

NATIONAL INSTITUTE OF STANDARDS & TECHNOLOGY Research Information Center Gaithersburg, MD 20899

U.S. DEPARTMENT OF COMMERCE / National Bureau of Standards

Standard X-ray Diffraction Powder Patterns

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards¹ was established by an act of Congress March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau consists of the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Institute for Computer Sciences and Technology, and the Office for Information Programs.

THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of a Center for Radiation Research, an Office of Measurement Services and the following divisions:

Applied Mathematics — Electricity — Mechanics — Heat — Optical Physics — Nuclear Sciences² — Applied Radiation² — Quantum Electronics³ — Electromagnetics³ — Time and Frequency³ — Laboratory Astrophysics² — Cryogenics³.

THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to improved methods of measurement, standards, and data on the properties of well-characterized materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; and develops, produces, and distributes standard reference materials. The Institute consists of the Office of Standard Reference Materials and the following divisions:

Analytical Chemistry — Polymers — Metallurgy — Inorganic Materials — Reactor Radiation — Physical Chemistry.

THE INSTITUTE FOR APPLIED TECHNOLOGY provides technical services to promote the use of available technology and to facilitate technological innovation in industry and Government; cooperates with public and private organizations leading to the development of technological standards (including mandatory safety standards), codes and methods of test; and provides technical advice and services to Government agencies upon request. The Institute consists of a Center for Building Technology and the following divisions and offices:

Engineering and Product Standards — Weights and Measures — Invention and Innovation — Product Evaluation Technology — Electronic Technology — Technical Analysis — Measurement Engineering — Structures, Materials, and Life Safety⁴ — Building Environment⁴ — Technical Evaluation and Application⁴ — Fire Technology.

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides technical services designed to aid Government agencies in improving cost effectiveness in the conduct of their programs through the selection, acquisition, and effective utilization of automatic data processing equipment; and serves as the principal focus within the executive branch for the development of Federal standards for automatic data processing equipment, techniques, and computer languages. The Institute consists of the following divisions:

Computer Services — Systems and Software — Computer Systems Engineering — Information Technology.

THE OFFICE FOR INFORMATION PROGRAMS promotes optimum dissemination and accessibility of scientific information generated within NBS and other agencies of the Federal Government; promotes the development of the National Standard Reference Data System and a system of information analysis centers dealing with the broader aspects of the National Measurement System; provides appropriate services to ensure that the NBS staff has optimum accessibility to the scientific information of the world. The Office consists of the following organizational units:

Office of Standard Reference Data — Office of Information Activities — Office of Technical Publications — Library — Office of International Relations.

¹Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted; mailing address Washington, D.C. 20234.

² Part of the Center for Radiation Research. ³ Located at Boulder, Colorado 80302.

^{*} Part of the Center for Building Technology.

²⁵Section 12—Data for 57 Substances

Howard F. McMurdie, Marlene C. Morris, Eloise H. Evans, Boris Paretzkin, Johan H. de Groot, Camden R. Hubbard and Simon J. Carmel 25-12

nu na

Institute for Materials Research National Bureau of Standards Washington, D.C. 20234

100

556

75

9

U.S. DEPARTMENT OF COMMERCE, Frederick B. Dent, Secretary NATIONAL BUREAU OF STANDARDS, Richard W. Roberts, Director

Issued February 1975

Library of Congress Catalog Card Number: 53-61386

National Bureau of Standards Monograph 25

Section 12—Data for 57 Substances Nat. Bur. Stand. (U.S.), Monogr. 25—Sec. 12, 90 pages (Feb. 1975) CODEN: NBSMA6

> U.S. GOVERNMENT PRINTING OFFICE WASHINGTON: 1975

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 (Order by SD Catalog No. C13.44:25/Sec. 12). Price \$1.50

Page		Page	
------	--	------	--

1

Introduction

Experimental patterns:

Aluminum nitride, AlN	-
Ammonium copper chloride hydrate,	
$(NH_4)_2CuCl_4 \cdot 2H_2O$	6
Barium aluminum oxide, Ba ₃ Al ₂ O ₆	7
Barium chloride hydrate, BaCl ₂ ·2H ₂ O	ç
Barium molybdenum oxide, Ba2MoO5	10
Barium phosphate, Ba3 (PO4)2	12
Barium tungsten oxide, Ba ₂ WO ₅	14
Calcium chloride hydrate (antarcticite),	
CaCl ₂ •6H ₂ O	16
Calcium oxide phosphate, Ca40(PO4)2	17
Cobalt acetate hydrate,	
$Co(C_2H_3O_2)_2 \cdot 4H_2O_{$	19
Cobalt borate, Co ₃ (BO ₃) ₂	20
Cobalt bromide hydrate, CoBr ₂ ·6H ₂ O	21
Cobalt nitrate hydrate, α -Co(NO ₃) ₂ ·6H ₂ O	22
Lead chloride (cotunnite), PbCl2	23
Magnesium titanium oxide, MgTiO4	25
Nickel nitrate hydrate, Ni(NO3)2.6H2O	26
Potassium chromium oxide sulfate,	
$K_2(CrO_4)_{67}(SO_4)_{33}$	27
Potassium chromium oxide sulfate,	
K_2 (CrO ₄) 33 (SO ₄) 67	28
Potassium rubidium chromium oxide,	
KRbCrO ₄	29
Silver chromium oxide, Ag ₂ CrO ₄	30
Strontium nitrate, Sr(NO3)2	31
Strontium tungsten oxide, Sr2WO5	32
Telluric acid, H ₆ TeO ₆	34
Zinc nitrate hydrate, α -Zn(NO ₃) ₂ ·6H ₂ O	36
Zinc titanium oxide, Zn2TiOh	37

Calculated patterns:

Barium calcium nitrate, solid solution series	
Ba $_{75}$ Ca $_{25}$ (NO ₃) ₂ . Ba $_{50}$ Ca $_{50}$ (NO ₃) ₂ . Ba $_{25}$ Ca $_{50}$ (NO ₃) ₂ . Ba $_{25}$ Ca $_{75}$ (NO ₃) ₂ . Barium lead nitrate, solid solution series	38 38 38
$Ba_{67}Pb_{33}(NO_3)_2$ $Ba_{33}Pb_{67}(NO_3)_2$ Barium strontium nitrate, solid solution	40 40
sories	
Ba 75 Sr 25 (NO3) 2 Ba 50 Sr 50 (NO3) 2 Ba 25 Sr 75 (NO3) 2 Calcium lead nitrate, solid solution series Ca 67 Pb 33 (NO3) 2 Ca 33 Pb 67 (NO3) 2 Calcium strontium nitrate, solid solution	42 42 42 42 44
Ca _{.67} Sr _{.33} (NO ₃) ₂ Ca _{.33} Sr _{.67} (NO ₃) ₂ Gallium magnesium, Ga ₂ Mg Gallium magnesium, Ga ₅ Mg ₂ Lead strontium nitrate, solid solution	46 46 48 51
Pb $_{67}$ Sr $_{33}$ (NO ₃) $_{2}$. Pb $_{33}$ Sr $_{67}$ (NO ₃) $_{2}$.	53 53

Lithium silver bromide, solid solution	
series	
Li_8Ag_2Br	55
Li ₆ Ag ₄ Br	55
Li 4Ag 6Br	55
Li 2Ag 8Br	55
Phosphoric acid hydrate, H3PO4 · 2H2O	56
Potassium cerium fluoride, β -KCeF4	59
Potassium sodium bromide, solid solution	
series	
K 8Na 2Br	62
K ₆ Na ₄ Br	62
K 4Na 6Br	52
K 2Na 8Br	62
Potassium sodium chloride, solid solution	
series	
K 8Na 2Cl	63
K 6Na 4C1	53
K 4Na 6Cl.	53
K_2Na_8C1	53
Thorium cobalt, Th ₂ Co ₁₇	54
Thorium iron, Th ₂ Fe ₁₇	57
umulative indices	

Cu

(Circular 539, Volumes 1-10 and Monograph 25, Sections 1-12 inclusive)

1.	Inorganic	70
2.	Organic	83

3.	Mineral	84
----	---------	----

STANDARD X-RAY DIFFRACTION POWDER PATTERNS

The following copies may be obtained from the National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia 22151. Where these publications are identified with a number, it must be used in ordering. They are available in hardcopy or microfiche; the price is not fixed and will be furnished on request.

NBS Publicatio	on		Numb	ber	NBS Public	catio	on		Numb	ber
Circular 539,	Volume Volume Volume Volume Volume Volume Volume Volume	1. .	178 178 178 178 178 178 178 178 178 178	902 903 904 905 906 907 908 909 910 911	Monograph	25,	Section Section Section Section Section Section Section Section	1PB 2PB 3PB 4PB 4PB 6PB 9COM 10COM	178 178 178 178	429 430 431 872 50002 51079 50183

STANDARD X-RAY DIFFRACTION POWDER PATTERNS

Section 12. --- Data for 57 Substances

by

Howard F. McMurdie, Marlene C. Morris, Eloise H. Evans, Boris Paretzkin, and Johan H. de Groot Joint Committee on Powder Diffraction Standards

and

Camden R. Hubbard and Simon J. Carmel National Bureau of Standards

Standard x-ray diffraction patterns are presented for 57 substances. Twentyfive of these patterns represent experimental data and 32 are calculated. The experimental x-ray powder diffraction patterns were obtained with an x-ray diffractometer. All d-values were assigned Miller indices determined by comparison with computed interplanar spacings consistent with space group extinctions. The densities and lattice constants were calculated and the refractive indices were measured whenever possible. The calculated x-ray powder diffraction patterns were computed from published crystal structure data. Both peak height and integrated intensities are reported for the calculated patterns.

Key words: Crystal structure; integrated intensities; lattice constants; peak intensities; powder patterns; reference intensities; standard; x-ray diffraction.

INTRODUCTION

The Powder Diffraction File is a continuing compilation of diffraction patterns gathered from many sources. Produced and published by the Joint Committee on Powder Diffraction Standards, 1 the File is used for identification of crystalline materials by matching d-spacings and diffraction intensity measurements. Under the partial sponsorship of the Joint Committee, the program at the National Bureau of Standards contributes new data to this File. Our work also aids in the evaluation and revision of published x-ray data and in the development of diffraction techniques. This report presents information for 57 compounds (25 experimental and 32 calculated patterns), and is the twenty-second of the series of "Standard X-ray Diffraction Powder Patterns."²

²See previous page for other published volumes.

EXPERIMENTAL POWDER PATTERNS

Sample. The samples used to make NBS patterns were obtained from a variety of sources or were prepared in small quantities in our laboratory. Appropriate annealing or recrystallization of the sample improved the quality of most of the patterns. A check of phase purity was provided by indexing the x-ray pattern. Unless otherwise noted, the spectrographic analyses were done at NBS after preparation of the sample was completed; the limit of detection for the alkali elements was 0.05 weight percent.

Optical data, color. A microscopic inspection for phase purity was also made on the non-opaque materials during the refractive index determination. The latter was done by grain-immersion methods in white light, using oils standardized in sodium light, in the refractive index range 1.40 to 2.1 [Hartshorne and Stuart, 1970].

The names of the sample colors were selected from the ISCC-NBS Centroid Color Charts [1965].

Interplanar spacings. For spacing determinations, a shallow holder was packed with a sample mixed with an internal standard (approximately 5 wt. percent tungsten powder). If tungsten lines were found to interfere with sample lines, silver or silicon was used in place of tungsten. If the internal standard correction varied along the length of the pattern, linear interpolations were used. To avoid errors associated with aberrations at the very top of peaks, the readings of 20 were taken at positions about 20 percent of the way down from the top, and in the center of the peak width. The internal standard correction for each region was then applied to the measured value of 20. We have reported all data as Kal peaks because the internal standard corrections for all regions were established in terms of the Ka1 wavelength.

¹Joint Committee on Powder Diffraction Standards, 1601 Park Lane, Swarthmore, PA. 19081. This Pennsylvania non-profit corporation functions in cooperation with the American Ceramic Society, the American Crystallographic Association, the American Society for Testing and Materials, The Clay Minerals Society, The Institute of Physics, the Mineralogical Association of Canada, the Mineralogical Society of America, The Mineralogical Society of Great Britain and Ireland, the National Association of Corrosion Engineers, and the Société Française de Minéralogie et de Cristallographie.

The internal standards used were of high purity (99.99%). The lattice constants used for them at 25 °C are given in the table below; the 20 angles were computed using cell dimensions uncorrected for index of refraction.

	Calculated 20	Angles, CuKa _l	$\lambda = 1.540598 \text{\AA}$
hkℓ	W a=3.16524Å ±.00004	Ag a=4.08651Å ±.00002	Si a=5.43088Å ±.00004
110	40.262		
111		38.112	28.443
200	58.251	44.295	
211	73.184		
220	86.996	64.437	47.303
310	100.632		
311		77.390	56.123
222	114.923	81.533	
321	131.171		
400	153.535	97.875	69.131
331		110.499	76.377
420		114.914	
422		134.871	88.032
511,	/333	156.737	94.954
440			106.710
531			114.094
620			127.547
533			136.897
444			158.638

The new internal standard Si powder is available as Standard Reference Material 640 [1974]. The lattice constant for the Si was refined from multiple powder data measurements made with tungsten as an internal standard [Swanson et al., 1966]. Cell parameter data were also collected for a single crystal from the boules ground to prepare the powder. The lattice parameters from the two methods agreed within 3 parts in 10⁵ [Hubbard et al.]. D-spacing results using SRM 640 will be in agreement with patterns recorded in this series of monographs since 1966.

All of our spacing measurements were recorded at 25 ± 1 °C on a diffractometer equipped with a focusing graphite or lithium fluoride crystal monochromator located between the sample and the scintillation counter. Pulse height discrimination was used as well. All measurements were performed using copper radiation: λ (CuK α_1 , peak)= 1.540598Å [Deslattes and Henins, 1973].

Structure, lattice constants. The space groups were listed with short Hermann-Maugin symbols as well as the space group numbers given in the International Tables for X-ray Crystallography, Vol. I [1952].

Orthorhombic cell dimensions were arranged according to the Dana convention b>a>c [Palache et al., 1944]. Monoclinic and triclinic lattice constants were transformed if necessary in order to follow the convention of *Crystal Data* [1973]. For primitive cells, the transformed cell axes are an alternate labelling of the reduced cell axes. For centered monoclinic cells, the transformed cell is the centered cell with the three shortest non-coplanar vectors.

A computer program [Evans et al., 1963] assigned hkl's and refined the lattice constants. Cell refinement was based only upon 20 obs values which could be indexed without ambiguity. The program minimized the value $\Sigma(\Theta_{obs}-\Theta_{calc})^2$. The estimated standard deviations (e.s.d.'s) of the reciprocal cell parameters were determined from the inverse matrix of the normal equations. The program calculated the e.s.d.'s of the direct cell constants by the method of propagation of errors. Since 1973, the e.s.d.'s derived by the computer program have been increased by 50% in order to reflect more truly the uncertainty in the lattice constants. A similar increase should also be applied to all lattice constants in earlier publications of this series. In indexing cubic patterns, multiple hkl's were not utilized in the refinement or reported. Instead, the single appropriate index having the largest h was listed. The number of significant figures reported for d-values varied with the symmetry and crystallinity of each sample.

<u>Densities</u>. These were calculated from the specified lattice constants, the Avogadro number 6.0220943×10^{23} [Deslattes et al., 1974] and atomic weights based on carbon 12 [International Union, 1961].

Intensity measurements. It was found that samples which gave satisfactory intensity patterns usually had an average particle size smaller than 10 µm, as recommended by Alexander et al. [1948]. In order to avoid the orientation effects which occur when powdered samples are packed or pressed, a sample holder was made that had in its top face a rectangular cavity which extended to one end of the holder. To prepare the sample, a glass slide was clamped over the top face to form a temporary cavity wall (see Figure 1), and the powdered sample was allowed to drift into the end opening while the holder was held in a vertical

position. With the sample holder returned to a horizontal position, the glass slide was carefully removed so that the sample could be exposed to the x-ray beam (as shown in Figure 2). If the sample powder did not flow readily, or was prone to orient excessively, approximately 50 volume percent of finely ground silica-gel was added as a diluent. The intensities of the diffraction lines were measured as peak heights above background and were expressed in percentages of the strongest line. At least three patterns for intensity measurements were prepared for each sample to check reproducibility.

Reference intensity, $I/I_{corundum}$. For reference intensity measurements, α -Al₂O₃ (corundum) was chosen as an internal standard to be mixed l:1 by weight with the sample. This mixture of two components was mounted in our regular intensity sample holder (see Figures 1 and 2), and the pattern was taken. The reference intensity was then calculated as the direct ratio of the strongest line of the sample to the strongest line of corundum (hexagonal reflection (113)). In a few instances, the strongest line of one of the components coincided with a line of the other. In that case, the second strongest line was measured, and the value for the strongest line was then calculated.

CALCULATED POWDER PATTERNS

Since some substances of interest are not readily available for experimental work, powder patterns were calculated from published crystal structure data. The FORTRAN program used for the computations was developed by Smith [1967] and modified at NBS.

Lattice parameters. Before the computations of the patterns, any necessary changes were made in the lattice constants in order to make them consistent with the revised value of the copper wavelength [Deslattes and Henins, 1973]. Both the altered and the original published values are given. Monoclinic and triclinic lattice constants were transformed if necessary, to follow the convention of *Crystal Data* [1973]. For primitive cells, the transformed cell axes are an alternate labelling of the reduced cell axes. For centered monoclinic cells, the transformed cell is the centered cell with the three shortest noncoplanar vectors.

Scattering factors. Whenever possible, the same scattering factors were used which the author of the reference article specified. Otherwise, the factors were taken directly from the International Tables for X-ray Crystallography, Vol. III, [1962]. The factors were corrected for dispersion if the author had done so.

<u>Thermal parameters</u>. The computer program used thermal parameter data of only two forms, the isotropic B's or the anisotropic β_{ij} 's in the following expressions:

$$e^{(-B \sin^2 \Theta)/\lambda^2}$$
 or

$$e^{-(h^{2}\beta_{11}+k^{2}\beta_{22}+\ell^{2}\beta_{33}+2hk\beta_{12}+2h\ell\beta_{13}+2k\ell\beta_{23})}.$$

Other thermal parameters were converted to one of these two forms. The isotropic parameters were used directly, if given by the structure reference. In a few of our patterns, anisotropic parameters were also used directly as given by the structure reference; in other work, instead of using given anisotropic parameters, approximately equivalent isotropic values were substituted as defined by:

$$B = 4 \left[\frac{\beta_{11}\beta_{22}\beta_{33}}{a^{*2}b^{*2}c^{*2}} \right]^{\frac{1}{3}}$$

Integrated intensities. Intensity calculations were based on the copper $K\alpha_1$ wavelength, 1.540598Å, determined by Deslattes and Henins [1973]. The integrated intensities were computed from formula (1):

(1) $I = F^2$ (Lp) (FAC)

where F is the standard structure factor

FAC is the powder multiplicity

$$Lp = \frac{1 + \cos^2 2\theta}{\sin^2 \theta \cos \theta}$$

The intensities were scaled to the strongest line which was assigned a value of 100. Reflections were not reported which had scaled intensities of 0.1 or less.

<u>Scale factor</u>. For each compound, this factor multiplied by the reported integrated intensities will reproduce the unscaled intensities which were calculated from equation (1).

Peak intensities. The integrated intensities can be transformed to a Cauchy profile with an appropriate variable half-width designated to simulate a diffractometer tracing [Smith, 1967]. The term half-width as used here is defined as the full width at half maximum and was assigned a value of 0.075° at 40° (20, $CuK\alpha_1)$. Then the intensities were summed for the overlapping peak profiles, and the resulting new peak intensities were scaled to the strongest peak height which was assigned a value of 100. Reflections were not reported which had scaled peak heights of 0.1 or less. Adjacent peaks with nearly equal 20 values usually cannot be experimentally resolved; therefore one composite peak was calculated in such instances. The 2Θ angle of this peak was assigned the $hk\ell$ of the reflection having the greatest integrated intensity; a plus sign (+) was used to indicate additional hkl's.

REFERENCES

- Alexander, L., Klug, H. P. and Kummer, E. (1948).
 J. Appl. Phys., 19, No. 8, 742.
- Crystal Data (1973). (3rd. Ed. Published jointly by the U. S. Department of Commerce, National Bureau of Standards, Washington, D. C. 20234, and the Joint Committee on Powder Diffraction Standards, Swarthmore, PA 19081).
- Deslattes, R.D. and Henins, A. (1973). Phys. Rev. Lett. 31, 972.
- Deslattes, R. D., Henins, A., Bowman, H. A., Schoonover, R.M., Carroll, C.L., Barnes, I.L., Machlan, L.A., Moore, L. J., and Shields, W.R. (1974). Phys. Rev. Lett. 33, 463.

- Evans, H.T., Jr., Appleman, D. E. and Handwerker, D.S. (1963). (abs.) Am. Cryst. Assoc. Annual Meeting, Cambridge, Mass. Program, 42.
- Hartshorne, N.H. and Stuart, A. (1970). Crystals and the Polarizing Microscope (Edward Arnold and Co., London, 4th Ed.)
- Hubbard, C. R., Swanson, H. E., and Mauer, F. A. J. Appl. Cryst. (to be published).
- International Tables for X-ray Crystallography, I
 (1952). (The Kynoch Press, Birmingham, Eng.),
 Ibid. III (1962). Pgs. 202, 210, 213, 214.
- International Union of Pure and Applied Chemistry (1961). Chem. Eng. News 39 (4), Nov. 20, 42.
- ISCC-NBS Centroid Color Charts, SRM 2106 (1965), obtainable from the Office of Standard Reference Materials, Room B311, Chemistry Building, National Bureau of Standards, Washington, D.C. 20234. \$5.00 per set.
- Palache, C., Berman, H. and Frondel, C. (1944). Dana's System of Mineralogy (John Wiley and Sons, New York, 7th Ed.), I, 6.
- Smith, D.K. (1967). A Revised Program for Calculating Powder Diffraction Patterns,UCRL 50264, University of California, Lawrence Radiation Laboratory, Livermore, CA. 94551.
- Standard Reference Material 640, Silicon Powder, X-ray Diffraction Standard, obtainable from the Office of Standard Reference Materials, Room B311, Chemistry Building, National Bureau of Standards, Washington, D.C. 20234. \$52.00 per 10 gram unit.
- Swanson, H. E., Morris, M. C., and Evans, E. H. (1966). Nat'l Bur. Std. U.S. Monograph 25, Sec. 4, 3.

20(°)

33.21

36.04

37.92

49.80

59.35

66.05

69.73

71.44

72.63

76.44

81.09

85.94 94.84

98.29

101.06

104.84

109.62

111.12

114.82

118.10

125.11

131.51

136.33

148.28

152.44

155.49

Inte	rnal stand	lard W, a =	3.16524 Å
d (Å)	I	hkl	20 (°)
2 695	100	100	33.0
2.490	60	002	36.0
2 371	80	101	37 9
1,829	25	102	49.8
1.5559	40	110	59.3
1.4133	30	103	66.0
1.3475	5	200	69.7
1.3194	25	112	71.4
1.3007	10	201	72.6
1.2450	1	004	76.4
1.1850	4	202	81.09
1.1301	1	104	85.94
1.0461	9	203	94.84
1.0184	3	210	98.2
0.9978	7	211	101.00
.9720	2	114	104.84
.9425	3	212	109.62
.9340	6	105	111.12
.9142	<1	204	114.82
.8982	4	300	118.10
.8680	10	213	125.1
.8448	5	302	131.5
.8298	1	006	136.3
.8008	5	205	148.28
7021	1	106	152.44
./931			155 40
.7882	<1	214	100.43
.7882	<1	214	100.40
	Inter d(A) 2.695 2.490 2.371 1.829 1.5559 1.4133 1.3475 1.3194 1.3007 1.2450 1.1850 1.1301 1.0461 1.0184 0.9978 .9720 .9425 .9340 .9142 .8982 .8680 .8448 .8298 8008	Internal stand d(Å) I 2.695 100 2.490 60 2.371 80 1.829 25 1.5559 40 1.4133 30 1.3475 5 1.3194 25 1.3007 10 1.2450 1 1.1850 4 1.1301 1 1.0461 9 1.0184 3 0.9978 7 .9720 2 .9425 3 .9340 6 .9142 <1	Internal standard W, a = a a a b I hkl a a b I hkl a a a a a a a a b a a a b b a a b b b a a b b b a a b b b a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a <tha<< td=""></tha<<>

Jeffrey, G. A., Parry, G. S., and Mozzi, R. L. (1956). J. Chem. Phy. 25, 1024. Kohn, J.A., Cotter, P.G., and Potter, R.A. (1956). Am. Mineralogist <u>41</u>, 355. Ott, Z. (1924). Z. Physik <u>22</u>, 201.

References

Sample

The sample was prepared by slow evaporation at room temperature of a 2:1 aqueous solution of NH4Cl and CuCl2.

Major impurities:

0.001-0.01% each: Al and Mg.

Color

Brilliant greenish blue

```
Optical data
  uniaxial (-), N_=1.668, N_=1.640
```

Structure

Tetragonal, P42/mnm (136), Z=2. [Hendricks and Dickinson, 1927]. The structure was refined by Chrobak [1934].

NBS lattice constants of this sample:

$$a = 7.594(1) \overset{\circ}{A}$$

c = 7.967(1)

Density (calculated) 2.005 g/cm³ at 25 °C.

Reference intensity I/I = 1.8

Additional patterns 1. PDF card 1-211 [Hanawalt et al., 1938].

2. Greenberg and Walden [1940].

3. Chrobak [1934].

- 4. PDF card 23-1010 [Swanson et al., 1971].
- 5. PDF card 25-262[Technisch Physische Dienst].

```
References
Chrobak, L. (1934). Z. Krist. 88, 35.
Greenberg, A. L. and Walden, G. H., Jr.
                                             (1940).
  Jour. Chem. Phys. 8, 645.
Hanawalt, J. D., Rinn, H. W. and Frevel, L. K.
  (1938). Ind. Eng. Chem. Anal. Ed. 10, 457.
Hendricks, S. B. and Dickinson, R. G. (1927). J.
  Am. Chem. Soc. 49, 2149.
Swanson, H. E., McMurdie, H.F., Morris, M. C.,
Evans, E. H., Paretzkin, B. (1971). Natl. Bur.
  Std. U. S. Mono. 25, 9, 8.
```

	$CuK\alpha_1 \lambda = 1.540598 \text{ Å}; \text{ temp. } 25\pm1 \text{ °C}$					
	Inter	nal standa	ard W, $a = 3.16$	6524 Å		
	d (Å)	I	hkl	20(°)		
	5.49	100	101	16.12		
	5.37	50	110	16.48		
	3.982	50	002	22.31		
	3.395	20	210	26.23		
-	3.200	25	112	27.86		
	3.124	30	211	28.55		
	2.745	70	202	32.59		
	2.685	90	220	33.35		
	2.585	17	212	34.68		
	2.506	12	103	35.80		
	2.411	8	301	37.26		
	2.404	8	310	37.38		
	2.228	20	222	40.46		
	2.093	9	213	43.18		
	2.058	6	312	43.97		
	2.037	12	321	44.45		
	1.992	20	004	45.50		
	1.899	14	400	47.85		
	1.867	9	114	48.74		
	1.843	8	410	49.42		
	1.794	8	411	50.87		
	1.790	7	330	50.99		
	1.718	5	214	53.27		
	1.713	8	402	53.43		
	1.672	8	412	54.87		
	1.650	4	323	55.67		
	1.632	5	332	56,32		
	1.599	18	224	57.60		
	1.560	5	105	59.18		

Sample The sample was prepared by A. E. Moore of the	СиКај	$\lambda = 1.540$	598 Å; temp. 2	5±1 °C		
Cement and Concrete Association by heating $BaCO_3$ and Al_2O_3 in a Pt crucible at 1400 °C.	Internal standard W, $a = 3.16524 \text{ Å}$					
	d (Å)	I	hkl	20(°)		
Color	F 90	2	220	15 21		
Coloriess	5.82	3	220	15.21		
	4.965	3	311	17.85		
	4.407	1	321	20.13		
Structure	4.120	35	400	21.55		
Cubic, Pa3 (205), $Z = 24$, isostructural with Ca ₃ Al ₂ O ₆ .	3.994	T	410	22.24		
	3.778	9	331	23.53		
NBS lattice constant of this sample:	3.594	2	421	24.75		
0	3.513	2	332	25.33		
a = 16.4750(6)A	3.362	3	422	26.49		
	3.169	13	511	28.14		
Density	3.057	6	432	29.19		
(calculated) 5.008 g/cm ³	3.007	14	521	29.69		
	2,911	100	440	30.69		
	2.870	3	522	31.14		
Reference intensity	2 784	2	531	32 13		
T/T = 1.2	2.704	2	001	52.15		
Corundum - 1.2	2 673	2	611	33 50		
	2.073	2	621	37.00		
Additional matterne	2.574	1	021 E 4 1	24.02		
Additional patterns	2.545	2	541	35.27		
1. PDF card 14-106 [Planz and Muller-Hesse,	2.512	2	533	35.71		
1961]. 2. PDF card 15-331 [Brisi, 1962].	2.457	2	630	36.54		
	2.377	20	444	37.82		
	2.306	7	551	39.02		
References	2,286	1	640	39.38		
Brisi, C. (1962), Ann. Chim. (Rome) 52, 785,	2,263	4	641	39.81		
Planz, E. and Müller-Hesse, H. (1961). Ber. Deut. Keram. Ges. 38, 440.	2.201	5	642	40.97		
Responsible Contraction of Contracti	2.145	5	731	42.09		
	2.110	1	650	42.83		
	2.059	30	800	43.94		
	2.028	1	811	44.64		
	2.012	6	733	45.02		
	21012	J	, 55	15+02		
	1.982	1	821	45.73		
	1.969	2	653	46.05		
	1.941	5	822	46.76		
	1.916	2	831	47.41		
	1.902	3	751	47.77		
	1.878	3	832	48.44		
	1.842	15	840	49.43		
	1,808		753	50.42		
	1.788	2	670	51.05		
	1.776	2	921	51.00		
	1.770	2	521	51.40		
	1.746	1	922	52.36		
	1.727	3	931	52.97		
	1.708	1	852	53.62		
	1.681	20	844	54.56		
	1.6638	2	941	55.16		
	1.6557	4	933	55.45		
	1.6397	4	10.1.0	56.04		
	1.6151	2	10.2.0	56.97		
	1.5926	6	951	57.85		
	1.5706	3	10.3.1	58.74		

d (Å)	I	hkl	20(°)
1.5367	2	953	60.17
1.5234	3	10•4•1	60.75
1.5039) 2	10•4•2	61.62
1.4855	2	11.1.1	62.47
1.4736	5 2	10.5.0	63.03
1,4680) 2	11.2.1	63.30
1.4561	9	880	63,88
1.4301	2 4]]•3•]	64.72
1.4230) 2	11.3.2	65,50
1.4129	3 3	10.6.0	66.08
1.7120	5	1000	00.00
1.4075	5 3	11•4•1	66.36
1.3977	2	11 • 3 • 3	66.89
1.3878	3 2	11•4•2	67.43
1.3825	5 3	965	67.72
1.3731	. 4	12.0.0	68.25
1 2501	4	11.5.1	60.05
1.3591	4	12•2•1	69.05
1.3497) 4	12.2.1	70.41
1.3362	4	11.5.2	70.41
1.3233	2	11.00.3	71.20
1.3105	, 3	11.0.1	72.00
1.3025	5 6	12•4•0	72.51
1.2906	5 4	991	73.29
1.2825	5 3	10.8.1	73.83
1.2598	3 6	13•1•1	75.39
1.2524	1 4	12•5•2	75.91
1 2/01	1	13.2.1	76 15
1.2491	3 5	12.4.4	76.68
1 2315	5 4	13•3•1	77.44
1.2010	5 A	12.6.1	77.96
1 2146		12.6.2	78.72
1.2146	3	12 0 2	10.12
1.2049) 5	13•3•3	79.48
1.1890) 4	888	80.76
1.1798	3 4	13.5.1	81.52
1.1706	5 3	14.1.1	82.30
L			

Barium aluminum oxide, $Ba_3Al_2O_6$ (continued)

Barium chloride hydrate, BaCl₂.2H₂O

```
Sample
  The sample was prepared by slow evaporation at
  room temperature of an aqueous solution of
  BaCl<sub>2</sub>.
Major impurities:
  0.001 to 0.1% each Al, Ca, Si, Sr
  0.0003 to 0.003% Mg
Color
  Colorless.
Optical data
  Biaxial (+), N_{\alpha} = 1.631, N_{\beta} = 1.639, N_{\gamma} = 1.658.
Structure
  Monoclinic P21/n (14), Z=4 [Naray-Szabo and
  Sasvari, 1937]. The structure was determined
  by Jensen [1946] and refined by electron dif-
  fraction by Padmanabhan et al. [1963].
  NBS lattice constants of this sample:
               a = 6.720(1)A
               b = 10.907(2)
               c = 7.135(1)
               \beta = 91.10(2)^{\circ}
Density
   (calculated) 3.103 g/cm<sup>3</sup>
Reference intensity
  I/I = 1.6
Additional patterns
   1. Jensen [1946].
   2. PDF card 11-137 [Amendola, Polytech. Inst.
      of Brooklyn].
   3. PDF card 1-0342 [Hanawalt et al., 1938].
 References
 Hanawalt, J. D., Rinn, H. W., and Frevel, L. K.
   (1938). Ind. Eng. Chem. Anal. Ed. 10, 457.
 Jensen, A. T. (1946). Kgl. Danske Videnskab.
   Selskab Mat. fys. Medd. 22, No. 3.
 Naray-Szabo, S. V., and Sasvari, K.
                                         (1937). Z.
   Krist. 97A, 255.
 Padmanabhan, V.M., Jakkal, V.S., and Shankar, J.
   (1963). Indian J. Pure Appl. Phys. 1, 293.
        CuK\alpha_1 \lambda = 1.540598 A; temp. 25±1 °C
        Internal standard W, a = 3.16524 A
                                            2⊖(°)
    đ (Å)
                    Ι
                              hkl
                    7
                                            14.84
                               011
    5.96
                                            15.49
                   12
                              110
    5.72
                                            16.26
                   85
                               020
    5.45
                                            17.95
                              101
                   60
    4.94
                   20
                              101
                                            18.30
    4.84
```

d (Å)	I	hkl	20 (°)
4.50	55	Ī11	19.72
4.42	100	111	20.05
4.33	17	021	20.49
4.23	2	<u>1</u> 20	20.99
3.661	45	Ī21	24.29
3.622	17	121	24.56
3.569	15	002	24.93
3.390	55	012	26.27
3.359	25	200	26.51
3.240	12	031	27.51
3.213	30	210	27.74
3.200	25	130	27.86
3.048	3	112	29.28
3.003	10	112	29.73
2.948	50	211	30.29
2.928	65	131	30.51
2.908	90	131,211	30.72
2.861	45	220	31.24
2.712	50	122	33.00
2.671	15	221	33.52
2.547	75	041,032	35.21
2.527	18	140	35.49
2.469	10	202,230	36.36
2.423	18	202	37.08
2.409	42	212	37.29
2.388	18	141	37.64
2.365	19	212	38.01
2.343	20	231	38.39
2.324	3	013,231	38.72
2.256	25	103	39.93
2.229	25	103	40.44
2.214	20	222	40.72
2.209	30	113	40.82
2.148	13	301	42.02
2.116	13	240	42.68
2.085	50	311,Ī23	43.37
2.073	30	150,320	43.62
2.068	35	Ī42	43.74
2.061	25	123,142	43.90
2.042	13	Ž32	44.33
2.0226	12	241	44.77
1.9985	19	321	45.34
1.9886	12	033,151	45.58
1.9069	4	330	47.65
1.8610	4	052	48.90
1.8343	3	331	49.66
1.8182	4	060	50.13
1.7834	3	004	51.18

Sample The sample was prepared at NBS by T. Negas by heating BaCO3 and MoO3 in stoichiometric pro-	СиКа1	CuK α_1 λ = 1.540598 Å; temp. 25±1 °C			
portions at 900 °C in a gold envelope for 4 days. Fine grained material was unstable when	Inter	mal standa	rd Ag, a = 4.08	3651 A	
exposed to air.	d (A)	I	hkl	20(°)	
0-1	6.21	6	110	14.26	
Colorless	5.09	3	020	17 23	
01011655	4 516	2	120	19 64	
	4.227	2	111	21.00	
Structure				21.00	
Orthorhombic, Pnam(62), Z=4, isostructural with	3.703	2	200	24.01	
K ₂ VO ₂ F ₃ . The structure of Ba ₂ MoO ₅ was deter-	3.556	16	121	25.02	
mined by Negas and Roth [1974].	3,521	19	210	25.27	
	3.378	7	130	26.36	
NBS lattice constants of this sample:	3.168	100	031	28.14	
a = 7.4097(7)A	3.114	45	201	28.64	
b = 11.3906(8)	3.105	65	220	28.73	
c = 5.7603(6)	3.005	60	211	29.71	
	2.914	4	131	30.66	
	2.880	45	002	31.03	
Density	0.017		0.10		
(calculated) 6.156 g/cm ²	2.847	1	040	31.39	
	2.731	20	221	32.76	
Defense intensite	2.052	13	230	33.//	
$\frac{1}{T} = 2 4$	2.420	18	310,141	30.99	
^{1/1} corundum ^{2.4}	2.415	10	310,141	57.25	
	2.258	17	240	39.90	
Additional patterns	2.230	1/5	212	40.42	
1. Yanushkevich and Zhukovskii [1972].	2.191	11	132	41.16	
	2.176	17	150	41.46	
	2.111	40	222	42.80	
References	2 1 01	0	241	42 01	
Negas, T. and Koth, K.S. (1974). (Private commu-	2.101	5	241	43.01	
Nication, to be published.) Vanuchkeyich T M and Zhukovskij, V M (1972).	1 950	13	232	46.53	
Inorg Materials 8, 1794	1.941	7	250	46.77	
morg, natoriaro o, 1794.	1.898	8	060	47.88	
	1.866	1	340	48.76	
	1.852	3	400	49.15	
	1.839	10	251,160	49.52	
	1.777	9	242	51.38	
	1./04	10	401	51.70	
	1.752	6	161	52.15	
	1.7428	7	411	52.46	
	1.7373	6	152	52.64	
	1.7134	15	033	53.43	
	1.7049	4	203	53.72	
	1 6895	10	260	54 25	
	1 6860	15	213	54.25	
	1.6809	6	332	54.55	
	1.6654	12	430	55.10	
	1.6335	4	223	56.27	
	1.6214	6	261	56.73	
	1.6094	4	252	57 57	
	1 5997	1	431	57.99	
	1 5848	10	062	58.16	
	1,5040	10	002	50.10	

d (Å)	I	hkl	20(°)
1.5660	1	342,071	58.93
1.5578	4	402	59.27
1 5559	1	1/3 233	59 35
1.5555	4	160	59.55
1.5495	3	162	59.62
1.5028	4	422	61.67
1.4686	2	053	63.27
1.4626	2	243	63.56
1,4572	8	262.361	63.82
1 4476	3	352	64 29
1 4417	10	422	64.59
1.441/	19	452	04.55
1.4372	4	450	64.82
1.4239	2	511,080	65.50
1.3984	2	180	66.85
1.3943	2	451	67.07
1.3917	5	521,172	67.21
100017	5		
1.3653	3	253	68.69
1.3589	5	370,181	69.06
1.3424	1	531,204	70.03
1.3384	2	343	70.27
1.3338	6	362,403	70.55
1 2002		160	70.00
1.3283	T	163	70.89
1.3244	3	413,272	71.13
1.3144	1	540	71.75
1.3064	4	224	72.26
1.2980	1	423	72.80
1,2947	2	281	73.02
1 2010	- 7	461	73 20
1 2960	,	452	72 50
1.2860	2	452	73.39
1.2/64	3	082	74.24
1.2684	3	263	74.79
1.2656	3	234	74.98
1.2582	2	433,182	75.50
1,2474	1	190	76.27
1.2423	2	550	76.64
1.2363	3	314,091	77.08
		•	
1.2348	3	600	77.19
1.2280	4	610	77.70
1.2227	1	470	78.10
1.2194	1	191	78.35
1.2143	3	551,244	78.74
1.2069	1	620,282	79.32
1.2013	3	154,611	79.76
1.1976	3	290	80.06
1.1960	2	542,471	80.19
1.1850	2	363	81.09
1 1015		224 622	01.00
1.1817	4	334,621	81.36
1.1726	4	291	82.13

Barium molybdenum oxide, Ba_2MOO_5 (continued)

Sample			0	
The sample was prepared at NBS by heating a 3:2 molar mixture of $BaCO_3$ and $(NH_4)_2HPO_4$ at 950 °C	CuK α_1 λ = 1.540598 A; temp. 25±1 °C			
for one hour; after regrinding it was heated overnight at 800 °C.	• Inter	nal standa	rd W, a = 3.10	6524 A
	d (A)	I	hkl	20(°)
Color	7.00	2	003	12.63
Colorless	4.726	15	101	18.76
	4.403	4	012	20.15
	3.565	20	104	24.96
Structure	3.177	100	015	28.06
Hexagonal, R3m (166), Z=3. The structure of				
$Ba_3(PO_4)_2$ was determined by Zachariasen [1948].	2.801	75	110	31.92
	2.552	2	107	35.14
NBS lattice constants of this sample:	2.411	5	021	37.26
a = 5.6022(1)	2.364	12	202	38.03
c = 20.9951(7)	2.334	13	009	30.33
	2.309	1	018	38.98
	2.202	16	024	40.95
Density	2.187	6	116	41.24
(calculated) 5.253 g/cm°	2.1008	35	205	43.02
	1.9268	18	1.0.10	47.13
Reference intensity	1.8865	4	027	48.20
$I/I_{corundum} = 5.0$	1.8271	4	211	49.87
	1.8071	1	122	50.46
	1.7929	16	119	50.89
Additional patterns 1. PDF card 4-582 [Zachariasen, 1948].	1.7318	4	214	52.82
	1.6806	24	1,25	54.56
	1.6175	13	300	56.88
References	1.5876	8	0.2.10	58.05
Zachariasen, W. H. (1948). Acta Cryst. <u>1</u> , 263.	1.5645	1	217	58.99
	1.5000	<1	2•0•11	61.80
	1.4840	1	1.1.12	62.54
	1.4682	1	306	63.29
	1.4327	5	0.1.14	65.05
	1.4006	12	220	66.73
	1.3811	12	2*1*10	67.80
	1.3431	1	131	69.99
	1.3348	1	312	70.49
	1.3293	5	309	70.83
	1.3038	2	134	72.43
	1.2814	11	315	73.90
	1.2755	4	2.0.14	74.30
	1.2520	8	1.1.15	75.94
	1.2281	<1	137	77.69
	1.2113	1	401	78.98
	1.2050	T	042	/9.4/
	1.2008	6	229	79.81
	1.1878	<1	3.0.12	80.86
	1.1820	1	404	81.34
	1.1655	5	045	82.74
	1.1610	5	1•2•14	83.13
	1.1329	5	1•3•10	85.68
	1.1117	<1	321	87.72
	1.0891	2	324	90.03
	1.0774	4	1.0.19	91.28
	1.0762	8	235	91.41

d (Å)	I	hkl	20(°)
1.0673	<1	2•1•16	92.40
1.0589	10	410	93.35
1.0505	3	4•0•10	94.32
1.0261	2	0.1.20	97.30
1.0136	2	416	98.92
1.0056	3	0•2•19	99.99
1.0017	4	3•1•14	100.53
0.9902	5	2•2•15	102.14
.9836	4	3•2•10	103.10
.9698	2	4•0•13	105.17
. 9642	5	419	106.05
.9544	2	054	107.63
.9464	7	2.1.19	108.96
.9457	3	505	109.09
.9432	4	0.4.14	109.51
	-		
.9339	3	330	111.14
.9163	2	241	114.43
.9136	2	422	114.95
.9111	3	1•2•20	115.45
.9060	<1	4•1•12	116.48
.9034	2	244	117.00
.8959	4	425	118.58
.8938	5	2•3•14	119.05
.8810	4	0.5.10	121.94
.8770	1	247	122.89
.8749	1	0.0.24	123.40
.8709	<1	511	124.39
.8685	2	152	124.98
.8670	3	339	125.36
.8597	1	514	127.27
.8540	5	1•3•19	128.84
.8533	6	155	129.03
.8444	5	4.1.15	131.63
.8404	4	2•4•10	132.88

Barium phosphate, $Ba_3(PO_4)_2$ (continued)

Sample The sample was prepared at NBS by T. Negas by	s prepared at NBS by T. Negas by CuK $\alpha_1 \lambda = 1.540598 \text{ Å}$; temp. 25±1 °C		±l °C	
tions at 900 °C in a gold envelope for 4 days.	Inter	nal standa	ard Ag, $a = 4.08$	651 Å
Maior impurities	d(A)	I	hkl	20(°)
Major Impuricies	6.223		110	14.22
0.01-0.1% Ca, Si, Sr	5.738	7	020	15.43
0.001-0.01% Cr, Mg	4.535	2	120	19.56
	4.219	8	111	21.04
	3.702	3	200	24.02
Color		_		25 23
Coloriess	3.557	5	121	25.01
	3.523	10	210	25.20
Ctunating	3.401	100	130	26.18
Orthorhombic Dnam (62) 7=4 isostructural with	3.104	65	220 201	28.00
$K_2VO_2F_3$. The structure of Ba_2WO_5 was determined	3.111	45	220,201	28.07
by Negas and Roth [15/4].	2 924	45	211	29.74
NPC lattice constants of this sample	2.524	4	131	30.35
NDS lattice constants of this sample	2.004	25	221	31.20
$a = 7.4066(6) A^{\circ}$	2.661	17	230	33 65
b = 11.4785(8)	2.001	11	250	55.05
c = 5.7313(4)	2.603	2	112	34.42
	2.565	<1	022	34.95
	2.426	10	141	37.03
Density	2.414	6	231	37.22
(calculated) 7.341 g/cm ³	2.268	11	240,202	39.70
	2.223	15	311,212	40.54
Reference intensity	2.193	12	150,132	41.13
$I/I_{corrupdum} = 4.0$	2.131	6	051	42.37
corunadii	2.107	35	241,222	42.88
	2.074	5	330	43.61
Additional patterns	1 950	25	250 222	16 51
1. PDr card 15+1/6 [2nmud and Oscapenenko,	1.950	25	250,232	40.54
1901].	1 913	3	160,400	4/.40
	1 847	11	251	49.13
Peferences	1.827	1	113	49.88
Negas, T. and Roth, R.S. (1974) (private communi-	1.02.			1000
cation, to be published).	1.779	4	242	51.32
Zhmud', S. and Ostapchenko, E. P. (1961). J.	1.762	18	161,401	51.84
Struct. Chem. (Eng. Transl.) 2, 27.	1.742	8	411,152	52.49
	1.709	16	033	53.59
	1.699	6	260	53.91
	1 600	-	202	52.00
	1.698	-	203	53.96
	1.684	5	441 222 212	54.45
	1.6795	12	332,213 A30	54.00
	1 6290	10	261	56.44
	1.0250	10	201	50.44
	1.6277	9	223	56.49
	1.6128	5	252	57.06
	1.6012	2	1/0,431	57.51
	1.5913	<1	342	58 89
	1.5005	1	342	50.07
	1.5554	6	162,402+	59.37
	1.5415	1	1/1,412	59.96
	1.5008	4	441,422 510,053	62.27
	1.4080	2	261 2624	63.59
	1.4020	9	301,202+	03.39

	d (Å)	I	hkl	20(°)
	1.4501	2	271,352	64.17
	1.4407	17	450,432	64.64
	1.4346	4	080	64.95
	1.4328	8	004	65.04
	1.3976	5	172	66.89
	1.3676	3	181	68,56
	1.3650	5	253	68.71
	1.3376	1	280,362	70.32
	1.3296	5	403	70.81
	1.3207	1	413,134	71.36
	1.3028	4	281	72.49
	1.3014	4	224	72.58
	1.2962	7	461	72.92
	1.2877	2	452	73.48
	1.2832	5	082,541	73.78
	1 2700	2	263	74 68
	1 2615	3	203	75.27
	1 2449	2	091	76.45
	1 2345	2	600	70.45
	1 2279	2	191 610	77.21
	1.2270	2	191,010	//./1
	1.2164	<1	551	78.58
	1.2114	2	244	78.97
	1.2059	1	290	79.40
	1.1995	1	154	79.91
	1.1961	1	542	80.18
	1.1857	2	363	81.03
Ì				

Barium tungsten oxide, Ba_2WO_5 (continued)

Sample

The sample was prepared by slow evaporation at room temperature of an aqueous solution of $CaCl_2$. Because the sample was somewhat unstable and hygroscopic, the intensity measurements varied up to 15% in reproducibility.

Color

Colorless

Optical data Uniaxial (-), $N_{o} = 1.550$, $N_{e} = 1.492$.

Structure

Hexagonal, P321(150), Z = 1, isostructural with SrCl₂•6H₂O, and other hexahydrates of alkaline earth halides. The structure of SrCl₂•6H₂O was determined by Jensen [1940].

NBS lattice constants of this sample:

a = 7.876(1)Ac = 3.9555(6)

Density

```
(calculated) 1.712 g/cm<sup>3</sup>
```

Additional patterns

```
1. Herrmann [1931].
```

- 2. PDF card 1-1220 [Hanawalt et al., 1938].
- 3. Torii and Ossaka [1965].

References
Hanawalt, J. D., Rinn, H. W. and Frevel, L. K.
(1938). Ind. Eng. Chem. Anal. Ed. <u>10</u>, 457.
Herrmann, Z. (1931). Z. anorg. u. allgem. Chem.
<u>197</u>, 212.
Jensen, A. T. (1940). Kgl. Danske Videnskab.
Selskab Mat. Fys. Medd. <u>17</u>, No. 9.

```
Torii, T. and Ossaka, J. (1965). Science <u>149</u>,
975.
```

CuK α_1 λ = 1.540598 Å; temp. 25±1 °C					
Internal standard Ag, $a = 4.08651 \text{ Å}$					
d (Å)	I	hkl	20(°)		
6.80	35	100	13.00		
3.93	90	110	22.60		
3.420	65	101	26.03		
2.792	75	111	32.03		
2.582	60	201	34.71		
2.273	60	300	39.61		
2.159	100	211	41.81		
1.977	20	002	45.86		
1.899	12	102	47.87		
1.767	8	112	51.68		
1.711	10	202	53.53		
1.706	25	311,400	53.68		
1.569	12	212	58.81		
1.566	12	401,320	58.95		
1.492	20	302	62.18		
1.488	25	410	62.34		
1.455	10	321	63.93		
1.396	9	222	66.99		
1.3929	9	411	67.15		
1.3675	5	312	68.57		
1.3129	3	330	71.85		
1,2946	5	103	73.03		
1,2915	4	402	73.23		
1.2505	2	113	76.05		
1.2295	7	203	77.59		
1.2256	5	421,510	77.88		
1.1895	5	412	80.71		
1.1743	4	213	81.99		
		and the second			

CaCO ₃ at 1500 °C for 24 hours in platinum foil. Major impurities	Inter	rnal
Major impurities	0	
Major impurities	d (A)	
	6.06	
0.002 to 0.028 and Mr. au	6.06	
0.003 to 0.03% each Mg, Sr	5.99	
0.001 to 0.1% each Ba, Fe, Pt	5.69	
	4.739	
0-1	4.558	
Colorless	4 405	
	4.403	
	4.122	
Structure	2 950	
Monoclinic P2. (4) 7-4 [Prove and Enstein	3.959	
1065] The structure was determined by Dickers	3.09/	
at al [1072] Farlier work by Trönol and	2 754	
Zarinan [1050] monomial this phase to be outhe	2 711	
zaminer [1959] reported this phase to be ortho-	2 604	
momble in space group P2122 (17).	2 511	
NPC lattice constants of this complete	3.511	
Mbs factice constants of this sample:	3.475	
a = 7.018(1)Å	3.366	
b = 11.980(2)	3.302	
c = 9.469(2)	3.268	
$\beta = 90.88(2)^{\circ}$	3.190	
	3.160	:
Density	3,053	,
(calculated) 3.056 g/cm ³	2,995	10
	2.895	
	2.872	
Reference intensity	2.811	
I/I = 7.3		
corundum	2.789	
	2.784	
Additional patterns	2.763	5
1. PDF card 11-232 [Sarver, J.F., Penn. State	2.724	4
Univ., University Park, Pa.] 2. Bauer and Balz [1965].	2.649	1
	2.642	
	2.607	
References	2.583	
Bauer, H., and Balz, W. (1965). Z. Anorg. u.	2.567	
allgem. Chem., 340, 225.	2.545	
Brown, W.E., and Epstein, E.F. (1965). J. Res.		
NBS 69A, 547.	2.534	
Dickens, B., Brown, W. E., Kruger, G. J., and	2.476	1
Stewart, J.M. (1973). Acta Cryst. B29, 2046.	2.387	
	2.367	
Trömel, G., and Zaminer, C. (1959). Arch. Eisen-	-	
Trömel, G., and Zaminer, C. (1959). Arch. Eisen- huettenw. <u>30</u> , 205.	2.322	1

$CuKa_1 \lambda = 1.540598 \text{ Å}; \text{ temp. } 25\pm1 \text{ °C}$				
Inter	nal standa	rd W, $a = 3.16$	524 Å	
d (Å)	I	hkl	20(°)	
6.06	4	110	14.61	
5.99	5	020	14.77	
5.69	4	ĪOl	15.57	
4.739	3	002	18.71	
4.558	5	120	19.46	
4.405	2	012	20.14	
4.122	14	121	21.54	
4.092	20	121	21.70	
3.959	2	102	22.44	
3.897	3	102	22.80	
3.754	4	ī12	23.68	
3 .71 1	8	022,112	23.96	
3.684	10	031	24.14	
3.511	45	200	25.35	
3.473	20	130	25.63	
3.366	3	210	26.46	
3.302	7	201, 1 22	26.98	
3.268	16	131,122	27.27	
3,190	30	211	27.95	
3.160	20	211,003	28.22	
3.053	80	032,013	29.23	
2.995	100	040	29.80	
2.895	30	1 03,221	30.86	
2.872	45	221	31.11	
2.811	25	Ī13 ,Ī 32	31.81	
2.789	35	023,132	32.06	
2.784	35	113	32.12	
2.763	50	212	32.38	
2.724	40	212	32.85	
2.649	14	141	33.81	
2.642	18	141	33.90	
2.607	12	1 23	34.37	
2.583	6	123	34.70	
2 567	5	222	34 93	
2.545	9	231	35.23	
2.534	16	222,231+	35.39	
2.476	16	033	36.25	
2.387	2	142	37.66	
2 367	7	004 203	37 99	
2.322	15	051,014+	38.75	
2.314	12	232	38,88	
2 292	12	232	39.28	
2.292	12 E	150	20.20	
2.208	5	150	39.71	
2.237	7	311	40.29	
2.207	12	151	40.85	

-		And the second se	
d (Å)	I	hkl	20(°)
2.204	9	151.024	40,92
2.173	9	043	41.53
2.137	5	052	42.26
2.130	6	321	42.40
2,109	4	302.124	42.84
		5027221	42.01
2.092	3	124	43.22
2.082	4	143	43.42
2.077	10	312	43.53
2.061	3	242	43.90
2.050	9	152	44.15
2.035	3	034,233	44.49
2.018	6	330	44.88
2.012	6	233	45.03
1.990	4	322	45.55
1.976	25	204	45.88
1 963	3	734	46 22
1 048	19	134 204	40.22
1 934	15	251	40.00
1 022	4	251	40.93
1.922	20	214	47.24
1.900	20	055	4/.02
1.881	6	161	48.36
1.869	11	015,313	48.67
1.865	15	303,332	48.79
1.846	8	1 53	49.32
1.842	10	340,313	49.43
1 837	9	243 153	49 57
1,831	13	243,133	49.76
1 820	12	252	50.09
1 804	13	323	50.55
1 780	4	323	51 28
1.700	-	525	92.20
1.753	25	400	52.13
1.735	8	410,260	52.72
1.724	3	342	53.07
1.708	15	261	53.59
1.7046	17	261	53.73
1.6877	5	063	54.31
1 6837	8	054.420+	54.45
1.6696	3	253	54.95
1.6624	2	170.421	55.21
1.6497	- 7	244	55.67
1.0.12			
1.6327	6	262,244+	56.30
1.6221	1	412	56.70

Calcium oxide phosphate $Ca_40(PO_4)_2$ (continued)

Sample The sample room temp Co(C ₂ H ₃ O ₂)	was prepa erature of 2•	red by slow eva f an aqueous	poration at solution of	
Color Deep red				
Structure Monoclinic al with Ni(C ₂ H ₃ O ₂) and Schoen	;, P2 ₁ /c, Ni(C ₂ H ₃ O ₂); 2*4H ₂ O was ing [1953]	(14), $Z = 2$, $2 \cdot 4H_2O$. The s s determined by	isostructur- tructure of van Niekerk	
NBS lattic	e constants	s of this sample	e:	
	a = 4.80 b = 11.92 c = 8.40 $\beta = 94.32$	084 (9) Å 24 (2) 64 (1) 3 (1) °		
Density (calculate	d) 1.709 g,	/cm ³		
Reference in I/I corundu	tensity = 3.3			
Additional p l. PDF ca	oattern ard 14-718	[Hanawalt et al	., 1938].	
References Hanawalt, J. (1938). I van Niekerk, Acta. Crys	D., Rinn Ind. Eng. Cl J. N. and st. <u>6</u> , 609.	, H. W., and F hem. Anal. Ed. d Schoening, F	revel, L. K. 10, 457. . R. (1953).	
СиКај	λ = 1.540	598 A; temp. 25	±1 °C	
Inter	nal standa	rd W, $a = 3.16$	524 A	
d (A)	I	hkl	20(°)	
6.89 5.97	100 1	011 020	12.84 14.82	
4.870	1	021	18.20	
4.795 4.451	9	100 110	18.49 19.93	
4.221	9	002	21.03	
4.055	5	012	21.90	
3.828	4	111	23.22	
3.599	4	031	24.72	
3.446	<1	022	25.83	
3.347	<1	121	26.61	
3.295	10	102	27.04	
3.058	3	130,102	29.18	<u> </u>

d (A)	I	hkl	20(°)
2.980	<1	040	29.96
2.962	<1	112	30.15
2.922	3	131	30.57
2.892	4	<u>0</u> 32	30.89
2.882	3	122	31.00
2.737	<1	013	32.69
2.721	2	122	32.89
2.543	1	023	35.26
2.532	3	140	35.43
2.456	<1	113	36.56
2.451	<1	141	36.63
2.423	1	132	37.08
2.399	1	141,200	37.46
2.306	5	211,113	39.02
2.295	2	033,051	39.23
2.210	1	142	40.79
2.187	1	123	41.25
2.156	<1 ,	202	41.87
2.135	1	150,142	42.30
2.122	~1	133,212	42.58
2.111	<1	<u>0</u> 04	42.81
2.087	1	151	43.32
2.076	<1	014,052	43.55
2.053	<1	151,230	44.07
2.047	<1	043	44.21
2.026	2	2 22 ,2 31	44.69
1.989	<1	024	45.57
1.965	<1	231	46.15
1.961	<1	114	46.26
1.934	<1	061	46.94
1.912	1	222	47.51
1.885	1	124	48.23
1.880	1	152,104	48.38
1.873	1	213	48.57
1.868	2	240	48.71
1.819	<1	053	50.12
1.798	1	062	50.74
1.747	1	242	52.34
1.741	1	213	52.51
1.729	<1	153	52.91
1.722	<1	044	53.15
1.712	1	233	53.49
1.701	1	162	53.84
1.670	2	015,071	54.92
1.6408	<1	251	56.00
1.6232	<1	025,063	56.66
1.6162	<1	115	56.93
1.6100	1	233	57.17
1.5787	1	072,311	58.41
1.5699	<1	1/1	58.77
1.5533	<1	035	59.46
1.5425	<1	115	59.92

Sample Cobalt oxide (CoO) and B_2O_3 in a 3:1 molar ratio were melted together and quenched.	CuKa _l Inter	$\lambda = 1.540$ nal standa	598 Å; temp. 25 rd Ag, a = 4.08	±1 °C 651 Å
Major impurities:	d (Å)	I	hkl	20(°)
0.1 to 1.0% each Fe. Ni	4.223	4	020	21.02
0.01 to 0.1 % each Ca. Cu	3.994	40	011	22.24
	3.489	25	101	25.51
	3.226	3	111	27.63
Color	2.734	9	200	32.73
Strong purple				
Contraction of the second	2.689	100	121	33.29
	2.503	40	130	35.85
Structure	2.391	6	031	37.58
Orthorhombic, Pnmn (58), Z=2. The structure was	2.341	8	201	38.42
determined by Berger [1949].	2.295	6	220	39.23
NBS lattice constants of this sample:	2.255	50	211	39.95
	2.190	16	131	41.19
a = 5.465(1)A	2.093	4	102	43.19
b = 8.442(1)	1.805	7	141	50.52
c = 4.531(1)	1.800	8	321	50.68
	1.744	30	202	52.43
Density	1.678	35	132	54.64
(calculated) 4.678 g/cm ³	1.613	5	150	57.04
	1.582	12	051	58.26
	1.569	13	321	58.81
Reference intensity				
I/I , = 1.4	1.544	4	042	59.85
corundum	1.529	18	330	60.52
	1.4863	6	013,142	62.43
Additional Patterns	1.4068	7	060	66.40
1. PDF card 5-647 [Berger, 1949]	1.3759	10	123	68.09
	1.3689	14	251	68.49
References	1.3661	12	400	68.65
Berger, S. V. (1949), Acta, Chem. Scand. 3, 660.	1.3311	3	033	70.72
	1.3058	5	213	72.30
	1.2927	4	133,411	73.15
	1.2677	5	332	74.84

Sample The sample was prepared by adding HBr to CoCO3 in water, and evaporating the solution slowly at room temperature.

Major impurities:

0.01 to 0.1% each Ca, Fe, Mg 0.003 to 0.03% Cu 0.001 to 0.01% each Al, Mn, Ni

Color

Very dark purplish red

Structure

Monoclinic, P21 (4), Z=2. The structure was determined by Stroganov et al. [1961].

NBS lattice constants of this sample:

 $a = 9.074(2) \tilde{A}$ b = 7.173(1) c = 6.905(2) $\beta = 94.11(2)^{\circ}$

Density

(calculated) 2.421 g/cm³

Additional patterns 1. PDF card 23-184 [Mauret and Girou, 1969].

References

- Mauret, P., and Girou, A. (1969). Bull. Soc. Chim. France <u>1969</u>, 2238.
- Stroganov, E. V., Andreev, S. N., Kozhina, I. I., and Solov'ev, V. E. (1961). Vestn. Leningr. Univ. Ser. Fiz. i Khim. 16, No. 3, 114.

	СиКа	$\lambda = 1.540$	598 A; temp. 25	5±1 °C
	Inte	rnal standa	rd Ag, $a = 4.08$	8651 Å
	d (Å)	I	hkl	20(°)
	5.679	100	Ĩol	15.59
	4.971	40	011	17.83
	4.525	4	200	19.60
	3.589	7	020	24.79
	3.436	7	211	25.91
	3.031	6	<u>1</u> 21	29.44
	2.997	50	112	29.79
	2.881	14	_ 112	31.02
	2.840	35	202,301	31.47
1	2.810	11	220	31.82
	2.781	18	310	32.16
	2.693	10	301	33.24
	2.485	9	212,022	36.11
	2,262	15	103,400	39.81
	2.238	4	312	40.27
	2,225	2	321	40.51
	2.191	2	302	41.16
	2.154	3	321	41.91
	2.132	2	222	42.35
	2.098	19	312	43.09
1	2.025	2	213	44.72
L	2.021	3	411	44.82
L	1.956	8	4 02	46.38
	1.936	7	Ī32	46.90
I	1.914	11	123,420	47.46
	1.893	2	303	48.01
	1.873	2	421	48.57
L	1.793	2	040	50.88
L	1.755	1	510	52.06
l	1.716	10	313	53.33
	1.667	6	Ī14,240	55.05
	1.649	5	204	55.71
	1.628	3	413	56.47
	1.616	5	332	56.93
L				

d (A)

5.84

5.57

5.44

4.621

3.864

3.712

3.509

3.424

3.285

3.160

3.067

2.918

2.837

2.781

2.716

2.688

2.615

2.341

2.310

2.228

2.202

2.196

2.183

2.112

2.099

2.058

2.042

1.945

1.879

1.867

1.834

1.721

1.5796

1.4589

CuK $\alpha_1 \lambda = 1.540598 \text{ Å; temp. } 25\pm1 \text{ °C}$

Internal standard Ag, a = 4.08651 A

hkl

002

202

011

211

211

202

402

213

013

204

020

004

121

220

022

222

411

215

422

415

224

600

015

024

206

406

523

006

215

224

602

417

408

008

2Θ(°)

15.17

15.90

16.28

23.00

23.95

25.36

26.00

27.12

28.22

29.09

30.61

31.51

32.16

32.95

33.30

34.26

38.42

38.95

40.46

40.96

41.06

41.33

42.75

43.05

43.93

44.32

46.66

48.40

48.73

49.67

53.19

58.37

63.74

Τ

30

19

11

100

15

10

10

2

60 30

5

20

5

10

12

14

6

3

5

7

16

30

8

5

2

3

2

3

5

3

3

8

4

2

Sample The sample was prepared by slow evaporation at room temperature of an aqueous solution of Co(NO3)2 over concentrated H2SO4 in a desiccator. Color Strong reddish brown Optical data Biaxial (-) N $_{\alpha}$ = 1.40, N $_{\gamma}$ = 1.549. medium. N $_{\beta}$ could not be determined. 2 V is Structure Monoclinic, I2/a(15), Z=4 [Jayaraman, 1958]. NBS lattice constants of this sample: a = 14.295(5)Ab = 6.139(2)c = 12.661(2) $\beta = 112.79^{\circ}(3)$ Density (calculated) 1.887 g/cm³ Reference intensity I/I corundum = 0.7 Polymorphism Pouillen et al. [1965] report that three forms of Co(NO3)2.6H2O exist. The form reported here is stable above -18 °C; the β form, stable between -18 °C and -34 °C is isostructural with the room temperature form of $Zn(NO_3)_2 \cdot 6H_2O$. The y form is stable below -34 °C. Additional patterns 1. PDF card 1-317 [Hanawalt et al.]. 2. PDF card 12-572 [University of Cardiff].
 3. PDF card 19-357 [Weigel et al., 1964]. 4. PDF card 24-335 [Weigel et al., 1964]. (Partially indexed by NBS). 5. Pouillen et al. [1965]. References Hanwalt, J. D., Rinn, H. W. and Frevel, L. K. (1938). Ind. Eng. Chem. Anal. Ed. 10, 457. Jayaraman, A. (1958). Proc. Indian Acad. Sci. A47, 147. Pouillen, P., Bernard, M. J. and Massaux, M.

^{(1965).} Compt. Rend. <u>260</u>, 6861. Weigel, D., Imelik, B. and Prettre, M. (1964). Bull. Soc. Chim. France <u>1964</u>, 836.

Sample			0	12.0-
The sample was obtained from the National Lead	CuKα ₁	$\lambda = 1.540$	598 A; temp. 25	±1 °C
Co.	Inter	nal standa	$rd \Delta q$, $a = 4.08$	651 Å
Maion impurition.		T	ht.0	20.(%)
Major Impuricies:	U(A)		11K *	20()
<0.01% each Bi and Fe	5.84	1	110	15.17
traces of Ag, Al, Ca, Cu, Mg, and Si	4.523	14	020	19.61
	4.057	35	011	21.89
	3.890	75	120	22.84
Structure	3.810	40	200	23.33
Orthorhombic, Pnam(62), Z=4, isostructural with				
PbBr2. The structure of PbCl2 was determined by	3.579	100	111	24.86
Bräkken and Harang [1928], and refined by Sahl	3,512	2	210	25.34
and Zemann [1961].	2.953	6	121	30.24
	2.915	20	201,220	30.64
NBS lattice constants of this sample:	2.802	5	130	31.91
0				
a = 7.6222(5)A	2.776	55	211	32.22
b = 9.0448(7)	2.510	45	031	35.74
c = 4.5348(4)	2.453	2	221	36.61
	2.446	2	310	36.71
	2.385	5	131	37.69
Density	0.064			
(calculated) 5.908 g/cm°	2.364	4	230	38.03
	2.267	25	002	39.73
Reference intensity	2.261	25	040	39.84
I/I = 4.3	2.214	25	320	40.72
	2.168	8	140	41.63
Additional pattorns	2 152	25	211	11 95
Addicional pacterns	2.152	40	221	41.33
1. Blakkell and harding [1920].	2.090	40	231	43.12
2. Doll and Klemm [1939].	2.027	2	022	44.67
3. PDF card 5-0416 [Swanson et al., 1953].	1.992	2	321	45.51
	1.959	18	122	46.31
References	1,948	14	202	46.58
Bräkken, H., and Harang, L. (1928), Z. Krist, 68.	1.944	13	240.330	46.69
123.	1.905		400,212	47.69
Döll W and Klamm W (1939) 7 anorg u	1 865	1	/10	48 80
alloom Chom 241 230	1 790	Б Б	222	51 01
Sahl, K., and Zemann, J. (1961). Naturwissenschaften	1.789	U U	222	51.01
48, 641.	1.7629	1	132	51.82
Swanson, H. E., and Fuyat, R. K. (1953). Nat'l	1.7566	1	401,420	52.02
Bur. Std., U. S. Circ. 539, Vol. II, 45.	1,7243	2	411	53.07
	1.6889	3	340	54.27
	1.6806	2	051	54.56
	1.6405	12	151	56.0I
	1.6365	8	232	56.16
	1.6105	1	430	57.15
	1.6010	6	042	57.52
	1.5844	13	322	58.18
	1 5667	4	140	E0 00
	1.5007	4	142	56.90
	1.51/9	5	43L	60.99
	1.5077	3	060	61.45
	1.5035	2	510	61.64
	1.4911	1	013	62.21
	1,4787	2	160	62.79
	1.4759	4	242.332	62.92
	1,4634	4	113	63-52
	1.4591	6	402	63,73
	1 /573	4	440	63.82
	T.47/2	-1		05.02

Lead chloride (cotunnite), $PbCl_2$ - continued

d (Å)	I	hkl	20 (°)
1.4450	3	520	64.43
1.4272	7	511	65.33
1.4017	11	260,351	66.67
1.3889	3	213,422	67.37
1.3545	4	342	69.32
1.3514	4	033	69.50
1.3395	1	261	70.21
1.3304	1	133	70.76
1.3130	1	432	71.84
1.3027	1	531	72.50
1.2964	1	360	72.91
1.2858	3	313	73.61
1.2736	4	170,233	74.43
1.2703	3	600	74.66
1.2641	2	540	75.09
1.2554	2	062	75.70
1.2529	2	512	75.88
1.2427	2	071	76.61
1.2386	2	162	76.91
1.2261	2	171,442	77.84
1.2232	2	601,620	78.06
1.2184	4	522	78.43
1.2123	2	611	78.90

.

Sample The sample was prepared by heating together TiO ₂ and MgCO ₃ at 1380 °C, grinding and re- heating.	CuKal Inter	$\lambda = 1.5405$ nal standar	98 Å; temp. 2 d W, a = 3.1	5±1 °C 6524 Å
	d (Å)	I	hkl	20(°)
Color	4.076	45	111	10.10
Colorless	4.876	45	220	10.18
	2.986	20	220	29.90
	2.544	100	222	35.25
Optical data	2.435	2	222	30.00
Isotropic, N = 1.95	2.110	60	400	42.02
	1.936	<1	331	46.88
Structure	1.722	6	422	53.13
Cubic, Fd3m (227), Z=8, inverse spinel type	1.624	30	511	56.62
[Barth and Posnjak, 1932].	1.492	50	440	62.18
	1.4268	3	531	65.35
NBS lattice constants of this sample:				
	1.3346	1	620	70.50
a = 8.4409(3)Å	1.2874	6	533	73.50
	1.2724	2	622	74.51
	1.2185	5	444	78.42
Density	1.1820	2	551	81.34
(calculated) 3.546 g/cm^3				
	1.1280	1	642	86.14
	1.0989	9	731	89.01
Reference intensity	1.0551	5	800	93.78
T/T = 2.1	0.9948	1	822	101.49
1' corundum	.9747	6	751	104.43
Additional patterns	.9682	1	662	105.42
1. PDF card 3-858 [Hanawalt et al., 1938].	.9438	3	840	109.41
2 Holgersson and Herrlin [1931].	.9265	1	911	112.48
3. Barth and Posnjak [1932].	.8997	1	664	117.77
L				

References Barth, T.F.W. and Posnjak, E. (1932). Z. Krist. <u>82</u>, 325. Hanawalt, J. D., Rinn, H. W., and Frevel, L. K. (1938). Ind. Eng. Chem., Anal. Ed. <u>10</u>, 457. Holgersson, S. and Herrlin, A. (1931). Z. anorg. u. allgem. Chem. <u>198</u>, 69. Sample

The sample was prepared by slow evaporation of an aqueous solution of Ni(NO_3)₂.

Color

strong brilliant green

Structure

Triclinic, Z = 2 [Weigel et al., 1962].

NBS lattice constants of this sample:

 $\begin{array}{rl} a &=& 7.699\,(4)\, \mbox{A} \\ b &=& 11.677\,(2) \\ c &=& 5.799\,(2) \\ \alpha &=& 98.56\,(3)\,^{\circ} \\ \beta &=& 102.22\,(3) \\ \gamma &=& 105.80\,(2) \end{array}$

Density (calculated) 2.019 g/cm³

Reference intensity I/I = 2.2

Additional pattern 1. PDF card 14-452 [Weigel et al., 1962].

Reference

Weigel, D.A., Imelick, B. and Lafitte, P. (1962). Bull. Soc. Chim. France <u>1962</u>, 544.

	CuKo	$\lambda_1 \lambda = 1.540$	° 598 A; temp. 25	±l °C
	Inte	ernal standa	rd Si, a = 5.43	088 Å
	d (Å)	I	hkl	20(°)
	10.93	7	010	8.08
	7.11	2	110	12.44
	5.48	100	020	16.16
:	5.27	6	110	16.81
	5.07	20	ĪOl	17.48
			-	
	4.65	2	111	19.09
	4.56	1	111 <u>,</u> 011	19.47
	4.405	6	021	20.14
	4.124	6	111	21.53
	3.901	3	101	22.78
	3.808	12	120	23.34
	3.761	25	Ī21,210	23.64
	3.652	4	030	24.35
	3.546	1	220	25.09
	3.526	1	021	25.24

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
3.348 4 111 26.60 3.141 3 $\overline{211}$ 28.39 3.084 3 $\overline{230}$ 28.93 2.931 2 $\overline{131}$ 30.47 2.905 14 130 30.75 2.882 5 $\overline{140}$ 31.01 2.832 5 $2\overline{21}, 0\overline{12}$ 31.57 2.741 65 040 32.64 2.691 4 201 33.27 2.606 2 $\overline{240}$ 34.39 2.552 13 012 35.14 2.483 2 $0\overline{32}, \overline{212}$ 36.14 2.485 1 122 36.57 2.435 <1
3.141 3 $\overline{211}$ 28.39 3.084 3 $\overline{230}$ 28.93 2.931 2 $\overline{131}$ 30.47 2.905 14 $\overline{130}$ 30.75 2.882 5 $\overline{140}$ 31.01 2.832 5 $2\overline{21}, 0\overline{12}$ 31.57 2.741 65 040 32.64 2.691 4 201 33.27 2.606 2 $\overline{240}$ 34.39 2.552 13 012 35.14 2.483 2 $0\overline{32}, \overline{212}$ 36.14 2.483 2 $0\overline{32}, \overline{212}$ 36.44 2.430 1 $211, \overline{122}$ 36.96 2.390 3 $\overline{141}$ 37.61 2.375 4 102 37.85 2.319 2 $\overline{222}, 131$ 38.80 2.282 5 $\overline{222}$ 39.46 2.212 3 051 40.75 2.200 2 $0\overline{2}, \overline{250}$ 40.99 2.166
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2.9312 $\overline{131}$ 30.472.9051413030.752.882514031.012.8325221.01231.572.7416504032.642.691420133.272.606224034.392.5521301235.142.4832032,21236.142.455112236.572.435<1
2.9051413030.752.8825 $\bar{1}40$ 31.01 2.8325 $2\bar{2}1,0\bar{1}2$ 31.57 2.74165 040 32.64 2.6914 201 33.27 2.6062 $\bar{2}40$ 34.39 2.55213 012 35.14 2.4832 $0\bar{3}2,\bar{2}12$ 36.14 2.4551 $1\bar{2}2$ 36.57 2.435<1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2.8825140 31.01 2.8325 $2\overline{2}1, 0\overline{1}2$ 31.57 2.74165040 32.64 2.6914201 33.27 2.6062 $\overline{2}40$ 34.39 2.55213012 35.14 2.4832 $0\overline{3}2, \overline{2}12$ 36.14 2.4551 $1\overline{2}2$ 36.57 2.435<1
2.8325221,01231.572.7416504032.642.691420133.272.6062 $\overline{2}40$ 34.392.5521301235.142.4832032,21236.142.455112236.572.435<1
2.741 65 040 32.64 2.691 4 201 33.27 2.606 2 $\overline{2}40$ 34.39 2.552 13 012 35.14 2.483 2 $032,212$ 36.14 2.483 2 $032,212$ 36.14 2.455 1 122 36.57 2.435 <1 321 36.88 2.435 <1 321 36.96 2.390 3 141 37.61 2.375 4 102 37.85 2.322 2 231 38.75 2.319 2 $222,131$ 38.80 2.282 5 $\overline{222}$ 39.46 2.212 3 051 40.75 2.200 2 $042,250$ 40.99 2.166 4 340 41.66 2.146 2 $221,\overline{1}32$ 42.08 2.063 3 $\overline{3}41,2\overline{2}2$ 43.84 2.006 2 $\overline{251}$ 45.16 1.996 2 $\overline{151}$ 44.60 2.006 2 $\overline{251}$ 45.16 1.991 2 $\overline{241}$ 45.52 1.980 4 122 45.78 1.931 1 $150,\overline{11}3$ 47.01 1.912 3 $161,\overline{103}$ 47.52 1.903 2 $240,\overline{411}$ 47.76 1.884 3 260 48.27
2.6914201 33.27 2.6062 $\bar{2}40$ 34.39 2.55213 012 35.14 2.4832 $0\bar{3}2,\bar{2}12$ 36.14 2.4551 122 36.57 2.435<1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2.319 2 $\overline{2}22,131$ 38.80 2.282 5 $\overline{2}\overline{2}2$ 39.46 2.212 3 $0\overline{5}1$ 40.75 2.200 2 $0\overline{4}2,\overline{2}50$ 40.99 2.166 4 340 41.66 2.146 2 $221,\overline{1}32$ 42.08 2.063 3 $\overline{3}41,2\overline{2}2$ 43.84 2.030 1 $\overline{1}51$ 44.60 2.006 2 $\overline{2}51$ 45.16 1.996 2 $\overline{1}\overline{5}1$ 45.40 1.991 2 $\overline{2}41$ 45.52 1.980 4 122 45.78 1.931 1 $150,\overline{1}\overline{1}3$ 47.01 1.912 3 $1\overline{6}1,\overline{1}03$ 47.52 1.903 2 $240,\overline{4}11$ 47.76 1.884 3 $\overline{2}60$ 48.27
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2.202 3 $0\overline{51}$ 40.75 2.200 2 $0\overline{42}, \overline{250}$ 40.99 2.166 4 340 41.66 2.146 2 $221, \overline{132}$ 42.08 2.063 3 $\overline{341}, 2\overline{22}$ 43.84 2.030 1 $\overline{151}$ 44.60 2.006 2 $\overline{251}$ 45.16 1.996 2 $\overline{151}$ 45.40 1.991 2 $\overline{241}$ 45.52 1.980 4 122 45.78 1.931 1 $150, \overline{113}$ 47.01 1.912 3 $161, \overline{103}$ 47.52 1.903 2 $240, \overline{411}$ 47.76 1.884 3 $\overline{260}$ 48.27
2.200 2 $0\overline{42}, \overline{250}$ 40.99 2.166 4 340 41.66 2.146 2 $221, \overline{132}$ 42.08 2.063 3 $\overline{341}, 2\overline{22}$ 43.84 2.030 1 $\overline{151}$ 44.60 2.006 2 $\overline{251}$ 45.16 1.996 2 $\overline{151}$ 45.40 1.991 2 $\overline{241}$ 45.52 1.980 4 122 45.78 1.931 1 $150, \overline{113}$ 47.01 1.912 3 $161, \overline{103}$ 47.52 1.903 2 $240, \overline{411}$ 47.76 1.884 3 $\overline{260}$ 48.27
2.1002 $042,250$ 40.99 2.1664 340 41.66 2.1462 $221,\overline{132}$ 42.08 2.0633 $\overline{341}, 2\overline{22}$ 43.84 2.0301 $\overline{151}$ 44.60 2.0062 $\overline{251}$ 45.16 1.9962 $\overline{151}$ 45.40 1.9912 $\overline{241}$ 45.52 1.9804 122 45.78 1.9311 $150,\overline{113}$ 47.01 1.9123 $161,\overline{103}$ 47.52 1.9032 $240,\overline{411}$ 47.76 1.8843 $\overline{260}$ 48.27
2.100 4 540 41.00 2.146 2 $221,\overline{132}$ 42.08 2.063 3 $\overline{3}41,2\overline{2}2$ 43.84 2.030 1 $\overline{151}$ 44.60 2.006 2 $\overline{251}$ 45.16 1.996 2 $\overline{151}$ 45.40 1.991 2 $\overline{241}$ 45.52 1.980 4 122 45.78 1.931 1 $150,\overline{113}$ 47.01 1.912 3 $161,\overline{103}$ 47.52 1.903 2 $240,\overline{411}$ 47.76 1.884 3 $\overline{260}$ 48.27
2.063 3 $\overline{3}41, 2\overline{2}2$ 43.84 2.063 3 $\overline{3}41, 2\overline{2}2$ 43.84 2.030 1 $\overline{151}$ 44.60 2.006 2 $\overline{251}$ 45.16 1.996 2 $\overline{151}$ 45.40 1.991 2 $\overline{241}$ 45.52 1.980 4 122 45.78 1.931 1 $150,\overline{113}$ 47.01 1.912 3 $161,\overline{103}$ 47.52 1.903 2 $240,\overline{411}$ 47.76 1.884 3 $\overline{260}$ 48.27
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
1.980412245.781.9311150,11347.011.9123161,10347.521.9032240,411 +47.761.884326048.27
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1.912 3 161,103 47.52 1.903 2 240,411 + 47.76 1.884 3 260 48.27
1.903 2 240,411 + 47.76 1.884 3 260 48.27
1.884 3 260 48.27
1.863 1 061.311 48.86
1.843 5 331,003 + 49.41
1,828 2 152,060 49,85
1.807 <1 213 50.46
1.736 <1 360 52.67
1.733 <1 113 52.79
1.714 2 043 53.42
1.708 4 161.062 53.62
Sample

The sample was prepared by melting together a 1:2 molar mixture of K_2SO_4 and K_2CrO_4 and annealing at about 600 °C for 18 hours.

Major impurities

0.001-0.01% each Al,Ba 0.003-0.03% Si 0.01-0.1% Ca

Color

Brilliant yellow

Structure

Orthorhombic, Pnam(62), Z=4. There is a complete solid solution series between K_2SO_4 and K_2CrO_4 [Groschuff, 1908], isostructural with low K_2SO_4 . The structure of low K_2SO_4 was determined by Ehrenberg and Hermann [1929].

NBS lattice constants of this sample

a	=	7.6095(9)
b	=	10.300(1)
с	=	5.8737(8)

Density (calculated) 2.707 g/cm³

Reference intensity I/I = 1.2

Polymorphism This composition inverts at about 650 °C to a hexagonal form [Groschuff, 1908].

References Ehrenberg, W. and Hermann, C. (1929). Z. Krist. 70, 163. Groschuff, E. (1908). Z. anorg. Chem. <u>58</u>, 107.

СиКај	$\lambda = 1.5405$	598 A; temp. 2	5±1 °C
Inter	mal standar	d W, a = 3.10	6524 Å
d (Å)	I	hkl	20(°)
6.116	1	110	14.47
5.148	10	020	17.21
5.098	5	011	17.38
4.265	30	120	20.81
4.237	35	111	20.95
3.805	20	200	23.36
3.569	5	210	24.93
3.452	8	121	25.79
3.194	9	201	27.91
3.127	5	130	28.52

d (Å)	I	hkl	20(°)
3.060	55	220	29.16
3.050	70	211	29.26
2,963	100	031	30.14
2,937	60	002	30 41
2 763	1	131	32 38
2.705	-	131	32.30
2.714	6	221	32.98
2.647	2	112	33.83
2.575	14	040	34.81
2.549	´ 18	022,230	35.18
2.462	20	310	36.46
2,440	4	140	36,80
2,419	6	122	37 14
2 339	2	231	38 46
2.355	25	231	30.40
2.200	10	1/1	20.00
2.235	12	747	55.55
2.141	9	132	42.17
2.133	10	240	42.34
2.120	20	321,222	42.61
2.040	6	330	44.37
2.004	2	241	45.20
1,988	3	150	45.59
1.944	2	051	46.68
1,925	9	232	47.17
1 903	8	400	47 75
1 888	5	312	48 16
1.000	5	912	40.10
1.865	<1	113	48.80
1.810	5	250,401	50.37
1.808	4	340	50.45
1.783	2	411	51.20
1.779	1	123	51.32
1 741	2	203	52 53
1 7272	6	341	52.95
1 7170	0	060 213	52.31
1 7009	10	033	53.95
1 6646	10	430	55.00
1.0040		450	22.12
1.6601	3	133	55.29
1.6470	2	152	55.77
1.6099	2	161	57.17
1.6004	5	431	57.54
1.5966	6	402	57.69
1 5779	2	41.2	58 11
1 56/3	2	260	59 00
1 5520	<1	200	59 47
1 5201	5 T	233	60.06
1 5227	3	542	60.00
1.5327	2	313	60.34
1.5270	2	143	60.59
1.5119	2	261	61.26
1.4820	7	062	62.63
1.4682	7	004	63.29
1.4593	8	520	63.72

Potassium chromium oxide sulfate, $K_2(Cr0_4)_{.33}(S0_4)_{.67}$

Sample				
The sample was prepared by melting together a 2:1 molar mixture of K_2SO_4 and K_2CrO_4 , and	СиКа	$\lambda = 1.540$	598 Å; temp. 25	s±1 °C °
annealing at 600 °C for 18 hours.	Inte	rnal standa	rd Ag, $a = 4.08$	8651 A
	d (Å)	I	hkl	20(°)
Color				
Brilliant yellow	5.10	10	020	17.38
	5.06	5	011	17.50
	4.221	30	120	21.03
Major impurities	4.203	30	111	21.12
0.001-0.01% each Al, Ba	3.778	25	200	23.53
0.003-0.03% 51	3.538	6	210	25.15
0.01-0.1% Ca	3.420	10	121	26.03
	3.168	8	201	28.14
Structure	3.099	5	130	28.78
Orthorhombic, Pnam (62), $Z=4$. There is a complete solid solution series between K_2SO_h and	3.027	75	211	29.48
K ₂ CrO ₄ [Groschuff, 1908], isostructural with	2.935	100	031	30.43
low K ₂ SO ₄ . The structure of low K ₂ SO ₄ was de-	2.912	60	002	30.68
termined by Ehrenberg and Hermann [1929].	2.691	6	221	33.27
	2.626	2	112	34.11
NBS lattice constants of this sample:	2.548	13	040	35.19
a = 7.551(2)A	2.527	15	022,230	35.49
b = 10.195(2)	2.443	30	310	36.76
c = 5.825(1)	2.413	4	140	37.23
	2.398	8	122	37.48
	2.249	18	212	40.05
Density				
(calculated) 2.679 g/cm ³	2.230	12	141	40.42
	2.122	8	132	42.57
	2.112	10	240	42.78
Reference intensity	2.100	20	222	43.03
I/I _{corundum} = 1.1	2.022	5	330	44.79
	1.986	2	241	45.64
Polymorphism	1.969	3	150	46.07
This composition inverts at about 620 °C to a	1.908	9	232	47.61
hexagonal form. [Groschuff, 1908].	1.888	6	400	48.15
	1.871	4	312	48.61
References	1,794	4	250	50.84
Ebrenberg, W. and Hermann, C. (1929), Z. Krist	1.769	2	411	51.64
70. 163.	1.727	2	203	52.98
Groschuff, E. (1908). Z. anorg. Chem. 58, 107.	1.710	5	242	53.53
<u></u>	1.700	6	060	53.89
	1.685	10	033	54.39

Sample

The sample was prepared by melting together a 1:1 molar mixture of K_2CrO_4 and Rb_2CrO_4 and annealing the product at 600 °C for 18 hours.

Major impurities

0.001-0.01% Ag 0.003-0.03% Mg 0.01-0.1% each Al, Ba, Ca 0.03-0.3% Si

Color

Brilliant yellow

Structure

Orthorhombic, Pnam(62), Z=4, isostructural with low K_2SO_4 . The structure of low K_2SO_4 was determined by Glossner [1928]. KRbCr O_4 is the midpoint in the complete solid solution series between K_2CrO_4 and Rb_2CrO_4 [Samuseva et al. 1967].

NBS lattice constants of this sample:

```
a = 7.853(1)A

b = 10.517(1)

c = 5.9969(9)
```

Density

(calculated) 3.226 g/cm³

```
Reference intensity
I/I = 2.3
```

Polymorphism

This composition inverts at about 630 °C to a high temperature crystal modification, presumably isostructural with high K_2SO_4 [Samuseva et al. 1967].

References

Glossner, B. (1928). Neues Jahrb. Mineral. Geol. Beilage B. 57A, 89.

Samuseva, R.G., Okunev, Y.A., and Plyushchev, V.E. (1967). Russ. J. Inorg. Chem.(English Transl.), 12, 1489.

CuKa	$\lambda = 1.5405$	98 A; temp. 2	25±1 °C
Inter	rnal standar	d W, a = 3.1	.6524 Å
d(Å)	I	hkl	20(°)
5.25 5.211 4.371 4.341 3.926	6 4 3 4 13	020 011 120 111 200	16.87 17.00 20.30 20.44 22.63
3.676 3.530 3.285 3.202 3.145	10 25 19 7 65	210 121 201 130 220	24.19 25.21 27.12 27.84 28.36

d(Å)	I	hkl	20(°)	
3.136	85	211	28.44	
3.026	100	031	29.49	
2.997	70	002	29.79	
2.785	10	221	32.11	
2.706	1	112	33.08	
2,629	13	040	34.08	
2.614	20	230	34.27	
2.539	30	310	35.32	
2.493	4	140	36.00	
2.472	11	122	36.31	
2 396	А	231	37 51	
2 3 3 9	14	231	38 45	
2.335	18	212	38 71	
2 302	<u>1</u> 0	141	39 09	
2 1 8 4	14	240 321	41 30	
2.101	7	240,521	41.30	
2.171	25	222	41.57	
2.098	6	330	43.09	
2.053	4	241	44.07	
2.031	5	150	44.57	
1.984	2	051	45.68	
1.971	18	232	46.02	
1.938	9	312	46.83	
1.866	6	401	48.75	
1.854	4	340,250	49.09	
1.837	4	411	49.59	
1.818	2	123	50.15	
1.781	4	203	51.26	
1.772	10	341,251	51.52	
1.756	-0	213	52.03	
1.753	7	060	52.14	
1 7 7 7	14	033	52.00	
1.737	14	033	52.66	
1./13	5	430	53.46	
1.696		123	54.02	
1.682	2	102	54.52	
1.040	4	431,101	55.80	
1.643	4	402	55.93	
1.623	3	412	56.68	
1.600	3	260	57.54	
1.578	3	342,252	58.43	
1.5713	2	313	58.71	
1.5466	4	261	59.74	
1.5132	6	062	61.20	
1,5041	10	511	61.61	
1.4995	10	004	61.82	
1.4874	8	432	62.38	
1 4753	2	170 242	62.05	
1 4601	2	114 071	63 70	
1 4361	3	450	6/ 00	
1 /126	- 7	450	66 00	
1 4010	2	403 204	66 71	
1 3006	2	403,204	67 30	
1.3000	2	413,214	07.30	

Sample							
The sample	e was prepare	ad at NBS by	adding AgNOn		т	bk≬	20(0)
in acuaci	c adution to	and of V-C-	On The sec-		T	117.2	20()
in aqueous	a solution to	d dwied	ou. me pre-	2 (57	11	1 7 1	22.70
cipitate v	was wasned ar	la arlea.		2.657	11	131	33.70
				2.557	3	221	35.07
				2.516	2	040	35.65
Color				2.426	3	022	37.02
Dark grav	ish brown			2,369	1	140	37.95
					_		
				2 202	12	100	20.26
				2.295	13	122	39.20
Optical data	a			2.174	T	202	41.51
Opaque				2.157	1	301	41.85
				2.136	1	032	42.28
				2,122	5	320	42.56
Structure							
Orthorhom	hia Dmnh(62)	7 - 4 The	structure of	2 100	,	211	10 05
OFCHOINDIN	DIC, Philip (02)	7, 2 - 4. Ine	Structure or	2.109	1	211	42.05
Ag ₂ CrO ₄	was determine	ed by Hackert	and Jacobson	2.045	19	240,132	44.26
[1971].				1.996	19	222	45.41
				1.892	5	051	48.06
NBS latti	ce constants	of this samp	le:	1.827	1	151	49.86
	2 - 7 02	20(0)		1 014	F	221	FO 25
	a - 7.022	20(9)A		1.014	5	221	50.25
	b = 10.065	5(2)		1.785	1	103	51.12
	c = 5.538	BO(7)		1.755	11	400	52.06
				1.684	3	322	54.43
				1.677	5	060	54.69
Density				1.0011	2	000	
(calgulat				1.005	- -	201	FF 10
(calculat	ea) 5.629 g/c	Cm ~		1.665	5	251	55.10
				1.645	16	242	55.86
				1.631	4	160	56.37
Reference i:	ntensity			1.6172	11	033	56.89
I/I	= 3.8			1.6125	20	213	57.07
-' corund	um			1.0105	20		
				1 5757	2	1 2 2	E0 E2
				1.5/5/	2	100	50.55
Polymorphis	m			1.49/1	12	431	61.93
Pistorius	[1967] rep	ports that Ag	2CrO4 inverts	1.4827	6	402	62.60
to a hexa	gonal form al	bove 479 °C.		1.4348	3	062	64.94
				1.4218	<1	422	65.61
Ndditional .	nattawn			1 4052	2	160	66 10
Additional	pattern	form a second		1.4055	3	102	00.40
1. PDF c.	ard 20-1055	Kloberstein	and Backmann,	1.3847	3	004	67.60
Degus	sa Forschung	Chemie, Frank	furt-am-Main,	1.3639	2	360	68.77
Germa	ny, 1967].			1.3607	2	053	68.96
	-			1.3311	1	333	70.72
				1.0011	-		
Deferrer				1 2020	2	271	72 00
References				1.2938	3	271	73.08
Hackert, M.	L. and Jacobs	son, R.A. (19	/1). J. Solid	1.2878	2	204	73.48
State Che	m. <u>3</u> , 364.			1.2690	1	253	74.75
Pistorius,	C. W. F. T.	(1967). J. Ch	em. Phys. 46,	1.2581	1	080	75.50
2167.			-	1.2477	2	224	76.25
				1.21//	2		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	1 5 405	°	513 AG	1		1.60	70.11
<u>Cuka</u>	1 = 1.5405	98 A; temp. 2	5±1 °C	1.2226	T	163	/8.11
			0	1.2124	2	460	78.89
Inte	rnal standard	d W, $a = 3.1$	6524 A	1.1952	<1	144	80.25
				1.1895	1	433	80.72
(A) b	т	hk l	20 (°)	1 1463	4	244	84.44
~~(II)	-	1111.~	20()	1.1403	7	277	01.11
5.00	0	000	17 (2)	1 1050	2	(1)	05 04
5.03	8	020	17.62	1.1376	3	611	85.24
4.86	1	011	18.24	1.1107	2	513	87.82
4.087	12	120	21.73				
3,994	3	111	22.24				
3 512	5	200	25 34				
5.512	5	200	23.34				
			27. 24				
2.879	75	220	31.04				
2.870	100	031	31.14				
2.844	90	211	31.43				
2.769	40	002	32.30				

33.53

2.671

4

021

Sample	material from		-	1-1-0	20 (2)
The sample was specially purified	Now York	a (A)	T	nki	20(*)
the Mallinckrout chemical works,	New IOIK.	1,887	1	410	48 18
		1.834	1	411	49.68
Color		1.786	12	331	51.10
Colorless		1.740	10	420	52.54
		1.698	<1	421	53.94
Optical data		1.660	<1	332	55.31
Isotropic $N = 1.587$		1.588	6	422	58.02
		1.556	<1	430	59.34
		1.527	1	510	60.61
Structure		1.497	9	511	61.92
Cubic, $P2_13$ (198), $Z = 4$, isost	ructural with				
$Ba(NO_3)_2$. The structure of $Ba(NO_3)_2$	3)2 was deter-	1.445	1	520	64.44
mined by Birnstock [1967]. P	reviously the	1.421	<1	521	65.64
space group for Sr(NO ₃) ₂ was con	sidered to be	1.3752	6	440	68.13
Pa3(205).		1.3342	1	530	70.53
Who lattice constants of this con	m1	1.3156	10	531	71.68
NBS lattice constants of this sam	bre:	1 2060	٨	600	77 00
-77913(2)		1 2702		610	74.00
a = 7.7013(2/A		1 2625	~1	611	74.00
		1 22023	2	620	75.20
Dongity		1 2155	<1	620	70 65
(calculated) 2.984 g/cm ³		1.2133	1	021	/8.05
(,, _, _, _, _, _, _, _, _, _, _,		1.1866	3	533	80,96
		1.1731	4	622	82.09
Reference intensity		1.1599	1	630	83.23
I/I _ = 3.5		1.1473	<1	631	84.35
corundum		1.1232	1	444	86.60
Additional patterns		1.0896	2	711	89.98
1. Vegard [1922].	10501	1.0791	1	640	91.10
2. PDF card 4-310 [Swanson and T	atge, 1953].	1.0688	<1	720	92.23
		1.0588	<1	/21	93.36
Defenerez		1.0398	2	642	95.60
References Birnstock R (1967) 7 Krist 1	24, 310,	1 0307	<1 *	722	96 72
Guangon H E and Tatge E (1953	Natl Bur	1 0131	4	731	98 99
Std II S Circ 539, 1, 80.	, nace, part	0 9962	<1	650	101 29
Vegard, L. (1922). Z. Phys. 9, 395	i.	.9884	<1	732	102.40
	•	.9728	<1	800	104.72
	······································		_		
$C_{11}K\alpha_{1}$) - 1 540500 h tom	25+1 °C	.9652	<1	810	105.90
Curul x = 1.540558 A, Cemp.	23-1 0	.9506	<1	733	108.25
Internal standard Si a = 5	43088 2	.9437	2	820	109.43
incernal scandard SI, a = 5.	43000 A	.9368	<1	821	110.63
$d(\mathbf{A})$ T $hk\ell$	20(°)	.9170	2	822	114.29
4.494 100 111	19.74	.9044	1	831	116.79
3.890 15 200	22.84	.8985	2	751	118.03
3.480 25 210	25.58	.8925	L	662	119.32
3.177 16 211	28.06	.8867	<1	832	120.62
2.753 20 220	32.50	.8700	T	840	124.61
0.505	24 54	.8541	3	911	128.81
	34.54	.8490	1	842	130.28
	38.33				
2.245 55 222	40.13				
	43.46				
1.94/ 14 400	46.62				

Sample The sample was prepared at NBS by T. Negas by heating SrCO3 and WO3 in stoichiometric pro- portions at 950°C in a gold envelope for 2 weeks.	
Color Colorless	
<pre>Structure Orthorhombic, Pnam (62), Z = 4, isostructural with K₂VO₂F₃. The structure of Sr₂WO₅ was de- termined by Negas and Roth [1974].</pre>	
NBS lattice constants of this sample:	
a = $7.2506(4)$ Å b = 10.8963(7) c = 5.5480(4)	
Density (calculated) 6.654 g/cm ³	
Reference intensity I/I corundum = 5.7	
Reference Negas, T. and Roth, R. S. (1974). Private commu- nication (to be published).	
CuKa ₁ λ = 1.540598 Å; temp. 25±1 °C	

and the second s			
СиКа1	$\lambda = 1.540$	0598 Å; temp. 25	±l °C
Inter	nal standa	ard Si, a = 5.43	088 Å
d (Å)	I	hkl	20(°)
6.04	11	110	14.66
5.45	· 13	020	16.26
4.95	3	011	17.91
4.356	9	. 120	20.37
4.085	30	111	21.74
3.626	5	200	24.53
3.440	10	210	25.88
3.037	100	031,201	29.39
3.020	30	220	29.56
2.923	30	211	30.56
2.804	4	131	31.89
2.774	35	002	32.24
2.652	17	221	33.77
2.567	11	230	34.93
2.551	4	140	35.15

d (Å)	I	ł	nkl	20(°)
2 521	2	-	112	35 58
2 473	ĩ	- i	122	36.30
2 2 2 2 2 2	7		222	30.30
2.329	,	-	231	38.63
2.318	6	-	141	38.82
2.204	4	2	202	40.92
2.178	7	:	240	41.42
2.172	6	3	311	41.55
2.159	11	:	212	41.80
2.109	2	1	132	42.84
2.088	4	1	150	43.30
2.052	-		1	44.00
2.052	5	-	321	44.09
2.043	25		222	44.31
2.028	7	05.	1,241	44.64
2.013	3	3	330	45.00
1.954	<1]	151	46.43
1.884	14	:	232	48.28
1.868	4	:	250	48.71
1.817	6	-	160	50.18
1 812	4		100	50.31
1 709	2		100	50.51
1.750	2	•	512	50.74
1.789	1	4	410	51.02
1.7699	12	2	251	51.60
1.7616	3]	L60	51.86
1.7231	12	4	401	53.11
1.7135	3	:	242	53.43
1 7000	<u> </u>	1.07		52.03
1.7023	2	123	3,411	53.8L
1.6680	1		152	55.01
1.6473	16	033	3,203	55.76
1.6429	12	4	421	55.92
1.6285	8	213	3,332	56.46
1,6227	10	260	0,430	56.68
1.6066	1		133	57 30
1 5767	4	-	223	58 49
1 5593	1		261	50.25
1 5/02	4	-	201	59.25
1.5455	4	4	252	59.03
1.5191	8	(062	60.94
1.5026	2	4	412	61.68
1.4998	3	2	233	61.81
1.4971	3]	L43	61.93
1.4870	3	1	L62	62.40
1 4676			. 71	62.22
1.46/6	Ţ		1/1	63.32
1.4618	1	4	122	63.60
1.4520	<1	3	360	64.08
1.4376	1	5	510	64.80
1.4181	1	3	323	65.80
1,4101	2	053	3.243	66.22
1 4047	5	0.50	361	66 51
1 3000	14		132	66 77
1 2072	7		252	66.01
1.39/3	· ·	-	04	67 40
T.396A	5	C C	104	07.48

d(A) 20(°) I hkl 1.3621 1 080,333 68.88 1.3586 1 521 69.08 1.3516 1 114,451 69.49 1.3442 1 024 69.93 172 70.52 1.3343 2 1.3220 1 124 71.28 253 71.76 1.3143 3 181 1.3013 1 72.59 1.2946 4 403 73.03 1.2859 1 214,362 73.60 74.27 1.2760 1 512,163 134,280 74.33 1.2751 1 5 224,423 1.2598 75.39 552 1.2506 4 76.04 1.2474 4 541 76.27 452 1.2458 4 76.39 3 281 76.62 1.2426 1.2224 3 082 78.12 263,234 1.2198 5 78.32 1.2082 1 600 79.22 1.2009 <1 610 79.80 1 091 81.28 1.1827 1 620,551 81.50 1.1801 173 1.1752 1 81.91 1.1698 1 244 82.37 1.1672 2 191 82.59 542 1.1623 1 83.02 1.1585 1 282 83.35 154,471 1.1553 2 83.63 1.1542 1 621 83.73 84.26 1.1483 1 290 1.1464 1 630 84.43 363,334 1.1422 2 84.82 1.1248 1 291 86.45 1.1230 3 631 86.62 1.1135 1 254 .. 87.54 602 1.1079 1 88.10 1.1023 3 064,612 88.66 <1 1.0962 414 89.29 1.0913 1 115,382 89.80 1.0898 1 164,0.10.0 89.95 1.0832 1 641 90.66 1.0823 1 390 90.75 481 1.0690 92.21 1 1.0679 1 373 92.33 4 292,205 93.11 1.0610 1.0558 2 215 93.70 1.0541 6 463,434 93.90 94.39 1.0499 2 135,283 1.0414 1 225 95.41

Strontium tungsten oxide, Sr_2WO_5 - continued

Sample

The sample was obtained from K&K Laboratories, Plainview, N.J.

Major impurities

0.01-0.1% Ca 0.001-0.01% Fe

Color . Colorless

Structure

Monoclinic, $P2_1/c$ (14), Z=4 [Gossner and Kraus, 1934]. The structure was determined by Lindqvist [1970] who confirmed this space group. Other space groups have been reported by Aviness and Petit [1968] and by Bayer [1968]. The NBS data could also be indexed on these space groups.

NBS lattice constants for this sample:

а	=	6.4979(6)A°
b	=	9.3223(9)
С	=	8.3334(9)
R	=	99.69(1) °

Density (calculated) 3.065 g/cm³

Reference intensity I/I = 5.9

Polymorphism

Three forms of H_6 TeO₆ have been reported. The cubic phase transforms to either the monoclinic or tetragonal phase depending on conditions of humidity and temperature. It was not possible to convert the monoclinic phase into the cubic form in either dry or moist air; this suggests that the monoclinic phase is the stable modification [Bayer, 1968].

Additional patterns 1. PDF card 21-388 [Bayer, 1968] 2. PDF card 24-1266 [Lindqvist, 1970] 3. Aviness and Petit [1968] References Aviness, C. and Petit, H. (1968). Compt. Rend. <u>266</u>, 981. Bayer, G. (1968). J. Less-Common Metals <u>16</u>, 215. Gossner, B. and Kraus, O. (1934). Z. Krist. <u>88</u>, 298.

Lindqvist, O. (1970). Acta Chem. Scand. 24, 3178.

CuKal	$\lambda = 1.540$	598 A; temp. 25:	±1 °C
Inter	nal standa	rd Ag, $a = 4.086$	551 Å
d (Å)	I	hkl	20(°)
4.75	100	ī11	18.65
4.67	45	020	19.00
4.183	65	111	21.22
3.485	1	ī12	25.54
3.203	7	200	27.83
3.083	11	022	28.94
2.761	4	202	32.40
2.639	20	220	33.94
2.622	4	221	34.17
2.589	25	131	34.62
2.582	30	113	34.72
2.376	5	222	37.83
2,331	3	040	38.60
2.303	2	113	39.08
2.243	2	041	40.18
2.2361	1	132	40.30
2.1013	5	311	43.01 43.20
2.0925	8	222,231	43.20
2.0536	2	033,004	44.06
2.0475	4	223	44.20
2.0322	5	T33	44.55
1.9932	4 <1	312	45.47
1,9431	6	311	46.71
1.8879	13	133,142	48.16
1.8839	16	240,124	48.27
1.8/91	10	213	50.51
1.8035	4	000 540	51.00
1.7808	5	223,242	51.26
1.7/18	6	151	51.54
1.7422	4	224	52.48
1.7321	3	124,151	52.81
1.6738	4	331	54.80
1.6525	4	242	55.57
1.6346	4	115	56.23
1.6133	1	152	57.04
1.6102	T	204	21.10
1.6007	1	400,134	57.53
1.5839	3	333,341 060	58.20
1.5335	4	044.313	60.03
1.5320	2	324,153	60.37
1.5216	2	224	60.83
1.5146	2	420	61.14
1.5121	3	341	61.25
1.5106	3	115,160	61.32
1.5002	2	422	01.15

Telluric Acid, H₆TeO₆ (continued)

d(Å)	I	hke	20(°)
1.4665	3	153	63.37
1.4626	4	244	63.56
1.4534	1	062,035	64.01
1.4247	<1	4 23	65.46
1.4136	1	402	66.04
		_	
1.4102	2	351	66.22
1.4064	2	315	66.42
1.3977	1	260,412	66.89
1.3949	1	261,333	67.04
1.3800	1	404,054	67.86
1 2765	,	550	69 06
1.3703	2	125	60.00
1 2505	2	133	60.23
1.3393	-	016 262	69.03
1.3540	-1	206,202	70.02
1.3420	< <u>1</u>	200,045	70.02
1.3234	2	424,254	71.19
1.3099	3	353	72.04
1.2946	2	262,171	73.03
1.2868	1	511,432	73.54
1.2809	<1	500,171	73.94
1.2396	1	155,522	76.84
1.2325	1	055,513	77.36
1.2236	1	361,511	78.03
1.2086	<1	_ 442	79.19
1.1973	3	264,353	80.09
1 1934	2	521 173	80.40
1 1878	1	532 444	80.86
1 1808	1	117,344	81 44
1 1710	<1	404	82 27
1.1/10	. 7	-0-	

Sample

The sample was prepared by slow evaporation at room temperature of an aqueous solution of $Zn (NO_3)_2$. Because of instability and strong cleavage the intensities are subject to some error.

Major impurities:

0.001-0.01% each Ag, Ba, Cr, Si, Sr 0.003-0.03% Fe 0.01-0.1% Ca

Color

Colorless

Structure

Orthorhombic, $Pn2_1a$ (33), Z=4. The structure was determined by Ferrari et al. [1967]. It is isostructural with β -Co(NO₃)₂·6H₂O [Pouillen et al., 1965].

NBS lattice constants of this sample:

- a = 12.372(3)A b = 12.902(3)c = 6.302(2)
- Density (calculated) 1.964 g/cm³

Polymorphism

Pouillen [1960] reports polymorphic transformations of $Zn(NO_3)_2 \cdot 6H_2O$ at + 19 ° and -13 °C; however Weigel et al [1964] did not find a transition at -13 °C.

Additional patterns

PDF card 19-1465 [Weigel et al., 1964].
 Pouillen et al., [1965].

References

Ferrari, A., Braibanti, A., Manotti-Lanfredi, A.N. and Tirificchio, A. (1967). Acta Cryst. <u>22</u>, 240. Pouillen, P. (1960). Compt. Rend. <u>250</u>, 3318. Pouillen, P., Bernard, M. J., and Massaux, M. (1965). Compt. Rend. <u>260</u>, 6861. Weigel, D., Imelik, B., and Prettre, M. (1964). Bull. Soc. Chem. France <u>1964</u>, 836.

CuK	$\alpha_1 \lambda = 1.5405$	98 A; temp. 2	5±1 °C
 Inte	ernal standar	d W, a = 3.1	6524 Å
å (Å)	I	hkl	20(°)
6.449	6	020	13.72
5.580	100	210	15.87
5.145	75	111	17.22
4.235	85	121	20.96
3.646	15	221	24.39
3.532	20	230	25.19
3.415	4	131	26.07
3.336	30	311	26.70
3.228	30	040	27.61
3.154	2	002	28.27
3.095	40	400	28.82
3.042	30	321	29.34
2.971	8	112	30.05
2.832	5	022	31.57
2.788	35	420	32.08
2.744	30	212	32.61
2.715	4	411	32.97
2.551	3	421	35.15
2.504	9	302	35.83
2.457	10	312	36.54
2.380	3	250	37.77
2.344	12	151	38.37
2.302	3	501	39.09
2.267	4	511	39.73
2.208	20	402	40.84
2.169	16	521	41.61
2.149	25	060	42.00
2.088	9	422	43.29
2.071	8	103	43.67
2.067	10	351	43.75
2.036	4	610	44.45
2.008	6	161	45.12
1.990	4	203	45.54
1.946	4	502	46.64

Sar	[an	.e
~~~		

The sample was prepared at NBS by heating a 2:1 mixture of ZnO and  $TiO_2$  (anatase) at 1300 °C for 45 minutes, followed by heating at 1450 °C for 10 minutes.

Color Colorless

Structure

Cubic, Fd3m (227), Z = 8. Verwey and Heilmann [1947] found  $Zn_2TiO_4$  to be an inverse spinel structure. Billiet and Poix [1963] found that at high temperatures there was some randomness of the cation occupation. The structure was also studied by Bartram and Stepetys [1961] who also noted some departure from perfect inverse spinel structure.

NBS lattice constant of this sample:

$$a = 8.4602(5)A$$

Density (calculated) 5.323 g/cm³

Reference intensity I/I = 4.5

Polymorphism

Besides the order-disorder of the spinel type, Billiet and Poix [1963] reported a tetragonal, distorted spinel form below about 500 °C.

# Additional patterns

Bartram and Stepetys [1961].
 Dulin and Rase [1960].

References

Bartram, S. F. and Stepetys, R. A. (1961). J. Am. Cer. Soc. <u>44</u>, 493.

Billiet, Y. and Poix, P. (1963). Bull. Soc. Chem. France <u>1963</u>, 477.

```
Dulin, F. H. and Rase, D. E. (1960). J. Am. Cer.
Soc. <u>43</u>, 125.
```

```
Verwey, E. J. W. and Heilmann, E. L. (1947). J.
Chem. Phys. <u>15</u>, 174.
```

Cu	Kα ₁ λ = 1.5	40598 Å; temp.	25±1 °C
In	ternal stan	dard Ag, $a = 4$	.08651 Å
d (Å)	I	hkl	20(°)
4.89	4	111	18.11
2.993	35	220	29.83
2.552	100	311	35.13
2.444	4	222	36.74
2.115	13	400	42.72
1 7 7 7	11	400	E2 09
1.727	11	422	52.90
1.627	30	511	56.50
1.4958	30	440	61.99
1.4305	<1	531	65.16
1.3377	3	620	70.32
1.2901	6	533	73.32
1.2758	2	622	74.28
1.2214	1	444	78.20
1.1306	4	642	85.89
1.1013	9	731	88.77
1 0576	2	800	93 50
0 9971	2	822	101 17
0.9971	2 E	751	101.17
.9709	נ ו	662	104.10
.9700	1	002	105.06
.9457	T	840	109.07
.9019	1	664	117.32
.8868	4	931	120.61
.8634	7	844	126.30

#### Structure

Cubic, P2₁3 (198), Z = 4. The structure of Ca(NO₃)₂ was determined by Vegard and Bilberg [1931], and the space group was given as Pa3. However, later work by Birnstock [1967] on the isomorph Ba(NO₃)₂ indicated that the space group is P2₁3. In the present calculated patterns, the atomic positions given by Vegard and Bilberg have been modified for the change in space group. The system Ba(NO₃)₂-Ca(NO₃)₂ forms a complete solid solution series [Protsenko and Belova, 1957].

#### Lattice constants

The constants were derived by interpolation on a molar ratio using the following: for  $Ba(NO_3)_2$  a = 8.1148Å [Swanson et al., 1973]; for  $Ca(NO_3)_2$ , a=7.6005Å [Swanson et al., 1957, modified to conform to new wavelength measurements].

Thermal parameters Isotropic: barium B = 0.93; calcium B = 1.0; nitrogen B = 1.2; oxygen B = 1.2.

#### Scattering factors

Ca²⁺, N⁰, O⁻ [International Tables, 1962]. Ba²⁺ [Cromer and Waber, 1965]. The factors used were proportional to the molar ratio, assuming random distribution of the cations.

References Birnstock, R. (1967). Z. Krist. <u>124</u>, 310. Cromer, D. T. and Waber, J. T. (1965). Acta Cryst. <u>18</u>, 104. International Tables for X-ray Crystallography III (1962), 202, 210. Protsenko, P. I. and Belova, Z. I. (1957). Zhur. Neorg. Khim. <u>2</u>, 2619. Swanson, H. E., Gilfrich, N. T., and Cook, M. I. (1957). Nat'l. Bur. Std. U.S. Circ. 539, <u>VII</u>, 14. Swanson, H. E., McMurdie, H. F., Morris, M. C., Evans, E. H., and Paretzkin, B. (1973). Nat'l. Bur. Std. U.S. Monograph 25, <u>11</u>, 14.

Vegard, L. and Bilberg, L. (1931). Avhandl. Norske Videnskaps Mat.-Nat. Kl. 1931 No. 12.

	Ba.75Ca.25(NO3)2			Ba ₅ Ca ₅ (NO ₃ ) ₂			Ba ₂₅ Ca ₇₅ (NO ₃ ) ₂		
hkl	d (A)	I	20(°)	d(A)	I	20 (°)	d(A)	I	20(°)
		λ=1.	540598		$\lambda = 1$ .	540598		λ=1.9	540598
111	4.610	100	19.24	4.535	100	19.56	4.463	100	19.88
200	3.994	25	22.24	3.928	15	22.62	3.864	5	23.00
210	3.573	17	24.90	3.515	28	25.32	3.456	42	25.76
211	3.262	13	27.32	3.209	20	27.78	3.155	31	28.26
220	2.824	26	31.66	2.779	22	32.18	2.733	17	32.74
221	2.664	<1	33.62	2.620	2	34.20	2.576	5	34.80
311	2.409	75	37.30	2.370	75	37.94	2.331	71	38.60
222	2.306	44	39.02	2.268	53	39.70	2.232	64	40.38
321 +	2.135	<1	42.30	2.101	1	43.02	2.066	2	43.78
400	1.997	13	45.38	1.965	16	46.16	1.933	19	46.98
					_				10 50
410	1.937	<1	46.86	1.906	<1	47.68	1.875	<1	48.52
411	1,883	2	48.30	1.853	3	49.14	1.822	5	50.02
331	1.833	15	49.70	1.803	14	50.58	1.773	11	51.50
024 +	1.787	14	51.08	1.757	13	52.00	1.728	11	52.94
124	1.744	1	52.44	1.715	1	53.38	1.687	1	54.34
332	1.703	<1	53.78	1.676	<1	54.74	1.648	1	55.74
422	1.631	10	56.38	1.604	8	57.40	1.5780	6	58.44
430	1.598	<1	57.64	1.5721	<1	58.68	1.5462	1	59.76
134 +	1.567	<1	58.90	1.5415	<1	59.96	1.5159	l	61.08
511 +	1.537	11	60.14	1.5123	11	61.24	1.4878	10	62.36
432	1 4836	1	62 56	1 4593	1	63 72	1,4352	2	64,92
125	1 4585	<1	63.76	1.4348	<1	64.94	1.4113	<1	66.16
440	1 4124	6	66 10	1 3894	7	67 34	1.3666	8	68,62
522 +	1 3000		67.26	1 3690		68 54	1 3457	<1	69 84
133	1 3701	<1	69 12	1 3490	<1	69 70	1 3255	1	71 06
433	1.3701	~1	08.42	1.3480	<μ.	09.10	T. 3233	T	/1.00

	Ba 7	75Ca.25(N	0 ₃ ) ₂	Ba.5Ca.5(NO3)2 Ba.25Ca.75(NC			03)2		
hkl	d(A)	I	20(°)	d (Å)	I	20 (°)	d(A)	I	20(°)
		λ=1.	540598		λ=1.	540598		λ=1.	540598
53] +	1.3504	13	69.56	1.3284	12	70,88	1.3067	11	72,24
142 +	1.3314	6	70.70	1,3099	5	72.04	1,2883	4	73.44
610	1.31.34	<1	71.82	1,2920	<1	73.20	1.2709	<1	74.62
235 +	1.2959	<1	72.94	1.2749	<1	74.34	1.2540	- 1	75.80
620 +	1 2631	3	75.16	1,2426	3	76.62	1,2222	2 ·	78,14
020	1.2051	2	/5.10	1.2420	5	70102	1.2202	2	/0.14
126 +	1.2476		76.26	1.2275	<1	77.74	1.2072	<1	79.30
145 +	1.2328		77.34	1.2128		78.86	1.1927	<1	80.46
533	1.2182	4	78.44	1.1986	4	79.98	1.1789	3	81.60
622	1.2044	4	79.52	1.1849	5	81.10	1.1653	5	82.76
542	1.1910	<1	80.60	1.1715	<1	82.22	1.1523	<1	83.90
136 +	1,1779	<1	81.68	1,1589	<1	83.32	1,1398	<1	85.04
444	1,1532	1	83.82	1,1344	1	85.54	1,1158	1	87.32
543	1,1297		85.98	1,1115	<1	87.74	1.0932	<1	89.60
711 +	1,1186	4	87.04	1,1006	4	88.84	1.0824	3	90.74
640 +	1,1079	2	88.10	1,0899	2	89.94	1.0719	ĩ	91.88
040 1	1.1075	-	00.10	1.0000	2	05.51	1.0715	-	51100
146	1.0974	<1	89.16	1.0796	<1	91.04	1.0618	<1	93.02
633	1.0871		90.24	1.0696		92.14	1.0519	<1	94.16
246 +	1.0676	4	92.36	1.0502	4	94.36	1.0330	3	96.44
544	1.0583		93.42	1.0410		95.46	1.0239	<1	97.58
137 +	1.0401	6	95.56	1.0231	5	97.68	1.0063	5	99.90
650	1.0228	<1	97.72	1,0063	<1	99.90	0.9898	<1	102.20
156 +	1.0145	<1	98,80	0,9981	<1	101.02	.9817	<1	103.38
800	0.9986	<1	100.96	.9824	<1	103.28	9663	<1	105.72
652 +	. 9909	<1	102.04	.9749	<1	104.40	.9587	1	106.92
147	.9833		103.14	.9675		105.54	.9515	<1	108.10
733	9761	1	104 22	9601	1	106 70	9111	1	109 30
644 +	9687	3	105 34	9531	3	107.84	037/	3	110 52
247 +	9617	<1	106 44	9/62	<1	109.00	9306	<1	111 7/
822 +	9415	2	109 80	9262	2	112 54	9110	2	115 46
831 +	.9287	<1	112.08	.9136	<1	114.94	.8986	<1	118.02
	0005		112 04	0085	-	116.16	0005	-	110.00
751 +	.9225	3	113.24	.9075	3	116.16	.8925	3	119.32
662	.9164	1	114.40	.9015	1	117.40	.8867	1	120.62
832 +	.9104	~1	115.58	.8957	< <u>1</u>	118.64	.8809	<1 ,	121.96
048 +	.8932	T	119.18	.8/8/	T	122.48	.8642	1	126.08
/44 +	.88//		120.40	.8/32		123.80	.8589	<1	127.50
753 +	.8769	4	122.90	.8627	4	126.48	.8485	4	130.42
842 +	.8717	2	124.18	.8575	2	127.86	.8434	2	131.94
761 +	.8615		126.80	.8475		130.70	.8335	<1	135.08
664	.8516	1	129.52	.8378	1	133.68	.8240	1	138.40
922 +	.8469		130.90	.8331		135.22	.8194	<1	140.14
158	8421		132 34	8285		136 80	81/18	<1	141 94
931 +	837/	2	133 80	9230	2	138 //	9103	2	1/3 9/
844	8154	2	1/1 72	-0239 8021	2	147 60	7990	2	155 04
033 1	2029	1	141.72	7000	1	147.00	./009	1	155.04
068 +	7989	2	147.22	7859	4	157 10			
000 1	. / 505	2	149.24	.7055	1	137,10			
249 +	.7949	<1	151.40						
862 +	. 7834	4	159.04						
Lattice		0			0			0	
constant		7.9889A			7.8594A			7.7300A	
Density			2			2			2
(calc.)		3.088 g	/cm ³		2.910 g	/cm ³		2.709 g	/cm ³

Barium calcium nitrate,  $Ba(NO_3)_2$ -Ca $(NO_3)_2$ , calculated solid solution series - Continued

Barium lead nitrate,  $Ba(NO_3)_2 - Pb(NO_3)_2$ , calculated solid solution series

Structure

Cubic,  $P2_13(198)$ , Z=4. The structure of  $Pb(NO_3)_2$  was determined by Hamilton [1957] and the space group given as Pa3. However, later work on the isomorph Ba $(NO_3)_2$  [Birnstock, 1967] indicated that the space group is  $P2_13$ . In the present calculated patterns the atom positions given by Hamilton were modified for the change in space group. The system  $Ba(NO_3)_2$ -Pb $(NO_3)_2$  forms a complete solid solution series [Laybourn, et al., 1934].

# Lattice constants

The constants were derived by interpolation on a molar ratio using the following: for  $Ba(NO_3)_2$ , a=8.1148Å [Swanson et al., 1974]; for  $Pb(NO_3)_2$ , a=7.8573 [Swanson et al., 1955, modified to conform to new wavelength measurements].

Thermal parameters Isotropic: barium B = .93, lead B = 1.0, nitrogen B = 1.21, oxygen B = 1.16.

#### Scattering factors

 $N^0$ , O⁻ [International Tables, 1962]. Ba²⁺, Pb²⁺ [Cromer and Waber, 1965]. The factors used were proportional to the molar ratio, assuming random distribution of the cations.

#### References

Birnstock, R. (1967). Z. Krist. <u>124</u>, 310.
Cromer, D. T. and Waber, J. T. (1965). Acta Cryst. <u>18</u>, 104.
Hamilton, W. C. (1957). Acta Cryst. <u>10</u>, 103.
International Tables for X-ray Crystallography III (1962), 202.
Laybourn, K., Madgin, M. W., and Freeman, D. (1934). J. Chem. Soc. <u>1934</u>, 139.
Swanson, H. E., Gilfrich, N. T., and Ugrinic, G. (1955). Nat'l. Bur. Std. U.S. Circ. 539, <u>V</u>, 36.
Swanson, H. E., McMurdie, H. F., Morris, M. C., Evans, E. H., and Paretzkin, B. (1974). Nat'l Bur. Std. U.S. Mono. 25, <u>11</u>, 14.

	Ba	a.67Pb.33 (NG	D ₃ ) ₂	Ba.	33Pb.67(NO	3) ₂	
hkl	d (Å)	I	20 (°)	d (Å)	I	20(°)	
		λ=1.54	40598		λ=1.54	10598	
			······································				
111	4.638	100	19.12	4.586	100	19.34	
200	4.015	35	22.12	3.973	35	22.36	
210 +	3.593	9	24.76	3.553	6	25.04	
211	3.278	6	27.18	3.243	4	27.48	
220	2.840	30	31.48	2.808	30	31.84	
1000							
311	2.421	67	37.10	2.395	64	37.52	
222	2.319	33	38.80	2.293	30	39.26	
123	2.146	<1	42.06	2.123	<1	42.54	
400	2.008	11	45.12	1.986	10	45.64	
410 +	1.948	<1	46.58	1.926	<1	47.14	
411	1.893	1	48.02	1.873	<1	48.58	
331	1.843	17	49.42	1.823	16	50.00	
024 +	1.796	15	50.80	1.776	15	51.40	
124	1.753	<1	52.14	1.734	< <u>1</u>	52.76	
332	1.713	<1	53.46	1.694	<1	54.10	
422	1.640	11	56.04	1.622	11	56.72	
431	1.575	<1	58.56	1.558	<1	59.26	
511 +	1.546	11	59.78	1.529	11	60.52	
432	1.4917	<1	62.18	1.4751	<1	62.96	
440	1.4201	5	65.70	1.4042	5	66.54	

_	Ba	67Pb.33(NC	) ₃ ) ₂	$Ba_{33}Pb_{67}(NO_3)_2$			
hkl	å (Å)	I λ=1.5	20 (°) 640598	d (Å)	Ι λ=1.5	20 (°) 40598	
433 531 + 442 + 610 611	1.3775 1.3576 1.3386 1.3204 1.3030	<1 13 6 <1 <1	68.00 69.14 70.26 71.38 72.48 74.68	1.3624 1.3426 1.3239 1.3058 1.2886	<1 12 6  3	68.86 70.02 71.16 72.30 73.42	
533 622 444 711 +	1.2248 1.2110 1.1593 1.1246	4 4 1 4	77.94 79.00 83.28 86.46	1.2339 1.2113 1.1976 1.1465 1.1123	4 4 1 4	78.98 80.06 84.42 87.66	
640 + 146 246 + 553 + 800	1.1139 1.1033 1.0734 1.0456 1.0041	2 <1 4 6 <1	87.50 88.56 91.72 94.90 100.20	1.1015 1.0911 1.0614 1.0341 0.9929	2 <1 4 5 <1	88.74 89.82 93.06 96.30 101.76	
733 644 + 822 + 831 751 +	0.9813 .9741 .9467 .9337 .9275	1 3 2 <1 3	103.44 104.52 108.92 111.18 112.30	.9704 .9633 .9361 .9234 .9172	1 3 2.  3	105.08 106.20 110.74 113.06 114.24	
662 840 + 753 + 842 + 664	.9213 .8980 .8817 .8764 .8562	1 1 4 2 1	113.46 118.14 121.78 123.04 128.22	.9112 .8881 .8719 .8667 .8468	1 1 4 2 1	115.42 120.30 124.12 125.44 130.92	
931 + 844 933 + 068 + 862 +	.8420 .8198 .8073 .8032 .7876	2 1 4 2 4	132.36 139.98 145.18 147.08 155.92	.8327 .8107 .7983 .7944	2 1 4 2	135.36 143.66 149.54 151.72	
Lattice constant		8.0322Å			7.9435Å		
(calc.)		3.645 g/	cm ³		4.083 g/	cm ³	

Barium lead nitrate,  $Ba(NO_3)_2 - Pb(NO_3)_2$ , calculated solid solution series - continued

Barium strontium nitrate,  $Ba(NO_3)_2$ -Sr(NO₃)₂, calculated solid solution series

Structure Cubic, P2₁3 (198), Z = 4. The structures of both Ba(NO₃)₂ and Sr(NO₃)₂ were originally determined by Vegard and Bilberg [1931]; they found the compounds isostructural and assigned the space group Pa3(205). Later work on Ba(NO3)2 by Birnstock [1967] indicated instead that the space group is  $P2_13(198)$  which is used here. The system  $Ba(NO_3)_2-Sr(NO_3)_2$  forms a complete solid solution series [Ringdal, 1932]. Lattice constants The constants were derived by interpolation on a molar ratio using the following; for  $Ba(NO_3)_2$ , a = 8.1184Å [Swanson et al., 1974] and for Sr(NO₃)₂, a = 7.7813Å [McMurdie et al., 1974]. Thermal parameters

Isotropic: barium B = 0.93; strontium B = 1.0; nitrogen B = 1.21; oxygen B = 1.16.

Scattering factors N⁰, O⁻ [International Tables, 1962].  $Ba^{2+}$ ,  $Sr^{2+}$  [Cromer and Waber, 1965]. The factors used were proportional to the molar ratio, assuming random distribution of the cations.

References

Birnstock (1967). Z. Krist. 124, 310.

Cromer, D. T. and Waber, J. T. (1965). Acta Cryst. 18, 104.

International Tables for X-ray Crystallography III (1962), 202.

McMurdie, et al: (1974). This publication, pg. 31. Ringdal, H. Th. (1932). Z. Krist. <u>82</u>, 50.

Swanson, H. E., McMurdie, H. F., Morris, M. C., Evans, E. H. and Paretzkin, B. (1974). Nat'l. Bur. Std. U. S. Mono. 25, 11, 14.

Vegard, L. and Bilberg, L. (1931). Avhandl. Norske Videnskaps Mat.-Nat. Kl. 1931, No. 12.

	Ba.7	Ba _{.75} Sr _{.25} (NO ₃ ) ₂			5Sr 5 (NO	3) ₂	Ba ₂₅ Sr ₇₅ (NO ₃ ) ₂		
hkl	d (À)	Ι λ=1.5	20(°) 540598	d (Å)	Ι λ=1.5	20(°) 540598	d (Å)	Ι λ=1.5	20(°) 540598
111	4.638	100	19.12	4.590	100	19.32	4.539	100	19.54
200	4.015	26	22.12	3.973	21	22.36	3.931	17	22.60
210	3.593	16	24.76	3.556	18	25.02	3.517	22	25.30
211	3.281	10	27.16	3.246	12	27.46	3.211	14	27.76
220	2.840	26	31.48	2.810	26	31.82	2.781	25	32 <b>.</b> 16
311 222 321 +	2.423 2.319 2.148	69 39	37.08 38.80 42.04	2.396 2.295 2.124	67 42	37.50 39.22	2.372 2.271 2.102	65 46	37.90 39.66 43.00
400	2.009	12	45.10	1.988	13	42.52	1.967	14	45.00
410 +	1.948	<1	46.58	1.928	<1	47.10	1.907	<1	47.64
411	1.894	1	48.00	1.874	2	48.54	1.854	2	49.10
331	1.843	15	49.40	1.824	14	49.96	1.804	14	50.54
024 +	1.796	14	50.78	1.778	14	51.36	1.759	13	51.94
124	1.753	1	52.12	1.735	1	52.72	1.716	1	53.34
332	1.713	<1	53.46	1.695	<1	54.06	1.677	<1	54.70
422	1.640	10	56.04	1.623	9	56.68	1.606	8	57.34
430	1.607	<1	57.30	1.590	<1	57.96	1.573	<1	58.64
134 +	1.576	<1	58.54	1.559	<1	59.22	1.542	<1	59.92
511 +	1.546	11	59.76	1.530	11	60.46	1.514	11	61.18
432	1.4917	1	62.18	1.4764	1	62.90	1.4606	1	63.66
125	1.4667	<1	63.36	1.4516	<1	64.10	1.4360	<1	64.80
440	1.4201	6	65.70	1.4053	6	66.48	1.3905	6	67.28
433	1.3779	<1	67.98	1.3634	<1	68.80	1.3490	<1	69.64
531 +	1.3579	12	69.12	1.3436	12	69.96	1.3294	12	70.82

	$Ba_{75}Sr_{25}(NO_3)_2$		Ba	Ba ₅ Sr ₅ (NO ₃ ) ₂			Ba _{.25} Sr _{.75} (NO ₃ ) ₂			
hkl	d (Å)	Ι λ=1.5	20(°) 540598	d(Å)	$I_{\lambda=1}$ .	20 (°) 540598	d (Å)	Ι λ=1.5	20(°) 540598	
442 +	1.3390	6	70.24	1.3249	5	71.10	1.3108	5	71.98	
610	1.3207	<1	71.36	1.3071	<1	72.22	1.2932	<1	73.12	
611 +	1.3033	<1	72.46	1.2895	<1	73.36	1.2758	<1	74.28	
620 +	1.2703	3	74.66	1.2571	3	75.58	1.2437	3	76.54	
621	1.2548	<1	75.74	1.2415	<1	76.70	1.2285	<1	77.66	
533	1.2251	4	77.92	1.2123	4	78.90	1.1994	3	79.92	
622	1.2113	4	78.98	1.1984	4	80.00	1.1858	4	81.02	
542	1.1976	<1	80.06	1.1851	<1	81.08	1,1725	<1	82.14	
136 +	1.1846	<1	81.12	1.1720	<1	82.18	1.1598	<1	83.24	
444	1.1595	1	83.26	1.1474	1	84.34	1.1362	1	85.46	
543	1.1361		85.38	1.1242		86.50	1.1123	<1	87.66	
711 +	1.1251	4	86.42	1.1131	4	87.58	1.1013	4	88.76	
640 +	1.1141	2	87.48	1.1025	2	88.64	1.0907	2	89.86	
146	1.1035	<1	88.54	1.0920	<1	89.72	1.0804	<1	90.96	
246 +	1.0736	4	91.70	1.0623	4	92.96	1.0510	4	94.26	
137 +	1.0460	5	94.86	1.0349	5	96.20	1.0241	5	97.56	
650	1.0287		96.98	1.0179	<1	98.36	1.0070	<1	99.80	
651 +	1.0203	<1	98.04	1.0096	<1	99.46	0.9990	<1	100.90	
800	1.0042	<1	100.18	0.9937	<1	101.64	.9832	<1	103.16	
652 +	0.9966	<1	101.24	.9861	<1	102.74	.9751	<1	104.28	
733	.9816	1	103.40	.9712	1	104.96	.9610	1	106.56	
644 +	.9742	3	104.50	.9640	3	106.08	.9538	1	107.72	
128 +	.9672	<1	105.58	.9570	<1	107.20	.9469	<1	108.88	
822 +	.9468	2	108.90	.9369	2	110.60	.9270	2	112.40	
831 +	.9339	<1	111.14	.9242	<1	112.92	.9144	<1	114.80	
751 +	.9277	3	112.26	.9180	3	114.10	.9082	3	116.02	
662	.9216	1	113.40	.9119	1	115.28	.9023	1	117.24	
832 +	.9156		114.56	.9060	<1	116.48	.8964	<1	118.48	
048 +	.8983	1	118.08	.8888	1	120.14	.8794	1	122.32	
753 +	.8818	4	121.74	.8726	4	123.96	.8634	4	126.30	
842 +	.8766	2	122.98	.8674	2	125.26	.8582	2	127.68	
664	.8565	1	128.16	.8475	1	130.72	.8384	1	133.48	
931 +	.8422	2	132.30	.8333	2	135.14	.8246	2	138.20	
844	.8200	1	139.90	.8114	1	143.38	.8028	1	147.30	
933 +	.8075	4	145.10	.7990	4	149.20	.7905	4	154.02	
068 +	.8034	1	146.98	.7950	1	151.38	.7866	1	156.66	
10.1.0 +	. 7994	<1	148.98	.7910	<1	153.70	.7827	<1	159.60	
862 +	.7878	4	155.80							
Lattice		o			o			٥		
constant		8.0341A			7.9498A			7.8656A		
Density (calc.)		3.188 g,	/cm ³		3.126 g/cm ³			3.058 g/cm ³		

Barium strontium nitrate,  $Ba(NO_3)_2$ -Sr( $NO_3$ )₂ - continued

Calcium lead nitrate,  $Ca(NO_3)_2$ -Pb $(NO_3)_2$ , calculated solid solution series

Structure

Cubic, P2₁3 (198), Z = 4. The structures of Ca(NO₃)₂ and Pb(NO₃)₂ were determined respectively by Vergard and Bilberg [1931] and Hamilton [1957]. The space group was given as Pa3. However, later work by Birnstock [1967] on the isomorph Ba(NO₃)₂ indicated that the space group is P2₁3. In the present calculated patterns, the atomic positions have been modified for the change in space group. The system Ca(NO₃)₂-Pb(NO₃)₂ forms a complete solid solution series [Laybourn et al., 1934].

#### Lattice constants

The constants were derived by interpolation on a molar ratio using the following: for  $Ca(NO_3)_2$ ,  $a = 7.6005\text{\AA}$  [Swanson et al., 1957]; for Pb(NO_3)₂, a = 7.8573 [Swanson et al., 1955]. Both constants were modified to conform to new wavelength measurements.

Thermal parameters Isotropic: calcium B = 1.0; lead B = 1.0; nitrogen B = 1.2; oxygen B = 1.2.

Scattering factors  $Ca^{2+}$ , N⁰, O⁻ [International Tables, 1962]. Pb²⁺ [Cromer and Waber, 1965]. The factors used were proportional to the molar ratio, assuming random distribution of the cations.

References Birnstock, R. (1967). Z. Krist. <u>124</u>, 310. Cromer, D. T. and Waber, J. T. (1965). Acta Cryst. <u>18</u>, 104. Hamilton, W. C. (1957). Acta Cryst. <u>10</u>, 103. International Tables for X-ray Crystallography III (1962), 202, 210. Laybourn, K., Madgin, W. M. and Freeman, D. (1934). J. Chem. Soc. <u>1934</u>, 144. Swanson, H. E., Gilfrich, N. T. and Ugrinic, G. (1955). Nat'l. Bur. Std. U.S. Circ. 539, <u>V</u>, 36. Swanson, H. E., Gilfrich, N. T. and Cook, M. I. (1957). Nat'l. Bur. Std. U.S. Circ. 529, <u>VII</u>, 14. Vegard, L. and Bilberg, L. (1931). Avhandl. Norske Videnskaps Mat.-Nat. Kl. <u>1931, No. 12</u>.

	Ca	.67Pb.33 (NO	3) ₂	$Ca_{33}Pb_{67}(NO_3)_2$			
hkl	d (Å)	Ι λ=1.54	20(°) 40598	d (Å)	Ι λ=1.54	20(°) 40598	
111	4.436	100	20.00	4.485	100	19.78	
200	3.841	15	23.14	3.887	31	22.86	
210	3.437	19	25.90	3.477	8	25.60	
211	3.138	14	28.42	3.173	6	28.10	
220	2.717	23	32.94	2.748	30	32.56	
221	2.561	2	35.00	2.590	<1	34.60	
311	2.317	63	38.84	2.344	66	38.38	
222	2.218	46	40.64	2.244	35	40.16	
321 +	2.054	1	44.06	2.077	<1	43.54	
400	1.921	14	47.28	1.944	11	46.70	
410	1.864	<1	48.82	1.885	<1	48.24	
411	1.811	2	50.34	1.832	1	49.72	
331	1.763	14	51.82	1.783	16	51.18	
024 +	1.718	13	53.26	1.738	15	52.62	
124	1.677	<1	54.68	1.696	<1	54.02	
332	1.639	<1	56.08	1.657	<1	55.40	
422	1.569	8	58.82	1.586	10	58.10	
430	1.537	<1	60.16	1.555		59.40	
134 +	1.507	<1	61.48	1.524	<1	60.70	
511 +	1.4789	11	62.78	1.4956	11	62.00	

	Ca.67 ^{Pb.33} (NO3)2		) ₃ ) ₂	Ca	33Pb.67 (NC	3)2	
hkl	d (A)	Ι λ=1.5	20(°) 640598	d (A)	Ι λ=1.5	20(°) 40598	
432	1,4270	1	65.34	1.4432	<1	64.52	
125	1.4030	<1	66.60	1.4189		65.76	
440	1.3586	6	69.08	1.3740	6	68.20	
433	1,3181	<1	71.52	1.3330	<1	70.60	
531 +	1.2990	11	72.74	1.3137	12	71.80	
442 +	1.2808	5	73.94	1.2953	5	72.98	
610	1.2633	<1	75.14	1.2779		74.14	
235 +	1.2467	<1	76.32	1.2608	<1	75.32	
620 +	1,2151	2	78.68	1.2291	3	77.62	
621	1,2001	<1	79.86	1,2138		78,78	
021	112001	-	15000				
533	1.1720	3	82.18	1.1854	4	81.06	
622	1.1586	4	83.34	1.1718	4	82.20	
542	1.1457	<1	84.50	1.1586	<1	83.34	
136 +	1.1331	<1	85.66	1.1461		84.46	
444	1.1093	1	87.96	1.1219	1	86.72	
543	1.0869	<1	90.26	1.0992		88.98	
711 +	1.0761	4	91.42	1.0884	4	90.10	
640 +	1.0658	2	92.56	1.0780	2	91.22	
146	1.0557	<1	93.72	1.0676	<1	92.36	
246 +	1.0269	3	97.20	1.0387	4	95.74	
137 +	1.0006	5	100.68	1.0120	6	99.14	
650	0.9840	<1	103.04	0.9951		101.44	
156	.9761	<1	104.22	.9872		102.58	
800	.9606	<1	106.62	.9716	<1	104.90	
652 +	. 9532	<1	107.82	.9640		106.08	
733	.9389	1	110.26	.9496	1	108.42	
644 +	.9320	3	111.48	.9426	3	109.62	
247 +	.9252	<1	112.72	.9357		110.82	
822 +	.9057	2	116.54	.9160	2	114.48	
831 +	.8934	<1	119.14	.9035	<1	116.98	
751 +	.8874	3	120.46	.8975	3	118.24	
662	.8816	1	121.80	.8915	1	119.54	
832 +	.8758	<1	123.18	.8857		120.84	
048	.8592	1	127.40	. 8690	1	124.86	
753 +	.8436	4	131.88	.8532	4	129.08	
842 +	8385	2	133.46	8481	2	130.54	
664	2103	2	140 18	8285	1	136 78	
004	.0193	1	140.10	.0205	7	1/1 0/	
844	.7844	1	158.26	.7933	1	152.34	
Lattice		0			0		
constant		7.6852A			7.7726A		
(calc.)		3.208 g/	′cm ³		3.905 g/	cm ³	

Calcium lead nitrate,  $Ca(NO_3)_2$ -Pb(NO₃)₂, calculated solid solution series - continued

Calcium strontium nitrate,  $Ca(NO_3)_2$ -Sr(NO₃)₂, calculated solid solution series

Structure

Cubic, P213 (198), Z = 4. The structures of both Ca(NO₃)₂ and Sr(NO₃)₂ were determined by Vegard and Bilberg [1931], and the space group was given as Pa3. However, later work by Birnstock [1967] on the isomorph Ba(NO₃)₂ indicated that the space group is P2₁3. The atomic positions given by Vegard and Bilberg have been modified here for the change in space group. The system Ca(NO₃)₂-Sr(NO₃)₂ forms a complete solid solution series [Protsenko and Belova, 1957].

Lattice constants The constants were derived by interpolation on a molar ratio using the following: for  $Sr(NO_3)_2$ , a = 7.7813Å [McMurdie et al, 1974] and for  $Ca(NO_3)_2$ , a = 7.6005Å [Swanson et al., 1957, modified to conform to new wavelength measurements].

Thermal parameters Isotropic: calcium B = 1.0, strontium B = 1.0, nitrogen B = 1.2, oxygen B = 1.2.

Scattering factors  $Ca^{2+}$ , N⁰, O⁻¹ [International Tables, 1962].  $Sr^{2+}$  [Cromer and Waber, 1965]. The factors used were proportional to the molar ratio, assuming random distribution of the cations.

References Birnstock, R. (1967). Z. Krist. <u>124</u>, 310. Cromer, D. T. and Waber, J. T. (1965). Acta Cryst. <u>18</u>, 104. International Tables for X-ray Crystallography III (1962), 202, 210. McMurdie, et al. (1974). This publication, pg. 31. Protsenko, P. I. and Belova, Z. I. (1957). Zhur. Neorg. Khim. <u>2</u>, 2619. Swanson, H. E., Gilfrich, N. T., and Cook, M. I. (1957). Nat'l. Bur. Std. U.S. Circ. 539, <u>VII</u>, 14. Vegard, L. and Bilberg, L. (1931). Avhandl. Norske Videnskaps Mat.-Nat. Kl. <u>1931</u>, No. 12.

	Ca.67Sr.33(NO3)2			Ca	Ca.33Sr.67(NO3)2			
hkl	d (Å)	Ι λ=1.5	20 (°) 40598	(Å)	Ι λ=1.54	20(°) 40598		
111 200 210 211 220	4.423 3.831 3.424 3.127 2.709	100 2 49 38 14	20.06 23.20 26.00 28.52 33.04	4.458 3.860 3.453 3.153 2.730	100 7 35 22 20	19.90 23.02 25.78 28.28 32.78		
221 311 222 321 + 400	2.553 2.310 2.211 2.047 1.915	10 68 74 2 22	35.12 38.96 40.78 44.20 47.44	2.574 2.328 2.229 2.063 1.930	5 66 58 2 18	34.82 38.64 40.44 43.84 47.04		
410 411 331 024 + 124	1.858 1.806 1.757 1.713 1.672	6 11 11 <1	49.00 50.50 52.00 53.46 54.88	1.873 1.820 1.771 1.726 1.685	<1 4 12 12 <1	48.58 50.08 51.56 53.00 54.40		
332 422 430 134 + 511 +	1.633 1.564 1.532 1.502 1.4743	1 5 1 1	56.28 59.02 60.38 61.70 63.00	1.646 1.576 1.544 1.514 1.4861	<1 6 1 1 11	55.80 58.52 59.84 61.16 62.44		

	Ca	67Sr.33 (NO	) ₃ ) ₂	Ca	33Sr.67 (NC	3)2	
hkl	å (Å)	I	20 (°)	d (A)	I	20(°)	
	- (00)	λ=1.5	540598		λ=1.5	40598	
120	1 4004	2	CE 50	1 4240		64.00	
432	1.4224	2	65.58	1.4340	1	64.98	
125	1.3986	1	66.84	1.4098	<1	66.24	
440	1.3541	8	69.34	1.3648	7	68.72	
522 +	1.3334	<1	70.58	1.3443	<1	69.92	
433	1.3137	1	71.80	1.3242	1	71.14	
531 +	1.2947	10	73.02	1.3052	11	72.34	
442 +	1.2767	3	74.22	1.2868	4	73.54	
610	1.2593	<1	75.42	1.2694	<1	74.72	
235 +	1.2426	1	76.62	1.2526	1	75,90	
620 +	1.2113	2	78.98	1.2209	2	78.24	
100	1 1004		00.16	1.0050			
126 +	1.1964	1 A	80.16	1.2059	<1	79.40	
541 +	1.1820	<1	81.34	1.1914	<1	80.56	
533	1.1683	2	82.50	1.1774	3	81.72	
622	1.1548	5	83.68	1.1641	5	82.86	
542 +	1.1419	<1	84.84	1.1510	<1	84.02	
136 +	1,1295	1	86,00	1,1385	<1	85.16	
444	1 1057	1	88 32	1 1145	1	87 44	
543	1 0833	<1	90.64	1 0920	<1	80 72	
711 +	1 0727	3	91.80	1.0520	3	90.86	
640 +	1.0622	1	91.00	1.0813	1	02.00	
040 +	1.0025	1	52.90	1.0708	1	92.00	
146 +	1.0522	<1	94.12	1.0607	<1	93.14	
633	1.0425	<1	95.28	1.0509	<1	94.28	
246 +	1.0236	3	97.62	1.0319	3	96.58	
544	1.0147	<1	98.78	1.0228	<1	97.72	
137 +	0.9973	5	101.14	1.0053	5	100.04	
650	.9807	<1	103.52	0.987	<1	102.36	
156 +	.9729	<1	104.70	.9806	<1	103.54	
800	.9575	<1	107.12	.9652	<1	105.90	
652 +	.9501	1	108.34	.9578	1	107.08	
147	.9429	<1	109.56	.9505	<1	108.28	
733	0359	1	110 80	9/3/	1	109 49	
733	. 53.00	2	110.00	. 9434	2	110 70	
020 +	. 9209	1	112.04	.9304	.1	111.02	
247 +	. 9222	1 2	113.30	.9296	<1	111.92	
822 +	.9028	∠ √1	11/.14	.9100	2	115.00	
830	.0300	<1	118.44	.9037		110.94	
831 +	.8905	1	119.78	.8976	<1	118.22	
751 +	.8845	3	121.12	.8916	3	119.52	
662	.8787	1	122.48	.8857	1	120.84	
832 +	.8730	1	123.86	.8800	<1	122.18	
048 +	.8565	1	128.16	.8633	1	126.32	
744	0513	.1	100 66	0500	.1	107 74	
744 +	.8511	<1	129.66	.8580	<1	127.74	
753 +	.8408	4	132.74	.84/5	4	130.70	
842 +	.8358	2	134.34	.8425	2	132.22	
/61 +	.8260	<1	137.66	.8326	<1	135.38	
664	.8166	1	141.24	.8231	T	138.72	
922 +	.8120	<1	143.12	.8185	<1	140.48	
158	.8075	<1	145.10	.8139	<1	142.32	
931 +	.8030	2	147.18	.8094	2	144.22	
844				.7881	1	155.62	
Lattice							
constant		7.6602Å			.7216A		
Dongitu							
Jensity		0.657	/3		2 0 0 7	3	
(calc.)		2.657 g/	cm 2		2.827 g/	cm ³	

Calcium strontium nitrate,  $Ca(NO_3)_2$ -Sr(NO₃)₂, calculated solid solution series - continued

	Structure Orthorhomk determined [1969].	oic, Pbam (S by Smith,	55), Z Muck	=8. er,	The John	structure was son and Wood	
	Lattice co	onstants:	[ibid.	]			
		a = 6.80 b = 16.34 (publishe c = 4.11	02(13) 47(33) ed val 11(8)	° A ue:	b =	16.346)	
	Density (calculate	≥d) 4.76 g/d	cm ³ [i	bid.	.]		
	Thermal para Isotropic	ameters [Smith et.	al.,	1969	9]		
	Scattering f Ga ⁰ , Mg ⁰ [ for dispen	factors Internation rsion [Crome	al Tab er, 19	les, 65].	, 196	2], corrected	
	Scale factor (integrate	r ed intensit:	ies) 8	.184	4 x 1	0 ⁴	
	References Cromer, D. 2 Internationa III (1962) Smith, G. S D. H. (196	F. (1965). al Tables ), 202. ., Mucker, 1 69). Acta (	Acta for X K.F., Cryst.	Crys -ray John <u>B2</u>	st. <u>1</u> 7 Cr nson, 5, 54	<u>8</u> , 17. ystallography Q. and Wood, 9.	
	Cal	culated Pat	ttern	(Pea	ık he	ights)	
	d (Å)	I	1	hkl		$2\Theta(^{\circ})$ $\lambda = 1.540598A$	
	8.17 6.28 5.23 4.25	1 6 7 1	0 1 1 1	2 1 2 3	0 0 0	10.82 14.10 16.94 20.88	
	4.11 3.67 3.50	31 25 52	0	5	1	21.60 24.22 25.40	
	3.44 3.40 3.33	39 10 5	1 2 2	1 0 1	1 0 0	25.40 25.88 26.18 26.76	
-							-

 1 2 1

3.23

3.14 2.96

2.95 2.90

2.73

2.67

2.62

2.61 2.53

d (Å)	I	hkl	$20(^{\circ})$ $\lambda = 1.540598 ^{\circ}$
2.50	26	2 2 1	35.96
2.36	100	2 3 1	38.08
2.27	30	0 6 1	39.66
2.25	13	3 1 0	40.12
2.21	9	1 7 0	+ 40.82
2.15	1	1 6 1	41.90
2.13	9	2 6 0	42.48
2.09	3	3 3 0	43.18
2.06	49	0 0 2	44.02
2.04	44	2 5 1	+ 44.28
1.983	32	3       4       0         3       1       1         1       7       1         3       2       1         2       6       1	45.72
1.971	13		46.02
1.946	36		46.64
1.929	17		47.06
1.889	10		48.14
1.865	1	3 3 1	48.78
1.836	1	0 4 2	49.60
1.830	2	0 8 1	49.80
1.786	2	3 4 1	51.10
1.773	11	1 4 2	51.50
1.759	2	2 0 2	51.94
1.755	3	1 9 0	52.08
1.750	2	2 1 2	52.24
1.720	1	2 2 2	53.22
1.700	2	4 0 0	53.88
1.692	1	$\begin{array}{ccccccc} 4 & 1 & 0 \\ 1 & 5 & 2 \\ 4 & 2 & 0 \\ 0 & 10 & 0 \\ 2 & 4 & 2 \end{array}$	54.18
1.686	2		54.38
1.665	2		55.12
1.635	1		56.22
1.616	2		56.94
1.614 1.602 1.595 1.516 1.509	2 4 5 3	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	57.00 57.48 57.74 61.06 61.40
1.505	5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	61.58
1.478	4		62.82
1.467	3		+ 63.36
1.449	11		64.22
1.443	3		64.54
1.427	16	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	65.34
1.417	2		65.84
1.370	1		68.40
1.351	1		69.50
1.340	6		+ 70.18
1.336 1.320 1.310 1.307 1.304	5 2 4 3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 70.42 71.40 72.02 + 72.22 72.42

27.58

28.40 30.22 30.30

30.82

32.84

33.58

34.20

34.28

35.46

Gallium magnesium,  ${\rm Ga}_2{}^{\rm M\!g}$  - continued

	d (Å)	I	hkl	Ъ	20(°)	Calcul
				~	= 1.540596A	d (Å)
	1.293	11 6	2 11 1 5 1 1	+	73.16	
	1.279	1	0 10 2		74.04	8.17
	1.276	6	5 2 1	+	74.28	6.28
	1.272	3	203		74.52	5.25
	1.264	3	2 9 2		75.12	4.11
	1.262	4	3 10 1		75.24	
	1.256	4	5 3 1	+	75.64	4.09
	1.241	1	4 9 0		76.72	3.67
	1.238	7	2 3 3	+	76.98	3.50
	1.224	2	0 6 3		77.98	3.40
	1.216	2	4 5 2		78.60	5.10
	1.188	1	4 9 1		80.82	3.33
	1.185	3	2 5 3	+	81.12	3.23
	1.181	3	4 6 2		81.42	3.14
			<b>C 7</b> 0			2.96
	1.1/6	1	5 / 0		81.88	K.90
	1.167	3	3 12 0	+	82.60	2.90
	1.164	5	1 7 3		82.84	2.72
	1.161	3	3 2 3		83.12	2.67
						2.62
	1.152	1	2 6 3		83.94	2.61
	1.134	2	2 13 1	+	85.60	2.53
	1.120	3	5 7 1		85+92	2.50
	1.120	2	1 12 2		86.90	2.36
	10120	-				2.27
	1+111	1	5 3 2		87.82	2.25
	1.103	3	482		88.60	2 21
	1.083	1	6 2 1		90.66	2.21
	1.063	1	5 5 2		91.90	2.15
	1+000	1	4 / 2		12.12	2.13
	1.060	2	1 13 2		93.26	2.09
	1.053	1	5 9 1		94.08	0.06
1	1.041	3	1 15 1		95.46	2.00
	1.037	2	6 5 1		96.00	2.04
	1.029	1	4 12 1		96.90	1.983
	1,028	2	0 0 4		97.10	1.971
	1.020	1	572		98.04	1.0%
	1.015	2	3 12 2	+	98.70	1.946
	1.013	1	5 10 1		99.02	1 889
	•986	1	1 4 4		102.74	1.865
	. 985	2	3 0 3		102.96	1.836
	• 966	7	2 11 3		102.00	
	•964	3	5 1 3		106.14	1.830
	.959	1	5 2 3		106.92	1.786
	•957	1	7 3 0		107.28	1.759
	057		7 10 7		107.04	1.755
	• 755	1	3 10 3		107.86	
	.951	1	5 3 3		108.04	1.749
	.937	1	5 12 1		110.54	1.720
	.935	1	3 1 4		111.02	1.700
IL.		· · · · · · · · · · · · · · · · · · ·				1.686

	Calculated	Pattern	(Int	egr	ated)
d (Å)	I		hkl		$2\theta(^{\circ}) \circ \\ \lambda = 1.540598 \text{Å}$
8.17 6.28 5.23 4.25 4.11	1 5 5 1 25	0 1 1 1 0	2 1 2 3 0	0 0 0 1	10.82 14.09 16.94 20.87 21.60
4.09 3.67 3.50 3.44 3.40	5 22 47 34 8	0 0 1 1 2	4 2 4 1 0	0 1 0 1 0	21.73 24.21 25.41 25.88 26.18
3.33 3.23 3.14 2.96 2.95	5 3 4 15 7	2 1 2 1 1	1 2 3 5	0 1 0 1 0	26.75 27.58 28.40 30.21 30.31
2.90 2.72 2.67 2.62 2.61	5 1 40 16 6	0 0 1 2 2	4 6 4 0 4	1 0 1 1 0	30.83 32.85 33.58 34.19 34.27
2.53 2.50 2.36 2.27 2.25	5 25 100 30 13	1 2 0 3	6 2 3 6 1	0 1 1 1 0	35.46 35.96 38.07 39.65 40.12
2.21 2.21 2.15 2.13 2.09	8 2 1 10 3	1 2 1 2 3	7 4 6 3	0 1 1 0 0	40.82 40.88 41.90 42.48 43.18
2.06 2.04 2.04 1.983 1.971	49 26 24 3 34 12	0 2 0 3 3	0 5 8 4 1	2 1 0 0 1	44.02 44.26 44.29 45.73 46.01
1.946 1.929 1.889 1.865 1.836	5         39           9         17           9         10           5         1           5         1	1 3 2 3 0	7 2 6 3 4	1 1 1 1 2	46.64 47.06 48.14 48.78 49.60
1.830 1.780 1.773 1.755 1.755	1     2       2     2       3     12       2     2       3     2	0 3 1 2 1	8 4 0 9	1 1 2 2 0	49.79 51.11 51.51 51.94 52.07
1.749 1.720 1.700 1.691 1.686	9 1 0 1 0 3 1 1 5 2	2 2 4 4 1	1 2 0 1 5	2 2 2 0 2 2 2 2	52.26 53.22 53.87 54.18 54.38

I

d (Å)	I	hkl	20(°) 。	d (A)	I	hkl	20(°) 。
			$\lambda = 1.540598 \text{A}$				$\lambda = 1.540598A$
1.665	3	4 2 0	55.12				
1.635	1	0 10 0	56.23	1.175	1	570	81.88
1.616	2	2 4 2	56.94	1.170	2	3 1 3	82.37
1 61/	1	1 0 1	57.02	1,168	2	3 12 0	82.55
1 405	1	3 4 1	57 30	1.168	1	0 1/1 0	82 55
T=002	2	2 0 1	07000	1 167	2	3 0 3	02.00
1 600	n	2 0 0	57 117	10101	۲	5 7 2	02.01
1.00.2	4	2 - 0	57047	1,164	5	1 7 3	82.83
1.595	2	1 6 2	7/0/5	1 161	2	7 0 7	02.000
1.516	6	3 1 2	61.06	1.101	2	3 2 3	83.14
1.509	3	4 5 0	61.41	1.152	2	2 6 3	83+94
1.505	4	1 7 2	61.58	1.134	2	2 13 1	85.60
				1.133	1	4 10 1	85.68
1.478	5	262	62.83		-		
1.467	2	4 4 1	63.36	1.130	5	5 / 1	85.93
1.467	2	3 3 2	63.36	1.124	2	522	86.55
1.449	14	082	64.22	1.120	3	1 12 2	86.91
1.443	3	460	64.55	1.111	2	5 3 2	87.83
				1.103	5	4 8 2	88.60
1.427	20	342	65.34				
1.418	2	390	65.83	1.083	2	6 2 1	90.65
1.370	1	0 0 3	68.41	1.072	2	5 5 2	91.90
1.351	1	0 2 3	69.50	1.063	1	4 9 2	92.92
1 340	2	5 2 0	70.06	1,060	3	1 13 2	93.27
10.172	2	5 2 0	10.00	1 053	2	5 0 1	9/1.09
1.340	7	3 9 1	70.17	T+0.02	۷	5 9 1	2400
4 770	,	4 4 7	70 05	1.041	h	1 15 1	95,46
1.009	2		70.20	1.041	7		06.05
F = 200	5	1 12 0	70+44	1.036	5	0 5 1	90.01
1.335	1	1 9 2	70.50	1.029	1	4 12 1	96.90
1.320	2	5 3 0	71.41	1.028	4	0 0 4	97.09
	-		70.00	1.020	1	572	98+03
1.310	2	4 0 2	12.02		•	- 10 0	
1.307	4	480	72.22	1.015	2	3 12 2	98.70
1.306	1	4 1 2	72.28	1.015	1	0 14 2	98.70
1.304	1	1 3 3	72.40	1.013	1	5 10 1	98.95
1.294	2	4 2 2	73.08	•991	1	6 1 2	102.05
				•986	1	1 4 4	102.72
1.293	14	2 11 1	73.15				
1.288	6	5 1 1	73.49	.985	3	393	102.86
1.279	1	0 10 2	74.04	.970	1	3 13 2	105.20
1.276	3	1 4 3	74.26	.966	5	2 11 3	105.78
1.276	5	5 2 1	74.29	.964	2	5 1 3	106.12
				.959	2	5 2 3	106.92
1.271	1	2 0 3	74.61		_		
1.264	3	2 9 2	75.12	.957	1	7 3 0	107.26
1.262	5	3 10 1	75.20	.053	2	3 10 3	107.87
1 257	-	5 10 1	75 61	050	1	2 16 1	108.00
1.050	2	5 5 1	75 66	051	1	5 3 7	100.04
1.0270	T	5 5 0	1.3.00	• 951	1	5 3 3	110 55
1.256	2	2 2 3	75.66	•957	T	J 12 1	110.02
1.200	2	e .e 0	70.00	075	1	3 1 /	111.03
1.241	1	4 9 0	/6./1	• 935	1	4 7 /	111.03
1.238	9	2 3 3	/6.97	.932	T	1 / 4	111.52
1.237	2	1 13 0	77.07				
1.224	3	063	77.99				
1.216	2	4 5 2	78.60				
1.188	1	4 9 1	80.81				
1.185	3	2 5 3	81.12				
1.184	2	1 13 1	81.16				
1.181	3	4 6 2	81.44				

I

Structure Tetragonal, I4/mmm (139), Z = 4. The structure was determined by Smith, Johnson and Wood [1969]. Lattice constants: [ibid.] a = 8.627(26)Ac = 7.111(21)Density (calculated) 4.98 g/cm³ [ibid.]

- Thermal parameters Isotropic [Smith et. al., 1969].
- Scattering factors Ga⁰, Mg⁰[International Tables, 1962], corrected for dispersion [Cromer, 1965].

```
Scale factor
  (integrated intensities) 11.81 x 10<sup>4</sup>
```

References

Cromer, D. T. (1965). Acta Cryst. <u>18</u>, 17. International Tables for X-ray Crystallography III (1962), 202. Smith, G. S., Johnson, Q. and Wood, D.H. (1969). Acta Cryst. B25, 554.

	Calculated	Pattern	(Pea	ak ł	neights)
d (Å)	I		hkl		$20(^{\circ})$ ° $\lambda = 1.540598 ^{\circ}$
6.10	1	1	1	0	14.52
5.49	2	1	0	1	16.14
4.31	18	2	0	0	20.58
3.56	66	0	0	2	25.02
3.39	62	2	1	1	26.26
3.05	37	2	2	0	29.26
2.74	47	2	0	2	32.62
2.73	55	3	1	0	32.80
2.67	47	3	0	1	33.60
2.31	26	2	2	2	38.88
2.29 2.27 2.16 2.16 2.03	7 9 44 63 61	1 3 4 3	0 2 1 0 3	3 1 2 0 0	39.40 39.72 41.70 41.84 44.52
2.02	100	2	1	3	44.84
1.84	22	4	0	2	49.38
1.83	18	3	0	3	49.82
1.77	19	3	3	2	51.74
1.71	2	1	1	4	53.66

d (Å)	I	hkl	λ	20(°) = 1.540598A
1.69	6	5 1	0	54.16
1.68	6	4 3	1 +	54.70
1.57	1	4 1	3	58.82
1.56	6	5 2	1	59.06
1.54	4	2 2	4	60.20
1.53 1.52 1.44 1.402 1.395	4 6 8 3 4	5 1 4 4 6 0 4 4 4 3	2 0 2 3	60.56 60.68 64.78 66.68 67.04
1.366	3	5 3	2	68.66
1.334	14	2 1	5 +	70.52
1.327	37	5 2	3	70.96
1.324	22	5 4	1	71.16
1.275	4	3 0	5	74.34
1.266	1	6 3	1	74.98
1.226	2	5 1	4	77.88
1.222	3	3 2	5	78.12
1.220	4	7 1	0 +	78.30
1.217	3	6 1	3	78.54
1.214	2	7 0	1	78.74
1.196	3	6 4	0	80.16
1.185	2	0 0	6	81.08
1.176	1	4 1	5	81.82
1.171	3	5 4	3	82.24
1.154	5	7 1	2 +	83.76
1.133	9	7 3	0 +	85.68
1.130	5	6 3	3	85.94
1.105	2	2 2	6	88.42
1.097	2	4 3	5 +	89.16
1.093	2	7 0	3	89.58
1.091	1	6 5	1	89.84
1.079	4	7 3	2	91.08
1.064	7	5 2	5	92.82
1.058	1	8 1	1 +	93.44
1.046 1.039 1.032 1.024 1.006	1 1 2 1	8 2 4 0 8 0 3 3 5 5	0 6 2 6 4	94.84 95.74 96.56 97.58 99.94
1.004 1.001 .982 .978 .975	2 2 1 2 5	8 2 6 5 2 1 5 4 8 1	2 + 3 7 5 + 3 +	100.26 100.60 103.28 103.92 104.34
•971	2	5 1	6	105.04
•931	1	7 0	5	111.60
•928	1	9 2	1	112.26
•915	1	6 0	6	114.76
•881	1	9 3	2	121.94

Gallium magnesium,  $\operatorname{Ga}_{5}\operatorname{Mg}_{2}$  - continued

Calc	culated Par	ttern (Int	egrat	ed)	d (Å)	I
d (Å)	I	hkl	λ	20(°) = 1.540598A		
					1.163	1
6.10	1	1 1	0	14.51	1.154	4
5.49	1	1 0	1	16.14	1.154	ు -
4.31	14	2 0	0	20.57	1.1.54	3
3.56	56	0 0	2	25.02	1.100	13
3.39	53	2 t	1	26.26	1 130	2
					1 1 1 0 5	2 7
3.05	33	2 2	0	29.26	1.105	. 1
2.74	42	2 0	2	32.61	1.097	· 1
2.73	47	31	0	32.80	1.097	1 7
2.67	45	30	1	33.59	1.095	5
2.31	26	22	2	38.87	1,091	1
a aa	-		-	70.70	1.079	6
2.29		1 0	3	39.39	1.064	11
2.27	9	32	1	39.71	1.058	1
2.16	40	3 1	2	41.70	1.058	1
2.16	54	4 0	0	41.85	1.000	1
2.03	61	33	0	44.52	1.046	1
			_		1.039	2
2.02	100	2 1	3	44.84	1.032	1
2.01	1	4 1	1	45.13	1.024	<u>_</u>
1.84	24	4 0	2	49.38	1.017	1
1.83	20	30	3	49.81	1.01/	-
1.77	21	3 3	2	51.75	1.010	1
					1,006	1
1.71	2	1 1	4	53.66	1.004	1
1.70	1	4 2	2	54.04	1.004	2
1.69	6	51	0	54.17	1.001	3
1.68	2	5 0	1	54.70	1.001	5
1.68	5	4 3	1	54.70	.982	1
			_		.978	3
1.57	1	4 1	3	58.82	.978	ĭ
1.56	6	52	1	59.06	.975	2
1.54	5	2 2	4	60.20	.975	6
1.53	4	5 1	2	60.56		Ŭ
1.53	6	4 4	0	60.68	.971	3
			•	<i>cu</i> <b>3</b> 0	.965	1
1+44	10	6 U	0	64.79	.931	2
1.402	4	4 4	2	66.68	.928	1
1.345	5	4 3	3	67.04	.915	2
1.366	3	5 3	2	68.65		
1.334	15	2 1	Э	70.52	.910	1
1 333	6	6 0	2	70.60	.909	1
1 303	0	5 0	7	70.05	.907	1
1 300	49	5 2	3	70.95	.902	1
1 075	2	3 4	1		.895	1
1 266	1	2 3	1	74.35		
1+200	1	6 5	+	14.99	•889	1
1.226	2	5 1	ц	77.89	.881	1
1 207	7	3 0	5	70 11	•872	3
1.220	3	7 1	0	78 30	• 871	4
1.220	5	5 5	0	78.30	•870	6
1.217	2	5 5	3	78.53		
1.511	1	0 1	5	10.00	•870	1
1.214	٦	7 0	1	78.74	•863	5
1,196		6 1	Î.	80.16	•858	2
1.120	7	0 4	6	81.09	•855	1
1.105			0	01.00	0.55	11
1.176	1	0 0	5	81.82	.855	4

•130	2	6	3	3	85.91
•105	3	2	2	6	88.42
•097	· 1	5	0	5	89.16
•097	1	4	3	5	89.16
•093	3	7	0	3	89.57
•091	1	6	5	1	89•78
•079	6	7	3	2	91•07
•064	11	5	2	5	92•82
•058	1	8	1	1	93•43
•058	1	7	4	1	93•43
•046 •039 •032 •024 •017	1 2 1 4 1	8 4 3 6	2 0 0 3 6	n 6 2 6 0	94.83 95.74 96.57 97.58 98.51
•010 •006 •004 •004 •001	1 1 2 3	4 5 6 8 6	2 5 1 2 5	6 4 5 2 3	99.43 99.95 100.18 100.26 100.60
•982	1	2	1	7	103.28
•978	3	5	4	5	103.91
•978	1	6	6	2	104.00
•975	2	7	4	3	104.34
•975	6	8	1	3	104.34
•971 •965 •931 •928 •915	3 1 2 1 2	5 7 7 9	1 5 0 2 0	6 2 5 1 6	105.04 105.89 111.59 112.26 114.76
•910 •909 •907 •902 •895	1 1 1 1	7 9 8 8 6	23522	5 0 1 4 6	115.58 115.79 116.27 117.37 118.86
•889	1	0	0	8	120.13
•881	1	9	3	2	121.93
•872	3	6	5	5	124.01
•871	4	7	7	0	124.24
•870	6	9	2	3	124.51
•870	1	7	6	3	124.51
•863	5	10	0	0	126.48
•858	2	5	2	7	127.76
•855	1	7	4	5	128.55
•855	4	8	1	5	128.55

2Θ(°)

 $\lambda = 1.540598 \text{\AA}$ 

82.92 83.75 83.75 85.59 85.69

hkl

1 6 1 2

5 5 2 6 4 2 7 3 0

1 7

Lead strontium nitrate,  $Pb(NO_3)_2$ -Sr( $NO_3$ )₂, calculated solid solution series

Structure

Cubic, P213 (198), Z=4. The structures of Pb(NO₃)₂ and Sr(NO₃)₂ were determined by Vegard [1922]. He found them to be isostructural with each other and with Ba(NO₃)₂ and Ca(NO₃)₂. Hamilton [1957] refined the structure of Pb(NO₃)₂. These earlier studies all assumed the space group to be Pa3 (205). However, Birnstock [1967] used neutron diffraction methods to refine the structure of Ba(NO₃)₂ and found weak reflections not permitted by Pa3. He assigned the space group P2₁3 which we used here. The atom positions for Sr(NO₃)₂ used in these calculations were those given by Vegard and Bilberg [1931]; the Pb(NO₃)₂ positions were from Hamilton [1957]. The system Pb(NO₃)₂-Sr(NO₃)₂ forms a complete solid solution series [Laybourn et al., 1934].

Lattice constants The constants were derived by interpolation on a molar ratio using the following: for Pb(NO₃)₂, a = 7.8573 [Swanson et al., 1955], modified to conform to new wavelength measurements; for Sr(NO₃)₂, a = 7.7813 [McMurdie et al., 1974].

## Thermal parameters

Isotropic: barium B = .93; strontium B = 1.0; nitrogen B = 1.2; oxygen B = 1.16.

## Scattering factors

N⁰, O⁻ [International Tables, 1962]. Pb²⁺, Sr²⁺ [Cromer and Waber, 1965]. The factors used were proportional to the molar ratio, assuming random distribution of the cations.

References Birnstock, R. (1967). Z. Krist. <u>124</u>, 310. Cromer, D. T. and Waber, J. T. (1965). Acta Cryst. <u>18</u>, 104. Hamilton, W. C. (1957). Acta Cryst. <u>10</u>, 103. International Tables for X-ray Crystallography III (1962), 202. Laybourn K., Madgin, M. W., and Freeman, D. (1934). J. Chem. Soc. <u>1934</u>, 139. McMurdie, et al. (1974). This publication, pg. 31. Swanson, H. E., Gilfrich, N. T., and Ugrinic, G. (1955). Nat'l. Bur. Std. U.S. Circ. 539, <u>V</u>, 36. Vegard, L. (1922). Z. Phys. <u>9</u>, 395. Vegard, L. and Bilberg, L. (1931). Avhandl. Norske Videnskaps-Akad. Oslo. I. Mat.-Naturv. Kl. <u>1931</u>, No. 12.

Pb.67Sr.33(NO3)2 Pb 33Sr 67 (NO3)2 hkl d(A) 20(°) d (A) Т 20(°) Ι λ=1.540598  $\lambda = 1.540598$ 111 4.521 100 19.62 4.507 100 19.68 200 3.914 31 22.70 3.904 24 22.76 210 7 12 3.501 25.42 3.490 25.50 211 5 27.88 3.186 27.98 3.198 8 220 2.769 29 32.30 2.759 27 32.42 34.44 221 2.611 ___ 34.32 2.602 1 62 38.20 38.08 2.354 62 311 2.361 32 38 39.98 222 2.261 39.84 2.253 123 +2.093 <1 43.18 2.086 <1 43.34 1.958 400 11 46.34 1.951 12 46.50 <1 48.02 410 1.900 <1 47.84 1.893 1 1 49.50 411 1.846 49.32 1.840 331 1.796 15 50.78 1.791 14 50.96 024 + 1.752 14 52.18 1.745 14 52.38 124 1.709 <1 53.58 1.704 <1 53.76 1.670 <1 55.14 332 <1 54.94 1.664 10 1.593 9 57.82 422 1.599 57.60 430 ___ 58.90 1.561 <1 59.12 1.567 134 + 1.536 <1 60.20 1.531 <1 60.42 511 + 1.508 11 61.46 1.502 11 61.70

	Pb	.67Sr.33 (NC	) ₃ ) ₂	Pb	33Sr 67 (NC	) ₃ ) ₂	
hkl	d (Å)	Ι λ=1.5	20(°) 540598	d (Å)	Ι λ=1.5	20(°) 540598	
432	1.4544	<1	63.96	1.4496	<1	64.20	
440	1.3847	5	67.60	1.3800	6	67.86	
433	1.3433	<1	69.98	1.3386	<1	70.26	
531 +	1.3239	12	71.16	1.3194	11	71.44	
442 +	1.3055	5	72.32	1.3012	5	72.60	
610	1.2877		73.48	1.2832	<1	73.78	
611 +	1.2706	<1	74.64	1.2662	<1	74.94	
620 +	1.2385	3	76.92	1.2344	3	77.22	
533	1.1944	4	80.32	1.1905	4	80.64	
622	1.1808	4	81.44	1.1770	4	81.76	
542	1.1676		82.56	1.1637	<1	82.90	
136	1,1548		83.68	1.1510	<1	84.02	
444	1.1305	1	85.90	1.1267	1	86.26	
711 +	1.0967	4	89.24	1.0932	4	89.60	
640 +	1.0861	2	90.34	1.0826	2	90.72	
146	1.0757	<1	91.46	1.0723	<1	91.84	
246 +	1.0466	4	94.78	1.0431	4	95.20	
553 +	1.0197	5	98.12	1.0164	5	98.56	
800	0.9790	<1	103.78	0.9758	<1	104.26	
733	.9569	l	107.22	.9537	1	107.74	
644 +	.9497	3	108.40	.9467	3	108.92	
128	.9429		109.56	.9398	<1	110.10	
822 +	.9230	2	113.14	.9200	2	113.70	
831	.9105		115.56	.9074	<1	116.18	
751 +	.9044	3	116.80	.9014	3	117.42	
662	.8984	1	118.06	.8955	1	118.68	
832	.8925		119.32	.8896	<1	119.96	
048 +	.8757	1	123.20	.8727	1	123,92	
753 +	.8597	4	127.28	.8569	4	128.04	
842 +	.8546	2	128.68	.8517	2	129.48	
664	.8349	1	134.62	.8322	1	135.54	
931 +	.8210	2	139.50	.8183	2	140.54	
844	.7994	1	149.00	.7967	1	150.40	
933 +	.7872	4	156.24	.7846	4	158.10	
068 +	.7832	2	159.16				
Lattice		0					
constant		7.8322A			7.8064A		
Density							
(calc.)		4.033 g/	cm ³		3.506 g/	cm ³	

Lead strontium nitrate,  $Pb(NO_3)_2$ -Sr( $NO_3$ )₂, calculated solid solution series - continued

## Structure

Cubic, Fm3m (225), Z = 4, isostructural with NaCl. The system LiBr-AgBr forms a complete solid solution series [Sandonnini and Scarpa, 1913].

## Lattice constants

The constants were derived by interpolation on a molar ratio, using the cell dimensions of LiBr  $(a = 5.5016\text{\AA})$  and AgBr  $(a = 5.7749\text{\AA})$ . Those dimensions were determined by Swanson et al. [1955] and are modified to conform to new wavelength measurements.

```
Thermal parameters
Isotropic. Overall B = 1.6
```

# Scattering factors

Li⁺, Ag⁺, Br⁻ [International Tables, 1962].

Random distribution of the cations was assumed, and the factors used were proportional to the molar ratio.

References International Tables for X-ray Crystallography III (1962), 202, 206, 211. Sandonnini, C. and Scarpa, G. (1913). Atti reale accad. Lincei Sez. II, <u>22</u>, 519. Swanson, H. E., Fuyat, R. K. and Ugrinic, G. M. (1955). Natl. Bur. Std. U.S. Circ. 539, 4.

	Li	.8Ag.2B	r	Li	. ₆ Ag	4Br	Li	.₄Ag	₆ Br	Li	.2 ^{Ag} .	₈ Br
hkl	d (Å)	Ι λ≕1.	20(°) 540598	d (Å)	$I = \lambda =$	20(°) 1.540598	d (Å)	$\mathbf{I}$ $\lambda =$	20(°) 1.540598	d (Å)	Ι λ=	20(°) 1.540598
111 200 220 311 222 400	3.209 2.778 1.9642 1.6755 1.6040 1.3890	53 100 55 15 16 6	27.78 32.20 46.18 54.74 57.40 67.36 74.26	3.238 2.805 1.9837 1.6915 1.6196 1.4027	16 100 58 4 16 6	27.52 31.88 45.70 54.18 56.80 66.62	3.271 2.833 2.003 1.7084 1.6354 1.4162	2 100 55  16 6	27.24 31.56 45.24 53.60 56.20 65.90	3.302 2.861 2.022 1.7246 1.6511 1.4301	100 60  17 6	26.98 31.24 44.78 53.06 55.62 65.18
420 422 511 +	1.2747 1.2423 1.1342 1.0692	13 9 2	76.64 85.56 92.18	1.2871 1.2545 1.1454 1.0798	14 9 1	73.32 75.76 84.52 91.02	1.2999 1.2668 1.1566 1.0903	14 9 	72.68 74.90 83.52 89.90	1.3124 1.2791 1.1676 1.1010	15 9 	71.88 74.06 82.56 88.80
440 531 600 + 620 533	0.9822 .9392 .9260 .8785 .8473	2 1 2 1 5 1 3 1 1 1	.03.30 .10.20 .12.58 .22.52 .30.76	0.9919 .9484 .9351 .8871 .8557	2 1 5 3	101.90 108.62 110.92 120.52 128.38	1.0016 0.9576 .9443 .8959 .8640	2  5 3 	100.54 107.10 109.32 118.60 126.14	1.0112 0.9669 .9534 .9045 .8723	2  5 3 	99.24 105.62 107.80 116.78 124.02
622 444 711 + 640	.8376 .8020	3 1 1 1	.33.74 .47.68	.8459 .8099 .7857	3 1 	131.18 144.02 157.28	.8541 .8178 .7933 .7857	3 1  3	128.80 140.76 152.32 157.30	.8624 .8257 .8010 .7933	3 1  3	126.56 137.80 148.18 152.36
Lattice constant		5.556	53Å		5.6	, 110A		5.6	656A		5.7	203Å
Density (calc.)		4.144	łg∕cm ³		4.7	83 g/cm ³		5.3	84 g/cm ³		5.9	47 g/cm ³

Structure	-					
Monoclinic, $P2_1/a$ (14), Z=8. The structure was determined by Mighell, Smith and Brown [1969].	d (Å)	I		hkl	λ	20(°) = 1.540598A
Lattice constants: [ibid.]	3.21	44	-1	2	2	27.74
٥	3.14	2	-2	0	2	28.36
a = 7.922(10)A	3.09	6	0	2	2 +	28+88
b = 12.987(20)	2.98	3	-2	1 L	0	29.20
$\beta = 109.9(1)^{\circ}$	2.00	5	*	· ·	Ŭ	00000
· 20303(2)	2.95	11	0	4	1	30.30
	2.91	26	2	0	1	30.74
Density	2.84	14	2	1	1	31.52
(calculated) 1.967 g/cm ³	2.83	15	-2	2	2 +	31.58
	2.01	4	-1	3	٢	51.78
Thermal parameters	2.62	2	1	4	1	34.26
Isotropic [ibid.]	2.592	6	1	2	2 +	34.58
	2.545	5	-2	3	2	35.24
	2.490	4	-2	4	1	36.04
Scattering factors	2.445	14	=3	2	1 +	36.72
p°, 0° [International Tables, 1962]	2.438	12	0	5	1 +	36.84
	2.418	4	-3	1	2	37.16
Scale factor	2.384	2	Ō	4	2	37.70
(integrated intensities) 2.663 x $10^4$	2.367	2	1	3	2	37.98
	2.341	2	0	0	3 +	38.42
7.7.7.4.7	2.301	4	=3	2	2	39.12
Additional patterns	2.254	8	=3	3	1 +	39.96
1. Leff et al. [1907]. 2. Norbert [1972].	2.235	ĭ	-2	2	3	40.32
2. NOLDELE [1972].	2.207	2	2	õ	2	40.86
	2.203	4	0	2	3	40+94
References	2 176	1	2	4	2	41.46
International Tables for X-ray Crystallography	2.158	7	=2	5	1 +	41.82
III (1962), 202. John J. P. Brown F. H. Frazier A. W. Smith	2.139	2	-3	3	2	42.22
J. P. and Thrasher, R. D. (1967). TVA Chem.	2.130	2	2	5	0	42.40
Engineering Bulletin # 6, 53.	2.125	4	-1	5	2	42.50
Mighell, A.D., Smith, J.P. and Brown, W.E. (1969).	0.000	2	0	F	2 +	113 30
Acta Cryst. B25, 776.	2.008	2	-3	3	3 4	43.30
Norbert, A. (1972). Bull. Soc. franc. Min. Crist.	2.060	3	-5	3	3	43.92
<u>95</u> , 154.	2.047	2	-1	6	1	44.22
	2.019	7	1	1	3	44.86
Calculated Pattern (Peak heights)	0.007	4	-2	E	2	115 011
0	1.975	8	-2	0	1 +	45.02
$d(A)$ I hkl $2\Theta(°)$	1.961	1	-3	4	2	46.26
λ = 1.540598A	1.951	3	-4	1	1	46.50
7.02 40 0 0 1 12.60	1.949	3	1	2	3	46.56
6.47 6 1 1 0 + 13.68	4 0/17					116 70
5.66 9 -1 1 1 15.64	1.945	7	1	5	1 7	40 • 70
4.89 46 1 2 0 18.12	1.899	2	2	<u>э</u>	$\frac{1}{3}$	47.86
4.52 74 -1 2 1 19.64	1.887	2	-3	3	3	48.18
4.18 // 1.1.1.21.0//	1.868	6	-1	6	2	48.70
3.88 46 =2 0 1 20 20		_				
3.72 52 2 0 0 + 23.89	1.860	2	-4	2	2	48.92
3.68 15 0 3 1 24.14	1.848	3	1	3	3	49.28
3.65 100 1 2 1 24.36	1.831	5	=2	1	2	49.42
7.54	1.797	3	-1	5	3	50.76
3.50 44 <b>1</b> 1 2 + 25.02	l					
3.39 11 0 1 2 25.34						
3.33 2 -2 2 1 26.71						
3.25 68 0 4 0 27.46						

Phosphoric acid hydrate,  $H_3P0_4 \cdot \frac{1}{2}H_20$  - continued

d (Å)	I	hkl	λ	20(°) 。 = 1.540598A
1.792	2	4 2	0 +	50.92
1.783	1	=2 6	2	51.20
1.766	3	-2 2	3	51.72
1.762	3	-3 4	3	51.86
1.729	2	1 4	3	52.90
1.719	2	2 1	3	53.26
1.702	4	3 2	2 +	53.82
1.687	1	-4 4	1	54.34
1.675	1	22	3	54.76
1.665	4	4 0	1	55.12
1.659	1	<del>-</del> 1 7	2	55.34
1.633	2	3 3	2	56.28
1.631	2	-3 5	3	56.36
1.623	4	08	0 +	56.66
1.606	1	1 5	3	57.32
1.602	1	<b>-2</b> 6	3	57.48
1.581	2	1 1	4 +	58.32
1.572	1	-4 5	1	58.70
1.567	1	-5 1	2	58.90
1.561	2	-4 1	4	59.14
1.546	1	26	2	59.78
1.528	1	-4 2	4	60.54
1.518	1	-3 7	1	60.98
1.501	2	-5 1	3	61.74
1.498	3	-2 8	1	61.90
1.481	3	-3 7	2	62.66
1.478	3	-4 3	4	62.82
1.470	1	-4 5	5	63.22
1.452	4	2 5	0	64+08

	Calculated	Pattern	(Inte	egra	ated)
d (Å)	I		hkl		$2\Theta(^{\circ}) \\ \lambda = 1.540598 A$
7.02 6.49 6.46 5.66 4.89	33 4 9 4 <b>4</b>	0 0 1 -1 1	0 2 1 1 2	1 0 0 1 0	12.59 13.63 13.69 15.64 18.11
4.52 4.18 3.88 3.74 3.72	70 4 47 5 41	-1 1 -2 1 2	2 1 0 3 0	1 1 1 0 0	19.63 21.24 22.89 23.75 23.87
3.72 3.69 3.65 3.58 3.57	15 11 100 1 7	-2 0 1 2 -1	1 3 2 1 3	1 1 1 0 1	23.90 24.13 24.36 24.85 24.95
3.56 3.51 3.39 3.33 3.25	43 11 12 1 74	-1 0 -2 0	1 0 1 2 4	2 2 2 1 0	25.01 25.34 26.27 26.73 27.45
3.21 3.14 3.09 3.09 3.09	45 2 1 5 9	-1 -2 1 0 -2	2 0 3 2 1	2 2 1 2 2	27.73 28.36 28.86 28.88 29.20
2.98 2.95 2.91 2.89 2.84	3 12 28 3 13	1 0 2 -2 2	4 4 3 1	0 1 1 1 1	30.00 30.30 30.74 30.91 31.52
2.83 2.82 2.81 2.62 2.592	9 2 3 2 2 6	-2 2 -1 1	2 3 3 4 2	2 0 2 1 2	31.59 31.67 31.79 34.25 34.58
2.58 2.544 2.491 2.45 2.45	7 2 4 6 1 4 5 2 5 11	-3 -2 -2 1 -3	1 3 4 5 2	1 2 1 0 1	34.64 35.25 36.03 36.61 36.71
2.445 2.439 2.436 2.417 2.384	5 <b>3</b> 9 2 5 7 7 4 4 2	-1 3 0 -3 0	1 5 1 4	3 0 1 2 2	36.73 36.82 36.87 37.16 37.70
2.36 2.342 2.341 2.301 2.25	7 3 2 1 1 2 1 4 3 3	1 -2 0 -3 -2	3 1 0 2 4	2 3 3 2 2	37.98 38.41 38.42 39.12 39.88

Phosphoric acid hydrate,  $H_3PO_4 \cdot \frac{1}{2}H_2O$  - continued

				_		
	d (Å)	I		hkl		20(°)
						$\lambda = 1.540598A$
	0.054	0	-	7		70.04
	2.204	0	-3	5		39.90
	2.235	1	=2	2	3	40.32
1	2.207	2	2	0	2	40.85
	2.203	4	0	2	3	40.94
	2.176	1	2	1	2	41.46
	2.159	8	-2	5	1	41.81
	2.158	1	-1	3	R	11 93
	2 130	1	-1	7	3	41.00
	2.129	2	-3	5	2	42.022
	2.130	1	2	5	0	42.59
	2+140	4	-1	5	2	42.49
	2.088	2	0	5	2	43.29
	2.086	1	-2	3	3	43.34
	2.079	1	1	6	0	43.51
	2.070	2	-3	1	3	43.70
	2.069	1	Ō	6	1	43.73
			_	_	_	
	2.059	4	0	3	3	43.93
	2.047	2	-1	6	1	44.22
	2.019	9	1	1	3	44.87
	2.003	1	-2	5	2	45.24
	1.975	3	-1	4	3	45.90
	1.974	8	-4	n	1	45.93
	1.961	1	-3	ú	2	46 26
	1.052	2	-11	1	1	40.20
	1 000	2	-4	2	1	40.49
	1.047	2	1	2	1	45.00
	1.945	5	1	6	1	46.70
	1.941	1	-4	0	2	46.76
	1.937	1	2	Š	1	46.87
	1,899	, x	0	ň	Ť	17.86
	1.887	2	-3	3	ž	47.10
	1.868	2 R	=1	6	2	40.17
	1.000	0	-	0	2	- ) • / 0
	1.860	2	-4	2	2	48.93
Ł	1.848	3	1	3	3	49.27
1	1.843	4	0	6	2	49.42
	1.831	1	-2	1	4	49.75
	1.797	4	-1	5	3	50.76
	1 70%		~	-		50.01
	1.794	1	0	7	1	50.86
	1.790	1	4	2	0	50.98
	1.783	1	-2	6	2	51.19
	1.779	1	-1	7	1	51.30
	1.779	3	-2	2	4	51.32
	1.766	4	-11	1	٦	51.72
1	1 761		-7	1	7	51 07
1	1.701	2	-3	4	0	51.87
1	1.748	1	3	1	2	52.29
1	1 710	2	1	4	S	52.90
	1.119	2	2	T	3	53+25
1	1.702	5	3	2	2	53.81
1	1.701	2	-2	3	4	53.86
1	1.687	1	-4	4	1	54.34
I	1.675	1	2	2	3	54.75
1	1.665	5	4	0	1	55.11
1	2.000	Ŭ		Ĩ	-	
1						

d (Å)	I	hk	2	20(°)° $\lambda = 1.540598A$
1.658	1	-1 7	2	55.35
1.634	3	3 3	2	56.27
1.631	2	-3 5	3	56.35
1.625	1	-3 6	2	56.59
1.623	5	0 8	0	56.65
1.606	1	1 5	3	57.32
1.602	1	-2 6	3	57.50
1.582	2	0 8	1	58.29
1.581	2	1 1	4	58.34
1.572	1	-4 5	1	58.69
1.567	1	-5 1	2	58.90
1.561	3	-4 1	4	59.14
1.546	1	2 6	2	59.79
1.528	1	-4 2	4	60.54
1.518	2	-3 7	1	60.99
1.501	3	-5 1	3	61.74
1.498	2	-2 8	1	61.90
1.481	3	-3 7	2	62.67
1.478	3	-4 3	4	62.83
1.478	1	-4 5	3	63.21
1.454	1	0 7	3	63.98
1.452	5	5 2	0	64.08

2⊖(°)

 $\lambda = 1.540598 \text{\AA}$ 

41.06

43.04

43.52

44.58

44.72

45.22

46.54

46.66

47.24

47.46

47.78

49.30

49.54

49.98

51.50

52.84

55.40

55.68

56.02

56.34

56.50

57.82

58.26

58.66

59.18 59.96

60.24

60.48

61.18

62.20

65.86

66.24

66.78

66.98

67.52

67.88

68.92

69.86

70.88

71.10

71.58

74.48

75.36

76.00

76.12

76.68

76.88

77.40

78.00

78.92

hkl

7

З

3 +

1 +

+

3 

Charles a based of						
Orthorho	mbic, Pnam (6	52), 7=4.	The s	structure was	d (A)	т
determin	ed by Brunton	1 [1969].				_
					2,1965	63
Lattice	constants:	(publishe	d valu	ues: 6.2895,	2.0999	2
15.596,	3.8040 [ibid.	.])			2.0779	1
		0			2.0309	2
	a = 6.28	399(3)A			2.0248	3
	D = 15.5	9/(2) N/2/2)				
	C = 3.80	J4Z(3)			2.0036	5
					1.9498	12
Density					1.9451	8
(calcula	ted) 4.542 g	/cm ³			1.9225	3
(ourouro					1.9141	25
					1.9021	20
Thermal pa	arameters				1.8469	24
Isotropi	c: potassium	B = 1.02	; cer:	ium B = 0.55;	1.8385	35
fluorine	B = 1.1	L7; fluc	rine	(2) $B = 0.96;$	1.8234	23
fluorine	B = 1.0	03; fluc	orine	(4) $B = 1.28$ .	1.7731	7
Polymorphi	Sm				1.7312	1
Two othe	er forms have	e been d	lescrit	bed. At the	1.6571	8
stoichic	metric compos	sition. 6	-KCeF	becomes the	1.6495	15
cubic,	fluorite-type	e α-KCeF	' ₄ abo	ove 755 °C. A	1.6402	2
hexagona	1 phase, $\beta_1 - \beta_1$	KCeF4 doe	s not	t occur as an	1+6317	2
equilibr	ium compound	[Bruntor	, 196	9].	1.6274	8
					1.5934	2
					1.5824	ĩ
Scattering	factors				1.5726	3
K', Ce'	, F [Cromer a	and Waber	,1965	]; the cerium	1.5600	1
factors	were correct	ted for d	usper	sion [Dauben		_
and remp	Jiecon, 1955]	•			1.5415	2
					1.5350	2
Scale fact	or				1.5295	6
(integra	ated intensit	ies) 6.57	0 x 1	04	1.5137	3
					1.4915	T
					1.4170	6
References	5		_		1.4098	1
Brunton, G	G. (1969). A	cta Cryst	. <u>B25</u>	, 600.	1.3997	6
Cromer, D.	T. and Wabe	r, J. T.	(1965	) Acta Cryst.	1.3960	3
<u>18,</u> 104.	U and Tom	oloton I	ьu	(1955) Acta	1.3861	1
Cryst. 8	ана тещ 3. 241.	precon, i	. п.	(1955). Acta	1 7707	2
cryst. g	.,				1.361/	2 5
					1.3453	2
0	Calculated Pa	ttern (Pe	ak he	ights)	1.3284	3
0					1.3249	11
d (A)	I	hk	2	20(°) 。		_
				$\lambda = 1.540598A$	1.3172	2
7.797	100	0 2	0	11.34	1.2729	3
4.897	74	1 2	0	18.10	1.2602	3
3.314	81	1 4	0	26.88	1+2512	2
3.186	93	1 1	1	27.98	1+2495	5
3.144	55	2 0	U	28.36	1.2418	1
3.0703	45	0 3	1	29.06	1.2390	4
2,9173	4.5 Q	2 2	0	30.62	1.2320	2
2.7946	1	1 5	ñ	32.00	1.2240	8
2.5991	5	0 6	ŏ	34.48	1.2120	2
2.4994	7	1 4	1	35.90		
	·		-	00070		
2.4238	9	2 0	1	37.06		

2.4125

2.4051

2.3952

2.2140

 37.24

37.36

37.52

40.72

Potassium cerium fluoride,  ${\scriptscriptstyle\beta}{\scriptscriptstyle\mathsf{-KCeF}}_4$  - continued

a(A)	т		bk 0			20(8)
u (A)	T		пқх		λ	$= 1.540598 \text{\AA}$
1.2062	1	0	10	2		70 30
1,197	. 3	5	10	<u>د</u>		20.00
1.1910	с <u>и</u>	5	1	1	т	90 40
1.1844	. 2	1	10	2		81.1 <i>0</i>
1.1746	2	0	5	3		81.96
	-	Ū		Ť		
1.1470	4	2	- 3	3		84.38
1.1443	3	0	13	1		84.62
1.1224	1	3	11	1		86.68
1.1047	2	3	12	0		88.42
1.1004	3	2	5	3		88.86
1.009/	2		c	2		00.00
1.0854	2	4	7	2		89.00
1 0934	3	1		3		90.40
1 0753	· · · · · · · · · · · · · · · · · · ·		17	່ 3 1		90.72
1.0579	2	2	10	2		91.02
10007.	J	1	16	۷		40.40
1.0527	2	5	7	1		94.06
1.0500	2	2	14	0		94.38
1.0483	1	6	Ū.	0		94.58
1.0455	1	3	10	2		94.92
1.0400	1	5	2	2		95.58
4 0007	_		_	_		
1.0293	3	4	8	2		96.90
1.0148	2	4	11	1		98.76
1.0132	3	5	4	2		98.98
1.0105	2	1	9	3		99.34
•9420	2	6	- 3	1		101.88
.9905	3	1	15	1		102.10
9835	1	5		1		103.12
.9755	2	3	-	- ג	J.	10/1 70
.9730	2	5	6	2	•	104.50
.9698	2	4	3	3		105.18
.9614	2	6	5	1	+	106.50
• 9553	2	3	12	2	+	107.48
•9511	1	0	0	4	-	108.18
.9452	1	0	11	3		109.16
•9412	1	4	5	3		109.86
•9311	1	2	16	0		111.64
.9253	1	4	13	1		112.72
.9232	1	6	8	0		113.10
.9195	2	3	9	3	+	113.80
•9181	1	6	0	2		114.08
0.1/1.1	0					
• 9141	2	1	4	4		114.84
•9118	1	6	2	2		115.30
•9103	1	2	n	4		115.60
, <b>9</b> 1191	1	4	14	0		115.84
0054	-				1.0	
•9051	3	2	11	3	т	110.00
•9051 •8916	3	2	11	3	т	119.52

Ca	lculated	Pattern	(Int	egr	ated)
d (Å)	I		hkl		$20(^{\circ}) \circ $ $\lambda = 1.540598A$
7.799 4.896 3.314 3.186 3.145	84 73 86 100 35	0 1 1 1 2	2 2 4 1 0	0 0 1 0	11.34 18.10 26.88 27.98 28.36
3.0701 2.9167 2.7946 2.5995 2.4988	49 10 1 6 9	0 2 1 0 1	3 2 5 6 4	1 0 0 1	29.06 30.63 32.00 34.47 35.91
2.4239 2.4121 2.4024 2.3952 2.2147	9 32 3 1 1	2 0 1 2 2	0 5 6 1 5	1 1 0 1 0	37.06 37.25 37.40 37.52 40.71
2.1969 2.1003 2.0779 2.0313 2.0247	79 3 1 2 3	2 1 3 1 3	3 7 1 6 2	1 0 0 1 0	41.05 43.03 43.52 44.57 44.72
2.0037 1.9496 1.9445 1.9226 1.9140	6 16 1 3 32	2 0 3 0 2	6 8 3 7 5	0 0 1 1	45.22 46.54 46.68 47.24 47.46
1.9021 1.8479 1.8466 1.8387 1.8236	25 4 29 44 31	0 0 3 1 3	0 2 4 7 1	2 2 0 1 1	47.78 49.27 49.31 49.54 49.97
1.7730 1.7314 1.6570 1.6497 1.6404	9 1 10 21 1	1 3 2 1 2	2 3 8 4 7	2 1 0 2 1	51.50 52.83 55.40 55.67 56.01
1.6320 1.6276 1.5932 1.5824 1.5725	3 10 4 1 4	3 2 2 3 4	6 0 2 5 0	0 2 2 1 0	56.33 56.49 57.83 58.26 58.66
1.5597 1.5414 1.5350 1.5297 1.5139	1 2 9 4	0 4 0 1 1	10 2 6 9 10	0 0 2 1 0	59.19 59.96 60.24 60.47 61.17
1.4913 1.4170 1.4099 1.3996 1.3973	2 9 1 9 1	1 3 1 4 2	6 7 3 10	2 1 2 1 0	62.20 65.86 66.24 66.79 66.91

Potassium cerium fluoride,  $\ensuremath{\mbox{\tiny B-KCeF}}_4$  - continued

d (Å)	I	hkl	$2\Theta(^{\circ})$ $\lambda = 1.540598A$
1.3863	2	3       2       2         2       6       2         0       8       2         4       6       0         0       11       1	67.51
1.3795	3		67.89
1.3615	8		68.91
1.3455	3		69.85
1.3286	4		70.87
1.3249	16	3       4       2         4       5       1         1       12       0         3       9       1         3       10       0	71.10
1.3173	3		71.57
1.2729	5		74.48
1.2603	5		75.35
1.2514	2		75.98
1.2494	7	2 8 2	76.13
1.2419	1	5 2 0	76.67
1.2391	5	1 1 3	76.87
1.2386	2	3 6 2	76.91
1.2319	3	0 3 3	77.40
1.2240	5	4 8 0	78.00
1.2239	10	2 11 1	78.01
1.2120	3	4 0 2	78.93
1.2061	1	0 10 2	79.39
1.1976	2	4 2 2	80.06
1.1972	4	5 4 0	80.09
1.1909	7	5 1 1	80.61
1.1845	3	1 10 2	81.13
1.1747	3	0 5 3	81.95
1.1471	7	2 3 3	84.37
1.1442	1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	84.63
1.1324	1		85.73
1.1261	1		86.32
1.1223	1		86.69
1.1141	1		87.49
1.1047	3	3       12       0         2       5       3         4       6       2         1       14       0         1       7       3	88.42
1.1004	5		88.85
1.0984	3		89.06
1.0970	1		89.21
1.0855	6		90.40
1.0824	5	3       1       3         2       13       1         1       12       2         5       7       1         2       14       0	90.74
1.0753	3		91.51
1.0579	5		93.47
1.0527	5		94.07
1.0501	1		94.37
1.0483 1.0454 1.0399 1.0293 1.0149	1 2 6 5	6 0 0 3 10 2 5 2 2 4 8 2 4 11 1	94.58 94.92 95.59 96.90 98.75
1.0132	5	5 4 2	98.97
1.0101	2	1 9 3	99.39
.9921	3	6 3 1	101.87
.9905	5	1 15 1	102.10
.9834	3	5 9 1	103.12

d (Å)	I	hkl	$2\Theta(^{\circ})$ $^{\circ}$ $\lambda = 1.540598 ^{\circ}$
.9792	1	5 10 0	103.75
.9755	3	373	104.30
.9748	1	0 16 0	104.41
.9730	2	562	104.69
•9698	3	4 3 3	105.18
.9614	4	651	106.49
•9613	1	0 14 2	106.51
.9570	1	4 10 2	107.20
• 9556	1	2 15 1	107.43
•9553	4	3 12 2	107.48
.9510	2	0 0 4	108.18
.9503	1	1 14 2	108.31
.9452	2	0 11 3	109.16
•9411	2	453	109.87
•9336	1	124	111.19
•9311	1	2 16 0	111.64
.9252	2	4 13 1	112.73
.9233	2	680	113.08
•9197	3	393	113.77
•9193	2	2 14 2	113.84
•9181	2	6 0 2	114.07
.9141	4	1 4 4	j14.84
.9118	1	6 2 2	115.30
.9103	2	2 0 4	115.60
•9091	1	4 14 0	115.85
.9052	5	2 11 3	116.63
.9048	4	3 15 1	116.72
.9042	1	2 2 4	116.84
.9039	2	5 12 0	116.90
.8927	1	720	119.30
.8916	4	5 1 3	119.52

#### Structure

Cubic, Fm3m (225), Z = 4, isostructural with NaCl. The system KBr-NaBr forms a complete solid solution series [Bellanca, 1939].

Lattice constants

The constants were derived by interpolation on a molar ratio, using the cell dimensions of KBr [Swanson and Tatge, 1953] and NaBr [Swanson et al.,1954]. For KBr, a=6.6004Å and for NaBr, a=5.9776Å; the original values have been modified to conform to new wavelength measurements.

```
Thermal parameters
Isotropic: overall B = 1.6.
```

# Scattering factors

K⁺, Na⁺, Br⁻ [International Tables, 1962]. Random distribution of the cations was assumed, and the factors used were proportional to the molar ratio.

References

Bellanca, A. (1939). Periodico Mineral. <u>10</u>, 18. International Tables for X-ray Crystallography III (1962), 202, 204, 206. Swanson, H. E., Fuyat, R. K., and Ugrinic, G. M. (1954). Natl. Bur. Std. U.S. Circ. 539, <u>3</u>, 47. Swanson, H. E. and Tatge, E. (1953). Natl. Bur. Std. U.S. Circ. 539, 1, 66.

	K _{.8} Na _{.2} Br			K _{.6} Na _{.4} Br			K _{4Na6} Br			K ₂ Na ₈ Br		
hkl	d(Å)	$I = \lambda = \lambda$	20(°) 1.540598	d(Å)	Ι λ=	20(°) 1.540598	d(Å)	$\mathbf{I}$ $\lambda =$	20(°) 1.540598	d (Å)	Ι λ=	2θ(°) 1.540598
111	3.74	29	23.78	3.67	34	24.26	3.60	43	24.74	3.52	54	25.26
200	3.238	100	27.52	3.175	100	28.08	3.112	100	28.66	3.052	100	29.24
220	2.290	63	39.32	2.246	60	40.12	2.202	63	40.96	2.157	62	41.84
311	1.952	10	46.48	1.915	12	47.44	1.878	14	48.44	1.840	17	49.50
222	1.870	18	48.66	1.834	17	49.68	1.797	17	50.76	1.762	18	51.86
400	1.619	7	56.82	1.588	7	58.04	1.557	7	59.32	1.525	7	60.66
331	1.486	3	62.46	1.457	4	63.82	1.429	4	65.26	1.400	5	66.76
420	1.448	17	64.28	1.420	16	65.70	1.392	16	67.18	1.364	16	68.74
422	1.322	10	71.28	1.296	10	72.90	1.271	10	74.60	1.246	10	76.40
511 +	1.246	2	76.36	1.222	2	78.14	1.198	3	80.00	1.174	3	81.98
440	1.1448	3	84.58	1.1228	2	86.64	1.1008	2	88.82	1.0787	2	91.14
531	1.0945	2	89.46	1.0736	2	91.70	1.0526	2	94.08	1.0315	2	96.62
442 +	1.0792	5	91.08	1.0586	5	93.38	1.0378	5	95.84	1.0170	5	98.48
620	1.0239	3	97.58	1.0042	3	100.18	0.9845	3	102.96	0.9649	3	105.94
533	0.9876		102.52	0.9686		105.36	.9496	1	108.42	.9306	1	111.74
622	.9763	2	104.18	.9575	2	107.12	.9388	3	110.28	.9199	3	113.72
444	.9347	1	111.00	.9167	1	114.34	.8988	1	117.98	.8808	1	121.98
711 +	.9068	1	116.30	.8894	1	120.02	.8719	1	124.12	.8545	1	128.70
640	.8980	2	118.14	.8807	2	122.00	.8635	2	126.28	.8462	2	131.08
642	.8654	4	125.78	.8488	4	130.34	.8321	4	135.56	.8154	4	141.70
731 +	.8431	1	132.04	.8269	1	137.36	.8106	2	143.70	.7944	2	151.68
820 +	.7853	3	157.56									
Lattice constant	6.4758Å			6.3513Å			6.2267Å			6.1022Å		
Density (calc.)	2.832 g/cm ³			2.918 g/cm ³			3.008 g/cm ³			3.102 g/cm ³		
### Structure

Cubic, Fm3m (225), Z = 4. The system KCl-NaCl forms a solid solution series, complete only between 480° and 650 °C [Scheil and Stadelmaier, 1952].

### Lattice constants

The constants were derived by interpolation on a molar ratio, using the cell dimensions of KCl[Swanson and Tatge, 1953] and NaCl [Swanson and Fuyat, 1953]. The original values were modified to a = 6.2935Å (KCl) and a = 5.6406Å (NaCl), to conform to new wavelength measurements.

Thermal parameters Isotropic: potassium B = 1.6; sodium B = 1.9; chlorine B = 1.6.

### Scattering factors

K⁺, Na⁺, Cl⁻ [International Tables, 1962]. The factors used were proportional to the molar ratio, assuming random distribution of the cations.

#### References

International Tables for X-ray Crystallography III (1962), 202, 204. Scheil, E. and Stadelmaier, Z. (1952). Z. Metallk. <u>43</u>, 227. Swanson, H. E. and Fuyat, R. K. (1953). Natl. Bur. Std. U. S. Circ. 539, II, 41. Swanson, H. E. and Tatge, E. (1953). Natl. Bur. Std. U. S. Circ. 539, I, 65.

	K.8Na.2Cl			K.6 ^{Na.4} Cl			K.4Na.6Cl			K _{.2} Na _{.8} Cl		
hkl	d (Å)	Ι λ=]	2θ(°) 540598	d (Å)	Ι λ=]	2θ(°) L.540598	d (Å)	Ι λ=1	2θ(°) •540598	d (Å)	Ι λ=	20(°) 1.540598
111 200 220 222 400 422 440 422 440 442 + 620 622 640 642	3.56 3.081 2.179 1.779 1.541 1.378 1.258 1.0894 1.0271 0.9745 .9290 .8546 .8236	 100 53 14 5 12 7 2 4 2 2 4 2 2 3	25.00 28.96 41.40 51.32 60.00 67.96 75.52 90.00 97.18 104.46 112.02 128.66 138.56	3.48 3.016 2.133 1.742 1.508 1.349 1.232 1.0664 1.0054 0.9538 .9094 .8365 .8061	 100 53 14 5 11 7 2 3 2 2 2 2 3	25.56 29.60 42.34 52.50 61.44 69.66 77.44 92.50 100.02 107.72 115.78 134.10 145.72	3.41 2.951 2.087 1.704 1.476 1.320 1.205 1.0433 0.9836 .9331 .8897 .8184 .7887	2 100 50 14 5 11 7 2 3 2 2 2 2 4	26.14 30.26 43.32 53.76 62.94 71.42 79.50 95.18 103.10 111.28 119.94 140.50 155.22	3.33 2.886 2.040 1.666 1.443 1.290 1.178 1.0202 0.9619 .9125 .8700 .8003	6 100 52 14 5 11 6 2 3 2 2 2 2	26.74 30.96 44.36 55.08 64.54 73.30 81.68 98.06 106.42 115.16 124.60 148.52
Lattice constant		6.1629	° AA	(	5.0323	° BA		5.9018	o BA		5.771	° 2A
(calc.)	alc.) 2.024 g/cm ³		:	2.061	g/cm ³	2.097 g/cm ³		2.131 g/cm ³				

Structure Hexagonal, $R\overline{3}m$ (166), Z = 3 isostructural with Th ₂ Zn ₁₇ . The structure was determined by	d (Å)	I	hkl $\lambda =$	20(°) 1.540598A
Johnson. Smith and wood [1969].	1.751	1	0 4 2	52.20
Lattice constants: [ibid.]	1.703	6	1 0 7	53.80
0	1.690	5	1 3 4	54.22
a = 8.438(5)A	1.661	5	3 2 1	55.26
c = 12.254(8)	1.617	6	2 3 2	56.90
	1.594	6	4 1 0	57.78
Density	1.579	4	0 2 7	58.40
(calculated) 9.664 g/cm ³	1.569	2	4 0 4	58.80
	1.565	9	0 3 6 +	58.98
	1.485	22	1 4 3 +	62.48
Thermal parameters	1.478	12	2 1 7	62.80
	1.470	12	3 2 4	63.18
	1.467	21	2 2 6	63.34
Scattering factors	1.451	2	0 5 1	64.12
Th ⁰ , Co ⁰ [International Tables, 1962], corrected for anomalous dispersion [Dauben and Templeton,	1.422	1	5 0 2	65.62
1955].	1.406	4	3 3 0	66.42
	1.384	2	2 3 5	67.66
a la Gastan	1.372	1	2 4 1	68.30
(integrated intensities) 56.46 x 10 ⁴	1.330	12	333	70.80
(integrated intensities) solve x is	1.000	16	<b>J</b> J <b>J</b>	10000
	1.325	5	1 3 7	71.10
References	1.319	3	0 5 4	71.46
Dauben, C. H. and Templeton, D. H. (1955). Acta	1.305	2	5 1 1	72.36
Cryst. 8, 241.	1.296	4	1 1 9	72.96
International Tables for x-ray crystallography	1.203	۲	1 5 2	13.10
Johnson, O., Smith, G. S., and Wood, D.H. (1969).	1.259	6	2 4 4	75.44
Acta Cryst. B25, 464.	1.256	4	5 0 5 +	75.68
	1.218	10	6 0 0	78.46
	1.211	6	3 2 7	79.02
Calculated Pattern (Peak heights)	1.200	4	1 0 10	19.20
0	1.206	5	5 1 4	79.36
d(A) I hkl $20(7)$	1.203	5	4 2 5	79.62
A - 1.540550A	1.189	10	3 0 9 +	80.80
6.28 9 1 0 1 14.10	1.170	2	5 2 0	82.34
4.697 6 0 1 2 18.88	1.1.0	2	520	02+34
4.219 30 1 1 0 21.04	1.162	2	0 2 10	83.06
4.085 11 0 0 3 21.74	1.158	2	3 3 6	83.36
3.501 18 0 2 1 25.42	1.157	2	1 5 5	83.48
3,138 8 2 0 2 28,42	1.131	1	2 3 8	85.88
2.934 80 1 1 3 30.44	1.125	6	5 2 3 7	80.44
2.826 18 1 0 4 31.64	1.122	5	0 5 7	86.72
2.695 18 2 1 1 33.22	1.120	2	2 1 10	86.90
2.518 10 1 2 2 35.62	1.084	1	2 4 7	90.54
2 // 35 50 3 0 0 36 99	1.055	6	4 4 0	93.82
2.347 36 0 2 4 38.32	1.050	4	5 1 7	94.36
2.324 1 0 1 5 38.72	1.047	4	164	94.70
2.109 68 2 2 0 42.84	1.046	7	6 0 6 +	94.84
2.093 100 3 0 3 + 43.20	1.040	1	3 5 1	95.56
	1.035	6	1 4 9 +	96.14
	1.033	3	1 2 11	96.44
	)			1
1.874 4 2 2 3 48.54				

Thorium cobalt,  $Th_2Co_{17}$  - continued

d (Å)	I	hkl $20(°)$ $\lambda = 1.540598A$
1.021 1.010 .990 .989 .988	2 1 1 2 2	0       0       12       97.94         6       2       1       99.42         4       3       7       102.12         3       2       10       102.28         3       5       4       102.44
•978 •976 •968 •962 •960	4 3 2 3 2	3       3       9       103.90         3       1       11       104.24         7       1       0       105.46         6       2       4       106.38         5       3       5       106.76
•942 •939 •937 •935 •933	8 5 6 4 1	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
•925 •921 •919 •917 •898	1 1 3 3 4	4       5       2       112.78         6       3       0       113.58         2       2       12       113.88         2       4       10       114.36         3       6       3       +       118.12
•897 •896 •895 •892 •890	3 4 3 3 2	3       5       7       118.44         5       1       10       118.62         5       4       4       118.82         2       1       13       119.42         2       7       1       119.90
•887 •877 •875 •860 •855	4 2 1 2	5       2       9       +       120.46         6       2       7       122.88         7       1       6       +       123.44         4       1       12       +       127.20         1       3       13       128.64
•857 •853 •851 •839 •826	1 1 1 3	2 7 4 127.98 8 1 1 129.06 2 0 14 129.64 7 2 5 133.34 5 5 3 + 137.56
.825 .824 .824 .822 .817	3 3 4 2	5       4       7       137.98         1       6       10       138.30         8       1       4       138.48         3       2       13       139.26         3       4       11       141.12
•808 •808	1 1	4 6 4 144.64 1 8 5 145.06

	Calculated	Pattern	(Int	.egra	ted)
å (Å)	I		hkl		$20(^{\circ})$ ° $\lambda = 1.540598 ^{\circ}$
6.28	9	1	0	1	14.10
4.695	7	0	1	2	18.89
4.219	33	1	1	0	21.04
4.085	12	0	0	3	21.74
3.501	21	0	2	1	25.42
3.138	9	2	0	2	28.42
2.935	100	1	1	3	30.44
2.825	23	1	0	4	31.64
2.694	23	2	1	1	33.22
2.518	14	1	2	2	35.63
2.436 2.348 2.324 2.109 2.092	69 50 1 9 <b>5</b> 74	3 0 2 3	0 2 1 2 0	0 4 5 0 3	36.87 38.31 38.72 42.83 43.21
2.092 2.051 2.942 2.035 1.874	72 34 40 19 6	0 2 0 2 2	3 1 0 2	<b>3</b> 4 6 5 3	43.21 44.11 44.32 44.48 48.53
1.833	7	1	2	5	49.69
1.807	1	4	0	1	50.47
1.751	2	0	4	2	52.21
1.702	9	1	0	7	53.81
1.690	7	1	3	4	54.22
1.661	7	3	2	1	55.26
1.617	9	2	3	2	56.90
1.595	11	4	1	0	57.77
1.579	6	0	2	7	58.41
1.569	2	4	0	4	58.80
1.565 1.565 1.485 1.485 1.485 1.479	7 8 19 19 19	3 0 4 1 2	0 3 1 4 1	6 6 3 7	58.9 <b>7</b> 58.97 62.47 62.47 62.79
1.471	17	3	2	4	63.17
1.467	27	2	2	6	63.33
1.451	3	0	5	1	64.12
1.422	1	5	0	2	65.62
1.406	7	3	3	0	66.42
1.384	3	2	3	5	67.66
1.372	2	2	4	1	68.29
1.362	1	0	0	9	68.91
1.347	1	4	2	2	69.75
1.330	21	3	3	3	70.80
1.325 1.319 1.305 1.296 1.283	6 4 5 8 3	1 0 5 1 1	3 5 1 5	7 4 1 9 2	71.10 71.46 72.35 72.95 73.77

Thorium cobalt,  $\mathrm{Th_2Co}_{17}$  - continued

d (Å)	I	hkl	$2\Theta(\circ)$ $\lambda = 1.540598 \text{\AA}$	d (Å)	I	hkl	20(°) $\lambda = 1.540598 Å$
1.259 1.257 1.257 1.255	11 1 1	2 4 4 4 1 6 1 4 6 5 0 5	75.45 75.59 75.59 75.71	.940 .939 .937 .936 .935	3 1 15 4	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	110.05 110.24 110.56 110.68
1.218 1.211 1.209 1.206 1.203	20 11 9 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	78.47 79.02 79.19 79.36 79.62	• - 33 • 933 • 925 • 921 • 919	1 2 3 7	5 4 1 4 5 2 6 3 0 2 2 12	111.32 112.78 113.58 113.87
1.188 1.188 1.174 1.170	11 10 3 3	3 0 9 0 3 9 0 4 8 5 2 0	80.80 82.03 82.34	•917 •913 •998 •898	6 2 6 6	2 4 10 0 2 13 6 3 3 3 6 3	114.37 115.12 118.11 118.11
1.162 1.158 1.157 1.131	4 3 3 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	83.06 83.37 83.48 85.87	.897 .896 .895 .895	6 4 6 6	3 5 7 5 1 10 5 4 4 2 1 13	118.44 118.63 118.82 119.42
1.125 1.125 1.122 1.122	7 7 4 3	5 2 3 2 5 3 0 5 7 2 1 10	86.44 86.44 86.72 86.90	.890 .887 .887 .887	2 5 6 1	2 7 1 2 5 9 5 2 9 7 2 2	119.79 120.45 120.45 121.37
1.101 1.084 1.055 1.050	1 3 15 9	0 1 11 2 4 7 4 4 0 5 1 7	88.77 90.54 93.83 94.37	.877 875 875 875 875	5 2 2 2	6 2 7 0 8 4 1 7 6 7 1 6	122.98 123.28 123.45 123.45
1.049 1.047 1.046 1.046 1.040	1 3 7 7 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	94.54 94.71 94.85 94.85 95.56	.874 .860 .860 .857 .856	1 2 2 4 1	4 5 5 4 1 12 1 4 12 2 7 4 8 0 5	123.59 127.21 127.21 127.98 128.31
1.035 1.035 1.033 1.029 1.021	6 7 1 1 4	4 1 9 1 4 9 1 2 11 5 3 2 0 0 12	96.13 96.13 96.42 96.92 97.93	.855 .853 .851 .847 .844	4 3 2 2 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	128.65 129.07 129.63 130.84 131.82
1.010 1.000 .co7 .oo1 .oc9	2 1 1 3	6 2 1 2 6 2 1 5 8 4 3 7 3 2 10	99.41 100.79 101.23 102.09 102.27	.839 .839 .834 .926 .826	1 2 1 6 5	6 3 6 7 2 5 4 4 9 5 5 3 3 3 12	133.20 133.36 134.98 137.55 137.57
.088 .078 .076 .968 .062	4 10 3 5 8	3       5       4         3       3       9         3       1       11         7       1       0         6       2       4	102.44 103.90 104.19 105.47 106.38	. 225 . 824 . 224 . 224 . 222 . 817	9 2 7 11 6	5 4 7 1 6 10 8 1 4 3 2 13 3 4 11	137.98 138.24 138.48 139.28 141.13
.060 .042 .042 .042 .042	1 8 9 3 3	5 3 5 7 1 3 1 7 3 0 3 12 3 0 12	106.65 109.75 109.75 109.76 109.76	.812 .810 .809 .808 .802	2 1 5 3 1	9 0 0 0 8 7 4 6 4 1 8 5 1 1 15	143.14 144.05 144.63 145.07 147.66

Acta

Hexagonal, R3m (166), Z = 3, isostructural with Th₂Zn₁₇. The structure was determined by Johnson, Smith and Wood [1969]. Lattice constants: [ibid.] a = 8.565(2) Å c = 12.469(3)Density (calculated) 8.888 g/cm³ Thermal parameters Isotropic [Johnson et. al., 1969] Scattering factors Th⁰, Fe⁰[International Tables, 1962], corrected for anomalous dispersion [Dauben and Templeton, 1955]. Scale factor (integrated intensities) 58.61 x  $10^4$ References Dauben, C. H. and Templeton, D. H. (1955). Cryst. 8, 241. International Tables for X-ray Crystallography III (1962), 202, 212.

Structure

Johnson	, Q.,	Smith,	G.	s.,	and	Wood,	D.H.	(1969).
Acta	Cryst.	B25,	464.					

İ	(	Calculated	Pattern	(Pea	k he	eights)
	d (Å)	I		hkl		$2\Theta(^{\circ})$ $\lambda = 1.540598A$
	6.375 4.772 4.283 4.157 3.553	8 5 27 10 17	1 0 1 0 0	0 1 1 0 2	1 2 0 3 1	13.88 18.58 20.72 21.36 25.04
	3.186 2.982 2.873 2.735 2.557	9 76 18 16 10	2 1 1 2 1	0 1 0 1 2	2 3 4 1 2	27.98 29.94 31.10 32.72 35.06
	2.473 2.387 2.364 2.142 2.125	50 33 2 63 100	3 0 2 3	0 2 1 2 0	0 4 5 0 3	36.30 37.66 38.04 42.16 + 42.50
	2.084 2.079 2.070 1.904 1.863	26 40 15 4 5	2 0 2 2 1	1 0 2 2	4 6 5 3 5	43.38 43.50 43.70 47.74 48.84

d (Å)	I	hk	۶ ۱	20(°) = 1.540598Å
1.778 1.732 1.717 1.686 1.6419	1 5 4 4 5	0 4 1 0 1 3 2 3	+ 2 1 7 3 4 2 1 3 2	51.36 52.80 53.30 54.38 55.96
1.6185	6	4 1	0	56.84
1.6056	4	0 2	7	57.34
1.5909	9	0 3	8 6 +	57.92
1.5083	22	1 4	3 +	61.42
1.5039	17	2 1	7	61.62
1.4935 1.4913 1.4730 1.4431 1.4274	13 19 1 1 4	3 2 2 2 0 5 5 0 3 3	2 4 6 1 2 0	62.10 62.20 63.06 64.52 65.32
1.4057 1.3931 1.3501 1.3467 1.3396	2 1 12 9 2	2 3 2 4 3 3 1 3 0 5	5 1 3 5 7 5 4	66.46 67.14 69.58 69.78 70.20
1.3246	2	5 1	1	71.12
1.3181	4	1 1	9	71.52
1.3027	2	1 5	2	72.50
1.2785	5	2 4	4	74.10
1.2752	3	5 0	5	74.32
1.2363	10	6 0	0	77.08
1.2304	6	3 2	7 +	77.52
1.2251	5	5 1	4	77.92
1.2219	4	4 2	5	78.16
1.2087	11	3 0	9 +	79.18
1.1932 1.1878 1.1820 1.1767 1.1751	1 2 2 2 2	0 4 5 2 0 2 3 3 1 5	8 0 10 6 5 5	80.42 80.86 81.34 81.78 81.92
1.1419	6	5 2	3 +	84.84
1.1393	5	0 5	7 +	85.08
1.1015	1	2 4	7	88.74
1.0707	6	4 4	0	92.02
1.0669	4	5 1	7	92.44
1.0625	7	6 0	6 +	92.94
1.0558	1	3 5	1	93.70
1.0526	5	1 4	9 +	94.08
1.0392	2	0 0	12	95.68
1.0252	1	6 2	1	97.42
1.0059	2	3 2	10 +	99.96
1.0034	2	3 5	4	100.30
.9943	4	3 3	9	101.56
.9929	1	3 1	11	101.76
.9825	2	7 1	0	103.26

Thorium iron,  $\mathrm{Th_2Fe_{17}}$  - continued

d (Å)	I		hkl	λ	20(°) = 1.5405982
.9769	3	6	2 4		104.10
.9745	1	5	3 5		104.46
.9580	2	0	3 12	+	107.04
.9562	6	1	7 3	+	107.34
.9549	3	1	6 7	+	107.54
.9518	6	4	4 6	+	108.06
9470	1	5	4 1		108.86
9389	1	ų.	5 2		110.26
.9348	ŝ	2	2 12	+	110.98
.9318	2	2	4 10		111.52
.9293	1	0	2 13		111.98
.9117	4	3	6 3	+	115.32
.9106	3	3	5 7	+	115.54
9084	3	5	4 4		115.98
.9076	3	2	1 13		116.14
.9038	1	2	7 1		116.92
9018	-	5	2 9	+	*****
.8908	ĭ	6	2 7		119.70
.8885	2	ñ	8 4	+	120.22
.8744	1	4	1 12	+	123.50
.8702	1	2	7 4		124.56
8694	1	1	3 13		124.76
.8661	1	â	1 1		125.60
.8402	1	3	3 12		132.94
.8388	2	5	5 3		133.36
.8381	3	5	4 7	+	133.60
.8363	3	2	1 4		134.18
.8356	3	3	2 13		134.38
.8303	1	3	L 11		136.18
.8208	1	4	6 4		139.58
. 8100	1	1	8 5		139,94
. 8003	6	8	2 0		144.28
. 80.95	3	a	0 7	+	144.66
.8074	4	2	7 7	+	145.14
0014	-	2			10011

	Calculated	Pattern	(Int	egra	ated)
d (A)	I		hkl		$20(^{\circ}) \\ \lambda = 1.540598 $
6.375	9	1	0	1	13.88
4.773	6	0	1	2	18.58
4.283	32	1	1	0	20.72
4.157	11	0	0	3	21.36
3.555	22	0	2	1	25.03
3.187	12	2	0	2	27.97
2.983	100	1	1	3	29.93
2.874	24	1	0	4	31.09
2.735	22	2	1	1	32.71
2.557	14	1	2	2	35.07
2.473 2.386 2.364 2.141 2.125	5 70 5 46 2 94 5 75	3 0 2 3	0 2 1 2 0	0 4 5 0 3	36.30 37.66 38.03 42.17 42.51
2.125 2.085 2.078 2.070 1.904	5 74 5 35 3 43 0 16 4 7	0 2 0 2 2	3 1 0 2	3 4 5 3	42.51 43.37 43.51 43.70 47.74
1.863	5 8	1	2	5	48.84
1.834	4 1	4	0	1	49.66
1.777	7 1	0	4	2	51.36
1.732	2 8	1	0	7	52.81
1.717	7 7	1	3	4	53.31
1.686	5 8	3	2	1	54.37
1.641	16 8	2	3	2	55.97
1.618	36 10	4	1	0	56.84
1.605	58 7	0	2	7	57.33
1.593	37 2	4	0	4	57.81
1.590 1.590 1.508 1.508 1.503	09     7       09     7       83     18       83     19       36     17	3 0 4 1 2	0 3 1 4 1	6 6 3 7	57.92 57.92 61.42 61.42 61.64
1.493	37       17         14       28         31       2         32       1         75       7	3	2	4	62.09
1.493		2	2	6	62.20
1.473		0	5	1	63.05
1.443		5	0	2	64.52
1.443		3	3	0	65.31
1.40	57       4         30       2         56       1         76       1         01       22	2	3	5	66•46
1.39		2	4	1	67•14
1.38		0	0	9	67•55
1.36		4	2	2	68•56
1.35		3	3	3	69•58
1.34 1.33 1.32 1.31 1.31	67 5 96 4 47 4 83 9 28 3	1 0 5 1	3 5 1 1 5	7 4 1 9 2	69.78 70.20 71.11 71.51 72.49

Thorium iron,  $\mathrm{Th}_{2}\mathrm{Fe}_{17}$  - continued

20(°)

= 1.540598A

108.14 108.20 108.87 110.26 110.96 111.03 111.54 112.09 115.31 115.31 115.52 115.58 115.97 116.15 116.92 117.35 117.35 118.40 119.71 120.17 120.28 120.28 120.43 123.50 123.50 124.56 124.76 125.60 127.23 128.15 129.49 130.80 132.95 133.34 133.60 133.68 134.16 134.39 136.18 138.34 138.97 139.58 139.94 141.43 143.53 144.27 144.66 144.66 144.99 145.09

d (Å)	I	hkl	$2\Theta(^{\circ})$ $\lambda = 1.540598A$	d (Å)	I	hkℓ λ
1.2785 1.2750 1.2363 1.2305 1.2297	10 2 20 11 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	74.10 74.34 77.08 77.51 77.57	.9513 .9509 .9470 .9389 .9349	2 3 1 2 8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1.2251 1.2220 1.2087 1.2087 1.1932	8 4 11 11 2	5 1 4 4 2 5 3 0 9 0 3 9 0 4 8	77.92 78.15 79.18 79.18 80.42	.9345 .9317 .9287 .9118 .9118	3 5 1 5 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1.1878 1.1820 1.1767 1.1751 1.1494	3 4 3 3 1	5       2       0         0       2       10         3       3       6         1       5       5         2       3       8	80.86 81.34 81.78 81.92 84.16	.9107 .9104 .9085 .9076 .9038	5 3 5 6 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1.1420 1.1420 1.1400 1.1394 1.1206	7 6 4 3 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	84.83 84.83 85.02 85.07 86.85	.9018 .9018 .8968 .8908 .8887	5 5 1 4 2	5 2 9 2 5 9 7 2 2 6 2 7 0 8 4
1.1016 1.0706 1.0669 1.0633 1.0625	3 14 8 2 8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	88.73 92.02 92.44 92.84 92.94	.8882 .8882 .8875 .8745 .8745	1 1 1 1 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1.0625 1.0558 1.0526 1.0526 1.0447	8 1 6 1	0 6 6 3 5 1 1 4 9 4 1 9 5 3 2	92.94 93.70 94.08 94.08 95.01	.8702 .2694 .8661 .2599 .8565	4 3 2 2 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1.0392 1.0251 1.0149 1.0127 1.0063	4 2 1 1 1	$\begin{array}{ccccc} 0 & 0 & 12 \\ 6 & 2 & 1 \\ 2 & 6 & 2 \\ 1 & 5 & 8 \\ 4 & 3 & 7 \end{array}$	95.68 97.42 98.75 99.04 99.90	.8517 .8472 .8401 .9389 .8381	2 1 4 5 7	7 2 5 4 4 9 3 3 12 5 5 3 5 4 7
1.0058 1.0033 .9942 .9929 .9825	3 4 9 2 4	3       2       10         3       5       4         3       3       9         3       1       11         7       1       0	99.96 100.31 101.57 101.76 103.26	.8378 .8363 .8356 .9303 .8242	1 6 9 4 1	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
•9768 •9753 •9604 •9580 •9580	7 1 1 3 2	6 2 4 5 3 5 3 4 8 0 3 12 3 0 12	104.11 104.34 106.65 107.04 107.04	.8225 .8208 .8199 .8161 .8110	1 3 3 1 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
•9561 •9561 •9549 •9546 •9518	7 8 3 1 14	7 1 3 1 7 3 1 6 7 0 5 10 4 4 6	107.35 107.35 107.54 107.60 108.06	.8093 .8084 .8084 .8077 .8075	25 4 9 4	8       2       0         9       0       3         0       9       3         2       7       7         3       5       10

or

Page

	Vol. or			Vol. or
	Sec.	Page		Sec.
Aluminum, Al	1	11	Ammonium copper bromide hydrate,	
Aluminum antimony, AlSb	4	72	$(NH_4)_2 CuBr_4 \cdot 2H_2 O$	1.Om
Aluminum bismuth oxide, Al4Bi209	llm	5	Ammonium copper chloride, NHLCuCl3	7m
Aluminum chloride, AlCl ₃	9m	61	Ammonium copper chloride hydrate,	
Aluminum chloride hydrate			$(NH_{h})_{2}CuCl_{h} \cdot 2H_{2}O$	12m
(chloraluminite), AlCl ₃ •6H ₂ O	7	3	Ammonium copper fluoride, NH, CuF,	llm
Aluminum fluoride hydroxide silicate	,		Ammonium gallium sulfate hydrate,	
topaz, Al ₂ (F,OH) $_{2}$ SiO ₄	lm	4	$NH_1$ Ga (SO ₁ ) $_2 \cdot 12H_2O$	6
Aluminum nitride, AlN	12m	5	Ammonium germanium fluoride,	
Aluminum nitrate hydrate,			(NH ₄ ) oGeF c	6
$A1(NO_{2})_{2} \cdot 9H_{2}O$	lm	6	Ammonium hydrogen carbonate	
Aluminum oxide (corundum), $\alpha$ -Al ₂ O ₃	9	3	(teschemacherite), (NH ₁ )HCO ₂	9
Aluminum oxide hydrate (böhmite),			Ammonium hydrogen phosphate,	
α-Al ₂ O ₂ •H ₂ O	3	38	NH ₁ , H ₂ PO ₁	4
Aluminum oxide hydrate, diaspore,			Ammonium iodate, NH, IO2	10m
β-Al ₂ O ₂ •H ₂ O	3	41	Ammonium iodide, NH, I	4
Aluminum phosphate, Al(PO ₂ ) ₂	2m	3	Ammonium iridium chloride.	
Aluminum phosphate (berlinite),			(NH ₄ ) airClc	8
AlPO, (trigonal)	10	3	Ammonium iron fluoride, (NH,) FeFe	9m
Aluminum phosphate, AlPO			Ammonium iron sulfate, NH, Fe(SO,)	10m
(orthorhombic)	10	4	Ammonium iron sulfate hydrate,	
Aluminum silicate (mullite).			NH. Fe (SO ₁ ) $\circ$ · 12H ₂ O	6
AlcSioOla	3m	3	Ammonium lead chloride, (NH,) 2PbClc	llm
Aluminum tungsten oxide, Al ₂ (WO ₁ ) ₂	llm	7	Ammonium magnesium aluminum fluoride	
Ammonium aluminum fluoride.			NH, MgAlFc	10m
(NH) all contraction of the second se	9m	5	Ammonium magnesium chromium oxide	
Ammonium aluminum selenate hydrate.			hydrate. $(NH_{\rm L})_{\rm o}Mg(CrO_{\rm L})_{\rm o}\cdot 6H_{\rm o}O$	8m
$NH_{i}$ Al (SeQ _i ) $_{2}$ ·12H ₂ Q	9m	6	Ammonium manganese chloride hydrate.	
Ammonium aluminum sulfate.		_	$(NH_{\rm L}) \circ MnCl_{\rm L} \circ 2H_{\rm C}O$	l lm
$NH_{L}Al(SO_{L})$	10m	5	Ammonium manganese(II) fluoride,	
Ammonium aluminum sulfate hydrate			NH, MnF	5m
(tschermigite), NH, Al(SO, ) ₂ · 12H ₂ O	6	3	Ammonium manganese sulfate,	
Ammonium azide, NH, No	9	4	$(NH_{\rm L}) \circ Mn_{\rm O} (SO_{\rm L}) \circ \dots \circ $	7m
Ammonium beryllium fluoride.			Ammonium manganese sulfate hydrate,	
$(NH_{i}) \circ BeF_{i}$	Зm	5	$(NH_{\rm H_{\rm H}})$ $_{\rm O}$ Mn (SO ₄ ) $_{\rm O}$ • 6H ₂ O	8m
Ammonium boron fluoride, NH, BF,	3m	6	Ammonium mercury chloride, NH, HqCl	8m
Ammonium bromide. NH, Br	2	49	Ammonium molybdenum oxide phosphate	
Ammonium cadmium chloride. NH.CdCl.	5m	6	hydrate. $(NH_{\rm H})_{\rm C}(MOO_{\rm C})_{\rm L} \circ PO_{\rm L} \circ 4H_{\rm C}O_{\rm C}$	8
Ammonium cadmium sulfate.			Ammonium nickel(II) chloride.	
$(NH_{\rm L})$ $_{\rm O}$ Cdo (SO _L ) $_{\rm O}$	7m	5	NH, NiCla	6m
Ammonium cadmium sulfate hydrate,			Ammonium nickel chromium oxide	
$(NH_{\rm L})$ $_{\rm O}$ Cd $(SO_{\rm L})$ $_{\rm O}$ · 6H $_{\rm O}$	8m	5	hydrate, (NH,) Ni(CrO,) 2.6H2O	8m
Ammonium calcium sulfate.			Ammonium nitrate (ammonia-niter),	
$(NH_{\rm H})$ $\circ$ Cao $(SO_{\rm H})$ $\circ$	8m	7	NH, NO2	7
Ammonium chlorate, NH, ClO,			Ammonium osmium bromide, (NH, ),OSBr	3
(orthorhombic)	7	6	Ammonium osmium chloride.	-
Ammonium chloride (sal-ammoniac).			(NH ₄ ) oOSClc	lm
NH ₂ C]	1	59	Ammonium palladium chloride.	
Ammonium chromium sulfate hydrate.			(NH) ) PdCl,	6
NH: $Cr(SO_1) \circ 12H \circ O_2$	6	7	Ammonium palladium chloride.	
Ammonium cobalt (II) chloride.			(NHL) PdClc	8
NH, CoCla	6m	5	Ammonium platinum bromide.	
Ammonium cobalt fluoride. NH. COF.	8m	9	(NHL) PtBrc	9
			Ammonium platinum chloride.	-
			(NH _k ) oPtClc	5

Further work on this program is in progress, and it is anticipated that additional sections will be issued. Therefore, the accumulative index here is not necessarily the concluding index for the project.

m - Monograph 25.

A mineral name in ( ) indicates a synthetic sample.

 $(NH_4)_2 TeBr_6$  ....

Ammonium rhenium oxide, NH4 ReO4 ....

(NH₄)₂SeBr₆ ....

(cryptohalite), (NH₄)₂SiF₆ .....

(NH₄)₂SO₄ .....

Ammonium sulfate (mascagnite),

Ammonium selenium bromide,

Ammonium silicon fluoride

Ammonium tellurium bromide,

	Vol. or	Dago		Vol. or	Dago
	JEC.	rage		Sec.	raye
Ammonium tellurium chloride,			Barium lead nitrate,		
(NH ₄ ) ₂ TeCl ₆	8	8	$Ba_{33}Pb_{67}(NO_3)_2$	12m	40
Ammonium tin chloride, (NH ₄ ) ₂ SnCl ₆	5	4	Barium lead nitrate,	10	40
Ammonium vanadium oxide, NH ₄ VO ₃	8	10	Ba $_{67}$ Pb $_{33}$ (NO ₃ ) $_2$	12m	40
Ammonium zinc fluoride, NH42Hr3	om	TO	Barium molybdenum oxide, Baroo ₄	1 2m	10
(NHL) 27F7	6	14	Barium nitrate (nitrobarite).	1211	10
Antimony, Sb	3	14	$Ba(NO_3)_2$	llm	14
Antimony(III) fluoride, SbF3	2m	4	Barium oxide, BaO	9m	63
Antimony(III) iodide, SbI3	6	16	Barium oxide, BaO ₂	6	18
Antimony(III) oxide (senarmontite),			Barium phosphate, Ba ₃ (PO ₄ ) ₂	12m	12
$Sb_2O_3$ (cubic)	3	31	Barium selenide, BaSe	5m	61
Antimony(III) oxide, Valentinite,	10	6	Barium silicon fluoride, Basif ₆	4m	/
Aptimony(IV) oxide (cervantite).	10	0	Barrow Scioncium nicrate, Ba $a_{\rm s}Sr_{\rm s} = (NO_{\rm s})a_{\rm s}$	1 2m	42
ShoQL server should be shown and sho	10	8	Barium strontium nitrate.	1 211	72
Antimony(V) oxide, Sb ₂ O ₅	10	10	$Ba_{\text{FO}}Sr_{\text{FO}}(NO_2)_2$	12m	42
Antimony selenide, Sb ₂ Se ₃	Зm	7	Barium strontium nitrate,		
Antimony(III) sulfide (stibnite),			Ba $_{75}$ Sr $_{25}$ (NO ₃ ) $_{2}$	12m	42
Sb ₂ S ₃	5	6	Barium sulfate (barite), BaSO4	1 Om	12
Antimony telluride, Sb ₂ Te ₃	Зm	8	Barium sulfide, BaS	7	8
Arsenic, As	3	6	Barium tin oxide, BaSnO ₃	3m	11
Arsenic(III) iodide, AsI ₃	6	17	Barium titanium oxide, BaTiO ₃	3	45
Arsenic oxide (arsenolite),	1	<b>E 1</b>	Barium titanium silicate (fresnoite),	0	14
As ₂ O ₃ (cubic)	T	TC	Ba ₂ TiSi ₂ O ₈	9m 7	14
(monoclinic)	Зm	9	Barium tungsten oxide, Bawoy	12m	14
Barium, Ba	4	7	Barium zirconium oxide, Bazro	5	8
Barium aluminum oxide, BaAl ₂ O ₁ ,	5m	11	Bervllium, alpha, Be	9m	64
Barium aluminum oxide, Ba ₃ Al ₂ O ₆	12m	7	Beryllium aluminum oxide		
Barium arsenate, Ba3(AsO4)2	2m	6	(chrysoberyl), BeAl ₂ O ₄	9	10
Barium borate, BaB ₄ O ₇	4m	6	Beryllium aluminum silicate, beryl,		
Barium borate, high form, BaB ₂ O ₄	4m	4	Be ₃ Al ₂ (SiO ₃ ) 6	9	13
Barium borate, BaB ₈ O ₁₃	7m	10	Beryllium calcium oxide, Be ₁₇ Ca ₁₂ O ₂₉	7m	89
Barium bromate hydrate,	0	10	Beryllium chromium oxide, $BeCr_2O_4$	10	12
$Ba(BrO_3)_2 \cdot H_2O$	8m 1.0m	19	Beryllium cobalt, BeCo	5m 10	62
Barium bromide fluoride BaBrE	10m	10	Beryllium Japthanum Oxide, Be ₂ Geo ₄	10 Om	13 65
Barium bromide hydrate, BaBra HaO	- Sm	10	Beryllium nichium. BeaNb	7m	92
Barium calcium nitrate,			Bervllium oxide (bromellite), BeO	1	36
Ba 25Ca 75 (NO3) 2	12m	38	Beryllium palladium, BePd	5m	62
Barium calcium nitrate,			Beryllium silicate, phenacite,		
$Ba_{50}Ca_{50}(NO_3)_2$	12m	38	BeSi ₂ O ₄	8	11
Barium calcium nitrate,			Bismuth, Bi	3	20
Ba. 75Ca. 25 (NO3) 2	12m	38	Bismuth fluoride, BiF ₃	lm	7
Barium calcium tungsten oxide,	0	10	Bismuth(III) iodide, Bil ₃	6	20
$Ba_2CaWO_6$	9m	10	Bismuth oxide (bismite), $\alpha$ -Bi ₂ O ₃	3m	14
(orthorhombia)	2	54	Bismuth oxide bromide, BioBr	0	14
Barium carbonate, BaCO ₂ (cubic)	2	54	BioCl	4	54
at 1075 °C	10	11	Bismuth oxide iodide. BioI	9	16
Barium chlorate hydrate,			Bismuth phosphate, BiPO, (monoclinic	) 3m	11
Ba(ClO ₄ ) ₂ •3H ₂ O	2m	7	Bismuth phosphate, BiPO ₄ (trigonal)	3m	13
Barium chlorate hydrate,			Bismuth sulfide (bismuthinite),		
$Ba(ClO_3)_2 \cdot H_2O$	8m	21	Bi ₂ S ₃	5m	13
Barium chloride, BaCl ₂ , (cubic)	9m	13	Bismuth telluride, BiTe	4m	50
Barium chloride, BaCl ₂ ,			Bismuth telluride (tellurobis-		
(orthorhombic)	9m		muthite), Bi ₂ Te ₃	3m	16
Barium chlorido hydrato BaCl. 200	1.0m	11	Bismuth vanadium oxide, low form,	2m	14
Barium fluoride, BaFo	1	70	Bismuth vanadium oxide high form	Siit	14
Barium hydroxide phosphate.	-		BiVO, (monoclinic)	3m	14
Ba ₅ (OH) (PO _L ) 3	llm	12	Boron oxide, $B_2O_2$ , phase 1	1 Om	70
Barium iodide, BaI ₂	10m	66	Cadmium, Cd	3	10
Barium lead chloride, BaPbCl ₄	llm	13			

	Vol. or Sec.	Page		Vol. or Sec.	Page
Cadmium ammine chloride,			Calcium iron silicate (andradite),		
Cd(NH ₃ ) ₂ Cl ₂	10m	14	Ca ₃ Fe ₂ Si ₃ O ₁₂	9	22
Cadmium bromide, CdBr ₂	9	17	Calcium iron silicate hydroxide, jul-		
Cadmium bromide chloride, CdBrCl	llm	15	goldite, $Ca_2Fe_3Si_3O_{10}(OH,O)_2(OH)_2$	lOm	72
Cadmium carbonate (otavite), CdCO3	7	11	Calcium lead nitrate,		
Cadmium chlorate hydrate,			$Ca_{33}Pb_{67}(NO_3)_2$	12m	44
$Cd(ClO_4)_2 \cdot 6H_2O$	3m	19	Calcium lead nitrate,		
Cadmium chloride, CdCl ₂	9	18	$Ca_{67}Pb_{33}(NO_3)_2$	12m	44
Cadmium chromium oxide, CdCr ₂ O ₄	5m	16	Calcium magnesium silicate		
Cadmium cyanide, Cd(CN) ₂	2m	8	(diopside), CaMg(SiO ₃ ) ₂	5m	17
Cadmium fluoride, CdF ₂	10m	15	Calcium molybdenum oxide		
Cadmium iron oxide, CdFe ₂ O ₄	9m	16	(powellite), CaMoO ₄	6	22
Cadmium manganese oxide, CdMn ₂ O ₄	10m	16	Calcium nitrate, Ca(NO ₃ ) ₂	7	14
Cadmium molybdenum oxide, CdMoO4	6	21	Calcium oxide, CaO	1	43
Cadmium nitrate hydrate,	-		Calcium oxide phosphate, $Ca_4O(PO_4)_2$	12m	17
$Cd(NO_3)_2 \cdot 4H_2O$	/m	93	Calcium phosphate, $\beta$ -Ca ₂ P ₂ O ₇	/m	95
Cadmium oxide, CdO	2	27	Calcium platinum oxide, Ca ₄ PtO ₆	TOW	18
Cadmium oxide, CdO (ref. standard)	8m	2	Calcium selenide, Case	5m	64
(homeneel)	7	10	Calcium strontium nitrate,	1.0-	10
(nexagonal)	2m	20	$Ca_{33}Sr_{67}(NO_3)_2$	12m	40
Cadmium sulfate, Caso ₄	2111	20	Calcium strontium nitrate,	1 0m	16
Cadmitum suitate mydrate,	6m	Q	$(a_{67}SI_{33}(NO_3)_2$		40
Cadmium sulfate budrate CdSO: HeO	6m	10	Calcium sulfide (aldamite), Caso ₄	4 7	15
Cadmium sulfide (greenockite) CdS	4	15	Calcium tollurido Came	/m	50
Cadmium telluride (dTe	3m	21	Calcium titanium oxide	4111	50
Cadmium tungsten oxide CdWO.	2m	8	(perovekite) CaTiO	Qm	17
Calcium. Ca	9m	68	Calcium tungsten oxide. Ca.WO	9m	19
Calcium aluminum germanium oxide.	J	00	Calcium tungsten oxide, scheelite.	5111	10
$Ca_2Al_2(GeO_4)_2$	10	15	CaWO,	6	23
Calcium aluminum hydroxide,			Carbon, diamond, C	2	5
Ca ₂ Al ₂ (OH) ₁₂	llm	16	Cerium antimony, CeSb	4m	40
Calcium aluminum oxide, Ca ₃ Al ₂ O ₆	5	10	Cerium arsenate, CeAsO,	4m	8
Calcium aluminum oxide,			Cerium arsenide, CeAs	4m	51
Ca12Al14033	9	20	Cerium bismuth, CeBi	4m	46
Calcium aluminum sulfate hydrate			Cerium cadmium, CeCd	5m	63
(ettringite), Ca ₆ Al ₂ S ₃ O ₁₈ ·31H ₂ O	8	3	Cerium(III) chloride, CeCl ₃	lm	8
Calcium bromide, CaBr ₂	llm	70	Cerium copper, CeCu ₆	7m	99
Calcium bromide hydrate, CaBr ₂ .6H ₂ O	8	15	Cerium(III) fluoride, CeF ₃	8	17
Calcium carbonate (aragonite),			Cerium niobium titanium oxide		
CaCO ₃ (orthorhombic)	3	53	(eschynite), CeNbTiO ₆	3m	24
Calcium carbonate (calcite),			Cerium nitride, CeN	4m	51
CaCO ₃ (hexagonal)	2	51	Cerium(IV) oxide (cerianite), CeO ₂	1	56
Calcium chloride (hydrophilite),			Cerium phosphide, CeP	4m	52
CaCl ₂	llm	18	Cerium(III) vanadium oxide, CeVO ₄	lm	9
Calcium chloride fluoride, CaClF	10m	17	Cerium zinc, CeZn	5m	65
Calcium chloride hydrate,			Cesium aluminum sulfate hydrate,	_	
$CaCl_2 \cdot 4H_2O$	11m	73	$CsA1(SO_4)_2 \cdot 12H_2O$	6	25
Calcium chloride hydrate		1.6	Cesium antimony fluoride, CsSbF ₆	4m	9
(antarcticite), CaCl ₂ ·6H ₂ O	12m	16	Cesium beryllium fluoride, CsBeF3	9m	69
Calcium chromium germanium oxide,	10	10	Cesium boron fluoride, CSBF4	8	22
$\operatorname{Ca}_3\operatorname{Cr}_2(\operatorname{GeO}_4)_3$	10	10	Cesium bromate, CSBr03	8	18
Calcium chromium oxide, Cacro ₄	、	13	Cesium bromide, CSBr	3	49
calcium chromium silicate (uvarovite)	10	17	(heurgenal)	10m	20
$Ca_3Cr_2(S10_4)_3$	1	17 69	(nexagonal)	TOIL	20
Calcium fluoride (Hudrite), Car2	1	09	(howagenal)	5m	19
(fluoranatite) CarF(PO,)	Зm	22	Cesium calcium chloride (sCaCl-	5m	21
Calcium gallium germanium ovide	Jiii	22	Cesium calcium fluoride CeCaF.	8m	25
CapGap (GeOu ) 2	10	18	Cesium calcium sulfate.	On	
Calcium hydroxide (portlandite)	10	10	$CS_{2}Ca_{2}(SQ_{1})_{2}$	7m	12
Ca (OH) 2	1	58	Cesium cerium chloride. CsoCeClo	7m	101
Calcium iron germanium oxide.	-		Cesium chlorate. CsClO	8	20
$Ca_3Fe_2(GeO_{\mu})_2$	10	19	Cesium chlorate, CsClO.,		
5 2 ··· +· 5			(orthorhombic)	lm	10

# Vol. or Sec. Page 44

Cesium chloride, CsCl	2	44
Cesium chromium oxide, Cs ₂ CrO ₄	Зm	25
Cesium chromium sulfate hydrate,		
$CsCr(SO_4)_2 \cdot 12H_2O$	8	21
Cesium cobalt(II) chloride, CsCoCl ₃	6m	11
Cesium cobalt chloride, Cs ₂ CoCl ₄	11m	19
Cesium copper(II) chloride, CsCuCl ₃	5m	22
Cesium copper chloride, Cs ₂ CuCl ₄	llm	20
Cesium copper sulfate hydrate,		
$Cs_2Cu(SO_{l_1})_2 \cdot 6H_2O$	7m	14
Cesium fluoride, CsF	Зm	26
Cesium gallium sulfate hydrate,		
$CsGa(SO_{L})_{2} \cdot 12H_{2}O$	8	23
Cesium germanium fluoride, Cs2GeFc	5	17
Cesium jodide. CSI	4	47
Cesium iodine bromide. CsI2Br	7m	103
Cesium iodine chloride. CSICla	3	50
Cosium iron sulfate hydrate.	-	
Co-Eo(So)) - 6HeO	7m	16
Cogium iron sulfato hydrate	/10	10
Cestum from sufface hydrate,	6	28
$CSFe(SO_4)_2 \cdot 12H_2O \dots CSFe(SO_4)_2 \cdot 12H_2O \dots$	0	20
Cesium lead(II) chioride, CSPDCI3	<b>F</b> -m	24
(tetragonal)	511	24
Cesium lead fluoride, CSPbF3	8m	26
Cesium lithium cobalt cyanide,		-
CsLiCo(CN) 6	LOm	79
Cesium lithium fluoride, CsLiF ₂	7m	105
Cesium magnesium chromium oxide,		
$Cs_2Mg_2(CrO_4)_3$	8m	27
Cesium magnesium chromium oxide		
hydrate, $Cs_2Mg(CrO_4)_2 \cdot 6H_2O$	8m	29
Cesium magnesium sulfate hydrate,		
$Cs_2Mg(SO_4)_2 \cdot 6H_2O$	7m	18
Cesium manganese fluoride, CsMnF3	1Om	21
Cesium manganese sulfate hydrate,		
$Cs_2Mn(SO_4)_2 \cdot 6H_2O$	7m	20
Cesium mercury chloride, CsHgCl ₃	7m	22
Cesium nickel(II) chloride, CsNiCl3	бm	12
Cesium nickel sulfate hydrate,		
$Cs_2Ni(SO_h)_2 \cdot 6H_2O$	7m	23
Cesium nitrate, CsNO2	9	25
Cesium osmium(IV) bromide. CsoOsBre	2m	10
Cesium osmium chloride. CsoOsClc	2m	11
Cesium platinum bromide. CsoPtBrc	8	19
Cesium platinum chloride. CsoPtClc	5	14
Cosium platinum fluoride CooPtEr	6	27
Cosium solonium bromide CsoSeBro	8	20
Cosium silicon fluorido, CS25eB16	5	10
Cesium stucetium chloride (S23176	Em	12
Cesium strontium chioride, Cssici ₃	0111	17
Cesium sulfate, Cs ₂ SO ₄	/	1/
Cesium tellurium bromide, Cs ₂ TeBr ₆	9	24
Cesium tin chloride, Cs ₂ SnCl ₆	5	16
Cesium vanadium sulfate hydrate,		
$CsV(SO_4)_2 \cdot 12H_2O$	lm	11
Cesium zinc sulfate hydrate,		
$Cs_2Zn(SO_4)_2 \cdot 6H_2O$	7m	25
Chromium, Cr	5	20
Chromium chloride, CrCl ₂	llm	77
Chromium fluoride, Cr ₂ F ₅	7m	108
Chromium fluoride, CrF ₂	lOm	81
Chromium(III) fluoride hydrate,		
CrF ₃ •3H ₂ O	5m	25
Chromium iridium 3:1, CraIr	бm	14
Chromium(III) oxide, Cr ₂ O ₂	5	22
Chromium phosphate, $\alpha$ -CrPO ₄	2m	12

	Vol. or	
	Sec.	Page
Chromium phosphate 8-CrPO	Q	26
Chromium rhodium 3:1. CroBh	60	15
Chromium silicide. Crosi	6	29
Cobalt, Co (cubic)	4m	10
Cobalt aluminum oxide. CoAloO	9	27
Cobalt ammine iodide, Co(NHa) da	1 Om	83
Cobalt antimony oxide. CoShoQ	5m	26
Cobalt arsenide. COAs	4m	10
Cobalt arsenide (skutterudite).		
COASo	10	21
Cobalt borate, $Co_2(BO_2)_2$	1.2m	20
Cobalt bromide hydrate, CoBro.6HoO	1.2m	21
Cobalt(II) carbonate (sphero-	12	
cobaltite), CoCO	10	24
Cobalt chlorate hydrate	10	
$CO(C10)$ ) $c \cdot 6H_0O$	Зm	28
Cobalt chloride bydrate CoClas2HaO	11m	22
Cobalt chloride hydrate, CoCl. 6HaO	11m	23
Cobalt chromium oxide. CoCr.O.	9m	21
Cobalt fluoride CoFe	10m	85
Cobalt fluoride bydrate. CoFe: 4HeO	11m	24
Cobalt gallium oxide. CoGaoO	10	27
Cobalt germanium oxide. Co.GeO.	10	27
Cobalt jodide. Colo	4m	52
Cobalt iron arsenide (safflorite).		51
COFeAs.	10	28
Cobalt iron oxide. CoFe ₂ O ₄	9m	22
Cobalt mercury thiogyanate.		
Co[Hq(CNS)]]	2m	13
Cobalt nitrate hydrate,		
$\alpha$ -Co(NO ₂ ) ₂ •6H ₂ O	12m	22
Cobalt(II) oxide, CoO	9	28
Cobalt(II,III) oxide, Co ₃ O ₄	9	29
Cobalt silicate, Co ₂ SiO ₄		
(orthorhombic)	4m	11
Cobalt silicon fluoride hydrate,		
CoSiF ₆ •6H ₂ O	Зm	27
Cobalt sulfate, $\beta$ -CoSO ₄	2m	14
Cobalt titanium oxide, CoTiO3	4m	13
Cobalt tungsten oxide, CoWO4	4m	13
Copper, Cu	1	15
Copper aluminum, CugAl4	llm	79
Copper ammine selenate,		
Cu(NH ₃ ) ₄ SeO ₄	lOm	87
Copper ammine sulfate hydrate,		
$Cu(NH_3)_4SO_4 \cdot H_2O$	lOm	90
Copper antimony oxide, CuSb ₂ O ₆	5m	27
Copper(I) bromide, CuBr	4	36
Copper cadmium, Cu ₅ Cd ₈	llm	81
Copper(I) chloride (nantokite),		
CuCl	4	35
Copper fluoride hydrate, CuF ₂ ·2H ₂ O	11m	25
Copper hydrogen phosphite hydrate,		0.0
CuHPO ₃ ·2H ₂ O	11m	83
Copper hydroxide carbonate,	2.0	20
azurite, $Cu_3(OH)_2(CO_3)_2$	10	30
Copper hydroxide carbonate	10	21
(malachite), $Cu_2(OH)_2CO_3$	10	16
Copper(I) iodide (marchite), Cul	4	38
Copper(I) oxide (cuprite), $Cu_20$	2	23
Copper(11) oxide (tenorite), CuO	1	49
Copper phosphate, $\alpha$ -Cu ₂ P ₂ O ₇	/10	113
cupper suitate (chaicocyanite),	Zm	20
Copper(II) sulfide (covellite) cut	ЭШ Д	13
copper(II) surrige (coverrice), cus	-1	10

Vol. or

40

8m

Vol. or

	Sec.	Page		Sec.	Page
Copper uranium oxide, CuUO ₄	lOm	93	Germanium oxide, GeO ₂		
Dysprosium antimony, DySb	4m	41	(tetragonal) (high form)	8	28
Dysprosium arsenate, DyAsO4	Зm	30	Gold, Au	1	33
Dysprosium arsenide, DyAs	4m	53	Gold antimony 1:2 (aurostibite),		
Dysprosium bismuth, DyBi	4m	47	AuSb ₂	7	18
Dysprosium gallium oxide,			Gold(I) cyanide, AuCN	10	33
Dy ₃ Ga ₅ O ₁₂	2m	15	Gold potassium cyanide, AuK(CN) 2	8m	36
Dysprosium gold, DyAu	5m	66	Gold tin 1:1, AuSn	7	19
Dysprosium nitride, DyN	4m	53	Gold titanium 1:3, AuTi ₃	6m	17
Dysprosium oxide, Dy ₂ O ₃	9	30	Hafnium, Hf	3	18
Dysprosium silver, DyAg	5m	66	Holmium arsenate, HoAsO,	Зm	34
Dysprosium telluride, DyTe	4m	54	Holmium bismuth, HoBi	4m	48
Dysprosium vanadium oxide, DyVO ₄	4m	15	Holmium fluoride, HoF2	10m	23
Erbium antimony, ErSb	4m	41	Holmium gold, HoAu	5m	68
Erbium arsenate, ErAsO ₄	Зm	31	Holmium nitride, HoN	4m	58
Erbium arsenide, ErAs	4m	54	Holmium oxide, Ho ₂ O ₂	9	32
Erbium bismuth, ErBi	4m	47	Holmium selenide, HoSe	4m	59
Erbium gallium oxide, EraGa5012	lm	12	Holmium silver, HoAg	5m	68
Erbium manganese oxide, ErMnO3	2m	16	Holmium vanadium oxide, HoVO,	4m	18
Erbium nitride, ErN	4m	55	Hydrogen amidosulfate, HoNSO2H	7	54
Erbium oxide, Er ₂ O ₂	8	25	Hydrogen arsenate, HrAs2010	7m	84
Erbium phosphate, ErPO.	9	31	Hydrogen borate, 8-HBO	9m	71
Erbium silver, ErAg	5m	67	Hydrogen borate (metaborite).		
Erbium telluride, ErTe	4m	55	HBO _o (cubic)	4m	27
Erbium vanadium oxide, ErVO,	5m	29	Hydrogen jodate. HIO2	5	28
Europium arsenate. EuAso.	Зm	32	Hydrogen jodate, HL202	8m	104
Europium(III) chloride, EuCla	lm	13	Hydrogen phosphate hydrate.	0	
Europium gallium oxide.			HoPO. + HoO	12m	56
ElloGa Olo	2m	17	Hydrogen tellurate. HaTeOc	1.2m	34
Europium nitride. EuN	4m	56	Indium. In	3	12
Europium oxide. EuO	4m	56	Indium antimony. InSb	4	73
Europium oxychloride, EuOCl	lm	13	Indium arsenide. InAs	.3m	35
Europium phosphate, EuPO	llm	26	Indium oxide. In-O-	5	26
Europium(III) vanadium oxide, EuVO	4m	16	Indium phosphate. InPO	8	29
Gadolinium antimony, GdSb	4m	42	Indium sulfide. In-So	11m	30
Gadolinium arsenate. GdASO	4m	17	Indine I.	3	16
Gadolinium arsenide. GdAs	4m	57	Iridium. Ir	4	- 9
Gadolinium chloride hydrate.			Tridium oxide. TrO.	4m	19
GdCla•6HaO	7m	118	Iridium titanium 1.3. IrTi	6m	20
Gadolinium fluoride. GdF2	lm	14	Iron. a-Fe	4	3
Gadolinium gallium oxide.			Iron arsenide FeAs	lm	19
GdoGa=Ovo	2m	18	Iron arsenide (loellingite), FeAs	10	34
Gadolinium indium. GdIn	5m	67	Iron bromide FeBr.	4m	59
Gadolinium nitride. GdN	4m	57	Iron chloride hydrate, FeCl. 2H.O	11m	32
Gadolinium oxide. GdoQo	lm	16	Iron fluoride hydrate, FeFe 4He0	11m	90
Gadolinium oxychloride, GdOCl	lm	17	Iron hydroxide sulfate hydrate.		20
Gadolinium silver, GdAg	6m	87	butlerite. Fe(OH)SO. •2H=0	10m	95
Gadolinium titanium oxide. GdoTiOr	8m	32	Iron iodide. Fela	4m	60
Gadolinium vanadium oxide, GdVO	5m	30	Iron(II III) oxide (magnetite).		00
Callium Ga	2	9	ForO.	5m	31
Gallium antimony GaSh	6	30	Iron sulfate hydrate (melanterite).	51.1	
Callium arsenide GaAs	Зm	33	FoSO. • 7H-O	8m	38
Gallium magnesium GaoMg	12m	48	Iron sulfide (purite) FeS-	5	29
Callium magnesium, Guyng	1.2m	51	Lanthanum antimony LaSh	4m	42
Callium oxido a-Callo	4	25	Lanthanum arconato Labo	3m	36
Callium phosphate hydrate	-	20	Lanthanum arsenide Laks	4m	60
CaPO. • 2H=0	8m	34	Lanthanum higmuth LaBi	4m	48
Gallium phoenbate ( $\alpha$ -quartz type)	On	54	Lanthanum brate LaRO-	]m	20
CaPO.	8	27	Lanthanum cadmium LaCd	5m	63
Germanium Ge	1	18	Lanthanum chloride LaCl-	1m	20
Germanium iodide Gel-	4m	58	Lanthanum fluoride LaF.	7	21
Cormanium (IV) iodide Cel.	5	25	Lanthanum nichium titanium ovido	,	<u> </u>
Germanium oxido CoO. (hovagonal)	J	2.5	LaNhTio.	Зm	37
(low form)	1	51	Landitu ₆	Jii	5,
(TOW TOTUL)	T	1	handhanum nittrate nyurate,		

 $La(NO_3)_3 \cdot 6H_2O$  .....

(low form) .....

# Vol. or Sec. Page

Vol. or	
Sec.	Page

Lanthanum nitride, LaN	4m	61
Lanthanum oxide, La203	3	33
Lanthanum oxychloride, LaOCl	7	22
Lanthanum phosphide, LaP	5m	69
Lanthanum selenide, LaSe	4m	61
Lanthanum zinc, LaZn	5m	70
Lead, Pb	1	34
Lead borate, PbB ₄ O ₇	4m	19
Lead bromide, PbBr ₂	2	47
Lead bromide chloride, PbBrCl	llm	33
Lead bromide fluoride, PbBrF	lOm	25
Lead chloride (cotunnite), PbCl ₂	12m	23
Lead carbonate (cerrussite), PbCO3	2	56
Lead chloride fluoride (matlockite),		
PbClF	1	76
Lead fluoride, $\alpha$ -PbF ₂		
(orthorhombic)	5	31
Lead fluoride, $\beta$ -PbF ₂ (cubic)	5	33
Lead fluoride iodide, PbFI	10m	26
Lead hydroxide phosphate,		
Pb ₅ (PO ₄ ) ₃ OH	8	33
Lead(II) iodide, PbI ₂	5	34
Lead molybdenum oxide (wulfenite),		
PbMo0 ₄	7	23
Lead nitrate, Pb(NO3)2	5	36
Lead oxide (litharge), PbO (red,		
tetragonal)	2	30
Lead oxide (massicot), PbO (yellow,		
orthorhombic)	2	32
Lead(II,III) oxide (minium), Pb ₃ O ₄	8	32
Lead oxide sulfate, Pb504S04	10m	27
Lead oxybromide, Pb ₃ O ₂ Br ₂	5m	32
Lead selenide (clausthalite), PbSe	5	38
Lead strontium nitrate,		
$Pb_{33}Sr_{67}(NO_3)_2$	12m	53
Lead strontium nitrate,		
$Pb_{67}Sr_{33}(NO_3)_2$	12m	53
Lead sulfate (anglesite), PbSO4	3	6/
Lead sulfide (galena), Pb5	2	18
Lead tin oxide, $PD_2SnO_4$	IUm	29
Lead titanium oxide, $PDTIO_3$	5	39
DEWO (totragonal)	5m	24
PDW04 (Letragonal)	Om.	100
Lead uranium $Oxide, PD_3OO_6$	1.0m	109
Lithium aluminum, Lightų	TOU	90
a-Li-AlE.	Om	111
Lithium arconato Li-Aco.	2m	10
Lithium azido LiNa	2111 Qm	113
Lithium barium fluoride LiBaFa	5m	35
Lithium beryllium fluoride LieBer	7m	126
Lithium borate. LisB.07	8m	114
Lithium bromide. LiBr	4	30
Lithium carbonate, Li2CO2	8m	42
Lithium chlorate hydrate,		
LiClO ₄ • 3H ₂ O	8	34
Lithium chloride, LiCl	1	62
Lithium fluoride, LiF	1	61
Lithium gallium oxide, LiGaO2	10m	31
Lithium hydroxide hydrate, LiOH·H20	1 lm	92
Lithium iodate, LiIO3 (hexagonal)	7	26
Lithium iodate, LiIO3 (tetragonal)	10m	33
Lithium molybdenum oxide, Li2MoO4		
(trigonal)	lm	23

Lithium niobium oxide, LiNbO3	6m	22
Lithium nitrate, LiNO ₃ Lithium oxide, Li ₂ O	7 1m	27 25
Lithium phosphate hydrate,	2	20
L1 ₃ P ₃ O ₉ •3H ₂ O Lithium phosphate, low form (lithio-	∠m	20
phosphate), Li ₃ PO ₄	4m	21
Lithium phosphate, high form,	Зm	30
Lithium rubidium fluoride, LiRbF ₂ .	7m	128
Lithium selenide, Li ₂ Se	lOm	100
Lithium silver bromide, Li Ag Br	12m	55
Lithium silver bromide,		
Li ₄ Ag ₆ Br Lithium silver bromide.	12m	55
Li ₆ Ag ₄ Br	12m	55
Lithium silver bromide,	1.2	
Li 8 ^{Ag} 2 ^{Br} Lithium sodium aluminum fluoride,	1210	22
cryolithionite, Li ₃ Na ₃ Al ₂ F ₁₂	9m	23
Lithium sodium sulfate, LiNaSO4	6m	24
Lithium sulfate, Li ₂ SO ₄	бm	26
Li ₂ SO ₄ • H ₂ O	4m	22
Lithium sulfide, Li ₂ S	10m	101
Lithium telluride, Li ₂ Te	lOm	102
Lithium tungsten oxide, Li ₂ WO ₄	-	0.5
(trigonal)	lm	25
LioWO. theo	2m	20
Lithium uranium fluoride, LiUF	2m 7m	131
Lutetium arsenate, LuAsO ₄	5m	36
Lutetium gallium oxide,		
Lu ₃ Ga ₅ O ₁₂	2m 2m	22
Lutetium nitride. LuN	2m 4m	62
Lutetium oxide, Lu ₂ O ₂	lm	27
Lutetium vanadium oxide, LuVO4	5m	37
Magnesium, Mg	1	10
Magnesium aluminum oxide (spinel),	0	25
MgAI ₂ O ₄ Magnesium aluminum silicate	9m	25
(pyrope), Mg ₃ Al ₂ (SiO ₄ ) ₃	4m	24
Magnesium aluminum silicate (low		
(orthorhombic) $Mg_2AI_4SI_5O_{18}$	lm	28
Magnesium aluminum silicate (high	TIU	20
cordierite), Mg ₂ Al ₄ Si ₅ O ₁₈		
(hexagonal)	lm	29
Magnesium ammonium phosphate hydrate, (struvite) MaNH, PO, 6H,0	3m	41
Magnesium borate, $Mg_2B_2O_5$	Sin	71
(triclinic)	4m	25
Magnesium bromide, MgBr ₂	4m	62
Magnesium bromide hydrate,	1.1	25
Magnesium carbonate (magnesite).	T TIU	33
MgCO ₃	7	28
Magnesium cerium MgCe	5m	65
Magnesium cerium nitrate hydrate,		
$Mg_3Ce_2(NO_3)_{12} \cdot 24H_2O$	10	20
Mg $(Clo_{1})_{2} \cdot 6H_{2}O$	7m	30

Vol. or	
Sec.	Page

Magnesium chloride (chloro-		
magnesite), MgCl ₂	llm	94
Magnesium chloride hydrate,		
MgCl ₂ ·12H ₂ O	7m	135
Magnesium chloride hydrate	11-	27
(bischofite), MgCl ₂ ·6H ₂ O	1 L m	37
(picrochromito) MgCr-O	g	34
Magnasium fluoride (sellaite), MgE	4	27
Magnesium fluoride silicate	-	55
(humite), $Mq_7F_2(SiO_1)_3$	lm	30
Magnesium fluoride silicate		
(norbergite), Mg ₃ F ₂ SiO ₄	10	39
Magnesium gallium oxide, MgGa ₂ O ₄	10	36
Magnesium germanium oxide,		
Mg ₂ GeO ₄ (cubic)	10	37
Magnesium germanium oxide, Mg ₂ GeO ₄		
(orthorhombic)	10	38
Magnesium gold, MgAu	6m	83
Magnesium nydrogen phosphate	7m	120
Magnogium hudrovido (brugite)	/10	139
Mg(OH)	6	30
Magnesium iron hydroxide carbonate	0	50
hydrate, pyroaurite,		
$Mg_6Fe_2(OH)_{16}CO_3 \cdot 4H_2O_7$ phase II	10m	104
Magnesium iron hydroxide carbonate		
hydrate, sjögrenite,		
Mg ₆ Fe ₂ (OH) ₁₆ CO ₃ •4H ₂ O, phase I	lOm	103
Magnesium lanthanum, MgLa	5m	69
Magnesium lanthanum nitrate		
hydrate, Mg ₃ La ₂ (NO ₃ ) ₁₂ ·24H ₂ O	1m	22
Magnesium manganese oxide, MgMn ₂ O ₄	1 Om	35
Magnesium mercury, MgHg	6m 7m	84
Magnesium molybdenum oxide, MgMoO4	/m 1.0m	28
Magnesium nickel Oxide, MgNiO ₂	1	30
Magnesium phosphate, a-MgoPoOz	9m	73
Magnesium selenide. MgSe	5m	70
Magnesium selenite hydrate,		
MgSeO ₃ •6H ₂ O	8m	116
Magnesium silicate, enstatite,		
MgSiO ₃	6	32
Magnesium silicate (forsterite),		
Mg ₂ SiO ₄	1	83
Magnesium sulfate hydrate		
(epsomite), MgSO ₄ ·7H ₂ O	7	30
Magnesium sulfide, MgS	7	31
Magnesium sulfite hydrate,	0	26
MgSO ₃ •6H ₂ O	9m	26
Magnesium tin ovide Mg-SpO	10m	37
Magnesium titanium oxide	TOUR	57
(geikielite). MgTiO2	5	43
Magnesium titanium oxide, MgTiO,	12m	25
Magnesium tungsten oxide, MgWO4	1	84
Manganese, <i>α</i> -Mn	7m	142
Manganese aluminum oxide (galaxite),		
$MnAl_2O_4$	9	35
Manganese bromide, MnBr ₂	4m	63
Manganese(II) carbonate	_	
(rhodochrosite), MnCO ₃	7	32
Manganese chloride (scacchite),	Orr	10
Mnc1 ₂	Sill	43

	Vol. or	
	Sec.	Page
Manager and David David Strategy		
Manganese chioride nydrate,	1 1m	38
Manganese chloride hydrate,	T TIU	50
MnCl ₂ •4H ₂ O	9m	28
Manganese cobalt oxide, MnCo ₂ O ₄	9m	30
Manganese fluoride, MnF ₂	10m	105
Manganese iodide, MnI ₂	4m	63
Manganese iron oxide (jacobsite),	0	26
$MnFe_{2}O_{4}$	9 10m	38
Manganese oxide (partridgeite),	I OIN	50
$\alpha - Mn_2O_3$	llm	95
Manganese oxide (pyrolusite),		
β-MnO ₂	10m	39
Manganese oxide hydroxide, groutite,	1.1	07
$\alpha$ -MnOOH	T T W	97
Manganese(11) Oxide (manganosite),	5	45
Manganese selenide, MnSe	10	41
Manganese sulfide (alabandite),		
α-MnS	4	11
Manganese(II) tungsten oxide		
(huebnerite), MnWO4	2m	24
Manganese vanadium oxide, $Mn_2V_2O_7$ .	9m	/5
Mercury amide chloride, HgNH ₂ CI	LOW	40
Ha (NH ₂ ) _o Cl _o	llm	39
Mercury bromate, Hg(BrO ₃ ) ₂	1 Om	107
Mercury bromide, HgBr ₂	lOm	110
Mercury(I) bromide, Hg ₂ Br ₂	7	33
Mercury(I) chloride (calomel),	_	
$Hg_2Cl_2$	1	72
Mercury (11) chloride, HgCl ₂	T	/3
α-Hα ₂ Cl ₂ S ₂	8m	118
Mercury(II) cyanide, Hq(CN) ₂	6	35
Mercury(II) fluoride, HgF ₂	2m	25
Mercury(I) iodide, HgI	4	49
Mercury iodide, HgI ₂ (tetragonal)	7m	32
Mercury(II) oxide (montroydite), HgO	9	39
Mercury(II) selenide (tiemannite),	7	25
HgSe	/	30
Has (bexagonal)	4	17
Mercury(II) sulfide (metacinnabar),		
HgS (cubic)	4	21
Molybdenum, Mo	1	20
Molybdenum arsenide, Mo ₂ As ₃	10m	115
Molybdenum osmium 3:1, Mo ₃ Os	бm	28
Molybdenum oxide (molybdite), MoO ₃ Molybdenum sulfide (molybdenite),	3	30
Mos ₂	5 /m	47
Neodymium arsenate. NdASO	4m	28
Neodymium arsenide, NdAs	4m	64
Neodymium bismuth, NdBi	4m	49
Neodymium borate, NdBO3	lm	32
Neodymium chloride, NdCl ₃	lm	33
Neodymium fluoride, NdF3	8	36
Neodymium gallium oxide, Nd ₃ Ga ₅ O ₁₂	lm	34
Neodymium oxide, Nd ₂ O ₃	4	26
Neodymium oxychioride, NdOC1	8 11m	40
Neodymium selenide. NdSe		71
Neodymium silver, NdAg	5m	71

#### Vol. or Sec. Page

Neodymium vanadium oxide, NdVO4	4m	30
Neptunium nitride, NpN	4m	64
Nickel, Ni	1	13
Nickel aluminum, NiAl	6m	82
Nickel aluminum oxide, NiAl ₂ O ₄	9	42
Nickel arsenide 1:2 (rammelsbergite),		
NiAs ₂	10	42
Nickel arsenic sulfide		
(gersdorffite), NiAsS	lm	35
Nickel bromide, NiBr ₂	10m	119
Nickel(II) carbonate, NiCO3		
(trigonal)	lm	36
Nickel chloride, NiCl ₂	9m	81
Nickel chloride hydrate,		
NiCl ₂ •6H ₂ O	11m	42
Nickel fluoride, NiF ₂	10m	121
Nickel fluoride hydrate, NiF2.4H20	11m	43
Nickel gallium oxide, NiGa204	10	45
Nickel germanium oxide, Ni ₂ GeO ₄	9	43
Nickel iron oxide (trevorite),		
NiFe ₂ O ₄	10	44
Nickel nitrate hydrate,		
Ni(NO3) 2.6H20	12m	26
Nickel(II) oxide (bunsenite), NiO	1	47
Nickel phosphide, Ni12P5	9m	83
Nickel silicon fluoride hydrate,		
NiSiF ₆ •6H ₂ O	8	38
Nickel sulfate, NiSO,	2m	26
Nickel sulfate hydrate(retgersite),		
NiSOL • 6H2O	7	36
Nickel sulfide, millerite, NiS	lm	37
Nickel tungsten oxide, NiWOu	2m	27
Niobium gold 3:1, Nb ₃ Au	6m	16
Niobium iridium 3:1, Nb3Ir	6m	19
Niobium osmium 3:1, Nb 305	6m	30
Niobium oxychloride, NbOCl2	7m	148
Niobium platinum 3:1, Nb ₂ Pt	6m	31
Niobium silicide, NbSi2	8	39
Osmium, Os	4	8
Osmium titanium, OsTi	6m	85
Palladium, Pd	1	21
Palladium hydride, PdHo 706	5m	72
Palladium oxide, PdO	4	27
Phosphorus bromide, PBr7	7m	150
Phosphorus oxide (stable form I),		
P ₂ O ₅ (orthorhombic)	9m	86
Phosphorus oxide (stable form II),		
P ₂ O ₅ (orthorhombic)	9m	88
Phosphorus oxide (metastable form),		
PhOlo (rhombohedral)	9m	91
Platinum, Pt	1	31
Platinum titanium 1:3, PtTi3	6m	33
Plutonium arsenide, PuAs	4m	65
Plutonium phosphide, PuP	4m	65
Plutonium telluride. PuTe	4m	66
Potassium aluminum sulfate.		
$KA1(SO_{1})$	9m	31
Potassium aluminum sulfate hydrate.		
$(a   um)$ , KA1 $(SO_{1})$ $2 \cdot 12H_{2}O_{1}$	6	36
Potassium barium nickel nitrite.	5	00
$K_2BaNi(NO_2)c$	9m	32
Potassium borohydride. KBH	9	44
Potassium bromate, KBrO2	7	38
Potassium bromide, KBr	1	66
	-	00

	Sec.	Page
Potassium bromide chloride,	0	10
KBr _{0.5} Cl _{0.5} Potassium bromide iodide,	8m	46
KBr _{.33} I _{.67} Potassium bromide iodide,	11m	44
KBr 67I 33	11m	45
Potassium cadmium fluoride, KCdF ₃ Potassium cadmium sulfate,	8m	47
K ₂ Cd ₂ (SO ₄ ) ₃ Potassium calcium carbonate	7m	34
(fairchildite), K ₂ Ca(CO ₃ ) ₂	8m	48
(chlorocalcite), KCaCl ₂	7m	36
Potassium calcium fluoride, KCaF ₂	8m	49
Potassium calcium magnesium sulfate,	7m	37
Potassium calcium nickel nitrite,	710	
K ₂ CaN1(NO ₂ ) ₆ Potassium calcium sulfate,	9m	33
$K_2Ca_2(SO_4)_3$	7m	39
Potassium cerium fluoride, $\beta$ -KCeF ₄	12m	59
Potassium chlorate, KClO ₃	3m	42
Potassium chlorate, KClO ₄	6	43
Potassium chloride (sylvite), KCl	1	65
Potassium chromium oxide, K ₃ CrO ₈ Potassium chromium oxide sulfate,	3m	44
$K_2(CrO_4)_{33}(SO_4)_{67}$ Potassium chromium oxide sulfate,	12m	28
K ₂ (CrO ₄ ) _{.67} (SO ₄ ) _{.33} Potassium chromium sulfate hydrate,	12m	27
$\operatorname{KCr}(\operatorname{SO}_4)_2 \cdot 12H_2O$	6	39
KCoFo	6m	37
Potassium cobalt fluoride, K_CoFL	llm	46
Potassium cobalt nitrite,		
K ₃ Co(NO ₂ ) ₆ Potassium cobalt(II) sulfate,	9	45
$K_2Co_2(SO_4)_3$	6m	35
Potassium copper chloride, KCuCl ₃ Potassium copper chloride hydrate	7m	41
(mitscherlichite), K ₂ CuCl ₄ ·2H ₂ O	9m	34
Vour	Gm	20
Potassium cvanate KCNO	7	39
Potassium cyanide. KCN	1	77
Potassium fluoride, KF	1	64
Potassium germanium fluoride, K ₂ GeF ₆ Botassium budrogon argonate	6	41
KH ₂ AsO ₄	lm	38
KH_PO	З	69
Potassium bydroxide. KOH at 300 °C	4m	66
Potassium iodate, KIO,	7	41
Potassium iodide, KI	1	68
Potassium iron cyanide, K ₂ Fe(CN) _c	9m	35
Potassium iron(II) fluoride, KFeFa	6m	39
Potassium iron fluoride, K ₃ FeF ₆	9m	37
Potassium lithium sulfate, KLiSO4	Зm	43
Potassium magnesium chloride hydrate (carnallite), KMgCl2.6H2O	8m	50
Potassium magnesium chromium oxide,		
K ₂ Mg ₂ (CrO ₄ ) ₃ Potassium magnesium fluoride.	8m	52
KMgF ₂	бm	42

Vol. or

Vol.	or	
Sec	•	Page

Potassium magnesium fluoride,		
K ₂ MgF ₄ Potassium magnesium selenate hydrate,	10m	42
$K_2Mg$ (SeO ₄ ) $_2 \cdot 6H_2O$	lOm	43
(langbeinite), K ₂ Mg ₂ (SO ₄ ) ₃	6m	40
(picromerite), K ₂ Mg(SO ₄ ) ₂ •6H ₂ O	8m	54
KMnF ₃	6m	45
Potassium manganese oxide, KMnO ₄ Potassium manganese(II) sulfate	7	42
(manganolangbeinite), $K_2Mn_2(SO_4)_3$ Potassium molybdenum oxide phosphate	6m	43
hydrate, $K_2(MOO_3)_{1,2}PO_{\mu} \cdot 4H_2O$	8	43
Potassium nickel fluoride, KNiF3	7m	42
Potassium nickel fluoride, K ₂ NiF ₄	10m	45
Potassium nickel(II) sulfate,	6m	46
Potassium nichium fluoride. KoNbFz	Sm	120
Potassium nitrate (niter), KNO2	3	0
Potassium nitrite, KNO2	9m	38
Potassium nitroso ruthenium chloride,		
K ₂ (NO)RuCl ₅	2m	29
Potassium oxide, K ₂ O	10m	125
Potassium platinum bromide, K ₂ PtBr ₆	8	40
Potassium platinum chloride,	_	
K ₂ PtCl ₆	5	49
Potassium platinum fluoride, K ₂ PtF ₆	6	42
KoReCla	2m	28
Potassium rhenium oxide, KReO	8	41
Potassium rubidium chloride,	Ť	
K _{0.5} Rb _{0.5} Cl	8m	76
Potassium rubidium chromium oxide,		
KRbCrO ₄	12m	29
Potassium ruthenium chloride,	10	16
Potassium ruthenium oxide chloride	10	40
hydrate, KuRu2OCl10•H2O	10	47
Potassium selenate, K ₂ SeO _b	9m	41
Potassium selenide, K2Se	lOm	126
Potassium selenium bromide, K ₂ SeBr ₆	8	41
Potassium silicon fluoride		
(hieratite), K ₂ SiF ₆	5	50
Potassium silver cyanide, KAg(CN) ₂	8m	78
(elpasolite), K ₂ NaAlF ₆	9m	43
Potassium sodium bromide,	12m	62
Potassium sodium bromide,	1 2m	62
Potassium sodium bromide,	1211	02
K ₆ Na ₄ Br Potassium sodium bromide,	12m	62
K ₈ Na ₂ Br Potassium sodium chloride,	12m	62
K ₂ Na ₈ Cl	12m	63
K ₄ Na ₆ Cl	12m	63
K ₆ Na ₄ Cl	12m	63
Potassium sodium chloride,		
K _g Na ₂ Cl	12m	63

	Vol. or	
	Sec.	Page
		•
Potassium sodium sulfate,		
K ₆₇ Na _{1.33} SO ₄	6m	48
Potassium sodium sulfate, KNaSO4	. 6m	50
Potassium sodium sulfate	~	50
(aprinitalite), $K_3 Na(SO_4)_2$	6m	52
Potassium sulfate (arcanite) $K \leq 0$	9m 3	99
Potassium sulfide K.S	د ۱0m	127
Potassium telluride. KoTe	10m	128
Potassium thiocvanate, KCNS	8	44
Potassium tin chloride, KoSnCl.	6	38
Potassium titanium fluoride, KoTiF	7	40
Potassium tungsten oxide, K ₂ WO ₄	11m	47
Potassium vanadium oxide, KV308	8m	56
Potassium zinc bromide hydrate,		
KZnBr ₃ •2H ₂ O	11m	104
Potassium zinc fluoride, KZnF3	5	51
Potassium zinc fluoride, K ₂ ZnF ₄	10m	46
Potassium zinc iodide hydrate,		
KZnI ₃ ·2H ₂ O	llm	107
Potassium zinc sulfate, $K_2 Zn_2 (SO_4)_3$	6m	54
Potassium zinc sulfate hydrate,	7	4.2
$R_2 2 \Pi (SO_4)_2 \cdot 6 R_2 O \dots O R_2	/m	43
K. 7 V. O. 16H.O.	=, ?m	45
Potassium zirconium fluoride	5111	45
K ₂ ZrF ₂	9	46
Praseodymium antimony. PrSb	4m	43
Praseodymium arsenate, PrAsO.	4m	32
Praseodymium arsenide, PrAs	4m	67
Praseodymium bismuth, PrBi	4m	49
Praseodymium cadmium, PrCd	5m	64
Praseodymium chloride, PrCl ₃	lm	39
Praseodymium fluoride, PrF ₃	5	52
Praseodymium oxychloride, PrOC1	9	47
Praseodymium sulfide, PrS	4m	67
Praseodymium vanadium oxide, PrVO4	5m	40
Praseodymium zinc, Przn	5m	12
Rhenium, Re	2	13
Rubidium aluminum culfato hydrato	J	9
RbAl(SO, ). 12HoO	6	44
Rubidium amide. RbNHa	5m	73
Rubidium bromate, RbBrO2	8	45
Rubidium bromide, RbBr	7	43
Rubidium cadmium chloride, high		
form, RbCdCl ₃ (tetragonal)	5m	43
Rubidium cadmium chloride, low form,		
RbCdCl ₃ (orthorhombic)	5m	41
Rubidium cadmium sulfate,		
$Rb_2Cd_2(SO_4)_3$	7m	45
Rubidium calcium chloride,		
RbCaCl ₃	7m	47
Rubidium calcium fluoride,		
RbCaF ₃	8m	57
Rubidium calcium sulfate,	7	40
$RD_2Ud_2(SU_4)_3$	/m	48
Rubidium chlorate, RDCLO ₃	2m	30
Rubidium chloride RbCl	2111	41
Rubidium chromium oxide. Rb.CrO.	- 3m	46
Rubidium chromium sulfate hydrate.		10
$RbCr(SO_{1})_{2} \cdot 12H_{2}O$	6	47

Vol. or	
Sec.	Page

Rubidium cobalt(11) chloride,		_	S
RbCoCl ₃	6m	57	Sc
Rubidium cobalt fluoride, RbCoF ₃	8m	58	S
Rubidium cobalt sulfate,			Sc
$Rb_2Co_2(SO_4)_3$	8m	59	Sc
Rubidium copper chloride hydrate,			5
$Rb_2CuCl_4 \cdot 2H_2O$	lOm	47	Se
Rubidium copper sulfate hydrate,			Se
$Rb_2Cu(SO_4)_2 \cdot 6H_2O$	8m	61	S
Rubidium fluoride, RbF	8m	63	S
Rubidium iodate, RbIO,	2m	31	S
Rubidium iodide, RbI	4	43	
Rubidium iron sulfate hydrate.	-		C 1
$Bb_{a}Fe(SO_{a}) = 6H_{a}O_{a}$	8m	64	51
Rubidium magnesium chromium oxide	Ont	01	
Ph-Ma- (CrO.)	8m	66	5-
Rubidium magnasium chromium oxida	Om	00	
hudrate Dh Mg (Cro) - (U )	Om	60	S
hydrate, $Rb_2 Mg(CrO_4)_2 \circ 6H_2O$	810	68	S
Rubidium magnesium sullate,	-	50	S
$Rb_2Mg_2(SO_4)_3$	/m	50	1
Rubidium magnesium sulfate hydrate,		_	S
$Rb_2Mg(SO_{4})_2 \cdot 6H_2O$	8m	70	7
Rubidium manganese(II) fluoride,			S
RbMnF ₃	5m	44	2
Rubidium manganese sulfate,			S
$Rb_2Mn_2(SO_4)_3$	7m	52	S
Rubidium nickel(II) chloride,			S
RbNiCl ₃	6m	58	2
Rubidium nickel sulfate,			S
$Rb_2Ni_2(SO_{\mu})_3$	8m	72	S
Rubidium nickel sulfate hydrate,			S
$Rb_{2}Ni(SO_{L})_{2} \cdot 6H_{2}O$	8m	74	S -
Rubidium nitrate, RbNO ₂ (trigonal)	5m	45	g -
Rubidium platinum chloride.	0.11	15	0- C-
RboPtClc	5	53	2- C-
Rubidium platinum fluoride	2	55	5. C:
Rubidium placinum riuoride,	6	10	51
Pubidium colonato Ph CoO	0	40	51
Rubidium silicon fluorido	911	44	SI
Rubidium Silicon iluoride,	~	10	_
RD2SIF6	ь	49	SI
Rubidium strontium chloride,	-	- 1	S
RbSrCl ₃	7m	54	S
Rubidium sulfate, Rb ₂ SO ₄	8	48	S
Rubidium tellurium bromide,			S
Rb ₂ TeBr ₆	8	46	S
Rubidium tellurium chloride,			Si
Rb ₂ TeCl ₆	8	48	S
Rubidium tin chloride, Rb ₂ SnCl ₆	6	46	Si
Rubidium zinc fluoride, RbZnF3	7m	57	S
Rubidium zinc sulfate hydrate,			S
$Rb_2 Zn(SO_4)_2 \cdot 6H_2O$	7m	55	S
Ruthenium, Ru	4	5	S
Ruthenium titanium, RuTi	6m	86	Sc
Samarium arsenate, SmAsO,	4m	33	Sc
Samarium arsenide. SmAs	4m	68	
Samarium chloride. SmCl.	lm	40	0
Samarium fluoride, SmFo	lm	41	SC
Samarium gallium oxide SmcGa-O-	lm	42	-
Samarium oxide Sm-O. (cubic)	410	34	SC
Samarium oxychlorido (CUDIC)	410	12	Sc
Samarium cilver Crla	TW.	43	5
Samarium tin guile Gr C	Sm	/3	1
Samarium tin oxide, Sm ₂ Sn ₂ O ₇	8m	11	Sc
Samarium vanadium oxide, SmVO ₄	5m	47	Sc
Scandium antimony, ScSb	4m	44	Sc

	Vol. or	
	Sec.	Page
		J
Scandium arsenate, ScAsO4	4m	35
Scandium arsenide, ScAs	4m	68
Scandium oxide, Sc ₂ O ₃	3	27
Scandium phosphate, ScPO4	8	50
Scandium silicate (thortveitite),		
Sc ₂ Si ₂ O ₇	7m	58
Selenium, Se	5	54
Selenium oxide (selenolite), SeO2	7m	60
Silicon, Si	2	6
Silicon, Si (reference standard):	12m	2
Silicon oxide ( $_{lpha}$ or low cristobalite	),	
SiO ₂ (tetragonal)	10	48
Silicon oxide ( $\alpha$ or low quartz),		
SiO ₂ (hexagonal)	3	24
Silicon oxide ( $\beta$ or high cristobalit	e),	
SiO ₂ (cubic)	1	42
Silver, Ag	1	23
Silver, Ag (reference standard)	8m	2
Silver antimony sulfide, AgSbS ₂	_	
(cubic)	5m	48
Silver antimony sulfide (miargyrite)	'	
AgSbS ₂ (monoclinic)	, 5m	49
Silver antimony sulfide (pyrargyrite	),	
Ag ₃ SbS ₃ (trigonal)	5m	51
Silver antimony telluride, AgSbTe ₂	3m	47
Silver arsenate, $Ag_3ASO_4$	5	56
Silver arsenic sulfide, xanthoconite	<b>'</b>	100
Ag ₃ ASS ₃	BIN	126
Silver bromide (bromunite) AgBro	5	57
Silver gerbonate da CO	4	46
Silver carbonate, $Ag_2CO_3$		44
Silver chloride (corprartite) Accl	7	44
Silver chronium oxide da Cro	1.2m	20
Silver evanide Agen	1 2m	30 48
Silver fluoride Ag.F	5m	53
Silver idate. AgIO.	9	49
Silver iodide (iodvrite). Agī	2	15
(hexagonal)	8	51
Silver jodide. v-AgI (cubic)	9	48
Silver manganese oxide, AgMnO,	7m	155
Silver molvbdenum oxide. Ag_MoO,	7	45
Silver nitrate, AgNO2	5	59
Silver nitrite, AgNO2	5	60
Silver oxide, Ag ₂ O	lm	45
Silver(II) oxide nitrate, Aq ₇ O ₈ NO ₃	4	61
Silver phosphate, Ag ₃ PO ₄	5	62
Silver rhenium oxide, AgReOL	8	53
Silver selenate, Ag ₂ SeO ₄	2m	32
Silver sodium chloride, Ago 5Nao 5Cl	8m	79
Silver sulfate, Ag ₂ SO ₄	7	46
Silver sulfide (argentite), Ag ₂ S	10	51
Sodium, Na	9m	105
Sodium aluminum chloride silicate,		
sodalite, Na ₈ Al ₆ Cl ₂ (SiO ₄ ) ₆	7m	158
Sodium azide, $\alpha$ -NaN ₃ , at -90 to		
-100 °C	8m	129
Sodium azide, $\beta$ -NaN ₃	8m	130
Sodium beryllium calcium fluoride		
silicate, leucophanite,		
NaBeCaFSi206	8m	138
Sodium borate, Na ₂ B ₈ O ₁₃	7m	160
Sodium boron hydride, NaBH4	9	51
Sodium bromate, NaBrO3	5	65

	Vol. or Sec.	Page		Vol. or Sec.	Page
Sodium bromide, NaBr	3	47	Sodium manganese(II) fluoride,	Em	6 F
NaBr ₃₃ Cl ₆₇	llm	49	Sodium mercury(II) chloride hydrate,	OIII	00
Sodium bromide chloride,			NaHgCl ₃ •2H ₂ O	Бm	66
NaBr ₆₇ Cl ₃₃	llm	50	Sodium molybdenum oxide, Na ₂ MoO ₄	lm	46
Sodium calcium aluminum fluoride	0	122	Sodium molybdenum oxide, Na2Mo2O7	9m	110
Sodium calcium borullium aluminum	810	132	Sodium neodymium fluoride silicate,	-	~ ~
fluorosilicate, meliphanite.			$(Na_2Na_8)F_2(SIO_4)_6$	/m	66
$(Na_0 c_2Ca_{1,27})Be(Al_{0,12}Si_{1,07})$			Na $Ni(SO_{1}) \circ 4H_{0}O$	6m	68
$(O_{6} \ _{25}F_{0} \ _{75})$	8m	135	Sodium nitrate (soda-niter). NaNO2	6	50
Sodium calcium carbonate hydrate,			Sodium nitrite, NaNO2	4	62
pirssonite, Na ₂ Ca(CO ₃ ) ₂ ·2H ₂ O	9m	106	Sodium oxide, Na ₂ O	lOm	134
Sodium calcium silicate, Na ₂ CaSiO ₄	10m	48	Sodium phosphate, Na3P309	Зm	49
Sodium calcium sulfate (glauberite),	<b>C</b>	50	Sodium phosphate hydrate,		
$Na_2Ca(SO_4)_2$	6m	59	Na ₃ P ₃ O ₉ •H ₂ O	3m	50
natrite) NacCostheO	g	54	Sodium phosphate hydrate,	10	50
Sodium carbonate sulfate. Na. CO. SO.	11m	51	$\alpha - Na_4 P_4 O_{12} \cdot 4H_2 O$ (monoclinic)	10	52
Sodium carbonate sulfate (burkeite),	1 11		8-Na, P. O. e. 4HaO (triclinic)	2m	35
$Na_6CO_3(SO_{\mu})_2$	llm	52	Sodium phosphate hydrate,	2111	55
Sodium carbonate sulfate,			$Na_6P_6O_{18} \cdot 6H_2O$	5m	54
Na ₆ CO ₃ (SO ₄ ) ₂	llm	53	Sodium praseodymium fluoride		
Sodium carbonate sulfate,			silicate, (Na ₂ Pr ₈ )F ₂ (SiO ₄ ) ₆	7m	68
$Na_6 (CO_3)_2 SO_4$	llm	54	Sodium selenate, Na ₂ SeO ₄	9m	55
Sodium chlorate, NaClO ₃	3	51	Sodium selenide, Na ₂ Se	10m	135
(orthorhombic)	7	10	Sodium silicate, $\alpha(III)$ , Na ₂ Si ₂ O ₅	8m	141
Sodium chloride (balite). NaCl	2	41	Sodium silicate, $\beta$ -Na ₂ Si ₂ O ₅	LOm	136 57
Sodium chromium oxide, Na ₂ CrO ₁	9m	48	Sodium sulfate (thenardite) Na-SO.	2	59
Sodium chromium oxide hydrate,			Sodium sulfide, Na ₂ S	10m	140
Na ₂ Cr ₂ O ₇ •2H ₂ O	7m	62	Sodium sulfite, Na ₂ SO ₂	3	60
Sodium chromium oxide hydrate,			Sodium telluride, Na ₂ Te	10m	141
$Na_2CrO_4 \cdot 4H_2O$	9m	50	Sodium tin fluoride, NaSn ₂ F ₅	7m	166
Sodium chromium oxide sulfate,			Sodium tungsten oxide, Na ₂ WO ₄	lm	47
$Na_{4}(CrO_{4})(SO_{4})$	TTW	55	Sodium tungsten(VI) oxide hydrate,		~~
$Na_{CO}(SO_{c}) = 4H_{cO}$	6m	61	Na ₂ WO ₄ ·2H ₂ O	2m Cm	33
Sodium cvanate, NaCNO	2m	33	Sodium zine sulfate bydrate	OIII	74
Sodium cyanide, NaCN (cubic)	1	78	Na $2n(S0, ) \circ 4H_0$	6m	72
Sodium cyanide, NaCN (orthorhombic)			Sodium zirconium fluoride,	0	
at 6 °C	1	79	Na ₇ Zr ₆ F ₃₁	8m	144
Sodium fluoride (villiaumite), NaF	1	63	Strontium aluminum hydroxide,		
Sodium hydrogen fluoride, NaHF ₂	5	63	Sr ₃ Al ₂ (OH) ₁₂	10m	50
Sodium hydrogen phosphate, Na ₃ H(PO ₃ ) ₄	LOm	130	Strontium aluminum oxide, Sr ₃ Al ₂ O ₆	10m	52
Nachosio, •4HaO	7m	163	Strontium arsenate, $Sr_3(AsO_4)_2$	2m Om	36
Sodium hydrogen sulfate hydrate.	7111	105	Strontium borate SrB.0	8m 3m	140 53
NaHSO _L •H ₂ O	9m	52	Strontium borate, SrB ₂ O ₄	4m	36
Sodium hydroxide, NaOH at 300 °C	4m	69	Strontium bromide fluoride, SrBrF	10m	54
Sodium iodate, NaIO3	7	47	Strontium bromide hydrate,		
Sodium iodate, NaIO4	7	48	SrBr ₂ •6H ₂ 0	4	60
Sodium iodide, NaI	4	31	Strontium carbonate (strontianite),		
Sodium iron fluoride, Na ₃ FeF ₆	9m	54	SrCO ₃	3	56
(Naclas) E. (SiO.).	7m	64	Strontium chloride, SrCl ₂	4	40
Sodium lanthanum molybdenum oxide,	710	04	Strontium chloride fluoride, SrCir Strontium chloride hvdrate,	TOW	55
NaLa(MoO ₄ ) ₂	lOm	49	SrCl ₂ •2H ₂ O	llm	58
Sodium magnesium aluminum boron			Strontium chloride hydrate,		
hydroxide silicate, dravite,			SrCl ₂ •6H ₂ O	4	58
$\operatorname{NaMg_3Al_6B_3(OH)_4Si_6O_27}$	Зm	47	Strontium chloride hydroxide		
Socium magnesium carbonate (eitelite)	11-	56	phosphate, $Sr_5Cl_{.65}(OH)_{.35}(PO_4)_3$ .	llm	60
Sodium magnesium sulfate bydrate	T TIU	56	Strontium indium budyouide	5	6/
bloedite, Na ₂ Mg(SO ₄ ) ₂ •4H ₂ O	6m	63	SraIna (OH)	Бm	76
			<u>3112</u> (011/12 ··································	On	,0

Vol. or

Sec.

6

8

4

8m

8m

7m

7m

7m

6

2

7

7

5

6

6

8

6

lm

7m

4m

4m

12m

12m

1

4m

3m

4m

4m

9

5m

4m

5m

2

1

4m

3m

5

4

1

9m 7

3

7m

3m 7m

9

8

4m

8m

1

8m

8

5m

2

5m

4m

Page

57

62

53

87

89

74

76

78

58

28

58

59

70

56 59

63

54

48

80

44

70

64

67

57

45

56

71

71

58

74

72

57

12

24

37

51

71

28

54 57

61

1 82

57

83

59

64

72

149

28

2

65

78

33

78

Vol. or	
Sec.	Page

Strontium iodide hydrate,			Thallium gallium sulfate hydrate,
SrI ₂ •6H ₂ 0	8	58	$TIGa(SO_4)_2 \cdot 12H_2O$
Strontium manganese oxide, SrMnO3	1.0		Thallium(I) iodate, TlIO ₃
(cubic)	1 Om	56	Thallium(I) iodide, TlI
Strontium manganese oxide, SrMnO3		_	(orthorhombic)
(hexagonal)	lOm	58	Thallium iron sulfate hydrate,
Strontium molybdenum oxide, SrMoO4	7	50	$Tl_2Fe(SO_4)_2 \cdot 6H_2O$
Strontium nitrate, Sr(NO ₃ ) ₂	12m	31	Thallium magnesium chromium oxide,
Strontium oxide, SrO	5	68	$Tl_2Mg_2(CrO_4)_3$
Strontium oxide, SrO ₂	6	52	Thallium magnesium sulfate hydrate,
Strontium oxide hydrate, SrO ₂ .8H ₂ O	llm	61	$Tl_2Mg(SO_{\mu})_2 \cdot 6H_2O$
Strontium phosphate, $\alpha$ -Sr ₂ P ₂ O ₇	11m	62	Thallium manganese sulfate,
Strontium phosphate, $\alpha$ -Sr ₃ (PO ₄ ) ₂	llm	64	$Tl_2Mn_2(SO_1)_2$
Strontium scandium oxide hydrate,			Thallium nickel sulfate hydrate,
Sr ₃ Sc ₂ O ₆ •6H ₂ O	бm	78	$Tl_2Ni(SO_1)_2 \cdot 6H_2O$
Strontium sulfate (celestite),			Thallium(I) nitrate, TlNO2
SrSO ₄	2	61	Thallium(III) oxide, Tl ₂ O ₂
Strontium sulfide, SrS	7	52	Thallium(I) phosphate, Tl_PO
Strontium telluride, SrTe	4m	69	Thallium(III) phosphate, TIPO
Strontium tin oxide, SrSnO ₂	8m	80	Thallium platinum chloride. Tl.PtCl.
Strontium titanium oxide, SrTiO2	3	44	Thallium silicon fluoride Tl-SiF-
Strontium tungsten oxide, SrWO,	7	53	Thallium(I) sulfate TLSO
Strontium tungsten oxide, SroWOr	12m	32	Thallium(I) thiographic TlCNS
Strontium zirconium oxide. SrZrO2	9	51	Thallium tin chlorido The Soch
Sulfamic acid. HoNSOoH	7	54	Thallium (I) tungatan avida $\mathbb{R}$
Sulfur, S (orthorhombic)	9	54	Thallium (1) tungsten $Oxide, 11_2 W_4$
Tantalum Ta	í	20	mainum zine suitate hydrate,
Tantalum, la	8	59	$T_2 2\pi (SO_4)_2 \cdot 6H_2O$
Tallurium To	1	26	Thorium antimony, ThSb
Tellurium (TV) ovido (paratellurito)	T	20	Thorium arsenide, ThAs
Tellurium(IV) Oxide (paratellurite),	7	FC	Thorium cobalt, Th ₂ Co ₁₇
TeO ₂ (tetragonal)	/	20	Thorium iron, Th ₂ Fe ₁₇
Tellurium(IV) Oxide, paratellurite,	10	<b>.</b>	Thorium oxide (thorianite), ThO ₂
TeO ₂ (tetragonal)	10	55	Thulium antimony, TmSb
Tellurium(IV) oxide, tellurite,	-		Thulium arsenate, TmAsO ₄
Teu ₂ (orthorhombic)	9	57	Thulium arsenide, TmAs
Terbium antimony, TbSb	5m	61	Thulium nitride, TmN
Terbium arsenate, TbAsO ₄	3m	54	Thulium oxide, $\text{Tm}_2\text{O}_3$
Terbium arsenide, TbAs	5m	75	Thulium silver, TmAg
Terbium nitride, TbN	4m	70	Thulium telluride, TmTe
Terbium phosphide, TbP	5m	76	Thulium vanadium oxide, TmVO4
Terbium selenide, TbSe	5m	76	Tin, $\alpha$ -Sn (cubic)
Terbium silver, TbAg	5m	74	Tin, $\beta$ -Sn (tetragonal)
Terbium sulfide, TbS	5m	77	Tin arsenide, SnAs
Terbium telluride, TbTe	5m	77	Tin(II) fluoride, SnF ₂
Terbium vanadium oxide, TbVO4	5m	56	Tin(IV) iodide, SnI,
Thallium aluminum sulfate hydrate,			Tin(II) oxide, SnO
$TIA1(SO_4)_2 \cdot 12H_2O$	6	53	Tin(IV) oxide (cassiterite), SnO2
Thallium(I) arsenate, Tl ₃ AsO ₄	2m	37	Tin sulfide (berndtite), 8-SnS2
Thallium azide, TlN3	8m	82	Tin(II) telluride, SnTe
Thallium(I) bromate, TlBrO3	8	60	Titanium, Ti
Thallium bromide, TlBr	7	57	Titanium oxide (anatase), TiO
Thallium cadmium sulfate,			Titanium oxide, brookite, TiO
$Tl_2Cd_2(SO_{\mu})_3$	8m	83	(orthorhombic)
Thallium(I) chlorate, TlClO,	2m	38	Titanium oxide (rutile) Tio
Thallium(I) chlorate, TlClO2	8	61	Titanium (III) ovide Tio
Thallium(I) chloride, TlCl	4	51	Titanium cilicido Ti Si
Thallium chromium oxide. Tl.CrO	3m	54	mitanium culfide mic
Thallium chromium sulfate hydrate	Sin	51	Titanium sulfide, IIS ₂
main (control dur suitate hydrate, main (control dur suitate hydrate, main (control dur suitate hydrate)	6	55	Titanium sulfide, Ti ₂ S
Thallium cohalt culfato	0	55	Tungsten, W
TlaCoa (SOL) a	Om	05	Tungsten, w (reference standard)
Thallium cohalt cultate horizote	om	65	Tungsten sulfide (tungstenite), WS2
Therefore the suitable hydrate,	7	70	Uranium oxide, UO
Thallium connon culfate budeate	/m	70	Uranium oxide (uraninite), UO ₂
marine copper suitate nyarate,	7-	72	Uranium selenide, USe
112Cu (304) 2 0n20	/ m	12	Uranium telluride, UTe

	Vol. or			Vol. or	
	Sec.	Page		Sec.	Page
Vanadium, V	9m	58	Zinc fluoride, ZnF ₂	6	60
Vanadium gold 3:1, V ₃ Au	бm	18	Zinc fluoride hydrate,		
Vanadium iridium 3:1, V ₃ Ir	бm	21	$\operatorname{ZnF}_2 \cdot 4\operatorname{H}_2O$	llm	69
Vanadium(V) oxide, V ₂ O ₅	8	66	Zinc germanium oxide, Zn ₂ GeO ₄	10	56
Vanadium palladium 3:1, V ₃ Pd	6m	32	Zinc hydroxide silicate hydrate,		
Vanadium platinum 3:1, V ₃ Pt	6m	34	hemimorphite, Zn4 (OH) 2Si207 H20	2	62
Vanadium rhodium 3:1, V ₃ Rh	бm	56	Zinc iodide, ZnI ₂	9	60
Ytterbium antimony, YbSb	4m	45	Zinc iron oxide (franklinite),		
Ytterbium arsenate, YbAsO4	4m	38	ZnFe ₂ O ₄	9m	60
Ytterbium arsenide, YbAs	4m	73	Zinc manganese oxide (hetaerolite),		
Ytterbium gallium oxide, Yb ₃ Ga ₅ O ₁₂	lm	49	ZnMn ₂ O ₄	1 Om	61
Ytterbium nitride, YbN	4m	74	Zinc molybdenum oxide, Zn2Mo308	7m	173
Ytterbium oxide, Yb ₂ O ₃	бm	80	Zinc nitrate hydrate,		
Ytterbium selenide, YbSe	5m	79	$\alpha$ -Zn(NO ₃ ) ₂ ·6H ₂ O	12m	36
Ytterbium telluride, YbTe	5m	79	Zinc oxide (zincite), ZnO	2	25
Ytterbium(III) vanadium oxide, YbVO4	5m	58	Zinc selenide, ZnSe	3	23
Yttrium antimony, YSb	4m	46	Zinc silicate (willemite), Zn2SiO4	7	62
Yttrium arsenate, YAsO4	2m	39	Zinc silicon fluoride hydrate,		
Yttrium arsenide, YAs	4m	74	ZnSiF ₆ •6H ₂ O	8	70
Yttrium gallium oxide, Y ₃ Ga ₅ O ₁₂	lm	50	Zinc sulfate (zinkosite), ZnSO4	7	64
Yttrium nickel, YNi3	lOm	123	Zinc sulfate hydrate (goslarite),		
Yttrium oxide, Y ₂ O ₃	3	28	ZnSO ₄ •7H ₂ O	8	71
Yttrium oxychloride, YOC1	lm	51	Zinc sulfide (wurtzite), a-ZnS		
Yttrium phosphate (xenotime), YPO4	8	67	(hexagonal)	2	14
Yttrium silver, YAg	5m	75	Zinc sulfide (sphalerite), $\beta$ -ZnS		
Yttrium sulfide, YS	5m	80	(cubic)	2	16
Yttrium telluride, YTe	4m	75	Zinc telluride, ZnTe	Зm	58
Yttrium titanium oxide, Y ₂ TiO ₅	llm	113	Zinc tin oxide, Zn ₂ SnO ₄	lOm	62
Yttrium vanadium oxide, YVO4	5m	59	Zinc titanium oxide, Zn ₂ TiO ₄	12m	37
Zinc, Zn	1	16	Zinc tungsten oxide (sanmartinite),		
Zinc aluminum oxide (gahnite),			ZnWO4	2m	40
ZnAl ₂ O ₄	2	38	Zirconium, α-Zr	2	11
Zinc ammine bromide, Zn(NH ₃ ) ₂ Br ₂	llm	68	Zirconium hydride, ZrH ₂	5m	60
Zinc ammine chloride, Zn(NH3) ₂ Cl ₂	lOm	59	Zirconium iodate, Zr(IO3)4	lm	51
Zinc antimony oxide, ZnSb ₂ O ₄	4m	39	Zirconium nitride, ZrN	5m	80
Zinc borate, ZnB ₂ O ₄	1	83	Zirconium oxide, ZrO	5m	81
Zinc carbonate, smithsonite, ZnCO3	8	69	Zirconium phosphide, ZrP	4m	75
Zinc chromium oxide, ZnCr ₂ O ₄	9m	59	Zirconium silicate, zircon, ZrSiO4	4	68
Zinc cobalt oxide, ZnCo ₂ O ₄	10m	60	Zirconium sulfate hydrate,		
Zinc cyanide, Zn(CN) ₂	5	73	Zr(SO ₄ ) ₂ •4H ₂ O	7	66

## CUMULATIVE ORGANIC INDEX

Vol. or

	Sec.	Page
4-Acetyl-2'-fluorodiphenyl,		
C ₁₄ H ₁₁ FO	8m	91
Alanine, L, CH ₃ CHNH ₂ CO ₂ H	8m	93
Ammonium acetate, NH4 • CH3CO2	8m	95
Ammonium formate, NH4HCO2	1 Lm	9
Ammonium oxalate hydrate (oxammite),	-	F
$(NH_4)_2C_2O_4 \cdot H_2O$	/	Ç
Ammonium yttrium oxalate nydrate,	0	07
$NH_4Y(C_2O_4)_2 \cdot H_2O$	Bill	97
Ascorbic acid, L-C ₆ H ₈ O ₆	8m 7	99
Azobenzene, C ₆ H ₅ NNC ₆ H ₅	/m	86
Cadmium nexaimidazole nitrate,	0	22
$Ca (C_{3H_4N_2})_6 (NO_3)_2 \dots \dots \dots$	0111	23
Calcium malate, Ca(HCO ₂ ) ₂	0	10
$C_{2}(0, C) = (CU - CUOU) \cdot 2U = 0$	10m	76
$Ca(U_2C)_2(Cn_2CnOn)_2n_2O$	TOU	70
$Co(C_1 + o_2) = A + o_2$	1 2m	10
Coppor glutamate budrate	1211	19
$CD(O_{-}C) = (H_{-}NCHCH_{-}CH_{-}) + 2H_{-}O$	7m	110
Copport totrapurazole chloride	7111	110
Ch (CaH, Na), Cla	8m	31
Custeine L HSCHo+CH(NHo)+COOH	11m	86
Dibenzovlmethane (CeHrCO) aCHa	7m	115
his=(o=Dodecacarborane), C BasHas	6m	7
Glucose, D. $\alpha_{\rm c}$ (dextrose), CcH100c	11m	28
Glucobe, $B_{1}$ and $(ACH LLOBE)$ , $c_{6} = 1206$	8m	102
Hexamethylenediammonium adipate.		102
$(CH_2)_{\rm U}$ (CO ₂ H ₂ N) ₂ (CH ₂ ) c $(CH_2)_{\rm U}$	7m	121
Holmium ethylsulfate hydrate.	,	
$Ho[(C_2H_5)SO_1]_2 \cdot 9H_2O$	lm	18
Hydroguinone, Y-HOCcH10H	8m	107
Iron oxalate hydrate (humboldtine).		
FeC ₂ O ₄ • 2H ₂ O	10m	24
Lead formate, Pb(HCO ₂ ) ₂	8	30
Lithium oxalate, Li ₂ C ₂ O ₄	10m	34
Mercury o-phthalate, C6H4 (CO2Hg)2	10m	113
Methyl sulfonanilide, C6H5NHSO2CH3	9m	78
N-Methylphenazinium-7,7,8,8-tetra-		
cyanoquinodimethanide, C ₂₅ H ₁₅ N ₆	7m	146
2-Naphthylamine, N-phenyl-,		
CloH7NHC6H5	бm	29
Neodymium ethylsulfate hydrate,		
Nd[(C ₂ H ₅ )SO ₄ ] ₃ •9H ₂ O	9	41

	Vol. or	
	Sec.	Page
Nickel hexalmidazole nitrate,	7	27
$N1(C_{3}H_{4}N_{2})_{6}(NO_{3})_{2}$	/m	27
Nickel tetrapyrazole chloride,	0	
$N1 (C_{3H_4N_2})_{4C_2} \cdots	an	44
Octanydro-1,3,5,/-tetranitro-		
1,3,5,7-tetrazocine ( $\alpha$ -HMX),	11	100
$C_{4}H_{8}N_{8}U_{8}$	TTm	100
1 2 E 7 totrangeine (8 UMV)		
C. N.N.O.	11m	102
Dalladium big (N iconvenul 2 atbul	T TIII	102
apliculaldiminate) $Dd(C_{1}, W_{2}, W_{3})$	7m	144
$Pimelia acid (CH_a) = (CO_aH)$	7111	152
Primeric acid, (Ch ₂ )5(CO ₂ h) ₂	710	100
complex KO CHANO CU	Qm	0.2
Detaggium hydrogon o-phthalato	Sur	22
C-N. (COON) (COON)	4m	30
Detaccium ovalato hudrato	4111	20
K-C-OH-O	Qm	30
Potassium ovalate perhydrate	210	55
KoCoO: HoOo	Orm	96
Recorpine Coefficient	Sm	123
Rubidium ovalate perhydrate	Ont	125
Rubialan Oxalace perhyarace,	9m	102
Silver ovalate. AgeCoO	9m	47
Sodium D-tartrate hydrate.	Ju	-17
(CHOH=COoNa) a 2HoO	11m	110
Sodium oxalate. NacCoOL	6m	70
Strontium formate, Sr(CHO ₂ ) ₂	8	55
Strontium formate hydrate.	-	
$Sr(CHO_2)_2 \cdot 2H_2O$ (orthorhombic)	8	56
Sucrose, CloHo2011	llm	66
Tartaric acid, D, (CHOHCO ₂ H) ₂	7m	168
Trimethylammonium chloride,		
(CH ₂ ) 2NHCl	9m	113
2.4.6-Trinitrophenetole,		
$C_{2}H_{5}OC_{6}H_{2}$ (NO ₂ ) 3	8m	152
Urea, $CO(NH_2)_2$	7	61
Uric acid, C=H_N_0O3	8m	154
Zinc diimidazole chloride,		
$Zn(C_{3H_{4}N_{2}})_{2}Cl_{2}$	7m	123
Zinc glutamate hydrate,		
$Zn(O_2CCHNH_2CH_2CH_2CO_2) \cdot 2H_2O$	7m	170

	Vol. or			Vol. or	
	Sec.	Page		Sec.	Page
Alabandite, MnS	4	11	Cryptobalite. (NH.) SiF.	5	5
Alum, $KAl(SO_h)_2 \cdot 12H_2O$	6	36	Cuprite, Cu ₀	2	23
Ammonia-niter, NH, NO3	7	4	*Diamond, C	2	5
Anatase, TiO ₂	7m	82	*Diaspore, AloOa+HaO	3	41
Andradite, CasFesSisOls	9	22	Diopside, $CaMa(SiO_2)$ .	5m	17
Anglesite, PbSO,	3	67	*Dravite, NaMg-Al-B-Si-O(OH).	3m	47
Anhvdrite, CaSO,	4	65	Eitelite Na Mg(CO)	11m	56
Antimony, Sb	3	14	Elpacolite K.NallE	Qm	12
Antarcticite, CaCl. 6H20	1 2m	16	*Enstatite Masio	511	45 20
Aphthitalite, $K_2Na(SO_1)_2$	6m	52	Enstattle, $MgS10_3$	07	32
Aragonite, CaCO	3	53	Epsonite, $MgSO_4 \cdot / \pi_2 O$	2	30
Arcanite K.SO	3	62	Eschynite, cenbrio ₆ $\dots$	310	24
Argentite Ag-S	10	51	Estolatte, $Cr_2O_3$	5	22
Argenic Ac	3	6	Ettringite, $Ca_6AI_2S_3O_{18} \cdot 3IH_2O$	8	3
Arsenic, As	1	E1	Fairchildite, $K_2Ca(CO_3)_2$	8m	48
Ausonotice, As203	1	10	Fluorapatite, $Ca_5 F(PO_4)_3$	3m	22
Autostipite, $Ausp_2$	/	10	Fluorite, CaF ₂	1	69
Azurite, $Cu_3(OH)_2(CO_3)_2$	10	30	Forsterite, Mg ₂ SiO ₄	1	83
Barite, BaSO4	LOm	12	Franklinite, ZnFe ₂ O ₄	9m	60
Berlinite, AlPO ₄	10	3	Fresnoite, Ba ₂ TiSi ₂ O ₈	9m	14
Berndtite, SnS ₂	9m	57	Gahnite, ZnAl ₂ O ₄	2	38
*Beryl, Be ₃ Al ₂ (SiO ₃ ) ₆	9	13	Galaxite, MnAl ₂ O ₄	9	35
Bischofite, MgCl ₂ ·6H ₂ O	llm	37	Galena, PbS	2	18
Bismite, $\alpha$ -Bi ₂ O ₃	Зm	17	Geikielite, MgTiO ₃	5	43
Bismoclite, BiOCl	4	54	Gersdorffite, NiAsS	lm	35
Bismuth, Bi	3	20	Glaserite, KaNa(SO,)	бm	52
Bismuthinite, Bi ₂ S ₃	5m	13	Glauberite, Na ₂ Ca(SO ₂ )	6m	59
*Bloedite, $Na_2Mg(SO_{\mu})_2 \cdot 4H_2O$	6m	63	Gold, Au	1	33
Böhmite, $Al_2O_2 \cdot H_2O$	3	38	Goslarite, $7nSO$ , $7H_{0}O$	8	71
Bromellite, BeO	1	36	Greenockite. CdS	4	15
Bromvrite, AgBr	4	46	*Groutite MpO(OH)	11m	97
*Brookite, TiO	3m	57	Halite MaCl	2	27 /1
Brucite Mg(OH)	6	30	Halice, Naci	1.0m	41 20
Bunsenite, NiO	ĩ	47	tumimorphito Tr (OU) Gi O U O	1011	50
Burkeite Na. $(0, (50))$ .	1 J m	50	Heminorphile, $2n_4(OH)_2SI_2O_7 \cdot H_2O \dots$	2	62
$*$ Butlorito $For (04) \cdot 24 \circ 0$	1.0m	05	Hetaerollte, $2nMn_2O_4$	LOW	61
Calcite, Caco	1011	50	Hieratite, $K_2 SiF_6$	5	50
$Calcille, CalCo3 \dots	2	D1 70	Huebnerite, MnWO4	2m	24
Calomer, $Hg_2Cl_2$	1	72	Humboldtine, FeC ₂ O ₄ · 2H ₂ O	1 Om	24
Carnallite, KMgCl ₃ ·6H ₂ O	8m	50	Humite, $3Mg_2SiO_4 \cdot MgF_2$	lm	30
Cassiterite, SnO ₂	Ţ	54	Hydrophilite, CaCl ₂	llm	18
Celestite, SrSO ₄	2	61	Iodyrite, AgI	8	51
Cerargyrite, AgCl	4	44	Iron, α-Fe	4	3
Cerianite, CeO ₂	1	56	Jacobsite, MnFe ₂ O ₄	9	36
Cerussite, PbCO ₃	2	56	*Julgoldite, Ca ₂ Fe ₃ Si ₃ O ₁₀ (OH,O) ₂ (OH) ₂	1 Om	72
Cervantite, Sb ₂ O ₄	10	8	Langbeinite, $K_2Mg_2(SO_4)_3$	6m	40
Chalcocyanite, CuSO ₄	Зm	29	Lead, Pb	1	34
Chloraluminite, AlCl ₂ ·6H ₂ O	7	3	*Leucophanite, NaCaBeFSi ₂ O ₆	8m	138
Chlorocalcite, KCaCl ₃	7m	36	Litharge, PbO (red)	2	30
Chloromagnesite, MgCl ₂	llm	94	Lithiphosphate, LipPO.	4m	21
Chrysoberyl, BeAl ₂ O ₄	9	10	Loellingite, FeAs,	10	34
Cinnabar, HqS	4	17	Magnesite, MgCO2	7	28
*Claudetite, As ₂ O ₂	Зm	9	Magnetite, Fe ₂ O	5m	31
Clausthalite, PbSe	5	38	Malachite Cu ₂ (OH) CO ₂	10	31
Copper, Cu	1	15	Manganolangheinite K-Mn _a (SO)	6m	43
Cordierite, Mg_Al_Si_O (hexagonal)	].m	29	Manganosite MnO	5	45
Cordierite, MacAl, SicOlo			Marshite Cul	1	30
(orthorhombic)	lm	28	Maccognito (NH ) CO	4	20
Corundum, AlaCa	9	20	Massignt $PhO_{(12)}$	2	22
Cotunnite PhCl.	1.2m	22	Massicol, FDO (yellow)	2	32
Covellite Cus	1211	13	Malastavita D-Co 70 c	1	70
Crictobalito (a or lou) Cio	4	10	Melanterite, FeSO ₄ · /H ₂ O	Sm	38
Cristopalite (a or low) Slo ₂	10	48	<pre>^Mellphanite,</pre>		
toruslithionite (B or high) Slo ₂	1	42	Na.63Ca1.37BeA1.13S11.8706.25F.75.	8m	135
·cryofitnionite, Li ₃ Na ₃ Al ₂ F ₁₂ ·····	9m	23	Metaborite, HBO ₂ (cubic)	4m	27
			Metacinnabar, HgS	4	21

*Natural mineral.

Miargyrite, AgSbS₂ .....

*Millerite, NiS .....

5m

lm

49

## CUMULATIVE MINERAL INDEX - Continued

	Vol. or Sec.	Page		Vol. or Sec.	Page
Minium, Pb ₃ O ₄	8	32	Silver, Ag (reference standard)	8m	2
Mitscherlichite, K ₂ CuCl ₄ ·2H ₂ O	9m	34	*Sjögrenite, Mg6Fe2CO3(OH)16*4H2O,		
Molybdenite, MoS ₂	5	47	phase I	10m	103
Molybdite, MoO3	3	30	Skutterudite, CoAs3	10	21
Montroydite, HgO	9	39	*Smithsonite, ZnCO3	8	69
Mullite, Al ₆ Si ₂ O ₁₃	Зm	3	*Sodalite, Na ₈ Si ₆ Al ₆ O ₂₄ Cl ₂	7m	158
Nantokite, CuCl	4	35	Soda-niter, NaNO3	6	50
*Newberyite, MgHPO ₄ · 3H ₂ O	7m	139	Sphalerite, ZnS	2	16
Niter, KNO3	3	58	Spherocobaltite, CoCO3	10	24
Nitrobarite, Ba(NO ₃ ) ₂	llm	14	Spinel, MgAl ₂ O ₄	9m	25
Norbergite, Mg2SiO4.MgF2	10	39	Stibnite, Sb ₂ S ₃	5	6
Oldhamite, CaS	7	15	Stolzite, PbWO4	5m	34
Otavite, CdCO3	7	11	Strontianite, SrCO3	3	56
Oxammite, $(NH_{1})_{2}C_{2}O_{1} \cdot H_{2}O$	7	5	Struvite, MaNH, PO, •6H20	Зm	41
Palladium, Pd	1	21	Sulfur, S (orthorhombic)	9	54
*Paratellurite, TeO2	10	55	Sylvite, KCl	1	65
Paratellurite, TeO2	7	56	Tantalum, Ta	1	29
Partridgeite, $\alpha - Mn_2O_3$	llm	95	Tellurium, Te	ī	26
Periclase, MgO	1	37	*Tellurite, TeO2	9	57
Perovskite. CaTiO ₂	9m	17	Tellurobismuthite, BiaTea	3m	16
*Phenacite, Be2SiOn	8	11	Tenorite, CuO	1	49
Picrochromite, MaCr ₂ O ₁ ,	9	34	Teschemacherite, NH, HCO2	9	5
Picromerite, K ₂ Mg(SO ₄ ) ₂ ·6H ₂ O	8m	54	Thenardite, Na ₂ SO ₄	2	59
*Pirssonite, $Na_2Ca(CO_3)_2 \cdot 2H_2O$	9m	106	Thermonatrite, Na ₂ CO ₂ •H ₂ O	8	54
Platinum, Pt	1	31	*Thomsenolite, NaCaAlFc HoO	8m	132
Portlandite, Ca(OH) 2	1	58	Thorianite. ThO2	1	57
Powellite. CaMoO,	6	22	Thortveitite, ScoSipOz	7m	58
Pyrargyrite, Ag ₂ SbS ₂	50	51	Tiemannite. Hase	7	35
Pyrite, FeSo	5	29	Tin. $\alpha$ -Sn (cubic)	2	12
*Pyroaurite, MgcFeoCOo(OH) 1c • 4HoO.	5		Tin, $\beta$ -Sn (tetragonal)	1	24
phase II	1 Om	1.04	*Topaz Alasio (F OH)	lm	2-1
Pyrolusite. B-MnOo	1 Om	39	Trevorite. NiFeaO	10	44
Pyrope, $Mg_{2}Al_{2}(SiO_{1})_{2}$	4m	24	Tschermigite, $NH_{\nu}Al(SO_{\nu}) \circ l2H_{2}O_{\nu}$	6	3
*Ouartz, SiO ₂ ( $\alpha$ or low)	3	24	Tungstenite, WS ₂	8	65
Rammelsbergite, NiAs2	10	42	Uraninite. NO2	2	33
Retgersite, NiSO, 6H2O	7	36	Uvarovite, $Ca_2Cr_2(SiO_1)_2$	10	17
Rhodochrosite, MnCO2	, 7	32	*Valentinite, ShoOo	10	
Rutile, TiO2	, 7m	83	Villiaumite, NaF	1	63
Safflorite. CoFeAs	10	28	Willemite, ZnoSiO	7	62
Sal-ammoniac. NH.Cl	1	59	Witherite, BaCOp	2	54
Sanmartinite, ZnWO.	2m	40	Wulfenite PhMoO	7	23
Scacchite, MpClo	8m	43	Wurtzite, ZnS	2	14
*Scheelite. CaWOu	6	23	*Xanthoconite AgaAsSa	8m	126
Selenium. Se	5	54	Xenotime, YPO	8	67
Selenolite, SeOn	7m	60	Zinc. Zn	1	16
Sellaite. MgFa	4	33	Zincite, ZnO	2	25
Senarmontite. Sb202	3	31	Zinkosite, ZnSO	7	64
Silver, Ag	1	23	*Zircon, ZrSiO	4	68
,,				-	

NBS-114A (REV. 7-73)				
U.S. DEPT. OF COMM. BIBLIOGRAPHIC DATA SHEET	1. PUBLICATION OR REPORT NO. NBS-MN 25, Section 12	2. Gov't Accession No.	3. Recipient'	s Accession No.
4. TITLE AND SUBTITLE Standard X-ray Diffraction Powder Patterns Section 12 - Data for 57 Substances		<ul> <li>5. Publication Date</li> <li>February 1975</li> <li>6. Performing Organization Code</li> </ul>		
7. AUTHOR(S) Howard F. M Boris Paretzkin, Joha 9. PERFORMING ORGANIZAT NATIONAL E DEPARTMEN WASHINGTON 12. Sponsoring Organization Nat Same as Item 9.	AcMurdie, Marlene C. Morris, an H. de Groot, Camden R. ION NAME AND ADDRESS BUREAU OF STANDARDS IT OF COMMERCE N, D.C. 20234 me and Complete Address (Street, City, S	Eloise H. Evans Hubbard and Si tate, ZIP)	<ul> <li>i. Performing mon J. Ca</li> <li>i. Project/T 313016</li> <li>i. Contract/</li> <li>i. Type of R Covered Interim</li> </ul>	g Organ. Report No. armel Jask/Work Unit No. 3 Grant No.
			14. Sponsorin	g Agency Code
Library of Congr 16. ABSTRACT (A 200-word or bibliography or literature su Standard x-ray diffract these patterns represe x-ray powder diffract d-values were assigned planar spacings consi constants were calcul The calculated x-ray structure data. Both calculated patterns.	ess Catalog Card Number: less factual summary of most significant rvey, mention it here.) action patterns are presente sent experimental data and 3 tion patterns were obtained ed Miller indices determined stent with space group exti ated, and the refractive in powder diffraction patterns a peak height and integrated	53-61386 information. If document d for 57 substant 2 are calculated with an x-ray di by comparison w nctions. The de dices were measure were computed for intensities are	nt includes a sp nces. Twen d. The exp iffractomer with comput- ensities and ired whenever from publis e reported	ignificant hty-five of berimental ter. All ted inter- nd lattice ver possible. shed crystal for the
17. KEY WORDS (six to twelve name; separated by semicolo	entries; alphabetical order; capitalize onl ons)	y the first letter of the	first key word u	unless a proper
Crystal structure; integrated intensities; lattice constants; peak intensities; powder patterns; reference intensities; standard; x-ray diffraction.				
18. AVAILABILITY	X Unlimited	19. SECURIT (THIS RE	Y CLASS PORT)	21. NO. OF PAGES
For Official Distribution	n. Do Not Release to NTIS			90

	(THIS REPORT)	21. NO. OF PAGES
For Official Distribution. Do Not Release to NTIS	UNCL ASSIFIED	90
Corder From Sup. of Doc., U.S. Government Printing Office Washington, D.C. 20402, <u>SD Cat. No. C13. 44:25/Sec</u> . 12	20. SECURITY CLASS (THIS PAGE)	<b>22.</b> Price
Order From National Technical Information Service (NTIS) Springfield, Virginia 22151	UNCLASSIFIED	\$1.50

.

### PERIODICALS

JOURNAL OF RESEARCH reports National Bureau of Standards research and development in physics, mathematics, and chemistry. It is published in two sections, available separately:

### • Physics and Chemistry (Section A)

Papers of interest primarily to scientists working in these fields. This section covers a broad range of physical and chemical research, with major emphasis on standards of physical measurement, fundamental constants, and properties of matter. Issued six times a year. Annual subscription: Domestic, \$17.00; Foreign, \$21.25.

### • Mathematical Sciences (Section B)

Studies and compilations designed mainly for the mathematician and theoretical physicist. Topics in mathematical statistics, theory of experiment design, numerical analysis, theoretical physics and chemistry, logical design and programming of computers and computer systems. Short numerical tables. Issued quarterly. Annual subscription: Domestic, \$9.00; Foreign, \$11.25.

DIMENSIONS/NBS (formerly Technical News Bulletin)—This monthly magazine is published to inform scientists, engineers, businessmen, industry, teachers, students, and consumers of the latest advances in science and technology, with primary emphasis on the work at NBS. The magazine highlights and reviews such issues as energy research, fire protection, building technology, metric conversion, pollution abatement, health and safety, and consumer product performance. In addition, it reports the results of Bureau programs in measurement standards and techniques, properties of matter and materials, engineering standards and services, instrumentation, and automatic data processing.

Annual subscription: Domestic, \$9.45; Foreign, \$11.85.

### NONPERIODICALS

Monographs—Major contributions to the technical literature on various subjects related to the Bureau's scientific and technical activities.

Handbooks—Recommended codes of engineering and industrial practice (including safety codes) developed in cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications—Include proceedings of conferences sponsored by NBS, NBS annual reports, and other special publications appropriate to this grouping such as wall charts, pocket cards, and bibliographies.

Applied Mathematics Series—Mathematical tables, manuals, and studies of special interest to physicists, engineers, chemists, biologists, mathematicians, computer programmers, and others engaged in scientific and technical work.

National Standard Reference Data Series—Provides quantitative data on the physical and chemical properties of materials, compiled from the world's literature and critically evaluated. Developed under a world-wide

The following current-awareness and literature-survey bibliographies are issued periodically by the Bureau: Cryogenic Data Center Current Awareness Service

A literature survey issued weekly. Annual subscription: Domestic, \$20.00; foreign, \$25.00.

Liquefied Natural Gas. A literature survey issued quarterly. Annual subscription: \$20.00.

Superconducting Devices and Materials. A literature

program coordinated by NBS. Program under authority of National Standard Data Act (Public Law 90-396).

NOTE: At present the principal publication outlet for these data is the Journal of Physical and Chemical Reference Data (JPCRD) published quarterly for NBS by the American Chemical Society (ACS) and the American Institute of Physics (AIP). Subscriptions, reprints, and supplements available from ACS, 1155 Sixteenth St. N. W., Wash. D. C. 20056.

Building Science Series—Disseminates technical information developed at the Bureau on building materials, components, systems, and whole structures. The series presents research results, test methods, and performance criteria related to the structural and environmental functions and the durability and safety characteristics of building elements and systems.

Technical Notes—Studies or reports which are complete in themselves but restrictive in their treatment of a subject. Analogous to monographs but not so comprehensive in scope or definitive in treatment of the subject area. Often serve as a vehicle for final reports of work performed at NBS under the sponsorship of other government agencies.

Voluntary Product Standards—Developed under procedures published by the Department of Commerce in Part 10, Title 15, of the Code of Federal Regulations. The purpose of the standards is to establish nationally recognized requirements for products, and to provide all concerned interests with a basis for common understanding of the characteristics of the products. NBS administers this program as a supplement to the activities of the private sector standardizing organizations.

Federal Information Processing Standards Publications (FIPS PUBS)—Publications in this series collectively constitute the Federal Information Processing Standards Register. Register serves as the official source of information in the Federal Government regarding standards issued by NBS pursuant to the Federal Property and Administrative Services Act of 1949 as amended, Public Law 89-306 (79 Stat. 1127), and as implemented by Executive Order 11717 (38 FR 12315, dated May 11, 1973) and Part 6 of Title 15 CFR (Code of Federal Regulations).

Consumer Information Series—Practical information, based on NBS research and experience, covering areas of interest to the consumer. Easily understandable language and illustrations provide useful background knowledge for shopping in today's technological marketplace.

NBS Interagency Reports (NBSIR)—A special series of interim or final reports on work performed by NBS for outside sponsors (both government and non-government). In general, initial distribution is handled by the sponsor; public distribution is by the National Technical Information Service (Springfield, Va. 22161) in paper copy or microfiche form.

Order NBS publications (except NBSIR's and Bibliographic Subscription Services) from: Superintendent of Documents, Government Printing Office, Washington, D.C. 20402.

### **BIBLIOGRAPHIC SUBSCRIPTION SERVICES**

survey issued quarterly. Annual subscription: \$20.00. Send subscription orders and remittances for the preceding bibliographic services to National Technical Information Service, Springfield, Va. 22161.

Electromagnetic Metrology Current Awareness Service Issued monthly. Annual subscription: \$100.00 (Special rates for multi-subscriptions). Send subscription order and remittance to Electromagnetics Division, National Bureau of Standards, Boulder, Colo. 80302. U.S. DEPARTMENT OF COMMERCE National Bureau of Standards Washington, D.C. 20234

OFFICIAL BUSINESS

Penalty for Private Use, \$300

POSTAGE AND FEES PAID U.S. DEPARTMENT OF COMMERCE COM-215 Fourth Class Mail



Off of Cong Rels Room 5835 NEW PUB

