Subject: Refrigerators.

Replying to your inquiry, we are enclosing our Letter Circular No. 255 which contains the information available at this Bureau on the subject of household refrigerators.

Respectfully,

George K. Burgess, Director.

Enclosure: LC 255
Electric and Gas Refrigerators
April 1, 1929

This letter circular has been prepared to serve as a reply to the numerous requests received by the Bureau for information on household refrigerators. Many of these requests are for recommendations or opinions on specific makes of machines, or for results of tests made by the Bureau. It can be stated at once that it is not one of the functions of the Bureau to collect or distribute information on the relative merits of commercial products, and that it does not give opinions on their relative merits. Only a very few tests of refrigerators have been made by the Bureau to determine compliance with special requirements of other government departments and the results of these tests are not available for publication.

There are two general types of refrigerating systems, the compression and the absorption type. In the usual compression type a small compressor, operated by an electric motor, is used to compress the vapor coming from the refrigerating coils to a pressure sufficiently high to cause it to liquefy at ordinary temperatures, when heat is removed either by water or air. The liquid is then readmitted through an expansion valve or equivalent device to the refrigerating coils, where its evaporation at a low pressure produces the cooling for which the machine is designed.

In the absorption type the vapor from the refrigerating coils is absorbed in a suitable substance, such as water, or other liquid, or by a solid which is capable of absorbing large quantities of vapor. Subsequently the substance containing the absorbed vapor is heated, either electrically or by a gas flame, and the vapor is driven off, then cooled and condensed to a liquid, which is returned to the refrigerating coils. Machines of this type have few or no moving parts, practically all of them are almost noiseless in operation and in contrast with many machines of the compression type, require connection to a water supply for cooling. Some of the machines using a liquid absorber are continuous in operation, the heat being applied always to one part, while the liquid is caused to circulate. Others are of the intermittent type, the heat being supplied for a time to one part, then to another part, or to one part at intervals. Nearly all of the machines now on the
market are designed to provide for freezing ice cubes, and since this feature is so very generally included, no further consideration of it is required here.

A very large number of makes of refrigerating machines of the compression type have been put on the market. These have included such variations as direct drive, belt drive, and gear drive; reciprocating single or multiple cylinder compressors, various types of rotary compressors; various refrigerants such as sulfur dioxide, methyl chloride, ethyl chloride, ammonia, volatile hydrocarbons, etc.; air or water cooling; refrigeration by direct expansion or by the use of brine tanks, etc. Completely self-contained and sealed machines of the compression type have also been made. It is impracticable to discuss here the various merits and demerits of the features which are often emphasized out of all proportion to their importance, in advertising and by salesmen. The user of a machine is not so much concerned with the kind of drive, refrigerant or absorbent used, type of compressor or system of refrigeration as he is in the kind of service the machine will give and what the service may cost over a period of years. For example, there is no outstanding advantage in a machine with a brine tank as compared with one of the direct expansion type, but the success or failure of either will depend upon the quality of the whole machine and not upon such a detail of design.

Knowledge of details of design of this kind is of value to the expert in judging whether the machine is designed and made so that it can be expected to have a reasonably long life and give satisfactory service during its life. The fact that a machine has one or several features of design which seem superior does not necessarily indicate that it will prove to be superior to other machines having other features of design. For example, the refrigerant used is a factor of minor importance as regards efficiency, since machines can be designed to use any of the ordinary refrigerants effectively. Similarly either compression or absorption machines can give very satisfactory service.

There have been instances where refrigerants which constituted a distinct hazard to life or health have been used, but this does not apply to the refrigerants now in general use. Again a poorly designed machine might introduce a distinct fire or accident hazard. The purchaser of a machine should, therefore, take into consideration evidence concerning test and approval of the type by some disinterested authority.

Short time tests of refrigerating machines unfortunately furnish only incomplete information as to their relative merits. Such a test may disclose obvious defects and will readily show the power or gas and water consumption and the efficiency of the unit tested, when new. By operating the machine under extreme conditions, e.g., at high room temperature, it is possible to make an estimate of the margin of reserve in power, cooling capacity and strength of parts above ordinary requirements, but none of these tests gives informa-
tion on the most important points, namely, the durability and re-
liability in service of the average machine under ordinary condi-
tions.

Some of the factors to which the prospective purchaser of a
machine should give attention are the following:

1. Standing of the manufacturer. If the manufacturer does
not remain in business the machine is likely to become obsolete
in a very short time, since replacement of worn or defective parts
may be difficult or impossible.

2. Record of the machine. A machine in the experimental
or development stage is a more speculative proposition than one
which has stood the test of service.

3. Noise. Unless a machine runs quietly when new and contin-
uous to do so, it will be unsatisfactory to most of its users.

4. Useful life. The aggregate cost of refrigeration depends
to a considerable extent upon the length of life of the machine,
and upon the cost of service and repairs. Very little information
on this point is available, and the purchaser must depend upon the
reputation of the product and such information as he can find in
regard to durability.

5. Efficiency of the machine. There are considerable dif-
ferences in the operating efficiencies of different machines, and
figures on operating costs can sometimes be obtained. If a machine
is not well made or is allowed to deteriorate, efficiency may be
greatly reduced after a short period of use.

6. Insulation of the refrigerator. The refrigerator should
be well insulated, preferably with not less than a two-inch thick-
ness of some good insulating material. Refrigerators depending
largely upon air spaces for insulation or those with thin walls
and doors are likely to require considerable power or fuel and
water to keep them cold.

7. Air or water cooling. If the machine is water cooled,
the purchaser should determine that his water supply is suitable
for the purpose, so that deposits from hard water will not be
formed inside the machine, ultimately interfering with its func-
tioning, and that the water supply is sufficient in quantity and
not too expensive.

8. Servicing of machine. Preference should be given to a
machine which could be easily and inexpensively serviced or re-
paired when necessary. A machine which could easily be removed
entirely and replaced by another would be classed as easily serv-
iced. If attention such as oiling or adjustments are required from
time to time, the points requiring attention should be few in
number, and should be readily accessible where the machine is to
be installed, lest it suffer from neglect.

9. Quality of local service. A machine obtained from a responsible dealer who is prepared to attend to adjustments and repairs promptly when required, is to be preferred.

10. Comparison of Refrigeration by Machines and by Ice. The purpose of this section is not to make an exhaustive comparison between machine refrigeration and ice refrigeration but merely to point out some of the more obvious facts, which if kept in mind, may enable the prospective purchaser to avoid being puzzled or misled.

The owner of a refrigerating machine is free from whatever annoyance accompanies frequent or irregular delivery of ice. The machine can be set to maintain a lower temperature than is practicable with ice, so that left overs can be kept a somewhat longer time before being thrown away. Few subjects are more misunderstood by the public and by writers on refrigeration than that of temperatures required for proper refrigeration. Most writers draw a dead line at 50°F and state in effect, that useful refrigeration is not obtained above that temperature. The facts are, however, fairly simple and obvious. Time and temperature are equally essential factors in decay. Most foods will remain palatable and wholesome if kept as long as a day at a temperature as high as 60°F. If they are to be kept for a week, 50°F may not be low enough. If they are to be kept for a month, the temperature must be still lower. In any case, most users prefer to serve food while it is fresh; there are very few who purchase a refrigerator for the purpose of establishing a miniature cold storage plant to preserve foods for considerable periods, and the possibility of keeping foods for more than a limited time is of little practical importance. There is, of course, a wide difference in the keeping qualities of various kinds of foods. The user of a machine is usually less subject to loss from spoilage of food, and in some cases there may be a considerable saving in this respect.

Either an ice cooled refrigerator or a machine cooled refrigerator tends to maintain a dry atmosphere in the food compartments and thus to dry out moist materials stored in them. The water from the melted ice carries off material in solution thereby removing causes of odors.

The relative cost of refrigeration with ice and with a machine depends very largely upon the useful life of the machine and the costs of repairs, replacements and service. To make a comparison of costs, it is necessary to estimate the probable life of the machine and then to estimate operating costs, and costs of repairs, service, etc. over this period. To these add the initial cost, (including interest charges if desired) and divide the total by the number of years to find the aggregate cost of refrigeration per year. A similar estimate may be made for a refrigerator using ice. Such computations indicate that a machine should have a
useful life of at least ten years in order that the cost of refrigeration by machine should not be unduly high as compared with ice refrigeration. In many cases the operating costs of a machine are lower than the cost of ice for a refrigerator of comparable size, but this is rarely true of the aggregate cost of refrigeration, which means that the greater convenience and better service of machine refrigeration are obtained at somewhat higher cost.

In many cases the purchaser of a machine compares its operating costs for the first few months with those of his old refrigerator, which may have had but little insulation when new and is almost certainly no better after years of use. Such a comparison does not give a correct picture. It is true that the reluctance of makers of ice refrigerators, until recently, to use insulation, has been one of the important factors in popularizing the machines, which are usually installed in well insulated boxes. On the other hand, well insulated refrigerators for ice are a comparatively recent development. As machines are usually set to maintain lower temperatures than are obtained in iced refrigerators, they require more insulation. The minimum requirement for any type of refrigerator is that the insulation shall be sufficient to prevent the deposition of moisture on the outside of the box, under all conditions in which it is to be used. Adequate insulation requires no secret formulas or knowledge not available to the public, but only the use of a sufficient thickness (not less than 2 inches) of a good insulating material, adequately protected from moisture. Recently, well insulated refrigerators for ice have been obtainable, and when such are used, the public will have a better opportunity to compare refrigeration by ice, with refrigeration by machine, on their respective merits.

Other Sources of Information:

2. A series of articles entitled "The Domestic Refrigerating Machine" in four issues (July to October 1923) of Ice and Refrigeration, Nickerson and Collins Co., Chicago, Ill.

3. A report of the Refrigeration-By-Gas Committee of the American Gas Association (1925), 342 Madison Avenue, New York, N. Y.

4. A report of the Electric Refrigeration Committee of the National Electric Light Association (1928-25) 29 West 39th Street, New York, N. Y.... $0.80.

8. An article entitled "Analysis of Household Refrigerator Tests" in Ice and Ref. 73, p. 230; 1927.

9. A booklet entitled "Home Economics Bibliography 5 - Household Refrigeration". This booklet containing a list of references to articles, mostly non-technical, of interest to the householder may be obtained free from the Bureau of Home Economics, Department of Agriculture, Washington, D. C.

10. The Household Refrigeration Bureau of the National Association of Ice Industries, Chicago, Ill., issues pamphlets on household refrigeration and related subjects.

These publications contain illustrations of many types of small refrigerating machines, and 4 to 8 inclusive, contain data obtained in tests of various ice boxes and machines.

Numerous papers on this subject may be found in the refrigeration journals listed below:

<table>
<thead>
<tr>
<th>Journal</th>
<th>Published</th>
<th>Publisher</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refrigerating World</td>
<td>Monthly</td>
<td>The Ice Trade Woolworth Bldg. Journal Co.</td>
<td>New York City</td>
</tr>
<tr>
<td>Ice & Refrigeration</td>
<td>Monthly</td>
<td>Nickerson & Collins Co.</td>
<td>5707 W.Lake St. Chicago, Ill.</td>
</tr>
</tbody>
</table>

This letter circular has been prepared for the purpose of answering individual inquiries only, and it is not to be used in connection with advertising or sales promotion.