
NISTIR 90-4251

ANALYSIS OF
COMPUTATIONAL
PARALLELISM WITH
A CONCURRENT
HIERARCHICAL
ROBOT CONTROL
SYSTEM

John L Michaloski
Thomas E. Wheatley
Ronald Lumia

U.S. DEPARTMENT OF COMMERCE
National Institute of Standards

and Technology

Robot Systems Division

Intelligent Controls Group
Bldg. 220 Rm. B124
Gaithersburg, MD 20899

U.S. DEPARTMENT OF COMMERCE
Robert A. Mosbacher, Secretary

Lee Mercer, Deputy Under Secretary
for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
John W. Lyons, Director

NIST





NISTIR 90-4251'“

ANALYSIS OF
COMPUTATIONAL
PARALLELISM WITH
A CONCURRENT
HIERARCHICAL
ROBOT CONTROL
SYSTEM

John L. Michaloski
Thomas E. Wheatley
Ronald Lumia

U.S. DEPARTMENT OF COMMERCE
National Institute of Standards

and Technology

Robot Systems Division

Intelligent Controls Group
Bldg. 220 Rm. B124
Gaithersburg, MD 20899

March 1990

/ ¥ \
\ J

'S
^*TES & '

U.S. DEPARTMENT OF COMMERCE
Robert A. Mosbacher, Secretary

Lee Mercer, Deputy Under Secretary
for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
John W. Lyons, Director





Analysis of Computational Parallelism with a Concurrent

Hierarchical Robot Control System

John L. Michaloski, Thomas E. Wheatley and Ronald Lumia

National Institute of Standards and Technology, Gaithersburg, MB 20899, U.S.A.

November 1989

ABSTRACT
Robot control systems require concurrent architectures to overcome real-time constraints. Satisfying real-time constraints is important,

but determinism, not performance, is the key element in assessing a control model. The goal of this paper is to present the concurrent

hierarchical control model as an efficient, flexible, and deterministic robot control methodology and then systematically analyze the

factors affecting the design and performance of a concurrent hierarchical control system. The ability for concurrent hierarchical control

to be systematically modeled is derived from the generic software approach to all levels of control. The generic software control primitive

of the model is the virtual control loop. A virtual control loop is a software concept analogous to a hardware duty cycle; software

cyclically samples commands and status to produce outputs within a bounded response time.

Virtual control with bounded response times forms the generic software component of each level in the concurrent robot control

hierarchy. Mathematical formalism can be applied to concurrent hierarchical control yielding a timing model that includes metrics of

system response time and level response time. The results of the timing analysis can be applied to process management in a robot control

system to yield a breakdown of control into concurrent processes: a short-term executor ensuring cyclic response and a long-term planner

anticipating the future. A software control algorithm will be presented that combines concurrent executors and planners to form the

generic level in the robot control hierarchy.

Key Words and Phases : communication, hierarchical controL,real-time, response time, task decomposition, virtual control

1. Introduction

Multiprocessor systems, especially those built of relatively low-cost microprocessors, offer a cost-effective

solution to the performance needs of an intelligent robot controller. Multiprocessor systems are beneficial for many

reasons, including cost performance, modular growth, reliability through replication, and flexibility for testing

alternative control strategies via different partitioning [8,18]. The effectiveness of a parallel implementation depends

on the inherent parallelism of the algorithms and the cost of interprocessor communication. Algorithms that are purely

sequential will not run faster on a parallel machine. Further, the cost of concurrent communication is a larger factor

than it would be on a sequential machine using procedure calls. Interprocessor communication using shared memory

or message passing takes longer because of the overhead of protocols and extra synchronization. The cost of

communications must not negate the time savings obtained by parallel execution on the different processors. Thus, to

achieve the benefits of parallelism, a robot control model must be inherently concurrent and have an efficient means

of communication.
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Parallel machines cover a broad range of computer architectures but several characteristics delineate purpose.

Parallel architectures vary within a fine-grain to coarse-grain domain [13, 15, 16]. General-purpose coarse-grain

machines are a parallel computer architecture maximizing batch throughput Here, the user may be unaware of any

parallelism involved Supercomputers are coarse-grained machines that specialize in fine-grained number crunching

in parallel for mathematically intensive algorithms. In this case, the programmer may add some data flow

enhancements to assist the number crunching. Other fine-grain computers specialize in data- intensive operations that

do not handle general-computing efficiently. The variety in machines leads to the distinction between systems that

maximize the throughput of many jobs, known as throughput-oriented multiprocessors, and systems that maximize

the execution of one process, known as speedup-oriented multiprocessors [5]. A robot controller will be characterized

as a speedup-oriented multiprocessing application since the controller is partitioned into a set of concurrent,

cooperating processes.

This paper describes the applicability of the concurrent hierarchical model as a multiprocessor architecture for

a robot control system. The subsequent sections of the paper are organized as follows: the second section discusses

the concurrent hierarchical control model as an architecture for a multi-computer robot control system. The theory of

concurrent hierarchical control model will be presented and include a discussion on the importance of task

decomposition and real-time response time. A software algorithm detailing the concurrent hierarchical model that

readily ports to a multi-computer system will be included. The third section presents a timing analysis of a control

system based on the concurrent hierarchical model. The fourth section discusses an implementation of a concurrent,

hierarchical robot control system at the National Institute of Standards and Technology (NIST, formerly the National

Bureau of Standards) as applied to the NASA flight telerobotic servicer and contrasts this model to other robot control

models.

2. Concurrent Hierarchical Real-Time Control

A goal of an efficient multiprocessor system is to exploit the benefits of parallelism while reducing software

complexity. Hierarchical structure is a well-defined design technique often applied to concurrent robot control [1,4,

5, 18, 21]. Hierarchical structuring of a control system offers an easy and systematic parallel approach. In itself,

hierarchical structure is not sufficient to defme concurrency. Task decomposition and response time further refine the

concurrent hierarchical model to handle the processor management of a hierarchical system, the complexity of any

level, and communication protocols.

Task decomposition is defined as the process of recursively partitioning a task into smaller, more manageable

subtasks. Task decomposition is complete when the subtasks are atomic. In this paper, a subtask partition defines a

level in the hierarchy. At each level in the hierarchical breakdown, an interface exists through which the adjoining

levels exchange information. As applied to control processes, one should not confuse hierarchical decomposition with

a deeply-nested serial process that follows a single thread of control flow. Although levels may share some data that

models the world, all levels run concurrently, and each can be defined as a virtual control loop.

Virtual control

,

as applied to hierarchical task decomposition, is a software control strategy that consists of the

following periodic actions: 1) inputting status and commands from adjoining levels, 2) producing a goal-directed

output based on the status and command, and 3) outputting an action to the adjoining lower level and a status to the

adjoining upper level. One iteration through the virtual control loop defines a cycle. When executing, each virtual

control layer in the hierarchy can be considered part of a long chain defining the hierarchical state, yet each layer

independently formulates its control flow. This leads to the definition of concurrent hierarchical control as

communicating layers of virtual control loops. Figure 1 illustrates the information flow in the concurrent hierarchical
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model.

Figure 1. Information Flow in a Concurrent Hierarchical Control System

A concurrent task decomposition model does not complete a definition of the control system. Mere functional

correctness is not sufficient. Of paramount importance is measuring the system performance by the time delay required

to respond (i.e., calculate a solution.) A real-time system must satisfy physical time constraints. Adding timing

constraints changes the mechanism of task decomposition. Now, the number of operations performed depends heavily

on the time required to make a decision and has a direct effect on decomposition. Responding to an event too late

nullifies the control no matter how intelligent the subsequent action. This timing restriction leads to the standard

definition of response time as the maximum allowable duration between an event and an action resulting from the

occurrence of that event.

Concurrency between levels does not guarantee a system response time. Concurrency within a level is necessary

to ensure predictable system behavior. To achieve predictable real-time control, each level in the hierarchy must

periodically sample inputs and produce outputs. Each level cannot run independently of adjoining levels. Should one

level be unable to complete the virtual control loop within one cycle, system performance is no longer predictable. For

example, a level awaiting a reading from a failed sensor could loop forever. Concurrency within a level can be

achieved by dividing a control level to account for present and future actions. Theplanner is responsible for generating

a plan consisting of a series of actions. The planner selects the best plan from a candidate list of alternative plans that

achieve the commanded goal, given the current state of the environment. An executor enables state transitions and so

is responsible for stepping through a generated plan. The executor must run periodically to guarantee the cyclic

behavior of the virtual control loop. The planner and executor can run concurrently within a level, thus insuring a

predictable level response which implies a predictable system response.

The following algorithm sketches an overview of planning and executing within a level of the hierarchical

concurrency model. The algorithm is written in pseudo code using Brinch Hansen primitives cobegin and coend for

concurrent execution f 1 0], It is important to note that the concurrent sections of code could be either tightly- or loosely-

coupled depending on timing constraints. (Processes that execute in parallel on separate processors are defined as

-3 -



loosely-coupled. Processes that execute in a multi-tasked operating system on a single processor are defined as tightly-

coupled.) In this algorithm, the familiar file operations lock and unlock are primitives that guarantee mutual exclusion.

Comments in the following algorithm will be delimited by double quotes.

procedure level()

cobegin

repeat "executor section, runs at a higher priority'

waitunxil( next-cycle);

update(next-cycle);

lock; read_command; unlock;

lock; readjstatus; unlock

;

read plan;

process;

lock; write_command; unlock;

lock; write_status; unlock;

untilforever;

"timing synchronization primitive

"update next cycle count"

"read command "

" read status "

"read current plan"

"execute level
"

"write command "

"write status
"

repeat "planner"

plan;

lock; write_plan; unlock;

untilforever

;

"do level planning"

"update executor plan

'

coend

The concurrency of the planner and executor allows this software algorithm to be easily ported onto a parallel

pipelined computer architecture. Each level in the hierarchy runs as a concurrent process. Parallelism is not a direct

result of concurrent hierarchical control because a lower level cannot process without a command from its adjoining

higher level. However, once a task is underway, this creates a pipeline in which each level is executing in parallel. For

example, it would take 5 control cycles for information from the top level to Filter down to the bottom level in a five

layer hierarchy. However, this cyclic protocol will guarantee a deterministic system response time.

3, Timing Analysis

Systems that meet response time obligations are defined as real-time systems. The concept of response time or

hard real-time must be contrasted to soft time used as a sequencer of events. For example, a sequence of robot

commands GOTO A, GOTO B , does not contain any timing information. Within the decomposition of this command,

only the lower levels are concerned about timing so that constant updates to the robot are guaranteed. However, the

command GOTO A BY f. GOTO B BY t.+j
where /• and t-+ j

are some explicit time values, demands real time

handling. Now, a solution must be supplied within an explicit time. This embodies the distinction between time as a

dynamic real-world parameter versus time as a sequencing tool.

For a hierarchical control system to be real time, it must meet the demands of 1) the response time of the system,

plus 2) the response time of each level in the hierarchy. Response time will be assumed to be an input of the

specification and therefore, a constraint of, rather than the output of, some timing analysis.

3.1 System Response Time

System response time can be considered in two ways. One perspective is to measure the elapsed time a system

takes to respond to a specific discrete event Another view is the time necessary to provide a complete solution. In a
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computer program, consider the distinction between the response to a keyboard terminating interrupt as opposed to

the time elapsed until the program has completed. Programs that fail to respond to a program interruption are flawed.

In this paper, system response will be defined as the amount of time to achieve an immediate response.

System response time can be calculated as the sum of the worst case time responses as commands and status

filter up or down the concurrent hierarchy. The movement of command and status can be characterized as follows.

Let R- be the response time for level i. If n denotes the number of levels employed in the hierarchical system and the

maximum response time of a control cycle of any of the levels is R , then if the ith level spends t
1

secondsmax c

communicating/waiting for commands and status, and t
1

prQC
processing, this leads to the following minimum timing

constraint for each cycle:

< < ‘proc
+ l

‘c
) = R

i
> £ R

max
: for each i=1 - "• <3'»

An upper bound to the system response time R
§
can be calculated as follows:

R < nR
s max (3.2)

Thus R/n defines R__ v the maximum response time of any level R
o max max No level can exceed this time limit

and still guarantee proper system communication flow. This implies a synchronization signal in each level to

periodically communicate (sample command and status) so that updated information can be trasnferred between

levels. This periodic communication prevents any level from processing in isolation and skewing the system response

time.

The rate at which each level samples new commands and statuses is dependent on its position within the

hierarchy. Assume the machine update rate of the lowest level tied to the robot is 1 millisecond per cycle. Imposing

this rate as Rmax for each level may be too constraining. A 1 millisecond cycle precludes the use of context

switching. All higher levels may want to sample using some other less-restrictive, yet bounded, time period. This leads

to a definition of R , system response time, as the sum of R- response times tied to the machine update rate, and the

sum of Rj response times arbitrarily set to meet the system response time goal.

R = XR: +IR- for i=l ... m andj=m+l,n (3.3)
s 1 j

where V(R
k
)<R

max for k=l,... ,n .

As a design metric, the response time of a system dictates the amount of system processing power. A system

that requires a response in 10 minutes has much different requirements than a system limited by 1 second response

times. However, system response time does not directly correlate to performance at lower levels. An overall 10 minute

system response time may still require millisecond updates at the lowest level to achieve real-time control. In effect,

system response time gives a general metric to evaluate timing.

3.2 Low-Level Timing Requirements

The required system response time restricts the maximum response time imposed on each level. Meeting this

timing restriction may not allow some levels enough processing time for sophisticated control. This leads to the

motivation to divide task decomposition into planners and executors. Now, each level can maintain real-time control.
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yet concurrently evaluate alternative future actions. An initial assumption is that t
1

^^, the time the executor runs each

cycle, is less than the level response time limit maximum; otherwise the system response time must be increased or a

finer resolution of task decomposition must be attempted.

t < R
exec max (3.4)

Response time for any level i, previously defined as R-, depends on the timing constraints of the level in the

hierarchy. R- is composed of t
exec ,

the time each level spends running the executor, tcomm , the time spent

communicating/waiting for data, and t
resjcjuap

time remaining before the next cycle. This leads to the following

definition for R. response time for the ith level.

R = t
1 + t

1 + S'*

i exec comm residual v * ’

Equation 3.5 leads to some observations. If the response time of the level is very small, say 1 millisecond, this

leaves very little time to do both processing and communicating. Finally, the amount of residual time per

level dictates whether the executor, the planner and other processes can run concurrently as tightly-coupled processes

on one processor or must run loosely-coupled on different processors. Each of these observations will be explored

further.

At the lower levels of the system, performance must be fast and predictable. An example is the servo loop at the

motor level. These operations must operate with short response times and guaranteed update rates. For example, in

order for a robot to exhibit smooth motion, control updates to the arm must be supplied within a set time linked to the

physical hardware capabilities. A control cycle executing sufficiently fast will provide motion control that will appear

continuous and thus real-time. Smooth motion results from an efficient input-compute-output cycle that maintains a

small standard deviation each cycle with an upper bound a on variance. Let us define the residual time tl

resj (jua]
as

the time remaining in a cycle after the executor is finished. This implies that not only must be greater that

zero, but must be bounded by a sum of the worst case times for both processing and communication. This leads to the

following constraint.

0 < t
residual

a < R. - t
i,max

exec

i,max

comm

where t
1,max

exec = max(t1,J

exec) j= 1,... «, cycles

,i,max
f ’* = max(tlx

* m ) j= 1,... 00 cycles
comm comm7 J

This relation sets a limit on the t
1

rp<;^ lia1
time available to other background processes each

implies that adding further capabilities with a small residual time will require additional

will adversely affect t* „ , the time for communications.J comm

(3.6)

cycle. This further

processors, which

In practice, response times at the lowest levels are very fast with minimal time devoted to communication and

planning. There are numerous examples that illustrate this principle with efficient, multiprocessor designs at low
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levels of the hierarchy [8, 14, 19, 20, 22].

3J Higher-Level Timing Requirements

Moving up in the hierarchy, timing constraints are relaxed and leads to an increase in R-, level response time.

The increase in R- means that the communications and executor components of a virtual control cycle are a smaller

percentage of the levels processing activity. Increased time at higher levels allows slower options to execute in the

background, such as secondary data storage, multi-tasking, and character input and output for a user interface. In fact,

loosely-coupled machines could conceivably link together in a distributed control system at the very highest levels for

systems with a moderating response time.

In the middle of the hierarchy the concern for processor power remains. A planner and executor tightly-coupled

on the same processor is desirable for its simplicity and the ease on communication requirements. The decision to

partition a control level (i.e. executor and planning processes) as tightly-coupled on one processor or loosely-coupled

on parallel processors depends on the constraints of timing and available computing resources.

In order to analyze the relationship between the planner and executor in an tightly-coupled environment, several

assumptions need to be established. First, levels execute every cycle and these cycles are of fixed time c. This leads

to the following equality of time cycles throughout the system.

t
i i

= t- + c i= 0,... °° cycles (3.7)

Second, once the executor has completed one cycle, it must wait for the next clock cycle before processing

again. At higher levels, sufficient residual time allows for the executor to block and wait until the next time cycle

before processing. For lower levels, the executor could busy/wait and poll on a system clock awaiting the next clock

cycle in cases where the time for a context switch between tasks may be too large a percentage of cycle operation.

Third, the concept of blocked, running, waiting processes implies the use of multitasking. In order to achieve

real-time performance, the multi-tasking scheduling need not be fair, as in a general-purpose operating system.

Instead, the multitasking must allow assignment of priorities to tasks. The requirement for priorities leads to the

assumption that the executor is of higher priority than the planner. The higher priority of the executor preserves the

system response requirement.

Fourth, communication between the planner and the executor depends on non-interruptible critical sections.

This is important since some multi-tasking systems lack a non-preemptive feature.

Given these assumptions for tightly-coupled execution, further timing constraints include context switching

overhead, critical section support, and general planner throughput requirements. Whether tight-coupled execution is

advisable remains to be determined First, the planning phase of each cycle provided only a small t
1

resj(jua|,
residual

time processing and would preclude a planner from formulating a plan in a reasonable amount of time. The

requirement that the planner must finish any plan within d cycles should be imposed on a level. This assumption leads

to the constraint that a plan take d
1

cycles to finish for the ith level,

/ d
1 < t

1

2 t.
cs

(3.8)
plan

' t
residual

where each cycle using t

res j (juaj

minus two times the t

cs
a context switching amount of processing time.
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If this condition cannot be held, then a multiprocessor planner and executor level should be used. Assuming

the condition to finish a plan within d
1

cycles does hold, more detailed constraints need resolving. First, response time

needs reevaluation. Therefore, including the planner on the same processor adds two extra context switches to a cycle,

represented in time t ,
plus increases the amount of communication time to include both interlevel communication

t'il-comm
communication between the planner and executor t*

e p.comm - This has the corresponding effect on

response time:

o _ t
l

i x + 2 t

i exec comm plan + residual cs

where t* „ = t
1
-, + t

1

_ _ •comm ll.comm e.p-comm

(3.9)

Since the planner and executor modules share data, whenever the planner must update the plan graph, it enters

a critical section whereby it cannot be preempted. This update may occur every cycle but it must be accounted for in

the worst case scenario. A problem may arise for plan updating of a large amount of data because the amount of time

allotted for the critical section must only be a fractional amount of the time used by the executor each cycle. This leads

to the constraint that the planner to executor communication is small.

e.p-comm
« R.

l
(3.10)

If the planners cannot meet this constraint, a parallel planner and executor should be used and interprocessor

communication between the processes should use a scheme that incorporates time slices or double-buffers for plan

update. Satisfying this plan updating constraint heeds one cautionary note. Should a critical section in one cycle

overlap into the next cycle, the executor would wait until the planner completes updating a portion of the plan graph

before continuing processing. Thus, mutual exclusion requires a non-preemptable multitasking scheduler to prevent

preemption of the lower priority planner in its critical section. Summarizing, the following features must be available

for an tightly-coupled planner/executor.

• high priority processes (i.e., executors) run every cycle at a fixed interval responding to current

control requirements, and

• lower priority processes (i.e., planners) run in the background anticipating future control

requirements.

• low priority processes allow critical sections to run to completion (i.e., non-preemptive) but must

be only a fractional time portion of higher-priority processes operating cycle

3.4 Algorithm Timing Analysis

The timing constraints of the control level algorithm outlined in the previous section can be studied using a

Gantt chart notation. For the sake of accounting, the algorithm will be divided into functions. These functions will be

assigned arbitrary timing constraints for the purposes of analysis. R will represent the function for an interprocessor

read of a command and status and will take 1 ms. W will represent the function for an interprocessor write of a

command and status, and will take 1 ms. X will represent the current level executor processing and will range from 1

to 3 ms computation intervals. P will represent the planner function and will require 1 to 6 ms before updating a plan.

Plans must be updated within 16 ms or at worst an updated plan should be available every third cycle. U will represent
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the critical section where the planner updates the current plan graph. For simplicity, operating system computation

costs such as context switches will be ignored. Initially, a response time of 8 ms will be considered. For this case, all

the functions can run tightly-coupled on one processor in one cycle, with sufficient residual processing time as shown

by the Gantt chart in figure 2.

W W U

8 ms 16 ms

cycle 1 cycle 2

Figure 2. Control Level Computation of Single Processor Concurrent Execution

Notice that the algorithm repeats ad infinitum the basic "RXWPU" computational pattern. The planner runs at

least 3 ms. each cycle which implies that after two cycles 6 ms. will have been allotted to the planner with 1 ms. for

plan updating. More stringent timing constraints may degrade system performance beyond an acceptable level. For

example, a 6 ms. response time allows insufficient time for planning, so that within 3 cycles no updated plan exists.

Figure 3 shows the Gantt chart for this situation.

W X X w w

6 ms 12 ms

cycle 1 cycle 2 cycle 3

Figure 3. Control Level Failing to Meet Planning Time Constraints

The lack of computational resources for planning suggests the partitioning of the problem across processors.

Now, processor one (PI) will have exclusive execution, but will have the additional timing constraint of interprocessor

communication with the planner. The function C will represent the interprocessor communication overhead. C

requires 1 ms. With excess computational power, the processor must now idle between cycles represented by a dash

(i.e., -). The executor repeats ad infinitum a "CRXW-" computational pattern. Processor two (P2) will execute

planning exclusively. Computational resources easily guarantee 6 ms. planning to generate updated plans with 12 ms.

As a side effect of excess computational power, the planner may have to wait for fresh information from R, an executor

status read. (Assume for the discussion that shared R status information is in a critical section and read-only for the

planner.) The Gantt chart in figure 4 shows the execution scheme in parallel processors.
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PI w w

6 ms 12 ms

P2 U

cycle 1 cycle 2

Figure 4. Control Level Computational of Dual-Processor Execution

In the parallel design, the control level effectively meets all timing constraints with some computational waste.

However, this solution can be sensitive to increases in complexity of the executor (X) portion of the control cycle. For

example, if the function X is replaced by a newer version which requires 4 ms. a cycle, then the above functional

allocation across processors will not work. For in the worst case, there is no time for interprocessor communication

with the planner (C). In this case, faster hardware or a more refined task decomposition strategy must be used.

4. Application of Concurrent Hierarchical Control and Comparisons to Other Models

The concurrent hierarchical model of a robot control system has been previously implemented with a purely

executor style of task decomposition for a robot control system at the National Institute of Standards and Technology

[3]. The flow of control featured state-table transitions. Where planning was appropriate, static plan definitions were

used. The system offered several benefits. First, the system was sensory-interactive and adapted to perturbations in the

environment in real-time even though the world model was limited to basic feature recognition. Second, interface

standards were proposed as a consequence of the well-defined interfaces of hierarchical decomposition [6]. Third, the

communicating sequential levels aided information-hiding and insulated software on one level from changes on

another level. Fourth, high-frequency feedback from the periodic sampling of commands and status ensured

predictability necessary for a reliable and safe robot controller.

The NASA/NBS Standard Reference Model for Telerobot Control System Architecture (NASREM) is the

basis for the current robot control system under development [2]. The concurrent hierarchy decomposes into these

levels: task, elemental move, primitive, and servo. NASREM extends the concurrent hierarchical model to examine

such research issues as task planning, extensive world modeling including maps, object definitions and feature

recognition. To maintain cost, flexibility and portability, multiprocessors communicating across a shared backplane

have been chosen for the hardware. Concurrency is supported as both loosely-coupled on multiprocessors and tightly-

coupled on a single processor. Software development is based on a real-time, cross-target ADA environment extended

to meet real-time scheduling priorities.

The real-time system consists of a series of Motorola 68020 processor boards linked with the VME bus. Each

processor board of the target system contains a small, fast, multitasking, real-time executive that guarantees

predictable execution times. For the real-time executive, task-switching is approximately 100 microseconds. A system

clock synchronizes software execution on all processor boards. Layered on top of this real-time kernel is a shared

memory reader/writer scheme used for inter-level concurrent communication. The host-target operator interface
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communication is linked using a VME bus to VME bus adapter. The hosts provide non-real-time services, such a

programming development, user-interface, or graphic diagnostic display.

The differing response times between levels affects granularity. At the lower primitive level [2], the planner is

responsible for generating a series of trajectory points in the background. In the foreground, the executor runs at 50Hz

and supplies new joint positions to the servo level at each clock cycle. At the servo level, the robot receives torque

commands at updates of 400 Hz. Wheatley offers a more detailed examination of the timing constraints at the lower

levels [24]. At higher levels, completion time for plans is less critical. Multitasking on a single processor supplies

enough processing p>ower for both the planner and executor. Figure 5 provides a summary of the implementation

design for planning and execution within the concurrent hierarchical model based on timing constraints at NIST.

LAN

LEVEL

minutes
LOW SPEED

seconds

MEDIUM SPEEDCYCLE/

RESPONSE 250 ms

TIMES
elms

HIGH SPEED

Distributed Processing

Multitasking

Asynchronous Multiprocessing

Fine Grained Multiprocessing

and/or dedicated hardware

Figure 5. Concurrent Resource Requirements Based on Cycle Response Time

4.1 Comparison of Concurrent Hierarchical Control to Other Models

A survey of existing robot control systems provides numerous concurrent models. The requirement to satisfy

real-time constraints has led to numerous implementations using robot control architectures with several processor

boards on a common bus [8, 12, 13, 19, 20, 22]. These architectures share common characteristics with the concurrent,

hierarchical control model. Although few of these control systems are directly labeled as a hierarchical, most systems

have at least a two-level hierarchy, with a low-level, real-time subsystem handling real-time motion control, and a

slower high-level subsystem responsible for planning. For example, the following research models use the two-level

hierarchy. The CMU CHIMERA model p>artitions concurrency as a two layer model, low-level real-time motion

control connected to a non-real-time AML/X command environment [2]. The MIT CONDOR project has a real-time

system consisting of a series of Motorola 68020 based boards connected by VME bus to VME bus adapter to a SUN-

3 workstation controlling the Utah/MIT hand [19]. The University of Pennsylvania has a robot coordinator issue force

and motion commands to a real-time robot force and motion server [20]. Brown University uses a series of high-sp>eed

networks connecting a real-time servo systems and general computing resources [12]. IBM partitions concurrency into

real-time and non-real-time by connecting the real-time system to the programming system by a real-time bridge [13].

IBM extends the exchange of commands and status to include varying frequencies; such as every cycle, every nth

invocation or asynchronously.

The RCA-McGill RCCL model uses a 3 level concurrency hierarchy that supports a planning level, a trajectory

level, and a joint-control level. The joint control level operates at 1 kHz and assigns 1 processor p>er joint. The Fine

motion trajectory level runs a 50 Hz and runs as high-priority cyclic task. Concurrently, a rough motion planner

asynchronously produces a queue of motion requests for the trajectory level as a background task. In RCCL, the
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trajectory level acts like an executor.

The HIC model is an operating system based on a hierarchy of servo loops for controlling the Utah/MIT hand

[4]. This model emphasis layers of servo loops with deterministic scheduling as the main control process and uses

periodic data buffers for communication. The periodic data sampling of the model supports the deterministic flavor of

concurrent hierarchical processing model.

Implicitly, these real-time models may have additional levels within the hierarchy, but further layering does not

directly correspond to a virtual control loop implementation. This is due in part to the concept of one return status per

procedure call of serial execution. For example, a Cartesian trajectory plan in a sequential robot language such as

AML/X must be decomposed into a series of kinematic poses for the robot. This process is implicitly hierarchical.

These implicit levels could be partitioned into separate concurrent processes that communicate through established

interfaces rather than serial routines that communicate via subroutine calls. Further, with concurrent operation, the

concept of sampling the return status, not just receiving a final status, embodies the feedback nature of a virtual control

loop.

5. Conclusion

Concurrent hierarchical structuring is a model that not only satisfies robot control timing constraints, but

provides predictable system performance. Hierarchical structuring uses task decomposition to create the level of

granularity necessary to meet the strict real-world timing requirement at the lowest level while offering a convenient

software development tool. A hierarchical control system defined with task decomposition offers information hiding

between levels that can lead to well-defined, and eventually standardized interfaces. The basis of concurrency within

the hierarchical model is the virtual control loop. The regulated and predictable behavior of the virtual control loop

leads to timing metrics guaranteeing performance. Predictable response time, especially important as complexity

increases, is a key for more reliable and safe robot controls systems.
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