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OVERVIEW OF THE ‘CRAMPS’ MULTIPROCESSOR OPERATING SYSTEM

Peter Mansbach

National Institute of Standards and Technology

Bldg. 220/Rm. B-124

Gaithersburg, MD 20899

ABSTRACT

CRAMPS is an operating system designed for use by a number of independent functicxially-divided

processors which communicate via common (shared) memcay. It achieves high speed, simplicity,

and ready adaptability to users’ individual needs by being primarily a single-tastog system, and

adding processor boards when concurrent t^jeration of processes is required. It thus trades software

cost for known hardware cost

Three mechanisms of asynchrtxious data conununication between processes are provided. These

include a set (tf f/nix-compatible calls, so a program can be debugged in a Unix environmoit and

simply re-linked to run on a targ<^ board. CRAMPS allows individual ptocesstvs to be stopped and

restarted, without interrupting the other processors, and allows single [uocesscus to be run in isola-

tion. The operating system includes a fast downloeder, a monitcv (in PROM), and an array of

debugging tools. CRAMPS inovides an extremely fast system for single-tasking multiple-processor

applications, and some multi-tasking capability as well. It is currently running on Motorola 680x0

microprocessOTS, and has also run on Intel 8086's.

keywords: asynclmmoiis communication; communicatioas protocol; functionally-divided inocesses;

CRAMPS; multiprocessing; muMptocessor; operating syston; real-time; robot vision; vision.



OVERVIEW OF THE ‘CRAMPS’ MULTIPROCESSOR OPERATING SYSTEM

I. Introduction

GRAMPS“the General Real-time Asynchronous Multi-Processor System—is an operating system

designed for use by a number of independent functionally-divided processors which communicate with

each other via common (shared) memory. CRAMPS is currently running on Motorola 680x0 microproces-

sors, several of which communicate over a VME backplane.^ An earlier version has also run on Intel 8086
processors, with a Multibus backplane.

CRAMPS is very fast and very simple. It can be easily modified and tailwed to users’ individual

needs. It achieves these qualities by being primarily a single-tasking system, thus avoiding the complexity

of "time-sharing" or multitasking systems. When concurrent operation of processes is required, additional

processor boards are easily added; CRAMPS handles the communications. Thus, additional hardware (if

necessary) is substituted for more complicated, expensive, and errOT-prone software.

CRAMPS supports both synchronous and asynchronous transfer of messages or other data between

processors. Further, three mechanisms of asynchronous data transfer are provided, depending on the needs

and preferences of the user. A subset of these communications calls, including open, close, read, write,

prinrf, getchar, and putchar, use the HO calling formats. Thus a program, which is written and com-
piled on a Unix host, may be linked to the standard Unix library and debugged on the host. The same pro-

gram may be re-linked with the CRAMPS library and downloaded to the target. On the host the "interpro-

cesstH*" communication takes place through files rather than common memory.

CRAMPS allows individual processors to be stopped and restarted, without intmnpting the other

processors, and allows single processors to be run in isolation.

CRAMPS was originally designed to have each processor run a single task. In this mode the operat-

ing system executes only when requested by the usct process. This permits the individual processes to

thieve their full speed potential. Also, the absence of multi-tasking allows great simplicity in the operat-

ing system, compared to "time-sharing" systems, and in particular in the writing of input/ouq>ut device

drivers, and in the use of interrupts.

Functions have since been added to allow simple multi-tasking (^ration. System calls to activate

and de-activate tasks are provided, and the on-board timer is programmed to interrupt the rurming task at a

time specified by the schedule. Thus the user can now perform efficient context-switching, subject to a

few constraints. Since simple priority scheduling is oftra insufficient to satisfy the needs of real-time

an}lications, the user himself can specify and {HOgram the exact scheduling algorithm required.

Numerous checks and tools are provided fcv aid in debugging. These may be turned off to permit

still faster execution and smallo' code.

Most of the CRAMPS code is written in C. Some of the basic routines-the message-passing primi-

tives, terminal HO, block moves, etc.-are in assembly language, as are portions of the PROM.

1. Background

The CRAMPS operating system was develq)ed by the authcR’ at the National Bureau of Standards.

This woik was done in suj^xirt ot a robot vision system which was initially constructed with five Intel

8086 microprocessOTS in a Multibus backplane [1,2,3]. Memory was {Hovided that was accessible to all

the processors via the Multibus.

It was desired to run the diffnent stages of vision processing concurrently on separate processors,

and to pass data from one stage to anotho' asynchronously. Data transfo’ would take place via common

1 Comm»rci«l produca ar* klantiflad in ontar iduuMiH' id dMOrib* thD equipment. In no case does such identification imply recommendation

Of endorsement by the National Institute of Siandarda «td Technolo» nor does it Imply that Ihe equipmont identified is necessarily tiie best available

for the purpose.
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memory, by having the processor that generated the information write it into common memory, and hav-

ing each processor that needed that information read it when required. Mutual exclusion, to prevent one

stage from reading data while another was still writing, and vice versa, was to be provided by the operat-

ing system.

Commercial operating systems available at the time did not support multiprocessor data passing.

(We use the term multiprocessor to refer to systems with two or more processors, as distinct from multi-

tasking, where several tasks may execute on the same CPU.) Since data-passing between processors was a

central requirement for our vision system, it seemed appropriate to write a simple operating system of our

own. In addition, for a research project with unanticipated requirements there is a substantial advantage to

writing one’s own operating system, and thereby having both the source code and the expertise to modify

it readily available. The system is then easily a^pted to the needs of the project.

We adt^ted the following design requirements for the CRAMPS operating system:

Support for multiple processors

Efficient data passing via shared memory, often large blocks of data

Support for txxh synchronous and asynchronous communication

Unix-like I/O calls

Ability to restart one pocess while others continue uninterrupted

Ability to run single processes without others present

Specific identifying messages for all errors in system code

Dynamic common memory allocation

Task-switching capability

2.1. Other Multiprocessor Systems

Since that time a number of other systems have become available with, or have added, multiproces-

sor capabilities. These include GEM [4], Harmony [5], Meglos [6], MTOS [7], POPEYE [8], pSOS [9],

VRTX [10], and VxWorks [11].

GEM (devel(^)ed at Ohio State) envisions a process architecture quite diffo^nt from ours, with

processes being dynamically assigned to pocessors, and containing "micro-pocesses’’ which can be turned

on and ofr by oth^ micro-processes. Harmony (National Research Council, Canada) is in some ways

similar to CRAMPS, but has more highly developed multi-tasking facilities. However, the Harmony system

blocks when sending or receiving messages, which may lose a fair amount of potradal processing time in

an application like ours that is not multi-ta^dng. Meglos (developed at Bell Laboratories) does not use

shar^ memory, but instead bases its communications on the elaborate and very fast SINET, also

developed by ^11 Labs.

MTOS (Industrial Programming Inc.), pSOS (Software Components Group), and VRTX (Hunter &
Ready) are all systems initially designed to be multi-tasking on a single processor, which have now been

extended to allow multiprocessor operations as weU. MTOS additionally offers dynamic load-balancing

among the processcus. POPEYE (Camegie-Mellon) is a complete vision system, including a 68000-hased

operating system widi many features similar to CRAMPS. However, there is no mention in the cited refer-

ence of communication firom one processor board to another. And, finally, VxWorks (Wind River Sys-

tems) runs using VRTX as the operating system for each board, and uses the Unix socket formalism to

implement interprocessor communications.

3. Major Components of the Operating System

The full CRAMPS operating system consists of five physically distinct parts: kernel, downloader,

PROM, SYS (system process), and debugging tools.

3.1. Kernel

The major part of the system code is the kernel, which is a collection of subroutines resident in the

CRAMPS run-time library. These subroutines are included by the linker, and thus become part of each

2 Unix u a trademaik of ATdtT/Bell Labontories.
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processor’s program code. The kernel includes the functions dealing with common memory communica-
tion with other processes, terminal I/O, dynamic memory allocation, process initialization, etc. These are

discussed further below.

Note that the C language promises that initialized variables start out with the values specified by the

programmer, but these values may change during program execution. Thus, to allow a program to be res-

tarted, the GRAMPS kernel saves these initial values the first time the program is executed after being

downloaded, and subsequently restores them each time the process is restarted. It is not necessary to re-

download the program to restart it.

3.2. Downloader

The downloader is resident on the host computer, and sends fully compiled and linked programs to

the target processor boards for execution there. These programs are sent first to an interface board on the

target computer. From there the destination processor copies them to its on-board memory under control of

its PROM. Clearly the choice of host computer is not important to the rest of the GRAMPS system, and

can be changed to suit the application.

The downloader performs some alto^ons to the object code before sending it to the target board.

In particular, it finds the symbol table pM-oduced by the compilCT, compresses it and appends it to the code,

for use by the GRAMPS tools. It also determines the highest program address, and inserts that, the stan-

ing address, and the symbol table address into a table used by the startup subroutines and the PROM. The
code itself is sent in a compacted format less than half as long as the common Motorola 5-format, and

thus taking less than half the time to download.

The download p)rogram is indep)endent of the device hardware, except that it calls different device

drivers for different hardware. It has been run using standard serial RS-232 non-login lines, and alterna-

tively using 16-bit parallel HO ports. This last is p)articularly fiasL The download pnogram could also use a

network link, such as an ethernet line, or could load over the VM£bus if the host and target p}rocessors

share the same backplane.

33. PROM
The PROM is semi-p)ennanent code 'Iximed in" to read-only memory, one copy per p)rocessOT

board. It includes a wakeip sequence fw the board, the "receiving (townloader" for receiving data from (or

sending it to) the host or development computer, monitor functions for directly examining registers and

memory, and other basic debugging aids. An onboard timer chip, if one exists, can be selected to

automatically time sections of code. A help conunand reviews the available monitor commands and for-

mats.

In addition to the usual monitor commands (display, substitute, go, go to breakpoint, single step,

move, fill, find, scan, compare, reset, etc.), we have added a go next n command, that goes through the

next break^int (n-1) times before finally stopping on the nth time.

Another nice feature, in die PROM's wakeup piiocedure, is diat it does not automatically wait fOT

input from the tenninal. Rather it cyclically pxills the terminal, the parallel pwrt, the serial link to the host,

and a pae-defined PROM message buffer. Thus a user on the host computer may, by activating the host’s

download pirogram, cause the interface board’s pnocessor to enter it’s "receiving downloader" pirogram,

either for serial or piarallel transmission. It is not necessary to first ^ter a command firom the interface

board’s terminal; in fact, it is not necessary to have a tenninal there at all. When the pnogram has been

transfored to the interface board, the host’s download pnogram will then instruct the interface board to

store a command in the target board’s PROM message buffer. The target board, polling on this buffer, will

receive the command, enter a subroutine in its PROM that copies the code from the interface board’s com-

mon memory into the target board’s local memory, and (if so commanded) start executing the program.

This is entirely automatic, and in re^xmse to a single download coipmand typed on the host

3.4. SYS

The system process, SYS, consists pnimarily of initialization functions, including setting up the mes-

sage buffer directory in common memory, writing out a table of system-wide parameters (such as the

4



camera calibration parameters used in the vision system), and zeroing buffer areas for easier debugging.

During execution, other processes’ status can by monitored by SYS, which then reports to the operator on

exceptional situations such as the death of a process. Currently, the SYS initialization code is included in

one of the other processes, and the monitoring functions are not performed.

3.5. Debugging Tools

The debugging tools are provided to assist in program development. These provide user-friendly

displays of the state of the common memory buffers and related system flags, allow variables to be exam-

ined and/or changed by name, obtain a stack trace (listing the sequence of nested subroutine calls), remove

or restore named sutwoudnes or execute them in isolation, and set debug flags which release additional

output during program execution.

4. Protocol for Interprocessor Communications

Central to the CRAMPS operating system are the inter-processw communications, which are imple-

mented as follows.

Data are passed from one processor on the bus to anoth^ via common memory (memory accessible

to both pocessors). The data are first written into common memory by the one processor, and then read

by the other. It is the principal task of the operating system’s communications programs to assure first

that the data is not read until the writCT is finished writing, and then that the memory is not written to (by

some other processor) until the reading is complete.

To achieve this, each separate data buffa in common memory is accessed by the user as though it

were a Unix file, which must be explicitly opened and closed. (We use the wwd "file" interchangeably

with "buffer", to emphasize the similarity with Unix file manipulation.) There is one important rule which

the system enforces: only one user may have access to a particular bi^er at any one time. This is gen-

erally a r^tsonable requirement: if one perscm is still writing a buffer, the other shouldn’t be reading it; if

he’s not still writing, he should relinquish the buffer (close it). This requirement is relaxed in a derivative

protocol described below in secticm 4.5.

Buffers are pomanently assigned areas in common memory. The buffer names (filenames), their

common memory addresses, legitimate usos, etc, are specified in an allfiles array maintained by the sys-

tem, and resident in the system buffer pamfile. Each process, at initialization, extracts from the allfiles

array the infnmation conconing those buffers for which it is a legitimate uso*. This infcHmation is stored

internally in the pnxKess’s own on-board files array, so that it is available fcH* use during real-time process-

ing without the added bus traffic and access time that would result from using the system copy. The crea-

tion of the files array is done by the system at the beginning of each process, and is transparent to the

user. The ^vantage to diis centralized scheme is that changes to the buffer assignments need be made
only in allfiles, and user programs do not need to be recompiled afto' such changes.

4.1. Unix Framework

The basic subroutine calls (open, close, read, write) have been chosen to be identical to the

corresponding ClUnix (Syston V) system calls. This is a convenient and widely known quasi-standard.

Many {HOgrammers will be faniliar with the usage, and will find the CRAMPS procedures easy to

remember. Also, this chmce allows programs to be compiled and tested under Unix without requiring

changes when transporting them to a target board.

These basic calls, fiiUy analogous to the ccareqxmding C calls, are:

file_descrq)tcH’ = qpen(filename, mode);

number_of_chars = read(file_descriptor, buffer, count);

number_of_chars = HTfre(file_descriptOT, buffer, count);

retum_code = c/ose(file_descTiptor);

Note that the bi^er argument above refers to the address, within the program, that one reads into or writes

frxxn. The common memory buffo- is specified by the filename argument

5



The openO and closeQ calls provide the mechanism for the system to enforce the rule that at most
one program may have a given buffer open at any one time. Thus the openQ function will check whether
any other CPU has the buffer open. If so, it polls until the buffer is closed. Only then does it open the

buffer and return a small positive number, which is used like a Unix file-descriptor, to the calling program.

Since openQ waits until a buffer is free, an alternative call, opennQ (open-or-retum-after-n-tries),

provides a way to try to open a buffer but to continue with other processing if it is busy. A return of -2

from openn means the buffer is busy; this is not an error condition.

Error conditions are flagged by -1, and should be checked for as in Unix. However, error messages
(and optionally stack traces) are printed by the system, so the user need not add additional code to print

messages. Successful readQ and writeQ calls return the number of bytes transferred. readQ and writeQ

check the system’s flag area to be sure the file has been opened, and to the correct user; this checking can

be turned off, to achieve optimum speed, once a program has been sufficiently debugged. Similarly, an

openJdQ call can replace the openQ, to eliminate the search through the files array, once a buffer’s loca-

tion in that array has been fixed.

4.2. Protocol Implementation

The openQ and closeQ functions are implemented by me^s of a one-byte flag associated with each

buffer. This flag is zero when the buffer is closed, and hex 80 (bit 7 set) when the buffer is open. When a

particular user attempts to open the buffer (put a 7 in bit 7 of the flag), he does so by means of a test-

and-set (JAS) instruction (Figure 1). This instruction, on the 680x0, first fetches bit 7 of the specified

address (the one-byte flag), and then sets bit 7 (stores a i in it), all the while locking other users out of the

bus. This prevents anyone else from changing the flag in the time between the fetch arxl the store porticms

of the instruction.

Having stored a 7-bit in bit 7 of the currrat flag, the user then determines what had been fetched

from that flag by examining the negative-flag in the 680x0'

s

status register. If it was a 7, someone else

had the buffer c^n; this user has not changed anything (he stored a 7, but a 7 had already been there). He
must not change anything in the buffer or its associated flags. He may wait and try again, in the case of

openQ, or continue processing, in the case of opennQ.

If he fetched a 0, on the other hand, this means the buffer was closed. It is now open to this usct,

since he has changed bit 7 of the flag to 7. He immediately puts his "user ID" in the adjacent byte, called

the previousjiser byte.

Saving the us^ ID of the last user to open the buffo' is necessary fOT the initialization procedure

(see next section). In addidon, the previousjiser byte has proven useful to applications inx)grams in

ascertaining whether data is "old" (last opened by the inquiring process), ex "new" (last opened by the

other user). They are also invaluable in drugging, fo example to see who in fact last used, and perhaps

is not relinquishing, a given buffer. To further aid debugging, the system maintains the time of last open

and last close, fo each buffer. Maintenance of these time entries can also be switched off once they are

no longer needed.

Note that the flags need not be adjacent to the buffers themselves. In fact, in our vision application

we have chosen to locate these flags all together, so that the status of all of the system’s buffers may be

seen at a single glance. This is no longer important, since the tools now include a display system flags

command.^

4J. Execution Hme The basic protocol is very fast Several subroutines were run on a 68020

microprocessOT, running with a 25 MHz clock. The open and close primidves (including maintaining the

"previous user" byte) run in 4.5 and 2.2 |isec, respeedvely. The complete debug versions, including run-

time checks on the parameters and on the internal files array, run in 100 and 40 nsec, respeedvely. (These

routines are written in C and their execudon time is compiler-dependent)

3 On ceruin hardware confignratioai the TAS instiuctioD does not lock the on-boerd bos, but c»ly the backplane bus linking the

boards. In such cases, individual flag buffers must be located so that they are ofif-board to those processon needing to set the flags.
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These timings may be compared with values quoted in a recent article [14] on a multi-tasking robot

operating system. That system required 913 and 353 psec, respectively, for message send and message
receive system calls.

4.4. Buffer Initialization

Initializing the flags at startup requires care. The design requirements state that any process may be

started up independently of the others. That is, any process may be reset and restarted while the others

are running; and processes may be started in any order. Achieving this goal required that each buffer

have one additional parameter, its owner. In cases where it is not otherwise clear which process is respon-

sible for cleaning up a buffer’s flags, the owner is designated to do the job.

Specifically, when a process is first started, it looks at each of its buffers (this occurs in the system

prologue that is automatically linked to the user’s program). If the previous_user byte of a particular

buffer contains that user’s own ID, it initializes the buffer. If the previous user was another user assigned

to the buffer, the job is left to that otho- user. (That other user may have just written good data, for

example, or he may have crashed and been restarted—this user doesn’t know, only the other user knows.)

Otherwise, the flags are junk (such as the FFFF that often tq)pears at power up). If this process is the

owner, it cleans up the flags; otherwise it does nothing. This algorithm identifies one and only one pro-

cess to initialize any given buffer and its flags. No determination of "who gets there first" needs to be

made.

During buffer initialization, there is one case in which a user must write to a flag buffer without

having first formally opened the buffer. This occurs when the user is the owner, and finds the buffer’s

OPENICLOSED flag set to OPEN, but the previousjiser byte is garbage (i.e. not a valid user of that

buffer). He goes to open the buffer. The problem is, it may be that the OPEN flag is validly set in the

course of anotho* usct’s open of the buffer, but the other uso* has not yet put his own userid in the

previousjiser byte. The solution is not to allow any user to open a buffer with a garbage previousjiser

byte, or a garbage flag for that matter. If the initialization process SYS (see Section 3) is run, no buffers

are left uninitialized.

An even more insidious case can occur if a process wakes up to find a flag set to OPEN, with the

previousjiser set to the process’s own userid. Hoe again, it may be that another user is in the process of

opening the buffer, and has set the flag to OPEN but has not yet put his userid in the previousjiser byte

(compare this with the much mwe likely situation, that this process had died while the file was open to

him). The presence of this user’s userid, althou^ this user is just now initializing, can be explained as

coming from a "in^vious incarnation", Le. before he was stopped and restarted. Our solution to this ambi-

guity, however inelegant, is for the [vocess just starting q) to go to sleep, and then re-awaken and see if

the flag has changed or not If not he then presumes it to be indeed open to him, and initializes and closes

the buffer.

Buffers are zeroed at initialization by the owner, if he’s also the one doing the initializing of the

flags, or by the system process SYS at powerup. The various inifializing functions are called by a sulnou-

tine vmain, which is automatically included by the linker and started by the downloader/PROM. This ini-

tialization is tran^)arent to the user.

4.5. Multiple*Reader Buffers

The buffers described above may have any number of users permitted to access them. In the proto-

col just described, however, only (me uso* is permitted to access a given file at any one time. A user, even

if he is (Mily reading, shuts out other users, even those who ate also waiting only to read

Multiple-reader bikers, on the other hand, allow several readers to have a file open, for reading

only, at the same time. For writing into the file, however, a user must still be the only one to have the file

open.

The fact that a buffer pomits multiple readers is transparent to the user. He still uses open or

openn to open a buffer, and chse to close it His int^nal files array is imchanged, excq)t that now the

entry multiple is set to TRUE.
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The multiple-reader protocol is implemented by adding a flag called rdusers, which lists users to

whom the file is currently open. Each bit in rdusers is assigned to a user, and is set if that user has the

file open. To prevent contention when two users try to change the rdusers flag at the same time, the pro-

tocol described in the previous subsections is appplied to the rdusers flag (actually to the whole flagbuf
structure containing it), instead of to the buffer. Thus rdusers can be changed by only one user at a time.

Note that previousjuser now refers to the last user to open the flagbuf structure, rather than the last user to

open the message buffer.

To the system, the open flag (and also the previousjiser byte) are taken to refer to just the flagbuf
structure, rather than the whole buffer. That is, only one {H'ocess may write into or read from the flagbuf
structure at a time, namely that process that has the flagbuf structure open, and whose name therefore

appears in the previousjiser byte. The same open/close protocols are us^, but they refer to the flagbuf

structure as the entity being opened ot closed.

Once the flagbuf structure is open to you, you may modify the rdusers vector (the open call does

this automatically) to add cw delete yourself as a current reader, or you may request write privileges. If

you request write privileges, you will be kept waiting until all other current users have closM the buffer.

No new users will be admitted until you close the buffer: openn will return FILEBUSY status (-2) to pros-

pective new users. Again, this protocol is internal to the system functions openQ and closeQ; the user

need not even know whether a given buffer is a "multiple-reader buffer" w not

The openQ and closeQ of a multiple-reader buffer will clearly take longo* than for a regular buffer,

so the multiple-reader facility should not be used to all files. The advantage of this protocol accrues when
several users all need to read the same file, and it is not updated often. An obvious candidate is parmfile,

the system parameter file. This is written by SYS during initialization, and then read by all othw processes

as needed.

The "multiple-reader" capability is a switchable option.

4.6. Dynamic Common Memory Allocation

The use of dynamic memory allocation to intoprocessor communication is quite elegant Suppose

process A has data that he wishes to send to processes B, C, and D. He requests a block of common
memory firom the system, in the amount he requires to his data, using the olloccmQ call. In so doing, he

also informs the system who will be using these data, namely B, C, and D. The system returns with a

pointer to a block of memoy of the requested size, and keeps a list of the prospective users.

At this point A is the only process that knows about (has the address of) this block of memory. He
goes ahead and writes his data there; he does not have to open it like a buffer, since no other process even

knows of its existence. When he is done writing, he passes a pointer to the block to the appropriate

processes, B. C, and D. (He also notifies the system that he is done with the block.)

The data is now available to be read. Since no writers have access to the block, readers need not

worry that the data will change. They too need not open a close the data buffer. Moreover, all the

readers may consider the block to be open to them simultaneously. The bus hardware arbitrates each fetch

request so that only one word of data is fetched at a time; no further software [votocol is required.

Whenever each process is finished using the data, it notifies the system by fireeing the block, with a

call to freecmQ. The system maintains the list of those processes using the block of memory (initially A
through D, in the exam^e). When the last process frees it, the system returns the block to the pool of free

memory, from which it can be reallocated.

The pointers themselves are currendy passed in buffers of the kind described above (requiring opens

and c/ores—see secttoi 4.2). Because of the specially simple nature of the messages (just a 32-bit address),

the special calls readheader and writeheader are available to opai, read (or write), and close with a single

call. We anticipate modifying this protocol further, so that the buffers themselves will varush, and the

four-byte pointers will be placed diiwtly in the flagbirf structure. Rnally, with the advent of 32-bit wide

bus hardware, the opens and closes can be eliminated, since the writing of the (32-bit) pointer will be

done in a single, indivisible bus cycle; the reacto will always read the latest pointer, and will never get

garbage (i.e. 16 bits of new pointer, and 16 bits of old).
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In CRAMPS, the dynamic common memory allocation is implemented as part of the kernel, which
is resident on each process. There is no centralized system process to perform such allocation for the

whole bucket. Instead, each process is given a region in common memory from which to carve out alloca-

tion blocks for himself, as needed. The alternative, of having the 575 process handle all allocation

requests, has not been pursued. This choice is transparent to the user: he simply calls the system function

alloccmO and receives a pointer to memory in return.

5. Additional Functions

The system also {S'ovides I/O services to and firom the CRT, including getchar, putchar, printf, and

readnl. In each case it first checks to see whether a CRT is in fact hooked up. This allows the user to

include diagnostic printf statements in his program, while still being able to run in real-time (i.e. without

the slow terminal HO) simply by unplugging the terminal from the computer board.

A system clock is created by the 575 process, and continues to run on one board, interrupt driven

and therefore transparent to the user. This clock may be read by any user by calling a function systime{)\

as currently implemented, it ticks once each millisecond. A sleep(n) function puts the process to sleep for

approximately n milliseconds. abort(message) and exit(n) perform as expected.

A PROC (per jHwess) array, maintained in common memOTy, irovides a snapshot of the current

state of each process. A tools command displays this information on request

Every error detected by the system gives rise to a message to the CRT (if there is one) including the

name of the subroutine and the error, and relevant parameters. If the debug flag is set a stack trace is also

automatically printed. Thus, while a user must ch^k for a -1 oror return, he need not bother coding an

error message. (The system error messages may be disabled, if desired, by clearing a flag.)

The same buffer protocol as described above has also been implemented for host-target data

transfers, to allow programs to be debugged on the host or to pomit the host to influence execution on

the target Since the host caimot directly lock the bus, the CPU on the interface board (ruiming code in

its PROM) accepts a request from the host to do the test-and-set on the host’s behalf, and to return the

result to the host

Additional buffer ("file") functions are provided, such as readran and writeran, which provide ran-

dom access, and autoread and autowrite, which include the open and close functions automatically, and so

result in fewer programmer errors. Open_syhch, togeths with the global variables synchrjxise and

synchrjncr, allows the user to require that message passing be done at fixed times only (synchronously).

These and other functions are described, and directions for their use is given, in The CRAMPS
Operating System: User’s Guide [12]. Details of how to set up the files arrays, uso- IDs, etc, will be

presented in The CRAMPS Operating System: Administrator’s Guide [13].

6. Application

CRAMPS - an earlier, less developed version - was used as the (grating system in the vision sys-

tem component of the National Bureau of Standards Automated Manufacturing Research Facility (AMRF).

The AMRF is a fully-automated machine-tool shop designed as a demonstration and test-bed facility. The

vision system was built and tested in 1982-1985, and continues in operation today. Hardware consists of

five CPU boards nmning Intel 8086 inicrq)rocess(ws in a Multibus backplane, and a separate host com-

puter consisting an ^)86 CPU board in an S-100 backplane, communicating with the Multibus bucket in

real-time as discussed in the |vevious section.

Program executkm in the vision system was data-driven. Each processor performed a different func-

tion on the image. One did run-length encoding of the image (see Ref. [3]), die next performed segmenta-

tion, the third extracted features such as comers, etc. Images arrived from the camera 30 times each

second. Each image was inocessed by the first processtx’. The output of this stage was then passed (via the

CRAMPS cperadng system) to the next, etc. The receiving {nxx^essOT is always available (at its

programmer’s discretion) to deal with the incoming data There is never any conc^ that it might be

swiped out of memory, or when it will again gain control of the processor, or how to presme the data

until it is again running. Intmupts were not used; each process simply checked to see if new data was

available, at appropriate points in its code. The opoating system’s responsibility is simply to provide
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bookkeeping for the data passing, and to assure that there are no collisions. CRAMPS does this with low
overhead, and what overhead there is occurs at points explicitly recognized by the user, i.e. during a call

to read or write.

Since then CRAMPS has been converted to run on 680x0 processors, and its capabilities have been

greatly enhanced. Three processes of the AMRF vision system were transported to three 68010's, where

they ran under CRAMPS as before. Other programs were written to test some of the new capabilities of

CRAMPS, and they demonstrated the usefulness of these new features. CRAMPS has thus proved itself to

be dependable, as well as fast, on both 8086's and 680x0's.
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