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Preface

This present work had its inception in 1954, shortly after Professor G. H.
Dieke of The Johns Hopkins University, "with the support of the U.S. Atomic
Energy Commission, initiated a program of experimental studies of the sharp
line absorption spectra of crystals. The effort was directed principally to

rare earth salt crystals, but some work was also done on the ruby and m'anyl
salts. Dr. Dieke suggested to the author that a theoretical study to accompany
the experimental program would be desirable and encouraged the undertaking
of such a study.

It rapidly became apparent on surveying the problem that the techniques
of group theory would be of central importance in such a study. Early in 1955,
Dr. Charles ]M. Herzfeld, then of the Naval Research Laboratory in Washington,
addressed the Spectroscopy Seminar at Hopkins on the techniques of group
theory with particular application to the paramagnetic resonance of salts of

the iron group. This was the beginning of a continuing association with Dr.
Herzfeld in the study of group theory, an association which has been a somce
of great personal and professional satisfaction to the author to the present time.

In August of 1955, through the courtesy of Dr. F. G. Brickwedde, then
Chief of the Heat and Power Division of the National Bureau of Standards,
and Dr. R. P. Hudson, Chief of the Cryogenic Physics Section of the Bureau,
the author was appointed a Guest Worker at the Bmeau, and office space was
provided and the extensive hbrary facilities of the Bureau made available.

This appointment continued when Dr. Herzfeld was appointed Chief of the
Heat Division.

The present work is largely an exhaustive collection of the results of group
theory which apply to the theory of atomic energy levels in crystals, together
with a careful, and detailed, but not especially abstract development of the

general theory to permit an intelligent application of the results to experimental
problems. Dr. Herzfeld, in collaboration with Professor Paid H. Meijer of

The Catholic University of America, has written a review on the general subject

"Group Theory and Crystal Field Theory", soon to be published, treating the

subject from a more abstract viewpoint of modern algebra and concentrating
on the fundamental aspects of the theory. This latter work and the present

one form a complementary pair of works on the general topic. It is hoped
that, together, they will meet the needs of most workers in the field.
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Atomic Energy Levels in Crystals
'

'

John L. Prather^

Discrete energy levels observed within certain crystals are treated as due to perturbations
of the energy leveli of the free ion by an electrostatic field arising from the crystal lattice.

The analytic procedures for determining the field from the charge configuration are given,
and the resulting fields are classified according to their symmetry. After a general survey
of group-theoretical ideas, the applicable groups are analyzed in detail, and characters
appropriate for both integral and half-integral angular momenta of the free ion are tabulated.
These are applied to the determination of the number and type of levels arising from a free
ion level with /<8. The results of this analysis are tabulated, as are the selection rules
for electric dipole, magnetic dipole, and electric quadrupole transitions. Calculation of the
perturbation matrix elements by the use of Wigner and Racah coefficients is discussed.
Examples of the application of these several techniques to specific problems are given.

1. Introduction

In contrast to the sharp lines or resolvable
bands characteristic of the optical absorption
spectra of free atomic and. raolecular systems,
such spectra for soUds consist for the most part
of broad absorption regions or bands vrithout any
resolvable structm-e. These spectra are therefore
of Httle used for analysis of the details of the solids

for which they are observed, revealing only general
information such as the presence or absence of

certain molecular groupings. Nevertheless, it was
early recognized in the development of optical
spectroscopy that certain naturally occurring
minerals did in fact show a characteristic line

absorption spectrum. The earliest observations
were on the crystals of salts of the iron group
elements and of the rare earth elements, though
later observations have shown similar spectra in

crystals of all elements characterized by a par-
tially filled inner shell of electrons. In this

present work we shaU be concerned primarily
with the rare-earth spectra, though we shaU
sketch the application of the development to
other possible cases.

The earliest data on these spectra, covering
about 50 years before 1905 are reviewed by
Kayser (see bibliography). Subsequent to the
discovery of the Zeeman effect in 1895, J. Becquerel
initiated an extensive investigation on the effects

of magnetic fields on the absorption lines of
natural rare earth crystals, their polarization, and
particularly their rotation of the plane of polariza-
tion of light (Faraday effect). These measure-
ments, carried out both at room temperature and
at liquid air temperature, are summarized in his

paper of 1908. In this same year, Becquerel and
Onnes reported on the spectra and magnetic
effects at liquid hydrogen temperatm-es, and
measurements at liquid helium temperatures were
finally reported in 1926 bv Becquerel, Onnes, and
de Haas, du Bois and Elias (1908, 1911) also

' Based on a dissertation submitted to the Faculty of Philosophy of The
Johns Hopkins University in partial ftdffllment of the requirements for the
degree Doctor of Philosophy.

' Supported in part by the U.S. Air Force, through the Air Force Office of
Scientific Research of the Air Research and Development Command, under
Contract No. CSO and A 6S0-56-21.

' Guest worker, formerly from The George Washington University, now
with Beloit College, Beloit, Wise

reported work on chromium, cobalt, and uranimn
crystals as well as on the rare earths.

The year 1929 marked the beginning of an
extensive program of investigation of these spectra

at various temperatures by Spedding, Freed, and
collaborators. The principal experimental ad-
vance over earlier work lay in the use of synthetic
crystals of more definite composition than the
natural crystals, which usually consisted of a
mixture of rare earths of varying composition.
Hence there had been little if any rehabUity in

intercomparison of the results obtained from
various crystals, even of the same nominal type.

This was a considerable advance over the previous
attempts at a systematic experimental approach
to these spectra, though by today's standards
even these crystals were not of satisfactory

purity. These measurements were also much
aided by continuing developments in the theory
of these spectra, vv'hich we shaU trace below.

All of these spectra show the same general

pattern and behavior upon reducing the temper-
ature. The absorption lines for various elements
faU into groups in several regions of the spectrum

—

the general wavelength regions where the lines

fall depend on the rare earth involved, while
details concerning the number of lines, the exact
position, intervals, Zeeman effect, etc., depend
on the negative ions involved and on the details

of the crystal structure. In comparison with
room temperature measurements, those at re-

duced temperatm-es show generally sharper lines,

together vnth a slight overall shift of the groups
to the red and increased separation of the lines

within a group (Spedding and Bear, 1932). The
ntimber of lines also changes; certain "high temper-
ature lines" disappear, while others appear or

become more intense at lower temperatures.

Such lines have also been observed in solutions of

the ions, though these lines are generally broader
than in the crystals.

Although there was some theoretical specula-

tion on these spectra, no theoretically satisfactory

contributions save the derivation of empirical

energy level diagrams coidd be made prior to the

advent of quantum mechanics. The fij'st major
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contribution directly related, to the rare earth
spectra was the calculation by Hund (1925) of the
room temperature paramagnetic susceptibility of

the rare earth crystals on the assumption that the
crystals consisted of an independent statistical

assemblage of ions, characterized by an unfilled

shell of 4/ electrons which became increasingly

filled as one proceeded up the periodic table.

The ground states of these ions were calculated

on the assumption that Hund's rules for free

atoms were valid, i.e., that of all the terms arising

from the given 4/" configuration, that with the
greatest multiplicity had the lowest energy, and
of those of this greatest multiplicity, the largest

L value was lowest. For a given L-S term, the
resulting multiplet was taken as normal in the
first half of the series (the 4/ shell being less than
half filled) and as inverted in the last half of the
series. The agreement with experiment was
quite good, save in the cases of europium and
samarium, and these two discrepancies were
corrected by the second order calculations of Van
Vleck and Frank (1929), Hund having considered
only the lowest level of the ground m^ultiplet as

contributing to the susceptibility. This agree-
ment with experiment not only gave evidence for

the electronic structure of the rare earth ions in

the crystals, but also suggested that the effects on
the magnetic properties of the ion due to inclusion

in the crystal were small in comparison with kT
at 300° K and also small in comparison with the
multiplet splitting of the ground L-S term.

It was perhaps natural to assume that the line

spectra observed were similarly due to the spectra
of the free ions, modified to some slight degree by
their inclusion in the crystal, but the first sugges-
tion to this effect was made by Brunetti and
OUano (1929), who considered the crystal as a
perturbing electrostatic field on the free ion
spectrum. This idea was also developed by
Freed and Spedding (1929) in initiating their

program of experimental observations noted
above. The classic paper in these early years of

the theory is that by Bethe (1929). Bethe
pointed out that the detaUs of the theoretical

treatment depended on the strength of this

external crystal field compared to the other inter-

actions present (principally the Coulomb inter-

action of the electrons and the spin-orbit inter-

action), and that the symmetry alone of the
external field, independent of its magnitude,
would determine the number and type of levels

arising from a given level of the free ion. These
were specifically computed by Bethe for certain

symmetries, emphasizing in the process the
importance of group-theoretical ideas for such
calculations, and the properties of one-electron

wave functions under these same crystal fields

were also calculated. These ideas were later

extended to treat the Zeeman effect in crystals

(Bethe, 1930). At about the same time, Kramers
(1929, 1930) considering principally the Faraday
effect, formulated the fundamental requirement

that these electrostatic fields arising from the
crystal must leave every level of an odd-electron
system at least twofold degenerate.

Although it seemed clear that the idea of an
electrostatic perturbation acting upon the levels

of the free ion was the key to the problem, it was
not at all certain what transitions were responsible
for the lines actually observed. The situation was
complicated by utter ignorance of the actual free

ion spectrum, and even as recently as 1958 only
that of CelV is known (Lang, 1936). The earliest

suggestions were that the transition involved a
4/ electron excited to either or 6s (Spedding,
1931; Spedding, 1933). These were based princi-

pally on analogy with the selection rules applicable
to free ions. However, the sharpness of the lines

indicates a freedom from interaction with other
ions which would not be expected from such levels

(involving 5d or 6s) having a fair probability of

being at appreciable distances from the nucleus.
Furthermore, the general intensity of the lines

relative to the high concentration of ions in a
solid yields transition probabilities corresponding
to transitions forbidden in the usual type of

atomic spectra (Van Vleck, 1937) . For this reason,

it is today generally considered that the lines

come from transitions between terms arising

from the gi'ound 4/" configuration. This view is

strengthened by the simplicity of such sharp line

spectra in the salts of cerium and ytterbiiun

(Dieke and Crosswhite, 1956) both of which have
only one excited level from the ground configura-

tions 4/^ and 4/^^, respectively. Van Vleck also

made some estimates of the relative probability of

transitions due to electric quadrupole radiation,

m^agnetic dipole radiation, electric dipole radiation

arising from absence of a static center of symmetry
in the crystal field (which destroys the character-

ization of levels as odd or even), and electric dipole

radiation arising from destruction of a static center

of symmetry by lattice vibrations. It was con-
cluded that there was no clear quantitative reason
to reject completely any of these as being not
responsible for the lines observed.

During this period (the 1930's) detailed calcula-

tions were made by Penney and Schlapp (1932,

Schlapp and Penney) based on the assumption of

a cubic crystal field, adjusting the parameters to

fit observed magnetic susceptibility data. Al-

though good agreement with experiment in this

regard was obtained, it is in marked disagTcement
with the spectral data. This may be ascribed to

the insensitivity of susceptibility data (a statistical

average over all ions present) to details of the

crystal field. The same objection also applies to

attempts to derive the crystal field from specific

heat data (Ahlberg et al., 1937). It is now known
that the symmetry of the cubic system is too high

to account for the spectroscopic observations.

Apart from theoretical considerations of the

rare earth spectra alone, several general theoretical

contributions have been made which are applicable

in major part to the determination of the energy
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levels of rare earth ions in crystals. Since these
will be referred to in detail later in this work, we
shall merely mention them for general background
at this point. The general applicabiUty of group
theory to problems of atomic structure has been
emphasized by Weyl (1928), clarified by Eckart
(1930), and treated at length by Wigner (1931).
The calculations of Bethe (1929) for certain sym-
metry groups were extended by Wigner (1930) to
other symmetries, though this was in connection
with problems of molecular vibrations. The
monimiental work of Condon and Shortley (1935)
is invaluable for the study of the free ion spectrum.

While experimental data on many different

crystals were collected by many observers, using
many different techniques (absorption spectra,

Zeeman effect, fluorescence spectra, magnetic
measiu-ements, specific heat data) diu-ing the fol-

lowing years, the next major advance was the ap-
plication of paramagnetic resonance techniques to
the rare earth crystals. A general review of this

work may be found in the paper by Bleaney and
Stevens (1953), while additional data are given in

the supplementary article by Bowers and Owen
(1955). This method has the advantage of giving
data of high acciiracy and resolution—its major
limitation is in the fact that with rare exceptions
only data on the ground level in the crystal are
obtained.
The next major advance in the general theory

was the work of Racah (1942, 1942a,b) on complex
spectra, which provided very powerful general
techniques for the solution of problems in many-
electron systems. His results have been made
applicable to specific nmnerical calculations by
the recent appearance of numerical tables by
Biedenham (1952), Simon (1954), and Simon et al.

(1954). While the procedures of Racah have
been used in several fields, and their applicability

to the problem of rare earth spectra in crystals has
been mentioned by Elliott and Stevens (1953),
no widespread use of them has been made in

crystal spectra problems. The general work of

Bethe (1929) on the applications of group theory
to the problem has subsequently been applied
by various authors to special cases, but no general
overall survey of the possibilities has been given.
The results have been obtained by Hellwege
(1948, 1948a-d) without the explicit use of group
theory, but much elegance and conciseness is lost

thereby, and the resiilts are presented in a rather
cumbersome form. A general survey of these
and many other aspects of the problem by Fick
and Joos (1957) has recently appeared.

Recent renewed interest in these spectra and
the associated properties of the ions has generated
a requirement for a comprehensive survey and
development of the theoretical techniques required
for an analysis of such spectra. While the theory
in its most general terms is known, its applications
in the past have either been concerned with a
particular salt or ion, or have used only a portion
of the theoretical equipment available, are widely
scattered through the literature, and their useful-

ness is limited by differences in conventions of
sign, phase, normalization, notation, etc. It is

the purpose of this paper to provide a compre-
hensive theoretical approach to the analysis of

these spectra in a form particularly adapted to
the requirements of the experimental workers.
In the interest of meeting this aim, mathematical
rigor and long purely algebraic manipulations
have for the most part been omitted, except
where necessary for an understanding of the
concepts and procedures involved. It is hoped
that it will be of value to experimentalists in the
field who have had only a general background in

the ordinary theory of the atomic spectra of free

atomic systems.
Since the general problem is that of computing

the effect on the free ion of the electrostatic

perturbations arising from the crystal lattice, we
begin by considering in section 2 the development
of this potential in a power series of tesseral har-
monics, in explicit terms of the charge and position
of the ions giving rise to the field. An important
property of such fields is their symmetry, and
this will be discussed in detail. In section 3, we
shaU consider the connection between the theory
of groups and quantiun mechanics. We begin
by sketching the group-theoretical ideas associated
with the problem of the free atom. This leads

naturally into those modifications caused by the
inclusion of the ion in the crystal lattice. The
properties of the groups involved in the present
problem are then considered in detail. In section

4, we present explicitly the results of the consider-

ations of section 3 to the degeneracy of levels,

selection rules and polarization of lines in the

spectrum of the crystal. In section 5, we consider

the calculation of the matrix elements of the

pertm-bing electrostatic potential. Finally, we
conclude in section 6 by a review of the various

factors influencing the experimentally observed

spectra, correlated with the spectra of the free

ion, and some examples of the application of the

techniques to specific problems.

2. The Electrostatic Field

2.1. Expansion in Tesseral Harmonics

Let us consider, in a given frame of reference,

an ion with a charge q located at the point described
in spherical coordinates as (R, a, jS). The potential
at the point (r, d, 4>) may be expressed as a series

of Legendre polynomials in the variable cos j,

where 7 is the angle between the directions given

by a, |8, and 6, (p. The unit vectors in the two di-

rections are sin a cos iSi+sui a sin jSj+cos ok, and
sin </) cos <^i+sin 6 sin 0j+ cos ^k, respectively.

Thus, cos 7 is the scalar product of the two unit vec-

tors and cos 7= sin 6 sin a cos ^ cos (^+sin 9 sin a
sin j8 sin ^+cos 6 cos a=sin a sin 0 cos (<^— /3)-|-

3



COS 6 cos a. The potential is given, for r<R, by

V=a±-^,P:,icosy). (2.1)
7v=o rC

The total potential is the sum of similar contribu-
tions from each ion of the crystal lattice. In the
above expression, the contribution of each ion is

described with reference to a different axis, and
it is convenient to refer each contribution to the
same axis, which we choose to be the 2-axis of

the given frame of reference.

This may be accomplished through the use of

the addition theorem of spherical harmonics, which
expresses Pn(cos 7) in terms of a, jS, 6, and 4)

(Stratton, 1941).

^ (N—M)^
P;v(cos7)=P^r(cosa)P^(cos^)+2^^|^^-^

P^(cOSa)Pilf(cOS e) COS Mi4>-^). (2.2)

The potential due to the i-th charge can then be
be put into the form

CO yA^ pVi=ai^ -snm (cos at) Pm (cos e)

^ (N—MV
W+S) (cos aO P'^ (cos e)

(cos M(t) cos Mj8j+sin sin Mft)
J.

(2.3)

The total potential may then be obtained by sum-
ming over all charges in the lattice.

As used above, the P^(cos 6) are not normalized
in the quantum-mechanical sense, since

f-
Pf (cos d) Pk (cos e) d (cos d)

=8'N,K Om.L
2 (iV+M)!

2N+1 (iV-M)!

and it is consequently convenient to define

/
2iV+l {N-M)l

(2.4)

Tabulated functions for N up to and including
6 are given in table 1. Similarly, the functions

-p sin M4>, cos AI^, and constitute an

orthonormal set of functions over the interval

[0, 27r] in the variable cj). We shall define the
following tesseral harmonics, which are functions
of position on the surface of the unit sphere, and
may be evaluated either from d, </>, or from x, y,

Table 1. Normalized Legendre functions

yi
2

e;=f cos

VlO
4

Vl5

(3 cos2 d- 1)

sin e cos d

3^Vl4 (5 cos' 6»-3
' 4 cos e)

,^V42 (5 cos2 e-l)'8 sin 0

V105

,

4

Vto

sm- B cos

e|=-^sin3 6

e2= 3V2
16

3VT0

(35 cos« 0-30 cos2 e+3)

(7 cos' e—2> cos 6) sin d

3V5
(7 cos2 d—l) sin2 e

3V7O
cos 6 sin' 6

3V35 . ,^

16i,

_V22 (63 cos5 0-70 cos' 6'+ 15
' 16 cos e)

Vl65 (21 COS* 9-14 cos2 S+l)
16 sin e

VM55
(3 cos' 0— cos e) sin2 0

-v/TTO

61=

32

3V385
16

3VT54
32

(9^cos2 0-1) sin' 0

cos 0 sin* 0

sin^ 0

/26
e?=-^(231 cos" 0-315 cos* 0+105 cos^ 0-5)

/273

16

V2,730
64

V2,730
32

3a/9T

(33 cos5 0-30 cos' 0+5 cos 0) sin 0

(33 cos* 0-18 cos2 0+1) sin2 0

(11 cos' 0-3 cos 0) sin' 0

32

372^002

32

(11 cos2 0-1) sin* 0

cos 0 sin^ 0

64
sm^ 0

and z. They are given as functions of x, y, and •

z in table 2:

CM oM sinM(^ co_

CM r\
, a=^el (2.5)



Table 2. Normalized tesseral harmonics

Q-

Q-

A 6^ z

" 2 'v^V

" 2 \r;V

VlO J_,2£-^-y^
' 4 '"^

_,_\15 1 zz

_i_\15 J_ yz
-~ 2 '^-r^

VTB 1 x^—y'
^2— —

Vlo 1 2X!/

yi4^ 1 2g3-3z2z-3;/2g

V42 J_ 422x-a:3_a.y2

_ V42 1 4:Z-y—x^y—y^

S5=

Si=

8 '•^

Vl05 1 zx^—zy'^

4~'7P^ \ IT
'

VlOB 2xyz

VTO z-^-3a:y2
^ 8

"v;;:'
r3

VtO J_ Zx'^y-f

8 'V; r3

ro=3V2 J_ 82^+ + 3y^- 24^222- 242/222+ egSyZ

' 16 \ 2^"

SVlO 1 (422 -3z2- 37/2) (X2)

Si

Q

Si

C5

SI

CI

SJ

8

3\^ 1 (422 -3a;2-32/2) (2/2)

8

3\'5 1 (622-

8

3V5 1 (622--x2- 2/2) (2x2/)

8 Vt

3^70 1 (z2--32/2) (X2)

° -V TT

3\^ 1 (3x2 -2/^) (2/2)

8 r4

_3V35 1 x^- 6x22/2+ 2/*

16

3V35 J_ 4x2/(x2- 2/2)

^ 16 'V^"
1'

-„_V22 J_ 825-4023(a;2+ 2/2) + 15(x2+ 2/^)22

' 16 ^27'

Q= V165 1 (82^+x^+ 2/*+2x22/2- 12X222- 122/222)X

16 Vx

SI_ Vl65 1 (Sz*+x*+y*+ 2x22/2— 1 2x222- 1 22/232)

Se=

q=

s?

S;

C;

Vl,155 J_ (222-x2-2/2)(x2-y2)2

8 Vx' '-^

Vl,155 _1_ (222 -X2- 2/2) (2x2/2)

8 Vx'

VtTO J_ (822-x2-2/2)(x3-3x;/2)

32 Vx"

VTTQ J_ (822-x2- 2/2) (3x22/ -2/3)
" 32 Vx'

_ 3V385 1 (x«- 6x22/2+ 2/^)2

16

3\/385 1 (X2--2/2) (4x2/2)

16 Vx

3\/l54 1 X5- 10x^2/2+ 5x2/*

32 Vx

3VT54 1 2/5- 102/5x2+ 52/0;*

32 j*5

V26 1 16 26- 120 (x2+ 2/2) 2«+ 90 (x2+ 2/2) 2 22- 5 (x2+ 2/2)
3

' 32 r8

O-

V273 _]_ [82S-2023(x2+ 2/2)+52(x2+ 2/2)2]x

" 16 V^'

ci_ v273 _1_ [82S-2023(x2+ 2/2)+52(x2+2/2)2]2/
^~

16 'V^*

C5 =

C2_
J6

V2,730 J_ [I62*- 16 (x2+ 2/2) 22+ (x2+ 2/2)2](x2- 2/^)

64 'y-' r6

V2,730 [162«- 16(x2+ 2/2) 22+ (x2+ 2/2)2](2x2/)

64 r6

»-6—_ V2,730 (822- 3x2- 3^2) (a;2_ 3y2) (3;^)

^6 00 /—

32

V2,730 1 (822-3x2 -32/2) (3x2 -2/2) (2/2)

32

3V9T 1 (1022-X2- 2/2) (x<- 6x22/2+ 2/*)

32

3V9I 1 (1022-X2- 2/2) (4x3?/— 4x2/3)

»-6—

^8—

32

3-v/2,002 J_ (xs- 10x32/2+ 5x2/*) 2

32 V^'

3V2,002 (j/ii- 102/3x2+ 52/x*)

2

32
'V;;'

Ve.QOe J_ x"- 15x«2/2+15x22/*— 2/°

64 r^

V6,0U6 J_ (3x2-2/2) (x2- 32/2) (2x2/)

64 V^"
16

551664—61 2



With these substitutions, the potential may now
be written in the form

N=0 M=0
(2.6)

where the coefficients and S^^ depend on the
size and location of the neighboring ions and are

given explicitly by

^'^-JNVi? ^^-"^^^

'^^=2:^?^ (2.7b)

We recall here that the i-ih ion, charge g,, is

located in spherical coordinates at (Ri,a{,l3i).

The terms C^{ai,l3i) and S^(Q;j,jSi) represent the
quantities (2.5) evaluated for the several pau's of

angles involved in the summation.

We shall also have occasion to utilize the complex
form of (2.5), defining

YMN—

and
V2

(2.8)

This will similarly require, in lieu of (2.7a, b) the
coefficients

(2.9)

This expression (2.6) for the potential diverges for
r>it. As we shall see later, however, we shall
require only terms for up to and including 6,

and we shall assume that the wave function of the
free ion vanishes sufficiently rapidly for large r

that negligible error is made by integrating to
infinite distances.

2.2. Symmetry

The effects of the electrostatic field on the free
ion spectrum may be separated into two categories:
first, those depending on the qualitative nature of
the field (its shape or symmetry), which is ex-
pressed through the mere presence or absence of
certain of the Cm or S^; and second, the quanti-
tative details which depend on the sign and magni-
tude of the Cn and S^- It is convenient to con-
sider separately these two characteristics of the
field.

There are several standard and equivalent
techniques for describing the symmetry of the
electrostatic field. For example, given an arbi-
trary point (x, y, z) of the field, one may indicate
the coordinates of all points having the same
value of the potential, such as {x, —y, z), {—x, y, z),

(—X, —y, z). Another widely used scheme is to

indicate by a symbolic notation the operations
which convert a given initial point into one of
equal potential. Thus, in the example just given,
the operations are respectively a reflection in the
x-z plane, a reflection in the y-z plane, and a
rotation of tt about the z axis, and may be desig-

nated as ffxz, <^vz, and Co. Finally, for a given
point {x, y, z) one may give those 3X3 matrices
which transform the original point into one of

equal potential. If one is thoroughly familiar

with the notation and properties of the various
rotations, reflections, and the inversion, there is

no reason to prefer one of these to the other. If

one does not have this familiarity, the use of the
matrices has the advantage that the effect of two
successive operations can be computed by matrix
multiplication without recourse to geometric
arguments. Thus, if r'=Ar and r"= Br for all r,

then r"'=ABr is also a point of equal potential
as is r""= BAr. For the problem to be considered
here, there are only a few basic matrices which
must be considered. These, together with their

symbolic notation (Schonflies, 1923) are:

r
cos 4> —sin cj) 0

C4=

sin (p

0

0 -1

cos 4>

0

1

0

— 1

0

0

r

C3=

E=

1

2

V3
2

0

1

2

V3
2

0

0

1
0

2

0 1

V3
0

1

-2 0

i
0 1

0

0

-1

-

1

0

0

Thus, the point (or vector) r={x, y, z) under
the operation becomes

r'= (x cos (p—y sin <^, x sin 0+2/ cos (j), z).

We see that this is equivalent to a rotation of the

vector about the g-axis by an angle counter-
clockwise (i.e., by +0 in terms of the right-hand

6



screw convention) when looking toward the origin

. along the positive z-axis. This may also be inter-

i

preted as a new description of the old point {x, y,
z) in terms of a new coordinate system where the
coordinate system has been rotated by the angle
4> in the opposite sense. In figure 1, we have ini-

tially (in two dimensions only) the vector r in the

Y
Y

/ f

///

/
^ X

/

/

/

Figure 1

X, y frame. The operation C„ will then give r'

ia the x, y frame. However, this is clearly the
same as r described in the rotated frame x'

,
y'

.

We shall use both interpretations in the present
work.

The designation C„ represents a r<,-fold axis of
symmetry (?i=2,3,4,6), since the matrix is ob-
tained from C„, by restricting </> to 27r/w. Each
rotation by 2ivln yields an equivalent point in the
potential field and, including the original one,
thei-e are n such altogether. The element C2 is a
twofold axis of symmetry about the y-axis—it is

characteristic of the collections of these symmetry
operations to be emphasized here (the noncubic
point groups) that there is at most one axis having
more than twofold symmetry, and hence rotations
about the y-axis can be restricted to those of order
two. The element I, the inversion, is noteworthy
in the above as being the only one with a determi-
nant — 1, all others being +1. Viewed as an
operation on a coordinate system, the inversion
represents the transformation to left-handed
rather than the usual right-handed system.

In addition to the symmetry operations given
above, there are operations which may be repre-
sented as the product of the element I with those
rotations given above. If we are considering a
collection of these symmetry operations con-
taining both I and the rotation, no fundamentally
new information is obtained by considering the
products, but there are certain collections of

symmetry operations which include some of these
product operations but not the factor operations
separately. These product operations, together
with their symbolic notation, are as follows:

^1 0 or ^1 0 0^

IC2= 0 1 0 0 —1 0

.0 0 0

^1

2

3

2
0

^0 —1 0^

3

2

1

2
0

iq= 1 0 0

.0 0 -1. .0 0

There are only a finite niunber of possible com-
binations of these basic operations which are of
interest in the present work. These are dia-
grammed in table 3 and are known as crystallo-

graphic point groups, since each of the combina-
tions constitutes a mathematical group, the
elements of which leave the potential of a point
unchanged. In interpreting table 3, the starting
point is the column headed C„. The groups C„
for the values of n for which we are interested,
consist of the operation C„ and its n distinct

powers, so a total of n symmetry operations are
represented in the group C„. This set of opera-
tions may be enlarged by adding the element I

(moving along the diagonal to the left), as is

indicated under the heading C„Xl. This nota-

tion represents the fact that I commutes with aU
powers of C„. The group may also be enlarged
by adding the element C2 (moving along the diag-

onal to the right). Here, the heading {CnCz}
represents that the various operations do not now
necessarily commute, but that all possible com-
binations of them and their powers are included.

Both of these enlarged groups have 2n elements.

To the latter set, I may now be added (moving
farther to the right), obtaining 47i operations.

From these groups containing I, in some cases

gToups of lower order may be obtained by sup-
pressing half the elements, including the element I

itself but not all products containing I. For
example, let us consider the group C2, which con-
tains the elements C2 and E. If we add I, we

7



Table 3. Structure of noncubic point groups

obtain C2A, containing C2, E, Col, and I. From
this we obtain Cj by considering only E and
C2l=o-ft. Similarly, by adding C2 to C2, we obtain
D2, which involves E, C2, C2, and C2C2. By the
further inclusion of I, we obtain D2ft with E, C2,

C2, C2C2, I, IC2, IC2, and IC2C2. By suppressing
I, IG2, C2, and C2C2, the remaining fom* elements
E, C2, IC2 (= trc) and C2<^v constitute the gxoup C2S.

There are a few points which should be made
clear in this connection. First, in the abstract
mathematical sense, these groups are not all dis-

tinct. For example, the group C2 contains the
elements C2 and E, while the group I contains
the elements I and E, and they both have the
same multiplication table. On the other hand,
there is some degree of distinction which should
be made between the E=C2 (which we might call

the identity in rotation space) and the E=I2
(which we might call the identity in inversion
space). Strictly speaking, the identity element of

the groups such as C„XI is the product of these
two separate identity elements.
We shall now investigate, term by term, the

symmetry possessed by the tesseral harmonics
tabulated above. The overall symmetry of a
given potential will then be at least that of those
symmetry elements common to each term of the
potential expansion. Conversely, if the S3mimetry
is known from other considerations, we shall Imow
what terms must be included to describe such a
condition.

C^: For this element to be present, the potential
must be independent of 4), a condition which is

met only by terms with M=0 for all N.
C„: For invariance here, y(0)= y(0+27r/7i).

Since the terms involve sin M<f> or cos M^, it is

clear that n=M, M/2, M/S, for integral values
only, etc. We shall specify n=M, since the other
cases are covered by the powers of C„ which are
also present in any group.

C2 : A point with the coordinates (r, 6, <f>) under
the transformation C2 becomes (r, ir—d, tt— <^).

Since Qf^ is a polynomial of degree N—M in cos 6

and degree M in sin 6, and cos (tt— &) =— cos 6,

sin (tt— e)=sin d, then 0^ changes as (— l)^"-^.

However, sin M(n-— <^) = sm M^T cos Ad^cj)— cos ]Sd.ir

sin M0=:(— 1)^+1 sin M4> and cos M(x— 0) =
cos Mir cos M^+sin Mir sm M^=(— 1)^ cos M4>.
Hence C terms have this symmetry for A^" even
and S terms have it for N odd.

I: Under this operation, the point (x, y, z)

becomes (— x, —y, —z), and it is clear from
inspection of table 2 that terms with even N have
this symmetry, while terms with odd N do not.

o-fti This operation results, in rectangular coordi-
nates, in the substitution oi —z for 0, and, in

spherical coordinates, in the substitution of ir—d
for 6. This is the same as the d substitution in

C2 and supplies a factor (— 1)^"*^. Hence, N
and M must both be even or both odd for this

element.

a„: A vertical plane of symmetry exists at

(^=;8 if V{r, e, i3+a) = F(r, 6, 13— a) for all values
of a. For S terms, we have sin M(/3+a)=
sinM;8cos Ma+cos M/S sin Ma and sin AI(l3—a) =
sin MiS cos Ma— cos M/S sin Ma. This yields the
requirement that cos M/S sin Ma=— cos M/3
sin Ma=0. For this to be independent of a,

cos M/3= 0, M|3=7r/2, 37r/2, 5x/2 ... and planes
of symmetry exist at |8=7r/2M, 37r/2M . . .

(2M— l)7r/2M. Similarly for C terms, we obtain
the requirement that sin MjS sin Ma=0, M)3=0,
TT, 27r, Stt. . . and planes of symmetry exist at

13=0, tt/M, 27r/M,_ (M-l)7r/M. We shall find it

convenient to distinguish these sets of planes, de-
scribing those arising from C terms as a„ and those
from S terms as aa. Note that the set c7„ for a
given evenM includes both and aa for M/2, and
that any vertical plane is a plane of symmetry if

M=0. Let us emphasize that the x— 2 plane (/3=0)
is a plane of symmetry for all C terms, while the

y—3 plane (^^—^ is a plane of symmetry for C

terms if M is even, for S terms if M is odd.

S4: This operation transforms (r, 6, </>) into

(r, TT—d, ^+(7r/2)) and 6^ transforms as (—1)^-^.

S terms involve sin M(<^)+ (7r/2)) =sin M4> cos M7r/2
+COS M(/) sin M7r/2. M odd yields a cos Mf term
which we reject, andM even yields (—1)^''^ sin M4>.
Thus S terms transform as (— for M
even. For C terms, the 6 contribution is the

same as for S terms and cos M(</)+(7r/2))=cos M^
cos M7r/2— sin M4> sin Mir12. As for S terms, we
reject M odd and in </> obtain (—1)-''^''^ cos M(^ for

M even. C terms then transform as (—1)^"*-''*^,
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I

just as S terms. The overall requirement for S4
is then that both M and N—^M must be even.

85: Since this element is defined as C3I, it is

necessary and sufficient that both C3 and I be
present for this element to be present, and it need
not be considered separately.

Based on the above analysis and discussion, the
symmetry elements present in each of the tesseral

harmonics of table 2 have been given in table 4.

An analysis of table 4 will indicate the potential

coefficients (2.7) which must be included to repre-
sent a potential appropriate to the groups of

table 3, and the results of this analysis are given
in table 5. Two points are worthy of note in the

! use of table 5. In each case where, for a given
' M and N both C and S are shown, the fu-st S

appearing is shown in parentheses. This repre-

sents the fact that, though both are consistent with
the required symmetry, the S term may be sup-
pressed by a suitable rotation about the s-axis.

ij This may be done, of course, for any one C, S
pair, but only for one. All other indicated combi-
nations of C and S must then be allowed, and this

one S omitted. Second, with the potential terms
considered, it will be noted that the groups De
and Ces cannot be distinguished from the group

,

Ds;, of higher synometry , nor can Ce be distinguished
from Car. Further analysis of the potential terms
shows that the coefficients S^, allowed in De, and
SI in Csn, neither of which is allowed in De^, are

the lowest order terms separating these three
groups. Similarly, 87 in Cs will separate it from
Cer, where this coefficient is forbidden. Finally,

it will be noted that the groups D„, C^n, and C„
have been omitted from the table. These sjm-
metries do not arise from the electrostatic fields

considered here.

2.3. Preferred Coordinate Systems

1

In considering the expansion of the potential

i (2.6) and the calculation of the coefficients (2.7),

it is clear that the coefficients (2.7) will depend
upon the choice of the coordinate system used.

On the other hand, it is also clear that all expan-
sions of the field (2.6) must be physically equiva-
lent, and that a choice between two differing de-
scriptions of the same field is merely a matter of

choosing the simplest description. Following uni-
versal convention, the principal axis of symmetry
in the preceding considerations has been taken to
be the s-axis, and in the calculation of the coeffi-

cients (2.7) this will have to be determined by an
inspection of the given configuration of charges,
as will also the location of any ^-axis (C2). Any
other choice of axis will, in general, yield a more
complicated expansion, and the symmetry will be
apparently (but not actually) lower.

It would be well to discuss further the point
mentioned in the preceding subsection concerning
the planes of symmetry. For a given N and M,
both C terms and S terms describe planes of sym-
metry, differing merely in their orientation with
respect to the vertical coordinate planes. Clearly,

any linear combination of these two terms also

represents a set of planes of symmetry, at some
intermediate angle. If only one N and M (other

than M=0) is present, the linear combination will

represent no more information than wiU either one
alone. The general preference arises from the fact

that the actual calculation of matrLx elements in

section 5 wUl be done through the Y terms (2.8)

rather than the C and S terms. It will be seen
from (2.9) that the suppression of S terms (as far

as possible) will yield real coefficients for the
matrix elements. A conventional preference for

C terms then implies the x-s plane as the pre-

ferred vertical plane of symmetry, and the y-axis

for the operation C'2, since IC2 is then a reflection

in this preferred plane. Sometimes (e.g., 'Dsn), we
shaU admit S terms and keep C2 as the y-axis

rather than adopt some other axis in the plane
as C2.

Once an expansion has been obtained in a given
coordinate system, that in any other coordinate
system may in principle be obtained from the fact

that each of the terms (2.5) or (2.8) in the new
coordinate system will be expressible as a sum of

Table 4. Symmetry elements in tesseral harmonics

M= 0 1 2 3 4 5 6

N=l
2

3
C

4
5
6

CodIC20'iS40' h

CcxiIC20'oS40'A

CcoC7,
C0C1IC2O' jSiffA

aha,
<r JC2

C2IC20'hOv
C20't S4

C2lC2a'i ffu

C2a'rS4
C2lC'2aAa' 5

C3IC2O' n So
Caffha V

C3lC2<Tc Se

C4lC2crAO'!iS4

C4CT „

C4lC2ffA a
G^aha V

C5lC2ff 5 CelCjaACTiSe

1

2
3

S
4
5
6

an ffdCi

ffdl

ah adC2

C2ltr had
C2C20' d S4

C2Ta';i a d

C2C20' d S4

Qi^Oh ad

C3C2 0';i a d

CjIadSe
CaCoO"/! (Id

CalffdSo

Cilohaa^i
GiCiad
QilahOd^i
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^co 02 CO 02 02 CO CO 02

00000 000 0
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gc/jtyjco

0000 0

u 000000 00000 000 0

Q 000 OcoOc^O Oc^O 0

g ^ 02
oo 000 0 0 0 0

g CO 02 CO ^ £^

u 000 000 0 0 0
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gc^co

000000 000

u 000000 0000 0
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u 000 0 0 0

g CO000 0 0 0

U g000000 0

u 000000 000
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Q 000 000 0 0 0
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Q
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000000
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P 000
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10



Table 6a. Transformation of tesseral harmonics

\ 0
0' \

\
Q CI SI

0 1 0

>-i 0 0 I

s\ 1 0 0

Table 6b. Transformation of tesseral harmonics

0' \
\

c° r2 S^
C3
02

Q 1

2
0

V3
2

0 0

Q 0 0 0 0 1

Q V3
2

0
1

2
0 0

SI 0 1 0 0 0

Si 0 0 0 1 0

the 2A'^+1 terms of the same value of N but of

different M in the old coordinate system. WhUe
general formulas have been derived for such rela-

tions (Wigner, 1931), a detailed study has been
carried out for a second coordinate system 0'

obtained by a rotation of 0 by —120° about the

(i+j+k) axis. This is equivalent to a cyclic

permutation a; of the variables; i.e., the
functions {y,z,x) and Siv iy,^,^) were evaluated
in terms of C§ {x,y,z) and S/^ {x,y,z). The results

of this evaluation are presented as the matrices of

table 6. It should be noted that these matrices are

orthogonal.

Table 6c. Transformation of tesseral harmonics

\
\ 'J

0' \
03 C2 C3

S>3

0
4

0
Vio

4
0 0 0

0 0
1

0
Vl5Q 0 0

4 4

ct 0
Vio

0 0 0 0
4 4

Q 0 0 0 0
Vl5

4
0

1

4

SI
Ve

0
Vio 0 0 0 0

4 4

Si 0 0 0 0 0 1 0

SI
_Vio 0 _V6 0 0 0 0

4 4

Table 6d. Transformation of tesseral harmonics

0' \ Q Q CI Q Si s^ SI St

a 3

8
0

4
0

V35
8

0 0 0 0

G 0 0 0 0 0 0
4

0
Vii

4

Q

Q

V5
4

0

0

0

1

2

0

0

0

V7
4

0

0

0

0

Vl4
4

0

0

0

4

Q V35
8

0
V7
4

0
1

8
0 0 0 0

Si 0
3

4
0

4
0 0 0 0 0

Si 0 0 0 0 0
V2
4

0
Vii

4
0

SI 0
4

0
3

4
0 0 0 0 0

St 0 0 0 0 0
4

0 _vl
4

0
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Table 6e. Transformation of tesseral harmonics

Q Q Q Q Q Q SI SI SI St SI

0

0

0

0

0

0

Vl5
8

0

Vto
16

0

3Vl4
16

Vl5
8

0

4

V2I

0

0

0

0

0

0

4

0

_V6
8

0

V30

Vto
16

0

_V6
8

0

9V2
16

0

0

0

0

0

0

0

0

0

0

0

V21
8

0

9V2
16

0

3Vl4
16

0

V30
8

0

Vio
16

0

0

0

0

0

0

1

8

0

V|2
16

0

V2IQ
16

0

0

0

0

_1
2

0

2

0

0

V|2
16

0

13

16

0

3^^5

16

0

V3
2

0

V2TO
16

0

3V5
16

0

1

2.4. Cubic Point Groups

In addition to the 27 noncubic point groups of

table 3, there are 5 point groups Imown as the

cubic groups. While these are not known to

arise in natural rare earth crystals, they are impor-
tant in the consideration of crystals of other types;

e.g., the iron group, and some data on rare earth

ions have been obtained by the inclusion of the

ion in a foreign lattice of cubic symmetry (Low,
1958) . We shall therefore complete the discussion

by considering these groups.

The five groups are assigned the symbols O,
0,= (0XI), T, T;,= (TXI), and T,^, but only four

distinct abstract groups are involved since Ta and
O are isomorphic. The group O has 24 elements
and represents the pm"ely rotational symmetry
of the cube (or octahedron), while O^, 48 elements,

represents the full symmetry of the cube. T is

of order 12 and represents the pure rotational

symmetry of the tetrahedron, while T^, a subgroup
of Oil with 24 elements, represents the full sym-
metry of the regular tetrahedron. is also of

order 24.

These groups represent a higher degree of sym-
metry than our previous considerations have sug-

gested. In particular, O includes fourfold axes
along X, y, and s, threefold axes along the principal

diagonal of each octant, and twofold axes along

the diagonals of the coordinate planes. T has
4 threefold axes, of which at most one can be
along a coordinate axis, but has also three mutually
perpendicular twofold axes. Kotations of these
groups wUl be generally designated C„ for rotations
2ir—' and they may be further distinguished by

primes. However, the distinctive conventions of
section 2.2 which are appropriate for D^^ and its

subgroups, cannot be adhered to for these high
symmetries. These symmetries cannot arise from
considering the symmetry elements common to
a sum of terms as in the previous cases, but
depend upon certain fLxed ratios in the coefi&cients.

In other words, these may be viewed as higher
symmetries arising from "accidental" values of

the coefficients in a case of lower symmetry.
As a particular example, let us consider the

group D4, representing the rotational symmetry
of a rectangular prism, with potential coefficients

(table 5) ClC'l CI Q, St, and CI The x and y
axes are equivalent, but the long dimension, the
3 axis, will generally be different. If the prism
actually becomes a cube, the x, y, and 0 axes will

all be equivalent. Hence we expect that any
combination of these terms which is invariant
under a substitution x-^y-^s—^x will represent a
higher symmetry, in this case O. This is just the
substitution considered in table 6. We see, for

12



Table 6f. Transformation of tesseral harmonics

\
\ 0

0' \
\

Q Q Q s^ Si Oe •36 ^6
C6
^6

Q 5

16
0

V2I0
32

0
_3V7

0
V462

0 0 0 0 0 0

Q 0 0 0 0 0 0 0 0
Vio
16

0
V3
4

0
3V22

16

V-6
V210

32
0

17

32
0

_V30
0

3V55
0 0 0 0 0 0

0 0 0 0 0 0 0 0
9

16
0

V30
8

0
V55
16

r*
3^/7

16
0

V30
32

0
13

ID
0 0 0 0 0 0 0

^6 0 0 0 0 0 0 0 0 V165
16

0 V22
8

0
V3
16

r« V462
32

0
3V55

32
0

_-v'66
0

_ 1
0 0 0 0 0 0

Jo 0
5

8
0

3aT0
16

0
^/66

16
0 0 0 0 0 0 0

Si 0 0 0 0 0 0 0
Vio

1 A 0
9

16
0

VT65
16

0

Si 0
sVTo

16
0

1

16
0

_VT65
X u

0 0 0 0 0 0 0

sj 0 0 0 0 0 0 0 Vf
4

0
V30

8
0

V22
8

0

SI 0
V66
16

0
VT65

16
0

5

16
0 0 0 0 0 0 0

s? 0 0 0 0 0 0 0
3V22

16
0

V55
16

0
V3-
16

0

example, that Q becomes a combination of and
Ci- Since Ci is not allowed in D4, we suppress the
second degree terms and proceed to those of the
fourth degree. Although both Q and Q yield

CI, if_the coefficients are in the ratio 0°: Ct=
V5,_the Q will cancel and the combination

Q-r-^^ a will be invariant under the operation

of table 6. SimUarly, if CI:CI=-1: V7, Q and
Ce arising from the transformation will vanish

and Q—^J7 Q will also be invariant. S| will

admix Sf, forbidden in D4, so St must also vanish.
We conclude then that under these conditions,
we have but two coefficients, and left to fix

the strength of the field, and the symmetry is O
rather than D4. In fact, all of the terms ahowed
also contain I as a symmetry element, and the
symmetry is even higher, i.e., O^. The dis-

tinction between O and O/, will arise from potential
terms of higher order.

On the other hand, the cube may be considered
as standing on a comer with a threefold axis along

the z axis, arising as a special case of D3 symmetry.
The allowed coefficients will be generally 0°; SI;

a, CI; SI; CI CI, and CI Since we do not have
data corresponding to table 6 to apply our previous
method, we shall set up a charge configiu-ation

having the desired symmetry and orientation,

evaluate the coefficients (2.7) and determine the

necessary relations among them. This has been
done in detail as an example in section 6—we
report merely the result at this point. The
coefficients C", -S'l, and SI must vanish, while the

ratios among the nonvanishing coefficients are

Cl:Cl= -7:2^5 and (7g:(7i:(7^=24:2Vl05:V462.
in this case as well, C° and Cq are the only adjust-

able parameters to fix the strength of the field.

The group T may lU^ewise be considered either

as a special case of D2, where the x, y, and z axes

all become equivalent, or as a special case of C3

vath the principal threefold axis of the figure

vertical. In the former case, the allowed coeffi-

cients are: (7^; (71; SI; CI, CI, C\; SI, SI; and CI
CI, Ct, and Ct A consideration of these terms
and table 6 shows that the following conditions
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must be met:

(7°=Ci=0 *Si is arbitrary (71=0 ^|=^|=0

C°:Ct=V7.V5 Cl^.Ct=-l.^|^

and Ci:(7^=-ll:V55.

The constants SI, CI, CI and CI can be considered
the variable coefficients describing the strength of

the field. The symmetry becomes Tn if the only
one of these terms lacking the element I, SI, is

suppressed. If we start from the case of T)ya

symmetry instead of merely D2, we obtain
symmetry but must suppress the coefficient CI,

leaving SI, CI, and CI

3. Groups, Characters

3.1. Representations and Quantum
Mechanics

Let us consider a Hamiltonian H, and yj/i (i=
1,2, . . . n) an 7? -fold degenerate solution of the
Schroedinger equation H\(/i=E\l/i. Let us further

consider a group of transformations (generally

rotations or the inversion) which may be applied

to this equation. If an element of the group is P,

with inverse P~\ then PHi/'i=P£V'i) which may be
rewi'itten as

(PHP-')(Pf,)=£'(P;Ai). (3.1)

This we interpret as yielding a transformed
Hamiltonian (PHP"') and a transformed solution

of the Schroedinger equation. Let us now
assxmie that the Hamiltonian is invariant under
the group of operations; i.e., that PHP~'=H or
PH= HP, and that 0 is another operation of the
group. Then (3.1) becomes ll{P\Pi)= E{P^i), and
Fi/i must be a solution of the original wave equa-
tion with the same energy; i.e., it must be a linear

combination of the original wave functions

F4^i=^Pii^P (3.2)

Similarly 0'/',:=S QoV'^, and (OP)^.= Z;(QP)o'/'y.
i . i

Thus the effect of each operation of the group may
be expressed as a ny^n unitary matrix. The
importance of the concept becomes most evident
when we consider the product QP as the operation
P followed by the operation 0-

=j:^QaP>cj^j. (3.3)
j k

Thus, the matrix for (QP) is the product of the
matrix for P by that for 0- These unitary
matrices are called a "representation of the group"
because any relation between elements of the
group is also a relation between the matrices corre-

sponding to the group elements.

In evaluating the coefficients for the threefold

axis vertical, we have again had recourse to the

establishment of a specific configuration, namely,
that of the regular tetrahedron itself. This will

yield terms for rather than T or T/,. Con-
figurations for these latter symmetries are con-
siderably more complicated, and have not been
evaluated for this orientation. The nonvanishing
coefficients must meet the following conditions:

(7°:(7|=V5:2 C'i.Cl=-^|^5:5 and

(7°:Ci:C«=4V2310:77V5:35V22. i

and Representations

Clearly, the precise form of the matrices depends
on the particular choice of original wave functions,
and any other set, related to the original set by a
unitary transformation may be selected and will

yield a transformed representation of the group.
If it is possible to find a transformation such that
the group operations cause only m of the n wave
functions to transform among themselves, and the
remaining n-m functions among themselves, the
representation is said to be (fully) reducible,
otherwise irreducible. Following Melvin (1956),
we shall for brevity speak of an irreducible repre-
sentation as a "rep". If the representation is a
rep, the degeneracy is said to be essential, since

the n wave functions may be transformed into
each other purely by symmetry operations. If

the representation can be reduced into two or
more reps, the degeneracy is essential between
wave functions belong to the same rep, but "acci-

dental" when wave functions belonging to different

reps are concerned, since wave functions belonging
to different reps are not related to each other
purely by symmetry operations. Accidental de-
generacy is either due to a purely fortuitous con-
sequence of the numerical parameters of the sys-

tem under consideration, or to the presence of
additional symmetry not previously considered

j

(sometimes called "excess degeneracy"). An ex-

ample of this latter will be considered in connec-
tion with Kramers' theorem (section 4.2), which
states that all levels of an atomic system with an
odd number of electrons wiU be at least twofold
degenerate under the influence of external fields

of purely electrostatic character. In this case, it

will be seen that wave functions belonging to

different reps of the rotation-reflection group may
actually be related by symmetry with respect to

time reversal.

3.2. Rotations in Three Dimensions

One of the transformations in which we shall be
particularly interested is that of an arbitrary rota-

tion of the coordinate axes in three dimensions, so

we shall now examine this in some detail. Let us
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consider a fixed {x, y, z) reference frame, and a
movable frame (^, -q, f), the origin of the latr-

ter being fixed at the origin of the {x, y, z)

frame. We assmne initially that the ^, 17, and f
axes coincide with the x, y, and z axes, respec-
tively. Any rotation will move the (|, 17, f) frame
to some new orientation which is uniquely deter-
mined by the rotation performed. We are in-

terested in the various ways of specifying the
orientation of the 17, f) frame and its relation to

the rotation involved.

It is clear that there will be thi-ee independent
quantities to be specified, two to fix the direction

of the axis of rotation and one to fix the angle of

rotation about this axis. Consider a vector r
fixed in the (^, 17, f) frame rotated through an
angle co about an axis fixed in {x, y, z) containing

Di(u,co)=

and r,r' are the column vectors (f, 77, or {x, y, 2),

and {x', y'
,
z'), respectively.

Since r is fixed in the 17, f) frame, its com-
ponents in that frame are the same before and
after the rotation

j
they are the same as its coor-

dinates {x, y, z) before the rotation in the fixed

frame.

The direction of the (^, r}, f ) frame may be deter-

mined then by applying this relation to the vectors

(1, 0, 0), (0, 1, 0), and (0, 0, 1) in turn.

The set of aU three dimensional rotations con-
stitutes a group which we shall designate as dts-

The set of real matrices Di (u, w) is orthogonal, hence
unitary, and meets the requirements of section

3.1 for a representation of the group. (Note that

Di is a particular element of A-) It is important
that the group of matrices Di be not confused
with the group of abstract operations 9?3, but
this requires a clear understanding of the differ-

ence between a group and any particular repre-
sentation of the group. In elementary work, a
three-dimensional rotation is invariably thought
of as an operation on a vector. This is adequate
in these elementary cases, since this leads, as we
have seen, to a particularly simple faithful repre-
sentation (a unique matrix for each operation) of
the group. However, we have already mentioned
in section 2.-3 that an element of dlz will induce
not only the linear substitution Di among the
three components of a vector, but also a linear

substitution among the 2N-{-l components of

the tesseral harmonics of degree A'^ (table 2) All

these substitutions are equally well representa-
tions of 9?3, and they are faithful for N^-O.
Geometrically, a vector may be resolved into its

components, which are the tesseral harmonics of

degree 1, which lie along the three coordinate
axes, so that a linear substitution among the com-
ponents of the tesseral harmonics of degree 1

the unit vector u with direction cosines (a, /3, 7).

Observe that r may be resolved into a component
parallel to u, (r-u)u, and a component perpen-
dicular to u, (r-(r-u)u), and that the vector (u X r)

is perpendicular to both and has the same
magnitude r sin (u,r) as the latter.

The component of r along u, (r-u)u will be
unchanged, while the perpendicular component
r— (r-u)u will be rotated through the angle w
into (r— (r-u)u) cos w+(uXr) sin w. Thus,

r'==r cos co+(l— cos w)(r-u)u+ (uXr) sin co.

(3.4)

This may be written as the matrix equation
r'=Di(u,co)r, where

(3.5)

necessarily implies a corresponding linear sub-
stitution among the components of a vector,
which we interpret as a rotation of the vector.
Likewise, any linear combination of the 2iV+l
tesseral harmonics of degree (or any quantity
having similar transformation properties) may
be viewed as a vector in a space of 2A^+ 1 dimen-
sions, mth the 2^"+! tesseral harmonics serving
as the unit vectors. An element of diz may also
be represented by a rotation matrix in this 2N-i-l
dimensional space. Our choice of properly nor-
malized tesseral harmonics ensures that the
resulting matrices are orthogonal. In terms of
this concept, the matrices of table 6 are the
matrices D.v for A''= 1,2,3,4,5,6 and

»=J|(Hj+k),»=|. .

A general rotation may also be described by a
point along the direction of u and at a distance w
from the origin. AU rotations are thus represented
as points \vithin or on the surface of a sphere of
radius tt. More precisely, the points represent the
results of the rotation, while the details of the
rotation are fixed by prescribing a path from the
origin (representing the original orientation) to this

particular end point. It is important to notice
that aU points of the closed sphere represent dis-

tinct orientations, save those on the sm-face where
diametrically opposed pairs of points represent the
same orientation, being attained by a rotation tt

about oppositely directed axes. Consequently,
there are two essentially different types of paths
by which one can go from the origin to another
point within the sphere. Thus, if it is desired to

reach the point ^0; ^; 0 ^ in the (ll co) space, this

could be accomplished by a single rotation ^ about

''cos CO-}- (1— cos co)a^

(1— cos a))a/3+7 sin w

^(1— COS w)a7— jS sin CO

(1— cos oija^—y sin co

COS co-(- (1 —COS co)/3^

(1— COS wjy^-l-a sin co

(1— COS co)a7+/3 sin co"^

(1— COS cci)l3y—a sin co

COS co-f- (1— cos co)7^ ^
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the y-axis, and the resulting path is a straight Hne

from (0, 0, 0) to ^Oj ^> oj- On the other hand, a

rotation by tt about the —y axis will be repre-

sented by a straight line from (0, 0, 0) to (0, — tt,

0) . Since the latter point is equivalent to (0, tt, 0)

,

a further rotation - will result in a path from

(0, TT, 0) to (^0, ^> 0^. We have thus reached

^0; 0^ by two different paths. These are es-

sentially different since there is no continuous
deformation of the paths, keeping the end points

fixed, which will cause them to coincide. Paths
which can thus be made to coincide are said to

be of the same homotopy class, otherwise they
are of a different homotopy class. There are

only two homotopy classes for rotation in three
dimensions. We shall call them Po (for paths
involving no points on the surface of the sphere,

or an even number of pairs of such points) and
Pi (paths involving an odd number of pairs of

points on the surface of the sphere)

.

It is frequently more convenient to describe

directly the orientation of the (|, i?, f) frame than
to describe the rotation as above; i.e., we give

directly the angles between the two frames. The
general technique is due to Euler, and the three

angles which must be specified are known as

Euler's angles. There are a great number of

different choices which can be made, and indeed
have been made by various authors, a freedom
which complicates considerably comparisons be-

tween different authors. We shall follow here

what seems to be the most frequent choice by
recent American writers on the subject (Edmonds,

1957; Rose, 1957). The position of the f axis will

be specified by 6, the angle between f and s, and
by </>, the angle between x and the projection of f

in the x-y plane. These are just the usual spherical

coordinates of the unit vector along the f axis in

the (x, y, z) system. For the thu-d angle, we shaU

use ip, the angle between tj and the intersection of
the x-y and the ^-rj planes. Experimental
workers (Dieke and Crosswhite, 1956) have found
convenient an alternate choice x, the angle be-
tween ^ and the intersection of the x-z and I-t?

planes. These angles are related by the equation

X=Xo+'/'. where tan xo=cos 6 tan ^. If 0=90°,
then x='A-
A major advantage of Euler's angles is that any

given orientation of the (^, >j, f) frame can be
obtained by three rotations in succession about the
coordinate axes. For these rotations, the matrices
(3.5) take on a particularly simple form, and their

product, expressing the general form of (3.5) in

terms of Euler's angles, may be computed directly.

The three rotations are:

1. A rotation by 4> about the z,^ axes (which
initially coincide). The ^-17 plane remains in

the x-y plane, but the ^-f and the rj-f planes are

rotated by the angle ^.

2. A rotation by 6 about the 1? axis. This will

bring the f axis into its final position, as specified

by 4) and 6. The ^—
17 plane will no longer be in

the x-y plane, but their intersection is the 17 axis.

3. A rotation by ^ about the f axis. This wiU
bring the ^ and -q axes to their final orientation.

In performing these rotations, it wiU be noted that
each one is carried out in the (|, n], f) frame, which
is generally in a different position each time as a
result of the preceding rotation in the sequence.
The same final configuration can be obtained by
rotating about the {x, y, z) frame axes, provided,
that the sequence of the angles is reversed. In
other words, a rotation of the (^, ij, f) frame first

about the s-axis by the angle yj/, then about the

y axis by d, and finally about the s-axis again by
the angle </>, will yield exactly the same final

orientation of the (^, 17, f) frame. This may be
established either by purely geometric considera-

tions, or by specific multiplication of the matrices
involved. Using this latter sequence of angles, we
obtain from (3.5)

if

u=(0, 0, 1), u=4> or oru=(0, 1, 0), u=d

^cos (j) —sin <i>

0"^

sin <j) cos 0 0

,0 0 u
Rfl

cos 6 0 sin

0 1 0

— sin 0 0 cosd^

''cos
\f/

— sin \^
0"^

sin ^ cos
\f/

0

L 0 0 u

and their product R0R9R;^ yields the matrices of the representation Di of dls, now in terms of the three

Euler angles,

^cos COS Q cos i/'— sin 4> sin ^ —cos </> cos B sin t/'— sin <^ cos ^ cos <^ sin ff^

sin 0 cos Q cos ;/'+ cos 0 sin —sin 0 cos B sin ;/'+cos <^ cos ^ sin <^ sin Q

-sin Q cos sin Q sin i/' cos Q

(3.5a)
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Since these matrices are orthogonal, the inverse of

a given matrLx is its transpose. In terms of u,co,

this amounts to reversing either the vector u or
the sign of the angle of rotation. In terms of the
Euler angles, the inverse amounts to reversing the
sign of the angles and also their sequence. In
general, we shaU not indicate the variables for

Di (or for Dm), since either set may be used.

A third extremely important description of a
three-dimensional rotation arises from the Cayley-
Klein parameters. Let us consider the general

2X2 matrix with complex elements, which we
shall write in the form

he'

de

where a, b, c, and d are real nonnegative numbers,
and a, 0, y, and 5 are real numbers. This matrix
contains eight arbitrary parameters. If we require
that it be a unitary matrix U, four conditions of

restraint on these parameters are imposed, and
there remain but four independent quantities.

These four conditions are: a=d; b=c; a^+6^=l;
and 2Q;+5=2)3+T+Tr. The fm-ther condition
that det U=-|-l requires that 2a+5=0, leaving
three independent quantities. We can then
write

ae

U=| I,

be~'^ ae"'"/

remembering that a^+6^=l. The independent
parameters are then, essentially, a, a, and /3.

Fxu-ther, let

R=
^—iv

-r

be a Hermitian matrix with a trace of zero, |, rj,

and f being arbitrary real numbers. A unitary
transformation

URU-i= R' (3.6)

wiU leave invariant the Hermitian property, the
trace, and the determinant, so R' can be written

R'=
z x—iy>

x+iy —2 I

Furthermore, det R'= — (x^+y^+s^) =det R'=
~ (^^+17^+ f^). If we interpret the sets of numbers

?j, f) and (x, ?/, z) as the coordinates of a point in

the movable (^, 17, f) system and the fixed (x, y, z)

system, respectively, we see that the transforma-
tion leaves unchanged the distance of the point
from the origin, so that the transformation can be
interpreted as a rotation. The matrix U can be
explicitly calculated in terms of the Euler angles
by finding the matrices U,^, U9, and U^, so that

U^U^UsU^. Thus,

cos ^ —sm -

sm cos^2 2^

U=

-i(<t>-'P)

e cos
2

+i(<t>->l')

2 • o
e sm

2

sm

cos-

(3.7)

Just as in the previous discussion distinguishing

between 9?3 and Di, we have here an abstract

group of unitary unimodular transformations in

a complex space of two dimensions, and a partic-

ular representation of the group through the

matrices (3.7) . The abstract group we shall desig-

nate as U2, the pai'ticular representation by the

collection of U matrices (3.7) as Z)i/2. The ele-

ments of the representation D112 may be given

either in terms of the Euler angles as in (3.7), or

in terms of the unit vector u and the angle co,

though we shall not give the latter form here ex-

plicitly. Since it will not generally be necessary

to indicate the variables, we shaU generally write

the matrices merely as D1/2 (instead of U) to parallel

our earlier distinction between Di and Di.

Let us consider the implication of this transfor-

mation in more detail. We first observe that the

matrix R can be written in the form

R=?
0 1\ /O -i\ /I 0

1 0/ \i 0/ \0 -1

where the 2X2 matrices are the Pauli matrices

corresponding to the x, y, and s-components, re-

spectively, of the spin angular momentum oper-

ator. If we let (^, 77, f) be a unit vector, the

matrix R is the operator corresponding to the pro-

jection of the spin angular momentum in the

direction given by the unit vector ($, rj, f). Let
us consider for simplicity U for d=\l/=0. R'=
URU"^ may similarly be written

R'= (^ cos (})—ri sin ^)

a 0

/O -i\ fl
-]-{r] COS 4>+^sm<f)

\ +rl
0/ \o

This corresponds to our interpretation that the

vector with components ($, 17, f), fixed in the

(?, n, f) frame, is given a rotation about the f

axis, positive in terms of the right hand screw
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convention. R' is now the operator correspond-
ing to the pi-ojection of spin in the new du'ection,

still described in the movable system by rj, f),

but described in the fLxed (x, y, z) system by
3;=! cos ^— ?? sin <^ ^=77 cos <^+| sin 3=f.
Note that the Pauli matrices retain their form, i.e.,

they are expressed in the fixed (JC, y, z) frame.
However, we can also write

0

where ^, >?, and f retain their original values, and
the Pauli spin matrices have been transformed to

the form appropriate to the new |, ??, f axes.

Recalling that this is a rotation by this should
be equivalent to a rotation of the physical system,
the fixed x, y, z axes, and the spin functions de-
scribed therein, by — In other words, generally,

a transformation of the spin operators a, by U is

equivalent to a transformation of the spin func-
tions themselves by U"^ More formally, con-
sider <^=R 1^, where ^ and are spin wave func-
tions. This expression, under the transformation
U, yields

U<i=URU-'W or </.'= RV'

which represents merely the transformation of

each side of the expression to a new frame of

reference; in other words, essentially the same
angular momentum measurement. From the
standpoint of a simple rotation of R to measure
angular momentum in the new direction fixed by
R' as considered in the original frame of reference,

we are interested in the quantity R'i/'=URU~V
=X which is generally different from ^. This
new measurement may be transformed by U""^ to

give

U-iX=U-i[URU-^]UU-V=-R[U-V].

In other words, the rotation of R to R', URU-'
gives the same result as the inverse transformation
of the spin wave functions by Since we are
usually interested in transforming wave functions,

we shall write Di4=U"^ rather than Di^=U.
The presence of the half-angle functions in this

transformation reflects the very special properties
of the spin transformations. In particular, the
rotation q!)'= <^>+27r, e'= 0-f27r, ;/''= 'A+27r clearly

jdelds an orientation of axes identical to that des-
ignated by <^>, \p. On the other hand, it may be
seen that By^{(j)'

,
6', f)= -DyX(p, 9, xP). Thus,

for each change of orientation in ordinary three-
dimensional space, there are two matrices corre-
sponding to this in the two-dimensional spin space.
For this reason, the set of matrices Dy^ does not
constitute a representation of the three-dimen-

sional rotation group in the stricted mathematical
sense of the term. It has become customary to
refer to D14 as a "two-valued" or "ambiguous"
representation, and the abstract group U2 as the
double rotation group. If a rotation is specified

by giving the initial and final configuration of
axes, the matrices Dy^ are fixed apart from the
sign. The sign may also be fixed if the detailed
course of the rotation is also prescribed. Clearly,
the matrix Dy is a continuous function of the
variables (f>, d, ^ and becomes the unit matrix for
no rotation at all. In other words, if the initial

and final axes are the same, we know only that
the appropriate Dy^ matrix is either the unit 2X2
matrix or its negative, while the detailed knowl-
edge that no rotation at all has occurred (or one
involving a path in the (uw) space of homotopy
class Pq) enables us to fix upon the unit matrix as
the appropriate one. Generally, if two axes are

related by the Euler angles 4>, d, xp we will select

Di^ (cj), 6, xp) if the transformation is of homotopy
class Pq, and — Di^(0, d, if of class Pj.

3.3. Group Theory and the Free Atom or Ion

The Hamiltonian for a free atom contains the
following types of terms:

1
1. Kinetic energy terms -—

2. Central field potential terms \-y'{'"i)

3. Electrostatic repulsion terms V (r^

4. Spin-orbit interaction terms ^{ri)\i•^^.

In the above, the Vir^ is selected so that the
overall effect of the third term is minimized. In
addition to the terms of the free ion Hamiltonian,
we shall also be interested in the effects of the
crystal lattice potential V discussed in the pre-

ceding section and of an external magnetic
field B. Consequently, we shall be interested in

the operations which leave invariant these various
terms in the Hamiltonian.
Let us first consider terms (1) and (2) only.

In this case, each electron is considered to move
independently of the detailed motion of the other
electrons present, their mutual interaction appear-
ing in an averaged form in the V (yi) term. Term
(1) gives the Laplacian operator, which may be
viewed as a scalar product of two vector operators

and is therefore invariant under an arbitrary rota-

tion of coordinate axes about the force center.

Since second derivatives are involved, it is also

invariant under the inversion. Similarly, the

second term involves only the scalar magnitude
of r which is invariant under the same two opera-
tions. The solutions of the Schrodinger equation
for one electron for these two terms only are
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characterized by the quantum numbers n, I, rrii,

and m., and have a degeneracy equal to 2(2Z+1),
there being 2l-\-l values of rrii and 2 values of

all belonging to the same energy and all related to
i each other by the particular choice of coordinate
axis. These 2l-r \ functions are just the functions

I

(2.8). Thus, a rotation of the coordinate axes will

cause each of the 2^+1 functions in the new set of

axes to be expressed in terms of all 2l-\-_\ functions
referred to the old axes, yielding a 2Z+ 1 dimensional
representation of the rotation as in section 3.2.

It is shown in the general theory of groups that
for aU nonnegative integral values of I these repre-
sentations are in fact reps. General formulas for

the matrix elements in terms of Euler's angles
have been given by TTigner (1931). Specific ex-

amples of these matrices using a real basis (2.5)

rather than the complex basis (2.8) have abeady
been given in table 6. It is further to be noted
that, for Z>0, the representation is faithful, i.e.,

there is a unique matrix corresponding to each
rotation. We shall designate the rep by Di, its

elements by D;.

For a single electron, as in hydrogen or in the
alkali-type atoms or ions, term (3) in the HamU-
tonian vanishes. So long as term (4) is neglected,
the transformation of the 2Z+1 values of m; and
the two values of are completely independent
of each other, and may even be described mth
respect to different coordinate axes. The general
transformation may be represented by a matrix
of 2(2^+1) dimensions, the direct product of Di^

and D(. Upon the introduction of term (4), the
independent transformation of spin and orbit no
longer leaves the Hamiltonian invariant. The in-

variance of the scalar product of two operators
(e.g., 1-s) is founded upon the assmnption that
each is referred to the same set of axes. The
group of allowed transformations is now less gen-
eral, since both spin and orbit must simultane-
ously undergo the same rotation. The 2(2^+1)
dimensionsal matrix is still an element of a repre-
sentation of the group of allowed transformations,
but it is no longer u-reducible, and it may be
transformed by a new choice of wave functions
into a diagonal mati'ix of sub-matrices of dimen-
sionality 2(Z+i)+ l and 2(Z— 1) + 1. The correct
choice of wave fimctions is precisely that dictated
by the usual transformation from a m,, to j,
raj representation in one-electron spectra. The
wave functions are determined by the coefficients

known variously as Wigner, Clebsch-Gordon, or
vector addition coefficients, and yield allowed
values of the total angular momentum or

A similar argument is apphcable to the case of
two electrons. Without terms (3) and (4) in the

Hamiltonian, aU transformations are independent
and most generally yield a matrix of 2^(2Zi+ l)'*

(24+1) dimensions. The introduction of term

(3) now excludes those transformations affecting

differently the space parts of the two one-electron

wave functions, and the space portion of the

matrix can be reduced into sub-matrices of
dimensionality 2Z+1, where L ranges from
Z1+Z2 to 1^1— Z2 1- The restrictions of the Pauli
principle require that the foin--dimensional spin
matrix be simultaneously reduced, yielding a
three-dimensional submatrix Di and the unit
1 by 1 matrix Dq. This reduction of the spin
transformation matrix corresponds to the well-
known existence of triplet and singlet states in
two-electron spectra. For our immediate piu--

poses, perhaps the most noteworthy point is the
disappearance of the ambiguity in sign of the spin
transformations. This is a general characteristic

of atoms or ions with an even nmnber of electrons.

The reps of U2 are infinite in number and are of
both even and odd dimensionality. Those of even
dimensionahty include and others designated
as D3I2, D0/2, etc., the dimensionalities being

2, 4, 6, . . ., respectively. These representations
are all faithful, and hence all are double-valued
representations of the three-dimensional rotation
group. The odd dimensional reps are the

^0,1,2,3 • • • previously discussed as reps of the
three-dimensional rotation group, but these latter

are not faithful. Aside from the identity rep Du,
any element Dj, J integi-al, corresponds to

J half-integral. This is a point of greatest im-
portance when considering the representations of

the point groups, as we shall see shortly.

The introduction of term (4) into the Hamil-
tonian now requires the reduction of the (2*S'+1)-

(2i+l) dimensional direct product into a diagonal
array of sub-matrices D^, where J=L-\-S,
L-\-S-l, ... \L-S\. Here, the integral

_
,S

yields integral J and the spin ambiguity remains
suppressed. In certain atoms, the magnitude of

the various terms in the Hamiltonian requires

that term (4) be introduced before (3). The re-

duction of the various matrices must then be
accomplished in a different order, corresponding
to the j—j coupling scheme rather than the L—S
scheme discussed above. For 3 or more electrons,

the details can become increasingly complicated,

but the general features remain the same. In
particidar, integral J's without spin ambiguity
appear for systems with an even number of

electrons, while half-integral J's corresponding to

double-valued representations of pure rotations

appear for systems with an odd number of

electrons.

There is another symmetry which must be
considered at this point, that of the inversion.

Terms (1), (2), (3) in the Hamiltonian depend only

on the length of a vector or vector operator and
hence are invariant under the transformation from
a right-handed to a left-handed coordinate system.

The angular momentum operator, orbital or spin,

has the transformation properties of a cross prod-

uct of two vectors, i.e., an axial vector or pseudo-

vector. Although the two vectors will change sign

on inversion, their product will not and the vector

operators (pseudovectors) 1 and s as well as the

Hamiltonian term 1-s are also invariant. It is

19



important to note at this point the distinction
between a vector and its description. Let us con-
sider the vector r=(x, y, z) and t={u, v, w), with
rXt= (yw— sw, zu—xw,xv—yu). If we now switch
to a left-handed system, the vector r remains the
same, but it is now described by {—x, —y, —z).
Likewise, t remains the same but its description
becomes the negative of the original. On the
other hand, the product rXt retains the same
description, but is consequently a different vector
since it is now in a left-handed system. The dis-

tinction between a quantity and its description is

a fundamental one which must on occasion be
made very carefully. If we consider a one-elec-
tron wave function \l/{x, y, z, s), the description of
this state in the inverted frame is ^(—x, —y, —z,
s), the description of an angular momentum being
invariant.

\f/
is a, homogeneous polynomial of de-

gree I in the variables x, y, z and the transfor-
mation under the inversion is that of (—1)' and
that of a w-electron system (—1)^'*. Strictly

speaking, of course, 2Z« will not have a definite

numerical value when terms (3) and (4) in the
Hamiltonian are introduced, but only down
through term (2). Nevertheless, the introduction
of (3) and (4), invariant under the inversion, will

admix only wave functions of the same value of
(—1)^'' which may be used to describe states of

the free atom or ion. In addition to J, the states

may be designated even or odd, {g or u, respec-
tively) depending on (— l)^'*.

3.4. Group Theory and the Perturbed Ion

It is the primary purpose of this paper to con-
sider in detail the effects of terms in the Hamil-
tonian arising from the crystal lattice perturba-
tion V and from the external magnetic field B.
There are two techniques which may be used in

the solution of the problem, both of which must
be used in a complementary fashion for a complete
discussion. One technique is to apply further the
theory of groups, reducing the representation of

the state of the free ion according to the reps of

the appropriate electrostatic-magnetic field sym-
metry group. This technique will yield the num-
ber of levels, their description in terms of their

behavior under the allowed symmetry operations,
and selection and polarization rules for various
types of transitions. The method will not yield

purely numerical details, such as the relative posi-

tions of levels, their variation with electric and
magnetic field intensities, or transition probabili-

ties (save for the vanishing forbidden transitions).

The other technique is to calculate to some degree
of approximation the matrix elements of the per-
turbing potentials in terms of the free ion wave
functions, interpreting the results in the frame-
work of the usual perturbation theory. In the
final analysis, this latter procedtire will yield not
only the numerical details not obtained from the
former technique, but can be so interpreted as to

yield all of the results that the former technique
will give. Nevertheless, the group-theoretical ap-

proach is one of great generality and provides a
very concise systematic framework for stating the '

results obtained. Furthermore, the principles of
group theory (or essentially similar arguments)
are used to determine what matrix elements of the

;

perturbing potentials vanish if the second approach
|

is used, and to calculate the magnitude of those
{

which do not vanish. Hence, the two approaches
;

are not really so divergent as might at first sight

appear to be the case. In this work, the contribu-
tions to the problem which can be made with the '

use of group theory will be studied in detail before ?

proceeding to the alternate considerations of calcu-

'

lations involving specific matrix elements. While
it is not the intent of this paper to furnish a general
treatise on group theory, and a general acquaint-

i

ance with at least the basic definitions wiU be ')

presumed, certain concepts will be examined in !

detail and applied as the necessity arises. i;

Let us consider the very simple group C3, con-ii

sisting of the elements C3, Cf, and E. We shall'

describe the group in terms of the effect of its !

operations on the basis triangle of figure 2a, il

taking G3 as a counterclockwise rotation of the
triangle by 120°. In the present configuration, '

the operation G3 will cause the vertex (1) to:^

appear at the point previously occupied by. (2),^

(2) at that occupied by (3), and also (3)-^(l).i

We may shorten this to C3: (l)->(2)-^(3). We

^

may also describe the operations in terms of their 1

effect on the triangle in figure 2b, where we see.

that we also obtain C3: (l)-^(2)^(3). Notice 1

that figure 2b differs from figure 2a only in that

'

C3 has been applied to the basis triangle before i

we use it to describe the group. We could alsoi

have applied Ci to figure 2a before describing the

:

operation, and again would have obtained Cz'i

(l)->(2)->(3). A study of the operation Ci will?

show that, using any of these basis triangles,!

we obtain Q: (1)^(3)^(2) as its description.

J

Thus, if we restrict ourselves to transformationsi

within the group under discussion, there is no^

transformation which will cause Ci and C3 to have-;

the same description in terms of their effect on !

the basis triangle. Let us now consider the group
D3, where we have added to our original set of

thi'ee elements three rotations of 180° about axes
in the x-y plane, described in terms again of figure

2a as C2: (2)^(3); C^: (l)-^(2); and C'^: (1)^(3).
Still restricting ourselves to transformations mthin
the group, let us consider the effect of C3 in terms
of the basis of figure 2c, derived from figure 2a by
the application of C2. Here we see that we obtain

C3: (1)—^(3)->(2), but this is the same as Ci

(2) (I) (3)

(3) (2) (2)

a b , c

Figure 2



described in terms of figure 2a. We thus see that
. in our first case C3 and Cf were essentially different,

j
in that none of our allowed transformations permit

! them to hare the same description, while in the
second case at least part of this essential difference

has been lost. This difference is expressed by the

, notion of class. In the first case C3 and Cf are

:
said to be in a different class, while in the second

I

case they are said to be in the same class.

More generally, if we consider the general trans-
formation, P'=TPT~^ and hmit oiu-selves to

' transformations T belonging to the group of P,
• we see that P' is also in the group of P, and is

defined as being in the class of P. For each T of
; the group a P' is obtained, not necessarily dis-

• tinct, and the complete set of P' constitutes the
^ class of P. Clearly, if P and T commute, P'= P.

; In an AbeHan group, where all elements commute,
every element is in a class by itself. Conversely,
if P' is distinct from P, then P and T must not

! commute. The separation of a group into classes

may be accompHshed either by geometric con-
siderations such as outhned above, or by formal
computation. The formal computation is aided
by the following considerations. Let N be the
set of group elements which commute with P.
It may be shown that this set of elements is in

fact a subgroup (possibly the entire group) called

the normalizer of P. Any element of N as the
transforming element j^elds a P'= P. Let K be
a group element not in N (K does not exist if the
normalizer is the whole group). Then K as the
transforming element T pelds a P' different from
P, but any element in the complex KN yields the
same P' as does K. Similarly, if L is a group
element not in N or KN, it will yield still another
P", but all elements in LN will yield the same P".
Generally, if the group order is g and the order of
the normalizer is n, the ratio g/n, an integer, is

called the index of N, and the group may be spht
into g/n complexes, one of which is the subgroup
N. All of the elements of the class of P may then
be obtained by transforming P with an element
from each of these g/n complexes. Hence the
class of P has g/n distinct elements.

These considerations may be applied to the
group D3 discussed above as an example. The
group order is 6, and the elements which com-
mute -^^-ith C3 are E, C3, C3. Hence the index of
the normalizer is 2, and there are two elements in
the class of C3, one of which is C3 itself, the other
of which may be obtained by transforming C3 \vith

any one of Co, C2, or C2. To accomplish this

latter we need the multiplication table for the
group elements, usually summarized as C3=C2= E,
C3C2= C2C3. The other element in the class of C3
is C2C3C2~^=C2C3C2=C2C2C3=Ci,as was geometri-
cally shown above. C2 commutes only with itseK
and E, so the order of its normahzer is 2, its index
is 3, and there are three elements in the class of C2.

These are C2 and the products of C2 with C3 and Cf.

If we have a set of g unitary matrices forming a
representation of a group of order g, the set of

traces of these g matrices is said to be the char-
acter of the representation. The importance of

the concept lies in the invariance of the trace xmder
a unitary transformation, Tr P'=Tr UPU"^=
Tr P. We see immediately that if U is a matrix
of the representation, then P' is an element of the
class of P and aU elements of the same class have
the same trace. If U is a matrix reducing the
representation into two or more reps, the character
of the representation is the sum of the characters
of the component reps. This latter fact will allow
us to determine what reps may be present in a
given representation without actually finding the
particular U necessary to accomphsh the reduction.

This latter procedure is precisely what we have
outlined above in sketching the appHcation of

group-theoretical ideas to the description of states

of free atoms or ions, and what we wish to examine
in detail when considering the effect of the intro-

duction of the crystal field V and the external

magnetic field B. Before the introduction of the

external fields, the Hamiltonian is invariant under
arbitrary rotation (of the simple or double group)
and inversion, and the wave functions are trans-

formed by Dj and (— l)^'-, respectively. After

the introduction of the external fields, the Hamil-
tonian is now invariant only with respect to sub-

groups of the original group of transformations.

The original rep of the complete group will not in

general be a rep of this smaller group but merely
a representation, reducible into reps of the smaller

group. This is the expression of the fact that the

original 2j-\- 1 fold degenerate level will under the

infiuence of these external fields split into several

levels of lower degeneracy. The character of the

original representation is the sum of the characters

of the reps into which the state splits. We shaU
now outline the method whereby this determina-
tion of the component reps may be accomphshed.

3.5. Group Characters and the Rep-Dj

Let us consider a finite group of g elements,

with the elements separated into classes. There
will, in general, be several reps for this group.

Let us write the trace in the i-th. rep and j-th class

as xn- For a given i, j will assume values from
1 to n, where n is the number of classes, and
will be a set of niunbers, generally complex and
not necessarily aU distinct. Strictly speaking,

the set of numbers Xij for all j and a given i con-

stitutes the character, while the number xtj for a
particular i and j is merely the trace of a matrix,

and one component of the character. This may
be emphasized by considering the character as a

vector Xi in a space of n dimensions, with the n
components, Xij- This is a distinction which is

usually either overlooked or ignored. We shaU
now introduce a weighted trace, defined as

-y/^ Xij, where Nj is the number of elements in

the class j, and, correspondingly, a weighted char-

acter ^1. Fundamental to our further considera-
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tions will be the orthogonality theorem for these

weighted characters, which we shall state without
proof, referring to Wigner (1931) for details.

This theorem states the following:

1. The weighted character for a given ^ is a
normalized vector in the Hermitian sense in a
space of n dimensions. Symbolically

J= l

(3.8)

2. The weighted characters belonging to dif-

ferent reps are orthogonal in the Hermitian
sense.

(3.9)

3. The set of weighted characters ?j for all i

forms a com.plete set in the space of n dimensions,
in terms of which the weighted character of any
representation may be expanded. If S is such a

weighted character, with components "Ej^-d—^ X^,
V 9

and ai=^rS-
i=l

9

(3.10)

Two important conclusions may be immediately
drawn from this theorem. We observe that, since

the weighted characters form a complete set in a
space of n dimensions, there must be n of them.
In other words, the index i as well as^" must assume
values from 1 to n, and the number of reps is equal
to the number of classes of the group. The
orthogonality theorem suggests that we consider
these weighted characters as the elements of a
ny,n matrix. The orthonormality (3.8) and (3.9)

in the rows (i.e., in the index i) implies a similar

relation in the columns (i.e., in the index j). In
n

particular, we have S ^iB^fs=l
i=l

where j=-E' refers to the class of the unit element.
The unit element is always in a class by itself, so

Ne=1- The matrix corresponding to the unit

element in any rep is the unit matrix of the di-

d
mensionality di of the rep, so XiB=dt and ^^e—-^-

Consequently,

2!j k'tsiiE— 1 implies
1=1

(3.11)

For the finite groups under consideration, there
will be a unique solution to this relation in terms
of integral values of df The dimensionality of
the reps (and hence the maximum allowable
essential degeneracy) will be determined by the

order and class structure of the group. Thus, for

the group D3 discussed above, with six elements
and three classes, we have 2^+1+ 1= 6, and the
maximum essential degeneracy will be 2

We shall begin our discussion of the character
of specific reps by considering the reps Dj, initially

limiting J to 1. The ideas of class, character,

and orthogonality just discussed were with specific

reference to finite groups, but are applicable to

infinite groups with but minor modification, the
most far-reaching being in the orthogonality rela-

tions. In this case the finite sums cited are re-

placed by integrals over parameters defining the
elements of the group. We shall not require the
theorem for infinite groups to be discussed here.

A matrix Dj expresses a transformation of a
vector r (^, 7], f) into a vector r'(x, y, z). The
transformation is orthogonal, leaving the length
of the vector unchanged, and may be viewed as a
rotation about an axis along rXr' with an angle of

r r'
rotation w such that cos co= . .. . To resolve the!

|r||r'|

group elements into classes note that we can first

rotate the vector r into the x-y plane and, if

necessary, perform a rotation about r so that r'

will also lie in the x-y plane. We thus transform

Di into a rotation about the z axis where it will,

from (3.5) for U=(0, 0, 1) assume the form

^ cos CO — sin CO 0^

Ri(a,)= sin CO cos CO 0

.0 0 1>

We see that all rotations with the same angle of

rotation are in the same class, and that the trace

is 1+ 2 cos CO. It is important to observe that the

fundamental interval of co and the complete range
of the character, here a vector with an infinite

number of components, may be obtained with co

between the limits 0 and tt. This reflects the fact

that a rotation, -co about a given axis is equiv-
alent to a rotation co about an oppositely directed

axis. Thus every rotation is in the same class as

its inverse.

Preparatory to considering other integral values

of J, let us transform Ri(co) to the purely diagonal
form RJ(co) given by

0 0^
1 0

0 g-"

This is the matrix describing the effect of a rota-

tion about the z axis on the three states (+ 1, 0,

— 1) of a ^ electron. For a d electron, we know

22



0 0 0 0
^

0 0 0 0

0 0 1 0 0

0 0 0 0

.0 0 0 0

]|
that such a rotation may be described by the
matrix

Since there is a unique 1 to 1 correspondence be-
tween the matrices Di and D2, it follows that any
matrix D2 may be brought into the form R2(w) by
the transformation corresponding to that bringing
Di into R^(w). Here the trace is 1+2 cos w+2
cos 2u. A similar argmnent holds for other in-

tegral J. A general expression xj-(w) is then given
J

by S This is a geometrical progression in

which the first term is e"*-''", the common ratio
is e*", and which contains 2j-\-\ terms. The
general formula for the sum of such a progression
gives

which may be simplified to

sin (2J+1)

(3.12)

sm-

We see from an inspection of this formula that
the relations considered for hold generally for
integral J, namely, x(w)= x(— w), and that w on
the interval (0, tt) covers the allowed range.
Let us now consider the group for J half-

integral, initiall}^ limiting oiu-selves to J=^'

Any unitary matrix may be diagonahzed, and
(a 0

Dj will assimie the particular form I

\0 a*.

where |a| is -fl. This diagonahzed form of
can be written as

e+'2 0

0

By equating the trace of this matrix to that of the
nondiagonahzed matrix (3.7), we obtain

2 cos -^=2 cos cos

a relation between the angle of rotation w and the
Euler angles 4), 6, We see that in this group, as
weU as in that with integral J, every element
and its inverse are in the same class, since the
character does not depend on the sign of w and
that the classes are determined by the parameter
0). The character of this rep is 2 cos co/2. The

range of the parameter w/2 in defining the group
element is (0, tt) corresponding to w in three dim-
ensions on the interval (0, 2Tr), again confii-ming
the double natiu-e of this group in describing real
rotations. Let oiq be the angle, less than tt, re-

lating two orientations of three-dimensional axes,
the corresponding diagonahzed two-dimensional
matrix being

R^('^o)=

with character 2 cos coo/2. The other two-
dimensional matrix corresponding to the same
orientation of three-dimensional axes is then
given by

R|(a;o+2x)=
0

0

0

-R|(wo).

The character of R|(wo+2t)=2 cos (coo/2+ 7r)=
— 2 cos a>o/2. Hence these two elements of
corresponding to the same three-dimensional rota-
tion have different traces and belong to different

classes, unless the trace is zero. This latter occurs
for coo=ir, at Avhich point the two matrices become

/i 0\ /-i 0>

R.(7r)= and R^(37r)=(

\0 -iJ \0 ^y

For real rotations of tt, the two elements are in the
same class, because they are then reciprocal

elements.
For higher half-integral values of J, with a

unique 1 to 1 correspondence with the elements of

the group Z)i, a similar reduction to diagonal form
must be obtainable, yielding

+''^'- 0 . . . 0 0

0 0 0

0 0

The trace of this matrix is a geometrical progres-

sion of the same form as the earlier one for integral

J, so the general formula (3.12) will still be valid.

Values of xA<^) have been calculated for co and
J of interest and are presented in table 7. In
further confirmation of previous discussion, for

integral J, co/2 need only range from 0 to 7r/2, since

the numerator is an odd polynomial of the de-
nominator, and the numerator and denominator
will change sign at the same time. For half
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Table 7. A character table for the reps Dj

\ 0° 60° 90° 120° 180° 240° 270° 300° 360°

J\
\

27r/6 27r/4 27r/3 IT 4n-/3 67r/4 107r/6 2ir

0 1 1 1 1 1 1 1 1 1

1/2 2 V3 1 0 -1 -V2 -V3 -2
1 3 2 1 0 -1 0 1 2 3

3/2 4 V3 0 -1 0 1 0 -V3 -4
2 5 1 -1 -1 1 -1 -1 1 5

5/2 6 0 0 0 0 V2 0 -6
3 7 -1 -1 1 -1 1 -1 -1 7

7/2 8 -V3 0 1 0 -1 0 V3 -8
4 9 -2 1 0 1 0 1 -2 9

9/2 10 -V3 V2V — 1 0 1 -V2V *^ a/3 — 10
5 11 -1 1 -1 -1 -1 1 -1 11

11/2 12 0 0 0 0 0 0 0 -12
6 13 1 -1 1 1 1 -1 1 13

13/2 14 V3 -V2 1 0 -1 ,/2 -V3 -14
7 15 2 -1 0 -1 0 -1 2 15

15/2 16 V3 0 -1 0 1 0 -V3 -16
8 17 1 1 -1 1 -1 1 1 17

integral J, the numerator will be a product of an
odd function of sin co/2 and an odd function of

cos co/2. No new values are obtained by going to

negative values of w, since again the numerator
and denominator will both change sign together
at co=0. However, the odd terms in cos aj/2

change sign at co/2= 7r/2, so that the range (0, 2tv)

in w will give distinct traces in this latter case.

This is due, of course, to the fact that the division

between the two homotopy classes of Di occurs
at w=ir rather than at co=0.

3.6. Noncubic Crystallographic Groups

We shall now consider the details of the sub-
groups of Dj in which we shall be interested.

Upon the introduction of the crystal field and/or
the external magnetic field the general rotation-

inversion invariance of the free ion Hamiltonian
is destroyed and only those transformations which
leave invariant terms representing these external
fields are admissible. These were defined in

section 2 in terms of the elements DiXl. Because
of the unique 1 to 1 correspondence between
DiXl and D^Xl for integral t/>0, the structure
as a group of the allowed transformations for all

integral J'>0 is the same as those of the perturbing
fields. This correspondence does not hold for J
half-integral. In this case we again select out of

Dj-Xl those transformations which correspond in

terms of DiXl to invariance of the pertiu"bing

fields. However, there are two elements of

DjXl, J half-integral, corresponding to the same
transformation in terms of DjXl, so there Avill be

twice as many elements in the corresponding sub-
groups. For this reason the structure of the sub-
groups for half-integral J wiU be different from
those for integral J and must be considered

separately. We shall initially limit ourselves to

those subgroups appropriate for integral J.

We shall examine more closely the detailed

structure of those groups listed in table 3, ex-

cluding temporarily the infinite groups listed at
the bottom of the table and the cubic point groups.

These we divide into four general types

:

1. The cj^cHc groups C„
2. The dihedral groups D„
3. The holohedric groups C„XI, D„XI
4. The hemihedric groups, which are the sub-

groups of the holohedric groups which do not
contain I alone but only in products with rotations.

The cyclic groups C„ are Abehan, of order n.

The elements of the group are the various powers
of C„ with Cl= E. Every element is in a class by
itself; consequently, there are nreps for the group.

The dihedral groups D„, ?i>l, are of order 2n,

and include the n powers of C„ and products of

these n elements with the elements C2'. Products
of C„ and Cg are related by C2C„=C~„'C2. Hence
the group in non-Abelian for ?i>2. If n=2,
every element is in a class by itself, otherwise the

class structure is more complicated. For w]>2,

the element C* and its inverse C^~* are in the

same class. If n is odd, there are n-1 powers of

Cn (eliminating the unit element in a class by
7h 1

itself) which are grouped by pairs into classes.
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The n products of C2 with the powers of C„ are all

in the same class, so we have a total of

71—l_rH-3

classes. For n>2 and even, the element C"'^

is its own inverse and like E is in a class by
^ 2

itseK. The other n-2 powers of C„ fall into
^

classes, each with two elements. The n products
of the form C*C2 will in this case fall into two
classes, one with k even, the other with k odd.
Here the total number of classes is given by

The case for n=3 has been discussed above
(section 3.4) in detail in connection with the

definition of class. In the present work, this is

the only case we shall be concerned with, though
a little geometric consideration on the symmetry
of the pentagon, heptagon, etc, will confirm the
above discussion of odd n. Since n is odd, an
axis of the form C'2 will pass through a vertex and
the opposite side of a n-gon. For n even, such
axes will join either opposite pairs of vertices or

sides, and no operation of the group either repre-

sents a rotation about a line joining a vertex and a
side, or will transform a rotation about one type
of axis into one about the other.

The holohedric groups D„Xl, C„XI contain

twice as many elements as D„, C„ and hence are

of order 4n or 2n, respectively. Since I commutes
\\-ith all elements, the group C„X I is Abelian. It

is interesting to note that for odd n it is also cyclic

since the group can be written in terms of the

powers of C„I, with (IC„)"=I. In the case of

D„X I, if A, B, and X are elements of D„ such that

A=XBX~\ the element IX will similarly trans-

form B into A. Thus the addition of I to the

group elements does not affect the class structure

of those elements not containing I. On the other

hand IA=X(IB)X-i=(IX) (IB) (IX)-; so the

class structure of those elements containing I ex-

actly reproduces that of those elements not con-
taining I.

Let us consider the relations between D3, D3XI
(=Dza) and the hemihedric subgroup Qj. D3
contains six elements in three classes as follows:

E; C3, Ci; C2, C3C2, C3C2. Dza contains these three

classesand threemore : I
;
IC3, ICi ; IC2, IC3C2, ICiCa.

We will now consider which elements must be
suppressed to eHminate I as an element of the
group without reverting to D3. Clearly, I must
itself be eliminated, as weU as the class of C3I,

since (C3l)^=I. If the class of IC2 is ehminated
we are back to D3, so we retain these three ele-

ments, noting that we cannot obtain I from powers
of these elements as was done with IC3 since the
square of any of them is the unit element. In
looking at the classes not containing I, we must
retain E to have a group, and the class of C3 must
be retained, since C§= (IC2) (ICiC2) and both of

the latter are retained. On the other hand, C2
(IC2)= I, so we conclude that the class of C2 must

also be eliminated, so we obtain for the class

structure of C3,: E; C3, Cf; IC2, IC3C2, ICiG2 which
is the same as that of D3 (i.e., the unit element,
two elements of order three, and three elements of
order two). Furthermore, the multipHcative rela-

tions between the elements of C^^ are the same as
those between corresponding elements of D3. The
product of two elements of Q;,, neither containing
I or both containing I clearly follows the parallel

relations in D3. If only one contains I, say IC3C2,
its products with the elements E, C3, Cf yield I

times the products of E, C3, Ci with the element
C3C2 of D3. We shall see later the importance of
the fact that not only is the class structure the
same, but that the corresponding multiplication
table is the same (though the latter implies the
former) for the two groups.

We may generahze these considerations, and
assert that the structure of any hemihedric group
is the same as that of the pure rotation group
from which it is derived through the intermediary
holohedric group of double order. Such groups
are said to be isomorphic. The only difference,

mathematically superficial, is in the geometric
designation of the operations involved. The pri-

mary significance of this for the present is that the
mmiber of actually independent groups to be con-
sidered is considerably less than the 27 finite groups
enumerated in table 3, and that only the struc-

tures of the pure rotation groups and the holo-

hedric groups have to be considered.

3.7. Noncubic Double Groups

We now turn our attention to the double groups,
which we shall designate as nQo, iiDes, etc., de-
pending on the corresponding subgroup of DiXl.
This notation will be used when it is desued to

particularly emphasize the double group. Usually
we shaU merely imply these groups through the
use of the symbols C^^, D^n, etc., in connection with
half-integral J. Some of these groups were first

considered by Bethe (1929). The problem was
again considered by Opechowski (1940), who
clarified many of the ideas involved. We shall

begin with the groups nC„. The element of

DiA for <t>=2Tr/n, e=i^=0 is, from (3.7), [Dyi=l]-']
the matrix

e " 0

Lo e » J

This is obviously the element of a cyclic group of

order 2n. We shall caU this iiC„, observing that

iiC" is given by the matrix I
J
which

V 0 .-1/
we usually designate by R. The unit element is

then R^. As in the case of C„, each element of

iiC„ is in a class by itself. The groups and
iiCn are isomorphic. The inverse of hC* is

C2n-k TJ cn-k

The double dihedral groups consist of the powers
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of iiG„, and the powers and products of the matrix
/ 0 +1\

Di^(0, TT, 0)=nCi=l j with nC„ and
\-l 0/

its powers. The element is of order 4; its

square is R. We note from dii^ect multiplication
of the corresponding matrices that (11CI2) (iiC„)=
(iiC^^)(iiG2). Groups such as this are called

dicyclic groups, and have the defining relations as

abstract groups A"=B2=R, R2=E, A-iB=BA,
a group of order 4n. The class structure may be
determined from the matrices themselves, or from
the defining relations of the abstract group.
A pictorial argument is here inapplicable ab initio,

but we shall investigate the relations between the
structure of D„ and iiD„. We shall use the
defining relations.

The elements which commute with A clearly

include the 2n powers of A, but no element in-

volving B will commute with A (unless A~^=A,
which implies that A=R and that n=l, which is

excluded, since n>2). Thus the order of the
normalizer of A is 2n, its index is two, and there
are two elements in the class of A, which we see

immediately from the defining relations are A
and A~^ Generally, A* and A~* will be in the
same class, except when k=n, since A"=R com-
mutes w^ith all elements and is in a class by itself.

The normalizer of B consists of B, R, B^ and
E, of order 4 and index n, so there are n elements
in the class of B, obtained by transforming B
with the first n powers of A. We have ABA~^=
A^B:, A2BA"^=A^B; etc., or generally the even
powers of A, times B. We have left over the
class of AB, with normalizer AB, R, (AB)^, E.
The n elements in the class of AB may likewise be
obtained by transforming by the first n powers of

A, yielding generally the odd powers of A times B.
Summarizing, there is the class of E with one ele-

ment, the class of R with one element, the {n—l)
classes of A* with two elements, the class of B
with n elements, and the class of AB with n
elements. Altogether thei^e are w+3 classes.

We notice that the class structure is the same for

both odd and even n.

It will now be interesting to compare the class

structure of uD,, with that of the group D„ from
which it is derived. Let us write the defining

relations of D„ in terms of the abstract elements
A and B as A"=S2=E; AB=BA-\ so that we
distinguish corresponding elements by italics.

Let us further, in iiD„, write powers of A
greater than n in terms of products of powers of
A less than n and the element R. Thus, A""'"*'=

RA'', and A~*=A^'*~'^=RA"'~*. Let us consider
the class of A, which is {A, A~^). There are four
elements in iiD„ corresponding to these two,
A and RA to the first, A-i=RA"-i and A"-i to

the second. These four elements are in separate
classes by pairs (A, RA""^) and (RA, A"~i). If n
is even, these are both classes of order 2n. If n
is odd, A is of order 2n, but RA is of order n.

Similarly, the class of A^, A^~" will generally

split into (A^ RA'^-*) and (A"-*, RA*) . If w is even,
tlaese are of the same order; if n is odd, these are
of the same order for even k, and of different
order for odd A;. The sole exception to this will
occur if k=n/2 (which will require n to be even),
where there is but one element in the class {A"''^)

and the two elements A"'^, RA"^^ are in the same
class.

Let us now consider the classes of B and B.
If n is odd, the class of B contains A^B, A*B,
. . .

A"-iB, RAB, RA^B . . . RA'^-^B, but it

does not contain RB, nor does it contain AB.
The class of AB also contains A=^B, . . . A^-^B,
RB, RA^B . . . RA^-iR. On the other hand, the
class of B contains B, AB, A^B, . . . A^-^B, so
the class of B will split into two classes, one con-
taining B and RAB, the other containing AB and
RB (and other elements as indicated above). If

n is even the class of B will still include only the
even powers of A times B, but A''=R will now be
included, so B and RB are now in the same class.

The class of B now involves only B and the even
powers of A times B, so for n even the class of B
will not split, but will merely contain twice as
many elements.
We may summarize this behavior by the fol-

lowing diagram, where we give in one column the
typical classes of D„, in the next column the cor-
responding classes of nD^, for both odd and
even n.

n odd

iiD„

E (E)

(R)

(A'i, RA"-*)
(A-'-'s RA*)

(B, AB, Am . .) (B, RAB, A2B . .)

(RB, AB, RA2B . .)

n even

(£) (E)

(R)

(A*, RA"-*)
(A"-*, RA*)

(A"/2, RA'-zs)

{B, Am, Am . .) (B, RB, A2B, RA2B . . .)

{AB, Am, Am .) (AB, RAB, A^B, RA'B, . .)

We see that the class structure of nD„ foUows the ii

same pattern for both odd and even n; the pattern
varies m the case of D„, in particular, for classes »

of elements of order 2. Results of the comparison i

may be summarized into the following rules, first

given by Opechowski: i!

1. For each class of D„ of order other than 2, )

there are two classes of u each having the same
[

number of elements as the class of D„. j

2. If there is but one class in D„ of order 2 (w is

odd), this win in nDn follow rule (1).

3. If there are two or more classes in of

order 2, {n is even) i.e., there are two or more
mutually perpendicular two-fold axes, these classes
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will not split in iiD„ but will contain twice as

many elements. These rules also hold for the

cubic groups, essentially special cases of D, or D4.

Finally, we may observe that we deduced the

I

existence of n+3 classes in nD„. This should be
considered in the light of the above rules with the

I

(ri+3)/2 classes of D„ (n odd), all of which split

! in nD„ or 3+ «/2 classes for n even, where n/2
classes split in iiD„.

i The relations between the double pm-e rotation

groups and the associated holohedric and hemi-
hedric groups is the same as between the single

rotation groups and their associated holohedric

and hemihedric groups, and therefore need not be
discussed separately.

3.8. Reps and Characters

We shall now examine briefly the notions of an
invariant subgroup and of a factor group. We
shaU see that these, together with the orthogo-
nalitj' relation for group characters, will permit us
to derive the characters for most of the finite

groups in which we shall be interested. While
these group characters have been derived by very
general considerations, a detailed study will prove
to be very instructive. Let us consider a sub-
group S of G, of order s and index n {ns=g). If

X is anv element of G, S is an invariant subgroup
if XSX-i=S, or XS=SX. This does not imply
that every element S, of S commutes with X, but
onh- that XSi= SjX, or that the set of elements
XS is the same as the set SX, differing only in the
order if at all. li n=2, we may ex-pand G into

the sum S+ST, where T is an element of G not
in S, or into the sum S+TS. We see that ST=TS,
or that any subgroup of index 2 is an invariant
subgroup. It is clear that S is either a class of G
or a sum of classes.

Let us associate with each element X of G the
complex SX. While there are g X's, there are
only n distinct complexes SX. Let P and 0 be
elements of G with product PO=R- The asso-

ciated complexes, similarlv multiplied, give (SP)
(SO)=SSPO=S(PO)= (SR), smce S commutes
with any group element, and SS= S. We thus see

that a relation PO=R holds either for the group
elements themselves or for the associated com-
plexes SP, SO, and SR. These n complexes
constitute a factor group of order n, the unit ele-

ment being S. The importance of the factor group
for our purposes lies in the fact that any rep of the
factor group will likewise be a rep of the original

group. Since the factor groups are of lower order,

their reps may frequently be found by inspection.

As an illustration of these ideas, let us consider
the group D, with elements E, C2, C2, C2C2. Since
C2, C2, and C2C2 are aU of order 2, E and any one
of them will constitute a subgroup of index 2, and
hence an invariant subgi'oup. There are thus
three "proper" factor groups (of order >1 and
<4):

1: (E, C2) (C2, C2C2) 2: (E, CO (C2,^C2CD

3: (E, C2C2) (C2, C2).

We observe that the set of numbers 1, 1 and 1,-1
constitute reps for the factor groups. We may
then obtain four reps for the whole group by
associating with each of the three factor gxoups
the two reps. This would generally yield sLx reps,

but those arising from the rep 1, 1 are the same
for aU three factor groups. These reps are tabu-
lated below. Those numbered 1-3 are obtained
from the corresponding factor gToup by the associ-

ation 1, —1 of the factor group, while (4) arises

from 1, 1.

E C2 C2 G2C2

1 1 -1 — 1

1 -1 1 — 1

1 — 1 -1 1

1 1 1 1

We are now prepared to discuss the characters
of the reps of specific groups, to tabulate their

niunerical values, and to systematize the descrip-

tion of states in terms of their behavior under the
group operations, just as the quantum numbers
L, S, and J, and AIl, Ms, and Mj describe the
behavior of states under general rotations. In the
original work of Bethe (1929), the various reps
were designated generally by r, and distinguished

by numerical subscripts such as Ts, Ts, etc. This
notation has persisted in this field, though it has
no systematic meaning and does not suggest the
actual behavior of the state under consideration.

An alternate notation has been highly developed in

connection with the theory of groups as applied to

molecular vibrations (Herzberg, 1945; MuUiken,
1955), and it is a modification of this that we shall

employ. While we shaU discuss the notation ap-
plicable to each group as it is discussed in detail

below, it seems desirable to cover the notation
generally at this time, particularly to point out
variations from the notation appropriate to molec-
ular spectra.

We shaU consider first the single groups, i.e.,

those appropriate to integral J. We shaU find

that the reps are of dimensionality three, two, or

one. Those of dimensionality three, which arise

only in the cubic groups, are designated by the
symbol T. If the inversion is a group element,
the symbol will carry the subscript "gf" or "u", as

appropriate, and, if necessary, they may be further

distinguished, essentially by convention, by sub-
scripts "1" or "2". Two-dimensional reps will be
designated as E, again with a or if appro-
priate. The two-dimensional reps of D^^ and
C„„, infinite in number, will be found to corre-

spond to the pair of states ±Mj of the free ion;

they will thus be distinguished by Mj appended
as a subscript. For these two gi'oups, molecular
spectroscopists use the symbols 11, A, etc. It

is believed that the notation of the present work
is more adaptable to crystal spectra, since D^^
and C^^ are only useful approximations to a case

of lower symmetry, where the notation is also

used in molecular spectroscopy.
One-dimensional reps have as elements numbers,

real or complex, of magnitude 1. If all elements
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are real, i.e., +1 or —1, they are designated as

"A" if the element for rotation about the 2-axis

is +1, "B" if the element is —1. They may be
further distinguished by subscripts 1, 2 according

as the element for rotation about the y-axis is

+ 1 or —1; g or u for the inversion; or (') or (")

for +1, —1, respectively, for reflection in the x-y

plane. While this is the general policy to which
the molecular notation conforms, it is usually

abandoned in the case of the group Da or Da;,.

This is because the x, y, and z axes are distinguish-

able only by convention, and the reps are called

Bi, B2, Bi. This does not seem to be warranted;
even the assignment of subscripts in the 5's must
be done by convention, so one may as well con-

form to the general rule. If the elements are not

all real, we use the symbol C/t, according to the

quantity {^Y- The general procedures of molec-

ular spectroscopy merge a complex rep with its

conjugate, which must also appear, as a two-dimen-

sional rep designated as "E'\ We are interested

in distinguishing these reps because of their separa-

tion when a magnetic field is applied.

The double groups do not appear in problems

of molecular vibrations. Their reps are of dimen-
sionality four, two, and one. That one of di-

mensionality four is the appropriate collection of

the elements of the rep 1)3/2 of II2, so we designate

it as D3/2 here also. Some of those of dimension-

ality two which appear are similarly collections of

elements of A^, which we continue to designate

as Dy^; those two dimensional reps not so desig-

nated are assigned the symbol oSk, where "*S"'

represents the idea of "spin'' or ''specific", the

anterior subscript for a two-dimensional rep, and
the posterior one (if necessary) by convention.

Similarly, the one-dimensional reps are designated

"(S"', with a distinguishing subscript according

to the root of 1 involved in the rep.

The reps of the cyclic groups C„ are all one-

dimensional. It is clear that just as the group
consists of the n powers of C„ so also wUl the n

powers of Vl serve as a rep. It is similarly clear

that the n powers of {^lY wUl also serve as a

rep, where k may be 2, 3, 4, . . . n. If k=n, we
designate it by yl, a general notation for a rep

where every rotation about the 0-axis is the unit

one-dimensional matrix. If n is even, for k=n/2
we use B, similarly a general notation for a rep

where the element of the rep corresponding to the

basic group element C„ is the 1X1 matrix (—1).

In other words, ^ is a symmetric rep, B an anti-

sjrmmetric rep. Note that Cn-ic is the complex
conjugate rep to Ck-

The double cyclic groups iiC„ are isomorphous

with the group Can, and hence the reps are the

various powers of CVl)*- For k even, we desig-

nate the rep by Ckn or A or B since it wiU then

be also the corresponding rep of C„. For k odd,

we shall call the rep {S for spin or specific) to

emphasize that it is peculiar to the double group.

Sk and S2„.k are complex conjugate reps. We note

that, if ijl= o:,o:\l then yi= -u>\ '^^/l= -i<jo.

The dihedral groups are less easily analyzed, i!

The reps (and characters) for Da were obtained J

above in connection with the illustration of the !

application of the factor group concept. In terms
i

of numbering there used, we shall describe (4) as ;i

Ai, (1) as A2, (2) as Bi, and (3) as B2. Here !

again, A is used for reps which are totally sym-
metric for rotations about the z-axis, being dis-

tinguished by subscripts according to the behavior
;

for rotations about the secondary y-axis. B is j

used where the basic rotation about the 2-axis is

antisymmetric, and again distinguishing various
,

behavior for rotations about the y-axis.

The group D3 contains the invariant subgroup
(E, C3, C3), so two reps are obtained as the rep

|

(1, 1) and (1, —1) of the factor group. Since I

(3.11) admits of the solution 2^+V+ V=6, the
j

other rep is two-dimensional and its character i

may be deduced from the orthogonality relation
;

for group characters. The one dimensional reps
are designated as Ai and A2, while two-dimensional

f

reps generally are designated as E.

For D4, 8 elements in 5 classes, eq (3.11) admits
the solution 22+ 12+ 12+12+12=8^ go there are
four 1-dimensional reps and one 2-dunensional
rep. Since (E, C4, Q, C4) is an invariant sub-
group, two reps are again the reps of the factor
group (1, 1) and (1, —1), designated Ai and ^a-i
We may also verify that (E, Q) is an invariant
subgroup, whose factor group is isomorphous with
Da, having the structure (E, C|) (C4, CI) (Ca, QCO
(C4C2, C4C2). Ai and A2 of Da give no new reps,

but Bi and B2 of Da will give us new reps, which
we shall designate as Bi and B2 in this case also.

The two-dimensional rep E may now be found
from the orthogonality condition.

In the case of Dg, 12 elements in 6 classes, =

22+22+12+12+12+12=12. The group Ce is an
invariant subgroup, and the (1, 1) and (1, —1) ofi

its factor group C3 are Ai and A2 respectively of

Dg. The group C3 is also an invariant subgroup,
with factor group Da, whose reps Bi and B2 give

Bi and B2 of Dg. Finally, the group (E, Co) is am
invariant subgroup with fa,'ctor group D3, whose
rep E will yield a new rep E2 of Dg. We findi

from the orthogonality condition the rep Ei..
The reps are numbered according to the reps ofi

D„ h with which they may be correlated (table 10). 1

For the double groups generally, cyclic or di-'

cyclic, (E, R) is an invariant subgroup whose'
factor group is the corresponding single group,

;
|

so the reps of the single group are also reps of the
double group, as we have already seen in the case I

of the cyclic groups. For any half-integral J, I

[

the traces of D^(E) and Dj(R) are (2J+1)
and — (2J"+1), respectively. Hence we see thatj t

we cannot resolve a faithful representation for! 1

half-integral J into a sum of reps, any one ofi 0

which has the same trace for E and R. This) 0

latter is clearly the case for those reps derived 1

1,

from the invariant subgroup (E, R), namely those,'
;

which are also reps of the single group, so we con- 1 i;

elude that they will not be useful for describing
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i
states arising from an odd number of electrons,

i: Those reps which are peculiar to the double
'\ groups we shall call specific reps (the basis for the
i. "S" notation in the cyclic groups used earlier);

li we include the non-specific reps for the complete-
i ness required by the orthogonality theorem and
; for the treatment of selection rules.

IID2 contains 8 elements in 5 classes, so

J

22-M2+i2+i24-i2==8. The four 1-dimensional
'I reps are the reps of D2, so the only specific rep is

two-dimensional. It is obvious that this must be
'j equivalent to the appropriate elements of Dy,, or

in other words, the representation is its own rep.
r We shaU emphasize this by designating the rep

f

as Dy^.

I 11 D3 has 12 elements in 6 classes, whence
!| 22+22+12+124-12+12^12. Half of these are
! the reps of D3, so there are two specific one di-

i mensional reps and one specific two-dimensional

j!

rep. We observe that (E, nCi, R11C3) is an in-

t variant subgroup. Its associated complexes
(cosets) are (aC;, nClnCj, RiiC3nC;), (nG3, R,
RnCl) and (nCanCs, RnCj, RiiClnCj) yielding a
factor group isomorphous with C4. The reps A

i
and B of C4 yield no new reps, but Ci and C3 will

yield specific reps which we shall distinguish as

Si and S3. Because of these two 1-dimensional
reps into which the representation from Dy could
perhaps split, we cannot conclude that the repre-

sentation from is also a rep here, but this

proves to be actually the case if the two-dimen-
sional character is calculated from the ortho-
gonality relations. As before, we call this rep Dy.

II D4 has 16 elements in 7 classes. Since
22+22+22+12+12+12+12=16, we find on sub-
tracting the reps of D4 that there are but two
specific reps, both two-dimensional. One of these

! must be D^; the other, derived from the ortho-

I

gonality relations, we shall call 2*S'.

j

II De has 24 elements in 9 classes. Equation

I

(3.11) gives us 22+22+22+22+22+l2+i2-|-i24_
!
12=24. Eliminating the reps of Dq, we have

I
three specific reps, aU two-dimensional. One of

[
these must be Dy. Unfortunately, we cannot

!
obtain either of the other two characters by the
methods used so far, and an alternate procedure
must be used. We obtain from table 7 the char-

i
acter of the representation arising from D3/2, which
is four-dimensional and hence reducible. By appli-

cation of the expansion theorem (3.10) we see

that Dy, is included once in the representation.

I

The other rep involved we shall call 2S1. The
I

final rep may now be obtained from the ortho-
gonality theorem as 2'S'2.

The liolohedric groups, single or double, are

: defined as the direct product of the group (E, I)= I

with a pure rotation group. The reps may be
obtained as products of the reps (1,1) and (1, —1)
of I with those of the pure rotation group. The

, reps are designated like those of the pure rotation

i group, with the additional subscript "g" if (1, 1)

is used and "u" if (1, —1) is used.

It has already been pointed out that the hemi-

hedric groups are isomorphous with the corre-

sponding (in the sense of table 3) pure rotation
group and hence have the same reps. Most of
these hemihedric reps are described just like the
corresponding pure rotation reps. The excep-
tions are the groups C3;,, Cj, and S4. For the
first three of these, the reps are classified accord-
ing to behavior under the operation IC2= ah, sym-
metric reps carrying a (') while antisymmetric
reps have (")• Dss is further subclassified accord-
ing to C2. This clifference m notation is peculiar
to the single groups—the specific reps of all hemi-
hedric double groups will be designated like those
of the corresponding pure rotation group. In the
case of S4, isomorphic with C4, the generating ele-

ment is taken as the operation IC4= C4lC2= C4cr;,,

which is usually considered as the fundamental
rotation-reflection operation. This is why the rep

Ci of S4 corresponds to C3 of C4 rather than to

(7i of C4.

3.9. Infinite and Cubic Groups

We have finally to discuss the infinite groups
involving infinitesimal rotations about the 2-axis,

namely C„, C^,,, D„, D„r, C^,, and the cubic
groups. In C„, the group operation consists of

arbitrary rotations C{4)) such that C(4)i) C(<^9)=
C(02) C(0i)= C(0i+ ^2), and that C(27r)= C(0).

If k is any number, e'*-* will meet the first require-

ment, but the second limits k to a real integer,

positive or negative, including zero. If y!:= 0, we
shall call the rep A, otherwise C^. For the group

iiC<„, the first of the above conditions holds, but
the second is replaced by C(27r)=— C(0). Here
k must be half-integral, positive or negative, and
we designate the reps by *S'2j: {2k is an odd integer).

C„7i is C„XI, so the reps for this group will carry

the subscript "g" or "u".
In D^, the group elements consist of the rota-

tions C(^) and the rotation C2, such that C2C(0)=
C{—<j))C'2. Considering as an invariant sub-

group, the reps (1, 1) and (1, —1) of the factor

group C2 yield reps A^ and A2 of D<„. As discussed

under C„, e'**" will serve as a rep insofar as C(^)
is concerned, but the operation C2 makes e'**' and

equivalent. Except when k=0 (which gives

Ai and A2) our rep for C(<^) must have the two-
dimensional form

/e''^ 0 \

and C2 will assume the form

which will transform C(<A) into C(— </>). It may
be shown that there are no other reps. These reps

we shall call E^, where k is a positive integer. In

the case of iiD<„, the reps become

0 \ / 0 1\

iiC(0)= I iiCH
\o e-'^'^'y \-i 0/
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and we shall designate them as 2S1C (k odd). Keps
of D^T, will have the additional subscripts "g" or
"u", whUe reps of the hemihedric group C^, wUl
be designated like those of D„.

In the gTOup O, there are 24 elements in 5

classes. These are the class of E, 1 element; the
class of C4, 6 elements; the class of C2, 3 elements;
the class of C3, the body diagonal axes, 8 elements;
and the class of C2 (here, C'2 is not along the y-axis),

6 elements. (3.11) gives 3^+32+22+12+ 12=24.
The set of elements (E, 3C2, 8C3) is an invariant

subgroup with factor group of order 2. Its reps

(1,1) and (1, —1) are the reps Ai and A2 of O. If

we consider Dj for J=l, we find that neither ^1
nor A2 is in the representation. Since it cannot
be reduced to Ai-\-E or A2-\-E {E being the two-
dimensional rep), it must itself be one of the three-

dimensional reps. These are generally designated
as T—this particular rep we shall call Ti. Dj,

J=2, contains neither Ai, A2, or Ti, so it must
reduce to E-\-T2, but we cannot separate them.
On going to J=3, we find from this seven-dimen-
sional representation, Ai and Ti accounting for

four. The remaining three must then be T2

which, subtracted from the J=2 case leaves E.
The groups and Ta follow our previous con-
siderations on pure rotation, holohedric, and
hemihedric groups. The reps of parallel

those of O.

The double group IIO has 48 elements. The
splitting into classes, as compared with the group
O, follows the same rules as for the dihedral

groups given in section 3.7, so the class structure

is: E (1); R (1); (6); RnQ (6); (6);

(8);_ RiiQ (8); 11C411C; (12). (3.11), after elimi-

nating the reps of O, indicates three reps for nO,
two 2-dunensional and one 4-dimensional. As
usual, Dy, is one of these reps. in this case

is also a rep, the four-dimensional one. The
remaining rep obtained from orthogonality we
call 2S.

The group T, 12 elements, may be separated
into the class E (1); C2 (3); Q (4); and C| (4).

It is interesting to note that, in spite of the rela-

tively high symmetry, a rotation C3 and its

inverse Cz^= Cl are in different classes. (3.11)

yields 32+12+12+12=12. The elements (E,3C2)
constitute an invariant subgroup, with a factor
group of order 3, C3. The reps A, C\ and C2 of

C3 are thus the one-dunensional reps A, Ci, and C2
of T. The rep T may then be obtained from
orthogonality and completeness considerations.

The group iiT, 24 elements divides (section 3.7)

into E (1); R (1); ^Cz (6); 11C3 (4); R„C3 (4);

iiQ (4); and RnCI (4). Subtracting off the
reps of T, we have 22+22+2^=12, indicating reps
we shall call D^, 2S1, and 282- As the notation
suggests, is its own rep. Unfortunately, our
previous techniques for finding reps fail in this

case, since the reps 2'S'i and 2*S'2 always appear
together and cannot be separated. We must
therefore proceed to a more general method.
The product of any two classes of a group [Ca]

and [Cfi] with Na and Nf, elements, respectively,
wUl be a total of NaNb elements, not necessarily
all distinct, which may themselves be written as
a sum of classes [GJ, or [CJ[C6]= l]A^a,6.JCJ,

g

with Na.-b:q a small nonnegative integer. A par-
ticular 2 may not appear at all, or may appear
more than once. It may be shown (Murnaghan,
1938) that this expansion implies the following
relation between the traces of the i-th rep

:

NaN,X
9

where XiE is the trace of the unit element, i.e., the
dimension of the rep. By developing in detail
the multiplication table of a group, sufficient

relations may be found to calculate the complete
character table of any group. In the present
case, we already have all but two of the seven
possibilities for nT. A solution of these equa-
tions for XiE=2 will then give the desired
characters.

j

3.10. Table of Group Characters I

The foregoing considerations have been sum-
j

marized in table 8, a table of group characters for

both the single and double groups in which we
shall be interested. Each portion of the table is

constructed around one of the single holohedric
groups. Typical elements of the various classes

of the group, together with an indication of the
total number of elements in the class, are shown
to the right of the group designation, while the
designations of the several reps are shown under
the group designation. For convenience, we also

give the notation of Bethe (1929). The characters
j

for the various classes and reps are the entries in

the table. The classes, reps, and characters for

the corresponding pure rotation group may be
obtained by dropping all classes containing I and
the subscripts "g" and "u" on the reps.

Above and to the left of each basic character

table are shown the classes and reps of the corre-

sponding hemihedric groups. The appropriate
group designations are given upward and to the

left of that of the basic holohedric group, while

the class structure is given along the same row
and the several reps in the same column, so that

both classes and reps correspond to those of the

holohedric group. A careful study of these will

indicate very clearly the relations between a holo-

hedric group and its hemihedric derivatives.

The characters and reps for the specific reps of

the double groups are given in table 8 immediately
below the reps of the single groups. Because of

the frequent splitting of the classes of the single

group into two classes discussed above, there will

in such cases be two characters for each class of

the single group. If A is a class element of the

single group, the first double group character wUl
be that for the class of nA, the second for that

of RiiA. Upon inspection, it will be seen that

such pairs of characters have opposite signs, while

those arising from classes of the single group which
do not split are all zero.
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Table 8. A table of group characters—Continued

c. E IC,

E C2
'

I IC2

R̂
s 1 _ I i — i

Bu 1
1 -1 — i i

A' A, 1 1 1 1

Au 1 1 -1 — 1

S\g 1 -1 i — i 1 -1 i —i
Q 1 -1 t — I -1 1 — i i

Sig 1 -1 — i i 1 -1 — i i

1 -1 — i i -1 1 i — i

Au
A,

4:

A2

E

T2

D

2^

D3/2

Aig(Ti)

A2g{r-^

A2U

Eg(Tz)

T2g{ Ts)

DngiTe)

2SAT7)

Dv2g(T,
D.J2U

2 -2
2 -2

-2
-2
-4
-4

6IC4

ec^

1

1

-1
-1

0
0
1

1

-1
-1

^|2 -V2
V2 -V2

-V2

-V2
0
0

V2~

V2
0
0

3C2

sc.

1

1

1

1

2

2
-1
-1
-1
-1

0

0

0

0
0
0

6IC^

6C2

8C3'

8C3'

1

1

1

1

-1
-1

0
0
0
0

1 -

1 -

1 -

1 -

1

-1

1

-1
1

-1

2
-2

3
-3

3
-3

2 -

-2

2 -

-2

4
-4

6IC4

1

-1
-1

1

0
0
1

-1
-1

1

V2 -V2
-V2 ^|2

-V2

V2
0
0

V2
-V2

0
0

3IC2

1

-1
1

-1

2
-2
-1

1

-1
1

0

0

0

0
0
0

6IC^ 8IC^

1

-1
1

-1

-1
1

0
0
0
0

1 -

• 1

1 -

-1

1

1 -

T,, E 3 Co 4C3 4 CI I 3IC2 4IC3 4ICi

Ag 1 1 1 1 1 1 1

An 1 1 1 1 -1 -1 -1

C\g 1 1 01 co^ 1 CO Co2

1 1 0) co^ -1 — CO -Co2

C2g 1 1 w- CO 1 Co2 CO

C2U 1 1 co- CO -1 -co2 — CO

Tg 3 -1 0 0 3 -1 0 0

Ta 3 -1 0 0 -3 1 0 0

2 -2 0 1 -1 -1 1 2 -2 0 1 -1 -1 1

2 -2 0 1 -1 -1 1 -2 2 0 -1 1 1 -1

2 -2 0 CO — to — co- C02 2 — 2 0 10 — CO — co^ co-

2'Slu 2 -2 0 01 CO -C02 Co2 -2 2 0 CO CO co* — CO*

2 -2 0 CO" — co^ CO CO 2 -2 0 03^ CO- — CO CO

2^2 „ 2 -2 0 CO- — CO- CO CO -2 2 0 — CO- CO- CO — CO

36



4. Degeneracy, Selection Rules, and Polarization

4.1. Splitting of Free Ion Levels

i We are now in a position to apply the results of

our previous considerations to the problem of

degeneracy in the presence of a perturbing external
field. The general procedure has been covered

i in the previous section; we consider here the spe-

! eific example of a free ion level described as

4a(t/=4,(— 1)^'*= — 1) in a field of C^^ symme-
try. From table 8 we obtain the class structure
of C6„ as E, 2C6,_ 2C3, Co, 3IC2,_ 3IC3C2. The
traces of the matrices of the rotation group J— 4:

corresponding to the first four of these classes

may be obtained directly from table 7. Those for

the last two classes will be —1 times the traces

of the corresponding pure rotation. We obtain
the following for the character table of a reducible

representation of C55. We also include for imme-
diate convenience the reps Ai and A2.

E 2C6 2C3 C2 3IC2' 3IC3C2'

9 -2 0 1 -1 -1
1 1 1 1 1 1

A2 1 1 1 1 -1 -1

The expansion theorem for group characters

(3.10) was given in terms of the weighted traces

and

but it is usually more convenient to use the
traces directly. Thus ai= ^i-E (3.10) becomes gat
= y^,NiT(*iKi. Using this latter form, we obtain for

^x/l2a^ =l(l)(9) + 2(l)(-2) + 2(l)(0) + l(l)(l)

+ 3(1)(-1)-1-3(1)(-1)= 0, so Ai will not ap-
pear in the reduction. Likewise, 12aA2=l(l)(9)

+2(1) (-2)+2(l) (0)+l(l) (l)+_3(-l) (-1)
+ 3(— 1)(— 1) = 12, so ^2 wUl appear in the reduc-
tion once.

The results of this and similar calculation for all

the subgroups of Dj of present interest are given
in table 9. As in table 8, the results for the pure
rotation groups are not given separately, and may
be obtained from the associated holohedric group
by omitting the "g"- "u" distinction. Only the
group I has been omitted; this has no sjrmmetry
apart from the inversion, and states are either
Ag or Au. The integral range of J is from 0 to 8,

while half-integral J ranges from to If only
electric fields constitute the perturbation on the
free ion, the appropriate group may be obtained
from table 5 or from crystallographic considera-

tions. For a pure magnetic field, we shall consider
only a uniform field with S3rmmetry C^;,. In case
both fields are present, the appropriate group is

the group of those symmetry operations common
to the electric and magnetic fields. Unless the
magnetic field is parallel to one of the symmetry
axes of the crystal field, there wUl in general be
no symmetry common to both perturbations.

In accordance with our previous discussions,

the physical implication of this reduction is that
all one dimensional reps appearing in the reduction
represent states arising from the free ion level J,
which are not related by symmetry to any of the
other states so arising. These states, then, are

either nondegenerate or "accidentally" degenerate,
the latter being due to numerical values of the
parameters hence very improbable in any actual
case. Any two-dimensional rep represents a pair

of states from the original 2t7+l which are

essentially degenerate, being related by symmetry
operations, but not degenerate with the other
2J—1 states. Similarly for any reps of higher
dimension. If a particular rep appears only once
in the reduction the state or states it represents

may be uniquely associated with a particular

combination of the original 2t/+l states. If the
rep appears more than once there will be two or

more states of the original 2J+ 1 having the same
symmetry properties, and the appropriate states

in the crystal may be a linear combination of

these. This can only be determined from the
numerical parameters involved. These consider-

ations are modified by Klramers degeneracy to be
considered in detail in section 4.2. Certain pairs

of reps are noted in table 9 as being Kramers
conjugate states. These states, even though
belonging to different reps, are degenerate if the

pertiirbing field is purely electrostatic.

It is often of considerable interest to follow the

behavior of a given level during the introduction

of perturbing fields of increasingly lower symmetry.
For example, one may wish to see the effect on the

levels under D^a symmetry of a reduction of sym-
metry to Csp. This may be accomplished by the

correlation table, table 10. Since most of the

groups with which we are presently concerned are

subgroups of D„s, we start \vith the reps of D^^.

For each group of lower symmetry, the designation

of the level or levels is given in the appropriate

column. Again, the pure rotation groups are not
given separately, requiring only the suppression

of "g"-"u" in the associated holohedi'ic group.

The procedure involved here is the application to

the characters of the reps of D^^ precisely the

same procedures as were applied to the rotation-

inversion group characters in constructing Table 9.

Notice that here, in many cases, the rep of D^s is

still a rep of the subgroup, since the levels fre-

quently remain twofold degenerate.

For an example, let us consider the state ^„
under the influence of a crystal field of symmetry
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Table 9. Type and number of perturbed levels

0 1 2 3 4 5 6 7 8

g u 9 u g u g u g u g u g u g u g u

1 1 1 1 1
A

1 1 1 1 1

A,o 1 1 1 1

A2U 1 1 1

1 1 1 ] 1 1 1

1 1 1 1 1

1 1 1 1 1 1

^coh E.u 1 1 1 1 1

1 1 1 1 1

1 1 1

1 1 1 1 1

1 1 1

Eso 1 ] 1 1
1

1

E^g 1 1

E^u 1 1

ElQ ^

1

1

Eyu
Eso
E%u

A, 1 1 1 1 1 1 1 1 1

Ao 1 1 1 1 1 1 1 1

E, 1 1 1 1 1 1 1 1 1 1 1 1 1

Ceo V E2 1 1 1 1 1 1 1 1 1 1 1 1 1

E3 1 1 1 1 1 1 1

E, 1 1 1 1 1 1 1

E, 1 1 1 1 1

E^ ; ; 1

El 1

Es 1

Ao 1 1 1 1 1 1 1 1
A

1 1 1 1 1 1 1

C±lg 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1

C±2e 1 1 1 1 1 1
ri

1 1 1 1 1

1 1 1 1 1 1

Coo h 1 1 1 1 1

1 1 1 1
n

1 1 1

C±5o 1 1 1 1

1 1 1

1 1
n

1

C±7ii 1 1

C±Tu

^±8« 1

Note: The states Cng, C-„g, and C„u, C_„„, are Kramers conjugate states.
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Table 9. Type and number of percurbed levels—Continued

0 1 2 3 4 5 6 7 5

g u a y n n
y u n

y XL y g u 9
n
y li

1 1 1 2 1 2
1 1 1 2 1 2

1 1 1 1 2
1 1 1 1 2 1

Big 1 1 1 1 1 1

Bin 1 1 1 1 1
D̂
2 a 1 1 1

1
i 1 1

1 1 1 1 1

El a
1± 1

J.
1
1

1
i

0 9 Q

1 1 1 1 2 2 3 3
E20 1 1 2 2 2 2 3

1X 9 9 9 9 0

A
1 1 1 1 1 2 1 1 2 2 1

A2 1
i 1 1 1 1 1 1 9 2 1 1 2

r>
1 1 1 1 1 1 1 1 1 1 1 1

B2 1
1

1
1 1i

1
i

1
i 1

1
1 i

1
1

1
i

11

E, 1 1 1 1 1 1 1 1 2 2 2 2 3 3 3 3
E2 1

1
i i 9 9 9 9 9 9 9 9Li

•}

A '

A\ 1 1 1 1 1 2 1 1 1 2 1

A2 1 1 } 1 1 1
1
1 1 2 1 1 1

1 1 1 1 1 1 1 2 1 1 1 2
11 1i 1

±
1
i 1 1 1

J.
1
1 9Li 1

J.
1
J.

E' 1 1 1 1 1 2 1 2 2 2 2 2 3 3 3
E" 11 1

1
11 11

1
i Li 9Li 9Li 9 9Li 0 9Li 0 Q0

A 1 1 2 1 2 1 3

Alu I I 2 \ 2 1 3

A
1 1 1 2 1 2 2

A2U X \ 1 2 1 2 2

-r\ P
"iff 1 1 1 1 2 2 2

Blu 1 1 1 1 9 2 2

•O20 1 1 1 1 2 2 2

B2U 1i
-1

1
1
1

1
i 9 9Li 9Li

Eg 1 1 2 2 3 3 4 4

Eu 1i 1 0 Q 3 A A

AAi i 1 1 1 2 1 1 2 9 1
i 1 2 3 2

A2 1 1 1 1 1 2 2 1 1 2 0 1 9 Q

C4. B, i i
-1

1 1
-1

1
1
i 1 9 9 9 9 9 2

1 1 1 1 1 1 1 1 2 2 2 2 2 2

E 1 1 1
0 z 0 9 q0 Q0 3 3 /I /I 4

A
Ax 1 1 1 1 2 1 1 1 2 2 1 2 3 2

A2 1 1
1

1 1 1 9 i 1 2 9Li 9 9 9LI

Dad B, 1 1 1 1 1 2 1 1 2 2 2 1 2 3

B2 1 1 1 1 1 1 1 2 2 1 2 2 2 2

E 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4

39



Table 9. Type and number of perturbed levels—Continued

0 1 2 S 4 5 6 7 5

U 9 u g U g u ? g u u ^? u

1 1 1 2 1 3 2 3
A , 1 1 1 2 1 i> 2 3

1 2 1 2 2 3 2
11 i 9 2 00 9

Eo 1 2 2 3 4 4 5 6
TP 1 2 2 3 4 4 5 6

A
1 1 1 1 2 2 1 1 2 3 2 2 3 3 2

A. 1 1 1 2 1 1 2 2 1 2 3 3 2 2 3
Mil

1i 1 9 9 9 00 q A A K c0 G AU

Aio 1 2 1 3 2 4 3 5
A , 1 2 1 3 2 4 3 5

1 1 2 2 3 3 4 4
1 1 2 2 3 q0 4 4

Big 1 1 9 2 3 q0 4 4
11 i 9 9 q0 3 J. A

Big 11 1
1 9 9 0 3 /l

T>
1 1 2 2 3 3 4 4

A, 1 1
i 9Li 1

1 1 9 0 9 9 0 A q0 4. 4
At 1 1 1 2 2 1 2 3 3 2 3 4 4 3 4 5

C2. Br 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4
1
1

1
i

1
i 1i 9 9 9 9 Q q0 q0 A J.

1 1 1 1 1 1 3 3 3
A 1 1 ]^ ]^ 3 3 3

Bg 2 2 2 2 2 2
R
•"a 2 2 2 2 2 2

1 1 1 1 2 2 3 3
r».

\ ]^ 2 2 3 3

1 1 2 2 2 2 3

<^2m 1 1 2 2 2 2 3

1 1 2 2 2 2 3

C'4a 1 1 2 2 2 2 3

1 1 1 1 2 2 3 3

Csa 1 1 1 1 2 2 3 3

Note: The states (Cio, C50 )i (C20, (Cza, Cda) are Kramers conjugate states.

1 1 1 1 2 1 2 1 2 3 2 3 2 3 2
A" 1 1 1 2 1 2 1 2 1 2 3 2 3 2 3

c; 1 1 1 1 1 2 1 2 2 2 2 2 3 3 3

cr 1 1 1 1 1 1 2 2 2 2 2 3 2 3 3

c; 1 1 1 1 1 2 1 2 2 2 2 2 3 3 3

1 1 1 1 1 1 2 2 2 2 2 3 2 3 3

Note: The states (CJ, C2) and (CJ', C2') are Kramers conjugate states.
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Table 9. Type and number of 'perturbed levels—Continued

0 1 2 S 4 5 6 7 8

g u g u g u g u g g ? u g u

1

1

1

1

1

1

3
3

3
3

3

3
5

5
5

5
5

5

Cin

1
1

2
2

2
2

3

3
4

4
4

4
5

5
6

6

C2g

C2U

1

1

2
2

2
2

3
3

4
4

4
4

5
5

6
6

Note: The states (Cu, C20) and (Cia, CjO are Kramers conjugate states.

Ao 1 1 1 1 3 3 3 3 5
Au 1 1 1 1 3 3 3 3 5
Bo 2 2 2 2 4 4 4

C4i Bu 2 2 2 2 4 4 4
Clg 1 1 2 2 3 3 4 4
Clu 1 1 2 2 3 3 4 4

1 1 2 2 3 3 4 4
1 1 2 2 3 3 4 4

Note: The states (Cu, C30) and (Ciu, Ca,.) are Kramers conjugate states.

1 1 1 2 1 2 3 2 3 2 3 4 3 4 5 4
S4 1 1 2 1 2 1 2 3 2 3 4 3 4 3 4 5

1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4
C3 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4

Note: The states Ci and C3 are Kramers conjugate states.

^0 1 1 3 3 5 5 7 7 9
1 1 3 3 5 5 7 7 9

2 2 4 4 6 6 8 8
i: 2 2 4 4 6 6 8 8

c. 1 1 2 3 2 3 4 5 4 5 6 7 6 7 8 9 8
^" 1 2 1 2 3 4 3 4 5 6 5 6 7 8 7 8 9

1 1 1 1

4i« 1 1 1 1

A20 1 1 1

A2U 1 1 1

Eo 1 1 1 1 1 2

Eu 1 1 1 1 1 2

1 1 1 2 1 2 2

1 1 1 2 1 2 2

T20 1 1 1 1 2 2 2

T2U 1 1 1 1 2 2 2
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Table 9. Type and number of perturbed levels—Continued

0 1 2 3 4 6 6 7 8

g u g u g u g u g u g u g u g u g u

Ai
1

1 1

1 1

1

1 1

1

1 1

\

E 1 1 1 1 1 1 1 1 1 1 2 2

T, 1

1 1

1 1

1

1

1

1

1

1

1

2
1

1

2
1

2
2

1

2
2

2
2

2
2

2
2

A,
A u

1

1

1

1

1

1

2
2

1

1

1

1

C\u

C20

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

1

1

1

1

2
2

2
2

3

3
3

3
4

4
4

4

Note: The states (Ci^, C2a) and (Cm, C2u) are Kramers conjugate states.

1 S 5 7 9 11 IS 15

2 2 2 2 2 2 2 2

u g u g u 9 u g u g u g u

2510 1 1 1 1 1

2'Slu 1 1 1 1 1

2'S3t, 1 1 1 1

2'S3!, 1 1 1 1

Doo/i 2'S5o 1 1 1

2'S5u 1 1 1

2'S7£i 1 1

2^7^ 1 1

2^9(7 1

2'S9m 1

2*51110 1

2*511!, 1

2'Sl3o 1

1

1

2S15U 1

2*81 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2^3 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

21S7 1 1 1 1 1 1 1 1 1

2S9 1 1 1 1 1 1 1

21811 1 1 1 1 1

2'S'13 1 1 1

2'S'15 1
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Table 9, Type and number of perturbed levels—Continued

Silo

<Sdb3(;

Sztog

Coo A "Si.ju

S±nu

S± 13 u

S

2

5
2

7

2

9

2

11

2

13

2

15

2

g u g u g u g u g u g u 0 u g u

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Note: The states (S„„, S.„i,) and (S„u, S_„J are Kramers conjugate states.

2^2 u

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2
2

1

1

2
2

2

2

2
2

2

2

2
2

3
3

2
2

2
2

3

3

3

3

2
2

2^2

1 1 1 1

1 1

1 1

1 1

1 1

1 1

1 1

2 2

1 1

2 2
2 2

2 2
2 2
2 2

3 3
2 2
2 2

3 3
3 3
2 2

Dh
D,H 2^,

2S2

1

1

1

1 1

1

1 1

1 1

1 1

1 2
1 1

2 1

1 2
2 2
2 1

2 2
2 2
2 2

3 2
2 2
2 3

3 2
3 3
2 3

Da.

2Su

1

1

1

1

1

1

1

1

2
2

2
2

2
2

3
3

2
2

3
3

3
3

3
3

4
4

4
4

4
4

Cj, Da
2S

1 1 1 1

1 1

1 1

2 2
2 2
2 2

3 3
2 2

3 3
3 3

3 3

4 4
4 4
4 4

Da
2S

1

1

1 1

1 1

1 2
2 1

2 2
2 2

3 2
2 3

3 3

3 3
3 4
4 3

4 4
4 4

Dao
Dau

D3d
Si.

Ssu

1

1

1

1

1

1

1

1

2
2

1

1

1

1

3
3

1

1

1

1

3
3

2
2

2
2

4
4

2
2

2
2

5
5

2
2

2
2

5
5

3
3

3
3

Note: The states (Sio, S30) and (Sm, S3J are Kramers conjugate states.
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Table 9. Type and number of 'perturbed levels—-Continued

3

2

5

2

7

2

5 i7 13

2

J5

2

g u g u g u g u g u

1 1
i 1 1 1

1 1

1 1

9 9

1 1

1 1

0 0
1 1

1 1

0 0
2 2
2 2

2 2
2 2

0 0
2 2
2 2

0 0
3 3
3 3

Note: The states (Si, S3) are Kramers conjugate states.

Slo
s,„
S3„

Sin
C4;, Sjp

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2
2

2
2

1

1

2

2
2

2
2

2
2

2

3

3
2

2
2

2
3

3

3

3
3

3

3

3
3

3

3

3
4

4
4

4
3

3

4
4

4
4

4

4
4

4

Note: The states (Sio, Syg), (S^, Stu\ {Ssg, S^g), (Ssu, S^u) are Kramers conjugate states.

Si

s,

Si S5

Sy

1

1

1

1

1 1

1 1

1 1

1 1

2 1

1 2
1 2
2 1

2 2
2 2
2 2
2 2

2 3

3 2

3 2
2 3

3 3
3 3
3 3
3 3

4 3

3 4
3 4
4 3

4 4
4 4
4 4
4 4

Note: The states (Si, S7) and (S2, S5) are Kramers conjugate states.

Do;, A<» 1

1

2
2

3

3

4
4

5
5

6
6

7
7

8
8

Sis
s,„
S30

S3„

Cf, S51,

S5„

Sju

Sgg

Ssa
Siij

Sllj,

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2
2

2
2

1

1

1

1

1

1

2
2

2
2

2
2

2
2

1

1

2
2

2
2

2
2

2

2

2

2
2

2

3

3
2

2

2
2

2

2

2
2

3
3

3

3
3

3

2
2

2

2

3

3
3

3

Note: The states (Si^, Sii„\ (Si,,, SuJ, {S30, Sg^^ {Ssu, SgJ, (S5„, Sj^), (Ss^, S7J are Kramers conjugate states.

Si
S3

C3fc S5
S7

S9

Sii

1

1

1

1

1

1 1

1

1

1 1

1

1 1

1 1

1 1

1 1

1 1

1 1

1 2
1 1

2 1

2 1

1 1

1 2

1 2
2 2

2 1

2 1

2 2
1 2

2 2
2 2

2 2
2 2

2 2

2 2

3 2
2 2

2 3
2 3

2 2
3 2

3 2
3 3

2 3
2 3

3 3
3 2

Note: The states (Si, Sn), (S3, Ss), (S5, 5?) are Kramers conjugate states.
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Table 9. Type and number of perturbed levels—Continued

Slu

Sg Sju

Sso

1

2

3

2

6

2

7

2

9

2

11

2

i.5

9 u g u g u g u 9 u 9 u ? u

1

1

1

1

1

1

2
2

1

1

2

2

2
2

2

2

3
3

2

2

3
3

3

3

4
4

3
3

4
4

4
4

4
4

5
5

4
4

5
5

5
5

6
6

5
5

Note: The states (Sig, S^g), (Sm, /S5J are Kramers conjugate states. The states (S30, Ssu) appear an even num-
ber of times as Kramers conjugate pairs.

1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8

Slg

Sig

1

1

1

1

2
2

2
2

3
3

3
3

4
4

4
4

5
5

5
5

6
6

6
6

7
7

7
7

8
8

8
8

Note: The states (S^, S^g) and (Sm, S^u) are Kramers conjugate states.

D^g

Ok D%g

iSg

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2
2

1

1

2
2

1

1

1

1

2
2

2
2

1

1

3

3

2
2

Dh

2S

1

1

1 1

1

1 1

1

1 1

1 1

1 1

1

2 2

1

1 1

2 2
1 1

1 2

2 2
2 1

1 2
3 3
2 1

iSlg

2^20

2S2U

1

1

1

1

1

1

1

1

1

1

1

1

2

2

1

1

1

1

1

1

2
2

2
2

2
2

2
2

2
2

3

3

2
2

2
2

2
2

3

3

3
3

Note: The states (2<Si„ 2821) and {2S1U, 2S2U) are Kramers conjugate pairs of states.
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but its behavior under lower symmetry does not
;

depend upon the rep of D^s from which it arose.
)

In a manner of speaking, the columns of table 10 .j

are first differences of the entries of table 9.
j

Table 1 1 shows the reduction of the reps of the
il

cubic group into the reps of their own cubic sub- !

groups, and into reps of the noncubic groups.
Here, we have considered the two possibilities ;

which may arise in destroying cubic symmetry. J

Thus, the group O may be reduced to D4 by i

destroying the threefold axes, or to D3 by destroy- }

ing the fourfold axes. In either case, the principal J

axis remaining is considered to be the principal
|

axis of symmetry. J

While our discussion has been that appropriate
j

to the weak-field case (sections 3.3, 3.4), the;
results are immediately applicable to both the

j

intermediate field case and the strong field case, i,

In the former, the external perturbation is stronger
f

than the spin-orbit interaction. Consequently, •

instead of reducing the representation D^XDs
into those reps of the group leaving invariant the
spin-orbit term in the Hamiltonian, i.e., Dj, we
reduce the representation into those reps of the
group leaving invariant the crystal field potential
V. Since the spin is not included in the Hamil-

[

tonian at this stage of the approximation, we
reduce Di, only into reps Xj. This may be
done by using table 9 for L instead of J
(liere, the double groups will not appear, since

L must be integral). The rep for the wave
function, including spin, will then be XtXDs.
We shall parallel spectroscopic notation for such
a state by using the appropriate symbol from
table 8 for the rep Xi, with an anterior superscript

2»S'+1 for Ds, the whole being placed in paren- I;

theses. If the spin-orbit interaction is now intro-
5

Table 11. Reduction of the cubic groups I

0, ^2h T D2d C3,

A, 4, Au Au Ag Au Ag Ai A Ai Ai
A^ A2 A^u Au A,u Au A2 A Bi A2

A, A2 Big Aig C\g Au Cu E QC2 AiBi, E
Au 4i A2u Au, Qu T: T A2E A.E

CigCig E A\gBu E Au C2g
T2 T B2E AiE

Ey, E A\uBiu Eu Aiu Dy Dh Dy Dy
2S Dy 2S Dy

Tu T EgA2g EgA2g T A2gBuB2g A gCigCig Dil2 2S1 2S2 Dy 2S Dy^SiSs
T E^Aiu Tu AiuBiuBiu AuC,uC2u

T r. EgBig EgAu Dy^g Dyg SigSsg
Tu EuBiu EuAiu Dyu Dhu SluS^u

lyy. Dng 2^1 s Dyg Si gSz g

2S Dhu Dyu SiuSsu

iSg .8 2<Sy Dv2e 2821 Dy,g SjgS^g

Dhu 2S2U Dy,u

2'S'lg 2'S'2g Bv2 Du^g Su Ssg

D3/2U 2'SlM 2Siu Din Dyu 2'S'u

where table 5 shows that potential coefficients

ClCtCl CICICI; act and CI are present, and
table 9 shows that there are two states Ai^ and
one each of A2U, Biu, and B2U, indicating that the
original fivefold degeneracy of the state 2„ has
been destroyed. If the terms C2, (7°, and CI are

more significant than the rest, an initial approxi-
mation using these terms only leads to D„;j sym-
metry, with states Am, E^^, and Eiu- The inclu-

sion of CI will reduce the symmetry to De^,, but the
states retain their designation. On the other
hand, the inclusion of C\ will reduce the sym-
metry to Din, leave the Aiu level unaffected, leave
the Ely, level unaffected save for a redesignation to

Eu, and cause the E^u level to split to B^u and
Biu- If we now include all terms, we see that Eu
of Dift splits to Biu and B2U of D2;,, and that the
states Bin and B2U of D4ft become Aiu and A2U,

respectively, in Don- This Aiu state can interact

with the Aiu state from the original D^^ approxi-
mation, so that a rigid correlation with the states

of D„;, has been lost.

Table 10 has been so constructed that the same
process may be followed for still lower order
groups. For every column in the table, its sub-

groups are found further to the right in the table

(or m the same column without the "(7"— "w"), and
the designation of any level under increasingly

lower symmetry may be followed across the table.

Entries of the same line have significance only
with respect to the allowed subgroups of any given

group. Thus, there is no correlation between
parallel entries in Ds^ and D4/i, though either may
be correlated with t)2n- All splittings of double-

degenerate reps have been correlated to ensure

consistency. Since the basic entries of the table

are the reps of D^^, any desired rep of some other
group must be found from the table by inspection
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Iduced, the rep XiXDs is now merely a representa-
tion, so that it must be reduced according to the

^ overall symmetry of the problem, which is still

that of the crystal field V. If Xi is one-dimen-
isional, the splitting which arises is that of the

• spin states only through Ds, and the angular mo-
mentum is said to be quenched; ii Xi is of dimen-
sionality greater than 1 but less than 2Z+1, the
orbital angular momentum is partially quenched.
This verbaUy depicts the effect on the orbital

angular momentum of the strong crystal potential
field V, which destroys (Xi one-dimensional) or
limits {l<CXiB<C^L-\-l) any further influence on
the angular momentum either by spin-orbit inter-

' action or by a moderate external magnetic field.
' Still another intuitive view is that the crystal po-
' tential partially or completely fixes the orientation

: of the angular momentum in the lattice, so that
these other influences have no further effect.

As an example, let us consider the ^i^a level of
' the europium trivalent ion, the symbol indicating

a reduction of D3XD3 to D2 by spin-orbit inter-

action. A weak perturbing field D^^ vvOI (table

9) split this level into states described as

QmAig] CF)B,,; CF)B2g; and CF)Eg. An mter-
mediate case field will split the ''F term (table

9 for Sg) into (M2,); CB,g); {^B^g); and 2{'Eg), a
total of (2S+1)(2Z+1)=49 states. The intro-

duction of the spin-orbit coupling will now cause
each of these to be split further. Consider the
level (^A-yg). The rep A2g in D^n has the character

(1, 1, 1, -1, —1, 1, 1, 1, —1, —1), while the
representation from Dz has the character (parity

even, since it is a spin representation) (7, —1, — 1,— 1, —1, 7, —1, —1, —1, —1), so the representa-
tion AzgXDz has the character (7, —1, —1, 1, 1,

7, —1, —1, 1, 1) and is reducible into Aig\ Big\

Big] and 2Eg. The final states may be designated
{'A2g)A,g- CA2g)B,g; {'A2g)B-2,; and 2(M,,)£',.

This notation parallels that of the usual L-S
coupling scheme. The labels inside the paren-
theses indicate the approximate transformation
properties of the state for transformations of spin
and orbit separately which leave invariant the
HamUtonian, while the final designation is the
accurate specification of the behavior of the state

under the simultaneous transformation of spin

and orbit.

In the strong field case, we introduce the crystal

field in our sequence of approximations (section

3.3) before considering the details of the electro-

static interaction of the electrons, retaining only
the initial central field average V'{ri). We now
specify our initial energy by giving only the con-
figuration, and the reduction of the representa-

tions begins at this point. As a matter of notation,

following MuUiken (1955), we shall designate the

reps and characters for a single electron by lower

case letters (e.g., flag)- If there is but one electron,

there is no distinction between the intermediate

field and strong field cases, and we proceed as

outlined for that case.

We shall illustrate the procedure for the case of

2 nonequivalent electrons, and then consider the
restrictions imposed on equivalent electrons by the
operation of the Pauli principle. We shall take
the configuration in a field of C25 symmetry.
The threefold degeneracy of a p state (apart from
spin) is completely lifted, and we obtain (table

9 for ly) ai] bi] and 62 for each electron, so the con-
figuration breaks up into (ai)(ai); (ai)(62); (^2)

(ai); etc., a total of 9 possibilities corresponding
to the original 9 orbital possibilities in pp. The
spin transformation will be Dy^XDy^- The intro-

duction of the details of electrostatic interaction

cannot cause any further splitting of the orbital

wave function, since all the states are one dimen-
sional, though a relabeling may occur. The re-

quirement for totally antisymmetric wave func-
tions will require that the spin transformation
Dy^y^Dy^ be reduced to Do and Di, giving the usual
singlet and triplet states, respectively. Thus, (ai)

(ai) becomes (ai) (a^) (^Ai) and (aj (aj) (^^1) ; (61)

(62) becomes {b,){b.2){'A2) and (6i)_(62)('^2); etc.

Note that this latter state is distinct from (62)

(61) (^^2), which is also an allowed state in the

reduction. The further introduction of spin-orbit

interaction now requires the reduction of XiXDo
for the singlet states, XiXDi for the triplet states,

in accordance with the overall symmetry of the

problem, which is still that of the external crystal

field potential V. Consider (60 (^2) ('^2). The
character of ^2 is (1, 1, —1, —1), while the char-

acter of Di in (even parity for a spin transfor-

mation) is (from table 7) (3, —1, —1, —1), so the

character to be reduced is (3, —1, 1, 1), giving

Ai, Bi, and Bo. We may write the final states,

then, as p^? (60 (^2) ('^2)^1, or pp{b{){b2){^A2)Bi,

for example.
If the electrons are equivalent, i.e., we write

{aiY instead of (ai)(ai), and we cannot distinguish

(ai)(62) from (62) (ai). Furthermore, the Pauli

principle requires the spin state of opposing .spins

for the orbital states {aiY; {biY; and (62)^ so that

these appear as singlets only. The remainder of

the orbital states may appear either as singlets or

as triplets. Apart from these considerations, the

development follows that of the nonequivalent
electrons. A possible final state would be written

p'^ib.fQAMi.
We have selected here a particularly simple case

in that there is no orbital degeneracy present in

the reduction of Di for a p electron. The require-

ments of the Pauli principle are then particularly

easy to satisfy. If the reduction yields a two-

dimensional rep, or remains three dimensional,

the development must be followed more carefully.

We introduce the procedure by considering, in the

concepts of the present work, the familiar opera-

tion of the Pauli principle in labeling the levels of

the configuration p'^ itself. We imagine a uniform

magnetic field such that the resulting perturba-

tion in the HamUtonian, —M-B, has the sym-

metry C^n- The degeneracy of each p electron

is lifted, and we have (table 9) the states a^, Cm
and c-iu for each electron. Because of the Pauli
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principle, the state {CiuYC2o occurs with anti-

parallel spins only; i.e., a singlet state. We see

that no state for n gi'eater than 2 arises.

We then infer from table 9 that there exists a
singlet level L=2 in the configuration when the
magnetic field is removed. Similarly, we deduce
a triplet L=l and a singlet L=0.
A similar process can be used if the crystal field

leaves degeneracy in the 1 -electron wave functions.
The differences are two : first, it is generally more
convenient to remove the degeneracy by the
imaginary application of an electrostatic potential
of a symmetry which is a subgroup of that actually
present; second, the correlation of states in this

additionally perturbed problem with those of the
primary perturbation is not unique, and several

alternatives must be considered.

Let us further consider p'^, this time under the
symmetry Q,, where 1^ reduces to ai and e. Our
problem really lies in the study of (e)^, since

(ai)(e) can yield either triplet or singlet, and
(aiY is necessarily a singlet. Without the con-
siderations of the Pauli principle, {eY yields Ai,
A2, Bi, and B2, both triplet and singlet, and the
Pauli principle will suppress certain of these terms.
Since (e), including spin, represents 4 states, we

4.3
expect ~2~~^ states altogether. Let us reduce

the symmetry to C21,; (e) becomes 61+62, and the
allowed orbital states are (61)^; (62)^; and (61) (62)-

The first two are both Ai and necessarily singlet,

while the third is A2, either singlet or triplet, so

we have our total of six states. If we examine
table 10 for the relations between these states of

C2V and states of €4^, we see that Ai in the former
implies either Ai or Bi in the latter. Since we
have Ai twice in C2» and cannot have either Ai or

Bi more than once from (eY in C^^, we conclude
that both are present in €4^ as singlet terms.
However, the singlet, or the triplet, A2 implies
either A2 or B2, and we cannot decide which is the
correct choice. If we reduce the symmetry to C4
instead of C2V, (e) reduces to (ci) and (ca), yielding
singlets (ciY and (csY, and singlet and triplet

{ci){cz). The first two give B states, while the
third gives A states. Examination of table 10
shows that B in C4 implies either Bi or B2 in Ci^.

Again, since we have two of the former, and are

allowed at most one of each of the latter, we
conclude the presence of singlet Bi and singlet B2,

together with the singlet Ai previously deduced.
The triplet state in C28 implies either A2 or B2 in

C45, while the triplet state in C4 implies either Ai
or A2. Obviously, the only choice consistent with
both is the triplet A2. We have, thus, ^Ai; ^A^;

^Bi] and ^^2. The balance of the problem then
follows previous discussion. In general, each
problem must be considered as an individual case.

4,2. Kramers Degeneracy

There is one very important symmetry oper-
ation, in addition to spatial rotations and the

inversion, which should be considered at this

time. This is the symmetry of "time-reversal".
This was initially considered by Kramers (1929,
1930) in connection with the rotation of the
plane of polarization of polarized light. The
matter has been thoroughly considered by Wigner i

(1932) in the nonrelativistic case in which we are

!

here interested, and more recently by lOein (1952), i

We shall outline here the principal concepts in-

volved, referring the reader to the original papers i

for additional details. '1

Classically, the reversal of time in a mechanical

!

system is accomplished by the reversal of the
direction of all velocities (or momenta) by the
substitution r'=r, p'= — p. Quantum mechan-
ically, we assume that this is also time reversal, if

a similar substitution s'= — s is made for any spin
{

angular momentum involved. In the case of a
^

free atom, the Hamiltonian H(r, p, s) involves,

p and s in kinetic energy terms with p^ and»
spin-orbit interaction terms with p-s, both of which

j;

are invariant under the time-reversal operation,
j

This invariance of the Hamiltonian remains under )

the influence of external perturbations of a purely
^

electrostatic character, in which case the vector

,

potential A may be set equal to zero and the
;

scalar potential V{r) introduced. This invariancei

is destroyed by the application of magnetic fields—• t

a term p-A arises in the Hamiltonian, which is!:

linear in p and changes sign on time reversal.

In general, then, we shall seek an operator s

K such that KH(r,p,s)K-i=H(r,-p,-s), and K^l
{r,s,t)=^-^{r,-s,-t). Since the operator K repre-l

sents a transformation of our wave functions, we|;

shall require it to be a unitary operator. If we
iEt

consider the spin-free theory, with ^(r,i) =\J'(r)e
'

we see that the operation —t is accomplished .

merely by taking the complex conjugate, an opera-
"

tion we shall call Kq. Insofar as the spin-free I

theory is concerned, this is sufficient; the p operator
—

-ifiV becomes—p= +'if(-Vupon taking the complex
conjugate. Let us now consider the Pauli spin

I

theory for one electron. The Pauli spin matrices

'

-c:) <-) -CJ)!
c

are both unitary and Hermitian. The trans-
li

formation KoSj,Ko~'= — Sj, since Sj, is purely,

imaginary, but and Sj, both real, are invariant^

under Kq. Hence, in order to effect the reversal,

of Sj: and s^, we seek yet another operator, which
J

must also be a unitary operator U, such that it

commutes with r, p, Sj^, and Kq, but anticommutes
with Sx and S2 so that U SjU~'= — s^r and simi-

larly for S2. This latter requirement is met by Sy

itself, or by some product of Sy with a complex
number a of modulus 1. To ensure commutation '

with Ko, the product aSy must be real, which I

follows if a=i, so that U='iS;, and K=KotSj,.
j

Note that the operator U is still unitary but no
j
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(j
longer Hennitian. For n electrons,

U=(i)"(S,)i(S^)2(S„)3 . . .

'} Phj-sically, it is clear that time reversal and any
' rotation-inversion operation commute. Mathe-
matically, the inclusion of the operator K in an

, extended group of the form DjXiXK cannot be
accomplished since K is not a linear operator.
The basic rules for the operator K were given by
Wigner as:

' 1. KV=UKoUKo\J'=UV=(-l)"'/', smce U is

real, K^=l, and s^= l.

I

2. K {a^Pfb(j>)=a*KxP+b*K(t>. This shows the
' nonlioearity of K.

3. (</,,,A)= (KoV',Ko<A)=(UKoi/',UKo<^,)=(K^,K<^).

Applying (3) and (1), we have (K\{/,\p)= (K\p,

' KKrP)=^{KrP, KV)= (-l)"(K^,i/'). We see that

I

the Hermitian scalar product must be zero if n
• is odd, or that

yf/
and K\p are then orthogonal and

' hence linearly independent, yet have the same
energy if KH=HK. This is the content of
Kramers Theorem as usually stated, namely,
that every level for an odd-electron system is at
least twofold degenerate under the influence of
external perturbations of a purely electrostatic

character. We must examine further the inclu-

sion of the operator K into our previous con-
siderations on group representations.
We shall consider the following three cases

(Frobenius and Schur, 1906; Wigner 1932):

1. The rep R is real, or may be put into some
equivalent form which is wholly real. This refers

to the elements R of the rep not merely the traces.

2. R cannot be made real, and R* is not
equivalent to it.

3. R cannot be made real, but R* is equivalent
to R.

For the finite groups a calculation of - XI x(R^) will
9 R

yield 1, 0, or —1 in cases (1), (2), or (3), respec-
tively. Case (1) occurs for integral J in. Dj and
ia all its subgroups save those one-dimensional
reps where complex numbers appear explicitly

in the character table (table 8). The only such
specific reps of the double groups are S^g, S^u of

iiSa and 5*3 of nQ- Case (2) holds in those one-
dimensional reps where there are obviously com-
plex characters. The only two-dimensional reps
in this category are the pairs (2S'i(„25'2ff), (2*S'i„,

2S2U), and (281,282) in the groups nT^ and nT.
Case (3) does not hold for any reps of the single

groups, but holds for all those of the double
groups not in (1) or (2).

In case (1) let us consider a group operation 0
such that Qxl^i^l^QijiPjandKQ^i=QK4^i=i:QijKyPj,
so the function Kt/' will transform like ^
under the operations of the group. Let us further

consider 4>i=4'i+'^'Pi and Q(=i(i/'<— K^i)- Clearly

0( and fij transform only among themselves under
the group operations. Furthermore, if there is an
even number of electrons, K0i=Ki/'iH-KV<=Ki^i

-\-\pi=4>i and Kfii=Kii/'j— KiKr/'j=— 'iKi/'i+'i^i

= i2i so the two sets of functions 4>i and are
not related by time reversal or otherwise, and any
degeneracy present is presumably only an acci-

dental degeneracy. Practically speaking, this

means that our set of wave functions may be
chosen to be real, and that in such a case time
reversal yields no connections among the set of

real functions that are not already present as a
result of the rotation-inversion symmetry. If

there is an odd number of electrons, K<^i=K)/'i—
\pi9^4>i and we cannot so separate the

(f>
and sets

of wave functions as we did above. Hence the
rep must appear twice, once for xp and once for

orthogonal to it. The only actual such cases

are the reps 83g,83u of Ss and 83 of C3 and it may
be verified fi'om table 9 for Sg that they do in fact

appear only an even number of times in any
reduction of a group of half-integral J.

In case (2), Q^i^'EQijxp) yields KQxPi=QKxPi
= XQ*jK^j. Since the rep ^* is not equivalent to R,
\p and Kr/' belong to different reps of the group and
hence are orthogonal (section 4.3), but have the

same energy. Hence a separation of a rep such
as E of Css into Ci and C2 of C3 by an electrostatic

field does not imply a removal of the degeneracy.

It is complex conjugate reps such as these which
are usually grouped together into a single two-
dimensional rep by workers in the field of molec-
idar spectroscopy.

The equivalence of R and 7?* in case (3) requires

the existence of a unitary matrix S such that
SRS-i=R* or S*R*(S-i)*=R, so S*SRS-HS-i)*
=R or S*SR=RS*S. We see that S*S
commutes with every R and hence must be a

multiple of the unit matrLx, say cE, with c of

absolute value 1. With S*S=cE, we have S*=
cS~^= c(S)*, where S is the transposed matrix of

S. This is a consequence of the unitary property

of S. The conjugate of this relation is S=c*S,

and the transpose of this gives S=c*S, finally

giving S= c*(c*)S, so (c*)^=l or c=±l. If

c=4-l, we have S with +1 along the minor
diagonal and zero elsewhere—in this case R=R*
and case (1) applies, so we take c= — 1. Then S
will consist of alternate -fl and —1 along the

minor (nonprincipal) diagonal. Incidentally, this

requires that the dimensionality of S be even.

Let us put S in the form such that +1 is in the

upper right corner, and let us label the rows and
columns of S and the R matrices by the numbers

j, . . . —j, where j is half-integral.

Then

8r„={-iy-'Ki-,) and {8-')a,= {-iy-'+'K,-i>y

The transformation SRS~' is then as follows:

{R8-')a,= i:.Ral.{8-'),,= lZIiau{-iy-^^'h<-^^
k k

= (-l)^+*+^i?a(-»,
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and terms of the form

k

= (-l)^^'+^-^^-^i?(-c)(-.)=(-l)''-^i?(-.)(-«.

This latter term must then also be {R*)cd, since R
and R* are equivalent by the transformation S.

We now consider

b

and

=SQ*a.K;A.=S(-l)*-'^Q(-.,(-.)KV',
b b

or

0(-lWa= 2:Q(-a)(-.)(-l)*K^..

If we compare this with the transformation on
ip-a obtaining Q4'~a=12Q(-a)(.~b)i^-b we see that

-b

(—lyKypa will transform like under the group
operations, and that(— 1)~°K;/'_a will transform like

^a- The linear combination (/)a=\J'a+ (— l)~''K;^_a

will transform in a similar fashion under the group
opera-tions. Further, we observe that

K4>a= K^<z+ (- 1 )"KV-a= ^4^a-i-W-a
= -{- im^a+ (- 1 )'^K^a]= - (- m^a,

since our convention has "a" half-integral, (— 1)"

is purely imaginary and Ko(— 1)"= (— 1)~"=
— (— 1)", and K^iAa=— '/'a- The important point
is that the set of functions <^a (a=j, J— 1, . . . —j)
transform among themselves under the group
operations, and that the operator K merely yields

a wave function which, apart from a phase
factor, is already in the set. Similarly, if

^a=i{'^a— i^'i-Y^^'-a) the Qa wUl also transform
among themselves under the group operations and
time reversal, but will not involve the 4>a. Hence
we conclude that the introduction of time reversal

does not require any additional essential degen-
eracy in case (3).

For emphasis, we shall summarize the cases
where we find that the symmetry of time reversal
(with external electrostatic fields only) gives us
degeneracy beyond that expected from previous
considerations.

1. States belonging to complex conjugate reps
are degenerate. This is the case for both an odd
or even number of electrons.

2. The reps S^g, Ssu of Se and Sz of C3, arising

from odd-electron systems will always occur twice,

once for yp and once for its orthogonal but degen-
erate conjugate K;^.

Finally, let us consider

K=(i)"(S,)i(S,)2 . . . (S,)„Ko

operating on a wave function consisting of 2"

Since

and

K;A=/*(r)(-l)2^ '^i{-S,)U-S,). . . U-S„).

It will be noted that K will commute with L^,

and J^, but not with L„ Sj or J^. If /(r) belongs

to the eigenvalue L and M^, /*(r) will belong to

L, —Ml if the usual phase factor is

supplied. Similarly, the original spin terms,

belonging to S, Ms will belong to S,—Ms with the

—-\-M .

phase factor (—1) 2 ^. Thus

Kyl.{L,ML,S,Ms)
n

= (-l)M,(^-l)Ms(-iy^(^L-ML,S,-Ms).

The transformation from L,Ml,S,Ms to L,S,J,

Mj is accomplished by the Clebsch-Gordan
coefficients (section 5.2), which have phase factors

such that

/-yL S J / ^ ^L+S-J L S J

In a state described by J,Mj, we must also intro-

duce this factor, and we obtain finally

lLyp{L,S,J,Mj)

= (_l)M,(_l)Ms(_l)l(-l)^+S-^V'(i/V,-W

= (_ 1)/-M, (_ 1)
^+^+1

^ (L,S,J, -Mj).\

L+S+- '

The factor (—1) ^ we shall neglect, but the
j

term is of some importance, since we
5

shall be considering states which are a linear
]

combination of states with the same J and different
i

Mj. There will be a physically significant shift

of relative phases among the components of such '

states when passing to the time-reversed state. i

4.3. Orthogonal States and Vanishing Matrix
Elements

,

Before proceeding to the consideration of
j

selection rules and polarization, we shall digress ,

here briefly to consider certain aspects of the ^

calculation of matrLx elements of the form

Ja-W. which wm be required at tUs toe,

deferring to the next section additional details.

Let us assume initially that X=\. Let 4^a and
belong to reps (1) and (2) respectively of the

appropriate symmetry group, so that any group
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operation 0 will yield Q4'a=I2Q'lli^'k and
k

Qh=^QfiiJ, where and Qfi are the same

if the two reps (1) and (2) are the same, otherwise
they are distinct. The operation 0 on i/'fi/'a then
gives j:QTQiUTn'=i:Q,a.j.rr^'r The

matrix with elements Qt,a jk is called the direct prod-
uct of and 0"', written Q'"'*^"'. If these
latter are of dimensionality Ui and ^2, then the di-

rect product is a nin2Xnin2 matrix. Obviously,
Q(2)*xa)

jg element of a representation of the
group—its trace is 2 Qm.m={I2 QT) (S Q'ii),

ab b a

the product of the traces of the two "factor"
matrices.

In general, (J(2)*x(i) y^r]\[ \yQ either a rep or a sum
of reps, in which latter case it may be reduced by
the methods of the preceding section. In either

case, we obtain ^ Qi^a.^k^'T^l' =12 Q.fl^'^J +
j,k d

Zl Qe/'/' /'
• • where i^T,^/', etc., are the com-

binations of lA'f *'/''" appropriate to the reduced
representation. Our original integral then be-

comes

The basic argument we shaU use here is that our

integral, i.e., the matrix element, represents a

physically significant quantity and hence cannot
depend on the choice of any symmetrically equiva-

lent reference frame. Consequently, the terms

of the form Z Qcajip^^dr must either actually be

independent of 0 or must vanish. If the rep (3)

is actually independent of 0, it is then in fact the

completely symmetricor identity rep of the group,

and we must ascertain the conditions under which
the rep is present in the representation Q(2)*x(i)_

The identity rep has the character + 1 for every
group operation, so the orthogonality theorem for

group characters tells us that - X) 2 Qia ba is the
g Q ab

number of times the symmetric rep occurs in the

reduction. But we recall that Z S Qba ba=
0 ab

2 (X)^66*) (2 Q^^), and this latter expression is

0 6 a

merely the orthogonality theorem applied to the

characters of the reps (1) and (2), which is zero un-
less (1)= (2). Hence we conclude the very
important result, that states belonging to different

reps of the appropriate symmetry group are

orthogonal.

The example just considered took ^=1. If X
itself, either a function or operator, transforms as

a rep or sum of reps of the symmetry group, the

product X\p^l^ must first be reduced. If this

reduction does not contain the rep (2), then the

integral must vanish.

4.4. Selection Rules and Polarization

Selection rules and polarization rules are in-

timately connected, and we shall consider them
together. We shall consider in detail the effect

of an incident perturbing electromagnetic radia-
tion superimposed upon the static electric and/or
magnetic field already present. In a region of

space not including the sources of the field, the
perturbing radiation is usually described by its

associated vector potential A, with the auxiliary

requirement V-A=0, which will allow us to set the
scalar potential V=0. The fields E and B are

1 dA
then given by E= ^ and B=VXA. This

c ot

vector potential modifies the classical Hamiltonian

term for one electron, p^, to

2^ (P-^ ^y=^2^ (S~c ^-^--c
^0"

Neglecting the term in A^, we obtain as the pertur-

bation term

H'=-
2mc

(p.A+A.p)

Since p is, apart from a constant factor, the vector

operator V, the term (p-A) vanishes and our final

H'=—^ A-p. This acts on each electron indi-
mc

vidually, and the total perturbation requires that

this be added for all electrons in the atom. If a

system is initially in a state '^a='^a^ the

probability CjC* that the system under the in-

fluence of the time-dependent perturbation H' will

at a later time be in the state ^6 is determined by

so we shall investigate this integral.

The components of A are functions of (x, y, z, t).

We shall assume that the variation of A with t is

harmonic. We shall not require explicitly the

harmonic factor e'"' in the following development
and shall generally omit further reference to it; i.e.,

A(^;, y, z, t)= A(x,y, z)e''''. For the wavelengths

of light in which we are interested, X is of the order

of 10~* cm. In comparison with the order of size

of the atom, 10~* cm, to a first approximation the

variation of the components of A with (x, y, z)

may frequently be neglected. We shall see that

this approximation may be inadequate for our

purposes, and we will improve this approximation

by developing the components of the vector po-
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tential in a Taylor's series about the origin. This
will yield

where the derivatives are evaluated at the origin.

Similar relations hold for Ay and A^. To this

approximation, H' becomes

+(t)-+(l^)-}
The first three of these terms will involve matrix
elements of the components of p only, since A°
is a constant. The general quantum-mechanical

equations of motion allow J^irtp^adr to be written

{Ei—Ea)Ji*r^adT. Note that our integral
im

now involves the time-independent wave func-
tions. Thus, these three terms can be written in

terms of the components of the vector r rather
than of p. Since er is the classical electric dipole,

transitions induced by these three terms are
called electric dipole transitions. Let us assume
temporarily that there is no external perturbation
apart from the radiation, so that J and parity
remain good quantum numbers. Let us consider
an initial state transforming as Jg, J^O. Each
of the vector components x, y, and z will transform
eis lu (i.e., as the components of an odd state
J=l). Applying our previous considerations,

the character of the rep Jg is XI e'^* for both proper

and improper rotations, while that for lu is

!+ for proper rotations and (—1) times
this for improper rotations. The product of the
characters for pure rotation yields

/J \ j+\

\-j / -(j+i)

-J -(.J-i)

and (—1) times this for the improper rotations.

It is immediately clear that the direct product
luXJff yields {J—l)u+Ju+iJ+})u, and (from
section 4.3) our final state arising from the
transition must be one of these. This is equiva-
lent to the well-known selection rule AJ=0, ±1,
and a particular example of Laporte's rules, where

tion B-L to H'. Since the quantity—::::— L
2mc 2mc

is the magnetic moment operator, transitions

arising from these terms are called magnetic
dipole transitions. The components of L (a

pseudovector) transform as in contrast to the

electric dipole's lu, so here even states combine
with even, or odd with odd. We may note at

this point that we have not yet included any
terms in our radiative perturbation representing

the interaction of the radiation with the spin

of the electron. This may be accomplished at

this point (in a more or less ad hoc manner)

even must combine with odd terms. If J=0,
lu'X.Og=lu, and we obtain the restriction that
J=0 does not combine with J=0.
The other set of 9 terms in H' does not itself

transform under a single rep of the rotation group,
and must be separated into terms, each one of

,

which does so transform. The 9 terms consist of I

the general products of the 3 components of the
.

vector r with those of the vector p. It is well
known that three linearly independent terms
arise from the vector product rXp, and a fourth
arises from the scalar product r-p, leaving five

terms, constituting the components of an irre-

ducible tensor of rank 2 (in contrast to the original

set of 9 components, which is also a tensor but
not irreducible). In the terminology of the pre-
ceding paragraph, wehhYe luXlu—^g+lg-'rOg- In
order to exhibit these more explicitly, let us

consider (^) ^^^'^ + (^) '^P^'' adding

and subtracting (^^^ ^Pv+ (^^^^

pression may be brought in to the form

+2 \-^-^) ^'p^-yp>

and a similar relation may be derived for the other
2 pairs of similar form. This process amounts to

finding the antisymmetric portion of the original

9 components, viewed as a 3X3 matrix. We
observe that the first factor of the second term is

the z component of vXA=B and that the second
factor is the z component of rXp= L, so, including

the other 2 pairs of terms, we have a contribu-

by using
2mc

(L+2S) as the interaction with

the magnetic part of the incident radiation, though
this will not change the transformation properties

of the term, since spin is also an angular momen-
tum operator with the transformation Ig. It will

be recalled from section 3.2 that the transforma-

tion (3.6) is equivalent to a rotation among the

components of the spin angular momentum
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loperator (then called R) and hence equivalent to

|a transformation like the three components of
ja state J=l.
I

In considering the other six linearly independent
iterms, we again have recourse to the general
quantum mechanical equations of motion. In
particular, we obtain

jand

jjlf we further simplify the notation by writing

A„ for (M) A., tor (^+^) our re-

maining perturbation can be written in terms of
the matrix elements of

In lieu of x^, y^, and z^, let us consider the linearly
independent combinations

Z2= 222— — ?/2

with the inverse relations

x'^l p'+l r'-i

„,2— 1 ^2_1 72__1 J2,

y — 3' 6^ 2 P

Substituting, we have as our perturbation the
matrix elements of

r\lA,,+iA,,+iA^^)^Z\\A,- \A,,~ \Ayy)

+p^(Mi2— \Ayy) +Axyxy+Aj:,xz+Ay,yz.

Of these six terms, that in is the Og term, in-
variant under rotation and inversion, and here
actually zero, since A^^+Ayy+A,,=di\ A=0.
Notice that the terms Z^, xy, etc., are, apart from
normalization factors, the tesseral harmonics of
degree 2 (table 2).

The remaining five terms are the components
of the quadrupole moment, and transitions aris-
ing from them are called electric quadrupole
transitions. The general selection rule is here
given by a consideration of the 2g transformation
properties of the quadrupole moment. If J>2,

^.XJ,= (J+2),+ (J+l),+J,+ (J- 1),+ (J-2)„
so the general selection rule is Aj=±2, ±1, 0.

If J=l, 2,Xlg=Sg^2g-\-lg, so J=l does not
combine with J=0. Likewise, 2gX0g=2g, so
J=0 does not combine with J=0 or J=l.
We have up to this point considered that the

symmetry present was that of the full three-di-
mensional rotation-inversion group. If this is not
the case, the 3 electric dipole components, the 3
magnetic dipole components, and the 5 electric

quadrupole components wiU belong to different
reps of the symmetry group. These may be de-
termined from table 9 for lu, Ig, and 2g, respec-
tively, and the detailed correlation may in most
cases be obtained from table 10. The use of
table 10 after an initial application of table 9 for

the group D„;, (for noncubic fields) is perhaps
most convenient. The reduction to D„;j will

separate both lu and Ig into one 1-dimensional rep
and one 2-dimensional rep, while 2g yields one
1-dimensional rep and two 2-dimensional reps.

These may be followed to lower symmetries with
table 10. Details may be obtained from table 8.

For example, L, belonging to Ig, yields, in 'D^h,L^

belonging to A2g, while and Ly both belong to

Eig. Upon reducing the symmetry to ^48, now
becomes A2 while and Ly now both belong to

E. If we consider the reduction from H^j^ to

CooA, we see that Eig splits into Cig and C^ig. How-
ever, these do not represent the transformation of

either or Ly, but of L^-^iLy and L^—iLy, re-

spectively. In this case, and also for the sub-
groups of C^!i, we shall consider these latter, along
with ij, as the three linearly independent com-
ponents, each of which involves only one rep of

the symmetry group. Similarly, we shall resolve

the electric dipole term r into x, y, and z for most
groups, using x-\-iy, x—iy, and z for the subgroups
of C^n, and the electric quadrupole components
into Z^, xz, yz, p^, xy, or, alternatively, Z^, z{x-\riy),

z(x—iy), (x-\-iyy, and {x—iyY. These resolutions

are presented in table 12.

As usual, there are two possibilities for the

cubic groups, one in which the 0-axis is an even-fold

axis and one in which it is an odd-fold axis. This
makes a difference only for the quadrupole com-
ponents, since the electric and magnetic dipole

components remain indistinguishable under these

symmetries. If we consider the 2-axis to be an
even-fold axis, i.e., C4 for O and O,,, S4 for T^, C2
for Tft and T, the five real quadrupole components
remain a satisfactory basis for the resolution in all

except for two components in and T,

where we require the normalized components

^[Q+^a] and ;^[C^-^Ci]

transforming as Cig and dg respectively.

If we take the 2-axis to be the C3 axis in these

cases, we find that these quadrupole components,
the tesseral harmonics of degree 2, do not serve as

a basis for the reduction of the 2g representation
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Table 12. Multipole moment transformations

a; y z - Z2 xz yz p' xy

DooA
Ceo V E,

Eiu
El

Aou
Ai

Eig
El

Eig
El

A2g
A2

Aig
Ai

Eig
El

Eig
El

E2S
E2

Eig
Ei

Oh T,u
T,

Tiu
T2

Tiu
T,

Tu
Ti

Tig
T,

Tig

Ti
Eg
E

T2g

T2
T2g
T2

Eg
E

Tig
T2

Tu
E,u Eiu

Tu T,
Eig

T
Eig

T
A2g

(^) T
Eig

Tg
Eig Eig

Tg
E2g

Eu
El

Eu
El

Aiu
Ai

Eg
El

Eg
El

A2g
A2

Aig
Ai

Eg
El

Eg
El

Big
E2

B2g
Ei

E'
Eu

E'
Eu

A','

A2U
E"
Eg

E"
Eg

A',

A2g
A[
Aig

E"
Eg

E"
Eg

E'
Eg

E'
Eg

C4p
E
E

E
E Ai

E
E

E
E

A2
Ai

Ai
Ai

E
E

E
E

Bi
Bi

Bi
Bi

D2A
C3,

B2U
E

Biu
E

A2u
Ai

B2g
E

Big
E

A2g
A2

Aig
Ai

Big
E

B2g
E

Aig
E

Aig
E

B,
B

B2
R
J-J u

Ai
Au

Bo
f>0 s

Bi
R

A2
A

Ai
A

Bi B2
R

Ai
A

Ai
A

c. A' A' A" A" A" A' A' A" A" A' A'

x+ iy X— iy z Lx-\-iLy ix+ iy) z {x— iy)z {x-\-iy)^ {x—iyY

Coo A Ciu C-lu Au aI g 0—1 g Ag Ag C] g C~ig C2 g C~2g

CeA
Cih Ciu

Au
u

Cig

Cig Czg

Ag
Ag

Ag
Ag

Cig

Ci g

Cig

Czg

C2g

Bg
Cig
Bg

Czh
Se

C[
Ciu

A"
A u

C['

^ Is

c. A'
A

A'
A

C[' C','

'~^2g '~'2g

C[
"-•18

S4 C3 B Ci A A Cz Ci B B

^ See text.

of the quadrupole interaction. For example, the
reduction of 2g under yields the following as a
basis:

^:[_|c.+|ci];[-|sj+|si]

n: [fq+f Ci] {fs;+f si] ; [cs]

While this, of course, yields the same polarization
results in the physical sense, the trigonal aspect
will not be considered further due to its formal
mathematical complexities.
Because of the different transformation proper-

ties of these components, they will most generally
permit transitions between different states of the
perturbed ion. The nonvanishing matrix elements
may be deduced by the procedures outhned above
(section 4.3). These are the selection rules
which are applicable in a case of definite symmetry.
Furthermore, the relative amount of any particular
component of the multipole interaction present

will depend upon the vector potential, and in

particular, upon the direction of propagation and
state of polarization of the incident radiation. A
detailed examination of this latter feature leads \

to the polarization rules for absorption of radiation.

The selection rules for most of the groups in

which we shall be interested (omitting only the
very simplest) are given in table 13. For each
rep in the left column, the states to which a
particular component of the multipole interaction

will permit transitions is shown in the column
under that multipole component. Generally, the
table parallels table 8, in that closely related

groups are shown with but minor modifications
on the same table. Results for pure rotation

may be obtained by dropping the "g"—"u" dis-

tinction in the tables. In a few cases, the changes
in notation and convention are sufficiently far-

reaching to require a separate table. It is

particularly interesting to note the table for

CooTi, appropriate to a uniform magnetic field. If

we denote the general rep by Cmp (Co=A), we
see that electric dipole transitions have AM=0,
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Table 13. Selection rules

z L^,Ly,xz,ijz Z2 p'',xy

A2U Eiu Aig E\g Aig E2g
Aig E\g A2U Eiu Aiu Eiu

Aiu Eiu Aig Eig A2g Eig
A2u All Aiu Eiu Aiu Eiu

Big Eiu E2uAiuA2u E\g E2gAigA2g Eig EigEig
Ei„ Eig EigAigAog Eiu E2uAiuA2u Eiu EiuEiu

Ezg E2u EiuEiu E2g E2g EigAigA2g
E2U Eo gE\ g E2u E',-u El A, A-,^iu-^lu^2u

E3. Ezu EiuE2u Eig EigE2g Eig ^—'Og-'—' 1 g

Eig EigE2g Eiu EiuE2u Eiu E-ouEiu

(Pattern repeats for higher states)

2*514 2'Slu 2<Slu 2'S3u iSig iSlg 2'S3s iSig iSig iSog

2<Slu iSig 2>Sig 2<S3g 2'Slu 2'Slu 2'S3u 2'Slu iSiu iSsu

2S3J 2^3 u 2'Sla iSbu 2'S3g 2*514 2'S5g 2^38 2Slg iSlg
oOi a '>0 =; a 2'S3u 2'Slu 2'S5u i,'^ 1 U i."^ i tl

2'Si5u 2S3U 287 -u 2'S5j 2'S3g o'Sts iSig iSig iSgg

2/S3J 2'S7j 2S,u 2'S3u '"Stu 2'Sou 2'Slu 2»S9u

(Pattern repeats for higher states)

For Ceo 5, delete and "u" and read the upper left corner as: Ceo D z

Ai Ai
A2 A2

z L:^,Ly,xz,yz Z2

Aig Aiu Eiu Aog Eig Aig Eig

Aiu Aig Eig A2u Eiu Aiu Eiu

Ail Aiu Eiu Aig Eig Aig Eig
A2U Aig Eig Aiu Eiu Aiu Eiu

Big B.u Eiu B2g E2g Big Eig

Bin Big Eig Biu Eiu Biu Eiu

Big Biu Eiu Big Eig Big Eig

Bin Big Eig Biu Eiu Biu Eiu

Eig Eiu AluA2uE2u Eig AigA2gE2g Eig BigBigEig
Ei„ Eig AigAigEig Eiu AiuA2uE2u Eiu BiuBiuEiu

Eig E2U BluB2uElu Eig BigBigEig Eig AigAigEig
Eig Eig BigB2gEig Eiu BiuB2uElu Eiu AiuAiuEiu

D^u iSiuDy^u Dng iSigDy^g Dy^g iSlg 2'S2g

Dy.g iSigDyig Dy^u iSiuDy^u Dy.u 2'Slu 2'S2u

2'Slg 2»Slu 2'S2uZ)hu iSig iSigDy^g iSig iSigDy^g

2'Slu 2'Slg 2S2gDiig 2'Slu iSiuDf^u iSlu iSiuDyu

iSig 2'S2u 2'Slu 2^2u 2'S2g 2'Slg. 2'S2g iSig iSigDi^g

2S2U 2'S2« iSlg 2'S2s 2*52 u 2'Slu 2'S2u iSiu iSiuDy^u

For Cbc, drop "g"—"w" and amend upper left corner to read: Ce, z

Ai Ai
Ai Ai
Bi Bi
Bi Bi
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Table 13. Selection rules—Continued

z Lx,Ly,xz,yz Z2 xy

A2u Eu A2g Eg Aig Big Big
A\u A2g Eg A2U Eu Aiu Bin Biu

Ais Alu Eu Aig Eg A2g B2g Big
Aiu Aig Eg Am Eu A2U Biu Biu

Big B2U Eu B2g Eg Big Aig Mg
Bi. B2g Eg Biu Eu B\u Aiu A2u

Big B\u Eu Big Eg B2g A2g Aig
Bin Bu Eg B,u Eu B2U A2u Am

Eg Eu AiuAiuBiuBiu Eg A\gA2gBigB2g Eg Eg Eg
Eu Eg AigA2gBigB2g Eu A\uA2uB\uB2u Eu Eu Eu

D}4g 2SuDi^u Dy,g 2S gDi^g iSg 2Sg
2SgD]^g Dy^u iSuDy^u B>y2u 2'S«

2S g iSuDy^u iSg iSgDyg iSg Dy^g

iSg 2SgDy^g iSu tSuDy^u Dy^u

For C4,: Drop "g" and "u" and read 2 in column.
For D2d- Drop "g" and "u" and read z inxy column.

D3;. z x,y,p'',xy LiLyXZ,yz Z2

A[ a;' E' a; E" A\
A'2 A[' E' A[ E" a;

A\- A', E" a;- E' Ai
A',' A[ E" Ai E' A-;

E' B" A.1A.2E E' AiA'^'E" E'
E" E' A1A2E" E" A'lA'^E' E"

2S2 2S1 2S2 Dy^ 2S1 Dh
2S1 2^2 2S2 Dy^ iSi

2'S2 Dh Di^ 2S1 282 2S1 2S2 2S2

±1, with change in parity, magnetic dipole

transitions have AM=0, ±1, with no change in

parity, while electric quadrupole transitions have
AM=0, ±1, ±2, with no change in parity.

In order to examine in detail the polarization

effects, let us consider a set of orthogonal unit

vectors in spherical coordinates.

ro=sin d cos 0i+sm 9 sm </)j+cos dk

dr
0o=-^°=cos 6 cos </)i+cos 6 sin </)j— sin

-sin </)i+cos
1 dro

sin d d0
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Table 13. Selection rules—Continued

Da z

xz,yz
Z2

Alu Eu A2g Eg Aig
A-, E,̂g A-, R A

,

^lu

A2t Alu Eu Aig Eg Aig
A o

.

A,, E A, ^u

Eg Eu Aiu Aiu Eu Eg Aig Aig Eg Eg
E„ E,̂g ^1 g ^2g ^ g E A, A-, E^lu •^2u -'-'« EJ^u

Slg Szu Slg
St. .Si^3 u S,f^lu

Sz. Slu Slg D^g Ssg
Slg Slu S,u

Dh. Slu Szu Di4u Slg Sig Di^^g D^g
Slg Ssg Dyg D^u SluS3uD,,.iu

For CsjI Drop "g" and "u" and read z in column.

z X y L„xy Ly,XZ

Aig Aiu Biu Biu A2g Bog Big Aig
Aiu Aig Big Big Aiu Biu Biu Aiu

A2g Aiu Biu Biu Aig Big Big Aig
A2u Aig Big Big Aiu Biu Biu Aiu

Big Biu Aiu Aiu Big Aig Aig Big
Biu Big Aig Aig Biu Aiu Aiu Biu

B2g Biu Aiu A2u Big Aig A2g Big
Biu Big Aig Aig Biu Aiu Aiu Biu

Dm. D^u D^g Dy2g Dng Diig
Dj^u Dy^u Dy^u

y,Lx
yz

XjLy
XZ

Lz,xy z,Z\p^

Co,: Omit "g"—"u" and read bottom of column.

x+ iy x—iy z

{x+iy)z

(x— iy)''

(x— iy)z
— iLy

{x+iyY
L,,Z^

Ag Clu Ciu A u Cig Cig Ag
Au Cig Cig Ag Clu Ciu Au

Cig Ciu Au Clu Cig Ag Cig

Clu Cig Ag Cig Ciu Au Clu

Cig Au Clu Ciu Ag Cig Cig

Ciu Ag Cig Cig Au Clu Ciu

Slg Slu Sou Slu Slg S,g S\g

Slu Szg Ssg Slg Slu Sou Slu

Szg Ssu Slu Szu Sse Slg Slg

Szu Ssg Slg Slg Siu Slu Slu

S:g Slu Szu Ssu Slg Slg Ssg

Siu Sis Slg Sog Slu Slu Ssu
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Table 13. Selection rules—Continued

Ceo k x+iy z Lx+iLy Lx— iLy (x+iyy ix- iij)^

ix+ iy)z {x— iy)z

A, C-lu Au Cig C-ig Ag Cig C-ig
Cig C-ig Ag Ciu C-lu Au Ciu C-iu

Cig Au Ciu Cig Ag Cig Cig C-ig
n. A

g c,^\g Co Â u Co^iu ' lu

C-ig C-iu C-lu Ag C-ig C-ig Cig C-3g

C-lu Ag C-2g C-ig Au C-iu C-lu Ciu C-iu

C3u Ciu Ciu C3g Cig Cig Cig Ag
ĉIg Co Ci^£u c,^lu Co^iu c.^iu

C-2g C-,u C-3u C-iu C-ig C-3g C-ig Ag C-ig

C-2u C-ig C-3g C-ig C-lu C-3u C-iu Au C-iu

Czg Ciu Cig Cig C-ig Cig Cie
Cig C,g C3g Ciu Ciu C3U Ciu Ciu

C-3g C-i-j. C-3u C-ig C-ig C-3g C-ig C-ig
C-3u C-2g C-is C-3g C-ig C-ig C-3u C-lu C-iu

(Pattern for higher C^ns.u repeats)

Sig Slu S-lu Slu Ssg S-ig Sis Sig S-3g

Ssg S-ig Sig S3U S-lu Slu Siu S-3u
Slu S-3u S-lu SlB S-3g S-ig Sig S-ig
Sig S~3g S-ig Slu S-3u S-lu Siu S-iu

Sou Slu S3U Sig Sig Sig Sig S-ig
S,g Sig Ssg Siu Slu Siu Slu S-lu
S-lu S-5u S-3u S-ig S-ig S-3g Sig S-ig

S-3u S-ig S~ig S-3g S-lu S-ou S-3u Slu S-lu

Ssg Syu S3u Siu Sig Sig Sig Sig Sig

Sig S3g Sig Slu Ssu Ssu Sou Slu

S-sg S-3u S-7u S-5u S-3e S-7g S-ig S-ig S-gg

S-5u S-3g S-7s S-ig S-3u S-lu S-iu S-lu S-9u

(Pattern for higher S^ng.u repeats)

z X+ iy x—iy Z/j-f- iLy Lx— iLy (x+iy)^ (X- iy)^

(x+iy)z {x— iy)z

Ag Au Ciu Ciu Ag Cig Cig C2g Cig
A g Cig Cig Au Ciu Ciu C2U Ciu

C\g C\u Ciu Au Cig Cig Ag Bg
C\g Cig Ag Ciu Ciu Au Bu

Cig Ciu Bu Ciu Cig Bg Cig Cig Ag
Ciu Cig Bg Cig Ciu Bu Ciu Ciu A u

Bg Bu Ciu Ciu Bg Cig Cig Cig Cig

Bu Bg Cig Cig Bu Ciu Ciu Ciu Ciu

Ciu Ciu Bu Cig Cig Bg Ag Cig

Cig Cig Bg Ciu Ciu Bu Au Ciu

C^g C^u Au Ciu Cig Ag Cig Cig Bg
Csu Cig Ag Cig Ciu Au Ciu Ciu Bu

Sig Slu Ssu Sllu Sig Ssg Siig Sig Sgg

Sig Szg Siig Slu Ssu Sllu Siu S'ju

Ssg S3U Siu Slu Sig Sig Sig Sig Siig

S3g Sig Sig Szu Siu Slu Slu Sllu

Ssg SflU S,u S3U Sig Sig Ssg Sig Sig

Sig Sig Ssg Siu Slu Siu Siju Slu

Sig Slu S,u Siu Sig S^g Sig Siig Sig

Sig Ssg Sig Slu S^u Siu Sllu Siu

Sou Sllu Slu Siig Sig Sig Sig

Sig Siig Sig S^u Sllu Slu Slu Siu

Sug Sllu Slu Sgu Siig Sig Sgg Sig Sig

Sllu Sug Sig S^g Sllu Slu Sciu Siu Slu
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Table 13. Selection rule^—Continued

Ag

C\g

Bu
Bg

Czg

Slu
Sig

S^g

Sou
Ssg

Stu
Sts

x+ iy

Cig

Bu
Bg

Csg

A u

Ag

S,u
Ssg

So^i

Sag

S-u
Sjg

Slu
Sig

x—iy

Czu
Csg

Au
Ag

Clu
Cig

Bu
Bg

Stu
S,g

Slu
Sig

Ssu
Ssg

Sou
Soe

Ag
Au

Clu

Czg

Czu

Sig

Slu

Szg

Szu

Sss
S,u

Syg

S^u

{x+ iy)z

Cig

Clu

Bu

Czg

Czu

Ag
Au

Szg

Szu

Ssg

Siu

Srg
Stu

Sig

Slu

Lx— iLy
{x—iy)z

Czg

Czu

Ag
Au

Cig

Clu

Bg
Bu

Sig

Stu

Sig

Slu

Szg

Szu

S-og

Sou

{x— iyY
{x+ iyy

Bg
Bu

Czg

Czu

Ag
Au

Cig

Clu

Sig

Ssu

Sig

Slu

Sig

Slu

Szg

Szu

S4

{x+ iyy-

z

{x— iyy
{x+ iy)

{x—iy)z

Lx+ iLy
(x—iy)
{x+ iy)z

A B Ci Cz A
C'l Cz B A Ci

B A Cz Ci B
Cz Ci A B Cz

Si Sr. Sz Si Si

Sz
.

s. Ss Si Sz

S-o Si s, Sz S3

S7 Sz Si Ss S7

Czh z x+iy x—iy Lx+iLy Lx iLy

{x—iyY {x+ iyy {x+ iy)z {x— iy)z

A' A" C'l A' C'l' C','

A" A' C'l cV A" C'l c.

C'l c. A' C'l C", A"
cr C'l C," A" C'l' c. A'

cr A' C'l c. A" C'l'

Ci' A" C'l' C',' A' C'l

Si Si s. So Si Sz Sii

Sz s. Sii Si Sz s. Si

s, Sii Si s, Ss Si Sz

S7 Si Sz Sn Si s. s.

s. Sz So Si s, Sn Si

Sii s. Si Sz Sii Si s.

551664—61 5 61



Table 13. Selection rules—Continued

C2A x,y z

xz,yz

A, A, Bg As
A. u B, As Bu Au

Au Bu Ag Bg
B„ A, Bs Au Bu

Slu Sis
Slu Sig S,u Slu

Sis Sig Sss
Slu Sz.

Oh r L xz,yz,xij

Ais Tiu Tis Eg Tis

Alu Tis Tiu Eu Tiu

Aog T.u Tig Es Tis
Aou Tis T2u Eu Tiu

Eg Tiu T'u Tig T-is Ais Aig Eg Tig Tis
Eu Tis Tu T,u Tiu Alu Aiu Eu Tiu Tiu

Tis Alu EuTiu T,^ Aig Eg Tig T-is Tis Tig Ais Eg Tig Tig
Tiu Aig Eg Tig T^s Alu Eu Tiu Tiu Tiu Tiu Aiu Eu Tin Tiu

T2S Aiu Eu Tiu Tiu Ail Eg Tig Tig Tis Tig Aig Eg Tig Tig
Tiu A,s Eg Tig T-ig AiuEu Tiu Tiu Tiu Tiu Alu Eu Tiu Tiu

Dhs Dhs T>z/2s Dzns iSg Dz/2 g

5 -03/2 8 Dy^u Dz/iu Dz/2u zSu Dzn

2'Sg 2Su T>iiiu iSg Dz/ig T>il2s T>3/2s

2'Sm 2Sg T>il2g 2(Sa 2)3/2

u

Diliu •Dh" -03/2 u

Dws 2Su iSg Di^g Dz/ig iSs Dy^g Dz/2g iSs Dy^g Dz/2g

D3/2U iSg Di^s T>3/2s 2<Su Dy^u Dz/iu iSu DkiL Dz/2u iSu Dy^iI Dzliu

and the inverse relations

i=sin 6 cos </)ro+cos 6 cos 4)9^— sin

j= sin 6 sin (^1*0+ cos 6 sin </>0o+cos 4>^q

k=cos 0ro— sin dO^.

Let us further consider A as a plane polarized

wave, incident toward the origin along the vector

To [fq points to the soui'ce of A], and having com-
ponents along 00 and ^0 perpendicular to the
direction of propagation.

A= {A cos 4/6q-^A sin yp^Q) exp i(cr[r-ro]+c<;0-

In the terminology of the Euler angles of section

3.2, the plane polarized light is incident along the f
axis with A parallel to the ^ axis. At the origin,

A° may be resolved into components as foUows

:

-4°=^e'"'(cos 4' cos 6 cos </>— sin xp sin </>)

Al^Ae'^^cos \p cos 6 sin (/)+sui ^ cos 0)

^5=yle'"'(— cos xp sin 6).

The vector A changes in space only along the
direction Tq, and hence a variation along the x-axis,

for example, will change A according to the
component of the variation along Tq. Formally,

dA^ dA d[r-ro]

dx d[r-ro] dx

Letting
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Table 13. Selection rules—Continued

r L
xz^yZjXy

A, Tu C\g 2«

Tu c lu C2U

Tu T, C2g A,
c\l T, T ^2u Au

^ Is Tu T, Ag
T Tu Au Clu

T, A~ u u ^2u T^u 9 1 a 0 0 J. a Tg T ĝ

Ag Cig C2g Tg ^u^lu u ^

u

Tu T

r3 s -^J^u 2*5^11* 2S2U / / 1 / _ OlJt IT 909 0 2'S'u 2«S2

Dyie 2<Slg 2'S2« D}^u 2S1U 2S2U 2SIU 2'S2u

2*^28

iSie 2^28 Diiu 2S1U 2S2U 2^2. Dhu

2821 -DH" i^lu 2S2U Due 2<Slj 2S2g 2'Slg

lS2u Dyjg 2^11 2S2g D^u 2S1U 2S2U Dviu 2S1U

r L 72 .2" ,P

xz vz xv

^1 T2 Ti E
A2 T: T2 E

E Ti T2 Ti To A, A[2 E
T, A2 E Ti T2 Ai E Ti T2 T, T2

T2 At, E Ti T2 Ai E Ti T2 Ti T2

2S D3/2 T>ii D3/2 D3/2

2S D^i Dz/2 2S D3/2 D3/2

D3/2 Dh 2^ D3/2 Dyj 2S D3/2 Dh 2S D3/2

we have

5A

Obviously, the resolution of A' into components
is parallel to that of A, so we obtain the following

9 terms involving the derivatives of A

:

-^=A' (cos
\f/
cos 6 cos 0— sin rp sin 0) (sin 6 cos </>)

-A' (cos 4' cos 6 cos 0— sin \p sin 4>) (sin 6 sin <^>)

-^^=A' (cos ^ cos 0 cos 0— sin ^ sin 0) (cos d)

-^=A' (cos ^ cos 0 sin </)+sin ^ cos 0) (sin 0 cos ($)

-=x4' (cos 1^ cos ^ sin 0+sin i/- cos 0) (sin Q sin 0)

^^=A' (cos i/- COS (9 sin (ji+sin ii cos 0) (cos 0)

du4
-^=-4' (—COS i/' sin Q') (sin 9 cos </>)

d2

=A' (—cos \i' sin ^) (sin Q sin

(—cos ^ sin ^) (cos Q).

These may now be combined as previously defined
(page 55) to yield

A^nc=^A' (cos i/ sin 20 cos' (^— sin i/- sin Q sin 20)

Ayj,=2-^' (<^*^s "A 20 sin^ </)+sin sin 0 sin 20)

A' (—cos sin 20)

yl' (cos ^ sin 20 sin 20+2 sin sin 0 cos 20)

^12=^' (cos i/ cos 20 cos 0— sin ^ cos 0 sin 0)

Ay2=A' (cos 1/' cos 20 sin 0+ sin 1/' cos 0 cos 0)

5j:=—A' (cos sin 0+sin i/- cos 0 cos 0)

52/=-4' (cos -^z cos 0— sin i/- cos 0 sin 0)

5^=^' (sin v^ sin 0).

We may note that A^x-VAyy-\-A^^ is in fact zero,

and that the angular factors for the components of

B are the same as those for A with a rotation of 90°

in showing the mutual perpendicularity of B and
A. In order to obtain our final five quadrupole
components, there is a question of normalization

which must be considered. Strictly speaking, the

appropriate "base vectors" for the quadrupole
components are the normalized tesseral har-

monics of table 2 for N=2. Since we shall be
interested in relative intensities, we may omit a
common factor, which we shall here choose to be

15
^^^=:- With the omission of this factor, xy, xz, and
2V^
yz will still be the proper basis, but for the other 2,

where we have heretofore used x^—y'^ and 22^
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—x'^—y'^, we must now include factors of \ and

respectively, so the balance of the term with these

two bases will become multiplied by the reciprocals

of these factors. We shall continue to denote
these two renormalized bases as p- and Z^.

Finally, we must consider the resolution of the
multipole interactions into the (complex) base
vectors appropriate to the group C„,, and its sub-
groups with complex reps. The terms in z, L^,

and will be unaffected by this change. In lieu

of X and y, we shall use -^{x-^iy) and -^{x—iy),

for Lx and Ly a similar combination, and for and

xy, (p^-^-ixy) and -p (p^—ixy). This requu'es

the use of the following linear combinations of

the previous terms:

A'.
V2 A o_V2

{Al+iAD

^2+=-V (A,2-iA,y) A<,^=\ {Afi^iA^y).

These are all summarized in table 14.

Let us now consider some of the conclusions of

this analysis. We shall discuss in detail six cases.

1. Only one component of the eleven considered
is effective in producing the transition. In this

case, the rate of absorption will be proportional to

the Hermitian square of the matrix element, and
hence proportional to the Hermitian square of the
appropriate angular dependence factor of table 14.

Such a case is exemplified by the B^g—i?2g transition

in D47,, which are joined only by Zj. The angular
dependence is thus (sin sin

2. Two components only of the eleven join the
states, these two belonging to a doubly degenerate
rep and consequently arising from the same type
of multipole interaction (e.g., in De;,, A^g is joined
to E-ig by both xy and p^. Then the total matrix
element will involve the sum of the two angular
factors for the two multipole components, and the
angular dependence will be proportional to the
Hermitian square of the sum of these angular
factors.

3. Two components only join the states m-
volved, arising from different multipole interac-

tions (e.g., A] of Ces will join itself bj^ either z or
Z^). The matrix element will then mclude the
sum of the angular factors for the two components,
but one will be multiplied by a factor "q" deter-
mined by the numerical ratio of the strength of

Table 14. Angular dependence of multipole components

1. Electric Dipole
^°= A(— cos \p sin e)

A°= A{cos rp cos 0 cos — sin sin 0)
A2= A'(cos_i/' cos 6 sin 0+ sin

i/- cos 0)

A+=a(^^^^ (cos 1^ cos 6— i sin 4/)e~^*

(cos \p cos d+ i sin </')e'*

2. Magnetic Dipole
Bj= A'(sin sin e)

B^= A'(— cos \p sin 0— sin cos B cos 4>)

By— A' {cos ip cos <#>— sin \p cos 9 sin <p)

B+= A'^^~^ (— sin \p cos 9— i cos i/')e~'*

B-= A'(^Y^ (— sin tp cos d+ i cos i/')e»*

3. Electric Quaclrupole

A,2=A'(^:^^ (_cos <p sin 26)

Ai2= A'(cos \p cos 2d cos ^— sin tp cos 6 sin 4>)

Ayz— A' (cos ip cos 2(9 sin </)+ sin \p cos 6 cos 4>)

Ap'^= ^A' (cos tp sin 28 cos 2</)— 2 sin \p sin d sin 2<^>)

Axu= iA' (cos tp sin 2d sin 2^+ 2 sin tp sin 6 cos 20)

=4'^^^ (cos tp cos 20— i sin tp cos 0)e~'*

A,~= A'^j^^ (cos tp cos 2d+ i sin tp cos e)e'*

A2+= A'(^~-^ (cos tp sin 2e-2i sin tp sin e)e-2'*

A2-= /l'(^—^ (cos tp sin 2e+ 2i sin tp sin (9)e2''*

the two types of interaction, and is fixed by explicit

calculations and not by general symmetry consid-

erations. The angular variation will then be pro-

portional to the Hermitian square of this sum, and
will contain q and g^. If one type of interaction

is very much stronger than the other, then q wQl
be small and it may be neglected. In the present

problem of crystal spectra, this is not necessarily

the case, and each case must be examined in

detail.

4. Two components join the states in question,

arising from the same multipole interaction, but
the components belong to one-dimensional reps

(as distinguished from (2)). For example, in

D27J, A2g is joined to itself by both Z^ and p^
The details here are very similar to case (3). The
matrix element will include the sum of the angular

factors. However, in contrast to (1), the term Z^

is not related by sjonmetry to p^, so one angular

factor will again be multiplied by a factor q,

expressing the relative strength of the interaction,

and the Hermitian square will again contain both

q and Generally, one may only expect that q
will in this case be nearer 1 than in case (3).

5. Only one component joins the states, but
another component joins another pau' of states,

both of which are respectively degenerate with

the first pair. This is a frequent situation in
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j

C„;j and its subgi'oups. Here the transitions

! proceed independently, and the total absorption

I

will be proportional to the siun of the Hermitian

i

squares of the angular factors, rather than to the

i

Hermitian square of the sum as in previous cases,

i
6. If the states are joined by thi-ee components,

I all belonging to the same triply degenerate rep,

I

as is the case for both electric and mag-netic

j

dipole transitions in the cubic groups, there are

no polarization effects.

We shall not discuss in detail more complicated
cases. In general, the angular dependence will

include factors expressing the relative strengths
of the transitions arising from different dipole
interactions, as Vv^ell as from nondegenerate inter-

actions of the same order. In specific cases, these
relative strengths may be computed from the
methods of the following section.

5. Matrix Elements

5.1. The Reduced Matrix Element
;!

I
We now turn our attention to the procedm-e

: alternate to that which has occupied our attention

,
in the preceding two sections, namely, the calcu-

lation of the matrix elements of the perturbing
potentials of the crystal field and their interpre-

tation. These potentials were discussed in detail

in section 2. We have akeady touched upon
certain general featiues of the problem in section
4.3—we must now examine this situation in

more detail, and also determine the simplifying
relationships w^hich exist among the nonvanishing

I

elements.

So far in our discussion of the transformation
properties of the several wave functions belonging
to a degenerate rep of a group, w^e have emphasized
the equivalence of these several wave functions,

• as well as the properties of the rep (notably the
character and class structui-e) which were invari-

ant under a unitary transformation. We shall

now depart from this procedure. We are now
interested in picking out a particular set of linearly

independent wave functions, in terms of which
specific matrices representing the operations of

the group may be written do"\vn. This is equiv-
alent to the introduction of a specific system of

base vectors in ordinary vector analysis.

Since we start with the wave functions of the
free ion, described by the quantum number J,

with 2j-{-l linearly independent wave functions,

we select for our basis, functions distinguished by
the quantum number M (or Mj will sometimes be
used for clarity) where M=J, J— I, «/— 2, . . .

— J, and such that the matrix representing rota-

tions about the 2-axis is diagonal with elements
Me^^* .We have seen from the preceding section

that wave functions belonging to different reps
(here, with different J values) are orthogonal—we
see that these 2^7+1 functions themselves belong
to different reps of the group C„, and hence are

mutually orthogonal within a given J. These
wave functions we can write as |aJM>- (in the
notation of Dirac), where a represents all quantum
numbers other than J and M. To emphasize that
such a state is one component of a 2J'+1 dimen-
sion rep of the rotation group, we may also write

in the form (aJ)|JM>. A different choice of

axes will leave the (scalar) portion of the function

unaltered, but will convert the normalized com-

ponent of the rep |JM> into a combination of

the same J and dift'erent M.
For these calculations, it mil be convenient to

use the complex potentials Y? (2.9) rather than
the real Q and S? (2.5) as om- perturbation. We
note here that these perturbing potentials actually
act upon the space coordinates of the individual
electrons, so the total perturbation is a sum of

such over all electrons. Clearly, if these poten-
tials obey a certain transformation law in the
coordinates of one electron, then- sum will similarly

transform when all the coordinates of all electrons

imdergo the simultaneous transformations implied
by the quantum number J, or when only the
space coordinates of all electrons undergo the
simultaneous transformation implied by the quan-
tum number L. Our problem has therefore

become that of computing the sum of terms of

the form

<a'J'M'\r''Y'AaJMy (5.1)

We shall for the time bemg disregard the factor r".

According to section 4.3, we Imow that the

matrix element will vanish unless J' is one of the

values J" arising from the reduction of the product
DjXDy, nsiinely, J+v, J-\-v—l, . . . \J—v\. Let
us expand the product Y!^|a;JM> into a sum of

terms

i:CZ^^iYMaJ)\J'^M"> (5.2)
M"

where the C-coefficients are the Wigner coefficients

to be discussed further in section 5.2, the term
(Y^llaJ) represents the portion of the product in-

variant under a rotation of the axes, and
\

J"M"'^
represents the M"-ih component of the

normalized rep Dj,> of the rotation group. We
now know that the remainmg term of (5.1),

<Ca'J'M'\= (a'J'XJ'Ad'\ is orthogonal to ah
states except |J'M'>, i.e.,

<J'M'\J"M">=8j,jndM'M" (5.3)

so we obtain, from (5.2) and (5.3),

<a' J'M'
IY? |aJM>= Ci,;i,: (a' J'

1

1 Y.
|

|aJ) • (5 .4)

In this expression, parity is included in the a,a'.

If V is even, a and a must be of the same parity;

if odd, of opposite parity.
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The importance of this step is that we have
placed into the term GmIm, the dependence of

the matrix element on M, M' , and /x, and the

"reduced matrix element" {aJ'\\y^\\aJ) contains

those portions of the interaction not dependent on
these quantum numbers. If the matrix element
is evaluated for one particular Ad, M', and /z, then
the reduced matrix element can be obtained, and
from it the matrix element for any other M, M',
and fx. This relation was initially given by Eckart
(1930) and again by Wigner (1931) and Kacah
(1942a). There is some divergence in the litera-

ture on normalization and phase factors for these

reduced matrix elements. We have here followed

Eckart, Wigner, Rose, and others, while Racah,
Biedenharn (1952), and Simon et al. (1954) have
used as reduced matrix element a quantity greater

by a factor yj2j'-\-l.

Eckart and Wigner have based their derivation

of this result on the ideas of the representations of

the rotation group, while Racah has developed the

algebraic application of the angular momentum
operators Jx, Jy, and J^, which may be mterpreted
as differential rotations about the x, y, or s-axes,

respectively. Since the vectorial character of a

vector operator T with components T^, T°, is

fixed by the general commutation rules [J2,T"]=
nT" and [Jr±iJy, r"]=V(l T?i)(l±w+1) r"±i, a
generalized irreducible tensor operator of degree

k has been defined as one having 2^+1 compo-
nents and satisfying the commutation rules

\Jz, lt\=nli and [J, d= iJy, T,"] =^l{kTn){k±n+l)
1"=*=^ Our quantity Yf^ is a specific example of

such an operator.

Stevens (1952) has emphasized a geometrical
interpretation of this result, and has given what
amounts to a technique for calculating certain of

the Wigner coefficients in the special case J'=J.
The behavior under rotation of any quantity
which may be expressed in terms of variously

oriented coordinate systems, may be described by
one or more components along a set of mutually
orthogonal base vectors in an mfinite number of

dimensions. Subspaces of dimension 1, 2, 3,

. . . 2t/+l determine a particular Dj, while the

individual vectors withm the subspaces correspond
to the various rows of the Dj. A product of two
components, each of which lies along one of these

base vectors (such as the Y!f|a'e/M> being con-
sidered) may itself be resolved into components
by means of the Wigner coefficients; all save the

one parallel to the third quantity < aVM'j will

vanish in the matrix element. Stevens also

pointed out that it is possible to form irreducible

tensors j'i from the noncommuting components of

J by taking the 2i'+l totally symmetric products

of degree v. This is analogous to the process we
have already used several times in connection

with the reduction of the general product of

two vectors. We then have

<ajM'mccjM>=ci,i^, miwj),

since this reduced matrix element is diagonal in

both a and J, and independent of a. These ma-
trix elements may themselves be calculated, giving
a set of numbers proportional to the Wigner
coefficients. Certain tables based on this proce-
dure have been given by Stevens (1952), by Elliott

and Stevens (1953a), and by Judd (1955).

5.2. Wigner Coefficients

The Wigner coefficients Cm\mIm, frequently writ-

ten {JiJ2JM\JiJ2M)Al2) are the elements of the uni-

tary matrix C which will reduce the (2t7]-j-l)X

(2t/2+l) dunensional direct product of the com-
ponents of Dj^ and Dj^ and which will provide the

proper linear combinations of the products of

these components IJiMi^ and !t72^2> appro-
priate to the reduced component |t/M>. The
columns of the C matrix are distinguished by the
double indices (Mj, Mo), vhUe the rows bear the
indices (J, M). The phase conventions implied
in (2.8) ensure that the matrix elements may be
chosen to be real. The inverse is merely the
transposed matrix. The orthogonality relations

for a real unitary (=orthogonal) matrix then give

us

S {JxJ2MM2\JMM) {J,J2MM2\JiJtJ'M')

= 8rr>d.jj'Omm' (5.5a)

}

J,M

=8m^m[8m^'^- (5.5b)

The product of \JiMi^ and |J2Af2> will, under
a rotation about the s-axis through 4>, be multi- -

plied by e^^i'* e^'^^^^^e'^'^'i^^'^^^ and hence M=
Mi+Mi, and all coefficients not meeting this ^

requirement are zero. The index M is frequently

suppressed when written in the form CMluf-
Because of this relation between the Mi and M2,

'

the sum in (5.5a) is in effect a sum over ikfi only
(or M2 only).

A general formula for these coefficients has been
j

given by Wigner, who carried out in detail the

'

process outlmed above of reducing the direct

product matrix. Condon and Shortley have ap-
proached the problem from the standpoint of

transforming eigenstates of two commuting angu-
lar momenta J, and J2 with quantum numbers

.

t/iM] and J2M2 into eigenstates of J= Jt+.T2 with '

quantum nmnbers J and M. They pointed out
that the vector addition coefficients may in prin-

ciple be obtained from the initial condition-

{JiJtJ^J-^J^J'iJi-\-J2\\J^^J2\)= '^ and from a suc-

cessive application of the Jj—iJy and Jxz opera-

tors, but that a general formula is difficult to

obtain. Racah (1942a) utilizing as well the

operator Jx-\-iJy has provided a purely algebraic

derivation of a general formula for the coefficients
{

which is relatively convenient and symmetric in

the various parameters. Based upon this for-
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mula, Simon (1954) has provided a numerical
table of these coefficients, but no J greater than
^2 is included. Condon and Shortley have given
formulas for the cases where J2=,^^, 1, and 2,

while Falkoff et al. (1952) gis^e ^2=3.
j

For actual computations, a numerical table of
[Wigner coefficients is required. The only such
'table known to the UTiter is that of Simon (1954).
;Unfortunately, this covers an madequate range of
'values for rare-earth spectra, and relies on sym-
metry properties of the Wigner coefficients, in-

1 / 2^7+1 \''-
(ivolving factors of the form

( 2X+I/ '
^^^^^

[usually somewhat awkward. To meet partially
khis need for the present application, table 15,
containing the coefficients Cii'/ to 6 decimals for

J'<8, f=2, 4, 6 and m= 0, 2, 3, 4, 6 consistent with
the V involved has been computed. These wdl
permit calculation of matrix elements diagonal in

and between states of the same parity.

I
In the case /x=0, 3, and 6, the values for

'!Af=e7— /i were calculated from the formula of
Sacah and those for other values of M were cal-

culated by the use of the tables of Stevens and
others noted above (section 5.1). For ^=4 and
y=4, M=2, factors corresponding to those of

Stevens were computed and used in a similar proc-
ess. For M=2, J'=6 this became too miwieldlj^
and the formula of Racah was used directly for

all entries. Coefficients were aU checked for

obedience to the requirement

and selected entries were checked for

M
2J+1
'2f+l

M

It is believed that errors do not exceed 2 in the
sixth decimal. In a very few entries a seventh
decimal was caiTied.

It is to be noted that only positive values of jj.

are given, and only entries for M>— ^. To ob-

tain other values required, the following special

cases of the general symmetry relations are re-

quired (diagonal in J and v even)

:

(5.6a)

(5.6b)

C-,,U,//=i-iyCZ-'. (5.6c)

The relation (5.6c) is especially noteworthv: we
observe that (for half-integral J)

and hence must be zero. This is intimately asso-

ciated with the essential degeneracy of liramers
discussed earlier.

Table 15. Wigner coefficients

\m
j\

0 1 2 3 4 5 6 7 8

\
1

2
3

-0. 632456
-. 534522
-. 516398

0. 316228
-. 267261
-. 387298

0. 534522
0 0. 645497

4
5
6

i

-. 509647
-. 506369
-. 504525

-. 433200
-. 455732

468488

-. 203859
-. 303822
-. 360375

. 178376
-. 050637

180188

0. 713506
. 303822
. 072075

0. 759554
. 396412 0. 792825

7
8

-. 503382
-. 502625

-. 476415
-. 481682

-. 395515
-. 418854

-. 260680
-. 314140

071912
167542

. 170790

. 020943
. 467426
. 251312

0. 817996
. 523568 0. 837708

I -\
1/2 3/2 5/2 7/2 9/2 11/2 13/2 15/2

3/2
5/2
7/2

-0. 447214
-. 478091
-. 487950

0. 447214
-. 119523
-. 292770

0. 597614
. 097590 0. 683130

9/2
11/2
13/2

-. 492366
-. 494728
-. 496139

-. 369274
-. 409917
-. 434122

-. 123092
-. 240296
-. 310087

. 246183

. 014135
-. 124035

0. 738549
. 353377
. 124035

0. 777429
. 434122 0. 806228

15/2 -. 497050 -. 449712 -. 355036 -. 213022 -. 023669 . 213022 . 497050 0. 828417

67



Table 15. Wigner coefficients—Continued

\\M
J\

\

0 1 2 3 4 5 6 7 8

2

3
4

0. 534523
. 426402
. 40.i^91

-0. 356348
. 071067
. 201146

0. 089087i
-. 497469
—

. 245844
0. 213201
— . 469340 0. 312893

5
6

7

. 392232

. 386953

. 383807

. 261488

. 294821

. 315270

065372
. 050672
. 127428

-. 392232
-. 248756
-. 126413

-. 392232
-. 442232
-. 357408

0. 392232
304035

-. 441175
0. 456052

217795 0. 508189

8 . 381771 . 328747 . 180281 -. 031814 -. 254514 -. 413585 -. 413585 137862 0. 551447

\

1/2 3/2 5/2 7/2 9/2 11/2 13/2 15/2

5/2
7/2
9/2

0. 308606
. 341882
. 354787

-0. 462909
-. 113961

. 059131

0. 154303
-. 493829
-. 335077

0. 265908
-. 433629 0. 354787

11/2
13/2

- 15/2

. 361298

. 365073

. 367467

. 154842

. 212959

. 250811

167745
-. 043944

. 044718

425815
310988
196371

348394
-. 446201

390798

0. 425815
-. 260284
-. 429684

0. 483384
-. 176929 0. 530786

\
•'\

0 1 2 3 4 5 6 7 8

3
4

5

-0. 482804
-. 373979
-. 347368

0. 362103
. 018699
104210

-0. 144841
. 411377
. 312631

0. 0241402
317882

. 251842
0. 0747958
-. 416842 0. 130263

6
7

8

-. 335531
-. 329015
~. 324985

167765
205635
230198

. 184542

. 082254

. 005416

. 360696

. 324080

. 251864

. 067106

. 289534

. 346651

461355
090479

. 176034

0. 184542
470492
211240

0. 235246
-. 457688 0. 281664

\\ M 1/2 3/2 5/2 7/2 9/2 11/2 13/2 15/2

7/2
9/2

11/2

-0. 241402
-. 273115
-. 286829

0. 434524
. 204836
. 057366

-0. 241402
. 341393
. 358536

0. 0482806
-. 376533

. 157756
0. 102418
-. 444585 0. 157756

13/2
15/2

-. 294280
-. 298843

. 036785
-. 099614

. 272209

. 179308
. 334007
. 346658

-. 016185
. 235090

469376
-. 155398

0. 210410
466195 0. 258997

68



I

I

I

Table 15. Wigner coefficients—Continued

\

\
-1 0 1 2 3 4 5 6

1

2
3

0. 774597
. 654653
. 632455

0. 534522
. 577350 0. 408248

4
5

6

. 624188

. 617915

. 592156

. 603023

. 495434

. 558291

0. 330289

. 483494

A 977^ p;n
\j. £i t i oou

. 377965 0. 239046

7

8
. 616515
. 615587

. 605405

. 606977
. 572054
. 581136

. 516377

. 538028
. 438160
. 477567

. 336817

. 399561
0. 210042

. 303489 0. 187317

\

\

-1/2 1/2 3/2 5/2 7/2 9/2 11/2

3/2
5/2
7/2

0. 632456
. 621059
. 617213

0. 462910
. 534522 0. 365148

y/z

11/2
13/2

c-i CA r7

. 614509

. 613941

. od4U7o

. 579365

. 588349

. 4DU5b6

. 508862

. 537087

0. 301511
. 402291
. 459933

0. 256776
. 356263 0. 223607

15/2 . 613572 . 594088 . 555088 . 496486 . 418079 . 319313 0. 198030

C'.i

^\
-1 0 1 2 3 4 5 6

2

3
4

-0. 563436
-. 449467
-. 424052

0. 345033
-. 123091
-. 245844

0. 522233
. 186989 0. 560968

5
6

7

-. 413449
-. 407884
-. 404568

-. 299572
-. 328395
-. 345779

0
-. 110558
-. 180745

. 358057

. 183513

. 056476

0. 554700
. 449089
. 308827

0. 532554
. 495260 0. 505389

8 -. 402422 -. 357114 -. 227940 -. 035172 . 187317 . 391802 . 515831 0. 477567

\
-1/2 1/2 3/2 5/2 7/2 9/2 11/2

5/2
7/2
9/2

-0. 345033
-. 372194
-. 381690

0. 462910
. 053722

-. 116608
0. 550482

. 285631 0. 560968

11/2
13/2
15/2

-. 386244
-. 388809
-. 390406

-. 204837
-. 256681
-. 289807

. 099950
-. 022676
-. 105958

. 410891

. 252439

. 126363

0. 544705
. 476312
. 354689

0. 519238
. 507935 . 491412

551664—61 6 69



Table 15. Wigner coefficients—Continued

f J6J

/\
-1 0 1 2 3 4 5 6

3
4
5

0. 494727
. 383214
. 355945

-0. 361298
0

. 12/813

0. 127738
-. 434524
—. 302079

0. 289683
—

. 308257 0. 397959

6
7
8

. 343817

. 337140
. 333010

. 184542

. 220710

. 243919

-. 163087
-. 058394

. 017964

-. 376632
-. 316265
—

. 232843

-. 147214
-. 335450
— 361685

0. 465530
0
—

. 247027
0. 505389

0 526926

\\M
J\

\

-1/2 1/2 3/2 5/2 7/2 9/2 11/2

7/2
9/2

11/2

. 255476

. 285631

. 298081

-. 442498
186989

—
. 035129

. 215917
-. 381691
—

. 359967
. 349825

—
. 227663 . 435942

13/2
15/2

. 304672

. 308643
. 058394
. 119537

-. 255871
-. 156366

-. 365192
-. 349645

-. 070719
-. 294427

. 488252

. 064249 . 517994

\
-1 0 1 2 3 4 5

2
3
4

-0. 527046
-. 265908
-. 186989

-0. 564076
-. 469339 -0. 494727

5
6
7

-. 146176
-. 120654

102998

-. 392232
-. 335111
-. 291972

-. 506369
-. 472034
-. 431342

-0. 423659
-. 490098

493065
-0. 363803
-. 457141 -0. 315165

8 -. 089984 -. 258460 -. 393234 -. 474495 -. 486664 -. 420595 -0. 275723

J \^
-1/2 1/2 3/2 5/2 7/2 9/2

5/2
7/2
9/2

-0. 577350
402015
311649

-0. 531816
-. 498639 -0. 458029

11/2
13/2
15/2

-. 255476
-. 216867
-. 188584

-. 442497
-. 391883
-. 349644

501745
-. 487398
-. 457792

-0. 392232
474594

-. 492112
-0. 338200
-. 438906 -0. 294427

\

'\
-1 0 1 2 3 4 5

3 0. 469340 -0. 221249
4 . 270973 . 323875 -0. 409673
5 . 201802 . 376036 . 058255 -0. 487398

6 . 163087 . 360696 . 248129 -. 147214 -0. 509963
7 . 137637 . 332940 . 322787 . 079066 258078 -0. 505389
8 . 119407 . 304863 . 347875 . 209882 -. 071755 -. 372080 -0. 487838
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Table 15. Wigner coefficients—Continued

\
^\
\

-1/2 1/2 3/2 5/2 7/2 9/2

7/2
9/2

11/2

13/2
15/2

0. 442498
. 373979
. 316163

. 272507

. 239074

-0. 334497
. 186990
. 324509

. 357008

. 354605

-0. 458029
-. 053661

. 163319

. 270834

-0. 503382

-. 223634
0

-0. 509963
-. 333849 -0. 497673

^ Mi

\\ M

\

-2 -1 0 1 2 3 4

2

3
4

5
6

7

8

0. 745356
. 594588
. 560968

. 546941

. 539583

. 535193

. 532354

0. 460566
. 494727

. 506369

. 511894

. 514990

. 516920

0. 312893

. 392232

. 432629

. 456490

. 471881

0. 226455
. 313114
. 366006

. 401022

0. 171499
. 253968

. 310630

0. 134387

. 209427 0. 108148

\, M
J\

\

-3/2 -1/2 1/2 3/2 5/2 7/2

5/2
7/2

9/2

11/2
13/2
15/2

0. 577350
. 550482
. 539792

. 534366

. 531214

. 529213

0. 376051
. 440738

. 469339

. 484930

. 494472

0. 264443

. 349825

. 397958

. 428225

0. 196116
. 281399
. 336926

0. 1512475
. 230164 0. 120199

\ M
J\

\

-2 -1 0 1 2 3 4

3

4
5

6

7

8

-0. 541947
-. 419790
-. 389919

-. 376632
-. 369318
-. 364795

0. 349825
-. 079333
-. 195539

-. 248128
-. 277194
-. 295182

0. 501745
. 233021

. 067106
-. 037801
-. 107785

0. 504505

. 382472

. 247517

. 137400

0. 465530
. 441640
. 354765

0. 417311
. 454447 0. 370540

\s M
J\

\

-3/2 -1/2 1/2 3/2 5/2 7/2

7/2

9/2
11/2

13/2
15/2

-0. 312893
-. 334497
-. 341495

-. 344698
-. 346452

0. 458029
. 102418

-. 055544

-. 141599
-. 194225

0. 512092
. 322921

. 167849

. 056068

0. 487398

. 419971

. 308798
0. 441641

. 452034 0. 393445
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Table 15. Wigner coefficients—Continued

\\ M
J\
\

-3 -2 -1 0 1 2

3
4
5

0. 733799
. 568399
. 527952

0. 429669
. 457220 0. 273241

6
7
8

. 509963

. 500060

. 493934

. 465530

. 469098

. 470948

. 345246

. 383017

. 405906

0. 184542
. 260982
. 310016

0. 130491
. 200114 0. 095673o

\ M
J\

-5/2 -3/2 -1/2 1/2 3/2

7/2
9/2
11/2

0. 554700
. 518874
. 503381

0. 339683
. 397958 0. 223100

13/2
15/2

. 495034

. 489956
. 423922
. 438230

. 299758

. 344798
0. 154399

. 228062 0. 111283

5.3. L-S Coupling and the One-Electron
Approximation

It is well to emphasize at this point that the

relation (5.4) involves no approximations—these

we shall introduce in evaluating the reduced
matrix element. The first of these is the approx-
imation of L-S coupling, i.e., the state |at/M>
may be written \aJMy =Y^\0LSMlMs'>

Ml
{LSMiMs\LSJM) , and consequently,

<aJ'M'\y>i\aJM>= S (L'S'J'M'lL'S'MLM's)

<l3'L'S'MiM's\Y'i\^LSMiMs> {LSMiMs\LSJm

.

(5.7)

We now recall that does not act upon the spin

coordinates of the system, that it is thus a scalar

quantity with respect to S, and therefore

<^'L'S'MiM's\i'i\^LSMrMs>= hs' 5m,m-

<^'L'SMlMs\Yt\^LSMrMs>.

This will reduce (5.7) to the equation

(5.8)

<a'J'M'\Yl\aJM>= 8ss' 2
{L'SJ'M'\L'SMiMs)

<^'L'SMlMs [Yt] &LSMiMs>{LSMiMs\LSJM).

(5.9)

All other matrix elements vanish—in particular

we see that there are no matrix elements between
terms of different multiplicities. Also we see that

(5.4) is again applicable, and obtain

<^'L'SMlMs\Y'.\^LSMiMs>= {LvL'ML\LvMLti)

i^'USWY.W^LS). (5.10)

Hence, we can write (5.9) in the form

<:^'L'SJ'M'\Yl\^LSJMy= Zl

{L'SJ'M' \L'SMiMs) (LvL'MLlLvMLti)

(LSMrMslLSJM) {&'L'S\ \Y,\\&LS), (5.11)

and this expression is also (5.4). If we multiply
both expressions by {JvJ'M'\JvMfx), introduce
the requirement that Mi=ML-^ ix, and sum over
M, the expression on the right of (5.4) wiU reduce
to {a'J'\\Yy\\aJ) by (5.5a) while the right side of

(5.11) becomes

2 {JvJ'W \JvMii) (L'SJ'M'\L'SiMi,+ix)Ms)

[LvL'[Mr^+ix]\LvMj^ii)

(LSMzMslLSJM) {I3'L'S\ |Y,| \I3LS). (5.12)

Such a sum of the product of 4 Wigner coefii-

cients appears recurringly in the theory of complex
spectra. The properties of such expressions were
first studied extensively by Racah (1942a), and
they have consequently become known as Racah
coefficients. In the present application the essen-

tial significance of (5.11) is that the two states

JM and J'M' are "uncoupled" into LSMjMs
and L'S'M'iM's so that the effect of the

acting only on the L part (i.e., the space coordi-

nates) may be determined. The Racah coeffi-
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cients appear generally in connection with such
uncoupling or recoupling of angular momenta.
The Kacah coefficient in (5.12) depends on six

parameters JJ' , LL'
,
S, and v, in spite of the

explicit appearance of the projection quantum
numbers M, M', Ml, Ms, and /x, they are elimi-

nated in the summation.
Although a general algebraic formula for these

coefficients is quite unwieldy, numerical tables
have been computed by Biedenharn (1952) and
by Simon et al. (1954). The first of these carries

the entries in a closed fractional form, the other
has a ten-place decimal form. In order to clarify

difference in notation, let us rewrite (5.12) as

M,

Ci,^ul{^'L'S\\\M^LS). (5.13)

Omitting algebraic details, the use of the sym-
metry relations for the Wigner coefficients will

permit this to be transformed into

(-
/ (2J+1)(2L-+ 1)

V (2S+1)(2.+ 1)

^ ^ J L Sp S L' J'

AIM ^^^L ^ <.M+MOm'-M-Mi)

c Li V J V

(H'L'SWY.mS)

and a'direct comparison with the notation of this

with'eq (1), page x of Simon et al. will give

(a' J'
1 1
Y,| laJ)= (- l)^+^-^'-V(2J+l)(2i'+l)

W(JLJ'L';Sv)(l3'L'S\\Yy\\0LS). (5.14)

The six-parameter expression W is tabulated in

Sunon et al. for J,J'< 15/2; L,L' < 9/2 (though of

course a half-integral L has no significance in the
present application) 5'<3 and i'<8, though the
useful range of values may be extended through
the use of the syrometry relations given in the
introduction to the tables.

We are now in a position to make comparisons
between quantities which depend only on the
ratios of the matrix elements for a given ^'L'S,

combination, but for additional details we
must evaluate the reduced matrix element
{1^'L'SWY^W^LS) . In principle, this maybe accom-
plished in a way simQar to the derivation of (5.13)

i.e., we now assume that the state \LSMiMs^ may
be m-itten as a sum of antisymmetrized products
of one-electron wave functions \nlmims^ and
the matrix element (5.10) can be expressed in

terms of one-electron matrix elements such as

<ji'l'm\m's\'Yv\nLmi'msy'.

Unfortunately, this procedure has several limi-

tations. First, there is the additional assumption
that the state involves only one configuration of
the free ion. In the present case, it is expected
that configiu-ations other than 4/" will interact
with the surrounduigs and other rare earth ions
to such an extent that they will no longer be char-
acterized by sharp energy levels, but by broad
levels or bands. The sharpness of the observed
lines suggests that the contribution of other
configurations to the wave functions of the free

ion is, at least as far as the energy is concerned,
negligible. It is quite possible that contributions
from other configurations are responsible for
features such as intensities and polarization; this

will be discussed further in the following section.

An additional disadvantage is that, unlike the
transformation from a JAI representation to an
LS representation, there is no general formula for

passage from the LSMlMs representation of a
state to its one-electron representation. The
general method of Gray and Wills (Condon and
Shortley 5^) may be used, but each configiu-ation

must be considered by itself, and no general
formula can be derived.

5.4. The Rare Earth Ground Terms

In the evaluation of the matrix element (5.10)

we are free to select any consistent set of the

projection quantum numbers; we shall therefore

consider the specffic element [M'l=L';Ms=S\

<^'L'SL'S\Y^\0LSLS>= {LvL'L'\ LvU)

{^'US\\Y.\I3LS). (5.15)

By selecting the maximum values of the projec-

tion quantum numbers, we shall find that the
transformation to the one-electron representations

is thereby simplified considerably.

For any particular rare earth, the analysis is

best carried forward in a systematic manner,
beginning with the ground state. In accordance
with Hund's rules, for 4/" we select the highest

allowed multiplicity, and then the highest L
consistent with this multiplicity. The correspond-

ing antisymmetrized products of one-electron wave

functions are usually written {mim.im2 • • • I; for

example, in this notation we start with 132 1| for
(++++ + +1 (+-+++ + + +1

Nd, 13210-1-2} for Eu, 133210-1-2-3} for

Tb, etc. While the analysis may be carried out

for any configuration, we shall consider the specific

example of Nd.

Let us begin with {32 ll=|^/ 6|>- The appli-

cation of the synametrie operator J/^-=L^—iLy

l«/6|>(Condon and Shortley 5^3) yields {320}^

A second application of yields 2V3 I32-1I

+V10 l31ol=V22|*/4|>- The state 10
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!32-tl-2V3l31ol] is orthogonal to |'/4 |> and
Li

is also a quartet with M£=4 and hence is the

state 1*6^4 Repeated application of

wUl yield the statesl^T'' 3 | >,|*Z> 2 ^ >, and|^^0 1>,

all of which arise from ^f' (Condon and Shortley

ableF). Similarly, beginning with |332|= |2X8->
Li

we can obtain the state 7
Li

There are

a total of four states with Mi,=6, Ms=^ namely

\^L^\y\m^\y,\n<cXy and|*/6^>. Thefirst
Li Li Li Li

two are obtained by a further application of ^
3

while the latter is obtained from |*/ 6 by the
Li

operator ^^^S^—iS^. The fourth state is then

In endeavoring to continue this process to states
where 71/^= 5, we find that in addition to those
arising from higher values of L or S, that there are
two additional states with Mi=5, Ms=\. They
must be therefore both described as \^'H 5|>,and
additional labels are necessary to distinguish them.
The usual procedure is to explicitly diagonalize the
submatrix of electrostatic interaction between the
two states (Condon and Shortley 7^), but further
work of Racah (1949) has shown that a more
abstract classification of states based on group
theory is possible. The former technique has
been applied by Judd (1955) to the specific case
of Eu.

In any perturbation calculation, the matrix
elements first to be considered are those between
different states of a degenerate level. In the
rare earth ions, and in crystal spectra generally,

the one most important level is the ground level.

While the great significance of optical spectros-
copy, in contrast to magnetic resonance measure-

ments, lies in data provided concerning excited
levels, a general ion-by-ion analysis of the excited
levels is a major undertaking, and only the
explicit details for the ground multiplet will be
developed here. As a specific example, we shall

f\u-ther consider the case of Nd, where (5.15)
becomes

<4f */6|Y°|4f */6|>

321
I

Y° |32 1 |> (5.16)

We shall here insert again the factor r" in the
potential, omitted since (5.1) since it is invariant
under the transformations we have been consider-
ing up to this point. Again recalling that r^YS is

an electrostatic perturbation upon the individual
electrons, we see that it is a spin-free quantity of
Condon and Shortley type F (6'^9), and (5.16)

3 +
becomes 2!3 <C4/ m

TO=1

+
where <E>°=

1_

27r

and 6° is given in table 1. The spin terms of the
matrix element give +1, the (j> terms give merely

and the 6 integral is

j:
07626? sin e de

+1 C (3 m, 3 m)

where c" is given in table 1* of Condon and Short-
ley. For the time being, we shall write the r"

integral as <C?'''>.
By evaluating (5.14) and (5.15) for all the rare

earths, the reduced matrix elements for the
ground levels apart from the term -^^r'^ have
been computed and presented in table 16. The
reduced L-S matrix elements are included princi-

pally for information, though they are directly

useful in cases where the electrostatic perturbation
is greater than the spin-orbit interaction, or where
the electrostatic and spin-orbit perturbations must
be considered simultaneously.

6. Applications

6.1. General Considerations

In this concluding section, we shall discuss
further the general significance of the preceding
sections in the interpretation of crystal spectra,
the connection mentioned at the beginning of sec-

tion 3.4 between the group-theory technique of

sections 3 and 4, and the matrix element calcula-
tions of section 5, and shall illustrate the applica-
tion of these general techniques to specific

problems.
Generally, a spectrum may be considered as

understood if the spacing of the energy levels is

known, the effect upon them of a magnetic field,

selection and polarization rules and relative inten-

sities of lines, and all these are correlated with the
structure of the atom responsible for the spectrum.
These may all in principle be obtained from a
knowledge of the initial and final states of the

transition involved in the spectral line. Unfor-
tunately, our knowledge of these initial and final

states is largely a matter of approximation which
is not always entirely satisfactory. This is true

both for the free ions and for the perturbed ions

in the crystal. Let us review briefly the situation

for the free ion.

The good quantum numbers for the wave func-

tions of the free ion (section 3.3) are the parity
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Table 16. Reduced matrix elements

Element L S v= 2 f = 4 ;'=6

Ce+++
Yb+++

3 1/2

5/2

7/2

— 0. 325732

301569
-. 307788

. 261168

. 289329

u. ^yiuDo

0
-. 245532

Pr+++
Tm+++

5 1

6
5
4

-. 276822

265205
— 249840
-. 260040

-. 261529

-. 224931
— . 174353
~'. 208628

. 455018

. 321183

. 261268

Nd+++
Er+++

6 3/2 -. 106082 -. 168698 642369

9/2
11/2
13/2

-. 098820
— 091864
-. 093887

-. 131239

-. 106106

-. 356506

-. 169019

15/2 101524 -. 144946 -. 457704

Pm+++
Ho+++

6 2

4
5
6

. 106082

. 095469

. 084208
083901

. 168698

. 115742

. 054866

. 642369

. 260356
-. 090686

. \jo ( Otjyf

7

8
. 089965
. 100398

. 088311

. 139515
. 062990
. 420886

Sin+++
Dv+++

5 5/2

5/2

7/2
9/2

. 276822

. 217802

. 160051

. 155288

. 261529

. 102885
-. 033771
-. 038079

455018

0
. 252972
. 220158

11/2
13/2
15/2

. 174559

. 208638

. 253811

-. 007942
. 070737
. 193261

. 210017

. 112678
-. 228851

Eu+++
Tb+++

3 3

0
1

2

. 325732

0
-. 199469
-. 012363

360856

0
0

150786

. 491065

0
0
0

3
4
5
6

— 054289
. 032147
. 138409
. zboiOi

ofim 4.^• -1 O
. 171347
. 130764

—. 168697

081844
'. 259348

-. 227510
. 064237

Gd+++ 0 7/2 0 0 0

Note 1: Where no / value is given, the tabulated quantity is (/3L*S||Y,||/3L<S), otherwise (^LSJ\\Yy\\0LSJ).
Note 2: For the second ion of the above pairs, all signs change.

transitions. Thus, consider a transition proba-
bility for electric dipole radiation involving the
matrix element L'SJ'M' \eY\^LSJM). If

J'=J-\-\ so the transition is allowed in J, but
L'=L\-2, it will be forbidden in L, and will be
nonzero only if the spin-orbit interaction has mixed
terms with spatial angular momentum Z+1 in

either L or U or both. The application of a
magnetic field splits a state into its 2J-\-l com-
ponents with a splitting determined to a first approx-

imation by the matrix element of (L+2S) • B,

yielding the usual expression for the Lande
gf-factor. Selection rules for M now become sig-

"^f" or "u" , the total angular momentum J and
its component M. The strict selection rules
AJ=0, ±1 (0+^0) for electric and magnetic dipole
radiation, and AJ=0, ±1, ±2 (O-f^O, 0+^1) for
electric quadrupole radiation, with change in
parity in the first case, no change in the last two,
were calculated in section 4.4. There is no phy-
sical significance to a selection rule on M in the
absence of a nonspherical perturbation. If the
spin-orbit interaction is small, L and S approxi-
mately describe a state and we obtain selection
rules in L similar to those in J, while in S we ob-
tain A(S'=0 for electric dipole or quadrupole transi-

tions, AiS'=0, ±1 (0-h>0) for magnetic dipole
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nificant, and we have AM=0, ±1 for either type
of dipole radiation, AM=0, ±1, ±2 for quadru-
pole transitions, and their associated polarization

effects.

The perturbing potential F (2.6) will influence a
state \aJM^ in general by four types of matrix
elements, the effects of which we shall examine in

detail. These are:

1. Matrix elements diagonal in a, J, M.
2. Matrix elements diagonal in a, J.

3. Matrix elements diagonal in a.

4. Matrix elements nondiagonal in a, though
perhaps diagonal in J and M. These matrices
(or rather, approximations to them) may be
calculated by the methods of section 5, though
the scope of table 15 itself will suffice only for

elements of types (1), (2), and those of (4) diagonal
in parity and J. We will now examine the effect

on the original level of these several matrix
elements.

Matrix elements of type (1) arise from potential

terms with v even, ^=0. Their effect is to split

the level into pairs of states ±M (and the single

level M=0 for integral J) in the ratios indicated

by table 15. The inclusion of these matrix
elements only results in an initial axial field

approximation which is sometimes useful. The
selection rules on J and parity, as well as any
approximate rules on L and S, remain valid, as do
those on M corresponding to the free ion in a
magnetic field. This case corresponds closely to

a reduction in symmetry from Dj to D^h, which
differs thi'ough the inclusion of matrix elements of

types (3) and (4) which are diagonal in M.
Elements of type (2) arise from potential

terms with v even but mt^O, still with the ratios

determined by table 15 and of the same order of

magnitude as those of type (1). The solution of

the secular determinant for elements of (1) and
(2) together will yield the first approximation to

the energies of the perturbed states as well as the
zero-order linear combination of states with
various M required for higher order perturbation
calculations. States with AI values differing by
ju will interact and M will no longer be a good
quantum number for these states. However, if

2J is less than the lowest n involved, there will be
no matrix elements of this type and the rules for

(1) only will stiU be valid. This situation will

occur for levels of low J in fields of high sym-
metry. Generally, the selection rules for J and a
will still hold. Selection rules on AI will apply to

those states which do not involve a combination
ofM values, and can be applied to the components
of those states which do involve a mixing of two
or more M states.

Type (3) matrix elements stUl involve only
potential terms with v even, since a includes the
parity quantum number. The addition of these

matrix elements to our scheme destroys the
validity of t/ as a quantum number which has
held for (1) and (2). These elements are those
between various J values of a given L-S term,

since they are still diagonal in a. In order of
magnitude, these elements are as large as those of

types (1) and (2), since all three come from the
same reduced L-S matrix element (table 16) and
differ only in the associated Racah and Wigner
coefficients (5.14, 5.4). Their effect is numerically
somewhat smaller, since terms they contribute in

perturbation theory are divided by the energy
ii

differences between the unperturbed levels. A
state of given J=Jo will be mixed directly with
other J values such that

\

J—Jo\< v. The selec-
j

tion rules for the free ion J are now either poor
\

or completely worthless, depending on the numeri-
cal parameters. Since both the upper and lower

]_

states of a transition can involve a range of J,

the effective selection rule is merely AJ<2j'+ 1.

Matrix elements of type (4) will generally be
numerically the smallest of the four types. They
arise from all terms in the potential (2.6), this

being the only one of the four where the terms
with odd V are included. Such elements, at least

as far as the ground state is concerned, involve
relatively distant levels, so the influence on the
splitting of the ground state will be small and lie

perhaps more in the overall position of the level

with respect to the unperturbed level. Perhaps
the most important effect of such elements is on
the selection rules and the associated polarization

effects, and in the intensity calculations. Just as

elements of type (3) destroyed «/ as a quantum
number, so will these destroy a as a quantum
number, a includes the specification of the con-

figuration and consequently the parity of a state.

In the most general case, there will be matrix
elements for even v between 4/" and higher even
configurations, such as 4/"~^5(i^, and for odd v be-

tween 4/" and 4f"-~^5d. These latter elements
destroy the parity of the state and lift the restric-

tions of Laporte's rule for electric dipole transi-

tions. Intensities corresponding to electric dipole

transitions between states principally 4/" in char-

acter must, therefore, be computed from these ex-

tremely small inter-configurational matrix elements
and are therefore extremely weak; nevertheless, all

crystal spectra are in any absolute sense quite

weak and such transitions must be considered in

the case of any nonholohedric perturbing potential.

The further effect of a uniform magnetic field

will depend to a large extent on the degeneracy
allowed by the electrostatic perturbation. The
magnetic field does not allow any remaining de-

generacy; hence, levels degenerate in the electro-

static field, including the Kramers conjugate
states, will be split by a term linear in the mag-
nitude of the field B which can be computed from
a solution of the associated secular determinant.

The average magnetic moment of any nondegen-

erate state is zero (Van Vleck, 1932; Klein, 1952)

so these states will show no first order effect for

weak magnetic fields. If the crystal field leaves

two or more levels relatively close together, a case

of intermediate or strong magnetic field approxi-

mation can be observed and the level will show a
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finite displacement from its B=0 position. Un-
less the magnetic field and crystal field symmetry
axes are parallel, there will generally be no sym-
metry and no selection rules. Marked variation
of intensities of lines has been observed in the
crystal Zeeman effect. A more specific example
of some of these considerations Tvill be given in
section 6.2.

6.2. A Crystal Field

The direct approach to a crj^stal problem is to
obtain the crystal structm^e by diffraction measure-
ments, geometric considerations, or other crystal-
lographic techniques. These techniques do not
locate the lighter ions with sufficient accuracy,
particularly water of crystallization, which con-
tribute greatly to the crystal field. As an illustra-

tion of the procedme, let us consider a possible
short range structure for rare-earth chlorides of
the form A'Cls-GHjO (H. S. Robertson, informal
communication) where 6 Cl~ (three from adjoining
X) are in two horizontal planes equidistant from
X, forming an equilateral triangle in each plane,
the two triangles being rotated 60° to each other
about a vertical axis. The water molecules [con-
sidered as dipoles] are then located along the
X-C\ lines.

While detailed calculations were not carried out
due to uncertainties in the various distance pa-
rameters, certain features of considerable interest
may be obtained through partial application of
(2.7). The above charge arra}^ ma}^ be described
by

0i-6=-^ /^T-g— 010-12= 2 013-15= 71"

P16-I8

—

~Y
23/!— 23n+l—— ^ 23n+2=6

and we shall take 0 as a variable parameter. There
are a total of 18 charges in this array. Those
above the x—y plane have the indices 1-9, while
those below have 10-18. Indices of the form 3n
refer to Cl~, S/i-fl refers to 0H~ and 3n-\-2 refers

to H+. The angular portions of the potential
were calculated over a range from 6=0° to 90°.

The angular factors (2.4) were obtained from the
tables of Tallqvist (1908). This table is not
widely available, but no other table covering its

range has been prepared to the knowledge of the
writer. The National Bureau of Standards table

(1945) covers values of M only up to and includ-

ing 4.

In performing the summation (2.7), the only
generally nonvanishing coefficients are {N<Q)
CI CI CI, CI, CI and Q, though this may be de-
duced directly from table 5 without explicitly per-
forming the smnmation. The values of these,

apart from a radial factor of the form

are given in table 17. Certain general qualitative

features may be noted by inspection. For ^=0
(corresponding to aU charges being located along
the vertical axis), the symmetry is D„h (table 5).

For other angles, the symmetry is generally Dsa,

while at 90° (a planar configuration) it is Deft. A
particular exception occurs for 0=54°44' where
the symmetry is "accidentally" O^, belonging to

the cubic point groups (section 2.4). For this

value of 6, the three pairs of charge axes are

mutually perpendicular and the C2 term vanishes.

For other values of 6 (e.g., 31°), other coefficients

vanish, but there is no general theoretical signifi-

cance to this. It is to be noted that for ^<10°,
the terms responsible for departure from D^^
sjonmetry are small, while in the vicinity of 0=90°
the terms causing departure from Dqh symmetry
are large and quite sensitive to small angular
variations.

Most features of even this simple problem re-

quire the specification of the radial distances of

the ions, as well as the average radial integrals

{r"") of the wave fimctions. On the other hand,
aspects of the Zeeman effect can be understood
without further knowledge of these parameters,

and these aspects are most important for under-

standing more complicated cases. Let us assume

Table 17. A representative crystal field

e CI CJ CI Ct

0° 9. 5120 7. 0898 5. 8991 0 0 0
10° 9. 0818 6. 0491 4. 1557 0. 0765 0. 2113 0. 0001
20° 7. 8430 3. 3675 0. 4242 . 5575 1. 3485 . 0063
30° 5. 9450 0. 1662 -2. 2064 1. 6053 3. 0365 . 0619
40° 3. 6168 -2. 2617 -1. 9088 3. 0170 3. 7557 . 2795
45° 2. 3780 -2. 8802 -0. 8756 3. 7074 3. 3393 . 4953
50° 1. 1392 -3. 0311 . 3326 4. 2850 2. 3851 . 8007
'Oh 0 -2. 7571 1. 3109 4. 6604 0. 7915 1. 1740
60° -1. 1890 -2. 0494 1. 9068 4. 8160 -. 4338 1. 6716
70° -3. 0870 -0. 0269 1. 2322 4. 2086 -2. 5978 2. 7282
80° -4. 3258 1. 8852 -0. 7794 2. 4595 -2. 3645 3. 6146
90° -4 7560 2. 6587 -1. 8435 0 0 3. 9624

" See text.
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that we have the case ^=0° of the preceding table

17, i.e., D„A symmetry. We see from table 9
that the 2J+ 1 states are separated into doubly
degenerate pairs corresponding to ±M, plus (for

integral J only) a nondegenerate state M=0.
The application of a uniform magnetic field par-

allel to the e-axis will reduce the symmetry to C^^
and all levels are now nondegenerate. The splitting

is given by twice the diagonal matrix element
{M\L,+2S^\M}B, since the -M level is de-
pressed by this same amount and there are no
nondiagonal elements, Lz-\-2Sz having no de-
pendence on 4>. If the field is applied parallel to
the y axis, the only symmetry remaining is C27,, but
this is referred to a horizontal axis, rather than a
vertical one. The secular determinant will now
involve matrix elements of L^-{-2Sy. This has
a 4> dependence of the form e=^''*, and will have
nonvanishing matrix elements between states dif-

fering in M by 1. Thus, of all the ±M pairs, a
transverse magnetic field will have no diagonal
elements and will have nondiagonal elements only
in the case of ±1- The magnitude of this ele-

ment
_
will be W(^+l) (J— 5+ 1) g^B and the

splitting will be twice that or (e/+|) g^B.
If we now proceed to the planar case Dg^, we

5
see from table 10 that for states remain

as in the D^;, case and the Zeeman effect for

these lower J values is unchanged. For J=3, the
original pair M= ±3(£'3g,3a) now splits into two
nondegenerate states Big_iu and B2g,2u, which are

the states

1^

V2

vi
+3>+

V2
-3> and

V̂2
+ 3>

—3>, respectively. This arises from the e^^^*

in the potential with nonzero matrix elements
between terms where AM=±6. These states
will show no first-order Zeeman effect, either

longitudinal or transverse. For t/=4, we see that
the states coming from ± 2 and ± 4 have the same
symmetry {E2g,2u), and while we still have degen-
erate pairs, their properties will depend upon the
solution of the associated secular determinant.
One pair will be given by an expression of the
form a|±4>+ (l— a^)^| =F2>- while the other will

be of the form (l-a^)^
|

±4>-a| T 2>. The
coefficient a will be fixed by the magnitude of CI.

For these terms, the longitudinal Zeeman splitting

win be 2[4a2-2(l-a2)] = 12a2-4 and 2[4.{l-a')
— 2a2]= 12a^— 8, respectively, while the trans-

verse effect remains zero. This longitudinal
effect thus depends explicitly on the crystal field.

For J—^i a similar phenomenon takes place

7
through a combination of ± ^ > with =f|>,

and the longitudinal effect will again depend
explicitly on the crystal field. A major difference

will occur in the transverse effect—here there are

nonvanishing off-diagonal matrix elements of the

form < 2 -^!/" -2Sy in the secular determinant

and there will be a transverse Zeeman splitting,

also depending explicitly on the crystal field.

Under, still lower symmetries than De,,, the
Zeeman efi^ect in odd-electron systems becomes
increasingly dependent on the crystal field, since
Kramers degeneracy remains in all cases, or
vanishes in first order in most even-electron
systems where the crystal field states generaUy
become nondegenerate.

6.3. The Fluorescence Spectrum of the
Terbium Ion

Because of the inexact knowledge of the radial
parameters necessary for fiu-ther work on the
direct approach to a solution of a given problem,
the more common procedure is to utilize the quan-
tities <j'^'y-C^N and Kj'^^Su as adjustable param-
eters to fit as best as possible the observed data.
This leaves the radial wave function integrals

combined with the crystal field parameters—they
are frequently left in this form since further infor-

mation about either one of them separately is not
readily available. We shall illustrate this pro-
cedure by some considerations of the fluorescence

spectrum of TbCl3-6H20.
The experimentally observed fluorescence lines

(Singh, J. H. U., Dissertation, 1957), observed both
at 4.2°K and 2.2°K, are given in table 18. The
exciting light, unpolarized, is incident along the
crystal axis (the z axis). For both temperatures,
the spacing of each level from the lowest of its

group is given, the average of the two temperature
values, and the spacing of this (to the nearest

cm~^) from the mean of the group. The overall

mean for each group is also given. The fluorescent

light is observed on the side of the crystal opposite
the incident radiation, also along the 2-axis.

The fluorescent lines are relatively weak and are

generally observed without regard to polarization;

however, a few plates were taken at 4.2°K show-
ing polarization (electric vector along x or y).

These data were made available by private com-
munication from Dr. Singh and are also included

in table 18. In the interpretation of fluorescence

spectra it should be remembered that the spectra

may originate near the surface of the crystal, and
that local fields, different from those in the main
body of the crystal, may significantly affect the

regularities expected.
The Tb ion has the configuration 4/^. Accord-

ing to Hund's rule, the ground state is a "^F multi-

plet with t/=6 lowest, with J from 5 to 0 above
the lowest. The fluorescence spectrum is caused

by transitions from a higher level (probably

but this is not important for the present consider-

ations) to various levels of the ground multiplet.

Qualitatively, the agreement with experiment is

excellent. The groups of lines Z, F, X, W, V, U,
T, correspond to J=6, 5, 4, 3,2, 1, and 0, in that

order. Within each group, there are 2J'+1 lines,

indicating that the crystal field has removed all

degeneracy. This is confirmed by the absence of

any first order Zeeman effect.
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Table 18. Fluorescence spectrum of TbCly6HiO

Line
(4.2°K) (2.2°K)

V V A;. X y

z, 20538. 81
20503. 66

0. 00
35. 15

20538. 77
503. 72

0. 00
35. 05

0.

00.

00 -167
-132

z,
z.

498. 20
461. 26

40. 61
77. 55

498. 33
461. 59

40. 44
77. 18

40.
77

52
oO

-127
-90

No

z,
z. 380. 70 158. 11

454 97
379. 70

83. 80
159. 07

00.

158. 59
-83
-8 Z= 20372

z-

Zi
369. 16
359. 49

169. 60
179. 32

370. 19
359. 27

168. 58
179. 50

ioy.

179.

1 9

41
2
12

z,

^10 306. 14 232. 67
347. 85
305. 73

190. 92
233. 04

1 on

232. 86
24
66

Zn
7

239. 08
193. 84

299. 73
344 95

238. 33
192. 86

300. 44
345. 91

ouu.

345.
Uo
43

133
178

Z\i 179. 61 359. 20 179. 33 359. 44 00 V. ^90^ 192

18433. 00
413. 02

0. 00
19. 98

18433. 04
413. 02

0. 00
20. 00

0.

1 Q1 y.

00
QQyy

-127
-107

s w
s w

F3
Y,

400. 92
359. 26

32. 08
73. 74

400. 99
359. 41

32. 05
73. 63

^9

73. 68
-95
-53

w s

s w
Y,
Y,

341. 00 92. 00 341. 09
333. 69

91. 95
99. 35

y i.

99.

yo
35

-35
-27

s w
s w

X XOtJUKJ

F7
•J 8

308. 29
294 96

124 71
138. 04

308. 57
295. 90

124 47
137. 14

1 9d

137.

oy
59

-2
11

s w
s w

-f 10

250. 87
124. 83

182. 13
308. 17 124 82 308. 22

1 ft9

308.

i 0
20

55
181 ? T

Yn 107. 90 325. 10 107. 81 325. 23 i 0 198 ? ?

X,
X2

17193. 56 0. 00 17193. 49
188. 20

0. 00
5. 29

u.

5.

no
29

-74
-69 w w

X,
Xi

184. 65 8. 91 184 76
135. 74

8. 73
57. 75

0
0.

57.

R9oZ
75

-65
-16

s

s w X=17120

Xi
^6

131. 91 61. 65 131. 98
104 88

61. 51
88. 61

Di.

88.

Oo
61

-12
15 vw

X7
Y

067. 31 126. 25 067. 52
056. 26

125. 97
137. 23

1 9fi

137.

1 1
1 1

23
52
63

X, 013. 94 179. 62 014 48 178. 81 179. 22 105
u

16162. 72 0. 00 16162. 85
080. 68

0. 00
82. 17

0.

82.

00
17

-98
— 15

w w
s

Wi
070. 26
043. 44

92. 46
119. 28

070. 33
043. 44

92. 52
119. 41

92.

119.

49
34

-5
22

w w
w s W= 16065

w,
037. 91
n^9 QQ

124 81 037. 95
n^9 87

124 90 124
129.

86
86

27
32

w w
s w

UZo. U/ io'i. DO 104:. \JV 134. 69 37 s w

V,
^ 2

15499. 89
430. 03

297. 53
292. 94

0. 00
69. 86

202. 36
206. 95

-145
— 75

57
62

"=15355

zoo, ly 1 P^9^^ 1 7 101 vw s

u,
U2

15001. 25
14994 68

0. 00
6. 57

-23
-17

s vw
vw s 17=14978

u,

T
938. 41

14691. 73

62. 84 40

r= 14692
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Let us consider the quantitative details. For
best results, our theory requires L-S coupling
and a crystal field splitting small compared to the
multiplet separation. We may check the validity

of L-S coupling by the interval rule, taking the
separation of the mean of adjacent groups and
dividing by the higher J value. We obtain, in

cm"\ the following:

J=6 344 J=4 264 J=2 158. 5

,7=5 237 J=3 237 J=l 286

This is not especially impressive for very good
obedience to L-S coupling requirements. Let us
also calculate the total spread of a group, divided
by the separation of the group mean from that
for the next lower J. We obtain:

J=6 0. 174 J=4 0. 170 J=2 0. 653

J=5 .274 J=3 .190 J=l .220

This indicates that the influence of adjacent levels

may be rather significant. The irregularity here
for f7=2 is quite interesting; it is only partially

due to the irregularity shown in the interval rule

check, since the total spread of J=2 is 247 cm"^
whUe that of ^=3 is only 179 cm^^

In beginning an analysis, we must first obtain
some idea of the symmetry. From table 9, we
see that the only symmetries giving no degeneracy
for an even-electron system are D2n, C2e, C2h,

and Cj. The overall crystal symmetry suggests

either C2,, or Co^. From table 5, we see that

D2ft requires the following potential coefficients:

CI CI Ct CI CI CI C\ Ct CI The lower symmetry
Civ is obtained by the inclusion of odd potential

terms, which will influence the energy splittings

by a very small amount (section 6.1), while

will include even S terms. These latter will

strongly iafluence the energy splittings. In order

to reduce the number of independent parameters,
we shaU assume 02^, which will be energetically

equivalent to C2,,.

In deducing the field parameters, we need to

know not only the energies of the levels but also

the free ion M values from which they come.
Where the crystal field does not remove all

degeneracy, this may be partially obtained from
the Zeeman splittings. For the present case, the

only source of such information is the polariza-

tion data.

We begin our detailed analysis with the simplest

nontrivial case ^7=1. We have three levels at

—23, —17, and +40. The only potential terms
of Daft contributing to matrix elements within
e7=l are CI and C|. It is a natural first guess to

consider that the CI term causes a splitting of

the state |0> to +40, and
| + 1> and

|

— 1> to
— 20, with a small splitting of the latter two to
— 17 and —23 by C|. This is not necessarily the
case, and must be in agreement with the polariza-

tion data.

From table 14, where radiation in the z direc-

tion corresponds to 0=0=0°, ^=0° for x polari-

zation and 1^=90° for y polarization, we see that

a;-polarized radiation may be produced by either

Al, By, or Ax2, while ^/-polarized radiation may be
produced by Al, Bj, or Ay^. These are the electric

dipole, magnetic dipole, or electric quadrupole
terms, respectively. We shall assmne that the

transitions are magnetic dipole in character. We
do not know the symmetry of the upper state in

the fluorescent spectrum, but there are only 4 pos-

sibilities in a Daft symmetry. From table 13 we
deduce the allowed lower state for each possible

upper state as follows:

Upper
state

B.{U.2)

B-ig Big
B\g B2g

Big A.g Aig
B2g Au Aig

The identification of Z7i and XJi of table 18

ideally requires that they be present in only one
of the two polarizations, rather than "very weak,"
but the actual behavior is quite close to this ideal.

We now turn to table 9, and find that the lower

state Ig yields in Das symmetry the states A^g,

Big, and Big. Since Aig is not present in the

lower group, we conclude that the upper state is

either Aig or Aog, that the lower states at —23
I

and —17 are Big and Big, while the other state

from J=l is Aig. We cannot uniquely assign

Big and Big to a particular one of the —23, —17
levels. The upper level is presiunably ^Di and a

4g level under Dj,, gives both Aig and Aig levels.

Interestingly enough, the same resiilts, Avithout
"g" and "u" subscripts, hold for Ci^ symmetry.
We now see from table 10 that Big and Big arise

from the state Eig of D^^, i.e., they come from
M= ± 1 and our earlier guess is confirmed.

In order to achieve maximum simplicity in the

calculations, it is in general desirable to use zero-

order wave functions which belong to reps of the

symmetry group. In the present case, the state

|0> belongs to Aig, but the states
|
+ 1> and

|

— 1>
are not appropriate, and we must use the (es-

sentially real) combinations Big-. -^| — 1>+
V2

-^|+ l>andi52,:-i|-l>—p|+ l>- We shall

\l2 V2 y2
frequently abbreviate these as |l +> and |1— >,
respectively. We now introduce the perturbation

V=r\C°iQ+ClQ). Since the potential V is

symmetric vmder Das and our three zero order

wave functions belong to difl^erent reps, all non- ;

diagonal matrix elements vanish, and the energies

are merely <0|F|0>, <l+ |F|l+> and
<1— |F|1 — >. It is a general characteristic of
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crystal field problems that one must be freely able
to shift from complex to real forms of wave func-
tions and vice versa, as the symmetry demands.

In the present case, we have from (2.9) ¥1= 02

and Tl^Y2'=^Cl Hence <0|F|0>=
-v2

ial\\Y2\Wl)Cim<r'>= 4:0 cm-i or, from tables

15 and 16, (0.199469)(-0.632456) Yl<r^>=4:0
cm-\ so that FK?'^>= -317.1 cm-^. Similarly,

<l-|-|F|l+ >=(al||Y2||«l)[|(C?§^+ C_Po^)r°

+liCAf + Ci_r) ri]<r-2>=- 17 cm-^

RecaUing (5.6) and using the value of just com-
puted above, we obtain (0.199469) (0.774597)
3^<r2>= + 3, or 71=19.4 cm-^. The sign of

F| is ambiguous, since the state |l+> could
equally well have been assigned to —23 cm~^
These results, while interesting, are really not too
profound, since we have only two independent
energies relative to the mean of the group, and
we had two adjustable coefficients at our disposal.

When we proceed to the J=2 case, we see that
the allowed levels (table 9) are (2) Aig, A2g, Big,

and B2g. In contrast to the J—l case, the Big
and B2g are |1—> and ll+ >. By using table 10,

we see that Aig and A2g arise from 1±2>. In
particular is |2-ty> while A2g is |2— >. These
may most conveniently be deduced from the
transformation rules of table 8, in comparison
with the tesseral harmonics of table 2, keeping in

mind the phase convention for odd positive M of

(2.8). The only nondiagonal matrix elements
in the resulting secular determinant will be
<0lF|2+ >, so that we have only one second
degree equation to solve for the energies.

The polarization data are available only for the
state at +101 cm"-'. This has polarization hke
the state Big or Bog of J=l, and hence is presum-
ably also |l+> or |1— We do not have any
polarization data on the other levels, so we do
not know which states are which. We are there-

fore forced to a trial-and-error process. The
additional potential parameters significant for

J=2 are CI CI CI If we select |l+> as 101
cm"' and anj^ one other as |1— >, this Avill fix

CI and CI, so that only C| is left to fit the other
three levels.

In attempting this process, the work is some-
what simplified by observing that (a2||Y2||Q!2) is

very small, and that second degree terms will

have only a small contribution to the matrix
elements. Consequently, they were disregarded
for the trial and error work, and were included
later for a more exact calculation. The required
matrix elements are, omitting the factor {a2

] | Y4I \oQ)

common to aU,

<o!F|o>=cro^rKr*>

<0|F|2+ >=^;^ {ClJi+CJ2f)Yl<r'>

=~ C4m<r'>

<2+|F|2+>=| (C?ir+CJ«) YKr^y

+1 (C_if+Ci_f) Yt<r'>

^Cim<r'>+ CJrYt<r'>
<1+

1
v\i+>=cim<r'>+ cJifY\<T'y

<\-\V\\-y=Cf^Y\<^r'y-CJ{fY\<r'~>

<2-
1

F|2->= Ci^2yo^r*>- t7_2 42F|<r*>

These may be simplified by observing that C?o^:

Gfi : Cro'=6:-4:l and that (7ir=-Vp GJif- If

we introduce the following abbreviations,

<0|F|0>=Fo <-2|F|+2>=^
<-l|F|-l>=5

the matrix elements may be simplified to

:

<0|F|0>=Fo

<2+|y|2+>=iyo+^

<2-|F|2->=|Fo-/3

<1+ |V!1+>=-|Fo+5

<0|F|2+>=-^|(V2)5=-iV35

<1-|F|1->=-|Fo-5

The form of these matrix elements suggests the
physical situation. The C% term splits the 2«7+l

2
levels into one at Fo, a pair at —^Fo and a pair

at -^Fq. The first pair is then further split by

C\ into states separated by 25. The second pair

is also split into two separated by 2/3 through G\,

but one of these interacts further (via Cf) with

|0> through the nondiagonal matrix element

The trial and error fit was actually tried for aU
possible pairs of states as

1
1+> and

1
1 — The

best fit was obtained for 101 (in agreement with
the polarization data) and —75. With this pre-

liminary information, the second degree terms
were included in the matrix elements, the fourth
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degree coefficients were ctiosen for a least squares
fit in the energy, and ttie following were obtained:

JJJ \KJkJiSJ

101 108. 0 |l + >
62 65. 9 |2->
57 45. 4 0. 820 |0> + 0. 572 |2+>

-75 -85. 8 |l->
-145 -133. 5 0. 820 |2+>-0. 572 |0>

<r4>ro=- 187.8 cm-i <r*>r|= 1,141 cm-i

<r*>Ft= -626.2 cm-\

The fit is only fair. There are three possible

sources of inaccuracy in the treatment. The first

of these is the possibility of deviation from the

L-S coupling approximation. This would appear
essentially in the values of the reduced matrix
elements. Purely from the empirical standpoint,

they coiild be treated as additional parameters to

provide a better fit to the data. A second appre-
ciable source of discrepancy is the interactions

with other states, principally those within the
ground multiplet. The nondiagonal Wigner co-

efficients and Racah coefficients are both generally

of the same order of magnitude as the diagonal
ones, and the reduced L-S matrix elements of

table 15 are appropriate for all combinations with-
in the ground multiplet. Nondiagonal matrix ele-

ments can therefore be of appreciable magnitude
and, in view of the relatively small multiplet
splitting, could become quite important in a more
refined theory. Finally, there is also the possibil-

ity that the symmetry is such as to require the
inclusion of terms. This almost doubles the

total nvmaber of parameters. This will, of course,

permit an adjustment to the data, but there is no
clear requirement for the inclusion of these terms.

It may be noted here again that the earlier check
on miiltiplet separation showed a distinct anomaly
for the J=2 group.

Let us now turn our attention to J=3. Our
allowed states are as follows:

^2g: |0>andl2+> A,: \2->

Big-. |3+ >and|l +> B2,:\l-> and |3->.

If we compute the levels from the second and
fourth degree terms only, we obtain a set of levels

which show a rather sm-prisingly similar trend to

the actually observed levels, which include the
effect of sixth degree terms. Unfortunately, the
polarization data both here and for still higher J
does not appear to follow either the rules appro-
priate for D2/, symmetry found adequate for lower
J, or any other pattern easily amenable to analysis.

In particular, the states given do not especially

even suggest the reported polarization data.

E (obs) E (calc) State

37 45. 1 0. 948 l + > -0. 319 3+>
32 36. 9 . 756 3-> -.654 l->
27 21. 8 . 784 0> -. 620 2+>
22 8. 6 . 620 0> +. 784 2+>
-5 -14. 8 . 319 l + > +.948 3+>
-15 -28. 0 |2- >
-98 -69. 6 0. 756 l-> +.654 3->

There is obviously a considerable amount of work
yet to be done before the Tb spectrum is under-
stood. Experimentally, there is need for more
attention to polarization data for fixing the charac-
ter of the states involved. Theoretically, there are

several lines of endeavor to be pursued. The
problems become numerically so tedious that
machine calculation is probably required for fur-

ther success. The first of these is a systematic
machine calculation of nondiagonal Wigner co-

efficients. The published table of Simon (1954)
is inadequate in range, and the extension of table

15 by desk calculations is almost out of the ques-
tion. For the most part, the tables of the Racah
coefficients (Simon et al., 1954) are adequate, so

that the availability of Wigner coefficients would
permit a study of nondiagonal contributions to the

energies. Furthermore, it appears that in prob-
lems of low symmetry, such as the present one,

there will be a requirement for trial-and-error

calculations. These are well adapted to machine
calculations, but are again, except in very sim-
ple cases, almost out of the question for desk
calculators.
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