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MeV Total Neutron Cross Sections*

Robert B. Schwartz, Roald A. Schrack, and H. Thompson Heaton. II

Thia report ia a compilation of the MeV neutron total cross section data measured at the National
Bureau of Standard, over the past several years. The measurements eenerally span the enersy in-
terval from 0.5 to 15 or 20 MeV; data are presented in graphical form for twelve normally occurring
elements, plus the separated isotopes ="U. ="U, and ""Pu. An appendix is included which gives com-
plete details of the experimental technique.

Key words; MeV neutrons; neutron time-of-flight; neutron total cross sections

1. Introduction

This report is a compilation of the MeV Total Neutron Cross Section data measured

fLTf fv.

B^eau ot Standards. The neutron tirae-of-fiight method wasused for the measurements, tvith the NBS electron linear accelerator as the pulsedneutron source. The measurements were made over the energy range 0.5 to 20 MeV
(in some cases, only to 15 MeV). Except for the uranium and plutonium isotopes, themeasurements were made on the naturally occurring isotopic mixtures of the elements
in question In each case, the data are presented in the form of graphs, both linearand logarithmic. Descriptive notes are also included for each element, giving details
concerning the samples.

Most of these data have not as yet been formally published. In most cases how-
ever the data have been presented orally at various meetings of the American Phys-

tatks
Literature Reference" is given which refers to the abstracts for these

Details of the experimental technique are given in the appendix.

I.l. Quality of Data

A. Energy Resolution

At low energies the resolution is largely determined by the neutron detector
thickness (12.7 cm); at high energies the electronic response function plays the dom-
inant role. For our 40 m (light path, the resolution varies from 0.2 ns/m at 500 keV
to 0.08 ns/m at 15 MeV. The resolution as a function of e
in the appendix.

nergy is shown in figure 5

B. Energy Scale Uncertainty

The energy scale uncertainty is 0.04 ns/m. There is excellent agreement between
our energy assignments and, for example, the precision neutron energy determina-
tions of Davis and Noda (NucL Phys. AI34, 361 (1969)).

C. .Absolute .Accuracy

The absolute accuracy of the data is estimated to be within ±1 percent This
estimate is based largely on the excellent « 1%) internal consistency of data takenmth ditferent sample thicknesses, and under different experimental conditions, as
well as the excellent l< 1%) agreement between our hydrogen data (Schwartz et al
Phys. Letters SOB, 36 (19691) and previously measured values, as represented by the
shape-independent effective range theory. Detailed comparisons between our data
and those from other laboratories will be given in later publications; we simply state
here that such comparisons have generally shoivn good agreement consistent with
our estimated 1 percent accuracy.

D. Statistical Precision

The statistical errors are generally 1 percent to 2 percent per point, but somewhat
poorer at the extreme high and low energy regions of our data. In any case, the sta-
tistical errors are indicated by the usual vertical hnes at every tenth point on our
curves, except in cases where the error bars are smaller than the points.

1.2. Experimental Technique

A brief account of our experimental setup has been given previously (R. B.
Schwartz, H. T. Heaton II, and R. A. Schrack, Proc. Symposium Neutron Standards
and Flux Normalization, AEC Conf-701002, Argonne, Illinois, p. 377 (October 21,
1970)). This description is brought up to date, and further details given, in the
appendix.

lupported in part by the U.S. Defense Nucl r Agency. Washington, D.C. i
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HYDROGEN

Sample materia!: polyethylene (CHOx

open: high-purity carbon

Sample diameter: 12.7 cm

Sample thickne! 18.3 cm
)! = 1.438 atoms/barn of hydrogei

Analysis: polyethylene: stochastic ratio of hydrogen to carbon within 0.04 percent of theoretical value

carbon: Volatile and nonvolatile contamination less than 0.01 percent

Literature Reference: R. B. Schwartz, R. A. Schrack, and H. T. Heaton II. Physics Letters SOB, 36 (1969); also, Proc.

Symp. Neutron Standards and Flux Normalization. AEC CONF-701002. Argonne, Illinois, p. 57

(Oct. 21, 1970).

Comments: Equality of carbon atoms/barn in the carbon and polyethylene samples can be seen from the absence of

structure in the observed hydrogen cross section. The statistical precision is degraded where there

are large peaks in the carbon cross section (e.g., 2.1 MeV), but there are no net fluctuations.
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BERYLLIUM

Sample Material: metallic beryllium

Sample Diameter; 12.7 cm

Sample Thicknesses: 3.3 cm; ti=0.4069 atoms/bam

7.65 cm; n=0.9447

Analysis: s= 99.39 percent beryllium

principal impurity: < 0.6 percent oxygen

Literature Reference: R. A. Schrack, R. B. Schwartz, and H. T. Heaton II, Bull. Am. Phys. Soc. 16,495 (1971).
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CARBON

Sample Material: pressed graphite

Sample Diameter: 12.7 cm; 5.08 cm.

Sample Thickness: 5.08 cm ?? = 0.4803 atoms/bam

10.16 cm 7i=0.9557 atoms/barn

17.78 cm » = 1.6750 atoms/barn

Analysis: volatile components < .01 percent

nonvolatile components < .01 percent

Literature Reference: R. B. Schwartz, H. T. Heaton II, and R. A. Schrack, Bull. Am. Phys. Soc. 15, 567 (1970).

Comments: Density fluctuations within a sample are less than 1 percent. There was no evidence of absorption

impurities on exposure to air.
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NITROGEN

Sample Material: liquid nitrogen

Sample Diameter: 12.7 cm

Sample Thickness; 27.9 cm, n - 0.9684 atoms/barn

13.5 cm. n= 0.4683

Literature Reference: H. T. Heaton 11, R. B. Schwartz, and R- A. Schrack, Bull. Am. Phys. Soc. 15, 568 (1970).

CommentB- Special dewars were constructed witl, end windows of known thickness of pyrex. Open runs were made
Comments, bpe

^^^^^^^ t^am. The nitrogen cross section was also obtamed by run_

ning melamine (CH,N.) against polyethylene ICH-.). A powdered sample of ""'^
''^o C

atoms/barn of nitrogen was run aga.nst a sample of polyethene havmg the same number of atoms of C

and H Figure A shows the ratio of cross sections obtained using melamme and liquid ratrogen.

Figure A,
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OXYGEN

Sample Material:

open:

Sample diameter:

Sample thickness:

Literature Referen

quartz (Si02) single crystals

semiconductor grade silicon

5.08 cm

7.54 cm; n= 0.396 atoms/barn

29.98 cm; n = 1.576 atomsAiam

R. A. Schrack, R. B. Schwartz, and H. T. Heaton II, Bull. Am. Phys. Soc. 17. 555 (1972).

whe« there are large peaks in the silicon cross section (e.g., 570 keV), but there are no net fluctuations.
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ALUMINUM

Sample Material: metallic aluminum plate

Sample Diameter: 12.7 cm

Sample Thickness: 11.3 cm, u= 0.6858 atoms/barn

A„a„,,s: The samples were fabricated fron, 1100 .rade a.u„,i„u,„. The principa, impurities were 0.62 percent iron

and 0.16 percent copper. AU other impurities were less than 0.1 percent.
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SILICON

Sample Material: polycrystalline silicon bar

Sample Diameter: 5.08 cm

Sample Tliickness: 4.6 cm. i. - 0.2294 atoms/barn

17.9 cm. « = 0.8957 atoms/barn

Literature Reference: E. A. SchraC. R. B. Schwart. and H. T. Heaton 11. Bull. Am. Phys. See. 16, 495 ,1971).

Comments: The samples were semiconductor grade silicon having impurity levels < 10-.
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CALCIUM

Sample Material: metallic calcium

Sample Diameter: 12.7 cm

Sample Thickness: U.f) cm, 0.3331 atoms/barn

44.7 cm, )!= 1.027 atoms/barn

Analysis- The samples were fabricated from 99 percent purity metal and placed m me al contamers to prevent exces-
Analysis.

J^^e
-mp^^._^^

^ .^^ spectrograph.c analysis of tl,e samples d.sclosed
'^'''-^"'f^lfj^^^^^^^

concentration were magnesium and strontium, both present .n concentrations greater than 0.1 percent but

less than 1 percent.

Literature Reference: R. A. Schrack, R. E. Schwartz, and H. T. Heaton II. Bull. Am. Phys. Soc. 17, 555(1972).
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TITANIUM

Sample Material: metallic titanium bar

Sample Diameter: 12.7 cm

Sample Thickness: 10.7 cm, n - 0.6368 atoms/barn

Literature Reference: R. B. Schwartz, R. A. Schrack, and H. T. Heaton 11, Ball. An,. Phys. Soc. 14, 494 (1969).

Analysis: A qualitative spectro^aphic analysis ctthe san«,le showed no impurit.es at levels greater than 0.1 percent.
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IRON

Sample Material: metallic iron

Sample Diameter: 12.7 cm

Sample Thickness: 2.94 cm. n = 0.2490 atoms/barn

11.8 cm, « = 0.9997 atoms/barn

Analysis: The samples were fabricated of SAE 1017 steel containing 0.9 percent manganese. The presence of themanganese may, at worst, introduce spurious fluctuations of up to 3 percent in amplitude in the energyregion where there are sharp resonances (< 2 MeV) and should have negligible effect at higher energiel
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NICKEL

Sample Material: nickel 200 cold drawn rod

Sample Diameter: 5.08 cm

Sample Thickness: 4.46 cm, 71=0.4047

11.37 cm, n= 1.032

Analysis: Qualitative spectro^raphic analysis of the sample showed no impurities greater than 0.1 percent.
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LEAD

Sample Material: metallic lead sheet

Sample Diameter: 12.7 em

Sample Thickness: 7.6 cm, 71 = 0.2614 atoms/barn

Analysis: A qualitative spectrographic analysis was made on the sample; the principal impurity was copper presentto less than 0.1 percent. All other impurities were less than 0,01 percent
PP", present
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URANIUM

Sample Material:

Sample Diameter:

Sample Thickness:

Analysis:

enriched metallic uranium

1.91 cm

4.45 cm, w = 0.2136 atoms/barn

1.00 percent

93.22

0.38

5.39

C: 200 ppm by weight
Si: 200

Pe: 200

0: 80

P: 50

Ni: 30

Al: 20

Literature Reference:

Comments: The

R. B. Schv/artz, H. T. Healon II. J. Menke. and R. A. Schrack, Bull. Am. Phvs. Soc. 18 (1973)
539.

asured cross section has been corrected for the ""U and carbon content, using our previously
nieasured values of these cross sections. Since the maximum correction was 0.4 percent any errors in
the corrections would introduce a totally negligible error in the final cross section. Systematic errors
in the ftnal corrected cross sections due to the remainingimpurities are < 0.1 percent.

Acknowledgment: We should like to thank the Los Alamos Scientific Laboratory for providing us with the sample,
and for doing the chemical and isotopic analysis.
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""'URANIUM

Sample Material: depicted uranium metal

Sample Sizes: 5.08 cm diam; 1.91 cm thick
5.08 cm diam; 4.45 cm thick,
1.91 cm diam; 4.45 cm thick;

= 0.0914

- 0.2128

= 0.2132

Analysis:

"U: 0.19 percent
"U: 99.80

350 ppm by weight
400

100

85

30

15

Literature Reference: R^B. Schwartz, H. T. Heaton I,, Menke, and R. A. Schraok, Bull. Ann. Phys. Soc. 18 a9,3,

Comments:

l'—^^^^^^^^^^^^
in the corrections would introduce a Slfn Jl lreT the' "/nil' '""""'T V'the final, corrected, cross section due to tL gLtriti"e: a^Vrptr^nt'''^'™'""

Acknowledgment: We should like to thank the Los Alamos Scientific r =h , ,

andforperformingthechemicalandTs^topTc anafysi '
"
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^"'PLUTONIUM

Sample Material: plutonium metal

Sample Diameter: L91 cm

Sample Thickness: 4.45

Analysis:

n = 0.2207 otoms/gran-

0.01 percent

0.37

0.02

260 ppm by weight
15

15

10

Literature Reference: R, B, Schwartz. H. T. Heaton II, J. MenUe, and R. A. Schrack, Bull. Am. Phys. S„c. 18,1973, 539
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AI. Experimental Arrangement
Figure 1 is a bird's eye view of our tarect area w» n, i j t

electron linear accelerator as a source of Su^rons The h ' f

"

of tlic picture, and passes throuT.
"'"'"^o"" Tlie beam enters from tile bottom

monitor' Since'tl,is se s ZJned f^rboZw"'"".'"""''"'
"

neutron cross section measuremeS^ ireautmenrr"^^^^^^^
For cross section measurementTthe mamet i^T^ 1 ? f'i " """"""^
tion. The electron beam ererges' from thfrna™ t"^

f"""^"

our neutron producing target

Appendix-Experimental Techniques

PZ IONIZATION CHAM6E

NEUTRON SOURCE

NEUTRON TIME-OF-FLIGHT
EXPERIMENTAL AREA

iRT PHOTOMULTIPLIER

ELECTRON BEAM LINE

FIGUBE 1 . Neutron time-of-flight target area.

' Figureain brackets indicate the lit«ratur« references at the end of the appendix.

^^etr'an™?,!""""""? " "> evacuated flight path.The transmission samples are placed three meters from the neutron source.

A2. Electron Linear Accelerator

„nl "^r^
accelerator has been described previously [2J, and hence

™l'rbe''Ltt"°n:dh:Jr
" tlme.of.fllgi;t'ixpeHmrt:

BO nfeV The'T 'f' ">'"'»''«'"'="t» the linac is generally run at about

hirer ihanthh T'f" °' ""ifary, as long as it is considerablyhigher than the highest energy neutrons to be measured. On the other hand, once theenergy ,s chosen, ,t must remain stable over the course of a measuremen (several

?hetrar, [h 1 '^'^" ""^ P"' "< *e neutron spectrum remaTns the same

'he^'eutroli'p^o^^ctj L"rge^
'"""^^ ' '^'"'"^

and since the' vilTdT'''/"' "^'^f™ ""'^ Pe-- "eam burst,and since the yield of neutrons is fairly high, only very low beam currents are reouired

Ts IvTtr : "V °' APP-imately ten times more current
IS available in a 2 ns wide pulse.

whi I''!l'l'"'"' '"'"I""'
" ™"'entional triode gun,= driven by a special pulserwhich allows a wide range of pulse widths: from several microseconds down to less

puls"es p"er "cord™ ™" " '° ^ " --ePe'i'i"" "te of 720

The average dark current is generally held to 0.01 percent of the average beamcurrent, and hence causes no problem.
^..igcueam

The beam spot size is - 3 mm in diameter.
Once tuned up. the linac is generally quite stable in operation. Specifically thebeam spot is stable in size and position, the beam current fluctuates by less than 10

percent, the energy remains within the 2 percent limits and the pulse shape remains

takinj"'
^'^ '''^^ ""''''''J' "ery important for accurate data

A3. Neutron Producing Target

To some extent, it is possible to "tailor" the neutron spectrum by the choice ofneutron producing target. Very generally, in the McV energy range, higher Z targetsproduce more neutrons, but of low energy and lower Z materials will give fewer neu-
trons, but of higher energy. The observed spectrum will, of course, be modified by thevariation in the detector efficiency ns a function of energy. In our early measurements
(which only went to - 5 MeV neutron energy), cadmium targets 1 to 2 cm thick were
used. The yield from cadmium tails off sharply above about 6 MeV, however so a com
bination of - 0.1 cm tungsten, backed by - 3 cm beryllium is now used. The tungsten
provides the low energy neutrons and also acts as an efficient bremsstrahlung radiator

' Applied Radiation Corporation Model 10. (Thi. particular piece of equipment, and certain other com-merciai e,uipment. instrumenU and materials are identified in thi. Monosraph in order to .dequately
specify the experimental procedure. In no case does such identification imply recommendation or endorse-ment by the National Bureau of Standards, nor does it imply that the material or equipment identified isnecessarily the best svaiiabie (or the purpose.)

equipment loentined is



for the beryllium which, in turn, supplies the higher energy neutrons. The difference
in thickness between the W and the Be is typical of the difference in yields between
high Z and low Z materials. The use of a target which is mainly low-Z is also important
in solving some of the problems associated with the gamma flash, as will be discussed
in section A4.3.

A4. Instrumentation

A4.1. Detector and Fast Timing Electronics

The main function of the fast electronics is simply to provide a "start" signal,
related in time to the production of the neutrons, and a "stop" signal, similarly related
in time to the detection of a neutron at the end of the flight path. These signals are
then analyzed and encoded by a Time Interval Counter, (sec. A4.3)

A block diagram of the electronics is shown in figure 2. Not included are such an-
cillary' units as fanoiits, pulse shapers, and delay cables, nor do we show the slow
electronics necessary to produce the logic signals for the on-line data handling system.

Figure 2. Btot^k diagram of electronics.

The shower developed when the electron beam strikes the neutron producing tar-
get impinges upon a bare RCA 931A phototube (i.e., no scintillator is used). The photo-
tube anode signal is fed to a zero crossing discriminator [3] whose output furnishes the
"start" signal The start signal performs several functions. It is fed to the Time

Interval Counter, initiates delayed gates and a marker generator, and is scaled by the
computer.

The neutron ("stop") detector is a 13 in. diam. by 5 in thick NE 21P liquid scintil-

lator, viewed by 3 Amperex type 58AVP photomulti pliers. The anode signals are fed
to zero cross-over discriminators [3]. The outputs of the zero crossing discriminators
go to a Two-Out-of-Three [4] coincidence gate and an OR gate.

The Two-Out-of-Three coincidence requirement reduces the noise counts.
The actual "stop" timing is derived from the output of the OR circuit. Before

each run, the delays among the three phototubes and zero crossing discriminators are
carefully matched so that the centroids of the timing distributions for the three tubes
are exactly coincident in time (i.e.. total spread less than 200 ps) at the input to the
OR circuit. For each individual event, however, there will generally be some spread
in the time of arrival of the three pulses. Since the Time Interval Counter is triggered
by the leading edge of its input pulse, timing from the output of the OR circuit means
that the timing is actually determined by whichever of the (nominally coincident)
pulses arrives first. This procedure makes the best use of the timing information from
the scintillator.

Signals from dynode 14 of each phototube are summed in a fast adder-discrimi-
nator. Since the gains of the phototubes are carefully matched, this provides a con-
venient method for setting the overall bias level, which is usually set at about 160
keV energy neutrons.

The outputs of the Two-Out-of-Three coincidence, the "OR" and the fast adder-
discriminator are suitably shaped and delayed, and applied to the inputs of an AND
circuit, along mth the output of a delayed gate generator which is used to define the
timing range and hence the energy range. If no neutron is detected during the time the
delayed gate is open, the marker pulse generator provides an artificial stop pulse which
resets the Time Interval Counter.

A4.2. System Response Function

We have used two approaches in determining the response function of our system:
synthesis and analysis. In the synthesis approach, we fold all the known contributions
to the response function to obtain the final overall response function. We have used
contributions from the following sources:

1. Electronic response function
2. Neutron detector thickness

3. Neutron source thickness

4. Electron beam pulse width
5. Timing channel bin width

The electronic response function was determined by a coincidence technique using
^^Na y rays. For y rays whose pulse height was approximately equal to that of 0.5 MeV
neutrons, the response function was 3.5 ns FWHM. The detector and source response
functions are truncated exponentials determined by the mean free path of the neu-
trons and their flight time in the medium. The electron beam pulse shape was assumed
to be a 2 ns wide Gaussian, as determined from measurements of the gamma flash
shape through thick absorbers.

* Manufactured by Nuclear Enterprises, Inc.



RESPONSE FUNCTION COMPONENTS AT .5

NANOSECONDS
FIGURE 3. Ehme„U of ,„po,„e /,,„ei,'„„, „alM<:i al-Sm k,V.

All of these contributions, evaluated at approximately 600 keV neutron ener«,

t--^^:^^-t^:^ "
The response function was also determined by analysis of the 634 keV line in Si

svstem soThaTth "i '^T.
" -"-derably less than the response function of the

^unctl sht! T i
transmission line is a good indication of the response

£ a ea anaLr^TT' " '^-''-^^e"" -hape (determinedby a, ea analysis of the transmission) was unfolded from the transmission. The re-sponse function thus obtained has a width of 2.4 kilovolts or 9 ns. The response func-tion used at 530 kilovolts is the compromise shown by the dashed line in figure 4

rnn i,' •f,'"'"'''
'=''P<>"''e function improves rapidly above aboutmil keV neutron energy, since the electronic response function as well as effectsdue to source and detector thicknesses all improve at higher energies. The measuredana yzed) response function is about 6.5 ns (11 keV) at 2.1 IMeV and about 3 4 ns

(120 keV) at 14 MeV. Figure 5 shows the width of the response function as a function

Va m"i'™"
"""•'Sy- The points are from analyses of narrow resonances. (The point at

14 MeV is the measured direct response to 14 MeV neutrons generated by the NBSVan de Graaff.)

A4.3. Gamma Flash

When the linac electron beam strikes the neutron-producing target an inten..

th^ :^csrbrr:tisrctr'' -^--^ ./.i^Xot-::

pro'blemsr^'
""""

2. An after-pulse, occurring approximately (iOO ns after the main pulse- and

gamrrshVuTse""
approximately 750 ^s after the

The after-pulse is caused by the photoelectrons from the gamma-flash pulse ionizng the residual gas in the region between the photocathode and the first d mode t
:"str^obird"afrpX'^-"°"°-'^ - th^pttti^^:

elector :^e?rcrtbrfirst"dytd::7:'sir:"t?e%ttr^^^^^^
i e., pulsing off the first few dynodes, w^ll not h?lp It was potted m^

"sua way

Malvano [6,, however, that a phototube can ^.Vi:rS.trZ'oilTSL:t



focus electrode. In our case, we are not really concerned with turning off the photo-
tube per se: our object is specifically to reverse the electrostatic field near the photo-
cathode so that the enormous number of photoelectrons generated by the gamma
flash are not accelerated down the photocathode-first dynode space. We do this by
applying a 600 volt negative pulse to the focus electrode of the 58AVP during the
gamma flash.

Figure 6 shows the electrostatic field lines in the front end of a 58AVP as mapped
out on an analog electrostatic field plotter. (For clarity, we show the field lines which
would exist with the photocathode at ground and -1-2600 volts on the anode; in actual
practice the anode is at ground and -2600 volts is applied to the cathode.) Figure 6a
shows the field lines during normal operation; figure 6b shows the field lines with
-600 volts applied to the focus. Note the reversal of the field at the photocathode.
so that photoelectrons are not accelerated down to the first dynode.

After the applied pulse, the photomultiplier gain recovers as rapidly as the pulse
decays, which in our case is about 100 ns (caused mainly by the stray capacity of the
leads and the phototubes.)

This method of ehminating the after-pulse also, of course, essentially eliminates
most of the primary gamma flash pulse itself. Further details of the phototube pulsing
as well as a circuit diagram of the pulser, have already been published [7].

While the phototube becomes rather noisy for several microseconds after the
applied pulse, the Two-out-of-Three coincidence requirement eliminates this as a

58 AVP FIELD DISTRIBUTIONS

-600 Volt Pulse

Figure 6. Electrostatic field linen in the type 5SAVP photcnnuitiplier.

The upper part of the figure shows the field lines when the -GOO volt pulse is applied
to the focus electrode, G,. The lower part of the fi^re shows the applied voltages and
resultant field lines during normal operation. For clarity, the voltages shown are those
which would exist with the photocathode at ground and +2600 volts on the anode- In
actual use, the anode is run at dc RTound and -2600 volts is applied to the cathode. The
field lines are, of course, the same in either case.

problem. A much more serious noise problem is caused by the gamma flash itself.
While the noise from the gamma flash pulse decays after about 750 ns, it is so intense
during this period that a significant number of accidental coincidences are recorded.
Requiring a three-fold (rather than 2/3) coincidence helps, but results in an appreciable
loss of smaller pulses. In addition to pulsing off the phototube, it was also found neces-
sary to reduce the intensity of the gamma flash by using a 1 inch thick tungsten
filter in the beam and by using a neutron-producing target consisting largely of low-Z
material (see sec. A3). In this way, we are able to make accurate measurements out to
about 20 MeV, or 500 ns after the gamma flash pulse.

A4.4. Time Interval Counter

As indicated earlier, the "start" and "stop" signals are analyzed by the Time
Interval Counter. This is a commercial digital timing device^ with one nanosecond

' Manufactured by Eldorado Electrodata Corporation.
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A4.5. Energy Calibration

Our system allows convenient, absolute enerev calihr.tinn <R„ i, . »

f^:^rj^^-^j;:-Lr--drt^^^
2^rp-^JCtir:'rz^:e^rri-^
Since the ™dths of the timing channels on the counter are known, th a srtves an absolute measurement of the neutron time-of-flight. A measurement of th? path "enihthen gives a direct measurement of the neutron energy

tainSes i„"'th"",""
""""^ Pnniarily from uncer-tainties n the timing measurements. These include nonlinearities of the TimeCounter, long.term (i.e., a few days) drifts in the timing, and systematic timing differcnces between neutrons and gamma rays. The non-linearities and long term driftshave both been carefully checked, and are less than 1 ns and V. ns, respectively While

lor„h ^7 l'°
in the timing response of the scintilla-

tor-phototubes-discrimmators between neutrons and gammas, it is known that NE
does not show any difference in response between neutrons and gammas. Theslewing between small pulses (due to low energy neutrons) and large pulses (from thegamma flash) is approximately 1 ns.
The path length has been measured with a geodimeter» to an accuracy of 0 02

percent: this contributes a neghgible error to the energy scale uncertainty. A minor
problem arises due to the detector thickness. The detector is approximately 4 mean
tree paths thick at 0.6 MeV, and 0.3 mean free paths at 20 MeV. Therefore (he low
energy neutrons effectively stop near the front face of the scintillator, whereas, on the
average, the high energy neutrons stop nearer the center. Thus, the effective path
length IS greater for high-energy than for low energy neutrons. This difference in
path length (amounting to almost 0.1%) can, however, easily be calculated and is cor-
rected for.

The final energies are all calculated relativistically.
Taking all the above factors into consideration, the over-all uncertainty in the

energy scale determination is 0.04 ns/m (e.g.. ± 3 keV at a neutron energy of 2 MeV).
Below about 2 MeV this compares very favorably with the best work reported from

Van de Graaff accelerators. At higher energies, some high-accuracy Van de Graaff
experiments [8] have smaller errors, but, in any case, the time-of-flight method has

' We are grateful to Mr. George Lesley of the U.S. Coast and Geodetic Survey for making this
measurement.

the great virtue of allowing a direct measurement. It is worth noting that there is

renorted hvThlw " our energy scale and thatreported by the Wisconsin group [8] (i.e., agreement within - 8 keV at 6 MeV neutron
energy).

A4.6. Data Handling

The data from the Time Interval Counter, as well as the counts from the moni-
tors various scalers clocks, etc. are all handled by the NBS on-line data handling
system The general features of this system have been described previously [9], and
a detailed report of our use of the system has been published [10); hence, only themajor features will be reviewed here.

The on-line data handling system has been constructed around an XDS 920 com-
puter. (16K core memory, 24 bit word, and 8ms cycle time). The modular concept hasbeen applied to both the software and hardware design of the system. Associated with
the 80 levels of priority interrupts are programs used to record the experimental data.The priority hierachy insures that the most important data will be recorded flrst
after which lime the computer can do more routine functions, such as present a CRT
display, output the data etc.

A5. Monitoring

Two monitors are used: a secondary emission monitor (SEM) to monitor the elec-
tron beam, and an NBS P2 ionization chamber (11) which monitors the shower created
in the neutron producing target. The ratios among the monitor counts and the total
neutron counts are printed out periodically during an experiment. The constancy of
these ratios during the course of the experiment is a measure of the overall stability

It IS important to note, however, that the spread in value of these ratios only repre-
sents an upper limit to the error caused by any errors in monitoring. This is because in
ovir transmission measurements the samples are cycled in and out every twenty
minutes. Hence drifts, with time constants long compared to twenty minutes vrill
cancel out.

'

A5.I. Secondary Emission Monitor

The secondary emission monitor (SEM) consists of three aluminum foils each
approximately 1 mg/cm= thick. A thin layer of platinum (- 25 Mg/cm') is evaporated
on the aluminum surfaces to reduce ageing effects. Although work in this laboratory
indicates that an SEM may not give very reproducible results for high (> 20 /lA) elec-
tron beam currents, the SEM is satisfactory for the low currents (- 100 nanoamps)
used in this experiment. The ratio of neutron counts to SEM readings show RMS
fluctuations of ~ Vh percent during the course of an experiment (i e two to three
days).

A5.2. Ionization Chamber

The more stable of our two monitors is a conventional NBS P2 ionization chamber
[111. The P2 is placed immediately behind the neutron producing target, and hence
effectively monitors the shower produced in this target. Although the P2 may over-
load (due to recombination effects) at high currents, again, as in the case of the SEM,
at the low currents used in these experiments there is no sign of overloading. The
neutron-to-P2 ratios fluctuate by ± Vi percent during the course of an experiment.



A6. Sample Thickness Considerations

It had been customary to use fairJy thin samples-SO percent to 70 percent aver-
age transniission-in total cross section measurements. In a low background situa-
tion, however, there are two factors which argue for the use of thicker samples-say,
< 15 percent transmission.

First, Rose and Shapiro [13] long ago showed that where the backgi'ound is low,
the optimum sample for minimum statistical error is approximately two mean free
paths thick; i.e., transmission ~ 15 percent.

Secondly, the over-all cross-section accuracy (as opposed to the statistical preci-

sion) may be improved by the use of a thick sample. This is easily seen: since T= e^"",

where T is the measured transmission, n is the areal density of the sample (in units, of,

say, atoms/barn) and cr is the total cross section,

fl<T 1 dT

(We call the dimensionless quantity iicr tlie "sample thickness.")
Thus, for example, an error in normalization will give a constant fractional error

in the trans »nission. Equation (1) shows that for this case, the resultant error in the
cross section may be reduced by simply running a thick sample. Equation (1) also ex-
plains why a particular cross section measurement may be accurate where the cross
section cr is high, but have large fractional errors where a is low.

On the other hand, eq (1) does not, of course, mean that one can achieve arbitrarily
small errors in the final measured cross section by using arbitrarily thick samples.
In addition to losing statistical precision for samples whose thickness is far from
optimum, for very thick samples (»a- >5; T < 1%) the in-scattering correction (see
sec. A7.3) becomes large and difficult to calculate, even in good geometry. More im-
portant, for thick samples, the background correction becomes large, and the ever-
present uncertainties in the background can become the dominant error.

In addition, if the instrumental resolution width is wider than the natural width of
any structure to be measured, the observed peak cross sections will be higher for
thinner samples. In other words, a thick sample worsens the apparent resolution.
This is sometimes referred to as a "beam hardening" effect.

A final complication derives from the simple fact that cross sections vary mth
energy, hence a particular sample which is "thick" at one energy may be very "thin"
at another energy.

Thus, while it is clear that the sample thickness has an important function in de-
termining the quality of a total cross section measurement, the procedure for choosing
the "n" value of the sample is much less clear. Careful consideration must be given to
all the sources of error in a particular experiment, as well as the use to which the
final data will be put, before the optimum sample thickness can be sensibly chosen. In
our case, the background is very low and well-behaved (see sec. A7.1). In addition, an
important use of our data was to be as input in neutron transport calculations; for
deep-penetration calculations the minima in the cross section are most important.
Thus, relatively large "«" values seem to be called for. Such samples might, however,
be too thick to give any useful information in regions where the cross section is high"
hence we generally ran with two different samples. The value for the thicker
sample was commonly > 1; "n" for the thinner sample was a factor of 2 to 4 less.

We thus had samples appropriate to cover a wide range of cross section values and,

in addition, the data from the two samples provided an important check on internal
consistency. (The exact "i>" values used are listed for each element in the main body
of this report. It will be seen that even the "thin" samples are rather thicker than has
been customary in this type of measurement.)

A7. Corrections to the Data

A7.1. Background

The background is measured by simply inserting a "shadow bar" (32 cm of copper
plus 15 cm of polyethylene) in place of the transmission sample. The backgi-ound count-
ing rate is generally less than 0.3 percent of the open beam counting rate. About half
of the background is due to cosmic rays and natural room background, and the other
half is associated with the linac beam. The background is flat and structureless, and
quite constant during the course of a run.

We have investigated the question of whether the true background is adequately
determined by this simple shadow-bar measurement. We have, for example, measured
counting rates with the detector off-axis, at "long" times-of-flight between machine
bursts, -with the beam purposely missteered, with various combinations of shielding
and beam stops, etc. We find no significant background beyond that measured with the
shadow bar technique. We note that our cross section measurements tend to be rather
immune to background caused by neutrons which scatter off the walls of the measure-
ment room and return to the detector, since such an event must occur within 4 fis of
the beam burst (at which time our gate closes) and must give a pulse larger than a
160 keV recoil proton.

The "black resonance" technique commonly used to measure backgrounds in the
eV and keV regions can not be used in the same way in the MeV region, simply because
the peak heights are so much lower. Nevertheless, a measurement with black (or
almost black) resonances does provide a valuable check on backgrounds determined
from shadow bar measurements. This was generally the case in our "thick" sample
measurements and the results (albeit often with rather poor statistics) were consistent
with our assumed background. The 2.95 MeV resonance in carbon, for example, was
studied with a quite thick sample {n = 1,2) for which the transmission T was 2.4 percent,
and with a thinner sample {n = 0.48) with 7'= 23 percent. The final value for the peak
cross section was the same for the two samples, despite the factor often difference in
transmission, indicating that the background was accurately known.

A7.2. Dead Time

With a low duty cycle machine (maximum rep. rate = 720 pulses per second) and
an electronic system which will only record one count per pulse, it is difficult to obtain
good counting statistics in each of several thousand channels in a reasonable amount
of running time. In addition to optimizing the sample thickness (sec. A6). it is also
necessary to run at high counting rates, which unfortunately, means that large dead
time corrections are required. In practice we select a beam current such that during
the "open" runs, an average of one neutron per burst is detected bv the "stop" detector
For this case, Poisson statistics show that the average number of neutrons actually
recorded by the electronics is (1-1/e) per burst, and in the last timing channel (lowest
energy neutrons) the ratio of true counts to recorded counts is equal to e.

For a -one-shot" electronic system which completely recovers between pulses.
It has been shown, [14] however, that to first order the dead-time correction is a sim-
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troduce negligibly small errors ,n tlie final result. This is further verified by the goodagreement between thick and thin sample measurements.
By us.ng thick samples and counting at relatively high rates, in ~ 60 hours ofrunning time the statistical errors are approximately 2 percent over most of the 3500

channels.

A7.3. Inscattering

The good geometry which is intrinsic in a time-of-flight experiment almost auto-
matically insures that the inscattering correction will be small.

The fractional change in the total cross section, due to inscattering is given
by (16);

icr, ri-)!-...-) ro-(0)l

where

n is the sample-to-source solid angle,
r-. is the detector-to-sample solid angle,

is the detector-to-source solid angle,
cr(0) is the scattering cross section at 0°, in b/sr.

and ^rZL'^n'^?^ ^™ "inscattering index" by Foster

LneSriy 0 or Ls' ' ?
* °" ' ^ '^<^ -cond termgeneral y O.o or less. The last term, which is essentially a multiple scattering correction to the in-scattenng varies betwppn i q e . ... .
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these measurement, H.„ 1 ^ sample thicknesses used in
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AS. Summary

In the appendix we have described the NBS system for making accurate totalcross section measurements in the MeV energy region, the main body of th?s Mono

future ™bl,"^
°' "^'^ — ™* this system.In future publications we will discuss some of these measurements in detail, and makecomparisons with results from other laboratories.

We should like to thank Julian Whittaker for his inestimable contributions to the
electronics and instrumentation. It is very doubtful that this program would havesucceeded without his active assistance.
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