Many inquiries come to the Bureau of Standards for information on solders and soldering. This letter circular has been prepared to give essential information on the subject in a condensed form in answer to such inquiries.

I. General Considerations

The term "soldering" is generally understood to mean the joining of two metal surfaces by means of another metal which is applied in the molten condition. The metal which forms the joint is the solder. Pure metals may be used as solders, but practically all solders in common use are alloys.

To form a satisfactory soldered joint it is necessary to heat the metal at the joint at least to a temperature at which the solder is entirely molten. One of the distinctions between a soldered joint and a welded joint is that in the former the metals to be joined are not heated to their melting points. Consequently, one of the requisites for a solder is that its melting point must be lower than that of the metals being joined. It is generally believed that to obtain satisfactory adherence of the solder it is necessary that the solder form an alloy with the metals which it is to join. It has been claimed that satisfactory adherence can be obtained without actual alloying of solder and metal.

II. Classes of Solders

The solders, in general use, may be divided into the following classes:

1. Soft Solders
2. Hard Solders
 a. Silver Solders
 b. Brazing Solders
3. Aluminum Solders

Recently a number of preparations designated "Liquid Solders" or "Cold Solders" have come into the market. These preparations are recommended for the joining of all sorts of materials without
the use of heat. Most of these preparations are really cements or "glues" and are not solders in the generally accepted meaning of the term. Although they may make joints with satisfactory strength for some purposes, they do not form a metal-to-metal bond and cannot be used to make joints to conduct electric current.

III. Fluxes

The strength of a soldered joint depends largely on the adherence of the solder to the metal being joined. To secure good adherence it is necessary that the surface of the metal and of the solder be free of oxide, dirt, etc. Base metals are normally covered with a film or layer of oxide and the amount of oxide increases as the metal is heated to the soldering temperature. Hence, to enable the solder to "wet" the metal, it is necessary to employ a material which will remove the oxide film already present and also protect the surfaces of both metal and solder from the air while they are heated to the soldering temperature. Such a material is known as a soldering flux.

IV. Soft Solders

(a) Composition and Properties

The desirable properties of soft solders are that they have comparatively low melting points and will withstand a considerable amount of bending without fracture. They can be applied by simple means, and can be used for joining with low melting points. One of their chief disadvantages is that they have comparatively low strengths.

The metals almost universally used as soft solders are the lead-tin alloys. The alloy containing 63 per cent tin and 37 per cent lead melts at about 360°F (182°C). All the other lead-tin alloys begin to melt at this temperature but are completely molten at a higher temperature depending upon the relative amounts of lead and tin in the alloy.

The most widely used "all purpose" soft solder is the alloy containing 50 per cent lead and 50 per cent tin. The temperature at which this alloy is completely molten is variously given as 415 to 440°F (215 to 225°C). The alloy containing about 2 parts of lead to 1 part of tin is used in preference to the "half and half" alloy for making "wiped" joints, as it has a wider melting range and therefore can be molded during solidification. Most commercial soft solders contain small percentages of antimony which is claimed to improve the properties of the solder. There are many other modifications of the lead-tin alloys for soft soldering purposes, the advantages or particular applications of which cannot be discussed here.
(b) Fluxes

The fluxes ordinarily used for soft soldering are solutions or pastes that contain zinc chloride or mixtures of zinc and ammonium chlorides as the active fluxing agents. The solvent or other medium holding the flux material is evaporated by the heat of the soldering operation, leaving a layer of the solid flux on the work. At the soldering temperature the flux is melted and partially decomposed with the liberation of hydrochloric acid. It is this acid reaction when heated which enables the flux to dissolve the oxides from the surfaces of the solder and the work. The fused flux also forms a protective film that prevents further oxidation from taking place. Thus, the two-fold function of a flux is fulfilled. It is claimed that a flux containing zinc and ammonium chlorides in their eutectic proportion (71 per cent by weight of zinc chloride to 29 per cent by weight of ammonium chloride) is the most satisfactory flux for this type of soft soldering.

Because zinc chloride fluxes have a corrosive action, it is sometimes necessary to employ a non-corrosive flux for certain types of work where the last traces of the flux cannot be removed after the soldering is completed. Rosin is the most commonly used flux of this type. Soft solder wire with a core of rosin is obtainable commercially.

(c) Application

Soft solders are usually applied with a soldering "iron" (actually made of copper) but may be applied with a flame as the source of heat. Difficulties may arise by using a blow torch if precautions are not taken against overheating. An excessive amount of solder is to be avoided. Except in "wiped" joints the minimum amount of solder that will spread evenly throughout the area of contact between the metals to be joined produces the strongest joints.

V. Hard Solders

Soft soldered joints do not stand up at temperatures above about 350°F (177°C). The hard solders melt at temperatures above about 1300°F (704°C). There are no satisfactory solders, with high ductility and strength, that melt between these temperatures.

There are two types of hard solders: silver solders and brazing solders. Practically all silver solders are alloys of silver, copper and zinc. They are malleable and ductile. Silver soldered joints in many metals may be as strong as the metals themselves. Brazing solders are generally alloys of copper and zinc. They are more brittle than silver solders and do not withstand bending and impact as well.
VI. Silver Solders

(a) Composition and properties

There are many variations in the proportions of silver, copper and zinc used in commercial silver solders. The following compositions, Table I, together with their melting points and flow points are given in the American Society for Testing Materials Specification B 73-29 for Silver Solders. It is believed that a solder satisfactory for most purposes for which silver solder is suitable can be selected from this list. The melting point as given in the table is the temperature at which the solder begins to melt; the flow point, the temperature at which the solder is completely molten.

TABLE I (Silver Solders, A.S.T.M. Specification B 73-29).

<table>
<thead>
<tr>
<th>No.</th>
<th>Chemical Composition</th>
<th>Melting Point</th>
<th>Flow Point</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Silver</td>
<td>Copper</td>
<td>Zinc</td>
</tr>
<tr>
<td>-----</td>
<td>-----------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>52</td>
<td>38</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>45</td>
<td>35</td>
</tr>
<tr>
<td>4</td>
<td>45</td>
<td>30</td>
<td>25</td>
</tr>
<tr>
<td>5</td>
<td>50</td>
<td>34</td>
<td>16</td>
</tr>
<tr>
<td>6</td>
<td>65</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>70</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>80</td>
<td>16</td>
<td>4</td>
</tr>
</tbody>
</table>

Small amounts of cadmium are sometimes added to the ordinary silver solder compositions. One such solder contains 20 per cent silver, 45 per cent copper, 30 per cent zinc and 5 per cent cadmium. This solder has the same melting and flow points as the No. 2 alloy.

A method commonly used in metal working shops to prepare silver solder for miscellaneous uses is to melt together silver and yellow brass (copper 60 per cent, zinc 40 per cent) in the proportions of 1 part silver to 2 parts brass.
(b) Fluxes

For ordinary purposes, borax or mixtures of borax and boric acid (75 to 25 per cent borax with 25 to 75 per cent boric acid) will meet most requirements as a flux for soldering with silver solders. Zinc chloride fluxes used for soft soldering are not satisfactory for hard soldering because they do not remain on the work at the temperature necessary for hard soldering.

(c) Application

All silver solders melt at temperatures above a red heat and cannot be applied with soldering irons. Blow torches of various kinds are commonly used. Silver solders (and also brazing solders) are frequently applied by heating the whole object in which the joint is to be made to the soldering temperature in a suitable furnace.

VII. Brazing Solders

(a) Composition and properties

The common brazing solders or brazing "spelters" are really brasses containing more zinc, and consequently with lower melting points, than the commercial brasses or bronzes. Hence, they can be used for joining brass, bronze and other commercial copper alloys as well as ferrous metals. Joints made with pure copper would be classed as brazed joints although they are often termed "coppered" joints in trade practice.

The commonly used brazing solders contain from 40 to 55 per cent copper and 60 to 45 per cent zinc, the composition most frequently used being the one containing equal weights of copper and zinc. These are brittle alloys and are ordinarily supplied in granular form. Their flow points are above 1800°F (981°C).

(b) Fluxes

The same fluxes used for silver soldering, described above, are generally used with the brazing solders.

(c) Application

Brazing solders are ordinarily applied by means of a blow torch.
VIII. Aluminum Solders

Hundreds of alloys have been developed for use in soldering aluminum and aluminum alloys. Most of the solders that have been found to be satisfactory contain tin and zinc in proportions varying from 50 to 75 per cent tin and 50 to 25 per cent zinc. The alloy containing 60 per cent tin and 40 per cent zinc is frequently used and will produce joints possessing satisfactory strength.

The solders are best applied without the use of a flux. Rubbing the surfaces of the aluminum under the melted solder with a wire brush or a sharp object such as an old file will clean its surface so that the solder will "wet" the aluminum. The tin-zinc solders can be applied with a soldering iron.

The chief difficulty with soldered joints on aluminum is that the aluminum adjacent to the joint corrodes when exposed to a moist atmosphere as a result of galvanic action between the dissimilar metals. This can be avoided to a certain extent by covering the joint with a moisture-proof paint or varnish.

Although it is generally considered best practice to join aluminum by welding rather than by soldering, aluminum solders serve a useful purpose in applications where the joints are normally well covered with oil or otherwise protected from the atmosphere.

IX. Additional Information on Solders and Soldering

Many variations from the compositions of the different types of solders mentioned in this discussion have been found useful for certain purposes. No attempt has been made to discuss in detail the metallurgical principles and theories involved in the use of solders. For more detailed information on the subject reference should be made to the original papers or books listed below.

(a) General subject of soldering

"Soldering and Brazing" by Hobart. Book published by D. Van Nostrand Company, 250 Fourth Ave., New York, N. Y.

(b) Soft soldering

(c) Silver solders

(d) Aluminum solders

"Solders for Aluminum", Circular of the Bureau of Standards No. 78.

Both of these circulars are obtainable by purchase from the Superintendent of Documents, Government Printing Office, Washington, D. C.

X. Specifications

The Federal Specifications Board has issued specifications for the use of the departments and independent establishments of the government in the purchase of solders. Excerpts from these specifications giving the compositions of the various grades of each type are given below. The complete specifications can be obtained from the Federal Specifications Board, Bureau of Standards, Washington, D. C.
1. Specification No. 306 for Spelter Solder (for brazing)

<table>
<thead>
<tr>
<th>Grade</th>
<th>Copper Per Cent</th>
<th>Tin Per Cent</th>
<th>Lead Maximum Per Cent</th>
<th>Iron Maximum Per Cent</th>
<th>Aluminum Maximum Per Cent</th>
<th>Zinc Per Cent</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>49.0-52.0</td>
<td>none*</td>
<td>0.50</td>
<td>0.10</td>
<td>0.10</td>
<td>remainder</td>
</tr>
<tr>
<td>B</td>
<td>49.0-52.0</td>
<td>3.0-4.0</td>
<td>0.50</td>
<td>0.10</td>
<td>--</td>
<td>"</td>
</tr>
<tr>
<td>C</td>
<td>68.0-72.0</td>
<td>none*</td>
<td>0.30</td>
<td>0.10</td>
<td>--</td>
<td>"</td>
</tr>
<tr>
<td>D</td>
<td>78.0-82.0</td>
<td>none*</td>
<td>0.20</td>
<td>0.10</td>
<td>--</td>
<td>"</td>
</tr>
</tbody>
</table>

* As determined on a one gram sample.

2. Specification No. 307 for Silver Solder

<table>
<thead>
<tr>
<th>Grade</th>
<th>Permissible Range (Per Cent)</th>
<th>Maximum Values (Per Cent)</th>
<th>Other Impurities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Silver</td>
<td>Copper</td>
<td>Zinc</td>
</tr>
<tr>
<td>0</td>
<td>20.0-25.0</td>
<td>45.0-50.0</td>
<td>Remainder</td>
</tr>
<tr>
<td>1</td>
<td>44.0-50.0</td>
<td>35.0-45.0</td>
<td>"</td>
</tr>
<tr>
<td>2</td>
<td>64.0-70.0</td>
<td>18.0-23.0</td>
<td>"</td>
</tr>
</tbody>
</table>

3. Specification No. 313 for Tin-Lead Solder

<table>
<thead>
<tr>
<th>Grade</th>
<th>Tin plus Lead Minimum Per Cent</th>
<th>Tin Minimum Per Cent</th>
<th>Antimony Maximum Per Cent</th>
<th>Copper Maximum Per Cent</th>
<th>Sum of Zinc, Aluminum and Cadmium Maximum Per Cent</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>99.65</td>
<td>49.0</td>
<td>0.25</td>
<td>0.08</td>
<td>none*</td>
</tr>
<tr>
<td>B</td>
<td>99.65</td>
<td>44.0</td>
<td>0.25</td>
<td>0.08</td>
<td>none*</td>
</tr>
<tr>
<td>C</td>
<td>99.65</td>
<td>38.0</td>
<td>0.25</td>
<td>0.08</td>
<td>none*</td>
</tr>
<tr>
<td>D</td>
<td>97.50</td>
<td>35.0</td>
<td>1.50</td>
<td>0.30</td>
<td>0.50**</td>
</tr>
<tr>
<td>E</td>
<td>97.50</td>
<td>30.0</td>
<td>1.50</td>
<td>0.30</td>
<td>0.50**</td>
</tr>
</tbody>
</table>

* As determined on a five gram sample.

** Not more than 0.30 per cent of zinc, aluminum, or cadmium individually will be permitted.