate hydrate,			
CrP0 ₄ •6H ₂ 0	15m	27	
Chromium rhodium, Cr ₃ Rh	6m	15	
Chromium silicide, Cr ₃ Si	6	29	
Chromium sulfate, $Cr_2(SO_4)_3$	16m	33	
Cobalt, Co (cubic)	4m	10	
Cobalt aluminum oxide, CoAl ₂ O ₄	9	27	
Cobalt ammine iodide, $Co(NH_3)_6I_3$	10m	83	
Cobalt antimony oxide, CoSb ₂ O ₆	5m	26	
Cobalt arsenate hydrate (erythrite),			
$Co_3(AsO_4)_2 \cdot 8H_2O$	19m	39	
Cobalt arsenide, CoAs ₂	4m	10	
Cobalt arsenide (skutterudite),			
CoAs ₃	10	21	
Cobalt borate, $Co_3(BO_3)_2$	12m	20	
Cobalt bromide hydrate, $CoBr_2 \cdot 6H_2O$	12m	21	
Cobalt(11) carbonate (sphaero-	10	24	
$cobaltite), collog \dots$	10	24	
Co(ClO) (ClO) (Clo)	3m	28	
$C_0(C_1U_4)_2 \circ On_2U \dots On_2U$	- Эш 11m	20	
Cobalt chloride hydrate, CoCl. +6H.0	11m	23	
Cobalt chromium oxide CoCr.0.	Qm	21	
Cobalt conner tin CoCueSn	14m	64	
Cobalt dysprosium Co-Dy	13m	63	
Cobalt erbium CooFr	13m	64	
Cobalt erbium, CozEro	13m	65	
Cobalt fluoride. CoF2	18m	31	
Cobalt fluoride, CoF ₂ (calculated			
pattern)	10m	85	
Cobalt fluoride hydrate, CoF2.4H20	11m	24	
Cobalt gadolinium, CoGd3	13m	68	
Cobalt gadolinium, Co2Gd	13m	71	
Cobalt gadolinium, Co7Gd2	13m	72	
Cobalt gallium hafnium, Co ₂ GaHf	14m	65	
Cobalt gallium manganese, Co ₂ GaMn	13m	75	
Cobalt gallium niobium,			
Co _{1.5} Ga _{0.5} Nb	15m	144	
Cobalt gallium niobium, Co ₂ GaNb	14m	66	
Cobalt gallium oxide, CoGa ₂ O ₄	10	27	
Cobalt gallium tantalum,		110	
Co _{1.5} Ga _{0.5} Ta	15m	146	
Cobalt gallium tantalum, Co2GaTa	13m	70	
Cobalt gallium titanium, Co2GaTi	13m	70	
Cobalt gallium vanadium, Co ₂ GaV	1.3M	10	
Cobalt germanium, Co3Ge2	1410 15m	148	
Cobalt germanium hafnium	1.500	140	
Cose Ge-Hf.	14m	69	
0010 00/m10			95

Cobalt germanium manganese,	10-	70
Co ₂ GeMn	1.3m	79
Cobalt germanium niobium,	15m	150
Cohalt cormanium nichium	1.5 Ш	150
Coase-Nha	14m	71
Cobalt germanium oxide. Co ₂ GeO ₄	10	27
Cobalt germanium tantalum,		
Co _{1,5} Ge _{0,5} Ta	15m	152
Cobalt germanium tantalum,		
Co ₁₆ Ge ₇ Ta ₆	14m	73
Cobalt germanium titanium, Co ₂ GeTi	13m	80
Cobalt hafnium tin, Co ₂ HfSn	14m	75
Cobalt holmium, Co ₂ Ho	14m	/0
Cobalt holmium, $Co_{9,2}Ho_{12}$	15m	154
Cobalt indium Coln-	13m	81
Cobalt indide Cole	4m	52
Cobalt iron arsenide		5-
(safflorite), CoFeAs,	10	28
Cobalt iron oxide, CoFe ₂ O ₄	9m	22
Cobalt iron sulfide, Co ₈ FeS ₈	14m	77
Cobalt iron vanadium,		
$Co_{4,35}Fe_{13,47}V_{12,18}$	14m	79
Cobalt lanthanum, CoLa ₃	13m	83
Cobalt lutetium, Co ₂ Lu	13m	86
Cobalt magnesium, Co ₂ Mg	15m	156
Cobalt manganese silicide, Co_2MnSi	14m	81
Control to the constant of the	2-	12
Cohalt maluhdapum Co-Mo	2Ш 1/m	82
Cobalt molybdenum, CoaMoa	15m	158
Cobalt molybdenum, Co-Moc	15m	160
Cobalt molybdenum silicide.		
Co ₃ Mo ₂ Si	15m	162
Cobalt neodymium, Co ₂ Nd	13m	87
Cobalt nickel tin,		
Co.75 ^{Ni} .75 ^{Sn} .75	13m	88
Cobalt niobium silicide, Co ₃ Nb ₄ Si ₇	15m	164
Cobalt niobium tin, Co ₂ NDSn	15m	100
$v_{\rm r} C_{\rm o}(NO_{\rm o})$.64 O	12m	22
$a = co(NO_3)_2 \cdot on_2 \circ \dots \circ on_2 \circ \dots \circ on_2 \circ \dots \circ on_2 \circ$	Q	28
Cobalt(II III) oxide. Coold	9	29
Cobalt phosphate. Co(PO ₂) ₂	13m	23
Cobalt phosphate hydrate,		
$Co_3(PO_4)_2 \cdot 8H_2O$	19m	40
Cobalt phosphide, CoP	14m	83
Cobalt phosphide, CoP ₃	14m	85
Cobalt phosphide, Co ₂ P	18m	32
Cobalt platinum, CoPt (disordered)	15m	16/
Cobalt platinum, CoPt (ordered)	15m	108
(disordered)	15m	160
Cobalt platinum CoPt. (ordered)	15m	170
Cobalt plutonium. CoPue	14m	87
Cobalt plutonium, CoPu ₂	15m	171
Cobalt plutonium, CoPu ₆	14m	89
Cobalt plutonium, Co ₂ Pu	14m	91
Cobalt plutonium, Co ₃ Pu	14m	92
Cobalt plutonium, Co ₁₇ Pu ₂	14m	94
Cobalt praseodymium, Co ₂ Pr	14m	97
Cobalt rhodium sulfide, CogRhSg	14m	98
Cobalt semarium Co.Sm	14m	173
Cobalt samarium. Co-Sm	13m	90
Cobalt silicate. Co ₂ SiO ₄	1.000	
(orthorhombic)	4m	11

Vol. or

Sec. Page

Cobalt silicon fluoride hydrate,			Erbium phosphate, ErPO ₄	9	31
CoSiF ₆ •6H ₂ 0	3m	27	Erbium silver, ErAg	5m	67
Cobalt sulfate, β -CoSO ₄	2m	14	Erbium telluride, ErTe	4m	55
Cobalt tantalum silicide,	. /		Erbium vanadium oxide, ErVO ₄	5m	29
Co ₁₆ Ta ₆ Si ₇	14m	102	Europium arsenate, EuAsO ₄	3m	32
Cobalt thorium, $Co_{17}Th_2$	12m	64	Europium(III) chloride, EuCl ₃	1m	13
Cobalt tin, Co_3Sn_2	13m	92	Europium chloride oxide, Euclo	Im	13
Cobalt tin oxide, Co_2SnO_4	15m	30	Europium gallium oxide,	2-	17
Cobalt tin vanadium, Co ₂ Snv	15m	175	$Eu_3Ga_5U_{12}$	200	56
Cobalt til 21rconium, Co25n2r	15m	12	Europium avida Euo	4111 /m	56
Cobalt titanium silicide	4111	15	Europium phosphate EuPO.	4m 11m	26
CoveTieSie	14m	104	Europium (III) vanadium oxide EuVO.	4m	16
Cobalt tungsten oxide. CoWO	4m	13	Gadolinium arsenate GdAs0.	4m	17
Cobalt vanadium silicide. Co.VSi	15m	176	Gadolinium arsenide, GdAs	4m	57
Copper. Cu	1	15	Gadolinium chloride hydrate.		0.
Copper ammine selenate,			GdCl ₃ •6H ₂ 0	7m	118
$Cu(NH_3)_4SeO_4$	10m	87	Gadolinium chloride oxide, GdCl0	1m	17
Copper ammine sulfate hydrate,			Gadolinium fluoride, GdF ₃	1m	14
$Cu(NH_3)_4SO_4 \cdot H_2O$	10m	90	Gadolinium gallium oxide,		
Copper antimony oxide, CuSb ₂ O ₆	5m	27	Gd ₃ Ga ₅ O ₁₂	2m	18
Copper arsenate (trippkeite),			Gadolinium indium, GdIn	5m	67
CuAs ₂ 0 ₄	16m	120	Gadolinium nitride, GdN	4m	57
Copper(I) bromide, CuBr	4	36	Gadolinium oxide, Gd ₂ O ₃	1m	16
Copper(I) chloride (nantokite),			Gadolinium silver, GdAg	6m	87
CuCl	4	35	Gadolinium titanium oxide, Gd ₂ TiO ₅	8m	32
Copper chloride hydrate			Gadolinium vanadium oxide, GdVO ₄	5m	30
(eriochalcite), $CuCl_2 \cdot 2H_2O$	18m	33	Gallium, Ga	2	9
Copper fluoride hydrate, $CuF_2 \cdot 2H_2O$	11m	25	Gallium arsenide, GaAs	3m	33
Copper hydrogen phosphite hydrate,		0.0	Gallium lutetium oxide, Ga ₅ Lu ₃ O ₁₂	2m	22
$CuHPO_3 \cdot 2H_2O$	lim	83	Gallium magnesium, Ga ₂ Mg	12m	48
copper nydroxide carbonate,	10	20	Gallium magnesium, Ga ₅ ng ₂	12m	24
azurile, $(u_3(0n)_2(00_3)_2 \dots \dots$	10	50	Gallium neodymium oxide, $Ga_5NG_3U_{12}$	1m A	34
(malachite) $(malachite)$	10	31	Gallium phosphate (α -quartz type)	4	25
(malachice), du ₂ (0h) ₂ dog	10	51	GaPO	8	27
(libethenite) Cuc(OH)PO	17m	30	Gallium phosphate hydrate	0	21
Copper(I) iodide (marshite). CuI	4	38	GaPO + 2HaO	8m	34
Copper lead hydroxide sulfate.			Gallium samarium oxide. GarSm2012	1m	42
linarite, CuPb(OH) ₂ (SO ₄)	16m	34	Gallium vtterbium oxide, GasYb ₂ O ₁₂	1m	49
Copper(I) oxide (cuprite), Cu ₂ O	2	23	Gallium yttrium oxide, Ga ₅ Y ₃ O ₁₂	1m	50
Copper(II) oxide (tenorite), Cu0	1	49	Germanium, Ge	1	18
Copper phosphate, Cu(PO ₃) ₂	14m	15	Germanium iodide, GeI ₂	4m	58
Copper phosphate, α -Cu ₂ P ₂ O ₇	7m	113	Germanium(IV) iodide, Gel ₄	5	25
Copper sulfate (chalcocyanite),			Germanium oxide, GeO ₂ (hexagonal)		
CuSO ₄	3m	29	(low form)	1	51
Copper(II) sulfide (covellite), CuS	4	13	Germanium oxide, GeO ₂		
Copper uranium oxide, CuUO ₄	10m	93	(tetragonal) (high form)	8	28
Dichlorotetraaquochromium (III)			Gold, Au	1	33
chloride dihydrate,	16		Gold chloride, AuCl	16m	37
$Cr(H_20)_4Cl_2$ $Cl \cdot 2H_20$	16m	31	Gold(1) cyanide, AuCN	10	33
Dysprosium arsenate, DyAsO ₄	3m	30	Gold holmium, AuHo	5m	00
Dysprosium arsenide, DyAs	4m	23	Gold magnesium, Aung	6	05
Dysprosium garrium oxide,	2-	15	Gold miobium, Aunda \dots $MK(CN)$	8m	36
Dysprosium cold $Dy\Delta u$	2m 5m	66	Cold tin AuSn	7	19
Dysprosium pitride DyN	Сли Дип	53	Gold titanium AuTia	6m	17
Dysprosium articlice, by	9	30	Gold vanadium. AuVo	6m	18
Dysprosium silver. DvAg	5m	66	Hafnium, Hf	3	18
Dysprosium telluride, DvTe	4m	54	Hafnium nitride, HfN	19m	46
Dysprosium vanadium oxide. DvVO	4m	15	Holmium arsenate, HoAsO4	Зm	34
Erbium arsenate, ErAsO ₄	Зm	31	Holmium fluoride, HoF ₃	10m	23
Erbium arsenide, ErAs	4m	54	Holmium nitride, HoN	4m	58
Erbium gallium oxide, Er ₃ Ga ₅ O ₁₂	1m	12	Holmium oxide, Ho ₂ O ₃	9	32
Erbium iron, ErFe ₂	19m	42	Holmium selenide, HoSe	4m	59
Erbium manganese oxide, ErMnO3	2m	16	Holmium silver, HoAg	5m	68
Erbium nitride, ErN	4m	55	Holmium vanadium oxide, HoVO ₄	4m	18
Erbium oxide, Er ₂ O ₃	8	25	Hydrazinium sulfate, (NH ₃) ₂ SO ₄	17m	38
			Hydrogen amidosulfate, H ₂ NSO ₃ H	7	54

Vol.	or
Se	c.

Page

Hydrogen arsenate, H ₅ As ₃ O ₁₀	7m	84	Lanthanum oxide, La ₂ 0 ₃	3	33
Hydrogen borate, β -HBO ₂ (monoclinic)	9m	71	Lanthanum phosphide, LaP	5m	69
Hydrogen borate (metaborite),			Lanthanum selenide, LaSe	4m	61
HBO ₂ (cubic)	4m	27	Lanthanum titanium oxide, La ₂ Ti ₂ O ₇	15m	35
Hydrogen iodate, HIO3	5	28	Lanthanum zinc, LaZn	5m	70
Hydrogen iodate, HI ₃ 0 ₈	8m	104	Lead, Pb	1	34
Hydrogen phosphate hydrate,			Lead borate, PbB ₄ O ₇	4m	19
$H_{3}PO_{4} \cdot 0.5H_{2}O$	12m	56	Lead bromide, PbBr,	17m	43
Hydrogen tellurate, H ₆ TeO ₆	12m	34	Lead bromide chloride, PbBrC1	11m	33
Indium, In	3	12	Lead bromide fluoride, PbBrF	10m	25
Indium arsenide, InAs	3m	35	Lead bromide hydroxide, PbBr(OH)	16m	40
Indium oxide, In ₂ O ₂	5	26	Lead bromide oxide. PholoBro	5m	32
Indium phosphate. InPO,	8	29	Lead carbonate (cerussite) Ph(0.	2	56
Indium sulfide. In ₂ S ₂	11m	30	Lead chloride (cotunnite) Ph(1.	12m	23
Iodine. Io	3	16	Lead chloride (cocumice), ibci2	1 2.11	25
Tridium. Tr	4	9	PhC1F	13m	25
Iridium niobium. IrNba	6m	19	Lead chromium oxide Dh CrO	1/m	16
Iridium oxide. Ir0	4m	19	Lead fluoride or DbF	140	10
Iridium titanium IrTi-	6m	20	(anthornhop)	F	21
Iridium vanadium IrV.	6m	21	(orthornombic)	5	31
Iron N-Fe	4	21	Lead fluoride, p-PDF ₂ (cubic)	10-	33
Iron aluminum ovide (hercunite)	-	5	Lead fluoride lodide, PDF1	IUm	20
Foll 0	10m	/ . 9	Lead nydrogen arsenate (schultenite),		10
$FeAl_2U_4$ $FeAl_2U_4$	19Ш 10-т	40	PDHASU ₄	14m	18
Tron ancimony oxide, respo ₄	1911	49	Lead hydrogen phosphate, PbHPO ₄	15m	37
Iron arsenide, FeAs	10	19	Lead hydroxide phosphate,		
Iron arsenide (loellingite), feAs ₂	10	34	$Pb_5OH(PO_4)_3$	8	33
Iron boride, feb	18m	35	Lead iodate, Pb(IO ₃) ₂	17m	45
Iron bromide, feBr ₂	4m	59	Lead(II) iodide, PbI ₂	5	34
Iron carbonate, siderite, $feCO_3$	15m	32	Lead molybdenum oxide (wulfenite),		
Iron chloride hydrate (rokuhnite),			РЪМоО4	7	23
$FeCl_2 \cdot 2H_2O$	11m	32	Lead nitrate, Pb(NO ₃) ₂	5	36
Iron chloride hydrate (hydromolysite),			Lead oxide (litharge), PbO (red,		
FeCl ₃ ·6H ₂ 0	17m	40	tetragonal)	2	30
Iron chromium oxide (chromite),			Lead oxide (massicot), PbO (yellow,		
FeCr ₂ 0 ₄	19m	50	orthorhombic)	2	32
Iron fluoride hydrate, FeF2·4H20	11m	90	Lead(II,III) oxide (minium), Pb ₃ 0 ₄	8	32
Iron fluoride, FeF ₃	18m	36	Lead oxide sulfate, Pb505S04	10m	27
Iron fluoride hydrate, β -FeF ₃ ·3H ₂ 0	17m	41	Lead selenide (clausthalite), PbSe	5	38
Iron hydroxide sulfate hydrate,			Lead strontium nitrate.		-
butlerite, Fe(OH)SO4 · 2H20	10m	95	Pb $a_{2}Sr_{e_{7}}(NO_{2})a_{2}$	12m	53
Iron iodide, FeI ₂	4m	60	Lead strontium nitrate.		
Iron oxide (hematite), α-Fe ₂ O ₃	18m	37	$Pb = rSr = n(NO_2)$	12m	53
<pre>Iron(II,III) oxide (magnetite),</pre>			Lead sulfate (anglesite), PbS0,	3	67
Fe ₃ 0 ₄	5m	31	Lead sulfide (galena). PbS	2	18
Iron phosphate, FePO,	15m	33	Lead tin oxide Ph_SnO.	10m	29
Iron phosphate hydrate (vivianite).			Lead titanium oxide (macedonite)	101	27
$Fe_2(PO_4)_2 \cdot 8H_2O_1$	16m	38	DbTiO.	5	30
Iron sulfate. $Fe_{0}(SO_{4})_{0}$	16m	39	Lead tungsten ovide (stalzite)	5	55
Iron sulfate hydrate (melanterite).			PhWO (tetragonal)	5	3/1
FeSO · 7HoO	8m	38	Land uranium ovide Dh 110	9m	100
Iron sulfide (nyrite) FeSa	5	29	Lead diaminum fluorido	om	103
Iron thorium Fer-Th-	12m	67	a Li AIE	0 m	111
Iron titanium ovide (ilmenite)	12.0	07	α -Li ₃ Alf ₆	<u>ош</u> Эт	111
Fortio	15m	3/	Lithium arsenate, Li ₃ AsU ₄	2m	19
The attain and Fa V O	10	24	Lithium azide, LiN ₃	8m	113
Leptherum excepte LeAs	200	26	Lithium barium fluoride, LiBar ₃	5m	35
Lanthanum arsenate, LaAsU ₄	311	30	Lithium beryllium fluoride, Li_2Ber_4	/m	126
Lanthanum arsenide, LaAs	411	20	Lithium borate, $Li_2B_40_7$	8m	114
Lanthanum borate, LaBU ₃	Im	20	Lithium bromide, LiBr	4	30
Lanthanum chloride, LaCl ₃	Im	20	Lithium calcium aluminum boron		
Lanthanum chloride oxide, LaClO	<u>/</u>	22	hydroxy silicate, liddicoatite,		
Lanthanum fluoride, Lar ₃	_7	21	$Ca(Li,A1)_{3}A1_{6}B_{3}Si_{6}O_{27}(0,OH)_{3}(OH,F)$	16m	42
Lanthanum magnesium, LaMg	5m	69	Lithium carbonate, Li ₂ CO ₃	8m	42
Lanthanum nickel platinum,			Lithium chlorate hydrate,		
LaNi _{0.25} Pt _{4.75}	17m	42	LiCl0 ₄ •3H ₂ 0	8	34
Lanthanum niobium titanium oxide,			Lithium chloride, LiCl	1	62
LaNbTiO ₆	Зm	37	Lithium chromium oxide hydrate,		
Lanthanum nitrate hydrate,			$Li_2CrO_4 \cdot 2H_2O$	16m	44
$La(NO_3)_3 \cdot 6H_2O$	8m	40	Lithium fluoride, LiF	1	61
Lanthanum nitride, LaN	4m	61	Lithium gallium oxide, LiGaO ₂	10m	31

Lithium hydroxide, LiOH	17m	46
Lithium hydroxide hydrate LiOH·H_O	11m	92
Lithium indata LiIO (havaaaal)	7	26
Lichim Iodale, Lilo ₃ (nexagonal)	10	20
Lithium iodate, Lil0 ₃ (tetragonal)	lOm	- 33
Lithium iodide hydrate, LiI·3H ₂ O	18m	40
Lithium molybdenum oxide, Li2MoO4		
(trigonal)	1 m	23
Lithium nichium avida LiNhO	6.00	20
Lichich Hibbidh Oxide, LiNbog	Om	22
Lithium nitrate, LiNO ₃	/	27
Lithium oxide, Li ₂ 0	lm	25
Lithium phosphate, high form, Li ₃ PO ₄	Зm	39
Lithium phosphate, low form		
(lithiophosphate) Li PO	4.00	21
(IIChiophosphace), Li ₃ io ₄	4m	21
Litnium phosphate hydrate,		
$Li_3P_3O_9 \cdot 3H_2O$	2m	20
Lithium potassium sulfate, KLiSO4	3m	43
Lithium rubidium fluoride. LiRbFo	7 m	128
Lithium selenide Li-Se	10m	100
	101	100
Lithium silicate, Li_2SiO_3	14m	19
Lithium silver bromide,		
Li 2Ag 8Br	12m	55
Lithium silver bromide. Li Ag eBr	12m	55
Lithium silver bromide		
Le As Dr	1.2	
L1 ₆ Ag ₄ Br	I∠m	55
Lithium silver bromide,		
Li 8Ag 2Br	12m	55
Lithium sodium aluminum fluoride.		
ormalithiopita Li Na Al F	0	22
Cryoffentonice, Li ₃ Na ₃ Al ₂ r ₁₂	911	25
Lithium sodium sulfate, LiNaSO ₄	6m	24
Lithium sulfate, Li ₂ SO ₄	6m	26
Lithium sulfate hydrate.		
LioSO + HoO	4m	22
Tithium sulfide Ti C	10-	101
Lichium suilide, Li ₂ 5	TOW	101
Lithium tantalum oxide, LiTaO ₃	14m	20
Lithium telluride, Li ₂ Te	10m	102
Lithium tin oxide. Li_SnO2	16m	45
Lithium tungsten oxide LieWO.		
(triconal)	1	25
(Lrigonal)	Im	25
Lithium tungsten oxide hydrate,		
$\text{Li}_2 WO_4 \cdot 0.5 H_2 O \dots \dots$	2m	20
Lithium uranium fluoride, LiUF5	7m	131
Lithium zirconium oxide Lio7r0.	10m	51
Literium zirconium okide, highiog	I Jiii	24
Lucelium arsenate, LuASO4	Sill	20
Lutetium manganese oxide, LuMnO ₃	2m	23
Lutetium nitride, LuN	4m	62
Lutetium oxide. Lu ₂ O ₂	1m	27
Lutetium vanadium oxide LuVO.	5m	37
Managing Ma	1	10
hagnesium, ng	1	10
Magnesium aluminum oxide (spinel),		
MgA1 ₂ 0 ₄	9m	25
Magnesium aluminum silicate (low		
cordierite) Mg.Al.Si-O.a		
(authauhauhia)	1	0
(orthornombic)	Im	28
Magnesium aluminum silicate		
(indialite) Mg ₂ Al ₄ Si ₅ O ₁₈		
(hexagonal)	1m	29
Magnesium aluminum silicate		_
(primone) Ma Al (SiO)	1	24
$(pyrope), ng_{3A1_2}(S10_4)_2 \dots$	4m	24
Magnesium arsenate hydrate		
(hoernesite), $Mg_3(AsO_4)_2 \cdot 8H_2O$	19m	53
Magnesium borate, MgB ₄ 0 ₇	17m	47
Magnesium borate. Me.B.O.		
(triclinic)	4m	25
Meananium huamida MaDa	410	20
nagnesium bromide, rigbr ₂	4m	02
Magnesium bromide hydrate,		
MeBro · 6HoO		
	11m	35
Magnesium carbonate (magnesite).	11m	35
Magnesium carbonate (magnesite), MgCO ₂	11m 7	35 28

Vol.	or	
Sec	2.	Page

Magnesium cerium nitrate hydrate,	10	20
Magnesium chlorate hydrate,	10	20
$Mg(ClO_4)_2 \cdot 6H_2O$ Magnesium chloride (chloro-	7m	30
magnesite), MgCl ₂	11m	94
Magnesium chloride hydrate, MgCl ₂ ·l2H ₂ O	7 m.	135
Magnesium chloride hydrate	11-	0.7
Magnesium chromium oxide	1 I m	37
(magnesiochromite), MgCr ₂ O ₄	9	34
MgCrO ₄ ·5H ₂ O	15m	39
Magnesium fluoride (sellaite), MgF ₂	4	33
(humite), $Mg_7F_2Si_3O_{12}$	1m	30
Magnesium fluoride silicate	10	39
Magnesium gallium oxide, MgGa ₂ O ₄	10	36
Magnesium germanium oxide,	10	37
Magnesium germanium oxide,	10	57
Mg ₂ GeO ₄ (orthorhombic) Magnesium hydrogen phosphate	10	• 38
hydrate, newberyite, $MgHPO_4 \cdot 3H_2O$	7 m	139
Magnesium hydroxide (brucite), Mg(OH),	. 6	30
Magnesium iodate hydrate,		
Mg(10 ₃) ₂ ·4H ₂ 0 Magnesium iron hydroxide carbonate	1/m	48
hydrate, pyroaurite,	10	10/
Mg ₆ Fe ₂ (OH) ₁₆ CO ₃ ·4H ₂ O (rhomb.) Magnesium iron hydroxide carbonate	IOm	104
hydrate, sjögrenite,	10	100
Mg ₆ Fe ₂ (OH) ₁₆ CO ₃ ·4H ₂ O, (hexag.) Magnesium lanthanum nitrate	IOm	103
hydrate, $Mg_3La_2(NO_3)_{12} \cdot 24H_20$	1m	22
Magnesium manganese oxide, MgMn ₂ O ₄	10m	35
Magnesium mercury, MgHg	6m	84
Magnesium molybdenum oxide, MgMoO ₄	7 m	28
Magnesium nickel oxide, MgNiO ₂	10m	36
Magnesium oxide (periclase), MgO	1	37
Magnesium phosphate, Mg(PO ₃) ₂	13m	26
Magnesium phosphate, α -Mg ₂ P ₂ O ₇ Magnesium phosphate (farringtonite)	18m	41
$M_{PO}(PO_{1})_{o}$	19m	55
Magnesium selenide, MgSe	5m	70
Magnesium selenite hydrate,		
$MgSeO_3 \cdot 6H_2O$	8m	116
Magnesium silicate, enstatite, MgSiO ₃	6	32
Magnesium silicate (forsterite),		0.0
Mg ₂ SiO ₄ Magnesium sulfate hvdrate	1	83
(kieserite), $MgSO_4 \cdot H_2O$	16m	46
Magnesium sulfate hydrate (ensomite) MgSO7HgO	7	30
Magnesium sulfide. MgS	7	31
Magnesium sulfite hydrate,		-
MgS0 ₃ ·6H ₂ 0	9m	26
Magnesium tin, Mg ₂ Sn	5	41
Magnesium tin oxide, Mg ₂ SnO ₄	10m	37
(geikielite). MgTiO	5	43
Magnesium titanium oxide. MenTiO.	12m	25
Magnesium tungsten oxide, MgWO4	13m	27
Manganese, α -Mn (calculated pattern)	7 m	142
Manganese, α-Mn	17m	50

Manganese, β-Mn	18m	43
MnAlo04	9	35
Manganese bromide, MnBr ₂	4m	63
Manganese(II) carbonate		
(rhodochrosite), MnCO ₃	7	32
Manganese chloride (scacchite),	9 m	1.2
Manganese chloride hydrate.	om	43
MnCl ₂ ·2H ₂ O	11m	38
Manganese chloride hydrate,		
MnCl ₂ ·4H ₂ 0	9m	28
Manganese cobalt oxide, $MnCo_2O_4$	9m	30
Manganese iodide. MnL	10m 4m	63
Manganese iron oxide (jacobsite),		00
MnFe ₂ 0 ₄	9	36
Manganese(II) oxide (manganosite),		
Mno	5	45
Manganese oxide (pyrotusite), $p-mo_2$	10m	39
Manganese oxide (bixbyite), d im203 Manganese oxide (hausmannite).	1111))
Mn ₃ 0 ₄	10m	38
Manganese oxide hydroxide, groutite,		
α-Mn00H	11m	97
Manganese phosphate, $Mn(PO_3)_2$	14m	21
Manganese phosphate $Mn_2(P0_4)_2$	15m 16m	41
Manganese selenide, MnSe	10	41
Manganese sulfate hydrate		
(szmikite), MnSO ₄ ·H ₂ O	16m	49
Manganese sulfide (alabandite),	,	
Manganese titanium oxide	4	11
(pyrophanite), MnTiO ₂	15m	42
Manganese(II) tungsten oxide		
(huebnerite), MnWO ₄	2m	24
Manganese vanadium oxide, Mn ₂ V ₂ O ₇	9m	75
Mercury amide chloride, HgNH ₂ CI	IUm	40
$Hg(NH_2)_2Cl_2$	11m	39
Mercury bromate, Hg(BrO3)2	10m	107
Mercury bromide, HgBr ₂	10m	110
Mercury bromide, Hg ₂ Br ₂	7	33
Mercury chloride (calomel)	1.3m	29
Hg _o Cl ₂	13m	30
Mercury chloride sulfide,		
α-Hg ₃ Cl ₂ S ₂	8m	118
Mercury(II) cyanide, Hg(CN) ₂	6	35
Mercury (11) fluoride, HgF ₂	Zm	25
Hg(0H)NO ₂	17m	52
Mercury(I) iodide, HgI	4	49
Mercury(II) iodide, HgI ₂ (tetragonal)	7 m	32
Mercury(II) oxide (montroydite),	0	20
HgU	9	39
HgSe	7	35
Mercury sulfate, HgSO ₄	16m	50
Mercury sulfate, Hg ₂ SO ₄	16m	52
Mercury(II) sulfide (cinnabar),	,	
HgS (hexagonal)	4	17
HgS (cubic)	4	21
Molybdenum, Mo	1	20
Molybdenum arsenide, Mo ₂ As ₃	10m	115
Molybdenum osmium, Mo ₃ Os	6m	28
Molybdenum oxide, MoO ₂	18m	44

	Vol. or	
	Sec.	Page
Molyhdenum oxide (molyhdita) MoQ	3	30
Molybdenum silicide. MorSia	19m	59
Molybdenum sulfide (molybdenite),		•••
MoS ₂	5	47
Neodymium arsenate, NdAsO ₄	4m	28
Neodymium arsenide, NdAs	4m	64
Neodymium borate, NdBO ₃	1m	32
Neodymium chloride, NdCl ₃	Im 8	33
Neodymium fluoride. NdF2	8	36
Neodymium oxide, Nd ₂ O ₃	4	26
Neodymium phosphate, NdPO4	11m	40
Neodymium selenide, NdSe	5m	71
Neodymium silver, NdAg	5m	71
Neodymium tantalum oxide, NdTaO ₄	18m	46
Neodymium titanium oxide, Nd_2TiU_5	18m	48
Neodymium titanium oxide, $Nd_2I1_2U_7$	10m 18m	50 52
Neodymium vanadium oxide, NdV04	4m	30
Neptunium nitride, NpN	4m	64
Nickel, Ni	1	13
Nickel aluminum oxide, NiAl ₂ 0 ₄	9	42
Nickel arsenate hydrate (annabergite)),	
$Ni_3(AsO_4)_2 \cdot 8H_2O$	19m	60
Nickel arsenide (rammelsbergite),	10	10
NiAS ₂ Nickel arcepic sulfide	10	42
(gersdorffite) NiAsS	1m	35
Nickel bromide. NiBro	10m	119
Nickel(II) carbonate, NiCO3		
(trigonal)	1m	36
Nickel chloride, NiCl ₂	9m	81
Nickel chloride hydrate,		
$\text{NiCl}_2 \cdot 6\text{H}_2\text{O}$	11m	42
Nickel fluoride, NiF ₂	10m	121
Nickel gallium oxide NiGaoO	10	45
Nickel germanium oxide, Niod204	9	43
Nickel iron oxide (trevorite),	-	
NiFe ₂ 0 ₄	10	44
Nickel molybdenum oxide, NiMoO $_4$	19m	62
Nickel nitrate hydrate,	10	~
$N_1(NO_3)_2 \cdot 6H_2O$	12m	26
Nickel phosphate $Ni(PO_{2})$.	1/1m	47
Nickel phosphate hydrate.	1 -411	22
$Ni_3(PO_4)_2 \cdot 8H_2O$	19m	64
Nickel phosphide, Ni ₁₂ P ₅	9m	83
Nickel silicon fluoride hydrate,		
$NiSiF_6 \cdot 6H_2O$	8	38
Nickel sulfate, $NiSO_4$	2m	26
Nickel sullate hydrate (retgersite),	7	36
Nickel sulfate hydrate (nickel-	'	50
hexahydrite), β -NiSO ₄ ·6H ₂ O		
(monoclinic)	19m	65
Nickel sulfide, millerite, NiS	1m	37
Nickel titanium oxide, NiTiO ₃	18m	54
Nickel tungsten oxide, NiWO ₄	2m	27
Nickel yttrium, Ni ₃ Y	10m	123
Nichium boride (=MDR	19m 17m	5/
Niobium chloride oxide. NbCl_O	7m	148
Niobium osmium. Nb ₂ Os	6m	30
Niobium platinum, Nb ₃ Pt	6m	31
Niobium silicide, NbSi ₂	8	39
Niobium silicide, α-Nb ₅ Si ₃	15m	43
Niobium silicide, β -Nb ₅ Si ₃	15m	44
USM144, US	4	8

Vol. or Sec. Page

Osmium titanium, OsTi	6m	85
Palladium, Pd	1	21
Palladium hydride. PdHo zoe	5m	72
Palladium oxide. PdO	4	27
Palladium selenium (palladseite).		
Pda-Sear	16m	1.39
Palladium vanadium PdV	6m	32
Phoenhorus bromide PBr-	7m	150
Phoephorus ovide (stable form I)	7 111	150
Phosphorus oxide (scaple form f),	0	94
$P_{2}O_{5}$ (orthornound)	ЭШ	80
Phosphorus oxide (stable form 11),	0	00
$P_2 U_5$ (orthornombic)	9m	00
Phosphorus oxide (metastable form),	0	0.1
$P_4 O_{10}$ (rhombohedral)	9m	91
Platinum, Pt	1	31
Platinum titanium, PtTi ₃	om	33
Platinum vanadium, PtV ₃	6m	34
Plutonium arsenide, PuAs	4m	65
Plutonium phosphide, PuP	4m	65
Plutonium telluride, PuTe	4m	66
Potassium aluminum sulfate,		
$KA1(SO_4)_2$	9m	31
Potassium aluminum sulfate hydrate		
(potash alum), $KA1(SO_4)_2 \cdot 12H_2O \ldots$	6	36
Potassium arsenic fluoride,		
KAsF ₆	17m	57
Potassium barium chromium oxide,		
$K_2Ba(CrO_4)_2$	14m	23
Potassium barium iron titanium		
oxide, K1 16Bao 72Feo 36Ti5 58013	16m	147
Potassium barium molybdenum oxide.		
$K_{2}Ba(MoO_{4})_{2}$	14m	24
Potassium barium nickel nitrite.		
K _a BaNi(NO _a)	9m	32
Potassium barium phosphate		
KRapo.	10m	68
Potassium horate hydroxide hydrate	1.211	00
K-B.O. (OF) +2H-O	15m	46
Potassium calcium phosphate	1.5 m	40
rocassium carcium phosphace,	10m	70
Potossium horon hydride KBW	0	44
Potassium bromate KBrO.	7	38
Potaccium bromida KBr	1	66
Potassium bromide, Abi	1	00
VD. Cl	0 m	1.6
RDF0.5010.5	ош	40
VD. T	11-	
KBr 331 67	11.	44
Potassium promide lodide, KBr.671.33	<u>11ш</u> От	45
Potassium cadmium fluoride, Ktdr ₃	бШ	47
Potassium cadmium sulfate,	-	~ ~ /
$K_2Cd_2(SO_4)_3$	/m	34
Potassium calcium carbonate		1.0
(fairchildite), K ₂ Ca(CO ₃) ₂	8m	48
Potassium calcium chloride, KCaCl ₃	7m	36
Potassium calcium fluoride, KCaF ₃	8m	49
Potassium calcium magnesium sulfate,		
$K_2CaMg(SO_4)_3$	7m	37
Potassium calcium nickel nitrite,		
K_2 CaNi(NO ₂) ₆	9m	33
Potassium calcium sulfate,		
$K_2Ca_2(SO_4)_3$	7m	39
Potassium calcium sulfate hydrate		
(syngenite), $K_2Ca(SO_4)_2 \cdot H_2O$	14m	25
Potassium cerium fluoride, β -KCeF ₄	12m	59
Potassium chlorate, KClO ₃	Зm	42
Potassium chlorate, KClO ₄	6	43
Potassium chloride (sylvite), KCl	1	65
Potassium chromium oxide, K ₃ CrO ₈	Зm	44
Potassium chromium oxide (lopezite),		
		1-

.

	Sec.	Page
Potassium chromium oxide sulfate,		
$K_2(CrO_4)_{.33}(SO_4)_{.67}$	12m	28
$K_{1}(C_{TO}) = (SO)$	1.2m	27
$R_2(010_4)_{.67}(50_4)_{.33}$	12ш	21
KCr(SO ₄) ₂	16m	58
Potassium chromium sulfate hydrate,		
$KCr(SO_4)_2 \cdot 12H_2O$	6	39
Potassium cobalt(II) fluoride,		
KCoF ₃	6m	37
Potassium cobalt fluoride, K ₂ CoF ₄	11m	46
Potassium cobalt nitrite,	0	/ =
$K_3 CO(NU_2)_6$	9	45
$K_0(\Omega_0(S\Omega_1))$	6m	35
Potassium copper chloride, KCuCl ₂	7m	41
Potassium copper chloride hydrate		
(mitscherlichite), K ₂ CuCl ₄ ·2H ₂ O	9m	34
Potassium copper(II) fluoride,		
KCuF ₃	6m	38
Potassium cyanate, KCNO	7	39
Potassium cyanide, KCN	1	77
Potassium fluoride, KF	19-	64
Potassium fluoride hydrate, KF·2H ₂ U	18m	22
K-CoF.	6	41
Potassium hydrogen arsenate.	Ŭ	41
KH ₂ As04	1m	38
Potassium hydrogen iodate,		
KH(10 ₃) ₂	17m	58
Potassium hydrogen phosphate,		
KH ₂ PO ₄	3	69
Potassium hydroxide, KOH at 300 °C	4m	66
Potassium iodate, KIO ₃	15m	48
Potassium iodate, KIO_4	/	41
Potassium iodide, KI	T	08
(erythrosiderite) K-Fe(la+H-0	14m	27
Potassium iron cvanide. KoFe(CN)	9m	35
Potassium iron cvanide, K ₄ Fe(CN) _e	18m	56
Potassium iron(II) fluoride, KFeF3	6m	39
Potassium iron fluoride, K ₃ FeF ₆	9m	37
Potassium iron sulfate (yavapaiite),		
$KFe(SO_4)_2$	16m	59
Potassium lead chloride, KPb ₂ Cl ₅	13m	33
Potassium lead chromium oxide,	1/	20
$K_2PD(CrO_4)_2$	14m	28
K-Pb(MoO.).	14m	29
Potassium lead phosphate.	1 110	
$K_2Pb(PO_2)_4$	15m	50
Potassium lead selenate,		
$K_2Pb(SeO_4)_2$	15m	52
Potassium lead sulfate (palmierite),		
$K_2Pb(SO_4)_2$	14m	30
Potassium magnesium chloride		
hydrate (carnallite), KMgCl ₃ ·6H ₂ O	8m	50
Potassium magnesium chromium oxide,	9 m	5.2
$K_2Mg_2(CrU_4)_3$	6m	52
Potassium magnesium fluoride, Kigra	10m	42
Potassium magnesium selenate	IOU	
hydrate, KoMg(SeO ₄) ₂ ·6H ₂ O	10m	43
Potassium magnesium sulfate		
(langbeinite), $K_2Mg_2(SO_4)_3$	6m	40
Potassium magnesium sulfate hydrate		
(picromerite), $K_2Mg(SO_4)_2 \cdot 6H_2O$	8m	54
Potassium manganese(II) fluoride,		15
KMnF ₃	6m	45

Vol. or

Potassium manganese oxide, KMnO4	7	42
Potassium manganese(11) sulfate	6-	42
(manganolangbeinite), $K_2 m_2 (50_4)_3$ Betaasium molybdenum ovide $K_2 MOO$	ОШ 15m	43
Potassium molybdenum oxide phos-	1.511	55
phate hydrate, $K_3(MoO_3)_{12}PO_4 \cdot 4H_2O$	8	43
Potassium nickel fluoride, KNiF3	7m	42
Potassium nickel fluoride, K2NiF4	10m	45
Potassium nickel(II) sulfate,		
$K_2Ni_2(SO_4)_3$	6m	46
Potassium niobium fluoride, K ₂ NDF ₇	8m	120
Potassium niobium oxide, KNOU ₃	1/m	58
Potassium nitrite (NO ₂	9 m	38
Potassium nitrosvl ruthenium	J III	50
chloride, K ₂ NORuCl ₅	16m	61
Potassium oxide, K ₂ 0	10m	125
Potassium platinum bromide, K ₂ PtBr ₆	8	40
Potassium platinum chloride,		
K ₂ PtCl ₆	13m	34
Potassium platinum fluoride, K ₂ PtF ₆	6	42
Potassium rhenium chloride, K ₂ Kell ₆	2m Q	28
Potassium rubidium chloride	0	41
Ko -Rbo -Cl	8m	76
Potassium rubidium chromium oxide.		
KRbCrO ₄	12m	29
Potassium ruthenium chloride,		
K ₂ RuCl ₆	10	46
Potassium ruthenium oxide chloride		
hydrate, $K_4 Ru_2 OCl_{10} \cdot H_2 O \dots $	10	47
Potassium selenate, K_2SeO_4	9m	41
Potassium selenide, K ₂ Se	10m	120
FOLASSIUM SELEMIUM DIOMIUE. Robedia	~ ~ ~	
Potassium silicon fluoride	U	41
Potassium silicon fluoride (hieratite), KoSiFe	5	50
Potassium silicon fluoride (hieratite), K ₂ SiF ₆ Potassium silver cyanide, KAg(CN) ₂	5 8m	50 78
Potassium silicon fluoride (hieratite), K_2SiF_6 Potassium silver cyanide, $KAg(CN)_2$ Potassium sodium aluminum fluoride	5 8m	50 78
Potassium silicon fluoride (hieratite), K ₂ SiF ₆ Potassium silver cyanide, KAg(CN) ₂ Potassium sodium aluminum fluoride (elpasolite), K ₂ NaAlF ₆	5 8m 9m	50 78 43
Potassium silicon fluoride (hieratite), K ₂ SiF ₆ Potassium silver cyanide, KAg(CN) ₂ Potassium sodium aluminum fluoride (elpasolite), K ₂ NaAlF ₆ Potassium sodium bromide,	5 8m 9m	50 78 43
Potassium silicon fluoride (hieratite), K ₂ SiF ₆ Potassium silver cyanide, KAg(CN) ₂ Potassium sodium aluminum fluoride (elpasolite), K ₂ NaAlF ₆ Potassium sodium bromide, K ₂ Na ₈ Br	5 8m 9m 12m	41 50 78 43 62
Potassium silicon fluoride (hieratite), K ₂ SiF ₆ Potassium silver cyanide, KAg(CN) ₂ Potassium sodium aluminum fluoride (elpasolite), K ₂ NaAlF ₆ Potassium sodium bromide, K ₂ Na _{.8} Br Potassium sodium bromide,	5 8m 9m 12m	41 50 78 43 62
Potassium silicon fluoride (hieratite), K ₂ SiF ₆ Potassium silver cyanide, KAg(CN) ₂ Potassium sodium aluminum fluoride (elpasolite), K ₂ NaAlF ₆ Potassium sodium bromide, K. ₂ Na _{.8} Br Potassium sodium bromide, K. ₄ Na _{.6} Br Potassium sodium bromide,	5 8m 9m 12m 12m	41 50 78 43 62 62
Potassium silicon fluoride (hieratite), K ₂ SiF ₆ Potassium silver cyanide, KAg(CN) ₂ Potassium sodium aluminum fluoride (elpasolite), K ₂ NaAlF ₆ Potassium sodium bromide, K ₂ Na _{.8} Br Potassium sodium bromide, K _{.4} Na _{.6} Br Potassium sodium bromide, K _{.4} Na _{.6} Br Potassium sodium bromide, K _{.4} Na _{.6} Br	5 8m 9m 12m 12m	41 50 78 43 62 62 62
Potassium silicon fluoride (hieratite), K ₂ SiF ₆ Potassium silver cyanide, KAg(CN) ₂ Potassium sodium aluminum fluoride (elpasolite), K ₂ NaAlF ₆ Potassium sodium bromide, K ₂ Na ₈ Br Potassium sodium bromide, K ₄ Na ₆ Br Potassium sodium bromide, K ₆ Na ₄ Br Potassium sodium bromide, K ₆ Na ₄ Br Potassium sodium bromide,	5 8m 9m 12m 12m 12m	41 50 78 43 62 62 62
Potassium silicon fluoride (hieratite), K ₂ SiF ₆ Potassium silver cyanide, KAg(CN) ₂ Potassium sodium aluminum fluoride (elpasolite), K ₂ NaAlF ₆ Potassium sodium bromide, K _{.2} Na _{.8} Br Potassium sodium bromide, K _{.4} Na _{.6} Br Potassium sodium bromide, K _{.6} Na _{.4} Br Potassium sodium bromide, K _{.6} Na _{.4} Br Potassium sodium bromide, K _{.8} Na _{.2} Br	5 8m 9m 12m 12m 12m 12m	41 50 78 43 62 62 62 62
Potassium silicon fluoride (hieratite), K ₂ SiF ₆ Potassium silver cyanide, KAg(CN) ₂ Potassium sodium aluminum fluoride (elpasolite), K ₂ NaAlF ₆ Potassium sodium bromide, K. ₂ Na _{.8} Br Potassium sodium bromide, K. ₄ Na _{.6} Br Potassium sodium bromide, K. ₆ Na _{.4} Br Potassium sodium bromide, K. ₈ Na _{.2} Br Potassium sodium chloride,	5 8m 9m 12m 12m 12m 12m	 41 50 78 43 62 62 62 62 62 62
Potassium silicon fluoride (hieratite), K ₂ SiF ₆ Potassium silver cyanide, KAg(CN) ₂ Potassium sodium aluminum fluoride (elpasolite), K ₂ NaAlF ₆ Potassium sodium bromide, K ₂ Na ₈ Br Potassium sodium bromide, K ₄ Na ₆ Br Potassium sodium bromide, K ₆ Na ₄ Br Potassium sodium bromide, K ₈ Na ₂ Br Potassium sodium chloride, K ₂ Na ₈ Cl	5 8m 9m 12m 12m 12m 12m 12m 12m	41 50 78 43 62 62 62 62 62 63
Potassium silicon fluoride (hieratite), K ₂ SiF ₆ Potassium silver cyanide, KAg(CN) ₂ Potassium sodium aluminum fluoride (elpasolite), K ₂ NaAlF ₆ Potassium sodium bromide, K ₂ Na ₈ Br Potassium sodium bromide, K ₄ Na ₆ Br Potassium sodium bromide, K ₆ Na ₄ Br Potassium sodium bromide, K ₈ Na ₂ Br Potassium sodium bromide, K ₈ Na ₂ Br Potassium sodium chloride, K ₂ Na ₈ Cl Potassium sodium chloride,	5 8m 9m 12m 12m 12m 12m 12m	 41 50 78 43 62 62 62 62 62 63 63
Potassium silicon fluoride (hieratite), K ₂ SiF ₆ Potassium silver cyanide, KAg(CN) ₂ Potassium sodium aluminum fluoride (elpasolite), K ₂ NaAlF ₆ Potassium sodium bromide, K ₂ Na ₈ Br Potassium sodium bromide, K ₄ Na ₆ Br Potassium sodium bromide, K ₆ Na ₄ Br Potassium sodium bromide, K ₈ Na ₂ Br Potassium sodium chloride, K ₂ Na ₈ Cl Potassium sodium chloride, K ₄ Na ₆ Cl	5 8m 9m 12m 12m 12m 12m 12m 12m 12m	 41 50 78 43 62 62 62 62 62 62 63 63
Potassium silicon fluoride (hieratite), K ₂ SiF ₆ Potassium silver cyanide, KAg(CN) ₂ Potassium sodium aluminum fluoride (elpasolite), K ₂ NaAlF ₆ Potassium sodium bromide, K. ₂ Na _{.8} Br Potassium sodium bromide, K. ₄ Na _{.6} Br Potassium sodium bromide, K. ₆ Na _{.4} Br Potassium sodium bromide, K. ₈ Na _{.2} Br Potassium sodium chloride, K. ₂ Na _{.8} Cl Potassium sodium chloride, K. ₄ Na _{.6} Cl Potassium sodium chloride, K. ₄ Na _{.6} Cl Potassium sodium chloride,	5 8m 9m 12m 12m 12m 12m 12m 12m 12m	 41 50 78 43 62 62 62 62 62 62 63 63 63 63
Potassium silicon fluoride (hieratite), K ₂ SiF ₆ Potassium silver cyanide, KAg(CN) ₂ Potassium sodium aluminum fluoride (elpasolite), K ₂ NaAlF ₆ Potassium sodium bromide, K. ₂ Na _{.8} Br Potassium sodium bromide, K. ₄ Na _{.6} Br Potassium sodium bromide, K. ₆ Na _{.4} Br Potassium sodium bromide, K. ₈ Na _{.2} Br Potassium sodium chloride, K. ₂ Na _{.8} Cl Potassium sodium chloride, K. ₄ Na _{.6} Cl Potassium sodium chloride, K. ₄ Na _{.6} Cl Potassium sodium chloride, K. ₄ Na _{.6} Cl Potassium sodium chloride, K. ₆ Na _{.4} Cl Potassium sodium chloride,	5 8m 9m 12m 12m 12m 12m 12m 12m 12m	 41 50 78 43 62 62 62 62 62 63 63 63
Potassium silicon fluoride (hieratite), K ₂ SiF ₆ Potassium silver cyanide, KAg(CN) ₂ Potassium sodium aluminum fluoride (elpasolite), K ₂ NaAlF ₆ Potassium sodium bromide, K ₂ Na ₈ Br Potassium sodium bromide, K ₄ Na ₆ Br Potassium sodium bromide, K ₆ Na ₄ Br Potassium sodium bromide, K ₈ Na ₂ Br Potassium sodium chloride, K ₂ Na ₈ Cl Potassium sodium chloride, K ₄ Na ₆ Cl Potassium sodium chloride, K ₆ Na ₄ Cl Potassium sodium chloride, K ₆ Na ₆ Cl Potassium sodium chloride,	5 8m 9m 12m 12m 12m 12m 12m 12m 12m 12m	 41 50 78 43 62 62 62 62 62 63 63 63 63
Potassium silicon fluoride (hieratite), K ₂ SiF ₆ Potassium silver cyanide, KAg(CN) ₂ Potassium sodium aluminum fluoride (elpasolite), K ₂ NaAlF ₆ Potassium sodium bromide, K ₂ Na ₈ Br Potassium sodium bromide, K ₄ Na ₆ Br Potassium sodium bromide, K ₆ Na ₄ Br Potassium sodium bromide, K ₈ Na ₂ Br Potassium sodium chloride, K ₂ Na ₈ Cl Potassium sodium chloride, K ₄ Na ₆ Cl Potassium sodium chloride, K ₆ Na ₄ Cl Potassium sodium chloride, K ₆ Na ₄ Cl Potassium sodium chloride, K ₆ Na ₄ Cl Potassium sodium chloride, K ₈ Na ₂ Cl Potassium sodium chloride, K ₈ Na ₂ Cl Potassium sodium sulfate.	5 8m 9m 12m 12m 12m 12m 12m 12m 12m	 41 50 78 43 62 62 62 62 63 63 63
Potassium silicon fluoride (hieratite), K ₂ SiF ₆ Potassium silver cyanide, KAg(CN) ₂ Potassium sodium aluminum fluoride (elpasolite), K ₂ NaAlF ₆ Potassium sodium bromide, K. ₂ Na _{.8} Br Potassium sodium bromide, K. ₄ Na _{.6} Br Potassium sodium bromide, K. ₆ Na _{.4} Br Potassium sodium bromide, K. ₆ Na _{.2} Br Potassium sodium chloride, K. ₂ Na _{.8} Cl Potassium sodium chloride, K. ₄ Na _{.6} Cl Potassium sodium chloride, K. ₆ Na _{.4} Cl Potassium sodium chloride, K. ₆ Na _{.2} Cl Potassium sodium sulfate, K. ₆ Na ₁ _{.33} SO ₄	5 8m 9m 12m 12m 12m 12m 12m 12m 12m 12m 12m 6m	 41 50 78 43 62 62 62 62 62 63 63 63 63 48
Potassium silicon fluoride (hieratite), K ₂ SiF ₆ Potassium silver cyanide, KAg(CN) ₂ Potassium sodium aluminum fluoride (elpasolite), K ₂ NaAlF ₆ Potassium sodium bromide, K. ₂ Na _{.8} Br Potassium sodium bromide, K. ₄ Na _{.6} Br Potassium sodium bromide, K. ₆ Na _{.4} Br Potassium sodium bromide, K. ₈ Na _{.2} Br Potassium sodium chloride, K. ₄ Na _{.6} Cl Potassium sodium chloride, K. ₄ Na _{.6} Cl Potassium sodium chloride, K. ₆ Na _{.4} Cl Potassium sodium chloride, K. ₈ Na _{.2} Cl Potassium sodium sulfate, K. ₆₇ Na _{1.33} SO ₄ Potassium sodium sulfate, KNaSO ₄	5 8m 9m 12m 12m 12m 12m 12m 12m 12m 12m 12m 12	41 50 78 43 62 62 62 62 62 63 63 63 63 63 48 50
Potassium silicon fluoride (hieratite), K ₂ SiF ₆ Potassium silver cyanide, KAg(CN) ₂ Potassium sodium aluminum fluoride (elpasolite), K ₂ NaAlF ₆ Potassium sodium bromide, K ₂ Na ₈ Br Potassium sodium bromide, K ₄ Na ₆ Br Potassium sodium bromide, K ₆ Na ₄ Br Potassium sodium bromide, K ₈ Na ₂ Br Potassium sodium chloride, K ₂ Na ₈ Cl Potassium sodium chloride, K ₆ Na ₄ Cl Potassium sodium sulfate, K ₆ Na _{1,33} SO ₄ Potassium sodium sulfate, K ₆ NaSium sodium sulfate, K ₁₃ So ₄ Potassium sodium sulfate, K ₁₆ Na _{1,33} SO ₄ Potassium sodium sulfate,	5 8m 9m 12m 12m 12m 12m 12m 12m 12m 12m 12m 12	41 50 78 43 62 62 62 62 62 63 63 63 63 63 48 50
Potassium silicon fluoride (hieratite), K ₂ SiF ₆ Potassium sodium aluminum fluoride (elpasolite), K ₂ NaAlF ₆ Potassium sodium bromide, K ₂ Na ₈ Br Potassium sodium bromide, K ₄ Na ₆ Br Potassium sodium bromide, K ₆ Na ₄ Br Potassium sodium bromide, K ₈ Na ₂ Br Potassium sodium chloride, K ₂ Na ₈ Cl Potassium sodium chloride, K ₄ Na ₆ Cl Potassium sodium chloride, K ₆ Na ₄ Cl Potassium sodium chloride, K ₆ Na ₂ Cl Potassium sodium sulfate, K ₆ Na ₁ 33SO ₄ Potassium sodium sulfate (aphthitalite), K ₃ Na(SO ₄) ₂	5 8m 9m 12m 12m 12m 12m 12m 12m 12m 12m 12m 6m 6m	41 50 78 43 62 62 62 62 62 63 63 63 63 63 63 48 50 52
Potassium silicon fluoride (hieratite), K ₂ SiF ₆ Potassium sodium aluminum fluoride (elpasolite), K ₂ NaAlF ₆ Potassium sodium bromide, K ₂ Na ₈ Br Potassium sodium bromide, K ₄ Na ₆ Br Potassium sodium bromide, K ₆ Na ₄ Br Potassium sodium bromide, K ₈ Na ₂ Br Potassium sodium chloride, K ₂ Na ₈ Cl Potassium sodium chloride, K ₄ Na ₆ Cl Potassium sodium chloride, K ₆ Na ₄ Cl Potassium sodium chloride, K ₆ Na ₂ Cl Potassium sodium chloride, K ₆ Na ₄ Cl Potassium sodium sulfate, K ₆ Na ₁ 33SO ₄ Potassium sodium sulfate (aphthitalite), K ₃ Na(SO ₄) ₂ Potassium sotium chromium oxide,	5 8m 9m 12m 12m 12m 12m 12m 12m 12m 12m 6m 6m 6m	41 50 78 43 62 62 62 62 62 63 63 63 63 63 63 48 50 52
Potassium silicon fluoride (hieratite), K_2SiF_6 Potassium solium rcyanide, $KAg(CN)_2$ Potassium sodium aluminum fluoride (elpasolite), K_2NaAlF_6 Potassium sodium bromide, K_2Na_8Br Potassium sodium bromide, K_4Na_6Br Potassium sodium bromide, K_6Na_4Br Potassium sodium bromide, K_8Na_2Br Potassium sodium chloride, K_2Na_8Cl Potassium sodium chloride, K_6Na_4Cl Potassium sodium chloride, K_6Na_6Cl Potassium sodium chloride, K_6Na_4Cl Potassium sodium chloride, K_6Na_4Cl Potassium sodium chloride, K_6Na_4Cl Potassium sodium sulfate, $K_6Na_1.33SO_4$ Potassium sodium sulfate (aphthitalite), $K_3Na(SO_4)_2$ Potassium sotium chromium oxide, $K_2Sr(CrO_4)_2$	5 8m 9m 12m 12m 12m 12m 12m 12m 12m 12m 12m 6m 6m 6m 6m 15m	 41 50 78 43 62 62 62 62 62 63 63 63 63 48 50 52 57
Potassium silicon fluoride (hieratite), K_2SiF_6 Potassium silver cyanide, $KAg(CN)_2$ Potassium sodium aluminum fluoride (elpasolite), K_2NaAlF_6 Potassium sodium bromide, K_2Na_8Br Potassium sodium bromide, K_4Na_6Br Potassium sodium bromide, K_6Na_4Br Potassium sodium bromide, K_8Na_2Br Potassium sodium chloride, K_4Na_6C1 Potassium sodium chloride, K_4Na_6C1 Potassium sodium chloride, K_6Na_4C1 Potassium sodium chloride, K_6Na_4C1 Potassium sodium chloride, K_6Na_4C1 Potassium sodium chloride, K_6Na_4C1 Potassium sodium sulfate, $K_67Na_{1,3}3SO_4$ Potassium sodium sulfate (aphthitalite), $K_3Na(SO_4)_2$ Potassium strontium chromium oxide, $K_2Sr(CrO_4)_2$ Potassium strontium phosphate, $KSPO_4$	5 8m 9m 12m 12m 12m 12m 12m 12m 12m 12m 12m 12	41 50 78 43 62 62 62 62 62 63 63 63 63 63 63 48 50 52 57 71
Potassium silicon fluoride (hieratite), K ₂ SiF ₆ Potassium sodium aluminum fluoride (elpasolite), K ₂ NaAlF ₆ Potassium sodium bromide, K _{.2} Na _{.8} Br Potassium sodium bromide, K _{.4} Na _{.6} Br Potassium sodium bromide, K _{.4} Na _{.6} Br Potassium sodium bromide, K _{.4} Na _{.6} Br Potassium sodium bromide, K _{.8} Na _{.2} Br Potassium sodium chloride, K _{.2} Na _{.8} Cl Potassium sodium chloride, K _{.6} Na _{.4} Cl Potassium sodium chloride, K _{.6} Na _{.4} Cl Potassium sodium chloride, K _{.6} Na _{.4} Cl Potassium sodium sulfate, K _{.67} Na _{1.33} SO ₄ Potassium sodium sulfate (aphthitalite), K ₃ Na(SO ₄) ₂ Potassium strontium chromium oxide, K ₂ Sr(CrO ₄) ₂ Potassium strontium phosphate, KSrPO ₄ Potassium solium selenate,	5 8m 9m 12m 12m 12m 12m 12m 12m 12m 12m 12m 12	 41 50 78 43 62 62 62 62 62 63 63 63 48 50 52 57 71
Potassium silicon fluoride (hieratite), K_2SiF_6 Potassium sodium aluminum fluoride (elpasolite), K_2NaAlF_6 Potassium sodium bromide, K_2Na_8Br Potassium sodium bromide, K_4Na_6Br Potassium sodium bromide, K_6Na_4Br Potassium sodium bromide, K_8Na_2Br Potassium sodium chloride, K_2Na_8Cl Potassium sodium chloride, K_4Na_6Cl Potassium sodium chloride, K_6Na_4Cl Potassium sodium chloride, K_6Na_4Cl Potassium sodium chloride, K_6Na_4Cl Potassium sodium chloride, K_6Na_4Cl Potassium sodium sulfate, $K_67Na_{1,3}SO_4$ Potassium sodium sulfate (aphthitalite), $K_3Na(SO_4)_2$ Potassium sodium sulfate, $K_2Sr(CrO_4)_2$ Potassium strontium phosphate, $KSrPO_4$ Potassium strontium selenate, $K_2Sr(SeO_4)_2$	5 8m 9m 12m 12m 12m 12m 12m 12m 12m 12m 12m 12	 41 50 78 43 62 62 62 62 62 63 63 63 48 50 52 57 71 58
Potassium silicon fluoride (hieratite), K_2SiF_6 Potassium silver cyanide, $KAg(CN)_2$ Potassium sodium aluminum fluoride (elpasolite), K_2NaAlF_6 Potassium sodium bromide, K_2Na_8Br Potassium sodium bromide, K_4Na_6Br Potassium sodium bromide, K_6Na_4Br Potassium sodium bromide, K_8Na_2Br Potassium sodium chloride, K_2Na_8Cl Potassium sodium chloride, K_6Na_4Cl Potassium sodium chloride, K_6Na_4Cl Potassium sodium chloride, K_6Na_4Cl Potassium sodium chloride, K_6Na_4Cl Potassium sodium sulfate, $K_6TNa_{1,33}SO_4$ Potassium sodium sulfate (aphthitalite), $K_3Na(SO_4)_2$ Potassium strontium phosphate, $K_2Sr(CrO_4)_2$ Potassium strontium selenate, $K_2Sr(SeO_4)_2$ Potassium sulfate	5 8m 9m 12m 12m 12m 12m 12m 12m 12m 12m 12m 12	 41 50 78 43 62 62 62 62 63 63 63 63 48 50 52 57 71 58
Potassium silicon fluoride (hieratite), K_2SiF_6 Potassium silver cyanide, $KAg(CN)_2$ Potassium sodium aluminum fluoride (elpasolite), K_2NaAlF_6 Potassium sodium bromide, K_2Na_8Br Potassium sodium bromide, K_4Na_6Br Potassium sodium bromide, K_6Na_4Br Potassium sodium bromide, K_2Na_8Cl Potassium sodium chloride, K_2Na_8Cl Potassium sodium chloride, K_6Na_4Cl Potassium sodium chloride, K_6Na_4Cl Potassium sodium sulfate, $K_67Na_{1,3}SO_4$ Potassium sodium sulfate (aphthitalite), $K_3Na(SO_4)_2$ Potassium strontium phosphate, $K_2Sr(CrO_4)_2$ Potassium strontium sulfate (kalistrontite), $K_2Sr(SO_4)_2$	5 8m 9m 12m 12m 12m 12m 12m 12m 12m 12m 12m 12	 41 50 78 43 62 62 62 62 63 63 63 63 63 63 63 63 63 52 57 71 58 31

	vol. or	
	Sec.	Page
Potassium sulfate, K ₂ S ₂ O ₈	17m	64
Potassium sulfate (arcanite), K ₂ SO ₄	3	62
Potassium sulfide. K ₂ S	10m	127
Potassium telluride. KoTe	10m	128
Potassium thiographic, KCNS	8	44
Potassium tin chloride K.SnCl.	6	38
Potassium titanium fluonida K TiF	7	40
Potassium turanium iluoride, K ₂ IIr ₆	11-	40
Potassium tungsten oxide, K ₂ w0 ₄	11Ш	4/
Potassium vanadium oxide, KVO ₃	18m	57
Potassium vanadium oxide, KV ₃ 0 ₈	8m	50
Potassium zinc bromide hydrate,		
$KZnBr_3 \cdot 2H_2O$	11m	104
Potassium zinc fluoride, KZnF ₃	5	51
Potassium zinc fluoride, K ₂ ZnF ₄	10m	46
Potassium zinc iodide hydrate,		
$KZnI_3 \cdot 2H_2O$	11m	107
Potassium zinc sulfate, $K_2 Zn_2 (SO_4)_3$	бт	54
Potassium zinc sulfate hydrate,		
$K_2Zn(SO_4)_2 \cdot 6H_2O$	7m	43
Potassium zinc vanadium oxide		
hydrate, KoZnoVioOse·16HoO	3m	45
Potassium zirconium fluoride.	011	
K-7rF-	Q	46
Praseodymium arsenate PrAso.	400	32
Progoodymium arsonido PrAs	400	67
Presedumium alsenide, FIAS	411	20
Praseodymium chioride, PrCi ₃	1111	39
Praseodymium chloride oxide, Proci	9	4/
Praseodymium fluoride, PrF ₃	5	52
Praseodymium sulfide, PrS	4m	6/
Praseodymium vanadium oxide, PrVO ₄	5m	40
Praseodymium zinc, PrZn	5m	72
Rhenium, Re	2	13
Rhodium, Rh	3	9
Rhodium vanadium, RhV ₃	6т	56
Rubidium aluminum sulfate		
hydrate, $RbA1(SO_4)_2 \cdot 12H_2O$	6	44
Rubidium amide, RbNH2	5m	73
Rubidium barium chromium oxide,		
$Rb_2Ba(CrO_4)_2$	14m	32
Rubidium barium molvbdenum oxide.		
$Bb_Ba(MoO_4)_{a}$	15m	59
Rubidium bromate. RbBrO	8	45
Rubidium bromide RbBr	7	43
Rubidium cadmium chloride high		.5
form BbCdCl (totrocorol)	5 m	1.2
Dubidium andmium ablamida	ЭШ	45
Rubidium cadmium chioride,	E	4.1
low form, RDCdCl ₃ (orthornombic)	ЭШ	41
Rubidium cadmium suffate,	-	15
$Rb_2Cd_2(SU_4)_3$	/m	45
Rubidium calcium chloride, RbCaCl ₃	/m	47
Rubidium calcium fluoride, RbCaF ₃	8m	57
Rubidium calcium sulfate,		
$Rb_2Ca_2(SO_4)_3$	7m	48
Rubidium chlorate, RbClO ₃	8	47
Rubidium chlorate, RbClO ₄	2m	30
Rubidium chloride, RbCl	4	41
Rubidium chromium oxide, Rb ₂ CrO ₄	3m	46
Rubidium chromium oxide, Rb ₂ Cr ₂ O ₇	15m	60
Rubidium chromium sulfate hydrate,		
$RbCr(SO_4)_2 \cdot 12H_2O$	6	47
Rubidium cobalt(II) chloride.		
RbCoCl ₂	6т	57
Rubidium cobalt fluoride, RbCoFo	8m	58
Rubidium cobalt sulfate		
BhoCoo (SO4)	8m	59
Rubidium conper chloride bydrate	Citt	55
Rb_CuCl. •2H_O	10m	47
Rubidium conpor sulfate hydrate	1011	-1
Ph Cu(SO), of O	8m	61
Nb2cu(504)2-0n20	ош	01

.. .

Vol. or	
Sec.	Page

		0			0
Rubidium fluoride. RbF	8m	63	Selenium. Se	5	54
Rubidium iodate. RbIO2	15m	62	Selenium oxide (selenolite). SeO	7m	60
Rubidium iodate RhIO.	2m	31	Silicon Si	13m	35
Rubidium iodide PhI	4	43	Silicon, Si (reference standard)	12m	22
Rubidium iron chloride hydrate	-	45	Silicon nitrido R-Si N	12m	50
Ph Fact an O	1/m	22	Silicon mitride, $p = Si_3N_4$	100	59
Rb2rec15 H20	1 4400	55	(a) (a)	1/-	116
Bb En(SO) (400	9 m	61.	(calculated pattern)	1400	110
$RD_2 re(SO_4)_2 \cdot On_2 O$	ош	04	Silicon oxide (a or low	10	10
Rubidium lead chromium oxide,	1/	21	cristobalite), SiU ₂ (tetragonal)	10	48
$RD_2PD(CrU_4)_2$	14m	34	Silicon oxide (α or low		
Rubidium lead molybdenum oxide,	15.	(0)	cristobalite), SiO ₂ (tetragonal)		
$Rb_2Pb(MoO_4)_2$	15m	63	(calculated pattern)	15m	180
Rubidium magnesium chromium oxide,			Silicon oxide (quartz, low), α -SiO ₂	18m	61
$Rb_2Mg_2(Cr0_4)_3$	8m	66	Silicon oxide (β or high		
Rubidium magnesium chromium oxide		60	cristobalite), SiO ₂ (cubic)	1	42
hydrate, $Rb_2Mg(CrO_4)_2 \cdot 6H_2O$	8m	68	Silver, Ag	1	23
Rubidium magnesium sulfate,			Silver, Ag (reference standard)	8m	2
$Rb_2Mg_2(SO_4)_3$	7m	50	Silver arsenate, Ag ₃ AsO ₄	5	56
Rubidium magnesium sulfate		_	Silver arsenic sulfide,		
hydrate, $Rb_2Mg(SO_4)_2 \cdot 6H_2O$	8m	70	xanthoconite, Ag ₃ AsS ₃	8m	126
Rubidium manganese(II) fluoride,	_		Silver bromate, AgBrO ₃	5	57
RbMnF ₃	5m	44	Silver bromide (bromargyrite), AgBr	4	46
Rubidium manganese sulfate,			Silver carbonate, Ag ₂ CO ₃	13m	36
$Rb_2Mn_2(SO_4)_3$	7 m	52	Silver chlorate, AgClO ₃	7	44
Rubidium nickel(II) chloride,			Silver chloride (chlorargyrite),		
RbNiCl ₃	6m	58	AgC1	4	44
Rubidium nickel sulfate,			Silver chromium oxide, Ag ₂ CrO ₄	12m	30
$Rb_2Ni_2(SO_4)_3$	8m	72	Silver cyanide, AgCN	9m	48
Rubidium nickel sulfate hydrate,			Silver fluoride, Ag ₂ F	5m	53
$Rb_2Ni(SO_4)_2 \cdot 6H_2O$	8m	74	Silver iodate, AgIO ₄	9	49
Rubidium nitrate, RbNO ₃ (trigonal)	5m	45	Silver iodide (iodargyrite), AgI		
Rubidium platinum chloride,			(hexagonal)	8	51
Rb ₂ PtCl ₆	5	53	Silver iodide, Y-AgI (cubic)	9	48
Rubidium platinum fluoride, Rb ₂ PtF ₆	6	48	Silver manganese oxide, AgMnO ₄	7m	155
Rubidium selenate, Rb ₂ SeO ₄	9m	44	Silver mercury iodide, β -Ag ₂ HgI ₄	17m	67
Rubidium silicon fluoride, Rb ₂ SiF ₆	6	49	Silver molybdenum oxide, Ag ₂ MoO ₄	7	45
Rubidium strontium chloride,			Silver nitrate, AgNO ₃	5	59
RbSrCl ₃	7m	54	Silver nitrite, AgNO ₂	5	60
Rubidium strontium chromium oxide,			Silver oxide, Ag ₂ 0	1m	45
$Rb_2Sr(Cr0_4)_2$	15m	64	Silver(II) oxide nitrate, Ag ₇ 0 ₈ NO ₃	4	61
Rubidium strontium sulfate,			Silver phosphate, Ag ₃ PO ₄	5	62
$Rb_2Sr(SO_4)_2$	15m	65	Silver rhenium oxide, AgReO4	8	53
Rubidium sulfate, Rb ₂ SO ₄	8	48	Silver selenate, Ag ₂ SeO ₄	2m	32
Rubidium tellurium bromide,			Silver sodium chloride,		
Rb ₂ TeBr ₆	8	46	$Ag_{0.5}Na_{0.5}C1$	8m	79
Rubidium tellurium chloride,			Silver sulfate, Ag ₂ SO ₄	13m	37
Rb ₂ TeCl ₆	8	48	Silver sulfide (acanthite), Ag ₂ S	10	51
Rubidium tin chloride, Rb ₂ SnCl ₆	6	46	Silver telluride (hessite),		
Rubidium zinc fluoride, RbZnF ₃	7m	57	Ag ₂ Te	19m	73
Rubidium zinc sulfate hydrate,			Silver terbium, AgTb	5m	74
$Rb_2Zn(SO_4)_2 \cdot 6H_2O$	7m	55	Silver thiocyanate, AgCNS	16m	62
Ruthenium, Ru	4	5	Silver thulium, AgTm	5m	74
Ruthenium titanium, RuTi	6m	86	Silver yttrium, AgY	5m	75
Samarium arsenate, SmAsO ₄	4m	33	Sodium, Na	9m	105
Samarium arsenide, SmAs	4m	68	Sodium aluminum chloride silicate,		
Samarium chloride, SmCl ₃	1m	40	sodalite, Na ₈ Al ₆ Cl ₂ (SiO ₄) ₆	7m	158
Samarium chloride oxide, SmOC1	1m	43	Sodium aluminum fluoride (chiolite),		
Samarium fluoride, SmF ₃	1m	41	Na ₅ Al ₃ F ₁₄	16m	63
Samarium oxide, Sm ₂ O ₃ (cubic)	4m	34	Sodium aluminum oxide, β-NaAlO ₂	18m	62
Samarium silver, SmAg	5m	73	Sodium aluminum sulfate hydrate		
Samarium tin oxide, Sm ₂ Sn ₂ O ₇	8m	77	(soda alum), NaAl(SO_4) ₂ ·12H ₂ O	15m	68
Samarium vanadium oxide, SmVO ₄	5m	47	Sodium azide, α -NaN ₃ , at -90 to		
Scandium arsenate, ScAsO ₄	4m	35	-100 °C	8m	129
Scandium arsenide, ScAs	4m	68	Sodium azide, β -NaN ₃	8m	130
Scandium boride, ScB ₂	17m	66	Sodium barium phosphate, NaBaPO4	19m	75
Scandium oxide, Sc ₂ 0 ₃	3	27	Sodium beryllium calcium aluminum		
Scandium phosphate, ScPO ₄	8	50	fluoride oxide silicate, meliphanite,		
Scandium silicate (thortveitite),			$(Na_{0.63}Ca_{1.37})Be(Al_{0.13}Si_{1.87})$		
Sc ₂ Si ₂ O ₇	7m	58	$(F_{0,75}O_{6,25})$	8m	135
Vol.	or				
------	----	------			
Sec		Page			

Sodium beryllium calcium fluoride silicate, leucophanite,		
NaBeCaFSioOo	8m	138
Sodium borate NaBOo	18m	63
Sodium borate Na-B.O.	16m	64
Sodium borate Na. B.O	7m	160
Sodium borate hydroxide hydrate	7.00	100
(borax), $Na_2B_4O_5(OH)_4 \cdot 8H_2O$	16m	66
Sodium boron hydride, NaBH ₄	9	51
Sodium bromate, NaBrO ₃	5	65
Sodium bromide, NaBr	3	47
Sodium bromide chloride,		
NaBr 33Cl 67	11m	49
Sodium bromide chloride,		
NaBr 67Cl 33	11m	50
Sodium calcium aluminum fluoride		
hydrate, thomsenolite,		
$NaCaAlF_6 \cdot H_2O$	8m	132
Sodium calcium carbonate hydrate,		
pirssonite, Na ₂ Ca(CO ₃) ₂ ·2H ₂ O	9m	106
Sodium calcium phosphate, β -NaCaPO ₄	15m	69
Sodium calcium silicate, Na ₂ CaSiO ₄	10m	48
Sodium calcium sulfate (glauberite),		
$Na_2Ca(SO_4)_2$	6m	59
Sodium carbonate hydrate (thermo-		
natrite). Na ₂ CO ₂ ·H ₂ O	8	54
Sodium carbonate sulfate. Na ₄ CO ₂ SO ₄	11m	51
Sodium carbonate sulfate (burkeite).	1 114	51
NacCo (SO.)	11m	52
Sodium carbonate sulfate	* 110	52
Na _c Co _c (SO _c) _c	11m	53
Sodium carbonate sulfate	I I III	55
Na. (CO.). SO.	11m	54
$Na_6(00_3)_{2}SO_4$	2	51
Sodium chlorate, Nacio ₃	2	51
Souting chieferback, $Nacio_4$	7	()
(orthornombic)	/	49
Sodium chiorate nydrate,	17.	(0
	1/m	08
Sodium chioride (nalite), Nati	2	41
Sodium chromium oxide, Na ₂ CrO ₄	9m	48
Sodium chromium oxide hydrate,	0	- 0
$Na_2CrU_4 \cdot 4H_2U$	9m	50
Sodium chromium oxide hydrate,	-	
Na ₂ Cr ₂ 0 ₇ • 2H ₂ 0	/m	62
Sodium chromium oxide sulfate,		
$Na_4(CrO_4)(SO_4)$	11m	55
Sodium cobalt nitrite, $Na_3Co(NO_2)_6$	15m	70
Sodium cobalt(11) sulfate hydrate,		
$Na_2Co(SO_4)_2 \cdot 4H_2O$	6m	61
Sodium cyanate, NaCNO	2m	33
Sodium cyanide, NaCN (cubic)	1	78
Sodium cyanide, NaCN (orthorhombic)		
at 6 °C	1	79
Sodium fluoride (villiaumite), NaF	1	63
Sodium hydrogen carbonate hydrate,		
trona, $Na_3H(CO_3)_2 \cdot 2H_2O$	15m	71
Sodium hydrogen fluoride, NaHF ₂	5	63
Sodium hydrogen phosphate,		
$\operatorname{Na}_{3}\mathrm{H}(\mathrm{PO}_{3})_{4}$	10m	130
Sodium hydrogen silicate hydrate,		
$Na_2H_2SiO_4 \cdot 4H_2O$	7m	163
Sodium hydrogen sulfate hydrate,		
NaHSO ₄ •H ₂ O	9m	52
Sodium hydroxide, NaOH at 300 °C	4m	69
Sodium iodate, NaIO ₃	7	47
Sodium iodate, NaIO ₄	7	48
Sodium iodate hydrate, NaIO3.H20	17m	73
Sodium iodide, Nal	4	31
Sodium iron fluoride, Na ₃ FeF ₆	9m	54
, , , , ,		

Sodium lanthanum fluoride silicate,		
(Na ₂ La ₈)F ₂ (SiO ₄) ₆ Sodium lanthanum molybdenum oxide,	7 m	64
$NaLa(MoO_4)_2$	10m	49
hydroxide silicate, dravite,		
NaMg ₃ Al ₆ B ₃ (OH) ₄ Si ₆ O ₂₇	3m	47
Sodium magnesium carbonate	11m	56
Sodium magnesium sulfate	110	50
(vanthoffite), $Na_6Mg(SO_4)_4$	15m	72
bloedite, $Na_2Mg(SO_4)_2 \cdot 4H_2O$	6т	63
Sodium magnesium sulfate hydrate	1/	25
Sodium manganese(II) fluoride,	140	35
NaMnF ₃	6m	65
Na ₁₂ Mn_7 (SO ₄) ₁₃ ·15H ₂ O	14m	37
Sodium mercury(II) chloride hydrate,		
$NaHgCl_3 \cdot 2H_2O$	6m	66
Sodium molybdenum oxide, Na ₂ MoO ₄	1m	46
Sodium molybdenum oxide, Na ₂ Mo ₂ O ₇	9m	110
Sodium neodymium fluoride silicate,	7m	66
Sodium nickel(II) sulfate hydrate,	7Ш	00
$Na_2Ni(SO_4)_2 \cdot 4H_2O$	6m	68
Sodium niobium oxide (lueshite),	10	~
NaNb0 ₃	18m	64
Sodium nitrate (soda niter), NaNO ₃	6	50
Sodium nitrite, NaNO ₂	4	62
budrate Na (NO)Ea(CN) +2H O	10-	66
Sodium ovido No O	10m	124
Sodium phosphate No P O	200	154
Sodium phosphate, Ma ₃ r ₃ O ₉ Sodium phosphate hydrate.	311	49
$Na_3P_3O_9 \cdot H_2O$	3m	50
Sodium phosphate hydrate,	13m	30
Sodium phosphate hydrate,	1.50	55
β -Na ₄ P ₄ O ₁₂ ·4H ₂ O (triclinic)	2m	35
No P O •6H.O	5m	54
Sodium praseodymium fluoride	Ju	54
silicate, (Na ₂ Pr ₈)F ₂ (SiO ₄) ₆	7m	68
Sodium selenate, Na ₂ SeO ₄	9m	55
Sodium selenide, Na ₂ Se	10m	135
Sodium silicate, $\alpha(III)$, Na ₂ Si ₂ O ₅ .	8m	141
Sodium silicate, β-Na ₂ Si ₂ O ₅	10m	136
Sodium silicon fluoride		
(malladrite), Na ₂ SiF ₆ Sodium strontium phosphate	16m	68
NaSrPO	19m	77
Sodium sulfate. NacSO4	11m	57
Sodium sulfate (thenardite), Na ₂ SO ₄	2	59
Sodium sulfate hydrate,		
$Na_2S_2O_3 \cdot 5H_2O$	17m	74
Sodium sulfide, Na ₂ S	10m	140
Sodium sulfite, Na ₂ SO ₃	3	60
Sodium telluride, Na ₂ Te	10m	141
Sodium tin fluoride, NaSn ₂ F ₅	7m	166
Sodium titanium oxide, Na ₂ Ti ₃ O ₇	16m	69
NaTio(PO4)	10m	70
Sodium tungsten oxide Na-WO.	1m	47
Sodium tungsten(VI) oxide hvdrate.	Tm	
$Na_2WO_4 \cdot 2H_2O$	2m	33
Sodium vanadium oxide, α-NaVO ₂	18m	67
Sodium vanadium oxide, β-NaVO ₃	18m	68

Vol.	or	
Sec		Page

		- /
Sodium zinc fluoride, NaZnF ₃	6m	74
Sodium zinc sulfate hydrate,		
$Na_2Zn(SO_4)_2 \cdot 4H_2O$	6m	72
Sodium zirconium fluoride,		
Na-ZroFat	8m	144
Sodium zirconium phosphate		
No 7r. (PO).	10m	81
Na212(FU4)3 hydroxido	1 ym	01
Strontium aluminum hydroxide,	10-	50
$Sr_3Al_2(OH)_{12}$	10m	50
Strontium aluminum oxide, $Sr_3Al_2O_6$	IUm	52
Strontium arsenate, $Sr_3(AsO_4)_2$	2m	36
Strontium azide, $Sr(N_3)_2$	8m	146
Strontium borate, SrB ₂ O ₄	3m	53
Strontium borate, SrB ₄ 0 ₇	4m	36
Strontium bromate hydrate.		
Sr(Br0a) a Ha0	17m	76
Strontium bromide fluoride SrBrF	10m	54
Strontium bromide huderte	1011	54
Strontium bromide hydrate,	,	(0
SrBr ₂ ·6H ₂ O	4	60
Strontium carbonate (strontianite),		
SrCO ₃	3	56
Strontium chloride, SrCl ₂	4	40
Strontium chloride fluoride, SrClF	10m	55
Strontium chloride hydrate,		
$SrCl_{\circ}:2H_{\circ}O$	11m	58
Strontium chloride hydrate		00
S-01 .4U O	1.	5.9
Srul ₂ on ₂	4	20
Strontium chloride hydroxide		
phosphate, $Sr_5Cl_{65}(OH)_{35}(PO_4)_3$	11m	60
Strontium chromium oxide, SrCr ₂ 07	17m	77
Strontium chromium oxide, Sr ₂ CrO ₄	16m	71
Strontium chromium oxide hydrate,		
$SrCr_00$, $3H_00$, \dots	17m	79
Strontium fluoride SrFe	5	67
Strontium hudrovide $Sr(OH)$.	13m	41
Strontium hydroxide, 51(01) ₂	1.500	41
Strontium hydroxide hydrate,	10-	10
$Sr(OH)_2 \cdot H_2O$	13m	42
Strontium hydroxide hydrate,		
$Sr(OH)_2 \cdot 8H_2O$	13m	43
Strontium indium hydroxide,		
$\operatorname{Sr}_{3}\operatorname{In}_{2}(OH)_{12}$	6m	76
Strontium iodide hydrate.		
SrL. 6H.0	8	58
Strontium iron ovide SrFe. O.	1.8m	69
Strontium monopogo ovido	10/11	0,
Scioncium manganese oxide,	10-	54
Srmo ₃ (cubic)	1010	20
Strontium manganese oxide,		
SrMnO ₃ (hexagonal)	10m	58
Strontium molybdenum oxide, SrMoO ₄	7	50
Strontium nitrate, Sr(NO ₃) ₂	12m	31
Strontium oxide, Sr0	5	68
Strontium oxide, Sr0,	6	52
Strontium oxide hydrate. SrOe · 8He0	11m	61
Strontium phosphate N=Sr-P-0-	11m	62
Strontium phosphate, d-Si21207	11m	64
Strontium phosphate, $a-Sr_3(r_0_4)_2$.	1111	04
Strontium scandium oxide nydrate,		70
$\operatorname{Sr}_3\operatorname{Sc}_2\operatorname{O}_6^{\circ}\operatorname{6H}_2\operatorname{O}^{\circ}$	6m	78
Strontium silicate, Sr ₃ SiO ₅	13m	44
Strontium sulfate (celestite), SrSO ₄	2	61
Strontium sulfide, SrS	7	52
Strontium telluride, SrTe	4m	69
Strontium tin oxide. SrSnO ₂	8m	80
Strontium titanium oxide SrTiO	3	44
Strontium tungsten ovide SrWO.	7	53
Strontium tungsten ovide Sr WO.	12m	30
Strontium tungsten oxide, Sr2w05	150	72
Strontium vanadium oxide, $Sr_3(VU_4)_2$	1.200	13
Strontium zirconium oxide, Sr2rU ₃ .	9	51
Sullamic acid, H ₂ NSO ₃ H	/	54
Sulfur, S (orthorhombic)	9	54

	Vol. or	
	Sec.	Page
Tratelum Tr	1	20
Tantalum, la	8	59
Tellurium, Te	1	26
Tellurium(IV) oxide (paratellurite),		
TeO ₂ (tetragonal)	7	56
Tellurium(IV) oxide, paratellurite,	10	EE
Tellurium(IV) ovide tellurite	10	22
Tella (orthorhombic)	9	57
Terbium arsenate, TbAsO ₄	3m	54
Terbium arsenide, TbAs	5m	75
Terbium nitride, TbN	4m	70
Terbium phosphide, TbP	5m	76
Terbium sulfide ThS	5m	70
Terbium telluride. TbTe	5m	77
Terbium vanadium oxide, TbVO ₄	5m	56
Thallium, α-Tl	16m	73
Thallium aluminum sulfate hydrate,		
$T1A1(S0_4)_2 \cdot 12H_20$	6	53
Thallium(I) arsenate, II_3ASU_4	2m 8m	37
Thallium(I) bromate. TlBrO2	8	60
Thallium bromide, TlBr	7	57
Thallium cadmium sulfate,		
$Tl_2Cd_2(SO_4)_3$	8m	83
Thallium(I) chlorate, TlClO ₄	2m	38
Thallium(I) chlorate, $TICIO_3$	8	51
Thallium (1) chioride, fici		54
Thallium chromium sulfate hydrate,	0	
$T1Cr(S0_4)_2 \cdot 12H_20$	6.	55
Thallium cobalt sulfate,		
$Tl_2Co_2(SO_4)_3$	8m	85
Thallium cobalt sulfate hydrate,	7m	70
Thallium conper sulfate hydrate.	7 111	10
$Tl_2Cu(SO_A)_2 \cdot 6H_2O$	7 m	72
Thallium fluoride, TIF	16m	74
Thallium gallium sulfate hydrate,		
$TlGa(SO_4)_2 \cdot 12H_2O$	6	57
Thallium(I) iodate, $IIIO_3$	0	02
(orthorhombic)	4	53
Thallium iron sulfate hydrate,		
$T1_2Fe(S0_4)_2 \cdot 6H_20$	8m	87
Thallium lead sulfate,	15	7/
$Tl_2Pb(SO_4)_2$ abromium avida	15m	74
TlaMga (CrO ₄)	8m	89
Thallium magnesium sulfate hydrate,		
$T1_2Mg(S0_4)_2 \cdot 6H_20$	7 m	74
Thallium manganese sulfate,		
$Tl_2Mn_2(SO_4)_3$	7m	76
Thallium nickel sulfate hydrate,	7m	78
Thallium(I) nitrate. $TINO_2$	6	58
Thallium oxide (avicennite), Tl_2O_3	16m	77
Thallium(III) oxide, Tl ₂ O ₃	2	28
Thallium(I) phosphate, Tl ₃ PO ₄	7	58
Thallium(III) phosphate, T1PO ₄	7	59
TI. P+Cl.	5	70
Thallium silicon fluoride. TloSiFo	6	56
Thallium strontium sulfate,		
$Tl_2Sr(SO_4)_2$	15m	75
Thallium(I) sulfate, Tl ₂ SO ₄	6	59
Thallium(1) thiocyanate, TICNS	8	54
mainum un chioride, 11250016	0	54

Thallium(I) tungsten oxide, Tl ₂ WO ₄	1m	48	Yttrium var
Thallium zinc sulfate hydrate, Than $2p(SQ) + 6H_{-Q}$	7m	80	Zinc, Zn Zinc alumir
Thereium arsenide. ThAs \dots	4m	70	ZnAl ₂ O ₄
Thorium carbide, ThC	18m	71	Zinc ammine
Thorium nitrate hydrate,			Zinc ammine
$Th(NO_3)_4 \cdot 5H_2O$	18m	72	Zinc antimo
Thorium oxide (thorianite), ThO ₂	1	57	Zinc Arsena
Thulium arsenate, TmAsO ₄	3m	56	$Zn_3(AsO_4)_2$
Thulium arsenide, TmAs	4m	/1	Zinc borate
Thulium nitride, IMN	400	58	Zinc carbon
Thulium telluride TmTe	4m	72	$2 \operatorname{Inc} \operatorname{Cho}_{2}$
Thulium vanadium oxide. TmVO4	5m	57	Zinc chromi
Tin, α -Sn (cubic)	2	12	Zinc cobalt
Tin, β -Sn (tetragonal)	1	24	Zinc cyanic
Tin arsenide, SnAs	. 4m	37	Zinc fluori
Tin arsenide, Sn _{3.8} As ₃	15m	76	Zinc fluori
Tin chloride hydrate, $SnCl_2 \cdot 2H_20$	17m	84	Zinc german
Tin(II) fluoride, SnF ₂	3m	51	Zinc hydrox
Tin hydrogen phosphate, SnHPO ₄	13m	46	hemimorphi
Tin(IV) 10dide, SnI_4	5 /	29	Zinc iodide
Tin(II) oxide (romarchite), Sho	4	20 54	Zinc iron o
Tin sulfide (berndtite) B-SnSat	Q m	57	$2\pi e_2 u_4$.
Tin(II) telluride. SnTe	7	61	
Titanium. Ti	3	4	Zinc molvbo
Titanium carbide, TiC	18m	73	Zinc nitrat
Titanium(III) oxide, TiO _{1.515}	9	59	α -Zn(NO ₃)
Titanium oxide (anatase), TiO ₂	7 m	82	Zinc oxide
Titanium oxide, brookite, TiO ₂			Zinc phosph
(orthorhombic)	3m	57	Zinc phosph
Titanium oxide (rutile), TiO ₂	7m	83	Zinc phosph
Titanium silicide, Ti ₅ Si ₃	8	64	Zinc phosph
Titanium sulfide, IiS_2	4m 8m	1/0	$2n_3(PO_4)_2$
Tupeston W	011	28	Zinc selent
Tungsten W (reference standard)	8m	20	
Tungsten oxide. Wo.	18m	74	ZnSiFe•6H
Tungsten sulfide (tungstenite), WS ₂	8	65	Zinc sulfat
Uranium nitride, UN	'18m	75	Zinc sulfat
Uranium oxide, UO	5m	78	ZnSO ₄ •H ₂ O
Uranium oxide (uraninite), UO ₂	2	33	Zinc sulfat
Uranium selenide, USe	5m	78	$ZnSO_4 \cdot 7H_2$
Uranium telluride, UTe	4m	/3	Zinc sulfic
Vanadium, V	9m	58	(hexagona)
Vanadium(v) oxide (sncherbinaice),	8	66	Linc sulfic
Vanadium sulfide <i>Q</i> =V ₂ S	14m	118	Zinc tellu
Vanadium sulfide, 8-V ₂ S	14m	120	Zinc tin or
Ytterbium arsenate, YbAsO ₄	4m	38	Zinc titan:
Ytterbium arsenide, YbAs	4m	73	Zinc titan:
Ytterbium nitride, YbN	4m	74	Zinc tungs
Ytterbium oxide, Yb ₂ 0 ₃	6m	80	ZnW0 ₄
Ytterbium selenide, YbSe	5m	79	Zirconium,
Ytterbium telluride, YbTe	5m	79	Zirconium
Ytterbium(III) vanadium oxide, YbVO ₄	5m	58	Zirconium
Yttrium, Y YA20	10m 2m	30	Zirconium
Vttrium arsenate, IASU4	2m 4m	74	Zirconium
Yttrium chloride oxide VClO	1m	51	Zirconium
Yttrium chromium oxide, YCrO2	19m	83	ZrOCla•8H
Yttrium oxide, Y ₂ O ₃	3	28	Zirconium
Yttrium phosphate (xenotime), YPO4	8	67	Zirconium
Yttrium sulfide, YS	5m	80	Zirconium
Yttrium telluride, YTe	4m	75	Zirconium
Yttrium titanium oxide, Y ₂ TiO ₅	11m	113	(zircosul

	Vol. or	
	Sec.	Page
	-	
Ittrium vanadium oxide, VU_4	5m 1	59
Zinc, Zinc aluminum oxide (gabnite)	1	10
ZnAl ₂ O ₄	2	38
Zinc ammine bromide, Zn(NH ₂) ₂ Br ₂	11m	68
Zinc ammine chloride, Zn(NH ₃) ₂ Cl ₂	10m	59
Zinc antimony oxide, ZnSb ₂ O ₄	4m	39
Zinc Arsenate Hydrate (koettigite),		
$2n_3(AsU_4)_2 \cdot 8H_2U$	19m	85
Zinc borate, $2n_4B_6U_{13}$	13m	40
Zinc chlorate hydrate.	U	09
$Zn(ClO_A)_2 \cdot 6H_2O$	16m	79
Zinc chromium oxide, ZnCr ₂ O ₄	9m	59
Zinc cobalt oxide, $ZnCo_2O_4$	10m	60
Zinc cyanide, Zn(CN) ₂	5	73
Zinc fluoride, ZnF_2	6	60
Zinc fluoride hydrate, ZhF ₂ ·4H ₂ U.	11m	56
Zinc bydroxide silicate bydrate.	10	0
hemimorphite, Zn ₄ (OH) ₂ Si ₂ O ₇ ·H ₂ O	2	62
Zinc iodide, ZnI ₂	9	60
Zinc iron oxide (franklinite),		
ZnFe ₂ 0 ₄	9m	60
Zinc manganese oxide (hetaerolite),	10	(1
$2nMn_2U_4$ avide $7n$ Me O	10m 7m	01 173
Zinc morybachum oxide, Zh2h0308	7ш	175
α -Zn(NO ₂) ₂ ·6H ₂ O	12m	36
Zinc oxide (zincite), ZnO	2	25
Zinc phosphate, α -Zn ₃ (PO ₄) ₂	16m	80
Zinc phosphate, β -Zn ₃ (PO ₄) ₂	16m	81
Zinc phosphate, γ -Zn ₃ (PO ₄) ₂	16m	83
Zinc phosphate hydrate (hopeite),	16m	95
$2 \ln_3(r_0_4)_2^{-4} \ln_2 0^{-1} \dots \dots \dots \dots \dots \dots \dots$ 7 inc selenide ZnSe	3	23
Zinc silicate (willemite), Zn ₂ SiO ₄	7	62
Zinc silicon fluoride hydrate,		
$\text{ZnSiF}_6 \cdot 6\text{H}_20$	8	70
Zinc sulfate (zinkosite), ZnSO ₄	7	64
Zinc sulfate hydrate (gunningite),	10m	86
7 inc sulfate hydrate (goslarite).	190	80
ZnSO4·7H ₂ O	8	71
Zinc sulfide (wurtzite), α-ZnS		
(hexagonal)	2	14
Zinc sulfide (sphaelerite), β -ZnS		16
(cubic)	2	10
Zinc telluride, Znie \dots	10m	62
Zinc titanium oxide. ZnTiO ₂	13m	49
Zinc titanium oxide, Zn_2TiO_4	12m	37
Zinc tungsten oxide (sanmartinite),		
ZnWO ₄	2m	40
Zirconium, α -Zr	10-	11
Zirconium fluoride, Zrf ₄	10m 5m	60
Zirconium iodate. Zr(IO ₂)	lm	51
Zirconium nitride, ZrN	5m	80
Zirconium oxide, ZrO	5m	81
Zirconium oxide chloride hydrate,		
Zr0Cl ₂ •8H ₂ 0	18m	81
Zirconium phosphide, ZrF	4m	15
Zirconium silicide, Zircon, Zislo ₄	17m	36
Zirconium sulfate hydrate		
(zircosulfate), $Zr(SO_4)_2 \cdot 4H_2O$	7	66

CHI₃ CH₄N₂O CH4N2S CH_5NO_2 CH₅N₃·HC1 CH₅N₃S C₂Ag₂O₄ C₂FeO₄ • 2H₂O $C_2HNa0_4 \cdot H_20$ $C_2H_2CaO_4$ $C_2H_2O_4 \cdot 2H_2O_4$ C2H2O4Pb C₂H₂O₄Sr $C_2H_2O_4Sr \cdot 2H_2O$ C₂H₃KO₄ $C_2H_3NaO_2 \cdot 3H_2O$ $C_2H_4N_2O_2$ $C_2H_5NO_2$ $C_2H_7NO_2$ $\mathtt{C_2H_8N_2} \boldsymbol{\cdot} \mathtt{2HC1}$ $C_2H_8N_2O_4\cdot H_2O_4$ $C_2K_2O_4 \cdot H_2O_4$ $C_2Li_2O_4$ $C_2Na_2O_4$ $C_2O_4Rb_2 \cdot H_2O_2$ $C_3H_7NO_2$ C3H7NO2S C₃H₉N·HC1 $C_4H_3KO_8 \cdot 2H_20$ $C_4H_4CaO_5 \cdot 2H_2O$ $C_4H_4KNaO_6 \cdot 4H_2O$ $\begin{array}{c} C_4 H_4 MnO_6 \\ C_4 H_4 NO_8 Y \cdot H_2 0 \end{array}$ $C_4H_4Na_2O_6 \cdot 2H_2O_6 \cdot 2H_2O_6 + 4H_6CoO_4 \cdot 4H_2O_6$ $C_4H_6Hg_2O_4$ $C_4H_6NiO_4 \cdot 4H_2O$ $C_4H_6O_4Zn \cdot 2H_2O$ $\begin{array}{c} C_4 H_6 O_6 \\ C_4 H_6 O_6 U \cdot 2 H_2 O \end{array}$ $C_4H_7N_3O$ C4H8N808 $C_4H_8N_8O_8$ C4H8N808 $C_4H_8N_8O_8$ $C_4H_{22}B_{20}$ $C_5H_4N_4O_3$ $\begin{array}{c} C_5H_4N_4O_3\\ C_5H_7CuNO_4\cdot 2H_2O\end{array}$ $C_5H_7NO_4Zn \cdot 2H_2O$ $C_5H_8NNaO_4 \cdot H_2O$ $C_5H_9NO_4$ $C_5H_{12}O_4$ $C_6H_3N_3O_7$ $C_6H_5NO_2$ $C_6H_6O_2$ $C_6H_8Cl_2N_4Zn$ C₆H₈N₂·HC1 C₆H₈O₆ C₆H₁₂N₄ $C_{6}H_{12}O_{6}$

	Vol. or	
	Sec.	Page
Indoform	1.8m	34
Urea	7	61
Thiourea	, 17m	83
Ammonium formate	11m	9
Guanidinium chloride	17m	35
Thiosemicarbazide	17m	81
Silver oxalate	9m	47
Iron oxalate hydrate (humboldtine)	10m	24
Sodium hydrogen oxalate hydrate	17m	72
Calcium formate	8	16
Oxalic acid hydrate	16m	55
Lead formate	8	30
Strontium formate	8	55
Strontium formate hydrate (orthorhomb:	ic) 8	56
Potassium formate-formic acid complex	9m	93
Sodium acetate hydrate	15m	66
Glyoxime	8m	102
α-Glycine	17m	34
Ammonium acetate	8m	95
Ethylenediamine Hydrochloride	19m	43
Ammonium oxalate hydrate (oxammite)	7	5
Potassium oxalate hydrate	9m	39
Lithium oxalate	10m	34
Sodium oxalate	6m	70
Rubidium oxalate perhydrate	9m	102
L-Alanine	8m	93
L-Cysteine	11m	86
Trimethylammonium chloride	9m	113
Potassium hydrogen oxalate hydrate	17m	60
Calcium malate hydrate	10m	76
Potassium sodium tartrate hydrate	15m	55
Manganese Tartrate	19m	57
Ammonium yttrium oxalate hydrate	8m	97
Sodium D-tartrate hydrate	11m	110
Cobalt acetate hydrate	12m	19
Mercury acetate	17m	51
Nickel acetate hydrate	13m	31
Zinc acetate hydrate	18m	78
D-Tartaric acid	7m	168
Uranyl acetate hydrate	18m	76
Creatinine	15m	31
α-HMX	l Im	100
β -HMX	lim	102
Octanydro-1,3,5,/-tetranitro-	11	100
1,3,5,/-tetrazocine, alpha-	1 1m	100
Octanydro-1,3,5,7-tetranitro-	11-	100
1,3,5,/-tetrazocine, beta-	11m	102
Dis-(o-Dodecacarborane)	0III 9	154
Unic acid, phase 1 (carc. pattern)	000 16m	134
Oric acid, phase i	1011	110
Zipe elutemete hydrate	7 m 7 m	170
Sodium alutamete hydrate	17m	70
Bele Clutomic poid	17m	22
Pentaeruthrital	17m	55
Picric acid	1/m 16m	56
Nicotinic acid	16m	54
V-Hydroquinope	2 Olli	107
7 inc dijmidezole chloride	7m	123
Phenylhydrazine hydrochloride	17m	56
L-Ascorbic acid	2 / III Rm	90
Hexamethy]enetetramine	17m	37
Dextrose	11m	28
DEACTOR	- 1U	20

		Vol. or	
		Sec.	Page
C ₆ H ₁₂ O ₆	α-D-Glucose	1 1m	28
$C_6H_{15}HoO_{12}S_3 \cdot 9H_2O$	Holmium ethylsulfate hydrate	1m	18
$C_6H_{15}NdO_{12}S_3 \cdot 9H_2O$	Neodymium ethylsulfate hydrate	9	41
C ₇ H ₅ BrO ₂	o-Bromobenzoic acid	16m	22
C ₇ H ₅ C1O ₂	m-Chlorobenzoic acid	16m	30
C ₇ H ₅ FO ₂	p-Fluorobenzoic acid	16m	36
$C_7 H_5 I O_2$	p-lodobenzoic Acid	19m	4/
	Rimolia acid	9m 7m	/8
$C_{7}H_{12}O_{4}$	Mercury o-nhthalate	10m	133
$C_8H_4H_82O_4$	Potassium hydrogen o-nhthalate	10m 4m	30
$C_{0}H_{-}O_{1}T$	Thallium hydrogen nhthalate		75
CoH-NoO-	2.4.6-Trinitrophenetole	8m	152
CeHeOn	p-Anisic acid	16m	11
CeHeNO	Acetanilide (calc. pattern)	14m	38
CeHeNO	Acetanilide	16m	7
CeH ₁ N ₂ NaO ₃	Sodium barbital	16m	157
$C_8H_{12}N_2O_3$	Barbital, form I	15m	126
$C_{8}H_{12}N_{2}O_{3}$	Barbital, form II	15m	128
$C_{8}H_{12}N_{2}O_{3}$	Barbital, form IV	15m	130
$C_{9}H_{14}N_{2}O_{3}$	Metharbital	15m	177
$C_{10}H_{12}N_2O_3$	Allobarbital	14m	41
$C_{10}H_{12}N_2O_8$	Ethylenediaminetetraacetic Acid	19m	45
$C_{10}H_{15}NO \cdot HC1$	(-)-Ephedrine hydrochloride	16m	124
$C_{11}H_{16}N_{2}O_{3}$	Vinbarbital, form I	16m	162
$C_{11}H_{18}N_2O_3$	Amobarbital, form I	15m	114
$C_{11}H_{18}N_2O_3$	Amobarbital, form II	15m	117
$C_{12}H_{10}N_2$	Azobenzene	7 m	86
$C_{12}H_{12}N_2 \cdot 2HC1$	Benzidine hydrochloride	18m	14
$C_{12}H_{12}N_2O_3$	Phenobarbital, form III	16m	144
$C_{12}H_{12}N_{2}O_{3} \cdot 8H_{2}O$	Phenobarbital Hydrate	19m	88
$C_{12}H_{16}Cl_2CuN_8$	Copper tetrapyrazole chloride	8m	31
$C_{12}H_{16}Cl_2N_8Ni$	Nickel tetrapyrazole chloride	8m	44
$C_{12}H_{16}CvN_{10}O_{6}$	Copper tetraimidazole nitrate	13m	24
C ₁₂ H ₁₆ N ₂	(N,N)-Dimethyltryptamine	14m	109
C ₁₂ H ₁₆ N ₂ O	Bufotenine	15m	133
C ₁₂ H ₁₆ N ₂ O	Psilocin	16m	152
$C_{12}H_{22}U_{11}$	Sucrose	11m 7	101
$C_{12}R_{26}N_{2}U_{4}$	nexametnylenedlammonium adipate	/ 11	1/0
$C_{13}n_{20}N_{2}O_{2}$ n_{11}	Procaine hydrochioride	1011	149
$C_{13}n_{21}n_{20}4^{r}$	/sliccydin methanolate	1011	01
C H N S H C H	4-ACECy1-2 -Hudrochloride	1/m	112
	B-Carbamazenine	1.9m	24
	Dibenzovlmethane	7m	115
CreHrsClNsO	Diazenam	14m	106
CieHiaN	N-Phenyl-2-naphthylamine	6m	29
C ₁₇ H ₁₀ ClN ₀ S	Chlorpromazine	14m	60
$C_{12}H_{10}NO_{2} \cdot HC1 \cdot 3H_{2}O$	Morphine hydrochloride hydrate	16m	133
C ₁₇ H ₂₁ NO ₄ •HC1	L-Cocaine hydrochloride	16m	114
$C_{17}H_{25}N \cdot HC1$	Phencyclidine hydrochloride	16m	141
$C_{18}H_{21}NO_3 \cdot HBr \cdot 2H_2O$	Codeine hydrobromide hydrate	16m	117
$C_{18}H_{24}CdN_{14}O_{6}$	Cadmium hexaimidazole nitrate	8m	23
C ₁₈ H ₂₄ N ₁₄ NiO ₆	Nickel hexaimidazole nitrate	7 m	27
C ₁₈ H ₂₈ N ₂ O ₄ S	(+)-Amphetamine sulfate	15m	119
$C_{19}H_{21}NO_4 \cdot HC1 \cdot 2H_2O$	Naloxone hydrochloride hydrate	16m	136
C ₁₉ H ₂₂ N ₂ O	Cinchonine	17m	26
C ₁₉ H ₂₄ N ₂ ·HC1	Imipramine hydrochloride	16m	129
C ₂₀ H ₂₅ NO ₃ ·HC1	Benactyzine hydrochloride	16m	92
C ₂₀ H ₃₄	α-Dihydrophyllocladene, hartite		
	(or bombiccite)	16m	122
C ₂₁ H ₂₃ ClFNO ₂	Haloperidol	16m	127
$C_{21}H_{30}O_{2}$	Cannabidiol	16m	111
$U_{22}H_{25}UIN_{2}OS \cdot 2H_{2}O$	Clopenthixol hydrate	1/m	28
C ₂₂ H ₃₀ O ₄	Δ°-Tetrahydrocannabinolic acid B	10m	160

(h.

		Vol. or	
		Sec.	Page
$C_{24}H_{32}N_2O_2Pd$	Palladium bis-(N-isopropyl-3- ethylsalicylaldiminate)	7m	144
C ₂₅ H ₁₅ N ₆	N-Methylphenazinium-7,7,8,8- tetracyanoquinodimethanide	7m	146
C ₃₃ H ₄₀ N ₂ O ₉	Reserpine	8m	123
-33402-3		O M	120

3.....

108

		Vol. or	
		Sec.	Page
Acetanilide	$C_{e}H_{o}NO$ (calc. pattern)	14m	38
Acetanilide	C ₈ H ₉ NO	16m	7
4-Acetyl-2'-fluorodiphenyl	$C_{14}H_{11}FO$	8m	91
Alanine, L-	CH ₃ CHNH ₂ CO ₂ H	8m	93
Allobarbital	$C_{10}H_{12}N_{2}O_{3}$	14m	41
Amobarbital, form I	$C_{11}H_{18}N_2O_3$	15m	114
Amobarbital, form II	$C_{11}H_{18}N_2O_3$	15m	117
Ammonium acetate	NH ₄ • CH ₃ CO ₂	8m	95
Ammonium formate	NH ₄ HCO ₂	1 1m	9
Ammonium oxalate hydrate (oxammite)	$(NH_4)_2C_2O_4 \cdot H_2O$	7	5
Ammonium yttrium oxalate hydrate	$\mathrm{NH}_{4}\mathrm{Y}(\mathrm{C}_{2}\mathrm{O}_{4})_{2}\cdot\mathrm{H}_{2}\mathrm{O}$	8m	97
Amphetamine sulfate, (+)-	$C_{18}H_{28}N_2O_4S$	15m	119
p-Anisic acid	C ₈ H ₈ O ₃	16m	11
Ascorbic acid, L-	C ₆ H ₈ O ₆	8m	99
Azobenzene	C ₆ H ₅ NNC ₆ H ₅	7m	86
Barbital, form 1	$C_8H_{12}N_2O_3$	15m	126
Barbital, form 11	$C_{8}H_{12}N_{2}O_{3}$	15m	128
Barbital, form IV	$C_8H_{12}N_2O_3$	15m	130
Benactyzine hydrochloride	$C_{20}H_{25}NO_3 \cdot HC1$	16m	92
Benzidine hydrochloride	$C_{12}H_{12}N_2 \cdot 2HCI$	18m	14
o-Bromobenzoic acid	C ₇ H ₅ BrO ₂	16m	22
Bufotenine	$C_{12H_{16}N_2O}$	15m	133
Cadmium hexaimidazole nitrate	$Cd(C_{3}H_{4}N_{2})_{6}(NO_{3})_{2}$	8m	23
Calcium formate	$La(HU)_2 J_2$	8	10
Calcium malate nydrate	$La(U_2L)_2(LH_2LHOH) \cdot 2H_2U$	10m	/0
Camhadididi	$C_{21}n_{30}O_2$	10m	26
m-Chlorohoppeig soid	$C_{15}n_{12}N_{2}O$	100	24
Chlorpromoting	C_{7} C_{1} C_{2} C_{1} C_{2} C_{1} C_{2} C_{1} C_{2} C_{1} C_{2} C_{2} C_{1} C_{2} C_{2	1/m	50
Cinchenine	$C = \frac{1}{2} N O$	14m 17m	26
Clepenthivel bydrote	C_{19}	17m	20
Cobalt acotate bydrate	$C_{22}I_{25}CIN_{205}ZI_{20}$	17m	10
Cocaine hydrachlaride I-	$C_{-H} = NO_{+HC1}$	16m	114
Codeine hydrobromide hydrote	$C_{17}N_{21}NO_{4}$ NO ₂ • HBr • 2H ₂ O	16m	117
Conper glutamate hydrate	$C_{18}(0, C) = (H_{0}NCHCH_{0}CH_{0}) \cdot 2H_{0}O$	7m	110
Copper tetraimidazole nitrate	$Cu(C_2U)_2(n_2)(n_1)_2(n_2)_2(n_2)$	13m	24
Copper tetrapyrazole chloride	$Cu(C_{0}H_{1}N_{0}) + Cl_{0}$	8m	31
Creatinine	$C_{4}H_{-}N_{0}O$	15m	31
Cysteine L-	HSCH ···································	11m	86
Dextrose	Collar Oc	11m	28
Diazepam	C ₁ cH ₁ 2ClN ₂ O	14m	106
Dibenzovlmethane	$(C_{c}H_{c}CO)_{o}CH_{o}$	7m	115
Dihydrophyllocladene, α -, hartite (or	(-85722		
bombiccite)	CaoHad	16m	122
(N.N)-Dimethyltryptamine	C12H16N2	14m	109
bis-(o-Dodecacarborane)	C4B20H22	6m	7
Ephedrine hydrochloride, (-)-	$C_{10}H_{15}NO \cdot HC1$	16m	124
Ethylenediamine hydrochloride	$C_2H_8N_2 \cdot 2HC1$	19m	43
Ethylenediaminitetraacetic acid	$C_{10}H_{12}N_{2}O_{8}$	19m	45
p-Fluorobenzoic acid	C ₇ H ₅ FO ₂	16m	36
Glucose, a-D-	$C_{6}H_{12}O_{6}$	11m	28
Glutamic acid, B-L-	$C_5H_9NO_4$	17m	32
Glycine, α-	$C_2H_5NO_2$	17m	34
Glyoxime	$H_2C_2(NOH)_2$	8m	102
Guanidinium chloride	CH ₅ N ₃ ·HC1	17m	35
Haloperidol	C ₂₁ H ₂₃ C1FNO ₂	16m	127
Hexamethylenediammonium adipate	$(CH_2)_4(CO_2H_3N)_2(CH_2)_6$	7m	121
Hexamethylenetetramine	C ₆ H ₁₂ N ₄	17m	37
HMX, α-	$C_4H_8N_8O_8$	11m	100
HMX, β-	C ₄ H ₈ N ₈ O ₈	11m	102
Holmium ethylsulfate hydrate	$Ho \left[(C_2H_5)SO_4 \right]_3 \cdot 9H_2O$	1m	18
Hydroquinone, y-	HOC ₆ H ₄ OH	8m	107

		Vol. or	
		Sec.	Page
Imipramine hydrochloride	C10H24N2 HC1	16m	129
p-Iodobenzoic acid	C ₇ H ₅ IO ₂	19m	47
Iodoform	CHI3	18m	34
Iron oxalate hydrate (humboldtine)	$FeC_2O_4 \cdot 2H_2O$	10m	24
Lead formate	$Pb(HCO_2)_2$	8	30
Lithium oxalate	$Li_2C_2O_4$	10m	34
Manganese tartrate	$C_4H_4MnO_6$	19m	57
Mercury acelate	$C_4 n_6 n_8 2 U_4$	1/m 10m	51
Methapyrilene hydrochloride	$C_{6} + H_{4} = N_{0} S \cdot HC1$	14m	113
Metharbital	$C_{0H_{14}N_{2}O_{2}}$	15m	177
Methyl sulfonanilide	C ₆ H ₅ NHSO ₂ CH ₃	9m	78
N-Methylphenazinium-7,7,8,8-tetra-			
cyanoquinodimethanide	C ₂₅ H ₁₅ N ₆	7 m	146
Morphine hydrochloride hydrate	$C_{17}H_{19}NO_3 \cdot HC1 \cdot 3H_2O$	16m	133
Naloxone hydrochloride hydrate	$C_{19}H_{21}NO_4 \cdot HC1 \cdot 2H_2O$	16m	136
2-Naphthylamine, N-phenyl-	C ₁₀ H ₇ NHC ₆ H ₅	6m	29
Neodymium ethylsulfate hydrate	Nd $[(C_2H_5)SO_4]_3 \cdot 9H_2O$	9	41
Nickel acetate nydrate	$N1(C_2H_3U_2)_2 \cdot 4H_2U$ N; (C, H, N,) (NO,)	13m 7m	31
Nickel tetranyrazole chloride	$N_1(C_3H_4N_2)_6(NO_3)_2$ Ni(C_H_N_a)_Cl_	7 III 8 m	21
Nicotinic acid	CeHrNO	16m	54
Octahydro-1.3.5.7-tetranitro-	0645102	1011	54
1,3,5,7-tetrazocine (a-HMX)	C ₄ H ₈ N ₈ O ₈	11m	100
Octahydro-1,3,5,7-tetranitro-			
l,3,5,7-tetrazocine (β-HMX)	C ₄ H ₈ N ₈ O ₈	11m	102
Oxalic acid hydrate	$C_2H_2O_4 \cdot 2H_2O$	16m	55
Palladium bis-(N-isopropyl-3-			
ethylsalicylaldiminate)	$Pd(C_{12}H_{16}NO)_2$	7m	144
Pentaerythritol Dheneweliding, hudnoshlavida	$C_{5}H_{12}O_{4}$	17m	55
Phenoharbital form III	$C_{17}H_{25}N$ ·HCI	16m	141
Phenoharbital hydrate	C_{12} C	10m	144
Phenylhydrazine hydrochloride	$C_{e}H_{e}N_{e} \cdot HCl$	17m	56
Picric acid	C _c H ₂ N ₂ O ₇	16m	56
Pimelic acid	(CH ₂) ₅ (CO ₂ H) ₂	7m	153
Potassium formate-formic acid complex	KO ₂ CH·HO ₂ CH	9m	93
Potassium hydrogen o-phthalate	$C_6 H_4 (COOH) (COOK)$	4m	30
Potassium hydrogen oxalate hydrate	$C_4H_3KO_8 \cdot 2H_2O$	17m	60
Potassium oxalate hydrate	$K_2C_2O_4 \cdot H_2O$	9m	39
Potassium oxalate perhydrate	$K_2C_2O_4 \cdot H_2O_2$	9m	96
Potassium sodium tartrate nydrate	$C_4H_4NaU_6^{*4}H_2U$	15m 16m	22
Psilocin	$C_{13}n_{20}N_{2}O_{2} n_{10}$	16m	149
Psilocybin methanolate	CtoHot NoO P	16m	154
Reservine	$C_{22}H_{4}ON_{2}OO$	8m	123
Rubidium oxalate perhydrate	$Rb_2C_2O_4 \cdot H_2O_2$	9m	102
Silver oxalate	$Ag_2C_2O_4$	9m	47
Sodium acetate hydrate	$C_2H_3NaO_2 \cdot 3H_2O$	15m	66
Sodium barbital	$C_8H_{11}N_2NaO_3$	16m	157
Sodium glutamate hydrate	$C_5H_8NNa0_4 \cdot H_20$	17m	70
Sodium hydrogen oxalate hydrate	$C_2HNaO_4 \cdot H_2O$	17m	72
Sodium Oxalate	$Na_2 U_2 U_4$	om 11m	110
Stroptium formate	$(CHO_1 - CO_2Na)_2 \cdot 2\pi_2O$ Sr(CHO_1)-	8	55
Strontium formate hydrate	$Sr(CHO_2)_2$ $Sr(CHO_2)_2 \cdot 2H_2O_2(orthorhombic)$	8	56
Sucrose	$C_{12}H_{22}O_{11}$	11m	66
Tartaric acid, D-	$(CHOHCO_{2}H)_{2}$	7m	168
Δ^9 -Tetrahydrocannabinolic acid B	$C_{22}H_{30}O_{4}$	16m	160
Thallium hydrogen phthalate	C ₈ H ₅ O ₄ Tl	16m	75
Thiosemicarbazide	CH ₅ N ₃ S	17m	81
Thiourea	CH ₄ N ₂ S	17m	83
Trimethylammonium chloride	C ₃ H ₉ N•HCI	9m	113
2,4,0-irinitrophenetole	$C_{8}\pi_{7}\pi_{3}U_{7}$	8m 19	152
llrea	$C_{4}n_{6}O_{6}O_{2}n_{2}O_{6}O_{6}O_{6}O_{6}O_{6}O_{6}O_{6}O_{6$	1000	61
Uric acid, phase 1. (calc. nattern)	C=H_N_O	8m	154
Uric acid (phase 1)	$C_{E}H_{A}N_{A}O_{2}$	16m	78
Vinbarbital, form I	$C_{11}H_{12}N_{2}O_{2}$	16m	162

		Vol. or	
		Sec.	Page
Zinc acetate hydrate	$C_4H_6O_4 \cdot 2H_2O$	18m	78
Zinc diimidazole chloride	$Zn(C_3H_4N_2)_2Cl_2$	7 m	123
Zinc glutamate hydrate,	$Zn(0_2CCHNH_2CH_2CH_2CO_2) \cdot 2H_2O$	7m	170

a

Acanthite, Ag ₂ S	10	51	Clausthalite, PbSe	5	38
Aeschynite CeNbTiOc	3m	24	Clinobisvanite BiVO.	3m	14
Alabandita MnS		11	Compose Cu	1	15
	- 4	11	copper, cu	1	15
Anatase, TiO_2	/m	82	Cordierite, Mg ₂ Al ₄ Si ₅ O ₁₈	1m	28
Andradite, Ca ₃ Fe ₂ Si ₃ O ₁₂	9	22	Corundum, Al ₂ O ₂	9	3
Anglesite PbSO	3	67	Cotunnite PbCl.	1.2m	23
Anhudrita CaSO		65		1200	10
Annydrite, Caso ₄	4	65	covellite, cus	4	13
Annabergite, Ni ₃ (AsO ₄) ₂ ·8H ₂ O	19m	60	Cristobalite (α or low) SiO ₂		
Antarcticite, CaCl ₂ .6H ₂ O	12m	16	(tetragonal)	10	48
Antimony: Sh	3	14	(ristobalite (v er low) SiO	10	
	,	14	criscobarice (a or low) Si02		
Aphthitalite, K ₃ Na(SO ₄) ₂	6m	52	(tetragonal, calculated pattern)	15m	180
Aragonite, CaCO ₃	3	53	Cristobalite (B or high) SiO ₂ (cubic)	1	42
Aragonite CaCO, (calculated nattern)	1/m	44	Crwolithionito Li-Na-Al F	Qm	23
Alagonite, catog (carculated pattern)	141	44		2111	25
Arcanite, K_2SO_4	3	62	Cryptohalite, $(NH_4)_2 SiF_6$	5	5
Arsenic, As	3	6	Cuprite, Cu ₂ O	2	23
Arsenolite. Asolo	1	51	*Derbylite ShFe TicO. (OH)	16m	89
Augestibite Augh	-	10	Direct C	1011	
Aurostibile, $Auso_2$	/	18	*Diamond, C	2	5
Avicennite, Tl_2O_3	16m	77	*Diaspore, Al ₂ O ₃ •H ₂ O	3	41
*Azurite, $Cu_2(OH)_2(CO_2)_2$	10	30	Diopside, CaMg(SiO ₂),	5m	17
*Rahianite Ala - Fee a Sha a O.	16m	87	*Drawite NaMa Al P Si O (OH)	3m	47
"Ballanice, A15.661 C0.09502.95016	100	07	"Diavice, Mang3A16D3516027(00)4	511	4/
Baryte, $BaSO_4$	10m	12	Eitelite, $Na_2Mg(CO_3)_2$	11m	56
Bassanite, CaSO ₄ ·0.5H ₂ O	18m	22	Elpasolite, KoNaAlFe	9m	43
Rerlinite AlPO.	10	3	*Enstatito MaSiO	6	32
$\mathbf{D}_{1} = 1 1 1 1 1 1 1 2 2 2 2 1 1 1 1 1 2 2 2 2 1 1 1 1 1 1 1 1$	10			-	52
Berndtite, SnS_2	9m	57	Epsomite, $MgSO_4 \cdot 7H_2O$	1	30
*Beryl, $Be_3Al_2Si_6O_{18}$	9	13	Eriochalcite, CuCl ₂ ·2H ₂ O	18m	33
Bischofite Mcl. 6Ho0	11m	37	Erythrite Co.(As0.). •8H_0	19m	39
Dismite a Di O	2	17		1/	07
Bismite, α -Bi ₂ O ₃	3m	17	Erythrosiderite, K ₂ Fecl ₅ ·H ₂ U	14m	27
Bismoclite, BiOCl	4	54	Eskolaite, Cr_2O_3	5	22
Bismuth, Bi	3	20	Ettringite, CacAloSoOre+31HoO	8	3
Dignuthinite Di C	5 -	12	Estimation $V C_2(CO)$	0	1.0
	500	15	$rallentidite, \kappa_2 ca(co_3)_2 \dots \dots$	ош	40
Bixbyite, α -Mn ₂ O ₃	11m	95	Farringtonite, Mg ₃ (PO ₄) ₂	19m	55
*Bloedite, Na ₂ Mg(SO ₄) ₂ ·4H ₂ O	бm	63	Fluorapatite, $Ca_{5}F(PO_{4})_{3}$	3m	22
Roehmite Al-O-+H-O	3	38	Fluorite CaF.	1	60
boeimite, A1203 1120	10	100		1	09
*Bombiccite, $C_{20}H_{34}$	Iom	122	Forsterite, Mg_2SiO_4	1	83
Borax, $Na_2B_4O_5(OH)_4 \cdot 8H_2O$	16m	66	Franklinite, ZnFe ₂ O ₄	9m	60
Bromarovrite AgBr	4	46	Fresnoite BasTiSisOs	9m	14
		26		2	20
Bromellice, Beo	1	30	Gannite, $2 n A I_2 O_4$	2	30
*Brookite, TiO ₂	3m	57	Galaxite, MnAl ₂ O ₄	9	35
Brownmillerite, Ca,AloFeo010	16m	28	Galena, PbS	2	18
Prucito Ma(OH)	6	30	Caspoito NiCO	1 m	36
Blucice, $ng(0n)_2$		50	$Gasperce, MIGO_3 \dots \dots \dots \dots$	TI	50
Bunsenite, NiO	1	47	Geikielite, MgTiO ₃	5	43
Burkeite, $Na_6CO_3(SO_4)_2$	11m	52	Gersdorffite, NiAsS	1m	35
*Butlerite Fe(OH)SO. •2H_O	10m	95	$Glauberite Na_Ca(SO_{\star})$	6m	59
		10		1	22
Cadmoselite, CdSe	/	12	Gold, Au	T	33
Calcite, CaCO ₃	2	51	Goslarite, ZnSO ₄ •7H ₂ O	8	71
Calomel, HeoClo	13m	30	Greenockite, CdS	4	15
Compliante Macla 64 0	0 m	50	$C_{\rm max} = M_{\rm m} O(OU)$	11m	07
carnallice, Migcl ₃ on ₂ 0	ош	50	"Groutite, mo(On)	1.111	91
Carobbiite, KF	1	64	Gunningite, ZnSO ₄ ·H ₂ O	19m	86
Cassiterite, SnO ₂	1	54	$Gvpsum$, $CaSO_4 \cdot 2H_2O$	17m	16
Celestite SrS0.	2	61	Halite NaCl	2	41
	1	54		16-	100
Cerianite, CeO_2	1	56	*Hartite, $C_{20}H_{34}$	Iom	122
Cerussite, PbCO ₃	2	56	Hausmannite, Mn_3O_4	10m	- 38
Cervantite. Shold	10	8	Hematite, 0-FeoOn	18m	37
$*$ Chabagita Ca Al Si O ± 124 O	10m	27	\star Unnime unbits $7n$ (OU) Si O \star U O	2	62
"Chabazite, Ca2A14518024 12h20	190	21	Anemimorphile, $2\pi_4(0\pi)_2 3\pi_2 07^{-1}\pi_2 0$.	2	02
Chalcocyanite, $CuSO_4$	3m	29	Hercynite, $FeAl_20_4$	19m	48
Chernovite, YAsO₄	2m	39	Hessite, Ag ₂ Te	19m	73
Chiolite Na-AlaF.	16m	63	Hetzerolite ZnMn_0.	10m	61
Chlanduminite AlCl (U.O.		3		16	10/
chioraluminice, Alci ₃ ·oH ₂ O	/	3	"hexanydroborite, $Ca[B(OH)_4]_2 \cdot 2H_2O$	TOW	104
Chlorargyrite, AgCl	4	44	Hieratite, K ₂ SiF ₆	5	50
Chloromagnesite, MgCl ₂	11m	94	Hoernesite, Mg.(AsO.). 8H.O.	19m	53
Chromatite CaCrO	7	13	Hencite $7n$ (DO) $A/4$ O	16m	25
	10	15	noperce, $2n_3(r_{4})_2 \cdot 4n_20 \cdots \cdots$	1011	00
Chromite, $FeCr_2O_4$	19m	50	Huebnerite, MnWO ₄	2m	24
Chrysoberyl, BeAl ₂ O ₄	9	10	Humboldtine, FeC ₂ O ₄ • 2H ₂ O	10m	24
Cinnabar, HgS	4	17	Humite Mg_F_Si_0.	1m	30
Claudatita Ac O	2-			17~	6
C_{12} udet ite, $AS_2 U_3 \dots \dots \dots \dots \dots$	SW	У	hydromolysite, Fecl ₃ •oH ₂ 0	1/m	40
			Hydrophilite, CaCl ₂	11m	18
*			Ilmenite, FeTiO ₂	15m	34
Natural mineral			, ,		

* Natural mineral

Indialite, Mg ₂ Al ₄ Si ₅ O ₁₈	1m	29
Iodargyrite, AgI	8	51
Iron, α -Fe	4	3
Jacobsite, $MnFe_2O_4$	9	36
*Julgoldite, $Ca_2Fe_3Si_3O_{10}(OH,O)_2(OH)_2$	10m	72
Kalistrontite, $K_2Sr(SO_4)_2$	14m	31
Kleserite, $MgSU_4$ H_2U	10m	40
Koettigite, $2\pi_3(ASU_4)_2 \cdot \delta\pi_2 \cup \ldots \cup$	1911	00 0
Langheinite $K_{-Mg_{-}}(SO_{+})$	6m	40
Larnite β -Ca ₂ SiO.	19m	29
Lautarite. $Ca(IO_2)_2$	14m	12
Lead. Pb	1	34
*Leucophanite, NaCaBeFSi ₂ O ₆	8m	138
Libethenite, Cu ₂ (OH)PO ₄	17m	30
*Liddicoatite, Ca(Li,A1) ₃ A1 ₆ B ₃ Si ₆ O ₂₇		
(0,0H) ₃ (OH,F)	16m	42
Lime, CaO	1	43
Lime, CaO (calculated pattern)	14m	49
*Linarite, CuPb(OH) ₂ (SO ₄)	16m	34
Litharge, Pb0 (red)	2	30
Lithiophosphate, Li ₃ PO ₄	4m	21
Loellingite, FeAs ₂	10	34
Loeweite, $Na_{12}Mg_7(SU_4)_{13} \cdot 15H_2U$	14m	35
Lopezite, $K_2 Cr_2 U_7$	15m	47
$^{\text{Loveringice, Ca}_{72\text{KL}},33(1,11,0,0)}$		
7r = A1 = V = Mp = 0	16m	106
Lueshite NaNb O_{2}	18m	64
Macedonite, PbTiO	5	39
Magnesiochromite. MgCroO4	9	34
Magnesite. MgCO ₂	7	28
Magnetite, Fe ₃ O ₄	5m	31
Malachite, Cu ₂ (OH) ₂ CO ₃	10	31
Malladrite, Na2SiF6	16m	68
Manganolangbeinite, $K_2Mn_2(SO_4)_3$	6m	43
Manganosite, MnO	5	45
Marshite, CuI	4	38
Mascagnite, (NH ₄) ₂ SO ₄	9	8
Massicot, PbO (yellow)	2	32
Matlockite, PbFC1	13m	25
Matteuccite, NaHSO ₄ ·H ₂ O	9m	52
Mayenite, $Ca_{12}AI_{14}O_{33}$	9	20
Melanterite, FeSU ₄ · /H ₂ U	8m	38
No Co Roll Si O F	8 m	125
Na.630a1.37DEAL.13011.8706.251.75 Metaborite HBO.	6m /m	133
Metacinnabar HoS	411	21
Miargyrite, AgSbSo	5m	49
*Millerite. NiS	1m	37
Minium, Pb ₃ O ₄	8	32
Mitscherlichite, K2CuCl4.2H2O	9m	34
Molybdenite, MoS ₂	5	47
Molybdite, MoO ₃	3	30
Monteponite, CdO	2	27
Montroydite, HgO	9	39
Mullite, Al ₆ Si ₂ O ₁₃	3m	3
Nantokite, CuCl	4	35
*Newberyite, $MgHPO_4 \cdot 3H_2O$	7m	139
Nickel-hexahydrite, β -NiSO ₄ ·6H ₂ O	19m	65
Niter, KNU3	3	58
Nitrample, Nn_4NO_3	/	4
Norbergite Mg.F.SiO	10	30
Oldhamite CaS	10	33
	7	15
Otavite. CdCO2	7 7	15 11

	vol. or	
	Sec.	Page
Palladium, Pd	1	21
Palladseite, Pd ₁₇ Se ₁₅	16m	139
Palmierite, $K_2Pb(SO_4)_2$	14m	30
Paraguanajuatite, Bi ₂ Se ₃	18m	16
*Paratellurite, TeO ₂	10	55
Paratellurite, TeO ₂	7	56
Periclase, MgO	1	37
Perovskite, CaTiO ₃	9m	17
*Phenakite, Be_2SiO_4	8	11
Picromerite, $K_2Mg(SO_4)_2 \cdot 6H_2O$	8m	54
*Pirssonite, $Na_2Ca(CO_3)_2 \cdot 2H_2O$	9m	106
Platinum, Pt	1.	31,
Portlandite, $Ca(OH)_2$	1	58
Potash alum, $KAI(SO_4)_2 \cdot 12H_2O$	6	36
Powellite, $CaMoO_4$	_6	22
$Pyrargyrite, Ag_3SbS_3 \dots$	5m	51
Pyrite, FeS_2	5	29
*Pyroaurite, $Mg_6Fe_2CO_3(OH)_{16} \cdot 4H_2O$	IOm	104
Pyrolusite, β -MnO ₂	IOm	39
Pyrope, $Mg_3AI_2(SiO_4)_3$	4m	24
Pyrophanite, MnTiO ₃	15m	42
*Quartz, $S10_2$ (α or low)	3	24
Quartz, Iow, α -S10 ₂	18m	61
Rammelsbergite, NiAs ₂	10	42
Retgersite, $N1SO_4 \cdot 6H_2O$	/	36
Rhodochrosite, MnCO ₃	/	32
Rokunnite, $FeCl_2 \cdot 2H_2O$	llm	32
Romarchite, SnO	4	28
*Roscherite, (monoclinic),		
$Be_2Ca(Fe_3Mg_7)_2AI_{67}(PO_4)_3(OH)_3$	16	
$2H_2O$	16m	96
*Roscherite, (triclinic), $Be_4 Ca_2$		
$(\text{In}_{3.91}\text{Mg}_{.04}\text{Ca}_{.05})(\text{AI}_{.13}\text{Fe}_{.42}\text{Fn}_{.12})$	16	100
$(PO_4)_6(OH)_4 \cdot OH_2O$	16m	100
Rutile, 110_2	/m 10	83
Sairiorite, CoreAs ₄	10	28
Salammoniac, NH ₄ CI	1.2	59
Sandornite, p-BaSi ₂ U ₅	1.5m	10
Samuartinite, $2nw0_4$	2111	40
Scacchite, MnL_2	om	43
$^{\circ}$ Scheelite, $_{dw0_4}$	1/m	10
Schultenite, ronaso ₄	1411	5/
Selenclite Se0	7m	60
Selleite Mar	/ 111	22
Seriarce, hgr ₂	4	21
Sheharbinaite $V_{-}O_{-}$	2	66
\dot{s} Siderite FeO.	15m	32
Silver Ao	1	23
Silver Ag (reference standard)	8m	2
*Sigrenite, MgcFeaCOa(OH)1c*4HaO	10m	103
Skutterudite. CoAsa	10	21
*Smithsonite. ZnCO ₂	8	69
Soda alum, NaAl $(SO_4)_2 \cdot 12H_2O \dots$	15m	68
*Sodalite, Na _o SicAl _c O ₂ Cl ₂	7m	158
Soda niter, NaNO ₃	6	50
Sphaerocobaltite, CoCO3	10	24
Sphalerite, ZnS	2	16
Spinel, MgAl ₂ O ₄	9m	25
Stibnite, Sb ₂ S ₃	5	6
Stilleite, ZnSe	3	23
Stolzite, PbWO ₄	5m	34
Strontianite, SrCO ₃	3	56
Struvite, MgNH ₄ PO ₄ ·6H ₂ O	Зm	41
Sulfur, S (orthorhombic)	9	54
Sylvite, KCl	1	65
Syngenite, $K_2Ca(SO_4)_2 \cdot H_2O$	14m	25
Szmikite, MnSO ₄ ·H ₂ O	16m	49

Tellurantimony, Sb ₂ Te ₃	3m	8
*Tellurite, TeO ₂	9	57
Tellurium, Te	1	26
Tellurobismuthite, Bi ₂ Te ₃	3m	16
Tenorite, CuO	1	49
Teschemacherite, NH ₄ HCO ₃	9	5
Thenardite, Na ₂ SO ₄	2	59
Thermonatrite, Na ₂ CO ₃ ·H ₂ O	8	54
*Thomsenolite, NaCaAlF ₆ ·H ₂ O	8m	132
Thorianite, ThO ₂	1	57
Thortveitite, Sc ₂ Si ₂ O ₇	7 m	58
Tiemannite, HgSe	7	35
Tin, α-Sn (cubic)	2	12
Tin, β -Sn (tetragonal)	1	24
*Topaz, Al ₂ SiO ₄ (F,OH) ₂	1m	4
Trevorite, NiFe ₂ 0 ₄	10	44
Trippkeite, CuAs ₂ O ₄	16m	120
*Trona, Na ₃ H(CO ₃) ₂ ·2H ₂ O	15m	71
Tschermigite, NH ₄ Al(SO ₄) ₂ ·12H ₂ O	6	3
Tungstenite, WS ₂	8	65
Unnamed mineral,		
K _{1.16} Ba _{.72} Fe _{.36} Ti _{5.58} O ₁₃	16m	147
Uraninite, UO ₂	2	33
Uvarovite, Ca ₃ Cr ₂ (SiO ₄) ₃	10	17
*Valentinite, Sb ₂ O ₃	10	6
Vanthoffite, Na ₆ Mg(SO ₄) ₄	15m	72
Villiaumite, NaF	1	63
Vivianite, $Fe_3(PO_4)_2 \cdot 8H_2O$	16m	38
Wakefieldite, YVO ₄	5m	59
Willemite, Zn ₂ SiO ₄	7	62
Witherite, BaCO ₃	2	54
Wulfenite, PbMoO ₄	7	23
Wurtzite, ZnS	2	14
*Xanthoconite, Ag ₃ AsS ₃	8m	126
Xenotime, YPO ₄	8	67
Yavapaiite, KFe(SO ₄) ₂	16m	59
Zinc, Zn	1	16
Zincite, ZnO	2	25
Zinkosite, ZnSO ₄	7	64
*Zircon, ZrSiO ₄	4	68
Zircosulfate, $Zr(SO_4)_2 \cdot 4H_2O$	7	66

-

5

U.S. DEPT. OF COMM. 1. PUBLIC				
	ATION OR	2. Performing Organ. Report No.	3. Publication Date	
BIBLIOGRAPHIC DATA	NU.		December 1092	
SHEET (See instructions) Monogr.	25Sec. 19		December 1902	
4. TITLE AND SUBTITLE				
Standard X-ray Diffraction	n Powder Patte	erns		
Section 19Data for 51 S	ubstances			
5. AUTHOR(S) M. C. Morris, H. H. S. Parker, N.	F. McMurdie, P. Pyrros, a	E. H. Evans, B. Pare	tzkin,	
6. PERFORMING ORGANIZATION (If join	nt or other than NBS	, see instructions)	7. Contract/Grant No.	
NATIONAL BUREAU OF STANDARDS DEPARTMENT OF COMMERCE WASHINGTON, D.C. 20234	JCPDSInt for Diffra Swarthmore	ernational Centre ction Data , PA 19081	8. Type of Report & Period Covered Final	
9. SPONSORING ORGANIZATION NAME	AND COMPLETE A	DDRESS (Street, City, State, ZI	P)	
Some as item 6 shows				
Jame as ricent o above.				
10. SUPPLEMENTARY NOTES				
	a Canad Numb			
LIDPARY OF CONGRESS CATAIO	g card Number	53-61386		
Document describes a computer p	ogram; SF-185, FIP	S Software Summary, is attached	•	
11. ABSTRACT (A 200-word or less facture	al summary of most	significant information. If docur	nent includes a significant	
bibliography or literature survey, ment	ion it here)			
Standard x-ray powder diffraction patterns are presented for 51 substances. These patterns, useful for identification, were obtained by manual or automated diffractometer methods, or were calculated from published crystal structure data. The lattice constants from the experimental work were refined by least-squares methods, and reflections were assigned Miller indices consistent with space group extinctions. Relative intensities, calculated densities, literature references, and				
tometer methods, or were ca lattice constants from the and reflections were assig tions. Relative intensiti	lculated from experimental ned Miller in es, calculate	re obtained by manual published crystal st work were refined by dices consistent with d densities, literatu	or automated diffrac- ructure data. The least-squares methods, space group extinc- ire references, and	
tometer methods, or were ca lattice constants from the and reflections were assig tions. Relative intensiti other relevant data are in	lculated from experimental ned Miller in es, calculate cluded.	re obtained by manual published crystal st work were refined by dices consistent with d densities, literatu	or automated diffrac- ructure data. The least-squares methods, space group extinc- ire references, and	
tometer methods, or were ca lattice constants from the and reflections were assig tions. Relative intensiti other relevant data are in	lculated from experimental ned Miller in es, calculate cluded.	re obtained by manual published crystal st work were refined by dices consistent with d densities, literatu	or automated diffrac- ructure data. The v least-squares methods, a space group extinc- are references, and	
tometer methods, or were ca lattice constants from the and reflections were assig tions. Relative intensiti other relevant data are in	lculated from e experimental ned Miller in es, calculate cluded.	re obtained by manual published crystal st work were refined by dices consistent with d densities, literatu	or automated diffrac- ructure data. The least-squares methods, space group extinc- are references, and	
tometer methods, or were ca lattice constants from the and reflections were assig tions. Relative intensiti other relevant data are in	lculated from e experimental ned Miller in es, calculate cluded.	re obtained by manual published crystal st work were refined by dices consistent with d densities, literatu	or automated diffrac- ructure data. The v least-squares methods, a space group extinc- are references, and	
tometer methods, or were ca lattice constants from the and reflections were assig tions. Relative intensiti other relevant data are in	lculated from experimental ned Miller in es, calculate cluded.	re obtained by manual published crystal st work were refined by dices consistent with d densities, literatu	or automated diffrac- cructure data. The least-squares methods, space group extinc- are references, and	
tometer methods, or were ca lattice constants from the and reflections were assig tions. Relative intensiti other relevant data are in	lculated from e experimental ned Miller in es, calculate cluded.	re obtained by manual published crystal st work were refined by dices consistent with d densities, literatu	or automated diffrac- ructure data. The least-squares methods, space group extinc- are references, and	
tometer methods, or were ca lattice constants from the and reflections were assig tions. Relative intensiti other relevant data are in	lculated from experimental ned Miller in es, calculate cluded.	re obtained by manual published crystal st work were refined by dices consistent with d densities, literatu	or automated diffrac- ructure data. The v least-squares methods, a space group extinc- are references, and	
tometer methods, or were ca lattice constants from the and reflections were assig tions. Relative intensiti other relevant data are in	lculated from e experimental ned Miller in es, calculate cluded.	re obtained by manual published crystal st work were refined by dices consistent with d densities, literatu	or automated diffrac- cructure data. The least-squares methods, space group extinc- are references, and	
tometer methods, or were ca lattice constants from the and reflections were assig tions. Relative intensiti other relevant data are in	lculated from experimental ned Miller in es, calculate cluded.	re obtained by manual published crystal st work were refined by dices consistent with d densities, literatu	or automated diffrac- ructure data. The v least-squares methods, a space group extinc- are references, and	
tometer methods, or were ca lattice constants from the and reflections were assig tions. Relative intensiti other relevant data are in	lculated from experimental ned Miller in es, calculate cluded.	re obtained by manual published crystal st work were refined by dices consistent with d densities, literatu	or automated diffrac- cructure data. The least-squares methods, space group extinc- are references, and	
tometer methods, or were ca lattice constants from the and reflections were assig tions. Relative intensiti other relevant data are in	lculated from e experimental ned Miller in es, calculate cluded.	re obtained by manual published crystal st work were refined by dices consistent with d densities, literatu	or automated diffrac- cructure data. The v least-squares methods, a space group extinc- are references, and	
tometer methods, or were ca lattice constants from the and reflections were assig tions. Relative intensiti other relevant data are in 12. KEY WORDS (Six to twelve entries; al	phabetical order; ca	pitalize only proper names; and	or automated diffrac- cructure data. The v least-squares methods, a space group extinc- ire references, and separate key words by semicolons)	
 tometer methods, or were ca lattice constants from the and reflections were assig tions. Relative intensiti other relevant data are in 12. KEY WORDS (Six to twelve entries; al Crystal structure: densiti 	phabetical order; ca	pitalize only proper names; and	or automated diffrac- cructure data. The pleast-squares methods, a space group extinc- are references, and separate key words by semicolons)	
 tometer methods, or were callattice constants from the and reflections were assigned tions. Relative intensition other relevant data are in 12. KEY WORDS (Six to twelve entries; all Crystal structure; densitiintensities: standard: yer 	phabetical order; ca es; lattice ca	pitalize only proper names; and onstants; powder patter	or automated diffrac- cructure data. The / least-squares methods, space group extinc- ire references, and separate key words by semicolons) erns; reference	
 tometer methods, or were callattice constants from the and reflections were assigned tions. Relative intensitient other relevant data are in 12. KEY WORDS (Six to twelve entries; all Crystal structure; densitient intensities; standard; x-restance) 	phabetical order; ca ay diffraction	pitalize only proper names; and onstants; powder pattern.	or automated diffrac- cructure data. The pleast-squares methods, a space group extinc- are references, and separate key words by semicolons) erns; reference	
 tometer methods, or were callattice constants from the and reflections were assigned tions. Relative intensition other relevant data are in 12. KEY WORDS (Six to twelve entries; all Crystal structure; densitiintensities; standard; x-re 13. AVAILABILITY 	phabetical order; ca es; lattice ca ay diffraction	pitalize only proper names; and onstants; powder patten.	or automated diffrac- cructure data. The / least-squares methods, a space group extinc- are references, and separate key words by semicolons) erns; reference 14. NO. OF PRINTED PAGES	
 tometer methods, or were callattice constants from the and reflections were assigned tions. Relative intensitient other relevant data are in 12. KEY WORDS (Six to twelve entries; all Crystal structure; densitient intensities; standard; x-relations) 13. AVAILABILITY X Unlimited X Experimentation of the standard intensities 	phabetical order; ca es; lattice ca ay diffraction	pitalize only proper names; and onstants; powder patten.	or automated diffrac- cructure data. The pleast-squares methods, a space group extinc- are references, and separate key words by semicolons) erns; reference 14. NO. OF PRINTED PAGES 11.8	
 tometer methods, or were callattice constants from the and reflections were assigned tions. Relative intensitient other relevant data are in 12. KEY WORDS (Six to twelve entries; all Crystal structure; densitient intensities; standard; x-relations) 13. AVAILABILITY X Unlimited For Official Distribution. Do Not State of Doctor State of	phabetical order; ca es; lattice ca ay diffraction Release to NTIS uments, U.S. Govern	<pre>published crystal st work were refined by dices consistent with ed densities, literatu pitalize only proper names; and onstants; powder patten. ment Printing Office, Washingto</pre>	or automated diffrac- cructure data. The pleast-squares methods, a space group extinc- are references, and separate key words by semicolons) erns; reference 14. NO. OF PRINTED PAGES 118 n. D.C.	
<pre>tometer methods, or were ca lattice constants from the and reflections were assig tions. Relative intensiti other relevant data are in 12. KEY WORDS (Six to twelve entries; al Crystal structure; densiti intensities; standard; x-r 13. AVAILABILITY X Unlimited For Official Distribution. Do Not Y Order From Superintendent of Doc 20402.</pre>	phabetical order; ca es; lattice ca ay diffraction Release to NTIS uments, U.S. Govern	<pre>pre obtained by manual published crystal st work were refined by dices consistent with ed densities, literatu pitalize only proper names; and onstants; powder patten. ment Printing Office, Washington TIS) Springfield VA 22161</pre>	or automated diffrac- cructure data. The / least-squares methods, space group extinc- ire references, and separate key words by semicolons) erns; reference 14. NO. OF PRINTED PAGES 118 15. Price \$5.50	
<pre>tometer methods, or were ca lattice constants from the and reflections were assig tions. Relative intensiti other relevant data are in 12. KEY WORDS (Six to twelve entries; al Crystal structure; densiti intensities; standard; x-r 13. AVAILABILITY X Unlimited For Official Distribution. Do Not Y Order From Superintendent of Doc 20402. Crystal Intendent of Doc</pre>	Iculated from e experimental ned Miller in es, calculate cluded. phabetical order; ca es; lattice ca ay diffraction Release to NTIS uments, U.S. Govern formation Service (N	<pre>pre obtained by manual published crystal st work were refined by dices consistent with ed densities, literatu pitalize only proper names; and onstants; powder patten.</pre>	or automated diffrac- cructure data. The / least-squares methods, space group extinc- ire references, and separate key words by semicolons) erns; reference 14. NO. OF PRINTED PAGES 118 15. Price \$5.50	

Instructions Instru INSTRUCTIONS Instructions

FORM NBS-114A: BIBLIOGRAPHIC DATA SHEET. This bibliographic data sheet meets the standards adopted for use by all U.S. Government agencies. It is needed for NTIS processing and must accompany all NBS papers, those appearing in nongovernmental media as well as those in NBS series, since all reports of NBS technical work are normally entered into the NTIS system. For all GPO publications, it becomes an integral part of the document and is widely used by librarians and abstractors.

- Items 1, 2 Complete if information is available; otherwise Publications Office will complete later: If non-NBS publication, state "see item 10" (Enter other agency sponsor's report number if requested to do so, and enter NBSIR number under item 2).
- ,,,,,,,,,,
- Item 3 Complete if known; otherwise Publications Office will complete.
- Items 4, 5 Complete as shown on manuscript. When NBS-114A is resubmitted along with NBS-266, following publication of non-NBS media papers, these items must agree with published paper.
- Item 6 If not NBS, blank out and enter Grantee/Contractor name and address, or if performed jointly, show both.
- Item 7 Complete when applicable.
- Item 8 Enter "Interim," "Final," or period covered.
- Item 9 Enter all sponsors' names and addresses. Include NBS if also a sponsor.
- Item 10 Enter other relevant information, i.e., related or superseded documents. Also used by Publications Office for Library of Congress catalog number, and entry of non-NBS media citation upon receipt of Form NBS-266 from author. Check block if appropriate and attach SF185.
- Item 11, 12 Prepare abstract and key words with special care. These are published separately by NBS, NTIS, and other bibliographic services, and are vital elements in guiding readers to your paper. The key words will be used as entries in a subject index. See NBS Communications Manual for additional guidance.
- Item 13 Indicate "Unlimited" for open-literature documents cleared under NBS editorial procedures, or "For official distribution. Do not release to NTIS" - for limited, restricted, or need-toknow material (See Communications Manual). Publications Office will mark appropriate "order" box and complete Stock Number when known.

Items 14, 15 -Leave blank. To be completed by Publications Office or call Printing and Duplicating for NBSIR's.

NBS TECHNICAL PUBLICATIONS

PERIODICALS

JOURNAL OF RESEARCH—The Journal of Research of the National Bureau of Standards reports NBS research and development in those disciplines of the physical and engineering sciences in which the Bureau is active. These include physics, chemistry, engineering, mathematics, and computer sciences. Papers cover a broad range of subjects, with major emphasis on measurement methodology and the basic technology underlying standardization. Also included from time to time are survey articles on topics closely related to the Bureau's technical and scientific programs. As a special service to subscribers each issue contains complete citations to all recent Bureau publications in both NBS and non-NBS media. Issued six times a year. Annual subscription: domestic \$18; foreign \$22.50. Single copy, \$4.25 domestic; \$5.35 foreign.

NONPERIODICALS

Monographs—Major contributions to the technical literature on various subjects related to the Bureau's scientific and technical activities.

Handbooks—Recommended codes of engineering and industrial practice (including safety codes) developed in cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications—Include proceedings of conferences sponsored by NBS, NBS annual reports, and other special publications appropriate to this grouping such as wall charts, pocket cards, and bibliographies.

Applied Mathematics Series—Mathematical tables, manuals, and studies of special interest to physicists, engineers, chemists, biologists, mathematicians, computer programmers, and others engaged in scientific and technical work.

National Standard Reference Data Series—Provides quantitative data on the physical and chemical properties of materials, compiled from the world's literature and critically evaluated. Developed under a worldwide program coordinated by NBS under the authority of the National Standard Data Act (Public Law 90-396).

NOTE: The principal publication outlet for the foregoing data is the Journal of Physical and Chemical Reference Data (JPCRD) published quarterly for NBS by the American Chemical Society (ACS) and the American Institute of Physics (A1P). Subscriptions, reprints, and supplements available from ACS, 1155 Sixteenth St., NW, Washington, DC 20056. **Building Science Series**—Disseminates technical information developed at the Bureau on building materials, components, systems, and whole structures. The series presents research results, test methods, and performance criteria related to the structural and environmental functions and the durability and safety characteristics of building elements and systems.

Technical Notes—Studies or reports which are complete in themselves but restrictive in their treatment of a subject. Analogous to monographs but not so comprehensive in scope or definitive in treatment of the subject area. Often serve as a vehicle for final reports of work performed at NBS under the sponsorship of other government agencies.

Voluntary Product Standards—Developed under procedures published by the Department of Commerce in Part 10, Title 15, of the Code of Federal Regulations. The standards establish nationally recognized requirements for products, and provide all concerned interests with a basis for common understanding of the characteristics of the products. NBS administers this program as a supplement to the activities of the private sector standardizing organizations.

Consumer Information Series—Practical information, based on NBS research and experience, covering areas of interest to the consumer. Easily understandable language and illustrations provide useful background knowledge for shopping in today's technological marketplace.

Order the above NBS publications from: Superintendent of Documents, Government Printing Office, Washington, DC 20402.

Order the following NBS publications—FIPS and NBSIR's—from the National Technical Information Services, Springfield, VA 22161.

Federal Information Processing Standards Publications (FIPS PUB)—Publications in this series collectively constitute the Federal Information Processing Standards Register. The Register serves as the official source of information in the Federal Government regarding standards issued by NBS pursuant to the Federal Property and Administrative Services Act of 1949 as amended, Public Law 89-306 (79 Stat. 1127), and as implemented by Executive Order 11717 (38 FR 12315, dated May 11, 1973) and Part 6 of Title 15 CFR (Code of Federal Regulations).

NBS Interagency Reports (NBSIR)—A special series of interim or final reports on work performed by NBS for outside sponsors (both government and non-government). In general, initial distribution is handled by the sponsor; public distribution is by the National Technical Information Services, Springfield, VA 22161, in paper copy or microfiche form.

U.S. Department of Commerce National Bureau of Standards

Washington, D.C. 20234 Official Business Penalty for Private Use \$300

POSTAGE AND FEES PAID U.S. DEPARTMENT OF COMMERCE COM-215

> THIRD CLASS BULK RATE