POLYTOPE VOLUME COMPUTATION

Jim Lawrence

Department of Mathematical Sclences George Mason University Falrfax，VA 22030
and

U．S．DEPARTMENT OF COMMERCE National Instltute of Standards and Technology Center for Computing and Applled Mathematles Galthersburg，MD 20899

U．S．DEPARTMENT OF COMMERCE Robert A．Mosbacher，Secretary NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOQY
Raymond G．Kammer，Acting Director
$Q C$
100
.$U 56$
$89-4123$
1989
$C .2$

NATIONAL INSTITUTE OF STANDARDS \& TECHNOLOGY Research Information Center Gaithersburg, MD 20899

Demco, Inc. 38-293

POLYTOPE VOLUME COMPUTATION

Jim Lawrence

Department of Mathematical Sciences George Mason Unlversity Falrfax, VA 22030
and
U.s. DEPARTMENT OF COMMERCE Natlonal Institute of Standards and Technology
Center for Computing and Applled Mathematics
Galthersburg, MD 20899

October 1989

U.S. DEPARTMENT OF COMMERCE Robert A. Mosbacher, Secretary
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
Raymond G. Kammer, Acting Director

ABSTRACT

A combinatorial form of Gram's relation for convex polytopes can be adapted for use in computing polytope volume. We present an algorithm for volume computation based on this observation. This algorithm is useful in finding the volume of a polytope given as the solution set of a system of Iinear inequalities, $P=\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}$.

As an illustration we compute a formula for the volume of a projective image of the n-cube. From this formula we deduce that, when A and b have rational entries (so that the volume of P is also a rational number), the number of binary digits in the denominator of the volume cannot be bounded by a polynomial in the total number of digits in the numerators and denominators of entries of A and b. This settles a question posed by Dyer and Frieze.

1. Introduction. We present a method for computing exactly the volume of a convex polytope given as the set of solutions of a finite system of linear inequalities.

Some methods for exact computation of the volume of a convex polytope P in \mathbb{R}^{n} are given in [1], [5], [13], and [30]. In Cohen and Hickey [5] and Von Hohenbalken [30], the volume is obtained by triangulating the polytopeand summing the volumes of the simplexes of the triangulation. (Cohen and Hickey [5] compares this method with an approximate method.) In Allgower andSchmidt [1] the volume is computed from a triangulation of the boundary of P. Lasserre [13] presents a method based on the recursive use of a well-knownformula for the volume (Theorem 37 of [8]); in many cases this approach alsoamounts to summing the volumes of the simplexes in a certain triangulation of the polytope. The method in the present paper avoids triangulation of P or ofits boundary.

Several papers concern computing the volume of certain sets in \mathbb{R}^{3}, e.g., Lee and Requicha [15], [16], where more general three-dimensional sets are considered, and Shoemaker and Huang [26]. In Speevak [27], a novel method forcomputing volumes of certain pyramids in \mathbb{R}^{n} is given.

The method presented in this paper is based essentially on Gram's relation. (See Shephard [25].) If the polytope P is simple then Gram's relation provides a method by which one can write the volume of P as a sum of numbers N_{v}, one for each vertex v of P. These numbers are easy to compute, so the difficulty of the procedure is mainly that of enumerating the vertices of P.

Recent results on the complexity of volume estimation appear in Bárány and Füredi [3], Elekes [9], and Lovasz [17]. These results pertain to convex sets C not necessarily given as an intersection of halfspaces, but rather
determined by certain oracles, e.g., by an oracle that, when given $x \in \mathbb{R}^{n}$, either assures us that $x \in C$, or gives us a halfspace H containing C but not x.

The problem considered in this paper has been shown to be \#P-hard (Dyer and Frieze [7]) even when restricted to polytopes for which the coefficient matrix of the defining system of inequalities is totally unimodular. (For a treatment of "\#P-hardness" see Valiant [29].)

Also in [7], Dyer and Frieze pose the following problem. Let A be an $m \times n$ matrix of rational numbers, and let b be a column vector of m rational numbers. Let $P=\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}$, be a bounded polytope so that the volume of P will necessarily be a rational number. Define the size (as in [24]) of the rational number $r=a / b$ (reduced) to be one more than the total number of digits in the binary representations of the integers a and b, and the size of the pair (A, b) to be $m(n+1)$ more than the sum of the sizes of the entries of A and b . Is the size of the volume of P polynomially bounded in the size of (A, b)? We shall see that the answer to this question is "no."

For background material concerning convex polytopes, systems of linear inequalities, linear programming, and valuations on convex polytopes see [11], [28], [10], and [23].
2. Statement of the Main Result, and a Result from Combinatorial Integral Geometry. We identify \mathbb{R}^{n} with the vector space of real column vectors of length n. Let $P \subseteq \mathbb{R}^{n}$ be an n-dimensional polyhedron. Then P is the set of solutions to a finite system of linear inequalities; say, $P=\left\{x \in \mathbb{R}^{n}\right.$: $a_{i}^{t} x \leq b_{i}$, for $\left.1 \leq i \leq m\right\}$, where the a_{i} 's are in \mathbb{R}^{n} and the b_{i} 's are in \mathbb{R}. Given such a representation, the function $r_{i}(x)=b_{i}-a_{i}^{t} x$ is called the $i^{\text {th }}$ residual. The polyhedron P is the set on which all the residuals are nonnegative. The $i^{\text {th }}$ inequality constraint is said to be binding at x if $r_{i}(x)=0$. The result upon which our algorithm for volume computation rests is as follows:

THEOREM. Suppose $P=\left\{x \in \mathbb{R}^{n}: r_{i}(x)=b_{i}-a_{i}^{t} x \geq 0\right.$ for $\left.i=1, \ldots, m\right\}$.
Suppose further that P is bounded and that for each vertex v of P the number of indices i such that $r_{i}(v)=0$ is n. In particular, P is a simple polytope. Suppose $c \in \mathbb{R}^{n}$ and $d \in \mathbb{R}$ and such that the function $f(x)=c^{t} x+d$ is nonconstant on each edge of P. Given a vertex v of P let

$$
N_{v}=\frac{f(v)^{n}}{n!\delta_{v} \gamma_{1} \cdots \gamma_{n}}
$$

where, if the indices of the constraints which are binding at v are i_{1}, \ldots, and i_{n}, then $\gamma_{1}, \ldots, \gamma_{n}$ are such that

$$
c=\gamma_{1} a_{i_{1}}+\ldots+\gamma_{n} a_{i_{n}}
$$

and δ_{v} is the absolute value of the determinant of the $n \times n$ matrix whose columns are $a_{i_{1}}, \ldots, a_{i_{n}}$. Then the volume of P is

$$
\begin{aligned}
\operatorname{vol}(P)= & \sum_{v, a} N_{v} . \\
& \text { of } P
\end{aligned}
$$

This theorem follows modulo the computation of the numbers N_{v} from the corollary at the end of this section. The numbers N_{v} are computed (under the
unnecessary but convenient restriction that P be contained in the nonnegative orthant in \mathbb{R}^{n} and have the orgin as a vertex) in section 3 .

We next describe a combinatorial form of Gram's relation.

If v is a vertex of P, we wish to describe the "forward cone" of P at v (with respect to f). Let i_{1}, \ldots, and i_{n} be the indices of the n constraints which are binding at v. Then v is the unique solution to the system of equations

$$
\begin{equation*}
a_{i}{ }^{t} x=b_{i} \quad(j=1, \ldots, n) \tag{1}
\end{equation*}
$$

It follows that $\left\{a_{i_{1}}, \ldots, a_{i_{n}}\right\}$ forms a basis for \mathbb{R}^{n}, and there is a unique representation $c=\sum_{j=1}^{n} \gamma_{j} a_{i}$ of $c \quad$ in terms of the basis. From this we have $f(x)=f(v)-\sum_{j=1}^{n} \gamma_{j} r_{i}(x)$. Omitting any one of the constraints in (1) leads to a system whose solution set is a line through v. Each edge of P containing v spans such a line. Since f is assumed to be nonconstant on each of the edges, it follows that $\gamma_{j} \neq 0$, for $j=1, \ldots, n$. We denote by $e(v)$ the number of indices j such that $\gamma_{j}>0$. This is also the number of edges of P containing v on which f decreases in the direction leaving v. The forward cone at v is the set $F(v)$ of solutions x to the system of inequalities:

$$
\begin{aligned}
& r_{i}(x)<0 \text { if } \gamma_{j}>0, \\
& r_{i}(x) \geq 0 \text { if } \gamma_{j}<0 .
\end{aligned}
$$

The closure of this set is a simplicial cone with apex v, and on this cone
f achieves its minimum value at v.
For a set $K \subseteq \mathbb{R}^{n}$, $C(K)$ denotes the characteristic function of K, so that for $x \in \mathbb{R}^{n}$

$$
C(K)(x)=\left\{\begin{array}{lll}
1 & \text { if } & x \in K \\
0 & \text { if } & x \notin K
\end{array}\right.
$$

If G is a face of the convex polyhedron P, we denote by $\gamma(G, P)$ the cone generated by P at $G: \gamma(G, P)=\{g+\alpha(y-x): x, g \in G, y \in P$, and $\alpha \geq 0\}$.

LEMMA. For $P \subseteq \mathbb{R}^{n}$ a simple, n-dimensional polyhedron, v a vertex of P, and $f(x)=c^{t} x+d$ a function which is nonconstant on each edge of P, as above, we have

$$
(-1)^{e(v)} C(F(v))=\sum_{G}(-1)^{\operatorname{dim}(G)} C(\gamma(G, P))
$$

where the summation extends over all faces G of P such that f attains its maximum value on G at v.

Proof. Let P be given (as above) as the set of solutions to the inequalities $r_{i}(x) \geq 0(i=1, \ldots, m)$, and suppose that i_{1}, \ldots, and i_{n} are the indices of the constraints which are binding at v. The 2^{n} subsets of $[n]=\{1,2, \ldots, n\}$ are in bijective correspondence with the faces of P containing v by the rule $S \rightarrow G(S)=P \cap\left\{x \in \mathbb{R}^{n}: r_{i}(x)=0\right.$ for $j \in S\}$, for $S \subseteq[n]$. The function G is order-reversing: If $S \subseteq T$ then $G(T) \subseteq G(S)$. We have $\operatorname{dim}(G(S))=n-|S|$. Also, for $S \subseteq[n]$, $\gamma(G(S), P)=\left\{x \in \mathbb{R}^{n}: r_{i}(x) \geq 0\right.$ for $\left.j \in S\right\}$, so that $x \in \gamma(G(S), P)$ if and only if $S \subseteq T_{x}$, where $T_{x}=\left\{j \in[n]: r_{i}(x) \geq 0\right\}$.

Suppose we have, as above, $f(x)=f(v)-\sum_{j=1}^{n} \gamma_{j} r_{i}(x)$. Let
$W=\left\{j \in[n]: \gamma_{j}<0\right\}$. Then f assumes its maximum value on $G(W)$ at v, and W is the (unique) smallest such set. For $S \subseteq[n], f$ assumes its maximum value on $G(S)$ at v if and only if $S \geq W$.

For $x \in \mathbb{R}^{n}$, the value of the right-hand side of the equation in the lemma is

$$
\sum_{\substack{S \subseteq[n] \\ S \supseteq W}}(-1)^{\operatorname{dim}(G(S))} C(\gamma(G(S), P))(x)
$$

$$
=\quad \sum_{W \subseteq S \subseteq T_{x}}(-1)^{n-|S|}= \begin{cases}(-1)^{n-|W|} & \text { if } T_{x}=W \\ 0 & \text { otherwise }\end{cases}
$$

Clearly this is $(-1)^{e(v)} C(F(v))(x)$.
In the proof of the theorem below we use a version of Gram's relation. (See Shephard [25]. The following is a strengthened version which can be proven using methods of [25]. Gram's relation is also known as the Brianchon-Gram Theorem. See McMullen [18].)

GRAM'S RELATION. Let P be a convex polyhedron having at least one vertex. Then

$$
\begin{aligned}
& \sum_{G, \text { a bounded }}(-1)^{\operatorname{dim}(G)} C(\gamma(G, P))=C(P) . \\
& \text { face of } P
\end{aligned}
$$

THEOREM. Suppose P and f are as in the statement of the lemma. Additionally, assume that f attains its minimum value on P. Then

$$
\begin{aligned}
& C(P)=\sum^{(-1)^{e(v)} C(F(v)) .} \\
& v, \text { a vertex } \\
& \quad \text { of } P
\end{aligned}
$$

Proof. We have

$$
\begin{aligned}
& \sum_{v, \text { a vertex }}(-1)^{e(v)} C(F(v)) \\
& \text { of } P
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{v, \text { a vertex }} \\
& \text { of } P \text { on which } f \text { attains } \\
& \text { its maximum value at } v \\
& =\sum_{G, \text { a bounded }}(-1)^{\operatorname{dim}(G)} C(\gamma(G, P))=C(P) \text {. } \\
& \text { face of } P
\end{aligned}
$$

The first of these equalities follows from the lemma; the second, from the fact that a face G on which f is bounded above and below must be bounded, since f is not constant on any edge of G; and the third, from the above version of Gram's relation.

This theorem is useful, as we shall see, not only in volume computation but also in the computation of any valuation which can easily be evaluated on simplexes. We recall some fundamental facts concerning valuations, beginning with the definition. (See also [14].)

Let \mathcal{F} be a family of sets in \mathbb{R}^{n} which is closed under finite intersections and unions, and suppose $\phi \in \mathscr{F}$. A valuation on \mathscr{F} is a function $V: \mathscr{F} \rightarrow \mathbb{R}$ such that (i) $V(\phi)=0$ and (ii) for each pair of sets $A, B \in \mathcal{F}$, the identity $V(A)+V(B)=V(A \cap B)+V(A \cup B)$ holds.

Any valuation V on \mathscr{F} induces a homomorphism $\tilde{\mathrm{V}}: \varphi(\mathcal{F}) \rightarrow \mathbb{R}$, where $\varphi(\mathscr{F})$ is the additive group generated by the characteristic functions $C(F)$ of elements F of \mathcal{F}, satisfying $V(F)=\tilde{V}(C(F))$ for each $F \in \mathscr{F}$.

Here we are interested in examples in which \mathscr{F} is a collection of sets which are finite unions of polyhedra. For such a collection, given a
function k which is integrable on each element of \mathcal{F}, we can define a valuation by integration: $V(F)=\int_{F} k d \mu$. (In this case, the induced homomorphism $\tilde{\mathrm{V}}: \varphi(\mathcal{F}) \rightarrow \mathbb{R}$ is given by $\tilde{\mathrm{V}}(\mathrm{g})=\int_{\mathbb{R}^{n}} g \mathrm{k} d \mu$.) For \mathcal{F} the collection of finite unions of convex polytopes, taking $k \equiv 1$, we get $V(F)=$ vol (F), the ordinary volume of F.

We can now state the following corollary to the theorem.
COROLLARY. If V is any valuation defined on a family \mathcal{F} which includes the polyhedron P of the theorem and all of the forward cones $F(v)$ for vertices v of P, then

$$
\begin{aligned}
& \mathrm{V}(\mathrm{P})=\sum_{\mathrm{v}, \text { a vertex }}(-1)^{\mathrm{e}(\mathrm{v})} \mathrm{v}(\mathrm{~F}(\mathrm{v})) . \\
& \text { of } \mathrm{P}
\end{aligned}
$$

Proof. If $\tilde{\mathrm{V}}: \varphi(\mathscr{F}) \rightarrow \mathbb{R}$ is the induced homomorphism then we have

$$
\begin{aligned}
& =\sum_{v,{ }_{\text {a vertex }}}^{(-1)^{e(v)}} \tilde{v}(C(F(v)))=\sum_{v, \text { of }_{\text {vertex }}}^{(-1)^{e(v)} v(F(v)) .}
\end{aligned}
$$

Of course, the volume function fails to satisfy the hypothesis of this corollary because it is not defined on the (unbounded) forward cones. We may still use the corollary to evaluate $\operatorname{vol}(P)$, if P is a polytope, as follows. Let t be a real number large enough so that the halfspace $H_{t}=\left\{x \in \mathbb{R}^{n}: f(x) \leq t\right\}$ contains P. Let the valuation V be defined by $V(F)=\operatorname{vol}\left(F \cap H_{t}\right)$, for any set F which is the finite union of convex
polyhedra whose intersections with H_{t} are bounded. Now the corollary applies. The left-hand side of the equation is the volume of P. On the right-hand side is a sum involving volumes of sets of the form $F(v) \cap H_{t} \xi$, which are simplexes.

As an example, consider the case in which P is the unit n-cube, $P=C^{n}=\left\{\left[x_{1}, \ldots, x_{n}\right]^{t} \in \mathbb{R}^{n}: 0 \leq x_{i} \leq 1\right.$ for $\left.1 \leq i \leq n\right\}$.
Let $f(x)=\gamma_{1} x_{1}+\ldots+\gamma_{n} x_{n}$, where the $\gamma_{i}^{\prime} s$ are positive.
Let $v=\left[\begin{array}{lll}\varepsilon_{1} & \cdots & \varepsilon_{n}\end{array}\right]^{t}$, where $\varepsilon_{i}=0$ or 1 for each i, so that v is one of the 2^{n} vertices of C^{n}. The forward cone $F(v)$ is the solution set of the system

$$
\begin{array}{lll}
\mathrm{x}_{\mathrm{i}} \geq 0 & \text { if } & \varepsilon_{\mathrm{i}}=0, \\
\mathrm{x}_{\mathrm{i}}>1 & \text { if } & \varepsilon_{\mathrm{i}}=1,
\end{array}
$$

and $F(v) \cap H_{t}$ is the set which also satisfies the additional inequality $\sum_{i=1}^{n} \gamma_{i} x_{i} \leq t$. The volume of this set is easily seen to be

$$
\left\{\begin{array}{ccc}
\frac{1}{n!} & \frac{(t-f(v))^{n}}{\gamma_{1} \gamma_{2} \cdots \gamma_{n}} & \text { if } \\
& 0 & \text { if } \\
& & t \leq f(v) \\
& & f(v)
\end{array}\right.
$$

By the corollary, the volume of $\mathrm{C}^{\mathrm{n}} \cap \mathrm{H}_{\mathrm{t}}$ is

$$
\frac{1}{n!} \sum_{v}(-1)^{|v|} \frac{\left((t-f(v))_{+}\right)^{n}}{\gamma_{1} \cdots \gamma_{n}}
$$

where if $y \in \mathbb{R}, y_{+}=\max \{0, y\}$, and $|v|=\sum_{i=1}^{n} \varepsilon_{i}$.
This formula has already been observed, in [4]. Dyer and Frieze [7] show that computing vol ($\left.\mathbb{C}^{n} \cap H_{t}\right)$ in \#P-hard.

As another example we compute the volumes of certain projective images of the unit n-cube.

For $u \in \mathbb{R}^{n}$ let T_{u} denote the projective transformation $T_{u}(x)=\frac{x}{1+\mathrm{T}^{T} x}$. For $u, v \in \mathbb{R}^{n}$ one has $T_{u}\left(T_{v}(x)\right)=T_{u+v}(x)$, and in particular T_{-u} is the inverse of T_{u}.

$$
\text { Let } \mathbb{R}_{+}^{n}=\left\{\left[x_{1} \ldots x_{n}\right]^{t} \in \mathbb{R}^{n}: x_{i} \geq 0(i=1, \ldots, n)\right\} \text {, the nonnegative }
$$ orthant. If $u>0$ then T_{u} is defined on \mathbb{R}_{+}^{n}. If $x \in \mathbb{R}_{+}^{n}$ and $y=T_{u}(x)$ then $0 \leq x=T_{-u}(y)=\frac{y}{1-u^{t} y}$.

Clearly

$$
\mathrm{T}_{\mathrm{u}}\left(\mathbb{R}_{+}^{\mathrm{n}}\right)=\left\{\mathrm{y} \in \mathbb{R}_{+}^{\mathrm{n}}: u^{\mathrm{t}} \mathrm{y}<1\right\}
$$

This set coincides, up to the boundary, with the simplex conv $\left\{0, v^{(1)}, \ldots, v^{(n)}\right\}$, where

$$
\mathrm{v}^{(\mathrm{i})}=\left[0, \ldots, \frac{1}{\mathrm{u}_{\mathrm{i}}}, \ldots, 0\right]
$$

the nonzero entry being in the $i \frac{\text { th }}{}$ coordinate.
We wish to apply the corollary with the valuation $\mathrm{V}(\mathrm{P})=\operatorname{vol} \mathrm{T}_{\mathrm{u}}(\mathrm{P})$, which is defined on polyhedra $P \subseteq \mathbb{R}_{+}^{n}$, to compute $V\left(C^{n}\right)$. To this end we determine $V(F(v))$ for vertices $v=\left[\varepsilon_{1} \ldots \varepsilon_{n}\right]^{t}$ of C^{n}. We have

$$
\begin{aligned}
& T_{u}(F(v))=\left\{y \in \mathbb{R}^{n}: T_{-u}(y) \in F(v)\right\} \\
& =\left\{y: y_{i} \geq 0 \text { if } \varepsilon_{i}=0\right. \\
& y_{i}+u^{T} y \geq 1 \text { if } \varepsilon_{i}=1
\end{aligned}
$$

$$
\text { and } \left.u^{T} y<1\right\}
$$

This set coincides, up to its boundary, with the simplex

$$
\operatorname{conv}\left\{T_{u}(v), v^{(1)}, v^{(2)}, \ldots, v^{(n)}\right\}
$$

where the $v^{(i)}$, s are as before, and of course

$$
T_{u}(v)=\left[\frac{\varepsilon_{1}}{1+u^{T}}, \ldots, \frac{\varepsilon_{n}}{1+u^{T} v}\right]^{t}
$$

Upon observing that the determinant of the matrix

$$
\left[\begin{array}{cccc}
\frac{1}{u_{1}} & & & 1 \\
& \cdot & & \cdot \\
& \cdot & & \cdot \\
& & \frac{1}{u_{n}} & 1 \\
\frac{\varepsilon_{1}}{1+u^{\mathrm{T}}} & \cdots & \frac{\varepsilon_{n}}{1+u^{\mathrm{T}}} & 1
\end{array}\right]
$$

is $\frac{1}{u_{1} \ldots u_{n}\left(1+u^{T} v\right)}$, we deduce that

$$
V(F(v))=\operatorname{vol} T_{u}(F(v))=\frac{1}{n!u_{1} \ldots u_{n}\left(1+u^{T} v\right)}
$$

By the corollary we have

$$
v\left(C^{n}\right)=\frac{1}{n!} \frac{1}{u_{1} \cdots u_{n}} \quad \sum_{v} \frac{(-1)^{|v|}}{1+u^{T} v}
$$

3. Description of the Method. Let the polytope P whose volume we are to compute be given as

$$
P=\left\{x \in \mathbb{R}^{n}: x \geq 0, A x \leq b\right\}
$$

where A is an $m \times n$ matrix and b is a column vector in \mathbb{R}^{m} having nonnegative entries. We assume that P is a simple polytope and that each vertex v of P satisfies with equality exactly n of the $m+n$ inequalities defining P. In particular, considering that the origin in \mathbb{R}^{n} is a vertex of P, the entries of b are positive. (This assumption can be discarded by making use of standard lexicographic techniques for handling primal degeneracy in linear programming. See [10].) Additionally, we assume the availability of a function $f(x)=c^{t} x+d$ which is constant on no edge of P.

For $i=1, \ldots, n$, let $r_{i}(x)$ be the residual associated with the
$i^{\text {th }}$ nonnegativity constraint; $r_{i}(x)$ is the value of the $i^{\text {th }}$ coordinate of x. For $i=n+1, \ldots, m+n$, let $r_{i}(x)$ be the residual associated with the inequality involving the $(i-n)^{\text {th }}$ row of A.

We can combine the above data to formulate a linear programming problem: maximize $c^{t} x+d$ subject to the constraints $\mathrm{Ax} \leq \mathrm{b}$,
(2)

$$
x \geq 0
$$

The polytope P is the feasible region for (2).
Our assumption that each vertex of P satisfies exactly n of the defining inequalities with equality is the assumption of primal nondegeneracy for (2). If we consider simplex tableaux to be equivalent if they differ only by row permutation then primal nondegeneracy implies a bijective correspondence between the set of (equivalence classes of) simplex tableaux and the vertex set of P.

The vertex enumerating algorithms of [2], [20], [21] use simplex pivoting methods to obtain all of the basic feasible tableaux for (2). See also [6] and [22] for a surveys of vertex-finding algorithms. Our method uses such an algorithm.

For each tableau, the numbers $e(v)$ and vol $\left(F(v) \cap H_{t}\right)$ are determined, where v is the vertex of P corresponding to the tableau. The summation in the corollary is computed using this information.

We describe how to glean the needed information from the simplex tableaux.

After introducing slack variables for (2), we have maximize $\left[\begin{array}{l}c \\ 0\end{array}\right]^{t} \hat{x}+d$ subject to the constraints

$$
\begin{align*}
{\left[\begin{array}{l:l}
\mathrm{A} & \mathrm{I}
\end{array}\right] \hat{\mathrm{x}} } & =\mathrm{b}, \tag{3}\\
\hat{x} & \geq 0,
\end{align*}
$$

where now $\hat{x} \in \mathbb{R}^{m+n}$. The intial tableau is

$$
\mathrm{T}=\left[\begin{array}{cc|c}
\mathrm{A} & \mathrm{I} & \mathrm{~b} \\
\hline-\mathrm{c}^{\mathrm{t}} & 0 & \mathrm{~d}
\end{array}\right]
$$

corresponding to the origin in \mathbb{R}^{n}, a vertex of P. The basic sequence for T is $(n+1, n+2, \ldots, n+m)$. The basic sequence for a tableau is the sequence of indices of basic columns in the order they would appear in the identity matrix.

Suppose v is a vertex of P. Suppose $r_{k_{j}}(v)>0$ for $j=1, \ldots, m$, and $k_{1}<\ldots<k_{m}$, so that k_{1}, \ldots, k_{m} are the indices of the residuals of the nonbinding constraints. Let \tilde{T} be a tableau cooresponding to v. The entries in its basic sequence $\left(\beta_{1}, \ldots, \beta_{m}\right)$ are the numbers $k_{j}(j=1, \ldots, m)$ in some order. The tableau \tilde{T} is of the form

$$
\tilde{T}=\left[\right],
$$

where

$$
M\left(i, \quad \beta_{j}\right)=\left\{\begin{array}{lll}
1 & \text { if } & i=j \\
0 & \text { if } & i \neq j
\end{array}\right.
$$

For us what is important is that $\gamma_{i}=0$ if and only if $i=\beta_{j}$ for some j, and $f(x)=\tilde{d}-\sum_{i=1}^{m+n} \gamma_{i} r_{i}(x)$. Thus the bottom row of \tilde{T} gives the coefficients of the objective function when written in terms of the residuals of the constraints which are binding at v. The number $e(v)$ is the number of positive γ_{i} 's. By definition the forward cone $F(v)$ is the set of solutions x to

$$
\begin{aligned}
& r_{i}(x)<0 \text { if } \gamma_{i}>0 \\
& r_{i}(x) \geq 0 \text { if } \gamma_{i}<0
\end{aligned}
$$

Given a real number t, let $H_{t}\left\{x \in \mathbb{R}^{n}: f(x) \leq t\right\}$, as before. We must compute the volume of the set $F(v) \cap H_{t}$. This set is given by the inequalities

$$
\begin{align*}
& r_{i}(x)<0 \text { if } \gamma_{i}>0, \\
& r_{i}(x) \geq 0 \text { if } \gamma_{i}<0, \tag{4}\\
& \sum_{i=1}^{m+n} \gamma_{i} r_{i}(x) \geq \tilde{d}-t .
\end{align*}
$$

This set is nonempty if $t>\tilde{d}$.

Let $i_{1}<i_{2}<\ldots<i_{n}$ be the indices of the residuals for the constraints which are binding at v, so that $\gamma_{i} \neq 0$ for $1 \leq j \leq n$.
The volume of the set of $y=\left[\begin{array}{lll}y_{1} & \cdots & y_{n}\end{array}\right]^{t} \in \mathbb{R}^{n}$ satisfying

$$
y_{j} \geq 0 \text { for } j=1, \ldots, n,
$$

(5)

$$
\sum_{j=1}^{n}\left|\gamma_{i}\right| y_{j} \leq t-\tilde{d}
$$

is $\left.\quad \frac{1}{n!} \frac{(t-\tilde{d})^{n}}{\mid \gamma_{i_{1}} \cdots \gamma_{i_{n}}} \right\rvert\,$, when $t \geq \tilde{d}$. The linear transformation mapping
$x \in \mathbb{R}^{n}$ to $y=\left[-\operatorname{sgn}\left(\gamma_{i_{1}}\right) r_{i_{1}}(x), \ldots,-\operatorname{sgn}\left(\gamma_{i_{n}}\right) r_{i_{n}}(x)\right]^{t}$ maps the simplex which is the closure of the set of solutions to (4) onto the solution set to
(5). We denote by δ_{v} the absolute value of the determinant of this transformation. The volume of the solution set to (4) is then
$\frac{1}{n!} \frac{1}{\delta_{v}} \frac{(t-\tilde{d})^{n}}{\left|\gamma_{i_{1}} \cdots \gamma_{i_{n}}\right|}:$
(6) $\quad \operatorname{vol}\left(F(v) \cap H_{t}\right)= \begin{cases}0 & \text { if } t \leq \tilde{d} \\ \frac{1}{n!} \frac{1}{\delta_{v}} \frac{(t-\tilde{d})^{n}}{\left|\gamma_{i_{1}} \cdots \gamma_{i_{n}}\right|} & \text { if } t>\tilde{d} .\end{cases}$

The number δ_{v} in (6) is easily seen to be the determinant of the basis matrix-the matrix consisting of the columns of [A : I] having indices basic in \widetilde{T} and occurring in the order dictated by the basic sequence for \widetilde{T}. It is easy to calculate δ_{V} if we have arrived at \tilde{T} from T by a sequence of pivots. It is the product of the pivot elements.

Finally, upon multiplying both sides of (6) by $(-1)^{e(v)}$, we get

$$
(-1)^{e(v)} \operatorname{vol}\left(F(v) \cap H_{t}\right)= \begin{cases}0 & \text { if } t \leq \tilde{d} \tag{7}\\ \frac{(-1)^{n}}{n!} \frac{1}{\delta_{v}} \frac{(t-\tilde{d})^{n}}{\gamma_{i_{1}} \cdots \gamma_{i_{n}}} & \text { if } t>\tilde{d}\end{cases}
$$

Summing these numbers for each vertex v yields the volume of the set $P \cap H_{t}$. If t exceeds the optimal value of the linear programming problem (2) then the sum is the volume of P.

Observe that for large t the functions of t that we sum are polynomials, and the sum is a constant - the volume of P. It follows that the sum is a constant polynomial. Evaluation at $t=0$ yields the volume of P as the sum of the numbers

$$
\begin{equation*}
N_{v}=\frac{1}{n!} \frac{1}{\delta_{v}} \frac{\tilde{d}^{n}}{\gamma_{i_{1}} \cdots \gamma_{i_{n}}} \tag{8}
\end{equation*}
$$

4. An Example and Comments. In the figures are exhibited the feasible tableaux for the problem

$$
\text { maximize } \quad \begin{aligned}
x_{1}+x_{2} & \text { subject to } \\
-x_{1}+x_{2} & \leq 2 \\
x_{2} & \leq 4 \\
3 x_{1}+2 x_{2} & \leq 15 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

along with a graph indicating the corresponding vertices. Our computations, as shown, indicate that the area of the polygon is $38 / 3$ (which, in this example, can easily be checked by other means).

The main contributor to the complexity of this method is the possibly high number of vertices of the polytope P. A polytope of dimension n
determined by $m+n$ linear inequality constraints may have as many as $\binom{m+n-\left\lfloor\frac{n+1}{2}\right\rfloor}{ m}+\binom{m+n-\left\lfloor\frac{n+2}{2}\right\rfloor}{ m}$ vertices. (See [19].)

A problem which provides a complication in higher dimensions is that of round-off error. The method requires summing a lot of numbers, some positive and some negative. These numbers, compared to the volume of P, can be quite large in magnitude, so that there can be considerable loss of significance. One (perhaps costly) way around this is the use of "exact arithmetic." To illustrate the extent to which this approach can indeed be costly and to provide a negative solution to the problem of Dyer and Frieze [7] mentioned in the Introduction, we consider again the example at the end of section 2 , with

$$
\mathrm{u}=\left[\frac{1}{2}, \frac{1}{4}, \ldots, \frac{1}{2^{n}}\right]^{\mathrm{t}}
$$

The projective image $T_{u}\left(C^{n}\right)$ is the polytope which consists of those $y \in \mathbb{R}^{n}$ which satisfy the $2 n$ inequalities

$$
\begin{aligned}
& y_{i} \geq 0, \quad(\text { for } 1 \leq i \leq n), \\
&\left(1+\frac{1}{2}\right) y_{1}+\frac{1}{4} y_{2}+\ldots+\frac{1}{2} n y_{n} \leq 1, \\
& \frac{1}{2} y_{1}+\left(1+\frac{1}{4}\right) y_{2}+\ldots+\frac{1}{2} n y_{n} \leq 1, \\
& \frac{1}{2} y_{1}+\frac{1}{4} y_{2}+\ldots+\left(1+\frac{1}{2^{n}}\right) y_{n} \leq 1 .
\end{aligned}
$$

Its volume is

$$
\frac{1}{n!u_{1} \cdots u_{n}} \sum_{\begin{array}{c}
v, a \\
\text { vertex of } c^{n}
\end{array}} \frac{(-1)^{|v|}}{1+u^{t} v}=\frac{2^{\frac{n^{2}+3 n}{2}}}{n!} \sum_{N=2^{n}}^{2^{n+1}-1} \frac{(-1)^{\eta(N)-1}}{N}
$$

where $\eta(N)$ is the number of 1 's in the binary expansion of N. Suppose this number, written as a reduced fraction, is a / b. Note that each prime N such that $2^{\mathrm{n}}<\mathrm{N}<2^{\mathrm{n}+1}$ divides b , so a very crude lower bound on b is 2^{k}, where
k is the number of such primes N. It follows by the prime number theorem ([12], page 9) that k is not bounded by a polynomial in n. We see that the number of digits in the binary expansion of b is not bounded by a polynomial in n.

In the presence of primal degeneracy there is no longer a bijective correspondence between the set of vertices of P and the set of equivalence classes of feasible tableaux. In this case it is nevertheless possible to find the desired volume by performing the summation, but now over the set of tableaux for which a lexicographic positivity condition holds.

The requirement that the objective function f be nonconstant on the edges of P also provides a complication. This requirement is fulfilled by $f(x)=c^{t} x$, where $c=\left[1, M, \ldots, M^{n-1}\right]^{t}$, for M a sufficiently large number. If A and b have rational entries then one can show (using the methods of [24], section 11.3) that M can be chosen to be of size polynomial in the size of (A, b).

Acknowledgement

We wish to note our appreciation for help and encouragement rendered by several people - Javier Bernal, Mark Hartmann, Victor Klee, Carl Lee, Walter Morris, Ted Speevak, and Christoph Witzgall. Aid rendered ranged from encouraging the writing of the paper through providing references of which I was unaware to reading a preliminary draft, finding mistakes, and suggesting improvements!

$$
\left.\begin{array}{l}
\text { I }\left[\begin{array}{ccccc|c}
-1 & 1 & 1 & 0 & 0 & 2 \\
0 & 1 & 0 & 1 & 0 & 4 \\
3 & 2 & 0 & 0 & 1 & 15 \\
\hline-1 & -1 & 0 & 0 & 0 & 0
\end{array}\right] \quad \delta_{v}=1 . N_{v}=\frac{1}{2!} \frac{1}{1} \frac{0^{2}}{(-1)(-1)} . \\
\text { II }\left[\begin{array}{ccccc|c}
0 & 5 / 3 & 1 & 0 & 1 / 3 & 7 \\
0 & 1 & 0 & 1 & 0 & 4 \\
1 & 2 / 3 & 0 & 0 & 1 / 3 & 5 \\
\hline 0 & -1 / 3 & 0 & 0 & 1 / 3 & 5
\end{array}\right] \quad \delta_{v}=3 . \\
\text { III } N_{v}=\frac{1}{2!} \\
\hline 0
\end{array}\right] \frac{1}{3} \frac{5^{2}}{(-1 / 3)(1 / 3)} .
$$

FIGURE 1.

FIGURE 2

REFERENCES

1. Allgower, E.L., and P.M. Schmidt, Computing volumes of polyhedra. Mathematics of Computation 46 (1986), 171-174.
2. Balinski, M.L., An algorithm for finding all vertices of convex polyhedral sets. SIAM Journal on Appl. Math. 9 (1961), 72-88.
3. Bárány, J., and Z. Furedi, Computing the volume is difficult. In Proc. $18^{\text {th }}$ Annual ACM Symposium on Theory of Computing, 1986, 442-447.
4. Barrow, D.L., and P.W. Smith, Spline notation applied to a volume problem. Amer. Math. Monthly 86 (1979), 50-51.
5. Cohen, J., and T. Hickey, Two algorithms for determining volumes of convex polyhedra. Journal of Assoc. for Computing Mach. $\underline{26}$ (1979), 401-414.
6. Dyer, M.E., The complexity of vertex enumeration methods. Math. of $\underline{Q} . \underline{R} . \underline{8}$ (1983), 381-402.
7. Dyer, M.E., and A. M. Frieze, On the complexity of computing the volume of a polyhedron. SIAM J. Computing 17 (1988), 967-974.
8. Eggleston, H.G., Convexity. Cambridge Univ. Press, 1958
9. Elekes, G., A geometric inequality and the complexity of computing volume. Discrete Comput. Geom. 1 (1986), 289-292.
10. Gass, S. I., Linear Programming. McGraw-Hill, 1958.
11. Grünbaum, B., Convex Polytopes. Interscience, 1967.
12. Hardy, G.H., and E.M. Wright, An Introduction to the Theory of Numbers. fourth edition, Clarendon Press, 1968.
13. Lasserre, J.B., An analytical expression and an algorithm for the volume of a convex polyhedron in \mathbb{R}^{n}. Journal of Optim. Theory and Appl. 39 (1983), 363-377.
14. Lawrence, J., Valuations and polarity. Discrete and Computational Geometry 3 (1988), 307-324.
15. Lee, Y.T., and A.A.G. Requicha, Algorithms for computing the volume and other integral properties of solids. I. Known methods and open issues. Comm. Assoc. Comp. Mach. 25 (1982), 635-641.
16. Lee, Y.T., and A.A.G. Requicha, Algorithms for computing the volume and other integral properties of solids. II. A family of algorithms based on representation conversion and cellular approximation. Comm. Assoc. Comp. Mach. 25(1982), 642-650.
17. Lovász, L., An Algorithmic Theory of Numbers, Graphs and Convexity. SIAM, 1986.
18. McMullen, P., Angle-sum relations for polyhedral sets. Mathematika 33 (1986), 173-188.
19. McMullen, P., and G.C. Shephard, Convex Polytopes and the Upper Bound Conjecture. Cambridge University Press, 1971.
20. Manas, M., and J. Nedoma, Finding all vertices of a convex polyhedron. Numerische Mathematik 12 (1968), 226-229.
21. Mattheiss, T.H., An algorithm for determining irrelevant constraints and all vertices in systems of linear inequalities. Operations Research 21 (1973), 247-260.
22. Mattheis, T.H., and D.S. Rubin, A survey and comparison of methods for finding all vertices of convex polyhedral sets. Mathematics of Operation Research 5 (1980), 167-185.
23. Rota, G.C., The valuation ring. In Studies in Pure Mathematics (L. Mirsky, ed.), Academic Press, New York 1971.
24. Schrijver, A., Theory of Linear and Integer Programming. John Wiley, Chichester, 1986.
25. Shephard, G.C., An elementary proof of Gram's theorem for convex polytopes. Canad. J. Math. 19 (1967), 1214-1217.
26. Shoemaker, D.P., and T.C. Huang, A systematic method for calculating volumes of polyhedra corresponding to Brillouin zones. Acta Cryst. 7 (1954), 249-259.
27. Speevak, T., An efficient algorithm for obtaining the volume of a special kind of pyramid and application to convex polyhedra. Math. of Computation 46 (1986), 531-536.
28. Stoer, J., and C. Witzgall, Convexity and Optimization in Finite Dimensions. Springer-Verlag, 1970.
29. Valiant, L. G., The complexity of enumeration and reliability problems. SIAM J. Comput. 8 (1979), 410-421.
30. Von Hohenbalken, B., Finding simplicial subdivisions of polytopes. Math. Prog. 21 (1981), 233-234.

4. TITLE AND SUBTITLE

Polytope Volume Computation
5. AUTHOR(S)

James F. Lawrence
6. PERFORMING ORGANIZATION (If joint or other than NBS, see instructions)
7. Contract/Grant No.

NATIONAL BUREAU OF STANDARDS
U.S. DEPARTMENT OF COMMERCE
GAITHERSBURG, MD 20899
8. Type of Report \& Period Covered
9. SPONSORING ORGANIZATION NAME AND COMPLETE ADORESS (Street, City. Stote, ZIP)
U.S. Department of Commerce

National Institute of Standards and Technology
Building 225, Room Al51
Gaithersburg, MD 20899
10. SUPPLEMENTARY NOTES
\square Document describes a computer program; SF-185, FIPS Software Summary, is attached.
11. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant bibliography or literature survey, mention it here)

A combinatorial form of Gram's relation of convex polytopes can be adapted for use in computing polytope volume. We present an algorithm for volume computation based on this observation. This algorithm is useful in finding the volume of a ${ }_{n}$ polytope given as the solution set to a system of linear inequalities, $P=\left\{x \in R^{n}: A x \leq b\right\}$.

As an example of the application of this method we compute a formula for the volume of a projective image of the n-cube. From this formula we deduce that, when A and b have rational entries (so that the volume of P is also a rational number), the number of binary digits in the denominator of the volume (when written as a reduced fraction) is not bounded by a polynomial in the total number of digits in the numerators and denominators of entries of A and b. This settles a question posed by Dyer and Frieze.
12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolons) polytope; simplex method; Gram's relation

13. AVAILABILITY

UnlimitedFor Official Distribution. Do Not Release to NTISOrder From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402.X] Order From National Technical Information Service (NTIS), Springfield, VA, 22161
14. NO. OF

PRINTED PAGES
26
15. Price

AO3

