VIJIO3 J5497J

NIST

NISTIR 89-4170

MEASUREMENTS OF TRIBOLOGICAL BEHAVIOR OF ADVANCED MATERIALS: SUMMARY OF U.S. RESULTS ON VAMAS ROUND-ROBIN NO. 2

A. W. Ruff S. Jahanmir

U.S. DEPARTMENT OF COMMERCE National Institute of Standards and Technology Tribiology Group Gaithersburg, MD 20899

U.S. DEPARTMENT OF COMMERCE Robert A. Mosbacher, Secretary NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY Raymond G. Kammer, Acting Director

QC 100 .U56 89-4170 1989 C.2

NATIONAL INC. TE OF STANDARDS & TECHNOLOGY Research Information Center Gaithersburg, MD 20899

NISTIR 89-4170

NISTC QC100 . US6 . NO. 89-4170 1989 C.2

MEASUREMENTS OF TRIBOLOGICAL BEHAVIOR OF ADVANCED MATERIALS: SUMMARY OF U.S. RESULTS ON VAMAS ROUND-ROBIN NO. 2

A. W. Ruff S. Jahanmir

U.S. DEPARTMENT OF COMMERCE National Institute of Standards and Technology Tribiology Group Gaithersburg, MD 20899

September 1989

U.S. DEPARTMENT OF COMMERCE Robert A. Mosbacher, Secretary NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY Raymond G. Kammer, Acting Director

FOREWORD

This interlaboratory measurement activity was made possible through the cooperation of a number of U.S. universities, industrial organizations, and government laboratories: Advanced Mechanical Technology, ALCOA, Argonne National Laboratory, Carborundum, Falex, Georgia Institute of Technology, GTE, Kodak, Midwest Research Institute, Massachusetts Institute of Technology, National Institute of Standards and Technology, Naval Research Laboratory, Oak Ridge National Laboratory, Pennzoil, Stevens Institute of Technology, and United Technology Research Center.

i

TABLE OF CONTENTS

		page
Foi	reword	i
1.	Executive Summary	ĺ
2.	Background of VAMAS	2
3.	Summary of Results from Round 1	7
4.	Measurement Plan for Round 2	10
5.	Results: Standard Test Conditions	12
6.	Results: Low Load Test Conditions	21
7.	Results: Lubricated Test Conditions	26
8.	Summary and Conclusions	31
	Acknowledgements	35
	References	35
	Appendix A: Test Instructions and Data Sheet	36
	Appendix B: Data Sets from U.S. Laboratories	43
	Appendix C: Draft ASTM Standard for Pin-on-disk	57
	Wear Testing	

ii

-

An interlaboratory measurement comparison was carried out among 16 U.S. tribology laboratories as part of a larger effort involving six countries within the VAMAS Wear Test Method Activity. This report provides a summary of the results reported by the U.S. laboratories, as they were made available to NIST which acted as the U.S. coordinating laboratory. This interlaboratory measurement round was the second such effort. The summary of the results of the first effort has been published previously [1,2]. At the conclusion of the first round, it was decided by the Wear Test Method Steering Group to carry out a second round to examine additional material pairs and also to investigate some different test conditions: a lower test load, and the use of a lubricant in the sliding contact region.

It was found in Round 2 that the test and measurement methods were well established (in agreement with Round 1), and that they were applicable to additional material combinations. Some problems were identified: differences among the test machines used, difficulty in measuring small wear volumes on some disk specimens, low load conditions showed more variability in wear and friction results, and lubricated conditions should involve higher loads and longer sliding distances.

The results of these two interlaboratory studies are being used in the process of developing a U.S. standard for pin-on-disk wear tests through the ASTM Committee G-2 on Wear and Erosion. That standard is currently in the process of achieving consensus agreement on the test method.

2. BACKGROUND OF VAMAS

In June 1982 the Versailles Summit Meeting of the Heads of States or Governments of Canada, France, Federal Republic of Germany, Italy, Japan, United Kingdom, United States of America, and the Commission of European Communities, among some 18 other project activities established a Project on Advanced Materials and Standards (VAMAS). The aim of VAMAS was to foster international collaborative projects aimed at providing the technical basis for drafting codes of practice and specifications for advanced materials. Examples would include advanced ceramics and composites that require a better understanding of properties and performance for innovative applications. It was thought that joint measurement activities at an early stage would foster cooperation among the countries, and help to remove restrictions and barriers to trade and development. VAMAS has as a stated purpose:

> "To stimulate the introduction of advanced materials into high technology products and engineering structures through international agreement on codes of practice and on performance standards, and through multilateral research aimed at furnishing the enabling scientific and metrological base necessary to achieve agreement on such standards".

Since 1982 VAMAS has initiated 14 Technical Working Areas as shown in Table 1. One of the first was the Working Group on Wear Test Methods. That group began planning work in Vancouver, Canada, in April 1985, under

Table 1. VAMAS Technical Working Area

- 1. Wear Test Methods
- 2. Surface Chemical Analysis
- 3. Ceramics
- 4. Polymer Blends
- 5. Polymer Composites
- 6. Superconducting and Cryogenic Structural Materials
- 7. Bioengineering Materials
- 8. Hot Salt Corrosion Resistance
- 9. Weld Characteristics
- 10. Materials Databanks
- 11. Creep Crack Growth
- 12. Efficient Test Procedures for Polymer Properties
- 13. Low Cycle Fatigue
- 14. Technical Basis for a Unified Classification System for Advanced Ceramics

the leadership of Prof. Horst Czichos, Bundesanstalt fur Materialprufung, F.R. Germany. The Group agreed then on a purpose:

- to formulate necessary conditions for conducting meaningful laboratory wear tests
- to perform comparative interlaboratory studies on selected advanced tribological materials
- to determine appropriate parameters of standard wear testing

Participants in that initial planning meeting are identified in Table 2. A survey was carried out within the group and including other established tribology laboratories, to determine the most commonly used tribology test method. This was identified to be unlubricated sliding using the pin-ondisk method. Plans were then laid for conducting interlaboratory tests on a set of materials that would be provided by members of the group. The countries involved and the number of participants in each country are identified in Table 3. Results of the first round of tests have been published [1,2] and are summarized in the next section.

Members of Working Party:

 Prof. Dr. H. Czichos (Chairman) Bundesanstalt für Materialprüfung (BAM) Unter den Eichen 87 D-1000 Berlin 45 Federal Republic of Germany

+ 4930 8104 5000 telex 01-83261 BAMB D

 Dr. T.S. Eyre Brunel University Dep. of Materials Technology Uxbridge Middlesex UB8 3PH United Kingdom

+ 44 0895 37188

- Dr. Anna Grazia Gandini E.N.E.A. CSN Casaccia 0061 Anguillara Sabazia (Roma) Italia

telex 613 296 ENEA/CAI

- Prof. M. Godet
 Institut National des
 Sciences Appliquées
 Laboratoire de Méchanique des Contacts
 20, avenue Albert Einstein
 69621 Villeurbanne-Cedex
 France
 + 337 894 8224
 - telex 380856 F INSA LYN
- Dr. S. M. Hsu National Bureau of Standards Inorganic Materials Division Gaithersburg Maryland 20899 /USA

+ 1301 9212847 telex 898493 GARG

 Prof. J. Molgaard Memorial University of Newfoundland Faculty of Engineering & Applied Science St. John's, Nfld. Canada, AlB 3X5

+ 1709 737 8947/8812

 Dr. Tomohiko Ohno Mechanical Engineering Laboratory 1-2, Namiki, Sakura-mura, Niihari-gun, Ibaraki-ken 305, JAPAN

+81 298 54 2611 telex 3652570 AIST J

 Dr. A.W. Ruff National Bureau of Standards Materials Building Gaithersburg Maryland 20899 /USA

+ 1301 921 2966 telex 898493 GARG

- B. C. D'Agraíves EEC Joint Research Centre Ispra Establishment Ispra (Varese) Italy Tel: (0332) 789111
- Howard Hawthorne National Research Council (NRC) Canada Western Laboratory 3904 West 4th Avenue Vancouver, B.C., V6R 1P5
- Remo Martinella CISE Casella postale 12081-20134 Milano, Italy Tel: 02/2167.1
- Jacques Masounave, Ph.D. Senior Research Officer Group Leader National Research Council 75, boul. De Mortagne Boucherville, Quebec, Canada J4B 6Y4 Tel: (514) 641-2280
- Frederick E. Schmidt, Jr.
 Senior Research Engineer
 Engineering Technology Laboratory
 E. I. Du Pont De Nemours & Company (Inc.)
 Experimental Station B/304
 Wilmington, DE 19898, USA
 Tel: (302) 772-2839
- Ing. Giacomo Tipatti
 Servizio Planificazione e Controllo Istituto Per Le Ricerche
 Di Tecnologia Meccanica
 E Per L'Automazione
 10080 Vico Canavese
 Torino, Italia
 Tel: (0125) 74362/63/74598
- C. S. Yust Metals and Ceramics Division Oak Ridge National Laboratory P.O. Box X Oak Ridge, TN 37831 /USA

GUESTS IN ATTENDANCE

Table 3. Countries and Number of Participants for VAMAS Working Group on Wear Test Methods (August 1987)

Canada (4)

France (5)

FR Germany (4)

Italy (8)

Japan (6)

United Kingdom (5)

United States (10)

3. SUMMARY OF RESULTS FROM ROUND 1

It was agreed by the members of the Wear Test Method Group to conduct specific tests on one "advanced material", aluminum oxide, and one traditional material, AISI type 52100 bearing steel. The materials were provided to each laboratory in the form of disks and balls with the characteristics given in Table 4. The wear tests carried out utilized pinon-disk apparatus in each laboratory where the specimen ball would be rigidly held against the rotating specimen disk. Both friction and wear were measured and reported. Test parameters were: load 10 N, sliding speed 0.1 m/s, temperature 23 C, and sliding distance 1 km.

Results from the interlaboratory tests (Round 1) are shown in Table 5. Reproducibility of friction and wear values was judged to be good in terms of usual tribological data; it ranged from about 10 - 20 % for friction, and from about 5 - 20 % for specimen (linear) wear loss. Two areas of concern were identified: effect of humidity level in the test atmosphere, and the effect of test machine differences in geometry and stiffness. A total of 9 U.S. laboratories and 22 other laboratories participated in Round 1 of the VAMAS Working Group.

Test Samples
Wear
the
of
<u>Characterization</u>
4.
Table

.

	Composition (wt.%)	Texture	R _z (mean) (µm)	R _a (mean) (µm)	Hardness (HV 10)
Steel ball (100Cr6) (AISI 52100) ^a	0.95 - 1.10 C 0.15 - 0.35 Si 0.25 - 0.45 Mn	martensitic with minor carbides and austenite	0.100	0.010	838 ± 21
Steel disc (100Cr6) (AISI 52100) ^b	< 0.030 P < 0.030 S 1.35 - 1.65 Cr		0.952	0.113	852 ± 14
Alumina ball ^c Alumina disc ^c	95 (Al ₂ O ₃ with additives of TiO ₂ , MgO and ZnO)	equigranular alpha-alumina with very minor secondary phases	1.369 0.968	0.123 0.041	1610 ± 101 HV 0.2 1599 ± 144 HV 0.2
^a Standard ball-bearir ^b Standard spacers fo	ng balls (SKF). r thrust bearings (INA).				

•

^cManufactured by C.I.C.E. S.A.

Table 5. Interlaboratory Test Results from Round No. 1

	Kit 1	Kit 2	Kit 3	Kit 4
	Steel-steel	Ceramic- steel	Steel- ceramic	Ceramic- ceramic
Coefficient of friction ^a Number of data Number of laboratories	0.60 ± 0.11 109 26	0.76 ± 0.14 75 26	0.60 ± 0.12 64 23	0.41 ± 0.08 76 26
Wear rate of system (µm km ⁻¹) ^b Number of data Number of laboratories	70 ± 20 47 11	very small	81 ± 29 29 11	very small
Ball wear scar diameter (mm) Number of data Number of laboratories	2.11 ± 0.27 102 23	c	2.08 ± 0.35 60 21	0.3 ± 0.05 56 19
Disc wear track width (mm) Number of data Number of laboratories	đ	0.64 ± 0.13 54 19	đ	not measured

Results of the round robin tests (AISI 52100 steel, α -Al₂O₃ ceramic, $F_N = 10$ N, v = 0.1 m s⁻¹, T = 23 °C, relative humidity 12% - 78%)

^aAt 1000 m sliding distance.

^b Determined from the wear curve (steady state range between 300 and 1000 m sliding distance).

^cMaterial transfer from disc to ball.

^dMaterial transfer from ball to disc.

4. MEASUREMENT PLAN FOR ROUND 2

A total of 16 U.S. laboratories agreed to participate in a second round as shown in Table 6 (the total world group was comprised of 38 laboratories). The U.S. group was divided into three sub-groups in order to carry out three different types of tests. The plan for standard test conditions was similar to that used in Round 1 except a new material was added, and a desired humidity level during the test was identified. The materials also used in Round 1 were AISI 52100 steel (HV 830 - 860), and alumina (95% Al₂O₃, balance TiO₂, MgO, ZnO; HV 1500 - 1700). The test material added for Round 2 was hot pressed silicon nitride (85% Si_3N_4 , 8% Y_2O_3 , 5% Al_2O_3 ; HV 1500 - 1800). A humidity of 50 ± 10 % (relative) was specified for the test environment. The other test parameters were: load 10 N, sliding speed 0.1 m/s, temperature 23 C, and sliding distance 1 km. Additional details on specimen size, cleaning methods, wear measurement methods, and reporting procedures are given in Appendix A along with an example of a data sheet and a list of the material combinations studied. Five U.S. laboratories followed this standard test plan.

Additional tests were defined for the two other sub-groups of U.S. laboratories involving low load conditions and lubricated conditions. The purpose was to determine whether the test method could be used under a wider range of conditions. One sub-group of 6 laboratories used a load of 2 N with otherwise the same test conditions. Another sub-group of 4 laboratories used the standard test parameters but with a supply of highly purified paraffin oil lubricant provided to the sliding contact zone.

Table 6. U. S. Participants in Wear Test Method Round 2

Mr. Michael Anderson Falex Corporation 2055 Comprehensive Drive Aurora, IL 60505 (312) 851-7660

Dr. Robert Bruce Alcoa Laboratories Surface Technology Division Alcoa Center, PA 15069 (412) 337-5750

Dr. Ken Budinski Eastman Kodak, KPD, Bldg. 23 Rochester, NY 14650 (716) 477-2027

Dr. Forest Carignan Cambridge, MA Advanced Mechanical Technology, Inc. (617) 253-2227 141 California Street Newton, MA 02158 Dr. S. G. Shes (617) 964-2042 Carborundum

Dr. Clark Cooper United Technology Research Center East Hartford, CT 06108 (203) 727-7138

Dr. Ali Erdemir Argonne National Laboratory Building 212 9700 South Cass Avenue Argonne, IL 60439 (312) 972-4077

Professor Traugott Fischer Stevens Institute of Technology Materials Department Hoboken, NJ 07030 (201) 420-5256

Dr. Said Jahanmir NIST Ceramics Division Bldg. 220/Room A215 Gaithersburg, MD 20899 (301) 975-3671

Dr. Carl Wu Naval Research Laboratory Code 6362 4555 Overlook Avenue, S.W. Washington, DC 20375 (202) 767-2007 Dr. Frances Lockwood Pennzoil Products Co. P. O. Box 7569 The Woodlands, TX 77387 (713) 363-9085

Dr. A. W. Ruff NIST Ceramics Division Bidg. 220/Room A215 Gaithersburg, MD 20899 (301) 975-6010

Dr. Nannaji Saka Massachusetts Institute of Technology Department of Mechanical Engineering Building 35 Cambridge, MA 02139 (617) 253-2227

Dr. S. G. Sheshardi Carborundum Materials Technology Division P. O. Box 832 Niagara Falls, NY 14302 (716) 278-6034

Mr. Paul Sutor Midwest Research Institute 425 Volker Boulevard Kansas City, MO 64116 (816) 753-7600

Dr. Steven F. Wayne GTE Laboratory, Inc. 40 Sylvan Road Waltham, MA 02254 (617) 466-2596

Dr. Ward (). Winer Georgia Institute of Technology School of Mechanical Engineering Atlanta, GA 30332 (404) 894-3270

Dr. Charlie Yust Oak Ridge National Laboratory Metals and Ceramics Division P. O. Box X Oak Ridge, TN 37831 (615) 574-4812

5. RESULTS: STANDARD TEST CONDITIONS

Individual data sets are listed in Appendix B for each of the five U.S. laboratories that carried out the tests under the specified (standard) conditions. A summary of all Round 2 results is given in Table 7. For standard condition tests, Table 8 collects the individual raw data and gives the results of an analysis of those data. The analysis is divided into five groups, one for each of the specimen pairs. Average values and standard deviations for average friction, ball wear volume, disk wear volume, and total wear volume are given. Note that the standard deviation is calculated using the small sample method since n=4 in most cases. Graphical presentation of the friction data is shown in Fig.1 and the wear data in Fig.2. Ball wear volume was calculated using the approximate formula shown on the data sheet, Appendix A. Disk wear volume was to be calculated by measuring the average wear track cross-profile, computing the average cross-section area of the wear track, and multiplying by the midtrack circumference. The principal findings are:

- (a) The lowest average friction coefficient is about 0.5 for the steel/steel couple.
- (b) With ceramic/metal or ceramic/ceramic couples, the average friction coefficient is larger, about 0.7.
- (c) Variability of average friction coefficient is large, typically about 15% for all combinations.
- (d) The average ball wear volume is smallest for the mixed ceramic/ceramic couple and for steel/silicon nitride.

Table 7. Summary of Results for All Test Conditions

.

.

MATLS. Ball/ DISK	BALL MATERIAL	DISK Material	LOAD	LUBE (YES/NO)	FRICTION Average	FRICTION ' SD	BALL BALL WEAR VOL AVERAGE	BALL Wear Vol Sd	DISK Near Vol Average	DISK WEAR VOL SD	TOTAL Wear Vol Average	TOTAL TOTAL WEAR VOL SD
SN/SN SN/ALOX st/SN SN/st st/st	51384 51384 615152100 51384 615152100	Si 3N4 Si 3N4 AL 203 Si 3N4 AI SI 52100 AI SI 52100	10.00 10.00 10.00 10.00		0.64 0.71 0.64 0.68 0.68	0.09 0.10 0.08 0.08 0.14 0.12	0.0942 0.0436 0.04367 0.0267 0.0826	0.0108 0.0293 0.0265 0.0258 0.0796	0.0622 0.0579 0.1032 0.0899 0.0622	0.0715 0.0719 0.0330 0.0800	0.1015 0.1015 0.1299 0.1725 0.2255	0.0883 0.1012 0.0595 0.1058 0.1541
SN/SN SN/ALDX st/SN SN/st st/st	Si3N4 Si3N4 AISI52100 Si3N4 AISI52100	Si3N4 AL203 Si3N4 AISI52100 AISI52100	2.00 2.00 2.00 2.00	00 00 00 00 00 00 00 00	0.56 0.57 0.67 0.55 0.55	0.18 0.20 0.25 0.29 0.17	0.0111 0.0206 0.0172 0.0172 0.0348	0.0070 0.0022 0.0164 0.0094 0.0171	0.0404 0.0072 0.0464 0.0468 0.0068 0.0068	0.0226 0.0057 0.0312 0.0066 0.0002	0.0515 0.0278 0.0634 0.0240 0.0250	0.0296 0.0079 0.0476 0.0160 0.0173
SN/SN SN/ALOX st/SN SN/st st/st	Si3N4 Si3N4 AISI52100 Si3H4 AISI52100	Si 3N4 AL 203 Si 3N4 A15152100 A15152100	10.00 10.00 10.00 10.00	YES YES YES YES	0.10 0.12 0.12 0.12 0.11	0.02 0.01 0.03 0.02 0.02	2.44E-04 4.26E-05 8.42E-04 1.14E-04 2.34E-03	1.77E-04 2.24E-05 7.76E-04 6.60E-05 1.31E-03	0.0E+00 0.00E+00 0.0E+00 0.0E+00 0.0E+00	0.0E+00 0.00E+00 0.0E+00 0.0E+00 0.0E+00	0.0002 0.0000 0.0008 0.0001 0.001	0.0002 0.0000 0.0008 0.0008 0.0013
SN/SN SN/ALDX SN/st	51 314 51 314 51 314	Si 3N4 AL 203 AI SI 52100	30.00 30.00 30.00	YES YES YES	0.09 0.09 0.10	0.01 0.00 0.00	3.20E-04 1.29E-04 1.34E-04	4.05E-04 1.50E-05 4.00E-05	0.00E+00 0.00E+00 0.00E+00	0.00E+00 0.00E+00 0.00E+00	0.0003 0.0001 0.0001	0.0004 0.0000 0.0000

	-		-		lable 8.	Summa	ry or k	esurcs	LOI 21	andaro	ronat	<u>c 1 ons</u>	8 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
AB	BALL	DISK	LOAD	LUBE	DISTANCE	8	AVERAGE FI	RICTION:	X	EARYO	LUME(1	(£~88		8
UNBER	NATERIAL	KAIERIAL	N	(YES/NU)	M AVEKABE M		AVERAGE	as s	BALLI Average	đs	VI SK 8 AVERAGE	20	AVERAGE	SD
	16 Si 3N6	51344	10.0	ON O	1000	0	× 1.08	¥0.11	0.1130	0.0000	0.1185	0.0986	0.2315	0,1560
	17 SiJN4	5 i 3N4	10.0	DN 00	1000	0	0.55	0.05	0.0863	0.0180	0.0660	0.0282	0.1523	0.0214
	19 Si 3N4	Si JNA	10.0	ON O	1000	0	0.77	0.05	0.0883	0.0133	0.2473	0.0649	0.3357	0.0782
	PO SIJNA	51 3N4	10.0	ON O	1000	0	0.65	0.04	0.0933	0.0162	2.3461	1.4296	2.4394	1.4455
	28 Si 3N4	Si 3M4	10.0	ON O	1003	2	0.60	0.20	0.0902	0.0294	0.1728	0.1037	0.2631	0.1268
						AVG=	0.64	AV6=	0.0942	AVG=	0.5901	AV6=	0.6844	
						=0S	0.09	S0≈	0.0108	5D=	0.9839	=0S	0.9833	
	16 Si 3NB	AL 203	10.0	ON O	1000	0	¥1.07	¥0.04	0.0557	0.0136	0.0107	0.0006	0.0663	0.0138
	17 Si 3N6	AL 203	10.0	ON O	1000	0	0.58	0.00	0.0870	0.0000	0.0540	0.0017	0.1410	0.0017
	19 Si 3N4	AL 203	10.0	ON O	1000	•	0.80	0.04	0.0216	0.0130	0.8607	0.0460	0.1822	0.0590
	PUC SI 3N4	AL203	10.0	ON O	1000	0	0.77	0.02	0.0403	0.0051	1.7000	0.3365	1.7392	0.3405
	28 Si 3N4	AL 203	10.0	ON O	1005	7	0.67	0.07	0.0136	0.0105	0.0061	0.0058	0.0198	0.0162
						AV6=	0.71	AV6=	0.0436	AV6=	0.3863	AV6=	0.4297	
						S0=	0.10	=0S	0.0293	=0S	0.7370	=0S.	0.7348	
	16 AISIS2100	SI JN4	10.0	ON O	1000	0	*1.01	¥0.13	0.0186	0.0022	0.1290	0.0240	0.1476	0.0248
	17 A15152800	SIJNS	10.0	ON O	1000	0	0.58	0.00	0.0147	0.0006	0.0903	0.0047	0.1050	0.0053
	19 AISIS2100	I SI 3NI	10.0	0 NO	1000	0	0.72	0.04	0.0739	0.0494	0.1310	0.0078	0.2049	0.0447
	20 AISIS2100	D SI 3N4	10.0	ON O	1000	0	0.69	0.10	0.0137	0.0025	1.2061	0.2719	1.2198	0.2735
	8 AISI52100	SiJN4	10.0	ON O	·1002	-	0.56	0.06	0.0127	0.0020	0.0624	0.0109	0.0751	0.0101
						AV6=	0.64	AVG=	0.0267	AV6=	0.3238	AV6≖`	0.3505	•
						SD=	0.08	S0=	0.0265	=0S	0.4941	50≈	0.4884	
_	16 SI 3N4	AIS152100	10.0	ON O	1000	0	*1.50	¥ 0.28.	0.1183	0.0283	0.1713	0.0569 :	0.2897	0.0852
	17 SI 3N4	AIS152100	10.0	ON O	1000	0	0.66	0.03	0.1000	0.0082	0.0437	0.0012	0.1457	0.0093
	19 Si3N4	AISI52100	10.0	ON O	1000	0	0.83	0.01	0.0590	0.0123	0.1423	0.0101	0.2013	0.0107
	20 SI 3N4	AIS152100	10.0	ON O	1000	0	0.74	0.03	0.0746	0.0254	2.0800	0.2425	2.1540	0.2176
,	ZB SIJNI	AIS152100	10.0	ON O	1002	1	0.49	6.10	0.0612	0.0209	0.0023	0.0040	0.0635	0.0179
						AV6=	0.68	av6=	0.0826	avg=	0.4879	AV6=	0.5704	
						=05	0.14	≥D=	0.0258	S0=	0.8927	=0S	0.8891	
-	16 AISI5210(A15152100	10.0	ON O	1000	0	¥1.36	* 0.39	0.7895	0.0650	0.1493	0.0908	0.9388	0.1035
	17 AISI5210	0 AISIS2100	10.0	ON O	1000	0	0.41	0.01	0.1513	0.0075	0.000	0.0000	0.1513	0.0075
	19 AISIS210(0 AISIS2100	10.0	ON O	1000	0	0.55	0.03	0.0610	0.0038	0.0993	0.0081	0.1603	0.0102
	20 AISI5210	0 AISIS2100	10.0	ON O	1000	0	0.65	0.14	0.2510	0.0485	3.2251	1.5412	3.4761	1.5389
	28 AISIS210	AIS152100	10.0	ON O	1002	-	0.42	0.09	0.1900	0.0139	0.0003	0.0005	0.1903	0.0136
						AVG=	0.51	AVG≃	0.2886	avg=	0.6948	₽VG=	0.9834	
Not	1e/1* .0	TOT PI	thelida	ve ni h	IS avave	50=	0.12	SD=	0.2884	=(15	1.4159	5D=	1.4330	

(

.

Summary of friction coefficient results for standard conditions. Fig. 1

15

Fig. 2 Summary of wear results for standard conditions.

- (e) The average ball wear volume is largest for the steel/steel couple.
- (f) Variability in ball wear volume ranges from 11% for ceramic/ceramic to a large value of 50% for steel/steel.
- (g) Average disk wear volume varies substantially among the labs. The cause may be related to different measurement methods used. It is difficult to determine any trends in disk wear volume in this small sample.

Examples of specific results are shown in Figs. 3, 4 and 5. Friction vs. time curves for a test under standard conditions for one of each of the five materials pairings are shown in Fig. 3. It is seen that slow, small decreases or increases in friction coefficient with time were found, with occasional abrupt but small changes probably due to wear debris effects in the contact gap. Two examples from the NIST measurements of profilometer tracings of disk wear tracks are shown in Fig. 4; each track was traced at four locations in order to obtain an average cross-sectional area of the wear track to use in computing the disk wear volume. The irregularities at the bottom of the wear track groove are thought to reflect roughness and possibly residual wear debris. Figure 5 shows two examples of the appearance (optical micrographs) of the ball wear scar and a portion of the disk wear track. Surface appearances suggest principally abrasive wear for the ceramic materials and deformation wear with some abrasion for the steel specimens.

.

Fig. 3 Friction coefficient vs. sliding distance examples for each material studied under standard conditions.

Fig. 4 Profilometer traces across wear track at four locations on disksfrom two tests under standard conditions.

Fig. 5 Optical micrographs from (top) a silicon nitride ball and disk pair, and (bottom) a steel - silicon nitride ball and disk pair, both tested under standard conditions

6. RESULTS: LOW LOAD TEST CONDITIONS

Individual data sets are provided in Appendix B for each of the six U,S. laboratories that carried out the tests under the low load (2 N) condition. A summary of all Round 2 data is given in Table 7. For low load test conditions, Table 9 collects the individual raw data and gives the results of an analysis of those data. The analysis is divided into five groups, one for each of the specimen pairs. Average values and standard deviations for average friction, ball wear volume, disk wear volume, and total wear volume are given. Note that the standard deviation is calculated using the small sample method since n=6 in most cases. Graphical presentation of the friction data is shown in Fig. 6, and the wear data in Fig. 7. The principal findings are:

- (a) There is considerable variation in friction coefficient for all materials, ranging from about 33% to 50%. This is larger than the variation found for the standard condition (10 N load).
- (b) There is fair agreement on ball wear in some cases (about 11%), but also some disagreement for other materials up to about 50%.
- (c) There is difficulty in measuring disk wear due to its small value at the low load, and considerable variation in the disk wear results for all materials.

Figure 8 shows two examples from the NIST measurements of friction vs. time curves for tests under low load conditions; more variation with time is seen there than for the higher (10 N) load under standard conditions.

LAB	BALL	DISK	LUAD	LUBE	DISTANCE:		AVERAGE FI	ICTION:		EARVO	LUME (I			
NURBER	MATERIAL	NATERIAL	:	(YES/NO)	AVERAGE	SD	AVERAGE	SD	BALL:		DISK:		TOTAL:	
			2		-	•			AVERAGE	SD	AVERAGE	SD	AVERAGE	SD
26	Si 3N4	AL 203	2.0	0 NO	1000	0	0.73	0.01	0.0181	0.0076	0.0110	0 0014	A 6707	0 0037
23	Si JN4	AL203	2.0	ON O	1000	0	0.63	0.04	0.0184	0.0010	0.0000	0.0000	0.0184	0.0010
28	Si 3N4	AL 203	2.0	ON Q	1004	-	0.38	0.23	0.0216	0.0018	0.0052	0.0008	0.0748	0.0017
29	Si 3N4	AL 203	2.0	ON O	1000	0	0.29	0	0.0240	0.0009	0.0124	0.0073	0.0242	0.0216
20	SI 3N4	AL203	2.01	DN O	1000	0	0.59	0.04	0.0207	0.0006	0.8333	0.2225	0.8540	0.2225
42	Si 3N4	AL 203	2.0	ON O	1000	0	0.80	0.00	0.0209	0.0009				
						AV6=	0.57	AV6=	0.0206	AV6=	0.1724	AV6=	0.1905	
ł						50=	0.20	=0S	0.0022	SD=	0.3695	20=	0.3709	
26	SiJNA	Si 3N4	2.0(ON C	0008	0	9.64	0.04	0.0240	0.0032	0.0589	0.0042	0.0829	0.0011
27	51 3N4	513N4	2.0(ON C	. 1000	0	0.67	0.01	0.0061	0.0015				
28	SiJN	51 3N4	2.0(ON	1003	E	0.60	0.30	0.0109	0.0035	0.0152	0.0219	0.0261	0.0186
29	5i 3N4	SI 3N4	2,0(ON C	1000	0	0.22	0.13	0.0112	0.0039	0.0470	0.0016	0.0582	0.0023
30	Si 3N4	Si 3N4	2.0(ON	1000	0	0.54	0.12	0.0036	0.0001	0.6620	0.0555	0.6656	0.0555
42	SiJNG	SI 3NE	2.0(DN	1000	•	0.70	0.05	0.0109	0.0037				
						AVG=	0.56	AV6=	0.0111	AV6=	0.1958	AV6=	0.2082	
в						50=	0.18	S0=	0.0070	50=	0.3015	SD=	0.2961	
22	Si JNI	A15152100	2.00	NON (1000	0	0.76	0.06	0.0339	0.0338	0.0131	0.0135	0.0470	0.0475
27	Si 3N4	AISI52100	2.0(ON C	1000	0	0.81	0.06	0.0160	0.0005	0.0000	0.0000	0.0160	0.0005
29	51 JN4	AISI52100	2.00	0N L	1000	•	0.28	0.01	0.0162	0.0105	0.0073		0.0235	0.0105
30	Si JN4	AIS152100	2.0(ON C	1000	•	0.42	0.25	0.0101	0.0077	0.1143	0.0127	0.1244	0.0051
42	SI 3N4	AISI52100	2.00	ON (1000	¢	0.83	0.03	0.0197	0.0004				
						AV6=	0.55	AVG=	0.0172	AV6=	0.0337	AV6=	0.0527	
-						SD=	0.29	S0₃	0.0094	50=	0.0540	S0≈	0.0496	
26	AISI52100	SEISNE	2.0(DN (1000	0	0.78	0.06	0.0115	0.0010	0.0491	0.0021	0.0606	0.0011
22	AISI52100	Si JN4	2.00	ON (1000	•	0.85	0.04	0.0093	0.0014				
29	AIS152100	Signe	2.0(ON C	1000	0	0.26	0.03	0.0463	0.0379	0.0120	0.0083	0.0583	0.0296
30	AISI52100	Si 3N4	2.00	ON C	1000	0	0.61	0.01	0.0073	0.0013	0.0780	0.0444	0.0853	0.0434
42	AISI52100	Si 3N4	2.0(DN	0001	0	0.83	0.01	0.0107	0.0004				
						AV6=	0.67	AV6=	0.0170	AV6=	0.0464	AV6=	0.0681	
						=0S	0.25	20= 20	0.0164	s0=	0.0312	50=	0.0141	
26	AIS152100	AISI52100	2.01	ON C	1000	0	0.67	0.09	0.0145	0.0019	0°000		0.0149	
27	AIS152100	AISIS2100	2.0(ON C	1000	0	0.60	0.01	0.0378	0.0103	0.0000	0.000	0.0378	0.0103
29	AIS152100	AISI52100	2.01	01 00	1000	0	0.29		0.0298					
30	A15152100	AISI52100	2.0(ON	1000	0	0.43	0.01	0.(1305	0.0020	3.4077	0.1842	3.4382	0.1846
42	AISI52100	AISI52100	2.01	ON O	1000	0	0.67	v.0 3	0.0613	0.0079				
						AV6=	0.53	AVG=	0.0348	AV6=	1.1360	AV6=	1.1636	
						5D=	0.17	=0S	9.0171	S0=	1.8548	SD=	1.8572	

Table 9. Summary of Results for Low Load (2N) Conditions

22

.

FRICTION COEFFICIENT +- 1 SD

Summary of friction coefficient results for 2 N load conditions. Fig. 6

Fig. 7 Summary of wear results for 2 N load conditions.

•

Fig. 8 Friction coefficient vs. sliding distance examples for two materials studied under 2 N load conditions.

Figure 9 shows an example of a wear track trace from an aluminum oxide disk.

7. RESULTS: LUBRICATED TEST CONDITIONS

Individual data sets are provided in Appendix B for each of the four U.S. laboratories that carried out the tests under lubricated conditions using a highly purified paraffin oil (25.9 cs viscosity at 40 C). The oil was prepared by percolation through an alumina absorbant column under nitrogen gas pressure. Most of the tests were conducted under otherwise standard conditions. One laboratory conducted a few tests at a 30 N load. summary of all Round 2 results is given in Table 7. For lubricated test conditions, Table 10 collects the individual raw data and gives the results of an analysis of those data. The analysis is divided into five groups, one for each of the specimen pairs. Average values and standard deviations for average friction, ball wear volume, disk wear volume, and total wear volume are given. Note that the standard deviation is calculated using the small sample method since n=4 in most cases. Graphical presentation of the friction data is shown in Fig. 10 and the wear data in Fig. 11. The principal findings are:

- (a) Average friction values are closely similar for all five material combinations, ranging from 0.09 to 0.12.
- (b) Variation in friction values among the laboratories ranged from 10% to 50%.
- (c) Ball wear volume is lowest for the material combinations including a ceramic member, ranging from 4×10^{-5} to 8×10^{-4} mm³. The steel/steel test ball wear volume is largest at 2×10^{-3} mm³.

Fig. 9 Profilometer traces across wear track at four locations on a disk from a test under 2 N load conditions.

onditions
Lubricated C
for
Results
Summary of
10.
Table

AB	EALL	DISK	LOAD	LUBE	DISTANCE:		AVERAGE E	RICTION:	11					
IUNPER	MATERIAL	MATERIAL		(YES/ND)	AVERAGE	SD	AVERAGE	50	BALL:		DISK:		TOTAL:	
			z		4	đ			AVERAGE	50	AVERAGE	SD	AVERAGE	SD
ň	4 Sian4	5 i 3N4	10.00	YES	1000	Q	0.12	0.01	2.20E-04 2	,00E-05 (0.00E+00 (0.00E+00	2.20E-04 8	.00E-05
ы. М	6 Si 3N4	Si 3N4	10.00	YES	1000	0	0°08	0.02	1.00E-04 7	7.17E-05	0.00E+00 (0.00E+00	1.00E-04	7.17E-05
÷.	PNEIS 7	513N4	10.00	YES	1000	0	0.10	0.01	5.00E-04 4	, 33E-04 (0.00E+00 (0.00E+00	5.00E-04 4	.33E-04
'n	9 Si 3N4	Si JN4	9.87	YES	1232	39	0.08	0.00	1.57E-04 8	3.81E-(i5	5.16E-02	1.99E-03	5.18E-02	.94E-03
		-				AV6=	0.10	AVG=	2.44E-04	AVG=	1.29E-02	AVG=	1.32E-02	
						SD=	0.02	SD=	1.77E-04	SD=	2.58E-02	5D=	2.58E-02	
ž	3 5i3N4	AL 203	10.00	YES	1001	1	0.09	0.03	6.87E-05 1	.85E-06 (0.00E+00 (00+300° (6.87E-05	.85E-06
r.	6 Si 3N4	AL203	10.00	YES	1000	0	0.10	0.01	2.95E-05 8	90-354°	0.00E+00 (0.00E+00	2.95E-05	2.45E-06
e	7 Si3N4	AL203	10.00	YES	396	6	0.12	0.01	1.93E-05 B	.08E-06	0.00E+00 (00+300°(1.93E-05 8),08E-(16
ė	9 Sian4	AL 203	9.87	YES	1086	0	0.09	0.00	5.29E-05 5	· 40-386-09	0.00E+00 (0.00E+00	5.29E-05	5.48E-06
						AV6=	0.10	AV6=	4.265-05	AV6= (0.00E+00	AV6=	4.26E-05	
						SD=	0,01	SD=	2.24E-05	SD=	0.00E+00	50=	2.24E-05	
ຄັ	3 Si3W4	AISI52100	10.00	YES	1002	-	0.07	0.02	7.08E-05 1	.85E-06	5.20E-03 5	9.14E-03	6.27E-03).14E-03
ē	6 Si 3N4	AISI52100	10.00	YES	1000	0	0.10	0.01	6.61E-05 1	.11E-05	0.00E+00 (0.00E+00	6.61E-(15	1.11E-05
ъ.	7 Sian4	AISI52100	10.00	YES	1000	0	0.11	0.00	1.10E-04 2	.65E-05 (0.00E+00 (00+300°	1.10E-04	2.65E-05
ຕົ້າ	9 Sian4	AISI52100	9.87	YES	1086	0	0.09	0.00	2.08E-04 2	-39E-04	0.00E+00 (0.00E+00	2.08E-(14	2.39E-04
						AV6=	0.09	AV6=	1.14E-04	-AV6=	1 .55E-03	AV6=	1.66E-03	
						5D=	0.02	SD=	6.60E-05	SD=	3.10E-03	SD=	3.07E-03	
ë	AISI52100	Si 3N4	10.00	YES	1000	0	0.16	0.05	1.43E-()3 1	.49E-03 (0.00E+00 (0.00E+00	1.43E-03	60-364° (
ĕ	6 AISI52100	I SI 3N4	10.00	YES	1000	0	0.10	0.00	8.96E-05 1	.54E-05	0.00E+00 (0.00E+00	8.96E-05	1.54E-(15
'n	7 AISI52100	SI 3N4	10.00	YES	1047	40	· 0.12	0.02	2.61E-04 1	.48E-04 (0.00E+00 (00+300.	2.61E-04	1.48E-04
τ,	9 AISI52100	Sian4	9.87	YES	1086	0	0.09	0.01	1.59E-03 5	5.65E-04	4.57E-02	9.41E-03	4.73E-02	9.86E-03
						AV6=	0.12	AV6=	8.42E-04	AVG=	1.14E-02	âV6=	1.23E-02	
						50=	0.03	SD=	7.76E-04	SI)= .	2.28E-02	5D=	2.33E-02	
Ē	4 AISI52100	AISI52100	10.00	YES	1000	0	0.14	E0.0	1.556-03 1	.08E-03	0.005+00 (),00E+00	1.55E-03	i "ŭ8E-03
ĕ	6 AISI52100	AISI52100	10.00	YES	1000	0	0.10	0.01	1.41E-03 4	.63E-04	0.00E+00 (0.00E+00	1.41E-03	4.63E-(14
ŝ	7 AISI52100	AISI52100	10.00	YES	1000	Û	0.09	0.01	2.17E-03 5	.51E-04 (0.00E+00 (),(0E+00	2.17E-03	5.51E-04
'n	9 AISI52100	0 AISI52100	9.87	YES	1187	102	0.11	0.01	4.24E-03 9	, 65E-()4	6.34E-()2	3.246-02	6.76E-02	3.32E-02
						âV6=	0.11	ĤV6=	2.34E-03	AVG= 1	1.58E-02	AV6=	1.82E-02	
						SD=	0.02	=0S	1.31E-03	SD=	3.17E-02	S0=	3.30E-02	
en .	6 Si3N4	Si 3N4	30.00	YES	1000	0	0.09	0.01	3.20E-04 /	4.05E-04	0.00E+00	0.00E+00	3.20E-04	4.05E-04
m	6 SI3N4	A1203	30.00	YES	1000	0	0°0	00.0	1.295-04 1	· 20-302 ·	0.00E+00 (0.00E+00	1.29E-04	1.50E-05
ന്	6 Si3N4	AISI52100	30.00	YES	1000	Ú	0.10	0.00	1.34E-04 4	1.00E-05	0.00E+00	0.06E+00	1.34E-04	4.00E-05

.

Summary of friction coefficient results for lubricated conditions. Fig. 10

- (d) Disk wear is very small and difficult to measure in most cases, although one lab reported values as high as 6×10^{-2} mm³.
- (e) Tests conducted at 30 N loads showed similar friction, slightly increased ball wear, and unmeasureable disk wear.

Figure 12 shows two examples from the NIST measurements of friction vs. time curves for tests under lubricated conditions. The curves show less variation and smaller absolute values than for unlubricated conditions, as would be expected. An example of a wear track trace from a steel disk is shown in Fig. 13; in such cases it was difficult to measure the small wear volume involved.

8. SUMMARY AND CONCLUSIONS

The results of Round 2 for the U.S. laboratories showed (in agreement with Round 1) that the test and measurement methods used were well established, and further that the methods were applicable to additional material combinations. It was agreed that standardization efforts through the ASTM will be pursued based on the VAMAS results. Some problems were identified in connection with differences among the test systems used in Round 2; improved machine characterization is needed. Data variability would probably be reduced if the test systems were more identical. It was also noted that wear volume on the disk specimen was difficult to measure accurately, and that work should be done to improve that situation.

Fig. 12 Friction coefficient vs. sliding distance examples for two materials studied under lubricated conditions.

Fig. 13 Profilometer traces across wear track at four locations on a disk from a test under lubricated conditions.

A number of specific recommendations for future improvements in the test protocol were developed. It was felt important to provide more precise definitions of friction terms such as initial, final, and average. There should be a better surface finish on the specimens, particularly on steel. There should be clear instructions on the method for measuring disk wear profiles. One laboratory suggested a different, more accurate formula for calculating ball wear. A desirable, parallel effort to improve measurement capability would involve circulating some worn specimens to compare the wear volume measurement method itself.

Improvements were also suggested for the report form associated with the test. It was felt important to provide more space on the data form for comments, with prompts to enter the information. There should also be a report section for showing surface photographs and profiles together.

Recommendations were developed for the non-standard test conditions. A longer sliding distance should be used at the 2 N load to obtain greater total wear that could be more precisely measured. Further, the 2 N load may be too low for some equipment designs. The lubricated testing probably should be carried out at higher loads and for longer sliding distances to obtain sufficient wear on both members. Slower sliding speeds or higher loads should be used to ensure boundary lubrication conditions.

ACKNOWLEDGEMENTS

The leadership and overall support for this effort (as part of the total world effort) that was provided by Horst Czichos and colleagues at B.A.M. was crucial to its success. The cooperation and dedicated effort received from the individuals involved in these measurements at the laboratories indicated in Table 6 is also gratefully acknowledged. The assistance of P. Pei at NIST in providing refined paraffin oil for certain tests was appreciated. Considerable work and data analysis was done at NIST by Eric Whitenton, and by University of Maryland co-operative students, Bill Duvall and Tim Strakna.

REFERENCES

- H. Czichos, S. Becker, and J. Lexow, "Multilaboratory Tribotesting: Results from the Versailles Advanced Materials and Standards Programme on Wear Test Methods". Wear <u>114</u>, 109-130 (1987).
- H. Czichos and A.W. Ruff, "Results of the VAMAS Interlaboratory Study on Wear Test Methods", VAMAS Bulletin No. 5, 1-5 (1987).

. 36

APPENDIX A: TEST INSTRUCTIONS AND DATA SHEET

.

.

INSTRUCTION SHEET

FOR VAMAS-PROJECT ROUND ROBIN

WEAR TEST METHODS

Please Perform Tests at the following Agreed Test Procedure

1. Test System

- -Stationary ball (10 mm diameter) against rotating disc (40 mm outer diameter, 32 mm standard wear track diameter, and 29 or 35 mm optional for additional runs, see point 4)
- -rotation in the horizontal plane
- -direction of rotation of disc to be indicated by each labora-- tory
 - -Ball and disc are to be protectively stored in plastic containers.
 - -The enclosed ball clamping (designed by NPL) should be used where applicable. Otherwise, holders for disc and ball are to the discretion of each laboratory.
 - -Please report (if possible) vibrations (e.g. vibration amplitudes and frequency distribution) of test rig at stated location, if changed or new since the first round robin.
 -Report stiffness-data of the test rig (if available), if changed or new since the first round robin.
- 2. Materials Disc: AISI 52100 alpha-Al₂O₃ Si₃N₄ Ball: AISI 52100 Si₃N₄

3. Lubricant

÷

No lubricant will be used in this round robin test.

4. Operating Variables

-Motion: Continuous unidirectional sliding -Velocity: 0.1 m/s -Normal Load: 10 N Optional: 50 N on 35 mm track in standard atmosphere -Temperature: 23 ± 1 °C -Sliding distance: 1000 m -Atmosphere: laboratory air, 50 ± 10 % relative humidity

Optional: "as dry as possible" on 29 mm track, 10 N load -Number of tests: 3

*If other conditions are used please indicate them.

5. Preparation of Surfaces

-Specimen are to be used as received, i.e. no mechanical surface finishing is necessary.

-Surfaces are to be cleaned immediately prior to each test.

a) Ultrasonic agitation in trichloroethane, 10 minutes

b) Ultrasonic agitation in methanol, 10 minutes

c) Rinsing with methanol

d) Drying in a drying oven at 120°C, 30 min

-Chemicals of pure quality are to be used.

-Samples are to be stored and transported in desiccators.

6. Measurements

! Please, use the evaluation sheets !

a) Wear:

(Please define whether wear of ball, wear of disc, or total wear of both ball and disc are measured.)

~Wear continuously measured and recorded (system wear)

-Wear scar diameter on ball to be measured with an optical microscope

-Profilogram results of surfaces of both, ball and disc, after the test

b) Friction:

(Please define whether the friction force or the friction torque are measured.)

-Submit a simplified graph giving the fluctuations as defined in the evaluation sheet

-Suggested chart speed 20 cm/h

7. Post-Measurement Handling

Indicate the sample number with a water resistant felt pen on the side of the disc which was not subjected to wear.
Mark the worn area on the ceramic balls with a water resi. stant felt pen or correction fluid for each test.

After the first and second test turn the ceramic ball into a new position without contaminating the sample.

-Put the samples back into the bags immediately after the

test and the examinations in order to avoid mixing of samples

8. Examination

Surfaces are optionally to be examined by optical photography and SEM techniques.

9. Report

All results should be reported to Prof. Czichos, BAM, by

. . , 1988.

Reports should in particular comprise:

-Information on the test setup (if modified or new since the first round robin)

-Photographs of surfaces (optional)

-Graphs of wear and friction

-Additional information on deviations from agreed conditions or other information concerning the test (e.g. vibrational characteristics, results of optional test runs)

V A M A S 2. ROUND ROBIN ON WEAR TEST METHODS

EVALUATION SHEET

LABORATORY NO. KIT .:

ball:

1123

disk:

	TEST 1	TEST 2	ITEST 3
TEST CONDITIONS			
sliding distance (m) load (N) velocity (m/s)			
wear track diameter (mm) ambient temperature (C) relative humidity (%)			
FRICTION AND WEAR RESULTS			
coefficient of friction value at the beginning value at the end maximum value			
average at steady conditions			
vertical displacement (um) (total linear wear)			
ball:wear scar diameter d ₁ (mm) wear scar diameter d ₈ (mm) wear volume W _b × (mm ³)			
disk:wear track width (mm) wear track depth (µm) planimetric wear (µm ²) wear volume Wa **(mm ³)			
*) $W_b = \pi d^4/64r$ r = ball radius; d = wear scar diameter	Observat	ions:	

 $\frac{1}{2}$ Wd = $2\pi R d^3/12r$

Material Combinations (Round 2)

<u>Ball</u>		<u>Disk</u>	
Si ₃ N ₄		Si ₃ N ₄	
Si_3N_4		52100	Steel
Si ₃ N ₄		A1203	
52100	Steel	Si_3N_4	
52100	Steel	52100	Steel

p. 1 of 5

INDIVIDUAL LABORATORIES - STANDARD CONDITIONS

•

	TOTAL	1		0.1510	0.3120	9.2315	0.1560	0.1410	0.1770	0.137(0.152	0.021	0.4190	9.244	0.324(0.335	0.070	0.807	3.750	2.678	2.439	1911	0.207	6.12	0.374	0.263	0.126
						AV6-	=0S				AV6=	:				AV6-	°05				AV6=	ŝ				AV6=	30-
)15K			0.0380	0.1790	0.1105	0.0984	0.0730	0,0100	0.0350	0.0660	0.0202	0.3140	0.1070	0.2390	0.2473	0.0419	0.0116	3.6103	2.5863	2.3461	1.4296	0.2110	0.0535	0.2520	0.1728	0.1037
	2510 2510	BIAN as		32.0	32.0	AVG-	-05	32.0	32.0	32.0	AV6-	5D+	32.0	32.0	32.0	AV6-	ŝ	31.0	31.5	32.0	AV6-	50 -	32.1	32.7	2.2	AVG	80=
	JWC MC	5.40		0.1130	0.8830	0.1130	0.0000	0.6480	0.0070	0.1040	0.0843	9.0180	0.1030	8.0770	0.0850	8.0083	0.0133	6.0775	6.1076	9.0726	0.093	0.0162	9.0743	0.0704	0.1240	9.0702	9.0244
	MLL	AVE as		1.640	1.640	AWGo	å	1.425	1.777	1.003	AVG-	å	2.846	1.996	2.040	AV6=	÷	1.676	1.129	1.753	AV6.	-95	1.645	1.637	1.005	AVS	ŝ
	SCAR	Ĩ		1.040	1.040			1.625	1.72)	1.803			2.120	8.940	2.020			1.676	1.029	1.73			3.670	1.630	1.070		
	MIL			1.040	8.010			1.625	1.727	1.003			2.160	2.020	2.060			1.674	1.020	1.753			1.640	1.435	8.680		
	AVE	COC		0.70	1.26	1.00	0.11	0.50		0.50	0.55	0.05	0.02	9.74	0.74	0.77	0.05	0.67	9.60	9.67	0.45	0.04	0.03	0.45	0.52	9.60	0.20
	AAL Frict	COEF		0.10	1.49	AV6-	-05	0.61	0.41	0.50	AV6-	SD-	0.09	9.94	0.02	AV6=	SD•	0.67	0.40	0.67	AV6-	SD-	0.84	0.74	0.65	AV6=	50-
-	FINAL	5		0.64	1.16			0.52	0.57	0.50			0.01	9.75	0.74			0.47	0.40	0.67			0.83	0.39	0.52		
	JRITIAL FRICT	COEF		0.71	0.01			0.50	0.60	0.54			0.42	0.35	0.63			0.58	0.50	0.40			0.57	0.44	0.35		
	CORNECT	M		2	2			8	8	8			62	48	2			11	12	2			12	12	55		
	ange	deg C	İ	34	R			88	20	23			23	33	22			38	24	22			12	2	23		
	ISK RACK DIAN			32.0	32.0			32.0	32.0	32.0			32.0	32.0	32.0			31.8	31.5	32.0			32.1	32.7	35.9		
	VELOCITY D	a/s		0.10	0.10			0.10	0.10	0.10			0.10	0.10	0.10			0.10	0.10	0.10			0.10	0.10	0.10		
	16ST 11AF	-																					9940	9840	9820		
	LOAD	12		10.00	86.00			10.00	10.00	10.00			10.00	10.00	10.00			10.00	10.00	10.00			10.00	10.00	10.00		
	NSTANCE	•		1000	1000	1000	•	1000	1000	1000	1000	•	1000	1000	1000	1000	•	1000	1000	1000	1000	•	1003	1001	1001	1003	2
	01SK		20041	2CD042	20043	AV6-	5 D=	20044	20045	200046	AVGa	50=	20039	200051	20 00 52	AV6=	50=	200053	2CD054	200055	AV6-	-80-	SN183	SN091	SN072	AV6-	20= 20=
	DISK Nateria		SI 3NG	SI 2N4	SI 3N4			51 344	51 3N4	51 3K4			SI 3N4	SI 3N4	543N4			51 3N4	51 3M	51 3N4			DI JNG	Si JN4	\$1 3N4		
	THE -		20.0049	201049	201049	,		201073	2C B075	201075			200074	200074	200074			20067	20047	2CB067			SN028	SH028	SN026		
	DALL		54.304	51 3N4	51344			SI 3N4	S13N	51 3N4			54 3N4	Si SNG	51384			SI 3N4	51 3N4	51344			51304	54246	51384		
	TEST D DATE				•																		1 2/3	12 3/15	13 3/24		
	LA1		16					11					=					R					20				

P. 2 of 5

INDIVIDUAL LABORATORIES - STANDARD CONDITIONS

TOTAL	2 F. H		0.0820	0.0610	0.0560	0.0463	0.0130	0.1420	0.1420	0.1390	0.1410	0.0017	0.2484	0.1350	0.1633	0.1022	0.0590	1.7930	1.3751	2.0196	1.7392	0.3405	0.0435	0.0099	0.0087	0.0170	0.0178	0.0162
						AV6-	ŝ				AV6-	-05	;			AV6-	-05				AVG-	:					AV6-	ŝ
015 K	4 A 8		0.0110	00100	0.0110	010.0	0.000	0.0550	0.0530	0.0520	0.0540	0.0017	0.2120	0.1230	0.1470	0.1607	0.0460	1.7554	1.277	2.0034	1.4907	0.2365	0.0146	0.0027	0.0023	0.0050	1400.0	0.0058
1810	TRACK Olah an		32.0	32.0	37.0	AV6-	ä	32.0	32.0	32.0	AV6-	à	37.0	32.0	32.0	AVG-	•05	32.7	31.0	32.2	AV6=	-05	2.0	35.0	31.7	31.0	AV6=	\$ 5
1	₩ .		0.0710	0.0510	0.0450	1220.0	0.0134	0.0070	0.0070	0.0470	0.0670	0.000	0.0344	0.0120	9.0143	0.0216	0.0130	0.0374	0.0374	0.0442	0.0403	0.0051	0.0289	0.0072	0.0044	0.0120	0.0134	0.0105
-TH	AVE IN		1.640	1.510	1.440	-9AN	-3	1.73	1.727	1.77	AV6-	-95	1.450	1.26	1.350	AV6-	ŝ	1.397	1.377	1.473	-9MV		1.305	0.125	0.879	1.052	AV6=	43
33	ž		8.64	1.560	1.400			1.72	1.72)	1.73			1.640	1.240	1.340			1.391	1.397	1.07			1.300	0.914	0.001	1.071		
Ħ	i a		8.640	1.160	1.440			1.127	8.727	1.721			1.660	1.240	1.340			1.397	1.397	1.473			1.310	0.935	0.909	1.027		
M	COCF COCF		1.07	1.02	1.10	1.07	0.04	0.51	0.50	0.50	0.50	0.0	0.02	0.03	0.75	0.00	9.06	0.00	0.74	0.76	0.77	0.02	0.70	0.75	0.43	0.60	0.67	0.07
IME			2.1	1.2	1.39	AVG=	50-	. 0.62	0.42	0.42	AVG	20 •	0.13	0.40	0.40	AV6-	50= 20=	0.04	9.82	0.70	AV6=	50=	0.41	0.82	0.73	0.64	AV6=	50=
FINA		2	10.1	1.03	1.03			0.51	0.56	0.54			0.00	0.03	0.74			0.82	0.74	0.71			0.93	0.70	0.43	0.57		
INTIAL DOCT	C007			1.29	1.39			0.42	0.62	0.42			0.16	0.42	0.54			9.04	0.82	0.74			0.20	0.25	0.19	0.24		
CORRECT				3	7		:	8	8	8			5	3	5			=	2	-			2	20	2	2		
761	den C	11	: 7	53	9		7	\$;	9 1	5			2	24	23		i	≈ :	24	R		;	24	8	23	2		
ISK RACK DIAN	1	32.0	13 4		9.26		A 11 A	A-76		1.26			32.0	32.0	32.0			1.1	31.0	32.2			35.0	33.8	31.9	31.0		
VELOCITY D	5/1	0.10			41.4		V • V	21.2	0.10	01.0			0.10	0.10	0.10			0.10	0.10	0.10			0.10	0.10	0.10	0.10		
TEST	-																						10001	1584	9821	1691		
LGAO	*	10.01	4 V V	N N	A. 1		20	AD . A1	8-AI	N.01			10.00	10.00	10.00			10.00	10.00	10.00			10.00	10.00	10.00	10.00		
OISTANCE	•	1000	0000	A~1	AM1	3			AAA1	0001	2	•	1000	1000	1000	1000	•	1000	1000	1000	1000	•	1014	1001	1002	1002	1003	~
NSI I	,	10025	10171		176411	- CA	-UC	Taca18	786078	Iceses	-QAN	20-	1C0377	100370	100379	AVE	8	100308	· 1C0392	100394	AV6=	ŝ	AL01295	AL01365	AL01366	AL01270	AVG	50-
BISK		A1 203	10018	2021A	6U218		100.00		CU1.1M	CU3 18			A1 203	A1 203	AI 203			A. 203	A1 203	A1 203			A1 203	A1 203	A1 203	A1203		
JULI I	-	2CB010	N.M.A	STAALA	114817		37 8010		210015	110017			208021	20021	208021			ZC 00 20	208020	2019020			SN020	SN059	SN059	SN020		
BALL PATERIAL		51344	SI THE	el Twa			61 TH 6	1111		tur le			SI 3N4	SI 3N4	51 3X4			513H4	51344	51344			51 3M	\$N218	SI SNG	51384		
TES1 4 DATE																							4 2/4	14 3/20	17 3/29	34 5/12		
(V)		=					11	:				;	4				;	2					2					

p. 3 of 5

••

INDIVIDUAL LABORATORIES - STANDARD CONDITIONS

101AL 8 V 84^3	0.1500 0.1217 0.1712 0.1712 0.1474	0440.0 0401.0 0201.0	0.7305 0.7305 0.1533 0.1533 0.2045 1.463 1.463 1.215 1.215	0.071 0.067 0.067 0.086 0.010
	ž		AVG- AVG-	50- 50-
815K 8 V 84^3	0121.0 0121.0 0121.0 0121.0	0.0530 0.0530 0.0520 0.0720	0.1320 0.1320 0.1340 0.1310 0.071 1.4711 1.4711 0.4278 1.2194 1.2041	0.2719 0.0603 0.0527 0.0742 0.0142 0.0107
alsx Thack Blan aa	20.0 20.0 20.0	37.0 37.0 37.0	32.0 32.0 32.0 32.0 31.0 31.5 31.5 31.5 31.5	50° 33.9 32.2 32.1 80° 50°
an's an's an's	0.0210 0.0167 0.0167 0.0102 0.0104	0.0150 0.0156 0.0156	0.0455 0.1080 0.1080 0.0474 0.0474 0.0474 0.0110 0.0110 0.0110	9.0025 9.0148 9.0149 9.0127 9.0029
BAUL SCAR AVG an		1.120 AV6-	2.058 2.170 1.376 AV6- 50- 1.029 1.130 AV6-	50- 1.025 1.106 1.046 50- 50-
Ber A	951-1 971-1 941-1	1.072 1.120 1.120	2.000 3.160 1.360 1.067 8.015 8.015	1.007 1.101 1.036
BAL Prip	1.232	1.120 1.120 1.120	2.100 2.100 1.300 1.410 1.641 1.641 1.641	1.042 1.116 1.086
AVS FRICT COEF			••••••••••••••••••••••••••••••••••••••	e.16 e.59 e.66 e.65 e.65 e.65 e.65 e.65 e.65 e.65
AAI FRICT COEF	1.12 1.12 Av6• Av6•	0.64 0.71 0.71 0.71	0.77 0.96 0.95 0.77 0.77 0.77	50- 6.63 6.71 AVG- 50-
FRIAL FRICT COEF	8.48 8.02 8.18	9.64 9.64 9.64	0.70 0.77 0.73 0.73 0.45	0.57 6.53 8.58
BILITIAL FAICT COEF	6.06 0.03 1. A	0.42 0.71 0.71	0.43 9.42 9.28 9.58 9.58	0.30 0.28 0.23
CORRECT NUM (B 1 TY IDHT	383 -	888	59 20 11 10 10 10 10 10 10 10 10 10 10 10 10	885
TEN ⁶ dag C	7 7 C	225	***	24 25
ISK IRACK BIAN De	37.0 32.0 32.0	32.0 32.0 32.0	32.0 32.6 31.6 31.5 31.5	35.9 32.2 32.1
VELOCITY 1	01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.10 0.10 0.10	0.10 0.10 0.10 0.10 0.10 0.10	0.10 0.10 0.10
1657 11/K	ν Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο			9651 9651 9651
LOAD	10.00 10.00 10.00	10.00 80.00 10.00	10.00 10.00 10.00 10.00 10.00	10.00 10.00 10.00
I STANCE a	900 1000 1000 1000	1000 1000	1000 1000 1000 1000 1000 1000 1000 100	0 1001 1002 1002 1002 1902
X510 -	20143 20143 20143 204	200140 200149 200136 AV6=	2C0154 2C0155 2C0154 AV6= 50= 2C0157 2C0157 2C0157 2C0158	SN182 SN182 SN182 SN231 AV6• SD••
DISK Rateria	61384 61384 81384 81384	51384 51384 51384	51344 31344 31344 51344 51344 51344 51344	51 344 91 344 51 344
	011451 (11051	150449 850450 150452	159459 159464 159465 159465 159465	11485 11485 11485
NIEJIN INI	015132100 A13132100 A13122181	AISI32106 AISI32106 AISI32106	AISIS2100 AISIS2100 AISIS7100 AISIS2100 AISIS2100 AISIS2100 AISIS7100	A15152100 A15157106 A15152100
TEST D DATE				20 4/1 21 4/1 22 4/4
3	4	11	s 9	R

p. 4 of 5

INDIVIDUAL LABORATORIES - STANDARD CONDITIONS

101 A A V A		0.2420	0.2390	0.3090	0.201)	0.0852	0.1414	0.136	0.154	0.143	0.001	0.107	0.202	0.20	0.201	0.810	2.145	1.942	2.372	2.15	0.21	0.04	0.05	0.08	0.06	0.01
					AV6-	-				AV6-	-				-SVA	-05				AV6-	å				AV6-	ŝ
815K 1 V 1 1		0.1410	0.1360	0.2370	0.1715	0.0347	0.0430	0.0430	0.0450	0.0437	0.0012	0.1410	0.1330	0.1530	0.1123	0.0101	2.0405	1.0468	2.3307	2.0795	6.2425	0.0070	0.0000	0.0000	0.0023	0.0040
BISK TRACK BIAN BA		32.0	32.0	32.0	AV6-	15	32.0	32.0	32.0	AV6-	-05	37.0	32.0	32.0	AV6-	5	р. С	37.4	11.0	AV6-	5	2.5	31.7	32.0	AV6-	50-
i.		0.1010	0.1030	0.1510	0.1103	0.0283	0.0780	0.0930	011090	0.1000	0.0082	0.0482	0.0724	0.0543	0.0590	0.0123	0.0823	0.0153	0.0462	0.0746	0.0234	0.0410	0.0504	0.0834	0.0612	9.0209
MUL SCAL		1.790	1.000	1.700	AV6-	-05	1.778	1.753	1.127	AV6-	å	1.770	1.960	1.640	AV6-	-05	1.702	1.745	1.475	AV6-	4	1.157	1.542	1.707	AV6=	ş
311		1.740	1.800	1.748			1.770	1.73	1.029			1.760	1.740	1.020			1.702	1.73	1.075			1.467	1.55	1.727		
₹£=		1.820	1.000	2.006			1.770	1.753	1.027			1.780	1.700	1.840			1.702	1.778	1.473			1.403	1.370	1.488		
AVE FRICT COEF		1.40	1.29	1.02	1.50	0.20	0.67	9.44	0.64	0.46	0.03	0.82	0.84	0.83	0.83	10.0	0.71	0.71	0.80	9.74	0.03	0.55	0.33	0.30	0.49	0.10
MI LINE		1.24	1.54	2.80	-9AV	-0S	0.47	0.49	0.45	AV6-	50-	6.15	6.89	0.67	AV6-	-05	0.71	0.76	0.00	AV6-	50-	0.61	0.63	0.57	AV6-	SD=
FINA FRICT COEF		1.40	1.27	1.77			0.43	0.44	0.42			0.83	0.02	0.03			0.71	0.71	0.76			0.57	0.60	0.30		
INITIAL Frict		9.08	0.74	0.74			0.10	0.10	0.43			0.14	0.14	0.21			0.27	0.50	0.75			0.20	0.05	0.03		
CORRECT HUMIDITY AM		2	12	#			30	8	8			23	8	11			53	2	17			a	2	2		
TER ⁶ deg C		23	5	2		1	20	2	a			23	22	23			2	2	24			23	22	52		
ISK Rack Olai Me		32.0	0.75	32.0			32.9	32.0	32.0			32.0	32.0	32.0			33.0	32.4	33.0			33.5	31.7	32.0		
VELOCITY 0 1 a/s		0.10	01.0	01.0			0.10	0.10	0.10			0.10	0.10	0.10			0.10	0.10	0.10			0.10	0.10	0.10		
s 1911 1																						1681	1691	1694		
1 01		10.00	80°01	10.00			10.00	10.00	10.00			10.00	10.00	10.00			10.00	10.00	10.00			10.00	10.00	10.00		
BISTANCE		000	0001	0001	990 1		0001	881	1000	1000	•	1000	1000	1000	1000	•	1000	1000	1000	1000	•	1001	1002	1002	1002	-
115K 0		150423	121051	121051	-9A		150426	150427	150428	AV6-	\$	150432	150433	150434	AV6-	\$	150435	150436	120137	AV6-	-09	st549	42) Is	st 460	AV6-	50-
OISK MATERIAL		AISIS2100	017C1518	ALSI22100			00 125 15 IV	A15132100	AISIS2100			AI5152100	A15152100	AI 5132100	-		A15132100	AIS152100	A15152100			A15152100	AISIS2100	A15152100		
BALL		209071	Voinz	ZCE011			20802	2CB058	2CB056			208043	2CB043	208043			208042	208042	208042			SKI 31	Sil 31	SM131		
BALL MATERIAL		and is		21214	•		51 3K4	513H1	SI 3M4			51 344	SISH	513N4			51304	\$13M4	51 3 W4			61 3N4	SI 3N4	513M4		
TEST & DATE																						25 4/11	26 4/8	27 4/7		
[V]	:	2				:	2					=					2					2				

•

LAO	TEST O DATE	BALL	BALL	DISK	915K	DISTANCE	LOAD	TEST	VELOCITY 0	ISK RACK DIAN	TERP .	CORRECT WUMID117	FRICT	FINAL	FAICT	AV6 FRICT	DALL Verg	SCAR	T N	I A F	015K	015K H V		101.AL
						•	=	can	a/a	1	deg C	RHZ	COEF	COEF	COEF	COEF	3	2		an^3 01	14 HV			1. m
71		A15152100	045851	A15157100	150513	1000	10.00		0.10	32.0	24	37	0.78	0.93	1.13	1.14	2.920	2.960	2.940	0.7335	32.0	0.2300		0.9435
		01212100	169231	A1515100	150514	1000	10.00		0.10	32.0	24	36	0.89	1.46	2.16	8.82	3.000	2.960	2.900	0.7742	32.0	0.0510		0.0232
		A15152100	159392	A15152100	150515	1000	10.00		0.10	32.0	22	32	0.95	0.96	1.56	1.13	3.040	3.080	3.040	0.8400	32.0	0.1670		1.0270
					AV6	= 8000									AV6=	8.36			-9A	0.7875	-9A6-	0.1493	AV6-	0.9386
					5	•									S0=	0.39			-	0.0650	= 0 5	0.0708	8	0.1035
-		AIS132100	158589	AIS152100	150516	1000	10.00		0.10	32.0	22	8	0.20	9.69	0.92	0.40	1.981	1.981	1.901	0.1510	32.0	0.0000		0.1510
•		A15152100	158587	A15132100	150517	0001	10.00		0.10	32.0	22	8	0.20	0.54	0.73	0.40	2.007	2.007	2.007	0.1590	32.0	0.0000		0.1590
		A15152100	858588	A15152100	150518	1000	10.00		0.10	32.0	23	20	0.30	0.50	0.49	0.42	1.756	1.754	1.956	0.1640	32.0	0.000		0.1440
					AVE	1000									-9AV	0.41			AV6=	0.1513	-9AV	0.000	AV6=	0.1513
					35										- O S	0.01			- 5	6.0073	-15	0.0000	ā	0.0075
:		A16162100	152501	A15152100	150422	1000	10.00		0.10	32.0	23	65	0.35	0.57	0.68	0.51	1.860	3.840	1.840	0.058	32.0	0.8030		0.1630
5		OCICE INTO IN	COVERS S	AISISIAN	LCSUSI	1000	10.00		0.10	32.0	24	99	0.16	0.51	0.46	0.52	1.060	1.840	1.940	0.0588	32.0	0.0900		0.1406
		901201214	10101	AIRISTON	PERCENT A	1 MM	10.00		0.10	32.0	2	54	0.28	0.55	0.67	0.56	1.920	1.700	1.910	0.0453	32.0	0.1030		0.1483
		MITCHEN	roraci	MITTEL	AUCAUS	1000					;				AV6=	0.55			AV6-	0.0610	AV6=	0.0993	- AVE-	0.1403
															- 50-	0.03			- 4 5	0.0038	-0S	0.0011	50°	0.0102
;		ALC BIOLA	10101	ALCICITA	1CPASI	- Wel	10.00		0.10	33.0	20	22	0.49	0.58	0.53	0.47	2.210	2.210	2.210	0.2341	33.0	3.5460		1.6001
Q,		BAITCICIN	000001	MITCLEIN	racues .	1000	10.00		0.10	15.1	38	5	0.42	0.76	0.76	0.71	2.159	2.159	2.159	0.2133	и.1	4.6121		1.155
		VUITEIEIN	100051	WITCHIGH	1CSU21	0001	10.00		0.10	11.2	2	53	0.71	0.87	0.87	0.74	2.362	2.362	2.342	0.3057	33.2	3.4971		3.8020
		MITCICIN	110321	1017F1011	JUN ALL	-									AV6-	0.45			AVB-	0.2310	MV6-	1.2551	AV6=	3.4761
					12	-									=05	0.14			-09	0.0HE	=0S	1.5412	=1S	1.5389
1			- 406	ALCICULA	0104-		10.00	9841	0.10	35.5	24	37	0.11	0.43	0.64	0.43	2.048	2.075	2.071	0.1810	51.5	0.0009		0.1819
87	51 4/6	AULACIZIAN	20115	WITCHTOIN	1441	IMI	10.00	6449	0.10	12.2	24	33	9.09	0.50	0.63	0.30	2.139	2.143	2.141	0.2060	32.2	0.0000		0.2060
	C/A 76	MANAGE IN CONTRACTOR IN	50115	WICSISIA	1444	1001	10.00	1289	0.10	35.3	23	37	0.40	0.32	0.50	0.33	2.074	2.086	2.079	0.1030	ъ.5	0.000		0.1830
	33 4/6	DATISTICIE	70115		aut	1002									AV6=	0.42			AVE	0.1900	AV6°	0.0003	AV6°	0.1903
					ls Is)= 1002									50=	0.09			50=	0.0139	50=	0.0005	20-	0.0136

p. 5 of 5

INDIVIDUAL LABORATORIES - STANDARD CONDITIONS

p. 1 of 5

INDIVIDUAL LABORATORIES - LOW LOAD (2N) CONDITIONS

THE VARAS RE	EULTS ALL LABS	(2/88) eve?	NEARY AT	A341000	•••		-				-	`												
LAB	TEST & DATE	BALL MATERIAL	BALL B	DISK Hrterifi	ζή 14 em	DISTANCE a	ж Суој	1111 1111 12	/ELGC11Y 01 18 8/5	SK 11 ACK 01AM Ka d	ErP COR	RECT IN 017Y FI	ITTAL F RICT FI OES C	INAL Rict F Oef	ALCT F	AVS PEF		LET A	ALL Gar	84LL 6 4 1 6 2 1	DISK Rack At as	1:5X 1:5X 1:53		101AL 18 v 68^2
2	-	512N4 513N4 513N4	2C5016 2C6018 2C6018	41203 ≥1203 A1202	120369 120370 120370 120371 AVG=	0001 0001 0001	2.00 2.00 2.00		0.10 0.10 0.10	32.0 32.0 32.0	888 888	545	0.42 0.53 0.53	0.78 0.88 0.88	0.78 0.88 0.88 AV6= 60=	0.76 C.70 C.74 0.73	1.211 1.160 1.095	1. :87 1. 195 1. 147	1.178 1.178 1.116 AVS= SV=	1020.0 1020.0 1810.0 1810.0	32.0 32.0 AVG=	0.0092 C.0123 0.0116 0.0110	AV6= SD=	0.0295 0.0312 0.0312 0.0268 0.0292
17		5: 344 5: 344 5: 364	2CB093 2CB098 2CB098	A1 203 A1 263 A1 203	1CD312 1CD316 1CD320 AV6= 50=	1000 1000 1000	2.00 2.00 2.00		0.10 0.10 0.10	32.0 32.0 32.0	3333	888	0.96 0.91 0.92	0.63 0.66 0.62	0.92 0.92 AV5=	0.65	1.180 1.175 1.170	1.190 1.170 1.140	1.155 1.155 AV6- SD-	0.0154 0.0184 0.0175 0.0175 0.010	12.0 32.0 AVS= SD=	0.0000 0.0000 0.0000 0.0000	=SvA SvA	0.0184 C.0184 0.0175 0.0184
8	5 2/7 18 1/28 19 3/30	5: 3N4 5: 3N4 5: 3N4	SN028 SN059 SN059	A: 203 A1 203 A1 203	ALCI295 ALCI295 ALDI365 ALDI366 FVG= S0=	1002 1002 1001	2.00 2.00 2.00	9507 9850 9850	0.10 0.10 0.10	32. 2 32. 3 35. 9	5 5	32 82 11	0.46 0.40 0.11	0.40 0.40	0. 47 0. 47 AVE= SD=	0.38 0.38 0.38	1.220 1.21 1.247	1.170 1.225 1.236	1.195 1.223 1.224 AVG= SC=	0.0197 0.0219 0.0219 0.0216 0.0216	12.2 35.9 AVS= S0=	0.0060 0.0048 0.0048 0.052	AVS=	0.9257 0.0265 0.0265 0.0269 0.0269
ç.	a ²	SI ING	160802	A1203 A1203	1CC384 1CC404 1CC403 AVG= S0=	100) 1000 1000	2.00		0.10 0.10	32.0	5				AVE -	0.29	1.220	1.240	1.220 1.240 AVS= SD=	0.0247 0.0247 0.0252 0.0209 0.0009	32.0 32.0 AVS= SD=	0.0064 0.0164 0.0124 0.0124	=5.NU	0.0311 5.0415 9.090 6.0242 0.0216
ន		513N4 513N4 1015	2C6038 2CE038 2CE038	41203 81233 81263	100327 100359 100359 AVE= Sn=	1000 1000 1000	2.0)		0.10 0.10	32.) 32. 0 32. 0	n 6 8	នួកដ	0.38 C.6J 0.65	9.53 0.69 0.69	0.65 ° 0.72 ° 1.77 ° FVS=	0.55 0.55 0.59	1.200 1.216 1.220	1. :90 1. 210 1. 200	1.195 1.210 1.213 AV6= ST=	0.0200 0.0210 9.0219 0.0207	AVS=	0.61350 0.6106 0.6135	A.15=	0. 3550 1. 0760 0. 6510 0. 2225
4		SI JNA SI JNA SI JNA	208115 201152 211822	A1203 A1203 A1203	1CD406 1CD407 1CC407 AVE= 5C=	0 0 0 0 0 0 0 0 0 0 0 0 0	2.30		0.10 0.10 0.10	32.0 32.2 32.5	222	52 52	1.00 0.72 0.93	0.75 0.74 0.77	1.00 0.94 646= 50=	6.80 0.80 0.80 0.00	1.175 1.205 1.1 95	1.210 1.220 1.235	1.173 1.218 1.215 PVG= \$D=	C. C19E 0. 0214 C. 0214 0. 0209 0. 0009	12.0 12.0 AVE= EC=		=35 	

p. 2 of 5

0.0819 0.0341 0.0827 0.0829 0.0811

0.0142 (.0145 0.0476 0.0261 0.0565 0.0565 0.0592 0.0592 0.171% 0.4975 0.6776 0.4676 0.4676

INDIVIDUAL LABORATORIES - LOW LOAD (2N) CONDITIONS

					AV6=	2			AV6=	- 5			AIR-	2 6	•			AV6=	å				±8V6	- 05					
5:1 3	1	C. C543	0.0624	0.0600	0.0589	7400.0				3-00 V	0.000	11111	color o	0.0219		0.0457	0.0483	C.0470	C.C.16	0.707.0	0.6790	0.6000	0.6620	e.0555					
 B: SK	DIAT as	32.0	32.0	32.0	ene=	32.0	32.0	32.0	N6-	- 25-	1.4.1	31.6	73.7	=0AH	6	32.0	12.0	ev6≈ .	=05	0.H	12.6	12.0	AV6=	20=	22.0	0	12.6	2.4 2.4 2.4	
1168 11.9	£**3	0.0276	0.0217	0.0227	0.0240	0.0050	0.0077	0.0048	1900.0	0.0015	/110.0	0.0140	0.007	5760 O		0.0144	0.0080	2:112.0	0.0039	e. ac36	0.0035	C.0.36	C.0036	6.0001	0.0152	c. 3095	C. 5982	0.027	
EALL SCAP	AVS 23	1.295	1.219	1.233	AVG-	50= 0.875	0.940	0.640	AV6=	50= 	cho.1	740.1	0. 421	=0,H	5	1.100	0.950	AV6=	50=	0.793	0.772	C. 748	AVE=	50=	1.115	0.993	0.955	675= 50=	;
81.8 9878	=	1.314	1.208	1.212		0.860	0.940	0.840			EH0-1	74.1.1	0.916			1.000	0.950			0.785	0.745	0.770			1.120	000.1	0.940		
EAL	8	1.276	1.230	1.233		0.890	0.940	0.840			1.046	740.1	0.9Z5			1.200	0.950			0.775	0.760	0.755			1.110	0.585	0.950		
AVS FE:CT	8	0.68	0.64	0.60	0.64	0.47	0.67	0.66	0.67	0.01	0.30	2	0.60	0.00		0.33		0.33	0.00	0.45	0.66	0.48	0.54	0.:2	0.49	0.66	0.76	0.70	;;
August a	CCE	0.71	0.47	0.64	-9AV	19.0	0.84	0.89	AV6=		0.62	11	0.62	AVD ^e CAr				AV6=	£03	0.99	0.75	0.10	AV6=	- S	0.70	0.91		AV6= Sf.=	;
FIXAL FRICT	2062	0.67	0.46	0.64		0 47	0.67	0.66		1	0.39	19 ° °	0.46							E\$.0	0.49	6.43			0.42	0.62	c.73		
FRICT	COEC	0.49	0.28	0.21		0 84	0.84	0.89			0.34	0.45	0.43							0.65	0.65	0.5(0.87	0.90	0.6		
CONSECT CONSECT	24	\$	45	45		F	38	8		•	•	= !	\$							6 <u>5</u>	09	S4			អ	3	ផ		
<u>ا</u> يۋ	deş C	12	23	23		36	12	24		1	23	3	22			24	24			23	23	53		•	23	21	52		
BIEK Tsacy Biai	2	32.0	32.0	32.0		17.0	32.0	32.0			36.1	7.75	33.9			32.0	32.0			32.0	32.0	32.0			32.0	32.0	32.0		
VELOZIJY	2/3	0.10	0.10	0.10		0.10	0.10	0.10			0.13	2.5	0.10			¢.:0	0.10			0.10	0.:0	0.10			0.10	0.10	0.10		
3%11 1531	57										9651	1110	ICPA																
1043	-	2.00	2.00	2.00		2.00	2.00	2.00		5	88	3.7	7*00			2.00	2.00			2.03	2.00	2.00			2.00	2.00	2.90		
J:STANCE	æ	0001	1000	1000	1000	1000	0001	1000	1000	0	1001	1001	1001	500	•	1000	1000	0001	U	000	1030	1000	1000	ē	1000	100	1000	0	
ů,		2CD(70	ZCD971	200072	AV6-	202073	200074	20075	av6=	50.0	LYUNG	74047	-3NV	-05	:	220095	200096	A:/6*	±3	2CD)97	2000-3E	2CE059	AV6=	Š	20202	ZC0203	ZEZCH	=0AH 2D=	
DISK		5:3W4	51 3H4	51344		51 3M4	11 344	Si JN4		C. TuA	51 TH4	C: Ted	5H0 IC			SIJNE	51 3N4			51 344	513H4	S: 304			5:384				
-1-VI		2/13041	2CB051	228061		200040	205063	2CB040		2 LUNE	SNOT	02020	67040			203073	226075			2CB(52	2C8:22	ZCBOEZ			208130	212130	001977		
BALL. YATERIAL		\$K213	51 JAN	51384		51 3M	51 3NG	51314		51 704	51244	5. 7ML	111770			5:344	5: 344				51344	51 JK4			51344	PHCIC S			
TEST D BATE		5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8								14 3/21	15 3/27	112 211																	
LAB		26				27				28	:				۴,				;	÷				5	7				

p. 3 of 5

INDIVIDUAL LABORATORIES - LOW LOAD (2N) CONDITIONS

EST & BATE	BALL 14736.R			4 4 4	1:STAM		9 H	5/a	IY DISK Track di La	TER-	CORPEC NCH1011 NCH1011	T FRICT COEF	FILLS	FRICT CCEF	Pro:			A EAL	225	PLEN THACK		14 22	
	AISI52:09 AISI52100 AISI52100	155479 155480 158481	SI 3H SI 3H Si 3H	2CD175 2CD175 2CD176 2CD177 AVG=	:000 1000 1000	2.00 2.00 2.00		0.10 0.10 0.10	32.3 32.0 32.0	22.23	***	0.35 0.25 0.21	0.78 0.78 0.78	0.78 0.92 0.68 AV6=	0.73 0.77 0.65 0.78	1.050 1.012 1.062	1.027 1.027 1.065	1.039 1.020 1.064 AYE=	0.0114 0.0106 0.0126 0.0115	22.0 32.0 AVG=	0.0499 0.0536 0.0467 0.0491	AV6=	0.0613 0.0613 0.0593 0.0606
	A15152100 A15152100 A15152100	155482 158463 158434	SI 3N4 SI 3N4 SI 3N4	SC= 2CD178 2CD179 2CD180 AV6=	1000 1000 1000	2.00		0.10 0.10 0.10	32.0 32.0 32.0	2 2 2	26 26 23	0.83 0.89 0.88	0.86 0.89 0.83	50= 0.86 0.86 AV6=	0.06 0.84 0.89 0.82 0.85	0.990 1.020 0.950	0.990 1.020 0.940	SD= 0.999 0.945 AV6=	0.0010 0.0044 0.0106 0.0078 0.0073	50= 32.0 32.0 AVE=	0.0021	SD*	1100.0
	9151521 20 A15152100	156488 158489	513N4 Si 344	50= 20189	0 1000 10C0	2.00		0.10	32.0 32.0	25				20 *	0.04	1.690	:.660 1.:20	50- 1.675 1.120	0.0154 0.0154	50= 32.0 32.0	0.0052 0.0187	Ë:	9.0825 0.0341
	A:S:52100 A:S:52100 A:S:52100	15: 191 15: 191 15: 192	SI JN4 SI JN4 SI JN4	AVG= 50= 201:87 20186 20186 20186	0 0 1000 1000 1000	2.00 2.00		0.10	32.0 32.0 32.0	មមន	60 60	0.53 0.65 0.62	0.60 0.60 0.60	AV6= 5D= C.70 C.70 0.72	0.26 0.04 0.60 0.60 0.60	0.969 0.921 0.921	0.969 0.525 0.235	AV6= 50= 0.923 0.293	0.0463 0.0379 0.097 0.097: 0.0022	AVE= 50= 32.0 32.0	0.0120 0.0085 0.0175 0.0575 9.1250	=57 50=	0.0583 0.0295 0.0562 0.0562 0.1352
	A15152100 F15:52100 A:5:52100	051451 52%331	NC18	RVE= SC= 202233 200233 200233 AVE=	1000 1000 1000 1000 1000	2.00 2.00 2.00		0.10 0.10	12.0 32.0	888	885	0.52 0.85 0.35	0.83 0.63 0.75	AVE= 50= 0.93 0.93 0.67	0.61 0.01 0.85 0.87	1.020 1.010 1.015	1.025 1.025 1.020	AV6= 50= 1.018 1.018 1.018	0.0073 0.0012 0.0105 0.0105	AV6= 50= 51.0 51.0	0.0444	=518 513=	0.9553

p. 4 of 5

ŝ

INDIVIDUAL LABORATORIES - LOW LOAD (2N) CONDITIONS

11 11	SST O BATE	BALL		DISK RATERIAL	¥::	31578505	CH31	7657	VELCCITY DISK TRACK D		CCHRECK	FREET	FINC	FRICE	AVS FR.CT	BALL	SCAR para	BALL SCAC	1128 1128	DISK TRACK	5:5K		IJTRL B V
						•	*	-	c/3 c3	de; [941 -	5200	COE;	CCE:	COEF	8	2	AVS as	£~83	DIAT as	8~28		5- 83
26		Si 3#4	208022	A13152100	150453	1000	2.00		0.10 32.0	2	\$	0.42	0.88	0.88	0.76	1.082	1.107	1.095	0.0111	32.0	0.0066		0.0207
		S13#4	2CB032	A15152100	150454	1000	2.00		0.10 32.0	23	\$	0.53	0.87	0.87	0.70	1.119	1.092	1.106	0.0147	32.0	0.0041		0.0188
		Si 3M4	208032	A15152100	150455	1000	2.00		0.10 32.0	23	\$	0.25	0.92	0.99	0.61	1.612	1.489	1.651	C.0729	32.0	0.0287		0.1016
					AV6=	1000								AV6-	0.76			AVG≃	0.0339	AV6-	0.0131	#V6*	0.0470
					.	•								=0S	9.06			=05	0.0338	ås	0.0135	=05	0.0473
12		Si Sila	2C6030	A15152100	15D456	1000	2.00		0.10 32.0	24	8	0.89	0.82	1.00	0.64	1.140	1.110	1.125	0.0157	32.0	0.000		0.0157
		SI 3NH	2CB030	AIS152100	120457	1000	2.00		0.10 32.0	24	ន	1.00	0.79	1.00	0.85	1.140	1.110	1.125	0.0157	32.0	0.000		0.0157
		51384	2CB030	A15152100	1SD 45B	1000	2.00		0.10 32.0	ដ	5	1.00	0.77	1.00	0.75	1.140	1.10	1.140	0.0166	32.0	0.0000		0.0166
					EV6-	1000								AV6=	0.81			AV6=	0.0160	AV6=	0.0000	AV6=	0.0160
					å	•								=0S	0.06			SD=	0.0005	ទឹ	0.0000	- 05	0.0005
29		51 3M4	2CB927	A15152100	1SD462	1000	2.00		0.13 29.0	23					0.27	1.220	1.220	1.220	0.0217	29.0			
		SL2N4	2CB027	A15152100	15D463	1000	2.00		0.19 29.0	24					0.29	0.805	0.505	0.805	0.0041	29.0			
		51 3N4	2CB027	A15:52100	150464	1000	2.00		0.10 25.0	23					0.27	1.250	1.22)	1.275	0.0228	29.0	0.0073		0.0301
					AV6=	006:								£46=	0.26			#NS=	9.0162	AV6≃	0.0073	âV6≖	0.0235
					ŝ	<u>ل</u>								= 3 5	10.0.			sus	0.0105	.		ឆ្ន	0.0:05
30		SLUKE	2CE026	A15152100	150465	1033	2.03		0.19 75.0	2	57	0.13	0.15	0.40	0.14	0.585	0.595	0.590	0.0012	32.0	0.1290		0.1302
		513%	206026	A15152100	150466	1000	2.0)		0.10 32.3	23	8	0.65	0.59	C.78	0.58	1.124	1.119	1.12	0.0155	.	0.1070		9.1225
		51 3M4	2CB026	A:S:52:00	150467	1600	2.00		0.10 22.0	ដ	85	0.45	0.55	0.72	0.55	1.087	1.079	1.083	0.0135	32.0	0.1070		C.1705
					=31i	1000								AV6=	0.42			AVG=	0.0101	=3VA	6.1143	#76=	9.1244
					=05	÷								5C=	0.25			s3=	0.0077	ទំ	C.0127	- 5	0.3051
42		S: 3NA	CE125	A15152100	1SC 594	001	2.20		0.10 32.0	27	ន	0.97	3.85		0.85	1.190	1.205	1.138	0.0232	32.0			
		Su 3NG	201320	A15152:00	:50255	1000	2.00		0.23 (1.0	ř.	5	1.05	C.82	1.03	0.85	:.180	1.190	1.185	0.C193	11.0			
		51 3#4	205125	A1315100	150596	0//01	2.00		9.10 32.6	22	5	0.77	C78	0.85	0.8)	1.180	1.195	1.138	0.0195	32.0			
					a1.5=	1000								AV6=	0.83			=9v6	0.0:97	AVS=		AV6=	
					-0	~								=3S	0.03			۳ 0 3	0.004	=35		50 ≂	

p. 5 of

ŝ

and a second

N N N

ETSK TRACK DTET as 0.0164

0.0004

0.0164

*6ª

.0004

0.0226 C.0212 O.0477 O.0578 O.0103

3.0000 3.0000 0.0000 0.0000 0.0000

32.0 32.0 32.0 50= 32.0 32.0 32.0 50= 50= 50=

-97 20= 3.5467 3.5429 3.2269 5.4282 5.4282 6.1645

3.5149 3.5149 3.1950 3.4077 6.1342

=9/8 =03 ÷

HV3= 53=

INDIVIDUAL LABORATORIES - LOW LOAD (2N) CONDITIONS

0.015 0.0124 0.0124 0.0151 0.0145 0.0145 0.0151 0.0178 0.0178 0.0178 0.0178 0.0298 0.0327 0.0299 0.0299 0.0300 0.0525 0.0512 0.0612 0.0612 0.0613 0.0613 EALL SCRE NVS RS L. 130 L. 060 L. 014 AVE= SD= SD= L. 335 L. 500 L. 350 AVE= SD= SD= SD= SD= AV6= 5D= 5D= 5D= 1.230 AV6= 5D= 5D= 5D= 5D= 5D= 50% 1.138 .350 1.330 1.530 1.120 12.1 1.122 1.346 1.110 1.350 1.329 1.312 1.525 1.560 1.630 0.42 0.43 0.43 0.45 0.45 0.45 0.45 0.45 0.55 0.57 0.29 TEL: 0.88 0.71 806= 50= 0.42 0.42 0.75 0.94 806= 50= AV6= 50= 50= 0.51 0.51 0.55 50= 50= 306= 306= 50= 50= Parts -0.7B 0.7B 0.60 (91) (91) (91) 0.70 SMITTAL FRECT COEF 0.42 0.59 0.15 0.15 0.14 0.45 CCRNECT MCHIDITY MA 388 **2** 2 2 2 5 8 5 383 ود; C . â 222 * ** ដ 2222 2235 VELOCITY DISK VELOCITY DISK EA 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 29.0 0.10 0.10 0.10 c.10 0.10 0.10 0.10 0.10 1511 **•** LCK3 -888 2.83 2.88 2.00 2.30 DISTANCE -1000 1000 1000 1000 1000 1000 150543 150544 150545 NV6= 50= 150546 150547 150548 Avg= 53ª 150552 AV6= SD= 150555 150555 150555 AV6= AV6= 150564 150565 150565 150565 150565 150565 150565 150565 150565 <u>،</u> BISK Reference A15152100 A15152100 A15152100 AISI52100 AIS152100 AIS152100 AIS152100 A15152100 A15152100 A15152100 A15152100 A:5152100 A15152100 A15152100 +++ VAMAE REEJLTE ALL LABSIG/38: +++5.52464 AT AS41+++ BA.L 158622 158623 158624 158619 158620 158621 158613 158610 158611 158612 158649 158649 158550 BALL Natertal AIS152100 AIS152100 AIS152100 A15152100 A15152100 A15152100 A15152100 A15152100 A15152100 AIS152100 AIS152100 AIS152100 15152100 . TEST O DATE 3 23 23 2 ន 2

p. 1 of 3

INDIVIDUAL LABORATORIES - LUBRICATED CONDITIONS

1 1 1							
10161 V V 14 V	0.0002200 0.00022400 0.0002000 0.00022000 0.00022000	0.0001407 0.000553 0.0003256 0.0001791 0.0001902 0.0001902	0.0010000 0.0002500 0.0002500 0.0002500 0.0005000 0.0005330	0.0525200 0.05255200 0.0495940 0.0495971 0.019371	0.0000684 0.0000666 0.0000701 0.0000687 0.0000687	0.00000268 0.0000268 0.0000315 0.0000315 0.00003295	0.000280 0.000120 0.000180 0.000181 0.000193 0.000193 0.0000561 0.0000561 0.0000561 0.0000561 0.0000529 0.00005529
	= 90 50= 50=	AV6= SD=	AV6= SD=	AV6= SD=	AV6= SD=	AVG= SD=	AVG= SD= AV6= SD=
DISK W V mi^3	0.000000 0.000000 0.000000 0.000000 0.000000	0.000000 0.0000000 0.0000000 0.0000000 0.000000	0.000000 0.0000000 0.0000000 0.0000000 0.000000	0.0523000 0.0532000 0.0494000 0.0516333 0.0019858	0.000000 0.0000000 0.0000000 0.0000000 0.000000	0,000000 0,000000 0,000000 0,000000 0,000000	0.000000 0.000000 0.000000 0.000000 0.000000
DISK TRACK DIAM an	33.4 33.4 AV6= SD=	32.0 32.0 32.0 AV6= \$D=	32.0 32.0 AV6= SD=	37.0 37.0 35.0 AV6= · SD=	36.3 35.8 32.0 50= 50=	32.0 32.0 AV6= SD=	32.0 32.0 32.0 50= 32.0 32.0 876= 87.0 50= 50= 50=
BALL H V BB^3	0.0002200 0.0002400 0.00022000 0.0002200	0.0001407 0.0000553 0.0000256 0.0001791 0.0001002 0.0001002	0.0010000 0.0002500 0.0002500 0.0005000 0.0005000	0.0002200 0.0000561 0.0001940 0.0001567	0.0000687 0.0000666 0.0000687 0.0000687 0.0000687	0.0000302 0.0000268 0.0000295 0.0000295	0.0000280 0.000120 0.0000180 0.0000193 0.000081 0.0000561 0.0000551 0.000055 0.000055
BALi SCAR AVG an	0.388 0.375 AVG= SD=	0.346 0.274 0.226 0.368 AV6= S0≈ S0≈	0.570 0.400 Ave= SD=	0.387 0.275 0.375 AV6= SD=	0.287 0.287 0.291 AV6= SD=	0.236 0.229 AV6= AV6= SD=	0.275 0.220 0.245 AV6= AV6= 0.260 0.280 0.280 AV6= AV6= SD=
SCAR para an	0.385 0.395 0.375	0.346 0.279 0.226 0.365	0.570 0.400 0.400	0.387 0.275 0.375	0.293 0.283 0.291	0.231 6.225 0.240	0.260 0.220 0.260 0.280 0.280
BALL perp an	0.390 0.395 0.370	0.346 0.226 0.226 0.370	0.570 0.400 0.400	0.3875 0.275 0.375	0.288 0.291 0.291	0.236 0.236 0.236	0.250 0.250 0.250 0.260 0.280 0.280
AV6 Frict Cdef	0.12 0.11 0.12 0.12 0.12	0.10 0.09 0.08 0.08 0.08	0.09 0.10 0.10 0.10	0.08 0.09 0.09 0.00	0.09 0.12 0.09 0.03	0.09 0.10 0.10 0.010	0.11 0.12 0.12 0.09 0.09 0.09 0.09 0.09
' MAX Frict Cdef	0.16 0.15 AV6= SD=	0.11 0.12 0.12 0.09 ÅV6= S0=	0.11 0.12 0.11 AV6= SD=	0.11 0.12 AV6= SD=	0.12 0.15 AV6= SD=	0.12 0.12 AV6= SD=	0.14 0.13 0.13 5D= 5D= 6.12 0.12 0.12 0.12 0.10 50= 50=
F INAL Frict Cdef	0.13 0.16 0.12	0.09 0.09 0.06	0.10 0.10 0.10	0.09	0.09 0.12 0.08	0.09 0.11 0.09	0.11 0.12 0.09 0.09 0.08
INITIAL Frict Coef	0.12 0.11 0.11	0.11 0.11 0.09	0.10 0.81 0.11	0.10 0.12 0.12	0.09	0.11 0.10 0.10	0.16 0.13 0.13 0.10 0.10
CDARECT CDARECT NUM1011Y RHX	41 56	43 53 47	50 4 4	5.5.5	20 16 18	\$ 0 9 \$	505 934 606 888
TEMP deg C	22 23 21	ឌ ឌ ឌ ឌ	23 35 35	50 50	ព្ល ព្ល ព្រ ព្រ ព្រ ព្រ ព្រ ព្រ ព្រ ព ព ព ព ព ព	5 53	28 26 21 21 21
ISK RACK DIAM ae	33.4 33.6 33.6	32.0 32.0 32.0 35.0	32.0 32.0 32.0	37.0 37.0 35.0	36.3 35.8 32.0	32.0 32.0 32.0	32.0 32.0 32.0 32.0 32.0
ELDCITY D B/S	0.10 0.10 0.10	0.10 0.10 0.10 0.10	0.10	0.12 0.12 0.11	0.10 0.10 0.10	0.10 0.10 0.10	0.10 0.10 0.10 0.10 0.10 0.10
1651 V 11ME 5	·				9851 9851 9851		
L0A0 N	10.00 10.00 10.00	10.00 10.00 10.00 10.00	10.00 10.00 10.00	9.87 9.87 9.87	10.00	10.00 10.00 10.00	10.00 10.00 10.00 9.87 9.87
I ST ANCE	1000 1000 1000	1000 1000 1000	1000 1000 1000	1255 1255 1187 1232 39	1001 1001 1002 1001	1000 1000 1000	956 994 994 936 936 9 1086 1086 1086
015K 0	2CD226 2CD226 2CD228 2CD228 AV6=	20220 200220 200221 200222 200220 8v6= sn=	200217 200218 200219 AV6=	50211 200212 200212 200213 AV6= 50=	AL DX 296 AL DX 367 AL UX 367 AVG= SD= SD=	1CD437 1CD438 1CD439 AV6= Sn=	100448 100448 100452 100458 Av6= Av6= 100433 100435 100435
DISK MATERIAL	4NE 12 4NE 12 13N4	4NE 15 4NE 15 4NE 15	ANE IS	ANEIS ANEIS	A1203 A1203 A1203 A1203	A1203 A1203 A1203	A1203 A1203 A1203 A1203 A1203 A1203 A1203
BALL B	2C8132 2C8132 2C8132	2C6134 2CR134 2C8134 2C8134 2C8134	2CB135 2CB135 2CB135	2C8127 2C8127 2C8127	50039 50039 50039	2C8111 2C8111 2C8111	2C8107 2C8107 2CR107 2CR112 2C8112 2C8112 2C8112
BALL MATERIAL	ANE IS ANE IS	HEIS	ANEIS ANEIS	513H4 513H4 513H4	ANE IS ANE IS	513H4 513H4 513H	51344 51344 51344 51344 51314 51314
EST 0 DATE	감도	4 31 11	म २ ह	35 55	101 2/11 231 4/20 241 4/21	31 31	ಸವಣ ಸನಣ
LA8	æ	36	37	36	58	36	33

p. 2 of 3

INDIVIDUAL LABORATORIES - LUBRICATED CONDITIONS

TOTAL U V sa^3	0.0000098 0.0167698 0.019729 0.005708	0.0000557 0.0000774 0.0000553 0.0000553 0.00001553	0.0000800 0.0001200 0.0001300 0.0001100 0.000265	0.000795 0.0004840 0.000614 0.0002083 0.0002083	0.0031000 0.0009400 0.0002500 0.0014868 0.0014868 0.0000883 0.0000883 0.0000894 0.0000894 0.0000894	0,003700 0,003200 0,003200 0,002607 0,002600 0,032200 0,032270,0 0,0322760 0,0322780 0,0328730 0,03869 0,038643
	AV6ª SD=	AV6= SD=	≜U6≃ SD=	AV6= SD=	AV6= AV6= AV6= SD=	AVG= 50= AV6= 50=
V N V N Baa^3	0.000000 0.0197000 0.0019000 0.0052000 0.0052000 0.0052000	0.0000000 0.0000000 0.0000000 0.0000000 0.000000	0.000000 0.000000 0.000000 0.000000 0.000000	0.000000 0.0000000 0.0000000 0.0000000 0.000000	0,000000 0,000000 0,000000 0,000000 0,000000	0.000000 0.000000 0.000000 0.000000 0.000000
DISK TRACK DIAN B	31.8 32.1 35.7 AV6≠ SD=	32.0 32.0 92.0 805= 50=	32.0 32.0 AV6= 5D=	32.0 32.0 32.0 AV6= 5D=	33.4 33.4 50= 50= 32.0 32.0 32.0 50= 32.0 50= 50= 50=	32.0 35.0 34.0 50= 32.0 32.0 32.0 32.0 32.0 32.0
BALL N V ee^3	0.000019 0.0000729 0.0000729 0.0000708	0.0000657 0.0000553 0.0000553 0.0000553	0.0001200 0.0001300 0.0001100 0.0001100	297000.0 0,000200.0 0,000200.0 0,000200.0 0,000200.0	001E00.0 00291000 002914868 0000000 00144968 000014868 000014868 000014868 000000 000000 000000 000000 000000 0000	0.0003700 0.0003200 0.000920 0.0002607 0.0015000 0.0015000 0.001500 0.0015867 0.0015867 0.0015867
BALL SCAR AVG an	0.290 0.290 0.294 AVE= SD=	0.286 0.298 0.274 AV6= SD=	-205-0 0.330 0.340 0.340 AV6= AV6= SVA	0.300 0.475 0.285 AVE= SD=	0.745 0.550 0.400 AV6= AV6= 5D= 0.226 0.328 0.328 0.328 0.328 0.328	0.525 0.505 0.370 0.370 0.530 0.630 0.630 0.630 0.580 0.580 0.580 0.580
SCAR Para Be	0.295 0.295 0.295	0.298	046.0	0.300 0.480 0.290	0.740 6.555 0.400 0.400 0.308 0.303 0.322	0.520 0.370 0.430 0.630 0.580
BALL Ferp	192.0 192.0 285.0	0.284	04E.0 06E.0	0.300 0.470 0.280	0.750 0.545 0.400 0.400 0.308 0.328	0.530 0.510 0.370 0.630 0.690 0.580
AV6 FRICT CDEF	0.05 0.07 0.07 0.07	0.10 0.10 0.10 0.10	0.00	0.10 0.09 0.09 0.09	0.12 0.13 0.13 0.10 0.10 0.00 0.00 0.00	0.14 0.13 0.12 0.02 0.09 0.09 0.09
, MAI Frict Coef	0.07 0.10 AV6= SD=	0.10 0.10 AV6= 5D= 5D=	0.11 0.11 AV6≍ SD≖	0.11 0.10 AV6= SD≠	0.33 0.19 0.18 0.18 50= 0.11 0.11 AV6= 0.12 AV6= 50= 50=	0.14 0.15 0.13 0.13 0.12 0.11 0.13 0.13 0.13 0.13
F1NAL FAICT COEF	0.00	0.10	0.11.0	0.09 0.08 0.09	0.21 0.11 0.10 0.10 0.09	0.14 0.15 0.09 0.09 0.09
INITIAL Frict Coef	0.0 90.0	0.10	11.0 11.0	0.10 0.09 0.10	0.12 0.13 0.13 0.13 0.10	0.13 0.12 0.12 0.10 0.10 0.10
CORFECT UNIDITY RNS	2 2 2	36	54 53 53	65 65	99 99 99 99 99 99 99 99 99 99 99 99 99	5666 4323 6666 4323
1EMP deg C	888		% % %	S 8 8	జిజిజి జిజిబె	462 SS2
DISK IRACA DIAN	31.6 32.1 35.7	32.0 32.0 32.0	32.0 32.0 32.0	32.0 32.0 32.0	4.66 4.66 4.66 0.56 0.56 0.56	32.0 34.0 32.0 32.0 32.0 31.0
/ELOCITY	0.10 0.10	0.10	0.10 0.10 0.10	0.10 0.10 0.10	0.10 0.10 0.10 0.10 0.10	0.10 0.10 0.10 0.10 0.10
1651 1 Inf	9851 9851 9851					
H TOYD	10.00 10.00 10.00	10.00	10.00 10.00 10.00	9.87 9.87 9.87	10.00 10.00 10.00 10.00 10.00 10.00	10.00 10.00 9.87 9.87
DISTANCE	1002 1002 1002	1000	1000 1000 1000	1086 1086 1086 1086 1086	0001 0001 0001 0001 0001 0001 0001 000	0 9801 9801 9801 9801 9801 9801 9801 980
D15K	st549 s1550 s1550 s1550 s1550 s1550 s1550	150612 150613 150614 AV6= 50=	150609 150610 150611 AV6= 50=	150603 150604 150605 AV6= 50=	202256 202257 202257 202256 AV6= AV6= 202251 202251 202251 202251 202251 202251	200247 200249 200249 200249 200241 200241 200243 200243 200243 200243 200243
BISK MATERIAL	A15152100 A15152100 A15152100	A15152100 A15152100 A15152100	AISIS2100 AISIS2100 AISIS2100	AISIS2100 AISIS2100 AISI52100	HE IS HE IS HE IS	411E 15 411E 15 411E 15 411E 15
BALL	6EONS 6EONS	2C6119 2C8119 2C8119	2CB120 2CB120 2CB120	2CB122 2CB122 2CB122	158152 158153 158146 158146 158147 158148 158146 158148	951821 951821 951821 951821 951821 951851
6ALL MAIERIAL	MEIS MEIS	51 344 51 344 51 344	VIE IS VIE IS	WE'S	AISIS2100 AISIS2100 AISIS2100 AISIS2100 AISIS2100 AISIS2100 AISIS2100	AISIS2100 AISIS2100 AISIS2100 AISIS2100 AISIS2100 AISIS2100 AISIS2100
IEST & DATE	28L 4/14 29L 4/15 30L 4/15	ನ ಹ	ಸ ನ ನ	ಸ ನ ಕ	ಸನಕ ಸನಕ	ಸನಕ ಸನಕ
1 48	ŝ	36	31	66	96 9 <u>6</u>	39

p. 3 of 3

INDIVIDUAL LABORATORIES - LUBRICATED CONDITIONS

101AL 12 V 164^3	0.000200 0.0002800 0.0027900 0.0015500	0.0017417 0.0017417 0.0016164 0.0016164 0.0016145	0.0019000 0.0018000 0.0028000 0.0028609	0014920000 0.0897000 0.0897000 0.0897000 0.0801448 0.0006326 0.0005263 0.00052633	0,0001123 0,0001327 0,0001415 0,000150 0,000150 0,000150 0,000150 0,0001339 0,0001339 0,0001339 0,0001339
	AVG=	=979 50=	AV6=	AV6= 50= AV6= 50= S0=	AV6= SD= AV6= S0=
015K H V ea^3	0.0000000 0.0000000 0.0000000 0.00000000	00000000000000000000000000000000000000	0.000000 0.0000000 0.0000000 0.0000000	0.000000 0.0752000 0.075500 0.053557 0.053557 0.0605000 0.0606000 0.0606000 0.0606000 0.0606000 0.0606000 0.0606000 0.0606000	0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
D15K D15K TRACK D1AM an	33.4 33.4 AV6= 51=	32.0 32.0 32.0 AV6= S0=	32.0 32.0 AV6= 50=	32.0 35.0 35.0 35.0 4VG= 35.0 8VG= 50= 50= 50= 50=	35.0 35.0 35.0 35.0 35.0 35.0 85.0 85.0 85.0
8ALL W V mm^3	0.0015500	0.0013417 0.0016854 0.0016164 0.0016165	0.0019000 0.0018000 0.0028000 0.0021667	0.0002100 0.00121200 0.0014000 0.0044000 0.001448 0.0001448 0.0001448 0.0000326 0.0003260 0.0003203 0.0003203	0.0001327 0.0001327 0.0001327 0.000150 0.000150 0.000150 0.00012339 0.0001095 0.0001095 0.0001095 0.0000000
BALL SCAR AVG mm	0.548 0.730 AV6=	50- 0.548 0.548 0.637 AVG= AVG= SD=	0.665 0.655 AVG= Cn=	0.755 0.850 0.850 0.850 0.850 0.349 0.532 0.532 AVG= SD= SD=	0.327 0.341 0.347 0.347 0.327 0.327 0.325 0.325 0.325 0.325 0.325
SCAR para no	6.548 0.562 0.730	0.644 0.543 0.644	0.650 0.650 0.720	0.750 0.850 0.810 0.810 0.341 0.341 0.529	0.327 0.341 0.337 0.356 0.356 0.356
BALL perp ma	0.548 0.562 0.730	0.654 0.553 0.630	0.670 0.660 0.740	0.760 0.850 0.856 0.356 0.240 0.534	0.327 0.341 0.356 0.2898 0.380
AVG FRICT CDEF	0.11 0.16 0.15 0.15	0.09 0.11 0.10	0.09 0.09 0.09	0.10 0.10 0.10 0.09 0.09 0.09 0.09 0.09	0.09 0.09 0.09 0.00 0.10 0.10 0.10 0.10
NAX . FRICT . CDEF	0.18 0.23 0.22 AVG= 50-	-00 0.13 0.12 AV6= 50=	0.13 0.14 AV6=	50- 0.12 0.13 0.14 0.14 0.13 0.10 0.10 0.11 0.11 0.11 0.11 0.11	0.10 0.10 0.10 50 50 11.0 0.10 0.10 0.10
FIHAL FRICT CDEF	0.11 0.16 0.15	0.09 0.08 0.11	0.09 0.08 0.07	0.11 0.10 0.10 0.09 0.10	0.09 0.09 0.09 0.09 0.10
NITIAL Frict Cdef	0.11 0.11 0.11	0.11 0.10 0.10	0.12 0.13 0.12	0.11 0.12 0.10 0.10 0.10	0.10 0.10 0.10 0.10 0.10
OKRECT I Intdity RHX	36 36 38	58	45 43	65 69 69 69	59 67 70 70 70
TEMP C deg C	និននិ	24 24 23	25 30	55 53 55 55 56 53	ងភ្លំ និងដ
Sk. Ack olgh	33.4 33.4 33.4	32.0 32.0 32.0	32.0 32.0 32.0	32.0 35.0 35.0 35.0 29.0	35.0 35.0 35.0 35.0
VELDCITY D1 TR a/s	0.10 0.10 0.10	0.10 0.10 0.10	0.10 0.10 0.10	0.10 0.11 0.12 0.10 0.10	0.10 0.10 0.10 0.10 0.10
TEST TIME s	- - - - - - - - - - - - - - - - - - -				
L DAD N	10.00 10.00	10.00 10.00 10.00	10.00 10.00 10.00	9.87 9.87 9.87 30.00 30.00	30.00 30.00 30.00 30.00 30.00
I STANCE a	1000 1000 1000 1000	1000 1000 1000	1000 1000 1000	1086 1187 1187 1187 1187 1000 1000 1000 1000	1000 1000 1000 1000 1000 1000 1000 100
DISk D	150588 150589 150590 1505-0 600-	su= 150582 150583 150584 AV6= cn-	150560 150560 150581 AV6=	50570 150571 150572 50572 60572 60572 60572 505 200220 200220 200220 200220 200220	100437 100438 100438 100439 805 150612 150612 150613 150613 150613 150613 150613 150613 150613
PISA NATERIAL	A15152100 A15152100 A15152100	A15152100 A15152100 A15152100 A15152100	AISI52100 AISI52100 AISI52100 AISI52100	AISI52100 AISI52100 AISI52100 AISI52100 S13N4 S13N4 S13N4	A1203 A1203 A1203 A1203 A12152160 A15152100 A15152100
BALL B	156122 156123 158124	156X14 156X17 156X18 156X18	158X1 158X2 158X3	15817 15818 15819 15819 268134 268134 268134	208111 208111 208111 208119 208119 206119 206119
6ALL MATER1AL	A15152100 A15152100 A15152100	A15152100 A15152100 A15152100	AISI52100 AISI52100 AISI52100	A15152100 A15152100 A15152100 A15152100 A15152100 S13N4 S13N4 S13N4	51344 51344 51344 51344 51344 51344 51344
T B OATE	31 51	11 21	3 5 5	고 2 년 년 년 년 년 년 년 년 년 년 년 년 년 년 년 년 년 년	
IES	Ť	-0	5	6	a .a
8HJ	, , ,	ei.	'n	m m	en ei

APPENDIX C: DRAFT ASTM STANDARD FOR PIN-ON-DISK WEAR TESTING

án.

:

-

.

(<u>NOTE:</u> This Committee G-2 draft is unapproved at this date.)

WEAR TESTING WITH A PIN-ON-DISK APPARATUS¹

(Draft #7 - 6/30/89)

CONTRACTOR This standard is issued under the fixed designation G--, the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parenthesis indicates the year of last reapproval. A superscript epsilon (e) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This test method describes a laboratory procedure for determining the wear of materials during sliding using a pin-on-disk apparatus. Materials are tested in pairs under nominally non-abrasive conditions. The principal areas of experimental attention in using this type of apparatus to measure wear are described. The coefficient of friction may also be determined.

1.2 This standard may involve hazardous materials, operations, and equipment. This standard does not purport to address all of the safety problems associated with its use. It is the responsibility of whoever uses this standard to consult and establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

¹This test method is under the jurisdiction of ASTM Committee G-2 on Wear and Erosion and is the direct responsibility of Subcommittee G02.40 on Non-Abrasive Wear.

2. Referenced Documents

2.1 ASTM Standards:

E 122 Recommended Practice for Choice of Sample Size to Estimate the Average Quality of a Lot or Process²

E 177 Recommended Practice for Use of the Terms Precision and Accuracy

as Applied to Measurement of a Property of a Material 2

E 178 Recommended Practice for Dealing with Outlying Observations²

G 40 Terminology Relating to Erosion and Wear³

3. Summary of Test Method

3.1 For the pin-on-disk wear test, two specimens are required. One, a pin with a radiused tip, is positioned perpendicular to the other, usually a flat circular disk. A ball, rigidly held, is often used as the pin specimen. The test machine causes either the disk specimen or the pin specimen to rotate about the disk center. In either case the sliding path is a circle on the disk surface. The plane of the disk may be oriented either horizontally or vertically (Note: wear results may differ for different orientations). The pin specimen is pressed against the disk at a specified load usually by means of an arm or lever and attached weights. Other loading methods have been used, e.g., hydraulic or pneumatic (Note: wear results may differ for different loading methods).

3.2 Wear results are reported as volume loss in cubic millimeters for the pin and the disk separately. When two different materials are tested, it is recommended that each material be tested in both the pin and disk

²Annual Book of ASTM Standards, Vol 14.02.

³Annual Book of ASTM Standards, Vol 03.02.

positions.

3.3 The amount of wear is determined by measuring appropriate linear dimensions of both specimens before and after the test, or by weighing both specimens before and after the test. If linear measures of wear are used, the length change or shape change of the pin, and the depth or shape change of the disk wear track (in millimeters) are determined by any suitable metrological technique, such as electronic distance gauging or stylus profiling. Linear measures of wear are converted to wear volume (in cubic millimeters) by using appropriate geometric relations. Linear measures of wear are used frequently in practice since mass loss is often too small to measure precisely. If loss of mass is measured, the mass loss value is converted to volume loss (in cubic millimeters) using an appropriate value for the specimen density.

3.4 Wear results are usually obtained by conducting a test for a selected sliding distance and for selected values of load and speed. One set of test conditions that was used in an interlaboratory measurement series is given in Tables 1,2 as a guide. Other test conditions may be selected depending on the purpose of the test.

3.5 Wear results may in some cases be reported as plots of wear volume <u>vs</u> sliding distance using different specimens for different distances. Such plots may display non-linear relationships between wear volume and distance over certain portions of the total sliding distance, and linear relationships over other portions. Causes for such differing relationships include initial "break-in" processes, transitions between regions of different dominant wear mechanisms, etc. The extent of such non-linear periods depends on the details of the test system, materials, and test

conditions.

3.6 It is not recommended that continuous wear depth data obtained from position-sensing gauges be used because of the complicated effects of wear debris and transfer films present in the contact gap, and interferences from thermal expansion or contraction.

4. Significance and Use

4.1 The amount of wear in any system will, in general, depend upon a number of system factors such as the applied load, machine characteristics, sliding speed, sliding distance, the environment, and the material properties. The value of any wear test method lies in predicting the relative ranking of material combinations. Since the pin-on-disk test method does not attempt to duplicate all the conditions that may be experienced in service (for example; lubrication, load, pressure, contact geometry, removal of wear debris, and presence of corrosive environment), there is no assurance that the test will predict the wear rate of a given material under conditions differing from those in the test.

5. Apparatus

5.1 General Description -- Figure 1 shows a schematic drawing of a typical pin-on-disk wear test system, and photographs of two differently designed apparatus⁴. One type of typical system consists of a driven spindle and chuck for holding the rotating disk, a lever-arm device to hold the non-rotating pin, and attachments to allow the pin specimen to be forced against the rotating disk specimen with a controlled load. Another

⁴A number of other reported designs for pin-on-disk systems are given in "A Catalog of Friction and Wear Devices", Am. Soc. Lub. Eng.(1973). A commercially built machine is available from Falex Corporation, 2055 Comprehensive Drive, Aurora. IL 60505.

type of system loads a pin rotating about the disk center against a stationary disk. In any case the wear track on the disk is a circle, involving multiple wear passes on the same track. The system may have a friction force measuring system, for example a load cell, that allows the coefficient of friction to be determined.

5.2 Motor Drive -- A variable speed motor, capable of maintaining constant speed (± 1% of rated full load motor speed) under load is required. The motor should be mounted in such a manner that its vibration does not affect the test. Rotating speeds are typically in the range 0.3-3 rad/s (60-600 rev/min).

5.3 Revolution Counter -- The machine shall be equipped with a revolution counter or its equivalent that will record the number of disk revolutions, and preferably have the ability to shut off the machine after a preselected number of revolutions.

5.4 Pin Specimen Holder and Lever Arm -- In one typical system, the stationary specimen holder is attached to a lever arm which has a pivot. Adding weights, as one option of loading, produces a test force proportional to the mass of the weights applied. Ideally, the pivot of the arm should be located in the plane of the wearing contact to avoid extraneous loading forces due to the sliding friction. The pin holder and arm must be of substantial construction to reduce vibrational motion during the test.

5.5 Wear Measuring Systems -- Instruments to obtain linear measures of wear should have a sensitivity of 2.5 μ m or better. Any balance used to measure the mass loss of the test specimen shall have a sensitivity of 0.1 mg. or better; in low wear situations greater sensitivity may be

needed.

6. Test Specimens and Sample Preparation

6.1 Materials -- This test may be applied to a variety of materials. The only requirement is that specimens having the specified dimensions can be prepared and that they will withstand the stresses imposed during the test without failure or excessive flexure. The materials being tested shall be described by dimensions, surface finish, material type, form, composition, microstructure, processing treatments, and indentation hardness (if appropriate).

6.2 Specimens -- The typical pin specimen is cylindrical or spherical in shape. Typical cylindrical or spherical pin specimen diameters would range from 2 mm to 10 mm. The typical disk specimen diameters would range from 30 mm to 100 mm and have a thickness in the range of 2 mm to 10 mm. Specimen dimensions used in an interlaboratory test with pin-on-disk systems are given in Table 1.

6.3 Surface finish -- A ground surface roughness of 0.8 μ m (32 μ inch) arithmetic average or less is usually recommended. [Note: rough surfaces make wear scar measurement difficult]. Care must be taken in surface preparation to avoid subsurface damage that alters the material significantly. Special surface preparation may be appropriate for some test programs. State the type of surface and surface preparation in the report.

7. Test Parameters

7.1 Load -- Values of the force in N at the wearing contact.

7.2 Speed -- The relative sliding speed between the contacting surfaces in m/s.

7.3 Distance -- The accumulated sliding distance in m.

7.4 Temperature -- The temperature of one or both specimens at locations close to the wearing contact.

7.5 Atmosphere -- The atmosphere (laboratory air, relative humidity, argon, lubricant, etc.) surrounding the wearing contact.

8. Procedure

8.1 Immediately prior to testing, and prior to measuring or weighing, the specimens must be cleaned and dried. Care must be taken to remove all dirt and foreign matter from the specimens. Non-chlorinated, non-filmforming cleaning agents and solvents shall be used. Materials with open grains must be dried to remove all traces of the cleaning fluids which may be entrapped in the material. Steel specimens having residual magnetism should be demagnetized. The methods used for cleaning shall be reported.

8.2 Measure appropriate specimen dimensions to the nearest 2.5 μm or weigh the specimens to the nearest 0.0001 g.

8.3 Insert the disk securely in the holding device so that the disk is fixed perpendicular (\pm 1 deg.) to the axis of rotation.

8.4 Insert the pin specimen securely in its holder and, if necessary, adjust so that the specimen is perpendicular (\pm 1 deg.) to the disk surface when in contact, in order to maintain the necessary contact conditions.

8.5 Add the proper mass to the system lever or bale to develop the selected force pressing the pin against the disk.

8.6 Start the motor and adjust the rotation speed to the desired value while holding the pin specimen out of contact with the disk. Stop the motor.

8.7 Set the revolution counter (or equivalent) to the desired number of

revolutions.

8.8 Begin the test with the specimens in contact under load. The test is stopped when the desired number of revolutions is achieved. Tests should not be interrupted or restarted.

8.9 Remove the specimens and clean off any loose wear debris. Note the existence of features on or near the wear scar such as: protrusions, displaced metal, discoloration, microcracking, or spotting.

8.10 Remeasure the specimen dimensions to the nearest 2.5 μ m or reweigh the specimens to the nearest 0.0001 g, as appropriate.

8.11 Repeat the test with additional specimens to obtain sufficient data for statistically significant results.

9. Calculation and Reporting

9.1 The wear measurements should be reported as the volume loss in cubic millimeters for the pin and disk, separately.

9.1.1 The following equations shall be used for calculating volume losses when the pin has initially a spherical end shape of radius R and the disk is initially flat, under the conditions that only one of the two members wears significantly:

Pin (spherical end) volume loss, $mm^3 = \frac{\pi (wear scar diameter, mm)^4}{64 (sphere radius, mm)}$

assuming that there is <u>no_significant_disk wear</u>. This is an approximate geometric relation that is correct to 1 percent for (wear scar diameter/ sphere radius) < 0.3, and is correct to 5 percent for (wear scar diameter/ sphere radius) < 0.7. The exact equation is given in Appendix 1.

Disk volume loss, $mm^3 = \frac{\pi (wear track radius, mm) (track width, mm)^3}{6 (sphere radius, mm)}$

assuming that there is <u>no significant pin wear</u>. This is an approximate geometric relation that is correct to 1 percent for (wear track width/ sphere radius) < 0.3, and is correct to 5 percent for (wear track width/ sphere radius) < 0.8. The exact equation is given in Appendix 1.

9.1.2 Calculation of wear volumes for pin shapes of other geometries shall use the appropriate geometric relations, recognizing that assumptions regarding wear of each member may be required to justify the assumed final geometry.

9.1.3 Wear scar measurements should be done at least at two representative locations on the pin surfaces and disk surfaces, and the final results averaged.

9.1.4 In situations where both the pin and the disk wear significantly, it will be necessary to measure the wear depth profile on both members. A suitable method would use stylus profiling. Profiling is the only approach to determine the exact final shape of the wear surfaces and thereby to calculate the volume of material lost due to wear. In the case of disk wear, the average wear track profile can be integrated to obtain the track cross-section area, and multiplied by the average track length to obtain disk wear volume. In the case of pin wear, the wear scar profile can be measured in two orthogonal directions, the profile results averaged, and used in a figure-of-revolution calculation for pin wear volume.

9.1.5 While mass loss results may be used internally in laboratories to compare materials of equivalent densities, this standard reports wear as volume loss so that there is no confusion caused by variations in density.

Care should be taken to use and report the best available density value for the materials tested when calculating volume loss from measured mass loss.

9.1.6 The following equation for conversion of mass loss to volume loss shall be used:

Volume loss,
$$mm^3 = \frac{Mass loss, g}{Density, g/cm^3} \times 1000$$

9.2 If the materials being tested exhibit considerable transfer between specimens without loss from the system, volume loss may not adequately reflect the actual amount or severity of wear. In these cases, this test and method for reporting wear should not be used.

9.3 Friction coefficient, defined as the ratio of friction force to applied load, should be reported when available. The conditions associated with the friction measurements, e.g. initial, steady-state, etc., shall be described.

9.4 Adequate specification of the materials tested is important. As a minimum the report should specify material type, form, processing treatments, surface finish, and specimen preparation procedures. If appropriate, indentation hardness should be reported.

10. Precision and Bias

10.1 The precision and bias of the measurements obtained with this test procedure will depend upon the test parameters chosen.

10.2 The reproducibility of repeated tests on the same material will depend upon material homogeneity, machine and material interaction, and careful adherence to the specified procedure by the machine operator.

10.3 Normal variations in the procedure will tend to reduce the
accuracy of the method as compared to the accuracy of such material property tests as hardness, density, or thermal expansion rate. Properly conducted tests should, however, maintain a within-laboratory coefficient of variation of 20 % or less for wear loss values. Table 2 contains wear data obtained from interlaboratory tests (see Note below). Those tests have shown acceptable within-laboratory variation, and further, a betweenlaboratory coefficient of variation of 40 %.

Note -- The interlaboratory data given in Tables 1 and 2 resulted through the cooperation of 31 institutions in 7 countries with the help of the following National Representatives within the VAMAS (Versailles Advanced Materials and Standards) Working Party on Wear Test Methods: J. Molgaard, Canada; M. Godet, France; H. Czichos, Germany (Chairman); A. G. Gandini, Italy; K. Matsumo, Japan; T. S. Eyre, UK; S. Hsu and A.W. Ruff, USA. Additional data have been filed at ASTM Headquarters and may be obtained by requesting RR:

10.4 In any test series, all data must be considered in the calculation, including outliers (data exceeding the obvious range); they are treated according to ASTM E178.

10.5 While two or more laboratories may develop test data which is within the acceptable coefficient of variation for their own individual test apparatus, the actual data of each laboratory may be relatively far apart. The selection of sample size and the method for establishing the significance of the difference in averages shall be agreed upon between laboratories and shall be based on established statistical methods of Recommended Practice E 122, Recommended Practice E 177, and STP 15D.⁵

A-11

⁵Manual on Quality Control of Materials, ASTM STP 15D, Am. Soc. Testing Mats., 1951.

Figure 1. (a) Schematic of pin-on-disk wear test system. F is the normal force on the pin, d is the pin or ball diameter, D is the disk diameter, R is the wear track radius, and w is the rotation velocity of the disk. (b) Photographs of two different designs.

(see note in 10.3 for information)
10TE T. 0107

	Composition (wc.%)	Microstructure	Hardness (HV 10)	Roughness R _Z (mean) (µm)	d R _a (mean) (μm)	•
Steel ball (100Cr6)	L 1.35-1.65 Cr	martensitic with minor carbides and austenite	838 ± 21	0.100	0.010	
(AISI 52100) ⁴ Diameter 10 mm Steel disc (100Cr6)	0.15-0.35 S1 0.25-0.45 Mn + <0.030 P	•	852 ± 14	0.952	0.113	A-13
(AISL 22100) ⁻ Dlameter 40 mm		anni-eranular alpha alumina	1610 ± 101 (HV 0.2)	1.369	0.123	
Alumina ball ^c Alumina disc ^c	 YON AL203 (WILL) additives of T102, MgO and ZnO) 	with very minor secondary phases	1599 ± 144 (HV 0.2)	0.968	0.041	
Astandard ball-bearing balls bStandard spacers for thrust CManufactured by C.I.C.E.S./ dMeasured by stylus profilo	s (SKF) c bearings (INA) A netry. R _z is maximum peak	-to-valley roughness. R _a is a	rithmetic average rou	ghness .		

ORAND CONTRACT

		Spectmen	Pairs	
(ball) Results (disk)	Steel- steel	Alumina- steel	Steel- alumina	Alumina- alumina
Ball wear scar diameter (mm)	$\begin{array}{c} 2.11 \pm 0.27 \\ (2.11 \pm 0.27) \end{array}$	WN	2.08 ± 0.35 (2.03 ± 0.41)	0.3 ± 0.06 (0.3 ± 0.06)
Ball wear volume (10 ⁻³ mm ³)	97,3 (97.3)		91.9 (83.3)	0.04 (0.04)
Number of values	102 (102)		, 09 (64)	56 (59)
Disk wear scar width (mm)	WN	0.64 ± 0.12 (0.64 ± 0.12)	WN	WN
Disk wear volume (10 ⁻³ mm ³)		480 (480)	8 8 8	8 0 8 9
Number of values		60) (60)		0 0 8 5
Friction coefficient	0.60 ± 0.11	0.76 ± 0.14	0.60 ± 0.12	0.41 ± 0.08
Number of values	109	75	64	76

Results of the Interlaboratory Tests (see note in 10.3) Table 2. 1. 1. A

р 0.

DRARTS COL $F = 10 \text{ N}; \text{ v} = 0.1 \text{ ms}^{-1}, T = 23^{\circ}C;$ relative humidity range $12^{\circ}-78^{\circ};$ laboratory air; sliding distance 1000 m; materials: steel = AISI 52100; alumina = α -Al203. TEST CONDITIONS:

(1) Numbers in parentheses refer to all data received in the tests. In accordance with ASTM E178, outlier data The values were identified in some cases and discarded, resulting in the numbers without parentheses. differences are seen to be small. NOTES

- Values preceded by \pm are one standard deviation. (2)
- Between 11 and 23 laboratories provided these data. (£ £ 6)
- Calculated quantities (e.g., wear volume) are given as mean values only.
- Values labeled "NM" were found to be smaller than the reproducible limit of measurement.

A-14

Appendix 1

A CARLES Exact equations for determining wear volume loss are as follows for:

A spherical ended pin:

Pin volume loss = $(\pi h/6)[3d^2/4 + h^2]$ where $h = r - [r^2 - d^2/4]^{1/2}$ d = wear scar diameter r = pin end radius

assuming no significant disk wear.

A disk:

Disk volume loss = $2\pi R [r^2 \sin^{-1} (d/2r) - (d/4)(4r^2 - d^2)^{-1/2}]$ where R = wear track radius d = wear track width

assuming no significant pin wear.

NIST14A (REV. 3-89)		
(REV. 3-89)	U.S. DEPARTMENT OF COMMERCE	1. PUBLICATION OR REPORT NUMBER
	NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY	NISTIR 89-4170
		2. PERFORMING ORGANIZATION REPORT NUMB
	BIBLIOGRAPHIC DATA SHEET	2 PUBLICATION DATE
		SEPTEMBER 1989
4. TITLE AND SUBTITLE		J SETTEMBER 1909
		Summer of U.S. Popults
Measurements	of Tribological Behavior of Advanced Materials:	Summary of 0.5. Results
on VAMAS Rou	nd-Kodin No. 2	
5. AUTHOR(S)		
A. W. Ruff a	nd S. Jahanmir	
LE DEPARTMENT OF	COMMERCE	7. CONTRACT/GRANT NOMBER
NATIONAL INSTITUTE	OF STANDARDS AND TECHNOLOGY	A TYPE OF REPORT AND PERIOD COVERED
GAITHERSBURG, MD	20899	
. SPONSORING ORGAN	IZATION NAME AND COMPLETE ADDRESS (STREET, CITY, STATE, ZIP)	
	·	
0. SUPPLEMENTARY NO	TES	
		·
DOCUMENT DE	SCRIBES A COMPUTER PROGRAM; SF-185, FIPS SOFTWARE SUMMARY, IS ATTAC	CHED.
LITERATURE SURVEY	, MENTION IT HERE.)	
An inte	rlaboratory comparison of tribological measureme	ents was carried out among
An inte 16 U.S. labo the VAMAS (V friction and statistical	rlaboratory comparison of tribological measureme ratories as part of a large world effort involvi ersailles Advanced Materials and Standards) acti wear of five material pairs are described in th analysis of the data, and interpretation of some	ents was carried out among ing six countries within lvity. Results for he report, along with a e of the findings.
An inte 16 U.S. labo the VAMAS (V friction and statistical 2. KEY WORDS (6 TO 12	rlaboratory comparison of tribological measureme ratories as part of a large world effort involvi ersailles Advanced Materials and Standards) acti wear of five material pairs are described in th analysis of the data, and interpretation of some	ents was carried out among ing six countries within lvity. Results for he report, along with a e of the findings.
An inte 16 U.S. labo the VAMAS (V friction and statistical 2. KEY WORDS (6 TO 12 advanced mate	rlaboratory comparison of tribological measureme ratories as part of a large world effort involvi ersailles Advanced Materials and Standards) acti wear of five material pairs are described in th analysis of the data, and interpretation of some some	ents was carried out among ing six countries within lvity. Results for ne report, along with a e of the findings. RATE KEY WORDS BY SEMICOLONS) , tribology; VAMAS; wear
An inte 16 U.S. labo the VAMAS (V friction and statistical 2. KEY WORDS (6 TO 12 advanced mate	rlaboratory comparison of tribological measureme ratories as part of a large world effort involvi ersailles Advanced Materials and Standards) acti wear of five material pairs are described in th analysis of the data, and interpretation of some some	ents was carried out among ing six countries within lvity. Results for ne report, along with a a of the findings. RATE KEY WORDS BY SEMICOLONS) , tribology; VAMAS; wear
An inte 16 U.S. labo the VAMAS (V friction and statistical 2 KEY WORDS (6 TO 12 advanced mate	rlaboratory comparison of tribological measureme ratories as part of a large world effort involvi ersailles Advanced Materials and Standards) acti wear of five material pairs are described in th analysis of the data, and interpretation of some some	ents was carried out among ing six countries within lvity. Results for he report, along with a e of the findings.
An inte 16 U.S. labo the VAMAS (V friction and statistical 2. KEY WORDS (6 TO 12 advanced mate 3. AVAILABILITY	rlaboratory comparison of tribological measureme ratories as part of a large world effort involvi ersailles Advanced Materials and Standards) acti wear of five material pairs are described in th analysis of the data, and interpretation of some """"""""""""""""""""""""""""""""""""	ents was carried out among ing six countries within lvity. Results for he report, along with a e of the findings. RATE KEY WORDS BY SEMICOLONS) , tribology; VAMAS; wear
An inte 16 U.S. labo the VAMAS (V friction and statistical 2. KEY WORDS (6 TO 12 advanced mate 3. AVAILABILITY XX UNLIMITED	rlaboratory comparison of tribological measureme ratories as part of a large world effort involvi ersailles Advanced Materials and Standards) acti wear of five material pairs are described in th analysis of the data, and interpretation of some some ENTRIES: ALPHABETICAL ORDER; CAPITALIZE ONLY PROPER NAMES; AND SEPA rials; ceramics; friction; round-robin; sliding	ents was carried out among ing six countries within lvity. Results for ne report, along with a e of the findings. RATE KEY WORDS BY SEMICOLONS) , tribology; VAMAS; wear
An inte 16 U.S. labo the VAMAS (V friction and statistical 2. KEY WORDS (6 TO 12 advanced mate 3. AVAILABILITY XX UNLIMITED FOR OFFICIAL D	rlaboratory comparison of tribological measureme ratories as part of a large world effort involvi ersailles Advanced Materials and Standards) acti wear of five material pairs are described in th analysis of the data, and interpretation of some manalysis of the data, and interpretation of some ENTRIES; ALPHABETICAL ORDER; CAPITALIZE ONLY PROPER NAMES; AND SEPA rials; ceramics; friction; round-robin; sliding	ents was carried out among ing six countries within livity. Results for ne report, along with a e of the findings. RATE KEY WORDS BY SEMICOLONS) , tribology; VAMAS; wear 14. NUMBER OF PRINTED PAGES 75
An inte 16 U.S. labo the VAMAS (V friction and statistical 2. KEY WORDS (6 TO 12 advanced mate 3. AVAILABILITY XX UNLIMITED FOR OFFICIAL C ORDER FROM S	rlaboratory comparison of tribological measureme ratories as part of a large world effort involvi ersailles Advanced Materials and Standards) acti wear of five material pairs are described in th analysis of the data, and interpretation of some ENTRIES; ALPHABETICAL ORDER; CAPITALIZE ONLY PROPER NAMES; AND SEPA rials; ceramics; friction; round-robin; sliding	Ants was carried out among lng six countries within lvity. Results for he report, along with a e of the findings. RATE KEY WORDS BY SEMICOLONS) , tribology; VAMAS; wear 14. NUMBER OF PRINTED PAGES 75 15. PRICE
An inte 16 U.S. labo the VAMAS (V friction and statistical 2. KEY WORDS (6 TO 12 advanced mate 3. AVAILABILITY XX UNLIMITED FOR OFFICIAL C ORDER FROM S WASHINGTON, 1	rlaboratory comparison of tribological measurement ratories as part of a large world effort involvi ersailles Advanced Materials and Standards) acti wear of five material pairs are described in the analysis of the data, and interpretation of some manalysis of the data, and interpretation of some entraies; ALPHABETICAL ORDER; CAPITALIZE ONLY PROPER NAMES; AND SEPA rials; ceramics; friction; round-robin; sliding histRiBUTION. DO NOT RELEASE TO NATIONAL TECHNICAL INFORMATION SERV UPERINTENDENT OF DOCUMENTS, U.S. GOVERNMENT PRINTING OFFICE, DC 20402.	Ants was carried out among ing six countries within lvity. Results for he report, along with a e of the findings. RATE KEY WORDS BY SEMICOLONS) , tribology; VAMAS; wear 14. NUMBER OF PRINTED PAGES 75 15. PRICE NO4

÷

: