

/•;.' .• I
,

- •:'
'I

•'

.V'

NATIONAL INSTITUTE OF STANDARDS &
TECHJ40L0GY

Research Information Center
Gaithersburg, MD 20B9d

U.S. DEPARTMENT OF COMMERCE
National institute of Standards and Technology

NISTIR 89-4128

National
Computer Processing Rate

Sensitivities of a

Systems Heterogeneous
Multiprocessor

Laboratory
G.E. Lyon

U. S. DEPARTMENT OF COMMERCE
National Institute of Standards and Technology

National Computer Systems Laboratory

Advanced Systems Division

Gaithersburg, MD 20899

©yiRF
August 1989

COMPUTER MEASUREMENT
RESEARCH FACILITY

FOR HIGH PERFORMANCE
PARALLEL COMPUTATION

Partially sponsored by the

Defense Advanced Research Projects Agency

and the

Department of Energy.

Processing Rate Sensitivities
of a Heterogeneous Multiprocessor

Gordon Lyon

Advanced Systems Division

National Computer Systems Laboratory

National Institute of Standards and Technology

Gaithersburg, MD 20899

Partially sponsored by

* Defense Advanced Research Projects Agency
* Department of Energy

U.S. Department of Commerce, Robert A. Mosbacher, Secretary

National Institute of Standards and Technology

Raymond G. Kammer, Acting Director

August 1989

TABLE OF CONTENTS

Page

Upgrading k of n Processors 2

Scheduling I: Ideal Balancing within a Mode 2

Scheduling II: Only Serial Speedup 3

Example: Actual Sort Workload 3

Acknowledgment 5

Citations 5

Appendix: Lower Bound for Worst Case Scheduling 6

-iii-

Processing Rate Sensitivities
of a Heterogeneous Multiprocessor

Gordon Lyon

Key words: Application signature; architecture; capacities;

models; performance; sensitivities.

Simple performance characterizations of multiprocessors show that such models,

freed of specialized detail, apply easily and widely. They can convey insight about

parallel e&iency [4] or scheduling [6]. Processing rate sensitivities are also amenable
to a simple approach. Consider a parallel program whose code is represented via

resource demands, a={a.}. The coefficients, which sum to unity, reflect how the

program’s total computation divides among a system’s disjoint computational modes.
Modes typically differentiate on type (say scalar or vector) or number (single vector unit

or chained) or both. Workload flections for a vector program might be {0.3, 0.7), for

demands of scalar-mode (1-processor) and vector-mode (1-processor), respectively [2].

Mode capacities determine a second set of coefficients, r={r.}. These are rates of

satisfying demand. A typical set of scalar-mode/vector-mode capacities is {10, 110},
measured in millions of floating-point operations per second (Mflops). Program
performance as an average processing rate R is estimated by equating "time=time" [1,2,

7]:

JL

R

tti a2— + — +

t'2
(0

Combining the example coefficient sets, R = [0.3/10 + 0.7/110]'^ = 27.5 Mflops.

Coefficients for (i) also contribute, along with scheduling, to program rate sensitivities.

Sensitivity studies of capacity on otherwise fixed structures (architectures) are

common in engineering disciplines, e.g., [8]. Analogous programming studies emphasize
where an application class (represented by signature a) benefits from component
(capacity) changes on a host computer architecture. However, set a is not generally

independent of capacity changes, which can upset processor load balances. The
redistribution of a is modeled via best and worst cases of rescheduling, which together

establish accuracy limits of estimates [5]. While the net influence of workload
redistribution may be small for some systems, an object lesson can be made of an n-

processor

No recommendation or endorsement, express or otherwise, is given by the National Institute of Standards

and Technology or any sponsor for any illustrative commercial items in the text Partially sponsored by

the Defense Advanced Research Projects Agency, ARPA Task No. 9157, and the Department of Energy,

DoE Order No. DE-AI05-87ER25046.

A contribution of NIST. Not subject to copyright.

- 1 -

MIMD shared-memory machine for which demand changes do matter. The context is

that of individually exchanging regular processors for faster ones to accelerate Quicksort

execution: It happens that upgrading many of the processors may give a poor return on
investment.

Upgrading k of n Processors

Imagine a multiprocessor with n identical processor units. In this case, modes can
differentiate solely on the number of active processors. Let i denote a mode of computing
with i processors^ the other n-i being idle. Capacities {r.) then summarize average

system rates for multiprocessing levels, e.g., rj
2

is the average collective rate for 12

active processors. The r^ have been normalized such that

Roriginal {comparison basis)

n

constrained by = 1 (full workload)

1=1

Suppose that ^ of the n processors can each be boosted to an improved processing

rate i+A faster than the original rate retained by all others. Overall improved
performance then hinges upon rebalancing disparities in processor loading. Two
example scheduling strategies are examined, one that uses the added power and another

that ignores it except for a^, the serial mode.

Scheduling I: Ideal Balancing within a Mode. One "best case" assumes a flexible

system with fine-grained load balancing characteristics. The system redistributes

computing within a mode with no noticeable overhead. This ensures that all k improved
processors are engaged to the degree that an application permits, and is denoted A
shared-memory design might approach this ideal improvement, whereas a loosely-

coupled system probably cannot unless computation grain is coarse enough to mask
communication latencies. It is assumed that algorithmic constraints prevent coefficients

a. from changing. However, any workload portion that runs with j parallel processors,

j
i k, nonetheless speeds up to the extent offered by k faster processors. This assumption

appears in the new collective rate for mode j, which is rj(l+[k/j]A). (Only k of the j are

improved.) It’ may require almost magical reassignments among faster and slower

processors to keep various portions from getting ahead and starving, which would
sacrifice some workload to a lesser mode. The following holds:

-2-

-1

R{k) =
n

z
a,-

r, (l +
min (k, i

)

A)

Scheduling H: Only Serial Speedup. Let R^Q^denote the worst scheduling, which

systematically excludes fast processors whenever possible. An intuitive argument for

this redistribution predicts no improvement except when all n processors have been
upgraded. Otherwise there is always some slow processor that delays completion. While
a detailed argument is possible that accounts for details of the coefficients (see the

appendix), its predictions hardly differ in usual circumstances from the intuitive view.

Thus *
^original

“ k of n processors faster by 1+A.

Strategy R^q^ is obviously deficient for reasonable cases. Improvement R^^ lets the

scheduler dispatch all serial workload (mode 1) on the k faster processors. The effort to

do this is usually minimal, there being no other processes to interfere. An exception

would be exceptionally brief serial sections spread scattershot across all processors; here,

process relocation overhead might be high. The example in the next section does not

have this problem. It has around 20 seriafi epochs, each averaging 90 ms duration. R.^.,

profitable because most programs have some region of serial bottleneck, is assumed
henceforth to be the worst case scheduling. This can be expressed as

1
^ 1 _ «i

^
ai _

^(1) ^(0) '‘i(l + A) ri ri(l + A)

Example: Actual Sort Workload

Scheduling performances really depend upon coefficient sets. For this example, the

machine and its normalized capacities are modeled as a shared memory system without

much memory or bus contention. Each added processor diminishes overall performance

only a half percent, to 99.5% what it would otherwise be. With 16 processors, this limits

efficiency to 92.8% of the sum of individual processors. A parallel Quicksort illustrates,

for data sets of 31000 values, some consequences of a divide-and-conquer paradigm. On
a 16-processor computer with shared memory. Quicksort demand coefficients a- are

typicdly small except for the 16-processor mode, All demand coefficients (column

3, below) are actual values measured via special low-perturbation methods [3,

esp. Fig. 4].

-3-

Number of Normalized
Processors, Capacity,

Mode i Tj

Resource
Demand,

01 .111

20 trial ave.

.026

02 .222 .023

04 .440 .036

08 .862 .057

10 1.067 .001

12 1.268 .001

14 1.465 .002

16 1.657 .854

Capacity-and-Use Profile-Parallel Quicksort

Estimates are made for improvement in one, two, and four of the processors.

Processor speedup ranges from three to nine. Best and worst scheduling cases (±x in

table below) are established via and R^j^ respectively. These scheduling tolerances

should be assessed relative to other sources of variation. For instance, demand fluctuates

from trial to trial, the greatest change being when workload is exchanged between

and ttj (max, and min. processing rates). Since = 0.88 and
"^(^figinal

~ ^

dRoriginal

da16

D—2
^original

d

dai6

0.88 - ai6 ai6+
'‘1 '"16

1 _ 1

'"I '"16

8.4

Looking at relative changes, (9R/3ajg)(a^g/R) = (8.4)(0.854/l) = 12. Consequently,

even minor coefiBcient fluctuations among trials pose large performance uncertainties;

actual rangings of over 20 trials were +3%, -2% about its mean. In this light,

scheduling tolerances are acceptable.

16 Processors Improved, Faster Processor

Improved: Base 3x(^=2) 5;c (A=4) 9x fA=5)
4:12 1.55 ± 24% 1.99 ±38% 2.79 ± 55%
2:14 1.41 ± 16% 1.67 ± 27% 2.13 ± 41%
1:15 1.31 ± 10% 1.47 ± 17% 1.73 ± 27%

Relative Improvements, Sort Workload

Minimal performance gain for any configuration is determined by serial speedup in

the worst case scheduling, since R^j^ assumes faster processors only help mode 1.

Consequently, each column has the same minimal performance. More than one faster

processor is generally no help. Substituting a 3x faster processor adds the equivalent of

2 processors, or 2/16=12,5%, to the original configuration. This plus alternate

substitutions of 5x and 9x in the 1:15 configuration (additions of 12.5, 25, and 50%

=4.

overall) produce guaranteed gains of 18, 23 and 26%, respectively. Clearly, an

economical improvement for minimal scheduling performance is to substitute one
moderatelyfaster processor.

Maximum performance does benefit from numerous faster processors. Each super-,

main, and sub-diagonal of the table matrix identifies configurations that have equivalent

processor power. That is, four processors boosted to 3x (extra capacity of 2x each)

equals two processors 5x faster (extra capacity of 4x each). But yield along a diagonal is

unequal for two reasons: (i) coefficients {a^} are unequal, and (ii) does not change

demand coefficients and distribute work among more processors. A single faster

processor can (by earlier assumption) help serial or parallel modes, whereas y processors

each improved to a lesser degree cannot help a mode j,j < y, as much.

The modest processing rate model raises issues and invites discussion. For instance,

the example schedulings do bias performance somewhat toward substitution of one faster

processor. The model probably exaggerates the efficacy of load balancing mechanisms
for shared-memory machines. An opposing factor that has been completely ignored is

the nonlinear cost of upgrading processors. A 9x faster processor is Itkely significantly

more expensive than two 5x units, this very fact being a strong economic motivation

behind parallel architectures.

Acknowledgment. Thanks to D. Dimmick for measuring the Quicksort performance on
our group’s specially instrumented, shared-memory machine, and to R. Snelick for

supplying various codes. R. Carpenter and A. Mink questioned numerous points and
made suggestions.

Citations

[1] G.M. Amdahl, "Validity of the single processor approach to achieving large scale

computing capabilities," in Proc., AFIPS Spring Joint Computer Conference
1967, Atlantic City, NJ, April, 1967, 483-485.

[2] LY. Bucher, "The computational speed of supercomputers," Report LA-UR-84-740,
Los Alamos National Laboratory, Los Alamos, New Mexico, 1984, 15pp.

[3] R.J. Carpenter, "Performance measurement instrumentation for multiprocessor

computers," in High Performance Computer Systems, E. Gelenbe (ed.), North-

Holland, 1988,81-92.

[4] D.L. Eager, J. Zahoijan, and E.D. Lazowska, "Speedup versus efficiency in parallel

systems," IEEE Trans, on Computers 38, 3(March 1989), 408-423.

[5] G.E. Lyon, "Capacity-and-use trees for estimating computer performance variations,"

Proc., Int. Conf on Computers and Inf, ICCr89, VoL 2, Toronto, May, 1989,

309-313. Extended version, "Hybrid structures for simple computer performance

-5 -

estimates," Report NISTIR 89-4063, NIST, Gaithersburg, Md. 20899, 1989, 24pp.

[6] K.C. Sevcik, "Characterizations of parallelism in applications and their use in

scheduling," Proc., 1989 SIGMETRICS Conf., Berkeley, Ca., May 1989, 171-180.

[7] W.H. Ware, "The ultimate computer," IEEE Spectrum, 84-91, (March 1972).

[8] R.G.S. White, "Rating scale estimates automobile drag coefficient," SAE Journal 77,

6(June, 1969), 52-53.

Appendix: Lower Bound for Worst Case Scheduling

The "worst case", R^q^ can be refined considerably via a lower bound. As before,

there are k faster proceWors and n-k of the originals. Let P. be a partition of the

workload actually handled by j active processors, i.e., all dem^d serviced in mode j.

Argument begins with original workload partitions through unchanged and

assumes that these do not involve improved processors. (Remember that R.q-. excludes

faster processors whenever it can.) Partition P^^ is special; it is the partition'^of largest

index that does not have to account directly for faster processors, although workload will

be added to it. In contrast, partitions P^^ to P^ suffer degenerate circumstances that

cause parts of their workload to fall into other partitions (due to idle processors).

Because some processors handling workload in these latter partitions must be faster

versions (there are but n-k originals), there will be gaps in available load. R.q>. does not

try to rebalance these pauses, so there is idling. Consequently, some workload in original

partition P. no longer belongs there, but instead is assigned to a partition whose lesser

index signifies fewer active processors. For calculation convenience this residual portion

is clumped at the end of P ’s processing, as if all improved processors idle

simultaneously. Computing for tliis residual is attributed to partition P^ The time free

of idling can be expressed as aj/(rj(l+A)), i.e., one assumes that all j processors run

faster and thereby completely shorten the partition processing time. In reality this is but

a convenience for calculation. It isolates that fraction of workload not processed in mode
j-

a,
A n-k

1 + A j
t. 4

The left set of parentheses express a residual fraction of dimension proportional to rate.

Faster processors of P. finish sooner, leaving this fraction for the slower processors to

complete in mode n-k. The right set of parentheses expresses another dimension, that

fraction of processors identified with another partition because they are not idle. These
are n-k in number— all the slow processors—of the j processors overall.

-6-

Assume that contention and other factors of marginal efficiency render

r. / i > / (i+1)- Then the worst possible per unit processing rate for the dropout load

from P. is fhat from the previous partition (j-1). This is scaled up for n-k processors of

Pn Being pessimistic (for a lower bound), the processing rate for the partition dropout

is:

^ ^ which is < r^-ic
y-1

Terms of relative time for the higher-numbered partitions are now expressed as:

a, ”
J

, ^ A n — k

‘

J
- 1

(1 + A) '
1 + A j r;_

1 (n - k)
1

' J

This establishes a lower bound for the relative rate. Add terms for the first n-k partitions

and invert.

assuming that
a > !l!±

i
~

i + l

and k < n.

R(0) ^
n-k oc-

E — +
'•/

Note that whenever

j=n-k+l

«/ j 0-1 + 0 - 1) A Tj

1 + A j r._i r,

-1

> Roriginal

Ll _ Li+l

i i + l

for any 1 <i < n, (scale-up with no processing loss), then =
^original^

intuitive

"worst case" of the text. Also, whenever n = k, there are no new opportunities for either

strategy, since all processors are improved models, and = R^^^. As a cautionary note,

some conditions of
n n+i— >—
I 1+1

determine that R{0) > R(k).

Such is the curious efficacy of strategy R^q^! It restricts amounts of parallelism.

Whenever added processors are too parasitic, they do not pay their way, and the

viewpoint of R^q^ is productive.

.7=

NBS«n4A (REV, 2*80

U.S. DEPT. OF COMMo

BIBLIOGRAPHIC DATA
SHEET (See instructions)

1. PUBLICATION OR
REPORT NO.
NISTIR 89-4128

2. Performing Organ. Report No 3. Publication Date

AUGUST 1989

4

.

TITLE AND SUBTITLE

Processing Rate Sensitivities of a Heterogeneous Multiprocessor

S. AUTHOR(S)

Gordon Lvon

6.

PERFORMING ORGANIZATION (If joint or other than NBS. see instructions)

NATIONAL BUREAU OF STANDARDS
U.S. DEPARTMENT OF COMMERCE
GAITHERSBURG, MD 20899

7. Contract/Grant No.

I. Type of Report & Period Covered

9.

SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street, City, State, ZIP)

Defense Advanced Research Projects Agency, Arlington, VA 22209

Department of Energy, Washington, DC 20545

10.

SUPPLEMENTARY NOTES

I I

Document describes a computer program; SF-185, FIPS Software Summary, is attached.

11,

ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant
bibliography or literature survey, mention it here)

A recent trend in multiprocessor evaluation has been to seek fundamental but easily

parameterized performance characterizations. Freed of specialized detail, simplified

models can convey good insight while applying easily and widely,

A simple performance estimator and alternate scheduling schemes can, from very modest

effort, highlight some first-order improvement tradeoffs in multiprocessors. An

application example of a quicksort is used to demonstrate the approach.
12,

KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolons)

application signature; architecture; capacities; models; performance; sensitivities

13. AVAILABILITY

|X~I Unlimited

I I
For Official Distribution. Do Not Release to NTIS

I I
Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.
20402.

I
Order From National Technical Information Service (NTIS), Springfield, VA. 22161

14. NO. OF
PRINTED PAGES

11

IS. Price

$9.95

USCOMM'OC 6043,Pe0

