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Abstract

We perform a linear morphological stability analysis of a planar interface during uni-

directional solidification of a binary aUoy for the case of a crystal having an anisotropic

thermal conductivity. We calculate a dispersion relation which shows that the onset of

instability depends on the orientation of the growth direction with respect to principal

crystallographic axes and on the orientation of the wavevector of the perturbation.

The onset of instability can be either oscillatory (travelling waves) or non-oscillatory

in time. For growth along a principal axis of the crystal there is an exchange of stabil-

ities, and the onset* of instability is non-oscillatory. For a uniaxial crystal, we explore

the dispersion relation in detail, and give numerical results for the case of an aUoy

of 0.78 at% bismuth in tin. For low growth velocities the onset of instability is non-

oscillatory and occurs for perturbations having a wavevector that lies along a principal

crystallographic axis.

*Consultant, National Institute of Standards and Technology
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1. Introduction

The theory of morphological stability, which has been with us now for over 25 years [1],

has been used to understand the conditions for the stability of a planar interface during

unidirectional solidification of a dilute binary alloy at constant velocity V. Experimental

tests of this theory abound in the hterature, and many of these pertain to cubic materials

for which there is no anisotropy of thermal conductivity . For non-cubic crystals, however,

the thermal conductivity will generally be anisotropic and the effect of this anisotropy on

morphological stability theory is not well understood. Indeed, one of the most popular

low melting point materials for experimental studies has been tin [2,3,4,5,6,7,8], which is

uniaxial, having a thermal conductivity A;|| = 0A60J/(cm- K -s) along the axis of symmetry,

and k± = 0.662J/(cm • K • s) along any direction perpendicular to the axis of symmetry

[9]. Moreover, tin has been selected as a prototype material for the study of morphological

stability under microgravity conditions by using the MEPHISTO system [10].

One might think that the standard morphological stability results could be modified

simply for an anisotropic crystal by replacing the thermal conductivity of the solid with

the thermal conductivity of the anisotropic crystal in some appropriate direction; however,

this begs the question of what direction to use as well as the question of the effect of

components of the heat flux that are not necessarily parallel to the temperature gradient

in an anisotropic crystal. In faot, our analysis, for crystal growth in a given direction, will

necessitate exploration of the conditions for marginal stability as a function of both the

magnitude and direction of the wavevector of infinitesimal sinusoidal perturbations of the

unperturbed planar interface. We shall find that for some of these directions, the onset

of morphological instability can even be oscillatory in time. For growth along a principal

crystallographic direction there is an exchange of stabilities and the onset of instability is

non-oscillatory. We explore the case of a uniaxial crystal in detail.

-2-



2. Theory

We perform a linear stability analysis of an initially planar crystal-melt interface for a crystal

with anisotropic thermal conductivity. For simplicity we neglect anisotropy of other prop-

erties, such as surface tension and interface kinetics, which have been treated previously

[11,12,13] and are even important for cubic materials. The planar crystal-melt interface is

cLssumed to be moving in the z direction at constant velocity V with respect to the crystal.

We choose a Cartesian coordinate system (x, y, 2) which is fixed with respect to the unper-

turbed planar interface located at ar = 0. The perturbed interface, z “ h{x^ 2/, 0? assumed

to be periodic in both the x and y directions.

The solute field, c, then satisfies

a = DV^c + for z > h{x^ t/, f), (la)

where D is the solute diffusivity and is the Laplacian; subscripts x, t/, or t on the de-

pendent variables indicate partial derivatives. In the liquid, we assume that the temperature

field, Tjr,, in the thermal steady-state approximation [14], satisfies

—
0, for z > ^(x,t/,<). (lb)

In the same approximation, the temperature field Ts in the crystal satisfies

».i=i

ai^Ts = 0, for z < h{x^y^i)^ (Ic)

where kij =s kji is the (symmetric, positive-definite) thermal conductivity tensor in the

crystal. In the sxumnation we have used the notation Xi = x, X2 = t/? X3 = We will

refer to kn as k^g^ amd so on.

The boundary conditions at the crystal-melt interface z = h{x, y, t) are

Ts ^Ti = Tm -f me — Ta/F/C, (Id)

- D{cg - hgCg “ hyCy) = (V" 4- /it)(l -- k)c, (le)

{—k^VTi — gs) ‘n — Lv(V -h ht)ng. (If)
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Here the distribution coefficient k relates the interface concentration, c, in the liquid, to

that, C5, in the solid via C5 = kc; Ly is the latent heat of fusion per unit volume (we take

the densities of crystal ajid melt to be equal); m is the liquidus slope; ki is the thermal

conductivity in the hquid; Tm is the melting point of the pure material; T is the capillary

length associated with the crystal-melt surface energy; and K is the mean curvature of

the interface. The heat flux vector, 95, in the crystal has components given by {qs)i =

— kijdTs/dxj. The unit normal to the interface is given by

^ hyi f

)

^i + hl + hl

The far-field boundary conditions are

c Coo, as z 00, (Ig)

dTi/dz —* Gl^ as z 00, (Ih)

and

dTsjdz —> Gs as z —00; (li)

the value for Gs is extually set by the heat flux boundary condition in order to allow steady-

state growth with the given velocity: k^zGs — kiG^ = LyV.

2.1. Planar Solution

The planar solution is given by t) = 0 and

- Coo{l + ^
^

^ exp( Vz/D)}, (2a)

Tj^\x,y,z,t) = Tu+'^ + GLZ, (2b)

Tf\x, y, z, t) = Tm +^ + Gsz. (2c)



2.2. Linear Stability Analysis

We write

^ c(x,y,z,t) '

'
c(®)(z)

''

^ a(^)
'

Tl{x, y, z, t) rf>(z) T[^\x,y, z, t) tdz)
exp(<Tt + iuJsX 4- iujyy),

Tsix,y, z,t) lf{z) lf\x,y, z,t) fs{z)

h{x,y,t)
y K 0 > ^

A<'*(l,y,t)
y [

^
J

where the perturbed quantities (superscript “1”) are assumed to be small.

The solution to the perturbed solute equation is unchanged from the standard case [15]:

c{z) = c(0)exp(rz),

where

and

2D V2D D

c(0){Dr + V{1 - k)} = 6{VkGc - <r{l -
K

Here and Gc = CoQ{VID){k — l)/fc.

Similarly, the perturbed temperature in the liquid has the usual form,

fiiz) = Ti:,(0)exp(-a;2:),

A

where the constant Tj[,{0) is determined from the interface boundary conditions.

The perturbed temperature in the solid satisfies

where

and

Q ““ ^xkgz ^ ojyk

P = + 2kxyUJx‘^y + ky^.

(3a)

(3b)

(3c)

(
4
)

(
5
)
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The solution to Eq. (5) can be written in the form

fs(z) = rs(0)exp(rs2),

where

The expression inside the radical can be rewritten in the form

Pkzz — + 2B(jJx<jJy + CJl,

(
6

)

(7)

where

A — h k —

B — kggkyzj

(
8

)

(
9

)

C = kyykzz ky^. (10)

The expression (7) is a positive-definite quadratic form in u;^ and ujy, since we have A > 0,

C > 0, ajid AC — > 0 . The first two inequalities follow from the fact that A and C are
I

given by minors of the positive-definite tensor and the third inequality follows from

the identity AC — = kgg det(/:,y), which can be verified by expanding the determinant.

A

From these considerations it follows that the real part of rs is positive, so that Ts decays as

z —^ —oo.

Linearization of the heat fiux boundary condition proceeds as follows. Written out more

fully, the nonlinear equation is

Lv{V + A.) + -K^) =
dx

dTi

dy dx

-K{kiJ^ + kiy^— + Axx^^)

aTs

dy

dTs^, dTs
o d" kxz Qay az

dz

ny{Kxy +• Kyy -t Kyz j-
dy dz

The linearized form of Eq. (11) is therefore

IvAi*’ + = (kr.^ + - AWfc,xGs,

(
11 )

(
12

)

-6-



or

(tLvS — kLijjTi, = kzzTsTs + iQ{fs — GsS), (13)

where all quantities are understood to be evaluated at 2: = 0. At 2r = 0 we also have

Tl + Gl6 =-fs + Gs6 = m(c + G.S) - TmTu^S, (14)

Equations (3c), (13), and (14) constitute a set of homogeneous linear equations in the

unknowns c, Ti, T5 ,
and S; they have a nontrivial solution only if

iQGs + ctLv k^uGi + VPkgg — Q^Gs
+

fciu; + y/Pkgg — Q2 ^ y/Pkgg —

— TjvfFu;^ -|- mG<

(15)

(i? - F/22)) - aIV

- (1 - 2k)V/2D ’

where

(16)

Eq. (15) can be viewed as a dispersion relation for <7 as a function of Ux and ujy for a given set

of material properties and growth conditions. For isotropic thermal conductivity this relation

reduces to previously-obtained results [14]. In fact, the term in and Gs has the familiar

form of a conductivity-weighted average of Gl with ki and Gs with an effective conductivity

ks = y/Pkzz — which is independent of the magnitude (but not the direction) of u; as

can be seen from Eq. (7).

If the real part of <t is negative for all values of u;* and a;y, the planar interface is stable.

By eliminating <7 using Eq. (16), Eq. (15) can be expressed as a cubic polynomial in the

variable R and from the roots of this polynomial that have Real(i2) > 0 one can deduce a as

a function of and Uy. In the next section we analyze this dispersion relation for a crystal

with uniaxial symmetry.

-7-



3. Analysis of the Dispersion Relation for a Uniaxial Crystal

For a uniaxial crystal, such as tin, the conductivity tensor in a coordinate system aligned

with the principal axes of the crystal can be written in the form

^ kj. 0 o''

{kii} = 0 fcx 0

0 0
j

where k± ajid Arj] cire generally unequal. The relation between this system of axes (see Fig. 1)

and the (x, y, z) axes can be described by means of the orthogonal matrix

n

I

\

1 0 0

0 cos 9 sin ^

0 — sin ^ cos 9

\

which, produces a rotation by an angle 9 about the x axis. This suffices to describe the

general case because at least one principal crystallographic axis corresponding to kj_ can

always be taken to lie along the x axis because of degeneracy in the plane perpendicular to

the uniaxial principal axis. The conductivity tensor transforms according to

/

\

kx 0 0

0 k^ 0

0 0 fcj|

y

\ /

1Z =

k^ 0

0 kyy

0

^yZ

\
0 kyz

/

where

kyy = Ar|| sin^ 9 + k± cos^ 9

kgf = A:|| cos^ 9 -\-k_i sin^ 9

fcy, = —
A:|l) cos ^ sin ^

which leads to A = k^kzz, B = 0 and C = k±k\^. We write the wavevector in the form

(ujx^ufy) = a;(cosa, sina) to obtain

P = k±uj^ cos^ a + sin^ a(A:|| sin^ 9 k± cos^ 9),
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Q = {k_i — A;||)a; sin a cos d sin 9\

the effective conductivity becomes

ksiO^a) = \Jk^kzg(d) cos^ a + kx.k\\ sin^ a.

We rewrite Eq. (15) in the form

iQGs 4* (tLv

k^u + fc£;u;
+ GLF(e,a) = -TmTu;^ + mG,

{R - V/2D) - aIV

i? - (1 - 2k)Vl2D
(17)

where

F{e,a) =
VLv\kE{0,a)

k,,{e)1 + kE(9,a)lkL

Clearly kg2{9) and kE{9,a) are symmetric about the points ^ = 0 and 9 = 7r/2, and about

a = 0 and a = 1:12. For ^ = 0 we note that kE{0, a) and F(0, a) are both independent of a.

In analyzing Eq. (17), the following questions are of interest: for crystal growth in a given

crystallographic direction (fixed 0), for what value of a does the onset of instability occur?

At this onset, is the imaginary part of <j non-zero, so that the onset is oscillatory in time

(travelling waves)? How do these results change as a function of 97

We first present some numerical results for dilute alloys of 0.78 at% bismuth in tin (for

thermophysical properties given in Table I) and then establish some general features of

Eq. (17).

In Figs. 2 and 3 we plot the marginal values oiGi and di = Im(or), as functions of a for

a growth velocity of 5 /im/s and various values of 9] these marginal values are calculated by

maximizing Gi over uj for fixed a. Observe, for any 9, that the onset of instability occurs at

a = 0, and with (J* = 0. For ^ = 0 and 9 = 7r/2, <7,- = 0 for all values of a; these values of 9

correspond to cases for which the growth direction is edong a principal crystallographic axis,

a case that we shall analyze later. We have plotted these figures only for positive values of

a and 9 lying between zero and 7r/2; changing the sign of either ^ or a changes the sign of

di but Gl is unaffected. We observe that the critical value of Gx, at the onset of instability

V2Lries by about 25% with crystallographic orientation; this should be viewed in light of an

anisotropy in thermal conductivity of 44% for tin.
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In Figs. 4 and 5 we again plot the marginal values of Gl and cr,- as functions of a for

a much larger growth velocity, V = 30 cm/s . The features of these curves are similar to

those of Figs. 2 and 3, except that the onset of instability now occurs at a = 7r/2 and for a

non-zero value of <7,-. Therefore the onset of instability is oscillatory at this higher velocity for

0 < 9 < w/2. We note that this velocity is approaching the conditions for absolute stability,

and the marginal temperature gradients change extremely rapidly with velocity; therefore

the apparent anisotropy displayed in Fig. 4 would be very difficult to observe experimentally.

In order to better understand the features of these curves, we now analyze Eq. (17). For

the range of values used in the computations, the product GLF{d,a) appears to be nearly

independent of 9 and a, so the ainisotropy of Gl can be understood approximately in terms

of the ajiisotropy of F. For fixed ^ ^ 0 we consider the extrema of F{9, a) as a varies. We

have

dF^ ^ 1 (J_ r VLv \ 1 \ dkE

da {1 kE(9,a)/kLy \kgg \ kiGiJ ki) da

and

1^
sin^ ^ sin a cos a.

Therefore, aside from the case in which dFjda vanishes identically (which corresponds to

Gs = Gl)^ we have extrema only at a = 0 and a = 7r/2. F(9^a) is therefore an increasing

function of a if

in which case a = 0 corresponds to a minimum and a = t/2 is a maximum. If this expression

is negative, then the minimum and maximum are interchanged. This explains the difference

in appearance in Figs. 2 and 4, because the term VLvHkiGL) is neghgible for V = 5//m/s,

but becomes large enough at V = 30 cm/s to interchange the values of a at which the

maxima and minima of F occur. Note that a maximum of F corresponds to a minimum of

Gx,, and vice versa, and also that the extrema of F correspond to the extrema of kE-

We next consider the extrema of F(9^ a) as 9 varies for fixed a. A short calculation shows

that

dF ^ dkgg

d9 ae

'
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where Ci is a positive factor. Since

= 2 —
fell) cos 9 sin0,

we conclude that 0 = 0 and 0 = 7r/2 are extrema of F, with 0 = 0 being a maximum and

0 = 7r/2 a minimum for > ^||.

For either 0 = Oor0 = 7r/2, we have Q = 0 which (since always kxz = 0 for our choice

of axes) is a manifestation of ky^ = 0. Both 0 = 0 and 0 = 7r/2 correspond to orientations

for which x, y, z are principal axes of the crystal. Moreover, if Q = 0, we can deduce from

Eq. (15) that a,* = 0, because the problem is then of the same form as that in previous

treatments [16] for isotropic conductivity, for which the principle of exchange of stabilities

has been established.

4. Discussion

We have carried out a linear morphological stability analysis for anisotropic thermal conduc-

tivity in the crystal, resulting in the dispersion relation given by Eq. (15). For fixed growth

conditions and thermophysical properties, this dispersion relation can be considered to be an

equation for <t as a function of both magnitude and direction of the wavevector (through ujx

and tjy, or alternatively through u and a) as well as the orientation of the growth direction

relative to the crystal axes, which requires the specification of two parameters for a crystal of

low symmetry. If the growth direction coincides with a principal crystallographic direction,

there is an exchange of stabilities, and the onset of instability is non-oscillatory. For other

growth directions, the onset of instability might or might not be non-oscillatory.

For a tmiaxial crystal it is sufficient to specify only the angle 0 that the axis of symmetry

makes with the growth direction, and the resulting dispersion relation is given by Eq. (17).

We ajialyze this dispersion relation numerically for the case of an alloy of 0.78 at% bismuth in

tin, with results given in Figs. 2-5. For low growth velocities, the onset of instability occurs

with (Ti = 0 for perturbations with wavevector along a principal axis of the crystal that lies

in the plane of the unperturbed interface. For high growth velocities, the onset of instability

-11-



occurs for perturbations with wavevector perpendicular to the principal axis of the crystal

that lies in the plane of the unperturbed interface, and with (t,- ^ 0 for orientations in the

range 0 < ^ < 7r/2. For other uniaxial crystals, the relative conductivities might be such

that the inequahty in Eq. (18) might be reversed, resulting in an onset of instabilities at low

velocities that is oscillatory in time.

For a crystal of general anisotropy, the appropriate dispersion relation is Eq. (15), which

is difficult to analyze. For low velocities (constitutional supercooHng regime), however, an

approximate analysis is tractible since u and T\fTuj^ <C rnGc 3<t the onset of instabihty.

To this approximation, the real and imaginary parts of Eq. (15) for 0-^ = 0 give the simple

results

ki "f ks
= mGc

and

<7i =
-VQ

(19)

(20)
kzz H" ks

For instance, for the conditions corresponding to Figs. 2 and 3, with a = 7r/2 and ^ = x/4,

the numerical results are Gl = 175 K/cm and <7,- = —1.70 s”^, and those calculated from

Eqns. (19) and (20) cire Gl = 186 K/cm and <7,- = —1.78 s“^.

Finally, we note that ks can be written in the form

= \/Acos2Q + 2Bcosasma + Csin2a,

where A, B and C are given by Eqs. (8) -(10). It is easy to determine that its maximum

and minimum values are

ki = )lliA + C)± \y/(A - cy + 4BK

Then writing Eq. (19) in the form

(
21

)

Gl
kL + ksiGsIGL) = mG, (

22
)

kL H" ks

and recognizing that a maximum value oi Gl will result from a minimum value of the term

in braces, we conclude that for Gl > Gs, k^ is applicable, whereas for Gl < Gs, k^ is

applicable in determining the onset of instability.
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Table I

Values used in numerical computations

liquid diffusion coefficient D 1.8 • 10 ®cm^/s

liquid thermal conductivity ki 0.303J/(cm- is: • s)

solid thermal conductivities fc|l 0.460J/(cm • K • s)

fcx 0.662J/(cm • K • s)

distribution coefficient k 0.28

liquidus slope m -2.2SKIM
capillary parameter TmT 8.6 • 10-®cm- if

heat of fusion Lv 418.0 y/cm®
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Figure Captions

Figure 1. Drawing showing the orientation of the growth direction, z, relative to the prin-

cipal axes Xcj Vc’t ^.nd Zc of a uniaxial crystal having thermal conductivity along Zc and k±

perpendicular to Zc. Without loss of generality we choose x to lie along Xc so that the growth

direction can be completely specified by the angle 9. The angle a specifies the direction of

the wavevector of a perturbation relative to the x axis.

Figure 2. Marginal values of the temperature gradient Gx, cls a function of a for various

growth directions 0 for an alloy of 0.78 at% bismuth in tin growing at 5 fim/s. The interface

is stable for values of Gx, above the given curves, so the onset of instability occurs for a = 0.

Figure 3. Imaginary part of <7 versus ct for the same conditions a.s Fig. 2. For ^ = 0 and

9 = 7r/2, which are principal crystallographic directions, di = 0. Note also that (7, = 0 at

the onset of instability, which takes place at a = 0.

Figure 4. Marginal values of the temperature gradient Gx, as a function of a for various

growth directions 9 for an alloy of 0.78 at% bismuth in tin growing at 30 cm/s. The interface

is stable for values of Gx, above the given curves, so the onset of instability occurs for a = x/2.

Figure 5. Imaginary part of a versiis a for the same conditions cis Fig. 4. For ^ = 0 and

^ = 7r/2, which are principal crystallographic directions, di = 0. Note also that di ^ 0 at

the onset of instability, which takes place at a = 7r/2.

-16-



Fig. 1



Morphological Stability Tin—Bismuth
C„ = 0.78 at % V = 5 ^z-m/s

Fig. 2



Morphological Stability Tin-Bismuth
= 0.78 at % V = 5 yum/s

Fig. 3



G,

K/c

Morphological Stability Tin—Bismuth
C = 0.78 at % V = 30 cm/s

1.9 n

d = (1/2) 77

6 = (1/4) 7T

e = (1/8) 77

0.7 H r

0.0

“I—

"

0.2

0 = 0
1 '

\

r

0.8

“I

1.0

Fig. 4



Morphological Stability Tin—Bismuth
C = 0.78 at % V = 30 cm/s

Fig. 5



B

o

Morphological S^Ahilily Tin-Bismuth

8\nio 08 = V1.9-1

1.6

= 0-^fj

TT (i\l) = Q
e = (3/8) 7T

% rO.Ol
*4

0.B

TV (8\J) = ^

0,7-



I4A

U.S. DEPT. OF COMM.

BIBLIOGRAPHIC DATA
SHEET (See instructions)

1. PUBLICATION OR
REPORT NO.
NISTIR 89-4143

2. Performing Organ. Report No. 3. Publication Date

AUGUST 1989

4. TITLE AND SUBTITLE

Effect of Anisotropic Thermal Conductivity on the

Morphological Stability of a Binary Alloy

5. AUTHOR(S)

G. B, McFadden, S. R. Coriell and R. F. Sekerka

6. PERFORMING ORGANIZATION (If joint or other than NBS, see instructions)

NATIONAL BUREAU OF STANDARDS
U.S. DEPARTMENT OF COMMERCE
GAITHERSBURG, MD 20899

7. Contract/Grant No.

8. Type of Report & Period Covered

9.

SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street, City, State, ZIP)
10.

SUPPLEMENTARY NOTES

f I
Document describes a computer program; SF-185, FIPS Software Summary, is attached.

11.

ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant
bibliography or literature survey, mention it here)

We perform a linear morphological stability analysis of a planar interface during

unidirectional solidification of a binary alloy for the case of a crystal having an

anisotropic thermal conductivity. We calculate a dispersion relation which shows

that the onset of instability depends on the orientation of the growth direction

with respect to crystallographic axes and on the orientation of the wayevector of

the perturbation. The onset of instability can be either oscillatory (travelling

waves) or non-oscillatory in time. For growth along a principal axis of the crystal

there is an exchange of stabilities, and the onset of instability is non-oscillatory

For a uniaxial crystal we explore the dispersion relation in detail, and give

numerical results for the case of an alloy of 0.78 at % bismuth in tin. For low

growth velocities the onset of instability is non-oscillatory and occurs for

perturbations having a wavevector that lies along a crystallographic axis.
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