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Abstract

The nonlinear instability of a two-dimensional single crystal of pure material grow-

ing from an undercooled melt is studied both analytically and numerically. The qucisi-

steady state approximation is used for the thermal fields and the effects of different

solid and liquid thermal conductivities and isotropic surface tension are included. A
bifurcation analysis is performed by calculating the instantaneous value of the funda-

mental component of the local normal growth speed for an interface perturbed by a

single Fourier shape component. The base state is time dependent, and two bifurcation

criteria are studied, the relative stabihty criterion according to which the time deriva-

tive of the ratio of the perturbation amplitude to the radius of the underlying circle

vanishes, and the absolute stability criterion according to which the time derivative

of the perturbation amplitude vanishes. Numerically, the fundamental component of

the interfacial growth speed is found by Fourier analysis of the solution to an integro-

differential equation (obeyed at the interface) which gives the instantaneous value of

the local normal growth speed. Analytically, a weakly nonlinear expansion technique

is used to derive a solvability condition at each bifurcation. Our analytical and numer-

ical results are in very close agreement, and therefore mutually corroborative. Landau

coefficients are presented as a function of the various dimensionless parameters used in

the model. Almost all of the bifurcations are subcritical.
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1 Introduction

In this paper, we present a nonlinear bifurcation analysis for a single crystal of pure

material growing from an undercooled melt in two dimensions. Our model couples the effects

of isotropic surface tension with quasi-steady-state heat flow, according to which the thermal

fields satisfy the Laplace equation throughout the bulk phases. We treat the case of isotropic

surface tension but allow the conductivity in the crystal to differ from the conductivity of the

melt. The nonlinear bifurcation analysis uses both numerical solutions to a fully nonlinear

model of crystal growth as well as analytical (weakly nonhnear expansion) techniques.

To date, analytical work on nonlinear stability theory in solidification has focused primar-

ily on exploring cellular interfaces that arise during directional solidification, and have small

but finite amplitudes. Wollkind and Segal[l] were among the earhest authors to perform an

analytical weakly nonlinear analysis for directional solidification in two dimensions. They in-

vestigated the weakly nonlinear interaction of a perturbation of fixed wavelength with itself.

Wollkind and others[2, 3, 4] have continued this work, including three dimensional calcu-

lations. Wheeler[5], McFadden et al[6] and Ungar et al[7] have also performed analytical

nonlinear calculations and have derived self-consistent evolution (Landau) equations for the

perturbation amplitude as part of the stability analysis. Wheeler [5] and Dee and Mathur[8]

have treated the case in which a band of wavelengths is considered, and McFadden et al[9]

have included anisotropic surface tension in the weakly nonlinear analysis.

In this paper, we extend the analytical analysis used in directional solidification to the

case of an initially circular single crystal growing into an undercooled melt. Furthermore,

1



we use a numerical method to compute the instantaneous growth velocity of the crystal-

melt interface and compare these results with those obtained by an analytical method. The

numerical (boundary integral) method is the same developed to calculate the evolving form

of the crystal-melt interface during the free growth of a single crystal[ 10
,
11 ].

In the following sections, we first present our model of crystal growth, including the

integral equation that is used to determine numerically the local normal growth speed along

the interface at a given time. We then give a brief description of the numerical method used

to solve this integral equation and present our numerical results. The analytical nonhnear

analysis follows, and a comparison between the analytical results and the numerical results

is made.

2 The Model

We consider a two-dimensional single crystal of pure material, growing at the expense of a

surrounding liquid phase due to the presence of an isothermal heat sink, at temperature Too,

located at a circular outer boundary of radius In this model, lengths have been scaled

by the nucleation radius R* = TmIIL{Tm — Too) referred to the surface tension 7 (assumed

isotropic), where Tm is the bulk melting temperature, and times by r = [R*Y /a^S

^

where

ai is the thermal diffusivity of the liquid. Here S = PlCl{Tm ~ Toq)IL is the dimensionless

supercooling, in which pl is the density of the liquid, cl is its specific heat, and L is the latent

heat per unit volume. The quantity 5 is assumed to be small, so that the quasi-steady state

approximation (the Laplace equations in the bulk) is valid. Further details may be found
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in previous references [10, 11]. We have assumed for the sake of simplicity that the densities

of the two phases are equal [pi = ps), that the specific heats in the two phases are equal

(c£, = cs) and that there is no convection in the liquid. The governing equations in the bulk

are;

= 0 (in the melt) (1)

and

'^^Us = 0 (in the crystal), (2)

where Us,l = {'^s,L — Too)/{Tm — T^o) is the dimensionless temperature in the crystal (S) or

in the melt (L). At the far boundary, Ul = 0 and at the crystal-melt interface:

Us,L = 1 - A", and (3)

Vn = [-VUl + PVUs] n, (4)

where K is the (dimensionless) local curvature, V)v is the local normal growth speed, ^ =

ks/ki is the ratio of the thermal conductivities, and n is the normal vector to the interface

pointing into the hquid phase.

3 Numerical Method

3.1 Integral Equation Method

Eqns. (1) through (4) may be reformulated into a single boundary integral equation. We
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define the variable a as the quotient of the arclength s to the perimeter St of the interface;

then, for a given point on the interface, Qq, the result is,

Uiioio) = St j G{a,ac)VN(a)da

+ St[1-S]J U,(a)VG{a, a„) n(a)da, (5)

in which G{a,ao) is the Green’s function (see [11] for details) for a circle of radius i^oo, and

Ui = 1 — K is the interfacial temperature. The solution to the integral equation (5) will give

VatIq^o) (tfie local normal growth speed) at any instant of time. This equation is solved by

numerical methods described previously [10, 11].

3.2 Numerical Results

We assume an interface shape given by r = R-\- A cos{kd) and choose values of the radius

R, the amplitude A, the ratio of the solid to hquid thermal conductivities (3, and the dimen-

sionless parameter R^o- We use the numerical method referenced in the previous section to

solve the integral equation (5) for the local normal growth speed along the interface at a

given time. Fourier analysis of the solution enables us to determine the fundamental Fourier

component, V^ik, A), of the growth speed from the numerical solution. We investigate the

manner in which Viv(^, A) changes as a function of the amplitude A of the perturbation. As

the amplitude of the shape perturbation increases, the solution of Eqn. (5) displays increas-

ingly nonlinear behavior, affecting V)v(fc, A), and causing higher order harmonics, V^ink, A),

in the velocity Fourier spectrum to grow.

l±£
2
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Examples of the nonlinear behavior of the fundamental component of the velocity V^( fc, A)

as a function of the increase of the amplitude of a perturbation having a four-fold symmetry,

[k = 4), are shown in Figures (1) and (2). In these calculations R < Rcr, in which Rcr is

the critical radius at which the fundamental component of the velocity vanishes. Rcr may

be found by using linear perturbation theory and is a root of[12]

\\n{Rcr/Roo)
1 - A.
M +

k{l-k^)

Rcr

R

= 0
, ( 6 )

withM= (l-(|21)“)/(l + (|2^)“).

In Figs. (1) and (2), each curve represents a specific value of the crystal’s mean radius R. In

Figure (1), we have taken the thermal conductivities in both phases to be equal, while for

Figure (2), (3 = 2. We define the critical amplitude Ani to be the finite amplitude for which

= 0, and in Fig. (3), A^i is plotted as a function of R under conditions given in

Fig. (1). As the departure of the average crystal size below the critical radius increases, the

critical amplitude becomes larger.

Numerical analysis of the Fourier components of the growth speed shows that the fun-

damental Fourier component of the interface velocity obeys, to a good approximation, the

equation

= (7)

in which Ci may be calculated from hnear stability theory and changes from negative to

positive as the radius changes from below to above the critical radius, and Ani denotes the

numerical value of the critical amplitude for a given radius R. Furthermore, as the amplitude
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A increases, higher order harmonics A) will appear in the Fourier spectrum of the

velocity. As the higher order harmonics begin to grow large, the second harmonic of the

velocity field is a hnear function of while the third harmonic of the velocity is a linear

function of A^ and so on. Thus, VN{nk, A) = C„A" for A sufficiently small. We show

an example of these results in Table (1). In the next section, we use an analytical weakly

nonlinear analysis to reproduce the numerically predicted nonlinear bifurcation, and to gain

further insight into the nature of the bifurcation.

4 Weakly Nonlinear Analysis

The analytical nonlinear stability analysis presented in this work differs from previous

nonlinear analyses for the following reasons. First, the geometry of the unperturbed single

crystal (the shape about which the nonlinear expansion is performed) is circular, not planar.

Second, the base state is neither quiescent, steady-state nor time periodic. Our analysis

therefore results in instantaneous stability conditions because during free growth, the cou-

pling of all growing Fourier components acts to change the crystal shape in the next instant

in time.

In order to investigate finite amphtude effects, we assume that a circular crystal is per-

turbed by a single Fourier component of integer wavenumber k, so that r(9) = R-\- Acos{k9).

We fix the wavenumber of the perturbation and investigate the weakly nonlinear interaction

of a perturbation of given wavelength with itself. Our strategy is to fix the radius, R, and

find the amplitude A^i for which the fundamental component of the interfacial velocity is

6



zero. We assume that the mean radius of the crystal, the shape perturbation amplitude, the

liquid and solid temperatures and the velocity of the interface may be expanded in powers

of a small parameter e.

R{e) =
n=0

n=0
r(«,£) = Y, + E 'V-i = Y

n=:l n=0

( 8 )

(9)

U{r, d, e) = U^^\r) + 9) + 0) + ^) + • •
•

,
and (10)

Vn{0. e) = + eVf:}\e) + + e^V^^\0) + • •
• (11)

in which cos(fc^), and poi = 0. The velocity Vjv is composed of Fourier

components at each order of e. We substitute Eqns. (8) to (11) into Eqns. (1) to (4), expand

all boundary conditions in a series about the unperturbed circular radius, R^^\ for which

e = 0, and obtain a system of equations at each order of the expansion parameter e. For the

zero order problem we have

dr'2 Vr/ dr

dr'2

= 0, for r < R^°\ with Us^\r = 0) < oo, and

(

1 \ dU^

-J ^ = 0, for R^^^ < r < Roo, with = R^) = 0,

in the bulk phases, and

C/i"’ = 1 -
R(0)'

!7[°> = 1 - and
^ iJ(o)

( 12 )

(13)

(14)
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Vi“> = + /JDCrf
) .

at r = D denotes the derivative of a function with respect to r. For all other orders,

e", the equations in the bulk are

= 0, for r < with Us^\r = 0) < oo, and

= 0, for < r < i^oo, with Ui"\r = R^) = 0,

and the boundary conditions are

c/r + z*"' (oc/f) - = c„,

[/["> + Z'") (ZJCf) - = D„, and

- D (-ci"' + + Z*"* (D2(C/i‘” - I3U^S^)) = E„,

(15)

(16)

(17)

in which all functions are evaluated at the unperturbed radius R^^K The subscripts 6 refer

to derivatives with respect to the polar angle 9. At any order, say 0(e”), the inhomogeneous

terms in Eqns. (17), C„, Dn and depend only on the solutions at 0(e”“^) or lower.

These inhomogeneous terms are listed in the Appendix. The set of equations at each order

in e is linear, and our solution procedure is to solve this set of equations up to order e^.

4.1 Zero Order (Unperturbed) Solution

The zero order (e°) problem gives the unperturbed circular solution. The growth velocity is

8



and the solutions for the unperturbed thermal fields are

= 1 - and (19)

= -Bo ln(-^),
Jtoo

in which

4.2 First Order Solution

In order to find a solution to the set of differential equations at first order in e, we assume

solutions of the form

+ Bi;iV)cos(M), (21)

+ p\\ cos{k9) and

vj^'> = VP + cos(k»).

Analysis of the boundary conditions (Eqns. (17)) shows that the differential equations and

the boundary conditions are satisfied identically if we set = 0, in which case

and also vanish. In order to find the critical amphtude, we must require the first order

contribution to the fundamental component of the local normal growth speed to vanish.

This condition reproduces the marginal stabihty results of hnear theory. Setting

Ui^\ and to zero, Eqns. (21) are substituted into Eqns. (15) and (16), from

which the solutions

9



and
(
22

)

are determined. The unknown solution constants, and pn, satisfy the matrix

equation,

Pn^ii — 0
, (

23
)

\

.(24 )

in which .Yu = (^5^^ pn)^, and Pn is the matrix

(^(0))*= 0 - ((1 -P)/(P(o))2)

0 1/(P'') (1 - (P(o)/Poc)'*'') (Po/P(°^ - (1 - P)/(P(°0 ^)

-^A:(P(o))'=-i -A:/(P^+i) (l + - [Bo/{R^^^)^)

In order to obtain non-trivial solutions to the homogeneous system, the determinant of Pn

must vanish, thereby determining the marginal stability condition and defining the corre-

sponding marginal stability radius = Per- The marginal stability condition has already

been given in Eqn. (6). The solutions to the first order problem may be written in terms of

a single undetermined coefficient pn in the form:

^
^ cos(fc^) (

25
)

in the crystal, and

-1

(
26

)

Rt
R^•^^00

Pii cos(A:^)

in the melt.
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4.3 Second Order Solution

Expanding the right hand sides of the boundary conditions, Eqns.
(
17 ), gives

C2 = C20 + C22 cos(2A;^), (27)

D2 ~ 7^20 “I” 7?22 cos(2fc^) and

E2 = E20 "I" E22 cos{ 2 k6
)

in which C20, C22 ,
-D20 ,

D22, E20 and E22 are given in the Appendix. Since the second order

equations are linear, we may assume solutions of the form

= UiT(r) + Cg'(r)cos(2M), (28)

and

^ ym ^ ^^
22

) cos( 2 ^^).

Equations
(
28

)
are substituted into Laplace’s equation, and each Fourier component of the

solution of the system of linear equations is solved independently. The solutions are

CrV) = (29)

Cr('-) = -Brin(£-)

and

CfV) = ( 30 )

11



(r)

Ri^)'

Eqns. (29) and (30) are then substituted into the interfacial conditions whereupon

and are found from the solution of

a(^o)
* rT — ^*205

In
Rr

Rr
and

d(20)
y(2o)

+ _ R(^)
Rr

A
Rlr

— E'20-

(
31

)

At this stage, we appear to have six unknowns, R^^\ Pii and e, but only

three equations. A degree of freedom, however, has been caused by the introduction of the

expansion parameter e, and this allows for an arbitrary but convenient choice for e. Thus, to

second order in e, only the quantities e^R^^^ = R — Rcr and epu = A have physical meaning.

For example, if we choose e = {Rcr — R)^^^ (or equivalently R^"^^ = —1) in which R < Rcr

is the actual radius of the crystal (which would be an appropriate choice for a subcritical

instability) the nonlinear analysis could then be continued to third order to calculate the

value of the critical amplitude A = A„/ as a function of i? = Rni at the nonlinear bifurcation

point. An alternative strategy is to choose e = A (or equivalently pu = 1) and then to

calculate the value oi R — Rcr = Rni — Rcr as a function of A„/ at the bifurcation point

from the nonlinear analysis. The sign of Rni — Rcr indicates whether the bifurcation is

“supercritical” or “subcritical”. For the moment we choose to retain flexibility and express

the solutions at second order as functions of the two expansion parameters, R^^^ and pn.

12



With the aid of Eqns. (31), the solutions and and the velocity component

may be written in the form

[/'“> = Coo +
7^(2)

(
32

)

= B20- A
Rrr

\n{r/Roo)

i?2
and

y^20) ^ ^ ^(2) J?1

ln(7i’cr/7?oo)

(|^“ :^))
i^cr-HRcr/Roc))

-1

The solution constants A^g^\ and are determined by using the boundary

conditions corresponding to the cos(2A:^) problem and lead to the matrix equation

P22X22 — R22 (33)

in which X22 = {A^s^\ ^
R22 = (^*22, -D22, -£^22)^ and P22 is the matrix

^
(P0)2^ 0 0

^

0 1/(P'^)2 (1 - (p(0)/p^)4fc) 0 •

By solving Eqn. (33), we determine the solutions

and

(34)

(35)

13



We emphasize that although the interface shape consists of only a single Fourier component

(proportional to cos(^’^)), there exists a Fourier component of the velocity proportional to

cos( 2 ^’^). We may not assume that this component of the velocity is zero, for then the analysis

leads to an overdetermined system of equations. Therefore, the nonlinear analysis gives only

an instantaneous condition for the disappearance of the fundamental Fourier component of

the velocity. Since this second order solution does not determine a relationship between p\\

and (or equivalently between Ani and Rni) we proceed to the third order problem.

4.4 Third Order Solution

We expand the right hand sides of the inhomogeneous third order boundary conditions
(
17

)

to find

C'a = C31 cos(fc^) + C33 cos( 3 A:^),
(36 )

£>3 = £>31 cos{kB) + D33 cos( 3 A:^),

£*3 = £31 cos{k9
) + E33Cos{Zkd),

From the Appendix we see that C31, £31 and £31 are of the form

C31 = C313P11 + Csiipii (
37

)

D31 = £313/9^1 + D3UP11

E31 = £313/511 + £311/^11

14



(The remaining coefficients C33, £>33 and are not needed for the analysis.) Consistent

with Eqns.
(
36 ), we assume solutions at third order of the form

UfX(r,e) = u!;%>(r)cos(M) + [/^“>(r)cos(3M), (38)

= P3i cos(kO), and

1/^3) ^ y^31) ^ y^33) cos(3A:^).

These are substituted into the Laplace equations and the resulting solutions are then applied

to the third order boundary conditions to give

PiiXzi = Rzu ( 39 )

for the cos{k 9
)
component, for which we seek the unknown vector X31 = pzi)^

In Eqn.
(
39 ), the right hand side R^i = ((^31, £>31, E3i)^; furthermore has been set

to zero because we are seeking the marginal stability condition. The determinant of Pn

vanishes (because the radius has been set at Per in the first order problem); thus, in order

for a solution X31 to exist, the solvability condition

{R3uy)=0 (
40 )

must be obeyed (in which the parentheses denote the inner product of P31 and y) for all

vectors y satisfying Pfjy = 0 where P-^ is the adjoint of the matrix Pn. Evaluation of Eqn.

(
40

)
leads to the solvability condition

+ (if) + (^)

15



Substitution of Eqn. (37) for C31 ,
D31 and E31 into Eqn. (41) leads to the following system

of equations relating pn and e:

np?, - = 0
, (42)

^nl = ^Plli

R„i = R,, + e^R(^K

The coefficients T and fl are given in the Appendix. Eqns. (42) give,

R„, - R„ = Al,^ (43)

which is the central analytical result. In the following section we compare Eqn. (43) with

our numerical results and characterize the nature of the bifurcation over a range of material

parameters.

5 Analytical Results

5.1 Comparison with Numerical Results

To verify the accuracy of our calculations, we compare the values of the subcritical

amplitude Ani for given R^i determined by the numerical solution of Eqn. (5) with the value

found by using the weakly nonlinear stability analysis. In Fig. (4), we examine the case for

which the ratio of the thermal conductivities is unity and k = 4. We plot ln( A„/) as a function

of 1/2 ln{Rcr — Rni) and observe that the numerical calculations (denoted by the open boxes)
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lie directly on top of the straight line of unit slope representing the analytical calculation.

Our numerical and analytical results are therefore, mutually corroborative. In Table (2), a

further comparison between the values of the numerical and the analytical calculations is

presented. In Tables (3) and (4), we hst the values of Ani/{Rcr — RniY^^ corresponding to the

point of subcritical instability as the value of the dimensionless parameter R^ increases for

fixed /?, and as the value of the ratio of the thermal conductivities /? increases for fixed i?oo-

Table (3) indicates a very weak (essentially logarithmic) dependence on Roo as expected;

Table (4) indicates that as (3 decreases, the bifurcation becomes more strongly subcritical.

5.2 Relative and Absolute Stability Criteria

We have computed the stability condition for which the fundamental component of the

growth speed vanishes, sometimes called absolute stability [12]. (This is not to be confused

with the Mullins and Sekerka usage of absolute stability[13]. )
Insofar as shape changes are

concerned, however, this is not the most meaningful criterion; even though a perturbation

may be growing, A/R may be decaying. A more meaningful criterion is that of relative

stability, the point at which the time derivative of the ratio of the perturbation amplitude

to the underlying crystal radius vanishes. To third order in e this condition is given by,

— f ^ = i ^ / {epu + eV3i)(Vff^ +
dt\R)

y
i?(o) + e2i2(2)

j
(i?(o) +e2i?(2))2

Eqn. (44) requires that at the point of relative instability.

72(0)
and (45)

17



(3.) _ (VrVn +— N
Ri^) (i?(0))2

The algebraic differences between the relative stabihty point and the absolute stability

point are the following; at first order, the homogeneous boundary conditions may be written

PnXn = 0,

where is the matrix

/

(46)

\

v

0 0 0

Ai + 0 0 0 • (47)

0 0
^

The critical radius denoting the onset of relative instabiHty, is now given by the roots

of[12]

fi-{i/R:r)
\^-h]

/ M V Per ) Lm n\MRcr/Poo),

At third order the boundary conditions are

P,\X31 = ^31 ,

in which

= 0 . (48)

(49)

^31 — +

v

(50)

- vPp,,ir:

Finally, the solvability condition for the relative bifurcation point is

/

(
51

)

18



in which £^
3 ^
= £31 + pw / puj R*^. From now on the superscript (*)

notation will be dropped and the stability criterion being considered will be exphcitly stated.

We have compared numerical and analytical calculations of relative stabihty points, and

again we have observed very close agreement between the results, verifying the consistency

of our calculations. Fig. (5) gives a comparison between the values of the relative and

the absolute critical radii given by Eqns. (48) and
(
6 ), respectively. The relative stability

critical radii are larger than the absolute critical radii at any wavenumber, for fixed values

of /3 and R^o- (For further details on the condition of relative marginal stabihty see Coriell

and Hardy[12].) Fig. (5) is representative of the difference between the relative and absolute

marginal stability radii for all of the parameter values for which we have examined nonlinear

stability.

We investigate the subcritical and supercritical nature of the nonlinear bifurcation by

evaluating the parameter (£„/ — £cr)/^^/ as a function of the conductivity ratio, the pa-

rameter Roo and the wavenumber of the perturbation. In Fig.
(6 ), values of the absolute

bifurcation parameter {Rni — Rcr)l-^\i are plotted as a function of the wavenumber for differ-

ent values of (3 at fixed R^o- The results show that this parameter is almost always negative,

the exceptions being at the largest values of £00 and /?, for wavenumbers of A: = 2 and k = 3.

Changing the value of R^ does not change appreciably the features shown in Fig.
(
6 ). In

Fig. (7) we show an enlarged view of a section of Fig.
(
6

)
that shows more clearly the change

in sign of (£„; — £cr)/^n/ perturbations with wavenumbers 2 and 3. In Fig.
(
8

)
we plot

the parameter (£„/ — Rcr)IA\i determined using the relative stability criterion. The results
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show that according to the relative stability criterion, the bifurcations are nearly always

subcritical except at the wavenumber k = 3. The qualitative behavior of the bifurcation

is very similar for all cases considered for either the relative theory or the absolute theory.

As the ratio of thermal conductivities decreases, or as the value of Roo decreases, or as the

wavenumber increases, the bifurcations become more strongly subcritical.

6 Conclusions

In summary, we have used numerical and analytical methods to calculate consistently non-

linear bifurcations for the fundamental Fourier component of the local normal growth speed

of a crystal-melt interface during the free growth of a pure single crystal. The analytical

results correspond to an instantaneous condition for the nonlinear stability of a given Fourier

shape component, and represent the first appHcation of weakly nonlinear stability analysis

to problems in solidification theory for which the unperturbed state is not steady. Our nu-

merical method is based on a boundary integral technique. The analytical analysis provides

an important check on the numerical method, which can then be used with confidence to

compute finite amplitude solutions. Using the numerical solution technique, we have shown

that at a fixed radius, the fundamental component, Vj\f{k,A), of the local normal growth

speed obeys a Landau-type equation. Furthermore, the higher order components of the

velocity are proportional to powers in A, for small amplitude perturbations. We find that

the fundamental Fourier component of the local normal growth speed vanishes at a critical

amplitude, in agreement with results obtained from an expansion technique to calculate an-
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alytically this critical amplitude. Two stability criteria are considered; these correspond to

the relative and the absolute stability criteria. For the absolute criterion, our results show

that the nonhnear bifurcations are almost always subcritical, except at high conductivity

ratios and high values of Roc for wavenumbers k = 2 and k = 3. For the relative stability

criterion, the bifurcations are nearly always subcritical except for high values of i?oo and

wavenumber k = 3. Furthermore, as the ratio of the solid to hquid thermal conductivity

increases and the outer boundary radius increases, the bifurcations become less strongly

subcritical. We also show that for fixed thermal conductivity ratio and Roo, the bifurcation

becomes more strongly subcritical as the wavenumber increases. Although our results are

only strictly applicable to the specific model that we have treated, several broader inferences

can be made. First, the fact that the results from numerical computations and from weakly

nonlinear stability analyses are in such good agreement is not only comforting but suggests

that weakly nonlinear analyses, in general, make sense and capture the most important non-

linearities near the onset of instabihty. This has been appreciated previously for steady state

base states, but our analysis extends this influence to non steady state base states as well.

Second, almost all of the bifurcations that we have examined are subcritical and, although

we cannot yet explain why, one is led to suppose that this is due to some underlying physical

mechanism that we should seek to uncover. One wonders, moreover, if the same results

(subcritical bifurcations) would be found for a growing sphere, and this is currently being

investigated. Finally, we note that the nonlinear analysis may be generalized to include the

effects of linear isotropic interfacial attachment kinetics; however, it is not anticipated that
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the kinetic effects will significantly alter the results presented in this analysis, other than to

delay the onset of morphological instability of the crystal to higher values of R.
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Table 1: Vfs/{nk,A) as a function of A. The numerical results show that in

the regime A << 1, Vi^[nk, A) = CnA^

.

The example shown in this table is

for the case given by the curve labelled as (3) in Fig. (1).

Fundamental Component

n Cn
1

"
Cl = -.452 X 10-«

2 C2 = +.363 X 10"^

3 C3 = -.853 X 10"®

Table 2: Numerically and analytically determined values of Ani for /3 = 1,

i?oo = 10®, Rcr = 322.56787 and k = 4.

Critical Amplitude

R Ani (num) Ani (ana)

322.564 .730 to .731 .730504

322.563 .819 to .820 .819279

322.562 .899 to .900 .899333

Table 3: Analytically calculated values of AniURcr — R-niY^^ as a function of

Roo, using the absolute stability criterion for ^ = 1.

Analytical Analysis

Rqo ^nll{Rcr — RnlY^^

10^ 14.40900

10® 16.66126

5 X 10® 18.10505

10^ 18.69906

5 X 10^ 20.02192

Table 4: Analytically calculated values of AniKRcr — RniY^^ as a function of

(3^ using the absolute stability criterion for Rco = 10®.

Analytical Analysis

/3 Ar,l/{Rcr - RnlY^'^

.5 13.16962

1.0 16.66126

2.0 22.81829



Figure Captions

Figure 1. The fundamental Fourier component of the velocity V0v(^5 as a function of A.

Here /? = 1, the value of Roo is 10®, Rcr = 322.5678 and k = 4. Curves (1), (2) and (3)

are for radii R = 322.55, 322.4 and 322.2, respectively.

Figure 2. The fundamental Fourier component of the velocity VN{k, A) as a function of A.

Here /? = 2, the value of R^o is 10®, R^ = 461.8201 and k = 4. Curves (1), (2) and (3)

are for radii R = 461.6, 461.5 and 461.4, respectively.

Figure 3. Ani as a function of R plotted for the conditions given in Fig. (1).

Figure 4. A plot of ln(A„/) vs. l/21n(i7cr — Rni)- The solid line is the analytical solution

given by the weakly nonlinear analysis and the open boxes are the values from the

numerical calculations. In this case, /? = 1 and R^o = 10®. The slope is unity.

Figure 5. A comparison between the values of the critical radii using the absolute stability

criterion and the relative stabihty criterion. The anomalous case k = 2 for the relative

stability criterion is omitted because, formally, the critical radius becomes very large.

Figure 6. A plot of {Rni — Rcr)l-^\i using the absolute stability criterion. The curves are

for values of /5 equal to 1/2, 1, 2 and 4. The value of Roo = 10®.

Figure 7. A plot of {Rni — Rcr)/A.'li using the absolute stability criterion. The curves are

for values of /? equal to 1, 2 and 4. The plots are taken from a section of the plot in Fig.

(6) and reveal the positive values of the parameter {Rni — Rcr)/^ni perturbations



of wavenumber k = 2 and k = d.

Figure 8. A plot of {Rni — Rct)I-A n̂i using the relative stability criterion. The curves corre-

spond to values of (3 equal to 1/2, 1, 2 and 4. The value of i2oo = 10*-
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