

NIST PUBLICATIONS

NISTIR 89-4214

Factors Significant to Precracking of Fracture Specimens

Charles G. Interrante James J. Filliben

U.S. DEPARTMENT OF COMMERCE Technology Administration National Institute of Standards and Technology Gaithersburg, MD 20899

QC 100 .U56 N0.89-4214 1989

NISTIR 89-4214

Factors Significant to Precracking of Fracture Specimens

Charles G. Interrante James J. Filliben

U.S. DEPARTMENT OF COMMERCE Technology Administration National Institute of Standards and Technology Gaithersburg, MD 20899

November 1989

U.S. DEPARTMENT OF COMMERCE Robert A. Mosbacher, Secretary

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY Raymond D. Kammer, Acting Director

.

ABSTRACT

The significance of four controlled variables in the technique used to precrack Charpy specimens is determined by analyses of seven response variables computed from results of slow-bend tests of metallic materials. The variables include crack size, stress-intensity factor at the start of precracking, notch preparation prior to precracking, and material. All four variables are shown here to be significant for more than one of the computed responses. All seven responses, each representing alternative methods for evaluations of fracture toughness, were evaluated for each test. These responses are based either on a single value of load or on energy absorbed in the test. The results can be summarized in three major conclusions: (1) All seven computed responses are linearly related to crack size and the sensitivity to crack size depnds on the choice of response parameter and on the material. (2) Precracking at either very high or very low levels of stressintensity factor, K_f , are to be avoided. (3) For the three methods of notch preparation, the effects of notch preparation were largely not significant. This work is the result of a study conducted by ASTM Task Group E24.03.03 and members of eight participating laboratories.

i

Table of Contents

		Page		
Abstract				
Table of Contents				
List of Symbols				
Lis	t of Illustrations			
	Tables	viii		
	Figures	ix		
1.	Background	1		
2.	Test Matrix	3		
2.1	Materials	3		
2.2	Laboratory Variabilities	6		
2.3	Notch Preparation Factor	7		
2.4	Stress-Intensity Factor	8		
2.5	Crack Size Factor	10		
2.6	Actual Number of Tests Conducted	10		
3.	Test Procedures			
4.	Calculation of Response from Charpy Test Results	13		
[`] 5.	Statistical Tests	16		
5.1	Kruskal-Wallis Test	17		
5.1	.1 Significance	19		
5.1	.2 Reproducibility	21		
5.1	.3 Accuracy	22		
5.2	Multiple Linear Regression			
5.3	Graphical Analysis Methods	26		
6.	Results	27		
6.1	Anomalies in the Data	28		

6.2	Results of KW Test of Significance for R _{sb} Responses	31			
6.3	Results of KW Test of Significance for All Responses				
6.4	Effect of Crack Size and Material				
6.5	Effect of K _f maximum				
6.5.1	Aluminum				
6.5.2	Titanium				
6.5.3	Steel				
6.6	Effect of Notch Preparation 4				
6.7	Sensitivity of the Responses to Crack Size				
7.	Conclusions 4				
8.	Acknowledgements				
9.	References				
	Tables	50-61			
	Figures	62-78			
	Appendices	79			
	I. Raw Data Used to Compute Responses of Precracked Charpy Tests	79			
	IA. Aluminum	79			
	IB. Titanium	80			
	IC. Steel	81			
	II. Reference Toughness and Computed Precracked Charpy Responses	82			
	IIA. Aluminum	82			
	IIB. Titanium	83			
	IIC. Steel	84			
	III. Results of Kruskal-Wallis Test of Significance, Cumulative				
	Probability Values, for the Crack-Size Factor, a.	85			
	IV. Results of Kruskal-Wallis Test of Significance, Cumulative				
	Probability Values, for the Factor K _e maximum.	86			

V. Results of Kruskal-Wallis Test of Significance, Cumulative Probability Values, for the Factor Notch Preparation, NP.

87

88

VI. Residual Standard Deviation from Multiple Linear Regression Analyses for Seven Responses and Three Materials.

List of Symbols

Α	-	Area of uncracked ligament at start of test: A=B(W-a)
A, Aluminum	-	Aluminum alloy 2419-T851 in the aged condition.
^a 25	-	Crack length at one quarter-thickness location
^a 50	-	Crack length measured at mid-thickness location
^a 75	-	Crack length measured at the other quarter-thickness location
ā	-	(a ₂₅ + a ₅₀ + a ₇₅)/3 = crack size
a/W	-	Normalized crack size
B .	-	Specimen thickness = 10 mm (0.394 in)
β	-	A coefficient that is a result of a regression analysis
CVN	-	Charpy V notch (test specimen)
CPS	-	Cumulative probability statistic
СТЅ	-	Compact tension specimen (currently designated C(T)
С	-	Experimental determination of total elastic compliance of
		specimen (=D1/P1)
C _m	-	Machine compliance
C _s	-	Theoretical elastic specimen compliance
Dl	-	Displacement to an arbitrary point "1" in the elastic region.
δ	-	Displacement
Ε	-	Young's modulus
Ec	-	Energy correction based on specimen compliance and crack length
EDM	-	Electric discharge machining
Е _М	-	Energy to maximum load, under the load-displacement trace
ET	-	Total energy under the load-displacement trace
E _{T/A}	-	Total energy divided by area of uncracked ligament.
EM	-	Corrected energy to maximum load $E_M^{\prime} = E_M - E_C^{\prime}$.
К	-	Stress-intensity factor

K* d	-	A response, computed from P* and Y*, termed lower-bound or
		equivalent energy
К _f	-	Stress-intensity factor in fatigue precracking
K _f maximum	-	K_{f} at the start of precracking in a constant-deflection apparat
K _f ratio	-	K _f maximum/K smallest
K smallest	-	The smallest value of K computed from equations 1, 2, and 3 of
		this report
K _{Ic}	-	Reference values of fracture toughness obtained from CTS
		tests, whether valid (E 399) K _{Ic} or invalid K _Q
К _Ј	-	A response computed from energy to maximum load
КΊ	-	Response K _J corrected for machine compliance of specimen
К _Q	-	A response computed using P _Q , as in ASTM Method E 399
K _{Q-PM}	-	A response computed as for K_Q , except P_M is used in place of P_Q
K ¹ _Q	3	A response computed from total energy absorbed in fracture
μ	-	Poisson's ratio
Ν	-	The number of observations
υ	-	Residual degrees of freedom
MLR	-	Multiple linear regression
NP	•	Notch preparation
N/A	-	Not applicable
% RD of K	-	Percent relative deviation = $(K - K_{Ic}) \times 100/K_{Ic}$
% RD of R sb	-	Percent relative deviation = $(R_{sb} - \bar{R}_{sb}) \times 100/\bar{R}_{sb}$
Pl	-	Load to an arbitrary point "1" in the elastic region
P _M	-	Maximum load
PQ	-	Load at the 5 percent secant intercept
p*	-	A value of load used to compute equivalent energy

vi

R _{sb}	-	Specimen strength ratio in slow-bend testing
R _{sb}	-	Mean R _{sb} for each material
S, Steel	-	Steel alloy AL MAR (200) in the maraged condition
s _y	-	Significant differences based on magnitude of test responses
s,	-	Significant differences based on reproducibility of test responses.
s	-	Standard deviation for replicate responses
s p	-	Standard deviation pooled for all responses of a material
σU	-	Ultimate tensile strength
σ _Y	-	Yield strength
σ _{Yl}	-	σ_γ at the precracking temperature
^σ Y2	-	σ _γ at the Charpy test temperature
T, Titanium	•	Titanium alloy Ti-6Al-4V in the annealed condition
W	-	Specimen width = $10.0 \text{ mm} (0.394 \text{ in})$
Ŷ	-	Mean response
γ *	-	A function of \bar{a}/W used to compute K_d^*
Уi	-	An individual test response

- Table 1. Proposed Test Matrix.
- Table 2. Actual Numbers of Tests Conducted for Each Level of the Factors and for each Material.
- Table 3. Chemical Composition.
- Table 4. Mechanical Properties and Results of Tests of Compact Tension Specimens (CTS) Tested by ASTM Method E 399.
- Table 5. Determination of K smallest.
- Table 6. Preparation and Testing of Specimens and Preparation of Raw Data.
- Table 7. Fatigue Precracking Levels, and Their Codes for Purposes of Data Analysis.
- Table 8. Kruskal-Wallis Test of Significance and Cumulative Probability Values for Response R_{ch}.
- Table 9. Results of Regression Analyses Conducted for Each of Three Materials and for All Computed Responses.
- Table 10. Summary of Results for the Factor K_{f} maximum.
- Table 11. Effects of Notch Preparation on Results for Steel Specimens.

Table 12. Sensitivity of Responses to Crack Size.

Figure 1a. Charpy V-notch specimen with a fatigue precrack, and the measures of crack length (S1, S2, a_{25} , a_{50} , a_{75}) that are taken after testing. Crack-size factor, $\bar{a} = (a_{25} + a_{50} + a_{75})/3$. B = W = 10 mm (.394 in). L = 55 mm (2.165 in).

Figure 1b. Three notch preparations used before precracking.

Figure 2. Slow-bend test fixture showing the fixed span of two anvil blocks, a center loading "striker", the placement of a displacement transducer (LVDT), and a Charpy specimen in position for testing.

Figure 3a. Response K'_0 based on total energy, E_T .

Figure 3b. Responses K_J , K_J' and K_d^* based on energy to maximum load, E_M or E_M^* .

Figure 3c. Responses K_{O-PM} and K_O based on a single value of load, P_M or P_O .

Figure 3. Fracture toughness responses and the principal measurements used to compute them.

Figure 4. Bimodal load-displacement plot common among test results for steel specimens with crack size $\bar{a} < 4.6$ mm (0.120 in).

- Figure 5. Plot of response R_{sb} versus K_f maximum, showing that all Titanium specimens tested at the highest K_f maximum level have small R_{sb} responses and are taken from a single CTS designated W.
- Figure 6. Plot of response K_J for three materials tested, showing the broad range of K_F ratios, K_f maximum/K smallest, used to precrack Charpy specimens.
- Figure 7. Plot of data for Aluminum showing, for each of three levels of K_f maximum, that %RD of K'_J increases with increases in normalized crack size, \bar{a}/W .
- Figure 8. Plot of data and a regression line for Aluminum, showing the relationship between response R_{sb} and normalized crack size, \bar{a}/W .
- Figure 9. Results of seven regression analyses for Aluminum data showing the relationship between %RD and normalized crack size, a/W.
- Figure 10. Plot of data and regression results for the response %RD of K¹_j as a function of normalized crack size, a/W, for three materials.
- Figure 11. Plot of data and regression results for response %RD of K_Q^{\dagger} as a function of normalized crack size, \bar{a}/W , for three materials. This plot shows the necessity for omission of K_Q^{\dagger} data for Steel specimens of crack size code 1 ($\bar{a}/W < 0.356$).

Х

- Figure 12. Plot of data and regression results for response R_{sb} as a function of normalized crack size for each of three materials.
- Figure 13. Plot of %RD of K' versus the K_f ratio, K_f maximum/K smallest, for Aluminum specimens, showing the tendency for an increase in the response for specimens precracked at ratios less than 0.4. This plot typifies and represents similar relationships observed for responses K_J , K_J , and K_d^* (which are based on energy to maximum load) and for response R_{sb} (which is based on maximum load).
- Figure 14. Plot of %RD of K' versus the K_f ratio, K_f maximum/K smallest, for Titanium specimens, showing the tendency for increased variance in responses at very low levels of the K_f ratio for specimens with a codes of 1 and 2. Similar relationships were observed for responses K_{Q-PM}, K_J, K'_J, K^{*}_d and R_{sb}.
- Figure 15. Plot of data and a regression line for response R_{sb} versus the K_f ratio, K_f maximum/K smallest, for Steel specimens, showing the general tendency for an increase in R_{sb} responses with increases in the K_f ratio.
- Figure 16. Plot of responses of %RD of K_{Q-PM} versus the K_f ratio, K_f maximum/K smallest, for Steel specimens, showing the general tendency for an increase in K responses for each of three coded crack sizes.
- Figure 17. Plot of %RD of K_{Q-PM} versus normalized crack size for Steel specimens, showing that the behavior of some specimens of NP code 1 differs from the normal trend.

xi

1. Background

A proposal for standardization of a precracked Charpy impact test was made by the Executive Committee of ASTM Committee E24, in January of 1971, and Task Group E24.03.03 was formed to deal with this problem. The task group drafted a preliminary document titled, "Proposed Method for Precrack Charpy Impact and Slow-Bend Testing of Metallic Materials," which required experimental work to determine the significance of variables in the fatigue precracking procedures prescribed in the proposed method. The "best procedures" for fatigue precracking had to be established. Further, the expected variability of test results had to be determined for a multiplicity of laboratories using a prescribed test method.

At the request of the Chairman of Task Group E24.03.03, the authors, from the National Institute of Standards and Technology (NIST), fomerly the National Bureau of Standards (NBS), furnished a proposed statistically designed experiment for determining the significance of four precracking variables on results of tests conducted with fatigue precracked Charpy specimens. This proposal included three levels for each of the four variables (here called factors). The factors and their levels were later modeified at meetings of the Task Group before test specimens were prepared. In addition, the proposal specified two methods of testing, slow-bend and impact; together, these proposed tests comprised what the Task Group called Phase I of their testing program.

This is an analysis of the results of the slow-bend tests conducted for Phase I. At the time that this work was being planned, a report published by the National Materials Advisory Board [3] recommended... "that the fatigue-precracked Charpy-size specimen, tested in slow bending to measure the ratio of specimen strength to either the yield strength or

the ultimate tensile strength of the material (ASTM E 399) be utilized, when applicable, for establishing correlation with plane-strain fracture roughness and minimum acceptance standards in quality-control programs. To foster implementation of this recommendation, the Committee urges that the test method be standardized as soon as practicable..." The Phase I test program was distinguished from other extensive research programs $[1,2]^{1}$ that have used precracked Charpy specimens, as the objective of this program is to establish the effects of precracking variables. The proposed Phase II effort was to be conducted by many laboratories to establish a lab-to-lab variability for precracked Charpy test results.

Charpy test specimens used in this program (shown in Fig. 1) differ from the standard ASTM E 23-66 type A, V-notch Charpy specimen: (1) Charpy specimens for this program (Fig. 1A) contain a fatigue precrack; in this respect they are similar to valid plane-strain facture thoughness specimens (ASTM E 399), while the standard Charpy specimen is not precracked; and (2) the standard V-notch root-radius of .25 mm (0.010 in) is here modified in various ways (Fig. 1B) to facilitate crack initiation under fatigue loading.

This analysis was completed in 1981. While the results of this study and analysis have been made available to various ASTM workers for committee activities, some of this and related information will be published in ASTM STP 1072, <u>Charpy Impact Test - Factors and Variables</u>, where it will be available for use in the development of test methods and in future studies. This internal report contains data and other information not available in the ASTM article.

¹Figures in brackets indicate the literature references at the end of this paper.

2. Test Matrix

In the proposed Phase I program, each of three materials are designated to be tested after being precracked in the various ways specified in the proposed test matrix, table 1. These specified precracking variables are notch preparation (NP), stress-intensity factor at the start of precracking (K_f maximum), and crack size (\bar{a}). Each precracking variable is controlled at three levels, which are coded 1, 2, and 3 in the proposed matrix. Thus, there are a total of four factors and three levels per factor in the experimental design. In addition, replicate specimens are specified for each test condition. The actual numbers of specimens tested at each condition, given in table 2 to be discussed later, differ slightly from the proposed 2 replicate tests per condition indicated in table 1.

Historically, the proposed test matrix was developed from a matrix suggested by the NIST authors working in cooperation with members of ASTM TG E24.03.03. From that NIST test matrix, proposed matrix of table 1 was developed by the Task Group, which finalized the levels of the factors in the matrix. While the number of test conditions had to be limited for economy, this matrix contains all factors and levels deemed by the task group to be necessary to determine the effects of the variables commonly encountered in fatigue precracking of Charpy specimens.

2.1 <u>Materials</u>

Three materials included in the Phase I program are an aluminum alloy (2419-T851) in the aged condition, a titanium alloy (Ti-6Al-4V) in the annealed condition, and an 18 NiCoMo steel [AL MAR 18 (200)] in the maraged condition. These materials are referred to here as Aluminum, Titanium, and Steel, and they are coded 4, 5, and 6, respectively, for

3.

purposes of computer sorting and analysis and for presentations made in the Appendices. They are also coded A, T, and S in some data plots. Their chemical compositions are given in table 3.

The following heat treatments were given prior to precracking: "Aluminum" is the aluminum alloy, as mill treated to the 851 condition. Typical treatment [4] for the 851 condition, in a similar (2219) alloy is: solution treat 535 C (995 F), stretch, and age at 177 C (350 F), 18 h at temperature. "Titanium" is the titanium alloy as solution treated, at 927 C (1700 F), 4 h, furnace cooled 38 C/h (100 F/h) to 315 C (600 F), and air cooled to room temperature. "Steel" is the maraged steel, as solution annealed and then aged at 488 C (910 F), 4 h.

Mechanical properties of the materials are given in tables 4 and 5. Properties listed in table 4 are those used for calculations made in the preparation of this report, after the completion of all slow-bend tests. Table 5 gives nominal properties used for preliminary calculations of allowable stress-intensity factors for fatigue precracking, K_f maximum.

Reference values of fracture toughness for these materials were furnished from tests conducted with the Compact Tension Specimen (CTS). The results of these tests, given in table 4, indicate that not all test results meet the validity requirements of E 399. The tests were conducted in accordance with ASTM Method E 399 [5]; and according to the Method, the results are either valid and are referred to as K_{Ic} , planestrain fracture toughness, or they are not valid and are referred to as K_Q . Table 4 gives the particular requirement that was not met for each test that failed the E 399 validity requirements. For simplicity in this writing, these reference values of K will be referred to as K_{Ic} values, even though some of the results are actually termed K_0 test

results by Method E 399. In this report, these reference values are used to assess the accuracy of the various responses (K values) computed from results of Charpy tests.

For Aluminum, the two reference K_{IC} values given in table 4 for the CTS tests are averaged to obtain a single reference for all Aluminum Charpy specimens. These two results are 39.3 and 38.4 ksi (in)^{1/2}, obtained from specimens of dimensions 1.5 x 3 x 3.6 in, which were taken from a plate sample (designated 411081) that was rolled to 1.5-in thickness. These results are about the same magnitude as results of 38.9 and 38.5 ksi (in)^{1/2} obtained from specimens of dimensions 0.5 x 3 x 6 in, which were taken from the plate sample (designated 411060) that was rolled to 0.5-in thickness and from the same cast as that of plate 411081. Although the Charpy specimens were actually taken from the 0.5-in-thick plate, the reference values obtained from specimens taken from the 1.5-in-thick plate were used as the reference values in this report. This was done because the values of P_M/P_Q for the tests of the 0.5in-thick plate were relatively high, about 1.7, whereas those from the 1.5-in-thick plate nearly met the E 399 requirement of $P_M/P_Q \leq 1.1$.

For Titanium, the CTS test results represent two specimen orientations, longitudinal (LT) with values of 77.9 and 80.2 ksi $(in)^{1/2}$, which are designated R and L respectively (see table 4), and transverse (TL) with values of 77.4 and 85.5, which are designated W and T respectively. Charpy specimens of Titanium were taken from the broken halves of the 1-3/8-in-thick CTS specimens used to obtain the reference K_{IC} values. It was noted that these K_{IC} values vary over a broad range from 77.4 to 85.5, and the difference between these two values is large, being about 14 percent of the smaller one. Further, the smallest value represent a

CTS test result with P_M/P_Q equal to 1.54, and this is a wide departure from the E 399 requirement of $P_M/P_Q \leq 1.1$, and in this regard this CTS is unique among all the specimens tested in this Phase I program. In addition, initial correlations made with the data of CTS and Charpy tests indicated that improved correlations would result from the use of four individual K_{IC} reference values for Titanium with each CTS result being used as a reference only for the data obtained from Charpy specimens taken from that CTS. Hence, in the analyses presented here, the reference for each Charpy specimen of Titanium is the K_{IC} result of its parent CTS.

For Steel, three CTS test results are averaged to obtain a single reference value of 120.5 ksi (in)^{1/2} for Steel Charpy specimens. The Charpy specimens were taken from the same plate, at adjacent locations, and in the transverse (TL) orientations. Results of the CTS tests indicate that the E 399 requirement, $B \ge 2.5 (K_{IC}/\sigma_{\gamma})^2$, was not met for this material, and this is the only material, among the three tested, that failed the ASTM thickness requirement.

2.2 Laboratory Variabilities

The tasks undertaken by each of eight laboratories that participated in the Phase I program are outlined in table 6. One objective of this program was to conduct the Charpy tests as though only a single laboratory had done the work. In keeping with this objective, only one laboratory can be involved for each step of the procedures of preparation and testing of specimens, and analysis of the data, except for those steps for which ASTM prescribed methods are applicable. In practice, this objective was largely met even though five of the laboratories participated in Charpy related tasks (see table 6). However,

some discrepancies did arise. Precracking of Charpy specimens was done at two laboratories due to an unforseen problem. After the specimens of Titanium and Aluminum had been precracked, it was found that although the rough machining of the specimens of the maraging steel had been done in accordance with the applicable ASTM specification, the lengths of these specimens were on the short side of the specification tolerances. These shorter specimens could not be properly precracked in the machine that had been used for specimens of the other two materials. Therefore, a second laboratory precracked the Steel specimens. As a result, not only were different equipment and personnel involved, but slightly different criteria were used for the stress-intensity factor in fatigue precracking. These differences are described later, in Section 2.4.

Other procedures with potential for giving rise to undesirable lab-to-lab procedural effects were generally controlled closely enough so that they are considered to have no significant effects on the test results. Mechanical machining and notching was done at two laboratories, but under the close tolerances of the ASTM specifications for root radius, notch angle, and notch depth. Data reduction from records of the load vs. displacement was done by similar methods at two laboratories, but only after the principals involved had agreed upon a single method for the reduction process.

2.3 Notch-Preparation Factor

The notch-preparation (NP) factor in the experimental design has three levels, as shown in figure 1, which are coded 1, 2, and 3 for purposes of computer sorting and analysis of the data. Each of these levels is a method by which a Charpy V-notch is prepared prior to precracking of the test specimen. Level 1 is a standard 0.25 mm (0.010 in)

root-radius V-notch modified by sharpening the root of the notch with a razor blade. Level 2 is a nonstandard V-notch of .125 mm (0.005 in) root-radius. Level 3 is a standard 0.25 mm (0.010 in) root-radius V-notch modified by sharpening the notch root to about 0.05 mm (.002 in) root-radius by electric discharge machining (EDM), using a razor blade as an electrode placed just above the notch in the EDM process.

2.4 Stress-Intensity Factor at Start of Precracking

The stress-intensity factor at the start of precracking (K_f maximum) was controlled at three levels for each material in the proposed test matrix. The three levels are dependent upon properties of the materials, as described below. To compute the proposed levels, first a stress-intensity-factor parameter here called "K smallest" is computed by using three formulae:

$$K_{(1)} = (\sigma_{Y1}/\sigma_{Y2}) \times K_{Ic} (ksi (in)^{1/2})$$
 (1)

$$K_{(2)} = 0.002 \times E(ksi(in)^{1/2})$$
 (2)

and

$$K_{(3)} = 0.57 \sigma_{Y1} (ksi (in)^{1/2}),$$
 (3)

where σ_{γ_1} and σ_{γ_2} are static yield stress in ksi at the precracking temperature and at the Charpy slow-bend test temperature, respectively, and E is the elastic modulus in psi. Table 5 shows values used for these constants and results of the K calculations for each of the three materials. The smallest of these calculated K values is called K smallest. Then, loads at the start of precracking are computed to give the following proposed values of K_f maximum (the value at the start of precracking in a constant-deflection machine): K smallest, (2/3)K

smallest, and (1/3)K smallest. These K_f maximum values are coded 3, 2, and 1, respectively, for purposes of computer sorting and analysis of data within each material. This is shown in table 7 which gives the fatigue precracking levels, and their codes used for sorting and analysis of data within a material. While three levels (coded 3, 2, and 1) are indicated (in the table) for analyses within each material, a total of 4 levels are indicated for combined materials: Aluminum and Steel have levels 3, 2, and 1, and Titanium has levels 2, 1, and 0. This coding became necessary for combined results because the actual K_{f} maximum levels used for Titanium are different from (lower than) the proposed K_{f} maximum levels. The highest actual level for Titanium is 20 ksi (in)^{1/2}, which is nearly equal to (2/3)K smallest, the proposed code 2; the next actual level for Titanium is nearly equal to (1/3)K smallest, which is the proposed code 1; and the lowest actual level for titanium is much lower than any other levels used in these tests. Thus, for combined materials, the analysis requires four levels, coded 3, 2, 1, and 0.

Further, as noted in table 7, for Steel the three actual levels are slightly higher than the proposed levels, on average. In addition, for Steel specimens, K_f maximum was measured at the finish of precracking, whereas levels of K_f maximum for Aluminum and Titanium were measured at the start of precracking. In the precracking machines used for this Phase I program, K decreases slightly as crack length increases, so that K_f at the finish of precracking is slightly lower than that at the start. Thus, for a short crack length, K_f at the start of precracking would be slightly greater than K_f "maximum" tabulated for the Steel; and for longer cracks, K_f maximum at the start of precracking is greater still. Thus, actual K_f maximum levels for each material represent

different fractions of the K smallest computed for the proposed levels. These fractions are called the K_f ratio and they are greatest for the Steel specimens and least for the Titanium specimens, and they are grouped into 3 levels for each material and into 4 levels for combined materials.

2.5 Crack Size Factor

The test matrix gives three levels for the crack-size factor (\bar{a}) used in calculations. These levels of \bar{a} are coded as follows:

Code 1: $\bar{a} = 2.5$ to 3.6 mm (0.097 to 0.140 in) Code 2: $\bar{a} = 3.6$ to 4.6 mm (0.1405 to 0.180 in) Code 3: $\bar{a} = 4.6$ to 6.1 mm (0.1805 to 0.242 in)

The lower bound for Code 1 was established as follows. After testing had been completed, it was observed that a crack was never initiated in some specimens fatigue cycled at the lowest level of K_f maximum; further, during a preliminary screening of the data, results for specimens with a less than 2.48 mm (0.097 in) were found to be more highly variable and in this respect inconsistent with the data for specimens with a between 2.48 and 6.15 mm (0.097 and 0.242 in). Thus a lower limit on a and 2.48 mm (0.097 in) was set for purposes of this analysis. Data for specimens below this limit are not included here. No upper limit was warranted for a.

2.6 Actual Number of Tests Conducted

The actual number of tests conducted for each test condition is given in table 2. The two replicate specimens specified in the proposed test matrix were actually tested except for selected cases, especially those involving K_f code 1, the lowest stress-intensity level (K smallest/3). The K_f code 1 tests actually conducted include only about

half of the proposed tests; of the 9 replicate tests proposed for each material, actual replicate results include only one for Aluminum, three for Titanium and eight for Steel. These deficiencies are reportedly due to difficulties commonly encountered in the process of precracking at very low K levels in tough materials. Further, a total of 54 specimens were proposed for tests of each material, and while 51 specimens of the Steel were tested, the number of specimens tested for the other materials was lower--43 Aluminum and 44 Titanium. The deficiencies in the numbers of tests for each of these materials are mainly in the K_f code 1 level, and the analysis of the results for K_f code 1 are adversely affected by these deficiencies.

3. Test Procedures

Precracked Charpy specimens were tested in three-point bend, using a bend test fixture with the geometry and dimensions recommended in ASTM Designation E 23-72 for Charpy impact testing. No movable support pins are used in this fixture, which uses two anvil blocks to provide support at a fixed span. The cross-head speed was 2.5 mm/min (0.10 in/min). Load and displacement were measured and plotted. The load was taken from the load cell of the test machine and the displacement was measured using a transducer (LVDT) placed between the top and bottom plates of the bend test fixture, as shown in figure 2. Therefore, while the measured displacement represents the displacement of the specimen, the measurement is affected by the compliance of the test machine.

After each slow-bend test, the test response was computed using the raw data obtained from the broken halves of the Charpy specimen and the load-displacement test records. If the specimen was not fractured into two pieces during the test, this was done using liquid nitrogen coolant

after the test. Load P, displacement δ , and energy absorption E (area Under the P- δ plot) were measured using a digitizer to trace along the P- δ plot of the test record. From the raw data, various fracture toughness test responses were computed. These responses are here designated K¹_Q, K_Q-PM, K_Q, K¹_J, K_J, K^{*}_d, and R_{sb}, and are computed by methods described in section 4 of this report. As is shown in figure 3, each response is based on one of three principal measurements, total energy (E_T), energy to maximum load (E_M or E^L_M) or a single value of load (P_M or P₀).

To compute the response K_Q^i , the total energy E_T^- (fig. 3A) is measured. E_T^- is taken to be the area under the curve from the start of test to a load equal to $P_M/10$, where P_M^- is the maximum load. Measurement of energy absorption beyond this level of load was impractical for two reasons, some of the specimens were not completely fractured into two halves during the test and most of the test records had a very broad tail area which could not be recorded without sacrificing accuracy in the record of the more important initial loading behavior. To compute the responses K_J , K_J^i , and K_d^* (fig. 3B), several measurements were taken: maximum load P_M , compliance DI/P1, and energy to maximum load, E_M^- . The responses R_{sb} , K_{Q-PM} , and K_Q^- (fig. 3C) require measurement of either the load P_M^- , or the load P_Q^- measured by the 5 percent secant method described in Method E 399.

Computations of the above responses also require a measure of the area (A) of the uncracked ligament at the start of the test. This area is obtained from the relationship $A=B(W-\bar{a})$, where the nominal specimen width B and thickness W each are set equal to 10 mm (0.394 in); the crack size factor \bar{a} is an average of the a_{25} , a_{50} , and a_{75} crack length

measurements taken, respectively, at the 1/4-, 1/2-, and 3/4-thickness (B) locations on the broken halves of the slow-bend tested Charpy specimens. This ligament is seen in figure 1A as the distance from the front of the fatigue crack to the back boundary of the specimen.

Hence, raw data taken for each Charpy specimen include P_Q , P_M , E_M , E_T , \bar{a} , a_{25} , a_{50} , a_{75} , and D1/P1. These data are given in Appendix I for all slow-bend test results that were included in this analysis.

For all aluminum and titanium specimens, and for most steel specimens, the load-displacement plots were observed to be of the type (general shape) shown in figure 3, in which there is no indication of a cleavage initiation event. For some Steel specimens the plots were bimodal as shown in figure 4, indicating a cleavage fracture with rapid machine unloading. During the unloading of the first mode of the bimodal type, the energy of the test machine is released to the specimen and it was not recorded on the test record. Thus, while the area under each of the two modes is included in the measurement of ${\rm E}_{\rm T},$ this energy of unloading, which contributes to the fracture process, is not included in this measured value. The bimodal load-displacement plot is observed only for steel specimens with crack size less than 3.56 mm (0.140 in), i.e. small crack lengths. The E_T values used in this analysis were not corrected to take machine unloading into account; as the analysis had been nearly completed when this was discovered, time constraints precluded this correction.

4. <u>Calculation of Response from Charpy Test Results</u>

Raw data taken in precracked slow-bend Charpy tests are not directly used to assess material properties. Rather, data are converted to responses of fracture toughness, designated by the symbol K, or

specimen strength ratio, R_{sb}. These responses are calculated by various methods given below. The computed K and R_{sb} results are given in Appendix Table II for all specimens included in this analysis.

Relationships used to compute responses of K are:

$$K_Q = (P_Q S/B W^{3/2}) f(a/W),$$
 (4)

where S = 1.574 and

 $f(a/W) = 3(\bar{a}/W)^{1/2} \frac{[1.99 - (\bar{a}/W)(1 - \bar{a}/W)(2.15 - 3.93 \bar{a}/W 2.7 \bar{a}^2/W^2)]}{2(1 + 2\bar{a}/W)(1 - \bar{a}/W)^{3/2}}$ after ASTM Method E 399 [5],

$$K_{Q-PM} = (P_M S/B W^{3/2}) f(a/W),$$
 (5)

which is the same as the equation for $K_{\rm Q}$ but maximum load $P_{\rm M},$ rather than $P_{\rm Q},$ is used;

$$K_Q' = [0.5 \ E \ E_T / A \ (T-\mu^2)]^{1/2}$$
, after Ronald [6], (6)

where:

$$K_{\rm J} = [2 \ E_{\rm M}/A \ (1-\mu^2)]^{1/2}, \text{ after Rice [7]},$$
 (7)

where E_{M} = energy to maximum load, under the load-deflection trace.

$$K'_{J} = [2 \ E \ E'_{M} / A(1-\mu^2)]^{1/2}$$
, after Rice [7], (8)

where E_M^1 is E_M corrected for the compliance of the test machine: $E_M^1 = E_M - P_M^2 C_m/2$; where C_m is machine compliance, after EPRI procedures [8,9]; $C_m = C - C_s$, with C and C_s , respectively, representing experimental and specimen (theoretical) compliance values. Measured values of C are given as D1/P1 in Appendix Table IC.

$$K_{d}^{\star} = \frac{6 Y^{\star} (\bar{a})^{1/2} P^{\star}}{B W}, \qquad (9)$$

where

$$Y^* = 1.93 - 3.07(\bar{a}/W) + 14.53(\bar{a}/W)^2 - 25(a/W)^3 + 25.8(a/W)^4$$
$$P^* = [2 E_M' / C_s]^{1/2}.$$

It is noted that K_d^* can also be computed using P* in place of P_Q in Equation 4. The lower bound (or equivalent-energy) procedure (K_d^*) arises from concepts developed by Witt [10].

Responses of strength ratio in slow-bend testing, R_{sb}, were computed using the equation:

$$R_{sb} = 6 P_{M} \forall /B (\forall \bar{a})^{2} \sigma_{\gamma}, \qquad (10)$$

after Method E 399 [5].

Responses computed using equations (4) through (10) are used here to determine statistically whether or not the level for each of the four factors significantly affects the test result. The <u>accuracy</u> of a Charpy test response is assessed, as described in Section 5.1.3 for each of the various fracture toughness measures of having the symbol K. This is done using an appropriate reference value of K_{IC} for each material. The reproducibility is assessed, as described in Section 5.1.2, using replicate responses.

5. Statistical Tests

The controlled variables, called factors in this analysis, are notch preparation (NP), fatigue-load at the start of precracking (K_f maximum), and original crack size (a) and material. The goals of this experiment do not include between material differences. Material-to-material differences are known to exist and in this analysis this variable is not considered as a factor in the analysis. In the proposed test matrix, each factor is tested at three levels only; however, for the factors \bar{a} and K_{f} maximum, many more than three levels were actually tested. A variety of analytical methods are used here to determine whether or not statistically significant difference exists among the levels of a factor. These include (1) the Kruskal-Wallis (KW) test, (2) multiple linear regression (MLR) analysis, and (3) graphical analysis of variance. The results of both the KW test and the MLR analysis is a Cumulative Probability Value (CPV) which corresponds to a percent point of the null distribution. The two tests are not identical and were run because they are sensitive to different aspects of the same problem. To determine whether a factor is significant, the MLR analysis is conducted using the individual responses. The KW test used ranks of these responses and each factor is subdivided into three levels to test whether the levels are significant. These differences are expected to give rise to differences in the CPV results for the two tests.

In this analysis, when either of these tests indicates a factor or its levels to be significant, then graphical analysis is used to further describe the effect.

5.1 Kruskal-Wallis Test

One procedure used here to carry out the test of significance is based on the Kruskal-Wallis [11] test statistic, H. The Kruskal-Wallis test statistic H can be shown to be equivalent to the usual 1-way analysis of variance statistics, with the observations within a given treatment (or level) replaced by their ranks. (To rank the data, the minimum observation of the set is replaced by a 1, the next larger observation is replaced by a 2, etc.) This transformation to ranks allows one to validly carry out the usual analysis of variance (ANOVA) test for equivalence of means without regard to the actual distribution of the data. In statistical terms, the test procedure is essentially a distributionfree analysis of variance.

The H test statistic is used in this analysis, instead of the usual ANOVA, because it is a distribution-free test and so the validity of the conclusions is not dependent on the distribution of the data. In particular, inasmuch as the usual ANOVA assumes the data to be normally distributed, and inasmuch as inspection of the data reveals that such a normality assumption is not likely to be valid in this case, then the application of a distribution-free test appears to be the simplest and most reasonable way to proceed.

Under the null hypothesis of no effect on the result by the various levels of a factor, the null distribution for H can be determined strictly from theoretical considerations. The test statistic H is then calculated from the data and compared with this theoretical null distribution of H. Calculated values of H which fall out in the extreme regions of the null distribution are deemed to be indicative of a false null hypothesis-thus, the levels within a factor are concluded to be significantly

different. Calculated values of H which occur in the "middle" or "body" of the null distribution are deemed to be typical and they give no evidence that the null hypothesis is false. Thus, the levels within a factor are concluded to be not significantly different from one another.

Associated with any given value of the Kruskal-Wallis test statistic, H, is a cumulative probability value (CPV). The CPV is arrived at from a given value for the H statistic in the following manner: In forming the null hypothesis H, that all levels of a factor yield an equivalent response, it follows that when H is true, the H statistic has a distribution which can be theoretically determined. To be specific, when the null hypothesis is true, the distribution of the H statistic has been found to be very closely approximated by a χ^2 distribution. Thus, for a given value of the H statistic, the cumulative probability value (CPV) associated with this H value can be found by a simple table look-up in the appropriate χ^2 table. The resulting probability value, which is noted from the table, is the area (= probability) under the null distribution density function from the observed point (i.e., from the H value) all the way back to -∞. If the null hypothesis H is true, one would expect cumulative probability values (CPVs) generally between 0.0 and 0.90. If H_o is false, one would hope to obtain CPVs larger than 0.90. In the present analysis, all cases with CPV > 0.90 will be discussed and the values are expressed in percentage points (i.e., 90 percent rather than 0.90).

If the null hypothesis H_o of no difference between levels of a given factor is true, then the distribution of the H statistic is theoretically determinable. And so (if H_o is true), the observed value

of H should behave like a single random drawing from the of the theoretical distribution of H. The "body" of such a distribution is that region between the O percent point and the 90 percent point--all values of H which fall in this region will yield CPVs between 0.0 and 0.90. Values of H which fall out of the "most likely region" are rare and imply that the validity of H_0 is not supported by the data. These larger values of H beyond the 90 percent point will, of course, yield CPVs larger than 0.90.

This CPV is reported here as the result of a test for the equality of the levels within a factor. The CPV is rather simply related to the probability of <u>erroneously</u> concluding that the difference between levels is significant. If this value is significant at the 10 percent level, only 10 percent of the time will it be erroneous to conclude that a significant difference exists.

For example, when a factor has a reported CPV of 95 percent there is a 5 percent chance of <u>erroneously</u> rejecting the null hypothesis when, in fact, it is true; thus, at a probability value of 95 percent, the difference between the levels of a factor is said_to be significant at the 5 percent level. It is noted that significance levels commonly used for hypothesis testing are 1, 5, or 10.

5.1.1 Significance

For each factor, X, it is of interest to test whether the various levels of X give the same result or a significantly different result. If the different levels do not (within random error) give the same value, the factor is said to be statistically significant. In this report, a test

of significance is applied independently to data sets representing each of the materials tested and to data representing all materials (of Phase I) combined into a single set. The result of the test of significance is a determination of whether the levels of a factor are significantly different.

The parameters used to conduct the KW statistical test are the standard deviation for replicate responses, s, the individual test responses, y_i , and the mean response, \bar{Y} . Responses derived from these three parameters are specimen strength ratio R_{sb} , and percent relative deviation (%RD) from reference K_{IC} values are given for each of several measures of fracture toughness (Section 4) designated K'_Q , K_{Q-PM} , K_Q , K'_J , K_{I} , and K'_A .

When the test of significance indicates that significant differences exist among the responses for the various levels of a factor, the question becomes which level is best. For the responses given above, low values of s and [%RD] indicate, respectively, better reproducibility and more accuracy. Thus, they are considered better than high values of s and [%RD]; therefore, the best level can be determined for computed responses of K by selection of the level with the lowest values of either s or [%RD]. However, for the computed values of specimen strength ratio, R_{sb} , the best level can be determined only from the reproducibility parameter s, because no reference values of R_{sb} (from which to make a determination of accuracy) are available for this analysis. Hence, for R_{sb} responses, the parameters y_i and \bar{Y} are used only to determine of the <u>significance</u> of differences (in the R_{sb} responses) among the levels of each factor, and the question as to which level is most accurate cannot be addressed without reference values of R_{sb} .

The requirement of replicate testing (see table 1) was not met for every combination of levels and factors given in the test matrix (table 2). In addition, reference data are not available for all of the cal-
culated test results, as reference values of R_{sb} are not available. Thus, the analysis is somewhat incomplete whenever these requirements for replicates and reference values were not met.

5.1.2 Reproducibility

Reproducibility of the test results is estimated from replicate responses. Let y_i denote the individual response for a group of replicate specimens. A mean response, \bar{Y} , and a standard deviation, s, are computed for each set of replicates in accordance with the formulae:

$$\bar{Y} = \sum_{i=1}^{N} (y_i)/N, \qquad (11)$$

and

s =
$$[\Sigma (y_i - \bar{Y})^2 / (N-1)]^{1/2}$$
, (12)

where N = the number of responses in the group (see Table 2). For the test of significance, a CPV is computed from a data set for each factor. The set includes the standard deviation, s, responses and their corresponding levels for one of the factors.

In this way, reproducibility evaluations are made for each material and for data <u>combined</u> for more than one material. The response parameter in each case is the value of s, converted to rank <u>within</u> a material. For combined data, this same <u>rank</u> (of s <u>within a material</u>) is the response parameter. The variance of data for each material to be combined is different, i.e., the pooled s for all responses of a material differ for the various materials evaluated. In the test of

significance, each s response is assigned a <u>rank</u> that <u>depends</u> <u>upon</u> <u>performance</u> <u>within</u> one of the <u>materials</u>, so that the effects of differences among the variances of the three materials are effectively eliminated, when the CPV is computed.

5.1.3 Accuracy

The test of significance is an estimate of the accuracy of the responses for each level of a factor whenever the CPV is obtained from computed estimates of K for which reference K_{Ic} values are available. The estimator of accuracy used here is called the percent relative deviation (%RD). This estimator of accuracy is based upon the difference between a value of fracture toughness, K, computed by one of the described methods (Section 4) used for precracked Charpy specimens, and the reference value (K_{Ic}) computed in accordance with ASTM Method E 399 [5] for large compact tension specimens. The %RD is this difference expressed as a percentage of K_{Ic} .

The %RD has an average in studies of this type. It can sometimes be an absolute measure that can be used to compare directly the results of one material (with one level of K_{Ic}) with those of another material (with another level of K_{Ic}); in these instances it would be a measure of the accuracy of the predicted response. The formula for relative deviation is

$$%RD = (K - K_{IC}) \ 100/K_{IC}.$$
(13)

Thus, the absolute value of relative deviation is a measure of the departure of the computed K from the reference K_{Ic} , and responses of lower absolute values of %RD are considered to be better in accuracy.

It is noted that when %RD is negative, K is smaller than K_{Ic} . Further, the test of significance used on this analysis will not yield the same result for the algebraic value of %RD and for the absolute value of %RD. In this report, tests of significance are conducted using the algebraic value of a response rather than the absolute value. This is done because most of the responses evaluated were found to be linearly related to crack length and information would be lost to the test if the absolute values were used.

The test of significance is conducted independently for each of two response parameters: y_i , the individual response, and \bar{Y} , the mean response for replicates. Both of the tests (one on the individual observation y_i and another on the average \bar{Y} of the data over replications within a level) were conducted so as to assure that the conclusions of the analysis were not dependent on a single approach. This follows a general principle of data analysis which states that perturbations in the analysis should be introduced whenever possible so as to assess the sensitivity of the conclusion to various facets of the analysis. The ultimate objective is to arrive at conclusions which are simple manifestations of the data "speaking for themselves" and devoid of any implicit bias introduced by the method of analysis. This objective is best attained by the aforementioned analytic perturbations-approachdependent results will yield different conclusions for different

perturbations; approach-independent results will yield substantially the same conclusions regardless of the particular perturbation.

The accuracy of responses for <u>combined materials</u> is given a test of significance in a manner similar to that described earlier for the reproducibility responses, except that both replicated and nonreplicated responses are included in the data set and two tests of significance are made. The response for one test is the <u>rank</u> of y_i within a material and the response for the other is the <u>rank</u> of \overline{Y} within a material.

5.2 Multiple Linear Regression

A procedure based on linear regression may also be used to complement the Kruskal-Wallis analysis. It is important to carry out alternative analyses (such as the regression procedure discussed in this section and the graphical procedure to be discussed in the following section) so as to assure that conclusions are not approachdependent. Conclusions which do not hold up over all three different approaches would lead one to suspect their validity; alternatively, a consistency of conclusions over the three separate approaches is highly supportive of their validity.

The first step in the regression approach consisted of fitting the response versus \bar{a} as described by the model:

$$y = \beta_0 + \beta_1 a.$$
 (14)

Due to results from the Kruskall-Wallis test, a was chosen as the first factor of interest. After this linear fit was performed, the residual standard deviation was computed and noted. At this point, there exist various tests that could be applied to determine if a itself is significant. The simplest such test is to note whether the slope β_1 is significantly nonzero. A second test is to compare the 1-factor residual standard deviation with the residual standard deviation gotten by fitting the model:

$$y = \beta_0 + e. \tag{15}$$

If a significant reduction has occurred, then a is interpreted as being significant.

The next step was to augment the 1-factor model to a 2-factor model as follows:

$$y = \beta_0 + \beta_1 a + \beta_2 K_f.$$
(16)

The K_f factor was chosen again from Kruskall-Wallis test results. The residual standard deviation for this 2-factor model was computed. The appropriate test of significance was then carried out to determine if a significant reduction occurred in the residual standard deviation in going from the 1-factor model to the 2-factor model. Such a significant reduction would be interpreted as the second factor (K_f) being significant.

The final step was to similarly augment the 2-factor model to a 3-factor model:

$$y = \beta_0 + \beta_1 a + \beta_2 K_f + \beta_3 NP.$$
 (17)

As before, the residual standard deviation was computed and compared to the 2-factor residual standard deviation. A significant reduction would imply the significance of the notch preparation factor.

5.3 Graphical Analysis

The graphical approach is a valuable complement to the Kruskall-Wallis and regression procedures. The rationale behind the graphics approach is multifold: First of all, it allows one to use the eye's built-in pattern recognition capabilities to confirm or explain significance or nonsignificance of a factor. Secondly, the graphical approach is not sensitive to one particular aspect of the data set, but rather incorporates the entire data set--each point individually--and so it uncovers not only what we suspect, but also what we may not suspect. A third point is that outliers are most easily flagged via a graphical approach. Outliers stand out on a plot and are easily noticeable. Subsequently, they may be confirmed as such by subsequent rigorous statistical tests. A fourth advantage of the graphical approach is that it is assumption free--the validation of conclusions and suspicions unearthed via graphics are not dependent on some underlying statistical assumptions, because, by and large, no assumptions are made in employing a graphical analysis. Fifth, the use of graphics avoids the potential problem of reducing a large data set to a few statistics--such few statistics must necessarily be sensitive to only certain aspects of the data and will be insensitive to many other aspects of the data. Such statistical selectivity has the net result that some information is emphasized, but most information in the data set is filtered out and ignored. Statistics for summary purposes has its place, but for analysis purposes, a properly constructed plot will frequently be more

informative. The final advantage of the graphical approach is that of communication. Whereas the use of the Kruskall-Wallis and regression procedures of the analysis may not be fully understood by some researcher, a properly constructed plot to emphasize the significance of a factor is easily understood by all.

All in all, the graphics approach is for many reasons a valuable one--its application to the Charpy data served as a useful complement to the Kruskall-Wallis and linear regression approaches.

6. Results

The results indicate that: (1) All seven computed responses are linearly related to crack size and the sensitivity to crack size varies with the choice of response parameter and with material. (2) Precracking at either very high or very low levels of stress-intensity factor, K_f , are to be avoided. (3) For the three methods of notch preparation used in this study, no significant effects (of notch preparation) on the responses were observed.

In the presentation to follow, anomalies in the test data are described before these results are developed. The anomalies include departures from the proposed experimental design. Reasons are given for elimination of selected test data from this analysis. The method of analysis using the KW test of significance is then further described by application to the problem of determining whether the levels of three factors are significantly different for the response R_{sb} . The results of the KW test are then presented for all other responses. The presentation describes results for R_{sb} in detail and results for various responses of K more succinctly. Next, sections are devoted to the results

for each of the factors, crack size K_f maximum, and notch preparation. Finally, the sensitivity to crack size is discussed for the responses. 6.1 Anomalies in the Data

This analysis of the Phase I slow-bend test data led to conclusions that some of the data submitted for analysis should not be included in determinations of the effects of the levels of the factors. Before discussion of the test results, the data excluded from the analyses are mentioned here.

A preliminary analysis of the data indicated that responses computed for test specimens with crack size less than 2.46 mm (0.097 in) should be excluded from the analysis because the variability of these responses was greater than that for specimens with larger crack sizes. These excluded specimens include some that were reported to have crack size of 2.00 mm (0.079 in) and thus were acknowledged by the experimentalist to have been uncracked after the completion of the precracking process. Others had reported crack sizes up to 2.18 mm (0.086 in). It was concluded that these excluded data would have confounded the test results. Therefore, specimens with crack sizes less than 2.46 mm (0.097 in) were excluded from the analysis. It is noted that the depth of the machined notch is about 2.0 mm, and this is about 0.5 mm less than the cut-off established for the present work. Thus, a minimum of 0.5 mm of fatigue crack growth was established here as a limit below which variability of the response increased greatly. From this experience, it is recommended that a minimum crack extension equal to 0.5 mm (a CVN crack size equal to about 2.5 mm) may be required as a practical measure to assure that fatigue crack initiation is properly detected and that the crack front has developed across the entire front of the V notch of a Charpy specimen.

In addition, during a preliminary analysis of data, one specimen of Aluminum and one of Steel behaved as outliers and the discrepancies could not be resolved with the experimentalist, so these two specimens were omitted.

Data for Steel specimens with the smallest crack size factor (\bar{a} code 1) were not included in the analysis for the response K_Q^i . For reasons given under Test Procedures, the total energy, E_T^i , for many of these specimens was in error. The response K_Q^i is the only response that is based on total energy. Therefore, K_Q^i is the only response for which it was necessary to omit the data for Steel specimens of \bar{a} code 1.

Titanium data were derived from four sets of Charpy specimens, taken from each of four compact tension specimens (CTS). See table 4. Charpy specimens taken from one of the four CTS, the one coded W, were anomalous in several respects and were omitted from determinations of the significance of and effects of the levels of the factors. Apparently, the code W Charpy specimens were not randomized before being selected for precracking, as they were all precracked at a single level of K_f maximum. This is shown in figure 5, which is a plot of the computed R_{sb} response as a function of K_f maximum. The plot characters (R, T, L, and W) represent the CTS specimen from which the Charpy specimens were taken. All W specimens are shown to have been precracked at K_f code 3, the highest level of K_f maximum in this plot. None of the other Titanium specimens were precracked at this level. In addition, it is seen that for R_{sb} data, the mean and the variance of these code W results are significantly different (smaller than) those for the R, T, and L data, which are plotted at lower levels of K_f maximum, codes 1 and 2; large differences (between mean and between variance) were also observed for most of the other

computed responses of K. Further, as indicated in table 5, the CTS coded W is the only Titanium CTS that failed the validity requirements of ASTM Method E 399, and this CTS has the lowest fracture toughness (77.4 ksi (in)^{1/2}) among the four CTS of Titanium tested. It was concluded that for Titanium, the code W specimens and therefore the Code 3, K_f maximum level should be excluded here, in determinations of the significance of the levels of a factor.

In developing an understanding of the results for the factor K_{f} maximum, the reader is asked to bear in mind that, contrary to the original experimental design with its three proposed K_f ratios, a wide range of actual K_f ratios (K_f maximum/K smallest) were used in this test program. This range is illustrated in figure 6, which is a plot of the computed responses %RD of K_1 as a function of K_f ratio. Steel specimens are precracked over a wide range of ratios within each of three proposed "discrete" levels of the factor K_f maximum. The highest K_f ratio used for Steel is about 1.3 Ksi(in)^{1/2}, a level well above the proposed Code 3 level of 1.0. These ratios for Steel are measured at the finish of precracking (see table 7). Discrete levels of the ratio are shown for Aluminum (0.33, 0.67, and 1.0) and for Titanium (0.20, and 0.40), and these ratios were measured at the start of precracking. Due principally to brinelling at the load points of the specimen, the actual K_f maximum at the finish is expected to be slightly lower than these indicated levels for Aluminum and Titanium. Thus, the range of stress-intensity ratios used in precracking the three materials varies from less than 0.20 to more than 1.3, and the levels for only two of the materials are discrete and are measured at the start of precracking.

6.2 Results of KW Test of Significance for R_{sb} Responses

The CPV results of the KW tests of significance conducted for the R_{sb} responses are presented as table 8 and described here to facilitate reader

30 .

understanding of the method of this analysis. Included are the results for Aluminum, all Titanium (including the Code W specimens), Titanium (including only the R, T, and L specimens), and Steel. In addition, results for the combined materials, Aluminum, Titanium (R,T,W,&L), and Steel are presented.

In summary, these cumulative probability results indicate that for the factor NP, the level of the factor is not significant for any of the three materials; for the factor K_f maximum, the level is significant for steel and possibly significant for Titanium; and the factor \bar{a} is significant for all three materials tested. In general, the combined results tend to reflect any significant effect that is found for one or more of the individual materials.

The conclusion that the level of the factor NP does not significantly affect the R_{sb} responses for any of the three materials tested is supported by results given in table 8. The highest cumulative probabilities are 69% for the individual response (y_i), 61% for the mean response (\bar{Y}) and 78% for the reproducibility parameter (s). Thus, the highest value in the analysis of the factor NP, is 86%. This indicates that even if the null hypothesis is true (that the factor NP for Steel has no effect on test result R_{sb}), we would on the average <u>erroneously</u> reject that hypothesis 14% of the time. Stated another way, on the average when the null hypothesis is true, then 14% of the time the calculated test statistic will exceed the tabulated 86% point of the null distribution for the factor NP, using the results for reproducibility of R_{sb} responses for Steel. Inasmuch as commonly used significance levels for hypothesis testing are 1, 5, and 10%, then it is concluded that the three levels of the factor NP are not significantly

different from one another on the basis of either the level of the response, y_i or \bar{Y} , or the reproducibility of the response, s. Thus it is concluded, on the basis of a distribution-free analysis of variance, that the levels of the factor NP do not significantly affect the $R_{\rm sh}$ response for the materials tested.

The conclusion that the level of the factor K_f maximum is significant for Steel and possibly significant for Titanium is obtained from the CPV given in table 8. For Steel, the response parameters y_i and \bar{Y} are, respectively, 98% and 96%, indicating that the effect on the response R_{sb} is significant at the 5% confidence level. The CPV for the reproducibility parameter s is only 25%; thus, reproducibility of R_{sb} responses for Steel is considered to be not affected significantly by the level of the factor K_f maximum.

For Titanium, only 2 levels of K_f maximum are tested for the RTL specimens used in the KW test of significance. Their CPV results are 50% for y_i , 21% for \bar{Y} , and 90% for s. The y_i and \bar{Y} results clearly indicate that the response is not affected significantly by the level of the factor K_f maximum, but the value of 90% for s is marginal, being significant at only the 10% confidence level. The possible effect of the level of K_f maximum on the reproducibility of R_{sb} responses therefore requires clarification from a more thorough analysis, which is presented later.

When Code W specimens of Titanium are included in the analysis of either "all Titanium" data or combined data for the three materials, the conclusions given above for Titanium are contradicted, and this points up the impropriety of the use of the Code W data. For all Titanium

data, the CPV exceeds 94 percent for each of the parameters, y_i , \bar{Y} , and s. These data supplement what was said earlier concerning the exclusion of Code W specimens from the Phase I program and this analysis. For the combined data set, the CPVs for the parameters y_i and \bar{Y} exceed 90% in support of the trend for steel.

6.3 Results of KW Test of Significance for All Responses

The results of the KW tests conducted for each of the responses R_{sb} , K'_Q , K_{Q-PM} , K_Q , K'_J , K_J , and K'_d are presented as Appendix Tables III through V for the factors \tilde{a} , K_f maximum, and NP, respectively. In these tables are given the results for each of the materials and for the combined materials. The Code W data for Titanium are excluded from the analyses of the Titanium (RTL) data, from the analyses given for Combined Materials and from the findings of this report of the Phase I program.

In general, the results of the KW tests of significance indicate that

(1) The level of the crack-size factor \bar{a} is significant for all three materials and for almost every computed response. This is evident from the results of both the individual response parameter y_i and from the mean response parameter \bar{Y} .

(2) The level of the stress-intensity factor used in precracking, K_f maximum, is significant for one or more responses for each material, but the significance levels are generally not as high as for the crack-size factor.

(3) The level of the notch preparation factor NP is not significant.

(4) For selected cases, the reproducibility parameter is significant for the factors \bar{a} and K_f maximum.

6.4. Effects of Crack Size and Material

Responses computed from slow-bend tests of precracked Charpy specimens are shown to be linearly related to crack size. With increases in normalized crack size, responses of R_{sb} increase and responses of K decrease. The relationship between response and crack size depends on the choice of response parameter and on the material. In this section, these relationships will be illustrated. In Section 6.7, the sensitivity of the response to crack size will be examined as a function of response parameter and material.

The predominant effect of crack size on the test responses is illustrated by selected plots presented as figures 7 through 12. In general, the responses of K (or %RD of K) decrease roughly linearly with increases in normalized crack size, as shown in figure 7, which is a plot of the responses of %RD of K_{1}^{i} for Aluminum specimens. The plot characters (1, 2, and 3) used here represent the levels of the factor K_{f} maximum to be discussed later. Figure 8 is similar to figure 7, except that the data is for the response R_{ch} and a regression line is shown to illustrate the expected value of response R_{sh} with increases in normalized crack size. The effect of the response parameter is illustrated further in figure 9, a plot of the regression results for Aluminum for each of the seven responses of %RD as functions of normalized crack size. Further, in table 9, results of regression analyses used for these plots are given, for all three materials. The function %RD of R_{sh} used in figure 9 and table 9 was computed using an arbitrary reference chosen to be the mean R_{sb} response, \bar{R}_{sb} , computed for each material. Thus, each R_{sb} response was converted to a %RD of R_{sb} so that the results of regression analyses of R_{sb} responses could be expressed in terms that

would facilitate comparison with the %RD of K values (see Eq. 13) used in analyses of all other responses computed from Charpy test results. This conversion is especially useful in the analysis of sensitivity to crack size. Figure 9 and table 9 each illustrate that both the slope and the magnitude of the response are functions of the response parameter. In the figure, R_{sb} is the only response with a positive slope. Further, the magnitudes of the responses of K are shown to decrease roughly in the order K_J , K_J^i , K_d^* , K_Q^i , K_Q -PM, and K_Q . However, the magnitude is dependent on the material; and the order indicated above for Aluminum is, to some extent, a function of material, as well as crack size. The sensitivity of the response to crack size is discussed in Section 6.7.

The effect of material is illustrated in figures 10 through 12 and in table 9. From the regression results, given in the figures and in the table, it is seen that at any crack length, the magnitude of the expected response (%RD of K or R_{sb}) is much greater for Steel than for Aluminum or Titanium, and this effect is especially marked for all of the K responses. This result opens to question the validity of the reference value of K_{Ic} used for this Steel. As was shown earlier among the CTS results used to obtain K_{Ic} reference values (table 4), the Steel failed to meet the thickness requirement, whereas the Aluminum and the Titanium both passed this requirement. Hence, this K_{Ic} for Steel is unique among the K_{Ic} reference values used in this analysis. 6.5 Effect of K_f maximum

The results, as summarized in table 10, indicate that precracking at levels of K_f maximum outside the range of 0.4 to 0.9 times K smallest is to be avoided, as either the magnitude or the variability of computed responses of K or R_{sh} may be greater than that for responses for specimens precracked

within this range. These observed effects of the level of K_f maximum are somewhat dependent on the response parameter and are generally dependent on crack-size factor. For example, R_{sb} is the only response with greater variability at high K_f ratio. Furthermore, the results are based on limited data and they may be dependent on the material, as each material was not tested over the same range of K_f ratios (K_f maximum/K smallest), and data are sparse for some combinations of coded \bar{a} and K_f levels. The range of K_f ratios for these tests are 0.33 to 1.0 for Aluminum, 0.20 to 0.40 for Titanium, and 0.33 to 1.3 for Steel. Thus, while conclusions of this analysis are presumed to be generally applicable to all materials tested, this presumption could not be completely tested with the available data.

A summary of significant results, for all seven responses and for the three materials, is given in table 10. A CPV is shown for the F test of the relevant MLR analysis and for each of the relevant parameters $(y_i, \bar{Y} \text{ and } s)$ of the KW test. The CPV is given for each <u>significant</u> result and for a few others, included for comparison. In addition, some symbols are presented in this table, to represent the significance. The symbols S_y and S_s represent those cases in which the K_f ratio significantly affects the magnitude and reproducibility, respectively, of the response. The symbol "?" is used in selected cases to indicate a questionably significant result. For each case in which one of these symbols is indicated, in either Column A for the magnitude of the response, or Column C for the reproducibility of the response, graphical analysis was conducted to further establish, illustrate, and describe the effect. The combined results of these methods of analysis gives a final result indicated in Column B (for the effect of K_f on the

magnitude of the response) or in Column D (for that of the reproducibility). Results are illustrated in figures 13 through 16.

6.5.1 <u>Aluminum</u>

Results for aluminum specimens indicate that for a codes 1 and 2, at a K_f ratio less than 0.4 the magnitude of the response is greater than at higher K_f ratios. As is indicated in table 10 column B, the magnitudes for all responses except $R_{sb}^{}$, $K_Q^{}$, and K_Q^{\prime} are significant. This effect of a low K_f ratio is illustrated in a plot given as figure 13, in which data for %RD of K_1 are plotted against the K_f ratio. The plot characters represent coded crack length. For each crack size shown, the response for specimens precracked at a ratio of 1.0 is similar to that at a ratio of 0.67, but for specimens precracked at a ratio of 0.33 the magnitude of the response increases for a codes 1 and 2. This plot typifies and represents four of the five significant responses for Aluminum specimens; these are K_{O-PM} , K_{J} , K_{J} , and K_{d}^{*} . A graphical analysis for the other significant response, K_0 , indicates that this effect is perhaps significant but only for a code 1. For a code 2 specimens, responses of K_0 for specimens precracked at a K_f ratio of 1.0 have greater magnitude than those precracked at ratios of either 0.67 or 0.33. Thus, for Aluminum specimens, K₀ responses are unique among the seven responses, and the other significant responses behaved as shown in figure 13.

6.5.2 Titanium

Results for titanium specimens indicate that the factor K_f maximum is significant for all seven responses and on the basis of limited available data for six of these responses and for \bar{a} codes 1 and 2 only, it is concluded that responses for specimens precracked at a very low K_f ratio of 0.20 may have greater variability than the variability for

specimens precracked at a ratio of 0.40. These findings are summarized in table 10 columns C and D. For Titanium specimens, data is available only for two levels of the K_f ratio and at the lowest level (0.20) the data are sparse for specimens of \bar{a} code 1 and very sparse for those of \bar{a} code 3. Thus, the conclusions are somewhat tentative.

The results indicate that for a code 2 at a K_f ratio of 0.20, responses are more variable than at a K_{f} ratio of 0.40. This is true for five of the responses, including R_{sb} , K_{Q-PM} , K_{J} , K'_{J} , and K'_{d} , and for each of these responses it appears that the effect may be significant even for specimens of a code 1, for which the data are sparse. For a sixth response K'_0 , this effect clearly is significant only for a code 2. The result for the seventh response ${\rm K}_{\rm Q}$ is significant but markedly different from that of the other responses. At a K_f ratio of 0.20, the magnitude of K_0 responses is <u>smaller</u> for \bar{a} codes 1, 2, and 3, and the variability is greater for a code 2 specimens but smaller for a code 1 specimens. Thus, K_0 responses behave uniquely (in both S and S of table 10) amongst these seven responses. The unique behavior observed for the response parameter K_0 for both the Aluminum and the Titanium specimens, as discussed in this section, give the authors pause and we note that in a previous work [14], the parameter K_0 (based on the same 5% secant intercept used in the present work) was found to be an inappropriate parameter for evaluations of fracture toughness in subsized specimens of a heat of 4340 steel at a yield strength of 180 ksi. It is concluded that K_0 may be an inappropriate parameter for evaluations of the fracture toughness using Charpy tests conducted under conditions used in this study. These conditions give a load-displacement trace of the type shown in figure 3, in which there is no indication of a cleavage initiation event.

The general behavior described for the other significant responses is illustrated in figure 14, a plot of data for response %RD of K'_J versus the K_f ratio. In the figure, the increased variability at a ratio of 0.20 is clearly evident for code 2, it is less clear for code 1, and for code 3 the data are too sparse for an assessment of an effect. This illustration is consistent with the KW test result of table 10 column C, which indicates that the CPV for the reproducibility parameter s of the KW test equals 96% for these coded data. Thus, it is concluded that, on the basis of the available data for Titanium specimens of a codes 1 and 2, responses for specimens precracked at a very low K_f ratio of 0.20 have greater variance than those for specimens precracked at a ratio of 0.40. 6.5.3 Steel

Steel specimens were precracked at K_f ratios of from 0.33 to 1.3 (see table 7). However, only a limited number of specimens were precracked at a ratio of less than 0.4. Hence, the results for Steel are used here for conclusions concerning the general trends for ratios above 0.4. In general, the data for steel specimens indicate that the magnitude of each of the seven responses tends to increase with increases in the K_f ratio. This effect is most marked for Steel specimens of \bar{a} code 2 and it indicates that precracking at K_f ratios above 0.9 is to be avoided. In addition, for R_{sb} variability of responses may increase at either high or low levels of the K_f ratio.

The general tendency for increases in the response with increases in the K_f ratio is illustrated by figure 15, a plot for Steel specimens showing data and a regression line for responses of R_{sb} versus the K_f ratio. Table 10 indicates the magnitude of the response is significant. Although the reproducibility parameter in the KW test (column C) does

not indicate a significant effect, it is apparant from this plot of R_{sb} data that for \bar{a} codes 2 and 3, variability is decidedly smaller at intermediate levels of the K_f ratio. Thus, it is concluded that both the magnitude and the variability of response R_{sb} may be significantly affected by the level of K_f ratio for Steel specimens.

The marked effect of K_f ratio on the responses of %RD of K observed for a code 2 specimens is illustrated in figure 16, a plot of codedcrack-length data for response K_{O-PM} versus K_{f} ratio. Linear regression lines for each of the three coded crack lengths are shown in order to facilitate comparisons of the effects of the K_f ratio for each coded crack size. Significance tests (table 10) indicate S_v (K_f maximum has a signficant effect on the response magnitude) for both the KW tests and the MLR analyses, except for responses based on energy to maximum load $(K_1, K'_1, and K'_n)$, for which only the MLR analyses lead to a significant effect of K_f maximum. Graphical analyses for these three responses indicate a significant behavior only for a codes 1 and 2. It is noted that for response K_0^1 , data are not available for Steel specimens of \bar{a} code 1, and the observed effects for the available data (a codes 2 and 3) are similar to the effects illustrated in figure 16 for K_{O-PM} . Thus, it is concluded that the magnitude of each of the seven responses tends to increase with increases in the K_f ratio for Steel specimens. This effect is most marked for Steel specimens of a code 2 and it is an indication that precracking at K_f ratios above 0.9 is to be avoided. In addition, it was shown that for response R_{sh}, variability of the response may increase at either high or low levels of the K_f ratio, and this is another indication that these extreme K_f levels are to be avoided.

6.6 Effects of Notch Preparation

Significant effects of the level of NP on the responses were observed only for Steel specimens, for three responses R_{sb} , K_{Q-PM} and K_Q^{I} . These effects were supported by results of MLR and graphical analyses, but they went largely undetected by the KW test for significant differences among coded levels of the factor NP. The results indicate that for a hard material, such as the margaging steel used in the Phase I program, razor scratching before precracking may lead to increases in either the variability or the magnitude of the response.

The KW test results, given as Appendix Table V, indicate that at the 10 percent confidence level the only potentially significant responses are K_Q^i for Titanium (R, T, and L) specimens and K_{Q-PM} for Steel specimens. In this table, for Titanium, y_i is 92 percent for K_Q^i responses, and for the Steel, s is 96 percent for K_{Q-PM} . Graphical and MLR analyses of the Titanium data indicated that there is no effect of NP on the magnitudes of the responses of K_Q^i for Titanium. This eliminates Titanium from further consideration for effects of notch preparation. However, results of graphical and MLR analyses conducted with the data for Steel indicate that NP is significant for responses R_{sb} , K_{Q-PM} , and K_Q^i . These NP results are summarized in table 11, which also gives some results for responses K_J^i and K_d^* , two responses for which significant effects of NP were not found.

The observed significant effect of NP for Steel specimens is illustrated in figure 17, a plot of %RD of K_{Q-PM} vs \bar{a}/W . Results in table 11 indicate that, statistically, K_{Q-PM} responses are affected more greatly than the other two significant responses, R_{sb} and K_Q^i . Figure 17 illustrates an effect observed in plots for all three responses, R_{sb} , K_{Q-PM} , and K_Q^i : Variability of responses for NP code 1 is greater than that for codes 2 or 3.

Figure 17 also illustrates two effects observed only for responses R_{sb} and K_{Q-PM} : (1) the mean and median responses for NP code 1 are greater than those for codes 2 or 3, and (2) there exists along the top of the trend band (of each plot) a set of NP code 1 data, with no data there for the other NP codes. Not illustrated in this plot is the observed effect of NP on the magnitudes of the responses of K_Q^i : The K_Q^i responses are generally smallest for data of NP code 1, and there are NP code 1 data at the <u>bottom</u> of the plot of for K_Q^i . Thus, for NP code 1, while the magnitudes of responses of selected specimens are greater for response of R_{sb} and K_{Q-PM} , they are smaller for K_Q^i responses; further, NP code 1 responses for R_{sb} , K_{Q-PM} , and K_Q^i are more variable than those for NP codes 2 and 3. Clearly, selected test results of Np-code-1 steel specimens are significantly contributing to the variability and magnitude of results for responses R_{sb} , K_{Q-PM} , and K_Q^i for steel.

Our interpretation of these findings is that some Steel specimens of NP code 1 (razor scratched) were somehow improperly prepared for the precracking process. The net result of this improper preparation is that something (perhaps an uneven crack front'or perhaps cold work) occurred in the test specimen during precracking. As a result of this, (1) responses that are a function of maximum load (R_{sb} and K_{Q-PM}) have greater than expected magnitude, (2) the response that is a function of total energy absorbed (K_Q^i) has smaller magnitude, and (3) those that are a function of either P_Q or energy to maximum load do not appear to be affected by NP. Because these effects of NP were not observed for the softer materials, Aluminum and Titanium, it is further speculated that, in general, the observed effect of NP occurred in this Steel because it is a difficult material to scratch with a razor blade, especially after

the blade begins to become dull, as it might after being used to scratch several hard steel specimens.

The results given above are believed to be unaffected by the previously discussed effect of the level of K_f maximum on the responses for Steel. This was assured by graphical analyses in which the responses for K_f code 3 were tagged and counted for each NP and \bar{a} code subdivision. Thus, it is concluded that razor scratching before precracking may lead to increases in either the variability or the magnitude of the reponse for a hard material, such as the maraging steel used in the Phase I program.

6.7 <u>Sensitivity of Response to Crack Size.</u>

In this section, the sensitivity of the response to crack size is shown to be a function of the choice of response parameter and of the material. The response parameters most sensitive to crack size are K_J and K'_J , both of which are based on energy to maximum load. Among the three materials tested, Steel is most sensitive to crack size and Aluminum is least sensitive to crack size.

Comparisons of the sensitivity of response parameter R_{sb} with that of one of the responses based on %RD of K is facilitated here in tables 9 and 12 and in figure 9, by the conversion of data for response R_{sb} to percent relative deviation (%RD of R_{sb}) from an arbitrary reference, the mean R_{sb} for each material, as discussed in Section 6.4. Table 12 contains selected data from table 9. These are data needed to compare the relative sensitivities (of all seven responses) to crack size. Two numbers are given for each combination of response parameter and material. The first of these is the slope, in the relationship between %RD of response and crack size (eq. 14), and the second is the residual standard deviation obtained from the fit to equation 14.

The indicated slopes and residuals lead to the conclusion that responses based either on a single value of load, including $R_{\rm sb}$, K_0 , and $^{K}_{\text{O-PM}},$ or on a total energy, $^{K'}_{\text{Q}},$ are less sensitive to crack size, in comparison with the sensitivities of responses based on an energy to maximum load. The slopes for responses that are based on either a load or total energy are comparatively small. They vary from 0.04 to 0.11. On the other hand, slopes for responses K_1 and K'_1 are particularly large, ranging from 0.20 to 0.43. Slopes for response K_d^* are intermediate in magnitude ranging from 0.11 to 0.18. Thus, responses based on energy to maximum load are more sensitive. This is illustrated by regression results for aluminum given as figure 9. In addition, residuals (table 12) for responses based either on a single value of load or on total energy are generally smaller and range from 2.4 to 6.1, whereas residuals for responses based on energy to maximum load are larger and range from 5.3 to 8.7. Thus, it is concluded that, among the seven responses, K_1 and K_1^t are most sensitive to crack size, K_d^* is intermediate in sensitivity to crack size, and responses based on either a single value of load or total energy are least sensitive to crack size and are generally similar to one another in sensitivity to crack size.

The relative sensitivity to crack size is measured by the absolute magnitude of the slope given as β_1 in table 9. These data indicate that

(1) The three materials tested are similar, but minor differences are present.

(2) The Steel is most sensitive to crack size.

(3) The Titanium and the Aluminum have similar sensitivities to crack size. Table 12 shows the similarities between slopes for most responses of aluminum and those of titanium, and it shows that the slope for most responses is greater for the Steel than for the other materials, with the exception of responses R_{sb} and K_Q' for which slopes are nearly equal for each of the three materials.

Table 12 indicates that the residual standard deviation for six of the seven responses is smaller for Aluminum than for either of the other two materials. This is an indication that Aluminum is least variable.

7. Conclusions

7.1 Responses computed from slow-bend tests of precracked Charpy specimens are shown to be linearly related to crack size.

7.1.1 With an increase in crack size, the response of R_{sb} increases and the K responses decrease.

7.1.2 At fixed crack size, the magnitude of the %RD of K, for each of six responses, is much greater for the Steel tested than that for the Aluminum or the Titanium, a result that opens to question the validity of the reference value of K_{Ic} used for the Steel.

7.2 The sensitivity of the response to crack size is a function of both the choice of response parameter and of the material.

7.2.1 Among the seven response parameters evaluated here, K_J and K'_J are most sensitive to crack size, K'_d is intermediate, and responses based on either total energy (K'_Q) or a single value of load, (K_{Q-PM} , K_Q and R_{sb}) are least sensitive and are similar to one another in sensitivity to crack size.

7.2.2 Among the three materials tested, sensitivity to crack size is greatest for the Steel and least for the Aluminum.

7.3 Preliminary screening of the data used for this analysis led to the conclusion that a lower bound of crack size equal to about 2.5 mm (0.098 in) may be required as a practical measure to assure that fatigue crack initiation is properly detected and that it has developed across the entire front of the V notch of a Charpy specimen.

7.4 Precracking at levels of K_f maximum outside the range of from 0.4 to 0.9 times K smallest is to be avoided, as either the magnitude or the variability of computed responses of K or R_{sb} may be greater than that for responses for specimens precracked within this range.

7.4.1 Available data for the Aluminum and the Titanium tested indicate that precracking at levels below a K_f ratio of about 0.4 is to be avoided, as either the magnitude or the variability of the response may be increased.

7.4.2 Indications that precracking at a low K_f ratio may increase the magnitude of the response were obtained from results of tests of Aluminum specimens. At a K_f ratio less than 0.4, the magnitude of the response is greater for crack sizes of a codes 1 and 2. This was observed for four of five significant responses K_{Q-PM} , K_J , K_J and K_d^* . For the fifth significant response, K_Q , the magnitude is greater only for a code 1.

7.4.3 Indications that precracking at low K_f ratio may increase the variability of the response were obtained from Titanium and Steel specimens. Results for Titanium specimens indicate that the factor K_f maximum is significant for all seven responses. On the basis of limited data available for six of these responses and for \bar{a} codes 1 and 2 only, it is concluded that responses for specimens precracked at a very low K_f ratio of 0.20 may have greater variability than those for specimens precracked at a ratio of 0.40. Variability of R_{sb} responses for \bar{a} codes 2 and 3 of Steel specimens is decidedly smaller at intermediate levels of the K_f ratio.

7.4.4 Results for the Steel specimens indicate that the magnitude of the response generally tends to increase with an increase in the K_f ratio over the range of ratios of from 0.33 to 1.3. This effect is most marked for specimens of \bar{a} code 2, and it is an indication that precracking at very high K_f ratios above 0.9 is to be avoided. 7.5 Among the three levels of notch preparation tested, no significant effects of the level of NP on the response were observed, except for steel. The results indicate that for materials similar to those used inthe Phase I program, similar responses are to be expected from a standard notch that is either razor scratched or EDM sharpened or from a sharply (non-standard) machined notch. The results suggest that for hard specimens (like the steel used here) razor scratching may not be appropriate because hard specimens may be difficult to scratch uniformly.

7.6 The results indicate that the response K_Q based on a 5-percentsecant intercept may be inappropriate for characterization of fracture toughness using precracked Charpy tests conducted under conditions used in this study.

8. Acknowledgments

The authors would like to thank two NBS workers, Mr. David E. Schwab for extensive computations and programming assistance in the computations of the Kruskal-Wallis Test of Significance and Mr. Sam R. Low for making numerous plots and tables needed for this analysis. In addition, this analysis was made possible through the ASIM Task Group E24.03.03, its chairman Dr. C. Hartbower and the work of participating members, M. W. Brennecke, A. Burnett, C. Curll, R. E. Davies, S. Fisher, and the extensive works of members, T. Ronald and W. Server. In a study conducted by G. E. Hicho for Subcommittee E24.02 on Fractography for Fracture Testing, the value of maximum load for specimen S19 was found to contain an error (a transposition of two numbers) and this prompted the authors to recompute and replot all affected results.

- [1] Schwabe, J.; et al. Report of Working Group on Instrumented Precrack Charpy Test for Medium Strength Nuclear Pressure Vessel Steels (Parts 1 and 2), MPC-PVRC Joint Task Group on Fracture Toughness Properties of Materials for Nuclear Components--Final Report, Library of Congress No. 77-88087, 1977.
- [2] Wullaert, R. A.; Olefield, W.; and Server, W. L. Fracture toughness data for ferritic nuclear pressure vessels--Final Report of Research Project 232-1, Vol. I, II and III, Electric Power Research Institute, NP-121, 1976 April.
- [3] NMAB Committee on Rapid Inexpensive Tests for Determining Fracture Toughness. Rapid inexpensive tests for determining fracture toughness; Washington, DC:National Materials Advisory Board, Commission of Sociotechnical Systems, National Research Council, National Academy of Science; 1976.
- [4] Aluminum standards and data; New York: Publications Dept., Aluminum Association, Inc., 750 Third Ave., New York, NY 10017; 1976.
- [5] ASTM Designation E399-74; Standard method of test for plane-strain fracture toughness of metallic materials, in Part 10, Annual book of ASTM standards. Philadelphia: American Society for Testing and Materials; 1976.
- [6] Ronald, T.; Hall, J. A.; and Pierce, C. M. Usefulness of precracked charpy specimens for fracture toughness screening tests of titanium alloys. Metallurgical Transactions 3:1-6; 1972 April.
- [7] Rice, J. R.; Paris, P. C.; and Merkle, J. G. Some further results of J-integral analysis and estimates. ASTM STP 536; 1973 July. 231 p.

- [8] Ireland, D. R.; Server, W. L.; and Wullaert, R. A. Procedures for testing and data analysis: task A topical report; Effects Technologies Inc., Technical Report 75-43, 1975 October.
- [9] Server, W. L. Impact three-point bend testing for notched and precracked specimens; ASTM Journal of Testing and Evaluation, 1978 January.
- [10] Witt, F. J. Equivalent energy procedures for predicting gross plastic fractures; Oak Ridge Nat. Lab., U.S. AEC Report ORNL-TM-3172, 1972.
- [11] Kruskal, W. H. and Wallis, W. A. Use of ranks in one-criterion variance anlaysis; JASA, 47(260):583-618; 1952 December.
- [12] Draper, N. and Smith, H. Applied regression analysis. New York: Wiley and Sons, 1956.
- [13] Dataplot, An interactive system for graphics, fortran function evaluation, and linear/nonlinear fitting. Proceedings of the Statistical Computing Section of the American Statistical Association; 1978.
- [14] Jones, M. H. and Brown, W. F., Jr. The influence of crack length and thickness in plane strain fracture toughness tests; in Review of developments in plane strain fracture toughness testing, ASTM STP 463, Philadelphia: American Society for Testing and Materials; 1970; 81 p.

Coded	Levels of Fact	tors	Proposed Number of Tests Per Material
NP	K _f	ā	Al, Ti, Steel
1	1	1	2
1	1	2	2
1	1	3	2
1	2	1	2
1	2	2	2
1	2	3	2
1	3	1	2
1	3	2	2
1	3	3	2
2	1	1	2
2	1	2	2
2	1	3	2
2	2	1	2
2	2	2	2
2	2	3	2
2	3	1	2
2	3	2	2
2	3	3	2
3	1	1	2
3	1	2	2
3	1	3	2
3	2	1	2
3	2	2	2
3	2	3	2
3	3	1	2
3	3	2	2
3	3	3	2

Proposed Test Matrix

<u>Table 1</u>

Table 2

Actual Numbers of Tests Conducted for Each Level of the Factors and for Each Material.

K _f * code	NP code	<u>a code = 1</u> 0.097"<ā<.140 Al Ti Steel	<u>a_code = 2</u> 0.140< <u>a</u> <0.180 Al Ti_Steel	<u>a code = 3</u> 0.180 <a<0.242 Al Ti Steel</a<0.242 	Sum for All Al Ti*	all a levels Ti** * RTL Steel
1	1 2 3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 2 2 0 1 2 2 2 2	0 1 3 1 1 2 0 0 2	2 3 2 4 3 3	3 6 4 6 3 6
2	1 2 3	2 2 2 2 2 1 2 3 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 2 3 2 2 2 3 2 2	6 6 6 6 6 6	6 6 6 4 6 6
3	1 2 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 1 3 2 2 2 1 0 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 4 6 6 6 6	0 5 0 6 0 6
				TOTALS	43 44	28 51

* See Table 7 for codes used in computer analysis.
**Data used in the analyses for Titanium include R, T, and L specimens and exclude all Charpy specimens prepared from a CTS specimen that was designated W.

						0	hemical (Percen	Compos t by We	sition sight)									
Material	٩٦	ن ن	Co	Cr	Cu	Бе	Η	Mg	Mn	Mo	z	in	0	Si	Ti	>	Zn	Zr
Aluminum Al-2419-T851 Sample 411081, Lot 216251	bal	3	ı	0.00	6.14	. 08	ı	.02	. 28	8	ı	0.00	U	.06	.06	.11	.01	. 15
Titanium Ti-6A1-4V Heat G50860-76	5.9	, 028	J	a	ı	.13	.006	1	8	ı	.011	ı	60.	i -	bal	4.0	ı	ı
Steel AL MAR 18 (200) Heat 83514-1	ı	.011	7.7	<.10	I	bal	<1ppm	ı	.02	3.95	.001	17.8	бррт	ı	.20	a	1	. 01

Table 3

MECHANICAL	PROPERTIES	S AND RESUI	TS OF TE	STS	DF COMPACT TENSION SPE	CIMENS (CTS) TE	ESTED BY METHOD ASTM	E 399	
	Properti Tensile	ies From e Tests	Plot char- acters	(0)	CTS Fracture Toughness	CTS <u>Thickness</u>	$2.5(K_{Ic}/a_{\gamma})^2$	Handbook Pr	operties
								Elastic Mod.	Poisson's Datio
Material and <u>Orientation</u>	^σ γ (ksi)	σ _U (ksi)			K _{Ic} or K _{Q1/2} (ksi(in) ^{1/2})	<u>(in)</u>	E-399 Minimum Thickness <u>Requirement</u>	с х10 ⁶ (р	si)
4 Alumínum, aged Al-2419-T851 Longitudinal	52	67	Υ		39.3 ^(a) , 38.4 ^(b)	1.500	1.43 1.36	10.5	. 33
Titanium, annealed	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		F						
11-6A1-4V Longitudinal	112	125	8 –	111 111	77.9 80.2	1.375	1.28	16.2	.30
Transverse	120	128	ЖĻ	111 111	77.4 ^(c) 85.5	1.375	1.26	16.2	.30
Steel, maraged AL MAR 18 (200) Transverse	203	223	S		120.5 ^(d)	0.750	.875	30.0	. 33
				Ø	ve. of 3 tests				

Departure from E-399 Requirements

(a)

 $P_{M}/P_{Q} = 1.12*$ $P_{M}/P_{Q} = 1.14*$ (q)

(c)

 P_M/P_Q^{-1} = 1.54* -- These specimens were eliminated from this analysis. Fails thickness requirements -- computed K from Charpy specimens of this material were generally greater than this value. (p)

*Fails: E-399 requires P_M/P_Q ≤ l.l

Table 5

Determination of K Smallest

	(See Ec	CRITERIA qs. 1, 2, and 3	3)
	$K_{(1)} =$	K ₍₃₎ =	K ₍₂₎ =
MATERIAL & ASSUMED PROPERTIES	$K_{\rm Ic} \frac{\sigma_{\rm Y_1}}{\sigma_{\rm Y_2}}$. 57σ _γ	.002E
Aluminum $\sigma_{Y1} = 60 \text{ ksi} = \sigma_{Y2}$ $K_{Ic} = 40 \text{ ksi(in)1/2}$ $E = 10 \times 10^3 \text{ ksi}$	40	34	<u>20</u>
Titanium $\sigma_{Y1} = 100 \text{ ksi} = \sigma_{Y2}$ $K_{Ic} = 80 \text{ ksi(in)1/2}$ $E = 16.5 \times 10^3 \text{ ksi}$	80	57	<u>33</u>
Steel $\sigma_{Y1} = 200 \text{ ksi} = \sigma_{Y2}$ KIc = 100+ E = 30 x 10 ³ ksi	100+	114	<u>60</u>

* σ_{Y1} is the static yield strength at the precracking temperature and σ_{Y2} is the static (slow bend) yield strength at the test temperature.

Plots of load vs Time or Deflection (6,7)(6,7)(6,7)(6,7) (6,7) (6,7) Reduction of Data 666 Taken From Charpy Specimens Test 999 666 666 (Numbers given in parentheses represent participating laboratory and principal participant.) Load Displacement Preparation of Testing, and 666 Plots 666 999 Precracking £££ £££ 666 razor scratched (4) razor scratched (4) razor scratched (4) Notch Sharpening Charpy EDM (8) EDM (8) EDM (8) N/A N/A N/A Mechanical Machining Participating Laboratories and principal participants: of Charpy Specimens .010" radius (8) .005" radius (8) .010" radius (8) .010" radius (8) .005" radius (8) .010" radius (8) and Notching **2**22 radius radius radius .010" 010" . 005" "010 Compact Tension Results from fests of and Specimens E (9) (E) Material (Source) Aluminum (1) Titanium (6) Steel (2)

- E. Davies Alcoa; R. 8202939355
- Allegheny Ludlum (Coatesville); S. Fisher NASA Marshall Space Flight Center; M. W. Brennecke

- Effects Technology, Inc.; W. Server presently at Fracture Control Corp. Army Materials and Mechanics Research Center (AMMRC); C. Curll Air Force Materials Laboratory (Wright Patterson); T. Ronald
 - National Bureau of Standards; C. Interrante
 - The Timken Company; A. Burnett.

Preparation and Testing of Specimens and Preparation of Raw Data.

Material Code	K _{smallest(1)} (ksi (in) ^{1/2})	Proposed K _f maximum (ksi (in) ^{1/2})	Proposed K _f Ratio ⁽²⁾	Actual K _f maximum (ksi (in) ^{1/2})	Actual K _f Ratio ⁽²⁾	<u>Codes for Con</u> Wi <mark>thin a For</mark> material	nputer combined materials
Aluminum, 4	20						
Level 3 Level 2 Level 1		20.0 13.3 6.67	1.00 0.67 0.33	20.0 13.3 6.7	1.0 0.67 0.33	n 2 1	153
Titanium, 5	33						
Level 3 Level 2 Level 1		33.0 22.0 11.0	1.00 0.67 0.33	20.0 13.3 6.7	0.61 0.40 0.20	153	012
Steel, 6	60						
Level 3 Level 2 Level 1		60.0 40.0 20.0	1.00 0.67 0.33	(>55-70) (>35-55) (20-35)	(>0.91=1.3)** (>0.58-0.91)** (0.33-0.58)**	n 2 3	н 2 ч
¹ See Eq. 1,	2, 3.						

<code>**These represent values at the finish</code> of precracking. K_f at the start would be slightly greater.

 $K_{f} \text{ Ratio} = \frac{K_{f} \text{ maximum}}{K_{smallest}}$

Table 7

Fatigue Precracking Levels, and Their Codes for Purposes of Data Analysis
Table 8

Kruskal-Wallis Test of Significance and Cumulative Probability Values for Response R_{sb}.

Type of Statistic	Response Parameter	N	Material	Cumulative NP	Probability K _f	Valu <u>e</u> for a
Single Material						
Individual Responses	Уi	43	Aluminum	68.9	56.9	>99.9
Mean Responses	Y	24	Aluminum	61.2	52.8	99.4
Reproducibility	S	17	Aluminum	51.3	70.7	96.8
Individual Responses	Уi	44	Titanium, all	22.5	100.0**	93.4
Mean Responses	Y	24	Titanium, all	7.3	>99.9	41.9
Reproducibility	S	16	Titanium, all	57.2	94.3	69.8
Individual Responses	Уi	28	T RTL only	57.5	49.8	96.9
Mean Responses	Y	16	T RTL only	25.0	20.9	95.1
Reproducibility	S	11	T RTL only	40.9	89.8	37.2
Individual responses	Уi	51	Steel	63.5	98.5	99.9
Mean responses	Y	27	Steel	35.3	96.0	99.6
Reproducibility	S	21	Steel	77.8	25.5	75.5
Combined Materials						
Individual Responses	Rank* of y _i	122	A, T(all), &	S 61.3	99.3	100.0**
Mean Responses	Rank* of Y	67	A, T(all), &	S 92.7	99.2	>99.9
Reproducibility	Rank* of s	48	A, T(all), &	S 53.5	3.5	99.5

Rank is assigned within the response for a material

 $R_{sb} = 6P_m W/B(W-\bar{a})^2 \sigma_{\gamma}$

** >99.9995

Results of Regression Analyses Conducted for Each of Three Materials and for All Computed Responses. Table 9.

			Obser	rved	,	$3_{1}\tilde{a} + \beta_{0}$				
Mat.			Respor Min.	nses ² Max.	Slope B ₁	Y-Int. Bo	ā at K _{IC} (mils)	Std. Poole	Dev. d Residual	Deg. of Freedon v
4		RSB	1.83	2.20	0.0013	1.77	-1400.18	0.24	0.08	41
പ		RSB	1.83	2.39	0.0011	1.86	-1625.20	0.15	0.12	26
9		RSB	1.96	2.35	0.0011	1.89	-1658.58	0.05	0.07	49
4	% RD of	RSB	-7.35	11.47	0.0638	-10.64	166.74	0	3.87	41
പ	% RD of	RSB	-18.65	16.42	0.0560	-9.05	161.79	ı	5.77	26
9	% RD of	RSB	-6.09	20.32	0.0586	-10.02	171.08	1	3.67	49
4	% RD of	κą.	-13.65	2.47	-0.0739	6.46	87.35	2.73	2.39	41
പ	% RD of	KQ'	-14.09	8.73	-0.0665	7.93	119.28	5.78	5.94	26
9	% RD of	KQ'>140 ¹	9.86	42.47	-0.0660	37.62	-570.00	1	6.14	34
4	% RD of	KQ-PM	-32.37	-14.42	-0.0730	-11.06	-151.57	3.14	3.03	41
ß	% RD of	KQ-PM	-27.75	-2.13	-0.0911	1.02	11.24	5.39	4.70	26
9	% RD of	KQ-PM	-11.10	9.90	-0.1145	19.14	167.26	2.62	3.07	49
4	% RD of	KQ	-37.81	-19.68	-0.0400	-22.43	-561.17	3.60	3.95	41
ഹ	% RD of	ğ	-33.51	-10.87	-0.0963	-3.99	-41.47	2.76	4.95	26
9	% RD of	ξQ Δ	-21.99	0.34	-0.1021	7.69	75.33	3.06	4.09	49
4	% RD of	KJ'	-19.63	28.19	-0.2191	40.06	182.78	6.23	6.23	41
ഹ	% RD of	KJ'	-10.48	31.89	-0.2026	41.06	202.65	9.89	8.67	26
9	% RD of	KJ'	15.65	67.33	-0.3111	91.26	293.32	6.08	7.08	49
4	% RD of	Ş	-10.79	38.85	-0.2505	52.04	207.75	6.02	5.28	41
പ	% RD of	KJ V	-8.53	35.43	-0.2472	50.69	205.06	9.42	8.15	26
9	% RD of	S	24.82	89.83	-0.4343	127.05	292.51	5.96	6.91	49
4	% RD of	×bX	-23.92	13.33	-0.1124	12.32	109.59	5.73	5.82	41
ى م	% RD of	kd*	-15.51	16.70	-0.0982	15.45	157.37	8.28	7.60	26
9	% RD of	×bX	9.33	45.04	-0.1774	55.82	314.65	5.31	6.10	49

¹Only specimens with \overline{a} > 140 mils are included in the analysis.

²Given as an R_{sb} response or as a % RD of a K response.

			Ţ	ests for Sig Magnituc	jnificant D Je of Test	ifferenc Response	tes in the		Tests for Significant Di Reproducibility of	ifferences in the Test Responses
4aterial	Response	CPV 1	rom KV	W Test Y	CPV fro F test	m MLR v	Combined Results Combined Results of KW Test and MLR Analysis	<u>Column B</u> Combined Results of Column A and Graphical Analysis	Column C Significant CPV for reproducibility para- meter s of the KW test	Column D Result of Column C plus graphical analysis
4	Reh	43	•	•	1	40	8			-
	-c 2	43	4	1	ı	40	ı	ı	ł	ł
	К 0-рм	43	98	95	(11)	40	ځ	s,	ı	•
	Υ Υ	43	(84)	(64)	(86)	40	2	20	,	ł
	<u>א</u>	43	96	88	16	40	S,	S	a	ı
	ج	43	95	88	95	40	Ś	ري م م	U	ı
	*P *	43	96	85	(86)	40	20	ر ^م بر	ı	۱
5	Rsh	28	1	B	1	25	D	a	06	້
		28	4	•	ı	25	í	8	06	° ~:
	KO-PM	28	1	·	ı	25	ı	a	96	ັ້
	× °	28	96	92	>99	25	S,	S,	(85)	ົ້
	×.	28	8	8	ı	25	۲. I	۰ . ۲	96	ى
	, , ,	28	ı	ı	ł	25	ı	ı	66	ົ້ິ
	×Þ	28	4	ı	ŧ	25	ı	ı	96	ິ້
9	Reh	51	66	96	66<	48	S	S _V	đ	້ິ
	2-0 Y	36	NC	NC	94	33	ر» بر ا	° °	NC	nı
	К0-РМ	51	95	(20)	66<	48	~v ^	ر ^م بر	ı	1
	¥0 ¥	51	67	(20)	98	48	°°,	^ی ر	8	ł
	(-	51	(24)	(32)	94	48	<i>م</i> در	ر مر	ı	•
	, X,	51	(38)	(13)	16	48	2	ر م	16	ı
	×p	51	())	(11)	94	48	2	л _о л	•	ı
Symbol	Meaning						ymbol Meaning			
NC ~	Not comput Significar	ted.	effect	t of K _f maxi	imum is		- Krmaximu Sv Krmaximu	um does not have a significant o	gnificant effect. effect on the	
s	open to qu K. maximun rinnoducih	lestlor Π has δ ilitv). A signt	ificant effe	ect on the		desponseNot signi	magnitude. ificant, but included	for comparisons.	
	1 · · · · · · · · · · · · · · · · · · ·		,	112 X X X X X X X X X X X X X X X X X X						

Table 10. Summary of Results for the Factor K $_{\sf f}$ maximum.

59

Response	CPV Fr	<u>rom KN</u> Y	N Test ⁽¹⁾ s	CPV from MLR Analysis	Findings from Graphical Analysis
R _{sb}	70	40	86	95	For NP code 1, both variability, and magnitudes of mean and median responses, are greater than those for codes 2 and 3.
K _{Q-PM}	30	18	96	97	Same as R _{sb} (above).
κ _Q	80	72	37	94	For N P code 1, variability is greater than, and magnitudes of mean and median responses are less than, those for NP codes 2 and 3.
кј	6	8	58	88	No significant effects of NP.
K* d	18	26	78	89	No significant effects of NP.
(

Table 11. Effects of Notch Preparation on Results for Steel Specimens.

(1) Taken from Appendix Table V.

Table 12.	Sensitivity	of	Responses	to	Crack	Size.	
-----------	-------------	----	-----------	----	-------	-------	--

		Reg	ression r	esults for	~ %RD**, t	aken from	n table S	9.
	Material	R _{sb}	Кţ	ĸ _{Q≁PM}	ĸ _Q	Кj	К _Ј	K* d
Slope β _l								
-	А	0.064	-0.074	-0.073	-0.040	-0.22	-0.25	-0.11
	Т	0.056	-0.067	-0.091	-0.096	-0.20	-0.25	-0.10
	S	0.059	-0.066	-0.115	-0.102	-0.31	-0.43	-0.18
Residual S	tandard Devia	tion						
	А	3.9	2.4	3.0	4.0	6.2	5.3	5.8
	Т	5.8	5.9	4.7	5.0	8.7	8.2	7.6
	S	3.7	6.1	3.1	4.1	7.1	6.9	6.1

** %RD = $\beta_1 \bar{a} + \beta_0$.

Fig. B

Macl	nined	Notch		Final
Root	Radius	Preparation	Special	Root
(mm)	(in)	Code	Preparation	Radius
.250	.010	1	razor scratch	~ .05 mm (.002 in)
.125	.005	2	none	.125 mm (.005 in)
.250	.010	3	EDM with razor electrode	~ .05 mm (.002 in)

Fig. C

Fig. 3

Fia.4

·ig. 5

PLOT CHARACTERS REPRESENT ALUMINUM, TITANIUM, AND STEEL

Fig. 6

67

6.

Fig. II

73

· ...

Fig. 13

£.,.

75

·19.14

78

. -

Appendix Table I - Raw Data Used to Compute Responses of Precracked Charpy Tests

Table IA - Aluminum.

	01/P.	10.24	16 425	14, 39	18.47	26.86	10.66	8.86	13.18	11.91/	23.74	19.048	21.46	10.14	8.39	10.55	8.15(9.53	12.08	9.25(9.02	13.79	11.79	23.48	14.94	8.78	9.08(11.87	13.87	24.59	10.52	10.13	11.46(11.11	17.93	23.56	8.43(8.423	11.33	13.708	23.29.	24.370
	a ₇₅	66	164	179	202	230	138	138	187	169	225	211	225	121	85	207	89	87	135	131	137	170	159	221	209	111	125	172	171	215	139	120	183	173	225	237	106	123	179	175	222	249
	^a 50			175	226	248	136	138	192	174	226	217	219	108	85	167	89	153	190	134	130	175	161	220	213	113	127	173	175	222	127	105	179	168	212	232	101	117	172	166	212	236
	a25	123	011	163	227	248	132	138	186	164	217	221	201	113	125	85	114	190	211	131	132	181	160	225	208	113	127	172	173	220	120	103	169	139	193	218	66	110	158	152	193	210
	n ag		1951 185	172	218	242	135	138	189	169	223	216	215	114	<u> 8</u> 6	153	97	143	179	132	135	175	160	222	210	112	126	172	173	219	128	109	177	160	210	229	102	117	170	164	209	232
	ε _{t/A}	242	102	228	214	191	262	235	215	218	230	203	209	255	266	240	269	232	215	238	219	227	239	191	211	232	245	233	216	213	248	239	231	229	203	206	249	249	224	209	205	238
_	щ. Ж	11.301	9.04/ 6 965	6.440	4.650	3.071	9.073	7.528	5.250	6.671	4.062	4.322	4.240	10.854	14.400	8.712	13.548	8.585	8.310	9.547	8.651	5.814	7.311	3.454	4.238	9.421	9.819	5.599	6.640	4.502	9.095	11.459	5.877	7.712	4.457	3.680	11.740	10.530	6.646	6.506	4.988	4.172
Codec	ж	~~~	50	10	2	2	ო	ო	m	ო	ო	ო	Ч	Ч	Ч	Ч	Ч	Ч	Ч	2	2	2	2	2	2	ო	e	ო	ო	ო	2	2	2	2	2	2	ო	ო	ო	ი -	ന	ო
Coded	ו מ		-1 (**	0 <2	n	ო	٦	Ч	ო	2	ო	ო	ო	Ч	٦	2	Ч	2	2	Ч	÷1	2	2	ო	ო	-	Ч	2	2	2	Ч	٦	2	2	ო	ო	٦	٦	2	2	ന	ო
	NP	ი ი	0 ლ	ი ი	e	ო	ო	ო	ო	ო	ო	ო	2	2	Ч		ო	ო	ო	~	2	2	2	2	~	~	2	2	~	2		-	-	-	-1	-	-	٦	٦	-1		Ч
	¥	13	3 8	19	13	13	20	20	20	20	20	20	7	2	2	7	7	7	7	13	13	13	13	13	13	20	20	20	20	20	13	13	13	13	13	13	20	20	20	20	20	20
	گ	1300	730	819	570	427	1168	1114	787	882	499	577	562	1274	1546	1048	1488	1074	886	1138	1110	824	929	495	621	1267	1198	864	825	525	1143	1326	816	918	585	492	1407	1270	888	867	267	499
	൨	1237	645	765	502	425	1140	1020	775	855	472	562	540	1200	1400	940	1190	880	740	1020	960	805	870	495	547	1178	1117	820	800	517	1080	1252	675	840	525	465	1275	1125	810	850	550	475
	Specimen	E9	38	EII	E12	E20	E13	E18	E14	E16	E15	E17	A3	A4	81	B 2	E2	E3	E4	A12	A20	A7	A8	A10	AII	A13	A17	A14	A18	A16	B 8	812	87	89	B1 0	811	815	B17	B13	B18	B16	819

Ē
Ţ,
C.
Ea.
-
8
H
ø
5
g
-

D ₁ /D ₂	6.541	5.732	5.126	7.551	7.986	6.011	9.820	7.735	6.689	4.734	5.167	5.561	7.337	7.422	10.949	9.727	5.637	6.036	7.218	5.972	8.676	9.561	5.263	5.635	5.684	6.812	11.660	11.404
a ₇₅	140	145	85	175	134	172	205	179	157	106	124	127	150	165	208	215	136	149	166	118	184	182	107	133	143	160	212	213
a50	142	138	114	191	180	155	213	182	169	120	124	139	168	174	210	218	138	147	171	147	191	205	117	133	130	160	214	220
^a 25	161	130	130	170	194	115	209	172	159	96	123	139	162	172	211	226	133	148	177	151	198	202	114	131	127	163	217	229
េក	148	138	110	185	169	147	209	178	162	107	127	135	160	170	210	220	136	148	171	139	191	196	113	132	133	161	214	221
ε _{τ/A}	629	598	790	597	209	954	760	606	700	939	671	707	777	644	642	658	749	622	610	806	689	661	735	598	663	661	605	731
٣	21.206	21.150	34.982	16.055	21.162	33.547	15.833	14.620	22.970	42.298	25.910	22.968	21.427	17.670	12.628	13.744	26.910	20.046	19.620	25.695	14.849	13.141	31.479	22.583	21.817	16.052	13.439	12.210
Coded KF	1	e1	1	1	-	- 1	-1	-	r-4	-	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Coded a	2	1	1	ო	2	2	ო	2	2	1	٦	-	2	2	ო	ო	-	2	2	1	ო	ო		٦	-	2	ო	ę
NP	2	2	~	~	٦	-	-	ო	ო	ო	~	2	~	2	~	2	-	٦	-	-		-	ო	ო	ന	ო	ო	e
ж г	7	2	2	2	2	2	2	2	2	2	13	13	13	13	13	13	13	13	E	13	13	13	13	13	13	13	13	13
Å	2305	2320	3145	1765	2015	2820	1420	1715	2150	3550	2860	2536	2224	2012	1376	1354	2564	2224	1972	2588	1704	1508	3032	2608	2564	2020	1304	1243
ď	2210	2310	2710	1450	1850	2400	1200	1550	1900	3050	2725	2430	2200	1970	1360	1140	2480	2160	1880	2470	1590	1460	2880	2460	2540	1960	1245	1190
Specimen	41-2	41-3	41-4	41-5	40-7	4012	4016	4013	4014	4018	40-1	40-6	40-2	40-4	40-5	432A	41-8	4111	41-7	4112	4115	4116	4110	4113	41-9	4117	4114	4118

Table IC - Steel.

D1/P1	4.187 5.376	4.091	5.429	8.000 8.380	3.863	3.909	5.000	6.333	7.238	3.803 A AE2	4.875	4.656	8.611	1.286	5.107	0.040 A 075	4.781	7.555	7.833	4.343	3.840	7.762	70/0/	3.9/8	5.094	5.000	7.810	8.278	3.840	5.040 5.010	5.125	7.150	7.619	3.954	4.000	4 906	7.667	7.619	3.860	3.840	4.300 5.125	7.048	7.778
875	135	136	184	226 228	114	117	166	216	216	77T	167	165	234	215	172	120	165	218	218	144	126	217	222	121	170	174	218	220	110	163	165	207	216	116	160	161	217	217	116	121	173 173	215	221
^a 50	146 173	137	185	226 228	114	118	168	219	215	77T	167 167	166	234	213	1/3	130	164	219	219	144	126	219	122	721	172	176	221	235	110	165	167	208	218	11/	16A	161	217	217	116	121	174 174	218	222
⁸ 25	146	127	179	218 225	114	121	167	216	213	C71	165	165	233	212	169	120	163	218	219	144	126	219	/12	72T	170	176	217	236	110	162	164	207	217	/11/	163	161	217	217	116	121	174 174	218	222
160	142	133	183	223	114	119	167	217	215	07T	166 166	165	234	213	1/1	130	164	218	219	144	126	218	022	72T	171	175	219	230	11/	163	165	207	217	11/	162	161	217	217	116	121	174 174	217	222
E _{T/A}	1205	1161	1297	1375	1380	1324	1208	1184	1168	138A	1302	1522	1435	1293	1356 1205	144R	1208	1320	1351	1751	1387	1169	CT CT	1075	1519	1534	1502	1300	1075 1976	1395	1370	1130	1453	1363	1386 1386	1400	1403	1342	1227	1190	1490 1490	1286	1442
۳. ۳	56.800 39 300	57.400	37.500	25.100 25 100	84.200	84.200	47.400	26.200	24.500	70.700 58 000	43.600	52.200	23.900	29,800	3/.100	68 500	41.500	23.300	28.800	57.200	65.200	26.000	20./00	60.400	44.400	46.100	29.200	23.300	66./UU	44 B00	44.800	26.200	28.900	/9.000	42 600	43.000	26.400	25.200	82.500	71.700	44.000	27.200	26.400
Coded K _F	1	44		2 -	101	2	2	~	2 0	ი ო	ი ო	e	ო 1	-1,			• ~•			2	2	~ ~	2 0	ი ო	ი ი		en	ო 1				٦		2 0	70	10	10	2	ო	ოი	ი ი	ა თ .	e
Coded	~~~	1 m	ŝ	იი იი) -	1	~	ი ი	- (r	-1 0	10	2	20	20	2		- N	၊က		2	-	ოი	، رہ	-1	- ~	5	en	ო 1	-1	- ~	101	m	ო 1		-	10	101	ი	1		20	1 M	e
NP	~ ~	•1				٦	-	I 1		-1		٦	-	-	20	10	1 01			2	~	~ ~	20	10	1 01		2	2	ო ი	າຕ	ი ი	ო	ი ი	ກເ	n (r) m	ი ი	ო	e	ოი	ົດ	က	e
¥	25	53	25	9 5 7	14	42	45	47	4 7 7 7		29	67	81	22	23	3 6	22	24	24	50	45	47	4 1 1 1 1	0 9 9	202	72	11	78	22	36	22	21	23	4 4	4 4 7 4 7 4	43	47	46	62	65 65	C0 [2	02	73
ح∑	4425	4556	3060	2067 1980	5350	5375	3440	2220	2199 5113	4375	3584	3840	2010	2358	3222	4765	3488	2109	2220	4250	4806	2160		0000 4906	3496	3452	2280	2067	5113 5125	3600	3612	2300	2274	2188	107C	3640	2190	2151	5300	5094	3012	2286	2184
్	3938 3188	4219	2760	1785	4594	4875	3240	1995	1920	4031	3360	3380	1725	0972	2860	4075	3120	1905	1920	3700	4094	2070	C202	4750	3340	3000	2160	1935	4/50	3440	3380	2080	2055	4625	3060	3360	2055	2070	4969	4531	3180	1935	1905
Specimen	S 23	SS	54 5	s S S S	S7	S8	S10	SII	512	015 012	S15	S16	S17	5TC	41 8	83	R4	R5	R6	R7	R8	R11	R12	CTN R14	R15	R16	R18	R20	11 10	12	14	15	91	10	0 5	110	111	112	113	714 716	911 CT 1	117	118

Appendix Table II - Reference Toughness and Computed Precracked Charpy Responses.

% RD	-25.51	-35.19	-30.28	-29.72	-19.69	-26.69	-26.69	-19.68	-23.77	-27.26	-30.67	-26.33	-22.50	-25.18	-34.56	-34.56	-34.59	-28.96	-29.56	-32.3/	-24.99	-21.27	-32.3/	-28.61	-25.85	-25.27	-26.55	-31.24	-37.81	-25.50	-36 16	-29.78	-35.44	-35.44	-32.24	-27.57	-29.57	-27.25	-26.89	-32.94	-28. /9
Å	28.94	25.18	27.09 25.71	27.30	31.20	28.48	28.48	31.20	29.62	27.20 28.28	26.94	28.62	30.11	29.07	25.42	25.42	25.41	27.60	21.37	26.2/	29.14	28.25	20.28	21.02	28.81	29.03	28.53	26.71	24.16	22.02	16.02	27.28	25.08	25.08	26.33	28.14	27.36	28.26	28.40	26.05	27.6/
% RD	25.80 10 24	14.92	7.22	-10.52	17.82	7.95	7.95	.74	8.40	-1 91	-3.11	23.94	38.85	19.69	34.45	34.45	16.42	23.76	20.17	15.05 5.55	2.5/	11.27	-4.45	15.06	20.50	03	9.12	.97	- 04	10.4U	3 60	14.2R	-2.02	-2.02	-5.99	26.23	22.74	8.43	5.88	3.37	1.02
К ₎	48.87 46.07	44.65	41.65	34.76	45.77	41.94	41.94	39.14	42.11 27 60	38 11	37.64	48.15	53.94	46.50	52.23	52.23	45.23	48.08	46.69	44./U	39.85	43.23	34.00 37.13	31.12 AA 70	46.81	38.84	42.39	39.23	38.84 år oo	77.04	40.04 AD 25	44.40	38.06	38.06	36.52	49.04	47.68	42.13	41.13	40.16	39.25
% RD	10.06	5.53	-2.77	-15.31	6.69	6.05	6.05	39	55.4 25.11-	-5 94	-11.99	9.65	28.19	15.33	25.50	25.50	13.29	22.59	15.40	11.92	-5.28	5.01	-14.03	- 2. 4/ 6. 75	14.67	-3.03	.99	-10.58	-5.72	70.42	3 64	10.57	-5.99	-5.99	-12.05	16.95	17.65	6.69	-5.21	-10.17	-4.97
k'	42.76	41.00	37.77	32.90 -	41.45	41.20	41.20	38.70	40.60 24 AF -	36.54	34.19 -	42.60	49.80	44.81	48.76	48.76	44.01	47.63	44.83	43.48	36.80	40.80	. 77.TC	20.10 47 47	44.55	37.67	39.24	34.74 -	36.63	40.72	40.26 40.26	42.96	36.52	36.52	34.17	45.44	45.71	41.45	36.83	34.90	36,92
% RD	-5.91	-2.02	-10.59 -5 10	19.72	-5.40	-5.61	-5.61	-7.26	-4.12	11,15	-16.89	-5.76	6.65	4.31	4.17	4.17	1.41	13.33	1.94	- /5 20 - 12	-12.69	-4.40	76.62.	-8.57	.47	10.83	-7.06	15.44	11.20	-6.3L	07.0 -4 33	99	-11.42	-11.42	16.61	-1.81	1.65	-2.05	-13.40	-15.40	-9.88
чи - хр *Х	36.55 27 E2	38.07	34.74 -	31.19 -	36.75	36.67	36.67	36.03	31.25	34.52	32.29	36.61	41.44	40.52	40.47	40.47	39.40	44.03	39.60	38.56	33.92	3/.14	25, 70 25, 70	35.50	39.03	34.64 -	36.11	32.85	34.50 -	37.78 26 AA	37 17	39.11	34.41 -	34.41 -	32.40 -	38.15	39.49	38.05	33.64 -	32.87 -	35.01
% RD	-21.69	26.60	·25.36	29.39	17.68	19.90	-19.90	-18.38	21.36	25.20	-27.84	-21.78	-14.42	16.58	-18.17	18.17	-20.17	-14.94	-21.41	.21.80	23.22	22.34	32.37	16 26.	20.44	21.26	24.26	30.17	29.77	71.62	51.10 -22 83	-23.26	-28.06	-28.06	-28.30	-20.07	-20.46	-20.24	-25.43	-30,86	-25.12
К ₀ -рм	30.42	28.52 -	29.00	27.43 -	31.98 .	31.12 -	31.12 -	31. /1	30.55 -	- 90 .02	28.03 -	30.39 -	33.25 -	32.41	31.79 -	31.79 -	31.01	33.04	30.53	30.38	- 29.83	30.1/	20.67	20.62	30.91	30.59 -	29.43 -	27.13	27.29	20.67	20.02	29.81	27.95	27.95 -	27.85 -	31.05 -	30.90	30.99	28.97	26.86 -	29.09
R _{sb}	1.87	1.92	1.91	2.12	2.00	1.96	1.96	2.15	2.00	2.10	2.02	1.87	2.03	2.07	1.94	1.94	1.96 1.96	2.20	1.91	06'T	1. 98 1. 55	1. 45	75.T	1.83	1.92	2.02	1.94	1.97	1.93	1.00 1	00.1	1.93	1.99	1.99	2.08	1.90	1.90	2.03	1.88	1.90	2.19
% RD	-2.89	-4.88	-5.74 -0.50	0. J0 -13. 56	1:11	-4.16	-4.16	-8.39	-/.// -5.25	-11.07	-9.72	21	1.92	-3.27	2.47	2.47	-4.90	-8.45	- 3. 65	-/.52	-5.83	-3.43	CD.CI.	-4 92	-2.27	-4.69	-8.09	-8.86	·11.58	- 1.00	-5-08 -1-08	-5.54	-10.87	-10.87	-10.28	-1.41	-1.45	-6.43	-9.74	-10.59	-3.6/
-0 ¥	37.73	36.95	36.62 35 52	33.58 -	39.28	37.23	37.23	35.59 ar ao	35.83 36 01	34.55	35.07	38.77	39.59	37.58	39.81	39.81	36.95	35.5/	31.43	35.93 26 F0	36.59	3/.52	35,333 25,323	36.94	37.97	37.03	35.71	35.41	34.35	30.61 27 E9	36.88	36.70	34.63	34.63	34.85 -	38.30	38.29	36.35	35.0/	34.74	31.42
K _{IC}	38.85 30.85	38.85	38.85 38.85	38.85 38.85	38.85	38.85	38.85 20.01	38.85 20.05	38.85 38.85	38.85	38.85	38.85	38.85	38.85	38.85	38.85	38.85	38.85	38.85 20.65	38.85 20.65	38.85 20.61	38.85 20 05	20.03 20.05	38.85	38.85	38.85	38.85	38.85	38.85 20.05	20.00 20.05	38.85	38.85	38.85	38.85	38.85	38.85	38.85	38.85	38.85	38.85	38. 85
Specimen	E9	E8	E11	E20	E13	E18	E18	E14	E I G	E17	A3	A4	B1	B2	E2	E2	E.S.	Б4 10	ALZ	AZU AZU	A/	AB		A13	A17	A14	A18	Al6	A19	00 013	B7	68	B10	B1 0	811	B15	817	B13	818	B16	618

Table IIB - Titanium

% RD	-15.24	-17.20	-19.14	-27.34	-25.05	-16.71	-33.51	-32.89	-26.80	-18.68	-18.68	-17.26	-22.22	-16.44	-19.60	-24.00	-25.89	-12.29	-17.16	-15.17	-10.87	-16.52	-20.24	-12.39	-15.28	-11.94	-17.71	-20.97	-19.64
Å	66.03	64.50	62.99	56.60	64.08	71.21	56.85	57.38	62.59	69.53	69.53	70.74	66.51	71.45	68.74	64.98	59.43	68.33	64.53	66.08	69.43	65.03	62.13	68.25	66.00	68.60	64.11	61.56	62.60
% RD	13.30	10.92	35.43	6.95	7.83	29.57	2.86	-8.53	10.63	34.98	34.98	9.53	4.70	6.39	-1.25	-7.89	5.34	24.63	10.16	14.46	22.50	4.37	59	29.16	13.29	11.57	1.29	5.44	2.52
КJ	88.26	86.41	105.50	83.32	92.19	110.79	87.94	78.21	94.59	115.40	115.40	93.64	89.52	90.97	84.43	78.75	84.49	97.08	85.81	89.17	95.42	81.30	77.44	100.61	88.26	86.91	78.90	82.14	79.86
% RD	7.96	8.55	29.38	8.87	1.88	27.66	3.77	-9.94	9.45	31.89	31.89	8.16	2.67	.31	-4.09	-10.48	11.18	22.22	8.58	13.14	18.15	2.90	-3.84	22.63	9.34	7.55	-1.23	2.10	3.05
Υ.	84.10	84.56	100.79	84.81	87.11	109.15	88.72	77.00	93.58	112.76	112.76	92.47	87.78	85.76	82.00	76.54	89.17	95.21	84.59	88.14	92.04	80.16	74.91	95.53	85.17	83.79	76.94	79.54	80.28
% RD	-1.21	-1.72	12.46	2.62	-5.05	16.70	88	-15.52	1.44	13.99	13.99	-3.42	-7.37	-7.20	-10.55	-14.45	6.62	10.40	64	5.60	7.09	-2.64	-8.76	7.16	-1.72	-3.20	-8.54	-2.28	-1.14
¥₽ ¥	76.96	76.56	87.61	79.94	81.18	99.78	84.74	72.23	86.73	97.46	97.46	82.58	79.20	79.35	76.48	73.14	85.51	86.00	77.40	82.27	83.43	75.84	71.08	83.48	76.56	75.41	71.25	76.13	77.01
% RD	-11.60	-16.84	-6.16	-11.55	-18.36	-2.13	-21.32	-25.75	-17.17	-5.35	-5.35	-13.16	-18.82	-15.52	-17.89	-23.11	-11.98	-9.32	-14.70	-11.02	-6.61	-10.54	-17.62	-7.76	-10.18	-11.11	-15.19	-17.22	-16.06
К _{Q-РМ}	68.86	64.78	73.10	68.90	69.80	83.68	67.27	63.49	70.82	80.93	80.93	74.25	69.41	72.23	70.20	65.74	70.59	70.64	66.44	69.31	72.75	69.69	64.17	71.85	69.97	69.25	66.07	64.48	65.39
R _{sb}	1.97	1.83	2.01	2.09	2.06	2.39	2.14	1.90	2.06	2.23	2.23	2.07	1.95	2.10	2.07	2.10	2.31	1.99	1.90	2.05	2.06	2.14	1.99	1.98	1.96	1.94	1.92	2.08	2.14
% RD	-3.95	-6.38	7.65	-6.38	-7.10	7.78	-3.83	-14.09	-7.65	6.94	6.94	-9.60	-7.22	-2.74	-11.43	-11.61	-4.55	4.82	-4.48	-5.40	8.73	.52	-1.50	3.83	-6.31	-1.42	-1.53	-5.79	3.53
-9 2	74.82	72.93	83.86	72.93	79.43	92.15	82.23	73.46	78.96	91.43	91.43	77.29	79.32	83.16	75.73	75.57	76.55	81.65	74.41	73.69	84.70	78.30	76.73	80.88	72.98	76.80	76.71	73.39	80.65
K _{Ic}	77.90	77.90	77.90	77.90	85.50	85.50	85.50	85.50	85.50	85.50	85.50	85.50	85.50	85.50	85.50	85.50	80.20	77.90	77.90	77.90	77.90	77.90	77.90	77.90	77.90	77.90	77.90	77.90	77.90
Specimen	41-2	41-3	41-4	41-5	40-7	4012	4016	4013	4014	4018	4018	40-1	40-6	40-2	40-4	40-5	432A	41-8	4111	41-7	4112	4115	4116	4110	4113	41-9	4117	4114	4118

Table IIC - Steel.

% RI	-6.2(-5.4	-11.9	-21.9			-8.21	-15.9	-20.5	-6.2	י י י ע	-5.6	-15.0	-12.1	-16.5	-16.5	-10 4	-13.4	-19.0	-17.6	-10.7	-12.3	-12.0	-40.		-2.5	٥- - -		-4.1	-4.8	-5.2	-5.6	-19.6(-13.4	-6.6!	-3.5	-16.3	19.8 	- T 2 - F)E	-6.1	-6.2	-5.1	-18.48
Кq	112.95	113.94	106.10	94.01	109.58	120.11	110.62	101.28	95.7/	113.02	112 PG	113.75	102.41	105.89	100.53	110.53	107 89	104.25	97.57	99.21	107.57	105.58	106 67	115 57	120.91	117.40	108.60	110 58	115.52	114.72	114.12	113.75	96. 88	104.32	112.48	116.28	100.80	104.90	105 00	120 07	113.10	113.02	114.27	98.23
% RD	62.87 44 02	60.88	44.63	31.44	88, 13	89.83	56.77	31.99	26.92	75.23	50.07 50.03	63.79	32.59	39.20	39.93	39.93	74 75	45.73	24.82	39.17	64.10	69.21 21 05	31.85	70.14	62.26	53.08	57.40	40. It	68.35	69.97	51.08	51.74	28.41	38.62	83.21	87.68	47.01	41.38	36.45	24.82 86.89	75.81	48.76	58.74	34.49
К _Ј	173.54	193.87	174.28	158.38	226.69	228.75	188.90	159.05	152.94	211.15	07.202	197.37	159.77	167.74	168.62	168.62	210 58	175.60	150.41	167.70	197.74	203.90	161 0A	205 02	195.52	184.46	169.67	155 82	202.86	204.81	182.05	182.85	154.74	167.04	220.77	226.15	177.14	150 SE	155.00	225.20	211.86	179.26	191.28	161.96
% RD	45.88	41.78	33.45	22.38	65.48	67.33	43.33	29.93	18.04	54.79	35, 88	51.40	25.41	27.04	26.36	20.36	11.12	32.46	15.65	28.71	46.87	51.61	C+.12	47.68	40.82	38.92	46.29	22.22	46.04	48.23	31.79	34.15 24.15	16.35	28.21	60.30	63.89	33.42	30.56	10.22	19.40 64 95	55.59	31.53	46.14	25.51
K'	153.78	170.84	160.81	147.46	199.40	201.64	172.71	156.56	142.23	190.05	162 72	182.44	151.12	153.08	152.26	152.26	186 98	159.62	139.36	155.10	176.98	142.69	160.35	177.95	169.68	167.40	176.27	146 AA	175.98	178.61	158.81	161.65	140.20	154.50	193.16	197.48	160.77	147 10	142. TU	198.77	187.49	158.49	176.10	153. / I 151. 23
% RD	30.43 16.87	25.40	23.73	15.87	42.23	45.04	31.27	22.78	11.46	35.02	04.4C	38.43	18.95	19.86	16.10	10.10	07.14 36.71	21.01	9.33	21.72	31.61	32.83	19.92	28.62	23.01	27.65	34.84	15 23	26.18	28.48	20.30	22.66	9.47	21.17	38.49	41.83	21.68	18.9/	10.00 10.00	42.27	35.30	19.74	34.60	20.22 18.80
*Þ ¥	157.17 140.83	151.11	149.10	139.62	171.39	174.78	158.18	147.95	134.31	162.69	100.03	166.81	143.34	144.43	139.91	120.91	164 73	145.82	131.75	146.68	158.59	100.Ub	149 24	154.98	148.23	153.81	162.48	138 85	152.04	154.82	144.96	147.80	131.92	146.00	166.88	170.90	146.62	120 01	10.251	171.44	163.03	144.29	162.19	145.2b 143.15
% RD	5.33	2.11	-2.38	-8.12	5.90	9.90	-2.53	-6.47	-8.9/	0 47	0.47	7.24	97	 	-5.14	- 5. 14 5 27	A. 70	-3.28	-10.36	-4.80	2.54	2.86	- 0, 14	4.25	3.64	1.98	3.70	C2.2	3.20	4.79	- 8 <u>-</u>	88.9	-11.10	-4.20	4.71	7.28	-3.78	-1.20	10.30	- 9, 30 6, 28	5.52	-1.03	2.58	-3.69 -3.79
Kq-pm	126.92 116.87	123.05	117.64	110.72	127.61	132.43	117.45	112.70	109.69	129.30	121.48	129.23	119.33	115.59	114.30	126.07	126.16	116.55	108.01	114.71	123.56	123.95	112 71	125.62	124.88	122.88	124.96	118.13	124.35	126.27	119.43	121.56	107.13	115.44	126.18	129.27	115.95	CU.VII	100 20	128.07	127.15	119.25	123.61	115.93
R _{sb}	2.09	2.00	2.06	2.12	2.04	2.13	2.00	2.12	2.06	2.09	2 DF	2.19	2.35	2.16	96.T	1.96 05	2.05	1.97	2.04	2.17	2.04	2.00	20.2 AL C	2.02	2.02	2.11	2.16	2.30	2.00	2.03	2.02	2.06	1.97	2.17	2.03	2.08	1.96	10.2	50.2 90	2.05	2.05	2.01	2.13	2.21
% RD	18.19 25.24	16.01	22.62	9.86 26.25	26.48	23.89	18.34	17.16	10.30	15.4b	20.07 22 AG	32.83	28.98	22.43	25.38	25.38	29.56	18.34	23.70	25.15	42.47	16 41	14.01	14.51	11.63	32.70	33.35	22.76	11.63	21.72	27.17	26.02	14.45	29.79	25.70	26.99	26.76	27.53	CC.12	19.27	17.45	30.01	31.43	24. 10 29. 29
-д Х	142.42 150.91	139.80	147.76	132.38	152.41	149.29	142.60	141.18	140.22	159. L3 159. E3	148 04	160.06	155.42	147.53	151.08	152 24	156.12	142.60	149.06	150.80	171.68	140 20 US	140.20	137.98	134.52	159.90	160.69	147.93	134.52	146.67	153.24	151.86	137.92	156.39	151.47	153.02	152.74	153.51	150 20	143.72	141.53	156.66	158.37	14/.13 155.80
K _{Ic}	120.50	120.50	120.50	120.50	120.50	120.50	120.50	120.50	120.50	120.50	120 50	120.50	120.50	120.50	120.50	120.50	120.50	120.50	120.50	120.50	120.50	120.50	120 50	120.50	120.50	120.50	120.50	120.50	120.50	120.50	120.50	120.50	120.50	120.50	120.50	120.50	120.50	120.50	120 50	120.50	120.50	120.50	120.50	120.50
Specimen	S S	23 23	54	S5 ce	22 22	S8	S10	SII	212	513	515	S16	S17	S19	T I	1 Ca	83	R4	R5	RG	R7 00	84 011	110	R13	R14	R15	816 010	R20		12	Ē	4 T 4	12	T6	11	8			11	113	T14	T15	T16	11/ 118

Appendix Table III

Results of Kruskal-Wallis Test of Significance, Cumulative Probability Values, for Factor Crack-Size , a.

Aluminum	N	Rsb	К'Q	K _{Q-PM}	к _Q	Кј	Кј	K* d
Accuracy (based upon y _i)	43	>99.9 ⁴	100.0	>99.9	99.4	100.0	100.0	>99.9
(based upon Y)	24	99.4	>99.9	99.9	95.7	>99.9	>99.9	99.9
Reproducibility (based on s)	17	96.8	76.9	69.7	57.8	94.6	69.0	96.8
<u>Titanium</u> (R, T, &	L dat	a)		<u> </u>				
Accuracy (y _i)	28	96.9	69.3	94.9	98.5	96.8	99.7	69.4
(Y)	16	95.1	76.0	94.1	92.7	96.2	97.8	83.8
Reproducibility (s)	11	37.2	2.6	8.7	79.2	6.9	34.6	36.0
<u>Steel</u>								
Accuracy (y _i)	51	99.9	98.0	100.0	100.0	100.0	100.0	100.0
(Y)	27	99.6	88.7	>99.9	99.9	>99.9	>99.9	>99.9
Reproducibility (s)	21	75.5 ² N = 20	86.9	78.2	42.0	60.3	8.2	59.5
Combined ¹								
Accuracy (y ₁)	122	100.0	98.6	100.0	100.0	100.0	100.0	100.0
(Y)	67	99.9	94.9	100.0	>99.9	100.0	100.0	100.0
Reproducibility (s)	49	99.547 N = 48	³ 95.4	90.0	0.0	94. 6	42.1	96.3
1								

¹Includes specimens listed above for all three materials ²N = 20 for R_{sb} calculation ³N = 48 for R_{sb} calculation ⁴ > 99.9995

Appendix Table IV

Results of Kruskal-Wallis Test of Significance, Cumulative Probability Values, for the Factor ${\rm K}_{\rm f}$ maximum.

<u>Aluminum</u>	Ν	R _{sb}	Кţ	К _{Q-РМ}	κ _Q	к	кյ	K* d
Accuracy (based upon y _i)	43	56.9	79.5	98.2	83.9	96.0	94.8	95.5
(based upon Y)	24	52.8	78.0	94.7	63.7	88.3	88.2	84.9
Reproducibility (based on s)	17	70.7	38.1	72.4	43.6	60.4	87.5	53.7
<u>Titanium</u> (R, T, &	L data	a)						
Accuracy (y _i)	28	49.8	22.6	3.8	96.1	76.9	80.5	83.6
(Y) **	16	20.9	36.6	44.0	91.9	84.7	73.4	89.9
Reproducibility (s)	11	89.8	89.8	95.9	84.7	95.9	98.6	95.9
Steel								
Accuracy (y _i)	51	98.5	52.0	95.4	96.8	52.9	37.6	68.8
(Y)	27	96.0	49.5	70.4	69.6	32.0	13.0	51.4
Reproducibility (s)	21	25.5 ² N = 20	43.4	81.2	40.7	85.1	90.8	74.5
Combined ¹								
Accuracy (y _i)	122	99.3	84.1	98.0	99.9	56.8	50.9	62.3
(Y)	67	92.7	39.6	66.7	98.1	16.1	11.9	31.8
Reproducibility (s)	49	3.5 ³ M = 48	31.8	1.1	59.5	20.4	10.7	40.5

N = 20 for R_{sb} only. N = 48 for R_{sb} only.

Appendix Table V

Results of Kruskal-Wallis Test of Significance, Cumulative Probability Values, for the Factor Notch Preparation, NP.

Aluminum	N	R _{sb}	Кţ	K _{Q-PM}	к _Q	Кj	Кј	K* d
Accuracy (based upon y _i)	43	68.9	36.3	68.4	0.0	41.0	50.8	62.5
(based upon Y)	24	61.2	36.7	67.8	4.6	56.9	60.0	66.1
Reproducibility (based on s)	17	51.3	86.1	67.2	83.6	8.2	56.2	18.4
<u>Titanium</u> (R, T, &	L dat	a)						
Accuracy (y _i)	28	57.5	91.6	37.8	49.2	28.8	25.5	57.5
(Y)	16	25.0	80.1	16.7	2.5	23.9	17.6	50.7
Reproducibility (s)	11	40.9	47.7	52.8	6.9	16.0	38.2	2.6
<u>Steel</u>								
Accuracy (y _i)	51	63.5	79.8	15.3	22.6	7.7	7.6	21.7
(Y)	27	35.3	72.1	13.0	23.4	8.3	0.7	26.0
Reproducibility (s)	21	77.8 ² N = 20	36.9	94.1	58.2	58.2	74.4	77.6
Combined ¹				<u> </u>	<u></u>			
Accuracy (y _i)	122	61.3	33.3	61.4	26.8	50.6	47.5	72.1
(Y)	67	59.1	22.6	43.3	21.9	52.7	40.7	73.9
Reproducibility (s)	49	53.5 ³ N = 48	40.2	48.0	38.2	43.6	26.1	57.6

 $^{1}_{2}$ Includes specimens listed above for all three materials. ^{3}N = 20 for R only. N = 48 for R^{sb}_{sb} only.

Appendix Table VI

Resid	ual-Standa	ard-l	Deviat	ion from M	ultip	ole Lin	near
Regression	Analyses	for	Seven	Responses	and	Three	Materials.

			a (Eq. 14)	$a + K_f$ (Eq	. 16)	\bar{a} + Kf + NP	(Eq. 17)
Material	Response ¹	N	res. S.D. ν	res. S.D.	ν	res. S.D.	ν
4	R _{sb}	43	0.077 41	0.076	40	0.073	39
5	R _{sb}	28	0.118 26	0.119	25	0.105	24
6	R _{sb}	51	0.072 49	0.060**	48	0.059	47
4	ĸģ	43	2.39 41	2.41	40	2.44	39
5	K _Q	28	5.94 26	6.06	25	6.03	24
6	K	51	6.56 49	6.49	48	6.46	47
6	K(2	36	6.14 34	5.65*	33	5.42	32
4	K _{Q-PM}	43	3.03 41	3.02	40	2.97	39
5	K _{Q-PM}	28	4.70 26	4.77	25	3.18	24
6	K _{Q-PM}	51	3.07 49	2.52**	48	2.38	47
4	ĸq	43	3.95 41	3.83	40	3.87	39
5	к _Q	28	4.95 26	3.70**	25	3.67	24
6	ĸq	51	4.09 49	3.72**	48	3.76	47
4	Кj	43	6.23 41	5.94*	40	6.00	39
5	к	28	8.67 26	8.64	25	8.64	24
6	кј	51	7.08 49	6.72*	48	6.62	47
4	кј	43	5.28 41	4.92**	40	4.98	39
5	Кј	28	8.15 26	8.14	25	8.13	24
6	к _J	51	6.91 49	6.65*	48	6.65	47
4	K*d	43	5.82 41	5.64	40	5.70	39
5	K* d	28	7.60 26	7.57	25	7.49	24
6	κ* ď	51	6.10 49	5.77*	48	5.65	47

¹ For the R_{sb} responses, for which reference values of the response are not available, the residual standard deviation is computed from the response R_{sb} . For each of the K responses the computation is made using the % RD of K and the magnitude of the residual S.D. will reflect this.

² Includes results for only specimens with \bar{a} > 140 mils.

* Significant at the 10 percent level

**Significant at the 5 percent level

NIST-114A	ILS DEPARTMENT OF COMMERCE	1. PUBLICATION OR REPORT MUMPER
(REV. 3-89)	NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY	NTSTTD 90 / 21/
		PERFORMING ORGANIZATION REPORTATION
	BIBLIOGRAPHIC DATA SHEET	3 RURUCATION DATE
		- FORECATION DATE
4. TITLE AND SUBTITL		
Eastona Sign	ificant to Proceeding of Procture Consistent	
Factors Sign	illicant to Precracking of Fracture Specimens	
5. AUTHOR(S)		
Charles G. I	nterrante and James J. Filliben	
6. PERFORMING ORGA	NIZATION (IF JOINT OR OTHER THAN NIST, SEE INSTRUCTIONS)	7. CONTRACT/GRANT NUMBER
U.S. DEPARTMENT	FCOMMERCE	
GAITHERSBURG, MD	E OF STANDARDS AND TECHNOLOGY	8. TYPE OF REPORT AND PERIOD COVERED
9. SPONSORING ORGA	NIZATION NAME AND COMPLETE ADDRESS (STREET, CITY, STATE, ZIP)	
-		
10. SUPPLEMENTARY NO	DTES	
DOCUMENT D	ESCRIBES & COMPLITER PROGRAM: SE-185 FIRS SOFTWARE SUMMARY IS ATTACK	IED
11. ABSTRACT (A 200-W	ORD OR LESS FACTUAL SUMMARY OF MOST SIGNIFICANT INFORMATION. IF DOC	UMENT INCLUDES A SIGNIFICANT BIBLIOGRAPHY OR
LITERATURE	Y, MENTION IT HERE.)	
The sig	nificance of four variables in the technique used	to precrack Charpy specimens
of metallic ma	terials is determined by analyses of seven respon	ses computed from results of
slow-bend Char	py V-notch tests. The variables include crack si	ze, stress-intensity factor
at the start o	f precracking (K _f max), notch preparation prior to	precracking, and material.
Values for the	crack-size factor range from a/W = 0.25 to 0.6.	Three levels of Kf max were
used and they	range from 0.2 to 1.2 times the value recommended	in ASTM Method E399. The
notch preparat	ion factor included three levels of root radius:	(1) a standard 0.25 mm
root-radius V-	notch modified by sharpening the root with a razo	r blade; (2) a machined, non-
standard V-not	ch of 0.125 mm root radius; and (3) a standard V-	notch modified by sharpening
to about 0.05	mm by electric discharge machining. The material	s included an aluminum alloy,
a maraging ste	el, and a titanium alloy. Three analytical metho	ls are used to determine the
significance o	f each of the test variables. These analyses are	conducted for each of seven
response param	eters (each represent alternative methods for eva	luations of fracture toughness)
that were eval	uated for each test. The results indicate that:	(1) All seven computed
responses are	linearly related to crack length and the sensitiv	ity to crack length is a
function of bo	th response parameter and material. (2) Precrack	ing at either very high or very
low levels of	stress-intensity factor, K _f , are to be avoided.	(3) The method of notch pre-
paration prior	to precracking does not significantly affect the	test response.
		a service a service of the service o
12. KEY WORDS (6 TO 12	ENTRIES; ALPHABETICAL ORDER; CAPITALIZE ONLY PROPER NAMES; AND SEPARA	ATE KEY WORDS BY SEMICOLONS)
Aluminum; Char	py; crack size; fatigue precracking; fracture tou	ghness; K _f maximum; Kruskal-
Wallis test, 1	inear regression; notch preparation; precracking;	statistical tests; steel;
stress-intensi	ty factor; titanium; slow-bend testing.	
13. AVAILABILITY		14. NUMBER OF PRINTED PAGES
UNLIMITED		88
FOR OFFICIAL	DISTRIBUTION. DO NOT RELEASE TO NATIONAL TECHNICAL INFORMATION SERVIC	e (NTIS).
ORDER FROM	SUPERINTENDENT OF DOCUMENTS, U.S. GOVERNMENT PRINTING OFFICE	15. PRICE
WASHINGTON,	DC 20402.	
ORDER FROM	NATIONAL TECHNICAL INFORMATION SERVICE (NTIS), SPRINGFIELD, VA 22161.	
ELECTRONIC FORM		
LECTRONIC FORM		

.