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Bibliography on Molecular and Crystal Structure Models

Deane K. Smith ^

A bibliography on molecular and crystal structure models is presented. The references
are classified into those discussing models in general, static models, dynamic models, or con-
struction devices. The static models are further classified in molecular (Fisher-Hirschfelder-
Taj'lor type), closed packing, open molecular, open crystal structure, open with parallel rods,
polyhedral, and miscellaneous models. A short annotation is given which describes the model
tj'pes and indicates the more significant articles pertaining to them.

1. Introduction

The mounting volume of literature on molecular
jind crystal structure models reflects their increas-

ilng importance in modern scientific research. The
toginal use of models for depicting atomic arrange-

fients is obscure, but it may date back to Kepler
1611) in his Strena seu de nive sexangula. As early

s 1690 Huygens, in his Treatise on Optics, con-
pidered the calcite structure to be composed of a
lihree-dimensional array of flattened spheroids.
iHaiiy (1784) in his Essai d'une theorie sur la struc-

ture des crystaux appliquee d plusieurs generes de

'substances crystallisees pictured the calcite struc-

ture as consisting of a three-dimensional array of

unit rhombohedra and showed the relation of these
lunits to the usual scalenohedral habit of crystal-

lized calcite. Frankenheini (1842) and Bravais
,(1848) show a baU-and-spoke representation of the
(14 space lattices. However, it was Pasteur (1848),
van't Hoff (1874), and Le Bel (1874) who used the
first truly molecular representations in their work
on optically active compounds. Barlow (1884,

il897), Kelvin (1889), and Barlow and Pope (1906,

11907, 1908, 1910) used packing models incorporat-

ling spheres to explain hexagonal and cubic close

jjpacking and some simple crystal structure types,

i
Since 1912, when the use of X-rays for deter-

imining crystal structures had its beginning, models
/have played an even more common role as an im-
iportant research tool. Besides being used as an
(instructional aid in classrooms, many types of
' structure models are used extensively in research
laboratories throughout the world. Even re-

searchers who can "think in three dimensions"
find that the time spent in constructing a model is

usuaUy justified because the mutual relations of

the atoms are much more apparent in the model.
The model is often an aid to the chemist for inter-

1
preting the results of structure analyses. Chemical

1 reactions and the physical properties of crystalline

[

material, such as optical, elastic, electrical, mag-
" netic, and thermal properties can be qualitatively

' correlated with the crystal structure most easfly

when a model is available. Models are now being-

used as research tools by physicists, chemists,
geologists, metallurgists, and biologists.

;

Special models have been developed to interpret

I

many properties of cleavage, stacking disorder,

deformation under mechanical stress, isomerism,

Research Associate, Portland Cement Association Fellowship.

and steric hindrance. Further developments in

the field of specialized models are the dynamic or

working models. These models represent atomic
and molecular movements and interactions which
take place during chemical and physical processes.

Such effects as thermal motion, phase changes, and
dislocations or disruption of ordered arrays by
foreign ions have been well illustrated by working
models.

2. Organization of the Bibliography

Because of the ever-increasing use of structure

models in scientific research and the widely
scattered literature on them, it was felt that a
bibliography covering the various types and uses,

conventions as to scale and other characteristics,

and construction techniques would be useful,

especiaUy for anyone planning to construct a

model for the first time. This bibliography
includes most of the readily available papers, but
some references in less accessible journals have
probably been missed. Also missing are references

to many variations in models developed for special

purposes that unfortunately have never appeared
in print.

The references in this bibliography have been
grouped into four broad categories: Models in

general; static models; dynamic models; and
construction devices. Only the static models have
been further subdivided, because they are the most
common and show a great divergence of types.

Many of the static models are actually combina-
tions of two or more basic types. Thus a clear-cut

subdivision is quite difficult. Four subgroups have
been used: closed models, open models, polyhedral

models, and miscellaneous. Each reference has

been classified as far as possible according to the

dominant features of the model described.

3. Models in General

Because of the wide variety of structure model
types, very few papers were classified as general in

content. Only the discussion by Nicholson (1952)

is really a survey paper. He describes several

types of crystal models seen in various labora-

tories, some of which are not described elsewhere in

the literature. These previously undescribed types

are an indication that many types of models

developed for specific uses have never been

described in the literature. Gibb and Winnerman
(1958) discuss the applications of crystal models.
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particularly packing models, for understanding
salt reactions. Bragg and Bragg (1929) have
compiled a set of stereophotographs of crystal

structui'e models of several types.

Other general papers contain the color and size

standards established by the British Institute of

Physics (1947) which is generally followed in the
United States. This same code is reproduced by
Lipson and Cochran (1953). A few variations

from this code do occur; for example, white is as

commonly used for silicon as is the black listed in

the specifications. In some of the more complex
mineral structures which contain several different

metal atoms, the color code has been altered.

Also in the Fisher-Hirschfelder-Taylor model sets,

blue is used for oxygen instead of red. Thus
anyone inspecting any model for the first time
must check the identification of the atoms.

A compilation of bond angles and interatomic
distances in molecules and ions, which is useful to

model builders, has been edited by Sutton (1958).

It includes data obtained by spectroscopy and
X-ray, electron, and neutron diffraction up to

and including the year 1955. Another source
for this information is the Groth Institute at the
Pennsylvania State University.

4. Static Models

Static models, in contrast to the dynamic
models, are very widely used at the present time.

They are primarily employed to depict accurately
the relative atom positions and bond angles in

either molecules or crystals. Two main types
of these models exist. In the first, the atoms are

represented by spheres scaled to the effective

atomic radii, and the model consists of these
spheres placed in contact in their respective posi-

tions. The internal portions of these models are
not usually visible, and this type of model will

be termed closed. The second type, which will

be termed open, consists of units representing
atoms, usually spheres of wood or plastic, linked
by rods representing the bonds. These open
models show valency angles, interatomic dis-

tances, and symmetry more clearly than do the
closed models. However, only rarely is any
attempt made to represent atomic radii with the
size of the spheres, and this type of model is not
so easily used to study spatial relatioias and steric

hindrance as the closed type. The wire models
may be considered open models in which the balls

representing atoms have shrunk to the vanishing
point.

A few additional types of static models exist

which cannot be placed in these two main clas-

sifications. Of these, only the models made with
coordination polyhedra warrant separate mention.
The polyhedral model was developed primarily as
a money and time saving structural representation
which generally depicts the arrangement of anions
about each cation or the closest neighbors around
a carbon atom.

5. Closed Models

5.1. Closed Molecular Models

The closed models may be subdivided into two
types, which, however, are not completely distinct,

j

The first type, commonly called the Fisher-

«

Hirschfelder-Taylor models (abbreviated hence-
forth as F.H.T.), are usually attributed to Stuart

:

(1934). Discussions on the theoretical aspects
:

of these models are given by Wepster (1946,
;

1951), Taylor (1941), Briegleb (1950 a, b), and
'

Hartley and 'Robinson (1952). The F.H.T. models
|.

consist of plastic or wooden spheres whose radii !

are proportional to the Van der Waals radii, and ;

whose colors (with some exceptions) correspond '

to the British code. These spheres are flattened;'

by cutting along planes normal to expected bond ''

du'ections by an amount corresponding to the|

difference between the Van der Waals radii and''

the single, double, or triple covalent bond radii. '

Thus for a given element several different atom

,

models may be necessary; for example, five;

different models of the carbon atom are used to;

represent the five most common combinations

!

of single, double, and triple bonds in which it
i

occurs.

In the early models of the F.H.T. type, the

atoms were bonded with wooden pegs which per-

mitted rotation of atoms around single bonds but
yielded a model with poor tensUe strength.

|

Consequently, several types of snap fasteners have '

been developed, notably by Taylor (1941, 1943) '

and Hartley and Robinson (1952). Casler and

'

Corey (1958) describe a magnetic coupling used

primarily for hydrogen bonds.
,

The F.H.T. models incorporate several desirable
j

features. (1) The models are quickly constructed,

and most molecules can be made or at least ap-

,

proximated. (2) The size of the model closely,

represents a scaled-up molecule. (3) The space-

(

filling characteristics are easily observable. (4)

,

Steric hindrance may be observed by using
j

rotatable bonds. Briegleb (1950) and Hartley
j

and Robinson (1952) list several shortcomings
of the standard F.H.T. model and suggest modi-t
fications which wUl allow the bond angles to bef,

distorted up to 12° and give the model somoj
flexibility. Both the F.H.T. models and the(

Courtauld (Hartley and Robinson) models are]

commercially available through chemical supply
;

companies. Recently Godfrey (1959) has de-f
scribed a slightl}^ modified F.H.T. model which is

also commercially available.

The recent availability of spheres of several,

colors and sizes made from foamed polystyrene

!

has led several people, notably Lambert (1953), i

to construct their own Stuart models. The spheres I

are given flattened surfaces normal to bond direc-

1

tions as in the F.H.T. models. They can be bonded ;

temporarily by metal rods or pipe cleaners or i

permanently by glues.

2



'I f 5.2. Closed Packing Models

The second type of closed model is the packing

j

paodel. The main distinction between this model
V, and F.H.T. type is that the atoms are assumed to

oe spherical, and the radii of the spheres are made
f- proportional to ionic, metallic, or covalent radii of
•^' Ihe represented atoms. Spheres of wood, cork,

foamed poh-styrene, and plastics have been used
m these models. Whereas the F.H.T. models are

aiost applicable to organic models, the packing
model is more suitable for representing inorganic

^ijsrystal structures, especially those with metallic

.(jf.and ionic bonding.
Packing models are constructed by marking on

die surface of each sphere all the bond dii'ections

and gluing or pinning the spheres at the appro-
'priate points of contact. Plastic balls may be

r^ijglued by placing a drop of solvent at their point
':'m contact. Buerger and Butler (1936) have

described the process fairly completely. Davidson
(1952) describes the use of cork balls, and Hatch,

!^
Comeforo, and Pace (1952) and Ordway (1952)

J'idescribe models made with hollow, transparent

^ plastic spheres. The use of foamed polystyrene
*' spheres is discussed in the paper on a punching jig

Iby Gibb and Bassow (1957).

6. Open Models

In the open models the balls representing the
fjjjatoms do not touch; instead they are usually
jjjiconnected by rods representing the bonds. The
^ilballs may or may not be scaled in diameter. In
/'these models the atoms within can be seen as well
las those on the sm-face, and thus this representa-

,

i^'tion is more suitable for complex structures and
•*| ;for photographic illustration. The symmetry and
'^iiilbond patterns are more easUy visible, but the pack-
^iiing characteristics of the atoms are not so ap-
yjjparent. In general, it is easier to construct an
^|iopen model of a distorted molecule than a closed
'Ijione if the departures from regiilar arrangement
^ajqare large.

If The open models have been divided into three
?]l groups. The first group contains molecular models
"which are primarily organic in nature, and the

*
'
Second group contains the more general structure

- models. The models of both these groups have
sometimes been called the "ball and spoke" type.

'fjl'The third group consists of vertical rods mounted
!|]

at certain positions on a base plate and supporting
"•'balls at specific heights.

J

6.1. Open Molecular Models

,e ,. The open molecular models are commonly called

Ijjithe Brode-Hurd-Boord models (Brode and Boord
a;! 1932). Sets of balls of uniform size, with holes
> • drilled to a uniform depth in expected bond di-

d rections, are commercially available for building
r these models. The balls are joined by rigid rods

whose lengths are proportional to the bond

lengths. Present sets also contain flexible rods
or helical springs for making double and triple

bonds and allowing some distortion. With these

sets most molecules can be constructed. Pouleur
(1932) devised a slightly different set of models
which had two or three parallel holes in directions

of double and triple bonds. Wooster (1944) and
Wooster, McGowan, and Moore (1949) suggest
using baUs with 26 holes corresponding to the

symmetry directions in the cubic system. Bren-
ner (1948) suggests using rubber balls instead of

rigid balls which, coupled with flexible rods, will

allow the construction of more distorted models.
Sets based on all these different systems are com-
mercially available.

6.2. Open Structure Models

The open structure models are closely related

to the open molecular models in both origin and
construction; the main difference is that these

models show the atomic positions as related to

the unit cell and thus show the crystal symmetry
and the repeat unit. In general, when making
these models, much greater care must be taken in

positioning the atoms and their bond directions

than in the moecular models. Models of this

type representing many known structure are avail-

able from several commercial sources.

These models are usually made with wooden
balls, although plastics, cork, and recently foamed
polystyrene have been used. Holes are drilled in

these baUs in bond directions, and the balls are

joined with rods of Monel, brass, or aluminum.
As these models are usually built with permanency
as an objective, iron rods are avoided because
they rust. A good general description is given

by Seymour (1938). Several devices for drilling

the holes are available and will be described under
constructional devices. Only one commercially
available set, described by Noyce (1951), is pri-

marily designed for constructing these models.

It is quite limited in use because most crystal

structures are somewhat irregular, and thus each
compound presents a special construction problem.

Several attempts to simplify the construction

of the open models have been made. Gruner (1932)

builds the wire frame first and then adds the

atoms, using Plastic Wood. Perldns (1951) uses

clay to form the atoms and, after the construction

is complete, fires the entire model to make it per-

manent. The other attempts at simplification are

seen in the many devices for positioning the holes

in the correct bond directions.

6.3. Open Models with Parallel Rods

Another type of open model, first described by
Sohncke (1879), consists of spheres supported on
parallel rods which are usually vertical. The rods

are rigidly mounted in a block of wood, clay,

paraffin, or foamed polystyrene, or held in place

by a wire mesh. The position of the rod in the

base corresponds to the coordinates of the atom

3



in the projection of the structure on that plane.

The sphere representing the atom may be adjusted
on the rod to make its heiglit correspond with
the third coordinate. The vertical rods have no
significance in the finished model. This type of

model is very useful to crystallographers who are

studying projected electron density maps.

7. Polyhedral Models

The polyhedral model consists of polyhedra,
usually of cardboard or paper, which depict the

coordination of anions around a central cation or

of bonded atoms around a central covalent atom.
The corners of the polyhedra correspond to the

positions of the surrounding atoms. The model is

built up by joining appropriate corners and edges
of the polyhedra. These models have an ad-
vantage in being inexpensive to build for a class

project, although they do not show the relation-

ships inside a completed model too well, and they
do not show the positions of the central atoms.
Schneer (1952) describes their construction fairly

completely. Pauling (1939) has used these models
extensively for illustration. Quite often poly-

hedra have been used for certain radicals such as

Si04 and SO4 in models of the vertical rod type.

They have also been used combined with molecular
models to show complex ions (Wendlandt, 1957).

The versatility of these models was emphasized
by Ashley (1930) who constructed them with ir-

regular as well as regular coordination polyhedra.
Elaborate models with irregular polyhedra are

rarely constructed, however, because the precise

knowledge of the coordination together with the
work of deriving the shapes of the cardboard
pieces usually justifies a model I'epresenting the

individual atomic positions.

8. Miscellaneous Types

Many miscellaneous model types have been
developed. One type closely related to the open
models is the wire model. Hughes and Taylor
(1949) describe a jig formaking rigid wire molecular
representations for projection onto an electron
density map. Tilton (1958b) uses rigid wire
tetrahedra coupled with cylindi'ica.l clamps to
depict network structures in silica glass. The
Dreiding wire models described by Fieser and
Fieser (1959) are commercially available. Models
based on several parallel sheets of Lucite or glass

have been used by Brown (1951), Gordon (1938),
Welch (1953), Westbrook (1957), and Wyckoff
and Ksanda (1926). The atoms are mounted on
the transparent sheets as either plastic balls,

corks, electric lamps, or painted circles. Con-
toured three-dimensional Fourier electron density
maps have been assembled in this manner.
Wlialen (1957) has drawn a chain of atoms on a
strip of paper which he then twisted to form an
a-helix (polypeptide chain) configuration. Lam-
bert (1957) has used foamed polystyrene to repre-

sent molecular orbitals. Undoubtedly many other

types of models have never been described in the

literature or are discussed only in connection with
a specific problem.

9. Dynamic Models

Dynamic models have been developed primarily

to study the effect of thermal motion on atomic
arrangements. One of the early dynamic models,
described by Kettering, Shutts, and Anderson
(1930) and consisting of balls connected with
helical springs, is still commonly used in classrooms
today. Models for showing molecular vibrations

have been described by Childs and Jahn (1937)
and Trenkler (1935). Several models for stimu-
lating the effect of thermal motion on ordered
lattices of spheres have been devised. Pohl (1952)
and Hilsch (1954) have used magnets, Woolley
and McLachlan (1949, 1950) have used lead shots

between plates, and Bragg and Nye (1947) have
used soap bubbles. Magnetic balls floating on
water have been employed by Dietzel (1956) to

represent the effects of thermal motion, simulated
by blowing across the surface of the tank. There
is little doubt that the development of dynamic

|

models is just beginning. t

10. Construction Devices

Drilling jigs maj be separated into two groups:

those which will drill holes only in certain special

directions, and those which will drill holes in any
desired position. In the first group fall the jigs of

Wooster (1945) and Evans (1948) which will posi-

tion twenty-six holes along the symmetry direc-

tions of the cubic system, that of Gibb and Bassow
(1957) which will punch tetrahedra! and octa-

hedral holes in foamed polystyrene spheres, and
that of Anker (1959) which drills marked holes in

rubber spheres. More elaborate devices for posi-

tioning holes in any desired direction have been
developed by Buerger (1935), Decker and Asp
(1955), and Haywood (1949), using a spherical

coordinate system to locate the bond direction,

and by Smith (1960) using bond angles.

For wire models, Hug-hes and Taylor (1958)
made a device for bending wire to conform with
bond directions.
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