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ENHANCEMENTS TO THE VWS2 DATA PREPARATION SOFTWARE

1. INTRODUCTION

1. CONTENTS

This paper discusses enhancements made between September 1987 and December 1988 to

the data preparation software for the Vertical Workstation (VWS) of the Automated
Manufacturing Research Facility (AMRF) at the National Institute of Standards and

Technology (NIST). NIST was formerly the National Bureau of Standards.

Chapter II discusses the new methods which were developed for creating contour outlines.

The new methods allow graphical input for describing a contour outline, provide several

means of rounding the comers of a contour outline, and provide two methods for automatic

construction of a contour outline from a set of control points.

In the spring of 1988 the text system was totally rebuilt. Chapter m describes the new text

system. The new system provides all the capabilities of the old system (choice of fonts,

ability to make new fonts, variable height, etc.) plus: variable spacing, variable rotation of

individual characters, ability to locate text along a contour outline path, verification character

by character rather than by string, choice of round-bottomed or vee-bottomed style (using

ball-nosed end mill or engraver), lower case letters, and easier creation of new characters.

In addition, invisible to the user, the new system does on-line transformation of characters,

rather than using stored transformed characters. A new, much simpler method of

representing the shape of characters is used in the new system.

Chapter IV describes how tolerance information has been introduced into the design protocol

used in the VWS. It also discusses a new algorithm for cutting flat-bottomed holes, which

uses the probe on the machining center for in-process metrology. The new algorithm is used

to achieve higher tolerance on the diameter of a hole.

Chapter V discusses a parser that was added to the system. The parser reads a

PDES/STEP boundary representation file that gives the shape of a part and writes an

equivalent features file in the format used by the Vertical Workstation. By having the VWS
control system call the data preparation software (with the parser) automatically, pans

which the parser can handle (a subset of the family of pans that can be expressed in the

VWS design protocol) may be made directly from PDES/STEP files without human
intervention, once the command to make the pan has been given.

Chapter VI describes changes which have been made to the Pan Design Editor. Two general

types of changes were made: those necessary to have it work correctly to implement the

items presented in other chapters, and those which were implemented solely to improve the

Editor itself

Chapter VII describes an algorithm which has been added to the system for the smooth

three-dimensional sculpting of contour_grooves.

- 1 -
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Chapter Vin describes the file structure of the enhancements and how a VWS2 LISP
environment which includes the enhancements may be built and run.

2. AUDIENCE

The paper is intended to be useful to people interested in concepts and technical details of

the VWS, particularly researchers at Manufacturing Technology Centers using the VWS
software and AMRF personnel who are running the VWS or maintaining or improving the

software for the VWS. The paper is intended to be useful also to other researchers in

automated manufacturing. Knowledge of the computer language LISP and of machining is

useful but not essential to reading this paper.

3. BRIEF DESCRIPTION OF THE VWS2 SYSTEM

The VWS is a computer-integrated automated machining workstation. It includes a control

system, a computer-aided design system, an automatic process planning system, and an

automatic NC-code generator. The principal machinery is a machining center (Monarch
VMC-75 with a GE2000 controller) and a robot (Unimate 4070 with a Val 11 controller) to

tend the machining center. There is quite a bit of ancillary hardware. The system is

controlled from a microcomputer (Sun 3/160 with 8 Mb memory, BW monitor). Running in

stand-alone mode, it is possible to design and machine a simple metal part within an hour.

The VWS may also be run as an integrated part of the AMRF.

The software for the VWS is written in the Franz LISP dialect of the computer language

LISP. In this paper this software is called the VWS2 system. Seven principal modules

comprise the VWS2 system: the Production Management Operating System (the control

system), the State Table Editor, the Equipment Program Generator, the Part Design Editor,

the Process Planner, the Data Execution module, and the PDES/STEP boundary

representation parser. In addition to the principal modules, there are three sets of software

that serve several modules and may be thought of as subsystems: graphics, verification, and

data handling.

The Part Design Editor, Process Planning and Data Execution modules, as well as other

system capabilities, may be accessed by the user through a small user interface called

vws_cadm. Vws_cadm asks the user questions about what the user wants to do and then

activates the appropriate module or other capability accordingly.

To produce a part from scratch, the user creates a design. The Process Planner is then called

to write a plan for how to machine a part of that design. Next, NC-code is generated

automatically from the design and the plan by the Data Execution module. Finally the user

tells the control system to make the part The control system coordinates the activities of

the workstation equipment so that the part blank is loaded onto the machining center, the

NC-code is sent to the machining center and executed (making the part), and the finished

part is unloaded.

- 2 -
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Usable designs may be created either at the Sun workstation using the VWS2 Pan Design
Editor, which generates a feature-based design directly, or by creating a boundary
representation in PDES/STEP file format and using the Parser to extract a feature-based

design. In the AMRF, designs in PDES/STEP format may be created by doing the initial

design on a Computervision CADDS station, using "solid-design" (a constructive solid

geometry package), automarically extracting a boundary representation in AMRF standard

format, and automatically converting that to PDES/STEP format.

4. DEVELOPMENT fflSTORY

The VWS2 software was developed in the environment of the AMRF. In 1985 the

predecessor of the VWS2 system was demonstrated. It used a document which was a

combined design and process plan as its chief item of data. Development of the VWS2
system, which separates design from process planning, began in the fall of 1985. A working

version was demonstrated in June 1986. Development continued at a rapid pace through

September 1987. The system was documented in detail as it existed in September 1987.

Enhancements to the system were built from time to time until the end of 1988. Since then,

there has been almost no further development.

The overall architecture of the system was suggested by Mr. Charles McLean. The
Production Management Operating System and the State Table Editor were built largely by

Dr. Jau-Shi Jun with the assistance of Mr. McLean. The Equipment Program Generator was
built by Mr. Ibrahim Nakpalohpo with assistance from Dr. Jun. Dr. Jun built the initial

version of the Part Design Editor (with graphics routines written by the author). The
remainder of the system was built by the author with the assistance of Mr. W. Timothy
Strayer (summer 1987) and Ms. Rebecca E. Weaver (summer 1988).

The VWS2 software would not have been developed if there had not been a VWS to which

to apply it. The VWS hardware (and the software for its low-level control) was put together

by a group including Mr. Frederick Rudder, and Mr. Denver Lovett and originally headed by

Dr. Edward Magrab. In the past two years, Mr. Simon Frechette has also worked on the

hardware side of the VWS.

5. RELATED READING

This paper is one of about a dozen papers prepared as part of the AMRF documentation to

describe all aspects of the VWS. The others are [JUN], [KRAI], [KRA3], [KRA4],

[KRA5], [KRA6], [K&J2], [K&S2], [KR&W], [LOVE], [NA&J], and [RUDD]. Other

papers, prepared for professional meetings and journals, also describe the VWS [KRA2],

[KRA7], [KRA8], [K&Jl], and [K&Sl].

This paper is essentially an update of the collection of AMRF documentation papers given

above. In some cases it will be necessary to refer to those papers to get a clear picture.

The best overview of the VWS2 system is given in Software for an Automated Machining

Workstation [K&Jl], although some details given in that paper are now out of date.

- 3 -
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6. MISCELLANEOUS SYSTEM CHANGES

Two changes in the system have been made which do not fall in any other chapter of this

paper. For completeness, they are given briefly here.

Whenever the feature enhancement system is asked to enhance a feature, it now prints a

message which says whether it was successful or not. This change was made to keep the

user better informed of what the system is doing, particularly during operation of the Process

Planning module and early stages of the Data Execution module. TTie change also causes

the Design Editor to print more messages than it did previously.

The process planner now prints a message each time it attempts to find operations for

making another feature. This change was made to keep the user better informed of what the

Process Planning module is doing.

- 4 -
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n. CONTOUR OUTLINE METHODS

1. INTRODUCTION

The VWS2 design protocol includes three feature types (contour_pocket, side_contour and

contour_groove) that make use of a planar curve called a contour outline. Contour outlines

are discussed in detail on pages 63 through 69 of [K&J2], where they are called "defining

lines" for contour features. Contour outlines are the sole subject of [KRA8]. For full

understanding of this chapter, it is suggested that those references be read before continuing

here.

A contour outline is any continuous collection of straight line segments and arcs of circles

joined end to end. A contour oudine may be either open or closed. If a contour outline is to

be used to outline a portion of a plane (as it is in contour_pockets and side_contours), it

must be closed and must not intersect itself. Contour oudines were defined using straight

line segments and circular arcs because those are the path shapes that machining centers

can make with single commands.

Figure 1. A Contour Outline

Comers
1 (X 1.3 y2)
2 (X 2.0 y2.5 radius 0)

3 (X 2.6 y2.5 radius 0.6)

4 (X 2.6 yO.O radius 0.6)

5 (X 3.5 yO.O radius 0.6)

6 (X 3.68 yO.24 radius 0.0)

7 (X 5.0 yO.8)

A contour oudine is represented in the VWS2 design protocol by a "comers" data structure,

which specifies a frame of straight line segments plus the radii of any arcs in the outline. An
example is shown in Figure 1. The contour outline, which is shown with a black line, is open

and is made up of three straight line segments and two circular arcs. The frame, which is

shown with a wide grey line, includes seven comers, three of which are rounded. The

positions of the comers are given by x and y coordinates. Each arc that fits into a comer is

understood to be tangent to the sides of the frame that meet at the comer. The comers data

for the example is given in the figure. Comers which are rounded have a positive arc radius

specified, comers which are not rounded and are not ends of an open contour outline have a

- 5 -
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zero radius specified, and ends of open contour outlines have no radius (or a radius value of

nil).

The definition of a contour outline has not been changed in the VWS2 enhancements, but

several improvements have been implemented. There are now two distinct approaches to

constructing a contour outline: either by locating comers or by locating control points. These
changes have been completely integrated with the VWS2 system. Because the Process

Planner and Data Execution Modules and the Verification subsystem work with the

enhanced comers description when dealing with contour features, no changes in those pans
of the system were required for integration.

2.

MAKING CONTOUR OUTLINES BY LOCATING AND ROUNDING CORNERS

A contour outline may be defined by locating the comers of a frame and then specifying how
the comers are to be rounded. Comers may be located either by typing coordinates at the

keyboard or by using the mouse, according to whether the mouse is off or on, as described

below. Regardless of which device is used, the user has five choices while comers are being

located:

1. Add a comer at the end

2. Insert a comer before an existing comer
3. Change a comer
4. Delete a comer
5. Stop locating comers

After the user is done locating comers, there is a choice of five methods of rounding the

comers. None of these uses the mouse, regardless of whether it is off or on.

1. Specify a unique radius at each comer.

2. Use the same radius for all comers.

3. Let the system calculate radii automatically and specify a percentage to be applied to

all the system-generated radii.

4. Specify a unique radius at some comers, and let all other comers have equal radii,

the value of which is specified by the user.

5. Specify a unique radius at some comers, and let the system calculate radii

automatically for the other comers (again specifying a percentage to be applied to all

system-generated radii).

The default value of the radius of a comer is 0. The system distinguishes between a zero

written without a decimal point (0) and a zero written with one (0.0) for implementing

options 4 and 5 above. If the radius is given as 0.0, that means the radius should be zero. If

the radius is given as 0, that means the comer should be rounded automatically by the

method for "other comers". This distinction gives the user an easy method of specifying

sharp (zero radius) comers. In [KRAS] the logical value of "auto" is used for the radius of a

comer which is to be rounded automatically. This logical distinction is implemented by the

difference between 0 and 0.0.

- 6 -
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While the user is specifying unique radii, there are three choices:

1. Select the number of the comer for which a radius is to be given, and then assign a

radius, which may be a positive number, join_ahead, or join_back. The same comer
may be selected several times during the process if the user has a change of mind.

2. Stop assigning radii.

3. Undo the assignment of a radius to any comer. A list of the original radius at each

comer plus any assignment made by the user is kept during the process to allow

undoing. If the undo option is chosen, the user must then specify which comer
should be undone. If the user has changed the radius of a comer several times, the

undoer will roll back through each assigned value in reverse order.

The system performs many checks during the process, such as "Does that comer exist?" or

"Is there anything to undo?".

3. MAKING CONTOUR OUTLINES BY LOCATING CONTROL POINTS

The user may locate a number of control points near which a contour outline should pass and

then let the system extract a comers data structure for the outline automatically. Contour

outlines constructed this way are called "arc-splines". Two methods of constructing arc-

splines have been implemented: expert and easy. A full description of the both methods is

given in [KRA8]. Both methods require that the mouse be used to locate control points.

Allowing an option for using the keyboard to locate control points could have been

implemented in principle (in fact, experience has proved it would be very useful for making
fine adjustments of control points), but this has not been done.

The expen method is useful only for copying an existing line drawing, such as a signature. It

is called "expen" since it requires some expertise on the pan of the user, who must stan by

dividing the drawing into pieces, each of which is approximately an arc of a circle.

The easy method is useful either for copying an existing line drawing or for drawing from

scratch on the computer screen.

4. PICKING POINTS WITH A MOUSE

Point picking with a mouse has been implemented in the Design Editor for locating comers or

control points. The mouse is activated and deactivated by new user commands:
mon - to activate the mouse
moff - to deactivate the mouse.

When the user gives a "mon" or a "moff command, an internal flag is set in the Design

Editor, and the user is informed that the mouse is "on" or "off. Nothing else happens at that

time. Whenever the user elects to make any feature requiring a contour outline, however,

the keyboard must be used to define the outline if the mouse is "off and the mouse must be

used if it is "on". When the Design Editor is started up, the mouse is "off’. The mouse is

used in the usual way by pointing at a spot on the screen and clicking a button or two.

- 7 -
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When the mouse is being used to locate comers, the 5 choices listed earlier are indicated as

follows:

1 . Add a comer at the end (one click of the left or middle button).

2. Insen a comer before an existing comer (quickly click the left button then the middle
button). The user must use the keyboard to identify the existing comer.

3. Change a comer (two quick clicks of the left button). The user must use the

keyboard to identify which comer is to be moved.

4. Delete a comer (two quick clicks of the middle button). The user must use the

keyboard to identify which comer is to be deleted.

5. Stop locating comers (one click of the right button).

When the mouse is used to locate control points for either arc-spline method, the user has

six choices:

1. Mark a control point at the end of the list which should become a sharp comer (one

click of the left button).

2. Mark a control point at the end of the list that should lie on a smooth portion of the

final contour outline (one click of the middle button).

3. Move a control point and, if there is a choice, specify whether it is to be sharp or

smooth (two quick clicks of the left bunon). "^e user must use the keyboard to

identify which point is to be moved and whether it is sharp or smooth.

4. Delete a control point (two quick clicks of the middle button). The user must use the

keyboard to identify which point is to be deleted.

5. Insen a control point before an existing control point (quickly click the left button

then the middle button). The user must use the keyboard to identify the existing

control point and specify whether the new point is sharp or smooth.

6. Stop locating control points (one click of the right button).

5. SOFTWARE

All of the new software for contour outlines is in the design3 and geom3 directories, although

minor changes had to be made to existing functions in other directories to integrate the

methods fully. The names of the new functions are given in Table 1.

- 8 -
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Table 1. New Contour Outline Functions

designs directory geomS directory

center_from_3pts

comify_expert

comify_ez

gen_comers

get_contoiir

get_contour_parms

get_comer_radius

get_fast_button

get_k;eyboard_comers

get_mouse_comers

get_mouse_location

get_mouse_points

inflectp

peq)_at_pt2

specify_radii

check_comers

enhance_aux_global

enhance_cont_global

mid_direction

place_midpoint

- 9 -
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m. TEXT SYSTEM

1. INTRODUCTION

1.1. Characteristics of Old Text System

The old text system is described in detail in [K&J2] pages 59 to 62 and 77 to 84. The old

system had the capability to make upper case alphabetic characters plus the ten digits, a

period, a space and a dash. All characters were available in five different fonts: plain, round,

broad, italic, and angular. Letters could be entered in lower case, but they would be

converted to upper case for machining. Text was located by specifying values for the x and y
coordinates of the lower left comer of the text string, and the text string extended from the

left to right on the part, parallel to the x-axis. For verification purposes, the physical extent

of the text in the xy-plane was represented by a parallelogram with rounded comers which
just fit around the text. The only bottom style for text was "round", so that text was always

machined with a baU-nosed end mill. An easy-to-use (for LISP programmers) function was
written to make it simple to create new fonts, but was not made available from the user

interface.

The old text system was a stroke-based system, in which data for each character

represented instmctions for generating the strokes required in drawing or machining the

character. In a computer graphics language like Postscript, both raster fonts and stroke-

based fonts are possible. For machining, only stroke-based fonts are feasible.

1.2. Need for New System

In the spring of 1988, the Department of Commerce requested that a plaque be made for the

75 Anniversary of the Department. The draft design for the plaque included text arranged in

a circle, as well as small lower case letters. It was necessary to revise the text system to

provide for making this plaque. The revisions that were done went somewhat beyond what

was essential.

1.3. Related Enhancement

The capability to copy handwritten text was also added to the system during the year, but

this is accomplished by contour outline methods described in the previous chapter.

1.4. Characteristics of New Text System

The new system provides all the capabilities of the old system plus: variable spacing,

variable rotation of individual characters, ability to locate text along a contour outline path,

choice of round-bottomed or vee-bottomed style, lower case letters, and easier creation of

new characters. The new system is stroke-based, like the old one.

Three characters were added: apostrophe, comma, and star. The star is represented by an

asterisk in the text string in the design. It is machined as a five-pointed star.

- 10 -
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1.5. Invisible Changes

A number of other changes, invisible to the user, were made.

The data base for characters and fonts was revised. Formerly, each character was
represented by a set of points and a set of instructions for joining the points together. The
new system represents each character as one or more contour outlines. This allows the text

system to take advantage of contour outline routines developed for other purposes.

The old system stored a transformed version of each character for each font. The new system

does on-line transformation of characters, so that storage requirements are smaller.

In the new system, verification is done on each contour outline of each character, so that

exact, rather than approximate verification is done.

In order to provide for the rotation of individual characters, the transformations used to

convert the "plain" font to another font were changed. The old transformations required that

any straight portion of a character that was attached to an arc of the character be either

vertical or horizontal, in the plain font. The old transformations also required that any arc in a

character must be a quarter circle in one of four orientations. Specifically, the tangents to the

end points of any arc had to be either vertical or horizontal. The new transformations have

no such restrictions.

In the old system, the user could make a new font by a call to the "new_font" function.

Whenever new_font was run, it transformed all characters and stored them. If the user

asked new_font to attempt an impossible transformation by specifying an out-of-bounds

parameter, the font maker would change the parameter value to be in bounds. Once the font

was made, all characters could be used. In the new system, a new font is made by adding a

line to the "char_desc" file. No characters are transformed when the font is defined, so the

user does not get an early warning if a character is not transformable. Because of the limits

of certain transformations, most lower case letters which include any arcs cannot be used in

the "round" and "angular" fonts. If the user tries to design a pan using the Design Editor

which has a text feature that includes characters that are not transformable into the desired

font, the user is informed by the Editor which characters are not transformable.

1.6. Drawback to New System: Slowness

Because of the improved verification, the time taken for verification of a text feature when it

has a reference feature has increased substantially, perhaps by a factor of eight. When using

the design editor, a typical user will find the wait for verification of text features with

reference features irritating, but not intolerable.

A long text string will also take quite a while to enhance. Enhancement time is appreciably

less than the time required for verification just described.

Time required for drawing and NC-code generation has not changed appreciably.

- 11 -



VWS2 Enhancments

2. TEXT DATABASE

2.1. Introduction

The new text database, like the old one, has two formats: one for the file in which the

database is stored, and one for use in the active LISP environment. The file format is

designed for easy use by a human who understands the format, while the data in the active

LISP environment is formatted for easy and efficient handling by the VWS2 system.

2.2. Text Database File

2.2.1. Introduction

The text database file "char_desc" sets up the property list of "fonts" when it is loaded into

the LISP environment. Then the list is automatically reformatted.

2.2.2. Font Representation

The parameters required to transform a character into a new font (curve, hw_ratio, mirror,

radius, roundness, spacing, and tilt) are stored for each of the five fonts. Unused properties

may be omitted. TTie data for the plain font, for example (which does not use curve or

mirror), are:

(plain radius 0.1666666666666667 spacing 0.3333 tilt 0.0 roundness 0.6667 hw_ratio 1.5)

2.2.3. ASCII Table

An ASCII table gives the name of the character to be machined along with the ASCII value

for the representation of the character in a string. For example, the name of ASCII character

number 65 is "A", the name of ASCII character number 32 is "space", and the name of ASCII
character number 42 is "star".

2.2.4. Character Representation

The only other portion of the file is called "characters". For each character named in the

ASCII table, a list is given which represents (in a shorthand notation) the contour outlines

which comprise the character. The letters A, G and o will be used as examples to explain

the notation. A picture of letter "A" is shown in Figure 2a. The data in the file for the letter

"A" is:

A (((0 0 n) (3 6 0) (6 0 n)) ((1 2 n) (5 2 n)))
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Figure 2. Text Paths for Letters A, o, and G

b

Text Paths

A (((0 0 n) (3 6 0) (6 0 n)) ((1 2 n) (5 2 n)))

o(((0 0r) (0 3r) (3 3 r) (3 0 r)))

G (((2.5 2 n) (4.5 2 0) (4.5 0 r) (0 0 r)

(0 6 r) (4.5 6 r) (4.5 3 t)))

The frame of the path is shown with a thin

black line.

The character is shown with a thick grey line.

Notice that the data for "A" consists of two sublists. The first sublist describes the sides of

the "A" and the second sublist describes the crossbar of the "A". There are two sublists

because two separate passes with a cutting tool are required to make the character. The

first pass cuts from the bonom left to the top to the bottom right, and the second pass cuts

the crossbar. The system can handle any number of sublists, but most characters require

only one pass, and no character requires more than three passes. Thus, there are one to

three sublists.

Each sublist for a character consists itself of sublists, each of which has three entries and
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represents one comer in a contour outline. The first entry represents the x-value of the

comer, and the second the y-value. The range of values for x is 0 to 6, and for y is -2 to 6.

Negative values of y are used for letters with "descenders", such as lower case y or g.

The dimensions of the grid were chosen purely for convenience in designing characters. With
these dimensions, the radius of arcs in the plain font is 1 unit. Also, with this size grid, most
of the X and y values are integers, which is convenient. All upper case letters and all digits

are 6 units high.

The third entry in the sublist that represents a comer is one of the following four choices:

n - An n means that this comer is the endpoint of an open contour outline.

r — An r means that there is an arc in this comer, and the comer is not an endpoint.

All arcs for characters of a given height in a given font have the same radius.

0 - A 0 means that there is no arc in this comer, and the comer is not an endpoint.

t - A t means that this comer is at the end of an open contour outline and is the

endpoint of a straight line segment which should be trimmed back (after the fonting

transformations have been applied) to the point where the segment joins an arc at

the preceding comer. This oddity is explained later in this chapter.

Thus the very first sublist for the letter "A" (0 0 n), means that the first comer of the outline

is where x-0 and y=0, and the outline is an open outline.

The data for "o", which is shown in Figure 2b, are:

o (((0 0 r) (0 3 r) (33r)(30r)))

Since the first and last comers of "o" do not have "n" or "t" as the last entry, the contour

outline is closed. Unlike "A", which has no rounded comers, all four comers of "o" are

rounded.

The character "G", shown in Figure 2c, has the data:

G (((2.5 2 n) (4.5 2 0) (4.5 0 r) (0 0 r) (0 6 r) (4.5 6 r) (4.5 3 t)))

This is an open contour outline (since the last entries of the first and last sublists are "n" or

"t") in which most comers are rounded, but one (the second one) is not. Trimming is

required at the last comer.

2.3. Text Database in the LISP Environment

In order to be usable with contour outline routines, the text database is put into property list

format when it is brought into the LISP environment (i.e. active memory). The font

- 14 -



VWS2 Enhancments

information and the ASCII table are already in property list format, so they do not need to be

changed, but the character information is changed extensively. The representation of "A"
becomes:

A (A
max 1.0

grooves

(

(A

1 (1 X 0.0 y 0.0)

2 (2 X 0.5 y 1.0 radius 0)

3 (3 X 1.0 y 0.0))

(A

1 (1 X 0.1666666666666667 y 0.3333333333333333)

2 (2 X 0.8333333333333334 y 0.3333333333333333))))

The first change to notice is that all x and y values are one-sixth what they are in the file,

and that "x", "y", and "radius" are written out. Reducing x and y values makes the height of

upper case letters 1 unit, which is more convenient as a starting point for transformations. If

a comer had "n" in the file, no radius at all is listed in the LISP environment. A new
property, "max" has been added. This is simply the maximum value of x reached anywhere

on the character. It is used by functions in the text system which need to measure the length

of text strings. The value of the "grooves" property is simply a reformatted version of the

data in the file for the character. The comers of each contour outline making up the character

are numbered, starting with 1. The name of the character ("A" above) is inserted in several

locations for formatting and information carrying purposes.

The representation of "G" becomes:

G(G
max 0.75

grooves

(

(G

1 (1 X 0.4166666666666667 y 0.3333333333333333)

2 (2 X 0.75 y 0.3333333333333333 radius 0)

3 (3 X 0.75 y 0.0 radius r)

4 (4 X 0.0 y 0.0 radius r)

5 (5 X 0.0 y 1.0 radius r)

6 (6 X 0.75 y 1.0 radius r)

7 (7 X 0.75 y 0.5 trim t))))

2.4. Trimming a Character

Trimming was introduced to solve a problem with transforming arcs when a font is tilted,

which occurs when an open contour outline ends in an arc. Understanding the problem

requires understanding how tilting is done, which requires knowing how a contour outline is

constructed. This is described in detail in [K&J2] pages 63 through 66. The imponant facts
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are as follows:

The straight lines connecting successive comers of a contour outline make a "frame" for the

outline. The frames of the letters are shown with a thin black line in Figure 2 and Figure 3.

To tilt a character, first the frame is tilted, then any comers requiring rounding are rounded,

and finally, any dangling line requiring trimming is trimmed.

Rounding is accomplished by inserting an arc of the radius given in the font specification into

the comer, so that the arc is tangent to the sides of the frame.

Tilting a frame is accomplished by moving each comer of the frame horizontally (in the x

direction) by an amount equal to the tilt factor times the y-value of the point. In equation

form, this means:

^ne^ ~~ ^old

^new “ ^old ^ yold

Figure 3 shows the letter "G" again. On the left, the G is untilted. On the right, the G has

been tilted using a tilt factor of 0.25

Observe that the end of the arc at the upper right of the G is lower than the corresponding

end of the untilted G. The last straight segment of the frame for the G is used to locate that

arc, but then the remaining straight portion of the segment is trimmed away.

3. NEW TEXT PARAMETERS

3.1. Introduction

In the old text system, the following parameters were required to specify a text feature:

feature_type - must be "text"

text " a string giving the characters to use

lower_l_x ” the x-coordinate of the lower left comer of the text

lower_l_y -- the y-coordinate of the lower left comer of the text

height " the scie factor to be applied to the characters as defmed in the text database

(in the database the height of all upper case letters is 1)

depth — depth of cut

line_width - width of cut

Two additional parameters were optional:

font " the name of an existing font (normally one of the five fonts listed above). If no

value for font is given, the plain font is used.

reference_feature -- If the text is to be made at the bottom of some other feature, this

is the feature number of that feature.
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Figure 3. Tilting and Trimming the Letter G

On the left the character is untilted. On the right it is tilted with a tilt factor of 0.25.

untilted (((2.5 2 n) (4.5 2 0) (4.5 0 r) (0 0 r) (0.0 6 r) (4.5 6 r) (4.50 3 t)))

tilted (((3.0 2 n) (5.0 2 0) (4.5 0 r) (0 0 r) (1.5 6 r) (6.0 6 r) (5.25 3 t)))

The frame of the path is shown with a thin black line.

The character is shown with a thick grey line.

Observe that the end of the arc at the upper right is lower in the tilted character.

Four new parameters were added to allow more ways of locating and machining text:

bottom_type, rotation, text path, and spacing. Some of these parameters interact with other

parameters, as discussed below. The VWS2 Design Editor has been changed to take these

parameter interactions into account automatically, and prevent inconsistent values of the

parameters.

3.2. Bottom type

Bottom_type is a required parameter. The value of bottom_type may be either "round" or

"vee". If the bottom_type is round, the depth and line_width of the text determine the radius

of the tool which cuts the text. If the bottom_type is "vee", the angle of the vee is assumed

to be 90 degrees, so that line_width must be twice depth.
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3.3. Rotation

Rotation is an optional parameter. If it is used, its value must be a number. This is the

number of radians which each character should be rotated counterclockwise after it has been
placed either by locating the lower left comer of the text or by specifying a text path. If text

path is specified, the total rotation of any character will be the rotation resulting from the text

path plus the rotation given by the value of the rotation parameter. Each character is rotated

about the lower left comer of the character (the origin of the coordinate system used to

describe the character in the database).

3.4. Text Path

The new system allows the user to specify a path by creating a contour outline (open or

closed). Then the characters of the text will automatically be placed along the outline by the

system. In the old system, the user specified the location of a text feature by providing the

coordinates of a point at the lower left comer of the feature. This method of placing text is

available in the new system as the first option offered to the user.

The user indicates the desire to use a text path by entering "n" instead of a number when the

design editor prompts for an x-value for the lower left comer of the text. The system then

uses the routines described in chapter n of this paper to have the user specify a contour

outline to use as a text path.

The format of a text path in the database is a property Ust with the properties feature_type,

comers, and optionally, one of: rounding, easy points, or expert points. The value of

feature_type is always contour^oove, for the benefit of the enhancement system. An
example is shown in Figure 4.

Figure 4. Text Path Data

(text__path

easy„points (comers

1 (1 X 4.282 y 1.196 sharp t)

2 (2x 4.998 y 1.462)

3 (3x 5.814 y 1.462)

4 (4x 6.48 y 1.146 sharp t))

comers (comers

1 (1 X 4.282 y 1.196 radius nil)

2 (2x 4.61690 y 1.39115 radius 2.23246)

3 (3x 5.45552 y 1.54704 radius 1.76248)

4 (4x 6.18068 y 1.37500 radius 1.74767)

5 (5 X 6.48 y 1.146 radius nil))

feature„type contour_groove)
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3.5. Spacing

Spacing is an optional parameter. If it is used, it must be a number. This is the actual

amount of space to be left between consecutive characters, and is not scaled.

3.6. How the New Parameters are Used

3.6.1. Introduction

In the new system, parameters are used in different ways according to their values. The
method of locating the text (either by its lower left comer or by a text path) is a major

determinant of how the parameters are used. As noted earlier, the design editor works to

prevent the user from entering inconsistent sets of parameter values. Figure 5 shows six

variations of the text "Machine", all with the same font, depth, line_width, and bottom_type.

In Figure 5 the text path has been drawn for those features which use it, but the text path

would not normally appear on the finished part or on the drawings prepared by the system.

Figure 5. Various Text Location Methods

3.6.2. If Text Located by Lower Left Comer

If there are non-nil, numerical values for the "lower_Lx" and "lower_l_y", that indicates that

location is to be done by the lower left comer. In this case, the text is placed horizontally

from left to right with the origin of the first character of text at the given point. If the user has

provided a value for spacing, that amount of space is left between the end of one character
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and the origin for the next character. If spacing has not been specified by the user, the

system uses the value for spacing g; . in the font data, scaled by the value of the height

parameter for the feature. If there is a numerical value for the rotation parameter, each

character is rotated as described above. The three features on the right of Figure 5 are

located using the lower left point. They all have the same height. At the bottom, spacing is

not used as a parameter, so the default spacing is used. In the middle, a value for spacing

has been used (0.2) which is slightly larger than the default spacing. At the top, spacing is

also 0.2, but a value of pi/2 radians has been used for rotation.

3.6.3. If Text Located by Text Path

If a text_path is given, the user may omit specifying both height and spacing or may specify

one of the two, but may not specify both. The system uses values of these parameters to

calculate appropriate attachment points for each character along the text_path.

If neither height nor spacing has been specified for the text feature, the height is determined

by dividing the length of the text path by what the length of the text (written in a straight

line) would be if the scale were 1 and the default value of spacing were used. This method is

shown at the upper left of Figure 5.

If the height of the text is given, spacing is calculated by subtracting the total width of the

scaled-up characters from the length of the text path, and dividing what is left into equal

parts. This method is shown at the middle left of Figure 5, where a small height has been

used, resulting in widely spaced characters. If a large height were used, spacing would be

negative, resulting in overlapping characters.

If the spacing of the text is given, the height is found by dividing the length of the text path

minus the total space required between characters by what the length of the text (written in

a straight line) would be if the scale were 1 and no spacing were used.

4. ENHANCING TEXT

4.1. Introduction

The new method of representing text was designed to take advantage of existing routines in

the VWS2 system for handling contoiir_grooves. Thus, the enhancement of text features is

performed in part by functions for enhancing contour_grooves, and the data structures

produced are structures which may be fed to routines for drawing, verifying, and machining

contour_grooves.

The basic idea of enhancement, as described in section 2.7 of [K&J2] is to add a lot of

derivable information to the description of a feature which will be needed by various modules

and subsystems of the VWS2 system.

A text feature is enhanced by the "enhance_text" function. It performs two types of

enhancement and then calls either "enhance_textl" (if the text is placed by giving a text
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path), or "enhance_text3" (if the text is place by locating the lower left-hand comer). Both
of these functions determine the placement of individual characters and then call

"enhance_char" to enhance them.

4.2. Enhance text Function

The enhance_text function adds the parameter "text_list" to the description of the feature.

The value of text_list is a list of names of characters given by the ascii_table corresponding

to the string which is the value of the "text" parameter. For example, if "text" is "A-b", then

"text_list" is (A dash b).

Next the function adds the parameter "tool_diam". If the text depth is less than half its

width, then the value of the parameter is calculated to be the diameter of an arc which will go

to the given depth of the feature while passing across the given width. Otherwise, the value

is equal to the width.

Finally, the function calls enhance_textl or enhance_text3.

4.3. Enhance text3 Function

The enhance_text3 function calculates the coordinates of the lower left-hand comer of each

character by starting at the lower left-hand comer of the text and going through a loop in

which the x-coordinate for character n is found by the adding the width of character n- 1 to the

space between characters. The y-coordinate of the comers is the same for all characters.

Once the location of the comer of a character is found, enhance_char is called to enhance the

character.

4.4. Enhance textl Function

The enhance_textl function calls "make_loc_list" to generate a list of the comer location and

rotation of each character, and then calls enhance_char. Make_loc_list finds comer locations

by calling "make_loc_sizes" to generate a list of distances between characters, and then

laying off those distances along the text path. Make_loc_list finds rotations by finding the

line between the comer of the character and the point on the text path which is farther down
the path from the comer by the width of the character.

4.5. Enhance char Function

A character is enhanced by enhancing each contour_groove that makes up the character. A
contour_groove is enhanced by transforming the frame of the groove, calculating the contour

outline that corresponds to the transformed frame, recalculating arcs of the outline if the

"curve" parameter is used, and trimming the ends the outline (if required). A frame is

transformed by transforming each comer of the frame. A comer of a frame is transformed as

follows:
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1 . If the font is a mirror font, mirror the comer about a vertical line through the middle.

2. Move the comer to the left or right, according to the height-to-width ratio of the font.

3. Scale the comer according to the height of the text feature.

4. Rotate the comer according to the rotation of the character.

5. Translate the comer according to the location of the character.

6. If the comer is to be rounded, calculate the radius value as the radius for the font

scaled by the height of the text feature.

5. ADDING A NEW CHARACTER

In the new system, adding a character is done by using a text editor to edit the '’char_desc"

file. The text path for the new character is added to the "characters" section of the file, and

the decimal vdue of the ASCII character chosen to represent the new character in text

strings is added to the "ascii_table" section of the file.

It is occasionally desirable to use a name rather than the character itself to represent the

new character in the "char_desc" file. If the new character has a special meaning to the LISP
reader, then it is essential. The "space" character (ASCII 32) is an obvious example of this.

It goes by the name "space" in the file.

To add the '\" character to the system, for example the line "backslash (((0 6 n) (4 0 n)))"

would be added in the characters section, and the line "92 backslash" would be added to the

ascii_table section. After the file was changed, it would be loaded into the LISP
environment. Then, for example, if a text feature had "a\b" as the value of the "text"

parameter, it would be handled correctly by the system in all respects (drawing, verification,

NC-code generation, etc.) with no further action by the user.

It is not necessary that the ASCII character chosen to represent the new character be the

normal printed version of the character, but if there is a normal printed version, it is sensible

to use it.

6. SOFTWARE

Software for the new text system has been placed in several vws3 subdirectories, as shown

in Table 2.
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Table 2. New and Revised Text System Functions

design3 geom3

change_text change_curve

get_text_panns enhance_char

select_font enhance_text

enhance_textl

verf3
enhance_text3

make_loc_list

mill text test
make loc sizes

ref_text_out
rot_pt

verify_text

exec3 draw3

text nc draw text
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IV. TOLERANCE INFORMATION

1. INTRODUCTION

In the development of the VWS2 system, it was clear from the outset that provision would
have to be made for producing parts within the tolerances specified in the design. In the

initial implementation, however, the principal objective was to get the system to make parts

automatically to nominal dimensions. Thus, before spring 1988, the VWS2 system had no

place for tolerance information.

When NIST machinists began to use the system in the spring of 1988, the initial

implementation of the system was completed, and the need for dealing with tolerance

information became more urgent. Two types of tolerance information were added to the

system: hole center tolerance and hole diameter tolerance. Both are fully integrated: the Part

l3esign Editor includes them in its dialog with the user, the verification system checks them,

the Process Planning Module prepares different plans according to their values, and the Data
Execution module writes NC-code for them.

2. HOLE CENTER TOLERANCE

On a machining center, the machining happenstance most likely to produce a significant

deviation from the design (when the NC-program and setup are correct) is the "walking" of

drills. When a drill "walks" before a hole is started, the location of the center of the hole may
be significantly far from the correct location, the drill will cut a hole whose axis is not

perpendicular to the surface of the part, and the bending of the drill may shorten its useful life

or break it. It is the normal practice of machinists to prevent drill walking by center drilling a

hole with a stiff tool before drilling it.

The VWS2 system already had a center drilling operation available for use in process plans

and NC-programs, but the Process Planning module did not make use of the operation. In

order to make use of the center drilling operation, it was necessary to edit the process plan

by hand on a text editor. This is a tedious job because it requires renumbering other steps of

the plan and changing precedence requirements in addition to adding new steps. There were

easier methods of getting the system to do center drilling, but they involved working around

the system, rather than through it. An additional drawback of center drilling was that the

modeling system ignored it and the drawing system did not draw it

The system was changed so that the Design Editor asks the user to choose a value for

center_tolerance when the user is describing a hole. The value for center_tolerance is either

"med" or "hi" (short for medium or high). During process planning, if the hole is to be drilled,

the Process Planning module checks the value of center_tolerance. If its value is "hi", a

center drilling operation is added to the plan. If not, no additional operation is added. The

depth of center drilling is computed automatically, based on the diameter of the hole and the

depth of the hole.
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When the Data Execution module is run, a center drilled hole is added to the model of the

part when the center drilling operation is carried out. If a hole with "hi" center_tolerance is to

be drilled, the system will not allow the drilling unless the hole has already been center

drilled. When the drilling operation is carried out, the center drilled hole is removed from the

model, and the drilled hole is insened. Similarly, the drawing system draws the center drill

hole at the appropriate time and removes it at the appropriate time.

The value of center_tolerance has no effect on the handling of holes which are to be milled

rather than drilled.

3. HOLE DIAMETER TOLERANCE

When it is run on the machining center in the Vertical Workstation, the pocketing algorithm

that has been used to mill flat-bottomed and through holes in the VWS2 system will make
holes that are quite round and are within about 0.005 inch of the correct diameter, as long as

the end mill used to do the cutting is the right diameter. This algorithm will not hold diameter

tolerances to less than 0.005 inch, however, and if the tool is the wrong size, the error in the

diameter of the hole can be expected to be at least as large as the error in the diameter of the

tool.

Close tolerances can be achieved by counterboring and/or reaming, but that requires a tool of

the same size as the hole. It is desirable to be able to make high tolerance holes of various

diameters without getting a new tool for each diameter. Compensation can be made for tool

diameter errors by measuring each tool and using the tool radius compensation feature of the

machining center, but this requires a significant amount of extra work.

It was decided to approach this problem through "in-process metrology", using the touch

probe already being employed for part location in the VWS2 system.

A design parameter for holes named "diameter_tolerance" was added to the system. The
value of diameter_tolerance may h>e "med" or "hi". The Part Design Editor was changed to

ask for a value for the parameter. A new machining work element named "mill_hole_probe"

was created. The Process Planning module was changed to select mill_hole_probe for

making holes with flat bottoms or no bottoms, if the diameter_tolerance is hi. The tool

selection function was changed to select an appropriately sized end mill for the new
operation. A new NC-code generation function was added to the Data Execution module to

write a block of code for carrying out the operation. No change was required in modeling,

verification, or drawing, because the nominal geometry produced by the operation is no

different from the nominal geometry produced by the old algorithm.

The new operation works by cutting a hole slightly smaller than the final hole, measuring the

diameter of this smaller hole with the probe, computing the difference between the intended

value and measured value of the diameter of this smaller hole, and changing the diameter of

the tool path for the final cut by this difference from what it should be in the absence of any

errors.
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Experiments cutting several holes of the same size with the same tool using the new and old

algorithms were conducted. The new operation holds tolerances to about 0.001 inch, even if

the tool is not quite the right diameter. This is a substantial improvement over the old

algorithm.

A separate paper discussing the new algorithm in more detail has been written [KRA7].

The value of diameter_tolerance has no effect on the handling of holes which are to be drilled

rather than milled.

4. DISCUSSION

4.1. Why '*med" and '*hi"?

In the design of parts to be used, tolerances are expressed as numerical requirements, not as

"med" or "hi". Why are "med" and "hi" being used?

The answer is that the quantitative effects of using different processes have not been fully

characterized. It is clear, for example that center drilling produces better center tolerances,

but the amount of improvement has not been measured. It seems likely that the amount of

improvement will vary with the length and diameter of the drill, with the type of material

being drilled, and with the specific machine and drill doing the drilling.

Under these circumstances, it would be misleading to use numbers for tolerances. When a

process has been well characterized, it will be reasonable to use numbers rather than words

to give tolerances. Then the Process Planning module would use knowledge about the

machine for which the plan is intended and knowledge about various processes to construct a

plan that can be expected to produce a finished part that meets the tolerance requirements of

the design. Until that time, it seems undesirable to create the impression that a particular

numerical tolerance can be satisfied.

In the case of hole diameter tolerance, enough experimental data has been gathered that it

might be reasonable to start using numerical tolerances.

4.2. The Future of Tolerance Information

It is feasible to add tolerance properties to the design protocol for many additional types of

tolerance requirements. It is also feasible (although a lot of work) to integrate these

tolerance properties as described above. This should be done.

It will be more of a challenge to add tolerance requirements that pertain to only a portion of a

feature (such as one face of a pocket). It is not clear whether standard methods of

expressing tolerances can be used.
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V. BOUNDARY REPRESENTATION PARSER
1.

INTRODUCTION

PDES (Prcxluct Data Exchange Specification) is a national project developing standards for

exchange of complete product model data. One of the PDES data formats is the PDES/STEP
boundary representation (B-rep) of the design of a pan. As its name implies, a boundary

representation describes the outer surface, the boundary, of the pan. Before the parser was
built, the Vertical Workstation had been able to produce pans automatically from a feature-

based design for some time, but was lacking a tie-in to design information prepared in other

formats. The parser, called the "VWS2 B-rep Parser", provided that tie-in. The description

"parser" may be inadequate, since what it actually does is (i) reformat the B-rep into an

easy to use form, (ii) recognize features from the new B-rep, and (iii) put the features into a

design. The parser is described in detail in [KRA6], except for the information about the

software which is given at the end of this chapter.

The VWS2 B-rep Parser produces a VWS2 design file with five types of features:

side_contour, contour_pocket, straight..groove, pocket, and hole. The only lx)ttom type of the

parsed features is flat. No subfeatures are parsed.

The input file is a boundary representation in PDES/STEP format. Six stages are used:

1. Convert the STEP format file into a very similar LISP-readable boundary

representation file. Then read the new file into the LISP environment to set up a

simple data structure in active memory.

2. Reformat the simple (but hard-to-use) LISP data structure into easy-to-use

hierarchical property list format. This property list is another boundary

representation, which we will call the VWS2 B-rep.

3. Parse the VWS2 B-rep into features which are either side_contours or

contour_pockets. Parsing consists of identifying groups of faces of the pan which

may be identified with single features. The parsing process should account for all

faces of the pan (with minor exceptions).

4. Take the list of features extracted in stage 3 and the design_id given by the user and

make a property list which is a complete design.

5. Examine the features which are contour_pockets to see if they qualify as

straight_grooves, holes or pockets, and change the representation of any that qualify.

6. Print the design into a file.

The parser is not available from the vws_cadm user interface. It may be used from LISP by

calling the "brep_to_features" function or the "brep_to_nc" function. The former performs the

six steps listed above. Brep_to_nc was designed to be called from the VWS control
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system. The function takes the name of an existing B-rep file and the name of the NC-
program it should write as arguments. It starts up the VWS2 system as a child process, and
sends a series of commands to the child process which do the following:

1. The B-rep file is converted into a VWS2 features design file named "demo_design"

by the VWS2 B-rep Parser.

2. The "reformat_for_demo" function chooses one of two block-shaped workpieces as

raw stock for cutting the part and reformats the design for the block chosen.

3. A process plan for the VWS2 machining center is generated from the features design

file and a tool catalog by the Process Planning Module. The plan is written to a file

named "demo_.plan".

4. An NC-program of the given name for the VWS2 machining center is generated from
the features design file, the process plan, and a current tooling database by the Data

Execution Module.

2. SOFTWARE

The software for the parser is all in the pdes3 subdirectory of the vws3 directory. With one

exception, it is all written in Franz LISP. A classification of the roles the LISP functions play

is given in Table 3. The one exception is "lex_brep'’, which is an executable file built using

the "lex" utility, one of the standard utilities provided with the Sun computer. This utility

performs the initial transformation of the B-rep file into a LISP-readable file by simple swaps

of character strings.
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Table 3. VWS2 Brep Parser Functions

reformat B-rep before recognize features

recognizing features in reformatted B-rep

find_face_pairs delete_loop2

rind_horiz_faces horizontal_line

find_tum paired_loops

find_ul_edg parse_dep

find_ul_edges parse_depressions

find_vert_faces parse_features

order_edge_loops parse_side_contours

order_loops remprop_list

reformat_arc tum_test

reformat_brep vertical_line

refonnat_cyl vert_face_adjoins

reformat_edges

reformat_faces

reformat_loops
put features into a design

reformat_plane

reformat_vertices
mak;e_design

revise_cp

convert B-rep edge loops

to VWS2 contour outlines

revise_design

save_design

common_end
extract_arcs

reformat design

for specific workpiece

extract_circle_comers

extract_extra_comers

extract_comers

reformat_for_demo

rotate_design_90

rotate_feat_90
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VI. DESIGN PROTOCOL AND PART DESIGN EDITOR

1. DESIGN PROTOCOL

A number of changes have been made in the design protocol. Contour outline improvements
are described in detail in Chapter II, text changes in Chapter HI, and hole changes in Chapter

IV. In addition, a bottom_type option has been added to straight_grooves. The changes are

summarized in Table 4.

Table 4. Summary of Design Protocol Changes

Feature Type Parameter Value Comments

contour_groove

contour_pocket

side_contour

easy_points

expert_points

list of control points

list of control points

New optional parameters.

They are alternatives.

See Chapter II.

hole center_tolerance

diameter_tolerance

hi or med
hi or med

New required parameters.

See Chapter IV.

straight_groove bottom_type round, flat, or vee vee is a new option

text bottom_type round or vee New required parameter.

Formerly only round bottom.

See Chapter in, sec. 3.2

text_path text_path structure New optional parameter.

Must have either text_path

or lower_l_x and lower_l_y.

See Chapter IH, sec. 3.4

rotation number New optional parameter

See Chapter IH, sec. 3.3

spacing number New optional parameter

See Chapter IH, sec. 3.5
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2. PART DESIGN EDITOR

2.1. Introduction

Changes in the Part Design Editor were of the following types:

1. revising existing commands
2. adding new commands
3. adding graphical input methods for contour outlines

The graphical input methods were described in Chapter II.

The files "pde_plist.l" and "features_list.l" which set up the property lists of "pde" and

"FEATURES_LIST" (data stmctures used by the Editor) were changed extensively to

implement all three types of changes.

The Design Editor tutorial which appeared in [KRA5] has been revised to correspond

exactly to the current working of the VWS2 system. It is appendix A to this paper.

2.2. Revised Commands

2.2.1. Change Feature ("c" on the Editor menu)

The "c" command for changing a feature has been altered. Now when the user is finished

changing a feature, the user is asked whether to save the changes or leave the feature the

way it was. This makes it easier to recover from errors or reconsider changing a feature.

Specialized routines have been written for changing some feature types so that users cannot

create invalid features. For example, if a straight_groove or text has a vee-shaped bottom,

when the depth of the feature is changed, the width is automatically reset to twice the depth

(since a bottom angle of 90 degrees is assumed). As another example, if a text feature has a

non-nil value for lower_l_x, the value of lower_l_y must also be non-nil, and the value of

text_path must be nil, or the system will not allow the user to stop editing the feature.

2.2.2 New Design ("new" on the Editor menu)

When the user starts to make a new design, the Editor asks the user for the name,

description, block size, and material, as it did previously, but it no longer enters a loop for

inserting new features after that Rather, the user must now give the command "i" each time

it is desired to make a new feature.

-31 -



VWS2 Enhancments

2.3. New Commands

Three new commands were added to the Design Editor menu: code, mon, and moff. The last

two of these were described in Chapter H, section 4.

The code command generates an NC-program named demonc for machining the design

currently being edited. It assumes the following:

1. The raw stock will have the dimensions of the block specified in the design.

2. The raw stock will be made from the material specified in the design.

3. Machining will be done in the vise.

The process plan which is generated as an intermediate step is named demo_plan, and must

not already exist. A file named demonc must also not exist in the directory in which the

VWS2 system is mnning.
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Vn. SCULPTED CONTOUR GROOVES

1. INTRODUCTION

An algorithm was devised and implemented in the VWS2 system for making sculpted

contour_grooves. A sculpted contour_groove is one which varies in depth. The sculpting of

vee-bottomed grooves causes the width of the groove to vary with the depth, and may be

used to create very attractive engravings.

Figure 6. A Part With Sculpted Contour Grooves

This is a three-dimensional realization of the logo of Johann Sebastian Bach
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Figure 6 shows a photograph of a part that was machined in the VWS using this algorithm.

The part is a three-^mensional realization of the logo of Johann Sebastian Bach. It consists

of the initials "JSB" written in script and rewritten in mirror image, surrounded by leaves, and

placed under a crown. The six initids have been sculpted.

Only a few days were spent on software for sculpting, and it is not integrated with the

VWS2 system. The Design Editor, Process Planner, Graphics subsystem, and Verification

subsystem know nothing about it. Hence, few NC-programs have been written which

include sculpting. In order to use the system in its current form to sculpt a contour_groove, a

text editor must be used to add three parameters and their values to the description of the

contour_groove in the design file. Alternatively, the parameters may be added to the design

in the active LISP environment by LISP function calls. The three parameters are:

depth_min - the minimum depth of the groove (the existing depth parameter is used as

the maximum depth).

ramp_angle - the angle (in degrees) of slope of the bottom of the groove (when it is

sloping) with respect to a horizontal plane.

min_rad - if the radius of a comer is less than min_rad, the comer is considered to be

tight.

As shown in Figure 7, there are two cases of ramping. The groove may reach full depth

(along line BC of the groove in the upper half of the figure, for example) or it may ramp down
for half the length of the groove (to point B of the groove in the lower half of the figure, for

example) and then ramp back up again without ever having reached full depth. The figure

shows simple straight_grooves, but the same concepts apply to a complex curved ones. The
joints at points A, B, C, and D in the side views of the grooves are sharp comers, as shown.

If the ramp_angle is kept small, however, the comer or comers at the bottom of the groove

will not be perceptible. The ramp_angle for the part in Figure 6 was two degrees for all six

grooves, and the lx)ttom comers cannot be discerned
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Figure 7. Sculpted Contour_Grooves

Top View

^

min depth depth ramp angle Side View

J 1 V
1

t , B C

In this case the full depth of the groove is reached.

Top View

In this case the full depth of the groove is not reached.
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2. SCULPTING ALGORITHM

The first principle behind sculpting is that the groove will look best if it is narrow at the ends
and gradually widens as the middle is approached, but the width should not exceed some
maximum.

As mentioned earlier, sculpted grooves are normally vee-bottomed. The bottom angle of the

vee is taken to be 90 degrees, so the width of the groove is twice its depth. The width may
be controlled by controlling the depth. To make the groove widen at a constant rate, it

suffices to make it deeper at a constant rate. This is a motion a 3-axis milling machine can

produce, either by changing the depth of cut linearly while moving along a straight line in the

xy-plane (a gl command), or by changing the depth of cut linearly while moving along a

circular arc in the xy-plane (a g2 or g3 command). The gl, g2, and g3 commands are required

for making unsculpted grooves in any event. The sculpting is produced by adding a z value to

the arguments to those commands.

The same effect could be produced by other tool paths, an arc of a circle in a plane tilted

slightly from the xy-plane, for example, but there are no simple instructions to direct a 3-axis

milling machine to follow such a path, and there is no data structure in the VWS2 design

protocol for expressing such a path.

The second principle behind sculpting is that the groove should be at its narrowest (and

hence its shallowest) whenever it reaches a sharp comer, and whenever it is making a tight

bend. This is so that the comer or bend is not obliterated by the width of the groove.

Detailed features require fine lines.

The detailed geometric information needed to specify the sculpting of each arc and straight

line segment of a groove is generated in two phases, at the time the contour_groove is

enhanced.

In the first phase the make_ramp_sizes function makes a list of the lengths of those portions

of the groove which are to be sculpted. It follows along the contour path from comer to

comer, and checks the radius at each comer. If the radius in any comer is less than

"min_rad" (one of the three parameters provided by the user), the groove should be at it

minimum depth as it passes around that comer. The make_ramp_sizes function stans at

comer 1, which must be a minimum depth comer. Measuring the length of a portion that is to

be sculpted starts at the end of the first non-tight comer encountered and continues until a

tight comer or the end of the groove is reached. The letter B in Figure 6, for example,

includes three portions which are individually sculpted, as well as two portions (in the two

closed loops) which are made at minimum depth and are not sculpted. The function does not

generate any data about the minimum depth portions, however.

In the second phase, the enhance_cg_ramp function makes another pass around the groove,

placing markers at the points where ramping down and up should begin and end, and putting

depth information into the data for each comer. The list of lengths is used by

enhance_cg_ramp in this pass, so that it does not have to look ahead.

- 36 -



VWS2 Enhancments

3. ALTERNATE SCULPTING ALGORITHMS

The sculpting algorithm just described was devised for the specific purpose of being able to

machine the J. S. Bach logo so that it would look the way it does in Figure 6 - a purely

esthetic criterion. The algorithm has been applied to other contour_grooves with comparably

good esthetic results.

Handwritten script text may be copied and machined as contour_grooves using the methods

described in Chapter n of this paper. Such grooves may be sculpted with the existing

sculpting algorithm. The esthetic results are terrible. Because script characters are joined

together at the bottom with wide loops, script characters are very bottom-heavy if sculpted

by this algorithm. Other algorithms are required for attractive sculpting of text. None has

been tried.

4. SOFTWARE

The sculpting software consists of two functions (enhance_cg_ramp and make_ramp_sizes)

for enhancing sculpted grooves in the proc3 directory and one function (cg_sculpt) for writing

NC-code to machine them in the exec3 directory.

Because sculpting is fully three-dimensional, while the rest of the VWS2 system is two-

and-a-half dimensional, writing the software required for full integration would be a major

challenge. Making sculpting reasonably user-accessible in even the most primitive way
would be a time-consuming exercise.
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Vin. FTLES AND LISP ENVIRONMENTS

1. LISP ENVIRONMENTS

1.1 Intrcxiuction

The VWS2 system is usually run in two separate LISP environments. One contains the data

preparation software developed by or under the direction of the author, including the Design,

Process Planning, Data Execution, and PDES/STEP Parser modules, the graphics,

verification, and data handling subsystems, and the vws_cadm user interface. The other

contains the software developed by or under the cognizance of Dr. Jun, including the Control,

State Table Editor, and Equipment Program Generator modules. This environment also

includes communications upwards to the AMRF data system and Cell controller via common
memory and downwards via RS-232 standard connections to an HP-9000 computer which
supervises all other hardware. A portion of the data handling subsystem built by the author

is used in this second environment, as well.

The version of Franz LISP which has been used puts an upper limit on the size of an

environment which does not permit building a single environment with everything in it. It

should be feasible to rebuild Franz LISP with a larger size limit and load all software into it,

but this has not been tried.

The two environments may be run simultaneously, and often are. Moreover, commands may
be passed from one environment to another. Commands are passed from the control

environment to the data preparation environment when making parts directly from
PDES/STEP designs. When both environments are running, only one should be actively

executing instructions at a time; the other should be quiescent If both environments are

actively executing, they tax the size of RAM memory, the operating system spends most of

its time paging between virtual memory and RAM, and the system slows to a crawl.

A third LISP environment, which contains only the data preparation software needed to run

the Design Editor, and is 0.7 Mbyte smaller than the complete data preparation environment,

is also maintained for editing complex parts. Editing a complex part with the graphics

subsystem mnning causes the SunCore graphics system to use megabytes of storage space,

which quickly fills up the complete environment, which then shuts itself off.

1.2 Running the LISP Environments

1.2.1. Introduction

The control LISP environment and the complete data preparation environment may each be

started by giving a single command at the Sun terminal after logging in. The single command
is a UNIX command which changes directories appropriately and then starts a suntools

window system, specifying a window description file which not only sets up windows, but

also starts a LISP environment in the appropriate window. The LISP environment is set up

so that when it starts, it loads a "patch" file containing any changes put in place since the
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environment was built, and then it starts the user interface to the system.

1.2.2. Control Environment

To start the control environment, log in as "jun" and give the command "vc" (a UNIX alias

which stands for vws control) when a prompt appears. This changes directories to

~jun/vws3 and starts suntools with the window description file "vws.windows". In the

command window which appears at the upper left of the screen, the LISP environment named
"vws" is started. It uses the patch file "p.I"

To stop the control environment, enter control-C in the command window once, twice, or

thrice until a LISP break is announced on the screen. Then enter "(exit)". When LISP exits,

use the mouse to stop suntools, and finally log out.

1.2.3. Data Preparation Environment

To start the data preparation environment, log in as "kramer" and give the command "vws2"

(a UNDC shell script) when a prompt appears. This changes directories to ~kramerA^ws2
and starts suntools with the window description file "vws2_windows". In the command
window labelled "LISP", which appears at the lower left of the screen, the LISP environment

named "vws2_lisp" is started. Because the LISP variable "user-top-level" was set to

"start_vws2" when the environment was built, the LISP function start_vws2 is executed

when the environment starts running. That function loads the patch file "patch.l", sets user-

top-level back to the default value of nil, and starts up the vws_cadm user interface.

To stop the data preparation environment, .enter "q" in the command window to exit from

vws_cadm, and then enter "(exit)". When LISP exits, use the mouse to stop suntools, and

finally log out.

1.3. Building Environments

An executable LISP environment for data preparation may be built by starting LISP in the

vws2 directory and loading the file "load_vws2.r'. When that file is loaded it will build the

environment and save it in a file named "vws2_lisp". If there is an existing file of that name,

it should be deleted or renamed beforehand. The load_vws2.1 file loads all enhancements to

the system. An environment without the enhancements may be built by editing the file

according the instructions inside the file, before loading it.

Similarly, an executable LISP environment for using the Design Editor only may be built by

starting LISP in the vws2 directory and loading the file "load_editor.l". When that file is

loaded it will build the environment and save it in a file named "vws2_lisp_editor".

It takes about 10 minutes to build a new environment of either type.

Before a new environment is built, the patch file should be edited to take out all but the first

and last lines (both of which refer to init_tools).
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It is not always possible to build an environment on a computer that has a remote file server

because dumping an executable image of several megabytes over Ethernet often fails. To be
sure the dump will work, build the environment on a Sun which is a file server. After the

environment is in a file, the file may be copied elsewhere without upsetting the Ethernet.

2. HLE STRUCTURE

2.1. Introduction

This section deals only with the files written by or under the direction of the author, which
includes all of the software that is loaded into the data preparation environment and a little

that is used in the control environment.

All of the data preparation software and documentation is in two directories: ~kramer/vws2
and ~kramer/vws3.

2.2. VWS2 Directory

2.2.1. Introduction

All of the software and data for the unenhanced VWS2 system is kept in the directory

~kramer/vws2. The directory contains both files and subdirectories.

2.2.2. Files

The vws2 directory contains essential files of the following sorts:

executable lisp environments

patch

font picture image
LISP code that builds environments (all of which are named "lodidjsomethingX")

When the VWS2 system writes process plans and NC programs, they are stored as files in

the vws2 directory, initially.

2.2.3. Subdirectories

In addition to files, the vws2 directory contains the subdirectories listed in Table 5. In

general, directories whose names end in 2 contain mainly files which define LISP functions.

The exceptions are datab2, which has six subdirectories used for various data handling

purposes, and doc2, which contains a few files and several subdirectories of documentation.

Table 5 gives a brief description of each directory and a reference to where more information

about it may be found.
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Table 5. VWS2 Subdirectories

Directory

Name
Description Reference

cadm2 LISP functions for the vws_cadm user interface [KRA5] p. 9

datab2 six subdirectories for data handling [KRA4] pp. 13, 14,

57,58

database needed only for the database manager log file, but

may have other data in it.

none

design part designs from the Design Editor none

design2 LISP functions and data for the Design Editor [K&J2] p. 95

doc2 six subdirectories of VWS2 documentation, one

subdirectory with LISP functions for examining

function call hierarchies

none

draw2 LISP functions for the Graphics subsystem [KRAS] pp. 23 - 25

exec2 LISP functions for the Data Execution module [KR&W] pp. 55, 56

geom2 LISP functions for geometric calculations [K&J2] pp. 98, 99

misc2 miscellaneous LISP functions none

ncprog NC-programs put there by the user none

plist2 LISP functions for property list manipulation none

pplan process plans put there by the user none

proc2 LISP functions for automatic process plan

generation, enhancement, reading, and writing

[KRAI] pp. 44, 45

vergen2 LISP functions and rule files for the automatic

feature verifier generator

[K&S2] p. 57

verify2 LISP functions for verification [K&S2] pp. 7, 18,

35,

Note: Directories whose names end in 2 contain mainly LISP functions. Directories

whose names do not end in 2 contain no LISP functions whatsoever.
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2.3. VWS3 Directory

All of the enhancements to the VWS2 system described in this paper are kept in the

directory ~kramer/vws3. The subdirectory structure of the vws3 directory parallels that of

the vws2 directory, except that there are fewer subdirectories. The directory structure is

shown in Table 6. All of the subdirectory names end with the character "3".

Each subdirectory of vws3 (except pdes3) has a corresponding subdirectory in vws2: datab3

corresponds to datab2, design3 corresponds to design2, etc. In all cases but one (verf3

corresponds to verify2 because the author tired of typing "verfiy") the base names of

corresponding directories are identical.

Any file in a vws3 subdirectory which has the same name as a file in a corresponding vws2
subdirectory overwrites the function definition or data contained in the vws2 file. Most files

in vws3 are revisions of vws2 tiles. In order to be sure the enhanced version of the system

is loaded, the vws3 tiles must be loaded after the vws2 tiles. The load functions in the vws2
directory keep the order straight, of course.

- 42 -



VWS2 Enhancments

Table 6. VWS3 Subdirectories

Directory

Name
Description

databS Has one subdirectory, "world", which contains revised text data, plus

other data updates

designs LISP functions and data for the Design Editor to handle new text system

and new contour outline methods

doc3 Files of new or revised documentation

draws new and revised LISP functions for the Graphics subsystem

exec3 new and revised LISP functions for the Data Execution module

geomS new and revised LISP functions for geometric calculations

pdes3 LISP functions for the PDES boundary representation parser (feature

extractor), a directory of parts in B-rep format, the paper [KRA6]

plistS one new LISP function for property list manipulation

proc3 revised LISP functions for automatic process plan generation,

enhancement, and writing

verfS six revised LISP functions for verification

This directory corresponds to verify!, although the base name differs

- 43 -



VWS2 Enhancments

REFERENCES

[JUN]

Jun, Jau-Shi; "The Vertical Machining Workstation Systems"; NISTIR 88-3890; National

Institute of Standards and Technology; 1988; 65 pages.

[KRAI]
Kramer, Thomas R.; "Process Plan Expression, Generation, and Enhancement for the

Vertical Workstation Milling Machine in the Automated Manufacturing Research Facility at

the National Bureau of Standards"; NBSIR 87-3678; National Bureau of Standards; 1987; 56

pages.

[KRA2]
Kramer, Thomas R.; "Process Planning for a Milling Machine from a Feature-Based Design";

Proceedings of Manufacturing International Meeting; Atlanta, Georgia; April 1988; ASME;
1988; Vol. Ill, pp. 179-189.

[KRA3]
Kramer, Thomas R.; "The Graphics Subsystem of the Vertical Workstation of the Automated
Manufacturing Research Facility at the National Bureau of Standards"; OTSIR 88-3783;

National Bureau of Standards; 1988; 27 pages.

[KRA4]
Kramer, Thomas R.; "Data Handling in the Vertical Workstation of the Automated
Manufacturing Research Facility at the National Bureau of Standards"; NBSIR 88-3763;

National Bureau of Standards; 1988; 62 pages.

[KRA5]
Kramer, Thomas R.; "The vwsjoadm User Interface of the Vertical Workstation of the

Automated Manufacturing Research Facility at the National Bureau of Standards"; NBSIR
88-3738; National Bureau of Standards; 1988; 110 pages.

[KRA6]
Kramer, Thomas R.; "A Parser that Converts a Boundary Representation into a Features

Representation"; NISTIR 88-3864; National Institute of Standards and Technology; 1988; 18

pages.

[KRA7]
Kramer, Thomas R.; "Automatic Generation of NC-Code for Hole Cutting with In-Process

Metrology"; Conference Record of Instrumentation and Measurement Technology

Conference; IEEE; April 1989; pp. 45 - 52.

[KRA8]
Kramer, Thomas R.; "Contour Outlines"; not yet published; 32 pages.

- 44 -



VWS2 Enhancments

[Kc&Jl]

Kramer, Thomas R.; and Jun, Jau-Shi; "Software for an Automated Machining Workstation'-,

Proceedings of the 1986 International Machine Tool Technical Conference; September 1986;

Chicago, Illinois; National Machine Tool Builders Association; 1986; pp. 12-9 through 12-44.

[K&J2]

Kramer, Thomas R.; and Jun, Jau-Shi; "The Design Protocol, Part Design Editor, and

Geometry Library of the Vertical Workstation of the Automated Manufacturing Research

Facility at the National Bureau of Standards"', NBSIR 88-3717; 1988; National Bureau of

Standards; 101 pages.

[K&Sl]
Kramer, Thomas R.; and Strayer, W. Timothy; "Error Prevention in Data Preparation for a

Numerically Controlled Milling Machine"', I^oceedings of 1987 ASME Annual Meeting;

ASME; 1987; PED-Vol. 25; pp. 195 - 213.

[K&S2]
Kramer, Thomas R.; and Strayer, W. Timothy; "Error Prevention and Detection in Data
Preparation for the Vertical Workstation Milling Machine in the Automated Manufacturing

Research Facility at the National Bureau of Standards"', NBSIR 87-3677; National Bureau of

Standards; 1987; 61 pages.

[KR&W]
Kramer, Thomas R.; and Weaver, Rebecca E.; The Data Execution Module of the Vertical

Workstation of the Automated Manufacturing Research Facility at the National Bureau of

Standards', NBSIR 88-3704; National Bureau of Standards; 1988; 58 pages.

[LE&R] Lee, Y. Tina, and Ressler, Sanford P.; "Converting the AMRF Part Model Report to

a PDESISTEP Subset"', NBSIR 88-3818; National Bureau of Standards; 1988; 39 pages.

[LOVE]
Lovett, Denver; "Equipment Controllers of the Vertical Workstation"', NBSIR 88-3769;

National Bureau of Standards; 1988; 59 pages.

[NA&J]
Nakpalohpo, Ibrahim; and Jun, Jau-Shi; "Automated Equipment Program Generator and

Execution System of the AMRF Vertical Workstation"', not published; 1987; 17 pages.

[RUDD]
Rudder, Frederick F.; Operations Manual for the Automatic Operation of the Vertical

Workstation', NISTIR 89-4031; National Institute of Standards and Technology; 1989; 33

pages.

- 45 -



VWS2 F-nhurv rncnts

W^ERE>i..lS ritAX3_

:’’iiQj;<ii4i'NoNW
W v**!^?*' ri'l2'4Ji.l nut bru* ; .H J^saiodT

•d8SS§9^aia»a .•>'>n9»9^'"o0 U^y^FtTv'T H^T aalii'-Rf/ knontTOJfiJ
^

^ ^ »-* '—«-- ^— * ' -

* mAM-
.f

.mil hne .>1 zefaoifT .rarranX'^
' *

'
- the

” H>- '.j^Si' Vufiiitt cf STa«J/!f :'•
.. ;- ^ * '. t%donarBurca^^.§rp(yjl;j,^^jjj|^J

' '\<

lQ{tt‘V -.i m. T>n f7ft 189. ^ •' • -

(I2AX3.V .m

10it$iV -.| m.po. 179 189.,

_,.
(£?j.ai ^

a^Z bq£ ,;.^< jjamofTt' .TanvItX

.235l8q :abT£bn*J^

’S!

'i
'.'; \W^1

wKt-gg «i2avi :7iy\c>M»w I

bS'373$:Na:.nr^ Faxciiacf Stt!«kfcUj^ *^tii.

;^d^LSlii g.l29V fi^ohbiiiAo'^^ > «-*v>*ovj\cO \Mr n3>^otja .iwvotl

iKJlAol ^‘Tiaq Si lS8^1 ,£SMJiifi^

Kranscr. T!»nus r. ' :A« CdF»ir* sA->itndaryliipf <i i^€aturts

Repft^gnftalan*: r^tSilR ^ill-3Sd4; f« • ^ Stftndutb Aod

bJ\sJ^^*vS^3^30 bite tv Iter.*' .Ilfi-tlAl flul tMU# Ifluri^lrfl .OqfiolACpUl^' J ;

.fc341*q tf ;tm*i ,i»(kr!ii«q lort ;' UoVi-wV -iteU \o mauyj
'

[ICRiATl s
' I - _ i

Krtcacr. Triaaias BL^rAu^atfusnl t 4^ ' ^ ^ ^ /br M - ^ OiiaVijr kiI^c1(,dOTJIp«
^*» S§fi5^0»

\> Vj‘jsi«n/ fsnohttM ;!€(»-« fOTZM 3>«smi*vj’« ,.

^ » .*'>8S<j ®
[ICRASi

' -'*-
- ,’

‘

Kramer’. TlwemfU ’Contour Outline , i** ;»« ?? !»£?».

tNi



APPENDIX A
PART DESIGN EDITOR TUTORIAL

Formerly part of Appendix B oi The vws_cadm User Interface

Revised June 21, 1989 to reflect enhancements to the VWS2 system
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Design Editor Tutorial

This is a tutorial for you to use to train yourself in using the VWS2 Part Design Editor

(PDE). In this tutorial, material printed by PDE in the LISP window is set in courier
font, material printed by PDE in the text window is set in |courier font| inside a box,

user entries are shown in boldface times font, and tutorial text is set in times font.

Sometimes you will be directed to use the mouse. If you make an error, read about the

command in which you made the error in the commands section of this manual to try to

recover. Good luck.

This tutorial will have you design the part shown in the picture immediately below.

DESIGN EDITOR
WORKING ON DESIGN ID: tutorial

DESIGN VERIFICATION IS: on soft

The quick way to start the VWS2 system when you are in the directory above the vws2

directory, is to enter the following on the terminal (which should be using the full screen at

this point).

vws2
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This will bring up a window system, start the VWS2 system in the window labelled LISP,

load the patch file of recent changes to the system, and start the user interface, vws_cadm.
Alternatively, the same result may be had by entering the following three commands.

1. cd vws2

This will change to the vws2 directory.

2. suntools pde_windows

This should format your screen with a set of windows. Then put the mouse cursor in the

window labelled LISP (that is the command window) and enter:

3. vws2_Iisp

At this point, regardless of how the system was started, a window system is set up,

vws_cadm is running, and the last two lines in the command window should be:

<e p X i o>

Enter e to start the Design Editor:

==> e

The command screen clears, and you start by turning graphics on and defining the size of the

block.

pde > gon
Graphics is now ON

pde > new
Enter the design_id ? tutorial

tutorial created
Enter part design description ? tutorial part

use default block_size (y/n) ? n

Enter block_length ? 6.5

Enter block_width ? 3.0

Enter block;_height ? .75

material

1

.

- aluminum

2.

- brass

3.

- steel
4

.

- monel

5.

- not_specified
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choose a number, 0 to ignore ? 2

The graphics screen formats itself, showing three views of the block with no features,

pde > I

Enter number of existing feature before which to insert
new feature, or 999 to insert at end ? 1

1.

” groove

2.

- straight_groove

3.

- contour__groove

4.

” pocket__corners

5.

” pocket__center

6.

- contour_pocket

7.

- side_contour

8.

= text

9.

“ hole

10.

~ chamfer out

The menu in the box is the "features menu". It appears frequently on the screen, but will not

be shown again in this tutorial. You now create the hole on the lower left of the block. It will

be countersunk and threaded.

choose a number, 0 to ignore ? 9

Enter ”center__x'' (numeral) ? .5

Enter "center__y'’ (numeral) ? .5

Enter "center__tolerance" (med/hi) ? hi

Enter "diameter " (numeral) ? .1719

Enter "diameter__tolerance" (med/hi) ? med
Enter "depth" (numeral/thru) ? thru

Adding threads to this hole (y/n) ? y
Enter "thread__diameter" (numeral) ? .19

Enter "thread_depth" (numeral thru) ? .5

Choose "threads__per__inch" (8 12 16 20 24 32) ? 24

Enter "countersink_diameter" (numeral/n) ? .2

Enter "reference_feature" (numeral/n) ?n
Feature il hole has been enhanced.
Feature il hole is OK.

The hole is drawn on the picture and the following feature description is printed in the PDE
text window. PDE prints a lot of feature descriptions in the text window, but only a few will

be mentioned in the rest of this tutorial.
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feature 1 - hole
center_x = 0.5
center_y = 0.5
center_tolerance = hi
diameter = 0.1719
diameter_tolerance = med
depth = thru
thread_diameter = 0.19
thread_depth = 0.5
threads_per_inch = 24
countersink diameter = 0.2

pde > i

Enter number of existing feature before which to insert
new feature or 999 to insert at end. ? 2

The features menu appears in the PDE text window. The next feature you make is a contour

pocket. A lot of drawing goes on in the graphics window that is not mentioned below.

choose a number, 0 to ignore ? 6

Describe a contour outline using the keyboard.

a=add, c=change, d=done, i=insert, r=remove. ? a

Enter x_coordinate for point 1 ? 1.5

Enter y_coordinate for point 1 ? 1.5

a=add, c=change, d=done, i=insert, r=remove. ? a

Enter x_coordinate for point 2 ? 2

Enter y_coordinate for point 2 ? 1

Here you redo comers 1 and 2, then go on to comer 3.

a=add, c=change, d=done, i=insert, r=remove. ? c

Enter number of point to change ? 1

The current x-coordinate for point 1 is 1.5.

Enter new x_coordinate or n=no change ? .8

The current y-coordinate for point 1 is 1.5.
Enter new y_coordinate or n=no change ? 1.75

a=add, c=change, d=done, i=insert, r=remove. ? c

Enter number of point to change ? 2

The current x-coordinate for point 2 is 2.

Enter new x_coordinate or n=no change ? 1.5

The current y-coordinate for point 2 is 1.
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Enter new y_coordinate or n=no change ? .3

a=add, c=change, d=done, i=insert, r=remove . ? a

Enter x coordinate for point 3 ? 2.2

Enter y_coordinate for point 3 ? 1.75

a=add, c=change, d=done, i=insert, r=remove. ? d

RADIUS METHODS FOR CONTOUR FEATURES

1. unique - Each corner has its own radius.
2. equal - Every corner has the same radius.
3. spline - Corners rounded automatically.
4. unique+equal - Some unique, rest equal.
5. unique+spline - Some unique, rest spline.

Choose a radius method ? 1

Specify a radius at some or all corners.
Select a point (numeral or d=done, u=undo) ? 1

Current radius for this corner is 0.

Enter new radius (numeral/ join_ahead/ join__back, or a=no change) ? .3

Select a point (numeral or d=done, u=undo) ?2
Current radius for this corner is 0.

Enter new radius (numeral/ join_ahead/ join_back, or a=no change) ? .3

Select a point (numeral or d=done, u=undo) ?3
Current radius for this corner is 0.

Enter new radius (numeral/ join_ahead/ join_back, or a=no change) ? .3

Here you change the radius of comer 2.

Select a point (numeral or d=done, u=undo) ?2
Current radius for this corner is 0.3

Enter a new radius (numeral/ join_ahead/ join_back, or a=no change)

? joinback

Select a point (numeral or d=done, u=undo) ? d

Enter "depth" (numeral) ? .1

Enter "reference_feature" (numeral/n) ? n

Feature i2 contour_pocket has been enhanced.
Feature i2 contour_pocket is OK.

The contour pocket is drawn on picture. Next, you use the first hole you created to make an

array of four holes (the original plus three copies). The "pick" command is used to get the

feature number of the first hole, in case you have forgotten it.
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pde > pick

Point at the feature and press the left mouse button.

Point at the edge of the hole and press the left mouse button. If the pick fails, try again.

Feature 1

pde > array

Enter feature number to be repeated ? 1

An array of features may be rectangular or in a circular arc.
Choose a type ( l=rectangular 2=circular) . ? 1

Array size is given either by the total x and y distances,
or by the incremental x and y distances between features.
Choose a method ( l=incremental 2=total) . ? 1

You will also need to specify the number of times the
feature is to be repeated in the x and y directions.

Enter no. of times to be repeated in x-direction ? 2

Enter no. of times to be repeated in y-direction ?2
Enter x-displacement ? 2

Enter y-displacement ? 2

Is this correct (y/n) ? y

Another hole appears on the picture after each of the following three pairs of lines.

Feature
Feature
Feature
Feature
Feature
Feature

i2 hole
12 hole
13 hole
13 hole
14 hole
i4 hole

has been enhanced,
is OK.
has been enhanced,
is OK.
has been enhanced,
is OK.

Done

pde > i

Enter number of existing feature before which to insert
new feature, or 999 to insert at end. ?5

The features menu appears in the PDE text window. Next you make a hole in the center of

the contour pocket. Since you want the hole at the bottom of the pocket, you use the pocket

as the reference feature for the hole. The "loc" command is used to find the coordinates of

the center.

choose a number, 0 to ignore ? 9
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Enter '’center_x" (numeral) ? loc

Point at the picture and press the right mouse button.

Point at the center of the contour pocket and press the right mouse button. If your aim is

good, the following four lines will appear at the top right of the graphics window.

position

top view

X = 1.5

y = 1.375

Press right button to relocate, left or middle to return.

Press the left button while the mouse cursor is over the picture. PDE will continue with the

dialog for creating a hole that it had started when you called "loc".

Enter ? 1.5

Enter "center_y'’ (numeral) ? 1.375

Enter ''center__tolerance" (med/hi) ? med
Enter "diameter" (numeral) ? .25

Enter "diameter_tolerance" (med/hi) ? med
"depth" (numeral/thru) ? .5

Choose a bottom type

1 . - conical
2. - flat

choose a number, 0 to ignore ? 1

Adding threads to this hole (y/n) ? n

Enter "countersink_diameter" (numeral/n) ? n

Enter "chamfer_in_depth" (numeral/d (efault ) =0 . 04 6875/n) ?n
Enter "reference_feature" (numeral/n) ? 5

Feature i5 hole has been enhanced.
Feature 5 contour_pocket has been enhanced.
Feature i5 hole is OK.

The hole appears on the picture. The "i5" in the message above is a temporary feature

number, indicating the new feature is to be inserted before any feature numbered 5 or more.

pde > 5 This is equivalent to using the "feat" command.

Look at the PDE text screen. Note that the hole just added is feature 5, since it was added

before the old feature 5. Note also that the contour pocket, which was feature 2 originally, is
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now feature 6. This is because the array of small holes was also added before the contour

pocket, just following feature 1.

Look at the front view of the new hole on the picture, and note that the top of the hole is at

the bottom of the contour pocket.

pde > i

Enter number of existing feature before which to insert
new feature, or 999 to insert at end. ? 999

The features menu appears in the PDE text window. Next you make the round groove

around the contour pocket.

choose a number, 0 to ignore ? 1

Enter "upper l_x" (numeral thru) ? .75

Enter "upper l_y" (numeral thru) ? 2.25

Enter "lower r_x" (numeral thru) ? 2.25

Enter "lower r y" (numeral thru) ? .75

Enter "depth" (numeral) ? .08

Enter "width" (numeral) ? .125

Enter "corner radius" (numeral) ? .75

Choose a bottom type

1 .
- round

2. - flat

choose a number, 0 to ignore ? 2

Enter ''chamfer_in_depth'' (numeral/d (efault) =0 . 046875/n) ? n

Enter ''chamfer_out_depth" (numeral/d (efault) =0 . 046875/n) ?n
Enter "reference_feature'' (numeral/n) ? n

Feature i999 has been enhanced.
Feature i999 groove is OK.

Again, "i999" is a temporary feature number. The actual feature number will be one greater

than the number of the existing feature with the largest number.

pde > i

Enter number of existing feature before which to insert
new feature, or 999 to insert at end. ? 999

The features menu appears in the PDE text window. Next you make the words 'TOO psi".

choose a number, 0 to ignore ? 8

Enter "text" (eg. AMRF VWS) ? 100 PSI

A picture of the five available fonts appears at top right of graphics window.
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Enter a font number ? 4

Enter "depth" ? .015

A list of available bottom types (l=round 2=vee) appears in the PDE text window.

choose a number, 0 to ignore ? 1

A list of available text widths appears in the PDE text window.

choose a number, 0 to ignore ? 3

Enter "reference__feature" (numeral/n) ? n

Enter "rotation" (number/n) ? n

Enter "lower_l_x" ? .75

Enter "lower_l_y" ? 2.35

Enter "height" ? .38

Enter "spacing" (number/d=default) d
Feature i999 text has been enhanced.
Feature i999 text is OK.

The text is drawn on the picture. Next you make the entire right side of the design in one fell

swoop by using the "group" command.

pde > group

Enter a list of features to be copied ? (1234567 8)

Enter x-displacement ? 3.5

Enter y-displacement ? 0

Another feature is drawn after each of eight enhancement and verification message sets.

Feature i9 hole has been enhanced.
Feature i9 hole is OK.
Feature ilO hole has been enhanced.
Feature ilO hole is OK.

Feature il6 hole has been enhanced
Feature 13 contour_pock:et has been enhanced.
Feature il6 hole is OK.

Done

Now you go back and change the first contour pocket. It may be feature 6, but to be sure, you

use "flash" to check. Then you increase the depth of the pocket.
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pde > flash

Enter a feature number ? 6

Design Editor Tutorial

pde > c

Enter feature number to be changed or h to change header ? 6

contour_pocket

1.

- corners

2.

- depth

3.

- reference feature

Choose a number. ? 2

Current value of "depth" is: 0.1

Enter new value (numeral) : ? 0.4

More changes for this feature (y/n) ? n

Save changes or undo changes (save/undo) ? save

Feature 6 contour_pock:et has been enhanced.
Feature 6 contour_pock;et is OK.

The contour pocket is redrawn. Now the hole at the bottom of the pocket is hanging in mid-a

ir in the front and side views of the pocket, so you redraw the hole.

pde > draw
Enter a feature number to draw ? 5

Feature 5 hole has been enhanced.
Feature 6 contour_pocket has been enhanced.
Feature 5 hole is OK.

pde > i

Enter number of existing feature before which to insert
new feature, or 999 to insert at end. ? 999

The feature menu appears in the PDE text window. You are going to chamfer the block,

choose a number, 0 to ignore ? 10

Enter "chamfer_out_depth" (numeral/d (efault ) =0 . 04 6875/n) ? .04

Feature i999 chamfer_out has been enhanced.
Feature i999 chamfer_out is OK.

A chamfer of the block is drawn on picture. The last feature you add is a straight groove to

separate the two halves of the design.

pde > i
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Enter number of existing feature before which to insert
new feature, or 999 to insert at end. ? 999

The features menu appears in the PDE text window. You choose a straight_groove.

choose a number, 0 to ignore ? 2

A straight groove direction menu appears in the PDE text window.
(l=horizontal / 2=vertical / 3=oblique)

Enter "direction". Choose a number ? 2

Enter "xl" (numeral/thru) ? 3.25

Enter "yl" (numeral/thru) ? thru

Enter "y2" (numeral/thru) ? thru

Enter "depth" (numeral) ? .4

straight groove bottom types

1. - round
2. - flat
3. - vee

Enter "bottom type". Choose a number ?2
Enter "width" (numeral) ? .5

Enter "chamfer__in_depth" (numeral/d (efault) =0 . 046875/n) ? .04

Enter "reference_feature" (numeral/n) ? n
Feature 1999 straight_groove has been enhanced.
Feature 1999 straight_groove is .OK.

A picture of the straight groove is drawn. Now you use "rdraw" to improve the picture. The
font picture disappears and the picture is redrawn with new masking.

pde > rdraw

You save the design. If the tutorial has been done in your directory before, PDE will ask you

if it is OK to overwrite the existing file. Say yes. That is not shown here.

pde > save

. /design/tutorial
.
pd saved

. /design/tutorial .
prt saved
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You may change the design further if you wish. When you are ready to quit from the Design

Editor, enter:

pde > q

Returning to vws_cadm.

Reply as prompted by <> or b=break, h=help, q=quit, r=redo.

<e p X i o>

PDE quits, the graphics window disappears, and you are back looking at the vws_cadm
prompt in the command window.

At this point you may wish to try out the vws_cadm tutorial. If so, turn to that tutorial in the

VWS_CADM Users Manual.

If you wish to get out of vws_cadm, enter:

==>q

This will put you into LISP. If you wish to exit LISP, enter:

=> (exit)

Depending on how you started the VWS2 system, this will either cause the command
window to disappear or it will restore the command window to being a UNIX shell. If you

wish, you can look at the design files you just created by entering the following UNIX
commands in a window which is running a UNIX shell:

more design/tutorial.pd
more design/tutorial.prt
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