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On the expected complexity of the

3-dimensional Voronoi diagram

Javier Bernal

National Institute of Standards and Technology, Gaithersburg, AID 20899

Abstract. Let 5 be a set of n sites chosen independently from a uniform distribution in a cube

in 3-dimensional Euclidean space. In this paper, work by Bentley, Weide and Yao is extended to

show' that the Voronoi diagram for 5 has an expected 0{n) number of faces. A consequence of the

proof of this result is that the Voronoi diagram for S can be constructed in expected 0{n) time.

Finally, it is showm that with the exception of at most an expected number of polyhedra,

each polyhedron in the Voronoi diagram for 5 has an expected constant number of faces.
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1. Introduction

Consider a set 5 = {pi , . .
.

,

of n sites in d— dimensional Euclidean space E‘^. The 1 oronof

diagram for 5 is a sequence i’(p]), ...
,

i (pn) convex polyhedra covering E‘^, where for

each i, i— l,...,n, i (Pi) is the Voronoi polyhedron of p^ relative to S, i. e. the set of all

points X in the space such that p, is as close to x as is any other site in 5.

The Voronoi diagram is an important geometrical concept that is used for solving a large

number of problems in many areas. Accordingly, several algorithms have been devised and

implemented for constructing it in tw'o and higher dimensions ([ij, [2], [3], [4], [5], [6], [7],

[8', [I2j, [13], [15], [20], [21], [22], [23], [24], [26]), and many of its statistical and geometrical

properties have been derived ([2], [9], [10], [ll], [12], [14], [16], [17], [l9j, [21], [22], [25]).

In this paper, w'e further develop the w’ork by Bentley, Weide and Yao [2] that relates to

the expected complexity of Voronoi diagrams. Given a set 5 of n sites chosen independently
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from a uniform distribution in a d— dimensional hypercube, Bentley, et al. show that with

the exception of at most an expected • logn) number of polyhedra, each polyhedron

in the Voronoi diagram for S has an expected constant number of faces. With m defined

as the largest integer less than or equal to i. e. the floor of Bentley, et al. first

divide the hypercube into equal-sized cells. Given c > 0 and defining LG(n) as the floor

of c • logn, where log denotes the natural logarithm, Bentley, et al. then show that for each

site p in 5 the expected number of faces of V{p) is constant if p is not constained in any of

the outermost LG(n) layers of cells of the hypercube. However, Bentley, et al. leave unclear

how to compute the expected complexity of the Voronoi diagram for 5 due to the Voronoi

polyhedra of the sites in the outermost LG(n) layers of cells of the hypercube.

In what follows, we extend the work by Bentley, et al. to show that in 3— dimensional

Euclidean space, • (c • logn)'*) is an upper bound for the expected number of faces of

the Voronoi diagram for 5 that are also faces of Voronoi polyhedra of sites in the outermost

LG(n) layers of cells of the cube. This result and those in
[

2
]
then imply that the expected

number of faces of the Voronoi diagram for the n sites is 0{n). Accordingly, we conjecture

that in for fixed d > 3, similar results hold for {d — 1 )
— dimensional faces or facets., i. e.

0(n*"V£/
. (c • log n)'^''^*

)
is an upper bound for the expected number of facets of the Voronoi

diagram for S that are also facets of Voronoi polyhedra of sites in the outermost LG(n)

layers of cells of the hypercube, and 0(n) is the expected number of facets of the Voronoi

diagram for the n sites. Finally, in for fixed d > 2, we show that with the exception of at

most an expected number of sites in 5, for each site p in 5, the expected number

of faces of V’(p) is constant.

2. Terminology

Let S = {pi,...,pn} be a set of n points in chosen independently from a uniform

distribution in a cube R. In what follows, a point in will be called a site if and only if it

belongs to 5. With m defined as the floor of assume as in
[
2

]
that R has been divided

into equal-sized cells. Given a site q. define the 1
** layer of cells that surrounds q as the

collection of cells that contain 9 ,
and inductively, given A- > 1

,
assume that the layer of

cells that surrounds q has been defined, and define the {k -
1

- 1 )‘^ layer of cells that surrounds

q as the collection, possibly empty, of cells that have one or more points in common with

cells in the layer, and that do not belong to the first k layers.

Let Icell and vcell represent, respectively, the length and volume of each cell.
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Given numbers c, c', c", 0 < c < c', c" > 1, define LG(n) and LG'(n) as the floors of

c • log 71 and c' • logn, respectively, and assume n is large enough so that LG(7i) > 2 and

Let k represent the largest integer k for which

2'=/^
• c" • LG'(n) < 2-' •

It follows from the assumptions on n that k > 3.

Set LGo(ti) equal to LG(n), and LG;c(n) equal to LG'(n) for each k, k = 1,. .
.
,k — 2.

Let /i, i = 1, . .
. , 6, represent the facets of R, and let 11 represent i. e. the boundary

of R.

Given a point x in and a subset IL of define dist( 2;,l'L) as the minimum value of

III — 7n|j for w in W
,
where

jj
•

||
represents the 3— dimensional Euclidean norm.

From the assumptions on n, several nonempty subsets of R can also be defined as follows:

R -1 = {x ^ R : dist( 2:,n) > Icell LG(n)}.

Ro = {x ^ R : Icell 2 < dist(x,n) < Icell LG(n)}.

Rj^ = {x £ R dist(x,n) < Icell

For each k, k = — 1,

Rk = {x e R : Icell -2-^^^ <d\si{x, U) < Icell -2-^^^}.

For each i, fc, 7 = 1, . .
. , 6, /c = 0, . .

.

,

fc — 2,

RI' = {x e Rk : dhi{x, fj) > Icell 2'"'^ c" LGk{n), j = 1, ... ,6, j ^ i}.

It follows from these definitions that the sets Rk-, k = — 1, . .
.

,

A:, are pair-wise disjoint nested

regions of the cube 7?, and

Finally, define /?_ 2 ,
a possibly emptj’ subset of R, as follows:

R _2 = {xeR : dist(x,n) > /ce//-(l +c")-LG(n)}.
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The significance of these regions as it relates to our purposes can be summarized as follows.

is essentially that region of the cube R obtained by subtracting the outermost LG(n)

layers of cells of R from R. From [2], the Voronoi polyhedron of a site in R-i is of expected

constant complexity. Rq is essentially that region of R obtained by subtracting from the

outermost LG(n) layers of cells of R the outermost two layers, k = 1, . .
.

,

fc, are regions

of R whose union is essentially that region of R composed of the outermost two layers of

cells of and whose thicknesses correspond to the terms of the geometric series expanded

to the first k — 1 terms together with the remainder. RI\ i = 1, . .
. , 6, A; = 0, . .

.

,

— 2, are

subsets of Rk, k = 0, ... ,k — 2, respectively, defined in such a way that due to the geometric

series aspect of R^, k = l,...,/r, and the position of Rq in the expected complexity of

the Voronoi diagram for 5 due to the Voronoi polyhedra of sites in these regions is linear

while the expected number of sites in U^^^Rk \ Uf., Utl Rl' is small enough that it does

not affect the linearity of the overall expected complexity of the diagram even under the

worst possible circumstances (see Section 3). Finally, i?_2 is a subset of /?_] defined in such

a way that sites in this region are highly unlikely to have Voronoi neighbors in the outermost

LG(n) layers of cells of R while R^i \ i?_2 is a region of R essentially composed of 0(LG(ti))

contiguous layers of cells of R.

For each facet / of R, let H{f) represent the plane that contains /, and for each site g,

let T^{q) represent the point in / that is the perpendicular projection of q onto /.

Given i, A:, 1 < f < 6, 0 < A- < A’ — 2, and a site q in 7?^', let u, v' and v" be vertices of R
in /i for which v' — u is perpendicular to u" — u, and for each j, j = 0, . .

.

,

8, define a point

tj in //(/,) by

ij = T^'{q) [v' — n) • cos(j7r/4) + {v" — v) • sin(j7r/4).

In addition, for each j, j = 1,...,8, let Oj be the octant in H{fi) that is the convex hull

of the rays T^'{q)tj-i and and say that j = 1,...,8, arc the octants associated

with q. Finally, if within the first 2^^^ • LG layers of cells that surround g, for each j.

j = 1, . .
.

,

8, there exists a site q^ such that dist(gj, fi) < Icell •
2~^ and the ray qqj intersects

Oj, say that q is octant-closed and that qj, j — 1, ... ,8, render q octant-closed.

Given i, k, g, u, u', v" as above, let v'" be a vertex of R for which v'" — u is perpendicular

to v' — V and v" — r, and for each j, j = 0, . .
.

,

8, and each m, m —
0, . .

.

,

3, define a point
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rjm by

rjm = g + ((v'

—

r) • cos(j7r/4) + (r" — r) • sin(j7r/4)) • sin(m7r/4)

+ {v’" — i;) • cos(m7r/4).

In addition, for each j^j = and each m, m = 1,2,3, let Ujm be the cone that is the

convex hull of the rays and gfj^, and say that Ujm, j — 1, . .
. , 8,

m = 1,2,3, are the cones associated with q. Finally, if within the first 2*^^
• LGfc(n) layers of

cells that surround q, for each j, j = 1, . .
. , 8, and each m, m == 1, 2, 3, there exists a site Sjm,

Sjm / q, such that Sjm belongs to Ujm, say that q is cone-closed and that Sjm, j — 1 ,..., 8
,

m = 1,2,3, render q cone-closed.

Given q as above, say that q is closed if it is octant-closed and cone-closed. As it will be

shown in Section 3, Voronoi polyhedra of closed sites are of complexity acceptable for our

purposes.

Given t. A:, q as above, define C^'[q) and C[q) as the closed half-spaces that contain T^'{q)

and q. respectively, and that are determined by the plane parallel to H{f,) that contains

{T^'{q)^ q)/2. Define S^'{q) as the subset of 5 for which a site p € S^'{q) if and only if

V{p) n V{q) n C^'{q) ^ 0, and S{q) as the subset of S for which a site p 6 S{q) if and only

if V{p) n v[q) n C[q) 7^ 0.

Finall)’, given sites p and g, say that p is a Voronoi neighbor relative to S of q if V(p)

and V{q) have a facet in common.

3. Results

In this section, based on the terminology developed in Section 2, we present two theorems,

the first of which, Theorem 1, is the main result of this paper.

Theorem 1 . 0{n^^^ • (c • log nY) is an upper bound for the expected number of faces of the

Voronoi diagram for 5 that are also faces of Voronoi polyhedra of sites in R\ R^i.

The proof of this theorem consists of partitioning the cube into the regions defined in Sec-

tion 2 and then computing where necessary the expected number of Voronoi neighbor pairs
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within and between these regions. It requires some preliminary results which we present in

the form of propositions. In the first two propositions it is essentially shown that Voronoi

polyhedra of closed sites are of complexity acceptable for our purposes.

Proposition 1. Given i, fc, 1 < i < 6, 0 < A: < — 2, a site q in and octants

and sites Oj, qj, j = 1, • • • , 8, such that Oj, j = 1, . .
. , 8, are the octants associated with q,

and qj, j = 1, . .
. , 8, render q octant-closed, if q' is a site such that for each j = 1, . .

. , 8,

Il9^ 9 II > \ Wj
~~

9ll? where q'j is the intersection of qqj and Oj, then q' ^ S^'{q).

Proof. Let q' be one such site, and define J' as the plane that perpendicularly bisects the

line segment [q',q]^ and C as the open half-space determined by J' that contains q. We show

that C contains V'(g) n C^'{q), so that q' ^ S^'{q).

Assume, without any loss of generality, that q' is in T^'{q) ^ g', for each j, j = 1,2,

T^'{q)qy' ^ T•^'(g)g2 ^ and g' is in the convex hull of T^'{q)qi' and T^'{q)q2
'.

Let J[ and be the planes that are the perpendicular bisectors of the line segments [g'i,g]

and [g2 ,g], respectively. Let B be the region that is the intersection of C-^’(g) and the closed

half-spaces determined by J[ and Jj that contain g. We show B is the convex hull of a region

K' and a ray u', both of which lie in C. Since C is convex, and B contains I (g) H cHi),
the result then follows.

To this end, let H' be the plane that contains {T^'{q) + g)/2 and is parallel to //(/j); let H"
be the plane that contains g and is parallel to //(/z); let g", gj', q'^ be the perpendicular pro-

jections onto H" of g', gj, gj. respectively; let h' . h\, h'^ be the lines that are the intersections

of H' with T', ^21 respectively; and let h", h'/, h'^ be the lines in H” that perpendicularly

bisect [g",gj, [g;',g], [g2 , 9 ], respectively.

Let g be the perpendicular projection of g onto H'. Define K' as the intersection of the

half-planes in H' determined by h\ and h'^ that contain g, and K” as the intersection of the

half-planes in H" determined by h” and h'^ that contain g.

In order to show that C contains K', we first prove that |lg" — g|| > \/2 ||g" — gl| for each

j^j = 1,2. To this end, for each j,j = 1,2, we have

|ig"-g|!^+lig'-g"ir = Ik'

-

9
!'^

> 2l|g'-g|r
1 u 1 |2

1
1 :

f "III1
9I 1

+ -QjW
oil'' I i

2
I o M '= 2 ||g_,

- g|! + 2 hg— q^

6



But \\q' — q"\
\

equals ||g' — q"\
\

for each j, j = 1
,
2

,
so that

\\q"-q\\^>2\W;-q\\^+\\q'^-q’;\\\

for each j, j = 1
,
2

,
and the inequalities follow.

Since q[ and q'^ belong to the contiguous octants Oi and O2 ,
respectively, it follows that h"

does not intersect K'\ But by similar triangles, h", h", h'^ are the perpendicular projections

onto H" of h', respectively. Thus, K'' is the perpendicular projection of K' onto H”,

and therefore, h' can not intersect K\ which shows C contains K‘.

In order to obtain u', let H* be the plane that contains q, q\^ and be the closed

half-space determined by H* that contains T^'{q)\ let w' be the line that is the intersection

of the planes J[ and Jj! be the plane that contains q and q', and that is perpendicular

to //*; and let w" be the perpendicular projection onto J* of w'.

Since w' is perpendicular to //*, so is w", and since from the definition of 9 ', q' is not in C*,

we must have that w" contains a ray n" that lies completely in C ' n C* n C^'{q). Therefore,

from the definition of w'\ it follows that w' must contain a ray u' that is also contained in

C'n c* nc^‘(g).

Since B is clearly the convex hull of K' and u \ the proof is now complete.

Proposition 2, Given i, k, I < 7 < 6, 0 < A* < fc — 2, and a site q in if q is closed

then for some constant AI > 0 independent of q, k and n, the smallest number of contiguous

layers of cells that surround q and contain each Voronoi neighbor of q is bounded above by

M -2^^^ -LCkin).

Proof. Let O^, jf = 1 , . .
.

,

8
,
be the octants associated with q, let q^, j = 1 ,..., 8

,
be sites

that render q octant-closed, and let 5^^,, j = 1, ...
,
8

,
m = 1,2,3, be sites that render q cone-

closed.

Using arguments similar to those developed in [2], it can be shown that the existence of the

sites Sjrrii j — 1,...,8, m = 1,2,3, implies that for some constant A/j > 0 independent oi q.

k and 77
,
the smallest number of contiguous layers of cells that surround q and contain S{q)

is bounded above by A/j •
2'^^^

• LGjt( 77 ).

We show a similar result for S^'{q).

For each j, j = 1 ,..., 8
,
dist(gj,/j) < lcell-2~^. Thus, by similar triangles, since q is

contained in so that dist(g, /,) > Icell •
,
we must have that for each j, j = 1 , . .

.

,

8
,

\\q'j ~ q\ \
^ 2

|j 9j — q\\, where g' is the intersection of qqj and Oj.

Thus, if q' is a site such that for each j, j = 1 , ... ,
8

,
\\q' — q\ \

> 2\f2 — q\ \

then for each
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j, j = l,...,S,\\q' - q\\> y/2
\
\q’^

-
9 ||,

and by Proposition 1, q' ^ S^'{q).

Therefore, since for each j, j = 1, ... ,8, qj is also contained in the first 2^^^ • LGfc(7i) layers

of cells that surround q, it follows that for some constant M2 > 0 independent of q, k and

n, the smallest number of contiguous layers of cells that surround q and contain S^'{q) is

bounded above by M2 •
2^^^ • LG;t(^)-

The proof of the proposition is now complete since the union of 5
( 9 )

and S^'{q) contains

each Voronoi neighbor of q.

In the next proposition it is shown that the probability that a site is not closed is very

small and uniform for all sites to which the definition of a closed site applies.

Proposition 3. Given t, A:, 1 < z < 6, 0 < A; < — 2, and a site q in there exist

positive constants Mi and M2 independent of g, k and n, such that the probability that q

is not closed is bounded above by Mi exp( — il/2 • (LG^(n))^), w^here exp is the exponential

function.

Proof. Let Oj, j = 1 ,..., 8
,
be the octants associated with q, and let Ujm, j = 1 ,..., 8

,

m = 1,2,3, be the cones associated with q.

For each j, j — 1, ... ,8, define O' as the subset of R for which a point p 6 O' if and only if

p is within the first 2^^^ LG;c(n) layers of cells that surround q, dist(p, /,) < Icell • 2"^, and

gp intersects O^. In addition, for each j, j = 1,...,8, and each m = 1,2,3, define

as the subset of R for which a point p € if and only if p is within the first
2^^"^ • LG*.(n)

layers of cells that surround g, and p is in Ujm-

From the definition of RI' and since c" > 1. the volume of U*_jO' is then approximately

equal to

{2-2^^^ -LCkin))^ {2-^)-vcell = {4
2^^ {LG k{n)f) {2-'^) vcell

— 4 • (LGfc(n))^ • uce//,

so that for each j, j = 1, ... ,8, the volume of O' is approximately equal to

(1/8) • 4 • iLGk{n)f • vcell = (1/2) • (LG^n))' • vcell.

Thus, a positive constant M2 exists, independent of g, k and n, such that for each j,

j = 1 , . .
.

,

8, M2 (LG*.(n))^ • vcell is a lower bound for the volume of O'

.

Therefore, since for each j, j = 1, . .
.

,

8, each m, m — 1,2,3, and each h, h — 1, . .
. , 8, the
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volume of is larger than the volume of it follows, using arguments developed in [2],

that

(8 + 8 • 3) • exp(-M2 • (LGfc(n))^) - 32 • exp(-il/2 • (LGfc(n))^)

is an upper bound for the probability that at least one of the sets O', j = 1 ,..., 8
,

j = 1, . .
. ,8, m = 1, 2, 3, does not contain a site.

Thus, by setting Mj equal to 32, the proof of the proposition is then complete.

In the next four propositions it is shown that due to the geometric series aspect of Rk,

k = 1, . .
. ,

fc, the position of Rq in R, and the definitions of RI' ,i = 1,...,6, = 0,...,fc — 2,

Voronoi polyhedra of sites in R^'
,

t = 1, . .
. , 6, A; = 0, . .

. ,
— 2, are of acceptable expected

complexity while the expected number of sites in [J^_QRk \ Ulzl RI' is small enough to

be also acceptable for our purposes.

Proposition 4. Given i, 1 < f < 6, and a site q in Rq
^
for constants A/', A/], A/2 > 0

independent of q and n, the expected number of Voronoi neighbors \n R \ /?_2 of q is

bounded above by

A/' • {lG{n)f + A/i • exp(-A/2 • {LG{n)Y) • LG(n)).

Proof. Let be the probability that q is closed, and let Tj be the expected number of

Voronoi neighbors \n R \ /?_2 of q when q is closed. Define P2 and T2 similarly by replacing

‘closed’ with ‘not closed.’

Let T be the expected number of Voronoi neighbors \n R \ /?_2 of g, so that

T = Pi • + P2 • T2.

We note, from Proposition 2, that if q is closed then for some constant A/ > 0 independent of

q and n, the smallest number of contiguous layers of cells that surround q and contain each

Voronoi neighbor of q is bounded above by A/ • LG(n). Therefore, since one is the expected

number of sites per cell, we must have that Ti < (2 • A/ • LG(n))L

In addition, from Proposition 3, we note that there exist positive constants A/j and A/2

independent of q and n, such that P2 < A/i • exp( —

A

/2 • (LG(n))^). Thus, since Pi < 1 and

T2 < 0
(
77
^/^

• LG(7i)), it follows that

T < 1 • 8 • A/3 • (LG(n))3 + M, • exp(-

A

/2 • (LG(n))3) • LG(n))

= AP • (LG(n))3 -f A/i • exp(-A/2 • (LG(n))3) • • LG(n))

9



for some positive constant M' independent of q and n, which completes the proof of the

proposition.

Proposition 5. Given t, A:, 1 < t < 6
,
0 < fc < — 2, and a site q in for constants A/,

A/", A/i, M2 > 0 independent of 9, k and n, if c" > (2 -i \/2 )
• M then the expected number

of Voronoi neighbors in \ Rj' of q is bounded above by

Ar . (LG'(n ))2 + A/i • exp(-Af2 • (LG'(n))") • • LG(n)).

Proof. Let Pi be the probability that q is closed, and let Ti be the expected number of

Voronoi neighbors in ufLo-R/ \ ufJo f?/' of q when q is closed. Define P2 and T2 similarly by

replacing ‘closed’ with ‘not closed.’

Let T be the expected number of Voronoi neighbors in ^f-()Ri \ Pj' of g, so that

T = Pi-Ti^ P2 - T2.

We note, from Proposition 2, that if q is closed then for some constant A/ > 0 independent of

q, k and n, the smallest number of contiguous layers of cells that surround q and contain each

Voronoi neighbor of q is bounded above by M • 2^^^ • LG'(n). Thus, if c" > (2 + %/2 )
• M and

since c' > c then

c" •
2^/2

• LG'(n) - A/ • 2 ^^^ LG'(n) > c" • 2
^^-')/"

• LG;,_i(n),

so that the intersection of these layers with \ uto Ri' is contained in and has

a volume bounded above by

(2 • A/ •
2*^/2

. LG'(n))' • ((Lt'fc
2"'+'

)
+ 2-^+^) .

= (4 • A/2 .
2*^

• (LG'(n))') •
(2-'‘+2) . ^^ell

= 16 -A/ 2 .(LG'(n))"-'i^ce//.

Therefore, Ti < 16 • A/^ • (LG'(n)) 2
.

That T is as desired, now follows by using arguments similar to those presented in the proof

of Proposition 4 .

Proposition 6. The expected number of sites in
- ^Ri is bounded above by

384 •(c"-LG'(n)) 2
.
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Proof. Since k is the largest integer k' for which

2"''/'
• c" • LG'(n) < 2-'

• n'/^

we must have that the volume of is bounded above by

6 (2 • . LG '(n ))2 •
(

2-*+2 + 2
-^+ 2

)

.

= 6 • (4 .
2^+1

• (c" • LG'(n))2) • (2 • 2
-^+ 2

)

.

= 384 • (c" • LG'(n))^ • uce//,

which completes the proof of the proposition.

Proposition 7. The expected number of sites in Rq \ is bounded above by

12•n'/^•(c"•LG(7l))^

and in Ri \ )
by

(1 + \/2) -48 -c" •LG'(n).

Proof. From the definitions, the volume of Rq \ bounded above by

12 •
71^^^

• (c" • LG(n))^ • vcell,

and that of Ri \ Uf_j( )
by

Zt? 2 • 12 • •
2'/2

. c" LG'(n) •
2-'+'

• vcell

= 48 .
2-^2 . . LG'(7i) • vcell

< (1 + \/2) • 48 • • c" LG'(n) • vcell.

The proposition now follows.

Proof of Th.?orem 1 . It suffices to prove the theorem for the 2— dimensional faces or facets,

since applications of the Euler formula to each of the Voronoi polyhedra of the sites \n R\ /?_i

produces the desired result for the 0— and 1 — dimensional faces. As mentioned above, the

proof consists of computing where necessary the expected number of Voronoi neighbor pairs

within and between the regions
,

i — 1 , . .
. , 6, A: = 0, . .

.

,

— 2, \ U®_j RI' ,
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R-i \ R-2 and R^2-

To this end, let p be a site in /2_i.

From [2], since for each site q in dist(9,/2_i) > Icell • (LG(n) — 2), we must have

that constants M[ and > 0 exist independent of n and p, such that the probability that

p has Voronoi neighbors in u{^_j Rk is bounded above by

M; •exp(-M^(LG(n))^).

Therefore, the expected number of facets of the Voronoi diagram for 5 that are shared by

Voronoi polyhedra of sites in iZ_i with Voronoi polyhedra of sites in U^^-^Rk is bounded

above by

• n M[ • exp( — il/j • (LG(n))^).

Similarly, positive constants M” and M” exist independent of n, such that the number of

facets of the Voronoi diagram for 5 that are shared by Voronoi polyhedra of sites in R ^2

with Voronoi polyhedra of sites in Rq is bounded above by

. LG(n)) • n • M” • exp(-A/'' • (LG(n))^).

For each i, i = 1, ... ,6, define a possibly empty subset of /2_i \ i?_ 2 ,
as follows:

R^2\ = {a" € R-] \ R -2 ' dist(i, fj) > Icell • ( 1 + c') • LG(n), j = 1, . .
.

, 6, j ^ t}.

Given i, 1 < J < 6, let p be a site in R{i^.

Again, from [2], since for each site q in Rq \ U dist(g,i?{'i) > Icell LG(n), we must

have that constants M[" and M'^' > 0 exist independent of n and p, such that the probability

that p has \'oronoi neighbors in Ro\L} is bounded above by

A/;"-exp(-A/;'-(LG(n)f).

In addition, as in the proof of Proposition 7, it can be shown that the expected number of

sites in {R-i \ R- 2 ) \ is bounded above by 12 •
. (c" • LG(n))^. Therefore, from

proposition 7, the expected number of facets of the Voronoi diagram for 5 that are shared

by Voronoi polyhedra of sites in R_^ \ R-2 with Voronoi polyhedra of sites in Rq \ U^-iRq

is bounded above by

12-n'/^.(c"-LG(n)f -0(722/^ •LG(n))- A/;"-exp(-M
2
"- (LG(n)f) + (12 •n'/3.(c"-LG(n)ff.

12



Thus, from Propositions 4, 5, 6 and 7, constants M', M", Mj, M2 ,
c" > 0 exist such that

the expected number of facets of the Voronoi diagram for 5 that are also facets of Voronoi

polyhedra of sites in i? \ iZ_i is bounded above by

0(n2/3 . LG(n)) • (M' • (LG(n)f + Mi • exp(-M2 • (LG(n))2) • • LG(n))) +

0(n2/3) . (M" • (LG'(n))' + • exp(-M2 • (LG'(7i))2) • LG(n))) +

(384 . (c" • LG'(n))' + 12 •
• (c" • LG(n))2 + (1 + x/2) • 48 • n'/" • c" • LG'(n))' +

0(7i2/3) • n . M; • exp(-M' • (LG(7i))^) +

0(71^/") • LG(7i) • n • M[' • exp(-M; • (LG(n)f ) +

12 •
• {c" LG(n))2 • LG(n)) • M[" • exp(-A/;' • (LG(7i))") +

(12-n'/3.(c".LG(n))2)2

- M -{LG{n)y

— M •
• (c • log n)'*,

where Af is a function of n, c and c' that decreases for fixed c and c', 0 < c < c'.

This completes the proof of the theorem.

The following corollary is a direct consequence of results in [2] and Theorem 1.

Corollary 1. 0(7j) is the expected number of faces of the Voronoi diagram for 5.

Proof. From [2] there exist positive constants M[ and A/j independent of n such that

0(1) + n • M[ exp(-A/2 • (LG(n))^)

is the expected number of faces of the Voronoi diagram for 5 that are also faces of the

Voronoi polyhedron of any given site in /?_i. Thus, from Theorem 1, the expected number

of faces of the Voronoi diagram for 5 is

0(n) • (0(1) + n • M[ • exp( — A/^ • (c • log n)^) + • (c • log n)'*) = M • n,

where M is a function of n. c and c' that decreases for fixed c and c', 0 < c < c'

.

The geometrical nature of the proofs of Theorem 1 and Corollary 1, and the fact that

O(n^) is the maximum number of facets that the Voronoi diagram for a set of n sites in

13



d > 3, can have ([9], [16], [17], [19]), suggest the following conjecture. Here, it is assumed

that S is a set of n sites in d > 3, chosen independently from a uniform distribution in a

d—dimensional hypercube R, and that R has been divided into equal-sized cells, where

m is the floor of

Conjecture. For fixed d, -{c-log
)
is an upper bound for the expected number

of facets or (d — 1)— dimensional faces of the Voronoi diagram for 5 that are also facets of

Voronoi polyhedra of sites in the outermost LG(n) layers of cells of R. Consequently, 0{n)

is the expected number of facets of the Voronoi diagram for 5.

The following remark relates to the expected number of faces of the convex hull of 5.

Remark. From [2] there exist positive constants M[ and M!^ independent of n such that the

probability that the Voronoi polyhedron of any site in R^i is unbounded is bounded above

by

M; •exp(-7l/'-(LG(n))^).

From Proposition 3 and the definition of a closed site there exist positive constants Mi and

A/2 independent of n such that the probability that the Voronoi polyhedron of any site in

Uf_j RI' is unbounded is bounded above by

A/i •exp(-A/2-(LG(n))2).

Thus, from Propositions 6 and 7, and the Euler formula, the expected number of faces of

the convex hull of S is bounded above by

n M[ •exp(-A/2 •
(LG(n))") + • LG(n)) • A/i • exp(-

A

/2 (LG(n))2) ^

384 • (c" • LG'(n))^ + 12 •
• {c" • LG(n))2 ^ (1 -f v/2) • 48 • • c" • LG'(n)

= • (log n)^).

The next result is also of related interest, although its proof does not depend on any of

the results obtained thus far in this paper. Here, it is assumed that 5 and R are as in the

conjecture above and that d > 2.

Theorem 2. For fixed d, with the exception of at most an expected number of

14



sites in 5, the Voronoi polyhedron of each site in 5 can be constructed in expected constant

time.

Proof. Let k be the nonnegative integer for which Ak^ < d < 4(A: -t- 1)^.

Let R' denote the hypercube obtained by surrounding R with LG(n) + A: + 1 layers of cells

of the type into which R has been divided, and let S' denote the set of sites that are the

centroids of cells in the LG(n) + A; -f 1 new layers.

Given a site g in 5 U S', using arguments developed in [2], it can be shown that the Voronoi

polyhedron relative to 5 U 5' of g can be constructed in expected constant time if g is not

contained in any of the outermost LG(n) layers of cells of R'

.

Let 5o denote the set of sites in S' contained in the first A: + 1 layers of cells in R' that

surround R, and let Sq be the set of sites in 5 that are Voronoi neighbors relative to 5 U 5'

of sites in S'.

It follows from the geometry of the sets S and S' that the sites in S'q are the only sites in S'

that can be Voronoi neighbors relative to S U 5' of sites in S. Thus, since each of the first

A: + 1 layers of cells in R' that surround R contains an expected number of sites,

the expected number of sites in Sq must be

(A- ^ 1)
• 0(1) = 0(n'-'/‘^).

Finally, since for each g in 5 \ Sq. the Voronoi polyhedron relative to S U 5' of g equals the

Voronoi polyhedron relative to 5 of g, the proof of the theorem is complete.

We note that in the proof of Theorem 2, in order to use the arguments developed in [2],

the d— dimensional hypercube R is surrounded by LG(7i) + A: -r 1 additional layers of cells,

where k is the nonnegative integer for which Ak^ < d < A{k -f 1)^. However, as hinted b}' the

proof. A* + 1 layers would have sufficed.

The final result of this paper is a corollary to Theorem 2 that shows the existence of

relatively simple 2— and 3— dimensional algorithms of good expected complexity for con-

structing Voronoi diagrams. It simplifies resuTs in [3j.

Corollary 2. For d — 2 and d — 3, the Voronoi diagram for S can be constructed in

expected 0{n) and time, respectively.
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Proof. Let So and Sq be as defined in the proof of Theorem 2, and let 5i be the set of

sites in S \ Sq that are Voronoi neighbors relative to 5 U 5q (equivalently, relative to 5) of

at least one site in Sq-

According to Theorem 2 and its proof, the expected number of sites in So is and

the expected number of Voronoi neighbors relative to 5 U 5^ of a site in So is 0(1). Thus,

the expected number of sites in So U Sj is

0(n'-'/'^) + 0(71'-'/*^) • 0(1) = 0(71'-^/*^).

For d = 2, the Voronoi polygons of sites in So can be obtained b)' applying to So U Si an

0{k • log A:) algorithm, e. g. Shamos’ [21]. Thus, for d — 2^ the Voronoi diagram for S can

be constructed in

0(77) • 0(1) + • log(7i^'^^)) = 0(77)

expected time.

For d = 3, the Voronoi polyhedra of sites in So can be obtained by applying to So U Si an

0{k^) algorithm, e. g. Bowyer’s [4] (proven to be 0{k^) in [3]). Thus, for d = 3, the Voronoi

diagram for S can be constructed in

0(77) • 0(1) + 0{{n^^y) = 0(77^/^)

expected time.

The proof of the corollary is now complete.

4. Summary

Let S be a set of n sites chosen independently from a uniform distribution in a d— dimensional

hypercube R, and assume R has been divided into m'^ equal-sized cells, where m is the floor

of 77^^*^. In addition, let c and c' be positive numbers, and define LG(77) as the floor of

c- log 77, where log denotes the natural logarithm. Influenced by Bentley, Weide and Yao’s

work [2], we have shown that if d equals 3 then M •
77^"

• log 77)'^'*^^ is an upper bound

for the expected number of facets of the Voronoi diagram for S that are also facets of Voronoi

polyhedra of sites in the outermost LG(77) layers of cells of i?, where M is a function of 77,

c and c' that decreases for fixed c and c', 0 < c < c’. Subsequently, from this result and

results in [2], we have shown that 0(77) is an upper bound for the expected number of facets

of the Voronoi diagram for 5. Accordingly, we have conjectured that similar results hold

for fixed d > 3, and from the Euler formula have concluded that for d = 3, the same results
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hold for the 0— and 1— dimensional faces of the Voronoi diagram for 5. Actually, without

explicitly stating it, we have established the existence of an expected 0{n) algorithm for

constructing Voronoi diagrams in three dimensions. To see this, we note that for each site in

the outermost LG(7i) layers of cells of R, we have implicitly shown the feasibility of obtaining

a subset of S that contains all of the Voronoi neighbors of the site, in such a way that the

expected time involved in obtaining all such subsets for all such sites is bounded above by

M • (c-logn)^, where M is a function of n, c and c' that decreases for fixed c and

c', 0 < c < c'. Thus, since the intersection of k half-spaces in 3— dimensional space can be

found in time 0{k -logk) [18], a computation can be carried out to show that the Voronoi

polyhedra of the sites in the outermost LG(n) layers of R can be found in at most

(c • log n)‘*) • \og{0{n^^^ • (c • log n)'*)) = M' • • (c • log n)‘* • log n

expected time, where M' is a function of n, c and c' that decreases for fixed c and c',

0 < c < c'. This observation, together with results in [2], then shows the existence of the

algorithm. Finally, independently of the results described above, we have shown that for

fixed d >2, with the exception of at most an expected 0{n^ number of polyhedra, each

polyhedron in the Voronoi diagram for 5 can be constructed in expected constant time. This

result and its proof, together with results in [2], have allowed us to show the existence of

‘simple’ expected 0{n) and 0{n^^^) methods for constructing Voronoi diagrams in two and

three dimensions, respectively.
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