
NEW NIST PUBLICATION

August 1989

Applied and nistir 89-4135

Computational

Mathematics

Division

Center for Computing and Applied Mathematics

Supercomputers Need Super

Arithmetic

D. W. Lozier and P. R. Turner

October 1989

U.S. DEPARTMENT OF COMMERCE
National Institute of Standards and Technology

Gaithersburg, MD 20899

SUPERCOMPUTERS NEED SUPER ARITHMETIC

D.W.Lozier and P.R.Tumer

Applied and Computational Mathematics Division

National Institute of Standards and Technology

Gaithersburg

MD 20899

Mathematics Department

US Naval Academy

Annapolis

MD 21402

lozier(a)enh.nist.gov ptumer@ usna.mil

(301) 975-2706 (301)267-3703

ABSTRACT

The title of the paper will be justified by the consideration of the parallel computation of

vector norms and inner products in floating-point and a proposed new form of computer

arithmetic, the symmetric level-index system.

KEYWORDS Parallel computation, vector norms, symmetric level-index

arithmetic, floating-point arithmetic, error analysis, vectorized algorithms.

r^

t

'*
ii>

Supercomputers need super arithmetic 1

1. Introduction.

In this paper we discuss the computation of vector p-norms and scalar products and the

implementation of algorithms for them on vector and parallel computers. For the most

part, we concentrate on the vectorization of algorithms for these operations. We begin

with a brief overview of three approaches to the p-norm calculation including an

extended version of Blue’s algorithm for the euclidean norm of a vector [2]. These

particular vector norms are attracting increased computational interest caused in part by

their role in the radial basis function approach to bivariate approximation; see [19] for

example. The analysis of finite element techniques also makes use of these norms.

In Section 2, we concentrate on the relative merits of the various approaches for a

serial machine. Section 3 extends the discussion to vector and (briefly) to other parallel

architectures. We see there that considerations of the ease of vectorization lead to very

different conclusions as to which is the algorithm of choice. For other parallel

architectures the decision may well be different again.

The choice and performance of the algorithm for the computation of the p-norm is

not just architecture-dependent but also depends on the arithmetic which is to be used and

on the detailed implementation of that arithmetic. In order to fix a framework for the

discussion, we adopt the Brown [3] model of floating-point arithmetic. In the

computational examples we use the IEEE single precision standard [IEEE].

The IEEE standard facilitates comparison with the symmetric level-index, or sli,

system. This arithmetic, which is an extension of the original level-index scheme of

Clenshaw and Olver [6], [7], is outlined in Section 4. For greater detail on this arithmetic

and its possible implementation see [6], [7], [9] and the introductory survey [8]. As long

as it remains the case that sli arithmetic must be implemented in software, it is difficult to

implement a genuine simulation of the double-length symmetric level-index scheme.

Therefore, we consider the single-length versions of both arithmetics for the purposes of

comparison. (One such software implementation for experimentation on PC’s is available

Supercomputers need super arithmetic 2

[21] while a Fortran implementation with its own precompiler is under development by

Lozier.)

In Section 5, we discuss floating-point error analysis and the analysis of

extensions of the floating-point system as well as error analysis for sli arithmetic. The

focus of the discussion is the computation of extended sums. This operation is central to

any of the more complicated operations such as evaluation of scalar products or vector

norms.

In Section 6, we consider some of the sli vector algorithms for the tasks of

evaluation of the p-norm and scalar products and see that these would be immediately

parallelizable as soon as a symmetric level-index arithmetic processor is available.

Section 7, on computational experience with the algorithms under discussion,

demonstrates the advantages claimed. The findings are summarized in the final section of

the paper.

2. Algorithms for Vector Norms

The vector space of complex n-tuples x = (Xj, x^, x^) is a Banach space under the norm

llxll = (llx.|P)'^ (2.1)

where p > 1 is a fixed real number. This norm is called the p-norm. In the special case

where p = 2, the norm derives from the usual inner product

(X, y) = I x.y., (2.2)

so that II X II2 = (x, x)^"^. With this 2-norm, the vector space becomes a Hilbert space.

The special importance of Hilbert spaces in applications of mathematics helps account

for the existence of robust algorithms for the 2-norm such as Blue’s algorithm [2] and for

the existence of library software in such collections as NAG, IMSL, SLATEC and many

others. Two other special cases - each easier to compute than the 2-norm are

Supercomputers need super arithmetic 3

n

llxll (2.3)

and

II X II lx.l. (2.4)

Like the 2-norm, the 1-norm and the o=-norm are commonly found in software libraries.

Little software is available for the more general p-norms. Yet general Banach

spaces are used widely in applied mathematics. For example, finite element analysis is

rooted in Banach spaces and not Hilbert spaces and one of the more promising techniques

being developed for multivariate approximation using radial basis functions relies

specifically on the computation of p-norms [19]. Perhaps the p-norm is available in finite

element packages but these are not readily accessible except to finite element

practitioners.

We are interested here in algorithms for computing p-norms on serial and vector

computers. In each case, we want the algorithm to be matched to the architecture so as to

speed the execution. Additionally - and perhaps even more importantly - we seek robust

algorithms. Thus they should return either the correct answer or a clear indication of

failure. The first, and conceptually simplest, algorithm is based directly on the definition.

ALGORITHM IS

s, = I X, IfSet

Compute Sj = s._j + I x^ f

,

i = 2, 3, ..., n.

Set II X II = s*^^ .

p n

It is generally accepted that floating-point systems of computer arithmetic are

usefully characterized by four parameters. See, for example, [3], [4], [5] and [12]. These

parameters are:

Supercomputers need super arithmetic 4

(3: the radix or base (usually 2 or 16),

t: the number of p-digits in the significand,

®min-
minimum exponent, and

^max'
maximum exponent.

These parameters do not describe an arithmetic processor fully since, for example, the

machine (roundoff) unit for arithmetic operations is not known until the rounding

algorithm is specified. Brown’s contribution [3] was to assign the parameters of a

specific arithmetic processor not on the basis of their static number representation, but on

the basis of a four-parameter arithmetic model which reflects an acceptable level of

performance of the actual arithmetic. Thus any of t, e^ and e^^ may be reduced to

compensate for a processor that fails to meet a stipulated set of criteria.

It is not always easy to determine the parameters that best characterize the

acceptable level of performance of a given processor. We shall assume, however, that

this determination has been made, and that we have B, t, e . and e available for use.

The set of model numbers is the set of all normalized floating-point numbers

X = ± O.djd^ ... d^ X P" (2.5)

with the integer e satisfying e^ < e < e^^^^ and dj ^ 0. Zero is included also. The model

has a maximum, the overflow threshold,

A = (1 -p-t) p^*"" (2.6)

and the set of positive model numbers has a minimum, the underflow threshold,

X = p^™n
(2.7)

Obviously, Algorithm IS is susceptible to both underflow and overflow in the

calculation of s^. If overflow occurs, the computation cannot proceed within the

arithmetic model. Nevertheless, the final value of II x lip (if it could be computed) may be

well below the overflow threshold and therefore steps should be taken to avoid overflow

so that a usable result is obtained. A simple scaling appears to do the trick.

Supercomputers need super arithmetic 5

ALGORITHM 2S

Set m = IxJ, Sj = IXj/mlP

Compute Si
= s._j -

1- Ix/mlP, i = 2, 3, ..., n

Set II X II = m s^^P
.

P n

A robust program must do somewhat more. Firstly, it must check to see whether

m = 0, in which case it must set II x lip = 0 and exit. Secondly, it must check whether the

final multiplication will cause overflow - a perhaps unlikely, but still possible event - in

which case it must issue an appropriate error message and quit or, alternatively, link into

an error-recovery system designed to allow the programmer an opportunity to circumvent

the overflow. Thirdly, the program must take into account the possibility of underflow in

the calculation of lx. / ml'’.

We note that Algorithm 2S overcomes the vulnerability to overflow of the simple

Algorithm IS at the expense of a preliminary pass over the data vector to determine the

maximal element. The third of our serial algorithms, devised by Blue [2] for the 2-norm

case and extended here to the general p-norm, avoids this cost. To simplify the

presentation, we denote by co the largest model number satisfying

CO < min (A, (2.8)

(cf (2.6) and (2.7)) and let

a = and M = fp! (2.9)

where [p 1 is the smallest integer not less than p. Define 2M nonoverlapping intervals by

= [(x™-\ a*"], m = -M+\, -M+2 , . .

.

M (2.10)

For each m, is a scale factor that transforms the interval into Iq by mapping

X a~^x. By definition, p^*’ powers of numbers in this interval Iq can be formed in the

model without overflow or underflow. The basis of the algorithm is the use of a separate

accumulator for each interval I .m

Supercomputers need super arithmetic 6

ALGORITHM 3S

Initialize Set m

Loop For each x. 9^ 0 (i =

Compute

Set

and

Ifx. = 0, sets® =
1 ’ m

= 0, m = -M+l, -M+2, M.

1, 2, n):

m. = rlog„ Ix.l1

c(i) - + \^Ja ^1^
1 1

S® = s®')

,

m ^ m..m m ’
i

for all m.
m’

Finalize

Set N = max {m : S®^ 0 } ,
P = min {m : S®^ 9^0}

Set S = S®^ +S®yco + ... + S®^

Set II X II = a^S*^.

As was the case with Algorithm 2S, a completely robust program must do a little

more. Overflow remains possible in the accumulators and the final summation only if n =

0(A), which is highly unlikely unless e^^^^ is unusually small. Underflow is highly

probable in forming the terms of the final summation. This could result in a genuine loss

of precision if underflows are replaced by zero (abrupt underflow) but good protection

against such loss would be afforded by use of gradual underflow. To achieve similar

protection with abrupt underflow, a more complicated version of the final decision

process of Blue’s algorithm [2] could be employed. The programming required to render

the algorithm robust is nontrivial; this point may be regarded as the central conclusion to

be drawn from Blue’s paper [2]. That is,

even with reasonably good information about the floating-point

arithmetic it is still not easy to achieve complete robustness even for

such a conceptually simple calculation as a vector norm.

An advantage of this algorithm over Algorithm 2S is the need to process the data

vector once only - although that processing is clearly more expensive. A disadvantage is

Supercomputers need super arithmetic 7

the need to obtain the parameters of the floating-point model from the computational

environment - a task that is burdensome but necessary when the program is to be

portable. The principal additional costs in Algorithm 3S are derived from the need for

2M accumulators and the computation of m. for each i.

3. Vectorized Algorithms

We present vectorized versions of Algorithms IS, 2S and 3S. First we describe, as a

subsidiary algorithm, the familiar cascading algorithm for vectorized summation to form

n

(3.1)

where we assume n is given in the form

n = 2*^
-I- m (3.2)

where k and m are the unique nonnegative integers satisfying (3.2) with m < 2*^.

ALGORITHM VS

Initialize

Set

For each i = m-i-1, m-i-2, ..., n^

For each i = 1, 2, ..., m

Loop For each j
= 1, 2, ..., k

set n. = n._^ / 2 ,

set t® = i=l,2, ...,n

Finalize

Set S =

If the add-and-store operations inside the loops were executed entirely in parallel,

this complete summation would require just k-i-1 such operations. That is, parallel

execution of Algorithm VS requires 0(log2 n) operations as opposed to the 0(n) that are

Supercomputers need super arithmetic 8

necessary for serial execution. Because operations on a vector processor are not

completely overlapped, Algorithm VS needs 0(n) operations on such a machine but with

a reduced execution time per operation. The saving becomes more significant as the

vector length increases.

Algorithm VS employs 2*^ temporary storage locations that are not needed in a

serial algorithm. It is characteristic of vector (or parallel) algorithms that reduced

execution time is achieved at the expense of additional storage requirements. The

initialization phase of this algorithm compresses the original vector into one of length 2^

in a way which minimizes the arithmetic operation count for that phase.

The principles of Algorithm VS extend naturally to other reduction processes, a

term that is sometimes used in compiler manuals to describe mappings from vector to

scalar quantities. For example it extends to the computation of maxima or minima of

vectors. The operation count and the temporary storage requirements are unchanged,

provided that the operation is suitably defined. In the case of finding the maximum of a

vector, the operation is finding the maximum of two numbers and storing the result.

Algorithm VS vectorizes Algorithm IS by simply modifying the initialization

step to use the components IxJ^ and the finalization step to compute (t^^

ALGORITHM IV

Use Algorithm VS modified as above to compute !lxlL

Algorithm 2S can be similarly vectorized.

ALGORITHM 2V

Use Algorithm VS, suitably modified, to compute m = max lx.l

.

Use Algorithm VS, suitably modified, to compute lIxIL

Each of the Algorithms VS, IV and TV is easily expressed in standard Fortran

and a vectorizing compiler can be expected to vectorize all of the (inner) loops. We turn

now to the possible vectorization of Algorithm 3S. The initialization step vectorizes

without difficulty. The loop presents two difficulties:

Supercomputers need super arithmetic 9

(i) The need to distinguish the cases in which x. = 0, and

(ii) the need to select the appropriate accumulator when 0.

In the finalization step, the vectorized determination of N and P is not readily expressed

in standard Fortran, and a choice must be made between Algorithm VS and Homer’s rule

for evaluating the polynomial expression.

Let us consider the loop, in Algorithm 3S, which is where most of the work is

done. The difficulties (i) and (ii) arise from the need to maintain an uninterrupted flow of

operands to the vector pipeline of the floating-point processor. An uninterrupted flow is

possible when the operands are spaced regularly in the computer memory and all

operands undergo exactly the same sequence of arithmetic operations. These conditions

translate into restrictions on the Fortran statements that are allowed inside a loop in order

that the loop be vectorized by a Fortran compiler.

These restrictions are not the same for different Fortran compilers.For example

one reference manual [Cray] states that "Loops containing a GO TO, IF, CALL or I/O

statement are not vectorizable" while another [Convex] states that "DO loops containing

nested IF statements and nonlinear subscripts (subscripts whose values do not form

arithmetic progressions) can be vectorized." We remark that the code for the loop of

Algorithm 3S contains both IF statements and nonlinear subscripts. The difference

between the statements made in the two different compiler manuals can be understood in

the following way.

First, we remark that it is important to minimize restrictions on inner-loop

programming because they exclude important algorithms. In recognition of this fact,

every vectorizing compiler provides nonstandard capabilities for doing so. However the

price of these nonstandard capabilities is a loss of portability. This places a burden on

programmers and, especially, on providers of software libraries.

Secondly, we remark that, conceptually at least, a loop containing logical

branches can be separated into two loops, one containing the logic and one containing the

Supercomputers need super arithmetic 10

arithmetic. Some compilers, for example [CDC], support the separation of arithmetic and

logic in a natural, though nonstandard, way. The programmer can write a loop defining a

bit-vector containing one bit for each component of the arithmetic vector operands. The

logic loop contains logical and relational operations and the arithmetic loop refers to the

previously computed bit-vector. For those operations where the appropriate bit is set, the

arithmetic result is stored while for those for which this bit is not set, the arithmetic result

is not stored. In this latter case, any floating-point exceptions which may arise such as

underflow/overflow or invalid arguments to functions must be suppressed. For this

separation to be effective, both the logic loop and the arithmetic loop must be

vectorizable.

Finally, we observe that several compilers now perform the separation of logic

and arithmetic through analysis of the source code, at least in sufficiently simple cases.

The following is one plausible vectorization of Algorithm 3S. An analog of

Algorithm VS is used to perform the summations subject to control by a bit-vector.

ALGORITHM 3V

Initialize

Set S^°^= 0, m = -M-Hl,-M-H2, ...,M.m

[
r log„lx.l 1

Set m. = ^
i = 1, 2, ..., n.

I 0 ifx.=0

Loop

For each m = —M-i-1, -M-h2, ..., M:

f 0 ifm m.

Setb^"'^=
j

'

i = l,2, ..., n.

[1 ifm = m.

Use Algorithm VS (controlled by b^*"^ and appropriately

initialized) to compute S^^

.

Finalize as in Algorithm 3S.

Supercomputers need super arithmetic 11

A general remark is in order on the efficiency of vectorizing inner loops when

some of the loop iterations do not store a result. Such iterations take the same time as do

iterations for which the result is stored. The separation approach maintains an

uninterrupted flow in the vector pipeline but clearly the effective vector rate is degraded.

If the proportion of null operations is large enough, a vector loop with its associated

overhead can produce an effective rate slower than would be achieved by a scalar

algorithm. In Algorithm 3V, the effective vector rate is eroded rapidly as M increases.

Therefore this algorithm is not attractive for computing 11x11^ for large p.

We conclude this section with the observation that an extremely simple serial

algorithm, Algorithm IS, vectorizes easily. But neither Algorithm IS nor IV is at all

robust, i.e resistant to overflow and underflow. The greater robustness of Algorithms 2S

and 3S is, of course, retained by their vectorization. But it is probably impossible to

vectorize Algorithm 3S in a way which is both portable and efficient.

4„ The Symmetric Level-Index System

In this section, we review briefly the basic definitions and properties of the symmetric

level-index representation and its arithmetic and go on to the summation of a vector as an

sli operation.

4.1 Symmetric Level-Index Arithmetic

A positive number X is represented in the level-index, //, system by x where

X = (|)(x) (4.1)

and the generalized exponentialfunction (|) is defined by

f X 0<x < 1,

(1) (X) = (4.2)

I exp ((t)(x-l)) X > 1.

The representation x is written in the form / -i- f where the level I is a nonnegative integer

and the index f e [0, 1). The various quantities are related by the equation

Suf)ercomputers need super arithmetic 12

X = exp(exp(... (exp f) ...)) (4.3)

where the exponential function is applied I times.

For the symmetric level-index system, numbers in the interval (0, 1) are

represented by the li images of their reciprocals together with an indicator to show that

they are in reciprocal form. Thus the sli representation can be described as representing a

real number X by ± <})(x)~\ (There are other ways to describe this representation which

are sometimes convenient for the analytic development of the theory.) The arithmetic

algorithms for the li and sli systems are described in detail in [7] and [9], while possible

hardware implementation schemes are discussed in [20] and [18].

A minimal description of the arithmetic algorithms is necessary in order that some

of the available simplicity of the vector operations can be clearly demonstrated. Consider

the addition (or subtraction) of two numbers (t)(x) and with x > y, to form their sum

(or difference) ({)(z). The problem is to find z, the sli representation of this sum or

difference; that is, we seek z such that

(})(z) = (l)(x) ± <))(y) (4.4)

This is achieved via the computation of the members of three short sequences defined by

a- = 1

1

(|)(x-j), b. =
(l)(y-j) / (l)(x-j), c. = ({)(z-j) / (t)(x-j). (4.5)

These sequences are computed from appropriate starting values by simple recurrence

relations involving evaluation of exponential or logarithmic functions for special and

restricted ranges of their arguments. Slight variations of these sequences are needed for

some of the other arithmetic operations involving quantities in reciprocal form, but the

principle is similarly straightforward. The details of the computation are not important to

the present discussion. For a detailed description of these algorithms and possible

implementations see, for example, [8].

The important point to make about the arithmetic algorithms at this point is that

all the internal computation is performed in fixed-point fixed-precision form. It is this

Supercomputers need super arithmetic 13

fact which makes considerable economy-of-scale available in the implementation of the

extended arithmetic operations to be discussed shortly.

For our present purposes, it is not the details of the algorithm that are essential,

but more the properties of the sli system once implemented.

One of the most important properties of the sli system is closure. Let A(t,/) be the

(finite) set of all sli numbers with t-bit indices and levels not greater than /. In [15] it is

proved that A(t,/) is closed under the four basic arithmetic operations, excluding division

by zero, if / is large enough. For example A(27,7) is closed and requires only 32 bits to

represent all of its members (27 for the index, 3 for the level and one each for the sign

and the reciprocation indicator). In contrast to the IEEE standard P754 [IEEE], it is not

necessary to introduce an artificial infinity arithmetic with non-numerical infinity

symbols. The error measure for symmetric level-index arithmetic is different from that

for floating-point. The appropriate error measure for the sli system is generalized

precision which is developed and discussed in [6]; it corresponds to fixed absolute

precision in the index.

The importance of closure is that it renders the system entirely free from overflow

or underflow as a result of arithmetic operations. As we shall also observe later,

generalized precision is the appropriate measure for the sort of calculation of current

concern. It is precisely the right measure to use when comparing very large or very small

quantities which are themselves to be the arguments of a high-order root function so that

we can draw appropriate conclusions about the accuracy of the final answer. This

particular point is also borne out by the computational experience with the sli system

reported in [10] on the root-squaring process for polynomial root-finding and [21] where

the p-norm calculation was seen to be highly stable as p increased.

Supercomputers need super arithmetic 14

4.2 Summation as an sli operation

In following sections, we shall be describing the sli implementation of algorithms for

computing scalar products and p-norms of vectors. It is immediately apparent that both of

these operations must rely heavily on the summation of the components of a vector. We

conclude this section with a look at this operation which is the subject of the error

analysis discussion in the next section. The possibility of the efficient computation of

extended sums for the level-index system was first considered in [7], a software

implementation is discussed in detail in [21] and the error analysis of extended arithmetic

operations in the li and sli systems is discussed in [17].

Firstly, the implementation of the operation even for a serial machine becomes

highly efficient once the largest term in the sum, x^^ say, has been identified. In this case

only one sequence (aj] and only one [Cj] need be computed. The whole of the extended

nature of the operation is accounted for by a redefinition of Cq which depends on values

of bp (or its equivalent for quantities in reciprocal form) for the terms to be summed. That

is, for the simplest case where all terms are greater than unity, we set

(4.6)

where the summation is taken over all terms except for the largest and

bo, = 4’(x,)/<l>(x„„) (4.7)

This redefinition of Cq simply amounts to the summation of these fixed-point, fixed-

precision quantities bg^ - an operation which is easily achieved since there are no

alignment shifts or normalizations to account for. The savings thus achieved amount to

about two-thirds of the work which might otherwise be involved. Details of the

algorithmic aspects of this can be found in [21].

On a machine with a sufficient degree of parallelism available in its sli processor,

it is clear that all the sequences (bj} could be computed simultaneously and so the

complete operation would be slowed in comparison to a single addition only to the extent

of identifying x^^ and then computing the redefined Cq via a tree of adders. Similarly, for

Supercomputers need super arithmetic 15

a software implementation on a vector machine, the computation of the various quantities

bg^ is readily vectorizable as in Algorithm VS.

5. Error Analysis

In this section we discuss briefly the error analysis of the IEEE standard floating-point

system with reference to the effect of gradual underflow and the consequent loss of a

uniform relative error bound for arithmetic operations. We shall also consider how this

affects other possible floating-point-like arithmetics which have been proposed. The

discussion will center on the summation operation.

We shall also include a short discussion of the error analysis for the sli operation

of forming sums either by repeated addition or using the summation algorithm described

briefly in the last section. The implementation described in [21] incorporates this

operation along with the formation of scalar products and vector norms in its standard

library of functions and procedures. The vector sum operation is central to all of these.

5.1 Floating-point

In his lengthy paper [11], Demmel highlights some of the advantages, in terms of writing

robust programs, which are derived from the inclusion of gradual underflow in the

floating-point arithmetic. Many of his examples are drawn from linear algebra

applications including the formation of scalar products. The case Demmel puts for the

inclusion of gradual underflow is convincing and justifies the extra complication in the

floating-point error analysis which is necessitated by the loss of normalization at the

underflow threshold X given by (2.7). One of his principal arguments in favor of gradual

underflow is the consequent relative ease of writing "highly robust, expert codes for

problems like polynomial root-finding"; the basic belief being, apparently, that it is

preferable to ease the programming task at the expense of slightly more complicated

error analyses. This is a view which probably meets with very widespread approval and

Supercomputers need super arithmetic 16

acceptance - and certainly that of the present authors.

The source of the additional difficulty in the error analysis is that, while relative

error in the floating-point representation is bounded by the machine unit e for quantities

in excess of the underflow threshold X, for smaller quantities the absolute bound Xe must

be used. For a t-digit base P significand with symmetric rounding

e = p'-72.

It is apparent from [11] that the detailed analysis of algorithms becomes more intricate -

even though the final error bounds achieved, as is the case for summation, are often no

more complex than for fully normalized arithmetic.

Specifically for the sum of N+l floating-point numbers Xq, Xj, ..., Xj^ of the same

sign which are assumed to be exact, we see from [11] that the final rounding error is

bounded as follows:

I F1(I X^) - I xJ < Ne F1(I X.) / (1 - e) (5.1)

where Fl(-) stands for the result of the floating-point operation, so that the relative

rounding error is bounded by (approximately) N times the bound for a single addition. In

the case of other extended calculations such as scalar products, the error bounds are a

more complicated combination of relative and absolute bounds depending on the

occurrence of (gradual) underflow. For such calculations with gradual underflow, the

attractive feature of a fixed relative error bound for all floating-point arithmetic

operations is lost.

Other unnormalized floating-point arithmetics have been proposed for purposes

of VLSI architectures and bit-by-bit pipelining of arithmetic. The details of these

arithmetic systems are not our present concern, but it is worth saying a little about the

error analysis requirements of such systems. The additional complication - in relative

error terms - is much greater for these general unnormalized systems than for the special

case of gradual underflow. It has been studied in some detail by Barlow [1] who pays

particular attention to the error analysis of Gaussian elimination. The essential difference

Supercomputers need super arithmetic 17

between his analysis and the analysis of conventional floating-point arithmetic lies in the

fact that relative error ceases to be the appropriate measure. It is replaced by "fractional

error" which is (essentially) the absolute error in the (unnormalized) mantissa. Like the

inclusion of gradual underflow, the use of such unnormalized arithmetic demands the use

of other error measures as well as relative error.

Gradual underflow (and any other unnormalized system) has the effect of

extending the range of representable numbers close to zero. Such expedients do nothing

to alleviate the potential dangers at the other end of the range. Matsui and Iri [16] and

Hamada [13] have suggested extensions of the floating-point system to alleviate the

overflow problem by allocating variable-sized segments of the computer word to the

exponent and mantissa of floating-point representations. The complication of the relative

error analysis of such systems is even greater than those mentioned above. Very little of

this analysis exists.

5.2 Symmetric level-index

For symmetric level-index arithmetic, too, it is necessary to use a different error measure,

generalized precision [6]. Generalized precision has some significant advantages

compared to relative error, not least of which is that it is a metric so that the symmetry of

X approximating x and x approximating x is a natural aspect of the error analysis.

Detailed error analyses of numerical processes will inevitably be different in this system

than for any of the floating-point systems but significant progress has already been made

in this respect. (See, for example, [6], [8] and [17].)

We turn now to questions of the precision that can be achieved in extended

calculations. Olver [17] has demonstrated that, at relatively low cost, it is possible to

perform a Wilkinson-style running error analysis. Such a running analysis is particularly

well- suited to a parallel environment since it would be performed by simultaneous

duplication of the operations for slightly adjusted data. The adjustments are similar to the

Supercomputers need super arithmetic 18

use of directed rounding in interval arithmetic and have a similar effect in yielding

guaranteed error bounds for the results obtained.

A first-order error analysis for extended sums and products leads to conclusions

that are broadly similar to those for the floating-point system in that the generalized

precision of the final result is bounded by N times the generalized precision for

individual operations. If 5 is the generalized precision of the sli representation, so that

8 = p'-/!

for symmetric rounding with a t-digit base (3 index, and taking all the terms in the sum to

have the same sign, we find that the final bound for the error 5x in the sli representation x

of the extended sum

(t)(x) = (j)(XQ) -h (t)(Xj) + . . . -I- (j)(Xj^)

is given by

I 5x I < N 5. (5.2)

Compare (5.1). Similar conclusions apply to extended products.

Examples of such computations are presented in [21]. They demonstrate that,

even in cases where underflow or overflow are not significant problems, sli arithmetic

provided answers of similar or greater relative precision than their floating-point

counterpart.

We turn now to the error analysis of the direct extended sum algorithm described

in the previous section. There is not the space to include a fully detailed analysis at this

point. These details will be included in a forthcoming paper. We confine ourselves to a

brief outline of the analysis in the simplest case and the comment that the other cases can

be handled by comparably straightforward extensions of the error analyses in [7] and [9].

The important finding is that the extended summation algorithm can reduce the

roundoff error significantly by comparison with (5.2) above. Indeed the error 6x above

can be bounded by (N-i- 1)5/2 which is only about half the error committed by repeated

addition. Furthermore, it is apparent that by making the appropriate choices of working

Supercomputers need super arithmetic 19

precisions an extended summation processor could be designed to reduce the error here

to the same magnitude as that for a single operation. The price of this would be that all

internal calculation is computed to approximately log
2
K extra bits of precision where K

is the maximum vector-dimension available.

6. Parallelization in an Sli Environment

In Sections 2 and 3, we introduced possible algorithms for the computation of p-norms

and studied their relative efficiencies in various computer architectures. In this section we

reexamine those algorithms from the point of view of efficiency in parallel architectures

with a built-in sli arithmetic processor. Of course, no such machine exists at present

but one of our conclusions is that it should for the reasons that will become apparent.

Let us first recall the basic definition of the p-norm of a vector x, namely

II X lip = {
IXj|P + Ix^lP . . . -H \xf } (6.1)

The first observation to make is that because of the freedom from overflow and

underflow afforded by the sli system, the algorithm implied by the definition is a

perfectly feasible method for the computation and indeed it may appear to be the optimal

such algorithm. (We discuss a still more efficient algorithm later.) This would be

summarized by the Pascal-like procedure:

for i := 1 to n do u. := lx.P

;

pnorm := Root(SumVector(u),p);

The operation within the loop is clearly immediately parallelizable for any parallel

architecture and, since the formation of the powers Ix.l^ is a very simple operation for sli

arithmetic (as is the taking of the p* root), this overall operation is particularly well-

suited to any parallel environment which is equipped with a symmetric level-index

arithmetic processor. This is especially true in the case where the sli processor itself has a

high degree of parallelism so that the SumVector operation can benefit from all the

acceleration described in the previous section.

Supercomputers need super arithmetic 20

In the event that such parallelism is not available, then the summation is

immediately amenable to pipelining or to some tree-structured addition procedure for a

multiprocessor architecture. Of course, for either of these latter operations, similar

considerations as for the floating-point system must be made with regard to organization

of the data in order to maximize the overall precision of the final result.

At this stage then, it would appear that the sli system is ideally suited to parallel

computing environments and that much of the expected slowdown of individual

calculations in comparison with floating-point will be handsomely compensated in such

situations. However, we have barely scratched the surface of the available savings.

Consider again the situation of a symmetric level-index arithmetic processor with

a high-level of on-chip parallelism. In this situation, we find that the operation of

computing vector norms could sensibly be incorporated as a single built-in vector

function which could be computed in not much more than a single sli operation time.

The algorithm is based on a similar approach to that outlined above for

summation; it entails a simple redefinition of Cq, the starting point of the sequence {cp.

Just as with summation, a single sequence (aj) suffices for the whole operation, while the

several sequences {bj) can be computed simultaneously.

The appropriate value for Cq is given by

c„ = {Zbg, }'>’; (6.2)

compare (4.6). At first sight this looks almost as complicated as the original operation,

but this first impression is misleading. Since bp^ is computed by an evaluation of the

exponential function, b^^ can be obtained simply by multiplying the argument by p.

(Again this is a fixed absolute precision operation.) Similarly, the formation of the p*

root in (6.2) is simply incorporated into the computation of

Cj = 1 -I- aj In Cq (6.3)

by the fixed-precision division of the logarithm of Z bg. by p. The only time penalties

incurred here relative to a single sli operation are in identifying the largest element of the

Supercomputers need super arithmetic 21

vector and in performing the extended fixed-point summation using an efficient tree-

structure.

The location of the dominant element - or perhaps a more complex sorting

operation - is required of all the algorithms under serious consideration. In the case of the

symmetric level-index representation, this operation need be no more complicated than

for integer variables since the bit-patterns used for the representation can be organized to

preserve the natural integer ordering. This fact is utilized in the implementation described

in [21] in which vector norms are computed using the algorithm just outlined - in a serial

implementation.

We see here that the symmetric level-index system allows the straightforward

definition of the vector norms, Algorithm IS, to be used for their computation and that

this permits immediate vectorization or high-degree parallelization for any

supercomputer architecture. In the event that this architecture allows significant

parallelism within the sli processor the operation can be made especially efficient.

At this point it is natural to investigate the more general task of computing scalar

products of two vectors. (See [11], Section 7 for a simple example which illustrates the

difficulty in producing robust floating-point algorithms for this task.) This operation has

been one of the main planks on which the interval arithmetic packages such as that

described in [14] have been built.

One likely suggestion for the computation of the inner product (x, y) of the two

vectors x and y in a floating-point environment would be that each vector should be

scaled by its largest element and the final result scaled in a compensatory manner.

However, as we see in the next section, this may be totally inappropriate since these

elements may themselves contribute to almost insignificant terms of the inner product.

Perhaps any scaling should be with respect to the largest term of the inner product itself

but this would add a generally unacceptable burden to the whole procedure.

Supercomputers need super arithmetic 22

It is perfectly conceivable to achieve some similar effect by considering the

scaling as an exponent shift where the largest sum of exponents for the terms x.y. would

be used. However this requires a considerably more complicated sorting procedure to be

adopted and then a decision as to how the overall shift should be divided between the two

vectors. The additional start-up time for any vectorized algorithm utilizing any of these

approaches would be prohibitive in almost all cases.

The corresponding scalar product algorithm for the symmetric level-index

computing environment is described by the following PASCAL-like code

for i := 1 to n do w. := x.*y.;

ScalarProd := SumVector(w);

that is, by a straightforward application of the definition. As we have already seen, the

SumVector operation is well-suited to parallel implementation, and the loop is clearly

immediately vectorizable or adaptable to any parallel environment.

7. Computational Examples

Among the algorithms discussed in Section 2, Algorithm 3S is the algorithm of choice

for complete robustness in a serial floating-point environment. In a vector processor

environmment Algorithm 2V becomes preferable due to its relative ease of vectorization

and normally adequate robustness. If a robust arithmetic such as symmetric level-index is

used then the simplest algorithm. Algorithm IS (or IV), is the obvious choice. As a first

example, we compare the results of computing llxllj, IIxIIjq, HxIIjqq and HxIIjq^q for vectors

of length 10, 100 and 1000 using Algorithm IS in 32-bit sli arithmetic and both

Algorithms 2S and 3S in IEEE standard (single precision) arithmetic with abrupt rather

than gradual underflows.

The sli computation was performed using the Turbo PASCAL unit, SLIUNIT,

which was described in [21]. This unit implements all the standard arithmetic operations,

elementary functions and the extended operations such as computation of p-norms and

Supercomputers need super arithmetic 23

scalar products of present interest. Table 1 presents the sli results and the floating-point

results for Algorithm 2S. The error estimates were made by comparison with extended

precision floating-point computations.

Table 1

—8
Relative error in llxllp for vectors x = (1, 2, ..., n) measured in units of 10 .

(Upper entries for floating-point, lower entries for sli.)

P
n

10

100

1000

1

0

_0

10

_0

6

12

10 100 1000

3 2 0

_3 2 0

2 1 4

_6 1 4

2 2 2

2 2 2

For n = 10, both the floating-point and symmetric level-index computations

returned 55 exactly for llxllj and 10 exactly for HxIIjqqq. Since IIxIIjqqq= 10(1 -1-0(10"^®))

this accounts for the lack of error in this case. In general, the relative error is quite flat

throughout the entire test for both arithmetics.

Although many (abrupt) underflows were reported in the floating-point programs

for p = 100 and p = 1000, the error in these results does not reflect any undue loss of

precision. We ran the same tests using Algorithm 3S. The errors observed were not much

different - in some cases slightly smaller and in others slightly larger. No underflows

were reported by Algorithm 3S.

The error analysis of Section 5 applies directly to the cases in the first column of

Table 1. Let us examine the case n = 1000, p = 1. Using (5.1) with N = 999 and e = 2"^^

we find that the relative error should be bounded by

Ne/(1 -e) - 6x 10"^

Supercomputers need super arithmetic 24

The floating-point error shown in Table 1 is 1000 times smaller, even though scalings in

the algorithm are not accounted for in the bound (5.1). Similarly, using the bound (5.2) -

which is the appropriate one for the algorithm used here - with N = 999 and 5 = the

generalized precision of 1 1x1
1 j
should be bounded by

N 5 = 7.4 X 10“^,

which corresponds to a relative error of approximately 2.5 x lO"'*. The relative error of

the sli result shown is about 2000 times smaller.

As a second example, we consider the computation of a scalar product.

Specifically, consider the vectors u, v whose components are given by:

u. = uf_j (i = 1,2,...,6); Ug given and

Vg = - Ug, V, = - Ug, Vg = Uj, Vg = Ug, V- = U- , otheHvise.

The scalar product of these two vectors was computed both in sli arithmetic and using

floating-point with scaling by the largest element as described in the previous section.

(This is also the scaling used for Algorithm 2S.) For the first and simplest case with Ug =

1, both systems, of course, produced the correct answer. However on setting Ug = 2, so

that u. = 2'^(2‘), the floating-point computation yielded u\ = 0 because the scaling by

the largest elements in the arrays (which in this case are both 2^) results in all the middle

terms in the scalar product underflowing to zero, while the terms UgVg and UjVj are

exacdy cancelled by the last two terms.

The sli result here is 4.29497 E-i-09. The exact scalar product is 4 295 033 088 so

that the relative error in the final result is less than 1.5x10”^.

Supercomputers need sup)er arithmetic 25

8. Conclusions

The principal conclusions to be drawn from this work are as follows.

1 . The simplest algorithms for computing p-norms or scalar products of vectors are

readily vectorizable but not robust.

2. Completely robust accurate algorithms for the p-norm are, at best, very difficult to

vectorize efficiently.

3. Algorithm 2V represents a normally acceptable compromise between the goals of

robustness and vectorization.

4. Much of the difficulty in obtaining parallel algorithms that are completely robust

in floating-point arithmetic for these vector operations is caused by the need to

safeguard against overflow and (potentially harmful) underflow and to preserve

accuracy in the computed result.

5. The symmetric level-index arithmetic system alleviates all of these difficulties

because, within that system, the simplest algorithms are robust, portable, accurate

and immediately parallelizable owing to the provision of a (completely) robust

arithmetic.

The computation of p-norms and scalar products are merely illustrations of a

more general pattern in scientific computing applications where, often, considerations of

robustness and the desire for parallelization of floating-point algorithms conflict. For all

of these reasons we draw the final conclusion

6. The more "super" the computer, the greater the need for "super" arithmetic such

as the symmetric level-index system.

Supercomputers need super arithmetic 26

REFERENCES

[1] J.L.Barlow, Error analysis in unnormalized floating point arithmetic. Report CS-

88-10, April 1988, Dept Computer Science, Pennsylvania State University.

[2] J.L.Blue, A portable Fortran program to find the euclidean norm of a vector,

ACM Trans Math Software 4 (1978) 15-23.

[3] W.S.Brown, A realistic model of floating-point computation. Mathematical

Software in (J.R.Rice, Ed.) Academic Press, New York, 1977, pp 343-360.

[4] W.S.Brown, A simple but realistic model of floating-point computation, ACM
Trans Math Software 7 (1981) 445-480.

[5] W.S.Brown and S.I.Feldman, Environment parameters and basic functions for

floating-point computation, ACM Trans Math Software, 6 (1980) 510-523.

[6] C.W.Clenshaw and F.W.J.Olver, Beyond floating point, J. ACM 31 (1984) 319-

328.

[7] C.W.Clenshaw and F.W.J.Olver, Level-index arithmetic operations, SIAM J Num

Anal 24(1987) 470-485.

[8] C.W.Clenshaw, F.W.J.Olver and P.R.Tumer, Level-index arithmetic: An

introductory survey, Proc. Numerical Analysis Summer School, Lancaster, 1987,

Springer Verlag (1989) to appear.

[9] C.W.Clenshaw and P.R.Tumer, The symmetric level-index system, IMA J Num

Anal 8 (1988) 517-526.

[10] C.W.Clenshaw and P.R.Tumer, Root-squaring using level-index arithmetic, to

appear.

[11] J.Demmel, Underflow and the reliability of numerical software, SIAM J Sci Stat

Comp 5 (1984) 887-919.

[12] P.A.Fox, A.D.Hall and N.L.Schryer, The PORT mathematical subroutine library,

ACM Trans Math Software 4 (1978) 104-126.

[13] H.Hamada URR: Universal representation of real numbers, New Generation

Computing, 1 (1983) 205-209.

[14] U.W.Kulisch and W.L.Miranker, The arithmetic of the digital computer: A new

approach, SIAM Review 28 (1986) 1-40.

[15] D.W.Lozier and F.W.J.Olver, Closure and precision in level-index arithmetic.

Manuscript.

[16] S.Matsui and M.Iri An overfiowlunderflow - free floating-point representation of

numbers, J. Information Proc. 4 (1981) 123-133

[17] F.W.J.Olver, Rounding errors in algebraic processes - in level-index arithmetic,

Proc. Reliable Numerical Computation (M.G.Cox and S.Hammarling, eds.)

Supercomputers need super arithmetic 27

Oxford, 1989, to appear.

[18] F.W.J.Olver and P.R.Tumer, Implementation of level-index arithmetic using

partial table look-up, Proc. ARITH8, (M.J.Irwin and R.Stefanelli, Eds.) EEEE

Computer Society, Washington, DC, 1987, 144-147.

[19] M.J.D.PoweU, Radial basis functions for multivariable interpolation: A review,

Algorithms for Approximation 143 - 167 (M.G.Cox and J.C.Mason, eds.) Oxford,

1987.

[20] P.R.Tumer, Towards a fast implementation of level-index arithmetic. Bull IMA

22(1986) 188-191.

[21] P.R.Tumer, A software implementation of sli arithmetic, pp. 18-24, Proc.

ARITH9, (Ercegovac and Swartzlander, Eds) IEEE Computer Society,

Washington DC, September 1989.

[CDC] Fortran 200 Version 1 Reference Manual, 60480200, Rev. 5, Oct 23,

1987, Control Data Corporation, Sunnyvale CA.

[Convex] Convex Fortran Language Reference Manual, 720-000050-202, 6*

edition. Rev 1, May 1988, Convex Computer Corporation, Richardson, TX.

[Cray] Fortran (CFT) Reference Manual, SR-0009, August 1981, Cray Research

Inc., Mendota Heights, MN
[IEEE] IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-

1985, IEEE Inc., New York, NY

U.S. DEPT. OF COMM.

BIBLIOGRAPHIC DATA
SHEET (See instructions)

1. PUBLICATION OR
REPORT NO.

NISTIR 89-4135

2. Performing Orgaui. Report No. 3. Publication Date

OCTOBER 1989
4. TITLE AND SUBTITLE

Supercomputers Need Super Arithmetic

5. AUTHOR(S)

D. W. Lozier and P, R. Turner

6. PERFORMING ORGANIZATION (If joint or other than NBS, see in struction s)

U.S. OEPAATMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
GAITHERSBURG, MD 20899

7. Contract/Grant No.

N/A
8 . Type of Report & Period Covered

Final

9.

SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street, City. State, ZIP)

NIST
Department of Commerce Mathematics Department
Gaithersburg, MD 20899 U. S. Naval Academy

Annapolis, MD 21402

10.

SUPPLEMENTARY NOTES

I I

Document describes a computer program; SF-185, FIPS Software Summary, is attached.

11.

ABSTRACT (A 200~word or less factual summary of most significant information. If document includes a significant
bi bliography or literature survey, mention it here)

The title of the paper is justified by the consideration of the parallel
computation of vector norms and inner products in floating-point and a

proposed new form of computer arithmetic, the symmetric level-index systemo

12.

KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolons)

Error analysis; floating-point; parallel computation; symmetric level-index;
vector norms; vectorized algorithms.

13. availability

Unl imited

I I

For Official Distribution. Do Not Release to NTIS

I I

Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.
20402.

[XX Order From National Technical Information Service (NTIS), Springfield, VA. 22161

14. NO. OF
PRINTED PAGES

30

15. Price

AO 3

USCOMM-DC 6043-P80

