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Scope of the Document

This document describes an implementation of a Cartesian servo algorithm on a seven degree-of-

freedom manipulator. In the basic algorithm the servo error is computed in Cartesian coordinates

and transformed to joint-space torque commands by use of the transpose of the Jacobian relating

the two coordinate systems. This control algorithm is described mathematically and in terms of the

computational processes operating in a multiprocessing system to achieve the control. Two appli-

cations of the algorithm are described: compliant motions for contact of the arm with the environ-

ment, and ping-pong ball catching using real-time visual feedback.

Keywords: multiprocessing, control system architecture, impedance control, robot visual sensing,

robot programming, robot trajectory generation



1. Introduction

The basic architecture for a robot control system is described in [1]. The architecture is hierar-

chical, consisting of multiple levels numbered from level 1, the lowest level, to level 4, the highest

level for an individual robot. The implementation of this type of architecture being constructed in

the Intelligent Controls Group (ICG) laboratory is shown in Figure 1. (Operator Interface connec-

tions are not shown in this figure.) As of this writing, the implementation involves only level 1 and

level 2 system components. A more detailed discussion of the ICG approach to developing an im-

plementation can be found in [7,21].

This document addresses the implementation of specific algorithms in the manipulator branch

of the control system. The task decomposition structure of the manipulator Level 1 (Servo Level)

is described in [3]. This structure is designed to support a number of different algorithms, however

this document only discusses the implementation of one type of Servo Level algorithm. Other al-

gorithms have been implemented in the laboratory as well. World modeling structure for the Servo

Level is discussed in detail in [5]. Level 2 for a manipulator is also called the Primitive Level, and

[4] describes the task decomposition structure of this level. The Primitive level is involved in using

the Servo algorithm to achieve task objectives. This will be the subject of Section 4.

LEVEL 4

LEVEL 3

LEVEL 2

LEVEL 1

TELEROBOT

Figure 1. Hierarchical Architecture of Laboratory System
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The type of algorithm which computes servo errors in a Cartesian coordinate system and relates

those errors to joint torques by a Jacobian-transpose multiplication is the subject of this discussion.

There are two principal reasons for wanting to use a control algorithm of this type. First, the fact

that the servo is directly in the Cartesian coordinates eliminates the need to do explicit inverse ki-

nematics, which can be expensive in the seven degree-of-freedom case. Second, the gains of the

Cartesian servo provide a convenient means for achieving end effector compliance in task coordi-

nates. Section 2 will describe the algorithm in detail and explain these points further. The algorithm

does have some disadvantages as will be explained in Sections 2 and 4.

An important aspect of the control architecture is that it is designed to be implemented on a

multiprocessor computing system. Specifically, the control levels and the control functions within

a level are split up into separate software processes that can be distributed to the processors [7].

Section 3 details how the Jacobian-transpose algorithm is distributed among separate software pro-

cesses and how these processes are distributed to processors. Included in this discussion is the de-

scription of the interface to the Robotics Research K-1607 controller.

Section 4 details the implementation of the Primitive level. The discussion focuses on how the

Primitive level can make use of a Servo Level capable of executing a Jacobian-transpose algo-

rithm. Two example tasks are described in this context. The first is a demonstration of how the al-

gorithm can be used generate compliant contacts between the robot and stiff environments. The
second example is a visual sensing task. The manipulator catches a ping-pong ball rolling down a

planar surface using sensory data from the Perception part of the control system.

2. Algorithm

Notation: In the following all quantities will be vector and matrix quantities unless otherwise stat-

ed. Generally, Cartesian position vectors are represented by x, Cartesian force vectors by f, (the

word force will be used for this vector even though it contains torques in the rotational degrees of

freedom). Vectors of joint positions are represented by 6 and joint torques by t. First derivatives

of these quantities are represented by a single dot over the character, and second derivatives by two
dots. Canesian vectors are of dimension six and joint vectors of dimension seven. The dimensions

of matrices can be inferred firom the vector context in which they are used. For example, the Jaco-

bian-transpose J^ multiplies a Cartesian vector producing a joint vector. Thus, the matrix is 7x6. (In

reality, the seven vector of 3 elements Cartesian position and 4 elements quaternion is used to rep-

resent X, however one should recognize that the underlying space is 6-D so that the Jacobian-trans-

pose is stiU 7x6. This will be explained in more detail further on.)

The basic form of the Jacobian-transpose algorithm can be written

where is the command torque to be sent to the joint actuators, Kp and are the position and

velocity gains, x j is the command (or reference) position in Cartesian coordinates, and t „ (0)

is a joint torque vector providing compensation for the effects of gravity [3,17]. The symbol (0)

Jacobian-Transpose Implementation 3



following a quantity indicates dependence of the quantity on manipulator position. The numeric

values of such quantides in the control algorithm must be recomputed as the manipulator changes

posirion.

The algorithm (1) can be recognized as basically a Proportional-Derivative (PD) control on

Canesian position with the addition of a gravity compensation term. The Cartesian feedback is ob-

tained by computing the forward kinematics on the sensed joint positions and velocities,

X = kin ( 6 )

;c = 7(6)0 (2)

where x and x represent the position and velocity of the manipulator tip with respect to a Cartesian

coordinate system fixed at the base of the robot [5].

The velocity representations in (2) should be clear; a 6x7 matrix, J(0), times a 7-vector, 6,

yields a 6-vector. The Cartesian 6-vector, x, gives the rate of change of the Cartesian directions x,

y, z, roll, pitch, yaw, in that order. See [16] for a definition of these Cartesian directions. The rep-

resentation of X however is a bit more complicated. A quaternion is used to represent the rotational

part of X as described in [2]. To compute x^-x in (1), the translational components are determined

using vector subtraction, and the rotational components are computed in two steps. First, the

quaternion which represents the error between the desired and actual orientations is computed

X = "R^^invCR)

where is the error quaternion with respect to world coordinates, and and "'R are the the

desired and actual orientations with respect to world coordinates. The definition of inverse and

multiplication operations for quaternions may be found in [2], Next, the error quaternion is con-

verted to a 3-dimensional differential rotation vector by multiplying the components of the axis of

the quaternion by the magnitude of the angle of the quaternion. The equivalence of these two rep-

resentations for small rotations is demonstrated in [16]. The rotational difference operation will

continue to be represented as a subtraction in the text. Note that all other operations in (1) are the

normal operations of vector addition (subtraction) and matrix multiplication.

The proportional gain Kp defines the stijfness-of the control with respect to deviations from the

reference position x^. The velocity gain IC^ determines the amount of damping provided by the

control. The combination of the gains with the Cartesian position error and velocity can be thought

of as a Cartesian force. This force is related to joint coordinates through a Jacobian-transpose ma-

trix multiplication. The result is a joint torque vector which can be commanded to the K-1607
through the robot’s torque interface [8].

By selecting the gains appropriately, the manipulator can be made to have a certain stiffness

and damping, or impedance, at the end effector. Thus, (1) is related to Hogan’s work on impedance

control [1 1]. In our control system implementation, the gains are included as part of the command
vector to the Servo Level [3], and can therefore be changed every Servo cycle, if desired. Modu-
lation of the control gains play a major role in the applications described in Section 4,

Jacobian-Transpose Implementation 4



As pointed out by Craig [10], the coupling between degrees of freedom in an articulated mech-

anism will degrade any control scheme which tries to control the degrees of freedom independent-

ly, as in (1). Degrees of freedom can be decoupled by model-based control techniques which com-

pensate for the nonlinear inertia, Coriolis, and centrifugal effects [3,10,13,15]. These techniques

rely on exact cancellation of coupling and require that accurate models of the manipulator be avail-

able. Many times, as in the current ICG system, such models are not available and these control

techniques cannot be used. This document discusses what can be achieved without complete mod-

els. The only part of the manipulator model currently used, in addition to the kinematic model [5],

is the gravity torque model. This model assumes lumped masses at the centers-of-gravity of the

links and necessarily has inaccuracies.

Surprisingly, some analytical stability results can be obtained for (1). As discussed in [17,19],

it can be shown that for a robot governed by a dynamic equation of

T = Af(e)e + z?(0,0)+g(e),

a control scheme (1) is asymptotically stable for any positive definite symmetric matrices Kp, K^.

However, there are a number of caveats to this result. One is that the result is obtained for sta-

tionary and does not readily generalize to the case of x^(t) defining a trajectory for the manipulator.

In addition, it may be the case that the stability is not obtained globally. There may be local minima

in the potential that prevent the manipulator from reaching the goal. This stall behavior is particu-

larly a problem when there are other potential fields operating in the control scheme. Such is the

case with joint limit avoidance potentials, discussed below.

The Jacobian-transpose has inherent stall points at the kinematic singularities of the mecha-

nism [19]. In these situations, the manipulator is typically unable to move in a Cartesian direction.

This is reflected in the algorithm by a column of the Jacobian-transpose matrix becoming zero, or

linearly dependent, such that the algorithm is no longer responsive to Cartesian commands along

that direction. That is, joint torques are not produced which provide motion along that Cartesian

degree-of-freedom. Note that the control algorithm does not "blow-up" and produce infinite joint

rates as in many inverse control schemes. This is a distinct advantage of this algorithm. Also, as

stated in [3,4,19], it may be possible to avoid kinematic singularities and other stall points by ap-

propriate planning at higher levels.

Another caveat to the stability result obtained for (1) is limitations on the gains. There is an

upper-bound on the magnitude of the gains that can be used with such a control scheme on a real

manipulator. This upper-bound Limits the performance in terms of the control bandwidth. For most
manipulators the upper-bounds on control gains must be determined by experiment [20]. The big-

gest limiting factor for these upper-bounds is the discrete sampling or around-the-loop rate of the

control scheme. For (1), this rate is determined by the length of time is takes to read the joint feed-

back, compute forward kinematics, compute the control, and output the analog torque command
(the around-the-loop rates obtained so far in the ICG laboratory are discussed in the next section).

Note that the computation of the Jacobian does not enter into the around-the-loop control rate. This

is because it is slowly varying and may be computed at a slower rate than the feedback control itself

[12,13].

The basic algorithm (1) can be modified to improve the control bandwidth for a given around-

Jacobian-Transpose Implementation 5



the-loop rate. One possibility is to add lag-lead compensation to the basic PD algorithm [22]. Lag

compensation in the velocity feedback path may remove some high-frequency excitation from the

loop, for example. Another modification would be to perform the feedback control in joint space

while maintaining a required Cartesian impedance. This can be done by computing new joint gain

matrices from the desired Cartesian matrices.

= fKpJ and K2 = fKJ

Then the feedback control loop can be done without the computational cost of forward kinematics.

V, = ^1 (0.-6) -^2(9)+

This obviously requires that the reference position 0^ be specified in joint space rather than in Car-

tesian space. In addition, although the matrix multiplication required by the Jacobian-transpose has

been removed, general matrix multiplications are still required for Kj and K2 , which are 7x7 ma-

trices.

A reference velocity may be added to (1) to improve tracking of the desired trajectory. This is,

in fact, done in our laboratory control system.

tac.
= - jf) } + (3)

(The 9-dependency notation on the Jacobian and gravity terms is dropped for convenience.)

Additional terms have been added to (3) to enhance the control systems performance and ca-

pabilities. The simplest term is a friction compensation term which just adds a constant torque to

overcome Coulombic friction disturbances.

"'ac.
=-f'{K^U^-x)+KJXj-x)}+ (4)

where, for each joint i.

X, . [i]
fric *

Cl [i] , 0 [i] > [i ]

;

0, V2[/] <9 [i] <Vi [i]

;

C2 U], 0[i]<V2[i]

The friction compensation torque is zero for a joint whose velocity falls within some deadband,

given by constants v^ and ^
2 - compensation is either a positive (Cj) or negative (C

2) constant

outside this deadband. The friction compensation constants are determined empirically for each

joint.

To help prevent accidental collisions with joint hardstops and other violations of joint limits, a

joint torque for avoidance of joint limits is computed and added to (4).

Jacobian-Transpose Implementation 6



(5)X
act

f {Kp{x^-x) +K^{x^-x) } +x.: . + x^ . + X.,
gravity jric jl

where

k[i] (/J/] -0[i]), e[/] >/i[/];

0, I2U] <e[/]

lc[i] (I2 U] e[z] <l2[i]

Here, gives the upper limit for the joint position, and I2 gives the lower limit. These limits specify

the position at which the joint limit spring force begins to exert a torque resisting further movement

toward the physical joint limits. The amount of force generated for joint limit avoidance is deter-

mined by the spring constant k.

Just as for joint limits, torques which act to avoid obstacles [12] and other things may be com-

puted and added to the control. Likewise, attractive torques may be added for desirable things such

as regions of maximum manipulability [18] and desired points of contact or other activity. The

presence of attractive and avoidance points in the robot work volume can create local minima

which can stall the manipulator. A simple example can be seen with (5), when the shortest straight-

line distance to the goal x^ would take one or more joints through a joint limit. The joint limit

avoidance torque would keep the manipulator away from the joint limit(s) and the manipulator mo-

tion would come to a stop at a point where the joint limit avoidance force balanced the PD force

trying to reach the Cartesian goal. In this case, the stall behavior is beneficial since it prevents a

joint limit violation. But, since there is another path that would lead to the Cartesian goal, it might

be preferable to have the manipulator move along this path rather than just stall. Determining this

non-stalling path and planning trajectories that move the manipulator along it would appear to be

tasks of higher levels in the control system.

Another undesirable behavior associated with (5) is jumping behavior. This typically occurs

when the manipulator is stalled due to certain forces, such as stiction, and then, as the goal x^ is

moved, other forces in the control scheme build-up until the manipulator jumps out of the stall

point. Joint stiction is the worst culprit for producing jumping effects. If significant stiction is

present and a low velocity movement is made, the manipulator may even bounce as it alternately

stalls and jumps along the trajectory. Obviously, this effect is most prominent when using small

gains Kp and K^. Higher gains will tend to reject stiction disturbances.

Since the manipulator has seven degrees of freedom, it is redundant with respect to the Carte-

sian PD task of (5). This means that the manipulator can execute self-motions while still satisfying

the Cartesian control task. Note that (5) provides no control for this self-motion whatsoever, except

to support it with respect to gravity. For a manipulator controlled by (5) one could push the elbow
around to any angle and it would stay there. Additional control of the self-motion can be provided

by computing a null-space operator [5,14]

Jacobian-Transpose Implementation 7



{I-fj), where 7^ = / (7/)

Through this operator a joint torque vector can be computed which acts only to produce manipu-

lator self-motion.

(6)

The vector x is selected to provide the desired control for self-motion. For example, x could be

some type of avoidance torque as described above. Through this torque the self-motion could be

made to avoid obstacle contact or other undesirable circumstances which may arise during the task.

In the ICG control system, due to joint 1 stiction problems, the following self motion control vector

has been used

z[i] = {

0, otherwise

This torque tends to move the self-motion such that joint 1 remains in the center of its travel. Com-
bining this with (5) yields the control equation which is currently implemented at the Servo Level.

. +Xf . +x., + x
gravity jric jl ns (7)

Another approach to handling the redundancy would be to include it explicitly in (5). This re-

quires that the Cartesian vectors be modified to include a self-motion parameter which specifies

the angle of the elbow. This parameter can be a scalar variable which corresponds to the angle be-

tween the manipulator elbow plane and the vertical plane [23]. The Jacobian must be augmented

to relate changes in this angle to joint space. This augmentedJacobian can then be used in a control

scheme analogous to (5).

V, = +A:,(z^-z)} + + (8)

In this equation, J ^ is the transpose of the 7x7 augmented Jacobian matrix, and the z vectors are

the 7-D control vectors which include the 6-D Cartesian position of the end effector and the elbow

angle parameter. Obviously, for this approach the forward kinematics are modified to include the

computation of the elbow angle parameter. The approach has been implemented in the ICG sys-

tem, and its development at JPL for the Robotics Research arm has been well-documented in the

literature [23,24].

Given that (7) is the basic control algorithm, it is desirable to allow the coordinate frame in

which the reference x^ is specified to be selected as appropriate for the application. For example,

if the task involves motion with respect to some object fixed in the environment, (as in assembly

tasks,) it may be more convenient to specifiy the reference x^^ with respect to a coordinate system

fixed in the object rather than with respect to a coordinate system fixed at the robot base. This type

Jacobian-Transpose Implementation 8



of modification is straight-forward with (7) as described in [3]. It involves computing the 6x6 dif-

ferential change matrix [16] corresponding to the change of coordinates and multiplying this ma-

trix by the Jacobian to get a new Jacobian for use in (7). The forward kinematics are modified with

this additional coordinate transformation as well. Parts of this technique have been tested in the

ICG system, but it has not been implemented entirely due to timing limitations of the current hard-

ware configuration.

One other variation on (7) which has been implemented in the ICG control system is to com-

pute the Cartesian control which respect to end effector coordinates instead of world coordinates.

This requires that a new Jacobian be computed which relates joint rates to the Cartesian velocities

of the end effector represented in the coordinate frame defined at the end effector. In this scheme,

x^ is still specified in world coordinates, but the operation x^-x is modified to give the error relative

to the end effector frame.

= invCR)

= invCR) . CP^-^P)

The symbols involving R represent the rotational part of the Cartesian vectors, that is, R is the ro-

tational part of X and R^ is the rotational part of x^. Likewise, the symbols involving P represent

the positional part of the Cartesian vectors. Compare with description of the world coordinate dif-

ference operation on page 4.

The end effector coordinate version of (7) is easily implemented by substituting the appropriate

xj-x and Jacobian computations. The change in the Cartesian difference operation is achieved by

selecting a different servo algorithm for the Servo Execution process [3], whereas the end effector

Jacobian might be implemented by a completely new and separate process in the system. The con-

figuration of functions in terms of processes is discussed in the next section.

3. Servo Processes

Implementation of (7) in the ICG laboratory is achieved by a set of eight software processes

coded in Ada using the process model described in [7]. These processes implement the descriptions

given in [3,5] for the interfaces and functions of Servo Level processes. These processes are dis-

tributed to 4 processors in a multiprocessor backplane. This section describes the Servo processes

and their allocation to processors. Figure 2 shows the Servo Level processes used to implement (7).

The RRC Communications process communicates with the K-1607 controller using the serial

link as described in [8]. A 68010 processor board is dedicated to running this process to provide 5

msec updates to the K-1607 controller. The RRC Communications process reads the command
torque from common memory, transmits these values to the K-1607 controller, and then receives

the feedback data and writes the values to common memory.

The Joint Feedback process gets the feedback data written by the RRC Communications pro-

cess and converts it to SI units. The result, joint position and velocity feedback, is written to com-
mon memory.

The joint feedback is used by the four world modeling processes to compute elements of the

Jacobian-Transpose Implementation 9



From Prim Level

Figure 2. Servo Level Processes.

control algorithm. The Gravity process computes the gravity compensation torque. The Nullspace

process computes the nullspace torque according to (6). The Jacobian process computes the Jaco-

bian which relates changes in a world coordinate system to joint space. As described earlier, the

Jacobian is used by the both the Nullspace process and the Forward Kinematics process. The For-

ward Kinematics process converts the joint feedback into Cartesian feedback using (2).

The Execution process computes (7). The process reads the elements of the equation from com-

mon memory locations written by the world modeling processes and the Job Assignment/Planning

process. The friction compensation torque and the joint limit avoidance torque Xj^ are com-

puted within the Execution process itself. These computations could probably be separated as ad-

ditional world modeling processes, however, the calculations are currently so simple that there is

no advantage to such a separation.

The Job Assignment/Planning process is a single process which performs the functions of both

Jacobian-Transpose Implementation 10



Table 1. Servo Process Execution Times.

Process Execution time

Job Assignment/Planning 1.4 msec

Execution 3.5 msec

Joint Feedback 0.5 msec

Gravity 2.1 msec

NuUspace 17.6 msec

Jacobian 4.7 msec

Forward Kinematics 3.2 msec

the Job Assignment and Planning processes described in [3]. These were originally separate pro-

cesses, but were combined to fit on a processor with Forward Kinematics. These processes will be

separated when an additional processor is added to the system. The Job Assignment/Planning pro-

cess receives the Servo commands from the Primitive Execution process. The Cartesian reference

signals x^ and x^, and the gains Kp and K^, are output as the Ex cmd to the Execution process.

Table 1 shows the execution times for the processes of Figure 1. The time shown is the execu-

tion time for one complete cycle of the process computing the appropriate component of (7). This

includes common memory reads and writes. These times were obtained from runs of the actual

code on the target hardware.

The RRC Communications process, as stated above, runs on a 5 msec cycle synchronized with

K-1607 controller. The 5 msec cycle time is determined by the update rate of the torque interface.

The torque interface accepts new torque commands every 2.5 msec. Flowever, the current serial

link to the K-1607 controller cannot run fast enough to provide new updates every time, so updates

are provided every other cycle instead [8].

The Execution process should provide new torques to the RRC Communications process every

5 msec so that the torque interface will receive new data at the fastest possible rate. Thus, Execution

should run every 5 msec. From Table 1, the process will take 3.5 msec of a 5 msec cycle when com-

puting (7). This leaves about 1.5 msec for a processor to be servicing other processes. When the

Execution process is running in joint-space, (and not running the Jacobian-transpose algorithm,)

the control loop time can be minimized by obtaining the joint feedback in the same 5 msec cycle

as Execution process. This fact, plus the fact that no other process really fits, lead to grouping the

Joint Feedback process with the Execution process on a single processor. These processes execute

in about 4 msec, and repeat execution every time there is new data available from the RRC Com-
munications process, i.e. every 5 msec.

As stated in Section 2, it is important that the forward kinematics be computed as rapidly as

possible to improve the around-the-loop rate of the algorithm. Therefore, everytime there is new
joint feedback data, the Forward Kinematics process should run. This implies a 5 msec cycle for

this process. Except for Job Assignment/Planning, all other processes can run at rates slower than

Jacobian-Transpose Implementation 11



68010 Comm.
Board 0

Board 1

Board 3

send r jt. 1
send

. r ji. i
send

^
get feedback torq |

get feedback torq get feedback torg

execution ^ execution ^ execution

Board 2
^ff^d kinematics ja/pl >f>fWd kinematics ja/pl ^ kinematics ^ ja/pl

nuUspace 4 gravity 4,= Jacobian
>f^

nullspace

5 msec

Figure 3. Servo Timing.

the control loop rate. Thus, the Job Assignment/Planning process and the Forward Kinematics pro-

cess are grouped on one processor, which consumes 4.6 msec out of a 5 msec cycle.

The remaining processes. Gravity, Nullspace, and Jacobian, are lumped together on another

processor and allowed to run one-after-the-other at the maximum rate. Since the total execution

time of these processes is 24.4 msec, each of these processes will update its output every 25 msec,

approximately. This rate is perfectly acceptable for these processes because of the role they play

in the algorithm.

Figure 3 shows the Servo timing for the system for the four processor boards. One can trace the

data through the system, from the start of feedback to the end of torque command, (the bold arrows

of Figure 2,) and see that the around-the-loop time for the Jacobian-transpose algorithm is 15 msec.

Note also that the process-to-processor mapping described above considered only the execu-

tion of one algorithm. Since there is no automatic method for distributing processes to processors

dynamically in the ICG system, the design must be able to handle all operating modes of the level.

For example, if the end effector Jacobian-transpose algorithm described at the end of Section 2 is

to be used in the same system with the world Jacobian-transpose algorithm, the process-to-proces-

sor mapping must be compatible with both schernes. This means that the processor running the Ex-

ecution process must have enough processing margin to handle the additional cost of computing

the relative Cartesian position error. Likewise, there must be sufficient processing power to com-

pute the end effector Jacobian. (See [25,26] for more on distributing processes to processors.)

Since both the world and end effector Jacobians are not generally required at the same time, a

simple scheme has been established for activating and inactivating processes as described in [7].

Thus, a process to compute the end effector Jacobian could be active, and a process to compute the

world Jacobian inactive, for the operation of the end effector Jacobian-transpose algorithm. In the

current implementation the activation of processes is handled by the Job Assignor. When switching

between algorithms, the execution of the new control mode is delayed until the level is fully recon-

figured for the new mode.

Jacobian-Transpose Implementation 12



4. Primitive & Applications

The Jacobian-transpose servo algorithm has been used to perform two demonstration tasks in

our lab. The first is stable, nondestructive contact and surface-following with a stiff environment.

The second is catching a ping-pong ball which rolls down a planar surface populated with obstacles

to produce a non-deterministic ball trajectory. This section describes the Primitive level trajectory

generation algorithms which are used with the Jacobian-transpose servo algorithm to perform these

tasks. See [4] for additional information on the structure and function of the Primitive task decom-

position processes. Also, a videotape is available from the Intelligent Controls Group at NIST

which demonstrates the described tasks.

4.1. General-Purpose Trajectories

The system currently provides two trajectory generation algorithms for general-purpose Cane-

sian motions, including those for which contact will occur between the robot end effector and

fixed, stiff objects in the environment. The first one plans and executes a trajectory with a trape-

zoidal velocity profile. The second is based on a quintic polynomial function for the time sequence

of Cartesian positions. Both types of trajectories are discussed in detail in [10]. For both types of

trajectories, the user enters the desired Cartesian goal position, execution time, and the name of the

object, if any, which will be contacted during the motion. The trajectory algorithms are currently

implemented only for cases where the initial and final velocities and accelerations are zero. The

planning for these trajectories is currently performed only once; there is no trajectory replanning

while the motion is being performed. Gains remain constant throughout the motion, and remain

effective until the next trajectory is performed.

Trapezoidal-profile motions consist of a constant acceleration portion followed by constant ve-

locity, followed by constant deceleration to the goal. The trapezoidal motions generated by our

implementation are symmetric; that is, the magnitude of acceleration is the same as the magnitude

of deceleration. For trapezoidal trajectories, the Primitive Planning process determines the accel-

eration/deceleration and constant velocity for each Cartesian degree-of-freedom, and the time

which will be spent accelerating. The percentage of time to be spent in acceleration is read from a

planning file. An acceleration period which is 5% of the total motion time works well for most

situations. This results in a velocity for the constant speed portion which is about 5% greater than

the average velocity for the motion. Using this approach, both acceleration and velocity will be

larger for fast motions than for slower ones. The Planning process also determines the gains to be

used during the motion. Currently, gains are obtained from a file associated with the name of the

contact object.

Once the Planning process sends down the parameters for a new trapezoidal trajectory, the

Primitive Execution process starts executing the motion. On each execution cycle, the desired Car-

tesian position and velocity are computed based on the time which has elapsed since the start of the

motion.

For quintic polynomial trajectories with zero initial and final velocities and accelerations, the

Planning process need only determine the gains and pass along the goal position and desired tra-

versal time. The parameters for the quintic polynomial do not have to be precomputed in this case,

since the equation may be rewritten to depend only on the initial and goal positions as

where x
^
= goal position, Xq = initial position, and h(t) = (traversal time - 1) / 1. Similarly, the fol-
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Xit) = x^- (x^-Xq) (I0h\t) -I5h\t) +6h^(t) )

lowing equation may be used for rotations

R(t) =R^*R{n, -({) (10/2^ (r) -15/2^ (r) +6/i^(r) )

where Rj = goal orientation, R(n,(t)) = rotation of angle ({) about axis n required to reorient Rq into

Rj. These equations are evaluated by the Execution process for increasing values of t until the end

of the motion is reached. The initial position is read from the Cartesian position feedback buffer

on the first cycle of execution. The difference between the initial position and the goal position is

also computed during this first cycle for use throughout the motion. No velocity or acceleration

checking is currently performed for Cartesian quintic trajectories. Also, only the desired position

is commanded to Servo at this time, although adding the desired velocity would not be difficult.

The Primitive Execution process evaluates a new Servo goal every 5 ms for both trapezoidal and

quintic trajectories.

Either of these trajectory algorithms may be used with the Jacobian-transpose servo algorithm

to perform Cartesian straight-line motions. Relatively low gains may be used in directions of stiff

contact with environmental objects to keep reaction forces small, while high gains may be used for

degrees of freedom which will not experience contact. The use of higher gains for non-contacting

degrees of freedom allows more accurate performance of the desired trajectory when reaction forc-

es are not an issue. The largest gains which have been used with (7) (for free space motions) are

4000 0 0 0 0
0

'

0 4000 0 0 0 0

^ ^ 0 0 4000 0 0 0

^ 0 0 0 700 0 0

0 0 0 0 700 0

_ 0 0 0 0 0 700_

200 0 0 0 0 0

0 200 0 0 0 0

f. ^ 0 O' 200 0 0 0
^ 0 0 0 30 0 0

0 0 0 0 30 0

_ 0 0 0 0 0 30_

where the units are N/m for the translational elements of Kp, N-m/rad for the rotational elements

of Kp, N-s/m for the translational elements of Ky, and N-m-s/rad for the rotational elements of Ky.

The largest stable gains wOl, of course, be robot configuration-dependent. Larger gains (especially

for larger rotational velocity gains) result in instability. No special effort has been made to opti-

mize the system to be able to use the highest gains possible, however. It is expected that consid-

erably higher gains could be used if the around-the-loop time were decreased and lag-lead com-
pensation were implemented as mentioned in Section 2.
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Figure 4. Example Robot Contact Motion.

A specific example will now be discussed to show how this type of motion works when contact

with a stiff object is encountered. Consider the motion of the robot gripper straight down onto a

rigid table, as shown in Figure 4. The desired robot motion is to start above the table, maintain

contact for a while, then move back to the start position. For this motion, trapezoidal trajectories

are used along with the Jacobian-transpose servo algorithm operating in world coordinates, and the

robot is commanded to move to a position below the table surface. A relatively small gain is used

in the world Z direction, while the gains in the other five Cartesian directions are fairly large. The

actual Cartesian gains used for this motion are

2500 0 0 0 0
0

'

0 2500' 0000
0 0 300 0 0 0

0 0 0 500 0 0

0 0 0 0 500 0

. 0 0 0 0 0 500_

The robot will follow the desired trajectory until contact is made with the table. As the desired

servo goal positions go further below the surface of the table, the reaction force between the gripper

and the table increases due to the increase in position error. Figure 5 shows a plot of the expected

and actual forces in the Z direction during contact with the table. The actual force was measured

by placing a six-axis force/moment sensor between the gripper and the table during the motion.

The expected force includes the effect of the additional position error introduced by the thickness

Jacobian-Transpose Implementation 15



Figure 5. Expected and Actual Z Forces After Table Contact.

K
V

55 0 0 0 0 0

0 55 0 0 0 0

0 0 20 0 0 0

0 0 0 30 0 0

0 0 0 0 30 0

_0 0 0 0 0 30_

of the force sensor, but it does not include an estimate of the impulsive force experienced at impact.

Note that there is a delay between the time when contact is expected to occur and the time of the

actual impact. This is due to the trajectory following error, which is quite large as a result of the

low gain in the Z direction. The end effector is moving at about 0.07 m/s at impact, and even at

this slow speed it is clear from Figure 5 that large forces are experienced as the kinetic energy of

the manipulator is dissipated.

After the impulsive forces from the initial impact have diminished and the trajectory has com-
pleted, the remaining force experienced by the gripper is very close to the theoretical value predict-

ed by multiplying the Cartesian position gain in the Z direction with the final position error, in that
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direction (the dimension d in Figure 4, 0.137 m in our example). After a dwell leaving the goal

position unchanged, the force decreases as expected when the robot starts moving back up toward

the start position.

The Z gain used in this example is small enough that a styrofoam coffee cup placed upside-

down on the table below the gripper will not be crushed during the contact portion, even though

the resulting position error is increased further. Similar trajectories, using the same gains, have

been used to slide the gripper across the table surface in a stable fashion. Again, the Z gain is small

enough that a light bulb can be placed below the gripper during this motion and slid along the table

without breaking .

Although the low Z gain in this example is useful for maintaining contact without generating

excessive interaction forces, it results in degraded trajectory tracking when moving toward the ta-

ble, as mentioned above. Because the gain is low, disturbances such as those caused by residual

joint friction and inertial effects are poorly rejected. Joint friction causes the free-space motion to

be unsteady; slowing down because of friction, then speeding up as the error becomes large enough

to pull the manipulator along.

Several steps have been taken to reduce the frictional effects. First, the robot manufacturer has

made modifications to reduce joint friction where possible. Second, some friction compensation

is provided by the terms in the servo algorithm (7). An attempt could be made to implement

a more sophisticated friction model, but it is difficult to compensate for friction exactly because

the parameters are typically time-varying and position- and direction-dependent. Third, the motion

is improved somewhat by increasing the velocity gain and commanding a desired velocity. For

faster motions with low gains, inertial effects will also cause substantial errors. These may be re-

duced by providing compensation in the servo algorithm, if sufficient computational resources are

available.

In summary, the experiments performed indicate that the Jacobian-transpose servo algorithm

(7) can be used to perform useful compliant motions. Compensation for gravity (and friction, to

an extent,) frees the position control algorithm from having to reject these disturbances, which al-

lows gains to be selected based on the task. Although contact forces are not controlled explicitly,

gains may be selected which will result in ballpark forces if the amount of deflection is known or

can be estimated. In most cases the exact forces experienced are not critical, as long as the robot

complies in the desired manner and destructively large forces are avoided. Further experiments

will be performed to evaluate the performance of this algorithm in actual space station-related as-

sembly operations.

4.2. Sensory-Interactive (Ball-Catching) Trajectories

The trajectory generation algorithm used in the ping-pong ball catching task is quite different

from those described above. Before discussing details of the algorithm, it will be usef^ul to describe

the experimental setup for this task. As shown in Figure 6, a board (2’x2’) is mounted on a tripod

so that it may be positioned easily in the robot workspace, and the board orientation may also be

easily adjusted. The board has a number of pins placed to produce a non-deterministic ball trajec-

tory. An example of an actual pin layout we used is shown in Figure 7. When a ball is rolled down
the board, its motion is observed by a stationary camera. An image differencing algorithm is used

to locate the centroid of the moving ball image. Image space centroid values are filtered and trans-
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Figure 6. Ball Catching Setup.

formed to robot world coordinates by a World Modeling process. The function of the Sensory Pro-

cessing and World Modeling algorithms for the ball-catching demonstration task are described in

[9, 28]. The objective is for the robot to use an 8 oz measuring cup (3 in. diameter) to catch the

ball as it rolls off the bottom edge of the board.

The position of the board in world coordinates is available to the Primitive Planning process.

Currently, the board position is determined by teaching three points on the board surface; the board

position and orientation is then stored in a data file. Teaching is performed by controlling the ma-

nipulator with gravity compensation torques only, allowing it to "float". The gripper is then man-

ually moved to the desired position, and the manipulator joint or Cartesian position is recorded by

reading the common memory buffers described in Section 3. The actual board position we have

used is somewhat different from that shown in Figure 6.

The approach taken to perform this task is one in which the Planning process plays a minor role,

and most of the trajectory generation is performed by the Execution process. The general idea is

this:

1 ) There is a line just away from the bottom of the board along which the cup will be moved to

catch the ball. The goal position is the projection of the estimated ball position down onto

that line, as shown in Figure 7. The estimate of the ball position includes a small amount of

prediction, as will be discussed later.

2) Instead of planning a trajectory to take the robot from the current position to the goal posi-

tion, the goal position is always sent directly to Servo. However, when the ball is near the

top of the board, a relatively low gain in the direction of the goal pose line is sent to Servo

(along with the position goal), and as the ball rolls down the board, this gain is increased
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2 ft

goal pose line

Figure 7. Example Board Layout.

until it reaches a maximum value as the ball rolls off the board.

Subjectively, this means that when the ball is near the top of the board, the robot will not try

very hard to get to the goal position. As the ball rolls down the board, the robot increases the effort

made to track the ball. The reasoning behind this approach is that initially, the error between the

robot position and the goal position may be quite large, and there is much uncertainty about where

the ball will actually end up, so it is undesirable to have the robot try to go there as fast as possible.

The robot will move toward the goal, however, gradually reducing the tracking error, which in turn

allows a higher gain to be used.

Projecting the expected ball position onto the goal pose line gives only a 3-dimensional posi-

tion goal. To determine the desired orientation, a nominal goal orientation is defined with respect

to the board. To this orientation is added a pivoting rotation which acts about the direction parallel

to the board normal. The magnitude of the pivoting rotation is proportional (up to a limit) to the

error between the goal position and the current robot position. This acts to point the cup in the di-

rection of robot motion, and tends to reduce the amount of motion required of the larger robot
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Figure 8. Primitive Level Processes.

joints.

For this trajectory algorithm, the Primitive Planning process sends parameters such as the min-

imum and maximum gains, maximum Cartesian force and torque, nominal goal orientation, and

maximum pivot rotation to the Execution process. Appropriate values for these parameters were

determined through experimentation. The plan for this task describes not the desired manipulator

position as a function of time, but rather the gains to be used as a function of ball-travel down the

board. The position and velocity gains for both translation and rotation are effectively increased

as a linear function of ball-travel down the board. The Execution process reads the current ball

position in world coordinates from a common memory buffer, and uses this information to com-

pute the goal position and orientation, and the gains to send to Servo.
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The Primitive Level processes used for ball-catching are shown in Figure 8. The image pro-

cessing box shown in this diagram is a simplified representation of the actual Sensory Processing

processes which compute the image space centroid of the moving ball. See [28] for a detailed de-

scription of the implementation of these processes. All other boxes in Figure 8 represent "atomic"

processes [7]. The position of the ball in world coordinates is updated every 66.7 ms, although

there is a latency of about 103 ms between the start of image acquisition and the availability of the

new ball position based on that image. The latency time includes the time it takes to acquire two

images of the same field (even or odd), take the difference of the two images, threshold and take

cumulative x and y histograms of the result, and transform the image space centroid to world co-

ordinates. This latency is problematic for high-performance visually-directed motions; particular-

ly when, as in this case, the trajectory of the object of interest cannot be predicted accurately from

previous position samples. The entire latency period is not compensated for, since this would

cause large errors when the ball changes direction as a result of hitting a pin. If no correction is

made, however, it is difficult to get the robot to the goal in time to catch the ball. The estimate of

the baU position therefore includes a limited prediction of where the ball is going based on a simple

linear extrapolation of the two most recent position samples. The equation used to estimate the ball

position is

Pest =

where Pgst = estimate of current ball position, = most recent position sample, P^.i = previous

position sample, and w = prediction factor which determines the amount of prediction to apply. Al-

though other values have been tried, a prediction factor of w = 1 seems to work fairly well. This

corresponds to using a constant velocity to reduce the latency by about 67 ms (one update period).

A chute has been attached to the board (not shown in the figures), which allows the robot to put

the ball back in play after a catch. After a catch is made, the system switches to a joint space quintic

polynomial trajectory algorithm and high-gain joint PD servo control. These algorithms are used

to dump the ball in the chute, and then to make a high-speed motion back to the start position before

the ball reaches the end of the chute. The start position is near the middle of the bottom edge of

the board. There is some freedom in selecting the start position, since the robot will move toward

the goal pose line regardless of where it starts from. If the start position is behind the line, the robot

will move towards the board as the ball rolls nearer, giving the appearance of aggressively going

after the ball. If tlie start position is too far back, however, the robot frequently overshoots the goal

pose line and misses the ball, because of suboptimal gains and the lack of inertia compensation.

The approach which was found to work best was to use a start position and a goal pose line that

were close to the board. Then, just as the ball rolls off the edge, the robot pulls back by an amount

related to how fast the ball is moving. This provides a crude "velocity matching" of the cup to the

ball as it is caught.

In practice, the robot is able to catch the baU approximately 80% of the time using this tech-

nique. The actual performance of the robot depends on a number of factors, including the accuracy

of the board and camera calibrations. In cases where the ball had a high horizontal velocity, or

radically changed direction near the bottom of the board, the robot was simply not fast enough to

get to the ball in time.

Of course, the gain scheduling approach is not the only way to control a robot for this task. In

fact, it was not the first approach tried. The initial approach was to scale the position error to stay
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within maximum acceleration and velocity constraints, and use this scaled value to determine the

goal position. Large gains would be used for the entire motion, and the ball would be tracked as

closely as the limits on acceleration and velocity would allow. This approach did not work very

well, however. The acceleration constraint scaled the error down to such an extent that the robot

would not move to the new goal position, because it was too close (the torques resulting from the

error times the gain were not large enough to overcome joint stiction). Since the velocity remained

zero, the error always remained small due to acceleration limiting, and the robot never moved.

Although further experiments could have been performed with the acceleration-limiting ap-

proach, trying things like making sure the new goal position was at least some minimum distance

from the current position, it was decided instead to look at the gain scheduling approach. One rea-

son for this decision was that the gain scheduling would allow the gains to be gradually increased

until stiction was overcome and the robot would start moving. The robot does in fact start moving

quite smoothly using gain scheduling. Of course, near the bottom of the board the motion becomes

jerky if the ball changes direction rapidly, since the ball must be tracked closely as it nears the edge

of the board.

Another possible approach is to continually replan a conventional trajectory (such as a quintic

polynomial) that will take the robot from its current state to the estimated goal state (catch posi-

tion), as in [27]. When the ball is at the top of the board, the estimated goal state and time-to-catch

would not be correct, but only a few cycles of this plan would be executed. Subsequent plans

would provide increasingly accurate estimates of the final catch position and time. Gains would

remain constant throughout the motion. This approach has the advantage of providing direct con-

trol over the smoothness of the trajectory, and will be investigated in future experiments.

The Jacobian-transpose servo algorithm works well in this application. It allows the robot to

be commanded directly in a Cartesian reference frame relevant to the task, and eliminates the need

to perform inverse kinematics. It enables one to think about the product of servo errors and gains

in terms of Cartesian forces acting on the end effector. Perhaps most importantly for this applica-

tion, it provides the capability to manipulate the gains directly to reflect the time-varying accuracy

requirements of the task. The performance is not quite as good as it could be, due to frictional and

inertial effects, but this situation is expected to improve as more complete compensation is provid-

ed.

5. Conclusions

The details of an implementation of a Jacobian-transpose servo algorithm in a multiprocessing

robot control system have been presented. This algorithm has been useful in laborator>' applica-

tions. The use of the algorithm for two of these applications, stable contact motions with a stiff

environment and catching a rolling ping-pong ball, has also been discussed.

The Jacobian-transpose algorithm provides a means of Cartesian control without requiring ex-

plicit inverse solutions to Jacobians or kinematics. The accuracy and speed of the Cartesian mo-
tions are determined by the magnitude of the control gains. The nonlinear nature of robot manip-

ulator dynamics, along with disturbances such as stiction arising from actuator seals and bearings,

degrade the performance of the Cartesian PD control when moderate gains are used. Although

there will always be a limit on the size of the gains, a number of approaches to improving the over-

all performance of the control have been indicated. The pursuit of several of these approaches is

planned in the future, including improving the rate at which torque commands and feedback data
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are updated.

Still, the Jacobian-transpose algorithm can be used to successfully generate compliant motions

useful for contact tasks involved in assembly operations. The algorithm can be used for sensory

interactive or other tasks where the goal is determined with respect to a Cartesian frame of refer-

ence. This would include teleoperation via a Cartesian hand controller.
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