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Abstract

Measurement error models assume that errors occur in both the response

and predictor variables. In using these models, it is of interest to compute

confidence regions and intervals for the model parameters. Fuller [1987]

provides an asymptotic form for the covariance matrix that can be used

to construct approximate confidence regions and intervals. We discuss the

solution of the minimization problem resulting from the use of a measure-

ment error model, and we develop a procedure for accurately computing

the covariance matrix. We then assess via a Monte Carlo study the quality

of the confidence regions and intervals constructed from this matrix.

Keywords: confidence intervals, confidence regions, cov-ariance matrix,

errors in variables, measurement error models, Monte Carlo study, ordi-

nary least squares, orthogonal distance regression, simultaneous equations

models.

1. Introduction

Parameter estimation and data fitting are among the most common activities in

science, with the ordinary least squares criterion being by far the most frequently

used. The emergence over the last decade of high quality software for finding the

’Contribution of the National Institute of Standards and Technology and not subject to

copyright in the United States.
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2 Introduction

ordinary least squares solution for nonlinear functions has allowed researchers to

consider more realistic data fitting and parameter estimation models for many
situations. Until recently, however, researchers have not had procedures avail-

able that would take into account the fact that errors in the observation of the

predictor variables, Xi, are frequently significant with respect to the errors in the

observations of the response variables, yi. Such errors can make a substantial

difference in resulting estimations. (See, e.g., [Boggs et ai, 1988].)

To be specific, ordinary least squares problems arise when the actual (or true)

value of the response variable, denoted by a superscript a, i.e., is observed with

some actual but unknowable error e“, while the predictor variables are observed

without error, i.e., Xj = x“. Now if we assume that

Vr = Vr -

= f=l,...,n,

where denotes the actual value of the vector of model parameters, then the

ordinary least squares criterion, which minimizes the sum of the squares of the

estimates of the errors in can be applied to obtain an estimate of /3“.

If there are also significant actual, but unknowable, errors in the predictor

variables, so that Xj = x“ — 5°^ then a generalization of the ordinary least squares

criterion is required, since, in this case the model becomes

y^ = f{x, + 8'^]^^) - z==l,...,n.

This problem goes under various names, including errors in variables, generalized

least squares, orthogonal distance regression, and measurement error models. We
prefer measurement error models in deference to the book of Fuller [1987] that

presents the definitive modern treatment of the problem. We also use the term

orthogonal distance regression since, as we show in §2, it is a useful geometric

description of the problem actually solved.

As in the ordinary least squares case, when using measurement error models

one is frequently interested in constructing confidence regions and/or confidence

intervals for the model parameters. To this end. Fuller derives the asymptotic

form of the covariance matrix and uses it in several examples. It is weU known,

however, that for nonlinear models in general, and for measurement error models

in particular, confidence regions and intervals constructed using the covariance

matrix are only approximate.

In this paper we discuss a stable and efficient numerical computation of the

covariance matrix of the estimators of the parameters of measurement error mod-

els, and the use of this matrix to construct confidence regions and/or confidence
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intervals. The quality of confidence regions and intervals for ordinary nonlinear

least squares estimators was discussed by Donaldson and Schnabel [1987]. In a

similar manner, we attempt to assess the quality of such regions and intervals for

measurement error models via a Monte Carlo study.

In §2 we give the details of the measurement error model and the formulation

of the minimization problem to be solved. We briefly review the solution of this

problem using the numerically stable and efficient algorithm provided by Boggs

et al. [1987], and describe the features of ODRPACK [Boggs ei ai, 1989], a high

quality, public domain implementation of this algorithm. ODRPACK has been

successfully used to solve measurement error problems at a number of sites, and

is used in the Monte Carlo study described in the last section.

In §3 we review’ the basis for using the covariance matrix for estimating confi-

dence regions and intervals. We also show how’ the asymptotic formula of Fuller

can be derived from the linearization of a related ordinary least squares problem.

We then point out the potential problems associated wdth using this linearization,

and elaborate on these problems for the special case at hand. In §4 we show how’

the covariance matrix can be efficiently computed in a numerically stable manner,

as has been done in ODRPACK. Finally, in §5, we present the description and

results of our Monte Carlo study of the accuracy of the confidence regions and in-

tervals obtained using the covariance matrix. These results suggest a strategy for

selecting appropriate w'eights to improve the accuracy of the resulting confidence

intervals for /?“ and

The results of our Monte Carlo study are in accordance with those of Donald-

son and Schnabel [1987] w’ho show that even for ordinary nonlinear least squares,

confidence regions and intervals constructed using the covariance matrix are less

accurate than other approximate, but more computationally expensive methods.

Despite its potential inaccuracy, the covariance matrix is frequently used to con-

struct confidence regions and intervals for measurement error models because the

resulting regions and intervals are inexpensive to compute, they are often ade-

quate, and they are familiar to practitioners. Caution must be exercised wTen

using such regions and intervals, how’ever, since the validity of the approximation

wall depend on the nonlinearity of the model, the variance and distribution of the

errors, and the data itself. When more reliable intervals and regions are required,

other more accurate methods should be used. (See, e.g., Donaldson and Schnabel

[1987], and Efron [1985].)
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2. Measurement Error Models and Orthogonal Distance

Regression

In this section, we derive the measurement error problem as a generalization of

the ordinary nonlinear least squares problem. We then briefly discuss its efficient

solution and the ODRPACK software package that incorporates this procedure.

The data fitting problem that we consider is composed of an observed data set

(xj, yi), i = 1, . .
. ,

n, and a model that is purported to explain the relationship of

the response variable E 3?^ to the predictor variables E J?'”. We assume that

the response variable is given as a function of the predictor variables and a set of

parameters G 3?^, i.e.,

Vt
= I = 1, . .

.
,n,

where / is a smooth function that can be either linear or nonlinear in and

/?, and the superscript a denotes the actual (or true) value of the corresponding

quantity.

Now if we suppose that the observations contain actual, but unknown,

additive errors e“ G 5?^, while the predictor variables are still known exactly, i.e.,

Xi — x°, then yi satisfies

Vr = z = 1,. .
.
,n.

One can therefore estimate by finding that (3 which minimizes the sum of

squares

S(/3) = F(/3yH-F(/3),

where F[j3) is the vector valued function with zth element equal to f{xi](3) —

yj, E'(/3)^ denotes the transpose of F{/3), and W E is the diagonal matrix

with (z,z)th component equal to . (The weights can be used to modify the

contribution to S{f3) of the various observations (a:i,yj), possibly because the n

observations have unequal precision.) Thus the least squares approximation /3 to

0° solves the ordinary least squares minimization problem

minS(/3) = min^uif [(/(xg/3) - y,)^] . (2.1)

That is, /3 minimizes the sum of the squared distances in the y direction from the

observation [x^,y^) to the point on the curve f[x]3).
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The explicit measurement error model results when we allow additive errors

in both Xi and y^. If we assume that — e“ and — Sf, where

(5“ G 3?'" is the actual, but unknown, additive error in the observation Xi, then the

observations satisfy

2 = 1, . .

.
,n.

(
2 . 2

)

The term explicit refers to the fact that y can be written directly as a function of

X and (3. The more general implicit problem, which has the form

f{xi + = 0
,

is considered in [Fuller, 1987]. The implicit problem is computationally more

difficult, and is not discussed further here. (See, e.g., Boggs et al., 1987.)

When there are errors in both x^ and y^, then it is reasonable to define the

distance from the observation {Xi,yi) to the curve /(x;/3) as the radius of the

smallest circle centered at [x^,yi) that is tangent to the curve. If the point of

tangency is {x^ + Si^y^ + e^), then, by the Pythagorean theorem, this orthogonal

distance is

= + «.; (3) -!/.)' + (2.3)

The observations Xi and yi can have unequal precision, however. We compen-

sate for this by generalizing (2.3) to the weighted orthogonal distance, defining

= {f{x, + S.',0)-y,f + (Jd^S„

where d, G f = 1, . .

.

, n, is a set of positive diagonal matrices that weight

each individual component of 8,.

We can then approximate /3“ by finding that /3 which minimizes the sum of

the squares of the fj. That is, we solve

n

min > {f{xi + 8p,l3) - y,Y T (2.4)

where w,, i — 1, ... ,n, is again a set of nonnegative numbers that allows us to

vary the contribution of the various observations to the sum of squares.

The orthogonal distance regression problem defined by (2.4) can also be ex-

pressed as an ordinary nonlinear least squares problem with n nm observations

and p -f nm unknowns. We designate the unknowns of this ordinary least squares

problem as = {0^
, S'l , . .

. , (^J). The sum of squares to be minimized is therefore

5(7,) = G(.,)^S1G(7,) (2.5)
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where G{Tj) is the vector valued function whose rth element is defined by

9z{v) =
f{xi + 6^]^) - y,

Vp+i-n

I 1
,

. .
. ,

71
,

7 = 71 + 1 , . .
. ,

72 + nm
,

(
2 ^6

)

and 0. G is the diagonal weighting matrix given by

14'

D (2.7)

with 14' G the diagonal matrix with ith component wf

,

and D G

the diagonal matrix composed of the individual diagonal matrices

Boggs et al. [1987] have exploited the special structure of the first derivative of

G[r]) with respect to rj to create a trust-region, Levenberg-Marquardt algorithm

for solving the orthogonal distance regression problem defined by (2.4). Their

algorithm is both stable and efficient, requiring only 0{np^) operations per iter-

ation. A similar ordinary least squares algorithm applied to (2.5) would require

0{n{nm ^ pY) operations per iteration. Thus the time per iteration in the [Boggs

et al., 1987! algorithm grows linearly in n while it grows as in an ordinary least

squares code applied to (2.5). The portable Fortran subroutine library ODRPACK
[Boggs et al., 1989] is an implementation of this algorithm. It is the first widely

available, efficient package for solving the orthogonal distance regression prob-

lem. ODRPACK can therefore be used to solve much larger orthogonal distance

regression problems than could be solved using ordinary nonlinear least squares

software, even though both solutions are mathematically equivalent.

ODRPACK is designed to solve both ordinary least squares and orthogonal dis-

tance regression problems, handling many levels of user sophistication and prob-

lem difficulty.

• It is easy to use, providing two levels of user control of the computations,

extensive error handling facilities, optional printed reports, and no size re-

strictions other than effective machine size.

• The necessary derivatives (Jacobian matrices) are approximated numerically

if they are not supplied by the user. The correctness of user supplied deriva-

tives can also'be verified by the derivative checking procedure provided.

• Both weighted and unweighted analysis can be performed.
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• Subsets of the unknowns can be treated as constants with their values held

fixed at their input values, allowing the user to examine the results obtained

by estimating subsets of the unknowns of a general model without rewriting

the model subroutine.

• The covariance matrix and the standard errors for the model parameter

estimators are optionally provided.

• The ODRPACK scaling algorithm automatically compensates for poorly

scaled problems, in which the model parameters and/or unknown errors in

the independent variables vary widely in magnitude.

ODRPACK is available free of charge from the authors.

3. Linearized Confidence Regions and Intervals

Confidence regions and confidence intervals are commonly computed in statistical

applications to assess a bound on the expected difference between the estimated

value and the actual (or true) value. A joint (1 — q), 0 < a < 1, confidence

region for all of the unknowns of the model can be informally defined as a region

for the unknowns in which one expects the true value to lie with probability

(1 — a). That is, if the experiment used to generate the data were repeated a

large number of times under the same conditions, and the unknowns estimated

for each replication, then one would expect the true value of the unknowns to

lie within the constructed confidence regions approximately 100(1 — q)% of the

time. A (1 — <a) confidence interval for an individual unknown can be defined

analogously. Methods of constructing confidence regions and intervals that are

statistically guaranteed to contain the true value 100(1 — q)% of the time are

called exact] all other methods are called approximate.

To understand the linearized confidence regions and intervals, we first review

the ordinary linear least squares problem, where f{xi] /3) is linear in the parameters

(3 and the x, are observed without error, i.e., f[x^]P) — (x“)^/9, f = 1, .

.

. ,7i. For

such an ordinary linear model, if we assume that the errors e ~ N(0,
)

with the actual residual standard deviation unknown, then an exact 100(1 —a)%
confidence region for can be specified as the region that contains those values

(3 for which

- S{P)

rr^
— pi" P|T1— P|1 —Q, (3.8)
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where is the estimated residual variance,

- y^f l{n
-

p),

j=i

and Fp,n_p,i_a is the 100(1 — q)% percentage point for the F distribution with p
and n — p degrees of freedom. Similarly, an exact 100(1 — q)% confidence interval

for can be specified as the interval between the values of (3j that maximize

(/3j — PjY subject to

S{P) - S{0)

/t2
= i

2

n-p,l — a /2
= F

1 ,n-p,l — a 1 (3.9)

M’here t^ri-p\-a /2
square of the 100(1 — a/2)% percentage point of the t

distribution with n —p degrees of freedom.

In general, the contours of constant likelihood represented by S{/3)~ S{0) are

expensive to compute, requiring the evaluation of f[x^]l3) at a large number of

points. For ordinary linear least squares, however, the region specified by (3.8) is

mathematically equivalent to the region specified by

{0 - 0fV-H0 -0}< (3.10)

while the interval specified by (3.9) is equivalent to that specified by

\0,-k\ < (
3 , 11

)

where V G is the estimated covariance matrix for the parameter estimators

/?, and VjJ is the square root of its (ji, ji’)th element. The covariance matrix for a

linear model is easily computed using

where A" G jg the matrix with fth row xj

,

i.e., the Jacobian matrix with

(i,y)th component equal to df{xp,f3)ld^j. (We assume that A' is of full rank,

so that A'^ITA" is nonsingular.) Consequently, for ordinary linear least squares

models, exact confidence regions and intervals can be easily constructed using

(3.10), (3.11) and the p x p covariance matrix.

When f[x]P) is nonlinear, construction of exact confidence regions and confi-

dence intervals is much more difficult, and so approximate methods are frequently
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used. It is possible to use the likelihood contours specified by (3.8) and (3.9)

directly to construct confidence regions and intervals that are fairly accurate, al-

though they are not exact except under special conditions (see, e.g., Donaldson

and Schnabel [1987] or Draper and Smith [1981]). These likelihood regions and

intervals have several computational disadvantages, however. First, both the con-

fidence regions and confidence intervals produced using likelihood contours can

be disjoint and unbounded. Second, as noted above, this method is computation-

ally expensive, since it requires that f{xi\(3) be evaluated at a sufRcient number

of points to allow the likelihood contours to be constructed. Finally, when the

data arrays are large, it can be awkward to publish the information necessary to

reconstruct the confidence region because this information cannot necessarily be

succinctly summarized.

Because of the computational disadvantages of the likelihood method, the less

accurate, but more easily computed, linearization method is the most widely used

of the approximate methods for ordinary nonlinear functions. The linearization

method assumes that the nonlinear function can be adequately approximated at

the solution by a linear model. Under this assumption, and the assumption that

e ~ N(0, (cr“)^lU~^ ), we can construct the covariance matrix

i;,, = <r^F'0fWF'(P)]-\

where — F[0)^WF{0) I {n — p), and F'{/3) G is the Jacobian matrix with

(z,ji)th element equal to df{xp,/3)/d0j evaluated at /?. (See, e.g., Bard [1974], p.

176-178.) We again assume that F'0) is of full rank, so that F'{fi)^W F'{0) is

nonsingular.

Using Voh, (3.10) and (3.11), we can construct approximate “linearized” con-

fidence regions and intervals for the parameters of an ordinary nonlinear model.

The adequacy of these approximations, however, will depend on how well the lin-

earized model approximates the actual function over the region defined by the

linearized confidence region and confidence intervals. This, in turn, depends on

the nonlinearity of /(x;/3) [Bates and Watts, 1980], and the size of cr“. Donald-

son and Schnabel [1987] have shown that linearized confidence intervals appear

to be reasonably good in practice, while linearized confidence regions can be very

inadequate.

The linearized confidence regions and intervals for the /3s and the 6s estimated

by orthogonal distance regression are the same as the regions and intervals that

are obtained when the orthogonal distance regression problem is solved as a p +nm
parameter ordinar}^ nonlinear least squares problem (see §2). As above, we assume
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that that the nonlinear function can be adequately approximated at the solution

by a linear model. If . .
. ,

(5^)'^ N( 0
,
(cr“)^Q~^

), then the covariance

matrix for the estimators 17 is

l>* = i^lG'{fifnG'(fi)]-\ (3.12)

where = G{rj)^QG{ij)j{n — p), and G‘{rj) € jg Jacobian

matrix with (i,ji)th element equal to dg^{T])l dr}j evaluated at rj. Using Vodr, we can

construct linearized confidence regions for r]° using (3.10) and linearized confidence

intervals for using (3.11). In the next section, we show how the covariance

matrix defined by (3.12) can be computed in a numerically stable way.

For ordinary nonlinear least squares, the linearization method is asymptoti-

cally correct as n 00
.
(See, e.g., Jennrich [1969].) For the orthogonal distance

regression problem, this method has been shown to be asymptotically correct

as —

2

0 [Fuller, 1987] . The difference between the conditions of asymptotic

correctness can be explained by the fact that, as the number of observations in-

creases in the orthogonal distance regression problem, we do not obtain additional

information for <5,. Thus, for orthogonal distance regression problems, we would

expect the portion of the covariance matrix concerned with to yield linearized

regions and intervals as accurate as those computed for ordinary nonlinear least

squares problems, while we would expect the regions and intervals for to be

less accurate.

Note also that Vodr is dependent upon the weight matrix fl, which must be

assumed to be correct, and cannot be confirmed from the orthogonal distance

regression results. Errors in the u’, and d, that form 17 will have an adverse affect

on the accuracy of Vodr and its component parts. In §5, we present the results

of a Monte Carlo experiment examining the accuracy of the linearized confidence

intervals. The results indicate that the confidence regions and intervals for 6° are

not as accurate as those for /3“. These results also show that errors in Q, can have

an adverse affect on both confidence regions and intervals.

4. Computing the Covariance Matrix Vodr

The most straightforward computation of a quantity is often not the most numer-

ically stable. Although Vo^r is defined as

i;.. -
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we would not compute it by first calculating QG'{r]) and then inverting

the resulting [p + nm) x (p + nm) matrix because such a procedure would in-

troduce unnecessary numerical errors that could severely jeopardize the accurac}’

of Vodr- this section, we present a numerically stable and efficient method for

constructing Vodr-

For any A G with linearly independent columns, it is generally recom-

mended that the matrix be computed by first constructing A = QR,

where Q G has orthonormal columns, and R G is upper triangular with

positive diagonal elements. If we let R G 5?^^^ be the upper p x p portion of R,

then A'^A — R'^

R

= R^

R

and = R^^ {R~^)^

.

Since R is triangular, its

inverse can be accurately computed, thus allowing an accurate computation of

[A'^A]~'^. (See, e.g., [Dongarra et ai, 1979].)

The computation of V^dr can be further improved, however, since analysis of

G'{r]) shows that it has the special structure

' J U
'

0 J

where J = F'0), and U G is the “staircase’' matrix

^
1 ,1 • '^1 ,m

^2,2m

^n— 1
,1 — 2) • • — l,m(n— 1)

^n,l-|-m(n— 1)
• • ^n,nm

with

= dg,{T])ldT)p+j

^ I
df{x, + 6,;P)/d6,^j_^i_j)rn if 1 -\- {i - l)m < j < im

1 0 otherwise

for i = 1, . .
.

,

n and j = 1, . .
. ,
nm. Thus,

- 2 0 IF o' ' J u y
a

1 0 D 0 1 \

'2 J^WJ J^WU
- -1

U'^WJ U'^WU + D
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We can partition

odr
^8 ^86

Vs8 Vs
(4.13)

ISwhere G is the covariance matrix of the estimated /?s, G 3?^

covariance matrix of the estimated (5s, and G gives covariances

between the /?s and the 6s. The component parts of Vodr are thus

Vh = jT
( lu'^wu + dV u^w] j

-1

= -o^V^{j"^WU) \U^ WU + D
-1

I S8 V.
rl
8S

W = -( U'^WU ^ D\ ' [1 + {U^ WJ)Vq[J'^WU) \U^WU + DT T1/J
J-1

Boggs et al. [1987] show how the structural properties of the matrices ap-

pearing in (4.13) can be exploited to compute l^dr accurately and efficiently. In

particular, they define

P-' = [U^WU^D] -^1

and

nm ^2
UJ,

r
= 2 = l,...,n.

J= 1

They then show that

p-^ = p-i - p-^u'^ivv^MW^'^un-^

where ilf G 3?^^^ is the diagonal matrix defined by

1

(4.14)

M = diag

Because D and IT' are diagonal, P ^ can be easily computed.

Boggs et al. [1987] also show that

IT - WU[U'' WU T D'^D]-^U'^W = M.
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Thus,

-1

J'T - WU

can be stably computed using the factorization techniques described at the be-

ginning of this section. This result and (4.14) allow the efficient formation of Vjis,

Vs0 and V^.

The covariance matrix of the estimators /? provided by ODRPACK is com-

puted using the above technique; users are seldom interested in or yps If

necessary, however, the full covariance matrix Kdr for all of the estimators tj

either can be computed using the above equations, or can be “automatically”

obtained from most ordinary least squares software (including ODRPACK) by

solving the orthogonal distance regression problem as the ordinary least squares

problem defined by
(
2 . 6 ).

5. Computational Experience

Given the ability to define and construct linearized confidence regions and intervals

for the parameters of an orthogonal distance regression problem, it is reasonable

to ask how good these regions and intervals are. In this section, we present the

results of a Monte Carlo study that indicates that, at least in some cases, linearized

confidence regions and intervals are quite good.

As we noted earlier, if a given experiment were repeated a large number of times

under the same conditions, and the unknowns and their associated confidence

intervals and regions estimated for each replication, then we would expect the

true value of the unknowns to lie within the constructed confidence regions and

intervals approximately 100(1 — a)% of the time. Most experiments, however,

cannot be repeated a large number of times. In addition, even if the experiment

were repeated a large number of times, the true values of the parameters are

not generally known. Therefore, in practice it is almost impossible to assess the

reliability of confidence intervals or regions except in the context of a Monte Carlo

experiment, where the data are created by computer simulation.

A Monte Carlo experiment allows us to examine the properties of confidence

regions and intervals for a given problem. For such an experiment, we define

the observed coverage, 7^, of a constructed confidence interval or region as the
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percentage of the time that true value did lie within the interval or region for the

parameter. The nominal coverage of such a region or interval is 100(1 — a)%.

When the number of realizations of the data is large, then the observed coverage

will reflect the actual (or true) coverage, 7 “, of the given region or interval. The

actual coverage may or may not be the same as the nominal coverage, however. By
comparing 7^ with 100(1 — q)%, we can thus assess the quality of an approximate

confidence interval or region.

Donaldson and Schnabel [1987] examined linearized confidence intervals and

regions for a number of ordinary nonlinear least squares models and data sets.

They found that the linearization method is not always adequate. Their re-

sults showed that, although there were many examples in which the linearization

method’s coverage differed from nominal by only a very small amount, there were

also many cases in which the observed coverage was far lower than nominal.

We would not expect an exhaustive study of orthogonal distance regression

problems to produce results that were different than those found by Donaldson and

Schnabel [1987]. Thus we do not attempt such a large scale study. Here we present

the results of a Monte Carlo study of only four data sets. They demonstrate that

the linearized confidence intervals and regions can be quite reasonable when Q is

known, but that when Q must be approximated, the results may not be adequate.

Our first example is from Fuller [1987, example 3.2.2, p. 230-238^. The data

[xi^yi) are the percent saturation of nitrogen gas in a brine solution forced into

the pores of sandstone, and the observed compressional wave velocity of ultrasonic

signals propagated through the sandstone, respectively. These data are assumed

to be modeled by

/(i, + «,;/?)= A

Fuller analyzed the original data assuming a measurement error model with Z)“ =

1

.

For our Monte Carlo experiment, we assigned

= (1264.65,-54.02,-0.0879)^,

= (0.0,0.0,5.0,7.0,7.5,10.0,16.0,26.0,30.0,34.0,34.5,100.0)^,

< = 1
,

z = l ,...,12

= 1
,

1,...,12

0-“ = .

The values selected for /3“ and cr“ are those estimated by Fuller using the original

data with fl = /. The values i = l,..., 7i, are the observations from the
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original experiment. Fuller notes that it is reasonable to believe that the error

variance for a: = 0 and x = 100 is smaller than the error variances for the remaining

observations. For our Monte Carlo experiment, we assume that Xi, X 2 and x-i 2 are

observed without error, and thus fix 8^ = 6^ — 8^^
— 0-

Our second example is from Ratkowsky [1983, example 6.11, p. 119-120:. The

response variable purports to represent resistance of a thermistor and the predictor

variable temperature. Ratkowsky, however, notes that since the resistance of a

thermistor increases with temperature, the response variable probably represents

conductance. The model used to describe the original data is

02

+ 03

The analysis by Ratkowsky assumed that there was no error in the response vari-

able; for our results, we assume a measurement error model with = 1/10, i —

1, . .
. ,

n. For this example, we assigned

0^ = (5.0,6150.0,350.0)^,

= (45 + 5i,f = 1,...,16)'^,

= 1, i = 1,.. .,16

d;- = 1/10, f = 1,...,16

= 0.0002 .

The values x°
,

i — 1,. .
.
,n, are the observations from the original experiment.

The other values are approximately those obtained by Ratkowsky in his analysis.

The third example is problem E, chapter 10 of Draper and Smith [1981, p. 518-

519]. This example models the relationship between pressure and temperature in

saturated steam using

/(2;,;^) = /3i

Draper and Smith assumed that there was no error in the temperature observa-

tions; for our results, we assume a measurement error model with = 10, i =

1, . .
. ,

n. We assigned

= (4.18,6.91,205.0)^,

= (0,10,20,30,40,50,60,70,80,85,90,95,100,105)^,

< = 1, 2 = 1,...,14

= 10, i = 1,...,14

= 1.2 .
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The values i = 1, . .
.
,n, are the observations from the original experiment.

The other values are approximately those obtained using the measurement error

model for the original data with = 10.

The data for the fourth example were collected as part of a phychophysical

experiment to evaluate the ability of human subjects to perceive a visual signal as

a function of the intensity of the signal. The predictor variable, Xj, represents the

signal intensity and the response variable, j/i, is the fraction of the total number

of trials during which a particular subject correctly identified the presence of the

signal. Each signal level was repeated 80 times. A sigmoidal curve belonging to

the family
-

. -A
e/32

-/33(a;.+'5.)j/3^

is used to relate y to x. We assigned

aa

(0.936,3.400,339.370,0.954)^,

(0.003,0.007,0.008,0.010,0.915,0.026,0.038,0.060,0.065)^,

, I = 1, . .
. ,

9

1.0 .

The values x^, i = 1, . .

. ,
n, are the observed values from the original experiment.

The weights rn, are calculated as the inverses of the standard deviations of the y,.

The standard deviations of the errors in the measurements of the various signal

levels are known from experience to be proportional to the value of the signal

itself with a proportionality constant of 1/30. The are computed accordingly.

These 4 examples are plotted in figures 1 thru 4, respectively. The graphs

display /(ai;/3“) evalutated over the range of the values i = 1, .

.

. ,n. The n

points (ai“,y“) are indicated by the “dots” on each curve.

For each of these models we construct 500 sets of “observed” data (a;j,y,) using

Xj = x^ — i — 1, . .
.

,n

Vi
= /(^“;/5“) - i=

The errors (e“, .

.

.
,
e°

, ,
5°) ~ N(0, (cr“)^[n“]~^), are generated using the

Marsaglia and Tsang [1984] pseudonormal random number algorithm as imple-

mented by James Blue and David Kahaner of the National Institute of Standards
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and Technology. We construct using (2.7) and

ir“ = diag{(ui‘')^ i = 1, . .

.

,n}

D” = d.ag{(«)^ ' = 1, .«}

For each of the 500 realizations of the data, we solve for ij =

(/3i, . .

.

,/5p, ^ 1 , . .

.

,

using the orthogonal distance regression software library

ODRPACK [Boggs et al, 19891 and the ordinary least squares representation of

the problem. (Recall that ODRPACK only computes the covariance matrix for

the estimators /? when solving an orthogonal distance regression problem. Using

the ordinar}' least squares representation of the problem allows us to easily ob-

tain the covariance matrix for the all of the estimators 77 .) The computations are

performed in double precision Fortran on a Sun Workstation.

Initially, 77 is set to 77
“ = (/3°, . .

. ,

,

6“)^. This is reasonable, since

we are interested in assessing the reliability of the confidence intervals and not

in ODRPACK ’s ability to obtain a solution quickly. Default values are used for

all ODRPACK arguments, except for the maximum number of iterations, which

is set to 100. The Jacobian matrices are computed using finite differences. We
expect that use of analytic derivatives would produce a slight improvement in the

results reported here.

The covariance matrix is dependent upon Q. Clearly, however, the W and

D that make up D are not always known. Of particular interest for orthogonal

distance regression problems is the case where the values of cf,, i = 1, . . . ,
7i, used

to determine D are only approximate. In addition to reporting the observed

coverage for D constructed using and w°, w^e therefore also report the coverage

observed when the 500 replications are solved using Q constructed wdth d, = d“/10,

d, = d“/ 2
,
di = 2d“, d, = lOd^, and d, = ood“, the latter indicating an ordinary

least squares solution in which all values of Si are forced to zero.

The observed coverages for these problems are shown in Tables 1
, 2, 3, and 4.

The confidence region coverage when d, is correct is surprisingly good when com-

pared with that observed by Donaldson and Schnabel [1987]. We conjecture that

this is due to our choice of examples, and is not a property of orthogonal distance

regression in general. In their study, Donaldson and Schnabel frequently found

that the observed coverage for linearized confidence regions was less than 80% of

the expected nominal coverages, a difference that many, if not most, users would

find unacceptable. Our results show a significant degradation in the coverage of

the linearized confidence regions when d, is incorrect by even a factor of 2 .
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These tables indicate that the confidence interval coverage when di is cor-

rect is also very good. In addition, these results illustrate that, even when d, is

known only to within a factor of 2, the confidence intervals for /?“ are still quite

good. When d, is under-estimated by a factor of 10, however, we see a significant

degradation for two of our examples.

There is a significant degradation in the confidence interval coverage for

when di is not known. As we expected, our results show that the confidence

intervals for /?“ are in general more reliable than those for

One surprising result is that, for confidence intervals for /?“, over-estimation of

d, is preferable to under-estimation. For 8°

,

the opposite is true. We believe that

this occurs because when di is over-estimated, we overly restrict the size of d, and

thus prevent d, from being “close enough” to d“ to allow the confidence intervals

and regions to include d“. When we under-estimate d,, on the other hand, we

artificially reduce the size of the residual variance, and thus the size of the

covariance matrix and the resulting confidence intervals for /9°. _
We conclude from this small study that for at least some orthogonal distance

regression problems, confidence regions and -intervals constructed using the co-

variance matrix do have some validity, especially when d^ is known at least to

within a factor of 2. We recognize, however, that for other problems such inter-

vals and regions may be very inaccurate. We also recognize that there is nothing

better that can be easily reported in their place. Thus, the linearization method

will continue to be the most frequently implemented method in production least

squares software. We therefore advocate the use of linearized confidence intervals

and regions for measurement error problems in the same spirit, and with the same

caveats, that they are used for ordinary nonlinear least squares problems.

Acknowledgement. The authors thank H. Iyer, Colorado State University, for

many useful discussions and comments concerning this work, and for providing
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Table 1 : Fuller Example 3.2.2

Observed Coverage

for Nomina] 95% Confidence Regions and Intervals

d^ = di = dr=d^ d, = 2d“ d, = lOdf d, = ocdf

(OLS)

c.r. for 16.8 78.4 93.6 86.6 0.0 —
c.r. for 42.8 85.0 93.8 96.6 95.4 95.2

c.r. for 6
“

18.4 82.6 93.4 81.2 0.0 —
c.i. for /3“ 50.0 84.4 93.8 97.2 97.4 97.4

c.i. for ^2 51.4 85.8 94.6 96.0 96.8 96.6

c.i. for 13^ 89.4 92.2 93.8 94.4 95.2 95.6

c.i. for 63 68.8 89.4 96.0 92.4 25.4 —
c.i. for 8^ 77.8 89.6 93.6 92.4 33.0 —
c.i. for 81 80.0 89.8 94.4 91.8 27.6 —
c.i. for 8q 85.0 91.2 97.0 93.0 31.0 —
c.i. for 8j 88.2 92.6 94.4 87.4 27.8 —
c.i. for 8g 93.0 93.8 92.2 83.6 25.8 —
c.i. for 8g 89.0 96.2 95.8 85.8 28.6 —
c.i. for 8°q 90.0 94.6 93.4 82.8 31.2 —
c.i. for 89.0 95.4 93.4 85.6 30.6 —
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Table 2: Ratkowsky Example 6.11

Observed Coverage

for Nominal 95% Confidence Regions and Intervals

— lO^t d, = \d’l d. = d^ d, = 2d° d, = 10d“ dj = ocd“

(OLS)

c.r. for r]° 0.0 99.6 96.2 28.0 0.0 —
c.r. for (3° 94.6 93.6 93.4 93.4 93.4 93.4

c.r. for 0.0 100.0 96.0 21.4 0.0 —
c.i. for 95.4 95.2 95.2 95.0 95.0 95.0

c.i. for j32 95.4 95.2 95.2 95.0 95.0 95.0

c.i. for j3^ 95.4 95.2 95.2 95.0 95.0 95.0

c.i. for 97.8 99.6 95.0 69.4 14.4 —
c.i. for ^2 87.8 99.0 96.2 74.2 18.2 —
c.i. for 8^ 82.8 99.8 94.6 69.2 17.6 —
c.i. for (§4 73.0 99.0 95.2 70.0 15.4 —
c.i. for 81 73.8 99.4 93.2 70.8 17.4 —
c.i. for (5g 71.4 99.2 94.4 74.4 16.4 —
c.i. for 8j 75.0 99.2 95.4 75.0 15.4 —
c.i. for 8g 73.8 99.6 95.2 73.8 17.6 —
c.i. for 8g 72.2 99.2 95.2 72.6 18.2 —
c.i. for (5“q 75.4 99.6 96.4 70.6 19.0 —
c.i. for 8°^ 69.4 98.2 94.2 74.2 18.8 —
c.i. for 8°2 69.8 99.0 94.4 72.6 20.6 —
c.i. for 8°2 69.6 99.0 95.8 68.2 16.8 —
c.i. for 8°^ 76.2 99.0 94.0 71.0 14.6 —
c.i. for (5^5 84.0 99.8 95.4 73.0 14.4 —
c.i. for 95.6 99.6 95.0 70.6 17.0 —
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Table 3; Draper and Smith Problem 10.

E

Observed Coverage

for Nominal 95% Confidence Regions and Intervals

di = dj = dj = d“ = 2d“ dj = 10 d“ di
— ood“

(OLS)

c.r. for 7/° 13.2 85.0 92.4 72.2 0.0 —
c.r. for 13° 80.4 92.6 90.8 87.4 78.0 76.8

c.r. for 6° 28.6 94.0 94.8 68.0 0.0 —
c.i. for l3° 71.8 89.8 94.8 96.0 96.6 96.4

c.i. for (3^ 86.6 93.2 94.0 91.8 89.4 89.6

c.i. for 82.2 92.6 95.0 93.6 93.0 92.8

c.i. for 6° 100.0 98.8 94.4 82.2 29.2 —
c.i. for S

2
99.8 99.2 93.2 82.2 30.0 —

c.i. for 92.6 99.2 94.6 78.8 25.0 —
c.i. for 77.2 98.2 94.4 79.4 25.4 —
c.i. for (^5 82.6 97.0 94.4 79.8 26.2 —
c.i. for Sg 93.8 97.4 95.4 81.0 25.8 —
c.i. for Sy 96.8 96.0 96.0 83.4 25.8 —
c.i. for Sg 96.2 97.2 95.6 83.2 27.6 —
c.i. for Sq 98.2 97.0 96.0 85.6 23.8 —
c.i. for (^“0 98.2 96.4 95.8 88.2 27.8 —
c.i. for 99.4 96.0 95.4 90.2 28.0 —
c.i. for S°2 99.6 97.4 94.0 87.0 26.8 —
c.i. for ^“3 100.0 98.6 95.2 85.6 25.2 —
c.i. for 99.8 98.4 94.8 86.6 26.8 —
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Table 4: Psychophysical Example

Observed Coverage

for Nominal 95% Confidence Regions and Intervals

di = dj = ^d° d, = d“ dj = 2d“ d^ = 10d“ d, = ood“

(OLS)

c.r. for 46.6 59.4 57.4 37.6 0.0 —
c.r. for /3“ 53.8 52.0 48.2 47.6 46.4 46.4

c.r. for 8
°

98.0 100.0 95.8 59.4 0.0 —
c.i. for /?“ 86T 94.8 95.0 95.2 95.4 95.4

c.i. for 100.0 99.8 99.8 99.8 99.8 99.8

c.i. for /Sg 93.4 96.6 95.8 95.4 95.4 95.4

c.i. for I3‘^ 99.8 93.0 90.2 89.4 89.0 89.0

c.i. for 100.0 99.6 95.0 75.6 22.0 —
c.i. for 82 99.8 99.6 96.4 78.2 22.4 —
c.i. for <^3 100.0 99.4 95.2 76.4 20.2 —
c.i. for (5“ 100.0 99.4 96.4 75.8 19.4 —
c.i. for 81 100.0 99.8 95.0 73.6 18.2 —
c.i. for 8q 99.8 99.4 95.0 75.0 18.8 —
c.i. for 8j 98.8 99.6 95.6 77.2 17.8 —
c.i. for - 100.0 99.4 94.8 72.2 20.4 —
c.i. for 8g 100.0 99.4 95.2 77.6 21.0 —
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