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MATHEMATICAL MODELING OF ENCLOSURE FIRES

Henri E. Mitler

Building and Fire Research Laboratory
National Institute of Standards and Technology

ABSTRACT

After a brief description of the history and physics of enclosure fire

modeling, two kinds of deterministic fire models are discussed: field models

and zone models. The models consist of sets of coupled equations -- differen-

tial, algebraic, or a mixture of the two. Special emphasis is placed on

discussing some of the numerical techniques used to solve these equations.

Although this is not a comprehensive review article, an attempt has been made

to give a sufficiently complete reference section that the interested reader
can follow up on any item.

key words: computer models; fire models; mathematical models; modeling;
numerical methods; room fires

I. PRELIMINARIES

A . Definitions

Pyrolysis is the heat decomposition of large molecules, generally in a

solid, into smaller molecules; these exit the solid in the form of gas or
vapor. Pyrolysis is often loosely referred to as burning. A fire is a set of
physical and chemical phenomena which include combustion (the rapid, localized
exothermic chemical reactions involving an oxidizer, almost always atmospheric
oxygen, which produce high temperatures and luminosity), fluid flows, and
(generally) pyrolysis or evaporation. If the combustion is in the solid
phase, as in char oxidation, it is a smoldering fire. When the combustion
occurs in the gas phase, the luminous part of the gas is called the flame.
Thus, fire is the more general phenomenon, that may or may not involve a

flame. Enclosure fire models attempt to describe all of the important
phenomena associated with a fire in an enclosure, such as the production of
various species, fluid flow throughout a building, and structural damage due
to heat. Flame models attempt to describe the structure, properties, and
behavior of the gas-phase combustion zone only (see Jeng ^ al. (1982),
Fernandez-Pello (1984), Sibulkin (1988)).

When a fire in an enclosure grows large enough, a number of phenomena
frequently ensue: the temperature of the hot gases in the room rises with
increasing speed to 600° C or more; the accompanying heat fluxes to the floor
rise to 2 W/cm^ or more, and other objects ignite. By the time a second
object ignites, it is usually only a matter of seconds before most of the
flammable materials in the room burst into flame. The smokey layer descends
nearly to the floor, and often flames shoot out of the enclosure. All or most
of these events take place over a period of a few seconds; this sequence of
events is called flashover. After flashover, the room is said to be "fully
involved.

"
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This paper discusses deterministic models of enclosure fires, which are a
subset of fire models. Thus we have not included stochastic models of room
fires (Siu, 1981), forest fires (Rothermel, 1972), hybrid models (which
contain features of two or more distinct models), or smoldering fires, which
range from cigarette fires to fires in mines (Ohlemiller 1985; Hitler 1988).
The emphasis will be on numerical methods.

B. Reasons for fire modeling

It is desirable to have a good mathematical model for the development of a

fire in a structure in order to:

1. Avoid full-scale testing. For example, new materials and new or altered
suppression devices all need to be tested before they can be used in new
construction. Once the intrinsic properties of the materials are known, it is

much faster and cheaper to estimate the performance of such new materials and
designs on a computer than to carry out full-scale tests. Moreover, the fire
behavior of a new furniture item, for example, could be tested in a number of
configurations rather than just the one that would be tried in a physical
test. Similarly, the behavior of a fire when the venting is altered, when the

wall thickness is changed, or any combination of structural changes are made,
can be examined in a way which would otherwise be impossible.

2. Help designers and architects. The most important parameters determining
the course of any particular fire can be found by making a number of runs, and
so details of design can be optimized according to a desired criterion.

3. Establish the flammability of materials. There is as yet no universally
accepted definition of "flammability." Indeed, the fire behavior of any
material is not an inherent property of it, but depends on the circumstances
and configuration in which the material is burning, as well. A reliable model
permits the assessment of material flammability in a particular configuration.

4. Increase the flexibility and reliability of fire codes. At present, fire
codes generally prescribe rigid specifications. With models, performance fire

codes become possible.

5. Identify needed fire research. The construction and use of such models
very quickly reveal where there are significant gaps in our knowledge, and
indicate where research efforts should be focused.

6. Help in fire investigations and litigation. A good model will be very
useful in the investigation and reconstruction of fires, whether for litiga-
tion or for other reasons. Indeed, some models have already been so used.

C. Short history of fire science and model'ng

Mathematical modeling of enclosure fires dates back at least sixty years,

if we take Ingberg's (1927) research at the National Bureau of Standards as

the first attempt to understand scientifically the post- flashover compartment
fire. Ingberg examined the fire behavior of a fully- involved room, burning in
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a quaai-steady state. He related the temperature history of the room gases to

the available mass of fuel.

It took thirty years before that analysis was improved; Kawagoe (1958)

found that the burning rate was limited to a factor times aVH (the "ventila-

tion factor"), where A is the area of the ventilating opening and H its

height. Kawagoe 's theoretical results for a steady- state fire in a flashed-

over room where the gases are well mixed were largely confirmed by experiment
(Thomas 1960; Simms et 1960; Gross and Robertson 1965). Later, these

results and analyses were extended by Odeen (1963) . Thomas and Hinkley (1964)

,

and Thomas et al,. (1967) Introduced the idea that the hot gases form a

separate upper layer, and that the thermal plume is the way in which mass and

energy pass into the upper layer.

Interest in fire research and in fire modeling grew rapidly after 1958, and
in 1959 the first symposium on fire research and the use of models was held in

Washington, sponsored by the National Academy of Sciences (Berl, 1961). Part
of the reason for the enhanced interest was that research on the physics and
chemistry of fires had made significant strides. Equally important was that
the development of large, fast electronic computers permitted the rapid sol-

ution of many simultaneous coupled equations, and therefore the possibility of

more sophisticated and comprehensive mathematical models. Research since then
has been accelerating, as has the development of computer hardware and ap-

propriate mathematical software.

D . General remarks

Mathematical models can be put into two broad classes: (a) stochastic (or

probabilistic), and (b) deterministic. In stochastic models, the probabilities
and contingent probabilities of significant events are estimated, and then the
a priori probability of a particular outcome estimated. Little or no physics
needs to be introduced (Thomas, 1967; Williamson, 1976; Siu, 1981; Schmidt,
1979)

.

In deterministic models, the problem and the configuration are prescribed,
and then the laws of physics and chemistry, as reflected in the equations
chosen to simulate reality, are invoked. Well -determined correlations may be
used to describe some of the processes. These equations then determine the
evolution of the fire. No probabilities are involved.

There are by now many exemplars of each kind of model. We shall concentrate
on deterministic models. The review will not be comprehensive: only a small
subset of existing models will be described. The numerical techniques used in
these models, however, are fairly representative of those in general use.

Finally, it should be made clear that the adequacy with which the physics
and chemistry of the processes taking place in fire is represented by the
model determines the adequacy of the results. That is, it is far more
important than the precision of the numerical solutions; thus, integrating the
equations to within 1% (or even 5%) is perfectly adequate.
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II. THE PHYSICS OF FIRE

There are a number of discussions of the physics of fires (for example,
Mitler 1978, Lyons ^ al. 1980, Drysdale 1985, Lyons 1985, DiNenno ^ al .

1988). Since the emphasis in this book is on niomerical methods, I shall here
sketch the rudiments of only the most important dynamical processes.

A fire acts as a pump, since the hot gases produced by combustion expand,
rise because of buoyancy, form a thermal plume, and produce large-scale
convection. This plume contains products of combustion, including CO and soot
(besides CO, other common toxicants are HCi and HCN)

,
and is oxygen-vitiated.

There are other associated flows, such as entrainment of air into the thermal
plume. The plume, upon striking the ceiling, fans out into a celling jet;

this rapidly flowing layer eventually reaches the confining walls, and is

turned downward, forming "wall jets." Momentum carries these down the walls
for some distance, but eventually that is dissipated and buoyancy turns them
back up. Then they form a hot gas layer trapped under the ceiling; this layer
heats up the ceiling and the contiguous upper parts of the walls . It is sooty
and oxygen-poor (i.e., lean in oxygen), since the plume is. Initially,
expansion drives cool air from the room. When the layer becomes so thick that
its lower boundary is driven below the top sill of a free vent, the hot gases
begin to escape from the compartment, too. After a brief phase during which
room gases -- hot and cold --continue to escape over the entire vent(s) due to

the gas expansion, the buoyant outflow reaches such a magnitude that external
(generally cooler) air is pulled into the room. In the region between the two

gas streams, a mixing region is formed, so that some of the hot gases are
pulled back into the room and mixed with the lower layer. The situation is

shown schematically in Fig.l, taken from Steckler ^ al . (1982)

.

The flows are generally turbulent due to two mechanisms: first, as a gas

mass accelerates due to buoyancy, it will quickly achieve velocities such that
the flow becomes unstable. Second, gradients in the flow velocity will
produce vortices

,
which eventually dominate the plume

.

The flames produce radiation which heats walls and other objects in the

enclosure. The heat feedback from other hot regions such as the hot layer and
the ceiling will also contribute, and exposed objects may be heated to their
ignition temperature. Moreover, the additional heat feedback will generally
accelerate the spread and burning rates of the fire(s).

Thus, many processes take place in a fire, and must be described in a good
model. Among these are convective heat and mass transfer, radiative heat
transfer, ignition, pyrolysis, and the formation of soot and other species.

III. FIELD MODELS

A. Equations

Field models attempt to calculate the velocity and temperature fields in an
enclosure, given some (generally prescribed) heat source. Some field models
also calculate gas species concentrations as a function of position and time.
The equations which describe the flow of fluids are the conservation of mass,
momentiim, and energy, plus the equation of state of the fluid. These equations
constitute a set of coupled nonlinear partial differential equations (PDEs)

.
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The associated boundary conditions and initial conditions are determined by

the particular problem and its geometry (see, for example, Batchelor, 1967).

Conservation of mass is described by the continuity equation

dp/dx: + V- (pu) - S. (1)

Here, p is the local mass density of the fluid and u is its velocity. The S

on the right-hand side corresponds to sources or sinks of mass; for almost all

cases of interest, S is zero. The Navier-Stokes equation describes conserva-

tion of momentum:

a(pu)/3t + V-(puu) - -Vp - gpej + V-r, (2)

where g is the acceleration of gravity, p is the absolute pressure, is the

upward-pointing unit vector, and r is the stress tensor. The right-hand side

describes the forces acting on the differential element.
Because the kinetic energy and the viscous dissipation terms are generally

small compared to the internal energy, they are usually neglected. The
pressure work is included in the PV term in the enthalpy. Hence the energy
equation is approximated by

3(pCpT)/at + V-(pCpTu) - 4"' - V-q, (3a)

where the right-hand side gives the sources:

q"' volumetric source, q » heat flux - -kVT. (3b)

The viscosity n implicit in Eq.(2) and the thermal conductivity k which is

implicit in Eq.(3a) via Eq.(3b), are functions of p and T. Finally, there
must be an equation of state,

P-P(P.T), (4)

for which the ideal gas law is generally used:

P - PRT. (5)

Analytic solutions of these equations exist for special cases that have
simple boundary conditions. Thus in the steady state, the momentum equations
are elliptic, and admit of analytic solutions for the two-dimensional case.
In the general two-dimensional case, a stream- function formulation that
simplifies the equations becomes possible, although they still remain
nonlinear. The assumption of no viscosity also simplifies the problem a great
deal, as does the assumption that the fluid is incompressible, in the sense
that dp/dp - 0. In other special cases, simplifications become possible which
either permit analytic solutions to be found or make the task of solving the
numerical equations easier. However, the general set of equations is not
analytically solvable. Therefore, solving the equations usually requires the
use of numerical techniques (Launder and Spalding, 1972; Roache

,
1976;

Patankar, 1980; Markatos and Cox, 1984).

In order to solve the PDE's numerically, the equations must be discretized;
that is, the region is divided, by a set of grids, into as many small volume
elements as is practicable, and the PDE's are replaced by a set of difference
equations (see, for example, Atkinson, 1978).
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We will discuss the equations and the solution methods in more detail, in
the rest of Section III. First, consider the approximations made to the basic
equations. Since the equations are parabolic (elliptic in the steady state),
the boundary conditions must be specified over the entire boundary of the
computation region. The no-slip condition for the velocity components on
solid boundaries is used (Ku ^ 1977) and either the temperature, heat
flux, or a combination of the two is prescribed for the thermal boundary
condition. At an open boundary such as a doorway or window, the free flow of
gas into and/or out from the computational region must be permitted, and the

flow field in the outside region must be known or postulated.

The equations are sometimes simplified by assuming the fluid to be incom-
pressible. Moreover, the variation of other fluid properties, such as

viscosity, specific heat, and thermal conductivity, is small compared to that
of the corresponding eddy properties and is therefore often neglected. Fusegi
and Farouk (1988) allow full compressibility and variable properties, with
viscous flow. They use a k-e turbulence model (see below). Also see Galea
(1989), Larson and Viskanta (1986), Patankar (1974), and Yang ^ (1984).

The source of convective and radiative energy is the chemical release from
combustion. This is generally specified as an input to the program. Bagnaro
et al . (1981) ,

on the other hand, modeled the combustion rate by finding a

diffusion equation for the mixture fraction; this also provides species
concentrations

.

B . Turbulence modeling

The flows generated in room fires generally are turbulent, so that they
consist of eddies or vortices of many sizes. The energy which resides in
large vortices cascades down to smaller and smaller vortices, until it

diffuses into heat. The size of the turbulent eddies that are generated by
the numerical approximations to the solutions of the flow equations can be no
smaller than at least several computational cells; the actual eddies exist
down to the size where the viscous forces dominate over inertial forces and
energy is dissipated into heat. This is conunonly referred to as the Kol-
mogoroff microscale. For laboratory- sized turbulent fires, this scale is of
the order of a millimeter, which is much smaller than the usual computational
mesh size. Since the mesh spacing is usually much greater than the Kbl-
mogoroff microscale, special methods must be used to approximate the tur-
bulence in these numerical approaches. Thus, the turbulence is often modeled
by turbulent transport equations which are then coupled to the full set of
equations

.

When the turbulent fluctuations are very rapid, the instantaneous solutions
are difficult if not impossible to obtain. Indeed, turbulent fluctuations
generally exist even in what would macroscopically be described as a steady
state. Therefore, one often solves for the time -averaged, or Reynolds-
averaged, flows. A variable is written as

<f>
~

( 6 )

A

where is the time -averaged value and <(>' is the fluctuating component. When
this is done, there are more variables than equations, and the Reynolds stress
terms (defined below) must be given separately in order to achieve closure.
One way frequently used to handle those terms in turbulent flow is by the
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Spalding k-€ model of hydrodynamic turbulence. This turbulence model is due
to Saffman (1970) , Rodi and Spalding (1970) ,

Jones and Launder (1972) ,
and

Laionder and Spalding (1972) . The generic name for this type of correction to

the basic equations is subgrid modeling.

The k-€ model is obtained as follows: Each variable is expressed as a

time-averaged value plus a fluctuating component, as in Eq.(6). However, it

is generally assimed that density fluctuations p' are sufficiently small to

justify neglecting turbulent correlations involving them (the Boussinesq
approximation, which assimaes that the flow has constant density except in the

buoyancy term). These variables are substituted into the flow equations (1)

and (2) ,
then time -averaged. The resulting equations are

dlv pu - 0 (7)

and

pdn/dt + pu-Vu - - Vp + V-(/i Vu) - paR^j/aXj (8)

where the summation convention has been used in the last term, and the tensor
R is the Reynolds stress (per unit mass):

<Wuj> (9)

where the brackets Indicate time averaging. The k-e model arises from the
determination of the form of this correlation teinn. One approach, which is

far simpler than using the full Reynolds stress model, is to use an algebraic
expression. Thus, the Boussinesq turbulence, or eddy viscosity,

,
which

accounts for the momentum transfer due to turbulent fluctuations, can be used
by choosing

-p s aR^j/aXj -
• (10)

Prandtl suggested that, in analogy with p in the kinetic theory of gases,

H ® - ( 11 )

where u^ is a local turbulent velocity and is. a characteristic turbulent
length scale. If one can find simple algebraic expressions for u^ and

,

then the problem formulation is complete. It is not difficult to show that

- C^pk2/e, (12)

where

k » <u(u(>/2 (13)

is the mean turbulent kinetic energy per unit mass, e is the rate at which k
is dissipated, and is a constant to be determined. Since two new variables
k and e have been introduced, it is necessary to solve two new transport
equations. These so-called two -equation models have been described by Saffman,
by Spalding, and by Launder. Also see Peyret and Taylor (1983), Chapter 9.

The k-€ model ignores the effects of gravity, yet it is the gravitational
force which gives rise to buoyancy, which in turn accelerates flows and can
give rise to turbulence. When buoyancy is important, the anisotropy forces

7



the determination of the level of temperature fluctuations. This quantity is

symbolized by g:

g - <T'2> (14)

where T' is the fluctuating component of T, and a third transport equation is

needed. This buoyancy- corrected k-e model should be used whenever large-scale
recirculating movements occur, such as in a fire. See Markatos ^ (1982).
The k-c-g model is described in Launder and Spalding (1972).

The transport equations for turbulent quantities are usually treated by the
k-€ model, but with no viscous terms, since the molecular viscosity is so much
smaller than the turbulent viscosity (see, e.g,, Fusegi and Farouk, 1988).
For turbulence, Ku ^ al. (1977) used the algebraic turbulence viscosity model
of Launder and Spalding (1972)

:

’•xx
- 2M,au/ax (15)

^xy - Me(3u/ay + 3v/ax) (16)

q*
- -k,3r/ax (17)

qy
" -k,3r/ay (18)

where 4^
and k^ are effective values of viscosity and thermal conductivity.

The turbulent flow formulation is sometimes Favre averaged, which means that
new variables are defined as integrals with p as the weight function. This is

used to describe flows with large density variations (Fusegi, 1988).

As Baum and Rehm (1984) point out, most turbulence models in use are of the

gradient diffusion type. Thus, they implicitly assume that a small-scale,
locally homogeneous turbulent field underlies the organized macroscopic mean
motion whose solution is sought. There is evidence that this is not correct;
for that reason, among others, Baum and Rehm do not use turbulence models in

their work. They aver that, on the contrary, the large eddies control the
overall fluid motion, and therefore theirs is a large-eddy model. Since the

energy cascades down from large to small eddies, the kinetic energy would,
with their model, accumulate (unphysically) at the grid scale, rather than
diffusing into heat. Therefore they periodically use Lanczos smoothing (which
is equivalent to putting in an artificial viscosity term. See Rehm e_t

,

1982). A detailed discussion of their model is given in section III.E.2.

C . Solving the model eqxiations

The three principal means of discretizing the equations are the use of
finite differences, finite elements, and finite volumes. In using finite
differences, the differential operators are approximated by making a Taylor-
series expansion of the operators in terms of differences on a grid, and
taking a finite subset. These are described in Chap . 2 of Peyret and Taylor
(1983). The finite-element method basically consists of reducing the PDE's to

a set of ODE'S or algebraic equations; one typically assumes an expansion of
the function in terms of a basis. This could include poljmomial fitting. See

Chap. 3 of Peyret and Taylor (1983). Finally, the finite -voltjune method involves
integrating the governing equations along the faces of control volumes
surrounding each node. This has the advantage of satisfying the conservation

8



laws in the difference equation form. This is particularly easy to do for

equations (l)-(3), for they are written in what is called divergence, or

conservation- law, form; these labels are used because in integrating over a

volume, the divergence theorem can be used on the second terms on the left-

hand side to transform them into the fluxes of each quantity across the

enclosing surface. When the volume is that of a primitive cell, this

guarantees that the flux leaving one cell flows into the adjacent one,

conserving the flux, both in the small and globally. This leads to a set of

algebraic equations Involving scalar terms evaluated at the center of the cell

and flux terms at the cell boundaries. Thus the PDE's describing fluid flow

are approximated by a (large) set of algebraic equations. That is tirue, of

course, whatever discretization method is used.

Birkhoff (1983) has written an excellent review article which places the

numerical solutions of these equations in perspective (see, especially, his
section 13). A classic text on PDE's and their numerical solution is that by
Richtmyer and Morton (1967); a more up-to-date text is that by Peyret and
Taylor (1983).

The method most generally used for the solution of the nonlinear difference
equations is some variant of the Newton-Raphson multivariate procedure (see

section IV.E.l); this is equally useful for sets of nonlinear equations. This
technique generally requires the evaluation of the Jacobian of the equations.

For the steady-state case, the Navier-Stokes equations are elliptic (in the

spatial variables) . If the problem is one -dimensional and there is no
radiation, the Jacobian is tridiagonal, and the solution method is easy
(Richtmyer and Morton, 1967). The non-linear Gauss-Seidel method (see

sections III.E.l and IV.E) can also be used, but is not as good as Newton's
method for this case. For the two-dimensional case, there are five diagonals
and seven diagonals in three dimensions, but the matrix is still sparse, and
special methods can be used to find the solution. The best way to solve them
is by iterative techniques, rather than "exactly," because trtincation errors
can build up to prohibitive levels. When radiation is included in the
problem, every cell connects with every other (that is, there are no zero
matrix elements), and no special solution methods are available.

The prototypical problem is a prescribed fire in a room with one or more
vents. Explicit methods have the theoretical advantage of yielding exact
answers in one pass; however, they may require exceedingly short time steps.
Implicit methods are more stable, and permit much larger time steps, usually
more than making up for the fact that iterations are necessary for convergence
to a solution. An early comparison of explicit ys implicit methods was made
by Torrance (1968).

Because of computer memory and speed constraints
,
the equations have

generally been written assuming two-dimensional flow. For example, Ku ^ al .

(1977) wrote the program UNDSAFE to solve the Navier-Stokes equations with
local heating, in two dimensions. They solved the problem for rectangular
enclosures. They used the SIMPLE algorithm of Patankar and Spalding (1972).
The governing equations and their boundary conditions are approximated with
finite-difference equations by a control-volume-based method. The computing
cells are chosen so that their boundaries coincide with physical boundaries.
A staggered grid system originally devised by Harlow and Welch (see Harlow and
Amsden, 1971) was chosen: in this system the pressure, temperature, and
density are evaluated at the centers of the cells while the velocity com-
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ponents are evaluated at the cell boundaries. Thus the momentum equations are
written for cells centered at the boundaries of the basic cells. The
convection- diffusion terms are discretized by a hybrid scheme (Patankar, 1980,

pp. 89-90 and 126-131).

D . General observations

Numerical approximations lead to approximate solutions; sometimes the
solutions are then ^ poor that the results are incorrect, but that might not
be apparent, and would be attributed to the physics of the problem. For
example, numerical diffusion or dispersion (or both) are created by the
discretization. Thus, fine structure is smeared out (or ripples created) via
the continuity equation; an artificial viscosity is created in the momentum
equation, and numerical conductivity in the energy equation. The following is

one example: the limitations of computer speed and size forced Torrance and
Rockett (1969) to use a relatively gross grid. The solution of the equations
showed that at high Grashof numbers (Gr - 10^^) large coherent structures were
periodically formed and shed, and eventually dissipated. It was surmised that
this resulted from the large shear produced across the large mesh (because of
the coherence of the phenomenon, they avoided saying that this was the onset
of turbulence) . They also found that their numerical solution of the
equations resulted in unphysical oscillations. They therefore devised a

smoothing algorithm which eliminated these oscillations; note that this
smoothing is equivalent to the addition of a zeroth- order viscous term to the

equations. In fact, later reconsideration of the same problem using a smaller
grid did not produce these eddies

,
showing that they were an artifact of the

(too-large) grid size: the numerical viscosity was much reduced when the grid
size was made smaller.

This example and others lead to an important general guideline: it is

essential to make sure that the numerical procedure yields reasonable
solutions. This is perhaps best done by showing that the numerical procedure
used yields the correct solution for a case where an analytic solution is

known (Birkhoff, 1983). For example, Torrance (1968) could not obtain an
analytic solution to the fluid- flow equations for a problem in which the

Grashof number was greater than 10^, so that a comparison was not possible.
However, the analytic solution for the problem with Gr = 0 was available, and
the validity of the solution in that limit, at least, was verified.

Again, Baum (1976) examined the k,£,g model as follows: he found quasi-
analytic solutions for two boundary-value problems of flow past a plate. He

then solved the same problems using the k,e,g model, and showed that the para-
meter values normally used for the model lead to some internal singularities.
To obtain numerical solutions, one integrates across these, and the result
depends on the relative location of the nodes and the singularities. Thus
solutions obtained with the k,€,g model are not always well-defined.

E. Solving the difference equations

Once the equations have been discretized, they must then be solved. Many
ways have been used to solve these sets of simultaneous algebraic equations.
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1 . Linear methods
Since the Navier-Stokes equations are nonlinear, the resulting difference

equations are also nonlinear. One solution method is to solve a sequence of

sets of linear equations, although this is seldom the most accurate way.

Therefore we first consider solution methods for sets of linear equations;

that is, sets which can be written in the form

Ax - b. (19)

where A is a given matrix, b a given vector, and x the vector we are trying to

find. An enormous literature exists on the solution of this problem, and we

shall not attempt to describe all the methods. A possible explicit method is

to find the inverse of the matrix A, and to set

X - A-^b (20)

This technique has many drawbacks, however, and is therefore almost never
used; the problem is usually attacked in the form (19). Solving for x
generally involves Gaussian elimination or some variant of it. Even when the

matrix A is nonsingular, however, the procedure is inadequate when its

condition nixDber c(A) (Ralston, 1965) is so large that the product of the
relative error in the matrix (due to rounding or truncation errors in the
calculation) and c(A) is of order one or larger. This is made more precise by
Eq. (9.4-20) in Ralston, for example.

Besides explicit methods, there are iterative procedures, such as the

Jacobi or Gauss-Seidel (hereafter referred to as G-S) successive substitution
methods (we shall describe these later). The G-S procedure is one of a class
of relaxation procedures, where one or more components of the residual vector

r, - b - As, (21)

arising in the ith iteration is (are) made to vanish by some modification
("relaxation") of the ith approximation x, . These methods are especially
important, because they also are useful when the equations are nonlinear.

There are a number of iterative techniques that are based on minimizing a

quadratic form. Two of these are the method of steepest descents and the
conjugate gradient method. For ill-conditioned systems, the convergence rate
of steepest descents will be very slow; it is mentioned here, because it
appears in the Levenburg-Marquard method, discussed in Section IV. G. The
conjugate -gradient method (Ralston, 1965, section 9.8-3) will converge in a

finite ntunber of steps, but that number may be large, and it is often not as
efficient as the relaxation methods. This is not always the case, however:
see Lewis and Rehm ( 1980 )

.

2. Current methods
An implicit iterative method is generally used to solve the equations. I

cannot do better than to quote Ku et (1977) ,
who solved the flow problem

in a compartment with a fire which was modeled as a prescribed heat source, to
describe the details of the numerical procedure: "The flux terms at the cell
boundaries are approximated through upwind differencing* while the velocity

* Author's note: for discussions of upwind differencing, see Raithby and
Torrance (1974); Peyret and Taylor (1983), section 2.4; Drummond (1989)
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and temperature gradients on the cell boundaries are approximated by central
differences. The unsteady term is approximated by a simple forward difference
in time. The overall procedure is conservative in that it conserves mass,
momentum, and energy in any finite region of computation."

"After the above procedures are carried out one obtains, at each cell, five
algebraic equations in five unknowns: pressure, density, temperature, and the
two velocity components. In low speed flows the pressure is only weakly
coupled to the equation of state* and thus the primary coupling in the state
equation is between the density and temperature. Therefore the usual
procedures employing the equation of state to calculate the pressure cannot be
used. Special procedures must be devised for treating the pressure."

The special procedure they use to find the pressure is an iterative scheme,
following Patankar and Spalding (1972) : "the temperature is evaluated from
the energy equation. Then the density is found from the equation of state.
This reflects the correct physical mechanism that density changes are caused
primarily by temperature changes. Next a pressure field is estimated by
taking it to be the pressure field at the previous time level. Using this

first estimate of the pressure field the velocity components are calculated
from the two momentum equations. These velocity components, in general, do

not satisfy the mass conservation equation so there will by a residual mass
source at each cell. The pressure is then corrected in such a manner that the

residual mass sources are reduced in size. This corrected pressure is then
used as a second estimate to calculate the velocity components. The process
is repeated through a number of iterations until the residual mass sources
become as small as desired. Thus the final pressure and velocity fields will
satisfy the mass conservation equation with a prescribed accuracy at each
cell. The equation for the pressure correction is obtained by making the
approximation that the velocity corrections are linearly dependent on the
gradient of the pressure correction." Ku et go on to describe the

algorithm in further detail.

The two-dimensional steady- state problem was solved in a similar way by
Markatos and Cox (1981). The solution method was a finite-difference
technique which combines features of the SIMPLE and NEAT algorithms (Patankar
and Spalding (1972) and Spalding (1977), p.565) together with a whole-field
pressure-correction algorithm described by Markatos e£ (1982).

A slight modification was used by Fusegi and Farouk (1988) : they also use
an iterative scheme (a modified SIMPLE algorithm). However, their solution
method employs the Strongly Implicit Scheme (Stone, 1968) as a multidimen-
sional simultaneous algebraic equation solver instead of the less efficient
line-by-line solver based on the tridiagonal matrix algorithm used in the
standard method (Patankar, 1980). They salve the equations using a pressure-
corrected iterative technique.

In the late 70' s, Baum and Rehm launched a project to model the combustion
and convective flow processes which occur in enclosure fires, from first
principles. The first paper (Rehm and Baum, 1978) established the equations
to be solved, taking the following conditions: the fluid is assumed to be
inviscid, thermal conductivity is ignored, the gas is ideal, the enclosure
walls are perfectly insulating (so that all the processes are adiabatic)

,
and

* Author's note: that is, the pressure during well -vented fires remains
approximately atmospheric.
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the heat source, which simulates a fire and drives the flow, is prescribed
(both in time and in extent). The enclosure is taken to be two dimensional,

with a rectangular cross-section. Radiation transport was ignored. Unlike

many such studies, however, the Boussinesq approximation (approximately
constant density) was not made. That is, the large density variations due to

the equally large temperature variations are taken into account, but compres-

sibility effects were suppressed. Such a fluid has been called "thermally
expandable" (Porsching, 1977). The flow is fully time -dependent, except that

no turbulence model is included, and acoustic oscillations are not in the

equations. The latter result is achieved by treating the pressure terms so

that only the time derivative of the spatially averaged pressure appears in

the energy equation, but the spatial gradients of the pressure are admitted in

the momentum equation. In that way, buoyant or internal-wave motions can

appear, but sound waves are "filtered out."

These equations were solved in the second paper of the series (Baum e£ al .

1982). They did not use an available "package;" rather, they constructed
their own scheme. First, the equations were nondimens ionalized in such a way
that all dependent quantities were made of order unity, which is one way to

avoid certain computational inaccuracies (see section IV. E. 3). Next, the

eqxiations were discretized; they established a number of criteria which the

differencing scheme must satisfy. By casting the equations in conservation-
law form, the divergence and the curl (for the vorticity equation) are
correctly calculated when in discrete form. Second, the difference equations
must be at least second-order accurate in time as well as space. This was
done by using a three -time- lave 1 ,

leap-frog scheme to express time derivatives
numerically, rather than the usual two -level central difference formula.
Third, they should accurately reproduce internal-wave modes; in Baum and Rehm
(1984) they had already established which difference aquations satisfy this
criterion. They also carefully avoided using differencing schemes which had
been shown to lead to computational instabilities. The scheme they chose is

called Jg by Arakawa and Lamb (1977) . They also were able to avoid an
instability described by Kreis and Oliger (1973) ,

by using a different order
in the operations

.

They use a typical staggered grid (Harlow and Amsden, 1971) . The pressure
(energy) equation plus boundary conditions constitute a singular linear
algebraic system of equations; details of the algorithm used to solve them are
given in Lewis and Rehm (1980) . They also carried out a linear stability
analysis, and found a condition on the maximum time-step size that can be
taken at any step. In the formulation of their field model, Baum et ^ (1983)
carefully and explicitly checked the adequacy of their numerical solution
against the exact analytic solutions for some cases where the latter could be
found; the importance of this step was stressed in Section III. A.

More discussion of the numerical procedure is given in Baum and Rehm
(1982). In that report they also give some experimental verification of the
results for the formation and buoyant rise of a thermal plume due to a heat
source in an enclosure. In Part II (Rehm ^ , 1985) they carry out the
task which is usually omitted in these numerical calculations: they verify the
adequacy of the algorithm. They find exact analytic solutions to the
equations for two special cases, and find that the numerically- derived
solutions agree with those to about one part in 10® (the specified accuracy)
in both cases. In Baum et (1982), the computation was extended to treat
the coagulation of the smoke aerosol produced by the fire. Baum and Rehm
(1984a) extended the computation to the three-dimensional case. In their
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words, "the basic asstunption is that large-scale macroscopically resolvable
motion is responsible for most transport of mass, momentum, and energy except
at boundaries. Small-scale physical and chemical processes, which control
heat and mass transfer to boundaries, as well as most combustion and smoke
aerosol phenomena, are ultimately to be embedded in a systematic way into the
large-scale flow." As in the first calculations, heat transfer to the
boundaries is ignored, and no turbulence model is employed. The large-scale
transport is then calculated directly from the equations of motion.

F . Radiation

There has been much less uniformity of treatment for radiation than for
fluid flow. In fire models, radiation has either been omitted altogether (Ku
et al . 1977, Markatos et 1982), or questionable assumptions have been
made: radiation has been assumed not to interact with the gas (Handa et al .

1984), the gas is assumed to be gray (Bagnaro ^ al. 1983, Markatos and
Pericleus 1983) , or the radiation field has been considered to be one-dimen-
sional (Lloyd ^ 1979) .

The interaction between turbulent convection and radiation in room fires
has recently been investigated by Fusegi and Farouk (1988) in a two-dimen-
sional calculation. Their calculation is typical: the number of nodes they
use is about 20,000. Since they use an implicit technique for the solution,
they must iterate: 50-100 iterations are needed per time step (but they are
giant time steps: At - 10 to 40 sec!) in order to converge to an accuracy of
|Af/fj - 10"^ at each grid point; f is any of the variables. The results of
their calculations show that the interaction of radiation with soot strongly
influences the temperature field and, hence, can influence the circulation.

G. Calculations in three dimensions

Increases in machine capabilities, together with advances in algorithms,
have resulted in the development of three-dimensional codes, as well, Bagnaro
et al . (1981) solved the fluid- flow problem in an enclosure with a prescribed
fire in three dimensions for the steady-state case, including radiation and
combustion. They used a k-e model for the turbulence. Using a method due to

Lockwood and Shah (1976), radiation heat transfer was handled by using a

three-dimensional quadratic expression for the radiation intensity I, in the

approximate radiation transfer equation

(n-V)I, - K,Jc7T"A - IJ (22)

(see Hottel and Sarofim (1967)). The coefficients giving the radiation are
functions of position. After integrating Eq.(22) over various solid angles,
there result three coupled PDE's in the coefficients (which appear in the

function which approximates I). Bagnaro et solved this set of PDE's using
a three-dimensional version of the program TEACH (Gosman ^ al . )

.

Other three-dimensional calculations of fire and smoke spread in rooms have
been made in the last few years (see Markatos and Cox (1984) ,

Kxomar and Cox
(1985), Kumar ^ (1986)). These calculations use the program JASMINE,
which is based on a finite-domain solution of the heat- and mass- transfer
equations including compressibility. An extensive discussion of the use of
UNDSAFE and UNDSAFE II has recently been given by Galea and Markatos (1987)

.
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A three -dimensional version of UNDSAFE has been developed (Satoh ^ al. 1980;

Satoh et 1984) ,
which uses an improved tridiagonal matrix solution scheme

(Yang, 1987). Also, as noted earlier, Batim and Rehm (1984a) have performed
three-dimensional time -dependent computations using their model.

H. General-purpose programs

Most of the programs mentioned so far have been developed with a specific
application in mind. A number of sophisticated, general-purpose computer
programs have been developed which permit the solution of various kinds of

equations (algebraic, ODE's, PDE's), or coupled sets of any of the above.

Shampine and Watts (1984) discuss software available for solving ODE's;

Boisvert and Sweet (1984) describe PDE solvers, as does Walsh (1978). Solvers

for linear and nonlinear sets of algebraic equations are discussed by Reid
(1978) and by Duff (1984). There are various compendia of available mathe-
matical software, such as IMSL or NAG; these are commercial packages available
at most research institutions. There is also software in the public domain,

such as LINPAC (linear equations solvers), DEPAC (ODE solvers), etc. A text
which discusses these and others is that of Kahaner ^ (1989)

.

There also are commercial codes available now which have been specifically
designed to solve fluid- flow problems. Upon developing the k-e model of
turbulence, Spalding embedded it in a general-purpose fluid dynamics code
which is commercially available as PHOENICS*. Comparable codes such as

FLUENT*, NEKTON*, and FIDAP* exist, and there are doubtless others available.
A brief description of these, including a very brief description of the

discretization and solution methods, as well as turbulence models, is given by
Hutchings and lannuzzelli (1987, 1987a).

These codes have been applied to fire problems in an enclosure (see the
work of Cox, Markatos, and coworkers). In principle, they can be applied to

multiple rooms; as was stated earlier, however, the limited number of nodes
available, and the correspondingly coarse resolution, especially for three-
dimensional configurations, makes such application, at best, extremely costly.

IV. ZONE MODELS

A. Description of models

In a zone model, the space is divided into a small set of large control
volumes, with conditions (generally) uniform throughout each. The heat and
mass transfer between zones can then be calculated, using the appropriate
equations. Generally a different set of processes dominates in each zone.
For a single room, the zones which are usually chosen are an upper (hot)
region and a (cooler) lower region, and such models are referred to as "two-
zone" models. This is somewhat misleading, because other zones are also often
included: a combustion zone; the walls; the region around vents; and one or
more significant objects in the compartment. The thermal plume which develops
at and above a fire is another zone; its volume, however, is (incorrectly!)
never removed from the lower layer. The plume carries mass, species (inert
plus the products of combustion)

, and enthalpy from the lower layer into the

* Mention of these does not constitute an endorsement, implicit or explicict,
by the National Institute of Standards and Technology.
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upper one. When the fire lies within the upper layer, however, no mass is

carried up from the lower layer. Note that the upper and lower layer are
zones whose volumes vary, in distinction to field model cells.

Field models yield the velocity and temperature distributions (although the
resolution and accuracy of the results depend on the grid size)

;
zone models

do this only crudely. The geometry of the room and its furnishings can have
large effects on the nature of the recirculation patterns; hence the higher
spatial resolution of field models can sometimes be important. For example,
detailed knowledge of the temperature and/or flow field near some critical
item (such as a smoke detector or sprinkler) may be necessary. Also, fluid-
dynamical considerations are automatically built into field models, rather
than being forced into oversimplified approximations. Thus, field models
follow the movement of the thermal plume, rather than assuming that deposition
of mass and energy from the plume/combustion zone into the upper layer is

instantaneous. Similarly, they describe the spread of the ceiling jet to the
entire upper layer, rather than assuming instantaneous mixing.

On the other hand, field models have certain drawbacks: they strongly
emphasize the fluid- flow aspects of the fire problem, but generally give
correspondingly little weight to two other classes of processes central to

understanding fire spread and fire behavior: solid-phase processes (heating,
pyrolysis, ignition, charring), and combustion processes. There are other
good reasons, as well, to believe that zone models are often preferable to

field models, in the fire area. They will not be listed, however, in order to

avoid the appearance of making this a polemical tract. It should be pointed
out, nevertheless, that due to the vast computer requirements, it is not now
practical -- nor does it seem likely to become so in the near future -- to

describe fires in multiple-room enclosures with a field model; zone models are
the only ones available for that purpose at present.

In order for any fire model to be truly useful, it will have to include
phenomena which are not so well understood today. Progress needs to be made,

for example, in understanding the behavior of wall fires, of burning in

vitiated air, of extinguishment, the production of CO, HCN, and other
toxicants, etc.

Even when the basic equations for some process are either not known or not
solved, useful correlations may exist that can be used in a zone model. Thus,

many global phenomena can be included in zone models which are not easily
incorporated in field models. For these reasons, a great deal of effort has
gone into the development of zone models. In one sense, zone models may be
thought of as hybrids: field models solved via finite-volume methods, where
the cells are very large, and where, as a result, a great deal of phenomenolo-
gical subgrid modeling replaces expensive detailed simulation performed with
marginal resolution at best.

Zone models can be classified in several ways. We will begin by consider-
ing steady-state ys transient ( time -dependent) models:

1. Steady-state models
These models span the spectrum of sophistication and complexity from a

relatively simple compendium of individual equations yielding estimates of
upper-layer temperatures in a single room, time to flashover, etc. (Lawson ^
al .

.

1985; Nelson, 1986), to quite sophisticated models which take many phys-
ical phenomena into account and solve the equations of conductive, radiative.
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and conveetive heat transfer from first principles (Quintiere, 1977). In
between are models such as GOMPBRN (Siu 1982, Chung et 1984), which uses
many empirical correlations, as well as basic equations, to describe the
results of various physical processes. The earliest model (Kawagoe, 1958)
treated the steady state.

Since time derivatives vanish, these models consist of sets of coupled
algebraic equations. The solution of sets of algebraic equations was
discussed in section III.E; further discussion is given in section IV. D.

2. Transient models
There are single- and multiple-room models. For comparisons among some of

these models, see Parikh et al. (1983), Hitler (1985a). As is the case for
field models, these models have many features in common. They are mostly two-
zone models, with similar plumes and vent-flow descriptions. Many of them
include the radiative exchanges between gases and solids, and some calculate
the heating of target objects.

B. Fonmlatlon of the problen

Only a small subset of the existing models will be examined. Primary
emphasis will be placed on the Harvard family of models, with which the author
has greatest familiarity. These, and the model FAST, use prototypes of the
numerical methods used in most zone models.

1. The model FAST
Most of the models solve a relatively small set (about five per room) of

coupled, generally nonlinear, ODE's which describe the bidirectional flow of
gases through vents, the rate of change of mass and temperature in the upper
layer, etc. For example, FAST (which is based on BRIl (Tanaka, 1983)) solves
the equations

P - s/(^-l)V, (23)

T, - ;S-MTi/PV,)[E, + V,s/(;S-l)V]
, (24)

where i - U,L (U = upper, L = lower)

and ™u '^u
V^s/V)/?0. (25)

Here s * Cp Tjj + Cp Tj^ + Ey + El (26)

and 0 - Cp/R - 7/(7-1); (27)

P. V, T
,
R

, Cp
,
and 7 are

,
respectively, pressure. volume, temperature, the

gas constant, specific heat, and Cp/c^; see Jones (1985) for the rest of the
nomenclature. The right-hand sides of these equations are the source terms.
The rooms are most strongly coupled through the pressure equations, which
determine the flows through vents connecting the rooms, and to the exterior.

2. The model Harvard Mark 5

Mark 5 is a single-room model in which a small set of ODE's describes the
rate of change of what may be called the "primary" variables. These are the
mass and energy of the two layers, the size of the fire if it is growing, and
the pressure at the center of the floor. This set is supplemented by d PDE
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which describes heat diffusion through solids, yielding the temperatures of
walls and heated objects. It is also supplemented by a number of algebraic
equations involving other variables, such as the radiation flux from the hot
layer to any object or wall, the convective heating/cooling of walls, the
pressure drop across any vent produced by the fire (i.e., the buoyancy- induced
flows)

,
etc

.

Mark 5 takes into account not only fluid flows, but other dynamics of the

fire, e.g., the radiative feedback from the room to a pyrolyzing (burning)
surface, the resulting spread of that fire on the surface, etc. Therefore
many more variables must be taken into consideration than in FAST or the
Consolidated Compartment Fire Model (CCFM; see Cooper and Forney, 1987) . The
additional variables may be thought of as auxiliary variables, but are clearly
of interest for an accurate description of a compartment fire.

The plumes are described by equations which give the mass and enthalpy
injected into the upper layer due to a source in the lower layer. Several
choices are available in the program; the simplest is the point-source plume
of Morton ^ (1956). The mass flow into the upper layer from a thermal
plume of height x is given by

lip - pJ(4.35;r2a^gQx")/(5^CpP„TJ]i/3 (28)

where and T^ are the ambient density and temperature, g the acceleration of
gravity, Q the convective heat release rate, and a is the entrainment constant
(for turbulent entrainment of air into the plume). The resulting energy
transport into the upper layer is

P o (29)

Vent flows are given by a hydrodynamic approximation to the fluid flow
equations, and are described by Eqs .

(37) - (39) ,
below. In order to follow the

transient heating up of walls or "target" objects, the heat diffusion equation

3t ^ dx^
(30)

which is a PDE, must be solved (assuming that heat diffuses internally only by
conduction) . Here it is assumed that
(a) The thermal conductivity k, the specific heat c, and the density p are
constant (independent of x, t, and T) . Hence so is the thermal diffusivity

a = k/pc. (31)

(b) The flow of heat is one -dimensional (slab geometry)
,
and

(c) there are no sources or sinks of heat in the solid.
The numerical solution is given by Eqs .

(65) - (70) ,
in section IV.E.l. A

flammable material is taken to ignite when its surface reaches an ignition
temperature. There are three kinds of fire algorithms built in: a growing
fire, a pool (constant size) fire, and a burner fire. The burning rate of a

pool fire depends on the flux incident on its surface, and therefore on the

temperature and emissivity of the hot layer, of the ceiling and walls, and on
the radiation from flames from other fires as well as from its own. The
burner fire, on the other hand, is unaffected by external fluxes; it is

prescribed by the user. Finally, the growing fire is like the pool fire, but
the radius is permitted to increase in size. The equation for R(t) is
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R - AC(1 + C/2 + c2/3) (32)

where A is the "growth rate parameter," C ^ 0/aTj
, 4 is the net flux falling

on the surface
,
and is the mean flame temperature

.

Species production rates are evaluated simplistically ,
as a constant

fraction of the pyrolysis rate. Oxygen consumption is found in the same way;

then the rate of change of species i in the upper layer is readily found from

the equation

ii - mjf^ - m^^Y^ (33)

where m^ is the fuel flow rate, m^^ is the rate at which hot gases leave the

layer through the vent(s)
,

is the concentration of species i in the layer,

and f^ is the "yield" of species i, in kg/kg. For oxygen Iq is negative, and
another term is added to account for the injection of oxygen into the upper
layer through the plume

.

Once the soot, CO
2 ,

and H
2
O concentrations are known, the absorption

coefficient of the upper layer is calculated. This is done in one of two

ways. The first is extremely simple: the soot concentration is multiplied by
a constant determined from an experiment. The second way includes the

absorption by the molecular bands of H
2
O and CO

2 ; the algorithm is rather
complex; see Modak (1978/9). Once k is known, the absorption and emission, of
radiation by the layer is readily calculated, via a mean-beam- length ap-

proximation or better. The emission from flames is calculated assuming that
the flame shape is a cone; the emission coefficient of the flame is input by
the user. Heat exchange with the walls is by convection and radiation. For
example, the convective heating flux to the wall/ceiling from the hot layer is

^=on
- - T„) (34)

where the temperature -dependent heat transfer coefficient h is taken to be

h - min[a, b+(a-b) (T^ -T„ )/100 ] , (35)

with Tl the layer temperature, T„ the wall temperature, and a and b are the
maximum and minimum values that h can take on, respectively.

One poor assumption made in this model is that none of the oxygen in the
upper layer can participate in the combustion process. Hence if the interface
height falls so low that the plume height is insufficient to entrain enough O

2

to provide combustion for the fuel, "oxygen starvation" is said to ensue. The
complete set of equations used in Mark 5 (i.e., the model) are given in Mitler
and Emmons (1981). A slightly earlier version was given in Emmons (1979).

The equation for the pressure entails enough interesting points that it
deserves a detailed discussion: When the physical processes which affect the
pressure in the room occur on a time scale which is long compared to the
transit time of a sound wave in the enclosure, the compressibility of the
gases in the room can be ignored; that is, the gas acts as an incompressible
fluid. The appropriate equation for the mean pressure at the floor of the
room, p, is then (Quintiere, 1981)
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(36)Vp + 7p2(m^/p^) - (7-1) [Q + 2(CpmjTj)]

where Q is the net heat release rate in the room, m^^ is the mass flow rate out
of the room through vent i of fluid of density p^, while Cpm^Tj is the inflow
enthalpy through vent j . This equation is very stiff, and slows down the
solution of the equation set considerably.

For fires which take place in enclosures which are not hermetically sealed,
the pressure stays (nearly exactly) constant. The pdV work done by the gases
while the hot layer is expanding (or shrinking) can be a large fraction of the
layer energy change; however, in Mark 5, enthalpy is used rather than internal
energy, and it turns out that Vdp is a very small fraction of the layer energy
change. It is therefore ignored; moreover, it is assumed that the equation is

so stiff that p is vanishingly small. Hence the pressure is found in a quasi

-

steady-state approximation. Thus, the pressure difference at any vent is

obtained by noting that at any moment, the flows induced by that pressure
difference must yield mass and energy conservation. This is exactly the same
approximation as is made by Tanaka in the BRI2 model.

Thus, assuming the ideal gas law, neglecting the differences in molecular
weight among air, fuel, and product species, and (finally) neglecting the

change in specific heat with temperature, the total internal energy in the

room gases remains constant. Thus the rate of change of gas mass in the room
is

% - ®out - “in - Ej^/CpT^ - (37)

where m^ and are the mass and internal energy of the upper layer, and m^

the rate at which fuel gas mass is produced in the room, either by pyrolysis
or via a gas buiTier; this is derived in Hitler (1978).

We will now indicate how the mass flow and pressure are related: the

pressure at various heights in the room are referred to that at the floor, p^

.

The mass flow through a vent at a given height is calculated by using the

hydrostatic approximations to fluid flow. Thus, it is assumed that momentum
is conserved at each horizontal plane. The vent is divided into a number of
horizontal strips, the number depending on how many changes in density or flow
direction are encountered between the bottom and the top of the vent; there
can be as many as six. The pressure difference from the bottom to the top of
each strip is a linear function of height. Consider strip i; if the pressure
difference at the bottom (top) of the strip, at height hj^ (^i + i) Ap^

(Apj^^i), then the flow in that strip is related to the pressure difference
across the vent at that height according to

kPi + i I
+ kPi^Pi + i I

+ I^Pi I

m^ - — (38)

yiAPi I

+ yiAPi+i

1

where

- (sign Ap^)(2/3)Cj B(hi+i - h^ ) Jlgpp^ (39)

where B is the width of the vent, C^j is the orifice coefficient, usually
taken to be 0.68, and p^ is the density of the incoming (usually ambient) air.

The derivation is given in Hitler and Emmons (1981) and in DiNenno al .

(1988) (Section 1, Chapter 8,, "Vent Flows," by H.W. Emmons). This is a quasi-
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steady- state expression, but is quite adequate, so long as there are no

compressibility effects to consider. Given Ap^ (the pressure drop at floor

height), all the other Ap^^'s are fixed, and therefore the are found.

Finally, the mass flows must satisfy mass and energy conseirvation. The set of

equations (38) cannot be inverted (unless the entire vent opening is one

strip) so as to give Ap^^ in terms of the mass flows; if we write

% + • “out ” (^0)

it is clear that Ap^ is a zero of the function f; it is found by a Newton
technique

.

C. Structnire of the equations

The equations of the system for Harvard Mark 5 and Mark 6 (the latter is

described in section IV. G) are of the form

0 - f(u,v,w) (41)

dv/dt - g(u,v,w) (42)

w - h(u,v,w) (43)

y - e(u,v,w) (44)

where u, v, w, and y are arrays ("vectors") of variables. Each variable is an
(implicit) function of t, the time since the start of the calculation. There
is generally no explicit t-dependence in any of the functions f, g, h, and e,

which are vector functions of those variables. If the number of components in

array a is represented by [a]
,
then

[f] - [u], [g] - [v], [h] - [w], and [e] - [y] (45)

must hold. Moreover,

[f] + [g] + [li] + [e] - N, (46)

where N is the total number of variables. Equations (41), (43), and (44) are
the algebraic equations, and the corresponding variables (the components of u,

w, and y) the algebraic variables. The components of v, corresponding to the
differential equations (42), can be referred to as the "integrated variables."

Eqs.(41) are root-finding equations, and the components of u are the root-
finding variables. Eqs.(43) [cf Eqs.(51), below] are fixed-point equations,
and the components of w are the fixed-point variables. Finally, in the
original formulation of the problem, there may be a subset of va’riables which
depend only on other variables, and not on each other. They are represented
by the vector y; thus, none of the variables y are found in the arguments on
the right-hand side of Eqs.(41) to (44). Those equations represented by
Eqs.(44) are also called "eliminated variable" equations, and the components
of y are the eliminated variables. They may also be referred to as
"auxiliary," or "dependent," variables.

Evidently, Eqs.(43) and (44) could be converted to the form (41), but the
chosen formulation is more economical of computer time because a system of
implicit fixed-point equations, such as (43), can (usually) be solved by a
successive substitution method, which requires fewer operations than the
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Newton method needed for Eqs.(41). Eliminated variables are trivial: one need
only solve (41), (42), and (43) simultaneously, and then substitute the
resulting values for u, v, and w back into (44) to find y. Eqs.(41) are the
nonlinear algebraic equations for the pressure.

D. Numerical methods for solving the model equations

Analytic solutions for these coupled sets of equations are generally not
possible. Hence nxomerical methods must be used. As is the case for field
models, the differential equations are replaced by difference equations which
are then solved numerically. In the BRI models, the equations are solved
explicitly, using explicit Runge-Kutta (R-K) methods (see, for example,
Ralston, 1965; Abramowitz and Stegxin, 1964). The solution is obtained with R-

K's of increasing order, until the solution of that order agrees with that of
the next- lowest order. If convergence does not occur by the time a sixth-
order version is used, the time step is cut to one -tenth its original value,
and the process repeated. If the solution is still not obtained to the
prescribed accuracy, the calculation stops.

The time rate of change p is assumed to be extremely small, and therefore
the pressure equation is taken to be an algebraic equation. The pressure
equation is solved by using Grout's method to invert the matrix. That gives
new pressures which yield new flows; the whole procedure is iterated until
convergence is established. One difficulty with BRIl was that the initial
values had to be guessed very shrewdly, else convergence could not occur.

Consider the ith member of the fixed-point equations (43) ;
when w^^ does not

appear on the right-hand-side, the equation is explicit, and the solution for
w^ at any given iteration is exact. When w^ does appear on the right-hand
side, the equation for w^ is implicit, and the solution will generally be only
approximate, assuming an approximate value of w^ is available for use on > the

right-hand- side . Thus, Eq.(41) (that is, Eq.(38) for Ap^^ ) is, by definition,
implicit in w^^ . We could make it explicit if we could invert Eq.(38) and
solve it for Ap^ ; as pointed out above, however, this cannot be done in
general

.

Finding Ap^ as the root of Eq.(40) presents two interesting problems:
first, any numerical "package" to be used in solving the equations must
include a root- finding part. Second, the following interesting conundrum
arises: the algebraic equations are solved by a successive-substitution (G-S)

method; hence it would appear to be a waste of effort to solve exactly for Ap
in any of the global iteration cycles, since (a) the solution will differ in
each subsequent iteration, and (b) the overall convergence of the procedure
should guarantee increasing accuracy. On the other hand, it might be that
finding the "exact" solution in each of the global cycles would help to

accelerate the overall convergence process. In producing Harvard V, the

former philosophy was adopted, and Ap was found with only one local iteration,
rather than iterated to local convergence. The second approach has been used
in the developmental version of FIRST; the result is as expected: not only has
convergence indeed been accelerated by finding Ap "exactly" at each time

iteration, but the program now runs to completion in many cases where it would
"crash" with the previous approach!

A problem with explicit methods is that the time-step size required is

prohibitively short when stiff equation sets are being solved. More frequent-
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ly, therefore, predictor-corrector methods are used to solve such sets of

equations. FAST was based on SRIl, but the numerical method was much improved.

Since the rates of the various dynamical processes vary over orders of

magnitude, these equations are stiff, and the time-steps required even by

predictor-corrector methods may become prohibitively small. However, FAST

uses the Selected Asymptotic Integration Method (SAIM) for this purpose (see

Young and Boris, 1977; Oran et 1979; Young, 1980), which is a modified
predictor-corrector method. In its simplest form, the method may be described

as follows: given a set of ODE's of the form

ii - - Qi - (47)

where is the formation rate of the quantity and Lj^x^ is the loss rate,

the equations are separated into two classes: "normal" and "stiff," according
to a simple criterion.* For the normal equations at time t+5t, the first
iteration for x^ ,

the predictor, is

, 1 ”
, 0 +

, 0 >

where
g

is the initial value (at time t)
;
for the corrector steps, the k+1

iteration is given by

^i.k+i - ^1,0 + + Fi.kl/2 (^9)

For the stiff equations
,
the predictor and corrector equations are

,

respectively,

5tF^
, 0

1
- ^i.o + 1 + 5tL

and

, k + 1 ”
, 0

1 ,

0

25t[Q, - L
i . 0 , 0 *^1,0

4 + 5t [Lj^
_ g + K , k ]

(50)

(51)

The method works well, and it would be most useful to go through a rigorous
stability/convergence/error analysis of the method.

In FAST, the source terms are calculated explicitly at each time step. Thus
the initial iterates are based on the values the primary variables have at the

beginning of that step, making FAST a single-step model.

The more standard method for solving sets of stiff coupled ODE's numerical-
ly is an implicit method using a backward difference fomnula, such as the Gear
method (Gear, 1971). This is a multivariate Newton-Raphson technique (see
section IV.E.l). CCFM (Cooper apd Forney, 1987) uses a Gear- like package
called DEBDF (Differential Equations via Backward Difference Formula) to solve
the ODE's. DEBDF is part of a three -routine set called DEPAC developed at
Sandia Labs (Watts and Shampine, 1979). These packages are quite sophisti-
cated; the programs internally determine the required time-step sizes as they
proceed. Some packages of ODE solvers are so sophisticated as to include a
heuristic which decides whether the equations are stiff, or not, and choose
internally which solution algorithms to use! (see Radhakrishnan, 1990).

* Canonically, one refers to the entire set of coupled equations as stiff.
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In general, numerical "packages" are used to solve the ODE's; the PDE must
be solved separately. A solution method for Eq.(30) is described in section
IV.E.l. However, it is possible to avoid having to solve a PDE, by writing
the surface temperature as a convolution integral. It can also be done by
transforming the PDE into a set of coupled ODE's. This can be done in three
ways: first, by using an integral technique to find the surface temperature
approximately. Second, by using similarity solutions to extract the spatial
dependence analytically, and third, by using a PDE solver such as the method
of lines (Aiken, 1985); there is one ODE per mesh point in the solid into
which heat is diffusing. This subset of ODE's often produce great stiffness
in the overall set, however. Since a relatively fine mesh is used to solve
the PDE for all methods but the first, these constitute a field-model
approach. Thus the entire model should more properly be called a hybrid
(partly zone, partly field) model.

E. Harvard Mark 5

1. Solution methods used

In Mark 5, every variable is calculated so that its value is consistent
with that of every other, according to all the available relationships, within
the prescribed accuracy. That is, if there are N variables being followed,
there are N algebraic equations to be solved simultaneously. There are 4

ODE's describing the rates of change of mass and energy in the layers, 3 ODE's
for each vent, and 5 for each burning object (describing the mass and radius
of the fuel packet, the energy release, and the mass and enthalpy injected
into the upper layer by the burning object's thermal plume). Hence, for a room
with just one burning object and one vent, there are 12 ODE's for 12 primary
variables, resulting in 12 (out of the N) difference equations.

In FAST (Jones, 1985), a set of algebraic relationships similar to, but
smaller than, those in Mark 5 are assumed to be the source terms on the right-
hand side of the differential equations

- 9^ (x) (52)

where x^ - x^(t) is the value of the i*^"^ primary variable, and the vector
symbol x stands for the set [x^]

.

Equations (52) are essentially Eqs.(42).

Since ODE's are transformed into algebraic equations, there is no dif-
ference in principle between the solution method used in FAST and other ODE-
based models and that used in Mark 5. In each case, a set of nonlinear
algebraic equations is solved numerically.

The numerical calculation procedures are described in considerable detail
in Mitler and Emmons (1981). A brief synopsis is presented here: rewrite the

(linear or nonlinear) "fixed-point" algebraic equations (43) in the form

^ic
“ Sk

The principal method of solution used is the successive-substitution method,
in which the variables x are calculated iteratively. After k iterations, the

(k+l)**^ value of variable Xj^ is found by setting
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„(lc+l ) - M ,

( 54 )

where ) is the set of values found at the previous iteration. The

time dependence of each variable is not displayed only in order to make the

equations more succinct.

There is one exception to the formulation of the equations all being of the

forms (41)-(44); the PDE(30) is not of any of the forms (41)-(44), and must be

solved independently, as discussed earlier.

The calculation for Ap is done inside a physics subroutine, since it cannot
be carried out in the numerics package. This is so, because the technique

(54) is only valid for fixed-point equations, which Eq.(41) [or (40)] is not.

Thus, given all the other Xj^ ' s at the nth (global) iteration, we find a value
for Ap --that is, for x[°^ -- in the same way as Eqs.(53) yield values for all

the other Xj^ ' s . We will therefore include Eq.(41) with the rest of Eqs.(53).
Note that in order to be able to find Ap, we must have already evaluated some
of the flow rates, so that this variable is best calculated late in the cycle.
This different treatment of Ap is an exception to the modularity principle: a

program should be structured so that any physics algorithm can be replaced
with an improved or corrected version, or a new numerical procedure readily
introduced, without requiring extensive program changes. Generally, modular-
ity is best achieved by decoupling the various calculations into independent
subroutines, and separating the numerical procedures from the physics.

Next, consider Eqs.(42); they are solved by numerical integration:

rt + At
x^(t+At) -Xi(t)

+J
5^(x)dt, (55)

where At is the time-step interval. In Harvard Mark 5, the integration method
which is used is the trapezoidal rule:

x^(t+At) - Xj^(t) + At[i9^(t) + ^^(t+At)]/2, (56)

where we have written ^(t) as a symbolic way to represent ^[x(t)]. Although
this is an explicit integration, the overall method, based on successive
substitutions, is implicit. Equations (56) are now also of the form (53), and
can be included in that set, as well. Thus equations (41), (42), and (53)
[i.e., (43)] have all been cast into the form (53), and the successive
substitution method can now be applied to them all . Use of the trapezoidal
rule seems crude, especially when compared with the methods used in FAST,
CCFM, and other models. However, the inherent error is - (At )

^ (r )/12 per
time step, where t < r < t+At. Hence the magnitude of the total error in the
ith variable (assuming uniform time steps only) is

[
(At)^ /12]25j^ (r^ ) ,

where j

goes from 1 to n — t/At. If we approximate the sum by an integral, it can be
shown that the cumulative numerical error in Xj^ is

Error - - (At)^ { (t) (0) )/12 - (At)^ { 35, (t) (0) } + 0([At]M. (57)

At large times, 5, and 5, should both go to zero. Thus, knowing the function
(t) [and therefore ^,(0)], we can readily choose At small enough to keep the

total error within satisfactory bounds. Indeed, note the comment at the end
of the Accuracy subsection, below.
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In early versions of the program, the Jacobi method was used to solve
Eqs.(53). In Mark 5, a variant of the G-S method is used, instead. An
important feature of the Jacobi method is that the results are essentially
independent of the order in which the equations are solved. This is not the
case for Gauss-Seidel

,
and a consequence is that some orderings will require

more iterations than others, for convergence. Indeed, for some cases one
ordering may diverge, while another ordering produces convergence. Define

„ _ _ / + 1 »k + 1 + 1 »k »k j.k \

oj.k Sj '.^1 1*2 + 1 *N-'- (58)

When Mark 5 was first being constructed,

(59)

was used. Still faster convergence was obtained with what might be called
successive under- relaxation (Smith (1965), chap. 2): instead of Eq.(59),
is now given by

- Agj + (1 -A)x5 a < 1 (60)

where A is the relaxation factor. Best results were found with A - 1/2. The
use of Eq. (60) rather than (59) has sometimes led to the convergence of an
otherwise divergent calculation (Mitler and Emmons, 1981). When the method
converges, it does so linearly. That is, for all sufficiently large k (i.e.,

k greater than some value k^ )

,

I

- x|
j

< C] lx?' - x| 1® k > k^ (61)

with m - 1 and |c| < 1, where x is the exact solution at time t and the double
bars denote the nom of the vector (Atkinson, 1978). The Gauss-Seidel method
has yielded superior results for the enclosure problem than the Jacobi method
has: it converges over a wider domain, and usually with substantially fewer
iterations

.

The starting values at a new time step are given, for each variable, by a

quadratic extrapolation of the values of the variable at the last three time
steps; this is analogous to the predictor step in predictor-corrector methods.
If, during the calculation, a variable is found to fall outside physically
reasonable (or permissible) bounds, its value is reset to the value it had at

the last time step. This procedure, carried out in sections called LIMITS, is

ad hoc and has drawbacks, but it made the calculation still more robust.

The second method used to solve the equations is the multivariate Newton-
Raphson technique, normally applied to functions of the form (41). For fixed-
point equations of the form (54) ,

one defines the vector function f:

f(x) * X - g(x) . (62)

The Newton technique for the case of N simultaneous equations takes the form

x^*^ - x^ - J-^f(x^) (63)

where J is the NxN Jacobian matrix {df^/dx^). For a single variable, a suffi-
cient condition for convergence is that
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( 64 )

for all k (Scarborough (1962), para. 78). In Mark 5, the equations are solved
by Gaussian elimination with partial pivoting (Scarborough (1962), p.270;
Smith, 1965) using the code of Forsythe and Moler (1967). If an exact
Jacobian were known at each iteration, then the algorithm given by Eq.(63)
would converge quadratically

,
i.e., with m - 2 in Eq.(61). The finite

difference approximation to the Jacobian used in Mark 5 is not exact, so that
in fact we are using a secant method. It can be shown that this leads to a

rate of convergence given by m - 1.839, in a single variable (Jarrat, 1970).
When the condition ntamber is very large, the Newton method will not work
properly; what can be done about this is discussed below, in subsection IV. G.

The full Newton method is quite time-consuming, and some alternatives were
devised. If J(t) varies slowly enough, it requires recomputation only once
every few time steps. This simple approach is called Newton Super Fast, and
is referred to as NWSF. It works much of the time, and is indeed very much
faster than the multivariate Newton method (NWTN)

.

Using a numerics "package" which solves sets of simultaneous algebraic
equations (or ODE's and algebraic equations) will not suffice for the PDE (30)

which describes heat diffusion. Hence we must again deviate from modularity,
and use a numerical procedure inside a physics subroutine. The technique used
in Mark 5 to solve for the surface temperature as a function of time is a

simple explicit finite-difference method: the wall (or object) is divided into
M slabs of thickness 5x by planes parallel to the surface. The temperature
profile within the wall is found at successive time steps. The Courant
criterion is satisfied when

5x > (5x)^i^ - y2a(At)^3^ (65)

where (At)^^^^^ is the largest time step taken in the problem and a is the
thermal diffusivity (assumed to be constant) . Thus M is given by

M - [^/(5x)^iJ (66)

where Q is the wall thickness ([a] means "the integer part of a"). Then the
temperature at the front surface, at time t+At, is given by

Ti(t+At) - T^(t)(l-aAt) + aAt{T
2
(t) + b(?i^(t)). (67)

Here is the net heating flux to the front surface. At is the current value
of the time step, T^ and T

2
are the temperatures at the first and second nodes

(front surface of wall and front surface of second slab, respectively), and a
and b are defined by

a " 2a/(5x)^ and b ^ 5x/k, (68)

where k is the thermal conductivity. For nodes 2 to M, the temperature is
given by

T^(t+At) - Ti(t){l-aAt} + aAt{Ti.i(t) + T.^i(t))/2. (69)

The temperature at the back surface is
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T„+i(t+At) - (t)(l-aAt) + aAt{T„(t) + (70)

A derivation of these equations is given in Mitler (1978) (also see Chapter 3

in DiNenno et
, 1988) .

The overall computation proceeds as follows: the calculation runs along
using G-S until it fails to converge at t+At^^ in a fixed, user -determined
number of iterations, with 35 as the default value. The program thereupon
cuts the time step in half and starts over (i.e., tries to converge to

t+hAtjj ) ,
using newly extrapolated values from the previous time steps; this

guarantees a starting solution closer to the correct answer, which helps to

lead to convergence. If it then succeeds in converging, the calculation
continues with At - Atg/2 for ten steps (with some exceptions), then doubles
the time increment, since the difficulty may have only been temporary.
Failure to converge in 35 of these smaller steps, on the other hand, causes
another halving of the time step, to At^/A; and so forth. The time step will
repeatedly be halved until the solution converges at some point, or until At -

Atg/16, where At is the newly cut time step and At^ the originally chosen time
step, whichever comes first. If the procedure fails to converge at this
(smallest) time step, the program switches to NWTN. The program tries to take
one step in NWTN, using the time step At, and then (if it converges to a

solution) switches to NWSF. The solution mode will remain NWSF until it

ceases to converge (in which case it goes back to NWTN, and we start over), or

until the size of the time step just taken is > At^/A, in which case it

switches back to the G-S mode. If it takes a number of steps successfully in

G-S mode, At is doubled when the total number of time steps taken (from the

beginning) is a multiple of 10. This doubling procedure continues until At -

Atg again, where it stays, or until trouble occurs again.

2. Convergence criterion

The convergence criterion used is that two successive iterations do not
change the value of any variable by more than some small, specified fraction.
Since we want the relative accuracy to be about the same for all variables, we

normally would demand that

[AXi/x^
I

< «c

for all i, where Ax^^ * - x^ . However, when a variable x^ takes on a

value x^ which is so small that it ceases to have physical significance,
the program stops testing it for convergence. When it takes on a value
greater than but comparable to Xj^ min’ full accuracy given
by Eq.(71), and it is replaced by

|Ax^/xJ < max (Xi . (72)

The largest value of

I

•
I

,ej]

is then called the NORM at this iteration. When NORM < for some iteration,
the program has "converged" to a solution.
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Suppose the j th variable is the small difference of two large numbers. Then
in order for Xj to be computed to within

,
its large constituents must be

computed rather more accurately. However, this also implies that if we take

too small, truncation and round-off errors become significant and it may be

literally impossible to obtain "convergence." Hence must be judiciously
chosen. The value is user-chosen, with a default value of 3x10"^. This
value is small enough to give satisfactorily accurate answers, but large
enough to permit rapid convergence in single-precision arithmetic while
avoiding the truncation errors just described.

3. Scaling of variables

The physical variables in Mark 5 range in magnitude from energies on the

order of 10^ Joules, to masses on the order of 10”^ kg. For a variety of
reasons, it is difficult to work numerically with sets of variables that
range, as these do, through twelve or more orders of magnitude. One problem
comes about as a result of the finite accuracy of the computer's floating-
point representation of numbers; for example, in estimating a partial
derivative according to the finite difference f (x+h) - f (x)

,
the perturbation

h cannot be too much smaller than x in magnitude when x is already small, or
the machine will compute the resulting difference as 0 or at best inaccurate-
ly. Again, in order to have maximum accuracy in solving the simultaneous
(linear) equations in the Newton mode, we need to have all the variables of
comparable size. This is accomplished by normalizing all variables by their
then-current values, to unity, whenever the transition is made to the NWTN
mode. Then the derivatives for the Jacobian are estimated numerically.

4 . Accuracy

The smaller we make
,

the more accurately we should converge to an
internally consistent solution of the algebraic equations. Likewise, the
smaller we make At^

,
the basic time increment, the smaller will be the errors

arising from the use of numerical approximations of various sorts. There are
some limitations, however. First, the smaller we make

,
the more iterations

usually have to be taken in order to converge. Moreover, the more likely we
are to fail to converge at all. Indeed, as pointed out above, if we demanded
too much precision we would run into round-off and truncation errors, and
probably could never converge. The same is true of At^

.

Consider the overall (rms, fractional) error per step. The mean convergence
error will be j3e^

,
with ^ of order unity, and the errors will be assumed to be

random. If the numerical error is also random and therefore incoherent
with the convergence error

,
the typical error in one step will be

(73)

The total error after k steps, again assuming random errors, should be about

% » Tk E,

.

(74)

For a given time step At^
,

the (fractional, rms) numerical error is
,

which is proportional to some power of At^

:

( 75 )
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If the basic time increment is At^
,
then for a run of duration t, the number

of time steps will be

k>t/At^, (76)

and therefore

> Tt ya2(Atj2,-i + (77)

The value =« 3x10“* was chosen after numerical experiments on a VAX
showed that the final answers (for a 500 -sec run of a standard problem) did
not differ by more than a few percent for this value, compared to calculations
with smaller Cg's. A series of runs with At^ - 2, 1, 1/2, 1/4, and 1/8 sec
was made, with kept at 3x10“*. It was found that all the variables appear
to converge to asymptotic values as At^ - 0. Indeed, the deviations from
those values were very nearly linear with At^^ :

Xi(Atg) =« x^(0)[l + a^Atg] all i (78)

Hence the fractional rms error at time t must be

E(t) =. <a(t)>At„
, (79)

where <a> is the rms value of the ' s . Only for At^ > 2 sec. does the

relationship (78) begin to fail. Since the values still appear to be
converging toward the exact answer with At^ - 1/8, it appears that:
(a) the value of At^ for which we get minimum error is less than 1/8 sec, and
(b)

,
which is independent of At^ , must be much smaller than even for

4t, - 1/8.

Therefore we shall take E, =« €„ henceforth. If the numerical errors are
X n

random , then
(c) the linearity with At^ in Eq.(79), plus Eq.(77) suggests that s - 3/2.

A similar analysis was carried out assuming that the numerical errors are
systematic, rather than random. In that case, Eq.(79) implies that s =• 2.

Finally,
(d) Eq.(78) appears to show that use of the trapezoidal rule for integration
is not the principal source of numerical errors, since that error varies as

(Atg)^ for one time step, and as (At^^)^ overall, according to Eq.(57), rather
than linearly, as in Eq.(78).

5

.

Numerical problems

The principal numerical problems with Mark 5 were of two kinds: first, the

program would not run to completion, some 10-15% of the time. Second, when
the program fails to converge in the G-S mode, it switches over to the Newton
method; however, that overcame the difficulty only some 50% of the time.

Analysis has shown that when a numerical difficulty arises, it most likely
is due to some discontinuity inadvertently built into the program (that is,

the physics was badly modeled) . When such a discontinuity was removed, the

numerical problem would disappear.
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Moreover, discontinuities in first derivatives can be troublesome with the

Gauss-Seidel method, and deadly with the Newton method since, when the left
derivative is different from the right derivative, the Jacobian is not well-

defined at the transition point. Finally, as suggested by Eq.(64), it is

desirable to have the functions at least twice differentiable. Again, the

cure is to avoid modeling a physical process with an expression which has
discontinuities in f ' . If such are found, one ^ hoc way to remove them is to

round the function in that region.

For many problems, the solutions will approach asymptotic values after a

certain time. One would suppose that the solver would then zip through the

problem in record time. In fact, one sometimes finds that a program will fail

in this regime. The reason is that when the variables approach convergence at

the prescribed accuracy, it is often because of stiff competing processes.
The small differences between relatively large numbers are basically "noise,"
and hence the Jacobians which are calculated are very poor. The result is an
amplification of the noise. Some of the oscillations will be damped out by the

solver, but others continue to grow and drive the solution outside of the

region of convergence. A simple solution to this problem lies in specifying
that differences which fall below the noise level (essentially, below the

prescribed error tolerance) be set to exactly zero.

F. The model FIRST

1. Improvements over Mark 5

A number of improvements, mainly in the physics, have been made to Mark 5;

the resulting program is called FIRST. These include the effects of layer
mixing at vents due to the formation of a turbulent shear layer at the
interface, the possibility of having forced ventilation, and a number of other
items. The complete list of improvements is too long to give here; it is

given in Appendix C of Mitler and Rockett (1987)

.

FIRST also incorporates several improvements in the numerics : the program
is now run in double precision, which minimizes problems arising from working
with small differences of large numbers. Indeed, this one change alone to

Mark 5 lowered the "bomb -out" rate to something like 20% of the previous
rate; i.e. to 2-3%. It was also realized that one source of difficulties was
the "machine e" problem, and this was removed. The integrations shown in
Eq.(55) are now carried out in a separate subroutine, so that the integration
technique can easily be upgraded to Adams -Moulton, Simpson's, Weddle's, etc.

2 . Further contemplated changes

The use of LIMITS (see remarks above Eq.(62)) to help obtain convergence is

an undesirable procedure; it can lead to discontinuities, spurious results,
and mask errors and inconsistencies in the program. FIRST has had these
removed from some of the subroutines. Newer versions of FIRST currently under
development have had the numerics improved in a number of ways, including the
removal of the LIMITS section from most of the remaining physics subroutines.

Consider the values of the i'^^ variable at the current (t+5t)
,
previous

(t)

,

and previous -but -one (f-At) times. Then in the expression

31



x^(t+5t) - Xj^(t) + a>[Xj^(t) - x^ ( t-At)
]
5t/At

,

(80)

which can be used to make an initial estimate of the value of x^^ at a new time
step, cj - 0 corresponds to no extrapolation and w - 1 to linear extrapolation.
A scheme which merits investigation is the following; numerical experiments
can show what value of w gives the best convergence for a series of runs.
That value can then be used as the default value, but the user would have the
option to change the value of w if he/she so wished.

Yet another technique which should be tried, is to accelerate convergence
of the iterations by some method such as Aitken's procedure (Henrici

(1964), p.70); that method is valid if the sequence of iterates is converging
with an error which is approximately in geometric progression.

G. An alternative method

As was pointed out earlier, the Newton-Raphson method will fail when the

Jacobian matrix is ill-conditioned. Nash (1979) discusses the unconstrained
minimization problem (Chapters 15-17) and shows that variable metric (quasi-
Newton or matrix iteration) algorithms are better than the Newton method. He
shows that a variant of the Levenberg-Marquardt method (Levenberg, 1944;
Marquardt, 1963) is very fast and extremely robust. When det J is "large,"
the method approaches the Newton algorithm, with rapid convergence. When det
J is small, however, then rather than failing altogether, the method ap-

proaches the steepest descents algorithm, which still converges, although only
linearly. This method has not yet been implemented in FIRST, however.

H. Harvard Mark 6

Harvard Mark 6 (referred to as Harvard 6, as Mark 6, or as CFG VI) was
created as a multi-room version of Mark 5 (Gahm 1983, Rockett and Morita 1985,

Rockett et 1989). The physical content is essentially the same. One design
goal for Mark 6 was to construct the system of equations so as to eliminate as

many variables as possible (see Section IV. C). Emmons (1978) showed that the

order in which the equations are solved greatly influences the apparent number
of dependent variables. Ramsdell (1981) devised an algorithm which finds the

ordering yielding the minimal set of independent variables and wrote JUGGLE, a

computer program which implements this algorithm (1981a). However, the program
was written in PASCAL, and is too large to be used as a subroutine in Mark 6.

It has been used to find the best ordering for the default set of variables.

Equations (41) -(44) are solved using the Gear (1971) ODE/algebraic equation
solver. The solver had to be generalized somewhat, to handle Eqs.(41). The
ODE part uses an implicit method; the program decides what the time- step size
should be as it goes along, based on estimates of the local truncation error,
and what order of integration/extrapolation to usr , It handles stiff
equations relatively well. It is a predictor-corrector method; the algorithm
reduces the integration problem to that of solving a system of nonlinear
algebraic equations. Solving this system of equations is called the "correc-
tion," and is done via a multivariate Newton's method which requires an
estimate of the Jacobian matrix. This is not done at every time step, but
only when the corrector fails to converge or when 30 corrections have elapsed
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since the last estimation of the Jacobian; this saves computing time. Even
when the Jacobian is. estimated, it is not the full Jacobian which is es-

timated: first, the structure of the equations implies that the Jacobian
columns for the eliminated variables are known a priori : they are zero except
for one's on the main diagonal. Therefore the U/L decomposition only needs to

be applied to the upper left-hand corner matrix, whose dimension is given by
the number of non- eliminated variables in the system, [u] + [v] + [w] . Thus, the
algorithm first solves for the non-eliminated variables using that portion of
the Jacobian. It then uses back- substitution with the remainder of the
Jacobian to find values for the eliminated variables.

Second, the algorithm often does not even evaluate the Jacobian for all of
the non-eliminated variables. When the off-diagonal entries of J are small,
one can often obtain convergence in the corrector by assuming that those small
entries are exactly zero. In this case, J is estimated by assviming it to be
the identity matrix except in ^ose coIuibds corresponding to root-finding
variables: For those variables, it is seldom true chat the off-diagonal
entries are small compared to the diagonal ones. Therefore, these columns of
J are estimated in the usual manner. In this case, only the upper left-hand
comer [f]x[f] matrix need be subject to U/L decomposition. All of the
remaining variables can be found by back- substitution. Consequently, this
technique is by far the least expensive correction technique. Note that when
this simplified Jacobian is used, the resulting correction method has a
successive- substitution form. The package does not handle PDE's, and so, just
as in Mark 5, the calculation of the heating of objects and walls is handled
independently of the general numerical package

.

The calculation switches back and forth between the Newton- like technique
and the successive-substitution-like technique. It uses the latter (faster)
method until the corrector fails to converge at twice the minimum time step
and then switches over to the more robust method until the faster method
begins to work again. On the other hand, since the faster method is less
stable, the integrator tends to take more time steps when it is in use,
cancelling much of the savings from the smaller Jacobian decomposition.
Moreover, it is not clear that the successive -substitution method will work
for systems of equations which include other root-finding equations, as the
upper left-hand sub-matrix may become singular.

The Integrator cannot guarantee a solution to the system of equations
unless the system satisfies certain conditions (see Gahm, 1983). In part
because these are not always satisfied, the program fails to converge, about
10% of the time. However, one can usually get around such a difficulty by
making a small change in the input, which has no real physical significance
(such as making a room which is 3.6 meters long, into one which is 3.61 m
long, for example); just one such change will work, 90% of the time, and the
result is that the program will work, 99% of the time. Occasionally a
calculation will reach a "sensitive" point, where the time steps taken will be
the smallest permitted (100 microseconds, as the default) for some time,
making the total computing time quite long. The same, of course, is true of
most such computer programs.

I . Validation

The results of using Mark 5 are discussed in a number of places (Emmons
1979, Mitler and Rockett 1981, Rockett 1982, 1984; Rockett ^ 1983,
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Blomqvist and Andersson 1984, Hitler 1985). The model has been found to

predict the outcome of a nximber of fires reasonably well. Also see Parikh ^
al . (1983) and Hitler (1985a). A number of studies of the use of FIRST have
also been carried out (HcCaffrey and Dagher 1989, Duong 1990, Gross and Davis
1988, Todd and Ryan 1989). As might be expected, FIRST is generally an
improvement over Hark 5. The results of using Hark 6 are discussed by Rockett
and Horita (1985), Rockett ^ (1989).

V. CONCLUDING REHARKS

Zone models, at present, allow for a wider range of processes to be incor-
porated than field models do, while requiring much less computer time or
memoiry -- minutes vs. hours. On the other hand, the capacities of computers
are increasing at such a pace that three-dimensional field models with
radiation and combustion are becoming possible. Horeover, new numerical
techniques and refinements are still appearing for the solution of PDE's.

The numerical techniques currently used in zone models differ among each
other, although some variant of a multivariable Newton-Raphson technique is

the most commonly used one. It is not yet clear whether it is more expedient
to solve a set of differential and algebraic equations, or a set of differen-
tial equations with very complicated sources. The nonlinear Gauss-Seidel
technique, with certain improvements, works very well, and other possibilities
(such as accelerating convergence, using the Levenberg-Harquardt method, etc.)
exist. A powerful technique for solving sets of ODE's which is not very well
known, based on a Taylor series expansion of the functions, is a program
called ATOHFT (Corliss and Chang, 1982); perhaps its use in this context
should be examined.

Fire modeling is in the midst of a vigorous growth phase. Efforts are
being made in at least a dozen places throughout the world to develop perhaps
double that number of models. Although progress is being made, these are
isolated efforts, with a good deal of repetition and overlap. New programs do

not profit from others nearly as much as is desirable, so "the wheel is

(continually) being reinvented." Further, each individual effort is hampered
by local limitations of time, manpower, and money. Progress -- especially in
incorporating more physical and chemical phenomena in the models -- would be
much faster if the same resources now being applied to more than twenty
efforts were applied to a much smaller number -- perhaps four or five. That
would still allow for alternative avenues to be explored.
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