Energy Dissipation by Fast Electrons

UREAU OF

U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

NBS MONOGRAPH 1

Addendum for

NBS Monograph No. 1

Energy Dissipation by Fast Electrons

Pa qe 2	<u>Line</u> 9	<u>Now reads in part</u> detail in [1]. We only	<u>Should read</u> detail in [1], we only
		a + i - ³ / ₂	$\tau m + i - l$
4	Eq. 15	Ino	Lmo

8 Eq. 31
$$\{ \times 1 + \pi(\mathbb{Z}/137) \}$$

$$\{ \mathbb{Z} = \mathbb{Z} = \mathbb{Z} = \mathbb{Z} \}$$

$$\{ \mathbb{Z} = \mathbb{Z} = \mathbb{Z} = \mathbb{Z} \}$$

$$\{ \mathbb{Z} = \mathbb{Z} = \mathbb{Z} = \mathbb{Z} \}$$

$$\{ \mathbb{Z} = \mathbb{Z} = \mathbb{Z} = \mathbb{Z} = \mathbb{Z} \}$$

$$\{ \mathbb{Z} = \mathbb{Z} = \mathbb{Z} = \mathbb{Z} = \mathbb{Z} = \mathbb{Z} = \mathbb{Z} \}$$

$$\{ \mathbb{Z} = \mathbb{Z} =$$

11

4 from bottom 0.1000000-01,

.

0.100000E-01,

USCOMM-NBS-DC

Energy Dissipation by Fast Electrons

L. V. Spencer

National Bureau of Standards Monograph 1 Issued September 10, 1959

For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, D.C. - Price 45 cents

Contents

		Page
1.	Introduction	1
2.	Methods and input information	2
	2.1. Calculation of moments	2
	2.2. Calculation of the energy dissipation distribution from its moments	5
	2.3. Choice and preparation of input data	8
3.	Tabulations and their description	10
	3.1. Description of the tables	10
	3.2. Interpolation	12
	3.3. Comparisons with experimental data	13
4.	References	70

÷

-			-	
- 1	ſ		F.	
. 4	L	4	L	

Energy Dissipation by Fast Electrons

L. V. Spencer

Tabulations are given of the energy dissipated by fast electrons at different distances from monoenergetic electron sources, for plane perpendicular and point isotropic sources. A summary of the theoretical methods and data utilized, and a table of spatial moments are also included.

1. Introduction

This Monograph belongs to a series of reports on radiation physics data being prepared with the support of the Office of Naval Research and the Atomic Energy Commission.

Earlier reports of this series were designed in part to present input data necessary for the preparation of this report, which gives results of extensive calculations of electron penetration taking into account both nuclear elastic scattering and electron slowing down. The tabulations given here are designed to answer the following type of problem: If electrons of kinetic energy E_0 are produced at a point or on a plane in a material with atomic number Z, the electrons will travel away from their point of origin, dissipating energy to the material as they go. Eventually each electron will have completely given up its initial energy. What will be the spatial distribution of the energy transferred to the surrounding material?

Two types of electron sources are considered, namely point isotropic sources emitting electrons of energy E_0 equally in all directions, and plane sources emitting electrons of energy E_0 only in a single direction which is perpendicular to the source plane. Superposition of the point source data for different E_0 will give data for more complete source spectra, such as the beta-ray spectra from a radioactive isotope or from mixed fission products. Superposition of the point sources at different spatial locations will give results descriptive of surface and volume beta-ray source geometries. Similarly, the data for the plane perpendicular source may be applied to the case of a beam of electrons injected into a material, since the integral of the energy deposition on any plane perpendicular to the beam is independent of the beam width and can therefore be calculated as though the beam were infinitely wide, thus constituting a plane perpendicular source.

The calculations presented here were programed for the IBM 704 digital computer at NBS. The methods which were used were essentially those outlined in [1].¹ Results are given for E_0 varying in approximately logarithmic intervals from 0.025 to 10 Mev, for the following materials: C, Al, Cu, Sn, Pb, air, and polystyrene. In the case of Sn and Pb, some of the lower and some of the higher values of E_0 have been omitted, the lower values because the range and cross-section data are unreliable near the atomic binding energies, the higher values because radiation straggling, which has not been taken into account, tends to dominate at high energies.

The medium is assumed to be homogeneous, extending in all directions around the source a distance greater than the electron range. The electrons are assumed to slow down continuously until their initial kinetic energy has been completely exhausted. The neglect of range straggling due to large singleenergy losses occurring in both radiative and inelastic collisions makes the data somewhat inaccurate; but the errors are probably important only for very large distances from the source, where only a minor fraction of the energy is dissipated. Since a major effort is required to improve the results further, and since experimental studies show generally good agreement where comparisons have been made, it is felt that the data are of sufficient accuracy and usefulness to justify their publication.

¹ Figures in brackets indicate the literature references at the end of this Monograph.

The remainder of this Monograph is divided into two parts, the first outlining the methods and data which were used to make the calculations and the second presenting and describing the tabular data. Section 3 describing the tabular data, has been made almost completely self-contained so that persons who need data but do not wish to follow the derivations may turn immediately to this latter section and find all the information they require.

2. Methods and Input Information

2.1. Calculation of Moments

Since the basic theoretical methods used to calculate electron energy dissipation distributions have already been given in considerable detail in [1]. We only sketch the arguments and procedures here.

The assumption that electrons lose their energy continuously established a relation between the residual range r of the electrons, measured along their path, and the average rate of energy loss, i.e., the stopping power (dE/dr):

$$r = \int_0^E \frac{dE}{dE/dr},\tag{1}$$

where $0 \le E \le E_0$ is the kinetic energy of an electron which has slowed down but not lost its energy completely. This equation is the basis for the tabulations of electron ranges [2].

It is convenient to measure both distances and residual ranges in units of $r_0 = r(E_0)$. For an electron source located on the plane z=0 which emits electrons of kinetic energy E_0 in the direction perpendicular to this plane and towards increasing z, the distance of a point from the source plane will be conveniently identified by a dimensionless parameter $x=z/r_0$. Similarly, we replace the residual range r by a dimensionless ratio $t=r/r_0$. We define the flux of electrons, $I(t,\theta,x)2\pi \ d(\cos \theta)dt$, as the number of electrons per second that cross a small spherical probe of unit cross sectional area at a distance x from the source, having residual ranges between t and t+dt and obliquities between θ and $\theta+d\theta$ relative to the direction from the source to the probe.

The electron flux must satisfy a transport equation, which has the following form in steady state conditions for the plane perpendicular source:

$$-\frac{\partial I}{\partial t} + \cos\theta \frac{\partial I}{\partial x} = \int_0^{2\pi} d\varphi' \int_{-1}^1 d(\cos\theta') S(t,\theta) \left\{ I(t,\theta',x) - I(t,\theta,x) \right\} + \frac{1}{2\pi} \delta(x) \delta(t-1) \delta(\cos\theta-1),$$
(2)

where Θ is the angle between the electron directions (θ', ϕ') and (θ, ϕ) before or after a collision. This is basically a continuity equation. The terms on the left describe a rate of change in $I(t,\theta,x)$ due to slowing down (first term) and due to spatial displacement (second term). The terms on the right describe a rate of change in the flux due to elastic collisions (first term) and due to generation of electrons by the source. The last term, describing a unit-electron source current, is the product of three Dirac delta functions which guarantee that the electrons are generated only at x=0, t=1, and $\cos \theta=1$. If the source is constant with time, $I(t,\theta,x)$ must also be constant with time, and therefore the rates of change in this quantity must balance one another.

The function $S(t,\Theta)$ which appears in the first term on the right of (2) requires a precise definition: The quantity $2\pi S(t,\Theta)d(\cos\Theta)dt$ is the probability that an electron having kinetic energy corresponding to t will undergo, while slowing down from t+dt to t, an elastic collision which results in a deflection through an angle between Θ and $\Theta+d\Theta$. $S(t,\Theta)$ is equal to $r_0N\sigma(E,\Theta)$, where N is the number of atoms per gram of material, E is the kinetic energy corresponding to t, σ is the elastic scattering cross section in a centimeters squared per steradian, per atom, and r_0 is measured in grams per square centimeter.

The procedure for solving (2) utilizes an expansion in spatial moments and spherical harmonics. Thus, if

$$I_{nl}(t) = \int_{-1}^{1} dx \, x^n \int_{-1}^{1} 2\pi \, d(\cos\theta) P_l(\cos\theta) I(x,\theta,t), \tag{3}$$

and

$$S_{l}(t) = \int_{-1}^{1} 2\pi \, d(\cos\theta) [1 - P_{l}(\cos\theta)] S(t,\theta), \tag{4}$$

2

an interlinked system of equations for the $I_{nl}(t)$ can be derived from (2):

$$\frac{\partial I_{nl}(t)}{\partial t} + S_{l}(t) I_{nl}(t) = \frac{n}{2l+1} \{ (l+1) I_{n-1, l+1}(t) + l I_{n-1, l-1}(t) \} + \delta_{n0} \delta(1-t).$$
(5)

Further analysis is dependent upon the fact that the scattering coefficients $S_l(t)$ can be obtained accurately from the suitable formula

$$S_{l}(t) = \frac{\alpha d_{l}}{t(t+\alpha)},\tag{6}$$

where d_i and α are constants. This analytic form, which is accurate over a very wide range of t, Z, and E_0 values, is made plausible by a derivation due to C. Blanchard which is given in appendix A of [1]. Expression (6) makes it possible to obtain from (5) a set of recursion relations linking "residual range moments" I_{nl}^n defined by

$$I_{nl}^{m} = \int_{0}^{1} dt \left[\frac{(1+\alpha)t}{t+\alpha} \right]^{m-n-1/2} I_{nl}(t).$$
⁽⁷⁾

Derivation of the recursion relations satisfied by the I_{nl}^m will not be given, but it is essentially that outlined in [1, Appendix C] with $m = p + n + \frac{1}{2}$, and $I_{nl}^m = (1 + \alpha)^p \Phi_{nl}^p$. They are

$$I_{nl}^{m} = n \frac{\alpha}{1+\alpha} \sum_{i=0}^{\infty} \frac{(i+1)}{[d_{l}-n+\frac{1}{2}(m+i)]} \frac{1}{(1+\alpha)^{i}} \left\{ \frac{l+1}{2l+1} I_{n-1,l+1}^{m+i} + \frac{l}{2l+1} I_{n-1,l-1}^{m+i} \right\} \\ + \delta_{n0} \frac{\alpha}{1+\alpha} \sum_{i=0}^{\infty} \frac{(i+1)}{[d_{l}+\frac{1}{2}(m+i)]} \frac{1}{(1+\alpha)^{i}}.$$
(8)

The system of eq (8) has a complicated appearance, but it contains one fundamental simplifying feature, namely that all the terms appearing in each equation have superscripts $m' \ge m$. This means that a knowledge of the $I_{nl}^{m'}$ for m' > m makes possible a solution for m and then chainwise for lower values of m. The procedure for solving eq (8) is based on this feature, together with the fact that all the sums converge essentially like a geometric series. By starting the solution at sufficiently large $m_{\text{initial}} = M$, it becomes unimportant whether or not terms $m' \ge M$ are accurately represented, since they contribute a negligible amount to the low values of m which are of primary interest.

The first step in the machine programing consists of a numerical determination of the I_{nl}^m through solution of (8). For this purpose it is convenient to restate (8) in a simpler form. We make the following definitions:

$$T_{nl}^{m} = n \left(\frac{\alpha}{1+\alpha}\right) \frac{1}{[d_{l}-n+\frac{1}{2}+m]} \left\{ \frac{l+1}{2l+1} I_{n-1,l+1}^{m} + \frac{l}{2l+1} I_{n-1,l-1}^{m} \right\}, \quad \text{for } n > 0$$

$$T_{0l}^{m} = \left(\frac{\alpha}{1+\alpha}\right) \frac{1}{[d_{l}+\frac{1}{2}+m]},$$

$$C_{nl}^{m} = \sum_{i=0}^{\infty} \left(\frac{1}{1+\alpha}\right)^{i} T_{nl}^{m+i}.$$
(9)

In terms of these quantities, and by means of the summation device [1, eq 27], we can rewrite (8) in the form of coupled equations to be evaluated successively in the order stated below:

$$C_{nl}^{m} = T_{nl}^{m} + \frac{1}{1+\alpha} C_{nl}^{m+1},$$

$$I_{nl}^{m} = C_{nl}^{m} + \frac{1}{1+\alpha} I_{nl}^{m+1}.$$
(10)

Equations (9) and (10) exhibit more clearly the progression of the solution from large to small values of m. It is clear that given initial values T_{nl}^{M} , C_{nl}^{M} , and I_{nl}^{M} , these same quantities may be deter-

3

mined in turn for M-1, M-2, etc., down to m=0. To complete the analysis, therefore, it is necessary to give some device for estimating the initial values. Two choices have been used: In some cases, particularly for large α , the I_{nl}^{M} and C_{nl}^{M} were set equal to zero. More frequently, a crude estimate of these quantities was used, which was based on approximate evaluation of the sums in (8) for large M, namely

$$C_{nl}^{M} = \left(\frac{1+\alpha}{\alpha}\right) T_{nl}^{M},$$

$$I_{nl}^{M} = \left(\frac{1+\alpha}{\alpha}\right)^{2} T_{nl}^{M}.$$
(11)

The expressions (11) break the M linkages and permit calculation of approximate values for I_{nl}^{M} and C_{nl}^{M} with as many n, l combinations as desired.

The foregoing equations are now almost ideally suited for machine computation. Because of the rapidity of the computer operations, there is hardly any limitation to the values of M which are practical. After some preliminary exploration, M was made sufficiently large that any further increase would not change the results for small m significantly in the eighth place. For most of the calculations M=50 proved sufficient for this, but for energies $E_0 \ge 2$ Mev, M=150 was used. As a final check, comparisons were made with values of I_{00}^0 obtained from (7), with $I_{00}(t)=1$,

$$I_{00}^{0} = 1 + \frac{1}{2} \frac{\alpha}{\sqrt{\alpha + 1}} \ln\left(\frac{\sqrt{\alpha + 1} + 1}{\sqrt{\alpha + 1} - 1}\right), \qquad \alpha > 0,$$

$$= 1 + 2 \frac{|\alpha|}{\sqrt{|\alpha| - 1}} \left\{\frac{\pi}{4} - \frac{1}{2} \tan^{-1} \sqrt{|\alpha| - 1}\right\}, \qquad \alpha < -1.$$
(12)

Calculation of numerical values for I_{n0}^{M} represents a major objective of the machine program, since these numbers describe the total flux of electrons integrated over all directions. The procedure just described for obtaining them has proved very rapid and satisfactory.

Once the I_{n0}^m have been obtained, we are in a position to calculate the energy dissipation distribution I(z), which is the end product of our investigation. If I(z)dz is the energy dissipated per square centimeter in the plane layer between z and z+dz, then I(z) is an integral over $I_0(t, x)$, namely

$$I(z) = \frac{1}{r_0} \int_0^{r_0} dr \left(\frac{dE}{dr}\right) I_0(r/r_0, z/r_0).$$
(13)

For our purposes it is advantageous to rewrite (13) in scaled form in terms of a de-dimensionalized function $J(x) = I(z)/(dE/dr)_{E_0}$:

$$J(x) = \int_0^1 dt \ \epsilon(t) I_0(t, x), \tag{13'}$$

where $\epsilon(t) = (dE/dr)/(dE/dr)_{E_0}$. Note that $\epsilon(t) = 1$ at t=1. Equations (13) and (13') express the assumption that each electron contributing to the flux $I_0(t,x)$ at x dissipates energy at the average rate dE/dr per unit pathlength traveled.

Our procedure is to calculate first the spatial moments J_n of J(x), and from these obtain the function itself. To obtain the J_n we use an approximate analytical representation for $\epsilon(t)$, namely

$$\epsilon(t) \approx \sum_{i=1}^{4} A_i \left[\frac{(1+\alpha)t}{t+\alpha} \right]^{i-\frac{3}{2}}.$$
(14)

Inserting this expression into $(13')_j$ and then calculating spatial moments of both sides, we obtain an expression for J_n in terms of the I_{n0}^m :

$$J_n = \sum_{i=1}^{4} A_i I_{n_0}^{n+i-\frac{3}{2}}.$$
 (15)

The representation (14) contains four constants A_i , which require four conditions for their determination. Since $\epsilon(t)$ is a ratio of stopping powers, it can be evaluated numerically for different t_j values. We may then require our representation to equal $\epsilon(t_j)$ at $t=t_j$. Each value of j then corresponds to one condition to be fulfilled by our representation. By a suitable choice of t_j values, the representation can be made to resemble closely the actual function $\epsilon(t)$. For this purpose, the values $t_1=1$, $t_2 \approx 0.5$, and $t_3 \approx 0.1$ were selected. Instead of selecting a fourth condition similar to these three, however, the condition was chosen that the total energy dissipated must always equal the initial kinetic energy E_0 of the electrons. This is expressed by the integral

$$J_{0} = \int_{-1}^{1} dx \int_{0}^{1} dt \,\epsilon(t) I_{0}(t,x), \qquad (16)$$

which takes the form

$$J_0 = \sum_{i=1}^{4} A_i I_{00}^{i-\frac{3}{2}} = \frac{E_0/r_0}{(dE/dr)_{E_0}}.$$
(17)

This condition insures that the stopping power is correctly expressed "on the average"; and it partially compensates for inaccuracies in (14) which arise from the difficulty of representing (dE/dr) simultaneously at low and high energies. When combined with the other three expressions obtained from (4) by setting $t=t_j$, we have a set of simultaneous linear equations whose solution yields the A_i . A short machine program was included to accomplish this and then, with the results, to evaluate the sums (15).

In summary, the machine program for calculating moments J_n of the energy dissipation distribution J(x) consists of a section which solves the moment eqs (8) by means of the recursion eq (9) to (11), a section to determine the A_t , and a final section to perform the sums (15). As input data, values of the constants d_t , α , and M are required for the first section, and E_0 , r_0 , $(dE/dr)_{E_0}$, t_1 , t_2 , and the values $(dE/dt)_{t\approx 0.5}$ and $(dE/dt)_{t\approx 0.1}$ for the second section.

The preceding discussion outlines the calculation of moments J_n for the *plane perpendicular* source. Also of interest are the moments for the *plane isotopic* source from which one can obtain the moments of the *point isotropic* sources (see eq 28). Note that in the case of the plane isotropic source, each element of area on the source plane emits electrons equally in all directions. Only minor modifications are needed in the equations already given to obtain equations from which a calculation of plane isotropic source moments can be made. In particular, the factor $\delta(\cos\theta-1)$ must be replaced by $\frac{1}{2}$ in the last term of (2), a factor δ_{10} must be included in the last term of (5) and (8), and in (9) the expression for T_{01}^m must also include a factor δ_{10} . Otherwise all equations are identically the same for both source types.

2.2. Calculation of the Energy Dissipation from its Moments

The method which was used to calculate the energy dissipation distributions was the "function fitting" method outlined in [1], in which several terms are added together to represent the distribution, all terms having the same functional form but differing in the value of a scale parameter. The representation is expected to be accurate if its moments agree with the known moments of the distribution, if the functional form has been well chosen, if it is smooth, nonoscillatory, positive, single-peaked, and if it is correct at x=0.

The chief advantage and also the chief difficulty with this method for calculating a function from its moments arise from its all-or-nothing character. To obtain values for all the scale parameters and "strength" parameters in the representation, it is necessary to solve simultaneously a set of nonlinear equations. The solution of these equations may be acceptable on the basis of the above-mentioned criteria. In this case the representation is expected to be very accurate. On the other hand, solution of the equations may lead to coefficients which are complex, too large, or too small, and which give a representation which is uneven or oscillatory in nature and not representative of the desired distribution at all. Because the solution of the equations may "fail" in this way, perhaps more often than it may succeed, the function-fitting method is not well suited to digital computer operations. Nevertheless, because only this method had proved successful in hand computations, it was necessary to attempt its use in systematic machine computations. The expectations that frequent failures would be encountered with any function-fitting machine program led us to take three precautions. (1) The functional form selected contained a number of parameters which could be given values arbitrarily. This was to make possible a wide variety of modifications in this function without having to write new codes. It turned out that many of these arbitrary parameters were unnecessary. (2) In each machine calculation, at least five different attempts were made to calculate the distribution, each attempt corresponding to a different value of one of the arbitrary parameters. Thus, several tabulations of the distribution were usually obtained in the same machine run. (3) Where several comparable tabulations occurred, these were graphed and compared both visually and in regard to their analytic form. A choice was made of the distribution best satisfying the criteria. It almost always turned out that if two or more such approximate distributions agreed about equally well with the basic criteria, they agreed with each other to within 1 or 2 percent, except for very small J(x).

Calculation of the spatial distributions proceeded as in [1]. Even and odd moment sets were considered as descriptive of even and odd functions $J^{even}(x)$ and $J^{odd}(x)$, which yield J(x) through the combinations

$$J(x) = \frac{1}{2} [J^{\text{even}}(x) + J^{\text{odd}}(x)],$$

$$J(-x) = \frac{1}{2} [J^{\text{even}}(x) - J^{\text{odd}}(x)].$$
(18)

The functions $J^{\text{even}}(x)$ and $J^{\text{odd}}(x)$ were calculated from the following analytic expressions:

$$(1-a_0x^2)J^{\text{even}}(x) = \sum_{i=0}^3 \alpha_i \beta_i \left(a_1 - a_2 \frac{x}{\beta_i}\right) \left(1 - \frac{x}{\beta_i}\right)^{\gamma} e^{-Ax/(\beta_i - x)},$$
(19)

$$(1 - a_0 x^2) J^{\text{odd}}(x) = \sum_{i=0}^{3} \alpha_i \left(a_1 - a_2 \frac{x}{\beta_i} \right) \left(1 - \frac{x}{\beta_i} \right)^{\gamma} e^{-Ax/(\beta_i - x)},$$
(20)

where the constants a_i were usually assigned the values $a_0=1$, $a_1=1$, and $a_2=0$. The constant A, which controls the asymptotic trend of all the terms, was determined by iteration from the expression

$$\sqrt{A} = \frac{\ln (J_{N-2}/J_N)}{2\{\sqrt{N+\frac{1}{4}+(A/12)} - \sqrt{N-7/4+(A/12)}\}}, N = n_{\text{maximum}}.$$
(21)

The precise value of A is not critical except for large |x|, where J(x) is very small; and (21) gives a fairly reasonable value for this constant since it corresponds to a simple but realistic approximate form [1, Section 7 and Appendix E],

$$J(x) \sim (1-x)^{-3/2} e^{-Ax/(1-x)}.$$
(22)

The constant γ was assigned integral or half-integral values, usually not greater than 1 nor less than -2. The constant β_0 was given the value unity, and the constant β_1 was given five different values in succession, namely $\sqrt{0.9}$, $\sqrt{0.6}$, $\sqrt{0.4}$, $\sqrt{0.1}$, and $\sqrt{0.04}$, each yielding a separate representation of J(x).

The other six constants in each of the expressions (19) and (20), namely α_i , i=1 to 4, and β_i , i=3,4, were determined so that five moment equations obtained from (19) and five from (20) were satisfied, and so that two other features of J(x) were given correctly,

$$J^{\text{odd}}(0) = 1, \tag{23}$$

and

$$\left(\frac{d}{dx} J^{\text{even}}\right)_{x=0} = -\frac{d}{dt} \left(\epsilon\right) \Big|_{t=1}.$$
(24)

Equation (23), together with the moment equations derived from (20) give the following system of simultaneous equations:

$$\frac{J_n - a_0 J_{n+2}}{a_1 \omega_n - a_2 \omega_{n+1}} = \sum_{i=0}^3 \alpha_i \beta_i^{n+1}, \qquad n = 1, 3, 5, 7, 9,$$

$$1 = \sum_{i=0}^3 \alpha_i, \qquad (25)$$

where ω_n indicates a number discussed below. Similarly, (24) together with the moment equations derived from (19) give the system

$$\frac{J_n - a_0 J_{n+2}}{a_1 \omega_n - a_2 \omega_{n+1}} = \sum_{i=1}^3 \alpha_i \beta_i^{n+2}, \qquad n = 0, 2, 4, 6, 8,$$
$$\frac{\alpha}{\alpha + 1} \sum_{i=1}^4 (i - \frac{3}{2}) A_i = [a_2 + a_1(\gamma + A)] \sum_{i=0}^3 \alpha_i. \tag{26}$$

Note that the α_i and β_i for J^{even} , obtained by solution of (25), are quite different from the corresponding values for J^{odd} , obtained from solution of (26).

The number ω_n appearing in both (25) and (26) is defined by the expression

$$\omega_n = \int_0^1 dx \; x^n (1-x)^{\gamma} e^{-Ax/(1-x)}. \tag{27}$$

Machine calculation of these numbers presented an interesting problem, since quite a few are needed, and they must be determined with great accuracy. For this purpose, recursion relations similar to those of [1, Appendix E] were derived. It was found that by estimating ω_n for a very large n, say n=50, and then by working back to small values of n using the recursion relations, very precise values could be obtained. Actually, there was more to the problem than this, since accurate *absolute* values were desired, whereas the method just sketched gives only accurate *relative* values. In any case, a simple and rapid machine program was devised for this purpose.

Solutions of (25) and (26) were programed for the computer, and the resulting parameters were then used in an additional routine which tabulated J^{even} and J^{odd} from (19) and (20). Finally, these tabulations were combined as in (18) to obtain J(x). In the solution of (25) and (26), if β_2 and β_3 turned out to be complex, the remainder of the calculation was omitted and another calculation was attempted with a new value of β_1 . Solutions involving complex β_1 were not acceptable because of being inherently oscillatory. Of the many calculations, perhaps half were not completed because of this type of failure.

The preceding discussion is largely descriptive also of the calculations of J(x) for a point isotropic source; but there were a number of differences worth noting. Point isotropic source moments could be easily obtained from plane isotropic source moments, which were actually computed directly, by use of the prescription

$$J_n^{\text{Point isotropic}} = (n+1) J_n^{\text{Plane isotropic}}.$$
(28)

From these moments A was then determined, using (21). The representation of J(x) for the point isotropic source differed somewhat from (19) because of the added condition that J(0)=1. This was ensured by addition of an extra term:

$$(1 - a_0 x^2) J(x) = (1 + a_1 x) (1 - x)^{\gamma} e^{-Ax/(1 - x)} + a_1 \sum_{i=0}^3 \alpha_i \beta_i \left(\frac{x}{\beta_i}\right) \left(1 - \frac{x}{\beta_1}\right)^{\gamma} e^{-Ax/(\beta_i - x)}.$$
(29)

Moments of (29) have the form

$$\frac{J_n - a_0 J_{n+2} - (\omega_n + a_1 \omega_{n+1})}{a_1 \omega_{n+1}} = \sum_{i=0}^3 \alpha_i \beta_i^{n+2}, \qquad n = 0, 2, 4, 6, 8,$$
(30)

where the ω_n are as defined by (27). To complete the set of equations, one more was added to express the condition that

$$\frac{d}{dx} J(x) \Big|_{x=0} = -\frac{d}{dt} (\epsilon) \Big|_{t=1}.$$

The parameters A, γ , β_0 , and β_1 were specified as already indicated, and a_0 , a_1 were set equal to unity.

It happened repeatedly that none of the solutions obtained from the prearranged set of values of β_1 were acceptable. When this occurred, the parameter next to be given new values was γ . On occasion it proved necessary to use several different values for γ before obtaining an acceptable result; but in no case was it necessary to modify the other parameters.

2.3. Choice and Preparation of Input Data

Three types of input data are required for the calculations outlined in the preceding section, namely electron stopping powers, electron ranges, and elastic scattering cross sections; but none of this information enters directly into the equations which are solved. Instead, a set of derived parameters is used which includes α , the d_i , and the A_i . Thus, after obtaining the basic physical data, a very substantial effort is required to determine the numerical values of the actual equation parameters. In this subsection the physical data is first discussed and then the preparation of the equation parameters is outlined.

Extensive tabulations of range and stopping-power data have been prepared by Nelms [2,3]. We used the data of [2], corrected for density effect according to Sternheimer [4]. This data is based on values for the mean excitation potential obtained by Mather and Segré [5].

The nuclear elastic scattering cross section which was used was essentially the Mott cross section (σ) modified to take into account screening by the atomic electrons. Values for the ratio σ/σ_R of the Mott cross section to the Rutherford cross section were taken from the tabulations of Doggett and Spencer [6]. Also used were unpublished values determined by Doggett and Spencer for several additional atomic numbers Z_i . The screening modification was accomplished through use of Moliére's expression for the screening parameter η [7]. To take into account deflections due to collisions with atomic electrons, the nuclear elastic scattering cross section was modified by a factor $[(Z^2+Z)/Z^2](1+\epsilon)$, in accordance with a correction due to Fano [8] to the usual prescription which replaces the factor Z^2 in the cross section by Z(Z+1).

Due to the remarkable scaling of electron penetration phenomena with the range r_0 (see, e.g., [1], slowing-down and scattering properties of the medium all find expression through the single function $S(t, \Theta)$. For reasons of computational convenience, we represented this function in the form

$$S(t,\Theta) = (3/4)N_A(Z/A)\phi_0(Z+1)(1+\epsilon)(E+mc^2)^2(mc^2)^2[E(E+2mc^2)]^{-2}r_0[1+2\eta-\cos\Theta]^{-2}\{\times 1+\pi(Z/137) \\ (\beta\cos\chi/\sqrt{2})[1+2\eta-\cos\Theta]^{1/2}+[(\sigma/\sigma_R)-1-\pi(Z/137)\beta\cos\chi\sin\frac{1}{2}\Theta][1+2\eta-\cos\Theta]^2[1-\cos\Theta]^{-2}\},$$
(31)

where the quantity in curly brackets can be recognized as σ/σ_R to within a minor modification, and

 N_A = Avogadro's number,

$$\phi_0 = \frac{8}{3}\pi \left(\frac{e^2}{mc^2}\right)^2 = 6.65205 \times 10^{-25} \text{ cm}^2 \text{ is the Thompson cross section,}$$

 $\beta = [E(E+2mc^2)]^{\frac{1}{2}}/(E+mc^2)$ is the electron velocity divided by c,

 mc^2 is the rest energy of the electron,

 σ is the Mott scattering cross section,

$$\epsilon = (Z+1)^{-1} (\ln 4\eta)^{-1} \left\{ u_{1n} - \ln \left[0.16Z^{-2/3} \left(1+3.33 \frac{Z}{137\beta} \right) \right] \right\},\$$

$$\eta = \frac{1}{4} \left[\frac{Z^{1/3}}{0.885(137)} \right]^2 \frac{(mc^2)^2}{E(E+2mc^2)} \left[1.13+3.76 \left(\frac{Z}{137\beta} \right)^2 \right],\$$

$$\cos \chi = \operatorname{Re} \left\{ \frac{\Gamma \left(\frac{1}{2} - i \frac{Z}{137\beta} \right) \Gamma \left(1+i \frac{Z}{137\beta} \right)}{\Gamma \left(\frac{1}{2} + i \frac{Z}{137\beta} \right) \Gamma \left(1-i \frac{Z}{137\beta} \right)}, \text{ and}$$

 $\sigma_{R} = \frac{3}{4} N_{A} (Z/A) \phi_{0} Z (E + mc^{2})^{2} (mc^{2})^{2} [E(E + 2mc^{2})]^{-2} (1 - \cos\theta)^{-2}.$

In (31), note that $(3/4)N_A(Z/A)\phi_0=0.300 \text{ cm}^2/\text{g}$, a tabulation of $\cos \chi$ has been given in [6], and the constant $-u_{\text{in}}$ is a number in the neighborhood of 5. Everything in (31) is known except the value of

 $-u_{\text{in}}$, which affects only a correction to a correction. To be systematic in "guessing" the value of $-u_{\text{in}}$, the few values in [8] were plotted against log Z and interpolations were made from a rough curve drawn through the points.

To discuss the further processing of the data, it is convenient to give the different terms in (31) shorter names. In particular, we define $G, C(\Theta), D(\Theta)$, and $F(\Theta)$ as follows:

$$G(E) = (3/4)N_A(Z/A)\phi_0(Z+1)(1+\epsilon)(E+mc^2)^2(mc^2)^2[E/(E+2mc^2)]^{-2}r(E),$$

$$C(\Theta) = [1+2\eta-\cos\Theta]^{-2},$$

$$D(\Theta) = [1+2\eta-\cos\Theta]^{-3/2},$$

$$F(\Theta) = \{ (\sigma/\sigma_R) - 1 - \pi(Z/137\beta)\cos\chi\sin\frac{1}{2}\Theta \} (1-\cos\Theta)^{-2}.$$
(32)

Using these definitions, $S(t, \Theta)$ can be written

$$tS(t, \Theta) = G\{C(\Theta) + \sqrt{\frac{1}{2}}\pi(Z\beta/137) \cos\chi D(\Theta) + F(\Theta)\}.$$
(33)

The expansion in Legendre coefficients of $C(\Theta)$ and $D(\Theta)$ is a simple matter and has been given in [1]. On the other hand, $F(\Theta)$ is only known numerically, and its harmonic expansion is therefore not so easy to obtain. Our procedure consisted of approximating $F(\Theta)$ by a four term polynomial in $(1-\cos\Theta)$ over each of the angular ranges 45° to 90°, 90° to 135°, and 135° to 180°,

$$F(\Theta) = \sum_{i=0}^{3} f_i (1 - \cos \Theta)^{i-1},$$
(34)

and by a three-term polynomial of the same type over the range 0° to 45°. Note that in each 45° range the f_t in (34) assume different values. These coefficients were determined so that (34) agreed with the tabulated values of $F(\Theta)$ at 15° intervals. With the analytic approximations (34), it is possible to accomplish the integrations (4) to obtain coefficients F_t . The procedure actually followed was that of determining a 12×12 matrix which, multiplied by the twelve tabulated values $F(15^\circ)$, $F(30^\circ)$, etc., would yield in turn the first twelve harmonic coefficients F_1, F_2, \ldots, F_{12} . The matrix multiplications were then performed by machine.

Having determined all the C_i , D_i , and F_i , the coefficients $S_i(t)$ were then calculated from the expression

$$tS_{i}(t) = G(E) \left\{ C_{i} + \sqrt{\frac{1}{2}} \pi (Z\beta/137) \cos x D_{i} + F_{i} \right\}_{E},$$
(35)

for all the energies and elements listed in tables 1 and 2, plus one lower energy, namely 0.01 Mev.

In the last stage of the preparation of the data, ratios $S_l(t)/S_1(t)$ were determined from (35). The representation (6) requires these ratios to be independent of t. Actually, they are weakly energy dependent, and to this extent (6) is in error. To minimize the effect of this error, the ratios d_l/d_1 were set equal to $S_l(1)/S_1(1)$, so that the most penetrating part of the range of the electrons is traveled before the approximation (6) incurs appreciable error:

$$\frac{d_l}{d_1} = \frac{S_l(1)}{S_1(1)}.$$
(36)

Finally, to obtain α and d_1 we notice from (35) that $tS_1(t)$ depends only on E, not on E_0 . Therefore, according to (6), the quantity

$$\frac{\alpha d_1}{t+\alpha} = t S_1(t), \tag{37}$$

also depends only on E, and not on E_0 . This makes it very easy to calculate α and d_1 from the tabular values of (35). One evaluates (37) for two values of t, namely t=1 and $t=t_1$, corresponding to E_0 and

9

the next lower energy recorded. Simultaneous solution of these two equations yields α and d_1 :

$$\alpha = \frac{S_1(1) - t_1[t_1S_1(t_1)]}{t_1S_1(t_1) - S_1(1)},$$

$$d_1 = \frac{1 + \alpha}{\alpha} S_1(1).$$
(38)

Combination of d_1 with the ratios d_i/d_1 then give all the d_i 's.

This completes the preparation of the data, except for compounds and mixtures, in which case it is necessary to determine the S_i from an average over S_i values for the constituent elements, in proportion to their fraction of the mixture by weight.

3. Tabulations and Their Description

3.1. Description of the Tables

The following quantities appear in table 1:

Z, the atomic number; results are given for Z=6 (carbon), 13 (aluminum), 29 (copper), 50 (tin), and 82 (lead), and in addition for air and polystyrene. Air is assumed to be 0.755 nitrogen, 0.232 oxygen and 0.013 argon by weight, and polystyrene is taken to be C_8H_8 .

 E_0 , the initial source energy of the electrons; results are given for $E_0=0.025$, 0.05, 0.1, 0.2, 0.4, 0.7, 1, 2, 4, and 10 Mev, except that some of the highest and lowest values have been omitted in the case of tin and lead.²

 $(dE/dr)_{E_0}$, the stopping power of electrons at the initial (source) energy.

 $r_0 = r(E_0)$, the residual range of electrons at energy E_0 .

x, the distance from the source in units of r_0 . This quantity refers to z/r_0 for plane perpendicular sources and to ρ/r_0 for point isotropic sources, where z is measured along a perpendicular to the source plane and ρ is measured radially out from the source point.

J(x), the de-dimensionalized energy dissipation distribution, for plane perpendicular and point isotropic sources, see eqs (13) and (13'). For plane perpendicular sources, $(dE/dr)_{E_0}J(x) = I(z)$, where I(z)dz is the energy dissipated per cm² in the plane layer between z and z+dz by electrons initially given kinetic energy E_0 assuming 1 electron/cm² to be generated at the source plane.³ For point isotropic sources, $(dE/dr)_{E_0}J(x) = I(\rho)$, where $I(\rho)d\rho$ is the average energy per electron dissipated in the spherical shell between ρ and $\rho+d\rho$. In the case of the plane perpendicular sources, J(x) has been given for positions on both sides of the source plane. Occasional negative values of J(-x) represent spurious effects due to imperfections in the representation. They have been included because they give some guidance regarding the expected accuracy for x=|-x|. One does not expect the value J(x) to be more accurate than plus or minus the corresponding value at -x, where that value is negative. Note that the discontinuity at the source plane is unity, and that in the case of both point isotropic and plane perpendicular sources the integral over x gives $(E_0/r_0)/(dE/dr)_{E_0}$.

Along with the tabulated energy dissipation distributions and the associated range and stopping power values at the source energy, we have included many other pieces of data in table 1 in order to give a fairly complete record of the computations. These are:

 $(\sigma)/\sigma_R(\theta)$, the ratio of the Mott to the Rutherford nuclear elastic scattering cross sections which was used as input data [6];

 $S_{l}(1)$, given by (35) for $t=r(E)/r(E_{0})=1$, i.e., for $E=E_{0}$;

 d_1 , α , quantities characterizing the representation (6) of the scattering coefficients $S_i(t)$;

 A_1, A_2, A_3, A_4 , the coefficients A_t in the analytic approximate representation (14) of the stopping power $\epsilon = (dE/dr)/(dE/dr)_{E_0}$,

 A^{PTI} , A^{PLP} , the two values of the constant A in eq (19) to (22) for the point isotropic and plane perpendicular source geometries, respectively. Theoretically the same, these values differ because

² A calculation for 0.1 Mev source energy in Pb has been included to facilitate calculations for energies below 0.7 Mev. Since the binding energy of the K electrons in Pb is ~0.07 Mev, the numbers in this table are not to be taken seriously.

³ For a beam source, I(z)dz represents the average energy per electron dissipated in the plane layer between z and z+dz.

they were obtained from (21) using different moment sets. The extent of the difference, as it affects the distribution in the manner indicated in (22), serves to indicate a region of large x in which the data are unreliable. There is no simple way to identify this region explicitly, since the representations (19, are more accurate than the expression (22) from which the constants A were determined. But when the difference in A values leads to widely different values for (18), one doesn't expect the tabulated values of J(x) to be accurate. Note that the assumption of continuous energy loss makes J(x) inaccurate in the same region anyway.

In table 2 the moments $I_{n0}^{p+n+\frac{1}{2}}$ have been recorded which were used to obtain the energy dissipation distributions. According to (7) these represent averages of the residual range function $\left[\frac{(1+\alpha)t}{t+\alpha}\right]^p$, over the n'th spatial moment $I_{n0}(t)$ of the flux distribution. In other words,

$$I_{n_0}^{p+n+\frac{1}{2}} = \int_0^1 dt \left[\frac{(1+\alpha)t}{t+\alpha} \right]^p I_{n_0}(t) = \int_0^1 dt \left[\frac{(1+\alpha)t}{t+\alpha} \right]^p \int_{-1}^1 dx \ x^n I_0(t,x), \tag{39}$$

where $I_0(t,x)dt$ is the flux of electrons having residual ranges between t and t+dt crossing a small spherical probe of unit cross sectional area at a distance x from the source. The different columns in table 2 correspond to fixed values of p. Enough p values have been included to make possible calculations of electron spectra by reconstruction from these "residual range moments". Similarly, the I_{n0}^m can be combined with new representations of the stopping power of the type given by (14) to yield improved calculations of energy dissipation distributions, or perhaps calculations, using the stopping power of air, which give results corresponding to measurements of air ionization in a cavity chamber. Note that each number in table 2 ends in a symbol *E-n* which stands for $\times 10^{-n}$; thus 0.1000000-01, is to be interpreted as 0.1×10^{-1} , or 0.01.

Two sets of curves are given to illustrate data in table 1. In figure 1 curves are drawn of the energy dissipation distributions for plane perpendicular sources in copper. Each curve corresponds to

FIGURE 1. Energy dissipation distribution for plane perpendicular sources of different initial energies in copper.

The irregularities for negative x are spurious effects arising from inadequacy of the representation.

FIGURE 2. Energy dissipation distribution for point isotropic sources of initial energy $E_0=0.7$ Mev in different materials.

a different source energy. The curves show marked similarity for nonrelativistic source energies, which illustrates the scaling with range. They also show the tendency at relativistic energies for electrons to dissipate their energy farther out from the source, more in the manner of protons and α particles. Figure 2 gives distributions J(x) for point isotropic sources corresponding to different Z values, for an initial energy $E_0=0.7$ Mev. These curves show clearly the trend towards greater energy dissipation near the source for larger Z values.

3.2. Interpolation

Three types of interpolation are of interest, namely interpolation in x, interpolation in E_0 , and interpolation in Z.

The fairly fine mesh in x, namely $\Delta x=0.025$, should make possible an interpolation everywhere of precision comparable with the number of digits tabulated, although a quadratic, rather than linear, interpolation formula may be required.

Interpolation in source energy E_0 is a fairly simple matter over most of the (E_0,x) region covered by the tabulations. This is because the curves have a strong tendency to preserve their shape through source energy changes. Because logarithmically spaced source energies have been used, interpolation should be based on the variable log E_0 rather than E_0 . For energies between 4 Mev and 10 Mev, and for large x values, there occur substantial shape changes which require a more sophisticated interpolation procedure which takes into account the analytic form of the approximating functions. Thus, for example, it should be substantially more accurate to interpolate the function $\{1/A \ln J(x) + x/(1-x)\}$, if a power series representation is used for the interpolation, even though the value of J(x) must then be obtained from a difference between terms which affect the value of J(x) exponentially.

Interpolation in Z is more difficult because of progressive shape changes with Z which result in great changes from one curve to the next. Accurate interpolation will therefore often require that the analytic form (22) be taken into account. This can be done in the manner already mentioned, by interpolating a well-chosen function of J(x), such as $\{1/A \ln J(x) + x/(1-x)\}$, rather than J(x) itself. The value of J(x) can be obtained from this function utilizing a value for the constant A which is also interpolated from the A^{PTI} or A^{PLP} values of table 1.

Of special interest are interpolations for compounds and mixtures. Here it should be noted that the single, most important, determining piece of input data is the $S_1(1)$, which is nearly proportional to Z+1. One can therefore average Z over the constituent elements in the compound and use this value in an interpolation of the type discussed in the preceding paragraph.

Interpolation can be used to modify the results presented here to correspond to more accurate range and stopping power data; but changes of this type will almost certainly be small because they affect the calculations chiefly through the factor r_0 in the S_i values. A 3-percent change in r_0 would have about the same effect on the calculations as a 3-percent change in the atomic number. A similar change in the stopping power at all electron energies would have no effect because of the scaling which is utilized in de-dimensionalizing J(x). Thus, new range and stopping power values can replace those presented in table 1 for most purposes, without further modifications in the results.

It should be mentioned that in a number of cases solutions were accepted for which one of the β_i exceeded unity by a small amount, say 2 percent. Because of this, the extreme asymptotic values of J(x), i.e., for $x \approx 1$, do not always follow closely the trend of (22). This is noticeable mostly for the low Z elements. Interpolation will be less accurate when this occurs, but the values of J(x) involved are small enough and inaccurate enough for other reasons that this should not matter.

3.3. Comparisons With Experimental Data

A number of experiments are available for comparison with the data presented here, and fortunately they are of high quality. By and large, the values in table 1 agree with the results recorded in [1], which in turn compared well with experiments due to Frantz using monoenergetic electrons incident perpendicularly on beryllium, aluminum, and gold [9]. Other results of [1] proved to be in good agreement with experiments using P^{32} beta ray sources in air (Clark, Brar, and Marinelli, point isotropic source geometry) [10], and in polystyrene (Loevinger, [11] plane isotropic source geometry).

Since the publication of [1], further experiments and calculations have been made by Huffman [12]. Huffman's results pertain to a monoenergetic electron beam incident perpendicularly on aluminum, with measurement of the energy dissipated in plane layers of air. His source energies are all in the proximity of 0.1 Mev. Huffman performed calculations, using the simplified method given in [1] which assumes α to be infinite. His theoretical values were in fair agreement with his experiments.

A fine summary of all this work is given in the Encyclopedia of Physics, vol. 34, in a review article by Birkhoff [13].

FIGURE 3. Comparison of experimental data [12] with energy dissipation data from table 1.

FIGURE 4. Comparison of experimental results of Grün [14] with theoretical data interpolated from table 1.

Although the data presented in this Monograph relate to energy dissipated in the material, rather than in an air probe, it is instructive to compare some of these new tabular data with Huffman's experimental results for 0.1 Mev electrons. Such a comparison is given in figure 3. The experimental results have been scaled to compare with $J(\alpha)$ by use of range and stopping power values from [1]. Agreement is seen to be very good, actually a little better than in the case of Huffman's calculations. Perhaps the use of a finite α , which permits a slightly better representation of the energy dependence of $S(t,\theta)$ even at low energies, causes the difference between the two calculations.

The most complete experiment of this type is that of A. E. Grün, who made extremely detailed and consistent measurements of the energy dissipation distribution of rather low energy electrons (0.005 to 0.054 Mev) in air [14]. Grün determined the energy dissipation in plane layers of air perpendicular to a beam source, and his values include positions *behind* the source plane. In fact, Grün's experiments exhibit with remarkable clarity the discontinuity at the source plane, and he uses this feature as an experimental determination of the stopping power of electrons at these (low) source energies.

Results from table 1 have been interpolated to obtain a comparison with Grün's curve for 0.032 Mev, and this is shown in figure 4. Both curves are absolute, having been normalized to unit electron source strength, so that the discontinuity measures the stopping power in Mev-cm²/g. Substantial disagreement occurs only in two areas. One is at large penetrations, where the experimental curve is high due to the straggling in range which has been omitted from the calculations. The other is for penetrations behind the source, where the theoretical representation breaks down due to the calculation of small differences between even and odd component distributions.

Comparisons at higher energies (~ 2 Mev) in aluminum have been made with earlier work by Trump, Wright, and Clark [15] and indicate fairly good agreement. In high-Z materials, at both high and low energies, where one expects the schematization to break down, there do not appear to be experimental results at present.

Construction of the computer programs and applications of the computer were accomplished in collaboration with Mrs. Sally Peavy of the NBS Computer Laboratory. Calculation of input data was accomplished with the aid of R. Bach and Joel Rogers. Graphing of the computer output for the purpose of selection of suitable results was accomplished with the help of Mrs. Ann Nelms. Many people aided this project in other ways.

 $Z = 6, E_0 = 0.025 Mev$

STOPPING POWER (dE/dr) _{E0} = 9.97 Mev(cm ² /g)	POINT ISOTROPI SOURCE	PL. C PERPE SO	ANE NDICULAR URCE		POINT ISOTROPIC SOURCE	PL PERPE SC	ANE INDICULAR NURCE
RESIDUAL RANGE x	J(x)	J(x)	J(-x)	x	J(x)	J(x)	J(-x)
$\begin{array}{ll} r_{o} &= 0.00141 \ \text{g/cm}^{2} & 0.000 \\ 0.025 \\ \text{OTHER PARAMETERS} & 0.050 \\ d_{1} &= 1.080 A_{1} = 0.8079 \\ \end{array}$	1.000	1.422	0.422	0.500	2.636	2.671	-0.009
	1.016	1.519	0.341	0.525	2.763	2.580	-0.012
	1.041	1.615	0.266	0.550	2.883	2.472	-0.013
	1.072	1.713	0.200	0.575	2.994	2.350	-0.008
$a = -107.8$ $A_2 = 0.2708$ 0.100 $A^{PTI} = 0.7751$ $A_3 = 0.0380$ 0.125 $A^{PLP} = 0.9124$ $A_4 = -0.1167$ 0.175	1.111	1.812	0.144	0.600	3.088	2.216	-0.003
	1.158	1.914	0.103	0.625	3.161	2.070	0.002
	1.211	2.022	0.081	0.650	3.203	1.910	0.006
	1.272	2.133	0.077	0.675	3.203	1.735	0.008
SCATTERING COEFFICIENTS 0.200 θ σ/σ_R ℓ $S\ell$ 0.225 15° 1.004 1 1.090 0.250 30 1.003 2 2.770 0.275	1.340	2.242	0.078	0.700	3.149	1.543	0.008
	1.415	2.346	0.079	0.725	3.025	1.334	0.008
	1.497	2.444	0.079	0.750	2.813	1.090	0.007
	1.586	2.534	0.078	0.775	2.496	0.872	0.004
45 0.998 3 4.867 0.300 60 0.990 4 7.272 0.325 75 0.979 5 9.977 0.350 90 0.966 6 12.87 0.375 105 0.953 7 15.90 0.375	1.682	2.615	0.076	0.800	2.064	0.634	0.001
	1.785	2.685	0.072	0.825	1.523	0.409	-0.002
	1.893	2.742	0.066	0.850	0.925	0.219	-0.004
	2.008	2.783	0.058	0.875	0.397	0.085	-0.003
1200.940819.040.4001350.928922.680.4251500.9201026.430.4251650.9141130.260.4501800.9121234.160.475	2.127	2.806	0.048	0.900	0.091	0.019	-0.001
	2.251	2.808	0.036	0.925	0.007	0.001	-0.000
	2.379	2.787	0.022	0.950	0.000	0.000	-0.000
	2.508	2.741	0.007	0.975	0.000	0.000	-0.000

Z = 6, $E_0 = 0.05$ Mev

STOPPING POWER				POINT	PL.	ANE		POINT	PLA	INE
(dE/dm)		N (2/)		ISOTROPIC	PERP	ENDICULAR		ISOTROPIC	PERPEN	NDICULAR
(ut/ur/E	2.93	mev(cm~/g)		SOURCE	SO	URCE		SOURCE	SOU	JRCE
RESIDUAL RANGE			x	J(x)	J(x)	J(-x)	х	J(x)	J(x)	J(-x)
r = 0.0047	9 0/0	2m ²	0.000	1.000	1.363	0.363	0.500	2.654	2.725	0.005
-0			0.025	1.008	1.443	0.290	0.525	2.798	2.630	-0.001
OTHER PARAMETE	RS		0.050	1.024	1.526	0.224	0.550	2.939	2.513	-0.005
d ₁ = 1.115	4	$A_1 = 0.7176$	0.075	1.049	1.615	0.167	0.575	3.072	2.378	-0.008
$\alpha = 12.76$	1	$A_2 = 1.438$								0.007
APTI 0 701	2 1		0.100	1.082	1.713	0.123	0.600	3.189	2.229	-0.007
A - 0.771		32.501	0.125	1.123	1.825	0.096	0.625	3.279	2.066	-0.007
$A^{PLP} = 0.934$	3 I	1, = 1.231	0.150	1.172	1.950	0.086	0.650	3.325	1.888	0.000
		4	0.175	1.230	2.075	0.081	0.675	3.303	1.696	0.004
SCATTERING CON	CFFIC.	TENTS								
θ σφ	ł	SA	0.200	1.296	2.195	0.076	0.700	3.185	1.490	0.007
15° 1.004	1	1.034	0.225	1.369	2.310	0.071	0.725	2.948	1.270	0.008
30 1.001	2	2.687	0.250	1.451	2.418	0.066	0.750	2.600	1.039	0.007
45 0.990	3	4.800	0.275	1.540	2.518	0.061	0.775	2.174	0.803	0.004
60 0.974	Ĩ	7.27/								
75 0.953	5	10.0/	0.300	1.637	2.609	0.056	0.800	1.715	0.571	0.001
90 0.930	6	13.04	0.325	1.742	2.688	0.050	0.825	1.255	0.358	-0.002
105 0.905	7	16 23	0.350	1.854	2.754	0.044	0.850	0.819	0.184	-0.003
120 0.882	ģ	10.58	0.375	1.973	2.805	0.038	0.875	0.446	0.068	-0.003
135 0 862	ä	23.06								
150 0.8/6	10	25.60	0.400	2.099	2.837	0.032	0.900	0.178	0.014	-0.001
165 0 926	11	20.04	0.425	2,231	2.847	0.026	0.925	0.039	0.001	-0.000
180 0.000	10	21 00	0.450	2,368	2.834	0.019	0.950	0.003	0.000	-0.000
100 0.833	12	54.00	0.475	2,510	2.793	0.012	0.975	0.000	0.000	-0.000
			~ • • • • • •	~*/-*						

 $Z = 6, E_0 = 0.1 Mev$

STOPPIN (dE/	NG POWER (dr) _{Eo} =	3.71	Mev(cm ² /g)		POINT ISOTROP: SOURCE	PI IC PERPI E SO	LANE ENDICULAR DURCE		POINT ISOTROPIC SOURCE	PI PERPI S	LANE ENDICULAR OURCE
RESIDUA	IL RANGE		2		J(x)	J(x)	J(-x)	v	J(x)	J(x)	J(-x)
r_ =	= 0.0159	g/cm	12	x	1 000	1 2/1	0 2/1	0 500	2 171	2 500	_0_009
OTHER	PARAMETER	S		0.025	1.011	1.626	0.270	0.525	2.605	2.507	-0.005
-		~ .	0.7075	0.050	1.029	1,508	0.204	0,550	2.736	2.399	-0.014
d ₁ =	= 1.042	A1	= 0.7075	0.075	1.05/	1,595	0.145	0.575	2.864	2.278	-0.009
α =	= 39.12	A	= 0.8655	0.0.9	20074						
PTT		2	2	0.100	1.086	1.687	0.097	0.600	2.983	2.145	-0.004
A' ' ' :	= 0.7714	. A.	$_{3} = -1.031$	0.125	1.124	1.786	0.062	0.625	3.084	2.001	0.001
APLP.	= 0.9168	A.	= 0.4576	0.150	1.169	1.895	0.045	0.650	3.154	1.844	0.005
	.,			0.175	1.221	2.013	0.045	0.675	3.174	1.671	0.007
SCATTE	RING COEF	FICT	ENTS								
Α	σ /σ	l	SP	0.200	1.279	2.130	0.050	0.700	3.116	1.481	0.008
0	°/ R		2	0.225	1.344	2.241	0.053	0.725	2.952	1.275	0.008
15°	1.004	1	1.016	0.250	1.415	2.345	0.056	0.750	2.667	1.054	0.006
30	0.996	2	2.702	0.275	1.493	2.442	0.058	0.775	2.266	0.824	0.003
45	0.976	3	4.908								
60	0.946	4	7.542	0.300	1.578	2.528	0.058	0.800	1.782	0.593	0.000
75	0.909	5	10.54	0.325	1.669	2.603	0.056	0.825	1.276	0.377	-0.002
90	0.868	6	13.84	0.350	1.767	2.664	0.052	0.850	0.822	0.197	-0.003
105	0.826	7	17.42	0.375	1.871	2.708	0.046	0.875	0.465	0.074	-0.003
120	0.786	8	21.23								
135	0.751	9	25.24	0.400	1.981	2.734	0.038	0.900	0.218	0.015	-0.001
150	0.725	10	29.43	0.425	2.097	2.737	0.027	0.925	0.076	0.001	-0.000
165	0.708	11	33.78	0.450	2.218	2.716	0.014	0.950	0.016	0.000	0.000
180	0.702	12	38.26	0.475	2.344	2.669	0.001	0.975	0.001	0.000	0.000

 $Z = 6, E_0 = 0.2 Mev$

STOPPING POWER					POINT PLANE			POINT	PLANE		
(dE	$(dr)_{r} =$	2.52	$Mev(cm^2/g)$		ISOTROPIC	PERPH	ENDICULAR		ISOTROPIC	PERPE	NDICULAR
	E0	~~~~~			SOURCE	SC	URCE		SOURCE	SO SO	URCE
RESIDU	AL RANGE			x	J(x)	J(x)	J(-x)	x	$J(\mathbf{x})$	$J(\mathbf{x})$	J(-x)
r	= 0.0498	g/cn	n ²	0.000	1.000	1.294	0.294	0.500	2.298	2.433	-0.012
0				0.025	1.008	1.368	0.228	0.525	2.425	2.344	-0.016
UTHER	PARAMETER	S		0.050	1.022	1.444	0.168	0.550	2.552	2.242	-0.013
dl	= 1.033	A	L = 0.6437	0.075	1.042	1.522	0.115	0.575	2.676	2.128	-0.008
α	= 18.89	A	2 = 0.8923	0.100	1.068	1.606	0.071	0.600	2,789	2.004	-0.003
APTI	= 0.7726	A.	=-0.9961	0.125	1.100	1.698	0.041	0.625	2.878	1.869	0.001
ק זק		÷	3	0.150	1.138	1.800	0.027	0.650	2.929	1.721	0.004
A' Di	= 0.9216	, A	= 0.4600	0.175	1.181	1.911	0.029	0.675	2.928	1.558	0.006
SCATTE	RING COEF	FICIE	ENTS								
A	a /a	ł	SP	0.200	1.231	2.022	0.035	0.700	2.861	1.380	0.007
7.60	R		0,000,5	0.225	1.286	2.126	0.040	0.725	2.714	1.186	0.007
15*	1.003	1	0.9815	0.250	1.347	2.224	0.044	0.750	2.472	0.978	0.005
50	0.987	2	2.666	0.275	1.414	2.314	0.047	0.775	2.132	0.762	0.003
40	0.954	3	4.912	0, 200	7 /00	0.205	0.010	0.000	1 700	0 515	0.000
75	0.900	4	1.0.034	0.300	1.400	2.395	0.048	0.800	1.702	0.545	0.000
00	0.040	2	1/ 28	0.325	1.207	2.403	0.048	0.825	1.220	0.344	-0.002
105	0.701	7	14.20	0.370	1.075	2.710	0.045	0.870	0.755	0.178	-0.003
120	0 651	g	22.2/	0.575	1.147	2.001	0.040	0.015	0.307	0.000	-0.002
135	0.596	a	26 61	0 / 00	1 8/2	2 5777	0 032	0.000	0 171	0 012	.0.001
150	0.554	ιó	31 28	0.400	1 9/8	2 576	0.021	0.900	0.071	0.01	-0.000
165	0.527	11	36.14	0.450	2.059	2.551	0.009	0.950	0.027	0.000	_0_000
180	0.518	12	41.19	0.475	2.176	2,503	-0.003	0.975	0.009	0.000	-0.000

$Z = 6, E_0 = 0.4 Mev$

STOPPING POWER (dE/dr) _E = 1.92 Mev(cm ² /g)	POINT ISOTROPIC SOURCE	PL PERPE SO	ANE NDICULAR URCE		POINT ISOTROPIC SOURCE	PL. PERPE SO	ANE NDICULAR URCE
RESIDUAL RANGE x	J(x)	J(x)	J(-x)	x	J(x)	J(x)	J(-x)
$r_0 = 0.143 \text{ g/cm}^2$ 0.000 OTHER PARAMETERS 0.050 $d_1 = 1.016 A_2 = 0.5417 0.075$	1.000 1.007 1.018 1.035	1.233 1.296 1.362 1.430	0.233 0.176 0.125 0.079	0.500 0.525 0.550 0.575	2.048 2.150 2.254 2.358	2.192 2.107 2.012 1.905	-0.014 -0.015 -0.012 -0.007
$ \begin{array}{c} \alpha &= 9.779 \\ A^{PTI} &= 0.7603 \\ A^{PLP} &= 0.9091 \\ A_{\pm} &= 0.3327 \end{array} \begin{array}{c} 0.100 \\ 0.125 \\ 0.150 \\ 0.175 \end{array} $	1.056 1.081 1.112 1.147	1.503 1.584 1.674 1.774	0.042 0.017 0.006 0.011	0.600 0.625 0.650 0.675	2.457 2.543 2.601 2.611	1.792 1.670 1.536 1.390	-0.003 0.001 0.004 0.005
SCATTERING COEFFICIENTS 0.200	1,187	1.873	0.018	0.700	2.544	1.231	0,006
$\theta \sigma / \sigma_R \ell S_\ell 0.225$ 15° 1.002 1 0.9221 0.275	1.231	1.967	0.026	0.725	2.380	1.058	0.006
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.334 1.458 1.527 1.602	2.205 2.264 2.310 2.340	0.038 0.038 0.037 0.032	0.800 0.825 0.850 0.875	1.466 1.098 0.731 0.401	0.488 0.307 0.160 0.060	0.002 -0.002 -0.003 -0.002
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.681 1.766 1.855 1.949	2.352 2.344 2.314 2.262	0.025 0.016 0.004 -0.006	0.900 0.925 0.950 0.975	0.157 0.031 0.001 0.000	0.012 0.001 0.000 0.000	-0.001 -0.000 -0.000 -0.000

Z = 6, $E_0 = 0.7$ Mev

STOPPIN	IG POWER				POINT	PL	ANE		POINT	PL	ANE
(dE/	$(dr)_{\mathbf{F}} =$	1.71	$Mev(cm^2/g)$		ISOTROPIC	PERP	ENDICULAR		ISOTROPIC	PERPE	NDICULAR
DEGENER	D-LO				SOURCE	50	URCE		SUORCE	501	JRUE
RESIDUA	L RANCE			х	J(x)	J(x)	J(-x)	x	J(x)	J(x)	J(-x)
r _o =	0.311	g/cm ⁴	٤	0.000	1.000	1.176	0.176	0.500	1.813	1.985	-0.013
OTUTO		c		0.025	1.004	1.227	0.131	0.525	1.894	1.907	-0.014
ombat r	ANAPEILA	2		0.050	1.013	1.279	0.089	0.550	1.977	1.819	-0.011
d1 =	= 1.004	A	= 0.4643	0.075	1.025	1.334	0.052	0.575	2.060	1.724	-0.007
α =	5.157	A	2 = 0.9142	0.100	1.040	1,394	0.022	0.600	2.141	1.623	-0.003
APTI=	0.7383	A	= -0.5978	0.125	1.060	1.462	0.022	0.625	2.213	1.513	0.000
PLP	0.0010			0.150	1.083	1.539	-0.006	0.650	2.268	1.394	0.003
A =	0.8842	A_4	= 0.2193	0.175	1.110	1.625	-0.001	0.675	2.288	1.265	0.005
SCATTER	ING COEF	FICIE	INTS				0.007	0 700	0.052	1 1 2 2	0 005
0	- 10	ł.	S.	0.200	1.140	1.712	0.007	0.700	2.20	0.070	0.005
Ø	070 R	Ŭ	Sl	0.225	1.174	1.795	0.014	0.720	2.137	0.970	0.00/
15°	1.001	1	0.8413	0.250	1.213	1.872	0.020	0.775	1 6/2	0.632	0.002
30	0.970	2	2.362	0.275	1.255	1.942	0.025	0.115	1.042	0.002	0.002
45	0.911	3	4.444	0 200	1 201	2 00/	0.029	0 800	1.306	0.458	0,000
60	0.828	4	7.022	0.300	1 351	2.004	0.029	0.825	0.963	0.293	-0.002
15	0.728	5	10.05	0.320	1./05	2.000	0.030	0.850	0.644	0.155	-0.003
305	0.617	6	13.50	0.375	1 /63	2.107	0.027	0.875	0.372	0.059	-0.002
100	0.505	7	17.31	0.)()	1.40)	~*±~)	0.021	0.079			
125	0.400	ŏ	21.50	0.700	1,525	2.134	0.021	0,900	0.168	0.012	-0.001
150	0.228	10	20.01	0.425	1,591	2.126	0.013	0.925	0.049	0.001	-0.000
165	0.10/	10	35 07	0.450	1.661	2.098	0.003	0.950	0.006	0.000	-0.000
180	0 179	12	/1 30	0.475	1.735	2.050	-0.007	0.975	0.000	0.000	-0.000
	0.11/	14	41.077								

 $Z = 6, E_0 = 1.00 Mev$

STOPPING POWER (dE/dr) _{E0} = 1.64 Mev(cm ² /g)		POINT ISOTROPIC SOURCE	PL PERPE SC	ANE NDICULAR URCE		POINT ISOTROPIC SOUFCE	PL PERPE SC	ANE NDICULAR URCE
RESIDUAL RANGE		$\mathbf{I}(\mathbf{x})$	$I(\mathbf{x})$	$I(-\mathbf{x})$		J(x)	J(x)	J(-x)
$r_{2} = 0.491 \text{ g/cm}^{2}$	x	1 000	1 1/0		X 500	1 677	1 866	_0_011
	0.025	1.003	1,180	0.103	0.525	1.747	1.795	-0.013
UTHER FARAPETERS	0.050	1 009	1 223	0.069	0.550	1,819	1.714	-0.011
$d_1 = 0.9994$ $A_1 = 0.4211$	0.075	1.018	1.268	0.039	0.575	1.882	1.626	-0.007
$\alpha = 3.373$ A ₂ = 0.8811								
PTI 0 7725 1 - 0 /5/0	0.100	1.030	1.319	0.014	0.600	1.949	1.532	-0.003
$A = 0.7135$ $A_3 = -0.4349$	0.125	1.045	1.376	-0.003	0.625	1.997	1.431	-0.000
$A^{FLF} = 0.8553$ A, = 0.1527	0.150	1.064	1.443	-0.010	0.650	2.027	1.322	0.002
4	0.175	1.085	1.520	-0.006	0.675	2.032	1.203	0.004
SCATTERING COEFFICIENTS								
e op l Sp	0.200	1.110	1.598	0.002	0.700	2.001	1.073	0.005
159 1000 1 07709	0.225	1.138	1.672	0.008	0.725	1.927	0.931	0.005
30 0.967 2 2.171	0.250	1.169	1.742	0.014	0.750	1.797	0.778	0.004
45 0.903 3 4.104	0.275	1.203	1.806	0.019	0.775	1.603	0.617	0.002
60 0.814 4 6.510								
75 0.705 5 9.348	0.300	1.241	1.864	0.023	0.800	1.339	0.452	0.000
90 0.586 6 12.59	0.325	1.282	1.913	0.025	0.825	1.014	0.295	-0.001
105 0.466 7 16.20	0.350	1.327	1.952	0.025	0.850	0.655	0.160	-0.002
120 0.352 8 20.16	0.375	1.376	1.979	0.023	0.875	0.324	0.063	-0.002
135 0.254 9 24.45								
150 0.179 10 29.06	0.400	1.428	1.992	0.019	0.900	0.097	0.014	-0.001
165 0.131 11 33.96	0.425	1.484	1.988	0.012	0.925	0.010	0.001	-0.000
180 0.115 12 39.15	0.450	1.545	1.966	0.004	0.950	0.000	0.000	-0.000
100 0011/ 12 //01/	0.475	1,609	1,924	0.005	0.975	0.000	0.000	-0.000

 $Z = 6, E_0 = 2.00 \text{ Mev}$

STOPPING (dE/d:	POWER r) _{Eo} = :	1.62	Mev(cm ² /g)		POINT ISOTROPIC SOURCE	PI PERPI SC	LANE ENDICULAR DURCE		POINT ISOTROPIC SOURCE	PI PERPI S(LANE ENDICULAP DURCE
RESIDUAL	RANGE			Y	$J(\mathbf{x})$.I(x)	.I(-x)		J(x)	$J(\mathbf{x})$	J(-x)
r ₀ =	1.11 g,	$/cm^2$		0 000	1 000	1 06/	0.064	0 500	1 / 31	1 709	-0.003
OTHER PAL	RAMETERS	5		0.025	1.001	1.088	0.042	0.525	1.490	1.659	-0.003
d. =	1.021	۲A	= 0.3432	0.050	1.005	1.114	0.021	0.550	1.553	1.593	-0.002
α =	1.365	A	= 0.9489	0.075	1.011	1.144	0.005	0.5/5	1.010	1.515	-0.00I
A ^{PTI} =	0.6539	A	= -0.4613	0.100	1.020	1.180	-0.006	0.600	1.675	1.431	-0.001
PLP	e Dida e	3		0.125	1.030	1.225	-0.009	0.625	1.722	1.341	0.000
A =	0.7815	A_4	= 0.1692	0.150	1.041	1.278	-0.003	0.650	1.749	1.244	0.001
SCATTERI	NG COEF	FICIE	NTS	0.175	1.052	1.332	0.003	0.075	1./51	1.140	0.001
θ	σ/σ	ł	Sg	0.200	1.065	1.385	0.008	0.700	1.722	1.026	0.002
1.59	1 000	1	0 5805	0.225	1.079	1.438	0.012	0.725	1.656	0.901	0.002
30	0.063	2	1 681	0.250	1.095	1.491	0.014	0.750	1.547	0.766	100.0
45	0.894	â	3,200	0.275	L.LJ4	1.542	0.015	0.775	1.389	0.621	0.001
60	0.797	Ĺ	5.107	0 300	1 13/	1 502	0 013	0 800	1 191	0 /60	0.000
75	0.680	5	7.373	0.325	1,157	1 630	0.010	0 825	0 028	0.409	-0.000
90	0.551	6	9.976	0.350	1,183	1.681	0.007	0.850	0.647	0.182	-0.001
105	0.421	7	12.90	0.375	1,213	1.715	0.00%	0.875	0.371	0.078	-0.001
120	0.298	8	16.12		1.22	10/2/	0.004	0.019	0.011	0.070	-0.001
135	0.192	9	19.63	0.400	1.247	1.741	0.002	0.900	0.151	0.019	-0.000
150	0.111	10	23.42	0.425	1,285	1.755	-0.000	0.925	0.031	0.002	-0.000
165	0.059	11	27.48	0.450	1.328	1.756	-0,002	0.950	0.001	0.000	-0.000
180	0.042	12	31.79	0.475	1.377	1.741	-0.003	0.975	0.000	0.000	-0.000

 $Z = 6, E_0 = 4.00 \text{ Mev}$

STOPPING POWER (dE/dr) _{E0} = 1.67 Mev(cm ² /g)	POINT ISOTROPIC SOURCE	PLANE PERPENDICULAR SOURCE	:	POINT ISOTROPIC SOURCE	PLANE PERPENDICULAF SOURCE
$ \begin{array}{c} \text{RESIDUAL RANGE} \\ r_{o} = 2.32 \text{ g/cm}^{2} & 0. \\ \text{OTHER PARAMETERS} & 0. \\ d_{1} = 1.041 & A_{1} = 0.2978 & 0. \\ \alpha = 0.6220 & A_{2} = 0.9285 & 0. \\ A^{\text{PTI}} = 0.5522 & A_{3} = -0.3785 & 0. \\ A^{\text{PLP}} = 0.6549 & A_{4} = 0.1522 & 0. \\ 0. \\ \end{array} $	x J(x) .000 1.000 .025 0.999 .050 1.000 .075 1.003 .100 1.006 .125 1.011 .150 1.017 .175 1.025	J(x) J(-x) 1.031 0.031 1.038 0.024 1.047 0.018 1.060 0.012 1.075 0.008 1.094 0.003 1.117 0.000 1.145 -0.002	x C.500 Q.525 O.550 O.575 O.600 O.625 O.650 O.675	J(x) 1.239 1.281 1.324 1.367 1.410 1.449 1.482 1.506	J(x) J(-x) 1.543 0.003 1.531 0.002 1.509 0.000 1.474 -0.001 1.426 -0.003 1.365 -0.004 1.289 -0.005 1.200 -0.003
$\begin{array}{cccc} \text{SCATTERING CCEFFICIENTS} & 0.\\ \theta & \sigma / \sigma_{\text{R}} & \ell & \text{S}_{\ell} & 0.\\ 15^{\circ} & 0.999 & 1 & 0.3992 & 0.\\ 30 & 0.962 & 2 & 1.145 & 0. \end{array}$.200 1.033	1.178 -0.004	0.700	1.514	1.097 -0.001
	.225 1.042	1.217 -0.004	0.725	1.501	0.981 0.001
	.250 1.051	1.261 -0.003	C.750	1.457	0.853 0.003
	.275 1.060	1.309 -0.002	0.775	1.372	0.714 0.003
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.300 1.069	1.357 -0.000	0.800	1.232	0.564 0.003
	.325 1.078	1.400 0.001	0.825	1.028	0.411 0.001
	.350 1.090	1.439 0.002	0.850	0.760	0.263 -0.000
	.375 1.103	1.473 0.003	0.875	0.456	0.136 -0.002
120 0.277 8 11.28 0. 135 0.168 9 13.78 0. 150 0.084 10 16.49 0. 165 0.031 11 19.41 0. 180 0.013 12 22.52 0.	.400 1.120	1.501 0.004	0.900	0.184	0.048 -0.002
	.425 1.142	1.523 0.004	0.925	0.033	0.008 -0.001
	.450 1.168	1.538 0.004	0.950	0.001	0.000 -0.000
	.475 1.201	1.545 0.004	0.975	0.000	0.000 -0.000

$Z = 6, E_{\sigma} = 10.00 \text{ Mev}$

Ind I on Lit				POINT	PI	LANE		POINT	PL.	ANE
$E/dr)_{T} =$	1.75	$Mev(cm^2/g)$		ISOTROPIC	PERPH	ENDICULAR		ISOTROPIC	PERPE	NDICULAR
Eo				SOURCE	SC	URCE		SOURCE	SCI	URCE
UAL RANGE					-	- ()		- ()	- 4 - 1	
= 5.83 p	t/cm^2		х	J(X)	J(x)	J(-x)	x	J(x)	J(x)	J(-x)
	-		0.000	1.000	1.007	0.007	0.500	1.070	1.296	0.000
PARAMETER	lS		0.025	0.999	1.007	0.007	0.525	1.087	1.325	0.000
= 1.071	A	= 0.2514	0.050	0.999	1.009	0.005	0.550	1.109	1.352	0.001
- 0 2370	×	- 1 005	0.075	1.000	1.013	0.005	0.575	1.137	1.373	0.001
- 0.2570	ⁿ 2	- 1.009								
-= 0.4129	A ₃	= -0.5297	0.100	1.002	1.019	0.004	0.600	1.169	1.384	0.000
P = 0.4788	A	= 0.2734	0.125	1.004	1.027	0.003	0.625	1.204	1.378	0.000
- 0.4100		- 0.21)4	0.150	1.007	1.037	0.003	0.650	1.239	1.349	0.000
ERING COEF	FICIE	ENTS	0.175	1.009	1.049	0.002	0.675	1.273	1.297	0.000
a la-	l	5.	0,000	1 011	3 0/1	0.007	0.000			
o/oR		J.	0.200	1.011	1.064	0.001	0.700	1.303	1.232	0.000
0.999	1	0.2051	0.225	1.013	1.079	-0.000	0.725	1.326	1.157	0.000
0.961	2	0.5920	0.200	1.015	1.095	-0.001	0.750	1.330	1.0/1	0.000
0.888	3	1.140	0.213	1.017	1.108	-0.00T	0.775	1.324	0.969	0.000
0.788	4	1.838	0 200	1 010	1 100	0.001	0.000	1 070	0.010	0.000
0.666	5	2.679	0.300	1.019	1.120	-0.001	0.800	1.279	0.847	0.000
0.532	6	3.655	0.325	1.022	1.134	-0.00I	0.825	1.184	0.698	0.000
0.397	7	4.762	0.550	1.025	1.150	0.000	0.850	1.018	0.521	0.000
0.269	8	5.995	0.575	I.029	1.109	0.000	0.875	0.767	0.324	0.000
0.159	9	7.351	0.100	1 02/	1 100	0.000	0.000	~		
0.074	10	8.827	0.400	1.034	1.190	0.000	0.900	0.444	0.143	0.000
0.021	11	10.42	0.425	1.040	1.214	0.000	0.925	0.143	0.033	0.000
0.002	12	12.12	0.450	1.048	1.240	0.000	0.950	0.010	0.000	0.000
			0.415	1.057	1.267	0.000	0.975	0.000	0.000	0.000
	$E/dr)_{E_0} =$ JAL RANGE = 5.83 g PARAMETER = 1.071 = 0.2370 I= 0.4129 P= 0.4788 ERING COEF σ/σ_R 0.999 0.961 0.888 0.788 0.666 0.532 0.397 0.269 0.159 0.074 0.021 0.002	$E/dr)_{E_0} = 1.75$ JAL RANGE = 5.83 g/cm ² PARAMETERS = 1.071 A ₁ = 0.2370 A ₂ I= 0.4129 A ₃ P= 0.4788 A ₄ ERING COEFFICIH σ/σ_R l 0.999 1 0.961 2 0.888 3 0.788 4 0.666 5 0.532 6 0.397 7 0.269 8 0.159 9 0.074 10 0.021 11 0.002 12	$E/dr)_{E_0} = 1.75 \text{ Mev}(cm^2/g)$ JAL RANGE = 5.83 g/cm ² PARAMETERS = 1.071 A ₁ = 0.2514 = 0.2370 A ₂ = 1.005 I = 0.4129 A ₃ = -0.5297 P = 0.4788 A ₄ = 0.2734 ERING COEFFICIENTS σ/σ_R l S _l 0.999 1 0.2051 0.961 2 0.5920 0.888 3 1.140 0.788 4 1.838 0.666 5 2.679 0.532 6 3.655 0.397 7 4.762 0.269 8 5.995 0.159 9 7.351 0.074 10 8.827 0.021 11 10.42 0.002 12 12.12	$E/dr)_{E_0} = 1.75 \text{ Mev}(cm^2/g)$ JAL RANGE $= 5.83 \text{ g/cm}^2 \qquad 0.000$ PARAMETERS $= 0.2370 \text{ A}_2 = 1.005$ $I = 0.4129 \text{ A}_3 = -0.5297 \qquad 0.100$ $P^2 = 0.4788 \text{ A}_4 = 0.2734 \qquad 0.125$ $\sigma/\sigma_R \qquad \& S_{\&} \qquad 0.200$ $0.999 \text{ 1} \qquad 0.2051 \qquad 0.225$ $0.961 \ 2 \ 0.5920 \qquad 0.250$ $0.888 \ 3 \ 1.140 \qquad 0.275$ $0.788 \ 4 \ 1.838 \qquad 0.300$ $0.532 \ 6 \ 3.655 \qquad 0.325$ $0.397 \ 7 \ 4.762 \qquad 0.350$ $0.269 \ 8 \ 5.995 \qquad 0.375$ 0.175 $0.175 \qquad 0.125 \qquad 0.2051$ $0.225 \qquad 0.300$ $0.532 \ 6 \ 3.655 \qquad 0.325$ $0.397 \ 7 \ 4.762 \qquad 0.350$ $0.269 \ 8 \ 5.995 \qquad 0.375$ $0.159 \ 9 \ 7.351 \qquad 0.400$ $0.021 \ 11 \ 10.42 \qquad 0.425$ $0.002 \ 12 \ 12.12 \qquad 0.450$	$E/dr)_{E_0} = 1.75 \text{ Mev}(cm^2/g)$ ISOTROPIC SOURCE IAL RANGE $= 5.83 \text{ g/cm}^2$ $= 5.83 \text{ g/cm}^2$ $= 5.83 \text{ g/cm}^2$ $= 5.83 \text{ g/cm}^2$ $= 0.2370 \text{ A}_2 = 1.005$ $I = 0.4129 \text{ A}_3 = -0.5297$ $= 0.4788 \text{ A}_4 = 0.2734$ $= 0.175 \text{ 1.009}$ $= \sigma/\sigma_R$ $= 5\xi$ $= 0.200 \text{ 1.011}$ $= 0.999 \text{ 1} 0.2051 \text{ 0.225} \text{ 1.013}$ $= 0.999 \text{ 1} 0.2051 \text{ 0.225} \text{ 1.013}$ $= 0.4788 \text{ A}_1 \text{ 8.88}$ $= 0.666 \text{ 5} 2.679 \text{ 0.300} \text{ 1.019}$ $= 0.532 \text{ 6} 3.655 \text{ 0.325} \text{ 1.022}$ $= 0.397 \text{ 7} 4.762 \text{ 0.350} \text{ 1.025}$ $= 0.269 \text{ 8} 5.995 \text{ 0.375} \text{ 1.029}$ $= 0.471 \text{ 1} 10.42 \text{ 0.425} \text{ 1.040}$ $= 0.475 \text{ 1.040}$		$ \begin{array}{c} F(dr)_{E_0} = 1.75 \ \text{Mev}(\text{cm}^2/\text{g}) \\ \text{JAL RANGE} \\ = 5.83 \ \text{g/cm}^2 \\ \text{matrix} \\ = 5.83 \ \text{g/cm}^2 \\ \text{matrix} \\ = 0.2514 \\ \text{matrix} \\ \text{matrix} \\ = 0.2370 \ \text{matrix} \\ matri$	$ \begin{bmatrix} J (dr)_{E_0} = 1.75 \text{ Mev}(cm^2/g) \\ JAL RANGE \\ = 5.83 \text{ g/cm}^2 \\ TARMETERS \\ = 0.2370 \text{ A}_2 = 1.005 \\ I = 0.4129 \text{ A}_3 = -0.5297 \\ P = 0.4788 \text{ A}_4 = 0.2734 \\ 0.100 \\ P = 0.4788 \text{ A}_4 = 0.2734 \\ 0.100 \\ 0.100 \\ 0.100 \\ 0.100 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 0.005 \\ 0.075 \\ 0.100 \\ 1.002 \\ 1.019 \\ 0.002 \\ 0.003 \\ 0.000 \\ 0.003 \\ 0$		$ \begin{array}{c} FORM & F$

Z = 13, $E_0 = 0.025$ Mev

STOPPING POWER (dE/dr) _{E0} = 8.50 Mev(cm ² /g)	POINT PLANE ISOTROPIC PERPENDICULAR SOURCE SOURCE				POINT ISOTROPIC SOURCE	PLANE PERPENDICULAR SOURCE		
RESIDUAL RANGE	x	J(x)	J(x)	J(-x)	x	J(x)	J(x)	J(-x)
$r_{o} = 0.00167 \text{ g/cm}^{2}$	0.000	1.000	2.009	1.009	0.500	3.456	1.939	0.007
OTHER PARAMETERS	0.025	1.026	2.224	0.809	0.525	3.420	1.743	0.008
$d_{1} = 2.049 \text{ A}_{1} = 0.7544$	0.050	1.080	2.419	0.640	0.550	3.324	1.545	0.008
$\alpha = -17.87 \text{ A}_{2} = 0.4987$	0.075	1.161	2.593	0.506	0.575	3.165	1.347	0.008
$A^{PTI} = 1.500$ $A_3^2 = -0.3392$ $A^{PLP} = 1.729$ $A_4^2 = 0.0861$ SCATTERING COEFFICIENTS	0.100 0.125 0.150 0.175	1.265 1.391 1.531 1.679	2.743 2.870 2.973 3.054	0.410 0.350 0.316 0.292	0.600 0.625 0.650 0.675	2.943 2.663 2.339 1.983	1.151 0.959 0.774 0.601	0.007 0.006 0.005 0.003
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.200	1.832	3.111	0.268	0.700	1.612	0.443	0.002
	0.225	1.990	3.145	0.241	0.725	1.241	0.305	0.000
	0.250	2.154	3.153	0.213	0.750	0.887	0.193	-0.000
	0.275	2.325	3.135	0.183	0.775	0.573	0.108	-0.001
75 1.001 5 18.29 90 0.988 6 23.10 105 0.973 7 28.00 120 0.959 8 32.94 135 0.946 9 38.92	0.300	2.499	3.090	0.153	0.800	0.320	0.051	-0.001
	0.325	2.674	3.018	0.122	0.825	0.143	0.019	-0.000
	0.350	2.844	2.920	0.092	0.850	0.046	0.005	-0.000
	0.375	3.006	2.797	0.064	0.875	0.008	0.001	-0.000
1500.9361044.971650.9301151.071800.9281257.20	0.400 0.425 0.450 0.475	3.153 3.280 3.378 3.440	2.653 2.492 2.316 2.131	0.041 0.024 0.013 0.008	0.900 0.925 0.950 0.975	0.001 0.000 0.000 0.000	0.000 0.000 0.000	-0.000 -0.000 -0.000 -0.000

$Z = 13, E_0 = 0.05 \text{ Mev}$

STOPPING POWEF (dE/dr) _{E0} = 0.14 Mev(cm ² /g)	FOINT ISOTROPIC SOURCE	PLA PERPEN SOU	NE IDICULAR IRCE		POINT ISOTROPIC SOURCE	PL PER' E SC	ANE NDICULAR URCE
RESIDUAL RANGE	J(x)	J(x)	J(-x)	~	J(x)	J(¥)	J(-x)
$\begin{array}{rcl} P_{0} &=& 0.00561 \text{ g/cm}^{-1} & 0.000 \\ 0\text{THER PARAMETERS} & 0.025 \\ d_{1} &=& 2.190 & A_{1} &=& 0.6818 & 0.050 \\ \alpha &=& 33.52 & A_{2} &=& 1.500 & 0.075 \end{array}$	1.000	1.972	0.972	0.500	3.506	1.918	0.003
	1.017	2.180	0.773	0.525	3.456	1.710	0.005
	1.151	2.72	0.607	0.550	3.340	1.1	0.006
	1.131	2.546	0.478	0.575	3.153	133	0.007
$A^{PTI} = 0.1582$ $A_3 = -2.445$ 0.100 $A^{PLP} = 1.829$ $A_4 = 1.260$ 0.125 SCATTERING COEFFICIENTS 0.175].224 1.338 1.470 1.620	2.703 2.842 2.960 3.055	0.385 0.328 0.295 0.270	0.600 0.625 0.650 0.675	2.896 2.580 2.221 1.839	1.089 0.892 0.706 0.534	0.006 0.006 0.004 0.003
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.783	3.124	0.245	0.700	1.453	0.382	0.001
	1.958	3.167	0.218	0.725	1.080	0.254	0.000
	2.141	3.181	0.191	0.750	0.742	0.153	-0.001
	2.330	3.168	0.163	0.775	0.456	0.081	-0.001
00 0.3777 4 14.90 75 0.979 5 19.59 0.300 90 0.955 6 25.18 0.325 105 0.928 7 31.04 0.350 120 0.902 8 37.10 0.375 135 0.879 9 43.29 14.90	2.520	3.125	0.134	0.800	0.241	0.035	-0.001
	2.708	3.053	0.106	0.825	0.102	0.012	-0.000
	2.890	2.952	0.079	0.850	0.030	0.003	-0.000
	3.060	2.826	0.055	0.875	0.005	0.000	-0.000
150 0.861 10 49.56 0.400 165 0.850 11 55.89 0.425 180 0.846 12 62.24 0.450 0.475 0.475	3.213	2.675	0.034	0.900	0.000	0.000	-0.000
	3.342	2.505	0.018	0.925	0.000	0.000	-0.000
	3.440	2.319	0.008	0.950	0.000	0.000	-0.000
	3.497	2.122	0.004	0.975	0.000	0.000	-0.000

 $Z = 13, E_0 = 0.10$ Mev

STCPPING POWER (dE/dr) _{E0} = 3.24 Mev(cm ² /g)	POINT ISOTROPIC SOURCE	PLANE PERPENDICULAR SOURCE		POINT ISOTROPI SOURCE	FL C PERPE SO	FLANE PERPENDICULAR SOURCE	
RESIDUAL RANGE	x J(x)	J(x) J(-x)	x	J(x)	J(x)	J(-x)	
$\begin{array}{c} \text{OTHER PARAMETERS} \\ \text{d}_1 = 2.145 \\ \alpha = 35.45 \\ \text{A}_2 = 0.9293 \end{array} \begin{array}{c} \text{O.} \\ \text{O.}$.000 1.000 .025 1.021 .050 1.066 .075 1.133	1.916 0.916 2.129 0.718 2.324 0.555 2.501 0.429	0.500 0.525 0.550 0.575	3.361 3.321 3.220 3.052	1.857 1.660 1.462 1.263	0.004 0.006 0.006 0.006	
$A^{PTI} = 1.580$ $A_3 = -1.089$ 0. $A^{PLP} = 1.833$ $A_4 = 0.4714$ 0. SCATTERING COEFFICIENTS 0.	.100 1.221 .125 1.327 .150 1.451 .175 1.589	2.659 0.342 2.797 0.292 2.913 0.267 3.004 0.248	0.600 0.625 0.650 0.675	2.819 2.529 2.194 1.831	1.067 0.877 0.696 0.528	0.006 0.005 0.003 0.002	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.200 1.739 .225 1.900 .250 2.069 .275 2.243	3.068 0.228 3.105 0.204 3.112 0.179 3.091 0.151	0.700 0.725 0.750 0.775	1.456 1.090 0.750 0.462	0.379 0.252 0.152 0.081	0.001 -0.000 -0.001 -0.001	
60 0.997 4 14.97 0. 75 0.941 5 20.74 0. 90 0.898 6 27.02 0. 105 0.852 7 33.73 0. 120 0.808 8 40.80 0.	.300 2.420 .325 2.594 .350 2.764 .375 2.924	3.0400.1222.9610.0932.8560.0662.7260.042	0.800 0.825 0.850 0.875	0.243 0.102 0.030 0.005	0.035 0.012 0.003 0.000	-0.001 -0.000 -0.000 -0.000	
135 0.769 9 48.18 0. 150 0.738 10 55.79 0. 165 0.719 11 63.62 0. 180 0.712 12 71.62 0.	.400 3.068 .425 3.192 .450 3.287 .475 3.346	2.577 0.024 2.412 0.012 2.235 0.006 2.049 0.004	0.900 0.925 0.950 0.975	0.000 0.000 0.000 0.000	0.000 0.000 0.000	-0.000 -0.000 -0.000 -0.000	

$Z = 13, E_{o} = 0.20 \text{ Mev}$

STOPPING POWER		POINT PLANE ISOTROPIC PERPENDICULAR SOURCE SOURCE			POINT ISOTROPIC SCURCE	PLANE PERPENDICULA SOURCE		
RESTRIAL RANGE						-()		
$r = 0.0570 c/m^2$	x	J(x)	J(x)	J(-x)	x	J(x)	J(x)	J(-x)
OTHER PARAMETERS $d_1 = 2.118$ $A_1 = 0.6285$	0.000 0.025 0.050	1.000 1.016 1.053	1.822 2.022 2.205	0.822 0.636 0.482	0.500	3.143 3.106 3.010	1.750 1.566 1.380	0.003 0.004 0.005
$\alpha = 20.70$ $A_2 = 0.9389$	0.075	Terro	2.312		0.575	2.075	1.194	0.005
$A^{A+2} = 1.575$ $A_3 = -1.056$ $A^{PLP} = 1.832$ $A_4 = 0.4883$	0.100 0.125 0.150	1.185 1.276 1.383	2.521 2.653 2.763	0.287 0.245 0.226	0.600 0.625 0.650	2.640 2.376 2.072	1.009 0.829 0.658	0.005 0.004 0.003
A ala l S	0.175	1.503	2.850	0.213	0.675	1.737	0.499	0.002
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.200 0.225 0.250 0.275	1.635 1.778 1.928 2.085	2.910 2.943 2.948 2.924	0.198 0.178 0.156 0.131	0.700 0.725 0.750 0.775	1.386 1.038 0.714 0.438	0.358 0.238 0.143 0.075	0.001 -0.000 -0.000 -0.000
75 0.883 5 21.46 90 0.815 6 28.26 105 0.743 7 35.64 120 0.674 8 43.52 135 0.613 9 51.85	0.300 0.325 0.350 0.375	2.245 2.405 2.563 2.714	2.872 2.793 2.690 2.566	0.104 0.077 0.052 0.031	0.800 0.825 0.850 0.875	0.228 0.094 0.027 0.004	0.033 0.011 0.002 0.000	-0.001 -0.000 -0.000 -0.000
150 0.566 10 60.57 165 0.536 11 69.64 180 0.526 12 79.00	0.400 0.425 0.450 0.475	2.853 2.973 3.068 3.128	2.425 2.270 2.104 1.930	0.015 0.006 0.003 0.002	0.900 0.925 0.950 0.975	0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000	-0.000 -0.000 -0.000 -0.000

 $Z = 13, \pm_0 = 0.40 \text{ Mev}$

STOPPING POWER	4	$= 13, E_0$	= 0.40	Mev				
$(dE/dr)_{E_0} = 1.72 \text{ Mev}(cm^2/g)$ RESIDUAL RANCE		POINT ISOTROPIC SOURCE	PLA PERPEN SOU	NE DICULAR RCE				
$r_0 = 0.162 \text{ g/cm}^2$ OTHER PARAMETERS	x	J(x)	J(x)	J(-x)	x	J(x)	J(x)	J(-x)
$\begin{array}{l} d_1 = 2.094 & A_1 = 0.5291 \\ \alpha = 9.679 & A_2 = 0.9542 \\ A^{\text{PTI}} = 1.547 & A_3 = -0.8196 \end{array}$	0.000 0.025 0.050 0.075	1.000 1.031 1.043 1.089	1.680 1.859 2.025 2.177	0.680 0.513 0.376 0.274	0.500 0.525 0.550 0.575	2.788 2.752 2.665 2.527	1.585 1.419 1.251 1.083	0.002 0.003 0.004 0.004
$A^{PLP} = 1.805$ $A_{4} = 0.3363$ SCATTERING COEFFICIENTS $\theta \sigma/\sigma_{R} \ell s_{\ell}$	0.100 0.125 0.150 0.175	1.150 1.224 1.312 1.410	2.315 2.438 2.542 2.624	0.208 0.176 0.167 0.163	0.600 0.625 0.650 0.675	2.342 2.116 1.853 1.561	0.917 0.755 0.600 0.456	0.004 0.003 0.002 0.001
15 1.019 1 1.898 30 1.008 2 5.218 45 0.968 3 9.666 60 0.903 4 15.08 75 0.818 5 21.33	0.200 0.225 0.250 0.275	1.519 1.636 1.761 1.891	2.679 2.708 2.710 2.684	0.155 0.142 0.125 0.104	0.700 0.725 0.750 0.775	1.252 0.942 0.652 0.401	0.328 0.219 0.133 0.070	0.001 -0.000 -0.000 -0.001
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.300 0.325 0.350 0.375	2.025 2.160 2.293 2.422	2.631 2.553 2.453 2.334	0.081 0.057 0.035 0.018	0.800 0.825 0.850 0.875	0.210 0.086 0.025 0.004	0.031 0.010 0.002 0.000	-0.000 -0.000 -0.000 -0.000
165 0.334 11 72.45 180 0.320 12 82.73	0.400 0.425 0.450 0.475	2.540 2.644 2.725 2.776	2.202 2.058 1.906 1.748	0.006 0.001 -0.001 0.000	0.900 0.925 0.950 0.975	0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000	-0.000 -0.000 -0.000 -0.000

Z = 13, $E_0 = 0.70$ Mev

STOPPING POWER (dE/dr) _{Eo} = 1.55 Mev(cm ² /g)					POINT ISOTROPIC SOURCE	INT PLANE ROPIC PERPENDICULAR URCE SOURCE		POINT ISOTROPIC SOURCE	PLA PERPEN SOL	ANE IDICULAR JRCE	
RESIDU	AL RANGE	,)		Y	$J(\mathbf{x})$	I(x)	T(-*)		$\mathbf{I}(\mathbf{x})$	$I(\mathbf{x})$	T(- Y)
r _o =	0.349 g,	/cm²		0.000	1 000	1 525	J(-x)	X	5(2)	J(X)	J(-X)
OTHER 1	PARAMETEI	RS		0.025	1.009	1.686	0.39/	0.500	2.456	1.459	0.000
d, :	= 2.084	A	= 0.452	0.050	1.031	1.828	0.278	0.550	2.361	1.160	0.002
α :	=4.755	42 A2	= 0.9030	0.075	1.066	1.961	0.193	0.575	2.247	1.008	0.003
APTI:	= 1.497	A	= -0.5669	0.100	1.113	2.085	0.139	0.600	2,093	0 858	0.002
A ^{PLP}	= 1.747	A.	= 0.2118	0.125	1.170	2.199	0.115	0.625	1.906	0.711	0.003
		4		0.175	1.238	2.299	0.113	0.650	1.678	0.569	0.002
SCATTER	RING COEF	FICI	ENTS	0.11)	1.714	2.378	0.115	0.675	1.426	0.437	0.001
θ	σ/σ _R	ł	sł	0.200	1.400	2.434	0.113	0.700	1,155	0 217	0.001
15 [°]	1.019	1	1.722	0.225	1.492	2.465	0.107	0.725	0.880	0.214	-0.000
30	1.003	2	4.801	0.250	1.591	2.471	0.095	0.750	0.618	0.132	-0.000
45	0.954	3	8,979	0.219	1.696	2.450	0.080	0.775	0.387	0.071	-0.001
75	0.874	4 5	14.11	0.300	1.804	2.404	0.062	0,800	0.207	0.032	0.000
90	0.658	6	20.10	0.325	1.914	2.334	0.042	0.825	0.088	0.011	-0.000
105	0.538	7	34.35	0.350	2.024	2.243	0.024	0.850	0.026	0.002	-0.000
120	0.424	8	42.49	0.375	2,131	2.136	0.010	0.875	0.004	0.000	-0.000
150	0.324	10	51.24	0.400	2.232	2.015	0.001	0.900	0.000	0.000	0.000
165	0.198	11	70.73	0.425	2.321	1.885	-0.003	0.925	0.000	0.000	-0.000
180	0.181	12	80.79	0.450	2.394	1.748	-0.003	0.950	0.000	0.000	-0.000
				0.475	2.441	1.605	-0.002	0.975	0.000	0.000	-0.000

Z = 13, $E_0 = 1.00$ Mev

STOPPING POWER (dE/dr) _{Eo} = 1.51 Mev(cm ² /g)		POINT ISOTROPIC SOURCE	PL PERPE SO	ANE NDICULAR URCE		POINT ISOTROPIC SOURCE	PLA PERPEN SOL	ANE VDICULAR JRCE
RESIDUAL RANGE	x	J(x)	J(x)	J(-x)	×	J(x)	J(x)	J(-x)
$r_{0} = 0.545 \text{ g/cm}^{2}$	0.000	1.000	1.436	0.436	0.500	2.253	1.402	-0.001
OTHER PARAMETERS	0.025	1.007	1.565	0.315	0.525	2.238	1.264	0.001
$d_{1} = 2.093 A_{1} = 0.4150$	0.050	1.024	1.688	0.216	0.550	2.184	1.124	0.002
$\alpha = 2.965 A_{2} = 0.8046$	0.075	1.052	1.807	0.143	0.575	2.088	0.982	0.002
$A^{PTI} = 1.447$ $A_3^2 = -0.2985$ $A^{PLP} = 1.690$ $A_4^2 = 0.0790$ SCATTERING COEFFICIENTS	0.100 0.125 0.150 0.175	1.090 1.136 1.191 1.254	1.921 2.029 2.128 2.210	0.097 0.078 0.079 0.084	0.600 0.625 0.650 0.675	1.956 1.789 1.589 1.362	0.841 0.702 0.567 0.439	0.003 0.002 0.002 0.001
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.200	1.324	2.269	0.086	0.700	1.116	0.323	0.001
	0.225	1.401	2.306	0.083	0.725	0.861	0.221	0.000
	0.250	1.483	2.318	0.076	0.750	0.614	0.138	-0.000
	0.275	1.570	2.305	0.065	0.775	0.393	0.076	-0.001
75 0.752 5 18.64 90 0.628 6 25.01 105 0.499 7 32.07 120 0.377 8 39.78 135 0.270 9 48.11	0.300	1.662	2.268	0.050	0.800	0.216	0.035	-0.000
	0.325	1.756	2.208	0.034	0.825	0.094	0.012	-0.000
	0.350	1.850	2.127	0.019	0.850	0.029	0.003	-0.000
	0.375	1.944	2.029	0.006	0.875	0.005	0.000	-0.000
150 0.187 10 57.02 165 0.134 11 66.47 180 0.116 12 76.44	0.400	2.034	1.918	-0.002	0.900	0.000	0.000	-0.000
	0.425	2.115	1.797	-0.005	0.925	0.000	0.000	-0.000
	0.450	2.184	1.670	-0.005	0.950	0.000	0.000	-0.000
	0.475	2.232	1.538	-0.003	0.975	0.000	0.000	-0.000

Z = 13, $E_0 = 2.00$ Mev

(dE/dr) _{Eo} = 1.51 Mev(cm ² /g)				POINT PLANE ISOTROPIC PERPENDICULAR SOURCE SOURCE			POINT ISOTROPIC SOURCE	PL PERPE SC	ANE NDICULAR URCE		
RES I DU	AL MANGE	1 2		x	J(x)	J(x)	J(-x)	x	J(x)	J(x)	J(-x)
ro	= 1.21	g/cm~		0.000	1.000	1,252	0.252	0.500	1,936	1.388	-0.005
OTHER	PARAMETEI	RS		0.025	1.002	1.333	0,177	0.525	1,953	1.265	-0.002
d.	- 2 112	A	= 0.327/	0.050	1.012	1.415	0.114	0.550	1.936	1.139	0.000
<u>u</u> 1	- 21112	^1 -		0.075	1.027	1.500	0.065	0.575	1.882	1.010	0.001
α	= 1.288	A ₂ =	= 0.9604								
APTI	= 1.294	A. =	= -0.4639	0.100	1.049	1.589	0.034	0.600	1.788	0.879	0.002
APLF	- 1 512	ر ،	- 0 1761	0.125	1.076	1.683	0.021	0.625	1.659	0.748	0.003
M	= 1.715	~4 ⁻	= 0.1701	0.150	1.109	1.778	0.022	0.650	1.499	0.619	0.002
SCATTE	RING COE	FFICIEN	ITS	0.175	1.148	1.805	0.030	0.075	1.212	0.493	0.002
θ	a/a ²	ł	Sl	0.200	1 102	1 038	0.036	0 700	1,105	0.375	0.001
15°	1.020	1	1,189	0.225	1.2/1	1,993	0.040	0.725	0.883-	0.267	0.000
30	0.999	2	3.373	0.250	1.294	2.030	0.040	0.750	0.658	0.175	-0.000
45	0.939	3	6.392	0.275	1.353	2.048	0.038	0.775	0.446	0.102	-0.001
60	0.846	4	10.16								
75	0.727	5	14.62	0.300	1.416	2.045	0.033	0.800	0.263	0.050	-0.001
90	0.594	6	19.71	0.325	1.482	2.021	0.026	0.825	0.127	0.019	-0.000
105	0.455	7	25.41	0.350	1.552	1.976	0.017	0.850	0.045	0.005	-0.000
125	0.323	8	31.69	0.375	1.624	1.911	0.007	0.875	0.009	0.001	-0.000
150	0.118	10	15 93	0 4 00	1 608	1 222	-0.001	0 900	0.001	0.000	-0.000
165	0.061	11	53 65	0.425	1 770	1 731	-0.001	0.900	0.001	0.000	-0.000
180	0.0/2	12	61.95	0.450	1.837	1.623	-0.008	0.950	0.000	0.000	=0.000
				0.475	1.895	1.508	-0.007	0.975	0,000	0.000	-0.000

$Z = 13, E_0 = 4.00 Mev$

STOPPING POWER (dE/dr) _{Eo} = 1.56 Mev(cm ² /g)				POINT ISOTROPIC SOURCE	PI PERPE SC	LANE ENDICULAR DURCE		POINT ISOTROPIC SOURCE	PL/ PERPEI SOI	ANE NDICULAR JRCE	
RESID	UAL RANGE				J(x)	J(x)	J(-x)		$\mathbf{I}(\mathbf{x})$	$T(\mathbf{x})$	I(-x)
r	= 2.51 g/	′cm ²			1 000	1 107	0.107	x 0 500	1 421	3(4)	
O ™UTED	DADAMETER	c		0.000	1 000	1.107	0.107	0.500	1.666	1.366	0.007
UINER	PARAMEIER	2		0.050	1 004	1 1/0	0.088	0.550	1.686	1 257	0.000
dl	= 2.176	Al	= 0.2857	0.075	1.010	0.075	0.077	0.575	1.687	1.151	-0.002
α	= 0.5808	A ₂	= 0.9244								
^PT:	I_ 1 065	^~	0 37/6	0.100	1.020	1.228	0.064	0.600	1.664	1.037	-0.003
	- 1.00J	<u></u> 3	- 0.9740	0.125	1.033	1.303	0.049	0.625	1.613	0.917	-0.004
ALT	= 1.244	A,	= 0.1645	0.150	1.049	1.400	0.032	0.650	1.529	0.790	-0.004
		*		0.175	1.069	1.507	0.015	0.675	1.409	0.659	-0.003
SCATTI	ERING COEF	FICH	ENTS								
θ	σφ	ł	Sg	0.200	1.091	1.604	0.000	0.700	1.251	0.526	-0.002
	' R			0.225	1.118	1.686	-0.010	0.725	1.059	0.397	-0.001
150	1.020	1	0.7995	0.250	1.148	1.752	-0.017	0.750	0.839	0.277	0.001
30	0.998	2	2.284	0.275	1.181	1.800	-0.020	0.775	0.607	0.174	0.001
45	0.936	3	4.355								
60	0.840	4	6.961	0.300	1.219	1.829	-0.018	0.800	0.386	0.093	0.001
75	0.718	5	10.07	0.325	-1.262	1.837	-0.012	0.825	0.203	0.040	0.001
90	0.580	6	13.64	0.350	1.308	1.825	-0.004	0.850	0.080	0.013	0.000
105	0.438	7	17.66	0.375	1.359	1.793	0.005	0.875	0.020	0.002	0.000
120	0.302	8	22.11								
135	0.183	9	26.96	0.400	1.414	1.744	0.013	0.900	0.002	0.000	0.000
150	0.091	10	32.21	0.425	1.472	1.683	0.016	0.925	0.000	0.000	0.000
165	0.033	11	37.84	0.450	1.530	1.612	0.015	0.950	0.000	0.000	0.000
180	0.013	12	43.84	0.475	1.584	1.533	0.011	0.975	0.000	0.000	0.000

$Z = 13, E_0 = 10.00 Mev$

POINT ISOTROPIC SOURCE	POINT PLANE ISOTROPIC PERPENDICULAR SOURCE SOURCE			POINT ISOTROPIC SOURCE	PLAN PERPEND SOUR	PLANE PERPENDICULAR SOURCE	
J(x)	J(x)	J(-x)	x	J(x)	J(x)	J(-x)	
1.000	1.023	0.023	0.500	1.290	1.517	-0.001	
	1 03/	0.020	0.550	1 300	1 / 53	0.001	
75 1.003	1.044	0.013	0.575	1.432	1.397	0.002	
.00 1.008	1.061	0.010	0.600	1.465	1.324	0.003	
50 1.021	1.120	0.006	0.650	1.486	1.122	0.003	
./) 1.020	1.104	0.004	0.075	1.402	0.777	0.001	
200 1. 037 25 1.044	1.211 1.256	0.003	0.700	1.408 1.316	0.865 0.724	-0.001	
250 1.051	1.300	0.002	0.750	1.181	0.580	-0.003	
1.057	1.342	0.001	0.775	0.999	0.437	-0.002	
1.062	1.382	0.000	0.800	0.778	0.300	-0.001	
25 1.071	1.418	-0.000	0.825	0.533	0.179	0.001	
1.083	1.451	-0.001	0.850	0.298	0.086	0.001	
1.099	1.480	-0.001	0.875	0.119	0.028	0.001	
00 1.122	1.503	-0.002	0.900	0.027	0.005	0.000	
25 1.153	1.519	-0.002	0.925	0.002	0.000	0.000	
.50 1.191	1.528	-0.002	0.950	0.000	0.000	0.000	
.75 1.238	1.528	-0.001	0.975	0.000	0.000	0.000	
	POINT ISOTROPIC SOURCE J(x) 00 1.000 25 0.999 50 1.001 75 1.003 00 1.008 25 1.014 50 1.021 75 1.028 00 1.037 25 1.044 50 1.051 75 1.057 00 1.062 25 1.071 50 1.083 75 1.099 00 1.122 25 1.153 50 1.191 75 1.238	POINT ISOTROPIC SOURCE PLA PERPEN SOU J(x) J(x) 00 1.000 1.023 25 0.999 1.027 50 1.001 1.034 75 1.003 1.044 00 1.008 1.061 25 1.014 1.085 50 1.021 1.120 75 1.028 1.164 00 1.037 1.211 25 1.044 1.256 50 1.057 1.342 00 1.062 1.382 25 1.071 1.418 50 1.099 1.480 00 1.122 1.503 25 1.519 1.519 50 1.91 1.528	POINT ISOTROPIC SOURCEPLANE PERPENDICULAR SOURCE $J(x)$ $J(x)$ $J(-x)$ 001.0001.0230.023250.9991.0270.020501.0011.0340.016751.0031.0440.013001.0081.0610.010251.0141.0850.008501.0211.1200.006751.0281.1640.004001.0371.2110.003251.0441.2560.002501.0511.3000.002751.0571.3420.001001.0621.3820.000251.0711.418-0.001751.0991.480-0.001001.1221.503-0.002251.1531.519-0.002501.911.528-0.002751.2381.528-0.001	POINT ISOTROPIC SOURCEPLANE PERPENDICULAR SOURCE $J(x)$ $J(x)$ $J(-x)$ x001.0001.0230.0230.500250.9991.0270.0200.525501.0011.0340.0160.550751.0031.0440.0130.575001.0081.0610.0100.600251.0141.0850.0080.625501.0211.1200.0060.650751.0281.1640.0040.675001.0371.2110.0030.700251.0441.2560.0020.725501.0511.3000.0020.750751.0571.3420.0010.825501.0831.451-0.0010.850751.0991.480-0.0010.875001.1221.503-0.0020.9251.1531.519-0.0020.925501.1911.528-0.0010.975	POINT ISOTROPIC SOURCEPLANE PERPENDICULAR SOURCEPOINT ISOTROPIC SOURCE $J(x)$ $J(x)$ $J(-x)$ x $J(x)$ $J(x)$ $J(-x)$ x 00 1.000 1.023 0.023 0.500 25 0.999 1.027 0.020 0.525 1.001 1.034 0.016 0.550 1.390 75 1.003 1.044 0.013 0.575 1.432 00 1.008 1.061 0.010 0.600 1.465 25 1.014 1.085 0.008 0.625 1.485 50 1.021 1.120 0.006 0.650 1.486 75 1.028 1.164 0.004 0.675 1.462 00 1.037 1.211 0.003 0.700 1.408 25 1.044 1.256 0.002 0.725 1.316 50 1.051 1.300 0.002 0.750 1.181 75 1.057 1.342 0.001 0.850 0.298 50 1.083 1.451 -0.001 0.850 0.298 75 1.099 1.480 -0.001 0.875 0.119 00 1.122 1.503 -0.002 0.900 0.027 25 1.151 -0.002 0.950 0.000 75 1.238 1.528 -0.001 0.975 0.000	POINT ISOTROPIC PLANE PERPENDICULAR SOURCE POINT ISOTROPIC PLANE PERPENDICULAR SOURCE POINT ISOTROPIC PLANE PERPEND SOURCE J(x) J(x) J(-x) x J(x) J(x) 00 1.000 1.023 0.023 0.500 1.290 1.517 25 0.999 1.027 0.020 0.525 1.341 1.492 50 1.001 1.034 0.016 0.550 1.390 1.453 75 1.003 1.044 0.013 0.575 1.432 1.397 00 1.008 1.061 0.010 0.600 1.465 1.324 25 1.014 1.085 0.008 0.625 1.485 1.232 00 1.028 1.164 0.004 0.675 1.462 0.999 00 1.037 1.211 0.003 0.700 1.408 0.865 25 1.044 1.256 0.002 0.755 1.316 0.724 50 1.051 1.300 0.002 0.750 1.181 0.580 25 <t< td=""></t<>	

24

 $Z = 29, E_0 = 0.025 Mev$

STOPPING POWER (dE/dr) _{Eo} = 6.91 Mev(cm ² /g)		POINT ISOTROPIC SOURCE	PLA PERPEN SOU	INE IDICULAR IRCE		POINT ISOTROPIC SOURCE	PLA PERPEN SOU	INE IDICULAR IRCE
RESIDUAL RANGE	x	J(x)	J(x)	J(-x)	x	J(x)	J(x)	J(, x)
$r_0 = 0.00210 \text{ g/cm}^2$ OTHER PARAMETERS $d_1 = 3.826 A_1 = 0.6465$	0.000 0.025 0.050 0.075	1.000 1.069 1.250 1.519	3.115 3.430 3.678 3.850	2.115 1.792 1.504 1.254	0.500 0.525 0.550 0.575	2.585 2.183 1.782 1.402	0.741 0.575 0.432 0.313	0.011 0.009 0.007 0.006
$a^{PTI} = -4.745 \qquad A_2 = 0.8729$ $A^{PTI} = 3.023 \qquad A_3 = -0.9436$ $A^{PLP} = 3.431 \qquad A_4 = 0.4242$	0.100	1.849	3.942	1.042	0.600	1.058	0.217	0.004
	0.125	2.211	3.951	0.869	0.625	0.760	0.142	0.002
	0.150	2.575	3.883	0.730	0.650	0.514	0.087	0.001
	0.175	2.916	3.749	0.620	0.675	0.323	0.049	0.000
SCATTERING COEFFICIENTS	0.200	3.218	3.566	0.530	0.700	0.184	0.025	-0.000
$\theta \sigma/\sigma \ell S_{\ell}$	0.225	3.478	3.354	0.450	0.725	0.093	0.011	-0.000
15° 1.013 1 4.847	0.250	3.697	3.124	0.375	0.750	0.040	0.004	-0.000
30 1.035 2 11.32	0.275	3.823	2.882	0.304	0.775	0.014	0.001	-0.000
45 1.055 3 18.48 60 1.066 4 25.84 75 1.070 5 33.12 90 1.066 6 40.14 105 1.059 7 46.80	0.300	3.997	2.631	0.238	0.800	0.003	0.000	-0.000
	0.325	4.060	2.374	0.179	0.825	0.001	0.000	-0.000
	0.350	4.056	2.114	0.129	0.850	0.000	0.000	-0.000
	0.375	3.979	1.856	0.088	0.875	0.000	0.000	-0.000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.400	3.828	1.605	0.057	0.900	0.000	0.000	-0.000
	0.425	3.603	1.365	0.036	0.925	0.000	0.000	-0.000
	0.450	3.313	1.139	0.022	0.950	0.000	0.000	-0.000
	0.475	2.968	0.930	0.015	0.975	0.000	0.000	-0.000

$Z = 29, E_0 = 0.05 \text{ Mev}$

STOPPING POWER (dE/dr) _{Eo} = 4.26 Mev(cm ² /g)		POINT ISCTROPIC SOURCE	PL PERPE SO	ANE NDICULAR URCE		POINT ISOTROPIC SOURCE	PL PERPE SO	ANE ENDICULAR FURCE
RESIDUAL RANGE	x	J(x)	J(x)	J(-x)	x	J(x)	J(x)	J(-x)
$r_0 = 0.00689 \text{ g/cm}^2$ OTHER PARAMETERS $d_1 = 4.779 A_1 = 0.5326$	0.000 0.025 0.050 0.075	1.000 1.108 1.344 1.676	3.230 3.657 3.971 4.171	2.230 1.815 1.469 1.190	0.500 0.525 0.550 0.575	2.085 1.668 1.283 0.944	0.534 0.391 0.274 0.184	0.009 0.007 0.005 0.003
$\begin{array}{l} \alpha = -22.11 & A_2 = 1.589 \\ A^{PTI} = 3.628 & A_3 = -1.011 \\ A^{PLP} = 4.130 & A_4 = -0.1106 \end{array}$	0.100 0.125 0.150 0.175	2.067 2.483 2.895 3.278	4.262 4.249 4.144 3.972	0.974 0.811 0.688 0.590	0.600 0.625 0.650 0.675	0.658 0.430 0.259 0.141	0.116 0.069 0.037 0.018	0.001 0.000 -0.000 -0.000
SCATTERING COEFFICIENTS $\theta \sigma/\sigma_R \ell s_\ell$ 15° 1.026 1 5.006 30 1.054 2 12.32	0.200 0.225 0.250 0.275	3.617 3.901 4.123 4.271	3.743 3.476 3.183 2.875	0.502 0.415 0.329 0.249	0.700 0.725 0.750 0.775	0.067 0.027 0.009 0.002	0.008 0.003 0.001 0.000	-0.000 -0.000 -0.000 -0.000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.300 0.325 0.350 0.375	4.335 4.310 4.192 3.986	2.560 2.247 1.943 1.653	0.180 0.124 0.081 0.052	0.800 0.825 0.850 0.875	0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000	-0.000 -0.000 -0.000 -0.000
120 0.995 8 74.57 135 0.970 9 85.41 150 0.950 10 96.03 165 0.937 11 106.4 180 0.932 12 116.5	0.400 0.425 0.450 0.475	3.700 3.346 2.946 2.518	1.381 1.131 0.905 0.705	0.033 0.022 0.015 0.011	0.900 0.925 0.950 0.975	0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000	-0.000 -0.000 -0.000 -0.000 25

$Z = 29, E_0 = 0.10$ Mev

STOFFING POWER (dE/dr) _{Eo} = 2.72 Mev(cm ² /g)		POINT ISOTROPIC SOURCE	PL PERPE SO	ANE NDICULAR URCE		POINT ISOTROPIC SOURCE	PI PERPE SC	ANE INDICULAR NURCE
RESIDUAL RANGE	~	7()	*/	*()		J(x)	J(x)	J(-x)
$r_{e} = 0.0221 \text{ g/cm}^2$		J(X)	$J(\mathbf{X})$	J(-x)	X	0 106	0 520	0.007
	0.000	1.000	3.211	2.211	0.500	2.120	0.225	0.005
UTHER PARAMETERS	0.025	1.079	2.270	1,012	0.550	1 302	0.268	0.00/
$d_1 = 4.971$ $A_1 = 0.6446$	0.075	1.572	4.037	1.210	0.575	0.950	0.177	0.002
$\alpha = -45.31$ A ₀ = 1.054	0.075	2000	4:001	T * ~ T O	0.717	01//0		
APTI 2 808 A = 1 2/0	0.100	1.926	4.101	0.998	0.600	0.654	0.110	0.001
A = 3.000 A3 = -1.240	0.125	2.310	4.071	0.834	0.625	0.420	0.064	0.000
$A^{PLP} = 4.342$ $A_{L} = 0.5412$	0.150	2.700	3.963	0.706	0.650	0.247	0.034	-0.000
	0.175	3.074	3.792	0.599	0.675	0.130	0.016	-0.000
SCATTERING COEFFICIENTS						4 -	4	
e or ~ si	0.200	3.415	3.575	0.502	0.700	0.060	0.006	-0.000
15° 1.038 1 5.083	0.225	3.712	3.326	0.410	0.725	0.023	0.002	-0.000
30 1.070 2 13.01	0.250	3.952	3.050	0.323	0.750	0.007	0.001	-0.000
45 1.082 3 22.86	0.275	4.123	2.//1	0.247	0.113	0.002	0.000	-0.000
60 1.073 4 34.12	0 300	4.214	2./80	0.178	0.800	0.000	0.000	-0.000
75 1.045 5 46.44	0.325	4.218	2,189	0.124	0.825	0,000	0.000	-0.000
90 1.003 6 59.56	0.350	4.132	1.903	0.083	0.850	0.000	0.000	-0.000
105 0.952 7 73.27	0.375	3.957	1.627	0.053	0.875	0.000	0.000	-0.000
120 0.900 8 87.40								
150 0 812 10 114	0.400	3.698	1.366	0.034	0.900	0.000	0.000	-0.000
165 0 789 11 121 1	0.425	3.368	1.122	0.021	0.925	0.000	0.000	-0.000
180 0.780 12 1/5 8	0.450	2.983	0.899	0.013	0.950	0.000	0.000	-0.000
T00 01100 TE T43.0	0.475	2.561	0.701	0.010	0.975	0.000	0.000	-0.000

 $Z = 29, E_0 = 0.20 \text{ Mev}$

STOPPIN (de/	G POWER	1.89	Mev(cm ² /g)		POINT ISOTROPIC SOURCE	PL. PERPEI SOI	ANE NDICULAR JRCE		POINT ISOTROPIC SOURCE	PI PERPI S(LANE ENDICULAR DURCE
RESIDUA	L RANGE		_		x	J(x)	J(x)	J(-x)	x	J(x)	J(x)	J(-x)
r _o =	0.0678	g/cm	2		0.000	1.000	3.081	2.081	0.500	1.974	0.485	0.006
OTHER P	ARAMETER	s			0.025	1.070	3.470	1.674	0.525	1.571	0.351	0.005
d. =	5.125	A.	, =	0.6033	0.050	1.253	3.737	1.345	0.550	1.196	0.243	0.004
α =	39.73	A	L a =	1.008		20000	21000	1.00/0	0.515	0.00)	0.137	0.002
APTI_	3,901	A	<	1.1/3	0.100	1.845	3.928	0.898	0.600	0.589	0.098	0.001
PLP_	1 150		3	0 5212	0.129	2.564	3.760	0.643	0.625	0.372	0.055	0.000
A =	4.474	R	4 =	0.7717	0.175	2.913	3.591	0.547	0.675	0.111	0.013	-0.000
SCATTER	ING COEF	FICI	ents									
θ	۵/۵	ł		Sg	0.200	3.234	3.384	0.456	0.700	0.050	0.005	-0.000
150	1 050	1	,	000	0.250	3 737	2 805	0.201	0.750	0.010	0.002	-0.000
30	1 092	1	12	777 10	0 275	3 805	2 621	0 210	0.770	0.005	0.000	-0.000
45	1.085	â	23	17 66	0.217	2.075	n e Onde	0.217	0.119	0.001	0.000	-0.000
60	1.057	í.	35.	94	0.300	3.977	2.344	0.158	0.800	0,000	0.000	-0.000
75	1.004	5	49.	69	0.325	3.976	2.063	0.107	0.825	0,000	0.000	-0.000
90	0.931	6	64.	66	0.350	3.889	1.787	0.069	0.850	0.000	0.000	-0.000
105	0.848	7	80.	66	0.375	3.718	1.521	0.041	0.875	0.000	0.000	-0.000
120	0.763	8	97.	52								
135	0.687	9	115.	08	0.400	3.469	1.271	0.024	0.900	0.000	0.000	-0.000
150	0.626	10	133.	.24	0.425	3.153	1.040	0.014	0.925	0.000	0.000	-0.000
165	0.587	11	151.	89	0.450	2.785	0.830	0.010	0.950	0.000	0.000	-0.000
180	0.573	12	170.	98	0.475	2.385	0.645	0.007	0.975	0.000	0.000	-0.000

$Z = 29, E_0 = 0.40$ Mev

STOPPING POWER (dE/dr) _{E0} = 1.47 Mev(cm ² /g)	POINT ISOTROPIC SOURCE	PLANE PERPENDICULAR SOURCE		POINT ISOTROPIC SOURCE	POINT PLA ISOTROPIC PERPEN SOURCE SOU	
RESIDUAL RANGE	J(x)	J(x) J(-x)	~	J(x)	J(x)	J(-x)
$r_0 = 0.191 \text{ g/cm}^2$ OTHER PARAMETERS $d_1 = 5.159 A_1 = 0.5130$ $q_1 = 11.06 A_2 = 1.003$	0 1.000 5 1.059 0 1.214 5 1.442	2.806 1.806 3.161 1.441 3.416 1.148 3.571 0.921	0.500 0.525 0.550 0.575	1.789 1.430 1.093 0.794	0.449 0.324 0.224 0.147	0.002 0.002 0.002
$A^{PTI} = 3.857 A_3 = -0.8755 \qquad 0.10 \\ A^{PLP} = 4.406 A_4 = 0.3598 \qquad 0.15 \\ SCATTERING COEFFICIENTS \qquad 0.17 \\ \hline$	0 1.721 5 2.027 0 2.341 5 2.644	3.6330.7533.6080.6313.5070.5393.3450.459	0.600 0.625 0.650 0.675	0.542 0.344 0.199 0.102	0.090 0.051 0.027 0.012	0.001 0.000 -0.000 -0.000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 2.924 5 3.168 0 3.364 5 3.502	3.1380.3822.9020.3042.6520.2322.3960.171	0.700 0.725 0.750 0.775	0.046 0.017 0.005 0.001	0.005 0.002 0.000 0.000	-0.000 -0.000 -0.000 -0.000
No. No. <td>0 3.573 25 3.570 30 3.492 25 3.339</td> <td>2.140 0.121 1.886 0.083 1.638 0.055 1.400 0.035</td> <td>0.800 0.825 0.850 0.875</td> <td>0.000 0.000 0.000 0.000</td> <td>0.000 0.000 0.000 0.000</td> <td>-0.000 -0.000 -0.000 -0.000</td>	0 3.573 25 3.570 30 3.492 25 3.339	2.140 0.121 1.886 0.083 1.638 0.055 1.400 0.035	0.800 0.825 0.850 0.875	0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000	-0.000 -0.000 -0.000 -0.000
155 0.305 9 121.9 150 0.420 10 142.4 0.40 165 0.366 11 163.8 0.42 180 0.348 12 185.9 0.45 0.47 0.47 0.47 0.45	00 3.117 25 2.837 30 2.511 5 2.156	1.173 0.021 0.962 0.013 0.769 0.008 0.597 0.005	0.900 0.925 0.950 0.975	0.000 0.000 0.000 0.000	0.000	-0.000 -0.000 -0.000 -0.000

 $Z = 29, E_0 = 0.70 \text{ Mev}$

STOPPING POWER	POINT	PLA	NE		POINT	PI	PLANE	
$(dE/dr)_{T} = 1.33 \text{ Mev}(cm^2/g)$	ISOTROPIO	PERPEN	DICULAR		ISOTROPIC	PERPE	ENDICULAR	
20	SOURCE	SOU	RCE		SOURCE	SC	DURCE	
RESIDUAL RANGE X	J(x)	J(x)	J(-x)	х	$J(\mathbf{x})$	J(x)	J(-x)	
$r_0 = 0.409 \text{ g/cm}^2$ 0.000	1.000	2.523	1.523	0.500	1.679	0.442	0.003	
OTHER PARAMETERS	1.045	2.846	1.194	0.525	1.356	0.323	0.002	
0.050	1.166	3.086	0.932	0.550	1.048	0.226	0.002	
$a_1 = 5.172$ $A_1 = 0.4427$ 0.075	1.348	3.242	0.735	0.575	0.771	0.150	0.001	
$\alpha = 5.029$ A ₂ = 0.9364	3 671	2 23 6	0.000	a (aa	0 604	0.001	0.003	
$A^{\text{PTI}} = 3.717$ $A_2 = -0.6005$ 0.100	1.574	3.315	0.595	0.600	0.534	0.094	0.001	
PLP = 1000 + - 00010 = 0.120	1.829	3.010	0.500	0.625	0.345	0.054	0.000	
$A^{-2-2} = 4.249$ $A_{1} = 0.2214$ 0.150	2.094	3.232	0.431	0.050	0.204	0.029	-0.000	
SCATTERING COEFFICIENTS	2.300	3.092	0.312	0.075	0.108	0.013	-0.000	
θ σ/σ ₂ ² S ₂ 0.200	2 500	2 006	0.310	0 700	0.050	0.005	-0.000	
15° 1.064 1 4.314 0.225	2 810	2 690	0.246	0.725	0.020	0.002	-0.000	
30 1.091 2 11.86 0.250	2.980	2.1.62	0.185	0.750	0.006	0.002	-0.000	
45 1.07/ 3 21.91 0.275	3,100	2.231	0.135	0.775	0.001	0.000	-0.000	
60 1.013 4 34.08	21200	No. 9. No. 9. Au	012//	01112	51001	0.000	- 01000	
75 0.914 5 48.11 0.300	3.165	1,999	0.094	0.800	0.000	0.000	-0.000	
90 0.788 6 63.81 0.325	3.170	1.769	0.064	0.825	0.000	0.000	-0.000	
105 0.648 7 81.02 0.350	3.114	1.544	0.041	0.850	0.000	0.000	-0.000	
120 0.508 8 99.59 0.375	2.995	1.326	0.025	0.875	0.000	0.000	-0.000	
135 0.382 9 119.4								
150 0.282 10 140.4 0.400	2.817	1.118	0.015	0.900	0.000	0.000	-0.000	
165 0.218 11 162.4 0.425	2.585	0.923	0.009	0.925	0.000	0.000	-0.000	
180 0.196 12_185.4 0.450	2.309	0.744	0.006	0.950	0.000	0.000	-0.000	
0.475	2.002	0.583	0.004	0.975	0.000	0.000	-0.000	

$Z = 29, E_0 = 1.00 \text{ Mev}$

STOPPING POWER (dE/dr) _{Eo} = 1.29 Mev(cm ² /g)			POINT ISOTROPIC SOURCE	PL. PERPEI SOI	ANE NDICULAR JRCE		POINT ISCTROPIC SCURCE	PL PERPE SO	ANE NDICULAR URCE		
RESIDU	AL RANGE			x	J(x)	J(x)	J(-x)	x	J(x)	J(x)	J(-x)
ro :	= 0.639	g/cm	2	0.000	1.000	2.320	1.320	0.500	1.638	0.456	0.003
OTHER :	PARAMETER	ເຮ		0.025	1.036	2.617	1.021	0.525	1.339	0.337	0.002
d,	= 5.207	A.	= 0.4033	0.075	1.284	3.003	0.607	0.575	0.784	0.162	0.002
α	= 3.091	A	= 0.8887	0 100	1.473	3.089	0.486	0.600	0.552	0 103	0 001
APTI	= 3.576	ے A	= -0.4454	0.125	1.688	3.104	0.409	0.625	0.363	0.061	0.000
APLP	= 4.087	3 A.	= 0.1534	0.150	1.917	3.051	0.356	0.650	0.219	0.033	-0.000
		4	002/04	0.17	~ • 140	~• //0	0.)1)	0.019	0.117	0.010	-0.000
SCATTE	RING COEF	FICI	ENTS	0.200	2.363	2.772	0.264	0.700	0.056	0.006	-0.000
θ	σ/σ _B	ł	Sł	0.225	2.556	2.576	0.209	0.725	0.022	0.002	-0.000
15°	1.066	1	3.934	0.275	2 83/	2 152	0.112	0.775	0.007	0.001	-0.000
30	1.092	2	10.91	0.215	2.0004	~+±)~	0.11~	0.117	0.002	0.000	-0.000
45	1.072	3	20.26	0.300	2,904	1.937	0.077	0.800	0,000	0.000	-0.000
60	1.004	4	31.68	0.325	2.922	1.723	0.051	0.825	0.000	0.000	-0.000
75	0.896	5	44.92	0.350	2.884	1.512	0.032	0.850	0.000	0.000	-0.000
90	0.761	6	59.83	0.375	2.792	1.307	0.019	0.875	0.000	0.000	-0.000
105	0.610	.7	76.25								
135	0.400	8	94.07	0.400	2.644	1.109	0.011	0.900	0.000	0.000	-0.000
150	0.218	10	133 5	0.425	2.446	0.923	0.006	0.925	0.000	0.000	-0.000
165	0,150	11	155.0	0.400	2.200	0.750	0.004	0.950	0.000	0.000	-0.000
180	0.126	12	177.5	0.475	1.702	0. 94	0.005	0.915	0.000	0.000	-0.000

 $Z = 29, E_0 = 2.00 \text{ Mev}$

STOPPIN (de/	dr) _E =	1.30) Mev(cm ² /g)		POINT PLANE ISOTROPIC PERPENDICULAR SOURCE SOURCE			POINT ISOTROPIC	PL PERPE	ANE	
RESIDUA	L RANGE				SUURCE	50	URCE		SOURCE	SU	URCE
r =	1.42		2	x	J(x)	J(x)	J(-x)	х	$\mathbf{J}(\mathbf{x})$	J(x)	J(-x)
¹ 0	· 1:4~	E/ OIII		0.000	1.000	1.904	0.904	0.500	1.658	0.547	0.003
OTHER P	ARAMETER	RS		0.025	1.019	2.153	0.659	0.525	1.408	0.421	0.002
d ₁ =	5.304	A	= 0.3259	0.050	1.075	2.357	0.471	0.550	1.151	0.312	0.002
α =	: 1.297	A_2	= 0.9372	0.019	1.109	~ •) 1~	0.747	0.)()	0.,00	0.221	0.001
A ^{PTI} =	3.153	A3	= -0.4319	0.100 0.125	1.279 1.416	2.618 2.674	0.273 0.240	0.600 0.625	0.668 0.465	0.148	-0.000 -0.000
A ^{PLP} =	3.602	A.4	= 0.1688	0.150	1.569	2.681	0.222	0.650	0.300	0.054	-0.000
SCATTER	RING COER	FFICI	ENTS	0011.9	10.91	~~~~	01209		00119	0.020	
θ	σjσ	ł	Sł	0.200	1.894 2.051	2.550	0.179 0.144	0.700	0.091 0.040	0.012	-0.000 -0.000
15°	1.068	1	2.995	0.250	2,195	2.268	0.104	0.750	0.015	0.001	-0.000
30	1.093	2	8.401	0.275	2.317	2.098	0.069	0.775	0.004	0.000	-0.000
45	1.068	3	15.76								
60	0.993	4	24.84	0.300	2.411	1.919	0.043	0.800	0.001	0.000	-0.000
75	0.876	5	35.49	0.325	2.469	1.746	0.024	0.825	0.000	0.000	-0.000
90	0.729	6	47.59	0.350	2.486	1.551	0.013	0.850	0.000	0.000	-0.000
105	0.566	7	61.05	0.375	2.457	1.365	0.007	0.875	0.000	0.000	-0.000
120	0.405	8	75.77								
135	0.259	9	91.69	0.400	2.382	1.184	0.003	0.900	0.000	0.000	-0.000
150	0.145	10	108.7	0.425	2.259	1.008	0.003	0.925	0.000	0.000	-0.000
165	0.071	11	126.9	0.450	2.093	0.843	0.003	0.950	0.000	0.000	-0.000
180	0.046	12	146.0	0.475	1.890	0.688	0.003	0.975	0.000	0.000	-0.000

$Z = 29, E_0 = 4.00 Mev$

STOPPING POWER		POINT	PL	ANE		POINT	PL	ANE
$(dE/dr)_{E_0} = 1.36 \text{ Mev}(cm^2/g)$)	ISOTROPIC	PERPEI	NDICULAR IRCE		ISOTROPIC	PERPE	NDICULAR
RESIDUAL RANGE		DOUNDE					T(w)	T()
$r_{2} = 2.92 \text{ g/cm}^{2}$	x	J(x)	J(x)	J(-x)	x	5(x)	J(X)	J(-x)
	0.000	1.000	1.407	0.407	0.500	1.787	0.767	0.001
OTHER PARAMETERS	0.025	1.007	1.546	0.313	0.525	1.607	0.623	0.000
$d_1 = 5.567$ $A_1 = 0.2836$	0.050	1.032	1.732	0.259	0.550	1.399	0.489	-0.000
$\alpha^{-} = 0.5645$ $A_{2}^{-} = 0.8990$	- 0.075	1.074	1.947	0.233	0.575	1.172	0,370	-0.000
$A^{\text{FTI}} = 2.596$ $A_{2} = -0.3550$	0.100	1.130	2.151	0.215	0.600	0.938	0.268	-0.000
PLP 2 off	0.125	1.201	2.296	0.181	0.625	0.711	0.183	-0.000
$A^{-11} = 2.965$ $A_{-1} = 0.1724$	0.150	1.284	2.357	0.129	0.650	0.505	0.117	-0.000
SCATTERING COFFETCIENTS	0.175	1.378	2.358	0.083	0.675	0.330	0.069	0.000
SORTHARD OUEFFICIENTS			0.001	0.05/		0.305	0.00(0.000
θ σ/σ _R + Sl	0.200	1.481	2.321	0.056	0.700	0.195	0.030	0.000
15° 1.068 1 2.008	0.220	1.590	2.470	0.041	0.720	0.102	0.017	0.000
30 1.093 2 5.680	0.290	1 815	2 072	0.026	0.775	0.045	0.000	0.000
45 1.066 3 10.74	0.21)		2.012	0.020	0.115	0.010	0.002	0.000
60 0.988 4 17.04	0,300	1,920	1,958	0.021	0.800	0.004	0.000	0.000
75 0.868 5 24.50	0.325	2.011	1,831	0.016	0.825	0.001	0.000	0.000
90 0.716 6 33.03	0.350	2.081	1,693	0.012	0.850	0.000	0.000	0.000
105 0.549 7 42.59	0.375	2.12/	1.5/6	0.009	0.875	0.000	0.000	0.000
120 0.383 8 53.12	0.)/)	~ • 1~4	1.740	0.007	0.019	0.000	0.000	
135 0.234 9 64.58	0.400	2,133	1,393	0.006	0,900	0.000	0.000	0.000
150 0.116 10 76.93	0.425	2,106	1.236	0.004	0.925	0.000	0.000	0.000
165 0.040 11 90.13	0.450	2,039	1.077	C.002	0,950	0.000	0.000	0.000
180 0.014 12 104.2	0.475	1,933	0.919	0.001	0.975	0.000	0.000	0.000

$Z = 29, E_0 = 10.00 \text{ Mev}$

STOPPI (dE	STOPPING POWER (dE/dr) _{Eo} = 1.45 Mev(cm ² /g) RESIDUAL RANGE		Mev(cm ² /g)		POINT ISOTROPIC SOURCE	PL PERPE SO	ANE NDICULAR URCE		POINT ISOTROPIC SOURCE	PERPER SOI	LANE NDICULAR URCE
RESIDU	AL RANGE				7()	-/ \	- 4 - 5		$I(\mathbf{x})$	$I(\mathbf{x})$	T(-x)
r	= 7.17 g	$/cm^2$		х	J(x)	J(x)	J(-x)	х	0(x)	5(x)	J(~x)
0		_		0.000	1.000	1.160	0.160	0.500	1.792	1.219	0.000
OTHER	PARAMETER	S		0.025	1.000	1.209	0.113	0.525	1.771	1.086	0.001
d,	= 6.060	A	= 0.2252	0.050	1.006	1.207	0.074	0.550	1.712	0.947	0.001
α	= 0.2020	A_	= 1.082	0.075	I.UI/	0رو ۱	0.043	0.575	I.OIZ	0.009	0.001
PTI	0.2020	2	20002	0.100	1,033	1.420	0.024	0,600	1.468	0.663	0.001
A	= 2.348	^A 3	= -0.7722	0.125	1.055	1.519	0.017	0.625	1.284	0.525	0.001
APLP	= 2.043	A,	= 0.4649	0.150	1.082	1.625	0.016	0.650	1.068	0.395	0.000
		4		0.175	1.115	1.723	0.019	0.675	0.835	0.280	0.000
SCATTE	RING COEF	FICIE	NTS				,				
θ	σ/σ_	Ł	Sg	0.200	1.153	1.803	0.020	0.700	0.606	0.182	-0.000
1 59	1 040	7	1 019	0.225	1.197	1.864	0.020	0.725	0.401	0.107	-0.000
30	1.009	± 2	7.010	0.250	1.247	1.903	0.019	0.750	0.238	0.055	-0.000
15	1.094	2	2.903	0.275	1.302	1.920	0.016	0.775	0.123	0.024	-0.000
60	0.087	2	9.990								
75	0.865	4 5	12 70	0.300	1.362	1.914	0.012	0.800	0.053	800.0	-0.000
90	0.712	6	17 25	0.325	1.426	1.884	0.007	0.825	0.017	0.002	-0.000
105	0 5/3	7	22 /8	0.350	1.494	1.832	0.003	0.850	0.003	0.000	-0.000
120	0.375	g	28 18	0.375	1.563	1.761	-0.001	0.875	0.000	0.000	-0.000
135	0.22/	a	3/ /2								
150	0.105	10	/1 18	0.400	1.631	1.673	-0.002	0.900	0.000	0.000	-0.000
165	0.029	11	18 15	0.425	1.694	1.574	-0.002	0.925	0.000	0.000	-0.000
180	0.003	12	56.21	0.450	1.746	1.464	-0.002	0.950	0.000	0.000	-0.000
200	0,000	1~	JUINT	0.475	1.781	1.346	-0.001	0.975	0.000	0.000	-0.000

TIN

$Z = 50, E_0 = 0.05 Mev$

STOPPING POWER	4	-)0, Eo	- 0.071	ne v				
$(dE/dr)_{E_0} = 3.55 \text{ Mev}(cm^2/g)$ RESIDUAL RANGE		POINT ISOTROPIC SOURCE	PL PERPE SO	ANE NDICULAR URCE		POINT ISOTROPIC SOURCE	PL PERPE SC	ANE INDICULAR NURCE
		J(x)	J(x)	J(-x)	x	$J(\mathbf{x})$	$J(\mathbf{x})$	J(-x)
$r_0 = 0.00840 \text{ g/cm}^2$	0 000	1 000	3 095	2 995	0 500	1 1/0	0 209	0.005
	0.025	1 167	/ /01	2 121	0.525	0.700	0.20/	0.003
OTHER PARAMETERS	0.02)	1 572	4 • 4 71	2 002	0.550	0.798	0.134	0.001
$d_1 = 6.467$ $A_1 = 0.5778$	0.075	2 006	4.702	1 686	0.550	0.229	0.081	0,001
$\alpha^{-} - 6385$ $\Lambda^{-} = 1.618$	0.07)	2.070	4.704	1.000	0.010	0.520	0.040	0.000
2 -0.007 A2 - 1.010	0 100	2 661	1. 571	1 1.27	0 600	0 190	0.021	0.000
$A^{r_1} = 5.218$ $A_3 = -2.491$	0 125	3 221	1 35/	1 107	0.625	0.109	0.024	0.000
APLP 5 913 A - 1 295	0 150	3 711	4.020	0.000	0.650	0.099	0.011	-0.000
	0.175	/ 105	3 763	0.900	0.050	0.047	0.005	-0.000
SCATTERING COEFFICIENTS	0.11)	4.177	1.10)	0.000	0.015	0.019	0.002	-0.000
A JJ L SI	0 200	1.517	3./15	0.634	0 700	0.007	0.001	0.000
R	0 225	1.779	3.0/9	0 / 90	0 725	0.007	0.001	-0.000
15° 1.018 1 7.668	0.250	1.879	2.677	0.369	0.750	0.002	0.000	-0.000
30 1.060 2 17.62	0.275	1.8/2	2.310	0.270	0.775	0.000	0.000	-0.000
45 1.120 3 28.50	0.217	14 8 Cape	~:)10	0.~70	0.11)	0.000	0.000	-0.000
60 1.173 4 39.62	0.300	4.675	1,957	0.191	0.800	0.000	0 000	-0.000
75 1.207 5 50.62	0 325	1.389	1.625	0.132	0.825	0.000	0.000	-0.000
90 1.225 6 61.24	0.350	4.00%	1 321	0 088	0.850	0.000	0.000	-0.000
105 1.230 7 71.34	0 375	3.5/5	1.050	0.058	0.875	0.000	0.000	-0.000
120 1.229 8 80.84	0.515	1.14)	1.0)0	0.000	0.01)	0.000	0.000	-0.000
135 1.229 9 89.70	0.400	3.0/1	0.813	0.037	0 900	0.000	0.000	.0.000
150 1.221 10 97.90	0.425	2.522	0.611	0.023	0.925	0.000	0.000	-0.000
165 1.219 11 105.4	0.4.50	2.017	0.445	0.014	0 950	0.000	0.000	-0.000
180 1.219 12 112.3	0 175	1 550	0 312	0.009	0.075	0.000	0.000	-0.000
	0.412	1.000	C . JTC	0.007	0.712	0.000	0.000	-0.000

$Z = 50, E_0 = 0.10 \text{ Mev}$

STOPPING POWER (dE/dr) _E = 2.29 Mev(cm ² /g)	POINT ISOTROPIC SOURCE	PLANE PERPENDICULAR SOURCE		POINT ISOTROPIC SOURCE	PLANE PERPENDICUL SOURCE	
r_0 r_0 0.0265 g/cm^2 0.0000 cm^2 OTHER PARAMETERS 0.00000 cm^2 $0.00000000000000000000000000000000000$	x J(x) 000 1.000 025 1.173 050 1.603 075 2.180	J(x) J(-x) 4.087 3.087 4.593 2.539 4.879 2.075 4.895 1.711	x 0.500 0.525 0.550 0.575	J(x) 0.877 0.579 0.357 0.203	J(x) J(0.143 0. 0.086 0. 0.049 0. 0.025 0.	-x) 003 001 000 000
$\alpha^{-} = -10.76$ $A_2 = 1.161$ 0. $A^{PTI} = 6.029$ $A_3 = -1.549$ 0. $A^{PLP} = 6.865$ $A_4 = 0.7748$ 0.	100 2.815 125 3.436 150 3.992 175 4.446	4.691 1.430 4.379 1.194 4.035 0.981 3.672 0.786	0.600 0.625 0.650 0.675	0.105 0.049 0.019 0.007	0.012 -0. 0.005 -0. 0.002 -0. 0.001 -0.	000 000 000 000
$\begin{array}{cccc} \text{SCATTERING COEFFICIENTS} & 0.\\ \theta & \sigma/\sigma & \ell & S_{\ell} & 0.\\ 15^{\circ} & 1.115 & 1 & 8.205 & 0.\\ 30 & 1.223 & 2 & 20.01 & 0. \end{array}$	2004.7712254.9512504.9802754.861	3.295 0.612 2.908 0.462 2.520 0.337 2.140 0.236	0.700 0.725 0.750 0.775	0.002 0.000 0.000 0.000	0.000 -0. 0.000 -0. 0.000 -0. 0.000 -0.	000 000 000 000
45 1.284 3 33.87 0. 60 1.277 4 49.01 0. 75 1.197 5 64.94 0. 90 1.055 6 81.33 0. 105 0.869 7 97.89 0.	300 4.607 325 4.239 350 3.782 375 3.269	1.779 0.161 1.444 0.106 1.144 1.069 0.882 0.045	0.800 0.825 0.850 0.875	0.000 0.000 0.000 0.000	0.000 -0. 0.000 -0. 0.000 -0. 0.000 -0.	000 000 000 000
120 0.664 8 114.4 0. 135 0.467 9 130.8 0. 150 0.305 10 146.9 0. 165 0.198 11 162.6 0. 180 0.161 12 177.8 0.	400 2.730 425 2.196 450 1.696 475 1.251	0.660 0.029 0.479 0.018 0.334 0.011 0.224 0.006	0.900 0.925 0.950 0.975	0.000 0.000 0.000 0.000	0.000 -0. 0.000 -0. 0.000 -0. 0.000 -0.	000 000 000 000
$Z = 50, E_0 = 0.20$ Mev

STOPPING POWER (dE/dr) _{E0} = 1.60 Mev(cm ² /g)	POINT ISOTROPIC PE SOURCE	PLANE RPENDICULAR SOURCÈ	POINT ISOTROPIC SOURCE	PLANE PERPENDICULA SOURCE
RESIDUAL RANGE x $r_0 = 0.0805 \text{ g/cm}^2$ 0.000 OTHER PARAMETERS 0.050 $d_1 = 8.129$ $A_1 = 0.5730$ 0.075	J(x) J(x 1.000 4.0 1.180 4.6 1.617 4.7 2.192 4.7	J(-x) x 76 3.076 0.500 37 2.401 0.525 91 1.948 0.500 04 1.616 0.575	J(x) 0.694 0.441 0.261 0.142	J(x) J(-x) 0.108 0.001 0.061 0.001 0.033 0.001 0.016 0.000
$\begin{array}{c} \alpha &= -35.95 & A_2 = 1.083 & 0.100 \\ A^{\rm PTI} = & 6.512 & A_3 = -1.237 & 0.125 \\ A^{\rm PLP} = & 7.438 & A_4 = 0.5813 & 0.175 \end{array}$	2.812 4.4 3.408 4.2 3.932 3.8 4.351 3.4	911.3420.600041.1010.625690.8880.650990.7020.675	0.070 0.030 0.011 0.004	0.007 0.000 0.003 0.000 0.001 0.000 0.000 0.000
$\begin{array}{cccc} \text{SCATTERING COEFFICIENTS} & 0.200 \\ \theta & \sigma / \sigma & \ell & s_{\ell} & 0.225 \\ 15^{\circ} & 1.072 & 1 & 8.362 & 0.250 \\ 30 & 1.161 & 2 & 21.30 & 0.275 \\ 45 & 1.232 & 3 & 27 & 15 \end{array}$	4.641 3.1 4.786 2.7 4.780 2.3 4.628 1.9	110.5420.700150.4090.725260.2990.750520.2110.775	0.001 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4.9 1.222 37.15 0.300 60 1.262 4 55.19 0.302 75 1.246 5 74.88 0.325 90 1.188 6 95.87 0.350 105 1.101 7 117.8 0.375 120 0.999 8 140.5 5	4.343 1.6 3.949 1.2 3.474 1.0 2.952 0.7	02 0.144 0.800 87 0.094 0.825 02 0.058 0.850 59 0.034 0.875	0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
135 0.899 9 163.8 0.400 150 0.815 10 187.4 0.425 165 0.760 11 211.2 0.475 180 0.741 12 235.3 0.475	2.417 0.5 1.900 0.3 1.430 0.2 1.024 0.1	57 0.019 0.900 94 0.010 0.925 67 0.005 0.950 73 0.002 0.975	0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000

 $Z = 50, E_0 = 0.40$ Mev

STOPPING POWER (dE/dr) _E = 1.27 Mev(cm ² /g)	POINT ISOTROPIC SOURCE	PLANE PERPENDI CULAR SOURCE	POIN ISOTRO SOUR	r point pic perpendicular ce source
RESIDUAL RANGE	J(x) J	(x) J(-x)	J(x)	J(x) = J(-x)
$r_0 = 0.225 \text{ g/cm}^2$ OTHER PARAMETERS $d_1 = 8.547 A_1 = 0.4939$ 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002	1.000 3 5 1.156 4 0 1.543 4 5 2.058 4	.724 2.724 .264 2.104 .447 1.693 .395 1.402	0.500 0.599 0.525 0.372 0.550 0.218 0.575 0.11	5 0.091 0.001 4 0.052 0.001 3 0.027 0.000 7 0.013 0.000
α = 16.16 A_2 = 1.031 0.100 A^{PTI} 6.636 A_3 = -0.8945 0.122 A^{PLP} 7.582 A_4 = 0.3696 0.150	0 2.620 4 5 3.161 3 0 3.633 3 5 4.000 3	.200 1.168 .920 0.961 .590 0.773 .228 0.604	0.600 0.059 0.625 0.02 0.650 0.009 0.675 0.009	5 0.006 -0.000 4 0.002 -0.000 9 0.001 -0.000 3 0.000 -0.000
$\begin{array}{cccc} \text{SCATTERING COEFFICIENTS} & 0.200 \\ \theta & \sigma / \sigma_{\text{R}} & \ell & S_{\ell} & 0.221 \\ 15^{\circ} & 1.096 & 1 & 8.049 & 0.251 \\ 30 & 1.197 & 2 & 21.18 & 0.271 \\ \end{array}$	0 4.241 2 5 4.347 2 0 4.318 2 5 4.162 1	.852 0.459 .745 0.337 .108 0.240 .760 0.164	0.700 0.000 0.725 0.000 0.750 0.000 0.775 0.000	L 0.000 -0.000 D 0.000 -0.000 D 0.000 -0.000 D 0.000 -0.000
45 1.264 3 37.77 0.30 60 1.276 4 57.15 0.32 75 1.227 5 78.83 0.35 90 1.126 6 102.5 0.37 105 0.988 7 127.8 0.37	0 3.893 1 5 3.530 1 0 3.098 0 5 2.625 0	.439 0.109 .150 0.070 .896 0.044 .678 0.027	0.800 0.000 0.825 0.000 0.850 0.000 0.875 0.000	0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 2.141 0 5 1.675 0 0 1.252 0 5 0.889 0	.496 0.016 .349 0.009 .235 0.005 .151 0.003	0.900 0.000 0.925 0.000 0.950 0.000 0.975 0.000	0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000

$Z = 50, E_0 = 0.70 \text{ Mev}$

CHODING DOLLER		, _0						
$(dE/dr)_{E_0} = 1.16 \text{ Mev}(cm^2/g)$		POINT TSOTROPIC	PL. PERPE	ANE NDTCHLAR		POINT ISOTROPIC	PL PERPE	ANE
RESIDUAL RANGE		SOURCE	SO	URCE		SOURCE	SC	URCE
$r_{o} = 0.475 \text{ g/cm}^{2}$	Y	J(x)	J(x)	J(-x)	v	J(x)	J(x)	J(-x)
OTHER PARAMETERS	0,000	1 000	2 252	2 252	0 500	0.580	0.00/	0.002
$d_1 = 8.797$ $A_1 = 0.4294$	0.025	1.126	3.851	1.788	0.525	0.370	0.054	0.001
$\alpha = 5.083$ $A_2 = 0.9362$	0.050	1.444	4.040	1.410	0.550	0.218	0.029	-0.000
$A^{\text{PTI}} = 6.448 A_3 = -0.5806$	0.075	1.012	4.01)	1.10	0.)/)	0.110	0.014	-0.000
$A^{PLP} = 7.361$ $A_4 = 0.2150$	0.100 0.125	2.344 2.806	3.853 3.608	0.954 0.786	0.600 0.625	0.058 0.025	0.006	-0.000 -0.000
SCATTERING COEFFICIENTS	0.150	3.214	3.314	0.636	0.650	0.009	0.001	-0.000
θ σ/σ _p l s _l	0.175	3.538	2.991	0.500	0.675	0.003	0.000	-0.000
15° 1.109 1 7.351	0.200	3.757	2.652	0.382	0.700	0.001	0.000	-0.000
30 1.216 2 19.72	0.225	3.861	2.311	0.281	0.725	0.000	0.000	-0.000
45 1.279 3 35.67	0.250	3.848	1.976	0.199	0.750	0.000	0.000	-0.000
60 1.277 4 54.59	0.275	3.724	1.658	0.135	0.775	0.000	0.000	-0.000
75 1.208 5 76.09 00 1.078 (00.84	0,300	3,500	1,363	0.088	0.800	0,000	0.000	-0.000
105 0.907 7 125.6	0.325	3.193	1.095	0.055	0.825	0.000	0.000	-0.000
	0.350	2.823	0.858	0.033	0.850	0.000	0.000	-0.000
135 0.535 9 182.3	0.375	2.413	0.654	0.019	0.875	0.000	Q.000	-0.000
150 0.385 10 212.8	0, 100	1 000	0 100	0.010	0.000	0.000	0.000	0.000
165 0.285 11 244.7	0.400	1.988	0.483	0.012	0.900	0.000	0.000	-0.000
180 0.251 12 277.6	0.425	1 100	0.344	0.007	0.925	0.000	0.000	-0.000
	0.475	0.855	0.153	0.004	0.950	0.000	0.000	-0.000

$Z = 50, E_0 = 1.00 Mev$

3

STOPPING POWER (dE/dr) _{E0} = 1.13 Mev(cm ² /g)		POINT ISOTROPIC SCURCE	PLI PERPEI SOU	ANE NDICULAR JRCE		POINT ISOTROPIC SOURCE	PL PERPE SC	LANE ENDICULAR DURCE
RESIDUAL RANGE	x	J(x)	J(x)	J(-x)	x	J(x)	J(x)	J(-x)
$r_{o} = 0.738 \ \rho/cm^{2}$	0.000	1.000	3.031	2.031	0.500	0.606	0.103	0.001
OTHER PARAMETERS	0.025	1.103	3.418	1.619	0.525	0.394	0.060	0.000
$d_{1} = 8.972 A_{1} = 0.3919$	0.050	1.367	3.673	1.273	0.550	0.238	0.033	0.000
$\alpha_{mm} = 2.920 A_{2} = 0.8830$	0.075	1.729	3.765	1.003	0.575	0.132	0.016	-0.000
$A^{PT1} = 6.193$ $A_3 = -0.4221$	0.100	2.135	3.689	0.806	0.600	0.066	0.007	-0.000
$A^{PLP} = 7.056$ $A_4 = 0.1472$	0.125	2.539	3.479	0.661	0.625	0.029	0.003	-0.000
SCATTERING COEFFICIENTS	0.150	2.905	3.186	0.540	0.650	0.011	0.001	-0.000
A σ $d\sigma$ ℓ St	0.175	3.204	2.863	0.4 27	0.675	0.004	0.000	-0.000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.200	3.417	2.538	0.325	0.700	0.001	0.000	-0.000
	0.225	3.531	2.221	0.239	0.725	0.000	0.000	-0.000
	0.250	3.543	1.916	0.169	0.750	0.000	0.000	-0.000
	0.275	3.454	1.625	0.116	0.775	0.000	0.000	-0.000
75 1.197 5 71.22 90 1.055 6 93.94 105 0.869 7 118.7 120 0.664 8 145.4 135 0.467 9 173.9	0.300	3.273	1.353	0.076	0.800	0.000	0.000	-0.000
	0.325	3.013	1.102	0.048	0.825	0.000	0.000	-0.000
	0.350	2.691	0.875	0.029	0.850	0.000	0.000	-0.000
	0.375	2.326	0.675	0.018	0.875	0.000	0.000	-0.000
150 0.305 10 203.9 165 0.198 11 235.3 180 0.161 12 268.1	0.400	1.942	0.504	0.010	0.900	0.000	0.000	-0.000
	0.425	1.558	0.362	0.006	0.925	0.000	0.000	-0.000
	0.450	1.197	0.250	0.004	0.950	0.000	0.000	-0.000
	0.475	0.876	0.165	0.002	0.975	0.000	0.000	-0.000

$Z = 50, E_0 = 2.00 \text{ Mev}$

STOPF (d	PING PCWER	1.16	Mev(cm ² /g)		POINT ISOTROPIC SOURCE	PL PERPE SO	ANE NDICULAR URCE		POINT ISOTROPIC SOURCE	PI PERPE S(LANE ENDICULAR DURCE
RESIL	DUAL RANGE										`
r	= 1.61	g/cm ²		x	J(x)	J(x)	J(-x)	x	J(x)	J(x)	J(-x)
OTHER	R PARAMETER	RS		0.000 0.025	1.000 1.055	2.493 2.815	1.493 1.155	0.500 0.525	0.775 0.540	0.160 0.100	0.002 0.001
dl	= 9.229	Al	= 0.3167	0.050	1.209	3.045	0.876	0.550	0.352	0.059	0.000
α	= 1.201	A2	= 0.9157	0.075	1.430	3.170	0.001	0.575	0.212	0.052	-0.000
API	^I = 5.344	A 3	= -0.3981	0.100 0.125	1.706 1.993	3.184 3.098	0.510 0.412	0.600 0.625	0.117 0.058	0.016 0.007	-0.000 -0.000
APL	^P = 6.068	^A 4	= 0.1658	0.150	2.271	2.933	0.348	0.650	0.025	0.003	-0.000
SCATT	ERING COER	FFICI	ENTS	0.17	20)22	2.110	0.27)	0.07	0.007	0.001	-0.000
θ	σø _R	ł	Sl	0.200	2.726 2.872	2.470 2.211	0.242 0.186	0.700	0.003	0.000	-0.000 -0.000
15°	1.121	1	5.036	0.250	2.950	1.948	0.132	0.750	0.000	0.000	-0.000
30 45	1.231	2	13.84 25.52	0.275	2.954	1.690	0.087	0.775	0,000	0.000	-0.000
60	1.275	4	39.72	0.300	2.884	1.442	0.052	0.800	0.000	0.000	-0.000
90	1.184	5	74.73	0.325	2.743	0.994	0.029	0.825	0.000	0.000	-0.000
105	0.825	7	95.21	0.375	2.282	0.798	0.008	0.875	0.000	0.000	-0.000
120	0.602	8	117.5	0.400	1.988	0.624	0.003	0.900	0.000	0.000	-0.000
150	0.214	10	167.0	0.425	1.673	0.472	0.004	0.925	0.000	0.000	-0.000
180	0.098	11	222.4	0.450	1.355	0.345	0.004	0.950	0.000	0.000	-0.000
				7	= 50 E	- 4 00 1	lev.				

 $Z = 50, E_0 = 4.00 \text{ Mev}$

STOPPII (dE,	NG POWER /dr) _{E_} =	1.23	$Mev(cm^2/g)$		POINT ISOTROPIC SOURCE	PI PERPE SC	ANE INDICULAR IURCE		POINT ISOTROPIC SOURCE	PL PERPE SC	ANE NDICULAR VURCE
RESIDU	AL RANGE				-4.5	_ / ``	- ()		$I(\mathbf{x})$	$I(\mathbf{x})$	J(-x)
r.	= 3.29 g	$/cm^2$		x	J(x)	J(x)	J(-x)	X	3, 3, 20	0 212	0,002
0 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	סידיידיע א ס א ס	c		0.000	1.000	1.895	0.895	0.500	0.871	0.221	-0.002
UINER I	- 0.005	ي ب	- 0 2757	0.050	1.096	2.221	0,606	0.550	0.635	0.148	-0.000
a1 -	= 9.905	A-	L = 0.2757	0.075	1.207	2.424	0.443	0.575	0.434	0.093	-0.000
α -	= 0.5076	A.	$_2 = 0.8755$								
APTI:	= 4.281	A.	= -0.3534	0.100	1.349	2.613	0.294	0.600	0.275	0.054	0.000
PLP	- / 559		- 0 2022	0.125	1.513	2.744	0.185	0.625	0.158	0.029	0.000
n -	- 4.000	A.	+ 0.2022	0.150	1.690	2.776	0.136	0.650	0.081	0.014	0.000
SCATTE	RING COEF	FICI	ENTS	0.175	1.011	2.071	0.197	0.07)	0.000	0.000	0.000
Α	σ /σ	ł	S c	0.200	2.046	2.537	0.149	0.700	0.013	0.002	0.000
Ŭ	R		° ł	0.225	2.204	2.334	0.139	0.725	0.004	0.001	0.000
15°	1.123	1	3.335	0.250	2.336	2.108	0.111	0.750	0.001	0.000	0.000
30	1.234	2	9.263	0.275	2.430	1.878	0.079	0.775	0.000	0.000	0.000
42	1 271	ر	27.06	0.000	0.150	- (0.057	0.000	0.000	0.000	0.000
75	1,179	45	38-57	0.300	2.478	1.653	0.051	0.800	0.000	0.000	0.000
90	1.017	6	51.65	0.325	2.4/2	1 221	0.029	0.022	-0.000	0.000	0.000
105	0.807	7	66.22	0.375	2 2 2 9 3	1 038	0.013	0.875	-0.000	0.000	0.000
120	0.578	8	82.20	0.515	202/1	1.000	0.002	0.017	0.000	0.000	0,000
135	0.359	9	99.51	0.400	2.124	0.861	-0.002	0.900	-0.000	0.000	0.000
150	0.178	10	118.1	0.425	1.911	0.699	-0.004	0.925	-0.000	0.000	0.000
165	0.059	11	137.9	0.450	1.665	0.553	-0.003	0.950	-0.000	0.000	0.000
190	0.018	12	128.9	0.475	1.400	0.424	-0.002	0.975	-0.000	0.000	0.000

$Z = 50, E_0 = 10.00 Mev$

STOPPIN	IG POWER				POINT	PL	ANE		POINT	PL	NE
(dE/	$(dr)_{E_0} =$	1.33	$Mev(cm^2/g)$		ISOTROPIC SOURCE	PERPE SO	NDICULAR URCE		SOURCE	SOU	JRCE
RESIDUA	L RANGE										
r =	7.95 s	$/cm^2$		x	J(x)	J(x)	J(-x)	х	J(x)	J(x)	J(-x)
-0	· • / / E	57 O.M.		0.000	1.000	1.436	0.436	0.500	1.712	0.759	-0.007
OTHER F	PARAMETER	RS		0.025	1.004	1.545	0.328	0.525	1.541	0.608	-0.006
d. =	11 50	1	= 0 1902	0.050	1.020	1.668	0.209	0.550	1.335	0.472	-0.004
~1 -	- 11.00		1 - 0.1702	0.075	1.049	1.794	0.097	0.575	1.105	0.354	+0.002
α =	= 0.168	39 A	$1_2 = 1.295$								
A =	2.801		$\tilde{=} = -1.267$	0.100	1.091	1.902	0.013	0.600	0.864	0.254	-0.001
PLP	0		3	0.125	1.146	1.973	-0.022	0.625	0.632	0.173	-0.000
A =	3,166		$A_{\perp} = 0.7827$	0.150	1.215	2.011	-0.012	0.650	0.424	0.110	0.000
	TNO COPE	DTOTE		0.175	1.294	2.036	0.008	0.675	0.258	0.065	0.000
SCATTER	CING COLF	FICIE	SN15	0 200	1 200	2 052	0.006	0.000	0.100	0.001	
θ	a/a p	l	Sg	0.225	1 176	2.055	0.026	0.700	0.139	0.034	0.000
159	1 12/	1	1 662	0.250	1 57/	2.000	0.040	0.750	0.005	0.015	0.000
30	1.235	2	4. 616	0.275	1.671	2.018	0.055	0.775	0.020	0.000	0.000
45	1.292	ĩ	8.592			21010	0.077	0.11)	0.000	0.001	0.000
60	1.274	í.	13.48	0.300	1.764	1.962	0.053	0.800	0,002	-0.000	0.000
75	1.177	5	19.22	0.325	1.848	1.876	0.045	0.825	0.000	-0.000	0.000
90	1.013	6	25.74	0.350	1.917	1.760	0.032	0.850	0.000	-0.000	0.000
105	0.801	7	33.00	0.375	1.966	1.618	0.017	0.875	0.000	-0.000	0.000
120 1	0.569	8	40.96								
135	0.348	9	49.59	0.400	1.988	1.454	0.004	0.900	0.000	-0.000	0.000
150	0.165	10	58.85	0.425	1.978	1.278	-0.005	0.925	0.000	-0.000	0.000
165	0.045	11	68.72	0.450	1.930	1.098	-0.009	0.950	0.000	-0.000	0.000
180	0.003	12	79.18	0.475	1.842	0.923	-0.009	0.975	0.000	-0.000	0.000

LEAD

 $Z = 82, E_0 = 0.10$ Mev

STOPP (d	PING POWER E/dr) _{Eo} = 1.97 Mev(cm ² /g)		POINT ISOTROPIC SOURCE	PL/ PERPEN SOU	ANE NDICULAR NRCE		POINT ISOTROPIC SOURCE	PL PERPE SC	ANE NDICULAR NURCE
RESID ro	= 0.0313 g/cm ²	x	J(x)	J(x)	J(-x)	X	J(x)	J(x)	J(-x).
OTHER	PARAMETERS	0.025	1.470	5.834	3.439	0.525	0.081	0.008	0.001
d	$= 10.90 A_1 = 0.5442$	0.050	2.374	5.822	2.816	0.550	0.037	0.003	0.000
α	$= -5.084$ $A_2 = 1.1310$	0.075	3.384	5.490	2.304	0.575	0.015	0.001	-0.000
APT	$A_3 = -1.552$	0.100	4.348	5.000	1.858	0.600	0.005	0.000	-0.000
APL	$P = 11.18$ $A_{\perp} = 0.6977$	0.125	5.149	4.430	1.466	0.625	0.002	0.000	-0.000
SCATT	ERING COEFFICIENTS	0.175	5.986	3.249	0.841	0.675	0.000	0.000	-0.000
θ	oka l Sl	0 200	5 980	2 688	0.608	0.700	0.000	0.000	-0.000
15°	1.074 1 13.56	0.225	5.713	2.168	0.427	0.725	0.000	0.000	-0.000
30	1.230 2 29.52	0.250	5.232	1.704	0.289	0.750	0.000	0.000	-0.000
45 60	1.728 / 6/.12	0.275	4.597	1.301	0.189	0.775	0.000	0.000	-0.000
75	1.896 5 81.67	0.300	3.874	0.963	0.119	0.800	0.000	0.000	-0.000
90	1.936 6 98.84	0.325	3.128	0.689	0.072	0.825	0.000	0.000	-0.000
105	1.842 7 115.4	0.350	2.415	0.475	0.042	0.850	0.000	0.000	-0.000
135	1.385 9 145.8	0.375	1.778	0.314	0.023	0.875	0.000	0.000	-0.000
150	1.143 10 159.6	0.400	1.244	0.198	0.012	0.900	0.000	0.000	-0.000
165	0.969 11 172.4	0.425	0.824	0.119	0.006	0.925	0.000	0.000	-0.000
180	0.908 12 184.7	0.450	0.514	0.068	0.003	0.950	0.000	0.000	-0.000
		0.4/2	0.500	0.030	0.001	0.915	-0.00I	0.000	-0.000

 $Z = 82, E_0 = 0.70 Mev$

STOPPING POWER (dE/dr) _{Eo} = 1.02 Mev(cm ² /g)	POINT ISOTROPIC SOURCE	PLANE PERPENDICI SOURCE	JLAR	POINT ISOTROPIC SOURCE	PI PERPE SC	LANE ENDICULAR DURCE
RESIDUAL RANGE	J(x)	$J(x) J(\cdot$	-x) x	J(x)	J(x)	J(-x)
$r_0 = 0.544 \text{ g/cm}^2$ 0.0	1.000	4.576 3.5	0.500	0.042	0.004	0.000
OTHER PARAMETERS 0.0	1.393	5.105 2.7	89 0.525	0.017	0.001	-0.000
$d_1 = 15.90$ $A_1 = 0.4133$ 0.0	050 2.2 36	5.068 2.1	.94 0.550	0.006	0.000	-0.000
$\alpha = 6.172$ $A_0 = 0.9603$	3.176	4.708 1.7	22 0.575	0.002	0.000	-0.000
$A^{\text{PTI}} = 12.80$ $A_{n}^{2} = -0.5993$ 0.1	LOO 4.005	4.187 1.3	36 0.600	0.000	0.000	-0.000
PLP 14 CO 0.1	L 25 4.615	3.603 1.0	0.625	0.000	0.000	-0.000
$A^{} = 14.82$ $A_{4} = 0.2256$ 0.1	4.956	3.016 0.7	49 0.650	0.000	0.000	-0.000
SCATTERING COEFFICIENTS C.I	175 5.023	2.462 0.5	0.675	0.000	0.000	-0.000
$\theta \sigma / \sigma_{\rm R} \ell S_{\ell} = 0.2$	200 4.836	1.958 0.3	65 0.700	0.000	0.000	-0.000
15° 1.098 1 13.68 0.2	225 4.438	1.515 0.2	39 0.725	0.000	0.000	-0.000
30 1.290 2 34.41 0.2	250 3.887	1.136 1.1	49 0.750	0.000	0.000	-0.000
45 1.564 3 59.30 0.2	275 3.246	0.823 0.0	0.775	0.000	0.000	-0.000
60 1.819 4 87.92	200 0 500	0 572 0 0	0 0 00	0.000	0.000	0.000
75 1.971 5 119.8	2.579		0.200	0.000	0.000	-0.000
90 1.966 6 154.5	350 1.389		1/ 0.850	0.000	0.000	-0.000
	375 0.934	0.144 0.0	0.875	0.000	0.000	÷0.000
150 0.830 10 314.5 0.4	400 0.588	0.081 0.0	0.900	0.000	0.000	-0.000
165 0.595 11 358.5 0.2	425 0.345	0.043 0.0	0.925	-0.000	0.000	-0.000
180 0.511 12 403.5 0.4	450 0.187	0.021 0.0	0.950	-0.000	0.000	-0.000
0.2	475 0.093	0.009 0.0	0.975	-0.000	0.000	-0.000

LEAD

 $Z = 82, E_0 = 1.00 \text{ Mev}$

STOPPING POWER (dE/dr) _{E0} = 1.01 Mev(cm ² /g)		POINT ISOTROPIC SOURCE	PL C PERPE SO	ANE NDICULAR URCE		POINT ISOTROPIC SOURCE	PL PERPE SC	ANE NDICULAR NURCE
RESIDUAL RANGE	x	J(x)	J(x)	J(-x)	v	J(x)	J(x)	J(-x)
$r_{o} = 0.841 \text{ g/cm}^{2}$	0 000	1 000	1, 208	3 208	0 500	0.047	0.004	0.000
OTHER PARAMETERS	0.025	1.329	4.730	2.469	0.525	0.019	0.002	-0.000
$d_1 = 16.75$ $A_1 = 0.3810$	0.050	2.053	4.736	1.927	0.550	0.007	0.001	-0.000
$\alpha = 2.890 A_2 = 0.9006$		~	41450	1.707				0.000
$A^{\text{PTI}} = 12.34$ $A_3^2 = -0.4442$	0.100	3.629	3.978	1.172	0.600	0.001	0.000	-0.000
$A^{PLP} = 14.23$ $A_4 = 0.1625$	0.150	4.530	2.913	0.662	0.650	0.000	0.000	-0.000
SCATTERING COEFFICIENTS	0.175	4.621	2.398	0.4/4	0.675	0.000	0.000	-0.000
θ σ/σ _R ł s _ł	0.200	4.484	1.924	0.325	0.700	0.000	0.000	-0.000
15° 1.108 1 12.44	0.225	4.153	1.503	0.213	0.725	0.000	0.000	-0.000
30 1.315 2 31.72	0.20	3.07	0 825	0.133	0.775	0.000	0.000	-0.000
45 1.599 3 55.21	0.21)	2.101	0.055	0.019	0.11)	0.000	0.000	-0.000
76 2 000 5 113 2	0.300	2.504	0.589	0.044	0.800	0.000	0.000	-0.000
90 1.975 6 147.0	0.325	1.918	0.398	0.024	0.825	0.000	0.000	-0.000
105 1.777 7 183.4	0.350	1.392	0.256	0.013	0.850	0.000	0.000	-0.000
120 1.444 8 222.2	0.375	0.953	0.156	0.006	0.875	0.000	0.000	-0.000
135 1.050 9 263.2								
150 0.683 10 306.1	0.400	0.611	0.089	0.003	0.900	0.000	0.000	-0.000
165 0.422 11 350.7	0.425	0.365	0.048	0.002	0.925	-0.000	0.000	-0.000
180 0.328 12 396.9	0.450	0.209	0.024	0.001	0.950	-0.000	0.000	-0.000

 $Z = 82, E_0 = 2.00 \text{ Mev}$

STOPPING POWER (dE/dr) _{E0} = 1.04 Mev(cm ² /g)		POINT ISOTROPI SOURCE	PL C PERPE SO	ANE NDICULAR URCE		POINT ISOTROPIC SOURCE	PI PERPI S(LANE ENDICULAR DURCE
RESIDUAL RANGE	x	J(x)	J(x)	J(-x)	x	J(x)	J(x)	J(-x)
$r_0 = 1.82 \text{ g/cm}^2$ OTHER PARAMETERS	0.000	1.000 1.199	3.412 3.971	2.412 1.745	0.500	0.097	0.011	0.000
$\alpha_1 = 17.40$ $\alpha_1 = 0.4377$ $\alpha_2 = 1.144$ $A_2 = 0.4377$	0.075	2.232	3.902	1.090	0.575	0.007	0.001	-0.000
$A^{\text{PLP}} = 10.26$ $A_3 = 0.6620$ $A^{\text{PLP}} = 11.72$ $A_4 = -0.4430$	0.100 0.125 0.150	2.792 3.265 3.603	3.596 3.224 2.817	0.875 0.682 0.511	0.600 0.625 0.650	0.002 0.001 0.000	0.000	-0.000 -0.000 -0.000
SCATTERING COEFFICIENTS $A \sigma/\sigma \ell S_{0}$	0.175	3.780	2.403	0.369	0.675	0.000	0.000	-0.000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.200 0.225 0.250 0.275	3.792 3.647 3.368 2.987	2.000 1.623 1.283 0.985	0.255 0.169 0.107 0.066	0.700 0.725 0.750 0.775	0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000	-0.000 -0.000 -0.000 -0.000
75 2.029 5 90.42 90 1.979 6 118.7 105 1.745 7 149.6 120 1.366 8 183.1 135 0.924 9 218.8	0.300 0.325 0.350 0.375	2.540 2.067 1.606 1.185	0.733 0.527 0.363 0.240	0.039 0.023 0.013 0.007	0.800 0.825 0.850 0.875	0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000	-0.000 -0.000 -0.000 -0.000
1500.51310256.71650.22211296.51800.11912338.1	0.400 0.425 0.450 0.475	0.827 0.543 0.333 0.188	0.150 0.088 0.048 0.025	0.004 0.002 0.001 0.000	0.900 0.925 0.950 0.975	0.000 0.000 0.000 0.000	0.000 0.000 0.000	-0.000 -0.000 -0.000 -0.000

STOPPING POWER		$E_0 = 0.02$	25 Mev					
$(dE/dr)_{E_{a}} = 9.65 \text{ Mev}(cm^2/g)$		DOTIO	-	4 3 3 3 3				
RESIDUAL RANCE $r_0 = 0.00146 \text{ g/cm}^2$		POINT ISOTROPIC SOURCE	PL. C PERPE SO	ANE NDICULAR URCE		POINT ISOTROPIC SOURCE	PL PERPE SC	ANE INDICULAR NURCE
OTHER PARAMETERS $d_1 = 1.286$ $A_1 = 0.7240$ $\alpha = -65.85$ $A_2 = 1.164$ $A^{PTI} = 0.9233$ $A_3 = -1.801$	x 0.000 0.025 0.050 0.075	J(x) 1.000 1.011 1.034 1.069	J(x) 1.538 1.651 1.763 1.876	J(-x) 0.538 0.434 0.339 0.257	x 0.500 0.525 0.550 C.575	J(x) 2.943 3.056 3.150 3.218	J(x) 2.574 2.438 2.288 2.126	J(-x) -0.006 -0.010 -0.008 -0.003
A^{PLP} = 1.080 A_4 = 0.9126 SCATTERING COEFFICIENTS ℓ S _P	0.100 0.125 0.150 0.175	1.115 1.172 1.239 1.317	1.990 2.107 2.227 2.348	0.191 0.145 0.122 0.116	0.600 0.625 0.650 0.675	3.252 3.243 3.182 3.060	1.956 1.776 1.588 1.389	0.001 0.005 0.007 0.008
1 1.306 2 3.299 3 5.766 4 8.575 5 11.63	0.200 0.225 0.250 0.275	1.405 1.502 1.609 1.724	2.463 2.568 2.662 2.744	0.114 0.111 0.106 0.101	0.700 0.725 0.750 0.775	2.867 2.597 2.248 1.827	1.183 0.971 0.758 0.552	0.008 0.006 0.004 0.001
6 14.87 7 18.23 8 21.67 9 25.17 10 28.70	0.300 0.325 0.350 0.375	1.846 1.976 2.111 2.251	2.811 2.862 2.893 2.904	0.094 0.085 0.075 0.062	0.800 0.825 0.850 0.875	1.356 0.879 0.461 0.170	0.364 0.206 0.093 0.028	-0.001 -0.002 -0.003 -0.002
11 32.22 12 35.72	0.400 0.425 0.450 0.475	2.394 2.537 2.679 2.815	2.890 2.850 2.784 2.691	0.048 0.033 0.017 0.004	0.900 0.925 0.950 0.975	0.033 0.002 0.000 0.000	0.004 0.000 0.000 0.000	-0.001 0.000 0.000 0.000

 $E_0 = 0.05 \text{ Mev}$

STOPPING POWER	POINT	PI PERPI	LANE ENDICIULAR		POINT	PERPI	LANE ENDICULAR
$(dE/dr)_{E_0} = 5.77 \text{ Mev}(cm^2/g)$	SOURCE	S I LIGI	DURCE		SOURCE	S	URCE
RESIDUAL RANGE	I(v)	T(w)	I(-w)		J(x)	J(x)	J(-x)
$r_0 = 0.00496 \text{ g/cm}^2$ x	1 000	1 / 07	$\int \left(-x \right)$	x. 0.500	2 070	2 557	0.000
OTHER PARAMETERS 0.025	1.013	1.609	0.396	0.525	3.007	2.101	-0.009
$d_1 = 1.329$ $A_1 = 0.7547$ 0.050	1.036	1.721	0.305	0.550	3,122	2.278	-0.007
$\alpha = 16.71$ $A_2 = 0.8725$ 0.075	1.070	1.834	0.227	0.575	3.217	2,121	-0.002
$A^{r_{11}} = 0.9498 A_3 = -1.192 0.100$	1.114	1.950	0.165	0.600	3.279	1,953	0.002
$A^{PLP} = 1.114$ $A_{\ell} = 0.5644$ 0.125	1.168	2.070	0.123	0.625	3.295	1.774	0.005
4 0.150	1.231	2.194	0.105	0.650	3.248	1.584	0.007
SCATTERING COEFFICIENTS 0.175	1.303	2.320	0.100	0.675	3.117	1.384	0.008
l S _l 0.200	1.385	2.433	0.099	0.700	2.884	1.174	0.007
1 1.274 0.225	1.475	2.547	0.097	0.725	2.558	0.958	0.006
3 5.791 0.250	1.574	2.644	0.094	0.750	2.139	0.741	0.003
4 8.757 0.275	1.681	2.728	0.089	0.775	1.691	0.533	0.001
5 12.06 0.300	1.795	2.796	0.084	0.800	1.245	0.345	-0.001
0 15.64 0.325	1.917	2.847	0.076	0.825	0.833	0.192	-0.002
8 23.40	2.045	2.878	0.066	0.850	0.483	0.083	-0.002
9 27.51	2.178	2.887	0.054	0.875	0.223	0.024	-0.001
10 31.72 0.400	2.316	2.872	0.040	0.800	0.070	0.003	-0.000
12 40.38 0.425	2.457	2.831	0.026	0.925	0.011	0.000	-0.000
	2.600	2.763	0.011	0.950	0.000	0.000	-0.000
0.475	2.741	2.671	-0.001	0.975	0.000	0.000	-0.000

$E_{o} = 0.10 \text{ Mev}$

STOPPING POWER (dE/dr) _{Eo} = 3.60 Mev(cm ² /g)	POIN ISOTRC SOUR	T PI PIC PERPI CE S(LANE ENDICULAR CURCE		POINT ISOTROPIC SCURCE	PI PERPI S(LANE ENDICULAR DURCE
RESIDUAL RANGE	J(x)	J(x)	J(-x)		J(x)	J(x)	J(-x)
$r_{0} = 0.0164 \text{ g/cm}^{2}$ OTHER PARAMETERS $d_{1} = 1.2670 A_{1} = 0.6992 0.$ $\alpha = 29.16 A_{2} = 0.9039$	X 1.00 000 1.00 025 1.01 050 1.03 075 1.06	0 1.453 3 1.562 6 1.672 5 1.782	0.453 0.356 0.268 0.194	0.500 0.525 0.550 0.575	2.749 2.876 2.993 3.090	2.472 2.344 2.205 2.055	-0.011 -0.011 -0.007 -0.002
$A^{PTI} = 0.9328$ $A_3^{2} = -1.048$ 0. $A^{PLP} = 1.101$ $A_4^{2} = 0.4452$ 0. 0.	1001.101251.151501.211751.28	8 1.896 2.014 6 2.137 2 2.262	0.135 0.096 0.079 0.079	0.600 0.625 0.650 0.675	3.158 3.181 3.138 3.008	1.895 1.725 1.543 1.351	0.002 0.005 0.006 0.007
SCATTERING COEFFICIENTS							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	200 1.35 225 1.43 250 1.52 275 1.62	6 2.380 9 2.487 9 2.583 6 2.664	0.082 0.083 0.083 0.080	0.700 0.725 0.750 0.775	2.780 2.466 2.098 1.695	1.149 0.940 0.730 0.527	0.006 0.005 0.003 0.0C1
5 12.58 0. 6 16.49 0. 7 20.70 0. 8 25.18 0.	300 1.73 325 1.84 350 1.96 375 2.08	1 2.730 3 2.779 1 2.807 4 2.812	C.C76 0.069 0.060 0.048	0.800 0.825 0.850 0.875	1.275 0.863 0.496 0.218	0.343 0.191 0.083 0.024	-0.001 -0.002 -0.002 -0.001
10 34.79 0. 11 39.87 0. 12 45.08 0.	400 2.21 425 2.34 450 2.48 475 2.61	3 2.793 5 2.748 5 2.678 5 2.585	0.035 0.020 0.005	0.900 0.925 0.950 0.975	0.060 0.006 0.000	0.003 0.000 0.000	-0.000 -0.000 -0.000

$E_{o} = 0.20 \text{ Mev}$

STOPPING POWER (dE/dr) _{E0} = 2.45 Mev(cm ² /g)		POINT ISOTROPIC SOURCE	PL. PERPEI SOI	ANE NDICULAR JRCE		POINT ISOTROPIC SOURCE	PL PERPE SC	ANE NDICULAF NURCE
RESIDUAL RANGE	x	J(x)	J(x)	J(-x)	x	J(x)	J(x)	J(-x)
$r_{0} = 0.0513 \text{ g/cm}^{-1}$	0.000	1.000	1.395	0.395	0.500	2.551	2.319	-0.013
OTHER PARAMETERS	0.025	1.009	1.493	0.306	0.525	2.677	2.200	-0.011
$d_{1} = 1.246 A_{1} = 0.6401$	0.050	1.027	1.592	0.225	0.550	2.794	2.071	-0.007
$q_{1} = 18.84 A_{2} = 0.9019$	0.075	1.052	1.693	0.156	0.575	2.892	1.932	-0.002
$A^{PTI} = 0.928 \qquad A_3 = -1.004$ $A^{PLP} = 0.1100 \qquad A_4 = 0.4624$ Scattering coefficients	0.100	1.085	1.797	0.103	0.600	2.959	1.783	0.001
	0.125	1.126	1.906	0.069	0.625	2.975	1.624	0.004
	0.150	1.174	2.022	0.056	0.650	2.921	1.454	0.006
	0.175	1.230	2.140	0.058	0.675	2.786	1.273	0.006
 ξ 1.183 2.3.206 3.5.894 	0.200	1.293	2.251	0.063	0.700	2.578	1.083	0.006
	0.225	1.363	2.352	0.067	0.725	2.311	0.886	0.004
	0.250	1.440	2.442	0.068	0.750	1.992	0.688	0.003
	0.275	1.525	2.518	0.068	0.775	1.626	0.496	0.001
4 9.143 5 12.88 6 17.04 7 21.59 8 26.48	0.300 0.325 0.350 0.375	1.616 1.714 1.818 1.929	2.579 2.623 2.647 2.649	0.065 0.060 0.051 0.040	0.800 0.825 0.850 0.875	1.228 0.827 0.466 0.195	0.322 0.179 0.078 0.022	-0.001 -0.002 -0.002 -0.001
9 31.67	0.400	2.045	2.628	0.028	0.900	0.048	0.003	-0.000
10 37.14	0.425	2.167	2.583	0.014	0.925	0.004	0.000	-0.000
11 42.90	0.450	2.292	2.514	0.000	0.950	0.000	0.000	-0.000
12 48.89	0.475	2.421	2.425	-0.009	0.975	0.000	0.000	-0.000

 $E_{o} = 0.40 \text{ Mev}$

STOPPING POWER (dE/dr) _{E0} = 1.89 Mev(cm ² /g)	POINT ISOTROPIC SOURCE	PLANE FERPENDICULAR SOURCE	POINT ISOTROPIC SOURCE	PLANE PERPENDICULAR SOURCE
RESIDUAL RANGE	J(x) J	(x) J(-x)	J(x)	J(x) J(-x)
$r_{0} = 0.147 \text{ g/cm}^{2}$ OTHER PARAMETERS $d_{1} = 1.227 A_{1} = 0.5361 0.02$ $a = 9.408 A_{2} = 0.9248 0.07$	1.000 1. 25 1.008 1. 30 1.022 1. 75 1.043 1.	.314 0.314 0 .400 0.237 0 .486 0.168 0 .574 0.109 0	.500 2.255 .525 2.358 .550 2.455 .575 0.537	2.079 -0.013 1.969 -0.010 1.850 -0.006 1.724 -0.002
$A^{PTI} = 0.9134 A_3 = -0.7547 0.10$ $A^{PLP} = 1.084 A_4 = 0.2938 0.12$ SCATTERING COEFFICIENTS 0.17	00 1.070 1 25 1.102 1 30 1.141 1 75 1.186 1	.666 0.064 0 .763 0.035 0 .867 0.027 0 .974 0.033 0	.600 2.592 .625 2.606 .650 2.560 .675 2.443	1.591 0.001 1.448 0.003 1.297 0.005 1.136 0.005
1 1.109 0.20 2 3.067 0.22 3 5.712 0.21 4 8.952	1.237 2 1.293 2 1.355 2 1.423 2	.074 0.041 0 .165 0.047 0 .245 0.051 0 .311 0.053 0	0.7002.2620.7252.0300.7501.7520.7751.434	0.967 0.005 0.792 0.004 0.616 0.002 0.445 0.000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.497 2 1.576 2 1.660 2 1.749 2	.364 0.052 0 .399 0.048 0 .415 0.041 0 .411 0.032 0	1.000 1.088 0.825 0.737 0.850 0.418 0.875 0.177	0.290 -0.001 0.161 -0.002 0.070 -0.002 0.020 -0.001
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.385 0.020 0 .336 0.007 0 .266 -0.005 0 .179 -0.012 0	0.900 0.044 0.925 0.004 0.950 0.000 0.975 0.000	0.003 -0.000 0.000 -0.000 0.000 0.000 0.000 0.000

 $E_{o} = 0.70 \text{ Mev}$

STOPPING POWER $(dE/dr)_{-} = 1.70 \text{ MeV}(cm^2/g)$		POINT ISOTROPIC	PI PERPI	LANE ENDICULAR		POINT ISOTROPIC	PI PERPF	LANE ENDICULAR
		SOURCE	SC	URCE		SOURCE	SC	URCE
RESIDUAL RANGE	x	J(x)	J(x)	J(-x)	x	J(x)	J(x)	J(-x)
$r_0 = 0.317 \text{ g/cm}^2$	0,000	1.000	1,271	0.271	0.500	2.013	1.827	-0.012
OTHER PARAMETERS	0.025	1.004	1.347	0.200	0.525	2.092	1.722	-0.009
$d_1 = 1.215$ $A_2 = 0.4343$	0.050	1.013	1.423	0.136	0.550	2.164	1.612	-0.005
$\alpha = 4.830$ $A_2 = 0.9874$	0.075	1.028	1.501	0.083	0.575	2.224	1.496	-0.002
$A^{\text{PTI}} = 0.9157$ $A_3^{\sim} = -0.7402$	0.100	1.049	1.581	0.042	0.600	2.262	1.374	0.001
$A^{PLP} = 1.090$ $A_{1} = 0.3184$	0.125	1.075	1.667	0.018	0.625	2.267	1.246	0.003
	0.150	1.106	1.758	0.012	0.650	2.224	1.110	0.004
SCATTERING COEFFICIENTS	0.1/5	1.143	1.091	0.020	0.075	2.110	0.900	0.004
ł s _ł	0,200	1,185	1,937	0.030	0.700	1,948	0.819	0.004
1 1.007	0.225	1.231	2.014	0.038	0.725	1.729	0.667	0.003
2 2.822	0.250	1.283	2.080	0.043	0.750	1.477	0.516	0.002
4 8.368	0.275	1.339	2.134	0.046	0.775	1.198	0.370	0.000
5 11.96	0.300	1.400	2.172	0.046	0.800	0.902	0.239	-0.001
6 16.04	0.325	1.466	2.195	0.042	0.825	0.609	0.132	-0.002
7 20.57	0.350	1.535	2.198	0.036	0.850	0.346	0.056	-0.002
9 30.84	0.375	1.609	2.182	0.026	0.875	0.148	0.016	-0.001
10 36.52	0.400	1.686	2.145	0.014	0.900	0.038	0.002	-0.000
11 42.59	0.425	1.766	2.088	0.002	0.925	0.003	0.000	-0.000
12 48.96	0.450	1.848	2.013	-0.008	0.950	0.000	0.000	-0.000
	0.475	1.931	1.925	-0.013	0.975	0.000	0.000	-0.000

 $E_{o} = 1.00 \text{ Mev}$

STOPPING POWER (dE/dr) _{E0} = 1.65 Mev(cm ² /g)		POINT ISOTROPIC SOURCE	PI C PERPH SC	LANE ENDICULAR DURCE		POINT ISOTROPIC SOURCE	PI PERPF S(LANE ENDICULAR DURCE
RESIDUAL RANGE	x	J(x)	J(x)	J(-x)	x	J(x)	J(x)	J(-x)
$r_{o} = 0.497 \text{ g/cm}^{2}$	0 000	1 000	1.186	0.186	0.500	1.820	1.789	-0.013
OTHER PARAMETERS	0.025	1.001	1.239	0.135	0.525	1.897	1.693	-0.012
d = 1.222 $h = 0.3807$	0.050	1.007	1.294	0.090	0.550	1.972	1.590	-0.008
$a_1 = 1.223$ $a_1 = 0.3007$	0.075	1.017	1.352	0.050	0.575	2.037	1.482	-0.004
$\alpha = 2.968$ $A_2 = 1.205$								
$A^{PTI} = 0.859$ $A_{2} = -1.095$	0.100	1.032	1.416	0.020	0.600	2.086	1.367	-0.001
	0.125	1.051	1.487	0.002	0.625	2.105	1.247	0.002
$A^{r} D^{r} = 0.1022$ $A_{4} = 0.5094$	0.150	1.073	1.567	-0.003	0.650	2.076	1.119	0.004
SCATTERING COEFFICIENTS	0.175	1.100	1.054	-0.003	0.075	1.986	0.984	0.005
l SP	0 200	1 132	1 737	0 011	0 700	1 837	0 8/2	0.005
	0.200	1 167	1 81/	0.018	0.725	1 6/8	0.695	0.00/
2 2 582	0.250	1.206	1.882	0.024	0.750	1.427	0.546	0.002
3 4.874	0.275	1.250	1.942	0.028	0.775	1.177	0.400	0.001
4 7.721								
5 11.08	0.300	1.298	1.990	0.030	0.800	0.906	0.265	-0.001
6 14.90	0.325	1.349	2.025	0.030	0.825	0.628	0.151	-0.002
7 19.15	0.350	1.405	2.046	0.028	0.850	0.370	0.068	-0.002
8 23.82	0.375	1.465	2.049	0.023	0.875	0.166	0.020	-0.001
9 28.87								
10 34.29	0.400	1.529	2.035	0.016	0.900	0.045	0.003	-0.000
11 40.05	0.425	1.597	2.000	0.007	0.925	0.004	0.000	0.000
12 46.14	0.450	1 7/3	1 875	-0.003	0.950	0.000	0.000	0.000

$E_0 = 2.00 \text{ Mev}$

STOPPING POWER (dE/dr) _{E0} = 1.68 Mev(cm ² /g)		POINT ISOTROPIC SOURCE	PI PERPE SC	LANE ENDICULAR DURCE		POINT ISOTROPIC SOURCE	PI PERPI S(LANE ENDICULAF DURCE
RESIDUAL RANGE	x	J(x)	J(x)	J(-x)	v	J(x)	J(x)	J(-x)
ro = 1.10 g/cm	0.000	1,000	1.096	0.096	0.500	1,495	1.673	-0.00/
OTHER PARAMETERS	0.025	0.993	1.115	0.070	0.525	1,568	1.610	-0.009
$d_1 = 1.251$ $A_1 = 0.2699$	0.050	0.989	1.138	0.046	0.550	1.645	1.531	-0.010
$\alpha = 1.230$ $A_2 = 1.856$	0.075	0.988	1.165	0.025	0.575	1.724	1.440	-0.009
$A^{PTI} = 0.7775 A_2 = -2.638$	0.100	0.990	1.198	0.008	0.600	1.797	1.340	-0.005
APLP 0 0226 A - 1/512	0.125	0.995	1.240	-0.003	0.625	1.851	1.233	-0.001
$A = 0.9230 A_{4} = 1.512$	0.150	1.003	1.294	-0.007	0.650	1.863	1.118	0.002
SCATTERING COEFFICIENTS	0.175	1.014	1.358	-0.005	0.675	1.811	0.995	0.004
l S _p	0,200	1.028	1./23	-0.001	0.700	1,691	0.865	0.005
1 0.6902	0.225	1.045	1./.85	0.003	0.725	1.525	0.726	0.005
2 1.966	0.250	1.066	1.543	0.007	0.750	1,331	0.582	0.003
3 3.738	0.275	1.089	1.597	0.009	0.775	1,113	0.437	0.002
4 5.955						>		
5 8.592	0.300	1.116	1.645	0.012	0.800	0.875	0.298	-0.000
6 11.62	0.325	1.447	1.687	0.013	0.825	0.627	0.176	-0.002
7 15.01	0.350	1.182	1.721	0.014	0.850	0.387	0.083	-0.002
8 18.75	0.375	1.221	1.746	0.013	0.875	0.186	0.027	-0.001
9 22.83								
10 27.22	0.400	1.264	1.760	0.012	0.900	0.057	0.004	-0.000
11 31.23	0.425	1.313	1.762	0.009	0.925	0.006	0.000	-0.000
12 36.91	0.450	1.368	1.749	0.005	0.950	0.000	0.000	-0.000
	0.475	1.428	1.720	0.001	0.975	0.000	0.000	0.000

$E_{o} = 4.00 \text{ Mev}$

STOPPING POWER $(dE/dr)_{E_0} = 1.78 \text{ Mev}(cm^2/g)$		POINT ISOTROPIC SOURCE	PLA PERPEN SOU	ANE VDICULAR JRCE		POINT ISOTROPIC SOURCE	PI PERPI S(LANE ENDICULAR DURCE
RESIDUAL RANGE	x	$J(\mathbf{x})$	J(x)	J(-x)	v	J(x)	J(x)	J(-x)
$r_0 = 2.26 \text{ g/cm}^2$	0.000	1.000	1.038	0.038	0.500	1.257	1.526	0.001
OTHER PARAMETERS	0.025	0,998	1.046	0.028	0,525	1,291	1.496	-0.001
d = 1.326 $h = 0.262/$	0.050	0.997	1.056	0.019	0.550	1.328	1.450	-0.003
$a_1 = 1.520$ $A_1 = 0.2024$	0.075	0.998	1.069	0.011	0.575	1.367	1.388	-0.004
$\alpha = 0.5283$ $A_2 = 1.034$								
$A^{\text{PTI}} = 0.6663 A_2 = -0.6649$	0.100	1.000	1.087	0.004	0.600	1.408	1.312	-0.004
APLP- 0.7867 A - 0.3688	0.125	1.004	1.110	-0.000	0.625	1.447	1.224	-0.003
$R = 0.7007 R_4 = 0.0000$	0.150	1.009	1.142	-0.003	0.650	1.479	1.129	-0.001
SCATTERING COEFFICIENTS	0.175	1.016	1.184	-0.003	0.675	1.496	1.027	0.001
ł S,								
1 0.4584	0.200	1.024	1.230	-0.002	0.700	1.486	0.916	0.002
2 1.314	0.225	1.033	1.274	-0.000	0.725	1.438	0.797	0.002
3 2.513	0.250	1.044	1.317	0.001	0.750	1.343	0.669	0.002
4 4.028	0.275	1.057	1.359	0.002	0.775	1.191	0.543	0.002
5 5.837	0 300	1 071	1 200	0.003	0 800	0.070	0.205	0.001
6 7.924	0.300	1.027	1 / 25	0.003	0.800	0.978	0.395	0.001
7 10.28	0.350	1 105	1 160	0.003	0.025	0./10	0.201	-0.000
8 12.89	0.375	1 125	1 / 07	0.004	0.075	0.100	0.143	-0.001
9 15.74	0.)()	1.12)	1+471	0.004	0.019	0.190	0.057	-0.001
10 18.83	0.400	1,147	1,520	0.004	0.900	0.055	0.013	-0.000
11 22.14	0.425	1.171	1.537	0.004	0,925	0,008	0.001	-0.000
12 25.68	0.450	1.197	1.544	0.003	0.950	0.003	0.000	-0.000
	0.475	1.226	1.541	0.002	0.975	0.005	0.000	-0.000

 $E_0 = 10.00 \text{ Mev}$

STOPPING POWER	POINT	PI	JANE		POINT	PI	LANE
$(dE/dr)_{\rm F} = 1.97 {\rm Mev}({\rm cm}^2/{\rm g})$	ISOTROPIC	PERPE	INDICULAR		ISOTROPIC	C PERPH	ENDICULAR
DESTDUAL DANCE	SOURCE	SC	URCE		SOURCE	SC	DURCE
RESIDUAL RANGE	, J(x)	J(x)	J(-x)	v	J(x)	J(x)	J(-x)
$r_0 = 5.44 \text{ g/cm}^2$		1 010	0.010	0 500	1 051	1 303	-0.007
OTHER PARAMETERS	00 1.000	1.000	0.010	0.500	1.091	1.21/	-0.007
d = 1.692 $h = 0.1200$ 0.0	125 0.997	1 000	0.009	0.520	1.0070	1 21/	-0.007
$a_1 = 1.002$ $A_1 = 0.1200$ 0.0	75 0.00/	1.009	0.008	0.575	1.009	1 201	-0.00/
$\alpha = 0.1557$ $A_2 = 1.942$	0.994	T*OIT	0.008	0.)/)	1.099		-0.004
$A^{\text{PT}I} = 0.5002 A_2 = -2.596 0.1$.00 0.993	1.014	0.007	0.600	1.123	1.279	0.001
PLP- 0 5760 1 - 1 52/ 0.1	25 0.992	1.019	0.006	0.625	1.154	1.252	0.007
$R = 0.9700 R_4 = 1.994 0.1$	50 0.993	1.027	0.006	0.650	1.193	1.220	0.012
SCATTERING COEFFICIENTS 0.1	75 0.993	1.036	0.005	0.675	1.238	1.179	0.015
ł So							
1 0 2266 0.2	0.994	1.047	0.004	0.700	1.285	1.127	0.016
2 0.6536 0.2	25 0.996	1.060	0.003	0.725	1.322	1.059	0.014
3 1.257 0.2	.50 0.999	1.075	0.003	0.750	1.330	0.968	0.007
4 2.026 0.2	75 1.001	1.092	0.002	0.775	1.290	0.849	-0.004
5 2.951	1 00		0.007	0.000	2.20/	0 (05	
6 4.024 0.3	1.005	1.111	0.001	0.800	1.184	0.695	-0.018
7 5.240 0.3	20 1.008	1.132	-0.000	0.825	0.996	0.511	-0.028
8 6.594	75 1 016	1,101	-0.001	0.075	0.720	0.1/2	-0.025
9 8.082	1.010	TOT	-0.002	0,015	0.420	0.142	-0.000
10 9.700 0.4	.00 1.020	1,207	-0.003	0,900	0,162	0.029	0.020
11 11.45 0.4	25 1.026	1.234	-0.004	0.925	0.031	-0.009	-0.017
12 13.32 0.4	.50 1.033	1.260	-0.005	0.950	0.001	-0.004	0.005
0.4	.75 1.041	1.284	-0.006	0.975	0.000	-0.000	0.000

 $E_{o} = 0.025 \text{ Mev}$

STOPPING POWER (dE/dr) _{E0} = 11.2 Mev(cm ² /g)	POINT ISOTROPIC SOURCE	PLAN PERPENI SOUF	NE DICULAR RCE	IS	POINT OTROPIC SOURCE	PLAN PERPEND SOUR	IE DICULAR ICE
RESIDUAL RANGE	J(x)	J(x)	J(-x)	v	J(x)	J(x)	J(-x)
$r_{0} = 0.00125 \text{ g/cm}^{2}$	1.000	1.342	0.342	0.500	2.500	2.754	0.003
OTHER PARAMETERS	5 1.010	1.414	0.278	0.525	2.631	2.690	-0.008
$d_{1} = 0.9338 \text{ A}_{1} = 0.7245 \text{ 0.056}$	0 1.027	1.488	0.218	0.550	2.761	2.601	-0.016
$q_{1} = -63.71 \text{ A}_{1} = 1.169$	5 1.052	1.565	0.163	0.575	2.884	2.491	-0.016
$A^{PTI} = 0.6711 A_2 = 0.100 0.100 \\ A^{PLP} = 0.7937 A_4 = 0.8868 0.150 \\ SCATTERING COEFFICIENTS 0.175 0.175 \\ 0.175 0.175 0.175 \\ 0.175 0.175 0.175 \\ 0.175 0.175 0.175 0.175 \\ 0.175 0.175 0.175 0.175 \\ 0.175 0.175 0.175 0.175 \\ 0.175 0.175 0.175 0.175 0.175 \\ 0.175 $	0 1.084	1.647	0.116	0.600	2.998	2.367	-0.011
	5 1.123	1.735	0.079	0.625	3.095	2.231	-0.004
	0 1.169	1.833	0.058	0.650	3.168	2.082	0.002
	5 1.221	1.942	0.053	0.675	3.206	1.919	0.006
لا S ₂ 0.200	1.280	2.055	0.055	0.700	3.196	1.739	0.009
1 0.9487 0.222	5 1.346	2.164	0.057	0.725	3.123	1.540	0.010
2 1.467 0.250	0 1.419	2.270	0.058	0.750	2.967	1.321	0.010
3 4.251 0.275	5 1.499	2.370	0.059	0.775	2.710	1.083	0.007
4 0.380 5 8.733 0.300 6 11.28 0.320 7 13.94 0.350 8 16.71 0.37	1.585 5 1.679 0 1.779 5 1.886	2.465 2.553 2.631 2.698	0.058 0.057 0.055 0.051	0.800 0.825 0.850 0.875	2.338 1.850 1.274 0.694	0.831 0.576 0.341 0.154	0.003 -0.001 -0.004 -0.005
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 1.999	2.750	0.045	0.900	0.243	0.042	-0.003
	5 2.118	2.786	0.037	0.925	0.034	0.004	-0.001
	0 2.242	2.800	0.028	0.950	0.000	0.000	-0.000
	5 2.370	2.791	0.016	0.975	0.000	0.000	0.000

$E_0 = 0.05 \text{ Mev}$

STOPPING POWER (dE/dr) _{E0} = 6.64 Mev(cm ² /g)	POINT ISCTROPIC SOURCE	PLANE PERPENDICULA SOURCE	R	POINT ISOTROPIC SOURCE	PLA PERPEN SOU	NE IDICULAR RCE
RESIDUAL RANGE x $r_0 = 0.00428 \text{ g/cm}^2$ 0.000 OTHER PARAMETERS 0.025 $d_1 = 0.9697$ $A_1 = 0.7637$ 0.050 $\alpha = 13.56$ $A_2 = 0.9428$ 0.100 $A^{PTI} = 0.6898$ $A_3 = -1.383$ 0.100 $A^{PLP} = 0.8173$ $A_4 = 0.6763$ 0.125	J(x) 1.000 1.010 1.026 1.049 1.079 1.114	J(x) J(-x) 1.300 0.300 1.369 0.240 1.440 0.186 1.516 0.137 1.599 0.097 1.693 0.075	x 0.500 0.525 0.550 0.575 0.600 0.625	J(x) 2.448 2.587 2.729 2.867 2.996 3.107	J(x) 2.754 2.697 2.614 2.510 2.390 2.254 2.105	J(-x) 0.005 -0.003 -0.009 -0.011 -0.009 -0.004
x = 0.8173 x4 = 0.160 0.150 SCATTERING COEFFICIENTS 0.200 0.225 0.225 1 0.9031 0.225 0.250 0.275 3 4.202 0.275	1.156 1.205 1.259 1.321 1.389 1.464	1.801 0.059 1.916 0.057 2.029 0.056 2.139 0.054 2.245 0.052 2.346 0.050	0.650 0.675 0.700 0.725 0.750 0.775	3.231 3.231 3.156 2.993 2.724	2.105 1.939 1.754 1.549 1.323 1.078	0.001 0.005 0.007 0.008 0.008 0.008
4 6.375 5 8.807 0.300 6 11.45 0.325 7 14.27 0.350 8 17.23 0.375 9 20.31	1.545 1.634 1.729 1.832	2.442 0.048 2.530 0.045 2.609 0.042 2.677 0.038	0.800 0.825 0.850 0.875	2.334 1.826 1.238 0.657	0.819 0.560 0.325 0.142	0.003 -0.001 -0.003 -0.004
10 23.48 0.400 11 26.72 0.425 12 30.02 0.450	1.941 2.058 2.181 2.311	2.732 0.033 2.770 0.027 2.788 0.021 2.784 0.013	0.900 0.925 0.950 0.975	0.221 0.028 0.000 0.000	0.037 0.003 0.000 0.000	-0.002 -0.000 0.000 0.000

 $E_{o} = 0.10 \text{ Mev}$

STOPPING POWER (dE/dr) _{Eo} = 4.13 Mev(cm ² /g)		POINT ISOTROPI SOURCE	PL C PERPE SO	ANE NDICULAR URCE		POINT ISOTROPIC SOURCE	PI PERPI SC	LANE ENDICULAR DURCE
RESIDUAL RANGE	x	J(x)	J(x)	J(-x)	x	J(x)	J(x)	J(-x)
$r_0 = 0.0142 \text{ g/cm}^2$	0.000	1.000	1.252	0.252	0.500	2.310	2.649	0.005
OTHER PARAMETERS	0.025	1.011	1.319	0.196	0.525	2.448	2.591	0.002
$d_1 = 0.9090 A_1 = 0.7102$	0.050	1.028	1.391	0.146	0.550	2.590	2.509	-0.001
$\alpha = 45.20$ $A_2 = 0.8488$	0.075	1.052	1.469	0.105	0.575	2.733	2.410	-0.003
$A^{PTI} = 0.6738$ $A_3 = -0.9880$	0.100	1.082	1.561	0.078	0.600	2.871	2.299	-0.004
$A^{PLP} = 0.8051$ $A_{1} = 0.4290$	0.125	1.119	1.668	0.069	0.625	2.996	2.175	-0.004
	0.150	1.161	1.778	0.064	0.650	3.095	2.036	-0.003
SCATTERING COEFFICIENTS	0.175	1.206	1.886	0.059	0.675	3.151	1.880	-0.001
l Sl								
1 0.8894	0.200	1.252	1.991	0.055	0.700	3.146	1.705	0.002
2 2.367	0.225	1.302	2.093	0.051	0.725	3.057	1.509	0.005
3 4.303	0.250	1.358	2.192	0.046	0.750	2.868	1.293	0.006
4 6.618	0.215	1.419	2.201	0.042	0.775	2.577	1.057	0.006
5 9.254	0 300	1.487	2 376	0.038	0.800	2 203	0 809	0.00/
6 12.17	0.325	1,562	2.457	0.034	0.825	1.762	0.559	0.000
7 15.32	0.350	1.644	2.531	0.029	0.850	1,269	0.329	-0.002
8 I0.00	0.375	1.734	2.593	0.025	0.875	0.762	0.147	-0.004
10 25 93							•	
11 29.78	0.400	1.832	2.643	0.021	0.900	0.325	0.040	-0.002
12 33.75	0.425	1.938	2.676	0.017	0.925	0.066	0.004	-0.000
1~));;;)	0.450	2.054	2.690	0.013	0.950	0.002	0.000	-0.000
	0.475	2.178	2.682	0.009	0.975	0.000	0.000	-0.000

 $E_0 = 0.20 \text{ Mev}$

STOPPING POWER $(dE/dr)_{E_0} = 2.79 \text{ Mev}(cm^2/g)$	POINT ISOTROPIC SOURCE	PLANI PERPEND: SOUR	E ICULAR CE	POINT ISOTROPIC SOURCE	PL PERPE SC	ANE NDICULAF URCE
RESIDUAL RANGE	J(x)	J(x)	J(-x) x	J(x)	J(x)	J(-%)
$r_{0} = 0.0448 \text{ g/cm}^{2}$ 0.000 0.025 $d_{1} = 0.9034 \Lambda_{1} = 0.6469 0.075$ $\alpha = 20.18 \Lambda_{2} = 0.8812 0.075$	1.000 1.008 1.020 1.038	1.237 (1.297 (1.359 (1.424 (0.237 0.500 0.185 0.525 0.137 0.550 0.093 0.575	2.150 2.272 2.399 2.525	2.480 2.418 2.338 2.244	-0.007 -0.015 -0.017 -0.013
$A^{+1} = 0.6770$ $A_3 = -0.9830$ 0.100 $A^{PLP} = 0.8119$ $A_4 = 0.4548$ 0.150 SCATTERING COEFFICIENTS 0.175	1.060 1.087 1.118 1.155	1.494 (1.573 (1.663 (1.766 (0.056 0.600 0.029 0.625 0.015 0.650 0.015 0.675	2.645 2.750 2.834 2.885	2.138 2.022 1.892 1.748	-0.008 -0.002 0.002 0.005
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.197 1.244 1.296 1.354	1.872 (1.974 (2.073 (2.166 (0.021 0.700 0.026 0.725 0.031 0.750 0.035 0.775	2.891 2.836 2.704 2.476	1.586 1.404 1.201 0.979	0.007 0.008 0.007 0.005
5 9.472 0.300 6 12.56 0.325 7 15.94 0.350 8 19.59 0.375 9 23.47	1.417 1.486 1.561 1.642	2.254 (2.333 (2.403 (2.461 (0.038 0.800 0.039 0.825 0.038 0.850 0.036 0.875	2.137 1.688 1.159 0.625	0.744 0.509 0.294 0.127	0.002 -0.001 -0.004 -0.004
10 27.57 0.400 11 31.87 0.425 12 36.35 0.450 0.475 0.475	1.729 1.824 1.925 2.034	2.504 (2.531 (2.537 (2.520 (0.032 0.900 0.025 0.925 0.016 0.950 0.004 0.975	0.216 0.029 0.000 0.000	0.032 0.003 0.000 0.000	-0.002 -0.000 -0.000 -0.000

 $E_{o} = 0.40 \text{ Mev}$

STCPPING POWER (dE/dr) _{E0} = 2.13 Mev(cm ² /g)		POINT ISOTROPIC SOURCE	PL. PERPE SO	ANE NDICULAR URCE		POINT ISOTROPIC SOURCE	PL PERPE SC	ANE NDICULAR URCE
RESIDUAL RANGE		J(x)	J(x)	J(-x)		J(x)	$J(\mathbf{x})$	J(-x)
$r_{o} = 0.129 \text{ g/cm}^{2}$ OTHER PARAMETERS $d_{1} = 0.8909 A_{1} = 0.5444$ $\alpha = 9.898 A_{2} = 0.9242$	x 0.000 0.025 0.050 0.075	1.000 1.006 1.017 1.031	1.186 1.237 1.290 1.346	0.186 0.142 0.100 0.063	x 0.500 0.525 0.550 0.575	1.926 2.026 2.129 2.232	2.232 2.168 2.090 2.002	-0.010 -0.016 -0.016 -0.012
$A^{PTI} = 0.6689$ $A_3 = -0.7832$ $A^{PLP} = 0.8040$ $A_4 = 0.3145$ SCATTERING COEFFICIENTS	0.100 0.125 0.150 0.175	1.049 1.070 1.096 1.125	1.407 1.476 1.555 1.646	0.032 0.010 0.001 0.001	0.600 0.625 0.650 0.675	2.330 2.416 2.484 2.524	1.904 1.798 1.681 1.551	-0.006 -0.002 0.002 0.005
ί s _l 1 0.8092 2 2.243 3 4.188 4 6.576	0.200 0.225 0.250 0.275	1.159 1.197 1.238 1.285	1.740 1.831 1.918 2.000	0.008 0.015 0.020 0.025	0.700 0.725 0.750 0.775	2.526 2.476 2.361 2.163	1.405 1.243 1.063 0.867	0.006 0.007 0.006 0.004
5 9.361 6 12.51 7 15.98 8 19.76 9 23.82	0.300 0.325 0.350 0.375	1.335 1.390 1.451 1.516	2.076 2.145 2.204 2.252	0.029 0.031 0.032 0.030	0.800 0.825 0.850 0.875	1.871 1.482 1.021 0.555	0.659 0.450 0.260 0.112	0.002 -0.001 -0.003 -0.003
10 28.14 11 32.70 12 37.49	0.400 0.425 0.450	1.586 1.662 1.744	2.286 2.303 2.300 2.277	0.026 0.020 0.011	0.900 0.925 0.950 0.975	0.193 0.026 0.000	0.029 0.002 0.000	-0.002 -0.000 -0.000

$E_{o} = 0.70 \text{ Mev}$

STOPPING POWER (dE/dr) _{Eo} = 1.89 Mev(cm ² /g)]	POINT SOTROPIC SOURCE	PL. PERPE SO	ANE NDICULAR URCE		POINT ISOTROPIC SOURCE	PL PERPE SO	ANE NDICULAR URCE
RESIDUAL RANGE		$J(\mathbf{x})$	$J(\mathbf{x})$	J(-x)		$I(\mathbf{x})$	$I(\mathbf{x})$	I(-x)
$r_0 = 0.281 \text{ g/cm}^2$	X 0.000	3		0 7 10	X	J	J(A)	J(-x)
OTHER PARAMETERS	0.000	1.000	1.140	0.140	0.500	1.705	2.019	-0.009
	0.02)	1 012	1 221	0.071	0.550	1 00/	1 880	-0.014
$d_1 = 0.8808$ $A_1 = 0.4652$	0.075	1.023	1 266	0.0/2	0.575	1 980	1 808	-0.011
$\alpha = 5.200$ A ₂ = 0.9275		1.02)	1.200	0.042	0.)))	1./00	1.000	-0.011
$A^{PTI} = 0.6502$ $A_{2}^{2} = -0.6353$	0.100	1.038	1.315	0.017	0.600	2.074	1.719	-0.006
PLP o Store	0.125	1.055	1.371	-0.001	0.625	2.157	1.624	-0.002
$A^{1}D^{2} = 0.7821$ $A_{\perp} = 0.2426$	0.150	1.075	1.438	-0.010	0.650	2.217	1.519	0.001
SCATTERING COEFFICIENTS	0.175	1.098	1.515	-0.007	0.675	2.245	1.402	0.004
l SP	0 200	1 1 2 2	1 506	0.000	0 700	0.020	1 072	0.005
	0.200	1.12)	1 675	-0.000	0.700	2.232	1 120	0.009
1 0.7387	0.250	1 181	1 750	0.000	0.750	2.190	0.020	0.000
2 2.075	0.275	1 213	1 822	0.012	0.775	1 86/	0.705	0.000
3 3.906	0.21)	1.21)	LOCK	0.017	0.11)	1.004	0.17)	0.004
4 0.1/4 5 9 9 1 (0.300	1.249	1.888	0.021	0.800	1,608	0.609	0.002
ליס בר (0.325	1.287	1.948	0.024	0.825	1.287	0.420	-0.001
7 15 2/	0.350	1.330	2.000	0.025	0.850	0.921	0.246	-0.003
g 18 93 (0.375	1.378	2.042	0.024	0.875	0,550	0.109	-0.003
9 22.91							,	
10 27.17	0.400	1.431	2.071	0.022	0.900	0.240	0.029	-0.002
11 31.70	0.425	1.489	2.086	0.016	0.925	0.057	0.002	-0.000
12 36.48	0.450	1.554	2.083	0.009	0.950	0.003	0.000	-0.000
	0.475	1.626	2.061	0.000	0.975	0.000	0.000	-0.000

 $E_0 = 1.00 \text{ Mev}$

STOPPING POWER (dE/dr) _{E0} = 1.82 Mev(cm ² /g)		POINT ISOTROPIC SOURCE	PI PERPE SC	LANE ENDICULAR DURCE		POINT ISOTROPIC SOURCE	PL PERPE SC	.ANE ENDICULAR DURCE
RESIDUAL RANGE	**	7(7(20)	7()		$I(\mathbf{x})$	1(7(
$r_{\rm c} = 0.443 {\rm g/cm}^2$		J(x)	J(x)	J(-x)	X			J(-x),
0 0000	0.000	1.000	1.110	0.110	0.500	1.575	1.889	-0.007
OTHER PARAMETERS	0.025	1.003	1.142	0.081	0.525	1.636	1.830	-0.013
$d_1 = 0.8767$ $A_1 = 0.4222$	0.050	1.008	1,176	0.054	0.550	1.766	1.696	-0.014
$\alpha = 3.391$ $A_0 = 0.8847$	0.01)	1.010	1.212	0.000	0.)))	1.100	11070	
PTI o cost A - 0.1661	0.100	1.026	1.253	0.010	0.600	1.834	1.614	-0.007
$A^{-} = 0.0200$ $A_{3}^{-} = 0.4004$	0.125	1.039	1.300	-0.005	0.625	1.900	1.526	-0.003
$A^{PLP} = 0.7565$ A, = 0.1595	0.150	1.054	1.357	-0.012	0.650	1.962	1.430	0.001
4	0.175	1.072	1.424	-0.010	0.675	2.013	1.324	0.003
SCATTERING COEFFICIENTS								
l Sp	0.200	1.093	1.496	-0.003	0.700	2.042	1.206	0.005
	0.225	1.117	1.566	0.003	0.725	2.032	1.074	0.006
1 0.0770	0.250	1.143	1.634	300.0	0.750	1.963	0.928	0.005
2 1.900	0.275	1.172	1.698	0.013	0.775	1.818	0.767	0.004
j j.000 1 E 704								
4 J.720	0.300	1.204	1.758	0.017	0.800	1.582	0.594	C.002
2 0.224 6 11 08	0.325	1.239	1.812	0.020	0.825	1.253	0.416	-0.001
7 1/ 26	0.350	1.278	1.860	0.021	0.850	0.854	0.249	-0.003
0 17 75	0.375	1.319	1.899	0.021	0.875	0.450	0.113	-0.003
10 25 60	0.400	1.364	1.928	0.020	0.900	0.150	0.031	-0.002
11 29 93	0.425	1.412	1.943	0.016	0.925	0.023	0.003	-0.000
12 3/ 51	0.450	1.463	1.943	0.009	0.950	0.006	0.000	-0.000
エニ ノ4・ノエ	0.475	1.517	1.925	0.001	0.975	0.010	0.000	-0.000

 $E_0 = 2.00 \text{ Mev}$

STOPPING POWER (dE/dr) _{E0} = 1.79 Mev(cm ² /g)		POINT ISOTROPIC SOURCE	PI C PERPI S(LANE ENDICULAR DURCE		POINT ISOTROPIC SOURCE	PI PERPI S(LANE ENDICULAR OURCE
RESIDUAL RANGE						-		
$r = 1.00 a/an^2$	х	J(x)	J(x)	J(-x)	x	J(x)	J(x)	J(-x)
	0.000	1.000	1.058	0.058	0.500	1.361	1.698	0.001
OTHER PARAMETERS	0.025	1.000	1.074	0.043	0.525	1.403	1.669	-0.004
1 - 0.000	0.050	1.002	1.092	0.02೮	0.550	1.448	1.623	-0.008
$a_1 = 0.8960 A_1 = 0.3442$	0.075	1.006	1.112	0.015	0.575	1.495	1.562	-0.010
$\alpha = 1.370$ A ₀ = 0.9492								
PTI 0 5780	0.100	1.011	1.136	0.004	0.600	1.544	1.490	-0.008
$A = 0.3700$ $A_3 = -0.4675$	0.125	1.018	1.165	-0.005	0.625	1.594	1.412	-0.005
$A^{PLP} = 0.6926$ $A_{1} = 0.1740$	0.150	1.027	1.203	-0.009	0.650	1.644	1.326	-0.002
4	0.175	1.038	1.251	-0.009	0.675	1.688	1.233	0.001
SCATTERING COEFFICIENTS								
ł S.	0.200	1.050	1.305	-0.005	0.700	1.720	1.131	0.003
	0.225	1.064	1.378	-0.002	0.725	1.725	1.017	0.004
1 0.5179	0.250	1.080	1.410	0.001	0.750	1.687	0.889	0.005
2 1.477	0.275	1.098	1.461	0.003	0.775	1.589	0.748	0.004
3 2.814								
4 4.492	0.300	1.118	1.510	0.006	0.800	1.415	0.593	0.002
5 6.486	0.325	1.140	1.556	0.008	0.825	1.157	0.430	0.000
6 8.779	0.350	1.164	1.599	0.009	0.850	0.823	0.269	-0.002
7 11.35	0.375	1.191	1.637	0.010	0.875	0.461	0.131	-0.003
8 14.19								
9 17.29	0.400	1.220	1.669	0.010	0.900	0.167	0.040	-0.002
10 20.63	0.425	1.251	1.693	0.010	0.925	0.026	0.004	-0.000
11 24.20	0.450	1.285	1.708	0.008	0.950	0.001	0.000	-0.000
12 28.00	0.475	1.322	1.710	0.005	0.975	0.001	0.000	-0.000

 $E_0 = 4.00 \text{ Mev}$

STOPPING POWER (dE/dr) _{Eo} = 1.84 Mev(cm ² /g)		POINT ISOTROPIC SOURCE	PI PERPE SC	LANE ENDICULAR DURCE		POINT ISOTROPIC SOURCE	PI PERPE SC	ANE NDICULAR NURCE
RESIDUAL RANGE		7()	7()	24		7(22)	7(~)	7(-*)
$r_{-} = 2.10 \text{ g/cm}^2$	x	J(x)	$J(\mathbf{x})$	J(-x)	x	J(X)	J(X)	J(-x)
0	000.0	1.000	1.025	0.025	0.500	1.197	1.508	0.002
OTHER PARAMETERS O	0.025	0.999	1.030	0.019	0.525	1.223	1.514	0.001
$d_1 = 0.9138$ $A_1 = 0.2982$ 0	0.050	0.999	1.036	0.014	0.550	1.250	1.509	0.000
	0.075	1.000	1.045	0.009	0.575	1.280	1.490	-0.001
$\alpha = 0.6231$ $A = 0.9289$								
APTI 0 (952 A -0 3859 0	0.100	1.002	1.056	0.005	0.600	1.312	1.454	-0.002
$n = 0.4772$ $n_3 = 0.7077$ 0	0.125	1.006	1.070	0.001	0.625	1.346	1.401	-0.003
$A^{FLF} = 0.5886$ $A_{r} = 0.1588$ 0	0.150	1.010	1.090	-0.002	0.650	1.381	1.331	-0.003
4 0	0.175	1.015	1.117	-0.002	0.675	1.418	1.250	-0.002
SCATTERING COEFFICIENTS								
l s, O	.200	1.021	1.150	-0.002	0.700	1.453	1.160	-0.000
	.225	1.028	1.183	-0.001	0.725	1.484	1.060	0.001
1 0.3508 0	0.250	1.036	1.217	-0.000	0.750	1.501	0.949	0.002
2 1.006 0	.275	1.046	1.251	0.000	0.775	1.487	0.824	0.002
3 1.927								
4 3.092 0	.300	1.057	1.285	0.001	0.800	1.410	0.684	0.002
5 4.394 0	.325	1.069	1.320	0.001	0.825	1.230	0.528	0.001
6 6.093 0	.350	1.082	1.353	0.002	0.850	0.933	0.363	-0.000
7 7.909 0	.375	1.097	1.386	0.002	0.875	0.560	0.203	-0.001
8 9.922								
9 12.13 0	.400	1.114	1.418	0.002	0.900	0.224	0.077	-0.001
10 14.51 0	.425	1.132	1.447	0.003	0.925	0.044	0.013	-0.000
11 17.08 0	0.450	1.152	1.472	0.003	0.950	0.002	0.000	0.000
12 19.82 0	0.475	1.173	1.493	0.002	0.975	0.000	0.000	0.000

$E_{o} = 10.00 \, \text{Mev}$

STOPPING POWER	POINT	PL	ANE		POINT	PI	ANE
$(dE/dr)_{E_a} = 1.94 \text{ Mev}(cm^2/g)$	ISOTROPIC	PERPE	NDICULAR		ISOTROPIC	PERPE	NDICULAF
RESIDUAL RANGE	SOURCE		JOROE .	-4 - 5	SOUNCE	50	OROE
$r = 5.26 \text{ g/cm}^2$ x		J(X)	J(x)	J(-x)	J(x)	J(x)	J(-x)
0.000	1.000	1.008	0.008	0.500	1.049	1.245	0.001
OTHER PARAMETERS 0.025	0.999	1.009	0.007	0.525	1.061	1.266	0.001
$d_1 = 0.9486$ $A_1 = 0.2476$ 0.050	0.999	1.011	0.006	0.550	1.078	1.287	0.001
$a = 0.2341$ $A_2 = 1.040$ 0.075	0.999	1.013	0.005	0.575	1.100	1.305	0.001
$A^{PT1} = 0.3688$ $A_2 = -0.6041$ 0.100	1.000	1.017	0.004	0.600	1.128	1.319	0.001
$A^{PLP} = 0.4265$ $A = 0.3168$ 0.125	1.001	1.022	0.003	0.625	1.159	1.328	0.001
	1.003	1.028	0.002	0.650	1.192	1.328	-0.001
SCATTERING COEFFICIENTS 0.175	1.006	1.035	0.001	0.075	1.227	1.910	-0.000
l S _l 0,200	1.008	1.044	-0.000	0.700	1.257	1.286	-0.001
1 0.1799 0.225	1.011	1.054	-0.001	0.725	1.285	1.233	-0.002
2 0.5194 0.250	1.012	1.065	-0.002	0.750	1.305	1.152	-0.003
3 1.001 0.275	1.013	1.078	-0.002	0.775	1.310	1.042	-0.002
4 1.614	1 015	1 002	-0.001	0.800	1.289	0.910	0.000
6 3 209 0.325	1.017	1.108	-0.001	0.825	1.22	0.761	0.002
7 4.182 0.350	1.019	1.125	-0.001	0.850	1.102	0.596	0.003
8 5.265 0.375	1.021	1.143	-0.001	0.875	0.889	0.413	0.002
9 6.457	3 00/	2 3/0	0.000	0.000	0 577	0 227	0.001
10 7.754 0.400	1.024	1 182	-0.000	0.900	0.229	0.07/	-0.001
12 10.65 0.425	1.033	1.202	0.000	0.950	0.024	0.006	-0.000
0.475	1.040	1.224	0.001	0.975	0.000	0.000	0.000

Table 2. Spatial Moments; Plane Isotropic Source

				er opener mente				
	n	p=-1/2	1/2	3/2	5/2	7/2	ÿ/2	11/2
		MÉV=	0.025 Z=	6.				
⁰ = 0	0 2 4 6 8 10 12	0.200623E 01 0.207134E-00 0.554574E-01 0.882493E-02 0.427186E-02 0.223431E-02	0.665423E 00 0.353090E-01 0.665209E-02 0.190310E-02 0.680553E-03 0.280751E-03 0.128119E-03	0.398403E-00 0.128270E-01 0.179023E-02 0.410774E-03 0.123130E-03 0.438166E-04 0.176028E-04	0 • 284237E-00 0 • 613529E-02 0 • 659319E-03 0 • 124023E-03 0 • 316172E-04 0 • 980682E-05 0 • 349565E-05	0 • 220907E -00 0 • 341688E-02 0 • 291312E-03 0 • 457380E-04 0 • 100391E-04 0 • 273872E-05 0 • 872190E-06	0.180648E-00 0.209981E-02 0.145455E-03 0.193494E-04 0.369538E-05 0.893686E-06 0.255850E-06	0.152797E-00 0.138322E-02 0.793759E-04 0.906069E-05 0.151948E-05 0.328035E-06 0.848891E-07
		MEV=	0.05 Z=	6.				
0	0 2 4 6 8 10 12	0.195082E 01 0.200989E-00 0.536731E-01 0.195981E-01 0.846725E-02 0.407747E-02 0.212097E-02	0.676671E 00 0.364758E=01 0.690895E=02 0.197824E=02 0.706352E=03 0.290559E=03 0.132104E=03	0.412986E-00 0.137752E-01 0.19542IE-02 0.452009E-03 0.135979E-03 0.484358E-04 0.194447E-04	0.297812E-00 0.676858E-02 0.747400E-03 0.142820E-03 0.367520E-04 0.114620E-04 0.409748E-05	0.233046E-00 0.384528E-02 0.340238E-03 0.546787E-04 0.121866E-04 0.335871E-05 0.107693E-05	0.191482E-00 0.239959E-02 0.174055E-03 0.238712E-04 0.465632E-05 0.114313E-05 0.330825E-06	0.162529E-00 0.160009E-02 0.969176E-04 0.114826E-05 0.435520E-06 0.114393E-06
		MEV=	0.10 Z=	6.				
0	0 2 4 6 8 10 12	0.198330E 01 0.208707E-00 0.555488E-01 0.208796E-01 0.910314E-02 0.441732E-02 0.231293E-02	0.670026E 00 0.362987E-01 0.692826E-02 0.199788E-02 0.717894E-03 0.296977E-03 0.135706E-03	0+404333E-00 0+133567E-01 0+189422E-02 0+438975E-03 0+132406E-03 0+472980E-04 0+190424E-04	0.289734E-00 0.644678E-02 0.706300E-03 0.134514E-03 0.345695E-04 0.107789E-04 0.385476E-05	0 • 2258 09E-00 0 • 361474E-02 0 • 315200E-03 0 • 502319E-04 0 • 111370E-04 0 • 305905E-05 0 • 978681E-06	0 • 185014E-00 0 • 223311E-02 0 • 158682E-03 0 • 214793E-04 0 • 415208E-05 0 • 101272E-05 0 • 291667E-06	0.156713E-00 0.147723E-02 0.871933E-04 0.101517E-04 0.101517E-05 0.376580E-06 0.981778E-07
		MEV=	0•20 Z=	6.				
0	0 2 4 6 8 10 12	0.196614E 01 0.208310E-00 0.566645E-01 0.209639E-01 0.914741E-02 0.443911E-02 0.232330E-02	0.673518E 00 0.368629E-01 0.707560E-02 0.204653E-02 0.736484E-03 0.304840E-03 0.139289E-03	0.408867E-00 0.137127E-01 0.196121E-02 0.456729E-03 0.138155E-03 0.494290E-04 0.199145E-04	0.293959E-00 0.666916E-02 0.739035E-03 0.141740E-03 0.365888E-04 0.114406E-04 0.409837E-05	0 •229589E -00 0 •376064E -02 0 •32597E-03 0 •534919E-04 0 •119326E-04 0 •329124E-05 0 •105592E-05	0.188389E-00 0.233345E-02 0.168598E-03 0.230790E-04 0.449622E-05 0.110274E-05 0.318855E-06	0.159745E-00 0.154901E-02 0.931771E-04 0.109920E-04 0.188725E-05 0.414468E-06 0.108611E-06
		MEV=	0•40 Z=	6.				
0	0 2 4 6 8 10 12	0.193695E 01 0.207728E-00 0.570670E-01 0.212698E-01 0.933468E-02 0.455114E-02 0.239109E-02	0.679556E 00 0.378685E-01 0.736060E-02 0.214846E-02 0.778572E-03 0.324045E-03 0.148731E-03	0*416776E-00 0*143514E-01 0*208820E-02 0*492294E-03 0*150292E-03 0*541621E-04 0*219492E-04	0:301370E-00 0:707140E-02 0:801071E-03 0:156075E-03 0:407707E-04 0:128676E-04 0:464441E-05	0 • 236247E-00 0 • 402638E-02 0 • 365690E-03 0 • 599568E-04 0 • 135722E-04 0 • 378705E-05 0 • 122645E-05	0 • 194352E-00 0 • 251725E-02 0 • 187550E-03 0 • 262600E-04 0 • 520584E-05 0 • 129462E-05 0 • 378596E-06	0.165115E-00 0.168114E-02 0.104667E-03 0.126697E-04 0.221945E-05 0.495360E-06 0.131545E-06
		MEV=	0•70 Z=	6.				
0	0 2 4 6 8 10 12	0.188794E 01 0.205297E-00 0.571854E-01 0.215602E-01 0.955452E-02 0.469773E-02 0.248656E-02	0.689981E 00 0.394641E-01 0.781980E-02 0.231680E-02 0.849804E-03 0.357313E-03 0.165449E-03	0.430648E-00 0.154562E-01 0.231200E-02 0.556385E-03 0.172641E-03 0.630519E-04 0.258421E-04	0.314500E-00 0.779301E-02 0.915316E-03 0.183165E-03 0.488608E-04 0.156866E-04 0.574361E-05	0 •248124E-00 0 •451406E-02 0 •428453E-03 0 •725907E-04 0 •168616E-04 0 •480490E-05 0 •158373E-05	0.205044E-00 0.286008E-02 0.224297E-03 0.326416E-04 0.667180E-05 0.170122E-05 0.508058E-06	0.174782E-00 0.193067E-02 0.127342E-03 0.161086E-04 0.292288E-05 0.671518E-06 0.182725E-06
		MEV=	1.00 Z=	6.				
0	0 2 4 6 8 10 12	0.183977E 01 0.202286E-00 0.570851E-01 0.217698E-01 0.974471E-02 0.483431E-02 0.257967E-02	0.700595E 00 0.410641E-01 0.829187E-02 0.249421E-02 0.926540E-03 0.393849E-03 0.184127E-03	0.445051E-00 0.166306E-01 0.255706E-02 0.628434E-03 0.198337E-03 0.734754E-04 0.304857E-04	0.328306E-00 0.858396E-02 0.104529E-02 0.214957E-03 0.586055E-04 0.191584E-04 C.712373E-05	0 •260727E-00 0 •506017E-02 0 •501924E-03 0 •879253E-04 0 •209760E-04 0 •611089E-05 0 •205235E-05	0.216466E-00 0.325033E-02 0.268309E-03 0.406066E-04 0.856511E-05 0.224176E-05 0.684509E-06	0.185162E-00 0.221848E-02 0.155022E-03 0.205042E-04 0.385702E-05 0.913156E-06 0.254918E-06
		MEV=	2.00 Z=	6.				
0	0 2 4 6 8 10	0.168856E 01 0.189832E-00 0.553143E-01 0.217104E-01 0.996824E-02 0.505878E-02	0.736579E 00 0.464625E-01 0.990914E-02 0.311271E-02 0.119848E-02 0.525255E-03	0.496049E-00 0.210603E-01 0.352464E-02 0.923544E-03 0.306839E-03 0.118637E-03	0.378611E-00 0.117631E-01 0.160502E-02 0.359467E-03 0.104899E-03 0.362749E-04	0.307593E-00 0.735947E-02 0.839901E-03 0.163541E-03 0.424534E-04 0.132632E-04	0.259600E-00 0.495445E-02 0.481925E-03 0.826386E-04 0.192703E-04 0.548194E-05	0.224841E-00 0.351326E-02 0.295569E-03 0.450919E-04 0.952003E-05 0.248185E-05
	12	U=212256F=02	0.252211E=03	0.510573E-04	0.141477E=04	0.472665E-05	0.179683E=05	0 a 752228E -06

		Table 2.	Spotial Maments,	Plane Isotropic S	iource — Continued		
n	p=-1/2	1/2	3/2	5/2	7/2	9/2	11/2
	MEV=	4•00 Z≈	- 6 •				
	ne v						
L=0 0 2 4 6 8 10 12	0.151704E 01 0.175401E-00 0.536425E-01 0.220420E-01 0.105517E-01 0.556243E-02 0.313770E-02	0+783300E 00 0+545245E-01 0+125918E-01 0+422722E-02 0+172299E-02 0+793759E-03 0+398476E-03	0.567490E 00 0.284224E-01 0.534768E-02 0.153779E-02 0.552072E-03 0.228121E-03 0.104063E-03	0.452743E-00 0.175219E-01 0.278311E-02 0.702075E-03 0.226029E-03 0.849868E-04 0.356521E-04	0.379255E-00 0.118231E-01 0.62094E-02 0.364277E-03 0.106431E-03 0.367706E-04 0.143024E-04	0.327453E-00 0.845708E-02 0.101666E-02 0.205819E-03 0.550514E-04 0.176029E-04 0.638771E-05	0 • 288689E-00 0 • 630584E-02 0 • 672671E-03 0 • 123733E-03 0 • 305046E-04 0 • 907878E-05 0 • 308858E-05
	MEV=1	0•00 Z=	6.				
0 0 2 4 6 8 10 12	0.131270E 01 0.155943E-00 0.512465E-01 0.226702E-01 0.116375E-01 0.654805E-02 0.392541E-02	0.850168E 00 0.682416E-01 0.178329E-01 0.667148E-02 0.299340E-02 0.150325E-02 0.816145E-03	0.680953E 00 0.431202E-01 0.967638E-02 0.322119E-02 0.606114E-03 0.305548E-03	0.579212E 00 0.305003E-01 0.605345E-02 0.183102E-02 0.688322E-03 0.296468E-03 0.140390E-03	0.508263E 00 0.229145E-01 0.409141E-02 0.113848E-02 0.386903E-03 0.161540E-03 0.723784E-04	0.454913E-00 0.179008E-01 0.290878E-02 0.750981E-03 0.246943E-03 0.945738E-04 0.402988E-04	0.412875E-00 0.143801E-01 0.214480E-02 0.517044E-03 0.160386E-03 0.583467E-04 0.237363E-04
	MEV=	0.025 Z=	13.				
0 0 2 4 6 8 10 12	0.203906E 01 0.151044E-00 0.301676E-01 0.856798E-02 0.296188E-02 0.116552E-02 0.503584E-03	0.658958E 00 0.269695E-01 0.390208E-02 0.878561E-03 0.252766E-03 0.854027E-04 0.323839E-04	0.390161E-00 0.100702E-01 0.110239E-02 0.201491E-03 0.489806E-04 0.143590E-04 0.481525E-05	0.276646E-00 0.490342E-02 0.420086E-03 0.635733E-04 0.132303E-04 0.339694E-05 0.101455E-05	0 • 214 169E-00 0 • 276502E-02 0 • 190391E-03 0 • 242509E-04 0 • 436988E-05 0 • 990875E-06 0 • 265250E-06	0.174667E-00 0.171482E-02 0.969603E-04 0.105396E-04 0.166067E-05 0.335017E-06 0.808429E-07	0.147448E-00 0.113752E-02 0.537560E-04 0.504572E-05 0.701182E-06 0.126677E-06 0.276991E-07
	MEV=	0.05 Z=	13.				
0 0 2 4 6 8 10 12	0.198057E 01 0.144237E-00 0.282923E-01 0.788767E-02 0.267655E-02 0.103406E-02 0.438749E-03	0.670578E 00 0.275627E-01 0.395426E-02 0.878980E-03 0.829052E-04 0.309403E-04	0.405047E-00 0.107315E-01 0.117931E-02 0.214536E-03 0.516923E-04 0.49865E-04 0.496351E-05	0.290399E-00 0.537920E-02 0.468200E-03 0.711238E-04 0.147654E-04 0.376806E-05 0.111598E-05	0.226403E-00 0.309902E-02 0.219179E-03 0.282572E-04 0.511241E-05 0.115824E-05 0.308789E-06	0.185544E-00 0.195399E-02 0.114599E-03 0.127076E-04 0.202318E-05 0.409936E-06 0.989538E-07	0.157189E-00 0.131334E-02 0.649416E-04 0.626382E-05 0.884914E-06 0.161399E-06 0.354584E-07
	MEV=	0.10 2=	130				
0 0 2 4 6 8 10 12	0.198161E 01 0.146022E-00 0.288370E-01 0.807240E-02 0.274594E-02 0.106227E-02 0.450951E-03	0.670368E 00 0.278011E=01 0.401017E=02 0.894246E=03 0.253993E=03 0.845683E=04 0.315657E=04	0.404776E-00 0.107991E-01 0.119195E-02 0.217362E-03 0.524374E-04 0.152067E-04 0.503610E-05	0.290147E-00 0.540427E-02 0.472056E-03 0.718395E-04 0.149249E-04 0.380881E-05 0.112746E-05	0.226177E-00 0.310972E-02 0.220571E-03 0.284736E-04 0.515314E-05 0.116707E-05 0.310888E-06	0.185342E-00 0.195892E-02 0.115158E-03 0.127806E-04 0.203466E-05 0.411990E-06 0.993416E-07	0.157008E-00 0.131568E-02 0.651802E-04 0.628995E-05 0.888262E-06 0.161857E-06 0.355116E-07
	MEV= C	20 Z=	13.				
0 0 2 4 6 8 10 12	0.196899E 01 0.146858E-00 0.292205E-01 0.821866E-02 0.280425E-02 0.108691E-02 0.461912E-03	0.672936E 00 0.282834E-01 0.411316E-02 0.921919E-03 0.262719E-03 0.876569E-04 0.327586E-04	0.408108E-00 0.110631E-01 0.123302E-02 0.226242E-03 0.548013E-04 0.159367E-04 0.528603E-05	0.293251E-00 0.556312E-02 0.491523E-03 0.753583E-04 0.157344E-04 0.402910E-05 0.119540E-05	0.228954E-00 0.321259E-02 0.230870E-03 0.300634E-04 0.547370E-05 0.124493E-05 0.332619E-06	0.187822E-00 0.202934E-02 0.121054E-03 0.135694E-04 0.217552E-05 0.442765E-06 0.107159E-06	0.159235E-00 0.136601E-02 0.687649E-04 0.671034E-05 0.955305E-06 0.175115E-06 0.385920E-07
	MEV= C	0∙40 Z≈	13.				
0 0 2 4 6 8 10 12	0.193635E 01 0.147251E-00 0.297308E-01 0.845498E-02 0.291013E-02 0.113599E-02 0.485642E-03	0.679681E 00 0.293022E-01 0.433772E-02 0.984996E-03 0.283540E-03 0.953750E-04 0.358826E-04	0.416941E-00 0.116914E-01 0.133306E-02 0.248660E-03 0.609966E-04 0.179177E-04 0.599229E-05	0.301525E-00 0.596068E-02 0.5541517E-03 0.847212E-04 0.179663E-04 0.465794E-05 0.139605E-05	0 • 236386E-00 0 • 347761E-02 0 • 258190E-03 0 • 344369E-04 0 • 638735E-05 0 • 147446E-05 0 • 398775E-06	0.194477E-00 0.221430E-02 0.137048E-03 0.157911E-04 0.258676E-05 0.535669E-06 0.131513E-06	0 •165228E-00 0 •150005E-02 0 •786518E-04 0 •791580E-05 0 •115471E-05 0 •215901E-06 0 •483693E-07
	MEV= C	2•70 Z=	13.				
0 0 2 4 6 8	0.187981E 01 0.146628E-00 0.302548E-01 0.875637E-02 0.305865E-02	0.691746E 00 0.309853E-01 0.471874E-02 0.109522E-02 0.320925E-03	0.433023E-00 0.128202E-01 0.151811E-02 0.291370E-03 0.731157E-04	0.316764E-00 0.670338E-02 0.638412E-03 0.103493E-03 0.225748E-04	0.250183E-00 0.398536E-02 0.312868E-03 0.435351E-04 0.835180E-05	0.206905E-00 0.257520E-02 0.169848E-03 0.205489E-04 0.350039E-05	0.176469E-00 0.176531E-02 0.993286E-04 0.105598E-04 0.161012E-05
12	0.5228565-02	0.4176795-04	0.7437835-04	0.1920065-05	0.5488205-04	0.1889115-06	0.7219325-05

			Toble 2.	Spotial Moments,	Plone Isotropic S	ource - Continued		
	n	p=-1/2	1/2	3/2	5/2	7/2	9/2	"/2
		MEV=	1.00 Z=1	13.				
L=0 1 1	0 2 4 6 8 0 2	0.182231E 01 0.145252E-00 0.305702E-01 0.899403E-02 0.318603E-02 0.127528E-02 0.557496E-03	0.704539E 00 0.327330E-01 0.512369E-02 0.121500E-02 0.362352E-03 0.125598E-03 0.485042E-04	0.450476E-00 0.140759E-01 0.173089E-02 0.341890E-03 0.877958E-04 0.267912E-04 0.925672E-05	0.333553E-00 0.756074E-02 0.755215E-03 0.126943E-03 0.285036E-04 0.774726E-05 0.241700E-05	0.265546E-00 0.458675E-02 0.381105E-03 0.555828E-04 0.110013E-04 0.268762E-05 0.762668E-06	0 • 220853E-00 0 • 301111E-02 0 • 211923E-03 0 • 269583E-04 0 • 478198E-05 0 • 105787E-05 0 • 274703E-06	0 • 189164E-00 C • 209076E-02 0 • 126461E-03 C • 142249E-04 0 • 227082E-05 0 • 457731E-06 0 • 109331E-06
		MEV=	2•00 Z=1	13•				
0	0 2 4 6 8 0 2	0.167676E 01 0.142005E-00 0.317098E-01 0.981214E-02 0.363200E-02 0.151186E-02 0.684819E-03	0.739576E 00 0.380482E-01 0.645579E-02 0.163376E-02 0.514562E-03 0.186986E-03 0.753012E-04	0.500452E 00 0.181241E-01 0.248215E-02 0.533581E-03 0.146902E-03 0.475634E-04 0.173055E-04	0.383056E-00 0.104595E-01 0.119390E-02 0.222737E-03 0.544688E-04 0.159122E-04 0.528451E-05	0.311804E-00 0.670000E-02 0.651216E-03 0.107011E-03 0.235091E-04 0.625337E-05 0.190997E-05	0.263525E-00 0.459232E-02 0.386159E-03 0.565199E-04 0.112521E-04 0.274463E-05 0.775567E-06	0+228488E-00 0+330322E-02 0+243305E-03 0+320015E-04 0+581382E-05 0+130794E-05 0+343609E-06
		MEV=	4•00 Z≠1	.3•				
0	0 2 4 6 8 0 2	0.150159E 01 0.137017E-00 0.331942E-01 0.110345E-01 0.435153E-02 0.191754E-02 0.914927E-03	0.787877E 00 0.464647E-01 0.882940E-02 0.837663E-03 0.326544E-03 0.140016E-03	0.574821E 00 0.253533E-01 0.403105E-02 0.977699E-03 0.27898E-03 0.105281E-03 0.413833E-04	0.460590E-00 0.161098E-01 0.220652E-02 0.476487E-03 0.131682E-03 0.427361E-04 0.155664E-04	0.387016E-00 0.111136E-01 0.133540E-02 0.260109E-03 0.658744E-04 0.198007E-04 0.673228E=05	0.334933E-00 0.808732E-02 0.863653E-03 0.153167E-03 0.358163E-04 0.100343E-04 0.320202E-05	0 • 295827E-00 0 • 611429E-02 0 • 586106E-03 0 • 953312E-04 0 • 207039E-04 0 • 543321E-05 0 • 163425E-05
		MEV=1	0•00 Z=1	.3•				
0	0 2 4 6 8 0 2	0.129644E 01 0.130406E-00 0.358792E-01 0.134213E-01 0.589155E-02 0.286321E-02 0.149531E-02	0.856174E 00 0.615027E-01 0.139454E-01 0.452050E-02 0.176588E-02 0.776773E-03 0.371636E-03	0.691847E 00 0.403513E-01 0.803401E-02 0.235675E-02 0.846984E-03 0.346458E-03 0.155339E-03	0.591925E 00 0.292770E-01 0.524067E-02 0.141508E-02 0.474291E-03 0.182493E-03 0.774461E-04	0.521688E 00 0.224217E-01 0.365803E-02 0.918362E-03 0.289414E-03 0.105479E-03 0.426287E-04	0.468547E-00 0.177869E-01 0.266966E-02 0.627483E-03 0.186988E-03 0.648669E-04 0.250735E-04	0.426465E-00 0.144721E-01 0.201231E-02 0.445119E-03 0.125964E-03 0.417469E-04 0.154846E-04
		MEV= (Q•025 Z=2	9.9				
0	0 2 4 6 8 0 2	0.216947E 01 0.996314E-01 0.131741E-01 0.261674E-02 0.657843E-03 0.193843E-03 0.641671E-04	0.634619E 00 0.169408E-01 0.165209E-02 0.262912E-03 0.554363E-04 0.141129E-04 0.41218E=05	0.360038E-00 0.618359E-02 0.459264E-03 0.594974E-04 0.1062 3E-04 0.234676E-05 0.601781E-06	0.249416E-00 0.297265E-02 0.173260E-03 0.185793E-04 0.283690E-05 0.549354E-06 0.126494E-06	0.190304E-00 0.166282E-02 0.779974E-04 0.702894E-05 0.927317E-06 0.158273E-06 0.326097E-07	0.153676E-00 0.102566E-02 0.395361E-04 0.303451E-05 0.349098E-06 0.528662E-07 0.979522E-08	0.128804E-00 0.677737E-03 0.218464E-04 0.144491E-05 0.146167E-06 0.197618E-07 0.330834E-08
		MEV= C	0.05 Z=2	9.				
	2 4 5 3 2	0.203129E 01 0.846654E-01 0.101974E-01 0.185200E-02 0.427152E-03 0.115815E-03 0.353668E-04	000475E 00 0.168527E-01 9.153258E-02 0.226240E-C; 0.442080E-04 0.104336E-04 0.282725E-05	J.392086E-00 0.678815E-02 0.484238E-03 0.593475E-04 0.995816E-05 0.206502E-05 0.499959E-06	0.278414E-00 0.349544E-02 0.201378E-03 0.20331E-04 0.374015E-05 0.558605E-06 0.121603E-06	0.215735E-00 0.205763E-02 0.979357E-04 0.8659410E-05 0.11250E-05 0.182480E-06 0.35922PE-07	0+176055E-00 0+132033E-02 0+528703E-04 0+407300E-05 0+461482E-06 0+680232E-07 0+121723E-07	0.148688E-00 0.900419E-03 0.307886E-04 0.207974E-05 0.210255E-06 0.280155E-07 0.457835E-08
		MEV- C	0•10 Z=2	9.				
0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 4 5 3 2	0.201498E 01 0.822757E-01 0.969035E-02 0.172055E-02 0.387988E-03 0.102871E-03 0.307274E-04	0.663686E 00 0.167139E-01 0.149053E-02 0.215478E-03 0.412166E-04 0.952165E-05 0.252569E-05	0.396179E-00 0.681848E-02 0.4787046-03 0.575897c-04 0.947584E-05 0.192605E-05 0.456992E-06	0.282183E-00 0.354274E-02 0.201583E-03 0.205406E-04 0.294210E-05 0.530688E-06 0.113361E-06	0+219080E-00 0+209962E-02 0+990235E-04 0+867089E-05 0+109216E-05 0+176141E-06 0+340708E-07	0+179024E-00 0+135445E-02 0+539022E-04 0+410524E-05 0+458704E-06 0+665847E-07 0+117231E-07	0.151343E-00 0.927650E-03 0.316077E-04 0.21)742E-05 0.21281E-06 0.277662E-07 0.447056E-08
		MEV= C	2•20 Z=2	9.				
	2 5 3 0	0.198355E 01 0.806730E-01 0.943628E-02 0.166107E-02 0.370971E-03 0.973453E-04	0.669975E 00 0.169690E-01 0.150941E-02 0.216913E-03 0.411686E-04 0.942574E-05	0.404267E-00 0.706935E-02 0.497904E-03 0.597770E-04 0.978755E-05 0.197610E-05	0.289673E-00 0.372680E-02 0.213928E-03 0.218430E-04 0.312321E-05 0.561018E-06	0.225754E-00 0.223266E-02 0.106773E-03 0.940569E-05 0.118643E-05 0.191054E-06	0.184965E-00 0.145239E-02 0.588807E-04 0.452821E-05 0.508271E-06 0.73861E-07	0.156669E-00 0.100146E-02 0.349066E-04 0.236705E-05 0.238194E-06 0.314179E-07

9

Toble 2. Spotial Moments, Plane Isotropic Source - Continued

n	p=-1/2	1/2	3/2	5/2	7/2	9/2	11/2
	MEV=	0+40 Z=2	9				
l=0 0 2 4 6 8 10 12	0.194377E 01 0.807058E-01 0.958548E-02 0.170655E-02 0.384436E-03 0.101558E-03 0.301659E-04	0.678134E 00 0.176946E-01 0.160539E-02 0.233984E-03 0.448806E-04 0.103596E-04 0.273872E-05	0.414906E-00 0.755310E-02 0.546031E-03 0.667792E-04 0.110864E-04 0.226239E-05 0.537052E-06	0.299613E-00 0.404847E-02 0.240007E-03 0.250794E-04 0.3364917E-05 0.6664481E-06 0.142652E-06	0 • 234665E-00 0 • 245524E-02 0 • 121948E-03 0 • 110434E-04 0 • 142278E-05 0 • 232963E-06 0 • 455052E-07	0*192933E-00 0*161240E-02 0*682331E-04 0*541726E-05 0*623271E-06 0*923745E-07 0*165039E-07	0.163836E-00 0.112025E-02 0.409435E-04 0.287752E-05 0.297816E-06 0.401822E-07 0.659689E-08
	MEV≖	0 • 7 0 Z = 2	9 •				
0 0 2 4 6 8 10 12	0.188548E 01 0.813055E-01 0.996169E-02 0.181938E-02 0.418844E-03 0.112761E-03 0.340616E-04	0.690514E 00 0.189550E-01 0.178643E-02 0.268300E-03 0.527576E-04 0.124397E-04 0.335052E-05	0.431365E-00 0.838471E-02 0.635590E-03 0.806377E-04 0.137934E-04 0.288673E-05 0.700382E-06	0.315182E-00 0.460502E-02 0.288856E-03 0.315300E-04 0.475303E-05 0.891563E-06 0.196351E-06	0 • 248745E-00 0 • 284356E-02 0 • 150668E-03 0 • 143479E-04 0 • 192562E-05 0 • 326288E-06 0 • 656365E-07	0*205605E-00 0*189376E-02 0*861210E-04 0*723496E-05 0*871723E-06 0*134307E-06 0*248086E-07	0.175290E-00 0.133065E-02 0.5260<0E-04 0.393471E-05 0.428619E-06 0.603825E-07 0.102887E-07
	MEV=	1.00 Z=2	9.0				
0 0 2 4 6 8 10 12	0.182812E 01 0.817533E-01 0.103283E-01 0.193513E-02 0.455413E-03 0.125019E-03 0.334329E-04	0.703219E 00 0.202903E-01 0.198668E-02 0.307621E-03 0.620579E-04 0.149609E-04 0.410960E-05	0.448657E-00 0.930545E-02 0.739939E-03 0.974657E-04 0.171958E-04 0.369509E-05 0.917469E-06	0.331791E-00 0.523912E-02 0.347898E-03 0.397076E-04 0.620897E-05 0.120140E-05 0.271824E-06	0 • 263926E-00 0 • 329553E-02 0 • 186389E-03 0 • 186852E-04 0 • 261580E-05 0 • 459370E-06 0 • 953161E-07	0.219377E-00 0.222680E-02 0.108897E-03 0.969129E-05 0.122455E-05 0.122455E-05 0.196437E-06 0.375769E-07	0 • 1878 16E-00 0 • 158 312E-02 0 • 677511E-04 0 • 53951E-05 0 • 619968E-06 0 • 913410E-07 0 • 161811E-07
	MEV=	2 • 00 Z = 2	9•				
0 0 2 4 6 8 10 12	0.167823E 01 0.835772E-01 0.115887E-01 0.234902E-02 0.592132E-03 0.172851E-03 0.561913E-04	0.739201E 00 0.246550E-01 0.270781E-02 0.460426E-03 0.100587E-03 0.260051E-04 0.760516E-05	0.499899E-00 0.124760E-01 0.114223E-02 0.168465E-03 0.326786E-04 0.762307E-05 0.203558E-05	0.382497E-00 0.751944E-02 0.589076E-03 0.767389E-04 0.133999E-04 0.285131E-05 0.701440E-06	0.311274E-00 0.497948E-02 0.339622E-03 0.395653E-04 0.627919E-05 0.122828E-05 0.280184E-06	0.263030E-00 0.350465E-02 0.210789E-03 0.221668E-04 0.322103E-05 0.582725E-06 0.123884E-06	0.228028E-00 0.257621E-02 0.138021E-03 0.132000E-04 0.176665E-05 0.297051E-06 0.591026E-07
	MEV=	4•00 Z=2	9•				
0 0 2 4 6 8 10 12	0.149518E 01 0.862193E-01 0.136481E-01 0.309853E-02 0.862994E-03 0.275568E-03 0.972393E-04	0.789798E 00 0.322005E-01 0.416983E-02 0.812827E-03 0.199720E-03 0.572869E-04 0.183979E-04	0.577916E 00 0.185875E-01 0.207707E-02 0.360649E-03 0.803840E-04 0.211766E-04 0.630392E-05	0.463916E-00 0.122910E-01 0.121260E-02 0.190685E-03 0.390628E-04 0.955434E-05 0.266063E-05	0.390316E-00 0.874185E-02 0.772257E-03 0.111142E-03 0.211032E-04 0.482620E-05 0.126489E-05	0.338120E-00 0.651889E-02 0.520865E-03 0.691255E-04 0.122406E-04 0.263112E-05 0.651950E-06	0.298875E-00 0.502901E-02 0.366259E-03 0.450861E-04 0.748151E-05 0.151769E-05 0.356802E-06
	MEV=1	.0•00 Z=2	9•				
0 0 2 4 6 8 10 12	0.128370E 01 0.920964E-01 0.180872E-01 0.496602E-02 0.163932E-02 0.610969E-03 0.248663E-03	0.860967E 00 0.474054E-01 0.799009E-02 0.195283E-02 0.585341E-03 0.200692E-03 0.758668E-04	0.700630E 00 0.326040E-01 0.495631E-02 0.111742E-02 0.312812E-03 0.100997E-03 0.361751E-04	0.602247E 00 0.244578E-01 0.341245E-02 0.719047E-03 0.190020E-03 0.583044E-04 0.199466E-04	0*532648E 00 0*192215E-01 0*248629E-02 0*493373E-03 0*123859E-03 0*363136E-04 0*119233E-04	0.479729E-00 0.155727E-01 0.188029E-02 0.353227E-03 0.846082E-04 0.237926E-04 0.752331E-05	0.437653E-00 0.128968E-01 0.146109E-02 0.260868E-03 0.598161E-04 0.161802E-04 0.493993E-05
	MEV=	0.05 Z=5	0•				
0 0 2 4 6 8 10 12	0.211954E 01 0.657000E-01 0.610643E-02 0.882671E-03 0.165809E-03 0.372759E-04 0.957510E-05	0.643694E 00 0.1235355-01 0.870923E-03 0.102742E-03 0.164108E-04 0.322182E-05 0.736462E-06	0.371104E-00 0.484113E-02 0.267379E-03 0.261691E-04 0.358895E-05 0.619234E-06 0.126524E-06	0.259326E-00 0.245494E-02 0.109232E-03 0.901196E-05 0.107203E-05 0.163696E-06 0.300484E-07	0 • 198934E -00 0 • 143179E-02 0 • 525039E-04 0 • 370317E-05 0 • 385717E-06 0 • 524763E-07 0 • 869734E-08	0.161231E-00 0.913340E-03 0.281186E-04 0.171620E-05 0.157859E-06 0.192548E-07 0.289509E-08	0.135490E-00 0.620441E-03 0.162837E-04 0.869128E-06 0.711381E-07 0.782418E-08 0.107201E-08
	MEV=	0.10 2=5	0.				
0 0 2 4 6 8 10 12	0.206696E 01 0.588604E-01 0.503548E-02 0.671967E-03 0.116840E-03 0.243686E-04 0.581877E-05	0.653575E 00 0.117894E-01 0.772687E-03 0.846850E-04 0.125775E-04 0.229882E-05 0.489851E-06	0 • 383376E-00 0 • 480885E-02 0 • 249928E-03 0 • 229124E-04 0 • 293975E-05 0 • 474477E-06 0 • 907249E-07	0.27.0443E-00 0.250900E-02 0.106290E-03 0.828367E-05 0.927912E-06 0.133241E-06 0.229879E-07	0 • 208691E-00 0 • 149522E-02 0 • 527669E-04 0 • 354430E-05 0 • 349903E-06 0 • 450062E-07 0 • 704258E-08	0.169821E-00 0.970175E-03 0.290244E-04 0.169993E-05 0.149137E-06 0.172898E-07 0.246560E-08	0.143126E-00 0.668235E-03 0.171916E-04 0.886783E-06 0.696441E-07 0.731798E-08 0.955220E-09

		Table 2.	Spatial Moments,	Plone Isatropic S	ource — Continued		
	p=-1/2	1/2	3/2	5/2	7/2	9/2	11/2
	MEV=	0.20 Z=5	i0+				
l=0 0 2 4 6 8 10 12	0.201897E 01 0.551487E-01 0.452350E-02 0.579002E-03 0.966167E-04 0.193492E-04 0.443893E-05	0.602898E 00 0.116595E-01 0.739115E-03 0.760883E-04 0.11701E-04 0.190575E-05 0.403319E-06	0.395172E-00 0.492287E-02 C.249685E-03 0.222154E-04 0.275912E-05 0.430482E-06 C.795103E-07	0.281254E-00 0.262969E-02 0.109743E-03 0.835840E-05 0.911258E-06 0.127045E-06 0.212496E-07	0 • 218255E-00 0 • 159510E-02 0 • 559286E-04 0 • 369575E-05 0 • 357022E-06 0 • 447867E-07 0 • 681999E-08	0:178291E-00 0:104945E-02 0:314334E-04 0:182244E-05 0:157267E-06 C:178604E-07 0:248799E-08	0.150687E-00 0.731017E-03 0.189588E-04 0.973638E-06 0.755853E-07 0.781358E-08 0.100003E-08
	MEV=	0 • 4 0 Z = 5	0.				
0 0 2 4 6 8 10 12	C.196068E 01 O.536107E-01 C.438571E-02 C.558351E-03 C.924943E-04 C.183638E-04 C.417223E-05	0.674639E 00 0.120860E-01 0.769632E-03 0.612866E-04 0.115844E-04 0.202650E-05 0.412643E-06	0.410328E-00 C.529260E-02 0.272686E-03 0.244298E-04 0.303927E-05 C.473365E-06 0.870680E-07	0.295324E-00 0.290048E-02 0.124176E-03 0.959416E-05 0.105390E-05 0.147373E-06 0.246440E-07	0 • 230813E-00 0 • 179301E-02 0 • 650711E-04 0 • 439302E-05 0 • 430089E-06 0 • 543780E-07 0 • 831279E-08	0.189483E-00 0.119718E-02 0.374099E-04 0.223064E-05 0.196178E-06 0.225629E-07 0.316839E-08	0.160730E-00 0.843870E-03 0.229944E-04 0.122191E-05 0.971900E-07 0.102221E-07 0.132422E-08
	MEV=	0.70 Z=5	i0 e				
0 0 2 4 6 8 10 12	0.188653E 01 0.534659E-01 0.450472E-02 0.587444E-03 0.992870E-04 0.200526E-04 0.462383E-05	0.690286E 00 0.130582E-01 0.864804E-03 0.941435E-04 0.137491E-04 0.245479E-05 0.508623E-06	0.431057E-00 0.558760E-02 0.324840E-03 0.302626E-04 0.388414E-05 0.620705E-06 0.116672E-06	0.314890E-00 0.338557E-02 0.154425E-03 0.125194E-04 0.142900E-05 0.206232E-06 0.354156E-07	0.248479E-00 0.214173E-02 0.836886E-04 0.597950E-05 0.612625E-06 0.804179E-07 0.126889E-07	0.205364E=00 0.145586E=02 0.494447E=04 0.314519E=05 0.291443E=06 0.350049E=07 0.509944E=08	0.175072E-00 0.10411E-02 0.310913E-04 0.17753E-05 0.149758E-06 0.165421E-07 0.223419E-08
	MEV=	1.00 Z=5	0.				
0 0 2 4 6 8 10 12	0.182016E 01 0.533072E-01 0.469954E-02 0.631781E-03 0.109639E-03 0.226675E-04 0.533797E-05	0.705028E 00 0.141435E-01 0.979837E-03 0.110616E-03 0.166582E-04 0.305452E-05 0.648015E-06	0.451152E-00 0.676105E-02 C.388001E-03 0.377907E-04 0.503272E-05 0.830089E-06 0.160413E-06	0.334208E-00 0.393286E-02 0.191744E-03 0.163844E-04 0.195318E-05 0.292508E-06 0.518768E-07	0.266149E-00 0.254087E-02 0.107121E-03 0.812906E-05 0.875396E-06 0.119888E-06 0.196272E-07	0.221403E-00 0.175582E-02 0.648768E-04 0.441436E-05 0.432564E-06 0.5544909E-07 0.827416E-08	0.189666E-00 0.127244E-02 0.416502E-04 0.256094E-05 0.229737E-06 0.267503E-07 0.378275F-08
	MEV=	2 • 00 Z=5	0.				
0 0 2 4 6 8 10 12	0.166229E 01 0.563596E-01 0.554613E-02 0.826278E-03 0.157029E-03 0.352365E-04 0.894329E-05	0.743289E 00 0.177901E-01 0.142079E-02 0.180549E-03 0.301202E-04 0.604830E-05 0.139298E-05	0.505939E 00 0.941511E-02 0.639671E-03 0.715387E-04 0.107200E-04 0.196107E-05 0.415794E-06	0.388619E-00 0.587233E-02 0.347359E-03 0.347490E-04 0.473557E-05 0.797090E-06 0.156869E-06	0.317090E-00 0.399784E-02 0.209028E-03 0.189103E-04 0.236377E-05 0.368629E-06 0.677315E-07	0.268463E-00 0.287947E-02 0.134566E-03 0.11000E-04 0.128091E-05 0.186067E-06 0.320631E-07	0.233085E-00 0.215871E-02 0.909600E-04 0.688588E-05 0.737415E-06 0.100210E-06 0.162548E-07
	MEV=	4 • 00 Z = 5	0.				
0 0 2 4 6 8 10 12	0.147129E 01 0.604356E-01 0.704963E-02 0.121655E-02 0.263396E-03 0.665068E-04 0.188108E-04	0.797057E 00 0.244225E-01 0.239096E-02 0.360559E-03 0.698191E-04 0.160149E-04 0.416192E-05	0.589712E 00 0.147884E-01 0.127496E-02 0.173800E-03 0.308944E-04 0.657447E-05 0.159766E-05	0.476666E-00 0.101343E-01 0.784646E-03 0.980988E-04 0.161936E-04 0.322799E-05 0.739569E-06	0.403018E-00 0.741759E-02 0.521921E-03 0.603830E-04 0.932378E-05 0.175164E-05 0.380376E-06	0.350432E-00 0.566533E-02 0.365321E-03 0.393625E-04 0.571517E-05 0.101643E-05 0.210013E-06	0.310682E-00 0.446090E-02 0.265324E-03 0.267563E-04 0.366782E-05 0.619664E-06 0.122194E-06
	MEV = 1	0.00 Z=5	0.				
0 0 2 4 6 8 10 12	0 • 125340E 01 0 • 691817E-01 0 • 106504E-01 0 • 234724E-02 0 • 633232E-03 0 • 195631E-03 0 • 669040E-04	0.872687E 00 0.389582E-01 0.529093E-02 0.105830E-02 0.263255E-03 0.758088E-04 0.243809E-04	0.722447E 00 0.281765E-01 0.352000E-02 0.659050E-03 0.154970E=03 0.424738E-04 0.130781E-04	0.628176E 00 0.219391E-01 0.255667E-02 0.452881E-03 0.101557E-03 0.266945E-04 0.792272E-05	0.560420E 00 0.177696E-01 0.194688E-02 0.328258E-03 0.705565E-04 0.178652E-04 0.513129E-05	0.508263E 00 0.147676E-01 0.152929E-02 0.2246446E-03 0.509503E-04 0.124654E-04 0.347468E-05	0.466373E-00 0.125030E-01 0.122868E-02 0.189831E-03 0.378467E-04 0.896770E-05 0.243123E-05
	MEV=	0.10 Z=8	2.				
C 0 2 4 5 8 10 12	0.215598E 01 0.414345E-01 0.248476E-02 0.240327E-03 0.311030E-04 0.493435E-05 0.912627E-06	0.637042E 00 0.782347E-02 0.361457E-03 C.288851E-04 0.321144E-05 C.448808E-06 0.744238E-07	0.362973E-00 C.310813E-02 O.113903E-03 0.762417E-05 0.733694E-06 0.907413E-07 0.135318E-07	0.252034E-00 0.160132E-02 0.478044E-04 0.271958E-05 0.228559E-06 0.2251646E-07 0.338876E-08	0 • 192578E-00 0 • 948747E-03 0 • 235856E-04 0 • 115560E-05 0 • 855548E-07 0 • 843635E-08 0 • 103045E-08	0.155663E-00 0.614243E-03 0.129462E-04 0.552679E-06 0.363336E*07 0.322722E-08 0.359067E-09	0.130559E-00 0.423010E-03 0.767128E-05 0.288240E-06 0.169484E-07 0.136331E-08 0.138741E-09

		Toble 2.	Spotiol Moments,	Plone Isotropic S	Source — Continued		
n	p=-1/2	1/2	3/2	5/2	7/2	9/2	11/2
	MEV=	0.20 Z=8	32 •				
l = 0 0 2 4 6 8 10 12	0.208503E 01 0.357941E-01 0.192109E-02 0.166777E-03 0.194256E-04 0.278030E-05 0.464950E-06	0.650141E 00 0.731934E-02 0.306302E-03 0.221426E-04 0.222825E-05 0.282187E-06 0.424621E-07	0.379085E-00 0.305595E-02 0.102961E-03 0.629961E-05 0.553039E-06 0.623668E-07 0.848229E-08	0.266540E-00 0.163054E-02 0.453997E-04 0.238635E-05 0.184513E-06 0.186514E-07 0.230386E-08	0.205256E-00 0.991963E-03 0.233028E-04 0.106586E-05 0.732142E-07 0.667502E-08 0.752316E-09	0.166792E-00 0.655821E-03 0.132160E-04 0.531799E-06 0.327026E-07 0.270442E-08 0.279325E-09	0.140429E-00 0.459453E-03 0.805073E-05 0.287680E-06 0.159456E-07 0.120227E-08 0.114254E-09
	MEV=	0.40 2=8	32 •				
0 0 2 4 6 8 10 12	0.200135E 01 0.328401E-01 0.168246E-02 0.139326E-03 0.154738E-04 0.211138E-05 0.336599E-06	0.666398E 00 0.735518E-02 0.297491E-03 0.206778E-04 0.199540E-05 0.241952E-06 0.348270E-07	0.399654E-00 0.324162E-02 0.107209E-03 0.637633E-05 0.541229E-06 0.588189E-07 0.769281E-08	0.285394E-00 0.179503E-02 0.497892E-04 0.257265E-05 0.194040E-06 0.190388E-07 0.227507E-08	0.221937E-00 0.112254E-02 0.266201E-04 0.120976E-05 0.817767E-07 0.729033E-08 0.799866E-09	0.181564E-00 0.758280E-03 0.156080E-04 0.630230E-06 0.384619E-07 0.313277E-08 0.316962E-09	0.153619E-00 0.540553E-03 0.977624E-05 0.353757E-06 0.196154E+07 0.146691E-08 0.137402E-09
	MEV=	0•70 Z=8	82 •				
0 0 2 4 6 8 10 12	0 • 190429E 01 0 • 317921E-01 0 • 164978E-02 0 • 137813E-03 0 • 153900E-04 0 • 210611E-05 0 • 336048E-06	0.6866622 00 0.791503E-02 0.328727E-03 0.23506E-04 0.227000E-05 0.277345E-06 0.401029E-07	0.425935E-00 0.370649E-02 0.127998E-03 0.783967E-05 0.679365E-06 0.749275E-07 0.990174E-08	0.310020E-00 0.213839E-02 0.629108E-04 0.338812E-05 0.263410E-06 0.264360E-07 0.321299E-08	0 • 244060E-00 0 • 137824E-02 0 • 351542E-04 0 • 168422E-05 0 • 118464E-06 0 • 108885E-07 0 • 122333E-08	0.201378E-00 0.953063E-03 0.213623E-04 0.918967E-06 0.588845E-07 0.498350E-08 0.519821E-09	0.171461E-00 0.692326E-03 0.137849E-04 0.536574E-06 0.315048E-07 0.246640E-08 0.239751E-09
	MEV≃	1.00 2=8	32 •				
0 0 2 4 6 8 10 12	0.181865E 01 0.315889E-01 0.169680E-02 0.145990E-03 0.167264E-04 0.234107E-05 0.381059E-06 MEV=	0.705370E 00 0.865881E-02 0.376899E-03 0.276892E-04 0.278880E-05 0.350034E-06 0.4518154E-07 2.00 Z=E	0.451625E-00 0.427977E-02 0.157176E-03 0.101026E-04 0.910832E-06 0.103876E-06 0.141294E-07	0.334668E-00 0.256099E-02 0.81226E-04 0.463831E-05 0.378356E-06 0.395406E-07 0.497580E-08	0.266572E-00 0.169580E-02 0.471855E-04 0.271855E-04 0.2742100E-05 0.180141E-06 0.173618E-07 0.203182E-08	0.221789E-00 0.119761E-02 0.295962E-04 0.137589E-05 0.939919E-07 0.839758E-08 0.917824E-09	0.190018E-00 0.884910E-03 0.196104E-04 0.831804E-06 0.524503E-07 0.436285E-08 0.446939E-09
0 0	0.165215E 01	0.745919E 00	0.509848E 00	0.392598E-00	0.320882E-00	0.272013E-00	0.236395E-00
2 4 6 8 10 12	0.337757E-01 0.210098E-02 0.206011E-03 0.265658E-04 0.414345E-05 0.745462E-06	0.112530E-01 0.581245E-03 0.494502E-04 0.567501E-05 0.601165E-06 0.132073E-06	0.618643E-02 0.277055E-03 0.210500E-04 0.219634E-05 0.285406E-06 0.437048E-07	0.397881E-02 0.157715E-03 0.108571E-04 0.10440E-05 0.125678E-06 0.180105E-07	0.278011E-02 0.988444E-04 0.622450E-05 0.552968E-06 0.623546E-07 0.8840556E-08	0.204818E-02 0.659546E-04 0.382647E-05 0.316611E-06 0.335144E-07 0.426649E-08	0.156650E-02 0.460345E-04 0.247449E-05 0.191556E-06 0.191055E-07 0.230422E-08
	MEV=	4.0U Z=8	2 •				
0 0 2 4 6 8 10 12	0.144942E 01 0.376061E-01 0.288659E-02 0.340194E-03 0.517003E-04 0.936000E-05 0.193120E-05	0.803859E 00 0.163267E-01 0.107738E-02 0.12925E-03 0.155679E-04 0.259106E-05 0.496270E-06	0.600905E 00 0.103370E-01 0.612198E-03 0.588505E-04 0.753816E-05 0.117620E-05 0.212607E-06	0.488873E-00 0.733190E-02 0.396305E-03 0.353791E-04 0.425300E-05 0.627381E-06 0.107804E-06	0.415259E-00 0.552182E-02 0.275136E-03 0.229827E-04 0.260884E-05 0.365729E-06 0.600109E-07	0.362359E-00 0.432214E-02 0.199917E-03 0.157092E-04 0.169120E-05 0.226153E-06 0.355512E-07	0.322168E-00 0.347740E-02 0.150109E-03 0.11414E-04 0.114140E-05 0.146012E-06 0.220456E-07
	MEV=	0.025 Air					
0 0 2 4 6 8 10 12	0.201025E 01 0.191918E-00 0.479180E-01 0.165278E-01 0.679527E-02 0.313094E-02 0.156476E-02	0.664624E 00 0.332702E-01 0.539477E-02 0.559400E-02 0.5541449E-03 0.213050E-03 0.930497E-04	0.397379E-00 0.122010E-01 0.161166E-02 0.350845E-03 0.100143E-03 0.340512E-04 0.131104E-04	0.283291E-00 0.587097E-02 0.600080E-03 0.10743E-03 0.261361E-04 0.775836E-05 0.265363E-05	0+220065E-00 0+328322E-02 0+267288E-03 0+400500E-04 0+840485E-05 0+219746E-05 0+672254E-06	0.179899E-00 0.202376E-02 0.134293E-03 0.170892E-04 0.312581E-05 0.725411E-06 0.199697E-06	0.152127E-00 0.133619E-02 0.736496E-04 0.805872E-05 0.129633E-05 0.268871E-06 0.669673E-07
	MEV=	0.05 Air					
0 0 2 4 6 8 10	0.196193E 01 0.186748E-00 0.464103E-01 0.159093E-01 0.649552E-02 0.297072E-02	0.674383E 00 0.341924E-01 0.607313E-02 0.163909E-02 0.554481E-03 0.217016E-03	0.409994E-00 0.129702E-01 0.173417E-02 0.379187E-03 0.108275E-03 0.367447E-04 0.14088E-04	0.295011E-00 0.638905E-02 0.667327E-03 0.120819E-03 0.295539E-04 0.879046E-05 0.30596E-05	0.230532E-00 0.363530E-02 0.305086E-03 0.465378E-04 0.987124E-05 0.259683E-05 0.7596846F-06	0.189232E-00 0.227088E-02 0.156567E-03 0.204114E-04 0.379295E-05 0.889427E-06 0.246401E-06	0.160504E-00 0.151534E-02 0.873901E-04 0.985433E-05 0.161839E-05 0.340589E-06 0.857022E-02

			Table 2.	Spatial Moments,	Plane Isotropic S	ource — Continued		
	n	p=-1/2	1/2	3/2	5/2	7/2	9/2	11/2
		MEV=	0.10 Air					
l =	0 0 2 4 6 8 10 12	0.197775E 01 0.191636E-00 0.482065E-01 0.166754E-01 0.685718E-02 0.315453E-02 0.157217E-02	0.671151E 00 0.343062E-01 0.614250E-02 0.166879E-02 0.567631E-03 0.223191E-03 0.972705E-04	0.405790E-00 0.128361E-01 0.172244E-02 0.378026E-03 0.368695E-03 0.368695E-04	0.291090E-00 0.626377E-02 0.653941E-03 0.118499E-03 0.290232E-04 0.864445E-05 0.295992E-05	0.227021E-00 0.353951E-02 0.295843E-03 0.450466E-04 0.954706E-05 0.251074E-05 0.770494E-06	0.186095E-00 0.219937E-02 0.150545E-03 0.195426E-04 0.362126E-05 0.847495E-06 0.234534E-06	0.157684E-00 0.146147E-02 0.834449E-04 0.934806E-05 0.152804E-05 0.320430E-06 0.804046E-07
		MEV=	0.20 Air					
1	0 0 2 4 6 8 10 12	0.196606E 01 0.192497E-00 0.487461E-01 0.69338E-01 0.698299E-02 0.321832E-02 0.160583E-02	0.673536E 00 0.348191E-01 0.627951E-02 0.584757E-03 0.584757E-03 0.230389E-03 0.100537E-03	0.408889E-00 0.131132E-01 0.177502E-02 0.391767E-03 0.112674E-03 0.384525E-04 0.148196E-04	0.293980E-00 0.642847E-02 0.678131E-03 0.123727E-03 0.304464E-04 0.909816E-05 0.312244E-05	0.229607E-00 0.364509E-02 0.308336E-03 0.473315E-04 0.10886E-04 0.266403E-05 0.819959E-06	0.188406E-00 0.227104E-02 0.157556E-03 0.206449E-04 0.385129E-05 0.905783E-06 0.251586E-06	0.159760E-00 0.151234E-02 0.876366E-04 0.992161E-05 0.163435E-05 0.344709E-06 0.868774E-07
		MEV=	0.40 Air					
	0 0 2 4 6 8 10 1 2	0.193466E 01 0.192145E-00 0.492124E-01 0.172423E-01 0.715799E-02 0.331694E-02 0.166251E-02	0.680035E 00 0.358811E-01 0.656434E-02 0.181043E-02 0.622651E-03 0.246891E-03 0.108304E-03	0.417408E-00 0.137837E-01 0.190210E-02 0.425645E-03 0.123704E-03 0.425664E-04 0.165154E-04	0.301965E-00 0.685147E-02 0.740609E-03 0.137517E-03 0.342930E-04 0.103558E-04 0.358449E-05	0.236783E-00 0.392527E-02 0.341880E-03 0.536086E-04 0.116141E-04 0.310674E-05 0.966338E-06	0.194833E-00 0.246530E-02 0.176876E-03 0.237593E-04 0.451833E-05 0.107913E-05 0.303536E-06	0.165548E-00 0.165228E-02 0.994075E-04 0.115762E-04 0.194947E-05 0.418563E-06 0.107053E-06
		MEV=	0•70 Air					
(0 0 2 4 6 8 10 12	0.193466E 01 0.192922E-00 0.494984E-01 0.173535E-01 0.720420E-02 0.333708E-02 0.167151E-02	0.680035E 00 0.359868E-01 0.659264E-02 0.181893E-02 0.625464E-03 0.247877E-03 0.108654E-03	0.417408E-00 0.138157E-01 0.190863E-02 0.427196E-03 0.12416E-03 0.426815E-04 0.165461E-04	0.301965E-00 0.686464E-02 0.742722E-03 0.343801E-04 0.103747E-04 0.358775E-05	0.236783E-00 0.393170E-02 0.342714E-03 0.537399E-04 0.116370E-04 0.311044E-05 0.966550E-06	0.194833E-00 0.246883E-02 0.177253E-03 0.238087E-04 0.452531E-05 0.107991E-05 0.303445E-06	0.165548E-00 0.165438E-02 0.995958E-04 0.115970E-04 0.195185E-05 0.418712E-06 0.106979E-06
		MEV=	1.00 Air					
(0 0 2 4 6 8 10 12	0.182248E 01 0.186279E-00 0.491333E-01 0.176428E-01 0.747898E-02 0.352943E-02 0.179791E-02	0.704500E 00 0.394339E-01 0.753406E-02 0.214872E-02 0.759373E-03 0.308074E-03 0.137844E-03	0.450422E-00 0.163580E-01 0.240526E-02 0.564296E-03 0.170240E-03 0.604069E-04 0.240552E-04	0.333501E-00 0.857957E-02 0.100805E-02 0.199120E-03 0.521291E-04 0.163798E-04 0.586199E-05	0.265498E-00 0.511664E-02 0.493388E-03 0.834817E-04 0.192050E-04 0.539574E-05 0.174894E-05	0.220810E-00 0.331589E-02 0.267803E-03 0.393432E-04 0.803377E-05 0.203424E-05 0.601042E-06	0.189124E-00 0.227919E-02 0.156682E-03 0.202076E-04 0.369325E-05 0.848437E-06 0.229760E-06
		MEV≖	2.00 Air					
(0 2 4 6 8 10 12	0.166734E 01 0.175920E-00 0.482984E-01 0.179694E-01 0.785902E-02 0.381371E-02 0.199251E-02	0.741988E 00 0.451362E-01 0.919118E-02 0.275856E-02 0.101717E-02 0.427968E-03 0.197714E-03	0.504011E 00 0.210061E-01 0.339463E-02 0.8566301E-03 0.273960E-03 0.102121E-03 0.424296E-04	0.386662E-00 0.119437E-01 0.158825E-02 0.344746E-03 0.973710E-04 0.325942E-04 0.123135E-04	0.315229E-00 0.757135E-02 0.848698E-03 0.161135E-03 0.406685E-04 0.123455E-04 0.427517E-05	0.266723E-00 0.514951E-02 0.495263E-03 0.832369E-04 0.189545E-04 0.525785E-05 0.167964E-05	0.231463E-00 0.368186E-02 0.308041E-03 0.462794E-04 0.957903E-05 0.244307E-05 0.723715E-06
		MEV=	4•00 Air					
(0 0 2 4 6 8 10 12	0.148027E 01 0.161451E-00 0.467705E-01 0.182931E-01 0.836919E-02 0.423029E-02 0.229413E-02	0.794306E 00 0.540810E-01 0.120556E-01 0.389930E-02 0.153215E-02 0.681277E-03 0.330549E-03	0.585224E 00 0.293733E-01 0.541884E-02 0.51819E-02 0.529941E-03 0.212814E-03 0.943643E-04	0.471801E-00 0.186297E-01 0.293889E-02 0.729354E-03 0.230075E-03 0.846097E-04 0.346875E-04	0.398161E-00 0.128445E-01 0.176809E-02 0.394250E-03 0.113651E-03 0.386278E-04 0.147572E-04	0.345717E-00 0.934763E-02 0.113892E-02 0.230518E-03 0.612196E-04 0.193612E-04 0.693291E-05	0.306154E-00 0.707019E-02 0.770775E-03 0.142721E-03 0.351381E-04 0.103950E-04 0.350486E-05
		MEV=1	10.00 Air					
(0 0 2 4 6 8 10 12	0.124042E 01 0.137570E-00 0.427443E-01 0.179808E-01 0.881183E-02 0.475029E-02 0.274325E-02	0.877859E 00 0.708955E-01 0.182523E-01 0.668055E-02 0.292446E-02 0.143243E-02 0.761565E-03	0.732230E 00 0.488896E-01 0.111437E-01 0.371383E-02 0.150375E-02 0.688493E-03 0.345134E-03	0.639936E 00 0.368079E-01 0.760442E-02 0.234723E-02 0.891152E-03 0.385811E-03 0.184204E-03	0.573129E 00 0.290469E-01 0.551207E-02 0.159134E-02 0.571044E-03 0.235381E-03 0.107696E-03	0.521417E 00 0.236354E-01 0.415678E-02 0.112997E-02 0.385353E-03 0.151951E-03 0.669143E-04	0.479695E-00 0.196606E-01 0.322583E-02 0.829778E-03 0.270032E-03 0.102225E-03 0.434715E-04

Table 2. Spatial Moments, Plane Isatropic Saurce - Cantinued

n	p=-1/2	1/2	3/2	5/2	7/2	9/2	11/2
	MEV≈	0.025 Pal	ystyrene				
l=0 0 2 4 6 8 10 12	0.201060E 01 0.219909E-00 0.620303E-01 0.238070E-01 0.107687E-01 0.541218E-02 0.293064E-02	0.664555E 00 0.366989E-01 0.722793E-02 0.215582E-02 0.801152E-03 0.342490E-03 0.161575E-03	0.397290E-00 0.131708E-01 0.190943E-02 0.454981E-03 0.141358E-03 0.520289E-04 0.215769E-04	0.283208E-00 0.625006E-02 0.694030E-03 0.135100E-03 0.356101E-04 0.114034E-04 0.419007E-05	0.219992E-00 0.346145E-02 0.303631E-03 0.491790E-04 0.111353E-04 0.313079E-05 0.102638E-05	0.179834E-00 0.211840E-02 0.150436E-03 0.205874E-04 0.404741E-05 0.100715E-05 0.296425E-06	0.152069E-00 0.139101E-02 0.815831E-04 0.955671E-05 0.164657E-05 0.365195E-06 0.970360E-07
	MEV≖	0.05 Pal	ystyrene				
0 0 2 4 6 8 10 12	0.195355E 01 0.212687E-00 0.597297E-01 0.228004E-01 0.102519E-01 0.512015E-02 0.275469E-02	0.676108E 00 0.378800E-01 0.749028E-02 0.223314E-02 0.827705E-03 0.352473E-03 0.165519E-03	0 • 4 122 48 E - 00 0 • 1 4 1550 E - 01 0 • 208 407 E - 02 0 • 500 1 16 E - 03 0 • 155796 E - 03 0 • 573 4 85E - 04 0 • 237468 E - 04	0.297120E-00 0.690776E-02 0.787901E-03 0.155708E-03 0.413994E-04 0.133205E-04 0.490524E-05	0 • 232425E-00 0 • 390552E-02 0 • 35557TE-03 0 • 589341E-04 0 • 135435E-04 0 • 384498E-05 0 • 126840E-05	0.190926E-00 0.242849E-02 0.180677E-03 0.254926E-04 0.511769E-05 0.129231E-05 0.384336E-06	0.162028E-00 0.161489E-02 0.100058E-03 0.121693E-04 0.215361E-05 0.487115E-06 0.131336E-06
	MEV=	0.10 Pal	ystyrene				
0 0 2 4 6 8 10 12	0.198551E 01 0.220300E-00 0.626532E-01 0.241448E-01 0.109394E-01 0.549814E-02 0.297399E-02	0.669579E 00 0.376414E-01 0.748866E-02 0.224538E-02 0.656447E-03 0.357784E-03 0.168677E-03	0.403755E-00 0.137137E-01 0.201586E-02 0.484100E-03 0.151036E-03 0.556961E-04 0.231057E-04	0.289198E-00 0.657693E-02 0.743515E-03 0.146295E-03 0.388083E-04 0.124723E-04 0.459056E-05	0.225329E-00 0.367127E-02 0.329119E-03 0.540459E-04 0.123449E-04 0.348996E-05 0.114782E-05	0 • 184586E-00 0 • 226056E-02 0 • 164642E-03 0 • 229107E-04 0 • 455467E-05 0 • 114184E-05 0 • 337704E-06	0.156329E-00 0.149158E-02 0.900089E-04 0.107510E-04 0.187750E-05 0.420354E-06 0.112424E-06
	MEV=	0.20 Pal	ystyrene				
0 0 2 4 6 8 10 12	0.196823E 01 0.219506E-00 0.625948E-01 0.241450E-01 0.109386E-01 0.549382E-02 0.296822E-02	0.673091E 00 0.381810E-01 0.763043E-02 0.854619E-03 0.354619E-03 0.365491E-03 0.172181E-03	0.408310E-00 0.140673E-01 0.208344E-02 0.502355E-03 0.157057E-03 0.579669E-04 0.240493E-04	0.293439E-00 0.679966E-02 0.776883E-03 0.153821E-03 0.409575E-04 0.131914E-04 0.486053E-05	0+229123E-00 0+381777E-02 0+346898E-03 0+574507E-04 0+131947E-04 0+374345E-05 0+123394E-05	0.187973E-00 0.236138E-02 0.174775E-03 0.245804E-04 0.492200E-05 0.124008E-05 0.368015E-06	0.159371E-00 0.156371E-02 0.961173E-04 0.116265E-04 0.204856E-05 0.461594E-06 0.124027E-06
	MEV=	0.40 Pol	ystyrene				
0 0 2 4 6 8 10 12	0.193766E 01 0.218261E-00 0.627574E-01 0.243562E-01 0.110860E-01 0.558835E-02 0.302822E-02	0.679408E 00 0.391898E-01 0.792111E-02 0.899909E-02 0.89968E-03 0.386541E-03 0.182768E-03	0.416582E-00 0.147299E-01 0.221757E-02 0.540813E-03 0.170507E-03 0.633389E-04 0.264128E-04	0.301188E-00 0.72200E-02 0.842919E-03 0.169442E-03 0.456270E-04 0.148236E-04 0.549981E-05	0.236082E-00 0.409610E-02 0.382184E-03 0.645026E-04 0.150264E-04 0.431067E-05 0.143360E-05	0.194204E-00 0.255401E-02 0.194978E-03 0.280462E-04 0.571325E-05 0.145905E-05 0.437767E-06	0.164982E-00 0.170220E-02 0.108354E-03 0.134507E-04 0.241794E-05 0.553598E-06 0.150699E-06
	MEV≃	0.70 Pal	ystyrene				
0 0 2 4 6 8 10 12	0 • 188873E 01 0 • 215270E=00 0 • 626699E=01 0 • 245758E=01 0 • 112846E=01 0 • 573187E=02 0 • 312693E=02	0.689809E 00 0.407720E-01 0.838907E-02 0.257604E-02 0.976854E-03 0.423645E-03 0.201931E-03	0*430416E-00 0*158417E-01 0*244854E-02 0*608860E-03 0*194914E-03 0*733158E-04 0*308969E-04	0.314279E-00 0.794732E-02 0.960810E-03 0.198154E-03 0.544359E-04 0.179747E-04 0.675996E-05	0*247924E-00 0*458742E-02 0*446810E-03 0*778431E-04 0*185905E-04 0*544182E-05 0*184052E-05	0.204863E-00 0.289910E-02 0.232721E-03 0.347582E-04 0.729358E-05 0.190822E-05 0.584229E-06	0.174618E-00 0.195315E-02 0.131588E-03 0.170543E-04 0.317261E-05 0.747098E-06 0.208233E-06
	MEV≃	1.00 Pal	ystyrene				
0 0 2 4 6 8 10 12	0.184048E 01 0.211703E-00 0.623553E-01 0.247074E-01 0.114492E-01 0.586319E-02 0.322234E-02	0+700436E 00 0+423657E-01 0+887136E-02 0+276277E-02 0+106003E-02 0+464386E-03 0+223328E-03	0.444834E-00 0.170285E-01 0.270213E-02 0.685465E-03 0.222990E-03 0.850096E-04 0.362408E-04	0.328097E-00 0.874766E-02 0.109529E-02 0.231899E-03 0.650511E-04 0.218542E-04 0.834057E-05	0 • 260535E-00 0 • 517972E-02 0 • 522667E-03 0 • 940610E-04 0 • 230510E-04 0 • 689282E-05 0 • 237375E-05	0.216291E-00 0.329342E-02 0.278053E-03 0.431500E-04 0.933610E-05 0.250531E-05 0.783703E-06	0.185003E-00 0.224369E-02 0.160032E-03 0.216689E-04 0.417573E-05 0.101255E-05 0.289343E-06
	MEV=	2.00 Poly	styrene				
0 0 2 4 6 8 10 12	0.168928E 01 0.197669E-00 0.599089E-01 0.243673E-01 0.115575E-01 0.604347E-02 0.336491E-02	0.736399E 00 0.477535E-01 0.105252E-01 0.341351E-02 0.135438E-02 0.610544E-03 0.301042E-03	0.495786E-00 0.215027E-01 0.370237E-02 0.998604E-03 0.341179E-03 0.135471E-03 0.597951E-04	0.378345E-00 0.119607E-01 0.167337E-02 0.384848E-03 0.115282E-03 0.408845E-04 0.163358E-04	0.307342E-00 0.746158E-02 0.870871E-03 0.173778E-03 0.462352E-04 0.147959E-04 0.539667E-05	0.259366E-00 0.501246E-02 0.497573E-03 0.872888E-04 0.606431E-05 0.203258E-05	0 • 224624E-00 0 • 354851E-02 0 • 304125E-03 0 • 473965E-04 0 • 102299E-04 0 • 272616E-05 0 • 844244E-06

Table 2. Spatial Moments, Plane Isotropic Source — Continued

		n	p=-1/2	1/2	3/2	5/2	7/2	9/2	11/2
			ME:V= 4	•00 Pol	lystyrene				
l	= 0 1	0 2 4 6 8 10 12	0.151748E 01 0.181303E-00 0.573708E-01 0.243315E-01 0.119923E-01 0.649528E-02 0.375781E-02	0.783171E 00 0.557602E-01 0.132424E-01 0.457095E-02 0.191323E-02 0.903853E-03 0.464687E-03	0.567284E 00 0.289184E-01 0.557353E-02 0.644333E-02 0.604591E-03 0.255779E-03 0.119341E-03	0.452523E-00 0.177714E-01 0.288344E-02 0.744208E-03 0.245128E-03 0.942419E-04 0.403929E-04	0.379038E-00 0.119649E-01 0.167210E-02 0.383801E-03 0.114568E-03 0.404271E-04 0.160510E-04	0.327244E-00 0.854434E-02 0.104523E-02 0.215812E-03 0.589070E-04 0.192193E-04 0.711324E-05	0 • 288489E-00 0 • 636265E-02 0 • 689710E-03 0 • 129231E-03 0 • 324796E-04 0 • 985495E-05 0 • 341694E-05
			MEV=10	•00 Pol	ystyrene				
	0	0 2 4 6 8	0.131041E 01 0.158946E-00 0.535286E-01 0.242518E-01 0.127343E-01 0.731978E-02	0.851004E 00 0.694258E-01 0.185185E-01 0.707505E-02 0.324029E-02 0.165969E-02	0.682461E 00 0.438542E-01 0.100261E-01 0.340310E-02 0.141318E-02 0.665135E-03	0.580966E 00 0.310214E-01 0.626536E-02 0.193030E-02 0.739111E-03 0.324127E-03	0.510111E 00 0.233106E-01 0.423216E-02 0.119862E-02 0.427491E-03 0.176166E-03	0.456785E-00 0.182148E-01 0.300793E-02 0.789959E-03 0.264276E-03 0.102950E-03	0.414738E-00 0.146364E-01 0.221759E-02 0.543561E-03 0.171474E-03 0.634292E-04
	1	12	0.447754E-02	0.918293E-03	0•341420E-03	0.156194E-03	0.802865E-04	0.446046E-04	0.262294E-04

Table 2. Spatial Maments, Plane Perpendicular Source

n	p=-1/2	1/2	3/2	5/2	7/2	9/2	11/2
	MEV=	0•025 Z=	6•				
L=0 0	0.200623E 01	0.665423E 00	0.398403E-00	0.284237E-00	0 • 220907E -00	0.180648E-00	0.152797E-00
1	0.775878E 00	0.185371E-00	0.866827E-01	0.507241E-01	0 • 334119E -01	0.237070E-01	0.177082E-01
2	0.403694E-00	0.747481E-01	0.287182E-01	0.143033E-01	0 • 821343E -02	0.516994E-02	0.347193E-02
3	0.229335E-00	0.350140E-01	0.114897E-01	0.500519E-02	0 • 255752E -02	0.145139E-02	0.887905E-03
4	0.142350E-00	0.184342E-01	0.527029E-02	0.203848E-02	0 • 937970E -03	0.484612E-03	0.272287E-03
5	0.920499E-01	0.103813E-01	0 • 263427E-02	0.917319E-03	0•384246E-03	0.182340E-03	0•947866E-04
6	0.623239E-01	0.622012E-02	0 • 141788E-02	0.448735E-03	0•172427E-03	0.756312E-04	0•365705E-04
7	0.432490E-01	0.387725E-02	0 • 803079E-03	0.233087E-03	0•827647E-04	0.337604E-04	0•152630E-04
8	0.308954E-01	0.251355E-02	0 • 476938E-03	0.127801E-03	0•421687E-04	0.160719E-04	0•682128E-05
9	0.224427E-01	0.167291E-02	0 • 293062E-03	0.729669E-04	0•224929E-04	0.804692E-05	0•321890E-05
10	0.166376E-01	0.114432E-02	0•186164E-03	0.432825E-04	0•125182E-04	0.421921E-05	0.159583E-05
11	0.124860E-01	0.797676E-03	0•121189E-03	0.264364E-04	0•720328E-05	0.229550E-05	0.823527E-06
12	0.951441E-02	0.567480E-03	0•808698E-04	0.166152E-04	0•427937E-05	0.129320E-05	0.441210E-06
	MEV=	0•05 Z=	6 •				
0 0	0.195082E 01	0.676671E 00	0.412986E-00	0.297812E-00	0.233046E-00	0.191482E-00	0.162529E-00
1	0.760494E 00	0.191484E-00	0.921155E-01	0.548962E-01	0.366282E-01	0.262398E-01	0.197468E-01
2	0.394309E-00	0.775606E-01	0.309137E-01	0.157929E-01	0.924108E-02	0.590229E-02	0.401032E-02
3	0.223980E-00	0.364855E-01	0.124927E-01	0.561305E-02	0.293711E-02	0.169870E-02	0.105546E-02
4	0.138547E-00	0.192188E-01	0.576276E-02	0.231042E-02	0.109364E-02	0.578218E-03	0.331179E-03
5	0.894289E-01	0.108325E-01	0.289427E-02	0.104896E-02	0.453771E-03	0.221152E-03	0+117581E-03
6	0.603383E-01	0.648362E-02	0.156162E-02	0.516276E-03	0.205608E-03	0.929351E-04	0+461055E-04
7	0.417689E-01	0.403896E-02	0.886444E-03	0.269600E-03	0.995276E-04	0.419620E-04	0+195196E-04
8	0.297334E-01	0.261353E-02	0.526813E-03	0.148343E-03	0.510346E-04	0.201609E-04	0+882780E-05
9	0.215393E-01	0.173697E-02	0.323937E-03	0.849627E-04	0.273776E-04	0.101775E-04	0+421045E-05
10	0.159118E-01	0.118540E-02	0•205702E-03	0.504929E-04	0•153012E-04	0•537155E-05	0.210604E-05
11	0.119066E-01	0.824739E-03	0•133876E-03	0.308939E-04	0•883852E-05	0•293995E-05	0.109565E-05
12	0.904111E-02	0.585221E-03	0•892424E-04	0.194316E-04	0•526512E-05	0•166408E-05	0.590951E-06
	MEV≃ (0.10 Z=	6•				
0 0	0.198330E 01	0.670026E 00	0.404333E-00	0.289734E-00	0.225809E-00	0.185014E-00	0.156713E-00
1	0.784967E 00	0.190559E-00	0.898725E-01	0.528804E-01	0.349676E-01	0.248829E-01	0.186286E-01
2	0.409145E-00	0.772044E-01	0.300110E-01	0.150702E-01	0.870698E-02	0.550685E-02	0.371242E-02
3	0.234077E-00	0.364165E-01	0.121050E-01	0.532441E-02	0.274136E-02	0.156531E-02	0.962493E-03
4	0.145405E-00	0.192068E-01	0.557148E-02	0.217955E-02	0.101213E-02	0.526925E-03	0.297973E-03
5	0.943347E-01	0.108528E-01	0.279656E-02	0.986006E-03	0.417302E-03	0.199763E-03	0.104626E-03
6	0.638747E-01	0.650659E-02	0.150771E-02	0.483700E-03	0.188013E-03	0.832861E-04	0.406195E-04
7	0.443950E-01	0.406278E-02	0.855987E-03	0.252062E-03	0.906213E-04	0.373670E-04	0.170549E-04
8	0.316988E-01	0.263353E-02	0.508690E-03	0.138419E-03	0.462873E-04	0.178503E-04	0.765544E-05
9	0.230394E-01	0.175403E-02	0.312966E-03	0.791847E-04	0.247576E-04	0.896903E-05	0.362825E-05
10	0.170647E-01	0.119907E-02	0.198801E-03	0•470035E-04	0•137991E-04	0•471348E-05	0.180434E-05
11	0.128054E-01	0.835883E-03	0.129479E-03	0•287402E-04	0•795419E-05	0•257069E-05	0.934063E-06
12	0.974589E-02	0.594066E-03	0.863562E-04	0•180644E-04	0•472895E-05	0•145030E-05	0.501499E-06
	MEV≃ (0•20 Z=	6 •				
0 0	0.196614E 01	0.673518E 00	0.408867E-00	0•293959E-00	0 • 229589E-00	0 • 188389E-00	0+159745E-00
1	0.785821E 00	0.193501E-00	0.919621E-01	0•543781E-01	0 • 360837E-01	0 • 257442E-01	0+193125E-01
2	0.409596E-00	0.785816E-01	0.308582E-01	0•156056E-01	0 • 906392E-02	0 • 575615E-02	0+389328E-02
3	0.234950E-00	0.371874E-01	0.125044E-01	0•554697E-02	0 • 287482E-02	0 • 165023E-02	0+101914E-02
4	0.145910E-00	0.196283E-01	0.576784E-02	0•227881E-02	0 • 106661E-02	0 • 558899E-03	0+317777E-03
5	0.947531E-01	0.111066E-01	0.290192E-02	0.103441E-02	0.441714E-03	0.213034E-03	0.112288E-03
6	0.641268E-01	0.665948E-02	0.156617E-02	0.508500E-03	0.199626E-03	0.891787E-04	0.438099E-04
7	0.445800E-01	0.416058E-02	0.890291E-03	0.265533E-03	0.964986E-04	0.401599E-04	0.184776E-04
8	0.318095E-01	0.269621E-02	0.529301E-03	0.145994E-03	0.493890E-04	0.192386E-04	0.832379E-05
9	0.231152E-01	0.179589E-02	0.325842E-03	0.836225E-04	0.264679E-04	0.969214E-05	0.395814E-05
10	0.171068E-01	0•122705E-02	0.206983E-03	0•496696E-04	0•147717E-04	0•510358E-05	0•197360E-05
11	0.128309E-01	0•855161E-03	0.134830E-03	0•303915E-04	0•852569E-05	0•278867E-05	0•102421E-05
12	0.975629E-02	0•607344E-03	0.899001E-04	0•191068E-04	0•507274E-05	0•157543E-05	0•550971E-06
	MEV= (0+40 Z=	6				
0 0	0.193695E 01	0.679556E 00	0.416776E-00	0.301370E-00	0.236247E-00	0.194352E-00	0 • 165115E-00
1	0.787531E 00	0.198716E-00	0.956897E-01	0.570650E-01	0.380952E-01	0.273023E-01	0 • 205536E-01
2	0.412566E-00	0.813962E-01	0.325102E-01	0.166354E-01	0.974684E-02	0.623204E-02	0 • 423822E-02
3	0.238355E-00	0.388541E-01	0.133212E-01	0.599382E-02	0.314064E-02	0.181870E-02	0 • 113131E-02
4	0.148560E-00	0.206183E-01	0.619256E-02	0.248748E-02	0.117967E-02	0.624810E-03	0 • 358449E-03
5	0.969068E-01	0.117309E-01	0.313823E-02	0.113948E-02	0.493919E-03	0.241194E-03	0.128478E-03
6	0.657633E-01	0.706029E-02	0.170289E-02	0.564187E-03	0.225217E-03	0.102037E-03	0.507353E-04
7	0.458646E-01	0.442820E-02	0.973035E-03	0.296575E-03	0.109758E-03	0.463928E-04	0.216343E-04
8	0.327963E-01	0.287777E-02	0.580825E-03	0.163942E-03	0.565573E-04	0.224063E-04	0.983853E-05
9	0.238909E-01	0.192250E-02	0.358965E-03	0.943803E-04	0.305009E-04	0.113732E-04	0.471939E-05
10	0.177115E-01	0.131647E-02	0.228736E-03	0.562951E-04	0.171136E-04	0.602778E-05	0.237119E-05
11	0.133104E-01	0.919618E-03	0.149461E-03	0.345841E-04	0.992710E-05	0.331369E-05	0.123931E-05
12	0.101352E-01	0.654289E-03	0.999038E-04	0.218158E-04	0.593207E-05	0.188197E-05	0.670878E-06

	n	p=-1/2	1/2	3/2	5/2	7/2	9/2	11/2
		MEV= 0	•70 Z=	6.				
<i>l</i> =0	0	0.188794E 01	0.689981E 00	0.430648E-00	0.314500E-00	0.248124E-00	0.205044E-00	0.174782E-00
	1	0.784723E 00	0.206911E-00	0.102020E-00	0.617800E-01	0.416952E-01	0.301287E-01	0.228276E-01
	2	0.415246E-00	0.861150E-01	0.354420E-01	0.185161E-01	0.110177E-01	0.712989E-02	0.489600E-02
	3	0.242517E-00	0.416984E-01	0.148013E-01	0.682984E-02	0.364885E-02	0.214605E-02	0.135206E-02
	4	0.152262E-00	0.223617E-01	0.698296E-02	0.288844E-02	0.140191E-02	0.756665E-03	0.440984E-03
	5	0.100060E-00	0.128459E-01	0.358506E-02	0.134511E-02	0.598676E-03	0.298827E-03	0.162155E-03
	6	0.682933E-01	0.779107E-02	0.196619E-02	0.675240E-03	0.277611E-03	0.128929E-03	0.654784E-04
	7	0.479040E-01	0.492198E-02	0.113439E-02	0.359360E-03	0.137339E-03	0.596600E-04	0.284860E-04
	8	0.344180E-01	0.321813E-02	0.682729E-03	0.200772E-03	0.717020E-04	0.292636E-04	0.131868E-04
	9	0.251921E-01	0.216238E-02	0.425174E-03	0.116713E-03	0.391320E-04	0.150646E-04	0.642877E-05
	10	0.187527E-01	0.148820E-02	0.272736E-03	0.702153E-04	0.221898E-04	0.808542E-05	0.327744E-05
	11	0.141507E-01	0.104465E-02	0.179333E-03	0.434808E-04	0.129981E-04	0.449677E-05	0.173614E-05
	12	0.108140E-01	0.746457E-03	0.120543E-03	0.276242E-04	0.783585E-05	0.258086E-05	0.951380E-06
		MEV= 1	•00 Z=	6.				
0	0	0.183977E 01	0.700595E 00	0.445051E-00	0.328306E-00	0.260727E-00	0.216466E=00	0.185162E-00
	1	0.779351E 00	0.215034E-00	0.108634E-00	0.668357E-01	0.456213E-01	0.332497E=01	0.253628E-01
	2	0.417028E-00	0.910255E-01	0.386246E-01	0.206105E-01	0.124593E-01	0.816322E=02	0.5566189E-02
	3	0.246111E-00	0.447124E-01	0.164440E-01	0.778555E-02	0.424274E-02	0.253532E=02	0.161836E-02
	4	0.155778E-00	0.242547E-01	0.788124E-02	0.335869E-02	0.166899E-02	0.918299E=03	0.543855E-03
	5	0.103138E-00	0.140729E-01	0.410124E-02	0.159102E-02	0.727419E-03	0.371273E-03	0.205305E-03
	6	0.708484E-01	0.860829E-02	0.227544E-02	0.810530E-03	0.343356E-03	0.163521E-03	0.844526E-04
	7	0.499951E-01	0.548004E-02	0.132630E-02	0.437000E-03	0.172556E-03	0.770669E-04	0.374898E-04
	8	0.361154E-01	0.36C752E-02	0.805497E-03	0.246979E-03	0.913580E-04	0.384269E-04	0.177766E-04
	9	0.265698E-01	0.243929E-02	0.505761E-03	0.145074E-03	0.504928E-04	0.200773E-04	0.881456E-05
	10	0.198720E-01	0.168844E-02	0.326855E-03	0.881021E-04	0.289616E-04	0.109220E-04	0•456374E-05
	11	0.150629E-01	0.119158E-02	0.216399E-03	0.550297E-04	0.171435E-04	0.614982E-05	0•245207E-05
	12	0.115599E-01	0.855703E-03	0.146382E-03	0.352399E-04	0.104349E-04	0.356995E-05	0•136139E-05
		MEV= 2	•00 Z=	6.				
٥	0	0.168856E 01	0.736579E 00	0.496049E-00	0.378611E-00	0.307593E-00	0.259600E-00	0.224841E-00
	1	0.749520E 00	0.241768E-00	0.132702E-00	0.862225E-01	0.612275E-01	0.459963E-01	0.359423E-01
	2	0.413272E-00	0.107601E-00	0.506534E-01	0.290584E-01	0.185519E-01	0.126912E-01	0.911811E-02
	3	0.250831E-00	0.551498E-01	0.228826E-01	0.118254E-01	0.689727E-02	0.435412E-02	0.290902E-02
	4	0.162281E-00	0.309520E-01	0.115128E-01	0.542854E-02	0.292266E-02	0.171751E-02	0.107514E-02
	5	0.109636E-00	0.184990E-01	0.624697E-02	0.271340E-02	0.135897E-02	0.748298E-03	0:441400E-03
	6	0.766172E-01	0.116030E-01	0.359178E-02	0.144779E-02	0.678622E-03	0.351934E-03	0:196492E-03
	7	0.549461E-01	0.755515E-02	0.216089E-02	0.813281E-03	0.358568E-03	0.175886E-03	0:932959E-04
	8	0.402654E-01	0.507326E-02	0.134940E-02	0.476614E-03	0.198488E-03	0.924242E-04	0:467231E-04
	9	0.300307E-01	0.349374E-02	0.368966E-03	0.289301E-03	0.114220E-03	0.506465E-04	0:244686E-04
	10	0.227420E-01	0.245857E-02	0.574496E-03	0.180963E-03	0•679481E-04	0.287693E-04	0•133153E-04
	11	0.174461E-01	0.176216E-02	0.388430E-03	0.116148E-03	0•415924E-04	0.168566E-04	0•749013E-05
	12	0.135382E-01	0.128357E-02	0.267849E-03	0.762512E-04	0•261061E-04	0.101494E-04	0•433805E-05
		MEV= 4	•00 Z=	6•				
0	0	0.151704E 01	0.783300E 00	0.567490E 00	0.452743E-00	0.379255E-00	0.327453E-00	0+288689E-00
	1	0.710917E 00	0.279926E-00	0.170542E-00	0.118835E-00	0.888722E-01	0.695287E-01	0+561510E-01
	2	0.410431E-00	0.133749E-00	0.716391E-01	0.450107E-01	0.308126E-01	0.222955E-01	0+167826E-01
	3	0.259722E-00	0.728698E-01	0.351120E-01	0.202348E-01	0.128563E-01	0.870521E-02	0+616988E-02
	4	0.174128E-00	C.430710E-01	0.189379E-01	0.101192E-01	0.602040E-02	0.384385E-02	0+258240E-02
	5 6 7 8 9	0.121481E-00 C.873658E-01 0.643352E-01 C.483073E-01 C.368607E-01	0.269368E-01 0.175828E-01 C.118674E-01 0.823189E-02 0.584086E-02	0.109191E-01 0.562226E-02 C.417909E-02 0.272446E-02 0.182481E-02	0.545210E-02 C.310843E-02 0.185301E-02 0.114572E-02 0.730310E-03	0.305706E-02 0.165078E-02 0.935792E-03 0.552061E-03 0.336714E-03	0.185068E-02 0.951600E-03 0.515454E-03 0.291406E-03 0.170746E-03	<pre> 0.118432E-02 0.582256E-03 0.302485E-03 0.164430E-03 0.928451E-04 </pre>
	10	0.285174E-01	0.422512E-02	0.125073E-02	0.477781E-03	0•211303E-03	0.103159E-03	0.541592E-04
	11	C.223250E-01	C.310731E-02	0.874410E-03	0.319653E-03	0•135902E-03	0.639978E-04	0.324955E-04
	12	0.176605E-01	0.231860E-02	C.622020E-03	0.218101E-03	0•893129E-04	0.406374E-04	0.199862E-04
		MEV=10	•00 Z=	6.				
0	0	C.131270E 01	0.850168E 00	0.680953E 00	0.579212E 00	0.508263E 00	0.454913E-00	0.412875E-00
	1	C.651212E 00	0.340514E-00	0.240074E-00	0.184960E-00	0.149337E-00	0.124268E-00	0.105652E-00
	2	0.401648E-00	0.180575E-00	0.115752E-00	0.826969E-01	0.626065E-01	0.492114E-01	0.397375E-01
	3	0.270937E-00	0.108034E-00	0.640418E-01	0.429708E-01	0.308235E-01	0.230931E-01	0.178513E-01
	4	C.192561E-00	0.693910E-01	0.384454E-01	0.244235E-01	0.167112E-01	0.120030E-01	0.892856E-02
	5	0.141749E-00	0.467645E-01	0.243967E-01	0.147578E-01	0.967788E-02	0.669197E-02	0.480799E-02
	6	C.107094E-00	0.326570E-01	C.161320E-01	C.933191E-02	0.588644E-02	0.393082E-02	0.273551E-02
	7	0.825615E-01	0.234445E-01	O.110147E-01	0.611394E-02	0.372020E-02	0.240513E-02	0.162486E-02
	8	C.647000E-01	0.172120E-01	C.771869E-02	0.412260E-02	0.242546E-02	0.152125E-02	0.999541E-03
	9	0.513958E-01	C.128731E-01	0.552705E-02	0.284718E-02	0.162283E-02	0.989158E-03	0.633085E-03
	10	3.413020E-01	0.978104E-02	0.403102E-02	0.200680E-02	0.111002E-02	0.658494E-03	0.411079E-03
	11	6.335225E-01	0.753319E-02	0.298680E-02	0.143953E-02	0.773857E-03	0.447377E-03	0.272730E-03
	12	3.274468E-01	0.587122E-02	0.224396E-02	0.104865E-02	0.548588E-03	0.309423E-03	0.184395E-03

57

n	p=-1/2	1/2	3/2	5/2	7/2	9/2	11/2
	MEV=	0•025 Z=1	3.				
l = 0 0	0.203906E 01	0.658958E 00	0.390161E-00	0.276646E-00	0•214169E-00	0.174667E-00	0 • 1 • 7 • 4 8 E - 00
1	0.560891E 00	0.141344E-00	0.683960E-01	0.409665E-01	0•274409E-01	0.197177E-01	0 • 1 • 8 7 3 7 E - 01
2	0.246525E=00	0.482409E-01	0.192809E-01	0.989262E-02	0•581444E-02	0.372930E-02	0 • 2 5 • 3 6 0 E - 02
3	0.114489E=00	0.188148E-01	0.649958E-02	0.294300E-02	0•155048E-02	0.902158E-03	0 • 5 6 3 5 7 6 E - 03
4	0.616519E=01	0.861956E-02	0.259981E-02	0.104740E-02	0•497977E-03	0.264381E-03	0 • 1 5 2 0 2 7 E - 03
5	0.341734E-01	0.419965E-02	0.113096E-02	0.411974E-03	0.178912E-03	0.874901E-04	0.466618E-04
6	0.204383E-01	0.223083E-02	0.540876E-03	0.179350E-03	0.715414E-04	0.323736E-04	0.160774E-04
7	0.124584E-01	0.122910E-02	0.271904E-03	0.829333E-04	0.306396E-04	0.129173E-04	0.600698E-05
8	0.796245E-02	0.715314E-03	0.145291E-03	0.409782E-04	0.140849E-04	0.555349E-05	0.242635E-05
9	0.515980E-02	0.426662E-03	0.802685E-04	0.210862E-04	0.678366E-05	0.251428E-05	0.103656E-05
10	0.345534E-02	0.264418E-03	0.462930E-04	0•113733E-04	0•343691E-05	0•120121E-05	0•468588E-06
11	0.233870E-02	0.166829E-03	0.273483E-04	0•631683E-05	0•180121E-05	0•595965E-06	0•220740E-06
12	0.162208E-02	0.108302E-03	0.166841E-04	0•363468E-05	0•980757E-06	0•307991E-06	0•108564E-06
	MEV=	0.05 Z=1	3•				
0 0	0.198057E 01	0.670578E 00	0.405047E-00	0.290399E-00	0.226403E-00	0.185544E-00	0.157189E-00
1	0.543576E 00	0.144828E=00	0.722112E-01	0.440978E-01	0.299475E-01	0.217424E-01	0.165342E-01
2	0.235139E-00	0.491161E=01	0.204189E-01	0.107657E-01	0.645705E-02	0.420734E-02	0.290635E-02
3	0.108350E-00	0.190939E=01	0.690198E-02	0.322972E-02	0.174515E-02	0.103621E-02	0.658197E-03
4	0.575659E-01	0.867334E=02	0.275356E-02	0.115278E-02	0.564912E-03	0.307396E-03	0.180432E-03
5	0.316229E-01	0.420053E-02	0.119570E-02	0.454567E-03	0.204304E-03	0.102783E-03	0.561486E-04
6	0.186833E-01	0.221114E-02	0.569007E-03	0.197737E-03	0.819546E-04	0.382939E-04	0.195449E-04
7	0.112824E-01	0.120945E-02	0.284873E-03	0.913700E-04	0.351922E-04	0.153692E-04	0.736759E-05
8	0.712875E-02	0.697376E-03	0.151273E-03	0.450122E-04	0.161817E-04	0.662984E-05	0.299472E-05
9	0.457603E-02	0.412695E-03	0.831181E-04	0.230983E-04	0.779375E-05	0.300991E-05	0.128632E-05
10	0.303116E-02	0.253392E-03	0.476028E-04	0.124039E-04	0.394183E-05	0.143930E-05	0•583511E-06
11	0.203234E-02	0.158566E-03	0.279456E-04	0.686113E-05	0.206218E-05	0.714502E-06	0•275673E-06
12	0.139488E-02	0.101989E-03	0.169223E-04	0.392693E-05	0.111938E-05	0.368934E-06	0•135766E-06
	MEV≖	0+10 Z=1	3•				
0 0	0.198161E 01	0.670368E 00	0.404776E-00	0.290147E-00	0•226177E-00	0 • 185342E-00	0.157008E-00
1	0.550135E 00	0.146071E-00	0.726769E-01	0.443178E-01	0•300650E-01	0 • 218099E-01	0.165748E-01
2	0.237612E-00	0.494515E-01	0.205123E-01	0.107985E-01	0•646959E-02	0 • 421200E-02	0.290768E-02
3	0.110031E-00	0.192869E-01	0.694764E-02	0.324320E-02	0•174931E-02	0 • 103727E-02	0.658170E-03
4	0.584098E-01	0.875133E-02	0.276787E-02	0.115563E-02	0•565152E-03	0 • 307041E-03	0.179998E-03
5	0.321740E-01	0.424612E-02	0.120324E-02	0.455908E-03	0.204381E-03	0.102614E-03	0.559646E-04
6	0.189949E-01	0.223310E-02	0.571952E-03	0.198054E-03	0.818578E-04	0.381633E-04	0.194427E-04
7	0.114879E-01	0.122268E-02	0.286502E-03	0.915287E-04	0.351426E-04	0.153084E-04	0.732291E-05
8	0.725261E-02	0.704343E-03	0.151973E-03	0.450344E-04	0.161363E-04	0.659334E-05	0.297149E-05
9	0.465897E-02	0.416987E-03	0.835109E-04	0.231056E-04	0.776855E-05	0.299136E-05	0.127522E-05
10	0•308322E-02	0.255764E-03	0.477732E-04	0•123922E-04	0•392369E-05	0•142829E-05	0•577548E-06
11	0•206768E-02	0.160047E-03	0.280388E-04	0•685163E-05	0•205140E-05	0•708469E-06	0•272592E-06
12	0•141764E-02	0.102825E-03	0.169581E-04	0•391635E-05	0•111196E-05	0•365271E-06	0•134036E-06
	MEV=	0•20 Z=1	3•				
0 0	0.196899E 01	0.672936E 00	0.408108E-00	0.293251E-00	0.228954E-00	0.187822E-00	0.159235E-00
1	0.555017E 00	0.148675E-00	0.742974E-01	0.454302E-01	0.308786E-01	0.224321E-01	0.170666E-01
2	0.239490E-00	0.503902E-01	0.210347E-01	0.111216E-01	0.668455E-02	0.436283E-02	0.301786E-02
3	0.111623E-00	0.197707E-01	0.716893E-02	0.336249E-02	0.182037E-02	0.108263E-02	0.688660E-03
4	0.592385E-01	0.897652E-02	0.286094E-02	0.120140E-02	0.590237E-03	0.321881E-03	0.189298E-03
5	0.327506E-01	0.437081E-02	0.124848E-02	0.475995E-03	0.214468E-03	0.108135E-03	0.591898E-04
6	0.193308E-01	0.229936E-02	0.594068E-03	0.207149E-03	0.861119E-04	0.403435E-04	0.206403E-04
7	0.117170E-01	0.126173E-02	0.298325E-03	0.960106E-04	0.370931E-04	0.162445E-04	0.780699E-05
8	0.739470E-02	0.726838E-03	0.158328E-03	0.472922E-04	0.170608E-04	0.701237E-05	0.317678E-05
9	0.475657E-02	0.430890E-03	0.871440E-04	0.243120E-04	0.823316E-05	0.319035E-05	0.136769E-05
10	0•314628E-02	0.264225E-03	0.498591E-04	0.130472E-04	0•416292E-05	0.152571E-05	0.620696E-06
11	0•211153E-02	0.165470E-03	0.292923E-04	0.722320E-05	0•218007E-05	0.758322E-06	0.293660E-06
12	0•144681E∽02	0.106261E-03	0.177138E-04	0.412972E-05	0•118247E-05	0.391386E-06	0.144606E-06
	MEV=	0.40 Z=1	3				
0 0	0.193635E 01	0.679681E 00	0.416941E-00	0.301525E-00	0.236386E-00	0.194477E-00	0.165228E-00
1	0.560952E 00	0.154196E-00	0.780799E-01	0.481457E-01	0.329191E-01	0.240213E-01	0.183397E-01
2	0.242860E-00	0.527236E-01	0.224113E-01	0.119960E-01	0.727566E-02	0.478199E-02	0.332642E-02
3	0.114620E-00	0.209646E-01	0.775758E-02	0.369189E-02	0.202106E-02	0.121270E-02	0.777031E-03
4	0.610421E-01	0.957624E-02	0.312403E-02	0.133484E-02	0.664784E-03	0.366564E-03	0.217569E-03
5	0.340165E-01	0.470361E-02	0.137756E-02	0.535408E-03	0.244995E-03	0•125117E-03	0.692283E-04
6	0.201408E-01	0.248577E-02	0.659831E-03	0.235037E-03	0.994248E-04	C•472672E-04	0.244868E-04
7	0.122778E-01	0.137266E-02	0.333884E-03	0.109937E-03	0.432884E-04	0•192663E-04	0.938923E-05
8	0.776954E-02	0.793614E-03	0.178104E-03	0.545151E-04	0.200759E-04	0•839901E-05	0.386409E-05
9	0.501960E-02	0.472766E-03	0.986062E-04	0.282250E-04	0.976999E-05	0•3858512-05	0.168197E-05
10	0•332794E-02	0.290764E-03	0.566465E-04	0.152279E-04	0.497282E-05	0.185994E-05	0.770391E-06
11	0•224127E-02	0.182797E-03	0.334365E-04	0.847866E-05	0.262196E-05	0.931790E-06	0.367789E-06
12	0•153875E-02	0.117678E-03	0.202871E-04	0.486857E-05	0.142988E-05	0.484068E-06	0.182498E-06

	n	p=-1/2	1/2	3/2	5/2	7/2	9/2	11/2
		MEV= C	0.70 Z=1	3.				
l=0	0	0.187981E 01	0.691746E 00	0.433023E-00	0.316764E-00	0.250183E-00	0.206905E-00	0.176469E-00
	1	0.566164E 00	0.163275E-00	0.847478E-01	0.530956E-01	0.367175E-01	0.270240E-01	0.207720E-01
	2	0.247399E-00	0.568825E-01	0.249941E-01	0.136837E-01	0.843863E-02	0.561854E-02	0.394917E-02
	3	0.118898E-00	0.231038E-01	0.888019E-02	0.434277E-02	0.242742E-02	0.148091E-02	0.961912E-03
	4	0.638515E-01	0.106904E-01	0.364211E-02	0.160714E-02	0.820864E-03	0.462003E-03	0.278936E-03
	5	0.360121E-01	0.532622E-02	0.163500E-02	0.658760E-03	0•310268E-03	0.162275E-03	0•916139E-04
	6	0.214784E-01	0.284287E-02	0.793844E-03	0.294236E-03	0•128568E-03	0.628046E-04	0•332986E-04
	7	0.132138E-01	0.158684E-02	0.407149E-03	0.139913E-03	0•570772E-04	0.261776E-04	0•130920E-04
	8	0.841563E-02	0.924942E-03	0.219538E-03	0.703323E-04	0•269114E-04	0.116341E-04	0•550729E-05
	9	0.547805E-02	0.555814E-03	0.122864E-03	0.368973E-04	0•133030E-04	0.544225E-05	0•244676E-05
	10	0.365262E-02	0.344218E-03	0•712154E-04	0.201312E-04	0•686350E-05	0•266537E-05	0•114122E-05
	11	0.247578E-02	0.217995E-03	0•424153E-04	0.113319E-04	0•366616E-05	0•135558E-05	0•554242E-06
	12	0.170847E-02	0.141188E-03	0•259320E-04	0.656889E-05	0•202232E-05	0•713744E-06	0•279283E-06
		MEV= 1	•00 Z=1	3.				
0	0	0.182231E 01	0.704539E 00	0.450476E-00	0.333553E-00	0.265546E-00	0.220853E-00	0.189164E-00
	1	0.568399E 00	0.172613E-00	0.920220E-01	0.586621E-01	0.410761E-01	0.305206E-01	0.236372E-01
	2	0.251021E=00	0.613611E-01	0.279288E-01	0.156635E-01	0.983424E-02	0.664012E-02	0.472041E-02
	3	0.122626E=00	0.254381E-01	0.101839E-01	0.512814E-02	0.293151E-02	0.182092E-02	0.120043E-02
	4	0.664483E=01	0.119342E-01	0.425868E-02	0.194497E-02	0.102063E-02	0.587229E-03	0.361127E-03
	5	0.378910E-01	0.602870E-02	0.194641E-02	0.815038E-03	0.395928E-03	0.212445E-03	0•122564E-03
	6	0.227731E-01	0.325195E-02	0.958771E-03	0.370771E-03	0.167718E-03	0.843417E-04	0•458414E-04
	7	0.141308E-01	0.183443E-02	0.498477E-03	0.179308E-03	0.759680E-04	0.359775E-04	0•184984E-04
	8	0.906012E-02	0.107853E-02	0.271885E-03	0.914531E-04	0.364512E-04	0.163190E-04	0•796371E-05
	9	0.593989E-02	0.653715E-03	0.153840E-03	0.486342E-04	0.183139E+04	0.777896E-05	0•361441E-05
	10	0.398422E-02	0•407839E-03	0•900253E-04	0•268546E-04	0•958640E-05	0•387473E-05	0.171864E-05
	11	0.271736E-02	0•260189E-03	0•541147E-04	0•152892E-04	0•519061E-05	0•200203E-05	0.849811E-06
	12	0.188528E-02	0•169606E-03	0•333569E-04	0•895362E-05	0•289859E-05	0•106937E-05	0.435313E-06
		MEV= 2	2•00 Z=1	3.				
0	0	0.167676E 01	0.739576E 00	0.500452E 00	0.383056E-00	0•311804E-00	0.263525E-00	0+228488E-00
	1	0.573559E 00	0.200308E-00	0.114760E-00	0.767045E-01	0•555952E-01	0.424243E-01	0+335660E-01
	2	0.263196E-00	0.757799E-01	0.378565E-01	0.226402E-01	0•149184E-01	0.104654E-01	0+767603E-02
	3	0.134599E-00	0.333040E-01	0.148548E-01	0.808553E-02	0•490912E-02	0.320142E-02	0+219772E-02
	4	C.752097E-01	0.163208E-01	0.658325E-02	0.329292E-02	0•185678E-02	0.113323E-02	0+732391E-03
	5	0.442924E-01	0.858878E-02	0.317009E-02	0.146995E-02	0.775147E-03	0.445326E-03	0:272305E-03
	6	0.27313CE-01	0.479173E-02	0.163183E-02	0.705938E-03	0.349963E-03	0.190096E-03	0:110401E-03
	7	0.173932E-01	0.279099E-02	0.883537E-03	0.358662E-03	0.167945E-03	0.865998E-04	0:479341E-04
	8	0.114034E-01	0.168730E-02	0.499391E-03	0.191098E-03	0.848442E-04	0.416671E-04	0:220445E-04
	9	0.764399E-02	0.105039E-02	0.292161E-03	0.105824E-03	0.447031E-04	0.209714E-04	0:106329E-04
	10	0.523013E-02	0.671234E-03	0•176193E-03	0.606147E-04	0•244329E-04	0.109769E-04	0.534560E-05
	11	0.363788E-02	C.438254E-03	0•108974E-03	0.357178E-04	0•137744E-04	0.594012E-05	0.278417E-05
	12	0.256976E-02	0.291808E-03	0•689538E-04	0.215891E-04	0•798358E-05	0.331135E-05	0.149646E-05
		MEV= 4	•00 Z=1	3.				
0	0	0.150159E 01	0.767877E 00	0.574821E 00	04460590E-00	0.387016E-00	0.334933E-00	0.295827E-00
	1	0.572468E 00	0.242184E-00	0.153087E-00	0.109311E-00	0.832301E-01	0.660300E-01	0.539302E-01
	2	0.279520E-00	0.100374E-00	0.567412E-01	0.370087E-01	0.260649E-01	0.192938E-01	0.147989E-01
	3	0.151933E-00	0.478173E-01	0.246255E-01	0.148771E-01	0.980345E-02	0.683761E-02	0.496803E-02
	4	0.890286E-01	0.250165E-01	0.118675E-01	0.669737E-02	0.415842E-02	0.274958E-02	0.190268E-02
	5 67 8 9	0.548428E-01 0.351621E-01 0.232361E-01 0.157540E-01 0.109048E-01	0.139612E-01 0.819614E-02 0.500322E-02 0.315537E-02 0.204368E-02	0.615493E-02 0.338047E-02 0.194146E-02 0.115725E-02 0.711219E-03	0.326654E-02 0.169584E-02 0.924638E-03 0.525118E-03 0.308446E-03	0.192162E-02 0.949215E-03 0.494222E-03 0.268831E-03 0.151640E-03	0.121023E-02 0.571506E-03 0.285357E-03 0.149240E-03 0.811244E-04	0.800937E-03 0.362899E-03 0.174336E-03 0.879265E-04 0.461856E-04
	10	0.768693E-02	0.135458E-02	0•448805E-03	0•186523E-03	0•882584E-04	0•455913E-04	0.251259E-04
	11	0.550226E-02	0.915562E-03	0•289656E-03	0•115633E-03	0•527675E-04	0•263660E-04	0.140882E-04
	12	0.399315E-02	0.629695E-03	0•190709E-03	0•732801E-04	0•323069E-04	0•156386E-04	0.811301E-05
		MEV=10	• CO Z=1	3.				
0	0	0.129644E 01	0.856174E 00	0.691847E 00	0.591925E 00	0.521688E 00	0.468547E-00	0.426465E-00
	1	0.562491E 00	0.311597E-00	0.226015E-00	0.177511E-00	0.145425E-00	0.122432E-00	0.105105E-00
	2	0.304850E-00	0.148861E-00	0.996151E-01	0.733261E-01	0.568037E-01	0.454927E-01	0.373167E-01
	3	0.182307E-00	0.803939E-01	0.503201E-01	0.350854E-01	0.259311E-01	0.199102E-01	0.157144E-01
	4	0.115994E-00	0.468728E-01	0.276734E-01	0.183964E-01	0.130437E-01	0.964849E-02	0.735938E-02
	5	0.770350E-01	0.288250E-01	0.161496E-01	0.102838E-01	0.702292E-02	0.502220E-02	0.371367E-02
	6	0.528664E-01	0.184611E-01	0.986044E-02	0.603619E-02	0.398226E-02	0.276043E-02	0.198360E-02
	7	0.372220E-01	0.122067E-01	0.623876E-02	0.368207E-02	0.235247E-02	0.158407E-02	0.110831E-02
	8	0.267668E-01	0.828565E-02	0.406458E-02	0.231832E-02	0.143730E-02	0.941840E-03	0.642644E-03
	9	0.195835E-01	0.574802E-02	0.271350E-02	0.149878E-02	0.903245E-03	0.576865E-03	0.384389E-03
	10	0.145528E-01	0.405278E-02	0.184981E-02	0.991167E-03	0.581508E-03	0.362440E-03	0.236133E-03
	11	0.109526E-01	C.291818E-02	0.128399E-02	0.668443E-03	0.382286E-03	0.232804E-03	0.148455E-03
	12	0.833801E-02	0.212600E-02	0.905541E-03	0.458665E-03	0.256005E-03	0.152486E-03	0.952661E-04

	Table 2. Spatial Moments, Plane Perpendicular Source — Continued									
n	p = -1/2	1/2	3/2	5/2	7/2	9/2	11/2			
	MEV= C	0.025 Z=2	9							
l = 0 0 2 3 4	0.216947E 01 0.353260E-00 0.134714E-00 0.452376E-01 0.210711E-01	0.634619E 00 0.873889E-01 0.249486E-01 0.725027E-02 0.283837E-02	0.360038E-00 0.425694E-01 0.978854E-02 0.249685E-02 0.842541E-03	0.249416E-00 0.257620E-01 0.499731E-02 0.113522E-02 0.337188E-03	0.190304E-00 0.174285E-01 0.293967E-02 0.602184E-03 0.160047E-03	0.153676E-00 0.126330E-01 0.189206E-02 0.353154E-03 0.850763E-04	0.128804E-00 0.960132E-02 0.129652E-02 0.222411E-03 0.490673E-04			
5	0.914676E-02	0.110081E-02	0.294128E-03	0.106868E-03	0.464263E-04	0.227507E-04	0 • 121730E-04			
6	0.475547E-02	0.506332E-03	0.121046E-03	0.397805E-04	0.157797E-04	0.711788E-05	0 • 352992E-05			
7	0.237059E-02	0.230472E-03	0.505317E-04	0.153127E-04	0.563064E-05	0.236616E-05	0 • 109816E-05			
8	0.132650E-02	0.117323E-03	0.235438E-04	0.657178E-05	0.223917E-05	0.876580E-06	0 • 380805E-06			
9	0.722547E-03	0.592318E-04	0.110487E-04	0.287711E-05	0.917935E-06	0.337689E-06	0 • 138317E-06			
10	0•426740E-03	0•323820E-04	0•561193E-05	0•136334E-05	0•407429E-06	0•140919E-06	0•544550E-07			
11	0•247482E-03	0•175945E-04	0•286252E-05	0•654549E-06	0•184610E-06	0•604238E-07	0•221516E-07			
12	0•152419E-03	0•101499E-04	0•155053E-05	0•333856E-06	0•889226E-07	0•275609E-07	0•959262E-08			
	MEV= (0•05 Z=2	9.0							
0 0	0.203129E 01	0.660475E 00	0.392086E-00	0.278414E-00	0 • 215735E-00	0.176055E-00	0 • 148688E-00			
1	0.314083E-00	0.881791E-01	0.459883E-01	0.291046E-01	0 • 203362E-01	0.151092E-01	0 • 117108E-01			
2	0.113059E-00	0.243071E-01	0.104363E-01	0.566974E-02	0 • 349307E-02	0.233101E-02	0 • 164478E-02			
3	0.361477E-01	0.680550E-02	0.260233E-02	0.127636E-02	0 • 717715E-03	0.441031E-03	0 • 288659E-03			
4	0.159719E-01	0.255940E-02	0.856186E-03	0.374699E-03	0 • 190783E-03	0.107358E-03	0 • 649239E-04			
5	0.661714E-02	0.954830E-03	0.290564E-03	0.116695E-03	0.549335E-04	0 • 287620E - 04	0.162720E-04			
6	0.327440E-02	0.421401E-03	0.115949E-03	0.425680E-04	0.184802E-04	0 • 898814E - 05	0.475217E-05			
7	0.156060E-02	0.184408E-03	0.469011E-04	0.160115E-04	0.649785E-05	0 • 296785E - 05	0.147955E-05			
8	0.833313E-03	0.900864E-04	0.211330E-04	0.670055E-05	0.254030E-05	0 • 108934E - 05	0.512067E-06			
9	0.434610E-03	0.437273E-04	0.959228E-05	0.285643E-05	0.102104E-05	0 • 414258E - 06	0.184815E-06			
10	0.245461E-03	0•229565E-04	0•470638E-05	0.131605E-05	0•443587E-06	0.170328E-06	0•721495E-07			
11	0.136475E-03	0•119966E-04	0•231988E-05	0.613908E-06	0•196412E-06	0.717814E-07	0•290112E-07			
12	0.805204E-04	0•665139E-05	0•121335E-05	0.303953E-06	0•923446E-07	0.321374E-07	0•123997E-07			
	MEV= (2≠2°	9•							
0 0	0.201498E 01	0.663686E 00	0.396179E-00	0.282183E-00	0 • 219080E-00	0.179024E-00	0 •151343E-0 0			
1	0.306929E-00	0.876050E-01	0.461053E-01	0.293570E-01	0 • 206050E-01	0.153626E-01	0 •119409E-01			
2	0.108722E-00	0.237994E-01	0.103308E-01	0.565612E-02	0 • 350553E-02	0.235062E-02	0 •166532E-02			
3	0.343618E-01	0.659808E-02	0.255529E-02	0.126500E-02	0 • 716516E-03	0.442915E-03	0 •291344E-03			
4	0.149447E-01	0.244577E-02	0.830007E-03	0.367197E-03	0 • 188582E-03	0.106879E-03	0 •650259E-04			
5	0.612762E-02	0.904007E-03	0.279441E-03	0.113591E-03	0.539961E-04	0.285018E-04	0 • 162369E-04			
6	0.298559E-02	0.393261E-03	0.110064E-03	0.409537E-04	0.179765E-04	0.882476E-05	0 • 470323E-05			
7	0.140886E-02	0.170514E-03	0.441543E-04	0.152928E-04	0.628095E-05	0.289817E-05	0 • 145762E-05			
8	0.741066E-03	0.821247E-04	0.196362E-04	0.632353E-05	0.242895E-05	0.105336E-05	0 • 500040E-06			
9	0.382742E-03	0.394957E-04	0.883720E-05	0.267495E-05	0.969532E-06	0.398119E-06	0 • 179500E-06			
10	0.213044E-03	0.204491E-04	0.427988E-05	0•121764E-05	0•416549E-06	0•162029E-06	0.694237E-07			
11	0.117311E-03	0.105876E-04	0.209135E-05	0•563442E-06	0•183081E-06	0•678260E-07	0.277463E-07			
12	0.682457E-04	0.579123E-05	0.107990E-05	0•275631E-06	0•851156E-07	0•300513E-07	0.117451E-07			
	MEV≠ (20 Z≡2	9•							
0 0	0.198355E 01	0.669975E 00	0.404267E-00	0.289673E-00	0.225754E-00	0.184965E-00	0.156669E-00			
1	0.304265E-00	0.892455E-01	0.476253E-01	0.305964E-01	0.216125E-01	0.161925E-01	0.126348E-01			
2	0.106473E-00	0.240893E-01	0.106583E-01	0.591156E-02	0.369910E-02	0.249902E-02	0.178119E-02			
3	0.337182E-01	0.669993E-02	0.265032E-02	0.133195E-02	0.763150E-03	0.476084E-03	0.315535E-03			
4	0.145119E-01	0.246560E-02	0.857732E-03	0.386452E-03	0.201315E-03	0.115416E-03	0.708955E-04			
5	0 • 594742E-02	0.911746E-03	0.289385E-03	0.120015E-03	0.579681E-04	0.310029E-04	0.178582E-04			
6	0 • 287024E-02	0.393665E-03	0.113417E-03	0.431630E-04	0.192954E-04	0.961747E-05	0.519246E-05			
7	0 • 135170E-02	0.170461E-03	0.454976E-04	0.161409E-04	0.676164E-05	0.317243E-05	0.161859E-05			
8	0 • 704666E-03	0.814840E-04	0.201195E-04	0.664945E-05	0.261001E-05	0.115296E-05	0.556140E-06			
9	0 • 362833E-03	0.390888E-04	0.904120E-05	0.281203E-05	0.104284E-05	0.436753E-06	0.200341E-06			
10	0.200252E-03	0 • 200880E <mark>- 04</mark>	0•435234E-05	0•127430E-05	0•446724E-06	0•177494E-06	0•774828E-07			
11	0.109852E-03	0 • 103659E - 04	0•212144E-05	0•588781E-06	0•196263E-06	0•743519E-07	0•310230E-07			
12	0.633861E-04	0 • 562834E - 05	0•108862E-05	0•286592E-06	0•909065E-07	0•328627E-07	0•131166E-07			
	MEV≖ (D+40 Z=2	9•							
0 0	0.194377E 01	0.678134E 00	0.414906E-00	0.299613E-00	0 • 234665E-00	0.192933E-00	0.163836E-00			
1	0.308599E-00	0.934421E-01	0.506347E-01	0.328402E-01	0 • 233523E-01	0.175836E-01	0.137742E-01			
2	0.107369E-00	0.252966E-01	0.114497E-01	0.644699E-02	0 • 407845E-02	0.277845E-02	0.199360E-02			
3	0.346926E-01	0.717876E-02	0.290973E-02	0.148737E-02	0 • 863157E-03	0.543928E-03	0.363476E-03			
4	0.148883E-01	0.264588E-02	0.947585E-03	0.436048E-03	0 • 230885E-03	0.134112E-03	0.832737E-04			
5	0.618472E-02	0.991991E-03	0.324608E-03	0.137738E-03	0.677439E-04	0.367719E-04	0.214458E-04			
6	0.298005E-02	0.428761E-03	0.127759E-03	0.498989E-04	0.227780E-04	0.115520E-04	0.632932E-05			
7	0.141706E-02	0.187522E-03	0.518281E-04	0.188985E-04	0.809702E-05	0.387160E-05	0.200764E-05			
8	0.738027E-03	0.897074E-04	0.229881E-04	0.782717E-05	0.314927E-05	0.142078E-05	0.697914E-06			
9	0.382755E-03	0.433581E-04	0.104187E-04	0.334267E-05	0.127245E-05	0.545018E-06	0.254950E-06			
10 11 12	0.211104E-03 0.116443E-03 0.671510E-04	0.222939E-04 0.115709E-04 0.628471E-05	0.502663E-05 0.246640E-05	0.152091E-05 0.708166E-06	0.548288E→06 0.243041E-06	0.223190E-06 0.944475E-07	0.995268E-07 0.403057E-07			

Table 2. Spatial Moments, Plane Perpendicular Source - Continued

		n	p=-!/2	1/2	3/2	5/2	7/2	9/2	11/2
			MÉV= (D.•70 Z=2	9.				
l	= 0	0 1 2 3 4	0.188548E 01 0.317061E-00 0.110227E-00 0.368331E-01 0.158588E-01	0.690514E 00 0.100632E-00 0.275947E-01 0.810123E-02 0.301558E-02	0.431365E-00 0.557714E-01 0.129181E-01 0.340545E-02 0.112783E-02	0.315182E-00 0.366803E-01 0.743820E-02 0.178563E-02 0.535598E-03	0.248745E-00 0.263397E-01 0.478232E-02 0.105633E-02 0.290590E-03	0.205605E-00 0.199798E-01 0.329861E-02 0.675839E-03 0.172132E-03	0.175290E-00 0.157425E-01 0.239031E-C2 0.457256E-03 0.108626E-03
		5 6 7 8 9	0.674346E-02 0.326536E-02 0.158042E-02 0.827667E-03 0.435365E-03	0.115807E-02 0.504955E-03 0.224946E-03 0.108476E-03 0.532130E-04	0.396687E-03 0.158226E-03 0.655109E-04 0.293865E-04 0.135403E-04	0.174199E-03 0.642378E-04 0.248902E-04 0.104604E-04 0.455083E-05	0.880385E-04 0.302539E-04 0.110299E-04 0.436707E-05 0.180141E-05	0.488664E-04 0.157471E-04 0.542600E-05 0.203310E-05 0.797948E-06	0.290389E-04 0.882014E-05 0.288321E-05 0.102626E-05 0.384383E-06
		10 11 12	0.241478E-03 0.134777E-03 0.781555E-04	0.275638E-04 0.144846E-04 0.792114E-05	0.659720E-05 0.328205E-05 0.170177E-05	0•209654 E- 05 0•991492E-06 0•489400E-06	0•787976E-06 0•355426E-06 0•167557E-06	0•332558E=06 0•143475E=06 0•647776E=07	0.153083E-06 0.633242E-07 0.274463E-07
			MEV= 1	L•00 Z=2	9•				
	0	0 1 2 3 4	0.182812E 01 0.324857E-00 0.113198E-00 0.390279E-01 0.169016E-01	0.703219E 00 0.108204E-00 0.301428E-01 0.914074E-02 0.344476E-02	0.448657E-00 0.613753E-01 0.146006E-01 0.398879E-02 0.134644E-02	0.331791E-00 0.409593E-01 0.860064E-02 0.214718E-02 0.660304E-03	0.263926E-00 0.297185E-01 0.562251E-02 0.129582E-02 0.367316E-03	0.219377E-00 0.227209E-01 0.392830E-02 0.842343E-03 0.222024E-03	0 • 187816E-00 0 • 180145E-01 0 • 287607E-02 0 • 577395E-03 0 • 142486E-03
		5 6 7 8 9	0.734395E-02 0.358124E-02 0.176214E-02 0.929619E-03 0.495588E-03	0.135347E-02 0.596591E-03 0.270496E-03 0.131730E-03 0.655568E-04	0.485892E-03 0.196802E-03 0.831262E-04 0.377784E-04 0.176936E-04	0.221027E-03 0.831215E-04 0.329433E-04 0.140727E-04 0.623712E-05	0.114884E-03 0.404197E-04 0.151132E-04 0.610140E-05 0.256987E-05	0.652582E-04 0.216073E-04 0.765552E-05 0.293353E-05 0.117830E-05	0.395439E-04 0.123809E-04 0.417177E-05 0.152278E-05 0.584993E-06
		10 11 12	0•276873E-03 0•156294E-03 0•912673E-04	0•342647E-04 0•182268E-04 0•100507E-04	0.872014E-05 0.439863E-05 0.230420E-05	0.291407E-05 0.139998E-05 0.699625E-06	0.114297E-05 0.524771E-06 0.251008E-06	0.500549E-06 0.220256E-06 0.101112E-06	0.238035E-06 D.100626E-06 0.444373E-07
			MEV= 2	2+00 Z=2	9•				
	0	0 1 2 3 4	0.167823E 01 0.347708E-00 0.123808E-00 0.464463E-01 0.206823E-01	0.739201E 00 0.132451E-00 0.390436E-01 0.129550E-01 0.510663E-02	0.499899E-00 0.801521E-01 0.207407E-01 0.626346E-02 0.224971E-02	0.382497E-00 0.557530E-01 0.130027E-01 0.362522E-02 0.120409E-02	0.311274E-00 0.416798E-01 0.890195E-02 0.231305E-02 0.717321E-03	0.263030E-00 0.326084E-01 0.644847E-02 0.157244E-02 0.458532E-03	0.228028E-00 0.263371E-01 0.486177E-02 0.111864E-02 0.308411E-03
		5 6 7 8 9	0.953182E-02 0.478427E-02 0.246480E-02 C.133729E-02 0.740716E-03	0.213928E-02 0.980503E-03 0.467550E-03 0.235782E-03 0.122371E-03	0.873181E-03 0.372067E-03 0.166476E-03 0.790241E-04 0.388310E-04	0.437418E-03 0.174976E-03 0.740229E-04 0.333123E-04 C.155909E-04	0.245595E-03 0.928427E-04 0.373332E-04 0.160080E-04 0.716625E-05	0.148733E-03 0.534012E-04 0.204935E-04 0.840472E-05 0.361072E-05	0.951706E-04 0.325825E-04 0.119725E-04 0.471083E-05 0.194734E-05
		10 11 12	0.425002E-03 0.247999E-03 0.148512E-03	0.660179E-04 0.364157E-04 0.206721E-04	0.198863E-04 0.104547E-04 0.566868E-05	0.762200E-05 0.383770E-05 0.199660E-05	0•335772E-05 0•162485E-05 0•813792E-06	0•162646E-05 0•758524E-06 0•366669E-06	0.845441E-06 0.380838E-06 0.178062E-06
			MEV= 4	• 00 Z=2	9.				
	0	0 1 2 3 4	0.149518E 01 0.376583E-00 0.141857E-00 0.590544E-01 0.277876E-01	0.789798E 00 0.172750E-00 0.561377E-01 0.209535E-01 0.891719E-02	0.577916E 00 0.114444E-00 0.336913E-01 0.116325E-01 0.460396E-02	0.463916E-00 0.845172E-01 0.229764E-01 0.743410E-02 0.276938E-02	0.390316E-00 0.660563E-01 0.167702E-01 0.512532E-02 0.181039E-02	0.338120E-00 0.535272E-01 0.127887E-01 0.371259E-02 0.124995E-02	0.298875E-00 0.444974E-01 0.100622E-01 0.278660E-02 0.897826E-03
		5 6 7 8 9	0.137946E-01 0.728703E-02 0.398612E-02 0.226662E-02 0.132163E-02	0.406896E-02 0.198967E-02 0.101640E-02 0.542470E-03 0.298541E-03	0.197291E-02 0.910123E-03 0.441124E-03 0.224140E-03 0.117877E-03	0.112514E-02 0.493893E-03 0.228801E-03 0.111423E-03 0.563312E-04	0.701505E-03 0.294613E-03 0.131062E-03 0.614364E-04 0.299737E-04	0.463925E-03 0.187139E-03 0.802174E-04 0.363092E-04 0.171436E-04	0.320242E-03 0.124454E-03 0.515404E-04 0.225819E-04 0.103414E-04
		10 11 12	0.791803E-03 0.483568E-03 0.301405E-03	0.169442E-03 0.984120E-04 0.585002E-04	0•640970E-04 0•357624E-04 0•204628E-04	0.295077E-04 0.158946E-04 0.879480E-05	0•151796E-04 0•791992E-05 0•425078E-05	0.841586E-05 0.426344E-05 0.222468E-05	0•493123E-05 0•243024E-05 0•123508E-05
			:4EV=10	2=2 Z=2	9•				
	0	0 1 2 3 4	0.128370E 01 0.418644E=00 0.180140E=00 0.670162E=01 0.457813E=01	0.860967E 00 0.248185E-00 0.964691E-01 0.428992E-01 0.20986CE-01	0.700630E 00 0.186629E-00 0.679755E-01 0.286279E-01 0.133397E-01	0.602247E 00 0.150390E-00 0.519592E-01 0.209275E-01 0.936815E-02	0.532648E 00 0.125706E-00 0.414805E-01 0.160666E-01 0.694326E-02	0.479729E-00 0.107591E-00 0.340653E-01 0.127366E-01 0.533147E-02	0.437653E-00 0.936628E-01 0.285521E-01 0.103338E-01 0.420042E-02
		5 6 7 8	0.254550E-01 0.148127E-01 0.891635E-02 0.552685E-02 0.350698E-02	0.109450E-01 0.601090E-02 0.343290E-02 0.202721E-02 0.122987E-02	0.6660565-02 0.351476E-02 0.193493E-02 0.110417E-02 0.648771E-03	0.451140E-02 0.230266E-02 0.122921E-02 0.681535E-03 0.389766E-03	0 • 323867E-02 0 • 160506E-02 0 • 833722E-03 0 • 450571E-03 0 • 251548E-03	0.241585E-02 0.116560E-02 0.590554E-03 0.311776E-03 0.170267E-03	0.185306E-02 0.872151E-03 0.431787E-03 0.223060E-03 0.119349E-03
		10 11	0.227241E-02 0.149844E-02	0.764162E+03 0.484450E+03	0.391123E-03 0.240987E-03 0.151446E-03	0.229049E-03 0.137752E-03 0.846000E-04	0.144491E-03 0.850389E-04 0.511634E-04	0.957821E-04 0.552655E-04 0.326295E-04	0.658472E-04 0.372992E-04 0.216393E-04

Table 2. Spatial Maments, Plane Perpendicular Source - Continued

n	p=-1/2	1/2	3/2	5/2	7/2	9/2	11/2
	MEV≖	0.05 Z=5	0•				
l=0 0	0.211954E 01	0.643694E 00	0.371104E-00	0.259326E-00	0.198934E-00	0.161231E-00	0.135490E-00
1	0.235416E-00	0.637948E→01	0.330460E-01	0.209325E-01	0.146746E-01	0.109466E-01	0.351898E-02
2	0.815438E-01	0.164232E→01	0.684021E-02	0.365803E-02	0.223484E-02	0.148490E-02	0.104569E-02
3	0.206691E-01	0.372254E→02	0.139850E-02	0.680999E-03	0.382068E-03	0.234842E-03	0.153959E-03
4	0.864823E-02	0.130823E→02	0.424379E-03	0.182391E-03	0.918464E-04	0.513369E-04	0.309221E-04
5	0.298817E-02	0.412418E-03	0.122684E-03	0.426437E-04	0.227293E-04	0 • 118508E - 04	0.669023E-05
6	0.139028E-02	0.169983E-03	0.453723E-04	0.163292E-04	0.699312E-05	0 • 336895E - 05	0.176931E-05
7	0.570350E-03	0.645869E-04	0.160209E-04	0.538011E-05	0.215868E-05	0 • 978053E - 06	0.484789E-06
8	0.285624E-03	0.294815E-04	0.671315E-05	0.208381E-05	0.777598E-06	0 • 329437E - 06	0.153409E-06
9	0.131006E-03	0.126619E-04	0.270625E-05	0.790811E-06	0.278640E-06	0 • 111785E - 06	0.494265E-07
10	0.693742E-04	0.621967E-05	0•123853E-05	0•338723E-06	0•112170E-06	0•424551E-07	0•177709E-07
11	0.344513E-04	0.291617E-05	0•549239E-06	0•142391E-06	0•448011E-07	0•161470E-07	0•644977E-08
12	0.190751E-04	0.151552E-05	0•268707E-06	0•657872E-07	0•196068E-07	0•671263E-08	0•255361E-08
	MEV≃	0e10 Z=50	0				
0 0	0.206696E 01	0.653575E 00	0.383376E-00	0.270443E-00	0 • 208691E -00	0.169821E-00	0.143126E-00
1	0.215043E-00	0.613067E-01	0.326594E-01	0.210845E-01	0 • 149928E -01	0.113103E-01	0.888330E-02
2	0.716962E-01	0.152845E-01	0.658869E-02	0.360913E-02	0 • 224544E -02	0.151379E-02	0.107896E-C2
3	0.172138E-01	0.330374E-02	0.129371E-02	0.649382E-03	0 • 373058E -03	0.233763E-03	0.155745E-03
4	0.692665E-02	0.112116E-02	0.381048E-03	0.169615E-03	0 • 878185E -04	0.502161E-04	0.308323E-04
5	0.228122E-02	0.338451E-03	0.106042E-03	0.437678E-04	0.211251E-04	0.113153E-04	0.653587E-05
6	0.102035E-02	0.134489E-03	0.379585E-04	0.142780E-04	0.634019E-05	0.314877E-05	0.169732E-05
7	0.400554E-03	0.490581E-04	0.129177E-04	0.455198E-05	0.190102E-05	0.891120E-06	0.454869E-06
8	0.192885E-03	0.215788E-04	0.523181E-05	0.170966E-05	0.666197E-06	0.292915E-06	0.140881E-06
9	0.848891E-04	0.891400E-05	0.203461E-05	0.627880E-06	0.231740E-06	0.967779E-07	0.443237E-07
10	0•432491E-04	0•421981E-05	0•899540E-06	0•260501E-06	0•906106E-07	0•357964E-07	0•155609E-07
11	0•206497E-04	0•190575E-05	0•385144E-06	0•105997E-06	0•351205E-07	0•132458E-07	0•550843E-08
12	0•110075E-04	0•954845E-06	0•182020E-06	0•474131E-07	0•149154E-07	0•535609E-08	0•212619E-08
	MEV≖	0.20 2=50	0				
0 0	0.201897E 01	0.662898E 00	0.395172E-00	0•281254E-00	0.218255E-00	0•178291E-00	0.150687E-00
1	0.205269E-00	0.610985E-01	0.332872E-01	0•218090E-01	0.156768E-01	0•119267E-01	0.943213E-02
2	0.666747E-01	0.149597E-01	0.664435E-02	0•371445E-02	0.234611E-02	0•160048E-02	0.115182E-02
3	0.156733E-01	0.317794E-02	0.128812E-02	0•662748E-03	0.388029E-03	0•246877E-03	0.166573E-03
4	0.614824E-02	0.105628E-02	0.373615E-03	0•171296E-03	0.907638E-04	0•528834E-04	0.329822E-04
5	0.198453E-02	0•313343E-03	0.102531E-03	0.437438E-04	0 •216803E-04	0*118694E-04	0.698375E-05
6	0.865731E-03	0•121807E-03	0.360451E-04	0.140692E-04	0 •643827E-05	0*327886E-05	0.180569E-05
7	0.333278E-03	0•436546E-04	0.120839E-04	0.443109E-05	0 •191240E-05	0*921730E-06	0.481890E-06
8	0.156613E-03	0•187789E-04	0.480027E-05	0.163736E-05	0 •661321E-06	0*299816E-06	0.148084E-06
9	0.676175E-04	0•762095E-05	0.183773E-05	0.593312E-06	0 •227504E-06	0*981879E-07	0.462823E-07
10	0.336375E-04	0.352843E-05	0•796462E-06	0•241899E-06	0•876321E-07	0•358647E-07	0•160830E-07
11	0.157601E-04	0.156544E-05	0•335555E-06	0•970339E-07	0•335503E-07	0•131343E-07	0•564536E-08
12	0.820766E-05	0.767291E-06	0•155424E-06	0•426257E-07	0•140223E-07	0•523757E-08	0•215330E-08
	MEV=	0.40 Z=50	0				
0 0	0.196068E 01	0.674639E 00	0.410328E-00	0.295324E-00	0.230813E-00	0.189483E-00	0.160730E-00
1	0.204177E-00	0.638034E-01	0.355919E-01	0.236670E-01	0.171922E-01	0.131851E-01	0.104943E-01
2	0.650598E-01	0.155235E-01	0.713892E-02	0.408446E-02	0.262356E-02	0.181303E-02	0.131834E-02
3	0.155116E-01	0.334919E-02	0.140991E-02	0.744853E-03	0.444883E-03	0.287550E-03	0.196536E-03
4	0.598905E-02	0.110327E-02	0.408327E-03	0.193489E-03	0.105168E-03	0.625426E-04	0.396708E-04
5	0.194989E-02	0.330466E-03	0.113425E-03	0.501562E-04	0 • 255725E-04	0.143287E-04	0.859626E-05
6	0.838945E-03	0.127244E-03	0.397003E-04	0.161404E-04	0 • 763257E-05	0.399438E-05	0.225106E-05
7	0.324582E-03	0.458694E-04	0.134133E-04	0.513525E-05	0 • 229589E-05	0.113988E-05	0.611276E-06
8	0.150637E-03	0.195444E-04	0.529767E-05	0.189380E-05	0 • 795254E-06	0.372654E-06	0.189391E-06
9	0.651971E-04	0.795661E-05	0.203783E-05	0.690872E-06	0 • 276007E-06	0.123388E-06	0.599714E-07
10	0.320623E-04	0.364950E-05	0•877453E-06	0.280692E-06	0•106260E-06	0•451754E-07	0•209458E-07
11	0.150313E-04	0.162110E-05	0•370623E-06	0.113073E-06	0•409292E-07	0•166757E-07	0•742470E-08
12	0.774398E-05	0.787323E-06	0•170484E-06	0.494502E-07	0•170725E-07	0•665280E-08	0•283996E-08
	MEV≍	0.070 Z=50	0				
0 0	0.188653E 01	0.690286E 00	0.431057E-00	0.314890E-00	0.248479E-00	0.205364E-00	0 • 175072E-00
1	0.209573E-00	0.696077E-01	0.399547E-01	0.270382E-01	0.198835E-01	0.153905E-01	0 • 123395E-01
2	0.658805E-01	0.170208E-01	0.818054E-02	0.481897E-02	0.316132E-02	0.222016E-02	0 • 163520E-02
3	0.163973E-01	0.383367E-02	0.169110E-02	0.922786E-03	0.564705E-03	0.372054E-03	0 • 258296E-03
4	0.628417E-02	0.126567E-02	0.495752E-03	0.244739E-03	0.137291E-03	0.837387E-04	0 • 542364E-04
5	0.211121E-02	0.391314E-03	0.142474E-03	0.658275E-04	0.347442E-04	0.200264E-04	0.123030E-04
6	0.904831E-03	0.150976E-03	0.503065E-04	0.215059E-04	0.105884E-04	0.572961E-05	0.332170E-05
7	0.358585E-03	0.557725E-04	0.174530E-04	0.704391E-05	0.328777E-05	0.169242E-05	0.936146E-06
8	0.166118E-03	0.238155E-04	0.694183E-05	0.262875E-05	0.115772E-05	0.564869E-06	0.297273E-06
9	0.732789E-04	0.988654E-05	0.272770E-05	0.981791E-06	0.412358E-06	0.192415E-06	0.970784E-07
10	0.360169E-04	0.454514E-05	0.118156E-05	0.402820E-06	0.160916E-06	0•716613E-07	0.346057E-07
11	0.171487E-04	0.205146E-05	0.507887E-06	0.165459E-06	0.633350E-07	0•270899E-07	0.125902E-07
12	0.883675E-05	0.998685E-06	0.234854E-06	0.729663E-07	0.267221E-07	0•109648E-07	0.490000E-08

	n	p=-1/2	1/2	3/2	5/2	7/2	9/2	11/2
		MEV=	1.00 Z=5	0.				
1	l=0 0	0.182016E 01	0.705028E 00	0.451152E-00	0.334208E-00	0.266149E-00	0.221403E-00	0.189666E-00
	1	0.216277E-00	0.759749E-01	0.447614E-01	0.307823E-01	0.228941E-01	0.178731E-01	0.144275E-01
	2	0.675084E-01	0.187673E-01	0.938938E-02	0.568044E-02	0.379942E-02	0.270839E-02	0.201871E-02
	3	0.175624E-01	0.441848E-02	0.203380E-02	0.114304E-02	0.715244E-03	0.479632E-03	0.337839E-03
	4	0.672288E-02	0.147006E-02	0.606190E-03	0.310589E-03	0.179310E-03	0.111932E-03	0.739030E-04
	5	0.233309E-02	0.469695E-03	0.180437E-03	0.867562E-04	0•472562E-04	0.279522E-04	0.175507E-04
	6	0.100198E-02	0.182575E-03	0.645765E-04	0.288898E-04	0•147534E-04	0.822968E-05	0.489601E-05
	7	0.407229E-03	0.692098E-04	0.230354E-04	0.975259E-05	0•473339E-05	0.251802E-05	0.143275E-05
	8	0.189366E-03	0.297735E-04	0.927092E-05	0.369861E-05	0•170061E-05	0.860687E-06	0.467542E-06
	9	0.852592E-04	0.126232E-04	0.372704E-05	0.141629E-05	0•622436E-06	0.301953E-06	0.157601E-06
	10	0•421024E-04	0.584587E-05	0.163172E-05	0.589308E-06	0•247143E-06	0•114781E-06	0.575100E-07
	11	0•203918E-04	0.268572E-05	0.715037E-06	0.247236E-06	0•995533E-07	0•444984E-07	0.215013E-07
	12	0•105623E-04	0.131682E-05	0.333890E-06	0.110405E-06	0•426501E-07	0•183370E-07	0.854136E-08
		MEV= 2	2•00 Z=5	0.				
	0 0	0.166229E 01	0.743289E 00	0.505939E 00	0 • 388619E-00	0.317090E-00	0.268463E-00	0•233085E-00
	1	0.239573E-00	0.968341E-01	0.608830E-01	0 • 436085E-01	0.333873E-01	0.266494E-01	0•218973E-01
	2	0.750472E-01	0.250330E-01	0.138126E-01	0 • 892260E-02	0.626340E-02	0.463613E-02	0•356242E-02
	3	0.220783E-01	0.667265E-02	0.340934E-02	0 • 206088E-02	0.136316E-02	0.955672E-03	0•698394E-03
	4	0.860304E-02	0.230878E-02	0.107869E-02	0 • 604927E-03	0.374710E-03	0.247695E-03	0•171575E-03
	5	0.326758E-02	0.809187E-03	0.354403E-03	0.187812E-03	0.110529E-03	0.696982E-04	0.462063E-04
	6	0.143778E-02	0.326514E-03	0.133521E-03	0.666869E-04	0.372207E-04	0.223644E-04	0.141797E-04
	7	0.627508E-03	0.133259E-03	0.515694E-04	0.245288E-04	0.130945E-04	0.755019E-05	0.460592E-05
	8	0.299775E-03	0.594201E-04	0.217351E-04	0.983870E-05	0.502193E-05	0.277841E-05	0.163095E-05
	9	0.143178E-03	0.267931E-04	0.933993E-05	0.404991E-05	0.198726E-05	0.105986E-05	0.601074E-06
	10	0.727000E-04	0.128411E-04	0•426562E-05	0•177193E-05	0•836035E-06	0.429951E-06	0.235666E-06
	11	0.370406E-04	0.622080E-05	0•19 79 89E-05	0•791379E-06	0•360375E-06	0.179290E-06	0.952512E-07
	12	0.197269E-04	0.315160E-05	0•961416E-06	0•369923E-06	0•162654E-06	0.783202E-07	0.403490E-07
		MEV= 4	• 00 Z=5	0				
	0 0	0.147129E 01	0.797057E 00	0.589712E 00	0.476666E-00	0.403018E-00	0.350432E-00	0.310682E-00
	1	0.272545E-00	0.133502E-00	0.918895E-01	0.698177E-01	0.558315E-01	0.461187E-01	0.389763E-01
	2	0.888482E-01	0.377488E-01	0.236636E-01	0.166827E-01	0.125132E-01	0.976718E-02	0.784291E-02
	3	0.303306E-01	0.117744E-01	0.691871E-02	0.461884E-02	0.330087E-02	0.246552E-02	0.190086E-02
	4	0.124397E-01	0.440065E-02	0.242025E-02	0.152896E-02	0.104090E-02	0.744115E-03	0.551047E-03
	5	0.526459E-02	0.173289E-02	0.903447E-03	0.545271E-03	0.356354E-03	0.245392E-03	0 • 175512E-03
	6	0.244442E-02	0.750038E-03	0.371146E-03	0.214262E-03	0.134580E-03	0.893743E-04	0 • 618097E-04
	7	0.116332E-02	0.336296E-03	0.159038E-03	0.882917E-04	0.535379E-04	0.344199E-04	0 • 230947E-04
	8	0.585948E-03	0.159954E-03	0.724046E-04	0.387069E-04	0.226867E-04	0.141365E-04	0 • 921270E-05
	9	0.301124E-03	0.781168E-04	0.339902E-04	0.175570E-04	0.997527E-05	0.603964E-05	0 • 383152E-05
	10	0.160883E-03	0.397454E-04	0.166478E-04	0.831877E-05	0•458668E-05	0.270111E-05	0.166968E-05
	11	0.874C41E-04	0.206493E-04	0.835013E-05	0.404593E-05	0•216920E-05	0.124472E-05	0.750911E-06
	12	0.488658E-04	0.110602E-04	0.432326E-05	0.203337E-05	0•106108E-05	0.593781E-06	0.349881E-06
		MEV=10	•00 Z=5	0.				
	0 0	0.125340E 01	0.872687E 00	0.722447E 00	0.628176E 00	0.560420E 00	0.508263E 00	0.466373E-00
	1	0.327278E-00	0.208403E-00	0.162842E-00	0.134966E-00	0.115397E-00	0.100671E-00	0.891002E-01
	2	0.121946E-00	0.711676E-01	0.526326E-01	0.417175E-01	0.343079E-01	0.288989E-01	0.247667E-01
	3	0.508175E-01	0.277170E-01	0.196126E-01	0.149889E-01	0.119370E-01	0.976560E-02	0.814610E-02
	4	0.236335E-01	0.121182E-01	0.823256E-02	0.608339E-02	0.470297E-02	0.374500E-02	0.304686E-02
	5	0.116337E-01	0.565588E-02	0.370732E-02	0.265901E-02	0.200198E-02	0.155614E-02	0 • 123796E-02
	6	0.606391E-02	0.280738E-02	0.178013E-02	0.124185E-02	0.912238E-03	0.693290E-03	0 • 540103E-03
	7	0.327652E-02	0.145156E-02	0.893005E-03	0.607349E-03	0.436163E-03	0.324674E-03	0 • 248095E-03
	8	0.183605E-02	0.780768E-03	0.466905E-03	0.310063E-03	0.217979E-03	0.159124E-03	0 • 119400E-03
	9	0.105550E-02	0.432222E-03	0.251752E-03	0.163508E-03	0.112688E-03	0.807753E-04	0 • 595890E-04
	10	0.622816E-03	0.246178E-03	0•139872E-03	0•889583E-04	0•601710E-04	0•423961E-04	0.307795E-04
	11	0.374914E-03	0.143399E-03	0•796084E-04	0•496484E-04	0•329999E-04	0•228822E-04	0.163671E-04
	12	0.230459E-03	0.854826E-04	0•464375E-04	0•284362E-04	0•185957E-04	0•127044E-04	0.896317E-05
		MEV= 0	• 10 Z=8	2•				
	0 0	0.215598E 01	0.637042E 00	0.362973E-00	0.252034E-00	0.192578E-00	0.155663E-00	0.130559E-00
	1	0.145450E-00	0.399781E-01	0.212012E-01	0.137484E-01	0.984798E-02	0.748935E-02	0.592969E-02
	2	0.475773E-01	0.945426E-02	0.394269E-02	0.212383E-02	0.131041E-02	0.880286E-03	0.626953E-03
	3	0.810198E-02	0.148787E-02	0.574647E-03	0.287948E-03	0.166049E-03	0.104720E-03	0.703060E-04
	4	0.313144E-02	0.475640E-03	0.157015E-03	0.687455E-04	0.352988E-04	0.201167E-04	0.123482E-04
	5	0.773991E-03	0.110047E-03	0.338981E-04	0.139162E-04	0.672167E-05	0.361509E-05	0.210067E-05
	6	0.328149E-03	0.410248E-04	0.112572E-04	0.416878E-05	0.183603E-05	0.908617E-06	0.489538E-06
	7	0.100658E-03	0.118577E-04	0.306801E-05	0.107335E-05	0.447636E-06	0.210272E-06	0.107787E-06
	8	0.455790E-04	0.487253E-05	0.115210E-05	0.371075E-06	0.143438E-06	0.628257E-07	0.301867E-07
	9	0.161539E-04	0.163826E-05	0.367667E-06	0.112559E-06	0.414285E-07	0.173100E-07	0.794881E-08
	10	0.770234E-05	0.722688E-06	0.150683E-06	0.430609E-07	0.148618E-07	0.584708E-08	0•253777E-08
	11	0.303136E-05	0.271285E-06	0.539713E-07	0.147332E-07	0.486389E-08	0.183319E-08	0•763318E-09
	12	0.150822E-05	0.126499E-06	0.236501E-07	0.608648E-08	0.190044E-08	0.679484E-09	0•269157E-09

Table 2. Spatial Moments, Plane Perpendicular Source - Continued

n	p=-1/2	1/2	3/2	5/2	7/2	9/2	11/2
	MEV=	0•20 Z≈8	2•				
l=0 0	0.208503E 01	0.650141E 00	0.379085E-00	0.266540E-00	0.205256E-00	0.166792E-00	0.140429E-00
1	0.129397E-00	0.378541E-01	0.207433E-01	0.137474E-01	0.100086E-01	0.771089E-02	0.617124E-02
2	0.405122E-01	0.866059E-02	0.377005E-02	0.209057E-02	0.131774E-02	0.900110E-03	0.649876E-03
3	0.640491E-02	0.127430E-02	0.517870E-03	0.269181E-03	0.159681E-03	0.103034E-03	0.705094E-04
4	0.236493E-02	0.392324E-03	0.137012E-03	0.626458E-04	0.332769E-04	0.194941E-04	0.122444E-04
5	0.546094E-03	0.850667E-04	0.279536E-04	0.120603E-04	0.606263E-05	0.337048E-05	0.201437E-05
6	0.220857E-03	0.303625E-04	0.893498E-05	0.349600E-05	0.161048E-05	0.827566E-06	0.460441E-06
7	0.635871E-04	0.826954E-05	0.230574E-05	0.856624E-06	0.375535E-06	0.184045E-06	0.978660E-07
8	0.274445E-04	0.324725E-05	0.830644E-06	0.285307E-06	0.116413E-06	0.534094E-07	0.267195E-07
9	0.916256E-05	0.103163E-05	0.251432E-06	0.824235E-07	0.321552E-07	0.141301E-07	0.678226E-06
10	0.416290E-05	0•434481E-06	0•986783E-07	0.302989E-07	0.111226E-07	0.461811E-08	0.210202E-08
11	0.154778E-05	0•154459E-06	0•335769E-07	0.988146E-08	0.348186E-08	0.138967E-08	0.608890E-09
12	0.733784E-06	0•687369E-07	0•140762E-07	0.391646E-08	0.130908E-08	0.497125E-09	0.207821E-09
	MEV= (0•40 Z=8	2•				
0 0	0.200135E 01	0.666398E 00	0.399654E-00	0.285394E-00	0.221937E-00	0.181564E-00	0.153619E-00
1	0.123079E-00	0.386056E-01	0.218830E-01	0.148141E-01	0.109507E-01	0.853667E-02	0.689780E-02
2	0.370955E-01	0.865618E-02	0.396087E-02	0.227020E-02	0.146553E-02	0.101951E-02	0.746886E-03
3	0.579388E-02	0.126244E-02	0.542024E-03	0.292742E-03	0.178748E-03	0.118009E-03	0.822904E-04
4	0.206347E-02	0.378532E-03	0.141196E-03	0.677305E-04	0.373337E-04	0.225291E-04	0.145013E-04
5	0.469783E-03	0.811198E-04	0 • 285853E-04	0.129961E-04	0.680938E-05	0.391629E-05	0.240826E-05
6	0.183513E-03	0.281352E-04	0 • 894626E-05	0.371592E-05	0.179621E-05	0.960596E-06	0.552841E-06
7	0.520154E-04	0.755804E-05	0 • 228426E-05	0.904164E-06	0.417488E-06	0.213734E-06	0.117987E-06
8	0.217093E-04	0.288196E-05	0 • 803549E-06	0.295743E-06	0.127797E-06	0.615607E-07	0.321224E-07
9	0.712748E-05	0.901714E-06	0 • 240162E-06	0.846157E-07	0.350715E-07	0.162338E-07	0.815316E-08
10	0•313455E-05	0•368745E-06	0.919126E-07	0.304704E-07	0•119378E-07	0•524368E-08	0•250765E-08
11	0•114513E-05	0•128961E-06	0.308329E-07	0.982206E-08	0•370384E-08	0•156831E-08	0•724014E-09
12	0•525960E-06	0•557353E-07	0.125961E-07	0.380780E-08	0•136725E-08	0•552899E-09	0•244407E-09
	MEV= (0 ∗7 0 Z=8	2•				
0 0	0.190429E 01	0.686462E 00	0.425935E-00	0.310020E-00	0.244060E-00	0.201378E-00	0.171461E-00
1	0.124255E-00	0.422318E-01	0.248427E-01	0.172010E-01	0.129161E-01	0.101887E-01	0.831048E-02
2	0.362491E-01	0.939300E-02	0.455604E-02	0.271366E-02	0.180096E-02	0.127955E-02	0.953191E-03
3	0.591669E-02	0.143238E-02	0.653853E-03	0.368301E-03	0.232044E-03	0.157014E-03	0.111707E-03
4	0.205193E-02	0.423803E-03	0.170447E-03	0.863191E-04	0.496027E-04	0.309460E-04	0.204722E-04
5	0.483367E-03	0.940092E-04	0.358066E-04	0.172408E-04	0.944918E-05	0.563743E-05	0•357462E-05
6	0.184656E-03	0.321566E-04	0.111604E-04	0.495474E-05	0.252608E-05	0.141171E-05	0•843250E-06
7	0.537625E-04	0.887634E-05	0.293419E-05	0.124478E-05	0.608026E-06	0.326280E-06	0•187509E-06
8	0.220120E-04	0.333989E-05	0.102589E-05	0.407568E-06	0.187560E-06	0.952883E-07	0•520550E-07
9	0.738256E-05	0.106788E-05	0.313892E-06	0.119663E-06	0.529605E-07	0.259257E-07	0•136697E-07
10	0•319240E-05	0•431261E-06	0•119294E-06	0.430348E-07	0•181025E-07	0.845321E-08	0•426470E-08
11	0•118630E-05	0•153472E-06	0•407845E-07	0.141677E-07	0•574981E-08	0.259470E-08	0•126689E-08
12	0•536695E-06	0•655528E-07	0•165393E-07	0.547754E-08	0•212647E-08	0.920522E-09	0•432191E-09
	MEV=	1.00 .2=8	2•				
0 0	0.181865E 01	0.705370E 00	0.451625E-00	0.334668E-00	0.266572E-00	0.221789E-00	0.190018E-00
1	0.128040E-00	0.468159E-01	0.284706E-01	0.201156E-01	0.153189E-01	0.122129E-01	0.100458E-01
2	0.365076E-01	0.104137E-01	0.532366E-02	0.328317E-02	0.223467E-02	0.161879E-02	0.122471E-02
3	0.631034E-02	0.168145E-02	0.810674E-03	0.474076E-03	0.307187E-03	0.212514E-03	0.153956E-03
4	0.215368E-02	0.495763E-03	0.213264E-03	0.113353E-03	0.676095E-04	0.434620E-04	0.294736E-04
5	0.530928E-03	0.115085E-03	0.469732E-04	0.237965E-04	0.135731E-04	0.836629E-05	0.545236E-05
6	0.200546E-03	0.392370E-04	0.147224E-04	0.693319E-05	0.370558E-05	0.215345E-05	0.132970E-05
7	0.605889E-04	0.112404E-04	0.402398E-05	0.181487E-05	0.931610E-06	0.521158E-06	0.310375E-06
8	0.246079E-04	0.421917E-05	0.141273E-05	0.600478E-06	0.292113E-06	0.155546E-06	0.884934E-07
9	0.851047E-05	0.139141E-05	0.446534E-06	0.182498E-06	0.855729E-07	0.440078E-07	0.242212E-07
10	0•365895E-05	0•561020E-06	0•170295E-06	0.661961E-07	0•296443E-07	0•146087E-07	0•772609E-08
11	0•139535E-05	0•204950E-06	0•598519E-07	0.224449E-07	0•971749E-08	0•463773E-08	0•237889E-08
12	0•628667E-06	0•874612E-07	0•243484E-07	0.874139E-08	0•363496E-08	0•167062E-08	0•827060E-09
	MEV=	2•00 Z=8	2•				
0 0	0.165215E 01	0.745919E 00	0.509848E 00	0.392598E-00	0.320882E-00	0.272013E-00	0 • 236395E-00
1	0.146382E-00	0.620839E-01	0.403520E-01	0.296927E-01	0.232637E-01	0.189486E-01	0 • 158531E-01
2	0.408400E-01	0.141726E-01	0.804347E-02	0.531817E-02	0.380957E-02	0.287132E-02	0 • 224289E-02
3	0.837800E-02	0.271018E-02	0.145459E-02	0.915541E-03	0.627006E-03	0.453262E-03	0 • 340461E-03
4	0.284931E-02	0.817193E-03	0.401014E-03	0.234226E-03	0.150285E-03	0.102490E-03	0 • 730148E-04
5	0.805298E-03	0.217301E-03	0.101487E-03	0.567293E-04	0.349620E-04	0.229648E-04	0.157922E-04
6	0.306551E-03	0.759179E-04	0.331570E-04	0.174973E-04	0.102443E-04	0.642229E-05	0.423055E-05
7	0.103708E-03	0.243530E-04	0.101797E-04	0.516554E-05	0.291725E-05	0.176828E-05	0.112837E-05
8	0.427448E-04	0.938565E-05	0.371664E-05	0.179883E-05	0.973424E-06	0.567319E-06	0.349036E-06
9	0.162757E-04	0.340932E-05	0.129795E-05	0.606382E-06	0.317602E-06	0.179527E-06	0.107304E-06
10	0.713232E-05	0.141335E-05	0.514022E-06	0.230615E-06	0•116412E-06	0.635915E-07	0•368121E-07
11	0.295694E-05	0.561719E-06	0.197126E-06	0.856344E-07	0•419557E-07	0.222851E-07	0•125622E-07
12	0.136165E-05	0.246650E-06	0.831772E-07	0.348690E-07	0•165342E-07	0.851882E-08	0•466651E-08

	n	p=-1/2	1/2	3/2	5/2	7/2	9/2	11/2
		MEV=	4.00 Z=8	2.				
l=	0 0	0.144942E 01	0.803859E 00	0.600905E 00	0.488873E-00	0 • 415259E -00	0.362359E-00	0•322168E-00
	1	0.175290E-00	0.911787E-01	0.650525E-01	0.508133E-01	0 • 415816E -01	0.350395E-01	0•301395E-01
	2	0.488544E-01	0.220284E-01	0.143264E-01	0.103941E-01	0 • 798688E -02	0.636705E-02	0•520992E-02
	3	0.124684E-01	0.525701E-02	0.325720E-02	0.226721E-02	0 • 167836E -02	0.129275E-02	0•102435E-02
	4	0.432734E-02	0.166951E-02	0.972066E-03	0.642564E-03	0 • 454585E -03	0.336094E-03	0•256488E-03
	5	0 • 144980E-02	0.528464E-03	0.295044E-03	0.188108E-03	0 • 128802E-03	0.923970E-04	0.685452E-04
	6	0 • 569255E-03	0.194395E-03	0.103490E-03	0.633727E-04	0 • 418606E-04	0.290585E-04	0.209101E-04
	7	0 • 221469E-03	0.720346E-04	0.369676E-04	0.219292E-04	0 • 140741E-04	0.951257E-05	0.667575E-05
	8	0 • 946449E-04	0.292140E-04	0.144161E-04	0.826854E-05	0 • 514848E-05	0.338423E-05	0.231406E-05
	9	0 • 405929E-04	0.120066E-04	0.573452E-05	0.319694E-05	0 • 193983E-05	0.124487E-05	0.832227E-06
	10	0.184882E-04	0.523197E-05	0•241592E-05	0•130803E-05	0•772953E-06	0•484050E-06	0•316267E-06
	11	0.850554E-05	0.231722E-05	0•103891E-05	0•548163E-06	0•316399E-06	0•193853E-06	0•124076E-06
	12	0.407434E-05	0.106803E-05	0•464743E-06	0•238899E-06	0•134662E-06	0•807107E-07	0•506027E-07
		MEV= (0.025 Air					
	0 0	0.201025E 01	0.664624E 00	0.397379E-00	0.283291E-00	0.220065E-00	0•179899E-00	0.152127E-00
	1	0.718231E 00	0.174648E-00	0.825087E-01	0.486035E-01	0.321643E-01	0•229003E-01	0.171509E-01
	2	0.357447E-00	0.675555E-01	0.263011E-01	0.132235E-01	0.764741E-02	0•484052E-02	0.326534E-02
	3	0.193674E-00	0.303174E-01	0.101140E-01	0.445910E-02	0.229969E-02	0•131480E-02	0.809282E-03
	4	0.115974E-00	0.154210E-01	0.448773E-02	0.175879E-02	0.817693E-03	0•426054E-03	0.241085E-03
	5	0.723178E-01	0.839313E-02	0.217138E-02	0.767127E-03	0.325029E-03	0.155697E-03	0.815818E-04
	6	0.474855E-01	0.488290E-02	0.113583E-02	0.364972E-03	0.141947E-03	0.628874E-04	0.306678E-04
	7	0.319594E-01	0.295650E-02	0.625594E-03	0.184516E-03	0.663636E-04	0.273596E-04	0.124817E-04
	8	0.222188E-01	0.186718E-02	0.362222E-03	0.986955E-04	0.330026E-04	0.127186E-04	0.544937E-05
	9	0.157111E-01	0.121108E-02	0.217099E-03	0.550025E-04	0.171931E-04	0.622256E-05	0.251388E-05
	10	0.113640E-01	0•808958E-03	0•134760E-03	0•318987E-04	0•935952E-05	0•319260E-05	0•121997E-05
	11	0.832331E-02	0•550847E-03	0•857570E-04	0•190574E-04	0•527059E-05	0•170057E-05	0•616603E-06
	12	0.620031E-02	0•383374E-03	0•560159E-04	0•117299E-04	0•306772E-05	0•938956E-06	0•323870E-06
		MEV= (0.05 Air					
	0 0	0.196193E 01	0.674383E 00	0.409994E-00	0.295011E-00	0.230532E-00	0.189232E-00	0.160504E-00
	1	0.705657E 00	0.179575E-00	0.869395E-01	0.520278E-01	0.348157E-01	0.249951E-01	0.188411E-01
	2	0.348996E=00	0.695371E-01	0.279540E-01	0.143694E-01	0.844785E-02	0.541585E-02	0.369102E-02
	3	0.188819E=00	0.312723E-01	0.108252E-01	0.490269E+02	0.258131E-02	0.150041E-02	0.936134E-03
	4	0.112446E=00	0.158762E-01	0.481587E-02	0.194729E-02	0.927948E-03	0.493322E-03	0.283870E-03
	5	0.698961E-01	0.863278E-02	0.233574E-02	0.854352E-03	0.372267E-03	0.182511E-03	0.975266E-04
	6	0.456573E-01	0.500728E-02	0.122192E-02	0.407821E-03	0.163626E-03	0.744112E-04	0.371073E-04
	7	0.306120E-01	0.302496E-02	0.673128E-03	0.206768E-03	0.769235E-04	0.326370E-04	0.152630E-04
	8	0.211749E-01	0.190367E-02	0.389250E-03	0.110733E-03	0.383970E-04	0.152659E-04	0.672055E-05
	9	0.149114E-01	0.123109E-02	0.233039E-03	0.617733E-04	0.200677E-04	0.750918E-05	0.312367E-05
	10	0.107323E-01	0.819174E-03	0.144350E-03	0.358209E-04	0•109456E-04	0•386816E-05	0.152503E-05
	11	0.782718E-02	0.555917E-03	0.916832E-04	0.213963E-04	0•617376E-05	0•206760E-05	0.774902E-06
	12	0.580240E-02	0.385352E-03	0.597286E-04	0.131558E-04	0•359586E-05	0•114439E-05	0.408722E-06
		MEV= (0.10 Air					
	0 0	0.197775E 01	0.671151E 00	0.405790E-00	0.291090E-00	0•227021E-00	0.186095E-00	0.157684E-00
	1	0.721772E 00	0.180139E-00	0.862902E-01	0.512850E-01	0•341521E-01	0.244297E-01	0.183629E-01
	2	0.358245E-00	0.699270E-01	0.277014E-01	0.141107E-01	0•824038E-02	0.525554E-02	0.356698E-02
	3	0.195105E-00	0.315178E-01	0.107372E-01	0.480773E-02	0•250954E+02	0.144878E-02	0.898931E-03
	4	0.116541E-00	0.160228E-01	0.477434E-02	0.190529E-02	0•898725E-03	0.473892E-03	0.270857E-03
	5	0.727640E-01	0.873652E-02	0.231779E-02	0.835291E-03	0:559716E-03	0.174680E-03	0•926010E-04
	6	0.476509E-01	0.507490E-02	0.121268E-02	0.398236E-03	0:157715E-03	0.709576E-04	0•350663E-04
	7	0.320552E-01	0.307278E-02	0.668713E-03	0.201856E-03	0:740357E-04	0.310410E-04	0•143707E-04
	8	0.222199E-01	0.193642E-02	0.386849E-03	0.108033E-03	0:368945E-04	0.144812E-04	0•630515E-05
	9	0.156884E-01	0.125465E-02	0.231829E-03	0.602680E-04	0:192640E-04	0.710974E-05	0•292246E-05
	10	0.113115E-01	0.835869E-03	0.143670E-03	0.349368E-04	0.104952E-04	0•365523E-05	0•142288E-05
	11	0.826711E-02	0.568151E-03	0.913331E-04	0.208709E-04	0.591590E-05	0•195102E-05	0•721430E-06
	12	0.613760E-02	0.394253E-03	0.595297E-04	0.128308E-04	0.344280E-05	0•107823E-05	0•379686E-06
		MEV= (0.20 Air					
	0 0	0.196606E 01	0.673536E 00	0.408889E-00	0.293980E-00	0.229607E-00	0.188406E-00	0.159760E-00
	1	0.726624E 00	0.182837E-00	0.879590E-01	0.524210E-01	0.349766E-01	0.250560E-01	0.188551E-01
	2	0.360996E-00	0.710537E-01	0.283556E-01	0.145037E-01	0.849604E-02	0.543166E-02	0.369367E-02
	3	0.197482E-00	0.322106E-01	0.110444E-01	0.496906E-02	0.260353E-02	0.150763E-02	0.937821E-03
	4	0.118047E-00	0.163968E-01	0.492170E-02	0.197527E-02	0.936000E-03	0.495417E-03	0.284067E-03
	5	0.738788E-01	0.896200E-02	0.239608E-02	0.868875E-03	0.376101E-03	0.183428E-03	0.976007E-04
	6	0.484020E-01	0.520982E-02	0.125532E-02	0.415063E-03	0.165327E-03	0.747482E-04	0.370975E-04
	7	0.326056E-01	0.315908E-02	0.693473E-03	0.210857E-03	0.778189E-04	0.328033E-04	0.152584E-04
	8	0.226054E-01	0.199159E-02	0.401501E-03	0.112998E-03	0.388498E-04	0.153385E-04	0.671324E-05
	9	0.159734E-01	0.129153E-02	0.240888E-03	0.631336E-04	0.203240E-04	0.754829E-05	0.312016E-05
	10	0.115164E-01	0.860546E-03	0+149351E-03	0.366285E-04	0.110866E-04	0.388720E-05	0.152232E-05
	11	0.842039E-02	0.585208E-03	0+950121E-04	0.219039E-04	0.625780E-05	0.207843E-05	0.773463E-06
	12	0.625008E-02	0.406053E-03	0+619380E-04	0.134724E-04	0.364482E-05	0.115002E-05	0.407711E-06

65

		Table 2. Spa	tial Moments, Pl	one Perpendicular	Source — Continu	bed		
n	p=-1/2	1/2	3/2	5/2	7/2	9/2	11/2	
	MEV=	0.40 Air						
l=0 0	0.193466E 01	0.680035E 00	0.417408E-00	0.301965E-00	0.236783E-00	0.194833E-00	0.165548E-00	
1	0.729586E 00	0.188407E-00	0.918987E-01	0.552590E-01	0.371037E-01	0.267060E-01	0.201713E-01	
2	0.364348E-00	0.739031E-01	0.300292E-01	0.155520E-01	0.919460E-02	0.592058E-02	0.404941E-02	
3	0.201019E-00	0.338395E-01	0.118444E-01	0.540952E-02	0.286724E-02	0.167575E-02	0.105034E-02	
4	0.120635E-00	0.173285E-01	0.532376E-02	0.217449E-02	0.104482E-02	0.55931EE-03	0.323756E-03	
5	0.759028E-01	0.953196E-02	0.261331E-02	0.966381E-03	0.424984E-03	0.210012E-03	0 • 1129962-03	
6	0.498807E-01	0.556471E-02	0.137744E⇒02	0.465338E-03	0.188663E-03	0.865806E-04	0 • 4352212-04	
7	0.337314E-01	0.338977E-02	0.765483E-03	0.238182E-03	0.896165E-04	0.384032E-04	0 • 181194E-04	
8	0.234434E-01	0.214395E-02	0.445211E-03	0.128413E-03	0.450780E-04	0.181196E-04	0 • 805560E-05	
9	0.166148E-01	0.139521E-02	0.268329E-03	0.721627E-04	0.237503E-04	0.899219E-05	0 • 3780512-05	
10	0.120031E-01	0.932019E-03	0.166958E-03	0.420654E-04	0•130331E-04	0.466430E-05	0•186013E-05	
11	0.879712E-02	0.635579E-03	0.106596E-03	0.252713E-04	0•739848E-05	0.251096E-05	0•952611E-06	
12	0.654068E-02	0.441928E-03	0.696892E-04	0.156030E-04	0•433012E-05	0.139757E-05	0•505652E-06	
	MEV=	0.70 Air						
0 0	0.193466E 01	0.680035E 00	0.417408E-00	0.301965E-00	0 • 236783E=00	0 • 194833E-00	0.165548E-00	
1	0.732494E 00	0.188955E-00	0.921103E-01	0.553644E-01	0 • 371642E=01	0 • 267440E-01	0.201968E-01	
2	0.365447E-00	0.740506E-01	0.300728E-01	0.155695E-01	0 • 920289E=02	0 • 592501E-02	0.405198E-02	
3	0.201790E-00	0.339162E-01	0.118609E-01	0.541415E-02	0 • 286867E=02	0 • 167617E-02	0.105043E-02	
4	0.121007E-00	0.173527E-01	0.532606E-02	0.217410E-02	0 • 104420E=02	0 • 558832E-03	0.323411E-03	
5	0.761462E-01	0.954376E-02	0.261346E-02	0.965685E-03	0.424450E-03	0.209668E-03	0.112780E-03	
6	0.500051E-01	0.556719E-02	0.137632E-02	0.464566E-03	0.188237E-03	0.863475E-04	0.433908E-04	
7	0.338087E-01	0.339006E-02	0.764492E-03	0.237646E-03	0.893530E-04	0.382705E-04	0.180497E-04	
8	0.234800E-01	0.214247E-02	0.444265E-03	0.128011E-03	0.449039E-04	0.160395E-04	0.801653E-05	
9	0.166341E-01	0.139357E-02	0.267608E-03	0.718914E-04	0.236420E-04	0.894571E-05	0.375915E-05	
10	0.120078E-01	0•930183E-03	0.166371E-03	0•418712E-04	0•129621E-04	0•463592E-05	0.184787E-05	
11	0.879600E-02	0•633960E-03	0.106154E-03	0•251375E-04	0•735290E-05	0•249378E-05	0.945578E-06	
12	0.653464E-02	0•440441E-03	0.693420E-04	0•155070E-04	0•429964E-05	0•138676E-05	0.501456E-06	
	MEV=	1.00 Air						
0 0	0.182248E 01	0.704500E 00	0.450422E-00	0.333501E-00	0.265498E-00	0 • 220810E-00	0 • 189124E+00	
1	0.722003E 00	0.206761E-00	0.106559E-00	0.664098E-01	0.457469E-01	0 • 335712E-01	0 • 257461E-01	
2	0.368356E=00	0.841037E-01	0.366584E-01	0.199286E-01	0.122159E-01	0 • 809147E-02	0 • 566190E-02	
3	0.208128E=00	0.397848E-01	0.151071E-01	0.731864E-02	0.405930E-02	0 • 246027E-02	0 • 158893E-02	
4	0.126889E=00	0.208665E-01	0.702612E-02	0.307374E-02	0.155907E-02	0 • 872290E-03	0 • 523895E-03	
5	0.811430E-01	0•117319E-01	0.355394E-02	0.141920E-02	0.663947E-03	0.345354E-03	0 • 194054E-03	
6	0.539961E-01	0•696998E-02	0.192002E-02	0.705661E-03	0.306528E-03	0.149057E-03	0 • 787324E-04	
7	0.369786E-01	0•431607E-02	0.109110E-02	0.371712E-03	0.150793E-03	0.688854E-04	0 • 343465E-04	
8	0.259710E-01	0•276784E-02	0.646823E-03	0.205445E-03	0.782093E-04	0.337010E-04	0 • 159180E-04	
9	0.186006E-01	0•182515E-02	0.396790E-03	0.118104E-03	0.423712E-04	0.172855E-04	0 • 775892E-05	
10	0.135601E-01	0•123332E-02	0.250745E-03	0.702427E-04	0•238363E-04	0.923520E-05	0•395041E-05	
11	0.100288E-01	0•850431E-03	0.162442E-03	0.429937E-04	0•138452E-04	0.510912E-05	0•208792E-05	
12	0.751662E-02	0•597184E-03	0.107594E-03	0.269941E-04	0•827305E-05	0.291500E-05	0•114063E-05	
	MEV≈	2.00 Air						
0 0	0.166734E 01	0.741958E 00	0.504011E 00	0.386662E-00	0.315229E-00	0.266723E-00	0.231463E-00	
1	0.700656E 00	0.235285E-00	0.131882E-00	0.868731E-01	0.623038E-01	0.471615E-01	0.370761E-01	
2	0.370237E-00	0.101296E-00	0.490618E-01	0.287047E-01	0.185996E-01	0.128738E-01	0.933841E-02	
3	0.216259E-00	0.502938E-01	0.215901E-01	0.114320E-01	0.679401E-02	0.435432E-02	0.294601E-02	
4	0.135288E-00	0.274205E-01	0.105973E-01	0.513855E-02	0.282788E-02	0.169190E-02	0.107524E-02	
5	0.886039E-01	0.159477E-01	0.561555E-02	0.251615E-02	0.129167E-02	0.725893E-03	0•435661E-03	
6	0.601780E-01	0.975193E-02	0.315733E-02	0.131641E-02	0.633977E-03	0.336280E-03	0•191406E-03	
7	0.420102E-01	0.619795E-02	0.185908E-02	0.725489E-03	0.329358E-03	0.165569E-03	0•896930E-04	
8	0.300170E-01	0.406753E-02	0.113731E-02	0.417424E-03	0.179354E-03	0.857427E-04	0•443415E-04	
9	0.218524E-01	0.273993E-02	0.717930E-03	0.248871E-03	0.101561E-03	0.463124E-04	0•229242E-04	
10	0•161723E-01	0.188775E-02	0.465613E-03	0•152992E-03	0•594777E-04	0.259387E-04	0•123179E-04	
11	0•121341E-01	0.132555E-02	0.308970E-03	0•965366E-04	0•358493E-04	0.149871E-04	0•684222E-05	
12	0•921784E-02	0.946632E-03	0.209225E-03	0•623344E-04	0•221641E-04	0.890077E-05	0•391384E-05	
	MEV=	4+00 Air						
0 0	0.148027E 01	0.794306E 00	0.585224E 00	0.471801E-00	0.398161E-00	0.345717E-00	0.306154E-00	
1	0.663454E 00	0.277876E-00	0.174712E-00	0.124337E-00	0.944591E-01	0.748193E-01	0.610377E-01	
2	0.368655E-00	0.129566E-00	0.723667E-01	0.468175E-01	0.327759E-01	0.241486E-01	0.184532E-01	
3	0.225379E-00	0.688764E-01	0.348872E-01	0.208389E-01	0.136159E-01	0.943322E-02	0.681642E-02	
4	0.146480E-00	0.397651E-01	0.185006E-01	0.103028E-01	0.633362E-02	0.415490E-02	0.285655E-02	
5	0.992995E-01	0.243153E-01	0.104877E-01	0.548393E-02	0.319053E-02	0.199190E-02	0.130883E-02	
6	0.695327E-01	0.155340E-01	0.625575E-02	0.308807E-02	0.170800E-02	0.101879E-02	0.642004E-03	
7	0.499307E-01	0.102700E-01	0.388379E-02	0.181797E-02	0.959441E-03	0.548518E-03	0.332439E-03	
8	0.366088E-01	0.698359E-02	0.249177E-02	0.111008E-02	0.560727E-03	0.308075E-03	0.180000E-03	
9	0.273060E-01	0.486066E-02	0.164293E-02	0.698801E-03	0.338732E-03	0.179262E-03	0.101178E-03	
10 11	0.206703E-01 0.158462E-01	0.345112E-02 0.249246E-02	0.110886E-02 0.763562E-03	0.451516E-03 0.298360E-03	0.210510E=03 0.134064E=03	0.107521E-03 0.662044E-04	0.567277E-04 0.350484E-04 0.214346E-04	
			Tuble 2. Op	dildi momone,				
-----	----	--------------	--------------	---------------	--------------	-------------------	--------------	--------------
	n	p=-1/2	1/2	3/2	5/2	7/2	9/2	11/2
		MEV=10	Air					
l=0	C	0.124042E 01	0.877859E 00	0.732230E 00	0.639936E 00	0*573129E 00	0.521417E 00	0.479695E-00
	1	0.589641E 00	0.351734E-00	0.265001E-00	0.213940E-00	0*179097E-00	0.153517E-00	0.133842E-00
	2	0.350544E-00	0.185083E-00	0.129313E-00	0.982693E-01	0*781190E-01	0.639498E-01	0.534688E-01
	3	0.22875CE-00	0.109508E-00	0.718858E-01	0.519597E-01	0*395578E-01	0.311558E-01	0.251471E-01
	4	0.157693E-00	0.694556E-01	0.431920E-01	0.298836E-01	0*219055E-01	0.166772E-01	0.130497E-01
	5	0.112824E-00	0.461852E-01	0.273657E-01	0.182047E-01	0 • 128973E = 0 1	0.952315E-02	0.724582E-02
	6	C.529849E-01	0.318110E-01	0.180372E-01	0.115759E-01	0 • 794876E = 02	0.570669E-02	0.423165E-02
	7	0.523676E-01	0.225203E-01	0.122619E-01	0.761225E-02	0 • 507780E = 02	0.355170E-02	0.257141E-02
	8	C.477C36E-01	0.163049E-01	0.854884E-02	0.514511E-02	0 • 334038E = 02	0.228014E-02	0.161425E-02
	9	0.375230E-01	0.120285E-01	0.608800E-02	0.355904E-02	0 • 225264E = 02	0.150283E-02	0.104181E-02
	10	0.291107E-01	0.901978E-02	0•441663E-02	0.251239E-02	0.155266E-02	0.101381E-02	0.689095E-03
	11	0.231505E-01	0.686417E-02	0•325857E-02	0.180681E-02	0.109195E-02	0.698835E-03	0.466380E-03
	12	0.186125E-01	0.529781E-02	0•244347E-02	0.132303E-02	0.783226E-03	0.492083E-03	0.322934E-03
		MEV= 0	.025 Poly	/styrene				
0	0	0.201060E 01	0.664555E 00	0.397290E-00	0.283208E-00	0 • 219992E -00	0.179834E-00	0:152069E-00
	1	0.823196E 00	0.192682E-00	0.890826E-01	0.517516E-01	0 • 339174E -01	0.239768E-01	0:178590E-01
	2	0.443707E-00	0.801637E-01	0.303328E-01	0.149483E-01	0 • 851668E -02	0.532833E-02	0:356096E-C2
	3	0.261138E-00	0.387507E-01	0.124828E-01	0.536575E-02	0 • 271353E -02	0.152771E-02	0:928411E-C3
	4	0.166713E-00	0.209460E-01	0.586828E-02	0.223599E-02	0 • 101685E -02	0.520390E-03	0:290082E-03
	5	0.110812E-00	0.121017E-01	0.300419E-02	0.102902E-02	0 • 425436E = 03	0.199730E-03	0.102892E-03
	6	0.768367E-01	0.741666E-02	0.165203E-02	0.513737E-03	0 • 194645E = 03	0.843864E-04	0.404019E-04
	7	0.545785E-01	0.472610E-02	0.955440E-03	0.272199E-03	0 • 952123E = 04	0.383544E-04	0.171555E-04
	8	0.39%179E-01	0.312595E-02	0.578406E-03	0.152009E-03	0 • 493709E = 04	0.185695E-04	0.779232E-05
	9	0.295273E-01	0.212182E-02	0.362143E-03	0.883601E-04	0 • 267917E = 04	0.945232E-05	0.373602E-05
	10	0.223107E-01	0.147814E-02	0.234113E-03	0.533032E-04	0.151541E-04	0.503402E-05	0.188029E-05
	11	0.170599E-01	0.104903E-02	0.155050E-03	0.331001E-04	0.885996E-05	0.278115E-05	0.984788E-06
	12	0.132297E-01	0.759006E-03	0.105162E-03	0.211319E-04	0.534380E-05	0.158985E-05	0.535113E-06
		MEV= 0	05 Poly	styrene				
0	0	0.195355E 01	0.676108E 00	0.412248E-00	0.297120E-00	0.232425E-00	0.190926E-00	0.162028E-00
	1	0.803874E 00	0.198790E-00	0.946863E-01	0.560715E-01	0.372474E-01	0.265964E-01	0.199649E-01
	2	0.431432E-00	0.830220E-01	0.326475E-01	0.165233E-01	0.960152E-02	0.609947E-02	0.412637E-02
	3	0.253508E-00	0.402555E-01	0.135597E-01	0.602114E-02	0.312238E-02	0.179293E-02	0.110747E-02
	4	0.161165E-00	0.217559E-01	0.640719E-02	0.253499E-02	0.118758E-02	0.622633E-03	0.354127E-03
	5	0.106820E-00	0.125691E=01	0.329339E-02	0.117636E-02	0.503059E-03	0.242867E-03	0.128102E-03
	6	0.737640E-01	0.769029E=02	0.181453E-02	0.590653E-03	0.232333E-03	0.103944E-03	0.511205E-C4
	7	0.522256E-01	0.489374E=02	0.105106E-02	0.314452E-03	0.114563E-03	0.477731E-04	0.220154E-04
	8	0.379467E-01	0.322913E=02	0.636430E-03	0.176154E-03	0.597669E-04	0.233381E-04	0.101179E-04
	9	0.280437E-01	0.218735E=02	0.398529E-03	0.102669E-03	0.326052E-04	0.119739E-04	0.490194E-05
	10	0.211050E-01	0.151957E-02	0.257431E-03	0.620279E-04	0.185147E-04	0.641745E-05	0.248867E-05
	11	0.160819E-01	0.107580E-02	0.170368E-03	0.385676E-04	0.108622E-04	0.356557E-05	0.131369E-05
	12	0.124222E-01	0.776040E-03	0.115385E-03	0.246329E-04	0.656731E-05	0.204740E-05	0.718506E-06
		MEV= 0	•10 Poly	styrene				
0	0	0.198551E 01	0.669579E 00	0.403755E-00	0.289198E-00	0.225329E-00	0.184586E-00	0.156329E-00
	1	0.828097E 00	0.197590E-00	0.923083E-01	0.539872E-01	0.355506E-01	0.252203E-01	0.188368E-01
	2	0.446433E-00	0.824925E-01	0.316549E-01	0.157539E-01	0.904172E-02	0.568919E-02	0.381958E-02
	3	0.263871E-00	0.400675E-01	0.131122E-01	0.570307E-02	0.291121E-02	0.165097E-02	0.100949E-02
	4	0.168325E-00	0.216669E-01	0.617853E-02	0.238678E-02	0.109750E-02	0.566823E-03	0.318407E-03
	5	0.112019E-00	0.125381E-01	0.317168E-02	0.110295E-02	0.461731E-03	0.219061E-03	0.113871E-03
	6	0.775700E-01	0.767892E-02	0.174508E-02	0.551700E-03	0.211948E-03	0.929839E-04	0.449779E-04
	7	0.550934E-01	0.489421E-02	0.101032E-02	0.292931E-03	0.104011E-03	0.424462E-04	0.192027E-04
	8	0.401240E-01	0.323303E-02	0.611391E-03	0.163693E-03	0.540278E-04	0.206090E-04	0.875624E-05
	9	0.297287E-01	0.219319E-02	0.382325E-03	0.952399E-04	0.293730E-04	0.105197E-04	0.421384E-05
	10	0.224174E-01	0.152530E-02	0.247238E-03	0•574443E-04	0•166265E-04	0.561181E-05	0•212623E-05
	11	0.171185E-01	0.108130E-02	0.163648E-03	0•356760E-04	0•972956E-05	0.310567E-05	0•111642E-05
	12	0.132454E-01	0.780812E-03	0.110836E-03	0•227597E-04	0•586842E-05	0.177681E-05	0•607615E-05
		MEV= 0	• 20 Poly	ystyrene				
0	0	0.196823E 01	0.673091E 00	0.408310E-00	0.293439E-00	0 • 229123E-00	0.187973E-00	0.159371E-00
	1	0.827434E 00	0.200379E-00	0.943671E-01	0.554782E-01	0 • 366664E-01	0.260830E-01	0.195225E-01
	2	0.445861E-00	0.838140E-01	0.325044E-01	0.162966E-01	0 • 940471E-02	0.594293E-02	0.400362E-02
	3	0.263951E-00	0.408071E-01	0.135166E-01	0.593157E-02	0 • 304885E-02	0.173864E-02	0.106796E-02
	4	0.168248E-00	0.220726E-01	0.637996E-02	0.249026E-02	0 • 115459E-02	0.600364E-03	0.339170E-03
	5	0.111992E-00	0.127821E-01	0.328074E-02	0.115403E-02	0.487656E-03	0.233176E-03	0.122017E-03
	6	0.774780E-01	0.782573E-02	0.180621E-02	0.578210E-03	0.224452E-03	0.993397E-04	0.464175E-04
	7	0.550076E-01	0.498778E-02	0.104647E-02	0.307488E-03	0.110416E-03	0.454968E-04	0.207562E-04
	8	0.400185E-01	0.329266E-02	0.633287E-03	0.171971E-03	0.574497E-04	0.221447E-04	0.949543E-05
	9	0.296299E-01	0.223273E-02	0.396593E-03	0.100138E-03	0.312811E-04	0.113290E-04	0.458305E-05
	10	0.223166E-01	0.155145E-02	0.256043E-03	0.604167E-04	0.177238E-04	0.605356E-05	0.231792E-05
	11	0.170262E-01	0.109908E-02	0.169437E-03	0.375338E-04	0.103811E-04	0.335524E-05	0.121967E-05
	12	0.131575E-01	0.792850E-03	0.114689E-03	0.239432E-04	0.626448E-05	0.192165E-05	0.664909E-06

Toble 2. Spotial Moments, Plane Perpendicular Source - Continued

n	p=-1/2	1/2	3/2	5/2	7/2	9/2	11/2
MEV= 0.40 Polystyrene							
L=0 0	0.193766E 01	0.679408E 00	0•416582E-00	0.301188E-00	0 • 236082E-00	0.194204E-00	0 • 164982E-00
1	0.826759E 00	0.205567E-00	0•982038E-01	0.582699E-01	0 • 387641E-01	0.277105E-01	0 • 208198E-01
2	0.447505E-00	0.866848E-01	0•342392E-01	0.173861E-01	0 • 101288E-01	0.644774E-02	0 • 436940E-02
3	0.266532E-00	0.425353E-01	0•143888E-01	0.641235E-02	0 • 333540E-02	0.192022E-02	0 • 118874E-02
4	0.170411E~00	0.231196E-01	0•684214E-02	0.271894E-02	0 • 127865E-02	0.672630E-03	0 • 383694E-03
5	0.113849E-00	0.134529E-01	0.354210E-02	0.127108E-02	0•545877E-03	0.264548E-03	0.140018E-03
6	0.789362E-01	0.826359E-02	0.195993E-02	0.641266E-03	0•253454E-03	0.113892E-03	0.562371E-04
7	0.561866E-01	0.528440E-02	0.114089E-02	0.343167E-03	0•125668E-03	0.526551E-04	0.243724E-04
8	0.409442E-01	0.349683E-02	0.692953E-03	0.192904E-03	0•658159E-04	0.258352E-04	0.112552E-04
9	0.303731E-01	0.237700E-02	0.435476E-03	0.112859E-03	0•360529E-04	0.133142E-04	0.547934E-05
10	0.229059E-01	0•165469E-02	0•281925E-03	0.683580E-04	0•205322E-04	0•715949E-05	0•279217E-05
11	0.175015E-01	0•117443E-02	0•187067E-03	0.426238E-04	0•120833E-04	0•399151E-05	0•147947E-05
12	0.135385E-01	0•848400E-03	0•126895E-03	0.272738E-04	0•732143E-05	0•229777E-05	0•811517E-06
	MEV=	0.70 Pol	ystyrene				
0 0	0.188873E 01	0.689809E 00	0.430416E-00	0.314279E-00	0.247924E-00	0.204863E-00	0.174618E-00
1	0.821698E 00	0.213622E-00	0.104538E-00	0.630050E-01	0.423819E-01	0.305505E-01	0.231039E-01
2	0.449039E-00	0.914614E-01	0.372402E-01	0.193127E-01	0.114292E-01	0.736498E-02	0.504030E-02
3	0.270091E-00	0.454823E-01	0.159361E-01	0.728596E-02	0.386524E-02	0.226061E-02	0.141770E-02
4	0.173874E-00	0.249697E-01	0.768627E-02	0.314638E-02	0.151478E-02	0.812234E-03	0.470784E-03
5 6 7 9	0 • 116949E-00 0 • 315179E-01 0 • 583284E-01 0 • 426917E-01 0 • 318064E-01	0.146605E-01 0.907091E-02 0.583969E-02 0.368627E-02 0.265591E-02	0.402856E-02 0.225193E-02 0.132290E-02 0.809806E-03 0.512575E-03	0.149438E-02 0.764017E-03 C.413720E-03 0.234954E-03 0.138742E-03	0.659181E-03 0.311100E-03 0.156505E-03 0.830115E-04 0.459971E-04	0.326625E-03 0.143340E-03 0.674124E-04 0.335780E-04 0.175423E-04	0•176148E-03 0•723099E-04 0•319565E-04 0•150160E-04 0•742635E-05
10	0.240770E-01	0.185751E-02	0•333934E-03	0.847272E-04	0•264641E-04	0.954904E-05	0•383844E-05
11	0.184644E-01	0.132428E-02	0•222882E-03	0.532317E-04	0•157209E-04	0.538375E-05	0•206054E-05
12	0.143304E-01	0.960467E-03	0•151986E-03	0.342937E-04	0•960641E-05	0.313090E-05	0•114375E-05
	MEV=	1.00 Poi	ystyrene				
0 0	0.184048E 01	0.700436E 00	0.444834E-00	0.328097E-00	0.260535E-00	0.216291E-00	0 • 185003E-00
1	0.814119E 00	0.221640E-00	0.111186E-00	0.681030E-01	0.463432E-01	0.336989E-01	0 • 256603E-01
2	0.449603E-00	0.964364E-01	0.405036E-01	0.214627E-01	0.129077E-01	0.842320E-02	0 • 582346E-02
3	0.273043E-00	0.486097E-01	0.176562E-01	0.828626E-02	0.448550E-02	0.266615E-02	0 • 169445E-02
4	0.177121E-00	0.269796E-01	0.864620E-02	0.364806E-02	0.179881E-02	0.983549E-03	0 • 579466E-03
5	0.119976E-00	0.159932E-01	0.459163E-02	0.176189E-02	0 • 798 673E -03	0 • 404798E - 03	0•222530E-03
6	0.841304E-01	0.997559E-02	0.259537E-02	0.913742E-03	0 • 383527E -03	0 • 181273E - 03	0•934628E-04
7	0.605445E-01	0.646998E-02	0.154000E-02	0.501177E-03	0 • 195968E -03	0 • 868180E - 04	0•421678E-04
8	0.445362E-01	0.433343E-02	0.950908E-03	0.287810E-03	0 • 105370E -03	0 • 439439E - 04	0•201815E-04
9	0.333450E-01	0.297970E-02	0.606766E-03	0.171710E-03	0 • 591225E -04	0 • 232991E - 04	0•101512E-04
10	0.253519E-01	0.209518E-02	0•398109E-03	0•105814E-03	0•343958E-04	0.128508E-04	0•532697E-05
11	0.195277E-01	0.150161E-02	0•267522E-03	0•670508E-04	0•206467E-04	0.733497E-05	0•290041E-05
12	0.152147E-01	0.109416E-02	0•183525E-03	0•435264E-04	0•127346E-04	0.431311E-05	0•163068E-05
	MEV=	2.00 Pol	ystyrene				
0 0	0.168928E 01	0.736399E 00	0.495786E-00	0.378345E-00	0.307342E-00	0.259366E-00	0.224624E-00
1	0.777972E 00	0.248071E-00	0.135372E-00	0.876350E+01	0.620705E-01	0.465399E-01	0.363124E-01
2	0.441878E-00	0.113219E-00	0.528241E-01	0.301218E-01	0.191457E-01	0.130522E-01	0.935143E-02
3	0.275416E-00	0.594207E-01	0.243831E-01	0.125041E-01	0.725071E-02	0.455605E-02	0.303235E-02
4	0.182396E-00	0.340732E-01	0.125158E-01	0.584913E-02	0.312760E-02	0.182781E-02	0.113894E-02
5	0.125893E-00	0.207742E-01	0.691972E-02	0.297612E-02	0 • 147918E-02	0.809425E-03	0.474964E-03
6	0.897232E-01	0.132727E-01	0.404876E-02	0.161471E-02	0 • 750589E-03	0.386612E-03	0.214616E-03
7	0.655413E-01	0.879372E-02	0.247640E-02	0.921521E-03	0 • 402687E-03	0.196087E-03	0.103368E-03
8	0.488675E-01	0.600246E-02	0.157077E-02	0.548213E-03	0 • 226163E-03	0.104496E-03	0.524782E-04
9	0.370507E-01	0.419872E-02	0.102674E-02	0.337576E-03	0 • 131965E-03	0.580376E-04	0.278448E-04
10	0•285008E-01	0.299906E-02	0•688570E-03	0.214085E-03	0•795564E-04	0•333967E-04	0•153444E-04
11	0•221948E-01	0.218062E-02	0•472010E-03	0.139242E-03	0•493279E-04	0•198137E-04	0•873713E-05
12	0•174735E-01	0.161047E-02	0•329832E-03	0.925913E-04	0•313482E-04	0•120747E-04	0•512015E-05
	MEV=	4.00 Pol	ystyrene				
0 0	0.151748E 01	0.783171E 00	0.567284E 00	0.452523E-00	0.379038E-00	0.327244E-00	0.288489E-00
1	0.731808E 00	0.285635E-00	0.173290E-00	0.120430E-00	0.898954E-01	0.702288E-01	0.566523E-01
2	0.433623E-00	0.139439E-00	0.741694E-01	0.463857E-01	0.316462E-01	0.228380E-01	0.171540E-01
3	0.280941E-00	0.775528E-01	0.370364E-01	0.212141E-01	0.134169E-01	0.905172E-02	0.639625E-02
4	0.192399E-00	0.467274E-01	0.203334E-01	0.107867E-01	0.638228E-02	0.405691E-02	0.271551E-02
5	0.136871E-00	0.297518E-01	0.119217E-01	0.590457E-02	0.329014E-02	0.198172E-02	0.126281E-02
6	0.100227E-00	0.197485E-01	0.734549E-02	0.341742E-02	0.180244E-02	0.103323E-02	0.629230E-03
7	0.750644E-01	0.135414E-01	0.470536E-02	0.206655E-02	0.103592E-02	0.567158E-03	0.331128E-03
8	0.572692E-01	0.953477E-02	0.311150E-02	0.129530E-02	0.619219E-03	0.324745E-03	0.182241E-03
9	0.443653E-01	0.686253E-02	0.211255E-02	0.836494E-03	0.382465E-03	0.192621E-03	0.104133E-03
10	0.348226E-01	0.503245E-02	0.146695E-02	0.554150E-03	0.242940E-03	0.117752E-03	0.614436E-04
11	0.276409E-01	0.374996E-02	0.103852E-02	0.375251E-03	0.158086E-03	0.738855E-04	0.372763E-04
12	0.221586E-01	0.283378E-02	0.747765E-03	0.259044E-03	0.105074E-03	0.474345E-04	0.231737E-04

Table 2. Spatial Moments, Plane Perpendicular Source - Continued

	n	p=-1/2	1/2	3/2	5/2	7/2	9/2	11/2
-		MEV=10.00		ystyrene				
1=0	0	0.1310415 01	0.851004E 00	0.682461F 00	0.580966E 00	0.510111E 00	0.456785E-00	0.414738E-00
~ ~	1	0.661394E 00	0.345512E=00	0.243552F=00	0.187640E-00	0.151512E-00	0.126091E-00	0.107215E-00
	2	0.4154905-00	0.1860925-00	0.119109F-00	0.850245E-01	0.643354E-01	0.505532E-01	0.408114E-01
	3	0.285277E-00	0.113084E=00	0.668676E-01	0.4479475-01	0.320986E-01	0.240306E-01	0.185656E-01
	4	0.206146E-00	0.737334E-01	0.407113E-01	0.258085E-01	0.1763325-01	0.1265175-01	0.940323E-02
	5	0.154130E-00	0.504078E-C1	0.261891E-01	0.158013E-01	0.103435E-01	0.714256E-02	0.512630E-02
	6	0.118165E-00	0.356836E-01	0.175444E-01	0.101189E-01	0.636947E-02	0.424665E-02	0.295163E-02
	7	0.923637E-01	0.259515E-01	0.121292E-01	0.671038E-02	0.407355E-02	0.262891E-02	0.177355E-02
	8	0.733366E-01	0.192895E-01	0.860163E-02	0.457767E-02	0.268631E-02	0.168159E-02	0.110319E-02 `
	9	0.589888E-01	0.145985E-01	0.623010E-02	0.319697E-02	0.181719E-02	0.110531E-02	0.706255E-03
	10	0.4797255-01	0.1121865-01	0-459397F-02	0.227768F=02	0.125617E=02	0.743534F=03	0+463352E-03
	11	0.2028665=01	0.873530E=02	0.3440165-02	0.165086F=02	0.884721E-03	0.510269E-03	0.310494E-03
	12	0.326062E-01	0.688028E-02	0.261113E-02	0.121470E-02	0.633399E-03	0.356380E-03	0.211966E-03

4. References

- [1] L. V. Spencer, Phys. Rev. 98, 1597 (1955).
- [2] Ann T. Nelms, NBS Circ. 577 (1956).
- [3] Ann T. Nelms, Supplement to NBS Circ. 577 (July 30, 1958).
- [4] R. M. Sternheimer, Phys. Rev. 88, 851 (1952); 91, 256 (1953).
- [5] R. Mather and Segré, Phys. Rev. 84, 191 (1951).
- [6] J. A. Doggett and L. V. Spencer, Phys. Rev. 103, 1597 (1956).
- [7] G. Moliere, Z. Naturforsch. 2A, 133 (1947).
- [8] U. Fano, Phys. Rev. 93, 117 (1954).
- [9] F. Frantz (private communication). See [1].
- [10] Clark, Brar, and Marinelli, Radiology 64, 94 (1955).
- [11] R. Loevinger, Radiology 66, 55 (1955).
- [12] F. N. Huffman: ORNL Report 2137, available from Office of Technical Services, U.S. Department of Commerce, Washington, D.C. See also Huffman, Cheka, Saunders, Ritchie, and Birkhoff, Phys. Rev. 106, 435 (1957).
- [13] R. D. Birkhoff, The Passage of Fast Electrons through Matter, Encyclopedia of Physics vol. 34, Springer-Verlag, 1958.
- [14] A. E. Grün, Z. Naturforsch. 12a, Heft 2, 89 (1957).
- [15] J. G. Trump, K. A. Wright, and A. M. Clark, J. Appl. Phys. 21, 345 (1950).

WASHINGTON, February 10, 1959.