Standard X-ray Diffraction Powder Patterns

U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

THE NATIONAL BUREAU OF STANDARDS

Functions and Activities

The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to government agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. Research projects are also performed for other government agencies when the work relates to and supplements the basic program of the Bureau or when the Bureau's unique competence is required. The scope of activities is suggested by the listing of divisions and sections on the inside of the back cover.

Publications

The results of the Bureau's research are published either in the Bureau's own series of publications or in the journals of professional and scientific societies. The Bureau itself publishes three periodicals available from the Government Printing Office: The Journal of Research, published in four separate sections, presents complete scientific and technical papers; the Technical News Bulletin presents summary and preliminary reports on work in progress; and Basic Radio Propagation Predictions provides data for determining the best frequencies to use for radio communications throughout the world. There are also five series of nonperiodical publications: Monographs, Applied Mathematics Series, Handbooks, Miscellaneous Publications, and Technical Notes.

A complete listing of the Bureau's publications can be found in NBS Circular 460, Publications of the National Bureau of Standards, 1901 to June 1947 (\$1.25), the Supplement to NBS Circular 460, July 1947 to June 1957 (\$1.50), and Miscellaneous Publication 240, July 1957 to June 1960 (includes titles of papers published in outside journals 1950 to 1959) (\$2.25); available from the Superintendent of Documents. Government Printing Office, Washington, D.C. UNITED STATES DEPARTMENT OF COMMERCE • Luther H. Hodges, Secretary NATIONAL BUREAU OF STANDARDS • A. V. Astin, Director

Standard X-ray Diffraction Powder Patterns

Howard E. Swanson, M. C. Morris, Roger P. Stinchfield, and Eloise H. Evans

National Bureau of Standards Monograph 25 — Section 1 Issued March 9, 1962

Contents

Page

29

30

3233

34

3536 37

49

505152

53

	Page	
Introduction	1	Magnesium Aluminum Silicate (high-cordierite),
Conversion factors for comparison of peak		$Mg_2Al_4Si_5O_{18}$] (hexagonal)
height and integrated intensities	2	Magnesium Silicate Fluoride (humite), 3Mg ₂ SiO ₄ ·
Standard X-ray powder patterns:		MgF ₂ (orthorhombic)
Aluminum Fluosilicate, topaz, Al ₂ SiO ₄ (F,OH) ₂		*Neodymium Borate, NdBO ₃ (orthorhombic)
(orthorhombic)	4	Neodymium Chloride, NdCl ₃ (hexagonal)
*Ammonium Chloroosmate, (NH ₄) ₂ OsCl ₆ (cubic)_	6	*Neodymium Gallium Oxide 3:5, $Nd_3Ga_2(GaO_4)_3$
*Bismuth Fluoride, BiF ₃ (orthorhombic)	7	(cubic)
Cerium(III) Chloride, CeCl ₃ (hexagonal)	8	*Nickel Arsenic Sulfide (gersdorffite), NiAsS
*Cerium(III) Vanadate, CeVO ₄ (tetragonal)	9	(cubic)
*Cesium Perchlorate, CsClO ₄ (orthorhombic)	10	*Nickel(11) Carbonate, NiCO ₃ (trigonal)
*Cesium Vanadium Sulfate Dodecahydrate,		Nickel Sulfide, millerite, NiS (trigonal)
$C_{\rm s}V({\rm SO}_4)_2 \cdot 12H_2O$ (cubic)	11	*Potassium Dihydrogen Arsenate, KH_2ASO_4
*Erbium Gallium Oxide 3:5, Er ₃ Ga ₂ (GaO ₄) ₃		(tetragonal)
(cubic)	12	*Praseodymium Unioride, FrOi ₃ (lexagonal)
*Europium(III) Chloride, EuCl ₃ (hexagonal)	13	Samarium Eluorida, SmE. (hovagonal)
*Europium Oxychloride, EuOCl (tetragonal)	13	Samarium Callium Oxido $3:5$ Sm.Co.(CoO.).
Gadolinium Fluoride, GdF ₃ (orthorhombic)	14	(evbie)
*Gadolinium Oxide, Gd ₂ O ₃ (cubic)	16	*Samarium Oxychloride SmOCl (tetragonal)
*Gadolinium Oxychloride, GdOCl (tetragonal)	17	Silver Carbonate, Ag ₂ CO ₂ (monoclinic)
*Holmium Ethylsulfate Nonahydrate,		Silver Oxide. Ag ₂ O (cubic)
$Ho[(C_2H_5)SO_4]_3 \cdot 9H_2O$ (hexagonal)	18	*Sodium Molybdate, Na ₂ MoO ₄ (cubic)
*Iron Arsenide, FeAs (orthorhombic)	19	Sodium Tungstate, Na ₂ WO ₄ (cubic)
*Lanthanum Borate, LaBO ₃ (orthorhombic)	20	*Thallium(I) Tungstate, Tl ₂ WO ₄ (hexagonal)
*Lanthanum Chloride, LaCl ₃ (hexagonal)	21	*Ytterbium Gallium Oxide 3:5, Yb ₃ Ga ₂ (GaO ₄) ₃
*Lanthanum Magnesium Nitrate 24-Hydrate,		(eubic)
$La_2Mg_3(NO_3)_{12} \cdot 24H_2O \text{ (trigonal)}$	22	*Yttrium Gallium Oxide 3:5, Y ₃ Ga ₂ (GaO ₄) ₃
*Lithium Molybdate, Li ₂ MoO ₄ (trigonal)	23	(cubic)
*Lithium Oxide, Li ₂ O (cubic)	25	*Yttrium Oxychloride, YOCl (tetragonal)
*Lithium Tungstate, Li ₂ WO ₄ (trigonal)	25	*Zirconium Iodate, Zr(IO ₃) ₄ (tetragonal)
*Lutetium Oxidc, Lu ₂ O ₃ (cubic)	27	Cumulative index to Circular 539, Volumes 1, 2,
*Magnesium Aluminum Silicate (low-cordierite),		3, 4, 5, 6, 7, 8, 9, and 10, and Monograph 25,
$Mg_2Al_4Si_5O_{18}$ (orthorhombic)	28	Section 1
*Not previously represented in the Powder Date File.		

Errata (Circular 539)

Vol. 9. Page 56, hkl 357 should be 537.

Vol. 10. Page 7. hkl 231 should be 232.

Page 52, space group $P2_1/n$ should be $P2_1/c$.

Standard X-ray Diffraction Powder Patterns

The ten previous volumes in this series are available from the Superintendent of Documents, U.S. Government Printing Office, Washington 25, D.C., as follows:

NBS Circular 539, Volume 1, Standard X-ray Diffraction Powder Patterns (Data for 54 inorganic substances) 45 cents NBS Circular 539, Volume 2, Standard X-ray Diffraction Powder Patterns (Data for 30 inorganic substances) 45 cents NBS Circular 539, Volume 3, Standard X-ray Diffraction Powder Patterns (Data for 34 inorganic substances) 45 cents NBS Circular 539, Volume 4, Standard X-ray Diffraction Powder Patterns (Data for 42 inorganic substances) 45 cents NBS Circular 539, Volume 5, Standard X-ray Diffraction Powder Patterns (Data for 45 inorganic substances) 45 cents NBS Circular 539, Volume 6, Standard X-ray Diffraction Powder Patterns (Data for 44 inorganic substances) 40 cents NBS Circular 539, Volume 7, Standard X-ray Diffraction Powder Patterns (Data for 53 substances) 40 cents NBS Circular 539, Volume 8, Standard X-ray Diffraction Powder Patterns (Data for 61 substances) 40 cents NBS Circular 539, Volume 9, Standard X-ray Diffraction Powder Patterns (Data for 43 substances) 40 cents NBS Circular 539, Volume 10, Standard X-ray Diffraction Powder Patterns (Data for 40 substances) 40 cents

Send orders with remittance to: Superintendent of Documents, U.S. Government Printing Office, Washington 25. D.C. Remittances from foreign countries should include an additional one-fourth of the purchase price for postage.

≈.~

STANDARD X-RAY DIFFRACTION POWDER PATTERNS

Section 1—Data for 46 Substances

Howard E. Swanson, Marlene Cook Morris,¹ Roger Stinchfield,¹ and Eloise H. Evans¹

Forty-six standard X-ray diffraction powder patterns are presented. Fourteen are to replace twelve patterns already given in the X-ray Powder Data File, and thirty-four are for substances not previously included. The X-ray Powder Data File is a compilation of diffraction patterns from many sources and is used for the identification of unknown crystalline materials by matching spacing and intensity measurements. The patterns were made with a Geiger counter X-ray diffractometer, using samples of high purity. The *d*-values were assigned Miller indices determined by comparison with calculated interplanar spacings and from space group considerations. The densities and lattice constants were calculated, and the refractive indices were measured whenever possible.

and the refractive indices were measured whenever possible. Included are X-ray data for the following forty-six substances: $(NH_4)_2OsCl_6$, $Al_2SiO_4(F,OH)_2$, topaz, BiF₃, CeCl₃, CeVO₄, CsClO₄, CsV(SO₄)₂·12H₂O, Er₃Ga₂(GaO₄)₃, EuCl₃, EuOCl, GdF₃, GdOCl, Gd₂O₃, Ho[C₂H₅)SO₄]₃·9H₂O, FeAs, LaBO₃, LaCl₃, La₂Mg₃(NO₃)₁₂·24H₂O, Li₂MOO₄, Li₂O, Li₂WO₄, Lu₂O₃, Mg₂Al₄Si₅O₁₈ (low-cordierite), Mg₂Al₄Si₅O₁₈ (high-cordierite), 3Mg₂SiO₄·MgF₂ (humite), NdBO₃, NdCl₃, Nd₃Ga₂(GaO₄)₃, NiAsS (gersdorffite), NiCO₃, NiS, millerite, KH₂AsO₄, PrCl₃, SmCl₃, SmF₃, Sm₃Ga₂(GaO₄)₃, SmOCl, Ag₂CO₃, Ag₂O, Na₂MoO₄, Na₂WO₄, Tl₂WO₄, Yb₃Ga₂(GaO₄)₃, Y₃Ga₂(GaO₄)₃, YOCl, $\operatorname{Zr}(\operatorname{IO}_3)_4$.

INTRODUCTION

The National Bureau of Standards in its program² for the revision and evaluation of published X-ray data for the X-ray Powder Data File presents data in this report for 46 compounds. This paper is the eleventh of a series of "Standard X-ray Diffraction Patterns." The designation "Circular 539" used in previous issues has been discontinued in favor of a new series, "Monograph 25." Included are patterns recommended to replace data on 12 cards now in the file. patterns for 34 compounds not represented in the file have been added. These compounds are: ammonium chloroosmate, bismuth fluoride, cerium(III) vanadate, cesium perchlorate, cesium vanadium sulfate dodecahydrate, erbium gallium oxide 3:5, europium(III) chloride, europium oxychloride, gadolinium oxychloride, gadolinium oxide, holmium ethylsulfate nonahydrate, iron arsenide. borate lanthanum(III) lanthanum lanthanum magnesium nitrate 24chloride. hydrate, lithium molybdate, lithium oxide, lithium tungstate, lutetium oxide, magnesium aluminum silicate (orthorhombic), neodymium borate, neodymium gallium oxide 3:5, nickel arsenic sulfide (gersdorffite), nickel(II) carbonate, potassium dihydrogen arsenate, praseodymium(III) chloride, samarium(III) chloride, samarium oxychloride, sodium molybdate, thallium(I) tungstate, ytterbium gallium oxide 3:5, yttrium gallium oxide 3:5, yttrium oxychloride, zirconium iodate.

¹ Research Associate at the National Bureau of Standards sponsored by the Joint Committee on Chemical Analysis by Powder Diffraction Methods ² This project is sponsored by the Joint Committee on Chemical Analysis by Powder Diffraction Methods. This committee is composed of members from the American Society for Testing Materials, the American Crystallo-graphic Association, and the British Institute of Physics. Financial support is also provided by the National Bureau of Standards.

The experimental procedure and general plan of these reports have not changed from that of previous volumes of the NBS Circular.³ However, the basic technique is discussed, in this section, under the same headings that appear in the text of this volume.

ASTM cards. Each section of this Monograph contains a table listing the ASTM file card numbers, the three strongest lines, the radiations used, and the literature references for each card. Cards listed in the 1960 index to the Powder Data File $[1]^4$ are included in the table.

Additional published patterns. Literature references for patterns that have not been published as ASTM cards are listed.

NBS sample. Many of the samples used to make NBS patterns were special preparations (of exceptionall high purity) obtained or prepared only in small quantities. Unless otherwise noted, the spectrographic analyses were done at NBS after recrystallization or heat treatment of the sample. The limit of detection for the alkali elements was 0.05 percent for the spectrographic analysis. A phase-purity check was made on the nonopaque materials during the refractive index determination. Another check of phase-purity was provided by the X-ray pattern itself, since it was indexed by comparison with theoretical dvalues. Treating the sample by appropriate annealing, recrystallization, or heating in hydrothermal bombs improved the quality of most of the patterns.

³ Other volumes were published as follows: Vol. 1 and Vol. 2, June 1953; Vol. 3, June 1954; Vol. 4, March 1955; Vol. 5, October 1955; Vol. 6, September 1956; Vol. 7, September 1957; Vol. 8, April 1959; Vol. 9, February 1960; and Vol. 10, September 1960. ⁴ Figures in brackets indicate the literature references at the end of each volume.

section of this paper.

At least two patterns for intensity measurements were prepared to check reproducibility. Samples that gave satisfactory intensity patterns usually had an average particle-size well within the rccommended range of 5 to 10 μ , as suggested by Alexander, Klug, and Kummer [2]. A special cell with one open end was used for making intensity measurements. The sample was prepared by clamping a flat piece of glass temporarily over the surface of this holder, and while it was held in a vertical position, the sample was drifted in from the open end. The glass was then carefully removed so that the surface of the sample could be exposed to the X-ray beam. Powders that did not flow readily or were prone to orient excessively, approximately 50-volume percent of finely ground silica-gel was added as a diluent. The intensity of the diffraction lines were measured as peak heights above background and were expressed in percentages of the intensity of the strongest line. Additional patterns were obtained for d-value measurements. These specimens were prepared by packing into a shallow holder a sample containing approximately 5-wt percent tungsten powder that served as an internal standard. The lattice constant used for tungsten at 25 °C is 3.1648 A, as determined by Jette and Foote [3]. All of the NBS patterns, unless otherwise noted, are made at 25 °C, using either filtered copper radiation (K α_1) or cobalt radiation (K α_1), having the wavelengths 1.5405 A, and 1.7889 A, respectively.

Although the lattice con-Structural data. stants obtained at NBS of cubic materials were calculated for each *d*-value, the constants reported is that obtained by averaging the last five lines because of the greater accuracy of measurement in the large-angle region of the pattern. The unit-cell values for each noncubic substance were determined by means of a least-squares calculation made on the IBM 704, using those d-values for which only one *hkl* could be assigned. The number of significant figures reported for d-values in the NBS pattern is limited by the quality of each sample and by its structural symmetry.

Published unit-cell data were converted to angstrom units as internationally defined in 1946 [4] using the factor 1.00202. When cell values based upon more than one cell configuration have been taken from the literature, corrections that were made to make them comparable have been indicated. The limits of error generally published with unit-cell data have not been included in the table because the number of determinations and their accuracy and variations were such that a statistical evaluation would be unjustified.

The space groups are listed with both the Schoenflies and short Hermann-Manguin symbols as well as with the space group numbers given in the International Tables for X-ray Crystallography.

Orthorhombic cell dimensions are presented according to the Dana Convention [5] b > a > crather than with a permutation as is occasionally given in the literature.

The densities calculated from the NBS lattice constants are expressed in grams per cubic centimeter and are based upon atomic weights reported by E. Wichers [6] in 1956 and the Avogadro number (6.0240×10^{23}) reported by Straumanis [7] in 1954.The refractive index measurements were made by grain-immersion methods in white light using oils standardized in sodium light.

References

- [1] Index to the X-ray Powder Data File, American Society for Testing Materials, Philadelphia, Pa. (1959).
- [2] L. Alexander, H. P. Klug, and E. Kummer, Statistical factors affecting the intensity of X-rays diffracted by crystalline powders, J. Appl. Phys. 19, No. 8, 742 - 753 (1948)
- [3] E. R. Jette and F. Foote, Precision determination of

- [4] Anonymous, The conversion factor for kX units to angstrom units, J. Sci. Inst. 24, 27 (1947).
 [5] Dana's System of Mineralogy, 1, 6 (1944).
 [6] E. Wichers, Report of the Committee on Atomic Weights of the American Chemical Society, J. Am. Chem. Sup. 25, 2225 (1957). Chem. Soc. 78, 3235 (1956).
- [7] M. E. Straumanis, Remarks concerning the absolute value of Avogadro's number, Phys, Rev. 95, 566 (1954).

Conversion Factors for Comparison of Peak Height and Integrated Intensities

Occasionally someone wishes to compare integrated intensity values with the peak height to background measurements made at the NBS for the Powder Data File. Conversion factors, applicable when copper radiation is used, can be read from the chart in figure 1 as a function of 2θ . Factors from the right side of the chart, multiplied by peak height values, give the corresponding integrated intensities. Factors for converting peak-height intensities to integrated intensities are on the left side of the chart.

The ordinate values used in determining the curve in figure 1 are the ratios of the integrated intensity to the peak height intensity for each line in medium to sharp patterns obtained from

 $(NH_4)_2$ PtCl₆, W, and Ca₃Al₂(GeO₄)₃. A curve based upon diffuse peaks or another radiation would be expected to vary from this one.

The patterns used for these measurements were scanned slowly (4 in. equal to one degree) to produce a broad peak. The area of the peak was recorded with a planimeter (G. Coradi, Zurich, Switzerland). Later, additional integrated intensity data were obtained by cutting out the peaks and weighing them. Since both integrating methods seemed to give equal precision, and a large number of points were needed to obtain the curve, all data from the three patterns were included.

FIGURE 1. Conversion factors for comparison of peak height and integrated intensities for copper radiation with medium to sharp peaks.

Aluminum Fluosilicate, topaz, $Al_2SiO_4(F,OH)_2$ (orthorhombic)

ASTM cards

Card numbers	Index lines	Radiation	Source
* 2-0704 2-0705	2. 96 1. 40 1. 38	Copper	British Museum

. From Scotland.

Additional published patterns. None.

NBS samples. Samples of topaz from three different sources were used. Spectrographic analysis of each sample showed the following impurities: (Minas Gerais, Brazil) 0.01 to 0.1 percent of germanium; 0.001 to 0.01 percent each of gallium, iron, sodium, titanium, and zinc; and 0.0001 to 0.001 percent each of boron, calcium, copper, lead, magnesium, and tin. (Durango, Mexico) 0.01 to 0.1 percent of iron; 0.001 to 0.01 percent each of boron, gallium, germanium, sodium, titanium, and zinc; and 0.0001 to 0.001 percent each of calcium, lead, magnesium, manganese, and tin. (Thomas Mountain, Utah) 0.01 to 0.1 percent of iron; 0.001 to 0.01 percent each of gallium, germanium, sodium, titanium, and zinc; and 0.0001 to 0.001 percent each of boron, calcium, lead, magnesium, ard tin.

The samples from Brazil and Utah were color-The sample from Mexico was slightly disless. colored brown. Topaz is optically positive with 2V≈55° and the following indices of refraction for each sample:

Source	Ν _α	Nβ	Nγ
Brazil Mexico Utah Average	$ \begin{array}{r} 1. \ 613 \\ 1. \ 608 \\ 1. \ 608 \\ \hline 1. \ 610 \\ \hline 1. \ 610 \\ \hline \end{array} $	$ \begin{array}{r} 1. \ 615 \\ 1. \ 611 \\ 1. \ 611 \\ \hline 1. \ 612 \\ \end{array} $	$ \begin{array}{r} 1. \ 622 \\ 1. \ 618 \\ 1. \ 618 \\ \hline 1. \ 619 \\ \hline 1. \ 619 \\ \end{array} $

The average *d*-values of the three strongest lines are: 2.937, 3.195, and 3.693 A.

Structural data. Leonhardt [1] in 1924 determined that topaz has the space group D_{2b}^{16} - Pmnb (No. 62) and $4[Al_2SiO_4(F,OH)_2]$ per unit cell.

Lattice constants

		a	ь	С
$1924 \\ 1928 \\ 1961$	Leonhardt [1] Alstonand West[2]_ National Bureau of Standarda	A 8. 39 8. 39	A 8. 80 8. 80	$\begin{array}{c} A \\ 4.\ 65 \\ 4.\ 65 \end{array}$
	Brazil Mexico Utah NBS average	8. 392 8. 395 8. 394 8. 394	8. 797 8. 789 8. 791 8. 792	4. 649 4. 649 4. 648 4. 649 at 26 °C

According to Pardee, Glass, and Stevens [3] the beta refractive index varies with the amount of fluorine present. The average value of the NBS beta refractive index indicates an approximate formula Al₂SiO₄F_{1.9}(OH)_{0.1}, corresponding to 19.6 percent fluorine. This formula, together with the average values of the NBS lattice constants, gives an average density of 3.558 g/cm³ at 26 °C.

- J. Leonhardt, Röntgenographische Untersuchungen am Topas, Z. Krist. 59, 216-229 (1924).
 N. A. Alston and J. West, The structure of topaz [Al₂(F, OH)₂SiO₄], Z. Krist. 69, 149-167 (1928).
 J. T. Pardee, Jewell J. Glass, and R. E. Stevens, Margine Level Appendix topage from the Preventional Appendix Construction of the Preventional Appendix Construction of the Preventional Appendix Construction of the Prevention of th
- Massive low-fluorine topaz from the Brewer Mine, South Carolina, Am. Mineralogist 22, 1058-1064 (1937).

hkl	196 National H of Stand Cu, 1.54 at 26 Minas G Braz	1 Bureau Hards 405 A °C erais, il	196 National E of Stand Cu, 1.54 at 26 Durango,	1 Bureau Iards 405 A °C Mexico	196 National E of Stand Cu, 1.54 at 26 Thomas tain, U	1 Bureau Hards 405 A °C Moun- Itah	196 National I of Stan Cu, 1.54 at 26 Avera	1 Bureau dards 405 A °C age
	d	Ι	d	Ι	d	Ι	d	I
$\begin{array}{c} 020\\ 200\\ 011\\ 120\\ 111\end{array}$	$\begin{array}{c} A \\ 4. \ 396 \\ 4. \ 191 \\ 4. \ 109 \\ 3. \ 894 \\ 3. \ 690 \end{array}$	$\begin{array}{r} 4\\ 4\\ 12\\ 6\\ 54\end{array}$	$\begin{array}{c} A \\ 4. \ 396 \\ 4. \ 193 \\ 4. \ 111 \\ 3. \ 895 \\ 3. \ 697 \end{array}$	$5\\6\\9\\6\\62$	$\begin{matrix} A \\ 4. \ 394 \\ 4. \ 199 \\ 4. \ 114 \\ 3. \ 898 \\ 3. \ 693 \end{matrix}$	$5 \\ 3 \\ 11 \\ 7 \\ 65$	$\begin{array}{c} A \\ 4. \ 395 \\ 4. \ 194 \\ 4. \ 111 \\ 3. \ 896 \\ 3. \ 693 \end{array}$	$\begin{array}{c}5\\4\\11\\6\\60\end{array}$
$\begin{array}{c} 021 \\ 220 \\ 121 \\ 211 \\ 031 \end{array}$	$\begin{array}{c} 3. \ 194 \\ 3. \ 035 \\ 2. \ 986 \\ 2. \ 934 \\ 2. \ 4806 \end{array}$	$58 \\ 32 \\ 21 \\ 100 \\ 20$	$\begin{array}{c} 3. \ 196 \\ 3. \ 036 \\ 2. \ 988 \\ 2. \ 938 \\ 2. \ 4806 \end{array}$	$72 \\ 43 \\ 24 \\ 100 \\ 22$	3. 195 3. 037 2. 985 2. 939 2. 4800	$69 \\ 37 \\ 25 \\ 100 \\ 23$	$\begin{array}{c} 3. \ 195 \\ 3. \ 037 \\ 2. \ 986 \\ 2. \ 937 \\ 2. \ 4804 \end{array}$	$ \begin{array}{c} 66 \\ 37 \\ 23 \\ 100 \\ 22 \end{array} $
$ \begin{array}{r} 301 \\ 131 \\ 320 \\ 002 \\ 311 \end{array} $	$\begin{array}{c} 2. \ 3962 \\ 2. \ 3785 \\ 2. \ 3605 \\ 2. \ 3241 \\ 2. \ 3126 \end{array}$	$\begin{array}{c}10\\22\\44\\6\\7\end{array}$	$\begin{array}{c} 2. \ 3968 \\ 2. \ 3779 \\ 2. \ 3605 \\ 2. \ 3247 \\ 2. \ 3126 \end{array}$	$10 \\ 30 \\ 34 \\ 12 \\ 9$	2. 3969 2. 3785 2. 3617 2. 3253 2. 3138	$11 \\ 27 \\ 58 \\ 5 \\ 11$	$\begin{array}{c} 2. \ 3966\\ 2. \ 3783\\ 2. \ 3609\\ 2. \ 3247\\ 2. \ 3130 \end{array}$	$10 \\ 26 \\ 45 \\ 8 \\ 9$
$\begin{array}{c} 012 \\ 040 \\ 112 \\ 140 \\ 321 \end{array}$	2. 2472 2. 1994 2. 1706 2. 1266 2. 1049	$5 \\ 11 \\ 14 \\ 5 \\ 38$	$\begin{array}{c} 2.\ 2467\\ 2.\ 1989\\ 2.\ 1716\\ 2.\ 1266\\ 2.\ 1058 \end{array}$	${6 \\ 10 \\ 11 \\ 13 \\ 46 }$	$\begin{array}{c} 2.\ 2472\\ 2.\ 1984\\ 2.\ 1711\\ 2.\ 1276\\ 2.\ 1040 \end{array}$	${6 \\ 10 \\ 12 \\ 7 \\ 47 }$	$\begin{array}{c} 2.\ 2470\\ 2.\ 1989\\ 2.\ 1711\\ 2.\ 1269\\ 2.\ 1049 \end{array}$	$6 \\ 10 \\ 12 \\ 8 \\ 44$
$\begin{array}{c} 022 \\ 041 \\ 212 \\ 240 \\ 141 \end{array}$	$\begin{array}{c} 2.\ 6553\\ 1.\ 9881\\ 1.\ 9823\\ 1.\ 9477\\ 1.\ 9344 \end{array}$	$\begin{array}{c}21\\5\\6\\2\\4\end{array}$	$\begin{array}{c} 2.\ 0553\\ 1.\ 9872\\ 1.\ 9815\\ 1.\ 9481\\ 1.\ 9340 \end{array}$	$\begin{array}{c}21\\8\\16\\5\\5\end{array}$	$\begin{array}{c} 2. \ 0558 \\ 1. \ 9864 \\ 1. \ 9811 \\ 1. \ 9453 \\ 1. \ 9336 \end{array}$	$\begin{array}{c} 30\\8\\4\\4\\6\end{array}$	$\begin{array}{c} 2.\ 0555\\ 1.\ 9872\\ 1.\ 9816\\ 1.\ 9470\\ 1.\ 9340 \end{array}$	$\begin{vmatrix} 24\\7\\9\\4\\5 \end{vmatrix}$
$\begin{array}{c} 411\\ 331\\ 032\\ 241\\ 132 \end{array}$	$\begin{array}{c} 1. \ 8688 \\ 1. \ 8553 \\ 1. \ 8219 \\ 1. \ 7967 \\ 1. \ 7797 \end{array}$	$\begin{array}{c} 25\\19\\9\\4\end{array}$	$\begin{array}{c} 1.\ 8700\\ 1.\ 8553\\ 1.\ 8209\\ 1.\ 7957\\ 1.\ 7791 \end{array}$	$21 \\ 32 \\ 12 \\ 7 \\ 5$	$\begin{array}{c} 1. \ 8685 \\ 1. \ 8553 \\ 1. \ 8209 \\ 1. \ 7954 \\ 1. \ 7800 \end{array}$	$25 \\ 25 \\ 15 \\ 7 \\ 6$	$\begin{array}{c} 1. \ 8691 \\ 1. \ 8553 \\ 1. \ 8212 \\ 1. \ 7969 \\ 1. \ 7796 \end{array}$	$24 \\ 26 \\ 12 \\ 8 \\ 5$
$232 \\ 322 \\ 341 \\ 431 \\ 042$	$\begin{array}{c} 1.\ 6709\\ 1.\ 6559\\ 1.\ 6205\\ 1.\ 6016\\ 1.\ 5975 \end{array}$	${31\atop {11\atop {13\atop <1}} 2}$	$\begin{array}{c} 1.\ 6706\\ 1.\ 6559\\ 1.\ 6205\\ 1.\ 6021\\ 1.\ 5968 \end{array}$	$\begin{array}{c} 26\\ 6\\ 7\\ 5\\ 5\end{array}$	$\begin{array}{c} 1.\ 6703\\ 1.\ 6565\\ 1.\ 6198\\ 1.\ 6006\\ 1.\ 5978 \end{array}$	$24 \\ 8 \\ 13 \\ 1 \\ 2$	$\begin{array}{c} 1.\ 6706\\ 1.\ 6561\\ 1.\ 6203\\ 1.\ 6014\\ 1.\ 5974 \end{array}$	$\begin{array}{c} 27\\8\\11\\2\\3\end{array}$
$501 \\ 142, 520 \\ 402 \\ 511 \\ 003$	$\begin{array}{c} 1. \ 5788 \\ 1. \ 5690 \\ 1. \ 5570 \\ 1. \ 5534 \\ 1. \ 5496 \end{array}$	$2 \\ 1 \\ \leq 1 \\ 1 \\ 1$	$\begin{array}{c} 1.\ 5790\\ 1.\ 5683\\ 1.\ 5575\\ 1.\ 5546\\ 1.\ 5499 \end{array}$	$\overset{1}{\overset{5}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{$	$\begin{array}{c} 1. \ 5795 \\ 1. \ 5678 \\ 1. \ 5575 \\ 1. \ 5551 \\ 1. \ 5477 \end{array}$	$\overset{1}{\underset{6}{\overset{2}{\overset{1}{\overset{1}{\overset{2}{\overset{1}{\overset{1}{\overset{1}{1$	$\begin{array}{c} 1.\ 5791\\ 1.\ 5684\\ 1.\ 5573\\ 1.\ 5544\\ 1.\ 5491 \end{array}$	$ \begin{array}{c} 1\\ 3\\ <1\\ 1\\ 4 \end{array} $
$\begin{array}{r} 412\\013,332\\440\\113\\242\end{array}$	$\begin{array}{c} 1.\ 5333\\ 1.\ 5264\\ 1.\ 5181\\ 1.\ 5018\\ 1.\ 4929 \end{array}$	$13 \\ 16 \\ 4 \\ < 1 \\ 1 \\ 1$	$\begin{array}{c} 1.\ 5340\\ 1.\ 5267\\ 1.\ 5181\\ 1.\ 4994\\ 1.\ 4925 \end{array}$	${ { 14 \\ 11 \\ 10 \\ < 1 \\ 2 } }$	$\begin{array}{c} 1.\ 5331\\ 1.\ 5262\\ 1.\ 5179\\ 1.\ 5007\\ 1.\ 4925 \end{array}$	$10 \\ 20 \\ 4 \\ < 1 \\ 2$	$\begin{array}{c} 1. \ 5335 \\ 1. \ 5264 \\ 1. \ 5180 \\ 1. \ 5006 \\ 1. \ 4926 \end{array}$	${ {12 \atop {16} \atop {6} \atop {-1} \atop {2} } }$
$521 \\ 060 \\ 023 \\ 160, 441 \\ 123$	$\begin{array}{c} 1.\ 4858\\ 1.\ 4648\\ 1.\ 4615\\ 1.\ 4439\\ 1.\ 4401 \end{array}$	$2 \\ 3 \\ 6 \\ 9 \\ 5$	$\begin{array}{c} 1.\ 4862\\ 1.\ 4642\\ 1.\ 4609\\ 1.\ 4431\\ 1.\ 4395 \end{array}$	$\begin{array}{c} 6\\9\\11\\6\\3\end{array}$	$\begin{array}{c} 1.\ 4860\\ 1.\ 4650\\ 1.\ 4617\\ 1.\ 4429\\ 1.\ 4397 \end{array}$	$\begin{array}{c}2\\4\\10\\8\\4\end{array}$	$\begin{array}{c} 1.\ 4860\\ 1.\ 4647\\ 1.\ 4614\\ 1.\ 4433\\ 1.\ 4398 \end{array}$	$ \begin{array}{c} 3 \\ 5 \\ 9 \\ 8 \\ 4 \end{array} $
$213 \\ 351 \\ 052$	$\begin{array}{c} 1.\ 4341 \\ 1.\ 4186 \\ 1.\ 4028 \end{array}$	$\begin{array}{c}3\\24\\18\end{array}$	$\begin{array}{c} 1.\ 4351\\ 1.\ 4175\\ 1.\ 4026 \end{array}$	$5\\24\\32$	$\begin{array}{c} 1.\ 4341 \\ 1.\ 4179 \\ 1.\ 4015 \end{array}$	$\begin{array}{c}3\\29\\24\end{array}$	$\begin{array}{c} 1.\ 4344\\ 1.\ 4180\\ 1.\ 4023 \end{array}$	$\begin{array}{c}4\\26\\25\end{array}$

Aluminum Fluosilicate, topaz, Al₂SiO₄ (F, OH)₂ (orthorhombic)—Continued

ASTM cards. None. Additional published patterns. None.

NBS sample. The sample of ammonium chloroosmate was prepared at NBS by R. B. Johannesen from chloroosmic acid and ammonium chloride. Spectrographic analysis showed the following impurities: 0.001 to 0.01 percent each of aluminum, beryllium, magnesium, and silicon.

The color of the sample was deep red. The indices of refraction could not be determined because the sample was too fine-grained.

The d-values of the three strongest lines are: 5.71, 4.94, and 2.978 A.

Structural data. The structure of ammonium chloroosmate has not been published but, because of the similarity of patterns, it is thought to be isostructural with ammonium chloroplatinate. The NBS pattern was indexed assuming the space group O_h^5 Fm3m (No. 225) and 4(NH₄)₂OsCl₆ per unit cell.

Lattice constants

1961	National Bureau of Standards	$egin{array}{c} A \ 9.\ 881 \ \mathrm{at} \ 25\ ^{\circ}\mathrm{C} \end{array}$
------	------------------------------	---

The density of ammonium chloroosmate calculated from the NBS lattice constant is 3.022 g/cm³ at 25 °C.

hkl	National Bureau of Standards Cu, 1.5405 A at 25 °C		
	b	Ι	a
$111 \\ 200 \\ 220 \\ 311 \\ 222$	$\begin{matrix} A \\ 5.\ 71 \\ 4.\ 94 \\ 3.\ 491 \\ 2.\ 978 \\ 2.\ 851 \end{matrix}$	$100 \\ 64 \\ 26 \\ 45 \\ 4$	$\begin{matrix} A \\ 9, 89 \\ 9, 88 \\ 9, 874 \\ 9, 877 \\ 9, 876 \end{matrix}$
$\begin{array}{c} 400 \\ 331 \\ 420 \\ 422 \\ 511 \end{array}$	2. 469 2. 267 2. 209 2. 016 1 902	$36 \\ 16 \\ 29 \\ 10 \\ 19$	$\begin{array}{c} 9.\ 876\\ 9.\ 881\\ 9.\ 879\\ 9.\ 876\\ 9.\ 883\end{array}$
$\begin{array}{c} 440 \\ 531 \\ 600 \\ 620 \\ 533 \end{array}$	$\begin{array}{c} 1.\ 747\\ 1.\ 670\\ 1.\ 647\\ 1.\ 562\\ 1.\ 507 \end{array}$	$\begin{array}{c} 19\\17\\13\\4\\6\end{array}$	9. 882 9. 880 9. 882 9. 879 9. 882
$\begin{array}{c} 444 \\ 711 \\ 640 \\ 642 \\ 731 \end{array}$	$\begin{array}{c} \textbf{J. } 426\\ \textbf{1. } 3835\\ \textbf{1. } 3701\\ \textbf{1. } 3204\\ \textbf{1. } 2864 \end{array}$	$\begin{array}{c} 6\\ 8\\ 5\\ 4\\ 6\end{array}$	9. 880 9. 880 9. 880 9. 881 9. 881
800 733 820 822 751	$\begin{array}{c} 1.\ 2349\\ 1.\ 2072\\ 1.\ 1983\\ 1.\ 1645\\ 1.\ 1411 \end{array}$	3 3 6 2 4	$\begin{array}{c} 9.\ 879\\ 9.\ 881\\ 9.\ 881\\ 9.\ 881\\ 9.\ 882\end{array}$
$840 \\911 \\842 \\664 \\931$	$\begin{array}{c} 1. \ 1047 \\ 1. \ 0845 \\ 1. \ 0780 \\ 1. \ 0531 \\ 1. \ 0357 \end{array}$	4 4 4 1 3	9. 881 9. 880 9. 880 9. 879 9. 880
$\begin{array}{c} 844\\ 933\\ 10{\cdot}0{\cdot}0\\ 10{\cdot}2{\cdot}0\\ 951 \end{array}$	$\begin{array}{c} 1.\ 0083\\ 0.\ 9929\\ .\ 9878\\ .\ 9687\\ .\ 9550 \end{array}$	$\begin{array}{c}4\\4\\1\\2\\2\end{array}$	9. 879 9. 879 9. 878 9. 878 9. 879 9. 879
$953 \\ 10 \cdot 4 \cdot 0 \\ 10 \cdot 4 \cdot 2 \\ 11 \cdot 1 \cdot 1 \\ 880$	$\begin{array}{c} . \ 9212 \\ . \ 9173 \\ . \ 9019 \\ . \ 8908 \\ . \ 8733 \end{array}$	$\overset{1}{\underset{\scriptstyle <1}{\overset{\scriptstyle 1}{\underset{\scriptstyle <1}{\overset{\scriptstyle 1}{\underset{\scriptstyle <1}{\overset{\scriptstyle 1}{\underset{\scriptstyle <1}{\overset{\scriptstyle 1}{\overset{\scriptstyle 1}{\underset{\scriptstyle <1}{\overset{\scriptstyle 1}{\underset{\scriptstyle >1}{\overset{\scriptstyle 1}{\underset{\scriptstyle >1}{\underset{\scriptstyle >1}{\overset{\scriptstyle 1}{\underset{\scriptstyle >1}{\underset{\scriptstyle >1}{\overset{\scriptstyle 1}{\underset{\scriptstyle >1}{\underset{\scriptstyle >1}{\underset{\scriptstyle >1}{\underset{\scriptstyle >1}{\underset{\scriptstyle 1}{\overset{\scriptstyle 1}{\underset{\scriptstyle >1}{\underset{\scriptstyle >1}{\underset{\scriptstyle 1}{\underset{\scriptstyle 1}{\atop\scriptstyle >1}{\underset{\scriptstyle 1}{\underset{\scriptstyle 1}{\underset{\scriptstyle 1}{\underset{\scriptstyle 1}{\underset{\scriptstyle 1}{\underset{\scriptstyle 1}{\underset{\scriptstyle 1}{\underset{\scriptstyle 1}{\atop\scriptstyle 1}{\underset{\scriptstyle 1}{\underset{\scriptstyle 1}{\atop\scriptstyle 1}{\underset{\scriptstyle 1}{\atop\scriptstyle 1}{\underset{\scriptstyle 1}{\atop\scriptstyle 1}{\atop\scriptstyle 1}{\underset{\scriptstyle 1}{\atop\scriptstyle 1}{\atop 1}{\atop\scriptstyle 1}{\atop\scriptstyle 1}{\atop\scriptstyle 1}{\atop\scriptstyle 1}{\atop 1}{\atop\scriptstyle 1}{\atop\scriptstyle 1}{\atop\scriptstyle 1}{\atop\scriptstyle 1}{\atop\scriptstyle 1}{\atop\scriptstyle 1}{\atop\scriptstyle 1}{\atop\scriptstyle 1}{\atop\scriptstyle 1}{\atop 1}{\atop\scriptstyle 1}{\atop 1}{\atop 1}{\atop 1}{\atop 1}{\atop 1}{\atop 1}{\atop 1}{\atop$	9. 879 9. 880 9. 880 9. 879 9. 880
11.3.110.4.410.6.011.3.312.0.0	$\begin{array}{c} . \ 8632 \\ . \ 8600 \\ . \ 8473 \\ . \ 8381 \\ . \ 8234 \end{array}$	$\overset{2}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{2}{\overset{2}{$	$\begin{array}{c} 9.\ 880\\ 9.\ 881\\ 9.\ 881\\ 9.\ 881\\ 9.\ 881\end{array}$
$ \begin{array}{c} 11 \cdot 5 \cdot 1 \\ 12 \cdot 2 \cdot 0 \\ 12 \cdot 2 \cdot 2 \\ 11 \cdot 5 \cdot 3 \end{array} $. 8149 . 8121 . 8015 . 7936	$\overset{<1}{\underset{1}{\overset{<}{\overset{1}{}{}{\overset{1}{}{}{\overset$	9. 880 9. 880 9. 882 9. 882
Average va	lue of last five lin	nes	9. 881

ASTM cards. None. Data on card number 2–1235 is for bismuth oxygen fluoride, Bi_2OF_4 , instead of bismuth fluoride, BiF_3 .

Additional published patterns. None.

NBS sample. The sample of bismuth fluoride was prepared by Olen Kraus of NBS by reacting bismuth oxide with a large excess of hydrofluoric acid at 80 °C. Spectrographic analysis showed the following impurities: 0.01 to 0.1 percent of sodium, and 0.001 to 0.01 percent each of aluminum, barium, calcium, iron, magnesium, and silicon.

The sample was colorless. The indices of refraction were not determined because the sample was too fine-grained.

The *d*-values of the three strongest lines are: 3.406, 2.970, and 3.508 A.

Structural data. Zachariasen and Plettinger [1] in 1950 determined that bismuth fluoride has yttrium fluoride-type structure, the space group D_{2b}^{16} -Pnma (No. 62), and 4(BiF₃) per unit cell.

Lattice constants

		a	Ь	с
1955	Aurivillius and	A	A	A
1040	Lundqvist [2] Zachariasen and	6.56	7.04	4. 83
1910	Plettinger [1] National Bureau	6.56	7.03	4.86
	of Standards	6. 563	7. 021	4.845 at 25 °C

The density of bismuth fluoride calculated from the NBS lattice constants is 7.912 g/cm³ at 25 °C.

- W. H. Zachariasen and H. Anne Plettinger, Mass Spectroscopy and Crystal Structure Division Quarterly Report, Argonne National Laboratory Report 4400, 12–16 (September 1, 1949–November 30, 1949). Quoted in Zalkin and Templeton [3].
- [2] B. Aurivillius and T. Lundqvist, X-ray studies on the system BiF₃-Bi₂O₃. I. Preliminary phase analysis and a note on the structure of BiF₃, Acta Chem. Scand. 9, 1206-1208 (1955).
- [3] A. Zalkin and D. H. Templeton, The crystal structures of YF_3 and related compounds, J. Am. Chem. Soc. 75, 2453-2458 (1953).

hkl	1961 National Bureau of Standards Cu, 1.5405 A at 25 °C		
	d	Ι	
$011 \\ 101 \\ 020 \\ 111 \\ 200$	$\begin{array}{c} A\\ 3.\ 985\\ 3.\ 897\\ 3.\ 508\\ 3.\ 406\\ 3.\ 278 \end{array}$	$7 \\ 47 \\ 48 \\ 100 \\ 4$	
$210\\121\\211\\002\\102$	2. 970 2. 607 2. 533 2. 420 2. 272	$49 \\ 23 \\ 2 \\ 12 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ $	
$112 \\ 221 \\ 131 \\ 301, 022 \\ 202$	2. 161 2. 148 2. 006 1. 993 1. 949	8 7 37 39 1	
$\begin{array}{r} 311\\ 230, 122\\ 212\\ 040\\ 321\end{array}$	1 918 1. 905 1. 877 1. 755 1. 734	$ \begin{array}{r} 10 \\ 26 \\ 27 \\ 9 \\ 20 \end{array} $	
$222 \\ 400 \\ 132 \\ 141 \\ 410$	$\begin{array}{c} 1.\ 704\\ 1.\ 640\\ 1.\ 630\\ 1.\ 600\\ 1.\ 597 \end{array}$	2 5 2 6 5	
$312 \\ 013 \\ 113 \\ 331, 411 \\ 232$	$\begin{array}{c} 1.\ 582\\ 1.\ 574\\ 1.\ 530\\ 1.\ 517\\ 1.\ 497 \end{array}$	$egin{array}{c} 3 \\ 4 \\ 6 \\ 5 \\ 10 \end{array}$	
$\begin{array}{r} 420\\ 241,322\\ 203\\ 123\\ 042,421\end{array}$	$\begin{array}{c} 1.\ 486 \\ 1.\ 474 \\ 1.\ 4489 \\ 1.\ 4318 \\ 1.\ 4215 \end{array}$	$\begin{array}{c} 4\\ 1\\ 2\\ 4\\ 6\end{array}$	
$142 \\ 402 \\ 051 \\ 430 \\ 223$	$\begin{array}{c} 1. \ 3890 \\ 1. \ 3587 \\ 1. \ 3483 \\ 1. \ 3436 \\ 1. \ 3399 \end{array}$	2 4 2 5 7	
$332, 412 \\033 \\151 \\341 \\242, 133$	$\begin{array}{c} 1. \ 3341 \\ 1. \ 3293 \\ 1. \ 3214 \\ 1. \ 3180 \\ 1. \ 3028 \end{array}$	$\begin{array}{c}4\\2\\8\\11\\4\end{array}$	
$303 \\ 431 \\ 250 \\ 313 \\ 501, 422$	$\begin{array}{c} 1. \ 2995 \\ 1. \ 2955 \\ 1. \ 2913 \\ 1. \ 2777 \\ 1. \ 2670 \end{array}$	$\begin{array}{c} 4\\ 2\\ 3\\ 1\\ 6\end{array}$	
$251, 511 \\ 233 \\ 323 \\ 004 \\ 440$	$\begin{array}{c} 1. \ 2471 \\ 1. \ 2326 \\ 1. \ 2187 \\ 1. \ 2112 \\ 1. \ 1987 \end{array}$	$\begin{array}{c} 6\\ 1\\ 4\\ 2\\ 4\\ 4\end{array}$	

ASTM cards

$\begin{array}{c} Card \\ number \end{array}$	Index lines	Radiation	Source
9-68	2.56 2.11 3.56	Copper	Zachariasen [1] 1955

Additional published patterns

Source	Radiation
Kojima, Inoue, and Ishiyama [2]	Copper

NBS sample. The sample of cerium chloride was received as a hydrate from Lindsay Chemical Co., West Chicago, Ill. It was dried in a hydrogen chloride atmosphere at 30 mm total pressure and 450 °C for one and one-half hours. It was then transferred in a dry box to a dry atmosphere sample holder used to prepare the patterns. An analysis from Lindsay Chemical Co. showed the following impurities: less than 0.1 percent combined of lanthanum, praseodymium, and neodymium.

The sample was colorless. The indices of refraction could not be determined because the sample was too hygroscopic.

The *d*-values of the three strongest lines are: 2.586, 6.47, and 3.590 A.

Structural data. Zachariasen [3] in 1948 determined that cerium chloride has the uranium chloride-type structure, the space group C_{6h}^2 -P6₃/m (No. 176) and 2(CeCl₃) per unit cell.

Lattice	constants
Laurce	constants

		a	с
1948 1951 1961	Zachariasen [3]. Kojima, Inoue, and Ishi- yama [2]. National Bureau of Stand- ards.	$A \\ 7. 451 \\ 7. 451 \\ 7. 451 \\ 7. 454$	A 4. 313 4. 313 4. 312 at 25 °C.

The density of cerium chloride calculated from the NBS lattice constants is 3.944 g/cm³ at 25 °C.

hkl	1961 National Bureau of Standards Cu, 1.5405 A at 25 °C	
	d	Ι
$ \begin{array}{r} 100\\ 110\\ 101\\ 200\\ 111 \end{array} $	$\begin{matrix} A \\ 6. \ 47 \\ 3. \ 729 \\ 3. \ 590 \\ 3. \ 229 \\ 2. \ 824 \end{matrix}$	84 48 78 19 51
$\begin{array}{c} 201 \\ 210 \\ 002, 300 \\ 211 \\ 102 \end{array}$	$\begin{array}{c} 2.586\\ 2.438\\ 2.153\\ 2.125\\ 2.048 \end{array}$	$100 \\ 16 \\ 47 \\ 71 \\ 16$
$112, 220 \\ 202 \\ 311 \\ 212 \\ 302$	$\begin{array}{c} 1.\ 864\\ 1.\ 792\\ 1.\ 654\\ 1.\ 615\\ 1.\ 523 \end{array}$	19 11 12 13 17
$\begin{array}{r} 320 \\ 410 \\ 321 \\ 312 \\ 203 \end{array}$	$\begin{array}{c} 1.\ 482\\ 1.\ 408\\ 1.\ 401\\ 1.\ 3776\\ 1.\ 3126 \end{array}$	$17 \\ 23 \\ 23 \\ 6 \\ 9$
$\begin{array}{r} 402 \\ 500 \\ 213 \\ 412 \\ 511 \end{array}$	1. 2923 1. 2912 1. 2382 1. 1790 1. 1192	
323	1. 0313	11

- W. Zachariasen, The crystal structure of trichlorides, tribromides and trihydroxides of uranium and of rare earth elements, U.S. Atomic Energy Comm. TID 5212, 157-164 (1955).
 T. Kojima, T. Inoue, and T. Ishiyama, Crystal structure.
- [2] T. Kojima, T. Inoue, and T. Ishiyama, Crystal structure of cerium compounds II, studies on cerium compounds by X-Ray analysis of crystal structure (Report 2), J. Electrochem. Soc. Japan 19, 383-386 (1951).
- (1951).
 [3] W. Zachariasen, Crystal chemical studies of the 5-f series of elements, Acta Cryst. 1, 265-268 (1948).

Additional published patterns. None.

NBS sample. The sample of cerium (III) vanadate was prepared at NBS by reacting stoichiometric solutions of cerium (III) chloride heptahydrate and ammonium metavanadate. It was then heated at 750 °C for 15 min to improve the crystallinity. The cerium (III) chloride heptahydrate was obtained from the Lindsay Chemical Co., West Chicago, Ill. Their analysis showed a total maximum impurity of rare earth oxides of 0.1 percent, largely lanthanum, praseodymium, and neodymium. Spectrographic analysis at NBS showed the following additional impurities for CeVO₄: 0.01 to 0.1 percent of silicon, and 0.001 to 0.01 percent each of aluminum, calcium, iron, magnesium, and nickel.

The color of the sample was an opaque yellow brown.

The *d*-values of the three strongest lines are: 3.70, 2.761, and 1.898 A.

Structural data. Milligan and Vernon [1] in 1952 determined that cerium(III) vanadate has zircontype structure, and the space group D_{4h}^{19} -I4/amd (No. 141) with 4(CeVO₄) per unit cell.

Lattice of	constants
------------	-----------

		a	с
1952 1961	Milligan and Vernon [1] National Bureau of Stand- ards.	A 7. 34 7. 399	$A \\ 6.47 \\ 6.496 \\ 25 \ ^{\circ}{ m C}$

The density of cerium(III) vanadate calculated from the NBS lattice constants is 4.763 g/cm³ at 25 °C.

Reference

 W. O. Millegan and L. W. Vernon, Crystal structure of heavy metal orthovanadates, J. Phys. Chem. 56, 145-148 (1952).

]
hkl	1961 National Bureau of Standards Cu, 1.5405 A at 25 °C	
	d	Ι
$101 \\ 200 \\ 211 \\ 112 \\ 220$	$\begin{matrix} A \\ 4.89 \\ 3.70 \\ 2.948 \\ 2.761 \\ 2.615 \end{matrix}$	$30 \\ 100 \\ 9 \\ 67 \\ 19$
$202 \\ 301 \\ 103 \\ 321 \\ 312$	$\begin{array}{c} 2. \ 441 \\ 2. \ 306 \\ 2. \ 078 \\ 1. \ 955 \\ 1. \ 899 \end{array}$	$5 \\ 16 \\ 10 \\ 9 \\ 50$
$\begin{array}{c} 400 \\ 213 \\ 411 \\ 420 \\ 303 \end{array}$	$\begin{array}{c} 1. \ 849 \\ 1. \ 811 \\ 1. \ 729 \\ 1. \ 653 \\ 1. \ 627 \end{array}$	$\begin{array}{c} 16\\ 4\\ 2\\ 10\\ 4\end{array}$
$004 \\ 402 \\ 332 \\ 204 \\ 501$	$\begin{array}{c} 1.\ 624\\ 1.\ 606\\ 1.\ 5361\\ 1.\ 4875\\ 1.\ 4429 \end{array}$	$\begin{array}{c} 4\\ 2\\ 12\\ 10\\ 4\end{array}$
$224 \\ 512 \\ 440 \\ 600 \\ 503, 404$	$\begin{array}{c} 1.\ 3799\\ 1.\ 3248\\ 1.\ 3079\\ 1.\ 2332\\ 1.\ 2208 \end{array}$	$\begin{array}{c}10\\10\\3\\4\\6\end{array}$
$215 \\ 611 \\ 532 \\ 620 \\ 523, 424$	$\begin{array}{c} 1.\ 2096\\ 1.\ 1955\\ 1.\ 1819\\ 1.\ 1697\\ 1.\ 1595 \end{array}$	$2 \\ 2 \\ 8 \\ 3 \\ 9$
$325 \\ 631 \\ 116, 613 \\ 415 \\ 701$	$\begin{array}{c} 1.\ 0979\\ 1.\ 0875\\ 1.\ 0603\\ 1.\ 0524\\ 1.\ 0432 \end{array}$	$ \begin{array}{c} 1 \\ 1 \\ 6 \\ 1 \\ 2 \end{array} $
$\begin{array}{r} 640\\ 543\\ 444\end{array}$	$\begin{array}{c} 1. \ 0262 \\ 1. \ 0192 \\ 1. \ 0184 \end{array}$	2 2 2

Additional published patterns. None.

NBS sample. The sample of cesium perchlorate was prepared at NBS by reacting solutions of ammonium perchlorate and cesium bromide. It was recrystallized several times to insure purity. Spectrographic analysis showed the following impurities: 0.1 to 1.0 percent of rubidium; 0.01 to 0.1 percent of sodium; and 0.001 to 0.01 percent of aluminum.

The sample is colorless and optically negative with the indices of refraction $N\alpha = 1.473$, $N\beta = 1.477$, and $N\gamma = 1.479$. $2V \cong 50^{\circ}$.

The *d*-values of the three strongest lines are: 3.427, 2.322, and 3.814 A.

Structural data. Büssem and Herrmann [1] in 1928 determined that cesium perchlorate has potassium sulfate-type structure, the space group D_{2h}^{16} —Pbnm (No. 62), and 4(CsClO₄) per unit cell. In addition, they recognized a cubic form at temperatures above 220 °C.

Lattice constants

		a	ь	с
1928	Büssem and Herr-	A 9. 84	$\begin{array}{c} A \\ 6. \ 01 \end{array}$	A 7. 81
1930	Herrmann and	9. 870	6. 038	7. 777
1961	National Bureau of Standards.	9. 848	6.029	7. 813 at 25 °C

The density of cesium perchlorate calculated from the NBS lattice constants is 3.326 g/cm^3 at 25 °C.

- W. Büssem and K. Herrmann, Röntgenographische Untersuchung der einwertigen Perchlorate, Z. Krist. 67. 405-408 (1928).
- [2] K. Hermann and W. Ilge, Röntgenographische Strukturerforschung der Kubischen Modifikationen der Perchlorate, Z. Krist. A75, 4–166 (1930).

hkl	1961 National Bureau of Standards Cu, 1.5405 A at 25 °C		1961 National Bure of Standards Cu, 1.54 A at 25 °C	
	d	I		
$\begin{array}{c} 020 \\ 101 \\ 111 \\ 120 \\ 200 \end{array}$	$\begin{matrix} A \\ 4. 92 \\ 4. 77 \\ 4. 30 \\ 4. 17 \\ 3. 909 \end{matrix}$	$12 \\ 17 \\ 42 \\ 6 \\ 40$		
$\begin{array}{c} 021 \\ 210 \\ 121 \\ 211 \\ 002 \end{array}$	$\begin{array}{c} 3.\ 814\\ 3.\ 632\\ 3.\ 427\\ 3.\ 111\\ 3.\ 015 \end{array}$	$76 \\ 51 \\ 100 \\ 38 \\ 45$		
$\begin{array}{r} 221 \\ 131,112 \\ 022 \\ 230 \\ 122 \end{array}$	$\begin{array}{c} 2.\ 728\\ 2.\ 705\\ 2.\ 572\\ 2.\ 514\\ 2.\ 442 \end{array}$	$ \begin{array}{r} 16 \\ 7 \\ 14 \\ 12 \\ 16 \\ 16 \\ \end{array} $		
$202 \\ 140 \\ 311, 212, \\ 231 \\ 041$	$ \begin{array}{c} 2.386\\ 2.347\\ 2.322\\ 2.280 \end{array} $	7 42 86 12		
$222 \\ 132 \\ 330 \\ 400 \\ 103$	$\begin{array}{c} 2.\ 147\\ 2.\ 135\\ 2.\ 040\\ 1.\ 952\\ 1.\ 946 \end{array}$	2 9 14 4 6		
$312, 331 \\ 232 \\ 410 \\ 113, 150 \\ 023$	$\begin{array}{c} 1. \ 932 \\ 1. \ 930 \\ 1. \ 916 \\ 1. \ 911 \\ 1. \ 861 \end{array}$	$\begin{array}{c}8\\7\\8\\6\\10\end{array}$		
$142 \\ 411 \\ 420 \\ 123 \\ 340$	$\begin{array}{c} 1.852\\ 1.826\\ 1.816\\ 1.810\\ 1.788\end{array}$	$\begin{array}{c} 14\\ 5\\ 8\\ <1 \end{array}$		
$213, 250 \\ 421 \\ 242 \\ 332, 251 \\ 133$	$\begin{array}{c} 1.\ 758\\ 1.\ 738\\ 1.\ 7128\\ 1.\ 6885\\ 1.\ 6749 \end{array}$	${{<1}\atop{<1}\\{20}\\2}$		
$\begin{array}{r} 402 \\ 412, 431 \\ 152 \\ 061 \end{array}$	$\begin{array}{c} 1.\ 6388\\ 1.\ 6171\\ 1.\ 6132\\ 1.\ 5830 \end{array}$	$\begin{array}{c}2\\13\\10\\4\end{array}$		

Cesium Vanadium Sulfate Dodecahydrate, CsV(SO₄)₂·12H₂O (cubic)

ASTM cards. None.

Additional published patterns. None.

NBS sample. The sample of cesium vanadium sulfate dodecahydrate was prepared at NBS by R. B. Johannesen from solutions of cesium sulfate and vanadium sulfate. Spectrograhic analysis showed the following impurities: 0.1 to 1.0 percent aluminum; 0.01 to 0.1 percent each of silver, calcium, chromium, iron, lithium, magnesium, manganese, nickel, and titanium.

The sample was purple. The index of refraction is 1.483.

The *d*-values of the three strongest lines are:

4.3986, 2.8535, and 2.7817A. Structural data. The structure of cesium vanadium sulfate dodecahydrate has not been published. Cesium vanadium sulfate dodecahydrate appears to be a beta alum since the intensities of the NBS pattern agree closely with those of other beta alums. Lipson [1] in 1935 determined the structure of the beta alums as having the space group T_h^6 —Pa3 (N 4[CsV(SO₄)₂. 12H₂O] per unit cell. (No. 205) and

Lattice constants

1961	National Bureau of Standards	A 12.439 at 25 °C
------	------------------------------	-------------------------

The density of cesium vanadium sulfate dodecahydrate calculated from the NBS lattice constant is 2.043 g/cm³ at 25 °C.

hkl	1961 National Bureau of Standards Cu, 1.5405 A at 25 °C		
	d	Ι	a
	A		A
111	7.18	13	12.44
200	6.23	36	12.46
210	5. 56	31	12.44
211	5.08	11	12.44
220	4. 3986	100	12. 441
221	4. 1467	23	12.440
311	3, 7509	6	12.440
222	3, 5913	28	12.440
302	3. 4502	8	12.440
321	3. 3249	19	12. 441
400	3 1099	37	12 440
410	3 0163	13	12, 437
221	2 8535	59	12. 438
420	2. 7817	54	12.440
421	2.7152	8	12 443
121	2. (104	0	12, 110
332	2.6511	2	12.435
422	2. 5397	34	12.442
431	2. 4389	3	12.436
511	2. 3938	17	12. 439
432	2. 3103	7	12. 441

	1961 National Bureau of Standards Cu, 1.5405 A at 25 °C		
hkl	d	Ι	a
$521 \\ 440 \\ 522 \\ 531 \\ 600$	$\begin{matrix} A \\ 2.\ 2711 \\ 2.\ 1994 \\ 2.\ 1656 \\ 2.\ 1035 \\ 2.\ 0737 \end{matrix}$	$4 \\ 19 \\ 4 \\ 4 \\ 19$	$\begin{matrix} A \\ 12. \ 439 \\ 12. \ 442 \\ 12. \ 440 \\ 12. \ 444 \\ 12. \ 442 \end{matrix}$
$\begin{array}{c} 611 \\ 620 \\ 621 \\ 533 \\ 622 \end{array}$	$\begin{array}{c} 2.\ 0183\\ 1.\ 9664\\ 1.\ 9426\\ 1.\ 8974\\ 1.\ 8750 \end{array}$	${6 \atop {30} \atop {4} \atop {10} \atop {9}}$	12. 442 12. 437 12. 439 12. 442 12. 437
$\begin{array}{c} 630 \\ 444 \\ 711 \\ 640 \\ 641 \end{array}$	$\begin{array}{c} 1.\ 8542\\ 1.\ 7947\\ 1.\ 7412\\ 1.\ 7247\\ 1.\ 7083 \end{array}$	$3\\5\\12\\2\\2$	12. 438 12. 434 12. 435 12. 437 12. 437
721 642 722 731 732	$\begin{array}{c} 1.\ 6926\\ 1.\ 6620\\ 1.\ 6469\\ 1.\ 6189\\ 1.\ 5795\end{array}$	$225 \\ 57 \\ 1$	12. 438 12. 437 12. 434 12. 435 12. 435
800 810 733 820 821	$\begin{array}{c} 1.\ 5554\\ 1.\ 5430\\ 1.\ 5201\\ 1.\ 5089\\ 1.\ 4975 \end{array}$	$2 \\ 2 \\ 5 \\ 15 \\ 3$	12. 443 12. 440 12. 442 12. 443 12. 439
$\begin{array}{c} 822 \\ 751 \\ 662 \\ 832 \\ 840 \end{array}$	$\begin{array}{c} 1.\ 4658\\ 1.\ 4365\\ 1.\ 4271\\ 1.\ 4175\\ 1.\ 3906 \end{array}$	$12 \\ 1 \\ 12 \\ 1 \\ 7 \\ 7$	12. 438 12. 440 12. 441 12. 439 12. 438
$911 \\ 842 \\ 664 \\ 851 \\ 931$	$\begin{array}{c} 1. \ 3651 \\ 1. \ 3571 \\ 1. \ 3260 \\ 1. \ 3117 \\ 1. \ 3039 \end{array}$	$4 \\ 4 \\ 2 \\ 2 \\ 4$	$\begin{array}{c} 12.\ 437\\ 12.\ 438\\ 12.\ 439\\ 12.\ 444\\ 12.\ 438\end{array}$
$\begin{array}{c} 844 \\ 10.0.0 \\ 10.1.0 \\ 10.2.0 \\ 10.2.2 \end{array}$	$\begin{array}{c} 1.\ 2693\\ 1.\ 2437\\ 1.\ 2379\\ 1.\ 2194\\ 1.\ 1968\\ \end{array}$	${3 \\ 2 \\ 2 \\ 12 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ $	$\begin{array}{c} 12.\ 437\\ 12.\ 437\\ 12.\ 441\\ 12.\ 435\\ 12.\ 438 \end{array}$
$953 \\ 10{\cdot}4{\cdot}0 \\ 10{\cdot}4{\cdot}2 \\ 945 \\ 11{\cdot}2{\cdot}1$	$\begin{array}{c} 1. \ 1599 \\ 1. \ 1547 \\ 1. \ 1357 \\ 1. \ 1263 \\ 1. \ 1079 \end{array}$	$\begin{array}{c}4\\5\\4\\2\\2\end{array}$	$\begin{array}{c} 12.\ 439\\ 12.\ 437\\ 12.\ 441\\ 12.\ 440\\ 12.\ 436 \end{array}$
$\begin{array}{c} 880 \\ 11\cdot 3\cdot 1 \\ 10\cdot 4\cdot 4 \\ 10\cdot 6\cdot 0 \\ 11\cdot 3\cdot 3 \end{array}$	$\begin{array}{c} 1.\ 0993\\ 1.\ 0869\\ 1.\ 0826\\ 1.\ 0666\\ 1.\ 0551 \end{array}$	$egin{array}{c}1\\1\\1\\2\\1\end{array}$	12. 437 12. 440 12. 438 12. 439 12. 439
10.6.2	1. 0513	1	12. 439
Average value of last five lines		12. 439	

References

[1] H. Lipson, Existence of three alum structures, Nature 135, 1912 (1935).

Erbium Gallium Oxide 35, Er₃Ga₂(GaO₄)₃ (cubic)

ASTM cards. None.

Additional published pattenns. None.

NBS sample. The sample was prepared at NBS by S. Schneider from stoichiometric mixtures of erbium oxide and gallium oxide. The sample was pressed into pellets and heated at 1,350 °C for 6 hr; then ground, remixed, and again pressed into pellets and heated at 1,450 °C for 6 hr. Spectrographic analysis showed the following impurities: 0.0001 to 0.001 percent each of manganese and silicon.

The color of the sample was pale pink. The index of refraction could not be determined because the sample was too fine-grained.

The *d*-values of the three strongest lines are: 2.741, 2.501, and 1.6377A.

Structural data. S. Schneider, R. Roth, and J. L. Waring [1] showed that erbium gallium oxide has the garnet-type structure, having the space group O_{h}^{10} —Ia3d (No. 230) and 8[Er₃Ga₂(GaO₄)₃] per unit cell.

1956 1961	Bertaut and Forrat [2] National Bureau of Standards	$A \\ 12.25 \\ 12.255 \\ at 25 \\ ^{\circ}C \\ C$
--------------	--	---

The density calculated from NBS lattice constant is 7.521 g/cm³ at 25 °C.

- S. Schneider, R. Roth, and J. L. Waring, Solid state reactions involving oxides of trivalent cations, J. Research NBS 65A, 345 (1961).
- [2] F. Bertaut and F. Forrat, Etude des combinaisons des oxides des terres rares avec l'alumine et la galline, Compt. Rend. Acad. Sci. (Paris) 243, 1219– 1222 (1956).

hkl	1961 National Bureau of Standards Cu, 1.5405 A at 25 °C		
	d	I	а
$211 \\ 220 \\ 321 \\ 400 \\ 420$	$\begin{array}{c} A \\ 5.\ 003 \\ 4.\ 333 \\ 3.\ 274 \\ 3.\ 064 \\ 2.\ 741 \end{array}$	$16 \\ 5 \\ 9 \\ 32 \\ 100$	$\begin{matrix} A \\ 12. 25 \\ 12. 25 \\ 12. 25 \\ 12. 26 \\ 12. 26 \\ 12. 26 \\ 12. 26 \end{matrix}$
$\begin{array}{c} 422 \\ 431 \\ 521 \\ 440 \\ 611 \end{array}$	2. 501 2. 404 2. 2370 2. 1661 1. 9881	$46 \\ 3 \\ 11 \\ 4 \\ 10$	12. 25 12. 26 12. 253 12. 253 12. 253 12. 255
$\begin{array}{c} 631 \\ 444 \\ 640 \\ 721 \\ 642 \end{array}$	$\begin{array}{c} 1.\ 8070\\ 1.\ 7688\\ 1.\ 6992\\ 1.\ 6676\\ 1.\ 6377\end{array}$	$egin{array}{c} 1 \\ 15 \\ 33 \\ 5 \\ 35 \end{array}$	12, 256 12, 255 12, 253 12, 254 12, 255
732 800 653 822 752	$\begin{array}{c} 1.\ 5560\\ 1.\ 5324\\ 1.\ 4646\\ 1.\ 4447\\ 1.\ 3877 \end{array}$	$\begin{array}{c} 3\\14\\2\\2\\1\end{array}$	$\begin{array}{c} 12.\ 252\\ 12.\ 259\\ 12.\ 254\\ 12.\ 258\\ 12.\ 256\end{array}$
$\begin{array}{c} 840 \\ 842 \\ 921 \\ 664 \\ 851 \end{array}$	$\begin{array}{c} 1.\ 3701\\ 1.\ 3372\\ 1.\ 3212\\ 1.\ 3061\\ 1.\ 2915 \end{array}$	$ \begin{array}{r} 10 \\ 18 \\ 1 \\ 5 \\ 2 \end{array} $	12. 254 12. 256 12. 252 12. 252 12. 252
$932 \\ 941 \\ 10.1.1 \\ 10.2.0 \\ 10.3.1$	$\begin{array}{c} 1.\ 2641\\ 1.\ 2379\\ 1.\ 2133\\ 1.\ 2015\\ 1.\ 1682 \end{array}$	3 2 1 2 3	12. 256 12. 255 12. 254 12. 252 12. 252
$\begin{array}{c} 10{\cdot}4{\cdot}0\\ 10{\cdot}3{\cdot}3\\ 10{\cdot}4{\cdot}2\\ 11{\cdot}2{\cdot}1\\ 880 \end{array}$	$\begin{array}{c} 1.\ 1379\\ 1.\ 1282\\ 1.\ 1188\\ 1.\ 0918\\ 1.\ 0832\\ \end{array}$	$\begin{array}{c} 12\\ 3\\ 6\\ 2\\ 6\end{array}$	12. 256 12. 255 12. 256 12. 255 12. 255 12. 255
11.3.210.6.012.0.012.2.011.5.2	$\begin{array}{c} 1.\ 0585\\ 1.\ 0506\\ 1.\ 0212\\ 1.\ 0074\\ 1.\ 0005 \end{array}$	$egin{array}{c} 2 \\ 2 \\ 3 \\ 4 \\ 1 \end{array}$	$\begin{array}{c} 12.\ 253\\ 12.\ 252\\ 12.\ 254\\ 12.\ 256\\ 12.\ 254\end{array}$
$\begin{array}{c} 12 \cdot 2 \cdot 2 \\ 11 \cdot 6 \cdot 1 \\ 11 \cdot 6 \cdot 3 \\ 13 \cdot 2 \cdot 1 \\ 12 \cdot 4 \cdot 4 \end{array}$	$\begin{array}{c} 0. \ 9940 \\ . \ 9749 \\ . \ 9511 \\ . \ 9289 \\ . \ 9239 \end{array}$	$\overset{7}{<1}$	$\begin{array}{c} 12.\ 255\\ 12.\ 254\\ 12.\ 254\\ 12.\ 253\\ 12.\ 253\\ 12.\ 257\end{array}$
$12.6.0 \\ 13.3.2 \\ 12.6.2 \\ 888 \\ 14.3.1$	$\begin{array}{c} . \ 9135\\ . \ 9087\\ . \ 9036\\ . \ 8845\\ . \ 8539\end{array}$	${<}^7_{{4\atop4}{3\atop2}}$	$\begin{array}{c} 12. \ 256 \\ 12. \ 259 \\ 12. \ 257 \\ 12. \ 256 \\ 12. \ 256 \end{array}$
$\begin{array}{c} 12 \cdot 8 \cdot 0 \\ 14 \cdot 4 \cdot 0 \\ 14 \cdot 4 \cdot 2 \\ 15 \cdot 2 \cdot 1 \\ 15 \cdot 4 \cdot 1 \end{array}$. 8498 . 8417 . 8339 . 8081 . 7879	3 7 7 2 3	$\begin{array}{c} 12. \ 256 \\ 12. \ 255 \\ 12. \ 256 \\ 12. \ 255 \\ 12. \ 255 \\ 12. \ 257 \end{array}$
12.10.0	. 7845	8	12.254

Additional published patterns. None.

NBS sample. The sample of europium chloride was received as a hydrate from Lindsay Chemical Co., West Chicago, Ill. It was dried for 2 hr in a hydrogen chloride atmosphere at 400 °C and 30 mm total pressure and transferred in a dry box to a dry atmosphere sample holder which was used to prepare the patterns. An analysis from Lindsay Chemical Co. showed the following impurities: less than 0.2 percent combined of other rare earths, largely samarium, gadolinium, and peodymium.

The sample was very pale yellow. The indices of refraction could not be determined because the material was too hygroscopic.

The *d*-values of the three strongest lines are: 2.526, 2.084, and 3.469 A.

Structural data. The structure of europium chloride has not been reported. It is assumed to have the uranium chloride-type structure, the space group C_{6h}^2 -P6₃/m (No. 176) and 2(EuCl₃) per unit cell.

Lattice constants

		a	c
1961	National Bureau of Standards.	A 7. 375	A 4.134 at 25 °C

The density of europium chloride calculated from the NBS lattice constants is 4.405 g/cm³ at 25 °C.

hkl	1961 National Bureau of Standards Co, 1.7889 A at 25 °C	
	d	Ι
$100 \\ 110 \\ 101$	$\begin{array}{c} A \\ 6. \ 40 \\ 3. \ 687 \\ 3. \ 469 \end{array}$	$65 \\ 39 \\ 78$
$\begin{array}{c} 200\\111\end{array}$	$\begin{array}{c} 3.\ 193 \\ 2.\ 750 \end{array}$	$\begin{array}{c} 23\\ 41 \end{array}$
$201 \\ 210 \\ 300 \\ 211 \\ 002$	$\begin{array}{c} 2. \ 526\\ 2. \ 413\\ 2. \ 128\\ 2. \ 084\\ 2. \ 066 \end{array}$	$ \begin{array}{r} 100 \\ 26 \\ 40 \\ 82 \\ 29 \end{array} $
$102 \\ 220 \\ 112 \\ 310 \\ 202$	1. 966 1. 843 1. 803 1. 770 1. 735	$24 \\ 12 \\ 17 \\ 15 \\ 16$
$311 \\ 400 \\ 212 \\ 302 \\ 410$	$\begin{array}{c} 1. \ 628 \\ 1. \ 596 \\ 1. \ 570 \\ 1. \ 483 \\ 1. \ 394 \end{array}$	$ \begin{array}{r} 13 \\ 10 \\ 31 \\ 27 \\ 23 \end{array} $
$321 \\ 312 \\ 402 \\ 501 \\ 213$	$\begin{array}{c} 1.\ 381\\ 1.\ 346\\ 1.\ 264\\ 1.\ 2204\\ 1.\ 1967 \end{array}$	$29 \\ 12 \\ 17 \\ 6 \\ 16$
$322 \\ 421 \\ 412 \\ 511$	$\begin{array}{c} 1.\ 1952\\ 1.\ 1582\\ 1.\ 1559\\ 1.\ 1053 \end{array}$	$16 \\ 7 \\ 15 \\ 10$

Europium Oxychloride, EuOCI (tetragonal)

ASTM cards. None.

Additional published patterns. None.

NBS sample. The sample of europium oxychloride was prepared at NBS by heating at 700 °C for 5 min a sample of europium chloride from the Lindsay Chemical Co., West Chicago, Ill. Their spectrographic analysis showed the following impurities: a maximum as rare earth oxides of 0.2 percent (largely Sm, Gd, and Nd).

The sample was colorless. The indices of refraction could not be determined because the sample was too fine.

The *d*-values of the three strongest lines are: 2.559, 2.804, and 3.41 A.

Structural data. The structure of EuOCl has not been determined; it is apparently isostructural with PbFCl, with the space group D_{4h}^7 -P4/nmm (No. 129) and 2 (EuOCl) per unit cell.

The density of europium oxychloride calculated from the NBS lattice constants is 6.420 g/cm³ at 25 °C.

hkl	1961 Nation of Standards C at 25	nal Bureau Co, 1.7889 A °C
	d	I
$001 \\ 101 \\ 002 \\ 110 \\ 111$	$\begin{array}{c} A \\ 6.70 \\ 3.41 \\ 3.35 \\ 2.804 \\ 2.586 \end{array}$	$ \begin{array}{r} 16\\63\\10\\74\\8\end{array} $
$102 \\ 003 \\ 112 \\ 200 \\ 103$	$\begin{array}{c} 2.559\\ 2.232\\ 2.150\\ 1.9817\\ 1.9459 \end{array}$	$100\\6\\24\\41\\4$
$201 \\ 113 \\ 211 \\ 202 \\ 004$	$\begin{array}{c} 1. \ 9012 \\ 1. \ 7460 \\ 1. \ 7143 \\ 1. \ 7043 \\ 1. \ 6750 \end{array}$	$\begin{array}{c} 6\\ 20\\ 21\\ 5\\ 2\end{array}$
$212 \\ 104 \\ 203 \\ 114 \\ 220$	$\begin{array}{c} 1.5669\\ 1.5420\\ 1.4820\\ 1.4362\\ 1.4012 \end{array}$	38 13 7 7 9
$213 \\ 221 \\ 005 \\ 301 \\ 222$	$\begin{array}{c} 1. \ 3880 \\ 1. \ 3718 \\ 1. \ 3393 \\ 1. \ 2963 \\ 1. \ 2929 \end{array}$	3 3 5 3

Europium Oxychloride, EuOCl (tetragonal)—Continued

hkl	1961 National Bureau of Standards Co, 1.7889 A at 25 °C		
	d	J	
$\begin{array}{c} 204\\ 105\\ 310\\ 311\\ 302\\ \\ 214\\ 115\\ 223\\ 312\\ 303\\ \\ 006\\ 205\\ 313\\ 321\\ \end{array}$	$\begin{array}{c} A\\ 1.\ 2791\\ 1.\ 2687\\ 1.\ 2534\\ 1.\ 2320\\ 1.\ 2291\\ 1.\ 2166\\ 1.\ 2085\\ 1.\ 1870\\ 1.\ 1739\\ 1.\ 1371\\ 1.\ 1163\\ 1.\ 1091\\ 1.\ 0928\\ 1.\ 0848\\ \end{array}$	2 2 10 5 9 12 2 3 5 4 2 2 5 3	
$ \begin{array}{r} 106, 224 \\ 215 \\ 322 \\ 304, 116 \\ 314 \\ 400 \\ \end{array} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	< 1 1 8 5 3	

Gadolinium Fluoride, GdF₃ (orthorhombic)

ASTM cards

Card number	Index lines	Radiation	Source
$5-0747 \\ 5-0748$	$\begin{array}{c} 1.\ 25\\ 3.\ 24\\ 2.\ 97 \end{array}$	Chromium	Zalkin [1] 1951

Additional published patterns. None.

NBS sample. The sample of gadolinium fluoride was prepared at NBS by the reaction of a solution of gadolinium chloride and hydrofluoric acid. It was heated at 750 °C for 10 min for additional crystal growth. The gadolinium chloride was obtained from the Lindsay Chemical Co., West Chicago, Ill. Their spectrographic analysis showed the presence of the following impurities in the chloride: a maximum as oxides of 0.1 percent samarium and europium plus a trace of terbium. Spectrographic analysis at NBS showed the following additional impurities in the fluoride: 0.01 to 0.1 percent of calcium, and 0.001 to 0.01 percent each of aluminum, iron, magnesium, manganese, lead, and silicon. The sample was colorless. The indices of refraction could not be determined because the sample was too fine-grained.

The *d*-values of the three strongest lines are: 3.236, 1.962, and 3.494 A.

Structural data. Zalkin and Templeton [2] in 1953 determined that gadolinium fluoride has yttrium fluoride-type structure, the space group D_{2h}^{16} Pnma (No. 62) and 4(GdF₃) per unit cell.

		a	b	с
1953	Zalkin and Tem- pleton [2]	$\begin{array}{c} A \\ 6.570 \end{array}$	A 6. 984	A 4. 393
1961	National Bureau of Standards	6. 571	6. 985	4. 393 26 °C

The density of gadolinium fluoride calculated from the NBS lattice constants is 7.056 g/cm³ at 26 °C.

hkl	1961 National Bureau of Standards Co, 1.7889 A at 25 °C	
	d	Ι
$011 \\ 101 \\ 020 \\ 111 \\ 210$	$\begin{matrix} A \\ 3.\ 72 \\ 3.\ 65 \\ 3.\ 494 \\ 3.\ 236 \\ 2.\ 974 \end{matrix}$	$31 \\ 57 \\ 62 \\ 100 \\ 60$
$201 \\ 121 \\ 211 \\ 220 \\ 002$	$\begin{array}{c} 2.\ 633\\ 2.\ 523\\ 2.\ 461\\ 2.\ 393\\ 2.\ 195 \end{array}$	$3 \\ 18 \\ 3 \\ 2 \\ 11$
$221\\102\\112\\131,301\\230$	$\begin{array}{c} 2.\ 102\\ 2.\ 083\\ 1.\ 9959\\ 1.\ 9615\\ 1.\ 8993 \end{array}$	$17 \\ 4 \\ 25 \\ 63 \\ 36$
$\begin{array}{c} 311 \\ 022 \\ 122 \\ 212 \\ 040 \end{array}$	$\begin{array}{c} 1. \ 8876 \\ 1. \ 8590 \\ 1. \ 7881 \\ 1. \ 7662 \\ 1. \ 7455 \end{array}$	18 12 18 17 11
$321 \\ 400 \\ 141 \\ 132, 302 \\ 312$	$\begin{array}{c} 1.\ 7094\\ 1.\ 6423\\ 1.\ 5756\\ 1.\ 5514\\ 1.\ 5137 \end{array}$	$ \begin{array}{r} 16 \\ 6 \\ 6 \\ 8 \end{array} $
$\begin{array}{c} 411 \\ 331 \\ 420 \\ 241 \\ 232 \end{array}$	$\begin{array}{c} 1. \ 5025 \\ 1. \ 4997 \\ 1. \ 4869 \\ 1. \ 4553 \\ 1. \ 4362 \end{array}$	$9 \\ 12 \\ 6 \\ 5 \\ 11$
$\begin{array}{c} 013 \\ 103 \\ 322 \\ 421 \\ 113 \\ 042 \end{array}$	$\begin{array}{c} 1.\ 4329\\ 1.\ 4295\\ 1.\ 4170\\ 1.\ 4079\\ 1.\ 4000\\ 1.\ 3669\end{array}$	$9 < 1 \\ 2 < 1 \\ 3 \\ 5 $
$\begin{array}{r} 430 \\ 142,203 \\ 051 \\ 402,213 \end{array}$	$\begin{array}{c} 1. \ 3427 \\ 1. \ 3375 \\ 1. \ 3315 \\ 1. \ 3146 \end{array}$	$\begin{array}{c} 5\\8\\4\\4\end{array}$
$151, 341 \\ 412 \\ 332 \\ 250 \\ 431$	$\begin{array}{c} 1.\ 3046\\ 1.\ 2928\\ 1.\ 2911\\ 1.\ 2855\\ 1.\ 2832\\ \end{array}$	$\begin{array}{c}11\\1\\2\\5\\4\end{array}$
$501 \\ 223 \\ 033, 511 \\ 422 \\ 303, 133$	$\begin{array}{c} 1.\ 2591\\ 1.\ 2485\\ 1.\ 2394\\ 1.\ 2312\\ 1.\ 2179 \end{array}$	$\begin{vmatrix} 3 \\ 11 \\ 7 \\ 5 \\ < 1 \end{vmatrix}$

hkl	1961 National Bureau of Standards Co, 1.7889 A at 25 °C	
	d	Ι
$313 \\ 440 \\ 521 \\ 060 \\ 152, 233, \\ 342$	$\left.\begin{array}{c}A\\1.\ 1993\\1.\ 1967\\1.\ 1847\\1.\ 1643\\\end{array}\right\}$	2 5 5 6 7
$323 \\ 432 \\ 351 \\ 502$	$\begin{array}{c} 1. \ 1496 \\ 1. \ 1449 \\ 1. \ 1378 \\ 1. \ 1274 \end{array}$	$< \stackrel{2}{\stackrel{4}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset$
$512 \\ 252, 161 \\ 531 \\ 143 \\ 403$	$\begin{array}{c} 1.\ 1127\\ 1.\ 1092\\ 1.\ 1075\\ 1.\ 1056\\ 1.\ 0922 \end{array}$	$< 1 \\ 8 \\ 10 \\ 6 \\ 2$
$104, 610 \\ 413, 333 \\ 522 \\ 114 \\ 261, 450$	$\begin{array}{c} 1.\ 0822\\ 1.\ 0798\\ 1.\ 0730\\ 1.\ 0704\\ 1.\ 0638 \end{array}$	$\begin{array}{c} 7\\12\\6\\6\\2\end{array}$
$601 \\ 243 \\ 442, 611 \\ 024 \\ 352$	$\begin{array}{c} 1.\ 0627\\ 1.\ 0615\\ 1.\ 0506\\ 1.\ 0485\\ 1.\ 0378 \end{array}$	$5\\8\\4\\3\\5$
$124, 451 \\ 062 \\ 541 \\ 621, 162 \\ 532$	$\begin{array}{c} 1.\ 0341\\ 1.\ 0284\\ 1.\ 0214\\ 1.\ 0162\\ 1.\ 0146 \end{array}$	$\begin{array}{c} 7\\ 4\\ 3\\ 2\\ 3\end{array}$
$egin{array}{c} 053 \\ 361 \\ 630 \\ 433 \\ 134 \end{array}$	$\begin{array}{c} 1.\ 0104\\ 1.\ 0010\\ 0.\ 9911\\ .\ 9892\\ .\ 9818 \end{array}$	55684
304, 262	. 9814	6

References

Zalkin, Thesis U. California, Berkeley (1951).
 Allan Zalkin and D. H. Templeton, The crystal structures of YF₃ and related compounds, J. Am. Chem. Soc. 75, 2453-2458 (1953).

Additional published patterns. None.

NBS sample. The sample of gadolinium oxide was prepared by the Lindsay Chemical Co., West Chicago, Ill. The sample was heated in air to 1,200 °C for 48 hr. Their analysis showed the following impurities: a total of less than 0.1 percent of samarium and europium, and a trace of terbium.

The sample was colorless. The index of refraction was not determined because the sample was too fine-grained.

The *d*-values of the three strongest lines are: 3.122, 1.912, and 2.704 A.

Structural data. Pauling and Shappell [1] in 1930 determined that gadolinium oxide has the thallium-oxide type structure (rare earth type C), the space group T_h^7 —Ia3 (No. 206) and 16 (Gd₂O₃) per unit cell. Several unit cell measurements have been converted from kX to angstrom units for comparison with the NBS value.

Lattice constants

$1925 \\ 1939 \\ 1947 \\ 1954 \\ 1961$	Goldschmidt, Barth, and Ulrich [2] Bommer [3] Iandelli [5] Templeton and Dauben [4] National Bureau of Standards	A 10. 81 10. 819 10. 820 10. 813 10. 813 at 25 °C
--	---	---

The density of gadolinium oxide calculated from the NBS lattice constant is 7.616 g/cm³ at 25 °C.

- [1] L. Pauling and M. D. Shappell, The crystal structure of bixbyite and the C modification of the sesquiox-
- ides, Z. Krist. 75, 128-142 (1930).
 [2] V. M. Goldschmidt, T. Barth, and F. Ulrich, Geochemische Verteilungsgesetze der Element IV-Zur Krystallstruktur der Oxyde der seltenen Erdmetalle, Skrifter Norske Videnskaps-Akad. Oslo Math. Naturv. Kl. 1925.
 [3] H. Bommer, Die Gitterhenstender der G. F.
- [3] H. Bommer, Die Gitterkonstanten der C-Formen der Oxyde der seltenen Erdmetalle, Z. anorg. u. allgem. Chem. 241, 273-280 (1939). [4] D. H. Templeton and C. H. Dauben, Lattice param-
- eters of some rare earth compounds and a set of crystal radii, J. Am. Chem. Soc. 76, 5237-5239 (1954)
- [5] A. Iandelli, Sulle modificazioni dei sesquiossidi delle terre rare, Gazz. chim. ital. 77, 312–318 (1947).

hkl	1961 National Bureau of Standards Co, 1. 7889 A at 25 °C			
	d	Ι	a	
$211 \\ 222 \\ 321 \\ 400 \\ 411$	$\begin{matrix} A \\ 4. \ 42 \\ 3. \ 122 \\ 2. \ 890 \\ 2. \ 704 \\ 2. \ 548 \end{matrix}$	$\begin{array}{c}12\\100\\2\\35\\6\end{array}$	A 10. 8 10. 8J 10. 81 10. 81 10. 81	
$ \begin{array}{r} 420 \\ 332 \\ 422 \\ 431 \\ 521 \end{array} $	$\begin{array}{c} 2.\ 418\\ 2.\ 305\\ 2.\ 206\\ 2.\ 120\\ 1.\ 974 \end{array}$	$egin{array}{c}1\\5\\1\\8\\2\end{array}$	10. 81 10. 81 10. 81 10. 81 10. 81	
$ \begin{array}{r} 440 \\ 433 \\ 600 \\ 611 \\ 620 \\ \end{array} $	$\begin{array}{c} 1.\ 912\\ 1.\ 854\\ 1.\ 801\\ 1.\ 754\\ 1.\ 709 \end{array}$	$39 \\ 2 \\ <1 \\ 5 \\ 1$	10. 81 10. 81 10. 81 10. 81 10. 81 10. 81	
541622631444543	$\begin{array}{c} 1.\ 669\\ 1.\ 6300\\ 1.\ 5946\\ 1.\ 5610\\ 1.\ 5298 \end{array}$	3 28 6 6 2	10. 82 10. 812 10. 815 10. 815 10. 815 10. 817	
$ \begin{array}{c c} 640 \\ 721 \\ 642 \\ 732 \\ 800 \\ \end{array} $	$\begin{array}{c} 1.\ 4995\\ 1.\ 4720\\ 1.\ 4454\\ 1.\ 3739\\ 1.\ 3512 \end{array}$	$egin{array}{c}1\\3\\1\\2\\4\end{array}$	10. 813 10. 817 10. 816 10. 818 10. 818	
811 820 653 822 831	$\begin{array}{c} 1.\ 3305\\ 1.\ 3110\\ 1.\ 2925\\ 1.\ 2743\\ 1.\ 2566 \end{array}$	$\begin{array}{c}4\\2\\2\\1\\3\end{array}$	$\begin{array}{c} 10.\ 809\\ 10.\ 811\\ 10.\ 814\\ 10.\ 813\\ 10.\ 810 \end{array}$	
$ \begin{array}{c} 662\\ 840\\ 833\\ 842\\ 921 \end{array} $	$\begin{array}{c} 1.\ 2401\\ 1.\ 2089\\ 1.\ 1941\\ 1.\ 1798\\ 1.\ 1663 \end{array}$		10. 811 10. 813 10. 813 10. 813 10. 813 10. 816	
851932844941 $10.0.0$	$\begin{array}{c} 1.\ 1397\\ 1.\ 1153\\ 1.\ 1035\\ 1.\ 0923\\ 1.\ 0815 \end{array}$	$\begin{array}{c} 2\\ 2\\ 5\\ 3\\ 1\end{array}$	10. 812 10. 813 10. 812 10. 813 10. 813 10. 815	
$ \begin{array}{c} 10.1.1\\ 10.2.0\\ 943\\ 10.2.2\\ 10.3.1 \end{array} $	$\begin{array}{c} 1.\ 0706\\ 1.\ 0601\\ 1.\ 0502\\ 1.\ 0405\\ 1.\ 0310 \end{array}$	$< 1 \\ 4 \\ 1 \\ 5 \\ 2$	$\begin{array}{c} 10.\ 813\\ 10.\ 811\\ 10.\ 812\\ 10.\ 813\\ 10.\ 813\\ 10.\ 813 \end{array}$	
$\begin{array}{c} 871 \\ 10.4.0 \\ 10.3.3 \\ 10.4.2 \\ 954 \end{array}$	$\begin{array}{c} 1.\ 0127\\ 1.\ 0039\\ 0.\ 9953\\ .\ 9870\\ .\ 9789 \end{array}$	$\begin{array}{c} 2\\ 3\\ 2\\ 2\\ 2\\ 2\end{array}$	10. 813 10. 812 10. 812 10. 812 10. 812 10. 812	
$11.2.1 \\ 880 \\ 10.4.4 \\ 11.3.2 \\ 10.6.0$	$\begin{array}{c} . \ 9633 \\ . \ 9557 \\ . \ 9411 \\ . \ 9341 \\ . \ 9271 \end{array}$	$egin{array}{c} 3 \\ 1 \\ 2 \\ 2 \\ 1 \end{array}$	10. 813 10. 812 10. 813 10. 813 10. 813 10. 812	
$ \begin{array}{r} 11.4.1 \\ 10.6.2 \\ 965 \end{array} $. 9204 . 9138 . 9074	3 6 1	10. 813 10. 812 10. 813	
Average value	e of last five lir	nes	10. 813	

Additional published patterns. None.

NBS sample. The sample of gadolinium oxy-chloride was prepared at NBS by heating at 500 °C a sample of $GdCl_3$ obtained from the Lindsay Chemical Co., West Chicago, Ill. Their analysis showed the following total impurities to be less than 0.1 percent oxides of samarium, neodymium, and yttrium, and traces of other rare earths.

The sample was colorless. The indices of refraction could not be determined because the sample was too fine-grained.

The *d*-values of the three strongest lines are: 2.550, 3.403, and 2.795 A. Structural data. A reference to the structure

of gadolinium oxychloride was not found; however, is is apparently isostructural with PbFCl, with the space group D_{4h}^{7} —P4/nmm (No. 129) and 2(GdOCl) per unit cell.

		a	с
1961	National Bureau of Stand- ards	A 3. 950	A 6. 673 at 26 °C

The density of gadolinium oxychloride calcu-lated from the NBS lattice constants is 6.656 g/cm³ at 26 °C.

hkl	1961 National Bureau of Standards Cu, 1.7889A at 26 °C	
	<i>d</i>	I
$\begin{array}{c} 001 \\ 101 \\ 002 \\ 110 \\ 111 \end{array}$	$\begin{array}{c} A \\ 6.\ 68 \\ 3.\ 403 \\ 3.\ 339 \\ 2.\ 795 \\ 2.\ 584 \end{array}$	$30 \\ 85 \\ 11 \\ 78 \\ 6$
$ \begin{array}{r} 102 \\ 003 \\ 112 \\ 200 \\ 103 \end{array} $	$\begin{array}{c} 2.550\\ 2.222\\ 2.141\\ 1.9746\\ 1.9387 \end{array}$	$100 \\ 7 \\ 27 \\ 41 \\ 3$
$201 \\ 113 \\ 211 \\ 202 \\ 004$	$\begin{array}{c} 1. \ 8940 \\ 1. \ 7397 \\ 1. \ 7070 \\ 1. \ 6981 \\ 1. \ 6661 \end{array}$	$7 \\ 20 \\ 25 \\ 8 \\ 1$
$212\\104\\203\\114\\220$	$\begin{array}{c} 1. \ 5610 \\ 1. \ 5362 \\ 1. \ 4772 \\ 1. \ 4320 \\ 1. \ 3967 \end{array}$	$41 \\ 11 \\ 8 \\ 8 \\ 11$
$213 \\ 221 \\ 005 \\ 301 \\ 222$	$\begin{array}{c} 1.\ 3826\\ 1.\ 3675\\ 1.\ 3349\\ 1.\ 2918\\ 1.\ 2882 \end{array}$	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 5 \\ 3 \end{array} $
$204 \\ 105 \\ 310 \\ 311 \\ 302$	$\begin{array}{c} 1.\ 2744\\ 1.\ 2642\\ 1.\ 2492\\ 1.\ 2283\\ 1.\ 2247 \end{array}$	3 2 9 2 8
$214 \\ 115 \\ 223 \\ 312 \\ 303$	$\begin{array}{c} 1.\ 2126\\ 1.\ 2043\\ 1.\ 1821\\ 1.\ 1697\\ 1.\ 1334 \end{array}$	$\begin{array}{c}11\\3\\5\\6\\2\end{array}$
$\begin{array}{r} 006\\ 205\\ 313\\ 321\\ 224, 106 \end{array}$	$\begin{array}{c} 1.\ 1124\\ 1.\ 1059\\ 1.\ 0890\\ 1.\ 0811\\ 1.\ 0708 \end{array}$	$<^1_{{3\atop7}{5\atop1}}$
$215 \\ 322 \\ 304, 116 \\ 314 \\ 400$	$\begin{array}{c} 1.\ 0648\\ 1.\ 0407\\ 1.\ 0332\\ 1.\ 0001\\ 0.\ 9872 \end{array}$	2 9 6 4 4
323	. 9834	1

Additional published patterns. None.

MBS sample. The sample of holmium ethylsulfate nonahydrate was prepared at NBS by R. S. Kaeser from solutions of holmium hydroxide and diethyl sulfate. Spectrographic analysis showed the following impurities: 0.001 to 0.01 percent zirconium and 0.0001 to 0.001 percent each of calcium and lead.

The color of the sample was pink. It is optically negative with the indices of retraction $N_e =$ 1.481 and $N_0 = 1.495$.

The d-values of the three strongest lines are: 4.96, 4.58, and 6.09 A.

Structural data. Ketelaar [1] in 1937 determined the structure of some of the rare earth ethylsulfates. Holmium ethylsulfate nonahydrate is isostructural with neodymium ethylsulfate nonahydrate, having the space group $C_{6b}^2 - P6_3/m$ (No. 176) with 2{Ho[(C_2H_5)SO₄]₃·9H₂O} per unit cell.

Lattice constants

		a	с
1961	National Bureau of Stand-	A	A
1001	ards	13. 928	7.052 at 25 °C

The density of holmium ethylsulfate nonahydrate calculated from NBS lattice constants is 1.969 g/cm³ at 25 °C.

Reference

 J. A. A. Ketelaar, The crystal structure of the ethylsulfates of the rare earths and yttrium, Physica 4, 619-630 (1937).

hkl	1961 National Bureau of Standards Cu, 1.5405 A at 25 °C	
	d	I
$100 \\ 110 \\ 101 \\ 200 \\ 111$	$\begin{array}{c} A \\ 12.\ 13 \\ 6.\ 98 \\ 6.\ 09 \\ 6.\ 03 \\ 4.\ 96 \end{array}$	$78 \\ 22 \\ 85 \\ 53 \\ 100$
$201 \\ 300 \\ 211 \\ 002 \\ 301$	$\begin{array}{c} 4.58\\ 4.019\\ 3.827\\ 3.526\\ 3.495 \end{array}$	$87 \\ 53 \\ 69 \\ 27 \\ 19$
$310 \\ 221 \\ 202 \\ 311 \\ 400$	$\begin{array}{c} 3. \ 346 \\ 3. \ 123 \\ 3. \ 044 \\ 3. \ 024 \\ 3. \ 018 \end{array}$	$20 \\ 22 \\ 15 \\ 16 \\ 10$
$212 \\ 320 \\ 302 \\ 410 \\ 321$	2. 790 2. 769 2. 651 2. 633 2. 578	$36 \\ 19 \\ 16 \\ 17 \\ 24$
$222 \\ 312 \\ 500 \\ 330 \\ 103$	2. 481 2. 428 2. 409 2. 322 2. 305	9 7 5 7 3
$501 \\ 203 \\ 322 \\ 421 \\ 412$	$\begin{array}{c} 2. \ 282 \\ 2. \ 190 \\ 2. \ 177 \\ 2. \ 170 \\ 2. \ 109 \end{array}$	28 19 25 28 20
$213 \\ 511 \\ 303 \\ 600 \\ 502$	$\begin{array}{c} 2.\ 088\\ 2.\ 071\\ 2.\ 030\\ 2.\ 010\\ 1.\ 991 \end{array}$	$15 \\ 28 \\ 2 \\ 8 \\ 5$
$\begin{array}{r} 430\\ 332\\ 313\\ 422, 431\\ 512\end{array}$	$\begin{array}{c} 1. \ 985 \\ 1. \ 938 \\ 1. \ 923 \\ 1. \ 911 \\ 1. \ 845 \end{array}$	$7\\10\\8\\7\\10$
$\begin{array}{c} 610 \\ 323 \\ 611 \\ 004 \\ 602 \end{array}$	1.838 1.791 1.779 1.764 1.7460	10 8 8 7 7 7
$\begin{array}{r} 440\\ 432\\ 114\\ 522, 204\\ 441\end{array}$	1. 7390 1. 7284 1. 7092 1. 6934 1. 6899	5 7 5 8
701	1. 6737	5

Additional published patterns. None.

NBS sample. The sample of iron arsenide was made at the Geophysical Laboratory in Washington, D.C., by L. Clark. A mixture of iron and arsenic was melted at 1,060 °C in an evacuated quartz tube and quenched at 900 °C. Spectrographic analysis showed the following impurities: 0.001 to 0.01 percent each of cobalt, chromium, copper, manganese, molybdenum, and nickel.

The sample was a gray opaque powder.

The *d*-values of the three strongest lines are: 2.588, 1.996, and 2.635 A.

Structural data. Hägg [1] in 1929 determined that iron arsenide has the manganese phosphidetype structure, the space group D_{2h}^{16} —Pnam (No. 62) and 4(FeAs) per unit cell. The unitcell measurements reported by Hägg have been converted from kX to angstrom units for comparison with the NBS values.

Lattice constants

		a	b	с
$1929 \\ 1957$	Hägg [1] Heyding and Cal-	$\begin{array}{c} A \\ 5.\ 439 \\ 5.\ 432 \end{array}$	$\begin{matrix} A \\ 6. \ 028 \\ 6. \ 023 \end{matrix}$	$egin{array}{c} A \ 3.\ 373 \ 3.\ 372 \end{array}$
1961	vert [2]. National Bureau of Standards.	5. 4361	6. 0242	3. 3724 at 25 °C

The density of iron arsenide calculated from NBS lattice constants is 7.861 g/cm³ at 25 °C.

References

- [1] G. Hägg, Röntgenographische Studien über das System
- [1] Eisen-Arsen, Z. Krist. 71, 134 (1929).
 [2] R. D. Heyding and L. D. Calvert, Arsenides of transition metals: The arsenides of iron and cobalt, Can. J. Chem. 35, 449 (1957).

hkl	1961 National Bureau of Standards Co, 1.7889 A at 25 °C		
	d	Ι	
$011 \\ 120 \\ 111 \\ 210 \\ *201$	$\begin{matrix} A \\ 2.942 \\ 2.635 \\ 2.588 \\ 2.478 \\ 2.116 \end{matrix}$	5581006617	
$121 \\ 220 \\ 211 \\ 130 \\ 310$	$\begin{array}{c} 2.\ 076\\ 2.\ 019\\ 1.\ 996\\ 1.\ 884\\ 1.\ 735 \end{array}$	$34 \\ 33 \\ 59 \\ 10 \\ 12$	
$\begin{array}{c} 031 \\ 002 \\ 230 \\ 320 \\ 311 \end{array}$	$\begin{array}{c} 1.\ 725\\ 1.\ 686\\ 1.\ 616\\ 1.\ 553\\ 1.\ 543 \end{array}$	$32 \\ 17 \\ 6 \\ 5 \\ 9$	
$231 \\ 140 \\ 122 \\ 321 \\ 400$	$\begin{array}{c} 1.\ 457\\ 1.\ 452\\ 1.\ 421\\ 1.\ 410\\ 1.\ 3590 \end{array}$		
$\begin{array}{c} 410 \\ 222 \\ *401 \\ 132 \\ 411 \end{array}$	$\begin{array}{c} 1. \ 3255 \\ 1. \ 2942 \\ 1. \ 2605 \\ 1. \ 2564 \\ 1. \ 2337 \end{array}$	$\overset{4}{\overset{6}{5}}_{\overset{5}{5}}$	
$312 \\ 150 \\ 232 \\ 421 \\ 322$	$\begin{array}{c} 1. \ 2093 \\ 1. \ 1763 \\ 1. \ 1663 \\ 1. \ 1629 \\ 1. \ 1423 \end{array}$	$\overset{7}{\underset{3}{\overset{4}{3}}}$	
$\begin{array}{r} 430 \\ 151 \\ 341 \\ 113 \\ 510 \end{array}$	$\begin{array}{c} 1.\ 1253\\ 1.\ 1107\\ 1.\ 0954\\ 1.\ 0829\\ 1.\ 0699 \end{array}$	$\overset{5}{\overset{1}{\overset{13}{\overset{5}{\overset{3}{}}}}}$	
$\begin{array}{c} 402 \\ 251 \\ 123 \\ 213 \end{array}$	$\begin{array}{c} 1.\ 0582\\ 1.\ 0469\\ 1.\ 0341\\ 1.\ 0235 \end{array}$	$\begin{array}{c} 6\\ 2\\ 3\\ 6\end{array}$	

*Contrary to space group.

Additional published patterns. Goldschmidt and Hauptmann [1] 1932. NBS sample. The sample of lanthanum borate

was prepared by E. Levin [2] at NBS from lanthanum oxide and boric oxide. Spectrographic analysis showed the following impurities: 0.001 to 0.01 percent each of aluminum, calcium, and silicon; and 0.0001 to 0.001 percent each of silver, copper, and magnesium.

hkl	1961 National Bureau of Standards Cu, 1.5405 A at 25 °C		
	d	Ι	
$011 \\ 020 \\ 111 \\ 120 \\ 200$	$\begin{matrix} A \\ 4. \ 339 \\ 4. \ 130 \\ 3. \ 492 \\ 3. \ 377 \\ 2. \ 936 \end{matrix}$	$20 \\ 10 \\ 100 \\ 53 \\ 19$	
$121 \\ 210 \\ 002 \\ 201 \\ 130$	$\begin{array}{c} 2. \ 822 \\ 2. \ 767 \\ 2. \ 553 \\ 2. \ 547 \\ 2. \ 493 \end{array}$	$egin{array}{c} 1 \\ 8 \\ 21 \\ 11 \\ 1 \end{array}$	
$211 \\ 031 \\ 220 \\ 112 \\ 022$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} 40 \\ 25 \\ 13 \\ 10 \\ 12 \end{array}$	
$040 \\ 122 \\ 140 \\ 202 \\ 212$	$\begin{array}{c} 2.\ 066\\ 2.\ 037\\ 1.\ 947\\ 1.\ 927\\ 1.\ 875 \end{array}$	$7 \\ 42 \\ 19 \\ 20 \\ 3$	
$231 \\ 311 \\ 320 \\ 222 \\ 240$	1.8691.7851.7681.7681.7461.690	$27 \\ 22 \\ 13 \\ 8 \\ 5$	
$013\\113,241\\142\\151\\400$	$\begin{array}{c} 1.\ 6676\\ 1.\ 6039\\ 1.\ 5482\\ 1.\ 5176\\ 1.\ 4679 \end{array}$	$5 \\ 13 \\ 11 \\ 10 \\ 5$	
$322 \\ 213 \\ 340 \\ 242 \\ 411$	$\begin{array}{c} 1. \ 4539 \\ 1. \ 4497 \\ 1. \ 4207 \\ 1. \ 4084 \\ 1. \ 3906 \end{array}$	$5\\12\\4\\5\\8$	
$\begin{array}{c} 420 \\ 060 \\ 233 \\ 004 \\ 402 \end{array}$	$\begin{array}{c} 1.\ 3832\\ 1.\ 3764\\ 1.\ 2985\\ 1.\ 2769\\ 1.\ 2727\end{array}$	$\begin{array}{c}4\\3\\9\\5\\10\end{array}$	

The color of the sample was white. It is optically negative with the indices of refraction $N_{\alpha} =$ 1.800, $N_{\beta} = 1.877$, and $N_{\gamma} = 1.822$. $2V \approx 20^{\circ}$.

The d-values of the three strongest lines are: 3.492, 3.377, and 2.037 A. Structural data. Goldschmidt and Hauptmann

[1] in 1932 determined that lanthanum borate has the aragonite-type structure, the space group D_{2h}^{16} -Pnam (No. 62) and 4(LaBO₃) per unit cell. The unit cell measurements reported by Goldschmidt

hkl	1961 National Bureau of Standards Cu, 1.5405 A at 25 °C	
	d	Ι
$313 \\ 431 \\ 260 \\ 342 \\ 351$	$egin{array}{c} A \ 1.\ 2695 \ 1.\ 2556 \ 1.\ 2461 \ 1.\ 2412 \ 1.\ 2254 \end{array}$	9 8 7 3 6
$\begin{array}{c} 422 \\ 062 \\ 440 \\ 124 \\ 204 \end{array}$	$\begin{array}{c} 1.\ 2163\\ 1.\ 2117\\ 1.\ 1963\\ 1.\ 1944\\ 1.\ 1710 \end{array}$	$\begin{array}{c} 4\\ 2\\ 2\\ 7\\ 6\end{array}$
$153 \\ 511 \\ 520 \\ 262 \\ 413$	$\begin{array}{c} 1.\ 1620\\ 1.\ 1339\\ 1.\ 1294\\ 1.\ 1199\\ 1.\ 1020 \end{array}$	5 6 6 6 3
$361, 253 \\ 442 \\ 451 \\ 149 \\ 512$	$\begin{array}{c} 1.\ 0994\\ 1.\ 0834\\ 1.\ 0725\\ 1.\ 0675\\ 1.\ 0581 \end{array}$	3 2 2 7 3
$324 \\ 522 \\ 433 \\ 540 \\ 244$	$\begin{array}{c} 1.\ 0351\\ 1.\ 0329\\ 1.\ 0307\\ 1.\ 0207\\ 1.\ 0183 \end{array}$	$\begin{array}{c} 6\\ 8\\ 11\\ 4\\ 5\end{array}$
$353,015\ 370\ 452\ 460\ 115$	$\begin{array}{c} 1.\ 0137\\ 1.\ 0098\\ 1.\ 0080\\ 1.\ 0038\\ 0.\ 9991 \end{array}$	5 5 3 6 6
$371 \\ 600 \\ 404 \\ 513 \\ 035$	$\begin{array}{c} . \ 9913 \\ . \ 9785 \\ . \ 9634 \\ . \ 9602 \\ . \ 9577 \end{array}$	$ \begin{array}{c} 6 \\ 2 \\ 2 \\ 7 \\ 5 \end{array} $
$254 \\ 542 \\ 182 \\ 551 \\ 064, 621$	$\begin{array}{c} . \ 9550 \\ . \ 9478 \\ . \ 9445 \\ . \ 9406 \\ . \ 9356 \end{array}$	$egin{array}{c} 2 \ 6 \ 3 \ 4 \ 2 \end{array}$
462	. 9344	4

and Hauptmann have been converted from kX to angstrom units for comparison with the NBS values.

		a	b	с
1022	Coldsahmidt and	A	A	A
1961	Hauptmann [1]_ National Burgan	5.84	8.24	5. 11
1901	of Standards	5. 872	8. 257	5. 107 at 25 °C

Lattice constants

The density of lanthanum borate calculated from NBS lattice constants is 5.303 g/cm³ at 25 °C.

References

- [2] E. Levin, C. Robbins, and J. Waring, Immiscibility and the system lanthanum oxide-boric acid, J. Am. Ceram. Soc. 44, No. 2, 87-91 (1961).

Lanthanum Chloride, LaCl₃ (hexagonal)

ASTM cards. None. Additional published patterns. None.

NBS sample. The sample of lanthanum chloride was received as a hydrate from Lindsay Chemical Co., West Chicago, Ill. It was dried for 30 min in vacuum at 400 °C and transferred in a dry box to a dry atmosphere sample holder which was used to prepare the patterns. An analysis from Lindsay Chemical Co., showed the following impurities: less than 0.01 percent praseodymium and less than 0.001 percent cerium.

The sample was colorless. The indices of refraction could not be determined because the material was too hygroscopic. The d-values of the three strongest lines are:

2.603, 6.49, and 2.137A.

Structural data. Zachariasen [1] in 1948 determined that lanthanum chloride has the uranium chloride-type structure, the space group C_{6h}^2 -P6₃/m (No. 176) and 2 (LaCl₃) per unit cell.

Lattice constants

		a	с
$\begin{array}{c} 1948\\ 1961 \end{array}$	Zachariasen [1]. National Bureau of Standards.	$\begin{matrix} A \\ 7. \ 483 \\ 7. \ 483 \end{matrix}$	A 4. 375 4. 364 at 25 °C

The density of lanthanum chloride calculated from the NBS lattice constants is 3.848 g/cm³ at 25 °C.

References

[1] W. H. Zachariasen, Crystal chemical studies of the 5-f series of elements, Acta Cryst. 1, 265-268 (1948).

hkl	1961 National Bureau of Standards Cu, 1.5405 A at 25 °C	
	d	Ι
	$\begin{array}{c} A \\ 6. \ 49 \\ 3. \ 742 \\ 3. \ 622 \\ 3. \ 243 \\ 2. \ 844 \end{array}$	79 49 70 20 33
$201 \\ 210 \\ 002 \\ 300 \\ 211$	2. 603 2. 450 2. 184 2. 159 2. 137	$100 \\ 18 \\ 26 \\ 44 \\ 75$
$102 \\ 112 \\ 220 \\ 202 \\ 310$	$\begin{array}{c} 2.\ 071\\ 1.\ 886\\ 1.\ 871\\ 1.\ 810\\ 1.\ 797 \end{array}$	$\begin{array}{c}13\\15\\9\\10\\2\end{array}$
$311 \\ 212 \\ 302 \\ 320 \\ 222, 103$	$\begin{array}{c} 1.\ 662\\ 1.\ 627\\ 1.\ 536\\ 1.\ 486\\ 1.\ 419 \end{array}$	$11 \\ 11 \\ 20 \\ 3 \\ 17$
$321 \\ 312 \\ 203 \\ 402 \\ 213$	$\begin{array}{c} 1.\ 408\\ 1.\ 388\\ 1.\ 327\\ 1.\ 299\\ 1.\ 251 \end{array}$	$\begin{array}{c} 23\\5\\8\\4\\11\end{array}$
$501 \\ 412 \\ 421 \\ 511 \\ 520, 323$	$\begin{array}{c} 1.\ 244\\ 1.\ 187\\ 1.\ 1794\\ 1.\ 1250\\ 1.\ 0383 \end{array}$	$5 \\ 8 \\ 4 \\ 5 \\ 8$

Additional published patterns. None.

NBS sample. The sample of lanthanum magnesium nitrate hydrate was prepared at NBS by Robert Kaeser from stoichiometric mixtures of lanthanum nitrate and magnesium nitrate. Spectrographic analysis showed the following impurities: 0.001 to 0.01 percent strontium; and 0.0001 to 0.001 percent each of calcium, copper, iron, and manganese.

The sample is colorless and optically negative. The indices of refraction are $N_e=1.516$ and $N_o=1.521$.

 $N_0 = 1.521$. The *d*-values of the three strongest lines are: 8.35, 3.994, and 6.43 A.

hkl (hex.)	1961 Nation of Sta Cu, 1.5403	onal Bureau andards 5 A at 25 °C
	<i>d</i>	
$101 \\ 012 \\ 104 \\ 006 \\ 015$	$\begin{array}{c} A\\ 9.\ 24\\ 8.\ 35\\ 6.\ 43\\ 5.\ 77\\ 5.\ 60\end{array}$	$\begin{array}{c} <1 \\ 100 \\ 82 \\ 14 \\ 16 \end{array}$
$110 \\ 113 \\ 202 \\ 107 \\ 024$	$5.521 \\ 4.984 \\ 4.607 \\ 4.397 \\ 4.185$	$54\\4\\6\\10\\58$
$116 \\ 018 \\ 009 \\ 122 \\ 027$	$\begin{array}{c} 3. \ 994 \\ 3. \ 945 \\ 3. \ 854 \\ 3. \ 538 \\ 3. \ 437 \end{array}$	$ \begin{array}{c} 94\\ 19\\ 6\\ 16\\ 4 \end{array} $
$214 \\ 1.0.10 \\ 208 \\ 300 \\ 303$	3. 335 3. 261 3. 211 3. 187 3. 076	$57 < 1 \\ 16 \\ 3 \\ 2$
$217 \\ 0.2.10 \\ 128 \\ 132 \\ 1.1.12$	$\begin{array}{c} 2. & 920 \\ 2. & 806 \\ 2. & 775 \\ 2. & 622 \\ 2. & 557 \end{array}$	$\begin{array}{c} 4 \\ 45 \\ 75 \\ 55 \\ 32 \end{array}$
$134 \\ 2 \cdot 1 \cdot 10 \\ 226 \\ 0 \cdot 1 \cdot 14 \\ 042$	2. 538 2. 501 2. 491 2. 398 2. 370	$12 \\ 35 \\ 52 \\ 26 \\ 1$
$137404318, 0452323 \cdot 0 \cdot 12$	$\begin{array}{c} 2. \ 340 \\ 2. \ 306 \\ 2. \ 261 \\ 2. \ 177 \\ 2. \ 140 \end{array}$	$5 \\ 9 \\ 16 \\ 12 \\ 45$
$324 \\ 1 \cdot 0 \cdot 16 \\ 1 \cdot 3 \cdot 10 \\ 410 \\ 413$	$\begin{array}{c} 2. \ 125 \\ 2. \ 113 \\ 2. \ 107 \\ 2. \ 086 \\ 2. \ 054 \end{array}$	$ \begin{array}{r} 40 \\ 16 \\ 22 \\ 15 \\ 9 \end{array} $
$1 \cdot 2 \cdot 14$ 327 $2 \cdot 2 \cdot 12$	$\begin{array}{c} 2.\ 043\\ 2.\ 004\\ 1.\ 997 \end{array}$	9 12 23
$0.2.16 \\ 4.0.10$	$1.\ 974 \\ 1.\ 966$	$\frac{14}{30}$

hkl (hex.)	1961 National Bureau of Standards Cu, 1.5405 A at 25 °C	
	d	Ι
$\begin{array}{c} 416\\ 238\\ 0{\cdot}0{\cdot}18\\ 2{\cdot}0{\cdot}17\\ 2{\cdot}1{\cdot}16\end{array}$	$\begin{array}{c} A\\ 1. \ 962\\ 1. \ 958\\ 1. \ 927\\ 1. \ 875\\ 1. \ 858\end{array}$	$33 \\ 22 \\ 3 \\ 1 \\ 14$
$\begin{array}{c} 330 \\ 1 \cdot 1 \cdot 18 \\ 422 \\ 2 \cdot 2 \cdot 15 \\ 336 \end{array}$	1. 841 1. 819 1. 797 1. 772 1. 752	8 9 8 5 8
$\begin{array}{c} 0 \cdot 1 \cdot 20 \\ 4 \cdot 1 \cdot 12 \\ 1 \cdot 3 \cdot 16 \\ 428 \\ 0 \cdot 0 \cdot 21 \end{array}$	$\begin{array}{c} 1.\ 706\\ 1.\ 692\\ 1.\ 679\\ 1.\ 669\\ 1.\ 6502 \end{array}$	$ \begin{array}{c} 7 \\ 13 \\ 8 \\ 5 \\ 6 \end{array} $
$\begin{array}{c} 2 \cdot 0 \cdot 20 \\ 2 \cdot 4 \cdot 10 \\ 600 \\ 1 \cdot 2 \cdot 20 \\ 1 \cdot 0 \cdot 22 \end{array}$	$\begin{array}{c} 1. \ 6294 \\ 1. \ 6024 \\ 1. \ 5940 \\ 1. \ 5647 \\ 1. \ 5546 \end{array}$	1 9 7 5 8
$\begin{array}{c} 0 \cdot 4 \cdot 17 \\ 5 \cdot 1 \cdot 10 \\ 345 \\ 0 \cdot 2 \cdot 22 \\ 526 \end{array}$	$\begin{array}{c} 1. \ 5513 \\ 1. \ 5391 \\ 1. \ 5335 \\ 1. \ 4964 \\ 1. \ 4801 \end{array}$	5 5 6 3 4
$\begin{array}{c} 2 \cdot 1 \cdot 22 \\ 2 \cdot 0 \cdot 23 \\ 0 \cdot 5 \cdot 16 \\ 1 \cdot 5 \cdot 14 \\ 1 \cdot 1 \cdot 24 \end{array}$	$\begin{array}{c} 1.\ 4461\\ 1.\ 4369\\ 1.\ 4334\\ 1.\ 4112\\ 1.\ 3972 \end{array}$	$4 \\ < 1 \\ 5 \\ 1 \\ 1$
$ \begin{array}{c c} 2 \cdot 4 \cdot 16 \\ 4 40 \\ 5 \cdot 2 \cdot 12 \\ 704 \\ 4 \cdot 0 \cdot 22 \end{array} $	$ \begin{array}{c} 1. 3873 \\ 1. 3801 \\ 1. 3532 \\ 1. 3496 \end{array} $	$<^2_1$ 1 1
$ \begin{array}{c c} 3 \cdot 0 \cdot 24 \\ 0 \cdot 6 \cdot 15 \\ 538 \\ 627 \\ 0 \cdot 4 \cdot 23 \end{array} $	$ \left. \begin{array}{c} 1. \ 3153 \\ 1. \ 3123 \\ 1. \ 3028 \\ 1. \ 2807 \\ 1. \ 2741 \end{array} \right. $	1 1 <1 <1 <1
7.0.10	1. 2712	1

Structural data. Culvahouse and Sapp [1] in 1959 determined the structure of cerium zinc nitrate hydrate and other rare earth magnesium nitrate hydrates. Due to the similarity of this pattern and cerium magnesium nitrate hydrate we believe the two compounds to be isostructural, having the space group D_{3d}^5 -R3m (No. 166) and $1[La_2Mg_3(NO_3)_{12} \cdot 24H_2O]$ per unit rhombohedral cell or $3[La_2Mg_3(NO_3)_{12}, 24H_2O]$ per unit hexagonal cell.

Lattice constants

		a	с
1961	National Bureau of Stand- ards.	$\begin{smallmatrix} A\\11.042 \end{smallmatrix}$	A 34.66 at 25 °C

The density of lanthanum magnesium nitrate 24-hydrate calculated from NBS lattice constants is 2.079 g/cm³ at 25 °C.

References

[1] J. W. Culvahouse and R. C. Sapp, Structure of cerium zinc nitrate, Department of Physics and Astronomy, University of Kansas (1959). Unpublished report to sponsor.

Lithium Molybdate, Li₂MoO₄ (trigonal)

ASTM cards. None.

Additional published patterns. None.

NBS sample. The sample of lithium molybdate was prepared at NBS by crystallization from a solution of stoichiometric quantities of lithium hydroxide and ammonium molybdate. Spectrographic analysis showed the following impurities: 0.01 to 0.1 percent each of calcium, silicon, and sodium, and 0.001 to 0.01 percent each of aluminum and potassium.

The sample was colorless and optically negative with the indices of refraction $N_e = 1.433$ and

 $N_o = 1.570$. The *d*-values of the three strongest lines are: 4.22, 2.920, and 4.47 A.

Structural data. Zachariasen [1] in 1926 determined that lithium molybdate has phenacite-type structure, the space group C_{3i}^2 —R3 (No. 148) and 18(Li₂MoO₄) per unit hexagonal cell or 6(Li₂MoO₄) per unit rhombohedral cell. According to Goldschmidt [2], there also exists at high temperatures a cubic form with spinel-type structure. Zachariasen's unit cell "a" measurement was multiplied by $\sqrt{3}$ as suggested by Goldschmidt [3]. The cell measurements were then converted from kX to angstrom values for comparison.

Lattice constants

		<i>a</i>	c
$1926 \\ 1961$	Zachariasen [1] National Bureau of Stand- ards.	$\begin{matrix} A \\ 14.\ 23 \\ 14.\ 338 \end{matrix}$	A 9.47 9.588 at 25 °C.

The density of lithium molybdate calculated from the NBS lattice constants is 3.043 g/cm³ at 25 °C.

- [1] W. H. Zachariasen, Note on the crystal structure of phenacite, willemite and related compounds, Norsk geol. tidsskr. 9, 65–73 (1926). [2] V. M. Goldschmidt, Die Gesetze der Krystallochemie,
- [2] V. M. Goldschmidt, Die Gesetze der Krystaliochemie, Geochemische Verteilungsgesetze der Elemente VII (1926), Skrifter Norske Videns.-Akad. Oslo I. Mat.-Nat. Kl. No. 2, 1–117 (1926).
 [3] V. M. Goldschmidt, Untersuchungen über Bau und Eigenschaften von Krystallen, Geochemische Ver-teilungsgesetze VIII (1927), Skrifter Norske Videns.-Akad. Oslo I. Mat.-Nat. Kl. (1926), 1–156 (1927).

hkl (hex.)	1961 National Bureau of Standards Cu, 1.5405 A at 25 °C		
	d	Ι	
$110 \\ 021 \\ 012 \\ 211 \\ 300$	$\begin{matrix} A \\ 7. 17 \\ 5. 21 \\ 4. 47 \\ 4. 22 \\ 4. 14 \end{matrix}$	$12 \\ 5 \\ 38 \\ 100 \\ 15$	
$202 \\ 220 \\ 122 \\ 131 \\ 401$	$\begin{array}{c} 3.\ 794\\ 3.\ 584\\ 3.\ 353\\ 3.\ 241\\ 2.\ 954 \end{array}$	$5 \\ 29 \\ 26 \\ 17 \\ 2$	
$113 \\ 312 \\ 321 \\ 410 \\ 042$	$\begin{array}{c} 2. \ 920 \\ 2. \ 797 \\ 2. \ 730 \\ 2. \ 708 \\ 2. \ 605 \end{array}$	$39 \\ 7 \\ 2 \\ 30 \\ 8$	
$303 \\ 232 \\ 330 \\ 223 \\ 104$	$\begin{array}{c} 2.\ 529\\ 2.\ 449\\ 2.\ 390\\ 2.\ 386\\ 2.\ 354 \end{array}$	$2 \\ 3 \\ 12 \\ 12 \\ 3$	
$241 \\ 502 \\ 511 \\ 214 \\ 422$	$\begin{array}{c} 2.\ 279\\ 2.\ 205\\ 2.\ 173\\ 2.\ 136\\ 2.\ 108 \end{array}$	$10 \\ 11 \\ < 1 \\ 5 \\ 2$	
$\begin{array}{r} 600\\ 152\\ 431\\ 520\\ 333\end{array}$	$\begin{array}{c} 2.\ 070\\ 2.\ 022\\ 1.\ 997\\ 1.\ 988\\ 1.\ 914 \end{array}$	${3\atop6}{11}{10}{14}$	
$\begin{array}{r} 404,015\\ 342\\ 161\\ 324\\ 205\end{array}$	$\begin{array}{c} 1.\ 897\\ 1.\ 878\\ 1.\ 858\\ 1.\ 835\\ 1.\ 834 \end{array}$	$\overset{4}{\overset{2}{_{3}}}_{\overset{3}{_{1}}}_{\overset{1}{_{1}}}$	
$125 \\ 612 \\ 701 \\ 603 \\ 054$	$\begin{array}{c} 1.\ 775\\ 1.\ 761\\ 1.\ 744\\ 1.\ 737\\ 1.\ 724 \end{array}$	$\overset{8}{\overset{5}{\overset{5}{\overset{5}{}}}}$	
$\begin{array}{c c} 621 \\ 244, 315 \\ 072 \\ 710 \\ 514, 045 \end{array}$	$\begin{array}{c} 1. \ 695 \\ 1. \ 676 \\ 1. \ 664 \\ 1. \ 645 \\ 1. \ 632 \end{array}$	$5 \\ 2 \\ 1 \\ 4 \\ 2$	

hkl (hex.)	1961 National Bureau of Standards Cu, 1.5405 A at 25 °C	
	d	Ι
$262 \\ 006 \\ 541 \\ 630, 443 \\ 116$	$\begin{array}{c} A\\ 1.\ 620\\ 1.\ 598\\ 1.\ 568\\ 1.\ 564\\ 1.\ 560\end{array}$	$2 \\ 6 \\ 2 \\ 4 \\ 1$
$\begin{array}{r} 434\\081\\452\\271\\164,425\end{array}$	$\begin{array}{c} 1.554\\ 1.532\\ 1.509\\ 1.498\\ 1.485\end{array}$	$\begin{vmatrix} 2\\ <1\\ 4\\ 2\\ 1 \end{vmatrix}$
$713 \\ 226 \\ 722 \\ 811 \\ 550$	$\begin{array}{c} 1.\ 462\\ 1.\ 460\\ 1.\ 446\\ 1.\ 436\\ 1.\ 434 \end{array}$	$12 \\ 5 \\ -1 \\ -1 \\ 2$
$704 \\ 633 \\ 624, 345 \\ 182 \\ 900$	$\begin{array}{c} 1.\ 427\\ 1.\ 4052\\ 1.\ 3979\\ 1.\ 3906\\ 1.\ 3792 \end{array}$	< 1 6 4 2 5
$\begin{array}{c} 416 \\ 642 \\ 820 \\ 615 \\ 544 \end{array}$	$\begin{array}{c} 1.\ 3764\\ 1.\ 3651\\ 1.\ 3546\\ 1.\ 3473\\ 1.\ 3247 \end{array}$	$\begin{array}{c} & 7 \\ & 1 \\ < 1 \\ < 1 \\ 1 \\ 1 \end{array}$
$217 \\ 084,075 \\ 191 \\ 740 \\ 274,265$	$\begin{array}{c} 1.\ 3148\\ 1.\ 3022\\ 1.\ 2892\\ 1.\ 2872\\ 1.\ 2811 \end{array}$	$egin{array}{c} 2 \\ 1 \\ 1 \\ 1 \\ 2 \end{array}$
$137 \\903, 606 \\912 \\381 \\823$	$\begin{array}{c} 1.\ 2727\\ 1.\ 2652\\ 1.\ 2561\\ 1.\ 2499\\ 1.\ 2469 \end{array}$	$\begin{pmatrix} 1 \\ < 1 \\ 3 \\ 3 \\ 3 \\ 3 \end{pmatrix}$
526464, 4559210.10.2660, 743	$\begin{array}{c} 1.\ 2449\\ 1.\ 2242\\ 1.\ 2138\\ 1.\ 2019\\ 1.\ 1941 \end{array}$	$2 \\ 2 \\ 1 \\ 1 \\ 3$
$018, 446 \\725 \\292 \\247 \\571$	$\begin{array}{c} 1. \ 1928 \\ 1. \ 1894 \\ 1. \ 1855 \\ 1. \ 1829 \\ 1. \ 1801 \end{array}$	2 2 2 2 2 2
$10 \cdot 1 \cdot 0$ 208 841	$\begin{array}{c} 1.\ 1780\\ 1.\ 1771\\ 1.\ 1644 \end{array}$	$2 \\ 2 \\ 1$

Additional published patterns. Bijvoet and Karssen [1] 1924, Bijvoet, Claassen, and Karssen [2] 1926, Zintl, Harder, and Dauth [3] 1934, and Rode, Dobrynina, and Gol'der [4] 1955. NBS sample. The sample of lithium oxide was

prepared at NBS by heating in a vacuum furnace overnight at 650 °C a sample of lithium hydroxide obtained from Fisher Scientific Co. To prevent decomposition it was necessary to protect the lithium oxide from atmospheric moisture and carbon dioxide. A silver boat was used. Spectrographic analysis showed the following impurities: 0.1 to 1.0 percent of calcium; 0.01 to 0.1 percent of sodium; and 0.001 to 0.01 percent each of aluminum, silicon, and vanadium.

The sample was a very fine white powder. The index of refraction was not determined because the sample reacted with index liquids.

The d-values of the three strongest lines are: 2.664, 1.6307, and 1.3906 A.

Structural data. Bijvoet and Karssen [1] in 1924 determined that lithium oxide has fluoritetype structure, the space group O_h^5 -Fm3m (No. 225), and $4(\text{Li}_2\text{O})$ per unit cell.

Lattice constants

1924 Bijvoet and Karssen [1] 4. 1934 Zintl, Harder, and Dauth [3] 4. 1955 Rode, Dobrynina, and Gol'der [4]. 4. 1961 National Bureau of Standards 4.	$\begin{array}{c} A \\ 62 \\ 628 \\ 619 \\ 6114 \text{ at} \\ 25 \ ^{\circ}\text{C} \end{array}$
---	--

The density of lithium oxide calculated from the NBS lattice constant is 2.023 g/cm³ at 25 °C.

Lithium Tungstate, Li₂WO₄ (trigonal)

ASTM cards. None.

Additional published patterns. None.

NBS sample. The sample of lithium tungstate was obtained from the City Chemical Co., New York, N.Y. As received, the sample was hy-drated. After heating to fusion and cooling the sample was found to be the trigonal form. Spectrographic analysis showed the following impurities: 0.001 to 0.01 percent each of aluminum, copper, iron, lead, molybdenum, and silicon.

The sample was colorless with the refractive index $N_o = 1.658$. N_e was not determined because of orientation of the particles under the microscope.

The *d*-values of the three strongest lines are: 4.23, 4.49, and 2.714 A.

Structural data. Zachariasen [1] in 1926 determined that lithium tungstate has phenacite-type structure, the space group C_{31}^2 -R3 (No. 148) and $18(\text{Li}_2\text{WO}_4)$ per unit hexagonal cell or $6(\text{Li}_2\text{WO}_4)$

hkl	1961 National Bureau of Standards Cu, 1.5405 A at 25 °C		
	d	Ι	a
$ \begin{array}{c} 111\\200\\220\\311\\400\\331\\422\\511\\440\\531\end{array} $	$\begin{array}{c} A\\ 2.\ 664\\ 2.\ 306\\ 1.\ 6307\\ 1.\ 3906\\ 1.\ 1531\\ 1.\ 0580\\ 0.\ 9413\\ .\ 8875\\ .\ 8151\\ .\ 7794 \end{array}$	100 8 41 15 3 3 8 4 3 5	$\begin{array}{c} A\\ 4.\ 614\\ 4.\ 613\\ 4.\ 612\\ 4.\ 612\\ 4.\ 612\\ 4.\ 612\\ 4.\ 6117\\ 4.\ 6116\\ 4.\ 6117\\ 4.\ 6110\\ 4.\ 6111\\ \end{array}$
Average value of last five lines 4. 6114			

References

- [1] J. M. Bijvoet and A. Karssen, X-ray investigation of the crystal structure of lithium oxide, Rec. Trav. Chim. Pays-Bas **43**, 680–684 (1924). [2] J. M. Bijvoet, A. Claassen, and A. Karssen, The
- scattering power of lithium and oxygen, determined from the diffraction-intensities of powdered lithium oxide, Proc. Amsterdam 29, 1286-1292 (1926).
- [3] E. Zintl, A. Harder, and B. Dauth, Gitterstruktur der Oxyde, Sulfide, Selenide und Telluride des Lithiums, Natriums und Kaliums, Z. Elektrochem. 40, 588-593 (1934).
- [4] T. V. Rode, T. A. Dobrynina, and G. A. Gol'der, Fizikokhimicheskoye izucheniye perekisi litiya, Izvest. Akad. Nauk S.S.S.R., Otdel. Khim. Nauk, 611-621 (1955).

per unit rhombohedral cell. According to Goldschmidt [2] the substance converts to a cubic spinel-type structure at high temperatures. In addition, there exists at room temperature a cubic hydrate. The "a" unit-cell measurement of

		a	c
1926 1961 1961	Zachariasen [1] Zachariasen and Plettin- ger [37] National Bureau of Stand- ards	$\begin{array}{c} A \\ 14. \ 23 \\ 14. \ 361 \\ 14. \ 361 \end{array}$	$\begin{array}{c} A \\ 9.\ 47 \\ 9.\ 602 \\ 9.\ 603 \\ {\rm at}\ 25 \\ {^\circ}{\rm C}. \end{array}$

hkl (hex.)	1961 Nation of Stand Cu, 1.5405 A	al Bureau lards at 25 °C	hkl (hex.)
	d	T	
$ \begin{array}{r} 110 \\ 021 \\ 012 \\ 211 \\ 300 \\ \end{array} $	$\begin{array}{c} & A \\ 7.2 \\ 5.23 \\ 4.49 \\ 4.23 \\ 4.15 \end{array}$	12 6 46 100 10	$\begin{array}{c} 630,443\\ 434\\ 081\\ 452\\ 271 \end{array}$
$202 \\ 220 \\ 122 \\ 131 \\ 113$	3.803 3.594 3.361 3.246 2.926	$egin{array}{c} 6 \\ 23 \\ 33 \\ 18 \\ 33 \end{array}$	$\begin{array}{c} 306 \\ 164, 425 \\ 802 \\ 713 \\ 226 \end{array}$
$312 \\ 410 \\ 042 \\ 232 \\ 223$	$2.802 \\ 2.714 \\ 2.610 \\ 2.454 \\ 2.390$	$3 \\ 35 \\ 17 \\ 5 \\ 21$	$811 \\ 550 \\ 704 \\ 461 \\ 633$
$104 \\ 241 \\ 024 \\ 502 \\ 511$	$2.358 \\ 2.283 \\ 2.240 \\ 2.209 \\ 2.176$	7 12 3 12 2	$\begin{array}{c} 624,345\\ 182\\ 731\\ 900\\ 416\end{array}$
214 422 600 152 421	2.176 2.138 2.111 2.072 2.025 2.000	2 7 3 3 7	$\begin{array}{c} 642 \\ 820 \\ 615 \\ 372 \\ 027 \end{array}$
$ \begin{array}{r} 134 \\ 333 \\ 404 \\ 342 \\ 161 \end{array} $	$\begin{array}{c} 1.971 \\ 1.918 \\ 1.9004 \\ 1.8816 \\ 1.8610 \end{array}$	$\begin{array}{c c}1\\1\\17\\4\\3\\3\end{array}$	$\begin{array}{r} 336 \\ 544 \\ 217 \\ 084,075 \\ 191 \end{array}$
$324, 205 \\125 \\612 \\701 \\602$	$1.8367 \\ 1.7781 \\ 1.7640 \\ 1.7474 \\ 1.7402$	1 9 2 7 4	$740 \\ 274, 265 \\ 137 \\ 606 \\ 912$
054621523244, 315072	1.7403 1.7278 1.6972 1.6914 1.6783 1.6661	4 6 7 8 3 4	$\begin{array}{c} 407\\ 381\\ 823\\ 526\\ 814 \end{array}$
$710 \\ 514,045 \\ 262 \\ 006 \\ 541$	$1.6474 \\ 1.6350 \\ 1.6228 \\ 1.6004 \\ 1.6710$	4 4 1 5	$\begin{array}{c} 464,455\\832\\921\\734,805\\0\cdot10\cdot2\end{array}$

Lithium Tungstate, Li₂WO₄ (trigonal)—Continued

Zachariasen [1] was multiplied by $\sqrt{3}$ to give the smallest hexagonal cell measurements, which were converted from kX to angstrom units for comparison.

The density of lithium tungstate calculated from the NBS lattice constants is 4.560 g/cm³ at 25 °C.

References

 W. H. Zachariasen, Note on the crystal structure of phenacite, willemite and related compounds, Norsk geol. tidsskr. 9, 65-73 (1926).
 V. M. Goldschmidt, Die Gesetze der Krystallochemie,

1961 National Bureau of Standards Cu, 1.5405 A at 25 °C

Ι

4

 $\frac{2}{2}{4}$

 $\mathbf{2}$

 $<^{1}_{3}$

 ${ < 1 \\ 10 }$

8 2

1

1

1

8

 $\frac{4}{2}$

 $< 1 \\ 4 \\ 10$

 2^{1} $<1^{1}$ $<1^{1}$ $<1^{5}$ 4^{2} 2^{1}

 $< 1 \\ 2 \\ 2 \\ 1 \\ 1$

 $< 1 \\ 4$

 $\frac{3}{2}$ $\frac{2}{2}$ $\frac{2}{2}$ $\frac{2}{2}$

 $\mathbf{2}$

1

 $\frac{\overline{2}}{2}$

< 1

d

1.5668

1.5567

 $\begin{array}{c} 1.5347 \\ 1.5116 \\ 1.5009 \end{array}$

1.4927

1.4879

 $\begin{array}{r} 1.4794 \\ 1.4650 \\ 1.4617 \end{array}$

1.4395

 $1.4363 \\ 1.4279$

1.4118

1.4071

 $1.4003 \\ 1.3930$

 $\begin{array}{c} 1.3846 \\ 1.3816 \\ 1.3785 \end{array}$

 $\begin{array}{c} 1.3674\\ 1.3570\\ 1.3498\\ 1.3429\\ 1.3401\\ 1.3302\\ 1.3267\\ 1.3166\\ 1.3044\\ 1.2916\\ \end{array}$

 $\begin{array}{c} 1.2897 \\ 1.2833 \\ 1.2748 \\ 1.2672 \\ 1.2583 \end{array}$

1.2546

 $\begin{array}{c} 1.2516 \\ 1.2493 \\ 1.2475 \\ 1.2446 \end{array}$

1.2265

1.2215

 $\begin{array}{c} 1.2156 \\ 1.2088 \\ 1.2040 \end{array}$

- [2] V. M. Goldschmidt, Die Gesetze der Krystallochemie, Geochemische Verteilungsgesetze der Elemente VII (1926), Skrifter Norske Videns.-Akad. Oslo I, Mat.-Nat. K1. No. 2, 1-117 (1926).
 [3] W. H. Zachariasen and H. A. Plettinger, The crystal
- [3] W. H. Zachariasen and H. A. Plettinger, The crystal structure of lithium tungstate, Acta Cryst. 14, 229-230 (1961).

Additional published patterns. Zachariasen [1] 1926.

NBS sample. The sample of lutetium oxide was prepared by the Lindsay Chemical Co., West Chicago, Ill. The sample was heated in air to 1,200 °C for 60 hr. Their analysis showed the following impurities: a total of less than 0.1 percent of ytterbium and thulium and traces of other rare earths.

The sample was colorless. The index of refraction could not be determined because the sample was too fine-grained.

The *d*-values of the three strongest lines are: 3.001, 2.598, and 1.837 A.

Structural data. Pauling and Shappell [2] in 1930 determined that lutetium oxide has the thallium-oxide type structure (rare earth type C), the space group $T_{\rm b}^{7}$ -Ia3 (No. 206) and 16(Lu₂O₃) per unit cell. Several unit cell measurements have been converted from kX to angstrom units for comparison.

Lattice constants

1925Goldschmidt, Barth, and Ulrich [3].1939Bommer [4]1954Templeton and Dauben [5]1961National Bureau of Standards	$\begin{matrix} A \\ 10.39 \\ 10.396 \\ 10.391 \\ 10.390 \text{ at} \\ 25 \ ^{\circ}\text{C}. \end{matrix}$
--	---

The density of lutetium oxide calculated from the NBS lattice constant is 9.424 g/cm³ at 25 °C.

- W. Zachariasen, The crystal structure of the modification C of the sesquioxides of the rare earth metals and of indium and thallium, Norske Geol. Tidsskr. 9, 310-316 (1926).
- [2] L. Pauling and M. D. Shappell, The crystal structure of bixbyite and the C modification of the sesquioxides, Z. Krist. 75, 128-142 (1930).
 [3] V. M. Goldschmidt, T. Barth, and F. Ulrich, Geochemische Verteilungsgesetze der Elemente IV—Zur Kurstellatunktung der solltenen Erdmetelle
- [3] V. M. Goldschmidt, T. Barth, and F. Ulrich, Geochemische Verteilungsgesetze der Elemente IV—Zur Krystallstruktur der Oxyde der seltenen Erdmetalle, Skrifter Norske Videnskaps-Akad. Oslo Math. Nat. Kl. (1925).
- [4] H. Bommer, Die Gitterkonstanten der C Formen der Oxyde der seltenen Erdmetalle, Z. anorg. allgem u Chem. 241, 273-280 (1939).
- [5] D. H. Templeton and C. H. Dauben, Lattice parameters of some rare earth compounds and a set of crystal radii, J. Am. Chem. Soc. 76, 5237-5239 (1954).

hkl	National Co, 1	1961 National Bureau of Standards Co, 1.7889 A at 25 °C		
	d	Ι	a	
$211 \\ 222 \\ 321 \\ 400 \\ 411$	$\begin{matrix} A \\ 4. 25 \\ 3. 001 \\ 2. 778 \\ 2. 598 \\ 2. 449 \end{matrix}$	$ \begin{array}{c} 12 \\ 100 \\ 3 \\ 37 \\ 6 \end{array} $	$\begin{matrix} A \\ 10. \ 41 \\ 10. \ 40 \\ 10. \ 40 \\ 10. \ 39 \\ 10. \ 39 \end{matrix}$	
$\begin{array}{c} 420 \\ 332 \\ 422 \\ 431 \\ 521 \end{array}$	$\begin{array}{c} 2. \ 325 \\ 2. \ 216 \\ 2. \ 121 \\ 2. \ 038 \\ 1. \ 898 \end{array}$	$ \begin{array}{c} 1 \\ 5 \\ 1 \\ 9 \\ 3 \end{array} $	$\begin{array}{c} 10.\ 40\\ 10.\ 40\\ 10.\ 39\\ 10.\ 39\\ 10.\ 40\\ \end{array}$	
$\begin{array}{c} 440 \\ 433 \\ 600 \\ 611 \\ 620 \end{array}$	$\begin{array}{c} 1.\ 837\\ 1.\ 782\\ 1.\ 731\\ 1.\ 686\\ 1.\ 643 \end{array}$	$\begin{array}{c} 34\\ 2\\ 1\\ 5\\ 1\end{array}$	$\begin{array}{c} 10. \ 39 \\ 10. \ 39 \\ 10. \ 38 \\ 10. \ 39 \\ 10. \ 39 \\ 10. \ 39 \end{array}$	
$541 \\ 622 \\ 631 \\ 444 \\ 543$	$\begin{array}{c} 1. \ 604 \\ 1. \ 567 \\ 1. \ 532 \\ 1. \ 500 \\ 1. \ 470 \end{array}$	$ \begin{array}{r} 4 \\ 28 \\ 5 \\ 6 \\ 2 \end{array} $	$\begin{array}{c} 10. \ 39 \\ 10. \ 40 \\ 10. \ 39 \\ 10. \ 39 \\ 10. \ 40 \end{array}$	
$\begin{array}{c} 640 \\ 721 \\ 642 \\ 732 \\ 800 \end{array}$	$\begin{array}{c} 1.\ 4413\\ 1.\ 4143\\ 1.\ 3886\\ 1.\ 3199\\ 1.\ 2989 \end{array}$	$\begin{array}{c}1\\3\\2\\3\\3\\3\end{array}$	$\begin{array}{c} 10.\ 393 \\ 10.\ 393 \\ 10.\ 391 \\ 10.\ 393 \\ 10.\ 391 \\ 10.\ 391 \end{array}$	
$\begin{array}{c} 811 \\ 820 \\ 653 \\ 822 \\ 831 \end{array}$	$\begin{array}{c} 1.\ 2791\\ 1.\ 2601\\ 1.\ 2420\\ 1.\ 2246\\ 1.\ 2080\\ \end{array}$	$\begin{array}{c}3\\2\\2\\1\\3\end{array}$	$\begin{array}{c} 10. \ 391 \\ 10. \ 391 \\ 10. \ 391 \\ 10. \ 391 \\ 10. \ 391 \\ 10. \ 392 \end{array}$	
$\begin{array}{c} 662 \\ 840 \\ 833 \\ 842 \\ 921 \end{array}$	$\begin{array}{c} 1.\ 1921\\ 1.\ 1619\\ 1.\ 1477\\ 1.\ 1338\\ 1.\ 1204 \end{array}$	7 5 1 1 2	$\begin{array}{c} 10. \ 392 \\ 10. \ 392 \\ 10. \ 393 \\ 10. \ 392 \\ 10. \ 390 \end{array}$	
$851 \\ 932 \\ 844 \\ 941 \\ 10.0.0$	$\begin{array}{c} 1.\ 0954\\ 1.\ 0719\\ 1.\ 0605\\ 1.\ 0497\\ 1.\ 0392 \end{array}$	$ \begin{array}{c} 2 \\ 2 \\ 5 \\ 3 \\ 2 \end{array} $	$\begin{array}{c} 10.\ 392 \\ 10.\ 392 \\ 10.\ 391 \\ 10.\ 392 \\ 10.\ 392 \\ 10.\ 392 \end{array}$	
$\begin{array}{c} 10 \cdot 1 \cdot 1 \\ 10 \cdot 2 \cdot 0 \\ 943 \\ 10 \cdot 2 \cdot 2 \\ 10 \cdot 3 \cdot 1 \end{array}$	$\begin{array}{c} 1.\ 0290\\ 1.\ 0189\\ 1.\ 0092\\ 0.\ 9999\\ .\ 9907 \end{array}$	$egin{array}{c}1\\5\\1\\5\\4\end{array}$	$\begin{array}{c} 10.\ 392 \\ 10.\ 391 \\ 10.\ 390 \\ 10.\ 391 \\ 10.\ 390 \end{array}$	
$871 \\ 10.4.0 \\ 10.3.3 \\ 10.4.2 \\ 954$	$\begin{array}{c} . \ 9732 \\ . \ 9648 \\ . \ 9566 \\ . \ 9486 \\ . \ 9407 \end{array}$	$ \begin{array}{c} 3 \\ 3 \\ 2 \\ 3 \\ 2 \end{array} $	$\begin{array}{c} 10.\ 391 \\ 10.\ 391 \\ 10.\ 391 \\ 10.\ 391 \\ 10.\ 391 \\ 10.\ 390 \end{array}$	
$\begin{array}{c} 11 \cdot 2 \cdot 1 \\ 880 \end{array}$.9256 .9184	$\frac{3}{1}$	$\begin{array}{c} 10. \ 390 \\ 10. \ 390 \end{array}$	
Average val	ue of last five li	nes	10. 390	

Magnesium Aluminum Silicate (low-cordierite),** Mg₂Al₄Si₅O₁₈ (orthorhombic)

ASTM cards. None. Cards numbered 9-326 and 9-472 give crystallographic data for orthorhombic cordierite; however, the *d*-values listed compare more favorably with the hexagonal cordierite.

Additional published patterns. Byström [1] 1942; Iiyama [2] 1956; Miyashiro, Iiyama, Yamasaki, and Miyashiro [4] 1954.

NBS sample. The sample of low temperature cordierite was prepared at the Geophysical Laboratory in Washington, D.C., by W. Schreyer and J. F. Schairer from stoichiometric mixtures of the oxides as a glass devitrified at 1,000 °C for 3 days, and 1,380 °C for 7 days. Spectrographic analysis showed the following impurities: 0.01 to 0.1 percent each of calcium, iron, sodium, and platinum; and 0.001 to 0.01 percent each of barium, chromium, copper, nickel, and silver. The sample is colorless. The mean index of

The sample is colorless. The mean index of refraction, using a phase contrast microscope with white light, is slightly less than 1.528.

The d-values of the three strongest lines are: 8.45, 8.52, and 3.039 A.

Structural data. Byström [1] in 1942 determined that orthorhombic cordierite has the space group D_{2h}^{20} -Cccm (No. 66) and $4(Mg_2Al_4Si_5O_{18})$ per unit cell. According to Byström [1], the pseudo-hexagonal structure ($a \sim b\sqrt{3}$) is almost identical with that of beryl. The unit cell data reported by Gossner and by Byström have been converted from kX to angstrom units for comparison with NBS values.

Lattice	constants
---------	-----------

		a	b	с
		A	A	A
1928	Gossner [3]	9.80	17.13	9.35
1941	Byström [1]	9.69	17.06	9.37
1954	Miyashiro Iiyama,	9.7	17.1	9.3
	Yamasaki, and Miyashiro [4].			
1956	Iiyama [2]*	9.76	17.12	9.33
1961	National Bureau	9.721	17.062	9. 339 at
	of Standards.			25 °C

*This data is an average of 6 sets from 6 different locations.

References

- [1] A. Byström, The crystal structure of cordierite, Arkiv. Kemi. Mineral. Geol. **15B**, No. 12, 7 (1941–42).
- [2] Iiyama, Optical properties and unit cell dimensions of cordierite and indialite, Mineral. J. 1, No. 6, 372-394 (1956).
- [3] B. Gossner, Structural relation between beryl and cordierite, Central. Mineral. Geol. 1928A, 204-207 (1928).
- [4] A. Miyashiro, T. Iiyama, M. Yamasaki, and T. Miyashiro, The polymorphism of cordierite and indialite, Am. J. Sci. 253, 185-208 (1955).
- [5] W. Schreyer and J. F. Schairer, Compositions and structural states of anhydrous Mg-cordierite: A reinvestigation of the central part of the system MgO-Al₂O₃-SiO₂, J. Petrology 2, No. 3, 324-406 (1961).

The density of low cordierite calculated from NBS lattice constants is 2.505 g/cm³ at 25 °C.

hkl	1961 National Bureau of Standards Cu, 1.5405 A at 25 °C	
	d	Ι
$\begin{array}{c} 020 \\ 110 \\ 130 \\ 200 \\ 002 \end{array}$	$\begin{matrix} A \\ 8.52 \\ 8.45 \\ 4.91 \\ 4.86 \\ 4.67 \end{matrix}$	$98 \\ 100 \\ 28 \\ 10 \\ 13$
040 112 221 132 202	4. 27 4. 09 3. 84 3. 381 3. 369	$egin{array}{c} 1 \\ 52 \\ 1 \\ 51 \\ 38 \end{array}$
$\begin{array}{c} 042\\ 222\\ 151\\ 241\\ 311 \end{array}$	3. 149 3. 132 3. 039 3. 035 3. 012	$25 \\ 56 \\ 64 \\ 64 \\ 56$
$152 \\ 242 \\ 312 \\ 260 \\ 400$	$\begin{array}{c} 2.\ 650\\ 2.\ 644\\ 2.\ 637\\ 2.\ 454\\ 2.\ 430 \end{array}$	$\begin{array}{c} 22\\ 22\\ 12\\ 4\\ 5\end{array}$
332 261 004 171 351	$\begin{array}{c} 2. \ 409 \\ 2. \ 373 \\ 2. \ 334 \\ 2. \ 293 \\ 2. \ 278 \end{array}$	$\begin{array}{c}3\\1\\11\\2\\2\end{array}$
$243 \\ 313 \\ 262 \\ 402 \\ 080$	$\begin{array}{c} 2. \ 234 \\ 2. \ 225 \\ 2. \ 173 \\ 2. \ 156 \\ 2. \ 132 \end{array}$	$\overset{4}{\overset{5}{\overset{5}{\overset{2}{}}}}_{\overset{2}{}}$
$172 \\ 204, 352 \\ 422 \\ 224 \\ 280$	$\begin{array}{c} 2. \ 107 \\ 2. \ 102 \\ 2. \ 091 \\ 2. \ 044 \\ 1. \ 954 \end{array}$	$\begin{array}{c}11\\11\\8\\2\\4\end{array}$
$370 \\ 082 \\ 510 \\ 263, 442 \\ 281$	1. 948 1. 942 1. 932 1. 925 1. 912	${\mathop{<}\limits_{\scriptstyle{5}}^{\scriptstyle{6}}}_{\scriptstyle{3}}$
$314, 173 \\ 353 \\ 423 \\ 460 \\ 530$	1. 882 1. 876 1. 870 1. 848 1. 839	
115461064334225, 0.10.0	1. 825 1. 811 1. 804 1. 798 1. 706	$<\!$
264	1. 691	18

^{**} According to Schreyer and Schairer [5].

Magnesium Aluminum Silicate (high-cordierite),* Mg₂Al₄Si₅O₁₈ (hexagonal)

ASTM cards

Card numbers	Index lines	Radiation	Source
^a 9−326 ^a 9−472	8.54 4.09 3.37 8.58 3.38 3.04	Cobalt Copper	Richardson and Rigby [2] 1949. Claringbull, British Museum.

^a These two cards give crystallographic data for the orthorhomhic form but the pattern contains only hexagonal spacing.

Additional published patterns. Miyashiro and Iiyama [3] 1954 and Miyashiro, Iiyama, Yamasaki. and Miyashiro [4] 1955.

NBS sample. The sample of hexagonal cordierite was prepared at the Geophysical Laboratory in Washington, D.C., by W. Schreyer and J. F. Schairer from stoichiometric mixtures of the oxides as a glass devitrified at 1,000 °C for 16 days. Spectrographic analysis showed the following impurities: 0.01 to 0.1 percent each of iron, nickel, sodium, and platinum; and 0.001 to 0.01 percent each of calcium, chromium, copper, and silver.

The sample is colorless. The mean index of refraction, using a phase contrast microscope with white light, is 1.528.

The *d*-values of the three strongest lines are: 8.46, 3.027, and 3.138 A.

Structural data. Miyashiro and Iiyama [3] in 1954 determined that hexagonal cordierite has the beryl-type structure, the space group D_{6h}^2-P6/mcc (No. 192) and $2(Mg_2Al_4Si_5O_{18})$ per unit cell. Miyashiro and Iiyama [3] call hexagonal cordierite, indialite.

Lattice constants

1954 1954	Miyashiro and Iiyama [3] (natural-a) Miyashiro and Iiyama (synthetic-a)	a A 9. 812 9. 782	c A 9. 351 9. 365
1956	$(synthetic-\beta)$ Iivama [5]	$\begin{array}{c} 9.\ 792 \\ 9.\ 742 \end{array}$	9.349 9.394 ь
$\begin{array}{c} 1956 \\ 1961 \end{array}$	Iiyama National Bureau of Stand-	9. 777	9. 358 °
	ards	9. 770	9. 352 at 25 °C

b Synthesized at 1,000 °C.
c Synthesized above 1,200 °C.

The density of hexagonal cordierite calculated from NBS lattice constants is 2.512 g/cm³ at 25 °C.

hkl	1961 National Bureau of Standards Cu, 1.5405 A at 25 °C		
	d	Ι	
$100 \\ 110 \\ 002 \\ 102 \\ 112$	$\begin{array}{c} A\\ 8.\ 48\\ 4.\ 89\\ 4.\ 679\\ 4.\ 094\\ 3.\ 379\end{array}$	$100 \\ 32 \\ 15 \\ 51 \\ 57$	
$202 \\ 211 \\ 212 \\ 220 \\ 302$	$\begin{array}{c} 3.\ 138\\ 3.\ 027\\ 2.\ 640\\ 2.\ 441\\ 2.\ 414 \end{array}$	$ \begin{array}{r} 66 \\ 86 \\ 26 \\ 6 \\ 4 \end{array} $	
$004 \\ 311 \\ 213 \\ 222 \\ 114$	$\begin{array}{c} 2. \ 338 \\ 2. \ 276 \\ 2. \ 231 \\ 2. \ 165 \\ 2. \ 108 \end{array}$	$12 \\ 5 \\ 5 \\ 6 \\ 8$	
$312 \\ 204 \\ 320 \\ 402 \\ 321$	$\begin{array}{c} 2. \ 098 \\ 2. \ 046 \\ 1. \ 941 \\ 1. \ 927 \\ 1. \ 901 \end{array}$	12 3 8 6 3	
$313 \\ 410 \\ 411 \\ 304 \\ 412$	$\begin{array}{c} 1.\ 875\\ 1.\ 846\\ 1.\ 811\\ 1.\ 800\\ 1.\ 718 \end{array}$	$ \begin{array}{c} 15 \\ 6 \\ 7 \\ 9 \\ 3 \end{array} $	
$224 \\ 314 \\ 323 \\ 330 \\ 215$	$\begin{array}{c} 1.\ 6882\\ 1.\ 6559\\ 1.\ 6472\\ 1.\ 6286\\ 1.\ 6150 \end{array}$	$\begin{array}{c} 28\\ 3\\ 4\\ 4\\ 3\end{array}$	
$\begin{array}{r} 420 \\ 413 \\ 404 \\ 006 \\ 332 \end{array}$	$\begin{array}{c} 1. \ 5988 \\ 1. \ 5885 \\ 1. \ 5690 \\ 1. \ 5584 \\ 1. \ 5377 \end{array}$	6 9 2 3 3	
$324 \\ 116 \\ 315, 206$	$\begin{array}{c} 1.\ 4935\\ 1.\ 4852\\ 1.\ 4625 \end{array}$	8 5 5	

- [1] W. Schreyer and J. F. Schairer, Compositions and structural states of anhydrous Mg-cordierite: A reinvestigation of the central part of the system $MgO-Al_2O_3-SiO_2$, J. Petrology 2, No 3, 324-406 (1961). [2] H M. Richardson and G. M. Rigby, The occurrence
- of iron-cordierite in blast furnace linings, Min. Mag. 28, 547-554 (1949).
- [3] A. Miyashiro and T. Iiyama, A preliminary note on a new mineral, indialite, polymorphic with cordierite, Proc. Japan Acad. 30, 746-751 (1954).
 [4] A. Miyashiro, T. Iiyama, M. Yamasaki, and T. Miyashiro, The polymorphism of cordierite and indialite, Am. J. Sci. 253, 185-208 (1955).
 [5] T. Jiyama, Optical properties and unit coll dimensions.
- [5] T. Iiyama, Optical properties and unit cell dimensions of cordierite and indialite, Mineral. J. 1, No. 6, 372-394 (1956).

^{*} According to Schreyer and Schairer [1].

ASTM cards

Card	Index	Radia-	Source
numbers	lines	tion	
*7-167 7-168	$ 1.74 \\ 2.45 \\ 1.48 $	Copper	Gillery, Pennsyl- vania State University

1961National Bureau of Standards Cu, 1.5405 A at 25 °C hkld Ι A $10.\ 42 \\ 5.\ 17$ $\frac{5}{9}$ 020 040 9 2005.11 $\begin{array}{r}
 210 \\
 220
 \end{array}$ 4.97 18 4.59 194.20 $\frac{1}{5}$ 111 $1\overline{21}$ 3.97 120313.90 3.66 5 1312403.64 49 $\begin{array}{c} 5\\32\\25\end{array}$ 3.473.453201 $\overline{0}\overline{6}\overline{0}$ 2113.430 $\frac{1}{32}$ 3.3121410513.119 $\begin{array}{c} 3. \ 102 \\ 2. \ 980 \\ 2. \ 885 \\ 2. \ 770 \\ 2. \ 744 \end{array}$ $\begin{array}{c} 231 \\ 151 \end{array}$ $\frac{7}{6}$ 2416 301 $\mathbf{23}$ 31132 $\begin{array}{c} 2. \ 691 \\ 2. \ 674 \\ 2. \ 589 \\ 2. \ 572 \\ 2. \ 490 \end{array}$ $\begin{array}{c} 161\\ 321 \end{array}$ 50 $\frac{5}{7}$ 080 331384204 261 $\begin{array}{c} 2.\ 453 \\ 2.\ 443 \end{array}$ 4 341302. 438 2. 399 17170 $\mathbf{21}$ 4300222.3088 $\frac{12}{7}$ 3512.3042. 297 2. 297 2. 256 2. 251 2. 218 440 271100 401, 122 3517 181

Additional published patterns. Sahama [1] 1953.

NBS sample. The sample of humite was prepared by A. Van Valkenburg at NBS by a solid state reaction using magnesium fluoride, quartz, and magnesium carbonate. Spectrographic analysis showed the following impurities: 0.1 to 1.0 percent nickel; 0.01 to 0.1 percent each of aluminum, calcium, iron, and titanium; and 0.001 to

hkl	1961 National Bureau of Standards Cu, 1.5405 A at 25 °C		
$132 \\ 361 \\ 142 \\ 222 \\ 460$	$\begin{matrix} A \\ 2. \ 189 \\ 2. \ 158 \\ 2. \ 107 \\ 2. \ 103 \\ 2. \ 057 \end{matrix}$	$7\\6\\38\\30\\6$	
$2 \cdot 10 \cdot 0, \ 291 \ 501 \ 1 \cdot 10 \cdot 1 \ 521 \ 531$	$\begin{array}{c} 1.\ 920\\ 1.\ 881\\ 1.\ 867\\ 1.\ 850\\ 1.\ 814 \end{array}$	$5\\7\\8\\1\\6$	
$\begin{array}{r} 471 \\ 2\cdot 10\cdot 1 \\ 391 \\ 082 \\ 272 \end{array}$	$\begin{array}{c} 1.\ 794\\ 1.\ 779\\ 1.\ 772\\ 1.\ 7477\\ 1.\ 7387\end{array}$	$2 \\ 6 \\ 5 \\ 6 \\ 65$	
$182 \\ 490, 551 \\ 481 \\ 432 \\ 3\cdot 10\cdot 1, 630$	$\begin{array}{c} 1.\ 7229\\ 1.\ 7117\\ 1.\ 6995\\ 1.\ 6859\\ 1.\ 6581 \end{array}$	$5 \\ 4 \\ 3 \\ 12 \\ 10$	
$\begin{array}{r} 442 \\ 372 \\ 640 \\ 452 \\ 621 \end{array}$	$\begin{array}{c} 1.\ 6486\\ 1.\ 6256\\ 1.\ 6213\\ 1.\ 6032\\ 1.\ 5863\end{array}$	$\begin{array}{c}1\\2\\15\\4\\5\end{array}$	
3.11.1 462 1.10.2, 123 2.13.0 	$\begin{array}{c} 1. \ 5575 \\ 1. \ 5525 \\ 1. \ 5419 \\ 1. \ 5223 \\ 1. \ 5192 \end{array}$	$4 \\ 13 \\ 3 \\ 10 \\ 8$	
$ \begin{array}{r} 4.11.0\\ 1.13.1\\ \overline{670}\\ 3.12.1\end{array} $	$\begin{array}{c} 1.\ 5176\\ 1.\ 4948\\ 1.\ 4895\\ 1.\ 4786\\ 1.\ 4644 \end{array}$	$5 \\ 1 \\ 16 \\ 69 \\ 1$	
$1 \cdot 11 \cdot 2 \\ 303 \\ 163, 2 \cdot 14 \cdot 0$	$\begin{array}{c} 1,\ 4588\\ 1,\ 4326\\ 1,\ 4223 \end{array}$		

0.01 percent each of barium, chromium, copper,

manganese, lead, and vanadium. The color of the sample was cream. It is optically positive with indices of refraction $N_{\alpha}=1.598$, $N_{\beta}=1.606$, and $N_{\gamma}=1.630$. The *d*-values of the three strongest lines are:

2.256, 2.438, and 1.4786 A.

Structural data. Taylor and West [2] in 1928 determined that humite has the space group D_{2b}^{16} -Pnma (No. 62) and $4(3Mg_2SiO_4 \cdot MgF_2)$ per unit cell.

The density of humite calculated from NBS lattice constants is 3.201 g/cm³ at 25 °C.

Lattice constants

		a	Ь	С
1099	Taylor and West	A	A 20 86	A 728 h
1928	[2] ^a Gillery ^a	10. 25 10. 25	20.80 20.84	4.738 5
1961	National Bureau of Standards.	10. 243	20. 72	4.735 at 25°C

^a Natural mineral.

Unspecified angstrom units.

- Th. G. Sahama, Mineralogy of the humite group, Ann. Acad. Sci. Fennicae Ser. A III. Geologia-Geo-graphica No. 31, 1-50 (1953).
 W. H. Taylor and J. West, The crystal structure of the chandratic grains. Base, Sec. (London) 1174.
- chondrodite series, Proc. Roy. Soc. (London) 117A, 517-532 (1927-28).

ASTM cards. None. Additional published patterns. None.

NBS sample. The sample of neodymium borate was prepared at NBS by E. Levin from neodymium oxide and boric oxide. A well-crystallized material was obtained by heating at 1,075 °C for 18 hr. Spectrographic analysis showed the following impurities: 0.01 to 0.1 percent europium and 0.001 to 0.01 percent each of holmium, lanthanum, silicon, and ytterbium.

The color of the sample was light purple. The indices of refraction could not be determined because the sample was too fine-grained.

The *d*-values of the three strongest lines are: 3.427, 3.300, and 2.377 A.

Structural data. According to Levin, Roth, and Martin [1], neodymium borate is isostructural with calcium carbonate, aragonite-type structure, the space group D_{2h}^{16} -Pnam (No. 62) and 4(NdBO₃) per unit cell.

Lattice constants

		a	b	с
1961	National Bureau of Standards.	A 5. 729	A 8. 080	$egin{array}{c} A \\ 5.041 \mathrm{~at} \\ 25 \mathrm{~^{\circ}C} \end{array}$

The density of neodymiun borate calculated from NBS lattice constants is 5.779 g/cm³ at 25 °C.

Reference

 E. Levin, R. Roth, and J. Martin, Polymorphism of ABO₃ type rare earth borates, 46, 1030-1055 (1961). Am. Mineralogist.

hkl	1961 National Bureau of Standards Cu, 1.5405 A at 25 °C	
	d	I
$011 \\ 020 \\ 111 \\ 120 \\ 200$	$\begin{array}{c} & A \\ 4.\ 273 \\ 4.\ 039 \\ \cdot & 3.\ 427 \\ 3.\ 300 \\ 2.\ 865 \end{array}$	$ \begin{array}{r} 18 \\ 10 \\ 100 \\ 51 \\ 18 \end{array} $
$121 \\ 210 \\ 002 \\ 130 \\ 211,031$	$\begin{array}{c} 2.\ 763\\ 2.\ 701\\ 2.\ 520\\ 2.\ 438\\ 2.\ 377 \end{array}$	$5\\5\\18\\6\\46$
$220 \\ 112 \\ 022 \\ 040 \\ 122$	$\begin{array}{c} 2. \ 336 \\ 2. \ 217 \\ 2. \ 138 \\ 2. \ 019 \\ 2. \ 003 \end{array}$	$ \begin{array}{c} 11 \\ 5 \\ 11 \\ 8 \\ 39 \end{array} $
$140 \\ 202 \\ 231 \\ 311 \\ 320$	$1.094 \\1.893 \\1.828 \\1.744 \\1.727$	$22 \\ 19 \\ 30 \\ 21 \\ 12$
$222 \\ 240 \\ 013 \\ 113 \\ 142$	$\begin{array}{c} 1.\ 714\\ 1.\ 650\\ 1.\ 646\\ 1.\ 581\\ 1.\ 519 \end{array}$	
$151 \\ 033 \\ 410 \\ 340 \\ 242$	$\begin{array}{c} 1.\ 4860\\ 1.\ 4257\\ 1.\ 4102\\ 1.\ 3877\\ 1.\ 3812 \end{array}$	$\begin{array}{c}10\\15\\3\\4\\7\end{array}$
$\begin{array}{c} 411 \\ 251 \\ 060 \\ 233 \\ 004 \end{array}$	$\begin{array}{c} 1.\ 3585\\ 1.\ 3558\\ 1.\ 3467\\ 1.\ 2766\\ 1.\ 2604 \end{array}$	${6}{7}{5}{11}{5}$
$\begin{array}{r} 313\\ 252,431\\ 260\\ 114,342\\ 351 \end{array}$	1, 2465 1. 2273 1, 2182 1, 2162 1, 1986	$ \begin{array}{c} 11 \\ 10 \\ 12 \\ 12 \\ 7 \end{array} $
$\begin{array}{c} 062\\ 243\\ 204\\ 153\\ 352 \end{array}$	$\begin{array}{c} 1. \ 1881 \\ 1. \ 1778 \\ 1. \ 1541 \\ 1. \ 1414 \\ 1. \ 1077 \end{array}$	$ \begin{array}{c} 6 \\ 7 \\ 4 \\ 5 \\ 8 \end{array} $
$\begin{array}{c} 171 \\ 262 \end{array}$	$\begin{array}{c} 1. \ 1041 \\ 1. \ 0974 \end{array}$	8 6

Neodymium Borate, NdBO₃ (orthorhombic)

ASTM cards

Card number	Index lines	Radiation	Source
3-0078	$\begin{array}{c} 6. \ 40 \\ 2. \ 55 \\ 2. \ 10 \end{array}$	Molybdenum	Dow Chemical Co.

Additional published patterns. None.

NBS sample. The sample of neodymium chloride was received as a hydrate from Lindsay Chemical Co., West Chicago, Ill. It was dried for 45 min in vacuum at 400 °C and transferred in a dry box to a dry atmosphere sample holder which was used to prepare the patterns. An analysis from Lindsay Chemical Co., showed the following impurities: less than 0.1 percent combined of other rare earths, largely praseodymium and samarium.

The sample was colorless. The indices of refraction could not be determined because the material was too hygroscopic.

The d-values of the three strongest lines are: 2.556, 2.105, and 3.535A.

Structural data. Zachariasen [1] in 1948 determined that neodymium chloride has the uranium chloride-type structure, the space group C_{6n}^2 P_{6_3}/m (No. 176) and 2(NdCl₃) per unit cell.

Lattice	constants
130000000	contotanteo

ards.	1948 1961	Zachariasen [1 National Bureau of Stand- ards.	$ \begin{array}{c} a \\ \hline A \\ 7. 396 \\ 7. 400 \end{array} $	<i>c</i> 4.240 4.240 at 25 °C.
-------	--------------	--	--	---

The density of neodymium chloride calculated from the NBS lattice constants is 4.138 g/cm³ at 25 °C.

hkl	1961 National Bureau of Standards Cu, 1.5405 A at 25 °C	
	d	Ι
100 110 101 200 111 1	$\begin{matrix} A \\ 6. \ 42 \\ 3. \ 702 \\ 3. \ 535 \\ 3. \ 208 \\ 2. \ 788 \end{matrix}$	$67 \\ 41 \\ 68 \\ 22 \\ 31$
$201 \\ 210 \\ 300 \\ 002 \\ 211$	$\begin{array}{c} 2.556\\ 2.422\\ 2.137\\ 2.122\\ 2.105 \end{array}$	$100 \\ 22 \\ 45 \\ 45 \\ 77$
$ \begin{array}{r} 102 \\ 220 \\ 112 \\ 310 \\ 202 \end{array} $	$\begin{array}{c} 2.\ 014\\ 1.\ 851\\ 1.\ 840\\ 1.\ 778\\ 1.\ 769 \end{array}$	$27 \\ 15 \\ 17 \\ 9 \\ 9 \\ 9$
$311 \\ 212 \\ 302 \\ 320 \\ 410$	$\begin{array}{c} 1.\ 639\\ 1.\ 595\\ 1.\ 504\\ 1.\ 471\\ 1.\ 3985 \end{array}$	$14 \\ 14 \\ 22 \\ 6 \\ 20$
$222 \\ 321 \\ 312 \\ 203 \\ 213$	$\begin{array}{c} 1. \ 3937 \\ 1. \ 3890 \\ 1. \ 3625 \\ 1. \ 2927 \\ 1. \ 2210 \end{array}$	$20 \\ 25 \\ 6 \\ 9 \\ 16$
$\begin{array}{c} 412 \\ 511 \\ 323, 114 \end{array}$	$\begin{array}{c} 1.\ 1671 \\ 1.\ 1108 \\ 1.\ 0187 \end{array}$	$\begin{array}{c} 16\\ 8\\ 11 \end{array}$

References

[1] W. H. Zachariasen, Crystal chemical studies of the 5-f series of elements, Acta Cryst. 1, 265-268 (1948).

Additional published patterns. None.

NBS sample. The sample was prepared at NBS by S. Schneider from stoichiometric mixtures of neodymium oxide and gallium oxide. The samples were pressed into pellets and heated at 1,000 °C for 12 hr, then ground, remixed, and again pressed into pellets and heated at 1,350 °C for 6 hr. Spectrographic analysis showed the following impurities: 0.01 to 0.1 percent europium and 0.001 to 0.01 percent each of aluminum, holmium, lanthanum, silicon, and ytterbium.

The color of the sample was light purple. The index of refraction is 1.985.

The *d*-values of the three strongest lines are: 2.796, 2.553, and 1.6712 A.

Structural data. Keith and Roy [1] in 1954 showed that double oxides of trivalent elements in these proportions may have the garnet-type structure. Neodymium gallium oxide is isostructural with other double oxides of trivalent elements, having the space group $O_{\rm h}^{10}$ —Ia3d (No. 230) with 8[Nd₃Ga₂(GaO₄)₃] per unit cell.

Lattice constants

1961 National Bureau of Standar	$ds_{} = \begin{bmatrix} A \\ 12.506 \\ at 25 \ ^{\circ}C. \end{bmatrix}$
---------------------------------	---

The density calculated from the NBS lattice constant is 6.609 g/cm³ at 25 °C.

References

 M. L. Keith and R. Roy, Structural relations among double oxides of trivalent elements, Am. Mineralogist 39 Nos. 1 and 2, 1-23 (1954).

hkl	National Cu, 1	1961 Bureau of St .5405 A at 23	andards 5 °C
	d	Ι	a
$211 \\ 220 \\ 321 \\ 400 \\ 420$	$\begin{array}{c} .4\\ 5.\ 107\\ 4.\ 420\\ 3.\ 342\\ 3.\ 128\\ 2.\ 796\end{array}$	$15 \\ 6 \\ 11 \\ 29 \\ 100$	$\begin{array}{c} A \\ 12.\ 51 \\ 12.\ 50 \\ 12.\ 50 \\ 12.\ 51 \\ 12.\ 50 \end{array}$
$332 \\ 422 \\ 431 \\ 521 \\ 440$	2. 669 2. 553 2. 452 2. 283 2. 211	$\begin{array}{c}1\\46\\3\\11\\4\end{array}$	$12.52 \\ 12.51 \\ 12.50 \\ 12.50 \\ 12.50 \\ 12.51 \\ 12.5$
$\begin{array}{c} 611\\ 620\\ 631\\ 444\\ 640 \end{array}$	$\begin{array}{c} 2. \ 029 \\ 1. \ 977 \\ 1. \ 843 \\ 1. \ 805 \\ 1. \ 735 \end{array}$	$ \begin{array}{r} 13 \\ 2 \\ 4 \\ 16 \\ 29 \end{array} $	12. 51 12. 51 12. 50 12. 51 12. 51 12. 51
$721 \\ 642 \\ 732 \\ 800 \\ 840$	$\begin{array}{c} 1.\ 701\\ 1.\ 6712\\ 1.\ 5883\\ 1.\ 5630\\ 1.\ 3982 \end{array}$		$\begin{array}{c} 12.\ 50\\ 12.\ 505\\ 12.\ 504\\ 12.\ 504\\ 12.\ 507 \end{array}$
$\begin{array}{c} 842 \\ 921 \\ 664 \\ 10 \cdot 2 \cdot 0 \\ 10 \cdot 3 \cdot 1 \end{array}$	$\begin{array}{c} 1.\ 3646\\ 1.\ 3489\\ 1.\ 3333\\ 1.\ 2267\\ 1.\ 1923 \end{array}$	$\begin{array}{c} 20\\ 3\\ 8\\ 5\\ 4\end{array}$	$\begin{array}{c} 12.\ 507\\ 12.\ 509\\ 12.\ 507\\ 12.\ 510\\ 12.\ 505 \end{array}$
$10.4.0 \\ 10.3.3 \\ 10.4.2 \\ 11.2.1 \\ 880$	$\begin{array}{c} 1. \ 1614 \\ 1. \ 1513 \\ 1. \ 1417 \\ 1. \ 1143 \\ 1. \ 1056 \end{array}$	$\begin{array}{c} 17\\2\\10\\3\\9\end{array}$	$\begin{array}{c} 12.\ 509\\ 12.\ 506\\ 12.\ 507\\ 12.\ 508\\ 12.\ 508\\ 12.\ 508\end{array}$
$11.3.2 \\ 12.0.0 \\ 12.2.0 \\ 11.5.2 \\ 12.2.2$	$\begin{array}{c} 1. \ 0801 \\ 1. \ 0422 \\ 1. \ 0281 \\ 1. \ 0212 \\ 1. \ 0146 \end{array}$	$\begin{array}{c}2\\7\\9\\6\\10\end{array}$	$\begin{array}{c} 12.\ 503\\ 12.\ 506\\ 12.\ 507\\ 12.\ 507\\ 12.\ 509 \end{array}$
$11.6.3 \\ 13.2.1 \\ 12.4.4 \\ 12.6.0 \\ 13.3.2$	$\begin{array}{c} 0. \ 9707 \\ . \ 9482 \\ . \ 9425 \\ . \ 9321 \\ . \ 9272 \end{array}$	$\begin{array}{c}3\\1\\7\\13\\2\end{array}$	$\begin{array}{c} 12.\ 503\\ 12.\ 507\\ 12.\ 504\\ 12.\ 505\\ 12.\ 509 \end{array}$
$12.6.2 \\ 888 \\ 14.3.1 \\ 12.8.0 \\ 14.4.0$	$\begin{array}{c} . \ 9219 \\ . \ 9025 \\ . \ 8715 \\ . \ 8670 \\ . \ 8589 \end{array}$	$\begin{array}{c} 6\\ 6\\ 3\\ 4\\ 13 \end{array}$	$\begin{array}{c} 12.\ 505\\ 12.\ 505\\ 12.\ 508\\ 12.\ 504\\ 12.\ 506\end{array}$
$\begin{array}{c} 14{\cdot}4{\cdot}2\\ 15{\cdot}2{\cdot}1\\ 15{\cdot}3{\cdot}2\\ 12{\cdot}10{\cdot}0\\ 14{\cdot}7{\cdot}1\end{array}$	$\begin{array}{c} . \ 8510 \\ . \ 8245 \\ . \ 8107 \\ . \ 8007 \\ . \ 7973 \end{array}$	$\begin{array}{c}10\\4\\2\\13\\2\end{array}$	$\begin{array}{c} 12.\ 507\\ 12.\ 504\\ 12.\ 507\\ 12.\ 507\\ 12.\ 505\end{array}$
14.6.4	. 7941	10	12. 507
Average val	ue of last five	lines	12. 506

ASTM cards. None. Additional published patterns

Source	Radiation
Olshausen [1] 1925	Copper
Harcourt [2] 1942	Copper

NBS sample. The sample of gersdorffite was prepared by R. Yund of the Geophysical Laboratory at 725 °C. Spectrographic analysis showed the following impurities: 0.001 to 0.01 percent each of aluminum, copper, and iron; and 0.0001 to 0.001 percent each of silver and magnesium.

The sample was a gray opaque powder.

The *d*-values of the three strongest lines are: 2.545, 2.325, and 1.7163A.

Structural data. Peacock and Henry [3] in 1947 determined that gersdorffite has the pyrite type structure, the space group T_h^6 —Pa3 (No. 205), and 4(NiAsS) per unit cell. Several unit cell measurements have been converted from kX to angstrom units for comparison with the NBS value.

Lattice constants

1925 Olshausen [1] A 1925 Ramsdell [4] 5. 731 1926 Goldschmidt [5] 5. 69 1927 Peacock and Henry [3] 5. 66 1961 National Bureau of Standards 5. 692 at 25 °C

The density of gersdorffite calculated from the NBS lattice constant is 5.966 g/cm³ at 25 °C.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	cl _	Cu, 1.5405 A at 25 °C		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		d	Ι	a
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		A		A
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	3.285	5	5. 690
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	02	2.848	59	5. 696
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21	2.545	100	5. 692
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	2.325	88	5. 694
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22	2.013	33	5. 693
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13	1.7163	79	5. 692
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22	1.6436	10	5. 694
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	23	1.5786	10	5. 692
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	23	1.5214	37	5. 693
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	04	1.4232	6	5. 693
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	33	$1.\ 3057$	3	5. 691
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	24	1.2730	6	5. 693
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	24	1.2422	15	5. 692
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	33	1.2138	7	5. 693
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	24	$1.\ 1616$	6	5.691
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15	1.0955	20	5. 692
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	25	1.0571	14	5. 693
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	25	1. 0393	8	5. 692
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	1. 0063	20	5. 692
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	06	0.9485	1	5. 691
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	61	.9357	2	5. 692
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16	. 9233	18	5. 692
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	26	. 8998	4	5. 691
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26	. 8888	-4	5. 691
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	35	. 8680	8	5. 692
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	26	. 8580	4	5. 692
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	53	. 8485	10	5. 692
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	36	. 8393	7	5. 692
236 . 8131 3 5. 6	14	. 8215	1	5. 692
	36	. 8131	3	5. 691
117 . 7970 1 5.6	17	. 7970	1	5. 692
046 . 7893 8 5. 6	16	. 7893	8	5. 692
146 . 7819 14 5. 6	46	. 7819	14	5. 692

- S. v. Olshausen, Strukturuntersuchungen nach der Debye-Scherrer Methode, Z. Krist. 61, 463-514 (1925).
- [2] G. A. Harcourt, Tables for the identification of minerals by X-ray Powder Patterns, Am. Mineralogist 27, 63 (1942).
- [3] M. A. Peacock and W. G. Henry, The crystal structures of cobaltite (CoAsS), gersdorffite (NiAsS), and ullmannite (NiSbS), Univ. Toronto Studies, Geol. Series 52, 71 (1947).
- [4] L. S. Ramsdell, The crystal structure of some metallic sulfides, Am. Mineralogist 10, 281 (1925).
 [5] V. M. Goldschmidt, Geochemische Verteilungsgesetze
- [5] V. M. Goldschmidt, Geochemische Verteilungsgesetze VIII, Skrifter Norske Vidensk. Akad. Oslo, Math. Nat. Kl. 8, 390 (1926–27).

The sample of nickel carbonate NBS sample. was prepared by Thelma Isaacs at NBS by heating basic nickelous carbonate (Fischer's reagent), solid CO_2 , and distilled water in a Morey bomb at 270 °C for two weeks. Spectrographic analysis showed the following impurities: 0.01 to 0.1 percent of sodium; 0.001 to 0.01 percent each of aluminum, copper, platinum, and silicon.

The color of the sample was green. It was optically negative with the indices of refraction $N_o=1.913$ and $N_e=1.696$. The *d*-values of the three strongest lines are:

2.708, 3.512, and 1.6811 A.

Structural data. Bizette and Langlès [1] in 1950 determined that nickel carbonate has calcitetype structure, the space group $D_{3d}^6 - R\overline{3}c$ (No. 167) and 6(NiCO₃) per unit cell.

The rhombohedral cell reported by Bizette and Langlès was converted to hexagonal for comparison.

Lattice constants

		a	c
1950 1961	Bizette and Langlès National Bureau of Stand- ards.	$\begin{array}{c} A \\ 4.596 \\ 4.609 \end{array}$	A 14.622 14.737 at 25 °C.

The density of pickel carbonate calculated from the NBS lattice constants is 4.362 g/cm³ at 25 °C.

References

[1] H. Bizette and R. de Saint-Léon Langlès, Préparation d'un carbonate de nickel neutre rhomboédrique, Bull. soc. chim. France 1041, (1950).

hkl (hex.)	1961 National Bureau of Standards Cu, 1.5405 A at 25 °C	
	d	Ι
$012\\104\\110\\113\\202$	$\begin{matrix} A \\ 3.\ 512 \\ 2.\ 708 \\ 2.\ 304 \\ 2.\ 086 \\ 1.\ 926 \end{matrix}$	48 100 27 34 28
$024 \\ 116 \\ 018 \\ 211 \\ 122$	$\begin{array}{c} 1.\ 7546\\ 1.\ 6811\\ 1.\ 6734\\ 1.\ 5001\\ 1.\ 4782 \end{array}$	$15 \\ 43 \\ 37 \\ 2 \\ 17$
$214 \\ 1.0.10 \\ 208 \\ 119 \\ 300$	$\begin{array}{c} 1. \ 3961 \\ 1. \ 3834 \\ 1. \ 3542 \\ 1. \ 3351 \\ 1. \ 3310 \end{array}$	$ \begin{array}{r} 13 \\ 3 \\ 6 \\ 9 \\ 14 \end{array} $
$0.0.12 \\ 217 \\ 0.2.10 \\ 128 \\ 220$	$\begin{array}{c} 1.\ 2287\\ 1.\ 2262\\ 1.\ 1857\\ 1.\ 1672\\ 1.\ 1526 \end{array}$	$5\\3\\2\\6\\1$
$1 \cdot 1 \cdot 12 \\ 134 \\ 2 \cdot 1 \cdot 10 \\ 226 \\ 0 \cdot 1 \cdot 14$	$\begin{array}{c} 1. \ 0843 \\ 1. \ 0606 \\ 1. \ 0546 \\ 1. \ 0435 \\ 1. \ 0175 \end{array}$	$\overset{4}{\overset{4}{_{3}}}_{\overset{4}{_{<1}}}$
$1 \cdot 2 \cdot 11 \\ 404 \\ 318 \\ 2 \cdot 0 \cdot 14 \\ 232$	$\begin{array}{c} 1.\ 0010\\ 0.\ 9633\\ .\ 9490\\ .\ 9310\\ .\ 9088 \end{array}$	$ \begin{array}{c} 9 \\ 5 \\ < 1 \\ 2 \end{array} $
$2.1.13 \\ 1.1.15 \\ 3.0.12 \\ 407$. 9067 . 9036 . 9027 . 9006	$\begin{array}{c}1\\1\\4\\2\end{array}$

ASTM cards

Card number	Ind ex lines	Radiation	Source
3-0760	$\begin{array}{c} 2. \ 77 \\ 1. \ 85 \\ 2. \ 50 \end{array}$	Copper	Harcourt [1] 1942

Additional published patterns. Alsen [2] 1925; Kolkmeijer and Moseveld [3]; Levi and Baroni [4].

NBS sample. The sample of millerite was obtained from the National Museum, catalog #113065. Spectrographic analysis showed the following impurities: 5 percent iron; 0.1 to 1.0 percent arsenic, cobalt, copper, and silicon; 0.01 to 0.1 percent each of aluminum, calcium, magnesium, manganese, and zinc; and 0.001 to 0.01 percent each of silver and barium. A small amount of chalcopurite, CuFcS, was present as an impurity in the physical mixture.

The sample was a gray opaque powder.

The *d*-values of the three strongest lines are: 2.777, 1.8631, and 2.513 A.

Structural data. Alsen [2] in 1925 determined that millerite has the space group C_{3v}^{5} —R3m (No. 160) and 9(NiS) per unit hexagonal cell or 3(NiS) per unit rhombohedral cell. Several unit cell measurements have been converted from kX to angstrom units for comparison with the NBS value.

1925 1926 1931	Alsen [2] Ott [5] Kolkmeijer and Moseveld [3].	<i>a</i> 9. 62 9. 63 9. 609	$\begin{array}{c} c \\ A \\ 3.16 \\ 3.161 \\ 3.171 \end{array}$
19 35 194 7 196 1	[3]. Levi and Baroni [4] Lundqvist [6] National Bureau of Standards.	9. 63 9. 610 9. 620	3. 16 3. 151 3. 149 at 25 °C

The density of millerite calculated from the NBS lattice constant is 5.374 g/cm³ at 25 °C.

hkl (hex.)	1961 National Bureau of Standards Cu, 1.5405 A at 25 °C	
	d	1
$110 \\ 101 \\ 300 \\ 021 \\ 220$	$\begin{matrix} A \\ 4. \ 807 \\ 2. \ 946 \\ 2. \ 777 \\ 2. \ 513 \\ 2. \ 406 \end{matrix}$	$62 \\ 41 \\ 100 \\ 64 \\ 12$
$211 \\ 131 \\ 410 \\ 401 \\ 321$	$\begin{array}{c} 2.\ 228\\ 1.\ 8631\\ 1.\ 8178\\ 1.\ 7372\\ 1.\ 6340 \end{array}$	$56 \\ 97 \\ 43 \\ 42 \\ 17$
$330 \\ 012 \\ 600 \\ 520 \\ 312$	$\begin{array}{c} 1.\ 6037\\ 1.\ 5470\\ 1.\ 3884\\ 1.\ 3343\\ 1.\ 3008 \end{array}$	$\begin{array}{c} 35\\27\\8\\4\\9\end{array}$
$042 \\ 440 \\ 161 \\ 502 \\ 422,701$	$\begin{array}{c} 1.\ 2560\\ 1.\ 2023\\ 1.\ 1783\\ 1.\ 1447\\ 1.\ 1133 \end{array}$	$8\\6\\4\\5\\15$
$710\\152, 621\\342\\541\\612, 081$	$\begin{array}{c} 1.\ 1033\\ 1.\ 0846\\ 1.\ 0333\\ 1.\ 0104\\ 0.\ 9888 \end{array}$	$\begin{array}{c} 7\\ 8\\ 12\\ 6\\ \cdot & 6\end{array}$
$\begin{array}{r} 303 \\ 262, 811 \\ 461 \\ 413, 820 \\ 731 \end{array}$	$\begin{array}{c} . \ 9820 \\ . \ 9316 \\ . \ 9143 \\ . \ 9090 \\ . \ 8984 \end{array}$	${ { 88 \atop { 83 \atop { 68 \atop { 88 $
740	. 8640	5

- G. A. Harcourt, Tables for the identification of ore minerals by X-ray powder patterns, Am. Mineralogist 27, 63-113 (1942).
 N. Alger Barta (1942).
- [2] N. Alsen, Röntgenographische Untersuchung der Kristallstructuren von Magnetkies, Breithauptit, Pentlandit, Millerit, und verwandten Verbindungen, Geol. Fören. i. Stockholm Förh. 47, 19-72 (1925).
- Geol. Fören. i. Stockholm Förh. 47, 19–72 (1925).
 [3] N. H. Kolkmeijer and A. L. Th. Moseveld, Über die Dichte und Struktur des Millerits (rhomboedrischen Nickelsulfids). Z. Krist. 80, 91 (1931).
- Nickelsulfids), Z. Krist. 80, 91 (1931).
 [4] G. R. Levi and A. Baroni, Struttura ed alterazioni di struttura di NiS e di NiSe, Z. Krist. A92, 210-215 (1935).
- [5] H. Ott, Die Strukturen von MnO, MnS, AgF, NiS, SnI, SrCl, BaF; Präzisionsmessungen einiger Alkalihalogenide; Z. Krist. 63, 222–230 (1926).
- [6] D. Lundqvist, X-Ray studies on the binary system Ni-S, Arkiv. Kemi Mineral. Geol. 24A, No. 21, 1–12 (1947).

Potassium Dihydrogen Arsenate, KH₂AsO₄ (tetragonal)

ASTM cards. None.

Additional published patterns. None.

NBS sample. Potassium dihydrogen arsenate was prepared at NBS by dissolving arsenic trioxide in nitric acid and then adding a solution of potassium carbonate. The purity of the sample was improved by several recrystallizations. Spectrographic analysis showed the following impurities: 0.01 to 0.1 percent each of sodium and lead, and 0.001 to 0.01 percent each of aluminum, antimony, calcium, copper, iron, magnesium, and silicon.

The sample was colorless and optically negative with the refractive indices $N_0=1.562$ and $N_e=1.519$.

The *d*-values of the three strongest lines are: 3.810, 2.980, and 2.000 A.

Structural data. Helmholtz and Levine [1] in 1942 discovered that potassium dihydrogen arsenate is an isotype of potassium dihydrogen phosphate, with the space group D_{2d}^{12} –I42d (No. 122) and 4(KH₂AsO₄) per unit cell. Several unit cell measurements have been converted from kX to angstrom units for comparison with the NBS values.

Lattice constants

		a	<i>c</i>
$\begin{array}{c} 1942 \\ 1946 \end{array}$	Helmholtz and Levine [1] Frevel, Rinn and Anderson	$\begin{array}{c} A \\ 7.\ 67 \\ 7.\ 63 \end{array}$	A 7. 18 7. 13
1950	[2]. Dickson and Ubbelohde [3]_	7.624	7. 163 at 18 °C
1961	National Bureau of Stand- ards.	7.630	7. 163 at 25 °C

The density of potassium dihydrogen arsenate calculated from the NBS lattice constants is 2.866 g/cm³ at 25 °C.

- L. Helmholtz and R. Levine, A determination of parameters in potassium dihydrogen arsenate and silver arsenate, J. Am. Chem. Soc. 64, 354-358 (1942).
- [2] L. K. Frevel, H. W. Rinn, and H. C. Anderson, Tabulated diffraction data for tetragonal isomorphs, Ind. Eng. Chem. Anal. Ed. 18, 83-93 (1946).
- Eng. Chem. Anal. Ed. 18, 83–93 (1946).
 [3] D. H. W. Dickson and A. R. Ubbelohde, The hydrogen bond in crystals. VIII. The isotope effect in KH₂AsO₄, Acta Cryst. 3, 6–9 (1950).

hkl	1961 National Bureau of Standards Cu, 1.5405 A at 25 °C	
	d	Ι
$ \begin{array}{r} 101 \\ 200 \\ 211 \\ 112 \\ 220 \end{array} $	$\begin{array}{c} A \\ 5. 21 \\ 3. 810 \\ 3. 078 \\ 2. 980 \\ 2. 697 \end{array}$	65 100 28 87 31
$202 \\ 310 \\ 301 \\ 321 \\ 312$	$\begin{array}{c} 2.\ 610\\ 2.\ 412\\ 2.\ 397\\ 2.\ 029\\ 2.\ 000 \end{array}$	${ \begin{smallmatrix} 6 \\ 4 \\ < 1 \\ 8 \\ 72 \end{smallmatrix} }$
$213 \\ 400 \\ 411,004 \\ 303 \\ 420$	1. 956 1. 908 1. 792 1. 741 1. 707	4 9 4 5 18
$204 \\ 332 \\ 323 \\ 422 \\ 501, 224$	$\begin{array}{c} 1.\ 622\\ 1.\ 6070\\ 1.\ 5833\\ 1.\ 5405\\ 1.\ 4925 \end{array}$	$ \begin{array}{r} 14 \\ 18 \\ 3 \\ 1 \\ 13 \\ \end{array} $
$\begin{array}{r} 413\\ 314\\ 105\\ 521\\ 512\end{array}$	1. 4629 1. 4379 1. 4071 1. 3897 1. 3808	$2 \\ 1 \\ < 1 \\ 3 \\ 16$
$ \begin{array}{r} 440 \\ 215 \\ 404 \\ 503 \\ 600 \\ \end{array} $	$\begin{array}{c} 1. \ 3491 \\ 1. \ 3209 \\ 1. \ 3054 \\ 1. \ 2852 \\ 1. \ 2716 \end{array}$	$3 < 1 \\ 6 \\ 1 \\ 22$
$\begin{array}{r} 305 \\ 611, 424 \\ 532 \\ 523 \\ 620 \end{array}$	$\begin{array}{c} 1. \ 2482 \\ 1. \ 2353 \\ 1. \ 2291 \\ 1. \ 2184 \\ 1. \ 2066 \end{array}$	$1\\8\\12\\<1\\10$
$\begin{array}{c} 602\\ 325\\ 541\\ 116\\ 415\end{array}$	$\begin{array}{c} 1. \ 1985 \\ 1. \ 1865 \\ 1. \ 1754 \\ 1. \ 1656 \\ 1. \ 1331 \end{array}$	$<1 \\ 1 \\ 2 \\ 3 \\ <1$
$\begin{array}{r} 631 \\ 613 \\ 701, 444 \\ 316 \\ 640 \end{array}$	$\begin{array}{c} 1.\ 1232\\ 1.\ 1103\\ 1.\ 0776\\ 1.\ 0700\\ 1.\ 0581 \end{array}$	$\begin{array}{c}1\\1\\2\\4\\2\end{array}$
$721, 604 \\712 \\642, 107 \\406 \\624$	$\begin{array}{c} 1.\ 0369\\ 1.\ 0332\\ 1.\ 0142\\ 1.\ 0118\\ 1.\ 0004 \end{array}$	$2 \\ 10 \\ 1 \\ < 1 \\ 2$
$336 \\ 426 \\ 651 \\ 732 \\ 800$	$\begin{array}{c} 0. \ 9944 \\ . \ 9774 \\ . \ 9679 \\ . \ 9648 \\ . \ 9538 \end{array}$	$\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{6}{\overset{1}{1$
615	. 9435	<1

Additional published patterns. None.

NBS sample. The sample of praseodymium chloride was received as a hydrate from Lindsay Chemical Co. Chicago, Ill. It was dried for 2 hr in vacuum at 400 °C and transferred in a dry box to a dry atmosphere sample holder which was used to prepare the patterns. An analysis from Lindsay Chemical Co., showed the following impurities: less than 1 percent combined of lathanum, neodymium, and smaller amounts of cerium and samarium.

The sample was very pale green. The indices of refraction could not be determined because the material was too hygroscopic.

The *d*-values of the three strongest lines are: 2.571, 2.112, and 3.56A.

Structural data. Zachariasen [1] in 1948 determined that praseodymium chloride has the uranium chloride-type structure, the space group C_{6h}^2 -P6₃/m (No. 176) and 2 (PrCl₃) per unit cell.

Lattice constants

		a	с
194 196	Zachariasen [1]. National Burea ards	u of Stand- 7. 42 7. 42	$\begin{array}{c c} A \\ 4.26 \\ 3 \\ 4.272 \\ at 25 ^{\circ}C \end{array}$

The density of praseodymium chloride calculated from the NBS lattice constants is 4.027 g/cm³ at 25 °C.

hkl	1961 National Bureau of Standards Cu, 1.5405 A at 25 °C	
	d	Ι
$ 100 \\ 110 \\ 101 \\ 200 \\ 111 $	$\begin{matrix} A \\ 6. \ 46 \\ 3. \ 72 \\ 3. \ 56 \\ 3. \ 22 \\ 2. \ 81 \end{matrix}$	$56 \\ 41 \\ 65 \\ 16 \\ 28$
$201 \\ 210 \\ 300 \\ 211 \\ 102$	$\begin{array}{c} 2.571 \\ 2.429 \\ 2.140 \\ 2.112 \\ 2.027 \end{array}$	$ \begin{array}{r} 100 \\ 19 \\ 58 \\ 79 \\ 31 \end{array} $
$112 \\ 310 \\ 202 \\ 311 \\ 212$	$\begin{array}{c} 1.853\\ 1.782\\ 1.779\\ 1.645\\ 1.604 \end{array}$	$\begin{cases} 25 \\ 17 \\ 15 \\ 18 \end{cases}$
$302 \\ 320 \\ 222 \\ 321 \\ 312$	$\begin{array}{c} 1.512\\ 1.475\\ 1.402\\ 1.394\\ 1.369\end{array}$	$ \begin{array}{r} 23 \\ 4 \\ 22 \\ 30 \\ 8 \end{array} $
$203 \\ 213 \\ 412 \\ 421 \\ 511$	$\begin{array}{c} 1. \ 302 \\ 1. \ 229 \\ 1. \ 173 \\ 1. \ 169 \\ 1. \ 1148 \end{array}$	$\left. \begin{array}{c} 11 \\ 17 \\ 14 \\ 10 \end{array} \right.$
323	1. 0241	12

References

 W. H. Zachariasen, Crystal chemical studies of the 5-f series of elements, Acta Cryst. 1, 265-268 (1948)

ASTM cards. None. Additional published patterns. None.

NBS sample. The sample of samarium chloride was received as a hydrate from Lindsay Chemical Co., West Chicago, Ill. It was dried for one and one-half hours in vacuum at 400 °C and transferred in a dry box to a dry atmosphere sample holder which was used to prepare the patterns. An analysis from Lindsay Chemical Co., showed the following impurities: less than 0.1 percent combined of other rare earths, largely neodynium, gadolinium, and europium.

The sample was colorless. The indices of refraction could not be determined because the material was too hygroscopic.

The d-values of the three strongest lines are: 2.538, 2.090, and 3.494A.

Structural data. The structure of samarium chloride has not been reported. It is assumed to have the uranium chloride-type structure, the space group $C_{6h}^2-P6_3/m$ (No. 176) and $2(SmCl_3)$ per unit cell.

Lattice constants

		a	с
1961	National Bureau of Stand- ards.	A 7. 380	A 4. 169 at 25 °C

The density of samarium chloride calculated from the NBS lattice constants is 4.334 g/cm³ at 25 °C.

hkl	1961 National Bureau of Standards Cu, 1.5405 A at 25 °C	
	d	Ι
$ \begin{array}{r} 100 \\ 110 \\ 101 \\ 200 \\ 111 \\ 201 \\ 210 \\ 300 \\ 211 \\ 102 \\ \end{array} $	$\begin{array}{c} A\\ 6.\ 393\\ 3.\ 694\\ 3.\ 494\\ 3.\ 198\\ 2.\ 764\\ \hline 2.\ 538\\ 2.\ 416\\ 2.\ 131\\ 2.\ 090\\ 1.\ 983\\ \end{array}$	$ \begin{array}{r} 66\\ 49\\ 75\\ 21\\ 34\\ 100\\ 20\\ 36\\ 90\\ 16\\ \end{array} $
$220 \\ 112 \\ 310 \\ 202 \\ 311$	$\begin{array}{c} 1.\ 845\\ 1.\ 814\\ 1.\ 772\\ 1.\ 746\\ 1.\ 630 \end{array}$	$12 \\ 1 \\ 13 \\ 10 \\ 13 \\ 13$
$\begin{array}{r} 400 \\ 212 \\ 302 \\ 410 \\ 321 \end{array}$	$\begin{array}{c} 1. \ 5973 \\ 1. \ 5783 \\ 1. \ 4895 \\ 1. \ 3946 \\ 1. \ 3833 \end{array}$	$10 \\ 15 \\ 21 \\ 14 \\ 30$
$312 \\ 203 \\ 501 \\ 213 \\ 412$	$\begin{array}{c} 1. \ 3506 \\ 1. \ 2744 \\ 1. \ 2224 \\ 1. \ 2046 \\ 1. \ 1594 \end{array}$	$9\\10\\14\\12\\18$
$511\\323$	1. 1066 1. 0087	9 14

ASTM cards

Card numbers	Index lines	Radiation	Source
3-1046	2.02 1.97	Copper	Oftedal [1] 1929
5–0563	$\begin{array}{c} 1.10\\ 3.12\\ 2.00\\ 1.96 \end{array}$	Chromium	Zalkin [2] 1951

Additional published patterns. None.

NBS sample. The sample of samarium fluoride was prepared at NBS by reacting samarium oxide with hydrofluoric acid. It was heated at 900 °C for 5 min to improve the pattern. Spectrographic analysis showed the following impurities: 0.01 to 0.1 percent each of aluminum, calcium, and silicon; and 0.001 to 0.01 percent each of iron and magnesium.

The color of the sample was very light gray. The indices of refraction could not be determined because the sample was too fine-grained.

The *d*-values of the three strongest lines are: 3.13, 1.960, and 2.008 A.

Structural data. Oftedal [3] in 1931 determined that samarium fluoride has the sapce group D_{6b}^3 $P6_3/mcm$ (No. 193) with $6(SmF_3)$ per unit cell. Samarium fluoride is isomorphous with lanthanum fluoride, which is used as a structure type. At high temperatures, hexagonal samarium fluoride converts to an orthorhombic form. The unit-cell measurements of Oftedal have been converted from kX to angstrom units for comparison with the NBS values.

		a 	c A
1923 1953 1961	Zalkin and Templeton [4] National Bureau of Stand- ards.	6. 956 6. 952	7. 120 7. 122 at 26 °C

The density of samarium fluoride calculated from the NBS lattice constants is 6.928 g/cm³ at 26 °C.

hkl	1961 National Bureau of Standards Cu, 1.5405 A at 26 °C	
	d	I
$002 \\ 110 \\ 111 \\ 112 \\ 300$	$\begin{matrix} A \\ 3.56 \\ 3.48 \\ 3.13 \\ 2.487 \\ 2.008 \end{matrix}$	$49 \\ 30 \\ 100 \\ 10 \\ 54$
$113\\004\\302\\221\\114$	$\begin{array}{c} 1.\ 960\\ 1.\ 779\\ 1.\ 748\\ 1.\ 689\\ 1.\ 584 \end{array}$	$58 \\ 9 \\ 36 \\ 19 \\ 9$
$222 \\ 223, 214 \\ 304 \\ 115 \\ 411$	$\begin{array}{c} 1.562\\ 1.4022\\ 1.3316\\ 1.3180\\ 1.2921 \end{array}$	
$224 \\ 412 \\ 006 \\ 330 \\ 413, 404$	$\begin{array}{c} 1.\ 2436\\ 1.\ 2333\\ 1.\ 1870\\ 1.\ 1588\\ 1.\ 1497 \end{array}$	$5\\1\\6\\9\\12$
$116\\332,225\\414\\306\\600$	$\begin{array}{c} 1.\ 1233\\ 1.\ 1019\\ 1.\ 0569\\ 1.\ 0216\\ 1.\ 0032 \end{array}$	$5 \\ 12 \\ 2 \\ 8 \\ 5$
$226 \\ 117 \\ 334 \\ 415, 602 \\ 521$	$\begin{array}{c} 0. \ 9803 \\ . \ 9765 \\ . \ 9711 \\ . \ 9657 \\ . \ 9555 \end{array}$	$<1 \\ 1 \\ 3 \\ 10 \\ 8$

- [1] I. Oftedal, Über die Kristallstruktur von Tysonit und eignigen künstlich dargestellten Lanthanidenfluo-
- riden, Z. physik. Chem. B5, 272-291 (1929).
 [2] Zalkin, Thesis, U. California, Berkeley (1951).
 [3] I. Oftedal, Zur Kristallstruktur von Tysonit (Ce, La, . . .)F₃, Z. physik. Chem. [B13, 190-200
- (1931).[4] A. Zalkin and D. H. Templeton, The crystal structures of YF3 and related compounds, J. Am. Chem. Soc. 75, 2453-2458 (1953).

ASTM cards

Card num- ber	Index lines	Radia- tion	Source
8-188	2.76 2.53 1.66	Copper	Keith and Roy [1] 1954.

Additional published patterns. None.

NBS sample. The sample was prepared at NBS by S. Schneider from stoichiometric mixtures of samarium oxide and gallium oxide. The samples were pressed into pellets and heated at 1,350 °C for 6 hr, then ground, remixed, and again pressed into pellets and heated at 1,650 °C for 6 hr. Spectrographic analysis showed the following impurities: 0.01 to 0.1 percent dysprosium and 0.001 to 0.01 percent each of aluminum, gadolinium, lanthanum, silicon, and thulium.

The color of the sample was yellowish white. The index of refraction is >2.00.

The *d*-values of the three strongest lines are: 2.781, 2.540, and 1.6614 A.

Structural data. Keith and Roy [1] in 1954 showed that double oxides of trivalent elements had the garnet structure. The garnets have the space group O_{h}^{10} -Ia3d (No. 230) with $8 [Sm_{3}Ga_{2}(GaO_{4})_{3}]$ per unit cell.

Lattice constants

$1954 \\ 1961$	Keith and Roy [1] National Bureau of Standards	A 12.355 12.432 at 25 °C
----------------	---	-----------------------------------

The density calculated from the NBS lattice constant is 6.854 g/cm³ at 25 °C.

References

 M. L. Keith and R. Roy, Structural relations among double oxides of trivalent elements, Am. Mineralogist 39 Nos. 1 and 2, 1-23 (1954).

hkl	Cu, 1	Bureau of 1.5405 A at	Standards 25 °C
	d	Ι	a
$211 \\ 220 \\ 321 \\ 400 \\ 420$	$\begin{array}{c} A \\ 5.\ 081 \\ 4.\ 403 \\ 3.\ 321 \\ 3.\ 108 \\ 2.\ 781 \end{array}$	$13 \\ 5 \\ 10 \\ 31 \\ 100$	$\begin{array}{c} A \\ 12.\ 45 \\ 12.\ 45 \\ 12.\ 43 \\ 12.\ 43 \\ 12.\ 43 \\ 12.\ 44 \end{array}$
$\begin{array}{c} 422 \\ 431 \\ 521 \\ 440 \\ 611 \end{array}$	2. 540 2. 440 2. 271 2. 199 2. 016	$\begin{array}{c} 44\\3\\13\\4\\11\end{array}$	$12. 44 \\ 12. 44 \\ 12. 44 \\ 12. 44 \\ 12. 44 \\ 12. 43$
$\begin{array}{c} 631 \\ 444 \\ 640 \\ 721 \\ 642 \end{array}$	$\begin{array}{c} 1.\ 834\\ 1.\ 794\\ 1.\ 724\\ 1.\ 692\\ 1.\ 661 \end{array}$	$3 \\ 17 \\ 33 \\ 5 \\ 35$	$12. 44 \\ 12. 43 \\ 12. 43 \\ 12. 44 \\ 12. 43$
$732 \\800 \\840 \\842 \\921$	$\begin{array}{c} 1.\ 579\\ 1.\ 5543\\ 1.\ 3902\\ 1.\ 3568\\ 1.\ 3402 \end{array}$	$4 \\ 15 \\ 10 \\ 20 \\ 3$	12. 44 12. 434 12. 434 12. 435 12. 435
$\begin{array}{c} 664\\ 932\\ 10{\cdot}2{\cdot}0\\ 10{\cdot}3{\cdot}1\\ 10{\cdot}4{\cdot}0 \end{array}$	1. 3254 1. 2825 1. 2190 1. 1852 1. 1543	$\begin{array}{c} 7\\ 3\\ 3\\ 4\\ 18\end{array}$	12. 433 12. 434 12. 431 12. 431 12. 431 12. 432
$10.3.3 \\ 10.4.2 \\ 11.2.1 \\ 880 \\ 11.3.2$	$\begin{array}{c} 1.\ 1444\\ 1.\ 1348\\ 1.\ 1073\\ 1.\ 0988\\ 1.\ 0740 \end{array}$	$\begin{array}{c}1\\7\\9\\2\\3\end{array}$	12. 431 12. 431 12. 429 12. 432 12. 432
$\begin{array}{c} 12.0.0\\ 12.2.0\\ 11.5.2\\ 12.2.2\\ 11.6.3\end{array}$	$\begin{array}{c} 1.\ 0359\\ 1.\ 0220\\ 1.\ 0154\\ 1.\ 0084\\ 0.\ 9646 \end{array}$	$4 \\ 5 \\ 3 \\ 9 \\ 4$	12. 431 12. 433 12. 436 12. 432 12. 428
$\begin{array}{c} 12 \cdot 4 \cdot 4 \\ 12 \cdot 6 \cdot 0 \\ 13 \cdot 3 \cdot 2 \\ 12 \cdot 6 \cdot 2 \\ 888 \end{array}$	$\begin{array}{c} . \ 9369 \\ . \ 9264 \\ . \ 9214 \\ . \ 9163 \\ . \ 8971 \end{array}$	$5 \\ 13 \\ 5 \\ 5 \\ 7$	$12. 429 \\12. 429 \\12. 430 \\12. 429 \\12. 430 \\12. 430 \\$
$\begin{array}{c} 14.2.0 \\ 14.3.1 \\ 12.8.0 \\ 14.4.0 \\ 14.4.2 \end{array}$	$\begin{array}{c} . \ 8786\\ . \ 8660\\ . \ 8620\\ . \ 8538\\ . \ 8459\end{array}$	$\begin{array}{c}2\\4\\5\\11\\10\end{array}$	$12. \ 426 \\ 12. \ 430 \\ 12. \ 432 \\ 12. \ 431 \\ 12. \ 432$
$\begin{array}{c} 15.2.1 \\ 14.6.0 \\ 15.3.2 \\ 12.10.0 \\ 14.6.4 \end{array}$. 8197 . 8161 . 8059 . 7959 . 7895 .	$3 \\ 3 \\ 2 \\ 13 \\ 12$	12. 431 12. 431 12. 433 12. 432 12. 432 12. 433

Additional published patterns. None.

NBS sample. The sample of samarium oxychloride was prepared at NBS by heating at 900 °C for 30 min a sample of samarium chloride from the Lindsay Chemical Co., West Chicago, Ill. Their spectrographic analysis showed the following impurities: a maximum as rare earth oxides of 0.1 percent (largely Nd, Gd, and Eu).

The sample was a very pale yellow-white. The indices of refraction could not be determined because the sample was too fine-grained.

The *d*-values of the three strongest lines are: 2.569, 3.43, and 2.816 A.

Structural data. The structure of SmOCl has not been determined; however, it is apparently isostructural with PbFCl, with the space group D_{4h}^7 -P4/nmm (No. 129) and 2(SmOCl) per unit cell.

Lattice constants

		a	с
1961	National Bureau of Stand- ards	A 3. 982	A 6. 721 at 26 °C

The density of samarium oxychloride calculated from the NBS lattice constants is 6.287 g/cm³ at 26 °C.

hkl	1961 National Bureau of Standards Cu, 1.5405 A at 26 °C	
	d	Ι
$001 \\ 101 \\ 002 \\ 110 \\ 111$	$\begin{matrix} A \\ 6.\ 73 \\ 3.\ 43 \\ 3.\ 36 \\ 2.\ 816 \\ 2\ 595 \end{matrix}$	$27 \\ 91 \\ 10 \\ 78 \\ 13$
$102 \\ 003 \\ 112 \\ 200 \\ 103$	$\begin{array}{c} 2, \ 569 \\ 2, \ 239 \\ 2, \ 158 \\ 1, \ 9905 \\ 1, \ 9540 \end{array}$	$ \begin{array}{r} 100 \\ 8 \\ 28 \\ 38 \\ 6 \end{array} $
$201 \\ 113 \\ 211 \\ 202 \\ 004$	$\begin{array}{c} 1. \ 9087 \\ 1. \ 7530 \\ 1. \ 7211 \\ 1. \ 7131 \\ 1. \ 6814 \end{array}$	$9 \\ 22 \\ 30 \\ 15 \\ 6$
$212 \\ 104 \\ 203 \\ 114 \\ 220$	$\begin{array}{c} 1.\ 5734\\ 1.\ 5477\\ 1.\ 4884\\ 1.\ 4431\\ 1.\ 4080 \end{array}$	$39 \\ 19 \\ 10 \\ 4 \\ 12$
$213 \\ 221 \\ 005 \\ 301 \\ 222$	$\begin{array}{c} 1. \ 3948 \\ 1. \ 3781 \\ 1. \ 3439 \\ 1. \ 3023 \\ 1. \ 2994 \end{array}$	$<\!\!\! \begin{array}{c} 1 \\ 4 \\ 5 \\ 6 \\ 5 \end{array} $
$204 \\ 105 \\ 310 \\ 311 \\ 302$	$\begin{array}{c} 1.\ 2836\\ 1.\ 2742\\ 1.\ 2592\\ 1.\ 2383\\ 1.\ 2346 \end{array}$	$egin{array}{c} 4 \\ 8 \\ 10 \\ 10 \\ 12 \end{array}$
$214 \\ 115 \\ 223 \\ 312 \\ 303$	$\begin{array}{c} 1.\ 2221\\ 1.\ 2130\\ 1.\ 1926\\ 1.\ 1790\\ 1.\ 1423 \end{array}$	$ \begin{array}{r} 10 \\ 6 \\ 5 \\ 10 \\ 8 \end{array} $
$\begin{array}{c} 006\\ 205\\ 313\\ 321\\ 224, 106 \end{array}$	$\begin{array}{c} 1.\ 1201\\ 1.\ 1143\\ 1.\ 0978\\ 1.\ 0900\\ 1.\ 0794 \end{array}$	3 9 7 7 5
215322304, 116314400	$\begin{array}{c} 1.\ 0726\\ 1.\ 0494\\ 1.\ 0415\\ 1.\ 0078\\ 0.\ 9957 \end{array}$	$ \begin{array}{c} 7 \\ 10 \\ 8 \\ 6 \\ 14 \end{array} $

Silver Carbonate, Ag₂CO₃ (monoclinic)

ASTM cards

Card number	Index lines	Radiation	Source
1-1071	2.652.732.27	Molyb- denum.	Hanawalt, Rinn, and Frevel [1] 1938.

Additional published patterns. None. NBS sample. The sample of silver carbonate was prepared at NBS from solutions of silver nitrate and potassium carbonate. Spectrographic analysis showed the following impurities: 0.001 to 0.01 percent each of aluminum and silicon, and 0.0001 to 0.001 percent each of calcium, copper, iron, and magnesium.

The color of the sample was a greenish yellow. The indices of refraction could not be determined because the sample was too fine-grained.

The *d*-values of the three strongest lines are: 2.66, 2.74, and 2.27 A.

Structural data. Donohue and Helmholz [2] reported that Eldridge [3] in 1943 determined the structure of silver carbonate, having the space group $C_2^2 - P2_1$ (No. 4) and 2 (Ag₂CO₃) per unit cell. The unit cell measurements reported by Eldridge have been converted from kX to angstrom units for comparison with the NBS values

The density of silver carbonate calculated from the NBS lattice constants is 6.131 g/cm³ at 25 °C.

- [1] J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chem.
- J. D. Hanawait, H. W. Kinn, and L. K. Frevel, Chem. ical analysis by X-ray diffraction, Ind. Eng. Chem-Anal. Ed. 10, 457-512 (1938)
 J. Donohue and L. Helmholz, The crystal structure of potassium silver carbonate, KAgCO₃, J. Am. Chem. Soc. 66, 295-298 (1944).
 J. E. Eldridge, Thesis, Dartmouth College (1943).

hkl	196 National of Stand Cu, 1.5405 A	1 Bureau lards at 25 °C
	d	Ι
$100 \\ 020 \\ 110 \\ 120 \\ 001$	$\begin{array}{c} .4\\ 4.85\\ 4.78\\ 4.32\\ 3.41\\ 3.25\end{array}$	$15 \\ 34 \\ 32 \\ 2 \\ 3 \\ 3$
$\begin{array}{c} 011 \\ 101 \\ 130 \\ 111 \\ 200 \end{array}$	$\begin{array}{c} 3. \ 08 \\ 2. \ 74 \\ 2. \ 66 \\ 2. \ 56 \\ 2. \ 42 \end{array}$	$8 \\ 60 \\ 100 \\ 6 \\ 20$
$\begin{array}{c} 040\\ 121\\ 210\\ 121\\ 031 \end{array}$	2. 39 2. 38 2. 35 2. 32 2. 27	$11 \\ 13 \\ 8 \\ 14 \\ 36$
$220 \\ 131 \\ \overline{2}01 \\ \overline{2}11 \\ 230$	$\begin{array}{c} 2.\ 16\\ 2.\ 04\\ 1.\ 976\\ 1.\ 934\\ 1.\ 929 \end{array}$	$ \begin{array}{c} 11 \\ 10 \\ 2 \\ 6 \\ 9 \end{array} $
$041 \\ 201, 211 \\ 141 \\ 150 \\ 240$	$\begin{array}{c} 1. \ 912 \\ 1. \ 875 \\ 1. \ 801 \\ 1. \ 777 \\ 1. \ 700 \end{array}$	$\begin{array}{c} 4\\ 6\\ 3\\ 13\\ 3\end{array}$
$\begin{array}{c} \overline{2}31 \\ 051 \\ 231 \\ 002 \\ 012, 060 \end{array}$	$\begin{array}{c} 1. \ 678 \\ 1. \ 639 \\ 1. \ 626 \\ 1. \ 616 \\ 1. \ 591 \end{array}$	$9 \\ 10 \\ 6 \\ 1 \\ 9$
$\begin{array}{c} \frac{310}{112} \\ 022 \\ 241 \\ 160 \end{array}$	$\begin{array}{c} 1.587\\ 1.538\\ 1.530\\ 1.526\\ 1.511 \end{array}$	$ \begin{array}{c} 4 \\ 2 \\ 3 \\ 3 \\ 2 \end{array} $
$\begin{array}{r} 102\\ 301\\ \overline{3}11\\ 122,032\\ 061\end{array}$	$\begin{array}{c} 1. \ 507 \\ 1. \ 468 \\ 1. \ 450 \\ 1. \ 441 \\ 1. \ 428 \end{array}$	$\overset{3}{\overset{1}{\overset{1}{\overset{2}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{1$
$ \begin{array}{r} \overline{321} \\ 311 \\ \overline{132} \\ \overline{251} \\ \overline{202} \end{array} $	$\begin{array}{c} 1. \ 411 \\ 1. \ 400 \\ 1. \ 398 \\ 1. \ 3747 \\ 1. \ 3723 \end{array}$	1 5 5 7 7
$132 \\ 260 \\ \overline{2}22 \\ \overline{1}42$	$\begin{array}{c} 1.\ 3654\\ 1.\ 3299\\ 1.\ 3192\\ 1.\ 3023 \end{array}$	$3 \\ 4 \\ < 1 \\ 3$

Lattice constants

		a	в	с	β
1943 1961	Eldridge [2, 3] National Bureau of Standards	$\begin{array}{c}A\\4.84\\4.836\end{array}$	$A \\ 9.54 \\ 9.555$	$\begin{matrix} A \\ 3. \ 24 \\ 3. \ 235 \end{matrix}$	92.7° 92.64° at 25 °C

ASTM cards

Card number	Index lines	Radiation	Source
1-1041	$\begin{array}{c} 2. \ 72 \\ 2. \ 36 \\ 1. \ 67 \end{array}$	Molybdenum_	Hanawalt, Rinn, and Frevel [1] 1938.

Additional published patterns. Wyckoff [2] 1922, Levi and Quilico [3] 1924, and P. Niggli [5] 1922.

NBS sample. The sample of silver oxide was obtained from the Fisher Scientific Co., Washington, D. C. The sample was heated between 250 and 280 °C to sharpen the pattern. Spectrographic analysis showed the following impurities: 0.001 to 0.01 percent each of iron, magnesium, lead, and silicon.

The sample was a very dark brown, opaque powder.

The *d*-values of the three strongest lines are: 2.734, 2.367, and 1.674 A.

Structural data. Wyckoff [2] in 1922 determined that silver oxide has the cuprous oxide structure-type, the space group O_h^4 – Pn3m (No. 224) and $2(Ag_2O)$ per unit cell.

Faivre [4] reported that the lattice constants vary from 4.697 to 4.736 A, depending on the amount of heat and the length of time applied. Several unit cell measurements have been converted from kX to angstrom units for comparison with the NBS value.

Lattice constants

Constant for sample heated to 250 °C.

The density of silver oxide calculated from NBS lattice constants is 7.243 g/cm³ at 25 °C.

hkl	1961 National Bureau of Standards Cu, 1.5405 A at 25 °C				
	d	a			
$110\\111\\200\\220\\311\\222\\400\\331\\420\\422\\511$	$\begin{array}{c} A\\ 3. 348\\ 2. 734\\ 2. 367\\ 1. 674\\ 1. 427\\ 1. 367\\ 1. 184\\ 1. 086\\ 1. 059\\ 0. 9667\\ . 9115\end{array}$	$3 \\ 100 \\ 33 \\ 17 \\ 12 \\ 6 \\ <1 \\ 3 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$	$\begin{array}{c} A\\ 4.\ 735\\ 4.\ 735\\ 4.\ 734\\ 4.\ 734\\ 4.\ 734\\ 4.\ 734\\ 4.\ 736\\ 4.\ 736\\ 4.\ 736\\ 4.\ 736\\ 4.\ 736\\ 4.\ 736\\ 4.\ 736\\ 4.\ 736\end{array}$		
Average value of last five lines 4. 736					

- J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemical analysis by X-ray diffraction, Ind. Eng. Chem. Anal. Ed. 10, 457-512 (1938).
 R. W. G. Wyckoff, The crystal structure of silver oxide (Ag₂O), Am. J. Sci. 3, 184-188 (1922).
 G. R. Levi and A. Quilico, Sulla non esistenza del sottossido di argento, Gazz. chim. Ital. 54, 598-604 (1924)
- (1924).
- [4] R. Faivre, Contribution à l'étude des oxydes actifs et du problème des sous-oxydes métalliques, Ann. chim., XI 19, 58-101 (1944).
- [5] P. Niggli, Die Kristallstruktur einiger Oxyde I, Z. Krist. 57, 253–299 (1922–1923).
 [6] V. M. Goldschmidt, Geochemische Verteilungsgesetze der Elemente; VII, Die Gesetze der Krystallochemie, Skrifter Norske Videnskaps-Akad. Oslo I. Mat.-Naturv. K1. 1926, No. 2 (1926).

Additional published patterns. None.

NBS sample. The sample of sodium molybdate was made at NBS by heating at 100 °C a sample of sodium molybdate dihydrate obtained from the Mallinckrodt Chemical Works, New York. Spectrographic analysis showed the presence of the following impurities: 0.001 to 0.01 percent each of aluminum and sodium.

The sample was colorless with the refractive index 1.714.

The *d*-values of the three strongest lines are: 2.746, 3.220, and 5.26 A.

Structural data. According to Lindqvist [1], sodium molybdate is isomorphous with sodium tungstate, with the spinel-type structure, the space group $O_{\rm h}^{7}$ -Fd3m (No. 227), and 8(Na₂MoO₄) per unit cell.

 $Lattice \ constants$

1950 Lindqvis 1958 Becka ar 1961 National	t [1] nd Poljak [2] Bureau of Standards	$\begin{matrix} A \\ 8.99 \\ 8.99 \\ 9.108 \text{ at} \\ 25 \ ^{\circ}\mathrm{C} \end{matrix}$
---	---	--

The density of sodium molybdate calculated from the NBS lattice constants is 3.620 g/cm³ at 25 °C.

- I. Lindqvist, Crystal structure studies on anhydrous sodium molybdates and tungstates, Acta Chem. Scand. 4, 1066-1074 (1950).
 L. N. Becka and R. J. Poljak, Estructura cristalina del
- [2] L. N. Becka and R. J. Poljak, Estructura cristalina del MoO_4Na_2 y del WO_4Na_2 , Anales asoc. quím. arg. 46, 204–209 (1958).

hkl	1961 National Bureau of Standards Cu, 1.5405 A at 25 °C		
	d	Ι	a
$111 \\ 220 \\ 311 \\ 331 \\ 422$	$\begin{matrix} A \\ 5. 26 \\ 3. 220 \\ 2. 746 \\ 2. 090 \\ 1. 8588 \end{matrix}$	$63 \\ 87 \\ 100 \\ 7 \\ 33$	$\begin{matrix} A \\ 9. \ 106 \\ 9. \ 108 \\ 9. \ 108 \\ 9. \ 108 \\ 9. \ 108 \\ 9. \ 106 \end{matrix}$
$511 \\ 440 \\ 531 \\ 620 \\ 533$	1. 7533 1. 6106 1. 5391 1. 4403 1. 3888	$33 \\ 38 \\ 12 \\ 14 \\ 10$	$\begin{array}{c} 9. \ 110 \\ 9. \ 111 \\ 9. \ 105 \\ 9. \ 109 \\ 9. \ 107 \end{array}$
$711 \\ 642 \\ 731 \\ 800 \\ 822$	$\begin{array}{c} 1.\ 2756\\ 1.\ 2171\\ 1.\ 1857\\ 1.\ 1386\\ 1.\ 0734 \end{array}$	$6 \\ 14 \\ 18 \\ 5 \\ 8$	$\begin{array}{c} 9. \ 110 \\ 9. \ 108 \\ 9. \ 108 \\ 9. \ 109 \\ 9. \ 108 \end{array}$
$751 \\ 840 \\ 911 \\ 664 \\ 931$	$\begin{array}{c} 1.\ 0519\\ 1.\ 0184\\ 0.\ 9999\\ .\ 9709\\ .\ 9549 \end{array}$	$8\\1\\4\\4\\4$	$\begin{array}{c} 9. \ 110 \\ 9. \ 109 \\ 9. \ 109 \\ 9. \ 108 \\ 9. \ 109 \end{array}$
$\begin{array}{r} 844\\ 933\\ 10{\cdot}2{\cdot}0\\ 951\\ 953\end{array}$	$\begin{array}{c} . \ 9295 \\ . \ 9154 \\ . \ 8930 \\ . \ 8805 \\ . \ 8494 \end{array}$	7 2 8 6 3	$\begin{array}{c} 9.\ 107\\ 9.\ 108\\ 9.\ 107\\ 9.\ 108\\ 9.\ 108\\ 9.\ 109\end{array}$
$\begin{array}{c} 10 \cdot 4 \cdot 2 \\ 11 \cdot 1 \cdot 1 \\ 880 \\ 11 \cdot 3 \cdot 1 \\ 10 \cdot 6 \cdot 0 \end{array}$	$\begin{array}{c} . \ 8315 \\ . \ 8213 \\ . \ 8051 \\ . \ 7957 \\ . \ 7810 \end{array}$	$\begin{array}{c} 7\\ 5\\ 3\\ 4\\ 4\\ 4\end{array}$	9. 108 9. 108 9. 108 9. 108 9. 107 9. 108
Average value of last five lines 9. 108			

ASTM cards

Card number	Index lines	Radiation	Source
5-0247	$5. 19 \\ 3. 18 \\ 2. 72$	Copper	Lindqvist [1] 1950.

Additional published patterns

Source	Radiation
Becka and Poljak [2]	Copper

NBS sample. The sample of sodium tungstate was prepared at NBS by heating at 100 °C a sample of sodium tungstate dihydrate obtained from the Allied Chemical and Dye Corp., New York. Spectrographic analysis showed the presence of the following impurities: 0.01 to 0.1 percent of silicon; and 0.001 to 0.01 percent aluminum.

The sample was colorless with the refractive index 1.679.

The *d*-values of the three strongest lines are: 2.753, 3.23, and 5.28 A.

Structural data. Lindqvist [1] in 1950 determined that sodium tungstate has spinel-type structure, the space group O_h^7 -Fd3m (No. 227), and 8(Na₂WO₄) per unit cell.

$1950 \\ 1958 \\ 1961$	Lindqvist [1] Becka and Poljak [2] National Bureau of Standards	$\begin{array}{c} A \\ 8.99 \\ 9.11 \\ 9.1297 \\ \text{at } 25 \\ ^{\circ}\text{C.} \end{array}$
------------------------	---	--

The density of sodium tungstate calculated from the NBS lattice constant is 5.128 g/cm³ at 25 °C.

hkl	National Cu, 1	tandards 25 °C	
	d	Ι	a
$111 \\ 220 \\ 311 \\ 400 \\ 331$	$\begin{matrix} A \\ 5. 28 \\ 3. 23 \\ 2. 753 \\ 2. 282 \\ 2. 094 \end{matrix}$	$89 \\ 98 \\ 100 \\ 5 \\ 20$	$\begin{array}{c} A\\ 9.\ 15\\ 9.\ 14\\ 9.\ 132\\ 9.\ 126\\ 9.\ 126\end{array}$
$ \begin{array}{r} 422 \\ 511 \\ 440 \\ 531 \\ 620 \\ \end{array} $	$1.8642 \\ 1.7574 \\ 1.6142 \\ 1.5430 \\ 1.4435$	$42 \\ 38 \\ 35 \\ 20 \\ 23$	$\begin{array}{c} 9.\ 133\\ 9.\ 132\\ 9.\ 131\\ 9.\ 128\\ 9.\ 130 \end{array}$
$533 \\ 444 \\ 711 \\ 642 \\ 731$	$\begin{array}{c} 1. \ 3921 \\ 1. \ 3177 \\ 1. \ 2786 \\ 1. \ 2202 \\ 1. \ 1887 \end{array}$	$14 \\ 2 \\ 10 \\ 19 \\ 19 \\ 19$	9. 129 9. 129 9. 131 9. 131 9. 131 9. 131
$800 \\ 733 \\ 822 \\ 751 \\ 840$	$\begin{array}{c} 1.\ 1412\\ 1.\ 1154\\ 1.\ 0759\\ 1.\ 0543\\ 1.\ 0206 \end{array}$	$\begin{array}{c} 6 \\ 3 \\ 10 \\ 9 \\ 3 \end{array}$	$\begin{array}{c} 9.\ 130\\ 9.\ 130\\ 9.\ 129\\ 9.\ 130\\ 9.\ 130\\ 9.\ 128\end{array}$
$911 \\ 664 \\ 931 \\ 844 \\ 933$	$\begin{array}{c} 1.\ 0020\\ 0.\ 9732\\ .\ 9571\\ .\ 9318\\ .\ 9176 \end{array}$	7 5 5 7 4	$\begin{array}{c} 9. \ 129 \\ 9. \ 1297 \\ 9. \ 1299 \\ 9. \ 1300 \\ 9. \ 1298 \end{array}$
$10.2.0 \\951 \\953 \\10.4.2 \\11.1.1$	$. 8952 \\ . 8826 \\ . 8514 \\ . 8334 \\ . 8232 $	$\begin{array}{c}13\\7\\3\\8\\6\end{array}$	9. 1296 9. 1301 9. 1299 9. 1298 9. 1298
$\begin{array}{c} 880 \\ 11 \cdot 3 \cdot 1 \\ 10 \cdot 6 \cdot 0 \end{array}$. 8069 . 7977 . 7829	3 8 9	$\begin{array}{c} 9.\ 1295\\ 9.\ 1296\\ 9.\ 1296\end{array}$
Average value of last five lines			9. 1297

- I. Lindqvist, Crystal structure studies on anhydrous sodium molybdates and tungstates, Acta Chem. Scand. 4, 1066-1074 (1950).
- [2] L. N. Becka and R. J. Poljak, Estructura cristalina del MoO₄Na₂ y del WO₄Na₂, Anales asoc. quím. arg. 46, 204–209 (1958).

Additional published patterns. None.

NBS sample. The sample of thallium tungstate was prepared at NBS by reaction of solutions of thallium (I) sulfate and sodium tungstate. The slightly soluble precipitate was recrystallized from a boiling aqueous solution and then fused at approximately 700 °C. Spectrographic analysis showed the following impurities: 0.01 to 0.1 percent silicon, and 0.001 to 0.01 percent each of arsenic and calcium.

The sample was light yellow. The indices of refraction were not determined because they were greater than 2.00.

The d-values of the three strongest lines are: 3.25, 3.14, and 2.260 A.

Structural data. No reference was found for the structure of thallium tungstate; however, by means of Bunn Charts, the pattern was tentatively indexed with a hexagonal cell containing $2(Tl_2WO_4)$. Observed with an optical microscope, thallium tungstate appears as hexagonal platelets.

Lattice constants

		a	с
1961	National Bureau of Stand- ards.	$\stackrel{A}{6.288}$	A 8.103 at 25 °C.

The density of thallium tungstate calculated from the NBS lattice constants is 7.857 g/cm³ at 25 °C. The average density obtained with a Berman balance is 7.841 g/cm³ at 25 °C.

		and the second s
hkl	1961 National Bureau of Standards Cu, 1.5405 A at 25 °C	
	d	Ι
$\begin{array}{c} 002\\ 102\\ 110\\ 003\\ 103 \end{array}$	$\begin{array}{c} A \\ 4.05 \\ 3.25 \\ 3.14 \\ 2.702 \\ 2.420 \end{array}$	$\begin{matrix} 1 \\ 100 \\ 83 \\ <1 \\ 2 \end{matrix}$
$202 \\ 004 \\ 104 \\ 212 \\ 300$	$\begin{array}{c} 2.\ 260\\ 2.\ 025\\ 1.\ 899\\ 1.\ 836\\ 1.\ 816 \end{array}$	$48 \\ 2 \\ 29 \\ 38 \\ 22$
$114 \\ 204 \\ 220 \\ 105 \\ 214$	$\begin{array}{c} 1.\ 703\\ 1.\ 625\\ 1.\ 572\\ 1.\ 553\\ 1.\ 4437 \end{array}$	$2 \\ 14 \\ 9 \\ 1 \\ 18$
$312 \\ 006 \\ 106 \\ 402 \\ 116$	$\begin{array}{c} 1.\ 4152\\ 1.\ 3503\\ 1.\ 3109\\ 1.\ 2904\\ 1.\ 2405 \end{array}$	$\begin{array}{c}12\\2\\1\\4\\9\end{array}$
$314 \\ 322 \\ 410 \\ 107 \\ 404$	$\begin{array}{c} 1.\ 2108\\ 1.\ 1938\\ 1.\ 1884\\ 1.\ 1318\\ 1.\ 1298 \end{array}$	557712
306 324 502 330 226	$\begin{array}{c} 1.\ 0834\\ 1.\ 0633\\ 1.\ 0517\\ 1.\ 0483\\ 1.\ 0245 \end{array}$	$\begin{array}{c} 4\\1\\2\\2\\3\end{array}$
$\begin{array}{c} 422 \\ 108 \\ 512 \\ 208 \\ 424 \end{array}$	$\begin{array}{c} 0. \ 9973 \\ . \ 9958 \\ . \ 9505 \\ . \ 9494 \\ . \ 9173 \end{array}$	2 2 2 2 2
218	. 9090	2

Additional published patterns. None.

NBS sample. The sample was prepared at NBS by S. Schneider from stoichiometric mixtures of ytterbium oxide and gallium oxide. The sample was pressed into pellets and heated at 1,350 °C for 6 hrs; then ground, remixed, and again pressed into pellets and heated at 1,450 °C for 6 hrs. Spectrographic analysis showed the following impurities: 0.001 to 0.01 percent silicon and 0.0001 to 0.001 percent each of erbium, lutetium, and thulium.

The color of the sample was white. The index of refraction could not be determined because the sample was too fine-grained.

The d-values of the three strongest lines are: 2.725, 2.489, and 1.6920 A.

Structural data. Keith and Roy [1] in 1954 showed that double oxides of trivalent elements in these proportions may have the garnettype structure. Ytterbium gallium oxide is isostructural with garnet, having the space group O_h^{10} —Ia3d (No. 230) with 8[Yb₃Ga₂(GaO₄)₃] per unit cell.

hkl	1961 National Bureau of Standards Cu, 1.5405 A at 25 °C		
	d	Ι	a
$211 \\ 220 \\ 321 \\ 400 \\ 420$	$\begin{array}{c} A\\ 4.\ 973\\ 4.\ 310\\ 3.\ 260\\ 3.\ 046\\ 2.\ 725 \end{array}$	$21 \\ 6 \\ 12 \\ 30 \\ 100$	$\begin{matrix} A \\ 12. \ 18 \\ 12. \ 19 \\ 12. \ 20 \\ 12. \ 18 \\ 12. \ 19 \end{matrix}$
$\begin{array}{c} 422 \\ 431 \\ 521 \\ 440 \\ 611 \end{array}$	$\begin{array}{c} 2.\ 489\\ 2.\ 392\\ 2.\ 228\\ 2.\ 156\\ 1.\ 979 \end{array}$	$\begin{array}{c} 45\\2\\12\\3\\12\end{array}$	$\begin{array}{c} 12. \ 19 \\ 12. \ 20 \\ 12. \ 20 \\ 12. \ 20 \\ 12. \ 20 \\ 12. \ 199 \end{array}$
$\begin{array}{c} 620 \\ 631 \\ 444 \\ 640 \\ 721 \end{array}$	$\begin{array}{c} 1.\ 930\\ 1.\ 799\\ 1.\ 7609\\ 1.\ 6920\\ 1.\ 6603 \end{array}$	$\begin{array}{c}1\\2\\16\\34\\5\end{array}$	$\begin{array}{c} 12.\ 206\\ 12.\ 201\\ 12.\ 200\\ 12.\ 201\\ 12.\ 201\\ 12.\ 201 \end{array}$
$642 \\ 732 \\ 800 \\ 653 \\ 822$	$\begin{array}{c} 1.\ 6307\\ 1.\ 5494\\ 1.\ 5253\\ 1.\ 4582\\ 1.\ 4377 \end{array}$	$\begin{array}{c} 34\\ 3\\ 14\\ 2\\ 2\\ 2\end{array}$	$\begin{array}{c} 12.\ 203\\ 12.\ 200\\ 12.\ 202\\ 12.\ 200\\ 12.\ 200\\ 12.\ 199 \end{array}$
$752 \\ 840 \\ 842 \\ 921 \\ 664$	$\begin{array}{c} 1,3816\\ 1,3642\\ 1,3311\\ 1,3155\\ 1,3006 \end{array}$	$\begin{array}{c}2\\8\\18\\2\\6\end{array}$	$\begin{array}{c} 12.\ 202\\ 12.\ 202\\ 12.\ 200\\ 12.\ 199\\ 12.\ 201 \end{array}$
$932 \\ 941 \\ 10 \cdot 1 \cdot 1 \\ 10 \cdot 2 \cdot 0 \\ 10 \cdot 3 \cdot 1$	$\begin{array}{c} 1.\ 2584\\ 1.\ 2326\\ 1.\ 2081\\ 1.\ 1965\\ 1.\ 1630 \end{array}$	2 1 1 2 3	$\begin{array}{c} 12.\ 201\\ 12.\ 202\\ 12.\ 201\\ 12.\ 202\\ 12.\ 12.\ 202\\ 12.\ 198 \end{array}$

Lattice constants

1961National Bureau of Standards at 25 °C	National Bureau of Standards A 12.200 at 25 °C
--	--

The density calculated from the NBS lattice constant is 7.750 g/cm³ at 25 °C.

Reference

 M. L. Keith and R. Roy, Structural relations among double oxides of trivalent elements, Am. Mineralogist 39, Nos. 1 and 2, 1-23 (1954).

hkl	1961 National Bureau of Standards Cu, 1.5405 A at 25 °C		
	d	Ι	a
$\begin{array}{c} 10{\cdot}4{\cdot}0\\ 10{\cdot}3{\cdot}3\\ 10{\cdot}4{\cdot}2\\ 11{\cdot}2{\cdot}1\\ 880 \end{array}$	$\begin{matrix} A \\ 1. \ 1328 \\ 1. \ 1229 \\ 1. \ 1137 \\ 1. \ 0869 \\ 1. \ 0783 \end{matrix}$	$\begin{array}{c}14\\2\\6\\3\\6\end{array}$	12. 201 12. 198 12. 200 12. 200 12. 200
$11.3.2 \\ 10.6.0 \\ 965 \\ 12.0.0 \\ 12.2.0$	$\begin{array}{c} 1.\ 0539\\ 1.\ 0460\\ 1.\ 0238\\ 1.\ 0166\\ 1.\ 0028 \end{array}$	$\overset{<1}{_{_{_{_{}_{_{}_{}_{}_{}_{}_{}}}}{\overset{1}{_{\overset{_{}_{}_{}}}}}$	$\begin{array}{c} 12.\ 200\\ 12.\ 198\\ 12.\ 200\\ 12.\ 199\\ 12.\ 200\\ 12.\ 200 \end{array}$
$\begin{array}{c} 11 \cdot 5 \cdot 2 \\ 12 \cdot 2 \cdot 2 \\ 11 \cdot 6 \cdot 1 \\ 11 \cdot 6 \cdot 3 \\ 13 \cdot 2 \cdot 1 \end{array}$	$\begin{array}{c} 0. \ 9961 \\ . \ 9896 \\ . \ 9706 \\ . \ 9469 \\ . \ 9248 \end{array}$	$\begin{array}{c}1\\7\\1\\1\\2\end{array}$	$\begin{array}{c} 12.\ 200\\ 12.\ 200\\ 12.\ 200\\ 12.\ 200\\ 12.\ 199 \end{array}$
$\begin{array}{c} 12 \cdot 4 \cdot 4 \\ 12 \cdot 6 \cdot 0 \\ 13 \cdot 3 \cdot 2 \\ 12 \cdot 6 \cdot 2 \\ 888 \end{array}$	$\begin{array}{c} . \ 9196 \\ . \ 9094 \\ . \ 9044 \\ . \ 8994 \\ . \ 8805 \end{array}$	$\overset{4}{<}^{8}_{1}_{5}_{3}$	$\begin{array}{c} 12.\ 199\\ 12.\ 200\\ 12.\ 201\\ 12.\ 200\\ 12.\ 201\\ 12.\ 201\end{array}$
$\begin{array}{c} 14 \cdot 1 \cdot 1 \\ 14 \cdot 2 \cdot 0 \\ 14 \cdot 3 \cdot 1 \\ 12 \cdot 8 \cdot 0 \\ 14 \cdot 4 \cdot 0 \end{array}$	$\begin{array}{c} . \ 8671 \\ . \ 8626 \\ . \ 8500 \\ . \ 8460 \\ . \ 8380 \end{array}$	$\displaystyle{\displaystyle \lesssim 1 \atop 2 \atop 2 \atop 8}$	12. 201 12. 200 12. 200 12. 200 12. 200 12. 201
$\begin{array}{c} 14 \cdot 4 \cdot 2 \\ 14 \cdot 5 \cdot 1 \\ 15 \cdot 2 \cdot 1 \\ 15 \cdot 3 \cdot 2 \end{array}$	$. 8302 \\ . 8188 \\ . 8045 \\ . 7908 $	$\left \begin{array}{c} 8\\1\\2\\<1 \end{array} \right $	$\begin{array}{c} 12.\ 201\\ 12.\ 200\\ 12.\ 201\\ 12.\ 200\end{array}$
Average value of last five lines 12.200			

Additional published patterns. None.

NBS sample. The sample was prepared at NBS by S. Schneider from stoichiometric mixtures of yttrium oxide and gallium oxide. The sample was pressed into pellets and heated at 1,350 °C for 6 hr; then ground, remixed, and again pressed into pellets and heated at 1,450 °C for 6 hr. Spectrographic analysis showed the following impurities: 0.01 to 0.1 percent each of calcium and silicon and 0.001 to 0.01 percent each of erbium, molybdenum, potassium, terbium, and titanium.

The color of the sample was white. The index of refraction could not be determined because the sample was too fine-grained.

The *d*-values of the three strongest lines are: 2.744, 2.507, and 1.6404 A.

Structural data. Keith and Roy [1] in 1954 showed that double oxides of trivalent elements in these proportions may have the garnet-type structure. Yttrium gallium oxide is isostructural with garnet, having the space group O_h^{10} —Ia3d (No. 230) with 8[Y₃Ga₂(GaO₄)₃] per unit cell.

Lattice	constants
Lacouree	00100001000

$\begin{array}{c} 1956 \\ 1961 \end{array}$	Bertaut and Forrat [2] National Bureau of Standards	$\begin{matrix} A \\ 12. \ 30 \\ 12. \ 277 \ {\rm at} \\ 25 \ {}^{\circ}{\rm C} \end{matrix}$
---	--	---

The density calculated from the NBS lattice constant is 5.794 g/cm³ at 25 °C.

- M. L. Keith and R. Roy, Structural relations among double oxides of trivalent elements, Am. Mineralogist 39 Nos. 1 and 2, 1-23 (1954).
- [2] F. Bertaut and F. Forrat, Étude des combinaisons des oxydes des terres rares avec l'alumine et la galline, Compt. Rend. Acad. Sci. (Paris) 243, 1219–1222 (1956).

hkl	1961 Nation Cu, 1	f Standards 25 °C	
	d	Ι	a
911		4	A
400^{211}	3. 070	40	12.21 12.28
420	2. 744	100	12. 27
$\frac{332}{422}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	51	12.28 12.28
431	2. 407	5	12.28
521 440	2.242 2.170		12.28 12.28
$\hat{611}$	1. 991	$\overline{6}$	12.28
444	1. 772	13	12.28
$\begin{array}{c} 640 \\ 721 \end{array}$	1.702 1.670	$\frac{34}{2}$	$12.28 \\ 12.27$
642	1. 6404	43	12.276
800 840	1.5349 1.3727	16	$12.279 \\ 12.278$
Q49	1. 2202	18	12.210
664	1. 3084	10 7	12.274
851	1. 2937	1	12.273 12.274
$\begin{array}{c} 941 \\ 10 \cdot 1 \cdot 1 \end{array}$	1.2399 1.2155	$\frac{1}{2}$	12.274 12.276
10.2.0	1. 2035	2	12. 273
10.3.1	1.1704	3	12.275 12.277
10.4.0 10.4.2	1. 1399		12.277 12.277
11.2.1	1. 0935	2	12.275
880	1. 0850	8	12.275
12.0.0 12.2.0	1.0229 1.0091	5	12.275 12.276
$\overline{12} \cdot \overline{2} \cdot \overline{2}$	0. 9956	10	12.275
11.6.3	. 9527	2	12. 275
12.4.4 12.6.0	.9254	12	12.277 12.275
12.0.0 13.3.2	. 9100	1	12.277
12.6.2	. 9050	6	12.276 12.273
10.9.3	. 8904	1	12. 270
$\frac{888}{14.3.1}$.8859 8553	$\frac{6}{2}$	12.275 12.276
12.8.0	. 8513	4	12. 278
$14.4.0 \\ 14.4.2$.8431 .8354	$\begin{array}{c c} 11\\ 14 \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
14.5.1	8239	1	12.276
15.2.1	. 8095	2	12. 277
Average va	lue of last five	lines	12. 277

Additional published patterns. None.

NBS sample. The sample of yttrium oxychloride was prepared at NBS by heating for 10 min at 700 °C a sample of YCl₃ obtained from the Lindsay Chemical Co., West Chicago, Ill. Their analysis showed the following impurities: a total as oxides of less than 0.1 percent of dysprosium, gadolinium, terbium, and europium, and traces of other rare earths.

The sample was colorless. The indices of refraction could not be determined because the sample was too fine-grained.

The *d*-values of the three strongest lines are: 2.520, 2.759, and 3.358 A.

Structural data. Zachariasen [1] in 1949 determined that yttrium oxychloride has PbFCltype structure, the space group D_{4h}^7 —P4/nmm (No. 129) and 2(YOCl) per unit cell.

Lattice constants

		a	c
$1949 \\ 1961$	Zachariasen [1] National Bureau of Stand- ards.	A 3. 900 3. 903	$\begin{matrix} A \\ 6.604 \\ 6.596 \text{ at} \\ 26 \ ^{\circ}\text{C} \end{matrix}$

The density of yttrium oxychloride calculated from NBS lattice constants is 4.639 g/cm³ at 26 °C.

References

 W. H. Zachariasen, Crystal chemical studies of the 5f-series of elements. XII. New compounds representing known structure types, Acta Cryst. 2, 388-390 (1949).

ASTM cards. None.

NBS sample. The sample of zirconium iodate was contributed by Don T. Cromer, Los Alamos Scientific Laboratory, Los Alamos, N. Mex. The compound was prepared by mixing water solutions of stoichiometric quantities of sodium iodate and zirconium sulfate tetrahydrate. The precipitate was dried at approximately 180 °C. It was refluxed in concentrated nitric acid to en-

hkl	1961 National Bureau of Standards Cu, 1.5405 A at 26 °C	
	d	Ι
$001 \\ 101 \\ 002 \\ 110 \\ 102$	$\begin{matrix} A \\ 6.59 \\ 3.358 \\ 3.298 \\ 2.759 \\ 2.520 \end{matrix}$	$26 \\ 50 \\ 573 \\ 100$
$\begin{array}{c} 003 \\ 112 \\ 200 \\ 103 \\ 201 \end{array}$	$\begin{array}{c} 2. \ 198 \\ 2. \ 116 \\ 1. \ 9505 \\ 1. \ 9148 \\ 1. \ 8703 \end{array}$	$3 \\ 20 \\ 40 \\ 3 \\ 6$
$113 \\ 211 \\ 202 \\ 004 \\ 212$	$\begin{array}{c} 1.\ 7196\\ 1.\ 6868\\ 1.\ 6783\\ 1.\ 6488\\ 1.\ 5426 \end{array}$	$ \begin{array}{r} 16 \\ 17 \\ 2 \\ 5 \\ 37 \end{array} $
$104 \\ 203 \\ 114 \\ 220 \\ 213$	$\begin{array}{c} 1.\ 5187\\ 1.\ 4592\\ 1.\ 4158\\ 1.\ 3799\\ 1.\ 3660 \end{array}$	$10 \\ 6 \\ 8 \\ 11 \\ < 1$
$221 \\ 005 \\ 301 \\ 222 \\ 204$	$\begin{array}{c} 1.\ 3515\\ 1.\ 3198\\ 1.\ 2766\\ 1.\ 2734\\ 1.\ 2597 \end{array}$	$\begin{array}{c} 4 \\ 1 \\ 3 \\ 3 \\ 3 \\ 3 \end{array}$
$105 \\ 310 \\ 311 \\ 302 \\ 214$	$\begin{array}{c} 1.\ 2490\\ 1.\ 2342\\ 1.\ 2135\\ 1.\ 2102\\ 1.\ 1984 \end{array}$	4 8 2 5 7
$115 \\ 223 \\ 312 \\ 006 \\ 205$	$\begin{array}{c} 1. \ 1903 \\ 1. \ 1694 \\ 1. \ 1562 \\ 1. \ 0996 \\ 1. \ 0925 \end{array}$	3 3 3 5 5 5
$313 \\ 321 \\ 224, 106 \\ 215 \\ 322$	$\begin{array}{c} 1.\ 0761\\ 1.\ 0681\\ 1.\ 0584\\ 1.\ 0525\\ 1.\ 0284 \end{array}$	$egin{array}{c} 4 \\ 5 \\ 2 \\ 2 \\ 6 \end{array}$
304, 116314400	$\begin{array}{c} 1.\ 0214\\ 0.\ 9881\\ .\ 9757 \end{array}$	$\begin{array}{c} 4\\ 4\\ 3\end{array}$

Zirconium Iodate, Zr(IO₃)₄ (tetragonal)

courage crystallization. Their chemical analysis showed 11.66 percent Zr(-Hf) and 64.0 percent I. The source $Zr(SO_4)_2 \cdot 4H_2O$ contained 0.36 atom percent Hf in the Zr (by spectrographic analysis).

The sample was colorless. The indices of refraction are higher than available immersion liquids.

The *d*-values of the three strongest lines are: 4.18, 2.784, and 2.963 A.

Zirconium	Iodate,	$\operatorname{Zr}(\operatorname{IO}_3)_4$	(tetragonal)-Continue	d
-----------	---------	--	-----------------------	---

hkl	196 National of Star Cu, 1.5405	51 Bureau adards A at 25 °C
	d	Ι
$110 \\ 111 \\ 200 \\ 002 \\ 201$	$\begin{matrix} A \\ 5. 92 \\ 4. 64 \\ 4. 18 \\ 3. 729 \\ 3. 651 \end{matrix}$	$20 \\ 18 \\ 100 \\ 33 \\ 22$
$ \begin{array}{r} 102 \\ 211 \\ 112 \\ 220 \\ 202 \\ 202 \end{array} $	$\begin{array}{c} 3. \ 406 \\ 3. \ 349 \\ 3. \ 157 \\ 2. \ 963 \\ 2. \ 784 \end{array}$	$ \begin{array}{c} 10 \\ 15 \\ 3 \\ 55 \\ 94 \end{array} $
$212 \\ 301 \\ 311 \\ 003 \\ 222$	$\begin{array}{c} 2.\ 644\\ 2.\ 616\\ 2.\ 497\\ 2.\ 489\\ 2.\ 319 \end{array}$	$\begin{array}{c}1\\15\\6\\4\\32\end{array}$
$ \begin{array}{r} 113 \\ 321 \\ 312 \\ 203 \\ 400 \\ \end{array} $	2. 293 2. 219 2. 159 2. 137 2. 094	$\begin{array}{c}1\\9\\11\\5\\25\end{array}$
$213 \\ 401 \\ 322 \\ 411 \\ 331$	$\begin{array}{c} 2.\ 071\\ 2.\ 020\\ 1.\ 972\\ 1.\ 960\\ 1.\ 908 \end{array}$	$ \begin{vmatrix} 8 \\ < 1 \\ 4 \\ 14 \\ 3 \end{vmatrix} $
$223 \\ 420 \\ 004 \\ 402 \\ 421$	$\begin{array}{c} 1.\ 904\\ 1.\ 873\\ 1.\ 864\\ 1.\ 826\\ 1.\ 817 \end{array}$	$\begin{array}{c}8\\12\\8\\16\\4\end{array}$
$\begin{array}{c} 412 \\ 332 \\ 204 \\ 323 \\ 422 \end{array}$	$ \begin{array}{c} 1.784\\ 1.746\\ 1.703\\ 1.698\\ 1.674 \end{array} $	$\stackrel{2}{\stackrel{<}{\scriptstyle\sim}1}_{\scriptstyle m 22}$
$\begin{array}{c c} 214 \\ 510 \\ 501 \\ 403 \\ 224 \end{array}$	$ \begin{array}{c} 1. \ 671 \\ 1. \ 643 \\ 1. \ 635 \\ 1. \ 602 \\ 1. \ 578 \\ \end{array} $	$\begin{array}{c} 37\\ 2\\ 13\\ 6\\ 5\end{array}$

Structural data. Larson and Cromer [1] in 1959 determined that zirconium iodate has the space group $C_{4h}^3 - P4/n$ (No. 85) with $2[Zr(IO_3)_4]$ per unit cell.

Lattice constants

		<i>a</i>	C
$1959 \\ 1961$	Larson and Cromer [1] National Bureau of Stand- ards.	A 8. 38 8. 380	A 7. 49 7. 460 at 25 °C

hkl	1961 National Bureau of Standards Cu, 1.5405 A at 25 °C	
	d	I
$\begin{array}{c} 413\\ 304\\ 502\\ 521\\ 512 \end{array}$	1. 575 1. 551 1. 527 1. 523 1. 5040	$13 \\ 4 \\ 12 \\ 2$
$\begin{array}{c} 423\\ 005\\ 440\\ 205\\ 600 \end{array}$	$\begin{array}{c} 1.\ 4966\\ 1.\ 4925\\ 1.\ 4815\\ 1.\ 4063\\ 1.\ 3968 \end{array}$	$egin{array}{c}2\\4\\7\\7\\11\end{array}$
$503 \\ 442 \\ 414 \\ 611 \\ 225$	$\begin{array}{c} 1.\ 3902\\ 1.\ 3772\\ 1.\ 3740\\ 1.\ 3551\\ 1.\ 3328 \end{array}$	$7 \\ 4 \\ 4 \\ 5 \\ 3$
$\begin{array}{c} 620 \\ 424 \\ 523 \\ 305 \\ 602 \end{array}$	$\begin{array}{c} 1. \ 3252\\ 1. \ 3224\\ 1. \ 3191\\ 1. \ 3160\\ 1. \ 3084 \end{array}$	$10 \\ 10 \\ 5 \\ 2 \\ 3$
$541 \\ 443 \\ 622 \\ 504 \\ 006$	$\begin{array}{c} 1.\ 2893\\ 1.\ 2728\\ 1.\ 2489\\ 1.\ 2464\\ 1.\ 2432 \end{array}$	5 1 4 4 2
$\begin{array}{c} 631 \\ 116 \\ 405 \\ 613 \\ 415 \end{array}$	$\begin{array}{c} 1.\ 2323\\ 1.\ 2170\\ 1.\ 2156\\ 1.\ 2051\\ 1.\ 2026 \end{array}$	$3 < 1 < 1 < 1 \\ 1 < 1 < 1 < 1$
$524 \\ 206 \\ 710 \\ 701 \\ 623$	$\begin{array}{c} 1. \ 1948 \\ 1. \ 1919 \\ 1. \ 1852 \\ 1. \ 1820 \\ 1. \ 1692 \end{array}$	
$\begin{array}{r} 425 \\ 444 \\ 543 \\ 226 \\ 721 \end{array}$	$\begin{array}{c} 1. \ 1675 \\ 1. \ 1597 \\ 1. \ 1586 \\ 1. \ 1469 \\ 1. \ 1378 \end{array}$	$\begin{array}{c}2\\7\\4\\3\\3\end{array}$
$712 \\ 633 \\ 505 \\ 642 \\ 730$	$\begin{array}{c} 1. \ 1299 \\ 1. \ 1165 \\ 1. \ 1142 \\ 1. \ 1094 \\ 1. \ 1005 \end{array}$	$\begin{array}{c c}1\\2\\2\\3\\2\end{array}$

The density of zirconium iodate calculated from the NBS lattice constants is 5.012 g/cm³ at 25 °C.

References

 A. C. Larson and Don T. Cromer, The crystal structure of Zr(IO₃)₄, Acta Cryst. 14, 128-132 (1961). (Presented at ACA meeting, Cornell University, Ithaca, N.Y.) (1959).

CUMULATIVE INDEX TO CIRCULAR 539, VOLUMES 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, AND MONOGRAPH 25, SECTION 1 ⁵

		Vol. or	Page		Vol. or	Page
	Aluminum Al	1	11	Arsenic As	3.00.	1 age 6
1	Aluminum antimony, AlSb	4	$\frac{11}{72}$	Arsenic(III) jodide, AsI ₂	6	17
Ĵ	Aluminum calcium sulfate hydrate (ettring-	_		Arsenic trioxide (arsenolite), As ₂ O ₃	ĭ	51
	ite), $Al_2O_3 \cdot 6CaO \cdot 3SO_3 \cdot 31H_2O_{$	8	3	Barium, Ba	$\overline{4}$	$\overline{7}$
	Aluminum chloride hexahydrate (chlor-			Barium carbonate (witherite), BaCO ₃	2	54
	aluminite), AlCl ₃ ·6H ₂ O	7	3	Barium carbonate, BaCO ₃ (cubic)	10	11
	Aluminum fluosilicate, topaz, Al_2SiO_4			Baroum fluoride, BaF ₂	1	70
	(F, OH) ₂	$1 \mathrm{m}$	4	Barium molybdate, BaMoO ₄	7	7
4	Aluminum orthophosphate (berlinite),	10	0	Barium nitrate (nitrobarite), $Ba(NO_3)_{2}$	1	81
	AIPO ₄	10	3	Barium peroxide, BaO_{2-}	6	18
4	Aluminum orthophosphate, AIPO4 (ortho-	10	4	Barium sulfate (barite), BaSO ₄	3	65
	rhomble)	10	4	Barlum sulfide, BaS	7	8
4	Aluminum oxide, alpha (corundum), α -Al ₂ O ₃₋	9	3	Barlum titanate, BallO ₃	び 7	45
4	mito) ALO, H.O	3	28	Barium zireonato BaZrO.	5	9
	Aluminum oxide monohydrate beta (dia-	0	00	Bervllium aluminum oxide (chrysobervl)	0	0
1	spore) Al ₂ O ₂ ·H ₂ O	3	41	BeAl _a O ₄	9	10
	Ammonium aluminum sulfate dodecahy-		11	Beryllium aluminum silicate (beryl)	0	10
1	drate, $NH_4Al(SO_4)_2 \cdot 12H_2O_{$	6	3	$\operatorname{Be_3Al_2(SiO_3)_{6-}}$	9	13
1	Ammonium azide, NH ₄ N ₃	9	4	Beryllium chromium oxide, BeCr ₂ O ₄	10	12
1	Ammonium bicarbonate (teschemacherite),			Beryllium germanate, Be ₂ GeO ₄	10	13
	$(NH_4)HCO_3$	9	5	Beryllium orthosilicate (phenacite), Be_2SiO_{4-}	8	11
4	Ammonium bomide, NH ₄ Br	2	49	Beryllium oxide (bromellite), BeO	1	36
1	Ammonium bromoosmate, $(NH_4)OsBr_{6}$	3	71	Bismuth, Bi	3	20
4	Ammonium bromoplatinate, $(NH_4)_2 PtBr_{6}$	9	6	Bismuth fluoride, BiF ₃	lm	7
4	Ammonium bromoselenate, $(NH_4)_2SeBr_{6}$	8	4	$Bismuth(III)$ iodide, Bil_{3}	6	20
1	Ammonium promotellurate, $(N \Pi_4)_2 1 e B \Gamma_{6}$	0	Э	Bismuth oxybromide, BiOBr	8	14
4	Ammonium chioride (sal-ammoniac),	1	50	Bismuth oxychioride (bismocilie), BIOOL	4	54 16
	Ammonium chloroiridato (NH) IrCl	8	59	Bismuth sulfide (bismuthinite) Bi-S	9	10
4	Ammonium chloroosmate (NH ₄) ₂ (O ₆	1m	6	Cadmium Cd	3	20
4	Ammonium chloropalladate. (NH ₄) ₂ PdCl ₆	8	7	Cadmium bromide. CdBr	ĝ	17
1	Ammonium chloropalladite, (NH ₄) ₂ PdCl ₄	$\breve{6}$	6	Cadmium carbonate (otavite), CdCO ₃ .	7	11
1	Ammonium chloroplatinate, (NH4)2PtCl6	5	3	Cadmium chloride, CdCl ₂	9	18
1	Ammonium chlorostannate (NH ₄) ₂ SnCl ₆	5	4	Cadmium molybdate, CdMoO4	6	$2\overline{1}$
1	Ammonium chlortellurate, $(NH_4)_2 TeCl_{6}$	8	8	Cadmium oxide, CdO	2	27
1	Ammonium chromium sulfate dodecahy-			Cadmium selenide, CdSe, (hexagonal)	7	12
	drate, $NH_4Cr(SO_4)_2 \cdot 12H_2O_{}$	6	7	Cadmium sulfide (greenockite), CdS	4	15
1	Ammonium dihydrogen phosphate,			tri-Calcium aluminate, 3CaO·Al ₂ O ₃	5	10
	$NH_4H_2PO_4$	4	64	Calcium aluminate 12:7, $12CaO \cdot 7Al_2O_{3}$	9	20
1	Ammonium fluogermanate, $(NH_4)_2 GeF_{6}$	0	8	Calcium aluminum germanate, Ca_3Al_2	10	15
1	Ammonium nuosilicate (cryptonalite),	5	F	(GeU ₄) ₃	10	15
	(NII4)201F 6	9	9	Calcium promide nexaligurate, CaDi ₂ ·011 ₂ O ₋	2	10
1	NH.Go(SO.).12H.O	6	9	Calcium carbonate (calcite), CaCO ₂	2	51
	Ammonium jodide NH I	4	56	Calcium chromate CaCrO	7	13
1	Ammonium iron sulfate dodecahydrate.	-	00	Calcium chromium germanate. Ca ₂ Cr ₂	•	10
1	$NH_4Fe(SO_4)_2 \cdot 12H_2O_{}$	6	10	$(\text{GeO}_4)_{3}$	10	16
1	Ammonium metavanadate, NH ₄ VO ₃	8	9	Calcium chromium silicate (uvarovite),		
	Ammonium nitrate (ammonia-niter),			$Ca_3Cr_2(SiO_4)_3$	10	17
	NH ₄ NO ₃	7	4	Calcium fluoride (fluorite), CaF ₂	1	69
4	Ammonium oxalate monohydrate (oxam-	_		Calcium formate, Ca(HCO ₂) ₂	8	16
	mite), $(NH_4)_2C_2O_4 \cdot H_2O_4$	7	5	Calcium gallium germanate, $Ca_3Ga_2(GeO_4)_{3-}$	10	18
4	Ammonium perchlorate, NH_4ClO_4 , (ortho-	-	0	Calcium hydroxide (portlandite), $Ca(OH)_{2}$	1	58
	rhombic)	7	6	Calcium iron germanate, $Ca_3Fe_2(GeO_4)_{3}$	10	19
4	Ammonium permenate, NH ₄ KeO ₄	9	7	Calcium iron silicate (andradite),	0	00
4	$(NH) PO(M_{O}) $ $4HO$	0	10	$C_{a_3} Fe_2 SI_3 O_{12}$	9	22
	$(N\Pi_4/3I O_4(MOO_3)_{12} \cdot 4\Pi_2O_{}$	0	10	Calcium norybuate (powenne), $Calmoo_{4}$	7	14
1	$(NH_{4})_{3}SO_{4}$ (revised)	Q	8	Calcium oxide. CaO	í	43
	Ammonium zirconium fluoride (NH ₄) ₀ ZrF ₇	6	14	Calcium sulfate (anhydrite), CaSO	4	65
	Antimony, Sb	3	14	Calcium sulfide (oldhamite), CaS	$\overline{7}$	15
	Antimony(III) iodide, SbI3	6	16	Calcium tungstate (scheelite), CaWO4	6	23
	Antimony(III) oxide (senarmontite), Sb ₂ O ₃₋	3	31	Carbon (diamond), C	2	5
	Antimony(III) oxide, valentinite, Sb_2O_3	10	6	Cerium(III) chloride, CeCl ₃	$1 \mathrm{m}$	8
4	Antimony(IV) oxide (cervantite), Sb_2O_4	10	8	Cerium(III) fluoride, CeF ₃	8	17
4	Antimony (V) oxide, Sb_2O_5	10	10	Cerium magnesium nitrate 24-hydrate,		
4	Antimony(III) sulfide (stibnite), Sb_2S_{3}	5	6	$Ce_2Mg_3(NO_3)_{12} \cdot 24H_2O_{$	10	20
				Cerium(IV) oxide (cerianite) CeO ₂	, 1	56
	• Further work on this program is in progress, and it is	s anticipa	ted that	Cerium(III) vanadate, $CeVO_{4}$	$1 \mathrm{m}$	9

⁶ Further work on this program is in progress, and it is anticipated that additional volumes will be issued. Therefore, the accumulative index here is not necessarily the concluding index for the project.

m-Monograph 25.

Cesium aluminum sulfate dodecahydrate,

Cesium bromate, CsBrO₃.....

6

8

25

18

 $CsAl(SO_4)_2 \cdot 12H_2O_-$

	Vol. or	Рала
Cesium bomide, CsBr	3	49
Cesium bromoplatinate, Cs ₂ PtBr ₆	8	19
Cesium bromoselenate, Cs_2SeBr_6	8	$\frac{20}{24}$
Cesium chlorate. CsClO ₃	9	$\frac{24}{20}$
Cesium chloride, CsCl	$\overset{\circ}{2}$	44
Cesium chloroplatinate, Cs ₂ PtCl ₆	5	14
Cesium chlorostannate, Cs_2SnCl_6	5	16
$CsCr(SO_4)_2 \cdot 12H_2O_{$	8	21
Cesium dichloroiodide, CsICl ₂	3	$\overline{50}$
Cesium fluoborate, CsBF ₄	8	22
Cesium fluorlatinate, Cs2GeF ₆	56	17
Cesium fluosilicate, Cs_2SiF_6	5	19^{21}
Cesium gallium sulfate dodecahydrate,		
$CsGa(SO_4)_2 \cdot 12H_2O_{$	8	23
Cesium iron sulfate dodecabydrate.	4	47
$CsFe(SO_4)_2 \cdot 12H_2O_{$	6	28
Cesium nitrate, CsNO ₃	9	25
Cesium perchlorate, $CsClO_4$, (orthorhombic)_	1 m	10
Cesium vanadium sulfate dodecahydrate.	'	17
$CsV(SO_4)_2 \cdot 12H_2O_{$	$1 \mathrm{m}$	11
Chromium, Cr	5	20
Chromium orthophosphate, beta, β -CrPO ₄	9	26
Chromium silicide, Cr ₂ Si	6	$\frac{22}{29}$
Cobalt aluminum oxide, CoAl ₂ O ₄	$\tilde{9}$	$\overline{27}$
Cobalt arsenide (skutterudite), CoAs ₃	10	21
Cobalt(II) carbonate (spherocobaltite),	10	94
Cobalt diarsenide, CoAs ₂	10	$\frac{24}{26}$
Cobalt gallate, CoGa ₂ O ₄	10	27
Cobalt germanate, Co_2GeO_4	10	27
Cobalt Iron arsenide (samorite), CoreAs ₄ Cobalt(II) oxide. CoO	10 Q	28
Cobalt(II) oxide, Co_3O_4	9	$\frac{20}{29}$
Copper, Cu	1	10
Copper (1) bromide, CuBr	4	36
$(CO_3)_{2}$	10	30
Copper carbonate, basic, (malachite),		00
$Cu_2(OH)_2(CO_3)$	10	31
Copper(I) chloride (nantokite), CuCl	4	35
Copper(I) iouide (inarstite), $Cu_2O_{$	2	$\frac{33}{23}$
Copper(II) oxide (tenorite), CuO	1	49
Copper(II) sulfide (covellite), CuS	4	13
Erbium gallium oxide 3:5 $\operatorname{Er}_2\operatorname{Ga}(\operatorname{Ga}\Omega)_2$	9 1m	30 12
Erbium phosphate, ErPO ₄	9	31
Erbium sesquioxide, Er2O3	8	25
Europium (III) chloride, EuCl ₃	lm 1m	13
Gadolinium fluoride. GdF ₃	1m 1m	14
Gadolinium oxide, Gd_2O_3	1m	$\overline{16}$
Gadolinium oxychloride, GdOCl	$1 \mathrm{m}$	17
Gallium, Ga	26	20
Gallium oxide, alpha, Ga ₂ O ₃	4	$\frac{30}{25}$
Gallium phosphate, (a-quartz type) GaPO ₄	8	27
Germanium, Ge	1	18
Germanium dioxide, GeO_2 (hexagonal)		51
Germanium (IV) jodide GeL	5	48 25
Gold. Au	1	33
Gold antimony 1:2 (aurostibite), AuSb ₂	7	18
Gold(I) cyanide, AuCN	10	33
Gold tin 1:1 AuSn	7	19
Hafnium, Hf	3	18
Holmium ethylsulfate nonahydrate,	1m	19
Holmíum sesquioxide. Ho Ω_3	9	$\frac{10}{32}$
,,	0	

	VOI. or	Page
Indium, In	3	12
Indium antimony, InSb	4	73
Indium oxide, In_2O_3	5	$\dot{26}$
Indium phosphate, InPO ₄	8	29
lodic acid, HIO ₃	5	28
Iodine, I_2	3	16
Iridium, Ir	4	9
Iron, Alpha, Fe	4	3
Iron arsenide, FeAs	1m	19
Iron arsenide (loellingite), FeAs ₂	10	34
Lopthonum bonto L-BO	5	29
Lanthanum oblarida LaCl	lm	20
Lanthanum fuoride LaF.	1m	21
Lanthanum magnesium nitrate 24 hudrote		21
La Mg (NO ₂) 12.24H ₂ O	1m	- 00
Lanthanum oxide. $La_0 O_2$	1111	22
Lahthanum oxychloride, LaOCl	7	- 00 - 99
Lead. Pb	i	34
Lead bromide, PbBr ₂	$\frac{1}{2}$	47
Lead carbonate (cerrussite), PbCO ₃	$\overline{2}$	56
Lead chloride (cotunnite), PbCl ₂	$\overline{2}$	45
Lead formate, Pb(HCO ₂) ₂	8	30
Lead fluochloride (matlockite) PbFCl	1	76
Lead fluoride, alpha, PbF ₂	5	31
Lead fluoride, beta, PbF ₂	5	33
Lead(II), iodide, PbI ₂	5	34
Lead molybdate (wulfenite), PbMoO ₄	7	23
Lead monoxide (litharge), PbO (red)	2	30
Lead monoxide (massicot) PbO (yellow)	2	32
Lead nitrate, $Pb(NO_3)_2$	5	36
Lead (11, 111) oxide (minium), Pb_3O_4	8	32
Lead, phosphate hydrate (lead hydroxyapa-	0	
I_{10} , I_{1	ð	33
Lead selenide (claustnance), 1 bbe	0	38
Lead sulfide (galena) PbS	0	07
Lead titanate PhTiO	5	20
Lead tungstate (stolzite), PbWO	7	24
Lithium bromide, LiBr	4	30
Lithium chloride, LiCl	1	62
Lithium fluoride, LiF	1	61
Lithium iodate, LiIO ₃	7	26
Lithium molybdate, Li ₂ MoO ₄ , (trigonal)	$1 \mathrm{m}$	23
Lithium oxide, Li ₂ O	$1 \mathrm{m}$	25
Lithium nitrate, LINO ₃	7	27
Lithium perchlorate trinydrate, LiClO ₄ ·3H ₂ O	. 8	34
Litnium tungstate, $Li_2 WO_4$, (trigonal)	lm	25
Lutetium oxide, Lu_2O_3	Im	27
Magnesium, Mg MgALO	1	10
Magnesium aluminum silicate (low-cordi-	4	30
erite) Mg.Al.Si-O. (orthorhombic)	1m	20
Magnesium aluminum silicate (high-cordi-	тш	20
erite). Mg ₂ Al ₂ Si ₅ O ₁₈ (hexagonal)	1m	29
Magnesium carbonate (magnesite), MgCO ₃	7	$\overline{28}$
Magnesium chromite (picrochromite),		-0
$MgCr_2O_4$	9	34
Magnesium fluoride (sellaite), MgF ₂	4	33
Magnesium gallate, MgGa ₂ O ₄	10	36
Magnesium germanate, Mg_2GeO_4 (cubic)	10	37
Magnesium germanate, Mg_2GeO_4 (ortho-	10	
rhombic)	10	38
Magnesium hydroxide (brucite), $Mg(OH)_{2}$	0	30
Magnesium oxide (periclase), MgO	L G	31
Magnesium silicate (enstatite), MgSiO ₃	0	32
Magnesium silicate (lorsterite), Mg20104	T	00
Masio. Mar	10	30
Magnesium silicate fluoride (humite)	10	09
$3 Mg_{2}SiO_{4} \cdot MgF_{2}$	1m	30
Magnesium sulfate heptahvdrate (epsomite).		
$MgSO_4 \cdot H_2O_{$	7	30
Magnesium sulfide, MgS	7	31
Magnesium tin, Mg ₂ Sn	5	41
Magnesium titanate (geikielite), $MgTiO_{3}$	5	43

m-Monograph 25.

	Vol. or	Page
Magnesium tungstate, MgWO ₄	1 9	84 35
Manganese(II) carbonate (rhodochrosite), $MnCO_3$	7	32
Manganese ferrite (jacobsite), MnFe ₂ O ₄ Manganese(II)oxide (manganosite), MnO	$\frac{9}{5}$	$\frac{36}{45}$
Manganese (III) oxide (partridgeite), Mn ₂ O ₃ - Manganese selenide, MnSe	$9 \\ 10$	$\begin{array}{c} 37 \\ 41 \end{array}$
Manganese sulfide, alpha (alabandite), α -MnS	4	1 1
Mercury(I) bromide, Hg ₂ Br ₂	$\frac{7}{1}$	33 72
Mercury (II) chloride, HgCl ₂	$\frac{1}{6}$	73 35
Mercury(I) iodide, HgI	4	$49 \\ 74$
Mercury(II) louide, Hg12 Mercury(II) oxide (montroydite), HgO	0	20
Mercury(II) selenide (tiemannite), HgSe	9 7	$\frac{39}{35}$
agonal)	4	17
Mercury(11) sulfide (metacinnabar), HgS (cubic)	4	21
Neodymium borate, NdBO ₃	$1 { m m}$ $1 { m m}$	$\frac{32}{33}$
Neodymium ethylsulfate nonahydrate, NdI (C ₂ H ₅)SO ₄] ₃ ·9H ₂ O	9	41
Neodymium fluoride, NdF ₃	8	36
$(GaO_4)_3$	1 m 4	$\frac{34}{26}$
Neodymium oxychloride, NdOCl	8	$\frac{5}{37}$
Nichel aluminate, NiAl ₂ O ₄	9	42
Nickel arsenic sulfide (gersdorffite) NiAsS	10 1m	35
Nickel (11) carbonate, NICO ₃ (trigonal) Nickel ferrite (trevorite), NiFe ₂ O ₄	1m 10	30 44
Nickel fluosilicate hexahydrate, $NiSiF_6 \cdot 6H_2O$ Nickel gallate, $NiGa_2O_4$	8 10	$\frac{38}{45}$
Nickel germanate, Ni ₂ GeO ₄ Nickel (II) oxide (bunsenite), NiO	$9 \\ 1$	$\begin{array}{c} 43 \\ 47 \end{array}$
Nickel sulfate hexahydrate, NiSO ₄ ·6H ₂ O Nickel sulfide, millerite, NiS	$7 \ 1 \mathrm{m}$	$\frac{36}{37}$
Niobium silicide, NbSi ₂	$\frac{8}{4}$	39 8
Palladium, Pd	1	21
Platinum, Pt	1	$\frac{5}{31}$
$KAl(SO_4)_2 \cdot 12H_2O_1$	6	36
Potassium boronydride, KBH4 Potassium bromate, KBrO3	9 7	44 38
Potassium bromole, KBr_{1} Potassium bromoplatinate, K_2PtBr_{6}	$\frac{1}{8}$	66 40
Potassium bromoselenate, K ₂ SeBr ₆ Potassium chloride (sylvite), KCl	$\frac{8}{1}$	$\begin{array}{c} 41 \\ 65 \end{array}$
Potassium chloroplatinate, K_2PtCl_6	$\frac{5}{10}$	$\begin{array}{c} 49\\ 46\end{array}$
Potassium chlorostannate K_2SnCl_6 Potassium chromium sulfate dodecahydrate.	6	38
$KCr(SO_4)_2 \cdot 12H_2O_{$	6 9	39 45
Potassium cyanate, KCNO	7 1	$\frac{10}{39}$
Potassium dihydrogen arsenate, KH ₂ AsO ₄	1m	38
Potassium dihydrogen phosphate, KH_2PO_{4} Potassium fluogermanate, K_2GeF_{6}	$\frac{3}{6}$	69 41
Potassium fluoplatinate, K ₂ PtF ₆	6 1	42 64
Potassium fluosilicate (hieratite), K_2SiF_{6}	$\frac{1}{5}$	50
Potassium fluotitanate, K_2TiF_{6} Potassium heptafluozirconate, K_3ZrF_{7}	7 9	$\frac{40}{46}$
Potassium hydroxy-chlororuthenate, $K_4Ru_2Cl_{10}O\cdot H_2O_{$	10	47
Potassium iodide, KI	1	68
m monograph zo.		

	Vol. or	Page
Potassium metaperiodate, KIO4	_ 7	41
Potassium nitrate (niter), KNO ₃	. 3	58
Potassium perchlorate, KClO ₄	$- \frac{6}{7}$	43
Potassium permanganate, KMnO ₄	- 8	42
Potassium phosphomolybdate, tetrahydrate	- -,	
$K_3PO_4(MoO_3)_{12} \cdot 4H_2O_{}$	- 8	43
Potassium sulfate (arcanite), K_2SO_4 Potassium thiographic KCNS	- 3	62 44
Potassium zinc fluoride, KZnF ₃	_ 5	51^{11}
Praseodymium chloride, PrCl ₃	- 1m	39
Praseodymium fluoride, PrF ₃	- 5	52
Rhenium Re	- 9 2	47 13
Rhodium, Rh	- 3	10
Rubidium aluminum sulfate dodecahydrate	3,	
$RbAl(SO_4)_2 \cdot 12H_2O_{}$	- 6	44
Rubidium bromide. RbBr	- 7	43
Rubidium bromotellurate, Rb ₂ TeBr ₆	8	46
Rubidium chlorate, RbClO ₃	- 8	47
Rubidium chloroplatinata Rh-PtCl.	- 4 5	41 53
Rubidium chlorostannate, Rb ₂ SnCl ₆	_ 6	46
Rubidium chlorotellurate, Rb ₂ TeCl ₆	_ 8	48
Rubidium chromium sulfate dodecahydrate	е,	47
$RDOr(SO_4)_2 \cdot 12H_2O_{}$ Rubidium fluoplatinate Rb_2PtF_2	- 0	47
Rubidium fluosilicate, Rb_2SiF_6	- 6	49^{10}
Rubidium iodide, RbÍ	- 4	43
Rubidium sulfate, Rb ₂ SO ₄	- 8	48
Samarium chloride. SmCl	- 4 1m	40
Samarium fluoride, SmF ₃	_ 1m	$\overline{41}$
Samarium gallium oxide 3:5, Sm ₃ Ga	2-	40
$(GaO_4)_3$	- 1m 1m	42
Scandium oxide, Sc ₂ O ₃	_ 3	27
Scandium phosphate, ScPO ₄	_ 8	50
Selenium, Se	- 5	54
Silicon Si	$-\frac{1}{2}$	- 00 6
Silicon dioxide (alpha or low quartz), SiO ₂ -	3	24
Silicon dioxide (alpha or low cristobalite),	40
Silicon diovide (beta or high crischalite)	10	48
Silo ₂	1	42
Silver, Ag	1	23
Silver arsenate, Ag ₃ AsO ₄	. – 5 E	56
Silver bromide (bromvrite). AgBr	- 4	46
Silver carbonate Ag_2CO_3	1m	44
Silver chlorate, AgClO ₃	7	44
Silver chloride (cerargyrite), AgCI	4	44 51
Silver iodide, gamma, γ -AgI (cubic)	- 9	48
Silver metaperiodate, AgIO ₄	- 9	49
Silver molybdate, Ag ₂ MoO ₄	7	45
Silver nitrate, $AgNO_3$	ə 5	
Silver oxide, Ag ₂ O	1m	45
Silver(II) oxynitrate, Ag ₇ O ₈ NO ₃	4	61
Silver perrhenate, AgReO ₄	8	53
Silver sulfate. Ag ₃ SO ₄	- 7	46
Silver sulfide (argentite), Ag ₂ S	10	51
Sodium acid fluoride, NaHF2	5	63
Sodium borohydride, NaBH ₄	9	51 65
Sodium bromide. NaBr		47
Sodium carbonate monohydrate (thermon	a-	
trite), $Na_2CO_3 \cdot H_2O_{$	8	54
Sodium chloride (halite). NaCl	-2	41
Sodium cyanide, NaCN (cubic)	ĩ	78
Sodium cyanide, NaCN (orthorhombic)	1	79
Sodium fluoride (villiaumite), NaF	1	63

	vol. or sec.	Page		Vol. or sec.	Page
Sodium iodate NaIO	7	47	Thallium(I) iodide TIL (orthorhombic)	4	53
Sodium iodate, Nal	4	31	Thallium(I) nitrate. TINO ₂	6	58
Sodium metaperiodate. NaIO	7	48	Thallium (III) oxide. $Tl_{2}O_{2}$	$\tilde{2}$	- 28
Sodium molybdate. Na MoQ	1m	46	Thallium(I) phosphate. Tl ₂ PO ₄	$\frac{2}{7}$	58
Sodium nitrate (soda-niter) NaNO	6	50	Thallium(III) phosphate, TIPO	7	50
Sodium nitrite NaNO	4	62	Thallium(I) sulfate Tl _s SO ₄	6	50
Sodium perchlorate NaClO ₂ (orthorhombic)	7	49	Thallium(I) thiocyanate TICNS	8	69
Sodium sulfate (thenardite) Na-SO	2	59	Thallium(I) tungstate ThWO	1m	48
Sodium sulfite Na-SO	3	60	Thorium oxide (thorianite) ThO	1	57
Sodium totramotanhognhata tetrahydrata	9	00	Thulium sesquioxide Tm.O.	¹	59
No P.O. $4HO$ (Monoclinic)	10	59	Tin alpha Sn	9	- 0C 10
Sodium tungatoto No WO	1	47	Tin bota Sp	1	9/
Strantium bromide househudrote Spp. 6H O	1111	47 60	Tin (IV) jodido SpL	1	- <u>2</u> 9 71
Strontium promide nexally drate, SrDr ₂ ·011 ₂ O.	4 9	50	Tin(II) ovide SpO	0 1	- 11
Strontium carbonate (strontianite) $SrOO_{3}$	Э 4	20	Tin(II) oxide, onocitemite) SnO	-±	- 40 E 4
Strontium chioride, SrCi ₂	4	40	$Tin(IV)$ oxide (cassification), $Silo_2$	17	04
Strontium chioride nexanydrate, $SrOl_2 Oh_2O_1$	4		Titonium Ti	4	10
Strontium fluoride, SrF_{2}	Ð	01	Titanium, II	3	1
Strontium formate, $Sr(CHO_2)_2$	8	55	Titanium dioxide (anatase), TiO ₂	1	40
Strontium formate dihydrate, $Sr(CHO_2)_2$.	0	- 0	Thanhum dioxide (rutile), 110_{2}	1	44
$2H_2O$ orthorhombic	8	56	Titanium(111) Oxide, $110_{1.515}$	9	59
Strontium iodide hexahydrate, $SrI_2 \cdot 6H_2O_{}$	8	58	Intanium silicide, 11_5S1_3	8	64
Strontium molybdate, SrMoO ₄	7	50	Tungsten, W	1	28
Strontium nitrate, $Sr(NO_3)_{2$	1	80	Tungsten sulfide (tungstenite), WS_{2}	8	65
Strontium oxide, SrO	5	68	Uranium dioxide, UO_2	$\frac{2}{2}$	- 33
Strontium peroxide, SrO_2	6	52	Urea, $CO(NH_2)_{2}$	7	61
Strontium sulfate (celestite), $SrSO_{4}$	2	61	Vanadium(V) oxide, V_2O_5	8	66
Strontium sulfide, SrS	7	52	Ytterbium gallium oxide 3:5, Yb ₃ Ga ₂ (GaO ₄) ₃ _	$1\mathrm{m}$	49
Strontium titanate, SrTiO ₃	3	44	Yttrium gallium oxide 3:5, $Y_3Ga_2(GaO_4)_{3}$	$1\mathrm{m}$	50
Strontium tungstate, SrWO ₄	7	53	Yttrium, oxide, Y_2O_3	3	28
Strontium zirconate, SrZrO ₃	9	51	Yttrium oxychloride, YOCl	$1\mathrm{m}$	51
Sulfamic acid, NH ₃ SO ₃	7	54	Yttrium phosphate (xenotime), YPO ₄	8	67
Sulfur, S	9	54	Zinc, Zn	1	16
Tantalum, Ta	1	29	Zinc aluminate (gahnite), ZnAl ₂ O ₄	2	- 38
Tantalum Silicide, TaSi2	8	59	Zinc borate, ZnB_2O_4	1	- 83
Tellurium, Te	1	26	Zinc carbonate (smithsonite), ZnCO ₃	8	69
Tellurium(IV) oxide (paratellurite) TeO ₂			Zinc cyanide $Zn(CN)_2$	5	73
(tetragonal)	7	56	Zinc, fluoride, ZnF_{2-}	6	60
Tellurium(IV) oxide, paratellurite, TeO ₂	10	55	Zinc fluosilicate hexahydrate, $ZnSiF_{6}\cdot 6H_{2}O_{}$	8	70
Tellurium(IV) oxide (tellurite), TeO ₂ (ortho-			Zinc germanate, Zn ₂ GeO ₄	10	-56
rhombic)	9	57	Zinc iodide, ZnI ₂	9	60
Thallium aluminum sulfate dodecahydrate.			Zinc orthosilicate (willemite), Zn ₂ SiO ₄	7	62
$T[A](SO_4)_2 \cdot 12H_2O_1$	6	53	Zinc oxide (zincite), ZnO	2	25
Thallium(I) bromate, TlBrO ₂	Ř	60	Zinc pyrosilicate hydrate (hemimorphite)		
Thallium bromide TIBr	7	57	$Zn_4(OH)_2Si_3O_7 \cdot H_2O$	2	62
Thallium(I) chlorate TIClO	Ř	61	Zinc selenide, ZnSe	3	23
Thallium(I) chloride TICI	4	51	Zinc sulfate (zinkosite), ZnSO4	$\overline{7}$	$\overline{64}$
Thallium ablevenletinete. TI PtCi	5	70	Zinc sulfate heptahydrate (goslarite).		-
Thamum chioropiantate, The Colo	0	70	ZnSO4.7H2O	8	71
Thannum chlorostannate, Tl ₂ SnCl ₆	b	54	Zinc sulfide, alpha (wurtzite), ZnS	2	14
Thallium chromium sulfate dodecahydrate,			Zinc sulfide, beta (sphalerite), ZnS	$\overline{2}$	16
$TICr(SO_4)_2 \cdot 12H_2O_{$	6	55	Zirconium, alpha, Zr	2	11
Thallium fluosilicate, Tl ₂ SiF ₆	6	56	Zirconium iodate, Zr(IO ₂)	1m	51
Thallium gallium sulfate dodecahydrate.			Zirconium silicate (zircon), ZrSiQ	4	68
$TlGa(SO_4)_2 \cdot 12H_2O_{$	6	57	Zirconium sulfate tetrahydrate Zr(SO.).	-	00
Thallium(I) jodate, TIIO ₂	8	62	4H ₀ O	7	66
(-) 100000, 1103	0				00

-- -

THE NATIONAL BUREAU OF STANDARDS

The scope of activities of the National Bureau of Standards at its major laboratories in Washington, D.C., and Boulder, Colorado, is suggested in the following listing of the divisions and sections engaged in technical work. In general, each section carries out specialized research, development, and engineering in the field indicated by its title. A brief description of the activities, and of the resultant publications, appears on the inside of the front cover.

WASHINGTON, D.C.

Electricity. Resistance and Reactance. Electrochemistry. Electrical Instruments. Magnetic Measurements. Dielectrics. High Voltage.

Metrology. Photometry and Colorimetry. Refractometry. Photographic Research. Length. Engineering Metrology. Mass and Scale. Volumetry and Densimetry.

Heat. Temperature Physics. Heat Measurements. Cryogenic Physics. Equation of State. Statistical Physics.

Radiation Physics. X-Ray. Radioactivity. Radiation Theory. High Energy Radiation. Radiological Equipment. Nucleonic Instrumentation. Neutron Physics.

Analytical and Inorganic Chemistry. Pure Substances. Spectrochemistry. Solution Chemistry. Standard Reference Materials. Applied Analytical Research.

Mechanics. Sound. Pressure and Vacuum. Fluid Mechanics. Engineering Mechanics. Rheology. Combustion Controls.

Organic and Fibrous Materials. Rubber. Textiles. Paper. Leather. Testing and Specifications. Polymer Structure. Plastics. Dental Research.

Metallurgy. Thermal Metallurgy. Chemical Metallurgy. Mechanical Metallurgy. Corrosion. Metal Physics. Electrolysis and Metal Deposition.

Mineral Products. Engineering Ceramics. Glass. Refractories. Enameled Metals. Crystal Growth. Physical Properties. Constitution and Microstructure.

Building Research. Structural Engineering. Fire Research. Mechanical Systems. Organic Building Materials-Codes and Safety Standards. Heat Transfer. Inorganic Building Materials.

Applied Mathematics. Numerical Analysis. Computation. Statistical Engineering. Mathematical Physics. Operations Research.

Data Processing Systems. Components and Techniques. Digital Circuitry. Digital Systems. Analog Systems. Applications Engineering.

Atomic Physics. Spectroscopy. Infrared Spectroscopy. Solid State Physics. Electron Physics. Atomic Physics.

Instrumentation. Engineering Electronics. Electron Devices. Electronic Instrumentation. Mechanical Instruments. Basic Instrumentation.

Physical Chemistry. Thermochemistry. Surface Chemistry. Organic Chemistry. Molecular Spectroscopy. Molecular Kinetics. Mass Spectrometry.

Office of Weights and Measures.

BOULDER, COLO.

Cryogenic Engineering. Cryogenic Equipment. Cryogenic Processes. Properties of Materials. Gas Liquefaction. **Ionosphere Research and Propagation.** Low Frequency and Very Low Frequency Research. Ionosphere Research. Prediction Services. Sun-Earth Relationships. Field Engineering. Radio Warning Service.

Radio Propagation Engineering. Data Reduction Instrumentation. Radio Noise. Tropospheric Measurements. Tropospheric Analysis. Propagation-Terrain Effects. Radio-Meteorology. Lower Atmosphere Physics.

Radio Standards. High Frequency Electrical Standards. Radio Broadcast Service. Radio and Microwave Materials. Atomic Frequency and Time Interval Standards. Electronic Calibration Center. Millimeter-Wave Research. Microwave Circuit Standards.

Radio Systems. High Frequency and Very High Frequency Research. Modulation Research. Antenna Research. Navigation Systems. Space Telecommunications.

Upper Atmosphere and Space Physics. Upper Atmosphere and Plasma Physics. Ionosphere and Exosphere Scatter. Airglow and Aurora. Ionospheric Radio Astronomy.