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Graphical Recoupling of Angular Momenta

D. R. Lehman* and J. S. O'Connell

A diagrammatic method for solving angular momentum recoupling problems is presented. It is

shown that a few graphical elements with a set of rules for their use lead to the solution of many
I J pea

of recoupling problems in an intuitive and systematic way. Several examples are given together with
exercises to develop the reader's facility with the method.

Key words: Angular momentum; diagrams; graphs; quantum theory; recoupling; transformation theory.

1. Introduction

Many calculations in atomic, nuclear, and ele-

mentary particle physics involve spin-angular inte-

grals where the integrand is the product of three or

more functions that possess definite angular mo-
mentum. They arise, for example, in the computation
of matrix elements of the multipole operator with
many-electron wave functions in atomic physics and
in the determination of angular distributions in pho-

tonuclear physics. The evaluation of such integrals

by application of angular momentum recoupling al-

gebra tends to be a tedious task. Recently, however,
M. Danos [1]

1 has presented a graphical method
whereby this complex process can be carried

through in a transparent way. Danos introduces a

phase convention which eliminates minus signs from
the interior part of the calculation, thus greatly re-

ducing the chance of computational error. This
graphical method resembles that of constructing a

flowchart before writing a computer program, and
it is an excellent bookkeeping technique for recou-

pling algebra, just as Feynman's diagrams are in

quantum electrodynamics.

Other diagrammatic methods [2, 3] have been de-

veloped as aids to angular momentum calculations.

The reader can find additional references to the lit-

erature in [2]. These methods usually start by assign-

ing a graphical symbol to the vector-coupling coeffi-

cient (3-7 or Clebsch Gordan) and compound the vec-

tor coupling to the 6-j or 9-j coefficients. Danos'
approach focuses on the recoupling aspect of angu-
lar momentum theory and uses four-element recou-

pling as its basic symbol. With the 9-j recoupling

as the central graphical element, separate graphical

elements need not be introduced for the lower sym-
bols since they are already included at no loss of

'National Research Council Postdoctoral Research Associate. Present Address:
Department of Physics. The George Washington University. Washington, D.C 20006.

1 Figures in brackets indicate the literature references at the end of this paper.

simplicity. For example, the 6-j recoupling is a 9-j

recoupling with one of the angular momenta equal

to zero. Moreover, the judicious choice of phase con-

vention for the contrastandard elements, given in

eq (1), removes the distinction between states and
operators, thus eliminating phases during the re-

coupling. We feel these features give the method a

power and elegance for recoupling problems not

found in the previous schemes.
Our objective is to present a didactic exposition

of Danos' diagrammatic method for angular momen-
tum recoupling algebra which will be useful for class-

room use or self-learning. The reader or student is

assumed to have a rudimentary knowledge of angu-

lar momentum theory comparable to that obtained

in a graduate quantum mechanics course at the level

of Merzbacher [4], Messiah [5], or Schiff [6]. The
material discussed below is equivalent to or paral-

lels that in Edmond's monograph [7]. In section 2,

we introduce the fundamental elements of the dia-

grammatic method and the rules for their applica-

tion. Symbols are introduced for coupled elements,

normalization, insertion of a complete set of states,

projection integrals, the contraction of two integral

angular momenta, grouping of momenta, and the

recoupling of two pairs of coupled momenta. The
tools developed in section 2 are then applied in sec-

tion 3 to simple examples from the different types

of problems to which the method is applicable. These
include the computation of the multipole operator

matrix element for single-particle states in the j-

representation, the derivation of a sum rule for the

6-j symbol, and the derivation of a general formula
for a (y, n) angular distribution. The main text then

closes in section 4 with several exercises, plus an-

swers, by means of which the reader can develop

facility with the method and experience the fun in-

volved in its application. A series of appendices gives

useful formulas and background material on the

basis of the method.
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2. Elements and Rules

We first introduce the rotational wave functions

and discuss their conjugation, coupling, normaliza-

tion, and closure properties. Spherical harmonics
are universally chosen to represent the rotational

properties of wave functions and operators in physi-

cal systems possessing spherical symmetry and in-

tegral angular momenta. Danos has shown that

multiplying the ordinary spherical harmonics, as

defined by Edmonds [7], by a phase factor (— i)
1

eliminates a mismatch between certain properties

of vector algebra and angular momentum coupling

theory. Therefore, the rotational part of a wave func-

tion for integral angular momentum is defined as

Y\!}(d,<p) = (-i)>Ylm (9, <p). (1)

Rotation functions with square bracketed super-

scripts are called contrastandard. Their Hermitian

conjugate (or costandard) forms are given by

Y^=WC= (-1 (-1)'+'»FL<L (2)

where the tilde means transposition (which has no
effect on spherical harmonics) and C means complex
conjugation. The two component spin-i wave func-

tion will be designated xf«i
2]

- These functions and

their representations are discussed in appendix B.

A general spin-angle wave function for a particle

(with either integer or half-integer angular momen-
tum) will be written as

iM/;
] (H) with $w'=(-iy+m$w (3)

The coupling of the angular momenta of two par-

ticles to a total angular momentum J is given by

m 1m 2

- [^J(fi
1 )x^j(n2

)]w (4)

and this equation is to be read as ji coupled with
j-i to J. The resultant J can take on values from
\ji—h I

tOJi+j2. (jimij2m 2 \JM) is a vector-coupling
coefficient |_7]. This coupling is represented graph-
ically in figure 1.

A common single-particle coupling is that of a

particle's orbital and spin momenta

W= %{lrnhhms \jm)Y\k}x^

= [yt']x xu/2]]U]. (5)

The normalization condition for wave functions

like those in eqs (4) and (5) is written

j^
]t^ ] =l<

(6)

r, . DO Art
(fl 2 ) J m

J2

FIGURE 1. Coupled angular elements.

where j is defined to mean that all spin sums and

angular integrations are to be performed. The prod-

uct of wave functions in eq (6) can be expanded in

terms of all possible coupled pairs

m
since the vector-coupling coefficients satisfy

^ (j— mjm\J0) {j—m'jm' \J0) = 8mm >.

j

If i//^ were an ordinary spherical harmonic, the

coupled pair in eq (7) could be replaced by a single

spherical harmonic of angular momentum J through
use of the addition theorem for spherical harmonics

[7]. After integration over the angular coordinates,

only the J — 0 term survives, because

Likewise, only the 7= 0 term survives the spin-angle

integration when eq (7) is substituted into eq (6).

This leads to

j
[^x^][»l=(2j+l)i/2

(8)

where we have used (j— mjm\00) = (— l)j+m/j.

Equation (8) is the contrastandard element's analog

of the normalization equation. A spin-angle integral

over a zero coupling will be called a "projection

integral," and will be represented graphically by a

box as shown in figure 2a (also see appendix A).

Thus, by eq (8), two lines terminating in a box gives

the factor j.



Tfl] [j]

7 j

< ) < )

DO
x V//

< > ( )

k k

(a)

T
K J2

< > ( » i >

(b)

(c)

FIGURE 2. (a) Two-element projection integral; {b) insertion

of intermediate states; (c) projection integral of the invariant

triple product.

which becomes

[vd/2] x x
ll/2l

]
[ °l= I.

(13)

In general, the closure relation for constrastandard

elements is

^ (-Dai[^xjiW] [»] =1 (14)

where a represents all other quantum numbers,

e.g., radial, and H is the unity operator in the space

of the functions. For the usual spin-angle functions

of eq (5), the unity operator is 8(0 — ft') I.

A graph for eq (14) can be constructed by using

figure 2b followed by a recoupling of the fines to

move the element with the tilde to the right. This

recoupling (as will be shown) introduces the re-

quired phase (
— l) 2k

. The summation is automatic

in any diagrammatic element that introduces new
quantum numbers.
We next consider the coupling that arises in the

evaluation of the matrix element of an operator T
between final and initial quantum states. If the

states and operator have been expanded in terms

of angular momentum eigenfunctions, the general

matrix element will be of the form (see appendix A)

Similarly, two fines taken out of a box, as in figure

2b, is the function A
:

[i//
[fc] Xi//M]M. This function is

useful as part of the representation for inserting a

complete set of states into a recoupling problem by
means of the closure relation for orthonormal func-

tions. For integral momenta, the closure relation is

2 mi(ft) y®* (ft' ) = § ( ft - ft - ) .
(9)

Im

In order to write eq (9) in the form of an angular mo-
mentum coupling, we use

[Fm X rW]M=2 (l-mlm\0O)Y^l FJM

m

l m

then eq (9) can be written as

y /[yw(ft)xrt'J(ft')] [0] =8(ft-ft').
i (ii)

Similarly, for the spin function

ExLfx^-^)-! (12)

j [fori* [IWX.$W]I"1]W.

Note that, just as in the normalization integral, the

total coupling is to zero since any other coupling

will vanish in the integration. The internal brackets

may be removed because the net result will be the

same no matter which pair of functions is coupled

first. The integral over the zero-coupled triple

product is a projection integral and since it occurs

frequently is given a special notation

[^[^]|7W|<j>Ua]] =
j

[^,[J>] x T[K] X 3>U*]][o]_

(15)

Its graphical representation is shown in figure 2c.

The projection integral of a triple product is closely

related to the usual reduced matrix element (see

appendix A),

(16)

Two coupled integral momenta of the same
argument can be contracted by the formula

[yM(ft) xyt^(ft)]w=<?W
2
yta(ft),

3



Q
[i]

(a)

(b)

FIGURE 3. (a) Contraction with a Q-box, (b) temporary

grouping.

where

OR = 0-1;
<1<2

(/1 + /2 + 0/2.
/./2 //l /'2 Z

(47T) 1 /2 \0 0 0
(17)

which we recognize as the addition theorem for

spherical harmonics [7]. ^ m3 )
is tlle Wi§ner

3-7 symbol.

The graphical symbol, figure 3a, called a Q-box,

is used to represent this operation. On the other

hand, any two coupled functions can be temporarily

labeled by a single line, as in figure 3b. This is just

a convenience and the two functions must eventually

re-emerge from the grouping in the same order as

they entered.

Finally, we consider the fundamental recoupling

operation upon which the present system is based.

All recouplings will be expressed as combinations
of the two-pair recoupling transformation

[
[>M X <pM

]
H X |>M X ,pM

] [/) ]
M

[
[<pM X ^M] to! X [<pM X <pM] W] I2

9ft

a b c

d e f
-g h i.

(18)

where the boxed coefficient is related to the usual

9-7 coefficient by

a b c

d e f
-g h i_

(19)

with j = (2/+ 1)
1/2

. Equation (18) is expressed in

words as follows: A system of four wave functions

[,nN

c

a b

)c C

d e

)fX
a

)g C

d

— ~~<

lb

>h

e

h
ll

FIGURE 4. Two-pair recoupling box.

with angular momenta a, b, d, e is originally coupled

ab to c, and de to /. The intermediate pair momenta
c and / are coupled to the total system momentum
i. If the pairs are recoupled ad to g, and be to h,

the original system wave function can be expanded

in terms of the new system wave functions with in-

termediate momenta g and h. The expansion coef-

ficients are the boxed coefficients. The recoupling

transformation is represented graphically by the

diagram in figure 4. Note the correspondence be-

tween the labeling of the line elements and loops

in figure 4 and the boxed coefficient. The diagram

is to be read from top to bottom. The values of a

through / and i are given; the intermediate momenta
g and h can take on the range of values

\a— d\ ^g^a + d

\b — e\ =£ b + e

(20)

subject to g, h, and i satisfying triangularity.

Now we have sufficient tools to solve a variety of

angular momentum recoupling problems. Symbols
have been assigned to coupled elements (fig. 1),

normalization (fig. 2a), insertion of states (fig. 2b),

projection integrals (fig. 2c), the contraction of two
integral angular momenta (fig. 3a), grouping of

momenta (fig. 3b), and the recoupling of two-pairs
of coupled momenta (fig. 4). These graphical ele-

ments are to be combined according to the follow-

ing rules in problem solving:

Rule 1. Only coupled elements can be recoupled.

Rule 2. Lines are assigned to each distinct ele-

ment in a coupled expression preserving

the order.

Rule 3. Lines can cross only in a recoupling box

as shown in figure 4. Mock zeros (dashed

fines) can be added anytime to achieve

four lines in a box.

4



Rule 4. The initial coupling equals the final

coupling times the product of all re-

coupling boxes and (?-boxes summed
over any unspecified intermediate

quantum numbers.

3. Examples and Applications

3.1. The Projection Integral for Three Inte-

gral Angular Momenta

A physical problem in which the initial and final

state wave functions and the transition operators

are expanded in spherical harmonics leads to the

projection integral

[YM
|

y[«2]
|

y[/3]] = j dn[Fi''] x F /2
J x Y^Y®.

(21)

The invariant triple product can be evaluated by
the successive contraction of angular elements by
(?-boxes as shown in figure 5. The first Q\'% replaces
[yv>] x FM]M by Y[h\ The second contracts the two
Ff /3

)'s to Y^°\ Therefore, we have

/1/2/3 / 1\ I'Z I'i

(47T) 1 / 2 \0 0 0
(22)

This result will be very useful in what follows.

i, h

3.2. A Multipole Operator in j-Representation

The expansion of the plane wave in angular

elements

iq • r

(47r) i/2 £ {-\YLjL{qr)Yf\ar), (23)

where jt is a spherical Bessel function and the di-

rection of q is taken along the z-axis, gives the often

encountered projection integral of the multipole

operator ji¥^
L\ For single particle states of eq (5),

the Coulomb and other particle momentum and
spin-independent operators have projection integrals

of the form

M,Xq) - [Rr(r)[Y^

X xlll2]
]
1/1 \jiXqr)Y^ \R,(r) [F'J X tfM] W], (24)

where Ri(r) are the radial functions with their

radial quantum number, n, suppressed. Figure 6

shows the graphical recoupling involved to separate

the radial, angular, and spin integrals. The box at

the top of the figure is the projection integral to

be evaluated (Rule 1); those at the bottom are

standard projection integrals whose values we
know. The recoupling boxes between them relate

the two. Starting at the top, lines are assigned to

each distinct element (Rule 2); in this case, the two
orbital momenta / and /', the two spin-2 functions,

R/tYWxX^lj^lR^YW.xM] 111

]

IV j
<"

* 2 1

L 0 L

./' | i .

FIGURE 5. Two contractions. FIGURE 6. Flowchart for evaluating a multipole operator.



and the operator of rank L. The first recoupling

separates the spin function from the orbital function

in the final (primed) state. A zero angular momentum
(the dashed fine) is added to make up the standard

box (Rule 3). The fact that L and V couple to / is

not obvious at this point. The whole box has angular

momentum j since the total problem is coupled to

0 and the pair of fines excluded from the first box
are coupled to j. The second box uncouples the

orbital and spin functions of the initial (unprimed)
state and couples all the spatial functions together

and all the spin functions together. The final two
loops must be zero because projection integrals are

made over the final products. The invariant triple

product among the /, I' , and L now show that L and
I' must be coupled to / in the intermediate loop

between boxes. In general, after a diagram is drawn,
one looks at any apparently arbitrary intermediate

couplings to see if they can in fact be specified by
relationships elsewhere in the diagram. By Rule 4
then

\v i r \i * n
M L {q) = L 0 L

J i j. _0 0 0_

[^fi/2]
| x

[i/2]] [y[/<]| yr/.j {Rl ,

\
jl {qr )

\

Rly (25)

The radial factor is the integral

(Rr\j,.(qr)\R,)
Jo

(r)j L (qr)Ri(r)r2dr.

(26)

The spin projection integral is discussed in appendix

B and has the value

[£[l/2]|
x

[l/2]] =+ i= V2 (27)

The other factors on the right-hand side of eq (25)

are given by eqs (19) and (22). Useful relationships

for reducing the 9-j coefficients when they contain

zeros are given in appendix C. The result is

Mi.(q)=(iY ,+'-''K-l) s
' +11

I'lj'jL

47T

/' r » V L I

0 0 0
(Rv \j,.(qr) \R,). (28)

Recoupling applied to other electromagnetic

multipole operators is discussed in [8].

3.3. A Sum Rule for the 6-j Symbol

Identities and sum rules among the 6-j and 9-j

coefficients can be verified with the recoupling dia-

grams. If a recoupling can be accomplished in two

different ways (i.e., by two different flowcharts), the

two transformations must be equivalent.

Before we begin an example, let us note the use-

ful simplification occurring in a four-element re-

coupling box when the two outside lines are mock
zeros. Figure 7a is a crossing of the nonzero lines

and results in a phase factor for elements that

commute:

0 a a

bob
b a c

= (-!)' (29)

Figures 7b and 7c show schemes in which ab

and cd are recoupled to ac and bd. Figure 7b does
it with one 9-j box while figure 7c does it with three

9-j boxes. Since the transformations are equivalent,

independent of wave functions, one has the relation

(30)

a b e b 0 b a 0 a

c d e C d e c b x

-f f 0-
X

_x d a_ -fb d.

which reduces to the indentity

3.4. A Product Operator

c b x~\

d a f\'

(31)

This example involves introducing a complete

set of intermediate angular states through the

(a)

FIGURE 7. Flowcharts for proving a 6-j identity.
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closure identity, eq (14). A projection integral that

has two coupled operators is evaluated by uncou-

pling the operators and inserting

2 (-iH[f)xei][«)= (32)

between them. The graph for equation (32) is made
by combining figure 2b and figure 7a. Figure 8

shows how the operators iA" and are recoupled

to produce the product of the projection intergrals

of each operator. The labeling of the intermediate

loops as ji and ji is inferred from the final zero

coupling of (jz L k) and (k J ji). The flowchart

produces the equation

[^U*][.[^XFlJ ]]W.|.|^it]]

^k(-iy
k k 0

0 J J

\_
k h JJ

L 0 L

k J

7« Ji K
0 ji ji

U-2 o ji

[^ 2]
if/['-]|^

]][e-] i^ ;l
i^'

,]

] (33)

- \l J k)

.[^]l^[/-]l^]][^IFt^l^--]].

Examples of such product operators are the

orbital angular momentum

L=rXp= V2 [^XpU]W (34)

and the electromagnetic current multipole operator

[j L(qr)^XpM][J\

M [
J
J

L J
r..i
I'M

U x V
r J

FIGURE 8. Flowchart for separating a product operator.

3.5. An Angular Distribution

Angular distributions [9, 10] play an important
role in atomic, nuclear and elementary particle

physics, since spins and parities of final states and
the nature of intermediate states can be ascer-

tained. The derivation of the appropriate formula
is a recoupling problem.
We consider as a specific example a general (y,

N) angular distribution as depicted in figure 9. The
transition is regarded as a two-step process through
the intermediate state, Ik. The first step is the tran-

sition from the ground state, /o, to the state, h,
by absorption of a photon of multipolarity, L. The
decay of the state, h, through particle emission
involves coupling the emitted particle spin, s, and
orbital angular momentum, /. We do this in the

./-representation (see fig. 9) as opposed to the

channel-spin representation where I/+s = S and
S+ l=Ifc; one representation can be obtained from
the other simply by a recoupling.

FIGURE 9. Photonuclear angular distribution.

For the initial state, we can write

^inmai=^>^]eifc2eW, (35)

where "J?^"1 represents the ground state and e**zeM

the photon incident along the z axis. e|*j is the

photon spin function which has two components,
mi.= ±\ (transverse — circularly polarized). The

505-690 O-LF- 73-2



product eikze$ can be written as the familiar

multipole expansion in terms of vector spherical

harmonics (appendix C):

- 2 (-l) LLC,Akr)Vy;l(Cl r ).

(36)

(37)

If eq (37) is substituted into eq (35) and the result

coupled to states of total angular momentum, Ik ,

eq (35) becomes

&„itiai=2 {-WLCdkr)
uk

(LmJ0mo\Ikmk )
[¥W X*^]^. (38)

Since total angular momentum and parity are con-

served, the final state can be written as

t/>finai=2 (- 1)
LLA

,

k(LmJomo \lkmk )H

^

]
, (39)

uk

with At,ik = CiMi/c, where Mik is the amplitude for

the photoabsorption through the state h. The state

EJ'^ can now be resolved into its resultant con-mk

figuration, which in the coordinate representation is

H=(i) I

[iywW)X-XM]
WX0W*1

. (40 )mk

where the phase (t)' comes from using contra-

standard spherical harmonics. The angular dis-

tribution of the outgoing particle with respect to

the incident photon direction (the z axis) is

ftnnai '/'nnai averaged over initial spins. The
/

means do all spin-coordinate integrations, except
those over the nucleon's angular coordinates.

Explicitly, we have

W{6)^ 2 2 (-i)/-+w )/2

[£i 0 LL'hl'
k

m 0m L= ±l J

• LL''A\< ,ik
Ai,i (L'mJomo

|

I'
k
mk ){LmiJ0mo

|

Ikmk )

• [[y[i']x x [slp']

x §fjJ]fJti
c[[yw x xm]uj x ew*]. (4i)mk mk '

The primed variables allow for interference. Using
the conjugation property, eq (A~2), brings in a

phase (— iyic+m k, and then we couple the last two
factors to angular momentum A.:

f^(0) ^ ^ (-1)L + L' + U-1')I2 +/;+m, f

2
'
o LL'hI'k \ mmi=±l J

• LL'Al^A, ,k
{L'mJomo

\

r
k
m k)(LmJ0m0

\

Ikmk )

• {r
k
-mkIkmk

|

X.0)[[ . . . ptfx [ . . . ][/ fc
l]W.

(42)

The problem now amounts to simplifying eq (42).

The simplification of eq (42) is done in two steps:

(1) Removal of the spin functions and (2) Recombina-
tion of the three vector-coupling coefficients.

k

s 1 s

><
t> <

FIGURE 10. Recoupling the angular distribution formula.

Removal of the spin functions can be achieved
with the flowchart in figure 10. Using the rules

established above, we get

/
[[. . .] wgx [. . .] t'AJ ]W



•t

J If
/"

I' s f

j h /* I s j

K 0 X_ _X 0 A_

IfsQMYl*(nN), (43)

which reduces to

= (-1 )J'+J+ S+// +'* + « - ''"2
//' lj'k\i I

'

.

(44)

j f x) y v k)/i v x\
1

0 0 0/ 477
I'k Ik If) U J s

Px(cos 0),

where we have used Y™(SlN ) = (- l)- x/2X/Mcos 6)1

(4,77)1/2 jf g pjn Qf the ejected particle is i, eq

(44) can be simplified to

= (_ iy +j-ii2+ ,
f
+'K^^j]'lJ'k\

'
A

'.f

/XUpk(cosS), ,45,

with the identity

a v kui v x\ __L(J j' K
)

If j il \o 00/ r/'\i -i 0/
(46)

Recombination of the vector-coupling coefficients

can be achieved in several ways. We could write

them as 3-7 coefficients and manipulate the order

of their arguments until use can be made of the

identity which relates a sum over the product of

three S-j's to the product of a 6-j and a 3-j (See

Edmond's eq (6.2.8, p. 95) [7]). However, one can

also recombine them with the aid of a diagram.

This combination of vector-coupling coefficients is

like that which occurs in the coupling (with arbitrary

functions)

[[$['/] x tp°]].r'fc] x [xw x si ">]]['*]] w

-V (L'm'LI0m'0 I

I'k
- mk){LmJom0 \Ikmk)

(4Hmto|X0)^*gxSS^),

which can be recoupled to

(47)

= 2

u h rk

L lo h

r j x

[
[<!>['-'] x XW]^'] x [<//[">] x ] ['i

]
t ^

(48)

L /o //,

/ J X

X (y'm.'Jm,|X0)(/>'m?Xm /,|y'm.',)

mjfnj

(49)

ll Io L Io

XC

•

> c

J'c

XC

-— —

>

.

—

—

.

L' L Io I(

Figure 11. Recoupling graph to obtain a vector-coupling

identity.

with the diagram in figure 11. Since the functions

Xi *K anQl 2 are arbitrary and the sums over mt,

m[, mo, and m0 appear on both sides, we have the

identity

^ (L'm'J0m'0 \Ik — mk ) (LmJ0mo\Ikmk)(Ik
mk

= 2
jj'

mjtn'j

v io rk
L Io h
r j x

— 7»fc/fcOTfc|X0)

(50)

W m'jjmj\K0) (L'
m'

LLm L \J' m'j)

(IomoIom0 \Jmj) •

Equation (50) is put into the form we want by four
steps: (1) Let m'0= — m0 which implies m'L— — m L

and mj=m'j=0. (2) Multiply both sides by (/<>—

mj0m0 \0 0) = (— l)'o+ mo//0 and sum over m 0 . (3) On
the right-hand side use ^ (7( ,

— mj0m0 \0 0){I0—

molomo\j 0) = 8v(i, which, since 7= 0, implies J' = X.

(4) Sum over m L — ±l and simplify the right-hand
side. We then have
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2 (-iy^(h)-HL f -mJ0-m4l'k-mK )

m km 0
mL=±\

(LmiJ0m {)\Ikm k ) (I'k
— m kIkm k \\0)

= (—l) L'+>»+'k
2Ikrkk )L L' kUL V k\

7o (7* h /of \— 1 1 oj. (51)

Therefore, the combination of vector-coupling coef-

ficients appearing in eq (42) can be rewritten by use

of eq (51) and the facts that

(L' — mJo — mb\I'k
— m k )

= {-l) L ' + l»-'k{L'mJ0m 0 \rkm k )

and (— 1) /«/, = — 1.

The result is

2 (-l) mk(L'mJom0 \rkmk )

mL~ ± 1

(LmJom 0 \Ikm k )(rk — m kIkmk \kO)

(L V \\ IL U k\
= (-l)Ia+Ik-Ifrl2IkJ'k\

[rk h h) \- 1 1 0/. (52)

Substituting eqs (45) and (52) into eq (42), as an

example, we get the y-nucleon angular distribution

formula

where overall factors have been dropped and we
used the fact that L + L' + A = even integer in

writing the phases. The photoproduction angular
distribution of pions from nucleons [11] can be
obtained in exactly the same manner by simply
specializing to /o=//=£ and 5 = 0.

4. Exercises

At this point the reader might like to try to solve

a recoupling problem with the aid of diagrams.

These exercises will develop facility with the

method and display its power and beauty. Appendix
C provides a collection of relations useful for

solving these problems.

4.1. The jj; to LS Coupling Transformation

There are two ways to couple spin 1/2 electrons

in atomic orbits l\ and I2 to a total angular momen-
tum J. First, an individual / is coupled to the spin

to give a total particle momentum j and then ji and

J2 are coupled to the total pair momentum J. Second,

the two orbitals l\ and h are coupled to a total orbital

L and the two spins to S. Then L and S are combined
to form J.

The exercise is to draw and label the 9-j box cor-

responding to this recoupling and show that the

transformation is given by:

[[^"l(l)x^i(l)]Wx [>M(2) x x
[i/2i(2)]i^ ]

LS

X[xW2](l)X XW2l(2)p)]^
]

W{e) = ^Al,rkA L , lk

L lk
V Ik

(53)

, , (l V \] (h U k\
(-l)
IM

XLL'hI'k \ if
(/' Ik /oj \-l 1 0/

(-iyk -'f-j-r
+^ikrjj'k\

J

r i
k

fk Uft lk If

(54)

Note that the same coefficient summed over jx

and ji applies to the inverse transformation. The 9-j

diagram read down to up gives the same coefficient

because of the transposition symmetry of the 9-j

coefficient and 9-j box.

4.2. A Spin Multipole Operator

In analogy to Example B, construct the projection

integral for the spin multipole operator y/ [F |/] X
o-[i]]W for the wave functions of eqs (5). The spin

projection integral is given by

7 A /\(cos 9),
[x

ti/2]
I

fj-m
I x W2]] = i V6. (55)

10



Obtain the result

= (—1 )i-J-i'+ ( r + + 1 + 0/2

4-7T

1/2

y//y/7 (56)

V; j J)

4.3. The Normalization Condition for the 9-j

and 6 -j Coefficients

Prove the equation

£ (2713+D (2724+D <7a h 734
(

' 7l3 724 7 '

(27.2+d (2734 + 1:

(57)

by recoupling the two pairs (ji, jz) and Qa
r fa) from

7i2 and 734 to7i3 and 724, respectively, with one box,

and then recouple with a second box back to the

original wave function with intermediate momenta

J'l2 and J'3i - The total angular momentum is taken

as J.

When 7i2
= 7i2 and 734 = 734, the transformation

must equal unity since it reproduces the original

wave function.

Show by recoupling that the 6-j coefficient

normalization is

2(27i + Dj-H
2

i'T-wrnJ*hh) 272 + i
"

i

where 7i and 72 are the pair momenta.

4.4 A (y, y')(A — 1)+N Angular Distribution

A problem which is of current experimental in-

terest is that of photon absorption with subsequent
photon + nucleon emission. The process can be
visualized as taking place in three steps as depicted

in figure 12. Experimentally, the emitted nucleon

goes undetected and the angular distribution of the

emitted photon is measured. Show by methods
similar to those in Example D that, after integrating

over the nucleon coordinates and removing its spin

functions, the emitted-photon angular distribution is

given by

(- 1 )/*-/<»+ ixLL7 /:.

(-1)/'+;+/^

"hi it j).

Pa (cos d), (59)

where 9 is the angle between the incident and
emitted photons. (Hint: the following identity is

useful in handling the emitted-photon step

& 1 \o o 0/ \i — 1 o>

(60)

4.5. A Two-Body Matrix Element

Draw the recoupling flowchart that separates a

two-body operator sandwiched between two-body
wave functions into a product of one-body matrix

elements, i.e., show

[r>^](i) x^i(2)]i "|

XT^(2)Y'^\ [<p
[kl] (l) x^f**l(2)]I*l]

\h h 71
= jtk\h k l [<^-'](i)|ri"i(i)

[kt h K)

t^0?J(2)
I
rt'*V(2) (61)

* + s
; T+ 1£ = I

k

Io

If

Figure 12. The A(y, y')(A-l) + N process.
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All recoupling identities using conventional ele-

ments (e.g., tyjm) are also true for the contrastandard

elements because the difference in phase

conventions appears on both sides of the identities

and therefore cancels. To check reduced matrix

element identities with recoupling diagrams, one
must remember to convert reduced matrix elements
to projection integrals using eq (16).

4.6. A 6-j Sum Rule

Derive the sum rule

2 (-1)"(2*+1){:
J

(62)

by recoupling from

\U[J i]TtK]tf)[J n] =V
-Mi m M2 £a

l,L

(Ji- M , L m +M2 \ Im , ) (Km ./, /!/•> \Lm+ M2 )

(A-4)

which reduces to only the /=0 term when the

angular integration and spin algebra have been
completed. The coefficient of this term can be
written in terms of the Wigner 3-7 coefficient as [14]

J{= (_l)J.+Mi(_l)2X(_l)Ji+Jf+J2

[[aX fl][°Jx[ix6][«]]i»] (63)

to

[[oX6]Wx[oX6]M]M (64)

by two different flowcharts.

5. Appendix A: The Projection
Integral

The projection integral introduced by Danos is

the quantity to which the tools of Racah algebra

are directly applicable. It is related to a general

matrix element in a manner similar to the reduced
matrix element, but with essential differences.

Consider the matrix element

J Mi m M2
v '

where, in general, i/> and T represent many-body
wave functions and operators, respectively. The
angular momentum notation is that of Fano and
Racah [12] with t meaning Hermitian conjugate, i.e.,

i|/t=t// c '. The transpose operation, ~, which affects

only the half-integral angular momentum, will be

discussed in appendix B. Conjugation [13] is defined

as

0jj]
c=(_l)/+M0W, (A_2)

for both integral and half-integral values of J.

Equation (A- 1) can then be written as

(A-3)

The product of three contrastandard tensor com-
ponents under the integral can be expanded in

terms of angular momentum eigenfunctions

/ Ji K J2 \

\—Mi m M-J

•j ^J'lxl'Wx^l]™. (A-5)

The integral of the invariant triple product is a pro-

jection integral denoted by

[^Ui]|TM|$[^l]=j ^iJx rlA'l X$W ]to].

(A-6)

The same matrix element expressed in terms of

the reduced matrix element as defined by Edmonds,
Racah and Wigner is (see Edmonds, p. 88) [7]

V

{- Mi m MJ

||
TW

||

#[/*]), (A-7)

thus

= r_i)ji+jr-/8^Wf[/i]'||7
,[x]||$[J»]).

(A-8)

The main differences between these two quantities

are the fact that the projection integral can be used

directly in recoupling algebra without phases to

worry about, and, in the projection integral, opera-

tors and state functions are treated on equal footing.

6. Appendix B: Half-Integral Angular
Momentum

The case of half-integral angular momentum
deserves special treatment, since it illustrates the

meaning of conjugation, eq (A~2), and permits us

12



to derive a relationship between ordinary spin-i

eigenstates and the contrastandard ones. We begin

by considering the conjugation property.

The conjugation property defines the costandard

sets in terms of the contrastandard sets (see Fano-

Racah,p. 23) [12]

n/ n/ (-i) j+M
(B-l)

where super ( ) denote costandard. For our pur-

poses, it is the rule for replacing all costandard

elements involved in recoupling by contrastandard

forms. We know that the integral angular momen-
tum eigenfunctions (17) ,

satisfy eq (B— 1), if

the conjugation operation means complex conjuga-

tion. However, this does not apply to the half-

integral angular momentum case.

Consider conjugation to be an operator, U, such

that

and

ty[J}
c=U^= ./rW (B-2)

U^lf s £/2|//W= ^j). (B-3)

Only for J an integer can U be interpreted as com-

plex conjugation. When J is a half-integer, U must

have another meaning compatible with eq (B~3).

We uncover the meaning of U for half-integral

angular momentum by specializing to the spin4

case. We choose the representation in which the

third Pauli matrix is diagonal and thus

Y [l/2] =
*l/2

v [l/2] = (B-4)

Then by the conjugation property eq (B~l), we get

v [l/2] (' =_ V [1/2]C=
A-l/2 (B-5)

If we impose orthonormality, x£\V — by use

of the ordinary definition of matrix transpose, a

contradiction arises. One way out of this impasse
is to introduce more freedom into the problem, for

example, let the transposed quantities correspond-

ing to eq (B—4) be

X!H
2] =(« 0); XL^=(7 §), (B-6)

with a, j6, y, 8 real constants. If we assume the

transposed quantities conjugate by eq (B— 1),

orthonormality now gives

a = 0

0= 1

y=-l
8= 0.

(B-

Explicitly,

XSK
21 =(0 1); xL^J=(-i 0)

x\p
r =(i o);

xfifl8

c-(o i).

(B-8)

(B-9)

The meaning of the conjugation operator for this

representation is clear:

U— i<j2 =
0 1

1 0
(B-10)

where cr2 is the second Pauli matrix. In general,

U is the Fano-Racah U matrix, which corresponds
to a rotation about the y-axis by tt

radians [15]. Specifically, U is the operation

The main point of the preceding paragraph is

that no phase is needed when relating the contra-

standard spinors to the ordinary spin4 spinors.

In actual practice an explicit representation is not

needed. We want simply

for half-integralj . We define

and

From appendix A, eq (B~13) becomes

1

and thus

<Xfi]|lIo]|xb-])=, [x
[J ]|x[j ]]8MV ,

(B-ll)

(B-12)

(B-13)

(B-14)

(B-15)

where j = (2jf+l) 1/2, The projection integral,

eq (B— 15), is the important quantity in recoupling,

not the explicit form of x [j J
-

7. Appendix C: Useful Relations

We collect a number of standard formulas needed
to work the exercises and to make this article self-

contained.

9-j Coefficients

The 9-j coefficients are invariant under an even
number of permutations of rows or columns and
under transposition about one of the diagonals. An
odd number of permutations of rows or columns
introduces a phase of minus one to the sum of all

nine indices. A 9-j coefficient with a zero as one

13



element can be reduced to a 6-j coefficient:

I U h h \
= —

7s J4 Ja

(C-l)

A 9-j with two or three zeroes reduces to one of the

following cases:

fa b c

(C-2)

(C-3)

L0 6 0

(0 a a]

a 0 a =

la a oJ

(_!)»«

(C-4)

6-j Coefficients

The 6-7 coefficients are invariant under any per-

mutation of columns or against interchange of

upper and lower elements in each of any two col-

umns. A 6-j with a zero as one element can be
reduced to

71 J2 J3

h h 0
1=1) Jl +)2 +J3

(C-5)

J1J2

3-j Coefficients

The 3-j coefficients are invariant under an even
number of permutations of columns. An odd num-
ber of permutations of columns or changing the

sign of all three projection quantum numbers in-

troduces a phase of minus one to the sum of the

three angular momenta involved. The 3-j symbol is

defined in terms of the vector-coupling coefficient as

h h J
mi m 2 —M

and when J = 0

(— 1) J1-J2+J1

(jimJ2m>t\JM)

(C-6)

; ; 0

m — m 0

(-1 j-m
(C-7)

Phases

Often there are a number of equivalent ways' of

expressing a given phase factor. Some useful

identities for manipulating half-integral phases
follow:

(1) Phases are invariant modulo 4j, i.e.,

(
_ 1))lj= (-i)(»±4)j.. (Oft)

(2) 2/= odd integer and 2(71 +j2 ) = even integer.

(3) Any three angular momenta which satisfy

triangularity (from a 3-;, 6-j, or 9-j coefficient) sum
to an integer.

We always use the standard convention that

i=V:r l, so that (i)'= (-D'/2
,
(-»')'= (-1)'.

(- 1
) V« = (- 1

)
-W , and ( i )"'=(- 1 )

"'/2
. The reader

is reminded that complex conjugation is equivalent

to computing the inverse of a phase, i.e.,

(-1)
y tin

(-1)

Spherical Harmonics

Formulas involving spherical harmonics with a

sum over the projection quantum numbers arise

frequently in physical problems. The following

are examples:

2 ra 2=s \Y»n
\

2=^ (C" 9)

(C-10)

^ m 2 |yMl 2= /(/+1
^
2/+1)

sin2 fl (C-ll)
m

£ Y\$*(l)Yl$(2) = tlYW(l) xYM (2)][°]

m

2/ + 1

4-7T
Pi(cosdn). (C-12)

Sectors

On numerous occasions it is useful to express

vector operations as angular momentum couplings.

For example,

A-B = V3[#]xfiW]M (C-13)

A x B = V2 [A W x ] Hi (C_ 14)

and the coupling of a unit vector with a spherical

harmonic to form a vector spherical harmonic:

,[1]

'X
= ^(/ml\|;M)i-We

»( , A

= (_ 1
)(/+i)/2 ^ (fml\[yilf>yIm e,

= (-l) ( ' +ll'2 ^,(

(C-15)

(C-16)

A

(C-17)

(C-18)
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Gradient Operator

The projection integrals for the gradient operator
are

[Ri+1 Yl
l+V\VM\RiYM]

(C-19)

= (Z+l)i/s (R 1+1 \y --\Ri)
or r

(C-20)

= /i/.(H
I . 1 |f +

i±l|H
I >.

or r
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publication is designed for the layman and also for

the industry-oriented individual whose daily work
involves intimate contact with science and technology—for engineers, chemists, physicists, research man-
agers, product-development managers, and company
executives. Annual subscription: Domestic, $6.50; For-
eign, $8.25.

NONPERIODICALS

Applied Mathematics Series. Mathematical tables,

manuals, and studies.

Building Science Series. Research results, test

methods, and performance criteria of building ma-
terials, components, systems, and structures.

Handbooks. Recommended codes of engineering

and industrial practice (including safety codes) de-

veloped in cooperation with interested industries,

professional organizations, and regulatory bodies.

Special Publications. Proceedings of NBS confer-

ences, bibliographies, annual reports, wall charts,

pamphlets, etc.

Monographs. Major contributions to the technical

literature on various subjects related to the Bureau's

scientific and technical activities.

National Standard Reference Data Series.

NSRDS provides quantitative data on the physical

and chemical properties of materials, compiled from

the world's literature and critically evaluated.

Product Standards. Provide requirements for sizes,

types, quality, and methods for testing various indus-

trial products.
f
These standards are developed co-

operatively with interested Government and industry

groups and provide the basis for common understand-

ing of product characteristics for both buyers and
sellers. Their use is voluntary.

Technical Notes. This series consists of communi-
cations and reports (covering both other-agency and
NBS-sponsored work) of limited or transitory interest.

Federal Information Processing Standards
Publications. This series is the official publication

within the Federal Government for information on
standards adopted and promulgated under the Public

Law 89—306, and Bureau of the Budget Circular A—86
entitled, Standardization of Data Elements and Codes
in Data Systems.

Consumer Information Series. Practical informa-
tion, based on NBS research and experience, cover-

ing areas of interest to the consumer. Easily under-
standable language and illustrations provide useful

background knowledge for shopping in today's tech-

nological marketplace.

BIBLIOGRAPHIC SUBSCRIPTION SERVICES
The following current-awareness and literature-survey bibliographies are issued periodically by the

Bureau

:

Cryogenic Data Center Current Awareness Service (Publications and Reports of Interest in Cryogenics).

A literature survey issued weekly. Annual subscription : Domestic, $20.00
;
foreign, $25.00.

Liquefied Natural Gas. A literature survey issued quarterly. Annual subscription: $20.00.

Superconducting Devices and Materials. A literature survey issued quarterly. Annual subscription : $20.00.

Send subscription orders and remittances for the preceding bibliographic services to the U.S. Department

of Commerce, National Technical Information Service, Springfield, Va. 22151.

Electromagnetic Metrology Current Awareness Service (Abstracts of Selected Articles on Measurement

Techniques and Standards of Electromagnetic Quantities from D-C to Millimeter-Wave Frequencies). Issued

monthly. Annual subscription: $100.00 (Special rates for multi-subscriptions). Send subscription order and

remittance to the Electromagnetic Metrology Information Center, Electromagnetics Division, National Bureau

of Standards, Boulder, Colo. 80302.

Order NBS publications (except Bibliographic Subscription Services)

from : Superintendent of Documents, Government Printing Office, Wash-
ington, D.C. 20402.



U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards
Washington, D.C. 20234

OFFICIAL BUSINESS

Penalty for Private Use. $300

POSTAGE AND FEES PAID
U.S. DEPARTMENT OF COMMERCE

COM-215


