
PACKET-ORIENTED
COMMUNICATION USING
A STREAM PROTOCOL
OR
MAKING TCP/IP ON
BERKLEY UNIX A LIHLE
MORE PLEASANT TO USE

NISTIR 90-4232

NEW NIST PUBLICATION

December 1989

Don Libes

U.S. DEPARTMENT OF COMMERCE
National Institute of Standards

and Technolo^
Center for Manufacturing Engineering

Factory Automation Systems Division

Gaithersburg, MD 20899

U.S. DEPARTMENT OF COMMERCE
Robert A. Mosbacher, Secretary

Lee Mercer, Deputy Under Secretary
for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
John W. Lyons, Director

NIST

NISTIR 90-4232

PACKET-ORIENTED
COMMUNICATION USING
A STREAM PROTOCOL
OR
MAKING TCP/IP ON
BERKLEY UNIX A LIHLE
MORE PLEASANT TO USE Don Libes

U.S. DEPARTMENT OF COMMERCE
National Institute of Standards

and Technology

Center for Manufacturing Engineering

Factory Automation Systems Division

Gaithersburg, MD 20899

February 1990

U.S. DEPARTMENT OF COMMERCE
Robert A. Mosbacher, Secretary

Lae Mercer, Deputy Under Secretary
for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
John W. Lyons, Director

Packet-oriented Communication Using a Stream Protocol

or

Making TCP/IP on Berkeley UNIX a little more pleasant to use

Don Libes

National Institute of Standards and Technology

Gaithersburg, MD 20899

ABSTRACT

The only DoD protocols supporting the Transport Layer in the OSI Model

are UDP and TCP. UDP is packet-oriented while TCP is stream-oriented. It is of-

ten useful to mix characteristics of both. This paper describes a software package

that simulates the useful properties of UDP while using TCP. Also included are

some functions for easier establishment of connections than by using TCP/IP prim-

itives.

In addition, some observations gained during the experience of implement-

ing this on a 4.2BSD UNIX system are described.

Keywords: packet, stream, communication protocol, TCP/IP, UDP, TCP.

Introduction

This paper describes software that performs packet-oriented communications using a stream pro-

tocol. Conceptually, this is a simple idea, yet users are expected to rediscover the solution each

time, repeatedly reimplementing and debugging a wheel that should be built a single time.

The software was motivated by a project [Libes 85] that simulated a common memory in a local

area network. The software described here was implemented in a Berkeley UNIX environment.

The second half of the paper will elaborate on problems specific to this environment.

January 8, 1990

- 2 -

Background - TCP and UDP

The OSI model [Stallings 88] consists of seven layers. The fourth layer is the Transport layer.

This layer controls end-to-end functions of network processes such as routing and ensuring the in-

tegrity of data between endpoints. There are several designs for doing this, but one of the most

prevalent is provided by the DoD (DARPA) protocol suite commonly referred to as “TCP/IP”.

TCP/IP includes two general purpose transport-level protocols, namely, UDP and TCP

UDP (User Datagram Protocol) has the following characteristics:

1. unreliable - No guarantee is made of delivery. This is not peijorative. Rather, the application

typically knows that guaranteed delivery is not necessary or may be too expensive. For exam-

ple, a process monitoring power usage may be able to extrapolate missing reports sufficiently

well for its use.

In actual practice, data can also arrive out of order. I.e., packets sent later can arrive before

packets sent earlier. Also, packets may arrive twice.

2. short - A maximum amount of data can be passed in a single application output request. This is

generally set to the capacity of the underlying Data Link and Physical layers, again for the

same reasons as above. A realistic example is that the data portion of an Ethernet packet can

be at most 1500 bytes.

3. packet boundaries preserved - Since packets are short enough, applications are expected to pro-

vide enough buffer space for an arbitrary size packet. Upon completion of input, the receiving

application is guaranteed to have exactly what the sending application output.

In summary, UDP is an extremely primitive transport mechanism, providing excellent efficiency

due to its lack of demands upon the lower levels of the communications software. Sometimes this

is a good match, such as when used by rwho(l), a BSD program that monitors active users on a

LAN. In contrast, TCP (Transmission Control Protocol) requires more processing power and

generally consumes a much larger amount of buffer space. But its benefits are often necessary.

TCP has the following characteristics:

1. reliable - Delivery of data is guaranteed. In addition, input data order is the same as output.

2. long - Data transfers may be fragmented by lower levels of communication software but this

occurs transparently.

3. boundaries are not preserved - reception of data gives no indication of how it corresponds to

units of transmission. The application is presumed to handle this or not need it. Much like

UNIX files, communication is simply assumed to be a “stream of bytes”.

Obvious hole

Mixing and matching attributes from UDP and TCP will create different styles of communica-

tions. For example, a packet protocol guaranteeing certain reliabilities would be useful, as would

a packet protocol with longer maximum lengths. Yet these and other styles have not been deemed

January 8, 1990

- 3 -

popular enough to create yet more protocols. Of course, any of these protocols can be use to sim-

ulate any other protocol, given a sufficiently powerful software set and adequate buffer space.

How it works - the basic idea

Our technique chose to follow the simulation idea. Our software simulates a completely reliable

packet protocol with unbounded-length packets. The basic idea is that user data is stored in an en-

velope demarcating packet boundaries. This envelope is given to the TCP service for delivery.

At the receiving end, one complete envelope is removed from the stream. The data is extracted

out of the envelope and handed to the user. Thus, the receiver atomically and reliably receives ex-

actly the information that the sender sent.

The packet format is as follows:

Length of data Data
MSB first

Bytes 0—3 4—2^^

UNIX read becomes sized__read, etc.

In the UNIX environment, interprocess communication appears as normal I/O or file system ac-

tivity [Leffler 83]. That is, read and write are used to read and write data, respectively, into

and out of the process space.

Two new calls were constructed, taking exactly the same parameters as read and write. They

are declared as follows:

int cc = sized_read (fd, buffer, maxsize)

;

int cc = sized_write (fd, buffer, size) /

int fd;

char *buffer;
int maxsize;

sized_write packetizes the given buffer and sends it over the TCP stream described by fd.

fd is the stream, buffer is the user’s data area, and size is the number of bytes in the data.

sized_read is analogous to read except that sized_read will only read one packet at a

time, maxsize represents the maximum size of an acceptable packet.

January 8, 1990

- 4 -

Exceptional conditions are a mess

If successful, both sized_read and sized_write return the number of characters in the

packet. This may include zero characters (which does not signal an exceptional condition). Vari-

ous problem are indicated by returning a -1. Currently, such problems include:

• bad packet header

• writer closes connection (i.e., dies) while in middle of packet

• reader closes connection (i.e., dies) while writer is writing

4.2BSD UNIX has always had a confusing array of ways in which read and write return error

reports. For example, if the writer dies, the reader may receive either a 0 from read, or a - 1

with errno == ECONNRESET depending on the circumstances. If the reader goes away while

writing is occurring, the S IGP IPE software signal will be sent to the writer. If the reader hangs

and the writer continues to write, eventually kernel buffers become exhausted and the writer will

be halted.

There is no question that the Berkeley designers made many compromises when integrating the

TCP/IP software into their system. If anything, our software ameliorates some of these problems

and does not provoke any new ones.

Nonetheless, the one case of a software signal being returned stands as is. If the application wish-

es to protect itself against a recalcitrant communicator, it should surround sized_write calls

with alarms. The following code illustrates such protection.

tinclude <setjmp.h>
#include <signal.h>

jmp_buf write_context

;

/* abort write 0 if recvr closes pipe as we are writing */

void sigpipe_handler (

)

{

long jmp (write_context , SIGPIPE) ; /* abort write () */

}

/* abort write 0 if recvr refuses to read it fast enough */

void sigalrm_handler (

)

{

long jmp {write_context , SIGALRM)

;

}

mainO {

signal (SIGPIPE, sigpipe_handler)

;

signal (SIGALRM, sigalrm_handler) ;

• • •

switch (set jmp (write context)) {

January 8, 1990

- 5 -

case 0

:

alarm (timeout)

;

sized_write (fd^ buf , size)

;

alarm (0)

;

break;
case SIGPIPE:

/* write 0 failed because recvr closed pipe */

alarm (0)

;

break;
case SIGALRM:

/* write 0 failed to complete fast enough */

break

:

}

}

The first time through main, the 0 case is executed. If the alarm is not disable by alarm (0)

,

the alarm signal handler is invoked passing control to the switch in such a way the the SIGALRM
case is taken. (A very complete explanation of set jmp and long jmp can be found in [Libes

88].)

Socket interface

As implemented in 4.2BSD, access to TCP/IP is through the “socket” interface. The socket inter-

face is quite general, and at the same time, complex for even the simplest things. A few simple

routines in a high-level library would be wonderfully helpful.

Until that is done, our software includes a few calls to manage socket connections. By using

these, an application need not ever use any of the primitive interprocess communication system

calls. The following two calls replace nine system calls and several other network library calls.

To open a connection, the user makes the following call:

linclude
iinclude
linclude
linclude
linclude

<sys/types .h>

<sys/socket .h>

<netinet/in .h>

<netdb.h>
"inet .h"

int socket = initport (port , role, sockettype, host_in)
int role;
int sockettype;
char *host_in;

initport returns a socket given a role, socket type and remote host name. Ports are defined by

name or address using one of the following macros (here specifying SMTP which is handled on

port 25):

January 8, 1990

- 6 -

P0RT_NUMBER(25)
PORT_NAME ("SMTP")

Programs are presumed to use connections in the client-server paradigm. Therefore, the applica-

tion has a choice of either SERVER or CLIENT for the role. The socket type may be either of

SOCK_STREAM (for TCP service) or SOCK_DGRAM for (for UDP service). host_in defines

the computer where a client expects to find the service. The local computer may be selected by

passing a zero character pointer or a null string. Servers are expected to do similarly, since they

do not know in advance which computer may be requesting their service.

If initport returns with a non-negative socket, clients may immediately beginning communi-

cating with the requested service. Sockets returned to servers are used to listen for service request

by clients. In order to find out if a client is requesting a connection, the server calls:

fd_set readers;
FD_ZERO (& readers)

;

int client = select_server_stream (socket , readers) ;

Each time select_server_streain returns, it indicates the client that is requesting service.

The actual data returned can be passed to sized_read to get the data itself.

socket is exactly the socket returned by initport. readers is a set of file descriptors used

to remember the server’s open connections.

Once connected, applications use the descriptor returned by initport as the file descriptor re-

quired in si 2ed_read and sized_write.

Performance

Some versions of TCP try to make better use of network bandwidth by aggregating small data

packets. For example, transmission of a single-byte packet will be delayed for a short time while

the TCP service waits for more bytes to come. Unfortunately, it is not always possible to control

this “feature”. (Some implementations support disabling it completely through the use of an op-

tion called TCP_NODELAY. Ours did not.)

The reason for this optimization is that TCP is most often used as a service for interactive applica-

tions (such as rlogin or telnet). In such cases, humans are sitting at terminals typing at rela-

tively slow speeds. Rarely do humans wait for characters to be sent individually. Rather, humans

tend to type the letters of a word or an entire phrase in quick succession.

At the physical layer, the data portion of a single-byte TCP packet is overwhelmed by the amount

of overhead information. Therefore, it is worthwhile for the computer to wait for more characters

before sending even a few out. Most implementations we have seen range from 100 to 200ms
while waiting for more bytes to send in a packet. This translates to 5 to 10 characters per second.

Evidently, this is a rate that implementors feel most humans can maintain while typing a single

phrase.

January 8, 1990

- 7 -

It is our observation that as the packet size goes up, the time spent waiting to aggregate more

packets goes down. This holds true until whatever internal buffer size being used by TCP is

reached. For example, 1024-byte buffers are extremely common. Thus, padding small packet

buffers with IK ofjunk can actually flush your data out of the system immediately. Of course,

larger packet sizes can potentially degrade performance due to other network traffic.

Some experimentation may be necessary to determine if padding is necessary when communicat-

ing using small packets.

How to get the software - FTP

This software may be retrieved by ftp to the Internet site durer . erne . nist
.
gov using the ac-

count name: anonymous. The software is called pub/sized_io . shar . Z and is stored as a

compressed shar file.

Comments or problems with the software may sent electronically to libes@cme . nist

.

gov or

cme-durer ! uunet ! libes or mailed to:

Don Libes

National Institute of Standards and Technology

Bldg 220, Rm A-127

Gaithersburg, MD 20899

References

[Leffler 83] Leffler, S., Fabry, R., Joy, W., “4.2BSD Interprocess Communications Primer”,

Computer Systems Research Group, U.C. Berkeley, July, 1983.

[Libes 85] “User-Level Shared Variables”, Usenix Conference Proceedings, Portland, Or-

egon, June 1985.

[Libes 88] “The C Forum: Win a Gold Medal in the Longjmp”, Micro/Systems Journal,

M&T Publishing, Vol. 4, No. 1, January 1988.

[Stallings 88] “Computer Communications Standards - The Open Systems Interconnection

(OSI) Model and OSI Related Standards”, William Stallings, Stallings/Mac-

millan, 1988.

January 8, 1990

.. ' .',1 •. ; r...,; ,
.'jji :.f. nodfl'/ioidotoo eijl

tltd.: K.
•• ‘'1 ; 'r/v 'i jiiTf .. s*w/3

'

'iK' -V.-v,:-
'

' - •'TM

I U-, : .. •*„/> /' Vi

• i

..r'
• •*

..
.

.’ V '.^ ar' - ^4 ,,

,j
' •

‘
- ^ a;:- j>: tdfti.nod by J

')C-> ‘.,-,.:,,i". V.- -IP

ilficas Bm«tf loi/

fi?.

'

/f

n, vf.

.

*^v.vni37 ro v«fl sfifiWiftoa RfriT-^^

a.'i' rv'

:o3 i

' •.V. . io^. ^s' I -ji I
a". T ynonfi a^rnjstt

.-.•ii^ J8ils

'

-'S'

i" .^. •?>•' .i£;.Lu I leiii'b-^sai

a.;. ’.'.I .,M'- a ^i.;.
•’''/

->)ij}C2iiI1finoi2jS

-'v-j’’ kOvI
**"

..JV .’ailxi
i

Nk'* i

U'y'* I y;T '

(
>'<.

U'
' ‘ hi 11 1,

' *
g

'

' f

» , t . •(.''lay.

H. “J '/, .- ?;:'-S itoajuia

.)Vf.rvAici’’tii:d '.w itiifc

'• ' It,'-.- '.. wtui U;r'OVX'AtC^?i«^^

i'\ 'a

,1 •Jl.M

^ . .V.’ ^ ij \n>iT»

*'1.11 . '.„• UM'; v'Lf^rai;f;ir«J^:

a '•
ii :\ rwmj Utf.. •-

1 ^ nilo cy|»i'i^ 'tmi

,
I

< ' y' >•

m
liVj

’s'*

NBS»1 14A IREV. 2-8C)

U.S. DEPT. OF COMM.

BIBLIOGRAPHIC DATA
SHEET (See instructions)

1. PUBLICATION OR
REPORT NO.

NISTIR 90-4232

2. Performing Organ. Report No. 3. Publication Date

FEBRUARY 1990

4. TITLE AND SUBTITLE

Packet-oriented Communication Using a Stream Protocol - or - Making
TCP/IP on Berkley UNIX a Little More Pleasant to Use

5. AUTHOR(S)

Don Libes, 734.03

6. PERFORMING ORGANIZATION (If joint or other than NBS. see in structlon s)

NATIONAL BUREAU OF STANDARDS
U.S. DEPARTMENT OF COMMERCE
GAITHERSBURG, MD 20899

7. Contract/Grant No.

8 . Type of Report & Period Covered

9.

SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City, Store, ZIP)
10.

SUPPLEMENTARY NOTES

I I

Document describes a computer program; SF-185, FIPS Software Summary, is attached.

11.

ABSTRACT (A 200~word or less factual summary of most significant information. If document includes a significant
bi bl iography or literature survey, mention it here)

The only DoD protocols supporting the Transport Layer in the OSI Model
are UDP and TCP. UDP is packet-oriented while TCP is stream-oriented.
It is often useful to mix characteristics of both. This paper describes
a software package that stimultates the useful properties of UDP while using
TCP. Also included are some functions for easier establishment of connections
than by using TCP/IP primitives.

In addition, some observations gained during the experience of implementation
this on a 4.2BSD UNIX system are described.

12.

KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolon s)

packet, stream, communication protocol, TCP/IP, UDP, TCP, Berkley UNIX
Interprocess Communication

13. AVAILABILITY

U n I i mi ted

I i

For Official Distribution. Do Not Release to NTIS

I I

Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.
20402.

'[Xj Order From National Technical Information Service (NTIS), Springfield, VA. 22161

14. NO. OF
PRINTED PAGES

10

15. Price

A02

USC0MM»0C 6043-P80

I

•V

. ^ . t

xtlr.

tJiMOo '\n .tn»4

atac 3itt«i;ifl00ue.a

(*no)i}uOinl

3JTr^a^^^ C?wA 3JT}T M

(n ..-UJ . .. •:inun 15 j

-yj no ^t\^DX
f

(a)^owTUA,4

‘ jeodjtJ
mtvrnm

»J , 4 ir i; ^ hwjjio .1

) A jfl jLi^nOIX/vVI

1

I
(«-

-iv-:

Tr ,v('l ‘lO ry‘.itil/.'fKA.''l3CI .ii.U

,ofiJtiZkaaT\Ai}

ntfV

O '*<

P? n fC '

, '’i' (.»
‘

- t ' (C

J’

- "h;. .4* , JrtSmta flfn
S-iifi" --I

-

<4itl V
A>U 1C

.
v

' •'* xino
:j _ lc

i i^hn, jh L.s.r/-

Ti'" w
^

wr.'., [><\.2
^

.

i, ,
.'^ a no'-ii/^i i

'1^

€

; iji.- .- ;*•<. fl j ' .'ll.'' iv? *»2V

j .^'r. j .'j'-'- •

,
-&I J3& ,.

^ no ''icoiituinjOv' •'>’9')0:^

^%5

.) I'll/
" '^

t r t

I tit tjt*

7‘ f.' i*Jt4‘»t*l/. <.-. wO

-I u •! llnu?vi 'c !

ic'

'

. ii»u« r v'V< ii lj»vMArtiw»T

.t'
'

‘'J

