

Standard X-ray Diffraction Powder Patterns

National Bureau on Junce de

APR 2 9 1374

Section 11-Data for 70 Substances

Howard E. Swanson, Howard F. McMurdie, Marlene C. Morris, Eloise H. Evans, and Boris Paretzkin

Assisted by Johan H. de Groot and Simon J. Carmel

Institute for Materials Research National Bureau of Standards Washington, D.C. 20234

U.S. DEPARTMENT OF COMMERCE, Frederick B. Dent, Secretary NATIONAL BUREAU OF STANDARDS, Richard W. Roberts, Director

Issued February 1974

Library of Congress Catalog Number: 53-61386

National Bureau of Standards Monograph 25 Section 11—Data for 70 Substances Nat. Bur. Stand. (U.S.), Monogr. 25—Sec. 11, 134 pages (Feb. 1974) CODEN: NBSMA6

U.S. GOVERNMENT PRINTING OFFICE WASHINGTON D.C.

Introduction	1
Experimental patterns:	
Aluminum bismuth oxide, Al4Bi209	5
Aluminum nitrate hydrate, Al (NO3) 3.9H2O	6
Aluminum tungsten oxide, Al2(WO4)3	7
Ammonium copper fluoride, NH4CuF3	8
Ammonium formate, NH4HCO2	9
Ammonium lead chloride, (NH ₄) ₂ PbCl ₆	10
Ammonium manganese chloride hydrate,	
$(NH_4)_2MnCl_4 \cdot 2H_2O$	11
Barium hydroxide phosphate, Ba5(OH) (PO4)3.	12
Barium lead chloride, BaPbCl ₄	13
Barlum nitrate (nitrobarite),	14
Cadmium bromide chloride CdBrCl	15
Calcium aluminum hydroxide, Capalo(OH)	16
Calcium chloride (hydrophilite), CaClares	18
Cesium cobalt chloride, Cs2CoCl	19
Cesium copper chloride, Cs ₂ CuCl ₄	20
Cobalt chloride hydrate, CoCl ₂ ·2H ₂ O	22
Cobalt chloride hydrate, CoCl ₂ .6H ₂ O	23
Cobalt fluoride hydrate, CoF2.4H20	24
Copper fluoride hydrate, CuF ₂ ·2H ₂ O	25
Europium phosphate, EuPO4	26
Glucose, D, alpha, (dextrose), C ₆ H ₁₂ O ₆	28
Indium sulfide, In ₂ S ₃	30
Iron chloride hydrate, FeCl ₂ ·2H ₂ O	32
Lead bromide chloride, PbBrCl	33
Magnesium bromide hydrate, MgBr ₂ ·6H ₂ O	35
Magnesium chloride hydrate (bischofite),	27
MgCl ₂ ·6H ₂ O	37
Manganese chloride hydrate, MnCl2·2H2O	38
Neodymium phosphate, NdPO,	40
Nickel chloride hydrate, NiClas6HaO	40
Nickel fluoride hydrate, NiF2.4H20	43
Potassium bromide iodide, KBr 33I 67	44
Potassium bromide iodide, KBr 67I 33	45
Potassium cobalt fluoride, K2CoF4	46
Potassium tungsten oxide, K ₂ WO ₄	47
Sodium bromide chloride, NaBr 33Cl 67	49
Sodium bromide chloride, NaBr. 67Cl. 33	50
Sodium carbonate sulfate, Na ₄ CO ₃ SO ₄	51
Sodium carbonate sulfate (burkeite),	_
$Na_6CO_3 (SO_4)_2$	52
Sodium carbonate sulfate, $Na_6CO_3(SO_4)_2$	53
Sodium carbonate sulfate, $Na_6 (CO_3)_2 SO_4 \dots$	54
No. (Cro.) (So.)	
Sodium magnesium carbonate (eitelite)	55
NacMa(CO2) a	56
Sodium sulfate. NacSO	57
Strontium chloride hydrate. SrCla.2HaO	58
Strontium chloride hydroxide phosphate.	
Sr5Cl 650H 35 (PO4) 3	60
Strontium oxide hydrate, SrO2.8H20	61
Strontium phosphate, alpha Sr ₂ P ₂ O ₇	62
Strontium phosphate, alpha Sr3(PO4)2	64
Sucrose, C ₁₂ H ₂₂ O ₁₁	66
Zinc ammine bromide, Zn(NH3)2Br2	68
Zinc fluoride hydrate, ZnF2·4H2O	69

Calculated patterns:

Calcium bromide, CaBr2	70
Calcium chloride hydrate, CaCl ₂ ·4H ₂ O	73
Chromium chloride, CrCl ₂	77
Copper aluminum, CugAl4	79
Copper cadmium, Cu ₅ Cd ₈	81
Copper hydrogen phosphite hydrate,	
CuHPO ₃ •2H ₂ O	83
Cysteine, L, HSCH ₂ ·CH(NH ₂)·COOH	86
Iron fluoride hydrate, FeF ₂ .4H ₂ O	90
Lithium hydroxide hydrate, LiOH·H ₂ O	92
Magnesium chloride (chloromagnesite),	
MgCl ₂	94
Manganese oxide (partridgeite),	
alpha Mn ₂ O ₃ (revised)	95
Manganese oxide hydroxide, groutite,	
alpha MnOOH	97
Octanydro-1,3,5,/-tetranitro-1,3,5,/-	
tetrazocine (alpha HMX) C4H8N8O8	100
Octanydro-1,3,5,/-tetranitro-1,3,5,/-	
Determine (Deta HMX) C4H ₈ N ₈ O ₈	102
Kappan 21 0	104
Relief 3.2H2U	104
KZplasium Zinc Iodide Hydrate,	107
Codium Detartrato hudrato	107
$(CHOH-CO_N_2) \sim 2H_O$	110
Vttrium titanium oxido Vamioa	112
rectrum creantum Oxtue, 121105	113

Cumulative indices (Circular 539, Volumes 1-10 and Monograph 25, Sections 1-11)

1. Inorganic	116
2. Organic	127
3. Mineral	128

Errata

Circular 539

Volume 2, page 30. In column 2, the density of PbO (red) should be 9.334 g/cm³. Volume 4, page 60. In the table column 4, the d-spacing 3.36 should be 2.36. Volume 6, page 60. In the table column 2, the d-spacing 2.75 should be 1.75. Volume 7, page 29. In the table, the NBS d-spacing 1.426 should be 1.406.

Monograph 25

Section 4, page 31. In the reference 4, the formula should be $KC_{6}H_{4}COOH-COO$. Section 7, page 2 Section 8, page 3 Section 9, page 3 Section 10, page 3 $L_{p} = \frac{1+\cos^{2}2\theta}{\sin^{2}\theta\cos\theta}$

Section 8, page 3. The formula for B should be:

$$B = 4 \left[\frac{\beta_{11}\beta_{22}\beta_{33}}{a^{*2}b^{*2}c^{*2}} \right]^{\frac{1}{3}}$$

Section 9, page 115. The index entry for ammonium chloroosmate, $(NH_4)_2OsCl_6$, should be Sec. lm, pg. 6. Section 10, page 11. In the sample description, line 2, BrF₂ should be BaF₂.

STANDARD X-RAY DIFFRACTION POWDER PATTERNS

The following copies may be obtained from the National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia, 22151. Where these publications are identified with a number, it must be used in ordering. They are available in hardcopy or microfiche; the price is not fixed and will be furnished on request.

Circular 539, Volume 1PB 178 902 Monograph 25, Section 1PB 178 429 Volume 2PB 178 903 Section 2PB 178 430 Volume 3PB 178 904 Section 3PB 178 431 Volume 4PB 178 905 Section 4 Volume 5PB 178 906 Section 5 Volume 6PB 178 907 Section 6 Volume 7PB 178 908 Section 7 Volume 8PB 178 909 Section 9PB 194 872 Volume 9PB 178 911 Section 9PB 194 872 Volume 10PB 178 911 Section 10PB 172 5002	NBS Publication	Number	NBS Publication	Number
	Circular 539, Volume 1 Volume 2 Volume 3 Volume 4 Volume 5 Volume 6 Volume 7 Volume 8 Volume 9 Volume 10	.PB 178 902 .PB 178 903 .PB 178 904 .PB 178 905 .PB 178 906 .PB 178 907 .PB 178 907 .PB 178 908 .PB 178 909 .PB 178 910 .PB 178 911	Monograph 25, Section Section Section Section Section Section Section Section Section Section Section	1PB 178 429 2PB 178 430 3PB 178 431 4 5 6 7 8PB 194 872 9COM 72-50002 10COM 72-51079

STANDARD X-RAY DIFFRACTION POWDER PATTERNS

Section 11. --- Data for 70 Substances

by

Howard E. Swanson, Howard F. McMurdie,¹ Marlene C. Morris² Eloise H. Evans,² and Boris Paretzkin² Assisted by Johan H. de Groot² and Simon J. Carmel

Standard x-ray diffraction patterns are presented for 70 substances. Fifty-two of these patterns represent experimental data and 18 are calculated. The experimental x-ray powder diffraction patterns were obtained with an x-ray diffractometer. All d-values were assigned Miller indices determined by comparison with computed interplanar spacings consistent with space group extinctions. The densities and lattice constants were calculated and the refractive indices were measured whenever possible. The calculated x-ray powder diffraction patterns were computed from published crystal structure data. Both peak height and integrated intensities are reported for the calculated patterns.

Key words: Crystal structure; integrated intensities; lattice constants; peak intensities; powder patterns; reference intensities; standard; x-ray diffraction.

INTRODUCTION

The Powder Diffraction File is a continuing compilation of diffraction patterns gathered from many sources. Produced and published by the Joint Committee on Powder Diffraction Standards,³ the File is used for identification of crystalline materials by matching d-spacings and diffraction intensity measurements. Under the partial sponsorship of the Joint Committee, the program at the National Bureau of Standards contributes new data to this File. Our work also aids in the evaluation and revision of published x-ray data and in the development of diffraction techniques. This report presents information for 70 compounds (52 experimental and 18 calculated patterns), and is the twenty-first of the series of "Standard X-ray Diffraction Powder Patterns."4

⁴See previous page for other published volumes.

EXPERIMENTAL POWDER PATTERNS

<u>Sample</u>. The samples used to make NBS patterns were obtained from a variety of sources or were prepared in small quantities in our laboratory. Appropriate annealing or recrystallization of the sample improved the quality of most of the patterns. A check of phase purity was provided by indexing the x-ray pattern.

Optical data, color. A microscopic inspection for phase purity was also made on the non-opaque materials during the refractive index determination. The latter was done by grain-immersion methods in white light, using oils standardized in sodium light, in the refractive index range 1.40 to 2.1 [Hartshorne and Stuart, 1970].

The names of the sample colors were selected from the ISCC-NBS Centroid Color Charts [1965].

Interplanar spacings. For spacing determinations, a shallow holder was packed with a sample mixed with an internal standard (approximately 5 wt. percent tungsten powder). If tungsten lines were found to interfere with lines from the sample, silver was used in place of tungsten. If the internal standard correction varied along the length of the pattern, linear interpolations were used. To avoid errors associated with aberrations at the very top of peaks, the readings of 20 were taken at positions about 20 percent of the way down from the top, and in the center of the peak width. The internal standard correction for each region was then applied to the measured value of 20. We have reported all data as $K\alpha_1$ peaks because the internal standard corrections for all regions were established in terms of the $K\alpha_1$ wavelength.

¹,²Consultant and Research Associates, respectively, of the Joint Committee on Powder Diffraction Standards Associateship at the National Bureau of Standards.

³Joint Committee on Powder Diffraction Standards, 1601 Park Lane, Swarthmore, Pa. 19081. This Pennsylvania non-profit corporation functions in cooperation with the American Ceramic Society, the American Crystallographic Association, the American Society for Testing and Materials, The Clay Minerals Society, The Institute of Physics, the Mineralogical Association of Canada, the Mineralogical Society of America, The Mineralogical Society of Great Britain and Ireland, the National Association of Corrosion Engineers, and the Société Française de Minéralogie et de Cristallographie.

The internal standards used were of high purity (99.99%). The lattice constants used for them at 25 °C are given in the table below; the 20 angles were computed using cell dimensions uncorrected for index of refraction.

Calcul	ated 20 Angles,	CuKa ₁	$\lambda = 1.54056 \text{ \AA}$
hkl	W a = 3.16516 ±.00004	° A	$Ag \circ \\ a = 4.08641 A \\ \pm.00002$
110	40,262°		
111			38.112°
200	58.251		44.295
211	73.184		
220	86,996		64.437
310	100.632		
311			77.390
222	114.923		81.533
321	131.171		
400	153.535		97.875
331			110.499
420			114.914
422			134.871
511			156.737

All of our spacing measurements were recorded at 25 \pm 1 °C on a diffractometer equipped with a curved lithium fluoride crystal monochromator located between the sample and the Geiger counter. Copper radiation was used and the wavelength Ka₁ was taken to be 1.54056 Å [Bearden, 1964].

Structure, lattice constants. The space groups were listed with short Hermann-Mauguin symbols as well as the space group numbers given in the International Tables for X-ray Crystallography, Vol. I [1952].

Orthorhombic cell dimensions were arranged according to the Dana convention b>a>c [Palache et al., 1944]. Monoclinic and triclinic lattice constants were transformed if necessary, in order to follow the convention of using a cell with the three shortest edges [Crystal Data, Vol. II, 1973].

A computer program [Evans et al. 1963] assigned hk ℓ 's and refined the lattice constants. Cell refinement was based only upon $2\Theta_{\rm obs}$ values which could be indexed without ambiguity. The program minimized the value $\Sigma(\Theta_{\rm obs}-\Theta_{\rm calc})^2$. The estimated standard deviations (e.s.d.'s) of the reciprocal cell parameters were determined from the inverse matrix of the normal equations. The program calculated the e.s.d.'s of the direct cell constants by the method of propagation of errors. Beginning with this issue, the e.s.d.'s derived by the computer program have been increased by 50% in order to reflect more truly the uncertain

ty in the lattice constants. A similar increase should also be applied to all lattice constants in earlier publications of this series. In indexing cubic patterns, multiple hkl's were not utilized in the refinement or reported. Instead, the single appropriate index having the largest <u>h</u> was listed. The number of significant figures reported for d-values varied with the symmetry and crystallinity of each sample.

<u>Densities</u>. These were calculated from the NBS determined lattice constants, the Avogadro number (6.02252×10^{23}) , and atomic weights based on carbon 12 [International Union, 1961].

Intensity measurements. It was found that samples which gave satisfactory intensity patterns usually had an average particle size smaller than 10 µm, as recommended by Alexander et al. [1948]. In order to avoid the orientation effects which occur when powdered samples are packed or pressed, a sample holder was made that had in its top face a rectangular cavity which extended to one end of the holder. To prepare the sample, a glass slide was clamped over the top face to form a temporary cavity wall (see Figure 1), and the powdered sample was allowed to drift into the end opening while the holder was held in a vertical position. With the sample holder returned to a horizontal position, the glass slide was carefully removed so that the sample could be exposed to the x-ray beam (as shown in Figure 2). If the sample powder did not flow readily, or was prone to orient excessively, approximately 50 volume percent of finely ground silica-gel was added as a diluent. The intensities of the diffraction lines were measured as peak heights above background and were expressed in percentages of the strongest line. At least three patterns for intensity measurements were prepared for each sample to check reproducibility.

Figure l

Figure 2

Reference intensity, I/I corundum. For reference intensity measurements, α -Al₂O₃ (corundum) was chosen as an internal standard to be mixed 1:1 by weight with the sample. This mixture of two components was mounted in our regular intensity sample holder (see Figures 1 and 2), and the pattern was taken. The reference intensity was then calculated as the direct ratio of the strongest line of the sample to the strongest line of corundum (hexagonal reflection (113)). In a few instances, the strongest line of one of the components coincided with a line of the other. In that case, the second strongest line was measured, and the value for the strongest line was then calculated.

CALCULATED POWDER PATTERNS

Since some substances of interest are not readily available for experimental work, powder patterns were calculated from published crystal structure data. The FORTRAN program used for the computations was developed by Smith [1967] and modified at NBS.

Lattice parameters. Before the computations of the patterns, changes were made as necessary in the lattice constants in order to make then consistent with the revised value of the copper wavelength [Bearden, 1964]; specifically, a published lattice constant in Å was multiplied by 1.00004. Both the altered parameter and the original published value are given. Monoclinic and triclinic lattice constants were transformed if necessary, to follow the convention of using a cell with the 3 shortest edges [Crystal Data, Vol. II, 1973]. <u>Scattering factors</u>. Whenever possible, the same scattering factors were used which the author of the reference article specified. Otherwise, the factors were taken directly from the International Tables for X-ray Crystallography, Vol. III, [1962]. The factors were corrected for dispersion if the author had done so.

<u>Thermal parameters</u>. The computer program used thermal parameter data of only two forms, the isotropic B's or the anisotropic β_{ij} 's in the following expressions:

$$e^{(-B \sin^2\theta)/\lambda^2}$$

or

$$e^{-(h^{2}\beta_{11}+k^{2}\beta_{22}+\ell^{2}\beta_{33}+2hk\beta_{12}+2h\ell\beta_{13}+2k\ell\beta_{23})}.$$

Other thermal parameters were converted to one of these two forms. The isotropic parameters were used directly, if given by the structure reference. In a few of our patterns, anisotropic parameters were also used directly as given by the structure reference; in other work, in place of using given anisotropic parameters, approximately equivalent isotropic values were substituted as defined by:

$$B = 4 \begin{bmatrix} \beta_{11}\beta_{22}\beta_{33} \\ a^{*2}b^{*2}c^{*2} \end{bmatrix}^{\frac{1}{3}}$$

<u>Integrated intensities</u>. Intensity calculations were based on the copper $K\alpha_1$ wavelength, 1.54056 Å, determined by Bearden [1964]. The integrated intensities were computed from formula (1):

(1) $I = F^2$ (Lp) (FAC)

where F is the standard structure factor

FAC is the powder multiplicity

$$Lp = \frac{1 + \cos^2 2\theta}{\sin^2 \theta \cos \theta}$$

The intensities were scaled to the strongest line which was assigned a value of 100. Reflections were not reported which had scaled intensities of 0.7 or less.

<u>Scale factor</u>. For each compound, this factor multiplied by the reported integrated intensities will reproduce the unscaled intensities which were derived using formula (1).

Peak intensities. The integrated intensities can be transformed to a Cauchy profile with an appropriate variable half-width designated to simulate a diffractometer tracing [Smith, 1967]. The value of the half-width was chosen as 0.075° at 40° (20, CuKa1). Then the intensities were summed for the overlapping peak profiles, and the resulting new peak intensities were scaled to the strongest peak height which was assigned a value Reflections were not reported which had of 100. scaled peak heights of 0.7 or less. Adjacent peaks with nearly equal 20 values usually cannot be experimentally resolved; therefore one composite peak was calculated in such instances. The 20 angle of this peak was assigned the $hk\ell$ of the reflection having the greatest integrated intensity; a plus sign (+) was used to indicate additional hkl's.

REFERENCES

- Alexander, L., Klug, H.P. and Kummer, E. (1948). Statistical factors affecting the intensity of x-rays diffracted by crystalline powders, J. Appl. Phys., 19, No. 8, 742-753.
- Bearden, J.S. (1964). X-ray Wavelengths, U.S. At. Energy Comm. NYO-10586.
- Crystal Data II (1973). (Published jointly by the U.S. Department of Commerce, National

Bureau of Standards, Washington, D.C. 20234, and the Joint Committee on Powder Diffraction Standards, Swarthmore, PA 19081).

- Evans, H.T., Jr., Appleman, D.E. and Handwerker, D.S. (1963). The least-squares refinement of crystal unit cells with powder diffraction data by an automatic computer indexing method. (abs.) Am. Cryst. Assoc. Annual Meeting, Cambridge, Mass. Program, 42-43.
- Hartshorne, N.H. and Stuart, A. (1970). Crystals and the Polarizing Microscope (Edward Arnold and Co., London, 4th Ed.)
- International Tables for X-ray Crystallography, I (1952). (The Kynoch Press, Birmingham, Eng.), Ibid III (1962). Pgs. 202, 210, 213, 214.
- International Union of Pure and Applied Chemistry (1961). Chem. Eng. News **39** (4), Nov. 20, 42.
- ISCC-NBS Centroid Color Charts, (1965) SRM 2106, obtainable from the Office of Standard Reference Materials, Room B311, Chemistry Building, National Bureau of Standards, Washington, D.C. 20234. \$5.00 per set.
- Palache, C., Berman, H. and Frondel, C. (1944). Dana's System of Mineralogy (John Wiley and Sons, New York, 7th Ed.), I, 6.
- Smith, D.K. (1967). A Revised Program for Calculating Powder Diffraction Patterns,UCRL 50264, University of California, Lawrence Radiation Laboratory, Livermore, Calif. 94551.

The sample was prepared by heating a 2:1 mixture of $\alpha Al_{2}O_{3}$ and $Bi_{2}O_{3}$ at 1000 °C. This was followed by grinding and reheating.

Color

24

Pale yellow

Structure

Orthorhombic, Pbam (55), Z=2, isostructural with $Bi_2Ga_4O_9$. The structure was determined by Eckerlin and Liebertz [1965].

Density (calculated) 6.244 g/cm³

Reference intensity I/I_{corundum} = 3.1

Additional patterns

1. PDF card 23-1006 [Surnina and Litvin, 1970].

References

Eckerlin, P. and Liebertz, J. (1965). Naturwissenschaften 52, 540.

Surnina, V.S. and Litvin, B.N. (1970). Soviet Phys. Cryst. English Transl. 15, 527.

Internal standard Ag, $\dot{a} = 4.08641 \text{ Å}$ CuK $a_1 \lambda = 1.54056 \text{ Å}$; temp. 25 °C				
d (Å)	Ι	hkl	20(°)	
5.68 4.055 3.989 3.862 3.591	75 12 5 10 35	001 020 111 200 120	15.58 21.90 22.27 23.01 24.77	
3.485 3.301 3.192 3.034 2.971	25 19 20 100 85	210 021 201 121 211	25.54 26.99 27.93 29.41 30.05	

d (Å)	Ι	hkl	20(°)
2.846	30	002	31.41
2.795	12	220	32.00
2.551	15	130	35.15
2.537	14	112	35.35
2.510	3	221	35.75
2.453	9	310	36.60
2.328	16	022,131	38.65
2.290	14	202	39.31
2.252	11	311	40.01
2.230	12	122	40.42
2.204	35	212	40.91
2.028	1	321,040	44.64
1.994	1	222	45.44
1.961	12	140	46.26
1.930	3	400	47.05
1.908	2	041	47.61
1.898	10	132,003	47.88
1.878	7	410	48.44
1.864	15	330	48.83
1.857	16	312	49.02
1.854	25	141	49.10
1.827	1	401	49.87
1.795	3	240	50.82
1.783	16	411	51.18
1.771	17	331	51.55
1.743	3	420	52.46
1.726	1	322	53.00
1.719	2	023	53.25
1.703	2	203	53.77
1.677	14	123	54.69
1.666	13	213,421	55.07
1.652	5	042	55.60
1.615	7	142	56.98
1.597	5	402	57.66
1.567	9	412	58.87
1.559	25	332	59.21
1.528	1	151	60.54
1.5222	2	133	60.80
1.5004	2	313	61.78
1.4954	2	250	61.98
1.4655	1	511	63.42
1.4465	6	251	64.35
1.4233	5	004	65.53
1.3989	6	521	66.82
1.3865	3	152	67.50
1.3722	2	350	68.30
1.3638	5	143	68.78

Sample The sample	was nre	nared by slow eva	unoration of	$d(\mathring{A})$	I	hkl	20(°)
an aqueous	s solutio	in of A1(NO ₃) ₃ . T	he crystals				- ()
were filte	ered out	and washed with et	hyl alcohol.	4.539	15	120	19.54
				4.487	45	202	19.77
Color				4.362	3	112	20.34
				4.231	2	121	20.98
colorless				4.143		510,121	21.45
				4.074	60	202	21.80
Optical dat	a			3.994	45	311	22.24
Biaxial (-), Ν. ∓	$1.401, N_{\beta} = 1.514$	$, \mathbb{N}_{v} = 1.525;$	3.943	50	220	22.53
2V ⊵ 25°.			,	3.762	30	311	23.63
				3.639	12	221	24.44
Structure				3.599	65	022	24.72
Monoclinic	;, P2;/c	(14), Z=4, isostr	uctural with	3.541	6	122	25.13
$Cr(NO_3)_3 \cdot 9$	0H ₂ 0 [Ka	nnan and Viswami	tra, 1965].	3.449	9	312,400	25.81
NPS lattic	o consta	ntc·		3.426	12	122	25.99
NDS Tattic	a = 13.84	7 (8) Å		3.387	6	013	26.29
b	= 9.617	(2)		3 278	16	222	27.18
c	c = 10.90	8(5)		3.244	35	410, 321	27.47
Ê	8 = 95.68	(2)°		3.219	19	113	27.69
				3.123	20	130	28.56
D				3.112	20	321	28.66
Uensity (calculated	1) 1 724	a/cm ³		2.074	12	031	29 02
(carculated	1) 1.724	5/ CAI		3.074	20	<u>4</u> 02	29.27
Reference i	intensit	y .		3.017	100	131	29.58
I/I corundum	0.5			2.982	45	131	29.93
corandan	0.0			2.907	35	230,412	30.73
				2 979	7	123	31.05
Additional	patterns		1000]	2.854	5	313	31.32
1. PDF car	rd 1-435	[Hanawalt et al.,	[938]	2.835	4	231	31.53
2. PDF card 12-472 [Aluminium Lab. Ltd.,Kingston			ta.,Kingston	2.788	3	402,123	32.08
Canada <u>.</u>				2.779	7	231	32.18
				2 761	10	032	32 40
References				2.761	6	132	33.41
Hanawalt, J.	D., Rinn	, H.W., and Frevel	, L.K.(1938)	2.615	20	204,104,+	34.26
Ind. Eng. Chem. Anal. Ed. 10, 457.				2.609	30	014,232,+	34.34
Kannan, K. K	C. and V	iswamitra, M. A. (1965). Acta	2.590	50	331	34.60
Cryst. 19,	151.					2	25 22
				2.538	16	323	35.33
				2.522	33	304,204	36.71
Inte	rnal stan	dard $W = -3.165$	16 Å	2.422	2	332	37.09
Inter	, stan	o.100	10 1	2.399	6	033	37.45
CuK	$a_1 \lambda = 1$.54056 A; temp. 2	25 °C			500 300	27 56
d (Å)	7	hhl	24(0)	2.393		520,133	37.56
	1	nrı	20(0)	2.363	25	124,024,+	38.05
7 87	1	110	11.24	2.348	30	041,430	38.31
7.20	12	011	12.29	2.326	4	431	38.68
6.55	70	ī11	13.51				20.01
6.21	60	111	14.26	2.307	12	423,141	39.01
5.60	14	210	15.81	2.301	14	224,600,+	39.10
		T o r	16.07	2.2/1	8	431.522	39.80
5.22	6	102	16.9/	2.242	10	404,513.+	40.19
4.89	25	211 020	18.41			,	
4.729	4	012	18.75	2.210	2	432,241	40.79
4.595	4	112,300	19.30	2.184	16	142,414,+	41.30

Aluminum tungsten oxide, Al₂(WO₄)₃

Sample

The sample was prepared by adding $NaWO_4$ solution to one of AlCl₃ and heating the precipitate two hours at 800 °C and 15 minutes at 900 °C.

Color

Colorless

Structure

Orthorhombic, Pnca (60), Z=2, isostructural with other tungstates and molybdates of the smaller trivalent rare-earth elements such as $Gd_2(WO_4)_3$ [Craig and Stephenson, 1968].

Density (calculated) 2.539 g/cm³

Reference intensity I/I conundum = 2.3

Additional patterns

1. PDF card 18-72 [Waring, 1965] (incorrectly called 2A1₂O₃·5WO₃)

References Craig, D. C. and Stephenson, N. C. (1968). Acta Cryst. B24, 1250. Waring, J. (1965). J. Am. Ceram. Soc. 48, 493.

Internal standard W, a = 3.16516 Å CuK a_1 λ = 1.54056 Å; temp. 25 °C			
d (Å)	- I	hkl	20(°)
6.30	11	020	14.04
5.73	13	111	15.46
4.53	11	002	19.59
4.50	6	121	19.73
4.296	35	210	20.66
4.059	40	102	21.88
3.877	50	211	22.92
3.867	45	112	22.98
3.810	100	031	23.33
3.697	16	220	24.05

d (Å)	Ι	hkl	20(°)
3.676	7	022	24.19
3.519	25	131	25.29
3.422	50	221	26.02
3.219	15	202	27.69
3.147	12	040	28.34
3.115	4	212	28.63
3.090	6	230	28.87
2.933	19	013	30.45
2.926	10	231	30.53
2.865	13	222	31.19
2.828	6	141	31.61
2.816	9	311	31.75
2.624	7	321	34.14
2.610	16	123	34.33
2.593	7	240	34.56
2.555	2	232	35.10
2.528	7	302	35.48
2.493	8	241	36.00
2.488	9	142	36.07
2.480	7	312	36.19
2.471 2.429 2.380 2.368 2.346	6 5 19 3	213 051 331 133 322,151	36.32 36.98 37.76 37.97 38.34
2.340	4	223	38.45
2.285	2	400	39.40
2.265	3	004	39.77
2.252	7	242	40.01
2.206	11	250	40.87
2.182	17	411	41.35
2.166	6	114,332	41.67
2.161	5	233	41.77
2.142	10	251,152	42.15
2.132	5	024	42.35
2.114	5	313	42.73
2.100	13	060	43.03
2.076	1	124	43.56
2.030	3	323,204	44.61
2.004	9	214	45.21
1.984	3	252	45.70
1.972	9	342	45.99
1.959	2	431	46.30
1.941	6	422	46.77
1.935	5	053	46.92
1.907	6	260	47.66
1.8926	3	153	48.03
1.8650	13	162	48.79
1.8490	13	440	49.24
1.8385	9	044	49.54
1.8271	3	234	49.87
1.7987	2	314	50.73
1.7931	5	015	50.88
1.7833	5	352	51.18

The sample was prepared by the reaction of Cu and Br in methanol; the product was added to a saturated methanol solution of NH_4HF_2 . The precipitate was filtered, and washed with methanol and ether. The sample was somewhat hygroscopic.

Color

Greenish white

Structure

Tetragonal, P4mm (99), Z=2, similar to KCuF₃, distorted perovskite. Crockett and Haendler [1960] gave a larger cell related to ours as a \cong a $\sqrt{2}$ and c \cong 2c. We found no lines which required the larger cell.

NBS lattice constants: a = 6.0828(4)Å c = 3.8915(4)

Density (calculated) 3.196 g/cm³

Reference intensity // corundum = 2.4

Additional patterns

 PDF card 22-41 [Clavan, 1969, Pennwalt Corp. King of Prussia, Penna.]

References

Crockett, D.S. and Haendler, H.M.(1960). J. Am. Chem. Soc. 82, 4158.

Internal standard W, a = 3.16516 Å				
Cuk	$a_1 \land = 1$.54056 A; temp. 2	15 °C	
d (\mathring{A})	Ι	hkl	20(°)	
4.300	100	110	20.64	
3.889	35	001	22.85	
3.041	35	200	29.35	
2.885	55	111	30.97	
2.719	4	210	32.92	
2.395	3	201	37.52	
2.230	4	211	40.42	
2.150	50	220	41.98	
1.946	19	002	46.64	
1.924	18	310	47.20	
1.882	15	221	48.31	
1.773	15	112	51.50	
1.725	14	311	53.05	
1.640	8	202	56.04	
1.5478	2	321	59.69	
1.5208	9	400	60.86	
1.4753	3	410	62.95	
1.4429	17	222	64.53	
1.4336	5	330	65.00	
1.4166	5	401	65.88	
1.3681	9	312	68.53	
1.3601	5	420	68.99	
1.3453	4	331	69.86	
1.2970	2	003	72.87	
1.2419	4	113	76.67	
1.1983	6	402	80.00	
1.1930	5	203,510	80.43	
1.1755	2	412	81.88	
1.1542	5	332	83.73	
1.1407	5	511	84.95	
1,1146	4	422	87.43	
1,1109	3	223	87.80	
1.0756	4	313.440	91.47	
1.0169	4	512	98.48	

The sample was obtained from the K and K Laboratories, Inc., Jamaica, N.Y. The material was somewhat hygroscopic.

Color

Colorless

Structure

Monoclinic , Pc (7), Z=2. The structure was determined by Nahringbauer [1968].

NBS lattice constants a = 3.8202(5)Ab = 4.6816(6)c = 9.118(1) $\beta = 91.12(1)^{\circ}$

Density (calculated) 1.284 g/cm³

Reference intensity I/I corundum = 1.5

Additional patterns 1. PDF card 14-756 [Hanawalt et al., 1938]

References

Hanawalt, J.D., Rinn, H.W., and Frevel, L.K. (1938). Ind. Eng. Chem. Anal. Ed. 10, 457. Nahringbauer, I. (1968). Acta Cryst. B24,565.

Internal standard W, a = 3.16516 Å CuKa ₁ λ = 1.54056 Å ; temp. 25 °C				
d (Å)	Ι	hkl '	2÷(°)	
4.555	55	002	19.47	
4.164	65	011	21.32	
3.819	10	100	23.27	
3.266	14	012	27.28	
2.954	100	110,102	30.23	
2.898	5	102	30.83	
2.826	30	111	31.63	
2.802	6	111	31.91	
2.550	9	013	35.17	
2.500	10	112	35.89	
2.466	9	112	36.41	
2.340	8	020	38.43	
2.279	13	004	39.51	
2.267	11	021	39.73	
2.137	2	113	42.26	
2.105	1	113	42.92	
2.083	4	022	43.41	
2.049	7	014	44.16	
1.996	1	120	45.39	
1.974	4	104	45.93	
1.955 1.945 1.941 1.9095 1.8546	1 2 1 4	121 121 104 200 023	46.42 46.66 46.76 47.58 49.08	
1.8350	1	122	49.64	
1.8192	2	114	50.10	
1.7932	<1	114	50.88	
1.7733	2	202	51.49	
1.7685	2	210	51.64	
1.7490 1.7419 1.7296 1.6990 1.6758	1 1 2 2	202 211 211 015 123	52.26 52.49 52.89 53.92 54.73	
1.6598	2	123,212	55.30	
1.6335	<1	105,024	56.27	
1.5635	2	115	59.03	
1.5406	2	213	60.00	
1.5380	2	031	60.11	
1.5193 1.5085 1.4938 1.4801 1.4767	1 <1 <1 1	006 124 124 220 032	60.93 61.41 62.08 62.72 62.88	
1.4646 1.4574 1.4451 1.4283 1.4246	1 1 2 2	221 221 016,130 131 131	63.46 63.81 64.42 65.27 65.46	

Ammonium lead chloride, (NH₄)₂PbCl₆

Sample

Chlorine was bubbled through a saturated solution of $PbCl_2$ in concentrated HCl. Then a saturated solution of NH_4Cl in concentrated HCl was added. The precipitate formed was filtered without washing.

Color

Brilliant green yellow

Structure

Cubic, Fm3m (225), Z=4, isostructural with K_2PtCl_6 . The structure was determined by Wyckoff and Dennis [1926].

NBS lattice constant: $^{\circ}$ a = 10.1609(3)A

Density

(calculated) 2.887 g/cm³

Reference intensity

I/I_{corundum} = 3.6

Additional patterns

1. PDF card 2-0139 [Wyckoff and Dennis, 1926].

Reference

Wyckoff, R. W. G. and Dennis, L. M. (1926). Am. J. Sci. 12, 503.

. 4

Internal standard W, a = 3.16516 Å						
	Cultur - 1.04000 A, temp. 20 C					
d (Å)	Ι	hkl	2⊕(°)			
5.866	100	111	15.09			
5.081	45	200	17.44			
3.593	20	220	24.76			
3.061	45	311	29.15			
2.933	1	222	30.45			
2.540	25	400	35.31			
2.332	18	331	38.57			
2.272	25	420	39.63			
2.074	9	422	43.61			
1.955	14	511	46.41			
1.796	15	440	50.78			
1.718	12	531	53.29			
1.693	10	600	54.11			
1.607	2	620	57.28			
1.5495	4	533	59.62			
1.4667	3	444	63.36			
1.4229	4	711	65.55			
1.4090	2	640	66.28			
1.3577	2	642	69.13			
1.3227	4	731	71.23			
1.2701	<1	800	74.67			
1.2415	1	733	76.70			
1.2324	3	820	77.37			
1.1976	1	822	80.06			
1.1733	2	751	82.07			
1.1359	2	840	85.39			
1.1152	2	911	87.37			
1.1087	2	842	88.02			
1.0829	<1	664	90.68			
1.0652	1	931	92.63			
1.0369	1	844	95.95			
1.0211	2	933	97.94			
1.0161	1	10.0.0	98.59			
0.9964	1	10.2.0	101.25			
0.9823	1	951	103.28			

The sample was prepared by slow evaporation at room temperature of an aqueous solution containing 2 grams NH₄Cl and 3.6 grams $MnCl_2 \cdot 4H_2O$. The first crystals formed were used. The method follows the phase study of the NH₄Cl-MnCl₂-H₂O system by Clendinnen and Rivett [1921].

Color

Pinkish white

Structure

Tetragonal, $P4_2/mnm$ (136), Z=2, isostructural with $(NH_4)_2CuCl_4 \cdot 2H_2O$ [Greenberg and Walden, 1940]. The structure of $(NH_4)_2CuCl_4 \cdot 2H_2O$ was determined by Hendricks and Dickerson [1927] and refined by Chrobak, [1934]. Greenberg and Walden [1940] found $(NH_4)_2MnCl_4 \cdot 2H_2O$ to have a solid solution relation with $(NH_4)_6MnCl_8 \cdot 2H_2O$.

NBS lattice constants: a = 7.589(1) Åc = 8.143(2)

Density (calculated) 1.904 g/cm³

Reference intensity //I_{corundum} = 1.4

References

Chrobak, L. (1934). Z. Krist.	88, 35.
Clendinnen, F.W.J. and Rivett,	A.C.D. (1921). J.
Chem. Soc. 119, 1329.	
Greenberg, A.L. and Walden, G.	H. Jr. (1940). J.
Chem. Phys. 8, 645.	
Hendricks, S.B. and Dickerson,	R.G. (1927). J.Am.
Chem. Soc. 49, 2149.	

Internal standard Ag, a = 4.08641 Å						
CuKa	$CuKa_1 \lambda = 1.54056 \text{ Å}; \text{ temp. } 25 \text{ °C}$					
d (Å)	Ι	hkl	20(°)			
<i>d</i> (A) 5.552 5.365 4.073 3.797 3.244 3.131 2.776 2.684 2.557 2.401 2.240 2.120 2.067 2.038 1.898 1.798 1.7938 1.7194 1.7194	I 35 15 35 6 8 100 90 8 4 25 5 1 90 8 4 25 5 1 19 16 3 5 8	hkl 101 110 002 200 112 211 202 220 103 310 222 213 312 321 400 313 204 402	28(°) 15.95 16.51 21.80 23.41 27.47 28.48 32.22 33.36 35.06 37.43 40.22 42.61 43.76 44.41 47.89 50.72 50.86 53.23 5.25			
1.6213	17	224	56.73			
1.5660 1.5231 1.4923 1.3877	9 2 2 8	422 413 431 521,404	58.93 60.76 62.15 67.43			

Additional patterns

1. PDF card 2-844 [Greenberg and Walden, 1940].

The sample was prepared by heating $Ba(OH)_2$ and $(NH_4)_2HPO_4$ together in a molar ratio of 5 : 3. After heating at 300 °C, the material was pelletized and reheated at 600 °C for one hour, at 900 °C for one hour, and at 1100 °C for one half hour.

Color

Colorless

Structure

Hexagonal, $P6_3/m$ (176), Z=2, isostructural with calcium and lead hydroxyapatites [Klement and Dihn, 1938]. The structure of Ca_5 (OH) (PO₄)₃ was refined by Posner et al. [1958].

```
NBS lattice constants:

a = 10.185(1)Å

c = 7.729(1)
```

```
Density
(calculated) 4.728 g/cm<sup>3</sup>
```

Reference intensity 1/1_{corundum} = 2.5

Addi	tion	al pa	tterns	5		
1.	$\mathbf{P}\mathbf{DF}$	card	1-811	[Hanawalt et	al.,	1938]
2.	PDF	card	3-578	[Klement and	Dihn,	1938]

References

```
Hanawalt, J.D., Rinn, H.W., and Frevel, L.K. (1938).
Ind. Eng. Chem. Anal. Ed. 10, 457.
```

Klement, R. and Dihn, P. (1938). Z. anorg. u. allgem. Chem. 240, 40.

```
Posner, A.S., Perloff, A., and Diorio, A.F.(1958).
Acta Cryst. 11, 308.
```

Internal standard W, a = 3.16516 Å						
CuK	$CuKa_1 \lambda = 1.54056 \text{ Å}; \text{ temp. } 25 \text{ °C}$					
d (Å)	Ι	hkl	20(°)			
5.10	3	110	17.37			
4.410	25	200	20.12			
4.255	19	111	20.86			
3.869	12	002	22.97			
3.829	1	201	23.21			
3.541	30	102	25.13			
3.334	35	210	26.72			
3.079	100	112	28.98			
3.062	100	211	29.14			
2.940	50	300	30.38			
2.908	4	202	30.72			
2.546	2	220	35.22			
2.447	8	310	36.70			
2.338	5	302	38.47			
2.334	2	311	38.54			
2.299	11	113	39.15			
2.225	2	203	40.50			
2.205	3	400	40.90			
2.127	30	222	42.47			
2.067	25	312	43.76			
2.038	30	213	44.41			
2.023	6	320	44.77			
1.958	17	321	46.34			
1.932	12	004	47.00			
1.925	20	410	47.18			
1.915	25	402	47.43			
1.868	1	411	48.70			
1.807	1	114	50.45			
1.792	<1	322	50.91			
1.775	1	313	51.45			
1.769	3	204	51.62			
1.7230	3	412	53.11			
1.6979	<1	330	53.96			
1.6721	10	214	54.86			
1.6671	8	420	55.04			
1.6582	3	331	55.36			
1.6290	1	421	56.44			
1.6143	8	304	57.00			
1.6048	5	502	57.37			
1.5913	8	323	57.90			

The sample was prepared by melting an equimolar mixture of $BaCl_2$ and $PbCl_2$. It was then ground and heated for 18 hours, at 400 °C, in a sealed glass tube. This was repeated twice.

Color

Colorless

Structure

Orthorhombic, Pnam (62), Z = 2; $-BaCl_2$ and $PbCl_2$ form a complete solid solution series [Calingaert et al., 1949]. The structure of $BaCl_2$ was determined by Döll and Klemm [1939] and refined by Brackett et al. [1963] and Sahl [1963].

Calculated) 4.829 g/cm³

Reference intensity 1/1 corundum = 2.8

References

- Brackett, E. B., Brackett, T. E., and Sass, R. L. (1963). J. Phys. Chem. 67, 2132.
- Calingaert, G., Lamb, F. W., and Meyer, F. (1949). J. Am. Chem. Soc. 71, 3712.
- Döll, W. and Klemm, W. (1939). Z. anorg. u. allgem. Chem. 241, 239.
- Sahl, K. (1963). Beitr. Mineral. Petrog. 9, 111.

Internal standard W, a = 3.16516 Å CuK a_1 λ = 1.54056 Å; temp. 25 °C				
d (Å)	Ι	hkl	2+·(°)	
4.62	11	020	19.20	
4.16	40	011	21.35	
3.97	95	120	22.40	
3.885	55	200	22.87	
3.664	100	111	24.27	
3.020	13	121	29.55	
2.981	14	201	29.95	
2.972	20	220	30.04	
2.866	11	130	31.18	
2.838	80	211	31.50	
2.572	50	031	34.86	
2.508	4	221	35.77	
2.440	12	131	36.80	
2.415	5	230	37.20	
2.331	30	002	38.60	
2.311	19	040	38.94	
2.259	35	320	39.87	
2.215	7	140	40.70	
2.197	35	311	41.05	
2.142	40	231	42.15	
2.081	2	022	43.45	
2.009	20	122	45.08	
1.997	17	202	45.38	
1.986	11	240	45.63	
1.941	7	400	46.76	
1.833	3	222	49.71	
1.759	2	411	51.94	
1.678	10	151	54.64	
1.675	7	232	54.76	
1.642	7	430	55.96	
1.6216	15	322	56.72	
1.6053	3	142	57.35	
1.5720	<1	251	58.68	
1.5492	4	431	59.63	
1.5110	6	242	61.30	
1.5023 1.4910 1.4869 1.4556 1.4318	5 5 7 8	113 402 440 511 351	61.69 62.21 62.40 63.90 65.09	

The sample was specially purified material from Mallinckrodt Chemical Works, New York.

Major impurities

0.001-0.01% each: Al, Na, and Sr.

Color

Colorless

Optical data

Isotropic, N = 1.571

Structure

Cubic, $P2_13$ (198), Z = 4, isostructural with $Sr(NO_3)_2$. The structure was determined by Birnstock [1967]. Previously the space group of $Ba(NO_3)_2$ was considered to be Pa3 (205).

NBS lattice constant: a = 8.1184(2)Å

Density (calculated) 3.244 g/cm³

Reference intensity

I/I corundum = 4.5

Additional patterns

```
1. PDF card 4-773 [Swanson and Tatge, 1953]
```

Internal standard W, a = 3.16516 Å CuK $a_1 \lambda$ = 1.54056 Å ; temp. 25 °C					
d (Å)	Ι	hkl	2#(°)		
4.689	100	111	18.91		
4.062	35	200	21.86		
3.633	14	210	24.48		
3.318	10	211	26.85		
2.870	30	220	31.14		
2.447	75	311	36.69		
2.344	45	222	38.37		
2.170	<1	321	41.59		
2.031	12	400	44.58		
1.970	<1	410	46.04		

d (Å)	Ι	hkl	20(°)
1.914	1	330	47.46
1.863	20	331	48.85
1.816	17	420	50.19
1.772	1	421	51.53
1.732	1	332	52.82
1.658	13	422	55.37
1.5923	<1	510	57.86
1.5626	11	333	59.07
1.5079	1	432	61.44
1.4827	<1	521	62.60
1.4352	8	440	64.92
1.3919	1	530	67.20
1.3723	15	531	68.29
1.3532	7	600	69.39
1.3348	1	610	70.49
1.3171	1	611	71.58
1.2836	3	620	73.75
1.2681	<1	621	74.81
1.2380	5	533	76.95
1.2237	5	622	78.02
1.2103	<1	630	79.05
1.1719	2	444	82.19
1.1367	5	551	85.32
1.1259	2	640	86.34
1.1151	1	720	87.38
1.0848	4	642	90.48
1.0570	5	731	93.56
1.0149	<1	800	98.75
1.0071	<1	740	99.79
.9918	1	733	101.91
.9844	2	820	102.98
.9567	2	660	107.24
.9375	3	751	110.50
.9313	1	662	111.61
.9078	1	840	116.11
.8910	2	911	119.65
.8857	1	842	120.84
.8654	1	664	125.76
.8510	1	931	129.69
.8285	1	844	136.80
.8158	2	755	141.53
.8119	1	860	143.17
.7960	2	10•2•0	150.78
.7848	<1	951	157.94

References

Birnstock, R. (1967). Z. Krist. 124, 310.

Swanson, H.E. and Tatge,E. (1953). Natl. Bur. Std. U.S. Circ. 539, 1, 81.

The sample was prepared by melting a l:l molar mixture of CdBr₂ and CdCl₂. This was then annealed for three days at 300° C in a sealed tube.

Color

Light grey

Structure

Hexagonal, R3m (166), Z = 3, isostructural with $CdCl_2$. The structure of $CdCl_2$ was determined by Pauling [1929]. A complete solid solution exists between CdBr₂ and CdCl₂ [Nacken, 1907].

NBS lattice constants: a = 3.9204(3)Å c = 18.408(2)

Density (calculated) 4.630 g/cm³

Reference intensity I/I corundum 3.3

References

Nacken, R. (1907). Centr. Mineral Geol. 1907, 303. Pauling, L. (1929). Proc. Nat. Acad. Sci. U.S. 15, 709.

Internal standard W, a = 3.16516 Å CuK $a_1 \lambda$ = 1.54056 Å ; temp. 25 °C				
d (Å)	Ι	hkl	2· (°)	
6.137	100	003	14.42	
3.340	30	101	26.67	
3.068	1	006	29.08	
2.734	60	104	32.73	
2.496	10	015	35.95	
2.081	6	107	43.46	
2.046	3	009	44.23	
1.961	25	110	46.26	
1.905	17	018	47.70	
1.868	10	113	48.71	
1.690	3	021	54.22	
1.5928	7	024	57.84	
1.5417	1	205	59.95	
1.5338	4	0.0.12	60.29	
1.5013	1	0.1.11	61.74	
1.4268	1	027	65.35	
1.4154	2	119	65.94	
1.3662	3	208	68.64	
1.3070	<1	1.0.13	72.22	
1.2801	2	211	73.99	
1.2359 1.2272 1.2116 1.2079 1.1917	4 1 4 <1	214 0.0.15 125 1.1.12 2.0.11	77.11 77.76 78.95 79.24 80.53	
1.1534	1	217	83.80	
1.1317	2	300	85.79	
1.1206	2	128	86.85	
1.1129	<1	303	87.60	
1.0897	1	1.0.16	89.96	
1.0400	<1	1.1.15	95.57	
1.0315	<1	0.1.17	96.62	
1.0183	<1	1.2.11	98.30	

The sample was prepared by treating a saturated solution of CaO with 6 % phenol. Aluminum metal dissolved in KOH was added. The compound was then dried at 110 °C for two hours.

Color

Colorless

Optical data

Isotropic, N = 1.605

Structure

Cubic, Ia3d (230), Z = 8, garnet type [Flint et al., 1941].

NBS lattice constant: a = 12.5727(2)Å

Density (calculated) 2.527 g/cm³

Reference intensity

Additional patterns

1. PDF 3-125 [Flint et al., 1941]

References

Flint, E.P., McMurdie, H.F., and Wells, L.S.(1941)
J. Res. Natl. Bur. Std. 26, 13.

Internal standard W, a = 3.16516 Å CuKa, λ = 1.54056 Å; temp. 25 °C				
d ($\overset{\circ}{A}$)	I	hkl	20(°)	
5.130	90	211	17.27	
4.442	40	220	19.97	
3.358	55	321	26.52	
3.142	45	400	28.38	
2.810	80	420	31.82	
2.680	6	332	33.41	
2.566	15	422	34.94	
2.465	30	431	36.42	
2.295	100	521	39.23	
2.222	4	440	40.56	
2.039	95	611	44.39	
1.989	8	620	45.58	
1.8536	1	631	49.11	
1.8148	10	444	50.23	
1.7785	2	543	51.33	
1.7437	40	640	52.43	
1.7111	20	721	53.51	
1.6800	50	642	54.58	
1.5964	11	732	57.70	
1.5715	13	800	58.70	
1.5478 1.5249 1.5030 1.4818 1.4616	1 2 3 1	741 820 653 660 831	59.69 60.68 61.66 62.64 63.61	
1.4243	1	752	65.48	
1.4058	12	840	66.45	
1.3716	5	842	68.33	
1.3555	5	761	69.26	
1.3401	8	664	70.17	
1.3253	2	851	71.07	
1.2965	5	932	72.90	
1.2835	2	844	73.76	
1.2701	4	941	74.67	
1.2449	2	10•1•1	76.45	
1.2330	1	10.2.0	77.32	
1.2216	1	943	78.18	
1.1986	8	10.3.1	79.98	
1.1774	<1	871	81.72	
1.1673	8	10.4.0	82.58	
1.1574	4	10-3-3	83.45	
1.1478	10	10-4-2	84.30	
1.1382	1	873	85.18	
1.1202	8	11-2-1	86.89	
1.1113	4	880	87.76	

d (Å)	Ι	hkl	26)(°)
1.0863	4	11.3.2	90.32
1.0624	1	10.6.2	92.94
1.0551	2	965	93.78
1.0478	2	12.0.0	94.64
1.0406	1	11.4.3	95.50
1.0337	2	12.2.0	96.35
1.0266	2	11.5.2	97.24
1.0197	5	12.2.2	98.12
1.0132	1	12.3.1	98.97
0.9758	5	11.6.3	104.26
.9532	2	13.2.1	107.83
.9477	1	12.4.4	108.74
.9371	5	12.6.0	110.56
.9320	3	13.3.2	111.47
.9268	3	12.6.2	112.43
.9220	1	13.4.1	113.33
.9073	1	888	116.19
.8935	1	13.5.2	119.11
.8890	1	14.2.0	120.09
.8846	1	12.7.3	121.10
.8760	3	14.3.1	123.13
.8718	2	12.8.0	124.15
.8675	<1	13.5.4	125.23
.8635	3	14.4.0	126.26
.8593	<1	14 • 3 • 3	127.38
.8554	8	14 • 4 • 2	128.44

Calcium aluminum hydroxide, $Ca_3Al_2(OH)_{12}$ - continued

 $CaCO_3$ was slowly converted to $CaCl_2$ by exposure to dry HCl fumes. However, since a few peaks of another phase persisted in the sample it was felt that intensity values should be calculated rather than measured.

Color

Colorless

Structure

Orthorhombic, Pnnm (58), Z=2, distorted rutile arrangement. The structure was determined by van Bever and Nieuwenkamp [1935]. Intensity values were calculated from structure data using the following information:

NBS lattice constants: a = 6.261(2)Å b = 6.429(2) c = 4.167(1)

- Atom positions: Ca (0 0 0) Cl (.275 .325 0) [van Bever and Nieuwenkamp, 1935]
- Scattering factors:

Ca²⁺, Cl [International Tables, 1962]

Thermal parameters: overall B = 1.0

Density (calculated) 2.175 g/cm³

Polymorphism

Jensen [1943] described 3 modifications.

Internal standard W, a = 3.16516 \AA				
CuK	$a_1 \lambda = 1$.54056 A; temp. 2	5 °C	
d (Å)	I (calc.)	hkl	20(°)	
4.48 3.46 3.050 2.858 2.816 2.356 2.331 2.244 2.083 2.027 1.974 1.906 1.890 1.866 1.792 1.751 1.684 1.565	85 17 100 35 4 25 50 30 20 3 2 25 10 11 10 4 7 4	110 101 111 120 210 121 211 220 002 130 221 031 112 301 311 320 122 400	19.80 25.71 29.26 31.27 31.75 38.16 38.59 40.16 43.40 44.66 45.94 47.68 48.10 48.75 50.92 52.20 54.44 58.97	
1.527 1.496	10 4	330	62.00	

Additional patterns

1. PDF card 1-0338 [Hanawalt et al., 1938]

2. Döll and Klemm [1939]

References

van Bever, A. K. and Nieuwenkamp, W. (1935). Z. Krist. 90, 374.

Döll, W. and Klemm, W. (1939). Z. anorg. u. allgem. Chem. 241, 233.

Hanawalt, J.D., Rinn, H.W., and Frevel, L.K.(1938) Ind. Eng. Chem. Anal. Ed. **10**, 457.

International Tables III (1962). 202, 204.

Jensen, A.T. (1943). Kgl. Danske Videnskab. Selskab 20 #5, 1.

Sample The sample	e was pre	epared by slow eva	aporation at	;	d (Å)	Ι	hkl	26(°)
room temp CsCl and Color Brilliant	erature CoCl ₂ . greenisl	ofa 2:1 aqueous h blue	s solution of	-	2.904 2.875 2.841 2.700 2.684	40 55 30 35 30	311 212 141 240,132 222	30.76 31.08 31.46 33.15 33.36
Optical data Biaxial, N_{α} = 1.575, N_{β} = 1.585, N_{γ} = 1.596; 2V is very large.				1	2.600 2.537 2.507 2.447 2.436	40 8 12 20 40	330 241 150 051 232	34.46 35.35 35.78 36.70 36.87
Structure Orthorhombic, Pnam (62), Z=4, isostructural with K_2SO_4 and Cs_2CuCl_4 [Porai-Koshitz, 1954]. The structure was determined by Tishchenko and Pin- sker [1955].					2.402 2.319 2.297 2.284 2.245	20 5 8 16 13	312,410 401 340 411 123	37.41 38.80 39.18 39.42 40.14
NBS lattice constants: a = 9.771(2)Å b = 12.973(2) c = 7.401(1) Density				2.194 2.170 2.142 2.126 2.093	19 10 13 9 2	341 213 033 332,430 133	41.11 41.59 42.16 42.48 43.18	
(calculated) 3.303 g/cm ³ Reference intensity I/I _{corundum} 1.8				2.086 2.076 1.976 1.951 1.945	4 11 6 11 13	223 152 260 342,440 422,313	43.35 43.57 45.88 46.50 46.66	
<pre>Major Impurities</pre>				1.925 1.910 1.870 1.850 1.843	6 5 13 16 13	143 261 520,511 004 432	47.17 47.56 48.65 49.21 49.40	
Akad. Nauk	SSSR 10	0, 913.	, o		1.822 1.798 1.779	3 10 5	243,170 071 352,024 +	50.03 50.74 51.30
Intern CuKa	$\lambda = 1.5$	ard Ag, $a = 4.0864$ 64056 Å; temp. 25	41 A 5 ℃		1.750	5 14	262	52.24 52.41
d (Å)	I 19	hkl	20(°)		1.730 1.714 1.687 1.682 1.670	6 7 3 8	531,204 512 271 343 522	52.88 53.42 54.32 54.50 54.93
4.367 4.075 3.952 3.889	90 15 19 75	121 201 130 211	20.32 21.79 22.48 22.85		1.632 1.629 1.622 1.6068	9 8 3 11	541 600 080 044	56.31 56.45 56.69 57.29
3.731 3.697 3.485 3.454 3.345	95 100 10 10 4	031 002 131 221 112	23.83 24.05 25.54 25.77 26.63		1.6037 1.6004 1.5969 1.5911	9 10 9 7	163,452 180 314 601	57.41 57.54 57.68 57.91 58.12
3.242 3.157 3.075 3.053 2.947	70 75 14 35 11	040 310 140 122 202	27.49 28.24 29.01 29.23 30.30		1.5431 1.5276 1.5081 1.4891	4 2 7 6 5	263 551 334 154	59.89 60.56 61.43 62.30

19

The sample was prepared by slow evaporation at room temperature of a 2:1 molar aqueous solution of CsCl and CuCl₂.

Color

Unground - deep brown Ground - deep orange

Optical data

Biaxial (+), N_{α} = 1.625, N_{β} = 1.648, N_{γ} = 1.678 2V = 83° 46' [Helmholz and Kruh, 1952].

Structure

Orthorhombic, Pnam (62), Z = 4. The space group was determined by Mellor [1939]. The structure was determined by Helmholz and Kruh [1952], and refined by Morosin and Lingafelter [1961].

```
Density
(calculated) 3.386 g/cm<sup>3</sup>
```

Reference intensity // corundum = 1.2

References

Helmholz, L. and Kruh, R.F. (1952). J. Am. Chem. Soc. 74, 1176.
Mellor, D.P. (1939). Z. Krist. 101A, 160.
Morosin, B. and Lingafelter, E.C. (1961). J. Phys. Chem. 65, 50.

Inter	Internal standard W, a = 3.16516 Å						
CuK	$a_1 \lambda = 1$.54056 A; temp. 2	5°C				
d(A)	Ι	hkl	20(°)				
5.236	2	120	16.92				
4.546	11	210	19.51				
4.316	55	121	20.56				
4.116	25	201	21.57				
3.905	40	211	22.75				
3.841	35	220	23.14				
3.808	100	130,002	23.34				
3.638	50	031	24.45				
3.410	5	112,131	26.11				
3.247	2	022	27.45				
3.157 3.152 3.103 3.082 3.005	60 60 30 16	230 310 040 122 202	28.24 28.29 28.75 28.95 29.71				
2.959	4	140	30.18				
2.920	25	212,231	30.59				
2.913	25	311	30.67				
2.884	25	320	30.98				
2.758	16	141	32.43				
2.704	25	222	33.10				
2.696	25	321,132	33.20				
2.560	30	330	35.02				
2.477	12	241	36.23				
2.442	9	400	36.77				
2.429	35	232,312	36.97				
2.406	25	150,042	37.35				
2.361	3	051	38.09				
2.300	7	322	39.14				
2.286	20	411,123	39.38				
2.274	6	420	39.60				
2.253	5	203	39.99				
2.247	3	340	40.09				
2.217	12	213	40.67				
2.179	2	421	41.40				
2.164	11	033	41.71				
2.156	13	242,341	41.87				
2.124	10	251,332	42.53				
2.056	2	402	44.00				
2.033	11	152	44.52				
2.028	10	412,431	44.64				
1.980	5	233	45.79				
1.977	3	313,350	45.86				
1.953	3	422	46.47				
1.935	5	342	46.92				
1.929	7	510,143	47.06				
1.910	8	351	47.56				
1.904	25	260,004	47.72				
1.872	5	511	48.60				
1.864	7	520	48.82				

Cesium copper chloride, $\rm Cs_2 CuCI_4$ - continued

d (Å)	I	hkl	20(°)
1 848	2	261 114	49.26
1 842	4	432	49.20
1 823	3	243	19 99
1 819		062	50.12
1 788	4	124 162	51 04
1.700	-	124,102	51.04
1.7673	3	530	51.68
1.7562	2	214	52.03
1.7428	5	413	52.46
1.7269	14	071	52.98
1.7218	16	512,531	53.15
1.7031	17	262,134	53.78
1.6979	11	451	53.96
1.6826	4	343	54.49
1.6746	6	522	54.77
1.6668	4	270	55.05
			:
1.6546	3	540	55.49
1.6298	12	314,600	56.41
1.6234	8	044	56.65
1.6169	9	541	56.90
1.6030	9	532	57.44
1			
1.5886	6	324	58.01
1.5786	, 6	611,460	58.41
1.5590	3	353	59.22
1.5366	3	513,550	60.17
1.5276	9	334,272	60.56
1.5166	5	542	61.05

The sample was prepared by evaporating an aqueous solution of $CoCl_2$ at about 90 °C. The first crystals formed were filtered from the solution and washed with ethyl alcohol. The sample forms a higher hydrate in moist air.

Color

Deep violet

Structure

Monoclinic, C2/m (12), Z = 2, isostructural with $CoBr_2 \cdot 2H_20$ and the corresponding Mn salts [Morosin, 1965]. The structure of $CoBr_2 \cdot 2H_20$ was determined by Morosin and Graeber [1963].

NBS lattice constants: a = 7.280(1)A b = 8.552(2) c = 3.573(1) $\beta = 97.55(1)^{\circ}$

Density (calculated) 2.498 g/cm³ Reference intensity $1/i_{corundum} = 2.5$

Additional patterns 1. PDF card 3-786 [Neuhaus, 1938].

References

Morosin, B. (1965). Abstract Bull. Am. Phys. Soc. 10, 686.
Morosin, B. and Graeber, E.J. (1963). Acta Cryst. 16, 1176.
Neuhaus, A. (1938). Z. Krist. 98, 112.

Inter	Internal standard W, a = 3.16516 Å						
CuK	$CuKa_1 \lambda = 1.54056 A; temp. 25 °C$						
d (Å)	Ι	hkl	20(°)				
5.514	100	110	16.06				
4.277	65	020	20.75				
3.606	2	200	24.67				
3.542	3	001	25.13				
3.127	4	111	28.52				
2.854	25	111	31.32				
2.758	14	220	32.43				
2.726	20	021	32.83				
2.712	40	201	33.00				
2.651	11	130	33.78				
2.376	25	201	37.84				
2.315	4	<u>3</u> 10	38.87				
2.291	12	221	39.30				
2.138	20	040	42.23				
2.076	19	131,221	43.56				
2.0611 1.8350 1.8044 1.7711 1.7379	12 4 6 6	311 311 400 002 112	43.89 49.64 50.54 51.56 52.62				
1.7031	5	331	53.78				
1.6789	10	241	54.62				
1.6626	6	420	55.20				
1.6359	3	022	56.18				
1.5896	10	241	57.97				
1.4233	3	510	65.53				
1.3938	1	350	67.09				
1.3786	5	440	67.94				

The sample was prepared by slow evaporation at room temperature of an aqueous solution of CoCl₂.

Color

Deep purplish red

Optical data

Biaxial (+), ${\rm N}_{\alpha}{=}1.524,~{\rm N}_{\beta}{=}1.548,~{\rm N}_{\gamma}{=}1.580.$ 2V is very large.

Structure

Monoclinic, I2/m (12), Z = 2, isostructural with NiCl₂.6H₂O. The structure was determined by Mizuno (1960).

NBS lattice constants: a = 8.898(2) Å b = 7.066(1) c = 6.644(1) $\beta = 97.25(1)^{\circ}$

Density (calculated) 1.907 g/cm³

Polymorphism

1. PDF card 13-399 [Inst. of Physics, University College, Cardiff, Wales] reports a cell related to this form but with the c doubled and with space group $P2_1/c$ (14). The pattern however appears quite different, so a polymorph may exist.

References

Mizuno, J	. (1960).	J.	Phys.	Soc.	Japan	15,	1412.
-----------	-----------	----	-------	------	-------	-----	-------

Interr	Internal standard Ag, a = 4.08641 Å					
CuK <i>a</i>	CuK a_1 λ = 1.54056 Å; temp. 25 °C					
d (Å)	I	hkl	20(°)			
5.636	100	101	15.71			
5.521	45	110	16.04			
4.987	15	101	17.77			
4.826	55	011	18.37			
4.421	4	200	20.07			
3.534	18	020	25.18			
3.414	4	211	26.08			
3.115	11	211	28.63			
2.993	16	121	29.83			
2.933	55	112	30.45			
2.817	20	202	31.74			
2.758	30	220	32.44			
2.735	16	112	32.72			
2.716	35	310	32.95			
2.569	19	301	34.89			
2.410	30	$022 \\ 031 \\ 400, \overline{3}21 \\ \overline{4}11, 321 \\ 222$	37.28			
2.219	10		40.63			
2.206	25		40.87			
2.079	10		43.49			
2.038	7		44.41			
1.985	18	312	45.66			
1.951	5	402,231	46.51			
1.940	5	411	46.80			
1.902	17	132	47.77			
1.871	8	420	48.62			
1.8664 1.8388 1.8118 1.7873 1.7666	8 4 3 7	123 330 213 123 040	48.75 49.53 50.32 51.06 51.70			
1.7075	15		53.63			
1.6852	3		54.40			
1.6136	9		57.03			
1.6115	8		57.11			
1.5989	6		57.60			
1.5769	3	521	58.48			
1.5564	10	042,233	59.33			
1.5540	6	332	59.43			
1.5041	4	323	61.61			
1.4932	3	024	62.11			
1.4837	3	204	62.55			
1.4694	5	503	63.23			
1.4665	5	233,224	63.37			
1.4554	3	341	63.91			

Sample	
The sample was prepared by slow evaporation of an aqueous solution of CoF_2 at room temperature.	
Color Medium red	d (A
Structure Orthorhombic, $P2_1ab$ (29), Z = 4, isostructural with $ZnF_2 \cdot 4H_20$ and other similar tetrahydrates. The structure of $ZnF_2 \cdot 4H_20$ was investigated by Rao et al. [1965].	5.24 4.89 4.09 3.77 3.57 3.29 3.10
NBS lattice constants:	3.07 3.0
a = 7.552(2)Å b = 12.658(3) c = 5.287(1)	2.98 2.97 2.76
Density (calculated) 2.221 g/cm ³	2.64 2.58 2.59
Reference intensity 1/1 _{corundum} = 1.8 Polymorphism	2.48 2.44 2.33 2.32 2.28
Easwaran. and Srinivasan [1965] reported, by com- parison of powder patterns, that $CoF_2 \cdot 4H_20$ was isostructural with $FeF_2 \cdot 4H_20$. However, Penfold and Taylor [1960] reported $FeF_2 \cdot 4H_20$ as rhombo- hedral. This suggests a second form of $CoF_2 \cdot 4H_20$ exists.	2.23 2.18 2.16 2.13 2.03
Additional patterns 1. PDF card 1-258 [Hanawalt et al., 1938]	2.00 1.95 1.95 1.92 1.88
References Easwaran, K.R.K. and Srinivasan, R. (1965). Proc. Nuclear Physics - Solid State Physics Symposium,	1.84 1.80 1.78 1.76 1.75
Calcutta, Part A, 171. Hanawalt, J.D., Rinn, H.W.,and Frevel, L.K.(1938). Ind. Eng. Chem. Anal. Ed. 10 , 457. Penfold, B.R. and Taylor, M.R. (1960). Acta Cryst. 13 , 953.	1.74 1.71 1.69 1.67 1.66
Rao, K.V.K., Naidu, S.V.N., and Rao, P.V. (1965). Indian J. Pure Applied Phys. 3, 68.	1.65 1.64 1.62 1.61 1.58

Internal standard Ag, a = 4.08641 Å CuK a_1 λ = 1.54056 Å; temp. 25 °C					
d (Å)	Ι	hkl	20(°)		
5.289	5	001	16.75		
4.854	100	120,011	18.26		
4.096	35	111	21.68		
3.776	4	200	23.54		
3.577	3	121	24.87		
3.296	4	031	27.03		
3.165	25	040	28.17		
3.071	3	201	29.05		
3.019	5	131	29.56		
2.987	30	211	29.89		
2.919	2	140	30.60		
2.764	15	221	32.36		
2.644	1	002	33.88		
2.589	3	012	34.62		
2.557	7	141	35.07		
.484	3	231	36.13		
.448	5	112	36.68		
.338	3	320	38.48		
.321	4	122	38.76		
.281	2	051	39.47		
.237	7	311	40.29		
.186	8	151	41.26		
.165	14	202	41.68		
.136	4	212	42.28		
.031	20	160	44.58		
.001	4	331	45.28		
.959	6	061,142	46.31		
.954	7	251	46.44		
.927	3	232	47.12		
.889	6	400	48.14		
.845	1	341	49.34		
.8044	5	312	50.54		
.7869	8	242	51.07		
.7606	5	411	51.89		
.7515	11	322	52.18		
.7465 .7117 .6921 .6732 .6696	7 2 3 3	013 421,071 351 332 171	52.34 53.49 54.16 54.82 54.95		
.6563 .6456 .6213 .6169 .5893	3 3 3 2	123 252 440 360 133	55.43 55.82 56.73 56.90 57.98		

Sample The sample was prepared by slow evaporation of a CuF_2 aqueous solution at room temperature.	Inter CuK	rnal stan $a_1 \lambda = 1$	dard W, a = 3.165 .54056 Å; temp. 2	16 Å 5 °C
Color Brilliant greenish blue	d (Å)	I	hkl	26(°)
Optical data Biaxial (-), N =1.502, N _β =1.522, N _γ =1.534; 2V is medium large. ^{α}	4.805 3.700 3.164 3.113 2.983	100 30 17 15 12	110 020 200 101 011	18.45 24.03 28.18 28.65 29.93
Structure Monoclinic, I2/m (12), Z=2. The structure was determined by Abrahams and Prince [1962] using neutron diffraction.	2.717 2.404 2.353 2.299	45 <1 15 20	101 <u>2</u> 20 211 130	32.94 37.37 38.22 39.16
NBS lattice constants: a = 6.412(1) Å b = 7.403(1) c = 3.3025(6) $\beta = 99.46(1)^{\circ}$	2.023 1.968 1.919 1.850 1.750	15 6 13 11 6	211 031 301 040 231	41.16 44.77 46.08 47.32 49.20 52.24
Density (calculated) 2.954 g/cm ³ Reference intensity	1.704 1.650 1.629 1.601 1.5818	5 2 <1 12 5	321 301 002 231 400	53.75 55.64 56.44 57.51 58.28
Additional patterns 1. PDF card 6-143 [Wheeler and Haendler, 1954].	1.5556 1.5299 1.5079 1.4930 1.4906	4 6 <1 2 <1	202 141 321 411 022	59.36 60.46 61.44 62.12 62.23
References Abrahams, S. C. and Prince, E. (1962). J. Chem. Phys. 36, 50. Wheeler, C.M.Jr. and Haendler, H.M. (1954). J. Am. Chem. Soc. 76, 263.	1.4544 1.4413 1.4342 1.3685 1.3598 1.3325	<1 <1 <1 1 <1 4	420 150 222 132 202 341	63.96 64.61 64.97 68.51 69.01 70.63

The sample was made by I. Mayer [Hebrew University, Jerusalem]. A mixture of $(NH_4)_2HPO_4$ and Eu_2O_3 was heated at 500 °C for 2 hours, then at 1100 °C overnight.

Color

Colorless

Structure

Monoclinic, P21/n (14), Z=4, isostructural with monazite [Feigelson, 1964]. The structure of monazite was determined by Kokkoros [1942].

NBS lattice constants: a = 6.6684(5)A b = 6.8671(5) c = 6.3534(5) $\beta = 103.94(1)^{\circ}$

Density

(calculated) 5.808 g/cm³

Additional patterns

1. PDF card 18-506 [Bril and Wanmaker, 1964]

References

Bril, A. and Wanmaker, W.L. (1964). J. Electrochem. Soc. 111, 1363.Kokkoros, P. (1942). Prakt. Akad. Anthenon 17, 163.

Feigelson, R.S. (1964). J. Am. Ceram. Soc. 47, 257.

Inter	Internal standard W, a = 3.16516 Å					
CuK	CuK a_1 λ = 1.54056 Å; temp. 25 °C					
d (Å)	Ι	hkl	2θ(°)			
5.127	12	101	17.28			
4.714	9	110	18.81			
4.593	25	011	19.31			
4.107	40	111	21.62			
4.008	18	101	22.16			
3.461	17	111	25.72			
3.435	15	020	25.92			
3.237	55	200	27.53			
3.084	7	002	28.93			
3.034	100	120	29.41			
3.000	5	021	29.76			
2.928	15	210	30.51			
2.901	6	211	30.80			
2.813	85	112,012	31.79			
2.561	25	202	35.01			
2.446	2	211	36.71			
2.399	18	212	37.45			
2.395	19	112	37.52			
2.355	6	220	38.18			
2.342	1	221	38.41			
2.296	5	Ī22,022	39.21			
2.208	3	301	40.83			
2.146	25	031	42.07			
2.112	25	Ī03	42.79			
2.104	25	311	42.96			
2.081	19	221	43.44			
2.058	2	310	43.96			
2.053	3	222	44.08			
1.988	2	131	45.60			
1.923	35	212	47.22			
1.899	6	301	47.87			
1.868	3	230	48.70			
1.862	14	231	48.88			
1.839	25	132,032	49.53			
1.835	15	103	49.64			
1.827	15	320	49.87			
1.7988	2	123	50.71			
1.7737	2	113	51.48			
1.7638	11	023	51.79			
1.7339	19	322	52.75			
1.7227	4	231	53.12			
1.7170	5	040	53.31			
1.7043	25	132,223	53.74			
1.6593	11	140	55.32			
1.6377	1	141	56.49			
1.6180	4	123,400	56.86			
1.6002	7	402	57.55			
1.5782	2	141	58.43			
1.5750	7	410	58.56			
1.5701	7	330	58.76			

Europium phosphate, $EuPO_4$ - continued

d (Å)	Ι	hkl	20(°)
1.5583	2	412	59.25
1.5547	4	312	59.40
1.5476	2	114	59.70
1.5420	5	004	59.94
1.5322	2	213	60.36
1.5288	1	033,323	60.51
1.5168	3	240	61.04
1.5101	5	332	61.34
1.5059	10	214	61.53
1.5003	4	142,042	61.78
1.4503	2	422	64.16
1.4473	1	322,411	64.31
1.4417	4	124	64.59
1.4358	3	241	64.89
1.4322	2	133	65.07
1.4295	3	223	65.21
1.4260	3	242	65.39
1.4062	1	024	66.43
1.3974	3	314	66.90
1.3591	2	421	69.05
1.3473 1.3434 1.3379 1.3320 1.3263	4 , 5 3 2	431 150,340 423 143 151	69.74 69.97 70.30 70.66 71.01
1.3179	4	324,043	71.53
1.3152	7	124	71.70
1.3091	11	332,402	72.09
1.3052	10	342,134	72.34

S

Sample	Inter	nal stand	ard Ag $a = 4.086$	41 Å
The sample was NBS Standard Reference Material	meer	inar Stano	°	11 73
41a. The dextrose was produced by Pfanstieni	CuKa	$\lambda = 1.5$	54056 A; temp. 2	5 °C
ash less than 0.02%	d (Å)	Ι	hkl	20(°)
	8 50	7	110	10.40
	7.42	6	020	11 91
Color	6.04	15	120	14 66
Colorless	5.181	14	200	17.10
	4.894	1	210	18.11
Structure	4 704			
Outherherhie D2 2 2 (10) Z=4 [Granalan and	4.724	20	011	18.77
Dove 19311 The structure was determined by	4.407	100		19.77
McDonald and Beevers [1952]	4.251	8	220	20.65
hobolidid and beevers [1552].	3.841	4	121	23.14
NBS lattice constants:			_	
a = 10.368(2)Å	3.709	1	040	23.97
b = 14.856(2)	3.590	4	201	24.78
c = 4.9808(6)	3.493	11	140,211	25.48
	3.366	2	310	26.46
	3.326	3	131	26.78
Demaitu	3.234	2	221	27.56
(calculated) I EGO Ø/cm ³	3.132	19	320	28.47
(calculated) 1.500 g/cm	3.018	1	240	29.57
Reference intensity	2.977	2	041	29.99
$ / _{consider} = 2.3$	2.907	4	231	30.73
Columbum	2 856	1	150	21.20
	2.833	1	330	31.29
Additional patterns	2.789	<1	311	32.06
1. PDF card 1-374 [Sponsler and Dove, 1931]	2.651	2	321	33.78
 PDF card 3-228 Inst. of Physics at Universi- ty College, Cardiff, Wales. 	2.590	5	400	34.60
	2.581	4	241	34.73
	2.551	4	410,051	35.15
References	2.530	2	340	35.45
McDonald T. R.R. and Beevers, C.A. (1952). Acta	2.489	8	002	36.05
Cryst. 5, 654.	2.477	9	151,060	36.23
Sponsler, O.L. and Dove, W.H. (1931). J. Am. Chem.	2,455	7	012	36.57
Soc. 53, 1639.	2.449	7	420	36.67
	2.423	2	102	37.08
	2.408	1	160	37.31
	2.390	1	112	37.60
	2.362	7	022	39.07
	2.295	4	430	39.22
	2.273	4	411	39.62
	2.255	6	341	39.94
	2.233	1	260	40.35
	2,217	4	061	40.65
	2.196	1	421	41.06
	2.168	1	161	41.62
	2.150	1	222	41.99
	2.125	<1	440	42.51
	2 085	1	431	13 36
	2.080	1	170	43.47
	2.053	4	510,351	44.08
	2.002	1	312	45.26
	1.963	2	270	46.20

Glucose, D, alpha, (dextrose), $C_6H_{12}O_6$ – continued

d (Å)	Ι	hkl	20(°)
1.953	2	450,071	46.47
1.918	2	171	47.36
1.914	2	501,530	47.47
1.899	1	511	47.87
1.867	1	361	48.74
1.854	1	521	49,10
1.827	1	180.271	49.87
1.818	<1	451	50.14
1.809	<1	370	50.40
1.791	2	252,460	50.95
1 786	1	531	51 10
1.775	<1	342	51 /3
1.756	1	062	52 05
1.745	<1	422	52.00
1.741	<1	081	52.52
1.716	<1	610,181	53.35
1.701	1	541,550+	53.86
1.684	1	461,620	54.44
1.671		352	54.90
1.663	L I	262	55.18
1.650	<1	013,281	55.66
1.630	1	190,113	56.39
1.623	1	611	56.65
1.617	<1	442	56.90
1.601	1	123	57.53
1.595	• 2	172,621	57.75
1.5811	1	203	58.31
1.5664	1	091,640+	58.91

20(°)

10.93 11.95 14.24 17.34 17.99 21.98 22.51 23.32 25.84 26.25 27.43 28.66 29.60 32.29

32.64

33.23 35.07 35.42 36.31 37.74

38.04 38.97

40.51 41.00

42.54 42.88 43.61

45.09 47.71 49.34

50.04 51.39

53.13 53.34

53.76

55.03

55.24 55.92

56.62 56.93

58.76 58.98 59.36 60.79

61.39

62.37

62.56 64.30 64.66

65.80

Sample The In_2S_3 was made by W.S. Brower by heating the elements in a sealed silica tube at 460 °C for sixteen hours and at 880 °C for six hours	Internal standard W, a = 3.16516 Å CuK a_1 λ = 1.54056 Å; temp. 25 °C			
	d (Å)	Ι	ĥkl	2
Color Unground: dark grayish red Ground: strong reddish brown	8.09 7.40 6.21 5.110 4.927	4 3 30 12 2	004 101 103 112 105	10 11 14 17 17
Tetragonal, I4 ₁ 22 (98), Z=16. The structure was studied by Rooymans [1959] and by Goodyear and Steigmann [1961].	4.041 3.947 3.811 3.445	3 2 18 2	008 107 200,116 204 211	21 22 23 25
Density	3.249 3.112 3.015 2.770 2.741	100 12 1 3 3	109,213 206 215 208,1·1·10 1·0·11,217	21 21 22 32 32 32
(calculated) ^{4.613} g/cm ³ Reference intensity ^{1/1} _{corundum} = 4.2	2.694 2.557 2.532 2.472 2.382	50 1 1 4 1	0.0.12,220 224 301 219,303 312	33 35 36 30 37
Polymorphism Hahn and Klinger [1949] found that a low temper- ature form transformed irreversibly at about 330 °C to a high form which they indexed as cu- bic with a few extra non-cubic lines.	2.364 2.309 2.225 2.199 2.123	3 1 3 9 1	1.0.13,305 314 2.1.11,307 2.0.12,316 1.1.14	38 38 40 41 42
Additional patterns 1. Goodyear and Steigmann [1961].	2.107 2.074 2.009 1.905 1.845	2 45 3 65 1	321 309,323 2·1·13,325 2·2·12,400 1·0·17,411	42 43 45 45
References Goodyear, J. and Steigmann, G.A. (1961). Proc. Phys. Soc. 78 491.	1.8213 1.7766 1.7224 1.7161 1.7037	6 1 1 3	329,413,+ 3.0.13,415 334,408,+ 3.2.11,417 336,420,+	50 5 5 5 5
Hahn, H. and Klinger, W. (1949). Z. anorg. Chem. 260, 97. Rooymans, C.J.M. (1959). J. Inorg. Nucl. Chem. 11, 78.	1.6673 1.6615 1.6429 1.6242 1.6161	3 3 13 5 3	3.1.14,424 1.0.19,2.1.17 3.0.15,419 426,2.0.18 2.2.16,0.0.20	55 55 56 56
	1.5701 1.5647 1.5556 1.5224 1.5090	2 2 10 1 4	3·3·10,428 4·1·11 4·0·12 2·1·19,431,+ 1·0·21,3·2·15	58 58 59 60
	1.4876 1.4835 1.4475 1.4403 1.4181	3 2 1 4 2	2.0.20,512 4.1.13,435 437 3.1.18,516,+ 1.1.22,3.3.14	62 62 64 64
Indium sulfide, $\ln_2 S_3$ - continued

d (Å)	Ι	hkl	20(°)
1.4137	2	3.0.19,521,+	66.03
1.4028	16	439,523,+	66.61
1.3527	2	4.3.11,527	69.42
1.3470	8	440,0.0.24	69.76
1.3252	1	3.2.19,4.1.17	71.08
1.2746	1	1.0.25,5.2.11	74.36
1.2701	2	2.0.24,536,+	74.67
1.2442	9	4.3.15,613,+	76.50
1.2364	2	4.2.18,606	77.07
1.2301	2	3.0.23,615,+	77.54
1.2119	1	1.1.26,608,+	78.93
1.2046	6	4.4.12,620,+	79.49
1.1895	1	4.3.17,541	80.72
1.1829	1	1.0.27,619,+	81.26
1.1728	1	4.2.20	82.11
1.1524	1	3·0·25,547,+	83.89
1.1488	1	5·1·18,6·0·12	84.21
1.1294	5	549,633,+	86.00
1.1190	1	4·1·23,635,+	87.00
1.0997	14	4·0·24,6·2·12	88.93
1.0832 1.0566 1.0462 1.0418 1.0368	<1 2 7 4	3.0.27,639,+ 556,640,+ 6.1.17,721 3.2.27,709,+ 6.0.18,646,+	90.65 93.61 94.83 95.36 95.97
1.0334	3	1.0.31,725,+	96.38
1.0223	1	5.5.10,648,+	97.79
1.0048	1	6.3.15,729	100.10
0.9715	2	7.0.15,653,+	104.91
.9524	4	4.4.24,800	107.96
.9413	1	659,743,+	109.83

The sample was prepared by permitting anhydrous $FeCl_2$ to hydrate in humid air. The sample was somewhat hygroscopic.

Color

light yellowish brown

Structure

Monoclinic, C2/m (12), Z=2, isostructural with $CoCl_2 \cdot 2H_2O$ and $MnCl_2 \cdot 2H_2O$. The structure was determined by Morosin and Graeber [1965].

NBS lattice constants: a = 7.3523(6)A b = 8.5609(8) c = 3.6367(3) $\beta = 98.10(1)^{\circ}$

Density (calculated) 2.385 g/cm³

Additional patterns

1. PDF card 1-210 [Hanawalt et al., 1938]

References

Hanawalt, J.D., Rinn, H.W., and Frevel, L.K.(1938). Ind. Eng. Chem. Anal. Ed. 10, 457. Morosin, B. and Graeber, E. J. (1965). J. Chem. Phys. 42, 898.

Internal standard W, a = 3.16516 Å CuK a_1 λ = 1.54056 Å ; temp. 25 °C					
$d(\mathring{A}) \qquad I \qquad hkl \qquad 2\theta(\circ)$					
5 548	100	110	15.96		
4.281	75	020	20.73		
3.641	7	200	24.43		
3.600	7	001	24.71		
3.181	8	111	28.03		
2 884	45	111	30.98		
2.773	45	220	32.25		
2.763	90	201	32.38		
2.657	25	130	33.70		
2.396	45	201	37.50		

d(A)	Ι	hkl	20(°)
2.335	12	310	38.53
2.321	25	221	38.77
2.193	5	131	41.13
2.141	35	040	42.18
2.092	45	311,221	43.21
2.088	35	131	43.30
1.848	7	330,311	49.26
1.840	6	041	49.51
1.820	19	400	50.09
1.800	13	002	50.67
1.769	14	112	51.62
1.721	9	331	53.18
1.711	7	202	53.49
1.692	20	241	54.17
1.674	11	420	54.79
1.6668	9	150	55.05
1.6609	8	112	55.26
1.6593	7	022	55.32
1.5959	18	241	57.72
1.5772	4	331	58.47
1.5313	4	151	60.40
1.5270	7	132	60.59
1.4943	6	151	62.06
1.4485	3	421	64.25
1.4352	4	510	64.92
1.4268	5	060	65.35
1.3987	3	350	66.83
1.3863	9	440	67.51
1.3775	8	042	68.00
1.3408	6	351,312	70.13
1.3263	<4	061	71.01
1.3138	< 4	422	71.79
1.2966	<4	530	72.89
1.2739	<4	511	74.41
1.2693	<4	351	74.72
1.2677 1.2432 1.2254 1.2065 1.2021	4 4 4 4	261 152 261,332 512,170 601	74.83 76.57 77.89 79.35 79.70
1.1981	4	402	80.02
1.1906	<4	203	80.63
1.1741	<4	531	82.00
1.1605	4	442	83.17
1.1572	4	621	83.46
1.1536 1.1481 1.1472 1.1357 1.1317	4 4 <4 <4	422 113 223 171 313	83.78 84.28 84.36 85.41 85.78

The sample was prepared by melting a 1:1 mixture of $PbCl_2$ and $PbBr_2$. The sample was then ground and annealed in a sealed glass tube at 400 °C overnight.

Color

Colorless

Structure

Orthorhombic, Pnam (62), Z=4, isostructural with BaCl₂. There is a complete solid solution series between PbBr₂ and PbCl₂ [Calingaert et al.,1949] The structure of PbCl₂ was determined by Bräkken and Harang [1928].

NBS lattice constants:

- a = 7.801(1)Å b = 9.207(1)
- c = 4.5803(5)

Density (calculated) 6.512 g/cm³

Reference intensity

I/I corundum = 2.0

References

- Bräkken, H. and Harang, L. (1928). Z. Krist. 68, 123.
- Calingaert, G., Lamb, F.W., and Meyers, F. (1949). J. Am. Chem. Soc. 71, 3712.

Internal standard Ag, a = 4.08641 Å				
CuKa	$\lambda = 1.5$	54056 Å; temp. 25	5 °C	
d (Å)	Ι	hkl	20(°)	
5 040	2	110	14 88	
5.949	6	020	19.25	
4.607	17	020	21 65	
4.101	80	120	21.03	
3.964	30	200	22,41	
3.897	30	200	22.80	
3.632	90	111	24.49	
2.998	30	121	29.78	
2.976	20	220	30.00	
2.976	16	130	31.29	
2.826	100	211	31.64	
2.020				
2.550	50	031	35.17	
2.503	8	310	35.84	
2.496	3	221	35.95	
2.423	16	131	37.07	
2.302	40	040	39.09	
2 201	40	002	39.30	
2.291	40	320	39.78	
2.204	10	140	40.85	
2.207	10	211	40.05	
2.196	40	311	41.00	
2.134	40	231	42.32	
2.051	1	022	44.12	
2.030	1	321	44.61	
1.982	30	122,240	45.74	
1.949	10	400	46.55	
1.908	1	410	47.63	
1 001	1	331.241	50.05	
1.021	5	222	50.22	
1.815	1	420 401	50.83	
1.795	-	150	50.03	
1.7922	3	150	50.91	
1.7869	4	132	51.07	
1.7616	2	411	51.86	
1.7239	1	340	53.08	
1.7090	1	051	53.58	
1.6895	3	312	54.25	
1.6682	16	151	55.00	
1 6229	10	042	56.67	
1 6100	20	322	57.16	
1.0102	20	142	57 97	
1.5896	3	251	59 09	
1.5647	з 7	421	50.90	
1.5488	,	40T	59.05	
1.5348	2	060	60.25	
1.5052	8	013,160	61.56	
1.4984	6	332,242	61.87	
1.4874	6	440	62.38	
1.4846	10	402	62.51	
		11.0	60.70	
1.4786	9	113	62.79	
1.4663	1	412	63.38	
1.4581	12	511	63.78	
1.4278	16	260,351	65.30	
1.4245	4	123	65.47	

Lead bromide chloride, PbBrCl - continued

d (Å)	I hkl 20(°)				I hkl 26		20(°)
1.4111	1	152	66.17				
1.4052	8	213	66.48				
1.3770	1	342	68.03				
1.3672	6	033	68.58				
1.3463	2	252,133	69.80				
1.3310	4	531	70.72				
1.3216	1	360	71.30				
1.3030	4	313	72.48				
1.2900	5	233	73.33				
1.2751	1	062	74.33				
1.2639	5	071	75.10				
1.2580	3	162	75.51				
1.2479	3	171,442	76.23				
1.2416	4	522	76.69				
1.2395	3	611	76.84				
1.2119	6	262	78.93				
1.2025	2	271,403	79.67				
1.1920	1	413	80.51				
1.1626	3	153	82.99				
1.1586	2	631	83.34				

The sample was prepared by treating $MgCO_3$ with a slight excess of an aqueous solution of HBr and evaporating at about 80 °C. The first crystals formed were used.

Color

Colorless

Structure

Monoclinic, C2/m (12), Z = 2, isostructural with MgCl₂·6H₂O. The structure was determined by Andress and Gundermann [1934].

NBS lattice constants: a = 10.286(1)Å b = 7.331(1)c = 6.211(1)

 $\beta = 93.34(1)^{\circ}$

Density (calculated) 2.076 g/cm³

Reference intensity 1/1_{corundum} = 2.9

Additional patterns

1. PDF card 1-1045 [Hanawalt et al., 1938].

References

Andress, K.R. and Gundermann, J. (1934). Z. Krist. 87A, 345.

Hanawalt, J.D., Rinn, H.W., and Frevel, L.K. (1938) Ind. Eng. Chem. Anal. Ed. 10, 457.

Inte:	Internal standard W, a = 3.16516 Å				
CuK	CuKa, λ = 1.54056 Å; temp. 25 °C				
d (Å)	Ι	hkl	20(°)		
6.20	10	001	14.28		
5.133	5	<u>2</u> 00	17.26		
4.375	2	111	20.28		
4.225	100	<u>1</u> 11	21.01		
4.070	40	201	21.82		
3.844	2	201	23.12		
3.664	35	020	24.27		
3.154	10	021	28.27		
3.101	40	310,002	28.77		
2.982	30	220	29.94		
2.835	18	311	31.53		
2.791	30	112	32.04		
2.724	70	202,221	32.85		
2.717	55	311,112	32.94		
2.655	3	221	33.73		
2.589	1	202	34.62		
2.568	1	400	34.91		
2.423	5	401	37.08		
2.378	6	130	37.80		
2.368	7	022	37.97		
2.325	14	401	38.70		
2.254	1	312	39.97		
2.210	9	131	40.79		
2.187	1	222	41.25		
2.136	4	312	42.27		
2.114	6	222	42.73		
2.067	1	003	43.77		
2.037	3	402	44.44		
2.021	3	421	44.80		
1.989	4	330	45.58		
1.973 1.963 1.958 1.933 1.915	4 4 2 8	T13 421 203 113 511	45.95 46.20 46.34 46.98 47.43		
1.899	12	T32	47.86		
1.879	6	203	48.39		
1.875	10	331,132	48.51		
1.8543	2	511	49.09		
1.8329	4	040	49.70		
1.8004	2	023	50.66		
1.7804	7	422	51.27		
1.7634	4	313	51.80		
1.7266	3	223,240	52.99		
1.7117	3	600,512	53.49		
1.7034	2	422	53.77		
1.6792	3	313	54.61		
1.6718	6	223,241	54.87		
1.6576	2	403	55.38		
1.6486	2	332	55.71		

Magnesium bromide hydrate, $MgBr_2$ $^{\circ}GH_2O$ - continued

d (Å)	Ι	hkl	20(°)
1.6261	2	512,601	56.55
1.5720	2	530	58.68
1.5667	2	403	58.90
1.5504	5	62 <u>0</u> ,004	59.58
1.5403	5	531	60.01
1.5213	2	242	60.84
1.5128	4	114	61.22
1.5085	3	204,531	61.41
1.4958	1	242	61.99
1.4861	2	621	62.44
1.4609	2	441,204 333 441 532,024 711	63.64
1.4581	2		63.78
1.4391	4		64.72
1.4280	2		65.29
1.4189	2		65.76
1.4156	1	T51	65.93
1.4103	2	151	66.21
1.3906	1	513	67.27
1.3776	<1	532	67.99
1.3625	2	404,442	68.85
1.3573	3	603,224	69.15
1.3475	2	350	69.73
1.3381	1	243	70.2 9
1.3341	2	712	70.53
1.3231	1	351	71.21
1.3189	<1	T52	71.47
1.3120	2	243	71.90
1.3106	1	351,152	71.99

Sample The sample was prepared by boiling a saturated aqueous solution of MgCl ₂ and filtering off the crystals. The sample was somewhat hyproscopic.	Internal standard Ag, a = 4.08641 Å CuK a_1 λ = 1.54056 Å; temp. 25 °C			
	d (Å)	I	hkl	20(°)
Color Colorless	5.77 4.263 4.101	17 20 100	110 111 111	15.34 20.82 21.65
Optical data Biaxial (+), N_{α} =1.498, N_{β} =1.505, N_{γ} =1.525. 2V is large.	3.955 3.708 3.556	30 10 30	201 201 020	22.46 23.98 25.02
Structure Monoclinic, C2/m (12), $Z = 2$, isostructural with MgBr ₂ .6H ₂ 0. The structure of bischofite was de- termined by Andress and Gundermann [1934].	3.068 3.032 2.981 2.883	2 5 35 65	021 002 310 220	29.08 29.43 29.95 30.99
NBS lattice constants: a = 9.871(2)A b = 7.113(1) c = 6.079(1)	2.740 2.728 2.661 2.643 2.616	35 55 8 90 7	311 T12 Z02 Z21,112 311	32.66 32.80 33.65 33.89 34.25
B = 93.74(1) Density (calculated) 1.585 g/cm ³	2.567 2.463 2.336 2.308 2.232	9 7 9 25 30	221 400 401 022,130 401	34.92 36.45 38.50 38.99 40.38
Reference intensity I/I _{corundum} = 0.8 Additional patterns	2.192 2.167 2.145 2.131 2.065	2 5 8 3 8	312 131 131 222 312	41.15 41.65 42.10 42.39 43.80
References	2.051 1.952 1.922 1.914 1.890	11 2 5 7 6	222 421 330 203 421	44.11 46.49 47.25 47.46 48.10
Andress, K.R. and Gundermann, J. (1934). Z. Krist. 87A, 345. Hanawalt, J.D., Rinn, H.W.,and Frevel, L.K.(1938). Ind. Eng. Chem. Anal. Ed. 10, 457.	1.849 1.844 1.830 1.812 1.778	35 20 6 7 15	ī32 511 203 331 040	49.25 49.38 49.79 50.32 51.35
	1.757 1.7272 1.7218 1.6860 1.6418	5 13 11 4 3	023 422 313 223 600	52.00 52.97 53.15 54.37 55.96
	1.6221 1.5964 1.5088 1.4874	6 5 4 12	241 332 133 531	56.70 57.70 61.40 62.38

The sample was prepared by heating a solution of $MnCl_2 \cdot 4H_2O$ in ethyl alcohol. Excess alcohol was removed by pressing between filter papers.

Color

Light pink

Optical data

Biaxial (+), N =1.583, N_{\beta}=1.613, N_{\gamma}=1.664; 2V is very large.

Structure

Monoclinic, C2/m (12), Z=2 [Neuhaus, 1937], isostructural with $CoCl_2 \cdot 2H_2O$. The structure was determined by Vainshtein [1952].

NBS lattice constants: a = 7.4062(5) A b = 8.8032(5) c = 3.6881(5) $\beta = 98.22(1)^{\circ}$

Calculated) 2.259 g/cm³

Reference intensity $\frac{1}{1}$ = 2.3

Additional patterns

PDF card 1-199 [Hanawalt et al., 1938].
 PDF card 3-743 [Neuhaus, 1937].

References

```
Hanawalt, J.D., Rinn, H.W., and Frevel, L.K. (1938).
Ind. Eng. Chem. Anal. Ed. 10, 457.
Neuhaus, A. (1937). Z. Krist. 98, 112.
Vainshtein, B.K. (1952). Dokl. Akad. Nauk SSSR 83, 227.
```

	Internal standard W, a = 3.16516 Å CuK a_1 λ = 1.54056 Å; temp. 25 °C					
$d(\hat{A}) \qquad I \qquad hkl \qquad 2\theta(\circ)$						
	5.636	100	110	15.71		
	4.399	65	020	20.17		
	3.667	3	200	24.25		
	3.227	4	ĩıı	27.62		
	2.922	25	111	30.57		
ļ	2.817	30	220	31.74		
	2.794	45	201	32.01		
I	2.725	14	130	32.84		
I	2.419	25	201	37.13		
	2.355	16	221,310	38.19		
٠						

d (Å)	Ι	hkl	20(°)
2.202	19	040	40.96
2.130	13	131	42.41
2.120	20	221	42.61
2.116	18	311	42.70
1.887	1	240	48.19
1.878	2	330	48.43
1.866	2	311	48.75
1.833	9	400	49.71
1.8250	8	002	49.92
1.7945	7	112	50.84
1.7499	4	331	52.23
1.7287	9	241	52.92
1.7120	2	150	53.48
1.6918	5	420	54.17
1.6282	9	241	56.48
1.6004	<1	331	57.54
1.5547	3	132	59.40
1.5304	2	151	60.44
1.4673	1	060	63.33
1.4463	1	510	64.36
1.4285	1	350	65.25
1.4084	6	<u>4</u> 40	66.31
1.3695	2	351	68.45
1.3618	1	260,061	68.89
1.3116	<1	530	71.93
1.2988	1	261	72.75
1.2841	1	511	73.72
1.2545	1	261	75.76
1.2393	1	170	76.86
1.2118	1	601	78.94
1.2096	1	402	79.11
1.1867	<1	531	80.95
1.1771	1	620	81.75
1.1682	3	621	82.50
1.1654	2	171	82.75
1.1453	2	460	84.53
1.1363	1	532	85.36
1.1266	<1	550	86.27
1.1181	1	370	87.09
1.1116	1	601,551	87.73
1.1002	<1	080	88.87
1.0893	1	371	90.00
1.0777	<1	621	91.24
1.0658	1	461	92.56
1.0615	1	641	93.05
1.0396	<1	710,711	95.62
1.0372	1	172	95.92
1.0239	<1	281	97.58
1.0096	1	552	99.45
0.9923	1	641	101.84
.9862	<1	730,731	102.71

The sample was prepared by exposing finely ground HgCl_2 to NH_3 gas in a previously evacuated desiccator.

Color

Colorless

Structure

Cubic, Z=1/2, structure determined by MacGillavry and Bijvoet [1936].

NBS lattice constant: a = 4.053(2)A

Density (actaulated) a c

(calculated) 3.809 g/cm³

Reference intensity //I_{corundum} = 1.6

Internal standard W, a = 3.16516 Å CuK $a_1 \lambda$ = 1.54056 Å ; temp. 25 °C					
$d(\mathring{A}) \qquad I \qquad hkl \qquad 2\theta(\circ)$					
2.868 2.342 2.028 1.4332 1.2220 1.1699	17 100 70 25 19 8	110 111 200 220 311 222	31.16 38.41 44.65 65.02 78.15 82.36		

Additional patterns

1. MacGillavry and Bijvoet [1936]

References

MacGillavry, C. H. and Bijvoet, J. M. (1936). Z. Krist. **94**, 231.

The sample was made by I. Mayer [Hebrew University, Jerusalem]. A mixture of $(NH_4)_2HPO_4$ and Nd_2O_3 was heated at 500 °C for 2 hours, then at 1100 °C overnight.

Color

Pale purplish pink

Structure

Monoclinic, P21/n (14), Z=4, isostructural with monazite. The structure of NdPO4 was determined by Mooney [1948].

NBS lattice constants: a = 6.7441(6)A b = 6.9584(7) c = 6.4111(7) $\beta = 103.67(1)^{\circ}$

Reference intensity 1/1 corundum = 1.0

corunoum

Polymorphism

NdPO₄ occurs also in a low temperature modification, which may require some zeolite water for stabilization [Mooney, 1950]. PDF card 4-644 is of this form.

Additional patterns

1. Weigel et al. [1965]

References

Mooney,	R.C.L.	(1948).	J.	Chem.	Phys.	16,	1003.	
Mooney,	R.C.L.	(1950).	Act	a Cry	st. 3,	337		
Weigel,	von F.,	Sherer	, V.	and I	Hensche	el, F	4 . (196	5
Radio	chimica	Acta 4.	18.					

Internal standard W, a = 3.16516 Å CuKa, λ = 1.54056 Å; temp. 25 °C					
d (Å)	I	hkl	26(°)		
5.17	14	101	17.13		
4.78	10	110	18.56		
4.645	25	011	19.09		
4.151	45	1 1 1	21.39		
4.064	16	101	21.85		
3.508	19	111	25.37		
3.479	18	020	25.58		
3.277	60	200	27.19		
3.116	8	002	28.62		
3.072	100	120	29.04		
3.040	7	021	29.36		
2.965	17	210	30.12		
2.933	5	211	30.45		
2.842	100	012,112	31.45		
2.583	25	202	34.70		
2.479	<1	211	36.21		
2.423	25	112,212	37.08		
2.385	7	220	37.68		
2.368	2	221	37.97		
2.321	6	022,122	38.77		
2.233 2.187 2.174 2.129 2.126	3 25 40 40	301 130 031 103 311	40.36 41.24 41.51 42.43 42.48		
2.109 2.085 2.075 2.038 2.015	25 3 1 2	221 310 122,222 113 131	42.84 43.36 43.58 44.42 44.95		
1.991	<1	013	45.53		
1.949	35	212	46.55		
1.924	9	301	47.19		
1.892	1	230	48.04		
1.885	16	231	48.25		
1.860	35	032,132	48.93		
1.851	19	320	49.19		
1.8165	2	123	50.18		
1.7945	2	113	50.84		
1.7834	11	023	51.18		
1.7521	20	322	52.16		
1.7400	7	040	52.55		
1.7266	25	132,232	52.99		
1.7215	20	303	53.16		
1.6812	12	140	54.54		
1.6715	1	$ \begin{array}{r} 313 \\ 141 \\ 123,400 \\ 402 \\ 141 \end{array} $	54.88		
1.6494	1		55.68		
1.6383	6		56.09		
1.6159	9		56.94		
1.5989	2		57.60		

Neodymium phosphate, $NdPO_4$ - continued

d (Å)	Ι	hkl	20(°)
1.5949	9	410	57.76
1.5903	8	330	57.94
1.5757	5	312	58.53
1.5616	3	114	59.11
1.5573	6	004,204	59.29
1.5427	<1	323	59.91
1.5364	3	240	60.18
1.5267	6	332	60.60
1.5193	13	214,042	60.93
1.4820	<1	420	62.63
1.4659	3	411,422	63.40
1.4554	6	124,241	63.91
1.4477	4	223	64.29
1.4431	4	142,242	64.52
1.4214	1	024,224	65.63
1.4092	3	314	66.27
1.3768	4	421	68.04
1.3636	5	431	68.79
1.3605	5	150,340	68.97
1.3534	2	303	69.38
1.3507	3	423	69.54
1.3470	, 3	143	69.76
1.3436	3	151	69.96
1.3332	5	043	70.59
1.3292	11	324,313	70.83
1.3270	13	332,402	70.97
1.3237	6	511	71.17
1.3200	8	342	71.40
1.3187	8	134	71.48
1.3125	2	233	71.87
1.3063	2	243	72.27
1.3030	5	412	72.48
1.2927	5	034,234,+	73.15
1.2880	3	510	73.46
1.2805	2	250,105	73.96
1.2701	12	152,414,+	74.67
1.2595	4	115,431	75.41
1.2495	2	503	76.12
1.2382	6	522	76.94
1.2300	<1	513	77.55
1.2254	8	501,152	77.89
1.2228	12	334	[.] 78.09
1.2123	2	224	78.90

20(°)

15.83

16.10 17.88

18.39

20.35

25.12

26.25

27.10

28.82

29.82

30.53

31.95

32.57

32.79

33.29

35.27

37.32

40.60

40.77

41.14

41.42

43.81 43.98

44.59

45.00

45.80

46.00

47.00

47.29

47.83

48.85

49.03 49.74

51.20

54.07

54.35

56.17 57.23 57.38

58.00

58.14 59.14

59.28

59.67

61.94

62.85

63.55

63.89

64.11

Sample

<pre>Sample The sample was prepared by slow evaporation at room temperature of an aqueous solution of NiCl2 (Fisher Scientific Co.). Because of the platy</pre>	Inter CuKa	Internal standard Ag, a = 4.08641 Å CuK $a_1 \lambda$ = 1.54056 Å; temp. 25 °C				
nature and the instability of the material, the intensity values are subject to some error.	d (Å)	Ι	hkl	2		
	5.59	100	<u>ī</u> 01			
Color	5.50	40	110			
Deep yellowish green	4.82	35	011			
	4.360	2	200			
Optical data	3.542	10	020			
Biaxial (+) N =1.590, N_=1.620, N =1.648; 2V is	3.392	2	211			
very large. α	3.288	1	002			
	3.095	4	211			
	2,994	9	121			
Structure Monoclinic $T^{2}(m)(12) = 2$ isostructural with	2,926	35	112			
CoClor6HoO. The structure was determined by Miz -	2.799	17	202			
uno (1961).	2.747	30	220			
	2.729	5	112			
NBS lattice constants:	2,009	20	310			
a = 8.786(2)Å	2.543	8	301			
b = 7.076(2)	2.407	16	022			
c = 6.625(2)	2.220	3	031			
$p = 97.21(1)^{-1}$	2.211	2	312			
	2.192	5	103,321			
Density	2.178	20	400			
(calculated) 1 932 g/cm ³	2.065	3	103,321			
	2.057		411			
	2.013	1	231			
Additional patterns			_			
 PDF card 1-200 [Hanawalt et al., 1938] 	1.980	3	213			
	1,9/1	8	312			
	1.932	3	402			
	1.900	10	132	1		
	1,862	5	123			
References	1.856	5	420	1		
Hanawalt, J.D., Rinn, R.W., and Frevel, L.K.(1938).	1.832	2	330			
Ind. Eng. Chem. Anal. Ed. 10, 457.	1.783	1	123			
Mizuno, J. (1961). J. Phys. Soc. Japan 16, 1574.	1.695	/	422			
	1.687	3	141			
	1.636	1	501			
	1.6084	3	114,413	1		
	1.5888	3	431			
			=			
	1.5853	3	512			
	1.5609	2	521			
	1.5483	4	332			
	1.4969	2	323			
	1,4774	ı	204			
	1.4628	2	233,224			
	1.4558	2	503			

1.4514

2

2

341

Sample The sample was made by slow evaporation at room temperature of an aqueous solution of NiF_2 with a slight excess of HF.	Inte Cul
Color	d (Å)
Brilliant yellow green Structure Orthorhombic, $P2_1ab$ (29), Z=4, isostructural with $ZnF_2 \cdot 4H_20$. The space group and cell parame- ters of $ZnF_2 \cdot 4H_20$ were determined by Rao et al. El9651	5.28 4.857 4.795 4.075 3.748
NBS lattice constants: a = 7.485(2)Å b = 12.482(2) c = 5.272(1)	3.266 3.120 3.052 2.964
Density (calculated) 2.276 g/cm ³	2.741 2.637 2.580 2.528 2.460
Reference intensity 1/1 _{corundum} 2.0	2.439 2.309 2.256 2.219 2.155
Easwaran and Srinivasan [1965] reported, by com- parison of powder patterns, that NiF ₂ ·4H ₂ O was isostructural with FeF ₂ ·4H ₂ O. However, Penfold and Taylor [1960] reported FeF ₂ ·4H ₂ O as rhombo- hedral. This suggests a second form of NiF ₂ ·4H ₂ O exists.	2.124 2.037 2.004 1.982 1.933
Additional patterns 1. PDF card 1-267 [Hanawalt et al., 1938]	1.913 1.871 1.828 1.793 1.773
References Easwaran, K.R.K. and Srinivasan, R. (1965). Proc. Nuclear Physics - Solid State Physics Symposium, Calcutta, Part A, 171. Hanawalt, J.D., Rinn, H.W., and Frevel, L.K.(1938). Ind Eng. Chem. Anal. Ed. 10, 457.	1.740 1.719 1.689 1.674 1.661
Penfold, B.R. and Taylor, M.R. (1960). Acta Cryst. 13, 953. Rao, K.V.K., Naidu, S.V.N., and Rao, P.V. (1965). Indian J. Pure Applied Phys. 3, 68.	1.648 1.6311 1.6050 1.5974 1.5951
	1.5821

Internal standard Ag, a = 4.08641 Å					
CuKa	$CuKa_1 \lambda = 1.54056 \text{ Å}; \text{ temp. } 25 \text{ °C}$				
d (Å)	I	hkl	26(°)		
5.28	6	001	16.78		
4.857	85	011	18.25		
4.795	100	120	18.49		
4.075	50	111	21.79		
3.748	6	200	23.73		
3.546 3.266 3.120 3.052 2.964	3 30 4 35	121 031 040 201 211	25.09 27.28 28.59 29.24 30.13		
2.741	15	221	32.64		
2.637	1	002	33.97		
2.580	3	012	34.74		
2.528	8	141	35.48		
2.460	3	231	36.49		
2.439	6	112	36.82		
2.309	4	122	38.98		
2.256	1	051	39.93		
2.219	8	311	40.62		
2.155	25	202	41.89		
2.124	4	212	42.53		
2.037	1	222	44.43		
2.004	13	160	45.22		
1.982	3	331	45.74		
1.933	9	251	46.98		
1.913	3	232	47.49		
1.871	5	400	48.61		
1.828	1	341	49.85		
1.793	5	312,420	50.90		
1.773	10	242	51.51		
1.740	13	013,322	52.56		
1.719	1	261	53.24		
1.689	2	071	54.25		
1.674	1	351	54.81		
1.661	2	332	55.25		
1.648	4	171	55.72		
1.6311	3	252	56.36		
1.6050	2	440	57.36		
1.5974	3	360	57.66		
1.5951	2	162	57.75		
1.5821	2	133	58.27		
1.5787	1	213	58.41		
1.5607	1	080	59.15		

<pre>Sample The sample was prepared by melting a 1:2 mixture of KBr and KI. After grinding, it was annealed at 450 °C overnight.</pre>	Internal standard Ag, a = 4.08641 Å CuK a_1 λ = 1.54056 Å; temp. 25 °C			
	d (Å)	I	hkl	20(°)
Calar				
C 0101	2 007	25	111	22.22
Colorless	3.997	25	111	22.22
	3.456	100	200	25.76
	2.446	40	220	36.71
	2.086	10	311	43.35
Uprical data	1.997	10	222	45.37
Isotropic, N=1.633				
	1.7290	7	400	52.91
	1.5868	2	331	58.08
Structure	1.5464	10	420	59.75
Cubic, $Fm3m$ (225), $Z = 4$, $NaCl type$. There is a	1.4118	5	422	66.13
complete solid solution series from KBr to KI [Wrzesnéwsky, 1912].	1.3312	1	511	70.71
	1 2227	1	110	79.10
NBS lattice constant:	1 1604		440	. 78.10
a = 6.9174(3)Å	1.1094		531	82.40
	1.1528	2	600	83.85
	1.0935	1	620	89.56
Density	1.0549	<1	533	93.81
(aslaulated) a (am ³)				
(calculated) 3.02 g/cm ²	1.0428	<1	622	95.24
	.9985	<1	444	100.96
Reference intensity	.9687	<1	711	105.34
1/1 corundum = 8.4	.9592	<1	640	106.85
Condition in	.9245	<1	642	112.85
References	,9006	<1	731	117.58
Wrzecnewsky J.B. (1912) Z anorg Chem 74 110	.8388	<1	800	133 34
HIZESHEWSKY, U.D. (1912). D. anorg. Chem. 74, 110.	.0300			100.04

Sample The sample was prepared by melting together KBr and KI in a 2:1 molar ratio. After grinding the sample was heated at 400 °C overnight.	Internal standard W, a = 3.16516 Å CuK a_1 λ = 1.54056 Å; temp. 25 °C			516 Å 25 °C
	d (Å)	Ι	hkl	2H(°)
Color	3 000	15	111	22.72
Colorless	3.909	100	200	22.73
001011633	3.380	100	200	26.35
	2.390	50	220	37.00
Structure	1 952	7	222	44.58
Cubic Fm3m (225) $7 = 4$ NaCl type There is a	1.552		222	40.40
complete solid solution series between KBr and	1,691	5	400	54.19
KT [Wrzesnewsky, 1912]	1.5514	2	331	59.54
KI [WIZCSNOWSKJ, ISID].	1.5125	7	420	61.23
NBS lattice constant.	1.3805	3	422	67.83
a = 6.7624(3)Å	1.3014	1	511	72.58
	1.1959	1	440	80.20
	1.1431	<1	531	84.73
Density	1.1273	1	600	86.20
(calculated) 2.90 g/cm ³	1.0693	1	620	92.17
	1.0193	<1	622	98.17
Reference intensity				
I/I corundum # 8.4.	.9760	<1	444	104.22
	.9467	<1	711	108.90
	.9377	<1	640	110.46
Option I data	.9036	<1	642	116.97
optical data	.8805	<1	731	122.04
1sotropic, N=1.597	0453	-1	000	121.26
	.8453	<1	800	130.00
	.8200	1	620	139.08

References

Wrzesnewsky, J.B. (1912). Z. anorg. Chem. 74, 110.

The sample was prepared by treating a 1:1 mixture of K_2CO_3 and $CoCO_3$ with HF, drying, and heating the product for 10 minutes at 400 °C, followed by 10 minutes at 750 °C.

Color

Medium pink

Structure

Tetragonal, I4/mmm (139), Z=2, isostructural with K_2MgF_4 and similar tetrafluorides [Rüdorff et al., 1959]. The structure of K_2MgF_4 was determined by Brehler and Winkler [1954].

NBS lattice constants: a = 4.0750(4) Åc = 13.089(1)

Density (calculated) 3.256 g/cm³

Reference intensity 1/1 corundum 3.4

- Major impurities ∼ .05% Ag, Ca, Cu, Fe, Ni, Zn and Si.
 - \sim .5% Al

References

Brehler, B. and Winkler, H.G.F. (1954). Heidelberger Beitr. Mineral. Petrog. 4, 6. Rüdorff, W., Kändler, J., Lincke, G., and Babel, D. (1959). Angew. Chem. 71, 672.

Internal standard W, a = 3.16516 Å CuK a_1 λ = 1.54056 Å; temp. 25 °C				
d (Å)	Ι	hkl	20(°)	
6.53	100	002	13.54	
3.890	8	101	22.84	
3.272	1	004	27.23	
2.976	40	103	30.00	
2.879	30	110	31.04	
2.637	2	112	33.97	
2.202	10	105	40.95	
2.181	40	006	41.36	
2.163	10	114	41.72	
2.038	25	200	44.42	
1.946	3	202	46.64	
1.806	1	211	50.49	
1.7394	7	116	52.57	
1.6814	8	213	54.53	
1.6364	5	008	56.16	
1.4956	3	215	62.00	
1.4891	9	206	62.30	
1.4403	4	220	64.66	
1.4229	1	118	65.55	
1.3697	1	109	68.44	
1.3089	<1	0.0.10	72.10	
1.2970	1	303	72.87	
1.2884	2	310	73.43	
1.2756	2	208	74.29	
1.2058	1	305	79.41	
1.2022 1.1919 1.1421 1.1365 1.1097	2 1 1 1	226 1.1.10 1.0.11 219 316	79.69 80.52 84.82 85.34 87.92	

The sample was prepared by adding KOH solution to an aqueous solution of $H_2WO_4.$

Color

Colorless

Structure

Monoclinic, C2/m (12), Z = 4. The structure was determined by Koster et al. (1969).

NBS lattice constants:

a = 12.383(1)A b = 6.1194(8) c = 7.5526(9) $\beta = 115.95(1)^{\circ}$

Density

(calculated) 4.208 g/cm³

Polymorphism

 K_2WO_4 undergoes a transition at 370 $^\circ\text{C}$ [Schmitz-Dumont and Weeg, 1951]

Additional patterns

PDF card 19-1004 [Gelsing et al., 1965]
 PDF card 21-703 [Hatterer et al., 1968]
 Kools et al. [1970]

References

Gelsing, R. J. H., Stein, H. N., and Stevels, J.M. (1965). Rec. Trav. Chim. 84, 1452.
Hatterer, A., Kessler, H., and Ringenbach, C. (1968). Compt. Rend. Paris 266C, 328.
Kools, F. X. N. M., Koster, A. S., and Rieck, G.D. (1970). Acta Cryst. B26, 1974.
Koster, A.S., Kools, F. X. N. M., and Rieck, G.D. (1969). Acta Cryst. B25, 1704.

Schmitz-Dumont, O. and Weeg, A. (1951). Z. Anorg. Chem. 265, 139.

Inte:	Internal standard W, a = 3.16516 Å					
CuK	CuK a_1 λ = 1.54056 Å; temp. 25 °C					
d (Å)	Ι	hkl	26(°)			
6.80	8	001	13.00			
5.70	50	201	15.52			
5.566	30	200	15.91			
5.365	30	110	16.51			
4.719	90	111	18.79			
3.834	45	111	23.18			
3.708	25	202	23.98			
3.601	25	201	24.70			
3.397	85	002	26.21			
3.173	100	310	28.10			
3.092	19	401	28.85			
3.059	60	020	29.17			
2.928	60	312	30.51			
2.848	4	402	31.38			
2.784	14	400	32.12			
2.696	9	221	33.20			
2.683	7	220	33.37			
2.630	6	112	34.06			
2.359	6	222	38.11			
2.332	13	221	38.57			
2.324	9	403	38.71			
2.293	17	313	39.26			
2.273	45	022	39.62			
2.253	12	401	39.98			
2.240	11	512	40.22			
2.176	5	421	41.46			
2.092	3	510	43.22			
2.048	11	602	44.18			
2.030	4	601	44.59			
2.006	2	130	45.17			
1.978	25	312	45.83			
1.967	10	131	46.10			
1.944	5	113,223	46.69			
1.899	6	603	47.85			
1.885	5	131	48.25			
1.868	4	204	48.71			
1.855	11	600,404	49.07			
1.849	12	423	49.23			
1.835	2	203	49.63			
1.814	8	421	50.26			
1.804 1.788 1.740 1.706	16 14 9 11	314 330 332 514 622	50.56 51.04 52.55 53.69 53.82			

Potassium tungsten oxide, K_2WO_4 – continued

d (Å)	Ι	hkl	26 (°)
1.6984	10	712,004	53.94
1.6671	3	604	55.04
1.6607	6	711	55.27
1.6351	3	713	56.21
1.6133	3	623	57.04
1.5946	6	224	57.77
1.5866	9	620,424	58.09
1.5742	6	223,333	58.59
1.5559	4	532	59.35
1.5514	4	422	59.54
1.5474	3	802	59.71
1.5293	7	040,114	60.49
1.5043	2	530	61.60
1.4846	5	024	62.51
1.4649	8	624	63.45
1.4620	11	315	63.59
1.4601	8	332	63.68
1.3854	6	<u>3</u> 34,531	67.56
1.3803	5	822,711	67.84
1.3715	2	441	68.34
1.3384	5	912,715	70.27
1.3337	4	913	70.56
1.3075	4	314,243	72.19
1.3000	3	625	72.67

le e sample was prepared by melting a 1:2 mixture NaBr and NaCl. After grinding it was annealed r 18 hours at 600 °C in a sealed glass tube. Internal standard W, a = 3.16516 Å $CuKa_1 \lambda = 1.54056 \text{ Å}$; temp. 25 °C			
3.329 2.882	30 100	111 200	26.76 31.00
2.037 1.7373	45 6	220 311	44.43 52.64
1.6632	11	222	55.18
1.4401	5	400	64.67 71.30
1.2883	9	420	73.44
1.1089	5	422 511	81.83
1.0185	1	440	98.28
0.9739	<] 1	531 600	104.54
.9108	1	620	115.49
.0000	1	022	124.33
.8317 .8067	<1 <1	711	135.68
.7990	<1	640	149.18
	Inter CuK d (Å) 3.329 2.882 2.037 1.7373 1.6632 1.4401 1.3216 1.2883 1.1761 1.1089 1.0185 0.9739 .9603 .9108 .8686 .8317 .8067 .7990	Internal stan CuK a_1 $\lambda = 1$ d (Å)I3.329302.8821002.037451.737361.6632111.440151.321621.288391.176151.018510.9739<1	Internal standard W, a = 3.165 CuK a_1 λ = 1.54056 Å; temp. 2d (Å)Ihkl3.329301112.8821002002.037452201.737363111.6632112221.440154001.321623311.288394201.176154221.08915111.018514400.9739<1

Reference Gromakov, S.P. and Gromakova, L.M. (1955). Zh.Fiz. Khim. 29, 746.

The sample was prepared by melting a 2:1 mixture of NaBr and NaCl. After grinding it was annealed for 18 hours at 600 °C in a sealed glass tube.

Color

Colorless

Optical data

Isotropic, N = 1.610

Structure

Cubic, Fm3m (225), Z=4. There is a complete solid solution series between NaBr and NaCl [Gromakov and Gromakova, 1955].

```
NBS lattice constant:
 a = 5.8676(2)Å
```

Density (calculated) 2.87 g/cm³

Reference intensity

1/1 corundum = 5.5

Internal standard W, a = 3.16516 Å CuKa, λ = 1.54056 Å; temp. 25 °C				
d (Å)	Ι	hkl	2θ(°)	
3.387	60	111	26.29	
2.933	100	200	30.45	
2.0742	60	220	43.60	
1.7692	12	311	51.62	
1.6944	18	222	54.08	
1.4669	6	400	63.35	
1.3463	4	331	69.80	
1.3121	15	420	71.90	
1.1977	9	422	80.05	
1.1292	3	511	86.02	
1.0375	2	440	95.88	
.9918	2	531	101.91	
.9780	4	600	103.93	
.9277	3	620	112.26	
.8949	<1	533	118.80	
.8846	2	622	121.09	
.8216	<1	711	139.28	
.8136	1	640	142.42	

References

Gromakov, S. P. and Gromakova, L. M. (1955). Zh. Fiz. Khim. 29, 746.

The sample was prepared by melting together equal molar amounts of Na_2CO_3 and Na_2SO_4 .

Major impurities

 \sim .05% Ag, Al, Ca, K and Si.

Color

Colorless

Optical data

Uniaxial (-), N $\stackrel{\sim}{=}$ 1.45

Structure

Hexagonal, $P\bar{3}ml$ (164), Z=1, isostructural with Na_2SO_4 , form I, and with α - Na_2CO_3 . A continuous isomorphous series exists in all proportions from zero to 75 mol. percent Na_2CO_3 [Schroeder et al., 1936]. The structure of this type of compound was determined by Gossner [1928].

NBS lattice constants: a = 5.2284(5) Åc = 6.8808(8)

Density (calculated) 2.528 g/cm³

Reference intensity I/I_{corundum} = 1.1

Polymorphism

The 1:1 composition may occur in several other crystal forms [Khlapova and Kovaleva, 1963].

Inter	Internal standard W, a = 3.16516 Å			
Cuk	$a_1 = 1$.54050 A, temp. 2		
d (Å)	Ι	hkl	20(°)	
4.528 3.783 3.440 2.741 2.614 2.263 2.150 1.891 1.720 1.710 1.611 1.5322 1.5094 1.4366	7 60 45 100 70 2 14 35 8 4 1 9 6 8	100 101 002 102 110 200 201 202 004 210 203 212 300 114	19.59 23.50 25.88 32.64 34.28 39.80 41.98 48.07 53.20 53.53 57.14 60.36 61.37 64.85	
1.3825 1.3722 1.3166 1.3073 1.2218 1.1796 1.1467 1.1347 1.119 1.1016	1 1 6 5 3 1 3 1 1	302 213 105 220 222 312 006 304 106 313	67.72 68.30 71.61 72.20 78.17 81.54 84.40 85.51 87.70 88.73	
1.0407	2	224	95.49	

References

Gossner, B. (1928). Neues Jahrb. Mineral. Geol., Beilage Bd. 57A, 89.

Khlapova, A. N. and Kovaleva, E. S. (1963). J. Struct. Chem. USSR (Eng. Transl.) 4, 517.

Schroeder, W.C., Berk, A.A., Partridge, E.P., and Gabriel, A. (1936). J. Am. Chem. Soc. 58, 846.

The sample was precipitated by mixing boiling aqueous solutions of Na_2CO_3 and Na_2SO_4 in a molar ratio of 1:2. Chemical analysis of the precipitate indicated a ratio of 1:2.0.

Color

Colorless

Structure

Orthorhombic, Z=4/3. Ramsdell [1942] reported a cell with the a and b parameters tripled. No evidence was seen here for an enlarged cell. This phase occurs over a range of solid solution [Caspari, 1924] [Schroeder et al., 1936]. Khlapova and Burovaya [1957] reported that this phase ("rhombic" burkeite) contained essential H_2O . However the weight loss found at NES between 350 and 700 °C was only 0.32% after the material had been transformed to the hexagonal form of the α -Na₂SO₄ type.

NBS	lattice	constants:		
	a	=	7.055(2)Å	
	b	=	9.215(2)	
	С	=	5.167(1)	

1/1 corundum = 0.7

Polymorphism

In studies of the system Na₂CO₃-Na₂SO₄ Khlapova and Burovaya [1957] and Khlapova and Kovaleva [1963] found three hexagonal polymorphs of the 1:2 composition, not including this one which they considered a hydrate. Transitions were reported to occur at 400 and 575 °C.

Additional patterns

- PDF card 2-840 [Michigan Alkali Co. Wyandotte Michigan].
- 2. Ramsdell [1939].

References

Caspari, W. A. (1924). J. Chem. Soc. 125, 2381.
Khlapova, A.N. and Burovaya, E.E. (1957). Russ. J. Inorg. Chem. (English Transl.) 2, No.8, 249.
Khlapova, A. N. and Kovaleva, E. S. (1963). J. Struct. Chem. USSR (Eng. Transl.) 4, 517.
Ramsdell, L.S. (1939). Am. Mineralogist 24, 109.
Ramsdell, L.S. (1942). Am. Mineralogist 27, 230.

Interr	Internal standard Ag, a = 4.08641 Å			
CuK <i>a</i>	CuK a_1 λ = 1.54056 Å; temp. 25 °C			
d (Å)	Ι	hkl	20(°)	
9.215	8	010	9.59	
4.607	5	020	19.25	
4.507	17	011	19.68	
4.172	4	101	21.28	
3.854	40	120	23.06	
3.795	75	111	23.42	
3.526	80	200	25.24	
3.439	19	021	25.89	
3.307	3	210	26.99	
3.072	17	030	29.04	
2.801	100	220	31.93	
2.777	55	211	32.21	
2.640	75	031	33.93	
2.583	75	002	34.70	
2.488	5	012	36.07	
2.345	6	112	38.35	
2.305	11	040	39.05	
2.279	4	310	39.51	
2.191	3	140	41.17	
2.147	14	122	42.04	
2.142	11	301	42.15	
2.105	6	041	42.94	
1.978	12	032	45.84	
1.929	30	240	47.07	
1.904	25	132	47.74	
1.898	30	222	47.88	
1.784	2	150	51.17	
1.764	17	400	51.79	
1.735	8	051	52.71	
1.722	3	003	53.15	
1.673	2	103	54.83	
1.645	3	113,340+	55.85	
1.635	4	250	56.20	
1.627	4	322	56.53	
1.614	4	023	57.00	
1.557	5	251	59.30	
1.548	6	203	59.67	
1.545	5	242	59.82	
1.536	6	060	60.20	
1.526	5	213	60.64	
1.503	6	033	61.67	

The sample was prepared by melting a 1:2 molar mixture of Na_2CO_3 and Na_2SO_4 . The sample was somewhat hygroscopic.

Color

Colorless

Structure

Hexagonal, $P\overline{3}ml$ (164), $Z=\frac{2}{3}$, isostructural with Na₂SO₄, form I, and with α -Na₂CO₃. A continuous series of isomorphous phases occurs in all proportions from zero to 75 mol. percent of Na₂CO₃ [Schroeder et al., 1936]. The structure of this type of compound was determined by Gossner [1928].

NBS	lattice	constants:		
	a	=	5.2624(4)Å	
	С	=	7.0236(7)	

Density (calculated) 2.563 g/cm³

Reference intensity

corundum = 1.1

Polymorphism

This composition may occur in several other crystal forms [Khlapova and Kovaleva, 1963].

References

Gossner, B. (1928). Neues Jahrb. Mineral. Geol., Beilage Bd. 57A, 89.

Khlapova, A. N. and Kovaleva, E. S. (1963). J. Struct. Chem. USSR (Eng. Transl.) 4, 517.

Schroeder, W.C., Berk, A.A., Partridge, E.P., and Gabriel, A. (1936). J. Am. Chem. Soc. 58, 846.

Internal standard W, a = 3.16516 Å CuK $a_1 \lambda$ = 1.54056 Å ; temp. 25 °C			
d (Å)	Ι	hkl	24(°)
4.558	10	100	19.46
3.824	85	101	23.24
3.515	50	002	25.32
2.783	100	102	32.14
2.631	80	110	34.05
2.279 2.167 2.106 1.912 1.755	4 11 40 10	200 201 112 202 004	39.51 41.65 42.90 47.51 52.06
1.7227	3	210	53.12
1.6332	2	203	56.28
1.5471	11	212	59.72
1.5190	7	300	60.94
1.4848	1	301	62.50
1.4603	10	114	63.67
1.3949	2	302	67.04
1.3876	2	213	67.44
1.3424	1	105	70.03
1.3154	5	220	71.69
1.2639	1	310	75.10
1.2439	1	311	76.52
1.2318	2	222	77.41
1.1892	3	312	80.74
1.1706	1	006	82.30
1.1488 1.1337 1.1121 1.0887 1.0837	4 2 <1 2	304 106 313 215 402	84.21 85.60 87.68 90.07 90.60
1.0529	2	224	94.04
1.0409	<1	206	95.47

The sample was prepared by melting Na_2CO_3 and and Na_2SO_4 together in a 2:1 molar ratio.

Major impurities

∿ .05% Ca

Color

Colorless

Structure

Hexagonal, $P\overline{3}ml$ (164), $Z=\frac{2}{3}$, isostructural with Na₂SO₄, form I, and with α -Na₂CO₃. A continuous isomorphous series exists in all proportions from zero to 75 mol. percent Na₂CO₃[Schroeder et al., 1936]. The structure of this type of compound was determined by Gossner [1928].

```
NBS lattice constants:

a = 5.2034(5)Å

c = 6.683(1)
```

Reference intensity

// corundum = 0.7

Polymorphism

This composition may occur in several other crystal forms [Khlapova and Kovaleva, 1963].

Internal standard Ag, a = 4.08641 Å CuK a_1 λ = 1.54056 Å; temp. 25 °C				
d (Å)	Ι	hkl	28(°)	
4.505	4	100	19.69	
3.739	45	101	23.78	
3.341	55	002	26.66	
2.684	100	102	33.35	
2.603	75	110	34.43	
2.253	2	200	39.99	
2.135 1.868 1.7034 1.6707	25 35 5 6	201 202 210 004 211	42.29 48.72 53.77 54.91	
1.5836	2	203	58.21	
1.5181	6	212	60.98	
1.5019	6	300	61.71	
1.4655	1	301	63.42	
1.4062	4	114	66.43	
1.3527	1	213	69.42	
1.3008	5	220	72.62	
1.2814	<1	105	73.90	
1.2453	1	303	76.42	
1.2125	3	222	78.88	
1.1706	3	312	82.30	

References

Gossner, B. (1928). Neues Jahrb. Mineral. Geol., Beilage Bd. 57A, 89.

Khlapova, A. N. and Kovaleva, E. S. (1963). J. Struct. Chem. USSR (Eng. Transl.) 4, 517.

Schroeder, W.C., Berk, A.A., Partridge, E.P., and Gabriel, A. (1936). J. Am. Chem. Soc. 58, 846.

The sample was prepared by melting an equimolar mixture of Na₂SO₄ and Na₂CrO₄. This material was then annealed for 18 hours at 600 °C, followed by 350 °C for 2 hours in a stream of oxygen.

Color

Brilliant greenish yellow

Structure

Orthorhombic, Amam (63), Z=2, isostructural with Na_2CrO_4 and Na_2SO_4 (III) [Fischmeister, 1954]. The structure of Na_2CrO_4 was determined by Miller [1936], and the space group was corrected by Niggli [1954]. Na_2CrO_4 and Na_2SO_4 (III) form a complete isomorphous series [Fischmeister, 1954].

Density (całculated) 2.733 g/cm³

Reference intensity

Major impurities \sim .05% Ag and A1

References

Fischmeister, H. (1954). Acta Cryst. 7, 776. Miller, J.J. (1936). Z. Krist. 94, 131. Niggli, A. (1954). Acta Cryst. 7, 776.

Internal standard Ag, a = 4.08641 Å			
CuKa	$\lambda = 1.5$	54056 Å; temp. 25	5 °C
d (Å)	I	hkl	20(°)
<i>d</i> (A) 4.857 4.555 4.003 3.831 3.527 2.869 2.855 2.687 2.511 2.430 2.280 2.168 2.135 2.116 2.089 2.000 1.915 1.811 1.770 1.764	<i>I</i> 15 3 50 45 55 75 100 60 2 20 3 2 6 3 7 16 9 2 10 20 20 3 2 6 3 7 16 9 2 10 20 3 2 6 3 7 10 10 10 10 10 10 10 10 10 10	nkl 011 020 111 120 200 002 211 031 131 022 040 140 231 311 320 222 240 113 331 400	$2\theta(3)$ 18.25 19.47 22.19 23.20 25.23 31.15 31.30 33.32 35.73 36.96 39.49 41.62 42.29 42.70 43.28 45.30 47.44 50.34 51.60 51.79
1.686 1.656 1.619 1.5926 1.5585	1 4 8 10 2	151 213 033 242 251	54.31 55.45 56.81 57.85 59.24
1.5032 1.4742	2 10	402 431	61.65 63.00

The sample was made by reacting a saturated solution of sodium hydrogen carbonate with a suspension of basic magnesium carbonate.

Color

Colorless

Optical data

Uniaxial (-), N_{e} =1.450, N_{O} =1.605 [Pabst, 1973].

Structure

Hexagonal, $R\overline{3}$ (148), Z = 3 [Pabst, 1973]. Eitel and Skaliks [1929] previously reported $P\overline{3}$ (147) as the space group.

NBS lattice constants: a = 4.9423(2) Åc = 16.396(1)

Density (całculated) 2.792 g/cm³

Reference intensity

Additional patterns

 PDF card 4-737 [Wyandotte Chem. Co., Wyandotte, Michigan]

References

- Eitel, W. and Skaliks, W.(1929). Z. anorg. u. allgem. Chem. 183, 263.
- Pabst, A. (1973). Am. Mineralogist 58, 211.

Internal standard W, a = 3.16516 Å CuKa ₁ λ = 1.54056 Å; temp. 25 °C			
d (Å)	Ι	hkl	20(°)
5.48	<1	003	16.17
3.794	16	012	23.43
2.731	25	006	32.77
2.602	100	015	34.44
2.469	25	110	36.36
2.251	20	113	40.03
2.121	2	021	42.58
2.0710	18	202	43.67
1.8975	20	024	47.90
1.8486	2	018	49.25
1.8333	9	116	49.69
1.7925	9	205	50.90
1.6099	8	211	57.17
1.5873	2	122	58.06
1.5311	11	1.0.10	60.41
1.5048 1.4803 1.4663 1.4505 1.4264	1 4 6 5	214 208 119 125 300	61.58 62.71 63.38 64.15 65.37
1.3802 1.3665 1.3310 1.3016 1.2695	<1 1 <1 1	303 0.0.12 217 0.2.10 128	67.85 68.62 70.72 72.57 74.71
1.2355	4	220	77.14
1.2232	<1	2.0.11	78.06
1.1957	<1	1.1.12	80.21
1.1841	1	131	81.16
1.1749	<1	312	81.93
1.1516	3	2·1·10	83.96
1.1297	<1	0·1·14	85.98
1.1233	<1	309	86.59
1.1163	4	315	87.27
1.0962	<1	1·2·11	89.29
1.0930 1.0865 1.0588 1.0353 1.0271	1 <1 <1 <1 <1 <1	0.0.15 0.2.13 137 404 2.0.14,318	89.62 90.30 93.35 96.15 97.18
1.0227	<1	229	97.74
1.0172	1	045	98.44
0.9996	<1	1.1.15	100.82
.9947	<1	2.1.13	101.50
.9750	<1	232	104.38
.9615	1	1.3.10	106.47
.9550	<1	324	107.53
.9488	<1	1.2.14,048	108.55
.9406	1	235	109.95
.9340	1	410	111.12

The sample was prepared by heating Na_2SO_4 at 700 °C for one hour. The sample changes to Na_2SO_4 , form V, if exposed to moist air.

Color

Colorless

Structure

Orthorhombic, Amam (63), Z=4, isostructural with Na₂CrO₄ [Frevel, 1940]. The structure of Na₂CrO₄ was determined by Miller [1936]. The space group was corrected by Niggli [1954].

Density		
(calculated)	2.696	g/cm ³

Reference intensity

corundum = 1.8

Polymorphism

The polymorphism of Na_2SO_4 is complex and not completely resolved. The form reported here is stable at room temperature and has been referred to as Na_2SO_4 , form III; Na_2SO_4 , form I, is hexagonal and is stable above $250^{\circ}C$. [Kracek and Ksanda, 1930]. Khlapova [1956] reported a form (δ), stable between 600°C. and the melting point (900°C.). Khlapova and Burovaya [1957] discussed the phase of Na_2SO_4 known as form V and as the mineral thenardite. They considered it to be a hydrate.

Additional patterns

1. PDF card 8-31 [Fischmeister, 1954]

2. Das Gupta [1954]

References

Das Gupta, D. R: (1954). Acta Cryst. 7, 275.
Fischmeister, H. (1954). Acta Cryst. 7, 776.
Frevel, L.K. (1940). J. Chem. Phys. 8, 290.
Khlapova, A.N. (1956). Russ. J. Inorg. Chem. (English Transl.) 1, No. 11, 132.
Khlapova, A.N. and Burovaya, E.E. (1957). Russ.
J. Inorg. Chem. (English Transl.) 2, No.8, 249.

Kracek, F. C. and Ksanda, C. J. (1930). J. Phys. Chem. 34, 1741.

Miller, J.J. (1936). Z. Krist. 94, 131.

Niggli, A. (1954). Acta Cryst. 7, 776.

Internal standard Ag, a = 4.08641 Å			
CuKa	$\lambda = 1.5$	54056 Å; temp. 25	5 °C
d (Å)	Ι	hkl	20(°)
4.759	9	011	18.63
4.476	4	020	19.82
3.929	35	111	22.61
3.768	30	120	23.59
3.485	25	200	25.54
2,809	100	211,002	31.83
2.636	45	031	33.98
2.465	2	131	36.42
2.377	20	022	37.82
2.238	4	040	40.26
2.184	2	202	41.31
2.131	6	140	42.39
2.101	6	231	43.01
2.086	7	311	43.33
2.062	5	320	43.87
1.963	18	222	46.20
1.883	9	240	48.29
1.831	1	013	49.76
1.771	1	113	51.56
1.7496	13	042	52.24
1.7419	18	331,400	52.49
1.6964	2	142	54.01
1.6229	3	420	56.67
1.6206	4	213	56.76
1.6115	3	340	57.11
1.5845	9	033	58.17
1.5633	10	242	59.04
1.5320	3	251	60.37
1.4919	1	060	62.17
1.4799	2	402	62.73
1.4528	9	431	64.04
1.4425	2	233	64.55
1.4028	4	004	66.61
1.3748	3	351,440	68.15
1.3370	1	511	70.36
1.3302	2	520	70.77
1.3168	3	062	71.60
1.3144	2	124	71.75
1.2941	3	162	73.06
1.2714	2	153	74.58
1,2494	1	224	76 12
1.2317	2	262,531	77.42
	_	,001	,,,12

6

3

8

7

4

223,040 314,512

712,531

710

133,240 332,241 333

20(°)

15.74

19.61

22.41

27.52

27.60

27.80

30.10

31.13

31.75

32.12

33.28

33.68

33.86

34.36

35.55

36.27

36.78

39.63

39.84

41.20

42.19

42.51

42.74

43.01

44.71

44.83 45,74

46.13

46.31

47.25

47.84

48.33

48.47

49.15

52.29

53.09

53.56

54.35

55.15

56.58

56.82

56.97

57.30 57.48

57.64

58.60

59.18

60.02

60.72

61.47

<pre>Sample The sample was prepared by heating SrCl₂.6H₂0 at 60 - 70 °C for several hours under vacuum.</pre>	Internal standard W, a = 3.16516 Å CuK a_1 λ = 1.54056 Å; temp. 25 °C			
Color	d (Å)	Ι	hkl	2
Colorless Structure Monoclinic, Cc (9) or C2/c (15), Z=4. The struc- ture was determined by Jensen [1942].	5.63 4.523 3.964 3.238 3.229	60 75 35 35 30	200 111 111 310 002	15 19 22 27 27
NBS lattice constant: a = 11.688(1)Å b = 6.4048(5) c = 6.6957(6) $\beta = 105.54(1)^{\circ}$	3.206 2.966 2.871 2.816 2.784	100 4 20 2 45	311,020 112 021 400 220	27 30 31 31 32
Density (całculated) 2.676 g/cm ³	2.690 2.659 2.645 2.608 2.523	30 75 40 20 35	221 311 112 312 202	33 33 33 34 35
Reference intensity I/I _{corundum} 1.0 Additional patterns	2.475 2.442 2.272 2.261 2.189	30 14 30 35 13	402 221 022 222 511	36 36 39 39 41
 PDF card 3-500 [Jensen, 1942]. References Jensen, A.T. (1942). Kgl. Danske Videnskab. Selskab 	2.140 2.125 2.114 2.101 2.025	1 2 35 40 30	421 510 420 113 512,131	42 42 42 43 44
Mat. Fys. Medd. 20, Nr.5.	2.020 1.982 1.966 1.959 1.922	30 9 30 5 6	313 222 131 422 113	44 45 46 47
	1.900 1.8816 1.8765 1.8522 1.7481	2 20 18 13 2	421 511 600 602 513	47 48 48 49 52
	1.7236 1.7096 1.6866 1.6640 1.6253	2 1 2 7 8	331 332 423 621 422	53 53 54 55 56
	1.6190 1.6151 1.6066 1.6020 1.5979	7 6 6 10	620 711 114 223,040 314,512	56 56 57 57 57

58

1.5740

1.5599

1.5401

Strontium chloride hydrate, $SrCl_2 \cdot 2H_2O$ - continued

d (Å)	Ι	hkl	2 ^{;}} (°)
1.4833	6	224	62.57
1.4765	4	514	62.89
1.4651	8	133	63.44
1.4609	6	602	63.64
1.4554	4	713	63.91
1.4507	6	204	64.14
1.4401	5	024	64.67
1.4342	6	042,711	64.97
1.4309	10	242	65.14
1.4270	5	604	65.34
1.4073	5	800	66.37
1.3916	7	440	67.22
1.3836	9	533	67.66
1.3502	8	513	69.57
1.3443	4	442	69.92
1.3289	8	622	70.85
1.3252	5	441	71.08
1.3208	9	333	71.35
1.3149	5	731	71.72
1.3127	3	822	71.86
1.3034	6	714,624	72.45
1.2948	3	T15	73.01
1.2886	3	820	73.42
1.2726	4	150	74.50
1.2691	5	911	74.74
1.2558	4	ī51	75.67
1.2523	5	515	75.92
1.2488	5	134,823	76.17
1.2416	3	151	76.69
1.2280	2	910	77.70
1.2244	2	733	77.97
1.2208	6	442	78.24
1.2112	8	731,ō42	78.98

The sample was prepared by adding a Na_3PO_4 solution to a saturated solution of $SrCl_2$. After boiling, the precipitate was filtered, washed, dried, and heated to 1100 °C for one half hour. Analysis showed 3.07 percent chlorine.

Color

Colorless

Structure

Hexagonal, P6₃/m (176), Z=2, isostructural with calcium hydroxyapatite, $Ca_5OH(PO_4)_3$; its structure was determined by Posner et al. [1958]. There is a complete solid solution between $Sr_5OH(PO_4)_3$ and $Sr_5C1(PO_4)_3$. However, the structure of $Ca_5C1(PO_4)_3$ was determined by Mackie et al. [1972] and found to be monoclinic, pseudo-hexagonal. The data here gave no indication of a departure from hexagonal.

NBS lattice constants: a = 9.847(1)Ac = 7.219(1)

- Density (calculated) 4.119 g/cm³
- Reference intensity 1/1 corundum 3.0
- Additional patterns 1. PDF 16-666 [General Electric Co. Ltd., Wembly England - for Sr₅Cl(PO₄)₃].

References Mackie, P.E., Elliott, J.C., and Young, R.A.(1972) Acta Cryst. B28, 1840.

Posner, A.S., Perloff, A., and Diorio, A.F. (1958) Acta Cryst. 11, 308.

	Internal standard W, a = 3.16516 Å CuK $a_1 \lambda$ = 1.54056 Å ; temp. 25 °C			
d (Å) I			hkl	2θ(°)
	8.51	2	100	10.39
	5.50	2	101	16.10
	4.93	3	110	17.98
	4.263	13	200	20.82
	4.070	9	111	21.82
	3.609	13	002	24.65
	3.325	11	102	26.79
	3.225	20	210	27.64
	2.942	95	211	30.36
	2.910	100	112	30.70
	2.842	55	300	31.45
	2.755	3	202	32.47

d (Å)	Ι	hkl	2ė(°)
2.645	1	301	33.86
2.464	1	220	36.44
2.404	2	212	37.37
2.365	9	310	38.02
2.247	2	311	40.10
2.232	6	302	40.37
2.162	9	113	41.75
2.132	2	400	42.35
2.096	2	203	43.12
2.033	35	222	44.52
1.978	11	312	45.83
1.956	4	329	46.39
1.928	25	213	47.10
1.888	15	321	48.16
1.861	15	410	48.90
1.835	14	402,303	49.63
1.804	9	004	50.54
1.721	<1	223, 322	53.18
1.695	1	114	54.07
1.687	2	313	54.32
1.662	1	204	55.22
1.655	4	412	55.49
1.640	1	330	56.02
1.6120	3	420	57.09
1.6004	2	331	57.54
1.5745	5	214	58.58
1.5417	3	502	59.95
1.5318	1	510	60.38
1.5236	10	304	60.74
1.5186	10	323	60.96
1.4975	7	511	61.91
1.4943	7	332	62.06
1.4725	1	413,422	63.08
1.4346	<1	314	64.95
1.4101	1	512	66.22
1.3775	2	404	68.00
1.3658	1	520	68.66
1.3563	1	333	69.21
1.3418	2	521	70.07
1.3389	3	423	70.24
1.3261	2	324	71.02
1.3224	3	602	71.25
1.3178	4	215	71.54
1.3067	2	432	72.24
1.2954	9	414	72.97
1.2774	7	522	74.17
1.2310	3	440	77.47
1.2142	1	334	78.75
1.2115	1	433	78.96
1.2021	3	424	79.70
1.1875	1	523	80.88
1.1680	4	514	82.52
1.1618	2	325	83.06
1.1543	2	532	83.72

60

Sam	рI	l e
-----	----	-----

A solution of $SrCl_2$ was treated with a slight excess of three percent H_2O_2 and stirred. Dilute NH₄OH solution was added and the precipitate was dried at room temperature. Since the crystals were very thin platelets, orientation may have affected intensity measurements.

Color

Colorless

Structure

Tetragonal, P4/mcc (124), Z=2. The structure was determined by Vannerberg [1959].

NBS lattice constants: a = 6.3432(5)Å c =11.197(1)

Density (całculated) 1.944 g/cm³

Additional patterns

1. PDF card 12-521 [Vannerberg, 1959]. 2. PDF card 2-1245 [Natta, 1932].

References

Natta, G. (1932). Gazz. Chim. Ital. 62, 444. Vannerberg, N-G. (1959). Arkiv Kemi 14, 17.

Internal standard W, a = 3.16516 Å CuK a_1 λ = 1.54056 Å; temp. 25 °C				
d (Å)	Ι	hkl	20(°)	
6.36	2	100	13.92	
5.59	100	002	15.85	
4.49	2	110	19.74	
4.197	7	102	21.15	
3.496	9	112	25.46	
2.798 2.759 2.750 2.560 2.530	10 4 9. 2	004 202 211 104 212	31.96 32.42 32.53 35.02 35.45	
2.377	11	114	37.82	
2.258	2	213	39.89	
2.242	1	220	40.18	
2.098	5	204	43.09	
2.081	1	222	43.45	
2.007	2	310	45.14	
1.992	5	214	45.50	

$d(\overset{\circ}{A})$	Ι	hkl	20(°)
1.979 1.889 1.866	<1 2 1	302 312 006	45.81 48.14 48.75
1.791 1.758 1.723 1.687 1.678	8 1 <1 <1	106 320,215 116 304 322	50.95 51.97 53.10 54.32 54.64
1.608 1.559 1.526 1.490 1.444	<1 4 <1 <1 <1	206 216 402 324 332	57.23 59.20 60.64 62.24 64.48
1.434 1.418 1.399 1.394 1.379	<1 <1 4 1 1	226 420 008,306 217 404	64.94 65.81 66.79 67.11 67.90
1.374 1.367 1.348 1.336 1.319	1 4 <1 <1 <1	422 108,316 414 118 334	68.18 68.62 69.67 70.41 71.47
1.280 1.255 1.187 1.167 1.155	<]]] <]	208,326 218 228,416 308,336 434	73.98 75.71 80.93 82.59 83.63
1.153 1.148 1.139 1.120 1.103 1.095 1.086 1.056 1.0414 1.0352	< 	522 318 219 0.0.10 1.0.10 328 1.1.10 2.0.10 2.1.10 418,516	83.85 84.30 85.09 86.91 88.61 89.41 90.33 93.67 95.40 96.16
1.0014 .9960 .9891 .9774 .9754	<1 1 <1 <1 <1 <1	2·2·10 428,526 604 3·1·10,614 542	100.56 101.31 102.30 104.01 104.31
.9580 .9446 .9398 .9231 .9133	<1 <1 <1 <1 <1 <1	2·1·11 3·2·10 438,536 1·0·12 1·1·12	107.04 109.27 110.10 113.12 115.00
.9053 .9012 .8952 .8862	<1 <1 <1 <1	4·1·10 528 2·0·12 2·1·12	116.60 117.44 118.73 120.72

The sample was prepared by adding dilute NH_4OH to a hot concentrated agueous solution of SrCl₂ and Na₃PO₄. The precipitate was filtered, washed with alcohol, and heated to 1200 °C for ten minutes.

Major impurities

 \sim .05% Al, Ba, Ca, Mg, Co, and V.

Color

Colorless

Structure

Orthorhombic, Z=4, isostructural with α -Ca₂P₂O₇ [Wanmaker and ter Vrugt, 1967], [Ranby et al. 1955].

NBS lattice constants: a = 8.917(2)Å b = 13.169(2)c = 5.400(1)

Density (calculated) 3.657 g/cm³

Reference intensity 1/1 corundum = 2.3

Polymorphism

The alpha form is stable above 750 °C [Ranby et al., 1955]. Below 750 °C the alpha form very slowly changes to the beta form. The beta form is represented by PDF card 13-194 [Hoffman and Mooney, 1960].

Additional patterns

1. PDF card 12-362 [Ropp et al., 1959]

Internal standard Ag, $a = 4.08641 \text{ Å}$				
CuK α_1 λ = 1.54056 A; temp. 25 °C				
d (Å)	Ι	hkl	28(°)	
7 40	35	110	11.95	
6.60	13	020	13.41	
5.30	3	120	16.70	
5.01	3	011	17.70	
4.462	11	200	19.88	
3.940	9	130	22.55	
3.694	4	220	24.07	
3.439	85	201	25.89	
3.327	35	211	26.14	
3 29]	4	040	27.07	
3.182	15	131	28.02	
3.128	25	230	28.51	
3.087	2	140	28.90	
3.048	7	221	29.28	
2.900	20	310	30.81	
2.700	45	002	33.15	
2.680	25	141	33.41	
2.648	2	240,012	33.82	
2.554	14	311	35.11	
2.525	11	150	35.52	
2.422	10	321	37.09	
2.406	2	241	37.55	
2.310	5	202	38.95	
2 274	2	21.2	20 60	
2.239	6	331	40.25	
2.230	9	400	40.42	
2.195	30	060	41.08	
2.132	6	160	42.36	
2.090	1	251	43.25	
2.044	65	232	44.27	
1.987	7	430	45.61	
1.982	8	161	45.73	
1.970	5	312	40.00	
1.966	11	421	46.13	
1.913	2	322	47.49	
1.891	17	242	48.08	
1 850	30	431 261	48.70	
1.000		201	49.22	
1.776	3	071	51.40	
1.747	4	441	52.34	
1 722	2	520	52.40	
1.703	8	062,450	53.79	
1.680	6	511	54.59	
1.665	13	033	55.10	
1.656	4	213	55.44	
1.651	3 1	271	55.62	

d (Å)	Ι	hkl	20(°)
1.6402 1.6370 1.6180	2 3 <1	521 133 223	56.02 56.14 56.86
1.5903	7	370	57.94
1.5643 1.5554 1.5297 1.5249 1.5026	4 3 2 3	460 143 313 371 461	59.00 59.37 60.47 60.68 61.68

References

Hoffman, C.W.W.and Mooney, R.W.(1960). J. Electro-chem. Soc. 107, 8541.

Ranby, P.W., Mash, D.H., and Henderson, S.T. (1955).

Rainby, F.W., Mash, D.M., Birt, and M. Bert, J. Appl. Phys. 6, Supplement 4 S18.Ropp, R.C., Aia, M.A., Hoffman, C.W.W., Veleker, T.J., and Mooney, R.W. (1959). Anal. Chem. 31, 1163.

Wanmaker, W.L. and ter Vrugt, J.W. (1967). Philips Res. Rep. 22, 355.

The sample was prepared by heating a 3:2 molar mixture of SrCO3 and (NH4)2HPO4 at 700°C, grinding, and reheating at 1200 °C for 15 minutes.

Color

Colorless

Structure

Hexagonal, R3m (166), Z = 3, isostructural with Ba3(PO4)2. The structure was determined by Zachariasen [1948].

NBS lattice constants: a = 5.3871(2)Å c = 19.780(1)

Density (calculated) 4.537 g/cm³

Reference intensity 1/1 corundum 4.4

Polymorphism

 α -Sr₃(PO₄)₂ undergoes a readily reversible, polymorphic inversion at 1305 °C to β -Sr₃(PO₄)₂ [Sarver et al., 1961].

Additional patterns

- 1. PDF card 14-271 [Sarver et al., 1961].
- 2. Zachariasen [1948].
- 3. PDF card 2-744 is for Sr5OH(PO4)3 and not Sr3(PO4)2.

References

Sarver, J. F., Hoffman, M. V., and Hummel, F. A. (1961). J. Electrochem. Soc. 108, 1103. Zachariasen, W. H. (1948). Acta Cryst. 1, 263.

Internal standard W, a = 3.16516 Å CuK a_1 λ = 1.54056 Å; temp. 25 °C				
d (Å)	I	hkl	2θ(°)	
6.60	1	003	13.40	
4.554	7	101	19.52	
4.225	1	012	21.01	
3.393	10	104	26.24	
3.016	100	015	29.59	
2.694	85	110	33.23	
2.494	<1	113	35.98	
2.418	<1	107	37.15	
2.318	3	021	38.82	
2.271	11	202	39.66	
2.198	11	009	41.03	
2.186	2	018	41.27	
2.110	14	024	42.82	
2.087	7	116	43.32	
2.009	35	205	45.08	
1.821	20	1.0.10	50.05	
1.799	2	027	50.69	
1.7565	2	211	52.02	
1.7360	<1	122	52.68	
1.7031	9	119	53.78	
1.6607	1	214	55.27	
1.6107	20	125	57.14	
1.5547	12	300	59.40	
1.5087	6	0·2·10	61.40	
1.4960	1	217	61.98	
1.4360	<1	128	64.88	
1.4243	<1	2·0·11	65.48	
1.4066	1	306,1·1·12	66.41	
1.3521	3	0·1·14	69.46	
1.3468	10	220	69.77	
1.3162	12	2·1·10	71.64	
1.2913	<1	131	73.24	
1.2827	<1	312	73.81	
1.2746	<1	0·2·13	74.36	
1.2697	2	309	74.70	
1.2517	1	134	75.96	
1.2298	7	315	77.56	
1.2087	1	2·0·14	79.18	
1.1844	8	1·1·15	81.14	
1.1643	<1	401	82.84	
1.1583	<1	042	83.37	
1.1484	3	229	84.25	
1.1353	<1	404	85.45	
1.1288	<1	0·1·17	86.06	
1.1188	3	045	87.02	
1.1026 1.0828 1.0461 1.0333	2 4 <1 5	1 · 2 · 14 1 · 3 · 10 324 235	88.63 90.69 94.84 96.40 98.32	

Strontium phosphate, alpha ${\rm Sr_3(PO_4)_2}-{\rm continued}$

d (Å)	Ι	hkl	20(°)
1.0161	3	1.0.19	98.59
1.0057	4	3,•0•15	99.98
1.0049	2	4.0.10	100.09
0.9822	<1	238	, 103.30
.9784	<1	0.4.11	103.86
9728	<1	416	104 71
9711	<1	1.2.17	104.71
9675	1	0.1.20	105 53
9542	1	3.1.14	107.66
.9508	1	0.2.19	108.22
.9422	3	2.2.15	109.68
.9414	3	3.2.10	109.82
.9237	1	419	113.00
.9170	<1	054	114.29
.9105	<1	2•0•20	115.55
9081	1	505	116.04
8994	1 1	0.4.14	117.83
.8978	1	330	118.18
8964	2	2.1.19	118.47
.8891	<1	1.1.21	120.07
			Ì
.8828	<1	1.0.22	121.50
.8782	<1	422	122.59
.8680	·<1	244	125.11
.8661	<1	336,4.1.12	125.59
.8626	2	1.2.20	126.51
.8605	4	425	127.05
.8531	1	2.3.14	129.08
.8438	1	0.5.10	131.80

```
The sample used was an NBS Standard Reference
Material (Number 17)
moisture..... less than 0.01%
ash..... less than 0.01%
reducing substances... less than 0.02%
```

Color

Colorless

Optical data Biaxial(-), N_{α} =1.540, N_{β} =1.558, N_{γ} =1.564; 2V is medium

Structure

Monoclinic, P21 (4), Z=2, structure determined by Beevers et al. [1952], and refined by Brown and Levy [1963].

NBS lattice constants: $a = 10.868(2) \text{\AA}$ b = 8.710(1) c = 7.761(1) $\beta = 102.97(1)^{\circ}$

Density (calculated) 1.588 g/cm³

```
Reference intensity
1/1 convolum = 0.7
```

Additional patterns

 PDF card 6-0142 [Palmer, Agriculture Res. Service, Albany, California]

References

- Brown, G.M. and Levy, H.A. (1963). Science 141, 921.
- Beevers, C.A., McDonald, T.R.R., Robertson, J.H., and Stern, F. (1952). Acta Cryst. 5, 689.

Internal standard W, a = 3.16516 Å				
d (Å)		hkl	20(°)	
10.59	14	100	8.34	
7.58	65	001	11.67	
6.94	40	Ī01	12.74	
6.73	55	110	13.14	
5.712	30	011	15.50	
5.424	11	Ī11	16.33	
5.298	14	200	16.72	
4.884	12	201	18.15	
4.706	100	111	18.84	
4.523	80	210	19.61	
4.354	25	020	20.38	
4.259	30	211	20.84	
4.028	30	120	22.05	
3.943	11	201	22.53	
3.776	18	002,021	23.54	
3.690	8	Ī21	24.10	
3.591	100	211	24.77	
3.531	45	300	25.20	
3.467	3	012,202	25.67	
3.437	5	121	25.90	
3.364	11	220	26.47	
3.272	5	310	27.23	
3.254	10	221	27.39	
3.222	7	212	27.66	
3.112	9	112	28.66	
2.956	2	301	30.21	
2.923	6	221	30.56	
2.882	25	122	31.00	
2.856	6	022	31.29	
2.799	20	130,311+	31.95	
2.777	4	312	32.21	
2.742	10	320	32.63	
2.711	4	222,031	33.01	
2.677	10	131	33.44	
2.661	4	212	33.65	
2.648	2	400,122	33.82	
2.586	5	103	34.66	
2.574	4	131,411	34.82	
2.545	3	230	35.24	
2.521	5	003	35.58	
2.504	6	203	35.83	
2.496	7	231	35.95	
2.479	9	113	36.20	
2.444	5	321	36.74	
2.430	6	322	36.96	
2.406 2.349 2.339 2.312 2.21	9 40 16 7	213 222,412 401,231+ 303 221	37.34 38.28 38.46 38.92 39.30	
Sucrose, $C_{12}H_{22}O_{11}$ - continued

d (Å)	Ι	hkl	.20(°)
2.258	14	113	39.89
2.253	11	312	39.98
2.234	10	313	40.33
2.189	5	132	41.20
2.171	5	223,501	41.57
2.133	1	140	42.34
2.101	2	203	43.02
2.091	2	041	43.23
2.075	7	ī41,403	43.58
2.060	6	123,510	43.92
2.042 2.028 2.014 2.000 1.971	10 4 1 1	213,323 141 240,232 512 402	44.33 44.64 44.97 45.30 46.00
1.956	4	430	46.39
1.942	3	521	46.74
1.929	5	133,501	47.07
1.924	5	204,412	47.21
1.904	6	520,033	47.72
1.895	4	233,142	47.96
1.887	- 4	042	48.18
1.885	3	511	48.23
1.870	2	432	48.66
1.855	3	340	49.08
1.823	3	142,313+	50.00
1.818	1	332	50.13
1.809	3	333,314	50.41
1.795	5	422	50.81
1.773	<1	611	51.50
1.764	2	600,521	51.79
1.753	2	341	52.12
1.733	2	024,404	52.79
1.718	1	150,242	53.27
1.698	4	051	53.97
1.693	5	441,502+	54.13
1.672	2	621	54.87
1.658	2	124	55.37
1.638	3	214	56.12
1.635	2	620	56.21

Sample

The sample was made by dissolving Zn $\,$ in hydrobromic acid and adding $\rm NH_4Br$ and $\rm NH_4OH$.

Color

Colorless

Optical data

Biaxial (-), N_{α} = 1.650, N_{γ} = 1.712

Structure

Orthorhombic, Imam (74), Z=4. The structure was determined by MacGillavry and Bijvoet [1936].

NBS lattice constants:

- a = 8.419(1)b = 8.816(1)
- c = 8.122(1)

Density (calculated) 2.856 g/cm³

Reference intensity I/I_{corundum} = 2.0

References

MacGillavry, C. H. and Bijvoet, J. M. (1936). Z. Krist. 94, 249.

Internal standard W, a = 3.16516 Å CuKa, λ = 1.54056 Å; temp. 25 °C								
d (Å)	I	hkl	2∂(°)					
6.08	30	110	14.55					
5.973	35	011	14.82					
4.410	55	020	20.12					
4.209	13	200	21.09					
4.062	95	002	21.86					
3.521	25	121	25.27					
3.441	19	211	25.82					
3.377	19	112	26.37					
3.044	50	220	29.32					
2.986	100	022	29.90					
2.922	13	202	30.57					
2.773	3	130	32.26					
2.764	4	031	32.36					
2.436	20	222	36.87					
2.309	11	231	38.97					
2.292	6	132	39.28					
2.272	5	321	39.63					
2.225	7	123	40.50					
2.205	7	213,040	40.89					
2.105	7	400	42.93					
2.062	2	141	43.87					
2.030	16	004,330	44.59					
1.986	1	411	45.65					
1.953	10	240	46.46					
1.937	2	042	46.87					
1.926	3	114	47.14					
1.899	3	420	47.85					
1.869	5	402	48.69					
1.844	6	024	49.37					
1.829	2	204	49.82					
1.815	4	332	50.20					
1.799	6	233	50.69					
1.782	3	323	51.23					
1.759	19	242	51.93					
1.722	10	051	53.13					
1.689	8	224	54.26					
1.674	1	431,143	54.78					
1.596	2	251	57.72					
1.5320	2	512	60.37					
1.4994	3	125	61.80					
1.4936	4	251,044,+	62.09					
1.4774	5	053	62.85					
1.4611	2	053,404	63.63					
1.4356	1	334	64.90					
1.4256	2	442,161	65.41					
1.4075	5	244	66.36					
1.3870	2	424,260	67.47					
1.3821	3	062	67.74					
1.3534	2	006	69.38					

Sample The sample	e was pre	pared by slow eva	poration,_at	d (Å)	I	hkl	20(°)
room tempe Color Colorless	erature,o	f an aqueous solut	:1on of ZnF ₂ .	3.577 3.297 3.160 3.072	5 6 25 4	121 031 040 201	24.87 27.02 28.22 29.04
Opticaldat Biaxial (- medium.	a -), Ν _α =1.	460, Ν _β =1.458, Ν _γ =	1.448; 2V is	2.985 2.762 2.592 2.555 2.484	40 20 10 12 3	211 221 012 141 231	29.91 32.39 34.58 35.10 36.13
Structure Orthorhomb with NiF ₂ . NBS lattic	ic, $P2_{16}$ 4H ₂ 0 [Rad	ab (29), Z=4, is o et al., 1965]. nts:	ostructural	2.449 2.323 2.281 2.236 2.202	6 10 4 14 3	112 122 051 311 241	36.67 38.73 39.47 40.30 40.96
Density	41(2) 92(1)		2.184 2.167 2.148 2.135 2.029	14 16 3 4 16	151 202 132 212 160,042	41.31 41.65 42.02 42.29 44.62	
Reference i I/I _{corundum} =	(/ CIII* /		1.999 1.957 1.952 1.927 1.887	4 4 8 4 8	331 061 251 232 400	45.32 46.35 46.49 47.13 48.19	
Polymorphism Easwaran and Srinivasan [1965] found by compari- son of powder patterns that $ZnF_2 \cdot 4H_20$ was iso- structural with $FeF_2 \cdot 4H_20$. However, Penfold and Taylor [1960] reported $FeF_2 \cdot 4H_20$ as rhombohedral. This suggests a second form of $ZnF_2 \cdot 4H_20$ exists.				1.845 1.804 1.786 1.759 1.751	2 6 12 13 18	341 312 242 411 322	49.36 50.54 51.09 51.94 52.20
References Easwaran, K. Nuclear Ph	R.K. and ysics - S	Srinivasan, R. (1 Solid State Physic	965). Proc. s Symposium,	1.738 1.709 1.689 1.673 1.667	8 4 2 2 4	261 071 351 332 171	52.63 53.59 54.25 54.84 55.06
Calcutta, Penfold, B.R 13, 953. Rao, K.V.K., Indian J.	171. ylor, M.R. (1960). S.V.N., and Rao, lied Phys. 3 , 68.	Acta Cryst. P.V. (1965).	1.658 1.644 1.619 1.615 1.610	4 4 3 5 5	123 252 440 360 162	55.36 55.88 56.83 56.97 57.18	
Interr CuKa	ard Ag, a = 4.0864 4056 Å; temp. 25	41 Å 5 ℃	1.589 1.581 1.579 1.557 1.544	2 2 2 2 1	133 080 342 271 361	57.96 58.32 58.41 59.29 59.85	
d (Å) 5.29 4.87	<i>I</i> 6 100	<i>hk1</i> 001 011	20(°) 16.73 18.19	1.541 1.537 1.4934 1.4671	3 1 5 5	043 402 233 520	60.02 60.19 62.10 63.34
4.844 4.098 3.776	100 70 7	120 111 200	18.30 21.67 23.54	Additional	nattern	s	

Additional patterns 1. PDF card 1-253 [New Jersey Zinc Co.]

Structure Orthorhombic, Pnnm (58), Z=2. The structure was	Calculated Pattern (Peak heights)					
determined by Döll and Klemm [1939], and refined by Brackett et al. [1963]. It is isostructural with CaCl ₂ [van Bever and Nieuwenkamp, 1935].	d (Å)	Ι	hkl	$\frac{2\theta(°)}{\lambda = 1.54056} \stackrel{\circ}{A}$		
Lattice parameters a=6.584(6), b=6.871(6), C=4.342(4)Å [Brackett et al., 1963].	4 • 75 3 • 672 3 • 625 3 • 435 3 • 292	20 9 3 1 21	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18•66 24•22 24•54 25•92 27•06		
Density (calculated) 3.380 g/cm ³	3.206 3.046 2.968	100 52 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	27.80 29.30 30.08		
Inermal parameters Isotropic, overall B=1.0	2.494 2.451	38	$\begin{array}{cccc} 1 & 2 & 1 \\ 2 & 1 & 1 \end{array}$	36.64		
Scattering factors Ca ²⁺ [International Tables, 1962] Br [Cromer and Waber, 1965]	2.377 2.171 2.085 2.026 1.975	12 15 1 23 2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	37•82 41•56 43•36 44•70 45•92		
Scale factor (integrated intensities) 2.474 x 10 ⁴ Additional patterns	1.958 1.883 1.850 1.812 1.768	3 15 8 5 15	$\begin{array}{cccccc} 3 & 0 & 1 \\ 3 & 1 & 1 \\ 3 & 2 & 0 \\ 2 & 0 & 2 \\ 1 & 2 & 2 \end{array}$	46•32 48•28 49•22 50•30 51•66		
 PDF card 2-535 [Döll and Klemm, 1939] Reference 	1.725 1.662 1.646 1.603	8 4 5 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	53•04 55•22 55•80 57•44 58•16		
<pre>van Bever, A.K.and Nieuwenkamp, W.(1935). Z.Krist. 90, 374. Brackett, E.B.,Brackett, T.E.,and Sass, R.L.(1963) J. Inorg. Nucl. Chem. 25, 1295. Cromer, D.T. and Waber, J.T. (1965). Acta Cryst. 18, 104.</pre>	1.552 1.523 1.502 1.408 1.404	1 4 1 5 3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	59•50 60•76 61•70 66•34 66•52		
Döll, W. and Klemm, W. (1939). Z. anorg.u.allgem. Chem. 241, 233. International Tables for X-ray Crystallography III (1962), 204.	$1 \cdot 385$ $1 \cdot 353$ $1 \cdot 320$ $1 \cdot 312$ $1 \cdot 301$	4 1 3 3 3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	67.60 69.42 71.42 71.92 72.60		
	1.285 1.280 1.278 1.247 1.247	4 2 6 3 2	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	73.66 74.00 74.16 76.32 76.84		
	1.230 1.223 1.217 1.190 1.148	1 3 1 2 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	77•58 78•04 78•52 80•68 84•28		
	1.147 1.145 1.125 1.086 1.070	2 2 2 1 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	84•38 84•54 86•42 90•40 92•10		

 $\frac{2\theta(^{\circ})}{\lambda = 1.54056 \, \text{\AA}}$

18.65 24.23 24.54 25.91 27.06 27.80 29.30 30.08 35.99 36.64 37.82 41.56 43.36 44.70 45.92 46.32 46.89 48.28 49.23 50.30 51.66 53.03 53.29 55.22 55.81 57.44 58.17 59.50 60.77 61.71 66.34 66.51 67.60 69.42 69.75

71.42 71.93 72.61 73.66 74.00 74.17 76.32 76.85 77.58 78.04 78.51 80.68 81.25 84.28 84.28

d (Å)	Ι	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \stackrel{\circ}{A}$	0	Calculate	d Pattern (Integ	rated)
1.051	1	6 1 1	94.22	d (Å)	Ι	hkl	λ =
1.022 1.016 1.013 .985	1 1 2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	97•76 98•58 99•00 102•84	4.75 3.671 3.625 3.435	18 9 3 1		
•982 •968 •964	2 1 1	4 3 3 2 6 2 5 1 3 +	103•34 105•44 106•02	3.292	20	2 0 0	
• 942 • 940	1	5 4 2 + 4 6 0	109•76 110•06	3.206 3.046 2.969 2.493		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
•936 •929 •919	1 1 2	324 551 271+	110•74 112•06 113•84 115•88	2.451	41 13		
•909 •907	1	1 4 4 3 5 3 + 4 0 4	116.42	2.171 2.085 2.026	17 1 27	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
•884 •863 •854 •852	1 1 1 1	2 4 4 4 6 2 1 1 5 1 8 0	121•24 126•48 128•76 129•50	1.975 1.959 1.936	3 4 1 18	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
•851 •814	1 1 1	642 524 035	129•74 142•38 143•12	1.884 1.850 1.812	10 7	3 1 1 3 2 0 2 0 2 $2 0 2$	
•808 •802 •800	1 1 1 1	7 3 2 3 1 5 3 8 0	145.02 147.68 148.76 151.56	1.768 1.725 1.718 1.662 1.646	18 11 1 5 6	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
• 793 • 793 • 789 • 788 • 787	1 2 1 1	3 3 3 2 7 3 + U 6 4 8 2 1 +	152.62 155.20 155.78 156.52	1.603 1.585 1.552 1.523 1.502	ь́ 2 1 5 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
]	1.408 1.405 1.385 1.353 1.347	7 1 6 2 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 6 6 6
				1.320 1.312 1.301 1.285 1.280	4 5 4 6 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7 7 7 7 7 7
				1.277 1.247 1.239 1.230 1.224	9 5 3 2 4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 7 7 7 7 7
				1.217 1.190 1.183 1.148 1.147	1 3 1 2 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 8 8 8 8

Calcium bromide, $CaBr_2$ - continued

			-
d (Å)	Ι	hkl	$2\theta(°)$ $\lambda = 1.54056 Å$
1.145 1.125 1.111 1.086 1.082	2 4 1 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	84•54 86•43 87•78 90•41 90•82
1.070	2	5 2 2	92•10
1.051	2	6 1 1	94•22
1.045	1	5 4 0	94•96
1.031	1	2 0 4	96•70
1.022	3	1 2 4	97•76
1.016	1	5 4 1	98.60
1.013	2	0 6 2	99.01
.987	1	2 2 4	102.54
.985	3	1 5 3	102.84
.982	4	4 3 3	103.34
•968 •965 •964 •947 •942	1 2 1 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	105.44 105.94 106.02 108.78 109.74
.942	1	5 4 24 6 03 2 45 5 16 4 0	109.77
.940	2		110.05
.936	2		110.73
.929	2		112.07
.925	1		112.81
.919 .919 .911 .909 .907	3 1 1 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	113.83 113.85 115.43 115.89 116.18
•907 •906 •884 •878 •870	1 2 1 1	7 2 0 4 0 4 2 4 4 3 7 1 7 3 0	116.22 116.43 121.25 122.75 124.58
.867	1	b 1 3 4 6 2 1 1 5 1 8 0 6 4 2	125.25
.863	3		126.49
.854	2		128.76
.852	1		129.50
.851	2		129.75
•847	1	5 4 3	130.77
•847	1	3 4 4	130.97
•837	2	7 2 2	133.92
•833	2	2 1 5	135.09
•828	1	4 7 1	137.10
.823	1	800	138.76
.817	1	633	141.10
.814	2	524	142.37
.812	3	035	143.11
.808	2	732	145.02

d (Å)	Ι	hkl	$\frac{2\theta(^{\circ})}{\lambda = 1.54056 \stackrel{\circ}{A}}$
 806 802 800 798 795 793 792 789 789 788 788 788 787 787 784 	1 3 2 1 3 4 1 5 2 3 4 2 1 3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	145.64 147.68 148.76 149.96 151.55 152.60 152.92 155.18 155.21 155.41 155.78 156.27 156.35 158.90

Triclinic, $P\overline{I}$ (2), Z=2. The structure was determined by Thewalt and Bugg [1973].

Lattice parameters

a=6.593(2), b=6.364(5), c=8.557(3)Å, α =97.77(5), β =93.52(4), γ =110.56(3)° [ibid.]

Density

(calculated) 1.838 g/cm³

Thermal parameters

Anisotropic [ibid.]

Polymorphism

Three crystalline forms have been described. [Gmelins Handbuch, 1957]. The form characterized here apparently corresponds to the α -form [The-walt and Bugg, 1973]

Scattering factors

Ca²⁺, Cl⁻ [Cromer and Waber, 1965], corrected for dispersion using terms $\Delta f'$ and $\Delta f''$ from Cromer and Liberman [1970].

Scale factor

(integrated intensities) 0.2942 x 104

Additional patterns

1. PDF card 1-1080 [Hanawalt et al., 1938]

Reference

Cromer, D.T. and Liberman, D. (1970). J.Chem.Phys: 53, 1891.

- Cromer, D.T. and Waber, J.T. (1965). Acta Cryst. 18, 104.
- Gmelins Handbuch der Anorganischen Chemie.Calcium, Teil B (1957). Pg. 468.
- Hanawalt, J.D., Rinn, H.W., and Frevel, L.K. (1938) Ind. Eng. Chem. Anal. Ed. 10, 457.
- Thewalt, U. and Bugg, C.E. (1973). Acta Cryst.B29 615.

Calculated Pattern (Peak heights)								
d (Å)	Ι	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \stackrel{\circ}{A}$					
6.13	51	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14.44					
5.87	91		15.08					
5.31	29		16.68					
5.25	27		16.88					
4.70	28		18.86					
4.60	100	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	19•28					
4.48	3		19•32					
4.40	2		20•18					
3.729	9		23•84					
3.633	15		24•48					
3.567	53	$\begin{array}{cccccc} -1 & -1 & 1 \\ 1 & -1 & 2 \\ 1 & 0 & 2 \\ -2 & 1 & 0 \\ -1 & 1 & 2 \end{array}$	24.94					
3.383	4		26.32					
3.295	38		27.04					
3.243	4		27.48					
3.222	16		27.66					
3.180	22	$\begin{array}{ccccccc} 0 & 1 & 2 \\ -1 & 2 & 0 \\ 2 & 0 & 0 \\ 1 & -2 & 1 \\ -1 & -1 & 2 \end{array}$	28.04					
3.129	34		28.50					
3.064	33		29.12					
3.056	24		29.20					
3.021	6		29.54					
2.996	38	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29.80					
2.938	62		30.40					
2.930	42		30.48					
2.826	31		31.64					
2.806	23		31.86					
2.778	4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32 • 20					
2.715	71		32 • 96					
2.667	9		33 • 58					
2.657	22		33 • 70					
2.629	74		34 • 08					
2.609	21	$\begin{array}{cccccc} -2 & 1 & 2 \\ 2 & -2 & 1 \\ 1 & -1 & 3 \\ -2 & 2 & 1 \\ 1 & 0 & 3 \end{array}$	34 • 34					
2.572	19		34 • 86					
2.535	9		35 • 38					
2.498	14		35 • 92					
2.445	6		36 • 72					
2.433	10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36•92					
2.398	29		37•48					
2.382	65		37•74					
2.350	18		38•26					
2.300	17		39•14					
2.239	22	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40.24					
2.234	20		40.34					
2.224	16		40.52					
2.219	30		40.62					
2.205	62		40.90					
2.198 2.193 2.156 2.105 2.100	60 25 30 8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	41.02 41.12 41.86 42.94 43.04					

Calcium chloride hydrate, $CaCl_2 \cdot 4H_2O$ - continued

d (Å)	Ι	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \overset{\circ}{A}$	d (Å)	Ι	hkl	$2\theta(^{\circ})$ $\lambda = 154056 \stackrel{\circ}{A}$
2.096 2.090 2.066 2.055 2.041	8 26 16 6 6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	43•12 43•26 43•78 44•02 44•34	1.555 1.551 1.541 1.533 1.514	2 2 3 3 1	$\begin{array}{cccc} -2 & 0 & 5 \\ 0 & 1 & 5 \\ 1 & -4 & 2 \\ 3 & -3 & 3 & + \\ -2 & 1 & 5 \end{array}$	59•38 59•54 59•96 60•34 61•16
2.004 1.999 1.994 1.980 1.974	30 18 6 13	2 -3 1 + -3 1 2 1 -3 2 2 -2 3 + -1 3 1 +	45•20 45•34 45•46 45•80 45•94	1.506 1.498 1.493 1.484 1.481	1 5 10 3 3	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	61 • 52 61 • 90 62 • 14 62 • 54 62 • 70
1.958 1.934 1.919 1.901 1.897	6 1 7 6 4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	46•32 46•94 47•32 47•80 47•92	1.474 1.468 1.465 1.454 1.452	3 8 6 1 1	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	63•02 63•28 63•44 63•98 64•06
1.883 1.878 1.865 1.851 1.843	2 5 1 3 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	48•28 48•42 48•78 49•18 49•42	1.446 1.442 1.436 1.431 1.428	2 3 1 2 3	-3 -2 2 1 2 4 1 1 5 -3 4 1 + 3 -4 2	64•40 64•58 64•88 65•14 65•28
1.838 1.817 1.784 1.759 1.754	2 5 6 7	-2 0 4 2 2 0 -2 -2 2 + 3 0 2 -2 3 2 +	49.54 50.18 51.16 51.94 52.10	1.424 1.420 1.417 1.414 1.407	3 4 3 5 4	$\begin{array}{ccccccc} -4 & 2 & 3 \\ 0 & -1 & 6 \\ -4 & 0 & 3 & + \\ 1 & -3 & 5 & + \\ -4 & 3 & 2 & + \end{array}$	65•48 65•70 65•88 66•04 66•36
1.750 1.745 1.720 1.716 1.696	16 9 1 4 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	52•24 52•40 53•20 53•36 54•04	1.403 1.391 1.377 1.367 1.358	6 7 2 4 7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	66•58 67•24 68•00 68•60 69•12
1.691 1.679 1.675 1.672 1.664	8 4 3 2 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	54•18 54•60 54•76 54•88 55•14	1.355 1.344 1.340 1.334 1.331	5 3 2 1 2	-3 4 2 -4 1 4 + -1 1 6 2 -4 4 4 -3 3	69•30 69•96 70•16 70•54 70•74
1.659 1.647 1.635 1.631 1.622	7 3 7 4 9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	55•34 55•76 56•20 56•38 56•70	1.327 1.323 1.317 1.314 1.311	2 3 1 1 1	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	70.96 71.20 71.56 71.80 71.98
1.608 1.603 1.592 1.582 1.578	6 4 2 3 5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	57•26 57•44 57•88 58•26 58•42	1.305 1.302 1.297 1.286 1.283	3 2 1 1 4	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	72 • 36 72 • 54 72 • 88 73 • 56 73 • 82
1.572 1.567 1.564 1.563 1.560	4 3 3 3 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	58•70 58•88 59•00 59•06 59•16	1.271 1.267 1.255 1.254	1 1 1 1	2 2 4 -5 3 0 1 -5 1 3 1 4	74•64 74•90 75•74 75•82

Ca	alculated	l Pattern (Integro	uted)		d (Å)	Ι	hkl	$\frac{2\theta(°)}{\lambda = 1.54056 \text{ Å}}$
d (Å)	I	hkl	2θ(°)					
			$\lambda = 1.54056 A$		2.239	25	0 2 2	40.24
					2.234	18	-2 -1 2	40.35
6.13	46		14.44		2.220	2	1 - 2 - 3	40.53
5.31	28		15.07		2.219	29	-1 -2 2	40.63
5.26	16		16.85		2.0217			10000
5.25	12	0 -1 1	16.88		2.204	64	2 1 1	40.90
					2.203	18	-2 0 3	40.94
4.70	28	1 0 1	18.86		2.198	32	-2 2 2	41.03
4.60	100	1 -1 1	19.28		2.193	5	-3 1 0	41.12
4.48	2	0 1 1	19.81		2.156	21	-2 1 3	41.85
4.40	2	-1 1 1	20.18		2 156		1 2 1	11 96
3.731	10	0 -1 2	23.85		2.156	14	-3 1 1	41.87
7 6 7 7	16	1 1 0	00.00		2.107	1	1 - 3 1	42.88
3.568	57	-1 -1 1	24.40		2.105	9	0 0 4	42.93
3.383	4	1 - 1 2	26.32		2.100	3	-1 3 0	43.05
3.295	42	1 0 2	27.04					
3.244	4	-2 1 0	27.47		2.096	5	0 -1 4	43.11
					2.090	32	2 -1 3	43.25
3.223	17	-1 1 2	27.66		2.067	14	-1 0 4	43.76
3.179	25	0 1 2	28.05		2.055	0	-5 2 0	43.70
3.143	4	1 1 1 1	28.37		2.055		1 1 5	44.02
3.129	3/	-1 2 0	28.50		2.041	6	-3 0 1	44.33
5.005	50	200	29.11		2.006	4	3 -2 1	45.16
3.054	7	1 -2 1	29.22		2.004	37	2 -3 1	45.21
3.021	5	-1 -1 2	29.54		1.998	3	-3 1 2	45.36
2.995	6	-2 0 1	29.80		1.993	3	1 -3 2	45.47
2.995	37	2 -1 1	29.80			-		5 50
2.937	74	0 2 0	30.41		1.980	5	2 - 2 3	45.79
0.000					1.978	5	=1 =2 3	45.89
2 9 3 0	35		30.48		1.973	12	-1 3 1	45.95
2.807	24		31.04		1.959	3	2 0 3	46.32
2.777	4	2 0 1	32.20					
2.716	84	0 -1 3	32.95		1.958	5	0 3 0	46.33
					1.934	2	3 0 1	46.93
2.673	3	-1 0 3	33.49		1.919	9	-2 3 1	47.32
2.667	Ó	1 -2 2	33.57		1.902	1	U = 3 2 3 = 1 2	47.79
2.657	22	-2 2 0	33.70		1.896	-	J -1 2	47.055
2.639	2	-2 2 1	33.94		1.884	2	0 1 4	48.27
2.029	01	-2 0 2	54.07		1.878	3	0 2 3	48.43
2.624	25	0 -2 2	34.14		1.866	1	0 -2 4	48.78
2.610	20	-2 1 2	34.33		1.851	4	1 -2 4	49.17
2.571	22	2 -2 1	34.86		1.843	3	-2 -2 1	49.42
2.535	10	1 -1 3	35.38				0 0 0	10 57
2.499	17	-2 2 1	35.91		1.839		-2 0 4	49.55
0 1111	-	1 0 -	74 70		1.784	7	-2 -2 2	51.16
2.446			36.72		1.782	1	-1 3 2	51.22
2.432	11	=1 1 3	36.03		1.759	7	3 0 2	51.94
2.397	34	-2 -1 1	37.49					
2.385	2	2 1 0	37.68		1.754	5	-2 3 2	52.10
					1.753	1	-3 0 3	52.14
2.382	73	0 1 3	37.74		1.749	20	0 - 5 - 5	52.24
2.380	7	-1 2 2	37.78		1.722	2	-1 -3 1	53,14
2.350	21	2 0 2	38.26	I	1.122	+ I		33+1+
2.300	20	2 = 2 2	38.4/					
2:000]	20 1	c - c - c	37.14					

d (Å)	Ι	hkl	$\begin{array}{c} 2\theta(^{\circ}) \\ \lambda = 1.54056 \stackrel{\circ}{A} \end{array}$]	d (Å)	I	hkl	$2\theta(°)$ $\lambda = 1.54056 \stackrel{\circ}{A}$
1.715 1.698 1.696 1.695 1.692	5 2 4 2 8	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	53.37 53.95 54.03 54.05 54.17		1.465 1.464 1.454 1.452 1.446	2 1 1 1 2	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	63.42 63.50 63.98 64.06 64.40
1.689 1.679 1.675 1.671 1.664	1 5 1 1 5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	54.25 54.61 54.76 54.88 55.14		1.442 1.436 1.431 1.431 1.428	4 1 1 2 4	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	64.59 64.89 65.14 65.14 65.28
1.663 1.663 1.659 1.647 1.635	1 3 8 3 10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	55.17 55.19 55.35 55.76 56.20		1.424 1.420 1.417 1.417 1.414	3 5 1 1 5	-4 2 3 0 -1 6 2 2 3 -4 0 3 1 -3 5	65.50 65.71 65.86 65.86 66.04
1.629 1.622 1.607 1.602 1.592	1 14 8 1 3	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	56.43 56.71 57.26 57.48 57.88		1.413 1.408 1.407 1.403 1.401	3 2 4 7 1	-2 4 2 2 0 5 -4 3 2 0 0 6 0 -4 3	66 • 0 9 66 • 34 66 • 38 66 • 58 66 • 69
1.589 1.583 1.582 1.580 1.579	1 1 2 2 2	$\begin{array}{ccccccc} 0 & 2 & 4 \\ -1 & 1 & 5 \\ 4 & -1 & 1 \\ 0 & -2 & 5 \\ 1 & -4 & 1 \end{array}$	57.98 58.25 58.27 58.37 58.39		1.392 1.391 1.379 1.377 1.367	4 9 1 3 6	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	67.17 67.23 67.94 68.00 68.59
1.577 1.572 1.567 1.564 1.563	2 4 1 3 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	58.47 58.70 58.90 58.99 59.07		1.365 1.358 1.358 1.358 1.358 1.358	1 4 1 5 3	$\begin{array}{cccccc} 0 & 2 & 5 \\ -4 & -1 & 2 \\ 0 & -2 & 6 \\ -2 & -2 & 5 \\ 2 & -3 & 5 \\ \end{array}$	68.69 69.09 69.12 69.13 69.13
1.561 1.555 1.551 1.542 1.533	2 2 1 4 2	-3 0 4 -2 0 5 0 1 5 1 -4 2 3 -3 3	59.15 59.39 59.54 59.96 60.32		1 • 355 1 • 344 1 • 343 1 • 340 1 • 334	2 1 4 2 1	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	69.26 69.93 69.97 70.15 70.55
1.533 1.514 1.506 1.498 1.498	2 1 1 4 2	4 0 0 -2 1 5 -2 4 1 -4 0 2 4 -2 2	60.34 61.15 61.51 61.90 61.90		1.331 1.327 1.323 1.323 1.323 1.317	2 2 1 1	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	70.74 70.97 71.19 71.20 71.56
1.493 1.492 1.485 1.484 1.484	7 8 1 4 2	$\begin{array}{ccccccc} 0 & 3 & 3 \\ -2 & -1 & 5 \\ 4 & -1 & 2 \\ 1 & 3 & 2 \\ 4 & -3 & 1 \end{array}$	62.13 62.15 62.47 62.55 62.70		1.314 1.311 1.305 1.305 1.303	1 1 2 2 1	-3 -1 5 -1 -2 6 -4 2 4 -4 -1 3 -2 1 6	71.80 71.98 72.36 72.37 72.48
1.478 1.476 1.474 1.473 1.469	1 2 1 12	$\begin{array}{ccccccc} 4 & 0 & 1 \\ 2 & -1 & 5 \\ 3 & -2 & 4 \\ 3 & -1 & 4 \\ 0 & 4 & 0 \end{array}$	62.84 62.93 53.01 63.07 63.27		1.302 1.300 1.297 1.286 1.283	1 1 1 5	-2 4 3 -5 1 1 3 -1 5 -1 4 3 2 1 5	72.53 72.65 72.89 73.56 73.82

Orthorhombic, Pnnm (58), Z=2 [Handy and Gregory, [1951]. The structure was determined independently and practically at the same time in four different laboratories and reported jointly in one paper [Tracy et al., 1961]

Lattice parameters

a=6.631, b=5.980, c=3.487A [Tracy et al., 1961]

Density

(calculated) 2.952 g/cm³

Thermal parameters

Anisotropic; $\beta_{11}=0.0137$, $\beta_{22}=0.0119$ for all atoms

Atomic positions

Cr in 2a: 0,0,0 Cl in 4g: x,y,0 with x=0.360, y=0.275

Scattering factors

Cr²⁺, Cl [Berghuis et al., 1955]

Scale factor

(integrated intensities) 0.5267×10^4

Additional patterns 1. PDF card 6-0159 [Handy and Gregory, 1951].

2. Oswald [1961]

Reference Berghuis, J., Haanapel, IJ. M., Potters, M., Loopstra, B. O., MacGillavry, C. H., and Veenendahl, A. L. (1955). Acta Cryst. 8, 478. Handy, L. L. and Gregory, N. W. (1951). J. Chem.

- Phys. 19, 1314.
- Oswald, H. R. (1961). Helv. Chim. Acta 44, 1049. Tracy, J.W., Gregory, N.W., Lingafelter, E.C.,Dunitz, J.D., Mez, H.-C., Rundle, R.E., Scheringer,
- C., Yakel, H.L., Jr., and Wilkinson, M.K. (1961). Acta Cryst. 14, 927.

Calculated Pattern (Peak heights)								
d (Å)	Ι	hkl	$\frac{2\theta(^{\circ})}{\lambda = 1.54056} \stackrel{\circ}{\underline{A}}$					
4.44	100	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	19•98					
3.314	8		26•88					
3.011	15		29•64					
2.990	2		29•86					
2.899	36		30•82					
2.743	41	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	32•62					
2.230	19		40•42					
2.220	15		40•60					
2.147	49		42•04					
2.073	4		43•62					
1.909	2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	47.60					
1.873	2		48.58					
1.867	18		48.74					
1.782	2		51.22					
1.743	10		52.44					
1.731	8	$\begin{array}{ccccc} 0 & 3 & 1 \\ 2 & 3 & 0 \\ 1 & 3 & 1 \\ 1 & 1 & 2 \\ 2 & 0 & 2 \end{array}$	52 • 86					
1.708	3		53 • 60					
1.674	4		54 • 78					
1.623	6		56 • 68					
1.543	1		59 • 88					
1.534	3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	60•28					
1.494	8		62•06					
1.480	3		62•72					
1.452	4		64•06					
1.450	6		64•18					
1.371	3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	68•36					
1.363	1		68•84					
1.334	1		70•52					
1.269	1		74•72					
1.240	1		76•84					
1.220	2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	78.28					
1.214	1		78.78					
1.177	1		81.76					
1.167	3		82.62					
1.135	2		85.48					
1.128	2	3 3 2 1 1 3 4 2 2 2 1 3 2 5 1	86.10					
1.125	2		86.46					
1.115	3		87.42					
1.079	1		91.12					
1.071	1		92.02					
1.069	3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	92•18					
1.029	2		96•96°					
1.004	1		100•20					
.976	1		104•30					
.934	1		111•04					
•933 •933 •874 •872 •855 •848 •845	1 1 1 1 1 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	111.24 111.32 123.56 124.14 128.44 130.70 131.34					

20(°)

 $\lambda = 1.54056 \stackrel{\circ}{A}$

100.20 101.77 104.30

106.56

107.65

108.61 109.14 110.08

111.04 111.22

111.33 111.58 113.27

113.59

121.15

123.55 123.58

124.16

125.89

128.44

128.79

130.71

131.35 133.86 134.64

136.35 137.30

138.24 143.34

144.68

146.89

148.40

150.33

152.02

152.52

153.24

3 3

2

3

1

3

1 3

4

3

4

0

1

4

3

0

3

4

2

C	alculated	l Pattern (Integr	ated)	d (Å)	Ì	hkl
d (Å)	Ι	hkl	$\frac{2\theta(°)}{\lambda = 1.54056 \text{ Å}}$	1.004	2	03
4.44 3.315 3.012 2.990 2.900	100 9 18 1 43	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	19.98 26.87 29.63 29.86 30.81	•993 •976 •961 •954 •948	1 2 1 1 2	$ \begin{array}{c} 1 & 3 \\ 1 & 5 \\ 2 & 3 \\ 5 & 4 \\ 1 & 6 \\ $
2.743 2.726 2.230 2.220 2.147	48 2 23 15 62	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	32.62 32.83 40.42 40.60 42.04	•945 •940 •934 •933 •933	1 2 1 1	2 5 4 1 4 5 6 0 5 3
2.073 1.909 1.873 1.867 1.782	5 2 24 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	43.62 47.60 48.57 48.74 51.22	•931 •922 •921 •884 •874	1 1 1 2	6 1 2 6 2 4 7 2
1.743 1.731 1.708 1.674 1.623	14 11 5 6 10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	52.44 52.86 53.60 54.78 56.67	•874 •872 •865 •855	1 3 2 2	5 0 0 0 5 1 1 1 4 6
1.543 1.534 1.495 1.494	2 4 4 9 4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	59.89 60.28 62.03 62.06 62.71	•847 •845 •837 •835	4 1 4 2	3 4 6 3 2 6 2 1 0 7
1.452 1.450 1.371 1.363	5 7 5 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	64.06 64.19 68.35 68.83 68.85	•827 •824 •811 •808 •804	1 1 3 2 1	1 5 7 1 2 2 2 5 3 1
1.383 1.334 1.295 1.287 1.269	2 1 1 1 2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	70.52 73.02 73.50 74.72 76.84	•801 •797 •794 •793 •792	2 2 1 1 2	5 3 3 7 6 1 1 3 6 4
1.220 1.214 1.177 1.167 1.135	3 2 2 5 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	78.29 78.78 81.75 82.61 85.49			
,1.128 1.124 1.115 1.079 1.074	3 2 6 2 1	3 3 2 1 1 3 4 2 2 2 1 3 2 4 2	86.10 86.48 87.42 91.12 91.68			
1.071 1.069 1.053 1.039 1.029	1 6 1 1 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	92.01 92.18 94.07 95.64 96.96			

Cubic, $P\overline{4}3m$ (215), Z=4. The structure was determined by Bradley and Jones [1933]. It was refined first by Westman [1965] and later by Heidenstam, Johannson, and Westman [1968]. This is the same phase of the copper-aluminum system that was called δ -CuAl (or CugAl₄) by Bradley and Jones [1933] and by Weibke [1934]; it was later called γ -CugAl₄ by Westman [1965] because its structure is very similar to that of γ -brass.

Lattice parameters

a=8.7027(5)Å (published value: 8.7023(5)Å) [Heidenstam et al., 1968]

Density

(calculated) 6.850 g/cm³

Thermal parameters

Isotropic [Heidenstam et al., 1968]

Atomic positions

The parameter values used were those in table 5 [Heidenstam et al., 1968], with half the "octahedral" Cu atoms in positions 6f and the other half in positions 6g [Westman, 1965].

Scattering factors

Cu⁰, Al⁰ [Cromer and Waber, 1965]: all factors were corrected for dispersion [Cromer, 1965].

Scale factor

(integrated intensities) 63.01×10^4

Additional patterns

1. PDF card 2-1254 [Weibke, 1934]

References
Bradley, A.J., and Jones, P. (1934). J.Inst. Metals
51, 131.
Cromer, D.T. and Waber, J.T. (1965). Acta Cryst.
18, 104.
Cromer, D.T. (1965). Acta Cryst. 18, 17.
v. Heidenstam, O., Johannson, A., and Westman, S.
(1968). Acta Chem. Scand. 22, 653.
Weibke, F. (1934). Z. anorg.u.allgem. Chem. 220,
293.
Westman, S. (1965). Acta Chem. Scand. 19, 1411.

Calculated Pattern (Peak heights)						
d (Å)	Ι	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \stackrel{\circ}{A}$			
8.699	3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10.16			
6.154	1		14.38			
3.8903	4		22.84			
3.5533	8		25.04			
2.9006	8		30.80			
2.5116	2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	35.72			
2.3259	3		38.68			
2.0509	100		44.12			
1.8990	1		47.86			
1.8553	4		49.06			
1.7762	4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	51.40			
1.7066	1		53.66			
1.6749	1		54.76			
1.5150	1		61.12			
1.4503	8		64.16			
1.4116	2	6 1 1 +	66.14			
1.2832	2	6 3 1	73.78			
1.2562	3	4 4 4	75.64			
1.2306	2	5 5 0 +	77.50			
1.1844	12	6 3 3 +	81.14			
1.1053	1	7 3 2	88.36			
1.0712	5	7 4 1	91.96			
1.0553	1	8 2 0 +	93.76			
1.0256	2	6 6 0 +	97.36			
.9173	2	9 3 0 +	114.22			
.8791 .8617 .8374 .8151 .7944	3 1 4 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	122.38 126.74 133.80 141.82 151.66			

Copper	aluminum,	Cu ₉ Al ₄	-	continued
--------	-----------	---------------------------------	---	-----------

Ca	alculated	Pattern (Integra	ited)					
d (Å)	Ι	hkl	$2\theta(°)$ $\lambda = 1.54056 \stackrel{\circ}{A}$					
8.703 6.154 3.8920 3.5529 2.9009	3 1 5 10 6	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10.16 14.38 22.83 25.04 30.80					
2.9009 2.5123 2.3259 2.1107 2.0513	4 4 1 100	2 2 1 2 2 2 3 2 1 3 2 2 3 2 2 3 3 0	30.80 35.71 38.68 42.81 44.11					
2.0513 1.9460 1.8991 1.8554 1.7764	53 1 6 6	4 1 1 4 2 0 4 2 1 3 3 2 4 2 2	44.11 46.64 47.86 49.06 51.39					
1.7067 1.7067 1.6748 1.6748 1.6161	1 1 1 1	$\begin{array}{cccccc} 4 & 3 & 1 \\ 5 & 1 & 0 \\ 5 & 1 & 1 \\ 3 & 3 & 3 \\ 4 & 3 & 2 \end{array}$	53.66 53.66 54.76 54.76 56.93					
1.5150 1.4505 1.4505 1.4118 1.4118	1 8 6 2 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	61.12 64.15 64.15 66.13 66.13					
1.2831 1.2561 1.2307 1.2307 1.2069	3 6 3 1 1	6 3 1 4 4 4 5 5 0 5 4 3 6 4 0	73.78 75.65 77.49 77.49 79.32					
1.1843 1.1843 1.1843 1.1629 1.1052	11 14 1 2	7 2 1 5 5 2 6 3 3 6 4 2 7 3 2	81.15 81.15 81.15 82.96 88.36					
1.0712 1.0554 1.0554 1.0256 1.0256	12 1 1 4	$\begin{array}{ccccccc} 7 & 4 & 1 \\ 8 & 2 & 0 \\ 6 & 4 & 4 \\ 8 & 2 & 2 \\ 6 & 6 & 0 \end{array}$	91.95 93.75 93.75 97.36 97.36					
•9983 •9854 •9174 •9174 •8791	2 2 3 2 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	101.00 102.83 114.21 114.21 122.38					
•8791 •8617 •8617 •8534 •8453	6 1 3 2 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	122.38 126.74 126.74 129.01 131.36					

d (Å)	Ι	hkl	$\frac{2\theta(°)}{\lambda = 1.54056 \stackrel{\circ}{A}}$	
.8374 .8374 .8298 .8151 .8151 .8151 .8046 .8046 .8012 .8012 .7944 .7879 .7879	3 1 2 12 2 1 1 1 2 10 2 2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 6 2 1 4 5 2 1 3 1 2 4 0	133.80 133.80 136.34 141.83 141.83 141.83 146.43 146.43 146.43 148.09 148.09 151.66 155.72 155.72

Cubic, $1\overline{4}$ 3m (217), Z=4. The structure was determined by Bradley and Gregory [1931] and refined by Heidenstam et al., [1968].

Lattice parameters

a=9.5892(3)Å (published value: 9.5888(3)Å) [Heidenstam et al., 1968]

Density

(calculated) 9.166 g/cm³

Thermal parameters

Isotropic [Heidenstam et al., 1968]

Atomic positions

Cu(1) in 8c, Cu(2) in 8c. The 12(Cu,Cd) in 12e and 24(Cu,Cd) in 24g are in random arrangement in each site, in the ratio of 1 Cu to 8 Cd.

Scattering factors

 Cu^0 , Cd^0 [Cromer and Waber, 1965]. All factors were corrected for dispersion [Cromer, 1965].

Scale factors

(integrated intensities) 159.5×10^4

Reference

Bradley, A.J. and Gregory, C.H. (1931). Phil. Mag. 12, 143.

Cromer, D.T. and Waber, J.T. (1965). Acta Cryst. 18, 104.

Cromer, D.T. (1965). Acta Cryst. 18, 17.

v. Heidenstam, O., Johansson, A., and Westman, S. (1968). Acta Chem. Scand. 22, 653.

Calculated Pattern (Peak heights)							
d (Å)	Ι	hkl	$\frac{2\theta(^{\circ})}{\lambda = 1.54056 \text{ Å}}$				
3.9140	1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	22.70				
3.0315	9		29.44				
2.7676	9		32.32				
2.5630	14		34.98				
2.3976	1		37.48				
2.2597	100	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	39.86				
2.0448	12		44.26				
1.9577	7		46.34				
1.8805	3		48.36				
1.6445	1		55.86				
1.5984	3	4 4 2 +	57.62				
1.5556	2	5 3 2 +	59.36				
1.5163	1	6 2 0	61.06				
1.4797	2	5 4 1	62.74				
1.4455	1	6 2 2	64.40				
1.4139 1.3839 1.3562 1.3048 1.2814	4 4 10 1	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	66.02 67.64 69.22 72.36 73.90				
1.2177	2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	78.48				
1.1803	2		81.48				
1.1629	1		82.96				
1.1301	1		85.94				
1.1000	1		88.90				
1.0857	2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	90.38				
1.0107	1		99.30				
.9687	2		105.34				
.9228	1		113.18				
.8981	1		118.12				
•8543	3	10 5 1 +	128.76				
•8284	1	11 3 2 +	136.82				

Copper cadmium, Cu_5Cd_8 - continued

С	alculated	l Pattern (Integra	uted)
d (Å)	Ι	hkl	$2\theta(°)$ $\lambda = 1.54056 \stackrel{\circ}{A}$
3.9148	1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	22.70
3.0324	15		29.43
2.7682	15		32.31
2.5628	24		34.98
2.3973	2		37.48
2.2602	88	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	39.85
2.2602	100		39.85
2.0444	23		44.27
1.9574	14		46.35
1.8806	4		48.36
1.8806	2	4 3 1	48.36
1.7507	1	5 2 1	52.20
1.6445	2	5 3 0	55.86
1.6445	1	4 3 3	55.86
1.5982	2	6 0 0	57.63
1.5982	5	4 4 2	57.63
1.5556	1	6 1 1	59.36
1.5556	3	5 3 2	59.36
1.5162	2	6 2 0	61.07
1.4797	5	5 4 1	62.74
1.4456	3	6 2 2	64 • 39
1.4138	9	6 3 1	66 • 02
1.3841	9	4 4 4	67 • 63
1.3561	1	5 4 3	69 • 22
1.3561	7	5 5 0	69 • 22
1.3049	18	7 2 1	72.35
1.3049	1	5 5 2	72.35
1.3049	7	6 3 3	72.35
1.2814	2	6 4 2	73.90
1.2178	3	6 5 1	78.47
1.2178 1.1987 1.1804 1.1629 1.1629	3 1 5 2	$\begin{array}{ccccc} 7 & 3 & 2 \\ 8 & 0 & 0 \\ 7 & 4 & 1 \\ 8 & 2 & 0 \\ 6 & 4 & 4 \end{array}$	78•47 79•98 81•47 82•97 82•97
1.1461 1.1301 1.1301 1.1000 1.0858	2 2 3 5	6 5 3 6 6 0 8 2 2 6 6 2 7 5 2	84•45 85•94 85•94 88•90 90•38
1.0590 1.0340 1.0108 1.0108 .9891	1 1 1 1	8 3 3 9 2 1 7 5 4 8 5 1 9 3 2	93.34 96.31 99.29 99.29 102.30
•9787	1	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	103.82
•9687	2		105.35
•9687	5		105.35
•9495	1		108.44
•9314	2		111.59

d (Å)	Ι	hkl	$2\theta(^{\circ})$ $\lambda \approx 1.54056 ^{\circ}$
•9227 •9227 •8981 •8981 •8981	4 1 2 3 1	10 2 2 6 6 6 8 7 1 7 7 4 8 5 5	113.19 113.19 118.11 118.11 118.11
•8682 •8543 •8543 •8543 •8476	2 2 5 6 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	125.06 128.76 128.76 128.76 130.68
•8410 •8346 •8284 •8284 •8284	1 2 1 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	132.66 134.71 136.83 136.83 139.03
•8223 •8163 •8163 •8047 •7991	1 1 2 2	8 6 6 8 7 5 11 4 1 9 6 5 8 8 4	139.03 141.34 141.34 146.36 149.13
•7936 •7936 •7936 •7936 •7936 •7829	1 1 1 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	152.15 152.15 152.15 152.15 152.15 159.35

Orthorhombic, $P2_12_12_1$ (19), Z=4. The structure was determined by Handlovic [1969].

Lattice parameters

a=6.71, b=9.00, c=7.40Å [ibid.]

Density

(calculated) 2.67 g/cm³

Thermal parameters Isotropic [Handlovic]

Scattering factors Cu^0 , O^0 , P^0 [International Tables, 1962]

Scale factor

(integrated intensities) 4.158 x 10^4

Reference

Handlovic, M. (1969). Acta Cryst. B25, 227 International Tables for X-ray Crystallography III (1962). 202, 210.

Ca	Calculated Pattern (Peak heights)							
d (Å)	I		hkl		$\frac{2\theta(°)}{\lambda = 1.54056 \text{ Å}}$			
5.38	22	1	1	0	16.46			
4.97	100	1	0	1	17.84			
4.50	3	0	2	0	19.72			
4.35	10	1	1	1	20.40			
3.84	10	0	2	1	23.12			
3.74	63	1	2	0	23•80			
3.70	10	0	0	2	24•04			
3.422	21	0	1	2	26•02			
3.336	13	1	2	1	26•70			
3.241	7	1	0	2	27•50			
2.893	10	2	1	1 +	30.88			
2.857	2	U	2	2	31.28			
2.779	7	0	3	1	32.18			
2.690	9	2	2	0	33.28			
2.629	8	1	2	2	34.08			
2.569 2.528 2.485 2.395 2.379	4 38 2 5 1	1 2 2 0	3 2 0 1 1	1 1 2 2 3	34•90 35•48 36•12 37•52 37•78			
2.331	1	0	3	2	38.60			
2.316	9	1	0	3	38.86			
2.250	4	0	4	0	40.04			
2.242	5	1	1	3	40.18			
2.237	4	2	3	0	40.28			
2.170	3	3	1	0	41.58			
2.163	7	0	2	3	41.72			
2.152	3	0	4	1	41.94			
2.141	4	3	0	1	42.18			
2.134	5	1	4	0	42.32			
2.059 2.050 2.003 1.940 1.933	4 7 2 2	1 1 3 2 3	2 4 2 1 2	3 1 0 3 1	43.94 44.14 45.24 46.78 46.96			
l.914 l.905 1.869 1.848 1.833	3 2 1 5 4	3 0 2 1 1	0 3 4 3	2 + 3 0 2 + 3	47•46 47•70 48•68 49•26 49•70			
1.818	3	2	2	3	50 • 14			
1.812	5	2	4	1 +	50 • 32			
1.793	1	3	3	0	50 • 88			
1.783	1	1	0	4	51 • 18			
1.762	4	3	2	2	51 • 86			
1.750	4	1	1	4	52•24			
1.745	2	3	3	1	52•40			
1.711	1	0	2	4	53•52			
1.693	2	1	5	1	54•14			
1.678	5	4	0	0	54•66			

Copper hydrogen phosphite hydrate, $\rm CuHPO_3{\cdot}2H_2O$ – continued

d (Å)	I	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \stackrel{\circ}{A}$	C	alculated	d Pattern (Integra	ated)
1.668	6	242	55.00	d (Å)	Ι	hkl	$2\theta(^{\circ})$ $\lambda = 154056 \overset{\circ}{A}$
1.663	4	0 4 3	55.18				1.04000 /1
1.658	6	1 2 4 +	55.38		1		
1.649		4 1 0	55.68	5.38	21	1 1 0	16.46
1.630	1	3 1 3	56.42	4.97	100	1 0 1	17.83
1.000	-		50042	4.50	3	0 2 0	19.71
1.620	3	204	F6 70	4.35	10	1 1 1	20.39
1 620	3	1 4 3	50.70	3.84	17	0 2 1	23.11
1.014	5		57.02				
1.594	2	2 1 4	57+78	3.74	70	1 2 0	23.79
1.586		340	$58 \cdot 10$	3.70	9	0 0 2	24.03
1.573	2	1 5 2 +	58+62	3,422	23	0 1 2	26.02
				3.355	1	2 0 0	26.55
1+555	1		59.40	3.336	14	1 2 1	26.70
1.551	3		59.56				
1.537		4 2 1	60.14	3.240	8	1 0 2	27.51
1.528	1	4 0 2	60•56	3.056	3	2 0 1	29.20
1.506	1	4 1 2	61.52	3.049	10	1 1 2	29.27
				2.893	11	2 1 1	30.88
1.490	2	2 4 3	62•28	2.858	2	0 2 2	31.27
1.458	2	342+	63•78	20000	_		<u> </u>
1.454	2	0 5 3	63•98	2.780	3	0 3 1	32.17
1.450	2	3 3 3	64•16	2.690	1 11		33.28
1.447	2	422	64.34	2.629	10	1 2 2	34.07
				2.568	10		34.90
1.436	3	1 6 1 +	64.88	2.500	15		35.08
1.425	3	2 3 4 +	65+42	2.020		2 2 1	55.40
1.408	1	314	66.34	2 // 0 5	7	2 0 2	36 11
1.398	1	144	66.88	2 306	5		37 51
1.390	2	062	67.30	2.0390	1		37 78
				2.379			30 60
1.369	2	260	68+46	2.330		1 0 3 2	20 07
1.361	1	4 3 2 +	68.92	2.015	11	1 0 5	30.07
1.359	2	324	69.06	2 250		0 0 0	10 OU
1.345	1	4 4 0	69.88	2.250	2		40.04
1.339	1	2 1 5	70.24	2.242	5		40.19
				2.230	2	2 3 0	40.50
1.334	1	2 5 3 +	70.52	2.1/1	3		41.57
1.325	2	4 2 3	71.06	2.103	8	0 2 3	41.76
1.322	1	4 4 1	71.26	0 157	7	0 11 1	41 03
1.320	2	501	71.38	2.155		3 0 1	41.95
1.315	1	244	71.74	2.141)) 		42.11
				2.133	2		42.55
1.306	1	5 1 1	72.26	2.059	5		40.94
1.302	1	1 3 5	72.54	∠ •050	9	141	44.13
1.297	2	2 2 5	72.88	2 007	<u>n</u>	3 2 0	45 24
1.286	1	520	73.60	2.003	0 z	3 2 0	45.27
1.284	2	2 6 2	73.70	1.941	5		40.11
				1.935	2	3 2 1	40.90
1.281	1	0 6 3	73.90	1.914	2	3 0 2	47.40
1.267	2	5 2 1 +	74.88	1.914	T	2 3 2	47.40
1.259	2	1 6 3 +	75+44	1.005	2	0 7 7	47 60
1.228	1	361	77.66	1.905	4	0 3 3	41.09
1.216	1	1 4 5	78.62	1.869	2	2 4 0	40.07
				1.850	3	1 (1 2	49.21
1.141	1	3 3 5 +	84+88	1.848	5	1 4 2	49.27
1.112	1	0 8 1 +	87.68	1.833	5	1 3 3	49.70
1.074	1	6 2 1	91.68			0 0 7	F0.14
1.070	ī	462	92.04	1.818	3	2 2 3	50.14
1.063	1	1 8 2	92.00	1.812	1	0 1 4	50.31
1.006	1	1 5 6		1.812	5	2 4 1	50.32
1.000	÷	1 5 0	99.96	1.793	1	3 3 0	50.88
I				1.783	1	104	51.18

Copper hydrogen phosphite hydrate, $CuHPO_3 \cdot 2H_2O$ - continued

d (Å)	Ι	hkl	$\frac{2\theta(°)}{\lambda = 1.54056 \text{ Å}}$		d (Å)	Ι	hkl	$\frac{2\theta(°)}{\lambda = 1.54056 \text{ Å}}$
1.761 1.749 1.743 1.711 1.692	6 5 1 2 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	51.87 52.25 52.46 53.51 54.15		1.297 1.286 1.284 1.282 1.282	4 1 2 1 1	2 2 5 5 2 0 2 6 2 0 6 3 5 2 1	72.89 73.59 73.71 73.89 74.88
1.677 1.668 1.662 1.658 1.657	8 8 1 6 2	$\begin{array}{cccccc} 4 & 0 & 0 \\ 2 & 4 & 2 \\ 0 & 4 & 3 \\ 1 & 2 & 4 \\ 3 & 0 & 3 \end{array}$	54.67 55.01 55.21 55.37 55.41		1.267 1.259 1.259 1.249 1.228	1 1 1 2	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	74.89 75.44 75.45 76.13 77.66
1.649 1.630 1.620 1.614 1.594	1 2 4 3 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	55•69 56•42 56•78 57•03 57•78		1.216 1.204 1.179 1.169 1.143	1 1 1 1	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	78.61 79.53 81.60 82.45 84.72
1.586 1.575 1.573 1.555 1.551	2 1 3 1 4	3 4 0 0 3 4 1 5 2 3 2 3 3 4 1	58.10 58.57 58.62 59.39 59.55		1.142 1.141 1.141 1.124 1.124	1 1 1 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	84.83 84.88 84.95 86.52 87.67
1.538 1.528 1.506 1.490 1.458	2 1 2 4 2	4 2 1 4 0 2 4 1 2 2 4 3 3 4 2	60.13 60.55 61.51 62.28 63.79		1.112 1.074 1.072 1.070 1.063	1 1 1 2	3 6 3 6 2 1 3 1 6 4 6 2 1 8 2	87.69 91.67 91.83 92.05 92.90
1.458 1.454 1.450 1.447 1.436	1 1 2 1 1	2 5 2 0 5 3 3 3 3 4 2 2 4 3 1	63.79 63.98 64.16 64.34 64.86		1.018 1.006 1.002 .991 .986	1 1 2 1 1	4 6 3 1 5 6 2 1 7 5 6 1 1 3 7	98.29 99.95 100.48 102.00 102.71
1.436 1.427 1.425 1.408 1.398	4 1 3 2 2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	64 • 88 65 • 34 65 • 42 66 • 33 66 • 89		•979 •970 •967 •945 •944	1 1 1 1	2 8 3 3 8 2 6 4 2 4 5 5 5 3 5	103.77 105.16 105.66 109.25 109.42
1.390 1.369 1.361 1.361 1.359	2 3 1 1 3	0 6 2 2 6 0 4 3 2 1 6 2 3 2 4	67.30 68.46 68.91 68.93 69.06			<u> </u>	L	
1.345 1.339 1.334 1.334 1.326	1 2 1 1 3	4 4 0 2 1 5 3 4 3 2 5 3 4 2 3	69.89 70.23 70.53 70.53 71.05	-				
1.323 1.320 1.315 1.306 1.302	1 2 1 2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	71.20 71.37 71.73 72.26 72.54					

L-Cysteine, HSCH₂·CH(NH₂)·COOH

Structure

Monoclinic, $P2_1(4)$, Z=4. The structure was determined by Harding and Long [1968].

Lattice parameters

a=11.51(1), b=5.240(5), c=9.517(10)Å, β=109.13° [ibid.]

Density

(calculated) 1.484 g/cm³

Thermai parameters

[sot:	ropi	c:		carbon	(1)	1.26
				11	(11)	1.26
sul	fur	(1)	B≃3.81	nitrogen	(1)	1.26
sul	fur	(2)	4.99	11	(11)	1.74
carl	bon	(3)	2.37	oxygen	(1)	1.58
11		(13)	2.21	11	(11)	1.74
11		(2)	1.58	11	(2)	2.45
11		(12)	1.42	11	(12)	2.45
				hydrogen	(all)	1.42

Scattering factors

 C^0 , H^0 , N^0 , $O^{-\frac{1}{2}}$, S^0 . The sulfur factors were corrected for the real part of the dispersion. [International Tables, 1962].

Scale factor

(integrated intensities) 0.5947 \times 10⁴

Additional patterns

 PDF card 13-722 [Eli Lilly Co., Indianapolis, Indiana.]

Reference

Harding, M.M. and Long, H.A. (1968). Acta Cryst. B24, 1096. International Tables for X-ray Crystallography III

(1962), 202, 214.

Calculated Pattern (Peak heights)						
d (Å)	Ι		hkl		$\frac{2\theta(°)}{\lambda = 1.54056 A}$	
10 • 88 8 • 98 8 • 40 6 • 02 5 • 5 2	42 4 1 3 2	1 0 -1 1 -2	0 0 0 0		8 • 1 2 9 • 8 4 1 0 • 5 2 1 4 • 7 0 1 6 • 0 4	
5 • 4 3 4 • 7 2 4 • 5 3 4 • 4 9 4 • 4 5	11 86 100 92 34	2 1 0 	0 1 1 0 1	0 0 + 1 2 1	16.30 18.78 19.60 19.74 19.74	
4 • 21 3 • 96 3 • 82 3 • 802 3 • 773	14 14 15 29	+ 2 1 - 3 - 2 2	0 1 0 1 1	2 1 1 1 0	21.10 22.46 23.24 23.38 23.56	
3 • 745 3 • 625 3 • 515 3 • 422 3 • 411	41 44 54 34 51	1 -1 -3 0	0 0 1 0 1	2 0 2 2 2	23.74 24.54 25.32 26.02 26.10	
3 • 281 3 • 227 3 • 166 3 • 087 3 • 046	20 58 4 15 3	- 2 2 - 1 - 2 1	1 1 0 1	2 1 3 3 + 2	27.16 27.62 28.16 28.90 29.30	
3 • 0 35 2 • 9 9 6 2 • 9 8 0 2 • 8 6 6 2 • 8 0 5	3 7 53 4 1	3 0 - 3 - 3	0 0 1 1 0	1 3 0 2 3	29.40 29.50 29.96 31.18 31.88	
2 • 761 2 • 719 2 • 712 2 • 673 2 • 660	19 50 41 3 25	-4 4 -1 1 -2	0 0 1 0 1	2 0 3 3 3	32.40 32.92 33.00 33.50 33.66	
2 • 6 2 6 2 • 6 2 0 2 • 6 1 2 2 • 6 0 5 2 • 5 4 7	7 11 11 6 9	3 0 2 0 1	1 2 1 1 2	 2 3 0	34.12 34.20 34.30 34.40 35.20	
2 • 5 1 6 2 • 5 0 2 2 • 4 7 3 2 • 4 5 6 2 • 4 4 3	4 3 7 14 8	0 =1 =3 =4	2 2 1 0 1	1 1 3 2 2	35.66 35.86 36.30 36.56 36.76	
2.412 2.403 2.394 2.382	2 2 17	4 1 4 1	1 2 0 1	0 1 1 3	37.24 37.40 37.54 37.74 37.74	

 $\textbf{L-Cysteine, HSCH}_2 \cdot \textbf{CH}(\textbf{NH}_2) \cdot \textbf{COOH} - \textbf{continued}$

d (Å)	r	hbl	20(°)	d (Å)	T	ьы	2θ(°)
(A)	1	11111	$\lambda = 1.54056 \text{ Å}$	u (A)	1	10100	$\lambda = 1.54056 \ A$
			30.10				5 0.0
2+360	6	2 2 0 +	38.10	1.673	3	520	54.82
2.293	2	-1 2 2 +	39.26	1.663	4	2 3 0 +	55.18
2.273	6	=3 0 4	39.62	1.628	2	032	56.48
2.248	11	0 0 4	40.08	1+613	3	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	57.04
2.221	15	+4 1 3 +	40.58	1.607	3	1 1 5 +	57.30
2.208	2	2 2 1	40.84	1.599	3	3 1 4	57.58
2.177	4	4 1 1	41.44	1.594	3	6 1 1	57.78
2.161	5	+3 2 1 +	41.76	1 693	2	1 2 2	58.24
2.166	1	-1 1 4	41.88	1.505	4		50.42
2.144	4	1 2 2	42.06	1.5/5	-	3 3 0 +	50.82
20110				1+207	۷	*/ 1 2	20102
2	6	-5 0 3 4	42.58				60.33
2+121			42.94	1+55/	1	-6 0 5	59.52
2.104	2		12.70	1+553	2	700+	59.96
2 • 100	2	-5 1 1	43.04	1+543	2	-4 0 6	59.88
2.085	6	=3 1 4 +	43.36	1+541	2	-5 2 4 +	59.98
2.081	8	-3 2 2	43.46	1.529	1	+1 3 3	60.48
2.066	1	014	43.78	1.525	1	-3 2 5	60.68
2.048	1	4 0 2	44.18	1.507	2	4 0 4	61.50
2.019	1	+1 2 3	44.86	1.496	ĩ	2 1 5	61.96
2.009	1	3 0 3	45.10	1.493	2	-4 3 1	62.14
1.998	i	-2 2 3	45.36	1,490	3		67.24
					5	0 2 0 1	
1.983	4	3 2 1	45.72	1.483	2	0 2 5	62.60
1.977	13	2 2 2	45.86	1.475		E 1 3 4	62.96
1.072		5 0 1 4	45.98	1 45 0		4 1 2 V	42.80
1.772	7	-5 1 3	44.12	10750		8 1 2	63.00
1.96/	3	-4 1 4	44.48	1+453	2	5 2 2	07.02
1+952	1		0100	1+419	1	1 2 5	05+/6
1.937		-4 2 1	40.00	1+406	1	-2 3 4	66.44
1.926		1 1 4	47.16	1+384	1	3 1 5	67.64
1+915	2	-3 2 3	47.44	1+380	2	*7 2 l +	67.88
1+907	7	4 1 2	47.64	1.376	1	-8 1 3	68.08
1+901	7	-4 2 2	47.82	1+373	1	+7 2 3	68.26
1.886	1	4 2 0	48.20	1+339	1	-6 2 5 +	70.26
1+875	2	3 1 3 +	48,50	1.313	2	6 2 2	71.84
1.871	3	1 2 3 +	48.62	1.310	2	-2 1 7	72.02
1.845	2	5 1 1	49.36	1.297		7 1 2	72.84
1.841	3	-6 0 3	49.48	1.294	: 1		73.04
	-			11277		-1 1 1	
1.798	4	0 0 5 +	50.72	1.297	,	-2 3 5	73-54
1.794		=4 0 5	50.86	1.207		*2 3 3 .0 0 3	74 34
1.701	6	-5 1 4 -	50.94	1.275	1	÷	74 50
1 . 7 . 7	5		51 04	1+271	1	+8 [5	79.30
1.787	3		51.00	1+261	1	- 8 2 2	15.32
1+764	/	=3 1 5 +	21010	1+252	1	-4 3 5	75.96
	-	-2 2 4	61 93				
1.760	5	-2 2 7	51.72				
1.753	3	•1 2 4	52.12	•			
1.749	2	4 0 3	52.26				
1+737	5	=6 1 3	52.66				
1.725	1	1 3 0 +	53.06				
1.715	4	0 3 1 +	53.38				
1+711	3	-6 0 4	53.50				
1.706	3	0 2 4	53.68				
1.701	2	0 1 5	53.84				
1.678	ī	1 3 1 +	54.66				
1.010	•						

L-Cysteine, HSCH₂·CH(NH₂)·COOH - continued

20(°)

 $\lambda = 1.54056 \text{ Å}$

37.74

37.94

38.10

38+10

39.26

39.27

39.62

40.08

40.53

40.53

40.57

40.85

41.43

41.76

41.80

41.95

42.06

42.54

42.58

42.96

43.03

43.36

43.39

43.46

43.79

44.19

44.86

45.09

45.36

45.71

45.86

45.97

46.00 46.12

46.48

46.87

47.15

47.44

47.63

47.82

48.20

48.49

48.49

48.60

48.61 49.35

49.47

50.72

50.78

50.83

hkl

- 2

= 1

- 1

-5

-3

- 2

- 4

-3

- 2

= 1

-5

- 4

- 5

- 3

-5

- 3

-5

- 4

- 4

- 3

- 4

- 6

- 6

- 4

- 1

- 1

- 2

C	alculated	l Patter	n (Integr	ated)		d (Å)	Ι
0		r			<u>2θ(°)</u>			
d (A)			nki		$\lambda = 1.54056 \stackrel{\circ}{A}$		2.382	21
							2.370	10
10.97	20	Ι.	0	0	9,12	1	2+360	3
10107	30		0		0.12		2 • 3 6 0	3
0,47		U	0	1	7.83		2 • 2 9 3	1
6.02		1 1	0	1	10.50			
5.52		- 2	0	1	14.04		2 • 2 9 3	1
2425	<u>د</u>		U	+	10.04		2 + 273	7
5.44	1 11	2	n	n	16.29		2.248	13
4.74	42	-1	ō	2	18.71		2 • 224	
4+72	71	i	1	Ō	18.78		28224	1
4.53	100	0	1	1	19.59		2.222	15
4+50	89	0	0	2	19.73		2.207	2
							2.177	ŝ
4645	32	-1	1	1	19.94		2+161	5
4 + 2 1	15	- 2	0	2	21+10		2+159	2
3 • 95	15	1	1	1	22.46			
3 • 8 2	3	-3	0	1	23.24		2 • 152	1
3+801	15	-2	1	1	23.38		2 • 1 4 7	4
							2+123	3
3.773	29	2	1	0	23.56		2 = 1 2 1	5
3+744	45	1	0	2	23.75		2+104	2
3+625	49	3	0	0	24.54			
3#515	61	- 7	1	2	25.32		2+100	2
31723	31	-3	U	4	20.01		2 • 085	6
3.412	44	0	1	2	26.09		2:084	1
3+281	23	= 2	i	2	27.16		2:080	6
3+227	67	2	i	ī	27.62		2.000	2
3+168	5	=1	ō	ŝ	28.15		2.040	,
3.089	9	= 3	1	1	28.88		2,010	:
							2.009	i
3 • 0 8 7	10	-2	0	3	28.90		1.998	i
3 • 0 4 6	3	1	1	2	29.29		1.983	4
3.035	2	3	0	1	29.41			
2 . 997	5	0	0	3	29.78		1 977	17
2 • 981	67	3	1	0	29.95		1+973	1
	-						1+971	2
2.000	5	- 3	1	2	31.17		1 • 9 6 6	1
2:005		- 3	0	3	31.00		1.952	1
2.719	23		0	2	32.92	1		
2 • 7 1 1	17	-1	1	3	33.02		1+937	1
	• '	•	•	•			1 • 926	1
2 • 6 7 4	ź	1	0	3	33.49		1.909	<u>د</u>
2.660	32	= 2	1	3	33.67	1	1.901	7
2 * 6 2 6	6	3	1	1	34.11		14701	0
2.620	9	0	2	0	34.20		1+887	1
2+612	9	2	1	2	34.30		1 • 876	1
							1.876	1
2.602	3	0	1	3	34.44		1.872	1
2 + 5 4 7	11	1	2	0	35+21		1+871	3
2+515	5	0	2	1	35.66			
2.502	4	=1	2	1	35.87		1.845	2
207/3	8	- 3	1	د	30.30		1.841	3
2.454	17	2	0	2	36.54		1.798	5
2.443	9	-4	1	2	36+76		1 • 796	2
2 • 413	2	4	i	ō	37.23		1+795	1
2.403	1	1	2	1	37.40			
2.394	Í.	4	0	1	37.54			

$\textbf{L-Cysteine, HSCH}_2 \cdot \textbf{CH(NH}_2) \cdot \textbf{COOH} - \textbf{continued}$

d (Å)	I	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \stackrel{\circ}{A}$
1 • 7 9 2	2	3 2 2	50 • 92
1 • 7 9 1	2	-5 1 4	50 • 94
1 • 7 9 1	2	-4 2 3	50 • 96
1 • 7 8 9	1	-2 1 5	51 • 01
1 • 7 8 7	1	-6 1 1	51 • 06
1 • 766 1 • 764 1 • 763 1 • 757 1 • 753	2 9 1 3	-1 1 5 -3 1 5 2 1 4 -2 2 4 -1 2 4	51 • 72 51 • 77 51 • 82 51 • 99 52 • 12
1 • 7 4 9 1 • 7 3 7 1 • 7 2 5 1 • 7 2 5 1 • 7 1 7	1 7 1 1	4 0 3 -6 1 3 -5 2 1 1 3 0 -3 2 4	52.27 52.66 53.03 53.06 53.31
1 • 716	2	-5 2 2	53.34
1 • 715	4	0 3 1	53.39
1 • 713	1	6 1 0	53.45
1 • 711	1	-6 0 4	53.50
1 • 706	4	0 2 4	53.68
1 • 701 1 • 680 1 • 678 1 • 673 1 • 65	1 1 4 1	0 1 5 3 0 4 1 3 1 5 2 0 *2 3 1	53.85 54.59 54.66 54.81 55.10
1 • 6 6 3	6	2 3 0	55 • 1 9
1 • 6 2 6	2	0 3 2	56 • 47
1 • 6 1 4	1	4 2 2	57 • 03
1 • 6 1 3	3	-2 3 2	57 • 04
1 • 6 1 2	1	-7 0 3	57 • 10
1 • 607	2	2 3 1	57 • 30
1 • 606	2	1 1 5	57 • 31
1 • 599	4	3 1 4	57 • 58
1 • 594	4	6 1 1	57 • 78
1 • 583	3	1 3 2	58 • 24
1 • 575	1	5 2 1	58 • 55
1 • 574	1	3 3 0	58 • 62
1 • 569	3	-7 1 2	58 • 82
1 • 557	2	-6 0 5	59 • 31
1 • 555	1	-1 0 6	59 • 38
1 • 553 1 • 544 1 • 541 1 • 539 1 • 530	2 2 1 2	7 0 0 -4 0 6 -5 2 4 -6 2 1 -1 3 3	59.45 59.87 59.97 60.07 60.48
1 • 5 2 4	1	-3 2 5	60 • 7 1
1 • 5 0 7	2	4 0 4	61 • 49
1 • 4 9 7	1	2 1 5	61 • 96
1 • 4 9 3	2	-4 3 1	62 • 12
1 • 4 9 1	2	6 2 0	62 • 23

	·		
d (Å)	1	hb1	20(°)
	-		$\lambda = 1.54056 $
1.489	2	7 1 0	62.29
1.493	2	0 2 5	62.40
1.474		_4 3 2	62.00
1.476	1		42.07
1 4 7 5	1	513	43 57
1.4402	1	1 2 2	03.5/
1.457	2	6 1 2	63.81
1.453	1	6 2 2	64.02
1.419		1 2 5	45.77
1.404		-2 7 4	44.44
1.204	1	=2 3 4	47.45
1+384	1	312	0/005
1+380		=7 1 5	67.88
1+379	1	-7 2 1	67.89
1.376	:	-8 1 3	68.08
1.373	1	=7 2 3	68.26
1.348	1		69.67
14210	•	-5 5 5	0,00,
1 + 3 4 4	1	-4 0 7	69:94
1+339	1	702	70.23
1+338	2	-6 2 5	70.27
1+330	1	-4 2 6	70.79
1+313	2	6 2 2	71.84
1+310	2	-2 1 7	72.01
1+297	1	7 1 2	72.84
1 . 294	1	-1 4 1	73.04
1 + 287	1	-2 3 5	73.53
1 • 275	1	-9 0 3	74.35
1 + 27 1	1	-8 1 5	74.59
1 • 261	1	-8 2 2	75.32
1+252	1	-4 3 5	75.96

Hexagonal, RJm(166), Z=3. The structure was determined by Penfold and Taylor [1960].

Lattice parameters

a=9.50(1), c=4.82(1) Å [ibid.]

Density

(calculated) 2.19 g/cm³

Thermal parameters

Isotropic [ibid.]

Atomic positions

In a disordered atomic arrangement, the 6 fluoride atoms and 12 water molecules were found to occupy one set of 36-fold positions, each site containing on the average ($\frac{1}{6}F^{-}$ and $\frac{1}{3}O^{0}$). The hydrogen positions were not determined [ibid.].

Polymorphism

Two kinds of white crystals precipitated together: the form "A", described here, and a form "B" which appeared to have a very similar structure with the c doubled [ibid.]

Scattering factors

 Fe^{2+} [Thomas and Umeda, 1957] $(\frac{1}{6}F^{-} + \frac{1}{3}O^{0})$ [Berghuis et al., 1955].

Scale factor

(integrated intensities) 3.406×10^4

Additional patterns

1. PDF card 22-626[Ostrovskaya and Amirova,1969]

Ca	Calculated Pattern (Peak heights)						
d (Å)	Ι	hkl	$\frac{2\theta(°)}{\lambda = 1.54056 ^{A}}$				
4.75	100	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18.66				
4.16	57		21.36				
3.13	5		28.50				
2.74	1		32.62				
2.61	35		34.30				
2.374	1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37.86				
2.080	5		43.48				
2.062	1		43.86				
1.905	12		47.70				
1.892	9		48.06				
1.795 1.758 1.657 1.583 1.564	5 5 2 1	$\begin{array}{ccccccc} 4 & 1 & 0 \\ 3 & 2 & 1 \\ 3 & 1 & 2 \\ 3 & 3 & 0 \\ 0 & 4 & 2 \end{array}$	50.82 51.98 55.40 58.22 59.00				
1.557 1.522 1.486 1.480 1.413	1 2 2 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	59.30 60.82 62.44 62.74 66.08				
1.386	2	$\begin{array}{ccccccc} 0 & 3 & 3 \\ 6 & 0 & 0 \\ 2 & 2 & 3 \\ 5 & 2 & 0 \\ 1 & 6 & 1 \end{array}$	67.52				
1.371	1		68.36				
1.331	1		70.74				
1.317	2		71.56				
1.214	1		78.76				
1.197	1	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	80.08				
1.192	1		80.48				
1.142	1		84.84				

Reference

Berghuis, J., Haanapel, IJ. M., Potters, M., Loopstra, B. O., MacGillavry, C. H., and Veenendaal, A. L. (1955). Acta Cryst. 8, 478.

Ostrovskaya, T.V., and Amirova, S.A. (1969). Zh. Neorgan. Khim. 14, 1443. Russ. J. Inorg. Chem. (English transl.) 14, 755.

Penfold, B.R., and Taylor, M.R.(1960). Acta Cryst. 13, 953.

Thomas, L.H. and Umeda, K. (1957). J. Chem. Phys. 26, 293.

Iron fluoride hydrate, $FeF_2 \cdot 4H_2O$ - continued

С	alculated	l Pattern (Integra	ited)
d (Å)	Ι	hkl	$\frac{2\theta(°)}{\lambda = 1.54056 \stackrel{\circ}{A}}$
4.75 4.16 3.13 2.74 2.61	100 60 5 1 42	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18.67 21.35 28.50 32.03 34.29
2.375 2.079 2.062 1.905 1.892	1 6 1 15 11	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37.85 43.48 43.86 47.70 48.05
1.795 1.758 1.657 1.583 1.565	7 7 11 2 2	$\begin{array}{ccccccc} 4 & 1 & 0 \\ 3 & 2 & 1 \\ 5 & 1 & 2 \\ 3 & 3 & 0 \\ 0 & 4 & 2 \end{array}$	50.81 51.99 55.40 58.22 58.99
1.557 1.522 1.486 1.480 1.413	1 3 3 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	59.29 60.81 62.45 62.74 66.08
1.386 1.371 1.331 1.317 1.307	3 2 3 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	67.51 68.35 70.74 71.56 72.25
1.302 1.214 1.197 1.192 1.142	1 2 1 2	$\begin{array}{cccccc} 4 & 3 & 1 \\ 1 & 6 & 1 \\ 1 & 4 & 3 \\ 1 & 0 & 4 \\ 3 & 5 & 1 \end{array}$	72.53 78.75 80.09 80.49 84.84
1.128 1.019 .965 .944 .934	1 1 1 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	86.16 98.25 105.89 109.32 111.14
.926 .871 .812 .807 .799	1 1 1 1 1	4 6 1 6 3 3 9 1 2 1 5 5 9 2 1	112.55 124.35 143.10 145.13 148.96
•795 •785 •784	1 1 1	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	151.61 157.76 158.80

Monoclinic, I2/m (12), Z=4. Pepinsky [1939] de-	Ca	lculated	Pattern (Peak h	eights)
termined the structure and published his data in terms of the C2/m cell with a=7.37kX, b=8.26kX, c=3.19kX, and B=110°18' Rabaud and Gay [1955]	d (Å)	Ι	hkl	$\frac{2\theta(^{\circ})}{\lambda = 1.54056 \text{ Å}}$
did further work, and Alcock [1971] refined their data to determine all the hydrogen positions. Lattice parameters a=6.95, b=8.28, c=3.20Å, β=95.23°.	4.14 3.47 2.97 2.80 2.66	2 3 66 24 100	C 2 0 -2 0 0 0 1 1 1 0 1 -2 2 0	21.44 25.68 30.02 31.94 33.70
Density (calculated) 1.53 g/cm ³ Thermal parameters	2.56 2.43 2.225 2.167 2.086	11 45 6 3 1	$ \begin{array}{ccccc} -1 & 3 & 0 \\ -1 & 2 & 1 \\ -3 & 1 & 0 \\ 2 & 1 & 1 \\ C & 3 & 1 \end{array} $	34.96 36.96 40.50 41.64 43.34
<pre>Isotropic: hydrogen(1):B=12.3;hydrogen(2):B=14.0 [Alcock,1971]; lithium: B=3.82; oxygen(1):B=2.87 oxygen(2): B=4.67. Atomic positions</pre>	2.070 1.958 1.836 1.777 1.742	6 8 9 3 13	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	43.70 46.34 49.60 51.38 52.48
Alcock [1971]. Scattering factors Li ⁺ , O ⁰ [International Tables, 1962]	1.733 1.664 1.646 1.611 1.593	6 3 1 1 2	$ \begin{array}{cccc} -4 & 0 & 0 \\ 1 & 4 & 1 \\ 2 & 2 & 1 \\ -1 & 5 & 0 \\ C & 0 & 2 \end{array} $	52.78 55.14 55.80 57.14 57.82
H ⁰ [McWeeny, 1951] Scale factor (integrated intensities) 0.1301 x 10 ⁴ Additional patterns	1.557 1.500 1.497 1.470 1.445	2 2 3 2	$ \begin{array}{ccccc} -1 & 1 & 2 \\ -2 & 0 & 2 \\ 1 & 1 & 2 \\ C & 5 & 1 \\ 4 & 1 & 1 \end{array} $	59.32 61.78 61.92 63.22 64.44
<pre>1. PDF card 1-1062 [Dow Chemical Co., Midland, Michigan].</pre>	1.422 1.380 1.374 1.367	3 1 2 1	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	65.58 67.86 68.18 68.58
Alcock, N.W. (1971). Acta Cryst. B27, 1682. International Tables for X-ray Crystallography III 1962, pg. 202. McWeeny, R. (1951). Acta Cryst. 4, 513. Pepinsky, R. (1937). Z. Krist. 102A, 119. Rabaud, H. and Gay, R. (1957). Bull. Soc. Franç.	1.353 1.346 1.326 1.254 1.179	1 1 1 1 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	69.40 69.82 71.02 75.80 81.56
Mineral Clist. 00, 100.	L			

Lithium hydroxide hydrate, LiOH·H $_20$ - continued

C	alculated	l Pattern (Inte	egrated)
d (Å)	I	hkl	$\frac{2\theta(°)}{\lambda = 1.54056 \text{ Å}}$
4.14	2	C 2 0	21.45
3.47	3	-2 0 0	25.68
2.97	64	0 1 1	30.02
2.80	24	1 0 1	31.94
2.66	100	-2 2 0	33.70
2.56	11	$ \begin{array}{ccccc} -1 & 3 & 0 \\ -1 & 2 & 1 \\ -3 & 1 & 0 \\ 2 & 1 & 1 \\ 0 & 3 & 1 \end{array} $	34.96
2.43	46		36.96
2.225	6		40.50
2.167	4		41.64
2.086	1		43.33
2.070	7	C 4 0	43.69
1.957	10	-3 0 1	46.35
1.837	11	-2 3 1	49.59
1.777	3	-2 4 0	51.37
1.742	16	2 3 1	52.49
1.733	7	$ \begin{array}{ccccc} -4 & 0 & 0 \\ 1 & 4 & 1 \\ 3 & 2 & 1 \\ -1 & 5 & 0 \\ 0 & 0 & 2 \end{array} $	52.79
1.664	4		55.13
1.646	1		55.80
1.611	1		57.14
1.593	3		57.82
1.557 1.501 1.498 1.469 1.445	22243	$ \begin{array}{ccccc} -1 & 1 & 2 \\ -2 & 0 & 2 \\ 1 & 1 & 2 \\ 0 & 5 & 1 \\ 4 & 1 & 1 \end{array} $	59.32 61.77 61.91 63.23 64.45
1.422	4	-3 4 1	65.59
1.380	1	C 6 0	67.86
1.374	2	-1 3 2	68.18
1.374	1	-4 3 1	68.20
1.367	1	-5 1 0	68.58
1.353 1.346 1.326 1.254 1.254	1 2 1 1	-3 1 2 -3 5 0 2 2 2 -5 2 1 -1 6 1	69.40 69.82 71.02 75.79 75.81
1.239 1.179 1.121 1.098	1 1 1	-5 3 0 -4 2 2 1 5 2 4 5 1	76.90 81.57 86.82 89.09

Hexagonal, $R\overline{J}m$ (166), $Z\approx3$, isostructural with $CdCl_2$. The structure was determined by Pauling [1929].

Lattice parameters

a=3.632(4), c=17.795(16)A [Ferrari et al.,]963]

Density

(calculated) 3.540 g/cm³

Thermal parameters

Isotropic, overall B=2.0

Scattering factors

Mg²⁺, Cl⁻ [International Tables, 1962]

Scale factor

(integrated intensities) 1.022×10^4

Reference

- Ferrari, A., Braibanti, A.,and Bigliardi,G.(1963). Acta Cryst. 16, 846.
- Hanawalt, J.D., Rinn, H.W., and Frevel, L.K.(1938)
 Ind. Eng. Chem. Anal. Ed. 10, 457.
- International Tables for X-ray Crystallography III
 (1962), pg. 202.
- Pauling,L. (1929). Proc. Nat'l. Acad. Sci. USA 15, 709.

Calculated Pattern (Peak heights)						
d (Å)	Ι	hkl	$\frac{2\theta(°)}{\lambda = 1.54056 \ A}$			
5.93	24	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14.92			
3.097	13		28.80			
2.966	53		30.10			
2.569	100		34.90			
2.356	5		38.16			
1.977	3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	45•86			
1.816	45		50•20			
1.737	3		52•66			
1.567	1		58•90			
1.549	7		59•64			
1.483 1.439 1.338 1.284 1.178	11 1 4 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	62•60 64•74 70•32 73•72 81•64			
1•148	8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	84•24			
1•048	5		94•56			
•989	1		102•38			
•908	1		116•06			
•868	1		125•04			
•856	3	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	128•24			
•812	2		143•04			
•783	1		159•06			

Calculated Pattern (Integrated)						
d (Å)	Ι	hkl	$\frac{2\theta(^{\circ})}{\lambda = 1.54056 \stackrel{\circ}{A}}$			
5.93	19	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14.92			
3.097	12		28.80			
2.966	13		30.10			
2.966	40		30.11			
2.568	100		34.90			
2.357	5	$\begin{array}{ccccc} 0 & 1 & 5 \\ 0 & 0 & 9 \\ 1 & 0 & 7 \\ 0 & 1 & 8 \\ 1 & 1 & 0 \end{array}$	38.15			
1.977	1		45.85			
1.977	3		45.86			
1.816	26		50.19			
1.816	26		50.20			
1.736	3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	52.67			
1.567	1		58.90			
1.549	2		59.64			
1.549	5		59.65			
1.549	2		59.65			
1.483 1.483 1.439 1.439 1.439 1.338	4 11 1 1 1	$\begin{array}{ccccccc} 0 & 0 & 12 \\ 0 & 2 & 4 \\ 0 & 1 & 11 \\ 2 & 0 & 5 \\ 1 & 1 & 9 \end{array}$	62•58 62•60 64•74 64•75 70•33			
1.284 1.179 1.178 1.178 1.149	6 1 2 7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	73.71 81.63 81.63 81.64 84.23			
1.149	7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	84.24			
1.049	2		94.54			
1.049	5		94.55			
1.048	2		94.56			
.989	1		102.37			
•908	2	$\begin{array}{ccccc} 0 & 2 & 16 \\ 2 & 2 & 0 \\ 1 & 1 & 18 \\ 1 & 2 & 14 \\ 2 & 2 & 6 \end{array}$	116.04			
•908	2		116.06			
•868	1		125.02			
•868	1		125.03			
•868	1		125.04			
•868 •856 •856 •856 •856	1 2 2 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	125.05 128.22 128.25 128.25 128.25 128.26			
•812	4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	143.02			
•812	4		143.04			
•783	1		158.98			
•783	2		159.06			
•783	1		159.08			

Additional patterns

1. PDF 3-0854 [Hanwalt et al., 1938]

Orthorhombic, Pcab (61), Z=16. The structure was determined by Norrestam [1967] and confirmed by Geller [1971]. The structure had previously been reported as a cubic, C-type sesquioxide [Pauling and Shappell, 1930; Swanson et al., 1960].

Lattice parameters

a=9.4161(3),b=9.4237(3), c=9.4051(3)Å (published values: 9.4157(3), 9.4233(3), 9.4047(3)Å) [Geller, 1971]

Density

(calculated) 5.026 g/cm³

Thermal parameters

Isotropic:			
Manganese(1)	B=0.335	oxygen(6)	B=0.641
Manganese(2)	B=0.416	oxygen(7)	B=0.684
Manganese (3)	B=0.577	oxygen(8)	B=0.606
Manganese (4)	B=0.584	oxygen(9)	B=0.517
Manganese (5)	B=0.573	oxygen(10)	B=0.629
nungunese (e)		oxygen(11)	B=0.598

Atomic positions

Geller [1971]

Polymorphism

Above 35°C, α -Mn₂O₃ becomes cubic. (Substitution of less than one cation % Fe³⁺ for the Mn³⁺ ion makes the compound cubic, at room temperature.) [Geller,1971]. The alpha form described here was called β -Mn₂O₃ by Morozov and Kuznetcov [1949]. A polymorph called γ -Mn₂O₃ was prepared by dehydration of Mn₂O₃·H₂O, and was somewhat unstable [Verwey and deBoer, 1936].

Scattering factors

Mn³⁺ [Cromer and Waber, 1965], corrected for dispersion [Cromer, 1965]. O²⁻ [Tokonami, 1965]

Scale factor

(integrated intensities) 54.67×10^4

Additional patterns

1. PDF card 10-69 [Swanson et al., 1960].

Ca	Calculated Pattern (Peak heights)				
d (Å)	Ι	hkl	$\frac{2\theta(°)}{\lambda = 1.54056 \stackrel{\circ}{A}}$		
4.706 3.844 3.1379 2.7185 2.5157	$ \begin{array}{c} 1 \\ 18 \\ <1 \\ 100 \\ 2 \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18.84 23.12 28.42 32.92 35.66		
2.3540 2.2192 2.1054 2.0069 1.9210	$ \begin{array}{r} 11 \\ <1 \\ <1 \\ 9 \\ 1 \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38.20 40.62 42.92 45.14 47.28		
1.8462 1.7191 1.6643 1.6143 1.5686	10 2 27 2 <1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	49.32 53.24 55.14 57.00 58.82		
1.5272 1.4887 1.4524 1.4196 1.3883	2 <1 4 11 5	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	60.58 62.32 64.06 65.72 67.40		
1.3589 1.3314 1.3052 1.2814 1.2802	3 <1 <1 1 1	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	69.06 70.70 72.34 73.90 73.98		
1.2585 1.1956 1.1772 1.1755 1.1591	<1 <1 1 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	75.48 80.22 81.74 81.88 83.30		
1.1579 1.1419 1.1406 1.1252 1.1097	$1 < 1 < 1 < 1 \\ 1 < 1 < 1 < 1$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	83.40 84.84 84.96 86.40 87.92		
1.1087 1.0945 1.0798	< 1 < 1 2	2 2 8 1 3 8 + 6 6 2 +	88.02 89.46 91.02		

References

Geller, S. (1971). Acta Cryst. B27, 821.

- Morozov, I.S. and Kuznetcov, V.G. (1949). Izvest. Akad. Nauk. SSSR Otdel. Khim. Nauk, No. 4, 343.
- Norrestam, R. (1967). Acta Chem. Scand. 21, 19. Pauling, L. and Shappell, M. D. (1930). Z. Krist. 75, 128.
- Tokonami, M. (1965). Acta Cryst. 19, 486.

Swanson, H. E., Cook, M., Isaacs, T., and Evans, E.H. (1960). Nat'l. Bur. Std. U.S. Circ.539, No.9, 37. Verwey, E.G.W., and deBoer, J.H. (1936). Rec.trav. chim. 55, 531.

C	alculated	l Pattern <i>(Integra</i>	ited)
d (Å)	Ι	hkl	$2\theta(^{\circ})$ $\lambda = 154056 \overset{\circ}{4}$
3.845 3.844 3.842 2.7179 2.3559	5 5 6 100 5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	23.11 23.12 23.13 32.93 38.17
2.3540 2.3513 2.0078 2.0072 2.0069	5 5 4 4 4	4 0 0 0 0 4 3 3 2 2 3 3 3 2 3	38.20 38.25 45.12 45.13 45.14
1.8475 1.8471 1.8468 1.8460 1.8458	2 2 2 2 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	49.28 49.29 49.30 49.33 49.33
1.8454 1.6652 1.6642 1.6636 1.5286	2 13 13 13 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	49.34 55.11 55.14 55.17 60.52
1.5275 1.5258 1.4536 1.4533 1.4530	1 1 1 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	60.57 60.64 64.00 64.01 64.03
1.4524 1.4523 1.4519 1.4203 1.4195	1 1 7 7	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	64.06 64.06 64.08 65.68 65.73
1.4183 1.3892 1.3889 1.3885 1.3885	7 1 1 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	65.79 67.35 67.37 67.39 67.41
1.3873 1.3871 1.3589 1.2822 1.2814	1 4 1 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	67.46 67.47 69.06 73.85 73.90
1.2800 1.1780 1.1770 1.1756 1.1599	1 1 1 1	$\begin{array}{cccccccc} 2 & 1 & 7 \\ 0 & 8 & 0 \\ 8 & 0 & 0 \\ 0 & 0 & 8 \\ 1 & 8 & 1 \end{array}$	73.99 81.67 81.75 81.87 83.22
1.1590 1.1577 1.0804 1.0799 1.0795	1 2 2 2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	83.30 83.42 90.95 91.00 91.04

0 1.54056 A

91.76

92.06

Structure

Orthorhombic, Pbnm (62), Z=4. It is isostructur-	Calculated Pattern (Peak heights)				
al with goethite (α -FeOOH) and diaspore(α -AlOOH) [Gruner, 1947]. The groutite structure was de- termined by Collin and Lipscomb [1949] and re-	d (Å)	Ι	h	kl	$\frac{2\theta(^{\circ})}{\lambda = 1.54056}$
fined by Glasser and Ingram [1968].	}				
	5.35	9	0	2 0	16.56
	4.20	100	1	1 0	21.16
Lattice parameters	3.471	10	1	2 0	25.64
a=4.560, b=10.700, c=2.870(Å) [Glasser and In-	2.810	34	1	3 0	31.82
gram,1968]	2+674	29	0	4 0	33.48
Density	2 • 5 2 9	13	o	2 1	35.46
(coloulated) a set of a	2.429	4	1	0 1	36.98
(calculated) 4.171 g/cm ³	2.368	48	1	1 1	37.96
Thermal parameters	2+308	17	1	4 0	39.00
riterimat parameters	2.280	2	2	0 0	39,50
Isotropic [Glasser and Ingram, 1968]	2.230	2	2		40.42
	2.212	7	1 1	2 1	40.76
Atomic positions	2.008	5	1	21	45.12
Glasser and Ingram [1968].	1.067		0.4		44.34
· · · · · · · · · · · · · · · · · · ·	1.017				44.84
	1.437		1 -	5 0	10.00
Polymorphism	1.798	3	1 4	+ 1	50.72
MnOOH occurs also as two other minerals: mangan-	1.783	2	0 6	0	51.18
ite (γ form, monoclinic) and feitnechtite(β form,	1 . 761	9	2 1	1	51.88
hexagonal).	1.735	6	2 4	0	52.70
	1.693	26	Z 2	2 1	54.12
Scattering factors	1 4 9 4				57.34
Mn ³⁺ [International Tables, 1962]	1.000	10			57.54
0^{2} [Suzuki, 1960]	1+370	2	2 2		50.14
, ,	1.500		2 -		41.14
	1.495		2 4	· ·	62.50
Scale factor	10103	· ·	£ .		
(integrated intensities) 0.7057 \times 10 ⁴	1.462	4	3 2	0	63.58
	1 • 4 4 9	4	1 7	0	64.22
	1.435	6	0 0	2	64.94
Additional natterns	1+404	1	26	0	66.52
1. PDF card 12-733 [Thompson, R.M., Univ. of Brit-	1.398	3	33	0	66.86
ish Columbia, Vancouver, British Columbia,	1.358	3	1 1	2	69.12
Canada.]	1.343	3	3 0	1	69.98
	1.333	1	3 1	1	70.62
	1.326	1	1 2	2	71.02
Poference	1.303	1	3 2	1	72.50
	1+278	4	1 3	2	74.14
2 104	1.264	3	0 4	2	75.06
2, 104.	1.262	3	2 6	ĩ	75.26
D24 1000	1.257	2	3 3	i	75.58
B24, 1233. International Tables for X-ray Crystallography III	1.218	ī	1 4	2	78.42
1962, 210.	1.215		2 0	2	78.72
Suzuki, T. (1960). Acta Cryst. 13, 279.	1,212	2	0 0	1	78.90
	1,200	3	3 4	i	79.84
	1.157	i i	3 4	0	83.50
	1 • 154	3	2 8	0 +	83.78
	1.1.22	2	μ.	0	95.43
	1.104	2	2 4	2	88.30
	1.078	1	3 7	ō	91.24

1.073

1.070

1 1 2

3 6 1

2 8 1 +

	d (Å)	Ι	hk	l	$2\theta(°)$ $\lambda = 1.54056 \stackrel{\circ}{A}$
İ	1.068	3	1 9	1	92.34
	1.056	1	25	2	93.66
	1.054	1	29	0	93.90
	1+024	1	32	2	97.54
	1+020	2	1 7	2	98.12
	1.016	1	4 3	1	98.66
	1+006	1	45	0	99.92
	1.004	1	2 6	2	100.24
1	1.003	1	0 10	1	100.40
1	1.001	2	33	2	100.56
	+951	1	1 11	0	108+14
	.948	1	38	1	108.72
	•933	1	1 1	3	111.34
	+901	1	36	2	117.58
İ	• 8 9 9	2	28	2 +	117.90
	•890	2	4 1	2	119.98
	+871	4	47	1 +	124.42
	•869	2	5 0	1	124.96
	•866	1	4 3	2	125.64
	•862	1	37	2	126.70
	•858	2	1 5	3 +	127.80
	.856	1	2 3	3	128.20
	•854	1	2 11	1	128.78
	.852	1	0 12	1	129.54
	+850	1	29	Z	130.10
			a (2	
	• 8 4 3	1	0 6	3	132.04
	•827	1	5 4	1	137.44
ļ	•824	1	4 5	4	138.46
	•823	1	3 8	2	138.86
1					

Ca	alculated	Pattern (Integra	ted)
d (Å)	Ι	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \overset{\circ}{A}$
5 • 35	9	0 2 0	16.56
4 • 1 9	100	1 1 0	21.16
3 • 470	11	1 2 0	25.65
2 • 809	40	1 3 0	31.83
2 • 675	34	0 4 0	33.47
2 • 5 2 9 2 • 4 2 9 2 • 3 6 9 2 • 3 0 7 2 • 2 8 0	15 58 21 2	0 2 1 1 0 1 1 1 1 1 4 0 2 0 0	35 • 46 36 • 98 37 • 95 39 • 00 39 • 49
2 + 2 3 0	2	2 1 0	40•42
2 + 2 1 2	8	1 2 1	40•76
2 + 0 0 8	6	1 3 1	45•12
1 + 9 5 7	3	0 4 1	46•36
1 + 9 3 7	5	1 5 0	46•86
1 • 921	1	2 3 0	47.28
1 • 798	4	1 4 1	50.73
1 • 783	2	0 6 0	51.18
1 • 761	13	2 1 1	51.88
1 • 735	9	2 4 0	52.71
1 • 6 9 3	38	2 2 1	54 • 1 1
1 • 6 0 6	26	1 5 1	57 • 33
1 • 5 9 6	9	2 3 1	57 • 70
1 • 5 6 0	5	2 5 0	59 • 1 6
1 • 5 1 5	13	0 6 1	61 • 1 3
1 • 485	2	2 4 1	62 • 50
1 • 462	6	3 2 0	63 • 58
1 • 449	7	1 7 0	64 • 21
1 • 435	9	0 0 2	64 • 93
1 • 405	2	2 6 0	66 • 51
1 • 3 9 8	4	3 3 0 1 1 2 3 0 1 3 1 1 1 2 2	66•85
1 • 3 5 8	6		69•13
1 • 3 4 3	4		69•98
1 • 3 3 3	2		70•61
1 • 3 2 6	1		71•02
1 • 3 0 3	1	3 2 1	72.49
1 • 2 7 8	6	1 3 2	74.13
1 • 2 6 5	5	0 4 2	75.05
1 • 2 6 2	2	2 6 1	75.25
1 • 2 5 7	3	3 3 1	75.58
1 • 2 1 9	3	1 4 2	78.41
1 • 2 1 4	1	2 0 2	78.73
1 • 2 1 2	3	0 8 1	78.90
1 • 2 0 0	5	3 4 1	79.84
1 • 1 6 1	1	2 7 1	83.12
1 • 157	2	3 6 0	83.50
1 • 154	3	2 8 0	83.78
1 • 153	1	1 5 2	83.83
1 • 138	1	3 5 1	85.23
1 • 134	4	4 1 0	85.61

	d (Å)	Ι	hkl	$2\theta(^{\circ})$
				$\Lambda = 1.34056 A$
	1+118	1	062	87.10
	1 • 106	3	2 4 2	88.30
	1.086	1	4 3 0	90.37
	1.078	1	370	91+23
	1.0/3	2	3 6 1	91.77
	1.070	1	2 8 1	92.05
	1.048	5	0 10 0	92.09
	1:056	2		92.33
	1+054	2	2 9 0	93.89
ĺ	1+024	з	3 2 2	97.55
	1.020	4	172	98 • 1 2
ł	1+016	2	4 3 1	98.65
	1+006	2	450	99.92
	1+004	1	262	100 • 23
	1+003	2	0 10 1	100.40
L	1+001	3	3 3 2	100.55
	.979	1	1 10 1	103.75
L	•969	1	2 10 0	105.35
	+951	2	1 11 0	108.13
	•948	1	3 8 1	108.73
	•942	.1	0 2 3	109.76
	•933	3	1 1 3	111+35
	• 901	2	3 6 2	117+58
	+899	4	282	117+90
	.899	2	520	117+92
	.890	2	3 9 1	119.82
	+ 870	5	4 1 2	119.98
	•871	7		122+36
				121010
	•8/0	5	2 2 3	124.49
	• • • • • •	2	5 0 1	124.80
	-862	2	4 3 2	125+64
	.858	1	3 / 2 (L 10 2	127.79
		•	0 10 2	12/0/4
	•858	5	1 5 3	127.79
	•856	2	2 3 3	128.18
	+ 854	1	2 11 1	128.79
	052	2	0 12 1	129+54
	1030	5	2 9 2	130.10
	.843	3	0 6 3	132.05
	.837	2	3 10 1	133.96
	.02/	5	5 4 1	137.44
	.821		4 5 2	138.46
	1023	•	4 Y U	130.82
	.823	2	382	138.87

Orthorhombic, Fdd2 (43), Z=8. The structure was determined by Cady et al. [1963].

Lattice parameters

a=15.14, b=23.89, c=5.913A [ibid.]

Density

(calculated) 1.839 g/cm³

Thermal parameters

Isotropic: carbon(1) B=2.731, carbon(2) B=2.641, nitrogen(1) B=2.093, nitrogen(2) B=2.374, nitrogen(3) B=2.992, nitrogen(4) B=2.900, oxygen(1) B=3.587, oxygen(2) B=4.234, oxygen(3) B=3.003, oxygen(4) B=3.658, hydrogen(3) =3.60, hydrogens (1), (2), and (4) B=0.0

Atomic positions

Erratum: in Cady et al. [op. cit.], $y_{N(1)}$ should be -0.0599 in order to derive the structure factors they give.

Polymorphism

There are 4 known polymorphic forms. The alpha modification described here is stable in the range 103 to 162 °C. [Cady, et al., 1963]

Scattering factors C^0 , H^0 , N^0 , O^0 [International Tables, 1962]

Scale factor

(integrated intensities) 26.64 x 10⁴

Reference

Cady, H.H., Larson, A.C., and Cromer, D.T. (1963). Acta Cryst. 16, 617. International Tables for X-ray Crystallography III

(1962). 202.

Са	Calculated Pattern (Peak heights)			
đ (Å)	Ι	hkl	$\frac{2\theta(^{\circ})}{\lambda = 1.54056 \text{ Å}}$	
6 • 39 5 • 97 5 • 37 4 • 53 3 • 79	$1 \\ 31 \\ 100 \\ 34 \\ 12$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13 • 84 14 • 82 16 • 50 19 • 58 23 • 48	
3.61	45	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	24.64	
3.52	50		25.26	
3.46	17		25.74	
2.986	17		29.90	
2.901	7		30.80	
2.870	11	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31 • 14	
2.754	34		32 • 48	
2.746	23		32 • 58	
2.677	5		33 • 44	
2.550	4		35 • 16	
2.501	1	2 4 2	35 • 88	
2.469	6	6 2 0	36 • 36	
2.391	2	1 9 1	37 • 58	
2.373	8	0 6 2	37 • 88	
2.325	3	b 4 0 +	38 • 70	
2.287	13	4 2 2	39.36	
2.281	8	2 10 0	39.48	
2.265	3	2 6 2	39.76	
2.183	4	3 9 1	41.32	
2.170	3	4 4 2	41.58	
2.115	1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	42.72	
2.024	1		44.74	
2.021	2		44.82	
1.991	1		45.52	
1.968	1		46.08	
1.948	3	1 1 3	46•58	
1.926	2	2 12 0	47•16	
1.898	2	1 3 3	47•88	
1.892	2	5 9 1	48•06	
1.809	1	1 5 3	50•40	
1.804 1.743 1.714 1.691 1.658	1 1 1 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50.54 52.44 53.42 54.18 55.38	
1.614	3	2 12 2 +	57.02	
1.580	1	8 2 2	58.36	
1.540	2	8 4 2	60.02	
1.484	1	7 11 1	62.56	

С	alculate	d Pattern (Integro	nted)
d (Å)	Ι	hkl	$\frac{2\theta(^{\circ})}{\lambda = 1.54056 \text{ Å}}$
6.39 5.97 5.37 4.53 3.79	$ 1 \\ 30 \\ 100 \\ 35 \\ 4 $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13.84 14.82 16.50 19.58 23.45
3.78	10	$\begin{array}{cccc} 4 & 0 & 0 \\ 1 & 5 & 1 \\ 4 & 2 & 0 \\ 2 & 6 & 0 \\ 3 & 3 & 1 \end{array}$	23.48
3.61	48		24.65
3.61	3		24.65
3.52	56		25.25
3.46	18		25.74
2.993	4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29.83
2.986	18		29.90
2.901	8		30.80
2.870	13		31.14
2.754	40		32.48
2.743	d	$\begin{array}{ccccccc} 4 & 6 & 0 \\ 2 & 2 & 2 \\ 5 & 1 & 1 \\ 5 & 3 & 1 \\ 3 & 7 & 1 \end{array}$	32.61
2.684	1		33.36
2.678	5		33.43
2.553	1		35.12
2.551	4		35.16
2.501	1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	35 • 88
2.469	7		36 • 36
2.391	3		37 • 58
2.374	10		37 • 87
2.347	4		38 • 31
2.344	1	4 8 0	38.36
2.324	4	0 4 0	38.71
2.287	17	4 2 2	39.37
2.278	3	2 10 0	39.52
2.265	3	2 6 2	39.76
2.183 2.171 2.115 2.024 2.020	5 4 1 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	41.32 41.57 42.71 44.74 44.82
1.991	2	$\begin{array}{ccccccc} 0 & 12 & 0 \\ 7 & 3 & 1 \\ 1 & 1 & 3 \\ 2 & 12 & 0 \\ 1 & 3 & 3 \end{array}$	45.53
1.968	1		46.08
1.948	4		46.58
1.925	2		47.17
1.898	2		47.88
1.891	2	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	48.07
1.809	1		50.40
1.804	1		50.55
1.762	1		51.85
1.743	1		52.45
1.714 1.691 1.658 1.648 1.615	2 1 1 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	53.42 54.19 55.38 55.73 56.99

d (Å)	Ι	hkl	$\frac{2\theta(°)}{\lambda = 1.54056 \text{ Å}}$
1.614 1.613 1.586 1.580 1.540	1 2 1 1 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	57.00 57.03 58.13 58.36 60.02
1.518 1.484 1.440 1.377 1.320	1 1 1 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	60.97 62.56 64.66 68.03 71.42

Monoclinic, P21/n (14), Z-2. The structure was determined first by Eiland and Pepinsky [1955]. Cady, Larson, and Cromer[1963] used Eiland's and Pepinsky's data and did a least squares refinement with anisotropic temperature factors, but did not determine the hydrogen positions. Choi and Boutin [1970] collected new 3-dimensional data from neutron diffraction analysis and refined parameters for all atoms including hydrogen.

Lattice parameters

a=6.54, b=11.05,c=7.37Å, β =102.8[Eiland and Pepinsky, 1955]

Density (calculated) 1.89 g/cm³

Thermal parameters

Isotropic:hydrogen(1):B=2.892;hydrogen(2)B=2.726 hydrogen(3):B=2.790;hydrogen(4) B=3.686[Choi and Boutin,1970]. Nitrogen(1):B=1.616; nitrogen(2): B=1.468;nitrogen(3): B=1.361;nitrogen(4):B=1.676 oxygen(1):B=2.282; oxygen(2):B=2.769; oxygen(3): B=3.063; oxygen(4): B=2.523; carbon(1) B=1.294; carbon(2) B=1.600.

Atomic positions

Choi and Boutin [1970]

Polymorphism

There are 4 known polymorphic forms. The beta modification described here is the stable form at room temperature [Cady et al., 1963].

Scattering factors H^0 , O^0 , N^0 , C^0 [International Tables, 1962].

Scale factor (Integrated intensities) 1.303 x 10⁴

Additional patterns

1. PDF card 3-0225 [Soldate and Noyes, 1947]

Reference

Cady, H.H., Larson, A.C., and Cromer,	D.T.	(1963)) -
Acta Cryst. 16, 617.			
Choi, C.S. and Boutin, H.P. (1970). B26, 1235.	Acta	Cryst.	•
Eiland, P.F. and Pepinsky, R.(1955). 2 18.	Z. Kri	st. 10)6,

International Tables for X-ray Crystallography III
(1962), pg. 202.

Soldate, A.M. and Noyes, R.M. (1947). Anal. Chem. 19, 442.

Ca	Iculated	Pattern (Peak he	ights)				
d (Å)	Ι	hkl	$\frac{2\theta(^{\circ})}{\lambda = 1.54056 \text{ Å}}$				
6.02	39	$\begin{array}{ccccccc} 0 & 1 & 1 \\ 1 & 1 & 0 & + \\ -1 & 0 & 1 \\ -1 & 1 & 1 \\ 1 & 0 & 1 \end{array}$	14.70				
5.52	40		16.04				
5.40	2		16.40				
4.85	11		18.26				
4.32	100		20.56				
4.02	8	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	22.08				
3.86	53		23.00				
3.59	1		24.76				
3.42	7		26.06				
3.40	23		26.18				
3.32	9	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	26.84				
3.28	28		27.18				
3.19	12		27.96				
3.06	13		29.12				
3.04	6		29.32				
3.01	33	C 2 2	29.64				
2.94	4	-1 2 2	30.34				
2.80	77	1 3 1	31.92				
2.76	7	C 4 0 +	32.38				
2.70	3	-2 0 2	33.14				
2.62 2.57 2.53 2.46 2.43	1 4 2 7	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	34.16 34.86 35.38 36.50 37.02				
2.41	8	2 3 0 +	37.26				
2.26	3	1 3 2	39.78				
2.22	1	-1 2 3	40.56				
2.197	2	0 2 3	41.04				
2.190	8	C 4 2	41.18				
2.178	4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	41.42				
2.158	2		41.82				
2.133	4		42.34				
2.119	2		42.64				
2.113	2		42.76				
2.088	5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	43.30				
2.027	1		44.68				
2.010	3		45.06				
1.984	2		45.70				
1.958	2		46.32				
1.926	2	3 0 1	47.16				
1.913	1	-3 2 2	47.50				
1.897	2	3 1 1	47.92				
1.883	1	0 5 2	48.30				
1.872	2	-3 3 1	48.60				
1.862	3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	48.86				
1.842	1		49.44				
1.817	2		50.18				
1.810	1		50.38				
1.801	4		50.64				
Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine	(beta	HMX)	C	4H	₈ N	٥,	- continued
--	-------	------	---	----	----------------	----	-------------
--	-------	------	---	----	----------------	----	-------------

d (Å)	Ι	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \stackrel{\circ}{A}$
1.796 1.769 1.739 1.710 1.685	4 1 1 1 2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	50.78 51.62 52.58 53.54 54.42 54.96
1.659 1.627 1.615 1.594	1 1 1 1	-2 2 4 -1 6 2 0 3 4 -4 0 2	55.34 56.50 56.98 57.78
1.578 1.573 1.550 1.521 1.467	1 3 1 1	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	58.44 58.64 59.60 60.84 63.34

Calculated Pattern (Integrated)								
	d (Å)	I		hkl		$\frac{2\theta(^{\circ})}{\lambda = 1.54056 \text{ Å}}$		
	6.02 5.52 5.52 5.40 4.85	36 14 24 1 11	0 0 1 -1 -1	1 2 1 0 1	1 0 0 1	14.69 16.03 16.03 16.39 18.26		
	4.32 4.02 3.86 3.59 3.42	100 9 57 1 6	1 -1 0 0	0 1 2 0 1	1 1 2 2	20.55 22.09 23.00 24.76 26.05		
	3.40 3.32 3.28 3.19 3.19	24 10 30 8 5	1 -1 0 1 2	2 1 3 0	1 2 1 0 0	26.17 26.85 27.18 27.95 27.96		
	3.06 3.06 3.04 3.01 2.94	10 4 5 38 5	-2 2 -1 0 -1	1 1 3 2 2	1 0 1 2 2	29.12 29.13 29.32 29.63 30.34		
	2.80 2.76 2.76 2.70 2.62	92 5 2 . 4 1	1 0 -2 2	3 4 2 0 1	1 0 0 2 1	31.91 32.38 32.39 33.14 34.15		
	2.57 2.53 2.46 2.43 2.43	1 4 2 2 7	0 1 -1 -1 -2	3 4 4 0 2	2 0 1 3 2	34.85 35.38 36.50 37.01 37.01		
	2.41 2.41	1 9	-2	3 3	1 0	37.27 37.27	103	

d (Å)	Ι	hkl	$2\theta(°)$
			A = 1.54056 A
2.26	4	1 3 2	39.79
2.198	2	J 2 3	41.03
2.190	9	0 4 2	41.18
2•178 2•178	4	$-2 \ 3 \ 2 \ 3 \ 1$	41.42 41.43
2.159 2.133	2 5	2 0 2 -3 1 1	41.81 42.34
2.119	1	-2 1 3	42.62
2.119	1	2 1 2	42.64
2.088	Î.	-2 4 1	43.30
2.005	4	2 4 0	45.50
2.027 2.011	1 4	-1 3 3 2 2 2	44.68
2.008 1.984	2	$\begin{array}{ccc} 0 & 3 & 3 \\ 3 & 2 & 0 \end{array}$	45.11 45.70
1.959	2	123	46.32
1.925	2	301	47.17 47.50
1.897	3	3 1 1	47.92
1.882	1 3	0 5 2 -3 3 1	48.59
1.863	1	-2 3 3	48.85
1.862 1.842	3	2 3 2 0 6 0	48.86 49.45
1.816 1.810	1	-251 043	50.18 50.38
1.801	-	-3 0 3	50.65
1.797	2	0 0 4	50.77 51.61
1.743	2	-1 6 1	52.45
1.739	1	-2 0 4	52.50
1.710	1	2 5 1	53.54 54.42
1.669	3	1 4 3	54.97 55.33
1.628	2	-1 6 2	56.49
1.615	1	0 3 4	56.98
1.594	1	-4 0 2 -4 1 2	58.43
1.573 1.550	1	-2 3 4 1 6 2	58.65 59.60
1.550	2	-3 5 1	59.61
1.522	1	2 6 1	60.33 63.34
1.463	2	-4 3 2	63.53
1.452	1	ى 51	6 70
1.401 1.354	2	2 6 2 -3 4 4	66.70

Structure

Orthorhombic, $P2_12_12_1$ (19), Z=4. The structure was determined by Holinski [1967].

Lattice parameters

a=9.327(2), b=13.067(4), c=6.786(2) A [ibid]

Density

(calculated) 3.053 g/cm³

Thermal parameters

Isotropic: bromine(1): B=2.86; bromine(2):B=2.97 bromine(3):B=2.86; zinc:B=2.28; potassium:B=3.51 water(1): B=2.58; water(2): B=3.31.

Atomic positions

To conform to the symmetry arrangements used in the International Tables I [1952],the values for the x parameters were replaced by -x. The value for x should be -0.0129 in order to derive structure factors given by Holinski [op. cit.].

Scattering factors

 O^0 , K⁺, Zn²⁺ [International Tables, 1962] Br [Cromer and Waber, 1965]

Scale factor (integrated intensities) 12.89 x 10⁴

Reference

Cromer, D.T. and Waber, J.T. (1965). Acta Cryst. 18, 104.

Holinski,R. (1967). Dissertation,Technischen Hochschule, 3392 Clausthal-Zellerfeld, W. Germany.

Calculated Pattern (Peak heights)								
$d(\stackrel{\circ}{A})$	Ι			hki		$\frac{2\theta(°)}{\lambda = 1.54056 A}$		
7.58 6.53 6.02 5.49 5.35	6 18 14 47 11		1 C C 1 1	1 2 1 0 2	0 0 1 1 0	11.66 13.54 14.70 16.14 16.56		
5.06 4.706 4.392 4.203 3.844	13 21 1 4 32		1 C 2 1 2	1 2 1 2 0	1 1 0 1 1	17.52 18.84 20.20 21.12 23.12		
3.795 3.687 3.666 3.411 3.312	2 5 4 63 5		2 2 C 1 2	2 1 3 2	0 1 1 1 1	23.42 24.12 24.26 26.10 26.90		
2.283 3.184 3.097 3.089 3.023	13 100 5 3 2		C 1 1 3	1 0 1 4 1	2 2 + 2 0	27.14 28.00 28.80 28.88 29.52		
2.944 2.882 2.826 2.763 2.743	1 48 28 2 1		0 2 3 2 2	4 3 0 1 0	1 1 1 2	30.34 31.00 31.64 32.38 32.62		
2.685 2.676 2.595 2.573 2.489	7 5 2 14 3		2 2 3 1 2	1 4 2 3 4	2 0 1 2 1	33:34 33.46 34.54 34.84 36.06		
2.371 2.360 2.321 2.292 2.285	4 1 3 2		3 1 2 3 1	3 5 3 0 4	1 1 2 2 2	37.92 38.10 38.76 39.28 39.40		
2.252 2.205 2.198 2.178 2.171	2 6 5 20 12		3 4 1 C 1	4 0 6 1	0 1 3 0 + 3	40.00 40.90 41.02 41.42 41.56		
2.161 2.138 2.083 2.071 2.055	3 2 1 1 10		2 3 1 C 4	5 4 2 5 3	1 + 1 + 3 2 0	41.76 42.24 43.40 43.68 44.02		
2.035 2.028 2.024 2.008 2.002	10 30 20 4 3		2 3 1 0 3	0 3 6 3 5	3 2 1 + 3 + 0	44.48 44.64 44.74 45.12 45.26		

Potassium zinc bromide hydrate, KZnBr ₃ ·2H ₂ O – conti	nued
---	------

d (Å)	Ι	hkl	$\frac{2\theta(°)}{\lambda = 1.54056 ^{\circ}A}$	C	alculated	l Pattern (Integra	ated)
1.047		(2 1		d (Å)	I	hkl	20(°)
1 963	8	4 3 1	46.10				A - 1.54056 A
1.943	2	2 2 2	40.22		1		
1.919	1	3 5 1	40.70	7.59	7	1 1 0	11.65
1.901	1		47.94	6.53	22	C 2 0	13.54
1.701	-	7 1 2	41.00	6.02	17	0 1 1	14.70
1,895	6	2 6 1 +	47.98	5.49	59	1 0 1	16.14
1.844	11	2 3 3 +	46.38	5.35	14	1 2 0	16.55
1.833	1		49.70				
1.828	2	4 4 1 +	49.84	5.06	16	1 1 1	17.51
1.811	ī	3 1 3	50.34	4.707	27	C 2 1	18.84
	-			4.392	1	2 1 0	20.20
1.798	14	1 6 2 +	50.72	4.202	5	1 2 1	21.13
1.767	2	1 7 1	51.68	3.843	45	2 0 1	23.12
1.758	1	4 3 2	51.96				22 (2
1.740	1	4 5 0	52.56	3.796	1	2 2 0	23.42
1.734	2	5 2 1	52.74	3.687	6		24.12
				3.666	5		24.20
1.725	7	3 6 1 +	53.04	3.412	91		20.10
1.697	5	C C 4	54.00	3.393	4		20.24
1.686	2	4 5 1 +	54.38	2 21 2		2 2 1	26 83
1.682	2	C 1 4	54.50	3.313	10		27.13
1.669	1	1 0 4	54.98	2.284	100		27.96
				2 1 0 2	100		28.01
1.663	11	531	55.20	3 009			28.80
1.658	6	4 4 2 +	55.38	5.070	1 1		20000
1.635	2	C 7 2 +	56.20	3 083	1	1 4 0	28.94
1.624	3	4 0 3	56.64	3.025	3	3 1 0	29.51
1.611	1	1 7 2	57.14	2,943		0 4 1	30.34
1 (00				2.882	75	2 3 1	31.01
1.609	1		57.20	2.866	3	1 2 2	31.19
1 500	1		57.52		_		
1.570	1		58.04	2.826	46	3 0 1	31.63
1.575	2	5 4 1 +	58 54	2.763	2	3 1 1	32.38
	2		+C•0C	2.744	2	2 0 2	32.61
1.566	1	1 8 1	58,94	2.685	10	2 1 2	33.34
1.559	ī	1 3 4	59.24	2.676	4	240	33.40
1.555	3	6 0 0	59.40				24 55
1.549	3	4 6 1 +	59.62	2.594	3	3 2 1	34.55
1.530	1	532	60.44	2.573	22		34.84
				2.530	1		36 05
1.521	3	4 3 3	60.84	2.489	5	3 2 1	37.92
1.518	2	5 5 0	61.00	2.3/1	0	5 5 1	5.072
1.497	3	2 3 4 +	61.92	2,250	2	1 5 1	38.11
1.487	3	2 6 3	62.40	2.321	4	2 3 2	38.76
1.462	1	542	63.60	2.292	4	3 0 2	39.27
1 151			(2.2.2.)	2.282	1	1 4 2	39.46
1.404	1	4 4 3 +	63.98	2.252	3	3 4 0	40.00
1.431	1		65.12		_		
1.423	1	3 3 4	65.54	2.229	1	0 1 3	40.44
1.404	1	3 3 4	00.20	2.205	10	4 0 1	40.89
1.404	2	1 7 1 4	00.00	2.198	2	1 0 3	41.02
1.386	2	2 9 0 +	67,50	2.178	34	C 6 0	41.43
1.367	2	5 3 3	68,62	2.174	1	4 1 1	41.49
1.358	1	2 9 1	69,10				(1) (2)
1.355	i	3 4 4	69.30	2.168	1	1 1 3	41.63
1.338	3	C 6 4	70.28	2.163	1	3 2 2	41.72
				2.161	3		42 24
				2.138	1		42.25
				2.137	3	541	72.025

Potassium zinc bromi	de hydrate,	KZnBr, 2H, C) – (continued
----------------------	-------------	--------------	-------	-----------

d (Å)	Ι	hkl	$2\theta(^{\circ})$	d (Å)	Ι	hkl	$2\theta(\circ)$
2.089	1	4 2 1	43.27	1.611	1	1 7 2	57.13
2.083	2	1 2 3 0 5 2	43.39	1.609	1	1 8 0	57.21
2.056	17	4 3 0	44.01	1.588	2	0 8 1	58.03
2.035	13	203	44.48	1.579	2	562	58.40
2.028	48	332	44.63	1.576	1 2	4 2 3 5 4 1	58.53 58.53
2.021	1	1 5 2	44.80	1.565	1		58.95
2.007	6	0 3 3	45.04	1.554	5	6 0 0	59.24
2.001	1	350	45.29	1.550	3	4 6 1	59.62
1.967	13	431	46.10	1.549		224	59.65 59.67
1.943	6	2 2 3	46.71	1.547	1	1 6 3	59.72
1.919	2	351	47.33	1.530	2	532	60.44
1.901 1.898	2	4 1 2 4 4 0	47.80 47.89	1.521	6	4 3 3 5 5 0	60.84 60.97
1.895	8	2 6 1	47.97	1.499	2	3 5 3	61.86
1.876	6 1	2 5 2 3 4 2	48.04	1.497	6	2 6 3	62.40
1.847	1	510	49.31	1.462	2	542	63.60
1.844	19	233	49.39	1.454		4 4 3	63.98
1.830	ī	1 7 0	49.77	1.433	1	2 4 4	65.04
1.829	1	303	49.81	1.431	2	631	65.13
1.828	2	4 4 1 3 1 3	49.85	1.423	1	054 334	65.55 66.27
1.800	2	0 7 1	50.68	1.404	2	1 9 1	66.57
1.798	22	1 6 2	50.72	1.387	2	5 6 1	67.48
1.767	3	1 7 1	51.68	1.386	2	290	67.51
1.758	1	4 3 2 4 5 0	51.97	1.376	1	273	68.10 68.62
1.734	2	5 2 1	52.74	1.358	3	2 9 1	69.10
1.727	5	2 4 5	52.90	1.300	2	3 4 4	07.20
1.725	11 .	3 6 1 3 5 2	53.04 53.10	1.343	1 6	$ \begin{array}{cccc} 1 & 0 & 5 \\ 0 & 6 & 4 \end{array} $	69.99 70.28
1.706	1	262	53.69	1.325	1	1 6 4	71.10
1.686	1	3 3 3	54.36	1.308	3	4 3 4	72.13
1.685	1	4 5 1	54.39	1.307	1	7 0 1	72.19
1.682	1	$ \begin{array}{cccc} 0 & 1 & 4 \\ 1 & 0 & 4 \end{array} $	54.50 54.97	1.302	3	4 6 3 1 3 5	72.56 73.76
1.662	21	5 3 1	55.20	1.2739	1	283	74.41
1.000	I	2	54.45	1.2052	5		70.01
1.636	1 3	0 7 2	55.45 56.19	1.2485	1 2	2 3 5 3 0 5	76.19
1.635	1	502 080	56.23 56.27	1.2402	5	7 0 2	76.79 77.36
1.624	6	4 0 3	56.65	1.2291	3	6 3 3	77.62

Structure

Orthorhombic, P212121 (19), Z=4. The structure was determined by Holinski [private comm., 1973].

Lattice parameters

a=9.950(3), b=13.727(4), c=7.072(2)A; published value: b=13.726 [ibid]

Density

(calculated) 3.584 g/cm³

Thermal parameters

Isotropic [Holinski, op. cit.]

Scattering factors 0⁰, K⁺, Zn^{2⁺} [International Tables, 1962] I [Cromer and Waber, 1965]

Scale factor

(integrated intensities) 36.27×10^4

Reference

Cromer, D.T. and Waber, J.T. (1965). Acta Cryst. 18, 104.

Holinski, R., Dissertation, 1967; Technischen Hochschule, 3392 Clausthal-Zellerfeld, W. Germany.

International Tables for X-ray Crystallography, III 1962, pgs. 202,204.

Calculated Pattern (Peak heights)								
d (Å)	I			hk	!	$\frac{2\theta(^{\circ})}{\lambda = 1.54056 A}$		
8.05	4		1	1	0	10.98		
6.86	10		0	2	0	12.90		
6.28	6		0	1	1	14.08		
5.76	61		1	0	1	15.36		
5.65	7		1	2	0	15.68		
5.31	8		1	1	1	16.68		
4.973	6		2	0	0	17.82		
4.924	14		0	2	1	18.00		
4.414	2		1	2	1	20.10		
4.070	46		2	0	1	21.82		
3.900 3.841 3.584 3.537 3.501	4 18 100 7 3		2 C 1 C 2	1 3 0 2	1 1 2 1	22.78 23.14 24.82 25.16 25.42		
3.424 3.368 3.331 3.238 3.225	9 79 88 2 3		0 2 1 3	1 3 0 1 1	2 0 2 2 0	26.00 26.44 26.74 27.52 27.64		
2.087	2		0	4	1	28.90		
2.040	45		2	3	1	29.36		
3.004	45		3	0	1 +	29.72		
2.934	2		3	1	1	30.44		
2.882	1		2	0	2	31.00		
2.820	6		2	1	2 +	31.70		
2.751	1		3	2	1	32.52		
2.693	21		1	3	2	33.24		
2.623	2		2	4	1	34.16		
2.510	4		3	3	1	35.74		
2.439 2.419 2.385 2.347 2.287	4 1 9 25		2 3 4 C	3 0 4 0 6	2 2 0 1 0	36.82 37.14 37.68 38.32 39.36		
2.260 2.220 2.185 2.179 2.139	2 1 18 11 41		3 4 4 1 3	4 2 3 2 3	1 0 3 2	39.86 40.60 41.28 41.40 42.22		
2.132	27		2	0	3	42.36		
2.126	14		1	6	1	42.48		
2.105	2		2	1	3	42.92		
2.095	8		C	3	3	43.14		
2.088	9		4	3	1	43.30		
2.051	3		1	3	3	44.12		
2.034	2		2	2	3	44.50		
2.027	1		3	5	1	44.68		
1.994	8		2	6	1	45.44		
1.989	6		2	5	2	45.58		

Potassium zinc iodide hydrate, $KZnl_3 \cdot 2H_2O$ - continued

d (Å)	Ι	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \text{ Å}$	C	alculated	Pattern (Integra	ated)
1.931	16	2 3 3	47.02	d (Å)	Ι	hkl	$2\theta(^{\circ})$
1.921	4	3 0 3 +	47.28				N - 1.34036 A
1.916	5	501	47.42	8-06	3	1 1 0	10.97
1.859	19	4 3 2	48.22	6.86	8	0 2 0	12.89
10057	-	7 2 2	40.90	6.29	5	0 1 1	14.08
1.857	1	1 7 1	49.02	5.76	52		15.36
1.845	1	521	49.36	2.65		1 2 0	12.01
1.815	12	352	50.08	5.31	7	1 1 1	16.67
1.810	2	2 4 3	50.36	4.975	5	200	17.81
				4.925	12		18.00
1.784		451	51.16	4.414	45		21.82
1.741	20		52.52				
1.734	2	5 0 2	52.74	3.901	3	2 1 1	22.78
1.715	2	072	53.38	3.842			23.13
1 71 1	_	6 0 2	53 50	2.536	6		25.16
1.673	1	403 541	53.52	3.500	2	2 2 1	25.43
1.668	i	0 8 1	55.02		_		
1.658	4	600	55.36	3.424	70	0 1 2	26.00
1.638	4	461	56.10	3.332	88	1 0 2	26.73
1.627	2	134	56.52	3.238	2	1 1 2	27.53
1.622	4	5 3 2 +	56.72	3.224	2	3 1 0	27.65
1.602	4	4 3 3	57.46	2 007		0 4 1	28 89
1.574		353	58.60	3.041	49	2 3 1	29.35
1.505	2	2 3 7	28.90	3.003	49	3 0 1	29.73
1.559	6	263	59.22	2.997	1	1 2 2	29.78
1.548	1	542	59.68	2.933	1	3 1 1	30.45
1.523	3	631	60.78	2.882	1	2 0 2	31.00
1.475	3	1 9 1	62.98	2.825	2	2 4 0	31.65
	_			2.821	5	2 1 2	31.70
1.471	3	3 6 3	63.16	2.751	22	$\frac{5}{132}$	32.52
1.458	2	290	63.26	2.073		1 5 2	55021
1.443	2	5 3 3	64.52	2.623	2	2 4 1	34.15
1.428	2	291	65.28	2.511	4	3 3 1	35.74
1 360		C 4 4 4	((00	2.439	í	3 0 2	37.13
1.386	1	192	67.50	2.385	1	3 4 0	37.69
1.385	2	1 6 4	67.56		10		20.22
1.382	2	562	67.74	2.347	10	401	38.33
1.315	4	4 3 4	68.16	2.288	29	0 6 0	39.35
1.370	5	4 6 3	68.40	2.276	1	2 5 1	39.57
1.3426	3	6 6 0	70.02	2.260	1	3 4 1	39.86
1.3393	4	1 3 5	70.22	2.220	1	4 2 1	40.60
1.3187	1	7 0 2	71.48	2.185	21	4 3 0	41.28
	_		11010	2.176	1	1 2 3	41.47
1.3005	5	6 3 3 +	72.64	2.139	48	3 3 2	42.22
1.2901	3	3 9 2	73.32	2.130	• •	2 0 5	72.70
1.2787	1	4 9 1	74.08	2.126	7	1 6 1	42.47
1.2401	2	2 9 3	76.80	2.105	1	2 1 3	42.93
				2.096	8	431	43.30
-				2.051	3	1 3 3	44.13

Potassium	zinc	iodide	hydrate,	KZnl,	2H,C) –	continued	
-----------	------	--------	----------	-------	------	-----	-----------	--

d (Å)	I	hkl	$2\theta(°)$ $\lambda = 1.54056 \stackrel{\circ}{A}$
2.035	2	2 2 3	44.49
2.026	1	3 5 1	44.69
1.994	9	2 6 1	45.44
1.988	3	2 5 2	45.60
1.937	1	4 4 1	46.86
1.931	19	2 3 3	47.01
1.921	2	3 0 3	47.27
1.921	1	0 6 2	47.28
1.916	4	5 0 1	47.42
1.890	1	0 7 1	48.11
1.886	25	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	48.21
1.859	1		48.96
1.857	1		49.03
1.845	1		49.35
1.820	15		50.08
1.815	1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50.22
1.810	2		50.38
1.784	1		51.17
1.768	9		51.66
1.767	18		51.69
1.741	2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	52.53
1.734	2		52.74
1.715	1		53.38
1.711	8		53.51
1.673	1		54.84
1.667	1	$\begin{array}{ccccc} 0 & 8 & 1 \\ 6 & C & 0 \\ 4 & 6 & 1 \\ 1 & 3 & 4 \\ 5 & 3 & 2 \end{array}$	55.02
1.658	5		55.35
1.638	4		56.10
1.627	2		56.52
1.622	4		56.72
1.620	1	1 6 3	56.79
1.603	5	4 3 3	57.45
1.574	1	3 5 3	58.59
1.565	7	2 3 4	58.95
1.559	8	2 6 3	59.22
1.548	1	5 4 2	59.69
1.523	3	6 3 1	60.78
1.477	2	3 3 4	62.88
1.474	4	1 9 1	62.99
1.471	1	3 6 3	63.14
1.469 1.458 1.443 1.428 1.400	3 2 3 1	5 6 1 2 9 0 5 3 3 2 9 1 1 0 5	63.26 63.77 64.52 65.28 66.74
1.399 1.387 1.385 1.382 1.375	6 1 2 5	$\begin{array}{cccccc} 0 & 6 & 4 \\ 1 & 9 & 2 \\ 1 & 6 & 4 \\ 5 & 6 & 2 \\ 4 & 3 & 4 \end{array}$	66.92 67.48 67.56 67.75 68.17

d (Å)	Ι	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \stackrel{\circ}{A}$
1.370 1.3427 1.3390 1.3331 1.3189	5 4 4 1 5	4 6 3 6 6 0 1 3 5 7 3 1 7 0 2	68.41 70.01 70.24 70.59 71.47
1.3010 1.3004 1.3003 1.2902 1.2806	3 4 2 5 1	3 0 5 6 3 3 4 9 0 3 9 2 0 9 3	72.61 72.65 72.66 73.32 73.96
1.2788 1.2401 1.2095 1.2002 1.1944	1 2 1 1	4 9 1 2 9 3 6 0 4 8 3 0 1 6 5	74.07 76.80 79.11 79.85 80.32
1.1932	3	591	80.41

Structure

Orthorhombic, $P2_12_12_1$ (19), Z=4. The structure was determined by Ambady and Kartha [1968].

Lattice parameters

a=11.460(5), b=14.670(5), c=4.959(3)Å [ibid.]

Density

(calculated) 1.833 g/cm³

- Thermal parameters Anisotropic [ibid.]
- Scattering factors H^0 , C^0 , O^0 , Na^+ [International Tables, 1962]

Scale factors (integrated intensities) 2.400 \times 10⁴

Reference

- Ambady,G.K. and Kartha,G. (1968). Acta Cryst. B24, 1540.
- International Tables for X-ray Crystallography III
 (1962), 202.

Ca	lculated	Patteri	n (P	eak i	heights)
d (Å)	Ι		hkl		$\frac{2\theta(°)}{\lambda = 1.54056 A}$
9 • 0 2 6 • 1 7 1 5 • 7 2 7 4 • 6 9 6 4 • 5 4 8	100 10 29 25	1 1 2 0	1 2 0 1	0 0 0 1	9.80 14.34 15.46 18.88 19.50
4 • 4 9 8 3 • 8 6 7 3 • 7 2 0 3 • 6 6 6	22 6 2 4	1 1 2 0	3. 2 3 4		19.72 22.98 23.90 24.26
3.633	35	2	1	1	24.48

d (Å)	Ι	hkl	$\frac{2\theta(^{\circ})}{\lambda = 1.54056 \text{ Å}}$
3 • 482	22	0 3 1	25.56
3 • 388	4	3 2 0	26.28
3 • 3 3 1	22	1 3 1 +	26.74
3 • 089	1	2 4 0	28.88
3 • 009	2	3 3 0	29.66
2 • 965	18	3 1 1	30 • 1 2
2 • 864	20	4 0 0	31 • 20
2 • 857	25	1 4 1	31 • 28
2 • 798	49	3 2 1	31 • 96
2 • 668	8	4 2 0	33 • 56
2 • 6 4 5	4	3 4 0	33.86
2 • 6 2 1	14	2 4 1	34.18
2 • 6 1 4	11	2 5 0	34.28
2 • 5 7 3	8	3 3 1	34.84
2 • 5 2 5	2	0 5 1	35.52
2 • 48 1	28	4 0 1 +	36.18
2 • 47 3	18	4 3 0	36.30
2 • 466	12	1 5 1	36.40
2 • 445	5	4 1 1 +	36.72
2 • 424	4	1 0 2	37.06
2 • 3 9 1	4	1 6 0	37.58
2 • 3 4 9	5	4 2 1 +	38.28
2 • 3 3 4	1	3 4 1	38.54
2 • 3 2 7	3	3 5 0	38.66
2 • 3 1 1	22	2 5 1	38.94
2 • 3 0 4	13	1 2 2 5 1 0 4 4 0 2 6 0 0 3 2	39.06
2 • 2 6 4	1		39.78
2 • 2 5 8	3		39.90
2 • 2 4 9	6		40.06
2 • 2 1 2	1		40.76
2 • 1 8 7	3	5 2 0	41.24
2 • 1 7 3	5	2 2 2 +	41.52
2 • 1 5 4	9	1 6 1	41.90
2 • 1 0 6	1	3 5 1	42.90
2 • 0 8 0	1	3 0 2	43.48
2 • 0 6 2	10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	43.88
2 • 0 5 4	11		44.04
2 • 0 5 0	6		44.14
2 • 0 2 2	1		44.78
2 • 0 0 1	4		45.28
1 • 968 1 • 933 1 • 930 1 • 914 1 • 904	2 2 4 3	2 7 0 2 4 2 0 7 1 3 3 2 1 7 1	46.08 46.96 47.04 47.46 47.74
1•894	4	6 1 0 +	48.00
1•860	8	4 1 2 +	48.94

Sodium D-tartrate hydrate, $(CHOH-CO_2Na)_2 \cdot 2H_2O$ - continued

d (Å)	Ι	hkl	$\frac{2\theta(°)}{\lambda = 1.54056 ^{\circ}}$	Calculated Pattern (Integrated)				
1+848	3	6 2 0	49.26	d (Å)	Ι	hkl	$\frac{2\theta(°)}{\lambda = 1.54056 \text{ Å}}$	
1.837	1	370	49.58					
1.829	3	2 7 1	49.80	0.02	100	1 1 0	9.79	
				4:179	11		14.32	
1+817	4	4 2 2	50.18	6,730	32		15.45	
1+810	3	5 4 1	50.38	50/30	28		18.87	
1.806	2	5 5 0	50.50	4.670	15		19.49	
1.798	7	2 5 2	50.72	10551		1 0 1		
1.779	2	6 3 0	51.32	4.516	4	2 2 0	19.64	
				4.498	24	1 3 0	19.72	
1.769	1	6 1 1	51.62	3.947	7	1 3 0	22.98	
1.750	1	4 3 2	52.22	3,720	2	2 2 0	23.90	
1 • 7 4 7	2	280	52.34	3.447	4	2 3 0	24.25	
1+742	2	461	52.50	3499/		0 7 0	2.000	
1.732	1	621	52.82	3.633	44	2 1 1	24.48	
				3.482	27	0 3 1	25.56	
1+721	2	162	53.16	3.388	5	3 2 0	26.28	
1+701	1	1 8 1	53.86	3.339	13	2 2 1	26.68	
1.697	3	551+	54.00	3.332	19	1 3 1	26.74	
1.694	4	6 4 0	54.10	0,000			_	
1.647	2	2 8 1	55.76	3.089	1	240	28.88	
				3.010	2	3 3 0	29.65	
1.636	1		56.16	2.964	25	3 1 1	30.13	
1+626	1		56.56	2.865	24	4 0 0	31+19	
1.000	1	6 9 0 4	57.54	2.856	24	1 4 1	31.30	
1.597	3		57.68					
1:572	2	3 3 4	5/000	2.797	68	3 2 1	31.97	
1.594	з	5 6 1 4	50.10	2.669	11	420	33+55	
1.500	2	2 1 3	50 34	2+646	5	340	33.85	
1.549	2	3 8 1	58.30	2.622	20	2 4 1	34.17	
1,555	2	7 0 1	50.07	2 • 612	8	250	34+31	
1.551	3	1 3 3	59.54					
	•		3,.31	2 • 5 7 3		3 3 1	34.84	
1.547	2	7 1 1 +	59.72	2 . 5 2 5	2	0 5 1	35.52	
1.542	1	272	59.94	2.481	30	4 0 1	30.18	
1.517	i	3 0 3	61.02	2.479	5	0 0 2	36.20	
1+513	1	602	61.20	2+472		4 3 0	30.31	
1.511	3	2 3 3 +	61.32	2			36.40	
				2.700	4		36.71	
1+505	2	6 1 2	61.56	20770	2		36.73	
1.495	1	7 4 0	62.04	2,421	5	1 0 2	37.07	
1.488	1	4 6 2	62.36	2,391	6		37.58	
1.486	1	3 2 3	62.46	2+371				
1.482	2	7 3 1 +	62.64	2.350	7	4 2 1	38.27	
	.	6 7 1	10.00	2.349	1	0 2 2	38.29	
1.4//		0 10 0	62.88	2.334	1	3 4 1	38.54	
1.407		7 4 1	63.34	2:327	3	3 5 0	38.66	
1.432	2	2 8 2 4	65.10	2+311	32	2 5 1	38.94	
1.417	2	4 9 0	05.48					
1.41/		0 7 7	05.06	2.301	2	1 2 2	39.11	
				2.265	1	5 1 0	39.77	
1+412	1	670	66.14	2.258	4	4 4 0	39.90	
1.370	1	8 1 1	68.42	2.249	7	260	40.06	
1 + 227	1	672	77.78	2+211	1	0 3 2	40.77	
1 • 222	1	0 2 4	78.12				41.13	
1+220	1	5 5 3	78.34	2+193	1	0 6 1	41.13	
				2.188	4	5 2 0	41.23	
1+175	1	0 11 2	81.96	2 • 173	0	2 2 2	41.55	
				2+171	3	1 3 2	41.05	
				2+154	12	161	71071	

Sodium D-tartrate hydrate, $(CHOH-CO_2Na)_2$ ·2H $_2O$ – continued

d (Å)	I	hkl	$\frac{2\theta(^{\circ})}{\lambda = 1.54056 ^{\alpha}}$]	d (Å)	Ι	hkl	$2\theta(°)$ $\lambda = 1.54056 \text{ Å}$
2.106	1	351	42.90		1+579	1	2 1 3	58.40
2.080	1	302	43.48		1.568	2	3 8 1	58+83
2+063	8	2 3 2	43.85		1+555	3	701	59.40
2+062	7	170	43.88		1.552	4	1 3 3	59.53
2 • 0 6 0	2	511	43 • 92		1+548	1	091	59.66
2.059	2	3 1 2	43.93		1+547	1	570	59.74
2+055	8	4 4 1	44.03		1.546	1	7 1 1	59.77
2.054	3	0 4 2	44.05		1.542	1	272	59.96
2.050	2	450	44+14		1,523	1	651	60.75
2.022	2	1 4 2	44.79		1+517	1	303	61.03
2.002	3	521	45 • 27		1+513	1	6 0 2	61.20
2.001	3	3 2 2	45.28		1+511	4	2 3 3	61+32
1.968	3	270	46.08	·	1.509	1	3 1 3	61.39
1.934	3	2 4 2	46.95		1.505	1	6 1 2	61.56
1.930	2	071	47.03		1.495	2	740	62.03
1.914	6	3 3 2	47.47		1.488	2	4 6 2	62.36
1.904	4	1 7 1	47.74		1.486	1	3 2 3	62.46
1+894	5	6 1 0	47.99		1.482	1	622	62+64
1.894	1	0 5 2	48.00		1.482	1	7 3 1	62.65
1.860	2	4 6 0	48.93		1+476	1	571	62.89
1.860	11	4 1 2	48.94		1.467	2	0 10 0	63.35
1.848	4	6 2 0	49.26		1.460	1	5 5 2	63.69
1.837	i l	3 7 0	49.57		1+432	1	580	65.09
1.829	ů	271	49.80		1+431	1	7 4 1	65.12
1.816	7	4 2 2	50 • 18		1+430	1	750	65.20
1+810	3	5 4 1	50.38		1+429	1	1 5 3	65.24
1.806	1	5 5 0	50+49		1+428	1	282	65.30
1.798	12	2 5 2	50.73		1+417	1	4 9 0	65.87
1.779	3	6 3 0	51+31		1+412	1	670	66.14
1+769	2	6 1 1	51.61		1+370	1	8 1 1	68.41
1.751	1	4 3 2	52+21		1 • 362	1	0 9 2	68.88
1.746	3	280	52.34		1.353	1	8 2 1	69.43
1.741	2	4 6 1	52.51		1.348	1	3 5 3	69.72
1.732	1	6 2 1	52.81		1.227	1	672	77.79
1 • 7 2 1	3	1 6 2	53+17		1 • 2 2 2	1	024	78.12
1.701	1	1 8 1	53.86		1+219	1	5 5 3	78.35
1.697	2	5 5 1	53.98		1+175	1	0 11 2	81.96
1.697	2	3 5 2	54.00					
1.694	ŝ	6 4 0	54.09	יו				
1.675	1	6 3 1	54.77					
1.647	4	2 8 1	55.74					
1.434		1 0 3	56.17					
1.630	2	1 1 3	56.55					
1.401	2	4 7 1	57.62					
1.601	1	6 5 0	57+53					
1.500	2	7 2 0	57.64					
1.007	4	1 2 3	67.48					
1.501	2	5 3 2	57.90					
1.695	2	5 6 1	58-17					
1.694	6	3 6 2	58-19					
1.204	2	3 0 4	50017	I				

Structure				· · ·					2810)
Orthorhom	pic, Pnam	n (62), Z=4. The s	tructure was	d (Å)	Ι		hkl		$\lambda = 1.54056 \text{A}$
determined	i by Mumn	ne and Wadsley (196	. (8)						
				2.94	9	3	2	0	30.36
Lattice pa	rameter	S		2.91	4	2	1	1	30.72
a=10.35(1	1). b=11	$25(1)$ $c=3.70(1)^{3}$	libid 1	2.71	2	1	4	0	32.98
a 10.55(1	.,,	23(1); C=3.70(1)A	(TDTG.)	2.63	25	0	3	1	34.02
				2,587	8	4	0	0	34.64
Density		2		2.552	9	1	3	1	35.14
(calculated)	4.713 g	/cm ³		2.539	8	3	3	0	35.32
				2.521	4	4	1	0	35.58
				2.462	3	3	1	1	36,46
Thermal pa	rameter	S		2.302	7	3	2	1	39.10
Isotropic	[ibid.]			2	4		c		41.02
				2 1 2 8	7	1	2	0	42.40
				2 1 3 0			с 0	1	42.60
Scattering	factors			2 . 1 2 1		ר	2	4	43.18
0 ² [Suzuk	ci. 1960]			2.094	о 4	د بر	1	4	43.38
Y ³⁺ , Ti ⁴⁺	[Cromer	and Waber,1965]. 1	These factors	2+084	, T	-	1	1	13,30
were corre	ected for	dispersion (Crome	er, 1965].	2.055	3	2	4	1	44.02
				2.036	2	5	1	ò	44.46
				1.984	3	4	2	1	45.68
Scale facto	210			1.943	ī	5	2	ō	46.72
(integrate	ed inten	sities) 10.05 × 10 ⁴	4	1 • 904	3	4	4	0	47.72
				1.890	1	1	5	1	48.10
Additional	nottern	c		1.875	4	0	6	0	48.52
		S	ml-1-rm 10601	1.850	23	Ō	0	2	49.22
I. PDF Cal	ra 21-14	404 [Garcon and wa	ukiyu, 1966]	1.845	55	4	3	1 +	49.34
				1 • 7 9 8	1	1	1	2	50.74
Reference				1.783	2	5	1	1	51.18
Cromer, D.T.	(1965).	Acta Cryst. 18,	17.	1.720	6	Š	2	i	53.20
Cromer, D.T.	and Wa	ber, J.T. (1965).	Acta Cryst.	1.705	1	6	ī	ò	53.72
18, 104.				1.693	i	4	4	1	54.12
Garton, G. a	nd Wankl	yn, B.M. (1968). J	. Mater.Sci.	1.679	2	3	5	1	54.60
3, 395. Mumme, W.G.	and Wads	ley, A.D. (1968).	Acta Cryst.	1.667	,	5	4	0	55.04
B24, 1327.		11 1 1	1	1.451		1	4	1 .	55.62
Suzuki, T. (1960).	Acta Cryst. 13, 27	9.	1.647	7	1	6	n	55.76
		· · ·		1.638	4	1	3	2	56.10
				1.627	4	5	3	1	56.50
									67.00
				1.591	5	2	6	1	57.90
	1	D		1.580	15	2	3	2	58.36
Ca	iculated	Pattern (Peak heig	ghts)	1.567	5	6	3	0 +	58.08
0	1		2810)	1.563		6	U	1	37.04
d (A)	I	hkl	$\lambda = 154056$ Å	1.549	2	6	1	1	27.00
			1,0403074	1.524	1	5	5	0	60.74

đ (Å)	Ι		hkl		$\frac{2\theta(^{\circ})}{\lambda = 1.54056 \text{ Å}}$				
7 • 6 1 5 • 6 3 5 • 1 8 4 • 9 4 4 • 7 0	1 8 2 1 1 3 6	1 0 2 1 2	1 2 0 2 1	0 0 0 0	11.62 15.74 17.12 17.94 18.86				
3 • 8 1 3 • 5 3 3 • 3 3 3 • 0 4 3 • 0 1	2 24 2 74 100	2 1 1 2 2	2 3 1 3 0	0 0 + 1 0 1	23.34 25.24 26.76 29.40 29.66				

1

1.519

1.505

1+495

1+492

1+470

1 • 466

1+443 1+430

1.418

1+415

4

3 3 2

6

6 3 1

7 2

2

1

7

3 6

4 1

- 4

1 0

7 1

5 2

2

10

2

2

1

2

1

1

1

1

ł

0

2

0

٥

1

1 +

6

60.96

61.58

62.02

62.18

63.18

63.38

64.52

65.18

65.82

65.94

Yttrium titanium oxide, $Y_2 TiO_5$ - continued

0	Ţ	12.7	20(°)		~		
d (A)	1	nri	$\lambda = 1.54056 \stackrel{\circ}{A}$	(Calculated	Pattern (Integra	ated)
				$d(\mathring{A})$	I	hkl	2θ(°)
1.390	2	560	67.32		_		$\lambda = 1.54056 A$
1.367		6 4 1	68.62				
1.363	1	7 1 1	68.82	7+62	14		11.01
				5.18	2		17.12
1.327	1	4 4 2	70.98	4.94	2	1 2 0	17.93
1+317			72.26	4+70	5	2 1 0	18.86
1.294	1	8 0 0	73.08				22.24
1+285	1	8 1 0	73.64	3.81	2	2 2 0	25.24
			70.04	3,53	24		25.32
1.281			76.74	3+33	2	1 1 1	26.76
1.234		7 4 1	77.26	3 • 0 4	78	2 3 0	29.39
1,230	1	3 6 2 +	77.52				20 (1
1+200	4	2 0 3 +	79.88	3.01	100		27.66
			00.10	2.91	4		30.72
1+196	3		80.20	2.71	2	1 4 0	32.98
1 • 176	4	1 9 1 +	81.88	2.63	27	0 3 1	34+01
1+174	4	4 6 2	82.04				54 44
1 • 172	4	033+	82.20	2+588	8	4 0 0	37.07
				2.532	10		35+32
1+164			82.86	2.522	4	4 1 0	35.57
1+151		6 4 2	84.00	2.462	3	3 1 1	36.46
1+149	1	7 1 2	84.20				20.00
1+131	1	7 2 2	85.82	2,302	8		41.02
				2+188	1	1 4 1	41.22
1 • 1 20	2		86.90	2.130		4 3 0	42.41
1.109	2	581+	87.94	2 • 1 2 0	2	4 0 1	42.60
1+108	2	7 6 1	88.10				
1+104	1	7 3 2	88.50	2.093	9		43.39
		0 1 1	00.40	2.055	3	2 4 1	44.03
1.070	1		92.08	2:036	2	5 1 0	44.46
1.067	3	4 3 3	92.40	1.984	4	4 2 1	45.69
1.060	1	802	93.20				44 73
1.055	1	8 1 2	93.74	1.904		520	47.72
1.044		7 7 1	95 10	1.890		151	48.10
1.044	1	5 2 3	95.42	1+878	2	3 4 1	48.42
1.031	2	1 9 2	96.74	1+875	4	0 6 0	48.51
1+028	3	5 9 1	97.08	1.950		0 0 2	49.21
1.025	3	1 6 3	97.40	1.846	43	431	49.33
1.020	1	5 3 3	98.14	1.845	16	1 6 0	49.35
1.011	1	263	99.32	1.798	1	1 1 2	50.74
1.003	1	6 0 3	100.30	1.784	2	511	51.17
•992	2	3 9 2 +	101.88	1.720		5 2 1	53.21
• 787	-	3 0 3	102.56	1.705	2	5 Z I	53.71
+972	1	8 7 1	104.78	1+693	2	4 4 1	54.12
.939	1	10 4 1	110.16	1.679	3	3 5 1	54.60
•934		1 12 0	111+18	1+667	1	540	55.04
.926	1	0 0 4	112.54	1.451		1 4 1	55+62
.725			112010	1.649	13		55.69
.923	2	8 6 2 +	113.20	1.647	i	3 6 0	55.75
+911	1	10 5 1	115.40	1.638	4	1 3 2	56.10
				1+627	5	5 3 1	56+50

d (Å)	Ι	hkl	$\frac{2\theta(°)}{\lambda = 1.54056 \stackrel{\circ}{A}}$	d (Å)	Ι	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \stackrel{\circ}{A}$
1.591	6	2 6 1	57.90	1+161	2	831	83+11
1.580	20	2 3 2	58.36	1+151	1	642	84.00
1.567	5	6 3 0	58.88	1+149	1	7 1 2	84.20
1.566	2	3 2 2	58.93	1+131	1	7 2 2	85.82
1.563	7	6 0 1	59.03	1.120	3	3 9 1	86.90
1.549	3	6 1 1	59.66	1+111	2	562	87.78
1+523	2	5 5 0	60.75	1+110	1	581	87.92
1+518	2	460	60.97	1+109] 1	3 3 3	87.95
1+505	9	3 6 1	61.57	1+108	2	7 6 1	88.11
1+505	4	402	61.57	1.104		7 3 2	88.51
1.495	3	3 3 2	62.02	1.093	1	9 1 1	89.62
1.492	1	4 1 2	62+18	1.078	1	921	91.23
1+474	1	071	63.01	1.070	1	590	92.09
1 • 470	2	640	63.18	1.067	6	4 3 3	92.39
1 • 4 6 6	2	7 1 0	63.40	1.060	2	802	93.19
1.443	1	6 3 1	64.52	1.056	1	8 1 2	93.73
1.430	2	7 2 0	65.18	1.044	1	7 7 1	95.10
1+418	1	2 7 1	65.82	1.041	1	523	95.43
1+416	2	1 5 2	65.93	1+031	2	1 9 2	96.73
1.390	2	560	67.32	1.028	4	5 9 1	97.07
1+376	1	7 3 0	68+11	1.025	3	1 6 3	97.40
1.369	1	512	68.47	1.024	1	950	97.57
1.367	2	6 4 1	68.62	1.020	1	5 3 3	98.13
1.363	1	7 1 1	68.83	1.011	1	2 6 3	99.32
1+327	2	4 4 2	70.97	1+003	2	6 0 3	100.31
1+317	2	0 6 2	71.59	•993	1	10 1 1	101.76
1.306	9	1 6 2	72.26	. 992	1	672	101.83
1+301	1	5 6 1	72.61	.992	1 1	842	101.87
1 • 294	2	800	73.08	.992	4	392	101.88
1 • 285	1	8 1 0	73.64	• 987	3	3 6 3	102.55
1.281	1	471	73.94	•972	2	8 7 1	104.78
1 • 25 4	1	6 1 2	75.81	.962	1	922	106.35
1 • 2 4 1	2	190	76.73	.959	1	8 5 2	106.86
1+234	1	7 4 1	77.26	.955	1	5 10 1	107.53
1 • 2 3 1	1	622	77.47	,955	1	7 9 0	107.59
1.230	1	3 6 2	77.52	.945	1	6 4 3	109.20
1+214	1	8 1 1	78.76	.939	2	10 4 1	110.15
1.201	2	6 6 1	79.81	• 934	1	1 12 0	111+18
1.200	5	2 0 3	79.89	.926	1	5 9 2	112.53
1+196	4	6 3 2	80.21	925	2	004	112.76
1+193	1	8 2 1	80.40	.923	1	8 6 2	113.16
1+177	4	1 9 1	81.79	.923	1	942	113+21
1+176	1	5 5 2	81.84	+911	2	10 5 1	115.39
1.176	1	670	81.85				
1+175	1	840	81.89				
1+175	3	3 9 0	81.90				
1+174	2	4 6 2	82.04				
1+172	2	7 5 1	82.18				
1+172	3	0 3 3	82.21				
1.164	1	1 3 3	82.85				

CUMULATIVE INORGANIC INDEX

	Vol. or	
	sec.	Page
Aluminum, Al	1	11
Aluminum antimony, AlSb	4	72
Aluminum bismuth oxide, Al.Bi ₂ O ₂	11m	5
Aluminum chloride AlCl.	9m	61
Aluminum chloride hydrate (chloraluminite)	om	01
AICI .64 0	7	3
Aluminum fluorido hydroxido cilicoto topoz	'	0
Aluminum nuoride nydroxide sincate, topaz,	4	
$AI_2(F', OH)_2SIO_4$	11	4
Aluminum nitrate nydrate, $Al(NO_3)_3 \cdot 9H_2O$	11m	6
Aluminum oxide, (corundum), alpha AI_2O_3	9	3
Aluminum oxide hydrate (bohmite), alpha		
$Al_2O_3 \cdot H_2O$	3	38
Aluminum oxide hydrate, diaspore, beta		
$Al_2O_3 \cdot H_2O$	3	41
Aluminum phosphate, Al(PO ₃) ₃	2m	3
Aluminum phosphate (berlinite), AIPO,		
(trigonal).	10	3
Aluminum phosphate AlPO (orthorhombic)	10	4
Aluminum silicate (mullite) 3A1 (.2Si)	3m	2
Aluminum tungston oxido Al (WO)	11m	
Anuminum tungsten oxide, $AI_2(WO_4)_3$	11111	-
Ammonium aluminum iluoride, $(NH_4)_3AIF_6$	9m	Э
Ammonium aluminum selenate hydrate,	0	0
$NH_4A1 (SeO_4)_2.12H_2O$	9m	6
Ammonium aluminum sulfate, $NH_4Al(SO_4)_2$	10m	5
Ammonium aluminum sulfate hydrate		
(tschermigite), NH ₄ Al(SO ₄) ₂ .12H ₂ O	6	3
Ammonium azide, NH ₄ N ₃	9	4
Ammonium beryllium fluoride, (NH ₄) ₂ BeF ₄	3m	5
Ammonium boron fluoride, NH ₄ BF ₄	3m	6
Ammonium bromide, NH, Br	2	49
Ammonium cadmium chloride, NH.CdCl,	5m	6
Ammonium cadmium sulfate (NH) Cd (SO)	7m	5
Ammonium cadmium sulfate hydrate	••••	-
(NH) Cd(SO) .6H O	8m	5
Ammonium calcium sulfate (NU) Ca (SO)	Qm	7
Ammonium chlorato NH ClO (orthorhombia)	7	6
Ammonium chloride ($col empeniee$) NIL Cl	1	50
Annionium chionue (sal-annioniae), NH ₄ CI	1	59
Ammonium chromium suitate hydrate,	0	-
$\mathrm{NH}_4\mathrm{Cr}(\mathrm{SO}_4)_2 \cdot 12\mathrm{H}_2\mathrm{O}$	6	4
Ammonium cobalt (II) chloride NH ₄ CoCl ₃	6 m	5
Ammonium cobalt fluoride, NH ₄ CoF ₃	8m	9
Ammonium copper bromide hydrate,		
$(\mathrm{NH}_4)_2 \mathrm{CuBr}_4 \cdot 2\mathrm{H}_2\mathrm{O}$	10m	6
Ammonium copper chloride, NH ₄ CuC1,	$7 \mathrm{m}$	7
Ammonium copper chloride hydrate,		
$(NH_{4})_{2}CuCl_{4}\cdot 2H_{2}O$	9m	8
Ammonium copper fluoride, NH_CuF,	11m	8
Ammonium gallium sulfate hydrate.		
$NH.Ga(SO.). \cdot 12H.O$	6	9
Ammonium germanium fluoride (NH.).GeF.	6	8
Ammonium hydrogen carbonate (teschemache-	0	0
rite) (NH)HCO	0	5
Ammonium hydrogon phoephoto NH H DO	4	5 64
Ammonium iodata NU IO	10	04
Ammonium iodide, NH I	TUM	50
Ammonium fodide, NH ₄ I	4	56
Ammonium iridium chloride, $(NH_4)_2 IrCl_6$	8	6
Ammonium iron fluoride, $(NH_4)_3 FeF_6$	9m	9
Ammonium iron sulfate, NH, Fe(SO,),	10m	8

³Further work on this program is in progress, and it is anticipated that additional sections will be issued. Therefore, the accumulative index here is not necessarily the concluding index for the project.

	Vol. or	
	sec.	Page
Ammonium iron sulfate hydrate,		
$NH_4Fe(SO_4)_2 \cdot 12H_2O$. 6	10
Ammonium lead chloride, $(NH_4)_2 PbCl_6$. 11m	10
Ammonium magnesium aluminum fluoride,	10	
NH ₄ MgAIF ₆	. 10m	y
Ammonium manganese chloride hydrate,		
$(NH_4)_2MnCI_4 \cdot 2H_2O$. IIm	11
(NUL) Ma(CrO) - GU O	, 0	10
$(NH_4)_2Mg(CIO_4)_2 \cdot 0H_2O$	8m	10
Ammonium manganese sulfate (NII) M_{π} (SO	D III	8
Ammonium manganese sulfate, (NH_{4}) , MH_{2} (SO ₄), (111	8
(NH) $Mn(SO)$ 6H O	9m	19
Ammonium mercury chloride NH HgCl	0111	14
(revised)	8 m	14
Ammonium molybdenium oxide phosphate	0111	14
hydrate (NH), (MoO.), PO. 4H, O	8	10
Ammonium nickel(II) chloride NH.NiCl.	. 0 6m	6
Ammonium nickel chromium oxide hydrate	. 0111	0
(NH.).Ni(Cro.).:6H-O	8m	16
Ammonium nitrate (ammonia-niter), NH, NO,	7	4
Ammonium osmium bromide, (NH ₄) ₃ OsBr	. 3	71
Ammonium osmium chloride, (NH ₄) OsCl ₄	1m	6
Ammonium palladium chloride, (NH ₄) ₂ PdCl ₄	6	6
Ammonium palladium chloride, (NH ₄) ₂ PdCl ₅	8	7
Ammonium platinum bromide, (NH ₄) ₂ PtBr ₅	9	6
Ammonium platinum chloride, (NH ₄) ₂ PtCl ₆	5	3
Ammonium rhenium oxide, NH ₄ ReO ₄	9	7
Ammonium selenium bromide, (NH ₄) ₂ SeBr ₆	. 8	4
Ammonium silicon fluoride (cryptohalite),		
$(\mathrm{NH}_4)_2 \mathrm{SiF}_6 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	5	5
Ammonium sulfate (mascagnite), (NH ₄) ₂ SO ₄		
(revised)	9	8
Ammonium tellurium bromide, (NH ₄) ₂ TeBr ₆	8	5
Ammonium tellurium chloride, (NH ₄) ₂ TeCl ₆	8	8
Ammonium tin chloride, (NH ₄) ₂ SnCl ₆	. 5	4
Ammonium vanadium oxide, NH ₄ VO ₃	8	9
Ammonium zinc fluoride, NH ₄ ZnF ₃	8m	18
Ammonium zirconium fluoride, $(NH_4)_3 ZrF_7 \dots$	6	14
Antimony(III) fluoride, SbF ₃	2m	4
Antimony(III) iodide, SbI ₃	6	16
Antimony(III) oxide (senarmontite), Sb_2O_3		
(cubic)	3	31
Antimony(III) oxide, valentinite, Sb_2O_3	4.0	
(ortnornombic)	10	6
Antimony(IV) oxide (cervantite), Sb_2O_4	10	8
Antimony (V) oxide, SD_2O_5	10	10
Antimony, Sp.	3	14
Antimony selenide, SD_2Se_3	310	1
Antimony (III) suifide (stibuite), SD_2S_3	С Отт	0
Antimony tenuride, $Sb_2 Te_3 \dots \dots \dots$	311	8
Arsenic, As	ა ი	0.4
Arsenic acid, $H_5 AS_3 O_{10}$	·/m	84
Arsenic(III) Iodide, Asi ₃	0	11
Arsenic oxide (arsenolite), As_2O_3 (cubic)	1	21
Arsenic oxide, claudetite, AS_2O_3 (mono-	3m	٥
Porium Po	3111	9 7
Barium eluminum evide BeALO	4 5m	11
Barium arconoto, $P_2(A_2O_4)$	2m	6
Darium horato, $BaBO$	4	6
Darium borato DoD O	4111 7m	10
Barium horate, high form Pap O	/111 .4 m	10
Barium bromate hydrate Ba(Bro) .	9m	10
Barium bromide BaBr	10m	63
Barium bromide fluoride BaBrF	1.0m	10
Darium bromue muorue, Dabir	. Iom	10

m-Monograph 25.

A mineral name in () indicates a synthetic sample.

	Vol. or		7	701. or	
	sec.	Page		sec.	Page
Barium bromide hydrate, BaBr ₂ ·H ₂ O	3m	10	Cadmium bromide, CdBr ₂	9	17
Barium calcium tungsten oxide, Ba_2CaWO_6	9m	10	Cadmium bromide chloride, CdBrCl	11m	15
Barium carbonate (witherite), BaCO ₃ (ortho-			Cadmium carbonate (otavite), CdCO ₃	7	11
rhombic)	2	54	Cadmium chlorate hydrate, $Cd(ClO_4)_2 \cdot 6H_2O \ldots$	3m	19
Barlum carbonate, $BaCO_3(cubic)$ at 1075 °C	10	11	Cadmium chloride, CdCl ₂	9	18
Barium chlorate hydrate, $Ba(ClO_4)_2 \cdot 3H_2O \dots$	2m		Cadmium chromium oxide, $CdCr_2O_4$	5m Om	16
Barium chlorida BaCl. (atherbarbia)	8m Om	21	Cadmium Cyanide, $Cd(CN)_2$	∠III 1.0	0 1 E
Barium chloride, BaCl ₂ , (orthornomotic)	9m 0m	11	Cadmium inon avida. CdE_2	10m	15
Barium chloride, Bacl ₂ , (cubic)	9m 10m	13	Cadmium monganoso ovido. $CdMn$ O	10m	16
Barium fluoride BaF	1011	70	Cadmium malybdenum oxide. CdMoO	6	21
Barium hydroxide phosphate Ba. (OH)(PO)	11m	12	Cadmium nitrate hydrate Cd(NO.).4H.O	7m	93
Barium indide. Bal.	1.0m	66	Cadmium oxide. CdO	2	27
Barium lead chloride. BaPbCl.	11m	13	Cadmium oxide, CdO (ref. standard)	8m	2
Barium molybdenum oxide, BaMoO,	7	7	Cadmium selenide, CdSe (hexagonal)	7	12
Barium nitrate (nitrobarite), $Ba(NO_3)_2$			Cadmium sulfate, CdSO,	3m	20
(revised)	11 m	14	Cadmium sulfate hydrate, 3CdSO ₄ ·8H ₂ O	6m	8
Barium oxide, BaO	9m	63	Cadmium sulfate hydrate, CdSO ₄ ·H ₂ O	6 m	10
Barium oxide, BaO_2	6	18	Cadmium sulfide (greenockite), CdS	4	15
Barium selenide, BaSe	5m	61	Cadmium telluride, CdTe	3m	21
Barium silicon fluoride, BaSiF ₆	4 m	7	Cadmium tungsten oxide, CdWO4	2m	8
Barium sulfate (barite), BaSO ₄ (revised)	1.0m	12	Calcium, Ca	9m	68
Barlum sulfide, Bas	7	8	Calcium aluminum germanium oxide,		
Barium tin oxide, $BaSnO_3$	3 m	11	$Ca_3Al_2(GeO_4)_3$	10	15
Barium titanium $oxide, Bario_3, \ldots, \ldots$	3	40	Calcium aluminum hydroxide, $Ca_3Al_2(OH)_{12}$	11m	16
Bartum titamum sincate (neshoite),	0m	14	Calcium aluminum oxide, $Ca_3AI_2O_6$	5	10
Barium tungsten oxide BaWO	911 7	0 14	Calcium aluminum oxide, $12CaO \cdot 7AI_2O_3 \dots$	9	20
Barium zirconium oxide BaZrO.	5	8	Calcium aluminum sulfate nydrate (ettringite),	0	2
Bervllium, alpha, Be	9m	64	Coloium Bromido, CoBr	0	70
Beryllium aluminum oxide (chrysoberyl),			Calcium bromide bydrate. CaBr. 6H O	2 I I III	15
BeAl ₂ O ₄	9	10	Calcium cathonate (aragonite) CaCO.	0	10
Beryllium aluminum silicate, beryl,			(orthorhombic)	3	53
$\operatorname{Be}_{3}\operatorname{Al}_{2}(\operatorname{SiO}_{3})_{6}$	9	13	Calcium carbonate (calcite) CaCO, (hexagonal)	2	51
Beryllium calcium oxide, Be ₁₇ Ca ₁₂ O ₂₉	7m	89	Calcium chloride fluoride. CaClF	10m	17
Beryllium chromium oxide, BeCr ₂ O ₄	10	12	Calcium chloride (hydrophilite), CaCl,	11m	18
Beryllium cobalt, BeCo	5m	62	Calcium chloride hydrate, CaCl ₂ ·4H ₂ O	11 m	73
Beryllium germanium oxide, Be ₂ GeO ₄	10	13	Calcium chromium germanium oxide,		
Beryllium lanthanum oxide, $Be_2La_2O_5$	9m	65	$Ca_{3}Cr_{2}(GeO_{4})_{3}$	10	16
Beryllium niobium, Be_2Nb	'/m	92	Calcium chromium oxide, CaCrO ₄	7	13
Beryllium pollodium, DoDd	1	36	Calcium chromium silicate (uvarovite),		
Beryllium giliaeta, phononita, BoSi O	2111	62	$Ca_{3}Cr_{2}(SiO_{4})_{3}$	10	17
Belymum Sincate, phenacite, $BeSi_2O_4$	0	20	Calcium fluoride (fluorite), CaF ₂	1	69
Bismuth fluoride BiF	1m	20	Calcium fluoride phosphate (fluorapatite),		
Bismuth(III) jodide Bil	6	20	$\operatorname{Ca}_{\mathfrak{s}}\operatorname{F}(\operatorname{PO}_{4})_{\mathfrak{z}}$	3m	22
Bismuth oxide (bismite), alpha Bi ₂ O ₂ ,	3 m	16	Calcium gallium germanium oxide,	10	10
Bismuth oxide bromide, BiOBr	8	14	$Ca_3Ga_2(GeO_4)_3$	10	18
Bismuth oxide chloride (bismoclite), BiOCl	4	54	Calcium nydroxide (portiandite), $Ca(OH)_2$	1	28
Bismuth oxide iodide, BiOI	9	16	Calcium iron germanium oxide, $Ca_3Fe_2(GeO_4)_3$	10	19
Bismuth phosphate, BiPO ₄ (monoclinic)	Зm	11	$C_{2} = E_{2} S_{1} O$	Q	22
Bismuth phosphate, BiPO ₄ (trigonal)	3m	13	Calcium iton silicate hydrovide julgoldite	5	22
Bismuth sulfide (bismuthinite), Bi_2S_3 (revised)	5m	13	Ca Fe Si O_{\perp} (OH O).(OH).	10m	72
Bismuth telluride, BiTe	4m	50	Calcium magnesium silicate (diopside).	rom	12
Bismuth telluride (tellurobismuthite), Bi ₂ Te ₃	3m	16	CaMg(SiO ₂),	5m	17
Bismuth vanadium oxide, low form, BiVO ₄			Calcium molybednum oxide (powellite).		
(tetragonal)	3m	14	CaMoO ₄	6	22
Bismuth vanadium oxide, high form, BiVO ₄			Calcium nitrate, Ca (NO ₃),	7	14
(monoclinic)	3m	14	Calcium oxide, CaO	1	43
Boric acid, HBO ₂ (cubic)	4 m	27	Calcium phosphate, beta Ca ₂ P ₂ O ₇	7m	95
Boron oxide, B_2O_3 , phase 1	10m	70	Calcium platinum oxide, Ca ₄ PtO ₆	10m	18
Cadmium amming ablaside (Cd/NUL) (Cl	3	10	Calcium selenide, CaSe	5m	64
Caumium ammine chloride, $Cd(NH_3)_2Cl_2$	IUm	14	Calcium sulfate (anhydrite), CaSO,	4	65
			Calcium sulfide (oldhamite), CaS	7	15

m-Monograph 25.

A mineral name in () indicates a synthetic sample.

Calcium telluride, CaTe.....

4m

50

	Vol. or	
	sec.	Page
Calcium titanium oxide (perovskite),		
CaTiO ₃	9m	17
Calcium tungsten oxide, Ca ₃ WO ₆	9m	19
Calcium tungsten oxide, scheelite, CaWO ₄	6	23
Carbon, diamond, C	2	5
Cerium antimony CeSb	4m	40
Cerium arsenate, CeAsO ₄	4m	8
Cerium arsenide, CeAs	4m	51
Cerium bismuth, CeBi	4 m	46
Cerium cadmium, CeCd	5 m	63
Certum (III) chloride, CeCl ₃	1111	0
Corium(III) fluorido. CoE	-7 m	99
Cerium nichium titanium oxido (oschunito)	0	17
Construit mobilini triantum oxide (eschynite),	2m	94
Corium nitride CeN	/m	51
Cerium(IV) oxide (cerianite) CeO	1	56
Cerium phosphide CeP	4m	52
Cerium(III) vanadium oxide CeVO	1m	9
Cerium zinc CeZn	5m	65
Cesium aluminum sulfate hydrate.	0	00
CsAl(SO.). 12H.O	6	25
Cesium antimony fluoride. CsSbF	4 m	9
Cesium beryllium fluoride, CsBeF,	9m	69
Cesium boron fluoride. CsBF	. 8	22
Cesium bromate, CsBrO,	8	18
Cesium bromide, CsBr	3	49
Cesium cadmium bromide,		
CsCdBr, (hexagonal)	10m	20
Cesium cadmium chloride, CsCdCl ₃		
(hexagonal)	5m	19
Cesium calcium chloride, CsCaCl ₃	5m	21
Cesium calcium fluoride, CsCaF ₃	8m	25
Cesium calcium sulfate, Cs ₂ Ca ₂ (SO ₄),	7m	12
Cesium cerium chloride, Cs ₂ CeC1 ₆	7m	101
Cesium chlorate, CsClO ₃	8	20
Cesium chlorate, CsClO ₄ , (orthorhombic)	1 m	10
Cesium chloride, CsCl	2	44
Cesium chromium oxide, Cs_2CrO_4	3m	25
Cesium chromium sulfate hydrate,	0	0.1
$CSCr(SO_4)_2 \cdot 12H_2O$	8	21
Cesium cobalt (Π) chioride, CSCOCI ₃	11 m	10
Cesium copait chioride, Cs_2CoCl_4	5.00	19
Cosium copper chloride, CSCuCl ₃	11m	20
Cosium copper cultate hydrate	1 1 111	20
$C_{\rm S}$ C ₁ (SO), 6H O	7m	14
Cesium fluoride CsF	3m	26
Cesium gallium sulfate hydrate	0	20
$CsGa(SO_{1})$. 12H.O	8	23
Cesium germanium fluoride. Cs.GeF	5	17
Cesium iodide, CsI	4	47
Cesium iodine bromide, CsL Br	$7 \mathrm{m}$	103
Cesium iodine chloride, CsICl ₂	3	50
Cesium iron sulfate hydrate,		
$Cs_2Fe(SO_4)_2 \cdot 6H_2O$	7m	16
Cesium iron sulfate hydrate,		
$CsFe(SO_4)_2 \cdot 12H_2O$	6	28
Cesium lead(II) chloride, CsPbCl ₃		
(tetragonal)	5m	24
Cesium lead fluoride, CsPbF ₃	8 m	26
Cesium lithium cobalt cyanide,		-
CsLiCo(CN) ₆	10m	79
m-monograph 25.		

	Vol. or	
	sec.	Page
Cesium lithium fluoride, CsLiF, Cesium magnesium chromium oxide,	7m	105
Cs ₂ Mg ₂ (CrO ₄) ₃ Cesium magnesium chromium oxide hydrate.	8m	27
$C \leq M \alpha (CrO) + 6 H O$	8m	20
$C_{2}Mg(CIO_4)_2 OII_2O \cdots OII_2O$	1.0m	20
Cesium manganesium sulfate hydrate,	1 Um	21
Cs,Mg(SO ₄),•6H,O Cesium manganese sulfate hydrate,	7m	18
$C s_2 Mn (SO_4)_2 \cdot 6H_2O \dots$	7m	20
Cesium mercury chloride, CsHgC1,	7m	22
Cesium nickel(II) chloride, CsNiCl ₃ Cesium nickel sulfate hydrate,	6 m	12
$Cs_2Ni(SO_4)_2$ *6H ₂ O	. 7m	23
Cesium nitrate. CsNO,	9	25
Cesium osmium(IV) bromide Cs OsBr	2m	10
Gasium agnium ablarida. Ga OsCl	2	11
Cesium osmium chioride, CS_2OSCI_6	Zm	11
Cesium platinum bromide, Cs_2PtBr_6	. 8	19
Cesium platnum chloride, Cs ₂ PtCl ₆	. 5	14
Cesium platinum fluoride, Cs. PtF	. 6	27
Cesium selenium bromide Cs.SeBr.	8	20
Cogium giliaan fluorida. Co SiE	. 5	10
Cestuli sincon nuonde, $Cs_2 Sir_6$		19
Cesium strontium chloride, $CSSrCl_3$. 6m	13
Cesium sulfate Cs ₂ SO ₄	7	17
Cesium tellurium bromide, Cs, TeBr,	9	24
Cesium tin chloride Cs SnCl	5	16
Cesium vanadium sulfate hydrate,		
$CsV(SO_4)_2 \cdot 12H_2O \dots$ Cesium zinc sulfate hydrate,	Im	11
$Cs_2Zn(SO_4)_2 \cdot 6H_2O$	$7 \mathrm{m}$	25
Chromium, Cr	5	20
Chromium chloride CrCl.	11m	77
Chromium fluoride, Cr E	m	100
Chromitan fluoride, Cr. F.	1.0	100
Chromium Huoride, CrF ₂	TOM	81
Chromium(III) fluoride hydrate, CrF ₃ ·3H ₂ O	5m	25
Chromium iridium 3:1, Cr ₃ Ir	6m	14
Chromium(III) oxide, Cr.O.	5	22
Chromium phosphate alpha CrPO	2m	12
Chromium phosphate, hote CrBO		26
Chromium phosphate, beta CIPO4	9	20
Chromium rhodium 3:1, Cr_3Rh	6m	15
Chromium silicide, Cr ₃ Si	6	29
Cobalt, Co (cubic)	4 m	10
Cobalt aluminum oxide, CoAl ₂ O ₄	9	27
Cobalt ammine iodide Co(NH) I	1.0m	83
Cobalt antimony oxide CoSh O	5m	26
Cobalt antiholdy oxide, $Cobb_2O_6$	4	10
Cobalt arsenide, CoAs ₂ (revised)	4111	10
Cobalt arsenide (skutterudite), CoAs ₃ Cobalt(II) carbonate (spherocobaltite),	10	21
CoCO,	10	24
Cobalt chlorate hydrate Co(ClO) .6H O	3m	28
Cobalt chloride hydrate, $Co(ClO_4)_2 \cdot 0 \cdot 1_2 \circ \dots \circ 0$	11m	20
Cobalt chloride hydrate, CoCl ₂ ·2H ₂ O	11m	22
Cobalt chloride hydrate, CoCl ₂ ·6H ₂ O	11m	23
Cobalt chromium oxide, $CoCr_2O_4$	9m	21
Cobalt fluoride, CoF,	10m	85
Cobalt fluoride hydrate, CoF ₂ ·4H ₂ O	11m	24
Cobalt gallium oxide CoGa.O	10	27
Cobalt garmanium oxido. Co GoO	10	27
Gabalt isdida Cal	4m	50
Cobalt logide, Col_2	4111	52
Cobalt iron arsenide (safflorite), CoFeAs ₄	10	28
Cobalt iron oxide, CoFe ₂ O ₄	9m	22
Cobalt mercury thiocyanate, Co[Hg(CNS).]	2m	13
Cobalt(II) oxide. CoO	9	28
Cobalt(II III) oxide Co O	0	29
Gebelt eiliente Ge Sig (artherhambie)	4m	11
Cobalt Silicate, Co ₂ SiO ₄ (orthornombic)	4111	11
Cobalt silicon fluoride hydrate,	-	07
$CoSiF_{6} \cdot 6H_{2}O$	3m	27

	Vol. or	
	sec.	Page
Cobalt sulfate, beta, CoSO ₄	2m	14
Cobalt titanium oxide, CoTiO ₃	4m	13
Cobalt tungsten oxide, CoWo ₄	4m	13
Copper, Cu	1	15
Copper aluminum, Cu ₉ Al ₄	11 m	79
Copper ammine selenate, Cu(NH ₃) ₄ SeO ₄	10m	87
Copper ammine sulfate hydrate,		
$Cu(NH_3)_4SO_4$ · H_2O	10m	90
Copper antimony oxide, CuSb ₂ O ₆	5m	27
Copper(I) bromide, CuBr	4	36
Copper cadmium, Cu _s Cd _s	11m	81
Copper (I) chloride (nantokite), CuC1	4	35
Copper fluoride hydrate, CuF ₂ ·2H ₂ O	11m	25
Copper hydrogen phosphite hydrate,		
CuHPO ₃ ·2H ₂ O	11 m	83
Copper hydroxide carbonate, azurite,		
$CU_3(OH)_2(CO_3)_2$	10	30
Copper hydroxide carbonate (malachite).		
$Cu_{2}(OH)_{2}CO_{2}$	10	31
Copper(I) iodide (marchite), CuI	4	38
Copper (I) oxide (cuprite), Cu ₂ O	2	23
Copper(II) oxide (tenorite), CuO	1	49
Conner phosphate alpha Cu.P.O.	7m	113
Copper sulfate (chalcocyanite) CuSO	3m	29
Copper Julice (covellite) CuS	4	13
Copper uranium oxide Cullo	10m	93
Dysprosium antimony Dysb	. 10m 4m	41
Dysprosium arsenate DyAsO	3m	30
Dysprosium arsenide DyAs	4m	53
Dysprosium hismuth DyBi	4m	47
Dysprosium gallium oxide Dy Ga (GaO)	2m	15
Dysprosium gold DyAu	5m	66
Dysprosium nitride DyN	4m	53
Dysprosium oxide Dy O	0	30
Dysprosium silver DyAg	5m	66
Dysprosium telluride DyTe	4m	54
Dysprosium vanadium oxide DyVO	4m	15
Erbium antimony ErSh	4m	41
Erbium arsenate ErAsO	3m	31
Erbium arsenide ErAs	4m	54
Erhium hismuth FrBi	4m	47
Erbium gallium oxide Er Ga (GaO)	1m	12
Erbium manganese oxide $FrMnO$	2m	16
Erbium nitride ErN	4m	55
Erbium oxide, Er.O.	8	25
Erbium phosphate, ErPO.	9	31
Erhium silver ErAg	5m	67
Erbium telluride. ErTe	4m	55
Erbium vanadium oxide. ErVO.	5 m	29
Europium arsenate, EuAsO,	3m	32
Europium(III) chloride, EuCl.	1m	13
Europium gallium oxide. Eu.Ga (GaO.)	2m	17
Europium nitride. EuN	4m	56
Europium oxide. EuO	4m	56
Europium oxychloride, EuOCl	1m	13
Europium phosphate EuPO	11m	26
Europium(III) vapadium oxide EuVO	4m	16
Gadolinium antimony, GdSh	4m	42
Gadolinium arsenate GdAso	4m	17
Gadolinium arsenide GdAs	4m	57
Gadolinium chloride hydrate	-111	01
GdCl. 6H.O	7 m	118
Gadolinium fluoride GdF	1m	14
		11

sec. Page Gadolinium gallium oxide, Gd, Ga, (GaO,), 2m 18 Gadolinium indium, GdIn 67 5m Gadolinium nitride, GdN..... 4m 57 Gadolinium oxide, Gd₂O₃ 16 $1 \,\mathrm{m}$ Gadolinium oxychloride, GdOCl 1m 17 Gadolinium silver, GdAg 6m 87 Gadolinium titanium oxide, Gd2TiOs 8m32 Gadolinium vanadium oxide, GdVO, 5m 30 Gallium, Ga 2 9 Gallium antimony, GaSb 6 30 Gallium arsenide, GaAs 3m 33 Gallium oxide, alpha, Ga₂O₃ 4 25 Gallium phosphate hydrate, GaPO4.2H2O 34 8m 27 Gallium phosphate (~-quartz type), GaPO4 ... 8 Germanium, Ge 18 1 Germanium iodide, GeI₂ 58 4m Germanium(IV) iodide, GeI₄ 5 25 Germanium oxide, GeO₂ (hexagonal) (low form) 1 51Germanium oxide, GeO₂ (tetragonal) 8 28 (high form) Gold, Au 1 33 Gold antimony 1:2 (aurostibite), AuSb, 7 18 Gold(I) cyanide, AuCN 10 33 Gold potassium cyanide, AuK(CN)₂ 8m 36 Gold tin, 1:1 AuSn..... 7 19 Gold titanium 1:3, AuTi₃ 6m 17 Hafnium, Hf 3 18 Holmium arsenate, HoAsO, 3m 34 Holmium bismuth, HoBi 4m 48 Holmium fluoride, HoF₃ 10m 23 Holmium gold, HoAu 5m 68 58 Holmium nitride, HoN 4m 32 Holmium oxide, Ho₂O₃..... 0 Holmium selenide, HoSe..... 4m 59 Holmium silver, HoAg 5 m68 Holmium vanadium oxide, HoVO4 4m18 Hydrogen borate, beta HBO₂ 9m 71 28 Hydrogen iodate, HIO₃ 5 Hydrogen iodate, HI₃O₈ 8m 104 Indium, In 3 12 Indium antimony, InSb..... 4 73 Indium arsenide, InAs..... 3m 35 Indium oxide, In₂O₃ 5 26 Indium phosphate, InPO, 29 8 30 Indium sulfide, In_2S_3 11m 3 Iodine, I₂..... 16 Iridium, Ir 4 9 Iridium oxide, IrO₂ 19 $4 \,\mathrm{m}$ Iridium titanium 1:3, IrTi₃ 6m 20 Iron, alpha Fe 4 3 Iron arsenide, FeAs 1m 19 Iron arsenide (loellingite), FeAs, 10 34 Iron bromide, FeBr, 59 4m 32 Iron chloride hydrate, FeCl₂·2H₂O 11m Iron fluoride hydrate, FeF₂·4H₂O 11m 90 Iron hydroxide sulfate hydrate, butlerite, $Fe(OH)SO_4 \cdot 2H_2O$ 10m 95 Iron iodide, FeI₂ 4m 60 Iron(II,III) oxide (magnetite), Fe₃O₄ 5m 31 8m 38 Iron sulfate hydrate (melanterite), FeSO₄·7H₂O Iron sulfide (pyrite), FeS₂ 5 29 Lanthanum antimony, LaSb 4m 42 Lanthanum arsenate, LaAsO, 3m 36 Lanthanum arsenide, LaAs 4m 60 Lanthanum bismuth, LaBi 4m 48

Vol. or

m-Monograph 25.

	Vol. or	
	sec.	Page
Lanthanum borate. LaBO,	1m	20
Lanthanum cadmium LaCd	5 m	63
Lopthonum chlorido, LoCl	1m	20
Lanthanum Chiofide, LaCi ₃	1111	20
Lanthanum Huoride, LaF ₃	1	21
Lanthanum niobium titanium oxide, LaNbTiO	3m	37
Lanthanum nitrate hydrate, La(NO ₃) ₃ ·6H ₂ O	8 m	40
Lanthanum nitride, LaN	4m	61
Lanthanum oxide, La.O.	3	33
Lanthanum oxychloride LaOCl	7	22
Lenthenum phoephide. LeP	Em	22
Lanthanum phosphile, Lar	2111	69
Lanthanum selenide, LaSe	4m	61
Lanthanum zinc, LaZn	5m	70
Lead, Pb	1	34
Lead borate, PbB.O.	4m	19
Lead bromide. PbBr	2	47
Load bromido chlorido DhPrCl	11m	22
Lead brouide flueside DbD-D	10	05
Lead bromide Huoride, PDBrF	IUm	20
Lead carbonate (cerrussite), $PbCO_3$	2	56
Lead chloride (cotunnite), PbCl ₂	2	45
Lead chloride fluoride (matlockite), PbClF	1	76
Lead fluoride, alpha PbF, (orthorhombic)	5	31
Lead fluoride, beta PbF, (cubic)	5	33
Lead fluoride jodide PhEI	1.0m	26
Lead hudravide sheephate. Dh (DO) OU	10111	20
Lead hydroxide phosphate, $PD_5(PO_4)_3OH$	8	33
Lead(II) lodide, PbI_2	5	34
Lead molybdenum oxide (wulfenite), PbMoO ₄	7	23
Lead nitrate, Pb(NO ₃) ₂	5	36
Lead oxide (litharge), PbO (red. tetragonal)	2	30
Lead oxide (massicot) PhO (vellow, ortho-		
thempic)	0	20
	4	34
Lead(II, III) oxide (minium), Pb_3O_4	8	32
Lead oxide sulfate, Pb ₅ O ₄ SO ₄	10m	27
Lead oxybromide, Pb ₃ O ₂ Br ₂	5m	32
Lead selenide (clausthalite), PbSe	5	38
Lead sulfate (anglesite), PbSO	3	67
Lead sulfide (calena) PhS	2	19
Lead time vide Db GoO	1.0	10
Lead tin oxide, PD_2SnO_4	TOm	29
Lead titanium oxide, PbTiO ₃	5	39
Lead tungsten oxide (stolzite), PbWO ₄		
(tetragonal) (revised)	5m	34
Lead uranium oxide. Pb ₃ UO ₂	8m	109
Letetium manganese ovide LuMnO	2m	23
Lithium aluminum Li Al	1.0m	0.0
\mathbf{L}_{1}	TOM	90
Lithium aluminum fluoride, alpha $L_{1_3}A_{1F_6}$	8m	111
Lithium arsenate, Ll_3ASO_4	2m	19
Lithium azide, LiN ₃	8m	113
Lithium barium fluoride, LiBaF,	5m	35
Lithium hervllium fluoride Li BeF	7 m	126
Lithium horate Li BO	0 m	114
Lithium bromide LiDr	0111	200
	.4	30
Lithium carbonate, $L_{1_2}CO_3$	8m	42
Lithium chlorate hydrate, LiClO ₄ ·3H ₂ O	8	34
Lithium chloride, LiCl	1	62
Lithium fluoride, Li F	1	61
Lithium gallium oxide, LiGaO	10m	31
Lithium hydroxide hydrate LiOH.H O	11m	92
Lithium iddate LilO		26
Lithium induite, LHO ₃	10	20
Lithium logate, LilO ₃ (tetragonal)	TUm	33
Lithium molybdenum oxide, Li ₂ MoO ₄ (trigonal)	1 m	23
Lithium niobium oxide, LiNbO ₃	6m	22
Lithium nitrate, LiNO,	7	27
Lithium oxide, Li ₂ O	1m	25
Lithium phosphate hydrate Li.P.O.3H.O	2m	20
Linnan phoophate no atate, Dist 309.01120	2411	20

m-Monograp	bh i	25	•
------------	------	----	---

	· 01. 01	
Lithium phosphate low form (lithiophos-	sec.	Page
phate). Li PO. (orthorhombic) revised	4m	21
Lithium phosphate, high form, Li,PO,	3m	39
Lithium rubidium fluoride, LiRbF	7m	1.28
Lithium selenide, Li ₂ Se	10m	100
Lithium sodium aluminum fluoride,		
cryolithionite, Li ₃ Na ₃ Al ₂ F ₁₂	9m	23
Lithium sodium sulfate, LiNaSO ₄	6m	24
Lithium sulfate, Li_2SO_4	6m	26
Lithium sulfate hydrate, $Li_2SO_4 \cdot H_2O$	4 m	22
Lithium sulfide, Li ₂ S	10m	101
Lithium telluride, Li ₂ Te	10m	102
Lithium tungsten oxide, Li_2WO_4 (trigonal)	1 m	25
Lithium tungsten oxide hydrate, $L_{1_2}WO_4 \cdot \frac{1}{2}H_2O$	2m	20
Lithium uranium fluoride, LiUF,	7m	131
Lutetium arsenate, LuAsO ₄	5m	36
Lutetium gainum oxide, $Lu_3Ga_2(GaO_4)_3$	2m	22
Lutetium manganese $oxide$, LuMnO ₃	2m 4m	23
Lutetium mitride, LuN	4m 1m	02
Lutetium vanadium oxida $L_{\rm uVO}$	110	21
Euterium vanaurum Oxide, Eu VO_4	3m 1	10
Magnesium, Mg	1	10
Magnesium aruminum oxide (spiner),	Qm	25
Magnesium aluminum silicate (nyrone)	5111	20
Mg Al (SiO)	4m	24
Magnesium aluminum silicate (low cordi-	4111	44
erite) Mg Al Si O (orthorhombic).	1m	28
Magnesium aluminum silicate (high cordi-	1	20
erite). Mg. Al. Si. O., (hexagonal)	1m	29
Magnesium ammonium phosphate hydrate.		-
(struvite). MgNH, PO, 6H, O	3 m	41
Magnesium borate, Mg_B_O, (triclinic)	4 m	25
Magnesium bromide, MgBr,	4m	62
Magnesium bromide hydrate. MgBr ₂ ·6H ₂ O	11m	35
Magnesium carbonate (magnesite), MgCO,	7	28
Magnesium cerium MgCe	5m	65
Magnesium cerium nitrate hydrate,		
$Mg_3Ce_2(NO_3)_{12} \cdot 24H_2O$	10	20
Magnesium chlorate hydrate, Mg(ClO ₄) ₂ ·6H ₂ O	7m	30
Magnesium chloride (chloromagnesite), MgCl ₂	11m	94
Magnesium chloride hydrate, MgC1 ₂ ·12H ₂ O	7m	135
Magnesium chloride hydrate(bischofite),		
MgCl ₂ ·6H ₂ O	11m	37
Magnesium chromium oxide (picrochromite),		
$MgCr_2O_4$	9	34
Magnesium fluoride (sellaite), MgF ₂	4	33
Magnesium fluoride silicate (humite),		
$\operatorname{Mg}_{7}\operatorname{F}_{2}(\operatorname{SiO}_{4})_{3}$	1 m	30
Magnesium fluoride silicate (norbergite),		
$Mg_{3}F_{2}SiO_{4}$	10	39
Magnesium gallium oxide, MgGa ₂ O ₄	10	36
Magnesium germanium oxide, Mg_2GeO_4 (cubic)	10	37
Magnesium germanium oxide, Mg ₂ GeO ₄ (ortho-	10	
rnombic)	10	38
Magnesium gold, MgAu	6m	83
Magnesium hydrogen phosphate hydrate,	_	
newberyite, MgHPO ₄ ·3H ₂ O	7m	139
Magnesium nydroxide (brucite), $Mg(OH)_2$	0	30
magnesium iron nyuroxide carbonate nydrate,	1.0m	104
pyroaurite, $Mg_6Fe_2(OR)_{16}CO_3^24H_2O$, phase II Magnesium iron hydroxide carbonate hydrote	1011	104
sideronito Me Eo (OII) CO 4H O phase I	10m	103
Sjogremite, $Mg_6Fe_2(OR)_{16}CO_3 \cdot 4\Pi_2O$, phase I Magnosium lanthanum Mala	10m 5m	69
Magnesium lanthanum, MgLa	Jui	00
Mg_La_(NO_)	1 m	22

	/o1. or	
	sec.	Page
Magnesium manganese oxide, MgMn ₂ O ₄	10m	35
Magnesium mercury, MgHg	6m	84
Magnesium nickel ovide MgNiO	10m	28
Magnesium oxide (periclase) MgO	10m	30
Magnesium phosphate alpha Mg.P.O.	9m	73
Magnesium selenide, MgSe	5m	70
Magnesium selenite hydrate, MgSeO, 6H2O	8m	116
Magnesium silicate, enstatite, MgSiO ₃	6	32
Magnesium silicate (forsterite), Mg ₂ SiO ₄	1	83
Magnesium sulfate hydrate (epsomite),		
MgSO ₄ ·7H ₂ O	7	30
Magnesium sulfide, MgS	7	31
Magnesium sulfite hydrate, MgSO ₃ .6H ₂ O	9m	26
Magnesium titanium oxide (geikielite), MgTiO ₃	5	43
Magnesium tin, Mg ₂ Sn	5	41
Magnesium tungsten ovide MgWO	1 Um	31
Manganese alpha Mn	7m	14.2
Manganese aluminum oxide (galaxite) MnAl.O.	0	35
Manganese bromide. MnBr.	4m	63
Manganese(II) carbonate (rhodochrosite).	1	00
MnCO ₃	7	32
Manganese chloride hydrate, MnCl ₂ ·2H ₂ O	11m	38
Manganese chloride (scacchite), MnCl ₂	8m	43
Manganese chloride hydrate, MnCl ₂ .4H ₂ O	9m	28
Manganese cobalt oxide, MnCo ₂ O ₄	9m	30
Manganese fluoride, MnF,	10m	105
Manganese iodide, MnI ₂	4m	63
Manganese iron oxide (jacobsite), MnFe ₂ O ₄	9	36
Manganese oxide (hausmannite), Mn ₃ O ₄	10m	38
Manganese oxide (partridgeite), alpha Mn_2O_3		05
(revised)	11m	95
Manganese oxide (pyrolusite), beta, MiO_2	TOM	39
MnOOH	11m	97
Manganese(II) oxide (manganosite). MnO	5	45
Manganese selenide, MnSe	10	41
Manganese sulfide (alabandite), alpha MnS	4	11
Manganese(II) tungsten oxide (huebnerite),		
MnWO ₄	2m	24
Manganese vanadium oxide, Mn ₂ V ₂ O ₇	9m	75
Mercury amide chloride, HgNH ₂ Cl	10m	40
Mercury ammine chloride, $Hg(NH_3)_2Cl_2$	11m	39
Mercury bromate, Hg(BrO ₃) ₂	10m	107
Mercury bromide, HgBr ₂	10m	110
Mercury(I) bromide, Hg_2Br_2	1	33
Mercury(I) chloride (caromer), $\operatorname{Hg}_2\operatorname{Cl}_2$	1	12
Mercury chloride sulfide alpha Hg Cl S	8m	110
Mercury (II) cyanide $H_{\alpha}(CN)$	6	35
Mercury(II) fluoride HgE	2m	25
Mercury(I) iodide. HgI	4	49
Mercury iodide, Hgl, (tetragonal) (revised)	7m	32
Mercury(II) oxide (montroydite) HgO (revised)	9	39
Mercury(II) selenide (tiemannite), HgSe	7	35
Mercury(II) sulfide (cinnabar), HgS (hex-		
agonal)	4	17
Mercury(II) sulfide (metacinnabar), HgS		
(cubic)	4	21
Molybdonum, Mo	1	20
Molybdenum arsenide, Mo ₂ AS ₃	fom	115
Morg buchum Osmitum S. 1, MO ₃ OS	om	28

m-Monograph 25.

A mineral name in () indicates a synthetic sample.

·	Sec	Page
Molybdenum oxide (molybdite), MoO,	3	30
Molybdenum sulfide (molybenite), MoS ₂	5	47
Neodymium antimony, NdSb	4m	43
Neodynium arsenate, NdAsO,	4m	28
Neodymium arsenide, NdAs	4m	64
Neodymium bismuth, NdBi	4 m	49
Neodymium borate, NdBO,	1m	32
Neodymium chloride, NdCl,	1m	33
Neodymium fluoride, NdF,	8	36
Neodymium gallium oxide, Nd ₃ Ga ₂ (GaO ₄) ₃	1m	34
Neodymium oxide, Nd ₂ O ₃	4	26
Neodymium oxychloride, NdOCl	8	37
Neodymium phosphate, NdPO ₄	11m	40
Neodymium selenide, NdSe	5m	71
Neodymium silver, NdAg	$5\mathrm{m}$	71
Neodymium vanadium oxide, NdVO4	4 m	30
Neptunium nitride, NpN	4m	64
Nickel, Ni	1	13
Nickel aluminum, NiAl	6 m	82
Nickel aluminum oxide, NiAl ₂ O ₄	9	42
Nickel arsenide 1:2 (rammelsbergite), NiAs ₂	10	42
Nickel arsenic sulfide (gersdorffite), NiAsS	$1 \mathrm{m}$	35
Nickel bromide, NiBr ₂	10m	119
Nickel(II) carbonate, NiCO ₃ (trigonal)	1m	36
Nickel chloride, NiCl ₂	9m	81
Nickel chloride hydrate, NiCl ₂ •6H ₂ O	$11 \mathrm{m}$	42
Nickel fluoride, NiF ₂	10m	121
Nickel fluoride hydrate, NiF ₂ ·4H ₂ O	11m	43
Nickel gallium oxide, NiGa ₂ O ₄	10	45
Nickel germanium oxide, Ni ₂ GeO ₄	9	43
Nickel iron oxide (trevorite), NiFe ₂ O ₄	10	44
Nickel(II) oxide (bunsenite), NiO	1	47
Nickel phosphide, Ni ₁₂ P ₅	9m	83
Nickel silicon fluoride hydrate, NiSiF ₆ .6H ₂ O	8	38
Nickel sulfate, NiSO4	2m	26
Nickel sulfate hydrate (retgersite),		
$NiSO_4 \cdot 6H_2O$	7	36
Nickel sulfide, millerite, NiS	1m	37
Nickel tungsten oxide, NiWO4	$2 \mathrm{m}$	27
Niobium gold 3:1, Nb ₃ Au	$6\mathrm{m}$	16
Niobium iridium 3:1, Nb ₃ Ir	6m	19
Niobium osmium 3:1, Nb₃Os	6m	30
Niobium oxychloride, NbOC1,	$7 \mathrm{m}$	148
Niobium platinum 3:1, Nb ₃ Pt	6m	31
Niobium silicide, NbSi ₂	8	39
Osmium, Os	4	8
Osmium titanium, OsTi	6m	85
Palladium, Pd	1	21
Palladium hydride, PdH _{0.706}	5m	72
Palladium oxide, PdO	4	27
Phosphorus bromide, PBr ₇	$7 \mathrm{m}$	150
Phosphorus oxide (stable form I), P ₂ O ₅ ,		
(orthorhombic)	9m	86
Phosphorus oxide (stable form II), P ₂ O ₅ ,		
(orthorhombic)	9m	88
Phosphorus oxide (metastable form), P_4O_{10} ,		
(rhombohedral)	9m	91
Platinum, Pt	1	31
Platinum titanium 1:3, PtTi ₃	6m	33
Plutonium arsenide, PuAs	4m	65
Plutonium phosphide, PuP	4m	65
Plutonium telluride, PuTe	4m	66
Potassium aluminum sulfate, KAl (SO ₄) ₂	9m	31
Potassium aluminum sulfate hydrate,		
(alum), $KAl(SO_4)_2 \cdot 12H_2O$	6	36

Vol or

	Vol. or	
	sec.	Page
Potassium barium nickel nitrite.		6-
K ₂ BaNi (NO ₂),	9m	32
Potassium borohydride, KBH,	9	44
Potassium bromate, KBrO ₃	7	38
Potassium bromide, KBr	1	66
Potassium bromide chloride, KBr _{0.5} Cl _{0.5}	8m	46
Potassium bromide iodide, KBr. 33I.67	11m	44
Potassium bromide iodide, KBr _{\$\u03b27} I _{\$33}	$11\mathrm{m}$	45
Potassium cadmium fluoride, KCdF ₃	8m	47
Potassium cadmium sulfate, K,Cd,(SO ₄),	$7 \mathrm{m}$	34
Potassium calcium carbonate (fairchildite),		
$K_2Ca(CO_3)_2$	8 m	48
Potassium calcium chloride (chlorocalcite),		
KCaCl ₃	7m	36
Potassium calcium fluoride, KCaF ₃	8m	49
Potassium calcium magnesium sulfate,		
$K_2CaMg(SO_4)_3$	$7 \mathrm{m}$	37
Potassium calcium nickel nitrite,		
$K_2CaNi(NO_2)_6$	9m	33
Potassium calcium sulfate, $K_2Ca_2(SO_4)_3$	$7 \mathrm{m}$	39
Potassium chlorate, KClO ₃	3m	42
Potassium chlorate, KClO ₄	6	43
Potassium chloride (sylvite), KCl	1	65
Potassium chromium oxide, K ₃ CrO ₈	3 m	44
Potassium chromium sulfate hydrate,		
$\mathrm{KCr}(\mathrm{SO}_4)_2 \cdot 12\mathrm{H}_2\mathrm{O}$	6	39
Potassium cobalt(II) fluoride, KCoF ₃	6 m	37
Potassium cobalt fluoride, K ₂ CoF ₄	11m	46
Potassium cobalt nitrite, K ₃ Co(NO ₂) ₆	9	45
Potassium cobalt (II) sulfate, $K_2Co_2(SO_4)_3 \ldots$	6m	35
Potassium copper chloride, KCuCl ₃	7m	41
Potassium copper chloride hydrate		
(mitscherlichite), K ₂ CuCl ₄ .2H ₂ O	9m	34
Potassium copper(II) fluoride, KCuF ₃	6m	38
Potassium cyanate, KCNO	7	39
Potassium cyanide, KCN	1	77
Potassium fluoride, KF	1	64
Potassium germanium fluoride, K ₂ GeF ₆	6	41
Potassium hydrogen arsenate, KH_2AsO_4	1 m	38
Potassium hydrogen phosphate, KH ₂ PO ₄	3	69
Potassium hydroxide, KOH at 300 °C	4m	66
Potassium iodide, KI	1	68
Potassium iodate, KIO ₄	7	41
Potassium iron cyanide, $K_{3}{\rm Fe}~({\rm CN})_{6}$	9m	35
Potassium iron fluoride, $K_3 FeF_6$	9m	37
Potassium iron(II) fluoride, KFeF ₃	6m	39
Potassium lithium sulfate, KLiSO ₄	3m	43
Potassium magnesium chloride hydrate		
(carnallite), KMgCl ₃ .6H ₂ O	8m	50
Potassium magnesium chromium oxide,		
$K_2Mg_2(CrO_4)_3$	8m	52
Potassium magnesium fluoride, KMgF ₃	6m	42
Potassium magnesium fluoride, K ₂ MgF ₄	1 0 m	42
Potassium magnesium selenate hydrate,		
$K_2Mg(SeO_4)_2$ ·6 H_2O	$10 \mathrm{m}$	43
Potassium magnesium sulfate (langbeinite),		
$K_2Mg_2 (SO_4)_3 \dots$	6m	40
Potassium magnesium sulfate hydrate		
(picromerite), K ₂ Mg(SO ₄) ₂ .6H ₂ O	8m	54
Potassium manganese (II) fluoride, KMnF ₃	6 m	45
Potassium manganese oxide, KMnO4	7	42
Potassium manganese (II) sulfate		
(manganolangbeinite), K ₂ Mn ₂ (SO ₄) ₃	6m	43

m-Monograph 25.

A mineral name in () indicates a synthetic sample.

	sec.	Page
Potassium molybdenum oxide phosphate	0	4.2
Potassium nickel fluoride $KNiF$	0 7m	40
Potassium nickel fluoride, K.NiF.	10m	42
Potassium nickel (II) sulfate, K ₂ Ni ₄ (SO ₂),	6m	46
Potassium niobium fluoride, K ₂ NbF ₇	8m	120
Potassium nitrate (niter), KNO,	3	58
Potassium nitrite, KNO ₂	9m	38
Potassium nitroso ruthenium chloride,		
K ₂ (NO)RuCl ₅	2m	29
Potassium oxide, K ₂ O	10m	125
Potassium platinum bromide, $K_2 PtBr_6$	8	40
Potassium platinum chloride, K_2 PtCl ₆	5	49
Potassium rhanium chlorida, $K_2 PlF_6$	0 2m	42
Potassium themium oxide KReQ.	8	41
Potassium rubidium chloride, Rbo - Ko - Cl	8m	76
Potassium ruthenium chloride, K ₂ RuCl ₆	10	46
Potassium ruthenium oxide chloride hydrate,		
$K_4Ru_2OCl_{10}$ · H_2O	10	47
Potassium selenate, K_2SeO_4	9m	41
Potassium selenide, K ₂ Se	10m	126
Potassium selenium bromide, K_2SeBr_6	8	41
Potassium silicon fluoride (hieratite), K_2SIF_6	5	50
Potassium silver cyanide, $KAg(CN)_2$	8m	18
(elpasolite) K NaAlF	9m	43
Potassium sodium sulfate. KNaSO.	6m	50
Potassium sodium sulfate, K ₆₇ Na ₁ ₃₃ SO ₄	6m	48
Potassium sodium sulfate (aphthitalite),		
K_3 Na $(SO_4)_2$	6m	52
Potassium sulfate, $K_2S_2O_7$	9m	99
Potassium sulfate (arcanite), K_2SO_4	3	62
Potassium sulfide, K ₂ S	10m	127
Potassium teiluride, K_2 Te	IUm	128
Potassium tin chloride K SnCl	6	38
Potassium titanium fluoride, KaTiF	7	40
Potassium tungsten oxide, K ₂ WO ₄	11 m	47
Potassium vanadium oxide, KV ₃ O _{\$}	8m	56
Potassium zinc bromide hydrate,		
$KZnBr_{3} \cdot 2H_{2}O$	11 m	104
Potassium zinc fluoride, $KZnF_3$	5	51
Potassium zinc fluoride, K ₂ ZnF ₄	10m	46
Potassium zinc iodide nydrate, $KZn_3 \cdot 2H_2O$ Potassium zinc sulfato, $KZn (SO)$	11m 6m	54
Potassium zine sulfate hydrate	om	54
$K_{\rm r}$ Zn(SO). (6H-O)	7 m	43
Potassium zinc vanadium oxide hydrate.	• • • •	10
$K_{2}Zn_{2}V_{10}O_{28} \cdot 16H_{2}O$	3 m	45
Potassium zirconium fluoride, K ₃ ZrF ₇	9	46
Praseodymium antimony, PrSb	4m	43
Praseodymium arsenate, PrAsO,	4m	32
Praseodymium arsenide, PrAs	4m	67
Praseodymium bismuth, PrBi	4 m	49
Praseodymium cadmium, PrCd	5m 1m	64 20
Praseodymium fluoride PrF	5	52
Praseodymium oxychloride PrOCl	9	47
Praseodymium sulfide. PrS	4m	67
Praseodymium vanadium oxide, PrVO4	5m	40
Praseodymium zinc, PrZn	5m	72
Rhenium, Re	2	13
Rhodium, Rh	3	9
Rubidium aluminum sulfate hydrate,	C	4.4
$RDAI(50_4)_2 \cdot 12H_20$	0	44

Vol. or

	Vol. or	
	sec.	Page
Rubidium amide, RbNH ₂	5m	73
Rubidium bromate, RbBrO ₃	8	45
Rubidium bromide, RbBr	7	43
Rubidium cadmium chloride, high form,	-	
RbCdCl ₃ (tetragonal)	5m	43
Rubidium cadmium chloride, low form,	Em	4.1
RDCdCl ₃ (orthornolid)	5m 7m	41
Rubidium calaium chlorido. $PhCoC1$. 1111 7.m	40
Rubidium calcium fluoride, RbCaE	6111 8m	41
Rubidium calcium sulfate Rh Ca (SO)	7m	10
Rubidium chlorate $BhClO$	8	40
Rubidium chlorate, RbClO.	2m	30
Rubidium chloride, RbCl	4	41
Rubidium chromium oxide. Rb ₂ CrO.	. 3m	46
Rubidium chromium sulfate hydrate.	om	
RbCr(SO ₄), 12H ₂ O	6	47
Rubidium cobalt (II) chloride, RbCoCl,	. 6m	57
Rubidium cobalt fluoride, RbCoF ₃	8m	58
Rubidium cobalt sulfate, $Rb_2Co_2(SO_4)_3$	8m	59
Rubidium copper chloride hydrate,		
Rb ₂ CuCl ₄ ·2H ₂ O	10m	47
Rubidium copper sulfate hydrate,		
$Rb_2Cu(SO_4)_2 \cdot 6H_2O$	8m	61
Rubidium fluoride, RbF	8m	63
Rubidium iodate, RbIO ₄	2m	31
Rubidium iodide, RbI	4	43
Rubidium iron sulfate hydrate,		
$Rb_2Fe(SO_4)_2 \cdot 6H_2O$	8m	64
Rubidium magnesium chromium oxide,	0	
$RD_2Mg_2(CIO_4)_3$	811	66
Rubialum magnesium chromium oxide hydrate,	0	00
$RU_2Mg(CIU_4)_2 \cdot 0H_2U$ Pubidium magnosium sulfato. Ph Mg (SO)	0111 7m	50
Rubidium magnesium sulfate hydrate	4 111	50
Rb Mg(SO):6H O	8m	70
Ruhidium manganese (II) fluoride RbMnF.	5m	44
Bubidium manganese sulfate, Bb ₂ Mn ₂ (SO ₂),	7m	52
Rubidium nickel (II) chloride, RbNiCl,	6m	58
Rubidium nickel sulfate, Rb ₂ Ni ₂ (SO ₄),	8m	72
Rubidium nickel sulfate hydrate,		
$Rb_2Ni(SO_4)_2 \cdot 6H_2O$	8m	74
Rubidium nitrate, RbNO, (trigonal)	5m	45
Rubidium platinum chloride, Rb ₂ PtCl ₆	5	53
Rubidium platinum fluoride, Rb ₂ PtF ₆	6	48
Rubidium selenate, Rb ₂ SeO ₄	9m	44
Rubidium silicon fluoride, Rb ₂ SiF ₆	6	49
Rubidium strontium chloride, RbSrCl ₃	7m	54
Rubidium sulfate, Rb ₂ SO ₄	8	48
Rubidium tellurium bromide, Rb ₂ TeBr ₆	8	46
Rubidium tellurium chloride, Rb ₂ FeCl ₆	8	48
Rubidium tin chloride, Rb ₂ SnCl ₆	6	46
Rubidium zinc fluoride, RbZnF,	$7 \mathrm{m}$	57
Rubidium zinc sulfate hydrate,		
$Rb_2Zn(SO_4)_2 \cdot 6H_2O$	$7 \mathrm{m}$	55
Ruthenium, Ru	4	5
Ruthenium titanium, RuTi	6m	86
Samarium arsenate, SmAsO ₄	-1m	33
Samarium arsenide, SmAs	4m	68
Samarium chloride, SmCl ₃	1m	40
Samanum fluoride, SmF ₃	1m	41
Samarium gallium oxide, $Sm_3Ga_2(GaO_4)_3$	Im	42
Samarium oxide, Sm ₂ O ₃ (cubic)	4m	34

Page Samarium oxychloride, SmOCl 1m 43 73 Samarium silver, SmAg 5m Samarium tin oxide, Sm₂Sn₂O₇ 8m 77 Samarium vanadium oxide, SmVO, 5m 47 Scandium antimony, ScSb $4 \,\mathrm{m}$ 44 35 Scandium arsenate, ScAsO, 4m Scandium arsenide, ScAs 4m 68 Scandium oxide, Sc2O3 3 27 Scandium phosphate, ScPO₄..... 8 50 Scandium silicate (thortveitite), Sc. Si.O. 7m 58 Selenium, Se..... 5 54 Selenium oxide (selenolite), SeO, (revised). 7m 60 Silicon, Si 2 6 Silicon oxide, (alpha or low cristobalite), SiO₂ (tetragonal) (revised) 10 48 Silicon oxide (alpha or low quartz), SiO₂ (hexagonal)..... 3 24 Silicon oxide (beta or high cristobalite), 1 42 SiO, (cubic) Silver, Ag 23 1 2 Silver, Ag (reference standard) 8m Silver antimony sulfide, AgSbS₂ (cubic)..... 5m 48 Silver antimony sulfide (miargyrite), AgSbS, (monoclinic)..... 5m 49 Silver antimony sulfide (pyrargyrite), Ag,SbS, 5m 51 (trigonal)..... Silver antimony telluride, AgSbTe₂..... 3m 47 Silver arsenate, Ag, AsO, 5 56 Silver arsenic sulfide, xanthoconite, Ag₃AsS₃ 8m 12657 Silver bromate, AgBrO, 5 Silver bromide (bromyrite), AgBr..... 4 46 Silver carbonate, Ag₂CO₃ 44 1m 7 44 Silver chlorate, AgClO₃ Silver chloride, (cerargyrite), AgCl 4 44 Silver cyanide, AgCN 9m48 Silver fluoride. Ag.F..... 5m 53 9 49 Silver iodate, AgIO, 51 Silver iodide (iodyrite), AgI (hexagonal) 8 9 Silver iodide, gamma, AgI (cubic) 48 155 Silver manganese oxide, AgMnO4 7m Silver molybdenum oxide, Ag₂MoO₄..... 7 45 59 Silver nitrate, AgNO₃ 5 Silver nitrite, AgNO₂..... 5 60 45 Silver oxide, Ag₂O 1m Silver(II) oxide nitrate, Ag 70,NO3 4 61 Silver phosphate, Ag, PO, 5 62 Silver rhenium oxide, AgReO4 8 53 2m 32 Silver selenate, Ag₂SeO₄ 79 Silver sodium chloride, Ago.s Nao.s Cl 8m Silver sulfate, Ag₂SO₄..... 7 46 Silver sulfide (argentite), Ag,S 10 51 Sodium, Na 9m 105 Sodium aluminum chloride silicate, sodalite, $Na_{a}Al_{6}Cl_{2}(SiO_{4})_{6}$ 7m 158 129 Sodium azide, alpha, NaN₃, at-90 to-100° C 8m 8m 130 Sodium azide, beta NaN₃ Sodium beryllium calcium fluoride silicate, leucophanite, NaBeCaFSi₂O₆..... 138 8m Sodium borate, Na₂B₈O₁₃..... 7m 160 9 51 Sodium boron hydride, NaBH4 Sodium bromate, NaBrO₃..... 5 65 3 47 Sodium bromide, NaBr..... Sodium bromide chloride, NaBr. 33 Cl. 67 11m 49 Sodium bromide chloride, NaBr, 67Cl, 33 50 11m Sodium calcium aluminum fluoride hydrate, 132 thomsenolite, NaCaAlF₆H₂O 8m

Vol. or

	Vol. or	
	sec.	Page
Sodium calcium beryllium aluminum fluorosilic	ate,	
meliphanite, (Na _{0.63} Ca _{1.37})Be(Al _{0.13} Si _{1.87})		
$(O_{6*25} F_{0*75})$	8m	135
Sodium calcium carbonate hydrate, pirssonite,		
$Na_2Ca (CO_3)_2.2H_2O$	9m	106
Sodium calcium silicate, Na ₂ CaSiO ₄	10m	48
Sodium calcium sulfate (glauberite),		
$Na_2Ca(SO_4)_2$	6m	59
Sodium carbonate hydrate (thermonatrite),		
Na ₂ CO ₂ ·H ₂ O	8	54
Sodium carbonate sulfate, Na.CO.SO.	11 m	51
Sodium carbonate sulfate (burkeite)		0 =
Na.CO.(SO.).	11m	52
Sodium carbonate sulfate Na CO (SO)	11m	53
Sodium carbonate sulfate, $Na_6CO_3(SO_4)_2$	11m	54
Sodium chlorate NaClO	11111	54
Sourum chiorate, NaClo, arthorhomhia	3	51
Sodium chloride, NaClO ₄ orthornombic	(49
Sodium chioride (nalite), NaCl	2	41
Sodium chromium oxide, Na_2CrO_4	9m	48
Sodium chromium oxide hydrate,		
$Na_2Cr_2O_7 \cdot 2H_2O \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$	7m	62
Sodium chromium oxide hydrate,		
$Na_2CrO_4.4H_2O$	9m	50
Sodium chromium oxide sulfate,		
$Na_{4}(CrO_{4})(SO_{4})$	11m	55
Sodium cobalt(II) sulfate hydrate.		
$Na_{CO}(SO_{1}) \cdot 4H_{CO}$	6m	61
Sodium cyanate NaCNO	2m	33
Sodium cyanide NaCN (cubic)	1	78
Sodium cyanide, NaCN (orthorhombic) at 6° C	1	70
Sodium fluorido (villioumito). NAE	1	62
Sodium Indonde (Villaumite), Nar	-	00
Sodium nydrogen Huoride, NaHF ₂	5	100
Sodium hydrogen phosphate, $Na_3H(PO_3)_4$	TUm	130
Sodium hydrogen silicate hydrate,	_	1.00
$Na_2H_2S1O_4 \cdot 4H_2O$	7m	163
Sodium hydrogen sulfate hydrate,		
NaHSO ₄ .H ₂ O	9m	52
Sodium hydroxide, NaOH at 300 ° C	4m	69
Sodium iodate, NaIO,	7	47
Sodium iodate, NaIO ₄	7	48
Sodium iodide, NaI	4	31
Sodium iron fluoride, Na ₃ FeF ₆	9m	54
Sodium lanthanum fluoride silicate,		
$(Na_2L_1a_4)F_2(SiO_4)_6$	7m	64
Sodium lanthanum molybdenum oxide.		
NaLa(MoO.)	10m	49
Sodium magnesium aluminum boron hydroxide		
silicate dravite NaMg Al B (OH) Si O	3m	47
Sodium magnesium carbonate (eitelite)	om	11
No Mg(CO)	11m	56
$\operatorname{Na_2Mg}(CO_3)_2$ Sulfate hydrote	1 1 111	50
bloodite No Ma(SO) 411 O	Gm	62
bioedite, $Na_2Mg(SO_4)_2 \cdot 4H_2O \dots$	Cm	03
Sodium manganese(II) Iluoride, NaMir $_3$	бШ	00
Sodium mercury (II) chloride hydrate,		0.0
NaHgCl_3 ·2H ₂ O	6m	66
Sodium molybdenum oxide, Na_2MoO_4	1 m	46
Sodium molybdenum oxide, Na ₂ Mo ₂ O ₇	9m	110
Sodium neodymium fluoride silicate,		
$(\operatorname{Na}_2\operatorname{Nd}_8)\operatorname{F}_2(\operatorname{SiO}_4)_6$	7m	66
Sodium nickel (II) sulfate hydrate,		
$Na_2Ni(SO_4)_2 \cdot 4H_2O \dots$	6m	68
Sodium nitrate (soda-niter), NaNO ₃	6	50

m_Monograph 25.

	Vo1.	or
	sec.	Page
Sodium nitrite, NaNO.	4	62
Ordina minito, nano ₂	1.0	104
Sodium oxide, Na_2O	IUm	134
Sodium phosphate, Na ₃ P ₃ O ₉	3m	49
Sodium phosphate hydrate, Na, P.O. H.O.	3m	50
Sodium phosphata hudrata, alpha	•	
Soutum phosphate hydrate, alpha		
$Na_4P_4O_{12} \cdot 4H_2O$ (monoclinic)	10	52
Sodium phosphate hydrate, beta		
Na PO $_{4HO}$ (triclinic)	2m	25
$\operatorname{Hu}_{41}_{4}\operatorname{H}_{20}_{12}\operatorname{Hi}_{20}$ (intermite)	2111	.55
Sodium phosphate hydrate, Na ₆ P ₆ O ₁₈ ·6H ₂ O	5 m	54
Sodium praseodymium fluoride silicate,		
$(Na_Pr_{\bullet})F_{\bullet}(SiO_{\bullet})$	7m	68
Sodium colorato. No SoO	0	55
Soutum selenate, $Na_2 SeO_4$	9m	55
Sodium selenide, Na ₂ Se	10m	135
Sodium silicate, alpha (III), Na.Si.O.	8m	141
Sodium cilicato, hota Na Si O	1.0m	120
Soutium sificate, beta $Na_2SI_2O_5$	TUIII	130
Sodium sulfate (thenardite), Na_2SO_4	2	59
Sodium sulfate, Na ₂ SO ₄	11 m	57
Sodium sulfide Na S	10m	140
Sodium culfite. No SO	2011	20
Soutium suffice, Na_2SO_3	3	00
Sodium telluride, Na ₂ Te	10m	141
Sodium tin fluoride. NaSn.F.	7m	166
Sodium tungston oxido. No WO	1 m	47
Soutum tungsten oxide, Na_2wO_4	1 111	41
Sodium tungsten(VI) oxide hydrate,		
Na,WO,·2H,O	2m	33
Sodium zinc fluoride NaZnE	6m	74
Godium zine mulitate hudrate	Om	11
Sodium zinc sullate hydrate,		
$Na_2Zn(SO_4)_2 \cdot 4H_2O$	6m	72
Sodium zirconium fluoride, Na-Zr.F.	8m	144
Stroptium aluminum hydroxida St Al (OH)	10m	50
Strontium arumnum nyutoxide, $Si_3AI_2(OI)_{12}$	TOIN	50
Strontium aluminum oxide, $Sr_3Al_2O_6$	10m	52
Strontium arsenate, Sr ₄ (AsO ₄),	2m	36
Strontium azide St(N)	8m	146
Strontrum dzide, $Si(N_3)_2$	0	110
Strontium borate, SrB_2O_4	Зm	53
Strontium borate, SrB_4O_7	4 m	36
Strontium bromide fluoride, SrBrF	10m	54
Strontium bromide hydrate SrBr .6H O	4	60
Shouthum bronnde nydrate, ShBr ₂ -On ₂ O	1	50
Strontium carbonate (strontianite), SrCO ₃	3	20
Strontium chloride, SrCl ₂	4	40
Strontium chloride fluoride, SrClF	10m	55
Stroptium chloride hydrate SrCl 6H O	4	58
Strontrum enforme hydrate, Sreiz-offizo		50
Strontium chloride hydrate, SrCl ₂ ·2H ₂ O	llm	58
Strontium chloride hydroxide phosphate,		
$Sr_{\bullet}C$, $OH_{\bullet}(PO_{\bullet})$	11m	60
Strontium fluorido SrF	5	67
		01
Strontium indium hydroxide, $Sr_3In_2(OH)_{12}$	6m	76
Strontium iodide hydrate, SrI, 6H ₂ O	8	58
Strontium manganese oxide SrMnO (cubic)	10m	56
Strontium manganese oxide, Similo ₃ (cubic)	rom	00
Strontium manganese oxide,		
SrMnO, (hexagonal)	10m	58
Strontium molybdenum oxide, SrMoO,	7	50
Strontium nitrate Sr(NO)	1	80
Strontium intrate, $Si(10_3)_2$	÷	00
Strontium oxide, SrO	5	68
Strontium oxide, SrO ₂	6	52
Strontium oxide hydrate SrO.:8H.O.	11m	61
Strontium phagphoto, olpho Sr D O	11m	62
Strontrum phosphate, alpha $Si_2F_2O_7$	TTU	04
Strontium phosphate, alpha $Sr_3(PO_4)_2$	11m	64
Strontium scandium oxide hydrate.		
Sr. Sc. O., 6H O	6m	78
$O_{13}O_{2}O_{6}O_{12}O_{12}O_{11}O_{12}O_{11}O_{12}$	0	61
Stronthum suitate (celestite), $SrSO_4$	2	10
Strontium sulfide, SrS	7	52
Strontium telluride. SrTe	4m	69
Strontium tin oxide SrSnO	8m	80
Showing the transformed state 3	0111	00
Strontium titanium oxide, SrTiO ₃	3	44
Strontium tungsten oxide, SrWO ₄	7	53
Strontium zirconium oxide SrZrO.	9	51
Sulfomia acid UNCO U	7	5.1
Sumamic actu, H_2NSO_3H	(04

	Vol.	or
	sec.	Page
Sulfur, S (orthorhombic)	9	54
Tantalum, Ta	1	29
Tantalum silicide, TaSi ₂	8	59
Tellurium, Te	1	26
Tellurium(IV) oxide (paratellurite), TeO ₂		
(tetragonal)	7	56
Tellurium(IV) oxide, paratellurite, TeO ₂		
(tetragonal)	10	55
Tellurium(IV) oxide, tellurite, TeO ₂ (ortho-		
rhombic)	9	57
Terbium antimony, TbSb	5m	61
Terbium arsenate, TbAsO ₄	3m	54
Terbium arsenide, TbAs	5m	75
Terbium nitride, TbN	4m	70
Terbium phosphide, TbP	5m	76
Terbium selenide, TbSe	5m	76
Terbium silver, TbAg	5m	74
Terbium sulfide. TbS	5m	77
Terbium telluride, TbTe	5m	77
Terbium vanadium oxide. TbVO.	5m	56
Thallium aluminum sulfate hydrate.		
$T[A](SO_{1}) \cdot 12H_{2}O_{1}$	6	53
Thallium(I) arsenate. TLASO	2m	37
Thallium azide TIN.	8m	82
Thallium(I) bromate TIBrO	8	60
Thallium bromide TIBr	7	57
Thallium cadmium sulfate. Tl Cd (SO)	8m '	63
Thallium (I) chlorate $T[C]O$	2m	38
Thallium(I) chlorate, $T[C]O$	200	61
Thallium(I) chlorido, TICl	4	51
Thallium abromium avide Tl CrO	2	51
Thallium chromium oxide, 112CrO ₄	əm	54
Thannum Chromium sunate hydrate,	c	
$\operatorname{The}\operatorname{Him}_{4} = \operatorname{he}\operatorname{he}\operatorname{he}\operatorname{he}\operatorname{he}\operatorname{he}\operatorname{he}\operatorname{he}$	0	55
Thallium cobalt suffate, $\Pi_2 CO_2(SO_4)_3$	8m	85
Thailium cobait sullate hydrate,	77	70
$\Pi_2 \cup (S \cup_4)_2 \cdot 0 \Pi_2 \cup \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots $	4 III	10
Inallium copper sultate hydrate,	-	70
$\Pi_2 Cu(SO_4)_2 \cdot 6H_2O$	ηm	12
Thailium gallium sulfate hydrate,	0	
$TIGa(SO_4)_2 \cdot 12H_2O$	6	57
Thallium(1) lodate, ΠO_3	8	62
Thallium(1) iodide, 111 (orthorhombic)	4	53
Thallium iron sulfate hydrate,		
$\Pi_2 F'e(SO_4)_2 \cdot 6H_2O$	8m	8.4
Thallium magnesium chromium oxide,		
$T1_2Mg_2(CrO_4)_3$	8m	89
Thallium manganese sulfate, $Tl_2Mn_2(SO_4)_3$	7m	76
Thallium magnesium sulfate hydrate,	-	- 4
$T1_2Mg(SO_4)_2.6H_2O$	7m	74
Thallium nickel sulfate hydrate,	_	-
$Tl_2N1(SO_4)_2 \cdot 6H_2O$	7m	78
Thallium(1) nitrate, TINO ₃	6	58
Thallium(III) oxide, TI_2O_3	2	28
Thallium(I) phosphate, TLPO,		58
Inallium(III) phosphate, TIPO,	1	59
I nallium platinum chloride Tl_2PtCl_6	5	70
Thallium Silicon fluoride, Tl_2SiF_6	6	56
Thallium(I) sufface, $\Pi_2 SO_4$	6	59
Thailium(1) thiocyanate, TICNS	8	63
Thallium tin chloride, Tl_2SnCl_6	6	54
Thallium(1) tungsten oxide, Tl_2WO_4	1 m	48
Thallium Zinc sulfate hydrate,	-	
$\Pi_2 \Delta \Pi (SO_4)_2 \cdot 6H_2O \ldots \ldots \ldots \ldots \ldots$.7m	80

m-Monograph 25.

	Vol.	or
	sec.	Page
Thorium antimony, ThSb	4m	44
Thorium arsenide, ThAs	4m	70
Thorium oxide (thorianite), ThO ₂	1	57
Thulium antimony, TmSb	4m	45
Thulium arsenate, TmAsO ₄	3m	56
Thulium arsenide, TmAs	4m	71
Thulium nitride, TmN	4m	71
Thulium oxide, Tm ₂ O ₃	9	58
Thulium silver, TmAg	5m	74
Thulium telluride, TmTe	4m	72
Thulium vanadium oxide, TmVO ₄	5m	57
Tin, alpha Sn (cubic)	2	12
Tin arsenide, SnAs	4m	37
Tin, beta Sn (tetragonal)	1	24
Tin(II) fluoride, SnF ₂	3m	51
Tin(IV) iodide, SnI ₄	5	71
Tin(II) oxide, SnO	4	28
Tin(IV) oxide (cassiterite), SnO ₂	1	54
Tin sulfide (berndtite), beta SnS ₂	. 9m	57
Tin(II) telluride, SnTe	7	61
Titanium, Ti	3	1
Titanium oxide (anatase), TiO ₂ (revised)	$7 \mathrm{m}$	82
Titanium oxide, brookite, TiO ₂ (ortho-		
rhombic)	.3m	57
Titanium oxide (rutile), TiO, (revised)	7m	83
Titanium(III) oxide, TiO,	9	59
Titanium silicide, Ti, Si,	8	64
Titanium sulfide. TiS	4m	72
Titanium sulfide. Ti _s S	8m	149
Tungsten. W	1	28
Tungsten, W (reference standard)	8m	2
Tungsten sulfide (tungstenite), WS,	8	65
Uranium oxide. UO	5m	78
Uranium oxide (uraninite) UO	2	33
Uranium selenide USe	5m	78
Uranium telluride, UTe	4m	73
Vanadium V	9m	58
Vanadium gold 3:1 V.Au	6m	18
Vanadium iridium 3.1 V.Ir	6m	21
Vanadium (V) oxide. V O.	8	66
Vanadium nalladium 3:1 V.Pd	6m	32
Vanadium platinum 3:1 V Pt	6m	34
Vanadium rhodium 3:1 V Rh	6m	56
Vtterbium antimony VbSb	4m	45
Vtterbium arsenate VbAsO	4m	38
Vtterbium arsenide VbAs	.1m	73
Vtterbium gallium oxide Vb Ga (GaO)	1m	40
Vtterbium nitride VhN	4m	74
Vtterbium ovide VbO	6m	80
Vtterbium selenide VhSe	5m	79
Vtterbium telluride VhTe	5m	79
Vttorbium(III) vanadium ovide VbVO	5m	58
Vitrium antimony VSb	4m	46
Vttrium arconate VASO	2m	30
Vttrium arsenide VAs	4m	74
Vttrium gallium oxide V Ga (GaO)	1m	50
Vttrium pickol VNi	1.0m	123
\mathbf{Y}	3	28
Vttrium oxychloride YOC	1m	51
Yttrium phosphate (xenotime) YPO	8	67
Yttrium silver VAg	5m	75
Vttrium sulfide VS	5m	80
Yttrium telluride YTe	4m	75
Vttrium titanium oxide V.TiO.	11m	113
Vttrium vanadium oxide VVO	5m	59
Zinc. Zn	1	16

	V01.	or
	sec.	Page
Zinc aluminum oxide (gahnite), ZnAl ₂ O ₄	2	38
Zinc ammine bromide, $Zn(NH_3)_2Br_2$	11m	68
Zinc ammine chloride, Zn(NH ₃) ₂ Cl ₂	10m	59
Zinc antimony oxide, $ZnSb_2O_4$	4m	39
Zinc borate, ZnB_2O_4	1	83
Zinc carbonate, smithsonite, ZnCO ₃	8	69
Zinc chromium oxide, $ZnCr_2O_4$	9m	59
Zinc cobalt oxide, ZnCo ₂ O ₄	10m	60
Zinc cyanide, Zn(CN) ₂	5	73
Zinc fluoride, ZnF ₂	6	60
Zinc fluoride hydrate, ZnF ₂ ·4H ₂ O	11m	69
Zinc germanium oxide, Zn ₂ GeO ₄	10	56
Zinc hydroxide silicate hydrate, hemimorphite,		
$\operatorname{Zn}_4(\operatorname{OH})_2\operatorname{Si}_2\operatorname{O}_7\cdot\operatorname{H}_2\operatorname{O}$	2	62
Zinc iodide, ZnI ₂	9	60
Zinc iron oxide (franklinite), ZnFe ₂ O ₄	9m	60
Zinc manganese oxide		
(hetaerolite), ZnMn ₂ O ₄	10m	61
Zinc molybdenum oxide, Zn ₂ Mo ₃ O ₈	$7 \mathrm{m}$	173
Zinc oxide (zincite), ZnO	2	25

	Vol. or	
	sec.	Page
Zinc selenide, ZnSe	3	23
Zinc silicate (willemite), Zn ₂ SiO ₄	7	62
Zinc silicon fluoride hydrate, ZnSiF ₆ .6H ₂ O	8	70
Zinc sulfate (zinkosite), ZnSO ₄	7	64
Zinc sulfate hydrate (goslarite),		
$ZnSO_4 \cdot 7H_2O$	8	71
Zinc sulfide (wurtzite), alpha ZnS (hexag-		
onal)	2	14
Zinc sulfide (sphalerite), beta ZnS (cubic)	2	16
Zinc telluride, ZnTe	3m	58
Zinc tin oxide, Zn_2SnO_4	. 10m	62
Zinc tungsten oxide (sanmartinite), ZnWO ₄	2m	40
Zirconium, alpha, Zr	2	11
Zirconium hydride, ZrH ₂	5m	60
Zirconium iodate, Zr(IO ₃) ₄	1m	51
Zirconium nitride, ZrN	5m	80
Zirconium oxide, ZrO	5m	81
Zirconium phosphide, ZrP	4m	75
Zirconium silicate, zircon, ZrSiO ₄	4	68
Zirconium sulfate hydrate, Zr(SO ₄) ₂ ·4H ₂ O	7	66

m-Monograph 25.

A mineral name in () indicates a synthetic sample.

CUMULATIVE ORGANIC INDEX

	Vol	or
	sec.	Page
4-Acetyl-2 '-fluorodiphenyl, C ₁₄ H ₁₁ FO	8m	91
Alanine, L, CH ₃ CHNH ₂ CO ₂ H	8m	93
Ammonium acetate, NH ₄ ·CH ₃ CO ₂	8m	95
Ammonium formate, NH ₄ HCO ₂	11m	9
Ammonium oxalate hydrate (oxammite),		
$(\mathrm{NH}_4)_2\mathrm{C}_2\mathrm{O}_4\cdot\mathrm{H}_2\mathrm{O}$	7	5
Ammonium yttrium oxalate hydrate,		
$NH_4Y(C_2O_4)_2 \cdot H_2O$	8m	97
Ascorbic Acid, L-C ₆ H ₈ O ₆	8m	99
Azobenzene, C ₆ H ₅ NNC ₆ H ₅	$7 \mathrm{m}$	86
Cadmium hexaimidazole nitrate,		
$Cd(C_{3}H_{4}N_{2})_{6}(NO_{3})_{2}$	8m	23
Calcium formate, Ca(HCO ₂) ₂	8	16
Calcium malate hydrate,		
$Ca(O_2C)_2(CH_2CHOH) \cdot 2H_2O \dots$	10m	76
Copper glutamate hydrate,		
$Cu(O_2C)_2(H_2NCHCH_2CH_2) \cdot 2H_2O$	7m	110
Copper tetrapyrazole chloride,		
$Cu(C_3H_4N_2)_4Cl_2$	8m	31
Cysteine, L, HSCH ₂ ·CH(NH ₂)·COOH	11m	86
Dibenzoylmethane, $(C_6H_5CO)_2CH_2$	7m	115
bis-(o-Dodecacarborane), C ₄ B ₂₀ H ₂₂	6m	7
Glucose, D, alpha, (dextrose), $C_6H_{12}O_6$	11m	28
Glyoxime, $H_2C_2(NOH)_2$	8m	102
Hexamethylenediammonium adipate,		
$(CH_2)_4(CO_2H_3N)_2(CH_2)_6$	7m	121
Holmium ethylsulfate hydrate,		
$Ho[(C_2H_5)SO_4]_3 \cdot 9H_2O \dots$	1m '	18
Hydroquinone, gamma, HOC ₆ H ₄ OH	8m	107
Iron oxalate hydrate		
(humboldtine) $FeC_2O_4 \cdot 2H_2O$	10m	24
Lead formate, $Pb(HCO_2)_2$	8	30
Lithium oxalate, $Li_2C_2O_4$	10m	34
Mercury o-phthalate, $C_6H_4(CO_2Hg)_2$	10m	113
Methyl sulfonanilide, C ₆ H ₅ NHSO ₂ CH ₃	9m	78
N-Methylphenazinium-7,7,8,8-tetracyanoquinodi-	•	
methanide, C ₂₅ H ₁₅ N ₆	7 m	146

	Vol. or	
	sec.	Page
2-Naphthylamine, N-phenyl-, $C_{10}H_7NHC_6H_5$	6 m	29
$Nd[(C_2H_4)SO_4]_4 \cdot 9H_2O$	9	41
Nickel hexaimidazole nitrate,		
$Ni(C_3H_4N_2)_6(NO_3)_2$	7m	27
Nickel tetrapyrazole chloride, Ni(C ₃ H ₄ N ₂) ₄ Cl ₂	8m	44
Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazo-		
cine (alpha HMX) C ₄ H ₈ N ₈ O ₈	11 m	100
Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazo-		
cine (beta HMX) C ₄ H ₈ N ₈ O ₈	11m	102
Palladium bis-(N-isopropyl-3-ethylsalicy-		
laldiminate), Pd(C ₁₂ H ₁₆ NO) ₂	7m	144
Pimelic acid, $(CH_2)_*(CO_2H)_2$	$7\mathrm{m}$	153
Potassium formate-formic acid complex.		
KO ₂ CH•HO ₂ CH	9m	93
Potassium hydrogen o-pthalate.		
C,H.(COOH)(COOK)	4m	30
Potassium oxalate hydrate, K ₂ C ₂ O ₄ ,H ₂ O	9m	39
Potassium oxalate perhydrate, K ₂ C ₂ O ₂ , H ₂ O ₂	9m	96
Reserving, $C_{33}H_{40}N_3O_6$	8m	123
Rubidium oxalate perhydrate, Rb ₂ C ₂ O ₄ , H ₂ O ₂ ,	9m	1 02
Silver oxalate. Ag.C.O.	9m	47
Sodium D-tartrate hydrate.		
(CHOH-CO.Na), 2H.O	11m	110
Sodium oxalate. Na.C.O.	6m	70
Strontium formate Sr (CHO.)	8	55
Strontium formate hydrate Sr(CHO ₂). 2H-O	0	00
(orthorhombic)	8	56
Sucrose C H O	11m	66
Tartaric acid D (CHOHCO H)	7m	168
Trimethylammonium chloride (CH) NHCl	Qm	113
2.4.6—Tripitrophenetole $C = OC = (NO)$	8m	152
$U_{2,4,0} = \Gamma \Pi \Pi \Pi \Pi \Omega D \Pi \Pi \Pi \Pi \Omega D \Pi \Pi \Omega \Pi \Omega \Omega \Omega \Omega$	7	61
Unia apid C H N O	0	154
Une acid, $C_5 H_4 N_4 O_3$	0111	104
Zine difinitiazofe chioride, $Zn(C_3H_4N_2)_2Cl_2$	(III	123
Zinc glutamate hydrate,	-	1 70
$Zn(O_2CCHNH_2CH_2CH_2CO_2) \cdot 2H_2O$	'7m	170

CUMULATIVE MINERAL INDEX

	Vol. or			Vol. or	
	sec	Page		sec.	Page
Alabandite. MnS	4	11	*Diaspore, ALO, H.O.	3	41
Alum $KA(SO)$ 1940	Ê	26	Dionsida CaMa(SiO)	Em	17
Alum, $KAI(SO_4)_2 \cdot 12H_2O \dots \dots \dots \dots \dots$	0	30	Diopside, Calig(SiO_3) ₂	511	11
Ammonia-niter, NH ₄ NO ₃	7	4	* Dravite, $\operatorname{Namg}_{3}\operatorname{Al}_{6}\operatorname{B}_{3}\operatorname{Sl}_{6}\operatorname{O}_{27}(\operatorname{OH})_{4}$ "	3m	47
Anatase, TiO, (revised)	7m	82	Eitelite, $Na_2Mg(CO_3)_2$	11 m	56
Andradite Ca.Fe.Si.O.	9	22	Elpasolite K.NaAlF.	9m	43
Anglogito PhSO	2	67	*Enctotito MaSiO	G	20
Angresite, FDSO4	3	07	Enstattle, MgSiO ₃	6	34
Anhydrite, CaSO ₄	4	65	Epsomite, $MgSO_4 \cdot 7H_2O$	7	30
Antimony. Sb	3	14	Eschvnite. CeNbTiO.	3m	24
Aphthitalite K Na(SO)	6m	52	Eskolaite Cr.O	5	22
Apprentiative, $K_3 (a, bO_4)_2$	0.01	52	Eskolatte, Cl_2O_3	5	44
Aragonite, CaCO ₃	3	53	Ettringite, $AI_2O_3 \cdot 6CaO \cdot 3SO_3 \cdot 3IH_2O$	8	3
Arcanite, K_2SO_4	3	62	Fairchildite, K ₂ Ca(CO ₃),	8m	48
Argentite Åg.S	10	51	Eluoranatite Ca. E(PO.)	3m	22
Assonia As	20	C C	Elucrite CoE	1	0
Alsenic, As	3		Fluonite, Car ₂	1	09
Arsenolite, As_2O_3	1	51	Forsterite, Mg_2SiO_4	1	83
Aurostibite, AuSb,	7	18	Franklinite, ZnFe ₂ O,	9m	60
*Azurite Cu (OH) (CO)	10	30	Erospoito Ba TiSi O	Qm	14
Parite P = 20 (remined)	1.0m	10	$\mathbf{r}_{1} = \mathbf{r}_{1} \mathbf{r}_{1} \mathbf{r}_{2} \mathbf{r}_{3} \mathbf{r}_{2} \mathbf{r}_{3}	5111	11
Barite, BaSO ₄ (revised)	1011	12	Gannite, $ZnAl_2O_4$	2	38
Berlinite, AlPO ₄	10	3	Galaxite, MnAl ₂ O ₄	9	35
Berndtite. SnS,	9m	57	Galena, PbS	2	18
*Bervl Be Al (SiO)	9	13	Goikielite MaTiO	5	43
$\mathbf{D}_{1} = \mathbf{h}_{1} + \mathbf{h}_{2} + \mathbf{h}_{2} + \mathbf{h}_{3} + \mathbf{h}_{4} + \mathbf{h}_{5} $	11	27		1	10
Bischolite, $MgCl_2 \cdot 6H_2O$	11m	31	Gersdorilite, NIASS	Im	35
Bismite, (alpha) Bi ₂ O ₃	3m	17	Glauberite, $Na_2Ca(SO_4)_2$	6m	59
Bismoclite. BiOCl	4	54	Gold Au	1	33
Rismuth Ri	3	20	Coolorito ZnCO ZU O	ō	71
Dismuthinite Di C (neviced)	5	10	Gostante, $\Sigma II SO_4 \cdot In_2 O \dots \dots \dots \dots$	0	11
$\text{Bisinutininite}, \text{Bi}_2\text{S}_3 (\text{revised}) \dots \dots \dots \dots$	ann	13	Greenockite, CdS	4	15
*Bloedite, $Na_2Mg(SO_4)_2 \cdot 4H_2O \dots$	6m	63	*Groutite, MnO(OH)	11 m	97
Böhmite, Al ₂ O ₂ ·H ₂ O	3	38	Halite NaCl	2	41
Bromellite BeO	1	36	Havemannite Mr. O	10-	20
Bromenite, AcDr	1	46	Hausmannite, Mn_3O_4	nor	30
Bromyrite, AgBr	. 4	40	*Hemimorphite, $Zn_4(OH)_2Si_2O_7 \cdot H_2O \dots$	2	62
*Brookite, TiO ₂	3m	57	Hetaerolite, ZnMn ₂ O ₄ ,	10m	61
Brucite, Mg(OH),	6	30	Hieratite K SiF	5	50
Bunsenite NiO	1	47	Huchmanita Mallo	200	24
Durischite, No Go (Go)	11	E0	Huebnerite, MilwO ₄	2111	44
Burkeite, Na_6CO_3 (SO ₄) ₂	1 1 M	54	Humboldtine, $FeC_2O_4 \cdot 2H_2O$	10m	24
*Butlerite, FeSO ₄ (OH)·2H,O	10m	95	Humite, 3Mg,SiO, MgF,	1m	30
Calcite. CaCO,	2	51	Hydrophilite CaCl	11m	18
Calomel Hg Cl	1	72	Indunito Agi	0	51
Geneallita VMcGl GM C	0	50	Iouyinte, Agr	0	01
Carnallite, KMgCl ₃ ·6H ₂ O	8111	50	Iron, alpha Fe	4	3
Cassiterite, SnO ₂	1	54	Jacobsite, MnFe ₂ O ₄	9	36
Celestite, SrSO,	2	61	*Julgoldite Ca.Fe.Si.O. (OH O) (OH)	10m	72
Corargyrite Age	4	44	Longhoinite $K Mg(SO)$	Gm	40
Geningjitte, figer	1	50	Langbernite, $K_2 Mg_2 (SO_4)_3 \dots$	OIII	-10
Certanite, CeO_2	1	90	Lead, Pb	1	34
Cerussite, PbCO,	2	56	*Leucophanite, NaCaBeFSi ₂ O ₆	8m	138
Cervantite Sb.O.	10	8	Litharge PbO (red)	2	30
Chalcograpita CuSO	3m	20	Lithinhoonhoto Li DO	4m	21
	5111	20	Limphosphate, Li ₃ rO ₄	411	21
Chloraluminite, $AlCl_3 \cdot 6H_2O$	7	3	Loellingite, FeAs ₂	10	34
Chlorocalcite, KCaC1,	7m	36	Magnesite, MgCO,	7	28
Chloromagnesite MgCl.	11m	94	Magnetite Fe O	5m	31
Chryscheryl BoAl O	0	10	$M_{\rm algorithm} = G_{\rm a} (OII) = G_{\rm algorithm} = G_{\rm algorit$	10	21
Chrysoberyl, BeAl_2O_4	9	10	Marachite, $Cu_2(OH)_2CO_3$	10	31
Cinnabar, HgS	4	17	Manganolangbeinite, $K_2Mn_2(SO_4)_3$	6m	43
*Claudetite, As,O,	3m	9	Manganosite, MnO	5	45
Clausthalite PbSe	5	38	Marshite Cul	4	38
Garman Qu	1	15	Magazanita (NIL) SO (revised)	Ô	0
Copper, Cu	1	10	Mascagnite, $(NH_4)_2 SO_4$ (revised)	9	0
Cordierite, $Mg_{\gamma}A1_{4}Si_{5}O_{18}$ (hexagonal)	1m	29	Massicot, PbO (yellow)	2	32
Cordierite, Mg. A1, Si, O., (orthorhombic)	1m	28	Matlockite, PbFCl	1	76
Corundum Al-O	9	3	Melanterite FeSO 74 O	8m	38
Cotunnita DhCl	0	45	$\frac{1}{1000} = \frac{1}{1000} = 1$	0	105
Cotumnite, PDCI ₂	2	45	-Mellphanite, Na. ₆₃ .Ca _{1.37} BeAl. ₁₃ Sl _{1.87} O _{6.25} F'. ₇₅	Sm	135
Covellite, CuS	4	13	Metacinnabar, HgS	4	21
Cristobalite, (alpha or low) SiO, (revised)	10	48	Miargyrite, AgSbS	5m	49
Cristobalite (beta or high) Sio	1	49	*Millerite Nis	1m	37
Chistoballie, (beta of high) blo2		14	Minime Db O		00
Cryolithionite, $L_{1_3}Na_3A_{1_2}F_{1_2}$	9m	23	winium, PD_3O_4	8	34
Cryptohalite, (NH ₄) ₂ SiF ₆	5	5	Mitscherlichite, K ₂ CuCl ₄ .2H ₂ O	9m	34
Cuprite, Cu.O	2	23	Molybdenite, MoS.	5	47
*Diamond C	2	5	Molybdite MoO	3	30
	4	5	Morybuille, MOO ₃	0	00
			Montroydite, HgO (revised)	9	39
*Natural mineral.			Mullite, 3Al ₂ O ₂ ·2SiO ₂	3m	3
M-Monagraph 25.			Nantokite, CuCl	4	35

M-Monagraph 25.

Nantokite, CuCl

CUMULATIVE MINERAL INDEX—Continued

	Vol. or			Vol. or	
	sec.	Page		sec.	Page
*Newberyite, MgHPO ₄ ·3H ₂ O	7m	139	*Sodalite, Na _s Si ₆ A1 ₆ O ₂₄ C1 ₂	$7 \mathrm{m}$	158
Niter, KNO ₃	3	58	Soda-niter, NaNO ₃	6	50
Nitrobarite, Ba(NO ₃) ₂ (revised)	11m	14	Sphalerite, ZnS	2	16
Norbergite, Mg ₂ SiO ₄ ·MgF ₂	10	39	Spherocobaltite, CoCO,	10	24
Oldhamite, CaS	7	15	Spinel, MgAl ₂ O ₄ (revised)	9m	25
Otavite, CdCO ₃	7	11	Stibnite, Sb ₂ S ₃	5	6
Oxammite, $(NH_4)_2C_2O_4 \cdot H_2O \dots$	7	5	Stolzite, PbWO, (revised)	5m	34
Palladium, Pd	1	21	Strontianite, SrCO ₃	3	56
*Paratellurite, TeO ₂	10	55	Struvite, MgNH ₄ PO ₄ ·6H ₂ O	3m	41
Paratellurite, TeO ₂	7	56	Sulfur, S (orthorhombic)	9	54
Partridgeite, alpha Mn ₂ O ₃ (revised)	11m	95	Sylvite, KCl	1	65
Periclase, MgO	1	37	Tantalum, Ta	1	29
Perovskite, CaTiO ₃	9m	17	Tellurium, Te	1	26
*Phenacite, Be ₂ SiO ₄	8	11	*Tellurite, TeO,	9	57
Picrochromite, MgCr ₂ O ₄	9	34	Tellurobismuthite, Bi, Te,	3m	16
Picromerite, K ₂ Mg(SO ₄) ₂ ·6H ₂ O	8m	54	Tenorite. CuO	1	49
* Pirssonite, Na ₂ Ca (CO ₃) ₂ .2H ₂ O	9m	106	Teschemacherite, NH, HCO,	9	5
Platinum, Pt	1	31	Thenardite, Na SO,	2	59
Portlandite, Ca(OH) ₂	1	58	Thermonatrite, Na ₂ CO ₂ ·H ₂ O	8	54
Powellite, CaMoO,	6	22	*Thomsenolite. NaCaAlF. H.O.	8m	132
Pyrargyrite, Ag ₃ SbS ₃	5m	51	Thorianite, ThO ₂	1	57
Pyrite, FeS ₂	5	29	Thortveitite. Sc. Si.O.	7m	58
*Pyroaurite, Mg ₆ Fe ₂ CO ₃ (OH) ₁₆ ·4H ₂ O, phase II	10m	104	Tiemannite, HgSe	7	35
Pyrolusite, β -MnO ₂	10m	39	Tin, alpha Sn (cubic)	2	12
Pyrope, Mg ₃ Al ₂ (SiO ₄) ₃	4m	24	Tin, beta Sn (tetragonal)	1	24
*Quartz, SiO ₂ (alpha or low)	3	24	*Topaz, Al _s SiO _s (F,OH),	1m	4
Rammelsbergite, NiAs ₂	10	42	Trevorite, NiFe,O,	10	44
Retgersite, NiSO, 6H2O	7	36	Tschermigite, NH, Al(SO,), 12H,O	6	3
Rhodochrosite, MnCO ₃	7 -	32	Tungstenite, WS,	8	65
Rutile, TiO, (revised)	7m	83	Uraninite, UO,	2	33
Safflorite, CoFeAs,	10	28	Uvarovite, $Ca_{s}Cr_{2}(SiO_{4})_{s}$	10	17
Sal-ammoniac, NH ₄ Cl	1	59	*Valentinite, Sb ₂ O ₃	10	6
Sanmartinite, ZnWO,	2m	40	Villiaumite, NaF	1	63
Scacchite, MnCl ₂	8m	43	Willemite, Zn ₂ SiO ₄	7	62
*Scheelite, CaWO,	6	23	Witherite, BaCO ₃	2	54
Selenium, Se	5	54	Wulfenite, PbMoO ₄	7	23
Selenolite, SeO, (revised)	7m	60	Wurtzite, ZnS	2	14
Sellaite, MgF ₂	4	33	*Xanthoconite, Ag ₃ AsS ₃	8m	126
Senarmontite, Sb ₂ O ₃	3	31	Xenotime, YPO ₄	8	67
Silver, Ag	1	23	Zinc, Zn	1	16
Silver, Ag (reference standard)	8m	2	Zincite, ZnO	2	25
*Sjögrenite, Mg ₆ Fe ₂ CO ₃ (OH) ₁₆ ·4H ₂ O, phase I	10m	1 03	Zinkosite, ZnSO4	7	64
Skutterudite, CoAs ₃	10	21	*Zircon, ZrSiO ₄	4	68
*Smithsonite, ZnCO ₃	8	69			

☆ U. S. GOVERNMENT PRINTING OFFICE: 1974-542-653/137

* Natural mineral. m—Monograph 25.

U.S. DEPT. OF COMM.	TO PUBLICATION OR REPORT NO.	2. Gov't Accession	3. Recipient's Accession No.
BIBLIOGRAPHIC DATA SHEET	NBS-MN 25, Section 11	No.	
4. TITLE AND SUBTITLE			5. Publication Date
Standard X-ray Di	February 1974		
Section 11	Data for 70 Substances		6. Performing Organization Code
7. AUTHOR(S)Howard E.	Swanson, Howard F.McMurdie, J	Marlene C. Morri	\$. Performing Organization
9. PERFORMING ORGANIZA	TION NAME AND ADDRESS	<u>z & Simon J. Car</u>	mel 10. Project/Task/Work Unit No 3130163
NATIONAL DEPARTMEI WASHINGTO	BUREAU OF STANDARDS NT OF COMMERCE N, D.C. 20234		11. Contract/Grant No.
2. Sponsoring Organization N	ame and Address		13. Type of Report & Period Covered Interim
Same as	9.		14. Sponsoring Agency Code
5. SUPPLEMENTARY NOTE	S		I
Standard x-ray diffr	action patterns are presented	l for 70 substand	ces. Fifty-two of the
Standard x-ray diffr patterns represent e powder diffraction p vere assigned Miller consistent with spac calculated, and the c-ray powder diffrac 30th peak height and	action patterns are presented xperimental data and 18 are of atterns were obtained with a indices determined by compar e group extinctions. The der refractive indices were measu tion patterns were computed f integrated intensities are p	d for 70 substand calculated. The an x-ray diffract cison with comput disities and late ared whenever pos from published co reported for the	ces. Fifty-two of the experimental x-ray tometer. All d-values ted interplanar spacin- tice constants were ssible. The calculate rystal structure data. calculated patterns.
Standard x-ray diffr patterns represent en powder diffraction p were assigned Miller consistent with spac calculated, and the k-ray powder diffrac Both peak height and 17. KEY WORDS (Alphabetics Crystal structure; in patterns: reference	action patterns are presented xperimental data and 18 are of atterns were obtained with a indices determined by compar- e group extinctions. The den refractive indices were measu- tion patterns were computed f integrated intensities are p integrated intensities are p	e constants; pea	ces. Fifty-two of the experimental x-ray tometer. All d-values ted interplanar spacin- tice constants were ssible. The calculated rystal structure data. calculated patterns.
55 Standard x-ray diffr patterns represent e powder diffraction p vere assigned Miller consistent with spac calculated, and the x-ray powder diffrac 30 th peak height and 17. KEY WORDS (Alphabetics Crystal structure; in patterns; reference : 18. AVAILABILITY STATEM.	action patterns are presented xperimental data and 18 are of atterns were obtained with a indices determined by compar- e group extinctions. The den refractive indices were measu- tion patterns were computed f integrated intensities are p integrated intensities are p horder, separated by semicolons) hegrated intensities; lattice intensities; standard; x-ray ENT	e constants; pea diffraction 19. SECURITY	ces. Fifty-two of the experimental x-ray tometer. All d-values ted interplanar spacin- tice constants were ssible. The calculated rystal structure data. calculated patterns. ak intensities, powder
The formation of the second se	action patterns are presented xperimental data and 18 are of atterns were obtained with a indices determined by compar- e group extinctions. The der refractive indices were measu- tion patterns were computed f integrated intensities are p integrated intensities are p horder, separated by semicolons) heregrated intensities; lattice intensities; standard; x-ray ENT	e constants; pead diffraction e constants; pead diffraction e constants; pead diffraction	ces. Fifty-two of the experimental x-ray tometer. All d-values ted interplanar spacin tice constants were ssible. The calculate rystal structure data. calculated patterns. ak intensities, powder Y CLASS PORT) 21. NO. OF PAGE 134
bibliography of literature s tandard x-ray diffr atterns represent e owder diffraction p ere assigned Miller onsistent with spac alculated, and the -ray powder diffrac oth peak height and 7. KEY WORDS (Alphabetica rystal structure; in atterns; reference : 8. AVAILABILITY STATEM X UNLIMITED.	action patterns are presented xperimental data and 18 are of atterns were obtained with a indices determined by compar- e group extinctions. The der refractive indices were measu- tion patterns were computed f integrated intensities are of integrated intensities are of the separated by semicolons) mategrated intensities; lattice intensities; standard; x-ray ENT	e constants; pea diffraction 19. SECURITY (THIS REI	ces. Fifty-two of the experimental x-ray tometer. All d-values ted interplanar spacin tice constants were ssible. The calculate rystal structure data. calculated patterns. ak intensities, powder Y CLASS PORT) 134
Dibiliography of literature s tandard x-ray diffr atterns represent e owder diffraction p ere assigned Miller onsistent with spac alculated, and the -ray powder diffrac oth peak height and 7. KEY WORDS (Alphabetica rystal structure; in atterns; reference : 8. AVAILABILITY STATEM X UNLIMITED.	action patterns are presented xperimental data and 18 are of atterns were obtained with a indices determined by compar- e group extinctions. The der refractive indices were measu- tion patterns were computed f integrated intensities are of integrated intensities are of the separated by semicolons) of the separated by semicolons intensities; lattice intensities; standard; x-ray ENT	e constants; pead diffraction 19. SECURITY (THIS REI 20. SECURITY 20. SECURITY 20. SECURITY 20. SECURITY 20. SECURITY	ces. Fifty-two of the experimental x-ray tometer. All d-values ted interplanar spacin tice constants were ssible. The calculate rystal structure data. calculated patterns. ak intensities, powder Y CLASS 21. NO. OF PAGE NGIASS 22 print
 Availability state Availability state To NTIS 	action patterns are presented xperimental data and 18 are of atterns were obtained with a indices determined by compar- e group extinctions. The der refractive indices were measu- tion patterns were computed f integrated intensities are of integrated intensities are of https://www.compare.com/ integrated intensities; lattice intensities; standard; x-ray ENT DISTRIBUTION. DO NOT RELEASE	e constants; pea diffraction	ces. Fifty-two of the experimental x-ray tometer. All d-values ted interplanar spacin tice constants were ssible. The calculate rystal structure data. calculated patterns. ak intensities, powder Y CLASS 21. NO. OF PAGE OFFIED 134 SIFIED 22. Price
7. KEY WORDS (Alphabetica rystal structure; in atterns; reference; 8. AVAILABILITY STATEM. X UNLIMITED. FOR OFFICIAL TO NTIS.	action patterns are presented xperimental data and 18 are of atterns were obtained with a indices determined by compar- e group extinctions. The den refractive indices were measu- tion patterns were computed f integrated intensities are of integrated intensities are of hegrated intensities; lattice intensities; standard; x-ray ENT DISTRIBUTION. DO NOT RELEASE	e constants; pea diffraction 19. SECURITY (THIS PAU	ces. Fifty-two of the experimental x-ray tometer. All d-values ted interplanar spacin tice constants were ssible. The calculate rystal structure data. calculated patterns. ak intensities, powder Y CLASS PORT) 134 SIFIED Y CLASS GE) 22. Price \$1.55

NEW

from NBS

This new monthly magazine from the National Bureau of Standards highlights and reviews issues like energy, fire, building technology, metric conversion, pollution, and consumer product performance. Research reports in DIMENSIONS will keep readers—scientists, engineers, business managers, and consumers—informed on the latest advances in science and technology.

(Formerly the Technical News Bulletin.)

Subscription Order Form

ENTER MY SUBSCRIPTION TO DIMENSIONS/NBS (formerly the NBS Technical News Bulletin) (C13.13) at \$6,50. Add \$1,75 for foreign mailing. No additional postage is required for mailing within the United States, its possessions, Canada, Mexico, and all Central and South American Countries except Argentina, Brazil, British Honduras, French Gulana, Guyana, and Surinam. For shipment to all other foreign countries include additional postage as quoted for each periodical or subscription service.

Send subscription to:

NAME-FIRST, LA	ST	r i i				
COMPANY NAME	OR ADDIT	TONAL	AUDRESS-LI	NE		
STREET ADDRESS	s s					
сіту				<u> </u> 	STATE	ZIP_CODE

PLEASE PRINT

Remittance enclosed (Make checks payable to Superintendent of Documents)
 Charge to my Deposit Account Ne.

MAIL ORDER FORM TO:

Superintendent of Documents Government Printing Office Washington, D.C. 20402

.

8-----

