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Abstract

An asymptotics argument is given, which shows that rigid unloading from

the ends of the thin-walled tubular specimen, enhanced by conductive heat

transfer, is a plausible mechanism for adiabatic shear band formation dur-

ing the high strain rate torsion test. The argument assumes that thickness

variations, as well as elastic and dynamic effects in the tube, can be ignored,

but that heat conduction and heat-sink thermal boundary conditions must

be included. The proposed mechanism is supported by a numerical anal-

ysis of a mathematical model of the torsion test, which is based on recent

torsional Kolskv bar experimental work of Marchand and Duffy (1988), on

a physical model of thermoelastic-plastic flow due to Wallace (1985), and

on a phenomenological Arrhenius model of the plastic flow surface. The

numerical technique used is the semi-discretization method of lines.

1. Introduction

It has been known for a long time that, during the late stages of large strain plas-

tic deformation at high strain rate, such as occurs during penetration of armor

by ballistic impact or during high-speed machining, the accumulated permanent

strain can become highly localized (see, e.g ., the review by Rogers (1979)). Zener

and Hollomon (1944) proposed that the basic mechanism for this localization is a

dynamic instability caused by adiabatic heating. That is, when the deformation

takes place so rapidly that there is not enough time for heat conduction to take

place over an appreciable length scale, the tendency of a ductile metal to harden

with increasing plastic strain is eventually counterbalanced and then dominated

by a tendency to soften with the rapid temperature increase associated with the

dissipation of plastic work into heat. Unfortunately, although this strain local-

ization is believed to be driven by shear stress, a penetration event or a rapid

machining process involves a large mean compressive stress as well, which makes

detailed analysis of such a deformation formidable.

Thus, it is not surprising that a great deal of interest has been stimulated

by the high strain rate torsional Kolsky bar experimental work of Costin, et al.

(1979), Hartley, et al. (1987), and most recently, Marchand and Duffy (1988),

who observed the formation of a single shear band in thin-walled steel tubes

under loading conditions which are essentially the same as occur in rapid simple

shear (see, e.g., Shrivastava, et al. (1982)). Successively improved measurements

of the local temperature rise as the deformation localized into a single adiabatic

shear band were also obtained. In addition, Marchand and Duffy (1988) recorded
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the evolution in time of the inhomogeneous strain distribution. This was done by

photographing an originally horizontal grid pattern, wrhich had been etched on the

outer walls of the tubes parallel to their axes prior to the tests, at different times

during the experiments. On the basis of the experimental results, the authors

concluded that shear strain localization at high strain rate can be divided into

three stages, associated with strains 77 and 7//, wTith 77 < 77 7. During the first

stage, for nominal plastic shear strains 7 < 77 ,
the grid lines were observed to

remain straight while they tilted to an angle 8 uniformly around the tubular

samples, where 7 = tan 8. During the second stage, for 77 < 7 < 777 ,
the

grid lines were observed to curve, so that the deformation had begun to localize,

uniformly around the samples. For nominal shear strains satisfying 7 > 777, the

flow stress was observed to drop rapidly, the shear bands were observed to narrow

considerably, down to about 20 /rm in the HY-100 steel, and a strong dependence

of shear strain on the circumferential coordinate around the tubes was observed.

Even under the comparatively simple loading conditions of the torsion test,

there is no consensus in the literature on the details of the evolution of the inho-

mogeneous strain field. Although Marchand and Duffy (1988) believed that the

flanges on the ends of the thin-walled tubes in their experiments provided heat

sinks, and that the stress remained homogeneous throughout their tests, except

at very early time and after a narrow shear band formed, they cited the papers

of Litonski (1977), Wright and Walter (1987), and of Molinari and Clifton (1987)

as providing numerical predictions which were qualitatively consistent with their

experimental results. In Litonski (1977), and in Molinari and Clifton (1987), the

assumptions were made that the mid-section of the thin-walled tube was thinner

than the outer portions of the tube, and that the tube was in mechanical equi-

librium during the test, so that the shear stress was different in the thinner and

thicker portions of the tube. Both studies assumed that this variable-thickness

deformation could be modeled as if it were locally one-dimensional simple shear,

involving only the coordinate along the tube axis, and as quasi-static and adia-

batic, so that dynamical effects and heat conduction were neglected. Both papers

also considered constitutive models for plastic flow which included strain and

strain-rate hardening and thermal softening. The computational results in both

studies indicated that the strain localized in the thinner, weaker part of the tube,

once the load-displacement curve for the simulation changed from strain-hardening

to strain-softening. Related computational results, in wThich heat conduction was

also included, were reported by Shawki, et al. (1983) and Clifton, et al. (1984).
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In Wright and Walter (1987), an analysis was given for the case of a strain-rate

hardening and thermal softening material, so that strain-hardening effects were

neglected. The deformation was treated as symmetric one-dimensional shearing of

a thin layer with thermally insulated boundaries, and no variation in la}fer thick-

ness was assumed. Instead, the problem was treated as homogeneous simple shear

with a small, symmetric perturbation in temperature, so that the calculated defor-

mation also localized in the mid-section of the shear layer. Because they assumed

the shear layer had uniform thickness, be., that any thickness perturbations were

a higher-order effect which could be ignored, Wright and Walter observed that the

stress remained homogeneous in the spatial coordinate throughout their calcula-

tions, which is in strong contrast with the results reported by Litonski, and by

Molinari and Clifton. Wright and Walter used a numerical method which allowed

them to compute long enough in time to be able to study the late stages of the

formation of a single shear band at high strain rate. Their numerical calculations,

which also included heat transport by conduction, indicated that, after a rapid

transition to a localized deformation pattern in the mid-section of the shear layer,

the strain rate became time-independent, while the temperature continued to in-

crease and the stress continued to decrease, but both at a lower rate than before.

Based on these observations, Wright and Walter gave an asymptotic description

of what they called the late-stage shear band morphology, which they found to

be in good agreement with their calculations. Additional asymptotic work in con-

nection with this approach to modeling shear band evolution was given by Wright

(1989). Related computational results, in which strain hardening effects were also

included, were reported by Batra (1987) and by Batra and Kim (1988).

In contrast to the adiabatic temperature boundary conditions used in the stud-

ies just cited, Wright (1987) took a different approach to the late-time behavior

of shear band formation. He assumed that the temperature boundary condi-

tions were isothermal, and that eventually a saturation effect occurred in work-

hardening, with the result that the material ceased to strain-harden. In this case,

he showed that the evolution terms in his one-dimensional model equations for the

deformation could be set equal to zero, with the result that stress, velocity, and

temperature became independent of the time. The temperature boundary con-

ditions forced the reference solution to be inhomogeneous. More recently, Chen,

et al. (1989) studied the stability of this late-stage steady shearing morphology.

Since fracture is often observed to occur during this late-stage deformation in the

high strain rate torsion test (see, e.g., Hartley, et al. (1987), Marchand and Duffy

(1988)), it follows that, beyond a certain stage, the deformation process can no
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longer be modeled as one-dimensional, and none of the above analyses continues

to be applicable.

The purpose of the present paper is to propose a different, nonsteady mecha-

nism, which can account for the formation of a single adiabatic shear band in the

experimental torsion tests cited above. The mechanism is derived using an asymp-

totics argument, in which it is assumed that thickness variations, as well as elastic

and dynamic effects in the tube, can be ignored, so that the stress remains homo-

geneous once plastic flow begins. The argument also assumes that heat transfer

by conduction takes place through the ends of the thin-walled tubular specimen,

so that the reference deformation becomes inhomogeneous, as in the studies by

Wright (1987) and Chen, et al. (1989). The present work is thus consistent with

the opinion of Marchand and Duffy (1988), that the ends of the thin-walled tubes

in their experiments were attached to heat sinks, and that the stress remained

homogeneous, except very early and very late in the loading history. The asymp-

totics argument is supported by a numerical analysis, which also depends on a

small initial inhomogeneity in temperature, as in the numerical study of Wright

and Walter (1987). The proposed mechanism is rigid unloading from the ends of

the thin-walled tube, once the deformation process becomes unstable. The analy-

sis shows that the unloading is enhanced by heat conduction, even though, as will

be shown in what follows, the dimensionless group of parameters corresponding

to the thermal diffusivity of the high strain rate deformation process is only of the

order of magnitude of 10~ 3
to 10~ 2

. As with the analyses cited above, this work is

only intended to apply while the torsion test remains essentially one-dimensional.

In Sec. 2, a one-dimensional model of the high strain rate torsion test is derived,

based on Wallace’s (1981), (1985) development of thermoelastic-plastic flow, which

assumes the plastic flow surface includes strain and strain-rate hardening, as well

as thermal softening. The resulting mathematical model is closely related to the

one studied computationally by Wright and Batra (1985) and Wright and Walter

(1987), (1989). Then in Sec. 3, the strain localization mechanism is derived, using

an asymptotics argument, based on the derivation in Sec. 2. In order to test

this hypothetical localization mechanism, a specific Arrhenius type constitutive

model for the plastic flow surface is derived in Sec. 4, using the data for HY-100

steel given in Marchand and Duffy (1988). In Sec. 5, the results are presented of

some computer simulations of the model problem, based on the semi-discretization

method of lines, which strongly support the proposed localization mechanism.

Concluding remarks and a discussion of these results are given in the final section.
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2. Approximate One-Dimensional Problem

Before it is deformed, suppose a tube of ductile metal has length d = 2.5 mm,
uniform wall thickness H = 0.4 mm, and uniform circular cross-sectional radius

Ro = 9.7 mm from the tube axis to the midpoint of the wall, so that its ini-

tial dimensions correspond to those in the samples studied experimentally by

Marchand and Duffy (1988). When such a thin-walled tube is loaded in torsion,

it is assumed here that the subsequent evolution of the deformation process is

governed by the model of thermodynamically irreversible, isotropically elastic,

thermoelastic-plastic flow derived by Wallace (1985) (also see Wallace (1981)).

This model consists of an initial-boundary-value problem on a finite time inter-

val and a bounded spatial domain for the standard continuum mechanics partial

differential equations of conservation of mass, momentum, and energy, coupled

with constitutive evolution equations for the stress tensor, the entropy, and the

temperature, along with the the Prandtl-Reuss-von Mises equations for plastic

yield and flow, and Fourier s law for heat conduction.

It is well-known that, during a torsion test, small radial length changes occur

in the tube, and without confinement, small axial length changes would occur

as well. In addition, large shear strains induce a small mean compressive stress

(see, eg., Shrivastava, et al. (1982)). At high strain rates, heat produced by

plastic work causes thermal expansion of the material, inducing an additional

small contribution to the mean compressive stress (see, e.g. Wallace (1985)). As is

commonly done in analyzing experimental torsion test data on ductile metals (see,

e.g., McMeeking (1982), Shrivastava, et al. (1982), Hartley and Duffy (1985)), it

is assumed here that these small effects can be ignored. In particular, let the

position of the tube in the undeformed (Lagrangian) configuration be given by

cylindrical polar coordinates (R,Q,Z), with its axis coincident with the Z-axis

from Z — 0 to Z — d, and let the corresponding cylindrical polar coordinate

system in the current (Eulerian) configuration be denoted by (r, 8, z). Let i(Z, t)

denote the angle of twist per unit length relative to the end Z — 0 of the tube

through which the ring of material at Z has been rotated by the torsional loading

process, so that £(Z, 0) = 0. It is assumed that the point on the midwall of the

tube initially at P = (R0 ,Q,Z), 0 < 0 < 27r, 0 < Z < d, is moved by the

deformation at time t to the point p
—

(
r,6

,
z ),

where

r = R0 ,

6 = Q + Zt(Z,t), (1)

2 = Z
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(see Shrivastava, et al. (1982)). Also, the only nonzero components of the true

(Cauchy) stress tensor referred to the current (r, 6, z
)
coordinates are assumed to

be

ct(9z
)
— a(z6) — r (2)

(see McMeeking (1982)), where r is related to the applied torque T by T =
2tvR 2

q
Ht (see Hartley and Duffy (1985)), and angular brackets denote physical

components of a tensor. Define the shear strain 7 and strain rate 7 by

f)

i = ^{Rozaz,t)},
d_

dZ
R0 Z((Z, t)j

, (
3

)

where the dot denotes the material time derivative, £ = D(/Dt. When £ is

homogeneous in Z
,
the strain defined in (3) reduces to the geometrically intuitive

formula 7 = R0 ( (see Shrivastava, et al. (1982)). The only nonzero components of

the deformation rate tensor D, referred to the current configuration, are assumed

to be

D(6z) = D(z6) = i-y
(4)

(see McMeeking (1982), Shrivastava, et al. (1982)). While the assumptions
(
1 ),

(2), and (4) are not consistent for large shear strains without making some ad-

ditional approximations (see Shrivastava, et al. (1982)), it will be shown in what

follows that they lead to a consistent mathematical model. An immediate conse-

quence of either assumption (1) or (4) is that the deformation is volume-preserving.

As a result, the mass density p, originally assumed to be homogeneous throughout

the specimen, remains constant, so that the equation of conservation of mass is

trivially satisfied (see Wallace (1985)).

The measure of deformation of most interest during the first two stages of the

experiments of Marchand and Duffy (1988) is the twist s(Z, t
)
at time t undergone

by the circular ring of material in the tube labeled by the Lagrangian axial coor-

dinate Z
,
since this is the variable which determines the instantaneous location

of each of the grid lines etched on the tube prior to a test, as discussed in the

Introduction. By inspection, for the simplified deformation assumed here, this is

the arclength from p(Z, 0) = P to p(Z,<), so that

s(Z,t) = RoZt(Z,t). (
5

)

The only nonzero component of the velocity v associated with the map (1) is the

angular speed v = v(6), where

v = R0 Zi. (
6

)
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From the definitions (5) and
(
6 ), it follows that the twist s and the angular speed

v are related by

jt

(Z,t) = v(Z,t). (7)

By (1) and (2), the equation of conservation of linear momentum reduces to a

scalar equation in mixed Lagrangian-Eulerian form (see Wallace (1985)),

dv dr
pm (z

'
t) =

dl
(z

’
ty

(
8

)

Since z — Z, it follows that, for a general function f(Z,t), f{Z,t) —

that the material time derivative equals the spatial time derivative,

/(M), so

,
Of df df

f
Dt dG’

ty (9)

and trivially,

df
f

...
df (7n

ad
-
dz

{z,ty
(
10

)

By (10), conservation of linear momentum
(
8

)
can be written in the purely La-

grangian form

(n)

The stress levels under consideration here are assumed to be much smaller than

the elastic moduli, so the standard assumption will be made that the deformation

rate D in the current configuration can be decomposed into a sum of elastic and

plastic contributions (see, eg., McMeeking (1982), Wallace (1985)), D = D e + Dp
,

so that

y = r + j
p

.

(
12

)

It follows from (3) that the local twist rate of the tube v — R0Z£ and the local

strain rate 7 = d ^R0 Z£^J /dZ are related by

dv
1 =

dZ'

Because of the assumptions
(
1

)
and (2), and the compatibility equation (13), the

thermoelastic equations for the evolution of D e reduce to the scalar equation

dr

dt
GY = G

7

(14)



(see Wallace (1985)), where G is the shear modulus of the material, which is

assumed to be a constant.

The Prandtl-Reuss constitutive approximation is (see Wallace (1985))

dp =!^’ (i5)

where ip is the effective plastic strain rate (see Shrivastava, et al. (1982)). The
scalar variable a denotes the effective shear stress, defined by

a —
(16)

where 52 = ^tr (cr'er') is the second rotational invariant of the deviator a' of the

Cauchy stress tensor <r
;
defined by cr' — a — |tr (a) I. In the approximation under

consideration here, a 1 = a. It follows that

<7 = (17)

Using (12) and (17), the Prandtl-Reuss approximation (15) reduces to the scalar

form

y = VH(Z,t). (18)

The assumption (4) reduces the equation in Wallace (1985) for the evolution

of absolute temperature T in the tube to

C— (Z,t) = T(Z,t)—(Z,t), (19)

where C is the heat capacity at constant volume, and 5 is the specific entropy,

z.e., the entropy per unit mass. The equation for entropy production at a material

point and a given time is given in Wallace (1985) in incremental form by

pTdS = pdQ -f 2 adip, (20)

where Q is the quantity of heat per unit mass, and dip is the effective plastic strain

increment. The plastic work Wp is defined incrementally by d\Vp = 2Vadip
,

where V is the specific volume, V = 1/ p. In (20), all of the plastic work Wp is

assumed to be converted into heat, although it is known that a small percentage

of this work goes into metallurgical changes in the material (Farren and Taylor

8



(1925)). Wallace (1981), (1985) argued that (20) is a good approximation which

simplifies the thermoelastic theory. The continuity equation for heat transport is

assumed to take the one-dimensional form

P
dQ
dt

(Z,t)
d£

~dz
(M), (

21
)

where J is the heat flux, and Fourier’s law for heat transport is assumed to

take the one-dimensional form J(z,t) — —k dT(z,t)/dz, where k is the thermal

conductivity of the material, which is assumed here to be constant. Using (10)

again, and substituting for a and using (17) and (18), it then follows that the

equation for the evolution of the absolute temperature is given in Lagrangian form

by

dT d2T
(
22

)

The criterion for when plastic flow occurs, i.e., for when > 0, is determined

by a generalization of the von Mises yield criterion. Wallace (1985) generalized

this criterion to a flow surface, such that

a = k(ip,ij>,V,S) (23)

anywhere in the material where plastic flow is taking place. This allows for strain

hardening, a strain-rate effect, and a dependence on the thermoelastic state (V, S).

In the approximation used here, the specific volume V does not change, and by

(19), the specific entropy 5 is a function of the temperature T. By (17) and (18),

therefore, the von Mises flow surface (23) can be written in the form

t = K(1”,Y,T). (24)

It is assumed that dK/d7P > 0, so that (24) can be inverted and written in the

form

7
P = 4>(r, 7

P
,
T). (25)

The criterion for whether or not plastic flow takes place at a given material point

at a given time is then given by

7
P -

$(U 7
P
,^) if r = A'(7p

, 7
p

,
T),

0 if r < K(7P
,0 ,T).

(26)

For each fixed value of the angular material variable 0, the mathematical

model has been reduced to a set of five evolution equations in one material variable,

9



consisting of an equation for the total twist (7), a scalar equation for conservation

of momentum (11), an equation for the evolution of the stress (14), an equation for

the evolution of the temperature field in the axial direction of the tube
(
22 ), and

an equation for the evolution of the plastic strain (26). Thus, the assumptions

(1), (2), and (4) have led to a highly simplified model of the dynamic torsion

problem, by allowing a reduction in the number of material coordinates on which

the deformation depends, and by eliminating most of the physics which must be

retained when thermoelastic effects are significant. To complete the specification

of the mathematical model of the torsion test, boundary and initial conditions

must be given, and a model for the flow surface (24) or (25) is required. As

discussed in the Introduction, in most of the computer simulations to date of

shear band formation, the boundary conditions on the temperature have been

assumed to be adiabatic, i.e., no heat flux through the boundaries, dT( 0, t)/dZ =

dT(d
,
t)/dZ = 0. It is assumed here, however, that the two ends of the thin-walled

tube are constant-temperature heat sinks,

T(0 .i) = Tl ,
T(d,t) = TR . (27)

For the time being, it is assumed that Ti = Tr = T0 ,
where T0 = 300 K denotes

an approximate value of room temperature.

It follows from the expression for the velocity component in the ^-direction
(
6

)

that one boundary condition must be

*>(0,0 = 0
, (28)

so that it is not appropriate to specify a boundary condition on the stress at Z = 0.

The remaining boundary condition is that the rate of twist R0Z £ of the end of

the tube corresponding to Z — d is constant. This corresponds approximately to

the test conditions described in Costin, et al. (1979), Hartley, et al. (1987), and

Marchand and Duffy (1988). By
(
6 ),

this is equivalent to the constant-velocity

boundary condition

v(d,t) = v0 , (29)

where v0 /d is equal to a constant specified strain rate 70 corresponding to a dy-

namic torsion test, assumed here to satisfy 70 = 100 to 1600 s
-1

. The model for

the flow surface will be discussed in Sec. 4, and initial conditions will be discussed

in Sec. 5 . Before turning to these topics, the hypothesis for strain localization

based on the model derived above will be discussed in the next section.
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3. A Mechanism for Strain Localization

The equations (7), (11), (14), (22), (26), and the boundary conditions (27 )-(29

)

can be scaled and nondimensionalized as follows. Let Z = Z/d, t = 70t, s =
s/d, v = v/v0 = f / (70d), t = t/t0 ,

T = (T - T0 )
/T0 , 7

P = 7
P (the plastic

strain is already dimensionless and can become the order of magnitude of one in a

torsion test), <f> (f, 7
p ,T) = $ (r, 7

P
,
T) />, and K

(
7^, 7

P ,T) = A"
(7

P
, 7

p ,T)/r0 .

Dropping the hats over the variables, the resulting equations are

0

c

<9s

ch

<9u

ch

<9r

<9*

<9T

<9f

d7
p

v,

dr

dZ’

d2T

(30)

when plastic flow is occurring, so that r = A(7P , 7
P ,T) and j

F > 0. When the

materia] is unloading, so that r < K(^p ,0,T) and 7
P = 0, the resulting equations

are the same, except that 4> = 0. The boundary conditions become

0
"

IIo' = 1
, (31)

and

o'IIo' T(l,f) = 0. (32)

The dimensionless groups of parameters and p are defined by

r
T
° rh

T°
; G ’

9
pH d2 ’

, K T0

~
j0d

2 ’ 11 - pCT0 •

(33)

The shear modulus G for the structural steel HY-100 is assumed to be the hand-

book value for iron of 81 GPa. As discussed at the end of the preceding section,

the range of strain rates assumed here is given by 70 = 100 to 1600 s
-1

,
and the

tests are assumed to take place at room temperature, T0 = 300 K. The length

scale d is the tube gauge length, d = 2.5 mm. The stress scale r0 is taken to be

the stress level which gives the yield stress ry when the strain equals the yield
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strain 7y ,
assuming the material behaves according to a power-law hardening rule

for small strain, i.e., in dimensional form, r = r07
n

,
where

To = Tyly
n

- (34)

The values chosen here for the parameters on the right-hand side in (34) are

those reported by Marchand and Duffy (1988) for high strain-rate tests on HY-
100 steel, T

y
= 463 MPa, 7y = 0.012, and n = 0.107, which give a value for the

stress scale of r0 = 743.2 MPa. The density scale p is taken to be the typical

value for steel of 7800 kg/m
3

. The values taken for the heat capacity C and the

thermal conductivity k are given in turn by the typical values for iron of 500 J / ( kg
K) and 54W/(m K). These parameter values yield orders of magnitude for the

dimensionless groups (33) of ( % 10
-2

, <t>
~ 10

~ 6
to 10~ 4

,
A % 1CT 3

to 10~ 2
,
and

p % 10 °.

The smallness of the stress, inertia, and thermal diffusivity coefficients, (, </>,

and A, suggests that some approximations in addition to
(
1 ), (2), and (4) may

be possible. For example, in Burns (1985), the case —
>• 0, </> —> 0, A —> 0

was discussed for adiabatic temperature boundary conditions. However, for the

isothermal heat-sink boundary conditions (32) considered here, the limit A —> 0 is

clearly inappropriate, since heat conduction must be significant, at least near the

two ends of the thin-walled tube, once the material begins to heat up during plastic

deformation, in order to maintain the boundary temperature. This provides a

mechanism for inhomogeneous deformation to evolve, as follows.

Assume that initially, u(Z, 0) = Z and T(Z, 0) = 0, so that the deformation

starts out homogeneous in strain and temperature. Consider the plastic flow

surface r = A"(7 , 7 ,T), which is assumed to satisfy the conditions

8K/&y >0, 1 > 8K/ 87 > 0, 8K/8T < 0
, (35)

so that the material strain hardens, has a small strain-rate effect (which is true

for HY-100 steel; see Marchand and Duffy (1988)), and thermal softens. For

torsion at constant strain rate and adiabatic temperature boundary conditions, a

material which behaves according to such a model will harden initially, so that

the stress will increase with increasing strain. If the deformation takes place at a

high enough rate of strain, then eventually the material will begin to soften, with

the stress decreasing with increasing strain (see Burns (1985), (1989)). While

the deformation will then be unstable, in the absence of significant perturbations,

it should still remain macroscopically homogeneous. With isothermal boundary

conditions, on the other hand, if the torsion test is performed at a high enough
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strain rate, then even with a small thermal diffusivity coefficient, the material

near the tube ends will always be at a lower temperature than that near the mid-

section of the tube. Thus, if the flow surface 7
P = $(r, 7

P ,T) has the property

that d$/dT > 0, so that the plastic strain rate increases with temperature, the

accumulated plastic strain will also be less near the isothermal tube ends, so that

the deformation will necessarily become inhomogeneous, even during the stable

strain-hardening phase of the loading history.

Now, suppose it is valid to neglect the elastic shear strain beyond the yield

strain 7y ,
z.e., suppose it is valid to take the asymptotic limit (

—

>

0
,
so that, to

a good approximation, the total strain 7 equals the plastic strain y
p

,
as is often

done in interpreting data from the torsion test (see, e.g., McMeekmg (1982),

Shrivastava, et al. (1982), Hartley and Duffy (1985)). Also assume it is valid

to take the so-called quasi-static limit, </>
—

> 0. In this limit, conservation of

momentum, the second equation in (30), requires that the shear stress (2), and

consequently the applied torque T, remain spatially uniform throughout the tube

during the loading process. Then, once any material in the interior of the tube

begins to soften, stress equilibration, dr/dZ = 0, will cause the cooler material

near the tube ends, which will have accumulated less plastic strain than the central

material if d$ /dT > 0, to be at a stress level which lies below its local flow surface

value. This means that rigid unloading will occur near the ends, z.e., 7 = 7
P = 0,

so that dv/dZ — 0 near the tube ends, by the third equation in (30).

As a result, plastic flow, and thus also heat production by plastic work, will

cease in the outer portions of the tube. By the velocity boundary conditions (31),

this means that a rigid-plastic unloading boundary, corresponding to regions of

constant rate of twist, given by v = 0 on the left and v -= 1 on the right, will

move in towards the mid-section of the tube. How rapidly this this free boundary

moves inward will depend upon how rapidly the stress drops, which in turn will

depend on how rapidly the local temperature increases, since dK/dT < 0. The

rate of temperature increase will depend upon the result of a competition between

the heat production term, fir7 ,
and the heat transport term, which is the product

of the dimensionless thermal diffusivity parameter, A, and the curvature of the

temperature distribution, d2T/dZ 2
.

Since A is inversely proportional to the applied dimensional strain rate, while

the dimensionless heat production parameter /z is independent of the strain rate,

heat transport by conduction will be more important the lower the applied strain

rate. If A is sufficiently small, z.e., if the strain rate is sufficiently large, then the

material will soften more rapidly than heat will be conducted away, and there will
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not be enough time for any curvature in the temperature field near the mid-section

of the tube to evolve. In this case, the deformation will not localize, even though

it will be inhomogeneous and unstable once the material begins to strain-soften.

On the other hand, if the applied strain rate is small enough, so that A is large

enough, heat transfer from the hotter central portion of the tube to the cooler tube

ends will cause some curvature to develop in the temperature distribution near

the mid-section of the tube. Since the stress is assumed to be uniform throughout

the tube, the region of higher temperature will also be a region of higher strain,

since, by (35),

dr dK dy dK dT
=

~dZ
%
~d^dZ

+
~df dZ !

so that, again by (35), d'y/dZ and dT/dZ will normally have the same sign. Once

the deformation becomes unstable, this curvature will quickly become more pro-

nounced. Thus, in this case, even under initial conditions which are homogeneous

in strain and temperature, the moving unloading boundary will cause regions of

increasing plastic strain and temperature to localize around the mid-section of the

tube. This provides a natural mechanism for catastrophic shear strain localization

to occur.

In practice, however, it is likely that there will always be at least a slight inho-

mogeneity in the initial distribution of the temperature, created, for example, by

the experimental loading conditions (see, e.g., Hartley and Duffy (1985)). Before

the deformation becomes unstable, this initial temperature distribution will be

modified by heat conduction through the tube ends, which, as discussed above,

will be more significant the lower the strain rate, and, also as discussed above,

this temperature inhomogeneity will produce an inhomogeneity in the strain dis-

tribution in the tube (this could also be modified at early time by the deformation

process; see Burns (1989)). Thus, in general, because of these inhomogeneities,

the deformation should begin to localize away from the mid-section, in the region

of largest strain and temperature, before the symmetrical localization mechanism

just described would have a chance to take place. By the same mechanism of run-

away of plastic strain coupled with rigid unloading due to uniform stress softening,

as discussed above for the symmetric case, a single shear band will then begin to

form in the hottest local region once the material begins to soften. Depending on

the size of the dimensionless thermal diffusivity parameter, which varies inversely

with the strain rate, the band may then subsequently become narrower as more

and more material surrounding the region of localization unloads, or it may widen

due to heat transfer by conduction, aided by the fact that the tube ends will be
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heat sinks. A computational study of this hypothetical strain localization mech-

anism will be presented in Sec. 5. In the next section, the specific flow surface

model derived for the computations will be described.

4. Plastic Flow Surface Model

Suppose that strain localization into a single shear band will occur during a com-

puter simulation by the moving boundary mechanism discussed in the preceding

section. Then, as they stand, the two sets of equations defined by (30) and the

yield criterion (26) will be difficult to treat numerically, because once the defor-

mation becomes unstable, there will be a growing region near each tube boundary

where the “rigid” set of equations, corresponding to 7
P = 0, applies, and a shrink-

ing central region where the “plastic” set of equations, corresponding to 7
P > 0,

applies, and these regions will be separated by rapidly steepening strain and tem-

perature gradients. In order to make the computational problem more tractable,

an Arrhenius model of the flow surface was chosen, which allowed the three hypo-

thetical regimes determined by (30) and (26) to be combined into a single regime

throughout the tube. This was done by eliminating the rigid unloading behavior,

7
P = 0, and replacing it by an “effective” unloading, 7

P % 0, thus allowing for a

uniform numerical treatment of the problem, irrespective of whether or not plastic

flow was taking place.

The phenomenological plastic flow surface for was assumed to be given in

terms of dimensional variables by

i
P = 7r exp

AH(r) \

kT )

(36)

(see e.g., Kocks et al. (1975), Estrin and Kubin (1980)), where AH(r) is the

activation enthalpy for the plastic deformation process, k is Boltzmann’s constant,

T is the dimensional temperature, and yr is a term which was assumed to be

constant and defined below. It was assumed that A H(t) could be linearized

about the reference value of the flow stress, r = t0 ,
so that

A H(r) ^ AH{t0 )
- AV (t - to)

, (37)

where AV = —d
(
AH) /dr

|
T=Tn is the apparent activation area Aa times the

magnitude b of the Burgers vector 6, so that it has the dimensions of a volume.

This approximation is probably not accurate for the large changes in the shear
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stress r which have been observed in the dynamic torsion test, but it did provide

enough simplification of the Arrhenius model (36) so that it could be used as a

phenomenological constitutive model for the plastic flow surface, based on the

experimental data given by Marchand and Duffy (1988). The pre-exponential

term qv was assumed to be given in terms of the constant reference conditions

t0 , 70 ,
and T0 by

ir = 7o exp f
AH(r0 )

\

{ kT0 )

(38)

To account for strain hardening, the linear approximation (37) to the activation

enthalpy was modified in the following way. Assume the strain-hardening behav-

ior follows the power-law rule t — tt (7
p

)
= r0 (7y -f 7

P
)

n
,
where 7y ,

r0 ,
and n

have been defined and given numerical values in the preceding section. Then the

constant reference stress r0 in the last term in (37) was assumed to be replaced

by this power-law rule, so that, in modified approximate form, the constitutive

equation for the flow stress is given by

7
P = 7r exp

AH(t0 )
- AV

[
t - tt (7

p
)]

kT
(39)

Rewriting (39) using the dimensionless variables defined in the preceding sec-

tion, the linearized Arrhenius model has the form

7
P = $(t, 7

p ,T) = exp
(3T A q [t - Tr (7

P
)]

1 + T
(40)

so that it introduces four new dimensionless groups of parameters. Two of these

are the yield strain 7y
and the strain-hardening exponent n, which have already

been discussed above. The remaining two are a temperature coefficient /?, where-

/3 — AH(r0 )/ (
kT0 ) ,

and a stress coefficient a, where a = AVr0 / (
kT0 ). By (38),

/

3

= ln(7r /7o). Kocks et al. (1975, p. 243) gave the estimated bounds on (3 of

8 < (3 < 40, where the upper bound corresponds to a strain rate of the order

of magnitude of 10
2

. Since the order of magnitude of the strain rates in the

present study was assumed to be 10
2
to 1

0

3
,
a value of (3 = 40 wTas chosen for the

temperature coefficient.

It was decided to fit the remaining parameter, a, by requiring that a homo-

geneous deformation of the thin-walled tube described in Sec. 2, at a constant

dimensional strain rate of 70 = 1600 s
-1

,
with adiabatic temperature boundary

conditions, attain its maximum stress at a homogeneous strain value of 7P = 0.25,

16



corresponding to a typical strain value at which a stress maximum was observed

by Marchand and Duffy (1988) in their experiments. The reasoning behind this

choice of parameter value was that, since the dimensionless thermal diffusivity

parameter A is very small, heat transfer from the central portion of the tube to its

boundaries should not be significant, i. e., the deformation away from the bound-

aries should be adiabatic to a good approximation, and hence the central material

should behave according to this homogeneous history, until it becomes unstable

and gradients in strain and temperature become important. The approximate

value of the stress coefficient determined in this way was found to be a = 55,

which gave a peak dimensional stress value of approximately 580 MPa, which is

about 6% lower than the average of the peak stresses reported by Marchand and

Duffy (1988, Table 3).

As a consistency check on the order of magnitude of a, first solve for r as a

function of the other variables in the constitutive equation (40), which is valid,

since clearly d^v /dr > 0. The result is

(1 + T) Q
r — K

(7
p

, 7
p ,T) = 7> (7

P
) + -1 In 7

P - — T. (41

)

a a

From this, it follows that the mean apparent strain-rate sensitivity parameter,

m = dr/dlnY (see, e.g., Eleiche (1981)), is given at constant temperature and

plastic strain by m = (1 -f T) /a. Thus, m is of the same order of magnitude as

1/a ~ 10
-2

,
which is the correct order of magnitude of m for low-carbon steel

(Eleiche (1981)).

As another consistency check on the constitutive model, recall that a neces-

sary requirement for the strain localization mechanism described in the preceding

section to be possible is that the strain rate must increase with temperature, i.e.,

that

dY/dT > 0
"

(42)

in (40). By (40),

dY [/? - a (r - tv)]
f
(IT + a r - rT (7

P
)] j

dT
~

(1 + Tf
eXP

\ 1 + T
J

’

so if t < rr -f /3/a, the condition (42) will be satisfied. To verify this, notice

that while plastic flow is taking place, the shear stress must lie on the flow surface

(41). As long as the scaled, dimensionless plastic strain rate satisfies the inequality

0 < 7
P < exp (3, it is straightforward to check that r < rT -f (S/a. Since exp (3
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is enormous, the condition (42) will be satisfied for any conceivable strain rate

achievable in a torsion test.

The yield criterion (26) was replaced by the Arrhenius model (40), so that,

computationally, the material always deformed in the plastic regime. Since a and

(3 are relatively large coefficients of approximately the same order of magnitude, it

was reasoned that this Arrhenius plastic flow model should behave computation-

ally according to the following heuristic asymptotics argument. Define the small

parameter e by e = 1/a. Then (40) can be written in the form

7
P = exp

"T + [r - rT (y)]
1

f (l + T) /’
(43)

where u = /3 /a ^ lis assumed to be a similarity parameter which is independent

of e. Solving for r as in (41),

r = tt (7
p

) -f e (1 + T) In 7
P - vT, (44)

it follows that r % tt — uT as e —> 0, unless 7
P = 0(exp— 1/e). By (43), this

latter condition will be satisfied when r drops below rT — uT
;
to be more precise,

the condition is satisfied when [r — (rr — vT)) / (1 -f T) is negative and 0(1) in

e. When this condition is satisfied, clearly 0 < )
p < 1. According to the scenario

in Sec. 3 above, this corresponds to rigid unloading due to stress equilibration.

Thus, the Arrhenius' model (40), which should apply with no difficulty in the

plastic flow regime, should also give a good approximation to the rigid unloading

behavior 7
P = 0, which will propagate inward from the tube ends, if the hypothesis

of the preceding section is valid. A computational study of this hypothesis will

be discussed in the next section.

5. Computational Results

To study the validity of the strain localization mechanism proposed in Sec. 3,

the system of five partial differential equations (PDE’s) (30), with the Arrhenius

plastic flow model (40) (i.e., with no provision for unloading), and the boundary

conditions (31), were solved numerically using the semi-discretization method of

lines (see, e.g ., Smith (1985, Chap. 3)). As used here, the basic idea of this method

is to discretize the right-hand sides of the PDE’s uniformly in Z using a centered

finite-difference method, taking into account the boundary conditions, resulting

in a (potentially very large) coupled system of ordinary differential equations
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(ODE’s). The system of ODE’s is then solved using a separate numerical method,

so that advantage can be taken of the sophisticated mathematical software which

is currently available for initial-value problems. Because the time derivatives of

two of the equations in (30) are multiplied by small parameters, and because the

temperature evolution equation is parabolic, the resulting system of ODE’s can be

very stiff (see Gear (1971)), especially if the spatial discretization interval is small

(see Smith (1985)). For this reason, the public-domain method of lines software

MOL1D (Hyman (1979)) was chosen for the computer simulations. This software

incorporates Hindmarsh’s (1975) version of the backward-difference method of

Gear (1971) for stiff ODE’s. Wright and Walter (1987), (1989), and Batra and

Kim (1988) used versions of the method of lines based on Gear’s method and a

semi-discretization using the finite-element method.

The initial time in the calculations was simplified by making the assumption

that, in dimensional variables, r — r
y
and 7 = 0 at t = 0. Thus, the small initial

elastic range of the material behavior was ignored, since there was no reason to

believe that the constitutive model (40) provides a good approximation to this

early-time behavior, anyway. The calculations were all run on a uniform spatial

grid of 101 points, so that the mesh width was 25 /im. The first calculations

which will be discussed were done to test the hypothetical symmetrical localization

mechanism described in Sec. 3. For the first calculation, it was assumed that the

applied dimensional strain rate was 70 = 1600 s
-1

. To two significant figures,

the dimensionless parameters in the problem were then as follows, a = 55, /3 =

40, C = 0.92 x 10
-2

, <t>
= 0.17 x 10~ 3

,
A = 0.14 x 10" 2

,
\i = 0.64. Also, the

function rT was given by rr = (0.012 + 7
P

)

n
,
where n = 0.107. The initial twist,

temperature, and plastic strain fields were assumed to be identically equal to

zero; the initial stress was set equal to
(
0 . 012 )” % 0.62

;
and the initial velocity

wTas assumed to increase linearly from 0 at Z = 0 to 1 at Z — 1, v(Z,0) =
Z, corresponding to a homogeneous initial strain rate of 7 = 1 . Thus, in a

deformation that remains homogeneous, 7 (Z, t) = t
,
so the dimensionless time

variable is the same as the homogeneous strain. The nominal strain in some of

the figure labels refers to the twist at the right-hand end of the tube, 5(1, t
)
=

[5(1, t
)
— 5

(
0

, £)], which is the dimensionless time, and is thus what the shear

strain would equal under conditions of homogenous simple shear, with adiabatic

boundary conditions in temperature. The results of this calculation are given in

Fig. 1-2. The stress was found to remain homogeneous throughout the calculation,

with its peak occurring at approximately 7
P = 0.25. In Fig. 2, the stress in the

tube and the temperature in the hottest region of the tube are plotted. The
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deformation became inhomogeneous, but the thermal diffusivity was too small,

and numerical noise was insufficient, to cause catastrophic localization, once the

process became unstable.

In the second calculation, the initial conditions were the same, but now it was

assumed that the applied dimensional strain rate was 70 = 100s
_1

. Since the

acceleration coefficient </> decreases as the square of the applied dimensional strain

rate 70 ,
while the stress rate coefficient ( remains unchanged, the semi-discretized

PDE’s became much stiffer numerically when 70 was decreased, with the result

that the calculation slowed down significantly once the stress began to soften, and

it never ran to completion. Because of this, the parameter
(f)
was then set back

to the value corresponding to the higher strain rate of 1600 s
-1

,
while A was kept

at the 16 times larger value corresponding to 70 = 100 s
-1

. Thus, this calculation

can be interpreted as the second in a parameter study of the influence of the

dimensionless thermal diffusivity on shear strain localization. If the asymptotic

limits (
—» 0, (j)

—» 0 assumed in Sec. 3 are valid, then this calculation should

also provide an approximate model of the same experiment simulated in the first

calculation, but at a lower strain rate. The results of this simulation are given in

Fig. 3-4. The stress was once again found to remain homogeneous in Z throughout

the calculation, with its peak occurring at approximately 7
P = 0.25. Also, from

the graph of v vs. Z
,

it is clear that the assumptions £ —* 0
, (f)

—* 0
,
and the

symmetric localization scenario hypothesized in Sec. 3 above, are supported by

the calculation. Notice that the width of the shear band actually increased as

the deformation progressed, once it began to localize, due to the large value of

the thermal diffusivity. This also accounts for the crossing of the last few velocity

curves in Fig. 3(b).

As discussed in the Introduction, Marchand and Duffy (1988) concluded that

there were three stages of shear strain localization in their torsion tests. In the

final stage, for a given axial location Z, the total twist was found to depend

on the circumferential variable 0
,
so there was no hope that the simple one-

dimensional mathematical model derived here could simulate the observed late-

time behavior. Keeping this in mind, the last calculations which will be discussed

were some simulations of a typical test reported by Marchand and Duffy (1988),

with numerical parameter values corresponding to 70 = 1600 s
-1

,
as in the first

calculation described above, and initial conditions the same as well, except that,

instead of a dimensionless homogeneous initial temperature of T(Z, 0) = 0, a

small, constant temperature gradient was introduced. The reason for introducing

the inhomogeneity this way was to study the effect on localization of heat transfer
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by conduction through the tube ends. An alternative approach would have been

to follow the procedure of Wright and Batra (1985), and subsequently others,

who introduced an initial temperature perturbation which was symmetric, with a

single maximum in the center. Under these conditions, with isothermal boundary

conditions, the deformation would have been expected to localize in the mid-

section of the tube, as in the second calculation described above.

In one of these simulations, the initial temperature distribution was set equal

to T(Z
, 0) = Z/20, and the right dimensionless boundary condition in temperature

was set to be compatible with this, T(1,0) = 1/20. Such an initial distribution

gave a temperature difference of 15 C between the two ends of the thin- walled tube.

While some inhomogeneity in the initial temperature due to the loading conditions

is likely to have been present in the experiments, this assumed distribution was

probably much too simplistic. The results of this calculation are shown in Fig. 5-6.

The stress was found to remain homogeneous in Z until the end of the calculation,

when small oscillations also appeared in the velocity, as shown in Fig. 5(b) &
(e). These oscillations were probably due to the numerical method used, and

are reminiscent of the oscillations which occur behind a shock wave in numerical

simulations (see, e.g., Richtmyer and Morton (1967)). Assuming this to be the

correct explanation, the calculation again strongly supports the assumption that

<j>
—> 0. The regions of constant velocity propagating inwards from the two ends

of the tube at late time also strongly support the rigid unloading hypothesis, i. e.,

that (
—

*

0. The results of this calculation also demonstrate that an initial local

temperature maximum in the interior of the thin-walled tube is not a necessary

requirement for catastrophic strain localization to occur during the torsion test.

From the plots of the temperature and plastic strain vs. Z in Fig. 5, it is clear

that localization occurred between values of the strain of 0.35 and 0.40, which

compares favorably with the 0.35 — 0.45 reported by Marchand and Duffy. The

qualitative agreement between the calculated stress and temperature vs. nominal

shear strain curves in Fig. 6 and the corresponding experimental curves in Marc-

hand and Duffy (1988, Fig. 12 & 21) is also very encouraging. Also notice that,

in Fig. 6
,
beyond a strain of about 0.40, the stress began to drop off more slowly.

This does not agree with the experimental observations of Marchand and Duffy

(1988, Fig. 12 &: 21), that the stress continued to drop catastrophically. This is

not surprising, because the experimentally observed deformation ceased to remain

one-dimensional in this regime, and in some cases, it was observed to fracture. As

discussed above, the present simulations cannot be expected to model these phe-

nomena. At a time corresponding to a homogeneous strain of 7 = 0.45, the shear
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band covered less than two mesh widths, so that its width was somewhere between

25 — 50 fim wide. To resolve this width any finer would require doubling or tripling

the mesh width, and was not done here. As it stands, however, this calculated

band width compares favorably with the width measured by Marchand and Duffy

during Stage III of about 20 pm. At 7 = 0.45, the corresponding dimensional

temperature was calculated to be approximately 450 C. This is in good agreement

with the measured values reported by Marchand and Duffy (1988, Table 5).

The same calculation was repeated, with the only changes that the initial tem-

perature distribution was assumed to be T(Z, 0) = Z/30 and T(Z, 0) = Z/ 100,

with compatible boundary conditions, so that the right end of the tube was ini-

tially 10C and 3C hotter than the left end. The main difference between these

two calculations and the one with the 15 C initial temperature difference was that,

in the latter two, localization occurred at respective nominal strains which were

about 0.05 and 0.15 larger than in the former one. As a final observation, the

shear band width was found to decrease with increasing strain in the latter three

calculations, unlike the symmetric case in Fig. 3, due to the smallness of the

dimensionless thermal diffusivity parameter.

6. Concluding Remarks and Discussion

An asymptotics argument has been given, which has led to the proposal of a new

mechanism for strain localization in the high strain rate torsion test. The mech-

anism is an inwardly moving boundary of rigid unloading, once the deformation

becomes unstable due to thermal softening, which isolates the material in the lo-

cally hottest region of the thin-walled tube. The argument has depended on the

test remaining essentially one-dimensional until after catastrophic strain localiza-

tion begins to occur; on the shear stress remaining in spatial equilibrium, and

on the material behavior being rigid-thermoviscoplastic, once plastic flow begins;

and on an outward flux of heat through the two ends of the thin-walled tube (it is

not essential that the boundaries be held at a constant temperature; for example,

Tr could vary with time). Numerical analysis, using the method of lines code of

Hyman (1979), of a mathematical model of some of the experiments of Marchand

and Duffy (1988), based on Wallace’s (1980), (1985) irreversible thermodynamics

model of thermoelastic-plastic flow, and a phenomenological Arrhenius model of

HY-100 steel, based on Marchand and Duffy’s data, have been shown to lend

strong support to this hypothetical mechanism.
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Because the rigid-thermoviscoplastic limit, £
—» 0, has been a necessary as-

sumption for the localization mechanism described here, it would seem more natu-

ral to have made this assumption in Sec. 2. The reason it was not assumed in Sec.

2 that all elastic strains could be ignored is that the resulting system of PDE’s

was found to provide a much more difficult computational problem. The key to

the application of the numerical method used here was the adoption of the system

of evolution equations (30), along with the Arrhenius model (40) for the plastic

flow surface, even in regions where classical plasticity theory says no plastic flow

should take place. Also, as discussed in the preceding section, because the dimen-

sionless parameter cf) decreases as the square of the nominal strain rate, numerical

simulation of a test at a strain rate of 500 s
-1 became much more difficult to do, at

least with the method used here, since (j> was an order of magnitude smaller. For

this reason, and because the material parameters are also different from those for

HY-100 steel, no simulations of the lower strain rate tests on the mild steels 1018

CRS or 1020 HRS reported by Costin, et al. (1979), and Hartley, et al. (1987),

have been discussed here.

As discussed in Sec. 4, the Arrhenius model used here (40) has been assumed to

have the form 7
P = exp J/(r, q

p
,
T)/eTj, where e is a small dimensionless param-

eter. Because of this, it would be nice to connect the strain localization problem

discussed here with some of the modeling of thermal explosions which has been

done in the mathematical theory of combustion, using activation energy asymp-

totics (see, e.g., Kapila (1983)). This does not appear to be possible, for the

following reason. The limit (
—

> 0 has been a necessary assumption for the local-

ization scenario discussed above. Because of this, when plastic flow is occurring,

as discussed in Sec. 4, the plastic strain rate does not grow like expl/c, so that

the temperature does not increase as rapidly as in a thermal explosion, i.e., like

the solution of

T = + b ~ T
)
exp (~jT-) ’

T (°) =

as e —> 0, for some positive constant b.

Finally, in connection with the assumed initial temperature distributions in

some of the calculations discussed in the preceding section, it would be very inter-

esting to see an experimental measurement of the early-time temperature distri-

bution during a high strain rate torsion test, or a two-dimensional computational

analysis of the test, similar to that done by Bertholf (1974) for the split-Hopkinson

pressure bar system, which also includes the evolution of the temperature field.
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Figure Captions

Figure 1 . Plots of (a) twist, (b) twist rate, (c) temperature, and (d) plastic

strain, for 70 = 1600 s
-1

,
as functions of the axial coordinate Z, for nominal strain

values of 0.0 — 0.80, in increments of 0.10 (see text). No shear band was observed

in this simulation. Note that 7
p — t in the central portion of the tube until the

deformation became unstable, with 7
p > t.

Figure 2. Plots of dimensionless stress (upper curve initially) and peak tem-

perature (lower curve initially) vs. nominal strain taken from the calculation in

Fig. 1 . Note that the peak stress occurred at a strain of approximately 0.25.

Figure 3. Plots of (a) twist, (b) twist rate, (c) temperature, and (d) plastic

strain, as functions of the axial coordinate Z, for nominal strain values of 0.0— 0.80,

in increments of 0.05. All parameters are the same as in Fig. 1
,
except that the

value of A was for a strain rate of 70 = 100s
_1

(see text). A symmetric shear

band was observed to form, supporting the localization mechanism discussed in

Sec. 3. Note that the band widened with increasing strain due to the large thermal

diffusivity A.

Figure 4. Plots of dimensionless stress and peak temperature vs. nominal

strain taken from the calculation in Fig. 3.

Figure 5. Plots of (a) twist, (b) twist rate, (c) temperature, and (d) plastic

strain, for nominal strain values of 0.0 — 0.45, and (e) stress, for nominal strain

values of 0.25 — 0.45, in increments of 0.05, as functions of the axial coordinate Z,

for parameter values corresponding to a strain rate of 70 = 1600 s
-1

. The initial

temperature distribution was assumed to be T(Z, 0) = Z/ 20. An adiabatic shear

band of 25 — 50 /xm in width formed at a nominal strain of between 0.35 — 0.40. Note

that there was no widening of the band with increasing strain in this simulation.

Figure 6 . Plots of stress and peak temperature vs. nominal strain, in dimen-

sional variables, taken from the calculation in Fig. 5. The initial peak temperature

was 42 C at the right-hand tube end. Notice the inflection points in the two graphs

at about the time the shear band formed.
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