NIST TIME & FREQUENCY BULLETIN
(Supersedes No. 399 February 1991)

NO. 400 MARCH 1991

1. GENERAL BACKGROUND INFORMATION ... 1
2. TIME SCALE INFORMATION .. 1
 International Timing Center comparisons via GPS common-view 2
3. UT1 CORRECTIONS AND LEAP SECOND ADJUSTMENTS 2
4. PHASE DEVIATIONS FOR WWVB AND LORAN-C 3
5. GOES TIME CODE INFORMATION ... 4
6. BROADCAST OUTAGES OVER FIVE MINUTES AND WWVB PHASE PERTURBATIONS 4
7. NOTES ON NIST TIME SCALES AND PRIMARY STANDARDS 5
8. SPECIAL ANNOUNCEMENTS .. 7

This bulletin is published monthly. Address correspondence to:

Gwen E. Bennett, Editor
Time and Frequency Division
National Institute of Standards & Technology
325 Broadway
Boulder, CO 80303
(303) 497-3295

NOTE TO SUBSCRIBERS: Please include your address label (or a copy)
with any correspondence regarding this bulletin.
1. GENERAL BACKGROUND INFORMATION

ABBREVIATIONS AND ACRONYMS USED IN THIS BULLETIN

APL - John Hopkins University Applied Physics Laboratory
BIH - International Time Bureau, France
BIPM - Bureau International des Poids Mesures
CCIR - International Radio Consultative Committee
CRL - Communications Research Laboratories, Japan
Cs - Cesium standard
CSIRO - Commonwealth Scientific and Industrial Research Organization, Australia
GOES - Geostationary Operational Environmental Satellite
GPS - Global Positioning System
IEN - National Institute of Electronics, Italy
INPL - National Physical Laboratory, Israel
LORAN - Long Range Navigation
MC - Master Clock
MJD - Modified Julian Date
NIST - National Institute of Standards & Technology
NPL - National Physical Laboratory, England
NRC - National Research Council, Canada
NOAA - National Oceanic and Atmospheric Administration
OP - Paris Observatory, France
PTB - Physical Technical Federal Laboratory, Germany
PRN - Pseudo random numbers
SI - International System of Units
TA - Atomic Time
TAI - International Atomic Time
TAO - Tokyo Astronomical Observatory, Japan
TUG - Technical University of Graz, Austria
USNO - United States Naval Observatory
UTC - Coordinated Universal Time
VLF - very low frequency
VSL - Van Swinden Laboratory, Netherlands

2. TIME SCALE INFORMATION

The values listed below are based on data from the BIH, the USNO, and the NIST. The UTC - UTC(NIST) values are extrapolations since UTC is computed more than two months after the fact. The UTC(USNO,MC) - UTC(NIST) values are averaged measurements from NAVSTAR satellites 3, 4, 6, and 8 (see references on page 6).

<table>
<thead>
<tr>
<th>FEBRUARY</th>
<th>MJD</th>
<th>UTI - UTC(NIST) (± 5 ms)</th>
<th>UTC - UTC(NIST) (± 0.2 µs)</th>
<th>UTC(USNO,MC) - UTC(NIST) (± 0.04 µs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1991</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>48294</td>
<td>+536 ms</td>
<td>-0.7 µs</td>
<td>-0.84 µs</td>
</tr>
<tr>
<td>14</td>
<td>48301</td>
<td>+523 ms</td>
<td>-0.8 µs</td>
<td>-0.87 µs</td>
</tr>
<tr>
<td>21</td>
<td>48308</td>
<td>+505 ms</td>
<td>-0.8 µs</td>
<td>-0.88 µs</td>
</tr>
<tr>
<td>28</td>
<td>48315</td>
<td>+490 ms</td>
<td>-0.8 µs</td>
<td>-0.90 µs</td>
</tr>
</tbody>
</table>
INTERNATIONAL TIMING CENTER COMPARISONS VIA GPS COMMON-VIEW

The table below is a weighted average of the indicated GPS satellites used as transfer standards to measure the time difference of Timing Center (i) - UTC(NIST) by the simultaneous common-view approach (see references, page 6). The day-to-day variations of this technique are a few nanoseconds and the accuracy is about 10 ns. The time of the measurement is interpolated to 0000 UTC for the particular MJD ending in 9. These data are prepared for the BIPM for the computation on TAI and of UTC. All differential delays are 0 unless otherwise noted.

<table>
<thead>
<tr>
<th>UTC(i)</th>
<th>PRN NUMBERS</th>
<th>UTC(i) - UTC(NIST) (ns)</th>
<th>MJD</th>
</tr>
</thead>
<tbody>
<tr>
<td>APL</td>
<td>2,3,6, 11,12,13,14, 18, 20</td>
<td></td>
<td>48279</td>
</tr>
<tr>
<td>CRL</td>
<td>3,6, 11,12</td>
<td>-2358 -2470 -2535 -2563</td>
<td>11956</td>
</tr>
<tr>
<td>CSIRO</td>
<td>++</td>
<td></td>
<td>-833</td>
</tr>
<tr>
<td>IEN</td>
<td>11</td>
<td>VIA OP</td>
<td>11495</td>
</tr>
<tr>
<td>INPL</td>
<td>11,12,13</td>
<td></td>
<td>592</td>
</tr>
<tr>
<td>NPL</td>
<td></td>
<td></td>
<td>-330</td>
</tr>
<tr>
<td>NRC+++</td>
<td>2,3,6, 11,12,13,14, 16,17, 20</td>
<td></td>
<td>-1572</td>
</tr>
<tr>
<td>OP</td>
<td>2</td>
<td>11,12,13,14, 16</td>
<td></td>
</tr>
<tr>
<td>PTB</td>
<td>2</td>
<td>11,12,13,14,15,16, 20</td>
<td></td>
</tr>
<tr>
<td>TAO</td>
<td>3,6, 11,12, 14, 17,18, 20</td>
<td></td>
<td>-1543</td>
</tr>
<tr>
<td>TUG</td>
<td>2</td>
<td>11,12,13,14,15,16, 20</td>
<td></td>
</tr>
<tr>
<td>USNO</td>
<td>2,3,6, 11,12,13,14, 16,17,18, 20</td>
<td></td>
<td>-835</td>
</tr>
<tr>
<td>VSL</td>
<td>2</td>
<td>11,12,13,14, 16, 20</td>
<td></td>
</tr>
</tbody>
</table>

+ This value has been updated from those printed in last month's Bulletin.
++ UTC(CSIRO) - UTC(NIST) is computed from the average via CRL, TAO, & WWV.
+++ UTC(NRC) - UTC(NIST) has a differential delay of 41.2 ns; all other comparisons are computed using zero (0).
* IEN had a frequency shift of approximately -16.0 E-14 on MJD 48299. Therefore, the value for MJD 48309 is an unfiltered estimate.
@ NRC had a frequency step of approximately 15.0 E-14 on MJD 48282.
! The value for MJD 48309 for TUG was extrapolated forward from MJD 48308.

3. UT1 CORRECTIONS AND LEAP SECOND ADJUSTMENTS

The master clock pulses used by the WWV, WWVH, WWVB, and GOES time code transmissions are referenced to the UTC(NIST) time scale. Occasionally, 1 second is added to the UTC time scale. This second is called a leap second. Its purpose is to keep the UTC time scale within ± 0.9 s of the UT1 astronomical time scale, which changes slightly due to variations in the rotation of the earth.

Positive leap seconds, beginning at 23 h 59 min 60 s UTC and ending at 0 h 0 min 0 s UTC, were inserted in the UTC timescale on 30 June 1972, 31 December 1972-1979, 30 June 1981-1983, 30 June 1985, 31 December 1987, 1989, and 1990. When future leap seconds are scheduled, advance notice will be provided in this bulletin.

The use of leap seconds ensures that UT1 - UTC will always be held within ± 0.9 s. The current value of UT1 - UTC is called the DUT1 correction. DUT1 corrections are broadcast by WWV, WWVH, WWVB, and GOES and are printed below. These corrections may be added to received UTC time signals in order to obtain UT1.

DUT1 = UT1 - UTC

= +0.6 s beginning 0000 UTC on 1 January 1991
= +0.5 s beginning 0000 UTC on 7 February 1991
= +0.4 s beginning 0000 UTC on 21 March 1991
4. PHASE DEVIATIONS FOR WWVB AND LORAN-C

WWVB - The values shown for WWVB are the time difference between the time markers of the UTC(NIST) time scale and the first positive-going zero voltage crossover measured at the transmitting antenna. The uncertainty of the individual measurements is ±0.5 µs. The values listed are for 1300 UTC.

LORAN-C - The values shown for Loran-C represent the daily accumulated phase shift (in microseconds). The phase shift is measured by comparing the output of a Loran receiver to the UTC(NIST) time scale for a period of 24 hours. If data were not recorded on a particular day, the symbol (-) is printed.

The stations monitored are Dana, Indiana (8970 M) and Fallon, Nevada (9940 M). The monitoring is done from the NIST laboratories in Boulder, Colorado.

<table>
<thead>
<tr>
<th>DATE</th>
<th>MJD</th>
<th>UTC(NIST) - WWVB(60 kHz) ANTENNA PHASE (µs)</th>
<th>UTC(NIST) - LORAN PHASE (in µs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>LORAN-C (DANA) (8970 M)</td>
</tr>
<tr>
<td>02/01/90</td>
<td>48288</td>
<td>5.69</td>
<td>+0.05</td>
</tr>
<tr>
<td>02/02/90</td>
<td>48289</td>
<td>5.69</td>
<td>+0.22</td>
</tr>
<tr>
<td>02/03/90</td>
<td>48290</td>
<td>5.68</td>
<td>(-)</td>
</tr>
<tr>
<td>02/04/90</td>
<td>48291</td>
<td>5.68</td>
<td>+0.54</td>
</tr>
<tr>
<td>02/05/90</td>
<td>48292</td>
<td>5.65</td>
<td>-0.35</td>
</tr>
<tr>
<td>02/06/90</td>
<td>48293</td>
<td>5.63</td>
<td>-0.08</td>
</tr>
<tr>
<td>02/07/90</td>
<td>48294</td>
<td>5.69</td>
<td>-0.13</td>
</tr>
<tr>
<td>02/08/90</td>
<td>48295</td>
<td>5.70</td>
<td>+0.38</td>
</tr>
<tr>
<td>02/09/90</td>
<td>48296</td>
<td>5.69</td>
<td>+0.08</td>
</tr>
<tr>
<td>02/10/90</td>
<td>48297</td>
<td>5.68</td>
<td>+0.21</td>
</tr>
<tr>
<td>02/11/90</td>
<td>48298</td>
<td>5.67</td>
<td>-0.36</td>
</tr>
<tr>
<td>02/12/90</td>
<td>48299</td>
<td>5.61</td>
<td>(-)</td>
</tr>
<tr>
<td>02/13/90</td>
<td>48300</td>
<td>5.75</td>
<td>-0.02</td>
</tr>
<tr>
<td>02/14/90</td>
<td>48301</td>
<td>5.70</td>
<td>+0.21</td>
</tr>
<tr>
<td>02/15/90</td>
<td>48302</td>
<td>5.88</td>
<td>+0.12</td>
</tr>
<tr>
<td>02/16/90</td>
<td>48303</td>
<td>5.70</td>
<td>(-)</td>
</tr>
<tr>
<td>02/17/90</td>
<td>48304</td>
<td>5.70</td>
<td>(-)</td>
</tr>
<tr>
<td>02/18/90</td>
<td>48305</td>
<td>5.70</td>
<td>+0.17</td>
</tr>
<tr>
<td>02/19/90</td>
<td>48306</td>
<td>5.70</td>
<td>-0.34</td>
</tr>
<tr>
<td>02/20/90</td>
<td>48307</td>
<td>5.73</td>
<td>-0.61</td>
</tr>
<tr>
<td>02/21/90</td>
<td>48308</td>
<td>5.72</td>
<td>-0.09</td>
</tr>
<tr>
<td>02/22/90</td>
<td>48309</td>
<td>5.72</td>
<td>-0.53</td>
</tr>
<tr>
<td>02/23/90</td>
<td>48310</td>
<td>5.73</td>
<td>+0.04</td>
</tr>
<tr>
<td>02/24/90</td>
<td>48311</td>
<td>5.75</td>
<td>+0.72</td>
</tr>
<tr>
<td>02/25/90</td>
<td>48312</td>
<td>5.76</td>
<td>+0.16</td>
</tr>
<tr>
<td>02/26/90</td>
<td>48313</td>
<td>5.68</td>
<td>+0.18</td>
</tr>
<tr>
<td>02/27/90</td>
<td>48314</td>
<td>5.66</td>
<td>-0.18</td>
</tr>
<tr>
<td>02/28/90</td>
<td>48315</td>
<td>5.69</td>
<td>-0.14</td>
</tr>
</tbody>
</table>
5. GOES TIME CODE INFORMATION

A. TIME CODE PERFORMANCE (1 - 28 February 1991)

GOES/East and GOES/West: Performance within normal limits during this period except for 1740-1745 UTC on 4 February when a large time jump occurred in the on-line time code generator.

B. SPECIAL REMINDER: Current satellite locations are about 60° West longitude for GOES/East and 135° West longitude for GOES/West.

C. SPRING ECLIPSE OPERATIONS: GOES/West will not be affected by eclipse operations. The GOES/East time code, however, is being switched daily from 0300-0600 UTC to the GOES-7 at 107.6° West longitude. The GOES/East position data transmitted with the code is being updated to be approximately correct for GOES-7 during these 3-hour periods. Users may experience loss of signal, however, due to the large difference in orbital locations for GOES-2 and GOES-7. The eclipse period will extend from 2 February through 25 March.

D. FUTURE SATELLITE LAUNCHES: NOAA's present launch schedule for replacement of the current East and West satellites has been moved back to February mid-1992 at the earliest.

E. GOES STATUS REPORTS

Note: On approximately February 1, 1991 the USNO Automated Data Service, including the GOES status report, was moved to a different computer system at USNO. For access information to this new "Bulletin-Board" type system, see below.

A brief message from the NIST giving current GOES time code status information is available from the U.S. Naval Observatory's Automated Data Service computer system in Washington, DC. To access the new system, dial (202) 653-0068 (commercial) or 653-0068 (FTS). Use 1200 or 2400 Baud only, 8 data bits, and no parity. At the password prompt, type "CESIUM133". At the next prompt, type your name. At the main menu, type "GOES" to get to the GOES submenu. Then type "NISTGO" to receive the status file on GOES. Type "EXIT" or "BYE" to exit the system.

6. BROADCAST OUTAGES OVER 5 MINUTES AND WWVB PHASE PERTURBATIONS

<table>
<thead>
<tr>
<th>OUTAGES</th>
<th>PHASE PERTURBATIONS WWVB 60 kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATION</td>
<td>FEBRUARY 1990</td>
</tr>
<tr>
<td>WWVB</td>
<td>NONE</td>
</tr>
<tr>
<td>WWV</td>
<td>NONE</td>
</tr>
<tr>
<td>WWVH</td>
<td>NONE</td>
</tr>
</tbody>
</table>
7. NOTES ON NIST TIME SCALES AND PRIMARY STANDARDS

The frequencies of the time scales, TA(NIST) and UTC(NIST), are calibrated with the NIST primary frequency standards. The UTC(NIST) scale is coordinated within a microsecond of the internationally coordinated time scale, UTC, generated at the BIH. It is used to control all of the NIST time and frequency services. The last calibration of the relative frequency offset, \(y \), of UTC(NIST) as generated in Boulder, Colorado, gave:

1) \[y_{\text{UTC(NIST)}} (\text{July 1987}) - y_{\text{NBS-6}} (\text{July 1987}) = (-0.6 \pm 2 \text{ (1 sigma)}) \times 10^{-13} \]

for the date shown. This calibration includes a correction for the systematic offset due to room temperature blackbody radiation, which is approximately \(\text{delta } y_{BB} = -1.7 \times 10^{-14} \). Using GPS\(^1\), the frequency of TAI for the dates shown were measured to be:

2) \[y_{\text{TAI}} (\text{July 1987}) - y_{\text{NBS-6}} (\text{July 1987 on geoid}) = (+1.7 \pm 2 \text{ (1 sigma)}) \times 10^{-13} \]

where account has been taken of the gravitational "red shift."

Starting 1 January 1975, an accuracy algorithm was implemented to bring the second used in the generation of TA(NIST) closer to the NIST "best estimate" of the SI second (see references, p.6). The relative frequency associated with this "best estimate" is denoted \(y_{\text{Cs(NIST)}} \). The last calibration (July 1987) covered the period from October 1986 through July 1987.

3) \[y_{\text{Cs(NIST)}} - y_{\text{NBS-6}} = (+1.4 \pm 2) \times 10^{-13} \text{ (July 1987)} \]

and

4) \[y_{\text{TAI}} - y_{\text{Cs(NIST)}} \text{ on geoid} = (+0.3 \pm 0.7) \times 10^{-13} \text{ (July 1987)} \]

This algorithm should provide nearly optimum accuracy and stability for TA(NIST) since it uses all past frequency calibrations with the NIST primary standards. These calibrations are weighted proportionately to the frequency memory of the clock ensemble that generates atomic time. This algorithm, therefore, capitalizes on a weighted combination of all the frequency calibrations with the primary standards in order to gain a "best estimate" of the SI Second while simultaneously obtaining the best uniformity available from the ensemble of working clocks in the atomic time scale system. The relative frequency of TA(NIST) is steered toward \(y_{\text{Cs(NIST)}} \) by slight frequency drift corrections of the order of 1 part in \(10^{13}/\text{yr} \).

TA(NIST) and UTC(NIST) are no longer simply related by an equation. TA(NIST) is now computed each month using a Kalman algorithm which minimizes the mean square time dispersion. UTC(NIST) is now independently computed using a different algorithm and is steered in frequency to keep its time within a microsecond of UTC(RIN). Table 7.1 lists monthly values of the time difference between UTC(NIST) and TA(NIST). A linear interpolation between monthly values will typically be within 10 ns of the actual time difference, \(\text{TA(NIST)} - \text{UTC(NIST)} \).

The primary standards of NIST (NBS-4 and NBS-6) are used in either of two modes: as calibrators of frequency to provide a reference for the SI second; or as member clocks of the NIST clock ensemble, to help keep the proper time for TA(NIST) and the coordinated time for UTC(NIST). Operating in the clock mode, NBS-4 and NBS-6 are only used and weighted according to their stability performance. Accuracy enters only when they are used as frequency calibrators, in which case clock operation is necessarily interrupted.

\(^1\)GPS is the Global Positioning System, a network of navigation satellites.
Table 7.1 is a list of changes in the time scale frequencies of both TA(NIST) and UTC(NIST) as well as a list of the time and frequency differences between TA(NIST) and UTC(NIST) at the dates of leap seconds, and/or frequency or frequency drift changes.

TABLE 7.1

<table>
<thead>
<tr>
<th>DATE</th>
<th>(MJD)</th>
<th>TA(NIST)</th>
<th>UTC(NIST)</th>
<th>TA(NIST) - UTC(NIST)</th>
<th>y[UTC(NIST)] - y[TA(NIST)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Sep 89</td>
<td>47770</td>
<td>0</td>
<td>-1.00 ns/d</td>
<td>24.045 129 538 s</td>
<td>-5.58 E-13</td>
</tr>
<tr>
<td>1 Oct 89</td>
<td>47800</td>
<td>0</td>
<td>1.00 ns/d</td>
<td>24.045 131 001 s</td>
<td>-5.68 E-13</td>
</tr>
<tr>
<td>1 Nov 89</td>
<td>47831</td>
<td>0</td>
<td>1.00 ns/d</td>
<td>24.045 132 534 s</td>
<td>-5.85 E-13</td>
</tr>
<tr>
<td>1 Dec 89</td>
<td>47861</td>
<td>0</td>
<td>1.00 ns/d</td>
<td>24.045 134 082 s</td>
<td>-6.05 E-13</td>
</tr>
<tr>
<td>1 Jan 90</td>
<td>47892</td>
<td>0</td>
<td>1.00 ns/d</td>
<td>25.045 135 724 s</td>
<td>-6.16 E-13</td>
</tr>
<tr>
<td>1 Feb 90</td>
<td>47923</td>
<td>0</td>
<td>1.00 ns/d</td>
<td>25.045 137 382 s</td>
<td>-6.21 E-13</td>
</tr>
<tr>
<td>1 Mar 90</td>
<td>47951</td>
<td>0</td>
<td>1.00 ns/d</td>
<td>25.045 138 888 s</td>
<td>-6.23 E-13</td>
</tr>
<tr>
<td>1 Apr 90</td>
<td>47982</td>
<td>0</td>
<td>1.00 ns/d</td>
<td>25.045 140 560 s</td>
<td>-6.36 E-13</td>
</tr>
<tr>
<td>1 May 90</td>
<td>48012</td>
<td>0</td>
<td>1.00 ns/d</td>
<td>25.045 142 241 s</td>
<td>-6.42 E-13</td>
</tr>
<tr>
<td>1 June 90</td>
<td>48043</td>
<td>0</td>
<td>1.00 ns/d</td>
<td>25.045 143 942 s</td>
<td>-6.34 E-13</td>
</tr>
<tr>
<td>1 July 90</td>
<td>48073</td>
<td>0</td>
<td>0.50 ns/d</td>
<td>25.045 145 580 s</td>
<td>-6.46 E-13</td>
</tr>
<tr>
<td>1 Aug 90</td>
<td>48104</td>
<td>0</td>
<td>0.00 ns/d</td>
<td>25.045 147 350 s</td>
<td>-6.62 E-13</td>
</tr>
<tr>
<td>1 Sep 90</td>
<td>48135</td>
<td>0</td>
<td>-1.00 ns/d</td>
<td>25.045 149 130 s</td>
<td>-6.69 E-13</td>
</tr>
<tr>
<td>1 Oct 90</td>
<td>48165</td>
<td>0</td>
<td>-1.00 ns/d</td>
<td>25.045 150 875 s</td>
<td>-6.82 E-13</td>
</tr>
<tr>
<td>1 Nov 90</td>
<td>48196</td>
<td>0</td>
<td>-1.50 ns/d</td>
<td>25.045 152 729 s</td>
<td>-6.94 E-13</td>
</tr>
<tr>
<td>1 Dec 90</td>
<td>48226</td>
<td>0</td>
<td>-1.50 ns/d</td>
<td>25.045 154 534 s</td>
<td>-7.04 E-13</td>
</tr>
<tr>
<td>1 Jan 91</td>
<td>48257</td>
<td>0</td>
<td>-1.00 ns/d</td>
<td>26.045 156 437 s</td>
<td>-7.05 E-13</td>
</tr>
<tr>
<td>1 Feb 91</td>
<td>48288</td>
<td>0</td>
<td>-0.50 ns/d</td>
<td>26.045 158 312 s</td>
<td>-6.92 E-13</td>
</tr>
</tbody>
</table>

UTC(NIST) is steered in time toward UTC by occasional frequency changes of the order of a few nanoseconds per day; 1 ns/d is approximately 1.16E-14. Otherwise, y[UTC(NIST)] is maintained as stable as possible.

REFERENCES

8. SPECIAL ANNOUNCEMENTS

AUTOMATED COMPUTER TIME SERVICE (ACTS)

On March 9, 1988, NIST initiated operation of a telephone time service designed to provide computers with telephone access to NIST time at accuracies approaching 1 ms. Features of the service include automated compensation for telephone-line delay, advanced alert for changes to and from daylight savings time and advanced notice of insertion of leap seconds. The ASCII-character time code should operate with standard modems and most computer systems. While the system can be used to set computer time-of-day clocks, simple hardware can also be developed to set other clock systems.

The test phase for this service is now complete and NIST is committed to long-term operation of the service. Additional lines will be added as use expands. NIST requests that calling times be spread out so that the system is not heavily taxed in some narrow time frame (e.g., midnight). The service telephone number is (303) 494-4774. The number may be changed at a later date. A help message can be obtained by returning a 7 during the first 6 s of transmission.

With appropriate user software, the NIST-ACTS service provides three modes for checking and/or setting computer time-of-day clocks.

1. In the simplest form of the (1200 Baud) service, the user receives the time code and an on-time marker/character which has been advanced a fixed period to nominally account for modem and telephone-line delays. Accuracy in this mode should be no worse than 0.1 s unless the connection is routed through a satellite.

2. At 1200 Baud, if the user's system echoes all characters to NIST, the round-trip line delay will be measured and the on-time marker advanced to compensate for that delay. The accuracy in this mode should be better than 10 ms. Our experience to date indicates that the asymmetry in conventional, 1200-Baud modems limits the accuracy at this level. Repeatability is about 1 ms.

3. At 300 Baud the user can obtain the same type of service as described in item 2 above, but there is generally less problem with modem asymmetry at this rate and our experience indicates that the accuracy is about 1 ms.

The accuracy statements here are based upon the assumption that the telephone connection is reciprocal, that is, that both directions of communication follow the same path with the same delay. Discussions with telephone carriers indicate that this is the general mode of operation and our tests to date indicate that the lines are both stable and reciprocal.

In order to assist users of the service, NIST has developed documentation of the features of the service, some example software which can be used in conjunction with certain popular personal computers and simple circuitry which can be used to extract an on-time pulse. This material is available on a 5½-in, 360-kbyte DOS diskette with instructions for $37.00 from the NIST Office of Standard Reference Materials, B311-Chemistry Bldg, NIST, Gaithersburg, MD, 20899, (301) 975-6776. Specify the Automated Computer Time Service, RM8101. Further technical questions and comments should be directed to NIST-ACTS, NIST Time and Frequency Division, 325 Broadway, Boulder, CO 80303.

FREQUENCY CONTROL SYMPOSIUM ANNOUNCEMENT

The 45th Annual Frequency Control Symposium will be held May 29-31, 1991 in Los Angeles Airport Marriott, CA. This symposium is the leading technical conference addressing all aspects of frequency control and precision timekeeping. Authors are invited to submit papers dealing with recent progress in research, development and applications in areas represented by the following topics:

- Fundamental properties of piezoelectric crystals
- Theory and design of piezoelectric resonators
- Resonator processing techniques
- Surface acoustic wave devices (SAW)
- Quartz crystal oscillators
- Microwave and millimeter wave oscillators
- Signal processing and frequency control circuitry
- Atomic and molecular frequency standards
- Frequency and time coordination and distribution
- Sensors and transducers
- Applications of frequency control
- Measurement and specifications

Sponsors: IEEE-UFFC and the US Army Electronics Technology and Devices Laboratory (LABCOM).
Place: Los Angeles Airport Marriott, CA
Contact: Clark Wardrip, Bendix Field Engineering Corp., P. O. Box 6147, Vandenberg AFB, CA 93437; (805) 865-3214.
NEW NIST FREQUENCY MEASUREMENT AND ANALYSIS SERVICE

NIST is now offering a new service for calibration laboratories. This service is called the Frequency Measurement and Analysis Service (FMAS). It allows users to calibrate up to four precision oscillators at once, and to graphically display and record their performance. All calibrations made are traceable to NIST, and users receive a monthly report that certifies traceability.

Each subscriber to the FMAS receives a completely automatic measurement system that they install in their laboratory. This system is about the size of a component stereo system. It includes a Loran-C radio receiver, a time interval counter, and a computer with a color display that continually monitors the performance of your oscillators and graphically displays and prints out the results. The system automatically transfers the data back to NIST by modem.

Since the system uses highly stable Loran-C signals, it has a measurement accuracy of about 1.00 E-12 over a 24-hour period. This allows it to measure the performance of any oscillator, quartz, rubidium, or cesium.

The measurement system archives all of the data it records. This data can be viewed or printed out at any time. This gives each subscriber a continuous record of the performance of each of their oscillators.

Subscribers receive all parts and supplies necessary to operate the service. Their only requirement is to supply the oscillators to be measured and a telephone line for data access. If any part of the system fails, NIST ships a new part to the subscriber by overnight mail.

The cost of this service is $500 per month, with an initial one-time start up fee of $4950. For more information, contact George Kamas or Michael Lombardi at (303) 497-3378 or (303) 497-3212.
Time & Frequency Bulletin

The Time & Frequency Bulletin provides information on performance of time scales and a variety of broadcasts (and related information) to users of the NIST services.

clocks; dissemination; frequency; GPS; oscillators; time

13. AVAILABILITY

☐ Unlimited
☐ For Official Distribution. Do Not Release to NTIS
☐ Order From National Technical Information Service (NTIS), Springfield, VA. 22161

14. NO. OF PRINTED PAGES

8

15. Price

unpriced