

NISTIR 90-4255

ECONOMIC ANALYSIS FOR MILITARY CONSTRUCTION DESIGN

CONCEPTS, TECHNIQUES, AND APPLICATIONS FOR THE ANALYST

STUDENT'S MANUAL

Rosalie T. Ruegg Sieglinde K. Fuller

Computing and Applied Mathematics Laboratory Office of Applied Economics

U.S. DEPARTMENT OF COMMERCE Robert A. Mosbacher, Secretary NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY John W. Lyons, Director

-QC 100 .U56 90-4255 1991

ECONOMIC ANALYSIS FOR MILITARY CONSTRUCTION DESIGN

CONCEPTS, TECHNIQUES, AND APPLICATIONS FOR THE ANALYST

STUDENT'S MANUAL

for

A Five-Day Course for Design Professionals

PROSPECT Course: ECO ANAL/MILCON DES: TECH offered by the Huntsville Training Division of the U.S. Army Corps of Engineers

> Prepared by: Rosalie T. Ruegg Sieglinde K. Fuller

U.S. DEPARTMENT OF COMMERCE National Institute of Standards and Technology Computing and Applied Mathematics Laboratory Office of Applied Economics Gaithersburg, MD 20899

Sponsored by: U.S. Army Corps of Engineers Huntsville Training Division

September 1991

U.S. DEPARTMENT OF COMMERCE Robert A. Mosbacher, Secretary NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY John W. Lyons, Director

Cover art reproduced with permission of the American Institute of Steel Construction

PREFACE

This Student's Manual for Economic Analysis for Military Construction Design: Concepts, Techniques, and Applications for the Analyst" is a workbook for a five-day course on Economic Analysis/Life-Cycle Cost Analysis (EA/LCCA) of Military Construction (MILCON) facilities. The methodology and procedures in this manual are consistent with Army Technical Manual 5-802-1; they do not reflect the amendments to 10 CFR part 436, which update the guidelines for energy management programs for Federal buildings and are set forth in Federal Register, Vol. 55, No. 224, Nov. 20, 1990.

The purpose of the course is to provide MILCON design professionals with the knowledge and skills they need to perform economic analysis quickly and efficiently. At the request of the Huntsville Training Division of the U.S. Army Corps of Engineers (USACE), the Office of Applied Economics at the National Institute of Standards and Technology (NIST) has developed the course, prepared the supporting manuals, and presented the course.

This Student's Manual presents the criteria and standards that govern EA/LCCA in MILCON design, treats basic economic concepts, gives step-by-step instructions for performing EA/LCCA, and provides examples of calculations and analyses. It also contains worksheets and data tables for doing hands-on analysis in class. In addition, the manual contains a comprehensive test to evaluate students' before- and after-class knowledge of EA/LCCA.

The authors are indebted to their colleagues at the NIST Office of Applied Economics for their reviews of the manual and to the students who made many useful comments when the course was field-tested in Huntsville, AL. They are especially grateful to Dr. Larry Schindler of HQ USACE for his excellent comments, advice, and extensive guidance throughout the development of the course and the preparation of the training materials.

This course material is consistent with Technical Manual 5-802-1, Headquarters, Department of the Army, December 31, 1986, and does not reflect subsequent changes by the Department of Energy to the LCC Rules and Regulations pertaining to energy conservation.

TABLE OF CONTENTS: STUDENT'S MANUAL

	Page
MEMO TO STUDENT	ix
COURSE AGENDA OVERVIEW	xi
PROSPECT Course Description	xiii
PART I. ADMINISTRATIVE	1
Follow-up Contact Address	3
Instructors	5
List of Students	7
Letter Sent to Students in Advance of Course	9
Contents of Reference Notebook	13
	Tab
1. ORIENTATION	1
Orientation Materials	
2. PRETEST	2
3. AIDS TO LEARNING	3
 3.1 Acronyms and Symbols 3.2 Use of the Hand-Held Calculators for LCC Calculations 3.3 Guidelines on Significant Figures 3.4 Ideas about Applications 	

TABLE OF CONTENTS: STUDENT'S MANUAL (continued)

PART II. BASICS OF ECONOMIC ANALYSIS

4. IMPROVING DECISIONS WITH ECONOMIC ANALYSIS/ LIFE-CYCLE COST ANALYSIS (EA/LCCA)

- 4.1 First Cost and Life-Cycle Cost Perspectives
- 4.2 Why EA/LCCA is Important in Design
- 4.3 What EA/LCCA Entails
- 4.4 When to do EA/LCCA
- 4.5 Knowledge and Skills Required of MILCON Design Professionals
- 4.6 Self-Assessment Using Scores on Pretest

5. TIME VALUE OF MONEY CONCEPTS

- 5.1 Why and How to Adjust for Time
- 5.2 Two Ways to Treat Inflation
- 5.3 Government Discount Rates
- 5.4 Cash Flow Modeling

6. ARITHMETIC OF EA/LCCA

- 6.1 Escalate to Estimate Future Dollar Costs & Benefits Based on Today's Price and Projected Rates of Price Change
- 6.2 Discount to Compute the Present Worth Equivalent of a Single Future Cost or Benefit
- 6.3 Discount to Compute the Present Worth Equivalent of a Series of Future Costs or Benefits
- 6.4 Exercise 6-1: Escalation/Discounting
- 6.5 Compute LCC
- 6.6 Exercise 6-2: LCC

Tab

5

6

TABLE OF CONTENTS: STUDENT'S MANUAL (continued)

		Tab
7.	HOW TO PERFORM MILCON GENERAL ECONOMIC STUDIES	7
	 7.1 Criteria for General Economic Studies 7.2 Input Data & Cash-Flow Diagrams 7.3 Computing LCC Using Conventional Approach 7.4 Exercise 7-1: Conventional Approach 7.5 Computing LCC Using One-Step Approach 7.6 Exercise 7-2: One-Step Approach 7.7 Ranking Design Alternatives 7.8 Exercises 7-3 & 7-4: Ranking 	
8.	HOW TO PERFORM ENERGY CONSERVATION STUDIES	8
	 8.1 Criteria for Energy Conservation Studies 8.2 Exercise 8-1: Applicable Criteria 8.3 Computing LCC for Energy-Conserving Designs Using One-Step Approach 8.4 Exercise 8-2: One-Step Approach 	
9.	DATA	9
	 9.1 Identifying Data Requirements (Exercise 9-1) 9.2 Estimating Construction Costs & Replacement Costs 9.3 Estimating Disposal Costs/Retention Values 9.4 Estimating Energy Costs 9.5 Estimating Maintenance and Repair Costs 9.6 Exercise 9-2: Using the M&R Database 	
PART I	II. TOPICS FOR THE EXPERIENCED ANALYST	
10.	PERFORMING LCCA WITH COMPUTERS	10
	10.1 Software for EA/LCCA10.2 Introduction to LCCID	

TABLE OF CONTENTS: STUDENT'S MANUAL (continued)

11.	DEALING WITH UNCERTAINTIES	11
	 11.1 Overview of Selected Techniques 11.2 When Uncertainty Assessment should be Done (Exercise 11-1) 11.3 Exercise 11-2: Sensitivity Analysis 	
12.	CRITIQUE OF EA/LCCA	12
	12.1 Guidelines for Reviewing EA/LCCA12.2 Exercise 12-1: Critique of an LCC Study	
13.	PUTTING EA/LCCA INTO PRACTICE	13
	 13.1 Deciding the Level of Effort 13.2 Documentation 13.3 Presenting/"Selling" Results 13.4 Contracting with A-E Firms 13.5 Exercise 13-1: Presenting/"Selling" Results 	
14.	OTHER ECONOMIC MEASURES	14
15.	POSTTEST	15
16.	SKILLS LABORATORY	16
	16.1 Review of Posttest16.2 Identifying Areas Needing More Work16.3 Additional Problems/Exercises	
17.	ANSWERS TO EXERCISES	17

COURSE EVALUATION

Tab

MEMO TO STUDENT

Dear Student,

This is your class workbook for learning concepts, techniques, and applications of economic analysis as applied to military construction design.

An outline of topics covered in the course and approximate times devoted to each appears on the next page. Brief biographies of the instructors and a list of students follow. A table of contents provides a directory to the 16 modules in the workbook.

The first module orients you to Huntsville and to the course. The second is a pretest which we give near the start of the course to measure your proficiency with the technical subject prior to training, and to learn more about current attitudes and practices concerning economic analysis. The third module provides aids to learning for your reference as needed throughout the course. It includes a glossary, list of symbols and abbreviations, instructions on using calculators (which were also mailed to you prior to the course), guidelines on significant figures, and a page for recording ideas and applications which you can take back to your job.

In Modules 4 through 9, we will establish the basics of performing economic analysis. In Modules 10 through 13, we will take up topics for the "experienced analyst," which we hope you are on the way to becoming. Of course, it takes considerable on-the-job practice with the techniques covered in the course to become a truly experienced analyst. But we think that you will benefit from an introduction to these more advanced topics.

Module 14 is a test which we administer at the end of the course to measure gains in proficiency with the subject. Module 15 is a skills laboratory which concludes the fiveday training course. It gives students an opportunity to apply their new skills under supervision and to resolve remaining questions.

To assist with your notetaking, the Workbook contains all of the visuals used in the instruction with space for notes below. It also contains all the exercises which you will perform in class. Each of the technical modules lists the learning objectives and summarizes key points. Explanatory notes are also included from time to time.

The workbook is not intended to be used as a stand-alone tutorial. Rather, it is designed to be used with an instructor who provides additional information. However, the Workbook with your notes and completed exercises provides a useful document for later reference and review. We request that you take it back with you and use it.

We invite you to ask questions, try out procedures, and seek clarification of any questions you might have as we go along. It is our goal, through a combination of instructional activities, to help you discover the power of economic analysis to improve decisions in your daily work.

Sincerely, Your instructors

ECO ANAL/MILCON DES Student's Manual

ECONOMIC ANALYSIS FOR MILCON DESIGN Concepts, Techniques, and Applications for the Analyst

	Day 1	Day 2	Day 3	Day 4	Day 5
	BAS	ICS OF ECONOMIC ANALY	YSIS	ADVANCI	ED TOPICS
0800	(1) Orientation	Rcvicw	Review	(11) Uncertainty	(14) Other Economic
0060	(Z) FICIESI	(6) Continued	(8) Energy Studies		Measures
1000	(4) Improving Decisions with Feonomic Analysis			(12) Critique of EA/LCCA	Review
1100				(13) Putting EA/LCCA into Practice	(15) Posttest Evaluation
1300	LUNCH	LUNCH	LUNCH	LUNCH	LUNCH
1400	(5) Time Value of Moncy	(7) MILCON General Economic Studies	(9) Data	(13) Continued	(16) Skills Lab CLOSE
1500	(6) Arithmetic				
1600				(10) Performing LCCA with Computers	
	FREE	FREE	FREE	FREE	
ing 2030)				Computer Lab	

ECO ANAL/MILCON DES Student's Manual xi

ECO ANAL/MILCON DES Student's Manual

ECONOMIC ANALYSIS FOR MILCON DESIGN: CONCEPTS, TECHNIQUES, AND APPLICATIONS FOR THE ANALYST

Short Title:

ECO ANAL/MILCON DES: TECH

Course Length:

38 Hours

PURPOSE

The course equips professionals actively involved in the design and review of MILCON projects to accomplish each of the following, in accordance with Army criteria: (a) select the appropriate type and level of economic analysis (EA)/life-cycle-cost analysis (LCCA), (b) conduct EA/LCCA studies and document the results in a cost-effective manner, (c) accomplish quick and incisive critical reviews of EA/LCCA studies performed by others, and (d) interpret results and make recommendations for the design decision.

DESCRIPTION

The course teaches economic analyses (EAs) for MILCON designs. It presents the Army criteria governing the conduct of EA and explains the key provisions; teaches how to use the life-cycle-costing method for measuring economic performance; demonstrates a variety of applications through realistic examples and case studies; discusses when and how to take into account uncertainties; provides guidance for collecting data and making assumptions; explains how to interpret and use EA results to select cost-effective designs from competing alternatives. The course also introduces computer software for EA calculations (with emphasis on the Corps' LCCID program); reviews savings-to-investment ratio and discounted payback methods; provides guidance on how to tailor the analysis and its documentation to the situation at hand; and helps develop skills in reviewing EAs performed by others, and in presenting and defending EA results. Classroom exercises give participants opportunities to apply knowledge and skills gained to typical MILCON design situations.

PREREQUISITES

Nominees must be assigned:

- a. Occupational Series: 0110 and 0800
- b. Grade: GS-07 through 13

ECO ANAL/MILCON DES Student's Manual

PART I. ADMINISTRATIVE

2

ECO ANAL/MILCON DES Student's Manual

FOLLOW-UP CONTACT ADDRESS

For follow-up questions on the course "ECONOMIC ANALYSIS FOR MILCON DESIGN, Concepts, Techniques, and Applications for the Analyst," contact

Dr. Larry Schindler

- Mailing address: HQ USACE (CEMP-EC) Office Chief of Engineers Rm. 3224 20 Massachusetts Ave., NW Washington, DC 20314-1000
- Telephone: Commercial: (202) 272-0466 Autovon: (202) 285-0466

Fax:(202) 272-0839Verification:(202) 272-1490

ECO ANAL/MILCON DES Student's Manual

Administrative

THE INSTRUCTORS

0

ECO ANAL/MILCON DES Student's Manual

Administrative

LIST OF STUDENTS

0

ECO ANAL/MILCON DES Student's Manual

Administrative

ECO ANAL/MILCON DES Student's Manual Administrative

ECO ANAL/MILCON DES Student's Manual

ECO ANAL/MILCON DES Student's Manual

8

ECO ANAL/MILCON DES Student's Manual

Administrative

CONTENTS OF NOTEBOOK OF REFERENCE MATERIAL FOR ECO ANAL/MILCON DES: TECH

- Tab 1: WORKING DOCUMENTS
- Tab 2: TM 5-802-1
- Tab 3: Current Letter Supplement
- Tab 4: Escalation and Discount Tables
- Tab 5: OSAF Tables
- Tab 6: e-Values
- Tab 7: Maintenance and Repair Data
- Tab 8: LCCID Manual and Diskettes
- Tab 9: Catalogue -- LCCID Support
- Tab 10: SOURCE DOCUMENTS
- Tab 11: 10 CFR 436A
- Tab 12: NBS Handbook 135 and Annual Supplement
- Tab 13: OMB Circular A-94
- Tab 14: ECIP Guidance Memo
- Tab 15: AF Documents
- Tab 16: PROSPECT COURSE DESCRIPTIONS

2

ECO ANAL/MILCON DES Student's Manual

MODULE 1

ORIENTATION

Purpose:

- To acquaint you with fellow students and the instructors
- To acquaint you with your environment and schedule
- To define the goal of the course and its benefits
- To introduce your training materials
- To answer questions and address problems you may have

Outline:

• Orientation Materials

Approximate Time:

30 minutes

Day 1

MODULE 2

PRETEST

Purpose:

- To assess your knowledge about the subject before training
 - for self assessment of your current level of knowledge and skills in EA/LCCA and need for improvement
 - to help instructors identify topics requiring special work
 - to serve as a bench mark for measuring effectiveness of training

2.1 PRETEST

 Which of the following statements most accurately reflects your experience with economic analysis/life-cycle cost analysis (EA/LCCA)? (Check the appropriate answer.)

I have used EA/LCCA extensively.	
----------------------------------	--

- I have limited experience with EA/LCCA.
- I have never used EA/LCCA, but I work closely with others who do.
- I have never used EA/LCCA, but I have a new assignment that requires it.

None of the above. Explain: _____

2) State your opinion about the usefulness and practicality of EA/LCCA applied to MILCON design:

3) List your personal objectives for the training course (what you hope to get out of it):

- 4) List the main obstacles you see to performing EA/LCCA as part of the MILCON design process:
- 5) Look at the list in this section, entitled "What design professionals need to be able to do."
 - 5a) Identify yourself as primarily a
 - a) _____ DESIGN ENGINEER
 - b) ____ COST ENGINEER
 - c) ____ MANAGER
 - ____ Design Manager
 - ____ Project Manager
 - _____ VE Officer

____ Other

d) _____ OTHER _____

- 5b) Go to the job task section that best fits you, i.e., the task section for Design Engineers, Cost Engineers, or Managers (if you checked d above, take a position (a - c) that fits best) and
 - CHECK the task if you agree that you need to be able to do it in order to perform your job as it should be done.
 - CIRCLE the check mark if you believe you presently perform the task as it should be done.

WHAT DESIGN PROFESSIONALS NEED TO BE ABLE TO DO:

Tasks Involving Knowledge and Skills in Economic Analysis

JOB TASKS OF DESIGN ENGINEERS

Ideally, at the working level, Corps design engineers (in their capacities as designers, design reviewers, and members of value-engineering teams) will perform the following tasks as needed in the manner indicated:

- 1. Conduct preliminary studies to determine the appropriate type and level of effort for economic analysis/life-cycle cost analysis (EA/LCCA) for the MILCON design decision at hand, taking into account Army, Air Force, or Navy criteria.
- 2. Work with cost engineers and other colleagues to identify sources of data, obtain required data, and make necessary assumptions.
- 3. Taking the appropriate level of effort (as identified in 1) and being responsive to applicable criteria, perform EA/LCCA efficiently and correctly, taking into account uncertainties in the analysis.
- 4. Properly interpret the results of EA/LCCA in the context of the design process.
- 5. Develop clear and appropriate recommendations for design decisions based on economic considerations.
- 6. Provide appropriate documentation for EA/LCCA in a cost-effective manner for the conditions at hand.
- 7. Perform quick and incisive critical reviews of the EA/LCCAs conducted by others (including review of analyses, interpretation of results, and documentation) and identify any deficiencies, errors, and deviations from contract or other agreed-upon provisions.
- 8. Develop A-E contract provisions for EA/LCCA as needed, taking into account applicable criteria.

- 9. Communicate effectively with management regarding EA/LCCA requirements, status, and results.
- 10. Defend decisions based on EA/LCCA.

JOB TASKS OF COST ENGINEERS

Ideally, at the working level, cost engineers will perform the following tasks as needed:

- 1. Provide supporting cost data of appropriate quality and in the appropriate format to Corps design engineers.
- 2. Assist Corps design engineers in making appropriate assumptions.
- 3. Communicate effectively with Corps design engineers and management about cost estimating requirements for individual EA/LCCAs.

JOB TASKS OF MANAGERS

Ideally, at the management level, managers will perform the following tasks:

- 1. Assure that EA/LCCAs are conducted as an integral part of the design process for all MILCON projects.
- 2. Assure that all EA/LCCAs are conducted in accordance with current Army criteria.
- 3. Assure that the appropriate type and level of EA/LCCAs are applied to each design decision.
- 4. Assure that the results of EA/LCCAs are appropriately documented in a cost-effective manner, design-discipline-wide and project-wide.
- 5. Prepare reliable estimates of resources required to support the appropriate level of EA/LCCA effort for all aspects of each design project.
- 6. Develop appropriate requirements and criteria for cost-effective documentation of each level of EA/LCCA for each design project.

- 7. Determine standards of performance in EA/LCCA for staff supervised, evaluate performance, and identify related staff training needs.
- 8. Develop A-E contract provisions for EA/LCCA as needed, taking into account applicable criteria.
- 9. Accomplish quick and incisive critical reviews of EA/LCCAs conducted by others.
- 10. Make recommendations and decisions about the design process based on EA/LCCA analyses performed in-house and by A-E firms.

_

- 6) Choose the statement below which best describes the attitude in your office about economic analysis:
 - a) _____ Economic analysis is a valuable decision tool.
 - b) _____ Economic analysis is a nuisance which HQ/Higher Authority tries to inflict on us.
 - c) ____ Economic analysis is just one more thing we take in stride, neither loving nor hating it.
 - d) _____ The topic of economic analysis seldom comes up, and I am not aware of any attitude in my office about it.
- 7) Do you have a copy of the Technical Manual (TM 5-802-1) in your office?
 - a) ____ Yes
 - b) _____ No
 - c) ____ Do not know
- 8) When you have performed economic evaluations in support of MILCON designs, which of the following best applied:
 - a) _____ I used the results myself to make a design decision and prepared no documentation.
 - b) _____ I used the results myself to make a design decision and filed the documentation.
 - c) _____ I provided documentation to someone else who made the decision.
 - d) _____ I gave an oral presentation and documentation to someone else who made the decision.
 - e) _____ None of the above apply because I have not performed economic evaluations.
 - f) ____ Other. Explain: _

TECHNICAL QUESTIONS

The following are technical questions relating to economic analysis. Each question is worth 1 point. Please leave a blank rather than guessing if you do not know the answer. Blanks will receive -1 point, wrong answers will receive -2 points.

- 1) Life-cycle costing
 - a) _____ ignores first costs and takes into account future costs.
 - b) _____ includes all relevant costs over a designated study period
 - c) ____ neither a) nor b)
- 2) Life-cycle costing applies only to Army construction projects and has little applicability to solving other types of problems.
 - a) ____ True
 - b) _____ False
- 3) Adding attic insulation in building A, which saves 12.9 million Btu annually, is more cost-effective than adding attic insulation in building B, which saves 9.5 million Btu annually, given that insulation costs essentially the same in both buildings.
 - a) ____ True
 - b) ____ False
 - c) ____ Can't tell
- 4) All economic analysis in support of MILCON design decisions are governed by the same set of criteria.
 - a) ____ True
 - b) ____ False

ECO ANAL/MILCON DES Student's Manual

5) Suppose you are planning to renovate 234 houses on a military base. You estimate the initial cost of renovating the exterior of each house to be about \$20,000. An A-E contractor estimates the initial cost of renovating the interior of each house at \$17,958. In an initial planning document the appropriate way to express the full initial costs of renovating base housing is

a)	\$8,882,172
b)	\$8,882,200
c)	\$8,880,000
d)	about \$9 million

6) Suppose you had the choice of receiving \$100 today or receiving \$100 (guaranteed) in one year. Which would you choose? Place a check in the space in front of your choice.

\$100 today or \$100 one year from now

What about \$100 today versus \$105 (guaranteed) one year from now?

\$100 today or \$105 one year from now

Choose one from each of the following pairs

\$100 today	or	\$110 (guaranteed) one year from now
\$100 today	or	\$115 (guaranteed) one year from now
\$100 today	or	\$120 (guaranteed) one year from now
\$100 today	or	\$130 (guaranteed) one year from now
\$100 today	or	\$140 (guaranteed) one year from now
\$100 today	or	\$150 (guaranteed) one year from now

ECO ANAL/MILCON DES Student's Manual

From your choice, what do you conclude is your annual minimum acceptable rate

MARR = %

of return (MARR)?

• Given that this is your annual minimum acceptable rate of return, what is the amount you would require in two years to make you willing to forego \$100 today?

Would require \$ _____ in two years

• Given your annual minimum acceptable rate of return, how much would you be willing to spend today to avoid incurring a sure cost of \$1,000 in one year?

Willing to spend \$ _____ now

• Given your annual minimum acceptable rate of return, how much would you be willing to spend today to avoid incurring a sure cost of \$1,000 in two years?

Willing to spend \$ _____ now

- 7) Suppose you expect general price inflation to run about 4% per year and you are willing to invest in treasury bonds with a guaranteed return of 10% per annum. If you could be certain that the rate of inflation would be 0% instead of 4%, it would be reasonable to require a return on the bonds of about
 - a) ____ 10%
 - b) _____ 6%
 - c) _____ 4%
 - d) _____ 0%

- Suppose you invest \$5,000 in a mutual fund with an average annual return of 10% compounded annually. At the end of five years your investment will have grown to
 - a) _____ \$8,052.55
 - b) _____ \$7,500.00
 - c) _____ \$5,500.00
- 9) Suppose you could replace the roof of your house today at a cost of \$3,000, and you wish to estimate how much to budget for the replacement which you expect to be required five years from now. If roofing materials and labor are expected to increase at a rate of about 6% per year, you will need to budget approximately
 - a) _____ \$4,000
 - b) _____ \$3,000
 - c) \$2,000
 - d) _____ \$3,180
 - e) _____ none of the above
- 10) To evaluate the cost effectiveness of one MILCON building design over its alternatives, it is necessary to forecast general price inflation and to add an inflation amount to the estimates of future operating, maintenance, repair, and replacement costs.
 - a) ____ True
 - b) _____ False

- 11) Suppose you are required to estimate future maintenance and repair costs for an HVAC system. General price inflation is forecasted to increase at a rate of 7% per annum, whereas prices for HVAC systems are forecasted to increase at an annual rate of only 4%. This means that in absolute terms (i.e., in current dollars) the HVAC price
 - a) _____ increases at an annual rate of about 11%
 - b) increases at an annual rate of about 7%
 - c) _____ increases at an annual rate of about 28%
 - d) _____ decreases at an annual rate of about 3%
 - e) increases at an annual rate of about 3%

And, it means that in relative terms (i.e., in constant dollars) the HVAC price

- a) _____ increases at an annual rate of about 7%
- b) _____ increases at an annual rate of about 4%
- c) _____ increases at an annual rate of about 3%
- d) _____ remains unchanged
- e) _____ increases at an annual rate of about 11%

2-14

- 12) Suppose you can reduce the energy costs of your house by installing insulation. You can pay for it by withdrawing funds from a money market account that pays 9% per annum, after taxes. Alternatively, you can use the money market funds to pay off a consumer loan you have outstanding at 12% per annum (after taxes). Improved comfort aside, i.e., on strictly economic grounds, the annual minimum acceptable rate of return required to induce you to install insulation is
 - a) _____ 0% because the funds are already on hand
 - b) _____ 9% because 9% will be lost by withdrawing the money
 - c) _____ 12% because 12% could be saved by using the funds to pay off the loan instead of buying insulation
- 13) When an individual's or organization's minimum acceptable rate of return is used to calculate how much he, she or it would be willing to spend now in order to avoid a given future cost, the rate is typically called
 - a) _____ the discount rate
 - b) _____ the interest rate
 - c) _____ the savings rate
 - d) _____ the reduction rate
- 14) Suppose you are selecting a roof for a new house, and you find that a high-quality roof will last 20 years without major repairs or replacement, and a standard-quality roof will last only 10 years before it requires replacement costs of \$2,000. The high-quality roof will cost you an extra \$800 now. Assume you can finance the more expensive roof by taking out a larger mortgage loan at the going loan rate of 10%. The high-quality roof is
 - a) _____ well worth the additional cost
 - b) _____ clearly not worth the additional cost
 - c) _____ likely to perform economically roughly the same as the standard quality roof

- 15) Suppose you are considering the use of floor coverings in a government building, saving an estimated \$2,000 (constant dollars) annually in maintenance and repair expenditures over a period of 25 years. The government requires an annual minimum rate of return of 10% over and above general price inflation. Total savings starting today and accruing over 25 years will be equivalent to
 - a) _____ receiving a lump sum of exactly \$50,000 today
 - b) _____ receiving a lump sum of less than \$50,000 today
 - c) _____ receiving a lump sum of more than \$50,000 today
 - d) _____ there is no way to determine the equivalent amount
- 16) Suppose the rate of general price inflation is about 4% per annum. Further assume that because of shortages, the price of oil escalates about 5% per annum faster than prices in general. In 10 years a quantity of oil which is priced at \$1,500 today will have increased in price to about
 - a) _____ \$2,250
 - b) _____ \$3,600
 - c) _____ \$9,300
 - d) _____ \$2,850
- 17) One would conclude that with a general price inflation rate of 4%, in 10 years a dollar bill will buy
 - a) _____ about the same as what a dollar will buy today
 - b) _____ about two-thirds what a dollar will buy today
 - c) _____ about one-tenth what a dollar will buy today
 - d) _____ about one-third more than what a dollar will buy today

18) Suppose the general inflation rate is 6% per annum and you require a return at least 4% per annum over and above inflation. This means that you require a total return of about

a)	6%	per	annum
----	----	-----	-------

- b) _____ 4% per annum
- c) _____ 10% per annum
- d) _____ 24% per annum
- e) none of the above
- 19) If the total annual rate of change in fuel oil prices is 7% and the rate of general price inflation is 4%, you would say that the differential escalation rate for fuel oil is about
 - a) _____ 11%
 - b) _____ 3%
 - c) _____ 7%

More precisely, the differential escalation rate for fuel oil is

- d) _____ 11.28%
- e) _____ 2.88%
- f) _____ 7.82%

- 20) Suppose annual maintenance and repair costs are expected to increase at the same annual rate as prices in general, say about 10%. In this case the differential annual rate of price escalation for maintenance and repair costs is
 - a) _____ 5%
 - b) _____ 7%
 - c) _____ 0%
 - d) _____ 10%
- 21) Refer back to question 20. Suppose you wish to estimate what maintenance and repair costs will be five years hence, based on the fact that they are \$1,000 today. Stated in dollars of the future year (i.e., in current dollars which include inflation), the estimated future cost is
 - a) _____ \$1,685 c) _____ \$1,000
 - b) _____ \$1,159 d) _____ \$1,611

Stated in today's dollars (i.e., in constant dollars which exclude inflation), the estimated future cost is

- a) _____ \$1,685 c) _____ \$1,000
- b) _____ \$1,159 d) _____ \$1,611
- 22) What is the estimated present-worth equivalent of a cost of \$10,000 which is expected to occur in 15 years if the discount rate is 10%?
 - a) _____ \$2,394
 - b) _____ \$9,091
 - c) _____ \$10,000
 - d) _____ None of the above

ECO ANAL/MILCON DES Student's Manual

- 23) Suppose you estimate a repair cost which is expected to occur in three years to be \$2,000 in today's dollars (i.e., in constant dollars). Further suppose that the rate of general price inflation is 6% and that you require a 4% per annum return over and above inflation to make you willing to spend money now in order to save money in the future. The discount rate you would use to calculate the presentworth equivalent of the \$2,000 future cost (in constant dollars) is
 - a) _____ 4%
 b) _____ 10%
 c) 2.4%
 d) _____ 6%
 e) _____ 10.24%
 f) none of the above
- 24) Refer back to question 23. Suppose the rate of general price inflation were 0%. What discount rate would you use then?
 - a) _____ 4%
 d) _____ 0%

 b) _____ 10%
 e) _____ none of the above
 - c) _____ 6%
- 25) Again refer back to question 23. The present-worth equivalent of the future amount of \$2,000 is
 - a) _____ \$1,679
 - b) _____ \$1,778
 - c) \$1,370

- 26) Suppose an equipment replacement is expected to be required in five years. You estimate that the replacement would cost \$1,000 if it were made today, and you need to know what it would cost in five years. Suppose general price inflation is expected to average 5% per annum, but the equipment is expected to increase in price only 3% per annum in absolute terms. Stated in dollars of the future year (i.e., in current dollars), the future replacement cost is estimated at
 - a) _____\$1,159 c) ____\$1,000
 - b) \$908 d) \$1,469
- 27) Refer back to question 26. Stated in today's prices (i.e., in constant dollars), the future replacement cost is estimated at
 - a) _____ \$1,469 c) _____ \$1,159
 - b) _____ \$1,000 d) _____ \$909
- 28) Again refer back to question 26. Suppose your minimum acceptable rate of return is 5% over and above inflation. Working in future year dollars (i.e., in current dollars) and including inflation in the discount rate, the present-worth equivalent of the future replacement cost is
 - a) _____ \$712 c) _____ \$1,181
 - b) _____ \$1,000 d) _____ \$1,390

Working in today's dollars and excluding inflation from the discount rate, the present worth equivalent of the future replacement cost is about

- a) _____ \$1,181 c) ____ \$712
- b) _____ \$1,000 d) _____ \$1,390

ECO ANAL/MILCON DES Student's Manual

- 29) As a general rule, if one includes general price inflation in estimates of future costs (i.e., if one states future costs in current dollars), it is imperative also to
 - a) _____ deduct the differential escalation rate
 - b) _____ add the differential escalation rate
 - c) _____ exclude an estimate of the rate of general price inflation from the discount rate
 - d) _____ include an estimate of the rate of general price inflation in the discount rate
- 30) As a general rule, if one excludes general price inflation in estimates of future costs (i.e., if one states future costs in constant dollars), it is imperative also to
 - a) _____ add the differential escalation rate
 - b) _____ deduct the differential escalation rate
 - c) _____ exclude an estimate of the rate of general price inflation from the discount rate
 - d) _____ include an estimate of the rate of general price inflation in the discount rate

31) Draw a cash flow diagram based on the following information:

Construction will begin two years from the date of study and will last one year. Assume that the construction costs of \$100,000 will be incurred at the mid point of the construction period. A repair cost of \$20,000 will be incurred 15 years from the date of study; maintenance costs of \$5,000 will be incurred annually beginning six months after the end of construction (beginning of beneficial occupancy). A retention value of \$10,000, net of disposal costs will remain at the end of 25 years of occupancy.

32) Calculate the life-cycle cost of sliding entry doors for an Army reserve building -one of several design alternatives for entry doors under consideration. Significant costs are limited to the following:

Present worth of installation costs	\$57,600
Present worth of energy costs for photo-electric control system	\$1,400
Present worth of annually recurring nonfuel O&M costs	\$1,700
Present worth of replacement costs	\$6,000
\$ = Life-cycle cost	

33) Attic insulation can be added to Army housing to reduce energy costs. Assuming there is no insulation present and the space will accommodate insulation up to a level of R38 (resistance level 38), choose the cost-effective level based on the following life-cycle cost data:

	Insulation Level	LCC \$
a)	 0	25,000
b)	 R11	15,000
c)	 R19	8,800
d)	 R30	7,500
e)	 R38	8,200

34) A general economic study is to be performed for a MILCON building design. The building in question is to last indefinitely. In most cases the maximum analysis period for calculating life-cycle costs is how many years from Beneficial Occupancy Date (BOD)?

a)	 40 years

- b) _____ 25 years
- c) _____ 28 years
- d) _____ 15 years

- 35) In order to compute the life-cycle cost of a MILCON design alternative, you should discount all amounts to their present-worth equivalent as of the
 - a) _____ Analysis Base Date (ABD)
 - b) _____ Beneficial Occupancy Date (BOD)
 - c) _____ Midpoint of Construction (MPC)
 - d) _____ Analysis End Date (AED)
 - e) _____ Time you select, since this will vary depending on the project
- 36) When estimating future costs for MILCON design alternatives, it is essential to include the projected rate of general price inflation in estimates of future costs.
 - a) ____ True
 - b) _____ False
- 37) The discount rate for general economic studies is
 - a) _____ 5%
 - b) ____ 10%
 - c) _____ 7%
 - d) _____ 6%
 - e) _____ 12%
 - f) _____ there is no specified rate

38) A routine economic analysis of parking lot surfaces shows the following results:

Surface Type	LCC	Initial Cost	Energy Cost
А	\$37,000	\$13,000	0
В	\$40,000	\$15,000	0

Is an uncertainty assessment required?

- a) ____ yes
- b) ____ no

39) Which of the following two design alternatives would you recommend?

a)	 Alternative A:	LCC Initial investment cost		\$40,000 \$15,000
b)	 Alternative B:	LCC Initial investment cost	=	\$40,100 \$10,000

- 40) In the economic analysis of energy-conserving building systems, which features are different from those of a general economic study?
 - a) ____ Discount rate
 - b) ____ Treatment of inflation
 - c) _____ Types of costs which may be included
 - d) _____ All of the above

Pretest

41) Calculate the present worth of a series of annually recurring electricity costs of \$28,000 (in constant 1988 dollars) for a domestic hot water system to be installed in a housing complex of a military base in Texas. Assume that the Analysis Base Date (ABD) is July 1988 and the system will last 10 years. The discount rate is 10% and the appropriate One Step Adjustment Factor (OSAF) is 0.5162.

The PW of the series is

- a) _____ \$107,900
- b) _____ \$144,500
- c) _____ \$280,000
- d) _____ \$542,425

Alternative A

42) The following costs and energy consumption data are estimated for two alternative natural gas domestic hot water systems in an administration building in Ft. McCoy, WI. There is uncertainty regarding the energy consumption of alternative A, which may be up to 35% higher than the most likely estimate. Recommend the system to be selected.

<u>Antomativo A</u>	
Initial investment:	\$80,000
Natural gas consumption:	10,000 mill. Btu/year
LCC _A :	\$717,425
LCC _A , taking into account 35% higher energy consumption:	\$940,524
Alternative B	
Initial Investment:	\$25,000
Natural gas consumption:	\$20,000 mill. Btu/year
LCC _B :	\$1,299,850

ECO ANAL/MILCON DES . Student's Manual

The system selected is

- a) _____ Alternative A
- b) _____ Alternative B
- 43) The Army's Construction Engineering Research Laboratory (CERL) has developed a database for estimating maintenance and repair costs. Which of the following statements are correct?
 - a) _____ Maintenance and repair costs are often the data most difficult to estimate.
 - b) _____ CERL's database facilitates the estimation of LCC maintenance and repair costs for components of major building systems.
 - c) _____ CERL's LCC cost factors for maintenance and repair are constructed from time study data.
 - d) _____ Cost factors are given per unit of component.
 - e) _____ Local wage rates can be reflected in maintenance and repair costs using CERL's database.
 - f) _____ All of the above.
- 44) Assume that an HVAC system uses 3,000 million Btu of electricity per year and the price today is \$19.40/million Btu. If the differential rate of energy price escalation is projected to be 5% for the next year and the discount rate is 7% over and above general price inflation, the present worth of a year's energy consumption paid at the end of the first year is
 - a) _____ \$58,200
 - b) _____ \$57,112
 - c) _____ \$60,920

- 45) Suppose the expected service life of an HVAC system in an Air Force administration building exceeds by 10 years the 25-year study period for an LCC analysis. This could be taken into account in an LCC study by
 - a) _____ including a replacement cost
 - b) _____ assuming a retention value at the end of the study period
 - c) _____ it cannot be taken into account
- 46) The most appropriate time for LCC analysis of MILCON designs is
 - a) _____ during preconcept design
 - b) _____ during concept design
 - c) _____ at the time of final design
- 47) Choose the statement you think is most valid for LCC analyses:
 - a) _____ LCCAs are very expensive and time-consuming and should be done only in support of major decisions.
 - b) _____ LCCAs are very inexpensive and should be done in support of all decisions.
 - c) _____ LCCAs can be done with varying levels of effort and are not always necessary.

- 48) As a project manager dealing with an A-E contractor on a design project, your responsibilities with respect to economic analysis include the following activities:
 - a) _____ Specify appropriate Army or Air Force
 - b) _____ Indicate desired level of effort
 - c) _____ Specify documentation requirements
 - d) _____ All of the above
- 49) Suppose alternative A has higher first cost but significantly lower life-cycle costs than alternative B. You can use the results of an LCC analysis to
 - a) _____ support a request for increased funds when the Current Work Estimate (CWE) is higher than the Programmed Amount (PA)
 - b) _____ support the recommendation of design alternative A to Higher Authority
 - c) _____ rebut criticism of design alternative A
 - d) _____ all of the above
- 50) Which of the following statements is incorrect? A computer-aided LCC analysis program, such as LCCID,
 - a) _____ determines the objectives of the analysis, identifies alternatives, and interprets results
 - b) _____ makes fast and accurate calculations
 - c) _____ incorporates ready data files
 - d) _____ makes it easier to use the methodology
 - e) _____ provides documentation

END

THIS PAGE IS INTENTIONALLY LEFT BLANK

ECO ANAL/MILCON DES Student's Manual

MODULE 3

AIDS TO LEARNING

Purpose:

• To provide a convenient grouping of items which pertain to all of the other modules and to which you may wish to refer frequently

0

Outline:

- 3.1 Acronyms and Symbols
- 3.2 Use of the Hand-Held Calculator for LCC Calculations
- 3.3 Guidelines on Significant Figures
- 3.4 Ideas about Applications

THIS PAGE IS INTENTIONALLY LEFT BLANK

ECO ANAL/MILCON DES Student's Manual

3.1 ACRONYMS AND SYMBOLS

А	- A Uniformly Recurring Annual Amount
A _i	- First in a Series of Annual Amounts Recurring Nonuniformly
ABD	- Analysis Base Date
AED	- Analysis End Date
A-E	- Architect-Engineer
AIRR	- Adjusted Internal Rate of Return
AR	- Army Regulation
ASA	- Assistant Secretary, Army
ASTM	- American Society for Testing and Materials
BCR	- Benefit-to-Cost Ratio
BOD	- Beneficial Occupancy Date
BRC	- Budget Review Committee
Btu	- British Thermal Units
BY	- Budget Year
CACES	- Computer-Aided Cost Estimating System
CCC	- Current Construction Cost
CD	- Construction Division
CDS	- Concept Design Study
CE	- Corps of Engineers
CONUS	- Continental United States
C _F	- Cost of an Item to Occur in the Future as of that Future Time
C _P	- Cost of an Item to Occur in the Future as of the Date of Study
СРІ	- Consumer Price Index
CERL	- Construction Engineering Research Laboratory

D	- Market (Nominal) Discount Rate, Including General Price Inflation
d	- Real Discount Rate, Excluding General Price Inflation
DA	- Department of Army
DOE	- U.S. Department of Energy
DOS	- Date of Study
DPP (DPB)	- Discounted Payback
DY	- Design Year
E	- Total Rate of Price Escalation, Including General Price Inflation
е	- Differential Rate of Price Escalation, Excluding General Price Inflation
EA/LCCA	- Economic Analysis/Life-Cycle Cost Analysis
ECIP	- Energy Conservation Improvements Projects
EV	- Expected Value
F	- A Future Amount
FOA	- Field Operating Agency, USACE
FY	- Fiscal Year
HQDA	- Headquarters, U.S. Army Corps of Engineers
Ι	- Rate of General Price Inflation
kWh	- Kilowatt Hours
LCC	- Life-Cycle Costs or Life-Cycle Costing
LCCID	- Life-Cycle Cost in Design
MARR	- Minimum Acceptable Rate of Return
МСР	- Military Construction Program
MILCON	- Military Construction
MPC	- Midpoint of Construction
M&R	- Maintenance and Repair

Aids To Learning

ECO ANAL/MILCON DES Student's Manual

N	- Number of Years in the Study Period
NB	- Net Benefits
NOMS Factor	- Nominal O&M Savings Factor, the Ratio of Non-discounted Savings to the First-Cost Difference between Two Alternative Designs
NS	- Net Savings
OCE	- Office of the Chief of Engineers
O&M	- Operation and Maintenance
ORR	- Overall Rate of Return
OSAF Factor	- One-Step Adjustment Factor
OSD	- Office of the Secretary of Defense
р	- Price
PA	- Programmed Amount
PM	- Project Manager
Р	- The Lump-Sum Time Equivalent Value of a Series of Recurring Costs as of the Time of Occurrence of the First Amount
PP (PB)	- Payback Period
PPI	- Producer Price Index
PW	- Present Worth
Q	- Quantity
SIR	- Savings-to-Investment Ratio
SPB (SPP)	- Simple Payback (Period)
SPW (SPV)	- Single Present Worth (Value)
TM	- Technical Manual
UCR	- Uniform Capital Recovery
UPW (UPV)	- Uniform Present Worth (Value)
UPW* (UPV [•])	- Modified Uniform Present Worth (Value)
USACE	- U.S. Army Corps of Engineers

Aids To Learning

THIS PAGE IS INTENTIONALLY LEFT BLANK

ECO ANAL/MILCON DES Student's Manual

3.2 USE OF THE HAND-HELD CALCULATOR FOR LCC CALCULATIONS

The arithmetic encountered in the course can be done with any hand-held calculator equipped with a power key $[y^x]$, at least one pair of memory keys [STO and RCL], and a pair of parenthesis keys [(and)]. It is suggested that you review and practice the use of these keys on your calculator before coming to the course. If you are not familiar with the use of any of these keys, please review the examples provided below.

The first three examples demonstrate, in turn, the use of the power key, the memory keys, and the parenthesis keys. The fourth example demonstrates the combined use of all three sets of keys in terms of a factor frequently used in the course.

The keystroke sequences indicated in the examples are those for a Texas Instruments TI-30-SLR calculator; they are similar for most other calculators.

EXAMPLE 1. POWER KEY y ^x		
Calculate 5 ³		
PRESS	DISPLAY	<u>COMMENTS</u>
5	5.000	"y" value
y ^x 3	3	Raise to power 3, the "x" value
=	125.000	Result: y ^x

EXAMPLE 2. PARENTHESIS KEYS FOR GROUPING NUMBERS AND OPERATIONS: (and)

Calculate 6 x (3+4)

Calculate 13.041 + 2.143 - 2.064

PRESS	DISPLAY	COMMENTS
6 x (6	Multiply 6 by the quantity that follows inside parentheses
3 + 4)	7.000	End of parentheses signals end of quantity; arithmetic inside parentheses completed and result displayed
=	42.000	Result

EXAMPLE 3. MEMORY KEYS TO STORE INTERMEDIATE RESULTS: STO and RCL

4.843 + 3.219		
PRESS	DISPLAY	COMMENTS
4.843 + 3.219 =	8.062	Calculate denominator
STO	8.062	Store denominator for future use
13.041 + 2.143 - 2.064 =	13.12	Calculate numerator
÷ RCL	8.062	Divide by denominator (recalled from memory)
=	1.6273877	Result

EXAMPLE 4. COMBINED USE OF POWER KEY, PARENTHESIS KEYS, AND MEMORY KEYS

Calculate: $(v^{k}-1)/(v-1)$ where v = (1+e)/(1+d).

Assume that e = 2.65%, d = 10%, and k = 25.

General approach: (1) calculate v and store it in memory; (2) calculate the numerator of the factor; (3) divide the numerator by the denominator.

PRESS	DISPLAY	COMMENTS
1.0265	1.0265	1+e
÷ 1.1	1.1	Divide by (1+d)
=	0.9331818	v = (1+e)/(1+d)
STO	0.9331818	Store v for later use
y ^x 25	25	Raise v to power k
=	0.177483	Result: v ^k
• 1	1	Subtract 1 from v ^k
=	-0.8225171	Result: (v ^k -1)
÷	-0.8225171	Divide
(RCL - 1)	-0.0668182	Quantity divided by: (v-1), where v is recalled from memory
=	12.309779	Result: factor (v ^k -1)/(v-l)

THIS PAGE IS INTENTIONALLY LEFT BLANK
3.3 GUIDELINES ON SIGNIFICANT FIGURES

Data used in EA/LCCA typically are estimates which lack a high degree of accuracy. The following are guidelines for reflecting the nature of the data:

Significance of Zeros to the Left of the Decimal

• Zeros to the left are usually assumed not to be significant unless it is specified that they are.

For example, the statement that a replacement cost expected 10 years from now is estimated at \$100,000 is usually interpreted to mean about \$100,000. The actual number could be \$97,950, \$104,999 or some other number rounded to \$100,000.

• Zeros to the left are assumed to be significant if it is specified that they are.

For example, the statement that a purchase price is exactly \$50,000 means that all the figures are significant.

• Zeros can also be significant if implied in context, such as in the context of firm financial transactions.

For example, the amount \$100,000 used in the context of a bank loan would normally be interpreted to mean exactly \$100,000.00.

Accuracy of Computed Numbers

• In addition, the total is no more accurate than the least accurate measurement. Similarly in subtraction, the result is no more accurate than the least accurate of the two measurements entering into the calculation. For example,

\$125 + \$4.27 + \$830 = \$959.27, rounded to \$960, if \$830 is an
approximation
\$1,597.54 + \$52.10 + \$2 = \$1,651.64, rounded to \$1,652

• In multiplication, the product should be considered to have only as many significant figures as the number of significant figures in the factor having the smallest number.

For example, suppose we know the price of an item is exactly \$2.29 per unit, and we estimate the quantity needed to be about 300 units. Compute total costs as $2.29 \times 300 = 687$, but state it as about \$700, because the quantity input to the calculation has only 1 significant figure.

When to Apply Significant Figures Rule

• To take advantage of the information we have, apply the significant figures rule as the last step in a series of calculations.

3.4 IDEAS ABOUT APPLICATIONS

Record ideas about promising on-the-job applications when they occur to you. Do not wait!

THIS PAGE IS INTENTIONALLY LEFT BLANK

MODULE 4

IMPROVING DECISIONS WITH ECONOMIC ANALYSIS/ LIFE-CYCLE COST ANALYSIS (EA/LCCA)

Purpose:

- To give you a conceptual understanding of EA/LCCA
- To demonstrate that the techniques you will learn can improve decisions
- To explain when you should perform EA/LCCA
- To itemize the knowledge and skills you need to perform EA/LCCA
- To identify where you need improvement

Outline:

- 4.1 First Cost and Life-Cycle Cost Perspectives
- 4.2 Why EA/LCCA Is Important in Design
- 4.3 What EA/LCCA Entails
- 4.4 When to do EA/LCCA
- 4.5 Knowledge and Skills Required of MILCON Design Professionals
- 4.6 Self-Assessment Using Scores on Pretest

Approximate Time:

2 hours

Day 1

Slide 4-1

Notes:

ECO ANAL/MILCON DES Student's Manual

ECONOMIC ANALYSIS (EA)

a generic term referring to any systematic type of analysis procedure that can be used to estimate which of several alternative courses of action will provide maximum benefits less costs over some specified period of time.

Day 1

Slide 4-3

LIFE-CYCLE COST ANALYSIS (LCCA)

a type of ECONOMIC ANALYSIS which identifies the alternative with the lowest total cost of ownership over the long term.

Slide 4-4

THIS PAGE IS INTENTIONALLY LEFT BLANK

ECO ANAL/MILCON DES Student's Manual

4.1 FIRST COST AND LIFE-CYCLE COST PERSPECTIVES

By the end of this section, you are expected to be able to

- give a clear, concise definition of LCCA
- explain the difference between an LCC approach and a first-cost approach to selecting among design alternatives
- give an example of when the first-cost approach to selecting among alternatives is appropriate, and when an LCC approach is needed
- state the conditions under which the first-cost approach and the LCC approach will agree as to which is the least-cost alternative
- state the conditions under which the two approaches may point to different alternatives
- explain the conditions under which you would accept the alternative indicated by the first-cost approach and when you would accept that indicated by the LCC approach when the two point to conflicting selections

LIFE-CYCLE COST ANALYSIS (LCCA) APPROACH

versus

FIRST COST APPROACH

Notes:

ECO ANAL/MILCON DES Student's Manual

4.2 WHY EA/LCCA IS IMPORTANT IN DESIGN

By the end of this section, you are expected to be able to

• give several examples of design problems whose solution can be aided by EA/LCCA

Day 1

EXAMPLES

Notes:

ECO ANAL/MILCON DES Student's Manual

Slide 4-7

SELECTING A HEATING SYSTEM		
	System A	System B
Purchase & Install:	\$3,500	\$4,000
Efficiency:	0.68	0.87

LCCA DATA

AHL = 80 mill Btu Today's fuel oil price = \$4.64/mill Btu Length of time = 25 years Other cost differences: none Multiplier = 0.5772

Notes:

ECO ANAL/MILCON DES Student's Manual

Notes:

ECO ANAL/MILCON DES Student's Manual

4.3 WHAT EA/LCCA ENTAILS

By the end of this section, you are expected to be able to

• list the major steps in performing an EA/LCCA in support of a design choice

Day 1

MAJOR STEPS IN EA/LCCA

- 1. List all feasible alternatives
- 2. Determine if a study is needed
- 3. If yes, determine the level of effort
- 4. Establish the analysis period and compile input data
- 5. Compute LCCs
- 6. Compare alternatives
- 7. Assess uncertainty
- 8. Rank design alternatives
- 9. Compute supplementary measures if needed (SIR, DPP, AIRR)
- 10. Document and disseminate

4.4 WHEN TO DO EA/LCCA

By the end of this section, you are expected to be able to

- state the most advantageous times to perform EA/LCCA in a general sense
- identify three types of requirements for performing EA/LCCA for Army/Air Force design decisions
- identify manuals and reference materials containing the criteria and standards for conducting EA/LCCA in response to the three types of requirements

Notes:

4-18

THIS PAGE IS INTENTIONALLY LEFT BLANK

ECO ANAL/MILCON DES Student's Manual

Improving Decisions With Economic Analysis

Day 1

4.5 KNOWLEDGE AND SKILLS REQUIRED OF MILCON DESIGN PROFESSIONALS

Learning Objectives:

This session will

- let you know the target performance of design professionals with regard to economic analysis
- provide a checklist of specific knowledge and skills that you need to do your job according to the target performance, and that you will learn in the course

JOB TASKS

It is part of the day-to-day job of every design engineer in the Corps Field Operating Activities (FOAS), Divisions and Districts, to (1) make design decisions, (2) recommend design decisions, (3) review and approve design decisions made by others, and (4) review and recommend approval of design decisions made by others. The performance desired by HQ is, that in carrying out the day-to-day job, those responsible for the design process give an appropriate degree of attention to integrating economic analysis into the design process.

JOB TASKS OF DESIGN ENGINEERS

Ideally, at the working level, Corps design engineers (in their capacities as designers, design reviewers, and members of value-engineering teams) will perform the following tasks as needed in the manner indicated:

- 1. Conduct preliminary studies to determine the appropriate type and level of effort for economic analysis/life-cycle cost analysis (EA/LCCA) for the MILCON design decision at hand, taking into account Army and Air Force criteria.
- 2. Work with cost engineers and other colleagues to identify sources of data, obtain required data, and make necessary assumptions.
- 3. Taking the appropriate level of effort (as identified in 1) and being responsive to applicable criteria, perform EA/LCCA efficiently and correctly, taking into account uncertainties in the analysis.
- 4. Properly interpret the results of EA/LCCA in the context of the design process.
- 5. Develop clear and appropriate recommendations for design decisions based on economic considerations.
- 6. Provide appropriate documentation for EA/LCCA in a cost-effective manner for the conditions at hand.
- 7. Perform quick and incisive critical reviews of the EA/LCCAs conducted by others (including review of analyses, interpretation of results, and

documentation) and identify any deficiencies, errors, and deviations from contract or other agreed-upon provisions.

- 8. Develop A-E contract provisions for EA/LCCA as needed, taking into account applicable criteria.
- 9. Communicate effectively with management regarding EA/LCCA requirements, status, and results.
- 10. Defend decisions based on EA/LCCA.

JOB TASKS OF COST ENGINEERS

Ideally, at the working level, cost engineers will perform the following tasks as needed:

- 1. Provide supporting cost data of appropriate quality and in the appropriate format to Corps design engineers.
- 2. Assist Corps design engineers in making appropriate assumptions.
- 3. Communicate effectively with Corps design engineers and management about cost estimating requirements for individual EA/LCCAs.

JOB TASKS OF MANAGERS

Ideally, at the management level, managers will perform the following tasks:

- 1. Assure that EA/LCCAs are conducted as an integral part of the design process for all MILCON projects.
- 2. Assure that all EA/LCCAs are conducted in accordance with current Army or Air Force criteria.
- 3. Assure that the appropriate type and level of EA/LCCAs are applied to each design decision.
- 4. Assure that the results of EA/LCCAs are appropriately documented in a cost-effective manner, design-discipline-wide and project-wide.

- 5. Prepare reliable estimates of resources required to support the appropriate level of EA/LCCA effort for all aspects of each design project.
- 6. Develop appropriate requirements and criteria for cost-effective documentation of each level of EA/LCCA for each design project.
- 7. Determine standards of performance in EA/LCCA for staff supervised, evaluate performance, and identify related staff training needs.
- 8. Develop A-E contract provisions for EA/LCCA as needed, taking into account applicable criteria.
- 9. Accomplish quick and incisive critical reviews of EA/LCCAs conducted by others.
- 10. Make recommendations and decisions about the design process based on EA/LCCA analyses performed in-house and by A-E firms.

KNOWLEDGE, SKILLS, & ATTITUDES

KNOWLEDGE, SKILLS, AND ATTITUDES REQUIRED BY DESIGN ENGINEERS

- 1. Ability and willingness to recognize design problems to which economic analysis can be usefully applied, and skill in integrating economic analysis into the design process at different points.
- 2. Knowledge of applicable Army or Air Force criteria/standards for economic analysis, and ability to select the appropriate criteria for individual design situations.
- 3. Knowledge of the different levels and types of economic analysis, and the ability to select the appropriate level and type on a case-by-case basis for the design stage at hand.
- 4. Knowledge of informational requirements for performing economic analyses of different levels and types.
- 5. Skill in specifying cost data requirements and discussing data and assumptions with cost engineers and other colleagues in support of economic analyses of different levels and types.
- 6. Skill in determining when an uncertainty assessment is required for proper evaluation of results.
- 7. Skill in structuring problems for solution and making all necessary calculations, including calculations to account for uncertainties, using both manual approaches and computer programs.
- 8. Skill in interpreting clearly and correctly the results of economic analyses.
- 9. Skill in preparing cost-effective written documentation of results easily usable by others.
- 10. Skill in making sound recommendations based on economic analysis.
- 11. Skill in evaluating EA/LCCA studies performed by others, quickly and incisively.

- 12. Skill in communicating with management regarding EA/LCCA requirements, status, and results.
- 13. Skill in communicating requirements for EA/LCCA to A-E contractors.
- 14. Skill in estimating resource requirements for different levels of effort.
- 15. Conviction that the Corps wishes economic analysis to be included in the design process.
- 16. Belief that economic analysis can be a valuable tool in the design process.
- 17. Self confidence in ability to use economic analysis to improve the design process.

KNOWLEDGE, SKILLS, AND ATTITUDES REQUIRED BY COST ENGINEERS

- 1. Knowledge of the kinds of data and assumptions required for different types and levels of EA/LCCAs.
- 2. Skill in compiling required data in appropriate formats.
- 3. Skill in communicating with design engineers and management about cost estimating requirements for individual EA/LCCAs.

KNOWLEDGE, SKILLS, AND ATTITUDES REQUIRED BY MANAGERS

- 1. Knowledge of Army or Air Force criteria and standards for economic analysis.
- 2. Knowledge of the different levels and types of economic analysis, and an understanding of which ones are appropriate for different design decisions.
- 3. Knowledge of the informational requirements for performing economic analyses of different levels and types.
- 4. Knowledge of the technical skills required for formulating and solving problems of different levels of complexity.

Improving Decisions With Economic Analysis

ECO ANAL/MILCON DES Student's Manual

- 5. Skill in estimating resource requirements in support of EA/LCCAs of different levels and types.
- 6. Knowledge of documentation requirements for understanding and evaluating economic analyses performed by others, and skill in preparing criteria for cost-effective documentation, which can be followed at the working level.
- 7. Knowledge of the meaning of analysis results.
- 8. Skill in developing A-E contract provisions for EA/LCCA in accordance with Army or Air Force criteria.
- 9. Skill in performing quick and incisive critical reviews of EA/LCCAs conducted by others.
- 10. Awareness of training opportunities in economic analysis.
- 11. Skill in communicating with staff, A-E contractors, and higher levels of management regarding all aspects of EA/LCCAs, including requirements for analyses, technical performance, meaning of results, and resource requirements.
- 12. Conviction that the Corps wishes economic analysis to be included in the design process.
- 13. Belief that economic analysis can be a valuable tool in the design process.

THIS PAGE IS INTENTIONALLY LEFT BLANK

ECO ANAL/MILCON DES Student's Manual

4.6 SELF-ASSESSMENT USING SCORES ON PRETEST

Learning Objective:

• To identify critical areas of knowledge and skills in which you most need improvement

٠,

KEY POINTS

- Life-cycle cost analysis (LCCA) is a method of economic analysis (EA) which emphasizes costs, takes a long-term view, and is particularly useful for comparing alternatives that differ in their first costs and future costs.
- Using EA/LCCA can lower the total cost of ownership of facilities.
- EA/LCCA can be most effective in reducing total costs of ownership of facilities if it is applied early and repeated as conditions change.
- EA/LCCA is to be performed routinely as part of the design process for all MILCON facilities.
- In addition, there are special requirements for EA that arise from statute and Executive Order, as well as from HQDA, OSD, or HQUSACE directives.
- By actively participating in the course, you can expect to gain the knowledge and skills needed to perform economic analysis according to Army and Air Force standards.
- The knowledge and skills you will acquire in the course are highly transferable to other jobs and are useful for personal decision making.

Day 1
MODULE 5

TIME VALUE OF MONEY CONCEPTS

Purpose:

- To help you understand concepts of time value of money and time-equivalent values
- To show how the concept of time-equivalent values applies to design decisions
- To demonstrate appropriate treatment of inflation in EA/LCCAs
- To explain why governments and other organizations use discount rates and what they are
- To show how to model estimates of dollar benefits and costs over the study period so as to simplify EA/LCC calculations

Outline:

- 5.1 Why and How to Adjust for Time
- 5.2 Two Ways to Treat Inflation
- 5.3 Government Discount Rates
- 5.4 Cash Flow Modeling

Approximate Time:

2 hours and 15 minutes

Slide 5-1

ECO ANAL/MILCON DES Student's Manual

5.1 WHY AND HOW TO ADJUST FOR TIME

By the end of this session, you are expected to be able to

- explain why the worth of a dollar of cost or benefit depends on when the amount is to be paid or received
- explain what is meant by the phrase, "time-equivalent values"
- explain in concept what a discount rate is
- explain how a discount rate affects design decisions
- use the discount rate in a formula to find the present worth equivalent of a single future amount

Day 1

Paying or receiving a dollar tomorrow

is not equivalent to

paying or receiving a dollar today.

Notes:

ECO ANAL/MILCON DES Student's Manual

TIME-EQUIVALENT VALUES

(you'd just as soon have one amount as the other)

DISCOUNT RATE (D or d)

rate at which a person or organization becomes willing to trade future dollars for present dollars

Used to Find PW given F

Notes:

ECO ANAL/MILCON DES Student's Manual

RELEVANCE OF DISCOUNTING TO DESIGN The ability to compute PW of F provides a sound basis for making design choices that increase costs today but • save in future costs increase future benefits

Slide 5-9

Slide 5-10

5.2 TWO WAYS TO ADJUST FOR INFLATION IN EA/LCCA

By the end of this section, you are expected to be able to

- explain two ways to adjust for inflation in EA/LCCA
- distinguish between absolute and relative rates of change in the prices of individual items
- estimate a future amount of cost or benefit in either current dollars or constant dollars by starting with today's prices and projected price level changes for the future
- explain the difference between "real" and "nominal" (or market) discount rates

TWO WAYS TO ADJUST FOR INFLATION

- (1) Work in absolute (actual) terms(Include general price inflation in prices & discount rate)
- (2) Work in relative (differential) terms(Exclude general price inflation from prices & discount rate)

Slide 5-14

EXAMPLE OF WORKING IN ABSOLUTE TERMS Inflation rate (I) = 5% Real opportunity cost (d) = 3% D = About 8% (precisely 8.15%) Time of replacement (n) = 4 years Price if replaced today (C_p) = \$1,000 Projected rate of price change (E) = I = 5% Replacement price in 4 years (C_F) = ? $C_F = C_p (1+E)^n$ = \$1000 (1+0.05)⁴ = \$1,215.51 Present worth (PW) = ? $PW = C_F [1/(1+D)^n]$ = \$1,215.51 [1/(1+0.0815)⁴] = \$888.49

Notes:

• The equation for computing D, given the real opportunity cost and the inflation rate is

D = (1+d)(1+I)-1.

D = (1+0.03)(1+0.05) - 1 = 0.0815 or 8.15%

and, therefore,

d = (1+D)/(1+I)-1

d = (1+0.0815)/(1+0.05) -1 = 0.0300 or 3%

Slide 5-16

Slide 5-17

1967-88 price increases	All items	<u>M&R</u>
Absolute (E)	6.2%	6.8%
Relative, or differential, (e)	-	0.56%

1967-88 price increases	All items	Fuel
Absolute (E)	6.2%	7.5%
Relative, or differential, (e)	-	1.22%

1967-88 price increases	All items	<u>Furnishings</u>
Absolute (E)	6.2%	3.5%
Relative, or differential, (e)		-2.5%

ECO ANAL/MILCON DES Student's Manual

1967-88 price increases	All items	<u>Construction</u>
Absolute (E)	6.2%	5.9%
Relative, or differential, (e)		-0.3%

Slide 5-21

SUMMART: RELATIONSHIP OF E, e, D, & d
E = (1+e)(1+l) - 1
e = (1+E)/(1+I) - 1
D = (1+d)(1+l) - 1
d = (1+D)/(1+I) - 1

where

=	absolute (actual) rate of change in price of a given item	
	(i.e., including inflation)	
=	rate of change in price of a given item relative to the rate	
	of change in the general price level (i.e., excluding inflation)	
=	nominal (market) discount rate (i.e., including inflation)	
=	real discount rate over and above inflation (i.e., excluding inflation)	
	-	

Notes:

Inflation simply cancels out of the combined escalation/discounting equation, such that the two ways of adjusting for inflation are mathematically equivalent:

$$PW = [C_{p} (1+E)^{n}] [1/(1+D)^{n}]$$
(Absolute Terms)
$$= [C_{p} (1+(1+e)(1+I)-1)^{n}] [1/(1+(1+d)(1+I)-1)^{n}]$$
$$= [C_{p} (1+e)^{n}] [1/(1+d)^{n}]$$
(Relative Terms)

Time Value of Money Concepts

ECO ANAL/MILCON DES Student's Manual

Day 1

Slide 5-22

	SUMMARY
Two Ways o	f Adjusting for inflation:
(1) Wa	ork in absolute (actual) terms (i.e., include inflation)
	 Estimate C_F by escalating at rate E Discount C_F with rate D
(2) Wo	ork in relative terms (i.e., exclude inflation)
	 Estimate C_F by escalating at rate e Discount C_F with rate d

THIS PAGE IS INTENTIONALLY LEFT BLANK

ECO ANAL/MILCON DES Student's Manual

5.3 GOVERNMENT DISCOUNT RATES

By the end of this session, you are expected to be able to

- explain why the Government requires the use of discount rates
- describe how the value of the discount rate would affect a design decision
- identify the specific requirements for Federal discount rates applicable to most Federal building design decisions

Slide 5-23

Congress, as elected representatives of the people, reached a decision as of 1968 as to what the basis of the discount rate should be: It should reflect the opportunity cost in the private sector. (U.S. Congress Joint Economic Committee, Subcommittee on Economy in Government. <u>Hearings on Economic Analysis of Public Investment</u> <u>Decisions: Interest Rate Policy and Discounting Analysis</u>. 84th Congress, 2nd session, 1968.)

	WHAT DISCOUNT RATES ARE USED BY THE GOVERNMENT?
•	10% real discount rate for evaluating most programs & projects having costs and benefits distributed over time (OMB A-94)
•	7% real discount rate for evaluating energy conservation and renewable energy projects (Energy Security Act, 1980) (Changed by Federal Energy Management Improvement Act, 1988)
•	Current nominal rates based on treasury securities with maturities equal to term of lease for evaluating lease-buy decisions (OMB Circular A-104, rev. 1986)
•	Special discount rate (formula) for evaluating water projects

Slide 5-25

5.4 CASH FLOW MODELING

At the end of this session you are expected to be able to

- explain what is meant by "cash flow modeling"
- be able to construct a simple, generic cash flow diagram

Slide 5-26

ECO ANAL/MILCON DES Student's Manual

- ,*

KEY POINTS

- People generally prefer receiving a dollar today to receiving a dollar at a future time, and prefer delaying payments to making them now.
- The value of the dollar is time-dependent because
 - inflation may change its purchasing power
 - money in hand may be used to earn a real return over and above inflation, i.e., money has an opportunity cost
 - another reason is that risk may increase with time
- The time value of money can be expressed as a required or minimum acceptable rate of return. When this rate is used to find the present equivalent value of future benefits and costs, it is called a discount rate.
- The minimum acceptable rate of return varies among individuals and organizations.
- Expressing benefits and costs as time-equivalent values makes it possible to assess the comparative economic value of alternative courses of action.
- Inflation is a distortion that must be adjusted for in EA/LCCA, either by (1) including inflation in cash flows and removing it by discounting with a nominal discount rate, or (2) excluding inflation both from cash flows and the discount rate at the outset.
- The Government specifies discount rates that are to be used in making decisions on behalf of the Government, such as design decisions for Federal buildings.
- Diagramming cash flows provides a checklist of relevant costs and benefits including their timing.
- Cash flows are commonly modeled more simply than they actually occur to make data gathering and computations easier.

ECO ANAL/MILCON DES Student's Manual

MODULE 6

ARITHMETIC OF ECONOMIC ANALYSIS

By the end of this module you are expected to be able to

- calculate
 - future costs and benefits based on today's prices and projected rates of change
 - present worth equivalents of future costs and benefits
 - life-cycle costs
- use
 - escalation and discounting formulas
 - escalation factors, discount factors, and combined escalation/discount factors -- "annual series factors"

Outline:

- 6.1 Escalate to Estimate Future Dollar Costs and Benefits Based on Today's Prices and Projected Rates of Change
 - With positive, negative, or zero price level changes
 - In current dollars
 - In constant dollars

- 6.2 Discount to Compute the Present Worth Equivalent of a Single Future Cost or Benefit
 - When the future amount is given
 - When the future amount has to be estimated
- 6.3 Discount to compute the Present Worth Equivalent of a Series of Future Costs or Benefits
 - Uniform series
 - Series escalating at a constant positive rate
 - Series escalating at a constant negative rate
 - Series beginning in the future
 - Series escalating at a variable rate
- 6.4 Exercise 6-1: Escalation/Discounting
- 6.5 Compute LCC
- 6.6 Exercise 6-2: LCC

Approximate Time:

5 hours

ECO ANAL/MILCON DES Student's Manual
Slide 6-1

ARITHMETIC OF ECONOMIC ANALYSIS/LCCA

- Escalation
- Discounting
- Combined Escalation & Discounting
- Using Formulas & Factors
- Calculating LCC

THIS PAGE IS INTENTIONALLY LEFT BLANK

ECO ANAL/MILCON DES Student's Manual

6.1 ESCALATE TO ESTIMATE FUTURE DOLLAR COSTS AND BENEFITS BASED ON TODAY'S PRICES AND PROJECTED RATES OF CHANGE

To estimate future dollar costs and benefits, a useful starting point is today's prices which are usually readily obtainable.

By the end of this section you are expected to be able to

• escalate today's price of an item forward to estimate its future price

Slide 6-2

ESCALATION: CALCULATE A FUTURE AMOUNT BASED ON TODAY'S PRICE AND PROJECTED RATES OF CHANGE

- With positive, negative, and zero escalation
- In current dollars
- In constant dollars

Slide 6-3

To find C_{F} when C_{P} is known

 $C_p \longrightarrow C_F?$

Escalation Formula: Single Compound Amount (SCA)

 $C_{F} = C_{P}(1+e)^{n}$

where

 $C_{\rm P}$ = cost of an item to occur in the future as of the date of study $C_{\rm F}$ = cost of an item to occur in the future as of that future time

SAMPLE PROBLEMS

Example 6.1: ESTIMATE A FUTURE COST BASED ON TODAY'S PRICE AND POSITIVE ESCALATION

Suppose an item costs \$500 today. What will be the cost in 12 years if the price escalates at a rate of 10% compounded annually.

Instead of calculating the factor using the escalation formula, you can look up the factor in the Escalation Factor table and multiply it by C_P to obtain C_F .

N																																				
LATIO	CALATE			•	^		~	8	• 0		= =	:					17	81	61	0.7		22	23	24	25		27	28	29	30	12	104	45	20		
- SCA	101 25	001-1		464		• • • •	. 949 .	2.144 4	2-358 *					138	22		• • • • •	5 60 *	5-116 *		. 400	1.140 *	+ + 26-6	0.850 +	0.835 *		.110 *	4.421 *	s.863 *	- 419 -	. 102 .	. 259 *	* 068 *	+ 161 -	- 024	. 049 .
10%	16	-090	202-1	1.112	65 (- 1	.677	1.626	1.993	2.172					C	<u>」</u>		826.4		5-142	-00-	6-109	6-659 8	7.258 8	116.0	8-623 10	9.190 1	0-245 1	1.167 14	2.172 15	3.268 17	0.414 26	1.409 45	8.327 72	11326117	.022	1 440-1
	81	1.080	1.260	1.360	1.409	1.587	1.714	1-851	2.159		2.510	2.720	2.917	3.172		3.426	00/-5	3-996	4-316	100.1	\$10.5	5.437	5.871	6.341	6-648	7. 396	7-966 1	8-627 1	9.317 1	0.063	4.785 2	1.725 3	1.920 41	6-902 74	1.019	1.039
	11	1.070	1.225	116-1		1.501	1.606	1.718	1.838		2.252	2.410	2.579	2.759		2.952	AC1-1	3. 380	1.070		4.141	4.430	4.741	5.072	2.427	5.807	6-214	6.649	7.114	7-612 1	0.677 1	4.974 2	11.002 3	9.457 4	1.017	1.034
 	61	1.060	161.1	1-262		1.419	1.504	1.594	1.791		2.012		2.261	191.2		Z-540	(¥60-7	3.207		3-400	3.604	3.820	4.049	4.292	4.549	4.822	5.112	5.418	5.743	7-686	0-286 1	3.765 2	8-420 2	1.015	1.010
	31	1.050	1.158	1.216		1.340	1.407	1.477	1-551	014	1.796	988.1	1.980	2.079		1. 207	167.7	104-7	126.2		2.786	2.925	1.072	3-225	3-366	3.556	1.733	3.920	4.116	4. 322	5.516	7.040 1	8.965 1	1.467 1	1.012	1.025
	1TE 41	1.040	1.125	1.170		1.265	1.316	1.369	1.423		1.601	1.665	1.732	1.801		1.048		970-7	2.191		2.279	2.370	2.465	2.563	2.606	2.172	2.883	2-999	3-119	1.243	3.946	4-801	5.841	7-107 1	1.010	1.020
	ATTON RJ	1.010	1.093	1.126		1.194	1.230	1.267	1.344	1.114	1.426	1.469	1.513	1.558		1.65.1		70/ -1	1.606		1.860	1.916	1.974	2.033	7.074	2.157	2.221	2.288	2.157	7.427	2.814	3.262	3.762	4.384	1.007	1.015
	L ESCAL	1-020	1.061	1.082		1.126	1.149	1.172	1.195	172-1	1.268	1.294	61(.1	1.346		1.400	. 4 7 8		1.486		1.516	1.546	1.577	1.605	100-1	1.673	1.707	1.741	1.776	112-1	2.000	2.208	2.438	2.692	1.005	1.010
	ANNUA	1.010	1.030	1.041		1.062	1.072	1.083	1.105	1.116	1.127	1.130	1.149	1.161		1.184	106		1.220		1.232	1.245	1.257	1.270	797-1	1.295	1.308	1.321	1.335	841.1	1.417	1.489	1.565	1-645	1.032	1.005
	¥o	1.000	1.000	1.000		1.000	1.000	1.000	000.1	1.000	1.000	1.000	1.000	1-000	-	000-1			000.1		1.000	1.000	1.000	000-1	B1	1.000	1.000	-000	000-1-	P	1.000	1.000	1.000	1.000	1.000	0000-1
	- II	066-0	0.970	0.961		0.941	0.932	0.923	0-914 0-904	0.895	0.886	0.878	0.869	0.860		1.0.0	0.015		0.818		0.810	0-802	161-0	0.786		0.170	0.762	0.755	0-747	0	0.703	0.669	0.636	0.605	199.0	0.995
	-21	0.980	0.941	0.922		0.886	0.868	0.851	0.814	0.01	0.785	0.769	0-754	0.739		0.709	204-0	109 0	0.668		0-654	1+9-0	0.628	010.0	c	0.591	0-580	0.568	0.557		0.493	0.446	0.403	0.364	266.0	0.990
	31-	0.970	616-0	0.859		((8.0	0.808	0.784	0-760	0.715	0.694	0.673	0.653	0.633	117 0	0.596	0.578	195.0	0.544		0.527	215.0	0.496	194-0	104.0	0.453	0-439	0.426	0.413		0.344	0.296	0.254	0.218	266.0	0.985
	24-	0.960	0.885	0.849		0.783	0-751	0.721	0.663	0.616	0.613	0.588	0.565	0-542	0 5 0	0.500	0.Ahn	0.460	0.442		0.424	104.0	160.0	C/(-0	Par	0.346	0.332	0.319	0.306		0.240	0.195	0.159	0.130	066.0	0.980
	-51	0.950	0.857	0.815		0.735	0.698	0.66]	0.599	0.569	0.540	0.513	0.488	0.463	077 0	0.418	10.107	111.0	0.358		0.341	47E - D	0.107	767.0		0.264	0.230	0.238	0.226	c17-0	0.166	0:129	660.0	0.077	0.987	0.975
	EARS TO SCALATE		•	* * • •		4 · 9 ·	•		• • •	•	• ~	•	-	•	• •	•			20 +		21		•			26 4	27 8	20 8	4 4 6 7 7		35 +	4 0 7	42 #	20 •	.25 *	.50 •
1	1 11				1				EARS	-															•											
									12 Y																											

ESCALATION FACTOR TABLE

TABLE

FACTOR

ESCALATION

Day 1

lime (in years)

c

0

d = number of escalation periods

where e = annual escalation rate

 $= (I + e)^{n}$

Escalation Factor

ຽ

ů

Cash Flow Diagram:

6-9

Example 6.2: ESTIMATE A FUTURE COST BASED ON TODAY'S PRICE AND NEGATIVE ESCALATION

Suppose an item costs \$500 today. What will be the cost in 12 years if the price "escalates" at a rate of -3% compounded annually.

$$C_{\rm P} = \$500$$

n = 12
e = -0.03
$$C_{\rm F} = ?$$

$$C_{\rm F} = \$500 \times (1-0.03)^{12}$$

= \\$500 \times 0.6938

= \$347

ECO ANAL/MILCON DES Student's Manual

Example 6.3: ESTIMATE A FUTURE COST BASED ON TODAY'S PRICE AND ZERO ESCALATION

Change the annual escalation rate in problem 6.2 to 0% and compute the future amount.

C _p	=	\$500
n	=	12
e	=	0.00
C _F	=	?
C _F	=	\$500 x (1+0.00) ¹² \$500 x 1.0000

= \$500

Example 6.4: ESTIMATE A FUTURE COST IN CURRENT DOLLARS BASED ON TODAY'S PRICE

Suppose that an item costs \$500 today and escalates at an annual rate of 10% over and above inflation. Assume the annual rate of inflation is 5%. What will be the cost in 12 years in then-current dollars?

$$\begin{array}{rcl} C_{\rm P} &=& \$500 \\ {\rm n} &=& 12 \\ {\rm e} &=& 0.10 \\ {\rm I} &=& 0.05 \\ {\rm E} &=& (1\!+\!{\rm e})(1\!+\!{\rm I}) - 1 \\ {\rm C}_{\rm F} &=& ? \end{array}$$

$$C_{\rm F} = \$500 \ \text{x} \ (1+\text{E})^{12}$$

$$E = (1+0.10)(1+0.05) - 1 = 0.155$$

$$C_{\rm F} = \$500 \ \text{x} \ (1+0.155)^{12}$$

$$= \$500 \ \text{x} \ 5.6362$$

= \$2,818

Example 6.5: ESTIMATE A FUTURE COST IN CONSTANT DOLLARS BASED ON TODAY'S PRICE

The price of an item which costs \$500 today is expected to escalate at an annual rate of 15% including 5% inflation. Estimate what it will cost in 12 years in constant dollars (i.e., in dollars with today's purchasing power).

$$C_{P} = \$500$$

n = 12
E = 0.15
I = 0.05
e = (1+E)/(1+I) - 1 = (1+0.15)/(1+0.05) - 1
= 0.095
C_{F} = ?

$$C_F = $500 x (1+e)^{12} \\ = $500 x (1+0.095)^{12} \\ = $500 x (2.9715)^{12}$$

= \$1,486

THIS PAGE IS INTENTIONALLY LEFT BLANK

ECO ANAL/MILCON DES Student's Manual

6.2 DISCOUNT TO COMPUTE THE PRESENT WORTH EQUIVALENT OF A SINGLE FUTURE COST OR BENEFIT

To compare the life-cycle costs and benefits of alternative designs, all amounts have to be stated in time-equivalent dollars. We do this by discounting.

By the end of this section you are expected to be able to

- discount to find the present worth equivalent of a single future amount when the future amount is given
- discount to find the present worth equivalent of a single future amount when the future amount has to be estimated

Slide 6-4

DISCOUNT A SINGLE FUTURE COST TO FIND ITS PRESENT WORTH EQUIVALENT

- When the future amount is given
- When the future amount has to be estimated

Slide 6-5 (a & b)

To find PW when C_F is known

PW? <----- C_F

Discount Formula: Single Present Worth (SPW)

 $PW = C_F [1/(1+d)^n]$

Example 6.6: COMPUTE THE PRESENT WORTH OF A SINGLE FUTURE COST GIVEN IN CONSTANT DOLLARS

What is the present worth equivalent of a future cost of \$2,300 (in this year's dollars, (i.e., in constant dollars) to be incurred in 12 years, if the real discount rate is 7% per year?

$$PW = $1,021$$

The multiplier 0.444 can also be found in a table of factors based on specified values of d and n. These factors are usually called single present worth (SPW) factors. Here we use the short-hand designation "Discount Factors" and "Discount Factor Table" to refer to these. Find the Discount Factor Table in your set. Find the factor.

DISCOUNT FACTOR TABLE

Example 6.7: COMPUTE THE PRESENT WORTH OF A SINGLE FUTURE COST GIVEN IN CURRENT DOLLARS

What is the present worth equivalent of a future cost of 5,000 (in then-current dollars) to be incurred in 12 years, if the annual real discount rate is 7% and the annual inflation rate 3%.

C _F	=	\$5,000
n	=	12
d	=	0.07
Ι	=	0.03
D	=	(1+d)(1+I) - 1
PW	=	?

PW	=	$5,000 \times 1/(1+D)^{n}$
D	=	(1+0.07)(1+0.03) - 1 = 0.1021
PW	=	$5,000 \times 1/(1+0.1021)^{12}$
	=	\$5,000 x 0.3114

PW = \$1,557

ECO ANAL/MILCON DES Student's Manual

Example 6.8: COMPUTE THE PRESENT WORTH OF THE SAME FUTURE COST AS IN EXAMPLE 6.7 BUT GIVEN IN CONSTANT DOLLARS INSTEAD OF CURRENT DOLLARS

What is the present worth equivalent of a cost of 3,507 (in this year's dollars, i.e., in constant dollars) to be incurred in 12 years, if we know the nominal discount rate is 10.2% and includes 3% inflation.

$$C_{F} = \$3,507$$

n = 12
D = 0.102
I = 0.03
d = (1+D)/(1+I) - 1
PW = ?

PW	=	$3,507 \times 1/(1+d)^{n}$
d	=	(1+0.102)/(1+0.03) - 1 = 0.07
PW	=	$3,507 \times 1/(1+0.07)^{12}$
	=	\$3,507 x 0.4440

PW = \$1,557

Slide 6-6 (a - b)

To find PW when C_F has to be estimated

PW? <---- C_F?

Escalation Formula combined with Discount Formula

$$PW = C_{p} \frac{(1+e)^{h}}{(1+d)^{h}}$$

Example 6.9: COMPUTE THE PRESENT WORTH OF A SINGLE FUTURE COST WHEN THE FUTURE COST IS TO BE ESTIMATED IN CONSTANT DOLLARS

Find the present worth of a future cost that is expected to occur 5 years from now. The cost would be \$800 if it occurred today; price escalation over the next 5 years is projected at an annual differential rate of 2.5%. The annual real discount rate is 7%.

C _P	=	\$800
n	=	5
d	=	0.07
e	=	0.025
PW	=	?

$$PW = ?$$

PW	=	$\begin{array}{c} \$800 \ x \ \underline{(1+0.025)^5} \\ (1+0.07)^5 \end{array}$	
	=	\$800 x <u>1.1314</u> 1.4026	(Note: carried through in
	=	\$800 x 0.80667	calculator
PW	=	\$645	

Instead of using the formula you can use the appropriate escalation factor from the Escalation Factor Table and the appropriate discount factor from the Discount Factor Table in combination.

- But since the escalation rate is 2.5%, using the factor table requires that you interpolate between the escalation factors for 2 and 3%
- The difference between the 3% escalation factor for year 5 and the 2% escalation factor for year 5 is

1.159 - 1.104 = 0.055

• Multiply this difference by 0.5 to get the value for 0.5%.

 $0.055 \ge 0.0275$

• Add this to the 2% factor to get the value for a 2.5% escalation

1.104 + 0.0275 = 1.131

• To summarize:

Escalation Factor for 2.5%, 5yr = 1.104 + 0.5(1.159-1.104) = 1.131

Look up the discount factor in the Discount Factor Table. It is 0.713.

Use these two factors in combination to calculate the PW:

 $PW = C_P x$ escalation factor x discount factor

- = \$800 x 1.131 x 0.713
- = \$800 x 0.807

PW = \$646 (note small difference due to rounding)

Arithmetic of Economic Analysis

ECO ANAL/MILCON DES Student's Manual

Example 6.10: COMPUTE THE PRESENT WORTH OF A SINGLE FUTURE COST WHEN THE FUTURE COST IS TO BE ESTIMATED IN CURRENT DOLLARS

Redo Example 6.9, but now assume that the future cost is to be estimated in current dollars. If it occurred today, it would be \$800, but it is not expected to occur for five years. Estimate the future cost in current dollars and discount it to determine its present worth equivalent.

C _P	=	\$800
n	=	5
e	=	0.025
Ι	=	0.06
E	=	(1+e)(1+I) - 1 =
d	=	0.07
D	=	(1+d)(1+I) - 1 =
PW	=	?
PW	=	$800 \times (1+E)^5$
		$(1+D)^{5}$
E	=	(1+0.025)(1+0.06) - 1 = 0.0865
D	=	(1+0.07)(1+0.06) - 1 = 0.1342
PW	=	(Note: carried through in
		$(1.1342)^3$ calculator)
		A000 0.00/7
	=	\$800 x 0.8067
		0 <i>C</i> 4 <i>C</i>
	=	\$645

ECO ANAL/MILCON DES Student's Manual

6.3 DISCOUNT TO COMPUTE THE PRESENT WORTH EQUIVALENT OF A SERIES OF FUTURE COSTS OR BENEFITS

When costs or benefits recur periodically, it is possible to use a short-cut calculation procedure which avoids the need to escalate and discount each amount in the series separately. Some series do not begin at the beginning of the analysis period. An adjustment is required in this case to compute PW of the series.

By the end of this section, you are expected to be able to

• calculate the present worth of series of cash flows having different rates of escalation and different starting times

Day 1

Slide 6-7

COMPUTE THE PRESENT WORTH OF A SERIES OF FUTURE AMOUNTS

- Uniform series
- Series escalating at a constant positive rate
- Series escalating at a constant negative rate
- Series beginning in the future
- Series escalating at a variable rate

Slide 6-8

Example 6.11: COMPUTE THE PRESENT WORTH OF A UNIFORM SERIES OF FUTURE AMOUNTS (e.g., zero differential rate of escalation)

Find the present worth of a series of annual payments that recur 25 times over the analysis period. The initial payment of \$8,000 occurs at the beginning of the first year of the analysis period, the second occurs at the beginning of the second year, and so forth. Assume the series escalates at the rate of general price inflation, meaning the differential escalation rate is zero. The discount rate is 10% per year.

A _i	=	\$8,000
k	=	25
d	=	0.10
е	=	0
PW	=	?

\$8K	\$8K	\$8K	\$8K	\$8K .	\$8K	
						{
Ó	1	2	3	4	23	24

$$PW = ?$$

 $PW = \$8,000 \text{ x } (v^{k}-1)/(v-1)$ = \\$8,000 \text{ x } [((1+0)/(1+0.10))^{25} - 1]/[(1+0)/(1+0.10) -1] = \\$8,000 \text{ x } 9.985

PW = \$79,878

Alternatively, look in the Annual Series Table - Annual Discount Rate = 10% - you will find the annual series factor for a series of 25 and 0% differential rate of escalation to be 9.985. Multiply the factor times the initial payment to obtain PW of the entire series.

Arithmetic of Economic Analysis

ECO ANAL/MILCON DES Student's Manual

TIAL RATE OF ESCALATION OR TABLE	OR TABLE := 10%	E NO. TH ST 97 107 SERIES	000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1 2.000	279 5.158 5.480 5.605 5.714 5.865 6.000 6 -51 6.115 6.281 6.453 6.530 6.812 7.000 7 628 6.837 7.053 7.277 7.509 7.750 8.000 8 267 7.526 7.796 8.078 8.372 8.680 9.000 8 -101 8.184 8.513 8.858 9.220 9.601 10.000 10	441 8.612 9.203 9.616 10.053 10.513 11.000 11 381 9.411 9.668 10.354 10.670 11.418 12.000 12 491 9.963 10.312 11.672 12.314 13.000 13 491 9.963 10.510 11.072 11.672 12.314 13.000 13 491 9.963 10.510 11.072 11.770 12.460 13.202 14.000 14 9.73 10.530 11.773 12.449 13.733 14.082 15.000 15 4.79 11.073 12.449 13.733 14.082 15.000 15		688 13.718 14.867 16.151 17.588 19.196 21.000 * 21 996 14.094 15.726 16.711 18.568 20.022 22.000 * 22 .287 14.454 15.769 17.255 18.936 20.840 23.000 * 23 .562 14.797 16.196 17.784 19.591 21.650 24.000 * 24 .352 15.124 16.607 18.299 20.235 22.454 25.000 * 25	069 15.477 17.003 18.800 20.957 21.250 26.000 * 26 - 301 15.775 17.394 19.287 21.468 24.038 77.000 * 27 - 521 16.020 17.752 19.761 22.097 24.820 28.000 * 28 - 729 16.291 18.107 20.222 22.6595 25.594 29.000 * 29 - 376 16.551 18.448 20.671 23.283 26.761 30.000 * 30	-759 17.682 19.979 22.776 26.061 10.095 15.000 * 35 -189 18.578 21.230 24.515 28.600 11.661 40.000 * 40 -864 19.288 22.107 26.102 10.914 17.069 45.000 * 45 -223 19.951 21.185 27.466 31.026 40.124 50.000 * 50 Cash Flow Diagram:	and rad
0% DIFFEREN	I Discount Rate	ANNUAL ESCALATION RATE IX 2X 3X	000 1.000 1.000 1. 918 1.927 1.936 1. 761 2.787 2.813 2. 535 3.584 3.634 3.	899 5.009 5.127 5. 498 5.645 5.797 5. 048 6.234 6.428 6. 553 6.781 7.019 7.	441 7.758 8.090 8. 814 8.194 8.575 8. 191 8.598 9.070 9. 523 8.972 9.455 9.	103 9.642 10.226 10. 358 9.941 10.576 11. 593 10.216 10.903 11. 808 10.475 11.209 12. 003 10.711 11.496 12.	187 10.934 11.764 12. 133 11.139 12.015 12. 506 11.129 12.251 13. 647 11.505 12.471 13. 776 11.668 12.678 13.	11.619 12.671 14. 11.960 13.052 14. 12.090 13.221 14. 12.211 13.328 14.	606 12-771 14-141 15 820 13-079 14-582 16 960 13-290 14-899 16 051 13-435 15-127 17	(1 - 1)
	Annua	-1X 0X	1.000 1.000 1. 1.900 1.909 1. 2.710 2.776 2. 1.439 1.487 3. 4.095 4.170 4.	4.686 4.791 4.585 5.217 5.355 5.555 5.669 5.669 5.669 5.6795 6.335 6.335 6.335 6.335 7.669 5.6695 5.669 5.669 5.669 5.669 5.669 5.669 5.669 5.669 5.669 5.6695 5.6	6.862 7.145 7. 7.176 7.495 7. 7.458 7.814 8 7.712 8.103 8 7.941 8.367 8	8.147 8.606 9. 8.332 8.824 9. 8.499 9.022 9. 8.649 9.201 9. 8.764 9.365 10	8.906 9.514 10 9.015 9.649 10 9.114 9.772 10 9.202 9.883 10 9.282 9.985 10	9.985	9.750 10.609 11 9.652 10.757 11 9.913 10.649 11 9.948 10.906 12	$= (v_{k} - 1)/($
AN		-41 -31 -21	0000 1.000 1.000 .673 1.882 1.691 .634 2.659 2.685 .299 3.345 3.392	-385 4-481 4-583 -827 4-953 5-083 -213 5-368 5-529 -549 5-733 5-925	-100 6.340 6.594 -323 6.591 6.675 -516 6.812 7.125 -689 7.179 7.547	.967 7.330 7.723 .081 7.464 7.880 .179 7.582 8.021 .266 7.686 8.146 .341 7.778 8.257	-407 7.858 8.356 -464 7.930 8.445 -514 7.993 8.523 -558 8.097 8.554	.629 8.140 8.712 .658 8.178 8.761 .683 8.211 8.806 .706 8.241 8.845	790 8-358 9-006 823 8-406 9-076 840 8-432 9-116 848 8-446 9-138	actor
		HO. TH SERIES -5X	1 • 1.000 1 2 • 1.864 1 3 • 2.610 2 4 • 3.254 3 5 • 3.010 3	 4.290 1.705 4.705 4.705 8.5.064 5.641 	11 5.071 6 12 6.071 6 13 6.243 6 14 6.320 6	16 6 6.611 6 17 6 6.727 7 18 6 6.809 7 19 6 6.861 7 20 6 6.941 7	S1 • 6.996 22 • 7.042 23 • 7.082 24 • 7.116 25 • 7.116	26 7.171 7 27 7.199 7 28 7.212 7 29 7.229 7 30 7.2249 7	35 • 7.290 40 • 7.313 50 • 7.323 50 • 7.329	Annual Series F
							25 PAYMENT			

ANNUAL SERIES FACTOR TABLE

Arithmetic of Economic Analysis

time (in years)

↓ 0

d = discount ratek = number of amounts in series

where v = (1 + e)/(1 + d)e = annual escalation rate

N

Example 6.12: COMPUTE THE PRESENT WORTH OF A SERIES OF FUTURE AMOUNTS ESCALATING AT A CONSTANT POSITIVE RATE

Use the same assumptions as in the previous example except change the escalation rate to 4% higher than general price inflation.

A

$$PW = ?$$

 $PW = \frac{88,000 \text{ x} (v^{k}-1)}{(v-1)}$

= $\$8,000 \times [((1+0.04)/(1+0.10))^{25} - 1]/[(1+0.04)/(1+0.10) - 1]$ = $\$,000 \times 13.822$

PW = \$110,580

Alternatively, look up the annual series factor in the table. For e = 4%, and k = 25, it is 13.822.

ECO ANAL/MILCON DES Student's Manual

What does \$110,580 mean? It is the amount today that is time equivalent to the series of future amounts escalating at 4% per year.

Example 6.13: COMPUTE THE PRESENT WORTH OF A SERIES OF FUTURE AMOUNTS ESCALATING AT A CONSTANT NEGATIVE RATE

Use the same assumptions as in the previous example except change the differential escalation rate to -4%. Calculate present worth.

PW = ?

$$PW = \$8,000 \times (v^{k}-1)/(v-1)$$

= \\$8,000 \times [((1-0.04)/(1+0.10))^{25}-1]/[(1-0.04)/(1+0.10) - 1]
= \\$8,000 \times 7.596
$$PW = \$60,766$$

The corresponding annual series factor from the Annual Series Factor Table is 7.596.

ECO ANAL/MILCON DES Student's Manual

Arithmetic of Economic Analysis

A series of annual costs begins to occur 3 years after the beginning of the analysis period. The series consists of 10 consecutive amounts spaced at one-year intervals. The initial amount would be \$500 if it occurred at the beginning of the analysis period. The differential escalation rate is zero, and the annual real discount rate is 7%. Compute the present worth equivalence of the series at the beginning of the analysis period.

SOLUTION:

STEP 1: Calculate the magnitude of the initial cost of the series (A_i) :

 $\begin{array}{rcl} A_{i} & = & A_{o} \ x \ (1+e)^{n} \\ & = & \$500 \ x \ (1+0)^{3} \\ & = & \$500 \end{array}$

FUTURE

ECO ANAL/MILCON DES Student's Manual

Day 2

STEP 2: Calculate the equivalent one-time cost of the series (P) of 10 payments as of the beginning of the series (i.e., at the time of the initial cost in the series):

$$P = A_i x (v^k-1)/(v-1)$$

- = $\frac{500 \times [((1+0)/(1+0.07))^{10} 1]}{[(1+0)/(1+0.07) 1]}$
- = \$500 x 7.515
- = \$3,758 (Note that this is the time equivalent value of the series three years <u>after</u> the beginning of the analysis period. We need it as of the beginning of the analysis period.)
- STEP 3: Calculate the present worth as of the beginning of the analysis period:

$$PW = P \times \frac{1}{(1+d)^{n}}$$

$$PW = \$3,758 \times \frac{1}{(1+0.07)^{3}}$$

$$= \$3,758 \times 0.8163$$

$$PW = \$3,068$$

Alternatively, solve the problem using factors:

A _i	=	\$500 x 1.000 \$500	(escalation factor from Escalation Factor Table, for $e = 0\%$, $n = 3$)
Р	=	\$500 x 7.515	(annual series factor from Annual Series Factor Table, for $d = 7\%$, $e = 0\%$, $k = 10$)
	=	\$3,758	$101 \mathrm{d} = 770, \mathrm{c} = 070, \mathrm{x} = 10)$

ECO ANAL/MILCON DES Student's Manual

PW = $$3,758 \times 0.8163$ (discount factor from Discount Factor Table, for d = 7%, n = 3)

= \$3,068

Example 6.15: COMPUTE THE PRESENT WORTH OF A SERIES THAT BEGINS TO OCCUR IN THE FUTURE AND ESCALATES AT A CONSTANT POSITIVE RATE

Change one assumption in Example 6.14 and find the new PW. Assume that the series escalates at a constant annual rate of 5%.

SOLUTION:

STEP 1: Calculate the magnitude of the initial cost in the series (A_i) :

$$A_i = $500 \times (1+0.05)^3 \\ = $500 \times 1.158 \\ = $579$$

ECO ANAL/MILCON DES Student's Manual
STEP 2: Calculate the equivalent one-time cost of the series as of the beginning of the series (i.e., at the time of the initial cost in the series):

$$P = A_i x (v^k-1)/(v-1)$$

- $= \frac{579 \text{ x } [((1+0.05)/(1+0.07))^{10} 1]}{[(1+0.05)/(1+0.07) 1]}$
- = \$579 x 9.199

STEP 3: Calculate the present worth as of the beginning of the analysis period:

$$PW = P \times \frac{1}{(1+d)^{n}}$$

$$PW = \$5,326 \times \frac{1}{(1+0.07)^{3}}$$

$$= \$5,326 \times 0.8163$$

$$PW = \$4,348$$

Alternatively, solve the problem using factors:

A _i	=	\$500 x 1.158	(escalation factor, Escalation Factor Table, e = 0% , n = 3)
	=	\$579	
Ρ	=	\$579 x 9.199	(annual series factor, Annual Series Factor Table, $d = 7\%$, $e = 0\%$, $k = 10$)
	=	\$5,326	
PW	=	\$5,326 x 0.8163	(discount factor, Discount Factor Table, d = 7% n = 3)
PW	=	\$4,348	

Example 6.16: COMPUTE THE PRESENT WORTH OF A SERIES THAT BEGINS TO OCCUR IN THE FUTURE AND ESCALATES AT A CONSTANT NEGATIVE RATE

Keep all assumptions of example 6.15, except change the differential escalation rate to a negative 5%. Use factors to find PW.

SOLUTION BY FACTORS:

A_i	=	\$500 x 0.857	(escalation factor, Escalation Factor Table, e = -5% , n = 3)
	=	\$428	
Ρ	=	\$428 x 6.203	(annual series factor, Annual Series Factor Table, $e = -5\%$, $d = 7\%$, $k = 10$)
	=	\$2,660	
PW	=	\$2,660 x 0.8163	(discount factor, Discount Factor Table, d = 7%, n = 3)
PW	=	\$2,170	

ECO ANAL/MILCON DES Student's Manual

Arithmetic of Economic Analysis

Example 6.17: COMPUTE THE PRESENT WORTH OF A SERIES ESCALATING AT VARIABLE RATES

Assume that a certain amount of energy is consumed annually over a 17 year period, and that the bills are paid annually. The first payment is incurred three years from the beginning of the analysis period. The cost of that annual consumption based on energy prices at the beginning of the analysis period (i.e., in constant dollars of the beginning as of the analysis period) is \$2,000. The differential escalation rate over the three-year period until the first payment is -3%. Over the next five years, the differential escalation rate is 4%, and thereafter it is 6%. Assume a real discount rate of 7%. Find the present worth of this series as of the beginning of the analysis period.

A _o	=	\$2,000	d	=	0.07
n	=	3	e ₁	=	-0.03
k ₁	=	5	e ₂	=	0.04
k ₂	=	12	e ₃	=	0.06
A1 _i	=	initial payment o	f first s	ubseri	ies
A2 _i	=	initial payment o	f secon	d subs	series
A _f	=	final payment			
PW	=	?			

Model this problem as though there were two successive subseries, one starting three years after the beginning of the analysis period and consisting of five payments, and the second one starting eight years after the beginning of the analysis period and consisting of 12 payments. Use factors to solve the problem.

ECO ANAL/MILCON DES Student's Manual Arithmetic of Economic Analysis

SOLUTION USING FACTORS:

- STEP 1: Calculate the magnitude of the first payment in the first subseries three years from the beginning of the analysis period:
 - A1_i = A_o x escalation factor ($e_1 = -3\%$, n = 3) = \$2,000 x 0.913 = \$1,826

Note that the first annual payment in the first series occurs at the time the escalation rate changes from e_1 to e_2 , and the first subseries consists of that payment plus four other payments escalating at e_2 . The first payment in the second series occurs at the time the escalation rate changes from e_2 to e_3 and consists of that payment plus 11 other payments escalating at e_3 .

STEP 2: Find the equivalent one-time cost of the first subseries at three years (P1): (It consists of five payments.)

P1 = A1_i x annual series ($e_2 = 4\%$, k = 5, d = 7%)

- = \$1,826 x 4.727 = \$8,632
- STEP 3: Calculate the magnitude of the first payment in the second subseries. The known cost of the annual consumption at the beginning of the analysis period has to be escalated to the time when the escalation rate changes from 4% to 6%, i.e., eight years:
 - $A2_i = A_o x$ escalation factor for period prior to first subseries ($e_1 = -3\%$, three years) x escalation factor for escalation period of first subseries ($e_2 = 4\%$, five years)
 - $= $2,000 \times 0.913 \times 1.217$ = \$2,222

STEP 4: Find the equivalent one-time cost of the second subseries at eight years (P2). The subseries consists of 12 payments:

P2 = A2_i x annual series factor ($e_3 = 6\%$, $k_2 = 12$, d = 7%)

= \$2,222 x 11.402 = \$25,335

STEP 5: Calculate the PW of each of the equivalent one-time costs (P1 and P2 of the two subseries:

PW1 = P1 x discount factor (d = 7%, n = 3)

= \$8,632 x 0.8163 = \$7,046

PW2 = P2 x discount factor (d = 7%, n = 8)

 $= $25,335 \times 0.5820 \\= $14,745$

STEP 6: The last step is to sum the two values to get the present worth of a series of annually recurring payments when the escalation rate varies over the analysis period:

PW = PW1 + PW2

- = \$7,046 + \$14,745
- = \$21,791

The results indicate that paying the energy bills over the analysis period is time equivalent to paying a lump sum of \$22,508 at the beginning of the analysis period, based on the data and consumptions given.

SUMMARY OF STEPS TO COMPUTE THE PRESENT WORTH OF A SERIES OF ANNUALLY RECURRING AMOUNTS WHEN THE ESCALATION RATE VARIES OVER THE ANALYSIS PERIOD:

STEP 1: Calculate initial amount A1_i for the first subseries:

A1_i = A_o x escalation factor for escalation period from beginning of analysis period to time first subseries begins

- STEP 2: Calculate the one-time equivalent cost for subseries 1 as of the beginning of the subseries:
 - P1 = $A1_i$ x annual series factor for number of payments in subseries 1, escalating at rate e_2
- STEP 3: Calculate initial amount $A2_i$ for subseries 2:

 $A2_i = A_o x$ escalation factors covering each escalation period from the beginning of the analysis period to the time the second subseries begins

- STEP 4: Calculate the equivalent one-time cost for subseries 2:
 - P2 = $A2_i$ x annual series factor for number of payments in subseries 2, escalating at rate e_3
- STEP 5: Calculate the present worth equivalents of both subseries as of the beginning of the analysis period:

PW1 = P1 x discount factor

PW2 = P2 x discount factor

ECO ANAL/MILCON DES Student's Manual

STEP 6: Sum the one-time costs of the two subseries to get the present worth equivalent of the entire annual series of costs:

PW = PW1 + PW2

Notice that there are six steps to the calculation procedure even using factors. In Module 7 we will introduce a special set of factor tables which will greatly simplify the calculations. They are tables of factors which have built in to single multipliers most of the calculations in the six-step procedure. THIS PAGE IS INTENTIONALLY LEFT BLANK

ECO ANAL/MILCON DES Student's Manual

6.4 EXERCISE 6-1: ESCALATION/DISCOUNTING

The purpose of this exercise is to provide you practice in (1) escalating to estimate future costs and benefits based on today's prices and projected rates of price escalation, and (2) discounting to present worth the various types of cash flows encountered in life-cycle cost analysis. Mastering the basic arithmetic operations lays the foundation for advancing to the specific cash flows of MILCON design evaluations in the next two modules.

Use the set of discount tables in the Notebook of Reference Materials. Note that directories in front of the tables explain how to use them, or you can refer back to the examples in this module if you need guidance.

Student's Manual

Problem 1

Estimate in constant dollars the cost of an item in 10 years, C_F , based on the fact that it costs \$1,000 today and the projected annual differential escalation rate is 10%.

$$C_{P} = \$1,000$$

n = 10
e = 0.10

a. Draw a cash flow diagram:

b. Calculate the future cost, $C_{\rm F}$, using the escalation formula:

 $C_F =$

c. Find the appropriate escalation factor in the set of escalation and discount tables in your Notebook of Reference Documents, write it here, and use it to calculate C_F :

Escalation Factor =

 $C_F =$

Arithmetic of Economic Analysis

ECO ANAL/MILCON DES Student's Manual

Problem 2

Redo problem 1, but assume a differential escalation rate of -5%.

$$\begin{array}{rcl} C_{\rm P} &=& \$1,000 \\ n &=& 10 \\ e &=& -0.05 \end{array}$$

a. Calculate the future cost, C_F , using the escalation formula:

C_F =

b. Find the escalation factor in the table, write it here, and use it to calculate C_F :

Escalation Factor =

 $C_F =$

Problem 3

A repair cost is expected to occur three years from now. If it occurred today, the repair cost would be \$1,500. The projected inflation rate is 4%, and relevant repair prices are projected to escalate at the rate of inflation. Express the future amount in current dollars.

 $C_{P} = \$1,500$ n = 3I = 0.04

a. Draw a cash-flow diagram:

b. Calculate the future cost, C_F , using the escalation formula:

 $C_F =$

c. Find the escalation factor in the table, write it here, and use it to calculate C_F :

Escalation Factor =

 $C_{\rm F}$ =

ECO ANAL/MILCON DES Student's Manual

Problem 4

Find the present worth (PW) of a salvage value of \$800 expected to be received eight years from today, given a discount rate of 7%.

 $C_{\rm F} = \$800$ n = 8 d = 0.07

a. Draw a cash flow diagram:

b. Calculate the present worth, using the discount formula:

PW =

c. Find the appropriate discount factor in the Discount Factor Table in your Notebook of Reference Materials, write it here, and use it to calculate PW:

Discount Factor =

PW =

Problem 5

A replacement component must be purchased at the end of nine years. If purchased today, the price would be \$500. The price is expected to increase at a rate 2.4% faster than general price inflation over the nine years. The discount rate is 7%. Estimate the future replacement cost and find its present worth in a combined escalation/discount calculation.

a. Draw a cash flow diagram:

b. Calculate PW, using the combined escalation/discount formula:

PW =

c. Find the escalation and discount factors needed to solve this problem in the tables in your Notebook, write them here, and use them to calculate PW (Note: this will require you to interpolate between the escalation factors for 2% and 3%):

Escalation Factor =

Discount Factor =

PW =

ECO ANAL/MILCON DES Student's Manual

Problem 6

Redo problem 5, but assume an escalation rate of -5%.

- $C_P = 500 n = 9 d = 0.07e = -0.05
- a. Use the formula:

PW =

b. Write the escalation and discount factors:

Escalation Factor =

Discount Factor =

Problem 7

Find the present worth of a series of maintenance and repair costs which recur annually over six years. The initial payment of \$300 occurs at the beginning of the first year of the analysis period (i.e., $A_o = A_i$). The series is projected to escalate at the rate of general price inflation. The real discount rate is 7%.

$$A_o = A_i = $300$$

 $k = 6$
 $d = 0.07$
 $e = 0$

a. Draw a cash flow diagram:

b. Calculate PW using the annual series formula:

PW =

c. Find the annual series factor, write it here, and use it to calculate PW:
 Annual Series Factor =
 PW =

Problem 8

Redo problem 7 but assume that the recurring cost escalates at a rate 3% faster than general price inflation.

 $A_{o} = A_{i} = \$300$ k = 6 d = 0.07 e = 0.03

a. Draw a cash flow diagram:

b. Calculate PW using the annual series formula:

PW =

c. Find the appropriate annual series factor and write it here:

Annual Series Factor =

Problem 9

Redo problem 7 but assume a negative rate of escalation.

$$A_{o} = A_{i} = $300$$

 $k = 6$
 $d = 0.07$
 $e = -0.05$

a. Draw a cash flow diagram:

b. Calculate PW using the annual series formula:

P =

c. Find the annual series factor and write it here:

Annual Series Factor =

ECO ANAL/MILCON DES Student's Manual

Problem 10

A series of annual M&R costs starts three years after the beginning of the analysis period and escalates at the same rate as general price inflation. The annual amount, if it occurred at the beginning of the analysis period, would be \$5,000. There are 10 amounts in the series. The discount rate is 10%.

 $A_o = $5,000$ d = 0.10 n = 3 e = 0 k = 10

a. Draw a cash flow diagram:

b. Calculate PW using the appropriate formulas:

 $A_i =$

P =

PW =

Problem 10 continued:

c. Find the appropriate factors needed to solve the problem, write them here, and use them to calculate PW:

Escalation Factor =

Annual Series Factor =

Discount Factor =

PW =

Problem 11

Redo problem 10, but assume that the series of costs escalates uniformly at an annual rate of 4%.

A _o	=	\$5,000	d	=	0.10
n	=	3	e	=	0.04
k	=	10			

a. Draw a cash flow diagram:

b. Calculate PW using factors:

$$A_i =$$

P

=

Problem 12

Redo problem 10 but assume that there is a negative escalation rate of 5%.

A	=	\$5,000	d	=	0.10
n	=	3	e	=	-0.05
k	=	10			

a. Draw a cash flow diagram:

b. Calculate PW using factors:

 $A_i =$

$$PW =$$

Arithmetic of Economic Analysis

ECO ANAL/MILCON DES Student's Manual

Problem 13

Compute the PW of an annual series consisting of 11 payments expected to escalate at a variable rate over the analysis period. The annual amount based on prices at the beginning of the analysis period is \$500. The first payment is incurred two years after the beginning of the analysis period. The escalation rate for the two years before the first payment is made is -2%. The escalation rate over the next five years is 3%, and over the remaining six years it is 5%. The discount rate is 7%.

A _o	=	\$500	d	=	0.07
n	=	2	e ₁	=	-0.02
k ₁	=	5	e ₂	=	0.03
k ₂	=	6	e ₃	=	0.05
A1 _i	=	initial paymer	nt of	first	subseries
$A2_i$	=	initial paymer	nt of	seco	nd subseries

a. Draw a cash flow diagram:

b. Calculate PW using factors:

- Find the magnitude of the first payment in the first subseries:
 - $A1_i =$
- Find the equivalent one-time cost of the five payments in the first subseries:
 - P1 =

ECO ANAL/MILCON DES Student's Manual Arithmetic of Economic Analysis

Problem 13 continued:

Find the magnitude of the first payment in the second subseries:

 $A2_i =$

Find the equivalent one-time cost of the six payments as of the beginning of the second subseries:

P2 =

- Find the present worth of the first subseries as of the beginning of the analysis period:

PW1 =

- Find the present worth of the second subseries as of the beginning of the analysis period:

PW2 =

- Find the present worth of the entire series of payments:

PW =

State what the answer means:

END OF EXERCISE 6-1

Arithmetic of Economic Analysis

ECO ANAL/MILCON DES Student's Manual

6.5 COMPUTE LCC

The purpose of this section is to demonstrate how to bring together present worth calculations to compute the life-cycle costs of alternatives.

By the end of sections 6.5 and 6.6, you are expected to be able to

- calculate LCCs of alternatives
- choose from the alternatives on the basis of LCCs

Example 6.18: USE LCCA TO CHOOSE BETWEEN THE FOLLOWING PIECES OF EQUIPMENT FOR DOING THE SAME JOB:

DATA	Equipment A	Equipment B
Cost of Procurement (Beginning of analysis period)	\$10,000	\$20,000
Routine Maintenance Costs (e = 0) (Series starts midway 1st year)	\$2,000/yr	\$1,000/yr
Repair Cost (End of year in which it occurs)	\$600/yrs 5&10	\$500/yr 8
Fuel Costs (uniform e = 4%) (Series starts end of 1st year)	$A_{o} = $6,500/yr$	\$4,500/yr
Salvage Value Net of Disposal (Received at end of last year)	0 in year 15	\$1,000 in year 15
Service Life	15 years	15 years
Annual Discount Rate = 10% real		
Analysis Period = 15 years		

All Amounts Stated in Constant Dollars

ECO ANAL/MILCON DES Student's Manual

STEP 1. COMPUTE LCC FOR EQUIPMENT A:

PW (Procurement) = \$10,000 (already in PW)

- PW (Maintenance) = $2,000 \times 8.367 \times 0.9535 = 15,956$ A_o x Annual Series Factor, e = 0 x SPW 0.5yrs
- PW (Repair) = $(\$600 \times 0.6209) + (\$600 \times 0.3855) = \$604$ 1st repair 2nd repair
- PW (Fuel) = (\$6,500 x 1.040) x 10.429 x 0.9091 = \$64,092(A_i = A_o x Esc. Fact.) x Annual Series Factor x SPW 1yr

PW (Net Salvage) = 0

LCC (A) = \$10,000 + \$15,956 + \$604 + \$64,092 - 0 = \$90,652

STEP 2. COMPUTE LCC FOR EQUIPMENT B:

PW (Procurement) = \$20,000 (already in PW)

PW (Maintenance) = $$1,000 \times 8.367 \times 0.9535 = $7,978$ A_o x Annual Series Factor, e = 0 x SPW 0.5yrs

PW (Repair) = \$500 x 0.4665 = \$233 Discount Factor for yr 8

PW (Fuel) = $($4,500 \times 1.040) \times 10.429 \times 0.9091 = $44,371$ (A_i = A_o x Esc. Fact.) x Annual Series Factor x SPW 1yr

PW (Net Salvage) = $$1,000 \times 0.2394 = 239

LCC (B) = \$20,000 + \$7,978 + \$233 + \$44,371 - \$239 = \$72,343

STEP 3. COMPARE LCC AND CHOOSE THE ALTERNATIVE WITH THE LOWEST LCC:

LCC (A) = \$90,652

LCC (B) = \$72,343

Choose Equipment B

ECO ANAL/MILCON DES Student's Manual

6.6 EXERCISE 6-2: LCC

The purpose of this section is to provide you practice in applying escalation and discounting skills to compare alternatives on the basis of their life-cycle costs (LCCs).

Calculate LCCs for the following window alternatives and make a choice between them based on their LCCs:

DATA

WINDOW ALTERNATIVES

	Single Glazed Wood Frames	Double Glazed Vinyl-Clad Frames
Purchase & Installation (Beginning of analysis period)	\$12,000	\$17,000
Cleaning Costs (e = 0) (Series starts midway 1st year)	\$500/yr	\$500/yr
Painting and Repair (End of year in which it occurs)	\$2,000/yrs 5,10,15	\$500/yr 10
Fuel Costs (uniform e = 2%) (Series starts midway 1st year)	$A_{o} = $2,600$	\$1,900
Resale of Building (End of last year)	0	\$5,000
Annual Discount Rate = 10% real		
Analysis Period = 20 years		
All Amounts Stated in Constant Dollars		
ECO ANAL/MILCON DES Student's Manual	Arithmetic of Economic Analysis	6-67

THIS PAGE IS INTENTIONALLY LEFT BLANK

MODULE 7

HOW TO PERFORM MILCON GENERAL ECONOMIC STUDIES

Purpose:

- To take you from generic calculations to specific MILCON design analysis
- To present the Army/Air Force criteria for general economic studies
- To give you hands-on practice in performing general economic studies according to criteria

Outline:

- 7.1 Criteria for General Economic Studies
- 7.2 Input Data & Cash-Flow Diagrams
- 7.3 Computing LCC Using Conventional Approach
- 7.4 Exercise 7-1: Conventional Approach
- 7.5 Computing LCC Using One-Step Approach
- 7.6 Exercise 7-2: One-Step Approach
- 7.7 Ranking Design Alternatives
- 7.8 Exercises 7-3 & 7-4: Ranking

Approximate Time:

4 hours

Slide 7-1

Notes:

How to Perform Milcon General Economic Studies

ECO ANAL/MILCON DES Student's Manual

7.1 CRITERIA FOR GENERAL ECONOMIC STUDIES

By the end of this section, you are expected to be able to

• describe the criteria governing MILCON general economic studies

CRITERIA FOR GENERAL ECONOMIC STUDIES

- 1. Methodology
- 2. Data & Parameters
- 3. Management Considerations

Notes:

How to Perform Milcon General Economic Studies

ECO ANAL/MILCON DES Student's Manual Slide 7-3 (a-i)

METHODOLOGY CRITERIA EA method: LCC (principal) 1. Coverage of each analysis: all feasible alternatives 2. Discounting approach: PW at DOS 3. Time frame: ABD thru lesser of economic life or 25 yrs from BOD 4. Measured effects: all relevant & signif \$ costs & benefits 5. Inflation: relative approach - constant \$ & real d 6. Cash-flow model: construction - MPC 7. annually recurring - mid year non-annually recurring - actual Uncertainty: assessment required when critical to ranking 8.

Notes:

Notes:

ECO ANAL/MILCON DES Student's Manual

Notes:

Slide 7-6

- (DOS) Date of Study, e.g., 1/90
- (ABD) Analysis Base Date (=DOS)
- (MPC) Midpoint of Construction, e.g., 7/92
- (BOD) Beneficial Occupancy Date, e.g, 1/93
- (AED) Analysis End Date, e.g., 1/18

Notes:

7.2 INPUT DATA & CASH FLOW DIAGRAM

By the end of this session, you are expected to be able to

- summarize and document input data on DA Form 5605-3
- prepare cash flow diagrams using calendar dates and MILCON cash-flow modeling conventions

Day 2

Vugraph 7-1. DA Form 5605-3 (Basic Input Data Summary)

Project No. & Thie
Installation & Location
Design Faature

Alt. No.

____.Titla.

LIFE CYCLE COST ANALYSIS BASIC INPUT DATA SUMMARY

For use of this form, see TM 5-802-1; the proponent agency is USACE.

Critaria Refar	ence		
Date of Study	(DOS)		Principsi Assumptions
Analysis Base	Date (ABD)		
Analysis End	Data (AED)		
Midpoint of C	construction		
Baneficial	Actual Projected		
Date (BOD)	Assumed for Analysis		Cash Flow Disgram
DOE Region			
Annual Disco	unt Rate		
Туре	Diffarenti Rata pe	al Escalation r Yasr (%)	
of Cost	Timeframe:	1	

	Cost on ABD	Time Cos	t Incurred**	
Cost Element	S x 10 ³ S x 10 ⁴	Actual Projected Dstes	Dates for Analysis (If Different)*	Source(s) of Data
	1			

DA FORM 5605-3-R, DEC 86

*When 10 CFR436A Critaria Apply

**For Racurring Annual Costs, show date of first and last costs only.

How to Perform Milcon General Economic Studies

INPUT DATA

The study is being performed on 7/1/88, and that is also the analysis base date. Two alternatives, A & B are being considered for exterior doors for a mess hall at Fort Bragg, NC. The project is assigned the number 567. Data for alternative A are as follows:

DOS:	7/88
ABD:	7/88
Construction Start:	7/90
Construction Period:	One year
BOD:	End of Construction Period (7/91)
First Recurring Cost:	Usually six months after BOD (1/92)
Analysis Period:	From 7/88 extending 25 years past BOD (7/16)

Cost Element	Costs on DOS	Time to be Incurred	Data Sources
Initial Investment	\$100,000	1/91	Supplier est.
Replacement	\$ 20,000	7/03	Supplier est.
M&R	\$ 5,000	1/92 (1st)	M&R Database
Natural Gas	\$ 8,000	1/92 (1st)	BLAST Program
Retention Value	\$-10,000	7/16	Estimating Pro- cedure Described in Attachment 1

DOE Region = 4 (Huntsville)

Differential Escalation (e values)

	87.00	July 1 - June 30	05-16
Natural gas	2.63%	9.17%	6.10%
Other	0	0	0

ECO ANAL/MILCON DES Student's Manual How to Perform Milcon General Economic Studies

7-11

Vugraph 7-2. Blow up of project description

Project No. & Title	
Installation & Location	
Design Feature	
Alt No. Title	

Vugraph 7-3. Blow up of key date section

Criteria Refere		
Date of Study	(DOS)	
Analysis Base	Date (ABD)	
Analysis End I		
Midpoint of Co	onstruction	
Beneficial Occupancy	Actual Projected	
Date (BOD)	Assumed for Analysis	

Vugraph 7-4. Blow up of DOE region, discount rate, escal rates

DOE Region	Section and the second				
Annual Disco	unt Rate				
Туре	Different Rate p	ial Escalation er Year (%)			
of Cost	Timeframe:				

How to Perform Milcon General Economic Studies

7-14

Vugraph 7-5. Blow up of bottom part of form

	Cost on ABD	Time Cos	t Incurred**	
Cost Element	□ \$ x 10 ³ □ \$ x 10 ⁴	Actual Projected Dates	Dates for Analysis (If Different)*	Source(s) of Data

DA FORM 5605-3-R, DEC 86

Vugraph 7-6. Blow up of principal assumptions part of form

Vugraph 7-7. Blow up of cash flow diagram

Vugraph 7-8. Blow up of cash flow diagram completed

Vugraph 7-9. Completed form

Project No. & The PN 567 Mess Hay Installation & Location ARCDE Fort Pragg NC Design Fosture Exterior Doors AR No. A This Shicking Door

LIFE CYCLE COST ANALYSIS BASIC INPUT DATA SUMMARY

For use of this form, see TM 5-802-1; the proponent agency is USACE.

	Cost on ABD		Incurred**		
Cost Element	27.5 ± 10 ³ ⊃ 5 ± 10 ⁴	Actual Projected Dates	Detes for Analysis (If Different)*	Source(s) of Deta	
Initial Investment	100	1 Jan 91		Supplier Estimate	
Replacement	20	1741 2003		Supplier Estimate	
Hith	5	170n92-170n K		H+R Database	
Natural Aas	8	17an 92-17a=H		BLAST Progr.	
Retention V.	-10	174116		Attachment 1	
			-		

DA FORM 5605-3-R, DEC 86

*When 10 CFR436A Criteria Apply

**For Recurring Annual Costs, show dete of first and last costs only.

Sheet_____ ef_____

THIS PAGE IS INTENTIONALLY LEFT BLANK

How to Perform Milcon General Economic Studies

7.3 COMPUTING LCC: CONVENTIONAL APPROACH

By the end of sessions 7.3 and 7.4 you are expected to be able to

- calculate present worths of cash flows typically encountered in general economic studies using the "conventional approach," and calculate LCC
- use DA Form 5605-4 to structure and document the calculations

Vugraph 7-10. DA Form 5605-4 (Present Worth: Conventional Approach)

LIFE CYCLE COST ANALYSIS Project No. & Title_ Installation & Location____ PRESENT WORTH: Design Fasture_ CONVENTIONAL APPROACH ____ This_ Alt. No.____ For use of this form, see TM 5-802-1; the proponent egency is USACE. Present Worth on ABD Differential Escalation Rate per Year (%) Total Discount Factor Ansiysis Base Data (ABD) Midpoint of Construction Imelram Analysis End Date (AED) Annual Discount Rata **Criteris Reference BOD for Analysis** Eacel.Cost (Time First Incurred) Equiv. Single Cost Other Costs Type of Cost Annusi Series Eq Factor tat Ann. Cost In Series Present Worth on ABD M&R Costs Discount Factor Escalation Factor Escal.Cost (Time Incurred) Energy/Fuel Costs Annual Cost on ABD Escelation Factor Total No. of Payments Last Incurred Cost on ABD Years from ABD Initial Costs First Incurred Yesra From ABD 5 × 10° - S x 104 [| \$ × 10² **Ons-Time Costs Vet Present Worth:** Annual Costs

DA FORM 5605-4-R, DEC 86

Sheet_____ of_____

How to Perform Milcon General Economic Studies

									1		1.0		
	One-Time Costs	X S x 10 ³	From	Cost	Escalation	Escal.Cost	Discount Pre	Cost Discount Present	Worth	Criteria Referen	Criteria Reference		DA J
	Chievrinine Costs	1 S x 104	ABD	on ABD	Factor	Incurred)	Factor	on ABD	Analysis Base	Analysis Base Date (ABD)		88	
									Analysis End D	ete (AED)	Jul	2016	
									Midpoint of Co	nstruction	Jar	191	
									BOD for Analy	ala	Jul	191	
									Annual Discou	nt Rate	1	0%	
_								ļ	Туре	Type of Cost 77-90		ential Escalation e per Year (%)	
┝									of Cost			Jun 95-16	
									Nat'l Gas	2.63	9.17	6.10	
									other	0.00	0.00	0.00	
Γ													

Vugraph 7-11. Blow up of one-time cost section of form

2	Day	2			
---	-----	---	--	--	--

	Years fro	om ABD	Total	Annual		Escal.Cos	t (Time First	Incurred)		Dresset
Annual Costs	First Incurred	Last Incurred	No. of Payments	Cost on ABD	Escalation Factor	1st Ann. Cost in Series	Annual Series Eq Factor	Equiv. Single Cost	Discount Factor	Worth on ABD
				_						
		ļ								
		L								
		1								

Vugraph 7-12. Blowup of annual cost section

						-	,			۴a	W U 98	o1 U	le fo	rm, 9	10 Ti	4 5-0	02-1	; the	prop	oner	nt a per	ney le USA	CE.
a DA	74/ 28	10. 91	10 11	10%	acatalion aer (11)	1-741	7 6.10	00.00		Worth worth on ABD	35.7		27.2	98.7								lial	1
H	• (AED)	ruction		arte.	Differential E Rate per Y	notramo: Ju	.63 9.1	.00 0.0		Discount Factor	491L		491L.	.4892									
Reference	End Date	nt of Const	r Analysia	Discount I		<u>, </u>	19. 3	er o	t Incurred)	Equiv. Single Coat	49.9		38.0	201.8								r Costs	
Critaria	Analysi	Midpoli	900 fe	Annuel	Tye	5 5	Na 1	0477	(Time Fire	Annual Series Eq	9.985		3.955	14,995								đ	
Present Worth on ABD	9.8L	4.8	-0.7						Escel.Cost	tet Ann. Cost In Series	2		13 21	13.46								Costa	
Discount Factor	1+1)-2-198	4:0 - 234	1-1)-069							Factor	.0)2.5		1001)"(1.091)	5.(01)01								MAM	
Escal.Cost (Time Incurred)	100	20	-10						Annuel	Cost on ABD	5 (1		<u>×</u> S	24		+	1				+-	uel Coata	
Escalation Factor	(1.0)25	(1.0)'5	11.0)2	`					Total	No. of Paymenta	25		4	21	+		+	T	+	+		Energy/	•
Cost on ABD	100	20	01-						om ABD	Incurred	522		6.5	27.5								I Costa	
Yaera From ABD	2.5	15	28			Π			Years f	First Incurred	3.5		3.5	5								Intu	·
One-Time Costs X 5 x 10* 3 x 10*	Initial Investment	Replacement Cost	Refension V.						M 8 # 10'	Annual Coats 1: 5 x 10*	HAR	Natural gar	0 92.45	(2) 4h-1h									Net Present Worth:

Vugraph 7-13. DA Form 5605-4 completed, except for LCC on last line

LIFE CYCLE COST ANALYSIS

PRESENT WORTH: CONVENTIONAL APPROACH

Project No. & THIS PN 567 Mess Hall

Installation & Location ABCDE, Fort Bragg, NC Design Feature Exterior Doors

AN NO A THIS SLICLING DOOR

Sheet___

of.

Vugraph 7-14. Present Worth: Conventional Approach (DA Form 5604-4 completed)

Project No. & This PN 537 Mers Hall Installation & Location ABCDE, Fort Bragg, NC Design Feature Exterior Doors AR. No. A This Shicking Door

LIFE CYCLE COST ANALYSIS

PRESENT WORTH: CONVENTIONAL APPROACH

For use of this form, see TM 5-802-1; the proponent agency is USACE.

DA FORM 5605-4-R, DEC 86

How to Perform Milcon General Economic Studies

ECO ANAL/MILCON DES Student's Manual

Sheet

__ 10 ___

7.4 EXERCISE 7-1: COMPUTE LCC USING CONVENTIONAL APPROACH

Suppose you have been asked to design a vehicle maintenance shop for Fort X in Huntsville, and you need to select among alternative exterior wall surfaces. Compute LCC of exterior wall design alternative A (Tile) by completing the attached DA Forms 5605-3 and 4, based on the following data:

Project Number:		PN568	
Date of Study (DOS):		7/88	
Analysis Base Date (ABD):		7/88	
Beginning of Construction:		Two years fro	m DOS
Length of Construction Period:		One year	
Beneficial Occupancy Date (BOD):		End of Constr	uction Period
Initial Investment Costs (as of DOS):		\$75,000	
M&R Costs (as of DOS):		\$2,000/yr	
Distillate Fuel (as of DOS): (M&R and Fuel costs start six months	after BOL	\$12,000/yr plu))	s escalation
Repair Cost (as of DOS): (Repair cost first occurs five years after	r BOD)	\$5,000/every f	ive years
Retention Value (as of DOS): (Retention value occurs 25 years after 2	BOD)	\$7,500	
Differential Escalation Rates ("e values")	1987-90	90-95	95 & beyond
Distillate (Hint: Look them up)			
Other	0	0	0

Data Sources: Initial investment -- Means Cost Data; M&R -- M&R Database; Repair -- Repair Records; Retention Value -- Prorated cost described in attachment; Energy -- BLAST.

Exercise 7-1. Basic Input Data Summary

OVOLT ODOT ANALVON

Project No. &	Thie	LIFE GTULE GUST ANALTSIS
Installation & I	Location	BASIC INPUT DATA SUMMARY
AR. No	Title	For use of this form, see TM 5-802-1; the proponent egency is USACE.
Criteria Refer	rence	
Date of Study	y (DOS)	Principal Assumptions
Analysis Base	Date (ABD)	
Analysis End	Date (AED)	
Midpoint of C	Construction	
Beneficial	Actual Projected	
Date (BOD)	Assumed for Analysis	Cash Flow Diagram
DOE Region		
Annual Disco	unt Rate	
Туре	Differential Escalation Rate per Year (%)	
of Cost	Timeframe:	
		llt

	Cost on ABD	Time Cos	at Incurred**	
Cost Element	□ \$ x 10 ³ □ \$ x 10 ⁴	Actual Projected Dates	Dates for Analysis (if Different)*	Source(s) of Data
				•

DA FORM 5605-3-R, DEC 86

*When 10 CFR435A Criteria Apply

**For Recurring Annual Costs, show date of firat and last costs only.

How to Perform Milcon General Economic Studies

ECO ANAL/MILCON DES Student's Manual

of

Sheet.

Exercise 7-1. Enlarged Cash Flow Diagram

Proje Insta Dasi Alt. I	ect I Illati gn F No	No. Ion (Faat	& TI & Lo ure.	tla _ cati . Titli	on			 			L (IFE CON	PF IVE	CLI RESI NTI	E C Ent On/	0s - M Al	t a /or Api	nal Th: Pro	.YS	IS H
						ential Escalation a per Year (%)				ctor on ABD			Prm, P		5-802		Prepo		pency	
Criteria Reference	Analysia Base Date (ABD	Anatysis End Data (AED)	Midpoint of Construction	BOD for Analysia	Annual Discount Rata	Type Differ	of Cost Timetram		me First Incurred)	mnual Equiv. Disc ries Eq. Single Fai actor Coat		_								Other Coats
Present Worth	on ABD								Escal.Cost (TI	1st Ann. A Cost In Se Series F										Coata
1 Discount										Escalation Factor										MAR
Time	Incurred)								Annual	Cost on ABD										/Fuel Costa
Escalation									Total	No. of Payments										Energ
Cost on ABD									rom ABD	Incurred										al Coata
From	ABD								Years fi	First Incurred										Initia
Dne-Time Costa 1 5 x 10 ²	-D1 # 4 .								-	Annual Coata 1.5 x 10*										

Exercise 7-1. Present Worth: Conventional Approach

How to Perform Milcon General Economic Studies

ECO ANAL/MILCON DES Student's Manual

. of_

Sheet_

7.5 COMPUTING LCC: ONE-STEP APPROACH

By the end of sessions 7.5 and 7.6 you are expected to be able to

- calculate present worths of cash flows typically encountered in general economic studies using the simplified "one-step approach"
- use DA Form 5605-5 to structure and document the calculations

Slide 7-7

Notes:

Slide 7-8

Notes:

Vugraph 7-15. Energy Table

REGION 1: ELECTRICITY

INDUSTRIAL SECTOR

REGION 1: ELECTRICITY

"ONE STEP" ADJUSTMENT FACTORS (OSAFS) / NORMALIZED UFW* FACTORS (1) JUNE 1988

ANALYSIS				BENI	FICIAL COL	PANCY DATE				
(NUMBER OF	FOR FEMP <2>				FOR NON-I	THP APPLIC	ATTONS <3>			
	JUL 1987	JUL 1989	JUL 1990	JUL 1991	JUL 1992	JUL 1993	JUL 1994	JUL 1995	JUL 1996	JUL 1997
1	.9658	.8288	.7293	.6376	.5586	.4989	.4511	.4070	.3673	.3323
2	.9237	.7790	.6834	.5981	.5287	.4750	.4291	.3872	.3498	.3182
3	.8817	.7319	.6418	.5650	.5029	.4523	.4085	.3689	.3345	.3057
4	.8417	.6885	.6061	.5365	.4789	.4311	.3895	.3527	.3211	.2935
5	.8022	.6506	.5751	.5106	.4566	.4113	.3724	.3383	.3083	.2817
6	.7661	.6174	.5471	.4868	.4359	.3934	.3571	.3247	.2959	.2703
7	.7342	.5873	.5214	.4647	.4170	.3773	.3428	.3118	.2842	.2594
8	.7057	.5598	.4978	.4446	.4000	.3623	.3292	.2995	.2729	.2492
9	.6792	.5345	.4762	.4264	.3841	.3481	.3164	.2878	.2623	.2394
10	.6548	.5115	.4567	.4095	.3691	.3346	.3042	.2768	.2522	.2302
11	.6321	.4905	.4385	.3935	.3550	.3219	.2926	.2663	.2426	.2214
12	.6115	.4711	.4215	.3785	.3416	.3098	.2817	.2563	.2336	.2131
13	.5925	.4528	.4055	.3644	.3289	.2984	.2713	.2469	.2250	.2053
14	.5745	.4357	.3904	.3510	.3170	.2876	.2615	.2380	.2168	.1978
15	.5575	.4196	.3762	.3383	.3056	.2773	.2522	.2295	.2091	.1908
16	.5414	.4045	.3628	.3264	.2949	.2676	.2434	.2215	.2018	.1841
17	.5260	.3902	.3501	.3151	.2847	.2584	.2350	.2139	.1949	.1778
18	.5114	.3767	.3381	.3043	.2751	.2497	.2271	.2067	.1883	.1718
19	.4974	.3639	.3267	.2942	.2659	.2414	.2195	.1998	.1821	.1661
20	.4841	.3518	.3159	.2845	.2572	.2335	.2124	.1933	.1762	.1607
21	.4713	.3403	.3057	.2754	.2490	.2260	.2056	.1871	.1705	.1555
22	.4591	.3295	.2960	.2667	.2412	.2189	.1991	.1813	.1652	.1507
23	.4473	.3192	.2868	.2584	.2337	.2122	.1930	.1757	.1601	.1460
24	.4361	.3094	.2780	.2505	.2266	.2057	.1872	.1704	.1552	.1416
: 25	I .4253	.3000	.2697	.2431	. 2199	.1996	.1816	.1653	.1506	.1374
30	.3772	.2598	.2336	.2106	. 1906	.1731	•1574	.1433	.1306	.1191
35	.3374	.2279	.2050	.1849	. 1673,	.1519	•1382	.1258	.1146	.1046
40	.3041	.2023	.1820	.1641	. 1486	.1349	•1227	.1117	.1018	.0929
45	.2760	.1814	.1632	.1472	. 1333	.1210	•1101	.1002	.0913	.0833
50	.2521	.1642	.1477	.1333	. 1206	.1096	•0997	.0907	.0827	.0754

TABLE 3.1.EL "ONE STEP" ADJUSTMENT FACTORS - REGION 1: ELECTRICITY

NOTES:

(1) TABLIATED OSAFS (UFW*/k) VALID THRU DECEMBER 1988 (2) OSAFS BASED ON FEMP CRITERIA (10CFR436A): FIXED (ARTIFICIAL) BOD, 7% DISCOUNT RATE, AND END-OF-YEAR CONVENTION (3) OSAFS BASED ON FEDS CRITERIA (DOD STANDARD): ACTUAL FROJECTED BOD, 10% DISCOUNT RATE, AND MILLIE-OF-YEAR CONVENTION

To use energy OSAFs for general economic studies:

- Find Applicable BOD in "Non-FEMP" column.
- In "k" column find number of payments in the analysis period.
- For that k, find OSAF in BOD column.
- Multiply total unescalated/undiscounted cost by the OSAF to find PW, i.e.,

PW = Annual cost as of DOS x k x OSAF

How to Perform Milcon General Economic Studies

EXAMPLE:

For BOD = 7/92 PW = \$1,000 x 25 x 0.2199 k = 25 years Annual Electricity Cost as of DOS = \$1,000 = \$5,498

- In contrast, using the conventional approach would require first dividing the cash flow into three subseries, one to cover each escalation rate period; then using escalation factors to find the initial payment beginning each subseries; then using annual equivalence factors to find the one-time equivalent worth of each subseries at the beginning of the subseries; then finding the PW of each of those amounts; and finally summing to find the total PW as of the ABD.
- It is in calculating PW of energy costs that you will find the OSAF tables most beneficial.
- As of June 1988, there was a set of five tables for each of 10 DOE regions of the country. The map at the front of the OSAF tables in your Notebook shows the regions. The number of regions has since been reduced to the four census regions. There are separate tables for electricity, distillate oil, residual oil, natural gas, and steam coal.

Slide 7-9

To find PW of a series of energy costs based on DoE-projected escalation rates

PW = Annual cost as of DOS (A_o) x number of payments (R) x OSAF

Notes:

Vugraph 7-16. M&R Table

ALL REGIONS: MAINTENANCE AND REPAIR (MGR) (4)

ALL REGIONS: MAINTENANCE AND REPAIR (M&R) <4>

"ONE STEP" ADJUSTMENT FACTORS (OSAFS) / NORMALIZED UPW* FACTORS (1)

JUNE 1988

ANALYSIS	EPNEFICIAL COOLPANCY DATE												
(NUMBER OF	FOR FEMP <2>				FOR NON-B	EMP APPLIC	ATIONS <3>						
PAIREA157	JUL 1987	JUL 1989	JIL 1990	JIL 1991	JUL 1992	JUL 1993	JUL 1994	JUL 1995	JUL 1996	JUL 1997			
1	.9346	.8599	.7818	.7107	.6461	- 5873	•5339	.4854	.4413	.4012			
2	.9040	.8208	.7462	.6784	.6167	- 5606	•5097	.4633	.4212	.3829			
3	.8748	.7841	.7128	.6480	.5891	- 5356	•4869	.4426	.4024	.3658			
4	.8468	.7496	.6815	.6195	.5632	- 5120	•4654	.4231	.3847	.3497			
5	.8200	.7172	.6520	.5927	.5388	- 4898	•4453	.4048	.3680	.3346			
6	.7944	.6866	.6242	.5675	.5159	.4690	. 4263	.3876	.3523	.3203			
7	.7699	.6579	.5981	.5437	.4943	.4493	. 4085	.3714	.3376	.3069			
8	.7464	.6308	.5735	.5213	.4739	.4308	. 3917	.3561	.3237	.2943			
9	.7239	.6053	.5503	.5002	.4548	.4134	. 3758	.3417	.3106	.2824			
10	.7024	.5812	.5284	.4804	.4367	.3970	. 3609	.3281	.2983	.2711			
11	.6817	.5585	.5078	.4616	.4196	.3815	.3468	.3153	.2866	.2606			
12	.6619	.5371	.4883	.4439	.4035	.3668	.3335	.3032	.2756	.2506			
13	.6429	.5169	.4699	.4272	.3883	.3530	.3209	.2918	.2652	.2411			
14	.6247	.4977	.4525	.4114	.3740	.3400	.3091	.2810	.2554	.2322			
15	.6072	.4796	.4360	.3964	.3604	.3276	.2978	.2707	.2461	.2238			
16	.5904	.4625	.4205	.3823	.3475	.3159	.2872	.2611	.2374	-2158			
17	.5743	.4463	.4058	.3689	.3353	.3049	.2771	.2519	.2290	-2082			
18	.5588	.4310	.3918	.3562	.3238	.2944	.2676	.2433	.2212	-2011			
19	.5440	.4164	.3786	.3442	.3129	.2844	.2586	.2351	.2137	-1943			
20	.5297	.4027	.3661	.3328	.3025	.2750	.2500	.2273	.2066	-1878			
21	.5160	.3896	.3542	.3220	.2927	.2661	.2419	.2199	• 1999	.1817			
22	.5028	.3771	.3429	.3117	.2834	.2576	.2342	.2129	• 1935	.1759			
23	.4901	.3653	.3321	.3019	.2745	.2495	.2268	.2062	• 1875	.1704			
24	.4779	.3541	.3219	.2927	.2661	.2419	.2199	.1999	• 1817	.1652			
1 25	4661	1.3434	.3122	-2838	.2580	.2346	.2133	.1939	.1762	.1602			
30	.4136	.2972	.2702	.2457	-2233	.2030	.1846	.1678	.1525	.1387			
35	.3699	.2606	.2370	.2154	-1958	.1780	.1618	.1471	.1338	.1216			
40	.3333	.2313	.2102	.1911	-1737	.1580	.1436	.1305	.1187	.1079			
45	.3023	.2073	.1885	.1713	-1558	.1416	.1287	.1170	.1064	.0967			
50	.2760	.1876	.1705	.1550	-1409	.1281	.1165	.1059	.0963	.0875			

"ONE SIMP" ADJUSTMENT FACTORS - ALL REGIONS, MAINTENANCE AND REPAIR (MGR) TABLE 2

NOTES:

(1) TAHULATED OGAFS (UPW*/k) VALUD THRU DELEMEER 1988 (2) OGAFS BASED ON FEMP CRITERIA (10CFR43GA): FIXED (ARTIFICIAL) BOD, 7% DISCOUNT RATE, AND END-OF-YEAR CONVENTION 3) OGAFS BASED ON FEDS CRITERIA (DOD STANDARD): ACTUAL PROJECTED BOD, 10% DISCOUNT RATE, AND MIDDLE-OF-YEAR CONVENTION (4) ADJUSTMENT FACTORS BASED ON ASSUMED DIFFERENTIAL ESCALATION RATE OF 0%

You can use these factors to calculate the PW of M&R costs that start as much as nine years after DOS. Using them eliminates the step in the conventional approach of applying a discount factor to account for the difference between DOS and BOD.

But the factors apply only when there is no differential escalation in M&R costs. If there is differential escalation, it is necessary to use the conventional approach.

• They are used just like the energy OSAFs: locate the OSAF for BOD and k, and multiply it by the product of annual M&R (as of DOS) times k.

Day 2

EXAMPLE:

For BOD = 7/94k = 15 years PW = \$25,000 x 15 x 0.2978 Annual M&R = \$25,000 = \$111,675

Notes:

Vugraph 7-17. One-Time Costs Table

ALL REGIONS: ONE-TIME COSTS <4>

ALL REGIONS: ONE-TIME COSTS <4>

"OHE-STEP" ADJUSTMENT FACTORS (OSAFs)/STANDARD SPH FACTORS <1>

F	OR FEMP APPLIC	ATIONS <2>			FOR NON-FEMP APPLICATIONS <3>							
TIME COST INCURRED (YEARS AFTER (FEMP ABO)	OSAF/SPW Factor R)	TINE COST INCURRED (YEARS AFTER) (FEMP ABO)	OSAF/SPW FACTOR	TIN INCI (YE. (AF	E COST URRED ARS) TER DOS)	OSAF/SPH FACTOR	TIME COST INCURRED (YEARS) (AFTER DOS)	OSAF/SPH FACTOR				
0.00 0.25 0.60 0.75	1.0000 0.9832 0.9667 0.9505	16.0 17.0 18.0 19.0 20.0	0.3387 0.3166 0.2959 0.2765 0.2584		0.00 0.25 0.50 0.75	1.0000 0.9765 0.9535 0.9310	16.0 17.0 18.0 19.0 20.0	0.2176 0.1978 0.1799 0.1635 0.1486				
1.0 2.0 3.0 4.0 5.0	0,9346 0,8734 0,8163 0,7629 0,7130	21.0 22.0 23.0 24.0 25.0	Q.2415 0.2257 0.2109 0.1971 0.1842		1.0 2.0 3.0 4.0 5.0	0.9091 0.8264 0.7513 0.6830 0.6209	21.0 22.0 23.0 24.0 25.0	0.1351 0.1228 0.1117 0.1015 0.0923				
6.0 7.0 8.0 9.0 10.0	0.6663 0.6227 0.5820 0.5439 0.5083	26.0 27.0 28.0 29.0 30.0	0.1722 0.1609 0.1504 0.1406 0.1314		6.0 7.0 8.0 9.0 10.0	0.5645 0.5132 0.4665 0.4241 0.3855	26.0 27.0 28.0 29.0 30.0	0.0839 0.0763 0.0693 0.0630 0.0573				
11.0 12.0 13.0 14.0 15.0	0.4751 0.4440 0.4150 0.3878 0.3624	35.0 40.0 45.0 50.0	0.0937 0.0668 0.0476 0.0339		11.0 12.0 13.0 14.0 15.0	0.3505 0.3186 0.2897 0.2633 0.2394	35.0 40.0 45.0 50.0	0.0356 0.0221 0.0137 0.0065				

TABLE 1. "ONE-STEP" ADJUSTMENT FACTORS -- ALL REGIONS, ONE-TIME COSTS

MOTES: <1> TABULATED OSAFS (SPW) VALID FOR INDEFINITE PERIOO (NOT CALENDAR-DEPENDENT) <2> OSAFS BASED ON FEMP CRITERIA (10CFR436A): 7% DISCOUNT RATE <3> OSAFS BASED ON FEDS CRITERIA (DOO STANDARD): 10% DISCOUNT RATE <4> OSAFS BASED ON ASSUMED DIFFERENTIAL ESCALATION RATE OF 0%

Day 2

	To find PW of a future one-time cost
	PW? < C _F
-	C _F x OSAF for one-time costs

Note that OSAF factors for one-time costs are identical to the conventional SPW discount factors. Both sets of factors express the PW as a ratio of the given future amount. They do not combine escalation with discounting. It is necessary to have the future estimate of cost or benefit before applying this OSAF. The table is repeated for convenience as part of the OSAF series of tables, in a similar format to those for M&R and energy.

Notice that factors for less than a year are provided. These are helpful for finding PW when n is not an integer.

EXAMPLE:

For Cost of \$5,000 incurred 10.5 years after DOS

 $PW = $5,000 \times 0.3855 \times 0.9535 = $1,838$

Notes:

Vugraph 7-18. Present Worth: One-Step Approach Sheet (DA Form 5605-5)

Project No. & Title ______ Installation & Location ____

Design Feature____

LIFE CYCLE COST ANALYSIS PRESENT WORTH: ONE-STEP APPROACH

Alt. No._____Thie _____

For use of this form, see TM 5-802-1; the proponent agency is USACE.

One-Time Costs	t 10 ³ Years	Cost	One Step Adl.Factor	Present Worth	Criteria Refer	ence	
L) \$ 1	10 ⁴ ABD	ABD	Table 1	on ABD	Analysis Base	Date (ABD)	
					Analysis End	Date (AED)	
					Midpoint of C	onstruction	
					BOD for Anal	ysis	
					Annual Disco	unt Rate	
					Туре	ial Escalation ar Year (%)	
					of Cost	Timetrame:	
		<u> </u>					
		#					
		╢					
		<u> </u>					
	_						

12 S x 104	Payments	on ABD	on ABD	Table Factor x DOS Correction	on ABD
					_

	Initial Costs	Energy/Fuel Coats	M&R Costs	Other Costs	Total
Net Present Worth:		_++		••	•
DA FORM 5605-5-R, DEC 86	-				

"Use One-Step Table 2 for M&R costs (e = 0).

Use One-Step Table 3 for energy/fuel costs (e = prescribed e value).

Sheet_____ of_____

How to Perform Milcon General Economic Studies
Vugraph 7-19. Enlargement of top part of sheet

Project No. & Thie ____

Installation & Location_____

Design Feature_____

Alt. No._____Thie____

LIFE CYCLE COST ANALYSIS PRESENT WORTH: ONE-STEP APPROACH

For use of this form, see TM 5-802-1; the proponent agency is USACE.

One-Time Costs	x 10 ³	Years	Cost On	One Step Adj.Factor	Present Worth	Criteria Refere	nce	HQI	A	
ប \$	x 10 ⁴	ABD	ABD	Table 1	on ABD	Analysis Base	Date (ABD)	174	.(88	
						Analysis End D	ate (AED)	174	12016	
						Midpoint of Co	nstruction	1 70	n 91	
						BOD for Ansly	sla	1 74	191	
					_	Annual Discount Rate			0%	
						Type Different Rate p		itial Escalation per Year (%)		
						of Cost	Timeframe 87-90	: JUI - 90-95	Jun 95-16	
						Nat'l Gar	2.63	9.17	6.10	
						Other	0.00	0.00	0.00	
							-			

7-43

Total Nominal Cost on ABD Annual Total Present Worth on ABD 12 \$ x 103 One Step Adjustment Factor* No. of Paymenta Cost on ABD Annual Costs □ \$ x 104 Table Factor x DOS Correction Initial Costs Energy/Fuel Costa M&R Costs **Other Costs** Total Net Present Worth: +.

Vugraph 7-20. Enlargement of annual costs part of sheet

ECO ANAL/MILCON DES Student's Manual

Vugraph 7-21. One-step sheet completed, except for bottom line

Project No. & THE PN 567 Mpss HAII Installation & Location AB(DE, Fort Brugg, NC Design Fortune Extension DOORS AL No. A The Sliding DOOR

LIFE CYCLE COST ANALYSIS PRESENT WORTH: ONE-STEP APPROACH

For use of this form, see Thi 5-802-1; the proponent agoncy is USACE,

One-Time Costs X S x 10 ⁴	Years from	Cost On ABD	One Step Adj.Factor Table 1	Present Worth en ABD	Criteria Refer	ence	HRDA	
	~~~						JUL ST	
Initial Invertment	2.5	100	0.7880	78.8	Analysia End	Dete (AED)	742 201	6
Replacement	15	20	0.2394	4.8	Midpoint of C	onstruction	JAN QI	-
Retention V.	28	-10'	0.0693	-0.7	BOD for Anal	/sie	JUL 91	
					Annual Discount Rate		10%	
					Type Differenti Rate pe		itial Escalation per Year (%)	
					of Cost	Timetrame 87-90	: JUL - JUN 90-95,95-1	16
					Nat'l Gas	2.43	9.17 6.10	0
					Other	0.00	0.00 0.00	0
								-
								-
								-
								1

Annual Costa	)( 5 x 10 ³ 1) 5 x 10 ⁴	Total No. of Paymanta	Annust Cost en ABD	Total Nominal Cost en ABD	One Step Adjustment Fector* Table Factor ± DOS Correction	Present Worth on ABD
HOR		25	5	125	02838	35.5
Natural Gas		25	8	200	0.6655	/33.1
		-				
	_					

*Use One-Step Table 2 for M&R costs (s = 0). Use One-Step Table 3 for energy/fuel costs (s = prescribed a value).

Sheel_____ ef____

# Vugraph 7-22. One-step sheet with bottom line filled in

Project No. & Thie PN 567 Hess Hall Installation & Location <u>ABCDE</u>, Fort Bragg, MC Design Feature <u>Experior Doors</u> All. No. <u>A</u> Thie <u>Science</u> Door

# LIFE CYCLE COST ANALYSIS PRESENT WORTH: ONE-STEP APPROACH

For use of this form, see TM 5-802-1; the proponent agency is USACE.

One-Time Costs	Years from	Coat On	One Step Adj.Factor	Present Worth	Criteria Refer	ence	HA	DA	
L3 \$ x 10*	ABD	ABD	Table 1	on ABD	Analysis Base	Date (ABD)	70	11 88	
Initial Investment	2.5	100	0.7880	78.8	Analysis End	Date (AED)	74	12016	
Replacement	15	20	0.2394	4.8	Midpoint of C	onstruction	JA	Ngi	
Retention Value	28	-10	0.0693	- 0.7	BOD for Analy	sie ,	74	191	
					Annual Discount Rate		1	10%	
					Type Different Rate p		tial Eeca er Year	lation (%)	
					of Cost	Timetrame:	10-95	95-16	
					Nat'l Gas	2.63	9.17	6.10	
					Other	0.00	0.00	0.00	
							-		

Annual Costs	X\$x 10 ³ ⊡\$x 10 ⁴	Total No. of Payments	Annual Cost on ABD	Total Nominal Coat on ABD	One Step Adjustment Factor* Table Factor x DOS Correction	Present Worth on ABD
M+R		25	5	125	0.2838	35.5
Natural	Gas	25	8	200	0.6655	133.1
	V					
				-		
	_					

	Initial Coats	Energy/Fuel Coets	M&R Coste	Other Costs	Total
Net Present Worth:	78.8	+ 133.1 +	35.5	. 4.1	_252

DA FORM 5605-5-R, DEC 86

*Use One-Step Table 2 for M&R costs (e = 0). Use One-Step Table 3 for energy/fuel costs (e = prescribed e value).

Sheet_____ of_____

How to Perform Milcon General Economic Studies

ECO ANAL/MILCON DES Student's Manual

# 7.6 EXERCISE 7-2: COMPUTE LCC USING ONE-STEP APPROACH

Compute LCC of exterior wall design alternative by completing the attached DA Form 5605-5, based on the data given for Exercise 7-1. (Refer back to the Basic Input Data Summary (DA Form 5605-3) that you completed for Exercise 7-1, p. 7-28.)

# Exercise 7-2. Present Worth: One-Step Approach Sheet (DA Form 5605-5)

Project No. & Title _____

Installation & Location_____

Alt. No._____Thie_

# LIFE CYCLE COST ANALYSIS PRESENT WORTH: ONE-STEP APPROACH

For use of this form, see TM 5-802-1; the proponent egency is USACE.

	the second s			and the local division of the local division			
One-Time Costa 13 \$ x 10	Yaars	Cost	One Stap	Present	Criteria Refe	rence	
L] \$ x 10	ABD	ABD	Table 1	on ABD	Analysis Bas	e Date (ABD)	
					Analysis End	Date (AED)	
					Midpoint of C	Construction	
					BOD for Anal	ysis	
					Annual Disco	unt Rata	
					Туре	Different Rate p	lal Escalation er Yaar (%)
					of Coat Timeframe:		
					L		

	Annual Costa	12 \$ x 10 ³ 12 \$ x 10 ⁴	Total No. of Payments	Annual Cost on ABD	Total Nominal Cost on ABD	One Stap Adjustment Factor' Table Factor x DOS Corraction	Present Worth on ABD
					1		
			Initial Costa	Enaroy/Eu		Costa Other Costa	Total
Net Pr	esent Worth:	-		_+	+	*****	

DA FORM 5605-5-R, DEC 86

"Use One-Stap Table 2 for M&R costs (e = 0).

Use One-Stap Table 3 for anergy/fual costs (a = prascribed a valua).

Sheet_____ of____

How to Perform Milcon General Economic Studies

ECO ANAL/MILCON DES Student's Manual



### 7.7 RANKING DESIGN ALTERNATIVES

By the end of this session you are expected to be able to

- assign economic rankings to design alternatives as an aid to selecting among them
- document the LCC results with Form DA 5605-2

Slide 7-12	
------------	--

Design Alternative	LCC	Rank
Α	\$100K	1
В	\$150K	2
С	\$200K	3

Notes:

7-50

ECO ANAL/MILCON DES Student's Manual

Slide 7-13



LCC results are conclusive when the LCC of one alternative is substantially less than the LCCs of other alternatives. In this case, rank the alternatives in order of their LCCs, with preference given to the alternative with the lowest LCC.

LCC results are inconclusive when LCCs of alternatives are essentially equal, or uncertainties are so great that differences in LCCs are not clear. The alternatives are considered equal in terms of LCC. In this case, other criteria are needed to break the LCC tie. Uncertainty assessment is generally not required.

LCC results are neither clearly conclusive nor clearly inconclusive when LCC results are close but not identical. We think there is a difference in LCCs, but we are not sure if it is statistically significant. In this case, guidelines for design selection depend on whether the decision is routine or non-routine. When it is routine, the alternative with the lowest LCC is usually selected. When it is non-routine, uncertainty assessment is usually performed.

Slide 7-14



When design alternatives have comparable LCCs, the decision is based on two additional criteria: comparative energy use and comparative initial procurement costs.

Slide 7-15

#### **TIE-BREAKING CRITERIA**

Choose the alternative which has

- lower Initial costs and equal or lower energy consumption (measured at source)
- lower energy consumption and equal or lower initial costs
- annual energy consumption at least 15% lower & Initial costs no more than 15% higher
- Initial costs at least 15% lower & annual energy consumption no more than 15% higher
- if none of above applies, assign equal ranking and make selection on judgment

# Vugraph 7-23. DA Form 5605-2: Summary

Project No. & Title______ Installation & Location_____

# LIFE CYCLE COST ANALYSIS SUMMARY

For use of this form, see TM 5-802-1; the proponent agency is USACE.

Date of Study_

Design Feature _

ALTERNÁTIVES ANALYZED							
Description/Title	Present Worth 1 - \$ x 10 ² - 1 \$ x 10 ⁴						
	initial	Energy	MAR	Other	Total		
		-					
	Description/Title	ALTERNÁTIVES . Description/Title Initial I I I I I I I I I I I I I I I I I I I	ALTERNÁTIVES ANALYZED  Description/Title  Present Wo initial Energy	ALTERNÁTIVES ANALYZED  Description/Title  Initial  Present Worth S x 10 ² Initial Energy M&R  Initial Initia	ALTERNÁTIVES ANALYZED         Description/Title       Present Worth       I · · \$ x 10 ² · ·   \$ x 10 ⁴ Initial       Energy       M&R       Other         Initial       Energy       Initial       Initial         Initial       Energy       Initial       Initial         Initial       Energy       Initial       Initial         Initial       Energy       Initial       Initial		

	ECONOMIC RANKING							
		Economic Advantages of To	p-Ranked Alternative					
Rank	Alternative No. & Title	LCC (PW) Difference (Dollars & Percent)	Other (Initial, Energy, Etc.)	Basis for No. 1 Ranking				

KEY ASSUMPTIONS	NARRATIVE SUMMARY (Comments/Leasons Learned/Observations/Recommendations/Etc.)

Key Participanta - Name	Discipline	Organization	Telephone No.

DA FORM 5605-2-R, DEC 86

Sheet_____ of_____

How to Perform Milcon General Economic Studies

ECO ANAL/MILCON DES Student's Manual

# Vugraph 7-24. DA Form 5605-2: Summary -- completed form

Project No. & Thie PN 567 Mess Hall Installation & Location ABCDE, FOIX Bragg, Vr Design Feature Craterion Dogro

# LIFE CYCLE COST ANALYSIS SUMMARY

For use of this form, see TM 5-802-1; the proponent agency is USACE.

Date of Study_ 1 July 88

	ALTERNÁTIVES ANALYZED					
No	Description/Title	Present Worth 115 x 103 115 x 104				
NO.		Initial	Energy	MAR	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Total
A	Sliding Doors	78.8	125.9	35.7	4.1	245
B	Revolving Doors	60.0	165.0	12.0	6.0	243
	U					

	ECONOMIC RANKING						
		Economic Advantages of To	p-Renked Alternative				
Rank	Alternative No. & Title	LCC (PW) Difference (Dollars & Percent)	Other (Initial, Energy, Etc.)	Basis for No. 1 Ranking			
	A. Sliding Doors B. Revoluing Doors	\$ 1.5K .6%		Compan - able LCEs			

KEY ASSUMPTIONS	NARRATIVE SUMMARY (Comments/Lessons Learned/Observetions/Recommendations/Etc.)
	Both initial cost + energy cost differ -
	ences exceed 15% criterion.
	Choice to be made on basis of
	indoment .

Key Participants - Neme	Discipline	Orgenizetion	Telephone No.

DA FORM 5605-2-R, DEC 86

Sheet_____ of_____

ECO ANAL/MILCON DES Student's Manual

How to Perform Milcon General Economic Studies

THIS PAGE IS INTENTIONALLY LEFT BLANK

ECO ANAL/MILCON DES Student's Manual

7-56

#### 7.8 EXERCISES 7-3 & 7-4: RANK ALTERNATIVES

Exercise 7-3: Use DA Form 5605-2 to rank the design alternative whose LCC you computed in exercise 7-2, against the alternative shown on the form. (Refer back to p. 7-48.)

Exercise 7-4: More practice in ranking design alternatives

Day 2

### Vugraph 7-25. Exercise 7-3 LCCA: Summary Sheet

Project No. & Title	PN	568,	Veh.1	Yaint.S	hop
netallation & Loca	tion For	tX, F	funts	U., AL	
Losion Kochum	Exter	L'UT (1)	all		

July 88

# LIFE CYCLE COST ANALYSIS SUMMARY

Date of Study_____

For use of this form, see TM 8-802-1; the proponent agency is UEACE.

		ALTERNÁTIVES	ANALYZED			
No	Decentering (This	Present Worth 115 x 1			· · · S x 104	
<b>NO</b> .		Initial	Energy	MAR	Other         Total           1.0         195.0	
A						
ß	Special Veneer	80	110.0	4.0	1.0	195.0

		ECONOMIC RANKING		
		Economic Adventages of To	p-Ranked Atternative	
Rank	Alternative No. & Thie	LCC (PW) Difference (Doilars & Percent)	Other (initial, Energy, Etc.)	Basis for No. 1 Ranking

KEY ASSUMPTIONS	NARRATIVE SUMMARY (Comments/Lessons Learned/Observations/Recommendations/Etc.)

Kay Participanta - Name	Discipline	Organization	Telephone No.

DA FORM 5605-2-R, DEC 86

Sheet _____ of _____

How to Perform Milcon General Economic Studies

ECO ANAL/MILCON DES Student's Manual

#### ADDITIONAL PRACTICE IN RANKING DESIGN ALTERNATIVES: EXERCISE 7-4

Rank A & B in each of the following sets of design alternatives:

SET	ALTER- NATIVE	LCC	INITIAL COSTS	ENERGY USE	RANK
1	А	\$50,000	\$25,000	13,000 kWh	
	В	\$48,000	\$35,000	12,500 kWh	
2	А	\$5,000	\$1,000	0	
	В	\$8,000	\$500	0	
3	А	\$15,800	\$5,000	2,000 gal oil	
	В	\$16,000	\$5,700	1,400 gal oil	
4	А	\$26,000	\$12,000	50,000 kWh	
	В	\$20,000	\$15,000	60,000 kWh	
5	А	\$160,000	\$25,000	1,000 gal oil	
	В	\$180,000	\$24,600	960 gal oil	
6	А	\$15,000-\$30,000	\$10,000	0	
	В	\$20,000-\$25,000	\$12,000	0	
7	А	\$100,000	\$40,000	10,000 kWh	
	В	\$112,000	\$41,000	11,000 kWh	

7-59

THIS PAGE IS INTENTIONALLY LEFT BLANK

ECO ANAL/MILCON DES Student's Manual

7-60

This section is consistent with the Criteria and Standards for Energy Conservation Studies in Technical Manual 5-802-1, Headquarters, Department of the Army, December 31, 1986. The material does not reflect the amendments to 10 CFR part 436 updating the guidelines applicable to energy management programs for Federal buildings. The amendments are set forth in Federal Register, Vol. 55, No. 224, Nov. 20, 1990. A list of the amendments is provided on page 8-8. TM 5-802-1 is currently being revised accordingly. THIS PAGE IS INTENTIONALLY LEFT BLANK

#### MODULE 8

#### HOW TO PERFORM ENERGY CONSERVATION STUDIES

#### Purpose:

- To present the criteria for energy conservation studies
- To give you hands-on practice in performing EA/LCCA of energy conserving designs according to "FEMP criteria"

#### Outline:

- 8.1 Criteria for Energy Conservation Studies
- 8.2 Exercise 8-1: Applicable Criteria
- 8.3 Computing LCC for Energy Conserving Designs Using One-Step Approach
- 8.4 Exercise 8-2: One-Step Approach

#### Approximate Time:

3 hours







Slide 8-4

#### LEGISLATION, EXECUTIVE ORDER, AND FEDERAL REGULATIONS DIRECTING EA FOR ENERGY CONSERVATION

- Energy Policy and Conservation Act (EPCA)
- National Energy Conservation Policy Act (NECPA)
- Executive Order 11912 (as amended by 12003)
- Energy Security Act
- Military Construction Codification Act
- Federal Energy Management Improvement Act
- Code of Federal Regulations (10 CFR, Sec 436, A)

Slide 8-5

LCC RU	JLE FOR ENERGY CONSERVATION
Administered by:	Federal Energy Management Program Office of Assistant Secretary for Conservation and Renewable Energy U.S. Department of Energy
Mailing Address:	FEMP CE 44 U.S. Department of Energy 1000 independence Avenue, SW Washington, DC 20585
Telephone:	(202) 586-1145 FTS 8-896-1145

### 8.1 CRITERIA FOR ENERGY CONSERVATION STUDIES

By the end of sections 8.1 and 8.2, you are expected to be able to

- describe the criteria governing energy conservation studies
- list the major differences between criteria for general economic studies and criteria for energy conservation studies
- explain the circumstances under which you would apply each set of criteria

#### Slide 8-6 (a-b)

#### ESSENTIAL DIFFERENCES IN CRITERIA (Energy Studies vs General Studies)

- Discount Rate: 7% reai
- Assumption of instantaneous Construction
- 10% Reduction in investment Costs
- Non-Energy e Values must be 0

Other differences:

- End-of-Year Cash Flows
- SIR & DPP Calculations for Solar
- Less Emphasis on Uncertainty Analysis

Notes:

The following is a summary of amendments to 10 CFR part 436 updating the guidelines applicable to energy management programs for Federal buildings (Federal Register/Vol 55, No. 224, Nov. 20, 1990):

DISCOUNT RATE to change annually (tied to long-term Treasury bonds) 10% INVESTMENT CREDIT eliminated CONSTRUCTION PERIOD allowed (but not required) STUDY PERIOD up to 25 years from BOD allowed TIMING OF CASH FLOWS within year flexible NON-ENERGY e VALUES still set at 0 More emphasis placed on UNCERTAINTY ASSESSMENT Use of SIR and DPP retained and AIRR added as an alternative to SIR for active solar.

#### APPLICABILITY OF ENERGY-CONSERVATION LCC RULE TO MILCON DESIGN DECISIONS

Non-renewable Resources

LCC Rule applies to situations where the opportunity exists for an energysaving design initiative not provided for by current design criteria. TM calls this "extraordinary energy saving design initiative" (i.e., does not apply to routine choices among conventional design alternatives covered by General Economic Studies)

Renewable Resources

LCC Rule applies to all projects in MCP and to all design features within those projects that use significant amounts of fossil-fuel-derived energy

Notes:

ECO ANAL/MILCON DES Student's Manual How to Perform Energy Conservation Studies



#### 8.2 EXERCISE 8-1: APPLICABLE CRITERIA

Suppose you are asked to perform a general economic study and an energy conservation study. The date you perform both analyses is January 1990. Assume that up-to-date energy price projections (e values) are available. Assume that in both cases, construction will not begin for two years, and the construction period will last one year. You have been asked to use the longest allowable analysis period for both analyses.

Provide the Information Requested:

General Study Energy Study

Discount Rate

Date of Study

Number of Years Construction Costs are Discounted

Percentage Reduction in Construction Costs

Date First Energy Cost is Incurred

Source of Energy e Values

Source of Non-energy e Values

Date Study Ends

Method of Adjusting for Inflation

Principal Method of Analysis

ECO ANAL/MILCON DES Student's Manual How to Perform Energy Conservation Studies

8-11

THIS PAGE IS INTENTIONALLY LEFT BLANK

ECO ANAL/MILCON DES Student's Manual

How to Perform Energy Conservation Studies

# 8.3 COMPUTING LCC FOR ENERGY CONSERVING DESIGNS

By the end of sections 8.3 and 8.4, you are expected to be able to

- summarize and document input data for energy studies on DA Form 5605-3
- prepare cash flow diagrams for energy studies
- calculate present worth equivalents of cash flows typically encountered in energy conservation studies using the "one-step approach," calculate LCC, and interpret the analysis results
- use DA Forms 5605 to structure and document the calculations

#### Day 3

### SAMPLE ENERGY CONSERVATION STUDY

#### Problem Statement:

A new administration building is planned for an Army facility in Madison, Wisconsin. The resulting building is three-stories with an underground parking level. It is approximately square in shape with double glazing comprising 35% of the wall area on all sides.

The design engineer sees opportunities for conserving energy by elongating the building on its east-west axis to provide greater exposure of the south side to solar radiation, earth-berming the north wall of the first floor, and reducing the window area to 25% and concentrating the glazed area on the south side. Because of modification in shape and interior layout, opportunities for daylighting are expected to be as good for this design as for the conventional design (and probably better). Both of the designs meet all functional requirements and will last indefinitely. Their construction costs, maintenance and repair costs, and energy costs are expected to differ. Determine if the proposed design changes are estimated to be cost effective.

Projected Date of Study (= ABD):	7/1/88
Mid-point of Construction:	1/1/91
Projected Beneficial Occupancy Date:	7/1/91
Analysis Period:	Maximum Allowable
Project number:	PN2 (FY 90)

Cost and Energy Consumption Data:

Alt A

Alt B

	Conventional Design	Energy-Conserving
Initial Investment costs:	\$800,000	\$975,000
M&R costs:	\$50,000/yr	\$45,000/yr

ECO ANAL/MILCON DES Student's Manual

How to Perform Energy Conservation Studies

# Natural Gas:

7/1/88 price	\$3.75/10 ⁶ Btu	\$3.75/10 ⁶ Btu
Annual consumption	4,000 x 10 ⁶ Btu	2,100 x 10 ⁶ Btu

Day 3

Vugraph 8-1. DA Form 5605-3 (blank)

Project No. & Title______ Installation & Location______ Design Feature______ Alt. No.______Title_____

# LIFE CYCLE COST ANALYSIS BASIC INPUT DATA SUMMARY

For use of this form, see TM 5-802-1; the proponent agency is USACE.

Criteria Refer	ence		
Date of Study (DOS)			Principel Assumptions
Analysis Base	Date (ABD)		
Analysis End	Dete (AED)		
Midpoint of C	onstruction		
Beneficial	Actusi Projected		
Date (BOD)	Assumed for Analysis		Caeh Flow Disgram
DOE Region			-
Annual Discor	unt Rate		
Туре	Differential Rate per	Escelation Yeer (%)	
of Cost	Timefreme:	1	
			-
			t

	Cost on ABD	Time Cost Incurred**		
Cost Element	□ \$ x 10 ³ □ \$ x 10 ⁴	Actuel Projected Detes	Detee for Analysis (if Different)*	Source(s) of Data

DA FORM 5605-3-R, DEC 86

*When 10 CFR436A Criteria Apply

**For Recurring Annuel Costs, show dete of first end last costs only.

Sheet_____ of_____

How to Perform Energy Conservation Studies

ECO ANAL/MILCON DES Student's Manual
#### Vugraph 8-2. Completed Input Data Summary Form

Project No. & TRIO PN2 Admin. Bldg LIFE CYCLE COST ANALYSIS Instatletion & Location Fort X, Mad. 1011. BASIC INPUT DATA SUMMARY Design Festure Envelope AR. No. A THIS CONVENTIONAL Design of this form, see TM 5-802-1; the proponent agency is USACE. **Criteris Reference** FEMP **Principel Assumptions** Date of Study (DOS) 7/68 Analysis Base Date (ABD) 7128 Anelysis End Date (AED) 5/13 **Midpoint of Construction** 1/91 Actual Projected 7/91 Beneficial Occupancy Date (BOD) Assumed for Anelysis 7/88 Cash Flow Disgram DOE Region 5 600 A ... Annusl Discount Rate 700 40 1 Differential Escaletion Rate per Year (%) of Cost Timeframe: 88-90 ,90-95 ,95-13 Vat Gas 2.80 8.25 5.32 Time Cost Incurred* Cost on ABD

Cost Element	✓ S x 10 ³ _ S x 10 ⁴	Actusi Projected Dates	Detes for Analysis (If Different)*	Source(s) of Data
Initial Cost	720 (800 less 107.)	1/9/	7/88	Cust Engineer's Est. (App)
M1+ R Lost	50	1/92-1/16	7/89-7/13	Fust Experience (App. 2)
Natural Gas	15	1/92 - 1/16	7/89-7/13	BLAST (App. 3)

* Note : Taking a 10% in duction in initial costs of both designs is equivalent to "When 10 CFR43BA Criteria Apply taking a 10% neduction in their difference. "For Recurring Annual Costs, show date of first and last costs only. Sheet______ of_____



Vugraph 8-3. Blow-up of cash flow diagram -- completed

#### Vugraph 8-4. PW: One-Step Approach Sheet -- blank

Project No. & Title

Installation & Location_____

Design Feeture_____ Alt. No.____ Title ____

#### LIFE CYCLE COST ANALYSIS PRESENT WORTH: ONE-STEP APPROACH

For use of this form, see TM 5-802-1; the proponent egency is USACE.

And 1 1 1 1 1 1 1 1 1 1 1								
One-Time Coata	i] \$ x 10 ³	Years	Coat	One Step Adi.Factor	Present Worth	Criteria Re	ference	
	L] \$ x 104	ABD	ABD	Table 1	on ABD	Analysis B	ase Date (ABD)	
						Analysia E	nd Date (AED)	
						Midpoint o	f Construction	
						BOD for An	nalysia	
	_					Annual Dia	count Rate	
						Туре	Different Rete p	tiel Escaletion er Yeer (%)
						of Coat	Timefreme:	
	_							

Annuel Coa	ita3 \$ x 10ª 1,7 \$ x 10ª	Total No. of Paymenta	Annual Cost on ABD	Totel Nominal Cost on ABD	One Step Adjuatment Factor* Table Factor x DOS Correction	Present Worth on ABD
		Initiel Cost	s Energy/Fu	el Costs MAR	Costs Uther Costs	lotel

	initiel Costs	Energy/Fuel Costs	M&R Costs	Other Costs	Totel
Net Present Worth:		++	+		

DA FORM 5605-5-R, DEC 86

*Use One-Step Table 2 for M&R costs (e = 0). Use One-Step Table 3 for energy/fuel costs (e = prescribed e value).

Sheet_____ of_____

# Vugraph 8-5. PW: One-Step Approach Sheet -- completed

Projsci No. & Title <u>PN 2</u> <u>Admin</u>, <u>Didg</u> Installetion & Location Fort X, <u>Madison</u>, <u>WS</u> Deelgn Feeture <u>Envelope</u> <u>Alt. No. A</u> <u>Thie Conventional Design</u>

#### LIFE CYCLE COST ANALYSIS PRESENT WORTH: ONE-STEP APPROACH

For use of this form, see TM 5-802-1; the proponent agency is USACE.

One-Time Costs	<b>S x 10³</b>	Yeers	Coet	One Step	Present	Criteria Refe	rence	FE	MP
	1. S x 104	ABD	ABD	Teble 1	on ABD	Anelysie Bes	e Date (ABD	1 7	188
					-	Analysie End	Date (AED)	7/	1/3
Initial Cos	+	0	720	1.0000	7.20	Midpoint of C	onstruction	11	91
						BOD for Anal	ysis	7/	68
						Annuel Dieco	unt Rete	7	90
						Туре	Differe Rete	ntial Esci per Yeer	(%)
						of Coet	Timetrem 88-90	: 90-95	95-13
						Nat Gas	2.80	8.25	5.32
				_					_
	_						1		

Annuel Costs VS x 10 ³ T S x 10 ⁴	Totel No. of Peyments	Annuel Coet on ABD	Total Nominal Cost on ABD	One Step Adjustment Fector* Teble Fector x DOS Correction	Present Worth on ABD
		·			
M+ R Cost	25	50	1,250	0.4661	583
Natural Gas	25	15	375	0.8499	319

Not Present Worth 720, 319, 583, - 1,624		initiel Costs	Energy/Fuel Costs	M&R Coste	Other Coele	Totel
	Net Present Worth:		. 319 .	583		-1,622

DA FORM 5605-5-R, DEC 86

"Use One-Step Teble 2 for M&R costs (e = 0).

Use One-Step Table 3 for energy/fuel costs (e = prescribed e value).

Sheet_____ of_____

How to Perform Energy Conservation Studies

ECO ANAL/MILCON DES Student's Manual

#### Vugraph 8-6. DA Form 5605-3 (blank)

Project No. &	Thie		L	IFE CYCLE C	OST ANALYSIS
Installation & L	ocation		D/		
Design Feature			B/	ASIC INPUT L	JATA SUIVIIVIARY
Ar. No	Thie		For use o	of this form, see TM 5-80;	2-1; the proponent agency is USACE
Criteria Refar	ence				•
Date of Study	(DOS)			Principel Aesompt	ions
Analysis Base	Dete (ABD)				
Analysis End	Date (AED)				
Midpoint of C	onatruction				
Beneficial	Actuel Projected				
Date (BOD)	Assumed for Analysis			Cash Flow Diagre	m
DOE Region		-			
Annuel Discor	unt Rste		-1-1-1-1-1	1 1 1 1 1	1 1 1 1 1 1 1 1
Туре	Differentie Rata per	Escelation Year (%)			
Coet El	ement	Cost on ABD .: \$ x 10 ³ :: \$ x 10 ⁵	Time Cos Actual Projected Datas	t incurred** Detes for Analysis (if Diffarant)*	Source(e) of Data

DA FORM 5605-3-R, DEC 86

Whan 10 CFR436A Critaria Apply

**For Recurring Annuel Costs, show data of first and last costs only.

She	<b>at</b>		
		_	_

_ of __

ECO ANAL/MILCON DES Student's Manual

#### Vugraph 8-7. Completed Input Data Summary Form

Project No. & This PN2 Admin. Bldg Installation & Location Fort X, Madison WS Design Feature Envelope Att. No. B This Earth - Bermed Design

# LIFE CYCLE COST ANALYSIS BASIC INPUT DATA SUMMARY

For use of this form, see TM 5-802-1; the proponent agency is USACE.



	Cost on ABD	Tima Cos	t Incurrad**	
Cost Element	1/5 x 10 ³ _ 5 x 10 ⁴	Actual Datas for Projected Analysis Datas (If Differant)*		Sourca(s) of Data
	*			
Initial Cost	878 (975 less 109	1/91	7/38	Cost Engineer's Est. (APP.I)
M+R lost	45	1/92 - 1/16	7/69- 7/13	Past Experience (APP.2)
	0	1 / 1/11	4/00 11/12	Diait (1) - 2
Natural Gas	8	1/92 - 1/16	1/87- 1/13	BLAST (App. 5)
DA FORM SEAS 2 P DEC 95				

* Note: Taking*10, reduction in initial costs of both designs is equivalent to taking "When 10 CFR438A Critaria Apply a 10 %, reduction in the difference. "For Recurring Annual Costs, show data of first and last costs only. Sheet_____ of_____

How to Perform Energy Conservation Studies

ECO ANAL/MILCON DES Student's Manual

# Vugraph 8-8. PW: One-Step Approach Sheet -- blank

Project No. & Title______

#### LIFE CYCLE COST ANALYSIS PRESENT WORTH: ONE-STEP APPROACH

Design Feeture	
Alt. NoTitle	

#### For use of this form, see TM 5-802-1; the proponent agency is USACE.

One-Time Coets	] \$ x 10 ³	Yesrs from	Cost On	One Step Adj.Fector	Present Worth	Criteria Refe	irence	
	LJ \$ x 10*	ABD	ABD	Teble 1	on ABD	Analysis Ba	e Dete (ABD)	
						Analysis En	d Dete (AED)	
						Midpoint of	Construction	
						BOD for Ane	lysie	
		_				Annusi Diec	ount Aste	
						Туре	Different Rate p	iel Eecsletion er Yeer (%)
						of Cost	Timefreme:	1
						<b></b>		

Annuel Coets	i∃ \$ x 10 ³ I⊒ \$ x 10 ⁴	Totsi No. of Psyments	Annuel Coet on ABD	Totel Nominel Cost on ABD	One Step Adjustment Fector' Teble Fector x DOS Correction	Present Worth on ABD

	Initial Costs	Energy/Fuel Coete	M&R Coete	Other Coets	Totel
Net Present Worth:		_++		+	
DA FORM 5605-5-R. DEC 86		_			

*Use One-Step Teble 2 for M&R costs (e = 0). Use One-Step Teble 3 for energy/fuel costs (e = prescribed e velue).

Sheet_____ of____

8-23

# Vugraph 8-9. PW: One-Step Sheet -- completed

Project No. & Title PN2 Admin. Bldg Installation & Location Fort X, Madison, WS Design Festure Envelope Att. No. B Title Earth - Bermed Design

#### LIFE CYCLE COST ANALYSIS PRESENT WORTH: ONE-STEP APPROACH

use of this form, see TM 5-802-1; the proponent agency is USACE. One Step Adj.Fsctor Tsble 1 Present Worth on ABD Cost On ABD Years from ABD V. S x 103 **Criteria Reference** FEMP One-Time Costs L. S x 104 Analysis Base Date (ABD) 7/88 Analysis End Date (AED) 1/13 878 878 Initial Cost 1.0000 1/91 0 **Midpoint of Construction BOD for Anslysis** /88 Annusl Discount Rate 7 % Differential Escalation Rate per Year (%) Type of Cost Timetrame: 88-90,90-95,95-13 Nat Gus 2.80 8.25 5.32

Annual Costs Z S x 10 ³	Total No. of Payments	Annual - Cost on ABD	Total Nominal Cost on ABD	One Step Adjustment Factor* Table Factor x DOS Correction	Present Worth on ABD
M+R Losts	25	45	1,125	0.4661	524
		_			
Natural Gas	25	8	200	0.8499	170
				0	Total
Net Present Worth:	B78	La Energy/Fue +/70		24 +	572

DA FORM 5605-5-R, DEC 86

*Use One-Step Table 2 for M&R costs (e = 0).

Use One-Step Table 3 for energy/fuel costs (e = prescribed e value).

ECO ANAL/MILCON DES Student's Manual

01

Sheet_

Day 3

#### Vugraph 8-10. DA Form 5605-2 -- blank

Project No. & Title	
Installetion & Locetion	
Design Feature	

# LIFE CYCLE COST ANALYSIS SUMMARY

For use of this form, see TM 5-802-1; the proponent agency is USACE,

Dete of Study_

	ALTERNÁTIVES ANALYZED					
No. Description/Title	Decertation (Title		Present Worth IIIS x 10° IIS x 10°			
	Descriptions mile	initiel	Energy	MAR	Other	Total
						(1999)

	ECONOMIC RANKING				
		Economic Adventeges of To	p-Renked Alternetive		
Renk	Alternative No. & Title	LCC (PW) Difference (Doilars & Percent)	Other (initial, Energy, Etc.)	Besis for No. 1 Ranking	

KEY ASSUMPTIONS	NARRATIVE SUMMARY (Comments/Leasons Leerned/Observetions/Recommendations/Etc.)

Key Participants - Name	Diacipline	Organization	Telephone No.

DA FORM 5605-2-R, DEC 86

Sheet_____ of____

#### Vugraph 8-11. DA Form 5605-2 -- completed

Project No. & Title PNZ Admin. Bldg
Installation & Location Fort X, Madison, WS
Dealor Feature Envelope

7/88

Data of Study____

# LIFE CYCLE COST ANALYSIS SUMMARY

For use of this form, see TM 5-802-1; the proponent egency is USACE.

	ALTERNÁTIVES ANALYZED					
No	Description/Title		Present W	orth \$ x 102	\$ x 10*	
NO.		Initlal	Energy	M&R	Othar	Total
A	Conventional Design	720	319	583		1 622
B	Earth - Berm Design	878	170	524	-	1,572

	ECONOMIC RANKING					
		Economic Advantagas of Te	op-Ranked Alternativa			
Rank	Altamativa No. & Titla	LCC (PW) Diffarance (Dollars & Percent)	Othar (initial, Enargy, Etc.)	Basis for No. 1 Ranking		
2	B Earth Bern	\$ 50,000	Energy	Lower		
2	A Conventional	3 7,	Savings	LCC		

KEY ASSUMPTIONS	NARRATIVE SUMMARY (Comments/Lassons Laarned/Obsarvations/Racommandations/Etc.)
	although the reduction in LCC offered by Alt B
	appears small in comparison with the totals,
	it appears more significant when compared
	against the extra amount spent. Keep in mind
	that about \$800K of initial cost is common to both designs,

Key Participants - Name	Discipline	Organization	Telephone No.	
I.M. Auchitect	Architect	4.5. A.C.E.	XXXYX	
M.E. Too	Arch. fect	USACE	× ×× × ×	

DA FORM 5605-2-R, DEC 86

Sheat_____ of_____

ECO ANAL/MILCON DES Student's Manual

#### 8.4 EXERCISE 8-2: ONE-STEP APPROACH

This session gives participants practice

- performing energy conservation studies under supervision in accordance with "FEMP criteria"
- presenting the results of energy conservation studies

#### EXERCISE 8-2: ONE-STEP APPROACH

Perform an LCC analysis of two alternative HVAC systems being considered for an administration building to be constructed at Fort Q in Mississippi:

- Alternative A, a variable-volume system <u>without</u> an energy economizer cycle
- Alternative B, a variable-volume system with an energy economizer cycle

A previous analysis has identified alternative A as the "best" of conventional designs. It is the baseline against which to evaluate the alternative with an energy economizer cycle. (See key dates at end of "Data.")

Compute LCCs of the two alternatives using the one-step approach and FEMP criteria for energy conservation studies. Compare LCCs and recommend a system.

Use DA Form 5605-3 for data inputs; DA Form 5605-5 to compute LCCs; and DA Form 5605-2 to compare the results and record the LCC ranking.

Т	20	+-	

	Alt A	Alt B
Purchase & Installation	\$125,000	\$132,000
Replacement (Plant) (7/00)	50,000	52,000
Replacement (Fan) (7/06)	20,000	20,000
Replacement (Plant) (7/09)	50,000	52,000
Net Retention Value (7/16)	18,000	20,000
Maintenance & Repair	12,000	12,500

How to Perform Energy Conservation Studies

ECO ANAL/MILCON DES Student's Manual

Data (	continued):	Alt A	Alt B
Annual E (in prio analysi	energy Costs ces at the beginning of the s period)		
	Electricity	\$17,000	\$15,000
	Distillate	2,000	1,500
Expected	Service Life	35 years	35 years

Dates: DOS = ABD = 7/88; Start of Construction = 7/90; BOD = 7/91

Day 3

#### Form 8-12. DA Form 5605-3 Basic Data Input Summary -- blank

Project No. & Title	LIFE CYCLE COST ANALYSIS
Installation & Location	BASIC INPUT DATA SUMMARY
Ar. No Trie	For use of this form, see TM 5-802-1; the proponent agency is USACE.
Criteria Reference	Principal Assumptions
Date of Study (DOS)	Principel Assumptions

Date of Study	(DOS)	
Analysis Base	Date (ABD)	
Analysis End	Date (AED)	
Midpoint of C	construction	
Beneficial	Actuel Projected	
Dete (BOD)	Assumed for Ansiysis	Caeh Flow Diegrem
DOE Region		
Annual Disco	unt Rate	
Туре	Differential Escalation Rate per Yeer (%)	
	Timetrame:	

	Cost on ABD	Time Cos	t Incurred**	
Cost Element	∑\$x10 ³ ∑\$x10 ⁴	Actuel Projected Datea	Dates for Analysis (If Different)*	Source(s) of Dete

DA FORM 5605-3-R, DEC 86

When 10 CFR436A Criteria Apply

**For Recurring Annual Costs, show date of first end lest costs only.

Sheet____ o1.

How to Perform Energy Conservation Studies

ECO ANAL/MILCON DES Student's Manual



Form 8-13. Blow up of cash flow diagram -- blank

#### Form 8-14. DA Form 5605-5 -- blank one-step

Project No. & Title _____ Installation & Location___

Dealgn Feature____

Alt. No._____Title_

#### LIFE CYCLE COST ANALYSIS PRESENT WORTH: ONE-STEP APPROACH

For use of this form, see TM 5-802-1; the proponent agency is USACE.

One-Time Coate	1] \$ x 10 ³	Years	Cost	One Step	Present	Criteria Refe	ence			
L] \$ x 10 ⁴		ABD	ABD	Table 1	on ABD	Analysia Bas	Date (ABD)			
						Analyala End		-		
						Midpoint of C	onstruction			
						BOD for Anal	ysis			
						Annual Disco	Annual Discount Rate			
						Туре	Differen Rate p	tial Eaca er Year	(%)	
						of Cost	of Cost Timeframe:			
								-	-	

Annual Coats	12 \$ x 10 ³ 12 \$ x 10 ⁴	Total No. of Payments	Annual Cost on ABD	Total Nominal Cost on ABD	One Step Adjuatment Factor* Table Factor x DOS Correction	Presen Worth on ABD
		Initial Coat	s Energy/Fu	el Coats M&R	Costa Other Coata	Total
Present Worth:	-		+	+		

DA FORM 5005-5-N, DEC 80

*Use One-Step Table 2 for M&R costs (e = 0). Use One-Step Table 3 for energy/fuel costs (e = prescribed e value).

Sheet_____ of_____

How to Perform Energy Conservation Studies

ECO ANAL/MILCON DES Student's Manual

Form 8-15. DA Form 5605-3 Basic Data Input Summary -- blank

Project No. &	Title	LIFE CYCLE COST ANALYSIS
Installation &	Location	BASIC INPLIT DATA SUMMARY
Design Featur		
Alt. No	Thie	For use of this form, see TM 5-802-1; the proponent agency is USACE.
		1
Criteria Refe	rence	Principal Assumptions
Date of Stud	y (DOS)	
Analysis Bas	e Date (ABD)	
Analysis End	Date (AED)	
Midpoint of (	Construction	
Beneficial Occupancy	Actual Projected	
Date (BOD)	Assumed for Analysia	Cash Flow Disgram
DOE Region		
Annual Disco	ount Rate	
Туре	Differential Escalation Rate per Year (%)	
of Cost	Timeframe:	

	Cost on ABD	Time Cos	t Incurred**	
Cost Element	∑ \$ x 10 ³ ∑ \$ x 10 ⁴	Actuel Projected Detes	Detee for Analysie (If Different)*	Source(e) of Deta
	-			

DA FORM 5605-3-R, DEC 86

"When 10 CFR436A Criterie Apply

**For Recurring Annuel Coete, show dete of first and last costs only.

Sheet_____ of____

ECO ANAL/MILCON DES Student's Manual How to Perform Energy Conservation Studies



Form 8-16. Blow up of cash flow diagram -- blank



ECO ANAL/MILCON DES Student's Manual

#### Form 8-17. DA Form 5605-5 -- blank

Project No. & Title

#### Instalistion & Location_____ Design Festure_____

Att. No._____ Title _____

#### LIFE CYCLE COST ANALYSIS PRESENT WORTH: ONE-STEP APPROACH

For use of this form, see TM 5-802-1; the proponent epency is USACE.

One-Time Costa	] \$ x 10 ³  ] \$ x 10 ⁴	Years from ABD	Cost On ABD	One Step Adj.Factor Table 1	Present Worth on ABD	Criteris Refer Ansiysis Base	rence e Date (ABD)	
						Analysis End	Date (AED)	
						Midpoint of C	onstruction	
						BOD for Ansi	ysis	
						Annual Disco	unt Rate	
						Туре	Different Rate p	isi Escalation er Year (%)
						of Cost Timeframe:		1

Annusi Costs	3 \$ x 10 ³ .7 \$ x 10 ⁴	Totai No. of Payments	Annusi Cost on ABD	Totsi Nominsi Cost on ABD	One Step Adjustment Factor* Table Factor x DOS Correction	Present Worth on ABD
		-				

	Initial Costs	Energy/Fuel Coets	M&R Coete	Other Costs	Total
Net Present Worth:	<u> </u>	_+++		+=	
DA FORM 5605-5-R, DEC 86	_			-	

*Use One-Step Table 2 for M&R costs (e = 0). Use One-Step Table 3 for energy/fuel costs (e = prescribed e value).

Sheet_____ of ____

Day 3

# Form 8-18. DA Form 5605-2 -- blank

LIFE CYCLE COST ANALYSIS Project No. & Title ____ installation & Location____ **SUMMARY** Design Faatura ____ For use of this form, see TM 5-802-1; the proponent agency is USACE. Date of Study____ ALTERNÁTIVES ANALYZED Present Worth 1: \$ x 103 11 \$ x 104 Description/Title No. initial Enargy MAR Othar Total ECONOMIC RANKING Economic Adventagas of Top-Renkad Altamative Basia for No. 1 Ranking Other (initial, Enargy, Etc.) Rank Alternative No. & Title LCC (PW) Difference (Dollars & Parcent) NARRATIVE SUMMARY (Commants/Lessona Laarned/Observations/Recommendations/Etc.) KEY ASSUMPTIONS Kay Participants - Name Diacipiina Organization Telephona No.

DA FORM 5605-2-R, DEC 86

Sheat_____ 01_____

How to Perform Energy Conservation Studies

ECO ANAL/MILCON DES Student's Manual

#### MODULE 9

#### DATA

#### Purpose:

- To explain data requirements for EA/LCCA
- To acquaint you with sources of data
- To provide practice under supervision using the M&R Database

#### Outline:

- 9.1 Identifying Data Requirements (Exercise 9-1)
- 9.2 Estimating Construction/Procurement Costs & Replacement Costs
- 9.3 Estimating Disposal Costs/Retention Values
- 9.4 Estimating Energy Costs
- 9.5 Estimating Maintenance and Repair Costs
- 9.6 Exercise 9-2: Using the M&R Database

#### Approximate Time:

4 hours

Slide 9-1

# DATA • What you need • How to get it

#### 9.1 IDENTIFYING DATA REQUIREMENTS (EXERCISE 9-1)

By the end of this section, you are expected to be able to

• identify data relevant to choosing among alternative building designs

Slide 9-2



# WHAT ABOUT PENALTIES/BENEFITS NOT MEASURED IN DOLLARS?

#### **EXERCISE 9-1: IDENTIFYING DATA REQUIREMENTS**

Suppose in a rehab project you want to evaluate whether it is cost effective to replace the existing HVAC system with a new system. Assume that the existing system can continue to meet heating and cooling requirements over the remaining 10 years that the building is expected to be occupied. From the following list, check the data you need:

1.	Original land costs	\$100,000
2.	Original site improvements	\$50,000
3.	Initial construction costs	\$5,000
4.	Purchase and installation costs of the existing HVAC system	\$10,000
5.	Duct work for the existing HVAC system	\$10,000
6.	Modification of the existing duct work to meet requirements of the new HVAC system	\$2,000
7.	Purchase and installation costs of the new HVAC system	\$50,000
8.	Maintenance cost of the existing HVAC	\$2,000/year
9.	Maintenance cost of the new HVAC	\$2,000/year
10.	Heating efficiency/cooling Coefficient of Performance (COP) of existing system	0.65/2.0
11.	Heating efficiency/cooling COP of new system	0.80/3.0
12.	Current price of energy used by the existing system	\$25.00/MBtu
13.	Current price of energy used by the new system	\$22.00/MBtu
14.	Projected rate of change in price of energy used by existing system	7%/year

15.	Projected rate of change in price of energy used by	
	new system	5%/year
16.	Building heating load (annual)	3,000 MBtu
17.	Building cooling load (annual)	4,000 MBtu
18.	Existing HVAC system's current salvage value less disposal costs	\$5,000
19.	New HVAC system's salvage value, less removal costs, if it were kept in service 30 years	\$10,000
20.	Replacement costs of existing system at end of its 15 year remaining life	\$35,000
21.	Replacement of new system at the end of its 30 year life	\$45,000
22.	The salvage value of the new system in 10 years	\$10,000

23. The new system operates more quietly than the existing system

THIS PAGE IS INTENTIONALLY LEFT BLANK

# 9.2 ESTIMATING CONSTRUCTION/PROCUREMENT COSTS & REPLACEMENT COSTS

By the end of this section, you are expected to be able to

- explain how to estimate future construction and replacement costs based on today's costs
- describe the level of detail required for estimates of construction/procurement/ replacement costs for EA/LCCA

CONSTRUCTION COST ESTIMATING APPROACH What level of accuracy? Detailed construction estimates are normally • not used for EA/LCCA. They are the basis for bids and are usually made after EA/LCCA, not before But if accurate data are readily available, use them •







Slide 9-8

Replacement costs,  $C_F = \$6,000 \text{ (yr 10) } \$\%6,000 \text{ (yr 20)}$  d = 10%PW = [\\$6,000 (1/(1+0.10)^{10})] + [\\$6,000 (1/(1+0.10)^{20})] = \\$2,313 + \\$892 = \\$3,205

#### 9.3 ESTIMATING DISPOSAL COSTS/RETENTION VALUES

By the end of this section, you are expected to be able to

- estimate a disposal cost to account for demolition or shut down at the end of the analysis period
- estimate a retention value to account for value remaining at the end of the analysis period

Slide 11-9












Slide 9-13











# THIS PAGE IS INTENTIONALLY LEFT BLANK

# 9.4 ESTIMATING ENERGY COSTS

By the end of this section, you are expected to be able to

- identify several computer programs for analyzing energy consumption data
- estimate future energy costs year-by-year based on the price at the ABD, the projected rate of price escalation, and projected consumption

## Day 3

Slide 9-17







A version of ASEAM (A Simiplified Energy Analysis Method) has been developed to incorporate DOE2 calculations. Contact the Fedral Energy Management Program Office of the Department of Energy for further information.

# ESTIMATING FUTURE ENERGY COSTS YEAR-BY-YEAR

 $C_F(energy) = Quantity_F x Price_F$ 

 $= Q_F \times P_F$ 

## TAKE ADVANTAGE OF OSAF SIMPLIFIED ENERGY COST ESTIMATION WHEN POSSIBLE

1

 $PW = (Q)(p_P)(N)(OSAF)$ 

#### where

Q	=	annual consumption
p _P	=	price at DOS
N	=	analysis period
OSAF	=	appropriate OSAF for the region, energy type, discount rate,
		DOS and BOD, and analysis period.

Slide 9-21



## 9.5 ESTIMATING MAINTENANCE AND REPAIR COSTS

By the end of this section, you are expected to be able to

- to use CERL's database to estimate life-cycle maintenance and repair costs for components of major building systems, including architectural, electrical, plumbing, and HVAC systems
- be acquainted with the structure and special features of the database which are important to using it correctly

Day 3

# **ESTIMATING MAINTENANCE & REPAIR COSTS**

## WITH

# CERL'S DATABASE

-

Notes:

ECO ANAL/MILCON DES Student's Manual

## ASSUMPTIONS FOR M&R COST DEMONSTRATION

Location: Alternatives: Roofing area: DOS: BOD: Analysis period: Discount rate:

Fort Eustis, VA Roof coverings -- builtup 10,000 SF 1/90 1/93 25 years from BOD 10%

EPS BASED MAINTENANCE AND REPAIR	a cos	T DATA FO	R USE IN	I LIFE CYC	LE COST	ANALYS	IS (\$ PER	UNIT ME	ASURE			AGE 1
COMPONENT DESCRIPTION		PRESEN MAINT. A	IT WORTI	I OF ALL	25 YEAR (d-10%)	Ŧ	ANNUAL IGH COST	MAINTEN	ANCE AND RE	AND REPA	IR PLUS	S
		By	Resourc	es	Wash. D.C.	Annual	Maintenar Repair	nce and	æ	eplaceme	nt and Hig Tasks	ł.
	MO	Labor	Mat'rt	Equip.	Total	Labor	Mat'rl	Equip.	۲۲	Labor	Mat'ri	Eaulo.
ARCHITECTURE ROOFING ROOF COVEDING												
BUILTUP ROOFING	SF	0.03990	0.37220	0.02000	1.25	0.00488	0.03172	0.00244	28	0.04938	0.70490	0.02469
PLACE NEW MEMBHANE OVER EXISTING -BUILTUP									14	0.02414	0.69960	0.01207
MOD. BIT. THERMOPLASTIC	ŝ	0.02440	0.33090	0.01180	0.87	0.00248	0.03219	0.00119	20	0.05659	0.85860	0.02829
REPAIR - M.B.G. R	u v	0.01680	0 23050	0 00050		121000			20	0.05659	0.85860	0.02829
MEMBRANE REPLACEMENT -	5	0.010.0	0066770	00000.0	10.0	0.001/4	0.02203	0.00088	20	0.03683	0.69960	0.01841
THERMOSETTING ROOF									20	0.03683	0.69960	0.01841
SLATE	5	0.01850	0.10440	0.00890	0.51	0.00259	0.01459	0.00124	70	0.06885	6.04200	0.03442
CEMENT ASBESTOS	5 5	0.01820	0.24340	0.00870	0.64	0.00254	0.03404	0.00122	29	0.05437	0.75190	0.02718
ROLL ROOFING	5 5 5	0.07140	0.42700	0.03640	2.00	0.00754	0.01557	0.00103	2 5	0.10169	3.07400	0.05084
TOTAL ROOF REPLACEMENT -									2		COC+1.0	01070.0
ROLL ROOF	R.	0.02210	0.22150	0 01170	0.71	0.00259	0 03185	0.00140	29	0.04141	0.74963	0.02070
REPLACE NEW OVER EXISTING -								01.0000	28	0.02996	0.43460	0.01498
SHINGLED ROOF	Ľ	0.01100	0 44050	0.000						.0.		
METAL		0.02190	1.15340	0.01080	1.64	020000	0.06260	0.00103	8	0.36265	2.17300	0.18132
CONCRETE SEALED DANEL DANE	ŝ	0.04300	0.11750	0.02120	1.07	0.00601	0.01643	0.00297	09	0.06123	0001010	0.03061
CONCRETE. SEALED PANEL RF4	SF	0.03900	0.08410	0.02020	0.95	0.00545	0.01176	0.00282	300	0.04342	24.07419	0.02171
CONCRETE SEALED POURED	SF	0.09830	0.63020	0.04950	2.80	0.01375	0.08811	0.00692	500	3.81056	18.03219	1.90528
FIBERGLASS, RIGID ROOF	ST ST	0.03800	1.15340	0.01930	1.99	0.00463	0.06269	0.00236	20	0.04133	6.01550	0.02066
TOTAL ROOF REPLACEMENT -									20	0.04133	6.01550	0.02066
FIBERGLASS RIGID	_	_	_	_		_	-	_	_	_		
See NOTES on the last page of th	ils tabi	le for Expl	anation o	f Column	Headings							

# Vugraph 9-1a

ECO ANAL/MILCON DES Student's Manual

EPS BASED MAINTENANCE AND REPAIR	COS1	r data fo	R USE IN	LIFE CYC	LE COST	ANALYS	S (\$ PER	UNIT MEA	SURE		6	AGE 1
COMPONENT DESCRIPTION		PRESEN MAINT. A	IT WORTH	I OF ALL :	25 YEAR (d-10%)	I	ANNUAL GH COST	MAINTEN	ANCE /	AND REPA	R PLUS	
		By	Resourc	es	Wash. D.C.	Annual	MaIntenar Repair	ice and	æ	eplacemer Cost	it and Hig asks	ء
	WD	Labor	Mat'rl	Equip.	Total	Labor	Mat'rl	Equip.	۲r	Labor	Mat'rl	Equip.
ARCHITECTURE ROOFING		+										
BUILTUP ROOFING BUILTUP ROOFING	SF	0.03990	0.37220	0.02000	1.25	0.00488	0.03172	0.00244	28	0.04938	0.70490	0.02469
EXISTING -BUILTUP EXISTING -BUILTUP MOD. BIT.THERMOPLASTIC MEMBRANE REPLACEMENT OR	SF	0.02440	0.33090	0.01180	0.87	0.00248	0.03219	0.00119	14 20	0.02414	0.69960 0.85860	0.01207 0.02829
REPAIR - M.B./T. R THERMOSETTING MEMBANE REPLACEMENT -	SF	0.01680	0.23950	0.00850	0.61	0.00174	0.02203	0.00088	20 20	0.05659	0.85860 0.69960	0.02829
THERMOSETTING ROOF SLATE CEMENT ASBESTOS TLLE	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.01850 0.01820 0.01820	0.10440 0.24340 0.20990	0.00890 0.00870 0.00740	0.51 0.64 0.55	0.00259 0.00254 0.00217	0.01459 0.03404 0.02935	0.00124 0.00122 0.00103	2222	0.03683 0.06885 0.05437 0.05437	0.69960 6.04200 0.75190 3.07400	0.01841 0.03442 0.02718 0.05084
TOTAL HOUFING TOTAL ROOF REPLACEMENT - ROLL ROOF SHINGLES REPLACE NEW OVER EXISTING -	р гу гу	0.02210	0.22150	0.01170	0.71	0.00259	0.02385	0.00140	2 6 6 6	0.04141 0.04141 0.04118 0.02396	0.74963 0.74963 0.74497 0.43460	0.02070 0.02070 0.02059 0.01498
SHINGLED ROOF METAL FIBERGLASS RIGID STP. ROOF CONCRETE, SEALED PANEL ROOF	***	0.01460 0.02190 0.04300	0.11060 1.15340 0.11750	0.00740 0.01080 0.02120	0.43 1.64 1.07	0.00205 0.00232 0.00601	0.01547 0.06269 0.01643	0.00103 0.00113 0.00297	<b>60</b> 30 30	0.36265 0.04543 0.06123	2.17300 6.01550 24.07419	0.18132 0.02272 0.03061
CONCRETE, SEALED PANEL RF4 CONCRETE SEALED POURED FIBERGLASS, MIGID ROOF	ኯ፝፝ኇዾ	0.03800	0.08410 0.63020 1.15340	0.04950 0.04950 0.01930	0.95 2.80 1.99	0.00545 0.01375 0.00463	0.01176 0.08811 0.06269	0.00282 0.00692 0.00236	200 30 200 30	0.04342 3.81056 0.04133	24.07419 18.03219 6.01550	0.02171 1.90528 0.02066
FIBERGLASS RIGID See NOTES on the last page of th	la tahi	e for Exol	fo offen	Column	andhaat				2	2	00010.0	00070.0

Vugraph 9-1b

Data

EPS BASED MAINTENANCE AND REPAIR	A COS	F DATA FC	R USE IN	LIFE CYC	ILE COST	ANALYS	IS (\$ PER	UNIT MEA	SURE			AGE 1
COMPONENT DESCRIPTION		PRESEN MAINT. #	IT WORTH	I OF ALL	25 YEAR (d-10%)	I	ANNUAL IGH COST	REPAIR /	ANCE A	ND REPA	IR PLUS	S
		By	Resourc	es	Wash.	Annual	Maintenar Repair	ice and	B	eplacemer Cost	nt and Hig	4
	5	Labor	Mat'rl	Equip.	Total	Labor	Mat'rl	Equip.	Xr	Labor	Mat'rl	Eaulo.
ARCHITECTURE RODFING			+									
ROOF COVERING												
BUILTUP ROOFING	SF	06660.0	0.37220	0.02000	1.25	0.00488	0.03172	0.00244	28	0.04938	0.70490	0.02469
EXISTING -BUILTIP											0.0000	20020
MOD. BIT. THERMOPLASTIC	SF	0.02440	0.33090	0.01180	0.87	0.00248	0.03219	0.00119	22	0.05659	0.85860	0.02829
MEMBRANE REPLACEMENT OR												
REPAIR - M.B./T. R	ŭ	0.016.00	0 22050	0.0000		0.00174			20	0.05659	0.85860	0.02829
	<b>b</b>	00010.0	06562.0	000000	0.61	0.001/4	0.02203	0.00088	50	0.03683	0.69960	0.01841
MEMBHANE HEPLACEMENI -										00000	0 0000	
SLATE	SF	0.01850	0.10440	0.00890	0.51	0.00259	0.01459	0.00124		0.05885	002200	0.01841
CEMENT ASBESTOS	SF	0.01820	0.24340	0.00870	0.64	0.00254	0.03404	0.00122	22	0.05437	0.75190	0.02718
TILE	ŝ	0.01550	0.20990	0.00740	0.55	0.00217	0.02935	0.00103	20	0.10169	3.07400	0.05084
ROLL ROOFING	SF	0.07140	0.42700	0.03640	2.00	0.00754	0.01557	0.00387	10	0.04141	0.74963	0.02070
TOTAL ROOF REPLACEMENT -												
ROLL ROOF	ц Ч	0.02210	0 22150	0.01170	0.74	0.00760	201100	00000	29	0.04141	0.74963	0.02070
DEDI ACE NEW OVER EVICENIC	;			21122		20700.0	C00770-0	0.00140	5 6	0.04118	0./4497	0.02059
CHINGLED DODE									3	0.02030.0	00404-0	0.410.0
METAI	Ъ,	0.01460	0.11060	0.00740	0.43	0.00205	0.01547	0.00103	30	0.36265	2.17300	0.18132
FIBERGLASS RIGID STP. ROOF	S F	0.02190	1.15340	0.01080	1.64	0.00232	0.06269	0.00113	20	0.04543	6.01550	0.02272
CONCRETE. SEALED PANEL ROOF	SF	0.04300	0.11750	0.02120	1.07	0.00601	0.01643	0.00297	60	0.06123	24.07419	0.03061
CONCRETE, SEALED PANEL RF4	SF	0.03900	0.08410	0.02020	0.95	0.00545	0.01176	0.00282	300	0.04342	24.07419	0.02171
CONCRETE SEALED POURED	SF	0.09830	0.63020	0.04950	2.80	0.01375	0.08811	0.00692	500	3.81056	18.03219	1.90528
FIBERGLASS, RIGID ROOF	L.S.	0.03800	1.15340	0.01930	1.99	0.00463	0.06269	0.00236	20	0.04133	6.01550	0.02066
TOTAL ROOF REPLACEMENT -									20	0.04133	6.01550	0.02066
FIBERGLASS RIGID	-	_	_			_	_	_		_		
See NOTES on the last name of th	its tabl	a for Exnl	anation of	Column	Headloos							

Data

# Vugraph 9-1c

EPS BASED MAINTENANCE AND REPAIR	I COST	r DATA FO	R USE IN	LIFE CYC	LE COST	ANALYSI	S (\$ PER	UNIT MEA	ASURE			AGE 1
COMPONENT DESCRIPTION		PRESEN MAINT. A	T WORTH ND REPA	I OF ALL	25 YEAR (d-10%)	Ŧ	ANNUAL GH COST	MAINTEN	ANCE /	AND REPA	IR PLUS NT COST	UN UN
		By	Resource	sa	Wash. D.C.	Annual	Maintenar Repair	ice and	ŭ	eplacemer Cost 1	It and High	4
	5	Labor	Mat'rt	Equip.	Total	Labor	Mat'r	Equip.	۲۲	Labor	Mat'rl	Eaulo.
ARCHITECTURE ROOFING				+								
ROOF COVERING BUILTUP ROOFING PI ACF NEW MEMBRANF OVER	SF	0.03990	0.37220	0.02000	1.25	0.00488	0.03172	0.00244	28	0.04938	0.70490	0.02469
EXISTING - BULTUP MOD. BIT./THERMOPLASTIC MEMBRANE REPLACEMENT OR	SF	0.02440	0.33090	0.01180	0.87	0.00248	0.03219	0.00119	14 20	0.02414 0.05659	0.69960 0.85860	0.01207 0.02829
REPAIR - M.B./T. R THERMOSETTING MEMBRANE REPLACEMENT -	SF	0.01680	0.23950	0.00850	0.61	0.00174	0.02203	0.00088	20	0.05659 0.03683	0.85860	0.02829 0.01841
THERMOSETTING ROOF SLATE CEMENT ASBESTOS TILF	r r r	0.01850 0.01820 0.01820	0.10440 0.24340 0.20990	0.00890 0.00870 0.00740	0.51	0.00259 0.00254 0.00254	0.01459 0.03404 0.02335	0.00124 0.00122	2002	0.03683 0.06885 0.05437 0.05437	0.69960 6.04200 0.75190	0.01841 0.03442 0.02718
ROLL ROOFING TOTAL ROOF REPLACEMENT -	SF	0.07140	0.42700	0.03640	2.00	0.00754	0.01557	0.00387	10	0.04141	0.74963	0.02070
ROLL ROOF SHINGLES REPLACE NEW OVER EXISTING -	SF	0.02210	0.22150	0.01170	0.71	0.00259	0.02385	0.00140	<b>99</b> 0	0.04141 0.04118 0.02996	0.74963 0.74497 0.43460	0.02070 0.02059 0.01498
METAL METAL FIBERGLASS RIGID STP. ROOF	r R R R R	0.01460 0.02190	0.11060 1.15340	0.00740	0.43	0.00205	0.01547 0.06269	0.00103	30	0.36265	2.17300 6.01550	0.18132 0.02272
CONCRETE, SEALED PANEL ROOF CONCRETE, SEALED PANEL RF4	, r, r,	000000000000000000000000000000000000000	0.08410	0.02020	0.95	0.00545	0.01176	0.00292	300	0.04342	24.07419 24.07419	0.03061
CONCHELE SEALED POUHED FIBERGLASS, RIGID ROOF TOTAL ROOF REPLACEMENT -	ц. К	0.03800	1.15340	001030	1.99	0.00463	0.06269	0.00236	\$ \$	0.04133	6.01550 6.01550	0.02066
FIBEHGLASS HIGID See NOTES on the last page of th	is table	a for Expla	ination of	Column	Headings		-	-	-	-	-	

ECO ANAL/MILCON DES Student's Manual Data

9-37

Vugraph 9-1d

EPS BASED MAINTENANCE AND REPAIR	a cosi	DATA FO	R USE IN	LIFE CYC	LE COST	ANALYSI	S (\$ PER	UNIT ME	ASURE			AGE 1
COMPONENT DESCRIPTION		PRESEN MAINT. A	T WORTH	I OF ALL 2	5 YEAR (d-10%)	Ŧ	ANNUAL GH COST	MAINTEN	ANCE /	AND REPA	IR PLUS NT COST	S
		By	Resourc	s	Wash. D.C.	Annual	Maintenar Repair	ice and	Ĕ	eplacemer Cost	It and High	£
	WD	Labor	Mat'rl	Equip.	Total	Labor	Mat'r	Equip.	۲۲	Labor	Mat'rl	Eaulo.
ARCHITECTURE ROOFING									-			
BUILTUP ROOFING	SF	0.03990	0.37220	0.02000	1.25	0.00488	0.03172	0.00244	28	0.04938	0.70490	0.02469
PLACE NEW MEMBRANE OVER									];			
MOD. BIT./THERMOPLASTIC	SF	0.02440	0.33090	0.01180	0.87	0.00248	0.03219	0.00119	20	0.05659	0.85860	0.01207
MEMBHANE HEPLACEMENT OR REPAIR - M.B./T. R	L								20	0.05659	0.85860	0.02829
THERMOSETTING MEMBRANE REPLACEMENT -	5	0.01080	05662.0	0.00850	0.61	0.00174	0.02203	0.00088	20	0.03683	0.69960	0.01841
THERMOSETTING ROOF									20	0.03683	0.69960	0.01841
SLATE	5	0.01850	0.10440	0.00890	0.51	0.00259	0.01459	0.00124	70	0.06885	6.04200	0.03442
CEMENT ASBESTOS TILF	р гу	0.01550	0.20990	0.00870	0.55	0.00254	0.03404	0.00122	0 4	0.05437	0.75190	0.02718
ROLL ROOFING	SF	0.07140	0.42700	0.03640	2.00	0.00754	0.01557	0.00387	22	0.04141	0.74963	0.02070
TOTAL ROOF REPLACEMENT -									ç			
SHINGLES	ЗF	0.02210	0.22150	0.01170	0.71	0.00259	0.02385	0.00140	9 9	0.04118	0.74497	0.02070
REPLACE NEW OVER EXISTING -									20	0.02996	0.43460	0.01498
METAL	SF	0.01460	0.11060	0.00740	0.43	0.00205	0.01547	0.00103	30	0.36265	2.17300	0.18132
FIBERGLASS RIGID STP. ROOF	SF	0.02190	1.15340	0.01080	1.64	0.00232	0.06269	0.00113	20	0.04543	6.01550	0.02272
CONCRETE, SEALED PANEL ROOF		0.04300	0.11750	0.02120	1.07	0.00601	0.01643	0.00297	60	0.06123	24.07419	0.03061
CONCRETE, SEALED PANEL RF4	n u	0.09830	0.63020	0.02020	0.95 08.0	0.01175	0.01176	0.00282	300	0.04342	24.07419	0.02171
CUNCHETE SEALED POURED	с Ч	0.03800	1.15340	0.01930	1.99	0.00463	0.06269	0.00236	30	0.04133	6 01550	0.02066
TOTAL ROOF REPLACEMENT -									20	0.04133	6.01550	0.02066
FIBERGLASS RIGID	_	_	_	_	_				_	_		
See NOTES on the last page of thi	ils tabl	e for Expla	ination of	Column 1	leadings							

ECO ANAL/MILCON DES Student's Manual

# Vugraph 9-1e



Slide 9-25



**M&R DATA AVAILABLE** for Architectural Electrical Plumbing **HVAC** 

Notes:

.



where

ACF = area cost factor MCP Index = Tri-Service MCP (inflation) Index For Further Information about the LCC maintenance database, contact:

Facility System Division Construction Engineering Research Laboratory Corps of Engineers Department of the Army P.O. Box 4005 Champaign, Illinois 61820-1305

Edgar S. Neely, Civil Engineer (217) 373-6721

Robert D. Neathammer, Staff Statistician (217) 373-7259



# THIS PAGE IS INTENTIONALLY LEFT BLANK

## 9.6 EXERCISE 9-2: USING THE M&R DATABASE

Use the following table to compute the present worth of M&R costs over 25 years for 15,000 SF of shingle roofing on a gym at the U.S. Military Academy. Use the ACF 1.17 to adjust for location. Use the factor 1.09 to update materials costs from 1985 to the DOS. Use \$13.85/hour as the wage rate for roofers, and use \$3.45/hour as the equipment charge rate.

PW (Labor/SF)

PW (Materials/SF)

PW (Equipment/SF) =

Total PW (M&R/SF) =

Total PW (M&R)

EPS BASED MAINTENANCE AND REPAIF	R COS	F DATA FO	R USE IN	LIFE CYC	LE COST	ANALYSI	S (\$ PER	UNIT ME	ASURE			AGE 1
COMPONENT DESCRIPTION		PRESEN MAINT. A	T WORTH	I OF ALL	25 YEAR (d-10%)	H	ANNUAL GH COST	MAINTEN.	ANCE /	AND REPA	IR PLUS NT COST	S
		By	Resource	es	Wash.	Annual	Maintenar Repair	ice and	æ	eplacemer Cost	Tasks	٩
	5	Labor	Mat'rl	Equip.	Total	Labor	Mat'rl	Equip.	۲۲	Labor	Mat'rl	Eaulo.
ARCHITECTURE ROOFING												
BUILTUP ROOFING	SF	0.03990	0.37220	0.02000	1.25	0.00488	0.03172	0.00244	28	0.04938	0.70490	0.02469
PLACE NEW MEMBRANE OVER EXISTING - RIIII TIID												
MOD. BIT. THERMOPLASTIC	ŝ	0.02440	0.33090	0.01180	0.87	0.00248	0.03219	0.00119	20	0.05659	0.85860	0.02829
MEMBRANE REPLACEMENT OR REPAIR - M.B./T. R									20	0.05550	0 96960	0.000
THERMOSETTING	Ъ.	0.01680	0.23950	0.00850	0.61	0.00174	0.02203	0.00088	30	0.03683	0.69960	0.01841
MEMBRANE REPLACEMENT - THERMOSETTING ROOF									20	103100	0 50050	
SLATE	SF	0.01850	0.10440	0.00890	0.51	0.00259	0.01459	0.00124	202	0.06885	0.03900	0.01447
CEMENT ASBESTOS	SF	0.01820	0.24340	0.00870	0.64	0.00254	0.03404	0.00122	70	0.05437	0.75190	0.02718
THE	г. г.	0.01550	0.20990	0.00740	0.55	0.00217	0.02935	0.00103	70	0.10169	3.07400	0.05084
TOTAL ROOFING	۲ 	0.0/140	0.42/00	0.03640	2.00	0.00754	0.01557	0.00387	10	0.04141	0.74963	0.02070
ROLL ROOF	1								10	0.04141	0.74963	0.02070
SHINGLES	ч Ч	0.02210	0.22150	0.01170	0.71	0.00259	0.02385	0.00140	40	0.04118	0.74497	0.02059
REPLACE NEW OVER EXISTING -									20	0.02996	0.43460	0.01498
METAL	SF	0.01460	0.11060	0.00740	0.43	0.00205	0.01547	0.00103	30	0.36265	2.17300	0.18132
FIBERGLASS RIGID STP. ROOF	L S	0.02190	1.15340	0.01080	1.64	0.00232	0.06269	0.00113	20	0.04543	6.01550	0.02272
CONCRETE, SEALED PANEL ROOF	SF	0.04300	0.11750	0.02120	1.07	0.00601	0.01643	0.00297	60	0.06123	24.07419	0.03061
CONCRETE, SEALED PANEL RF4	5	0.03900	0.08410	0.02020	0.95	0.00545	0.01176	0.00282	300	0.04342	24.07419	0.02171
CONCRETE SEALED POURED	L S	0.09830	0.63020	0.04950	2.80	0.01375	0.08811	0.00692	500	3.81056	18.03219	1.90528
FIBERGLASS, RIGID ROOF	SF	0.03800	1.15340	0.01930	1.99	0.00463	0.06269	0.00236	50	0.04133	6.01550	0.02066
TOTAL ROOF REPLACEMENT -									20	0.04133	6.01550	0.02066
FIBERGLASS RIGID		-	_				_		_			
See NOTES on the last page of th	lis tabl	e for Expl	anation of	Column 1	Headings							

# LIFE CYCLE COST ANALYSIS

ECO ANAL/MILCON DES Student's Manual

#### **KEY POINTS**

- Omit from EA/LCCA costs (& benefits) which are not affected by the choice of alternatives, including sunk costs.
- Detailed estimates are normally <u>not</u> used for economic analysis. They are the basis for bids and are usually made <u>after</u> economic analysis, not for economic analysis.
- To avoid unduly penalizing the economic performance of a building system which has service life remaining at the end of the analysis period, a cost credit called a retention value is attributed to that system. The retention value is usually estimated by prorating the initial cost of the system over its estimated service life, and taking the amount remaining at the end of the analysis period as the retention value.
- Maintenance data for performing LCC analysis are readily available from CERL in a series of published reports, one for each of the major building systems: architecture, HVAC, plumbing, and electrical.
- The set of 25 year PW data is to be used for manual calculations when the analysis period is 25 years.
- The set of annual data, together with "replacement/high cost" data, is to be used with the LCCID computer program and for manual calculations when the analysis period is not 25 years.
- The CERL database has the advantage of allowing you to use your own upto-date labor and equipment charge rates and to adjust material costs for your location and date of study.



#### **MODULE 10**

## PERFORMING LCCA WITH COMPUTERS

#### Purpose:

- To introduce you to performing LCCA using computer software
- To discuss factors in selecting and using software

## Outline:

- 10.1 Software for EA/LCCA
- 10.2 Introduction to LCCID
- Computer Lab

## Approximate Time:

3 hours and 30 minutes (1 hour classroom; 2.5 hours computer lab)

#### Day 4

Slide 10-1



## **10.1 SOFTWARE FOR EA/LCCA**

By the end of this section, you are expected to be able to

- list several aspects of EA that existing software can do for you and several things that you have to do
- list key factors to consider in selecting software for EA/LCCA
- identify several computer programs that are useful for EA/LCCA

Slide 10-2

# EXISTING SOFTWARE WILL

- Perform fast and accurate calculations
- Make it easier to follow criteria
- Provide some of the data
- Supply part or all documentation


## FACTORS TO CONSIDER WHEN SELECTING SOFTWARE

- For what application?
- Is there an active users group?
- Is it endorsed for this application?
- Is it compatible with my hardware?
- How well is it documented and supported?
- Is it adequate for my needs?
- Will using it increase productivity?





# THIS PAGE IS INTENTIONALLY LEFT BLANK

ECO ANAL/MILCON DES Student's Manual

## **10.2 INTRODUCTION TO LCCID**

By the end of this section and the computer lab, you are expected to be able to

- use LCCID to perform simple EA/LCCA
- describe the special features of LCCID
- interpret a sample printout of the LCCID Output Report

### LIFE-CYCLE COST IN DESIGN (LCCID)

- Tailored to DOD needs
  - incorporates criteria of Army/Navy/Air Force
  - calculates required economic measures
  - For performing
    - general economic studies
    - energy conservation studies (FEMP & ECIP)

Slide 10-7 (a-d)









THIS PAGE IS INTENTIONALLY LEFT BLANK

ECO ANAL/MILCON DES Student's Manual

Performing LCCA With Computers

### **10.2 LCCID COMPUTER LAB**

Two case studies are provided for LCCID solution. These are examples that you have solved manually in class. The first requires a general economic study; the second, an energy conservation study. Do Case Study 10-1 first, and have an instructor verify that you successfully completed the exercise. Then, if time permits, do Case Study 10-2.

Day 4

10-16

## CASE STUDY 10-1: USING LCCID FOR A GENERAL ECONOMIC STUDY

Compute LCC using conventional approach. Suppose you have been asked to design a vehicle maintenance shop for Fort X in Huntsville, and you need to select among alternative exterior wall surfaces. Compute LCC of exterior wall design alternative A (Tile) by completing the attached DA Forms 5605-3 and 4, based on the following data:

Project Nu	umber:		PN568
Date of St	Date of Study (DOS):		7/88
Analysis Base Date (ABD):		7/88	
Beginning	of Constru	ction:	Two years from DOS
Length of	Constructio	on Period:	One year
Beneficial	Occupancy	Date (BOD):	End of Construction Period
Initial Investment Costs (as of DOS):		\$75,000	
M&R Cos	sts (as of D	OS):	\$2,000/yr
Distillate 1 (M&1 after	Fuel (as of R and Fuel BOD)	DOS): costs start six months	\$12,000/yr plus escalation 2,609 MBtu at \$4.60/MBtu
Repair Cost (as of DOS): (Repair cost first occurs five years after BOD)		\$5,000/every five years	
Retention Value (as of DOS): (Retention value occurs 25 years after BOD)		\$7,500	
Differentia (	al Escalation ("e values")	n Rates:	
Energ	Energy Use set for 1987 (which were still in effect at time of this study)		till
Other	r	0	
Data Sources:	Initial inve Repair I in attachm	stment Means Cost Data; M& Repair Records; Retention Value ent; Energy BLAST.	R M&R Database; e Prorated cost described

Performing LCCA With Computers

ECO ANAL/MILCON DES Student's Manual

## CASE STUDY 10-2: USING LCCID FOR AN ENERGY CONSERVATION STUDY

Perform an LCC analysis of two alternative HVAC systems being considered for an administration building to be constructed on Fort X in Mississippi:

- Alternative A, a variable-volume system <u>without</u> an energy economizer cycle
- Alternative B, a variable-volume system with an energy economizer cycle

A previous analysis has identified alternative A as the "best" of conventional designs. It is the baseline against which to evaluate the alternative with an energy economizer cycle.

Compute LCCs of the two alternatives using the one-step approach and FEMP criteria for energy conservation studies. Compare LCCs and recommend a system. (See key dates below.)

Use DA Form 5605-3 for data inputs; DA Form 5605-5 to compute LCCs; and DA Form 5605-2 to compare the results and record the LCC ranking.

Data:			
	Alt A	Alt B	
Purchase & Installation	\$125,000	\$132,000	
Replacement (Plant) (7/00)	50,000	52,000	
Replacement (Fan) (7/06)	20,000	20,000	
Replacement (Plant) (7/09)	50,000	52,000	
Net Retention Value (7/16)	18,000	20,000	
Maintenance & Repair (yearly)	12,000	12,500	
ECO ANALIMILCON DES	Performing LCCA With Computers	10-17	

Student's Manual

Day 4

Data (continued):	Alt A	Alt B
Annual Energy Costs (in prices at the beginning of the analysis period; use set of data for 1987)		
Electricity	\$17,000 1,252 MBtu	\$15,000 1,105 MBtu at \$13.58/MBtu
Distillate	2,000 435 MBtu	1,500 326 MBtu at \$4.60/MBtu
Expected Service Life	35 years	35 years

Dates: DOS = ABD = 7/88; Start of Construction = 7/90; BOD = 7/91

### **KEY POINTS**

- Computer programs for EA/LCCA can speed calculations and increase accuracy, make it easier to follow criteria, provide some of the data, supply part or all documentation, but there is much that remains for you, the analyst, to do.
- It pays to select your computer program carefully; the wrong program hinders rather than helps your analysis.
- Make sure that programs selected for use are compatible with all current criteria.
- Computer software is a useful tool only if used correctly.
- LCCID and LCCID -- compatible programs (including commercially developed programs) are tailored to your EA/LCCA needs.



## THIS PAGE IS INTENTIONALLY LEFT BLANK

#### Day 4

### **MODULE 11**

### **DEALING WITH UNCERTAINTIES**

### Purpose:

- To emphasize that uncertainty is a fact of life for EA/LCCA
- To point out that uncertainty in input data may cause the outcome of a design choice to be different than indicated by results of an economic study
- To acquaint you with some of the techniques for dealing with uncertainties
- To introduce you to sensitivity analysis

### Outline:

- 11.1 Overview of Selected Techniques
- 11.2 When Uncertainty Assessment Should Be Done (Exercise 11-1)
- 11.3 Exercise 11-2: Sensitivity Analysis

### Approximate Time:

1 hour and 30 minutes

Slide 11-1

# SOURCES OF UNCERTAINTY IN EA/LCCA

- Variability in data inputs
  - Prices
  - Quantities
  - Timing of costs & benefits
  - System performance
  - Circumstances of use

## 11.1 OVERVIEW OF SELECTED TECHNIQUES

By the end of this section and section 11.3, you are expected to be able to

- describe several techniques for dealing with uncertainty
- perform sensitivity analysis

Day 4

Slide 11-2

## UNCERTAINTY ANALYSIS

analytical techniques for taking into account the degree of uncertainty about input values for an economic analysis

Slide 11-3

# TECHNIQUES FOR DEALING WITH UNCERTAINTY

- Probability-based analysis
  - Sensitivity analysis
- Others

Notes:

NIST Special Publication 757, <u>Techniques for Treating Uncertainty and Risk in the</u> <u>Economic Evaluation of Building Investments</u>, by Harold E. Marshall. Slide 11-4

## SENSITIVITY ANALYSIS IS PERFORMED --

by repeating an economic evaluation with one or more input values changed.

Notes:

ECO ANAL/MILCON DES Student's Manual





Slide 11-6



Slide 11-7

"WHAT IF?"			
<u>Scenario</u>	LCC		
1	\$10,000		
2	9,000		
3	11,000		
4	8,000		

Slide 11-8



Slide 11-9





# THIS PAGE IS INTENTIONALLY LEFT BLANK

ECO ANAL/MILCON DES Student's Manual

## 11.2 WHEN UNCERTAINTY ASSESSMENT SHOULD BE DONE

By the end of this section, you are expected to be able to

- identify conditions under which you <u>should</u> perform uncertainty assessment as part of EA/LCCA for MILCON design
- identify conditions under which you <u>should not</u> perform uncertainty assessment as part of EA/LCCA for MILCON design

### Slide 11-10

FACTORS WHICH DETERMINE NEED FOR UNCERTAINTY ASSESSMENT

- Are LCCA results clear cut?
- is approval required by higher authority?
- Are the LCCA results controversial?
  - Deviation from criteria?
  - Change from common practice?
  - Rejection of user preference?
  - Large Increase in first cost for small decrease in LCC?

### EXERCISE 11-1: WHEN TO PERFORM SENSITIVITY ANALYSIS

Place a check next to the following cases for which you think an uncertainty assessment should be done.

1. You have completed a routine, basic economic study of alternative floor covering materials for a school. The LCC results are as follows:

LCC
\$15,000
14,800
15,200

- 2. You know there is a strong sentiment among families slated for base housing for natural gas furnaces rather than heat pumps. The basic LCC analysis supports selection of heat pumps.
- 3. A basic economic study of alternative interior wall partitions for a reserve training building in Nebraska shows the following results:

Partition Type	LCC
Х	\$22,000
Y	30,000

4. An LCC analysis of paving materials for a parking surface shows the following results:

Surface Type	LCC	Initial Cost	Energy Cost
Р	\$33,000	\$20,000	0 ′
Q	38,000	15,000	0

FI

### Day 4

5. Normally vinyl tile floor covering is used in corridors of building type Y. But an LCC analysis indicates that terrazzo floors are cost effective in this particular case due to higher-than-average traffic of heavy rolling carts.

### **11.3 EXERCISE 11-2: SENSITIVITY ANALYSIS**

Decide if an uncertainty assessment is required for the following case and perform it if necessary. Recommend a selection.

Alternative Parking Surface A (asphalt w/2" wearing surface)

"Best Guess" Estimates:

Initial Investment:	\$40K
Replacement (1" top) after eight yrs:	\$10K
Replacement (1" top) after 16 yrs:	\$10K
M&R:	\$0.8K/yr

LCC: \$53K

Alternative Parking Surface B (asphalt w/3" wearing surface)

"Best Guess" Estimates:

Initial investment:	\$42K
Replacement (1" top) after 12 yrs:	\$10K
M&R:	\$0.4K/yr

LCC: \$48K

There is uncertainty regarding the maintenance cost advantage of Alt B over Alt A. Alt B may cost about the same to maintain as Alt A. HQUSACE is currently investigating roadway and parking lot paving decisions. Assume construction is accomplished in a one-month period three years after DOS.

## **KEY POINTS**

- A single-value measure of work implies a level of certainty that seldom exists in economic analysis.
- Probability analysis can provide a quantitative estimate of the chance (risk) of making the wrong choice.
- The TM provides guidance/requirements as to when uncertainty assessment should be undertaken and what techniques are to be considered.
- Sensitivity analysis is a simple and practical technique which in certain cases can help to improve decisions.

## MODULE 12

## **CRITIQUE OF EA/LCCA**

Purpose:

To train students to perform quick and incisive critiques of analyses

Outline:

12.1 Guidelines for Reviewing EA/LCCA

12.2 Exercise 12-1: Critique of an LCC Study

Approximate Time:

1 hour



ECO ANAL/MILCON DES Student's Manual

•
# 12.1 GUIDELINES FOR REVIEWING EA/LCCA

By the end of this module you are expected to be able to

• review DA Forms 5605 and quickly identify incorrect data, assumptions, calculations, and ranking decisions

,

### Day 4

### OUTLINE OF RECOMMENDED GENERAL PROCEDURE FOR CONDUCTING A REVIEW

- 1) Review contract provisions with regard to EA/LCCA.
- 2) Clarify unclear contract provisions.
- 3) Examine contractor draft report as a whole to make sure
  - the provisions of the contract are met
  - the documentation is sufficient for a quick and incisive review.
- 4) Make sure the inclusion or exclusion of evaluated alternatives was done "correctly."
- 5) Examine results of EA/LCCA and evaluate the documented rationale for the selection decision.
- 6) Evaluate the reasonableness of the design selection based on engineering judgment.
- 7) Select the level of detail at which to conduct the EA/LCCA review.
- 8) Check to make sure the key provisions of criteria (Chapter 2 of TM 5-802-1) were followed.
- 9) Review and spot-check the accuracy and validity of input data and key assumptions.
- 10) Validate the accuracy of the EA/LCCA calculations; compare the PW calculations with the data inputs for consistency; check a few selected calculations by either
  - simplified approximation techniques, rules of thumb, etc., or
  - a method different from that used by the contractor.
- 11) Document clearly and concisely all deviations found and return report to contractor for correction and resubmission.

Critique of EA/LCCA

ECO ANAL/MILCON DES Student's Manual Slide 12-1 (a-e)





Slide 12-3 (a-d)



Identify Deviations: • From contract provisions

- From applicable criteria
- From other agreed-on provisions



# THIS PAGE IS INTENTIONALLY LEFT BLANK

ECO ANAL/MILCON DES Student's Manual

### 12.2 EXERCISE 12-1: CRITIQUE OF AN LCC STUDY

An A-E contractor was asked to perform an EA/LCCA on floor finish alternatives for the Cheney Center, a 50,000 sq. ft. Army recreation center in Fort Oaks, Michigan. The specifications required the contractor to follow HQDA criteria and to submit the analysis report on DA Forms 5605-2, 3 and 4. Quickly review the report according to the guidelines given in section 12.1.

# DA Form 5605-3 (Basic Input Data Summary, completed for A)

Project No. & Thie 318 Flour Finish Installation & Location Ruilding X Design Festure Maintenance AH. No. A Thie Orlessote Block

# LIFE CYCLE COST ANALYSIS BASIC INPUT DATA SUMMARY

For use of this form, see TM 5-802-1; the proponent agency is USACE.



	Cost on ABD	Time Cost	Incurred**				
Cost Element	\$ x 10 ³ _ \$ x 10 ⁴	Actual Projected Dates	Dates for Ansiyals (If Different)*	Source(s) of Dsta			
Initial Investm.	120	JAN 91		Eng. Estimate			
MAR	3	JAN 92-JAN	21	Eng. Estimate			
Distillak	10	DANG2-JAN	21	BLAST Progr.			
Refention V.	6	JUL 21		Rest suess			
				0			
	_						

DA FORM 5605-3-R, DEC 86

*When 10 CFR436A Criteria Apply

**For Recurring Annual Costs, abow date of first and lest costs only.

ECO ANAL/MILCON DES Student's Manual

. of _

Sheet____

Critique of EA/LCCA

12-10



DA Form 5605-4 (Present Worth: Conventional Approach, completed for A)

LIFE CYCLE COST ANALYSIS

PRESENT WORTH:

Project No. & THIS 31? Florn Finish

Installation & Location Revieding X

DA FORM 5605-4-R, DEC 86

ECO ANAL/MILCON DES Student's Manual

Sheet____

_ 01__

Day 4

12-11

### DA Form 5603 (Basic Input Data Summary, completed for B)

Project No. & Thie 318 Flour Finish Installation & Location Building X Design Festure Haintenauce An. No. B. Thie Walnut Parquet

# LIFE CYCLE COST ANALYSIS BASIC INPUT DATA SUMMARY

or use of this form, see TM 5-802-1, the proponent agency is USACE.



	Cost on ABD	Time Cost	Incurred**			
Cost Element	X\$ x 10 ³ _ \$ x 10 ⁴	Actual Projected Dates	Dates for Analysis (If Different)*	Source(s) of Dsta		
Initial Investm.	225	JAN 91		ELP, Expincite		
Mar	6	JANG2-JAN:	4	Fine Estimate		
Distikate	10	74N92-7AN	a	BLAST Progr.		
Retention V.	4	74121		Rest Guess		

DA FORM 5605-3-R, DEC 86

"When 10 CFR436A Criteria Apply

**For Recurring Annual Costs, show date of first and last costs only.

Sheet_____ of_____

ECO ANAL/MILCON DES Student's Manual



Project No. & Title 318 Flow Finish Installation & Location, Ruildwig X Design Feature Maniferrance Alt. No_B_Thie Walnut Parquet

# LIFE CYCLE COST ANALYSIS PRESENT WORTH:

CONVENTIONAL APPROACH

For use of this form, see TM 5-802-1; the proponent egency is USACE.

	88 11	10 21	AN 91	1671	101	Escalation		5C19/ 21	(. Maria	>		Present Worth on ABD	: c 1	52.4	174.2								Total	
$\left  \right $	C (08V)	(AED)	uction	1 L	ete	Differential		-90190.	20 (50			Discount Factor	1001	12 0/ .	1685								7	
Reference	a Base Date	a End Data	at of Constr	r Analysia	Discount R			87	114 1		Incurred)	Equiv. Single	11 11	4.90	447.8			T	T				s C;	
Criteria	Analysi	Analyal	Midpolr	BOD fo	Annual		010		19.0		(Time Fire	Annual Seriea Eq	12 2775	111 7. 61	34.48					T		đ	•	
Present	on ABD	190	,53								Escal.Cost	tet Ann. Cost In	, v	200	<i>c</i> /							Costs	4	
1 Discount	ractor	+448.	.1314									Escalation Fector	2.5 (01)	2.6100 /	(10.1							MAD	. 62.	
Escal.Cos (Time	Incurred)	225	4-								Annual	Coal on ABD	9		2	+	T					Fuel Costs	t.2	
Escalation	ractor	(1.0)2.5	(1.0)20								Totat	No. of Paymenta	30	200	25		T				=	Eneravi	171-+-	
Cost		225	-4								rom ABD	Last Incurred	32.5	222	<u></u>							el Costa	90	
Years From	ABD	5.5	30								Years I	First Incurred	رب بر	L C	2							tuiti	-	
One-Time Costs X 5 * 10'		Init. Investu.	Referchon Value								X1.10	Annual Costs X 4 10	U+U	Distillet									let Present Worth:	

DA FORM 5605-4-R, DEC 86

ECO ANAL/MILCON DES Student's Manual Sheet_

Day 4

12-13

# DA Form 5605-2 (Summary, completed for A & B)

Project No. & This 318 Flows Finish Installation & Location Building X Design Feature Manstenance

# LIFE CYCLE COST ANALYSIS SUMMARY

For use of this form, see TM 5-802-1; the proponent agency is USACE.

ALTERNÁTIVES ANALYZED												
No	Description	Present Worth X x 103 (1 \$ x 104										
NO.	Descriptions rate	initiai	Energy	MAR	Other	Totai						
A	Cressole Block	101.3	353.4	31.4	.62	485.5						
B	Walnut Parquet	190	174.2	62.4	53	426						
	l											

	ECONOMIC RANKING										
		Economic Adventages of Top									
Rank	Alternative No. & Title	LCC (PW) Difference (Dollars & Percent)	Other (Initiai, Energy, Etc.)	Besis for No. 1 Ranking							
12	B-Walnut Aarquet A-Crevsole Block	.\$ 59.5K laver (12%)	51% laver oriengry	LCC							

KEY ASSUMPTIONS	NARRATIVE SUMMARY (Comments/Lessons Learned/Observations/Recommendations/Etc.)
	First cost is 46% higher
	Every wit is 51% lower

Key Participants - Name	Discipline	Organization	Telephone No.			

DA FORM 5605-2-R, DEC 86

Sheet _____ of _____

ECO ANAL/MILCON DES. Student's Manual

### **MODULE 13**

### **PUTTING EA/LCCA INTO PRACTICE**

### Purpose:

To provide guidance in

- Deciding the appropriate level of effort to devote to EA/LCCA, and the appropriate level of documentation
- Presenting/"selling" results of EA/LCCA
- Providing specifications to A-E contractors for performing EA/LCCA under contract

#### Outline:

- 13.1 Deciding the Level of Effort
- 13.2 Documentation
- 13.3 Presenting/"Selling" Results
- 13.4 Contracting with A-E Firms
- 13.5 Exercise 13-1: Presenting/"Selling" Results

### Approximate Time:

4 hours



Notes:

ECO ANAL/MILCON DES Student's Manual

# **13.1 DECIDING THE LEVEL OF EFFORT**

By the end of this module, you are expected to be able to

• describe several levels of effort for EA/LCCA and explain the factors to consider in deciding which level to choose





Step 1

### DETERMINE GENERAL REQUIREMENTS FROM TM

(TM 2-2a)

Notes:

ECO ANAL/MILCON DES Student's Manual Putting EA/LCCA Into Practice



Slide 13-5



LCCA is most likely to be cost effective when

- there are dramatic differences in cash-flow profiles
- there is a feature common to a number of projects





# Step 3 ASSESS IMPLICATIONS OF "POLITICAL" CONSIDERATIONS Source of requirement Anticipated levels of review Visibility/controversiality Known preferences in the command structure Anticipated viability of project

Day 4

Slide 13-9

# Step 4 DETERMINE FEASIBILITY OF USING/ADAPTING PREVIOUSLY CONDUCTED ANALYSES

Day 4

Slide 13-10

# Step 5

### CONDUCT SIMPLE SCREENING PROCEDURE TO DETERMINE IF A STUDY IS WARRANTED

Step 6

### DETERMINE THE LEVEL OF EFFORT LIKELY TO BE APPROPRIATE BASED ON STEPS 1-5

Notes:

ECO ANAL/MILCON DES Student's Manual Putting EA/LCCA Into Practice

Day 4

Slide 13-12

Step 7

# ADJUST THE LEVEL OF EFFORT AS REQUIRED AS EVENTS UNFOLD

Notes:

ECO ANAL/MILCON DES Student's Manual

### 7 STEPS SUMMARY

- 1. Determine general requirements from TM (2-2a), i.e., scope, coverage, and exceptions.
- 2. Determine specific requirements from special rules or instructions (if any), e.g., special directed studies.
- 3. Assess implications of pertinent "political" considerations, e.g.,
  - source of the requirement (statutory vs. routine)
  - anticipated levels of review
  - visibility/controversiality
  - known preferences in the command structure
  - anticipated viability of project.
- 4. Determine feasibility of using/adapting previously conducted analyses.
- 5. Conduct simple screening procedure to determine if a study is warranted (where no previous study is available).
- 6. Determine the level of effort likely appropriate based on Steps 1-5.
- 7. Adjust the level of effort as required as events unfold.

# NOMS FACTOR SCREENING TECHNIQUE

Rule-of-thumb approach for general economic studies for determining if a higher first-cost alternative is likely to be life-cycle cost effective.

Notes:

ECO ANAL/MILCON DES Student's Manual

### SCREENING PROCEDURE FOR ASSESSING PAYOFF POTENTIAL OF CONDUCTING AN ECONOMIC ANALYSIS

### ("NOMS FACTOR" SCREENING TECHNIQUE)

### STAGE 1:

- 1. Estimate difference in initial costs between alternative with lowest initial cost and a higher priced alternative.
- 2. Estimate difference in total future costs of the two alternatives, i.e., the "nominal" savings. (That is, no discounting is performed.)
- 3. Calculate the "Nominal O&M Savings Factor" (NOMS Factor) as the ratio of nominal savings to the first-cost difference.
- 4. Conduct "Zero Order" Screening:
  - If NOMS FACTOR < 1, Payoff Potential of Economic Study is Nil. Do not perform LCCA.
  - If NOMS FACTOR > 3, Payoff Potential of Economic Study is Good. Perform LCCA.
  - If NOMS FACTOR >> 3, Payoff Potential of Economic Study is Great. This is the case where you should especially perform LCCA.
  - If 1 < NOMS FACTOR < 3, Payoff Potential is Unknown. Continue with next stage of screening procedure.

### Day 4

### STAGE 2:

1. Make Rough Estimate of Minimum NOMS FACTOR Required for Payback

When savings are mainly in M&R or very low-e value fuels & normal MILCON design conditions prevail (i.e., d = 10%, three years to BOD, 25 year post-BOD period),

Minimum NOMS FACTOR = 3

Under more "favorable" conditions,

Minimum NOMS FACTOR is lower

- e.g., 1.5 for higher-e fuels (>5% average rate) 1.0 for 1-year study
- If NOMS FACTOR < 90% of Est. Minimum Value, Payoff Potential is Low.
- If NOMS FACTOR > 125% of Est. Minimum Value, Payoff Potential is Good.
- For Intermediate Values of NOMS FACTOR, Payoff Potential is unknown.
- 2. If NOMS FACTOR > minimum required, perform an LCCA.

Factors influencing minimum "nominal" savings required for cost effectiveness: discount rate project calendar years of operation escalation rates

### **KEY POINTS IN SELECTING A LEVEL OF EFFORT**

- LCCA not needed in every case
- Avoid new study if old will work
- Screening technique may help
- Detailed data not necessary for most LCCA
- Comprehensive study probably worthwhile for highstakes and controversial decisions

Notes:

13-20

### **13.2 DOCUMENTATION**

By the end of this section, you are expected to be able to

- describe the Army criteria for documenting EA/LCCA studies
- be able to list key elements in documentation

### DOCUMENTATION

a "stand-alone" written record of an economic study for project files which is comprehensible to others & which sets forth

- what was done
- data
- principal results
- technical & administrative lessons learned

### CRITERIA FOR DOCUMENTATION TM 5-802-1, Chapter 2, (p. 2-7)

**Basic Requirement:** 

A written record will be provided for every economic study, regardless of the size of the project and the conclusiveness of the results. The written record will be made a part of the design documentation and included in the project files.

# DISTRIBUTION

- Among design professionals within the organization
- To higher authority when
  - significant or unusual findings
  - changes from common practice
  - significantly improved procedures
Slide 13-19



Slide 13-20

# HOW DOCUMENT?

**Core material** 

- with DA Form 5605 (& attachments)
- with LCCID or equivalent software

Supporting material as necessary

# SUMMARY DESCRIPTION OF DOCUMENTATION TASK

Provide documentation for the economic analysis in a cost-effective manner.

- 1. Throughout the analysis, document key information/data
  - include assumptions, prices and quantities, timing, economic parameters, calculations, analyses, and results, and
  - make maximum use of standard forms, worksheets, checklists, computer printouts, and other types of "self-documenting" materials.
- 2. At the outset, determine Army requirements for the documentation in accordance with TM  $\P$  2-2.
- 3. Prepare the documentation package (narrative, graphics, reference material, and appendices) to be the minimum judged appropriate and sufficient within the criteria requirements and under the circumstances at hand.

THIS PAGE IS INTENTIONALLY LEFT BLANK

ECO ANAL/MILCON DES Student's Manual

# 13.3 PRESENTING/"SELLING" RESULTS

By the end of this section, you are expected to be able to

- prepare for principal challenges that you may receive while presenting study results
- defend study results that are based on sound analysis

Slide 13-21

# STEPS IN ANALYZING STUDY RESULTS

- 1. Rank alternatives In LCC order
- 2. Assess quality of Input data
- 3. Select on basis of LCCs if possible
- 4. Apply tle-breaking criteria (if LCCs close or data quality poor)
- 5. Conduct an uncertainty assessment if unsure about significance of LCC difference
- 6. Select on basis of LCCs if supported by results of the uncertainty assessment; otherwise select according to professional judgment

Slide 13-22

# PRINCIPAL CHALLENGES

Be prepared for attempts by others to have study results reversed -- with little or no <u>substantive</u> justification -- on grounds of some "overriding consideration."

Day 4

Slide 13-23

# PRINCIPAL DEFENSE A sound economic study, with properly validated LCC results, is the best defense

Slide 13-24



Slide 13-25

# WHY NOT REVERSE OR IGNORE THE RESULTS OF A SOUND ECONOMIC STUDY?

- Long-run building costs are likely to be higher
- Wasteful to perform studies which are ignored

# **13.4 CONTRACTING WITH A-E FIRMS**

By the end of this session, you are expected to be able to

• list the important provisions regarding EA/LCCA to include in specifications for A-E contracts

Student's Manual

Day 4

Slide 13-26

# CONTRACTING WITH A-E FIRMS What provisions to include in specifications?

Day 4

# 13.5 EXERCISE 13-1: PRESENTING/"SELLING" RESULTS

This exercise is intended to focus attention on the need for sound economic analysis as the starting point for successfully selling design recommendations on the basis of EA/LCCA results.

Read the two reports which follow. Decide if you would feel comfortable presenting or "selling" to your boss the recommendation of Report 1; of Report 2.

If you are assigned the role of presenter by the instructor, your job is to do your best with the material at hand to make a case for adopting the report's recommendation.

If you are assigned the role of decision maker, your job is to review the reports, listen to the presentation critically, and challenge the recommendation being made. Accept the recommendation if and when you are convinced of its merits.

# EXERCISE 13-1: PRESENTING/"SELLING" RESULTS

# EA/LCCA REPORT 1: WASTE-HEAT RECOVERY SYSTEM

# **Identifying Information**

	Seymour Arb, NC
Building:	Administrative building with large computer facility
Design Feature:	Waste-Heat Recovery System
Alternative X: Alternative Y:	Include the Waste-Heat Recovery System Omit the Waste-Heat Recovery System

# **Key Dates**

DOS:	6/88
ABD:	6/88
BOD:	6/91
AED:	6/13

# Recommendation

Include the proposed waste-heat recovery system in the computer facility to provide heating for adjacent offices.

# **Basis for Recommendation**

Attached report by A-E Contractor XYZ who was hired to investigate the potential.

# Attached Report by A-E Contractor

In 1978 we performed an economic analysis of retrofiting a heat wheel in a dental products plant in Syracuse, NY to capture waste heat for heating adjacent office space. The square footage of dental office space to be heated is comparable to that of the office space adjoining the computer lab.

In that study, we estimated an annual rate of return of 15%. Due to cost overruns on acquisition costs, the actual rate of return was reduced to about 9%.

We think this is ample grounds for concluding that the proposed waste-heat recovery system for the computer facility will be cost effective, particularly when we take into account inflation since 1978.

# EA/LCCA REPORT 2: USE OF AN INNOVATIVE LIGHTING SYSTEM IN A RESERVE CENTER

### **Identifying Information**

Installation & Location:	Laramie, WY
Building:	Reserve Center
Design Feature:	Innovative Lighting System
Alternative A:	Use the innovative lighting system
Alternative B:	Use the conventional system

### Key Dates

DOS:	06/88
ABD:	06/88
BOD:	12/90
AED:	06/13

# Recommendation

Include the innovative lighting system in the reserve center.

#### **Basis for Recommendation**

Attached report by A-E Contractor OPQ who was hired to investigate the potential.

Summary of EA/LCCA Results:

Based on Most Probable Values of Input Data

LCC (A) = 117K

LCC (B) = 139K

Net Savings of Alt A over Alt B = \$22KPercentage Reduction in LCC = 16%

Based on Sensitivity Analysis:

(Using Most Pessimistic Input Data)

LCC (A) = \$125K

LCC (B) = 139K

Net Savings of Alt A over Alt B = \$14KPercentage Reduction in LCC = 10%

Attached Report by A-E Contractor

# Completed DA Form 5605-3 for Alt A

Project No. & Thie <u>PN'101 Reserve (enter</u> Installation & Location Fort z, <u>Lavarnie</u> Wy Design Feature <u>Lighting</u> System AR. No <u>A</u> Thie <u>Inneventive Lighting</u> System For use of this form, we TM 5-802-1; the proponent agency is USACE.

Criteria Refer	ence	FEMP				
Date of Study	(DOS)	6/88	Principal Assumptions			
Analysis Bese	Date (ABD)	6/88	Tt is assumed based on extensive private			
Analysis End	Date (AED)	6/13	sector experience that the lighting system			
Midpoint of C	onstruction	12/90	will serform in an acceptable way			
Beneficial Occupancy	Actual Projected	6/91	and meet all performance requirement			
Date (BOD)	Assumed for Analysia	6/88	Cash Flow Diagram			
DOE Region		8	]  -			
Annual Disco	unt Rate	79.	Une			
Туре	Differential Escelation Rete per Year (%)		m+R			
of Cost	Timefreme: PS-90 1 90	0-95 195-13				
ELec	-3:37 -1	1.03-0.05	Electricity			
Other	0	00				

	Coat on ABD	Time Cost	Incurred**	
Coat Element	✓ \$ x 10 ² \$ x 10 ²	Actual Projected Detea	Detes for Analysis (if Ditterent)*	Source(a) of Data
Initial Costs	\$15.01<	12/90	6/88	Cost Engineer's Est. (App1)
Mo R (Lamps)	0.2 K	12/91-12/16	6/88-6/13	Manufucturer's Info (Hyp. 2)
Electric, ty	9.8K	12/91-12/16	6/08-6/13	$DOEZ(H_{UP}, 3)$
Retention Value	0			

DA FORM 5605-3-R, DEC 86

"When 10 CFR436A Criteria Apply

**For Recurring Annual Costs, show date of first and last costs only.

Sheet Z of 5

ECO ANAL/MILCON DES Student's Manual

Putting EA/LCCA Into Practice

# Completed DA Form 5605-5 for Alt A

enc

Project No. & Title <u>PN 101 Reserve Center</u> Instaliation & Location Fortz, Laranie Wy Design Feature Lighting System Alt. No. <u>A</u> Title In 100 Datice Lighting St

# LIFE CYCLE COST ANALYSIS PRESENT WORTH: ONE-STEP APPROACH

use of this form, see TM 5-802-1; the proponent egency is USACE.

One-Time Costs	VS x 103	Years	Cost On	One Step Adj.Factor	Present Worth	Criteris Re	ference	F	EMP
	. \$ x 10*	ABD	ABD	Table 1	on ABD	Anaiysis B	sse Date (ABD)	6/	188
						Ansiysis End Date (AED)		nsiysis End Date (AED) 6/13	
Fuitial Co	sts	D	\$15.0K	1.0	\$15.0K	Midpoint of Construction		1/2	190
						BOD for Ar	BOD for Analysis		188
						Annusi Dis	count Aste	1 2	19:
						Туре	Differen	ntial Esca per Year	lstion (%)
						of Cost Timeframe: 88-90, 90-95, 5		95-13	
						ELEC	-3.37	-1,03	- 0.05
						Cther	U	D	Û
							_		

Annusi Costs	S x 10 ³ S x 10 ⁴	Total No. of Payments	Annual Cost on ABD	Totsi Nominal Cost on ABD	One Step Adjustment Factor* Table Factor x DOS Correction	Present Worth on ABD
			·			
Electricit	-1;	25	9.8K	\$245.0K	C1. 4050	\$99.2K
	/					
M+R (La	mps)	25	C.2K	95.0K	0,4661	\$ 2.35
		1-11-1-0		0	Casta Dibas Casta	Total

 Initial Costs
 Energy/Fuel Costs
 M&R Costs
 Other Costs
 Total

 Net Present Worth:
 \$15,0k + \$99.2k + \$2,3k + \$-\$\$
 <math>\$5,0k + \$99.2k + \$2,3k + \$-\$\$
 \$\$5,0k + \$15,0k + \$15,0k + \$2,3k + \$-\$\$
 \$\$5,0k + \$15,0k + \$15,

DA FORM 5605-5-R, DEC 86

*Use One-Step Table 2 for M&R costs (e = 0). Use One-Step Table 3 for energy/fuel costs (e = prescribed e vsiue).

2 , 5 Sheet

ECO ANAL/MILCON DES Student's Manual

# Completed DA Form 5605-3 for Alt B

Project No. & Title <u>PN iUI Reserve Center</u> Installation & Locetion Fortz, Lanimie, W Design Feature Lighting System Att. No. B. Title <u>Conventional System</u>

# LIFE CYCLE COST ANALYSIS BASIC INPUT DATA SUMMARY

of this form, see TM 5-802-1; the proponent agency is USACE.



	Cost on ABD	Time Cost	t Incurred**		
Coat Element		Actuel Projected Dates	Detea for Anelyais (If Different)*	Source(a) of Dete	
Initial Costs	\$ 11.0 K	12/90	6/88	Cost Engineers Est Ring Y	
		/			
Mr R (Langs)	D.IK	12/51-12/16	6/88-6/13	Munufacture Lesto Capo	5
			1	0 0 -10	[~
Electricity	12.5K	12/91-12/16	6/85-613	DOE2 (apple)	
		· · ·	/	70	
Retention Value	0			-	
		1			

DA FORM 5605-3-R, DEC 86

*When 10 CFR436A Criteria Apply

**For Recurring Annuel Costs, show date of first and lest costs only.

sheet 3 of 5

# Completed DA Form 5605-5 for Alt B

Project No. & Title PN 161 Reserve Center Installation & Location Fort Z, Laramie Wy Design Feature Lighting System Att. No. B Thie Conventional System

# LIFE CYCLE COST ANALYSIS PRESENT WORTH: ONE-STEP APPROACH

For use of this form, see TM 5-802-1; the proponent agency is USACE.

One-Time Costs 25 x 103	Years	Cosi	One Slep Adi.Factor	Present Worth	Criteria Refe	renca	FE	EMIP
.: \$ x 10 ⁴	ABD	ABD	Table 1	on ABD	Analysis Bas	e Date (ABD)	6	188
			_		Analysis End	Date (AED)	6/	13
Initial Costs	0	\$11.0K	1.0	\$ 11.0K	Midpoint of C	Construction	12/	190
				_	BOD for Anal	lysis	6	188
					Annual Disco	unt Rate	7	40
					Туре	Differen Rate j	tial Esca per Year	(%)
					of Cost Timetrame: 88-90, 90-95		90-95	95-13
					Elec	- 3.37 -	-1.03	-0.05
					Uther	0	U	0

Annual Costs	10 ³ Total No. of Payments	Annual Cost on ABD	Total Nominal Cost on ABD	One Step Adjustment Factor* Table Factor x DOS Correction	Present Worth on ABD
Electricity	25	\$12.5K	\$312.5K	0.4050	\$126.6K
		C. A. IC	0.000	0 11 1 1 1	1 · · · ·
In+ IC Lamps	) 25	70.1K	72.5K	0.7661	1.2K
			4		
	Initial Cost	ts Enargy/Fue	Costs M&R	Costs Other Costs	Total

	Initial Costs	Enargy/Fuel Costs	M&R Costs	Other Costs	Total
Net Present Worth:	\$ 11:0K	. \$126.6K.	\$ 1.2K	·	\$139 K

DA FORM 5605-5-R, DEC 86

*Use One-Stap Table 2 for M&R costs (e = 0). Usa One-Stap Tabla 3 for enargy/fual costs (a = prescribed a valua).

Putting EA/LCCA Into Practice

Sheet 4 of 5

ECO ANAL/MILCON DES Student's Manual

# Completed DA Form 5605-2

Project No. & This Piv 101 Reserve Cente	- LIFE CYCLE COST ANALYSIS
Installation & Location Fort 2, Lavamie, WY Dealgn Feature Lighting Sustein	SUMMARY
Date of Study 6 28	For use of this form, see TM 5-802-1; the proponent agency is USACE.

	AL	TERNÁTIVES	ANALYZED			
No.	Description/Title	Present Worth \$ x 10 ³ \$ x 10 ⁶				
	Description/Title	Initial	Energy	M&R	Other	Total
A	Innovative Sustem	\$15.0K	\$ 99.212	\$2,3K	-	\$117K
B	Conventional Sisterin	\$11.0K	\$1266K	\$1.2K	-	\$139K

		ECONOMIC RANKING		
		Economic Advantages of To	p-Ranked Alternative	
Rank	Alternative No. & Title	LCC (PW) Difference (Dollara & Percent)	Other (Initial, Energy, Etc.)	Baala for No. 1 Ranking
Z 2	A Inno vatise System B Conventional System	\$22 K 16% less	Saves Energy	LCC

KEY ASSUMPTIONS	NARRATIVE SUMMARY (Comments/Lessona Learned/Observations/Recommendations/Etc.)		
Based On Fatisive	Sensitiin Andusis symmits the selicition.		
private sieter lise	Using pessimistic assumptions that the		
Innovative Sustein	Suistein Costs more to install and mintain		
assumed to inter	It save less energy it is still estimated		
this prostante per portaile	to be the cost - effective choice. *		
Standayes	//		

Key Participants - Name	Discipline	Organization	Telephone No.
I. R. Frighter	Electrical Engineer	U.S. H.C.F.	XXXXX
In.T. Costs	Lest Engineer	11.5. H.C.E	<u> </u>

DA FORM 5605-2-R, DEC 86 * Sensitivity line yers Not Shown.

Sheet ______ 01_____

# **KEY POINTS**

- It is important to choose the correct level of effort for an economic study. Spending too little means costly decisions; spending too much means wasting resources on the study.
- There are rules of thumb which can be useful in choosing the level of effort.
- Documentation helps keep track of the evaluation process, provides record which may be useful in the future, and is required.
- The best defense against challenges to design decisions made on the basis of EA/LCCA is a sound economic study performed according to criteria.
- A thorough understanding of EA concepts and criteria is essential for communicating your needs to design engineers and A-E contractors.
- Contractors need to be informed of the requirements and criteria for EA/LCCA.

# **MODULE 14**

# **OTHER ECONOMIC MEASURES**

# Purpose:

- To acquaint you with other measures of economic performance which
  - you may have to compute in response to special requirements
  - you may wish to compute as supplementary measures to use in presenting/"selling" results of EA/LCCA

# Outline:

- 14.1 Net LCC Savings
- 14.2 Savings-to-Investment Ratio
- 14.3 Discounted Payback Period

# Approximate Time:

1 hour and 30 minutes

Slide 14-1



Notes:

ECO ANAL/MILCON DE Student's Manual

# DEMONSTRATION OF HOW TO COMPUTE SIR AND DPP USING DA FORM 5605-1

# Sample Problem Data:

An active solar hot water system is being considered in lieu of a conventional hot water system for an Air Force base launderette in Phoenix, Arizona. The solar energy hot water system is packaged with an auxiliary backup system whose costs are included as part of the solar energy system's cost.

Undiscounted/Unescalated (\$s as of ABD)	Solar Energy System	Conventional System
Purchase and Installation	\$35,000	\$8,000
Maintenance & Repair $(e = 0)$	1,500/yr at ABD	200/yr
Replacement Cost $(e = 0)$	2,000/yr 10	8,000/yr 12
Energy Cost (DOE e values) (Electricity)	10,000/yr at ABD	16,000/yr at ABD
Retention Value	0 at AED	0 at AED
DOS = 7/88 ABD = 7/88 AED = 7/13		
Discount rate, $d = 7\%$		
Present Worth		
Purchase & Installation	35,000	8,000
Maintenance & Repair	17,479	2,331
Replacement Cost $(e = 0)$	1,017	3,552
Energy Cost	104,175	166,680

Other Economic Measures

Project No. & Titla______ Installation & Location_____

Design Feature_

Baseline System_

investment_

	SIR Calcu	lation	]
Element of Calculation	System	Type of Cost/Benefit	
		Enargy/Fual	
PW of	Base- line	Other O&M	
Operating & Maintenanca		Total	
Coata		Enargy/Fual	
□ \$ x 104	Invest- mant	Other O&M	
		Total	
	Δ	Net Savings	
	Base- line	Initial (MCP)	
		Replacementa	
		Tarminal	
DW -4		Other	
Capital		Total Net	
Costs		Initial (MCP)	
□ \$ x 104		Raplacementa	
	Invest- mant	Terminal	
		Other	
		Total Nat	
	Δ	Extra Investment	
SIR	Δ	Net Savings Extra Investment	

# LIFE CYCLE COST ANALYSIS SAVINGS-TO-INVESTMENT RATIO (SIR) & DISCOUNTED PAYBACK CALCULATION

For use of this form, see TM 6-802-1; the proponent agency is USACE.

	DISCO	anteo Payba		
Tria	Values of P	ost-BOD An	alysis Period	l, n(years)
n =	n =	n =	n =	n -
			-	_
	_			
				_
				-
		_		
111111	, innin	, innin	1111111	mm
	_	_		
		_		
		1		

DA FORM 5605-1-R. DEC 86

Next Trial n Value

ears)

*In calculating First Trial n Value for Discounted Payback Calculation, Use Last SIR = Last n = 0.

A = This SIR - 1.0 B = This SIR - Last SIR*

C = Ratio of A to B D = Last n° - This n

E = Product of C & D F = Next n = This n + E

Project No. & This PNI Launderette Installation & Location Air Force Base X, Ph Design Feature Process Hot Water System Baseline System Conventional Hot Water System Invesiment Solar Hot Water System

SIR Calculation			
Element of Calculation	System	Type of Cost/Benefit	
		Energy/Fuel	166,680
PW of	Base- line	Other O&M	2,331
Operating & Maintenance		Total	169,011
Coats		Energy/Fuel	104,175
□\$x10*	Invest- ment	Other O&M	17,479
		Total	121,654
	Δ	Net Savinga	47,357
	Base- line	Initial (MCP)	8,000
		Replacements	3.320
		Terminal	0
DW of		Other	-
Capital		Total Net	11,320
□ \$ x 10 ³		Initial (MCP)	35,000
🗆 \$ x 10*		Replacements	1,017
	Invest- ment	Terminal	0
		Other	-
		Total Net	36,017
	Δ	Extra Investment	24,697
SIR	Δ	Net Savings Extra investment	1.9*

0.9

1.9

0.47

-25

11.8

13.2

# LIFE CYCLE COST ANALYSIS SAVINGS-TO-INVESTMENT RATIO (SIR) & DISCOUNTED PAYBACK CALCULATION

For use of this form, see TM 5-802-1; the proponent agency is USACE.

		Discounte	ed Payback	Calculation	
	Trial Va	lues of Post	BOD Analy	is Period, n	(years)
	n = 13	n =	n =	n =	n =
	86.674				
	1,212				
	87,886				
	54,171				
	9.089				
	63,260				
	24,626				
	8,000				
	3,320				
	0				
	-				
	11,320				
	35,000				
	1,017				
	0				
	36,017				
	24,647				
	~1.0				
1					
72					
$\langle \rangle$					
$\langle \rangle$					

DA FORM 5605-1-R, DEC 86

Next Trial n Value

(Years)

*In calculating First Trial n Value for Discounted Psyback Calculation, Use Last SIR = Last n = 0.

A = This SIR - 1.0

C = Ratio of A to B

D = Laat n* -- Thia n

E = Product of C & D

F = Next n = This n + E

B = This SIR - Last SIR*

ECO ANAL/MILCON DES Student's Manual

Other Economic Measures

THIS PAGE IS INTENTIONALLY LEFT BLANK

# MODULE 15

# POSTTEST

# Purpose:

- To assess your understanding of EA/LCCA after training
  - for self assessment of your current level of understanding
  - to help instructors evaluate the effectiveness of the course
  - to get feedback on topics that need further practice in the Skills Lab

# Time Allotted:

1 hour

THIS PAGE IS INTENTIONALLY LEFT BLANK

# POSTTEST

The following are technical questions relating to economic analysis. Each question is worth 1 point. Please leave a blank rather than guessing if you do not know the answer. Blanks will receive -1 point, wrong answers will receive -2 points.

- 1) Life-cycle costing
  - a) _____ ignores first costs and takes into account future costs.
  - b) _____ includes all relevant costs over a designated study period
  - c) ____ neither a) nor b)
- 2) Life-cycle costing applies only to Army construction projects and has little applicability to solving other types of problems.
  - a) ____ True
  - b) False
- 3) Adding attic insulation in building A, which saves 12.9 million Btu annually, is more cost-effective than adding attic insulation in building B, which saves 9.5 million Btu annually, given that insulation costs essentially the same in both buildings.
  - a) ____ True
  - b) ____ False
  - c) ____ Can't tell
- 4) All economic analysis in support of MILCON design decisions are governed by the same set of criteria.
  - a) True
  - b) _____ False

ECO ANAL/MILCON DES Student's Manual Posttest

15-3

# Day 5

- 5) Suppose you are planning to renovate 234 houses on a military base. You estimate the initial cost of renovating the exterior of each house to be about \$20,000. An A-E contractor estimates the initial cost of renovating the interior of each house at \$17,958. In an initial planning document the appropriate way to express the full initial costs of renovating base housing is
  - a) _____ \$8,882,172
  - b) _____ \$8,882,200
  - c) _____ \$8,880,000
  - d) _____ about \$9 million
- 6) Suppose you had the choice of receiving \$100 today or receiving \$100 (guaranteed) in one year. Which would you choose? Place a check in the space in front of your choice.

\$100 today or \$100 one year from now

What about \$100 today versus \$105 (guaranteed) one year from now?

\$100 today or \$105 one year from now

Choose one from each of the following pairs

 \$100 today	or	\$110 (guaranteed) one year from now
 \$100 today	or	\$115 (guaranteed) one year from now
 \$100 today	or	\$120 (guaranteed) one year from now
 \$100 today	or	\$130 (guaranteed) one year from now
 \$100 today	or	\$140 (guaranteed) one year from now
 \$100 today	or	\$150 (guaranteed) one year from now

From your choice, what do you conclude is your annual minimum acceptable rate of return (MARR)?

MARR = _____ %

• Given that this is your annual minimum acceptable rate of return, what is the amount you would require in two years to make you willing to forego \$100 today?

Would require \$ _____ in two years

• Given your annual minimum acceptable rate of return, how much would you be willing to spend today to avoid incurring a sure cost of \$1,000 in one year?

Willing to spend \$ _____ now

• Given your annual minimum acceptable rate of return, how much would you be willing to spend today to avoid incurring a sure cost of \$1,000 in two years?

Willing to spend \$ _____ now

- 7) Suppose you expect general price inflation to run about 4% per year and you are willing to invest in treasury bonds with a guaranteed return of 10% per annum. If you could be certain that the rate of inflation would be 0% instead of 4%, it would be reasonable to require a return on the bonds of about
  - a) _____ 10%
    b) _____ 6%
    c) _____ 4%
    d) _____ 0%

# Day 5

- 8) Suppose you invest \$5,000 in a mutual fund with an average annual return of 10% compounded annually. At the end of five years your investment will have grown to
  - a) _____ \$8,052.55
  - b) _____ \$7,500.00
  - c) _____ \$5,500.00
- 9) Suppose you could replace the roof of your house today at a cost of \$3,000, and you wish to estimate how much to budget for the replacement which you expect to be required five years from now. If roofing materials and labor are expected to increase at a rate of about 6% per year, you will need to budget approximately
  - a) _____ \$4,000
  - b) _____ \$3,000
  - c) _____ \$2,000
  - d) _____ \$3,180
  - e) ____ none of the above
- 10) To evaluate the cost effectiveness of one MILCON building design over its alternatives, it is necessary to forecast general price inflation and to add an inflation amount to the estimates of future operating, maintenance, repair, and replacement costs.
  - a) ____ True
  - b) ____ False

11) Suppose you are required to estimate future maintenance and repair costs for an HVAC system. General price inflation is forecasted to increase at a rate of 7% per annum, whereas prices for HVAC systems are forecasted to increase at an annual rate of only 4%. This means that in absolute terms (i.e., in current dollars) the HVAC price

a)	 increases at an annual rate of about 11%
b)	 increases at an annual rate of about 7%
c)	 increases at an annual rate of about 28%
d)	 decreases at an annual rate of about 3%
e)	 increases at an annual rate of about 3%

And, it means that in relative terms (i.e., in constant dollars) the HVAC price

- a) _____ increases at an annual rate of about 7%
- b) _____ increases at an annual rate of about 4%
- c) increases at an annual rate of about 3%
- d) remains unchanged
- e) increases at an annual rate of about 11%

# Day 5

- 12) Suppose you can reduce the energy costs of your house by installing insulation. You can pay for it by withdrawing funds from a money market account that pays 9% per annum, after taxes. Alternatively, you can use the money market funds to pay off a consumer loan you have outstanding at 12% per annum (after taxes). Improved comfort aside, i.e., on strictly economic grounds, the annual minimum acceptable rate of return required to induce you to install insulation is
  - a) 0% because the funds are already on hand
  - b) _____ 9% because 9% will be lost by withdrawing the money
  - c) ____ 12% because 12% could be saved by using the funds to pay off the loan instead of buying insulation
- 13) When an individual's or organization's minimum acceptable rate of return is used to calculate how much he, she or it would be willing to spend now in order to avoid a given future cost, the rate is typically called
  - a) ____ the discount rate
  - b) ____ the interest rate
  - c) _____ the savings rate
  - d) _____ the reduction rate
- 14) Suppose you are selecting a roof for a new house, and you find that a highquality roof will last 20 years without major repairs or replacement, and a standard-quality roof will last only 10 years before it requires replacement costs of \$2,000. The high-quality roof will cost you an extra \$800 now. Assume you can finance the more expensive roof by taking out a larger mortgage loan at the going loan rate of 10%. The high-quality roof is
  - a) _____ well worth the additional cost
  - b) _____ clearly not worth the additional cost
  - c) _____ likely to perform economically roughly the same as the standard quality roof
15) Suppose you are considering the use of floor coverings in a government building, saving an estimated \$2,000 (constant dollars) annually in maintenance and repair expenditures over a period of 25 years. The government requires an annual minimum rate of return of 10% over and above general price inflation. Total savings starting today and accruing over 25 years will be equivalent to

a) receiving a lump sum of exa	actly \$50,000 today
--------------------------------	----------------------

- b) receiving a lump sum of less than \$50,000 today
- c) _____ receiving a lump sum of more than \$50,000 today
- d) there is no way to determine the equivalent amount
- 16) Suppose the rate of general price inflation is about 4% per annum. Further assume that because of shortages, the price of oil escalates about 5% per annum faster than prices in general. In 10 years a quantity of oil which is priced at \$1,500 today will have increased in price to about
  - a) _____ \$2,250
  - b) \$3,600
  - c) \$9,300
  - d) _____ \$2,850
- 17) One would conclude that with a general price inflation rate of 4%, in 10 years a dollar bill will buy
  - a) about the same as what a dollar will buy today
  - b) about two-thirds what a dollar will buy today
  - c) _____ about one-tenth what a dollar will buy today
  - d) about one-third more than what a dollar will buy today

Posttest

- 18) Suppose the general inflation rate is 6% per annum and you require a return at least 4% per annum over and above inflation. This means that you require a total return of about
  - a) ____ 6% per annum
  - b) _____ 4% per annum
  - c) ____ 10% per annum
  - d) _____ 24% per annum
  - e) _____ none of the above
- 19) If the total annual rate of change in fuel oil prices is 7% and the rate of general price inflation is 4%, you would say that the differential escalation rate for fuel oil is about
  - a) ____ 11%
  - b) _____ 3%
  - c) ____ 7%

More precisely, the differential escalation rate for fuel oil is

- d) ____ 11.28%
- e) _____ 2.88%
- f) _____ 7.82%

20) Suppose annual maintenance and repair costs are expected to increase at the same annual rate as prices in general, say about 10%. In this case the differential annual rate of price escalation for maintenance and repair costs is

a)	 5%
b)	 7%
c)	 0%
d)	 10%

21) Refer back to question 20. Suppose you wish to estimate what maintenance and repair costs will be five years hence, based on the fact that they are \$1,000 today. Stated in dollars of the future year (i.e., in current dollars which include inflation), the estimated future cost is

a)	 \$1,685	c)	\$1,000
b)	 \$1,159	d)	\$1,611

Stated in today's dollars (i.e., in constant dollars which exclude inflation), the estimated future cost is

- a) _____ \$1,685 c) _____ \$1,000
- b) _____ \$1,159 d) _____ \$1,611
- 22) What is the estimated present-worth equivalent of a cost of \$10,000 which is expected to occur in 15 years if the discount rate is 10%?
  - a) _____ \$2,394
  - b) _____ \$9,091
  - c) _____ \$10,000
  - d) _____ None of the above

- 23) Suppose you estimate a repair cost which is expected to occur in three years to be \$2,000 in today's dollars (i.e., in constant dollars). Further suppose that the rate of general price inflation is 6% and that you require a 4% per annum return over and above inflation to make you willing to spend money now in order to save money in the future. The discount rate you would use to calculate the presentworth equivalent of the \$2,000 future cost (in constant dollars) is
  - a) _____ 4% d) _____ 6%
  - b) ____ 10% e) ____ 10.24%
  - c) _____ 2.4% f) _____ none of the above
- 24) Refer back to question 23. Suppose the rate of general price inflation were 0%. What discount rate would you use then?
  - a) _____ 4% d) _____ 0%
  - b) ____ 10% e) ____ none of the above
  - c) _____ 6%
- 25) Again refer back to question 23. The present-worth equivalent of the future amount of \$2,000 is
  - a) _____ \$1,679
  - b) _____ \$1,778
  - c) _____ \$1,370

- 26) Suppose an equipment replacement is expected to be required in five years. You estimate that the replacement would cost \$1,000 if it were made today, and you need to know what it would cost in five years. Suppose general price inflation is expected to average 5% per annum, but the equipment is expected to increase in price only 3% per annum in absolute terms. Stated in dollars of the future year (i.e., in current dollars), the future replacement cost is estimated at
  - a) _____ \$1,159 c) _____ \$1,000
  - b) \$908 d) ____ \$1,469
- 27) Refer back to question 26. Stated in today's prices (i.e., in constant dollars), the future replacement cost is estimated at
  - a) _____ \$1,469 c) _____ \$1,159
  - b) _____ \$1,000 d) _____ \$909
- 28) Again refer back to question 26. Suppose your minimum acceptable rate of return is 5% over and above inflation. Working in future year dollars (i.e., in current dollars) and including inflation in the discount rate, the present-worth equivalent of the future replacement cost is
  - a) _____ \$712 c) ____ \$1,181
  - b) _____ \$1,000 d) _____ \$1,390

Working in today's dollars and excluding inflation from the discount rate, the present worth equivalent of the future replacement cost is about

a) _____ \$1,181 c) _____ \$712

b) _____ \$1,000 d) _____ \$1,390

- 29) As a general rule, if one includes general price inflation in estimates of future costs (i.e., if one states future costs in current dollars), it is imperative also to
  - a) _____ deduct the differential escalation rate
  - b) _____ add the differential escalation rate
  - c) _____ exclude an estimate of the rate of general price inflation from the discount rate
  - d) _____ include an estimate of the rate of general price inflation in the discount rate
- 30) As a general rule, if one excludes general price inflation in estimates of future costs (i.e., if one states future costs in constant dollars), it is imperative also to
  - a) _____ add the differential escalation rate
  - b) _____ deduct the differential escalation rate
  - c) _____ exclude an estimate of the rate of general price inflation from the discount rate
  - d) _____ include an estimate of the rate of general price inflation in the discount rate

## 31) Draw a cash flow diagram based on the following information:

Construction will begin two years from the date of study and will last one year. Assume that the construction costs of \$100,000 will be incurred at the mid point of the construction period. A repair cost of \$20,000 will be incurred 15 years from the date of study; maintenance costs of \$5,000 will be incurred annually beginning six months after the end of construction (beginning of beneficial occupancy). A retention value of \$10,000, net of disposal costs will remain at the end of 25 years of occupancy.

32) Calculate the life-cycle cost of sliding entry doors for an Army reserve building -one of several design alternatives for entry doors under consideration. Significant costs are limited to the following:

Present worth of installation costs	\$57,600
Present worth of energy costs for photo-electric control system	\$1,400
Present worth of annually recurring nonfuel O&M costs	\$1,700
Present worth of replacement costs	\$6,000

\$ _____ = Life-cycle cost

33) Attic insulation can be added to Army housing to reduce energy costs. Assuming there is no insulation present and the space will accommodate insulation up to a level of R38 (resistance level 38), choose the cost-effective level based on the following life-cycle cost data:

	Insulation Level	LCC \$
a)	 0	25,000
b)	 R11	15,000
c)	 R19	8,800
d)	 R30	7,500
e)	 R38	8,200

- 34) A general economic study is to be performed for a MILCON building design. The building in question is to last indefinitely. In most cases the maximum analysis period for calculating life-cycle costs is how many years from Beneficial Occupancy Date (BOD)?
  - a) _____ 40 years
  - b) _____ 25 years
  - c) _____ 28 years
  - d) _____ 15 years

- 35) In order to compute the life-cycle cost of a MILCON design alternative, you should discount all amounts to their present-worth equivalent as of the
  - a) _____ Analysis Base Date (ABD)
  - b) _____ Beneficial Occupancy Date (BOD)
  - c) _____ Midpoint of Construction (MPC)
  - d) _____ Analysis End Date (AED)
  - e) _____ Time you select, since this will vary depending on the project
- 36) When estimating future costs for MILCON design alternatives, it is essential to include the projected rate of general price inflation in estimates of future costs.
  - a) ____ True
  - b) ____ False
- 37) The discount rate for general economic studies is
  - a) _____ 5%
  - b) _____ 10%
  - c) _____ 7%
  - d) _____ 6%
  - e) _____ 12%
  - f) _____ there is no specified rate

S

38) A routine economic analysis of parking lot surfaces shows the following results:

urface Type	LCC	Initial Cost	Energy Cost
А	\$37,000	\$13,000	0
В	\$40,000	\$15,000	0

Is an uncertainty assessment required?

- a) ____ yes
- b) ____ no

39) Which of the following two design alternatives would you recommend?

a)	 Alternative A:	LCC Initial investment cost	= =	\$40,000 \$15,000
b)	 Alternative B:	LCC Initial investment cost	=	\$40,100 \$10,000

- 40) In the economic analysis of energy-conserving building systems, which features are different from those of a general economic study?
  - a) ____ Discount rate
  - b) ____ Treatment of inflation
  - c) ____ Types of costs which may be included
  - d) _____ All of the above

41) Calculate the present worth of a series of annually recurring electricity costs of \$28,000 (in constant 1988 dollars) for a domestic hot water system to be installed in a housing complex of a military base in Texas. Assume that the Analysis Base Date (ABD) is July 1988 and the system will last 10 years. The discount rate is 10% and the appropriate One Step Adjustment Factor (OSAF) is 0.5162.

The PW of the series is

- a) _____ \$107,900
- b) _____ \$144,500
- c) \$280,000
- d) \$542,425

Alternative A

ECC Stud

42) The following costs and energy consumption data are estimated for two alternative natural gas domestic hot water systems in an administration building in Ft. McCoy, WI. There is uncertainty regarding the energy consumption of alternative A, which may be up to 35% higher than the most likely estimate. Recommend the system to be selected.

Alternative A	
Initial investment:	\$80,000
Natural gas consumption:	10,000 mill. Btu/year
LCC _A :	\$717,425
$LCC_A$ , taking into account 35% higher energy consumption:	\$940,524
Alternative B	
Initial Investment:	\$25,000
Natural gas consumption:	\$20,000 mill. Btu/year
LCC _B :	\$1,299,850
ANAL/MILCON DES	Posttest

The system selected is

- a) _____ Alternative A
- b) _____ Alternative B
- 43) The Army's Construction Engineering Research Laboratory (CERL) has developed a database for estimating maintenance and repair costs. Which of the following statements are correct?
  - a) _____ Maintenance and repair costs are often the data most difficult to estimate.
  - b) ____ CERL's database facilitates the estimation of LCC maintenance and repair costs for components of major building systems.
  - c) ____ CERL's LCC cost factors for maintenance and repair are constructed from time study data.
  - d) ____ Cost factors are given per unit of component.
  - e) _____ Local wage rates can be reflected in maintenance and repair costs using CERL's database.
  - f) _____ All of the above.
- 44) Assume that an HVAC system uses 3,000 million Btu of electricity per year and the price today is \$19.40/million Btu. If the differential rate of energy price escalation is projected to be 5% for the next year and the discount rate is 7% over and above general price inflation, the present worth of a year's energy consumption paid at the end of the first year is
  - a) _____ \$58,200
  - b) _____ \$57,112
  - c) _____ \$60,920

- 45) Suppose the expected service life of an HVAC system in an Air Force administration building exceeds by 10 years the 25-year study period for an LCC analysis. This could be taken into account in an LCC study by
  - a) _____ including a replacement cost
  - b) _____ assuming a retention value at the end of the study period
  - c) _____ it cannot be taken into account
- 46) The most appropriate time for LCC analysis of MILCON designs is
  - a) _____ during preconcept design
  - b) _____ during concept design
  - c) _____ at the time of final design
- 47) Choose the statement you think is most valid for LCC analyses:
  - a) _____ LCCAs are very expensive and time-consuming and should be done only in support of major decisions.
  - b) _____ LCCAs are very inexpensive and should be done in support of all decisions.
  - c) _____ LCCAs can be done with varying levels of effort and are not always necessary.

- 48) As a project manager dealing with an A-E contractor on a design project, your responsibilities with respect to economic analysis include the following activities:
  - a) _____ Specify appropriate Army or Air Force
  - b) _____ Indicate desired level of effort
  - c) _____ Specify documentation requirements
  - d) _____ All of the above
- 49) Suppose alternative A has higher first cost but significantly lower life-cycle costs than alternative B. You can use the results of an LCC analysis to
  - a) _____ support a request for increased funds when the Current Work Estimate (CWE) is higher than the Programmed Amount (PA)
  - b) _____ support the recommendation of design alternative A to Higher Authority
  - c) _____ rebut criticism of design alternative A
  - d) _____ all of the above
- 50) Which of the following statements is incorrect? A computer-aided LCC analysis program, such as LCCID,
  - a) _____ determines the objectives of the analysis, identifies alternatives, and interprets results
  - b) _____ makes fast and accurate calculations
  - c) _____ incorporates ready data files
  - d) _____ makes it easier to use the methodology
  - e) _____ provides documentation

## END

## MODULE 16

## SKILLS LABORATORY

#### Purpose:

- To review results of posttest
- To give you an opportunity to bring up specific issues that still need clarification
- To discuss issues to be treated in future courses

## Outline:

- 16.1 Review of Posttest
- 16.2 Identifying Areas Needing More Work
- 16.3 Additional Problems/Exercises

## Exercise 16-1: Use OSAF to Compute the Present Worth of Single Future Amount

Use OSAF to compute the present worth of a single cost of \$5,000 expected to occur in 15 years. The discount rate is 10%.

$$C_{F} = \$5,000$$
  
n = 15  
d = 0.10  
PW = ?  
\$5,000  

$$1 = 2 = 3 = 10$$
  
\$5,000  
PW = ?  
PW = ?

 $PW = C_F x OSAF (ONE-TIME COST TABLE)$ = \$5,000 x 0.2394 PW = \$1,197

Solve the problem using OSAF.

ECO ANAL/MILCON DES Student's Manual

**Exercise 16-2:** Compute Present Worth of Series of Energy Costs Escalating at DOE-Projected Rates and Beginning to Accrue at the BOD

Assume the BOD is July 1992. Annual electricity costs for Region 1 as of the DOS (June 1988) are estimated at \$3,000, but they do not begin to accrue until the BOD, with the first payment six months after BOD. The annual discount rate is a real rate of 10%. Compute the present worth of electricity costs based on 25 years of occupancy.

## SOLUTION:

The factor 0.2199 in the column headed July 1992 (the BOD) and for 25 payments shows that the PW of the series equals about 22% of the sum of the unescalated, undiscounted payments.

 $PW = A_{o} x k x OSAF (Electricity Table (Region 1), k = 25, BOD = 7/92)$ = \$3,000 x 25 x 0.2199

PW = \$16,493

In contrast, the conventional approach would require that we first divide the series into three subseries, find the initial amounts of each subseries by applying escalation factors, then use annual series factors to find the one-time equivalent cost of each subseries, find the PW of each one-time equivalent cost, and finally find the total PW for the entire series.

Exercise 16-3: Compute the Present Worth of a Uniform Series of M&R Costs that Begins to Accrue at the BOD

Assume the BOD is July 1991. A routine repair cost as of the DOS (June 1988) equals \$8,000. It is expected to occur in each of the 25 years after BOD, with the first payment occurring six months after BOD. The cost is projected to escalate at the same rate as general price inflation over the entire analysis period. The real discount rate is 10%. Compute the present worth of the series using OSAFs.

 $A_o = \$8,000$  k = 25 e = 0 d = 0.10PW = ?

## SOLUTION:

Look in the column headed July 1991, and find the factor for 25 payments: 0.2838. The factor tells us that the PW is 28% of the unescalated/undiscounted sum of the series.

 $PW = A_{o} x k x OSAF (M\&R TABLE, 3-year lag, k = 25)$ = \$8,000 x 25 x 0.2838 PW = \$56,760

Note that these factors apply only when there is no differential escalation in M&R costs (or other annually recurring costs). If there is differential escalation, it is necessary to use the conventional approach.

Recall that with the conventional approach we would first use the annual series factor to find the one-time cost of the series of payments over 25 years and then apply the SPW factor to find the PW as of the beginning of the study period. The SPW factor would have to be interpolated for 3.5 years to match the mid-year convention of the OSAF Tables.

Skills Laboratory

## Exercise 16-4: LCCA of a Roadway/Parking Surface

Do an LCCA as part of an economic study for a FY 90 project involving the construction of a reserve training building in the Tidewater area of Virginia. The LCCA is to be conducted in accordance with the provisions of a general economic study (HQDA). The ABD is the actual date on which the study is performed (the DOS); the midpoint of construction (Jan 91) and the BOD (Jul 91) are taken as the actual projected dates for these events. The study period is 25 years from BOD. The two alternatives considered have the following specifications:

	ALTERNATIVE A	ALTERNATIVE B
Type of Surface:	Asphalt with 2" wearing surface	Asphalt with 3" wearing surface
Initial Investm.:	\$45,400	50,900
Replacement		
(1" top):	Year 8: \$8,900	Year 12: 8,900
× • • •	Year 16: \$8,900	-
Annual M&R costs:	\$600	\$400

Use One-Step worksheets to document, and to compute the LCC and rank the alternatives.

# Vugraph 16-S1. Basic Input Data Summary for Alt A

Project No. & Title	LIF
Installation & Location	
Design Feature	DASI
Alt. NoThie	

# LIFE CYCLE COST ANALYSIS BASIC INPUT DATA SUMMARY

For use of this form, see TM 5-802-1; the proponent agency is USACE.

Criteria Refar	rence	
Date of Study (DOS)		Principal Assumptions
Analysis Base	e Data (ABD)	
Analysis End	Date (AED)	
Midpoint of C	Construction	
Beneficial	Actual Projected	
Date (BOD)	Assumed for Analysis	Cash Flow Disgram
DOE Region		] -
Annual Disco	ount Rata	
Туре	Differential Escalation Rate per Year (%)	
of Cost	Timeframe:	71.
		-11-

	Cost on ABD Time Cost Incurred**		Incurrad**	
Cost Elament	17 \$ x 10 ³ 72 \$ x 10 ⁴	Actual Projected Datas	Datas for Analysis (If Differant)*	Source(s) of Data

DA FORM 5605-3-R, DEC 86

*When 10 CFR436A Critaria Apply

**For Racurring Annual Costs, show date of first and last costs only.

Sheat_____ of_____

ECO ANAL/MILCON DES Student's Manual

## Vugraph 16-S2. Present Worth: One-Step Approach for Alt A

Project No. & Title

Installation & Location______
Design Feature______

Alt. No._____ Thie _____

## LIFE CYCLE COST ANALYSIS

## PRESENT WORTH: ONE-STEP APPROACH

For use of this form, see TM 5-802-1; the proponent agency is USACE.

The second se				the second se			
One-Tima Coats 3 \$ x 10 ³	Yaars	Cost	One Stap Adl.Fector	Prasent Worth	Criteria Refe	Criteria Reference	_
L] \$ x 10 ⁴	ABD	ABD	Teble 1	on ABD	Analysia Base Deta (ABD)		
					Analysia End	Data (AED)	
					Midpoint of C	onstruction	
					BOD for Anal	yala	
					Annuel Diaco	unt Rata	
					Type of Cost Timafreme:		ial Eacalation er Yaar (%)

Annual Costs	2 \$ x 10 ³ 2 \$ x 10 ⁴	Total No. of Peyments	Annual Coat on ABD	Total Nominal Coat on ABD	Ona Step Adjustment Fector* Table Factor x DOS Correction	Prasen Worth on ABI
			•			
				1		
				#		

DA FORM 5605-5-R, DEC 86

*Use One-Stap Table 2 for M&R costs (e = 0).

Use One-Step Teble 3 for energy/fuel costs (e = prescribed e velue).

Sheet____

__ 01___

## Vugraph 16-S3. Basic Input Data Summary for Alt B

Project No. & Title

Installation & Location____ Design Feature_____

Alt. No_____Thie__

# LIFE CYCLE COST ANALYSIS BASIC INPUT DATA SUMMARY

For use of this form, see TM 5-802-1; the proponent egency is USACE.

Criteria Reference			Principal Assumptions				
Date of Study	(DOS)						
Analysis Base	Date (ABD)						
Analysis End	Date (AED)						
MidpoInt of C	Construction						
Beneficial	Actual Projected						
Dete (BOD)	Assumed for Analysis		Cash Flow Diegrem				
DOE Region							
Annual Disco	unt Rate		· · · · · · · · · · · · · · · · · · ·				
Type	Differentiel E Rete per Y	eer (%)					
of Cost	Timefreme:						

	Cost on ABD	Time Cost	Incurred**		
Coet Element	11 \$ x 10 ³ 12 \$ x 10 ⁴	Actuel Projected Detee	Dates for Analyele (If Different)*	Source(e) of Deta	

DA FORM 5605-3-R, DEC 86

*When 10 CFR436A Criterie Apply

**For Recurring Annual Costs, show date of first and last costs only.

Sheet_____ of____

ECO ANAL/MILCON DES Student's Manual

# Vugraph 16-S4. Present Worth: One-Step Approach for Alt B

Project No. & Title _____

Installation & Location____

Design Feeture____

Alt. No._____Thie ____

# LIFE CYCLE COST ANALYSIS

## PRESENT WORTH: ONE-STEP APPROACH

For use of this form, see TM 8-802-1; the proponent egency is USACE.

One-Time Costs	F] \$ x 10 ³	Yeers	Cost	One Step Adl.Fector	Present Worth	Criterie Refe	rence	
	L] \$ x 10 ⁴	ABD	ABD	Teble 1	on ABD	Anelysis Bese Dete (ABD)		
						Anelysis End	Dete (AED)	
						Midpoint of	Construction	
						BOD for Ane	lysis	
						Annuel Disco	ount Rete	
						Type of Cost Timefreme:		iel Escaletion er Yeer (%)

Annuel Costs	] \$ x 10 ³ ] \$ x 10 ⁴	Totel No. of Peyments	Annuel Cost on ABD	Total Nominel Cost on ABD	One Step Adjustment Fector* Teble Fector x DOS Correction	Present Worth on ABD
		Initiel Cost	Energy/Fue	el Costs M&R	Costs Other Costs	Totel
Net Present Worth:	-		+	+		

DA FORM 5605-5-R, DEC 86

*Use One-Step Teble 2 for M&R costs (e = 0). Use One-Step Teble 3 for energy/fuel costs (e = prescribed e value).

Sheet_____ of_____

Day 5

# Vugraph 16-S5. Summary for Alt A and B

Project No. & Title______ Installation & Location______ Design Faatura______

# LIFE CYCLE COST ANALYSIS SUMMARY

For use of this form, see TM 5-802-1; the proponent agency is USACE.

Date of Study_

ALTERNÁTIVES ANALYZED						
Ne	Description/Title	Prasent Worth 1:\$x10			3 II\$x 10*	
NO.	Cascipiton rina	initiai	Enargy	M&R	Other	Totai

	ECONOMIC RANKING					
		Economic Advantages of To	p-Rankad Altamativa	-		
Rank	Aiternativa No. & Titia	LCC (PW) Differanca (Doilars & Parcant)	Other (initial, Enargy, Elc.)	Basis for No. 1 Ranking		

KEY ASSUMPTIONS	NARRATIVE SUMMARY (Commants/Lassons Laarned/Observations/Racommandations/Etc.)

Kay Participants - Name	Disciplina	Organization	Talaphone No.
-			

DA FORM 5605-2-R, DEC 86

Sheet_____ of_____

## MODULE 17

## SOLUTIONS TO EXERCISES

ECO ANAL/MILCON DES Student's Manual Answers to Exercises

17-1

# THIS PAGE IS INTENTIONALLY LEFT BLANK

ECO ANAL/MILCON DE: Student's Manual

NIST-114A (REV. 3-89)	U.S. DEPARTMENT OF COMMERCE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY	NISTIR 90-4255	
		2. PERFORMING ORGANIZATION REPORT NUMBER	
	BIBLIOGRAPHIC DATA SHEET	3. PUBLICATION DATE SEPTEMBER 1991	
TITLE AND S	SUBTITLE		
Economic (Concepts	Analysis for MILCON Design: Student's Manual , Techniques, and Applications for the Analyst)		
AUTHOR(S)	Duese and Signifieds V. Dulley		
Rosalle J	CORGANIZATION (/E IOINT OF OTHER THAN NIST SEE INSTRUCTIONS)		
U.S. DEPAR	TMENT OF COMMERCE		
GAITHERSB	URG, MD 20899	8. TYPE OF REPORT AND PERIOD COVERED	
SPONSORIA	IG ORGANIZATION NAME AND COMPLETE ADDRESS (STREET, CITY, STATE, ZIP)		
U.S. Ar	my Corps of Engineers		
P.O. Bo Huntsvi	ille, AL 35807-4301		
. SUPPLEMEN	ITARY NOTES		
DOCL	IMENT DESCRIBES A COMPUTER PROGRAM; SF-185, FIPS SOFTWARE SUMMARY, IS ATTACH	ED.	
LITERATUR	E SURVEY, MENTION IT HERE.)		
This is Construc	the class workbook for a five-day course, "Economic An	alysis for Military or the Analyst " The	
course e	equips design professionals to conduct, document, and r	eview economic studies	
of build	ing and facility design alternatives in accordance wit	h Army and Air Force	
case stu	dents. It demonstrates a variety of applications thround is the workbook covers 16 training modules; includ	gn realistic examples and ing orientation, pre and	
post tes	sts, aids to learning, time value of money, mathematica	l operations, general	
economic and risk	studies, energy conservation studies, data, computer	software, and uncertainty	
key poir	its. The manual is designed not as a stand-alone tutor	ial, but as a working	
document	for a course taught by an instructor who provides add	itional information.	
2. KEY WORD	S (6 TO 12 ENTRIES: ALPHABETICAL ORDER: CAPITALIZE ONLY PROPER NAMES; AND SEPAR.	ATE KEY WORDS BY SEMICOLONS)	
building	g economics; design economics; economic analysis; life-	cycle costing; military	
construc	tion; training course		
3. AVAILABILI	тү	14. NUMBER OF PRINTED PAGES	
X UNLI		493	
FOR	ER FROM SUPERINTENDENT OF DOCUMENTS, U.S. GOVERNMENT PRINTING OFFICE.	15. PRICE	
WAS	HINGTON, DC 20402.	A21	
LECTRONIC	FORM		





