I. General information

II. Publications of the National Bureau of Standards
 1. Scientific papers
 2. Technologic papers
 3. Research papers
 4. Circulars

III. Articles published in outside journals

IV. Subject index

I. GENERAL INFORMATION

The publications of the National Bureau of Standards for which prices are indicated may be purchased from the Superintendent of Documents, United States Government Printing Office, Washington, D. C. The prices quoted are for delivery to addresses in the United States, its territories and possessions, and in certain foreign countries which extend the franking privilege. In the case of all other countries, one-third the price of the publication should be added to cover postage. Remittances for publications (marked with a price) should not be made to the Department of Commerce or the National Bureau of Standards, but should be made directly to the Superintendent of Documents, United States Government Printing Office, Washington, D. C., by coupons (for sale by the Superintendent of Documents), postal money order, express order, or check. Currency may be sent at sender's risk. Foreign remittances should be made either by international money order or draft on an American bank. Foreign currency and foreign or domestic stamps will not be accepted.
"OP" in the column marked "Price" indicates that the publication is out of print, but may be consulted at depository libraries which have been designated by Congress to receive copies, as issued, of publications printed by the Government for public distribution.

"Outside publications" are not for distribution or sale by the Government. The National Bureau of Standards cannot supply copies of "outside" journals or reprints from them, and it is unable to furnish information as to their availability or price. These publications may be consulted at technical libraries or in some cases may be purchased directly from the publishers.

Series letters with serial numbers are used to designate publications of the National Bureau of Standards:

S = "Scientific Paper". S1 to S329 are "Reprints" from the "Bulletin of the Bureau of Standards". S330 to S572 were published as "Scientific Papers of the Bureau of Standards". This series was superseded by the "Bureau of Standards Journal of Research" in 1928.

T = "Technologic Paper". T1 to T370. This series was superseded by the "Bureau of Standards Journal of Research" in 1928.

RP = "Research Paper". RP1 to RP690 are reprints from the "Bureau of Standards Journal of Research". Research papers since July 1934 are reprints from the "Journal of Research of the National Bureau of Standards".

C = Circular.

Circular C24 and supplements give the complete list of the publications of the National Bureau of Standards (1901-1936), and may be purchased for 55 cents from the Superintendent of Documents, Government Printing Office, Washington, D. C. Announcement of new publications is made each month in the Technical News Bulletin of the National Bureau of Standards, which is obtainable from the Superintendent of Documents by subscription at 50 cents per year.

II. PUBLICATIONS OF THE NATIONAL BUREAU OF STANDARDS

The numbers assigned (for example, S352, T349, RP62) are the actual reprint numbers by which the National Bureau of Standards and the Government Printing Office lists and sells, respectively, the separate papers (reprints). In ordering Government publications from the Superintendent of Documents, Government Printing Office, Washington, D. C., please use the letter in connection with the number and title of the publication; for example, "S315, Thermal expansion of tungsten".
1. **SCIENTIFIC PAPERS**

<table>
<thead>
<tr>
<th>Topic</th>
<th>Series</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>A simplified formula for the change in order of interference due to changes in temperature of air. I. G. Priest. Bul. BS 2 (1913)</td>
<td>S 199</td>
<td>5 $</td>
</tr>
<tr>
<td>Production of temperature uniformity in an electric furnace. A. W. Gray. Bul. BS 10, 451 (No. 4, 1914)</td>
<td>S 219</td>
<td>25 $</td>
</tr>
<tr>
<td>Thermal expansion of alpha and of beta brass between 0 and 600° C, in relation to the mechanical properties of heterogeneous brasses of the huntz metal type. P. D. Merica and L. W. Schad. Bul. BS 14, 571 (No. 4, 1919)</td>
<td>S 321</td>
<td>25 $</td>
</tr>
<tr>
<td>Thermal expansion of copper and some of its important industrial alloys. P. Hidnert. Sci. Pap. BS 17, 91 (1922)</td>
<td>S 410</td>
<td>25 $</td>
</tr>
</tbody>
</table>

* For Quarterly number of the Bulletin in which the Scientific Paper appeared. This paper is not for sale as a separate paper.
SCIENTIFIC PAPERS (Cont'd)

| Thermal expansion of nickel, Monel metal, stellite, stainless steel, and aluminum. | S 426 | 10 ¢ |
| W. H. Souder and P. Hidnert. Sci. Pap. BS 17, 497 (1922) |

| Thermal expansion of a few steels. W. Souder and P. Hidnert. | S 433 | OP |
| Sci. Pap. BS 17, 611 (1922) |

| Thermal expansion of molybdenum. P. Hidnert and W. B. Gero. | S 488 | 10 ¢ |
| Sci. Pap. BS 19, 429 (1923-24) |

| Thermal expansion of aluminum and various important aluminum alloys. P. Hidnert. | S 497 | OP |
| Sci. Pap. BS 19, 697 (1923-24) |

| Thermal expansion of tungsten. P. Hidnert. | S 515 | 5 ¢ |
| Sci. Pap. BS 20, 483 (1924-26) |

| Measurements of the index of refraction of glass at high temperatures. C. G. Peters. | S 521 | 10 ¢ |
| Sci. Pap. BS 20, 635 (1924-26) |

| Pure zinc at normal and elevated temperatures. J. R. Freeman, Jr., F. Sillers, Jr., and P. F. Brandt. | S 522 | OP |
| Sci. Pap. BS 20, 661 (1924-26). See page 663 for data on thermal expansion by W. Souder and P. Hidnert. |

| Measurements on the thermal expansion of fused silica. W. Souder and P. Hidnert. | S 524 | 10 ¢ |
| Sci. Pap. BS 21, 1(1926-27) |

| Sci. Pap. BS 22, 533 (1927-28) |
SCIENTIFIC PAPERS (Cont'd)

<table>
<thead>
<tr>
<th>Thermal expansion of alloys of the "stainless iron" type. P. Hidnert and W. T. Sweeney.</th>
<th>Series</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sci. Pap. BS 22, 639 (1927-28)</td>
<td>S 570</td>
<td>10 £</td>
</tr>
</tbody>
</table>

2. TECHNOLOGIC PAPERS

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T 38</td>
<td>35 £</td>
</tr>
<tr>
<td></td>
<td>T 107</td>
<td>OP</td>
</tr>
<tr>
<td></td>
<td>T 123</td>
<td>OP</td>
</tr>
<tr>
<td></td>
<td>T 155</td>
<td>OP</td>
</tr>
<tr>
<td></td>
<td>T 157</td>
<td>10 £</td>
</tr>
<tr>
<td>Porosity and volume changes of clay fire bricks at furnace temperatures. G. A. Loomis. Tech. Pap. BS 13 (1920)</td>
<td>Series</td>
<td>Price</td>
</tr>
<tr>
<td></td>
<td>T 159</td>
<td>OP</td>
</tr>
<tr>
<td></td>
<td>T 209</td>
<td>OP</td>
</tr>
<tr>
<td></td>
<td>T 216</td>
<td>OP</td>
</tr>
</tbody>
</table>
3. RESEARCH PAPERS

Thermal expansion of magnesium and some of its alloys. P. Hidnert and W. T. Sweeney. BS J. Research 1, 771 (1928)

Physical properties of dental materials (gold alloys and accessory materials). R. J. Coleman. BS J. Research 1, 867 (1928)

Fire resistance of hollow load-bearing wall tile. S. H. Ingberg and H. D. Foster. BS J. Research 2, 1 (1929)

Thermal expansion of tantalum. P. Hidnert. BS J. Research 2, 887 (1929)

Preparation of experimental sagger bodies according to fundamental properties. R. A. Heindl and L. E. Hong. BS J. Research 3, 419 (1929)

Progress report on investigation of fire-clay bricks and the clays used in their preparation. R. A. Heindl and W. L. Pendergast. BS J. Research 3, 691 (1929)
RESEARCH PAPERS (Cont'd)

<table>
<thead>
<tr>
<th>Series</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP 127</td>
<td>10 ¢</td>
</tr>
<tr>
<td>RP 194</td>
<td>10 ¢</td>
</tr>
<tr>
<td>RP 308</td>
<td>10 ¢</td>
</tr>
<tr>
<td>RP 321</td>
<td>10 ¢</td>
</tr>
<tr>
<td>RP 327</td>
<td>10 ¢</td>
</tr>
<tr>
<td>RP 382</td>
<td>OP</td>
</tr>
<tr>
<td>RP 387</td>
<td>OP</td>
</tr>
<tr>
<td>RP 388</td>
<td>25 ¢</td>
</tr>
<tr>
<td>RP 399</td>
<td>10 ¢</td>
</tr>
<tr>
<td>RP 410</td>
<td>5 ¢</td>
</tr>
</tbody>
</table>

Fire clays; some fundamental properties at several temperatures. R. A. Heindl and J. L. Pendergast. BS J. Research 5, 213 (1930)

Dimensional changes in the manufacture of electrolytes. N. Bekkedahl and W. Blum. BS J. Research 6, 329 (1931)

Volume changes in brick masonry materials. L. A. Palmer. BS J. Research 6, 1003 (1931)

The determination of the coefficient of cubical expansion of solid benzoic acid by means of a gas-filled dilatometer. E. R. Smith. BS J. Research 7, 903 (1931)

The life of the sagger as affected by varying certain properties. R. A. Heindl and L. E. Mong. BS J. Research 7, 1017 (1931)

A method for determining the volume changes occurring in metals during casting. C. M. Saeger, Jr., and E. J. Ash. BS J. Research 8, 37 (1932)

Kaolins; effect of firing temperatures on some of their physical properties. R. A. Heindl, W. L. Pendergast, and L. E. Long. BS J. Research 8, 199 (1932)
Volume changes of cast irons during casting. E. J. Ash and C. M. Saeger, Jr. BS J. Research 9, 601 (1932)

Thermal expansion of some silicates of elements in Group II of the periodic system. R. F. Geller and H. Insley. BS J. Research 9, 35 (1932)

"Moisture expansion" of ceramic white ware. R. F. Geller and A. S. Creamer. BS J. Research 9, 291 (1932)

A study of some ceramic bodies of low absorption maturing at temperatures below 1000° C. R. F. Geller and D. N. Evans. BS J. Research 9, 473 (1932)

Thermal expansion of lead. P. Hidnert and V. T. Sweeney. BS J. Research 9, 703 (1932)

The interference method of measuring thermal expansion. G. E. Merritt. BS J. Research 10, 59 (1933)

The thermal expansion of refractories to 1800° C. R. A. Heindl. BS J. Research 10, 715 (1933)

Thermal expansion of columbium. P. Hidnert and H. S. Krider. BS J. Research 11, 279 (1933)

Effects of particle size of a potter's "flint" and a feldspar in whiteware. R. F. Geller, D. N. Evans, and A. S. Creamer. BS J. Research 11, 327 (1933)

Effect of heat treatment on the expansivity of a Pyrex glass. J. B. Saunders and A. Q. Tool. BS J. Research 11, 799 (1933)

Olivine as a refractory. R. A. Heindl. BS J. Research 12, 215 (1934)

Thermal expansion of bearing bronzes. P. Hidnert. BS J. Research 12, 391 (1934)

Thermal expansions of some soda-lime-silica glasses as functions of the composition. B. C. Schmid, A. N. Finn, and J. C. Young. BS J. Research 12, 421 (1934)
RESEARCH PAPERS (Cont'd)

<table>
<thead>
<tr>
<th>Title</th>
<th>Series</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal expansion of artificial graphite and carbon. P. Hidnert. J. Research NBS 13, 37 (1934)</td>
<td>RP 693</td>
<td>5 ¢</td>
</tr>
<tr>
<td>Forms of rubber as indicated by the temperature volume relationship. N. Bekkedahl. J. Research NBS 13, 411 (1934)</td>
<td>RP 717</td>
<td>5 ¢</td>
</tr>
<tr>
<td>Compression tests of structural steel at elevated temperatures. P. D. Sale. J. Research NBS 13, 713 (1934)</td>
<td>RP 741</td>
<td>OP</td>
</tr>
<tr>
<td>Calibrations of the line standards of length of the National Bureau of Standards. L. V. Judson and B. L. Page. J. Research NBS 13, 757 (1934)</td>
<td>RP 743</td>
<td>5 ¢</td>
</tr>
<tr>
<td>Young's modulus of elasticity at several temperatures for some refractories of varying silica content. R. A. Heindl and W. L. Pendergast. J. Research NBS 13, 851 (1934)</td>
<td>RP 747</td>
<td>5 ¢</td>
</tr>
<tr>
<td>Index of refraction, density, and thermal expansion of some soda-alumina-silica glasses as functions of the composition. C. A. Faick, J. C. Young, D. Hubbard, and A. N. Finn. J. Research NBS 14, 133 (1935)</td>
<td>RP 762</td>
<td>OP</td>
</tr>
<tr>
<td>Thermal expansion of monocrystalline and polycrystalline antimony. P. Hidnert. J. Research NBS 14, 523 (1935)</td>
<td>RP 784</td>
<td>5 ¢</td>
</tr>
</tbody>
</table>
Thermal expansion of copper-beryllium alloys. P. Hidnert. J. Research NBS 16, 529 (1936)
Thermal expansion of lead-antimony alloys. P. Hidnert. J. Research NBS 17, 697 (1936)
Thermal expansion of cemented tungsten carbide. P. Hidnert. J. Research NBS 18, 47 (1937)
Some "soft" glazes of low thermal expansion. R. F. Geller, E. N. Bunting, and A. S. Creamer. J. Research NBS 20, 57 (1938)
Thermal expansion and effects of heat treatments on the growth, density and structure of some heat-resisting alloys. P. Hidnert. J. Research NBS 20, 809 (1938)
Expansion effects on the inversion of silica crystals in certain devitrified glasses. A. Q. Tool and J. B. Saunders. J. Research NBS 21, 773 (1938)
Thermal-expansion characteristics of some ground-coat enamel frits. W. N. Harrison, B. J. Sweo and S. M. Shelton. J. Research NBS 22, 127 (1939)
Improved interferometric procedure with application to expansion measurements. J. B. Saunders. J. Research NBS 23, 179 (1939)

* For June number of the Journal in which the Research Paper appeared. This paper is not for sale as a separate paper.
Thermal expansion of some chromium-vanadium steels. P. Hidnert. J. Research NBS 24, 25 (1940)

Length changes of whiteware clays and bodies during initial heating, with supplementary data on mica. R. F. Geller and E. N. Bunting. J. Research NBS 25, 15 (1940)

Thermal expansion of electrolytic chromium. P. Hidnert. J. Research NBS 26, 81 (1941)

Some factors affecting the properties of ceramic talcose whiteware. R. F. Geller and A. S. Creamer. J. Research NBS 26, 213 (1941)

Comparative tests of chemical glassware. E. Wichers, A. N. Finn, and W. S. Clabaugh. J. Research NBS 26, 537 (1941). See page 539 for data on thermal expansion by P. Hidnert, L. H. Haxwell, and J. B. Saunders.

Thermal expansion of cast and of swaged chromium. P. Hidnert. J. Research NBS 27, 113 (1941)

Thermal expansion of clay building bricks. C. W. Ross. J. Research NBS 27, 197 (1941)

Thermal expansion studies of boric oxide glass and of crystalline boric oxide. J. J. Donoghue and D. Hubbard. J. Research NBS 27, 371 (1941)

Expansivity of a Vycor brand glass. J. B. Saunders. J. Research NBS 28, 51 (1942)

4. CIRCULARS

Invar and related nickel steels (2nd edition). C 58 OP
Circular BS No. 58 (1923)

Testing of line standards of length. L. V. Judson. Circular BS No. 332 (1927)

III. ARTICLES PUBLISHED IN OUTSIDE JOURNALS

The reference numbers (for example, OJ-1, OJ-2, etc.) in the following lists of publications in outside journals, are merely arbitrary numbers assigned here to indicate sequence in this letter circular and for easy reference in the index. They have nothing to do with any designating numbers which may be applied by the publishers.

Bulletin of the American Ceramic Society
(2525 North High St., Columbus, Ohio)

<table>
<thead>
<tr>
<th>Reference No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effect of repeated heatings on the mechanical strength of high-tension insulator porcelains. R. F. Geller, Bul. Am. Ceramic Soc. 12, 18 (1933)</td>
</tr>
<tr>
<td>The effect of calcined cyanite in porcelain bodies. S. J. McDowell and E. J. Vachuska. J. Am. Ceramic Soc. 10, 64 (1927)</td>
</tr>
</tbody>
</table>
Methods for testing crazing of glazes caused by increases in size of ceramic bodies. H. G. Schurecht. J. Am. Ceramic Soc. 11, 271 (1928)

The influence of chemical composition on the physical properties of glazes. F. P. Hall. J. Am. Ceramic Soc. 13, 182 (1930)

Transactions of the American Electrochemical Society (Columbia University, New York, N.Y.)

Methods for determining the volume changes undergone by metals and alloys during casting. C. N. Saeger, Jr., and E. J. Ash. Trans. Am. Foundrymen's Assoc. 38, 107 (1930)

Transactions of the American Institute of Metals
(29 West 39th St., New York, N. Y.)

Transactions of the American Institute of Mining and Metallurgical Engineers
(29 West 39th St., New York, N.Y.)

Austenite and austenitic steels. J. A. Mathews. Trans. Am. Inst. Min. Met. Eng. 71, 568 (1925). See page 575 for data on thermal expansion by P. Hidnert and W. T. Sweeney (Chemical composition of samples C-25-0 and CN-21-7 should be changed to Cr 23.7, Ni 6.8 percent and Cr 26.5, Ni 0.34 percent, respectively).

American Refractories Institute
(Oliver Bldg., Pittsburgh, Pa.)

Transactions of the American Society for Steel Treating
(7016 Euclid Ave., Cleveland, Ohio)

Ceramic bodies of low absorption maturing below 1000 Deg. C. R. F. Geller and D. N. Evans. Ceramic Ind. 20, 32 (1933)

The Chemical News

Industrial and Engineering Chemistry
(American Chemical Society, 20th & Northampton Sts., Easton, Penna.)

Metals and Alloys
(Reinhold Publishing Corp., East Stroudsburg, Pa.)

Metals Handbook of American Society for Metals
(7016 Euclid Ave., Cleveland, Ohio)

The Metal Industry
(The Louis Cassier Co., Ltd., 22 Henrietta St., Covent Garden, London, W.C. 2, England)

Thermal expansion of beryllium and aluminum-beryllium alloys. P. Hidnert and W. T. Sweeney. Metal Ind. 32, pp. 397 and 423 (1928)
<table>
<thead>
<tr>
<th>Reference No.</th>
<th>Physical Review</th>
</tr>
</thead>
<tbody>
<tr>
<td>OJ-33</td>
<td>Thermal expansion of lead. P. Hidnert and W. T. Sweeney. Metal Ind. 42, 177 (1933)</td>
</tr>
<tr>
<td>OJ-34</td>
<td>Thermal expansion of bearing bronzes. P. Hidnert. Metal Ind. 45, 57 (1934)</td>
</tr>
<tr>
<td>OJ-35</td>
<td>Thermal expansion of copper-beryllium alloys. P. Hidnert. Metal Ind. 49, 212 (1936)</td>
</tr>
<tr>
<td>OJ-42</td>
<td>Thermal expansion of "Carboloy". P. Hidnert. Phys. Rev. 35 (series 2), 120 (1930)</td>
</tr>
</tbody>
</table>

Rock Products (Tradepress Publishing Corp., 309 W. Jackson Blvd., Chicago, Ill.)

Rubber Chemistry and Technology (20th & Northampton Sts., Easton, Pa.)

Forms of rubber as indicated by the temperature volume relationship. N. Bekkedahl. Rubber Chem. Tech. 8, 5 (1935)

Journal of the Washington Academy of Sciences (450 Ahnaip St., Menasha, Wis.)

Micrometer microscopes. A. W. Gray. J. Wash. Acad. Sciences 4, 45 (1914)
The production of temperature uniformity in an electric furnace. A. W. Gray. J. Wash. Acad. Sciences 4, 134 (1914)

Reference No. OJ-56

World Engineering Congress
(World Engineering Congress, Kogakkaï, Harunouchi, Tokyo, Japan)

Zeitschrift für Metallkunde
(VDI-Verlag GmbH, Dorotheenstr. 40, Berlin NW 7, Germany)

IV. Subject Index

(Numbers refer to publications and not to pages.)

A

Admiralty condenser tubes, S410
Admiralty nickel (or Adnic), OJ-44
Alloys,
 aluminum, S497
 aluminum-beryllium, S565, OJ-32, OJ-58
 aluminum-copper, S497, RP399
 aluminum-manganese, S497
 aluminum-manganese-copper, S497
 aluminum-silicon, S497
 aluminum-silicon-copper, S497
 aluminum-silicon-copper-manganese, S497
 aluminum-zinc, S497
 copper, S410, OJ-47
 copper-aluminum, OJ-20
 copper-beryllium, RP890, OJ-35
 copper-manganese-aluminum, RP863
 copper-nickel-tin, OJ-44
 copper-tin, S410, OJ-47
 copper-tin-lead-zinc, RP665, OJ-47
 copper-zinc, S410
 gold-copper, RP32
 gold-nickel, RP32
 gold-silver, RP32
 heat-resisting, RP388, RP1106
 iron-chromium, S570, RP388
 iron-chromium-aluminum, RP1106
 iron-chromium-aluminum-cobalt, RP1106
 lead-antimony, RP938
 magnesium, RP29, OJ-59
 magnesium-aluminum, RP29, OJ-59
 magnesium-aluminum-manganese, RP29
 nickel-chromium, RP388
 nickel-chromium-iron, RP388
 nickel-copper-tin-iron, OJ-45
 nickel-manganese, T155
 Nos. 1, 2, 4 and 502, RP388
 tungsten carbide, cemented, RP960, OJ-42
Alumina, OJ-19
Aluminum, S426, S497, RP399, OJ-20
Aluminum alloys, S497
Aluminum-beryllium alloys, S565, OJ-32, OJ-58
Aluminum bronze, S410
Aluminum-copper alloys, S497, RP399
Aluminum-manganese alloys, S497
Aluminum-manganese-copper alloys, S497
Aluminum-silicon alloys, S497
Aluminum-silicon-copper alloys, S497
Subject Index (Cont'd)

Aluminum-silicon-copper-manganese alloys, S497
Aluminum-zinc alloys, S497
Amalgams, dental, T157, C433
Anorthite, RP456
Antimony, RP784, OJ-49
Apparatus, cubical expansion, RP382, RP399, RP717, RP760, OJ-20, OJ-51
Apparatus, linear expansion,
 autographic, RP722
dial, OJ-50
 fused-quartz tube and dial, RP29, OJ-7
 interferometer, S365, S393, S485, S521, T157, RP1227,
 RP1253, RP1445, OJ-53
 optical strain gage, RP1414
 porcelain dilatometer, RP1311
 precision micrometric, S219, S410, S524, OJ-36, OJ-54, OJ-57
to 1800°C, RP562
 various types, OJ-57
Auxiliary expansion apparatus,
 electric furnace, S219, OJ-56
 micrometer microscopes, S215, OJ-55
 thermoelements, S276
Artificial stones, dental, RP32

B

Bakelite, S352
Bearing bronzes, RP665, OJ-34
Benzoic acid, RP382
Beryll, RP456
Beryllia, RP1443
Boric oxide, crystalline, RP1425
Brasses, S321, S410, OJ-21
Brass, red, RP399
Brazing brass, S410
Bricks, commercial, OJ-24
Bronzes, S410
Bronzes, bearing, RP665, OJ-34

C

Calcium metasilicate, RP456
Calite, B, E, N, and S, RP388
Carboloy, RP960, OJ-42
Carbon, T335, RP693
Cartridge brass, S410
Celluloid, S352
Celsian (barium feldspar), RP456
Cemented tungsten carbide, RP960, OJ-42
Ceramic bodies, RP483, RP594, OJ-26
Ceramic bodies, glazed, OJ-10
Subject Index (Cont'd)

Ceramic materials, S485, RP456
Ceramic materials, low-expanding, RP456
Ceramic talcose whiteware, RP1371
Ceramic whiteware, RP472
Chain bronze, S410
Chromax, RP388
Chromel A, RP388
Chromel, cast, RP388
Chromin D, RP388
Chromium, cast, swaged, RP1407
Chromium, electrolytic, RP1361, OJ-46
Chromium-vanadium steels, RP1269
Cimet, RP388
Clays, S485, RP387, OJ-17, OJ-24
 aluminous, RP1243
 ball, RP1311
 fire, RP194
 flint, RP1243
Clay bricks, RP321
Clay building bricks, RP1414
Clay fire bricks, T159
Columbium, RP590
Commercial brass, S410
Commercial bronze, S410
Condensite, S352
Copper alloys, S410
Copper, arsenical, S410
Copper, electrolytic, S410
Copper, nickeliferous, S410
Copper-aluminum alloy, OJ-20
Copper-beryllium alloys, RP390, OJ-35
Copper-manganese-aluminum alloy, RP863
Copper-nickel-tin alloy, OJ-44
Copper-tin alloys, S410, OJ-47
Copper-tin-lead-zinc alloys, RP665, OJ-47
Copper-zinc alloys, S410
Cordierite, RP456
Cyclops 17A, RP388
Cyanite, OJ-5

D

Dental materials, T157, RP32, C433
Denture base material, C433
Diaspore, RP1243
Dicalcium aluminum silicate, RP456
Dickite, RP410
Duralumin, S347, S497

E

Enamels, RP1172, OJ-3
Enduro KA2Ni, RP388
Subject Index (Cont'd)

F

Fahrite N-1 and CS, RP388
Feldspars, OJ-15
Feldspar bodies, OJ-9, OJ-15
Fire clays, RP114, RP194, RP1084, OJ-12, OJ-14, OJ-24
Fire clay bricks, RP114, RP321, OJ-12
Formica, S352
Formula (interferometer), S199
Forsterite, RP456
Fourdrinier wire, S410
Free turning rod, S410

G

Gilding, S410
Glasses, S393, S485, S521, RP219
boric oxide, RP1425
devitrified, RP1153
No. 790 (96 percent silica), RP1445
pyrex, RP626
soda-alumina-silica, RP762
soda-lime-silica, RP667
Vycor, RP1445
Glassware, chemical, RP1394, T107, OJ-29
Glazes, S485, RP1064, OJ-6, OJ-13
Gold, RP32
Gold-copper alloy, RP32
Gold-nickel alloy, RP32
Gold-silver alloy, RP32
Graphite, T335, RP693
Gun metal, S410
Gypsum fiber concrete, OJ-50

H

Halloysite, RP410
Heat-resisting alloys, RP388, RP1106
Heat-resisting steel No. 74, RP388
Hoskins' alloy No. 10, RP1106

I

Impression compound, dental, RP32, C433
Insulating materials, electrical, S352, T216
Invar, RP743, C58
Investments, dental, RP32, C433
Iron car wheels, T209
Iron, cast, S433, RP399, RP440, RP741, OJ-20
Iron-chromium alloys, S570, RP388
Iron-chromium-aluminum alloy, RP1106
Iron-chromium-aluminum-cobalt alloys, RP1106
Subject Index (Cont'd)

Iron, effects of hydrogen, OJ-25
Iron, electrolytic, S433
Iron, "hydrogen point", OJ-25, OJ-39
Isoprene, RP951, OJ-52

K

Kanthal alloys, RP1106
Kaolins, RP410, RP1243, RP1311

L

Lead, RP399, RP500, OJ-20, OJ-33, OJ-43, OJ-61
Lead-antimony alloys, RP938
Leaded bronze, S410
Leaded low brass, S410
Leaded screw wire, S410
Length standards, RP743, C332
Limestones, S352, T349
Low brass, S410

M

M-M-M alloy, OJ-45
Magnesia, OJ-19
Magnesite, RP645
Magnesium, RP29, OJ-59
Magnesium alloys, RP29, OJ-59
Magnesium-aluminum alloys, RP29, OJ-59
Magnesium-aluminum-manganese alloys, RP29
Manganese bronze, S410
Marble, S352, T123, OJ-38
Masonry bricks, RP321
Mica, RP1311
Molybdenum, S332, S488
Monel metal, S426
Mortars, RP321
Mullite, RP410, RP562
Muntz metal, S410

N

Naval brass, S410
Nichrome, RP388
Nichrome IV, RP388
Nickel, S426, RP257
Nickel-chromium alloys, RP388
Nickel-chromium-iron alloys, RP388
Nickel-copper-tin-iron alloy, OJ-45
Nickel-manganese alloy, T155
Nickel steels, RP741, RP743, C58, OJ-37, OJ-41, OJ-48
Nirosta KA-2 and KA-2S, RP388
Olivine, RP645
Oxides, OJ-19

Phenol condensation products, S352, T216
Phenol-methylene materials, S352, T216
Phosphor bronze, S410
Plaster of paris, RP32, C433
Porcelains, S352, T155, OJ-1, OJ-2
Porcelain bodies, OJ-8
Porcelain, synthetic (dental), T157
Primer gilding, S410

Quartz, fused, S524, OJ-4, OJ-28

Refactories, RP114, RP562, RP747, OJ-19
Rhodium, RP127
Rich low brass, S410
Rubber, RP1253, OJ-53
Rubber, amorphous, crystalline, RP717, OJ-51
Rubber, hard, S352
Rubber-sulphur compounds, S560, RP760

S

Sagger bodies, RP104, RP387, RP827, OJ-16
Sagger clays, RP827, OJ-7, OJ-11
Shale bricks, RP321
Silica, S524, RP410, OJ-28
Silicates, RP456; dental cement, C433
Silicates, lead, RP705
Spark-plug electrode, T155
Special CNS steel, RP388
Spring brass, S410
Stainless iron, S570
Stainless iron type C2, RP388
Stainless steel, S426
Steels, S433, RP388, RP1269, OJ-22, OJ-23, OJ-31
Steel car wheels, T235
Steels, chromium-vanadium, RP1269
Steel rails, T38
Steel, structural, RP741
Stellite, S426
Subject Index (Cont'd)

T

Tantalum, RP62, OJ-60
Teeth, T157, C433
Terra-cotta tile, S485
Thoria, RP1443, OJ-19
Thoria-zirconia, RP1443
Thorium, OJ-30
Tile, clay, RP37
Tile, hollow, S485
Tile, shale, RP37
Tin, RP399, OJ-20
Tophet A and C, RP388
Tungsten, S515, OJ-27
Tungsten carbide-cobalt mixtures, RP960, OJ-42

U

Uniloy 21-12, RP388
Uniloy-special 18-8, RP388

V

Verilite, S497

W

Waxes, inlay, RP32, C433
Wax, ozokerite base, RP308
Whiteware, OJ-18
Whiteware bodies, T310, RP1311
Whiteware, ceramic talcose, RP1371

Z

Zinc, S522, RP399, OJ-20
Zinc aluminate, RP456
Zinc orthosilicate, RP456
Zirconia, RP1443, OJ-19