
NISTIR 89-4225Applied and

Computational

Mathematics

Division

Center for Computing and Applied Mathematics

Optimal 3-Dimensional Methods for

Linear Programming

Paul D. Domich, Paul T. Boggs,

Janet R. Donaldson and Christoph Witzgall

December, 1989

U.S. DEPARTMENT OF COMMERCE
National Institute of Standards and Technology

Gaithersburg, MD 20899

Optimal 3-Dimensional Methods

for Linear Programming *

Paul D. Domich Paul T. Boggs Janet R. Donaldson

Christoph Witzgall

December 21, 1989

Abstract

Interior point algorithms for solving linear programming problems are considered. An

optimal 3-dimensional method is developed that, at each iteration, solves a subproblem

bcised on minimizing the cost function on low-dimensional cross sections of the feasible

region. This idea was used by the authors in [Boggs et al., Algorithmic Enhancements to

the Method of Centers for Linear Programming Problems, ORSA Journal of Computing,

l(3):159-171, 1989.] The generators for the original 2-dimensional subproblems are derived

from either a discrete or a continuous version of Huard’s method of centers. The generators

for the optimal 3-dimensional subproblem include the dual affine search direction, and two

higher-order search directions. One of the higher order directions is a third order correction

to the Newton recentering direction, and the other is a correction to the dual affine direction

that is motivated by the use of rank-one updates of the second derivative information.

Numerical results are presented for the optimal 3-dimensional method that indicate almost

a 18.9% reduction in CPU time compared to our best dual affine implementation.

Keywords; Method of centers, dual affine direction, ordinary differential equa-

tions, low-dimensional subproblem, optimal multi-directional methods, factorable functions,

third-order correction terms, recentering, center trajectory.

"Contribution of the National Institute of Standards and Technology (N.I.S.T.) and not subject to copyright

in the United States. This research was supported in part by ONR Contract N-0014-87-F0053.

^Applied and Computational Mathematics Division, National Institute of Standards and Technology

^Boulder, CO 80303-3328 (INTERNET: domich@cam.nist.gov)

5 Gaithersburg, MD 20899 (INTERNET: boggsQ cam.nist.gov)

^Boulder, CO 80303-3328 (INTERNET: jrd@cam.nist.gov)

II Gaithersburg, MD 20899 (INTERNET: witzgail@cam.nist.gov)

1

Introduction

1. Introduction

In our previous work on solving linear programming (LP) problems [BogDDW89], we suggested

an interior point strategy that consists of exactly solving a sequence of 2-dimensional subprob-

lems. These 2-dimensional subproblems are generated by considering the restriction of the

original LP to two search directions. In our best 2-dimensional algorithm, one of the directions

is the dual affine direction and the second direction is an approximate recentering direction. In

this paper, we extend this idea to include a third, higher-order direction derived from Huard’s

method of centers [Hua67]. Our numerical results demonstrate the effectiveness of using such

higher-order information: the number of iterations required to solve a subset of the Netlib prob-

lems [Gay85] (those problems without explicit bounds) is reduced by 33.4% and the time by

18.9% over our new version of the dual affine method. Our results are competitive with the

dual affine procedures reported in [Meh89], [MonM87] and [AdlRV86], and with the primal-dual

interior point methods reported in [Sha85], [McSMS88] and [LusMS89].

Our techniques, which we call optimal multi-dimensional methods, effectively solve the prob-

lem of how to combine the various search directions that arise from interior point methods. The

theoretical and algorithmic details of our optimal 3-dimensional methods are contained in §2,

and the implementation details are given in §3. The computational results for the subset of the

Netlib test problems [Gay85] are presented in §4.

In the remainder of this section, we motivate our optimal 2-dimensional method using

Huard’s original method of centers and a continuous version of it. The various solution “tra-

jectories” discussed below are covered in greater detail in [BayL86] and [WitBD88b]. The

corresponding numerical procedures evolving from them are discussed in [BogDDW89].

The LP problem that we solve is of the form

Tmm c u
XL

s.t. Au < b

(
1 . 1

)

where c, u G A G and h G R’”. We define the set of residuals related to the con-

straints of (1.1) as

rfc(u) = bk - AkU, k - 1, . .
.

,

m,

where Ak denotes the kth row of A, and let ro(u, t) = t — correspond to the residual of the

objective row assuming an upper bound t on the objective function value. In particular, let uq

be a feasible point. Then for to = c'^uq + e, e > 0,

ro{uo,to)>0 and (uo) > 0, A: = 1, . .
. ,
m.

2

Introduction

The center, defined by the constraints of (1.1) and the objective constraint for t = to, is the

feasible point u that solves

i^(to) = max[L(u, to)l (1-2)

where

L{u,to) = logro(u,to) + ^ log rfc(u). (1.3)

The optimization problem (1.2) can be solved using Newton’s method. The search direction is

then given by

Sn = [Vu„i(u, t)]“W„L(u, t)

T1-1 (1-4)
A'^D^A +^

1 1

,
R = (^, . .

. ,
and e = t — c”u > 0. Applying thewhere D = diag

Sherman-Morrison formula to (1.4) results in

= /?i(e) [A^ A]~\ + ^2 {e) [a'^ D'^AY^ A^

R

:i.5)

for real-valued functions /3i(e) and y92(€). The first term in (1.5) is the dual affine search direction

[AdlRV86] and the second is the Newton search direction for locating the center of the original

polytope defined by Au < h without the objective constraint.

Note that one could systematically reduce the value of t and solve a sequence of centering

problems (1.2). This yields a sequence of iterates Ui with successively lower objective function

values. With a reasonable selection of t,, it can be shown that {tq} converges to an optimal

solution as z — oo. This procedure is Huard’s original method of centers [Hua67] applied to

the linear programming problem. The implementation of Huard’s method proposed by Renegar

[Ren86] was shown to possess an equivalent polynomial complexity bound to that of Karmarkar’s

original method [Kar84].

It is also easily seen that by continuously moving the constraint corresponding to the objective

function, one can find a continuous trajectory, rather than a discrete set of points Ufc, that

converges to an optimal solution of (l.l). In particular, differentiating (1.4) with respect to t

results in the ODE

u[t] ~ -VuuL(u, t)"^VutI(u, t). (1.6)

This ODE can be supplied with initial conditions consisting of an arbitrary feasible point and

an appropriate value of t with the result that for every feasible point there is a trajectory that

connects it to an optimal solution of (l.l). The direction field at each feasible point can be

easily shown to be proportional to the dual affine direction described earlier.

3

New Algorithms

Since the solutions of (1.6) can get arbitr<irily close to an exponential number of vertices

(see, e.g., [MegS86]), it is of interest to consider modifications that “correct” the trajectories

towards the center of the polytope. Thus a second ODE can be formulated [BogDDW89] that

includes the Newton recentering component (1.5), i.e.,

u'(t) = - Vuul,(u, t)~^ [Vutl,(u, t) - 0VuL(u, t)] (1.7)

for (^ > 0. If VuL{u,t) = 0, then the recentering component has no effect, and the resulting

solution is referred to as the center trajectory.

Both (1.5) and (1.7) indicate the motivation for combining the two directions

31 = {A^D^Ay\ (1.8)

32 = A^R (1.9)

into a single search direction

3 = ClSl + ^252-

The values of the weights and f2 dramatically affect the performance of an interior point

procedure. One successful method for determining how to combine such multiple search direc-

tions when using large steplengths is the subproblem approach. This approach was suggested

by [Kar85] and [Gon87a], and explored more fully in [BogDDW89].

Initially, we considered the 2-dimensional subproblem defined by the span of the two search

directions (1.8) and (1.9). Assuming these directions are not colinear, i.e., the current point u is

feasible and not on the center trajectory, 3i and S2 define a 2-dimensional plane that intersects

the fuU LP polytope. The full LP objective c^u can then be minimized on this plane using the

linear program;

min ^ic^3i + ^23^ 32

subject to

^lAsi + f2>f52 <h — An

> 0

^2 unrestricted.

Note that since u is assumed to be feasible, = 0 and ^2 = 0 is also feasible. Further, since

A^D^A is positive definite, the dual affine direction 3i will always be a descent direction for the

objective function; hence, the sign restriction on These two conditions imply that a cost-

improving feasible solution always exists for the subproblem. Finally, observe that the resulting

weights and ^2 are not dependent on the arbitrary values of e and
<f>

defined earlier.

4

New Algorithms

2. New Algorithms

2.1. Motivation

The optimal multi-dimensional approach is motivated by noting that the cost function is eas-

ily mmimked on a low-dimensional polytope, and that the solution to this reduced problem

determines a search direction that optimally weights the component search directions over the

low-dimensional cross section of the full LP polytope. The new algorithm presented in this

section uses a 3-dimensional subproblem. The new search direction included in this subproblem

can be derived either from a third-order correction to the Newton recentering direction (1.5), or

from a higher-order technique for solving (1.7).

2.2. The Subproblem Generators

The sole restriction on the subproblem generators is that they be linearly independent. In (1.10),

the two generators

31 = {A^D^Ay\ (2.1)

32 = {A^D^Ay^ A'^R. (2.2)

are linearly independent unless the current estimate u lies on the center trajectory, in which

case, the dual affine direction (2.1) is the obvious search direction. In [BogDDW89], we discuss

other possibilities for 32, including the first-order (steepest descent) recentering direction

32 = A'^R.

We also derive a correction to the dual affine direction,

S2= {A’^D^Ay^ aJ, (2.3)

where k is the index of the first constraint encountered in the dual affine direction. This direction

is motivated by considering the search direction 3i = (A^D'^A) ^
c, and the rank-one update

of [A'^D^A) ^ reflecting the change in residual k which produces the “new” search direction

^new _ D‘2j^y^^ g. Assuming c is not orthogonal to Ak, it is easily shown that

3
""“' = 0131 + 02 {A'^D^Ay'- AJ

for scalars Oi and 02 . Thus, the direction [A'^D^A) ^ A'^ represents a rank-one correction to

the dual affine direction.

5

New Algorithms

There cire several ways to derive the third direction, S3 ,
for our optimal 3-dimensional method.

By recalling the differential equation (1.7), one can expand the solution u{t) in a Taylor series.

The directions for the optimal 2-dimensional method can then be viewed as the independent

directions that arise from considering the expansion through two terms. By considering the

expansion through three terms, the new direction S3 = s^, described in detail in §2.3 below,

is obtained. It is easily shown that this new direction can be found by considering either the

expansion based on the dual affine direction or the Newton recentering component. Since the

latter is easier to develop, we present that derivation in §2.3. We also show in §2.4 that this

direction can be economically calculated by using the “factorable” form of the terms involved.

The set of generators for the subproblem can be varied to create a globally effective algorithm.

See §3 for the details of our implementation of this algorithm, and [BogDDW89j for a detailed

description and earlier computational results using the 2-dimensional subproblem generators.

2.3. Third Order Correction Terms

The derivation of the term s/i as a correction to the recentering direction follows that described

in [JacM86]. To simplify the presentation, we give an informal derivation in one dimension; the

extension to higher dimensions is straightforward. Thus, assume that we fix t and that we use

a Taylor’s series expansion of the scalar function L[u) = L(u, t),

L[u -h 8u) = L[u) -f L'{u)6u + L"[u)^—^—t- L"'[u) ^ ^—h . . .

.

(2.4)

The standard second-order Newton method for maximizing the function L[u) assumes that

((5u)3
V"[u)-

3!
0

,

resulting in

»„ = |L"Hr‘L'(u).

This direction Sn thus maximizes (2.4) through three terms. Instead, suppose that a significant

third-order correction term exists, say Sh- Then for 6u = Sn + Sh, the recentering optimality

condition requires

L'[u + 6u) = 0
,

33 before. Ignoring terms of order Odl^uH"*) in (2.4), we have

0 = L'M + L''[u){3„ + 3U) + £"'(u) + 0(||faf

)

= L'M + r (u)(.„ + 3,) + + 0(||«uf

)

6

New Algorithms

Note that s„ is C)(|jL'(u)||). Assuming sh is 0(||L'(«)||^), then SnSh is 0(||i/'(u)||^) and is

0(||X'(u)||^). Ignoring C>(|lL'(u)||^) terms, we have

0 = I'(u) + L"(u)(s„ + s^) + r»(«)^

= V{u)-L'{u) + L"{u)3^ + L^'’{u)^.

Hence, the third-order correction term is

= -i|L"(„)|-'L"'(u),^ (2.5)

2.4. The Practorable Form of L''*{u)3^

The actual computation of 3h is considerably simplified using the outer product form of L'".

With the notation from [McCS88], we consider

g{x) = U{a{x)),

for U[a) possessing as many continuous derivatives as required and a = a^x. Then

Vg(x)^3 = [8U[a[x])/6a.\a^ 3

V^gr(i)s = a\8^U[oi[x)) /8a^\[a^ s)

V^g(i) (8 3^ = a[<i^l7(a{i))/(5Q:^](a^3)^.

Let U{ak{u)) = log(6fc — Aku). Then the third-order correction term (2.5) can be written as

1

k=l
{bk - Afcu)3

{AkSr
(
2 .6

)

The third-order correction term, 3^, thus requires no increase in the order of work per iteration

since the Cholesky factorization of L"[u) has been previously computed and since the summation

in (2.6) is 0(nm) operations.

2.5. Solving the Subproblem.

The subproblem solution is found using a specialized revised dual simplex approach applied

to the ducil formulation of the subproblem. This procedure is used to minimize the dimension

of the basis matrix and to provide feasible primal solutions to the original subproblem. The

procedure also aUows the user to terminate the subproblem solution process after a fixed number

of iterations with a feasible set of weights for the search direction.

7

New Algorithms

The actual primal subproblem consists of five columns cind m rows, (m » 5). The five

columns correspond to the positive dual aifine direction
(
2 . 1), the third-order correction direction

(2.5), cind either the recentering direction (2.2) or the rank-one update direction (2.3) described

earlier. The second and third columns are replicated and negated in the subproblem to allow

for positive and negative multipliers. Since the zero vector is feasible to the subproblem, the

primal problem is always initially feasible.

The revised dual simplex approach is applied to the dual formulation of the subproblem.

Let S denote the n x 5 matrix composed of search directions Si, . .
. , 35 . Then dual subproblem

formulation is

Tmm r y
y

subject to
^2

'j\

— [AS)'^y < S'^

c

y > 0
,

where the zth constraint of (2.7) is (— < sjc, for i = 1
,
...,5. This dual LP is dual

feasible since ry > 0
,
for all j.

The procedure begins by forming the LU factorization of the 5x5 basis matrix B (initially

B = I) and finding the updated solution vector B~^S'^c. Next, the dual variables, 0^ = rBB-\

are computed where is the row vector of objective coefficients corresponding to columns in

the current basis. The pivot row selection rule finds the row with the largest index k such that

5-5^3 < 0, corresponding to an infeasible primal variable, where the zth row of B ^ is denoted

as B~^. Because m » 5, the A:th row of B~^ is computed explicitly and is used to update the

m entries in row k. Computing B^^ requires only three backsolves using the LU factorization

of B since two columns of are known to be unit vectors.

The updated Hh row of
(
— ^45)^, B^^(— A^)^, is computed and column j is selected that

minimizes
^T(-^g)T-r,

over z such that B'^^[— AS)I < 0
.
where

(
—A5)^ is the zth column of

(
— A5)^. This column

selection rule guarantees dual feasibility of /? and hence provides feasible search direction mul-

tipliers at each step. The pivot is performed and the basis is updated to include column j.

This process is repeated until B~^S'^c > 0 . For complete details of the dual simplex approach

described above see Bazaraa and Jarvis [BcizJ77].

Empirical evidence suggests the subproblem polytopes often have a large number of redun-

dcint constraints. Using the specialized procedure described above, the optimal vertex is usually

found after a very small number of simplex pivots. (For the test problems reported in §4, all

8

Implementation

subproblem solutions required fewer than 50 pivots, and more than 95% of the total number of

subproblem solutions required fewer than 10 pivots.) An inordinate number of pivots could oc-

ctir, however, due to the redundant constraints at a near-optimal vertex. Suboptimal solutions,

e.g., those obtained after a fixed number of simplex pivots, may be substituted for the optimal

solution to save computation time. For the test problems reported in §4, however, the sub-

problem solution time is only 10% of the total optimal 3-dimensional solution time; terminating

the subproblem prematurely causes an increase in the number of major iterations resulting in a

overall increase in CPU time.

3. Implementational Details.

Optimal 3-Dimensional Method. In the results reported here, we use the following basic

algorithm.

Algorithm 3.1. Optimal 3-Dimensional Method

1; Compute si = (A^D^A) at u^.

2 : Compute either

2.1: the rank-one update direction by

a: finding the index k of the first constraint encountered in the direction si and

b: computing S2 = (A'^D'^A) ^ At, or

2 .2 : the recentering direction S 2 = [A'^D^A) ^ A^ R.

3: Compute the third-order correction direction 33 = s/i as in
(
2 .6).

4: Solve for ^ 1 , ^2 S’Hd ^3 in the 3-dimensional subproblem defined by 3i, 32 and 33. i.e.,

min {^ic’^ 3 i + f2 c’^S2 + f3 c’’^ 53 }
fl.f3.f3

subject to

$1 A3i + ^2^32 + $“3^33 < b — Au' (^- 1
)

>0

^2,^3 unrestricted.

5: Compute u,-+i = u, + (0.99){fi3i + ^-252 + ^353]-

Problem Scaling. Our scaling algorithm for A uses techniques discussed in detail in

[GilMWSl, p.353]. First, each row of A is scaled by the geometric mean of the minimum

9

Implementation

and maximum absolute values of the nonzero elements of the row. The columns of A are next

scaled in the analogous manner. This scaling of the rows and columns is then repeated until the

greatest ratio of two nonzero elements in the same column does not change by more than 10%.

Finally, each row is scaled by its meiximum magnitude, followed by a scaling of each column

by its maximum magnitude. Although this scaling of A requires multiple passes through the

data structures, the actual cost is minimal as is seen in §4. We find this scaling improves the

robustness both of our optimal 3-dimensional method and of our dual affine procedure over that

observed using scaling with a fixed number of passes as recently suggested in [MarSSPBSS].

The subproblem constraint matrix defined in (3.1) is also scaled. First, each column of the

subproblem constraint matrix is scaled by the square of the two-norm of the corresponding

subproblem generator Sk, k = 1,2,3, (see §3). Then each row is scaled by its two-norm. This

scaling of the subproblem constraint matrix was also found to improve the numerical stability

of the method.

Starting Values and Phase 1 Procedure. Initially, uq = Q. We observe that, for the

problems examined, this choice of starting value outperforms starting values derived as a function

of the problem data. (See, e.g., [AdlRV86], [MarSSPB88|, and [Meh89].) Choi et al. [ChoMS88]

reports similar experience with uq = 0. Lustig et al. [LusMS89], however, notes that this choice

may not be satisfactory for the full expanded Netlib test set.

When necessary, an initial feasible solution is obtained using a big-M Phase 1 procedure (see,

e.g., [BazJ77]). We implement this by appending a dense column to the constraint matrix A to

produce the Phase 1 problem

min c'^u Mua
U,Ua

S.t. Au — Uat < h

for e = (1,...,!)^. (The initial choice for is discussed below.) As was true in our earlier

work [BogDDW89], the value of M is not dynamically updated at each iteration. Unlike our

earlier work, however, the coefficient M of the artificial variable is a function of the scaled values

of c, rather than always the value 10*.

It has been widely reported that interior point methods are sensitive to the selection of M.

Numerical difficulities cire encounted when M is either too Icirge or too small. For the primal-dual

procedures, Choi et al. [ChoMS88] uses M = pn^ max{||c||jjjj
, ||6 ||jjq},

where p is either 3 or 30.

Similarly, Mehrotra [Meh89] uses M = 10^ ||c||. For our work, we set

M = 10 X min{l0^, ||c||qq x max{l0*, ||c||qq}}.

10

Implementation

We found this heuristic more robust than those previously reported. It is arbitrary, but when

coupled with our scaling of A, its use significantly improves both our optimal 3-dimensional

results, and to a lesser degree, our dual affine results (see §4).

In addition to the selection of M, the big-M Phase 1 procedure requires that we initialize the

artificial Vciriable Ua- In our earlier work, we set Ua = 2 ||r||^, which, for our choice of uq is the

same as Ua = 2 ||fc||oo- This is closely related to the value used by McShane et al. [McSMS88|

of Ua = 1 + 2 ||rj|^. Mehrotra [Meh89], on the other hand, sets Ua = 2
|

mini<t<„{ri} |. Both

values guarantee initial feasibility. To obtain the results reported in §4, we set Ug using both the

range of the residuals, and the geometric mean of the maximum and minimum absolute values

of the residuals. The results reported in §4 were obtained by conditionally specifying Ua based

on the size of the ratio
|
rmin/^max 1- Specifically, we used

where

I
^min

I

if 10 X |

Tmin
|
<

|
Tmax

I
Tmin

I

+\2<P2{r) Otherwise,

I
^min

I

"(
1
^max i)

^

1P2 (^) ~ max{l, (roiax ^min)}i

and where Ai = 1 and A2 = .3. This value of ensures that the starting values uq and

Ua are safely interior without excessively inflating the original polytope. Note that ipi(r) is

the geometric mean of the minimum and maximum residual after adding the minimum amount

required to make all residuals greater than or equal to one, and <P2 {t’) is the range of the residuals.

Problem Preprocessing. The Netlib test problem set [Gay85| has test problems that may

contain empty rows or columns, and variables that are explicitly fixed. A small amount of pre-

processing is performed on the test problems to remove these extraneous items. The process first

identifies fixed variables and removes them from the problem. This is a multiple pass process,

since removal of a variable in an earlier iteration may result in identifying additional fixed vari-

ables. Once all identified fixed variables are removed, the procedure removes all corresponding

empty rows from the problem. (See also [BreMW75].)

Data Structures. The A matrix is stored in sparse format using the XMP experimental

mathematical programming data structures described in [Mar8l]. The Hessian matrix A^

A

is stored using the data structures from the Yale Sparse Matrix Package SMPAK [SCA85].

11

Implementation

Hessian GMW Modification. The Hessian is encoded and factored using the Yale Sparse

Matrix Package SMPAK [SCA85|. The minimum degree ordering subroutine is invoked at the

beginning of Phase 1 and again at the beginning of Phzise 2 to find a permutation of the rows

and columns that reduces fill-in. The symbolic factorization routine is also invoked only once

at the beginning of each Phase. As discussed below, constraints are implicitly dropped <is our

algorithm progresses. We do not repeat the symbolic factorization as constraints axe dropped

however.

At each iteration, the Cholesky factorization U^EU is formed using SMPAK routine SNF.

We have altered this code to detect near singularity of the Hessian using the modified Cholesky

algorithm specified on page 111 of GiU et al. [GilMWSl). In this algorithm, the Cholesky factors

U and E are computed subject to two requirements. First, all elements Ea must be strictly

positive. Second, the elements [U’^ E^!"^) must satisfy the uniform bound specified in [GilMWSl].

As the algorithm is presented in [GUMWSl], when these conditions cire not met for a row z, the

diagonal elements of the original matrix are implicitly increased until the conditions eire satisfied.

This results in an increase in the value for Ea, while the entries of the corresponding row i of

U are left unchanged.

In our implementation, we use the criteria of the modified Cholesky algorithm to identify and

remove rows of U that are effectively dependent. Thus, the algorithm was changed so that when

a nonzero quantity would be added to the diagonal entry Ea, the corresponding off-diagonal

entries in U are zeroed as well. Note that this procedure is slightly more expensive than that

of simply chcinging nonpositive diagonal entries Ea to some small positive number during the

factorization. It has the advantage, however, of isolating dependent columns of DA and,

thus, obtaining solutions unaffected by the dependent columns.

Constraint Dropping. Constraints that are sufficiently far from the current point u, i.e.,

those having residuals ry(u) that satisfy

rj (u) > 10^^ X min{rfc(u), k = 1, . .
.

,

m}, (3.2)

aire explicitly removed from the computations. Constraints j that satisfy (3.2) are “dropped”

by setting Rj and Djj to zero prior to computing A^

A

and A^ R. This can improve the

sparsity in A^

A

and the numerical accuracy of the resulting search directions, and therefore

can lead to improved performance.

Steplength Selection. All procedures reported in §4 use a steplength equal to 99% of the

maximum feasible steplength in the designated search direction. This steplength shifts the

12

Computational Results

current estimate u to within 1% of the distance to the boundary of the polytope.

Stopping Criteria. Three standard convergence tests are used to terminate the iterations.

These tests are based on (a) the relative change in the objective function, (b) the relative

difference between the primal and dual objective values (see, e.g., [AdlRV86|), and (c) the

steplength.

Objective function convergence is obtained when

If!— < 10-8 (3

I I

where Zi is the objective function value at iteration i. The convergence criterion based on the

relative difference between the primal and dual objective values is

zf - Zi

max{| zf I, I

Zi 1}

< 10
-8

(3.4)

where zf is the dual objective function value at the current iteration. This, of course, can

only be tested when the ducil multiplier estimate D^A [A'^D'^A) ^ c is nonnegative (see, e.g.,

[MonM87]). The third convergence criterion is based on steplength, where convergence is ob-

served when the steplength is less than or equal to 10“^®. All problems in our test set met either

(3.3) or (3.4).

Computing Environment. The methods reported here are implemented in Fortran 77 and

executed in double precision on a Sun 3/60 using compiler version F77-Sun 1.1 and options -O

and -f68881.

4. Computational Results

During thk study, several variants of the methods described in §2 were analyzed. In this section,

computational results are presented for the optimal 3-dimensional method and for two variants of

the dual affine method. Previously, it has been shown in [AdlRV86]^ [MonM87], and [McSMS88]

that the dual affine method compares favorably to MINOS 5.0 [MurS83], a weU-known and

widely-available implementation of the simplex method. No direct comparison with MINOS is

made, however, in this paper.

The methods analyzed in this study were tested on 31 of the 54 publicly available linear

programming problems available through Netlib [Gay85]. The problems omitted from our study

are those with explicit bounds, which our implementations do not currently handle. The size

13

Computational Results

and optimal objective value for each of these 31 problems are shown in Table 4.1. The number

of rows and columns specified for the Original Problem, as well as the optimal objective value,

are supplied by [Gay85]. These problem dimensions exclude the slack column, the right-hand

side vector, and the cost row. The Reformulated Problem dimensions indicate the size of the

dual problems that we actually solved after preprocessing the data as described in §3.

All but 3 of the 31 problems analyzed require a Phase 1 procedure to obtain an initial

feasible point when using the starting values specified in §3. Another 8 problems do not have

a fuU dimensional interior and therefore only require Phase 1 to find the optimal solution. The

remaining 20 problems require both Phase 1 and Phase 2.

1

4.1. Results

The computational results provided here compare our Optimal S-D algorithm with our Dual

Affine results. Both methods use the same Fortran “kernel” routines. Although only the essential

computations are executed for each method, we expect that a further reduction in execution

time for both methods could be obtained by customizing each. It may not be meaningful,

therefore, to compare directly these times with times obtained using other codes. In addition,

we recognize that our timing results are influenced by the order of computations, the compiler

and the computing environment. Even the relative timing results reported here may not stay

constant if run on a different computer. For a detailed discussion of the difficulties inherent in

comparing numerical methods see [JacBNP89].

Table 4.2 summarizes our Original Dual Affine results, computed as discussed in

[BogDDW89], and our New Dual Affne results and our Optimal 3-D results, computed as

described in §3. For each of these methods. Table 4.2 reports:

Iter.: the number of iterations required for Phase 1 and the total number of iterations, with

the two values listed as p/q-,

Time: the CPU time, in seconds, excluding data input, preprocessing and scaling as described

in §2, and formulation of the dual problem; and

Error: the relative error of the solution,
|

[z — z*)lz* |,
where z is the estimated optimal

objective value and z* is the true optimal value listed in Table 4.1.

The times for the Original Dual Affne results cire labeled by 0, the New Dual Affne results

by $, and the Optimal S-D results by for consistancy with Table 4.3. The total number of

iterations and the total times required to run all of the problems are listed at the bottom of

Table 4.2.

14

Computational Results

The iteration counts for our Original Dual Affine results are nearly identical to the dual

affine results reported in [AdlRV86|, (MonM87] and [McSMS88]. We have provided the times

for this work to allow our new results to be compared to our earlier work and that reported by

others.

Table 4.3 provides a comparison of our Optimal S-D approach with our Dual Affine results.

For convenience, the CPU times for the each of the methods axe repeated from Table 4.2. In

addition, Table 4.3 reports the change in time between the Optimal S-D approach and the Dual

Affine approaches, listed both in seconds and as a relative percentage of the Dual Affine times,

and the ratio of the Dual Affine times to the Optimal S-D times.

4.2. Observations

Convergence. Table 4.2 shows that our Optimal S-D results agree weU with the accepted

optimal values provided in [Gay85]. Each problem in the test set is solved “correctly”, converging

to the true value with at least 6 digits, and in all but 3 cases with 8 or more digits, of agreement.

Iteration Counts. Table 4.2 shows that our Optimal S-D approach results in a significant

reduction in the number of iterations when compared to either of our Dual Affine results. The

number of iterations required by the Optimal S-D method is less than that required by the Dual

Affine methods for all problems. The relative reductions range from 17.6% to 52.9% for the

individual problems, and over the set of 31 problems the total reduction in iterations is 33.4%.

Since our dual affine results compare favorably with those reported in [AdlRV86], [MonM87],

[McSMS88| and [LusMS89], we believe that our Optimal S-D results are also competative with

most current interior point work.

Timings. The Optimal S-D approach results in an overall reduction in CPU time of 18.9%

when compared with our New Dual Affine results, and 34.9% when compared with our Original

Dual Affine results. When compared with our New Dual Affine results, 22 of the 31 problems

show a reduction in CPU time using the Optimal S-D approach. Individual times decrease by

as much as 39.2%, and 15 of the problems decrease in time by 10% or more.

Of the problems experiencing an increase in time, the Optimal S-D approach causes a relative

increaise of more than 10% for problems ScagrZ, Sharelb, Scsd6 and ScsdS. The largest absolute

increase is 11.7 seconds (problem ScsdS), which is 16.5% of its individual execution time (82.8

seconds) and is only 0.2% of the total execution time for aU problems (6562 seconds).

It ^ easily shown that the solution of the subproblem does not increase the order of work per

iteration. Our timings show that the additional time required to set up and solve the subproblem

15

Computational Results

is only 13.7% (896 seconds) of the total CPU time (6562 seconds) for the Optimal S-D method.

Of this, 640 seconds are spent in the simplex solver, and the remaining time is primarily that

required to solve for 32 = D^A)
^

Aj or ^ A^i2 and 33 = Sh-

Data input and processing requires a total of about 498 seconds for the 31 problems. Of this,

123 seconds are required for the scaling and preprocessing described in §3. Since the data input

and processing time is constant for each of our methods, it is relatively larger for our Optimal

S-D method than for our New Dual Affine method. Our results would change slightly in favor

of our New Dual Affine results, therefore, if the data input and processing times were included.

The change is not significant, however, and does not alter our conclusions.

\

4.3. Conclusions

This study demonstrates the computational advantages of using optimal third-order methods as

more sophisticated adaptations to the traditional method of centers. In particular, our Optimal

S-D results are a significant improvement over our New Dual Affine results. The total number

of iterations is reduced by 33.4%, and the toted CPU time by 18.9%. The iteration counts for

our Optimal S-D results are also very competitive with the dual affine and primal-dual results

reported in [AdlRV86
],
[MonM87], [McSMS88

],
and (LusMS89j.

16

Table 4.1: Test Problem Characteristics

Problem

Name

Original

Rows Col. Rows

— B

Col.

.eformulated Prob

Non.

Phase 1

lem —
seros

Phase 2

Optimal ValueConst. Hess. Const. Hess.

Afiro 27 32 51 27 153 118 102 90 -.46475314286e3

ADLittle 56 97 137 55 554 433 417 377 .22549496316e6

Scagr7 129 140 184 128 641 753 457 606 -.23313892547e7

Sc205 205 203 315 203 978 858 663 654 -.52202061211e2

Share2b 96 79 162 96 939 968 777 871 -.41573224074e3

Sharelb 117 225 248 112 1396 1080 1148 967 -.76589318579e5

Scorpion 388 358 453 375 1913 2367 1460 1991 .18781248227e4

Scagr25 471 500 670 470 2387 2841 1717 2370 -.14753433060e8

ScTapl 300 480 660 300 2532 1987 1872 1686 .14122500000e4

t BrandY 220 249 247 137 2227 2364 — — .15185098965e4

J Scsdl 77 760 760 77 — — 2388 1133 .86666666743el

brael 174 142 316 174 2759 11402 2443 11227 -.89664482186e6

BandM 305 472 425 258 2459 3370 2034 3111 -.15862801845e3

t Scfxml 330 457 592 322 3299 3526 — — .18416759028e5

tE226 223 282 469 220 3206 3012 — — -.18751929066e2

t Scrs8 490 1169 1250 465 4428 2450 — — .90429695380e3

t Beaconfd 173 262 262 140 3357 2504 — — .33592485807e5

J Scsd6 147 1350 1350 147 — — 4316 2099 .50500000078e2

Ship04s 402 1458 1414 268 5538 3265 4124 2996 .17987147004e7

t Scfxm2 660 914 1184 644 6603 7071 — — .36660261564e5

Ship04l 402 2118 2162 356 8530 4933 6368 4576 .17933245379e7

ShipOSs 778 2387 2171 416 8477 4969 6306 4552 .19200982105e7

ScTap2 1090 1880 2500 1090 9834 7686 7334 6595 .17248071428e4

t ScfxmS 990 1371 1776 966 9907 10616 — — .54901254549e5

Ship 12s 1151 2763 2293 466 8849 5126 6556 4659 .14892361344e7

J ScsdS 397 2750 2570 397 — — 8584 4280 .90499999992e3

ScTapS 1480 2480 3340 1480 13074 10347 9734 8866 .14240000000e4

CzProb 929 3523 3141 737 12595 7715 9454 6977 .21851966989e7

t 25FV47 821 1571 1849 793 12415 12509 — — .55018458883e4

ShipOSl 778 4283 4339 688 17149 9841 12810 9152 .19090552113e7

Ship 121 1151 5427 5329 838 20993 11942 15664 11103 .14701879193e7

t indicates Phcise 1 problem

t indicates Phase 2 problem

Table 4.2: Results

Problem

Original Dual Affine

Iter. Time Error

(sec)

New Dual Affine

Iter. Time Error

(sec)

Optimal 3-D

Iter. Time Error

(sec)

Afiro 1/ 20 1.3 5.E-09 2/ 19 1.3 9.E-09 1/ 10 1.3 4.E-09

ADLittle 1/ 22 5.3 4.E-09 2/ 25 6.1 9.E-10 1/ 15 6.0 3.E-11

Scagr? 3/ 24 8.7 2.E-07 3/ 25 8.9 2.E-07 2/ 18 10.6 2.E-07

Sc205 4/ 27 15.1 3.E-09 6/ 28 16.9 2.E-09 3/ 17 15.7 l.E-10

Share2b 4/ 30 13.6 3.E-09 3/ 27 12.4 3.E-09 2/ 14 9.9 5.E-09

Sharelb 7/ 37 27.0 9.E-09 4/ 34 23.3 4.E-09 2/ 28 28.4 5.E-11

Scorpion 5/ 23 37.7 4.E-09 2/ 26 33.2 5.E-09 2/ 17 33.5 2.E-12

Scagr25 3/ 28 50.5 l.E-09 3/ 33 55.7 3.E-10 2/ 21 55.8 l.E-11

ScTapl 6/ 34 55.5 8.E-09 2/ 35 49.5 9.E-09 1/ 21 45.9 9.E-10

t BrandY 37/ 37 108.0 l.E-05 32/ 32 74.6 6.E-09 21/ 21 58.1 l.E-10

t Scsdl 0/ 17 19.5 5.E-09 0/ 17 19.2 5.E-09 0/ 8 14.5 2.E-09

Israel 9/ 40 479.9 8.E-09 4/ 31 375.5 l.E-08 3/ 24 307.0 l.E-10

BandM 7/ 30 87.5 8.E-09 7/ 30 74.2 9.E-09 4/ 21 65.3 2.E-10

t Scfxml 33/ 33 138.6 l.E-09 38/ 38 154.9 l.E-09 23/ 23 113.3 2.E-10

tE226 37/ 37 130.3 3.E-08 32/ 32 109.7 9.E-09 24/ 24 101.0 5.E-07

t Scrs8 52/ 52 450.0 3.E-08 34/ 34 261.7 6.E-09 25/ 25 224.7 2.E-10

t BeaconFD 25/ 25 94.8 6.E-09 25/ 25 73.9 8.E-09 17/ 17 59.3 2.E-09

t Scsd6 0/ 19 38.5 5.E-09 0/ 19 38.5 5.E-09 0/ 13 43.0 l.E-09

Ship04s 5/ 29 129.0 3.E-09 2/ 24 83.8 7.E-10 1/ 15 75.1 6.E-09

t Scfxm2 37/ 37 449.8 7.E-09 39/ 39 463.9 6.E-09 29/ 29 387.9 8.E-09

Ship04l 4/ 29 201.8 2.E-09 2/ 22 153.5 2.E-08 1/ 17 152.3 3.E-10

ShipOSs 5/ 31 271.0 2.E-09 1/ 24 122.5 8.E-10 1/ 16 132.3 4.E-09

ScTap2 6/ 32 498.4 2.E-09 2/ 27 362.1 5.E-09 1/ 16 285.0 3.E-09

t ScfxmS 38/ 38 906.2 l.E-09 40/ 40 896.3 8.E-09 31/ 31 783.5 3.E-10

Shipl2s 5/ 30 363.3 2.E-08 1/ 24 114.0 3.E-09 1/ 16 122.3 2.E-09

t ScsdS 0/ 19 73.6 8.E-09 0/ 19 71.1 8.E-09 0/ 13 82.8 2.E-10

ScTapS 6/ 34 766.6 5.E-09 2/ 29 526.6 6.E-09 1/ 18 445.9 4.E-09

CzProb 3/ 44 970.7 l.E-09 2/ 53 933.1 9.E-10 1/ 41 852.0 3.E-11

t 25FV47 55/ 55 2443.2 4.E-08 51/ 51 2095.8 5.E-08 28/ 28 1275.2 4.E-06

ShipOSl 4/ 28 494.8 l.E-09 1/ 27 375.0 6.E-10 1/ 17 353.1 3.E-10

Shipl2l 5/ 28 755.3 2.E-08 2/ 29 506.5 6.E-10 1/ 17 421.4 l.E-08

AU 407/969 10085.5 344/918 8093.7 230/611 6562.1

t indicates Phase 1 problem

t indicates Phcise 2 problem

Table 4.3: Comparison

Optimal 3-D New Dual Affine Original Dual Affine

$ ^ $
4>

0 ^-0 0 0/'F

Problem (sec) (sec) (sec) (%) (sec) (sec) {%)

Afixo 1.3 1.3 0.0 0.0 1.00 1.3 0.0 0.0 1.00

ADLittle 6.0 6.1 -0.1 -1.6 1.02 5.3 0.7 13.2 0.88

Scagr? 10.6 8.9 1.7 19.1 0.84 8.7 1.9 21.8 0.82

Sc205 15.7 16.9 -1.2 -7.1 1.08 15.1 0.6 4.0 0.96

Share2b 9.9 12.4 -2.5 -20.2 1.25 13.6 -3.7 -27.2 1.37

Sharelb 28.4 23.3 5.1 21.9 0.82 27.0 1.4 5.2 0.95

Scorpion 33.5 33.2 0.3 0.9 0.99 37.7 -4.2 -11.1 1.13

Scagr25 55.8 55.7 0.1 0.2 1.00 50.5 5.3 10.5 0.91

ScTapl 45.9 49.5 -3.6 -7.3 1.08 55.5 -9.6 -17.3 1.21

t BrandY 58.1 74.6 -16.5 -22.1 1.28 108.0 -49.9 -46.2 1.86

1 Scsdl 14.5 19.2 -4.7 -24.5 1.32 19.5 -5.0 -25.6 1.34

Israel 307.0 375.5 -68.5 -18.2 1.22 479.9 -172.9 -36.0 1.56

BandM 65.3 74.2 -8.9 -12.0 1.14 87.5 -22.2 -25.4 1.34

t Scfxml 113.3 154.9 -41.6 -26.9 1.37 138.6 -25.3 -18.3 1.22

tE226 101.0 109.7 -8.7 -7.9 1.09 130.3 -29.3 -22.5 1.29

t ScrsS 224.7 261.7 -37.0 -14.1 1.16 450.0 -225.3 -50.1 2.00

t BeaconFD 59.3 73.9 -14.6 -19.8 1.25 94.8 -35.5 -37.4 1.60

t Scsd6 43.0 38.5 4.5 11.7 0.90 38.5 4.5 11.7 0.90

Ship04s 75.1 83.8 -8.7 -10.4 1.12 129.0 -53.9 -41.8 1.72

t Scfxm2 387.9 463.9 -76.0 -16.4 1.20 449.8 -61.9 -13.8 1.16

Ship04l 152.3 153.5 -1.2 -0.8 1.01 201.8 -49.5 -24.5 1.33

ShipOSs 132.3 122.5 9.8 8.0 0.93 271.0 -138.7 -51.2 2.05

ScTap2 285.0 362.1 -77.1 -21.3 1.27 498.4 -213.4 -42.8 1.75

t ScfxmS 783.5 896.3 -112.8 -12.6 1.14 ’ 906.2 -122.7 -13.5 1.16

Ship 12s 122.3 114.0 8.3 7.3 0.93 363.3 -241.0 -66.3 2.97

1 ScsdS 82.8 71.1 11.7 16.5 0.86 73.6 9.2 12.5 0.89

ScTapS 445.9 526.6 -80.7 -15.3 1.18 766.6 -320.7 -41.8 1.72

CzProb 852.0 933.1 -81.1 -8.7 1.10 970.7 -118.7 -12.2 1.14

t 25FV47 1275.2 2095.8 -820.6 -39.2 1.64 2443.2 -1168.0 -47.8 1.92

ShipOSl 353.1 375.0 -21.9 -5.8 1.06 494.8 -141.7 -28.6 1.40

Ship 121 421.4 506.5 -85.1 -16.8 1.20 755.3 -333.9 -44.2 1.79

AU 6562.1 8093.7 -1531.6 -18.9 1.23 10085.5 -3523.4 -34.9 1.54

t indicates Phase 1 problem

J indicates Phase 2 problem

References

References

[AdlRV86] Dan Adler, Mauricio G. C. Resende, and Geraldo Veiga. An implementation

of Karmarkar’s algorithm for linear progreimming. Manuscript ORC 86-8, De-

partment of Industrial Engineering and Operations Research, University of

California, May 1986.

[BayL86] D. A. Bayer and J. C. Lagarias. The nonlineeir geometry of linear programming:

I. affine and projective scaling trajectories, II. legendre transform coordinates,

III. central trajectories, IV. Karmarkar’s linear programming algorithm and

Newton’s method. Internal memoranda, AT&T Bell Laboratories, Murray Hill,

NJ, 1986.

[BazJ77] Mokhtar S. Bazaraa and John J. Jarvis. Linear Programming and Network

Flows. John Wiley and Sons, Inc., New York, 1977.

[BogDDW89] Paul T. Boggs, Paul D. Domich, Janet R. Donaldson, and Christoph Witzgall.

Algorithmic enhancements to the method of centers for linear programming

programming. ORSA Journal on Computing, 1(3): 159-171, 1989.

[BreMW75l A. L. Brearley, G. Mitra, and H. P. Williams. Analysis of mathematical pro-

gramming problems prior to applying the simplex algorithm. Mathematical

Programming, 8:54-83, 1975.

[ChoMS88] In Chan Choi, Clyde L. Monma, and David F. Shanno. Further development

of a primal-dual interior point method. Research Report RRR 60-88, Rutgers

University, December 1988.

[Gay85l David M. Gay. Electronic mail distribution of linear programming test prob-

lems. Mathematical Programming Society COAL Newsletter 13, December

1985.

[GUMW81] Philip E. GiU, Walter Murray, and Margaret H. Wright. Practical Optimization.

Academic Press, Inc., 1981.

[Gon87a] Clovis C. Gonzaga. Search directions for interior linecir programming meth-

ods. Preliminary version. Department of Electrical Engineering and Computer

Sciences, University of California, Berkeley, May 1987.

20

References

[Hua67] Pierre Huard. Resolution of mathematical programming with nonlinear con-

straints by the method of centres. In J. Abadie, editor, Nonlinear Programming,

pages 209-219. North Holland, Amsterdam, 1967.

[JacBNP89] Richard H. F. Jackson, Paul T. Boggs, Stephen G. Nash, and Susan Powell.

Report of the ad hoc committee to revise the guidelines for reporting compu-

tational experiments in mathematical programming. Draft, January 1989.

[JacM86] Richard H. F. Jackson and Garth P. McCormick. The polyadic structure of

factorable function tensors with applications to higher-order minimization tech-

niques. Journal of Optimization Theory and Applications, 5l(l):63-93, 1986.

[Kar84] Ncirendra Karmarkar. A new polynomial-time algorithm for linear program-

ming. Combinatorica, 4:373-395, 1984.

[Ktir85] Ncirendra Karmarkar, 1985. ORSA/TIMS Joint National Meeting, Boston MA.

[LusMS89] Irvin J. Lustig, Roy E. Marsten, and David F. Shanno. Computational ex-

perience with the primal-dual interior point method for linear programming.

Technical Report SOR 89-17, Department of Civil Engineering and Operations

Research, Princeton University, School of Industrial Engineering and Opera-

tions Research, Georgia Institute of Technology, and Rutgers Center for Oper-

ations Research, Rutgers University, October 1989.

[Mcir81] Roy E. Marsten. The design of the XMP linear programming library. ACM
Transactions on Mathematical Software, 7(4):481-497, December 1981.

[MarSSPB88] Roy E. Marsten, Matthew J. Saltzman, David F. Shanno, George S. Pierce, and

J. F. Ballintijn. Implementation of a dual affine interior point algorithm for

linear programming. Research Report RRR 44-88, Rutgers University, August

1988.

[McCS88] Garth P. McCormick and Ariela Sofer. Optimization with unary functions. The

George Washington University and George Mason University, October 1988.

[McSMS88] Kevin A. McShane, Clyde L. Monma, and David F. Shanno. An implementa-

tion of a primal-dual interior point method for linear programming. Research

Report RRR 24-88, Rutgers University, March 1988.

21

References

[MegS86] Nimrod Megiddo and Michael Shub. Boundary behavior of interior point al-

gorithms in linear programming. Manuscript RJ 5319 (54679), IBM Almaden

Research Center, Tel Aviv University and IBM T. J. Watson Research Center,

September 1986.

[Meh89] Sanjay Mehrotra. Implementations of affine scaling methods: Approximate

solutions of systems of linear equations using preconditioned conjugate gradient

methods. Technical Report 89-04, Northwestern University, August 1989.

[MonM87] Clyde L. Monma and Andrew J. Morton. Computational experience with a

dual affine variant of Karmarkar’s method for linear programming. Internal

memorandum. Bell Communications Research, March 1987.

[MiirS83] Bruce A. Murtaugh and Mitchell A. Saunders. MINOS 5.0 user’s guide. Tech-

nical Report SOL 83-20, Stanford Optimization Laboratory, December 1983.

[Ren86] J. Renegar. A polynomial-time algorithm, based on Newton’s method, for lin-

ear programming. Report 07118-86, Mathematical Sciences Research Institute,

University of California at Berkeley, June 1986.

[Sha85] David F. Shanno. Computing Karmarkar projections quickly. Working Paper

85-10, University of California, December 1985.

[SCA85] SMPAK User’s Guide Version 1.0, 1985.

(WitBD88b] Christoph Witzgall, Paul T. Boggs, and Paul D. Domich. On the convergence

behavior of trajectories for linear programming. Submitted to Proceedings

of the AMS-IME-SIAM Research Converence on “Mathematical Developments

Arising from Linear Programming Algorithms”

,

June 1988.

22

U.S* DEPT. ©F COMM.

BIBLIOGRAPHIC DATA
SHEET (See instructions)

1. PUBLICATION OR
REPORT NO.

NISTIR 89-4225

2. Performing Organ. Report No. 3. Publication Date

DECEMBER 1989

4. TITLE AND SUBTITLE

Optimal 3-Dimensional Methods for Linear Programming

I. AUTHOR(S)

Paul D. Domich, Paul T. Boggs, Janet R. Donaldson, and Christoph Witzgall

6. PERFORMING ORGANIZATION (If joint or other than NBS. see instructions)

NAnONAL BUREAU OF STANDARDS
U.S. DEPARTMENT OF COMMERCE
GAITHERSBURG, MD 20899

7. Contract/Grant No.

S. Type of Report & Period Covered

9.

SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City, State, ZIP)
10.

SUPPLEMENTARY NOTES

I I
Document describes a computer program; SF-185, FI PS Software Summary, is attached.

11.

ABSTRACT (A 200-word or less (actual summary of most significant in formation. If document includes a significant
bibliography or literature survey, mention it here)

Interior point algorithms for solving linear programming problems are considered.
An optimal 3-dimensional method is developed that, at each iteration, solves a

subproblem based on minimizing the cost function on low-dimensional cross sections of

the feasible region. This idea was used by the authors in [Boggs et al.. Algorithmic
Enhancements to the Method of Centers for Linear Programming Problems, ORSA Journal
of Computing, 1 (3) : 159-17 1 , 1989.] The generators for the original 2-dimensional
subproblems are derived from either a discrete or a continuous version of Huard's
method of centers. The generators for the optimal 3-dimensional subproblem include
the dual affine search direction, and two higher-order search directions. One of
the higher order directions is a third order correction to the Newton recentering
direction, and the other is a correction to the dual affine direction that is motivated
by the use of rank-one updates of the second derivative information. Numerical
results are presented for the optimal 3-dimensional method that indicate almost a 23%
reduction in CPU time compared to our best dual affine implementation.

12.

KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolon s)

method of centers; dual affine direction; ordinary differential equations; low-
dimensional subproblem; optimal multi-directional methods; factorable functions;
third-order correction terms, recentering, center trajectory

13.

availability

^Unl imited

I I
For Official Distribution. Do Not Release to NTIS

I I

Order From Superintendent of Documents. U.S. Government Printing Office. Washington. D.C.
20402.

iY~! Order From National Technical Information Service (NTIS). Springfield. VA, 22161

14. NO. OF
PRINTED PAGES

24

15. Price

A02

USCOMM-OC 6043-P80

.1

iTsS JtV .kT Atrt, <tQ .luiiT ^- *ii5*

iitsi>-e6 jiitfeiw
4.TAQ attfV4^yiJ»a

,mSwiKm « it !»'«*“ iiw > Ill^l mim^

3jTrrLTTm<k a .iTfT
<*J

'

ft r,b ;1 '' Iififtcismfc.' ;ca.-C iJMJHfiO

' :»

J

* 'i.'**

'W .7.

. »

iJSwTrulM*

.: • ... '’:ao..i'.:?ii<!‘"rfi .0 iwi’'

I
„ -v »Tv '’’S'.'i* '. .1 “im

’

i,'. 'M T
J ...

.
fii-utAtwm'aauiaH’tfS'aAvioitAit

^ iw> Twswpm
'

V. I, .jU
.

..)' iffijifl v».rfc|ioa ..
. iws

^0- v>>'V:<r4y, /Lr4flairi||
‘' 4 . -j,;

rn

'.41

,. . ?j i't.'oa' r '•M', C«*i -j-i ' ,%»>!.>.. Lstic*
’

.-’/s

•t

& - <

.' Ci iJliv.
'• f •. .' .\rr*x., S.'

yj«P'TH3^

•

' *'

'

' .w.H '• r-J *
. S.viil.rWrt'. Mriios t iWi.,

j> tp

. I .
,i i . i

.R,? - vv- ’'(W n?'

,.,'-.o'''i '•<1'.'' :» v>omn'iyi 'e V't-w-yOS A)
' »

> ^
'

' f •* : ’.r ^ w .«•'•• V r... — ,.T .

''w .t- ', .S®-'

il'
• •• ;o-r'

'

- '
I ‘’3 if*

»<«
•</ -..ii-fi .Sift .JLifrioiaoMOiift'-f

-V.. . ,,•.: /(.
. r,c ir;v, .gji7X.'!f.ri:ui;.j.,lt7i 00 hj!iia:a«J tft©X<

U-, ;..''«I_-(T vv-.,,4 aPw ,
i-'"

. . . y .If* stl:» « *

-; ^ .r: ’''/•Jr-'j; sr;.j 7i‘i’ '•rt)*

v- '3;^,^:' S' : •avr'^ i,.-- I'S'a!. •priu

,

'

‘.rri-jo -Vj ani a-nr 'Viait^U . 1 1>V£j 3 ^cr'.

- '-• ^ -- Ti;/' (< \;.a'}ti-vtv
. ,,,.,T

•.<•.• —» lii^ iL 1- ID'- i r -^?ii i »jt£j’i^o> a/8i'45^

)
1 J ‘i I 'J-

.”1 'a‘- L.i '7S*'!
f
3 ». f'

,
ti-^riOO 4' '7 iWw'

, :,

’

M>. _-’
/

’

V .

' V ^*\4^ '^'f i' ••» •< .

1.- i'^« 4; ,*. 4 C . Jvj.;..*),;?, or ^ ^

Jyr lii- S i‘.n o.'. I" -e'liicc i«t/ .-

-.(• !»n.

:.yi'
.ft ti <

M.r.TT*'.
*

TT.,... ,».a*n<n •sr.ooqc'j IpMV Ot.fwi'.. slffVMft* 4i¥AI»W» ;»J'

., .. i.,ci ^ -'•y.Ab iyanjibno > t sol’ll# Ifiuti ;

?o J - 3 } .

« »ii;-f»3 u'-
-''^“•“

JiTM «| * « H' »0 ,
«o*'»Utfri)lWQf|^

.CC noTaft'A*' "^ imWO .4?.U

'

\;

‘•tl ,V'*' k<»rto? .IC'TM) '•notMM

