
NAT L INST, OF STAND 4 TECH R.I.C.
I

III

NISTIR 89-4215

NIST

PUBLICATIONS

NOTE ON NASREM
IMPLEMENTATION

John Fiala

U.8. DEPARTMENT OF COMMERCE
National Instituta of Standards

and Technology

Robot Systems Division

Intelligent Controls Group
Bldg. 220 Rm. B124
Gaithersburg, MD 20899

QC

100

U56

89-4215

1989

U.S. D^ARTMENT OF COMMERCE
Robert A. Mosbacher, Secretary

Lae Mercer, Deputy Under Secretary
for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
John W. Lyons, Director

NIST

C.2

NATIONAL mSTITUTE OF STANDARDS &
TECffi'IOLOGY

Research Infonnation Center

Gaitbersbui'g, MD 20899

DATE DUE

1

Demco. Inc. 38 293

NISTIR 89-4215

NOTE ON NASREM
IMPLEMENTATION

-

John Fiala

U.S. DEPARTMENT OF COMMERCE
National Institute of Standards

and Technology

Robot Systems Division

Intelligent Controls Group
Bldg. 220 Rm. B124
Gaithersburg, MD 20899

December 1989

Issued March 1990

U.S. DEPARTMENT OF COMMERCE
Robert A. Mosbacher, Secretary

Lee Mercer, Deputy Under Secretary
for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
John W. Lyons, Director

'.'M <1
‘

••’r- *:•’

f"

-• V,W, s
- .^/W

v» -^,rf', 'f-ty
'

•?)!;<>»
‘ im

. v,i V '>'^i{

••^
'I .'m ^ ' "jM

-t

i. :

Note on NASREM Implementation

Intelligent Controls Group
Robot Systems Division

Principle Author: John Fiala

Date: 12/11/89

Scope of the Document

This document describes ideas formulated in the Intelligent Controls Group for the structure

of a NASREM implementation. A basic description of a telerobot control system architecture

is given in terms of the model’s parallel processing formulation and its meaning in a multipro-

cessing computing environment. Examples of software organization using Ada are provided

to illustrate the ideas.

Keywords: Ada, multiprocessing, control system architecture, software design, real-time

control

1. Introduction

The NASA/NBS Standard Reference Model Telerobot Control System Architecture

(NASREM) is outlined in [1]. This note discusses how the basic architecture can be decom-

posed in more detail to arrive at a specific implementation. The discussion emphasizes that

the decomposition should maintain certain architectural features with respect to parallel pro-

cessing and process communication such that the final design accurately represents system

parallelism. This type of design provides advantages in building an evolvable system capable

of meeting real-time performance requirements.

Figure 1 depicts the basic structure of a telerobot control system architecture. This figure

is only meant to show the architecture at a conceptual level. The actual system has much ad-

ditional structure not revealed at this level. As shown in the figure, the architecture is con-

posed of levels. These levels are given names. The highest level is called the Service Mis-

sion level. The lowest level is called the Servo level.

At each "control" level there are sensory processing, world modeling and task decompo-

sition components. Task decomposition components of the architecture are the behavior gen-

erators. These elements determine what is to be done and send commands to other system

elements to affect that activity. Sensory processing components obtain and process data

from system sensors. World modeling components utilize sensory processing data to main-

tain an internal model of the world. World modeling is the part of the system which interfac-

es sensory processing and task decomposition activities. Much of what world modeling does

has to do with updating the global data system used by sensory processing and task decom-

position.

As mentioned above. Figure 1 is conceptual. The figure depicts a system composed of 18

boxes. The figure does not show the level of detail needed for an actual system. For exam-

ple, the figure does not show how the architecture decomposes around equipment. Figure 1

seems to indicate that the world modeling functions for camera and arm movements are more

closely coupled than are the world modeling and task decomposition functions within each of

these pieces of equipment. The figure shows one world modeling box and one task decompo-

sition box at each level without showing any separation according to equipment. Clearly,

world modeling functions related to arm movements interact much more with arm task de-

composition than with eye movement world modeling. Thus, the level of detail of Figure 1 is

not adequate for representing the actual system architecture. The appropriate level of detail

for a design based on the concepts of [1] is discussed in Sections 2 and 3. Section 4 discuss-

es the attributes of the boxes represented by the system architecture, i.e. how they function

as part of a multiprocessing system. Ada implementation examples are given to illustrate the

ideas of this section.

2. Decomposition around Equipment

One important feature of the architecture not depicted in Figure 1 is that the architecture

hierarchically decomposes around equipment [1, p. 23]. There is a single Task level for an en-

tire robot. This Task level coordinates Elemental-move (E-move) levels for each major

equipment subsystem. The E-move levels each coordinate a set of Primitive levels, which in

turn coordinate Servo levels for each separate piece of equipment that must be controlled.

The levels form a hierarchy (or tree) structure with a single Task level root node and Servo

Note on NASREM 2

Figure 1. Conceptual Telerobot Control System Architecture.

Note on NASREM 3

TELEROBOT TASK

Figure 2. Hierarchical Decomposition around Equipment.

level leaf nodes. As an example of how the architecture decomposes around equipment con-

sider the diagram shown in Figure 2. This diagram depicts a hypothetical robot system that

consists of an arm with a simple gripper, and a camera with pan, tilt, zoom, focus and iris con-

trol.

There is a Servo level for controlling the manipulator arm. This Servo level contains sen-

sory processing, world modeling and task decomposition components. The Servo level for the

arm is commanded by a Primitive level for the arm. (For a more detailed description of the

Note on NASREM 4

structure and functionality of manipulator arm Primitive and Servo levels see [2-4].) There is

also a Primitive level for the gripper. These Primitive levels have sensory processing, world

modeling, and task decomposition components. The gripper and arm Primitive levels are coor-

dinated by an E-move level. If there were more than one arm, the second arm and its gripper

would also have Primitive levels under this one E-move level.

There is no Servo level beneath the gripper Primitive level, and the Primitive level com-

municates directly with the sensors and actuators of the gripper. The gripper in this example

is assumed to be controlled open-loop. That is, discrete actions result in the gripper being

opened or closed, such as with a pneumatic device. There is no closed-loop control for this

device that provides a servo to a commanded position or gripping force. In cases such as this,

where there is no closed-loop servo control, it is appropriate to command the device directly

from the Primitive level. For the camera device in Figure 2, there are servo levels for the

moveable components (pan & tilt, zoom, etc.) because these devices have closed-loop con-

trol in the example. If the iris mechanism, for example, were capable only of receiving open-

loop commands of aperture settings, then this device would not have a Servo level.

The architecture is determined by the types of control system interfaces provided by the

selected equipment. For example, if a simple gripper allowing only discrete open/close com-

mands is used, then the architecture would not have a Servo level for gripper control. Howev-

er, if a more complicated gripper accepts finger position commands and provides finger posi-

tion feedback, then an implementation architecture should include a gripper Servo level to

servo control gripper opening. The architecure design is dependent on the type of interface

provided by the equipment, since this interface completely determines the ability of the con-

trol system to influence the behavior of the equipment.

As a further example, consider a gripper that has internal electronics such that it servos

to a commanded position using internal position feedback. This feedback is not provided ex-

ternally, only used internally to close a position loop. Since the interface to this equipment

consists of command positions only, it can be considered an open-loop device for the purpose

of architecture design. Again, the control system cannot specify the behavior of the local elec-

tronics; the behavior is a fixed attribute of the equipment which lies outside the control sys-

tem architecture.

A requirement of the telerobot architecture is that it be able to evolve and incorporate

new capabilities [6]. This implies that individual components be easily modifiable, capable of

executing new algorithms and communicating with new system elements. This is not gener-

ally a feature of hardware electronics of the type mentioned for the gripper servo above. Since

the control system must exhibit many different capabilities, components must also be capa-

ble of performing many different algorithms, during normal operation. Again, this eliminates

most hardwired control electronics from being included in the system architecture. Although

one might label some collection of circuits as being a Servo level for, say, a gripper, this does

not give those circuits the properties of multiple capabilities and evolvability that is required

of a telerobot control system architecture. Thus, the architecture includes only the program-

mable components of the control system, the "software" components.

Note that the camera structure includes a Servo level for the image itself. This structure

appears to be in conflict with the above mentioned criterion for the existence of a Servo level.

Indeed, if the only task decomposition output were "on/off camera" this would be a conflict.

Note on NASREM 5

however task decomposition is also involved in planning for and selecting the sensory pro-

cessing algorithms. Remember that task decomposition determines what is to be done by the

system. This means that task decomposition configures the activities within a level, as well

as commanding lower levels. Thus, there is a Servo level for configuring and coordinating

low-level image processing activities. Due to the complexity of these activities, a level is re-

quired to "servo" thresholds and filter parameters for this image processing. (See [5] for de-

tails.)

As a final comment on equipment hierarchies it should be mentioned that they can be dy-

namic. That is, the hierarchy can be reconfigured while the system is in operation [1, p. 6].

As a simple example consider the case where, during normal operation, the manipulator’s

end-effector is replaced with a new one. The new end-effector may have completely different

control requirements such that a new control architecture for this subsystem is mandated.

This problem can be accommodated by dynamic reconfiguration of the control hierarchy.

Figure 3 depicts the hierarchical configuration prior to the end-effector replacement. Here,

the original gripper "GRIPPER 1" is attached to the arm and is being controlled by the level

with a solid box. The structure with dashed-border boxes is inactive, meaning it is not pro-

cessing. This is the control structure for the replacement gripper "GRIPPER 2" which is not

attached to the manipulator. After the end-effector exchange, "GRIPPER 2" is attached to

the manipulator and "GRIPPER 1" is not. This situation is depicted in Figure 4, where the

"GRIPPER 1" control elements are inactive and "GRIPPER 2" elements are now active. For

this example there is probably some amount of time when neither control structure is active,

i.e. there is no end-effector attached to the mainpulator, but there is no instant when both are

PRIM

SERVO

Figure 3. Control Hierarchy with GRIPPER 1 Active, GRIPPER 2 Inactive.

Note on NASREM 6

PRIM

SERVO

Figure 4. Control Hierarchy with GRIPPER 2 Active, GRIPPER 1 Inactive.

active. The meaning of "active" and "inactive" control elements will be discussed funher in

Section 4.

3. The Detailed Architecture

A diagram in the form of Figure 2 begins to describe the structure of the control system

architecture as designed for a specific implementation. A Figure 2 diagram is implementation-

specific because it is determined by the equipment selected for an implementation. Selecting

a different set of equipment should result in a different Figure 2 diagram. This section dis-

cusses the level of detail required in a final implementation-specific architecture. The level of

detail in Figure 2 is not sufficient because the interaction among componenents within a lev-

el, and even components between levels, is not specified. An entire level is much too compli-

cated to represent an "atomic" component of the implementation. The following discussion

will delineate the characteristics of architecture components such that "atomic" units can be

determined. The ultimate goal is to decompose the control system architecture down to this

"atomic" level, such that no box can be further decomposed. This level of detail provides a

great deal of flexibilty when trying to meet real-time performance requirements, as discussed

below.

Given that a decomposition around equipment has been appropriately made in terms of

"levels", the next step is to determine the structure within each level. There are task decom-

position, world modeling, and sensory processing components within a level, but into how
many "boxes" do these general categories of activities decompose? Clearly, this is deter-

Note on NASREM 7

mined by the functionality of the specific level, which to a large extent is determined by the

decomposition around equipment. This means that decomposition within a level is partly an

implementation-specific feature of the architecture. (See Figure 5.)

Reference [1] describes a basic structure for the task decomposition part of a level. Task

decomposition breaks into job assignment, planning, and execution modules. There is only

one job assignment module for a level, but there may be several planners and executors with-

in a level [1, p. 28]. Each of the task decomposition modules has a well-defined role in the

control system as described in [1-3,5]. The job assignment, planning, and execution modules

are "atomic" elements of an architecture design by definition.

The criteria of world modeling and sensory processing decompositions is less clearly

specified in [1], although some discussion of such decompositions is made in [4]. A principal

criterion for these decompositions of sensory processing and world modeling into "atomic"

boxes should be "parallelizability" of function, as will be explained subsequently.

The boxes in Figure 1 conceptually represent 18 activities that proceed concurrently. That

is, world modeling activities are going on simultaneously with sensory processing and task

decomposition activities. The activities at each level also proceed concurrently, with periodic

communication between levels serving to coordinate the whole system. For instance, when
E-move outputs a new command to Primitive, it does not halt its processing and wait until

Primitive completes the command. E-move continues processing while Primitive is acting on

the new command. During this time E-move accepts new directives from Task and prepares

new outputs for Primitive.

This parallelism of activity holds for the equipment decomposition, as well. For the exam-

ple of Figure 2, the camera would obtaining new images and adjusting focus and iris concur-

rently with the movements of the manipulator arm. Within task decomposition, job assign-

ment, planning, and execution activities proceed simultaneously. While the execution box is

executing the current plan, the planning box is preparing the next plan, effectively extending

the current plan further into the future. Commands entering the task decomposition structure

are pipelined from job assignment to planning to execution, such that job assignment, plan-

ning, and execution activities are all happening concurrently. Thus, the architecture design is

basically a specification of concurrent activities of the control system. This is an important

feature of the architecture since it helps to meet the real-time goals as discussed in the next

section.

That the final architecture design is to represent the inherent parallelism of the control

system activities is the "parallelizability" criterion for motivating decompositions. The senso-

ry processing and world modeling activity at a level should be broken up into boxes such that

the function in each box can proceed in parallel with the functions in other boxes. Likewise,

the multiplicity of planners and executors within a level must also be determined on the basis

of the "parallelizability" of function.

As an example of "atomic" decomposition consider Figure 5. This figure depicts the ar-

chitectural boxes for task decomposition and world modeling functions for the Servo level of a

manipulator arm [2,4]. Each rectangular box is a separate function that can proceed concur-

rently with the other boxes in the figure. The ovals in the figure represent data that is the

output and input to the boxes. (These ovals are components of the "global data system"

Note on NASREM 8

From Prim Level

Figure 5. Servo Level Boxes Representing Parallel Functions.

Note on NASREM 9

[1,2].) For the example, the boxes shown in the figure are "atomic" units of the Servo archi-

tecture.

The figure shows world modeling as composed of several activities which support the

task decomposition modules. These activities are concurrent with the task decomposition ac-

tivities, and, to a large extent, can proceed "asynchronously" with them. This means, for ex-

ample, that the Jacobian does not have to be computed at a rate directly linked to the rate of

the execution module. Jacobians can be computed at some slower rate, with the rate only af-

fecting performance significantly when it is outside some broad range. The time between Ja-

cobian outputs does not even have to be fixed, but can vary from output to output without se-

verely affecting performance. This allowance for "asynchronicity" is another useful criterion

for breaking out boxes in the architecture, since this information can also be used to enhance

real-time performance as will soon be discussed.

If a function is a separate box, then it will have to interact with the other components of

the system by communicating through the global data system. This is a fundamental feature

of the control system architecture [1, p. 5]. Unfortunately, global data system communication

must come at some expense since it is a special purpose message passing system and not

just a transferal of data by, say, a procedural invocation. It is more efficient for a function to

operate on local data than to read and write data to the global data system. Thus, one should

consider the communication overhead when separating functions into parallel modules. By

carefully choosing the decomposition, the communication overhead can be balanced with the

speed-up obtained through parallelism.

Suppose an attempt is made to split the Jacobian box in Figure 5 such that two new box-

es are generated, one to compute the upper half of the Jacobian and one to compute the lower

half. First, both of the new boxes would have to read all the joint angles (in general) such

that there is already some cost for this split. It is likely that the elements of the Jacobian

share a number of common terms such as sines and cosines of joint angles, and algebraic

combinations of these sines and cosines. If each of the new boxes must repeat these calcula-

tions it is doubtful that there can be any advantages to the parallelization. If each box com-

putes half of the common terms and shares the results with the other, then a communication

bottleneck is reached since this communication is through the global data system. One must

conclude that the Jacobian function cannot be effectively decomposed into separate parts and

that it should remain as a single box. Through this type of analysis, the "atomic" units of a

level can be determined.

This is not to say that a single box can only be executed on a single processor. It is cer-

tainly possible, although difficult, to distribute a box over some multiprocessor structure.

This would involve developing a communication scheme for the multiprocessor separate from

the global data system, since, if the box communicated through the global data system, it

would be several architectural boxes instead of one. Developing such specialized communica-

tion schemes is difficult and weakens the design since there is less freedom in the distribu-

tion of boxes to processors. However, multiprocessor structures are often used in special-

ized computing hardware, where the communication scheme is already built in.

To conclude, a final control system architecture design is achieved when the design con-

sists only of "atomic" boxes. The decomposition of a level into these "atomic" boxes is based

on predetermined functional categories: task decomposition job assignment, task decomposi-

Note on NASREM 10

Figure 6. "Atomic" Decomposition for a Level.

tion planning, task decomposition execution, world modeling, and sensory processing. Four

other criteria on which to base the separation of activities into separate boxes are:

• Parallelizabnity

• Asynchronicity

• Communication overhead

• Function decomposeability

Eventually, the architecture design for every level should reach the detail shown in Figure 6,

where all interfaces between "atomic" boxes and between boxes and equipment are clearly

defined. /

4. Properties of "Atomic” Boxes

This section defines the properties of the boxes in the final control system architecture.

The description of the architecture [1] is specific with respect to these properties, and any ar-

chitecture design must adhere to these properties. It is not acceptable to "map" an architec-

ture design onto a completely arbitrary software structure. The "atomic" boxes that have

been carefully determined in Sections 2 and 3 represent very specific software entities within

the final implementation.

The software entity which implements a box is called a process in the following. A pro-

cess has five important properties:

• Continuous cyclic execution

• Read-compute-write execution cycle

• Concurrency

• Interfaces through global data system

• Inactivation

First, a process repeatedly performs its designated function in the system. Secondly,

each execution cycle of a process consists of the sequence, read inputs-perform computation-

write outputs. A process that repeatedly performs this cycle is said to be cyclicly executing.

Note on NASREM 11

Since a process can run concurrently and (sometimes) asynchronously with the other pro-

cesses of the system, a process should be capable of retaining some context from cycle-to-

cycle in the form of process variables. Process variables are not globally defined. The fourth

property of a process, however, is that the inputs and outputs are via the global data system.

Finally, a process can be made inactive, as described below.

For most processes of the system, the read-compute-write cycle is continually per-

formed for the life of the system. Even when no new commands are issued to a process, cy-

clic execution is still being performed. This allows the robot to react to sensed changes in

the environment, e.g., disturbances to the servo control loop. In order to insure that a pro-

cess will be able to react quickly, the process should not deadlock waiting for communication

with any one process. Thus, reliable cyclic execution requires that a process be able to read

or write data with as little waiting as possible. A process should always read and execute

on the most current data that is available.

The data that a process reads (writes) is obtained from (sent to) the global data system.

It is through the global data system (and only through the global data system) that a process

communicates with other processes. Thus, the lines depicting interfaces between boxes in

Figure 6 represent global data system communication links. The global data system must

protect the data from corruption while allowing global access to the data. Typically an inter-

face written by one process is read by several other processes so that the global data sys-

tem must accommodate simultaneous accesses to the same data. There are a number of

techniques for implementing this type of data system, however they are not discussed in this

document.

As described in Section 2, a process can be made inactive. This means that the process

no longer executes read-compute-write cycles. The process is removed from the set of cy-

clicly executing processes (active processes) that compose the control system. Processes

that share the use of one processor obviously cannot run simultaneously. However, a pro-

cess which gives up the processor to allow another to execute in some time-sharing scheme

is not "inactive" as defined here. Multiprocessing schemes which allow several processes to

share a processor fairly should not disturb the apparent concurrency of activity as seen by

the rest of the system. For example, a simple scheme would let each process execute one cy-

cle in sequence, repeating the sequence of one-cycle process execution indefinitely. An inac-

tive process would be one that is removed from the sequence for a period of time, such that it

no longer is cycling with the others.

Since every box in the architecture design represents a software process that can run in

parallel with the other processes (boxes) of the system, the allocation of a process to a pro-

cessor should be essentially arbitrary. This is provided of course that the processor’s com-

puting power is sufficient and that the box has been well-enough designed to have reason-

able communication overhead. With this in mind, it is desireable to develop a software model

of a process that would allow it to be easily moved from one processor to another. There are

many ways to do this. Some languages, such as Ada, provide a parallel process model inher-

ent to the language. In Ada, this is the "Tasking" model. Even in Ada, however, there are

other possibilities for process models which would achieve the desired objective.

As an example, consider the following model. A process is defined that consists of three

elements, an initialization procedure, a process body, and a set of process variables. The ini-

Note on NASREM 12

tialization procedure for a process runs before the process body runs. It initializes the pro-

cess variables and their common memory areas, and performs any other initialization re-

quired by the process. The process body consists of a read-compute-write cycle which can

be executed repeatedly to carry out the functions of the process. Each execution cycle, the

body reads its input buffers, computes outputs, and writes the output buffers. The process

variables are the data buffers which are read and written by the process body.

Incorporating this model in an Ada package, the package specification is

package YURBOX_PROCESS is

procedure YURBOX_INIT;

procedure YURBOX;

end YURBOX PROCESS;

where YURBOX is the name of the process being implemented. YURBOX_INIT is the ini-

tialization procedure and YURBOX is the process body. The process variables are hidden

within the package body so that they are only visible to the process itself. Thus, the vari-

ables are local to the process but retain their values between process body cycles. It is as-

sumed that the global data system declarations of the interfaces is made elsewhere

with PROCESS_COMMAND, PROCESS_STATUS

;

use PROCESS_COMMAND, PROCESS_STATUS

;

package body YURBOX_PROCESS is

YURBOX_CMD: YURBOX_CMD_TYPE;
YURBOX_STAT: YURBOX_STATUS_TYPE;

procedure YURBOX_INIT is separate;

procedure YURBOX is separate;

end YURBOX PROCESS;

Here, PROCESS_COMMAND and PROCESS_STATUS contain the command and status

data structures. The structures are instantiated as process variables YURBOX_CMD and

YURBOX_STAT. Thus, the process body will read commands from global memory into

YURBOX_CMD, and write status into global memory from YURBOX_STAT.

The process body can also be implemented as an Ada task. This may be desirable be-

cause of features provided by tasks which are not available to procedures. To implement as a

task, the procedure declaration in the specification is replaced with

Note on NASREM 13

task YURBOX_TASK is

entry CYCLE;
end YURBOX_TASK;
procedure YURBOX renames YURBOX_TASK . CYCLE;

and the declaration in the package body is replaced with

task body YURBOX_TASK is separate;

This type of task declaration allows a main procedure to invoke either the procedure ver-

sion or the task version of the process body via the statement YURBOX;. However, a small

change is required within the task body itself. The task body must contain a loop around the

whole read-compute-write sequence so that the task never terminates. By putting an accept

statement at the top of the loop, a single loop iteration can be invoked by the main, just as for

the procedure definition. Thus, the task body would look like

task body ^ YURBOX_TASK is

begin

loop
accept CYCLE;

<do reads>
<call procedure to compute outputs>
<do writes>

end loop;

end YURBOX TASK;

Each processor board in the system would have a main procedure. The main procedure

would first call the initialization procedures of the processes that are to run on the board,

then call the process bodies. For example,

with YURBOX_PROCESS; use YURBOX_PROCESS;
procedure YURMAIN is

begin

YURBOX_INIT;

loop
YURBOX;

end loop;

end YURMAIN;

Note on NASREM 14

In this example, the main initializes YURBOX and then repeatedly invokes the process

body. Note that YURBOX could be implemented either as a task or a procedure in this exam-

ple - the main procedure does not change. However, it is possible to have the process body

implemented as a task such that the accept CYCLE; statement precedes the loop. In this

case, the task will handle do its own looping via the Ada tasking model. A main for this type

of task would look like

with YURBOX_PROCESS; use YURBOX_PROCESS

;

procedure YURMAIN is

begin

YURBOX_INIT;

YURBOX;

end YURMAIN;

All of the above software structures are similar enough that processes can be easily

moved from one processor to another. The only code that is modified (once the processes are

written) is the board main procedures. Then it is simply a matter of remaking the executable

images that will be placed on the processor boards.

A simple way to handle process inactivation can be used with the above process model.

This technique involves having each process read a data area that indicates whether it

should run or not. This is depicted for world modeling in Figure 5. Here, a World Modeling

Coordinator specifies which processes of world modeling are to be active. The coordinator

writes into a global data area for each process indicating whether the process is to cycle or

remain dormant. Ada code for a procedure process body using this method of inactivation

might look like

procedure YURBOX is

begin

READ (ACTIVE_FLAG) ;

if not ACTIVE_FLAG then return;
end if;

<do reads>
<call procedure to compute outputs>
<do writes>

end YURBOX;

Here, a procedure READ is assumed that obtains the data item ACnVE_FLAG from the

global data system. If ACTIVE_FLAG is not set, the process is not supposed to perform its

Note on NASREM 15

read-compute-write cycle, and so it returns to the main directly.

Note that the model using procedures for process bodies runs each process cycle in a

fixed sequence. This is one of the simpliest schemes for concurrency on a single processor.

More complicated execution of process cycles can be achieved in the model by using Ada
tasks to implement process bodies. There are myriad ways to implement the software pro-

cesses of the control system. The Ada code provided here is only an example. However, any

implementation must adhere to the properties of a process mentioned above, as these prop-

erties assure that the architecture truly represents system parallelism.

5. Conclusions

Having an architecture design and process model as described here can greatly enhance

our ability to meet the real-time requirements of the control system. The architecture is de-

signed such that it represents the inherent parallelism of the control system functions, mini-

mizing communication overhead while allowing the maximum utility of the components. The

implementor can use this design to determine how to distribute processes to processors

such that the overall performance requirements are met.

A box in a final telerobol control system design CANNOT be broken up into smaller pro-

cesses, each of which could be assigned to different machines. It must be "atomic", or the de-

sign is not complete. A design can change such that what was once a single process is now

implemented by several read-compute-write processes. However, such a change constitutes

a new control system design with respect to NASREM, i.e., a different NASREM implemen-

tation.

Clearly, a NASREM design reflects decisions made by the designer specific to his or her

implementation. There is no one "correct" design, however there are obvious attributes that

make one design better than another. A good design should be able to incorporate new capa-

bilities easily and should facilitate the ability to meet real-time performance requirements. In

addition, the design should reflect how the actual system is decomposed into parallel pro-

cesses as defined here.

6. References

[1] Albus, J.S., McCain, H.G., Lumia, R., "NASA/NBS Standard Reference Model

Telerobot Control System Architecture (NASREM)," NIST Technical Note 1235, NIST,

Gaithersburg, MD, July, 1987.

[2] Fiala, J., "Manipulator Servo Level Task Decomposition," NIST Technical Note 1255,

NIST, Gaithersburg, MD, October, 1988.

[3] Wavering, A. "Manipulator Primitive Level Task Decomposition," NIST Technical Note

1256, NIST, Gaithersburg, MD, October, 1988.

[4] Kelmar, L. "Manipulator Servo Level World Modeling," NIST Technical Note 1258,

NIST, Gaithersburg, MD, March, 1989.

[5] Chaconas, K., Nashman, N., "Visual Perception Processing in a Hierarchical Control

System: Level 1," NIST Technical Note 1260, NIST, Gaithersburg, MD, June, 1989.

Note on NASREM 16

“‘ii

jd 11^. [6] Goddard Space Flight Center Internal ' Document, "Short Term Evolution for the Flight

I

Telerobotic Servicer," GSFC, April, 1989.

•j

or

Hi-

mi

-' SPtrr"

•i
, j ,

! i *=-

iJL, /f-as •‘m ‘=.=,
' ‘

4
:'

1

'
/? Vr>»;

U J .

"S':

:-n

I* • -.

.

,,lt %,.-

AtV

,
>*,« ' „ 'J f-

Al«(f- :
l<n

*'
'

• < .'.1 'Uvi'.f *> ’ '

'-J.,.-.-

.

17

NBS«n4A IREV. 2-80

U.S. DEPT. OF COMM.

BIBLIOGRAPHIC DATA
SHEET (See instructions)

1. PUBLICATION OR
REPORT NO.
NISTIR 89-4215

2. Performing Organ. Report No. 3. Publication Date

MARCH 1990

4. TITLE AND SUBTITLE

Note on NASREM Implementation

5. AUTHOR(S)
John C. Fiala

6. PERFORMING ORGANIZATION (If Joint or other than NBS, see instructions)

NATIONAL BUREAU OF STANDARDS
U.S. DEPARTMENT OF COMMERCE
GAITHERSBURG, MD 20899

7. Contract/Grant No.

t. Type of Report & Period Covered

9. SPONSORING ORGANI ZATION NAME AND COMPLETE ADDRESS (Street, City, Stote, ZIP)

S/A

10. SUPPLEMENTARY NOTES

I I
Document describes a computer program; SF-185, FIPS Software Summary, is attached.

11. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant
bibliography or literature survey, mention it here)

This document describes ideas formulated in the Intelligent Conttols Group for the structure

of a NASREM implementation. A basic description of a telerobot control system architecture

is given in terms of the model’s parallel processing formulation and its meaning in a multipro-

cessing computing environment Examples of software organization using Ada are provided

to illustrate the ideas.

12. KEY WORDS (Si* to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolons)

Ada; control system architecture; real-time control; software design

13. AVAILABILITY

gyj^nlimited

1 1
For Official Distribution. Do Not Release to NTIS

1 1

Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.
20402.

Order From National Technical Information Service (NTIS), Springfield, VA. 22161

14. NO. OF
PRINTED PAGES

20

15. Price

AO 2

USCOMM.OC 4043-P80

HC 41 ” .

.nV' T^O^a/’ i.

-.
f

; n-iWyjt: .fjp

)
:^ -

,
»:

''I'’,:':- 'i

'•!.,J

> ,

-"•i ' \'.>‘'

^Jiif- •
f ^ i !»< i ;VT f {te 7>(, K\.^-

.-tV'Ti'lW"- irir»»»WT,- *• ••**

,
44'h'OC .iit!>4 .rM;^

.A'i .,»>'«•;$ 'f'n# ' T ;> W), (iKg'A . 1
,

^«;^5«.^rt^.Vf :.> (.# »i y»pfH*|

»

