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Abstract

The linear stability of circular Couette flow between concentric infinite cylinders is

considered for the case when the inner cylinder is rotated at a constant angular velocity

and the outer cylinder is driven sinusoidally in time with zero mean rotation. This

configuration was studied experimentally by Walsh and Donnelly. The critical Reynolds

numbers calculated from linear stability theory agree well with the experimental values,

except at large modulation amplitudes and small frequencies. The theoretical values are

obtained using Floquet theory implemented in two distinct approaches: 1) a truncated

Fourier series representation in time and 2) a fundamental solution matrix based on a

Chebyshev-pseudospectral representation in space. For large amplitude, low frequency

modulation, the linear eigenfunctions axe temporally complex, consisting of a quiescent

interval followed by rapid change in the perturbed flow velocities.
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1. Introduction

In 1923 G.I. Taylor considered the stability of the steady Couette flow between rotating cylin-

ders and discovered a transition to steady axisymmetric toroidal rolls (“Taylor vortices”),

obtaining agreement between the measured values of the critical rotation rates and his the-

oretical predictions [1]. In the last thirty years, a substantial amount of research has been

conducted on various aspects of Taylor-Couette flow, including the effect of time-periodic

forcing of the cylinder rotation rates. Beginning with the experimental work of Donnelly

et al [2], [3], where it was observed that temporal modulation of the inner cylinder angular

velocity provides stabilization, the problem has served as an important model for gaining

understanding into the effects of time-periodic forcing.

The present study is an outgrowth of a research effort to understand the interaction of

a solidification interface, and its associated interfacial instabilities, with some of the funda-

mental hydrodynamic instabilities [4]. These problems are relevant to the area of materials

processing, in particular, growth of a solid from the melt. For the Taylor-Couette prob-

lem, recent studies by McFadden et al have demonstrated that a solidification interface can

significantly alter the centrifugal instability for steady rotation [5], [6], and the effect of time-

periodic rotation is now being addressed. In developing the linear theory for the interaction

of modulated Taylor-Couette flow with a solidification interface, the isothermal problem sub-

ject to time-periodic oscillation was used to test the solution procedures. After reviewing the

literature on this problem, it was found that some discrepancies remain between the existing

experimental results and theoretical predictions.

Carmi and Tustaniwskyj [7] performed a comprehensive study of the linear theory onset

conditions for sinusoidal torsional oscillation of the cylinders using Floquet theory. The

study was comprehensive, in that several variations of forcing conditions were considered,

with and without mean rotation, for a finite-gap width and for a gap width that approximates

the narrow-gap limit. Their analysis predicts destabilization predominantly as a result of

modulation. Donnelly and colleagues have conducted several of the more recent experimental

studies on the effects of temporal modulation. For the particular case of steady rotation of
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the inner cylinder and sinusoidal torsional oscillation of the outer cylinder about a zero mean,

Walsh and Donnelly [8] observed stabilization due to the modulation, while the linear theory

of Carmi and Tustaniwskyj [7] predicts destabilization. A recent theoretical analysis by

Barenghi and Jones [9] yields much better agreement between linear theory and experiment

for one set of the Walsh and Donnelly experiments; however, this set of conditions was not

the focus of their study, and the experimental conditions yielding the greatest stabilization

were not considered.

The present study provides a more complete comparison with the cases considered ex-

perimentally by Walsh and Donnelly [8]. A thorough theoretical investigation is conducted

based on linear theory employing Floquet analysis in two independent approaches to the

numerical solution. A detailed description of the linear theory eigenmodes, both spatial and

temporal is included. Although limited to linear behavior, the comprehensive study provides

better understanding into the complex nature of the response to temporally-periodic forcing

in the Taylor-Couette problem.

2. Theory

Briefly, the governing equations are the continuity equation and the incompressible Navier-

Stokes equations for the velocity, u, and the pressure, p,

V • u = 0, (la)

o
1~ + (u V)u + -Vp = 1/V 2

u, (lb)
ot p

where p is the density and v is the kinematic viscosity. For cylindrical-polar coordinates

(r, 0
, 2 ), the velocity components are u =

(
u,v,w

)
in the radial, azimuthal, and axial direc-

tions, respectively. The fluid occupies the annular region R\ < r < R2 ,
where R\ is the inner

cylinder radius and R 2 is the outer cylinder radius. For the stability analysis, the cylinder

is assumed to be infinite in the axial direction.

We focus the analysis on time-periodic rotation of the outer cylinder about a zero mean,

while the inner cylinder rotates with a constant angular velocity The angular velocity
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of the outer cylinder is assumed to be Cl? (t) = cos ut, where u> is the forcing frequency.

The boundary conditions on the velocity components are the no-slip and no-penetration

conditions at solid boundaries; therefore, the azimuthal velocity at the inner cylinder is

i’i = Ri^-i and at the outer cylinder is V2 = # 2^ 2 (0 - The remaining velocity components

are zero at both boundaries.

We next choose dimensionless variables. The length scale is chosen to be the fluid gap

width d = i?2 — Ri, the time scale is chosen to be d2
/^, and the velocity scale is chosen to be

v / d. We retain the same notation for all variables, which will henceforth be dimensionless.

The choice of scaling introduces the Reynolds number in the boundary condition, which is

given by R e = Q.\dP /v. The fluid region then occupies the range 77/ ( 1 — 77) < r < 1/(1 —
77),

where 77 = R1/R2.

3. Base State

The base state is given by u = 0
,
v = v^(r,t), and w = 0 . The dimensionless azimuthal

velocity satisfies

dv (°)

_ ^dV°) ldu< 0) ,(
0

)

dt \ dr 2 r dr

with the boundary conditions,

v ( 0 )

{
t}/(1

-
rj),t) =

1 - 77

and

u (0) (l/(l -
77), t) =

eRe

1 - 77

cos ujt.

(
2a)

( 2 b)

(
2c)

The solution to the above linear problem for the base flow is written as the superposition

of a steady and a periodic component, v^ = Vs (r) + Vp(r,t). The steady solution is found

by setting the right-hand side of Eq.
(
2a) equal to zero, and applying the steady part of the

boundary conditions. The steady component of the base flow is

V,: =
R, 1

1 — 77
2 L

(1 — 77 )

2 r
77

2
r] (

3
)
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An analytic solution for the periodic component of the base flow solution can be written in

terms of Kelvin functions. However, because the solution to the stabihty problem must be

determined numerically, it is often more efficient to calculate the periodic component of the

base flow numerically in the same manner used to calculate the perturbed flow.

4. Linearized equations

For the linear stability analysis of the time-dependent base state, the total flow field variables

are written as the superposition of the base state component and a perturbation. The

perturbed quantities are Fourier analyzed in the azimuthal and axial directions, so that we

write

u(r,z,(f),t

)

v{r,z,(f>,t)

w{r,z,4>,t)

{ \

\ p(r,*,<M) /

( 0 \

id
0
*(r, t

)

0

V P
(0) (M) )

( u(r,t
)

^

+
w(r, t)

\ P(r,t) )

exp + iaz), (4)

where a is the nondimensional axial wave number and n is the azimuthal mode number. The

base state components are denoted by a zero superscript (e.g., td 0*) and the quantities u, v,

w
, p are the perturbation amplitudes. Note that only axisymmetric disturbances (n = 0)

will be used to obtain the stability results presented here; however, the analysis is formulated

for the general nonaxisymmetric case.

The governing equations for the perturbation quantities are obtained by substituting the

above expansion into the dimensionless form of Eq. (1) and linearizing in the perturbation

quantities:

u invDH-+ + iaw = 0,
r r

du
.

td°) A -tv?* Du——K m u — 2 v + Dp = D 2
u -}

ot r r r

n 2 u u 2inv
a

2
u ,

~2 r 2 ’

dv ,(°)

-r—|- in v + t)u -I
— = D 2

v +
ot r r

Dv n 2 v

dw
. A . A 2 A Dw n 2w— + in w + tap = D w H

—
ot r r r*

— a
2
v +

2 *— aw
,

2inu

(5a)

(5b)

(5c)

(5d)
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for 77/(1 — 77) < r < 1/(1 — 77). Here D = djdr and D. = d /dr 4- 1 jr.

The order of the system is reduced by differentiating Eq.
(
5a) with respect to r and

subtracting it from Eq.
(
5 b) yielding,

du . A A „ n 2 u 2a ,
r
nDv nv——h in u — 2 u + Dp = a u — z 1 + aDw .

Ot r r r z rr2

The set of equations
(
5 a),

(
5c),

(
5d), and (6) yield a sixth-order system which is closed by

the six boundary conditions u = v = w = 0 imposed at r = 77/(1 — 77) and r = 1/(1 — 77).

Alternatively, one can eliminate w and p from the set of equations by straightforward

manipulation to obtain a fourth-order equation in r for the quantity u and a second-order

equation for v. This is a commonly-used formulation for hydrodynamic stability problems, so

the equations are not given here (see Carmi and Tustaniwskyj
[
7

]
for the full nonaxisymmetric

equations). The boundary conditions in this form become v = u = Du = 0 at the inner and

outer boundaries. As discussed in the next section, two different numerical approaches are

used to solve the stability problem. In the first approach, the set of equations retaining all

the variables shown above is used, while in the second approach, the reduced set of equations

in terms of u and v alone is advantageous.

5. Numerical Treatment

The set of equations for the perturbation quantities are linear partial differential equations in

one space variable and time. The equations contain time periodic coefficients, and so Floquet

theory can be used to investigate the stability of the system. Two distinct implementations

of Floquet theory are employed. In the first approach, the time-periodic part of the solution

is represented by a truncated complex Fourier series in time. This approach was employed

by Hall
[
10

]
and by Seminara and Hall [11] for similar stability problems. In this approach,

a perturbation quantity /(r, t) is represented by the product of a periodic Fourier series and

an exponential term with complex growth rate cr,

f(r,t) = e" Y. /4r)e'm“‘,

|m|<M

-6-



The real part of cr determines the stability of the base solution. Substitution of the series

expansion into the equations and boundary conditions above yields a large set of coupled

two-point boundary value problems in the spatial variable r for the Fourier coefficients,

fm (r). The set of equations is complex and contains the growth rate a as a parameter.

The set of coupled two-point boundary value problems, subject to the homogeneous

boundary conditions, yields an eigenvalue problem that is solved using the computer code

SUPORT in a similar manner as the one described in [12]. The SUPORT code [13] solves the

set of linear coupled twTo-point boundary value problems using superposition of numerically

integrated solutions. An orthonormalization procedure is used to assure linear independence

of the intermediate solutions. The user has a choice of variable-step integration schemes.

For all the results presented, a high-order Adams-type procedure was used.

The base state subject to periodic forcing is linearly stable if for all disturbances cr r < 0,

where crr is the real part of cr. For the condition of neutral stability (cr r = 0), the solution of

the eigenvalue problem for the full set of coupled complex Fourier modes yields the Reynolds

number and the imaginary part of the growth rate (a,) for fixed values of the remaining

parameters. Using the full set of equations for the problem posed here, cr, is found to be either

zero (synchronous response) or lo/2 (subharmonic response). By fixing the value of cr, for

either synchronous or subharmonic response, symmetry relationships between the negative

and positive index Fourier modes can be used to halve the number of unknowns required

to solve for the Reynolds number alone. For axisymmetric disturbances, a set of 12A/ + 12

ordinary differential equations for the coupled, complex temporal Fourier modes must be

solved. The value of M used depends on the parameter values, in particular, the value of

the forcing frequency. Lower frequency calculations are more temporally complicated and

require a greater number of Fourier modes in time. For the results presented, the value of M
ranged from 4 to 24, depending on frequency. A discussion of the accuracy and convergence

of this approach is contained in the next section.

The periodic part of the base flow solution is obtained by assuming

Vp {r,t) = Real[V(r)e'wt
}
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where the real part corresponds to cosine forcing at the boundaries. It is through the

periodic time dependence of the base flow solution terms in the perturbation equations that

the individual temporal Fourier solution modes are coupled. Substituting the above form

into the equation and boundary conditions given by Eq. (2) yields a two-point boundary

value problem for the complex amplitude function V(r), which has an analytic solution in

the form of Kelvin functions of the first and second kind. Because a variable stepsize is used

to integrate the perturbation equations numerically, it is computationally more efficient to

solve for V(r) using SUPORT, rather than evaluate the Kelvin functions which comprise

the analytic solution. Calculating the complex amplitude function V{r) numerically in this

manner does not degrade the accuracy of the required base flow solution.

The second numerical approach employed to solve the stability problem consists of ap-

proximating the spatial behavior of the solutions, using the equation set for u and v alone,

via the pseudospectral technique in the physical domain, as described in references [14] and

[15]. The approach corresponds to expanding the solutions in terms of truncated series of

Chebyshev polynomials Tn (s),

N
u(r,t) = ^2 UM Tn(s),

n= 0

N
v{r,t) = J2 vn{t)Tn {s),

n= 0

where s = 2(r — 77/(1 — 7/))
— 1 . The pseudospectral discretization requires that the solution

expansions satisfy the governing equations at specific collocation points for the Chebyshev

polynomials. When implemented in the physical domain, the unknowns are the solution

values at the collocation points, instead of the expansion coefficients as in purely spectral

methods.

In the pseudospectral approach, the spatial differential operators in the governing partial

differential equations are replaced by discrete matrix operators. As a result, the governing set

of partial differential equations and boundary conditions becomes a set of coupled ordinary

differential-algebraic equations in time for the unknown solution values at the collocation

points. The algebraic equations result from the boundary conditions. Because the size of the
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set of coupled equations depends on the number of original partial differential equations, the

size is minimized by using the equations formulated in terms of u and v alone, as discussed

in the previous section; the total number of unknowns in this formulation is 2(N + 10-

In this numerical solution approach, the computational effort for determining the periodic

component of the base flow by numerical integration or by evaluation of the Kelvin functions

is equivalent, since the amplitude values V{r) are required only at fixed collocation points

(i.e., they need only be calculated once and stored).

The computer code DASSL [16] is used to integrate the differential-algebraic system in

time. The algorithm uses backward differentiation with up to fifth-order accuracy obtained

using a multi-step approach. The implicit integration procedure is appropriate for the inte-

gration of the equation set obtained from a Chebyshev spatial discretization. Also, because

differential-algebraic systems often behave like systems of stiff differential equations, they

require that special error estimation schemes be used in order to obtain stable, accurate

solutions [17].

In this second approach, Floquet analysis is implemented by constructing a K x I\

fundamental solution matrix, where K is the number of differential equations (A' = 2N — 4).

The K columns of this matrix are linearly independent calculated solutions for the unknowns

at the end of one forcing period. The eigenvalues of this matrix are the Floquet multipliers

from which the complex growth rate a is obtained. The advantage of the second approach

is that it yields K values of a resulting from the discrete solution modes, providing several

eigenvalues that are accurate approximations to the spectrum. Since periodic forcing can

excite different temporal response (i.e., subharmonic versus synchronous), knowledge of the

relative stability of various modes provided by the a values simplifies the determination of

the critical stability boundaries in parameter space.

The two distinct numerical solution approaches provide an independent check on the cal-

culated results. In addition, each of the two approaches has advantages and disadvantages

depending on the nature of the solution. For example, if the spatial variation is limited more

to the boundary regions of the domain, the SUPORT approach with its variable mesh incre-

-9-



ment can optimize the computation effort for a given global accuracy; while for complicated

temporal behavior, the time integration scheme of the second approach may be better, since

the temporal Fourier representation may converge slowly and require an impractical number

of terms for reasonable accuracy.

6. Results

As discussed in the introduction, the focus of the present study is a comprehensive com-

parison of linear stability theory predictions for the onset conditions with the experimental

results of Walsh and Donnelly [8]. Only one type of boundary forcing is considered; the case

when the inner cylinder rotates at constant angular velocity and the outer cylinder is modu-

lated about a zero mean. In the experiments, Walsh and Donnelly varied the gap width, the

forcing frequency, and the outer cylinder angular velocity modulation amplitude. For this

particular configuration, it was found in the experiments that the modulation stabilizes the

flow when compared to the case with zero outer cylinder rotation.

For the present calculations, only axisymmetric disturbances (n = 0
)
are considered. We

present the calculated results here in terms of the parameters used by Walsh and Donnelly

and those used in earlier theoretical studies
[
7 ]. The Reynolds number Re used in the previous

studies is related to the Reynolds number that appears in the theoretical formulation here

by Re = Re ^Jr)/( 1 — 7). The dimensionless forcing frequency used previously, 7, is related to

the dimensionless frequency of the present formulation by u> = 2y 2
;
the use of 7 rather than

u) compacts the frequency scale. The remaining parameters 7 and e, the radius ratio and

dimensionless modulation amplitude, respectively, are defined in Section 3 . For simplicity in

all the figures that follow, we have shifted the origin of r so that r ranges from 1 to 2 instead

of 7/(1 - 7) to 1/(1 - 7).

In Figs. 1 and 2
,
the base flow as a function of r for nine different fractional times covering

half a cycle is shown for two values of modulation frequency, 7 = 2 and 6, respectively. The

base flow velocity is normalized by the maximum velocity of the outer cylinder. For clarity

only half the cycle is shown. For the higher frequency, 7 = 6, the effect of the outer cylinder
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modulation is confined to the vicinity of the outer boundary, whereas for the lower frequency

7 = 2
,
the effect of the modulation spans the entire domain.

In the experiments of Walsh and Donnelly, three radius ratios (7 = 0.719,0.88 and 0.95)

and two modulation amplitudes (e = 0.5 and 1.5) were investigated for several different forc-

ing frequencies, 7 . Calculated results are presented for the same combinations of parameters

as the experiments for a larger and more continuous range of frequencies. In Fig. 3, we show

the critical Reynolds number Rc (the absolute minimum of Re as a function of wavenumber.

a) versus 7 for radius ratio 7 = 0.719 and modulation amplitude e = 1.5. An e value of 1.5

means that the maximum amplitude of the periodic angular velocity of the outer cylinder is

1.5 times greater than the steady angular velocity value of the inner cylinder. In the figure,

the curves represent the present linear theory predictions, while the individual points are

from the experiments
[
8 ]. Points below the curves are stable according to linear theory, while

points lying above are unstable. As can be seen, the agreement is quite good.

For large frequencies, the predicted critical values asymptote to the value for a stationary

outer cylinder, since the effects of the modulation are confined to a thin layer near the outer

boundary. The calculated curve approaches the critical value for a stationary outer cylinder,

which for 7 = 0.719 corresponds to Rc = 51.04. The theoretical predictions consist of two

individual curves. The curve on the right is a synchronous mode, for which the imaginary

part of the growth rate cr vanishes. The narrow parabolically shaped curve corresponds to

subharmonic response, where <r,- is equal to w/2. In the experiments, there was no means

for monitoring the temporal character of the instability as onset ensued, so the distinction

between synchronous or subharmonic response could not be made. The maximum amount

of stabilization occurs for 7 in the range of 3 to 4.

In Fig. 4, we show the critical values for the case where the radius ratio 7 = 0.88 and

e = 0.5. Again, the solid curve is the linear theory predictions and the individual points

are from Walsh and Donnelly’s experiments. The amount of stabilization obtained in this

case is significantly less than the previous case, for which the maximum modulation angular

velocity was 1.5 times the constant angular velocity of the inner cylinder. For the range
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of frequencies considered, only synchronous response is obtained at onset from the theory

with this lower value of e. The agreement between theory and experiment is again quite

good. For 7 = 0.88, the critical value for the unmodulated case is Rc = 44.49, which is the

asymptotic value of the theoretical results as the frequency becomes large. Barenghi and

Jones [9] present a curve of Rc versus 7 based on their linear theory calculations for this set

of parameters. The maximum stabilization predicted by their calculations agrees very well

with our calculations. However, their calculated values of Rc do not decrease as sharply as

ours for 7 greater than about 1.25.

Again for 7 = 0.88, Fig. 5 shows the onset conditions in the case when the modulation

amplitude is increased to e = 1.5. The theoretical curve exhibits similar structure as the case

shown in Fig. 3, with subharmonic response again being obtained. Only five experimental

data points for a narrow range of frequencies were provided for this case. At lower frequencies

the theoretical stability boundary consists of parabolic regions of both subharmonic and

synchronous response, with the overall trend being greater and greater stabilization. For

this case, the agreement between the theory and experiment is less satisfactory. Except for

one point, the experimental values lie below the theoretical curve. The primary difference

between this case and the one shown in Fig. 3 is the frequency range of the data.

The final comparison with the experimental data is presented in Table 1 . For 7 = 0.88

and a fixed frequency of 7 = 2.3, the modulation amplitude is increased from e = 0.3 to

2.0. For modulation amplitudes below 1.0, the agreement between theory and experiment

is good; however, for the values e = 1.5 and 2.0, the theoretical predictions are considerably

higher than the experimental values. Note that the temporal response obtained from the

theory is synchronous for all but the largest value of e.

Walsh and Donnelly also presented four data points for 7 = 0.95 and e = 0.5 with 7 in

the range 0.6 to 0.9. The Rc from the experimental data is approximately 45 within the

experimental error for the range of 7 covered. The theory predicts Rc of 45.8 to 45.9 over

this range, which is in good agreement with the experimental data. The unmodulated Rc is

42.4
,
so only a small amount of stabilization occurs for this case.
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In order to better understand the results, and perhaps explain the discrepancy for the

high modulation amplitude case shown in Fig. 5, the structure of the linear eigenmodes

was investigated both spatially and temporally for 77 = 0 . 88 ,
e = 1.5 and for frequencies

7 = 2 and 6 . For the higher frequency, Fig. 6 shows three-dimensional plots of the u and

v velocity components as functions of the radial coordinate, r, and time (normalized over

one period). For this high-frequency, synchronous case, the spatial and temporal structure

of the eigenmodes is fairly simple, having a single maximum in space and being roughly

sinusoidal in time. For 7 = 2 ,
the critical Reynolds number

(
Rc = 94.0) corresponds to a

subharmonic mode, but there is also a synchronous mode close by with Re = 95.1. In Fig.

7, the velocity components for the synchronous mode are shown in order to compare the

effect of the frequency on the solution behavior for the same type of temporal response. In

contrast to the high frequency solution, at 7 = 2
,
both the spatial and temporal behavior

are complicated; the temporal behavior consists of a quiescent interval present for nearly

one-half the period followed by rapid increase in the velocity amplitudes. In order to better

view the structure, the solutions are plotted from t = 0.25 to 1.25, so that the nonzero

regions appear in the interior of the plots and not at the edges.

Three-dimensional plots of the velocity components for the subharmonic mode at 7 = 2

are shown in Fig. 8 . Since the temporal response is subharmonic, the velocities are plotted

over two periods. Similar to the synchronous mode at the lower frequency, there are quiescent

intervals followed by rapid change in the amplitudes over a short period of time. In the

subharmonic case, the rapid change in amplitude occurs once every forcing period, but

alternates in direction (positive or negative) so that the solution is periodic over twice the

forcing period. For the synchronous case, the rapid change in amplitude is always in the same

direction and the period of the flow is the same as the forcing period. Here, the solutions are

plotted from t = 0.5 to 2.5 to better show the behavior. Given the similarity of the temporal

structure (except for the change in sign of the subharmonic mode), it is not surprising that

the Reynolds numbers are approximately the same for both modes. However, there is a shift

in the critical wavenumber between the two modes, with a = 3.10 for the svnchronous mode
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and a = 4.35 for the subharmonic mode.

Fig. 6 indicates that for large 7 ,
the spatial and temporal behavior is simple, whereas for

small 7 Figs. 7 and S indicate that the temporal behavior is complicated. To further illustrate

this in Fig. 9, we show convergence of the temporal Fourier coefficients for the v component

of velocity. The results correspond to the two cases shown in Figs. 6 and 7, representing

7 = 6 and 2, respectively. For the larger 7 the Fourier coefficients decay rapidly, while for

the smaller 7 a large number of coefficients are required to obtain an accurate solution. The

difficulty in obtaining accurate solutions at low frequencies was also discussed by Barenghi

and Jones [9], where they show that Rc values below the unmodulated value can be obtained

with insufficient temporal resolution. They attribute this as the reason why the calculations

of Carmi and Tustaniwskyj [7] predict destabilization for the specific boundary forcing case

considered here.

While the spatial structure of the eigensolutions is less complicated than the temporal

structure, it is equally important to assure that proper resolution is obtained. Both of

the numerical approaches employed here provide for high spatial accuracy. The SUPORT

approach achieves high accuracy through the use of a variable step-size high-order Adams

integrator. The Chebyshev-pseudospectral representation of the second solution approach is

also highly accurate as displayed in Fig. 10 by the decay of the Chebyshev coefficients of

the v velocity for the same 7 values as Fig. 9. Typically, twelve or sixteen Chebyshev modes

were used for the present calculations, for which the coefficients have decayed by six orders

of magnitude. Clearly, Fig. 10 also indicates that the spatial complexity does not depend

significantly on 7 .

The variation Re with wavenumber, a, for 7 = 2, 7 = 0.88, and e = 1.5 is shown in Fig.

11. As is apparent from this figure, the minima of the two lowest curves (synchronous and

subharmonic) occur at approximately the same Reynolds number with the absolute minimum

on the subharmonic curve. With a slight increase in 7 ,
the absolute minimum occurs on the

synchronous curve as is evident from the transition in the critical Reynolds number plot

shown in Fig. 5. There is also another synchronous branch at larger wavenumbers, but the
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minimum of this branch occurs at a higher value of Re .

The effect of the temporal modulation on the wavenumber of the critical disturbances

is shown in Fig. 12, which plots the critical wavenumber as a function of modulation fre-

quency, 7 ,
for the same conditions as Fig. 5. Without modulation the critical wavenumber

is 3.12. For large 7 ,
the critical wavenumber asymptotes to this value. As 7 decreases the

critical wavenumber decreases slightly and then rises sharply. At each of the transitions be-

tween synchronous and subharmonic response, there is a discontinuous change in the critical

wavenumber. At small 7 ,
corresponding to large degrees of stabilization, the wavenumber

behavior is complicated with no clear trend.

7. Discussion

Our numerical linear stability results are in excellent agreement with the experimental data

of Walsh and Donnelly, except for low frequencies and large modulation amplitudes where

the experimental results he below the calculated critical Reynolds numbers. Both the cal-

culations and the experiments show that modulation of the outer cylinder about zero mean

stabilizes the flow when compared to the case of a stationary outer cylinder. For constant

rotation of the outer cylinder, Taylor showed
[
1

]
that the critical Reynolds number is a U-

shaped function of the angular velocity of the outer cylinder, and that the lowest critical

Reynolds number occurs for zero outer cylinder rotation. A simple argument for the stabi-

lization by modulation of the outer cylinder assumes that the instantaneous angular velocity

of the outer cylinder can be used to characterize the instability
[
8 ]. Thus, modulation ef-

fectively moves the system into a less unstable region of the stability diagram; in fact, for

sufficiently large modulations the system spends a portion of its time in the stable region of

the stability diagram of the unmodulated flow. Therefore, the stabilization increases with

increasing modulation amplitude. A comparison of the base flow (Fig. 1
)
with the temporal

response of the eigenfunctions shown in Figs. 7 and 8 indicates that the quiescent inter-

val occurs during the half-cycle when the outer cylinder velocity decreases from maximum

velocity (corotation) to minimum velocity (counterrotation).
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There are a number of possible explanations for the discrepancy between our calculations

and the experimental results for the critical Reynolds numbers at low frequencies and large

modulation amplitudes (see Fig. 5 and Table 1). Walsh and Donnelly indicate that at low

frequency it becomes increasingly difficult to determine the onset of instability. In linear

stability calculations, the criterion for stability is that of transient stability [IS] where a

disturbance may grow for part of the forcing cycle but ultimately decays. At the onset of

transient instability, the eigenmodes (Figs. 7 and 8) show a quiescent interval followed by

a very large amplification. Depending on the size of initial fluctuations, this large amplifi-

cation might invalidate the linear theory, or alternatively might be viewed as instability in

experimental observations ([18], [19]). Since disturbances are always present in experiments

and since individual disturbances may grow to significant amplitude for part of the cycle,

this situation may be viewed as a manifestation of secondary flow, even though an individual

disturbance would decay over several cycles according to linear theory. The likelihood of this

situation occurring is greater at lower frequencies, where the time period for the effect of

multiple disturbances to accumulate is longer.

Finally, it is important to mention that although the present study is comprehensive, it

is not exhaustive owing to the large number of parameters and the complexity exhibited by

the stability boundaries. For example, it was not possible to evaluate Re for all wavenumbers

in the entire frequency range. As shown in Fig. 11, there are multiple minimums in the plot

of Re versus a at fixed frequency. Also, only axisymmetric disturbances were investigated

here. It is possible that for certain parameter values nonaxisymmetric modes may be more

unstable. It is known that for steady rotation the critical modes can be nonaxisymmetric

when the cylinders rotate in opposite directions [20], However, given the good agreement

with the experimental results for all but low frequency, high amplitude modulation, it is

clear that axisymmetric linear theory is still relevant for studying the effect of time-periodic

forcing in the Taylor-Couette problem.
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Table I. Comparison of Rc from the experimental data of Walsh and Donnelly and the present

calculations for various modulation amplitudes, e, at fixed frequency, 7 = 2.3, with 7 = 0.88.

The calculated wavenumber, a, and mode type are also shown.

e 0.0 0.3 0.5 0.7 0.9 1.5 2.0

Rc (Data) 44.5 45.9 47.8 50.8 55.5 73.3 86.4

Rc (Calc) 44.5 45.4 47.2 50.5 56.6 83.9 97.2

a (Calc) 3.1 3.1 3.1 3.1 3.2 4.3 4.5

Mode - syn syn syn syn syn sub
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Figure Captions

Figure 1 . Azimuthal base flow velocity, u (0) as a function of the radial coordinate, r, for

various fractional times through half a period for 7 = 2, 7 = 0 . 88 , and e = 1 . 5 .

Figure 2 . Azimuthal base flow velocity, v^ 0) as a function of the radial coordinate, r, for

various fractional times through half a period for 7 = 6
, 7 = 0 . 88 , and e = 1 . 5 .

Figure 3. Critical values of Re as a function of 7 for 7 = 0.719 and e = 1.5. The points

are the experimental results of Walsh and Donnelly; the curves are the present linear theory

(solid curve - synchronous response, dotted curve - subharmonic response).

Figure 4. Critical values of Re as a function of 7 for 7 = 0.88 and e = 0.5. The points are

the experimental results of Walsh and Donnelly; the solid curve is the present linear theory.

Figure 5. Critical values of as a function of 7 for 7 = 0.88 and e = 1.5. The points

are the experimental results of Walsh and Donnelly; the curves are the present linear theory

(solid curve - synchronous response, dotted curve - subharmonic response).

Figure 6. Linear eigenfunction velocity components u(r, t) and v(r, t) plotted for one forcing

period over the spatial domain for 7 = 6
, 7 = 0.88, and e = 1.5 (synchronous response).

Figure 7. Linear eigenfunction velocity components u(r
,
t) and u(r, t) plotted for one forcing

period (starting at t = 0.25) over the spatial domain for 7 = 2, 7 = 0.88, and e = 1.5

(synchronous response).

Figure 8. Linear eigenfunction velocity components u(r, t) and u(r, t) plotted for two forcing

periods (starting at t = 0.50) over the spatial domain for 7 = 2, 7 = 0.88, and e = 1.5

(subharmonic response).

Figure 9. The m th temporal Fourier coefficient of the v velocity component at a fixed

spatial point as a function of m for the linear eigenfunctions shown in Fig. 6 (solid curve)

and Fig. 7 (dotted curve).
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Figure 10. The nth Chebyshev spectral coefficient of the v velocity component at a fixed

time as a function of n for the linear eigenfunctions shown in Fig. 6 (solid curve) and Fig.

8 (dotted curve).

Figure 11. Values of Re as a function of wavenumber, a, for 7 = 2.0, 7 = 0.88 and e = 1.5.

(solid curve - synchronous response, dotted curve - subharmonic response).

Figure 12. Critical values of a as a function of 7 for the same parameters as Fig. 5. (solid

curve - synchronous response, dotted curve - subharmonic response).

-21 -



Li.-



50

-

01

-

Figure 1



-

1.0

-

0.5

Figure 2



40.0

50.0

60.0

70.0

80.0

90.0

100.0

7

Figure 3



42.0

44.0

46.0

48.0

50.0

52.0

7

Figure 4



O'OOT

006

008

OOi

009

OOQ

00*

7
Figure 5



Vi)

91*0 00 * 0

Figure



Figure



000*1

CO

093
*

1 -

Figure



o
c\i

Figure 9



o

Figure 10



80.0

90.0

100.0

110.0

120.0

Figure 11



o
i6 “I

T T

7

T

Figure 12



N,ST114A U.S. DEPARTMENT OF COMMERCE
(REV. 3-M) NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

BIBLIOGRAPHIC DATA SHEET

1 PUBLICATION OR REPORT NUMBER

NISTIR 90-4283

2. PERFORMING ORGANIZATION REPORT NUMBER

3. PUBLICATION DATE

APRIL 1990
4. TITLE AND SUBTITLE

Stabilization of Taylor-Couette Flow due to

Time-Periodic Outer Cylinder Oscillation

S. AUTHOR(S)

B. T. Murray, G. B. McFadden, and S. R. Coriell

6. PERFORMING ORGANIZATION (IF JOINT OR OTHER THAN NIST, SEE INSTRUCTIONS)

U.S. DEPARTMENT OP COMMERCE
NATIONAL INSTITUTE OP STANDARDS AND TECHNOLOGY
GAITHERSBURG, MO 20BM

7. CONTRACT/GRANT NUMBER

S. TYPE OF REPORT ANO PERIOD COVERED

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (STREET, CITY, STATE, TW)

10.

SUPPLEMENTARY NOTES

j
DOCUMENT DCSCRISES A COMPUTER PROGRAM: SF-166, Wl SOFTWARE SUMMARY, IS ATTACHED.

11.

ABSTRACT (A MO-WORD OR LESS FACTUAL SUMMARY OP MOST SIQHM1CAMT BMORMATKML W POCUMEHT MCLUOES A SIGNIFICANT EIUOQRAPHY OR
LITERATURE SURVEY, MENTION IT HERE.)

The linear stability of circular Couette flow between concentric infinite cylinders is

considered for the case when the inner cylinder is rotated at a constant angular velocity
and the outer cylinder is driven sinusoidally in time with zero mean rotation. This

configuration was studied experimentally by Walsh and Donnelly. The critical Reynolds

numbers calculated from linear stability theory agree well with the experimental values,
except at large modulation amplitudes and small frequencies. The theoretical values are

obtained using Floquet theory incremented in two distinct approaches: 1) a truncated Fourier
series representation in time and 2) a fundamental solution matrix based on a Chebyshev-

pseudospectral representation in space. For large amplitude, lew frequency modulation, the

linear eigenfunctions are temporally complex consisting of a quiescent region followed by

rapid change in the perturbed flow velocities.

12.

KEYWORDS (S TO 12 IMTMES; ALPMASCTtCAL ORDER; CAPITALIZE ONLY PROPER NAIMS; AND SEPARATE KEY WORDS BY SEMICOLONS)

Floquet Theory; Fourier spectral method; hydrodynamic stability; pseudospectral collocation;

Taylor-Couette flow; time-periodic modulation

13. AVAJLASRJTY 14. NUMBER OF PRINTED PAGES

X UNLIMITED 35

FOR OFFICIAL DISTRIBUTION. DO NOT RELEASE TO NATIONAL TECHNICAL BIFORMATION SERVICE (HITS).

ORDER FROM SUPERINTENDENT OF DOCUMENTS. U.S. GOVERNMENT FRETTING OFFICE,
WASHINGTON, DC 20402.

IS. PRICE

AO 3

ORDER FROM NATIONAL TECHNICAL INFORMATION SERVICE (NT1S), SPRINGFIELD, VA 22161.

ELECTRONIC FORM








